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Preface

The present textbook represents the first part of a four-volume series on experimental Physics. It covers
the field of Mechanics and Thermodynamics. One of its goal is to illustrate, that the explanation of our
world and of all natural processes by Physics is always the description of models of our world, which
are formulated by theory and proved by experiments. The continuous improvement of these models
leads to a more detailled understanding of our world and of the processes that proceed in it.

The representation of this textbook starts with an introductory chapter giving a brief survey of the his-
tory and development of Physics and its present relevance for other sciences and for technology. Since
experimental Physics is based on measuring techniques and quantitative results, a section discusses
basic units, techniques for their measurements and the accuracy and possible errors of measurements.

In all further chapters the description of the real world by successively refined models is outlined. It
begins with the model of a point mass, its motion under the action of forces and its limitations. Since
the description of moving masses requires a coordinate system, the transformation of results obtained
in one system to another system moving against the first one is described. This leads to the theory
of special relativity, which is discussed in Chap. 3. The next chapter upgrades the model of point
masses to spatially extended rigid bodies, where the spatial extension of a body cannot be ignored
but influences the results. Then the deformation of bodies under the influence of forces is discussed
and phenomena caused by this deformation are explained. The existence of different phases (solid,
liquid and gaseous) and their relation with external influences such as temperature and pressure, are
discussed.

The properties of gases and liquids at rest and the effects caused by streaming gases and liquids are
outlined in Chap. 7 and 8.

Many insights in natural phenomena, in particular in the area of atomic and molecular physics could
only be explored after sufficiently good vacua could be realized. Therefore Chap. 9 discusses briefly
the most important facts of vacuum physics, such as the realization and measurement of evacuated
volumina.

Thermodynamics governs important aspects of our life. Therefore an extended chapter about defini-
tions and measuring techniques for temperatures, heat energy and phase transitions should emphazise
the importance of thermodynamics. The three principle laws ot thermodynamics and their relevanve
for energy transformation and dissipation are discussed.

Chapter 11 deals with oscillations and waves, a subject which is closely related to acoustics and optics.

While all foregoing chapters discuss classical physics which had been developed centuries ago,
Chap. 12 covers a modern subject, namely nonlinear phenomena and chaos theory. It should give
a feeling for the fact, that most phenomena in classical physics can be described only approximately
by linear equations. A closer inspection shows that the accurate description demands nonlinear equa-
tions with surprising solutions.

A description of phenomena in physics requires some minimum mathematical knowledge. Therefore a
brief survey about vector algebra and vector analysis, about complex numbers and different coordinate
systems is provided in the last chapter.

A real understanding of the subjects covered in this textbook can be checked by solving problems,
which are given at the end of each chapter. A sketch of the solutions can be found at the end of the
book.

For further studies and a deeper insight into special subjects some selected literature is given at the
end of each chapter.
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vi Preface

The author hopes that this book can transfer some of his enthusiasm for the fascinating field of physics.
He is grateful for any comments and suggestions, also for hints to possible errors. Every e-mail will
be answered as soon as possible.

Several people have contributed to the realization of this book. Many thanks go the Dr. Schneider
and Ute Heuser, Springer Verlag Heidelberg, who supported and encouraged the authors over the
whole period needed for translating this book from a German version. Nadja Kroke and her team
(le-tex publishing services GmbH) did a careful job for the layout of the book and induced the author
to improve ambiguous sentences or unclear hints to equations or figures. I thank them all for their
efforts.

Last but not least I thank my wife Harriet, who showed much patience when her husband disappeared
into his office for the work on this book.

Kaiserslautern, December 2016 Wolfgang Demtröder
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2 1 Introduction and Survey

The name “Physics” comes from the Greek (“'�� i��” D
nature, creation, origin) which comprises, according to the def-
inition of Aristotle (384–322 BC) the theory of the material
world in contrast to metaphysics, which deals with the world of
ideas, and which is treated in the book by Aristotle after (Greek:

meta) the discussion of physics.

Definition

The modern definition of physics is: Physics is a basic sci-
ence, which deals with the fundamental building blocks of
our world and the mutual interactions between them.

The goal of research in physics is the basic understanding
of even complex bodies and their composition of smaller
elementary particles with interactions that can be catego-
rized into only four fundamental forces. Complex events
observed in our world should be put down to simple
laws which allow not only to explain these events quan-
titatively but also to predict future events if their initial
conditions are known.

In other words: Physicists try to find laws and correla-
tions for our world and the complex natural events and to
explain all observations by a few fundamental principles.

Note, however, that complex systems that are composed of
many components, often show characteristics, which cannot be
reduced to the properties of these components. The amalga-
mation of small particles to larger units brings about new and
unforeseen characteristics, which are based on cooperative pro-
cesses. The whole is more than the sum of its parts (Heisenberg

1973, Aristotle; metaphysics VII). Examples are living biologi-
cal cells, which are composed of lifeless molecules or molecules
with certain chemical properties consisting of atoms that do not
show these properties of the molecule.

The treatment of such complex systems requires new scientific
methods, which have to be developed.

This should remind enthusiastic physicists, that physics alone
might not explain everything although it has been very success-
ful to expands the borderline of its realm farther and farther in
the course of time.

1.1 The Importance of Experiments

The more astronomically oriented observations of ancient Baby-
lonians brought about a better knowledge of the yearly periods
of the star sky. The epicycle model of Ptolemy gave a nearly
quantitative description of the movements of the planets. How-
ever, modern Physics in the present meaning started only much
later with Galileo Galilei (1564–1642, Fig. 1.1), who performed
as the first physicist well planned experiments under defined
conditions, which could give quantitative answers to open ques-
tions. These experiments can be performed at any time under

conditions chosen by the experimentalist independent of exter-
nal influences. This distinguishes them from the observations
of natural phenomena, such as thunderstorms, lightening or vol-
canism, which cannot be influenced. This freedom of choosing
the conditions is the great advantage of experiments, because
all perturbing external influences can be partly or even com-
pletely eliminated (e. g. air friction in experiments on free falling
bodies). This facilitates the analysis of the experimental results
considerably.

Experiments are aimed questions to nature, which yield
under defined conditions definite answers.

The goal of all experiments is to find reasons and causes for all
phenomena observed in nature, to see connections between the
manifold of observations and to categorize them under a com-
mon law. Even more ambitious is the quantitative prediction of
future experimental results, if the initial conditions of the exper-
iments are known.

A physical law connects measurable quantities and con-
cepts. Its clear form is a mathematical equation.

Such mathematical descriptions give a clearer insight into the
relations between different physical laws. It can reduce the man-
ifold of experimental findings, which might seem at first glance
uncorrelated but turn out to be special cases of the same general
law that is valid in all fields of physics.

Examples

1. Based on many careful measurements of planetary or-
bits by Tycho de Brahe (1546–1601), Johannes Kepler

(1571–1630) could postulate his three famous laws
for the quantitative description of distances and move-
ments of the planets. He did not find the cause for
these movements, which was discovered only later by
Isaac Newton (1642–1727) as the gravitational force
between the sun and the planets. However, Newton’s
gravitation law did not only describe the planetary or-
bits but all movements of bodies in gravitational fields.
The problem to unite the gravitational force with the
other forces (electromagnetic, weak and strong force)
has not yet been solved, but is the subject of intense
current research.

2. The laws of energy and momentum conservation were
only found after the analysis of many experiments in
different fields. Now they explain and unify many
experimental findings. Such a unified summary of
different physical laws and principles to a consistent
general description is called a physical theory. J
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Figure 1.1 Left: Galileo Galilei. Right: Looking of Cardinales through Galilio’s Telescope

Its range of validity and predictive capability is checked
by experiments.

Since the formulation of a theory requires a mathematical

description, a profound knowledge of basic mathematics is in-

dispensible for every physicist.

1.2 The Concept of Models in
Physics

The close relation between theory and experiments is illustrated
by the following consideration:

If a free falling body in a vacuum container at the surface of
the earth is observed one finds that the fall time over a definite
distance is independent of the size or form of the body and also
independent of its weight. In contrast to this result is the fall
of a body in any fluid, instead of vacuum where the form of
the body does play a role because here perturbing influences,
such as friction often cannot be neglected. Neglecting these per-
turbations one can replace the body by the model of a point

mass. With other words: In these experiments the falling body

behaves like a point mass, because its size does not matter. The
theory can now give a complete description of the movement of
point masses under the influence of gravitational forces and it
can predict the results of corresponding future experiments (see
Chap. 2).

Now the experimental conditions are changed: For a body
falling in water the velocity and fall time do depend on size
and weight of the body, because of friction and buoyancy. In
this case the model of a point mass is no longer valid and has to
be broadened to the model of spatially extended rigid bodies

(see Chap. 5). This model can predict and quantitatively explain
the movements of extended rigid bodies under the influence of
external forces.

If we now further extend our experimental condition and let a
massive body fall onto a deformable elastic steel plate, our rigid
body model is no longer valid but we must include in our model
the deformation of the body, This results in the model of ex-

tended deformable bodies, which describes the interaction and
the forces between different parts of the body and explains elas-
ticity and deformation quantitatively (see Chap. 6).

The theory of phenomena in our environment is always the
description of a model, which describes the observations.
If new phenomena are discovered which are not correctly
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represented by the model, it has to be broadened and re-
fined or even completely revised.

The details of the model depend on the formulation of the ques-
tion asked to nature and on the kind of experiments which
should be explained. Generally a single experiment tests only
certain statements of the model. If such an experiment confirms
these statements, we say, that nature behaves in this experiment
like the model predicts, i. e. nature gives the same answer to se-
lected experiments as the model.

Since theory can in principle calculate all properties of an ac-
cepted model it often gives valuable hints, which experiments
could best test the validity of the model.

Such a cooperation and mutual inspiration of theoretical
and experimental physics contribute in an outstanding way
to the progress in physical knowledge.

An impressive example is the development of quantum chro-

modynamics. This modern theory describes the substructure
of particles, which had been regarded as elementary, such as
protons, neutrons and mesons, but are really composed of still
smaller particles, the quarks. Theoretical predictions about the
possible masses of unstable particles, composed of these quarks,
which appear as resonances in the collision cross sections, al-
lowed the experimentalists to restrict their search which is like
the search for a needle in the haystack, to the predicted energy
range, which facilitated their efforts considerably.

The model concept for the description of observations in nature
is in particular obvious in the world of microphysics (atomic,
molecular and nuclear physics), because here the particles can-
not be seen with the naked eye and therefore a vivid picture
cannot be given. Attempts to transfer vivid models useful in
macrophysics to microphysics have often led to misunderstand-
ings and wrong ideas. One example is the particle-wave dualism
for the description of microparticles (see Vol. 3).

Figure 1.2 comprises the discussion above. One example shall
illustrate the development and refinement of models in physics.
The explanation of lightning by Greek philosophers was the
god Zeus who flung flashes to the earth while he was in a fu-
rious mood. Modern models explain lightning by the separation
of positive and negative electrical charges by charged water
drops floating in turbulent air, leading to large electric voltages
between different clouds or between clouds and earth with re-
sulting strong discharges. This modern model is based on many
detailed observations with high speed photographic instruments
and on experimental simulations of lightning in high voltage
laboratories where discharges can be observed under controlled
conditions.

The goal of sciences is the understanding of natural phenom-
ena observed under different conditions and to categorize their
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Figure 1.2 Schematic representation of the way, how scientists gain informa-
tion on nature

explanations under a common law. It is assumed, that the ob-
served reality exists independent of the observer. However, the
experiments performed in order to reproduce the observations
demand nevertheless characteristic features of the observing
subject, such as imagination for the planning of decisive ex-
periments, an open mind for new ideas, etc. Many ideas turn
out to be wrong. They can be already excluded by comparison
with former experiments. Such ideas which do not contradict
already existing knowledge can contribute to a working hypoth-
esis. Even such a hypothesis might be only partly correct and
has to be modified by the results of further experiments. If all
these results confirm the working hypothesis it can become a
proved theory, which allows us to summarize many observa-
tions to a general law (see Fig. 1.3).

This procedure where a theory is built up from many experimen-
tal results is called the inductive method.

In theoretical physics often a reverse procedure is chosen. The
starting point are fundamental basic equations such as Newton’s
law of gravitation or the Maxwell equations or symmetry laws.
From these general laws the outcome of possible experiments is
predicted (deductive method).

Both procedures have their justification with advantages and
drawbacks. They supplement each other.

An important aspect which one should keep in mind is summa-
rized in the following fundamental statement:

Physics describes objective and as accurate as possible the re-
ality of the material world. For human beings this is, however,
only a small section of the world we experience, as a specific
example illustrates: From the standpoint of physics a painting
can be described, by giving for each point .x; y/ the reflectivity
R.�; x; y/, which depends on the wavelength �, the spectrum of
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Figure 1.3 Schematic diagram of gaining insight into natural phenomena

the illuminating radiation source and the angles of incidence and
observation direction. A computer which is fed with these char-
acteristic input data can reproduce the painting very accurately.

Nevertheless this physical description lacks an essential part of
the painting, which is in the mind of the observer. When look-
ing at the painting a human being might remember other similar
paintings which he compares with the present painting, even if
these other paintings are not present but only in the mind they
still change the subjective impression of the observer. The sub-
ject of the painting may induce cheerful or sad feelings in the
mind of the observer, it may call back remembrances of former
events or impressions which are related to this painting. All
these different influences will determine the judgement about
the painting, which therefore might be different for different ob-
servers.

All these aspects are not the realm of physics, because they
are subjective, although they are essential for the quality of the
painting as judged by human beings and they represent an im-
portant part of the “reality” as perceived by us.

These remarks should warn physicists, not to forget that our fas-
cinating science is only competent for the description of the
material basis of our world. Although the other nonmaterial
realms are based on the material world their description and
understanding reaches far beyond physics. The question, how
living cells are built from inanimate molecules and how the
human mind is related to the structure of the brain are still pend-
ing but exciting problems, which might be solved in the future.
This is related to the question whether the human brain is more
than a highly developed computer, which is the subject of hot
discussions between the supporter of artificial intelligence and
biologists.

For more detailed discussions of these questions, the reader is
referred to the literature [1.1a–1.6].

1.3 Short Historical Review

The historical development of physics can be roughly divided
into three periods:

The natural philosophy in ancient times
The development of classical physics
The modern physics.

1.3.1 The Natural Philosophy in Ancient Times

The investigation of natural phenomena and the efforts to ex-
plain them by rational arguments started already 4000 years
ago. The astronomical observation of the Babylonian and the
Egyptian scientists were important for the prediction of an-
nual occurrences, such as the Nile flood or the correct time
for sowing. The Greek philosophers produced many ideas for
the explanation of the observed natural phenomena. All these
ideas were treated within the framework of general philosophy.
For example, the textbook on Physics ('�� i�� ˛�%o˛� i& D
lectures on physics) by Aristotle contains mainly philosophical
considerations about space and time, movements of bodies and
their causes.

Probably the most important achievement of Greek philosophy
was the overcoming of the widespread mythology, where the
life of mankind was governed by a hierarchy of gods, whose
mood was not predictable and everybody had to win the lik-
ing of gods by sacrificing precious gifts to them. Most Greek
philosophers abandoned the belief, that the world was a playing
ground for gods, demons and ghosts who generated thunder-
storm, floods, sunshine or disastrous droughts just according to
their mood (see Homer’s Odyssey).

The Greek philosophers believed that all natural phenomena
obeyed eternal unchanging laws which were not always obvious
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Figure 1.4 Aristotle. With kind permission of the “Deutsches Museum”

because of the complex nature but which were independent of
men or gods. This means that it is, at least in principle, possible
to find such laws merely by human reason.

Example

A solar eclipse is no longer described by a monster that
engulfs the sun, but by the temporarily blocking of the
sunlight by the moon. This changes the solar eclipse from
an accidental event to a predictable occurrence. J

Famous representatives of Greek philosophy were Thales from

Milet (624–546 BC), who discovered magnetism and frictional
electricity, but could not correctly explain his findings. Empedo-

cles (495–435 BC) assumed that fire, water, air and soil formed
the four basic elements, which can mix, divide and build com-
positions from which all other material is composed. The
mathematical aspect of natural phenomena was introduced by
Pythagoras (572–492 BC) and his scholars who assumed that
numbers and mathematical relations between these numbers re-
flect the reality. They made acoustic experiments with striking
chords of different lengths and measured the resulting tones.
However, they erroneously generalized their results to other
fields such as the movement of the planets.

Anaxagoras (499–428 BC) was the first to postulated that the
world consists of many infinitely small different particles. The
force which keeps them together is the Nus (D world spirit).
Leucippus (489–428 BC) and his student Democritus (455–
370 BC) followed these ideas and refined this hypothesis. Dem-

ocritus assumed that the world consists of atoms (˛�o�o& D
indivisble), very small indivisible identical particles, which
move forever in an infinite empty space. The different forms
of matter differ only by the number and arrangement of atoms
of which they are composed. This hypothesis comes close to our
present understanding of the atomic composition of the different
elements in the periodic table (see Sect. 1.4).

The doctrine of the “atomists” was declined by Plato (427–
347 BC) and Aristotle (Fig. 1.4) since it contradicted their view
of a continuous world. Since these two philosophers had such
a great reputation the atomistic theory was forgotten for nearly
2000 years.

Aristotle (384–322 BC) (Fig. 1.4) regarded nature as the forever
moving and developing universe, where at the beginning a “di-
vine mover” was assumed who started the whole world. The
planets move apparently without obvious mover and therefore
Aristotle assumed that they do not consist of the four earthly
elements fire, air, water and soil but of a fifth “divine element”
which he called “Ether”. This ether should be massless and elas-
tic and should penetrate the whole world, including rigid bodies.

Archimedes (287–212 BC) studied in Alexandria, the centre of
science at that time. Later he moved to Syracuse on Sicily. He
was the greatest mathematician, physicist and technical expert
of his time. He succeeded to calculate the area and the perime-
ter of a circle, the surfaces of spheres, cones and cylinders
and he solved third order equations. As a physicist he deter-
mined the centre of mass for bodies of different shape, he found
the lever principle, calculated the buoyancy of bodies in water
(Archimedes’ principle), he built a planetarium and measured
star positions and proved the curvature of the sea surface. He
was famous for his technical achievements. He invented and
constructed about 40 different machines, such as the worm gear
drive, catapults, hydraulic levers for lifting ships and many ma-
chines used for warfare.

In spite of great success in many fields the Greek philosophers
could not reach natural science in the present sense, because
they did not accept the experiment as the touchstone for every
theory. They believed that an initial observation was sufficient
and that all subsequent conclusions and knowledge could be
achieved by pure thinking without further confirming or dis-
proving experiments.

This rather speculative procedure has influenced, due to the
great impact of Aristotle’s generally accepted teaching, many
generations of philosophers for more than 1500 years. Even
when Galilei Galileo observed through his telescope the four
moons of Jupiter, most philosophers and high members of the
church did not believe him, because his observation contradicted
the theory of Aristotle, who taught that the planets were fixed
on crystal spheres moving with the planet around the earth. If
moons circled around Jupiter they had to penetrate these crystal
spheres and would smash them. Therefore, the moons should
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be impossible. Even when Galilei offered to the sceptics to look
through the telescope (Fig. 1.1b) many of them refused and said:
“Why should we look and be deceived by optical illusions when
we are sure about Aristotle’s statements”.

Although some inconsistencies in Aristotle’s teaching had been
found before, Galilee was the first to disprove by his observa-
tions and experiments the whole theory of the shining example
of Greek philosophy, in particular when he also advertised the
new astronomy of Copernicus, which brought him many ene-
mies and even a trial before the catholic court.

1.3.2 The Development of Classical Physics

One may call Galileo the first physicist in the present meaning.
He tried as the first scientist to prove or disprove physical the-
ories by specific well-planned experiments. Famous examples
are his experiments on the movement of a body with constant
acceleration under the influence of gravity. He also considered
how large the accuracy of his experimental results must be in or-
der to decide between two different versions for the description
of such movements. He therefore did not choose the free fall
(it is often erroneously reported, that he observed bodies falling
from the Leaning tower in Pisa). This could never reach the re-
quired accuracy with the clocks available at that time. He chose
instead the sliding of a body on an inclined plane with an angle
˛ against the horizontal. Here only the fraction g � sin˛ acts on
the body and thus the acceleration is much smaller.

His astronomical observations (phases of Venus, Moons of
Jupiter) with a self-made telescope (after he had learned about
its invention by the optician Hans Lipershey (1570–1619) in
Holland) helped the Copernican model of the planets circling
around the sun instead of the earth, finally to become generally
accepted (in spite of severe discrepancies with the dogmatic of
the church and heavy oppression by the church council).

The introduction of mathematical equations to physical prob-
lems, which comprises several different observations into a
common law, was impressively demonstrated by Isaac New-

ton (Fig. 1.5). In his centennial book “Philosophiae Naturalis

Principia Mathematica” he summarizes all observations and
the knowledge of his time about mechanics (including celes-
tial mechanics D astronomy) by reducing them to a few basic
principles (principle of inertia, actio D reactio, the force on a
body equals the time derivative of his momentum and the grav-
itational law).

Supported by progress of mathematics in the 17th century (an-
alytical geometry, infinitesimal calculus, differential equations)
the mathematical description of physical observations becomes
more and more common. Physics emancipates from Philosophy
and develops its own framework using mathematical language
for the clear formulation of physical laws. For example classical
mechanics experiences its complete and elegant mathemati-
cal form by J. L. de-Lagrange (1736–1813) and W. R. Hamilton

(1805–1865) who reduced all laws for the movement of bodies
under arbitrary forces to a few basic equations.

Figure 1.5 Sir Isaac Newton. With kind permission of the “Deutsches Museum
München”

Contrary to mechanics which had developed already in the 18th
century to a closed complete theory the knowledge about the
structure of matter was very sketchy and confused. Simultane-
ously different hypotheses were emphasized: One taken form
the ancient Greek philosophy, where fire, water, air and soil
were assumed as the basic elements, or from the alchemists who
favoured mercury, sulphur and salt as basic building blocks of
matter.

Robert Boyle (1627–1591) realized after detailed experiments
that simple basic elements must exist, from which all materi-
als can be composed, which however, cannot be further divided.
These elements should be separated by chemical analysis from
their composition. Boyle was able to prove that the former as-
sumption of elements was wrong. He could, however, not yet
find the real elements.

A major breakthrough in the understanding of matter was
achieved by the first critically evaluated quantitative experi-
ments investigating the mass changes involved in combustion
processes, published in 1772 by A. L. de Lavoisier (1743–1794).
These experiments laid the foundations of our present ideas
about the structure of matter. Lavoisier and John Dalton (1766–
1844) recognised metals as elements and postulated like Boyle
that all substances were composed of atoms. The atoms were
now, however, not just simple non-divisible particles, but had



C
h

a
p

te
r

1

8 1 Introduction and Survey

specific characteristics which determined the properties of the
composed substance. Karl Wilhelm Scheele (1724–1786) found
that air consisted of nitrogen and oxygen.

Antoine-Laurent Lavoisier furthermore found that the mass of
a substance increased when it was burnt, if all products of the
combustion process were collected. He recognized that this
mass increase was caused by oxygen which combined with the
substance during the burning process. He formulated the law
of mass conservation for all chemical processes. Two elements
can combine in different mass ratios to form different chemical
products where the relative mass ratios always are small integer
numbers.

The British Chemist John Dalton was able to explain this law
based on the atom hypothesis.

Examples

1. For the molecules carbon monoxide and carbon diox-
ide the mass ratio of oxygen combining with the same
amount of carbon is 1 W 2 because in CO one oxygen
atom and in CO2 two oxygen atoms combine with one
carbon atom.

2. For the gases N2O (Di-Nitrogen oxide), NO (nitrogen
mono oxide), N2O3 (nitrogen trioxide), and NO2) ni-
trogen dioxide) oxygen combines with the same mass
of nitrogen each time in the ratio 1 W 2 W 3 W 4. J

Dalton also recognized that the relative atomic weights con-
stitute a characteristic property of chemical elements. The
further development of these ideas lead to the periodic system
of elements by Julius Lothar Meyer (1830–1895) and Dimitri

Mendelejew (1834–1907), who arranged all known elements in
a table in such a way that the elements in the same column
showed similar chemical properties, such as the alkali atoms in
the first column or the noble gases in the last column.

Why these elements had similar chemical properties was recog-
nized only much later after the development of quantum theory.

The idea of atoms was supported by Amedeo Avogadro (1776–
1856), who proposed in 1811 that equal volumes of different
gases at equal temperature and pressure contain an equal number
of elementary particles.

A convincing experimental indication of the existence of atoms
was provided by the Brownian motion, where the random move-
ments of small particles in gases or liquids could be directly
viewed under a microscope. This was later quantitatively
explained by Einstein, who showed that this movement was in-
duced by collisions of the particles with atoms or molecules.

Although the atomic hypothesis scored indisputable successes
and was accepted as a working hypothesis by most chemists
and physicists, the existence of atoms as real entities was a mat-
ter of discussion among many serious scientists until the end of
the 19th century. The reason was the fact that one cannot see
atoms but had only indirect clues, derived from the macroscopic
behaviour of matter in chemical reactions. Nowadays the im-
provement of experimental techniques allows one to see images

of single atoms and the theoretical basis of atomic theory leaves
no doubt about the real existence of atoms and molecules.

The theory of heat began to become a quantitative science after
thermometers for the measurement of temperatures had been de-
veloped (air-thermoscope by Galilei, alcohol thermometer 1641
in Florence, mercury thermometer 1640 in Rome). The Swedish
physicist Anders Celsius (1701–1744) introduced the division
into 100 equal intervals between melting point (0 ıC) and boil-
ing point (100 ıC) of water at normal pressure. Lord Kelvin

(1824–1907) postulated the absolute temperature, based on gas
thermometers and the general gas law. On this scale the zero
point T D 0 K D �273:15 ıC is the lowest temperature which
can be closely approached but never reached (see Chap. 10).

Denis Papin (1647–1712) investigated the process of boiling
and condensation of water vapour (Papin’s steam pressure pot).
He built the first steam engine, which James Watt (1736–1819)
later improved to reliable technical performance. The terms
amount of heat and heat capacity were introduced by the En-
glish physicist and chemist Joseph Black (1728–1799). He
discovered that during the melting process heat was absorbed
which was released again during solidification.

The more precise formulation of the theory of heat was es-
sentially marked by establishing general laws. Robert Mayer

(1814–1878) postulated the first law of the theory of heat, which
states that for all processes the total amount of energy is con-
served. Nicolas Carnot (1796–1832) started 1831 after some
initial errors a fresh successful attempt to describe the conver-
sion of heat into mechanical energy (Carnot’s cycle process).
This was later more precisely formulated by Rudolf Clausius

(1822–1888) in the second law of heat theory.

A real understanding of heat was achieved, when the kinetic
gas theory was formulated. Here the connection between heat
properties and mechanical energy was for the first time clearly
formulated. Since the dynamical properties of molecules mov-
ing around in a gas were related to the temperature of a gas, the
heat theory was now called thermodynamics, which was for-
mulated by several scientists (Clausius, Avogadro, Boltzmann)
(see Fig. 1.6). They proved under the assumption that gases con-
sist of many essentially free atoms or molecules, which move
randomly around and collide with each other, that the heat en-
ergy of a gas is equivalent to the kinetic energy of these particles.
The Austrian physicist Joseph Loschmidt (1821–1895) found
that under normal pressure the gas contains the enormous num-
ber of about 3 � 1019 atoms per cm3.

Optics is one of the oldest branches of physics which was al-
ready studied more than 2000 years ago where the focussing of
light by concave mirrors was used to ignite a fire. However,
only in the 17th century optical instruments and their imag-
ing properties were studied systematically. A milestone was
the fabrication of lenses and the invention of telescopes. Willi-

brord Snellius (1580–1626) formulated his law of refraction
(see Vol. 2, Chap. 9), Newton found the separation of differ-
ent colours when white sun light passed through a prism. The
explanation of the properties of light was the subject of hot dis-
cussions. While Newton believed that light consisted of small
particles (in our present model these are the photons) the ex-
periments on interference and diffraction of light by Grimaldi
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Figure 1.6 Ludwig Boltzmann. With kind permission from Dr. W. Stiller Leipzig

(1618–1663), Christiaan Huygens (1629–1695), Thomas Young

(1773–1829) and Augustin Fresnel (1788–1827) decided the
dispute in favour of the wave theory of light. Melloni showed
1834 that the laws for visible light could be extended into the
infrared region and Max Felix Laue (1879–1960) and William

Bragg (1862–1942) demonstrated the wave character of X-rays,
which had been discovered by Conrad Roentgen (1845–1923),
by their famous experiments on X-ray diffraction in crystals.

The velocity of light was first estimated by Ole Rømer (1644–
1710) by astronomical observations of the appearance time of
Jupiter moons and later more precisely determined by Huy-
gens. With measurements on earth Jean Foucault (1819–1868)
and Armand Fizeau (1819–1896) could obtain a rather accurate
value for the velocity of light.

William Gilbert (1544–1603) was called “the father of electric-
ity”. He investigated the magnetic field of permanent magnets
and measured the magnetic field of the earth with the help of
magnetic needles. He made extensive experiments on friction
electricity and divided the different materials into electrical and
non-electrical substances. He built the first electroscop and
measured the forces between charged particles. Stephen Gray

(1670–1736) discovered the electrical conductivity of different
materials and made detailed experiments on electric induction.
He made electricity very popular by spectacular demonstrations.

Figure 1.7 James Clerk Maxwell. With kind permission from the American
Institute of Physics, Emilio Segre Visual hives, College Park MD

Charles Augustin Coulomb (1736–1806) built the first electrom-
eter, constructed the Coulomb torsion balance and formulated
the famous Coulomb law for the forces between charged parti-
cles. Benjamin Franklin (1706–1790) recognized that lightening
is not a fire but an electrical discharge and constructed the first
lightning conductor. Luigi Galvani (1737–1798) discovered the
stimulation of nerves by electrical currents (frog’s leg experi-
ments); and the contact voltage between different conductors,
which lead to the construction of batteries (Galvanic element).
Allessandro Volta (1745–1827) continued the experiments of
Galvani and he categorized the different metals in an electro-
chemical series.

Hans Christean Oersted (1777–1851) discovered the magnetic
field of an electric current. Andre Marie Ampere (1775–1836)
coined the terms “electrical current” and electrical voltage. By
many detailed experiments, he established modern electrody-
namics.

Michael Faraday (1791–1867) performed basic experiments on
the relations between electric currents and magnetic fields (Fara-
day’s induction law). He prepared the foundations for the
development of alternating currents and their applications.

James Clerk Maxwell (1831–1879) (Fig. 1.7) summarized all
known results of former experiments by a few basic equations
(Maxwell’s equations) and gave them a general mathematical
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formulation, which represents the basis for electrodynamics and
optics. Their solutions are electro-magnetic waves, which found
a brilliant confirmation by the experiments of Heinrich Hertz

(1857–1894), who showed that these waves were transversal and
propagate in space with the velocity of light.

1.3.3 Modern Physics

At the end of the 19th century, all problems in physics seemed
to be solved and many physicists believed, that a closed theory
describing all known facts could be realized in the near future.

This optimistic opinion changed, however, in a dramatic way,
induced by the following experimental findings.

The Michelson experiment (see Sect. 3.4) showed without
doubt, that the velocity of light is constant, independent of
the direction or the velocity of the observer. This result was
in sharp contrast to former concepts and induced Albert Ein-
stein (Fig. 1.8) to formulate his theory of special relativity
(see Sect. 3.6).
Experimentally found deviations from the theoretically ex-
pected spectral intensity distribution of the thermal radiation
of hot bodies, as calculated by Stephan Boltzmann and Wil-

helm Wien, could not be explained by classical physics. This

Figure 1.8 Albert Einstein. With kind permission of the “Deutsches Museum
München”

Figure 1.9 Max Planck. With kind permission of the “Deutsches Museum
München”

discrepancy led Max Planck (1858–1947) (Fig. 1.9) to the
conclusion of quantized energy of radiation fields. This bold
assumption, which could perfectly reproduce the experimen-
tal results, represented the beginning of quantum theory that
was later on imbedded in a concise mathematical framework
by Erwin Schrödinger (1887–1961) and Werner Heisenberg

(1901–1976) (see Vol. 3). The concept of energy quanta
was further supported experimentally by the photoelectric
effect, which was quantitatively explained by Einstein, who
received the Nobel Prize for his theory of the photo-effect
(not for his theory of relativity!).
New experimental techniques allowed investigating the
structure of atoms and molecules. The light emitted from
atoms or molecules could be sent through a spectrograph
and showed discrete lines, indicating that it has been emit-
ted from discrete energy levels. Through the development of
spectral analysis by Gustav Robert Kirchhoff (1824–1887)
and Robert Bunsen (1811–1899) it was found that atoms of
a specific element emitted spectral lines with wavelengths
characteristic for this element. The results could not be ex-
plained by classical physics but needed quantum theory for
their interpretation. Today the physics of atomic electron
shells and their energy levels can be completely described
by a closed theory called quantum-electrodynamics.



1.4 The Present Conception of Our World 11

C
h

a
p

te
r

1

This illustrates that always in the history of natural sciences new
experimental results forced physicists to revise former concepts
and to formulate new theories which, however, should include
proved earlier results. In most cases the old theories were not
completely abandoned but their validity range was restricted and
more precisely characterized. For example the classical physics
is perfectly correct for the description of the motion of macro-
scopic bodies or for many applications in daily life, while for
the description of the micro-world of atoms and molecules it
may completely fail and quantum theory is necessary.

The properties of atomic nuclei could be only investigated af-
ter appropriate detectors had been developed. Nuclear physics
is therefore a rather new field where most of the results were
obtained in the 20th century. The substructure of atomic nuclei
and the physics of elementary particles could start after parti-
cle accelerators could be operated and many results in this field
have been achieved only recently.

This short historical review should illustrate that many concepts
which today are taken for granted, are not as old and have been
accepted only after erroneous ideas and a long way of successive
corrections, guided by new experiments. It is worthwhile for
every physicist to look into some original papers and follow the
gradual improvements of concepts and representation of results.

More extensive literature about the historical development of
physics and about bibliographies of physicists can be found in
the references [1.6–1.14c].

1.4 The Present Conception of Our
World

As the result of all experimental and theoretical investigations
our present model of the material world has been established
(Fig. 1.10). In this introduction, we will give only a short sum-
mary. The subject will be discussed more thoroughly in Vol. 3
and 4 of this textbook series.

Macroscopic bodies

(solid, liquid and gaseous)

Nuclei and electrons

Quarks, gluons

Atoms Molecules

Atomic nuclei

(protons + neutrons)

Figure 1.10 Build up of our material world (H. J. Jodl [1.14b])

Elementary Particles

The entire material world known up to now is composed of
only a few different particles. The three most important are the
electron (e�), the proton (pC) and the neutron (n). All other
elementary particles (muons, �-Mesons, Kaons, �-particles
etc.) exist after their production only a very short time (10�6–
10�15 s). They convert either spontaneously or by collisions into
other particles which finally decay into pC, e�, neutrinos or pho-
tons h ��. Although neutrinos are stable particles they show such
a small interaction with matter that they are difficult to detect
and they therefore play no role in daily life.

Recent experiments and theoretical consideration have shown,
that the particles pC, n, mesons and hyperons, which had been
regarded as elementary, show a substructure (see Vol. 4), Ac-
cording to our present understanding they consists of smaller
particles, called “quarks”, which occur in 6 different species.

All building blocks of matter can be divided into two groups:

1. the quarks, which build up the heavy particles (baryons),
such as proton, neutron, mesons and hyperons

2. the light particles (leptons) electron, myon and neutrino.

Each of these two groups consists of three families of elemen-
tary particles, which are listed in Tab. 1.1. For each of these
particles there exists an anti-particle with equal mass but oppo-
site charge. For instance the anti-particle of the electron e� is the
positron eC, the proton pC has as anti-particle the anti-proton p�

and the anti-neutron has the same mass and the charge zero as
the neutron.

According to present theories the interaction between the parti-
cles can be described by the exchange of “interaction particles”,
which are called the quanta of the interaction field. For exam-
ple the quanta of the electromagnetic field, which determine the
interaction between charged particles are the photons h � �.

The quanta of the strong interaction between nucleons are called
gluons. The gravitons are the quanta of the gravitational field.
Our present knowledge is that there exist only four different
kinds of interaction, which are summarized in Tab. 1.2.

An essential goal of present research is to reduce the four types
of interaction to one common force (grand unification). The re-
duction of the manifold of different particles to two groups of
elementary particles was in a certain sense successful, because
the classification into two groups with three families in each
group gives a rather simple arrangement. However, the num-
ber of 24 different particles together with their antiparticles is
still large and adding the 15 interaction quanta the total number
of elementary particles is 39. Whether the “grand unification”
will allow a further reduction or a simpler ordering scheme is
still an open question.

This field of research is very interesting because it ventures to
the limit where matter and energy might become indistinguish-
able. It is also closely related to processes occurring at the very
beginning of our universe where elementary particles and their
interaction played a major role in the extremely hot fireball dur-
ing the first seconds of the big bang.
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Table 1.1 The three families of Leptons and Quarks

Leptons

Name Symbol Mass MeV=c2 Charge

Electron e� 0.51 �1

Electron neutrino āe < 10�5 0

Myon �� �105:66 �1

Myon neutrino ā� < 10�4 0

Tau-lepton £ 1840 �1

Tau-neutrino ā� < 10�4 0

Quarks

Name Symbol Mass MeV=c2 Charge

Up u � 300 2=3

Down d � 306 �1=3

Charm c � 1200 2=3

Strange s � 450 �1=3

Top t 1:7 � 105 2=3

Bottom b � 4300 �1=3

Table 1.2 The four types of interaction between particles (known up to now)
and their field quanta. There are 8 gluons, 2 charged (WC and W�) W bosons,
1 neutral boson (Z0) and probably only 1 graviton with spin I D 2

Interaction Field quantum Rest mass MeV=c2

Strong interaction Gluons 0
El. magn. interaction Photons 0
Weak interaction W bosons 81;000

Z bosons 91;010
Gravitational interaction Gravitons 0

Atomic Nuclei

Protons and Neutrons can combine to larger systems, the atomic
nuclei. The smallest nucleus is the proton as the nucleus of the
hydrogen atom. The largest naturally existing nucleus is that of
the uranium atom with 92 protons and 146 neutrons. Its diam-
eter is about 10�14 m. Besides the nuclei found in nature there
are many artificially produced nuclei, which are however, gen-
erally not stable but decay into other stable nuclei. Nearly every
atom has many isotopes with nuclei differing in the number of
neutrons. Meanwhile there is a wealth of information about the
strong attractive forces, which keep the protons and neutrons
together in spite of the repulse electrostatic force between the
positively charged protons.

Atoms

Atomic nuclei together with electrons can form stable atoms,
where for neutral atoms the number of electrons equals the num-
ber of protons. The smallest atom is the hydrogen atom, which
consists of one proton and one electron. The diameter of atoms
ranges from 5 � 10�11 m to 5 � 10�10 m and is about 10;000 times
larger than that of the nuclei, although the mass of the nuclei
is about 2000 times larger than that of the electrons. The elec-
trons form a cloud of negative charge around the nucleus. The
electro-magnetic interaction between electrons and protons has
been investigated in detail and there is a closed theory, called
quantum electrodynamics, which describes all observed phe-
nomena of atomic physics very well.

The chemical properties of the different atoms are completely
determined by the structure of the atomic electron shell. This is
illustrated by the periodic system of the elements (Mendelejew
1869, Meyer 1870), where the elements are arranged in rows
and columns and ordered according to the number of electrons
of the atoms (see Vol. 3). With each new row a new electron

shell starts. In each column the number of electrons in the outer
shell (valence electrons) is equal and the chemical properties of
the elements in the same column are similar. A real understand-
ing of the periodic table could only be reached 60 years later
after the quantum theory of atomic structure had been devel-
oped.

Molecules

Two or more atoms can combine to form a molecule, where the
atoms are held together by electro-magnetic forces. The mag-
nitude of the binding energy depends mainly on the electron
density between the nuclei. Biological molecules such as pro-
teins or DNA-molecules may consist of several thousand atoms
and have diameters up to 0:1 µm, which is about 1000 times
larger than the hydrogen atom. Molecules form the basis of
all chemical and biological substances. The properties of these
substances depend on the kind and structure of the molecules,
such as the geometrical arrangement of the atoms forming the
molecule.

Macroscopic Structures, Liquids and Solid Substances

Under appropriate conditions many equal or different atoms
can form large macroscopic bodies which can contain a huge
number of atoms. Depending on temperature they can exist in
the solid or liquid phase. The interaction between the atoms
is in principle known (el. magn. forces) but difficult to calcu-
late because of the enormous number of participating atoms
(1022=cm3). Most theoretical treatments therefore use statistical
methods. Up to now many characteristics of macroscopic bodies
can be calculated and understood from their atomic structure but
a general exact theory of liquids and solids, which can explain
also finer details, is still not available. Therefore approximations
are used where each approximate model can describe special
features quite well but others less satisfactorily. Examples are
the band structure model, which can explain the electrical con-
ductivity but not as well the elastic properties.

Structure and Dynamics of Our Universe

In our universe all of the constituents discussed so far are
present.

Free elementary particles (pC, n, e�, photons h�, also short
lived mesons in the cosmic radiation, in the atmosphere of
stars and in hot interstellar clouds, in the hot fireball during
some minutes after the big bang, of our universe).
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Figure 1.11 Family tree of physics (with kind permission of Dr. H. J. Jodl) [1.14b]

Atomic nuclei in the inner part of stars, in neutron stars and
in hot gas clouds.

Atoms in atmospheres of planets and stars and in the inter-
stellar medium.

Molecules in molecular clouds, in comet tails, in interstellar
space, in the atmospheres of cold stars and of planets.

Solid and liquid macroscopic bodies (in planets and moons,
in meteorites).

For the understanding of the origin and the development of
our universe the interactions between these particles have to be
known. Although in the early stage of the universe and later on
in the interior of stars all four kinds of interaction played a role,
gravitation is by far the most important force between celestial
bodies such as stars, planets and moons.

Systematic Hierarchy of Physics

The systematic building up principle from small to larger enti-
ties discussed so far would suggest to start studies of physics

with elementary particles and then proceed gradually to larger
systems. However, since the theoretical treatment of elementary
particles and nuclear physics is rather difficult, it is advisable
from the didactical point of view to go the opposite way, We
therefore start with classical physics of macroscopic bodies and
proceed then to smaller structures like atoms, molecules, nuclei
and elementary particles (see Fig. 1.11). The Physics courses
therefore start with classical mechanics and thermodynamics
(Vol. 1), continue with electrodynamics and optics (Vol. 2) and
then with a basic knowledge of quantum mechanics treat the
physics of atoms, molecules, solid and liquid states (Vol. 3) to
arrive finally at nuclear physics, elementary particle physics and
astrophysics (Vol. 4).

There exist a large number of good books on the subjects treated
in this section [1.14b–1.19], which discuss in more detail the
questions raised here. In order to gain a deeper understanding
of how all this knowledge has been achieved, a more thorough
study of basic physics, its fundamental laws and the experimen-
tal techniques, which test the developed theories, is necessary.
The present textbook will help students with such studies.
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1.5 Relations Between Physics and
Other Sciences

Since physics deals with the basic elements of our material
world it represents in principle the foundations of every natural
science. However, until a few decades ago the scientific meth-
ods in chemistry, biology and medicine were more empirically
oriented. Because of the complex nature of the objects studied
in these sciences it was not possible to start the investigations
“ab initio” in order to understand the atomic structure of large
complex molecules and biological cells to say nothing of the
human body and its complex reactions as the research object in
medicine. Therefore, in former years a more phenomenological
method was preferred.

With refined experimental techniques developed in recent years
(electron microscopy, (Fig. 1.12), tunnel microscopy, x-ray
structural analysis, neutron diffraction, nuclear magnetic res-
onance tomography and laser spectroscopy) in many cases it
became possible to uncover the atomic structure even of com-
plex molecules such as the DNA (Fig. 1.13). Here physics was
helpful in a twofold way: First of all physicists developed, of-
ten in cooperation with engineers, the experimental equipment
and secondly it provided the theoretical understanding for the
atomic basis of the research objects. Therefore the differences
in the research methods become less and less important and the
cooperation between researchers of different fields is rapidly in-
creasing, indicated by the growing number of interdisciplinary
research projects. For example the essential question of the
relation between molecular structure and chemical binding is
attacked in common efforts by experimental chemists, theoret-
ical quantum chemists and physicists. Overstated one may say
that chemistry is applied quantum theory and therefore a branch
of physics.

Due to the complex diagnostic techniques in medicine the coop-
eration between physicists and medical doctors has enormously
increased as will be outlined in the next section.

Figure 1.12 Scavenger Cells visualized with an electron microscope

Bases

Phosphates

Nucleotid-

sequence

Strand I

Strand II

Figure 1.13 Double Helix of DNA (deoxyribonucleic acid)

1.5.1 Biophysics and Medical Physics

Meanwhile biophysics has developed to an independent branch
of physics. Some of the many research projects are the physi-
cal processes in living cells, e. g. the energy balance during cell
processes, the ion transport through cell membranes, the pene-
tration of bacteria and viruses into cells, the different steps of
photosynthesis or the visual process. The very sensitive detec-
tion techniques for the detection of single molecules, developed
in physics laboratories, allow the tracing of single laser excited
molecules on their way from outside a cell through membrane
channels into the cell interior. In particular the realization of
ultra short laser pulses down to below a femtosecond (10�15 s)
opens for the first time the possibility to view ultrafast processes
such as molecular isomerisation.

In recent years, medical physics has been established at many
universities and research institutes. The development of new
diagnostic techniques and therapy methods are based on exper-
imental techniques invented and optimized in physics laborato-
ries and on new insights about the interaction between radiation
and tissue. Examples of such new methods are ultrasonic di-
agnostics with improved spatial resolution, nuclear magnetic
resonance tomography, thermography or laser-induced cell flu-
orescence. One specific example is the localization of brain
tumours by optical coherence tomography and methods for
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their operation with laser techniques, which are investigated
in cooperation between laser physicists and neurosurgeons.
[1.20a–1.23b]

1.5.2 Astrophysics

For ages the closest relation with physics had the astronomy,
which tried to determine the positions of stars, the movement
of planets and the prediction of eclipses. Modern astronomy
goes far beyond this type of problems and looks for informa-
tion about the composition of stars, conditions for their birth
and the different stages of their development. It turns out that
nearly all branches of physics are necessary in order to solve
these problems. Therefore, this part of modern astronomy is
called astrophysics. The cooperation with physicists who mea-
sure in the laboratory processes relevant for the understanding
of star atmospheres and the energy production in the interior of
stars has greatly improved our knowledge in astrophysics (see
Vol. 4). One of the results is for example, that in the universe
the same elements are present as can be found on earth and that
the same physical laws are valid as known from experiments
on earth. The correct interpretation of many astrophysical ob-
servations could only be given, because laboratory experiments
had been performed which could give unambiguous decisions
between several possible explanations of astrophysical phenom-
ena.

The following facts have contributed essentially to the impres-
sive progress in astronomy.

The development of new large telescopes in the optical,
near infrared and radio region, of satellites and space probes
(Fig. 1.14) and sensitive detectors.
New and deeper knowledge in the fields of atomic, nu-
clear and elementary particle physics, in plasma physics and
magneto-hydrodynamics.
Faster computers for the calculation of more complex mod-
els for the present composition, the birth, evolution and final
stages of stars [1.24a–1.24c].

1.5.3 Geophysics and Meteorology

Although geophysics and meteorology have developed into
autonomous disciplines, they are completely based on funda-
mental physical laws. In particular, in meteorology it is evident
how important fundamental physical processes are, such as the
interaction of light with atoms and molecules, collisions be-
tween electrons, ions, atoms and molecules or light scattering
by aerosols and dust particles. Without the detailed understand-
ing of these and other processes the complex preconditions for
the local and global climate could not be calculated within a cli-
mate model. However, it turns out, that in spite of the knowledge
of these basic processes it is often not possible to give a reliable
long term weather forecast, because already tiny changes of the
present status of the atmosphere could result in huge changes of

Figure 1.14 Last inspection of the Giotto-space probe before its journey to the
comet Halley (with kind permission of the European Space Agency ESA)

its future development. The system shows a chaotic behaviour.
This astonishing feature has lead to a new branch of physical and
mathematical sciences, called chaos research (see Chap. 12).
[1.25–1.30b]

1.5.4 Physics and Technology

The application of physical research has pushed the develop-
ment of our industrial society in a way, which can hardly be
overestimated. Examples are the inventions of the steam en-
gine, the electromotor, research on semiconductors, which form
the basis of computers, information technology, such as the
telephone and extremely fast optical communication over glass
fibres, Lasers and their various applications, precision measur-
ing techniques down into the nanometre range. This connection
between applied physics and technology has received new im-
petus through the urgent problems of energy crisis, lack of raw
materials, global warming, which have to be solved within a
limited time. Urgent problems are, for example

the development of new energy sources, such as nuclear
fusion, which demands a profound knowledge of plasma
physics under extreme conditions,
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Figure 1.15 Hexagonal structure of a graphite surface, visualized by a tunnel
microscope (M. Müller, H. Öchsner, TU Kaiserslautern)

the optimization of wind converters,
the development of solar cells with sufficiently high efficien-
cies,
increasing the conversion efficiency from heat into electrical
energy,
improving the transport efficiency of energy.

Further examples are the development of reliable electrically
driven cars with new designs of batteries, hydrogen technology,
magnetically levitated railways (trans-rapid), development of “-
clean air cars” etc.

Of particular interest for many branches of industry is the re-
search on new materials such as met-glasses (amorphous metals
with particular properties such as high tensile strength), com-
pound materials or amorphous semiconductors, which have
found meanwhile numerous applications. Surface science
(Fig. 1.15) has given the basic understanding for corrosion pro-
cesses, catalytic effects and the properties of thin films in optics
and for the creation of very hard surfaces of tools, which de-
crease the wear and tear of such tools considerably.

One should keep in mind that for densely populated countries
such as Germany, which do not have sufficient raw material at
their disposal, technological innovations and inventions of new
products as well as progress in environmental protection are es-
sential for a better and safe life in the future. Here physicists
encounter great challenges and new ideas and a critical but prag-
matic way of thinking are demanded, characteristics, which are
trained during the physics education. [1.30a–1.30b]

1.5.5 Physics and Philosophy

Since its beginning in the Greek period, physics always had a
close relation to philosophy (see Sect. 1.3). Already for the
Greek philosophers recognition in natural sciences gave new

directions to the philosophical way of thinking. The essential
goal of modern physics is the understanding and the detailed de-
scription of our world and the reduction of many observations
to a few general laws. The essential point is, that the human
consciousness and the attitude against the human surroundings
are changed by this new knowledge. The fascinating question,
how cognitive faculty is received by communication with other
thinking persons and whether the structured mind which allows
to process this information to form a unique world view, had
been already formed prenatal had been extensively discussed
by the great philosopher Immanuel Kant (1724–1804) in his fa-
mous book “Kritik der reinen Vernunft”.

Nowadays biophysicists and neurologists try to understand by
well aimed experiments the connection between specified parts
of the brain and the storage of information which we receive
from outside. All these progress in natural sciences has influ-
enced philosophical theories. Although the approach to this
subject is often different for philosophers and scientists, an in-
tense discussion between the representatives of the two camps
could remove many misunderstandings and could lead to a more
extensive view of our world. If such discussions should be fruit-
ful, both sides have to learn more about the way of thinking and
arguing of the other side. The study of physics and its way of
arguing can shape the way we are looking onto our world and
represents an essential part of our culture.

An important aspect of such cooperation is the critical evalu-
ation of ethical questions related to scientific research, which
have found more and more concern in our society. Since the de-
velopments in physics and their applications, essentially change
our daily life, physicists have to think about the consequences of
their scientific results. The research itself is unbiased and value-
free. Ethical problems arise when the results of basic research
are applied in such a way, that society might be damaged by
such applications. For instance, the discovery of nuclear fission
by Otto Hahn could be used for peaceful applications as well as
to build an atomic bomb; lasers can be used for health treatment
in medicine or as laser weapons.

People who demand social relevance for every research projects
forget that this is a question of possible applications, which can
often not be predicted from basic research. There are many
examples where basic research was done without any ideas of
possible benefit for the public, such as the beginning of solid
state physics, low temperature physics, semiconductor research.
[1.31–1.35]

1.6 The Basic Units in Physics,
Their Standards and
Measuring Techniques

Since any objective description of nature demands quantitative
relations between measurements of different objects, which can
be expressed by numbers, one has to define units for the results
of measurements. This means that every numerical result of a
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measurement must be expressed in multiples of such units. One
needs a scale that can be compared with the measured quantity.

To measure always means to compare two quantities!

There are several possibilities for choosing units. For the length
unit for instance one may use units which are given by nature
such as foot or the distance between two atoms in a crystal;
for the time unit the time interval between two successive heart
beats, or the time between two culminations of the sun. A bet-
ter choice of physical units is to use arbitrary but suitable units,
which are conveniently adapted to daily life. Such units have
to be defined by standards with which they can be always com-
pared (calibration).

Every standard has to meet the following demands:

It must be possible to compare with sufficient accuracy
the quantity in question with the standard.
The standard must be reproducible with the demanded
accuracy.
The production and the safekeeping of the standard and
the comparison with measurable elements must be pos-
sible with justifiable expenditure.

According to these demands ulna, foot or heartbeat period are
not good standards, because they are dependent on the person
who measures them. They may change with time and are not
general constants.

The quality of a measurement is judged according to the
following aspects:

How reliable is the measurement?
Here the experimental apparatus plays an important
role, the interpretation of the experimental results by
the observer; his ability and experience (see for in-
stance temperature estimations guided by our senses
(Chap. 10 or “optical illusions” Vol. 2)).
How accurate is the measurement, i.e. how large is the
maximum possible error of the result?
Are measurements performed under different experi-
mental conditions reproducible?

Of course, each physical quantity cannot be measured more
accurately than the accuracy of the normal’s measurement.
Therefore such a normal should be chosen which is so accu-
rately defined that it does not represent a limitation for the
accuracy of the measurement. For many measurements, a stop-
watch or a micrometre-screw might not be accurately enough
and should not be used as normal.

The question is now how many basic units are necessary to de-
scribe all physical quantities. Since all physical processes go

off in space and time one certainly needs basic units for length
and time. We will see that all physical quantities can be derived
from three basic units for length, time and mass. One would
therefore need in principle only these three basic units. It turns
out, however, that it is useful to add four more basic units for
the temperature, the mole fraction of material, for the strength
of an electric current and the luminous intensity of radiation
sources, because many derived units can be simpler expressed
when these four additional units are included [1.37–1.39].

In the following we will discuss the different basic units and
also give a short outline of the historical development of this
units and their increasing accuracy. This shall illustrate how
new measurement techniques have improved the quality of a
measurement and asked for new and better standards that could
meet the demands for higher accuracy and reproducibility.

1.6.1 Length Units

As length unit the metre (m) was chosen in 1875 which was
originally meant as the 1=10;000;000 fraction of the equator
quadrant (¼ of the earth circumference). The prototype as the
primary standard was kept in Paris. In order to maintain this
normal as reproducible as possible, it was realized by the dis-
tance between two markers on a platinum-iridium rod with a
low thermal expansion coefficient. The rod was kept in a box at
0 ıC. More precise later measurements of the earth circumfer-
ence showed that the metre deviated from the original definition
by about 0.02%. The comparison of length standards with this
prototype was only possible with a relative uncertainty of 10�6.
This means that it is only possible to detect a deviation of larger
than 1=1000 mm. This does not meet modern requirements of
accuracy.

