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Preface

The present textbook represents the first part of a four-volume series on experimental Physics. It covers
the field of Mechanics and Thermodynamics. One of its goal is to illustrate, that the explanation of our
world and of all natural processes by Physics is always the description of models of our world, which
are formulated by theory and proved by experiments. The continuous improvement of these models
leads to a more detailled understanding of our world and of the processes that proceed in it.

The representation of this textbook starts with an introductory chapter giving a brief survey of the his-
tory and development of Physics and its present relevance for other sciences and for technology. Since
experimental Physics is based on measuring techniques and quantitative results, a section discusses
basic units, techniques for their measurements and the accuracy and possible errors of measurements.

In all further chapters the description of the real world by successively refined models is outlined. It
begins with the model of a point mass, its motion under the action of forces and its limitations. Since
the description of moving masses requires a coordinate system, the transformation of results obtained
in one system to another system moving against the first one is described. This leads to the theory
of special relativity, which is discussed in Chap. 3. The next chapter upgrades the model of point
masses to spatially extended rigid bodies, where the spatial extension of a body cannot be ignored
but influences the results. Then the deformation of bodies under the influence of forces is discussed
and phenomena caused by this deformation are explained. The existence of different phases (solid,
liquid and gaseous) and their relation with external influences such as temperature and pressure, are
discussed.

The properties of gases and liquids at rest and the effects caused by streaming gases and liquids are
outlined in Chap. 7 and 8.

Many insights in natural phenomena, in particular in the area of atomic and molecular physics could
only be explored after sufficiently good vacua could be realized. Therefore Chap. 9 discusses briefly
the most important facts of vacuum physics, such as the realization and measurement of evacuated
volumina.

Thermodynamics governs important aspects of our life. Therefore an extended chapter about defini-
tions and measuring techniques for temperatures, heat energy and phase transitions should emphazise
the importance of thermodynamics. The three principle laws ot thermodynamics and their relevanve
for energy transformation and dissipation are discussed.

Chapter 11 deals with oscillations and waves, a subject which is closely related to acoustics and optics.

While all foregoing chapters discuss classical physics which had been developed centuries ago,
Chap. 12 covers a modern subject, namely nonlinear phenomena and chaos theory. It should give
a feeling for the fact, that most phenomena in classical physics can be described only approximately
by linear equations. A closer inspection shows that the accurate description demands nonlinear equa-
tions with surprising solutions.

A description of phenomena in physics requires some minimum mathematical knowledge. Therefore a
brief survey about vector algebra and vector analysis, about complex numbers and different coordinate
systems is provided in the last chapter.

A real understanding of the subjects covered in this textbook can be checked by solving problems,
which are given at the end of each chapter. A sketch of the solutions can be found at the end of the
book.

For further studies and a deeper insight into special subjects some selected literature is given at the
end of each chapter.
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Preface

The author hopes that this book can transfer some of his enthusiasm for the fascinating field of physics.
He is grateful for any comments and suggestions, also for hints to possible errors. Every e-mail will
be answered as soon as possible.

Several people have contributed to the realization of this book. Many thanks go the Dr. Schneider
and Ute Heuser, Springer Verlag Heidelberg, who supported and encouraged the authors over the
whole period needed for translating this book from a German version. Nadja Kroke and her team
(le-tex publishing services GmbH) did a careful job for the layout of the book and induced the author
to improve ambiguous sentences or unclear hints to equations or figures. I thank them all for their
efforts.

Last but not least I thank my wife Harriet, who showed much patience when her husband disappeared
into his office for the work on this book.

Kaiserslautern, December 2016 Wolfgang Demtroder
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1 Introduction and Survey

The name “Physics” comes from the Greek (“pvoikn” =
nature, creation, origin) which comprises, according to the def-
inition of Aristotle (384-322 BC) the theory of the material
world in contrast to metaphysics, which deals with the world of
ideas, and which is treated in the book by Aristotle after (Greek:
meta) the discussion of physics.

Definition

The modern definition of physics is: Physics is a basic sci-
ence, which deals with the fundamental building blocks of
our world and the mutual interactions between them.

The goal of research in physics is the basic understanding
of even complex bodies and their composition of smaller
elementary particles with interactions that can be catego-
rized into only four fundamental forces. Complex events
observed in our world should be put down to simple
laws which allow not only to explain these events quan-
titatively but also to predict future events if their initial
conditions are known.

In other words: Physicists try to find laws and correla-
tions for our world and the complex natural events and to
explain all observations by a few fundamental principles.

Note, however, that complex systems that are composed of
many components, often show characteristics, which cannot be
reduced to the properties of these components. The amalga-
mation of small particles to larger units brings about new and
unforeseen characteristics, which are based on cooperative pro-
cesses. The whole is more than the sum of its parts (Heisenberg
1973, Aristotle; metaphysics VII). Examples are living biologi-
cal cells, which are composed of lifeless molecules or molecules
with certain chemical properties consisting of atoms that do not
show these properties of the molecule.

The treatment of such complex systems requires new scientific
methods, which have to be developed.

This should remind enthusiastic physicists, that physics alone
might not explain everything although it has been very success-
ful to expands the borderline of its realm farther and farther in
the course of time.

1.1 The Importance of Experiments

The more astronomically oriented observations of ancient Baby-
lonians brought about a better knowledge of the yearly periods
of the star sky. The epicycle model of Ptolemy gave a nearly
quantitative description of the movements of the planets. How-
ever, modern Physics in the present meaning started only much
later with Galileo Galilei (1564-1642, Fig. 1.1), who performed
as the first physicist well planned experiments under defined
conditions, which could give quantitative answers to open ques-
tions. These experiments can be performed at any time under

conditions chosen by the experimentalist independent of exter-
nal influences. This distinguishes them from the observations
of natural phenomena, such as thunderstorms, lightening or vol-
canism, which cannot be influenced. This freedom of choosing
the conditions is the great advantage of experiments, because
all perturbing external influences can be partly or even com-
pletely eliminated (e. g. air friction in experiments on free falling
bodies). This facilitates the analysis of the experimental results
considerably.

Experiments are aimed questions to nature, which yield
under defined conditions definite answers.

The goal of all experiments is to find reasons and causes for all
phenomena observed in nature, to see connections between the
manifold of observations and to categorize them under a com-
mon law. Even more ambitious is the quantitative prediction of
future experimental results, if the initial conditions of the exper-
iments are known.

A physical law connects measurable quantities and con-
cepts. Its clear form is a mathematical equation.

Such mathematical descriptions give a clearer insight into the
relations between different physical laws. It can reduce the man-
ifold of experimental findings, which might seem at first glance
uncorrelated but turn out to be special cases of the same general
law that is valid in all fields of physics.

Examples

1. Based on many careful measurements of planetary or-
bits by Tycho de Brahe (1546—1601), Johannes Kepler
(1571-1630) could postulate his three famous laws
for the quantitative description of distances and move-
ments of the planets. He did not find the cause for
these movements, which was discovered only later by
Isaac Newton (1642—-1727) as the gravitational force
between the sun and the planets. However, Newton’s
gravitation law did not only describe the planetary or-
bits but all movements of bodies in gravitational fields.
The problem to unite the gravitational force with the
other forces (electromagnetic, weak and strong force)
has not yet been solved, but is the subject of intense
current research.

2. The laws of energy and momentum conservation were
only found after the analysis of many experiments in
different fields. Now they explain and unify many
experimental findings. Such a unified summary of
different physical laws and principles to a consistent
general description is called a physical theory. <



Figure 1.1

Its range of validity and predictive capability is checked
by experiments.

Since the formulation of a theory requires a mathematical
description, a profound knowledge of basic mathematics is in-
dispensible for every physicist.

1.2 The Concept of Models in
Physics

The close relation between theory and experiments is illustrated
by the following consideration:

If a free falling body in a vacuum container at the surface of
the earth is observed one finds that the fall time over a definite
distance is independent of the size or form of the body and also
independent of its weight. In contrast to this result is the fall
of a body in any fluid, instead of vacuum where the form of
the body does play a role because here perturbing influences,
such as friction often cannot be neglected. Neglecting these per-
turbations one can replace the body by the model of a point
mass. With other words: In these experiments the falling body

1.2 The Concept of Models in Physics

Left: Galileo Galilei. Right: Looking of Cardinales through Galilio’s Telescope

behaves like a point mass, because its size does not matter. The
theory can now give a complete description of the movement of
point masses under the influence of gravitational forces and it
can predict the results of corresponding future experiments (see
Chap. 2).

Now the experimental conditions are changed: For a body
falling in water the velocity and fall time do depend on size
and weight of the body, because of friction and buoyancy. In
this case the model of a point mass is no longer valid and has to
be broadened to the model of spatially extended rigid bodies
(see Chap. 5). This model can predict and quantitatively explain
the movements of extended rigid bodies under the influence of
external forces.

If we now further extend our experimental condition and let a
massive body fall onto a deformable elastic steel plate, our rigid
body model is no longer valid but we must include in our model
the deformation of the body, This results in the model of ex-
tended deformable bodies, which describes the interaction and
the forces between different parts of the body and explains elas-
ticity and deformation quantitatively (see Chap. 6).

The theory of phenomena in our environment is always the
description of a model, which describes the observations.
If new phenomena are discovered which are not correctly
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1 Introduction and Survey

represented by the model, it has to be broadened and re-
fined or even completely revised.

The details of the model depend on the formulation of the ques-
tion asked to nature and on the kind of experiments which
should be explained. Generally a single experiment tests only
certain statements of the model. If such an experiment confirms
these statements, we say, that nature behaves in this experiment
like the model predicts, i. e. nature gives the same answer to se-
lected experiments as the model.

Since theory can in principle calculate all properties of an ac-
cepted model it often gives valuable hints, which experiments
could best test the validity of the model.

Such a cooperation and mutual inspiration of theoretical
and experimental physics contribute in an outstanding way
to the progress in physical knowledge.

An impressive example is the development of quantum chro-
modynamics. This modern theory describes the substructure
of particles, which had been regarded as elementary, such as
protons, neutrons and mesons, but are really composed of still
smaller particles, the quarks. Theoretical predictions about the
possible masses of unstable particles, composed of these quarks,
which appear as resonances in the collision cross sections, al-
lowed the experimentalists to restrict their search which is like
the search for a needle in the haystack, to the predicted energy
range, which facilitated their efforts considerably.

The model concept for the description of observations in nature
is in particular obvious in the world of microphysics (atomic,
molecular and nuclear physics), because here the particles can-
not be seen with the naked eye and therefore a vivid picture
cannot be given. Attempts to transfer vivid models useful in
macrophysics to microphysics have often led to misunderstand-
ings and wrong ideas. One example is the particle-wave dualism
for the description of microparticles (see Vol. 3).

Figure 1.2 comprises the discussion above. One example shall
illustrate the development and refinement of models in physics.
The explanation of lightning by Greek philosophers was the
god Zeus who flung flashes to the earth while he was in a fu-
rious mood. Modern models explain lightning by the separation
of positive and negative electrical charges by charged water
drops floating in turbulent air, leading to large electric voltages
between different clouds or between clouds and earth with re-
sulting strong discharges. This modern model is based on many
detailed observations with high speed photographic instruments
and on experimental simulations of lightning in high voltage
laboratories where discharges can be observed under controlled
conditions.

The goal of sciences is the understanding of natural phenom-
ena observed under different conditions and to categorize their

REDUCTION due to natural laws
mathematical formulation

REDUCTION due to
experiments

e e ] FEWBASIC [ | Refined
MODELS D MODELS T MODEL
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PROBLEM | verty or iy the
DEFINITION y
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i ,
Observation of Sgphislﬁca‘ed
ut elegant
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Perception with Curiosity, reconsideration
sensory organs of basic observations
or instruments y

Figure 1.2 Schematic representation of the way, how scientists gain informa-
tion on nature

explanations under a common law. It is assumed, that the ob-
served reality exists independent of the observer. However, the
experiments performed in order to reproduce the observations
demand nevertheless characteristic features of the observing
subject, such as imagination for the planning of decisive ex-
periments, an open mind for new ideas, etc. Many ideas turn
out to be wrong. They can be already excluded by comparison
with former experiments. Such ideas which do not contradict
already existing knowledge can contribute to a working hypoth-
esis. Even such a hypothesis might be only partly correct and
has to be modified by the results of further experiments. If all
these results confirm the working hypothesis it can become a
proved theory, which allows us to summarize many observa-
tions to a general law (see Fig. 1.3).

This procedure where a theory is built up from many experimen-
tal results is called the inductive method.

In theoretical physics often a reverse procedure is chosen. The
starting point are fundamental basic equations such as Newton’s
law of gravitation or the Maxwell equations or symmetry laws.
From these general laws the outcome of possible experiments is
predicted (deductive method).

Both procedures have their justification with advantages and
drawbacks. They supplement each other.

An important aspect which one should keep in mind is summa-
rized in the following fundamental statement:

Physics describes objective and as accurate as possible the re-
ality of the material world. For human beings this is, however,
only a small section of the world we experience, as a specific
example illustrates: From the standpoint of physics a painting
can be described, by giving for each point (x, y) the reflectivity
R(A, x,y), which depends on the wavelength A, the spectrum of



1.3 Short Historical Review
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Figure 1.3 Schematic diagram of gaining insight into natural phenomena

the illuminating radiation source and the angles of incidence and
observation direction. A computer which is fed with these char-
acteristic input data can reproduce the painting very accurately.

Nevertheless this physical description lacks an essential part of
the painting, which is in the mind of the observer. When look-
ing at the painting a human being might remember other similar
paintings which he compares with the present painting, even if
these other paintings are not present but only in the mind they
still change the subjective impression of the observer. The sub-
ject of the painting may induce cheerful or sad feelings in the
mind of the observer, it may call back remembrances of former
events or impressions which are related to this painting. All
these different influences will determine the judgement about
the painting, which therefore might be different for different ob-
servers.

All these aspects are not the realm of physics, because they
are subjective, although they are essential for the quality of the
painting as judged by human beings and they represent an im-
portant part of the “reality” as perceived by us.

These remarks should warn physicists, not to forget that our fas-
cinating science is only competent for the description of the
material basis of our world. Although the other nonmaterial
realms are based on the material world their description and
understanding reaches far beyond physics. The question, how
living cells are built from inanimate molecules and how the
human mind is related to the structure of the brain are still pend-
ing but exciting problems, which might be solved in the future.
This is related to the question whether the human brain is more
than a highly developed computer, which is the subject of hot
discussions between the supporter of artificial intelligence and
biologists.

For more detailed discussions of these questions, the reader is
referred to the literature [1.1a—1.6].

1.3 Short Historical Review

The historical development of physics can be roughly divided
into three periods:

m  The natural philosophy in ancient times
m  The development of classical physics
=  The modern physics.

1.3.1 The Natural Philosophy in Ancient Times

The investigation of natural phenomena and the efforts to ex-
plain them by rational arguments started already 4000 years
ago. The astronomical observation of the Babylonian and the
Egyptian scientists were important for the prediction of an-
nual occurrences, such as the Nile flood or the correct time
for sowing. The Greek philosophers produced many ideas for
the explanation of the observed natural phenomena. All these
ideas were treated within the framework of general philosophy.
For example, the textbook on Physics (pvoikn akgoacic =
lectures on physics) by Aristotle contains mainly philosophical
considerations about space and time, movements of bodies and
their causes.

Probably the most important achievement of Greek philosophy
was the overcoming of the widespread mythology, where the
life of mankind was governed by a hierarchy of gods, whose
mood was not predictable and everybody had to win the lik-
ing of gods by sacrificing precious gifts to them. Most Greek
philosophers abandoned the belief, that the world was a playing
ground for gods, demons and ghosts who generated thunder-
storm, floods, sunshine or disastrous droughts just according to
their mood (see Homer’s Odyssey).

The Greek philosophers believed that all natural phenomena
obeyed eternal unchanging laws which were not always obvious

Chapter 1
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1 Introduction and Survey

Figure 1.4 Aristotle. With kind permission of the “Deutsches Museum”

because of the complex nature but which were independent of
men or gods. This means that it is, at least in principle, possible
to find such laws merely by human reason.

Example

A solar eclipse is no longer described by a monster that
engulfs the sun, but by the temporarily blocking of the
sunlight by the moon. This changes the solar eclipse from
an accidental event to a predictable occurrence. <

Famous representatives of Greek philosophy were Thales from
Milet (624-546 BC), who discovered magnetism and frictional
electricity, but could not correctly explain his findings. Empedo-
cles (495-435 BC) assumed that fire, water, air and soil formed
the four basic elements, which can mix, divide and build com-
positions from which all other material is composed. The
mathematical aspect of natural phenomena was introduced by
Pythagoras (572-492 BC) and his scholars who assumed that
numbers and mathematical relations between these numbers re-
flect the reality. They made acoustic experiments with striking
chords of different lengths and measured the resulting tones.
However, they erroneously generalized their results to other
fields such as the movement of the planets.

Anaxagoras (499-428 BC) was the first to postulated that the
world consists of many infinitely small different particles. The
force which keeps them together is the Nus (= world spirit).
Leucippus (489-428 BC) and his student Democritus (455—
370 BC) followed these ideas and refined this hypothesis. Dem-
ocritus assumed that the world consists of atoms (¢topuos =
indivisble), very small indivisible identical particles, which
move forever in an infinite empty space. The different forms
of matter differ only by the number and arrangement of atoms
of which they are composed. This hypothesis comes close to our
present understanding of the atomic composition of the different
elements in the periodic table (see Sect. 1.4).

The doctrine of the “atomists” was declined by Plato (427-
347 BC) and Aristotle (Fig. 1.4) since it contradicted their view
of a continuous world. Since these two philosophers had such
a great reputation the atomistic theory was forgotten for nearly
2000 years.

Aristotle (384-322 BC) (Fig. 1.4) regarded nature as the forever
moving and developing universe, where at the beginning a “di-
vine mover” was assumed who started the whole world. The
planets move apparently without obvious mover and therefore
Aristotle assumed that they do not consist of the four earthly
elements fire, air, water and soil but of a fifth “divine element”
which he called “Ether”. This ether should be massless and elas-
tic and should penetrate the whole world, including rigid bodies.

Archimedes (287-212 BC) studied in Alexandria, the centre of
science at that time. Later he moved to Syracuse on Sicily. He
was the greatest mathematician, physicist and technical expert
of his time. He succeeded to calculate the area and the perime-
ter of a circle, the surfaces of spheres, cones and cylinders
and he solved third order equations. As a physicist he deter-
mined the centre of mass for bodies of different shape, he found
the lever principle, calculated the buoyancy of bodies in water
(Archimedes’ principle), he built a planetarium and measured
star positions and proved the curvature of the sea surface. He
was famous for his technical achievements. He invented and
constructed about 40 different machines, such as the worm gear
drive, catapults, hydraulic levers for lifting ships and many ma-
chines used for warfare.

In spite of great success in many fields the Greek philosophers
could not reach natural science in the present sense, because
they did not accept the experiment as the touchstone for every
theory. They believed that an initial observation was sufficient
and that all subsequent conclusions and knowledge could be
achieved by pure thinking without further confirming or dis-
proving experiments.

This rather speculative procedure has influenced, due to the
great impact of Aristotle’s generally accepted teaching, many
generations of philosophers for more than 1500 years. Even
when Galilei Galileo observed through his telescope the four
moons of Jupiter, most philosophers and high members of the
church did not believe him, because his observation contradicted
the theory of Aristotle, who taught that the planets were fixed
on crystal spheres moving with the planet around the earth. If
moons circled around Jupiter they had to penetrate these crystal
spheres and would smash them. Therefore, the moons should



be impossible. Even when Galilei offered to the sceptics to look
through the telescope (Fig. 1.1b) many of them refused and said:
“Why should we look and be deceived by optical illusions when
we are sure about Aristotle’s statements”.

Although some inconsistencies in Aristotle’s teaching had been
found before, Galilee was the first to disprove by his observa-
tions and experiments the whole theory of the shining example
of Greek philosophy, in particular when he also advertised the
new astronomy of Copernicus, which brought him many ene-
mies and even a trial before the catholic court.

1.3.2 The Development of Classical Physics

One may call Galileo the first physicist in the present meaning.
He tried as the first scientist to prove or disprove physical the-
ories by specific well-planned experiments. Famous examples
are his experiments on the movement of a body with constant
acceleration under the influence of gravity. He also considered
how large the accuracy of his experimental results must be in or-
der to decide between two different versions for the description
of such movements. He therefore did not choose the free fall
(it is often erroneously reported, that he observed bodies falling
from the Leaning tower in Pisa). This could never reach the re-
quired accuracy with the clocks available at that time. He chose
instead the sliding of a body on an inclined plane with an angle
o against the horizontal. Here only the fraction g - sin« acts on
the body and thus the acceleration is much smaller.

His astronomical observations (phases of Venus, Moons of
Jupiter) with a self-made telescope (after he had learned about
its invention by the optician Hans Lipershey (1570-1619) in
Holland) helped the Copernican model of the planets circling
around the sun instead of the earth, finally to become generally
accepted (in spite of severe discrepancies with the dogmatic of
the church and heavy oppression by the church council).

The introduction of mathematical equations to physical prob-
lems, which comprises several different observations into a
common law, was impressively demonstrated by Isaac New-
ton (Fig. 1.5). In his centennial book “Philosophiae Naturalis
Principia Mathematica” he summarizes all observations and
the knowledge of his time about mechanics (including celes-
tial mechanics = astronomy) by reducing them to a few basic
principles (principle of inertia, actio = reactio, the force on a
body equals the time derivative of his momentum and the grav-
itational law).

Supported by progress of mathematics in the 17th century (an-
alytical geometry, infinitesimal calculus, differential equations)
the mathematical description of physical observations becomes
more and more common. Physics emancipates from Philosophy
and develops its own framework using mathematical language
for the clear formulation of physical laws. For example classical
mechanics experiences its complete and elegant mathemati-
cal form by J. L. de-Lagrange (1736—1813) and W. R. Hamilton
(1805-1865) who reduced all laws for the movement of bodies
under arbitrary forces to a few basic equations.

1.3 Short Historical Review

Figure 1.5 Sir Isaac Newton. With kind permission of the “Deutsches Museum
Miinchen”

Contrary to mechanics which had developed already in the 18th
century to a closed complete theory the knowledge about the
structure of matter was very sketchy and confused. Simultane-
ously different hypotheses were emphasized: One taken form
the ancient Greek philosophy, where fire, water, air and soil
were assumed as the basic elements, or from the alchemists who
favoured mercury, sulphur and salt as basic building blocks of
matter.

Robert Boyle (1627-1591) realized after detailed experiments
that simple basic elements must exist, from which all materi-
als can be composed, which however, cannot be further divided.
These elements should be separated by chemical analysis from
their composition. Boyle was able to prove that the former as-
sumption of elements was wrong. He could, however, not yet
find the real elements.

A major breakthrough in the understanding of matter was
achieved by the first critically evaluated quantitative experi-
ments investigating the mass changes involved in combustion
processes, published in 1772 by A. L. de Lavoisier (1743-1794).
These experiments laid the foundations of our present ideas
about the structure of matter. Lavoisier and John Dalton (1766—
1844) recognised metals as elements and postulated like Boyle
that all substances were composed of atoms. The atoms were
now, however, not just simple non-divisible particles, but had
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specific characteristics which determined the properties of the
composed substance. Karl Wilhelm Scheele (1724—1786) found
that air consisted of nitrogen and oxygen.

Antoine-Laurent Lavoisier furthermore found that the mass of
a substance increased when it was burnt, if all products of the
combustion process were collected. He recognized that this
mass increase was caused by oxygen which combined with the
substance during the burning process. He formulated the law
of mass conservation for all chemical processes. Two elements
can combine in different mass ratios to form different chemical
products where the relative mass ratios always are small integer
numbers.

The British Chemist John Dalton was able to explain this law
based on the atom hypothesis.

Examples

1. For the molecules carbon monoxide and carbon diox-
ide the mass ratio of oxygen combining with the same
amount of carbon is 1 : 2 because in CO one oxygen
atom and in CO, two oxygen atoms combine with one
carbon atom.

2. For the gases N,O (Di-Nitrogen oxide), NO (nitrogen
mono oxide), NoOj (nitrogen trioxide), and NO,) ni-
trogen dioxide) oxygen combines with the same mass
of nitrogen each time in the ratio 1 : 2 : 3 : 4. <

Dalton also recognized that the relative atomic weights con-
stitute a characteristic property of chemical elements. The
further development of these ideas lead to the periodic system
of elements by Julius Lothar Meyer (1830-1895) and Dimitri
Mendelejew (1834—1907), who arranged all known elements in
a table in such a way that the elements in the same column
showed similar chemical properties, such as the alkali atoms in
the first column or the noble gases in the last column.

Why these elements had similar chemical properties was recog-
nized only much later after the development of quantum theory.

The idea of atoms was supported by Amedeo Avogadro (1776—
1856), who proposed in 1811 that equal volumes of different
gases at equal temperature and pressure contain an equal number
of elementary particles.

A convincing experimental indication of the existence of atoms
was provided by the Brownian motion, where the random move-
ments of small particles in gases or liquids could be directly
viewed under a microscope. This was later quantitatively
explained by Einstein, who showed that this movement was in-
duced by collisions of the particles with atoms or molecules.

Although the atomic hypothesis scored indisputable successes
and was accepted as a working hypothesis by most chemists
and physicists, the existence of atoms as real entities was a mat-
ter of discussion among many serious scientists until the end of
the 19th century. The reason was the fact that one cannot see
atoms but had only indirect clues, derived from the macroscopic
behaviour of matter in chemical reactions. Nowadays the im-
provement of experimental techniques allows one to see images

of single atoms and the theoretical basis of atomic theory leaves
no doubt about the real existence of atoms and molecules.

The theory of heat began to become a quantitative science after
thermometers for the measurement of temperatures had been de-
veloped (air-thermoscope by Galilei, alcohol thermometer 1641
in Florence, mercury thermometer 1640 in Rome). The Swedish
physicist Anders Celsius (1701-1744) introduced the division
into 100 equal intervals between melting point (0 °C) and boil-
ing point (100°C) of water at normal pressure. Lord Kelvin
(1824-1907) postulated the absolute temperature, based on gas
thermometers and the general gas law. On this scale the zero
point T = 0K = —273.15°C is the lowest temperature which
can be closely approached but never reached (see Chap. 10).

Denis Papin (1647-1712) investigated the process of boiling
and condensation of water vapour (Papin’s steam pressure pot).
He built the first steam engine, which James Watt (1736—-1819)
later improved to reliable technical performance. The terms
amount of heat and heat capacity were introduced by the En-
glish physicist and chemist Joseph Black (1728-1799). He
discovered that during the melting process heat was absorbed
which was released again during solidification.

The more precise formulation of the theory of heat was es-
sentially marked by establishing general laws. Robert Mayer
(1814-1878) postulated the first law of the theory of heat, which
states that for all processes the total amount of energy is con-
served. Nicolas Carnot (1796-1832) started 1831 after some
initial errors a fresh successful attempt to describe the conver-
sion of heat into mechanical energy (Carnot’s cycle process).
This was later more precisely formulated by Rudolf Clausius
(1822-1888) in the second law of heat theory.

A real understanding of heat was achieved, when the kinetic
gas theory was formulated. Here the connection between heat
properties and mechanical energy was for the first time clearly
formulated. Since the dynamical properties of molecules mov-
ing around in a gas were related to the temperature of a gas, the
heat theory was now called thermodynamics, which was for-
mulated by several scientists (Clausius, Avogadro, Boltzmann)
(see Fig. 1.6). They proved under the assumption that gases con-
sist of many essentially free atoms or molecules, which move
randomly around and collide with each other, that the heat en-
ergy of a gas is equivalent to the kinetic energy of these particles.
The Austrian physicist Joseph Loschmidt (1821-1895) found
that under normal pressure the gas contains the enormous num-

ber of about 3 - 10'? atoms per cm®.

Optics is one of the oldest branches of physics which was al-
ready studied more than 2000 years ago where the focussing of
light by concave mirrors was used to ignite a fire. However,
only in the 17th century optical instruments and their imag-
ing properties were studied systematically. A milestone was
the fabrication of lenses and the invention of telescopes. Willi-
brord Snellius (1580-1626) formulated his law of refraction
(see Vol. 2, Chap. 9), Newton found the separation of differ-
ent colours when white sun light passed through a prism. The
explanation of the properties of light was the subject of hot dis-
cussions. While Newton believed that light consisted of small
particles (in our present model these are the photons) the ex-
periments on interference and diffraction of light by Grimaldi



Figure 1.6 Ludwig Boltzmann. With kind permission from Dr. W. Stiller Leipzig

(1618-1663), Christiaan Huygens (1629-1695), Thomas Young
(1773-1829) and Augustin Fresnel (1788—1827) decided the
dispute in favour of the wave theory of light. Melloni showed
1834 that the laws for visible light could be extended into the
infrared region and Max Felix Laue (1879-1960) and William
Bragg (1862-1942) demonstrated the wave character of X-rays,
which had been discovered by Conrad Roentgen (1845-1923),
by their famous experiments on X-ray diffraction in crystals.

The velocity of light was first estimated by Ole Rgmer (1644—
1710) by astronomical observations of the appearance time of
Jupiter moons and later more precisely determined by Huy-
gens. With measurements on earth Jean Foucault (1819-1868)
and Armand Fizeau (1819-1896) could obtain a rather accurate
value for the velocity of light.

William Gilbert (1544-1603) was called “the father of electric-
ity”. He investigated the magnetic field of permanent magnets
and measured the magnetic field of the earth with the help of
magnetic needles. He made extensive experiments on friction
electricity and divided the different materials into electrical and
non-electrical substances. He built the first electroscop and
measured the forces between charged particles. Stephen Gray
(1670-1736) discovered the electrical conductivity of different
materials and made detailed experiments on electric induction.
He made electricity very popular by spectacular demonstrations.

1.3 Short Historical Review

Figure 1.7 James Clerk Maxwell. With kind permission from the American
Institute of Physics, Emilio Segre Visual hives, College Park MD

Charles Augustin Coulomb (1736—-18006) built the first electrom-
eter, constructed the Coulomb torsion balance and formulated
the famous Coulomb law for the forces between charged parti-
cles. Benjamin Franklin (1706—-1790) recognized that lightening
is not a fire but an electrical discharge and constructed the first
lightning conductor. Luigi Galvani (1737-1798) discovered the
stimulation of nerves by electrical currents (frog’s leg experi-
ments); and the contact voltage between different conductors,
which lead to the construction of batteries (Galvanic element).
Allessandro Volta (1745-1827) continued the experiments of
Galvani and he categorized the different metals in an electro-
chemical series.

Hans Christean Oersted (1777-1851) discovered the magnetic
field of an electric current. Andre Marie Ampere (1775-1836)
coined the terms “electrical current” and electrical voltage. By
many detailed experiments, he established modern electrody-
namics.

Michael Faraday (1791-1867) performed basic experiments on
the relations between electric currents and magnetic fields (Fara-
day’s induction law). He prepared the foundations for the
development of alternating currents and their applications.

James Clerk Maxwell (1831-1879) (Fig. 1.7) summarized all
known results of former experiments by a few basic equations
(Maxwell’s equations) and gave them a general mathematical
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1 Introduction and Survey

formulation, which represents the basis for electrodynamics and
optics. Their solutions are electro-magnetic waves, which found
a brilliant confirmation by the experiments of Heinrich Hertz
(1857-1894), who showed that these waves were transversal and
propagate in space with the velocity of light.

1.3.3 Modern Physics

At the end of the 19th century, all problems in physics seemed
to be solved and many physicists believed, that a closed theory
describing all known facts could be realized in the near future.

This optimistic opinion changed, however, in a dramatic way,
induced by the following experimental findings.

m  The Michelson experiment (see Sect. 3.4) showed without
doubt, that the velocity of light is constant, independent of
the direction or the velocity of the observer. This result was
in sharp contrast to former concepts and induced Albert Ein-
stein (Fig. 1.8) to formulate his theory of special relativity
(see Sect. 3.6).

m  Experimentally found deviations from the theoretically ex-
pected spectral intensity distribution of the thermal radiation
of hot bodies, as calculated by Stephan Boltzmann and Wil-
helm Wien, could not be explained by classical physics. This

Figure 1.8 Albert Einstein. With kind permission of the “Deutsches Museum
Miinchen”

Figure 1.9 Max Planck. With kind permission of the “Deutsches Museum
Miinchen”

discrepancy led Max Planck (1858-1947) (Fig. 1.9) to the
conclusion of quantized energy of radiation fields. This bold
assumption, which could perfectly reproduce the experimen-
tal results, represented the beginning of quantum theory that
was later on imbedded in a concise mathematical framework
by Erwin Schrodinger (1887-1961) and Werner Heisenberg
(1901-1976) (see Vol. 3). The concept of energy quanta
was further supported experimentally by the photoelectric
effect, which was quantitatively explained by Einstein, who
received the Nobel Prize for his theory of the photo-effect
(not for his theory of relativity!).

m New experimental techniques allowed investigating the
structure of atoms and molecules. The light emitted from
atoms or molecules could be sent through a spectrograph
and showed discrete lines, indicating that it has been emit-
ted from discrete energy levels. Through the development of
spectral analysis by Gustav Robert Kirchhoff (1824-1887)
and Robert Bunsen (1811-1899) it was found that atoms of
a specific element emitted spectral lines with wavelengths
characteristic for this element. The results could not be ex-
plained by classical physics but needed quantum theory for
their interpretation. Today the physics of atomic electron
shells and their energy levels can be completely described
by a closed theory called quantum-electrodynamics.