Therefore in 1960 a new length standard was defined by the
wavelength � of the orange fluorescence line of a discharge
lamp filled with the krypton isotope 86 (Fig. 1.16), where
the conditions in the krypton lamp (pressure, discharge cur-
rent and temperature) were fixed. The metre was defined as
1;650;763:73 � �. The wavelength � can be measured with an
uncertainty of 10�8, which is 100 times more accurate than the
comparison with the original metre standard in Paris.

With increasing accuracy of measurements this standard was
again abandoned and a new standard was chosen, which was
based on a completely new definition. Since time can be mea-
sured much more accurate than length, the length standard was

Figure 1.16 The old definition of the length unit, based on the wavelength of
a Krypton line (valid from 1960–1983)
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Table 1.3 Range of actual lengths in our world

Object Dimension/m

Radius of the electron � 10�18

Radius of the proton 10�15

Distance between atoms in solids 10�10

Thickness of the skin of a soap bubble 10�7

Mean distance between air molecules at 105 Pa 10�6

Radius of the earth 6 � 106

Distance earth–moon 4 � 108

Distance earth–sun 1:5 � 1011

Diameter of the solar system 1014

Distance to the nearest star 4 � 1016

Diameter of our galaxy 3 � 1020

Extension of the universe 3 � 1025

related to time measurements via the velocity c of light. The
weighted average of the most precise measurement of the speed
of light in vacuum is now defined as

c D 299;792;458 m=s :

This means that the speed of light is no longer a result of new
measurements but is defined as a fixed value.

Definition

The length unit 1 m is now fixed by the following defini-
tion:

One metre is the length of the path that is travelled by
light in vacuum during the time interval 1=299;792;485 s.

From the relation c D � �� between speed of light c, frequency �
and wavelength � of an electro-magnetic wave the wavelength �
of any spectral line can now be determined from the frequency
� (which can be measured with a much higher accuracy than
wavelengths) and the defined speed of light (see Sect. 1.6.2 and
1.6.4).

The order of magnitude of length-scales in physics covers the
enormous range from 10�18 m for the size of elementary parti-
cles to 10C25 m for the radius of the present universe (Tab. 1.3).
It is therefore appropriate to give metre scales in powers of ten.
For specific powers a shorthand notation is used, e. g. 10�6 m D
1 micrometer (µm); 103 m D 1 kilometer (km). These shorthand
notations are listed in Tab. 1.4.

In astronomy, the distances are very large. Therefore, appro-
priate units are used. The astronomical unit AU is the mean
distance between earth and sun. The new and more exact def-
inition, adopted 1976 by the International Astronomical Union
is the following:

Table 1.4 Labels for different orders of magnitude of length units

1 attometer D 1 am D 10�18 m

1 femtometer D 1 fm D 10�15 m

1 picometer D 1 pm D 10�12 m

1 nanometer D 1 nm D 10�9 m

1 micrometer D 1 µm D 10�6 m

1 millimeter D 1 mm D 10�3 m

1 centimeter D 1 cm D 10�2 m

1 dezimeter D 1 dm D 10�1 m

1 kilometer D 1 km D 103 m
Often used units in
– atomic and nuclear physics

1 fermi D 1 femtometer D 10�15 m

1 X-unit D 1 XU D 1:00202 � 10�13 m

1 Ångström D 1 Å D 10�10 m
– astronomy:
1 astronomical unit D 1 AU

� mean distance earth–sun � 1:496 � 1011 m

1 light year D 1 ly D 9:5 � 1015 m

1 parsec D 1 pc D 3 � 1016 m D 3:2 ly

Definition

1 AU is the distance to the centre of the sun, which a hypo-
thetical body with negligible mass would have, if it moves
on a circle around the sun in 365.256 8983 days.

One light-year (1 ly) is the distance, which light travels in 1 year.
An object has a distance of one parsec (1 pc) if the astronomical
unit seen from this object appears under an angle of one second
of arc (100) (Fig. 1.17). The distance d of a star, where this angle
is ˛ is d D 1 AU= tan˛. With tan 100 D 4:85 � 10�6 we obtain

1 pc D 2:06 � 105 AU D 3:2 ly :

Note: In some countries other non-metric length units are
in use: 1 inch D 2.54 cm D 0.0245 m and 1 yard (1 yd) D
0.9144 m, 1 mile (1 mi) D 1609.344 m.

However, in this textbook only SI units are used.

Figure 1.17 Definition of the astronomical units 1 AU and 1 pc
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Figure 1.18 Caliper gauge with vernier scale

1.6.2 Measuring Techniques for Lengths

For measuring of lengths in daily life secondary standards are
used which are not as accurate as the primary standards but are
more readily usable. The accuracy of such standards is adapted
to the application for which they are constructed. One sim-
ple example is the sliding vernier (Fig. 1.18). Its accuracy is
based on the nonius principle. The upper scale is divided into
millimetres, the lower scale has 10 scale divisions for 9 mm,
which means that every division is 9=10 mm. For the situation
in Fig. 1.18b the division mark 9 mm on the upper scale coin-
cides with the division mark 4 on the lower scale. The distance
D between the two fold limbs is then

D D .9 � 4 � 9=10/mm D 5:4 mm :

The uncertainty of the measurement is about 0.1 mm.

Higher accuracies can be reached with a micrometer screw
(Fig. 1.19) where a full turn of the micrometer drum corre-
sponds to a translation of 1 mm. If the scale on the drum is
divided into 100 divisions each division mark corresponds to

Anvil Measuring arbor

Bow

Reference line
Measuring
surfaces

of carbide
Arbor fixing screw

Scale cylinder
Coarse

setting

Figure 1.19 Micrometer caliper

0.01 mm. The shackle is thermally isolated in order to minimize
thermal expansion, With differential micrometer screws, which
have two coaxial drums turning into opposite directions, where
one drum produces a translation of 1 mm per turn, the other of
�0:9 mm in the backward direction, one full turn corresponds
now to 0.1 mm. This allows an accuracy of 0:001 mm D 1 µm.
This is about the accuracy limit of mechanical devices.

More accurate length measurements are based on optical tech-
niques. For distances below 1 m interferometric methods are
preferable (see Vol. 2) where lasers (see Vol. 3) are used as
light sources. Here distances are compared to the wavelength
of the light source. Modern interferometers reach accuracies
of �=100. With a wavelength of � D 500 nm an accuracy of
5 nm D 5 � 10�9 m can be achieved.

Larger distances can be measured via the travel time of a light
pulse. For instance the distance of the retro-reflector which the
astronauts have positioned on the moon, can be measured within
a few cm using laser pulses with 10�12 s pulse width (LIDAR
technique see Fig. 1.20). Measuring this distance from differ-
ent locations on earth at different times even allows to detect
continental drifts of the earth crust plates [1.41–1.42].

For the exact location of planes, ships or land vehicles the global
positioning system GPS has been developed. Its principle is
illustrated by Fig. 1.21.

The navigator, who wants to determine his position, measures
simultaneously the phases of radio signals emitted from at least
four different satellites. The radio signals on frequencies at
1575 MHz and 1227 MHz are modulated. This allows to de-
termine unambiguously the distances di from the receiver to the
satellites Si from the measured phase differences �i. From these
four distances di the position (x; y; z) of the receiver can be deter-
mined with an uncertainty of only a few cm if relativistic effects
(see Sect. 3.6) are taken into account! In order to achieve this
accuracy, the frequencies of the radio signals must be kept sta-
ble within 10�10. This can be realized with atomic clocks which
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Figure 1.20 Measurement of the distance Earth–Moon with the LIDAR-
technique

reach a relative stability ��=� D 10�14. The exact position of
the satellites is fixed by radio signals from several stations and
receivers at selected precisely known locations on earth. The
European Space Agency has launched several satellites for the
realization of a new GPS System called Galileo with predicted
higher accuracy.

Also a more precise value of the astronomical unit 1 AU can be
obtained by measuring the travel time of short light pulses. A
radar pulse is sent from the earth to Venus where it is reflected.
The time delay between sending and receiving time is measured
for a time of closest approach of Venus to Earth. which gives

Figure 1.21 Principle of the Global Positioning System GPS

a precise value of the distance between Earth and Venus. From
the angle between the radii Earth–Sun and Earth–Venus at the
time of the measurement the distance Earth–Sun can be obtained
by trigonometric relation in the triangle Earth–Venus–Sun and
using Kepler’s 3rd law (see Sect. 2.9).

As the result of many different measurements, which became
more and more accurate, the Astronomical Union has recom-
mended in 2012 to take the average of these measurements as
the definition of the Astronomical Unit:

1 AUdef D 149;597;870;700 m :

1.6.3 Time-Units

The unit of time is the second (1 s). Its initial definition was

1 s D 1=.60 � 60 � 24/ d D .1=86;400/ of a solar day ;

where a solar day is defined as the time between two lower cul-
minations of the sun i.e. between two successive midnights.

When the earth rotates around its axis with the angular velocity
! one sun day is d D .2�C˛/=!;where the additional angle ˛
is due to the revolution of the earth around the sun. On the other
hand a sidereal day (D time between two culminations of a
star) is d D 2�=! and therefore shorter by 1=365 d (Fig. 1.22a).
365.25 solar days correspond to 366.25 sidereal days.

Later it was found that the period of a solar day showed peri-
odic and erratic changes, which can amount up to 30 s per day.
(Fig. 1.22b) These changes are caused by the following effects:

A yearly period due to the non-uniform movement of the
earth on an ellipse around the sun (Fig. 1.23 and Sect. 2.9).
The velocity v2 around the perihelion (minimum distance
between earth and sun) is larger than v1 around the aphe-
lion (maximum distance). Since the revolution of the earth
around the sun and the rotation of the earth around its axis
have the same rotation sense, a solar day is longer around the
perihelion than around the aphelion.
A half-year period due to the inclination of the earth axis
against the ecliptic (the plane of the earth’s movement around
the sun), which causes a variation of the sun culmination at a
point P on earth (Fig. 1.24).

In order to eliminate the effect of such changes on the definition
of the second, a fictive “mean sun” is defined which (seen by an
observer on earth) moves with uniform velocity (D yearly aver-
age) along the earth equator. The time between two successive
culmination points of this fictive sun defines the mean solar day
hdi. This gives the definition of the mean solar second

1 s D .1=86;400/hdi :
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Figure 1.22 a Difference between solar day and sidereal day, b Difference between the true and the mean solar time

Figure 1.23 Changing velocity of the earth during one revolution on its ellip-
tical path around the sun

Figure 1.24 Variation of the point of culmination of the sun with a half-year
period, due to the inclination of the earth axis

With the development of modern precise quartz clocks it was
found that even this mean solar day showed periodic and irreg-
ular variations due to changes of the earth’s moment of inertia
caused by melting of glaciers at the poles, falling of leaves in
autumn, volcano eruptions, earth quakes, and turbulent move-
ments of material in the liquid part of the earth’s interior. The
deviations from the mean sun day amount up to 10 milliseconds
per day and cause a relative deviation of 10�2=85;400 � 10�7

per day. Therefore the astronomers no longer use the earth rota-
tion as a clock but rather the time span of the tropical year. This
is the revolution period of the earth around the sun between two
successive spring equinoxes, which are the intersection point of
the ecliptic and the equator plane vertical to the earth’s axis
(Fig. 1.25). This tropical year equals the annual period of the
mean sun on its way along the earth’s equator.

Figure 1.25 Definition of the tropical year

Since even the tropical year suffers in the course of time small
variations, the astronomers introduced 1960 the ephemeris

time, based on tables which give the calculated positions of sun,
moon and planets at a given time [1.24d].

The astronomical definition of the second is now 1 s D
period of the tropical year 1900 divided by 31;556;925:9747.

For daily use, quartz clocks are more convenient and therefore
more useful secondary time standards. Their essential part is a
quartz rod of definitive length, which is excited by an external
electric high frequency field to length oscillations (see Vol. 2).
If the exciting frequency is tuned to the resonance frequency of
the quartz rod, the oscillation amplitude reaches a maximum.
By appropriate feedback the system becomes a stable self sus-
taining oscillator which does not need an external frequency
source. The relative frequency deviation of good quartz clocks
are��=� � 10�9. The second is then counted by the number of
oscillation periods per time. Of course, the quartz clocks need a
calibration with primary time standards.

The subdivisions of the second and longer time periods are listed
in Tab. 1.5.

A better time standard which is still valid up to now is the cae-

sium atomic clock. Its principle is illustrated in Fig. 1.26.
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Figure 1.26 Caesium atomic clock. a Experimental arrangement; b level scheme of the hyperfine-transition; c detector signal as a function of the microwave
frequency; d Definition of the second as a multiple of the oscillation period T

Table 1.5 Labelling of subdivisions of the second or of longer time intervalls

Subdivisions of second

1 millisecond D 1 ms D 10�3 s

1 mikrosecond D 1 µs D 10�6 s

1 nanosecond D 1 ns D 10�9 s

1 picosecond D 1 ps D 10�12 s

1 femtosecond D 1 fs D 10�15 s

1 attosecond D 1 as D 10�18 s
Larger time units

1 hour D 1 h D 3:6 � 103 s

1 day D 1 d D 8:64 � 104 s

1 year D 1 a D 3:15 � 107 s

Cs-atoms evaporate through a hole in an oven into a vacuum
tank. Several apertures collimate the evaporating atoms and
form a collimated atomic beam which passes through a mi-
crowave resonator M placed between two six pole magnets A
and B. They act on atoms with a magnetic moment like an op-
tical lens and focus the atomic beam onto the detector D where
the focusing characteristics depend on the hyperfine structure
level of the atoms. If the resonator is excited on the frequency
� D .E2 � E1/=h which corresponds to the transition between
the two hyperfine levels F D 3 ! F D 4 in the S1=2 electronic
ground state of Cs (Fig. 1.26b) (see Vol. 3), the atoms can ab-
sorb the microwave radiation and are transferred from the F D 3
level into the F D 4 level. In this level they have a different
magnetic moment and are therefore defocused in the magnetic
field B. They cannot reach the detector D and the measured sig-
nal decreases (Fig. 1.26c). When the microwave frequency �

is tuned over the resonance at � D 9;192;631;770 s�1 a dip
in the signal S.�/ appears which is transferred by a feedback
circuit to the microwave generator and keeps its frequency ex-
actly on resonance. The frequency stability of the microwave
generator is now determined by the atomic transition frequency
and serves as a very stable clock, called atomic clock. The
achieved frequency stability of modern versions of the Cs-clock
is ��=� D 10�15.

The new definition of the second, which is still valid today,
is: 1 s is the time interval of 9,192,631,770.0 oscillation
periods of the Cs clock.

Table 1.6 gives a survey about the time scales of some natural
phenomena, which extend from 10�23 to 10C18 s.

The new definition of the second shows that the time measure-
ment is put down to frequency measurements. The frequency of
any oscillating system is the number of oscillation periods per
second. Its metric unit is [1 s�1] or [1 hertz D 1 Hz]. Larger
units are

1 kilohertz D 1 kHz D 103 s�1,
1 Megahertz D 1 MHz D 106 s�1,
1 Gigahertz D 1 GHz D 109 s�1,
1 Terahertz D 1 THz D 1012 s�1.

Smaller units are

1 Millihertz D 1 mHz D 10�3 s�1,
1 Microhertz D 1 µHz D 10�6 s�1.
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Table 1.6 Time scales occuring in natural phenomena

Natural phenomenon Period=s

Transit time of light over the diameter of an atomic nucleus 10�23

Revolution period of electron in the hydrogen atom 10�15

Transit time of electrons in old tv-tubes 10�7

Oszillation period of tuning fork 2:5 � 10�3

Time for light propagation sun–earth 5 � 102

1 day 8:64 � 104

1 year 3:15 � 107

Time since the first appearance of homo sapiens 2 � 1013

Rotational period of our galaxy 1016

Age of our earth 1:6 � 1017

Age of universe 5 � 1017

1.6.4 How to measure Times

For the measurement of times periodic processes are used with
periods as stable as possible. The number of periods between
two events gives the time interval between these events if the
time of the period is known. Devices that measure times are
called clocks.

Quartz Clocks: Modern precision clocks are quartz clocks with
a frequency instability ��=� � 10�9. This means that they
deviate per day from the exact time by less than 10�4 s.

Atomic Clocks: For higher accuracy demands atomic clocks are
used, which are available as portable clocks (Rubidium clocks
with ��=� � 10�11) or as a larger apparatus fixed in the lab
e. g. the Cs clock with ��=� � 10�15.

As world-standard Cs-clocks are used at several locations (Na-
tional Institute of Standards and Technology NIST in Boul-
der, Colorado, Physikalisch-Technische Bundesanstalt PTB in
Braunschweig, Germany and the National Physics Laboratory
in Teddington, England) which are connected and synchronized
by radio signals. Two of such clocks differ in 1000 years by less
than 1 millisecond [1.44a–1.44b].

Frequency stabilized Lasers: A helium-Neon laser with a fre-
quency of 1014 Hz can be locked to a vibrational transition of the
CH4 molecule and reaches a stability of 0.1 Hz, which means a
relative stability ��=� � 10�15 comparable to the best atomic
clocks [1.45]. With the recently developed optical frequency
comb (see Vol. 3) stabilities ��=� � 10�16 could be achieved
[1.46]. It is therefore expected, that the Cs-standard will soon
be replaced by stabilized lasers as frequency and time standards.

The time resolution of the human eye is about 1/20 s. For the
time resolution of faster periodic events stroboscopes can be
used. These are pulsed light sources with a tuneable repetition
frequency. If the periodic events are illuminated by the light
source, a steady picture is seen, as soon as the repetition fre-
quency equals the event frequency. If the two frequencies differ
the appearance of the event is changing in time the faster the
more the two frequencies differ.

Periodic and non-periodic fast events can be observed with high
speed cameras, which reach a time resolution down to 10�8 s;
with special streak cameras even 10�12 s can be achieved. Faster

events, such as the rearrangement of the atomic electron shell
after excitation with fast light pulses or the dissociation of
molecules which occur within femtoseconds (1fs D 10�15 s) can
be time- resolved with special correlation techniques using ul-
trafast laser pulses with durations down to 10�16 s.

1.6.5 Mass Units and Their Measurement

As the third basic unit the mass unit is chosen. The mass of
a body has always a fixed value, even if its form and size is
altered or when the aggregation state (solid, liquid or gaseous)
changes as long as no material is lost during the changes. The
mass is the cause of the gravitational force and for the inertia of
a body, which means that all bodies on earth have a weight and
if they are moving, magnitude and direction of their velocity is
not changing as long as no external force acts on the body (see
Sect. 2.6).

As mass unit the kilogram is defined as the mass of a
platinum-iridium cylinder, which is kept as the primary
mass standard in Paris. (Fig. 1.27)

Initially the kilogram should have been the mass of a cubic
decimetre of water at 4 ıC (at 4 ıC water has its maximum den-
sity). Later more precise measurements showed, however, that
the mass of 1 dm3 water was smaller by 2:5 � 10�5 kg D 0:025 g
than the primary standard.

In Tab. 1.7 the subunits of the kilogram, which are used today,
are listed. For illustration in Tab. 1.8 some examples of masses
which exist in nature are presented.

Figure 1.27 Standard kilogram of platin-iridium, kept under vacuum in Paris
(https://en.wikipedia.org/wiki/Kilogram#International_prototype_kilogram)

https://en.wikipedia.org/wiki/Kilogram#International_prototype_kilogram
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Table 1.7 Subdivisions and multiples of the kilogram

Unit Denotion Mass/kg

1 gram D 1 g 10�3

1 milligram D 1 mg 10�6

1 microgram D 1 µg 10�9

1 nanogram D 1 ng 10�12

1 pikogram D 1 pg 10�15

1 ton 103

1 megaton 109

1 atomic mass unit D 1 AMU 1:6605402 � 10�27

Table 1.8 The masses of particles and bodies found in nature

Body Mass/kg

Electron 9:1 � 10�31

Proton 1:7 � 10�27

Uranium nucleus 4 � 10�25

Protein molecule 10�22

Bacterium 10�11

Fly 10�3

Man 102

Earth 6 � 1024

Sun 2 � 1030

Galaxy � 1042

Masses can be measured either by their inertia or they weight,
since both properties are proportional to their mass and un-
ambiguously defined (see Sect. 2.6). The inertia of a mass is
measured by the oscillation period of a spring pendulum. Here
the mass measurement is reduced to a time measurement.

The weight of a mass is determined by comparison with a mass
normal on a spring balance or a beam balance and therefore re-
duced to a length measurement. Today balances are available
with a lower detection limit of at least 10�10 kg (magnetic bal-
ance, electromagnetic balance, quartz fibre microbalance).

Note: In some countries non-metrical units are used: 1 pound D
0:453 kg.

1.6.6 Molar Quantity Unit

As already mentioned in the beginning of this section in ad-
dition to the three basic units for length, time and mass four
further units (molar quantity, temperature, electric current and
luminous intensity of a radiation source) are introduced because
of pragmatic reasons. Strictly speaking they are not real basic
units because they can be expressed by the three basic units.

Definition

The unit of molar quantity is the mol, which is defined as
follows:

1 mol is the amount of a substance that consist of as many
particles as the number N of atoms in 0.012 kg of the car-
bon nuclide 12C.

These particles can be atoms, molecules, ions or electrons.
The number N of particles per mol with the numerical value
N D 6:02 � 1023=mol, is called Avogadro’s number (Amedeo

Avogadro 1776–1856).

Example

1 mol helium has a mass of 0:004 kg, 1 mol copper cor-
responds to 0:064 kg, one mol hydrogen gas H2 has the
mass 2 � 0:001 kg D 0:002 kg. J

1.6.7 Temperature Unit

The unit of the temperature is 1 Kelvin (1 K). This unit can be
defined by the thermo-dynamic temperature scale and can be re-
duced to the kinetic energy of the molecules (see Sect. 10.1.4).
Because of principal considerations and also measuring tech-
niques, which are explained in Chap. 10, the following defini-
tion was chosen:

1 Kelvin is the fraction (1=273:16) of the thermodynamic
temperature of the triple point of water.

The triple point is that temperature where all three phases of
water (ice, liquid water and water vapour) can simultaneously
exist (Fig. 1.28).

There are plans for a new definition of 1 K which is independent
on the choice of a special material (here water). It reads:

1 Kelvin is the temperature change which corresponds to
a change �.kT/ D 1:3806505 � 10�23 Joule of the ther-
mal energy kT , where k D 13;806;505 � 10�23 J=K is the
Boltzmann constant.

Figure 1.28 Phase diagram and triple point of water



1.6 The Basic Units in Physics, Their Standards and Measuring Techniques 25

C
h

a
p

te
r

1

New very accurate measurements of the Boltzmann constant
allow a much better definition of the temperature T with an un-
certainty of �T=T � 8 � 10�6.

1.6.8 Unit of the Electric Current

The unit of the electric current is 1 Ampere (1 A) (named after
Andre-Marie Ampère 1775–1836). It is defined as follows:

1 Ampere corresponds to a constant electric current
through two straight parallel infinitely long wires with
a distance of 1 m which experience a mutual force of
2 � 10�7 Newton per m wire length (Fig. 1.29).

The definition of the electric current unit is therefore based on
the measurement of the mechanical quantities length and force
(see Vol. 2)

1.6.9 Unit of Luminous Intensity

The luminous intensity of a radiation source is the radiation
power emitted into the solid angle 1 Sterad D 1=.4�/. It could
be defined in Watt=Sterad, which gives the radiation power in-
dependent of the observing human eye. However, in order to
characterize the visual impression of the light intensity of a light
source, the spectral characteristics of the radiation must be taken
into account, because the sensitivity of the human eye depends
on the wavelength. Therefore the definition of the light inten-
sity is adapted to the spectral sensitivity maximum of the eye at
a wavelength � D 555 nm. The luminosity unit is called 1 can-

dela (1 cd).

1 cd is the radiation power of (1/6839)W/Sterad emitted
by a source at the frequency 540 THz (� D 555 nm) into
a selected direction.

Note: 1. The luminous intensity of a source can differ for dif-
ferent directions.

2. The definition of the candela is related to the radi-
ation power in Watt=Sterad, which shows that the
candela is not a basic unit.

Figure 1.29 Illustration how the unit of the electric current is defined

1.6.10 Unit of Angle

Plane angles are generally measured in degrees of arc. The full
angle of a circle is 360ı. The subdivisions are minutes of arc
(1ı D 600) and seconds of arc (10 D 6000 ! 1ı D 360000). Often
it is convenient to use dimensionless units by reducing angle
measurements to length measurements of the arc length L of a
circle, which corresponds to the angle ˛ (Fig. 1.30).

The circular measure (radian) of the angle ˛ is defined as the
ratio L=R of circular arc L and radius R of the circle. The unit
of this dimensionless quantity is 1 radian (rad) which is realized
for L D R. Since the total circumference of the circle is 2�R the
angle ˛ D 360ı in the unit degrees corresponds to ˛ D 2� in
the units radian D rad.

The conversion from radians to degrees is

1 rad D 360ı

2�
D 57:296ı D 57ı1704500 :

While the plane angle ˛ D L=R cuts the arc with length L out
of a circle with radius R the solid angle ˝ D A=R2 is the angel
of a cone that cuts the area A D ˝R2 out of a full sphere with
area 4�R2 and radius R (Fig. 1.31). The dimensionless unit of
the solid angle is 1 steradian (1 sr) for which A D R2.

Definition

1 sr is the solid angle of a cone which cuts an area A D
1 m2 out of the unit sphere with R D 1 m.

Since the total surface of a sphere is 4�R2 the total solid angle
around the centre of the sphere with A D 4�R2 is ˝ D 4� .

The three planes xy, xz, yz through the positive coordinate axis
Cx, Cy, Cz cut a sphere around the origin (0; 0; 0) into 8 oc-
tands, The solid angle of one octand is

˝ D 1

8
� 4� D 1

2
� sr :

Note: The numerical values of the units for the basic physi-
cal quantities discussed so far have been often adapted by the

International Comission for Weights and Measures (CIPM for

Figure 1.30 To the definition of the radian ˛ D L=R
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Figure 1.31 a To the definition of the solid angle ˝ ; b Illuration of the solid
angel element d˝ D dA=r2

the French comite international des poids et measures) in or-
der to take into account the results of new and more accurate
measurements. At present, considerations are made to reduce
all quantities to combinations of fundamental constants in order
to give them more accurate and time independent values. This
has been realized up to now only for the length unit which is
defined through the fixed speed of light and the frequency of the
Cs-clock. This might be soon generalized to all physical units
in order to get a system of time-independent values for the units
which do not need to be corrected in future times.

One example is the mass unit. There are many efforts in several
laboratories to create a better and more accurately defined mass
normal. One realistic proposal is a large silicon single crystal
in form of a polished sphere, where the atomic distances in the
crystal have been precisely measured with X-ray interferometry.
This allows the determination of the total number of atoms in the
crystal and the mass of the crystal can be related to the mass of
a silicon atom and is therefore reduced to atomic mass units and
the Avogadro constant [1.48a]. Although it has been shown, that
such a mass normal would be more accurate (�m=m � 10�8)
and would represent a durable mass standard, it has not yet been
internationally acknowledged.

Similar considerations are discussed for the temperature unit
1 K which might be reduced to the Boltzmann constant k (see
above).

1.7 Systems of Units

As has been discussed in Sect. 1.6 the three basic quantities and
their units in physics are

length with the unit 1 Meter D 1 m
time with the unit 1 second D 1 s
mass with the unit 1 kilogram D 1 kg

with four additional quantities

molar quantity with the unit 1 mole D 1 mol
temperature with the unit 1 Kelvin D 1 K
electric current with the unit 1 Ampere D 1 A
radiation luminosity with the unit 1 candela D 1 cd

where these four quantities can be reduced in principle to the
three basic quantities and are therefore no real basic quantities.

All other quantities in physics can be expressed by these 3 basic
quantities with the additional 4 quantities for convenient use.
This will be shown for each derived quantity in this textbook
when the corresponding quantity is introduced.

Each physical quantity is defined by its unit and its numerical
value. For instance the speed of light is c D 2:9979 � 108 m/s or
the earth acceleration g D 9:81 m/s2 etc.

In a physical equation all summands must have the same
units.

These units or the products of units are called the dimension of
a quantity. The check, whether all summands in a equation have
the same dimension is called dimensional analysis. It is a very
helpful tool to avoid errors in conversion of different systems of
units.

Each physical quantity can be expressed in different units, for
example, times in seconds, minutes or hours. The numerical
value differs for the different units. For instance the velocity
v D 10 m/s equals v D 36 km/h. In order to avoid such numeri-
cal conversions one can use a definite fixed system of units.

If the three basic units are chosen as

1 m for the length unit,
1 s for the time unit,
1 kg for the mass unit.

The system is called the mks-system. If the unit Ampere for the
electric current is added, the system is called the mksA.-system,
often named the SI-System after the French nomenclature Sys-

tem International d’Unites. It has the very useful advantage that
for the conversion from mechanical into electrical and magnetic
units all numerical conversion factors have the value 1. All basic
units and also the units derived from them are called SI units.

In theoretical physics often the cgs system is used, where the
basic units are 1 cm (instead of 1 m), 1 Gramm (instead of 1 kg)
and only the time unit is 1 s as in the SI-system. According to
international agreements from 1972 only the SI-system should
be used. In this textbook exclusively SI units are used.

For a more detailed representation of the subject the reader is
referred to the literature [1.37–1.39,1.50].
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11.8 Accuracy and Precision;
Measurement Uncertainties and
Errors

Every measurement has in different ways uncertainties which
can be minimized by a reliable measuring equipment and care-
ful observation of the measurement. The most important part
in the measuring process is an experienced and critical experi-
menter, who can judge about the reliability of his results. The
final results of an experiment must be given with error limits
which show the accuracy of the results. There are two different
kinds of possible errors: Systematic and statistical errors.

1.8.1 Systematic Errors

Most systematic errors are caused by the measuring equipment,
as for instance a wrong calibration of an instrument, ignor-
ing of external conditions which can influence the results of
the measurement (temperature change for length measurements,
lengthening of the string of a threat pendulum by the pendulum
weight or air pressure changes for measurements of optical path
length). Recognizing such systematic errors and their elimina-
tion for precision measurements is often difficult and demands
the experience and care of the experimental physicist. Often the
influence of systematic errors on the experimental results is un-
derestimated. This is illustrated by Fig. 1.32, which shows the
results of measurements of the electron mass during the time
from 1950 up to today with the error bars given by the authors.
Due to improved experimental techniques the error bars become
smaller and smaller in the course of time. The dashed line gives
the value that is now accepted. One can clearly see, that all the
error bars given by the authors are too small because the sys-
tematic error is much larger.

The electron mass can be only determined by a combination
of different quantities. For example, from the deflection of
electrons in magnetic fields one can only get the ratio e=m of
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Figure 1.32 Historical values of measurements of the electron mass in units of 10�31 kg, demonstrating the underestimation of measuring uncertainties. The
relative deviations�m/m from the best value accepted today are plotted in units of 10�6 (ppm D parts per million)

electron charge e and electron mass m. According to the CO-
DATA publication of NIST the value accepted today is me D
9:10938291.40/ � 10�31 kg, where the number in brackets gives
the uncertainty of the last two digits.

1.8.2 Statistical Errors, Distribution of
Experimental Values, Mean Values

Even if systematic errors have been completely eliminated, dif-
ferent measurements of the same quantity (for instance the
falling time of a steel ball from the same heights) do not give
the same results. The reasons are inaccurate reading of meters,
fluctuations of the measured quantity, noise of the detection sys-
tem etc. The measured results show a distribution around a mean
value. The width of this distribution is a measure of the quality
of the results. It is illustrative to plot this distribution of mea-
sured values xi in a histogram (Fig. 1.33), where the area of the
rectangles represents the number ni�x D �ni of measurements
which have given a value within the interval from xi ��x=2 to
xi ��x=2.

The mean value x of n measurements is chosen in such a way
that the sum of the squares of the deviations (x � xi) from the

Figure 1.33 Typical histogram of the statistical distribution of measured values
xi around the mean value x
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mean value become a minimum, i.e.

S D
nX

iD1

.x � xi/
2 D Minimum : (1.1)

For the derivative follows:

dS

dx
D 2 �

nX

iD1

.x � xi/ D 0 :

This gives for the mean value

x D 1

n

nX

iD1

xi ; (1.2)

the arithmetic mean value of all measured results. BecauseP
.x � xi/ D 0 the arithmetic mean is at the centre of the sym-

metric distribution, which means that the sum of the positive
deviations equals the sum of the negative ones. Contrary to this
symmetric distribution of values with statistical errors the sys-
tematic errors cause deviations in one direction.

The question is now how much the mean value deviates from the
true, but generally unknown value of the measured quantity. We
will now prove, that after elimination of all systematic errors
the arithmetic mean converges against the true value xw with
increasing number of measurements. This means:

xw D lim
n!1

1

n

nX

iD1

xi : (1.3)

Since it is impossible to perform infinitely many measure-
ments the true value generally remains unknown!

We define the absolute error of the measured value xi as the
difference

ei D xw � xi (1.4)

and the absolute error of the mean value as the difference

" D xw � x : (1.5)

The mean values of these errors are

hei D .1=n/
X

eiI he2i D .1=n/
X

e2
i :

From (1.2) it follows

" D xw � x D 1

n

nX

iD1

.xw � xi/ D 1

n

nX

iD1

ei : (1.6)

The absolute error " of the arithmetic mean x equals the
arithmetic mean he1i D 1

n

P
ei of the absolute errors of

the individual results xi.

From (1.6) we obtain by squaring

"2 D 1

n2

�X

i

ei

�2

D 1

n2

X

i

e2
i

C 1

n2

X

i

X

j¤i

eiej � 1

n2

X

i

e2
i :

(1.7)

The double sum converges for n ! 1 towards zero because for
any fixed number j it follows from (1.3)

lim
n!1

1

n

nX

iD1

ei D xw � xw D 0 :

Since for statistical errors the deviations ei and ej are uncorre-
lated.

The quantity

� D
p

he2i D

sP
.xw � xi/

2

n
(1.8a)

is named standard deviation or root mean square devi-

ation. It equals the square root of the squared arithmetic
mean he2i

he2i D 1

n

X
e2

i D 1

n

nX

iD1

.xw � xi/
2 (1.8b)

The smaller quantity

�m D
p
"2 D

r
1

n2

X
e2

i

D 1

n

sX

i

.xw � xi/
2

(1.8c)

is the mean error of the arithmetic mean x.

From (1.8a)–(1.8c) we can conclude

�m D �p
n
: (1.9)

The mean error of the arithmetic mean equals the mean
error of the individual measurements divided by the square
root of the total number n of measurements.
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In the next section it will be shown that � approaches a constant
value for n ! 1. Equation 1.9 then implies, that lim �m D 0,
which means that the arithmetic mean x approaches the true
value xw for a sufficiently large number n of measurements.

1.8.3 Variance and its Measure

Since for a finite number n of measurements the true value of
the measured quantity is generally unknown, also the absolute
errors and the mean errors � and �m cannot be directly deter-
mined. We will now show how � and �m are related to quantities
that can be directly measured.

We introduce instead of the unknown deviations ei D xw � xi

of the measured values from the true value xw the deviations
vi D x � xi from the mean value, which contrary to ei are known
values.

According to (1.4) and (1.5) we can express the vi by the quan-
tities ei and ".

vi D x � xi

D xw � xi � .xw � x/

D ei � " :
(1.10)

The mean square deviation of the measured values xi from the
arithmetic mean x can then be written as

s2 D 1

n

X

i

v2
i D 1

n

X

i

.ei � "/2

D 1

n

"X

i

e2
i �

 
2"

n

X

i

ei

!
C "2

#

D 1

n

X

i

�
e2

i � "2
�
;

(1.11)

because according to (1.6) " D .1=n/
P

ei. The comparison
with (1.8a,b,c) yields the relation

s2 D 1

n

X

i

�
e2

i � "2
�

D �2 � �2
m : (1.12)

From the equations (1.8b), (1.9) and (1.12) it follows

s2 D
�

1

n
� 1

n2

�X

i

.xw � xi/
2

D n � 1

n2

X

i

.xw � xi/
2

D .n � 1/�2
m D n � 1

n
�2 :

For the standard deviation of the individual results xi we
obtain the mean deviation of the arithmetic mean value

�2 D n

n � 1
s2 ! � D

sP
.x � xi/

2

n � 1
; (1.13)

which can be obtained from measurements and is there-
fore a known quantity.

For the mean deviation of the arithmetic mean (also called
standard deviation of the arithmetic means) we get

�2
m D 1

n � 1
s2 ! �m D

sP
.x � xi/

2

n.n � 1/
: (1.14)

Example

For 10 measurements of the period of a pendulum the fol-
lowing values have been obtained:
T1 D 1:04 s; T2 D 1:01 s; T3 D 1:03 s; T4 D 0:99 s;
T5 D 0:98 s; T6 D 1:00 s; T7 D 1:01 s; T8 D 0:97 s;
T9 D 0:99 s; T10 D 0:98 s.

The arithmetic mean is T D 1:00 s. The deviations xi D
Ti � T of the values Ti from the mean T are
x1 D 0:04 s; x2 D 0:01 s; x3 D 0:03 s; x4 D �0:01 s;
x5 D �0:02 s; x6 D 0:00 s; x7 D 0:01 s; x8 D �0:03 s;
x9 D �0:01 s; x10 D �0:02 s. This gives

†.Ti � hTi/2 D †x2
i D 46 � 10�4 s2 :

The standard deviation is then

� D
p
.46 � 10�4=9/ D 2:26 � 10�2 s

and the standard deviation of the arithmetic mean is

�m D
p
.46 � 10�4=90/ D 0:715 � 10�2 s : J

1.8.4 Error Distribution Law

In the histogram of Fig. 1.33 the resolution of the different mea-
sured values depends on the width �xi of the rectangles. All
values within the interval�xi are not distinguished and regarded
to be equal. If �ni is the number of measured values within the
interval�xi and k the total number of intervals�xi we can write
Eq. 1.2 also as

x D 1

n

kX

iD1

�ni � xi with
kX

iD1

�ni D n : (1.15)

The histogram in Fig. 1.33 can be obtained in a normalized form
when we plot the fraction ni=n (ni D �ni=�xi and n D P

�ni/,
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Figure 1.34 Normalized statistical distribution and distribution function of
measured data

which represents the number of measured values within the unit
interval �xi D 1 (Fig. 1.34). The heights of the rectangles
give these fractions. The quantity �ni=n can be regarded as
the probability that the measured values fall within the interval
�xi. With increasing number n of measurements we can de-
crease the width of the intervals �xi which means that the total
number k of all intervals increases. For �xi ! 0 the number
k ! 1 and �ni ! 0 but the fraction �ni=�xi approaches a
finite value. The sum n D P

ni�xi which represents the total
number of measured values, stays of course constant. The dis-
continuous distribution of the histogram in Fig. 1.34 converges
against a continuous function f .x/, which is shown in Fig. 1.34
as black dashed curve. The function f .x/ is defined as

f .x/ D .1=n/ lim.�ni=�xi/ D .1=n/ � dn=dx I (1.16a)

f .x/ is the continuous distribution function. The product f .x/ �
dx gives the probability to find a measured value in the interval
from x � dx=2 to x C dx=2. From (1.16a) and

P
ni�xi follows

the normalization
Z

f .x/dx D lim
h
.1=n/

X
ni�xi

i
D 1 : (1.16b)

This means that the probability to find a measured value some-
where within the total x-range must be of course 100% D 1,
because it has to be somewhere in this range.

The integral
R

f .x/dx represents the area under the black curve
which is normalised to 1 because the ordinate in Fig. 1.34 is
given as the normalized quantity ni=n.

The standard deviation � is a measure for the width of the dis-
tribution f .x/. Its square �2 gives, as for the discontinuous
distribution (1.8b), the mean square deviation of the arithmetic
mean from the true value xw, which determines the centre of the
symmetric curve f .x/

�2 D he2i D
C1Z

�1

.xw � x/2 f .x/ dx : (1.17)

The quantity �2 is named the variance.

If only statistical errors contribute, the normalized distribution
of the measured values can be described by the normalized
Gauss-function

f .x/ D 1p
2��2

e�.x�xw/
2=2�2

; (1.18)

Figure 1.35 Error distribution function (Gaussian distribution) around the true
value xw for different standard deviations �

which has its maximum at x D xw. The inflection points of
the curve f .x/ are at x D xw ˙ � . The full width between the
inflection points where f .x/ D f .xw/=e is therefore 2� . The dis-
tribution f .x/ is symmetrical around its centre at xw (Fig. 1.35).
For infinitely many measurements the arithmetic mean x be-
comes xw.

When the standard deviation has been determined from n mea-
surements, the probability P.�/ that further measured values fall
within the interval x D xw ˙� and are therefore within the stan-
dard deviation from the true value. It is given by the integral

P .jxw � xij � �/ D
xwC�Z

xw��

f .x/dx : (1.19)

When inserting (1.18) the integral can be solved and yields the
numerical values

P .ei � �/ D 0:683 .68% confidence range/

P .ei � 2�/ D 0:954 .95% confidence range/

P .ei � 3�/ D 0:997 .99:7% confidence range/ :

The results of a measurement are correctly given with the 68%
confidence range as

xw D x ˙ � : (1.20)

This means that the true value falls with a probability of 68%
within the uncertainty range from x � � to x C � around the
arithmetic mean, if all systematic errors has been eliminated.
The relative accuracy of a measured value xw is generally given
as �=x.

Cautious researchers extend the uncertainty range to ˙3� and
can than state that their published result lies with the probability
of 99.7%, which means nearly with certainty within the given
limits around the arithmetic mean. The result is then given as

xw D x ˙ 3� D x ˙ 3 �

sP
.xi � x/2

n � 1
: (1.21)



1.8 Accuracy and Precision; Measurement Uncertainties and Errors 31

C
h

a
p

te
r

1

Since the arithmetic mean is more accurate than the individual
measurements often the uncertainty range is given as the stan-
dard deviation �m of the arithmetic mean which is smaller than
� . The result is then given as

xw D x ˙ �m D x ˙
sP

.xi � x/2

n.n � 1/
: (1.22)

Example

For our example of the measurements of the periods of a
pendulum the result would be given with the 69% confi-
dence range as

Tw D hTi ˙ � D .1:000 ˙ 0:025/ s

and for the 99.7% confidence range as

Tw D hTi ˙ 3� D .1:000 ˙ 0:075/ s :

For the standard deviation �m of the arithmetic mean one
gets

Tw D hTi ˙ �m D .1:0000 ˙ 0:0079/ s :

The relative uncertainty of the true value is then with a
probability of 68%

�Tw=Tw D 7:9 � 10�3 D 0:79% : J

Remark. For statistical processes where the measured quan-
tity is an integer number xi D ni that statistically fluctuates (for
instance the number of electrons emitted per sec by a hot cath-
ode, or the number of decaying radioactive nuclei per sec) one
obtains instead of the Gaussian function (1.18) a Poisson distri-
bution

f .x/ D xx

xŠ
e�x x D integer number : (1.23)

1.8.5 Error Propagation

If a quantity y D f .x/ depends in some way on the measured
quantity x, the uncertainty dy is related to dx by (Fig. 1.36)

dy D df .x/

dx
dx : (1.24)

When the quantity x has been measured n-times its standard de-
viation is

�x D
sP

.Nx � xi/2

n � 1
;

Figure 1.36 Error propagation for a function y D f .x/

which results in the standard deviation of the yi values

�y D
sP

.Ny � yi/2

n � 1
D

sP�
f .Nx/ � f .xi/

�2

n � 1

D
�

df .x/

dx

�

Nx
� �x :

(1.25)

Often the value of a quantity, which is not directly accessible to
measurements, and its uncertainty should be known. Examples
are the density of a body which can be calculated as the ratio of
mass and volume of the body, or the acceleration of a moving
mass which is determined from measurements of distances and
times.

The question is now: What is the accuracy of a quantity f .x; y/,
if the uncertainties of the measurements of x and y are known.

Assume one has made n measurements of the quantity x from
which the uncertainty range of the arithmetic mean is deter-
mined as

x ˙ �x D x ˙
sP

v2
i

n � 1
with vi D xi � x

and m measurements of the quantity y with the mean

y ˙ �y D y ˙
sP

u2
k

m � 1
with uk D yk � y ;

one obtains the quantity

fik D f .xi; yk/ D f .x C vi; y C uk/

D f .x; y/C vi

�
@f .x; y/

@x

�

0

C uk

�
@f .x; y/

@y

�

0
C : : :

(1.26)

by a Taylor expansion, where .@f =@x/0 is the partial derivative
for the values x; y. Often the deviations vi and uk are so small
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that the higher powers in the expansion can be neglected. The
mean value of all fik is then

f D 1

n � m

X

i

X

k

fik D 1

n � m

nX

iD1

mX

kD1

�
f .x; y/

C vi

@f

@x
.x; y/C uk

@f

@y
.x; y/

�

D 1

n � m

�
n � m � f .x; y/C m

X

i

vi

@f

@x

C n
X

k

uk

@f

@y

�
D f .x; y/ ;

(1.27)

because @f =@xjx;y is constant and
P
vi D P

ui D 0.

The arithmetic mean f of all values fik equals the value
f .x; y/ of the function f .x; y/ for the arithmetic means x; y
of the measured values xiyk.

In books about error calculus [1.53a–1.55] it is shown, that the
standard deviation of the derived quantity f is related to the stan-
dard deviations �x and �y of the measured values xi, yk by

�f D
s

�2
x

�
@f

@x

�2

C �2
y

�
@f

@y

�2

: (1.28)

The mean uncertainties �x and �y propagate to the uncertainty
�f of the derived mean f .x; y/. The 68% confidence range of the
true value fw.x; y/ D f .xw; yw/ is then

fw.x; y/ D f .x; y/˙
s

�2
x

�
@f

@x

�2

C �2
y

�
@f

@y

�2

: (1.29)

With the inequality
p

a2 C b2 � jaj C jbj the uncertainty (1.29)
can be also written as

�f D fw � f .x; y/ �
ˇ̌
ˇ̌�x

@f

@x

ˇ̌
ˇ̌C

ˇ̌
ˇ̌�y

@f

@y

ˇ̌
ˇ̌ : (1.30)

Examples

1. The length L is divided into two sections x and y with
L D x C y which are separately measured (Fig. 1.37a).
The final result of L is then, according to (1.27) and
(1.28) with @f =@x D @f =@y D 1,

L D x C y ˙
q
�2

x C �2
y :

This means: the mean error of a sum (or a difference)
equals the square root of the sum of squared errors of
the measured values.

Figure 1.37 a Mean error of a length measurement, that consists of
two individual measurements x and y ; b Error propagation for the mea-
surement of an area x � y

2. The area A D x � y of a rectangle shall be determined
for the measured side lengths x and y. The true values
of x and y are

xw D x ˙ �x ; yw D y ˙ �y ;

@A

@x
.x; y/ D y ;

@A

@y
.x; y/ D x ;

A D x � y ˙ �xy

D x � y ˙
q�

y � �x

�2 C
�
x � �y

�2
:

The relative error of the product A D x � y

�xy

A
D
s�

�x

x

�2

C
�
�y

y

�2

equals the Pythagorean sum of the relative errors of
the two factors x and y.

3.

y D ln x I x D x ˙ �x ) @y

@x
D 1=x

y D ln x ˙ �x=x

The mean absolute error of the logarithm of a mea-
sured value x equals the relative error of x. J

1.8.6 Equalization Calculus

Up to now we have discussed the case, where the same quantity
has been measured several times and how the arithmetic means
of the different measured values and its uncertainty can be ob-
tained. Often the problem arises that a quantity y.x/, which
depends on another quantity x shall be determined for differ-
ent values of x and the question is how accurate the function
y.x/ can be determined if the measured values of x have a given
uncertainty.

Example

1. A falling mass passes during the time t the distance
d D 1

2 g � t2 and its velocity v D g � t is measured at
different times ti.
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12. The change of the length �L D L0 � ˛ � �T , a long
rod with length L and thermal expansion coefficient ˛
experiences for a temperature change�T , is measured
at different temperatures T . J

In our first example distances and velocities are measured at dif-
ferent times. The goal of these measurements is the accurate
determination of the earth acceleration g. In the second exam-
ple length changes and temperatures are measured in order to
obtain the thermal expansion coefficient ˛ as a function of tem-
perature T .

The relation between y.x/ and x can be linear (e. g. v D g � t),
but may be also a nonlinear function (e. g. a quadratic or an ex-
ponential function). Here wee will restrict the discussion to the
simplest case of linear functions, in order to illustrate the appli-
cation of equalization calculus to practical problems.

This will become clear with the following example.

Example

We consider the linear function

y D ax C b

and will answer the question, how accurate the constants a

and b can be determined when y is calculated for different
measured values of x.

Solution

It is often the case that the values x can be measured more
accurately than y. For instance for the free fall of a mass
the times can be measured with electronic clocks much
more accurately than distances or velocities. In such cases
the errors of x can be neglected compared to the uncer-
tainties of y. This reduces the problem to the situation
depicted in Fig. 1.38. The measured values y.x/ are given
by points and the standard deviation by the length of the
error bars.

The question is now, how it is possible to fit a straight line
to the experimental points in such a way that the uncer-
tainties of the constants a and b become a minimum.

Figure 1.38 Equalization calculus for the function y D ax C b , when
the values xi can be measured much more accurate than the values yi

This is the case if the sum of the squared deviations
reaches a minimum.

S D
X

.yi � axi � b/2 (1.31)

Differentiating (1.31) gives the two equations. (Note that
a and b are here the variables!)

@S

@a
D �2

nX

iD1

xi.yi � axi � b/ D 0 (1.32a)

@S

@b
D �2

nX

iD1

.yi � axi � b/ D 0 : (1.32b)

Rearranging yields

a �
X

i

x2
i C b �

X

i

xi D
X

i

xiyi (1.33a)

a �
X

i

xi C b � n D
X

i

yi : (1.33b)

The last equation is matched exactly for the point .x; y/
with the mean coordinates

x D .1=n/
X

xiI y D .1=n/
X

yi :

Inserting these values into (1.33b) yields after division by
the number n the relation

a � x C b D y :

This proves that the point .x; y/ fulfils the equation and is
located in Fig. 1.38 exactly on the red straight line.

From (1.33b) one obtains for the slope b of the straight
line

b D y � ax D .1=n/
X

yi � .a=n/
X

xi :

Inserting this into (1.33a) gives with the abbreviation

d D n �
X

x2
i �

�X
xi

�2
;

the constants a and b as

a D n
�P

xiyi

� � �P
xi

��P
yi

�

d
; (1.34a)

b D
�P

x2
i

��P
yi

�
�
�P

xi

��P
xiyi

�

d
: (1.34b)

The true constants a and b give the true values yw.xi/ D
axi C b within the 68% confidence limits yi ˙ �y around
the mean value y. From (1.18) and (1.19) one obtains the
probability P.yi/ to find the measured value yi

P.yi/ / 1

�y

e�.yi�axi�b/2=2�2
y : (1.35)
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The uncertainties of the constants a and b can be obtained
according to the error propagation rules. The results are

�2
a D

n � �2
y

d
; �2

b D
�2

y

P
x2

i

d
: (1.36)

The full width between the two points P.yw/=e is �y �
p

2.

For more information on error analysis and regression fits
see [1.53a–1.56]. J

Summary

Physics deals with the basic building blocks of our world,
their mutual interactions and the synthesis of material from
these basic particles.
The gain of knowledge is pushed by specific experiments.
Their results serve for the development of a general theory
of nature and to confirm or contradict existing theories.
Experimental physics started in the 16th century
(e. g. Galilei, Kepler) and led to a more and more refined
and extensive theory, which is, however, even today not yet
complete and consistent.
All physical quantities can be reduced to three basic quanti-
ties of length, time and mass with the basic units 1 m, 1 s, and
1 kg. For practical reasons four more basic quantities are in-
troduced for molar mass (1 mol), temperature (1 K), electric
current (1 A) and the luminous power (1 cd).
The system of units which uses these basic 3 C 4 units is
called SI-system with the units 1 m, 1 s, 1 kg, 1 mol, 1 K, 1 A
and 1 cd.
Every measurement means the comparison of the measured
quantity with a normal (standard).
The length standard is the distance which light travels in
vacuum within a time interval of .1=299;792;458/ s. The
time standard is the transition frequency between two hy-
perfine levels in the Cs atom measured with the caesium
atomic clock. The present mass standard is the mass of the
platinum-iridium kilogram, kept in Paris.
Each measurement has uncertainties. One distinguishes be-
tween systematic errors and statistical errors. The mean
value of n independent measurements with measured values
xi is chosen as the arithmetic mean

x D 1

n

nX

iD1

xi ;

which meets the minimum condition

nX

iD1

.x � xi/
2 D minimum:

If all systematic errors could be eliminated the distribution
of the measured values x show the statistical Gaussian distri-
bution

f .x/ / e�.x�xw/
2=2�2

;

about the most probable value, which equals the true value
xw. The half-with of the distribution between the points
f .xw/=e D f .xw ˙ �/ is � �

p
2 Within the range x D xw ˙ �

fall 68% of all measured values. The standard deviation � of
individual measurements is

� D
sP

.x � xi/2

n � 1
;

the standard deviation of the arithmetic means is

�m D
sP

.x � xi/2

n.n � 1/
:

The true value xw lies with the probability of 68% within the
interval xw ˙ � , with a probability of 99.7% in the interval
xw ˙ 3� . The Gaussian probability distribution for the mea-
sured values xoi has a full width at half maximum of

�x1=2 D 2�
p

2 � ln 2 D 2:35� :
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Problems

1.1 The speed limit on a motorway is 120 km/h. An interna-
tional commission decides to make a new definition of the hour,
such that the period of the earth rotation about its axis is only
16 h. What should be the new speed limit, if the same safety
considerations are valid?

1.2 Assume that exact measurements had found that the di-
ameter of the earth decreases slowly. How sure can we be, that
this is not just an increase of the length of the meter standard?

1.3 Discuss the following statement: “The main demand for
a length standard is that its length fluctuations are smaller than
length changes of the distances to be measured”.

1.4 Assume that the duration of the mean solar day increases
by 10 ms in 100 years due to the deceleration of the earth rota-
tion. a) After which time would the day length be 30 hours? b)
How often would it be necessary to add a leap second in order
to maintain synchronization with the atomic clock time?

1.5 The distance to the next star (˛-Centauri) is d D 4:3 �
1016 m. How long is the travelling time of a light pulse from
this star to earth? Under which angle appears the distance earth-
sun from ˛-Centauri? If the accuracy of angular measurements
is 0:100 what is the uncertainty of the distance measurement?

1.6 A length L is seen from a point P which is 1 km (per-
pendicular to L) away from the centre of L, under an angle of
˛ D 1ı. How accurate can the length be determined by angle
measurements from P if the uncertainty of ˛ is 10?

1.7 Why does the deviation of the earth orbit from a circle
cause a variation of the solar day during the year? Give some

arguments why the length of the mean solar day can change for
different years?

1.8 How many hydrogen atoms are included in 1 kg of hy-
drogen gas?

1.9 How many water molecules H2O are included in 1 litre
water?

1.10 The radius of a uranium nucleus (A D 238) is 8:68 �
10�15 m. What is its mean mass density?

1.11 The fall time of a steel ball over a distance of 1 m is
measured 40 times, with an uncertainty of 0.1 s for each mea-
surement. What is the accuracy of the arithmetic mean?

1.12 For which values of x has the error distribution function
expŒ�x2=2� fall to 0.5 and to 0.1 of its maximum value?

1.13 Assume the quantity x D 1000 has been measured with
a relative uncertainty of 10�3 and y D 30 with 3 � 10�3. What is
the error of the quantity A D .x � y2/?

1.14 What is the maximum relative error of a good quartz
clock with a relative error of 10�9 after 1 year? Compare this
with an atomic clock (��=� D 10�14).

1.15 Determine the coefficients a and b of the straight line
y D ax C b which gives the minimum squared deviations for the
points .x; y/ D .0;2/; .1;3/; .2;3/; .4; 5/ and .5;5/. How large
is the standard deviation of a and b?
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As has been discussed in the previous chapter, the theoretical de-
scription of the physical reality often proceeds by successively
refined models which approach the reality more and more with
progressive refinement. In this chapter the motion of bodies un-
der the influence of external forces will be depicted by the model
of point masses, which neglects the spatial form and extension
of bodies, which might influence the motion of these bodies.

2.1 The Model of the Point Mass;
Trajectories

For many situations in Physics the spatial extension of bodies
is of no importance and can be neglected because only their
masses play the essential role. Examples are the motion of the
planets around the sun where their size is very small compared
with the distance to the sun. They can be described as point
masses.

The position P.t/ of a point mass in the three-dimensional space
can be described by its coordinates, which are defined if a suit-
able coordinate-system is chosen. These coordinates are fx; y; zg
in a Cartesian system, fr; #; 'g in a spherical coordinate system
and f%; #; zg in cylindrical coordinates (see Sect. 13.2).

The motion of a point mass is described as the change of its
coordinates with time, for example in Cartesian coordinates

x D x.t/

y D y.t/

z D z.t/

9
>=
>;

� r D r.t/ ;

where the position vector r D fx; y; zg combines the three coor-
dinates x, y and z (Sect. 13.1).

Note: Vectors are always marked as bold letters.

The function r.t/ represents a trajectory in a three-dimensional
space, which is passed by the point mass in course of time
(Fig. 2.1). The representation r D r.t/ is called parameter rep-
resentation because the coordinates of the point P.t/ depend on
the parameter t.

Figure 2.1 Illustration of a trajectory

The motion performed by P.t/ on its trajectory is called trans-

lation. Contrary to the point mass bodies with extended size can
also perform rotations (Chap. 5) and vibrations (Chap. 6).

Note: The model of a point mass moving on a well-
defined trajectory fails in micro-physics for the motion
of atoms or elementary particles described correctly by
quantum mechanics (Vol. 3), where position and veloc-
ity cannot be precisely given simultaneously. Instead of
a precisely defined trajectory where the point mass can be
find at a specific time with certainty at a well-defined posi-
tion, only probabilities P.x; y; z; t/dxdydz can be given for
finding the point mass in a volume dV D dxdydz around
the position .x; y; z/. Strictly speaking a geometrical ex-
act trajectory does not exist in the framework of quantum
mechanics.

Examples

1. Motion on a straight line

x D a � t ; y D b � t ; z D 0 :

Elimination of t gives the usual representation y D
.b=a/x of a straight line in the .x; y/-plane.
The point mass moves in the x; y-diagram on the
straight line with the slope .b=a/ (Fig. 2.2).

Figure 2.2 Motion on a straight line in the x-y plan

Motions where one of the coordinates are time-
independent constants are named planar motions,
because they are restricted to a plane (in our example
the x; y-plane)

2. Planar circular motion

We can describe this motion by the coordinates R and
' (Fig. 2.3), where R is the radius of the circle and
'.t/ the angle between the x-axis and the momentary
radius vector R.t/. From Fig. 2.3 the relations

x D R � cos!t ; y D R � sin!t ;

R D const ; ! D d'=dt :

can be derived. Squaring of x and y yields

x2 C y2 D R2.cos2 !t C sin2 !t/ D R2 ;

which is the equation of a circle with radius R. The
point mass m with the coordinates fx; y; 0g moves with
the angular velocity ! D d'=dt and the velocity v D
R � ! on a circle in the x; y-plane.
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Note: The point mass moves relative to a chosen coordi-
nate system (in our case a plane system with the origin at
x D y D 0). The description of this motion depends on
the choice of the reference frame (coordinate system) (see
Chap. 3).

Example

Figure 2.4 Part of the moon trajectory described in two different coor-
dinate systems. a Origin in the mass centre of the moon-earth system,
located in the focal point of the ellipse; b origin in the centre of the sun.
The deviations from the elliptical path of the mass centre earth-moon
are here exaggerated in order to illustrate these deviations. In reality the
orbit of the moon around the sun is always concave, i. e. the curvature
radius always points towards the sun. The orbital plane of the moon is
inclined against that of the earth

The orbital motion of the moon around the earth is ap-
proximately an ellipse if r.t/ is measured in a coordinate

system with the origin in the centre of mass of the earth-
moon system.(Fig. 2.4a). If one chooses, however, the
centre of the sun as origin, the trajectory is much more
complex (Fig. 2.4b), because now two motions are su-
perimposed: the orbit around the centre of mass and the
motion of the centre of mass around the sun. J

2.2 Velocity and Acceleration

For a uniformly moving point mass the position vector

r D v � t with v D fvx; vy; vzg D const ; (2.1)

increases linearly with time. This means that in equal time in-
tervals �t equal distances �r are covered.

The ratio v D �r=�t is the velocity of the point mass. The unit
of the velocity is Œv� D 1 m=s.

A motion where the magnitude and the direction of the veloc-
ity vector v is constant, i. e. does not change with time, is called
uniform rectilinear motion (Fig. 2.5). In Cartesian coordinates
with the unit vectors Oex; Oey; Oez, the velocity vector v can be writ-
ten as

v D vx Oex C vy Oey C vz Oez or v D
˚
vx; vy; vz



:

Equation 2.1 reads for the components of v as

x D vxt I y D vyt I z D vzt : (2.1a)

Example

Uniform motion along the x-axis:

vx D v0 D const I vy D vz D 0 ! v D fv0; 0;0g :

The trajectory is the x-axis and the motion is x D v0t. J

In general the velocity will not be constant but can change with
time its magnitude as well as its direction. Let us regard a point
mass m, which is at time t in the position P1 (Fig. 2.6). Slightly

Figure 2.5 Uniform motion on a straight line
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Figure 2.6 Non-uniform motion on an arbitrary trajectory in space

later at the time t C �t it has proceeded to the point P2. The
ratio

���!
P1P2

.t C�t/ � t
D r.t C�t/ � r.t/

�t
D �r

�t
D v

is the average velocity v over the distance P1P2.

For �t ! 0 the two points P1 and P2 merge together and we
define as the momentary velocity v.t/ the limiting value

v.t/ D lim
�t!0

r.t C�t/ � r.t/

�t
D dr

dt
D Pr ;

which equals the time derivative of the function r.t/. In order
to distinguish this time derivative dr=dt D Pr.t/ from the spatial
derivative y0.x/ D dy=dx the time derivative is marked by a point
instead of an apostrophe.

Since the derivative df =dx of a function f .x/ gives the slope of
the curve f .x/ at the point P.x; y/ the velocity v has at any point
the direction of the tangent (Fig. 2.6). Its magnitude is in Carte-
sian coordinates:

v D jvj D
q
v2

x C v2
y C v2

z D
p

Px2 C Py2 C Pz2 : (2.2)

Examples

1. Linear accelerated motion

z D a � t2 ! vz D Pz D 2a � t :

For a D const the velocity increases linearly with
time. For a D �g=2 this describes the free fall with
the initial velocity vz.t D 0/ D 0 (see Sect. 2.3.1).
Here only the magnitude, not the direction of the ve-
locity changes with time.

2. Uniform circular motion

x D R � cos!t ) Px D �R � ! � sin!t

y D R � sin!t ) Py D R � ! � cos!t

z D 0 ) Pz D 0

9
>=
>;

! jvj D
p

Px2 C Py2 C Pz2 D R � ! :

For ! D const the magnitude of v does not change, only
its direction. J

We will now discuss the time dependence of the velocity v in
more detail: Let us regard a point mass with the velocity v.t/ at
the point P1 of the curve v.t/. At a slightly later time t C�t the
point mass has arrived at P2 and has there generally a different
velocity v.t C �t/ (Fig. 2.7). We define the mean acceleration
a as

a D v.t C�t/ � v.t/

�t
:

Analogous to the definition of the momentary velocity the mo-
mentary acceleration is the limit

a.t/ D lim
�t!0

v.t C�t/ � v.t/

�t
D dv

dt
D Pv.t/ D Rr.t/

a.t/ D Pv.t/ D Rr.t/ (2.3)

The acceleration a.t/ is the first time derivative dv=dt of the
velocity v.t/ and the second derivative d2r=dt2 of the position
vector r.t/. a.t/ D fax; ay; azg is a vector and has the dimen-
sional unit Œa� D Œ1 m=s2�.

2.3 Uniformly Accelerated Motion

A motion with a D const where the magnitude and the direction
of a do not change with time is called uniformly accelerated
motion. It is described by the equation

Rr.t/ D a D const : (2.4)

Equation 2.4 is named differential equation because it is an
equation between the derivative of a function and other quan-
tities (here the constant vector a).

The vector equation (2.4) can be written as the corresponding
three equations for the components

Rx.t/ D ax

Ry.t/ D ay

Rz.t/ D az :

The equation of motion (2.4) is readily solvable. The velocity if
obtained by integrating (2.4) which yields:

v.t/ D Pr.t/ D
Z

a dt D a � t C b : (2.5)

Figure 2.7 Definition of acceleration
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The integration constant b (b is a vector with constant compo-
nents) can be defined by choosing the initial conditions for the
motion. For t D 0 is Pr.0/ D v.0/ D b. I. e. the constant b gives
the initial velocity v.0/ D v0.

Further integration of (2.5) gives the trajectory r.t/

r.t/ D 1
2 at2 C v0t C c with c D r.0/ D r0 : (2.6)

This vector-equation can be written for the 3 components

x.t/ D 1
2 ax � t2 C v0xt C x0 ;

y.t/ D 1
2 ay � t2 C v0yt C y0 ;

z.t/ D 1
2 az � t2 C v0zt C z0 :

(2.6a)

One should realize the following statement:

All functions f .x/C c with arbitrary constants c have the same
derivative y0 D f 0.x/ because the derivative of a constant is zero.
This implies:

All functions f .x/ C c, which represent an infinite parametric
curve family, are solutions of the differential equation y0 D
f 0.x/. Therefore infinitely many position vectors r.t/ are found
for the same velocity v.t/. Only the initial conditions select one
specific position vector.

We will illustrate this by several examples in the next sections.

2.3.1 The Free Fall

We choose the vertical direction as the z-axis. A body experi-
ences in the gravitational field of the earth the acceleration

ax D ay D 0 ;

az D �g D �9:81 m=s2 ;

where the numerical value is obtained from experiments.

When a body at rest falls at time t D 0 from the height h, the
initial conditions are x.0/ D y.0/ D 0: z.0/ D h; vx.0/ D
vy.0/ D vz.0/ D 0.

With these initial conditions the system of equations (2.6a) re-
duces to

z.t/ D � 1
2 gt2 C h : (2.7)

The derivative gives vz.t/ D �g � t. The motion z.t/ plotted in
the z-t-plane represents a parabola (Fig. 2.8). For t D

p
2h=g

the body has reached the ground at z D 0. The falling time for
the distance h is

tfall D
p

2h=g ; (2.8)

and the final velocity at z D 0 is vmax D p
2hg.

t

z

h
z(t)

v=–gt

–v

√2h/g

Figure 2.8 Path-time function z.t/ (red curve ) and velocity-time function (dot-
ted line )

2.3.2 Projectile Motion

As starting point we choose x.0/ D y.0/ D 0; z.0/ D h; and
the z-axis is again the vertical direction, while the x-axis marks
the horizontal direction, so that the trajectory for the projectile
is in the x-z-plane (Fig. 2.9). The initial velocity should be v0 D
fv0x; 0; v0zg. The acceleration is a D f9; 0;�gg. Equation 2.6
becomes then

x.t/ D v0xt ;

y.t/ D 0 ;

z.t/ D � 1
2 gt2 C v0zt C h :

The motion is therefore a superposition of a uniform straight
motion into the x-direction and a uniformly accelerated motion
into the z-direction. For v0z D 0 we obtain the special case of
the horizontal throw and for v0x D 0 the vertical throw.

Elimination of t D x=v0x yields the projectile parabola

z.x/ D �1

2

g

v2
0x

x2 C v0z

v0x

x C h : (2.9)

The value x D xs where the maximum occurs is found for
dz=dx D 0.

xS D v0x � v0z

g
D v2

0 � sin ' � cos'

g
: (2.10)

For a given value of the initial velocity v0 the maximum of xs is
achieved for ' D 45ı. In order to calculate the projectile range

Figure 2.9 Projectile motion
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xw we solve (2.9) for z.xw/ D 0. This gives

xW D v0x � v0z

g
˙
"�

v0x � v0z

g

�2

C 2v2
0x

g
� h

#1=2

: (2.11)

Since xw > 0 only the positive sign is possible. With the relation
vz0 � vx0 D 1

2v
2
0 � sin 2' we can transform (2.11) into

xW D v0

2g
sin 2'

"
v0 C

�
v2

0 C 2gh

sin2 '

�1=2
#
: (2.12)

The optimum angle 'opt for achieving the largest throwing range
for a given initial velocity v0 is achieved when dxw=d' D 0.
This gives

'opt D arcsin

0
B@

1q
2 C 2gh=v2

0

1
CA : (2.13)

For the special case h D 0 (2.13) simplifies because of
arcsin.

p
2=2/ D �=4 to 'opt D 45ı (see the detailed deriva-

tion of (2.13) in the solution of Problem 2.5c).

2.4 Motions with Non-Constant
Acceleration

While the differential equation for motions with constant ac-
celeration is elementary integrable this might not be true for
arbitrary time dependent accelerations. We will at first treat the
simple example of the uniform circular motion, where the mag-
nitude of the acceleration is constant but not the direction.

2.4.1 Uniform Circular Motion

For the uniform circular motion equal distances are gone for
equal time intervals. This means that the magnitude of the ve-
locity v is constant and the component a' of the acceleration
a D far; a'g in the direction of v must be therefore zero.

The path length �s on the circle arc for the angle �' is �s D
R ��' (Fig. 2.10a). The magnitude of the velocity is then

v D ds

dt
D R � d'

dt
D R � ! :

The quantity ! D d'=dt is the angular velocity with the di-
mension Œ!� D Œrad=s�.

The acceleration is now

a D dv

dt
D d

dt
.vOet/ D dv

dt
Oet C v

dOet

dt

D v
d Oet

dt
because v D const :

Because Oe2
t D 1 ! 2Oet � dOet=dt D 0.

Figure 2.10 a uniform circular motion, b Illustration of the angular velocity

The scalar product of two vectors becomes zero, if either at least
one of the vectors is zero or if the two vectors are orthogonal.
Since Oet ¤ 0 and dOet=dt ¤ 0 it follows

dOet

dt
? Oet :

This means that the acceleration a is orthogonal to the velocity
v which is collinear with Oet. The vector dOet=dt gives the angu-
lar velocity of the tangent to the circle. Since the radius vector
R is orthogonal to the vector v both vectors turn with the an-
gular velocity ! D d'=dt. This means that the magnitude is
jdOet=dtj D !. This gives for the acceleration

a D v � dOet

dt
D R � !2Oea D �R!2Or ; (2.14)

where the unit vector ea D �R=R always points into the direc-
tion towards the centre of the circle, and Or D r=jrj points into
the opposite direction.

Proof

r D
(

R � cos!t

R � sin!t

)

v D
(

�R � ! � sin!t

R � ! � cos!t

)

a D
(

�R!2 cos!t

�R!2 sin!t

)
D �!2 � r D �R!2 � Or : J

The vector of the acceleration for the uniform circular motion

a D �R!2Or with jaj D R � !2

is called centripetal-acceleration because it points towards the
centre of the circle (Fig. 2.11).

If also the orientation of the plane in the three-dimensional space
should be defined, it is useful to define a vector ! of the angular
velocity which is vertical to the plane of motion (Fig. 2.10b) and
has the magnitude ! D j!j D d'=dt D v=R.
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Figure 2.11 Rollercoaster, where the superposition of centripetal acceleration and gravity changes along the path and inluences the feelings of the passenger
(with kind permission of Foto dpa)

2.4.2 Motions on Trajectories with Arbitrary
Curvature

In the general case the velocity v will change its magnitude as
well as its direction with time. However, the momentary veloc-
ity v.t/ at time t is always the tangent to the trajectory in the
point P.t/, while the acceleration a.t/ can have any arbitrary di-
rection (Fig. 2.12). The acceleration can be always composed of
two components at D dv=dt � Oet along the tangent to the curve
(tangential acceleration) and an in the direction of the normal
to the tangent, i. e. perpendicular to at (normal acceleration).

For v D v � Oet where Oet is the unit vector tangential to the trajec-
tory, the acceleration a is

a D dv

dt
D dv

dt
� Oet C v

dOet

dt
D at C an : (2.15)

The change of the magnitude of the velocity is described by at

while the change of the direction of v is described by an.

Figure 2.12 Tangential and normal acceleration
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Figure 2.13 a Derivation of the normal acceleration. b Local radius of curva-
ture of a trajectory with arbitrary curvature %

For an D 0 the trajectory is a straight line, where the body
moves with changing velocity if at ¤ 0. For at D 0 the point
mass moves with a constant velocity jvj on a curve which is de-
termined by an.t/. For the free fall of Sect. 2.3.1 is an D 0 and
at D const., while for the uniform circular motion at D 0 and
an D const.

For the motion on trajectories with arbitrary curvature the accel-
eration can be obtained as follows: We choose the x-y-plane as
the plane of the two vectors v.t/ and a.t/, which implies that all
vectors have zero z-components.

According to Fig. 2.13a the two mutually vertical unit vectors Oet

and Oen can be composed as

Oet D cos' Oex C sin ' Oey

Oen D cos.' C �

2
/Oex C sin.' C �

2
/Oey

D � sin ' Oex C cos' Oey

There we get

dOet

dt
D � sin'

d'

dt
Oex C cos'

d'

dt
Oey

D d'

dt
Oen

The normal acceleration is therefore

an D v
d'

dt
Oen :

We regard in Fig. 2.13b an infinitesimal section between the
points A and A0 of an arbitrary curve and approximate this
section by a circular arc AA0 with the center of curvature M.
Shortening the section AA0 more and more, i.e. the points A

and A0 converge towards the point P1 the curve section AA0 ap-
proaches more and more the circular arc with radius MP1. The
radius % D MP1 is the radius of curvature of the curve in the
point P1.

For the small section of the curve we get

ds D %d' (2.16a)

d'

dt
D d'

ds

ds

dt
D d'

ds
v D 1

%
v : (2.16b)

The acceleration vector becomes

a D dv

dt
Oet C v2

%
Oen (2.16c)

Examples

1. Assume a motion on a straight line experiences the
acceleration a.x/ D b � x4.
Calculate the velocity v.x/ for the initial condition
v.0/ D v0.

Solution

a D dv

dt
D dv

dx
� dx

dt
D dv

dx
� v ;

xZ

x0

adx D
vZ

v0

vdv :

Inserting a and integration yields

1
5 b
�
x5 � x5

0

�
D 1

2

�
v2.x/ � v2

0

�
:

Resolving this equation for v.x/ gives

v.x/ D
q

2
5 b
�
x5 � x5

0

�
C v2

0 :

2. The open parachute of a parachutist experiences, due
to air friction, a negative acceleration besides the ac-
celeration by gravity.

a D �b � v2 with b D 0:3 m�1 :

a) What is his constant final velocity ve?
b) What is the time-dependent velocity v.t/, if the

parachutist opens his parachute only after t0 D 10 s
free fall for which friction can be neglected?

Solution

a) A constant final velocity is reached, when the total ac-
celeration becomes zero. This is the case when

g � b � v2
e D 0 ! ve D

p
g=b D 5:7 m=s :

b) The equation of motion after the parachute is opened is
with the z-axis in the vertical direction

Rz D g � b � Pz2 :
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With v D dz=dt and dv=dt D d2z=dt2 we obtain

dv=dt D b � b � v2 ;

which leads to the equation

vZ

v0

dv

g � bv2
D 1

g

vZ

v0

dv

1 � v2=v2
e

D
tZ

t0

dt0 D t � t0 :

We substitute v=ve D x, for x > 1 i. e. for v > ve we
get

Z
dx

1 � x2
D 1

2
ln

x C 1

x � 1

! t � t0 D 1

2

ve

g
ln
v C ve

v � ve
C C :

For t D t0 ! v D v0 D g � t0 D 98:1 m=s. This gives
for the integration constant C the value

C D �1

2

ve

g
ln
v0 C ve

v0 � ve

! t � t0 D 1

2

ve

g
ln

�
v C ve

v � ve

v0 � ve

v0 C ve

�
:

Eliminating v from this equation for v yields

v.t/ D ve
d � ec.t�t0/ C 1

d � ec.t�t0/ � 1
with

d D v0 C ve

v0 � ve
and c D 2g=ve :

The velocity decreases from the initial value v.t0/ D v0

at t0 exponentially to the final value ve for t D 1.
However, already after t � t0 D 2ve=g D 1:16 s the
velocity has reached 96.7% of its final value.

J

2.5 Forces

We will now discuss the question, why a body performs that mo-
tion that we observe, why for instance the earth moves around
the sun on an elliptical trajectory, or why a stone in a free fall
moves on a vertical straight line to the ground.

Newton recognized that the cause for changes of a body’s veloc-
ity must be interactions of the body with its surroundings. These
can be long range interactions such as the gravitational interac-
tion between the sun and the earth, or short range interaction
which work for example in collisions between colliding billiard
balls, or even ultrashort range strong interactions between neu-
trons in an atomic nucleus. All such interactions are described

by the concept of forces. When a body changes its state of mo-
tion we say that a force acts upon the body.

If, for instance, two bodies collide we say: Each of the two
bodies has exerted during the collision a force onto the other
body, which causes a change of the state of motion for both
bodies.

A body without any interaction with its surroundings (or for
which the vector sum of all forces is zero), is called a free body.
A free body does not change its state of motion. Strictly speak-
ing there are in reality no free bodies without any interaction
(because we would not see them). However, in many cases the
interaction is so small, that we can neglect it. Examples are
atoms in a tank where a very good vacuum has been established,
or a sliding carriage on a nearly frictionless horizontal air track.
Such free bodies move uniformly on a straight trajectory. For
such cases the model of a free body is justified.

2.5.1 Forces as Vectors; Addition of Forces

Since velocity changes which are caused by forces are vectors,
also forces must be described by vectors, i. e. they are defined
by their magnitude and their direction.

Figure 2.14 Vector sum of forces. a all forces act on the same point, b equiv-
alent representation of the vector sum
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Note: When forces act on extended bodies, also the point of
origin is important (see Sect. 5.4).

A force, as any vector, can be reduced to the sum of its compo-
nents. This reduction depends on the chosen coordinate system.
For example in Cartesian coordinates the vector and its compo-
nents are F D fFx;Fy;Fzg. If we choose the coordinate system
in such a way that the z-direction points into the direction of
F, the component representation becomes F D f0; 0;Fz D Fg
with F D jFj. Often the solution of a problem can be essen-
tially simplified by choosing the optimum coordinate system
(see Sect. 2.3.2). If several forces act on a body the total force is
the vector sum of the individual forces (superposition principle)

F D
X

i

Fi :

This vector equation is equivalent to the three equations for the
components

Fx D
X

i

Fix Fy D
X

i

Fiy Fz D
X

i

Fiz :

The addition of several vectors is illustrated in Fig. 2.14a and b.
Both ways to add vectors are equivalent, because the origin of
the vectors can be shifted. If

P
Fi D 0 the total force is zero

and the body remains in its constant state of motion (either at
rest or in a uniform motion on a straight line.

Examples

1. A body with mass m rests on a friction-free sloped
plane (Fig. 2.15). The gravitational force can be
regarded as the vecor sum of the two forces F? per-
pendicular to the sloped plain and Fk parallel to this
plane. F? exerts a force onto the surface of the plane
and causes an opposite force N of equal magnitude by
the elastic response of the surface. Only the force Fk
can cause an acceleration of the body. It can be com-
pensated by an opposite force Z in order to reach a
zero total force and keep the body at rest on the sloped
plane. This situation can be described by the equation

m � g D Fk C F? D �.Z C N/ :

Attractive force Z and elastic force N compensate the
gravitational force and the body remains at rest.

Figure 2.15 Equilibrium of forces for a body on an inclined plane

2. A circular pendulum is a mass m hold by a string
which is fixed at a point P. The mass can move on
a circle in the x-y-plane while the string movement
forms the surface of a cone (Fig. 2.16). The total force
F D m � g C Fel as the sum of gravitational force and
elastic force of the stressed string acting on the mass m

always points towards the centre of the circle in the x-
y-plane and acts as centripetal force which causes the
circular motion of m.

m·g

Restoring
spring force

F

r

Figure 2.16 Circular pendulum with the vector diagram J

2.5.2 Force-Fields

Often the force acting on a body depends on the location. If it is
possible to unambiguously assign to each point .x; y; z/ a force
with defined magnitude and direction the spatial force function
F.x; y; z/ is called a force-field. Its components depend on the
chosen coordinate system:

F.r/ D F.x; y; z/ in Cartesian coordinates, or

F.r; #; '/ in spherical coordinates, or

F.r; '; z/ in cylinder coordinates.

In a graphical representation the direction of the force is illus-
trated by “force-lines” where the force at any point .x; y; z/ is
the tangent to the force-line (Fig. 2.17).

If the force has for any point in space only a radial component
with a magnitude which depends on the distance r to the centre
r D 0 the force field is centro-symmetric and is called a central

force field. It can be written as

F D f .r/ � Or ;

where Or D r=jrj is the unit vector in radial direction. The sign
of the scalar function f .r/ is: f .r/ < 0 if the forces point to the
centre and f .r/ > 0 is it points from the centre away.

Surfaces where the force field has the same magnitude are called
equipotential surfaces. (see Sect. 2.7.5)

Central force fields are spherical symmetric.
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Examples

1. Central force fields

a) Gravitational force field of the earth (Fig. 2.17a)
F depends on the distance for the earth’s cen-
tre. For the idealized case that the earth can be
described by a homogeneous sphere with spher-
ical symmetric mass distribution (see Fig. 2.9)
the gravitational force is for r > R (R D
radius of the earth)

F D �G
m � M

r2
Or

(M D mass of earth, m D mass of body, G D
gravitation constant, unit vector Or D r=jrj)

b) Force field of a positive electric charge Q

(Fig. 2.17b).
In the electric force field of an electric charge Q the
force on a small test charge q is

F D 1

4�"0

q � Q

r2
Or I

("0 = dielectric constant see Vol. 2). The spheri-
cal symmetric force field has the same form as the
gravitational force field.

Figure 2.17 Spherical symmetric force fields a gravitational force field
of a mass M (attractive force) and b electric force field of a positive
charge Q and repulsive force on a positive test charge

2. Non-central force fields

a) Dipole force field

The force field in the surrounding of two charges
CQ and �Q with equal magnitude but opposite
sign is no longer spherical symmetric. The force
on a test charge not only depends on the distance
from the centre of the two charges but also on
the angle # of the position vector against the con-
necting line of the two charges (Fig. 2.18). The
calculation of the force field gives (see Sect. 1.5 of
Vol. 2)

F D F1 C F2 D q � Q

4�"0

�
1

r2
1

Or1 � 1

r2
2

Or2

�
:

Figure 2.18 Force field of an electric dipole and the force on a negative
test charge

b) Force field of a planetary system

At each position r the gravitational forces on a test
mass exerted by the sun, the planets and the moons
superimpose. The force field F.r/ D P

Fi is very
complex. It even can be zero at certain points in
space, for example at a point N between earth and
moon (neutral point) where the opposite gravita-
tional forces from earth and moon just compensate
(Fig. 2.19).

Figure 2.19 Gravitational field between earth and moon
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c) Homogeneous force field of a parallel plate ca-

pacitor

For a voltage V between the plates with a dis-
tance d the force on an electric charge Cq is F D
Cq � .V=d/ � Oez vertical to the plates and pointing
from the positively charged plate to the negative
one (Fig. 2.20). The force F has at any point inside
the capacitor the same magnitude and direction.
Such a force field is called homogeneous.
Within a small volume also the gravitational field
of the earth can be treated as a homogeneous force
field as long as the vertical extension �z of this
volume is very small compared to the radius R of
the earth. The force on a mass is then F D m � g,
where jgj D 9:81 m=s2 is the earth gravitational
acceleration which remains constant in a small vol-
ume.

Z

d

–

+

Figure 2.20 Homogeneous force field for electric charges inside a par-
allel plate capacitor J

2.5.3 Measurements of Forces; Discussion of
the Force Concept

Forces can be measured due to their effect on the deformation of
elastic bodies (see Chap. 6). One example is the spring balance
(Fig. 2.21). Here the elongation of a spring under the influence
of a force is measured. Its displacement x � x0 from the equilib-
rium position x0 is proportional to the acting force

Fx D �D.x � x0/ : (2.17)

If the spring constant D D F=�x is known, the determination of
the force F is reduced to a length measurement�x D x�x0. The
spring constant D can be obtained from measurements of the
oscillation period of the spring balance. After a mass m has been

Figure 2.21 Spring balance for the measurement of forces

Train Comet

FL

Fg

Figure 2.22 Interaction between sun and comet as an example for the far
distance effect of forces

displaced from its equilibrium position x0 and then released, it
performs oscillations around x0 (see Sect. 2.9.7).

Often forces can act on bodies without physical contact between
them. Examples are the gravitational force between sun and
earth or between sun and a comet (Fig. 2.22). In the latter case
the comet is attracted by the sun due to the gravitational force
and vice versa. Its tail is repelled because of the radiation pres-
sure and the sun wind which is exerted by particles (protons and
electrons) emitted from the sun.

Even if there is no direct contact between two bodies we say that
a force acts on each body which causes the change of its mo-
tional state i. e. its velocity with time. Also for the investigation
of atomic collision processes the information on the forces be-
tween the colliding atoms is obtained from the observed change
of the velocities of the two collision partners (see Sect. 4.3).
Here the change of the momentum dp=dt is used to determine
the force. This explanation goes beyond the ordinary meaning
of forces as directly perceptible phenomena as for instance the
physical strength.

In all cases the force is a synonym for the interaction between
bodies. The range of distances between the interacting bodies
can reach from 10�17 m to infinity.

The question, what the real cause for this interaction is and
whether it is transferred between the interacting bodies infinitely
fast or with a finite speed can be up to now only partly answered
and is the subject of intense research but is not yet fully under-
stood. Theoretical predictions claim a finite transfer time which
equals the speed of light. The description of the interaction be-
tween very fast moving bodies has therefore to take into account
this finite transfer time (retardation, see Sect. 3.5). For veloci-
ties which are small compared to the speed of light this effect
can be neglected (realm of non-relativistic physics).

We will now discuss more quantitatively the relations between
forces and the change of motional states of bodies.
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2.6 The Basic Equations of
Mechanics

The mathematical description of the motion of bodies under the
influence of forces can be reduced to a few basic equations.
These equations are based on assumptions (axioms) which are
suggested by experiments. They were first postulated by Isaac
Newton in his famous multi-volume opus “Philosophiae natu-

ralis principia mathematica” which was published in the years
1687–1726 [2.1].

2.6.1 The Newtonian Axioms

For the introduction of the force model and its relation with the
state of motion of bodies Newton started from three basic as-
sumptions which were taken from daily experience. They are
called the three Newtonian axioms (sometimes also Newton’s
three laws).

First Newtonian Axiom

Each body remains in the state of rest or of uniform motion
on a straight line as long as no force is acting on it.

As the measure for the state of motion of a body with mass m

we define the momentum

p D m � v :

The momentum p is a vector parallel to the velocity v and has
the dimension Œp� D Œkg � m � s�1�. A particle on which no force
is acting is called a free particle.

With this definition Newton’s first law can be formulated as

The momentum of a free particle is constant in time.

This means: always when a particle changes its state of motion
a force is acting on it, i. e. it interacts with other particles or it is
moving in a force field (Fig. 2.23).

Second Newtonian Axiom

Since we attribute a force to any change of momentum we
define the force F as

F D dp

dt
: (2.18)

Figure 2.23 Forces as cause for a change of momentum

With p D m � v we can write this in the form

F D m � dv

dt
C dm

dt
� v : (2.18a)

The second term describes a possible change of the mass m with
the velocity of the particle. There are many situations where
this second term becomes important, for instance when a rocket
is accelerated by the expulsion of fuel (see Sect. 2.6.3) or when
a particle is accelerated to very high velocities, comparable to
the velocity c of light, where the relativistic mass m.v/ increase
with velocity, cannot be neglected (see Sect. 4.4.1).

Example

A freight train moves with the velocity v in the horizon-
tal x-direction (Fig. 2.24). It is loaded continuously with
sand from a stationary reservoir above the train. The mass
increase per time dm=dt is assumed to be constant. When
friction can be neglected the total force onto the train is
zero. The equation of motion is then

0 D m � dv=dt C A � v (2.18b)

with m D m0 C A � t. Integration yields

ln
v

v0
D ln

m0

m0 C A � t

Figure 2.24 Example to Eq. 2.18a

with the solution

v.t/ D v0
1

1 C .A=m0/ � t
: (2.18c)

With m0 D 1000 tons and dm=dt D A D 1 ton=s the train
velocity v.t/ D v0.1 C 1 C 10�3 t/�1 the velocity slows
down to v0=2 in 1000 s. J
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Figure 2.25 actio D reactio for the example of gravitational forces F1 D �F2

between two masses

If the mass m is constant .dm=dt D 0/Eq. 2.18b takes the simple
form

F D m � a with a D dv

dt
: (2.18d)

The unit of the force is ŒF� D 1 kg � m � s�2 D 1 Newton D 1 N.

Third Newtonian Axiom

When two bodies interact with each other but not with a
third partner the force acting on the first body has equal
magnitude but opposite direction as the force on the sec-
ond body (Fig. 2.25). Newton’s formulation in Latin was

actio D reactio

F1 D �F2 :

We will apply Newton’s axioms to a system of two masses m1

and m2 which interact with each other, i. e. they collide, but are
otherwise completely isolated from their surroundings. Such a
system is called a closed system.

Since there are no external forces on a closed system we can
conclude in analogy to a free particle that the total momentum
of the system remains constant:

p1 C p2 D const : (2.19a)

Differentiating this equation yields

dp1

dt
C dp2

dt
D 0 ) F1 D �F2 : (2.19b)

This axiom can be proved experimentally with two equal spring
balances (Fig. 2.26a), which are connected to each other at one
end. If one pulls at the two other ends into opposite directions
they show that on each spring balance the same force is acting.

Another experimental verification is shown in Fig. 2.26b where
a spring is compressed by two equal masses on an air track

Strand
Spring

Air track

Figure 2.26 Experiment to prove the 3. Newtonian law a with two equal
spring balances, b with two equal masses on an air track

Figure 2.27 The gravitational force F D m � g of a mass m on a solid surface
is compensated by the antiparallel deformation force of the solid surface

which are hold together by a string. If the string is burnt by
a candle, the two masses are pushed by the expanding spring to
opposite sides and slide on the air track with equal velocities,
which means that they have equal but opposite momenta. The
velocities can be accurately measured by photoelectric barriers.

Newton’s third law can be also proved for resting bodies. A
mass m resting on a solid surface acts with the gravitational
force F1 D m � g on the surface which is deformed and responds
with an equal but opposite elastic force Fel D �F1 D �mg

(Fig. 2.27).

2.6.2 Inertial and Gravitational Mass

The property of bodies to remain in their state of motion when
left alone (i. e. when no force is acting on them) is called their
inertia. Since the accelerating force is proportional to the mass
of the body its mass can be regarded as the cause of the inertia
and is therefore called the inertial mass minertial. Newton’s sec-
ond law means this inertial mass. There are many demonstration
experiments which illustrate this inertia. Assume, for example,
a glass of water standing on a sheet of paper. If the paper is
pulled suddenly away, the glass remains a rest without moving,
because of its inertia.

There is another property of masses which is the gravitational
force (Fgrav D m � g on the earth surface). This force is also
called the weight of the mass. Experiments measure the weight
of a mass of 1 kg as

Fgrav D 1 kg � 9:81 m=s2 D 9:81 N :



2.6 The Basic Equations of Mechanics 53

C
h

a
p

te
r

2

Figure 2.28 Einstein’s Gedanken-experiment for the equivalence of gravita-
tional and inertial mass a in the homogeneous gravitational field of the earth;
b in a gravitation-free space inside an accelerated lift

Note: The gravitational force is always present when the mass
m is attracted by another mass M and it is proportional to the
product m � M (see Sect. 2.9.2).

The question is now: Are these two properties related to the
same mass i. e. is minertial D mgrav?

Many detailed and accurate measurements for many different
masses have proved that within the relative uncertainty of 10�10

there is no measurable difference between minertial and mgrav.

Starting from this experimental result Einstein has postulated
the general equivalence principle that inertial and gravita-

tional masses are always equal.

By the following “Gedanken-experiment” he has shown, that it
doesn’t make sense to distinguish between inertial and gravita-
tional masses:

An observer in a closed lift measures a mass m hanging on a
spring balance (Fig. 2.28). He cannot distinguish, whether the
elevator is resting in a gravitational field with the gravitational
force Fgrav D m � g on the mass m (Fig. 2.28a) or whether the
elevator moves upwards with the velocity v D �gt and the ac-
celeration �g in a force-free surrounding (Fig. 2.28b). Both
situations lead to the same elongation of the spring balance. Any
further experiment performed inside the closed elevator leads to
the same results for the two situations (a) and (b).

For instance when the observer in the elevator throws a ball in
the horizontal direction the trajectory of the ball is for both situ-
ations a parabola (see Fig. 2.9).

We will therefore no longer distinguish between inertial and
gravitational mass and call it simply the mass m of a body which
has the two characteristic features of inertia under acceleration
and weight in gravitational fields.

Note: The question what the mass of a body really means is up
to date not answered, although great efforts are undertaken to
solve this problem.

2.6.3 The Equation of Motion of a Particle in
Arbitrary Force Fields

Integration of Newton’s equation of motion F D m�dv=dt yields
the equations

v.t/ D 1

m

Z
Fdt C C1 ; (2.20a)

r.t/ D
Z

v.t/ dt C C2

D 1

m

Z �Z
Fdt

�
dt C

Z
C1 dt C C2 (2.20b)

For the velocity v.t/ and the position vector r.t/with the integra-
tion constants C1 and C2 which are fixed by the initial conditions
(e.g. v.t D 0/ D v0 and r.t D 0/ D r0).

Whether these equations are analytical solvable depends on the
form of the force F which can be a function of position r, veloc-
ity v or time t. We will illustrate this by some examples.

Constant Forces

For the most simple case of constant forces F D const, which
do not depend on time nor on the position or velocity of the
particle the integration of (2.20) immediately gives

F D m � a D const ;

v.t/ D at C C1 with C1 D v0 D v.t D 0/ ;

r.t/ D 1
2 at2 C v0t C r0 with r0 D r.t D 0/ :

(2.21)

The trajectory of the particle can be directly determined, if the
initial conditions are known. It is advisable to choose the coor-
dinate system in such a way that the force coincides with one of
the coordinate axes.

Example

The motion of a particle under the influence of the con-
stant force F D f0; 0;�mgg pointing into the �z-direction
gives the three equations for the 3 components of the force

Rx D 0 ) Px D Ax ) x D Axt C Bx

Ry D 0 ) Py D Ay ) y D Ayt C By

Rz D �g ) Pz D �gt C Az ) z D � 1
2 gt2 C Azt C Bz :

(2.22)

These equations describe every possible motion of par-
ticles under the influence of the earth gravitation in a
volume which is small compared with the dimensions of
the earth where the gravitational force can be regarded as
constant. From the many possible solutions of (2.22) the
initial conditions with fixed values of A and B select spe-
cial solutions (see examples in Sect. 2.3). J
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Figure 2.29 Launch of a body from the earth surface

Forces F.r/ that depend on the Position

As an example of position dependent forces we choose the grav-
itational force

F.r/ D �G
m � M

r2
Or :

The minus-sign indicates that the attractive force points into the
direction of �r.

The acceleration a has in this central force field only a radial
component ar D �G � M=r2. For vertical motions the ve-
locity becomes in spherical coordinates v D fvr; 0; 0g and its
magnitude is jvj D v D vr. Our problem therefore becomes
one-dimensional. From the relation

a D dv

dt
D dv

dr
� dr

dt
D dv

dr
� v ;

it follows: v � dv D �.G � M=r2/dr.

Integration yields

1

2
v2 D GM

r
C C1 : (2.23)

Let us discuss the case that a projectile is fired from the earth
surface .r D R/ upwards in vertical direction with the initial ve-
locity v0 (Fig. 2.29). The integration constant C1 then becomes

C1 D 1

2
v2

0 � GM

R
D 1

2
v2

0 � g � R ;

because a.R/ D �g D �G.M=R2/. This gives

1

2
v2 D gR2

r
C 1

2
v2

0 � g � R : (2.24)

At the maximum vertical height r D rmax the velocity becomes
v.rmax/ D 0 and we obtain from (2.24)

rmax D R

1 � .v2
0=2Rg/

: (2.25)

For the initial velocity v0 ! p
2Rg the maximum vertical

height rmax becomes infinity and the projectile can leave the
earth. This velocity is called the escape velocity. Inserting the
numerical values for R and g gives

v0 � v2 D
p

2Rg D 11:2 km=s
(escape velocity)

: (2.26a)

The velocity v2 is often named the 2nd cosmic velocity while
the first cosmic velocity v1 is the velocity of a projectile which
is fired in horizontal direction and orbits around the earth on a
circle closely above the earth surface. From the relation

v2
1

R
D GM

R2
! v1 D

r
GM

R
D
p

g � R (2.26b)

the numerical value of v1 becomes (when neglecting the earth
rotation) v1 D v2=

p
2 � 7:9 km=s.

Note: The general case of arbitrary motion in a central force
field is treated in Sect. 2.9.

Time-dependent Forces

There are many situations where the force on a particle changes
with time. One simple example is a mass hanging on a spring,
which is induced to vertical oscillations, or a comet moving on a
parabolic trajectory through the solar system. We will illustrate
the solution of the equation of motion for time dependent forces
by two numerical examples.

Examples

1. Assume the time dependent force F D b � t C c with
b D 120 N=s and c D 40 N, which points into the
x-direction, is acting on the mass m D 10 kg. For
t D 0 the mass should be at x D 5 m with a velocity
v.0/ D 6 m=s. Calculate the position x.t/.

Solution

The straight motion proceeds along the x-axis. The accel-
eration is a D F=m and the velocity

v.t/ D 1

m

tZ

0

F.�/d� D b

2m
t2 C c

m
t C v0x I

x.t/ D
Z
vxd� D b

6m
t3 C c

2m
t2 C v0xt C x0

D .2t3 C 2t2 C 6t C 5/m with t in s :

2. What is the final velocity of a mass m initially at
rest .v.0/ D 0/ which experiences a force F.t/ D
A � expŒ�a2t2�?
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Solution

m � v.t D 1/ D
Z

F dt D A

Z
e�a2t2 dt D A

p
�

2a
I

v1 D A

2

p
�

a � m
: J

Acceleration of a Rocket

In the example for position dependent forces we have assumed
that the projectile starts with the initial velocity v0 > 0. In
reality it starts with v0 D 0. However, the velocity v > 0 is
reached within a short distance that is very small compared with
the earth radius R. We will now study the acceleration during
the start phase of the rocket in more detail. Within this small
distance d � R, which the rocket passes during its acceleration,
we can fairly assume the earth acceleration g to be constant.

During the burning phase the rocket is continuously accelerated
by the recoil momentum of the propellant hot gases (Fig. 2.30).

With v0 we denote the velocity of the propellant gases relative to
the surface of the earth which represents our reference coordi-
nate system, and with v the rocket velocity in this system. The
escaping gas mass per second is�m=�t. The momentum of the
rocket at time t is p.t/ D m � v. At time t C�t the mass of the
rocked has been reduced by ��m (which equals the mass of the
expanding gas during this time interval) and its velocity has in-
creased by �v while the gases have transported the momentum
�m � v0. The total momentum of the system rocket + gas is then
with �m > 0

p.t C�t/ D .m ��m/.v C�v/C�m � v0 : (2.27a)

During the time interval �t the momentum of the system has
changed by

�p D p.t C�t/ � p.t/

D m ��v C�m.v0 � v/ ��m ��v : (2.27b)

Figure 2.30 Acceleration of a rocket

For the limit �t ! 0; �m=�t ! dm=dt is lim�t!0.�m �
�v=�t/ D 0.

Since the time derivative dp=dt of the momentum equals the
force Fg D m � g of gravity acting on the rocket we obtain

dp

dt
D m

dv

dt
C dm

dt
.v0 � v/ D m � g : (2.27c)

The velocity v0 of the propellant gases relative to the earth de-
pends on the velocity v of the rocket. For jvj < jv0j the direction
of v0 is downwards, for jvj > jv0j it is upwards. It is therefore
better to introduce the velocity ve D v0 � v of the propellant
gases relative to the rocket, which is independent of v and con-
stant in time. This converts Eq. 2.27c into

m � dv

dt
C dm

dt
ve D m � g : (2.27d)

With v D f0; 0; vzg, ve D f0; 0; veg, g D f0; 0;�gg this equa-
tion becomes after division by m and multiplication by dt

dv D �ve
dm

dt
� g � dt ; (2.27e)

Integration from t D 0 up to t D T (propellant time of the
rocket) yields

v.T/ D v0 C ve ln
m0

m
� gT ; (2.28)

where v0 D v.t D 0/.

Numerical Example

Launching of a Saturn rocket with m0 D 3 � 106 kg; ve D
4000 m=s, T D 100 s, v0 D 0. Final mass at t D T is
m.T/ D 106 kg, which means that the mass of the fuel is
2 � 106 kg. Equation 2.28 yields

v.T D 100 s/ D 0 C 4000 m=s � ln 3 � 9:81 m=s2 100 s

D 3413:5 m=s :
J

The heights z.t/ of the rocket during its burning time for con-
stant loss of mass q D dm=dt D const is readily obtained. With
m.t/ D m0 � q � t, Eq. 2.28 becomes

v.t/ D v0 � ve ln
�

1 � q

m0
t

�
� gt I

z.t/ D v0t � ve

Z
ln
�

1 � q

m0
t

�
dt � 1

2
gt2 C C0 ;

and integration yields

z.t/ D v0 � t � ve

Z
ln

�
1 � q

m0
t

�
dt � 1

2
gt2 C C0 :

The integration constant is C0 D 0 (because z.0/ D 0).
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Since
R

ln xdx D x ln x � x the integration gives

z.t/ D .v0 C ve/ t C ve

�
m0

q
� t

�
ln

�
1 � q

m0
t

�
� 1

2
gt2 :

(2.29)

Numerical Example

For our example above we obtain with q D 2 � 104 kg=s,
v0 D 0; ve D 4000 m=s T D 100 s

z.T / D .4 � 105 C 2 � 103 � ln 0:33 � 4:9 � 104 m

D .400 � 219:7 � 49/ km D 131 km ;

v.T / D
�
�4 � 103 � ln.0:33/� 981

�
m=s D 3413 m=s ;

J

This example illustrates that with z.T/ � R the earth acceler-
ation does not change much and can be regarded as constant.
It further demonstrates that with a single stage the escape ve-
locity v D 11200 m=s of the rocket cannot be achieved with
reasonable fuel masses. It is therefore necessary to use multi-
stage rockets.

Numerical Example

After the end of the burning time T1 of the first stage
the velocity of the rocket in our example is v.T1/ D
3400 m=s. The second stage starts with a mass m.T1/ D
9 � 105 kg (the fuel tank with m D 105 kg has been pushed
off) including m D 7 � 105 kg for the fuel. The burning
time is again 100 s and the final mass m.T2/ D 2:105 kg.
According to (2.28) the final velocity v is

v.T1 C T2/ D .3400 C 4000 ln.9=2/� 9:81 � 100/

D 8435 m=s :

The third stage starts with a velocity v D 8435 m=s and a
mass m D 1:8 � 105 kg (the fuel tank of the 2nd stage with
m D 2 � 104 kg has been pushed off). With T3 D 100 s we
obtain the final velocity

v.Tfinal/ D .8400 C 4000 ln 7:2 � 9:8 � 100/m=s

D 15;000 m=s > vescape :
J

Note: For the second and third stage one should, strictly speak-
ing, take into account the decrease of the earth acceleration
g with increasing z. Instead of the constant g one should
use the function g.z/ D G � M=r2 with r D z C R and
M D mass of the earth. With the approximation .1 C z=R/�2 �
1 � 2z=R one obtains instead of (2.27e) the equation

dv D �ve
dm

m
� g.1 � 2z=R/dt : (2.30)

This equation illustrates that even for z D 100 km the correction
term 2z=R for g amounts only to 3%. This means for the cal-
culation of the velocity v only a correction of 1%, because the
term g � T in Eq. 2.28 represents only about 1=3v.

The integration of (2.28) is now more tedious but an approxima-
tion is still possible, if the function (2.29) is inserted for z.t/.

2.7 Energy Conservation Law of
Mechanics

In this section we will discuss the important terms “work”,
“power”, “kinetic and potential energy” before we can formu-
late the energy conservation law of mechanics.

2.7.1 Work and Power

If a point mass m proceeds along the path element �r in a force
field F.r/ (Fig. 2.31), the scalar product

�W D F.r/ � �r (2.31a)

is called the mechanical work, due to the action of the force F

on the point mass m.

The work is a scalar quantity!

Written in components of the vectors F and r Eq. 2.31a reads

�W D Fx�x C Fy�y C Fz�z : (2.31b)

The unit of work is Œwork� D Œforce � length� D 1 N � m D
1 Joule D 1 J.

Remark. In the cgs-system the unit is ŒW� D 1 dyn � cm D
1 erg D 10�7 J.

Figure 2.31 Definition of work
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If the point mass moves under the action of the force F from
point P1 to point P2 the total work on this path is the sum W DP
�Wi of the different contributions �Wi D F.ri/ ��ri which

converges in the limit �ri ! 0 to the integral

W D
P2Z

P1

F � dr : (2.32a)

The integral is called line-integral or curvilinear integral. Be-
cause of the relation F � dr D Fxdx C Fydy C Fzdz it can be
reduced to a sum of simple Rieman integrals:

Z
F � dr D

x2Z

x1

Fxdx C
y2Z

y1

Fydy C
z2Z

z1

Fzdz ; (2.32b)

which can be readily calculated if the force is known (see the
following examples). In Equation 2.32 is W > 0 for F � dr > 0
i.e. if the force F has a component in the direction of the move-
ment. In this case the mass m is accelerated. According to this
definition the work is positive if the energy of the mass m is
increased. Work which is performed by the mass on other sys-
tems decreases its energy and is therefore defined as negative
(see Sect. 2.7.3).

If F is perpendicular to r (and therefore also to the velocity v)
the work is W D 0, because then the scalar product F � dr D 0.

The work per time unit

P D dW

dt
(2.33a)

is called the power P. Its unit is ŒP� D 1 J=s D 1 Watt D 1 W.

P D d

dt

tZ

t0

F.r.t0/; t0/ � Pr.t0/dt0

D F.r.t/; t/ � v.t/ D F � v :

(2.33b)

Remark. In daily life the electrical work is defined in kWh.
With 1 J D 1 Ws the relation is 1 kWh D 3:6 � 106 Ws.

Examples

1. Uniform circular motion under the action of a radial
constant force. Here v always points in the direction of
the tangent to the circle, but the force is always radial,
i. e. F?v. The scalar product F � v D 0 and therefore
the work is zero.

2. A mass is moved with constant velocity without fric-
tion on a horizontal plane. (motion on a straight line).
The gravitational force is always perpendicular to the
motion, ! F � dr D 0. The work is zero.

3. The work performed by a mountaineer against the
gravitational force (man C pack D 100 kg), who
climbs up the Matterhorn (�z D 1800 m) is W DR

Fgdz D �m �g ��z D 102 �9:81 �1:8 �103 kg�m2=s2 D
�17:6 � 105 J � 0:5 kWh.
The work is negative, because the force is antiparal-
lel to the direction of the movement. The mountaineer
produces energy by burning his food and converts it
into potential energy thus decreasing its internal en-
ergy. The prize for the electrical equivalent of 0:5 kWh
is about 10 Cents!

4. In order to expand a coil spring one has to apply a
force F D �Fr opposite to the restoring spring force
Fr D �D.x � x0/ which is proportional to the elonga-
tion .x�x0/ of the spring from its equilibrium position
x0. The work which has to be applied is

W D
Z

Fxdx D D

Z
.x � x0/dx

D 1
2 D.x � x0/

2 :

This is equal to the area A in Fig. 2.32a between the
x-axis and the straight line F D D.x � x0/.

Figure 2.32 a Work for expanding a spring, b work of a car climbing
up a slope

5. A car (m D 1000 kg) moves with constant velocity of
48 km=h on a straight line with a slope of 5ı against
the horizontal (Fig. 2.32b). What is the work the en-
gine has to produce within 5 min, if friction effects can
be neglected?
The force in the direction of the motion is

F D �Fg � sin˛ D m � g � sin˛ :

The distance which the car moves within 5 min is

s D 48 km � 5=60 D 4 km D 4000 m :
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The work is then with 1 kWh D 103 � 3:6 � 103 Ws D
3:6 � 106 J

W D 4 � 103 � 9:81 � sin 5ı � 103 N � m

D 3:4 � 106 J � 1 kWh :

The power is

P D dW

dt
D 3:4 � 106 J

300 s
� 1:13 � 104 W

D 11:3 kW : J

2.7.2 Path-Independent Work; Conservative
Force-Fields

We regard a force field F.r/ that depends only on the position
r but not on time. When a mass m is moved from point P1 to
point P2 on the path (a) (Fig. 2.33) the work necessary for this
motion is

Wa D
Z

F � dra :

On the path (b) it is

Wb D
Z

F � drb :

If for arbitrary paths (a) and (b) always Wa D Wb we name the
integral path-independent and the force field F.r/ conservative.

With other words:

In conservative force fields the work necessary to move a
mass m from a point P.r1/ to a point P.r2/ is independent
of the path between the two points.

If we move the mass from P1 to P2 and back to P1 the total
work is then zero.

Force-field F

Figure 2.33 Path-independent work in a conservative force field

In conservative force fields the work for moving a mass m

on a closed loop is zero.

Wa � Wb D
P2Z

P1

F � dra �
P2Z

P1

F � drb

D
P2Z

P1

F � dra C
P1Z

P2

F � drb

D
I

F � dr D 0 :

(2.34)

The work depends only on initial and final position of the
motion, not on the chosen path between them.

In Vector-Analysis it is proved that the equivalent condition for a
conservative force field F.r/ is curl F D 0 (theorem of Stokes).
For the definition of curl F see Sect. 13.1. It is

curl F D rot F D r � F

D
�
@Fz

@y
� @Fy

@z
;
@Fx

@z
� @Fz

@x
;
@Fy

@x
� @Fx

@y

�
:

Conservative force fields are a special case of force fields F.r/
that depend only on the position r, not on time or velocity.

Note: Not every force field F.r/ is conservative! (see Example
below)

Examples

Conservative Force Fields

1. A homogeneous force field F.r/ D f0; 0;Fzg with
Fz D const (Fig. 2.34a) is conservative because

F � dr D Fzdz ! W D
Z

F � dr

D
z2Z

z1

Fzdz D �
z1Z

z2

Fzdz !
I

F � dr D 0 :

2. Every time-independent central force field, written
in spherical coordinates (see Sect. 13.1) as F D
fFr;F# D 0;F' D 0g, which depends only on the
distance r from the centre r D 0 and not on the angles
# and ' is conservative.
It can be written as F.r/ D f .r/ � Or, where f .r/ is a
scalar function of r (Fig. 2.34b).