This illustrates that always in the history of natural sciences new
experimental results forced physicists to revise former concepts
and to formulate new theories which, however, should include
proved earlier results. In most cases the old theories were not
completely abandoned but their validity range was restricted and
more precisely characterized. For example the classical physics
is perfectly correct for the description of the motion of macro-
scopic bodies or for many applications in daily life, while for
the description of the micro-world of atoms and molecules it
may completely fail and quantum theory is necessary.

The properties of atomic nuclei could be only investigated af-
ter appropriate detectors had been developed. Nuclear physics
is therefore a rather new field where most of the results were
obtained in the 20th century. The substructure of atomic nuclei
and the physics of elementary particles could start after parti-
cle accelerators could be operated and many results in this field
have been achieved only recently.

This short historical review should illustrate that many concepts
which today are taken for granted, are not as old and have been
accepted only after erroneous ideas and a long way of successive
corrections, guided by new experiments. It is worthwhile for
every physicist to look into some original papers and follow the
gradual improvements of concepts and representation of results.

More extensive literature about the historical development of
physics and about bibliographies of physicists can be found in
the references [1.6—1.14c].

1.4 The Present Conception of Our
World

As the result of all experimental and theoretical investigations
our present model of the material world has been established
(Fig. 1.10). In this introduction, we will give only a short sum-
mary. The subject will be discussed more thoroughly in Vol. 3
and 4 of this textbook series.

Macroscopic bodies
(solid, liquid and gaseous)

4 4
‘ Atoms }——{ Molecules ‘
} 4

‘ Nuclei and electrons ‘

1

Atomic nuclei
(protons + neutrons)

!

‘ Quarks, gluons ‘

Figure 1.10 Build up of our material world (H.J. JodI [1.14b])

1.4 The Present Conception of Our World

Elementary Particles

The entire material world known up to now is composed of
only a few different particles. The three most important are the
electron (e™), the proton (p™) and the neutron (n). All other
elementary particles (muons, w-Mesons, Kaons, A-particles
etc.) exist after their production only a very short time (1076
10713 s). They convert either spontaneously or by collisions into
other particles which finally decay into p*, e~, neutrinos or pho-
tons h-v. Although neutrinos are stable particles they show such
a small interaction with matter that they are difficult to detect
and they therefore play no role in daily life.

Recent experiments and theoretical consideration have shown,
that the particles p™, n, mesons and hyperons, which had been
regarded as elementary, show a substructure (see Vol. 4), Ac-
cording to our present understanding they consists of smaller
particles, called “quarks”, which occur in 6 different species.

All building blocks of matter can be divided into two groups:

1. the quarks, which build up the heavy particles (baryons),
such as proton, neutron, mesons and hyperons
2. the light particles (leptons) electron, myon and neutrino.

Each of these two groups consists of three families of elemen-
tary particles, which are listed in Tab. 1.1. For each of these
particles there exists an anti-particle with equal mass but oppo-
site charge. For instance the anti-particle of the electron e~ is the
positron e*, the proton p* has as anti-particle the anti-proton p~
and the anti-neutron has the same mass and the charge zero as
the neutron.

According to present theories the interaction between the parti-
cles can be described by the exchange of “interaction particles”,
which are called the quanta of the interaction field. For exam-
ple the quanta of the electromagnetic field, which determine the
interaction between charged particles are the photons h - v.

The quanta of the strong interaction between nucleons are called
gluons. The gravitons are the quanta of the gravitational field.
Our present knowledge is that there exist only four different
kinds of interaction, which are summarized in Tab. 1.2.

An essential goal of present research is to reduce the four types
of interaction to one common force (grand unification). The re-
duction of the manifold of different particles to two groups of
elementary particles was in a certain sense successful, because
the classification into two groups with three families in each
group gives a rather simple arrangement. However, the num-
ber of 24 different particles together with their antiparticles is
still large and adding the 15 interaction quanta the total number
of elementary particles is 39. Whether the “grand unification”
will allow a further reduction or a simpler ordering scheme is
still an open question.

This field of research is very interesting because it ventures to
the limit where matter and energy might become indistinguish-
able. It is also closely related to processes occurring at the very
beginning of our universe where elementary particles and their
interaction played a major role in the extremely hot fireball dur-
ing the first seconds of the big bang.

1
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Table 1.1 The three families of Leptons and Quarks

Leptons

Name Symbol Mass MeV/c? Charge
Electron cn 0.51 =l
Electron neutrino Ve <107 0
Myon wo —105.66 —1
Myon neutrino Vyu <10 0
Tau-lepton T 1840 =l
Tau-neutrino v <10 0

Table 1.2 The four types of interaction between particles (known up to now)
and their field quanta. There are 8 gluons, 2 charged (W* and W~) W bosons,
1 neutral boson (2°) and probably only 1 graviton with spin | = 2

Interaction Field quantum Rest mass MeV/c?
Strong interaction Gluons 0
El. magn. interaction Photons 0
Weak interaction W bosons 81,000

Z bosons 91,010
Gravitational interaction Gravitons 0

Atomic Nuclei

Protons and Neutrons can combine to larger systems, the atomic
nuclei. The smallest nucleus is the proton as the nucleus of the
hydrogen atom. The largest naturally existing nucleus is that of
the uranium atom with 92 protons and 146 neutrons. Its diam-
eter is about 107'* m. Besides the nuclei found in nature there
are many artificially produced nuclei, which are however, gen-
erally not stable but decay into other stable nuclei. Nearly every
atom has many isotopes with nuclei differing in the number of
neutrons. Meanwhile there is a wealth of information about the
strong attractive forces, which keep the protons and neutrons
together in spite of the repulse electrostatic force between the
positively charged protons.

Atoms

Atomic nuclei together with electrons can form stable atoms,
where for neutral atoms the number of electrons equals the num-
ber of protons. The smallest atom is the hydrogen atom, which
consists of one proton and one electron. The diameter of atoms
ranges from 5- 107" m to 5- 107! m and is about 10,000 times
larger than that of the nuclei, although the mass of the nuclei
is about 2000 times larger than that of the electrons. The elec-
trons form a cloud of negative charge around the nucleus. The
electro-magnetic interaction between electrons and protons has
been investigated in detail and there is a closed theory, called
quantum electrodynamics, which describes all observed phe-
nomena of atomic physics very well.

The chemical properties of the different atoms are completely
determined by the structure of the atomic electron shell. This is
illustrated by the periodic system of the elements (Mendelejew
1869, Meyer 1870), where the elements are arranged in rows
and columns and ordered according to the number of electrons
of the atoms (see Vol. 3). With each new row a new electron

Quarks

Name Symbol Mass MeV/c? Charge
Up u ~ 300 2/3
Down d ~ 306 -1/3
Charm © ~ 1200 2/3
Strange s ~ 450 —1/3
Top t 1.7-10° 2/3
Bottom b ~ 4300 —1/3

shell starts. In each column the number of electrons in the outer
shell (valence electrons) is equal and the chemical properties of
the elements in the same column are similar. A real understand-
ing of the periodic table could only be reached 60 years later
after the quantum theory of atomic structure had been devel-
oped.

Molecules

Two or more atoms can combine to form a molecule, where the
atoms are held together by electro-magnetic forces. The mag-
nitude of the binding energy depends mainly on the electron
density between the nuclei. Biological molecules such as pro-
teins or DNA-molecules may consist of several thousand atoms
and have diameters up to 0.1 um, which is about 1000 times
larger than the hydrogen atom. Molecules form the basis of
all chemical and biological substances. The properties of these
substances depend on the kind and structure of the molecules,
such as the geometrical arrangement of the atoms forming the
molecule.

Macroscopic Structures, Liquids and Solid Substances

Under appropriate conditions many equal or different atoms
can form large macroscopic bodies which can contain a huge
number of atoms. Depending on temperature they can exist in
the solid or liquid phase. The interaction between the atoms
is in principle known (el. magn. forces) but difficult to calcu-
late because of the enormous number of participating atoms
(10?2 /cm?®). Most theoretical treatments therefore use statistical
methods. Up to now many characteristics of macroscopic bodies
can be calculated and understood from their atomic structure but
a general exact theory of liquids and solids, which can explain
also finer details, is still not available. Therefore approximations
are used where each approximate model can describe special
features quite well but others less satisfactorily. Examples are
the band structure model, which can explain the electrical con-
ductivity but not as well the elastic properties.

Structure and Dynamics of Our Universe

In our universe all of the constituents discussed so far are
present.

m  Free elementary particles (p*, n, €, photons hv, also short
lived mesons in the cosmic radiation, in the atmosphere of
stars and in hot interstellar clouds, in the hot fireball during
some minutes after the big bang, of our universe).
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Figure 1.11 Family tree of physics (with kind permission of Dr. H. J. Jodl) [1.14b]

Atomic nuclei in the inner part of stars, in neutron stars and with elementary particles and then proceed gradually to larger
in hot gas clouds.

systems. However, since the theoretical treatment of elementary
Atoms in atmospheres of planets and stars and in the inter- particles and nuclear physics is rather difficult, it is advisable
stellar medium. from the didactical point of view to go the opposite way, We
therefore start with classical physics of macroscopic bodies and
proceed then to smaller structures like atoms, molecules, nuclei
and elementary particles (see Fig. 1.11). The Physics courses

= Solid and liquid macroscopic bodies (in planets and moons, therefore start with classical mechanics and thermodynamics
in meteorites). (Vol. 1), continue with electrodynamics and optics (Vol. 2) and
For the understanding of the origin and the development of then .Wlth a basic knowledge of.quantul.n mechamcs treat the

our universe the interactions between these particles have to be P h}.,SICS of atoms, molecules., solid and liquid sFates (VO!' 3) 1o
known. Although in the early stage of the universe and later on arnve ﬁna.lly at nuclear physics, elementary particle physics and
in the interior of stars all four kinds of interaction played a role, astrophysics (Vol. 4).

gravitation is by far the most important force between celestial
bodies such as stars, planets and moons.

Molecules in molecular clouds, in comet tails, in interstellar
space, in the atmospheres of cold stars and of planets.

There exist a large number of good books on the subjects treated
in this section [1.14b—1.19], which discuss in more detail the
questions raised here. In order to gain a deeper understanding
T . of how all this knowledge has been achieved, a more thorough
Systematic Hierarchy of Physics study of basic physics, its fundamental laws and the experimen-
The systematic building up principle from small to larger enti- tal techniques, which test the developed theories, is necessary.
ties discussed so far would suggest to start studies of physics The present textbook will help students with such studies.
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1.5 Relations Between Physics and
Other Sciences

Since physics deals with the basic elements of our material
world it represents in principle the foundations of every natural
science. However, until a few decades ago the scientific meth-
ods in chemistry, biology and medicine were more empirically
oriented. Because of the complex nature of the objects studied
in these sciences it was not possible to start the investigations
“ab initio” in order to understand the atomic structure of large
complex molecules and biological cells to say nothing of the
human body and its complex reactions as the research object in
medicine. Therefore, in former years a more phenomenological
method was preferred.

With refined experimental techniques developed in recent years
(electron microscopy, (Fig. 1.12), tunnel microscopy, x-ray
structural analysis, neutron diffraction, nuclear magnetic res-
onance tomography and laser spectroscopy) in many cases it
became possible to uncover the atomic structure even of com-
plex molecules such as the DNA (Fig. 1.13). Here physics was
helpful in a twofold way: First of all physicists developed, of-
ten in cooperation with engineers, the experimental equipment
and secondly it provided the theoretical understanding for the
atomic basis of the research objects. Therefore the differences
in the research methods become less and less important and the
cooperation between researchers of different fields is rapidly in-
creasing, indicated by the growing number of interdisciplinary
research projects. For example the essential question of the
relation between molecular structure and chemical binding is
attacked in common efforts by experimental chemists, theoret-
ical quantum chemists and physicists. Overstated one may say
that chemistry is applied quantum theory and therefore a branch
of physics.

Due to the complex diagnostic techniques in medicine the coop-
eration between physicists and medical doctors has enormously
increased as will be outlined in the next section.

Figure 1.12 Scavenger Cells visualized with an electron microscope
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Figure 1.13 Double Helix of DNA (deoxyribonucleic acid)

1.5.1 Biophysics and Medical Physics

Meanwhile biophysics has developed to an independent branch
of physics. Some of the many research projects are the physi-
cal processes in living cells, e. g. the energy balance during cell
processes, the ion transport through cell membranes, the pene-
tration of bacteria and viruses into cells, the different steps of
photosynthesis or the visual process. The very sensitive detec-
tion techniques for the detection of single molecules, developed
in physics laboratories, allow the tracing of single laser excited
molecules on their way from outside a cell through membrane
channels into the cell interior. In particular the realization of
ultra short laser pulses down to below a femtosecond ( 10~135%)
opens for the first time the possibility to view ultrafast processes
such as molecular isomerisation.

In recent years, medical physics has been established at many
universities and research institutes. The development of new
diagnostic techniques and therapy methods are based on exper-
imental techniques invented and optimized in physics laborato-
ries and on new insights about the interaction between radiation
and tissue. Examples of such new methods are ultrasonic di-
agnostics with improved spatial resolution, nuclear magnetic
resonance tomography, thermography or laser-induced cell flu-
orescence. One specific example is the localization of brain
tumours by optical coherence tomography and methods for



their operation with laser techniques, which are investigated
in cooperation between laser physicists and neurosurgeons.
[1.20a-1.23b]

1.5.2 Astrophysics

For ages the closest relation with physics had the astronomy,
which tried to determine the positions of stars, the movement
of planets and the prediction of eclipses. Modern astronomy
goes far beyond this type of problems and looks for informa-
tion about the composition of stars, conditions for their birth
and the different stages of their development. It turns out that
nearly all branches of physics are necessary in order to solve
these problems. Therefore, this part of modern astronomy is
called astrophysics. The cooperation with physicists who mea-
sure in the laboratory processes relevant for the understanding
of star atmospheres and the energy production in the interior of
stars has greatly improved our knowledge in astrophysics (see
Vol. 4). One of the results is for example, that in the universe
the same elements are present as can be found on earth and that
the same physical laws are valid as known from experiments
on earth. The correct interpretation of many astrophysical ob-
servations could only be given, because laboratory experiments
had been performed which could give unambiguous decisions
between several possible explanations of astrophysical phenom-
ena.

The following facts have contributed essentially to the impres-
sive progress in astronomy.

m The development of new large telescopes in the optical,
near infrared and radio region, of satellites and space probes
(Fig. 1.14) and sensitive detectors.

m New and deeper knowledge in the fields of atomic, nu-
clear and elementary particle physics, in plasma physics and
magneto-hydrodynamics.

m  Faster computers for the calculation of more complex mod-
els for the present composition, the birth, evolution and final
stages of stars [1.24a—1.24c].

1.5.3 Geophysics and Meteorology

Although geophysics and meteorology have developed into
autonomous disciplines, they are completely based on funda-
mental physical laws. In particular, in meteorology it is evident
how important fundamental physical processes are, such as the
interaction of light with atoms and molecules, collisions be-
tween electrons, ions, atoms and molecules or light scattering
by aerosols and dust particles. Without the detailed understand-
ing of these and other processes the complex preconditions for
the local and global climate could not be calculated within a cli-
mate model. However, it turns out, that in spite of the knowledge
of these basic processes it is often not possible to give a reliable
long term weather forecast, because already tiny changes of the
present status of the atmosphere could result in huge changes of

1.5 Relations Between Physics and Other Sciences
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Figure 1.14 Lastinspection of the Giotto-space probe before its journey to the
comet Halley (with kind permission of the European Space Agency ESA)

its future development. The system shows a chaotic behaviour.
This astonishing feature has lead to a new branch of physical and
mathematical sciences, called chaos research (see Chap. 12).
[1.25-1.30b]

1.5.4 Physics and Technology

The application of physical research has pushed the develop-
ment of our industrial society in a way, which can hardly be
overestimated. Examples are the inventions of the steam en-
gine, the electromotor, research on semiconductors, which form
the basis of computers, information technology, such as the
telephone and extremely fast optical communication over glass
fibres, Lasers and their various applications, precision measur-
ing techniques down into the nanometre range. This connection
between applied physics and technology has received new im-
petus through the urgent problems of energy crisis, lack of raw
materials, global warming, which have to be solved within a
limited time. Urgent problems are, for example

m the development of new energy sources, such as nuclear
fusion, which demands a profound knowledge of plasma
physics under extreme conditions,
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Figure 1.15 Hexagonal structure of a graphite surface, visualized by a tunnel
microscope (M. Miiller, H. Ochsner, TU Kaiserslautern)

the optimization of wind converters,

= the development of solar cells with sufficiently high efficien-
cies,

® increasing the conversion efficiency from heat into electrical
energy,

= improving the transport efficiency of energy.

Further examples are the development of reliable electrically
driven cars with new designs of batteries, hydrogen technology,
magnetically levitated railways (trans-rapid), development of “-
clean air cars” etc.

Of particular interest for many branches of industry is the re-
search on new materials such as met-glasses (amorphous metals
with particular properties such as high tensile strength), com-
pound materials or amorphous semiconductors, which have
found meanwhile numerous applications. Surface science
(Fig. 1.15) has given the basic understanding for corrosion pro-
cesses, catalytic effects and the properties of thin films in optics
and for the creation of very hard surfaces of tools, which de-
crease the wear and tear of such tools considerably.

One should keep in mind that for densely populated countries
such as Germany, which do not have sufficient raw material at
their disposal, technological innovations and inventions of new
products as well as progress in environmental protection are es-
sential for a better and safe life in the future. Here physicists
encounter great challenges and new ideas and a critical but prag-
matic way of thinking are demanded, characteristics, which are
trained during the physics education. [1.30a—1.30b]

1.5.5 Physics and Philosophy

Since its beginning in the Greek period, physics always had a
close relation to philosophy (see Sect. 1.3). Already for the
Greek philosophers recognition in natural sciences gave new

directions to the philosophical way of thinking. The essential
goal of modern physics is the understanding and the detailed de-
scription of our world and the reduction of many observations
to a few general laws. The essential point is, that the human
consciousness and the attitude against the human surroundings
are changed by this new knowledge. The fascinating question,
how cognitive faculty is received by communication with other
thinking persons and whether the structured mind which allows
to process this information to form a unique world view, had
been already formed prenatal had been extensively discussed
by the great philosopher Immanuel Kant (1724—1804) in his fa-
mous book “Kritik der reinen Vernunft”.

Nowadays biophysicists and neurologists try to understand by
well aimed experiments the connection between specified parts
of the brain and the storage of information which we receive
from outside. All these progress in natural sciences has influ-
enced philosophical theories. Although the approach to this
subject is often different for philosophers and scientists, an in-
tense discussion between the representatives of the two camps
could remove many misunderstandings and could lead to a more
extensive view of our world. If such discussions should be fruit-
ful, both sides have to learn more about the way of thinking and
arguing of the other side. The study of physics and its way of
arguing can shape the way we are looking onto our world and
represents an essential part of our culture.

An important aspect of such cooperation is the critical evalu-
ation of ethical questions related to scientific research, which
have found more and more concern in our society. Since the de-
velopments in physics and their applications, essentially change
our daily life, physicists have to think about the consequences of
their scientific results. The research itself is unbiased and value-
free. Ethical problems arise when the results of basic research
are applied in such a way, that society might be damaged by
such applications. For instance, the discovery of nuclear fission
by Otto Hahn could be used for peaceful applications as well as
to build an atomic bomb; lasers can be used for health treatment
in medicine or as laser weapons.

People who demand social relevance for every research projects
forget that this is a question of possible applications, which can
often not be predicted from basic research. There are many
examples where basic research was done without any ideas of
possible benefit for the public, such as the beginning of solid
state physics, low temperature physics, semiconductor research.
[1.31-1.35]

1.6 The Basic Units in Physics,
Their Standards and
Measuring Techniques

Since any objective description of nature demands quantitative
relations between measurements of different objects, which can
be expressed by numbers, one has to define units for the results
of measurements. This means that every numerical result of a
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measurement must be expressed in multiples of such units. One
needs a scale that can be compared with the measured quantity.

To measure always means to compare two quantities!

There are several possibilities for choosing units. For the length
unit for instance one may use units which are given by nature
such as foot or the distance between two atoms in a crystal;
for the time unit the time interval between two successive heart
beats, or the time between two culminations of the sun. A bet-
ter choice of physical units is to use arbitrary but suitable units,
which are conveniently adapted to daily life. Such units have
to be defined by standards with which they can be always com-
pared (calibration).

Every standard has to meet the following demands:

= [t must be possible to compare with sufficient accuracy
the quantity in question with the standard.

m  The standard must be reproducible with the demanded
accuracy.

m  The production and the safekeeping of the standard and
the comparison with measurable elements must be pos-
sible with justifiable expenditure.

According to these demands ulna, foot or heartbeat period are
not good standards, because they are dependent on the person
who measures them. They may change with time and are not
general constants.

The quality of a measurement is judged according to the
following aspects:

= How reliable is the measurement?
Here the experimental apparatus plays an important
role, the interpretation of the experimental results by
the observer; his ability and experience (see for in-
stance temperature estimations guided by our senses
(Chap. 10 or “optical illusions” Vol. 2)).

= How accurate is the measurement, i.e. how large is the
maximum possible error of the result?

= Are measurements performed under different experi-
mental conditions reproducible?

Of course, each physical quantity cannot be measured more
accurately than the accuracy of the normal’s measurement.
Therefore such a normal should be chosen which is so accu-
rately defined that it does not represent a limitation for the
accuracy of the measurement. For many measurements, a stop-
watch or a micrometre-screw might not be accurately enough
and should not be used as normal.

The question is now how many basic units are necessary to de-
scribe all physical quantities. Since all physical processes go

off in space and time one certainly needs basic units for length
and time. We will see that all physical quantities can be derived
from three basic units for length, time and mass. One would
therefore need in principle only these three basic units. It turns
out, however, that it is useful to add four more basic units for
the temperature, the mole fraction of material, for the strength
of an electric current and the luminous intensity of radiation
sources, because many derived units can be simpler expressed
when these four additional units are included [1.37-1.39].

In the following we will discuss the different basic units and
also give a short outline of the historical development of this
units and their increasing accuracy. This shall illustrate how
new measurement techniques have improved the quality of a
measurement and asked for new and better standards that could
meet the demands for higher accuracy and reproducibility.

1.6.1 Length Units

As length unit the metre (m) was chosen in 1875 which was
originally meant as the 1/10,000,000 fraction of the equator
quadrant (Y4 of the earth circumference). The prototype as the
primary standard was kept in Paris. In order to maintain this
normal as reproducible as possible, it was realized by the dis-
tance between two markers on a platinum-iridium rod with a
low thermal expansion coefficient. The rod was kept in a box at
0°C. More precise later measurements of the earth circumfer-
ence showed that the metre deviated from the original definition
by about 0.02%. The comparison of length standards with this
prototype was only possible with a relative uncertainty of 107°.
This means that it is only possible to detect a deviation of larger
than 1/1000 mm. This does not meet modern requirements of
accuracy.

Therefore in 1960 a new length standard was defined by the
wavelength A of the orange fluorescence line of a discharge
lamp filled with the krypton isotope 86 (Fig. 1.16), where
the conditions in the krypton lamp (pressure, discharge cur-
rent and temperature) were fixed. The metre was defined as
1,650,763.73 - A. The wavelength A can be measured with an
uncertainty of 1078, which is 100 times more accurate than the
comparison with the original metre standard in Paris.

With increasing accuracy of measurements this standard was
again abandoned and a new standard was chosen, which was
based on a completely new definition. Since time can be mea-
sured much more accurate than length, the length standard was

E |‘_ A= 16501763,73 m _’I

Figure 1.16 The old definition of the length unit, based on the wavelength of
a Krypton line (valid from 1960-1983)

x/m
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Table 1.3 Range of actual lengths in our world

Object Dimension/m

Radius of the electron < 10°'®
Radius of the proton 10~
Distance between atoms in solids 1010
Thickness of the skin of a soap bubble 1077
Mean distance between air molecules at 10° Pa 10~°
Radius of the earth 6-10°
Distance earth-moon 4.108
Distance earth—sun 1.5-10!
Diameter of the solar system 10"
Distance to the nearest star 4.10'
Diameter of our galaxy 3.10%
Extension of the universe 3.10%

related to time measurements via the velocity ¢ of light. The
weighted average of the most precise measurement of the speed
of light in vacuum is now defined as

¢ =299,792,458 m/s .

This means that the speed of light is no longer a result of new
measurements but is defined as a fixed value.

Definition

The length unit 1 m is now fixed by the following defini-
tion:

One metre is the length of the path that is travelled by
light in vacuum during the time interval 1/299,792,485s.

From the relation ¢ = v-A between speed of light ¢, frequency v
and wavelength A of an electro-magnetic wave the wavelength A
of any spectral line can now be determined from the frequency
v (which can be measured with a much higher accuracy than
wavelengths) and the defined speed of light (see Sect. 1.6.2 and
1.6.4).

The order of magnitude of length-scales in physics covers the
enormous range from 1078 m for the size of elementary parti-
cles to 1072 m for the radius of the present universe (Tab. 1.3).
It is therefore appropriate to give metre scales in powers of ten.
For specific powers a shorthand notation is used, e. g. 107 m =
1 micrometer (um); 103> m = 1 kilometer (km). These shorthand
notations are listed in Tab. 1.4.

In astronomy, the distances are very large. Therefore, appro-
priate units are used. The astronomical unit AU is the mean
distance between earth and sun. The new and more exact def-
inition, adopted 1976 by the International Astronomical Union
is the following:

Table 1.4 Labels for different orders of magnitude of length units

1 attometer =lam =10"m

1 femtometer =I1fm =10"m

1 picometer =1lpm =10"m

1 nanometer =1nmm =10"m

1 micrometer =1lpm =10"°m

1 millimeter =Ilmm =10"m

1 centimeter =lcm =102m

1 dezimeter =1ldmn =10"'m

1 kilometer =1km =10°m

Often used units in

— atomic and nuclear physics

1 fermi = 1 femtometer =10""m

1 X-unit =1XU =1.00202-10""3m

1 Angstrém =1A =10"m

— astronomy:

1 astronomical unit =1AU

~ mean distance earth—sun ~ 1.496-10'"'m

1 light year =1ly =95-10"m

1 parsec =1lpc =3-10°m =3.2ly
Definition

1 AU is the distance to the centre of the sun, which a hypo-
thetical body with negligible mass would have, if it moves
on a circle around the sun in 365.256 8983 days.

One light-year (1 ly) is the distance, which light travels in 1 year.
An object has a distance of one parsec (1 pc) if the astronomical
unit seen from this object appears under an angle of one second
of arc (1”) (Fig. 1.17). The distance d of a star, where this angle
isaisd = 1 AU/ tan . With tan 1”7 = 4.85- 107 we obtain

Ipc=2.06-10°AU =321y .

Note: In some countries other non-metric length units are
in use: 1 inch = 2.54cm = 0.0245m and 1 yard (1yd) =
0.9144m, 1 mile (1 mi) = 1609.344 m.

However, in this textbook only SI units are used.

(%)

/d=8P P
\ /' Circular motion of a body
AN - with mass m <<< Mg and
T = 365,2568983 days

Figure 1.17 Definition of the astronomical units 1 AU and 1 pc
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Figure 1.18 Caliper gauge with vernier scale

1.6.2 Measuring Techniques for Lengths

For measuring of lengths in daily life secondary standards are
used which are not as accurate as the primary standards but are
more readily usable. The accuracy of such standards is adapted
to the application for which they are constructed. One sim-
ple example is the sliding vernier (Fig. 1.18). Its accuracy is
based on the nonius principle. The upper scale is divided into
millimetres, the lower scale has 10 scale divisions for 9 mm,
which means that every division is 9/10mm. For the situation
in Fig. 1.18b the division mark 9 mm on the upper scale coin-
cides with the division mark 4 on the lower scale. The distance
D between the two fold limbs is then

D=(9-4-9/10)mm = 54 mm .

The uncertainty of the measurement is about 0.1 mm.

Higher accuracies can be reached with a micrometer screw
(Fig. 1.19) where a full turn of the micrometer drum corre-
sponds to a translation of 1 mm. If the scale on the drum is
divided into 100 divisions each division mark corresponds to

Coarse
setting

Anvil Measuring arbor Scale cylinder

Q.3
N

Measuring
surfaces
of carbide

Reference line
Arbor fixing screw
Bow

Figure 1.19 Micrometer caliper

|
012345678910'

Measurement: 5.4 mm

0.01 mm. The shackle is thermally isolated in order to minimize
thermal expansion, With differential micrometer screws, which
have two coaxial drums turning into opposite directions, where
one drum produces a translation of 1 mm per turn, the other of
—0.9 mm in the backward direction, one full turn corresponds
now to 0.1 mm. This allows an accuracy of 0.001 mm = 1pm.
This is about the accuracy limit of mechanical devices.

More accurate length measurements are based on optical tech-
niques. For distances below 1 m interferometric methods are
preferable (see Vol. 2) where lasers (see Vol. 3) are used as
light sources. Here distances are compared to the wavelength
of the light source. Modern interferometers reach accuracies
of 1/100. With a wavelength of A = 500 nm an accuracy of
5nm = 5- 10~ m can be achieved.

Larger distances can be measured via the travel time of a light
pulse. For instance the distance of the retro-reflector which the
astronauts have positioned on the moon, can be measured within
a few cm using laser pulses with 1072 s pulse width (LIDAR
technique see Fig. 1.20). Measuring this distance from differ-
ent locations on earth at different times even allows to detect
continental drifts of the earth crust plates [1.41-1.42].

For the exact location of planes, ships or land vehicles the global
positioning system GPS has been developed. Its principle is
illustrated by Fig. 1.21.

The navigator, who wants to determine his position, measures
simultaneously the phases of radio signals emitted from at least
four different satellites. The radio signals on frequencies at
1575MHz and 1227 MHz are modulated. This allows to de-
termine unambiguously the distances d; from the receiver to the
satellites S; from the measured phase differences ¢;. From these
four distances d; the position (x, y, z) of the receiver can be deter-
mined with an uncertainty of only a few cm if relativistic effects
(see Sect. 3.6) are taken into account! In order to achieve this
accuracy, the frequencies of the radio signals must be kept sta-
ble within 107'°. This can be realized with atomic clocks which
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Figure 1.20 Measurement of the distance Earth-Moon with the LIDAR-
technique

reach a relative stability Av/v = 10~'*. The exact position of
the satellites is fixed by radio signals from several stations and
receivers at selected precisely known locations on earth. The
European Space Agency has launched several satellites for the
realization of a new GPS System called Galileo with predicted
higher accuracy.

Also a more precise value of the astronomical unit 1 AU can be
obtained by measuring the travel time of short light pulses. A
radar pulse is sent from the earth to Venus where it is reflected.
The time delay between sending and receiving time is measured
for a time of closest approach of Venus to Earth. which gives

Reference receiver

Reference transmitter

Figure 1.21 Principle of the Global Positioning System GPS

a precise value of the distance between Earth and Venus. From
the angle between the radii Earth—Sun and Earth—Venus at the
time of the measurement the distance Earth—Sun can be obtained
by trigonometric relation in the triangle Earth—Venus—Sun and
using Kepler’s 3rd law (see Sect. 2.9).

As the result of many different measurements, which became
more and more accurate, the Astronomical Union has recom-
mended in 2012 to take the average of these measurements as
the definition of the Astronomical Unit:

1 AU = 149.597,870,700m .

1.6.3 Time-Units

The unit of time is the second (1 s). Its initial definition was
1s=1/(60-60-24)d = (1/86,400) of a solar day ,

where a solar day is defined as the time between two lower cul-
minations of the sun i.e. between two successive midnights.

When the earth rotates around its axis with the angular velocity
w one sun day is d = (27 + «)/w, where the additional angle «
is due to the revolution of the earth around the sun. On the other
hand a sidereal day (= time between two culminations of a
star) is d = 27 /w and therefore shorter by 1/365d (Fig. 1.22a).
365.25 solar days correspond to 366.25 sidereal days.

Later it was found that the period of a solar day showed peri-
odic and erratic changes, which can amount up to 30s per day.
(Fig. 1.22b) These changes are caused by the following effects:

m A yearly period due to the non-uniform movement of the
earth on an ellipse around the sun (Fig. 1.23 and Sect. 2.9).
The velocity v, around the perihelion (minimum distance
between earth and sun) is larger than v; around the aphe-
lion (maximum distance). Since the revolution of the earth
around the sun and the rotation of the earth around its axis
have the same rotation sense, a solar day is longer around the
perihelion than around the aphelion.

m A half-year period due to the inclination of the earth axis
against the ecliptic (the plane of the earth’s movement around
the sun), which causes a variation of the sun culmination at a
point P on earth (Fig. 1.24).

In order to eliminate the effect of such changes on the definition
of the second, a fictive “mean sun” is defined which (seen by an
observer on earth) moves with uniform velocity (= yearly aver-
age) along the earth equator. The time between two successive
culmination points of this fictive sun defines the mean solar day
(d). This gives the definition of the mean solar second

1s = (1/86.400)(d) .
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Figure 1.23 Changing velocity of the earth during one revolution on its ellip-
tical path around the sun
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Figure 1.24 Variation of the point of culmination of the sun with a half-year
period, due to the inclination of the earth axis

With the development of modern precise quartz clocks it was
found that even this mean solar day showed periodic and irreg-
ular variations due to changes of the earth’s moment of inertia
caused by melting of glaciers at the poles, falling of leaves in
autumn, volcano eruptions, earth quakes, and turbulent move-
ments of material in the liquid part of the earth’s interior. The
deviations from the mean sun day amount up to 10 milliseconds
per day and cause a relative deviation of 1072/85,400 ~ 10~/
per day. Therefore the astronomers no longer use the earth rota-
tion as a clock but rather the time span of the tropical year. This
is the revolution period of the earth around the sun between two
successive spring equinoxes, which are the intersection point of
the ecliptic and the equator plane vertical to the earth’s axis
(Fig. 1.25). This tropical year equals the annual period of the
mean sun on its way along the earth’s equator.