Z
F � dr D

r2Z

r1

Frdr D �
r1Z

r2

Frdr )
I

F � dr D 0 :
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Figure 2.34 Examples for conservative force fields. a Homogeneous
field, b central field

Non-conservative Force Fields

1. Position-dependent non-central force field

F.r/ D yex C x2ey :

The work one has to expend for moving a body from
point P1 D f0; 0; 0g to point P2 D f2; 4; 0g is

W D
PZ

0

F � dr D
2Z

xD0

Fxdx C
4Z

yD0

Fydy

D
2Z

xD0

y dx C
4Z

yD0

x2dy :

We choose two different paths (Fig. 2.35):
(a) along the straight line y D 2x

(b) along the parabola y D x2.
On the path (a) is y D 2x ) x2 D .y=2/2

Z
F � dra D

2Z

0

2xdx C
4Z

0

� y

2

�2
dy

D x2
ˇ̌
ˇ
2

0
C y3

12

ˇ̌
ˇ
4

0
D 4 C 16

3
D 28=3 ;

On the path (b) is y D x2.

Z
F � drb D

2Z

0

x2dx C
4Z

0

y dy

D 1

3
x3
ˇ̌
ˇ
2

0
C 1

2
y2
ˇ̌
ˇ
4

0
D 8

3
C 8 D 32

3
:

) H
F � dr ¤ 0. The force field is not conservative!

Figure 2.35 Movement in a non-conservative force field
F.r/ D y � ex C x2 � ey

2. For time-dependent force fields the integral cannot be
path-independent, because the force field varies during
the travel of the body and therefore the work expended
for the different paths is generally different.

3. If the force depends on the velocity of the body (for
instance the friction for a body moving through a
medium or on a surface, or the Lorentz-force F D
q � .v � B/ on a charge q moving with the velocity
v in a magnetic field B) such fields are generally not
conservative because the velocity differs generally on
the different paths. For friction forces Ff the force is
for small velocities v proportional to v.Ff � v/, when
the body moves slowly through a liquid. For large ve-
locities is Ff � v3 for example when a body moves
through turbulent air. For all friction forces heat is
produced and therefore the mechanical energy cannot
be preserved. In all these cases

H
F � dr ¤ 0 (see also

Sect. 6.5) J

Time-dependent or velocity-dependent forces are gener-
ally not conservative.

2.7.3 Potential Energy

When a body is moved in a conservative force field from a start-
ing point P1.r1/ to another point P2.r2/ the work expended or
gained during this movement does not depend on the path be-
tween the two points. If P0 is a fixed point P0 and P.r/ has an
arbitrary position r the work solely depends on the initial point
P0 and the final point P.r/. It is therefore a function of P.r/
with respect to the fixed point P0. This function is called the
potential energy Ep.P/ of the body.

The work

�W D
P2Z

P1

F dr
DefD � �Ep.P2/ � Ep.P1/

�
; (2.35a)
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Figure 2.36 Different possibilities to choose the zero of the potential energy:
a Ep.z D 0/ D 0; b Ep.r D 1/ D 0

which the force F.r/ accomplishes on the body when it is moved
between two points P1 and P2 is equal to the difference of the
potential energies in these two points. For F � dr > 0 the force is
directed into the direction of the motion. The potential energy
difference�Ep D Ep.P1/�Ep.P2/ is then negative. This means,
that the mass m can deliver the work �W but looses potential
energy.

One example is the free fall in the gravitational field of the earth,
when a mass m falls from the height h with potential energy m�g�
h to the ground with h D 0. When we lift the mass m from h D 0
to h > 0 against the gravitational force, the scalar product F � dr

is negative and the potential energy increases (Fig. 2.36a). The
work spend on the body to lift it against the force results in an
increase of the potential energy. A body with a positive potential
energy can convert this potential energy again into work. An
example is water falling down through pipes and drives a turbine
which drives maschines and produces electricity.

Note:

1. The sign of work and potential energy difference in (2.35a)
has been chosen in such a way, that for F�dr < 0 ! �W < 0
but�Ep > 0, i. e. one has to spend work in order to move the
body against the force which increases its potential energy.
Work which the body can deliver to its surrounding for F �
dr > 0 decreases its potential energy.

2. The defined zero Ep D 0 for the potential energy is not fixed
by the definition (2.35a). If we choose the fixed reference
point P0 as the zero point of the potential energy and define
Ep.P0/ D 0, then the absolute value of the potential energy
in point P is given by

W D
PZ

P0

F � dr D �Ep.P/ : (2.35b)

For our example of the free fall we can choose h D 0 as
the reference point with Ep.0/ D 0. In many cases where
a body can be moved to very large distances from the earth
(for instance space crafts) it is more convenient to choose
r D 1 as the reference point for Ep.1/ D 0. We then have
the definition

1Z

P

F � dr D Ep.P/ � Ep.1/ D Ep.P/ ; (2.35c)

the potential energy Ep.P/ is then negative for F � dr < 0. It
is equal to the work one has to spend in order to bring the
body from the point P to infinity. For instance the potential
energy of a mass m in the gravitational field of the earth Fg D
�GMm=r2 at a distance r D R from the centre of the earth is
then

Ep.R/ D �GMm=R ; (2.35d)

where G is Newton’s constant of gravity and M is the mass
of the earth (Fig. 2.36b).

3. The work which one has to spend on the body (for F � dr < 0
or which can be gained from the body (for F �dr > 0) when it
is moved from point P1 to point P2 is of course independent
of the choice of the zero point because it depends only on the
difference �Ep D E.P1/ � Ep.P2/ of the potential energies.

Examples

1. A body with mass m is lifted in the constant gravi-
tational force field F D f0; 0;�mgg from z D 0 to
z D h, where h � R (earth radius). The necessary
work to achieve this lift is

W D
Z

F � dr D �
hZ

0

m � g dz

D �m � g � h D Ep.0/� Ep.h/ :

If we choose Ep.z D 0/ D 0 the potential energy for
z D h is Ep.h/ D Cmgh (Fig. 2.37a). The work ap-
plied to the mass m appears as potential energy.

Ep

Ep= m⋅g⋅h

F=m⋅g

Ep=0 r=R

h

0

(r=∞)=0

F=–G⋅
m⋅M
r 2 ⋅r

Ep=–G ⋅
m⋅M

R

=–m⋅g⋅R

∧

a) b)

Figure 2.37 a Approximately homogeneous gravitational force field
as small section of the spherical field of the earth in b. The selection of
the definition Ep D 0 is Ep .z D 0/ D 0 in case a and Ep .r D 1/ D 0
for case b

2. In an attractive force field, such as the gravitational
field of the earth F D �.GMm=r2/er a mass m is
moved from r D R (earth surface) to r D 1. In this
case is F � dr < 0. The necessary work is negative:

W D �
1Z

r

GMm

r2
Ordr D �

1Z

r

GMm

r2
dr

D �GMm

r
D Ep.r/ :

(2.35e)
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Ep.r/ is negative because E.r D 1/ D 0. To raise the
mass m work has to be applied, which is converted to
the increase of potential energy (Fig. 2.37b).
For repulsive potentials (e.g. the Coulomb potential of
two positive electrical charges q1 and q2)

F D .q1 � q2=r2/er

the potential energy is positive and one wins work
when the charge separation increases, while the po-
tential energy decreases.
When a body with mass m should be moved from the
earth surface r D R to r D 1 one needs the work
W D �GMm=R. With g D GM=R2 this can be written
as W D �mgR.
Numerical example: With g D 9:81 m=s2, R D
6371 km, the work to launch a mass of 100 kg is
W D 6:25 � 109 J D 1736 kWh. J

2.7.4 Energy Conservation Law in Mechanics

Multiplying the Newton equation

F D m � dv

dt

scalar with the velocity v and integrating over time yields

Z
F � vdt D m

t1Z

t0

dv

dt
� v dt : (2.36)

The integral on the left hand side gives with v D dr=dt

Z
F � vdt D

P1Z

P0

F � dr D Ep.P0/ � Ep.P1/ ;

where the last equality is valid for conservative force fields.

The right hand side of (2.36) gives

m �
Z

dv

dt
� v dt D m

v1Z

v0

v � dv D m

2
v2

1 � m

2
v2

0 :

The expression

Ekin D mv2=2 (2.37)

is called the kinetic energy of a body with mass m and velocity
v D jvj.
The integral

R
F � dr represents the work W which is supplied to

the body. The statement of Eq. 2.36 can therefore be formulated
as:

�Ekin D �W : (2.38a)

The increase of kinetic energy of a body is equal to the
work supplied to this body.

In conservative force fields
R

F � dr is equal to the change of
potential energy. Then Eq. 2.36 states:

Ep.P0/C Ekin.P0/ D Ep.P/C Ekin.P/ D E : (2.38b)

When a body is moved in a conservative force field from
a point P0 to a point P the total mechanical energy E (sum
of potential and kinetic energy) is conserved, i. e. it has for
all positions in the force field the same amount.

Examples

1. For the free fall starting from z D h with the velocity
v.h/ D 0 we choose Ep.h D 0/ D 0. For arbitrary z

the following equations hold:

Ep.z/ D �
zZ

0

�mgdz D mgz :

With v D g � t and s D h � z D 1
2 gt2 ! 1

2v
2 D

1
2 g2t2 D g.h � z/ (see Sect. 2.3).
This gives

Ekin.z/ D 1
2 mv2 D m � g � .h � z/ :

The sum Ep.z/ C Ekin.z/ D mgh is independent of z

and for all z equal to the total energy E D mgh.
2. A body with mass m oscillates in the x-direction,

driven by the force F D �D � x. For each point of its
path the total energy is E D Ep.x/C Ekin.x/ D const.
For x D 0 the potential energy is zero. In the upper
turning points for x D ˙xm the velocity is zero and
therefore Ekin D 0. (Fig. 2.38).

Figure 2.38 Example of energy conservation for a harmonic motion

The oscillation can be described by

x D xm sin!t ! v D dx=dt D xm! cos!t :

The potential energy is Ep D
R

Dxdx D 1
2 Dx2 D

1
2 Dx2

m sin2 !t. The kinetic energy is Ekin D 1
2 mv2 D
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1
2 m � x2

m!
2 cos2 !t. From the Newton equation F D

ma D m � d2x=dt2 we obtain by comparison with
F D �Dx the relation D D m � !2. Inserting this
into the expression for the potential energy we get

E D Ep C Ekin D 1
2 mx2

m!
2.sin2 !t C cos2 !t/

D 1
2 m � x2

m!
2 ;

which is independent of x. J

2.7.5 Relation Between Force Field and
Potential

If a body in a conservative force field is moved from the point P

by an infinitesimal small distance�r to a neighbouring point P0

(Fig. 2.39) the potential energy changes by the amount

�Ep D @Ep

@x
�x C @Ep

@y
�y C @Ep

@z
�z ; (2.39)

where the partial derivative @E=@x means that for the differen-
tiation of the function E.x; y; z/ the two other variables are kept
fixed (see Sect. 13.1.6).

The movement of the body from P to P0 requires the work

�W D F ��r D ��Ep ; (2.40)

where F is an average of F.P/ and F.P0/. The comparison be-
tween (2.39) and (2.40) yields

F�r D Fx�x C Fy�y C Fz�z

D �@Ep

@x
�x � @Ep

@y
�y � @Ep

@z
�z :

Since this equation holds for arbitrary paths, i. e. arbitrary values
of �x, �y, �z it follows that

Fx D �@Ep

@x
I Fy D �@Ep

@y
I

Fz D �@Ep

@z
:

(2.41)

Figure 2.39 Relation between force and potential

Defining the gradient of the function Ep.x; y; z/ as

gradEp
DefD
�
@Ep

@x
;
@Ep

@y
;
@Ep

@z

�
; (2.42)

the relations (2.41) for the components of F can be combined
into the vector equation

F D �gradEp D �rEp ; (2.41a)

where the symbol r D nabla (r has the form of an old Egyptian
string instrument called nabla) is an abbreviation to make the
equation more simple to write.

The potential energy Ep of a body with mass m in the gravita-
tional field of a mass M depends on both masses. However, for
m � M (for instance a mass m in the gravitational field of the
earth with M � m) the small contribution of m to the gravi-
tational field can be neglected. In such cases it is possible to
define a function V.P/ for each point P, called the gravitational
potential

V.P/
DefD lim

m!0

�
1

m
Ep.P/

�
I (2.42a)

which is the potential energy pro unit mass m in the limit of
m ! 0 in the gravitational field of M. V.P/ is a scalar function
which depends only on the position of P and on the mass M that
generates the gravitational field.

The gravitational potential of the earth is for instance

V.r/ D �G � ME=r ;

where r is the distance from the centre of the earth.

The gravitational field strength is defined as

G D �gradV : (2.43)

The force on a mass m is then

FG D �m � G : (2.44)

For the gravitational field of a spherical symmetric mass M one
obtains

G D G
M

r2
Or ; (2.43a)

and for the force on a body with mass m in this field Newton’s
gravitational law

FG D �G
m � M

r2
Or : (2.44a)

These definitions are completely equivalent to their pendants in
electrostatics: The electrical potential of an electric charge Q

and the Coulomb law (see Vol. 2, Sect. 1.3).



2.8 Angular Momentum and Torque 63

C
h

a
p

te
r

2

2.8 Angular Momentum and Torque

Assume a point mass moving with the momentum p D m � v

on an arbitrary path r D r.t/ (Fig. 2.40). We define its angular

momentum L with respect to the coordinate origin r D 0 as the
vector product

L D .r � p/ D m � .r � v/ : (2.45)

Note, that L is perpendicular to r and v!

In Cartesian coordinates L has the components (see Sect. 13.4)

Lx D ypz � zpy I Ly D zpx � xpz I
Lz D xpy � ypx :

(2.46)

If the body moves in a plane but on an arbitrarily curved path
we can compose the velocity in any point of the path of a radial
component vr k r and a tangential component v' ? r using
polar coordinates r and ' (Fig. 2.40). This gives the relations:

L D m � Œr � .vr C v'/�

D m � .r � v'/ because r � vr D 0 :

The value of L is

jLj D m � r2 � d'

dt
because jr � v' j D r2 � d'

dt
D r2 � ! :

These equations describe the following facts:

For planar motions the angular momentum L always
points into the direction of the plane-normal perpendic-
ular to the plane (Fig. 2.40). The vector product (r � v)
forms a right-handed screw.

When the angular momentum is constant, the motion proceeds
in a plane perpendicular to the angular momentum vector.

Figure 2.40 Angular momentum L referred to an arbitrarily chosen origin 0

for a plain motion of a point mass m

Example

For the uniform circular motion the constant angular mo-
mentum points into the direction of the axis through the

circle centre perpendicular to the circular plane, i. e. into
the direction of the angular velocity vector ! (Fig. 2.41).

jLj D L D m � r � v � sin.r; v/ D m � r � v D m � r2 � ! :

sin.r; v/ D 1 because r ? v : (2.47)

For the uniform circular motion is r D constant and v D
constant ! L D constant.

Figure 2.41 Constant angular momentum of the uniform circular mo-
tion J

Differentiating (2.45) with respect to time we obtain

dL

dt
D
�

dr

dt
� p

�
C
�

r � dp

dt

�

D .v � p/C .r � Pp/ D .r � Pp/; because v k p ;

dL

dt
D .r � F/; because F D dp

dt
:

(2.48)

The vector product

D D .r � F/ (2.49)

is the torque of the force around the origin r D 0 acting on the
mass m at the position r. Equation 2.48 can then be written as

dL

dt
D D : (2.49a)

The change of the angular momentum L with time is equal
to the torque D.

In other words: If the torque on a mass is zero, its angular mo-
mentum remains constant.

Note the equivalence between linear momentum p and angular
momentum L:

dp

dt
D F;

dL

dt
D D ; (2.50)

p D constant for F D 0 and L D constant for D D 0.

In central force fields F.r/ D f .r/ � Or the torque D D r � F D 0

because F k r. Therefore the angular momentum is constant
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Figure 2.42 Illustration of angular momentum of a body moving on a straight
line with respect to a point P which does not lie on the straight line

for all motions in a central force field. This implies that all

trajectories are in a plane, perpendicular to the angular mo-

mentum vector.

Note: Angular momentum and torque are always defined with

respect to a selected point (for instance the origin of the coor-
dinate system). Even a body moving on a straight line can have
an angular momentum with respect to a point, which is not on
the straight line.

In Fig. 2.42 the amount L of the angular momentum L of the
mass m moving with the constant velocity v on a straight line is
with respect to the point P

L D m � r � v � sin# D m � b � v

where b (called the impact parameter) is the perpendicular dis-
tance of P from the straight line.

2.9 Gravitation and the Planetary
Motions

In the previous section we have learned that in central force
fields the angular momentum L is constant in time. The mo-
tion of a body therefore proceeds in a plane perpendicular to L.
The orientation of the plane is determined by the initial condi-
tions (for instance by the initial velocity v0) and is then fixed for
all times. The most prominent example are the motions of the
planets in the central gravitational field of the sun which we will
now discuss.

2.9.1 Kepler’s Laws

Based on accurate measurements of planetary motions (in par-
ticular the motion of Mars) by Tycho de Brahe (Fig. 2.43)
Johannes Kepler (Fig. 2.44) could show, that the heliocentric
model of Copernicus allowed a much simpler explanation of the
observations than the old geocentric model of Ptolemy where
the earth was the centre and the planets moved around the earth
in complex trajectories (epicycles).

Kepler assumed at first circular trajectories because such mo-
tions seemed to him as perfect in harmony with God’s creation.
However, this assumption led to small inconsistencies between

Figure 2.43 Tycho de Brahe (1546–1601) (with kind permission of “Deutsches
Museum”)

Figure 2.44 Johannes Kepler (1571–1630) (with kind permission of
“Deutsches Museum”)
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Figure 2.45 Initial model of Kepler illustrating the location of the planets at
the corners of regular geometric figures (with kind permission of Prof. Dr. Ron
Bienek)

calculated and observed motions of the planets which exceeded
the error limits of the observations. After a long search with
several unsuccessful models (for instance a model where the
planets were located at the corners of symmetric figures which
rotate around a centre (Fig. 2.45). Kepler finally arrived at his
famous three laws which were published in his books: Astrono-

mia Nova (1609) and Harmonices Mundi Libri V (1619).

Kepler’s first law

The planets move on elliptical trajectories with the sun in
one of the focal points (Fig. 2.46).

Kepler’s second law

The radius vector from the sun to the planet sweeps out in
equal time intervals equal areas (Fig. 2.47).

Kepler’s third law

The squares of the full revolution times Ti of the different
planets have the same ratio as the cubes of the large half
axis ai of the elliptical paths.

T2
1=T2

2 D a3
1=a3

2 or T2
i =a3

i D constant ;

where the constant is the same for all planets.

The 2. Kepler’s law tells us that the areas Ai in Fig. 2.47 is for
equal time intervals �t always the same, i. e. the area A1 D
SP.t1/P.t1 C �t/ D A2 D SP.t2/P.t2 C �t/. For sufficiently
small time intervals dt we can approximate the arc length ds D
P1P2 D vdt in Fig. 2.48b by the straight line P1P2. The area of

Figure 2.46 Kepler’s first law

ϕ

Figure 2.47 Kepler’s second law. S: sun, ®: center of ellipse

the triangle SP1P2 is then

dA D 1
2 � jr � vj D 1

2 jrj � jvj � sin˛ D 1
2 � jLj

m
: (2.51)

Kepler’s second law therefore states that the angular momentum
of the planet is constant. Kepler’s first law postulates that the
motion of the planets proceeds in a plane. Since the angular
momentum is perpendicular to this plane it follows that also the
direction of L is constant.

Figure 2.48 Kepler’s second law as conservation of angular momentum.
a schematic representation of the equal area law. b calculation of the area
covered by the radius vector in the time interval dt
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2.9.2 Newton’s Law of Gravity

Newton came to the conclusion that the free fall of a body as
well as the motion of the planets have a common cause: the
gravitational attraction between two masses. In order to find a
quantitative formulation of the gravitational force he started his
considerations with Kepler’s laws. Since the angular momentum
of the planetary motion is constant the force field has to be a
central force field

F.r/ D f .r/ � Or :
The gravitational force which acts on a body with mass m at the
surface of the earth with mass M (which is equal to its weight)
is proportional to m. According to the principle actio D reactio

and also because of symmetry principles the equal but opposite
force acting on M should be also proportional to the mass M of
the earth (Fig. 2.25). It is therefore reasonable to postulate that
the gravitational force is proportional to the product m � M of the
two masses. We therefore can write for the force between two
masses m1 and m2

Fg D G � m1 � m2 � f .r/ � Or : (2.52a)

The proportionality factor G is the Newtonian gravitational con-

stant.

The function f .r/ can be determined from Kepler’s third law.
Since (2.52a) must be also valid for circular orbits we obtain for
the motion of a planet with mass m around the sun with mass
Mˇ the equation

G � m � Mˇ � f .r/ D m � !2 � r ; (2.52b)

because the gravitational force is the centripetal force which
causes the circular motion of the planet with the angular velocity
! D v=r. The revolution period of the planet is T D 2�=!. For
the orbits of two different planets Kepler’s third law postulates:

T2=r3 D const :

With ! D 2�=T this gives !2 � r3 D const or !2 � r�3.

Inserting this into (2.52b) yields f .r/ � r�2.

We then obtain Newton’s law of gravity

Fg.r/ D �G � m � Mˇ
r2

Or : (2.52c)

The minus sign indicates that the force is attractive.

The gravitational force

F.r/ D �G � m1 � m2

r2
Or

acts not only between sun and planets but also between arbitrary
masses m1 and m2 separated by the distance r. However, the
force between masses realized in the laboratory is very small

and it demands special very sensitive detection techniques in
order to measure it. The gravitational constant G can be deter-
mined from such experiments in the lab. Among all physical
constant it is that with the largest uncertainty. Therefore many
efforts are undertaken to determine G with new laser techniques
which should improve the accuracy [2.5a–2.5b]. The present
accepted numerical value is

G D 6:67384.80/ � 10�11 N � m2=kg2

with a relative uncertainty of 1:2 � 10�4.

Note: The gravitational force is always attractive, never repul-
sive! This differs from the static electric forces between two
charges Q1 and Q2

F.r/ � Q1 � Q2=r2C ;

which can be attractive or repulsive, depending on the sign of
the charges Qi.

2.9.3 Planetary Orbits

Since the gravitational force field is conservative the sum of po-
tential and kinetic energy of a planet is constant. Because it is a
central field also the angular momentum L D r � p is constant.
This can be used to determine the orbit of a planet which pro-
ceeds in a plane with constant orientation perpendicular to L.
We use polar coordinates r and ' with the centre of the sun as
coordinate origin (Fig. 2.49).

The kinetic energy is

Ekin D m

2
v2 D m

2

�
v2

r C v2
'

�

D m

2

�
Pr2 C r2 P'2

�
:

(2.53)

The amount L D jLj of the angular momentum L is

L D mr2 P' D const : (2.54)

Figure 2.49 Elliptical orbit in Cartesian and in polar coordinates
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Conservation of energy demands

Ep C m

2
Pr2 C L2

2mr2
D E D const ; (2.55)

where E and L2 are temporally constant. Resolving (2.55) for
dr=dt gives

dr

dt
D
s

2

m

�
E � Ep � L2

2mr2

�
: (2.56)

For the angular variable '.t/ one gets from (2.54)

d'

dt
D L

mr2
: (2.57)

Division of (2.57) by (2.56) yields

d'

dr
D L

mr2

�
2

m

�
E � Ep � L2

2mr2

���1=2

;

integration gives

Z
d' D ' � '0

D L

m

Z
dr

r2
q

2
m

�
E � Ep � L2=.2mr2/

� :
(2.58)

This allows to get the polar representation of the orbit in the
following way:

With Ep D �G �M �m=r the integral in (2.58) belongs to the type
of elliptical integrals with the solution for the initial condition
'.0/ D '0 D 0 (see integral compilation [2.6a–2.6b]):

' D arccos

 
L2=r � Gm2Mp

.Gm2M/2 C 2mE � L2

!
: (2.59)

With the abbreviations

a D �GmM

2E
and " D

s

1 C 2EL2

G2m3M2
; (2.59a)

Eq. 2.59 can be written as

' D arccos
�

a.1 � "2/ � r

" � r

�
: (2.59b)

Solving for r gives

r D a
�
1 � "2

�

1 C " � cos'
: (2.60)

This is the equation of a conic section (ellipse, hyperbola or
parabola) in polar coordinates with the origin in the focal point
S Œ2W6�. The minimum distance rmin D a.1 � "/ is obtained
for cos' D C1, the maximum distance rmax D a.1 C "/ for
cos' D �1. For the shortest distance (perihelion) and the

largest distance (Aphelion) from the sun the derivative dr=dt D
0. Inserting this into (2.56) gives

E � GmM

r
� L2

2m � r2
D 0 :

The solutions of this equation are

rmin;max D �GmM

2E
˙
�

G2m2M2

4E2
C L2

2mE

�1=2

: (2.61)

We distinguish between three cases:

a) E < 0.
For E < 0 is the constant a D �GmM=.2E/ > 0 and " < 1.
The orbit is an ellipse with the major axis a and the excen-
tricity ". This can be readily seen from (2.60), when the
transformation � D r � cos' and � D r � sin ' to Cartesian
coordinates with the origin in the focal point S is applied.
This gives

a
�
1 � "2

�
� "� D

p
�2 C �2 : (2.61a)

When we shift the origin f0; 0g from S into the centre of the
ellipse with the transformation x D � C a" and y D � we
obtain from (2.61a) the well-known equation for an ellipse
in Cartesian coordinates

x2

a2
C y2

b2
D 1 with b2 D a2

�
1 � "2

�
: (2.61b)

For the special case " D 0 ) a D b the orbit becomes a
circle with r D const. From (2.54) it follows because of L D
const that d'=dt D const the planet proceeds with uniform
velocity around the central mass M.

For a negative total energy E < 0 the planet proceeds
on an elliptical orbit (Kepler’s first law).

b) E D 0.
For E D 0 one immediately obtains from (2.59)

r D L2

Gm2M.1 C cos'/
: (2.62)

This is the equation of a parabola [2.6a, 2.6b] with the mini-
mum distance rmin D L2=.2Gm2M/ from the focal point for
' D 0.

c) E > 0.
Since in (2.61) the distance r has to be positive .r > 0/ for
E > 0 only the positive sign before the square root is possi-
ble. Therefore only one rmin exists and the orbit extends until
infinity .r D 1/. For E > 0 ) " > 0 (see (2.59a)). The
orbit is a hyperbola.

In Tab. 2.1 the relevant numerical data for all planets of our so-
lar system are compiled, where the earth moon is included for
comparison.
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Table 2.1 Numerical values for the orbits of all planets in our solar system. The earth moon is included for comparison

Name Symbol Large semi axis a of orbit Revolution
period T

Mean
velocity

Numerical
excentricity

Inclination
of orbit

Distance from earth

In AU In
106 km

In light
travel time t

In km s�1 Minimum
in AU

Maximum
in AU

Mercury � 0.39 57.9 3:2 min 88 d 47.9 0.206 7:0ı 0.53 1.47
Venus � 0.72 108.2 6:0 min 225 d 35.0 0.007 3:4ı 0.27 1.73
Earth � 1.00 149.6 8:3 min 1:00 a 29.8 0.017 – – –
Mars � 1.52 227.9 12:7 min 1:9 a 24.1 0.093 1:8ı 0.38 2.67
Jupiter � 5.20 778.3 43:2 min 11:9 a 13.1 0.048 1:3ı 3.93 6.46
Saturn � 9.54 1427 1:3 h 29:46 a 9.6 0.056 2:5ı 7.97 11.08
Uranus � 19.18 2870 2:7 h 84 a 6.8 0.047 0:8ı 17.31 21.12
Neptun � 30.06 4496 4:2 h 165 a 5.4 0.009 1:8ı 28.80 31.33
Earth moon 	 0.00257 0.384 1:3 s 27:32 d 1.02 0.055 5:1ı 356410 km 406740 km

Figure 2.50 Inclination angles of the orbital planes for the different planets
against the earth ecliptic

Remark.

1. Pluto is since 2006 no longer a planet but is now listed
according to a decision of the International Astronomical
Union in the group of dwarf planets. To this group also be-
long Ceres, Eris and about 200 additional dwarf planets in
the Kuiper belt far beyond the orbit of Neptune.

2. The orientation of the orbital plane of a planet depends on
the initial conditions when the solar system was created from
a rotating gas cloud [2.7]. Since these initial conditions
were different for the different planets the orbital planes
are slightly inclined against each other (Fig. 2.50). Fur-
thermore the gravitational interaction between the planets is
small compared to the interaction with the sun, but not com-
pletely negligible. This disturbes the central force field and
leads over longer time periods to a change of the orientation
of the orbital planes.

3. For more accurate calculations (which are necessary for as-
tronomical predictions) one has to take into account that the
sun is not exactly located in a focal point of the ellipse. Be-
cause Mˇ is not infinite, the sun and the planets move around
the common centre of mass, which is, however, not far away
from the focal point because Mˇ � m [2.8]. For more ac-
curate calculations one has to replace the mass m of a planet
by the reduced mass � D m � Mˇ=.m C Mˇ/ (see Sect. 4.1)
where Mˇ is 700 times larger than the mass of all planets
.Mˇ � 700 � Pmi/. The constant a in Eq. 2.60 has to be

replaced by

a D �G�M

2E
D � GmM2

2E � .m C M/
:

4. For the accurate calculation of the planetary orbits one has to
take into account the interactions between the planets. Be-
cause of the small deviations from a central force field the
angular momentum is no longer constant but shows slight
changes with time.

5. Most of the comets have been formed within our solar sys-
tem. They therefore have a negative total energy E < 0 and
move on elongated elliptical orbits with a � b.

2.9.4 The Effective Potential

The radial motion of a body in a central force field, i. e. the so-
lution of Eq. 2.56, can be illustrated by the introduction of the
effective potential.

We decompose the kinetic energy in (2.53) into a radial part
.m=2/Pr2 which represents the kinetic energy of the radial mo-
tion, and an angular part 1

2 m � r2.d'=dt/2 which stands for the
kinetic energy of the tangential motion at a fixed distance r. The
second part can be expressed by the angular momentum L

Etan
kin D 1

2
mr2 P'2 D L2

2mr2
(2.63)

(see (2.55)). Since for a given constant L this part depends only
on r but not on the angle ' or on the radial velocity Pr, it is added
to the potential energy Ep, which also depends only on r. The
sum

Eeff
p D Ep.r/C L2

2mr2
(2.64)

is the effective potential energy. Often the effective potential

Veff
p D Eeff

p =m

is introduced which is the potential energy per mass unit. The
part L2=.2 m � r2/ is called the centrifugal potential energy
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Figure 2.51 Effective potential energy E eff
p .r/ as the sum of potential energy

and centrifugal energy

and L2=.2 m2r2/ the centrifugal potential, while the radial part
Ep.r/=m is the radial potential.

The kinetic energy of the radial motion is then

Erad
kin D 1

2 mPr2 D E � Eeff
p ; (2.65)

where E is the constant total energy.

In the gravitational force field is

Eeff
p D �G � mM

r
C L2

2mr2
: (2.66)

Both parts are depicted in Fig. 2.51. The centrifugal-term Ez

decreases with increasing r as 1=r2 and is for large r negligible
while for small values of r it can overcompensate the negative
radial part to make the total energy positive.

The minimum of Eeff
p is obtained from dEeff

p =dr D 0. This gives

r0 D L2

Gm2M
: (2.67)

The kinetic energy of the radial motion Ekin.r/ D E � Eeff
p .r/

at the distance r from the centre is indicated in Fig. 2.51 as the
vertical distance between the horizontal line E D constant and
the effective potential energy. The body can only reach those
intervals �r D rmin � rmax of r where E � Eeff

p > 0.

These intervals depend on the total energy E, as is illustrated in
Fig. 2.51.

E < 0 but Erad
kin

> 0. (horizontal line 1)
The body moves between the points A.rmin/ and B.rmax/.
They correspond to the radii r D a.1 ˙ "/ for the motion
of planets on an ellipse around the sun.
E < 0 but Erad

kin
D 0 (horizontal line 2)

The orbital path has a constant radius r0, which means it is a
circle. In the diagram of Fig. 2.51 the body always remains
at the point M in the minimum of Eeff

p .

E > 0 and Erad
kin < jEeff

p .r D 1/j (horizontal line 3)
The body has the minimum value of r in the point C, where
Erad

kin D 0. It can reach r D 1. Its orbit is a hyperbola.
E D 0

From (2.65) it follows that Erad
kin D �Eeff

p . The body reaches
the minimum distance rmin in the point D on the curve E.r/.
Here is Erad

kin D 0 and Eeff
p D 0. It can reach r D 1, where

Erad
kin D 0. The orbit is a parabola.

2.9.5 Gravitational Field of Extended Bodies

In the preceding sections we have discussed the gravitational
field generated by point masses. We have neglected the spatial
extension of the masses and have assumed that the total mass
is concentrated in the centre of each body. This approximation
is justified for astronomical situations because the distance be-
tween celestial objects is very large compared to their diameter.

Example

The radius of the sun is Rˇ D 7 �108 m, the mean distance
sun–earth is r D 1:5 �1011 m, i. e. larger by the factor 210!

J

We will now calculate the influence of the spatial mass distribu-
tion on the gravitational field. We start with the field of a hollow
sphere in a point P outside the sphere (Fig. 2.52). The hollow
sphere should have the radius a and the wall-thickness da � a.

A disc with the thickness dx cuts a circular ring with the breadth
ds D dx= sin# and the diameter 2y. The mass of this ring (thick-
ness da and breadth ds) is for a homogeneous mass density %

dM D 2�y% � ds � da

D 2�a � % � dx � da because y D a � sin# :

All mass elements dM of this ring have the same distance to the
point P. Therefore the potential energy of a small probe mass m

in the gravitational field generated by dM is

dEp D �G � m � dM=r D �G � m � 2�a � % � da � dx=r :

Figure 2.52 Potential and gravitational field-strength of a hollow sphere
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Figure 2.53 Potential energy of a sample mass m and gravitational field
strength in the gravitational field of a hollow sphere with mass M

The gravitational field of the total mass M is obtained by inte-
grating over x from x D �a to x D Ca.

Ep D �2�%Gma � da

CaZ

xD�a

dx

r
: (2.68)

From Fig. 2.52 the relations

r2 D y2 C .R � x/2 D y2 C x2 C R2 � 2Rx

D a2 C R2 � 2RxI r dr D �R dx

can be verified. This yields

Ep D 2�%a da � m

R
G

R�aZ

rDRCa

dr

D �G � m � M

R
;

(2.69)

because M D 4�a2 � %da is the mass of the hollow sphere.

The gravitational force on the mass m is

FG D �gradEp

D �dEp

dR
OR D �G � m � M

R2
� OR :

(2.70)

The gravitational field of a hollow sphere with mass M is outside
the sphere exactly the same as if the mass M is concentrated in
the centre of the sphere (Fig. 2.53).

For R < a the calculation proceeds in the same way. Only the
upper limit of the integration changes. For x D Ca the limit
becomes r D a � R as can be seen from Fig. 2.52. With

rDa�RZ

rDaCR

dr D �2R

the potential energy becomes

Ep D �G
m � M

a
D const for R � a : (2.71)

The gravitational force in the inner volume of the hollow sphere
is then

F D �gradEp D 0 for R < a : (2.72)

In the inner volume of the hollow sphere there is no gravitational
field. The force on a test mass m is zero. The contributions
from the different parts of the hollow sphere cancel each other.
In Fig. 2.53 the potential energy Ep.R/ and the force F.R/ are
shown inside and outside of the hollow sphere.

A homogeneous full sphere can be composed of many concen-
tric hollow spheres. Its mass is

M D
R0Z

aD0

% � 4�a2da :

For a test mass outside the sphere .R > R0/ we obtain from
(2.69)

Ep D �G
4�

R
%m

R0Z

0

a2 da D �G
4�

3R
R3

0%m

D �G
m � M

R
:

(2.71a)

For a point inside the sphere .R < R0/ we perform the integra-
tion in two steps over the ranges 0 � a � R and R � a � R0.
From the Eqs. 2.71 and 2.71a the potential energy can be derived
as

Ep D �4�%Gm

2
4

RZ

aD0

a2 da

R
C

R0Z

aDR

a da

3
5

D �4�%Gm

�
R2

3
C 1

2
R2

0 � 1

2
R2

�
I

(2.73)

since M D .4=3/ � %�R3
0 this becomes

Ep D GMm

2R3
0

�
R2 � 3R2

0

�
: (2.74)

The physical meaning of the two steps for the integration is
the following: For a test mass in the point P(R) only the mass
elements of the sphere with r � R contribute to the total gravi-
tational force while the contributions of all mass elements with
r � R exactly cancel each other. The second term in (2.73) gives
a constant part to the potential energy and therefore no contri-
bution to the force. From (2.71) and (2.74) one obtains the force
(Fig. 2.54 lower part)

F D �G
Mm

R2
Or for R � R0

F D �GMm

R3
0

ROr for R � R0 :
(2.75)

Remark. The earth is not a sphere with homogeneous density

1. Because it is an oblate spheroid due to the rotation of the
earth which deforms the plastic earth crust [2.10].
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Figure 2.54 Potential energy Ep and gravitational force F of a sample mass m
in the gravitational field of a full sphere with mass M

2. Because the density increases towards the centre. Therefore
the mass M.R/ inside a sphere with radius R < R0 increases
with R only as Rn (with n < 3, Fig. 2.55). The earth accel-
eration g measured in a deep well therefore decreases with
rq.q < 1/ [2.11].

Figure 2.55 a Radial cut through the earth showing the different layers. b ra-
dial density function %.r/

North pole

South pole

Equator

Figure 2.56 The shape of the earth as geoid. The deviation of the geoid from
a spheroid with .a � b /=a D 1=298:25 (dotted curve ) is shown 80 000 times
exaggerated. Even the geoid gives only the approximate shape of the real earth

3. The mass distribution is not exactly spherical symmetric.
The gravitational field of the earth is therefore not exactly
a central force field. This implies that the angular momen-
tum of a satellite, orbiting around the earth is not really
constant. Measurements of the change of the orbital plane
with time (the position r.t/ of a satellite can be determined
with RADAR techniques with an uncertainty of a few cm!)
allows the determination of the mass distribution %.#; '/ in
the earth [2.9a, 2.9b].

4. The equipotential surfaces of the earth form a geoid

(Fig. 2.56). One of these surfaces, which coincides with the
average surface of the oceans is defined as the normal zero
surface. All heights on earth are given with respect to this
surface.

2.9.6 Measurements of the Gravitational
Constant G

Measurements of the planetary motions allow only the determi-
nation of the product G�Mˇ of gravitational constant G and mass
of the sun. The absolute value of G has to be measured by labo-
ratory experiments. Such experiments were at first performed
1797 by Henry Cavendish and later on repeated by several
scientists with increased accuracy [2.12a–2.14], where Lorand

Eötvös (1848–1919) was especially of high repute because of
his very careful and extensive precision experiments [2.2].

Most of these experiments use a torsion balance (Fig. 2.57). A
light rod (1) with length 2L and two small lead balls with equal
masses m hangs on a thin wire. Two large masses M1 D M2 D
M are placed on a rotatable rod (2), which can be turned to the
two positions (a) or (b). Due to the gravitational force between
m and M the light rod (1) is clockwise turned for the position (a)
and counter-clockwise for the position (b) by an angle ' where
the retro-driving torque

Dr D �

2
G� d4

16l
� ' (2.76)
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Mirror

Laser

Scale

Figure 2.57 Eötvös’ torsion balance for measuring Newton’s gravitational
constant G

of the twisted wire just compensates the torque with the amount
2L � Fg generated by the gravitational forces

Fg D G � m � M

r2
D G � 16�2

9r2
%2R3

1R3
2 : (2.77)

Here G� is the torsion module of the wire, d its diameter and
l its length, % the mass density of the spheres, R1 and R2 their
radii and r the distance between their centres. In the equilibrium
position, where the two torques cancel, we have the condition
Dr D 2L � Fg. This gives for the gravitational constant

G D 9G�

64�

r2.d=2/4

l � L � %2R3
1R3

2

��' : (2.78)

In order to maximize the force Fg, the density % should be as
high as possible, because the distance r between the masses m

and M cannot be smaller than rmin D R1 CR2. The measurement
of ' is performed by placing a mirror at the turning point of the
rod with the masses m, which reflects a laser beam by an angle
2'. On a far distant scale the deflection of the laser spot is a
measure for the angle '.

The most accurate measurement proceeds as follows: The
masses M are turned into the position (a). The system now per-
forms oscillations around the new equilibrium position '1 which
can be determined as the mean of the turning points of the os-
cillations. Now the masses M are turned into the new position
(b). Again oscillations start around the new equilibrium posi-
tion '2, which is determined in the same way. The difference
�' D '1 � '2 than gives according to (2.78) the gravitational
constant G.

Equation 2.78 tells us, that the diameter d of the wire should be
as small as possible. New materials, such as graphite compos-
ites, have a large tear strength. They can carry the masses m

even for small values of d. This increases the sensitivity.

Mirror

z Uper turning

point

Atomic cloud

Atomic cloud

Tungsten mass

upper position

Lower position

Vacuum tube

Atomic trap

Laser beam

Figure 2.58 Atom interferometer for the measurement of the Newtonian grav-
itational constant G [2.13b]

In recent years new methods for measuring G have been devel-
oped. Most of them are based on optical techniques. We will
just discuss one of them: A collimated beam of very cold atoms
(laser-cooled to T < 1 µK) is sent upwards through an evacuated
tube (Fig. 2.58). At the heights z D h where 1

2 mv2 D mgh they
reach their turning point where they fall down again. A large
tungsten mass surrounds the tube and can be shifted upwards or
downwards. Above the mass the atoms experience during their
upwards motion an acceleration �.g C �g/ due to the gravita-
tional attraction by the earth .g/ and the mass .�g/. Below the
mass their acceleration is �.g � �g/. These accelerations are
measured via atom interferometry [2.13b].

Figure 2.59 gives the results of many experiments in the course
of time, using different measuring techniques. This illustrates,
that the error bars are still large but the differences between the
results of many experiments are even larger, indicating the un-
derestimation of systematic errors. The value accepted today

G D 6:67384.80/m3 kg�1 s�2

is the weighted average of the different measurements where
the number in the brackets give the standard deviation � (see
Sect. 1.8.2). The relative error is 1:2 � 10�4 which illustrates
that among all universal constants G is the one with the largest
uncertainty.

2.9.7 Testing Newton’s Law of Gravity

In order to test the validity of the 1=r2 dependence of the grav-
itational force (2.52) several precision experiments have been
performed [2.13d]. An interesting proposal by Stacey [2.17] is
based on the following principle: In the vertical tunnel within
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BIPm-01
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CODATA 2002

MSL-03

HUST-05

UZur-06

CODATA 2006

HUST-09

JILA-10

CODATA 2010

BIPM-13

THIS WORK

torsion balance

torsion balance

torsion balance

torsion balance

torsion balance

torsion balance

torsion balance

torsion balance

torsion balance

atom interferometry

beam balance

simple pendulum

simple pendulum

Figure 2.59 Results of different measurements of the Newtonian gravitational constant G [2.13b]

a large water reservoir a sensitive gravitation-balance is placed,
where two masses m are hold at different heights, one above the
water level and one below (Fig. 2.60). When the water level is
lowered by �h, the change of the gravitational force differs for
the two masses. For the lower mass it increases by

ıFG D G � m � 2�% ��h (2.78a)

because the water above the mass decreases, while the water
below the mass stays constant. For the upper mass the force
decreases because the distance between the mass and the water
surface increases (see problem 2.34).

There is still an open question concerning the exact validity
of the r�2 dependence in Newton’s gravitation law over astro-

Upper

Lower
waterlevel

Figure 2.60 Possible method for measuring the 1=r2 dependence of the grav-
itational force

nomical distances. Astronomical observations of the rotation of
galaxies showed, that the visible mass distribution in the galaxy
could not explain the differential rotation !.R/ as the function
of the distance R from the galaxy centre, if Newton’s law is as-
sumed to be valid. There are two different explanations of this
discrepancy: Either the 1=r2 dependence of FG is not correct
over large distances, or there exists invisible matter (dark mat-

ter) which interacts with the visible matter only by gravitation
and therefore changes the gravitational force of the visible mat-
ter.

Such very difficult precision experiments have a great impor-
tance for testing fundamental physical laws. There are many
efforts to develop theories which reduce the four fundamental
forces (see Tab. 1.2) to a common origin and to understand more
deeply the difference between energy and matter. One example
of such precision experiments are tests of possible differences
between gravitational and inertial mass as has been performed
by Eötvös 1922 and Dicke 1960 and many other scientists.

Here the inertial mass is measured for different materials by the
oscillation period of a gravitational torsion balance [2.18a]. The
results obtained up to now show that the ratio min=mg of inertial
mass to gravitational mass does not differ from 1 within the error
limits. For two different materials A and B a possible difference

�.A;B/ D Œmin=mg�A � Œmin=mg�B < 10�12

must be very small and lies below the detection limit of 10�12

with the presently achievable accuracy.
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Table 2.2 Mass and mean density of sun, planets and the earth-moon

Planet Symbol Mass=earth mass Mean density %
in 103 kg=m3

Sun 
 3:33 � 105 1.41
Mercury � 0:0558 5.42
Venus � 0:8150 5.25
Earth � 1:0 5.52
Mars � 0:1074 3.94
Jupiter � 317:826 1.314
Saturn � 95:147 0.69
Uranus � 14:54 1.19
Neptun � 17:23 1.66
Moon 	 0:0123 3.34

From the revolution period T D 2�=! of a satellite around the
earth (e.g. the moon or an artificial satellite) the mass M of the
earth can be determined. For a circular motion the gravitational
force is equal to the centripetal force

m � !2 � r D G � mM=r2 :

With the known gravitational constant G and the measured dis-
tance r of the satellite from the earth centre the mass of the earth
is obtained from

M D !2 � r3=G :

The experimental value is

M D 5:974 � 1024 kg :

From measurements of the gravity acceleration g on the earth
surface the equation

m � g D G � m � M=R2

yields the earth radius R. From M and R the mean density % D
3M=.4�R3/ can be derived.

A comparison of the densities of the different planets (Tab. 2.2)
illustrates that the inner planets (Mercure, Venus, Earth and
Mars) formed of rocks have comparable densities around % D
5 g=cm3, while the outer gas planets and the sun have much
lower densities. These differences give hints to the formation
process of our solar system [2.7] (see Volume 4).

2.9.8 Experimental Determination of the Earth
Acceleration g

The most accurate determination of g can be performed by mea-
suring the oscillation period of a pendulum. This pendulum
consist of a sphere with the mass m suspended by a string with
length L (measured between suspension point A and the centre
C of the sphere). If the mas of the string is negligibly small
compared to m and the radius R of the sphere small compared

Figure 2.61 Measuring the free fall acceleration g with a pendulum

with L this device is called a mathematical pendulum. The mo-
tion of the pendulum under the influence of gravity can be best
calculated when the force Fg D m � g is decomposed into the
two components (Fig. 2.61):

a radial component Fr in the direction of the string, which
generates in the string an equal but opposite restoring force.
Since the total force component in this direction is zero, it
does not contribute to the acceleration.
a tangential component Ft D �m � g � sin ' which causes a
tangential acceleration at D �g � sin '.

The pendulum represents an example of a position dependent
force which is not a central force. The angular momentum
is therefore not preserved. However, if the initial velocity for
' ¤ 0 lies in the plane of the components Fr and Ft the motion
remains in this plane. It can be therefore described by planar
polar coordinates z and '. The equation of motion reads

m � g � sin' D �m � L � ' : (2.79a)

Expanding sin' into a Taylor-series

sin ' D ' � '3

3Š
C '7

7Š
� � � � :

The higher order terms can be neglected for small elongations
'. For example is for ' D 10ı D 0:17 rad the term '3=3Š D
8:2�10�4 which means that the second term is already smaller by
the factor 208 than the first term. The error in the approximation
sin' � ' is for ' D 10ı only < 0:5%.

The equation of motion (2.79a) is then in the approximation
sin' � '

R' D �.g=L/' : (2.79b)

With the initial condition '.0/ D 0 the solution is

'.t/ D A � sin.
p

g=L � t/ : (2.80)

The pendulum performs a periodic oscillation with the oscilla-
tion period

T D 2� �
p

L=g : (2.81)

Measuring the time for 100 periods with an uncertainty of 0:1 s
allows the determination of T with an error of 10�3 s. The
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largest uncertainty comes from the measurement of the length
L. The errors for L and T in the determination of

g D 4�2 � L

T2

give a total error of g according to

ˇ̌
ˇ̌�g

g

ˇ̌
ˇ̌ � 2

ˇ̌
ˇ̌�T

T

ˇ̌
ˇ̌C �L

L
:

Example

�T=T D 5 � 10�5, �L=L D 10�3 for L D 1 m. )
�g=g D 1:1 � 10�3. J

For a more accurate solution of (2.79a) we use the energy con-
servation law (see Sect. 2.7), which saves one integration. From
Fig. 2.62 we see that

Ep D m � g � L � .1 � cos'/

Ekin D 1
2 m � v2 D 1

2 mL2 � '2 :

The constant total energy is

E D Ep C Ekin D m

2
L2 P'2 C mgL.1 � cos'/

D mgL.1 � cos'0/ :

Where '0 is the angle at the turning point where Ekin D 0. Solv-
ing for ' gives

d'

dt
D
r

2g.cos' � cos'0/

L
:

Integration yields

s
L

2g

'0Z

'D0

d'p
cos' � cos'0

D
T=4Z

tD0

dt D T=4 : (2.82)

Figure 2.62 Illustration of the integration of the pendulum equation based on
the energy conservation

Figure 2.63 Dependence of the oscillation period on the deflection of the pen-
dulum

With the substitution sin � D sin.'=2/= sin.'0=2/ the integral
can be reduced to an elliptical integral

T D 4
p

L=g

�=2Z

0

d�p
1 � k2sin2�

with k D sin.'0=2/ ;

(2.83)

which can be solved by a Taylor expansion of the inte-
grand [2.18b]. The result is

T.'0/ D 2�

s
L

g

�
1 C 1

16
'2

0 C � � �
�
: (2.84)

For the accurate determination of T the oscillation period is
measured as a function of the elongation '0 and the measured
values are extrapolated towards '0 D 0 (Fig. 2.63).

If the shape of the earth is approximated by a spheroid the de-
pendence of g on the latitude ˇ D 90ı �# can be approximated
by the formula

g.ˇ/ � ge
�
1 C 0:0053024 sin2 ˇ

� 5:8 � 106sin2 2ˇ
� (2.85)

where ge D g.ˇ D 0/ D 9:780327 m=s2 is the earth acceler-
ation at the equator. This formula takes into account, that g is
diminished by the centrifugal acceleration of the rotating earth
which depends on ˇ (see Sect. 3.2). Because of the inhomoge-
neous mass distribution of the earth additional local changes of
g appear which are not considered in (2.85).

Instead of the pendulum nowadays modern gravimeters are used
for the determination of g. These are sensitive spring balances
which had been calibrated with a precision pendulum. The
restoring force F D �D.x � x0/ is determined by measuring
the displacement from the equilibrium position by a calibrated
mass m and gets the local variation of the earth acceleration g

according to [2.19]

m � g D �D.x � x0/ :

Recently two identical satellites were launched which orbit
around the earth on identical paths with an angle distance �'.
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This distance can be measured very accurately (within a few
millimetres) by the time laser pulses need to travel from one
satellite to the other and back. Local variations of the gravity
cause a different local acceleration which changes the distance
d D R ��' between the satellites. This allows the determination
of even tiny changes of the gravity force [2.20a, 2.20b, 2.20c].

Summary

A body with mass m can be described by the model of a point
mass as long as its spatial extensions are small compared to
its distance to other bodies.
The motion of a body is described by a trajectory r.t/, which
the body traverses in the course of time. Its momentary ve-
locity is v.t/ D Pr D dr=dt and its acceleration is a.t/ D
dv=dt D d2r=dt2.
Motions with a.t/ D 0 are called uniform straight-line mo-
tions. Magnitude and direction of the velocity are constant.
For the uniform circular motion the magnitude ja.t/j is con-
stant, but the direction of a.t/ changes uniformly with the
angular velocity !.
A force acting on a freely movable body causes an accelera-
tion and therefore a change of its state of motion.
A body is in an equilibrium state if the vector sum of all act-
ing forces is zero. In this case it does not change its state of
motion.
The state of motion of a body with mass m and velocity v is
defined by the momentum p D m � v.
The force F acting on a body is defined as F D dp=dt

(2. Newton’s law).
For two bodies with masses m1 and m2 which interact with
each other but not with other bodies the 3. Newtonian law is
valid: F1 D �F2 (F1 is the force acting on m1, F2 acting on
m2/.
The work executed by the force F.r/ on a body moving along
the trajectory r.t/ is the scalar quantity W D R

F.r/dr.
Force fields where the work depends only on the initial point
P1 and the final point P2 but not on the choice of the path
between P1 and P2 are called conservative. For such fields
is rot F D 0. All central force fields are conservative.
To each point P in a conservative force field a potential en-
ergy Ep.P/ can be attributed. The work

R
F.r/dr D E.P1/�

E.P2/ executed on a body to move it from P1 to P2 is equal
to the difference of the potential energies in P1 and P2. The
choice of the point of zero energy is arbitrarily. Often one
chooses E.r D 0/ D 0 or E.r D 1/ D 0.
The potential energy E.P/ and the force F.r/ in a conserva-
tive force field are related by F.r/ D �gradEp.
The kinetic energy of a mass m moving with the velocity v is
Ekin D 1

2 mv2.
In a conservative force field the total energy E D Ep C Ekin

is constant (law of energy conservation).
The angular momentum of a mass m with momentum p, re-
ferred to the origin of the coordinate system is L D r � p D
m � .r � v/. The torque acting on a body in a force field F.r/
is D D r � F. It is D D dL=dt.
All planets of our solar system move in the central force field
F.r/ D �G � .m � M=r2/Or of the sun. Therefore their an-
gular momentum is constant. Their motion is planar. Their
trajectories are ellipses with the sun in one focal point.
The gravitational field of extended bodies depends on the
mass distribution. For spherical symmetric mass distribu-
tions with radius R the force field outside the body (r > R)
is exactly that of a point mass, inside the body (r < R) the
force F.r/ increases for homogeneous distributions linearly
with r from F D 0 at the centre r D 0 to the maximum value
at r D R.
The free fall acceleration g of a body with mass m equals the
gravitational field strength G D F=m at the surface r D R of
the earth with mass M. With Newton’s law of gravity g can
be expressed as g D G � .M=R2/Or (G D gravitational con-
stant). It can be determined from the measured oscillation
period T D 2�

p
L=g of a pendulum with length L, or with

gravitational balances.
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Problems

2.1 A car drives on a road behind a foregoing truck (length
of 25 m) with a constant safety distance of 40 m and a constant
velocity of 80 km=h. As soon as the driver can foresee a free
distance of 300 m he starts to overtake. Therefore he accelerates
with a D 1:3 m=s2 until he reaches a velocity of v D 100 km=h.
Can he safely overtake? How long are time and path length of
the overtaking procedure if he considers the same safety dis-
tance after the overtaking? Draw for illustration a diagram for
s.t/ and v.t/.

2.2 A car drives half of a distance x with the velocity v1 D
80 km=h and the second half with v2 D 40 km=h. Estimate and
calculate the mean velocity hvi as the function of v1 and v2.
Make the same consideration if x1 D 1=3x and x2 D 2=3x.

2.3 A body moves with constant acceleration along the x-
axis. It passes the origin x D 0 with v D 6 cm=s. 2 s later it
arrives at x D 10 cm. Calculate magnitude and direction of the
acceleration.

2.4 An electron is emitted from the cathode with a velocity
v0 and experiences in an electric field over a distance of 4 cm a
constant acceleration a D 3 � 1014 m=s2, reaching a velocity of
7 � 106 m=s. How large was v0?