' Earth axis

Vernal
apparent | equinox
path of sun
23°27 Orbital of
mean sun

Figure 1.25 Definition of the tropical year

Since even the tropical year suffers in the course of time small
variations, the astronomers introduced 1960 the ephemeris
time, based on tables which give the calculated positions of sun,
moon and planets at a given time [1.24d].

The astronomical definition of the second is now 1s =
period of the tropical year 1900 divided by 31,556,925.9747.

For daily use, quartz clocks are more convenient and therefore
more useful secondary time standards. Their essential part is a
quartz rod of definitive length, which is excited by an external
electric high frequency field to length oscillations (see Vol. 2).
If the exciting frequency is tuned to the resonance frequency of
the quartz rod, the oscillation amplitude reaches a maximum.
By appropriate feedback the system becomes a stable self sus-
taining oscillator which does not need an external frequency
source. The relative frequency deviation of good quartz clocks
are Av/v < 107, The second is then counted by the number of
oscillation periods per time. Of course, the quartz clocks need a
calibration with primary time standards.

The subdivisions of the second and longer time periods are listed
in Tab. 1.5.

A better time standard which is still valid up to now is the cae-
sium atomic clock. Its principle is illustrated in Fig. 1.26.
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Figure 1.26 Caesium atomic clock. a Experimental arrangement; b level scheme of the hyperfine-transition; ¢ detector signal as a function of the microwave

frequency; d Definition of the second as a multiple of the oscillation period T

Table 1.5 Labelling of subdivisions of the second or of longer time intervalls

Subdivisions of second

1 millisecond = I ms =105

1 mikrosecond =1lps =10"%s

1 nanosecond = lns =10"s

1 picosecond = 1ps =10""2s

1 femtosecond = Ifs =105

1 attosecond = las =10"185
Larger time units

1 hour 1h =36-10%s
1 day =1d =8.64-10%s
1 year =1 =3.15-10"s

Cs-atoms evaporate through a hole in an oven into a vacuum
tank. Several apertures collimate the evaporating atoms and
form a collimated atomic beam which passes through a mi-
crowave resonator M placed between two six pole magnets A
and B. They act on atoms with a magnetic moment like an op-
tical lens and focus the atomic beam onto the detector D where
the focusing characteristics depend on the hyperfine structure
level of the atoms. If the resonator is excited on the frequency
v = (E; — Ey)/h which corresponds to the transition between
the two hyperfine levels F = 3 — F = 4 in the S}/, electronic
ground state of Cs (Fig. 1.26b) (see Vol. 3), the atoms can ab-
sorb the microwave radiation and are transferred from the F = 3
level into the FF = 4 level. In this level they have a different
magnetic moment and are therefore defocused in the magnetic
field B. They cannot reach the detector D and the measured sig-
nal decreases (Fig. 1.26c). When the microwave frequency v

is tuned over the resonance at v = 9,192,631,770s~" a dip
in the signal S(v) appears which is transferred by a feedback
circuit to the microwave generator and keeps its frequency ex-
actly on resonance. The frequency stability of the microwave
generator is now determined by the atomic transition frequency
and serves as a very stable clock, called atomic clock. The
achieved frequency stability of modern versions of the Cs-clock
is Av/v = 1071,

The new definition of the second, which is still valid today,
is: 1s is the time interval of 9,192,631,770.0 oscillation
periods of the Cs clock.

Table 1.6 gives a survey about the time scales of some natural
phenomena, which extend from 10723 to 10785,

The new definition of the second shows that the time measure-
ment is put down to frequency measurements. The frequency of
any oscillating system is the number of oscillation periods per
second. Its metric unit is [1s™'] or [1 hertz = 1 Hz]. Larger
units are

1 kilohertz = 1 kHz = 103 5™,

1 Megahertz = 1 MHz = 10°s7!,
1 Gigahertz = 1GHz = 10°s7!,
1 Terahertz = 1 THz = 10251,

Smaller units are

® 1 Millihertz = lmHz = 103s7!,
m 1 Microhertz = 1 yHz = 107657/,
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Table 1.6 Time scales occuring in natural phenomena

Natural phenomenon Period/s
Transit time of light over the diameter of an atomic nucleus 1072
Revolution period of electron in the hydrogen atom 10713
Transit time of electrons in old tv-tubes 1077
Oszillation period of tuning fork 25-1073
Time for light propagation sun—earth 5-107

1 day 8.64 - 10*

1 year 3.15-107
Time since the first appearance of homo sapiens 2-108
Rotational period of our galaxy 10'°
Age of our earth 1.6- 10"
Age of universe 5-10"7

1.6.4 How to measure Times

For the measurement of times periodic processes are used with
periods as stable as possible. The number of periods between
two events gives the time interval between these events if the
time of the period is known. Devices that measure times are
called clocks.

Quartz Clocks: Modern precision clocks are quartz clocks with
a frequency instability Av/v < 107°. This means that they
deviate per day from the exact time by less than 10™#s.

Atomic Clocks: For higher accuracy demands atomic clocks are
used, which are available as portable clocks (Rubidium clocks
with Av/v < 107" or as a larger apparatus fixed in the lab
e. g. the Cs clock with Av/v < 1071,

As world-standard Cs-clocks are used at several locations (Na-
tional Institute of Standards and Technology NIST in Boul-
der, Colorado, Physikalisch-Technische Bundesanstalt PTB in
Braunschweig, Germany and the National Physics Laboratory
in Teddington, England) which are connected and synchronized
by radio signals. Two of such clocks differ in 1000 years by less
than 1 millisecond [1.44a—1.44b].

Frequency stabilized Lasers: A helium-Neon laser with a fre-
quency of 10'* Hz can be locked to a vibrational transition of the
CH,4 molecule and reaches a stability of 0.1 Hz, which means a
relative stability Av/v < 107! comparable to the best atomic
clocks [1.45]. With the recently developed optical frequency
comb (see Vol. 3) stabilities Av/v < 107'® could be achieved
[1.46]. It is therefore expected, that the Cs-standard will soon
be replaced by stabilized lasers as frequency and time standards.

The time resolution of the human eye is about 1/20s. For the
time resolution of faster periodic events stroboscopes can be
used. These are pulsed light sources with a tuneable repetition
frequency. If the periodic events are illuminated by the light
source, a steady picture is seen, as soon as the repetition fre-
quency equals the event frequency. If the two frequencies differ
the appearance of the event is changing in time the faster the
more the two frequencies differ.

Periodic and non-periodic fast events can be observed with high
speed cameras, which reach a time resolution down to 107 8s;
with special streak cameras even 1072 s can be achieved. Faster

events, such as the rearrangement of the atomic electron shell
after excitation with fast light pulses or the dissociation of
molecules which occur within femtoseconds (1fs = 10~ s) can
be time- resolved with special correlation techniques using ul-
trafast laser pulses with durations down to 10716,

1.6.5 Mass Units and Their Measurement

As the third basic unit the mass unit is chosen. The mass of
a body has always a fixed value, even if its form and size is
altered or when the aggregation state (solid, liquid or gaseous)
changes as long as no material is lost during the changes. The
mass is the cause of the gravitational force and for the inertia of
a body, which means that all bodies on earth have a weight and
if they are moving, magnitude and direction of their velocity is
not changing as long as no external force acts on the body (see
Sect. 2.6).

As mass unit the kilogram is defined as the mass of a
platinum-iridium cylinder, which is kept as the primary
mass standard in Paris. (Fig. 1.27)

Initially the kilogram should have been the mass of a cubic
decimetre of water at 4 °C (at 4 °C water has its maximum den-
sity). Later more precise measurements showed, however, that
the mass of 1dm?> water was smaller by 2.5- 10 kg = 0.025¢g
than the primary standard.

In Tab. 1.7 the subunits of the kilogram, which are used today,
are listed. For illustration in Tab. 1.8 some examples of masses
which exist in nature are presented.

Figure 1.27 Standard kilogram of platin-iridium, kept under vacuum in Paris
(https://en.wikipedia.org/wiki/Kilogram#International_prototype_kilogram)
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Table 1.7 Subdivisions and multiples of the kilogram

Unit Denotion Mass/kg

1 gram =1lg 1073
1 milligram = 1mg 106
1 microgram =1lpg 1077
1 nanogram =lng 10712
1 pikogram =lpg 1071
1 ton 10°

1 megaton 10°

1 atomic mass unit =1 AMU 1.6605402 - 1027

Table 1.8 The masses of particles and bodies found in nature

Body Mass/kg
Electron 9.1-1073!
Proton 1.7-107%
Uranium nucleus 4.107%
Protein molecule 1022
Bacterium 10~
Fly 1073
Man 10?
Earth 6-10%
Sun 2.10%
Galaxy ~ 10

Masses can be measured either by their inertia or they weight,
since both properties are proportional to their mass and un-
ambiguously defined (see Sect. 2.6). The inertia of a mass is
measured by the oscillation period of a spring pendulum. Here
the mass measurement is reduced to a time measurement.

The weight of a mass is determined by comparison with a mass
normal on a spring balance or a beam balance and therefore re-
duced to a length measurement. Today balances are available
with a lower detection limit of at least 107! kg (magnetic bal-
ance, electromagnetic balance, quartz fibre microbalance).

Note: In some countries non-metrical units are used: 1 pound =
0.453 kg.

1.6.6 Molar Quantity Unit

As already mentioned in the beginning of this section in ad-
dition to the three basic units for length, time and mass four
further units (molar quantity, temperature, electric current and
luminous intensity of a radiation source) are introduced because
of pragmatic reasons. Strictly speaking they are not real basic
units because they can be expressed by the three basic units.

Definition

The unit of molar quantity is the mol, which is defined as
follows:

1 mol is the amount of a substance that consist of as many
particles as the number N of atoms in 0.012kg of the car-
bon nuclide '2C.

These particles can be atoms, molecules, ions or electrons.
The number N of particles per mol with the numerical value
N = 6.02 - 10%/mol, is called Avogadro’s number (Amedeo
Avogadro 1776-1856).

Example

1 mol helium has a mass of 0.004 kg, 1 mol copper cor-
responds to 0.064 kg, one mol hydrogen gas H, has the
mass 2 - 0.001 kg = 0.002kg. <

1.6.7 Temperature Unit

The unit of the temperature is 1 Kelvin (1 K). This unit can be
defined by the thermo-dynamic temperature scale and can be re-
duced to the kinetic energy of the molecules (see Sect. 10.1.4).
Because of principal considerations and also measuring tech-
niques, which are explained in Chap. 10, the following defini-
tion was chosen:

1 Kelvin is the fraction (1/273.16) of the thermodynamic
temperature of the triple point of water.

The triple point is that temperature where all three phases of
water (ice, liquid water and water vapour) can simultaneously
exist (Fig. 1.28).

There are plans for a new definition of 1 K which is independent
on the choice of a special material (here water). It reads:

1 Kelvin is the temperature change which corresponds to
a change A(KT) = 1.3806505 - 10~ Joule of the ther-
mal energy kT, where k = 13,806,505 - 10723 J/K is the
Boltzmann constant.

PA
liquid

gaseous

T, =27316 K TIK

Figure 1.28 Phase diagram and triple point of water
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New very accurate measurements of the Boltzmann constant
allow a much better definition of the temperature T with an un-
certainty of AT/T < 8-107°.

1.6.8 Unit of the Electric Current

The unit of the electric current is 1 Ampere (1 A) (named after
Andre-Marie Ampere 1775-1836). It is defined as follows:

1 Ampere corresponds to a constant electric current
through two straight parallel infinitely long wires with
a distance of 1 m which experience a mutual force of
2 - 1077 Newton per m wire length (Fig. 1.29).

The definition of the electric current unit is therefore based on
the measurement of the mechanical quantities length and force
(see Vol. 2)

1.6.9 Unit of Luminous Intensity

The Iuminous intensity of a radiation source is the radiation
power emitted into the solid angle 1 Sterad = 1/(4x). It could
be defined in Watt/Sterad, which gives the radiation power in-
dependent of the observing human eye. However, in order to
characterize the visual impression of the light intensity of a light
source, the spectral characteristics of the radiation must be taken
into account, because the sensitivity of the human eye depends
on the wavelength. Therefore the definition of the light inten-
sity is adapted to the spectral sensitivity maximum of the eye at
a wavelength A = 555 nm. The luminosity unit is called 1 can-
dela (1 cd).

1cd is the radiation power of (1/6839)W/Sterad emitted
by a source at the frequency 540 THz (A = 555 nm) into
a selected direction.

Note: 1. The luminous intensity of a source can differ for dif-
ferent directions.

2. The definition of the candela is related to the radi-
ation power in Watt/Sterad, which shows that the

candela is not a basic unit.

1A

oy

im F=2-107 N pro mlength

b .

1A

Figure 1.29 lllustration how the unit of the electric current is defined

1.6.10 Unit of Angle

Plane angles are generally measured in degrees of arc. The full
angle of a circle is 360°. The subdivisions are minutes of arc
(1° = 60’) and seconds of arc (1’ = 60” — 1° = 3600"). Often
it is convenient to use dimensionless units by reducing angle
measurements to length measurements of the arc length L of a
circle, which corresponds to the angle « (Fig. 1.30).

The circular measure (radian) of the angle « is defined as the
ratio L/R of circular arc L and radius R of the circle. The unit
of this dimensionless quantity is 1 radian (rad) which is realized
for L = R. Since the total circumference of the circle is 27 R the
angle « = 360° in the unit degrees corresponds to ¢ = 2 in
the units radian = rad.

The conversion from radians to degrees is

360°

lrad = = 57.296° = 57°17'45" .

While the plane angle « = L/R cuts the arc with length L out
of a circle with radius R the solid angle £2 = A/R? is the angel
of a cone that cuts the area A = £2R? out of a full sphere with
area 47 R? and radius R (Fig. 1.31). The dimensionless unit of
the solid angle is 1 steradian (1 sr) for which A = R

Definition

1 sr is the solid angle of a cone which cuts an area A =
1 m? out of the unit sphere with R = 1m.

Since the total surface of a sphere is 47 R? the total solid angle
around the centre of the sphere with A = 47R? is 2 = 4.

The three planes xy, xz, yz through the positive coordinate axis
+x, +y, 4z cut a sphere around the origin (0, 0, 0) into 8 oc-
tands, The solid angle of one octand is

Note: The numerical values of the units for the basic physi-
cal quantities discussed so far have been often adapted by the
International Comission for Weights and Measures (CIPM for

4 L

Figure 1.30 To the definition of the radiana@ = L/R
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Figure 1.31 a To the definition of the solid angle £2; b llluration of the solid
angel element d2 = dA/r?

the French comite international des poids et measures) in or-
der to take into account the results of new and more accurate
measurements. At present, considerations are made to reduce
all quantities to combinations of fundamental constants in order
to give them more accurate and time independent values. This
has been realized up to now only for the length unit which is
defined through the fixed speed of light and the frequency of the
Cs-clock. This might be soon generalized to all physical units
in order to get a system of time-independent values for the units
which do not need to be corrected in future times.

One example is the mass unit. There are many efforts in several
laboratories to create a better and more accurately defined mass
normal. One realistic proposal is a large silicon single crystal
in form of a polished sphere, where the atomic distances in the
crystal have been precisely measured with X-ray interferometry.
This allows the determination of the total number of atoms in the
crystal and the mass of the crystal can be related to the mass of
a silicon atom and is therefore reduced to atomic mass units and
the Avogadro constant [1.48a]. Although it has been shown, that
such a mass normal would be more accurate (A m/m < 1079%)
and would represent a durable mass standard, it has not yet been
internationally acknowledged.

Similar considerations are discussed for the temperature unit
1 K which might be reduced to the Boltzmann constant k (see
above).

1.7 Systems of Units

As has been discussed in Sect. 1.6 the three basic quantities and
their units in physics are

= length with the unit 1 Meter = 1 m
= time with the unit 1 second = 1s
= mass with the unit 1 kilogram = 1kg

with four additional quantities

molar quantity with the unit 1 mole = 1 mol
temperature with the unit 1 Kelvin = 1K

electric current with the unit 1 Ampere = 1 A
radiation luminosity with the unit 1 candela = 1 cd

where these four quantities can be reduced in principle to the
three basic quantities and are therefore no real basic quantities.

All other quantities in physics can be expressed by these 3 basic
quantities with the additional 4 quantities for convenient use.
This will be shown for each derived quantity in this textbook
when the corresponding quantity is introduced.

Each physical quantity is defined by its unit and its numerical
value. For instance the speed of light is ¢ = 2.9979 - 10% m/s or
the earth acceleration g = 9.81 m/s etc.

In a physical equation all summands must have the same
units.

These units or the products of units are called the dimension of
a quantity. The check, whether all summands in a equation have
the same dimension is called dimensional analysis. It is a very
helpful tool to avoid errors in conversion of different systems of
units.

Each physical quantity can be expressed in different units, for
example, times in seconds, minutes or hours. The numerical
value differs for the different units. For instance the velocity
v = 10 m/s equals v = 36 km/h. In order to avoid such numeri-
cal conversions one can use a definite fixed system of units.

If the three basic units are chosen as

= 1 m for the length unit,
m 1 s for the time unit,
= 1kg for the mass unit.

The system is called the mks-system. If the unit Ampere for the
electric current is added, the system is called the mksA.-system,
often named the SI-System after the French nomenclature Sys-
tem International d’Unites. It has the very useful advantage that
for the conversion from mechanical into electrical and magnetic
units all numerical conversion factors have the value 1. All basic
units and also the units derived from them are called SI units.

In theoretical physics often the cgs system is used, where the
basic units are 1 cm (instead of 1 m), 1 Gramm (instead of 1kg)
and only the time unit is 1 as in the SI-system. According to
international agreements from 1972 only the SI-system should
be used. In this textbook exclusively SI units are used.

For a more detailed representation of the subject the reader is
referred to the literature [1.37-1.39,1.50].
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1.8 Accuracy and Precision;
Measurement Uncertainties and
Errors

Every measurement has in different ways uncertainties which
can be minimized by a reliable measuring equipment and care-
ful observation of the measurement. The most important part
in the measuring process is an experienced and critical experi-
menter, who can judge about the reliability of his results. The
final results of an experiment must be given with error limits
which show the accuracy of the results. There are two different
kinds of possible errors: Systematic and statistical errors.

1.8.1 Systematic Errors

Most systematic errors are caused by the measuring equipment,
as for instance a wrong calibration of an instrument, ignor-
ing of external conditions which can influence the results of
the measurement (temperature change for length measurements,
lengthening of the string of a threat pendulum by the pendulum
weight or air pressure changes for measurements of optical path
length). Recognizing such systematic errors and their elimina-
tion for precision measurements is often difficult and demands
the experience and care of the experimental physicist. Often the
influence of systematic errors on the experimental results is un-
derestimated. This is illustrated by Fig. 1.32, which shows the
results of measurements of the electron mass during the time
from 1950 up to today with the error bars given by the authors.
Due to improved experimental techniques the error bars become
smaller and smaller in the course of time. The dashed line gives
the value that is now accepted. One can clearly see, that all the
error bars given by the authors are too small because the sys-
tematic error is much larger.

The electron mass can be only determined by a combination
of different quantities. For example, from the deflection of
electrons in magnetic fields one can only get the ratio e¢/m of

80

electron charge e and electron mass m. According to the CO-
DATA publication of NIST the value accepted today is m, =
9.10938291(40) - 10~3! kg, where the number in brackets gives
the uncertainty of the last two digits.

1.8.2 Statistical Errors, Distribution of
Experimental Values, Mean Values

Even if systematic errors have been completely eliminated, dif-
ferent measurements of the same quantity (for instance the
falling time of a steel ball from the same heights) do not give
the same results. The reasons are inaccurate reading of meters,
fluctuations of the measured quantity, noise of the detection sys-
tem etc. The measured results show a distribution around a mean
value. The width of this distribution is a measure of the quality
of the results. It is illustrative to plot this distribution of mea-
sured values x; in a histogram (Fig. 1.33), where the area of the
rectangles represents the number n; Ax = An; of measurements
which have given a value within the interval from x; — Ax/2 to
x; — Ax/2.

The mean value X of n measurements is chosen in such a way
that the sum of the squares of the deviations (X — x;) from the

—
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

—
X

x

o

A X

Figure 1.33 Typical histogram of the statistical distribution of measured values
x; around the mean value X

9,109558

™ 91085 9,10968

-120

-160

-200

9,10721

9,109540

| CODATAVALUE 2010:9,10938291(40) x10™'kg |

Relative deviation from mean value in ppm

-240 ' '
1950 1960 1970

1980
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1990 2000 2010

Figure 1.32 Historical values of measurements of the electron mass in units of 1073' kg, demonstrating the underestimation of measuring uncertainties. The
relative deviations A m/m from the best value accepted today are plotted in units of 106 (ppm = parts per million)
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mean value become a minimum, i.e.

S = Z()_c —x;)* = Minimum .

(1.1)
i=1
For the derivative follows:
ds .
i 2-;(x—x,-) =0.
This gives for the mean value
1 n
X=-> x, (1.2)
o
the arithmetic mean value of all measured results. Because

> (x — x;) = 0 the arithmetic mean is at the centre of the sym-
metric distribution, which means that the sum of the positive
deviations equals the sum of the negative ones. Contrary to this
symmetric distribution of values with statistical errors the sys-
tematic errors cause deviations in one direction.

The question is now how much the mean value deviates from the
true, but generally unknown value of the measured quantity. We
will now prove, that after elimination of all systematic errors
the arithmetic mean converges against the true value x,, with
increasing number of measurements. This means:

1
Xw = nlLI]gO ; 21:.765 5 (13)
i=

Since it is impossible to perform infinitely many measure-
ments the true value generally remains unknown!

We define the absolute error of the measured value x; as the
difference

e = Xy — X; (1.4)
and the absolute error of the mean value as the difference
=Xy —X. (1.5)
The mean values of these errors are
() =(/m Y e (€)=(1/m)) e}

From (1.2) it follows

(1.6)

i=1 i=1

The absolute error ¢ of the arithmetic mean x equals the
arithmetic mean (e;) = 1 Y ¢; of the absolute errors of

T n

the individual results x;.

From (1.6) we obtain by squaring

2 1 ? 1 2
e = n—z(Ze,) = n—zzei

i

1 1
+;ZZeiej%n—ZZeiZ.

i

1.7)

The double sum converges for n — oo towards zero because for
any fixed number j it follows from (1.3)

1 n
lim — i = Xy — Xy = 0.
n;r{}on Ze, Xy — Xy = 0
i=1
Since for statistical errors the deviations e; and ¢; are uncorre-
lated.
The quantity

(1.8a)

is named standard deviation or root mean square devi-
ation. It equals the square root of the squared arithmetic
mean (e?)

1 |
(€)== e = i;(xw —x)? (1.8b)
The smaller quantity
1
Oy = \/8—2 = ; Zelz
1 (1.8¢)
= - Z (xw - xi)2
n -
1
is the mean error of the arithmetic mean x.
From (1.8a)—(1.8c) we can conclude
o
Oy = % . (19)

The mean error of the arithmetic mean equals the mean
error of the individual measurements divided by the square
root of the total number n of measurements.
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In the next section it will be shown that o approaches a constant
value for n — oo. Equation 1.9 then implies, that limoy,, = 0,
which means that the arithmetic mean X approaches the true
value x, for a sufficiently large number n of measurements.

1.8.3 Variance and its Measure

Since for a finite number n of measurements the true value of
the measured quantity is generally unknown, also the absolute
errors and the mean errors o and oy, cannot be directly deter-
mined. We will now show how ¢ and oy, are related to quantities
that can be directly measured.

We introduce instead of the unknown deviations ¢; = xy, — X;
of the measured values from the true value x,, the deviations
v; = X —Xx; from the mean value, which contrary to e; are known
values.

According to (1.4) and (1.5) we can express the v; by the quan-
tities e; and ¢.

Vi =X —X;
(1.10)

= Xy — X — (Xy —X)

=€ —£&.

The mean square deviation of the measured values x; from the
arithmetic mean x can then be written as

5t = %Zi:v?: %Z(e,-—a)z

= % [Z 2 — (2}1_8 Ze,-) +52} (1.11)
= Zz:(e%—sz) ,

because according to (1.6) ¢ = (1/n)>_e;. The comparison

with (1.8a,b,c) yields the relation

(1.12)

For the standard deviation of the individual results x; we
obtain the mean deviation of the arithmetic mean value

PN S D k. ) T
n—1 n—1

which can be obtained from measurements and is there-
fore a known quantity.

For the mean deviation of the arithmetic mean (also called
standard deviation of the arithmetic means) we get

N ) _ [XE—x)’
Um—n_ls — Op = 7’1(”_1) . (1.14)

Example

For 10 measurements of the period of a pendulum the fol-
lowing values have been obtained:

T, = 1.04s; T, = 1.01s; T3 = 1.03s; Ty =
Ts = 098s; T = 1.00s; 77 = 1.01s; Ty =
Ty = 0.99s; T1p = 0.98s.

0.99s;
0.97 s;

The arithmetic mean is 7 = 1.00s. The deviations x; =
T; — T of the values 7; from the mean T are

x; = 0.04s; x, = 0.01s; x3 = 0.03s; x4 = —0.01s;
x5 = —0.02s; x¢ = 0.00s; x; = 0.01s; x3 = —0.03s;
x9 = —0.01 s; x10 = —0.02s. This gives

(T — (T)* = Zx? = 461075 .
The standard deviation is then

o= /(46-107/9) = 2.26- 1072

and the standard deviation of the arithmetic mean is

Om = v/ (46-1074/90) = 0.715- 1025 . <

1.8.4 Error Distribution Law

In the histogram of Fig. 1.33 the resolution of the different mea-
sured values depends on the width Ax; of the rectangles. All
values within the interval Ax; are not distinguished and regarded
to be equal. If An; is the number of measured values within the
interval Ax; and k the total number of intervals Ax; we can write
Eq. 1.2 also as

k

k
X = ZAn,--x,- with ZAni:n.
i=1

i=1

(1.15)

The histogram in Fig. 1.33 can be obtained in a normalized form
when we plot the fraction n;/n (n; = An;/Ax;andn = ) An;),
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Ani/n

X|f==----------------1

o 2

A X

Figure 1.34 Normalized statistical distribution and distribution function of
measured data

which represents the number of measured values within the unit
interval Ax; = 1 (Fig. 1.34). The heights of the rectangles
give these fractions. The quantity An;/n can be regarded as
the probability that the measured values fall within the interval
Ax;. With increasing number n of measurements we can de-
crease the width of the intervals Ax; which means that the total
number k of all intervals increases. For Ax; — 0 the number
k — oo and An; — 0 but the fraction An;/Ax; approaches a
finite value. The sum n = ) n;Ax; which represents the total
number of measured values, stays of course constant. The dis-
continuous distribution of the histogram in Fig. 1.34 converges
against a continuous function f(x), which is shown in Fig. 1.34
as black dashed curve. The function f(x) is defined as

f(x) = (1/m)lim(An;/Ax;) = (1/n) -dn/dx;  (1.16a)

f(x) is the continuous distribution function. The product f(x) -
dx gives the probability to find a measured value in the interval
from x — dx/2 to x 4+ dx/2. From (1.16a) and ) n; Ax; follows
the normalization

/f(x)dx = lim [(l/n) ZniAxi] —1. (1.16b)
This means that the probability to find a measured value some-

where within the total x-range must be of course 100% = 1,
because it has to be somewhere in this range.

The integral [ f(x)dx represents the area under the black curve
which is normalised to 1 because the ordinate in Fig. 1.34 is
given as the normalized quantity n;/n.

The standard deviation o is a measure for the width of the dis-
tribution f(x). Its square o gives, as for the discontinuous
distribution (1.8b), the mean square deviation of the arithmetic
mean from the true value xy,, which determines the centre of the
symmetric curve f(x)

+o0
o2 = (%) = / (X —x)> f(x) dx . 1.17)

The quantity o2 is named the variance.

If only statistical errors contribute, the normalized distribution
of the measured values can be described by the normalized
Gauss-function

flx) = \ 2e‘<""‘w)2/2“2, (1.18)
To

Figure 1.35 Error distribution function (Gaussian distribution) around the true
value x,, for different standard deviations o

which has its maximum at x = xy. The inflection points of
the curve f(x) are at x = x,, + 0. The full width between the
inflection points where f(x) = f(xy)/e is therefore 2¢. The dis-
tribution f(x) is symmetrical around its centre at x,, (Fig. 1.35).
For infinitely many measurements the arithmetic mean x be-
COmes Xy .

When the standard deviation has been determined from n mea-
surements, the probability P(o) that further measured values fall
within the interval x = x,, & ¢ and are therefore within the stan-
dard deviation from the true value. It is given by the integral

Xw+0o

/ f(x)dx .

Xw—0O

P(lxw —xi| <0) = (1.19)

When inserting (1.18) the integral can be solved and yields the
numerical values

P(e; <o) =0.683 (68% confidence range)
P(e; <20) =0.954 (95% confidence range)
P(e; <30) =0.997 (99.7% confidence range) .

The results of a measurement are correctly given with the 68%
confidence range as

Xy =x+o0. (1.20)
This means that the true value falls with a probability of 68%
within the uncertainty range from X — o to X 4+ o around the
arithmetic mean, if all systematic errors has been eliminated.
The relative accuracy of a measured value x,, is generally given
as o/x.

Cautious researchers extend the uncertainty range to 30 and
can than state that their published result lies with the probability
of 99.7%, which means nearly with certainty within the given
limits around the arithmetic mean. The result is then given as

—2
Xy =X+30 =%+3- Z(x—lx)
—

(1.21)
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Since the arithmetic mean is more accurate than the individual
measurements often the uncertainty range is given as the stan-
dard deviation oy, of the arithmetic mean which is smaller than
o. The result is then given as

-2
xwzﬂzom:xi,/m—_x). (1.22)
nn—1)

Example

For our example of the measurements of the periods of a
pendulum the result would be given with the 69% confi-
dence range as

Ty = (T) £ 0 = (1.000 £ 0.025) s
and for the 99.7% confidence range as
Ty = (T) £ 30 = (1.000 & 0.075) s .

For the standard deviation o,,, of the arithmetic mean one
gets

Ty = (T) % 0 = (1.0000 & 0.0079) s .

The relative uncertainty of the true value is then with a
probability of 68%

ATy /Ty =7.9-107° =0.79% . <

Remark. For statistical processes where the measured quan-
tity is an integer number x; = n; that statistically fluctuates (for
instance the number of electrons emitted per sec by a hot cath-
ode, or the number of decaying radioactive nuclei per sec) one
obtains instead of the Gaussian function (1.18) a Poisson distri-
bution

fe) = x—je’* (1.23)
X!

X = integer number .

1.8.5 Error Propagation

If a quantity y = f(x) depends in some way on the measured
quantity x, the uncertainty dy is related to dx by (Fig. 1.36)

df ()
dx

dx .

dy = (1.24)

When the quantity x has been measured n-times its standard de-

viation is
Do (X —x;)?
O-X = Y
n—1

X
X X+dx
Figure 1.36 Error propagation for a function y = f(x)
which results in the standard deviation of the y; values
_ - 2
o = . 2 —v)? Y(fR) —f(x)
y = =
—1 -1
" ! (1.25)

-(40)
- (L2) o

Often the value of a quantity, which is not directly accessible to
measurements, and its uncertainty should be known. Examples
are the density of a body which can be calculated as the ratio of
mass and volume of the body, or the acceleration of a moving
mass which is determined from measurements of distances and
times.

The question is now: What is the accuracy of a quantity f(x, y),
if the uncertainties of the measurements of x and y are known.

Assume one has made n measurements of the quantity x from
which the uncertainty range of the arithmetic mean is deter-
mined as

/ 2

V7

x+to,=x+ Z—’l with v, =x;—X
n—

and m measurements of the quantity y with the mean

X u

m—

y:l:O'y:yﬂ: with w, =y, —y,
one obtains the quantity

S =F Giye) =f X+ v,y + w)
=f &) + v (af(x’y))
0

ox

af (x,y)
uk ( dy )o *

by a Taylor expansion, where (df/dx)g is the partial derivative
for the values x, y. Often the deviations v; and u; are so small

(1.26)

31

Chapter 1




32

(@]
=
Q
©
—+
q°)
q
-

1 Introduction and Survey

that the higher powers in the expansion can be neglected. The
mean value of all f is then

DY fa= ﬁZZ[f(w)
i k i=1 k=1

a )
+ via—f x5 + ”k—f (767?)]
x ady

f=

1
n-m

(1.27)

)
[n-m-f()‘cj)—{—mZv,-%
Bf] _
+n Uk~ :f(xvy)v

213

because df /0x|,, is constantand ) v; = Y u; = 0.

The arithmetic mean f of all values fy equals the value
f(x,y) of the function f(x, y) for the arithmetic means X, y
of the measured values x;yy.

In books about error calculus [1.53a—1.55] it is shown, that the
standard deviation of the derived quantity f is related to the stan-
dard deviations o, and o, of the measured values x;, y; by

ETAN ETAN
=4[oH =)+ == | -
7 \/ ! (3)6) ! (3y
The mean uncertainties o, and o, propagate to the uncertainty

or of the derived mean f(x, y). The 68% confidence range of the
true value fy (x,y) = f(xy, yw) is then

2 2
fuloy) =fEY) + \/og(a_f) +gvz(3_f) '
ox ” ay

With the inequality v/a? + b% < |a| + |b| the uncertainty (1.29)
can be also written as

(1.28)

(1.29)

Af =fy—f &Y = 02_];‘ + (1.30)

of

Examples

1. The length L is divided into two sections x and y with
L = x+ y which are separately measured (Fig. 1.37a).
The final result of L is then, according to (1.27) and
(1.28) with df /dx = dof /oy = 1,

L=%4+5+,/02+0?.

This means: the mean error of a sum (or a difference)
equals the square root of the sum of squared errors of
the measured values.

| x Y

= L ~ A=x"y y
C=x+y+Vo,2+0,2 x

a) b)

Figure 1.37 a Mean error of a length measurement, that consists of
two individual measurements x and y; b Error propagation for the mea-
surement of an area x - y

2. The area A = x - y of a rectangle shall be determined
for the measured side lengths x and y. The true values
of x and y are

Xy =X Loy, ywzy:l:Uy’
0A _ . _ 0A _
g(’y) Y a—y(X,y)—X,
A=x-Yto,
— — — 2 = 2
=5+ (0) + ()

The relative error of the product A = x -y

o _ (@Y, (%Y

A x y
equals the Pythagorean sum of the relative errors of
the two factors x and y.

0
xzfj:ax:>—y=1/x
ox

y=Inx;
y =Inx £ 0, /X

The mean absolute error of the logarithm of a mea-
sured value x equals the relative error of x. <

1.8.6 Equalization Calculus

Up to now we have discussed the case, where the same quantity
has been measured several times and how the arithmetic means
of the different measured values and its uncertainty can be ob-
tained. Often the problem arises that a quantity y(x), which
depends on another quantity x shall be determined for differ-
ent values of x and the question is how accurate the function
y(x) can be determined if the measured values of x have a given
uncertainty.

Example

1. A falling mass passes during the time ¢ the distance
d = %g -7 and its velocity v = g - ¢ is measured at
different times z;.
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2. The change of the length AL = Ly - o - AT, a long
rod with length L and thermal expansion coefficient o
experiences for a temperature change AT, is measured
at different temperatures 7. <

In our first example distances and velocities are measured at dif-
ferent times. The goal of these measurements is the accurate
determination of the earth acceleration g. In the second exam-
ple length changes and temperatures are measured in order to
obtain the thermal expansion coefficient @ as a function of tem-
perature 7.

The relation between y(x) and x can be linear (e.g. v = g- 1),
but may be also a nonlinear function (e. g. a quadratic or an ex-
ponential function). Here wee will restrict the discussion to the
simplest case of linear functions, in order to illustrate the appli-
cation of equalization calculus to practical problems.

This will become clear with the following example.
Example
We consider the linear function
y=ax+b
and will answer the question, how accurate the constants a

and b can be determined when y is calculated for different
measured values of x.

Solution

It is often the case that the values x can be measured more
accurately than y. For instance for the free fall of a mass
the times can be measured with electronic clocks much
more accurately than distances or velocities. In such cases
the errors of x can be neglected compared to the uncer-
tainties of y. This reduces the problem to the situation
depicted in Fig. 1.38. The measured values y(x) are given
by points and the standard deviation by the length of the
error bars.

The question is now, how it is possible to fit a straight line
to the experimental points in such a way that the uncer-
tainties of the constants a and b become a minimum.

Y A

{/}/ y=ax+b

Figure 1.38 Equalization calculus for the function y = ax + b, when
the values x; can be measured much more accurate than the values y;

<y

This is the case if the sum of the squared deviations
reaches a minimum.

S=Y (i—ax—b)* (1.31)

Differentiating (1.31) gives the two equations. (Note that
a and b are here the variables!)

aS Zn

ba= P xi(yi —axi —b) = 0 s
_BS——z § (yi—ax;—b) =0 (1.32b)
TR ' ‘

Rearranging yields

a- Y G+b-Y xi=Y xy (1.33a)
a-Zx,-—i—b-n:Zy,-. (1.33b)

The last equation is matched exactly for the point (X, y)
with the mean coordinates

X=/m) x y=0/m)) .

Inserting these values into (1.33b) yields after division by
the number » the relation

a-x+b=y.

This proves that the point (x, y) fulfils the equation and is
located in Fig. 1.38 exactly on the red straight line.

From (1.33b) one obtains for the slope b of the straight
line

b=y—ax=(1/n)) yi—(a/n) Y x.

Inserting this into (1.33a) gives with the abbreviation

d=n-Zx,~2—(in) )
the constants a and b as
= "(in}’i) - (in)(Zy,-)
p .
(Z2)(E0) ~ (Zx)(Suw)
d

(1.34a)

b= (1.34b)
The true constants a and b give the true values yy(x;) =
ax; + b within the 68% confidence limits y; £ o0, around
the mean value y. From (1.18) and (1.19) one obtains the
probability P(y;) to find the measured value y;

1
P(y;) o G—e—(yf—%—“zﬂ“f . (1.35)
y
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The uncertainties of the constants @ and b can be obtained
according to the error propagation rules. The results are

2 2 2
, n-o; , O >
d

o, = . 0y = (1.36)

The full width between the two points P(yy)/e is o - V2.

For more information on error analysis and regression fits
see [1.53a—1.56]. <

Summary

Physics deals with the basic building blocks of our world,
their mutual interactions and the synthesis of material from
these basic particles.

The gain of knowledge is pushed by specific experiments.
Their results serve for the development of a general theory
of nature and to confirm or contradict existing theories.
Experimental physics started in the 16th century
(e.g. Galilei, Kepler) and led to a more and more refined
and extensive theory, which is, however, even today not yet
complete and consistent.

All physical quantities can be reduced to three basic quanti-
ties of length, time and mass with the basic units 1 m, 1 s, and
1kg. For practical reasons four more basic quantities are in-
troduced for molar mass (1 mol), temperature (1 K), electric
current (1 A) and the luminous power (1 cd).

The system of units which uses these basic 3 + 4 units is
called SI-system with the units 1 m, 1s, 1 kg, 1mol, 1 K, 1 A
and 1 cd.

Every measurement means the comparison of the measured
quantity with a normal (standard).

The length standard is the distance which light travels in
vacuum within a time interval of (1/299,792,458)s. The
time standard is the transition frequency between two hy-
perfine levels in the Cs atom measured with the caesium
atomic clock. The present mass standard is the mass of the
platinum-iridium kilogram, kept in Paris.

Each measurement has uncertainties. One distinguishes be-
tween systematic errors and statistical errors. The mean
value of n independent measurements with measured values
x; is chosen as the arithmetic mean

n
_ 1
XZ—E Xi s
n“
i=1

which meets the minimum condition

n
Z()_c — x;)*> = minimum.
i=1

If all systematic errors could be eliminated the distribution
of the measured values x show the statistical Gaussian distri-
bution

F(x) e~ (—xw)?/207 )

about the most probable value, which equals the true value
Xyw. The half-with of the distribution between the points
f(xw)/e = f(xy £ 0) is o - ~/2 Within the range x = x,, + ¢
fall 68% of all measured values. The standard deviation o of
individual measurements is

o — [ 2o —x;)? 7
n—1

the standard deviation of the arithmetic means is

_ 2@ —x)?
Om = nn—1) °

The true value x, lies with the probability of 68% within the
interval x,, &= o, with a probability of 99.7% in the interval
xyw T 30. The Gaussian probability distribution for the mea-
sured values x,; has a full width at half maximum of

Axyp =20+2-In2 =2.350 .
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Problems

1.1 The speed limit on a motorway is 120 km/h. An interna-
tional commission decides to make a new definition of the hour,
such that the period of the earth rotation about its axis is only
16h. What should be the new speed limit, if the same safety
considerations are valid?

1.2 Assume that exact measurements had found that the di-
ameter of the earth decreases slowly. How sure can we be, that
this is not just an increase of the length of the meter standard?

1.3 Discuss the following statement: “The main demand for
a length standard is that its length fluctuations are smaller than
length changes of the distances to be measured”.

1.4  Assume that the duration of the mean solar day increases
by 10ms in 100 years due to the deceleration of the earth rota-
tion. a) After which time would the day length be 30 hours? b)
How often would it be necessary to add a leap second in order
to maintain synchronization with the atomic clock time?

1.5 The distance to the next star («¢-Centauri) is d = 4.3 -
10'*m. How long is the travelling time of a light pulse from
this star to earth? Under which angle appears the distance earth-
sun from «-Centauri? If the accuracy of angular measurements
is 0.1” what is the uncertainty of the distance measurement?

1.6 A length L is seen from a point P which is 1km (per-
pendicular to L) away from the centre of L, under an angle of
o = 1°. How accurate can the length be determined by angle
measurements from P if the uncertainty of « is 1'?

1.7 Why does the deviation of the earth orbit from a circle
cause a variation of the solar day during the year? Give some

arguments why the length of the mean solar day can change for
different years?

1.8  How many hydrogen atoms are included in 1kg of hy-
drogen gas?

1.9
water?

How many water molecules H,O are included in 1 litre

238) is 8.68 -

1.10 The radius of a uranium nucleus (A
10~"> m. What is its mean mass density?

1.11 The fall time of a steel ball over a distance of 1 m is
measured 40 times, with an uncertainty of 0.1s for each mea-
surement. What is the accuracy of the arithmetic mean?

1.12  For which values of x has the error distribution function
exp[—x2/2] fall to 0.5 and to 0.1 of its maximum value?

1.13  Assume the quantity x = 1000 has been measured with
a relative uncertainty of 1073 and y = 30 with 3 - 1073. What is
the error of the quantity A = (x — y%)?

1.14 What is the maximum relative error of a good quartz
clock with a relative error of 10~ after 1 year? Compare this
with an atomic clock (Av/v = 107'%).

1.15 Determine the coefficients a and b of the straight line
y = ax + b which gives the minimum squared deviations for the
points (x,y) = (0,2); (1,3); (2,3); (4,5) and (5,5). How large
is the standard deviation of a and b?

References

1.1a. R.D. Jarrard, Scientific Methods. An online book:
https://webct.utah.edu/webct/RelativeResourceManager/
28871200902 1/Public%20Files/sm/sm0.htm

K. Popper, The Logic of of Scientific Discovery. (Rout-
ledgen 2002)

R. Feynman, The Character of Physical Laws (Modern
Library, 1994)

W. Heisenberg, Physics and Philosophy (Harper Peren-
nial Modern Thoughts, 2015)

A. Franklin, Phys. Persp. 1(1), 35-53 (1999)

L. Susskind, G. Hrabovsky, The theoretical Minimum.
What you need to know to start doing Physics (Basic
Books, 2013)

1.1b.

1.2.

1.3.

1.4.
1.5.

1.6. J.Z. Buchwald, R. Fox (eds.), The Oxford Handbook of
the History of Physics (2014)

A. Einstein, The evolution of Physics From early Con-
cepts to Relativity and Quanta (Touchstone, 1967)

D.C. Lindberg, E. Whitney, The Beginning of western
Sciences (University of Chicago Press, 1992)
https://en.wikipedia.org/wiki/History_of_physics

H.Th. Milhorn, H.T. Milhorn, The History of Physics
(Virtualbookworm.com publishing)

W.H. Cropper, Great Physicists: The Life and Times
of Leading Physicists from Galileo to Hawking (Ox-
ford University Press, 2004) https://en.wikipedia.org/
wiki/Special:BookSources/0-19-517324-4

1.7.

1.8.

1.9.
1.10.

1.11a.

35

Chapter 1



https://webct.utah.edu/webct/RelativeResourceManager/288712009021/Public%20Files/sm/sm0.htm
https://webct.utah.edu/webct/RelativeResourceManager/288712009021/Public%20Files/sm/sm0.htm
https://en.wikipedia.org/wiki/History_of_physics
https://en.wikipedia.org/wiki/Special:BookSources/0-19-517324-4
https://en.wikipedia.org/wiki/Special:BookSources/0-19-517324-4

36

(@]
=
Q
o
—
(1°)
q
-

1 Introduction and Survey

1.11b.

1.11c.

1.12.

1.13a.

1.13b.

1.13c.

1.14a.

1.14b.

1.14c.

1.15.

1.16a.

1.16b.

1.17.

1.18.

1.19.

1.20a.

1.20b.

1.21.

1.22a.

1.22b.

John L. Heilbron, The Oxford Guide to the His-
tory of Physics and Astronomy (Oxford Univer-
sity Press, 2005) https://en.wikipedia.org/wiki/Special:
BookSources/0-19-517198-5

J.Z. Buchwald, I.B. Cohen (eds.), Isaac Newton’s natural
philosophy (Cambridge, Mass. and London, MIT Press,
2001)

J.T. Cushing, Philosophical Concepts in Physics: The
historical Relation between Philosophy and Physics
(Cambridge Univ. Press, 2008)

E. Segre, From Falling Bodies to Radio Waves: Clas-
sical Physicists and Their Discoveries (W.H. Freeman,
New York, 1984) https://en.wikipedia.org/wiki/Special:
BookSources/0-7167-1482-5,  https://www.worldcat.
org/oclc/9943504

E. Segre, From X-Rays to Quarks: Modern Physi-
cists and Their Discoveries (W.H. Freeman, San
Francisco, 1980) https://en.wikipedia.org/wiki/Special:
BookSources/0-7167-1147-8,  https://www.worldcat.
org/oclc/237246197+56100286+5946636

G. Gamov, The Great Physicists from Galileo to Ein-
stein (Dover Publ., revised edition 2014) ISBN: 978-
0486257679

P. Fara, Science, A Four Thousand Year History (Oxford
Univ. Press, 2010) ISBN: 978-0199580279

H.J. Jodl, in: E. Liischer, H.J. Jodl, (eds.), Physik,
Gestern, Heute, Morgen (Miinchen, Heinz Moos-Verlag
1971)

N.N., From Big to Small: The Hierarchy Prob-
lem in Physics (String Theory) (what-when-how — In
Depth Tutorials and Information) http://what-when-how.
com/string-theory/from-big-to-small-the-hierarchy-
problem-in-physics-string-theory/

St. Weinberg, The Discovery of Subatomic Particles (Sci-
entifique American Library Freeman Oxford, 1984)

G. Gamov: One, Two, Three ... Infinity. Facts and Spec-
ulations of Science (Dover Publications, 1989) ISBN:
978-0486256641

G. Gamov: Mr. Tomkins in Paperback (Cambridge Univ.
Press, reprint 2012) ISBN: 978-1107604681

N. Manton, Symmetries, Fields and Particles. (Univer-
sity of Cambridge), http://www.damtp.cam.ac.uk/user/
examples/3P2.pdf

F. Close, Particle Physics: A Very Short Introduction.
(Oxford Univ. Press, 2004)

R. Oerter, The Theory of Almost Everything: The Stan-
dard Model, the Unsung Triumph of Modern Physics.
(Plume, Reprint edition, 2006)

T. Plathotnik, E.A. Donley, U.P. Wild, Single Molecule
Spectroscopiiy. Ann. Rev. Phys. Chem. 48, 181 (1997)
N.G. Walter, Single Molecule Detection, Analysis, and
Manipulation, in Encyclopedia of Analytical Chemistry,
ed. by R.A. Meyers (John Wiley & Sons Ltd, 2008)

E. Schrodinger, What is life? (Macmillan, 1944)

D. Goldfarb, Biophyiscs Demystified. (Mc Grawhill,
2010) ISBN: 978-0071633642

R. Glaser, Biophysics: An Introduction. (Springer,
Berlin, Heidelberg, 2012) ISBN: 978-3642252112

1.23a.

1.23b.

1.24a.

1.24b.

1.24c.

1.24d.

1.24e.

1.25.

1.26a.

1.26b.

1.27.

1.28.

1.29a.

1.29b.

1.30a.

1.30b.

1.31.

1.32.

1.33.

1.34a.

1.34b.

1.35.

1.36a.

1.36b.

1.37.

K. Nouri (ed.), Lasers in Dermatology and Medicine.
(Springer, Berlin, Heidelberg, 2012) ISBN: 978-0-
85729-280-3

K. Nouri (ed.), Laser Applications in Medicine Inter-
national Journal for Laser Treatment and Research.
(Elsevier, Amsterdam)

St. Hawking, The Universe in a Nutshell. (Bantam Press,
2001)

L.M. Krauss, A Universe from Nothing. (Atria Books,
2012)

E. Chaisson, St. McMillan, Astronomy Today. (Addison
Wesley, 2010)

T. Dickinson, A. Schaller, T. Ferris, Night watch. A prac-
tical Guide to viewing the Universe. (Firefly Books)
B.W. Carroll, D.A. Ostlie, An Introduction to Modern As-
trophysics. (Pearson Education, 2013)

A.E. Musset, M. Aftab Khan, S. Button, Looking into
the Earth: An Introduction to Geological Geophysics,
st edn. (Cambridge University Press, 2000) ISBN: 978-
0521785747

C.D. Ahrens, Meteorology Today: Introduction to
Wheather, Climate and the Environment. (Brooks Cole,
2012) ISBN: 978-0840054999

St.A. Ackerman, J.A. Knox, Meteorology: Understand-
ing the Atmosphere, 4th edn. (Jones & Bartlett Learning,
2013)

PJ. Crutzen, Pure Appl. Chem. 70(7), 1319-1326 (1998)
P. Saundry, Environmental physics. (The Encyclope-
dia of Earth, 2011), http://www.eoearth.org/view/article/
152632

F.K. Lutgens, E.J. Tarbuck, D.G. Tasa, Essentials of Ge-
ology, 11th edn. (Prentice Hall) ISBN: 978-0321714725
W.S. Broecker, How to Build a Habitable Planet. (Eldi-
gio Press, 1988)

R.A. Miiller, Physics and Technology fiir Future Presi-
dents. (Princeton Univ. Press, 2010)

M.L. Forlan, Modern Physics and Technology. (World
Scientific, Singapore, 2015)

L. Sklar, Philosophy of Physics. (Oxford University
Press, 1990) ISBN: 978-0198751380

Th. Brody, The Philosophy behind Physics. (Springer,
Berlin, Heidelberg, 1994)

St. Cole, Am. J. Sociol. 89(1) 111-139 (1983)

B.R. Cohen, Endeavour 25(1) 8-12 (2001)

R.M. Young, Science and Humanities in the understand-
ing of human nature. (The Human Nature Review),
http://human-nature.com/rmyoung/papers/pap131h.html
W. Heisenberg, Physics and Beyond: Encounters and
Conversations. (Harper & Row, 1971)

P. Becker, The new kilogram is approaching. (PTB-
news, 3/2011), http://www.ptb.de/en/aktuelles/archiv/
presseinfos/pi2011/pitext/pil 10127.html

S. Hadington, The kilogram is dead, long live
the kilogram! ~ (The Royal Society of Chemistry,
2011), http://www.rsc.org/chemistryworld/News/2011/
October/31101101.asp

N.N., SI based Units. (Wikipedia), https://en.wikipedia.
org/wiki/SI_base_unit


https://en.wikipedia.org/wiki/Special:BookSources/0-19-517198-5
https://en.wikipedia.org/wiki/Special:BookSources/0-19-517198-5
https://en.wikipedia.org/wiki/Special:BookSources/0-7167-1482-5
https://en.wikipedia.org/wiki/Special:BookSources/0-7167-1482-5
https://www.worldcat.org/oclc/9943504
https://www.worldcat.org/oclc/9943504
https://en.wikipedia.org/wiki/Special:BookSources/0-7167-1147-8
https://en.wikipedia.org/wiki/Special:BookSources/0-7167-1147-8
https://www.worldcat.org/oclc/237246197+56100286+5946636
https://www.worldcat.org/oclc/237246197+56100286+5946636
http://what-when-how.com/string-theory/from-big-to-small-the-hierarchy-problem-in-physics-string-theory/
http://what-when-how.com/string-theory/from-big-to-small-the-hierarchy-problem-in-physics-string-theory/
http://what-when-how.com/string-theory/from-big-to-small-the-hierarchy-problem-in-physics-string-theory/
http://www.damtp.cam.ac.uk/user/examples/3P2.pdf
http://www.damtp.cam.ac.uk/user/examples/3P2.pdf
http://www.eoearth.org/view/article/152632
http://www.eoearth.org/view/article/152632
http://human-nature.com/rmyoung/papers/pap131h.html
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2011/pitext/pi110127.html
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2011/pitext/pi110127.html
http://www.rsc.org/chemistryworld/News/2011/October/31101101.asp
http://www.rsc.org/chemistryworld/News/2011/October/31101101.asp
https://en.wikipedia.org/wiki/SI_base_unit
https://en.wikipedia.org/wiki/SI_base_unit

1.38.

1.39.

1.40.

1.41.
1.42.

1.43a.

1.43b.
1.44a.

1.44b.

1.45.

1.46.

1.47.
1.48a.

1.48b.

N.N,, https://www.bing.com/search?q=Phyiscal %20
basis%20for%20S1%20units&pc=cosp&ptag=ADC8E90
F4567&form=CONMHP&conlogo=CT3210127

B.W. Petley, The fundamental physical constants and the
frontiers of measurements. (Adam Hilger, 1985)

N.N., History of the Meter. (Wikipedia), https://en.
wikipedia.org/wiki/History_of_the_metre

J. Levine, Ann. Rev. Earth Planet Sci. 5 357 (1977)

J. Miiller et al., Lunar Laser Ranging. Recent Resullts.
(AG Symposia Series, Vol 139, Springer, 2013)

K.M. Borkowski, Journal of the Royal Astronomical So-
ciety of Canada 85 121 (1991)
http://en.wikipedia.org/wiki/Tropical_year

N.N., Atomic clock. (Wikipedia), https://en.wikipedia.
org/wiki/Atomic_clock

N.N., Clock network. (Wikipedia), https://en.wikipedia.
org/wiki/Clock_network

A. deMarchi (ed.), Frequency Standards and Metrology.
(Springer, Berlin, Heidelberg, 1989)

S.A. Diddams, T.W. Hénsch et al., Phys. Rev. Lett. 84
5102 (2000)

Ch. Gaiser, Metrologia 48 382 (2011)

N.N., Kilogram (Wikipedia), https://en.wikipedia.org/
wiki/Kilogram

N.N., Mole (unit) (Wikipedia), https://en.wikipedia.org/
wiki/Mole_(unit)

1.49.

1.50.

1.51.

1.52.

1.53a.

1.53b.

1.54.

1.55.

1.56.

References

V.V. Krutikov, Measurement Techniques.
Berlin, Heidelberg, 2013)

Journal of Measurement Techniques (Springer Berlin,
Heidelberg)

K.T.V. Grattan (ed.), Measurement: Journal of Inter-
national Measuring Confederation (IMEKO) (Elsevier,
Amsterdam), ISSN: 0263-2241

L. Marton (ed.), Methods of experimental Physics.
(29 Vol.) (Academic Press, New York, 1959-1996) (con-
tinued as Experimental Methods in the Physical Sciences
up to Vol. 49, published by Elsevier Amsterdam in 2014),
ISBN 13: 978-0-12-417011-7

J.R. Taylor, An Introduction to Error Analysis:The Study
of Uncertainties in Physical measurements, 2nd ed.
(University Science Books, 1996)

D. Roberts, Errors, discrepancies, and the nature of
physics. (The Physics Teacher, March 1983) a very use-
ful introduction

J.W. Foremn, Data Smart: Using Data Science to trans-
form Information into Insight. (Wiley, 2013)

R.C. Sprinthall, Basic statistical Analysis, 9th ed. (Pear-
son, 2011)

J. Schmuller, Statistical Analysis with Excel for Dum-
mies, 3rd ed. (For Dummies, 2013)

(Springer,

37

Chapter 1



https://www.bing.com/search?q=Physical%20basis%20for%20SI%20units&pc=cosp&ptag=ADC890F4567&form=CONMHP&conlogo=CT3210127
https://en.wikipedia.org/wiki/History_of_the_metre
https://en.wikipedia.org/wiki/History_of_the_metre
http://en.wikipedia.org/wiki/Tropical_year
https://en.wikipedia.org/wiki/Atomic_clock
https://en.wikipedia.org/wiki/Atomic_clock
https://en.wikipedia.org/wiki/Clock_network
https://en.wikipedia.org/wiki/Clock_network
https://en.wikipedia.org/wiki/Kilogram
https://en.wikipedia.org/wiki/Kilogram
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Mole_(unit)

Mechanics of a Point Mass

2.1 The Model of the Point Mass; Trajectories .. .............. 40 ~
2.2 Velocity and Acceleration . ... ...... .. ... ... .. 41 5
2.3 Uniformly Accelerated Motion . ... ................... 42 %
2.4 Motions with Non-Constant Acceleration . . . .. ............ 44 -5
25  FOrCeS . .. 47
2.6  The Basic Equations of Mechanics . . .. ................. 51
2.7  Energy Conservation Law of Mechanics . . .. . ............. 56
2.8  Angular Momentumand Torque . . . ................... 63
2.9  Gravitation and the Planetary Motions . .. ............... 64

SUMMANY . . . o e 76

Problems . . . . ... ... . 77

References . . . . . .. . 79
© Springer International Publishing Switzerland 2017 39

W. Demtroder, Mechanics and Thermodynamics, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-27877-3_2



40

(@]
=
Q
©
—+
")
q
N

2 Mechanics of a Point Mass

As has been discussed in the previous chapter, the theoretical de-
scription of the physical reality often proceeds by successively
refined models which approach the reality more and more with
progressive refinement. In this chapter the motion of bodies un-
der the influence of external forces will be depicted by the model
of point masses, which neglects the spatial form and extension
of bodies, which might influence the motion of these bodies.

2.1 The Model of the Point Mass;

Trajectories

For many situations in Physics the spatial extension of bodies
is of no importance and can be neglected because only their
masses play the essential role. Examples are the motion of the
planets around the sun where their size is very small compared
with the distance to the sun. They can be described as point
masses.

The position P(z) of a point mass in the three-dimensional space
can be described by its coordinates, which are defined if a suit-
able coordinate-system is chosen. These coordinates are {x, y, z}
in a Cartesian system, {r, ¢}, ¢} in a spherical coordinate system
and {p, ¥, z} in cylindrical coordinates (see Sect. 13.2).

The motion of a point mass is described as the change of its
coordinates with time, for example in Cartesian coordinates

x = x(1)
y=yt)p =r=r().
z =z(1)

where the position vector r = {x, y, z} combines the three coor-
dinates x, y and z (Sect. 13.1).

Note: Vectors are always marked as bold letters.

The function r(f) represents a trajectory in a three-dimensional
space, which is passed by the point mass in course of time
(Fig. 2.1). The representation r = r(t) is called parameter rep-
resentation because the coordinates of the point P(¢) depend on
the parameter 7.

Figure 2.1 lllustration of a trajectory

The motion performed by P(f) on its trajectory is called trans-
lation. Contrary to the point mass bodies with extended size can
also perform rotations (Chap. 5) and vibrations (Chap. 6).

Note: The model of a point mass moving on a well-
defined trajectory fails in micro-physics for the motion
of atoms or elementary particles described correctly by
quantum mechanics (Vol. 3), where position and veloc-
ity cannot be precisely given simultaneously. Instead of
a precisely defined trajectory where the point mass can be
find at a specific time with certainty at a well-defined posi-
tion, only probabilities L(x, y, z, 7)dxdydz can be given for
finding the point mass in a volume dV = dxdydz around
the position (x,y,z). Strictly speaking a geometrical ex-
act trajectory does not exist in the framework of quantum
mechanics.

Examples

1. Motion on a straight line

x=a-t, y=b-t, z=0.

Elimination of ¢ gives the usual representation y =
(b/a)x of a straight line in the (x, y)-plane.
The point mass moves in the x,y-diagram on the
straight line with the slope (b/a) (Fig. 2.2).

Figure 2.2 Motion on a straight line in the x-y plan

Motions where one of the coordinates are time-
independent constants are named planar motions,
because they are restricted to a plane (in our example
the x, y-plane)
2. Planar circular motion

We can describe this motion by the coordinates R and
¢ (Fig. 2.3), where R is the radius of the circle and
¢(1) the angle between the x-axis and the momentary
radius vector R(7). From Fig. 2.3 the relations

x=R-coswt, y=R: sinwt,

R = const , w =dp/dt.

can be derived. Squaring of x and y yields
x> 4+ y* = R*(cos® wt + sin®* wr) = R? ,

which is the equation of a circle with radius R. The
point mass m with the coordinates {x, y, 0} moves with
the angular velocity w = d¢/dt and the velocity v =
R - w on acircle in the x, y-plane.
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Figure 2.3 Circular motion <

Note: The point mass moves relative to a chosen coordi-
nate system (in our case a plane system with the origin at
x =y = 0). The description of this motion depends on
the choice of the reference frame (coordinate system) (see
Chap. 3).

Example

Moon

max =

405 506 km

x Y

M
Earth

Trmin\= 363 000 km

a)

Path of center of mass
of earth + moon

Figure 2.4 Part of the moon trajectory described in two different coor-
dinate systems. a Origin in the mass centre of the moon-earth system,
located in the focal point of the ellipse; b origin in the centre of the sun.
The deviations from the elliptical path of the mass centre earth-moon
are here exaggerated in order to illustrate these deviations. In reality the
orbit of the moon around the sun is always concave, i.e. the curvature
radius always points towards the sun. The orbital plane of the moon is
inclined against that of the earth

The orbital motion of the moon around the earth is ap-
proximately an ellipse if 7(f) is measured in a coordinate

2.2 Velocity and Acceleration

system with the origin in the centre of mass of the earth-
moon system.(Fig. 2.4a). If one chooses, however, the
centre of the sun as origin, the trajectory is much more
complex (Fig. 2.4b), because now two motions are su-
perimposed: the orbit around the centre of mass and the
motion of the centre of mass around the sun. |

2.2 Velocity and Acceleration

For a uniformly moving point mass the position vector

r=v-t with v ={v,, v, v.} = const, 2.1

increases linearly with time. This means that in equal time in-
tervals At equal distances Ar are covered.

The ratio v = Ar/At is the velocity of the point mass. The unit
of the velocity is [v] = 1 m/s.

A motion where the magnitude and the direction of the veloc-
ity vector v is constant, i. e. does not change with time, is called
uniform rectilinear motion (Fig. 2.5). In Cartesian coordinates
with the unit vectors e,, &y, e, the velocity vector v can be writ-
ten as

V=08, + Ve, +ve, or v= {vx, vy, vz} .

Equation 2.1 reads for the components of v as

X=U,t, y=ut; z=0;t. (2.1a)

Example
Uniform motion along the x-axis:
vy =v, =0— v ={v9,0,0} .

vy = vy = const;

The trajectory is the x-axis and the motionis x = vot. <«

In general the velocity will not be constant but can change with
time its magnitude as well as its direction. Let us regard a point
mass m, which is at time ¢ in the position P; (Fig. 2.6). Slightly

X=Vg-t

At At

t

Figure 2.5 Uniform motion on a straight line

Chapter 2
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2 Mechanics of a Point Mass

V(t+ At

X y

Figure 2.6 Non-uniform motion on an arbitrary trajectory in space

later at the time ¢ 4+ At it has proceeded to the point P,. The
ratio

PP, r(t+ At)—r(t)y Ar _
= = — =7
(t+ Ar)—t At At

is the average velocity v over the distance P P,.
For At — 0 the two points P; and P, merge together and we
define as the momentary velocity v(¢) the limiting value

r(t+ At) —r(t) dr
m - -

1) =li = =
v() = li o

At—0 At

’

which equals the time derivative of the function r(r). In order
to distinguish this time derivative dr/d¢ = #(¢) from the spatial
derivative y'(x) = dy/dx the time derivative is marked by a point
instead of an apostrophe.

Since the derivative df /dx of a function f(x) gives the slope of
the curve f(x) at the point P(x, y) the velocity v has at any point
the direction of the tangent (Fig. 2.6). Its magnitude is in Carte-
sian coordinates:

Vi of Hul = V242

(2.2)

v = |v| =
Examples
1. Linear accelerated motion
— 2 — s
z=a-t"—>v,=z=2a-t.

For a = const the velocity increases linearly with
time. For a = —g/2 this describes the free fall with
the initial velocity v,(r = 0) = 0 (see Sect. 2.3.1).
Here only the magnitude, not the direction of the ve-
locity changes with time.

2. Uniform circular motion

x=R-coswt = Xx=-—R-w-sinwt

y=R-sinwt = y= R-w-coswt
z=0 = z= 0
—> =+ +2=R-w.

For @ = const the magnitude of v does not change, only
its direction. <

We will now discuss the time dependence of the velocity v in
more detail: Let us regard a point mass with the velocity v () at
the point P of the curve v(z). At a slightly later time 7 4+ At the
point mass has arrived at P, and has there generally a different
velocity v(¢r + At) (Fig. 2.7). We define the mean acceleration
aas

v(t+ Af) —v(2)

At '

E:

Analogous to the definition of the momentary velocity the mo-
mentary acceleration is the limit

v(t+At)—v(t)_d_v_. .
R

2.3)

a() = fim,
a(t) = v(t) = #(1)

The acceleration a(z) is the first time derivative dv/dr of the
velocity v(f) and the second derivative dr/d¢* of the position
vector (7). a(t) = {ay,ay,a.} is a vector and has the dimen-
sional unit [a] = [1 m/s?].