2.5 A body is thrown from a height h D 15 m with an initial
velocity v0 D 5 m=s
a) upwards,
b) downwards.
Calculate for both cases the time until it reaches the ground.
c) Derive Eq. 2.13.

2.6 Give examples where both the magnitude and the di-
rection of the acceleration are constant but the body moves
nevertheless not on a straight line. Which conditions must be
fulfilled for a straight line?

2.7 A car crashes with a velocity of 100 km=h against a thick
tree. From which heights must it fall down in order to experi-
ence the same velocity when reaching the ground? Compare this
with two equal cars with velocities of 100 km=h crashing head
on against each other.

2.8
a) A body moves with constant angular velocity ! D 3 rad=s

on a vertical circle in the x-z-plane with radius R D 1 m in
the gravity field F D f0; 0;�gg of the earth. How large are
its velocities at the lowest and the highest point on the circle?
How large is the difference between the two values? Could
you relate this to the potential energy?

b) A body starts with v0 D 0 from the point A.z D h/ in
Fig. 2.64 on the frictionless looping path. How large are

velocities and accelerations in the points B and C of the cir-
cular path with radius R? What is the maximum ratio R=h to
prevent that the body falls down in B? How large is then the
velocity v.B/?

Figure 2.64 Looping path (Probl. 2.8 b)

2.9 How large is the escape velocity
a) of the moon (d D 384 000 km) in the gravitational field of

the earth?
b) of a body on the surface of the moon in the gravitational field

of the moon?

2.10 What is the minimum fuel mass of a one stage rocket
with a payload of 500 kg for a horizontal launch at the equator
to bring the rocket to the first escape velocity of v1 D 7:9 km=s
when the velocity of the propellant gas relative to the rocket is
ve D 4:5 km=h
a) in the east direction
b) in the west direction?

2.11 Check the energy conservation law for the examples
given in the text. Show, that (2.26) follows directly from the
condition Ekin � Ep, i. e. 1

2 mv2 � m � g � R.

2.12 A rocket to the moon is launched from a point at the
equator. How much energy is saved compared to a vertical
launch, when it is shot in the eastern direction under 30ı against
the horizontal?

2.13 A wooden cylinder (radius r D 0:1 m, heights h D
0:6 m) is vertically immersed in water with 2=3 of its length
which is its equilibrium position. Which work has to be per-
formed when it is pulled out of the water? How is the situation
if the cylinder lies horizontally in the water? How deep does it
immerse?

2.14 A body with mass m D 0:8 kg is vertically thrown up-
wards. In the heights h D 10 m its kinetic energy is 200 J. What
is the maximum heights it can reach?
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2.15 A spiral spring of steel with length L0 D 0:8 m is ex-
panded by the force F D 20 N to a length L D 0:85 m. Which
work is needed to expand the spring to twice its initial length, if
the force is always proportional to the expansion�L D L � L0?

2.16 What is the minimum initial velocity of a body at a ver-
tical launch from the earth when it should reach the moon?

2.17 What is the distance of a geo-stationary satellite from
the centre of the earth? Which energy is needed to launch it?
How accurate has its distance to the earth centre be stabilized in
order to maintain its position relative to a point on earth within
0:1 km=d?

2.18 What is the change of potential, kinetic and total energy
of a satellite when its radius r on a stable circular orbit around
the earth centre is changed? What is the ratio Ekin=Ep? Does
it depend on r? Express the total energy E by m, g, r and the
mass ME of the earth. Are these quantities sufficient or are more
needed?

2.19 Prove, that the force F D m � g � sin ' � et for the math-
ematical pendulum is conservative and that for arbitrary values
of ' conservation of energy Ekin C Ep D const holds.

2.20 Assume one is able to measure the length L D 10 m of
a pendulum within 0:1 mm and the period T within 10 ms. How
many oscillation periods have to be measured in order to equal-
ize the contribution of �L and �T to the accuracy of g? How
large is then the uncertainty of g?

2.21 How much accuracy is gained for the determination of G

with the gravity balance if the large masses M are increased by
a factor of 10? How accurate has the measurement of the angle
' to be in order to determine G with an accuracy of 10�4? Give
some physical reasons for the limits of the accuracy of '.

2.22 The comet Halley has a period of 76 years. His small-
est distance to the sun is 0.59 AU. How large is its maximum
distance to the sun and what is the eccentricity of its elliptical
orbit? Hint: Look for a relation between T and rmin D a.1 � "/
and rmax D a.1 C "/.

2.23 Assume that the gravity acceleration at the equator of
a rotating planet is 11:6 m=s2, the centripetal acceleration a D
0:3 m=s2 and the escape velocity for a vertical launch 23:6 m=s.
At the heights h D 5000 km above the surface is g D 8:0 m=s2.
What are the radius R and the mass M of the planet. How fast is
it rotating? Which planet meets these requirements?

2.24 The gravitational force exerted by the sun onto the moon
is about twice as large as that exerted by the earth. Why is the
moon still circling around the earth and has not escaped?

2.25 Which oscillation period would a pendulum have on the
moon, if its period on the earth is 1 s?

2.26 A vertical straight tunnel is cut through the earth be-
tween opposite points A to B on the earth surface.
a) Show that without friction a body released in A performs a

harmonic oscillation between A and B.
b) What is the oscillation period?
c) Compare this value with the period of a satellite, which cir-

cles around the earth closely above the surface.
d) A straight tunnel is cut between London and New York.

What is the travel time of a train without friction and extra
driving force (besides gravity) which starts in London with
the velocity v0 D 0? How much does the time change, if
v0 D 40 m=s?

2.27 Calculate the distance earth-moon from the period of
revolution of the moon T D 27 d (mass of the earth is M D
6 � 1024 kg).

2.28 Saturn has a mass M D 5:7 � 1026 kg and a mean density
of 0:71 g=cm3. How large is the gravitational acceleration on its
surface?

2.29 How large is the relative change of the gravity acceler-
ation g between a point on the earth surface and a point with
h D 160 km above the surface?

2.30 How large is the change�g of the earth acceleration due
to the attraction by
a) the moon and
b) the sun?
Compare the two changes and discuss them. How large is the
relative change�g=g?

2.31 Two spheres made of lead with masses m1 D m2 D
20 kg are suspended by two thin wires with length L D 100 m
where the suspension points are 0:2 m apart. What is the dis-
tance between the centres of the spheres, when the gravitational
field of the earth is assumed to be spherical symmetric?
a) without
b) with the gravitational force between the two masses.

2.32 Based on the energy conservation law determine the
velocity of the earth in its closest distance from the sun (Per-
ihelion) and for the largest distance (aphelion). How large is
the difference �v to the mean velocity? Discuss the relation
between the eccentricity of the elliptical orbit and �v.

2.33 A satellite orbiting around the earth has the velocity
vA D 5 km=s in the aphelion and vP D 7 km=s in its perihe-
lion. How large are minor and major half axes of its elliptical
orbit?

2.34 Prove the equation (2.78a).
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82 3 Moving Coordinate Systems and Special Relativity

For the description of the location and the velocity of a body in
a three-dimensional space one needs a coordinate system where
the position vectors r.t/ and its time derivative dr=dt D v.t/ are
defined. Of course are all physical processes independent of the
choice of the coordinate system. However, their mathematical
formulation can be much simpler in a suitable coordinate system
than in other systems. It is therefore essential to choose that sys-
tem which allows the optimum description of a process and to
find the transformation equations to change from one to another
coordinate system.

For example is the coordinate system connected with the earth
which moves around the sun, the best choice for the descrip-
tion of measurements on earth. For astronomical observations
the results of such measurements must be transformed into a
galactic coordinate system which has its origin in the galactic
centre and moves with the rotating galaxy, in order to eliminate
the complex motion of the earth relative to the galactic centre.
For coordinate systems at rest these transformations impose no
problems. The situation is different for systems which move
against each other.

In this chapter we will discuss question which arise for trans-
formations between moving coordinate systems when physical
processes are described in different systems. It turns out that
many concepts derived from daily life experience which were
taken for granted, had to be revised. The mathematical frame-
work for such revisions is the special relativity theory developed
by Albert Einstein, which will be briefly treated in this chapter.

3.1 Relative Motion

An observer, sitting in the origin O of a coordinate system looks
at two objects A and B with the coordinates rA and rB and the
relative distance

rAB D rA � rB ; (3.1)

which move with the velocities

vA D drA

dt
and vB D drB

dt

relative to the coordinate system O (Fig. 3.1). The velocity of A
relative to B is then

vAB D drAB

dt
D vA � vB ; (3.2a)

while the velocity of B relative to A

vBA D vB � vA D �vAB : (3.2b)

This illustrates that position vector and velocity do depend on
the reference system.

Figure 3.1 Definition of the relative distance

3.2 Inertial Systems and
Galilei-Transformations

Two observers B and B0 sit in the origins O and O0 of two coordi-
nate systems S.x; y; z/ and S0.x0; y0; z0/ which move against each
other with the constant velocity u (Fig. 3.2). Both observers
measure the motion of an object A. which has the position vec-
tor r.x; y; z/ in the system S and r0.x0; y0; z0/ in the system S0.

As can be erived from Fig. 3.2 it is

r0 D r � u � t ; (3.3)

which can be written for the components as

8
ˆ̂̂
<
ˆ̂̂
:

x0.t/D x.t/ � ux � t

y0.t/D y.t/ � uy � t

z0.t/D z.t/ � uz � t

t0 D t

9
>>>=
>>>;
; (3.3a)

where t D t0 means that both observers use synchronized equal
clocks for their time measurements. This is not obvious and is
generally not true if the velocity u approaches the velocity of
light (see Sect. 3.4). For the velocity of A the two observers find

v D dr

dt
and v0 D dr0

dt
: (3.4)

From (3.3) follows

v0 D v � u : (3.5)

Figure 3.2 The coordinates of a point A, described in two different systems O
and O 0 which move against each other with the constant velocity u
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Figure 3.3 Description of the free fall in two different inertial systems

The acceleration a of A can be derived from (3.5) as

a0 D dv0

dt
D dv

dt
D a : (3.6)

Both observers in the systems which move with constant ve-
locity u against each other, measure the same value for the
acceleration a. Because the force on a body with mass m is
F D m � a both observers come to the same conclusion about
the force acting on A and find the same relations for dynamical
processes in the two systems.

Such systems which move with a constant relative velocity u

against each other are named inertial systems.

Between the quantities r, v and t for the motion of an object A
measured in two different inertial systems the Galilei transfor-
mations pertain

r D r0 C ut ;

v D v0 C u ) a D a0 and F D F0 ;

t D t0 ;

(3.7)

where u D juj � c is the constant velocity of S against S0.

Because of F D F0 both observers measure the same forces and
derive identical physical laws. This can be illustrated by the
example of the free fall observed in the two systems S and S0

moving with the velocity u D ux in the x-direction against each
other (Fig. 3.3):

A body A which is released at the heights z D h falls down
in the system S0 along the z0-axis (x0 D y0 D 0), which moves
with the velocity u against the z-axis in the system S. For the
observer O0 in S0 the motion of A appears as vertical free fall.
For the observer O in S the body A starts at z D z0 D h with
the velocity v.h/ D u in the x-direction, which bends down into
the �z-direction because of the gravitation. The trajectory of A
is for O a parabola (horizontal throw see Sect. 2.3.2). However,
both observes measure the same fall acceleration g D f0; 0;�gg
and the same fall times. They derive the same law for the free
fall.

All inertial systems are equivalent for the description of
physical laws.

In other words: An observer siting in a train who does not look
out through the window cannot decide by arbitrary many ex-
periments whether he sits in a train at rest or in a train moving
against another reference system with constant velocity.

3.3 Accelerated Systems; Inertial
Forces

If the two observers sit in two systems which move against each
other with a velocity u.t/ changing with time resulting in an
acceleration a D dv=dt they measure for the motion of a body
A relative to their system different accelerations and therefore
conclude that different forces act on A.

The observer in an accelerated system can, however, ascertain
that his system moves accelerated against another system. If
he takes into account this acceleration he comes to the same
conclusions about physical laws for the observed motion of the
body A as an observer in an inertial system.

We will discuss this for two different accelerated motions:

a) rectilinear motion of S against S0 with constant acceleration
b) rotation of S against S0 around the common origin 0 D 00.

Remark. In the following sections we will always assume that
the observers O and O0 sit in the origins 0 and 00 of the systems
S and S0.

The discussion of the description of physical processes in accel-
erated coordinate systems leads to the introduction of special
forces (inertial forces), which are often confusing students.
Therefore these forces will be discussed as vivid as possible in
order to illustrate that these forces are no real forces but are only
necessary, when the observer in the accelerated system does not
take into account the acceleration of his system.

3.3.1 Rectilinear Accelerated Systems

If the origin 00 of the system S0 moves along the x-axis of S

with the time dependent velocity u.t/ D u0 C a � t.a D axex

with ax D du=dt D d2x=dt2/ against S, only the magnitude of
the velocity changes not its direction (Fig. 3.4). An example is
an observer in a train accelerating on a straight track.

For a body A with the coordinates .x0; y0; z0/ in the system S0

the observer in S measures the coordinates x D u0t C 1
2 at2 C x0,

y D y0, z D z0, if for t D 0 the two origins of S and S0 coincide
and the relative velocity u.t/ between S and S0 at time t D 0
is u0. The velocity of A is then v0 D fv0

x; v
0
y; v

0
zg for O0 and

v D fvx D u0 C a � t C v0
x, vy D v0

y, vz D v0
zg for O.

The description of different situations by O (sitting in a system
S at rest) and O0 (sitting in the accelerated System S0) shall be
illustrated by three examples. Note that S0 is no inertial system!
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Figure 3.4 Coordinates of point A in a system S with origin O and a system
S 0 with origin O 0, that moves against O with the acceleration a in x-direction

Examples

1. The observer O0 is sitting on a carriage at a fixed ta-
ble with plain tabletop. On the tabletop rests a ball A
without friction (Fig. 3.5a). If the system S0 is acceler-
ated to the left (i. e. in �x-direction), both observers O

(in the system S at rest) and O0 see that the ball moves
accelerated towards O0. Both O and O0 make the same
observation but interpret this in a different way:
O0 says: The ball moves accelerated towards me.
Therefore a force F D m � a must act on the ball.
O says: The system S0 moves with the acceleration �a

to the left, while the ball does not participate in the
acceleration and stays at rest. This means: Not the
ball is accelerated towards O0, but O0 is accelerated
towards the resting ball. Therefore no force is acting
on A.

a) b)

Figure 3.5 a A freely movable ball; b a ball fixed to a spring balance,
both on a table that is accelerated into the �x-direction with constant
acceleration a

Note: If O0 knows that his system S0 is accelerated, he
also knows that the ball must stay at rest, because it
is frictionless and therefore not linked with the table,
which means that it will not participate in the motion
of the table. In order to explain his observation of the
acceleration a of the ball he introduces a force F D m �
a which he calls fictitious force (often named pseudo-

force), because he knows that this is not a real force
but merely the description of a virtual acceleration a

of the ball when its motion is described in a reference

system which itself is accelerated with the acceleration
�a. Often the notation “inertial force” is used in order
to point to the inertial mass of the ball which prevents
it to follow the acceleration of the table.

2. The observer O0 connects the ball with an elastic
spring scale and holds the other end with his hand
(Fig. 3.5b). If the system S0 is now accelerated with the
acceleration �a to the left O0 observes that the spring
is compressed. The spring balance measures the force
F1 D �m � a. He must apply an equal but opposite
force F2 D Cm � a in order to keep the ball at rest.
O0 says: The total force F D F1 C F2 acting on the
ball is zero in accordance with my observation that the
ball rests.
The observer O in the rest system S says: Since the
ball is now connected with the table in S0 it participates
in the acceleration �a of S0 . The observer O0 has to
apply the force F D �m � a in order to transfer the
same acceleration �a to the ball as the system S0 and
to keep the ball at rest relative to the system S0.

3. A mass m in an elevator is suspended by a spring
balance (Fig. 3.6). If the elevator moves with the ac-
celeration a D f0; 0;�ag downwards (Fig. 3.6a) the
spring balance measures the force F D m.g�a/, if the
elevator moves upwards with the acceleration Ca the
balance measures F D m.gCa/ where g D f0; 0;�gg
is the earth acceleration. The observer O0, sitting in
the elevator, says: The body is at rest. Therefore the
total force acting on it must be zero. The total force
F D F1 C F2 C F3 (Fig. 3.6c) is the sum of

F1 D m � g D the weight of the mass m

F2 D �m.g � a/D opposite force of
the spring balance

F3 D �m � a D inertial force

:

O0 must introduce the inertial force F3 in order to ex-
plain his observation.
The observer O outside the elevator at rest says: The
body with mass m is connected with the elevator. It
therefore participates in the acceleration of the eleva-
tor. This demands the force F D m � a. The total force
acting on the body is the sum of its weight F1 D m � g

and the restoring force F2 D �m � .g � a/ of the
spring balance. Which gives, as expected the total
force F D m � g � m � .g � a/ D m � a.
If the suspension cable of the elevator is ruptured and
the elevator goes down in a free fall its acceleration is
a D g. For O0 the total force remains

P
Fi D 0 while

for O the total force becomes F D m � g.
These examples illustrate, that the inertial forces are
introduced only for measurements in accelerated co-
ordinate systems if the acceleration of the system is
not taken into account. They are therefore also called
fictitious forces or pseudo-forces. A transformation to
an inertial system lets all pseudo-forces vanish. This
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means an observer O in an inertial system does not
need any pseudo-force for the explanation of the ob-
served physical processes.

Figure 3.6 Elevator experiment. Description of the forces acting on
a mass m , that hangs on a spring balance in an elevator accelerated
downwards in a and upwards in b. In c the forces are listed as observed
by O 0 in the elevator (left hand side ) and by O at rest outside the elevator
(right hand side ) J

3.3.2 Rotating Systems

We regard two coordinate systems S.x; y; z/ and S0.x0; y0; z0/with
the unit vectors Oex, Oey, Oez and Oex0 , Oey0 , Oez0 of the coordinate axes
and a common origin 0 D 00. S0 rotates against S with the con-
stant angular velocity ! D f!x; !y; !zg around 0 D 00 (Fig. 3.7).
S0 is therefore no inertial system. We assume that for all times
0 D 00.

A point A should have at time t in the system S the position
vector

r.t/ D x.t/ � Oex C y.t/ � Oey C z.t/ � Oez (3.8)

and the velocity

v.t/ D dx

dt
Oex C dy

dt
Oey C dz

dt
Oez : (3.9)

The same point A has in the system S0 the position vector

r0.t/ D r.t/ D x0 Oex0 C y0 Oey0 C z0 Oez0 : (3.10)

y

Figure 3.7 A system S 0, that rotates around the axis ! against S . Both sys-
tems have the same origin O D O 0

Note: r D r0 means that we regard the same vector in both
systems with the same magnitude but different components.

If the observer O0 does not take into account that his system
rotates, he will define as the velocity of A in his system

v0.t/ D dr0

dt
D dx0

dt
Oex0 C dy0

dt
Oey0 C dz0

dt
Oez0 : (3.11)

However, if the observer O in the inertial system S describes the
velocity of A in the coordinates of S0. he knows that the axis of
S0 are rotating and therefore not constant in time. He therefore
must write:

v.x0; y0; z0/ D
�

dx0

dt
Oex0 C dy0

dt
Oey0 C dz0

dt
Oez0

�

C
�

x0 dOex0

dt
C y0 dOey0

dt
C z0 dOez0

dt

�

D v0 C u :

(3.12)

The endpoints of the unit vectors Oex0 , Oey0 , Oez0 perform a circu-
lar motion with the angular velocity ! around 0 D 00. Their
velocity is then

dOex0

dt
D ! � Oex0 I dOey0

dt
D ! � Oey0 I dOez0

dt
D ! � Oe0

z : (3.13)

Inserting this into (3.12) the second term in (3.12) becomes

u D .! � Oex0/x0 C .! � Oey0/y0 C .! � Oez0/z0

D ! � .Oex0 x0 C Oey0 y0 C Oez0 z0/

D ! � r0 D ! � r; because r � r0 :

We therefore get the transformation between the velocity v of
the point A measured by O in the system S and the velocity v0

measured by O0 in the system S0

v D v0 C .! � r/ : (3.14)
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Note: v0 is the velocity measured by O0, if he does not take into
account, that his system S0 rotates with the angular velocity !,
while v in (3.9) is the velocity in the resting system S and v

in (3.14) the velocity of A measured by O but expressed in the
coordinates of the rotating system S0.

The acceleration a can be obtained by differentiating (3.14). The
result is

a D dv

dt
D dv0

dt
C
�

! � dr

dt

�
; (3.15)

because we have assumed that ! D const. The observer O0 gets
the result for a, expressed in the coordinates of his system S0:

dv0

dt
D
�

Oex0
dv0

x

dt
C Oey0

dv0
y

dt
C Oez0

dv0
z

dt

�

C
�

dOex0

dt
v0

x C dOey0

dt
v0

y C dOez0

dt
v0

z

�

D a0 C .! � v0/ ;

(3.16)

where a0 is again the acceleration of A measured by O0 in the
system S0. We therefore obtain with (3.15)

a D dv

dt
D a0 C .! � v0/C .! � v/ :

Inserting for v the expression (3.14) we finally obtain from
(3.15)

a D a0 C 2.! � v0/C ! � .! � r/ ; (3.17)

and for a0
a0 D a C 2.v0 � !/C ! � .r � !/

D a C aC C acf :
(3.18)

While the observer in his resting system S measures the accel-
eration a D dv=dt, the observer O0 in his rotating system S0 has
to add additional terms for the acceleration in order to describe
the same motion of A. These are

the Coriolis-acceleration

aC D 2.v0 � !/ ; (3.19a)

the centrifugal acceleration

acf D ! � .r � !/ : (3.20a)

Special Cases: If the point A moves parallel to the rotation
axis we have v k ! and therefore the Coriolis acceleration be-
comes aC D 0. The Coriolis acceleration appears only, if v0 has
a component perpendicular to !. When we choose the z-axis
as the direction of ! (Fig. 3.8), both the Coriolis acceleration
aC and the centrifugal acceleration acf lie in the x-y-plane. The
centrifugal acceleration points outwards in the radial direction.
The direction of the Coriolis acceleration depends on the direc-
tion of the velocity v0 in the coordinate system .x0; y0; z0/. Since
the v0

z-component does not contribute to aC only the projection
v? D fv0

x; v
0
yg is responsible for the determination of the vector

aC D ! � fv0
y;�v0

x; 0g :

The vector aC is perpendicular to v? as can be immediately seen
when forming the scalar product aC � v0

?.

azf

Figure 3.8 Centrifugal- and Coriolis-force acting on a mass m in A.x; y ; z D
0/ described in a system S 0, that rotates with constant angular velocity ! around
the z -axis

3.3.3 Centrifugal- and Coriolis-Forces

According to Newton’s laws accelerations are caused by forces.
Therefore the observer O0, who measures in his rotating sys-
tem S0 additional accelerations has to introduce additional forces
based on the equation F D m � a These are the Coriolis force

FC D 2 m � .v0 � !/ ; (3.19b)

and the centrifugal force

Fcf D m � ! � .r � !/ : (3.20b)

Both forces are inertial forces or virtual forces because they are
not real forces due to interactions between bodies. They have
only to be introduced if the rotation of the coordinate axes of
the rotating system S0 are not taken into account. If the same
motion of the body A are described in an inertial system S or in
the rotating system S0 where the rotation of the coordinate axes
in considered, these forces do not appear.

We will illustrate these important facts by some examples.

Examples

1. A mass m is attached to one end of a string with length
L while the other end is connected to the end of a bar
with length d which rotates with the angular velocity
! around a vertical axis fixed to the centre of a rotating
table (Fig. 3.9). In the equilibrium position the string
forms an angle ˛ against the vertical direction, where
˛ depends on !, d and L. The observer O in the rest-
ing frame S and the observer O0 sitting on the rotating
table describe their observations as follows:
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O says: Since m moves with constant angular velocity
! on a circle with radius r D d C L � sin˛ a centripetal
force Fcp D �m � !2 � r acts on m which is the vector
sum of its weight m �g and the restoring force Fr of the
string (Fig. 3.9a).
O0 says: Since m is resting in my system S0 the total
force on m must be zero, i. e.

P
Fi D 0. The vector

sum m�gCFr has to be compensated by the centrifugal
force Fcf D Cm!2r (Fig. 3.9b). He has to introduce
the virtual force Fcf if he does not take into account
the rotation of his system.

Figure 3.9 Forces on a rotating string pendulum, described by the ob-
server O at rest and O 0 rotating with the pendulum

2. In a satellite, circling around the earth with constant
angular velocity ! experiments are performed con-
cerning the “weightlessness” (Fig. 3.10). For example
an astronaut can freely float in his satellite without
touching the walls.
The observer O0 in the satellite (i. e. the astronaut)
says: I know that the gravity force

Fg D �.GmM=r2/Oer

acts on me, where r is the distance to the centre of the
earth. It is compensated by the opposite centrifugal
force

Fcf D Cm!2 � r � Oer :

The total force acting on me is zero and therefore I can
freely float.

Mass M

Earth

Figure 3.10 Force-free conditions in a satellite orbiting around the
earth

Note: The state of the astronaut should be better called
“force-free” instead of “weightlessness”.
The observe O in a resting system S (for example the
galactic coordinate system) says: The gravity force Fg

acts as centripetal force on both the satellite and the as-
tronaut. Both are therefore forced to move on a circle
around the earth. The acceleration a D �.GM=r2/Oer

is the same for the astronaut and the satellite and the
difference of the accelerations is zero. Therefore the
astronaut can freely float in his satellite.
Note: Both observes can describe consistently the sit-
uation of the astronaut, however the observer S0 has to
introduce the inertial force Fcf if he does not take into
account the accelerated motion of his space ship.

3. A sled moves with constant velocity v on a linear track
and writes with a pen on a rotating disc (Fig. 3.11).
The marked line on the rotating disc is curved where
the curvature depends on the velocity v of the sled, the
perpendicular distance d of the track from the centre
of the disc and the angular velocity ! of the rotating
disc. The two observers O and O0 describe the ob-
served curve as follows:
O says: The sled moves with constant velocity on a
straight line, as can be seen from the marked line out-
side the disc. Therefore no force is acting on the sled
and its acceleration is zero. The curved path marked
on the disc is due to the fact that the disc is rotating.
O0 says: I observe a curved path. Therefore a force
has to act on the sled. By experiments with different
values of v, ! and d he finds:
For d D 0 is ja0j / v0 � !; a ? v0 and a ? !.
For d ¤ 0 is a D c1! C c2!

2 with c1 / v and c2 / r,
where r is the distance of the sled from the centre of
the disc. The quantitative analysis of his measure-
ments gives the result:

a0 D 2.v0 � !/C ! � .r � !/ ;

which is consistent with (3.18) and shows that the ac-
celeration of the sled measured by O0 is the sum of
centrifugal and Coriolis accelerations.

MGlider

with pen

Figure 3.11 Experimental illustration of the inertial forces. A glider,
moving on a straight line above a rotating disc writes with a pen its path
on the rotating disc which appears as a curved trajectory
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This example illustrates clearly that the two acceler-
ations and the corresponding forces are only virtual,
because the sled moves in fact with constant veloc-
ity on a straight line and therefore experiences no real
forces.

4. A hollow sphere filled with sand hangs on a string
which is connected to a fixed suspension point and
swings in the fixed x-z-plane of a resting system S,
driven by the gravity force Fg D m � g with g D
f0; 0;�gg.
Below the swinging pendulum is a rotating table in the
x-y-plane which rotates with the angular velocity !
around a vertical axis through the minimum position
of the pendulum.
If the sand flows through a small hole in the hollow
sphere it draws for ! D 0 a straight line on the ta-
ble while for ! ¤ 0 a rosette-like figure is drawn
(Fig. 3.12) with a curvature which depends on the ra-
tio of oscillation period T1 of the pendulum to rotation
period T2 of the rotating table.
The two observers give the following explanations:
O says: The x-z-oscillation plane remains constant
because the driving force Fg D m � g � sin˛ (see
Sect. 2.9.7) lies always in the x-z-plane and therefore
the motion must stay in this plane. The projection of
the trajectory onto the x-y-plane should be a straight
line. The curved trajectory drawn on the rotating ta-
ble is caused by the rotation and not by an additional
force.
O0 says sitting on the rotating table: I see a curved path
which must be caused by forces, which depend on !,
v0 and r. Its form can be explained by the centrifu-
gal and the Coriolis forces. My careful measurements
prove that the paths is due to the action of the total ac-
celeration a0 D acf C aC in accordance with Eq. 3.18.

Figure 3.12 Apparent trajectory written on a rotating disc by a sand
pendulum than oscillates in a constant plane

5. Foucault pendulum. Since our earth is a rotating sys-
tem, the path drawn by a linearly swinging pendulum

onto the ground must show curved lines as discussed
in example 4). However, because of the slow earth ro-
tation (! D 7:3 � 10�5 s�1) the curvature is very small.
Using a pendulum with a large length L and a cor-
responding large oscillation period T the rotation of
the earth under the linearly swinging pendulum could
be first demonstrated 1850 by Leon Foucault (1819–
1868) who used a copper ball (m D 28 kg) suspended
by a 67 m long string (T D 16:4 s). The turn of the
oscillation plane against the rotating ground occurs
with the angular velocity !s D ! � sin' where ' is
the geographic latitude of the pendulum (Fig. 3.13).
in Kaiserslautern with ' D 49ı the pendulum plane
turns in 1 h by 11ı320, which can be readily measured.
Using shadow projection of the pendulum string defin-
ing the oscillation plane this turn can be quantitatively
measured within a physics lecture.

Figure 3.13 Explanation of the turning plane of oscillation of the
Foucault-pendulums on the surface the rotating earth

6. An impressive demonstration of the Coriolis force is
provided by the motion of cloud formations around
a low pressure region as for instance realized by tor-
nados or typhoons (Fig. 3.14). For an observer on
the rotating earth looking from above onto the ground
the wind does not blow radially into the low pres-
sure region but rotates on the northern hemisphere
anticlockwise around it, on the southern hemisphere
clockwise. Around a high pressure region the ro-
tation is clockwise on the northern hemisphere and
anticlockwise on the southern.

Note: If a small balloon which floats in the air is used
as indicator of the wind flow an observer on earth
would see the balloon moving on one of the lines in
Fig. 3.14. An observer O at a fixed position outside
the earth, would however see, that the balloon moves
on a straight line radially into the centre of the deep
pressure region or out from the centre of a high pres-
sure region. These centres are fixed at a point on earth
and rotate with the earth.
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Figure 3.14 Stream-lines of the air around a deep-pressure region.
a on the northern hemisphere; b on the southern hemisphere. On the
northern hemisphere the Coriolis force acts (seen in the wind direction
from above) in the right direction against the radial force of the pressure
gradient, on the southern hemisphere in the left direction. c Satellite
photo of the “death-hurricane” north of Hawaii (with kind permission of
NASA photo HP 133) J

3.3.4 Summary

Inertial forces (virtual forces) have to be introduced, if the mo-
tion of bodies are described in accelerated coordinate systems.
These forces are not caused by real interactions between bodies
but only reflect the acceleration of the coordinate system. They
do not appear if the same motion is described in an inertial sys-
tem.

In rotating systems with a fixed centre the inertial forces are cen-
trifugal and Coriolis forces. In systems with arbitrarily changing
velocities further inertial forces have to be introduced.

3.4 The Constancy of the Velocity of
Light

We consider a body A which has the velocity v measured in
the system S but the velocity v0 in a system S0, which moves
itself with the velocity u against the resting system S. According
to the Galilei transformations the different velocities are related
through the vector sum (Fig. 3.15)

v D v0 C u : (3.21a)

Therefore one might suggest, that also the velocity of light,
emitted from a light source which is fixed in a system S0 moving
with the velocity u against the system S, should be measured in
the system S as the vector sum

c D c0 C u ; (3.21b)

where c0 is the velocity measured by O0 in his system S0. This
means that the observer O should measure the velocity c1 D
c0 C u if c0 and u have the same direction, and c2 D c0 � u if they
have opposite directions.

Very careful measurements performed 1881 by Albert Abra-
ham Michelson and Edward Morley [3.2a, 3.3] and later on by
many other researchers [3.4a, 3.4b] produced evidence that the
velocity of light is independent of the relative velocity u be-
tween source and observer. For example measurements of the
velocity of light from a star at different times of the year always

Figure 3.15 Galilei transformations of velocities in two inertial systems
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Figure 3.16 Experimental possibility to prove the constant velocity of light, by
measuring the velocity of light from a distant star at two different days with a
time interval of half a year, when the earth on its way around the sun moves
towards the star and away from it

brought the same result although the earth moved with a veloc-
ity of 30 km=s at one time of the year against the star and half
a year later away from the star (Fig. 3.16). This result was very
surprising and brought about many discussions but induced the
formulation of the theory of special relativity by Albert Einstein.

According to these unambiguous experimental results we must
conclude:

The velocity of light is the same in all inertial systems,
independent of their velocity against the light source.

The Galilei-transformations (3.7) which appear very plausible
apparently fail for very large velocities. It turns out, that in par-
ticular the assumption t D t0 in Eq. 3.3a needs a critical revision.
It must be precisely defined what “simultaneity” means for two
events at different locations. The question is: How does one
measure the times of two events at different locations?

To illustrate this point we regard in Fig. 3.17 two systems S and
S0 where light pulses are emitted from the points A and B in the
system S and from A0 and B0 in the system S0. If the two systems
do not move against each other (Fig. 3.17a) the situation is clear:
The observers O and O0 measure the arrival time of the two light
pulses in O resp. O0 and can decide, whether the pulses had
been sent from A and B resp. from A0 and B0 simultaneously
or at different times. For the first case they arrive in O or O0

simultaneously. Both observers come to the same result.

Figure 3.17 Illustration of the problem of measurements of simultaneous
events in A and B resp. in A0 and B0 in two different systems: a which are
at rest, b which move against each other

The situation is more difficult, if S0 moves with the velocity vx

against S (Fig. 3.17b). We assume, that at time t D 0 the origins
of both systems coincide, i. e. O D O0 and therefore also A and
A0 as well as B and B0 coincide. If now at t D 0 two pulses are
emitted form A and B in S and from A0 and B0 in S0 the observer
O in the rest frame measures their arrival times in O. During
the light travel time �t for the pulses from A or B the system S0

has moved over the distance �x D vx � �t to the right side in
Fig. 3.17b. The pulses from B0 therefore arrive earlier in O0 than
those from A0. Therefore O0 concludes that the pulses from B0

had been sent earlier than those from A0.

Now we will take the standpoint of O0, who assumes that his
system S0 is at rest and that S moves with the velocity �vx to the
left in Fig. 3.17b. He now defines the Simultaneity of the events
in A0 and B0 if he receives the light pulses at O0 simultaneously.
Now the pulses from A arrive for O earlier that those from B.
This illustrates that the definition of simultaneity depends on the
system in which the pulses are measured. The reason for this
ambiguity is the finite velocity of light. If this velocity would
be infinite, the problem of simultaneity would not exist because
then the travel time for the signals from the two points A and B
would be always zero.

The question is now: what are the true equations for the trans-
formation between different inertial systems?

3.5 Lorentz-Transformations

We regard two inertial systems S.x; y; z/ and S0.x0; y0; z0/ with
parallel axes and with O.t D 0/ D O0.t0 D 0/ which move
with the constant velocity v D fvx; 0; 0g against each other in
the x-direction (Fig. 3.18). Assume, that a short light pulse is
emitted at t D 0 from O D O0. The observer O measures that
the pulse has reached the point A after a time t. He describes his
observation by the equation

r D c � t or: x2 C y2 C z2 D c2 � t2 : (3.22a)

The observer O0 in S0 measures that the pulse has arrived in A
after the time t0. he therefore postulates:

r0 D c � t0 or: x0 2 C y0 2 C z0 2 D c2 � t0 2 : (3.22b)

Figure 3.18 Schematic diagram for deriving the Lorentz-transformations
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Both observers know about the result of the Michelson experi-
ment. They therefore assume the same velocity of light c. The
coordinate x of the origin O0 measured in the system S is

x.O0/ D v � t for x0 D 0 :

Since the coordinate x0 refers to the system S0 the transformation
to the coordinates x.A/ of the point A, expressed in the system
S must depend on the argument (x � v � t). We make the ansatz

x0 D k.x � v � t/ ; (3.23)

where the constant k has to be determined. At time t D 0 the
two observers were at the same place x D x0 D 0 and have
simultaneously started their clocks, i. e. t.x D 0/ D t0.x0 D
0/ D 0. However, the time measurements for t > 0 are not
necessarily the same for the two observers, because they are no
longer at the same place but move against each other with the
velocity v. The simplest transformation between t and t0 is a
linear transformation

t0 D a.t � bx/ ; (3.24)

where the constants a and b have again to be determined. In-
serting (3.23) and (3.24) into (3.22b) yields with y D y0 and
z D z0

k2
�
x2 � 2vxt C v2t2

�
C y2 C z2

D c2a2
�
t2 � 2bxt C b2x2

�
:

Rearrangement gives

�
k2 � b2a2c2

�
x2 � 2

�
k2v � ba2c2

�
xt C y2 C z2

D
�
a2 � k2v2=c2

�
c2t2 :

This has to be identical with (3.22a) for all times t and all loca-
tions x. Therefore the coefficients of x and t have to be identical.
This gives the equations

k2 � b2a2c2 D 1
k2v � ba2c2 D 0

a2 � k2v2=c2 D 1

9
>=
>;

)
a D k D 1p

1�v2=c2

b D v=c2 :
(3.25)

Inserting the expressions for a, b and k into (3.23) and (3.24)
gives the special Lorentz-Transformations

x0 D x � vtp
1 � v2=c2

; y0 D y ; z0 D z

t0 D t � vx=c2

p
1 � v2=c2

;

(3.26)

between the coordinates .x; y; z/ and .x0; y0; z0/ of two inertial
systems which move against each other with the constant veloc-
ity v D fv; 0; 0g. These equations were first formulated 1890 by
Hendrik Lorentz [3.5]. They show, that for v � c the Lorentz
transformations converge towards the Galilei transformations
(because for v2=c2 � 1 !

p
1 � v2=c2 � 1), which are there-

fore a special approximation for small velocities v:

Example

For v D 10 km=s .36 000 km=h/ is v=c � 3 � 10�5 and
.1 � v2=c2/�1=2 � 1 C 1

2v
2=c2 D 1 C 10�10. The differ-

ence between Galilei and Lorentz transformations is then
only 5 � 10�10 and therefore smaller than the experimental
uncertainty. J

With the abbreviation 
 D .1 � v2=c2/�1=2 the Lorentz transfor-
mations can be written in the clear form

x0 D 
.x � vt/ x D 
.x0 C vt0/

y0 D y y D y0

z0 D z z D z0

t0 D 
.t � vx=c2/ t D 
.t0 C vx0=c2/

: (3.26a)

Note: The Lorentz transformations have, compared to the
Galilei transformations, only one additional assumption: The
constancy of the velocity of light and its independence of the
special inertial system, which was used in (3.22a,b), where both
observers anticipate the same value of the velocity of light.

We will now discuss, how the velocity u of a body A, measured
in the system S transforms according to (3.26) into the velocity
u0 of A, measured by O0 in S0.

For O pertains:

ux D dx

dt
I uy D dy

dt
I uz D dz

dt
; (3.27)

while for O0 applies

u0 D fu0
x; u

0
y; u

0
zg D

�
dx0

dt0
;

dy0

dt0
;

dz0

dt0

�
:

Using (3.26) and considering that x D x.t/ depends on t, we get:

u0
x D dx0

dt0
D dx0

dt
� dt

dt0
D dx0

dt

.dt0

dt

D 

�

dx
dt

� v
�



�
1 � v

c2
dx
dt

� D ux � v
1 � v�ux

c2

:

Solving for ux gives the back-transformation

ux D u0
x C v

1 C u0
xv=c2

: (3.28a)

In the same way one obtains

u0
y D uy


 .1 � vux=c2/
I uy D

u0
y



�
1 C vu0

x=c2
� ; (3.28b)

u0
z D uz


 .1 � vux=c2/
I uz D u0

z



�
1 C vu0

x=c2
� : (3.28c)

These equations demonstrate that the velocity components uy

and uz perpendicular to the velocity v D vx of S0 against S
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transforms differently from the component ux parallel to vx. For
vx � u � c2 one obtains again the Galilei transformations.

If the body A moves parallel to the velocity v i. e. parallel to the
x-axis and therefore also to the x0-axis, we have uy D uz D 0 )
u D ux, the Lorentz transformations simplify to

u0 D u � v
1 � vu=c2

: (3.28d)

For u D c we get

u0 D c � v
1 � v=c

� c ; (3.28e)

which means that O and O0 measure the same value for the light
velocity in accordance with the results of the Michelson experi-
ment.

3.6 Theory of Special Relativity

Starting with the results of the Michelson experiment and the
Lorentz transformations Einstein developed 1905 his theory of
special relativity [3.5–3.8], which is based on the following pos-
tulates:

All inertial systems are equivalent for all physical laws
The velocity of light in vacuum has the same value in all
inertial systems independent of the motion of the observer or
the light source.

For the comparison of measurements of the same event by two
observers in two different systems S and S0, which move against
each other the time definition plays an important role. The
Lorentz-transformations (3.26) show that also the time has to
be transformed when changing from S to S0. We will therefore
at first discuss the relativity of simultaneity. The presenta-
tion in Sect. 3.6 follows in parts the recommendable book by
French [3.8].

3.6.1 The Problem of Simultaneity

We will now treat the problem of simultaneity in different iner-
tial systems in some more detail. We regard three points A, B
and C which rest in the system S and have equal distances, i. e.
AB D BC D �x. In an x-t-coordinate-system with rectangu-
lar axis. For t D 0 the three points are located on the x-axis
(Fig. 3.19a). In the x-t-diagram the points A, B and C proceed
in the course of time on vertical straight lines since they are
fixed in the system S and have therefore constant positions x.
At time t D 0 a light pulse is emitted from point B. The light
pulse, however proceeds on an inclined straight line with an in-
clination angle ˛1 with tan˛1 D t1=�x. This line intersects the
vertical position lines of A and C at the points A1 and C1. The
connecting line through A1 and C1 is the horizontal line t D t1.
Since the light travels with the same speed c in all directions the
pulses reach the points A and C at the same time t1 D �x=c.

Figure 3.19 Illustration of the different results in a space-time diagram, when
measuring simultaneous events in two different systems that move against each
other

Now we regard the same situation in the system S0 which moves
with the velocity v D vx against S (Fig. 3.19b). The points A, B
and C should rest in the system S0, they therefore move with the
velocity vx against the system S and pass in the x-t-diagram of S

inclined straight lines with the inclination angle ˛2 and the slope
tan˛2 D dt=dx D 1=v. The light pulses travel with the same
velocity c as in S. At time t D 0 both systems S and S0 should
coincide. The light pulse, emitted from B at t D 0 now reaches
the two points A and C for the observer O not simultaneously

but in A at t D t1 and in C at t D t2, which correspond with the
intersection points A0

1 and C0
1 in Fig. 3.19b. The reason is that

A propagates towards the light pulse but C from it away.

Since for the observer O0 in S0 the points A, B and C are resting
in S0 the events A0

1 and C0
1 (we define as event the arrival of the

light pulse in the point A0
1 or C0

1) has to occur simultaneously,
equivalent to the situation for S in Fig. 3.19a because all inertial
systems at rest are completely equivalent. In the x0-t0-diagram
the line through the points A0

1 and C0
1 has to be a line t0 D const

i. e. it must be parallel to the x0-axis (Fig. 3.20). One has to
choose for the moving system S0 other x0- and t0-axes which are
inclined against the x- and t-axes of the system S. The x0-axis
(t0 D 0) and the t0-axis (x0 D 0) are generally not perpendicular
to each other.

One obtains the t0-axis in the following way: If O0 moves with
the velocity v D vx against O he propagates in the system S0

along the axis x0 D 0 which is the t0-axis (because he is in his

Figure 3.20 a Space axis and time axis in a moving inertial system S 0 are
inclined by the angle ˛ against the axes in a system S at rest. b Definition of
the velocity u of a point A in the two systems S and S 0
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system S0 always resting at the origin x0 D 0). In the system S

this axis is x D v � t which is inclined against the t-axis x D 0 by
the angle ˛ with tan˛ D v=c. The slope of the t0-axis against
the x-axis in the system S is dt=dx D 1=v.

Any event E is completely defined by its coordinates .x; t/ in S

or .x0; t0/ in S0.

Note, however, that for the same event E the spatial and time
coordinates .xE; tE/ for O in S are different from .x0

E; t
0
E/ for O0

in S0 (Fig. 3.20)

For each observer the simultaneity of two events at dif-
ferent spatial points depends on the coordinate system in
which the events are described.

We regard a point mass A which moves with the velocity ux

against O and with u0
x against O0. Its velocity is determined by

O and O0 by measuring the coordinates x1.t1/ and x2.t2/ in S

resp. x0
1.t

0
1/ and x0

2.t
0
2/ in S0 (Fig. 3.20b).

O obtains: ux D x2 � x1

t2 � t1
;

O0 obtains: u0
x D x0

2 � x0
1

t02 � t01
:

The velocity ux is represented in S by the reciprocal slope
�x=�t D ux of the straight line A1A2, In S0 however by
u0

x D �x0=�t0. One can see already from, Fig. 3.20b that
ux ¤ u0

x, which is quantitatively described by Eq. 3.28.

3.6.2 Minkowski-Diagram

The relativity of observations and their dependence of the refer-
ence system can be illustrated by space-time-diagrams as shown
in Fig. 3.20. Each physical event which occurs at the loca-
tion r D fx; y; zg at time t can be represented by a point in
the four-dimensional space-time fx; y; z; tg. For simplicity we
will restrict the following to one spatial dimension x and the
relative motion of S0 against S should occur only in the x-
direction. Then the four-dimensional representation reduces to

Figure 3.21 Minkowski diagram showing the world lines of a point A resting
in the system, of a point B moving in the system with the velocity u and a light
pulse emitted at time t D o from the origin

Figure 3.22 Minkowski diagram of the axes .x; t/ of a system S at rest, of the
axes .x 0; t 0/ of a system S 0 that moves with the velocity v against S and of the
axes .x 00; t 00/ of a system S 00, moving with �v against S

a two-dimensional one. Furthermore the time axis t is changed
to c � t in order to have the same physical dimension [m] for both
axes. Such a depiction is called Minkowski-diagram (Fig. 3.21).

A body A at rest propagates in an orthogonal .x; ct/ diagram
on a vertical line while a body B with the constant velocity v
relative to O propagates on a sloped straight line with the slope
c � �t=�x D c=v. A light pulse which is emitted from x D 0
at t D 0 and propagates with the velocity c into the x-direction
traverses on a straight line with the inclination of 45ı against the
x-axis because the slope is tan˛ D c=c D 1. It is represented
by the diagonal in an orthogonal .x; ct/-diagram. Such lines for
moving bodies or for light pulses are called world lines or space-

time-lines, which can be also curved. Two events A and B occur
in the system S simultaneously, if their points in the Minkowski-
diagram lie on the line t D t1 parallel to the x-axis (Fig. 3.19).
The ct0-axis in S0 is the world line of O0.

We had already discussed in the preceding section that the axis
of two inertial systems S and S0, which move against each
other with the constant velocity vx are inclined against each
other. If the x- and the ct-axes in system S are orthogonal
the ct0-axis has the slope tan˛ D c=vx against the x-axis.
Also the x0-axis is inclined against the x-axis. According to
the Lorentz-transformations the relation t0 D 0 ) t D v � x=c2

must be satisfied (Fig. 3.22). Its slope against the x-axis is there-
fore dt0=dx D tanˇ0 D v=c. The angle between the x0 and the
ct0 axes is 
 D ˛-ˇ0 D arctan.c=v/ � arctan.v=c/.

For illustration also a third system S00 is shown in Fig. 3.22,
which moves with the velocity v D �vx against S. The slope of
the x00-axis against the x-axis is now tanˇ00 D �vx=c. the angle
between ct00-axis and ct-axis is also ˇ00. The ct00-axis forms an
angle ı D 2.ˇ0 C ˇ00/C 
 > 90ı against the x00-axis.

3.6.3 Lenght Scales

Not only the inclination of the axis but also their scaling is dif-
ferent in the systems S, S0 and S00. Since the velocity of light
is the same in all inertial systems (which implies c D dx=dt D
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Figure 3.23 Illustration of the invariant s2

c0 D dx0=dt0 D const) the quantity

s2 D .ct/2 � x2 D .ct0/2 � x0 2 (3.29)

must be equal in all inertial systems. This can be also seen from
the Lorentz-equations (3.26). The quantity s2 is therefore invari-
ant under transformation between different inertial systems. For
s2 D 0 the world-line x D ˙ct of a light pulse is obtained. For
the motion of a body with velocity v < c starting at t D 0 and
x D 0 it follows x2.t/ < .ct/2 ) s2 > 0.

In the .x; ct/-diagram no points with x2 > .ct/2.s2 < 0/ can be
reached by signals emitted by O at t D 0. The area in Fig. 3.23
with s2 < 0 is non-accessible, while all points with s2 > 0 can
be reached by such signals.

Such an invariant quantity like s2 can be used to fix the scale
length in Minkowski-diagrams. If we allow also imaginary val-
ues of s, the square s2 can be also negative. For s2 D �1 we
obtain from (3.29) for all inertial systems (i. e. for S as well as
for S0) the hyperbola

x2 � .ct/2 D x02 � .ct0/2 D 1 ;

which is drawn in Fig. 3.23. It intersects in the system S the
x-axis .t D 0/ in the point A at x D 1. This defines the scale
length L D 1 for the system S.

Also in the system S0 is x0 D 1 for t0 D 0, which gives the scale
length L0 D 1 for the observer O0. However, for the observer O

in S the length L0 appears as L ¤ 1 as can be seen from Fig. 3.24
where L D OA but L0 D 0B. Each observer measures for the
length in his own system another value than for the length in
a system moving against his system. This seems very strange
but is a consequence of the problem of simultaneity, because
in order to measure the lengths L and L0, O has to measure the
endpoints 0 and A or 0 and B simultaneously, i. e. at the same
time t, while O0 measures them at the same time t0.

Figure 3.24 A yardstick with length O A that rests in the system S , appears
shortened in the system S 0 moving against S

This shows that length standards in different inertial systems
can be in fact different. If O in his system S measures distances
in another system S0, moving against S, he uses a larger scale,
which means that the length of distances appears shorter.

3.6.4 Lorentz-Contraction of Lengths

One of the surprising results of the Lorentz-transformations is
the contraction of the length of bodies in Systems S0 moving
against the observer in a rest frame S. In the foregoing section
we have already indicated that this contraction is caused by the
change of the length scale L0 and that it can be ascribed to the
problem of simultaneity.

Assume a rod with the endpoints P0
1 and P0

2 rests in the mov-
ing system S0. The coordinates x0

1 and x0
2 therefore move in the

course of time on straight lines parallel to the t0-axis (Fig. 3.25).
The observer O0 measures at time t01 the length

L0 D P0
1P0

2 D x0
2.t

0
1/ � x0

1.t
0
1/ :

For the observer O in S the rod resting in S0 moves with the
system S0 with the velocity v in the x-direction. In order to de-
termine the length of the rod, O has to measure the endpoints x1

Figure 3.25 Graphical illustration of the Lorentz-contraction of a yard stick
with length L resting in the moving system S 0, when O in S measures the length
L 0, expressed in the Minkowski diagram of S 0
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and x2 simultaneously, i. e. for t D t1. These endpoints are for
t D t1 at the intersection points P1.t1/ D P0

1 and P2.t1/ ¤ P0
2 of

the world-lines x0
1.t/ and x0

2.t/ with the horizontal line t D t1 in
Fig. 3.25. For O is therefore the length of the rod

L D P1P2 D x2 � x1 ;

where x1 and x2 are the vertical projections of P1 and P2 onto
the x-axis t D 0 (Fig. 3.25).

Since �x0 differs from �x the two lengths L and L0 are dif-
ferent. Because the scale lengths s and s0 are different one
cannot directly geometrically compare the length of the rod
measured in S and S0 from Fig. 3.25, but has to use the Lorentz-
transformations.

x0
1 D 
.x1 � vt1/I x0

2 D 
.x2 � vt2/

) x0
2 � x0

1 D 
.x2 � x1/ for t1 D t2

) L0 D 
 � L ) L < L0I because 
 > 1 :

(3.30)

The lengths of a moving rod seems for an observer to be

shorter than that of the same rod at rest.

The contraction does not depend on the sign of the velocity
v D ˙vx.
The contraction is really relative as can be seen from the
following example: Two rods should have the same length
L1 D L2 if both are resting in the same system S. Now L2 is
brought into a moving system S0 where it rests relative to the
origin O0 of S0. For the observer O the length L2 seems to be
shorter then L1 but for O0 L1 seems to be shorter than L2. This
implies that the Lorentz contraction is symmetric. This is no
contradiction, because the different length measurements are
due to the different observations of simultaneity as has been
discussed before.
Each observer can only make statements of events and times
with respect to his own system S. If he transfers measure-
ments of events in moving systems S0 to his own system S,
he has to take into account the relative velocity of S0 against
S and must use the Lorentz transformations. Then O and O0

come to the same results.

Note that both observers O and O0 come to consistent re-
sults for measurements in their own system and in the
other system which moves against their own system, if
they use consequently the Lorentz-transformations.

The answer to the often discussed question whether there is a
“real contraction” depends on the definition of “real”. The only
information we can get about the length of the rod is based on
measurements of the distance between its endpoints. For rods
moving against the observer the locations of the two endpoints
have to be measured simultaneously, which gives the results dis-
cussed above.

The relativity of the contraction can be visualized in the
Minkowski diagram of Fig. 3.26. We regard again two iden-

Figure 3.26 Relativity of the Lorentz contraction: a The yardstick O A D 1
rests in S , b the yardstick O B D 1 rests in the moving system S 0

tical yardsticks with the scale L D 1, which rest in the system
S resp. S0. The yardstick in S has for the observer O the end-
points O and A with the distance OA D 1. The world line for
O is the ct-axis x D 0 and for A the parallel vertical line x D 1.
In Fig. 3.26a also the world line x D c � t of a light pulse and
the hyperbola x2 � c2t2 D 1 are drawn. The intersection of the
hyperbola with the x-axis t D 0 defines the scale L D 1, in the
system S.

How is the situation in the system S0? The world line of A inter-
sects the x0-axis ct0 D 0 in the point A0. Therefore the distance
OA0 is for O the length L0 D 1 of the yardstick. However, for O0

in his system S0 the length of the yardstick is x0 D 1 given by the
distance OB0 where B0 is the intersection point of the parabola
x02 � .ct0/2 D 1. For O is the length of the moving yardstick
therefore smaller than for O0, who regards the stick resting in
his system.

Note that the parabola is the same in both systems S and S0 (see
Sect. 3.6.3).

For O0 is the scale of O which he measures as OA0 shorter than
his own scale OB0 this means that it appears for O0 shorter.

Now we take a scale OB0 which rests in the system S0 and has
there the length x0 D 1 because B0 is the intersection point of the
parabola x02 � .ct/2 D 1 with the x0-axis ct0 D 0 (Fig. 3.26b).
The world line of O0 is the ct0-axis x0 D 0 and that of the point
B the line through B0 parallel to the ct0 axis. This line intersects
the x-axis in the point B. The observer O measures the length
of the scale x0 D 1 as the distance OB which is shorter than the
distance OA with x D 1. Now the scale x0 D 1 of the observer
O0 is shorter for the observer O.

This illustrates that the length contraction is due to the

different prolongation of the scale which is caused by the

different simultaneity for measurements of the endpoints by

O and O0.