2.3 Uniformly Accelerated Motion

A motion with @ = const where the magnitude and the direction
of a do not change with time is called uniformly accelerated
motion. It is described by the equation

¥(t) = a = const . 2.4)
Equation 2.4 is named differential equation because it is an
equation between the derivative of a function and other quan-
tities (here the constant vector a).

The vector equation (2.4) can be written as the corresponding
three equations for the components

X(1) = ay
y(t) = ay
72(t) = a; .

The equation of motion (2.4) is readily solvable. The velocity if
obtained by integrating (2.4) which yields:

v(t):i‘(t)Z/adt:a-t—i-b. (2.5)

; 2/v’xm

P1 AVX
At oAy

oty t

Figure 2.7 Definition of acceleration



The integration constant b (b is a vector with constant compo-
nents) can be defined by choosing the initial conditions for the
motion. For t = 0is 7(0) = v(0) = b. L. e. the constant b gives
the initial velocity v(0) = vy.

Further integration of (2.5) gives the trajectory r(r)

r(t) = 1a + vor+¢ with ¢=r0)=r. (2.6)
This vector-equation can be written for the 3 components
x(t) = %ax 4 vt + X0
y(t) = %ay P+ Vot + Yo (2.6a)

z(1) = %az 12+ Voot + 20 -

One should realize the following statement:

All functions f(x) 4+ ¢ with arbitrary constants ¢ have the same
derivative y = f’(x) because the derivative of a constant is zero.
This implies:

All functions f(x) + ¢, which represent an infinite parametric
curve family, are solutions of the differential equation y’ =
f'(x). Therefore infinitely many position vectors r(¢) are found
for the same velocity v(z). Only the initial conditions select one
specific position vector.

We will illustrate this by several examples in the next sections.

2.3.1 The Free Fall

We choose the vertical direction as the z-axis. A body experi-
ences in the gravitational field of the earth the acceleration

ay=a, =0,
—g=-9.81m/s*,

a,

Z

where the numerical value is obtained from experiments.

When a body at rest falls at time t = 0 from the height &, the
initial conditions are x(0) = y(0) = 0: z(0) = h; v, (0) =
vy(0) = v,(0) = 0.

With these initial conditions the system of equations (2.6a) re-

duces to
W) =—Lgf +h. 2.7

The derivative gives v,(f) = —g - t. The motion z() plotted in
the z-t-plane represents a parabola (Fig. 2.8). Fort = /2h/g
the body has reached the ground at z = 0. The falling time for

the distance 4 is
tan = v/2h/g ,

and the final velocity at z = 0 is Vax = /2hg.

(2.8)

2.3 Uniformly Accelerated Motion

\2hig t

Figure 2.8 Path-time function z(t) (red curve) and velocity-time function (dot-
ted line)

2.3.2 Projectile Motion

As starting point we choose x(0) = y(0) = 0; z(0) = h; and
the z-axis is again the vertical direction, while the x-axis marks
the horizontal direction, so that the trajectory for the projectile
is in the x-z-plane (Fig. 2.9). The initial velocity should be vy =
{vox, 0, vo.}. The acceleration is a = {9,0, —g}. Equation 2.6
becomes then

x(t) = Voxl ,
y(0) =0,
2(t) = —Lg +vot + 1.

The motion is therefore a superposition of a uniform straight
motion into the x-direction and a uniformly accelerated motion
into the z-direction. For vy, = 0 we obtain the special case of
the horizontal throw and for vy, = 0 the vertical throw.

Elimination of t = x/vy, yields the projectile parabola

1 Vo
2(x) =—= izx2 +Zx+h. (2.9
2 on Voyx
The value x = x; where the maximum occurs is found for
dz/dx = 0.
2 .
- Vo Vg - sin @ - cos
xg = S o Yo SO COSF (2.10)
g 8

For a given value of the initial velocity vy the maximum of x; is
achieved for ¢ = 45°. In order to calculate the projectile range

1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
X

<Y

S XW

Figure 2.9 Projectile motion
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2 Mechanics of a Point Mass

Xy We solve (2.9) for z(xy) = 0. This gives

2 1/2
Vox * Voz 4 (UOX : UOZ) + Ox | h (2 11)
8 8 8

Since x,, > 0 only the positive sign is possible. With the relation

Uz * Uy = U2 - sin2¢ we can transform (2.11) into

20h \'/2
XW:ESiHZgD[UO—{—(US‘I‘ (g; ) .
2g sin® ¢

The optimum angle ¢, for achieving the largest throwing range
for a given initial velocity vg is achieved when dx,,/dg = 0.
This gives

Xw =

(2.12)

1

2+ 2gh/v}

For the special case h = 0 (2.13) simplifies because of
arcsin(v/2/2) = /4 to @opt = 45° (see the detailed deriva-
tion of (2.13) in the solution of Problem 2.5c).

@opt = arcsin (2.13)

2.4 Motions with Non-Constant
Acceleration

While the differential equation for motions with constant ac-
celeration is elementary integrable this might not be true for
arbitrary time dependent accelerations. We will at first treat the
simple example of the uniform circular motion, where the mag-
nitude of the acceleration is constant but not the direction.

2.4.1 Uniform Circular Motion

For the uniform circular motion equal distances are gone for
equal time intervals. This means that the magnitude of the ve-
locity v is constant and the component a, of the acceleration
a = {a;, a,} in the direction of v must be therefore zero.

The path length As on the circle arc for the angle Ag is As =
R - Ag (Fig. 2.10a). The magnitude of the velocity is then

dp
=3 =

v . =R-w.
dr

The quantity @ = d¢/dt is the angular velocity with the di-
mension [w] = [rad/s].

The acceleration is now

dv d( 2) dv . N de,
a=—=—(ve) = —e vV—
e de VA dr
dét
= v— because v = const .
dr

Because éf =1-—2e¢ -de/dr=0.

a)

Figure 2.10 a uniform circular motion, b lllustration of the angular velocity

The scalar product of two vectors becomes zero, if either at least
one of the vectors is zero or if the two vectors are orthogonal.
Since ¢, # 0 and de,/dr # 0 it follows

de,

—le .

dr

This means that the acceleration a is orthogonal to the velocity
v which is collinear with &, The vector de,/dr gives the angu-
lar velocity of the tangent to the circle. Since the radius vector
R is orthogonal to the vector v both vectors turn with the an-
gular velocity @ = dg/dt. This means that the magnitude is
|de,/dt| = w. This gives for the acceleration

de,

L R.

i (2.14)

a=v- w*é, = —Rw*F ,
where the unit vector e, = —R/R always points into the direc-
tion towards the centre of the circle, and 7 = r/|r| points into
the opposite direction.

Proof

R - cos wt

r= )
R - sin wt

v — —R - w -sinwt

R-w - coswt

—Rw? cos wt .

a= ) =—w’-r=—Rw’ -F. <
—Rw* sin wt

The vector of the acceleration for the uniform circular motion

a = —Rw’ with |a| =R o’
is called centripetal-acceleration because it points towards the
centre of the circle (Fig. 2.11).

If also the orientation of the plane in the three-dimensional space
should be defined, it is useful to define a vector @ of the angular
velocity which is vertical to the plane of motion (Fig. 2.10b) and
has the magnitude w = || = d¢/dt = v/R.
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Figure 2.11 Rollercoaster, where the superposition of centripetal acceleration and gravity changes along the path and inluences the feelings of the passenger
(with kind permission of Foto dpa)

2.4.2 Motions on Trajectories with Arbitrary The change of the magnitude of the velocity is described by a;
Curvature while the change of the direction of v is described by a,.

In the general case the velocity v will change its magnitude as
well as its direction with time. However, the momentary veloc-
ity v(¢) at time 7 is always the tangent to the trajectory in the
point P(¢), while the acceleration a(7) can have any arbitrary di-
rection (Fig. 2.12). The acceleration can be always composed of
two components ¢, = dv/dt - ¢, along the tangent to the curve
(tangential acceleration) and a, in the direction of the normal
to the tangent, i. e. perpendicular to a; (normal acceleration).

For v = v - &, where ¢, is the unit vector tangential to the trajec-
tory, the acceleration a is

=¥

dv dv dé, z
a=—=— ¢ +v— =a.+a,. (2.15)
dr dr dr Figure 2.12 Tangential and normal acceleration
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Figure 2.13 a Derivation of the normal acceleration. b Local radius of curva-
ture of a trajectory with arbitrary curvature o

For a, = O the trajectory is a straight line, where the body
moves with changing velocity if @, # 0. For a¢; = 0 the point
mass moves with a constant velocity |v| on a curve which is de-
termined by a,(¢). For the free fall of Sect. 2.3.1 is a, = 0 and
a; = const., while for the uniform circular motion a; = 0 and
a, = const.

For the motion on trajectories with arbitrary curvature the accel-
eration can be obtained as follows: We choose the x-y-plane as
the plane of the two vectors v(r) and a(¢), which implies that all
vectors have zero z-components.

According to Fig. 2.13a the two mutually vertical unit vectors &
and e, can be composed as

&, = cos e, + sinpe,

. T T

én = cos(p + E)ex + sin(p + E)e),
= —singe, + cos pe,

There we get

de, . de, do
— = —SInY— CoOSp—e,
dr l(pdtex+ 4
do .
= —¢
dr "

The normal acceleration is therefore

dy

a, =v LR
We regard in Fig. 2.13b an infinitesimal section between the
points A and A’ of an arbitrary curve and approximate this
section by a circular arc AA” with the center of curvature M.
Shortening the section AA’” more and more, i.e. the points A
and A’ converge towards the point P; the curve section AA’ ap-
proaches more and more the circular arc with radius MP;. The
radius 0 = MP; is the radius of curvature of the curve in the
point P;.

For the small section of the curve we get

ds = ode (2.16a)
d de d d 1
o _dd 9 _ . (2.16b)
dr ds dt ds 0
The acceleration vector becomes
dv, v*,
a= Eet + —e, (2.16¢)

Examples

1. Assume a motion on a straight line experiences the
acceleration a(x) = b - x*.
Calculate the velocity v(x) for the initial condition
v(0) = vy.

Solution

dv dv dx dv
a=—=—-—=—-v,
dt dx dr dx

x v
/adx:/vdv.
X0 Vo

Inserting a and integration yields
(@ —x3) =1 (v’ —v3) .

Resolving this equation for v(x) gives

v() = /36 (x° —x3) + v} .

2. The open parachute of a parachutist experiences, due
to air friction, a negative acceleration besides the ac-
celeration by gravity.

a=—b-v* with b=03m".
a) What is his constant final velocity v.?
b) What is the time-dependent velocity v(z), if the

parachutist opens his parachute only after 7y = 10s
free fall for which friction can be neglected?

Solution

a) A constant final velocity is reached, when the total ac-
celeration becomes zero. This is the case when

g—b-v}=0—v.=+/g/b=5Tm/s.

b) The equation of motion after the parachute is opened is
with the z-axis in the vertical direction

i=g—-b-2".



With v = dz/dr and dv/dt = d?z/ds* we obtain
dv/dt=b—b-v?,
which leads to the equation
t

/v dv _1[ dv —/dt/—t .
g—bvr  g) 1—v2/v2 - 0

Vo vo o

We substitute v/v. = x, forx > 1i.e. for v > v, we

get
dx 1. x+1
=—1In
1-x2 2 x-—1
1
—>t—t0=—&1nv+ve+c.
28 vV—v

Fort =1t — v = vy = g -t = 98.1 m/s. This gives
for the integration constant C the value

=LV, ot
2¢g Vo — Ve
—>t—l‘o=l&ln|:v+ve u} .
8 U — Ve Vo + Ve

Eliminating v from this equation for v yields

d - eci=10) +1

U([) = ved~ec(t_—t0)—1 with
d=v0—+ve and ¢ =2g/ve .
Vo — Ve

The velocity decreases from the initial value v (7)) = vo
at ) exponentially to the final value v, for r = oo.
However, already after t — fp = 2v./g = 1.165s the

velocity has reached 96.7% of its final value. -

2.5 Forces

We will now discuss the question, why a body performs that mo-
tion that we observe, why for instance the earth moves around
the sun on an elliptical trajectory, or why a stone in a free fall
moves on a vertical straight line to the ground.

Newton recognized that the cause for changes of a body’s veloc-
ity must be interactions of the body with its surroundings. These
can be long range interactions such as the gravitational interac-
tion between the sun and the earth, or short range interaction
which work for example in collisions between colliding billiard
balls, or even ultrashort range strong interactions between neu-
trons in an atomic nucleus. All such interactions are described

2.5 Forces

by the concept of forces. When a body changes its state of mo-
tion we say that a force acts upon the body.

If, for instance, two bodies collide we say: Each of the two
bodies has exerted during the collision a force onto the other
body, which causes a change of the state of motion for both
bodies.

A body without any interaction with its surroundings (or for
which the vector sum of all forces is zero), is called a free body.
A free body does not change its state of motion. Strictly speak-
ing there are in reality no free bodies without any interaction
(because we would not see them). However, in many cases the
interaction is so small, that we can neglect it. Examples are
atoms in a tank where a very good vacuum has been established,
or a sliding carriage on a nearly frictionless horizontal air track.
Such free bodies move uniformly on a straight trajectory. For
such cases the model of a free body is justified.

2.5.1 Forces as Vectors; Addition of Forces

Since velocity changes which are caused by forces are vectors,
also forces must be described by vectors, i.e. they are defined
by their magnitude and their direction.

Figure 2.14 Vector sum of forces. a all forces act on the same point, b equiv-
alent representation of the vector sum

47
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2 Mechanics of a Point Mass

Note: When forces act on extended bodies, also the point of
origin is important (see Sect. 5.4).

A force, as any vector, can be reduced to the sum of its compo-
nents. This reduction depends on the chosen coordinate system.
For example in Cartesian coordinates the vector and its compo-
nents are ' = {F\, F,, F}. If we choose the coordinate system
in such a way that the z-direction points into the direction of
F, the component representation becomes F = {0,0,F, = F}
with F' = |F|. Often the solution of a problem can be essen-
tially simplified by choosing the optimum coordinate system
(see Sect. 2.3.2). If several forces act on a body the total force is
the vector sum of the individual forces (superposition principle)

F:ZF,—.

This vector equation is equivalent to the three equations for the
components

Fx:ZFix F)':ZFiy FZZZFiz-

The addition of several vectors is illustrated in Fig. 2.14a and b.
Both ways to add vectors are equivalent, because the origin of
the vectors can be shifted. If Y F; = 0 the total force is zero
and the body remains in its constant state of motion (either at
rest or in a uniform motion on a straight line.

Examples

1. A body with mass m rests on a friction-free sloped
plane (Fig. 2.15). The gravitational force can be
regarded as the vecor sum of the two forces F; per-
pendicular to the sloped plain and F| parallel to this
plane. F'; exerts a force onto the surface of the plane
and causes an opposite force N of equal magnitude by
the elastic response of the surface. Only the force F)
can cause an acceleration of the body. It can be com-
pensated by an opposite force Z in order to reach a
zero total force and keep the body at rest on the sloped
plane. This situation can be described by the equation

m-g=F‘|+Fl=—(Z+N).

Attractive force Z and elastic force N compensate the
gravitational force and the body remains at rest.

N -
V4
m
F
AN
\\l L2
N I

Figure 2.15 Equilibrium of forces for a body on an inclined plane

2. A circular pendulum is a mass m hold by a string
which is fixed at a point P. The mass can move on
a circle in the x-y-plane while the string movement
forms the surface of a cone (Fig. 2.16). The total force
F = m-g + F, as the sum of gravitational force and
elastic force of the stressed string acting on the mass m
always points towards the centre of the circle in the x-
y-plane and acts as centripetal force which causes the
circular motion of m.

Restoring
spring force

Figure 2.16 Circular pendulum with the vector diagram <«

2.5.2 Force-Fields

Often the force acting on a body depends on the location. If it is
possible to unambiguously assign to each point (x,y, z) a force
with defined magnitude and direction the spatial force function
F(x,y,z) is called a force-field. Its components depend on the
chosen coordinate system:

F(r) =F(x,y,2)
F(r,v,p)
F(r.e,2)

in Cartesian coordinates, or
in spherical coordinates, or
in cylinder coordinates.

In a graphical representation the direction of the force is illus-
trated by “force-lines” where the force at any point (x,y, z) is
the tangent to the force-line (Fig. 2.17).

If the force has for any point in space only a radial component
with a magnitude which depends on the distance r to the centre
r = 0 the force field is centro-symmetric and is called a central
force field. 1t can be written as

F=f(@r)-r,

where 7 = r/|r| is the unit vector in radial direction. The sign
of the scalar function f(r) is: f(r) < O if the forces point to the
centre and f(r) > 0 is it points from the centre away.

Surfaces where the force field has the same magnitude are called
equipotential surfaces. (see Sect. 2.7.5)

Central force fields are spherical symmetric.



Examples

1.

Central force fields

a) Gravitational force field of the earth (Fig. 2.17a)
F depends on the distance for the earth’s cen-
tre. For the idealized case that the earth can be
described by a homogeneous sphere with spher-
ical symmetric mass distribution (see Fig. 2.9)
the gravitational force is for r > R (R =
radius of the earth)

F=-G

2
(M = mass of earth, m = mass of body, G =
gravitation constant, unit vector 7 = r/|r|)

b) Force field of a positive electric charge Q
(Fig. 2.17b).

In the electric force field of an electric charge Q the
force on a small test charge ¢ is

Il q-0,

= L =5
dey 2

(g9 = dielectric constant see Vol. 2). The spheri-
cal symmetric force field has the same form as the
gravitational force field.

Eqmpotentlal

/ surfaces

TN
~. Lines of
- force

a)

| Equnpotentlal

\ surface

b) |

Figure 2.17 Spherical symmetric force fields a gravitational force field
of a mass M (attractive force) and b electric force field of a positive
charge Q and repulsive force on a positive test charge

2.5 Forces

2. Non-central force fields

a) Dipole force field

The force field in the surrounding of two charges
+0 and —Q with equal magnitude but opposite
sign is no longer spherical symmetric. The force
on a test charge not only depends on the distance
from the centre of the two charges but also on
the angle ¥ of the position vector against the con-
necting line of the two charges (Fig. 2.18). The
calculation of the force field gives (see Sect. 1.5 of
Vol. 2)

F=F +F,=

Figure 2.18 Force field of an electric dipole and the force on a negative
test charge

b) Force field of a planetary system

At each position r the gravitational forces on a test
mass exerted by the sun, the planets and the moons
superimpose. The force field F(r) = > F; is very
complex. It even can be zero at certain points in
space, for example at a point N between earth and
moon (neutral point) where the opposite gravita-
tional forces from earth and moon just compensate
(Fig. 2.19).

Figure 2.19 Gravitational field between earth and moon
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c) Homogeneous force field of a parallel plate ca-
pacitor
For a voltage V between the plates with a dis-
tance d the force on an electric charge +¢q is F =
+q - (V/d) - e, vertical to the plates and pointing
from the positively charged plate to the negative
one (Fig. 2.20). The force F has at any point inside
the capacitor the same magnitude and direction.
Such a force field is called homogeneous.
Within a small volume also the gravitational field
of the earth can be treated as a homogeneous force
field as long as the vertical extension Az of this
volume is very small compared to the radius R of
the earth. The force on a mass is then F = m - g,
where |g| = 9.81m/s? is the earth gravitational
acceleration which remains constant in a small vol-

ume.

4 —
AN IR
IR
T I

+

Figure 2.20 Homogeneous force field for electric charges inside a par-
allel plate capacitor <

2.5.3 Measurements of Forces; Discussion of
the Force Concept

Forces can be measured due to their effect on the deformation of
elastic bodies (see Chap. 6). One example is the spring balance
(Fig. 2.21). Here the elongation of a spring under the influence
of a force is measured. Its displacement x — x( from the equilib-
rium position x is proportional to the acting force

F, = —D(x—xp) . 2.17)
If the spring constant D = F/Ax is known, the determination of
the force F is reduced to a length measurement Ax = x—xy. The
spring constant D can be obtained from measurements of the
oscillation period of the spring balance. After a mass m has been

X—Xg
1

Figure 2.21 Spring balance for the measurement of forces

ﬁ:m-@’

Figure 2.22 Interaction between sun and comet as an example for the far
distance effect of forces

displaced from its equilibrium position xy and then released, it
performs oscillations around x( (see Sect. 2.9.7).

Often forces can act on bodies without physical contact between
them. Examples are the gravitational force between sun and
earth or between sun and a comet (Fig. 2.22). In the latter case
the comet is attracted by the sun due to the gravitational force
and vice versa. Its tail is repelled because of the radiation pres-
sure and the sun wind which is exerted by particles (protons and
electrons) emitted from the sun.

Even if there is no direct contact between two bodies we say that
a force acts on each body which causes the change of its mo-
tional state i. e. its velocity with time. Also for the investigation
of atomic collision processes the information on the forces be-
tween the colliding atoms is obtained from the observed change
of the velocities of the two collision partners (see Sect. 4.3).
Here the change of the momentum dp/df is used to determine
the force. This explanation goes beyond the ordinary meaning
of forces as directly perceptible phenomena as for instance the
physical strength.

In all cases the force is a synonym for the interaction between
bodies. The range of distances between the interacting bodies
can reach from 10~!7 m to infinity.

The question, what the real cause for this interaction is and
whether it is transferred between the interacting bodies infinitely
fast or with a finite speed can be up to now only partly answered
and is the subject of intense research but is not yet fully under-
stood. Theoretical predictions claim a finite transfer time which
equals the speed of light. The description of the interaction be-
tween very fast moving bodies has therefore to take into account
this finite transfer time (retardation, see Sect. 3.5). For veloci-
ties which are small compared to the speed of light this effect
can be neglected (realm of non-relativistic physics).

We will now discuss more quantitatively the relations between
forces and the change of motional states of bodies.



2.6 The Basic Equations of
Mechanics

The mathematical description of the motion of bodies under the
influence of forces can be reduced to a few basic equations.
These equations are based on assumptions (axioms) which are
suggested by experiments. They were first postulated by Isaac
Newton in his famous multi-volume opus “Philosophiae natu-
ralis principia mathematica” which was published in the years
1687-1726 [2.1].

2.6.1 The Newtonian Axioms

For the introduction of the force model and its relation with the
state of motion of bodies Newton started from three basic as-
sumptions which were taken from daily experience. They are
called the three Newtonian axioms (sometimes also Newton’s
three laws).

First Newtonian Axiom

Each body remains in the state of rest or of uniform motion
on a straight line as long as no force is acting on it.

As the measure for the state of motion of a body with mass m
we define the momentum

p=m-v.

The momentum p is a vector parallel to the velocity v and has
the dimension [p] = [kg-m-s~']. A particle on which no force
is acting is called a free particle.

With this definition Newton’s first law can be formulated as
The momentum of a free particle is constant in time.

This means: always when a particle changes its state of motion
a force is acting on it, i. e. it interacts with other particles or it is
moving in a force field (Fig. 2.23).

Second Newtonian Axiom

Since we attribute a force to any change of momentum we
define the force F as

=%

i (2.18)

2.6 The Basic Equations of Mechanics

A\ pa
P4

Interaction
range

- x Bi =X B’i
p;/ \62

Figure 2.23 Forces as cause for a change of momentum

With p = m - v we can write this in the form

dv dm
._+_.v

(2.18a)
The second term describes a possible change of the mass m with
the velocity of the particle. There are many situations where
this second term becomes important, for instance when a rocket
is accelerated by the expulsion of fuel (see Sect. 2.6.3) or when
a particle is accelerated to very high velocities, comparable to
the velocity ¢ of light, where the relativistic mass m(v) increase
with velocity, cannot be neglected (see Sect. 4.4.1).

Example

A freight train moves with the velocity v in the horizon-
tal x-direction (Fig. 2.24). It is loaded continuously with
sand from a stationary reservoir above the train. The mass
increase per time dm/dt is assumed to be constant. When
friction can be neglected the total force onto the train is
zero. The equation of motion is then

O=m-dv/dt+A-v (2.18b)
with m = mg + A - t. Integration yields
nY =™
Vo my+A-t
4
"I..I It L3 |¢ Il ) :[11-' 3
O C | O O

l m-g X

Figure 2.24 Example to Eq. 2.18a

with the solution

1
T+ @A/mg) -1
With my = 1000 tons and dm/dt = A = 1ton/s the train

velocity v(f) = vo(1 + 1 + 1073 £)~! the velocity slows
down to vy/2 in 1000s. |

v(t) =v (2.18¢)
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——— f ———

maz

Iz

iy my-m
= 1My
IFi =6 207

Figure 2.25 actio = reactio for the example of gravitational forces F; = —F;
between two masses

If the mass m is constant (dm/dr = 0) Eq. 2.18b takes the simple
form

. dv
F=m-a with a=—.

2.18d
" (2.18d)

The unit of the force is [F] = 1kg-m-s™2 = 1 Newton = I N.

Third Newtonian Axiom

When two bodies interact with each other but not with a
third partner the force acting on the first body has equal
magnitude but opposite direction as the force on the sec-
ond body (Fig. 2.25). Newton’s formulation in Latin was

actio = reactio
F,=—-F,.

We will apply Newton’s axioms to a system of two masses 1,
and m, which interact with each other, i. e. they collide, but are
otherwise completely isolated from their surroundings. Such a
system is called a closed system.

Since there are no external forces on a closed system we can
conclude in analogy to a free particle that the total momentum
of the system remains constant:

p, +p, = const . (2.19a)
Differentiating this equation yields
dp,  dp,
— + —=0=F =-F,. 2.19b
” ” 1 2 ( )

This axiom can be proved experimentally with two equal spring
balances (Fig. 2.26a), which are connected to each other at one
end. If one pulls at the two other ends into opposite directions
they show that on each spring balance the same force is acting.

Another experimental verification is shown in Fig. 2.26b where
a spring is compressed by two equal masses on an air track

a) F -F
Strand
Spring
) ey
b) Al\irt:racr

Figure 2.26 Experiment to prove the 3. Newtonian law a with two equal
spring balances, b with two equal masses on an air track

\Fy=-m-g

——

Figure 2.27 The gravitational force F = m - g of a mass m on a solid surface
is compensated by the antiparallel deformation force of the solid surface

which are hold together by a string. If the string is burnt by
a candle, the two masses are pushed by the expanding spring to
opposite sides and slide on the air track with equal velocities,
which means that they have equal but opposite momenta. The
velocities can be accurately measured by photoelectric barriers.

Newton’s third law can be also proved for resting bodies. A
mass m resting on a solid surface acts with the gravitational
force F| = m- g on the surface which is deformed and responds
with an equal but opposite elastic force Foy = —F; = —mg
(Fig. 2.27).

2.6.2 Inertial and Gravitational Mass

The property of bodies to remain in their state of motion when
left alone (i. e. when no force is acting on them) is called their
inertia. Since the accelerating force is proportional to the mass
of the body its mass can be regarded as the cause of the inertia
and is therefore called the inertial mass m;,e.42. Newton’s sec-
ond law means this inertial mass. There are many demonstration
experiments which illustrate this inertia. Assume, for example,
a glass of water standing on a sheet of paper. If the paper is
pulled suddenly away, the glass remains a rest without moving,
because of its inertia.

There is another property of masses which is the gravitational
force (Fgry = m - g on the earth surface). This force is also
called the weight of the mass. Experiments measure the weight
of a mass of 1kg as

Foy = 1kg-9.81m/s? = 9.81N.



<!
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F=m-g b)

e
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Figure 2.28 Einstein's Gedanken-experiment for the equivalence of gravita-
tional and inertial mass a in the homogeneous gravitational field of the earth;
b in a gravitation-free space inside an accelerated lift

Note: The gravitational force is always present when the mass
m is attracted by another mass M and it is proportional to the
product m - M (see Sect. 2.9.2).

The question is now: Are these two properties related to the
same mass i. €. 1S Minerial = Mgray !

Many detailed and accurate measurements for many different
masses have proved that within the relative uncertainty of 1010
there is no measurable difference between miperial and mgray.

Starting from this experimental result Einstein has postulated
the general equivalence principle that inertial and gravita-
tional masses are always equal.

By the following “Gedanken-experiment” he has shown, that it
doesn’t make sense to distinguish between inertial and gravita-
tional masses:

An observer in a closed lift measures a mass m hanging on a
spring balance (Fig. 2.28). He cannot distinguish, whether the
elevator is resting in a gravitational field with the gravitational
force Fyryy = m - g on the mass m (Fig. 2.28a) or whether the
elevator moves upwards with the velocity v = —gt and the ac-
celeration —g in a force-free surrounding (Fig. 2.28b). Both
situations lead to the same elongation of the spring balance. Any
further experiment performed inside the closed elevator leads to
the same results for the two situations (a) and (b).

For instance when the observer in the elevator throws a ball in
the horizontal direction the trajectory of the ball is for both situ-
ations a parabola (see Fig. 2.9).

We will therefore no longer distinguish between inertial and
gravitational mass and call it simply the mass m of a body which
has the two characteristic features of inertia under acceleration
and weight in gravitational fields.

Note: The question what the mass of a body really means is up
to date not answered, although great efforts are undertaken to
solve this problem.

2.6 The Basic Equations of Mechanics

2.6.3 The Equation of Motion of a Particle in
Arbitrary Force Fields

Integration of Newton’s equation of motion F = m-dv/dt yields
the equations

v(t) = l/thJr C, (2.20a)
m
r(t) = /v(t) dt + C;
= l/ [/th] dt+/C1 dt+ C, (2.20b)
m

For the velocity v(z) and the position vector r(¢) with the integra-
tion constants C; and C, which are fixed by the initial conditions
(e.g. v(t=0) = vgand r(t = 0) = ry).

Whether these equations are analytical solvable depends on the
form of the force F which can be a function of position r, veloc-
ity v or time £. We will illustrate this by some examples.

Constant Forces

For the most simple case of constant forces F = const, which
do not depend on time nor on the position or velocity of the
particle the integration of (2.20) immediately gives

F =m-a = const ,
U(t) =at+C, with Cy=vy= v(t = 0) ,
r(t) = %(Jtt2 +vot+ry with ro=r(=0).

221

The trajectory of the particle can be directly determined, if the
initial conditions are known. It is advisable to choose the coor-
dinate system in such a way that the force coincides with one of
the coordinate axes.

Example

The motion of a particle under the influence of the con-
stant force F = {0, 0, —mg} pointing into the —z-direction
gives the three equations for the 3 components of the force

¥=0 =>i=A = x=At+B,

y=0 =y=A4, = y=At+B,

P=—g=>i=—gt+A =>z=—1g2+At+B..
(2.22)

These equations describe every possible motion of par-
ticles under the influence of the earth gravitation in a
volume which is small compared with the dimensions of
the earth where the gravitational force can be regarded as
constant. From the many possible solutions of (2.22) the
initial conditions with fixed values of A and B select spe-
cial solutions (see examples in Sect. 2.3). <
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Figure 2.29 Launch of a body from the earth surface

Forces F(r) that depend on the Position

As an example of position dependent forces we choose the grav-
itational force

m-M

.
2

F(r)=-G

The minus-sign indicates that the attractive force points into the
direction of —r.

The acceleration a has in this central force field only a radial

component a, = —G - M/r?. For vertical motions the ve-
locity becomes in spherical coordinates v = {v;,0,0} and its
magnitude is [v] = v = v,. Our problem therefore becomes

one-dimensional. From the relation

dv dv dr dv
a=——=—+:— = — s
dr dr dt dr

it follows: v - dv = —(G - M/r*)dr.
Integration yields

1, GM
= —+C.
r

5 (2.23)

Let us discuss the case that a projectile is fired from the earth
surface (r = R) upwards in vertical direction with the initial ve-
locity vy (Fig. 2.29). The integration constant C; then becomes

GM 1,
Clz—vo——zzvo—g'R,

because a(R) = —g = —G(M/R?). This gives

1, gR* 1 ’
0t =4 P _6.R. 2.24
2” r + zvo § ( )

At the maximum vertical height r = rp,x the velocity becomes
v(rmax) = 0 and we obtain from (2.24)
R

Fmax =

For the initial velocity vp — +/2Rg the maximum vertical
height rp,x becomes infinity and the projectile can leave the
earth. This velocity is called the escape velocity. Inserting the
numerical values for R and g gives

Vo > vy = y/2Rg = 11.2km/s . (2.26a)

(escape velocity)

The velocity v, is often named the 2nd cosmic velocity while
the first cosmic velocity v; is the velocity of a projectile which
is fired in horizontal direction and orbits around the earth on a
circle closely above the earth surface. From the relation

GM
=,/— =g R (2.26b)
R
the numerical value of v; becomes (when neglecting the earth
rotation) v; = vz/\/f ~ 7.9km/s.

Note: The general case of arbitrary motion in a central force
field is treated in Sect. 2.9.

Time-dependent Forces

There are many situations where the force on a particle changes
with time. One simple example is a mass hanging on a spring,
which is induced to vertical oscillations, or a comet moving on a
parabolic trajectory through the solar system. We will illustrate
the solution of the equation of motion for time dependent forces
by two numerical examples.

Examples

1. Assume the time dependent force F = b - t + ¢ with
b = 120N/s and ¢ = 40N, which points into the
x-direction, is acting on the mass m = 10kg. For
t = 0 the mass should be at x = 5m with a velocity
v(0) = 6 m/s. Calculate the position x(z).

Solution

The straight motion proceeds along the x-axis. The accel-
eration is @ = F/m and the velocity

t
1 b
v(t) = —/F(r)dr =7+ £t—}- Vox ;
m 2m m
0

b
x(1) = /vxdr =—7F+ it2 + voxt + Xxo
6m 2m
=QF +22 +61+5)m withrins .
2. What is the final velocity of a mass m initially at

rest (v(0) = 0) which experiences a force F(f) =
A - exp[—a*f]?



Solution

m-v(t=oo)=/th

Voo =

N|D>

Acceleration of a Rocket

In the example for position dependent forces we have assumed
that the projectile starts with the initial velocity vy > 0. In
reality it starts with v9 = 0. However, the velocity v > 0 is
reached within a short distance that is very small compared with
the earth radius R. We will now study the acceleration during
the start phase of the rocket in more detail. Within this small
distance d < R, which the rocket passes during its acceleration,
we can fairly assume the earth acceleration g to be constant.

During the burning phase the rocket is continuously accelerated
by the recoil momentum of the propellant hot gases (Fig. 2.30).

With v” we denote the velocity of the propellant gases relative to
the surface of the earth which represents our reference coordi-
nate system, and with v the rocket velocity in this system. The
escaping gas mass per second is Am/At. The momentum of the
rocket at time 7 is p(f) = m - v. At time r + At the mass of the
rocked has been reduced by —Am (which equals the mass of the
expanding gas during this time interval) and its velocity has in-
creased by Av while the gases have transported the momentum
Am - v'. The total momentum of the system rocket + gas is then
with Am > 0

pt+ Aty = (m—Am)(v + Av) + Am-v' . (2.27a)
During the time interval At the momentum of the system has
changed by

Ap =p(t+ A1) —p(1)

2.27b
=m-Av+ Am(w' —v) — Am- Av ( )

Figure 2.30 Acceleration of a rocket

2.6 The Basic Equations of Mechanics

For the limit At — 0; Am/At — dm/dt is lima,o(Am -
Av/Ar) = 0.

Since the time derivative dp/dt of the momentum equals the
force F, = m - g of gravity acting on the rocket we obtain

dp

dr

d

2.27
ma (2.27¢)

—v)=m-g.
The velocity v’ of the propellant gases relative to the earth de-
pends on the velocity v of the rocket. For |v| < |v’| the direction
of v’ is downwards, for |v| > |v’| it is upwards. It is therefore
better to introduce the velocity v. = v’ — v of the propellant
gases relative to the rocket, which is independent of v and con-
stant in time. This converts Eq. 2.27¢ into

dv dm
+ —ve=m-g.

2.27d
Cdr d ( )

With v = {0,0,v,}, v = {0,0,v.}, g = {0,0,—g} this equa-
tion becomes after division by m and multiplication by dt

dm

d -
v dr

= —V, —g-dr, (2.27e)

Integration from ¢+ = O up to ¢+ = T (propellant time of the

rocket) yields

mo
v(T) =vg + veln — — gT , (2.28)
m

where vy = v(t = 0).

Numerical Example

Launching of a Saturn rocket with my = 3 - 10°kg; v, =
4000m/s, T = 100s, vop = 0. Final mass at t = T is
m(T) = 10° kg, which means that the mass of the fuel is
2 - 10°kg. Equation 2.28 yields

v(T = 100s) = 0 +4000m/s-In3 —9.81 m/s> 100s

=3413.5m/s .
<

The heights z(¢) of the rocket during its burning time for con-
stant loss of mass ¢ = dm/dr = const is readily obtained. With
m(t) = my — q - t, Eq. 2.28 becomes

v(t) = vo—veln(l—it) —gt;

mo
z2(t) = vot — ve/In (1

and integration yields

1 2
— ) di— g+ Gy,
myy 2

1
Z(t)=vo-t—vefln(l—it)dt—Egt2+co.

my

The integration constant is Cy = 0 (because z(0) = 0).
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Since f In xdx = xIn x — x the integration gives

1
2() = (vo + ve) t + Ve [@ —t] In (1 - it) - 5gt2 .
q

Numerical Example

For our example above we obtain with ¢ = 2 - 10*kg/s,
vg = 0; ve =4000m/s T = 100s

2(T)=(4-10°+2-10°-1n0.33 —4.9-10*m
= (400 — 219.7 — 49) km = 131km ,

o(T) = [~4-10°-1n(0.33) — 981] m/s = 3413m/s ,
<

This example illustrates that with z(T) < R the earth acceler-
ation does not change much and can be regarded as constant.
It further demonstrates that with a single stage the escape ve-
locity v = 11200m/s of the rocket cannot be achieved with
reasonable fuel masses. It is therefore necessary to use multi-
stage rockets.

Numerical Example

After the end of the burning time 7' of the first stage
the velocity of the rocket in our example is v(7}) =
3400m/s. The second stage starts with a mass m(7T;) =
9. 10° kg (the fuel tank with m = 10’ kg has been pushed
off) including m = 7 - 10° kg for the fuel. The burning
time is again 100s and the final mass m(7,) = 2.10° kg.
According to (2.28) the final velocity v is

v(T) + T») = (3400 + 40001n(9/2) — 9.81 - 100)
= 8435m/s .

The third stage starts with a velocity v = 8435 m/s and a
mass m = 1.8 - 10° kg (the fuel tank of the 2nd stage with
m = 2 - 10* kg has been pushed off). With T3 = 100s we
obtain the final velocity

V(Tfpa) = (8400 + 40001n7.2 — 9.8 - 100) m/s
= 15,000m/s > Vescape -

Note: For the second and third stage one should, strictly speak-
ing, take into account the decrease of the earth acceleration
g with increasing z. Instead of the constant g one should
use the function g(z) = G - M/r* with r = z + R and
M = mass of the earth. With the approximation (1 + z/R)™2 ~
1 — 2z/R one obtains instead of (2.27¢) the equation

d
dv = —ve % —g(1 —2z/R)dr . (2.30)
m

This equation illustrates that even for z = 100 km the correction
term 2z/R for g amounts only to 3%. This means for the cal-
culation of the velocity v only a correction of 1%, because the
term g - T in Eq. 2.28 represents only about 1/3v.

The integration of (2.28) is now more tedious but an approxima-
tion is still possible, if the function (2.29) is inserted for z().

2.7 Energy Conservation Law of
Mechanics

In this section we will discuss the important terms “work”,

“power”, “kinetic and potential energy” before we can formu-

late the energy conservation law of mechanics.

2.7.1 Work and Power

If a point mass m proceeds along the path element Ar in a force
field F(r) (Fig. 2.31), the scalar product
AW =F(r)- Ar (2.31a)

is called the mechanical work, due to the action of the force F
on the point mass m.

The work is a scalar quantity!

Written in components of the vectors F and r Eq. 2.31a reads

AW = F,Ax + F,Ay + F.Az . (2.31b)

The unit of work is [work] = [force - length] = IN-m =
1 Joule = 11J.

Remark. In the cgs-system the unit is [W] = 1dyn-cm =
lerg = 10771.

P
»- Trajectury

-
4"
5
.

)
=

Figure 2.31 Definition of work



If the point mass moves under the action of the force F from
point P; to point P, the total work on this path is the sum W =
> AW; of the different contributions AW; = F(r;) - Ar; which
converges in the limit Ar; — O to the integral

Py
W:/F-dr.
Py

The integral is called line-integral or curvilinear integral. Be-
cause of the relation F - dr = F.dx + Fydy + F.dz it can be
reduced to a sum of simple Rieman integrals:

(2.32a)

y2 22

X2
/F‘dr:fodx—i-/Fydy-i—/dez,

X1 Y1 21

(2.32b)

which can be readily calculated if the force is known (see the
following examples). In Equation 2.32is W > O for F - dr > 0
i.e. if the force F has a component in the direction of the move-
ment. In this case the mass m is accelerated. According to this
definition the work is positive if the energy of the mass m is
increased. Work which is performed by the mass on other sys-
tems decreases its energy and is therefore defined as negative

2.7 Energy Conservation Law of Mechanics

3. The work performed by a mountaineer against the

gravitational force (man + pack = 100kg), who
climbs up the Matterhorn (Az = 1800m) is W =
[ Fedz = —m-g-Az = 107-9.81-1.8-10°kg-m?/s* =
—17.6-10°J ~ 0.5kWh.

The work is negative, because the force is antiparal-
lel to the direction of the movement. The mountaineer
produces energy by burning his food and converts it
into potential energy thus decreasing its internal en-
ergy. The prize for the electrical equivalent of 0.5 kWh
is about 10 Cents!

. In order to expand a coil spring one has to apply a

force F = —F, opposite to the restoring spring force
F. = —D(x —xy) which is proportional to the elonga-
tion (x—xp) of the spring from its equilibrium position
xo. The work which has to be applied is

/dex=D/(x—x0)dx

= %D(x —x)%.

w

This is equal to the area A in Fig. 2.32a between the
x-axis and the straight line F = D(x — x).

(see Sect. 2.7.3). Fx
. . . Fy =D-(x—Xq)
If F is perpendicular to r (and therefore also to the velocity v)
the work is W = 0, because then the scalar product F - dr = 0.
The work per time unit A A= %D(x =
dw -
pP=— 2.33a a) X X
a ( ) ) Xo
is called the power P. Its unitis [P] = 1J/s = 1 Watt = 1 W. )\‘/(

d \ / / (1 /
p= $/F(r(t)7t) SF(r)dr (2.33b)

=F@r(t),t)-v(t) =F-v.

Remark. 1In daily life the electrical work is defined in kWh.

m-g-sina

Oti e
b) !
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Figure 2.32 a Work for expanding a spring, b work of a car climbing

With 1J = 1 Ws the relation is 1 kWh = 3.6 - 10° Ws.
up a slope

5. A car (m = 1000kg) moves with constant velocity of

Examples

1. Uniform circular motion under the action of a radial
constant force. Here v always points in the direction of
the tangent to the circle, but the force is always radial,
i.e. FLv. The scalar product F - v = 0 and therefore
the work is zero.

2. A mass is moved with constant velocity without fric-
tion on a horizontal plane. (motion on a straight line).
The gravitational force is always perpendicular to the
motion, — F - dr = 0. The work is zero.

48km/h on a straight line with a slope of 5° against
the horizontal (Fig. 2.32b). What is the work the en-
gine has to produce within 5 min, if friction effects can
be neglected?

The force in the direction of the motion is

F=—F,-sinc =m-g-sina .
The distance which the car moves within 5 min is

s =48km-5/60 = 4km = 4000m .



58

(@]
=
Q
o
—
(1°)
q
N

2 Mechanics of a Point Mass

The work is then with 1 kWh = 10 -3.6- 10> Ws =
3.6-10°07

W=4-10°-9.81-sin5°-10°N-m
=34-10°7 ~ 1kWh .
The power is

dw  3.4-10°J
P_ —

= e = ~ 1.13-10°W
dr 300s

=11.3kW. <

2.7.2 Path-Independent Work; Conservative
Force-Fields

We regard a force field F(r) that depends only on the position
r but not on time. When a mass m is moved from point P; to
point P, on the path (a) (Fig. 2.33) the work necessary for this
motion is

W, = / F-dr,.
On the path (b) it is
W, = / F -dry .
If for arbitrary paths (a) and (b) always W, = W,, we name the

integral path-independent and the force field F(r) conservative.

With other words:

In conservative force fields the work necessary to move a
mass m from a point P(r) to a point P(r;) is independent
of the path between the two points.

If we move the mass from P; to P, and back to P; the total
work is then zero.

Figure 2.33 Path-independent work in a conservative force field

In conservative force fields the work for moving a mass m
on a closed loop is zero.

Py Py
Wa—WbZ/F‘dra—/F dry,
Py Py
? " (2.34)
:/F-dra—i-/F.drb
Py Py

:%F-dr:O.

The work depends only on initial and final position of the
motion, not on the chosen path between them.

In Vector-Analysis it is proved that the equivalent condition for a
conservative force field F(r) is curl F = 0 (theorem of Stokes).
For the definition of curl F see Sect. 13.1. Itis

curlF =rotF =V x F
_ oF, 0dF, 0F, OF,
T lay 9z oz ox ’

OF, OF,
ox  ady |’

Conservative force fields are a special case of force fields F(r)
that depend only on the position r, not on time or velocity.

Note: Not every force field F(r) is conservative! (see Example
below)

Examples

Conservative Force Fields

1. A homogeneous force field F(r) = {0,0, F,} with
F, = const (Fig. 2.34a) is conservative because

F-dr=FZdz—>W=/F-dr

22 21
=/dez=—/dez—>¢F-dr=0.
21 22

2. Every time-independent central force field, written
in spherical coordinates (see Sect. 13.1) as F =
{F;,Fy = 0,F, = 0}, which depends only on the
distance r from the centre » = 0 and not on the angles
¥ and ¢ is conservative.

It can be written as F(r) = f(r) - ¥, where f(r) is a
scalar function of r (Fig. 2.34Db).

r

r
/F-dr:/F,dr:—/Frdr:>¢F-dr=0.
r

r



2.7 Energy Conservation Law of Mechanics 59

F \ vi
Path II P,

22 S P2 / S ~Pathl
u/ s
h / \\\ F (r)

.
.

"IPT Path1 P~
X X
ay ! 2 b)

ZA

—
-

<y

Figure 2.34 Examples for conservative force fields. a Homogeneous
field, b central field

Figure 2.35 Movement in a non-conservative force field
Non-conservative Force Fields F)=y-ex+x ¢

Chapter 2

2. For time-dependent force fields the integral cannot be
path-independent, because the force field varies during
the travel of the body and therefore the work expended
for the different paths is generally different.

3. If the force depends on the velocity of the body (for

1. Position-dependent non-central force field

F(r) = ye, + x2ey .

The work one has to expend for moving a body from instance the friction for a body moving through a
point P; = {0,0, 0} to point P, = {2,4,0} is medium or on a surface, or the Lorentz-force F =
q - (v X B) on a charge ¢ moving with the velocity

P 2 4 v in a magnetic field B) such fields are generally not

W = / F.-dr = / F.dx + / Fydy conservative because the velocity differs generally on

i 2 7 the different paths. For friction forces F; the force is

B = for small velocities v proportional to v(F ~ v), when

2 4 the body moves slowly through a liquid. For large ve-

_ / ydx + / dy . locities is Fy ~ v3 .for example yvhen a body moves

through turbulent air. For all friction forces heat is

=0 y=0 produced and therefore the mechanical energy cannot

be preserved. In all these cases ¢ F - dr # 0 (see also

We choose two different paths (Fig. 2.35): Sect. 6.5) <

(a) along the straight line y = 2x
(b) along the parabolay = x°.
On the path (a) is y = 2x = x* = (y/2)?
Time-dependent or velocity-dependent forces are gener-

2 4 . ally not conservative.
/F-dra = /Zxdx—l-/(%) dy
0 0
2 34 16 .
=2+ L a4 2 =28/3, 2.7.3 Potential Energy
o 12lo 3
On the path (b) is y = 2. When a body is moved in a conservative force field from a start-

ing point P;(ry) to another point P,(r,) the work expended or
gained during this movement does not depend on the path be-

2 4
2 tween the two points. If Py is a fixed point Py and P(r) has an
/ F.-dr, = / dx + / ydy arbitrary position r the work solely depends on the initial point
0 0 Py and the final point P(r). It is therefore a function of P(r)
1.2 1.4 8 3 with respect to the fixed point Py. This function is called the
= — 3‘ — 2‘ =_—4+8=" potential energy E,(P) of the body.
3 b2 T3 3 P
The work

= gS F - dr # 0. The force field is not conservative! " Def

AW = /Fdr = — (Ey(Py) — Ey(Py)) (2.352)
P
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z

h’”n'q"{ 7777777 Epo=mgh 0
h

04|—E91=0

a)

Figure 2.36 Different possibilities to choose the zero of the potential energy:
abk(z=0)=0bE(r=00)=0

which the force F(r) accomplishes on the body when it is moved
between two points P; and P, is equal to the difference of the
potential energies in these two points. For F' - dr > 0 the force is
directed into the direction of the motion. The potential energy
difference AE, = E,(P)—E,(P,) is then negative. This means,
that the mass m can deliver the work AW but looses potential
energy.

One example is the free fall in the gravitational field of the earth,
when a mass m falls from the height # with potential energy m-g-
h to the ground with 2 = 0. When we lift the mass m fromh = 0
to h > 0 against the gravitational force, the scalar product F - dr
is negative and the potential energy increases (Fig. 2.36a). The
work spend on the body to lift it against the force results in an
increase of the potential energy. A body with a positive potential
energy can convert this potential energy again into work. An
example is water falling down through pipes and drives a turbine
which drives maschines and produces electricity.

Note:

1. The sign of work and potential energy difference in (2.35a)
has been chosen in such a way, that for F-dr <0 — AW <0
but AE, > 0, 1i.e. one has to spend work in order to move the
body against the force which increases its potential energy.
Work which the body can deliver to its surrounding for F -
dr > 0 decreases its potential energy.

2. The defined zero E;, = 0 for the potential energy is not fixed
by the definition (2.35a). If we choose the fixed reference
point Py as the zero point of the potential energy and define
E,(Py) = 0, then the absolute value of the potential energy
in point P is given by

»
W= /F -dr = —E,(P) . (2.35b)

Po

For our example of the free fall we can choose & = 0 as
the reference point with E,(0) = 0. In many cases where
a body can be moved to very large distances from the earth
(for instance space crafts) it is more convenient to choose
r = o0 as the reference point for E,(c0) = 0. We then have
the definition

oo

/F-dr = Ey(P) — Ey(00) = Ey(P) ,
J

(2.35¢)

the potential energy E,(P) is then negative for F'- dr < 0. It
is equal to the work one has to spend in order to bring the
body from the point P to infinity. For instance the potential
energy of a mass m in the gravitational field of the earth Fy =
—GMm/r? at a distance r = R from the centre of the earth is

then
E,(R) = —GMm/R , (2.35d)

where G is Newton’s constant of gravity and M is the mass
of the earth (Fig. 2.36b).

. The work which one has to spend on the body (for F-dr < 0

or which can be gained from the body (for F-dr > 0) when it
is moved from point P; to point P; is of course independent
of the choice of the zero point because it depends only on the
difference AE, = E(P1) — E,(P;) of the potential energies.

Examples

1. A body with mass m is lifted in the constant gravi-
tational force field F = {0,0, —mg} from z = 0 to
z = h, where h < R (earth radius). The necessary
work to achieve this lift is

h

0
=—m-g-h=Ey0) — Ep(h) .

If we choose E,(z = 0) = 0 the potential energy for
z = his Ey(h) = +mgh (Fig. 2.37a). The work ap-
plied to the mass m appears as potential energy.

/ A Ep  (r=e0)=0
h—— Eg,=m-gh ble gomm
= . - r2
l F=m-g
-G .-mM
0 —Ep=0 ___r_=R-— — 5)__G_ _R_
/-\z_m-g R
a) b)

Figure 2.37 a Approximately homogeneous gravitational force field
as small section of the spherical field of the earth in b. The selection of
the definition £, = 0is £,(z = 0) = Oincase a and E,(r = o0) = 0
for case b

2. In an attractive force field, such as the gravitational
field of the earth F = —(GMm/r*)e; a mass m is
moved from r = R (earth surface) to r = oo. In this
case is F - dr < 0. The necessary work is negative:

o0 o0

GM GM
W=—/ szdr=—/ ar
rr S (2.35¢)
GMm
=———=E50).



E,(r) is negative because E(r = co) = 0. To raise the
mass m work has to be applied, which is converted to
the increase of potential energy (Fig. 2.37b).

For repulsive potentials (e.g. the Coulomb potential of
two positive electrical charges ¢g; and g,)

F = (q1-q:/r)e

the potential energy is positive and one wins work
when the charge separation increases, while the po-
tential energy decreases.

When a body with mass m should be moved from the
earth surface r = R to r = oo one needs the work
W = —GMm/R. With g = GM/R? this can be written
as W = —mgR.

Numerical example: With g = 9.81m/s?, R =
6371km, the work to launch a mass of 100kg is
W =6.25-10°] = 1736kWh. <

2.7.4 Energy Conservation Law in Mechanics

Multiplying the Newton equation

dv
F:m._
dr

scalar with the velocity v and integrating over time yields

n
d
/F-vdtzm[—"-vdt. (2.36)
dt
1

0

The integral on the left hand side gives with v = dr/dr

Py

[F.vdtz/F.drzEp(Po)—Ep(Pl),

Py

where the last equality is valid for conservative force fields.

The right hand side of (2.36) gives

V]

d
m./l.vd;:m/v-dvzﬂv%—ﬂvé.
dt 2 2

Vo

The expression
Exin = mv*/2 (2.37)
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The increase of kinetic energy of a body is equal to the
work supplied to this body.

In conservative force fields [ F - dr is equal to the change of
potential energy. Then Eq. 2.36 states:

Ey(Po) + Exin(Po) = Ep(P) + Exin(P) = E . (2.38b)

When a body is moved in a conservative force field from
a point Py to a point P the total mechanical energy E (sum
of potential and kinetic energy) is conserved, i. e. it has for
all positions in the force field the same amount.

Chapter 2

Examples

1. For the free fall starting from z = h with the velocity
v(h) = 0 we choose E,(h = 0) = 0. For arbitrary z
the following equations hold:

Z

Ey(z) = — / —mgdz = mgz .
0
Withv = g-tands = h—z = 1gi - L% =
1g%* = g(h—z) (see Sect. 2.3).
This gives

*=m-g-(h—2).

Ein(z) = %mv
The sum E,(z) + Exin(z) = mgh is independent of z
and for all z equal to the total energy E = mgh.

2. A body with mass m oscillates in the x-direction,
driven by the force F = —D - x. For each point of its
path the total energy is E = E,(x) + Exjn(x) = const.
For x = 0 the potential energy is zero. In the upper
turning points for x = =x,, the velocity is zero and
therefore Eyi, = 0. (Fig. 2.38).

E Reversal point

1
Ekin= E, Ep=0

Figure 2.38 Example of energy conservation for a harmonic motion

The oscillation can be described by

is called the kinetic energy of a body with mass m and velocity
v =|vl.

The integral [ F - dr represents the work W which is supplied to
the body. The statement of Eq. 2.36 can therefore be formulated
as:

AEgn = AW . (2.38a)

X = Xy sinwt — v = dx/dt = x,,w coswt .

The potential energy is E, = [Dxdx =
1Dx2 sin® ot. The kinetic energy is Ein =
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im - x:w? cos’ wt. From the Newton equation F =
ma = m - d’x/d> we obtain by comparison with
F = —Dx the relation D = m - w?. Inserting this

into the expression for the potential energy we get

E = E, + Exin = tmxl,0*(sin* wt + cos® wr)

_ 1 2 2
= Sm-x,0°,

which is independent of x. <

2.7.5 Relation Between Force Field and
Potential

If a body in a conservative force field is moved from the point P

by an infinitesimal small distance Ar to a neighbouring point P’

(Fig. 2.39) the potential energy changes by the amount
_0E, 0E, 0E,

AE, = —Ax+ —Ay+ —Az,

ox ady 0z 2.39)

where the partial derivative 0E/dx means that for the differen-
tiation of the function E(x, y, z) the two other variables are kept
fixed (see Sect. 13.1.6).

The movement of the body from P to P’ requires the work
AW =F-Ar=—-AE,, (2.40)

where F is an average of F(P) and F(P’). The comparison be-
tween (2.39) and (2.40) yields

FAr = F.Ax+ F,Ay + F. Az

0E, E 0E
=——PAx— 2Ay- Az,
o ady Y 0z ¢

Since this equation holds for arbitrary paths, i. e. arbitrary values
of Ax, Ay, Az it follows that

P . o 0B
* ox y dy’
(2.41)
o
N 0z

F(x+Ax, y + Ay)

Figure 2.39 Relation between force and potential

Defining the gradient of the function E(x,y, z) as

de, 2 T
BrAH =1 oy oz

Det {aEp OE, aEp} o)

the relations (2.41) for the components of F can be combined
into the vector equation

F = —gradE, = —VE, , (2.41a)
where the symbol V = nabla (V has the form of an old Egyptian

string instrument called nabla) is an abbreviation to make the
equation more simple to write.

The potential energy E, of a body with mass m in the gravita-
tional field of a mass M depends on both masses. However, for
m < M (for instance a mass m in the gravitational field of the
earth with M > m) the small contribution of m to the gravi-
tational field can be neglected. In such cases it is possible to
define a function V(P) for each point P, called the gravitational
potential

Def

V(P) = lim (lEp(P)) ; (2.42a)
m—0 \ m

which is the potential energy pro unit mass m in the limit of
m — 0 in the gravitational field of M. V(P) is a scalar function
which depends only on the position of P and on the mass M that
generates the gravitational field.

The gravitational potential of the earth is for instance
V(r)=—-G-Mg/r,

where r is the distance from the centre of the earth.

The gravitational field strength is defined as

G = —gradV . (2.43)
The force on a mass m is then
Fg=-m-G. (2.44)

For the gravitational field of a spherical symmetric mass M one
obtains

M,
G=Gr,

5 (2.43a)
,

and for the force on a body with mass m in this field Newton’s
gravitational law

F. (2.44a)

These definitions are completely equivalent to their pendants in
electrostatics: The electrical potential of an electric charge Q
and the Coulomb law (see Vol. 2, Sect. 1.3).
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2.8 Angular Momentum and Torque

circle centre perpendicular to the circular plane, i.e. into
the direction of the angular velocity vector @ (Fig. 2.41).
Assume a point mass moving with the momentump = m - v

on an arbitrary path r = r(r) (Fig. 2.40). We define its angular ILl=L=m-r-v-sin,v)=m-r-v=m-r o.
momentum L with respect to the coordinate origin r = 0 as the

vector product

(2.46)

L, = xpy — ypx . m
If the body moves in a plane but on an arbitrarily curved path

we can compose the velocity in any point of the path of a radial
component v, || r and a tangential component v, L r using

polar coordinates r and ¢ (Fig. 2.40). This gives the relations: Figure 2.41 Constant angular momentum of the uniform circular mo-
tion <

sin(r,v) =1 because r |l v. (2.47)
L=(rxp)=m-(rxv). (2.45)
For the uniform circular motion is » = constant and v =
Note, that L is perpendicular to r and v! constant — L = constant.

N
In Cartesian coordinates L has the components (see Sect. 13.4) N —
fe 2
)
Le=yp: —zpy; Ly =zpc—ap:: S vy o
©
=
O

L=m-[rx v+ v,)]

=m-(rxwvy) because rxv.=0. Differentiating (2.45) with respect to time we obtain

The value of L is dL dr dp
L[5
d d dr dt dt
|L| =m-r* L because |r < v,| s
dr Y dr ' = (xp)+ (rxp)=(rxp), because v|p,
. . . dL dp
These equations describe the following facts: yrie (rxF), because F = i
(2.48)
For planar motions the angular momentum L always The vector product
points into the direction of the plane-normal perpendic-
ular to the plane (Fig. 2.40). The vector product (r x v) D = (rxF) (2.49)

forms a right-handed screw.
is the torque of the force around the origin r = 0 acting on the
mass m at the position r. Equation 2.48 can then be written as
When the angular momentum is constant, the motion proceeds

in a plane perpendicular to the angular momentum vector. dr

— =D 2.49
” (2.49a)

The change of the angular momentum L with time is equal
to the torque D.

5o ) Vr||? In other words: If the torque on a mass is zero, its angular mo-
mentum remains constant.

Figure 2.40 Angular momentum L referred to an arbitrarily chosen origin 0 Note the equivalence between linear momentum p and angular
for a plain motion of a point mass m momentum L:

dp dL
Example T F, —=D, (2.50)

For the uniform circular motion the constant angular mo- p = constant for F = 0 and L = constant for D = 0.

mentum points into the direction of the axis through the In central force fields F(r) = f(r) - 7 the torque D = r x F = 0
because F || r. Therefore the angular momentum is constant
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Figure 2.42 |llustration of angular momentum of a body moving on a straight
line with respect to a point P which does not lie on the straight line

for all motions in a central force field. This implies that all
trajectories are in a plane, perpendicular to the angular mo-
mentum vector.

Note: Angular momentum and torque are always defined with
respect to a selected point (for instance the origin of the coor-
dinate system). Even a body moving on a straight line can have
an angular momentum with respect to a point, which is not on
the straight line.

In Fig. 2.42 the amount L of the angular momentum L of the
mass m moving with the constant velocity v on a straight line is
with respect to the point P

L=m-r-v-sind =m-b-v

where b (called the impact parameter) is the perpendicular dis-
tance of P from the straight line.

2.9 Gravitation and the Planetary
Motions

In the previous section we have learned that in central force
fields the angular momentum L is constant in time. The mo-
tion of a body therefore proceeds in a plane perpendicular to L.
The orientation of the plane is determined by the initial condi-
tions (for instance by the initial velocity vg) and is then fixed for
all times. The most prominent example are the motions of the
planets in the central gravitational field of the sun which we will
now discuss.

2.9.1 Kepler's Laws

Based on accurate measurements of planetary motions (in par-
ticular the motion of Mars) by Tycho de Brahe (Fig. 2.43)
Johannes Kepler (Fig. 2.44) could show, that the heliocentric
model of Copernicus allowed a much simpler explanation of the
observations than the old geocentric model of Ptolemy where
the earth was the centre and the planets moved around the earth
in complex trajectories (epicycles).

Kepler assumed at first circular trajectories because such mo-
tions seemed to him as perfect in harmony with God’s creation.
However, this assumption led to small inconsistencies between

Figure 2.43 Tycho de Brahe (1546-1601) (with kind permission of “Deutsches
Museum”)

Figure 2.44 Johannes Kepler (1571-1630) (with kind permission of
“Deutsches Museum”)



Figure 2.45 Initial model of Kepler illustrating the location of the planets at
the corners of regular geometric figures (with kind permission of Prof. Dr. Ron
Bienek)

calculated and observed motions of the planets which exceeded
the error limits of the observations. After a long search with
several unsuccessful models (for instance a model where the
planets were located at the corners of symmetric figures which
rotate around a centre (Fig. 2.45). Kepler finally arrived at his
famous three laws which were published in his books: Astrono-
mia Nova (1609) and Harmonices Mundi Libri V (1619).

Kepler's first law

The planets move on elliptical trajectories with the sun in
one of the focal points (Fig. 2.46).

Kepler's second law

The radius vector from the sun to the planet sweeps out in
equal time intervals equal areas (Fig. 2.47).

Kepler's third law

The squares of the full revolution times 7; of the different
planets have the same ratio as the cubes of the large half
axis a; of the elliptical paths.

T}/T; = al/ai or T?/a} = constant ,

where the constant is the same for all planets.

The 2. Kepler’s law tells us that the areas A; in Fig. 2.47 is for
equal time intervals At always the same, i.e. the area A} =
SP(t))P(t; + At) = Ay, = SP(t)P(t, + At). For sufficiently
small time intervals df we can approximate the arc length ds =
PP, = vdt in Fig. 2.48b by the straight line P;P,. The area of

2.9 Gravitation and the Planetary Motions

. E
b r(t)
Aphelion &HJS Perihelion
a-e
Figure 2.46 Kepler's first law
P (t2)
P (ty + At)
P (t)
P (to+ At)
Ai=Ay

Figure 2.47 Kepler's second law. S: sun, ¢: center of ellipse

the triangle SP; P, is then

1

dA:%‘|rxv|:%|r|‘|v|~sinoc:5- (2.51)
Kepler’s second law therefore states that the angular momentum
of the planet is constant. Kepler’s first law postulates that the
motion of the planets proceeds in a plane. Since the angular
momentum is perpendicular to this plane it follows that also the
direction of L is constant.

Curve element

ds=vdt

b)

Figure 2.48 Kepler's second law as conservation of angular momentum.
a schematic representation of the equal area law. b calculation of the area
covered by the radius vector in the time interval dt
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2.9.2 Newton’s Law of Gravity

Newton came to the conclusion that the free fall of a body as
well as the motion of the planets have a common cause: the
gravitational attraction between two masses. In order to find a
quantitative formulation of the gravitational force he started his
considerations with Kepler’s laws. Since the angular momentum
of the planetary motion is constant the force field has to be a
central force field

F(@r)y=f(r)-7.

The gravitational force which acts on a body with mass m at the
surface of the earth with mass M (which is equal to its weight)
is proportional to m. According to the principle actio = reactio
and also because of symmetry principles the equal but opposite
force acting on M should be also proportional to the mass M of
the earth (Fig. 2.25). It is therefore reasonable to postulate that
the gravitational force is proportional to the product m - M of the
two masses. We therefore can write for the force between two
masses m; and m;

Fy=G-my-my-f(r)-7. (2.52a)
The proportionality factor G is the Newtonian gravitational con-
stant.

The function f(r) can be determined from Kepler’s third law.
Since (2.52a) must be also valid for circular orbits we obtain for
the motion of a planet with mass m around the sun with mass
M, the equation

G-m-Mg-f(r)=m-w-r, (2.52b)
because the gravitational force is the centripetal force which
causes the circular motion of the planet with the angular velocity
w = v/r. The revolution period of the planetis T = 27 /w. For
the orbits of two different planets Kepler’s third law postulates:

T%/r* = const .

2 3

~ .

With @ = 27/T this gives w? - ¥ = const or ®

Inserting this into (2.52b) yields f(r) ~ r—2.

We then obtain Newton’s law of gravity

m-M@A
> r.

Fo() = —G- (2.52¢)

I

The minus sign indicates that the force is attractive.