Note that both observers O and O0 come to contradiction-
free statements concerning measurements in their own
system and in the other system if they use the Lorentz-
transformations.
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3.6.5 Time Dilatation

We regard a clock, which rests in the origin O of system S. We
assume that this clock sends two light pulses at times t and tC�t

with a time delay �t of the second pulse. An observers O at the
location x0 in the system S receives the light pulses at times t1
and t2, at the event points A and B of his world line x D x0 D
const (Fig. 3.27). For O the time interval between the two pulses
is

�t D AB D t2 � t1 :

An observers O0 sitting at x0 D x0
0 in the system S0 which moves

with the velocity v against S receives the light pulses at the in-
tersection points A0 and B0 of his world line x0 D x0

0 with the
two axes x0 D ct0 and x0 D c.t0 C �t0/ which are observed at
times t01 and t02 measured with his clock in S0.

The observer O in S knows, that these times t01 and t02 are
transformed into his measured times t1 and t2 by the Lorentz
transformations

t01 D 

t1 � v � x0

c2
t02 D 


t2 � v � x0

c2
:

According to these equations he determines the time difference
in the moving system S0 as

�t0 D t02 � t01 D 
 ��t : (3.31)

Since 
 D .1 � v2=c2/�1=2 > 1 the observer O at rest mea-
sures for the moving system S0 a longer time interval �t0

between the two pulses than the moving observer O0. Be-
cause the clock resting in S moves for the observer S0 he
measures, that this clock runs slower than his own clock. This
can be expressed by: Moving clocks run slower. Equiva-
lent to the length contraction also the time dilatation is caused
by the different observations of simultaneity in the systems
S and S0. This effect increases with increasing velocity v
and reaches essential values only for velocities v close to

Figure 3.27 Minkowski diagram for illustration of the time dilatation. Two
signals with the time difference�t D t2 � t1 in the resting system S reach the
moving observer O 0 in S 0 with the time difference�t 0 D 
 ��t

Figure 3.28 Measurement of the lifetime of relativistic muons with two detec-
tors at different heights h1 and h2 above sea level

the velocity c of light. However this time dilatation can be
measured with very precise clocks already for smaller veloc-
ities. For example, if two clocks are synchronized in Paris
and transported by a fast plane (such as the concorde with
v D 2400 km=h D 667 m=s ) 
 D 1 C 8:9 � 10�12) to New
York the difference between �t and �t0 during a flight time of
3 hours is 8:9 � 10�9 s D 8:9 ns.

A much more precise measurement of the time dilatation can be
obtained with faster moving clocks. Examples of such fast mov-
ing clocks are fast elementary particle such as electrons, protons
or muons which move with velocities v � c.

The cosmic radiation (electrons and protons with very high en-
ergy) produce in the upper earth atmosphere at collisions with
the atomic nuclei of the atmospheric molecules muons �� with
velocities v � c which reach nearly the velocity of light. Part
of these muons reach the earth surface, while part of them de-
cay during their flight through the atmosphere according to the
scheme

�� �����! e� C ā� C āe (3.32)

into an electron and two neutrinos (see Vol. 4). The life-
time of decelerated resting muons can be precisely measured
as � D 5 � 10�6 s.

In order to measure the lifetime � 0 of fast flying muons the rate
of muons, incident onto a detector is measured at different alti-
tudes above sea level, for instance at the altitude h D h1 on the
top of a mountain and at h D h2 at the bottom of the mountain
(Fig. 3.28). For a mean decay time � 0 of the muons moving with
the velocity v the relative fraction dN=N decays during the time
interval dt=� 0

dN D �a � .N=� 0/dt :

Integration yields

N.h2/ D N.h1/ � e��t=� 0
with �t D h1 � h2

v
;

where the factor a < 1 takes into account the scattering of
muons by the atmospheric molecules. This factor can be calcu-
lated from known scattering data. The often repeated measure-
ments clearly gave essentially higher lifetimes � 0 D 45 � 10�6 s
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Figure 3.29 Einstein’s “light-clock” for illustration of the time dilatation

of the moving muons than � D 5 � 10�6 s for muons at rest.
From � 0 D 
 � � follows 
 D 9 ! v D 0:994c. The muons
have a velocity v which is smaller than c by only 6 ‰.

Meanwhile many short-lived elementary particles can be pro-
duced and accelerated to high velocities. Comparing the
lifetimes of these particles at rest and while moving, unam-
biguously confirms the time dilatation postulated by the Lorentz
transformations.

The relativistic time dilatation can be illustrated by an
“gedanken-experiment” proposed by Einstein using a light pulse
clock (Fig. 3.29). The system consists of a box with length L.
On one side a flash lamp is mounted at the point A and on the
opposite end a mirror M1. The flash lamp emits a short light
pulse and starts a clock. The light pulse reflected by M1 is re-
ceived by a detector which stops the clock. The time interval
�t0 D 2L=c is used as time scale in the system S in which the
light clock rests.

Now we let the system S move with the velocity v relative to a
system S0 in a direction perpendicular to the length L. For the
observer O0 in S0 the light pulse now travels from A to B and
is reflected to C. With AN D NC D v � �t=2 it follows from
Fig. 3.29

AB C BC D 2 �
"

L2 C
�
v
�t0

2

�2
#1=2

D c ��t0

) �t0 D 2L

.c2 � v2/
1=2

:

(3.33)

The observer O measures�t D 2L=c. The comparison between
�t and �t0 gives:

�t0 D �t

.1 � v2=c2/
1=2

D 
 ��t ; (3.34)

which turns out to be identical with (3.31).

3.6.6 The Twin-Paradox

No other problem of special relativity has aroused so many
controversial discussions as the twin paradox (often called the

Figure 3.30 Minkowski diagram for the twin paradox

clock-paradox), discussed by Einstein in his first paper 1905
about relativity. It deals with the following situation:

Two clocks which are synchronized show equal time intervals
when sitting in the same system S at rest. One of the clocks
is taken by O0 on a fast moving spacecraft and returns after the
travel time T (measured by O in S) back to the other clock which
always had stayed in the system S. A comparison of the two
clocks shows that the moved clock is delayed, that means that it
shows a smaller value T 0 than T [3.8–3.11].

This “gedanken-experiment” has meanwhile be realized and the
time dilatation has been fully verified (see previous section). For
manned space missions this means that an astronaut A after his
return to earth after a longer journey through space is younger
than his twin brother B who has stayed at home. The “gained”
time span is, however, for velocities of spacecrafts which can
be realized up to now, very small and therefore insignificant.
Nevertheless an understanding of the twin paradox is of princi-
pal significance because it illustrates the meaning of relativity,
which is often used in a popular but wrong way.

We have discussed in the previous section that the time dilata-
tion is relative, i. e. for each of the two observers O and O0 the
time scale of the other seems to be prolonged. Why is it then
possible to decide unambiguously that A and not B is younger
after his return?

The essential point is that A is not strictly in an inertial system,
even if he moves with constant velocity, because at his return-
ing point he changes the system from one that moves with the
velocity Cv into one that moves with �v against B. This shows
that the measurements of A and B are not equivalent.

In order to simplify the discussion we will categorize the journey
of A into three sections, which are illustrated in the Minkowski
diagram of the resting system S of B in Fig. 3.30.

A starts his journey from x D 0 at time t D t0 D 0, reaches
in a negligibly small time interval his final speed v until he
arrives at his point of return P1.xr;T=2/ after the time t1 D
T=2.
At time t1 D T=2 he decelerates to v D 0 and accelerates
again to �v. This should all happen within a time interval
which is negligibly small compared with the travel time T .
Astronaut A flies with v2 D �v back to B and reaches B in
x D 0 at t2 D T .
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While the world line of B in Fig. 3.30 is the vertical line x D 0,
A follows the line x D v � t ! ct D .c=v/x until the point
of return P1 from where he travels on the line x D xr � v.t �
T=2/ ) ct D .c=v/.xr � x/ C cT=2, until the point P2.0;T/
where he meets with B.

From (3.29) we obtain for the invariant

ds2 D c2dt2 � dx2 D c2dt02 � dx02 :

This yields the different travel times for A and B: For B is al-
ways dx D 0. We therefore get for the total distance s in the
Minkowski diagram:

s D
Z

ds D c �
Z

dt D c � T :

For the moving astronaut A the resting observer B measures on
the way OP1: dx D v � dt ! ds2 D c2dt2 � v2dt2, which gives
for the total path

Z
ds D

p
c2 � v2

Z
dt D c � T

2

D cT 0

2
;

and on the way P1P2 back: dx D �vdt:

Z
ds D

p
c2 � v2

Z
dt D c � T

2

D cT 0

2
:

The total travel time measured by B in S for the system S0 of his
twin A is then T 0 D T=
 < T . This result can be also explained
by the Lorentz contraction: For A is the path L shortened by
the factor 
 . Therefore the travel time T for A is shorter by the
factor 
 since A as well as B measure the same velocity v of A
relative to B.

The asymmetry of the problem can be well illustrated by regard-
ing light pulses sent at constant intervals by A to B and by B to
A. Both the observer B and the astronaut A send these light sig-
nals at the frequency f0 measured with their clocks. The sum of
the sent pulses at a frequency f0 D 1=s gives the total travel time
in seconds (Fig. 3.31).

Figure 3.31 Illustration of the twin paradox, using the signals sent and re-
ceived by A and B

Figure 3.32 Doppler-effect of the signal frequency illustrated in the Minkowski
diagram

While A moves away from B both observers receive the pulses
at a lower frequncy f1 because each successive pulse has to travel
a longer way than the preceding pulse. The asymmetry occurs at
the turning point P1. While A on his way back now receives the
pulses with a higher frequency f2 directly after he turns around,
B receives the pulses from A with the frequency f2 only at times
�t � c � x0 after the return time. He receives the same total
number N 0 of pulses as has been sent by A but he receives for a
longer time signals with lower frequency than A. Therefore he
measures a longer travel time for A than A himself.

This is illustrated in Fig. 3.31 for v D 0:6c. B sends during
the travel time of A altogether 20 pulses, which are all received
by A. While B sends his signals at constant time intervals �0,
A receives them on the outbound trip with larger time intervals
�1 i. e. lower frequency and on the way back with shorter time
intervals �2, i. e. higher frequency. Measured in the system S0

of A the travel time T 0 is shorter by the factor 
 . The astronaut
A sends during this time only N 0 D N=
 D 16 pulses which
are all received by B. Since B receives the signal sent by A at
the return time only delayed, he receives signals with the larger
interval �1 (lower frequency) for a longer time and only after the
time t0r C L=2c the signals with the shorter intervals �2.

This is further illustrated by the Minkowski diagram of Fig. 3.32
which explains the relativistic Doppler-effect. The astronaut A
is at time t D 0 at the point .x D 0; t D 0/ in the Minkowski
diagram. He moves, measured by B on the line

x D v � t ! c � t D c

v
x :

The observer B sitting always at x D 0 sends light pulses at a
repetition frequency f0. A pulse sent by B at time t0 travels in
the .x; ct/-diagram on lines with a 45ı slope which intersects the
world line of A in the point .x1; t1/, where it is received by A.
The next pulse is sent by B at time t D t0 C � D t0 C 1=f0
and reaches A at .x2; t2/. According to Fig. 3.31 the following
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Table 3.1 Measurement of multiple physical quantities of resident and traveler (according to [3.7])

Physical quantity Measurement of B (resident) Measurement of A (traveler)

Total travel time T D 2L
v

T 0 D 2L

v

Total number of sent signals f � T D 2fL

v
f � T 0 D 2fL


v

Reversal time of A tu D L
v

C L
c

D L
v
.1 C ˇ/ t0u D L


v

Number of received signals with frequency

f 0
�

f 0 D f �
�

1�ˇ
1Cˇ

�1=2
� f 0tu D f �

�
1�ˇ
1Cˇ

�1=2
� L
v
.1 C ˇ/

D fL

v
.1 � ˇ2/1=2

f 0t0u D f �
�

1�ˇ
1Cˇ

�1=2
� L
v

�
1 � ˇ2�1=2

D fL

v
.1 � ˇ/

Travel time after reversal t2 D L
v

� L
c

D L
v
.1 � ˇ/ t02 D L


v
D L

v
1

.1�ˇ2/1=2

Number of received signals with frequency

f 00 D f �
�

1Cˇ
1�ˇ

�1=2
f 00t2 D f �

�
1Cˇ
1�ˇ

�1=2
� L
v
.1 � ˇ/

D fL

v
.1 � ˇ2/1=2

f 00t02 D f �
�

1Cˇ
1�ˇ

�1=2
� .1 � ˇ2/1=2

D fL

v
.1 C ˇ/

Total number of received signals
N D f 0tu C f 00t2; N0 D f 0t0u C f 00t02

N D f 0tu C f 00t2 D 2fL

v
.1 � ˇ2/1=2

D 2fL


 �v

N0 D f 0t0u C f 00t02 D 2fL

v

Conclusion regarding the time measured by the other T 0 D 2L

v

ˇ D v=c; 
 D .1 � ˇ2/�1=2

T D 2L
v

relations apply:

x1 D c � .t1 � t0/ D x0 C v � t1

x2 D c � .t2 � t0 � �/ D x0 C v � t2 :

Subtraction of the first from the second equation yields

t2 � t1 D c � �
c � v I x2 � x1 D v � c � �

c � v :

Figure 3.32 illustrates that for A the time intervals � 0 are longer
on the outward flight than on the return flight. Astronaut A mea-
sures in his system S0 according to the Lorentz transformations

� 0 D t02 � t01 D 
 �
h
.t2 � t1/ � v

c2
.x2 � x1/

i

D 
 � .1 C ˇ/ � � ; with ˇ D v=c :

With 
 D .1 � ˇ2/�1=2 this becomes

� 0 D �

�
1 C ˇ

1 � ˇ

�1=2

) f 0 D 1

� 0 D f0

�
1 � ˇ
1 C ˇ

�1=2

:

Astronaut A measures therefore on the outward flight the
smaller repetition frequency f1 which is smaller than f0
by the factor Œ.1 � ˇ/=.1 C ˇ/�1=2 and on the return flight
with the velocity �v he measures the higher repetition rate
f2 D Œ.1 C ˇ/=.1 � ˇ/�1=2f0.

In Tab. 3.1 the different measurements of A and B are summa-
rized. The table shows again, that the total number of pulses sent
by B is equal to the number received by A but different from the
number sent by A. The last line in Tab. 3.1 makes clear, that B
can conclude the travel time measured by A from the number
of pulses received from A and vice versa can A conclude the
time measured by B. Both observers are therefore in com-

plete agreement in spite of the different times measured in

their systems. This shows that there are no contradictions in

the description of the twin paradox. Observer B knows, that
the travel time T 0 measured by A is shorter than the time mea-
sured by himself because A is sitting in a moving system, and A
knows that B measures in his resting system a longer time.

3.6.7 Space-time Events and Causality

Since the speed of light is the upper limit for all velocities with
which signals can be transmitted from one space-time point
.x1; t1/ to another point .x2; t2/ all space-time events can be clas-
sified into those which can be connected by signals and those
which cannot. In the first case an event in .x2; t2/ can be caused
by an event in .x1; t1/.

In the Minkowski diagram of Fig. 3.33 the two diagonal lines
x D ˙c � t are the worldliness of light signals passing through

Figure 3.33 Two-dimensional Minkowski diagram with the shaded areas for
past and future and the white areas for non-accessible space-time point .r; t/
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the point .x D 0; t D 0/. These world lines divided the space-
time into different regions: All regions with .x; t > 0/ with
jxjj � ct represent the future seen from .x D 0; t D 0/. They
can be reached by signals sent from .0;0/, while the region with
.x; t < 0/ form the past.

This can be also expressed in the following way: All events
in space-time point .x; t/ can be causally connected with each
other, i. e. an event in .x2; t2/ can be caused by an event in .x1; t1/
if both points lie in the red shaded regions in Fig. 3.33. this
means signals can be transferred between these points and inter-
actions between bodies in these points are possible. For instance
the event A can influence the event B in Fig. 3.33 but not the
event C.

An observer in the space-time point .x; t/ with jxj � jctj can
never receive a signal from points in the white regions with
jxj > jctj. We call these regions therefore “elsewhere”.

In a three-dimensional space-time diagram .x; y; ct/ the sur-
faces x2 C y2 D c2t2 form a cone called the light-cone. Past
and future are inside the cone. “elsewhere” is outside. In a
four-dimensional space-time diagram .x; y; z; ct/ this light cone
becomes a hyper-surface.

Very well written introductions to the special relativity and its
consequences without excessive Mathematics, which are also
understandable to undergraduate students can be found in [3.7–
3.11].

Summary

For the description of motions one needs a coordinate sys-
tem. Coordinate systems in which the Newtonian Laws can
be formulated in the form, discussed in Sect. 2.6 arte called
inertial systems. Each coordinate system which moves with
constant velocity v against another inertial system is also an
inertial system.
The transformation of coordinates .x; y; z/, of time t and of
velocity v and therefore also of the equation of motion from
one to another inertial system is described by the Lorentz
transformations. They are based on the constancy of the
speed of light c, confirmed by experiments, which is in-
dependent of the chosen inertial system and has the same
value in all inertial systems. For small velocities v � c the
Lorentz transformations approach the classical Galilei trans-
formations.
The description of motions in accelerated systems demand
additional accelerations, which are caused by “inertial or
virtual” forces. In a rotating system with constant angular
velocity these are the Coriolis force FC D 2 m.v0 �!/ which
depends on the velocity v0 of a body relative to the rotating
system, and the centrifugal force Fcf D m �!� .r�!/ which
is independent of v0.

The theory of special relativity is based on the Lorentz trans-
formations and discusses the physical effects following from
these equations when the motion of a body is described in
two different inertial systems which move against each other
with constant velocity v. An essential point is the correct
definition of simultaneity of two events. Many statements of
special relativity can be illustrated by space-time diagrams
.x; ct/ (Minkowski diagrams), as for instance the length-
contraction or the time-dilatation. Such diagrams show that
these effects are relative and symmetric, which means that
each observers measures the lengths in a system moving
against his system contracted and the time prolonged. The
description of the two observers O and O0 are different but
consistent. There is no contradiction.
For the twin-paradox an asymmetry occurs, because the as-
tronaut A changes its inertial system at the point of return. It
is therefore possible to attribute the time dilation unambigu-
ously to one of the observers.
The statements of special relativity have been fully con-
firmed by numerous experiments.

Problems

3.1 An elevator with a cabin heights of 2:50 m is accelerated
with constant acceleration a D �1 m=s2 starting with v D 0 at
t D 0. After 3 s a ball is released from the ceiling.
a) At which time reaches it the bottom of the cabin?
b) Which distance in the resting system of the elevator well has

the ball passed?
c) Which velocity has the ball at the time of the bounce with

the bottom in the system of the cabin and in the system of
the elevator well?

3.2 From a point A on the earth equator a bullet is shot in
horizontal direction with the velocity v D 200 m=s.
a) in the north direction
b) in the north-east direction 45ı against the equator
c) In the north-west direction 135ı against the equator
What are the trajectories in the three cases described in the sys-
tem of the rotating earth?
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3.3 A ball hanging on a 10 m long string is deflected from
its vertical position and rotates around the vertical axis with
! D 2� � 0:2 s�1. What is the angle of the string against the
vertical and what is the velocity v of the ball?

3.4 In the edge region of a typhoon over Japan (geographical
latitude ' D 40ı) the horizontally circulating air has a velocity
of 120 km=h. What is the radius of curvature r of the path of the
air in this region?

3.5 A fast train .m D 3 � 106 kg/ drives from Cologne to
Basel with a velocity of v D 200 km=h exactly in north-south
direction passing 48ı latitude. How large is the Coriolis force
acting on the rail? Into which direction is it acting?

3.6 A body with mass m D 5 kg is connected to a string with
L D 1 m and rotates
a) in a horizontal plane around a vertical axis
b) in a vertical plane around a horizontal axis
At which angular velocity breaks the string in the cases a) and
b) when the maximum tension force of the string is 1000 N?

3.7 A plane disc rotates with a constant angular velocity
! D 2� � 10 s�1 around an axis through the centre of the disc
perpendicular to the disc plane. At time t D 0 a ball is
launched with the velocity v D fvr; v'g with vr D 10 m=s,
v' D 5 m=s (measured in the resting system) starting from the
point A .r D 0:1 m; ' D 0ı/. At which point .r; '/ does the ball
reach the edge of the disc?

3.8 A bullet with mass m D 1 kg is shot with the velocity
v D 7 km=s from a point A on the earth surface with the ge-
ographical latitude ' D 45ı into the east direction. How large
are centrifugal and Coriolis force directly after the launch? At
which latitude is its impact?

3.9 Two inertial systems S and S0 move against each other
with the velocity v D vx D c=3. A body A moves in the system
S with the velocity u D fux D 0:5c; uy D 0:1c; uz D 0g. What
is the velocity vector u0 in the system S0 when using

a) the Galilei transformations and
b) the Lorentz transformations?
How large is the error of a) compared to b)?

3.10 A meter scale moves with the velocity v D 2:8 � 108 m=s
passing an observer B at rest. Which length is B measuring?

3.11 A space ship flies with constant velocity v to the planet
Neptune and reaches Neptune at its closest approach to earth.
How large must be the velocity v if the travel time, measured by
the astronaut is 1 day? How long is then the travel time mea-
sured by an observer on earth?

3.12 Light pulses are sent simultaneously from the two end-
points A and B of a rod at rest. Where should an observer O

sit in order to receive the pulses simultaneously? Is the answer
different when A, B and O moves with the constant velocity v?
At which point in the system S an observer O0 moving with a
velocity vx against S receives the pulses simultaneously if he
knows that the pulses has been sent in the system S simultane-
ously from A and B?

3.13 At January 1st 2010 the astronaut A starts with the con-
stant velocity v D 0:8c to our next star ˛-Centauri, with a
distance of 4 light years from earth. After arriving at the star,
A immediately returns and flies back with v D 0:8c and reaches
the earth according to the measurement of B on earth at the 1st
of January 2020. A and B had agreed to send a signal on each
New Year’s Day. Show that B sends 10 signals, but A only 6.
How many signals does A receive on his outbound trip and how
many on his return trip?

3.14 Astronaut A starts at t D 0 his trip to the star Sirius (dis-
tance 8.61 light years) with the velocity v1 D 0:8c. One year
later B starts with the velocity v2 D 0:9c to the same star. At
which time does B overtake A, measured
a) in the system of A,
b) of B and
c) of an observer C who stayed at home?
At which distance from C measured in the system of C does this
occur?
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In the preceding chapters we have discussed the motion of a
single particle and its trajectory under the influence of external
forces. In this chapter we will deal with systems of many par-
ticles, where besides possible external forces also interactions
between the particles play an important role.

4.1 Fundamentals

At first we introduce several expressions and definitions of fun-
damental terms and notations for systems of many particles.

4.1.1 Centre of Mass

We consider N point masses with position vectors ri and define
as the centre of mass the point with the position vector

RS D
P

i mi riP
i mi

D 1

M

X

i

mi ri ; (4.1)

where M D P
mi is the total mass of all N particles (Fig. 4.1).

When the masses mi move with the velocities vi D dri=dt we
define the velocity vS of the centre of mass as

vS D dRS

dt
D 1

M

X

i

mivi : (4.2a)

With the momenta pi D mi � vi (4.2a) can be also expressed by
the total momentum P D P

pi as

P D MvS : (4.2b)

If no external forces are acting on the particles, we need to re-
gard only internal forces, i. e. interactions between the particles.
Such a system without external forces is called a closed system.

From the Newtonian law Fik D �Fki it follows:
P

i

P
k¤i Fik D

0. In a closed system the vector sum of all forces is zero.

With Fi D P
k¤i Fik and Fi D dpi=dt the total momentum of the

system

P D
X

pi D const : (4.3)

Since P is the momentum of the centre of mass we can state:

The centre of mass of a closed system moves with constant
momentum. This implies that its velocity does not change.

If an external total force F ¤ 0 acts onto the system we can
write

F D d

dt

X
pi D dP

dt
; (4.4)

RS

Figure 4.1 Definition of center of mass

With the acceleration of the centre of mass aS D dvS=dt we
obtain

F D MaS : (4.5)

The centre of mass of an arbitrary system of particles
moves in the same way as a body with the total mass
M D P

mi would move under the action of the external
force F.

Often it is useful to choose a coordinate system with the centre
of mass as origin, which moves with the velocity vS of the centre
of mass against the fixed laboratory system. Such a system is
called the centre of mass system (CM-system).

The position vectors ri in the lab-system are related to the posi-
tion vectors riS in the CM-system (Fig. 4.1) by

ri D riS C RS : (4.6a)

Inserting into (4.1) gives

X

i

miriS D
X

i

mi .ri � RS/

D
X

i

miri � RS

X

i

mi D 0 ;

X
miriS D 0 (4.6b)

This implies that in the CM-system the position vector RS of the
centre-of-mass is RS D .1=M/

P
miriS D 0.
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The relation between the velocity vi in the lab-system and viS in
the CM-system is

vi D viS C VS ; (4.6c)

which can be verified by differentiation of (4.6a). For the mo-
menta we therefore get

X

i

miviS D
X

i

piS D 0 : (4.6d)

The sum of all momenta in the CM-system is always zero.

For a closed system of two masses m1 and m2 the total kinetic
energy in the lab-system is

Ekin D 1
2 m1v

2
1 C 1

2 m2v
2
2

D 1
2

�
m1v

2
1S C m2v

2
2S

�
C 1

2 .m1 C m2/V2
S

C .m1v1S C m2v2S/ � VS :

(4.7a)

The last term is zero because p1S C p2S D 0 and we obtain:

Ekin D E
.S/
kin C 1

2 MV2
S : (4.7b)

In the Lab-system the kinetic energy of a closed system
can be written as the sum of E

.S/
kin in the CM-system plus

the kinetic energy of the total mass M concentrated in the
center of mass S (translational energy of the system).

The total motion of the closed system can be divided into a uni-
form motion of S with the constant velocity VS and a relative
motion of the two particles against S.

4.1.2 Reduced Mass

We consider two particles with masses m1 and m2 which interact
with each other due to the forces F12 D �F21. Without other
external forces the equations of motion read:

dv1

dt
D F12

m1
I dv2

dt
D F21

m2
: (4.8a)

Subtraction yields

d

dt
.v1 � v2/ D

�
1

m1
C 1

m2

�
F12 ; (4.8b)

where v12 D v1 � v2 is the relative velocity of the two particles.

Introducing the reduced mass

� D m1m2

m1 C m2
; (4.9)

and rewrite Eq. 4.8b we get

F12 D �
dv12

dt
: (4.10)

This means: For the relative motion of the two particles the
equation of motion is completely analogous to Newton’s equa-
tion (2.18a) for a single particle with the mass �. This shows
the usefulness of defining the reduced mass.

The kinetic energy ES
kin of the two particles in the CM-system

E
.S/
kin

DefD
X

i

mi

2
v2

iS

D 1

2

X
miv

2
i � 1

2
MV2

S :

(4.11a)

is the difference of Ekin in the lab-system and the kinetic energy
of the CM.

Inserting vS D .1=M/
P

mivi gives with (4.9)

E
.S/
kin D 1

2
�v2

12 : (4.11b)

The kinetic energy of a closed system of two particles in the
CM-system equals the kinetic energy of a single parrtivle with
the reduced mass � which moves with the relative velocity v12.

This important relations can be summarized as:

The relative motion of two particles under the influence of
their mutual interaction F12 D �F21 can be reduced to the
motion of a single particle with the reduced mass � driven
by the force F12.

This is illustrated in Fig. 4.2 where two masses m1 D m and
m2 D 1:5m move around their centre of mass S which moves
itself with the velocity VS. An example of such a system is a
double-star system, where two stars with different masses circu-
late around their common CM (see Vol. 4).

4.1.3 Angular Momentum of a System of
Particles

We consider two point masses m1 and m2 with their mutual in-
teraction forces

F12 D �F21
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VS

F12

r12

v12

μ

Figure 4.2 a Velocity VS of the CM of a system of two masses with velocities
vi ; b Reduction of the relative motion of two masses mi to the motion of a single
particle with the reduced mass � under the action of the force F12

and the external forces F1 acting on m1 and F2 acting on m2.
The torques on the two masses with respect to the origin 0 of
the coordinate system are

D1 D r1 � .F1 C F12/ ;

D2 D r2 � .F2 C F21/ ;

and the total torque of the system is then (Fig. 4.3)

D D .r1 � F1/C .r2 � F2/C .r1 � r2/ � F12 :

Since the direction of the internal forces F12 D �F21 lies in the
direction of the connecting line r12 D .r1 � r2/ the last term
vanishes and the total torque

D D .r1 � F1/C .r2 � F2/ (4.12)

becomes the vector sum of the torques on the individual parti-
cles. Without external forces the total torque on the system is
zero!

The total angular momentum L of the system with respect to the
origin 0 is

L D .r1 � p1/C .r2 � p2/ ; (4.13)

and we obtain, analogous to the Eq. 2.48 for a single particle:

dL

dt
D .r1 � F1/C .r2 � F2/ D D : (4.14)

The derivation of these equations and the situations discussed
for a system of two particles can be readily generalized to a
system of many particles. This gives the important statement:

Figure 4.3 Torques acting on a system of two masses under the influence of
external forces

The time derivative of the total angular momentum of a
system of particles referred to an arbitrary point is equal
to the total torque exerted onto the system and referred to
the same point.

For the special case that no external forces are present the torque
is zero and therefore the angular momentum L is constant.

The total angular momentum of a closed system of parti-
cles is constant.

Using CM-coordinates we can divide the angular momentum
(4.13) according to (4.6a)

L D m1 .r1S C RS/ � .v1S C VS/

C m2 .r2S C RS/ � .v2S C VS/ :

For many particles this reads

L D
X

i

mi .riS C RS/ � .viS C VS/

D M .rS � VS/C
X

i

mi .riS � viS/

C
X

i

mi .RS � viS/C
X

i

mi .riS � VS/ :

The terms
P

i mi.RS�vS/ and
P

i mi.riS�vS/ are zero according
to (4.6d) and (4.6b) and it follows:

L D M .rS � VS/C
X

i

mi .riS � viS/ : (4.14a)

The first term

L0S D M .RS � VS/ (4.15a)

is the angular momentum of the total mass contracted in the CM
referred to the origin of the coordinate system. The second term
gives the total angular momentum referred to the CM.
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For a system of two particles we can transform LS because ofP
i miviS D 0 into

LS D
X

LiS D .r1S � p1S/C .r2S � p2S/

D .r1S � r2S/ � p1S D r12 � �v12 ;
(4.15b)

(with piS D �v12). This follows from (4.6d) and (4.10). We can
therefore state:

The angular momentum LS of a system of two particles
in the CM is equal to the angular momentum of a single
particle with the reduced mass � and the position vector
r12 D r1 � r2.

Examples

1. The relative motion of the earth-moon system around
their common center of mass S (Fig. 4.4) can be re-
duced to the motion of a single body with reduced
mass � D mE � mMo=.mE C mMo/ � 0:99mMo in
the central gravitational force field between earth and
moon around the centre M of the earth. The cen-
tre of mass is located inside the earth 4552 km away
from the centre M because the mass of the moon
mMo � 0:01mE is small compared with the earth mass.
In the CM-system earth and moon describe nearly cir-
cular elliptical orbits around the common CM with
radii

rE D .mMo=.mE C mMo// rEMo � 0:01rEMo

and

rMo D .mE=.mE C mMo// rEMo � 0:99rEMo ;

where rEMo is the distance between earth and moon.
In a coordinate system which is referred to the centre
of our galaxy the lunar orbit is a complicated curve,
shown in Fig. 4.4b where the deviations from the path
of the CM are exaggerated in order to elucidate the
situation. This complicated motion can be composed
of
a) the motion of the moon around the CM of the

earth-moon system
b) the motion of the CM around the centre of mass of

the solar system, which is located inside the sun,
because Mˇ > 103 �PmPlanets.

c) the motion of the CM of the solar system around
the centre of our galaxy.

d) The exact calculation of the lunar orbit has to take
into account the simultaneous gravitational attrac-
tion of the moon by the earth and the sun, which
changes with time because of the changing relative
position of the three bodies. Because of this “per-
turbation” the lunar orbit is not exactly an ellipse

around the CM. Although there is no analytical
solution for the exact orbit, very good numerical
approximations have been developed [4.1b].

Figure 4.4 a Motion of the moon in the CM-system earth–moon.
b Motion of the moon and the CM in the galactic coordinate system
where the sun also moves

2. The hydrogen atom is a two-body system of an elec-
tron with mass me and proton with mass mp. Because
mp D 1836me the reduced mass is � D 0:99946me �
me. In a classical picture proton and electron circulate
around the CM. With the mean distance rpe between
proton and electron the CM lies .1=1836/rpe from the
centre of the proton. The motion of the two particles
can be separated into the translation of the CM with
the velocity VS and the motion of a particle with mass
� with the relative velocity vpe around the CM. The
total kinetic energy of the H-atom is then:

Ekin D 1
2

�
mp C me

�
V2

S C 1
2�v

2
pe :

For velocities of the H-atom which correspond to
thermal energies at room temperature the first term
.� 0:03 eV/ is very small compared to the second
term of the “internal” energy (� 10 eV). J

4.2 Collisions Between Two Particles

This section is of great importance for the understanding of
many phenomena in Atomic and Nuclear Physics, because an
essential part of our knowledge about the structure and dynam-
ics of atoms and nuclei arises from investigations of collision
processes.

When two particles approach each other they are deflected due
to the interaction forces between them. The deflection oc-
curs in the whole spatial range where the forces are noticeable
(Fig. 4.5). Due to this interaction both particles change their
momentum and often also their energy. However, conservation
laws demand that momentum and energy of the total system are
always preserved.
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Figure 4.5 Schematic illustration of a collision with the asymptotic scattering
angles �1 an �2

The exact form of the trajectory of the particles inside the in-
teraction zone can be determined only if the exact interaction
potential is known. However, it is possible to make definite
statements about magnitude and direction of the particle mo-
menta after the collision in a great distance from the interaction
zone. These statements are based solely on the conservation of
momentum and energy. We will illustrate this in more detail in
the following section.

4.2.1 Basic Equations

Although the total energy of the two colliding partners is pre-
served during collisions, part of the translational energy is often
converted into other forms of energy, as for instance poten-
tial energy or thermal energy. From (4.3) it follows however,
that the total momentum of the collision partners is always re-
tained.

The basic equations for collision processes between two parti-
cles with velocities v which are small compared to the velocity
c of light (non-relativistic collisions) can be written as:

conservation of momentum (Fig. 4.6)

p0
1 C p0

2 D p1 C p2 (4.16)

conservation of energy

p02
1

2m0
1

C p02
2

2m0
2

D p2
1

2m1
C p2

2

2m2
C U (4.17)

Figure 4.6 Conservation of total momentum at the collision of two particles

where p0
i is the momentum of particle i after the collision and

U is that part of the initial energy that had been converted
into internal energy of one or both of the collision partners
and is therefore missing in the kinetic energy after the collision
(U < 0). If internal energy of the colliding partners has been
transferred into kinetic energy we get U > 0.

The Eq. 4.16 and 4.17 describe the collision process completely
in that sense, that relations between magnitude and direction of
the individual momenta of the particles after the collision can be
determined, if they are known before the collision.

Depending on the magnitude of U we distinguish between three
cases:

U D 0, elastic collisions. The total kinetic energy is pre-
served, while the kinetic energy of the individual particles
generally changes.
U < 0, inelastic collisions. The total kinetic energy after the
collision is smaller than before. Part of the initial kinetic en-
ergy has been converted into internal energy of the collision
partners.
U > 0, superelastic collisions (sometimes called collisions
of the second kind). At least one of the collision partners had
internal energy before the collision which was transferred
into kinetic energy during the collision.
The kinetic energy after the collision is larger than before the
collision.

During reactive collisions (for instance during chemical reac-
tions or in high energy collisions) new particles can be produced
and the masses of the collision partners may change. An exam-
ple is the reaction

H2 C Cl2 �! HCl C HCl :

These reactive collisions are treated later.

Note:

While the kinetic energy is only preserved in elastic
collisions the total momentum is preserved for all kinds
of collisions (Fig. 4.6).
Inelastic, super-elastic and reactive collisions can only
occur, if at least one of the collision partners has an
internal structure. This means that it must consist of
at least two particles, which are bound together. Ex-
amples are atoms (consisting of nuclei and electrons)
or nuclei (consisting of protons and neutrons). Part
of the kinetic energy of the collision partners then
can be transferred into the increase of the internal en-
ergy (potential or kinetic energy of the constituents).
For collision partners consisting of many particles (for
example solids) the increase of kinetic energy of the
constituents can be defined as an increase of the tem-
perature (see Sect. 7.3) which is then called “thermal

energy” (see Sect. 10.1).
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4.2.2 Elastic Collisions in the Lab-System

The description of collision processes can be essentially sim-
plified when the appropriate coordinate system is chosen. For
many situations one of the collision partners, for instance m2, is
at rest before the collision. We choose its position as the origin
of our coordinate system, which is fixed relative to the labo-
ratory system. In this system is therefore p2 D 0 (Fig. 4.7).
We assume that the masses do not change during the collision
(m1 D m0

1, m2 D m0
2). With U D 0 for elastic collisions we

obtain from (4.16) and (4.17)

p1 D p0
1 C p0

2 D p0 ; (4.16a)

p2
1

2m1
D p02

1

2m1
C p02

2

2m2
: (4.17a)

We choose the direction of the initial momentum p1 as the x-
direction (Fig. 4.8) ) p1 D fp1; 0; 0g. The angular momentum
L D r � p points into the z-direction. Because the angular
momentum is constant the motion of the collision partners is
restricted to the x-y-plane. The endpoint of the vector p0

2 is the
point P.x; y/. From Fig. 4.8 we derive the relations:

x2 C y2 D p02
2 ;

.p1 � x/2 C y2 D p02
1 :

Inserting into (4.17a) yields

p2
1

2m1
D .p1 � x/2 C y2

2m1
C x2 C y2

2m2
:

Rearranging gives with the reduced mass� D m1 �m2=.m1Cm2/
the equation

.x � �v1/
2 C y2 D .�v1/

2 (4.18)

of a circle in the x-y-plane with the radius r D �v1 and the
centre M D f�v1; 0g. This implies that the endpoints of all
possible vectors p0

2 which fulfil energy-and momentum conser-
vation have to lie on the circle around M, if they start from the
origin f0; 0g (Fig. 4.9).

The angles �1 and �2 are the deflection angles of the two col-
lisions partners. The maximum deflectionangle �max

1 of the

Figure 4.7 Collision of a particle with mass m1 and momentum p1 with a mass
m2 at rest, drawn in the Lab-system

Figure 4.8 Illustration of (4.18)

impinging particle is reached, when p0
1 is the tangent to the cir-

cle. For m1 > m2 ! p1 D m1v1 > 2�v1, which means that
jp1j > 2r. The magnitude of the momentum of the impinging
particle is larger than the diameter of the circle. From Fig. 4.9
we can then conclude the relation

sin �max
1 D �v1

.m1 � �/v1
D �

m1 � � D m2

m1
: (4.19)

Examples

1. m1 D 1:1m2 ) � D 0:52m2 ) sin �max
1 D 0:91

) �max
1 D 65ı :

2. m1 D 2m2 ) � D 0:67m2 ) sin �max
1 D 0:5

) �max
1 D 30ı :

3. m1 D 100m2 ) � D 0:99m2

) �max
1 D 0:6ı : J

Special Case: Central Collisions

If p0
2 has the same direction as p1 the deflection angle becomes

�2 D 0 (central or collinear collision). All vectors p1, p0
1 and p2

are collinear and coincide in Fig. 4.9 with the x-axis. We obtain

Figure 4.9 Momentum diagram of elastic collisions for m1 > m2. All possible
endpoints of the vector p0

2 are located on the circle with radius �v1 around M
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from Fig. 4.9:

p1 D 2�v1 C p0
1

)m1v
0
1 D m1v1 � 2

m1m2

m1 C m2
v1

)v0
1 D m1 � m2

m1 C m2
v1 I

p0
2 D 2�v1

)v0
2 D 2

�

m2
v1 D 2m1

m1 C m2
v1 :

(4.20)

The momentum of the pushed particle gets its maximum value
p0

2 D 2�v1 for collinear collisions.

Also the kinetic energy, transferred from m1 to m2 during a
collinear elastic collision reaches its maximum value

�Ekin D p02
2

2m2
� �Emax

kin D 2m2
1m2

.m1 C m2/2
v2

1

�Emax
kin D 4

m1m2

M2
E1 D 4�2

m1m2
E1 ;

(4.21)

which equals the fraction 4�2=.m1m2/ of the initial energy E1 of
the impinging mass m1. In Fig. 4.10 this maximum transferred
fraction is shown as a function of the mass ratio m1=m2.

For m1 D m2 it is v0
1 D 0 and v0

2 D v1. The two masses
exchange their momentum during the collision, i. e. after the col-
lision m1 is at rest and m2 moves with the momentum p0

2 D p1.

For equal masses m1 D m2 the energy of the incident parti-
cle is completely transferred to the resting mass m2 during
a collinear collision.

1,0

0,5

0
10 5 10 15 20

(m1/m2)

Ekin
max

E1

∆
=

4m1m2

(m1+m2)
2
=

4

(m1/m2)+2+1/(m1/m2)

Figure 4.10 Maximum energy transfer �E D E � E 0
1 for a collinear elastic

collison of a particle with mass m1 onto a mass m2 at rest for different ratios
m1=m2

Special cases of non-collinear collisions

We will now discuss the general case of non-collinear collisions
and illustrate it by some important special cases of the mass ratio
m1=m2.

m1 D m2 D m ) � D 1
2
m:

Equation 4.18 gives for the radius of the circle in Fig. 4.9
r D 1

2 mv1, which implies that the momentum p1 D mv1 of
the incident particle is the diameter of the circle (Fig. 4.11). For
non-collinear collisions the momenta p0

1 and p0
2 after the colli-

sion are perpendicular to each other according to the theorem of
Thales. For the deflection angles it follows �1 C �2 D �=2.

The paths of the two particles are perpendicular to each
other after the non-collinear collision, i. e. p0

1 ? p0
2.

Example

For the deceleration of neutrons in nuclear reactors a
material with many hydrogen atoms is the best choice.
Because the protons have nearly the same mass as neu-
trons. J

m1 � m2 ) � � m1

The radius of the circle in Fig. 4.9 becomes for the limiting case
m1=m2 ! 0 equal to the momentum p1 D m1v1 of the inci-
dent particle (Fig. 4.12a). The magnitude of p1 does not change
during the collision .jp1j D jp0

1j/ but all directions of p0
1 are

possible. The scattering angle �1 can take all values in the range
�� � �1 � C� .

The maximum momentum transfer onto m2 is

jp0
2jmax D 2r D 2p1 :

The maximum transferred energy is

�Emax
kin D .2p1/

2

2m2
D 4p2

1

2m1

m1

m2
D 4

m1

m2
E1 : (4.22)

Figure 4.11 Elastic collision between particles of equal mass
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Figure 4.12 Elastic collision for m1 � m2 (a) and m1 � m2 (b)

In collisions of a small mass m1 against a large mass m2

the maximal transferred fraction of the initial kinetic en-
ergy is 4.m1=m2/.

Examples

1. Impact of a particle onto a solid wall.

m2 D 1 ) �Emax
kin D 0 but: p0

2 D �2p1 :

During the elastic collision of a particle with a solid
wall the particle is elastically reflected and p0

1 D �p1.
Therefore twice the initial momentum is transferred to
the wall but no energy!

2. Collision of an electron with a proton at rest.

m1 D m2=1836. The maximal transferred energy
occurs in central collisions and is then �Emax

kin D
4.m1=m2/E1 D 0:00218 E1. J

m1 � m2 ) � � m2.

In this case the radius of the circle in Fig. 4.9 is r D m2v1

(Fig. 4.12b). For central collisions is

m2v
0
2 D 2r D 2m2v1 ) v0

2 D 2v1 ;

and the transferred energy is

�Ekin D m2

2
v0

2
2 D 4

m2

m1
E1 : (4.23)

For non-collinear collisions the energy transferred to m2 is
smaller. The maximum deflection angle ' D �max

1 of the in-

cident mass m1 is according to (4.19)

sin' D m2

m1
:

Example

In collisions of ˛-particles (helium nuclei) with electrons
at most the fraction �E1 D 0:00054E1 of the initial
energy E1 can be transferred to the electron. The maxi-
mum deflection angle of the ˛-particles is ' � sin' D
1:36 � 10�4rad D 0:480. When ˛-particles pass through
matter the electron shell of the atoms contributes to the
deflection only a tiny part. Most of the deflection is
caused by the atomic nuclei (see Rutherford scattering in
Vol. 3). J

4.2.3 Elastic Collisions in the Centre-of Mass
system

When none of the collision partners is resting, the description
of the collision process is often simpler in the CM-system than
in the lab-system. Since, however, the observation of the pro-
cess always occurs in the lab-system the measured results must
be transformed into the CM-system in order to compare them
with the predictions calculated in the CM-system. The relations
between position vectors and velocities in the two systems is
illustrated in Fig. 4.13b and the results are compiled in Tab. 4.1.

VS

RS

Figure 4.13 Graphical representation of the relations between a Lab- and CM-
coordinates and b Lab- and CM-velocities
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Table 4.1 Compilation of quantities relevant for collisions in the lab-system
and the CM-system

M D m1 C m2 D total mass

� D m1 �m2
m1Cm2

D reduced mass

RS D 1
M
.m1r1 C m2r2/ D position vector of CM

VS D 1
M
.m1v1 C m2v2/ D velocity of CM

r12 D r1 � r2 D relative distance

v12 D v1 � v2 D relative velocity

riS D ri � RS D position vector of i-th particle in the CM-system

viS D vi � VS D velocity of i-th particle in the CM-system

piS D miviS D momentum of i-th particle in the CM-system
P

piS D 0

�i D deflection angle of i-th particle in the lab-system

#i D deflection angle of i-th particle in the CM-system

Note: We will denote the center of mass with the index S.

Since the total momentum in the CM-system is always zero, we
can write for two particles 1 and 2

p1S D �p2S and p0
1S D �p0

2S :

The sum of the momenta of the collision partners before
the collision and after the collision is in the CM-system
always zero.

From the energy conservation (4.17) it therefore follows:

1

2

�
1

m1
C 1

m2

�
p02

1S D 1

2

�
1

m1
C 1

m2

�
p2

1S C U ;

which can be written when using the reduced mass �

energy conservation in the S-system

p02
1S

2�
D p2

1S

2�
C U : (4.24)

For elastic collisions .U D 0/ in the CM-system is p2
1S D p02

1S
and p2

2S D p02
2S. This means:

In the CM-system each collision partner retains in elastic
collisions its kinetic energy.

In the CM-system the result of an elastic collision is merely a
turn of the momentum vectors which are always pointing into
the opposite direction (Fig. 4.14).

Figure 4.14 In the CM-system an elastic collision is represented by a turn of
the momentum vectors without changing their length

Note: in order to distinguish the deflection angles � in the lab-
system written as capital letters, from those in the CM we will
label all deflection angles in the CM-system by lower case let-
ters # .

Example

Deceleration of neutrons (mass m1, velocity v1) in elastic
collisions by atomic nuclei (mass m2) at rest. The CM-
velocity is

VS D V0
S D m1v1

m1 C m2
D v1

1 C A
with A D m2=m1 :

J

The velocity of the two particles in the CM-system is according
to Fig. 4.15

v1S D v1 � VS D Av1

1 C A
I

v2S D 0 � VS D � v1

1 C A
I

v0
1S D v0

1 C v2S D v0
1 � VS :

S

Figure 4.15 Determination of energy transfer at elastic collisions
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Squaring gives with v0
1S � VS D v0

1S � VS � cos#1

v02
1 D v02

1S C V2
S C 2v0

1SvS cos#1 ;

where #1 is the angle between v0
1S and VS. Because VS k v1S

it follows that #1 is also the angle between v0
1S and v1S, i. e. the

deflection angle of m1 in the CM-system. Inserting the relations
above for VS we obtain

v02
1S D v2

1
A2 C 2A cos#1 C 1

.1 C A/2
:

The ratio of the kinetic energies of the neutron after and before
the collision is then

�
E0

kin

Ekin

�
D v02

1

v2
1

D A2 C 2A cos#1 C 1

.1 C A/2
:

For central collisions is #1 D � and the ratio becomes
�

E0
kin

Ekin

�central

D
�

A � 1

A C 1

�2

:

For the transferred energy �E D E0
kin � Ekin we then obtain

�E

Ekin
D 4A

.A C 1/2
D 4m1m2

.m1 C m2/2
:

For m1 D m2 the transferred energy �E=E takes on its maxi-
mum value�E=E D 1. This means that the neutron can transfer
its total kinetic energy if it suffers a central collision with a pro-
ton.

4.2.4 Inelastic Collisions

For inelastic collisions part of the initial kinetic energy is trans-
ferred into internal energy U of the collision partners. Such
collisions are only possible, if at least one of the partners has
a variable internal sub-structure, which means that it has to be
composed of two or more particles. For point masses there are
no inelastic collisions!

For inelastic collisions momentum conservation remains valid
(4.16) and also energy conservation with U < 0 (4.17). In the
limiting case of maximal inelastic collisions the two collision
partners stick together after the collision and move with the CM-
velocity.

VS D m1v1 C m2v2

m1 C m2
: (4.25)

From (4.17) and (4.25) we obtain for the maximum fraction of
the kinetic energy, which is transferred into internal energy

U D 1

2
.m1 C m2/V2

S � 1

2

�
m1v

2
1 C m2v

2
2

�

D �1

2

m1m2

m1 C m2
.v1 � v2/

2 D �1

2
�v2

12 ;

(4.26a)

which is identical to the kinetic energy of the two particles in
the CM-system (see (4.11b)).

In a completely inelastic collision, where the two particles
stick together after the collision, just the kinetic energy
of the two particles in the CM-system is converted into
internal energy of one or both collision partners.

From (4.26) it follows that only in cases where the two collision
partners have equal but opposite momenta (m1v1 D �m2v2 )
VS D 0) the total kinetic energy can be converted into internal
energy. The two particles then stick together and are at rest,
their total momentum is zero before and after the collision. For
all other collisions jUj < jUmaxj. Therefore the general rule is:

For all inelastic collisions not more than �E D 1
2� � v2

12
of the initial kinetic energy can be converted into internal
energy. At least the proportion

1
2 .m1 C m2/V

2
S D 1

2 MV2
S (4.26b)

of the CM-motion remains as kinetic energy of the colli-
sion partners.

Examples

1. A glider with mass m1 on an air-track hits a second
glider with mass m2 at rest .v2 D 0/. The two col-
liding ends are covered with plasticine, which causes
the two gliders to stick together after the collision and
they move with the CM-velocity

VS D m1

m1 C m2
v1 :

The kinetic energy after the collision is

E0
kin D m1 C m2

2
V2

S D m2
1

2.m1 C m2/
v2

1 ;

and the energy converted into the plasticine energy is

U D E0
kin � Ekin D � m2

m1 C m2
Ekin :

For m1 D m2 this gives

U D � 1
2 Ekin :

2. A neutron n with velocity v1 impinges on a proton p
at rest. This produces a deuteron d D np.

n C p �! d :

Because of m1 D m2 the deuteron moves with the
CM-velocity VS D 1

2v1 and has therefore half of the
initial kinetic energy E0

kin D Ekin of the incident neu-
tron. The other half is converted into internal energy
of the deuteron, which is excited into a higher energy
state, that can decay by emission of 
 -radiation. J
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Summarizing the results: In inelastic collisions of particles with
equal masses where one collision partner is at rest at most half
of the kinetic energy of the incident particle can be converted
into internal energy

jUj � jUmaxj D 1

2

m

2
v2

1 : (4.27a)

The amount Umax � U remains as kinetic energy of the col-
lision partners in addition to the kinetic energy 1

2 MV2
S of the

CM-motion.

Special Cases

If a particle with mass m1 suffers a totally inelastic collision
with a wall .m2 � m1 ! � � m1/ it remains adsorbed
at the wall and transfers its kinetic energy completely to the
wall, which heats up. .U D �Ekin;E

0
kin D 0/.

If two equal masses collide head-on with p1 D �p2 the total
momentum after the collision must be zero. With v2

1 D v2
2 D

v2 the increase of internal energy is

U D �1

2
.m1 C m2/v

2 ;

as in the first case the total kinetic energy is converted into
internal energy. These two special cases are illustrated in
Fig. 4.16 and compared with the corresponding elastic colli-
sions.

Examples

1. Collisional excitation of mercury atoms by elec-
tron impact (Franck-Hertz-Experiment). Because of
mHg � me the reduced mass m � me. From (4.26) we
can conclude that nearly the total kinetic energy of the

Figure 4.16 Comparison of elastic and completely inelastic collisions: a parti-
cle against a wall, b collision between two equal masses

electron can be converted into excitation energy of the
Hg-atoms.

2. A heavy particle with mass m1 D 100m2 collides with
a particle of mass m2. Now � D 0:99m2 and U D
.0:99=100/m2v

2
1=2. This implies that only about 1%

of the kinetic energy is converted into internal energy
U. J

4.2.5 Newton-Diagrams

The measurements of deflection angles at collisions between
atoms or molecules is performed in the laboratory-system. The
determination of the interaction potential derived from these
deflection angles is, however, much easier in the CM-system.
The relations between the relevant parameters in the two sys-
tems (velocities, deflection angles, energy transfer) for arbitrary
elastic or inelastic collisions can be visualized with the help of
Newton diagrams, which connects the velocities in the lab- sys-
tem with those in the CM-system (Fig. 4.17). The parameters
used in the following are listed in Tab. 4.1.

With the relations

r1 D RS C .m2=M/ r12 and

r2 D RS � .m1=M/ r12 ;
(4.28)

v1 D VS C .m2=M/v12 and

v2 D VS � .m1=M/v12 ;
(4.29)

which can be derived from Fig. 4.13, the kinetic energy can be
separated into the two parts

Ekin D 1
2 m1v

2
1 C 1

2 m2v
2
2„ ƒ‚ …

Ekin in lab frame

D 1
2 MV2

S„ƒ‚…
Ekin of

CM-motion

C 1
2�v

2
12„ƒ‚…

Ekin of relative motion
in the CM-system

:

(4.30)

Figure 4.17 Newton diagram of elastic collision between two particles
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Figure 4.18 Newton-diagram of inelastic collisions between two particles

Since for elastic collisions the kinetic energy of each partner in
the CM-system is preserved, the vector of the relative velocity
v12 retains its magnitude but turns around the centre of mass
S where the end of the vector describes a circle with the radii
v1S D .m2=M/v12 and v2S D .m1=M/v12. The deflection angles
#1 in the CM-system can be determined graphically from the
deflection angles �1 in the lab-system.

In particular the maximum deflection angle �max
1 can be deter-

mined readily. It appears when v0
1 is the tangent to the Newton

circle.

For inelastic collisions (Fig. 4.18) part of the kinetic energy
1
2�v

2
12 is converted into excitation energy, which means that v0

12
becomes smaller. However, still the centre-of-mass S divides
the connecting line between the endpoints of the vectors v1 and
v2 in the ratio m1=m2 of the two masses. The endpoints of v0

12
are now located on a circle with smaller radius (dashed circles
in Fig. 4.18).

For both elastic and inelastic collisions the range of possible
deflection angles and the maximum deflection angles can be de-
termined from the Newton diagrams. Therefore such diagrams
are very useful for the planning of experiments, because they
tell us, in which deflection ranges one must look for scattered
particles for given initial conditions [4.2].

4.3 What Do We Learn from the
Investigation of Collisions?

The deflection of a particle A during the collision with another
particle B is due to the momentum transfer

�p D
C1Z

�1

F dt ; (4.31)

which is caused by the force F acting between A and B while
passing by each other. The momentum change �p experienced

Figure 4.19 Illustration of impact parameter

by A is, of course, compensated by the change ��p experienced
by B, because the total momentum has to be conserved.