The gravitational force

niy - nmyp

F(r)y=-G- r

2

acts not only between sun and planets but also between arbitrary
masses m; and my separated by the distance r. However, the
force between masses realized in the laboratory is very small

and it demands special very sensitive detection techniques in
order to measure it. The gravitational constant G can be deter-
mined from such experiments in the lab. Among all physical
constant it is that with the largest uncertainty. Therefore many
efforts are undertaken to determine G with new laser techniques
which should improve the accuracy [2.5a-2.5b]. The present
accepted numerical value is

G = 6.67384(80) - 107" N - m? /kg?

with a relative uncertainty of 1.2 - 107,

Note: The gravitational force is always attractive, never repul-
sive! This differs from the static electric forces between two
charges Q) and O,

F(r) ~ Q1 Qx/1*",

which can be attractive or repulsive, depending on the sign of
the charges Q;.

2.9.3 Planetary Orbits

Since the gravitational force field is conservative the sum of po-
tential and kinetic energy of a planet is constant. Because it is a
central field also the angular momentum L = r X p is constant.
This can be used to determine the orbit of a planet which pro-
ceeds in a plane with constant orientation perpendicular to L.
We use polar coordinates r and ¢ with the centre of the sun as
coordinate origin (Fig. 2.49).

The kinetic energy is

m ., _ Mg, 2
Ekin = EU = E (Ur + U(ﬂ>
m

(2.53)
=2 (P +r¢) .
The amount L = |L| of the angular momentum L is
L = mr’¢ = const . (2.54)

—
N

|
L

Figure 2.49 Elliptical orbit in Cartesian and in polar coordinates



Conservation of energy demands

m., i I?
—
2 2mr?

E, + = E = const , (2.55)

where E and L? are temporally constant. Resolving (2.55) for

dr/dr gives
dr 2 L?
For the angular variable ¢(f) one gets from (2.54)
d L
d—‘f =—. 2.57)
Division of (2.57) by (2.56) yields
do _ L T2(, . 2\1"”
dr = mr? | m P omr? ’
integration gives
/ dp = ¢ — o
L dr (2.58)

ik VEE—E - 12/@mm)

This allows to get the polar representation of the orbit in the
following way:

With E, = —G-M-m/r the integral in (2.58) belongs to the type
of elliptical integrals with the solution for the initial condition
¢(0) = ¢p = 0 (see integral compilation [2.6a—2.6b]):

L*/r — Gm*M
¢ = arccos (2.59)
V(GmAM)? + 2mE - 2
With the abbreviations
GmM / 2EL?
a = —T and ¢ = 1+ W 5 (2593)
Eq. 2.59 can be written as
1—&%)—
¢ = arccos (u) . (2.59b)
e-r
Solving for r gives
1— 2
poall=2) (2.60)
1+4+¢e-cose

This is the equation of a conic section (ellipse, hyperbola or
parabola) in polar coordinates with the origin in the focal point
S[2:6]. The minimum distance ry,;, = a(l — €) is obtained
for cos¢p = +1, the maximum distance ry,x = a(l + &) for
cosp = —1. For the shortest distance (perihelion) and the

2.9 Gravitation and the Planetary Motions

largest distance (Aphelion) from the sun the derivative dr/dr =
0. Inserting this into (2.56) gives

L2

GmM
r 2m - r2

E

The solutions of this equation are

(2.61)

Fmin,max — —

GmM G m*M?>
2F 4E2

L2 1/2
+ — .
2mE ]
We distinguish between three cases:

a) E<0.
For E < 0 is the constant a = —GmM/(2E) > O and ¢ < 1.
The orbit is an ellipse with the major axis a and the excen-
tricity . This can be readily seen from (2.60), when the
transformation §¢ = r - cos¢ and n = r - sin ¢ to Cartesian
coordinates with the origin in the focal point S is applied.
This gives

a(1—82)—sE: \/m

When we shift the origin {0, 0} from S into the centre of the
ellipse with the transformation x = § + as and y = n we
obtain from (2.61a) the well-known equation for an ellipse
in Cartesian coordinates

(2.61a)

x2 y2

az_i_b2

— =1 with p*=d*(1—-¢).  (261b)
For the special case ¢ = 0 = a = b the orbit becomes a
circle with r = const. From (2.54) it follows because of L =
const that dp/dt = const the planet proceeds with uniform
velocity around the central mass M.

For a negative total energy £ < 0 the planet proceeds
on an elliptical orbit (Kepler’s first law).

b) E=0.
For E = 0 one immediately obtains from (2.59)

L2

T Gm*M(1 +cosg) (2.62)
This is the equation of a parabola [2.6a, 2.6b] with the mini-
mum distance 7, = L?/(2Gm>M) from the focal point for
¢ =0.

c) E>0.
Since in (2.61) the distance r has to be positive (r > 0) for
E > 0 only the positive sign before the square root is possi-
ble. Therefore only one rpy;, exists and the orbit extends until
infinity (r = 00). For E > 0 = & > 0 (see (2.59a)). The
orbit is a hyperbola.

In Tab. 2.1 the relevant numerical data for all planets of our so-
lar system are compiled, where the earth moon is included for
comparison.
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2 Mechanics of a Point Mass

Table 2.1 Numerical values for the orbits of all planets in our solar system. The earth moon is included for comparison

Name Symbol Large semi axis a of orbit Revolution Mean Numerical Inclination Distance from earth
period T velocity excentricity of orbit
In AU In In light In kms™! Minimum Maximum
10km  travel time t in AU in AU

Mercury o 0.39 57.9 3.2 min 88d 47.9 0.206 7.0° 0.53 1.47
Venus Q 0.72 108.2 6.0 min 225d 35.0 0.007 3.4° 0.27 1.73
Earth o) 1.00 149.6 8.3 min 1.00a 29.8 0.017 - - -
Mars 4 1.52 227.9 12.7 min 1.9a 24.1 0.093 1.8° 0.38 2.67
Jupiter 4 5.20 778.3 43.2 min 11.9a 13.1 0.048 1.3° 3.93 6.46
Saturn h 9.54 1427 1.3h 29.46a 9.6 0.056 2.5° 7.97 11.08
Uranus o) 19.18 2870 2.7h 84a 6.8 0.047 0.8° 17.31 21.12
Neptun L 30.06 4496 42h 165a 5.4 0.009 1.8° 28.80 31.33
Earthmoon € 0.00257 0384 135 27.32d 1.02 0.055 ShE 356410km 406740 km

Mercury 7.00° replaced by

Venus 3.39°

'\SAatur: §.549° GuM GmM?

ars 1.85° a=— = - .
Neptun 1.77° 2E 2E - (m+ M)
Jupiter 1.30° 4. For the accurate calculation of the planetary orbits one has to
. Uranus 0.77° take into account the interactions between the planets. Be-
Ecliptic Earth

Figure 2.50 Inclination angles of the orbital planes for the different planets
against the earth ecliptic

Remark.

1. Pluto is since 2006 no longer a planet but is now listed
according to a decision of the International Astronomical
Union in the group of dwarf planets. To this group also be-
long Ceres, Eris and about 200 additional dwarf planets in
the Kuiper belt far beyond the orbit of Neptune.

2. The orientation of the orbital plane of a planet depends on

the initial conditions when the solar system was created from
a rotating gas cloud [2.7]. Since these initial conditions
were different for the different planets the orbital planes
are slightly inclined against each other (Fig. 2.50). Fur-
thermore the gravitational interaction between the planets is
small compared to the interaction with the sun, but not com-
pletely negligible. This disturbes the central force field and
leads over longer time periods to a change of the orientation
of the orbital planes.

3. For more accurate calculations (which are necessary for as-

tronomical predictions) one has to take into account that the
sun is not exactly located in a focal point of the ellipse. Be-
cause M, is not infinite, the sun and the planets move around
the common centre of mass, which is, however, not far away
from the focal point because My > m [2.8]. For more ac-
curate calculations one has to replace the mass m of a planet
by the reduced mass u = m- Mg/ (m + My) (see Sect. 4.1)
where M, is 700 times larger than the mass of all planets
(Mg = 700 - Y m;). The constant a in Eq. 2.60 has to be

cause of the small deviations from a central force field the
angular momentum is no longer constant but shows slight
changes with time.

5. Most of the comets have been formed within our solar sys-
tem. They therefore have a negative total energy £ < 0 and
move on elongated elliptical orbits with a > b.

2.9.4 The Effective Potential

The radial motion of a body in a central force field, i.e. the so-
lution of Eq. 2.56, can be illustrated by the introduction of the
effective potential.

We decompose the kinetic energy in (2.53) into a radial part
(m/2)i? which represents the kinetic energy of the radial mo-
tion, and an angular part 1m - r*(dg/dr)* which stands for the
kinetic energy of the tangential motion at a fixed distance . The
second part can be expressed by the angular momentum L

o _ L
2mir?

(see (2.55)). Since for a given constant L this part depends only

on r but not on the angle ¢ or on the radial velocity 7, it is added

to the potential energy E;,, which also depends only on r. The
sum

(2.63)

2

L
ff __
Eg =B+ 2mr?

(2.64)
is the effective potential energy. Often the effective potential
ff _ poeff
Vel = B/

is introduced which is the potential energy per mass unit. The
part L?/(2m - r?) is called the centrifugal potential energy



E| \\Ez

Figure 2.51 Effective potential energy E,fﬁ(r) as the sum of potential energy
and centrifugal energy

and L?/(2m?r?) the centrifugal potential, while the radial part
E,(r)/m is the radial potential.

The kinetic energy of the radial motion is then

E3l = imi? = E—E5", (2.65)
where E is the constant total energy.
In the gravitational force field is
mM  L?
Ef= G . — 4+ —— . 2.66
P r + 2mr? (2.66)

Both parts are depicted in Fig. 2.51. The centrifugal-term E,
decreases with increasing r as 1/r% and is for large r negligible
while for small values of r it can overcompensate the negative
radial part to make the total energy positive.

The minimum of E5" is obtained from dES"/dr = 0. This gives
L2

= —. 2.67
Gm*M (2.67)

ro
The kinetic energy of the radial motion Eyi,(r) = E — ngf(r)
at the distance r from the centre is indicated in Fig. 2.51 as the
vertical distance between the horizontal line E = constant and
the effective potential energy. The body can only reach those
intervals Ar = ruyjn — Fmax Of ¥ where E — ngf > 0.

These intervals depend on the total energy E, as is illustrated in
Fig. 2.51.

= E <0but Ej2Y > 0. (horizontal line 1)
The body moves between the points A(rmin) and B(rmax)-
They correspond to the radii r = a(1 £ ¢) for the motion
of planets on an ellipse around the sun.

= E <0but Ej24 = 0 (horizontal line 2)
The orbital path has a constant radius ry, which means it is a
circle. In the diagram of Fig. 2.51 the body always remains
at the point M in the minimum of £,

2.9 Gravitation and the Planetary Motions

= E>0and Y < |ngf(r = 00)| (horizontal line 3)
The body has the minimum value of r in the point C, where
Ef9 = 0. It can reach r = oo. Its orbit is a hyperbola.

n E=
From (2.65) it follows that E%0 = —E". The body reaches
the minimum distance ry,;, in the point D on the curve E(r).
Here is £ = 0 and ES™ = 0. It can reach r = oo, where

ERd = 0. The orbit is a parabola.

2.9.5 Gravitational Field of Extended Bodies

In the preceding sections we have discussed the gravitational
field generated by point masses. We have neglected the spatial
extension of the masses and have assumed that the total mass
is concentrated in the centre of each body. This approximation
is justified for astronomical situations because the distance be-
tween celestial objects is very large compared to their diameter.

Example

The radius of the sunis Rg = 7- 10® m, the mean distance
sun—earth is 7 = 1.5-10'" m, i. e. larger by the factor 210!
<

We will now calculate the influence of the spatial mass distribu-
tion on the gravitational field. We start with the field of a hollow
sphere in a point P outside the sphere (Fig. 2.52). The hollow
sphere should have the radius a and the wall-thickness da < a.

A disc with the thickness dx cuts a circular ring with the breadth
ds = dx/ sin ¢ and the diameter 2y. The mass of this ring (thick-
ness da and breadth ds) is for a homogeneous mass density o
dM = 2myp -ds-da
=2ma-0-dx-da because y=a-sin? .
All mass elements dM of this ring have the same distance to the

point P. Therefore the potential energy of a small probe mass m
in the gravitational field generated by dM is

dE, = —-G-m-dM/r=—-G-m-2ma-@-da-dx/r.

ds =dx/sind

Figure 2.52 Potential and gravitational field-strength of a hollow sphere
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E
P R=a

0

Figure 2.53 Potential energy of a sample mass m and gravitational field
strength in the gravitational field of a hollow sphere with mass M

The gravitational field of the total mass M is obtained by inte-

grating over x from x = —a tox = +a.
+a
dx
E, = —27oGma - da / - (2.68)
x=—a
From Fig. 2.52 the relations
r? :y2 + (R—x)2 :y2 +x* + R* —2Rx
=a*+R*—2Rx; rdr=—Rdx
can be verified. This yields
) d R—a
E, = 7”Q“R“'mc; / dr
e (2.69)
m-M

because M = 4ma? - oda is the mass of the hollow sphere.

The gravitational force on the mass m is

Fg = —gradE,
dE, « m-M . (2.70)
= ——R = —G . .R
drR R?

The gravitational field of a hollow sphere with mass M is outside
the sphere exactly the same as if the mass M is concentrated in
the centre of the sphere (Fig. 2.53).

For R < a the calculation proceeds in the same way. Only the
upper limit of the integration changes. For x = +a the limit
becomes r = a — R as can be seen from Fig. 2.52. With

r=a—R

/ dr = —2R

r=a+R
the potential energy becomes

m-M

E,=-G =const for R<a. (2.71)

a

The gravitational force in the inner volume of the hollow sphere
is then

F = —gradE, =0 for R<a. (2.72)
In the inner volume of the hollow sphere there is no gravitational
field. The force on a test mass m is zero. The contributions
from the different parts of the hollow sphere cancel each other.
In Fig. 2.53 the potential energy E,(R) and the force F(R) are

shown inside and outside of the hollow sphere.

A homogeneous full sphere can be composed of many concen-
tric hollow spheres. Its mass is
Ro

M= / Q-47ra2da.
a=0

For a test mass outside the sphere (R > Ry) we obtain from
(2.69)

Ro
4 4
E, = —GFJTQm/a2 da = —G3—;R89m
o (2.71a)
m-M
=-G——.

R

For a point inside the sphere (R < Ry) we perform the integra-
tion in two steps over the ranges 0 < a < Rand R < a < R.
From the Eqs. 2.71 and 2.71a the potential energy can be derived
as

R Ry
a*da

E, = —4mwoGm R + | ada
a=0 a=R (273)

= —470G R2+1R2 el

IEE e IR

since M = (4/3) - o R} this becomes
GMm

= R*—3R}) . 2.74

The physical meaning of the two steps for the integration is
the following: For a test mass in the point P(R) only the mass
elements of the sphere with » < R contribute to the total gravi-
tational force while the contributions of all mass elements with
r > R exactly cancel each other. The second term in (2.73) gives
a constant part to the potential energy and therefore no contri-
bution to the force. From (2.71) and (2.74) one obtains the force
(Fig. 2.54 lower part)

Mm
F=—-G—r for R>Ry
R2

GMm (2.75)

3
R()

F =— Rr for R<Ry.

Remark. The earth is not a sphere with homogeneous density

1. Because it is an oblate spheroid due to the rotation of the
earth which deforms the plastic earth crust [2.10].



Figure 2.54 Potential energy £, and gravitational force F of a sample mass m
in the gravitational field of a full sphere with mass M

2. Because the density increases towards the centre. Therefore
the mass M(R) inside a sphere with radius R < Ry increases
with R only as R" (with n < 3, Fig. 2.55). The earth accel-
eration g measured in a deep well therefore decreases with
ri(g < 1) [2.11].

(km)
Ear}h crust  _ 7000
Atmosphere 6000
Hydrosphere {5000
- 4000
Earth mantle
- 3000
Outer = 2000
kernel
0
a)
(km)
7000 T T T T T T 1 T T T T 7T
6000 =
5000 *
4000 b
3000 =
2000 *
1000 b
0 I N T I T YT N N B
0O 2 4 6 8 10 12 14
kg / dm?3
b) p (kg )

Figure 2.55 a Radial cut through the earth showing the different layers. b ra-
dial density function o(r)

2.9 Gravitation and the Planetary Motions

North pole |4 20
.10 At [m)

{
N/

Equator

South pole B

Figure 2.56 The shape of the earth as geoid. The deviation of the geoid from
a spheroid with (a — b)/a = 1/298.25 (dotted curve) is shown 80 000 times
exaggerated. Even the geoid gives only the approximate shape of the real earth

3. The mass distribution is not exactly spherical symmetric.
The gravitational field of the earth is therefore not exactly
a central force field. This implies that the angular momen-
tum of a satellite, orbiting around the earth is not really
constant. Measurements of the change of the orbital plane
with time (the position r(7) of a satellite can be determined
with RADAR techniques with an uncertainty of a few cm!)
allows the determination of the mass distribution o(%9, ¢) in
the earth [2.9a, 2.9b].

4. The equipotential surfaces of the earth form a geoid
(Fig. 2.56). One of these surfaces, which coincides with the
average surface of the oceans is defined as the normal zero
surface. All heights on earth are given with respect to this
surface.

2.9.6 Measurements of the Gravitational
Constant G

Measurements of the planetary motions allow only the determi-
nation of the product G-M, of gravitational constant G and mass
of the sun. The absolute value of G has to be measured by labo-
ratory experiments. Such experiments were at first performed
1797 by Henry Cavendish and later on repeated by several
scientists with increased accuracy [2.12a-2.14], where Lorand
Eotvos (1848-1919) was especially of high repute because of
his very careful and extensive precision experiments [2.2].

Most of these experiments use a torsion balance (Fig. 2.57). A
light rod (1) with length 2L and two small lead balls with equal
masses m hangs on a thin wire. Two large masses M| = M, =
M are placed on a rotatable rod (2), which can be turned to the
two positions (a) or (b). Due to the gravitational force between
m and M the light rod (1) is clockwise turned for the position (a)
and counter-clockwise for the position (b) by an angle ¢ where
the retro-driving torque

x _, d*
D, = -G 0]

n — 2.
2 16l (276)
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Mirror

Figure 2.57 Eotvos’ torsion balance for measuring Newton's gravitational
constant G

of the twisted wire just compensates the torque with the amount
2L - F, generated by the gravitational forces

m-M G 1672
T

F,=G 0°RIRS . (2.77)

r

Here G* is the torsion module of the wire, d its diameter and
[ its length, o the mass density of the spheres, R; and R, their
radii and r the distance between their centres. In the equilibrium
position, where the two torques cancel, we have the condition
D, = 2L - F,. This gives for the gravitational constant

* 2 4
_ %" _rd/y)" (2.78)
64m 1-L-0*RiR3

In order to maximize the force F,, the density ¢ should be as
high as possible, because the distance r between the masses m
and M cannot be smaller than r,;, = R| +R,. The measurement
of ¢ is performed by placing a mirror at the turning point of the
rod with the masses m, which reflects a laser beam by an angle
2¢. On a far distant scale the deflection of the laser spot is a
measure for the angle ¢.

The most accurate measurement proceeds as follows: The
masses M are turned into the position (a). The system now per-
forms oscillations around the new equilibrium position ¢; which
can be determined as the mean of the turning points of the os-
cillations. Now the masses M are turned into the new position
(b). Again oscillations start around the new equilibrium posi-
tion ¢,, which is determined in the same way. The difference
Agp = ¢ — ¢, than gives according to (2.78) the gravitational
constant G.

Equation 2.78 tells us, that the diameter d of the wire should be
as small as possible. New materials, such as graphite compos-
ites, have a large tear strength. They can carry the masses m
even for small values of d. This increases the sensitivity.

Zuzzzz: Mirror
A
Y
z $— Uper turning
point
Atomic cloud
[ 4

Tungsten mass
upper position
@—— Atomic cloud

— Vacuum tube

Atomic trap

T Laser beam

Figure 2.58 Atom interferometer for the measurement of the Newtonian grav-
itational constant G [2.13b]

In recent years new methods for measuring G have been devel-
oped. Most of them are based on optical techniques. We will
just discuss one of them: A collimated beam of very cold atoms
(laser-cooled to T < 1 uK) is sent upwards through an evacuated
tube (Fig. 2.58). At the heights z = h where %mv2 = mgh they
reach their turning point where they fall down again. A large
tungsten mass surrounds the tube and can be shifted upwards or
downwards. Above the mass the atoms experience during their
upwards motion an acceleration —(g + Ag) due to the gravita-
tional attraction by the earth (g) and the mass (Ag). Below the
mass their acceleration is —(g — Ag). These accelerations are
measured via atom interferometry [2.13b].

Figure 2.59 gives the results of many experiments in the course
of time, using different measuring techniques. This illustrates,
that the error bars are still large but the differences between the
results of many experiments are even larger, indicating the un-
derestimation of systematic errors. The value accepted today

G = 6.67384(80)m* kg ' s>

is the weighted average of the different measurements where
the number in the brackets give the standard deviation o (see
Sect. 1.8.2). The relative error is 1.2 - 10~* which illustrates
that among all universal constants G is the one with the largest
uncertainty.

2.9.7 Testing Newton's Law of Gravity

In order to test the validity of the 1/r? dependence of the grav-
itational force (2.52) several precision experiments have been
performed [2.13d]. An interesting proposal by Stacey [2.17] is
based on the following principle: In the vertical tunnel within
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o : NIST-82 torsion balance
o i TR&D-96  torsion balance
I—EO—I LANL-97 torsion balance
f i CODATA 1998 -
i [ ] UWash-00 torsion balance
E 2 2| BIPm-01 torsion balance
I—E—Q—I UWup-02  simple pendulum
CODATA 2002
I-+-I MSL-03 torsion balance
—e— i HUST-05 torsion balance
i . UZur-06 beam balance
FE—.—* CODATA 2006
@ E HUST-09 torsion balance
o E JILA-10 simple pendulum
’—é—* CODATA 2010
i ol BIPM-13  torsion balance
—e— E THIS WORK atom interferometry
I I I I
6.665 6.670 6.675 6.680

G (10'mkg's2)

Figure 2.59 Results of different measurements of the Newtonian gravitational constant G [2.13b]

a large water reservoir a sensitive gravitation-balance is placed,
where two masses m are hold at different heights, one above the
water level and one below (Fig. 2.60). When the water level is
lowered by Ah, the change of the gravitational force differs for
the two masses. For the lower mass it increases by

0Fc=G-m-2mo- Ah (2.78a)

because the water above the mass decreases, while the water
below the mass stays constant. For the upper mass the force
decreases because the distance between the mass and the water
surface increases (see problem 2.34).

There is still an open question concerning the exact validity
of the r~2 dependence in Newton’s gravitation law over astro-

Figure 2.60 Possible method for measuring the 1/r? dependence of the grav-
itational force

nomical distances. Astronomical observations of the rotation of
galaxies showed, that the visible mass distribution in the galaxy
could not explain the differential rotation w(R) as the function
of the distance R from the galaxy centre, if Newton’s law is as-
sumed to be valid. There are two different explanations of this
discrepancy: Either the 1/r? dependence of Fg is not correct
over large distances, or there exists invisible matter (dark mat-
ter) which interacts with the visible matter only by gravitation
and therefore changes the gravitational force of the visible mat-
ter.

Such very difficult precision experiments have a great impor-
tance for testing fundamental physical laws. There are many
efforts to develop theories which reduce the four fundamental
forces (see Tab. 1.2) to a common origin and to understand more
deeply the difference between energy and matter. One example
of such precision experiments are tests of possible differences
between gravitational and inertial mass as has been performed
by Eotvds 1922 and Dicke 1960 and many other scientists.

Here the inertial mass is measured for different materials by the
oscillation period of a gravitational torsion balance [2.18a]. The
results obtained up to now show that the ratio m;, /m, of inertial
mass to gravitational mass does not differ from 1 within the error
limits. For two different materials A and B a possible difference

(A, B) = [min/mgly — [min/mygls < 1072

must be very small and lies below the detection limit of 10~
with the presently achievable accuracy.
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Table 2.2 Mass and mean density of sun, planets and the earth-moon

Planet Symbol Mass/earth mass Mean density o
in 10° kg/m?3

Sun 0 3.33-10° 1.41

Mercury o} 0.0558 5.42

Venus Q 0.8150 5.25

Earth le) 1.0 5.52

Mars ) 0.1074 3.94

Jupiter 4 317.826 1.314

Saturn h 95.147 0.69

Uranus o) 14.54 1.19

Neptun tt 17.23 1.66

Moon C 0.0123 3.34

From the revolution period T = 27 /w of a satellite around the
earth (e.g. the moon or an artificial satellite) the mass M of the
earth can be determined. For a circular motion the gravitational
force is equal to the centripetal force

m-w*-r=G-mM/r*.

With the known gravitational constant G and the measured dis-
tance r of the satellite from the earth centre the mass of the earth
is obtained from

M=w*1r/G.
The experimental value is
M =5974-10%kg .

From measurements of the gravity acceleration g on the earth
surface the equation

m-g=G-m-M/R

yields the earth radius R. From M and R the mean density o0 =
3M /(4 R3) can be derived.

A comparison of the densities of the different planets (Tab. 2.2)
illustrates that the inner planets (Mercure, Venus, Earth and
Mars) formed of rocks have comparable densities around o =
5g/cm’, while the outer gas planets and the sun have much
lower densities. These differences give hints to the formation
process of our solar system [2.7] (see Volume 4).

2.9.8 Experimental Determination of the Earth
Acceleration g

The most accurate determination of g can be performed by mea-
suring the oscillation period of a pendulum. This pendulum
consist of a sphere with the mass m suspended by a string with
length L (measured between suspension point A and the centre
C of the sphere). If the mas of the string is negligibly small
compared to m and the radius R of the sphere small compared

F=m-g

Figure 2.61 Measuring the free fall acceleration g with a pendulum

with L this device is called a mathematical pendulum. The mo-
tion of the pendulum under the influence of gravity can be best
calculated when the force F, = m - g is decomposed into the
two components (Fig. 2.61):

m a radial component F; in the direction of the string, which
generates in the string an equal but opposite restoring force.
Since the total force component in this direction is zero, it
does not contribute to the acceleration.

® a tangential component Fy = —m - g - sin ¢ which causes a
tangential acceleration @, = —g - sin ¢.

The pendulum represents an example of a position dependent
force which is not a central force. The angular momentum
is therefore not preserved. However, if the initial velocity for
¢ # 0 lies in the plane of the components F, and F; the motion
remains in this plane. It can be therefore described by planar
polar coordinates z and ¢. The equation of motion reads

m-g-sing =—m-L-¢. (2.79a)

Expanding sin ¢ into a Taylor-series

The higher order terms can be neglected for small elongations
¢. For example is for ¢ = 10° = 0.17rad the term ¢3/3! =
8.2-10~* which means that the second term is already smaller by
the factor 208 than the first term. The error in the approximation
sing ~ ¢ is for ¢ = 10° only < 0.5%.

The equation of motion (2.79a) is then in the approximation
sing ~ ¢

¢ =—(g/Ly . (2.79b)
With the initial condition ¢(0) = 0 the solution is
() =A-sin(y/g/L-1) . (2.80)

The pendulum performs a periodic oscillation with the oscilla-
tion period

T=2m-+/L/g.

Measuring the time for 100 periods with an uncertainty of 0.1s
allows the determination of 7 with an error of 10~3s. The

(2.81)



largest uncertainty comes from the measurement of the length
L. The errors for L and 7 in the determination of

472 L
T2

g =

give a total error of g according to

Ag AT AL
2| <2|— -
g | L
Example
AT/T = 5-107, AL/L = 103 for L = Im. =

Ag/g=1.1-1073. <

For a more accurate solution of (2.79a) we use the energy con-
servation law (see Sect. 2.7), which saves one integration. From
Fig. 2.62 we see that

E, :m-g~L'(1—cos<p)
Exin = m v’ = mL2 . <,02 .
The constant total energy is
E=E, + Eqi = %L2¢2 + mgL(1 — cos @)
= mgL(1 — cos ¢y) .

Where ¢ is the angle at the turning point where Ey;, = 0. Solv-
ing for ¢ gives

de

. \/Zg(cos @ — CcoS o)
e '

L

Integration yields

] =

T/4

/ dt=T/4. (2.82)
‘/coscp —COS ¢

A

L-cosy

L(1-cos~p){
0

Figure 2.62 lllustration of the integration of the pendulum equation based on
the energy conservation

2.9 Gravitation and the Planetary Motions

| To, /T,

1.02
101

099

Figure 2.63 Dependence of the oscillation period on the deflection of the pen-
dulum

With the substitution siné = sin(¢/2)/sin(¢o/2) the integral
can be reduced to an elliptical integral

/2

AT dg
r=4 L/gO/ (2.83)

V1 —k2sin’g

with & = sin(gg/2) ,

which can be solved by a Taylor expansion of the inte-
grand [2.18b]. The result is
+) ,

T(po) =2 Ll—i—1
¢o—7Tg 16

For the accurate determination of 7 the oscillation period is
measured as a function of the elongation ¢, and the measured
values are extrapolated towards ¢y = 0 (Fig. 2.63).

(2.84)

If the shape of the earth is approximated by a spheroid the de-
pendence of g on the latitude 8 = 90° — ¢ can be approximated
by the formula

g(B) ~ g (1 +0.0053024 sin’ B

— 5.8-10°sin” 28) (289
where g. = g(8 = 0) = 9.780327m/s? is the earth acceler-
ation at the equator. This formula takes into account, that g is
diminished by the centrifugal acceleration of the rotating earth
which depends on B (see Sect. 3.2). Because of the inhomoge-
neous mass distribution of the earth additional local changes of
g appear which are not considered in (2.85).

Instead of the pendulum nowadays modern gravimeters are used
for the determination of g. These are sensitive spring balances
which had been calibrated with a precision pendulum. The
restoring force F = —D(x — x¢) is determined by measuring
the displacement from the equilibrium position by a calibrated
mass m and gets the local variation of the earth acceleration g
according to [2.19]
m-g=—D(x—xp) .

Recently two identical satellites were launched which orbit
around the earth on identical paths with an angle distance Ag.
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2 Mechanics of a Point Mass

This distance can be measured very accurately (within a few
millimetres) by the time laser pulses need to travel from one
satellite to the other and back. Local variations of the gravity
cause a different local acceleration which changes the distance
d = R- Ap between the satellites. This allows the determination
of even tiny changes of the gravity force [2.20a, 2.20b, 2.20c].

Summary

m A body with mass m can be described by the model of a point
mass as long as its spatial extensions are small compared to
its distance to other bodies.

= The motion of a body is described by a trajectory r(t), which
the body traverses in the course of time. Its momentary ve-
locity is v(f) = F = dr/dr and its acceleration is a(t) =
dv/dt = d?r/de>.

= Motions with a(f) = 0 are called uniform straight-line mo-
tions. Magnitude and direction of the velocity are constant.

= For the uniform circular motion the magnitude |a(?)| is con-
stant, but the direction of a(f) changes uniformly with the
angular velocity @.

m A force acting on a freely movable body causes an accelera-
tion and therefore a change of its state of motion.

= A body is in an equilibrium state if the vector sum of all act-
ing forces is zero. In this case it does not change its state of
motion.

m  The state of motion of a body with mass m and velocity v is
defined by the momentump = m - v.

m The force F acting on a body is defined as F = dp/dr
(2. Newton’s law).

m  For two bodies with masses m; and m, which interact with
each other but not with other bodies the 3. Newtonian law is
valid: F; = —F, (F is the force acting on my, F, acting on
H’lz).

m  The work executed by the force F(r) on a body moving along
the trajectory r(7) is the scalar quantity W = [ F(r)dr.

= Force fields where the work depends only on the initial point
Py and the final point P, but not on the choice of the path
between P; and P, are called conservative. For such fields
isrot F = 0. All central force fields are conservative.

= To each point P in a conservative force field a potential en-
ergy E,(P) can be attributed. The work [ F(r)dr = E(Py) —

E(P,) executed on a body to move it from P; to P, is equal
to the difference of the potential energies in P; and P,. The
choice of the point of zero energy is arbitrarily. Often one
chooses E(r = 0) =0or E(r = o0) = 0.

The potential energy E(P) and the force F(r) in a conserva-
tive force field are related by F(r) = —gradE,,.

The kinetic energy of a mass m moving with the velocity v is
Ekin = %mvz.

In a conservative force field the total energy E = E, + Eyi,
is constant (law of energy conservation).

The angular momentum of a mass m with momentum p, re-
ferred to the origin of the coordinate systemis L =r xp =
m - (r x v). The torque acting on a body in a force field F(r)
isD=rxF.ItisD = dL/dr.

All planets of our solar system move in the central force field
F(r) = —G - (m - M/r?)# of the sun. Therefore their an-
gular momentum is constant. Their motion is planar. Their
trajectories are ellipses with the sun in one focal point.

The gravitational field of extended bodies depends on the
mass distribution. For spherical symmetric mass distribu-
tions with radius R the force field outside the body (» > R)
is exactly that of a point mass, inside the body (» < R) the
force F(r) increases for homogeneous distributions linearly
with r from F = 0 at the centre r = 0 to the maximum value
atr = R.

The free fall acceleration g of a body with mass m equals the
gravitational field strength G = F/m at the surface r = R of
the earth with mass M. With Newton’s law of gravity g can
be expressed as g = G - (M/R*)# (G = gravitational con-
stant). It can be determined from the measured oscillation
period T = 2w +/L/g of a pendulum with length L, or with
gravitational balances.



Problems

Problems

2.1 A car drives on a road behind a foregoing truck (length
of 25 m) with a constant safety distance of 40 m and a constant
velocity of 80 km/h. As soon as the driver can foresee a free
distance of 300 m he starts to overtake. Therefore he accelerates
with a = 1.3 m/s? until he reaches a velocity of v = 100km/h.
Can he safely overtake? How long are time and path length of
the overtaking procedure if he considers the same safety dis-
tance after the overtaking? Draw for illustration a diagram for
s(t) and v(r).

2.2 A car drives half of a distance x with the velocity v; =
80 km/h and the second half with v, = 40km/h. Estimate and
calculate the mean velocity (v) as the function of v; and v,.
Make the same consideration if x; = 1/3x and x, = 2/3x.

2.3 A body moves with constant acceleration along the x-
axis. It passes the origin x = 0 with v = 6cm/s. 2s later it
arrives at x = 10cm. Calculate magnitude and direction of the
acceleration.

2.4 An electron is emitted from the cathode with a velocity
v and experiences in an electric field over a distance of 4cm a
constant acceleration = 3 - 10'*m/s?, reaching a velocity of
7-10°m/s. How large was v?

2.5 A body is thrown from a height 7 = 15 m with an initial
velocity vg = 5m/s

a) upwards,

b) downwards.

Calculate for both cases the time until it reaches the ground.

c) Derive Eq. 2.13.

2.6 Give examples where both the magnitude and the di-
rection of the acceleration are constant but the body moves
nevertheless not on a straight line. Which conditions must be
fulfilled for a straight line?

2.7 A car crashes with a velocity of 100 km/h against a thick
tree. From which heights must it fall down in order to experi-
ence the same velocity when reaching the ground? Compare this
with two equal cars with velocities of 100 km/h crashing head
on against each other.

2.8

a) A body moves with constant angular velocity @ = 3rad/s
on a vertical circle in the x-z-plane with radius R = 1 m in
the gravity field F = {0,0, —g} of the earth. How large are
its velocities at the lowest and the highest point on the circle?
How large is the difference between the two values? Could
you relate this to the potential energy?

A body starts with vg = 0 from the point A(z = h) in
Fig. 2.64 on the frictionless looping path. How large are

b)

velocities and accelerations in the points B and C of the cir-
cular path with radius R? What is the maximum ratio R/h to
prevent that the body falls down in B? How large is then the
velocity v(B)?

C D X
Figure 2.64 Looping path (Probl. 2.8 b)

2.9 How large is the escape velocity

a) of the moon (d = 384000km) in the gravitational field of
the earth?

b) of abody on the surface of the moon in the gravitational field
of the moon?

2.10 What is the minimum fuel mass of a one stage rocket
with a payload of 500 kg for a horizontal launch at the equator
to bring the rocket to the first escape velocity of v = 7.9km/s
when the velocity of the propellant gas relative to the rocket is
ve = 4.5km/h

a) in the east direction

b) in the west direction?

2.11  Check the energy conservation law for the examples
given in the text. Show, that (2.26) follows directly from the
condition Eyjy > Ep,i.e. 3mv> > m-g-R.

2.12 A rocket to the moon is launched from a point at the
equator. How much energy is saved compared to a vertical
launch, when it is shot in the eastern direction under 30° against
the horizontal?

2.13 A wooden cylinder (radius »r = 0.1 m, heights A =
0.6 m) is vertically immersed in water with 2/3 of its length
which is its equilibrium position. Which work has to be per-
formed when it is pulled out of the water? How is the situation
if the cylinder lies horizontally in the water? How deep does it
immerse?

2.14 A body with mass m = 0.8 kg is vertically thrown up-
wards. In the heights 4 = 10 m its kinetic energy is 200J. What
is the maximum heights it can reach?
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2 Mechanics of a Point Mass

2.15 A spiral spring of steel with length Ly = 0.8 m is ex-
panded by the force F = 20N to a length L = 0.85m. Which
work is needed to expand the spring to twice its initial length, if
the force is always proportional to the expansion AL = L — Ly?

2.16 What is the minimum initial velocity of a body at a ver-
tical launch from the earth when it should reach the moon?

2.17 What is the distance of a geo-stationary satellite from
the centre of the earth? Which energy is needed to launch it?
How accurate has its distance to the earth centre be stabilized in
order to maintain its position relative to a point on earth within
0.1km/d?

2.18 What is the change of potential, kinetic and total energy
of a satellite when its radius r on a stable circular orbit around
the earth centre is changed? What is the ratio Ey,/E,? Does
it depend on r? Express the total energy E by m, g, r and the
mass Mg of the earth. Are these quantities sufficient or are more
needed?

2.19 Prove, that the force F = m - g - sin ¢ - e, for the math-
ematical pendulum is conservative and that for arbitrary values
of ¢ conservation of energy Ex;, + E, = const holds.

2.20 Assume one is able to measure the length L = 10m of
a pendulum within 0.1 mm and the period 7 within 10 ms. How
many oscillation periods have to be measured in order to equal-
ize the contribution of AL and AT to the accuracy of g? How
large is then the uncertainty of g?

2.21 How much accuracy is gained for the determination of G
with the gravity balance if the large masses M are increased by
a factor of 10? How accurate has the measurement of the angle
¢ to be in order to determine G with an accuracy of 107*? Give
some physical reasons for the limits of the accuracy of ¢.

2.22 The comet Halley has a period of 76 years. His small-
est distance to the sun is 0.59 AU. How large is its maximum
distance to the sun and what is the eccentricity of its elliptical
orbit? Hint: Look for a relation between T and ry;, = a(l — ¢)
and g = a(l + ¢).

2.23  Assume that the gravity acceleration at the equator of
a rotating planet is 11.6m/s>, the centripetal acceleration a =
0.3m/s? and the escape velocity for a vertical launch 23.6m/s.
At the heights & = 5000 km above the surface is g = 8.0m/s?.
What are the radius R and the mass M of the planet. How fast is
it rotating? Which planet meets these requirements?

2.24  The gravitational force exerted by the sun onto the moon
is about twice as large as that exerted by the earth. Why is the
moon still circling around the earth and has not escaped?

2.25 Which oscillation period would a pendulum have on the
moon, if its period on the earth is 1s?

2.26 A vertical straight tunnel is cut through the earth be-

tween opposite points A to B on the earth surface.

a) Show that without friction a body released in A performs a
harmonic oscillation between A and B.

b) What is the oscillation period?

¢) Compare this value with the period of a satellite, which cir-
cles around the earth closely above the surface.

d) A straight tunnel is cut between London and New York.
What is the travel time of a train without friction and extra
driving force (besides gravity) which starts in London with
the velocity vop = 0? How much does the time change, if
vg = 40m/s?

2.27 Calculate the distance earth-moon from the period of
revolution of the moon 77 = 27d (mass of the earth is M =
6 - 10*kg).

2.28 Saturn has a mass M = 5.7 - 10*° kg and a mean density
of 0.71 g/cm?. How large is the gravitational acceleration on its
surface?

2.29 How large is the relative change of the gravity acceler-
ation g between a point on the earth surface and a point with
h = 160km above the surface?

2.30 How large is the change Ag of the earth acceleration due
to the attraction by

a) the moon and

b) the sun?

Compare the two changes and discuss them. How large is the
relative change Ag/g?

2.31 Two spheres made of lead with masses m; = m, =
20kg are suspended by two thin wires with length L = 100 m
where the suspension points are 0.2 m apart. What is the dis-
tance between the centres of the spheres, when the gravitational
field of the earth is assumed to be spherical symmetric?

a) without

b) with the gravitational force between the two masses.

2.32 Based on the energy conservation law determine the
velocity of the earth in its closest distance from the sun (Per-
ihelion) and for the largest distance (aphelion). How large is
the difference Av to the mean velocity? Discuss the relation
between the eccentricity of the elliptical orbit and Av.

2.33 A satellite orbiting around the earth has the velocity
v4 = Skm/s in the aphelion and vp = 7km/s in its perihe-
lion. How large are minor and major half axes of its elliptical
orbit?

2.34 Prove the equation (2.78a).
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3 Moving Coordinate Systems and Special Relativity

For the description of the location and the velocity of a body in
a three-dimensional space one needs a coordinate system where
the position vectors r(r) and its time derivative dr/dr = v(¢) are
defined. Of course are all physical processes independent of the
choice of the coordinate system. However, their mathematical
formulation can be much simpler in a suitable coordinate system
than in other systems. It is therefore essential to choose that sys-
tem which allows the optimum description of a process and to
find the transformation equations to change from one to another
coordinate system.

For example is the coordinate system connected with the earth
which moves around the sun, the best choice for the descrip-
tion of measurements on earth. For astronomical observations
the results of such measurements must be transformed into a
galactic coordinate system which has its origin in the galactic
centre and moves with the rotating galaxy, in order to eliminate
the complex motion of the earth relative to the galactic centre.
For coordinate systems at rest these transformations impose no
problems. The situation is different for systems which move
against each other.

In this chapter we will discuss question which arise for trans-
formations between moving coordinate systems when physical
processes are described in different systems. It turns out that
many concepts derived from daily life experience which were
taken for granted, had to be revised. The mathematical frame-
work for such revisions is the special relativity theory developed
by Albert Einstein, which will be briefly treated in this chapter.

3.1 Relative Motion

An observer, sitting in the origin O of a coordinate system looks
at two objects A and B with the coordinates r and rg and the
relative distance

3.1)

FAB =TA —TIB,

which move with the velocities

relative to the coordinate system O (Fig. 3.1). The velocity of A
relative to B is then

dI‘AB
Uap = ——— = Up — Up, 3.2a
AB a A B (3.2a)
while the velocity of B relative to A
UBa = VB — VA = —UAB - (32b)

This illustrates that position vector and velocity do depend on
the reference system.

Figure 3.1 Definition of the relative distance

3.2 Inertial Systems and

Galilei-Transformations

Two observers B and B’ sit in the origins O and O’ of two coordi-
nate systems S(x, y, z) and S'(x’, y', z') which move against each
other with the constant velocity u (Fig. 3.2). Both observers
measure the motion of an object A. which has the position vec-
tor r(x, y, z) in the system S and ' (x’, ¥/, Z) in the system §’.

As can be erived from Fig. 3.2 it is

r=r—u-t, (3.3)
which can be written for the components as
X () =x(t) —u, -t
YO =y —u-t] (3.32)

() =z(t) —u, -t
=t

where ¢t = 7 means that both observers use synchronized equal
clocks for their time measurements. This is not obvious and is
generally not true if the velocity u approaches the velocity of
light (see Sect. 3.4). For the velocity of A the two observers find

dr
v=— and v

= —. 34
dr dr (3-4)

From (3.3) follows
V=v—u. (3.5)

Figure 3.2 The coordinates of a point A, described in two different systems O
and O’ which move against each other with the constant velocity u
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Figure 3.3 Description of the free fall in two different inertial systems
The acceleration a of A can be derived from (3.5) as
dv/ dv
/ = — = —=4a. 36
dr dr 36)

Both observers in the systems which move with constant ve-
locity u against each other, measure the same value for the
acceleration a. Because the force on a body with mass m is
F = m - a both observers come to the same conclusion about
the force acting on A and find the same relations for dynamical
processes in the two systems.

Such systems which move with a constant relative velocity u
against each other are named inertial systems.

Between the quantities r, v and ¢ for the motion of an object A
measured in two different inertial systems the Galilei transfor-
mations pertain

r=r +ut,
v=v+u=a=d4 and F=F, (3.7)
t=1,

where u = |u| < c is the constant velocity of S against S'.

Because of F = F’ both observers measure the same forces and
derive identical physical laws. This can be illustrated by the
example of the free fall observed in the two systems S and S’
moving with the velocity u = u, in the x-direction against each
other (Fig. 3.3):

A body A which is released at the heights z = h falls down
in the system S’ along the 7-axis (X' = y’ = 0), which moves
with the velocity u against the z-axis in the system S. For the
observer O in §’ the motion of A appears as vertical free fall.
For the observer O in S the body A starts at z = 7/ = h with
the velocity v(h) = u in the x-direction, which bends down into
the —z-direction because of the gravitation. The trajectory of A
is for O a parabola (horizontal throw see Sect. 2.3.2). However,
both observes measure the same fall acceleration g = {0, 0, —g}
and the same fall times. They derive the same law for the free
fall.

All inertial systems are equivalent for the description of
physical laws.

3.3 Accelerated Systems; Inertial Forces

In other words: An observer siting in a train who does not look
out through the window cannot decide by arbitrary many ex-
periments whether he sits in a train at rest or in a train moving
against another reference system with constant velocity.

3.3 Accelerated Systems; Inertial
Forces

If the two observers sit in two systems which move against each
other with a velocity u(f) changing with time resulting in an
acceleration @ = dv/dr they measure for the motion of a body
A relative to their system different accelerations and therefore
conclude that different forces act on A.

The observer in an accelerated system can, however, ascertain
that his system moves accelerated against another system. If
he takes into account this acceleration he comes to the same
conclusions about physical laws for the observed motion of the
body A as an observer in an inertial system.

‘We will discuss this for two different accelerated motions:

a) rectilinear motion of S against §” with constant acceleration
b) rotation of S against §” around the common origin 0 = 0'.

Remark. In the following sections we will always assume that
the observers O and O’ sit in the origins 0 and 0’ of the systems
Sand S

The discussion of the description of physical processes in accel-
erated coordinate systems leads to the introduction of special
forces (inertial forces), which are often confusing students.
Therefore these forces will be discussed as vivid as possible in
order to illustrate that these forces are no real forces but are only
necessary, when the observer in the accelerated system does not
take into account the acceleration of his system.

3.3.1 Rectilinear Accelerated Systems

If the origin 0" of the system S moves along the x-axis of S
with the time dependent velocity u(f) = uy + a - tla = a.e,
with a, = du/dt = d’x/ds*) against S, only the magnitude of
the velocity changes not its direction (Fig. 3.4). An example is
an observer in a train accelerating on a straight track.

For a body A with the coordinates (x',y’,7) in the system S’
the observer in S measures the coordinates x = ugt + %at2 + X,
y =1y,z=7,if for t = 0 the two origins of S and S’ coincide
and the relative velocity u(7) between S and S’ at time ¢t = 0
is up. The velocity of A is then v’ = {v}, v}, v/} for 0" and
v={vy=up+a-t+v,v, = v;, v, = v} for O.

The description of different situations by O (sitting in a system
S at rest) and O’ (sitting in the accelerated System S’) shall be
illustrated by three examples. Note that S’ is no inertial system!
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3 Moving Coordinate Systems and Special Relativity

X = X' + Ugt + 1/2 at?
y=y'
z=27
t =t
Az z
A S
S Ly
y r NV &4
r T,
'z
o x_ Y o
0 X 0 X
n —_—
x(0'(1)) = uot +at?/2 a<du/dt

Figure 3.4 Coordinates of point A in a system S with origin O and a system
S’ with origin 0, that moves against O with the acceleration a in x-direction

Examples

1.

a)

The observer O’ is sitting on a carriage at a fixed ta-
ble with plain tabletop. On the tabletop rests a ball A
without friction (Fig. 3.5a). If the system S’ is acceler-
ated to the left (i. e. in —x-direction), both observers O
(in the system S at rest) and O’ see that the ball moves
accelerated towards O'. Both O and O’ make the same
observation but interpret this in a different way:

O’ says: The ball moves accelerated towards me.
Therefore a force F = m - a must act on the ball.

O says: The system S moves with the acceleration —a
to the left, while the ball does not participate in the
acceleration and stays at rest. This means: Not the
ball is accelerated towards O’, but O is accelerated
towards the resting ball. Therefore no force is acting
on A.

Figure 3.5 a A freely movable ball; b a ball fixed to a spring balance,
both on a table that is accelerated into the —x-direction with constant
acceleration a

Note: If O’ knows that his system S’ is accelerated, he
also knows that the ball must stay at rest, because it
is frictionless and therefore not linked with the table,
which means that it will not participate in the motion
of the table. In order to explain his observation of the
acceleration a of the ball he introduces a force F = m-
a which he calls fictitious force (often named pseudo-
force), because he knows that this is not a real force
but merely the description of a virtual acceleration a
of the ball when its motion is described in a reference

system which itself is accelerated with the acceleration
—a. Often the notation “inertial force” is used in order
to point to the inertial mass of the ball which prevents
it to follow the acceleration of the table.

. The observer O’ connects the ball with an elastic

spring scale and holds the other end with his hand
(Fig. 3.5Db). If the system S’ is now accelerated with the
acceleration —a to the left O" observes that the spring
is compressed. The spring balance measures the force
F, = —m -a. He must apply an equal but opposite
force F; = +m - a in order to keep the ball at rest.

O’ says: The total force F = F; + F, acting on the
ball is zero in accordance with my observation that the
ball rests.

The observer O in the rest system S says: Since the
ball is now connected with the table in S it participates
in the acceleration —a of S’ . The observer O’ has to
apply the force ¥ = —m - a in order to transfer the
same acceleration —a to the ball as the system S’ and
to keep the ball at rest relative to the system S'.

. A mass m in an elevator is suspended by a spring

balance (Fig. 3.6). If the elevator moves with the ac-
celeration @ = {0, 0, —a} downwards (Fig. 3.6a) the
spring balance measures the force F = m(g—a), if the
elevator moves upwards with the acceleration +a the
balance measures F = m(g +a) whereg = {0,0, —g}
is the earth acceleration. The observer O', sitting in
the elevator, says: The body is at rest. Therefore the
total force acting on it must be zero. The total force
F = F| + F, + F5 (Fig. 3.6¢) is the sum of
Fi=m-g = the weight of the mass m
opposite force of
Fo=-mg—a)=,_ spring balance

Fi=-m-a = inertial force

O’ must introduce the inertial force F3 in order to ex-
plain his observation.

The observer O outside the elevator at rest says: The
body with mass m is connected with the elevator. It
therefore participates in the acceleration of the eleva-
tor. This demands the force F = m - a. The total force
acting on the body is the sum of its weight F| = m - g
and the restoring force F; = —m - (g — a) of the
spring balance. Which gives, as expected the total
force F=m-g—m-(g—a) =m-a.

If the suspension cable of the elevator is ruptured and
the elevator goes down in a free fall its acceleration is
a = g. For O the total force remains »_ F; = 0 while
for O the total force becomes F = m - g.

These examples illustrate, that the inertial forces are
introduced only for measurements in accelerated co-
ordinate systems if the acceleration of the system is
not taken into account. They are therefore also called
fictitious forces or pseudo-forces. A transformation to
an inertial system lets all pseudo-forces vanish. This



means an observer O in an inertial system does not
need any pseudo-force for the explanation of the ob-
served physical processes.

i

T
o !

STl

o

m-g "
m-g
a) b)
o' O
Fiem.g | | Fo=M@-3)| F om.g| | Fo=-m@-2a
F3_-m5
E'E}i=0 Zﬁi=mg
0)

Figure 3.6 Elevator experiment. Description of the forces acting on
a mass m, that hangs on a spring balance in an elevator accelerated
downwards in a and upwards in b. In c the forces are listed as observed
by 0’ in the elevator (left hand side) and by O at rest outside the elevator
(right hand side) <«

3.3.2 Rotating Systems

We regard two coordinate systems S(x, y, z) and §'(x', y', Z') with
the unit vectors é,, é,, é; and ey, ey, ¢, of the coordinate axes
and a common origin 0 = (/. §' rotates against S with the con-
stant angular velocity @ = {w,, wy, @} around 0 = 0’ (Fig. 3.7).
S’ is therefore no inertial system. We assume that for all times
0=0.

A point A should have at time ¢ in the system S the position
vector

() =x(1)- e+ y(t)- e, + z(1) - e, (3.8)
and the velocity
dx . dy. dz.,
1) =— —eé, + —e; . 3.9
v(?) dtex‘l' dte)+ dteL (3.9)
The same point A has in the system S’ the position vector
() =r() =xey +ye, +7e,. (3.10)

3.3 Accelerated Systems; Inertial Forces

Figure 3.7 A system §’, that rotates around the axis @ against S. Both sys-
tems have the same origin 0 = 0’

Note: r = r’ means that we regard the same vector in both
systems with the same magnitude but different components.

If the observer O’ does not take into account that his system
rotates, he will define as the velocity of A in his system
dr  dx dy dz
/ ~ ~ A
v()) = —=—ey+ —ey+ —ey.

© de — dt * At dr t
However, if the observer O in the inertial system S describes the
velocity of A in the coordinates of . he knows that the axis of
S’ are rotating and therefore not constant in time. He therefore
must write:

dx’, dy’,

v(x,y.7) = (Eex/ + —éy + —
déy dé.
+ (X — +7—
( dr dr )

=v +u.
The endpoints of the unit vectors ey, ey, €, perform a circu-
lar motion with the angular velocity @ around 0 = (. Their
velocity is then

(3.11)

 déy (3.12)

+
ydt

de, o dey o des ¢ o
=W X ey, =wXxey, — =wXxe.. .
dr * dr ) dr z

Inserting this into (3.12) the second term in (3.12) becomes
(@ xe)x + (0 x &)y + (& x é,)7

=w X (eyx +éyy +€,7)

becauser =1 .

u =

=wXxr =oXxr,

We therefore get the transformation between the velocity v of
the point A measured by O in the system S and the velocity v’
measured by O’ in the system S’

v=v 4+ (0 xXr). (3.14)

85

Chapter 3




86

(@)
-
Q
©
(g
(1]
q
w

3 Moving Coordinate Systems and Special Relativity

Note: v’ is the velocity measured by O', if he does not take into
account, that his system S’ rotates with the angular velocity o,
while v in (3.9) is the velocity in the resting system S and v
in (3.14) the velocity of A measured by O but expressed in the
coordinates of the rotating system S'.

The acceleration a can be obtained by differentiating (3.14). The

result is
n dr
wXxX—|,
dt

because we have assumed that w = const. The observer O’ gets
the result for a, expressed in the coordinates of his system S’

dv’ . dvl P dv; v dv]
—_— = e, — e, —— e, —
dr ! T dr ¢

dv dv’

= 3.15
=% T @ (3.15)

dr dr

N déx/v/+déy/v/+déz/v/ (3.16)
dr * dr Y dr ¢

=d + (0w x?),

where a’ is again the acceleration of A measured by O’ in the
system §’. We therefore obtain with (3.15)
d
a:d—lt):a/—i-(wxv/)—i-(wxv).
Inserting for v the expression (3.14) we finally obtain from
(3.15)

a=d +2(wxv)+wx(wxr), (3.17)

and for a’
d=a+20Vxw)+oxFrxw
( ) ( ) (3.18)
=a-+ac+agg.

While the observer in his resting system S measures the accel-
eration @ = dv/dt, the observer O’ in his rotating system S’ has
to add additional terms for the acceleration in order to describe
the same motion of A. These are

the Coriolis-acceleration

ac =20V X @) , (3.19a)
the centrifugal acceleration
as=w X (rxw). (3.20a)

Special Cases: If the point A moves parallel to the rotation
axis we have v || @ and therefore the Coriolis acceleration be-
comes ac = 0. The Coriolis acceleration appears only, if v" has
a component perpendicular to @. When we choose the z-axis
as the direction of @ (Fig. 3.8), both the Coriolis acceleration
ac and the centrifugal acceleration ac lie in the x-y-plane. The
centrifugal acceleration points outwards in the radial direction.
The direction of the Coriolis acceleration depends on the direc-
tion of the velocity v’ in the coordinate system (x’,y’, z’). Since
the v.-component does not contribute to ac only the projection
v = {v}, vy} is responsible for the determination of the vector
ac = o - {v), —v,,0}.

The vector ac is perpendicular to v, as can be immediately seen
when forming the scalar productac - v’ .

z=12
A
A
N
®
o
v
1
1
|
1
1 o y
1
1
v Vi =V
A |
2 I
c ! e
V1 ac LV
)
X Azt = .
ac LV

Figure 3.8 Centrifugal- and Coriolis-force acting on a mass m in A(x, y,z =
0) described in a system $§’, that rotates with constant angular velocity @ around
the z-axis

3.3.3 Centrifugal- and Coriolis-Forces

According to Newton’s laws accelerations are caused by forces.
Therefore the observer O’, who measures in his rotating sys-
tem S’ additional accelerations has to introduce additional forces
based on the equation F = m - a These are the Coriolis force

Fc=2m- (v Xw), (3.19b)
and the centrifugal force
Fio=m-wXx((rxw). (3.20b)

Both forces are inertial forces or virtual forces because they are
not real forces due to interactions between bodies. They have
only to be introduced if the rotation of the coordinate axes of
the rotating system S’ are not taken into account. If the same
motion of the body A are described in an inertial system S or in
the rotating system S’ where the rotation of the coordinate axes
in considered, these forces do not appear.

We will illustrate these important facts by some examples.

Examples

1. A mass m is attached to one end of a string with length
L while the other end is connected to the end of a bar
with length d which rotates with the angular velocity
 around a vertical axis fixed to the centre of a rotating
table (Fig. 3.9). In the equilibrium position the string
forms an angle « against the vertical direction, where
o depends on w, d and L. The observer O in the rest-
ing frame S and the observer O’ sitting on the rotating
table describe their observations as follows:



O says: Since m moves with constant angular velocity
o on a circle with radius » = d 4 L-sin« a centripetal
force Fep = —m - ? - r acts on m which is the vector
sum of its weight m - g and the restoring force F; of the
string (Fig. 3.9a).

O’ says: Since m is resting in my system S’ the total
force on m must be zero, i.e. > F; = 0. The vector
sum m-g + F; has to be compensated by the centrifugal
force F; = +mw?r (Fig. 3.9b). He has to introduce
the virtual force F if he does not take into account
the rotation of his system.

Figure 3.9 Forces on a rotating string pendulum, described by the ob-
server O at rest and O’ rotating with the pendulum

2. In a satellite, circling around the earth with constant

angular velocity w experiments are performed con-
cerning the “weightlessness” (Fig. 3.10). For example
an astronaut can freely float in his satellite without
touching the walls.

The observer O’ in the satellite (i.e. the astronaut)
says: I know that the gravity force

F, = —(GmM/r)é,

acts on me, where r is the distance to the centre of the
earth. It is compensated by the opposite centrifugal
force

Fo=4+mw?-r-é, .

The total force acting on me is zero and therefore I can
freely float.

3.3 Accelerated Systems; Inertial Forces

Note: The state of the astronaut should be better called
“force-free” instead of “weightlessness”.

The observe O in a resting system S (for example the
galactic coordinate system) says: The gravity force F,
acts as centripetal force on both the satellite and the as-
tronaut. Both are therefore forced to move on a circle
around the earth. The acceleration @ = —(GM/r%)é,
is the same for the astronaut and the satellite and the
difference of the accelerations is zero. Therefore the
astronaut can freely float in his satellite.

Note: Both observes can describe consistently the sit-
uation of the astronaut, however the observer S’ has to
introduce the inertial force F if he does not take into
account the accelerated motion of his space ship.

. A sled moves with constant velocity v on a linear track

and writes with a pen on a rotating disc (Fig. 3.11).
The marked line on the rotating disc is curved where
the curvature depends on the velocity v of the sled, the
perpendicular distance d of the track from the centre
of the disc and the angular velocity @ of the rotating
disc. The two observers O and O" describe the ob-
served curve as follows:

O says: The sled moves with constant velocity on a
straight line, as can be seen from the marked line out-
side the disc. Therefore no force is acting on the sled
and its acceleration is zero. The curved path marked
on the disc is due to the fact that the disc is rotating.
O’ says: I observe a curved path. Therefore a force
has to act on the sled. By experiments with different
values of v, w and d he finds:

Ford =0is |@'| x v -w;a L v anda | w.

Ford # 0isa = cw + cow® with ¢; & v and ¢, o 7,
where r is the distance of the sled from the centre of
the disc. The quantitative analysis of his measure-
ments gives the result:

ad=20X®)+wx[Frxw),

which is consistent with (3.18) and shows that the ac-
celeration of the sled measured by O’ is the sum of
centrifugal and Coriolis accelerations.

y w

Glider (oM

with pen r
| 7244 o
—l—

v
—
0 X
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Figure 3.11 Experimental illustration of the inertial forces. A glider,
Figure 3.10 Force-free conditions in a satellite orbiting around the moving on a straight line above a rotating disc writes with a pen its path
earth on the rotating disc which appears as a curved trajectory
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3 Moving Coordinate Systems and Special Relativity

This example illustrates clearly that the two acceler-
ations and the corresponding forces are only virtual,
because the sled moves in fact with constant veloc-
ity on a straight line and therefore experiences no real
forces.

. A hollow sphere filled with sand hangs on a string

which is connected to a fixed suspension point and
swings in the fixed x-z-plane of a resting system S,
driven by the gravity force F, = m - g with g =
{0’ 09 —8 }

Below the swinging pendulum is a rotating table in the
x-y-plane which rotates with the angular velocity @
around a vertical axis through the minimum position
of the pendulum.

If the sand flows through a small hole in the hollow
sphere it draws for @ = 0 a straight line on the ta-
ble while for @ # 0 a rosette-like figure is drawn
(Fig. 3.12) with a curvature which depends on the ra-
tio of oscillation period 7 of the pendulum to rotation
period 7> of the rotating table.

The two observers give the following explanations:

O says: The x-z-oscillation plane remains constant
because the driving force F;, = m - g - sina (see
Sect. 2.9.7) lies always in the x-z-plane and therefore
the motion must stay in this plane. The projection of
the trajectory onto the x-y-plane should be a straight
line. The curved trajectory drawn on the rotating ta-
ble is caused by the rotation and not by an additional
force.

O’ says sitting on the rotating table: I see a curved path
which must be caused by forces, which depend on w,
v" and r. Its form can be explained by the centrifu-
gal and the Coriolis forces. My careful measurements
prove that the paths is due to the action of the total ac-
celeration a’ = a.r + ac in accordance with Eq. 3.18.

t=T

t=0

onto the ground must show curved lines as discussed
in example 4). However, because of the slow earth ro-
tation (w = 7.3 - 107 s7!) the curvature is very small.
Using a pendulum with a large length L and a cor-
responding large oscillation period 7" the rotation of
the earth under the linearly swinging pendulum could
be first demonstrated 1850 by Leon Foucault (1819-
1868) who used a copper ball (m = 28 kg) suspended
by a 67m long string (T = 16.4s). The turn of the
oscillation plane against the rotating ground occurs
with the angular velocity @; = o - sing where ¢ is
the geographic latitude of the pendulum (Fig. 3.13).
in Kaiserslautern with ¢ = 49° the pendulum plane
turns in 1 h by 11°32/, which can be readily measured.
Using shadow projection of the pendulum string defin-
ing the oscillation plane this turn can be quantitatively
measured within a physics lecture.

L

9.

o [0
A
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g

S

Figure 3.13 Explanation of the turning plane of oscillation of the
Foucault-pendulums on the surface the rotating earth

6. An impressive demonstration of the Coriolis force is

provided by the motion of cloud formations around
a low pressure region as for instance realized by tor-
nados or typhoons (Fig. 3.14). For an observer on
the rotating earth looking from above onto the ground
the wind does not blow radially into the low pres-
sure region but rotates on the northern hemisphere
anticlockwise around it, on the southern hemisphere
clockwise. Around a high pressure region the ro-
tation is clockwise on the northern hemisphere and
anticlockwise on the southern.

Note: If a small balloon which floats in the air is used
as indicator of the wind flow an observer on earth
would see the balloon moving on one of the lines in
Fig. 3.14. An observer O at a fixed position outside

the earth, would however see, that the balloon moves
on a straight line radially into the centre of the deep
pressure region or out from the centre of a high pres-
sure region. These centres are fixed at a point on earth
and rotate with the earth.

Figure 3.12 Apparent trajectory written on a rotating disc by a sand
pendulum than oscillates in a constant plane

5. Foucault pendulum. Since our earth is a rotating sys-
tem, the path drawn by a linearly swinging pendulum



S

a) Northern hemisphere

S

b) Southern hemisphere

Figure 3.14 Stream-lines of the air around a deep-pressure region.
a on the northern hemisphere; b on the southern hemisphere. On the
northern hemisphere the Coriolis force acts (seen in the wind direction
from above) in the right direction against the radial force of the pressure
gradient, on the southern hemisphere in the left direction. c Satellite
photo of the “death-hurricane” north of Hawaii (with kind permission of
NASA photo HP 133) <

3.4 The Constancy of the Velocity of Light

3.3.4 Summary

Inertial forces (virtual forces) have to be introduced, if the mo-
tion of bodies are described in accelerated coordinate systems.
These forces are not caused by real interactions between bodies
but only reflect the acceleration of the coordinate system. They
do not appear if the same motion is described in an inertial sys-
tem.

In rotating systems with a fixed centre the inertial forces are cen-
trifugal and Coriolis forces. In systems with arbitrarily changing
velocities further inertial forces have to be introduced.

3.4 The Constancy of the Velocity of
Light

We consider a body A which has the velocity v measured in
the system S but the velocity v’ in a system §’, which moves
itself with the velocity u against the resting system S. According
to the Galilei transformations the different velocities are related
through the vector sum (Fig. 3.15)

v=0v 4u. (3.21a)

Therefore one might suggest, that also the velocity of light,
emitted from a light source which is fixed in a system S’ moving
with the velocity u against the system S, should be measured in
the system S as the vector sum

c=c +u, (3.21b)

where ¢’ is the velocity measured by O’ in his system S’. This
means that the observer O should measure the velocity ¢; =
¢’ +u if ¢’ and u have the same direction, and ¢, = ¢/ —u if they
have opposite directions.

Very careful measurements performed 1881 by Albert Abra-
ham Michelson and Edward Morley [3.2a, 3.3] and later on by
many other researchers [3.4a