Since F.r/ D �rEp the force F is a measure for the potential
energy Ep.r/ of the interaction between A and B which depends
on the distance r between A and B. The deflection of A there-
fore depends on the impact parameter b in Fig. 4.19, which is a
measure of the closest approach between A and B. It is defined
in the following way:

For large distances between A and B the force F is negligible and
the incident particle A will follow a straight line. If there would
be no interaction between A and B the incident particle A would
follow this straight line and pass B at the closest distance b. This
line is parallel to the straight line through B where B is resting in
the origin of the coordinate system. To each impact parameter
b belongs a certain deflection angle � in the lab-system resp. #
in the CM-system., which depends on the interaction potential
V.r/ between A and B.

4.3.1 Scattering in a Spherical Symmetric
Potential

In Sect. 4.1.3 it was shown, that the relative motion of two parti-
cles around the CM caused by the mutual interaction force F.r/
can be reduced to the motion of a single particle with the re-
duced mass� in the spherical symmetric potential with its origin
at the position of one of the two particles (usually the one with
the larger mass). If the force F.r/ is known, the deflection angle
# in the CM-system can be determined from Eq. 4.3 and the re-

Figure 4.20 Relation between momentum change�p and deflection angle #
in the CM-system
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lation sin.#=2/ D 1
2
�p

pA
(Fig. 4.20). In Sect. 4.2.5 it was shown

how the angle � measured in the lab-system can be transformed
into the angle # in the CM-system.

The deflection of particles in a potential is called potential

scattering. We will illustrate this potential scattering and its
treatment by some examples.

Examples

1. Collision of two hard spheres with radii r1 and r2

(Fig. 4.21).

If the impact parameter b is larger the sum r1 C r2

no collision takes place. The hard sphere A moves on
a straight line and passes B without deflection. For
b � r1 C r2 the colliding partner A is reflected at the
surface of B (Fig. 4.21a). In order to determine the
deflection angle # of A we decompose the momentum
p1 of A into a component pr parallel to the connecting
line M1M2 at the touch of the two spheres and a com-
ponent pt in the tangential direction perpendicular to
pr (Fig. 4.21b). We assume the surface of the spheres
as frictionless. Then no rotation of the spheres can be
excited and the component pt does not change during
the collision. For the component pr we can conclude
from (4.20) for central collisions

p0
r D m1 � m2

m1 C m2
pr : (4.32a)

Figure 4.21 Determination of the deflection function for collisions
between two hard spheres. a Definition of impact parameter, b decom-
position of impact momentum, c momentum vector addition

For m2 � m1 this gives p0
r D �pr. In this case is in

Fig. 4.21c ˇ D ˛ and the deflection angle becomes
� D 2˛.

From Fig. 4.21b one can deduce from b D r1 C r2 for
� D 2˛ the dependence of the deflection angle on the
impact parameter b

�.b/ D 2 arccos
b

r1 C r2
: (4.32b)

For b D 0 is � D � i. e. A is reflected back., for
b > r1 C r2 is � D 0. The function �.b/ is called
deflection function. Its curve depends on the interac-
tion potential .V.r//. For the collision of two hard
spheres the potential is a step function (Fig. 4.22a) and
the deflection function is the monotonic curved shown
in Fig. 4.22b for m2 � m1.
For the general case of arbitrary ratios m1=m2 we ob-
tain from Fig. 4.21c:

� D ˛ C ˇ

with pr=pt D tan˛ it follows

tanˇ D p0
r=pr D �.m1 � m2/=.m1 C m2/ :

While (4.32b) is only strictly valid for m2 D 1, the
deflection function

#.b/ D arccos
b

r1 C r2
(4.32c)

in the CM-system is correct for arbitrary ratios m1=m2.

Figure 4.22 a Potential V .r/ for hard spheres; b deflection function
for hard sphere collisions

2. Scattering of a particle in a potential V.r/ / 1=r.

This important case applies for instance for the
Coulomb-scattering of charged particles (electrons
or ˛-particles) on atomic nuclei (see Vol. 3) or the
Kepler-orbit of comets in the gravitational field of the
sun.
For a potential V.r/ with the potential energy Ep D
a=r the force between the interacting particles A and
B with masses m1 and m2 is

F D � grad Ep D a

r2
Or : (4.33)

For a > 0 a repulsion between the particles occur, for
a < 0 an attraction. The angular momentum in the
CM-system is according to (4.15)

L D r � � � v with � D m1m2

m1 C m2
;
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where r is the distance between A and B and v is the
relative velocity.
Since L is in the central potential temporally constant
the orbit of the particle remains in the plane ?L, which
we choose as the x-y-plane (Fig. 4.23). The particle A

is incident parallel to the x-axis with an impact param-
eter b and the initial velocity v0. It is convenient to use
polar coordinates for the description of its trajectory.
The magnitude of L is then

L D jr � �vj D �r2 d'

dt
D �v0b ; (4.34)

where the last term describes the angular momentum
of A for large distances r ! 1 referred to the par-
ticle B which sits at the origin r D 0. It should be
emphasized that we use the CM-system for our de-
scription. In the lab-system B does not stay at r D 0
but moves around the common centre of mass. We
compose the force F.r/ of the components Fx and Fy.
For the deflection of A only the component Fy is re-
sponsible. From Fig. 4.23 we see that

Fy D a sin '

r2
D �

dvy

dt
: (4.35)

A ( r )

Figure 4.23 Scattering of a particle in the potential V .r/ with r D
distance AB

From (4.34) and (4.35) we obtain

dvy

dt
D a sin'

�v0b

d'

dt
: (4.36)

The total deflection of A during its path through the
potential V.r/ is obtained by integration over the
whole range from r D �1 to r D 1.
For A.�1/ we have vy D 0 and ' D 0, for A.C1/
is vy D v0 � sin# with # D � � 'max. For the elastic
potential scattering the magnitude v0 of the velocity
remains constant. Therefore the integration of (4.36)
yields

Z
dvy D a

�v0b

��#Z

0

sin ' d'

! v0 sin# D a

�v0b
.1 C cos#/ :

With the equation .1 C cos#/= sin# D cot.#=2/ the
relation between deflection angle # and impact pa-
rameter b for scattering in the potential with energy
Ep D a=r becomes

cot

�
#

2

�
D �v2

0

a
b D 2Ekin

a
b : (4.37a)

The ratio a=b gives the potential energy of the interac-
tion between the particles A and B at a distance r D b.
Inserting this into (4.37a) gives the result

cot

�
#

2

�
D 2Ekin

Ep.b/
: (4.37b)

The deflection angle # in the cm-system is determined
by the ratio of twice the kinetic energy and the poten-
tial energy at a distance r D b between the interacting
particles. The deflection function #.b/ is shown in
Fig. 4.24. For b D 0 is cot.#=2/ D 1 ! # D � .
The particle A is scattered back into the �x-direction.
The turning point which is the closest approach r0 can
be obtained from Ekin D Ep ! �v2

0=2 D a=r0. This
gives r0 D 2a=.�v2

0/.

Figure 4.24 Deflection function #.b / (a) and trajectories of a particle
in a potential V .r/ / 1=r for different impact parameters but constant
initial energy. Each deflection angle corresponds to a different ratio f D
2Ekin=Epot.b /. ➀: # D � ; ➁: # D 3

4� ; ➂: # D 105ı, f D 0:76; ➃:
# D 60ı, f D 1:7; ➄: # D 30ı, f D 3:7

For the gravitational potential is a D �Gm1m2 (see
(2.52) and we get from (4.37b) with M D m1 C m2 the
result

cot

�
#

2

�
D � v2

0

GM
b : (4.37c)

The deflection angle depends only on the masses, the
initial velocity v0 and the impact parameter b. For a
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comet is m1 � m2 D Mˇ. The total mass M is then
with a very good approximation M D Mˇ. The mass
of the comet does not affect the deflection angle.
According to (2.60) the trajectories of the particle m1

for E D Ekin C Ep > 0 are hyperbolas. In Fig. 4.24b
some of these hyperbolas are shown for a repulsive po-
tential .a > 0/ and different impact parameters b. For
the interaction between two positively charged parti-
cles with charges q1 and q2 is a D .1=4�"0/ � q1 � q2

(see Vol. 2). J

4.3.2 Reactive Collisions

Reactive collisions provide the basis of all chemical reactions.
A simple example is the reaction

A C BC ! ABC ! AB C C ; (4.38)

where an atom A with the velocity vA collides with a molecule
BC (velocity vBC), forms a complex ABC, which can decay into
the fragments AB C C (Fig. 4.25).

Momentum conservation is also valid for reactive collisions.
The momentum of the right side in equation (4.38) must be
therefore the same as on the left side. The kinetic energy is,
however, in general not conserved because part of this energy
may be converted into internal energy .U < 0/. In cases where
the reactants on the left side are already excited, this internal
energy may be also transferred to kinetic energy (U > 0, super-
elastic collisions). The measurement of velocities and deflection
angles after the collision gives information about the energy bal-
ance of the reaction and the interaction potential between the
reactants, if the initial conditions are known. The potential is
in general no longer spherical symmetric but depends on the
spatial orientation of the molecule BC against the momentum
direction of A. The reaction probability can differ considerably
for collinear collisions, (Fig. 4.26a) from that for non-collinear
collisions where the internuclear axis of BC is inclined by the
angle ˛ against the momentum direction of A (Fig. 4.26b).

Figure 4.25 Schematic representation of a reactive collision, where a collision
complex is formed that decays again

Figure 4.26 Collinear (a) and noncollinear (b) collision, where angular mo-
mentum of the relative motion is transferred to rotational angular momentum of
the molecule BC

Often the reactants A and BC fly in two perpendicular colli-
mated molecular beams. In the intersection volume of the two
beams the reactants collide. For this arrangement the directions
of the reactants are known and their velocities can be selected
by velocity selectors which interrupt the beams (see Sect. 7.4.1).
The initial conditions are then well known (apart from the often
unknown internal energies).

Note, that the masses are generally not constant for reactive
collisions, because the reduced mass �.A C BC/ before the col-
lision differs in general from �.AB C C/ after the collision.

If the kinetic energy E2 of the reaction products is smaller than
the kinetic energy E1 of the reactants, the reaction is called en-

dotherm. One has to put energy into the system in order to make
the reaction possible. If energy is released in the reaction it is
called exotherm. In this case the kinetic energy of the reaction
products is larger than that of the reactants. Measurements of the
velocities of reactants and reaction products can decide which
type applies to the investigated reaction.

The energy balance is illustrated by the potential diagram of
Fig. 4.27. Often the reactants have to overcome a potential bar-
riers in order to start the reaction. In this case a minimum initial
energy is necessary even for exothermic reactions.

The heights of the potential barrier and with it the reaction
probability depends on the internal energy (vibrational- rota-

Figure 4.27 Diagram of potential energy as function of the reaction coordinate
for a endothermic and b exothermic reactive collisions
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tional or even electronic energy) of the reaction partners. For
the measurement of these internal energy several spectroscopic
techniques have been developed which allow to determine the
excitation state of the partners involved in the reaction.

An ideal experiments should allow to measure all relevant pa-
rameters of a collision process such as the internal energies, the
deflection angles and the velocities of all particles. Such modern
techniques are discussed in Vol. 3.

4.4 Collisions at Relativistic Energies

Up to now we have used the Newtonian laws (energy- and mo-
mentum conservation) for the description of collision processes
and we have assumed that the masses of the reaction partners are
constant (besides in reactive collisions). This is justified as long
as the velocities of the collision partners are small compared
with the velocity c of light (see Chap. 3).

For the investigation of interactions between elementary parti-
cles and atomic nuclei, higher energies of the collision partners
are required. Such energies, where the velocity of particles
comes close to the velocity of light can be realized in particle
accelerators and storage rings (see Vol. 4). We will now discuss,
how the rules governing collisions at relativistic energies (the
domain of high energy physics) must be formulated.

4.4.1 Relativistic Mass Increase

We regard two particles A and B which have equal masses m1 D
m2 D m, if they are at rest. We assume that A and B move in a
system S with velocities

v1 D fvx1;�vy1g and v2 D f0; vy2g

against each other where vy1 D vy2 (Fig. 4.28a).

The particle B should suffer an elastic striking collision with A

such that during the collision the x-component vx1 of A remains
constant but the y-component is reversed. The velocity of A after
the collision is then v0

1 D fvx1; vy1g. The magnitude of its veloc-

ity jv1j D
q
v2

x1 C v2
y1 is therefore also preserved. Because the

momentum must be constant the velocity of B after the collision
must be

v0
2 D f0;�vy2g :

We assume that vy � vx. For the magnitudes of the velocities
this implies

v1 D .v2
x1 C v2

y1/
.1=2/ � vx1 and v2 � v1 :

Now we describe this collision between A and B in a system S�

which moves against S with the velocity v D vx1 into the x-
direction (Fig. 4.28b). In this system we get for the velocities of
A and B:

v�
x1 D 0 but v�

x2 D �vx1 ;

* *

Figure 4.28 Grazing elastic collision between A and B at relativistic velocities.
a In the system S has A a large and B a small velocity since Vy � Vx . b In the
sytem S �, that moves relativ to S the situation is reversed

which implies that the roles of A and B are just interchanged.

According to Eq. 3.28 for the transformation of velocities when
changing from system S to S� the observer O� in S� measures
the velocity component

v�
y D vy=


1 � vxv=c2
: (4.39)

Since in the system S for the particle A holds: vx1 D v0
x1 ¤ 0,

for B, however, vx2 D v0
x2 D 0 the observer O� measures for the

two particles different y-components of the velocities

v�
y1 D vy1=


1 � vx1v=c2
D vy1=


1 � v2=c2
D 
vy1 ;

since v � vx1 ;

(4.40a)

v�
y2 D vy2=


1 � vx2v=c2
D vy2=
 ; (4.40b)

while for the observer O in S the velocity component of A is vy1

and for B it is vy2.

In both inertial systems S and S� the conservation of total mo-
mentum holds, since the physical laws are independent of the
chosen inertial system (see Sect. 3.2). This yields for the y-
component of the total momentum

mAvy1 � mBvy2 D m�
Av

�
y1 � m�

Bv
�
y2 D 0 : (4.41)
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For mA D m�
A and mB D m�

B this condition cannot be fulfilled,
i. e. the conservation of momentum would fail, because accord-
ing to (4.40) vy1=v

�
y1 is different from vy2=v

�
y2. We are therefore

forced (if we will not give up the well proved conservation of
momentum) to assume that the mass of a particle is changing
with its velocity. For the limiting case vx1 � vy1 � 0 we can
write:

vA � vx1 D v I v�
A � 0 ;

vB � 0 I v�
B � vx1 � v :

We therefore get with m.v D 0/ D m0 for (4.41)

m.v/vy1 C m0vy2 D 0 ; (4.42a)

m0v
�
y1 C m.v/v�

y2 D 0 ; (4.42b)

with (4.40) this gives

.m.v//2

m2
0

D vy2

v�
y2

�
v�

y1

vy1
D 
2

) m.v/ D 
m0 D m0p
1 � v2=c2

: (4.43)

The mass m.v/ of a moving particle increases with its velocity
v. the mass m0 D m.v D 0/ is called its rest-mass. This mass
increase is noticeable only for large velocities [4.3].

Examples

1. For v D 0:01c ) m D 1:00005m0. The relative mass
increase �m=m D .m � m0/=m0 � 5 � 10�5.

2. For v D 0:9c ) m D 2:29m0.
3. For v D 0:99c ) m D 7m0. J

In Fig. 4.29 the increase of the mass m.v/ is plotted against the
normalized velocity v=c. This illustrates also, that the maxi-
mum velocity of a particle with m0 ¤ 0 is always smaller than
the velocity of light because for v ! c it follows from (4.43)
m.v/ ! 1.

Figure 4.29 Dependence of a mass m on the ratio v=c

4.4.2 Force and Relativistic Momentum

The work, which has to be spent for the acceleration of a mass
is used with increasing velocity more and more for the increase
of the mass and less for the increase of the velocity.

The Newton-equation (2.18) between force and momentum with
the inclusion of the relativistic mass increase (4.43) is

F D dp

dt
D d

dt
.mv/ D d

dt

 
vm0p

1 � v2=c2

!

D
 

d

dt

m0p
1 � v2=c2

!
v C ma :

(4.44a)

This gives with d=dt D .dv=dt/ � .d=dv/

F D m0
�
v=c2

�
a

.1 � v2=c2/
3=2

v C ma

D 
3m0a

�
v2

c2
Oev C

�
1 � v2

c2

�
Oea

�
;

(4.44b)

where Oev and Oea are unit vectors in the direction of v and a.

These equations show that for large velocities v the force F is
no longer parallel to the acceleration a but has a component in
the direction of v. For v � c the first term in (4.44b) can be
neglected and we obtain the classical Newton equation F D m�a.

In order to keep the Newton equation F D dp=dt the relativistic
momentum

p.v/ D m.v/ � v D 
 � m0 � v (4.45a)

has to be used which has the magnitude

p D ˇ
m0c .ˇ D v=c/ : (4.45b)

For the relativistic momentum the conservation law (4.41) is ful-
filled for all velocities.

We will now discuss, how the components of the force are trans-
formed for a transition from a system S where a particle has a
velocity v and a mass m D 
m0 into a system S� which moves
with the velocity U D Cv against S. In S� is therefore v� D 0
and m� D m0. We choose the axes of the coordinate system such
that v D fvx; 0; 0g. It follows then from (4.44) with Oev D Oea

Fx D dpx

dt
D 
3m0ax : (4.45c)

In S� the x-component of the acceleration a becomes

a�
x D 
3ax

as can be seen from (3.26) and (3.28). Therefore the component
of the force in the system S� becomes

F�
x D m0 � a�

x D 
3m0 � ax � Fx : (4.45d)
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We obtain the remarkable result that the x-components in the
two systems which move against each other in the x-direction,
are equal!

This no longer true for the components perpendicular to the rel-
ative motion of the two systems, because we get for vy � vx the
result

F�
y D m0 � a�

y D 
2m0ay D 
 � Fy ; (4.45e)

and therefore obtain for the ratio

Fx

Fy

D 
2 � ax

ay

: (4.45f)

This shows again that for 
 ¤ 1 the force F is no longer parallel
to the acceleration a as in the nonrelativistic case.

4.4.3 The Relativistic Energy

In classical mechanics the kinetic energy of a particle

Ekin D 1
2 mv2

is different in diverse inertial systems which move against each
other, because the velocity v is different.

In order to obey energy conservation when changing from one
system to the other the total energy of a particle has to be defined
in such a way, that it is Lorentz-invariant. i. e. that it does not
change for transformations into different inertial systems (see
Sect. 3.3).

We will at first present an intuitively accessible description,
which is based on a “Gedanken-experiment” of Einstein. We re-
gard in Fig. 4.30 a box with length L and mass M. We assume,
that at the time t1 D 0 a light pulse with energy E is emitted
from the left side of the box which travels with the velocity of
light c to the right. According to results of classical physics the
momentum of the light pulse is p D .E=c/Oe (see Vol. 2). Be-
cause of the conservation of momentum the left wall and with
it the total box suffers a recoil �p into the left direction. This
results in a velocity

v D �p=M D .E=Mc/Oe

Figure 4.30 Einstein’s “Gedanken-experiment” illustrating E D mc2

of the box. For v � c the light pulse reaches the right wall of
the box at a time t2 D L=c and is absorbed by the wall. This
transfers the momentum p D C.E=c/Oe to the right wall. The
total momentum transferred to the box is therefore zero and the
box is again at rest. However, during the time t2 the box has
moved to the right by a distance

�x D �v � t2 D �E � L

Mc2
: (4.46)

Since the box plus light pulse represent a closed system where
no external forces act onto the system, the centre of mass can-
not have moved. The CM of the box certainly has moved by�x

into the �x-direction. Therefore the light pulse must have trans-
ported mass into the Cx-direction in order to leave the CM of
the total system (box + light pulse) at rest. If we attribute a mass
m to the light pulse with energy E the CM of the total system
stays at rest, if

m � L � M ��x D 0 : (4.47)

This gives with (4.46) the result

m D E=c2 ) E D mc2 : (4.48a)

According to this consideration each mass m is correlated
to the energy E D m �c2. Mass and energy are proportional
to each other.

When we insert the rest mass m0 from (4.43) we obtain from
(4.48a) the energy of a mass m that moves with the velocity v

E D m0c2

p
1 � v2=c2

D m0c2 C .m � m0/c
2 : (4.48b)

This energy E can be composed of two parts:

The rest energy m0c2 which a particle at rest must have, and the
kinetic energy

Ekin D .m.v/� m0/c
2 ; (4.49a)

which is here described as the increase of its mass m.v/. If we
expand the square root in (4.48b) according to

1p
1 � v2=c2

D 1 C 1

2

v2

c2
C 3

8

v4

c4
C � � � ;

the kinetic energy becomes

Ekin D 1

2
m0v

2 C 3

8
m0
v4

c2
C � � � : (4.49b)

In the limiting case v � c we can neglect the higher order terms
in (4.49b) and obtain the classical result

Ekin D 1
2 mv2 :

This shows that the classical expression for the kinetic energy is
an approximation for v � c. Since in daily life the condition
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v � c is always fulfilled, the relativistic expression is important
only for cases where v approaches c as in high energy physics
or astrophysics.

Squaring (4.48b) and multiplying both sides with c2 gives

E2 D m2
0c6

c2 � v2
D m2

0c4 C m2c2v2 : (4.50)

Inserting (4.45) for the relativistic momentum yields

E2 D m2
0c4 C p2c2 :

This gives the relativistic relation between total energy E

and momentum p

E D c

q
m2

0c2 C p2 : (4.51)

For v � c the square root can be expanded and gives the result

Ekin D E � m0c2 � p2

2m
D 1

2
m0v

2

with the classical momentum p D m0 � v.

4.4.4 Inelastic Collisions at relativistic
Energies

The relativistic energy and its conservation can be illustrated
by the example of a collinear completely inelastic collision
(Fig. 4.31). We regard two particles A and B with equal masses
m which fly against each other width velocities v1 D fv1; 0; 0g
and v2 D f�v1; 0; 0g, measured in the system S. In a com-
pletely inelastic collision their total kinetic energy is converted
into internal energy of the collision partners (see Sect. 4.2.4).
After the collision they form a compound particle AB with the
velocity v D 0 (Fig. 4.31 upper part).

In a system S�, which moves with the velocity v D v1 against
S the particle A has the velocity v�

1 D 0, the compound particle
AB which rests in S has in S� the velocity u D �v1. The particle

Figure 4.31 Description of a collinear completely inelastic collision in two dif-
ferent inertial systems S and S �

B has in S� according to the relativistic addition of velocities
(3.28) the velocity

v�
2 D v2 � v

1 � v2v=c2
D �2v

1 C v2=c2
; (4.52)

where v2 D �v1 is the velocity of B in S and v D v1 is the
velocity of S� against S.

The conservation of momentum demands for the collision de-
scribed in S�

m
�
v�

2

�
� v�

2 D Mu D �Mv1 ; (4.53)

where M is the mass of the compound AB with the velocity u D
�v1 measured in S�.

Conservation of energy requires, when dividing by c2

m
�
v�

2

�
C m0 D M : (4.54)

Inserting from (4.53) the relation M D �m.v�
2 /�v�

2=v into (4.54)
we obtain

m
�
v�

2

�

m0
D � v

v�
2 C v

: (4.55)

Equation 4.52 gives the relation between v and v�
2

v D � c2

v�
2

"
1 C

�
1 � v�2

2

c2

�1=2
#

I (4.56)

inserting this into (4.55) gives the mass ratio

m
�
v�

2

�

m0
D
�

1 � v�2
2

c2

��1=2

D 

�
v�

2

�
; (4.57)

and therefore again the general relation

m.v/ D m0p
1 � v2=c2

D 
.v/m0 ; (4.58)

which has been already derived in Sect. 4.4.1.

4.4.5 Relativistic Formulation of Energy
Conservation

In order to show, that the relativistic energy E D m � c2 is
conserved we must discuss the relativistic formulation of the
Newton equation F D dp=dt. Thereto we replace the classical
position vector r by the Lorentz four-vector

R D xOex C yOey C zOez C ictOet D r C ictOet ; (4.59)

defined in the four-dimensional Minkowski space .x; y; z; ict/
(see Sect. 3.6.2), where the unit vector Oet is perpendicular to
the three spatial axes. From (4.59) one can derive that R2 D
r2 � c2t2.
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This gives the total differential

�
dR2

� D dx2 C dy2 C dz2 � c2dt2 D �c2d�2 ; (4.60)

where we have used as abbreviation the differential

d� D
r

dt2 � 1

c2
.dx2 C dy2 C dz2/

D dt

s

1 � v2

c2
D dt=


(4.61)

of the “eigen-time” � , which approaches the classical time dif-
ferential dt for v � c.

The differentiation of (4.59) gives the four-vector of the velocity

dR

d�
D dx

d�
Oex C dy

d�
Oey C dz

d�
Oez C ic

dt

d�
Oet

D v C icOetp
1 � v2=c2

:
(4.62)

The four-momentum is defined as

P D m0
dR

d�
D m0

v C icOetp
1 � v2=c2

: (4.63)

In analogy to the Newton equation F D dp=dt we define the
four-force (also called the Minkowski-force)

F D dP

d�
D m0

d2
R

d�2

D 


�
d

dt
.m � v/C ic

d

dt
.mOet/

�

D 


�
F C i

d

dt
.mcOet/

�
:

(4.64)

Using these definitions we can derive the relativistic energy con-
servation law. We multiply (4.64) with dR=d�

�
F

dR

d�

�
D m0

�
d2R

d�2

�
� dR

d�

D m0

2

d

d�

�
dR

d�

�2

:

(4.65)

According to (4.60) is .dR=d�/2 D �c2 D const. Therefore the
right side of (4.65) is zero!

F
dR

d�
D 0 : (4.66)

This can be separated in a spatial and a temporal part, which
gives

1

1 � v2=c2

�
F � dr

dt
� d

dt

�
mc2

��
D 0

) d
�
mc2

�
D F � dr D dW :

(4.67)

The quantity dW represents the work, performed on the particle
with mass m. For conservative forces F D � grad V, which have
a potential, is dW equal to the change of the potential energy Ep.
Integration of (4.67) over the time yields

Ep C mc2 D const D E ; (4.68a)

which corresponds to the classical energy conservation (2.38) if
Ekin is replaced by mc2.

For a particle with the velocity v we can write

mc2 D m0
.v/ � c2 D m0c2

p
1 � .v=c/2

:

The equation (4.68a) of energy conservation then becomes

Ep C m0c2

p
1 � v2=c2

D E : (4.68b)

4.5 Conservation Laws

In the foregoing sections we have discussed, that there are phys-
ical quantities which are conserved in closed systems, i. e. they
do not change in the course of time.

As a reminder, please note,

that a closed system is a system which has no interaction
with the outside, i. e. there are no external forces acting
on the particles of the system, although the particles may
interact with each other.

Such conserved quantities are the total momentum p, the total
energy E and the angular momentum L of a closed system. The
conservation of these quantities is, because of its great impor-
tance, formulated in special conservation laws, which shall be
summarized and generalized in the following sections.

4.5.1 Conservation of Momentum

For a single free particle (no forces acting on it) the momentum
conservation reads:

The momentum p D m � v of a free particle is constant in
time.

This is identical with the Newton postulate (Sect. 2.6).

Generalized for a system of particles this reads:
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The total momentum of a closed system of particles which
may interact with each other, does not change with time.

This can be also formulated as: If the vector sum of all external
forces acting on a system of particles is zero, the total momen-
tum of the system does not change with time. According to the
3. Newton’s axiom actio D reactio the vector sum of all internal
forces is anyway zero.

Note that the momentum of the individual particles can indeed
change!

4.5.2 Energy Conservation

We have seen in Sect. 2.7 that in conservative force fields the
sum of kinetic anf potential energy is constant. This energy con-
servation can be generalized to a system of particles and also
further types of energy (internal energy, thermal energy, mass
energy E D mc2) can be included. The law of energy conserva-
tion in the general form is then:

The total energy of a closed system is constant in time,
where the different forms of energy can be completely or
partially converted into each other

For instance the kinetic energy of a particle can be converted
into thermal energy at a collision with the wall, or the mass en-
ergy of electron and positron can be converted into radiation
energy if the two particles collide.

4.5.3 Conservation of Angular Momentum

If the vector sum of all torques Di which act on a system of
particles is zero, the total angular momentum L of the system
remains constant. This follows from the relation dL=dt D P

Di.

Note: For the definition of the angular momentum

L D
X

.ri � pi/ ;

the reference point (generally the origin of the coordinate sys-
tem from which the position vectors ri start) has to be defined.

Since for a closed system
P

Di D 0 the conservation of angular
momentum can be also formulated as

In a closed system the total angular momentum L remains
constant in time.

4.5.4 Conservation Laws and Symmetries

A more detailed investigation of the real causes of the con-
servation laws reveals that these laws are based on symmetry
properties of space and time [4.9]. In order to prove this, we
introduce the Lagrange function L

L.ri; vi/ D
NX

i

mi

2
v2

i � Epot.r1; r2 : : : rN/

D Ekin � Ep

(4.69)

of a closed system with N particles, which represents the differ-
ence of kinetic and potential energy. From (4.69) the relations

@L

@vi

D mivi D pi (4.70a)

@L

@ri

D �@Ep

@ri

D Fi (4.70b)

follow immediately. This gives the equation of motion Fi D
mi � dvi=dt in the general form

d

dt

�
@L

@vi

�
D @L

@ri

: (4.71)

Note: The Lagrange equation (4.71) can be derived quite gen-
eral from a fundamental variation principle, called the principle

of minimum action [4.8].

This principle also gives the definite justification for the follow-
ing statements and their explanation.

1. The conservation of momentum is due to the homogene-
ity of space.

This homogeneity of space guarantees that the properties of a
closed system do not change when all particles are shifted by an
amount ", which means that their position vectors changes from
r to rC". Because of the homogeneity all masses and velocities
remain unchanged.

The Lagrange function in a homogeneous space does not depend
on the position vectors ri i. e.

X
@L=@ri D 0 :

From (4.71) we can conclude

X

i

d

dt

@L

@vi

D d

dt

X

i

@L

@vi

D 0

)
X @L

@vi

D
X

pi D p D const :

(4.72)
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2. The conservation of energy follows from the homogene-
ity of time.

The homogeneity of time implies that the Lagrange function L
does not explicitly depend on time. Which means that @L=@t D
0.

The total derivation of L is

dL

dt
D

3NX

iD1

@L

@xi

Pxi C
X @L

@ Pxi

Rxi :

If we replace according to (4.71) @L=@xi by d=dt.@L=@Oe/ we
obtain

dL

dt
D
X

Pxi

d

dt

@L

@ Pxi

C
X @L

@ Pxi

Rxi D
X d

dt

�
@L

@ Pxi

Pxi

�

) d

dt

�X
Pxi

@L

@ Pxi

� L
�

D 0

)
X

Pxi

@L

@ Pxi

� L D E D const ;

(4.73)

which means that E is constant in time.

Finally the conservation of angular momentum follows from
the isotropy of space, which means that no specific direction
in space is preferred.

This isotropy implies that an arbitrary rotation of a closed sys-
tem does not change the mechanical properties of the system.
In particular the Lagrange function should not change when the
system rotates by an angle @'.

We introduce the vector ı' with the magnitude ı' and the di-
rection of the rotation axis. The change of the position vector ri

of the point P is (Fig. 4.32)

ıri D ı' � ri : (4.74a)

The velocity of P is then changing by

ıvi D ı' � vi : (4.74b)

Figure 4.32 Definition of ı' and ır

For the change ıL D 0 of the Lagrange function L we obtain

ıL D
X

i

@L

@ri

ıri C @L

@vi

ıv D 0 : (4.75)

With the relations

@L=@vi D pi and @L=@ri D Fi D dpi

dt

we can write (4.75) in the form

X

i

Ppi .ı' � ri/C pi .ı' � vi/ D 0

) ı'

"
X

i

..ri � Ppi/C .vi � pi//

#

D ı'
d

dt

X
.ri � pi/ D 0 :

(4.76)

Since this must hold for arbitrary values of ı' it follows

X
.ri � pi/ D L D const : (4.77)

Summary

The centre of mass of a system of N point masses mi with the
position vectors ri has the position vector

rS D 1P
mi

X
miri D 1

M

X
miri :

The coordinate system with the CM as origin is called the
centre-of-mass system
The vector sum of all momenta mivi of the masses mi in the
CM-system is always zero.

The reduced mass � of two masses m1 and m2 is defined as

� D m1 � m2

m1 C m2
:

The relative motion of two particles with the mutual interac-
tion forces F12 D �F21 can be reduced to the motion of a
single particle with the reduced mass � which moves with
the velocity v12 D v1 � v2 around the centre of m1.
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A system of particles with masses mi, where no external
forces are present is called a closed system. The total mo-
mentum and the total angular momentum of a closed system
are always constant, i. e. they do not change with time (con-
servation laws for momentum and angular momentum).
In elastic collisions between two particles the total kinetic
energy and the total momentum are conserved. For inelas-
tic collisions the total momentum is also conserved but part
of the initial kinetic energy is transferred into internal en-
ergy (e. g. potential energy or kinetic energy of the building
blocks of composed collision partners). Inelastic collisions
can only occur if at least one of the collision partners has a
substructure, i. e. is compound of smaller entities.
While for elastic collisions in the lab-system the kinetic en-
ergies Ei of the individual partners change (although the total
energy is conserved), in the CM-system also the Ei are con-
served.
In inelastic collisions only the kinetic energy 1

2�v
2
12 of the

relative motion can be transferred into internal energy. At
least the part 1

2 Mv2
S of the CM-motion must be preserved as

kinetic energy of the collision partners.

The collision between two particles with masses m1 and m2

can be reduced in the CM-system to the scattering of a single
particle with reduced mass

� D m1 � m2

m1 C m2

by a particle with mass m1 fixed in the CM. This can be
also described by the scattering in a potential depending on
the interaction force between the two particles.
The deflection angle ' of the particle in the CM-system de-
pends on the impact parameter b, the reduced mass �, the
initial kinetic energy 1

2�v
2
0 and the radial dependence of the

interaction potential.
The evaluation of collisions at relativistic velocities v de-
mands the consideration of the relativistic mass increase.
Then also energy and momentum conservation remain valid.
The conservation laws for energy, momentum and angular
momentum can be ascribed to general symmetry principles,
as the homogeneity of space and time and the isotropy of
space.

Problems

4.1 Two particles with masses m1 D m and m2 D 3m suffer
a central collision. What are their velocities v0

1 and v0
2 after the

collision if the two particles had equal but opposite velocities
v1 D �v2 before the collision
a) For a completely elastic collision
b) For a completely inelastic collision?

4.2 A wooden block with mass m1 D 1 kg hangs on a wire
with length L D 1 m. A bullet with mass m2 D 20 g is shot with
the velocity v D 103 m=s into the block and sticks there. What
is the maximum deflection angle of the block?

4.3 A proton with the velocity v1 collides elastically with a
deuteron (nucleus consisting of proton and neutron) at rest. Af-
ter the collision the deuteron flies under the angle of 45ı against
v1. Determine
a) the deflection angle �1 of the proton
b) the CM-velocity
c) the velocities v0

1 and v0
2 of proton and deuteron after the col-

lision.

4.4 A particle with mass m1 D 2 kg has the velocity v1 D
f3Oex C 2Oey � Oezg m=s. It collides completely inelastic with a par-
ticle of mass m2 D 3 kg and velocity v2 D f�2Oex C 2Oey C 4Oezg.
Determine
a) The kinetic energies of the two particle before the collision

in the lab-system and the CM-system.
b) Velocity and kinetic energy of the compound particle after

the collision.

c) Which fraction of the initial kinetic energy has been con-
verted into internal energy? Calculate this fraction in the
lab-system and the CM-system.

4.5 A mass m1 D 1 kg with a velocity v1 D 4 m=s collides
with a mass m2 D 2 kg. After the collision m1 moves with
v0

1 D
p

8 m=s under an angle of 45ı against v1 and m2 with
v0

2 D
p

2 m=s under an angle of �45ı

a) What was the velocity v2?
b) Which fraction of the initial kinetic energy has been con-

verted into internal energy in the lab-system and the CM-
system?

c) How large are the deflection angles #1 and #2 in the CM-
system?

4.6 Two cuboids with masses m1 D 1 kg and m2 < m1 slide
frictionless on an air-track, which is blocked on both sides by a
vertical barrier (Fig. 4.33). Initially m1 is at rest and m2 moves
with constant velocity v2 D 0:5 m=s to the left. After the colli-
sion with m1 the mass m2 is reflected to the right, collides with
the barrier .m D 1/ and slides again to the left. We assume
that all collisions are completely elastic.
a) What is the ratio m1=m2 if the two masses finally move to

the left with equal velocities?
b) How large should m2 be in order to catch m1 before it reaches

the left barrier?
c) Where collide the two masses at the second collision for

m2 D 0:5 kg?
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Figure 4.33 Illustrating Probl. 4.6

4.7 A steel ball with mass m1 D 1 kg hangs on a wire
with L D 1 m, vertically above the left edge of a resting mass
m2 D 5 kg which can slide without friction on a horizontal air-
track. (Fig. 4.34). The steel ball with the wire is lifted by an
angle ' D 90ı from the vertical into the horizontal position and
then released. It collides elastically with the glider. What is the
maximum angle ' of m1 after the collision?

Figure 4.34 Illustration of Probl. 4.7

4.8 An elevator ascends with constant velocity v D 2 m=s.
When its ceiling is still 30 m below the upper point A of the lift
shaft a ball is released from A which falls freely down and hits
elastically the ceiling of the elevator, from where it is elastically
reflected upwards.
a) Where does it hit the elevator ceiling?
b) What is its maximum height after the reflection?
c) Where does it hit the elevator ceiling a second time?

4.9 An ˛-particle (nucleus of the He-atom) hits with the ve-
locity v1 an oxygen nucleus at rest .m2 D 4m1/. The ˛-particle
is deflected by 64ı, the oxygen nucleus by �51ı against v1. The
collision is completely elastic.
a) What is the ratio v0

1=v
0
2 of the velocities after the collision?

b) What is the ratio of the kinetic energies after the collision?

4.10 A particle has in a system S a kinetic energy of 6 GeV.
and the momentum P D 6 GeV=c. What is its energy in a sys-
tem S0, where its momentum is measured as 5 GeV=c? What is
the relative velocity of S0 against S?
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Up to now we have discussed idealized bodies where their
spatial extension could be neglected and they were therefore
adequately described by the model of a point mass. We have
investigated their motion under the influence of forces and
have presented besides Newton’s laws fundamental conserva-
tion laws for linear momentum, energy and angular momentum.

All phenomena found in nature which are due to the spatial ex-
tension of bodies demand for their explanation an extension of
our model. Besides the translation of point masses, discussed so
far, we have to take into account the fact that extended bodies
can also rotate around fixed or free axes.

At first, we will restrict ourselves to the motion of free extended
bodies under the influence of forces. The motion of single
volume elements of an extended body against each other, that
results in a deformation of the body will be discussed in the next
chapter. Such still idealized extended bodies that do not change
their form, are called rigid bodies.

5.1 The Model of a Rigid Body

We can partition an extended rigid body with volume V and to-
tal mass M into many small volume elements �Vi with masses
�mi which are rigidly bound together (Fig. 5.1). We can re-
gard theses mass elements �mi as point masses and treat them
according to the rules discussed in Chap. 2.

The total body can then be composed of these volume elements:

V D
NX

iD1

�Vi ; M D
NX

iD1

�mi :

We name the ratio

% D �m=�V I Œ%� D kg=m3 (5.1)

the mass density of the volume element �V. The total mass can
then be expressed as

M D
NX

iD1

%i�Vi : (5.2)

If the volume elements �V become smaller and smaller, their
number N correspondingly larger, the sums converge for the
limiting case �V ! 0 to volume integrals [5.1]

V D lim
�Vi!0
N!1

NX

iD1

�Vi D
Z

V

dV I

M D
Z

V

%dV ;

(5.3)

where the volume integral stands for the three-dimensional inte-
gral

V D
z2Z

z1

2
4

y2Z

y1

0
@

x2Z

x1

dx

1
A dy

3
5 dz (5.4)

Figure 5.1 Partition of a spatially extended body into small volume elements
�Vi

for the example of a cuboid, while for a spherical volume with
radius R and a volume element dV D r2 � sin# � dr � d# � d' (see
Sect. 13.2) the integral can be written as

V D
RZ

rD0

�Z

#D0

2�Z

'D0

r2 sin# dr d# d' : (5.5)

The mass density %.x; y; z/ can generally depend on the location
.x; y; z/. For homogeneous bodies % is constant for all points of
the body and we can extract % out of the integral. The mass M

of the body can then be expressed as

M D %

Z

V

dV D %V : (5.6)

5.2 Center of Mass

As has been shown in the previous chapter the position vector
rS of the CM of a system with N particles at the positions ri

(Fig. 5.2) is

rS D
PN

iD1 ri�miPN
iD1 �mi

D 1

M

NX

iD1

ri%.ri/�Vi :

(5.7)

For the limiting case �V ! 0 and N ! 1 this becomes

rS D 1

M

Z

V

r dm

D 1

M

Z

V

r%.r/ dV :

(5.8a)
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Figure 5.2 Definition of the Center of Mass of an extended body

This corresponds to the three equations for the components

xS D 1

M

Z

V

x%.x; y; z/ dV ;

yS D 1

M

Z

V

y%.x; y; z/ dV ;

zS D 1

M

Z

V

z%.x; y; z/ dV :

For homogeneous bodies (% D const) (5.8a) simplifies to

rS D 1

V

Z

V

r dV : (5.8b)

Example

Center of Mass of a homogeneous hemisphere.

If the center of the sphere is at the origin .x D y D z D 0/
(Fig. 5.3) symmetry arguments require xS D yS D 0. For
% D const we obtain from (5.8b)

zS D 1

M

Z

V

z% dV D 1

V

Z

V

z dV :

Figure 5.3 Center of Mass of a hemisphere

This becomes with z D r�cos# and dV D r2dr�sin#d#d'

zS D 1

V

RZ

rD0

�=2Z

#D0

2�Z

'D0

r3 cos# sin# dr d# d'

D 3

8
R :

(5.9)

J

5.3 Motion of a Rigid Body

The center points Pi of the volume elements dVi are defined by
their position vectors ri, the CM by rS. The vector

riS D ri � rS

points from the center of mass S to the point Pi (Fig. 5.4). The
vector

driS=dt D viS D vi � vS (5.10)

gives the relative velocity of Pi with respect to the CM.

In a rigid body all distances are fixed, i.e. jriSj D const. Differ-
entiation of r2

iS D const gives

2riS � vS D 0 ;

which implies that the vector of the relative velocity is per-
pendicular to the position vector. This can be written as (see
Sect. 2.4)

viS D .! � riS/ ; (5.11)

where ! is the angular velocity of Pi rotating about an axis
through the CM perpendicular to the velocity vector viS.

Figure 5.4 The motion of a rigid spatially extended body
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For the general motion of the rigid body the velocity of the point
Pi

vi D vS C .! � riS/ (5.12)

can be composed of two contributions: The translational veloc-
ity vS of the CM and the rotation .! � riS/ of Pi around the CM.
Since the consideration discussed above is valid for an arbitrary
point Pi we can make the general statement:

The motion of an extended rigid body can always be com-
posed of the translation of its CM and a rotation of the
body about its CM.

Note: The rotational axis is not necessarily constant but can
change its direction in the course of time, even when no external
forces act onto the body (see Sect. 5.7).

The Eq. 5.10 and 5.11 are based on the condition r2
ik D const

for a rigid body. They are no longer valid, if deformations of the
body occur, because then vibrational motions of Pi against the
CM can be present as additional movements.

The complete characterization of the motion of a free rigid body
demands 6 time-dependent parameters: The position coordi-
nates

rS.t/ D fxS.t/; yS.t/; zS.t/g

for the description of the CM-motion and three angular coordi-
nates for the description of the rotation of the rigid body about
its CM.

The free rigid body has six degrees of freedom for its mo-
tion.

If one point of the body (for example the CM) is kept fixed the
body can still rotate about this point but cannot perform a trans-
lation. The number of degrees of freedom then reduces to three,
namely the three rotational degrees of freedom. If the body ro-
tates around a fixed axis, only one degree of freedom is left,
namely the one-dimensional rotation described by the angle '.

5.4 Forces and Couple of Forces

While a force F acting on a point mass is unambiguously defined
when its magnitude and direction is given, for forces acting on
an extended body the point of origin P has to be added (Fig. 5.5).

We will investigate the change of motion which an extended
body suffers under the action of a force F.Pi/ with its origin
in an arbitrary point Pi. We can simplify the treatment when
we add two antiparallel forces F2.S/ and F3.S/ D �F2.S/ with
equal magnitude which both act on the center of mass S and
therefore do not affect the motion of the body, because they act

Figure 5.5 The two forces F1 and F2 have equal magnitudes but different
points of application P1 and P2. They effect different motions of the body

on the same point S and since F2.S/C F3.S/ D 0 they cancel
each other.

Now we combine the two antiparallel forces F1 and F3 with
equal magnitude (Fig. 5.6) which form a couple of forces, but
regard at first the remaining single force F2, which acts on the
center of mass S. This force causes a translation of the CM. The
couple of forces brings about a torque

DS D .riS � F1/ ; (5.13a)

referred to the center of mass S. Since F1 C F3 D 0 this couple
of forces does not cause an acceleration of the CM. It induces,
however, a rotation of the body around S. Summarizing we can
make the general statement:

A force F acting on an arbitrary point P ¤ S of an
extended body causes an acceleration of the CM and a ro-
tation of the body about the center of mass S.

An extended rigid body initially at rest suffers an accel-
erated translation of its center of mass S and a rotation
around S when a force F acts on a point P ¤ S.

In this chapter we will investigate such motions in more detail.

At first we will restrict the treatment to the special case where
the body rotates around a space-fixed axis. The motion is then
restricted to a rotation which has only one degree of freedom.

Figure 5.6 Decomposition of a force F1 into a couple of forces F1F3 and
a force F2 that attacks at the Center of Mass
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Figure 5.7 Rotation of a rigid body about a fixed axis A , induced by a force
F attacking at the point P . Decomposition of the projection of F onto the x-y-
plane into a normal and a tangential component

We choose the direction of the rotation axis A as the z-direction
and the x-y-plane through the point P.r/ where the force F acts
on the body, which has the distance r from the rotation axis
(Fig. 5.7). We can then decompose the force into the three com-
ponents Fz k A, the radial component Fr k r and the tangential
component Ft ? r and ? A. Fz is perpendicular to the x-y-plane
and the other two components are in the x-y-plane.

The torque exerted by the force F onto the body is

D D .r � F/ D .r � Ft/C .r � Fz/ ;

since .r � Fn/ D 0.

The first term causes a torque about the z-axis, and therefore an
acceleration of the rotation about the z-axis. The second term
would change the direction of the rotation axis. If this axis is
fixed by axle bearings the torque only acts on the bearings and
does not lead to a change of motion.

If the rotation axis intersects the center of mass S (Fig. 5.8)
which we choose as the origin of our coordinate system, the
torque exerted by the weight Fw D M � g of the body is zero, as
can be seen by the following derivation:

The torque with respect to the rotation axis caused by the grav-
itational force �mi � g on the mass element �mi is Di D

Figure 5.8 Contribution of the mass element�m to the torque about an axis
through the Center of Mass, due to the weight of�m

Figure 5.9 Principle of beam balance

.riS � �mi � g/. The torque exerted by the weight of the whole
body is then

D D
Z

V

.r � g/ dm D �g �
Z

V

r dm

D � .g � MrS/ D 0 ;

(5.13b)

because the center of mass S is the origin and therefore is rS D 0.

If a body can rotate around an axis through the CM it is
always at equilibrium, independent on the space orienta-
tion of the axis because the torque exerted by its weight is
always zero.

All beam balances are based on this principle (Fig. 5.9). The
balance is at equilibrium if

P
Di D 0, which means

r1 � F1 C r2 � F2 D 0 :

This is the equilibrium condition for a balance as two-armed
lever.

5.5 Rotational Inertia and Rotational
Energy

We consider an extended body which rotates about a fixed axis
A with the angular velocity ! (Fig. 5.10). The mass element
�mi with the distance ri? D jrij from the axis A has the velocity
vi D ri � !. Its kinetic energy is then

Ekin.�mi/ D 1
2�miv

2
i D 1

2�mir
2
i !

2 :

Figure 5.10 Definition of moment of inertia
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The summation over all mass elements gives the total rotational
energy of the body

Erot D lim
N!1
�mi!0

 
1

2

NX

iD1

�mir
2
i?!

2

!
D 1

2
!2
Z

r2
? dm : (5.14)

The expression

I
DefD
Z

V

r2
? dm D

Z

V

r2
?% dV (5.15)

is called the rotational inertia (often also moment of inertia) of
the rotating body referred to the axis A. With this definition we
obtain for the rotational energy

Erot D 1
2 I!2 : (5.16a)

The angular momentum of �mi with respect to the axis A is

Li.�mi/ D ri? � .�mivi/ D r2
i?�mi! ; (5.17a)

which gives the total angular momentum of the body as

L D I � ! : (5.17b)

Replacing in (5.16a) !2 by L2=I2 we obtain for the rotational
energy

Erot D 1

2
I!2 D L2

2I
: (5.16b)

The rotational inertia I is a measure for the mass distribution
in an extended body relative to the rotational axis. For geo-
metrically simple bodies with homogeneous mass distribution
% D const the rotational inertia I can be readily calculated, as is
illustrated in the following examples. For bodies with a complex
geometrical structure I has to be measured (see below).

If the rotational axis A intersects the center of mass S.r D 0/,
the rotational inertia can be written as

IS D % �
Z

r2dV :

The rotational inertia is always defined with respect to a
definite rotational axis and depends on the location of this
axis with relative to the CM.

5.5.1 The Parallel Axis Theorem (Steiner’s
Theorem)

If a body rotates about an axis B which is parallel to the axis A

through the CM, the rotational inertia with respect to the axis B

Figure 5.11 Steiner’s rule: The drawing shows the plane through dm , perpen-
dicular to the axis A

can be readily calculated, if it is known with respect to the axis
A. If the distance between the two axes is a (Fig. 5.11) we can
write

IB D
Z

r2dm D
Z
.rmS C a/2dm

D
Z

r2
mSdm C 2a

Z
rmSdm C a2

Z
dm :

According to (5.8) is
R

rmSdm D RS � M D 0, because the center
of mass S is the origin of the coordinate system and therefore is
RCM D RS D 0.

We then obtain
IB D IS C a2M : (5.18)

Equation 5.18 is called the parallel axis theorem or Steiner’s

theorem. It states:

The inertial moment of a body rotating around an axis B is
equal to the sum of the inertial moment with respect to an
axis A through the center of mass S with a distance a from
the axis B plus the moment of inertia of the total mass M

concentrated in S with respect to B.

This illustrates that it is sufficient to determine the rotational
inertia with respect to an axis A through S. With (5.18) we can
then obtain the rotational inertia with respect to any axis parallel
to A.

In the following we will give examples for the calculation of I

for homogeneous bodies with different geometrical structures.

Example

1. Thin disc. We assume the height h in the z-direction is
small compared to the extension of the body in the x-
and y-directions.
a) Rotational axis in the z-direction:

Iz D % �
Z
.x2 C y2/dV :

b) Rotational axis in the x-direction:

Ix D % �
Z
.y2 C z2/dV � % �

Z
y2dV ;

because jzj � h=2 � ymax.
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Figure 5.12 Moment of inertia of a thin disc with arbitrary shape (a),
circular disc (b)

c) Rotational axis in the y-direction:

Iy D % �
Z
.x2 C z2/dV � % �

Z
x2dV :

This shows that with the approximation z � x; y one
obtains

Iz � Ix C Iy : (5.19)

For plane bodies (for example a triatomic molecule)
the rotational inertia for the rotation around an axis
through the CM perpendicular to the plane is equal to
the sum of the two other moments of inertia.
For the case of a thin circular disc we obaqin from
(5.19) because of the rotational symmetry (Fig. 5.12b)

Ix D Iy D 1
2 Iz :

For the homogeneous circular disc with radius R it is
not difficult to calculate Iz:

Iz D % �
Z

r2dV D 2�h%

Z
r3dr D % � h � � � R4=2 ;

because dV D 2�r � h � dr. With M D % � � � R2 � h this
gives

Iz D 1
2 MR2 : (5.20a)

2. Hollow cylinder with height h, outer radius R and wall
thickness d � R (Fig. 5.13). Rotation about the z-axis
as symmetry axis:

Iz D %

Z

V

r2dV D 2�h%

RZ

R�d

r3 dr ;

with dV D 2� � R � h � dr and d � R one obtains

Iz D h � % � �
�
R4 � .R � d/4

�
� 2�%hR3d :

This gives with M D 2� � r � % � d � h

Iz D M � R2 : (5.20b)

Figure 5.13 Moment of inertia of a hollow cylinder

Remark. A simpler derivation starts with the relation
for the total mass of the hollow cylinder with outer
radius r2 and inner radius r1:

M D � � % � h
�
r2

2 � r2
1

�
:

Iz D
Z

r2 dm D 2�% � h

Z
r3dr D 1

2�% � h
�
r4

2 � r4
1

�

D 1
2�% � h

�
r2

2 � r2
1

�
�
�
r2

2 C r2
1

�

� 1
2 M � 2R2 D MR2 :

3. Full cylinder with radius R and height h.

Iz D 2�%h

RZ

0

r3 dr D �

2
h%R4

D M

2
R2 ;

(5.20c)

which, of course, concurs with (5.20a).
4. Thin rod (length L � diameter (Fig. 5.14))

a) Rotation about the vertical axis a through the cen-
ter of mass S.

IS D %

Z
x2 dV D %A

CL=2Z

�L=2

x2 dx

D 1

12
%AL3 D 1

12
ML2 :

(5.21a)

Figure 5.14 Rotation of a thin rod with arbitrary cross section about
an axis a through the Center of Mass and about an axis b at one end of
the rod
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b) Rotation about the vertical axis b through an end
point of the rod. According to the parallel axis the-
orem (5.18) the moment of inertia is

Ib D IS C M

�
L

2

�2

D 1

12
ML2 C 1

4
ML2 D 1

3
ML2 :

(5.21b)

This result could have been obtained also directly
from

Ib D %A

LZ

0

x2 dx D 1

3
%AL3 D 1

3
ML2 :

5. Diatomic molecule. Because of the small electron
mass .me � 1=1836mp/ the electrons do not con-
tribute essentially to the moment of inertia when the
molecule rotates around an axis A through the CM
perpendicular to the inter-nuclear axis (Fig. 5.15). Be-
cause the diameter of the nuclei .d � 10�14 m/ is
very small compared with the inter-nuclear distance
R .� 10�10 m/ we can treat the nuclei as point masses
and obtain

ISA D m1r2
1 C m2r2

2 : (5.22a)

With the inter-nuclear distance R D r1 C r2 and the
reduced mass� D m1 �m2=.m1 Cm2/ (5.22a) becomes
with r1=r2 D m2=m1

ISA D � � R2 : (5.22b)

When the molecule rotates around its inter-nuclear
axis B the nuclei lie on the rotational axis and do not
contribute to the moment of inertia. Now the electrons
provide the major contribution. Because of the small
electron mass the moment of inertia is now very small
and the rotational energy

Erot D L2=2IB

for a given angular momentum L becomes much larger
than for the rotation around A (see Chap. 11 and
Vol. 3).

Figure 5.15 Moment of inertia of a diatomic molecule

Figure 5.16 Derivation of the moment of inertia of a sphere

6. Moment of inertia for a homogeneous sphere. Be-
cause of the spherical symmetry the moment of inertia
is independent of the direction of the rotational axis
through the center of the sphere. The moment of iner-
tia of a mass element �m with a distance a from the
rotation axis (Fig. 5.16) is dI D a2dm. For the whole
sphere we obtain

IS D %

Z
a2dV

with dV D r2 sin#drd#d' and a D r sin# .

IS D %

RZ

rD0

�Z

#D0

2�Z

'D0

r4 sin3# dr d# d'

D 1

5
%R52�

�Z

#D0

sin3# d#

D 2

5
%R2 4

3
�R3 D 2

5
MR2 :

(5.23)

J

These examples with their rotational inertia are compiled in
Tab. 5.1.

5.6 Equation of Motion for the
Rotation of a Rigid Body

For the rotation of a rigid body around a space-fixed axis the
angular momentum of a mass element �mi is:

Li D .ri? � pi/ D �mi .ri? � vi/ D �mir
2
i?! ; (5.24)

where the velocity vi is perpendicular to the rotation axis (point-
ing into the direction of ! which is the z-direction) and to the
radius r.
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Table 5.1 Moments of inertia of some symmetric bodies that rotate about a
symmetry axis

Geometrical figure Realization Moment of inertia

Thin disc 1
2 MR2

Hollow cylinder
with thin wall

Full cylinder

MR2

1
2 MR2

Thin rod L � r 1
12 ML2

Homogeneous sphere

Hollow sphere
with thin wall

2
5 MR2

2
3 MR2

Cuboid Ix D 1
12 M.b2 C c2/

Iy D 1
12 M.a2 C c2/

Iz D 1
12 M.a2 C b2/

Diatomic molecule I D m1m2
m1Cm2

� R2

The time-derivative of (5.24) is

dLi

dt
D �mi

�
ri? � dvi

dt

�
D .ri? � Ft/ D Dik ; (5.25)

where Dik D ri? � Fi is the component of the torque Di parallel
to the rotation axis A. The other components Fz and Fr of the
force F are compensated by elastic forces of the mounting of the
fixed axis A (Fig. 5.17).

For the magnitude Di D jDikj of the not compensated torque we
obtain from (5.24) and (5.25)

Di D �mir
2
i?

d!

dt
: (5.26)

Figure 5.17 Torque acting on the rotation about a fixed axis induced by a force
F attacking at the point P

The integration overall mass elements yields

D D I � d!

dt
D I � d2'

dt2
; (5.27)

where ' is the angle of r against the x-axis.

5.6.1 Rotation About an Axis for a Constant
Torque

For a constant torque which does not change with time the in-
tegration of (5.27) yields the equation of rotation analogous to
(2.6) for the translation of a body

' D D

2I
t2 C At C B : (5.28a)

The integration constants A and B are specified by the initial
conditions '.0/ D '0 and d'.0/=dt D !0. This gives for
(5.28a)

' D D

2I
t2 C !0t C '0 : (5.28b)

Example

1. A full cylinder, a hollow cylinder and a ball with equal
masses M and equal radii r role down an inclined
plane. All three bodies start at the same time. Who
will win the race? The question can be answered ex-
perimentally as demonstration experiment during the
lecture and arises always astonishment.
Solution: The rotation takes place around the momen-
tary rotation axis which is the contact line between
the body and the plane (Fig. 5.18). The torque act-
ing on the body is D D M � g � sin˛ where ˛ is the
inclination angel of the plane. The rotational inertia is
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according to the parallel axis theorem I D IS C Mr2.
Equation 5.27 then becomes

Mgr sin˛ D
�
IS C Mr2

�
P! : (5.29)

The translational acceleration a D d2s=dt2 of the cen-
ter of mass S is equal to the acceleration r � d!=dt of
the perimeter which rolls on the inclined plane. This
gives the relation

d2s

dt2
D r P! D r

Mgr sin˛

IS C Mr2

D g sin˛

1 C IS=Mr2
D a :

(5.30)

Compare this with the acceleration of a body which
slides frictionless down the plane without rolling. In
this case the acceleration is at D g � sin˛.
For the rolling body part of the potential energy is
converted into rotational energy and only the rest is
available for translational energy. The translational ac-
celeration is reduced by the factor b D .1 C IS=Mr2/,
which depends on the moment of inertia IS of the
rolling body. The race is therefore won by the body
with the smallest moment of inertia. According to
Sect. 5.5.1 these are:

Ball: b D 7=5 ! a D 5=7 � g � sin˛ ;

Full cylinder: b D 3=2 ! a D 2=3 � g � sin˛ ;

Hollow cylinder: b D 2 ! a D 1=2 � g � sin˛ :

Therefore the ball wins the race barely before the full
cylinder, while the hollow cylinder arrives last. It is
instructive to consider the situation from another point
of view: When the body has travelled the distance s

from the starting point on the inclined plane the loss
of potential energy is�Epot D M �g �h D M �g �s �sin˛
which is converted into kinetic energy Ekin D Etrans C
Erot D 1

2 .Mv
2 C !2IS/ D 1

2 Mv2.1 C IS=Mv2/. This
gives for the translational velocity

v2 D 2gs sin˛

1 C IS=Mr2
:

Differentiation yields with d.v2/=dt D 2�v �a the result
(5.30) for the acceleration a.

Figure 5.18 Rolling cylinder on an inclined plane

2. Maxwell’s Wheel. A cylindrical disc with radius R,
mass M and rotational inertia IS D 1

2 MR2 is centered
on a thin axis through S with radius r � R. The disc
hangs on a strand which is wrapped around the axis
(Fig. 5.19). The mass of the axis should be negligi-
ble compared with the mass M of the disc. When the
wheel is released it will roll down on the strand under
the influence of the torque D D r � Mg and will move
down with the acceleration

a D r
d2'

dt2
D rD

I

D r2Mg
1
2 MR2 C Mr2

D g

1 C R2=2r2
:

The acceleration g is therefore reduced by the factor
.1 C 1

2 R2=r2/. This allows to observe this small ac-
celeration when performing the experiment. After the
CM of the wheel has travelled the distance h the total
potential energy Mgh has been converted into kinetic
energy Mgh D Ekin D Etrans C Erot where

Etrans D 1

2
Mv2

trans D 1

2
Mr2!2

D Mgh
2r2

R2 C 2r2

and
Erot D 1

2
I!2

D Mgh
R2

R2 C 2r2
:

Hint: The result is obtained from the relations r2!2 D
v2

t and v2
t D g2T2=.1 C 1

2 R2=r2/2 with the fall time
T D Œ.2h=g/.1 C 1

2 R2=r2/�1=2. By far the larger frac-
tion 1=.1 C 2r2=R2/ of the total energy is converted
into rotational energy.
At the lowest point of its path where the strand is com-
pletely unwound, the wheel continues to rotate in the
same sense (why?) and the strand winds up again,
which causes the wheel to rise nearly up to the starting
point. Because of frictional losses it does not com-
pletely reach its original starting heights.

Figure 5.19 Maxwell’s wheel J
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5.6.2 Measurements of rotational inertia;
Rotary Oscillations About a Fixed Axis

The experimental determination of inertial moments for bodies
with arbitrary form uses a rotary table consisting of a circular
disc with a concentric axis which can turn in fixed ball bearings
(Fig. 5.20). A coil spring with one end attached to the axis and
the other end to the mounting is bent by the turn of the table and
causes by its tension a restoring torque which is proportional to
the displacement angle ' from the equilibrium position ' D 0
(see Sect. 6.2)

D D �Dr � ' : (5.31)

The proportionality factor Dr is called torsional rigidity. Its
value depends on the rigidity of the spring. The equation of
motion (5.27) for this case is

I0 R' D �Dr' ; (5.32a)

where I0 is the inertial moment of the rotary table. We have
neglected any friction. The solution of the differential equation
(5.32a) is with the initial condition '.0/ D 0

' D a sin
�p

Dr=I0 t
�
: (5.32b)

Once deflected from its equilibrium position the rotary table per-
forms a harmonic oscillation with the oscillation period

T0 D 2�
p

I0=Dr : (5.32c)

If a circular disc with known mass M and radius R is placed
concentrically on the table, the moment of inertia increases to
I D I0 C 1

2 MR2 and the oscillation period becomes

T1 D 2�
q�

I0 C 1
2 MR2

�
=Dr : (5.32d)

From the difference T2
1 �T2

0 D 2�2�R2=Dr the torsional rigidity
Dr can be determined. Now a body A with arbitrary form can be
placed on the table. The total moment of inertia IA now depends

Figure 5.20 Turntable with cut through the ball bearing

on the location of A with respect to the center of the table. The
measured oscillation period

T D 2�
p
.I0 C IA/ =Dr (5.32e)

allows the determination of IA. With the parallel axis theorem
(5.18) the moment of inertia IS of A with respect to its center of
mass S is IS D IA � Ma2, where a is the distance between the
center of the rotary table and the CM of A.

5.6.3 Comparison Between Translation and
Rotation

Table 5.2 shows a comparison between corresponding quantities
for the description of translation of a point mass and rotation of
an extended body. Note the analogous notation for momentum,
angular momentum, energy and power, if the mass m is replaced
by the moment of inertia I.

5.7 Rotation About Free Axes;
Spinning Top

Up to now we have discussed only rotations of rigid bodies
about space-fixed axes. Even for the example of the cylinder
rolling down the inclined plane the direction of the rotational
axis remained constant although it performed a translation.

In the present section we will deal with the more complex situa-
tion that a body can rotate about a free axis, which might change
its direction in space. We will treat at first the case that no ex-
ternal forces act on the body and then discuss the cases where
external torques are present.

Such rigid bodies rotating about free axes are called spinning

tops or gyroscopes.

Table 5.2 Comparison of corresponding quantities for rotation and translation

Translation Rotation

Length L Angle '
Mass m Moment of inertia I

Velocity v Angular velocity !

Momentum p D m � v Angular momentum L D I � !

Force F Torque D D r � F

F D dp

dt
D D dL

dt

Ekin D m

2
v2 Erot D I

2
!2

Restoring force Restoring torque
F D �D � x D D �Dr � '
Period of a linear
oszillation

Period of torsional
oszillation

T D 2�
p

m=D T D 2�
p

I=Dr
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For the general motion one must take into account the trans-
lation of the CM (which can be always treated separately) and
the rotation around the CM. If the motion is discussed in the
CM-system where the CM is at rest, one has to regard only the
rotation about the CM. We will see, that the space-orientation
of free axes generally changes with time and the motion of an
arbitrary point of the rigid body might perform a complicated
trajectory.

In order to calculate the motion about free axes we have to deter-
mine the dependence of the moment of inertia on the direction
of the rotation axis, which, however, always should intersect the
CM.

5.7.1 Inertial Tensor and Inertial Ellipsoid

When a rigid body rotates with the angular velocity ! around an
axis through the center of mass S with arbitrary space orientation
(Fig. 5.21) the mass element�mi moving with the velocity vi D
! � ri has the angular momentum

Li D �mi .ri � vi/ D �mi .ri � .! � ri// ; (5.33a)

using the vector relation (see Sect. 13.1.5.4)

A � .B � C/ D .A � C/B � .A � B/C ;

this can be transformed into

Li D �mi

��
r2

i � !
� � .ri � !/ ri

�
: (5.33b)

The total angular momentum of the rigid body is then obtained
by integration over all mass elements. This gives

L D
Z �

r2! � .r � !/ r
�

dm : (5.34a)

This vector equation corresponds to the three equations for the
components

Lx D Ixx!x C Ixy!y C Ixz!z

Ly D Iyx!x C Iyy!y C Iyz!z

Lz D Izx!x C Izy!y C Izz!z ;

(5.34b)

Figure 5.21 Rotation of a body about an arbitrary axis through the Center of
Mass

where the coefficients Iik are abbreviations for the expressions

Ixx D
Z �

r2 � x2
�

dm

Ixy D Iyx D �
Z

xy dm

Iyy D
Z �

r2 � y2
�

dm

Iyz D Izy D �
Z

yz dm

Izz D
Z �

r2 � z2
�

dm

Ixz D Izx D �
Z

xz dm :

(5.35a)

Equation 5.34b can be readily checked when inserting the rela-
tions r2 D x2 C y2 C z2 and r � ! D x!x C y!y C z!z into (5.34a)
and using (5.35a). The components Iik can be written in form of
the matrix

eI D

0
B@

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

1
CA ; (5.35b)

which allows to write Eq. 5.34b in the vector form

0
B@

Lx

Ly

Lz

1
CA D

0
B@

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

1
CA

0
B@
!x

!y

!z

1
CA : (5.34c)

This can be shortened to

L DeI � ! : (5.34d)

The mathematical term for I is a tensor of rank two, which
is called inertial tensor. The diagonal elements of I give the
moments of inertia for rotation axes in the direction of the coor-
dinate axes x; y; z.

To illustrate the advantage of introducing this inertial tensor we
will at first calculate the rotational energy of the body for a
rotation about an arbitrary axis !. For a mass element �mi

(Fig. 5.21) the rotational energy is

1
2�miv

2
i D 1

2�mi .! � ri/ .! � ri/

D 1
2�mi

�
!2r2

i � .! � ri/
2� ;

where the right hand side follows from the vector relation
.A � B/ � .A � B/ D A2B2 � .A � B/2.
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The spatial integration over all mass elements gives the rota-
tional energy of the whole rigid body

Erot D !2

2

Z
r2dm � 1

2

Z
.! � r/2 dm

D
!2

x C !2
y C !2

z

2

Z �
x2 C y2 C z2

�
dm

� 1

2

Z �
!xx C !yy C !zz

�2
dm

D 1

2

�
!2

x Ixx C !2
y Iyy C !2

z Izz

�

C !x!yIxy C !x!zIxz C !y!zIyz ;

(5.36)

where the definitions (5.35b) have been used. Within the tensor
notation (5.36) can be written as

Erot D 1
2 !T � QI � ! ;

which explicitly means

Erot D 1

2
.!x!y!z/

0
B@

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

1
CA

0
B@
!x

!y

!z

1
CA :

This shows that for arbitrary orientations of the rotation
axis all elements of the inertial tensor can contribute to
the rotational energy.

When the rotation axis ! forms the angles ˛; ˇ; 
 with the co-
ordinate axes the components of ! are

!x D ! � cos˛ ; !y D ! � cosˇ ; !z D ! � cos 
 :

When the rotational energy is written in the form of Eq. 5.16 as

Erot D 1
2 I!2 ;

the comparison with (5.36) yields for the scalar moment of in-
ertia

I D cos2˛ Ixx C cos2ˇ Iyy C cos2
 Izz

C 2 cos˛ cosˇ Ixy C 2 cos˛ cos 
 Ixz

C 2 cosˇ cos 
 Iyz :

(5.37a)

When we introduce a vector R in the direction of the rotation
axis with the components x D R � cos˛; y D R � cosˇ; z D
R � cos 
 Eq. 5.37a can be written as

R2I D x2Ixx C y2Iyy C z2Izz

C 2xyIxy C 2xzIxz C 2yzIyz :
(5.37b)

This is a quadratic equation in x, y, and z with constant coeffi-
cients Iik . All points .x; y; z/ for which R2 � I D const are located
on an ellipsoid because (5.37) describes for R2 � I D k D const

Figure 5.22 Inertial ellipsoid

an ellipsoid, with axes which depend on the coefficients Iik .
Since I / M � R2

m the constant k D M � R4
m has the dimension

Œk� D kg � m4. Its value depends on the mass M of the rigid body
and the mass distribution relative to the center of mass S which
is expressed by a mean distance Rm.

The moment of inertia I! D k=R2 for a rotation about an ar-
bitrary axis ! D f!x; !y; !zg is proportional to 1=R2 where
R is the distance from the center of the ellipsoid to its surface
(Fig. 5.22). With this notation one can say that the scalar value
I of the moment of inertia as a function of the spatial orientation
.˛; ˇ; 
/ of the rotation axis represents the inertial ellipsoid.

5.7.2 Principal Moments of Inertia

We introduce a coordinate system .�; �; �/ which is generated
by three orthogonal vectors �, � and � with axes which point
into the directions of the principal axes a, b and c of the inertial
ellipsoid (Fig. 5.23). Their magnitude is normalized when di-
viding by

p
k. In this coordinate system the ellipsoid equation

(5.37) becomes with R2 � I D 1

�2Ia C �2Ib C �2Ic D 1 : (5.38)

In this principal axis coordinate system all off-diagonal ele-
ments Iik with i ¤ k of the inertial tensor I are zero and the

Figure 5.23 Definition of principal axes of inertia
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tensor becomes a diagonal tensor

eI D

2
64

Ia 0 0
0 Ib 0
0 0 Ic

3
75 : (5.39)

Mathematically such a principal axes transformation can be per-
formed by a diagonalization of the corresponding matrix [5.2].
The principal inertia moments Ia, Ib, Ic (i.e. the moments of iner-
tia for rotations about the principal axes a, b, c) are the solutions
of the determinant equation

ˇ̌
ˇ̌
ˇ̌
ˇ

Ixx � I Ixy Ixz

Iyx Iyy � I Iyz

Izx Izy Izz � I

ˇ̌
ˇ̌
ˇ̌
ˇ

D 0 : (5.40)

Note, that generally the principal moments of inertia do
not concur with the elements Ixx, Iyy, Izz, because all ele-
ments of the tensor can change under the principal axes
transformation.

According to international agreements [5.3] the assignment of
the principal moments follows the definition:

Ia � Ib � Ic :

The moment of inertia for a rotation about an arbitrary axis with
direction angels ˛, ˇ, ', against the x, y, z, axis is (Fig. 5.24)

I D Ia cos2 ˛ C Ib cos2 ˇ C Ic cos2 
 : (5.41)

This equation corresponds to (5.37a) since all off-diagonal ele-
ments are zero. The principal axes transformation has made the
expression for the general moment of inertia I simpler.

Figure 5.24 Inertial moment about an arbitrary axis

Figure 5.25 Examples of asymmetric tops

With the principal moments of inertia the angular momentum
and the rotational energy can be written as

L D fLa;Lb; Lcg D f!aIa; !bIb; !cIcg ; (5.42)

Erot D 1

2

�
!2

a Ia C !2
b Ib C !2

c Ic

�

D L2
a

2Ia

C L2
b

2Ib

C L2
c

2Ic

:

(5.43)

If all three principal moments are different .Ia ¤ Ib ¤ Ic ¤ Ia/
the body is called an asymmetric top.

Example: A cuboid with three different side lengths a, b, c

(Fig. 5.25b) or the NO2 molecule (Fig. 5.25a).

If two principal moments of inertia are equal the body is called
a symmetric top.

Example: All bodies with rotational symmetry (circular cylinder
linear molecules but also quadratic cuboids).

Every body with rotational symmetry is a symmetric top,
but a symmetric top has not necessarily a rotational sym-
metry (for example a quadratic post). The inertial ellipsoid
of a symmetric top is, however, always rotationally sym-
metric.

We distinguish between

Prolate symmetric tops (Fig. 5.26a) with Ia < Ib D Ic. The
inertial ellipsoid is a stretched rotational ellipsoid where the
diameter along the symmetry axis z is larger than the diame-
ter in the x-y-plane (Fig. 5.27a).
Oblate symmetric tops (Fig. 5.26b) with Ia D Ib < Ic.
The inertial ellipsoid is a squeezed rotational ellipsoid (disc,
Fig. 5.27b).
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Prolate top Oblate top

For

Figure 5.26 Examples of symmetric tops: a prolate and b oblate symmetric
top

Figure 5.27 Inertial ellipsoids of a prolate and b oblate symmetric top

For an asymmetric top the angular momentum L and the
rotational axis ! D f!x; !y; !zg generally point into dif-
ferent directions, because the components Ix, Iy, Iz, in
Eq. 5.42 are different, except if the body rotates aboud
one of its principal axes.

When all three principal moments of inertia are equal, the body
is a spherical top, because in this case its inertial ellipsoid is a
sphere.

Examples: A ball or a cube.

5.7.3 Free Rotational axes

The Eq. 5.42 and Fig. 5.28 give the following important infor-
mation: Angular momentum L and rotational axis ! point for
all bodies with free axes (where the rotation axis is not fixed by
mountings) only then into the same direction if at least one of
the following conditions is fulfilled.

Ia D Ib D Ic (spherical top) or

Figure 5.28 Angular momentum L and rotational axis are generally not par-
allel. This is illustrated in a .x; y ; z/ coordinate system that coincides with the
principal axes .a ; b ; c/

the body rotates about one of its principal inertial axes, which
implies that only one of the three components !x, !y, !z is
not zero.
For a symmetric top is L k ! if the body rotates around an
arbitrary axis perpendicular to the symmetry axis.

Since without external torque the angular momentum L is con-
stant and has a constant orientation in space the body has in
these three cases a space fixed rotational axis and rotates around
this constant axis with constant angular velocity !. Its rota-
tional motion is then identical to the rotation about axes with
fixed mountings (see Sect. 5.6)

The principal axes of a body are therefore also called free axes

because the body can freely rotate about them even if they are
not fixed by mountings.

The experiment shows, however, that a stable rotation is only
possible about the axes of the smallest and the largest moment
of inertia. For the rotation about a free axis of the intermediate
moment of inertia any tiny perturbation makes the motion in-
stable and the body finally flips into a rotation about one of the
other two principal axes.

Examples

1. A cuboid with Ia < Ib < Ic is suspended by a thread
(Fig. 5.29) and can be induced to rotations about the
thread by a small motor which twists the thread. The
cuboid rotates stable if the thread direction coincides
with the axis of the inertial moments Ia or Ic. If it
is suspended in a way that the thread direction co-
incides with the axis of Ib the cuboid flips for faster
rotations into a rotation around the axis b, as shown in
Fig. 5.29c), it rotates then no longer about the thread
but around the dashed line in Fig. 5.29c), which is a
free axis.
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Figure 5.29 Rotation of a cuboid about free axes: a stable rotation
about the axis of maximum moment of inertia; b instable rotation about
the axis of median moment of inertia, which jumps into a rotation about
the axis c of maximum moment of inertia (c)

2. A closed chain hangs on a thread and is induced to ro-
tations by a motor (Fig. 5.30). Due to the centrifugal
force the chain widens to a circle which orientates it-
self in a horizontal plane, because in this position the
rotation takes place about the axis of the maximum
inertial moment and therefore the rotational energy
ErotL

2=2I becomes a minimum. In this stable rota-
tional mode the rotation axis does not coincide with
the direction of the thread.

Figure 5.30 Rotation of a chain about the axis of maximum moment
of inertia

3. A thrown discus flies stable as long as the rotation pro-
ceeds about the symmetry axis (axis of the maximum
moment of inertia) (Fig. 5.31).

Figure 5.31 Stable flight of a discus J

5.7.4 Euler’s Equations

For an arbitrary orientation of the rotation axis angular momen-
tum L and rotation axis ! are no longer parallel. The motion of
the body is now more complicated. In order to investigate this
motion as seen by an observer sitting in a space-fixed inertial
coordinate system S, we have to describe it in this system S.

The time derivative dL=dt of the angular momentum is equal to
the torque D acting on the body.

�
dL

dt

�

S

D D : (5.44)

A coordinate system K where the axes are the principal axes
of the body, which is therefore rigidly connected to the rotating
body rotates with the angular velocity ! against the system S.
In this system the time derivative of L is (see Sect. 3.3.2)

�
dL

dt

�

K

D
�

dL

dt

�

S

� .! � L/ ; (5.45)

which gives the vector equation for the torque D

D D
�

dL

dt

�

K

C .! � L/ : (5.46)

This equation corresponds formally to (3.14) if we replace L by
r. Note, that in (5.46) dL=dt is the derivative of L in the body
fixed principal axes system K, while ! is the angular velocity
in the space-fixed system S. If (5.46) is written for the three
components in the direction of the principal axes one obtains
for example for the axis a the relation

Da D
�

dL

dt

�

a

C .! � L/a

D d

dt
.Ia!a/C .!bLc � !cLb/

D Ia

d!a

dt
C !bIc!c � !cIb!b ;

where Da is the component of the torque in the direction of the
principal axis a.

Similar equations can be derived for the other two components.
This leads to the Euler-equations
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Ia

d!a

dt
C .Ic � Ib/ !c!b D Da

Ib

d!b

dt
C .Ia � Ic/ !a!c D Db

Ic

d!c

dt
C .Ib � Ia/ !b!a D Dc :

(5.47)

5.7.5 The Torque-free Symmetric Top

A symmetric top has two equal principal moments of inertia. If
the symmetry axis of its inertial ellipsoid is the axis c we have
Ia D Ib ¤ Ic. For rotational symmetric bodies the symmetry
axis is also called the figure axis. For a bicycle wheel as sym-
metric top this is the visible wheel axis (Fig. 5.32). Without any
external torque .D D 0/ the magnitude and the direction of the
angular momentum L is constant. Such a top with D D 0 is
called force-free top although it should be called more correctly
torque-free top.

When the top rotates about its figure axis, L and ! coincide
with this axis. The top rotates as if its axis would be hold by a
stable mounting (see Sect. 5.6). If, however, ! points into an
arbitrary direction which does not coincide with the figure axis
the motion becomes complicated.

For the description of this motion one has to distinguish between
three axes (Fig. 5.33a):

The space-fixed angular momentum axis L

The momentary (not space-fixed) rotation axis !

The figure axis of the symmetric top, which is only space-
fixed, if L coincides with this axis.

We can win a qualitative picture for the motion of the figure
axis by the following consideration: For D D 0 the angular
momentum L and the rotational energy Erot are both constant.

Figure 5.32 Bicycle wheel as symmetric top

Figure 5.33 Figure axis c, angular momentum L and momentary rotation
axis !: a Decomposition of ! and L into the components parallel and per-

pendicular to the figure axis of the symmetric top. b Nutation cone of EL and
E!

Then we obtain from Eq. 5.43

L2
x C L2

y C L2
z D const D C1 ; (5.48a)

L2
a

Ia

C L2
b

Ib

C L2
c

Ic

D const D C2 : (5.48b)

In a space-fixed coordinate system with the axes Lx, Ly, Lz

(5.48a) represents the equation of a sphere. Equation 5.48b
describes an ellipsoid in the principal axes system. Since
the components of the space-fixed vector L must obey both
equations, the endpoint of L can only move on the curve of in-
tersection between sphere and ellipsoid (Fig. 5.34). Since the
ellipsoid is determined by the principal axes system of the top,
i.e. rotates with the top, while L is space-fixed, the top and
therefore also its inertial ellipsoid move in such a way, that the
endpoint of L always remains on the curve of intersection. This
causes a nutation of the figure axis and the momentary rotation
axis ! about the space-fixed axis L (Fig. 5.33b).

While the figure axis can be seen straight forward, the momen-
tary rotation axis can be made visible by an experimental trick:
A circular disc with red, black and white circular segments is

Figure 5.34 The top of the angular momentum vector moves on the intersec-
tion curve of angular momentum sphere and energy ellipsoid
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Figure 5.36 Nutation cone, herpolhode cone and polhode cone for a the prolate, b the oblate top

Figure 5.35 Visualization of the momentary rotational axis

centered on the peak of the figure axis (Fig. 5.35). When the
top rotates the three colors blur to an olive-brown mixed color.
Only at the intersection point with the momentary rotation axis
one can see the color of the specific segment which wanders
slowly from red over black to white which indicates the motion
of the momentary rotation axis.

In order to calculate the motion of the figure axis and the mo-
mentary rotation axis more quantitatively we apply the Euler
equations (5.47) to the special case D D 0 and Ia D Ib. They
simplify to

P!a C˝!b D 0 ;

P!b �˝!a D 0 ;

P!c D 0 ;

(5.49)

with the abbreviation ˝ D ..Ic � Ia/=Ia/!c. The solutions of
this system of equations are

˝a D A cos˝t ; ˝b D A sin˝t ;

˝c D C with A;C D const ;
(5.50)

as can be proved by inserting (5.50) into (5.49). While ! is the
angular frequency of the spinning top,˝ is the frequency of the

nutation. The solutions show, that the magnitude ! D j!j is
constant in the body-fixed system as well as in the lab-system,
because !2 D !2

a C !2
b C !2

c D A2 C C2 D const. However,
the individual components !a and !b can change and therefore
the direction of !.

We separate ! into a component !c parallel to the figure axis
and a component !? D p

.!2
a C !2

b/ D A perpendicular to the
figure axis (Fig. 5.33a) . Squaring (5.42) yields then

L D Ia!? C Ic!c : (5.51)

The figure axis forms a constant angle ˛ against the space-fixed
angular momentum axis with

tan˛ D Ia!?
Ic!c

D Ia

Ic

q
!2

a C !2
b

!c

D Ia

Ic

� A

!c

:

This means that the figure axis migrates on a cone with the full
aperture angle 2˛ around the space-fixed axis L (Fig. 5.33b and
5.36). This cone is called nutation-cone.

The vector ! with its constant magnitude forms the constant
angle ˇ with the figure axis where sinˇ D !?=! D A=!c. The
momentary rotation axis ! is also wandering on a cone with
the opening angel 2.ˇ � ˛/, called herpolhode cone around
the space fixed axis of L. This common motion of figure axis
and momentary rotation axis without external torque is called
nutation.

The common motion of figure axis and momentary rotation axis
can be illustrated by two cones (nutation cone and herpolhode
cone) with different opening angles centered around the space-
fixed axis L. A third cone (polhode cone) centered around the
nutating figure axis touches the space fixed herpolhode cone

along the momentary rotation axis and rolls on the outer sur-
face (prolate top Fig. 5.36a) or the inner surface (oblate top
Fig. 5.36b) of the herpolhode cone. The contact line shows the
momentary rotation line !. The apex of the three cones lies in
the center of mass of the nutating body.
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5.7.6 Precession of the Symmetric Top

If an external torque D acts on the body the angular momentum
is no longer space-fixed, because of D D dL=dt. Depending on
the direction of D relative to the figure axis the direction and
also the magnitude of L changes with time. At first we will
discuss the simplest case where the body rotates with the angular
velocity ! around its figure axis c and all three axis L, ! and c

coincide. In this case there is no nutation and for D D 0 the
body would rotate with ! D const about the space-fixed figure
axis.

If the top is not supported in its CM, the gravitational force gen-
erates a torque

D D r � m � g ;

where r is the vector from the support point to the CM. If the
symmetric top spins with the angular momentum L the torque is
perpendicular to L and therefore changes only its direction but
not its magnitude (Fig. 5.37). During the time interval dt the
direction of L changes by the angle d' and we can derive from
Fig. 5.37

jdLj D jLj � d' ! D D dL

dt
D jLjd'

dt
:

The angular momentum axis and with it the coincidental figure
axis rotate with the angular velocity

!p D d'

dt
D D

L
D D

I!
(5.52)

about an axis perpendicular to the plane of D and L where we
have assumed that !p � !. This motion is called precession.

If the figure axis forms the angle ˛ against the vertical direction
the magnitude of the torque is D D m � g � sin˛. The change dL

of the angular momentum L is now for dL � L (Fig. 5.38)

dL D jLj sin˛ � d' :

For !p � ! therefore the equation for the precession frequency
becomes

!p D mgr sin˛

I! sin˛
D mgr

I!
; (5.53)

Figure 5.37 The gravitational force causes a torque acting on a top, that is not
supported in the Center of Mass

Figure 5.38 Precession of a spinning top

which shows that !p is independent of the space orientation of
the figure axis and depends only on the angular momentum L

and the torque D.

The general treatment of precession has to take into account the
three vectors (Fig. 5.39)

1. The angular velocity !F about the figure axis
2. The angular velocity !p of precession around the vertical z-

axis
3. The total angular velocity ! D !F C !p

According to Fig. 5.39 we get the relations:

!F D ! � e with e D fsin � cos'; sin � sin'; cos �g
!p D P' � f0; 0; 1g
! D f! � sin � cos'; ! � sin � sin'; ! � cos � C P'g :

(5.53a)

We separate ! into a component !k parallel and !? perpendic-
ular to the figure axis e.

!k D e � .! C P' cos �/

!? D e � .! � e/

D P' sin � � f� cos � cos';� cos � sin '; sin �g :
(5.53b)

θ

Figure 5.39 Illustration of the equation of motion for a spinning top
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The total angular momentum L is

L D Ik!k C
�
mr2

s C I?
�

!?

D Ik � e.! C P' cos �/

C
�
I? C mr2

s

�

� P' sin �f� cos � cos';� cos � sin'; sin �g ;

(5.53c)

where Ik is the moment of inertia for a rotation about the figure
axis and I? about an axis perpendicular to the figure axis.

Because !, d'=dt and � do not change with time the time
derivative of (5.53c) is

dL

dt
D Ik.! C P' cos �/ � Pe

�
�
I? C mr2

s

�
P'2 cos � sin �f� sin '; cos'; 0g

D
�
Ik � sin �.! C P' cos �/ P'
�
�
I? C mr2

s

�
P'2 sin � cos �

�
� On :

(5.53d)

where n D f� sin '; cos'; 0g is the unit vector in the direction
of the torque D. With dL=dt D D D m � g � rs � sin � � n we obtain
the equation

!p � Ik � ! C !2
p cos �.Ik � I?/ D mgrs : (5.53e)

which has two solutions for the precession frequency !p. The
difference between the two solutions depends on the difference
Ik � I? of the two moments of inertia [5.4].

5.7.7 Superposition of Nutation and
Precession

In the general case the top does not rotate about its figure axis.
Without external torque the top would perform a nutation around
the space-fixed angular momentum axis L. With an external
torque the angular momentum axis is no longer constant but pre-
cesses with the angular velocity !p around an axis through the
underpinning point A parallel to the external force (Fig. 5.39)
while the figure axis performs a nutation around the precessing
axis L. With this combination of precession and nutation the
end of the figure axis describes a complicated path (Fig. 5.40).
The exact form of this trajectory depends on the ratio of nutation
frequency ˝ to the precession frequency !p.

For the demonstration of nutation and precession a special bear-
ing of the top is useful called a gimbal mounting where the figure
axis can be turned into arbitrary directions and the top is always
“torque-free” (Fig. 5.41). This can be realized if the figure axis
is mounted by ball bearings in a frame which can freely rotate
around an axis perpendicular to the figure axis. The mounting
of this axis can again rotate about a vertical axis. If the system is
turned around the vertical axis, the figure axis of the top diverts
from its horizontal direction. Reversal of the turning direction
also reverses the direction of this diversion. If a short push is
applied perpendicular to the top axis, the angular momentum

Figure 5.40 Path of figure axis when precession and mutation are superim-
posed

axis is forced into another direction and the top starts to nutate.
When a mass m is attached to the first frame, a torque acts on
the top which starts to precess around a vertical axis.

Before the invention of the GPS system the precession of the top
was used for navigation purposes (gyro compass). Its function
is explained in Fig. 5.42, where a rotating disc is suspended in
a mounting B which can turn around a vertical axis a through
the suspension point A. The top axis KA can freely turn only in
a horizontal plane. The center of mass lies below the point A.
Different from a torque-free top rotating around its figure axis
where the figure axis and the angular momentum axis coincide,
for the gyro compass the suspension axis through the point A

is rigidly connected with the earth and participates in the earth
rotation with the angular velocity!. Therefore a torque is acting
on the gyro perpendicular to the drawing plane. The gyro turns
around the axis a until the figure axis is parallel to the rotation
axis of the earth and points into the south-north direction. Now
angular momentum axis L and the forced rotation axis !E are
parallel (Fig. 5.42b), and the torque forcing the turn of the figure
axis becomes zero.

This property can be experimentally studied with the gimbal
mount by simulating the earth rotation by the rotation of the
outer mounting in Fig. 5.41. The figure axis then turns into the
vertical position.

Figure 5.41 Gimbal mount of a symmetric top
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Figure 5.42 Gyro-compass: a mount, b direction of L and !E at the equator
and for higher lattitudes

At the earth equator !E and L are parallel. This is not the case
for a point P on another circle of latitude because L has to lie
in a horizontal plane. However, also in this case the gyro ad-
justs itself in such a way that the component L parallel to !E

becomes maximum. The vector L becomes the tangent to the
circle of longitude, points therefore again to the north. Only at
the two poles of the earth the gyro fails, because here L is always
perpendicular to !E.

5.8 The Earth as Symmetric Top

In a good approximation the earth can be described by a clinched
rotational ellipsoid, i.e. an oblate symmetric top with Ia D Ib <
Ic. The equator diameter is with 12 756 km by about 43 km
larger than the pole diameter with 12 713 km. This clinch is
caused by the centrifugal force due to the rotation of the earth
(see Sect. 6.6). For the following considerations we will com-
pose this oblate ellipsoid by a sphere plus additional bulges
which have their maximum thickness at the equator (red area
in Fig. 5.43).

Because of the inclination of the earth axis .' D 90ı � 23:5ı D
66:5ı/ against the ecliptic (orbital plane of the earth’s motion
around the sun) the two centers of mass S1 of the bulge towards
the sun and S2 of the bulge opposite to the sun are located above
and below the ecliptic (Fig. 5.43) in contrast to the center of
mass S of the sphere which lies in the ecliptic. While for the

Figure 5.43 The earth as symmetric top. The arrows indicate the difference
forces F1 � F2 ath the Centers of Mass S1 and S2 of the two opposite sides of
the bulge

mass mE of the sphere concentrated in S the centripetal force
F1 D GmEMˇ=r2 due to the gravitational attraction between
earth and sun is just compensated by the equal but opposite cen-
trifugal force F2 D mEv

2
E=r this is no longer true for the centers

of mass S1 and S2 of the bulges. Since S1 is closer to the sun the
centripetal force predominates while for S2 the centrifugal force
prevails. Since the net forces for S1 and S2 are antiparallel they
form a couple of forces which act as a torque on the earth and
cause the earth axis to precess (solar precession).

Besides the gravitational force between earth and sun the attrac-
tion between moon and earth must be taken into account. The
calculation is here more complicated because the orbital plane
of the moon around the earth is inclined by an angle of 5:1ı

against the ecliptic. The calculation shows that the influence on
the earth is of the same order of magnitude than that of the sun.

Altogether both torques cause the lunar-solar precession where
the earth axis propagates on a cone with an opening angle of
2 � 23:5ı by an angle ' � 5000 per year which gives a preces-
sion period of about 25 750 years for ' D 2� (Platonic year).
Within a Platonic year the cone is once circulated. The elonga-
tion of the earth axis describes a circle on the celestial sphere
around the ecliptic pole (Fig. 5.44).

Remark. This precession causes a turn of the intersect-
ing line between ecliptic and equatorial plane by 360ı within
25 850 years. This shifts the vernal equinox (where day and
night both last 12 hours) by about 5000 per year. It causes fur-
thermore a shift of the signs of the zodiac between their naming
2000 years ago and today by about one month. For example the
real constellation of the Gemini (twins) coincides in our times
with the sign of the zodiac Cancer. This is unknown to many as-
trological oriented people who come into trouble if they should
explain whether the real stars or the signs of the zodiac are re-
sponsible for the fate of a person.

The precession of the earth axis described above is not uniform
because of the following reasons:



C
h

a
p

te
r

5

150 5 Dynamics of rigid Bodies

Figure 5.44 Due to the precession of the earth its axis traverses a circle on the
celestial sphere around the ecliptic pole. In 1950 it pointed towards the pole star

Because of the inclination of the earth axis the torque exerted
by the sun changes periodically during the year (Fig. 5.45).
It is maximal on December 22nd and June 21st and minimal
at March 21st and September 23rd
The torque exerted by the moon changes because the incli-
nation of the moon’s orbital plane changes with a period of
9.3 years.
Also the other planets cause a small torque acting on the
earth. Because the relative distances to the earth change in
time, this causes a tiny variation of the precession.
The motion of the earth around the sun proceeds on an ellip-
tical path and therefore the distance r between earth and sun
changes periodically. It is minimum in December and max-
imum in June (Fig. 5.45). Therefore the gravitational force
acting on the earth changes correspondingly.

Astronomers call these short-period fluctuations of the preces-
sion nutations although they are strictly speaking no nutations
but perturbations of the precession.

There are real torque-free nutations superimposed on the com-
plicated precession. They are caused by the fact, that the figure
axis of the earth and the rotation axis do not exactly coin-
cide (Fig. 5.46). The figure axes (south-north pole intersection)

Figure 5.45 Position of the earth axis during the revolution of the earth about
the sun. Note, that the direction of the angular momentum does not change
during the year

Figure 5.46 Nutation of the earth axis

therefore nutates around the precessing angular momentum axis
with a measure period of about 303 days. On the other hand the
nutation period is

Tnut D 2�

!

Ia

Ic � Ia

: (5.54)

From the measured nutation period one can therefore determine
the difference Ic � Ia of the inertial moments [5.5a, 5.5b].

Since the earth is no rigid body the mass distribution and there-
fore the inertial moments can change, for instance by volcanic
eruptions or by convective currents in the liquid interior of the
earth [5.6a, 5.6b]. This causes small fluctuations of the nutation.
In Fig. 5.47 the wandering of the north-pole of the rotational axis
during the year 1957 is shown.

The above discussion has shown, that the more precise mea-
surements have been made, the more different influences on the
motion of the earth axis have to be taken into account. Even
today there are discussions about the best model for the earth
motion [5.7, 5.8].

Figure 5.47 Migration of the north pole of the earth’s rotation axis during the
year 1957 about the average position of the period 1900–1905. One second of
arc corresponds to about 30 m
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Summary

The model of the extended rigid body neglects all internal
motions (Deformations and vibrations). The center of mass
S has the coordinates

rS D 1

M

Z

V

r%.r/dV D 1

V

Z
rdV for % D const :

The motion of a free rigid body can be always composed of
a translation of the center of mass S with the velocity vs and
a rotation of the body around S with the angular velocity !.
The motion of the extended body has therefore 6 degrees of
freedom.
For the motion of an extended body not only magnitude and
direction of the force acting on the body are important but
also the point of action on the body.
An arbitrary force acting on an extended body can always
be composed of a force acting on the center of mass S
(translational acceleration) and a couple of forces causing an
accelerated rotation.
The moment of inertia (rotational inertia) for a rotation about
an axis through the center of mass S is Is D

R
r2
?%dV where

r? is the distance of the volume element dV from the rotation
axis. The moment of inertia for a rotation around an arbi-
trary axis with a distance a from the parallel axis through S

is I D Is C Ma2 (parallel axis theorem or Steiner’s theorem).
The kinetic energy of the rotational motion is Erot D 1

2 I!2.
The equation of motion for a body rotating about a space-
fixed axis is Dk D I � d!=dt, where Dk is the component of
the torque parallel to the rotation axis.
The moment of inertia Is depends on the direction of the ro-
tation axis relative to a selected axis of the body. It can be

described by a tensor. The directions of the axes with the
maximum and the minimum inertial moment determine the
principal axes system. In this system the tensor is diagonal.
The diagonal elements are the principal moments of inertia.
If two of the principal moments are equal, the body is a sym-
metric top. If all three are equal the body is a spherical top.
Angular momentum L and angular velocity ! are related by
L D I � !, where I is the inertial tensor, which is diagonal
in the principal axes system. In the general case L and ! are
not parallel.
If the body rotates about a principal axis, L and ! are parallel
and without external torque their directions are space-fixed.
For an arbitrary direction of ! the momentary rotation axis !

nutates around the angular momentum axis which is space-
fixed without external torque.
Under the action of an external torque the angular momen-
tum axis L precedes around the external force and in addition
the momentary rotation axis nutates around L. The relation
between L and D is D D dL=dt.
The general motion of a top is completely described by the
Euler-equations.
The earth can be approximately described by a symmetric
top, which rotates about the axis of its maximum moment
of inertia. The vector sum of the gravity forces exerted by
the sun, the moon and the planets results in a torque which
causes a periodic precession of the earth axis with a period
of 25 850 years. In addition changes of the mass distribu-
tion in the earth cause a small difference between symmetry
axis and momentary rotation axis. Therefor the earth axis
performs an irregular nutation around the symmetry axis.

Problems

5.1 Determine the center of mass of a homogeneous sector
of a sphere with radius R and opening angle ˛.

5.2 What are moment of inertia, angular momentum and ro-
tational energy of our earth
a) If the density % is constant for the whole earth
b) If for r � R=2 the homogeneous density %1 is twice the den-

sity %2 for r > R=2?
c) By how much would the angular velocity of the earth change,

if all people on earth (n D 5�109 with m D 70 kg each) would
gather at the equator and would start at the same time to run
into the east direction with an acceleration a D 2 m=s2?

5.3 A cylindrical disc with radius R and mass M rotates
with ! D 2� � 10 s�1 about the symmetry axis (R D 10 cm,
M D 0:1 kg).
a) Calculate the angular momentum L and the rotational energy

Erot.
b) a bug with m D 10 g falls vertical down onto the edge of the

disc and holds itself tight. What is the change of L and Erot?
c) The bug now creeps slowly in radial direction to the center

of the disc. How large are now !.r/, I.r/ and Erot.r/ as a
function of the distance r from the center r D 0?
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5.4 The mass density % of a circular cylinder (radius R,
height H) increases in the radial direction as %.r/ D %0.1 C
.r=R/2/.
a) How large is its inertial moment for the rotation about the

symmetry axis for R D 10 cm and %0 D 2 kg=dm3?
b) How long does it take for the cylinder to roll down an in-

clined plane with ˛ D 10ı from h D 1 m to h D 0?

5.5 Calculate the rotational energy of the Na3-molecule
composed of 3 Na atoms (m D 23 AMU) which form an isosce-
les triangle with the apex angle ˛ D 79ı and a side length of
d D 0:32 nm when it rotates around the three principal axes
with the angular momentum L D

p
l.l C 1/ � „. Determine at

first the three axis and the center of mass.

5.6 A wooden rod with mass M D 1 kg and a length l D
0:4 m, which is initially at rest, can freely rotate about a vertical
axis through the center of mass. The end of the rod is hit by
a bullet (m D 0:01 kg) with the velocity v D 200 m=s, which

moves in the horizontal plane perpendicular to the rod and to the
rotation axis and which gets stuck in the wood.
What are the angular velocity ! and the rotational energy Erot of
the rod after the collision? Which fraction of the kinetic energy
of the bullet has been converted to heat?

5.7 A homogeneous circular disc with mass m and radius R

rotates with constant velocity ! around a fixed axis through the
center of mass S perpendicular to the disc plane. At the time
t D 0 a torque D D D0 � e�at starts to act on the disc. What
is the time dependence !.t/ of the angular velocity? Numerical
example: !0 D 10 s�1, m D 2 kg, R D 10 cm, a D 0:1 s�1,
D0 D 0:2 Nm.

5.8 A full cylinder and a hollow cylinder with a thin wall
and equal outer diameters roll with equal angular velocity !0 on
a horizontal plane and then role up an inclined plane. At which
height h do they return? (Friction should be neglected), numer-
ical example: R D 0:1 m, !0 D 15 s�1.
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In this chapter, we will proceed with the stepwise refinement of
our “model of reality”. We will take into account the experi-
mental fact that extended bodies can change their shape under
the influence of external forces. We will also discuss the impor-
tant question why and under which conditions real bodies can
exist in different aggregation states as solids, liquids or gases.
We will see, that an atomic model, which considers the different
interactions between the atoms, can at least qualitatively explain
all observed phenomena. For a quantitative description, a more
profound knowledge about the atomic structure is demanded.
The quantitative calculation of the detailed characteristics of
solids or liquids is still not trivial, even with fast computers
and sophisticated programs, because of the enormous number
(1023 =kg) of atoms involved. Here symmetry considerations
are helpful to facilitate the description.

If all physical characteristics of an extended body (density, elas-
ticity, hardness etc.) are constant within the body, we call it
a homogeneous body. Are they also independent of the di-
rection the body is isotropic. A liquid metal is an example of
an isotropic and homogeneous body while a NaCl-crystal (table
salt) is homogeneous but not isotropic.

6.1 Atomic Model of the Different
Aggregate States

Many experiments have proved that all macroscopic bodies are
composed of atoms or molecules (see Vol. 3). Between two
atoms, which consist of a positively charged small nucleus and
a negatively charged extended electron cloud, attractive as well
as repulsive interactions can occur. The superposition of all
these interactions results in a force F.r/ and a potential energy
Ep.r/ which depend on the distance r between the interacting
atoms and which are qualitatively depicted in Fig. 6.1. At the
equilibrium distance r0, the potential energy Ep.r/ shows a min-
imum and the force F.r/ D � grad Ep becomes zero. For shorter
distances r < r0 the repulsive forces dominate and for larger dis-
tances r > r0 the attractive forces. For both cases, the potential
energy increases. When an atom A is surrounded by many other
atoms Ai at distances ri the total force F acting on A is the vector
sum of all individual forces Fi:

F D
X

Fi.ri/ :

The resulting potential energy Ep of atom A depends on the spa-
tial distribution of the surrounding atoms Ai and is related to the
force F by F D �grad Ep.

In crystalline solids the atoms are arranged in regular lattices
(Fig. 6.2) while in amorphous solids they sit on more or less
statistically distributed sites. Examples for the first cases are
NaCl-crystals, or noble gas crystals at low temperatures, while
examples for amorphous solids are glasses or amorphous sili-
con, which is used for solar cells.

When we place the atom A in a crystalline solid at the origin
r D 0 of our coordinate system the atoms Ai have the position

Figure 6.1 Qualitative dependence of potential energy Ep .r/ and force F .r/
between two atoms as a function of distance r between the nuclei of two adja-
cent atoms

vectors

ri D n1i a C n2i b C n3i c ; (6.1)

where the n˛i are integers and the basis vectors a; b; c define the
unit cell (or elementary cell) in the crystalline solid. They are
marked as red vectors in Fig. 6.2. Their magnitudes and direc-
tions define the crystal structure of the solid. The forces between
the atoms can be modelled by elastic springs (Fig. 6.3) where
the restoring force constants ki can be different in the differ-
ent directions. At the absolute temperature T the atoms vibrate
about their equilibrium position r0. Their mean kinetic energy
is hEkini D .1=2/kT per degree of freedom (see Sect. 7.3) where
the equilibrium positions correspond to the minimum of the po-
tential energy Ep in Fig. 6.1. For temperatures far below the
melting temperature, hEkini is small compared to the magnitude
jEp.r0/j of the potential energy at the equilibrium position which
means that the atoms cannot leave their equilibrium positions.

If the temperature rises above the melting temperature the
mean kinetic energy hEkini becomes larger than the bind-
ing energy EB D �Ep.r0/. The atoms cannot be kept any

Figure 6.2 Regular structure of a solid crystal. The basis vectors a, b, c form
the elementary cell with volume VE D .a � b/ � c. The position vector of the
point A is rA D 2a C b C c
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Figure 6.3 Spring model of a solid crystal. The restoring force is for an isotropic
crystal equal for all three directions a, b, c, for an unisotropic crystal they differ

longer on their positions ri but can diffuse around. The
crystalline solid melts and converts to the liquid state.

Also in the liquid state the minimum of the potential energy re-
mains at the mean distance hr0i between the atoms. This means
that the density in the liquid state is not very different from that
in the solid state. However, now a single atom is no longer
bound to a fixed position but can move freely within the liq-
uid. Nevertheless, there is still a certain order. If one plots the
probability W.r/ that an atom A occupies a position with the
distance r from its neighbors (Fig. 6.4) a pronounced maximum
is found at r D r0 which is close to the minimum distance r0

in the crystalline solid. Similar to the amorphous solid the liq-
uid has a short range order, while a crystalline solid has a long

range order, because it is possible to assign a definite position
r D n1a C n2b C n3c (with integers ni) to each atom regardless
how far away it is (Fig. 6.2). While the crystalline solid can be
described by the spring model of Fig. 6.3, many features of liq-
uids can be modelled by the string model of Fig. 6.5. Here the
atoms are connected by strings of constant lengths where the di-
rections can be arbitrarily altered. The balls in this mechanical
model can move similar to the atoms in a liquid.

A further increase of the temperature above the boiling point
makes the mean kinetic energy large compared to the magnitude
of the potential energy. The potential energy is then negligible

P(r)

P(r)

rr0

Figure 6.4 Probability P .r/ that an atom A1 in a liquid has the distance r to
an arbitrary other atom A2

Figure 6.5 Atomic model of a liquid. The balls are connected with each other
by strings. The model illustrates the free mobility of each atom

and the atoms can move freely. They form a gas that fills the to-
tal accessible volume. The interaction energy is only noticeable
during collisions of the atoms with each other.

The mean distance hri between the atoms or molecules and
therefore also the density % D M=V of the gas with total mass M

depends on the volume V which is accessible to the N D M=m

molecules with mass m. At normal pressure p D 1 bar the den-
sity of the gas is about three orders of magnitude smaller than
that of solids or liquids.

Examples

The density of air at p D 1 bar and T D 300 K.� 20 ıC/
is % D 1:24 kg=m3, while the density of water is about
103 kg=m3 and that of lead is 11:3 � 103 kg=m3. J

The considerations above show that the aggregation state of ma-
terial depends on the ratio hEkini=Ep and therefore on the tem-
perature and on the binding energy of the atoms or molecules of
the body.

We will now discuss the most important characteristic features
of the different aggregation states in a phenomenological man-
ner. The more detailed treatment is given in Vol. 3.

6.2 Deformable Solid Bodies

External forces can change the shape of solid bodies. If the
body returns to its original shape after the exposure to the exter-
nal forces we call it elastic. For a plastic body the deformation
remains.
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6.2.1 Hooke’s Law

If a pulling force acts onto the end face of an elastic rod with
length L and cross section A, which is hold tight at the other end
x D 0 (Fig. 6.6) the length L is prolonged by �L. The linear
relation between the magnitude F D jFj of the force and the
prolongation�L

F D E � A ��L=L (6.2)

is called Hooke’s law, which is valid for sufficiently small rel-
ative length changes �L=L. The proportional factor E is the
elastic modulus with the dimension N=m2. For technical ap-
plications often the dimension kN=mm2 D 109 N=m2 is used.
Table 6.1 gives numerical values for some materials.

For materials with a large elastic modulus E one needs
a large force to achieve a given relative change of length
�L=L. With other words: Materials with a large value of
E show for a given force a small relative length change.

Introducing the tensile stress (D pulling force=cross section A)

� D F=A

and the relative stretch or strain " D �L=L Hooke’s law can be
written in the clearer form

� D E � " : (6.2a)

For sufficiently small relative stretches ", tensile stress and strain
are proportional. In this proportional range the distances be-
tween neighboring atoms vary only within a small range around
r0 (Fig. 6.1) where the interatomic force F.r/ D a � r is ap-
proximately a linear function of the distance r and the potential
energy Ep.r/ can be approximated by a parabola.

Note: This linear relation is only an approximation for small
values of ". For larger " nonlinear forces appear that cannot be
neglected.

Expanding Ep.r/ into a Taylor series around the equilibrium po-
sition r0

Ep.r/ D
1X

nD0

.r � r0/
n

nŠ

�
@nEp

@rn

�

rDr0

(6.3a)

Figure 6.6 A rod fixed at x D 0 expands under the action of a force EF by
�L D F � L=.E � A /

Table 6.1 Elastic constants of some solid materials. E D elastic modulus;
G D modulus of shear; K D compressibility modulus; � D inverse contraction
number D Poisson number; [6.1]

Material E Œ109 N=m2� G Œ109 N=m2� K Œ109 N=m2� �

Aluminium 71 26 74 0.34
Cast iron 64–181 25–71 48–137 0.28
Ferrite steel 108–212 42–83 82–161 0.28
Stainless steel 200 80 167 0.3
Copper 125 46 139 0.35
Tungsten 407 158 323 0.29
Lead 19 7 53 0.44
Fused silica 75 32 38 0.17
Water ice (�4 ıC) 10 3.6 9 0.33

and choosing the minimum of Ep.r/ as Ep.r0/ D 0, the first
two members of the Taylor series (6.3a) vanish because also
@Ep=@rjrD0 D 0. This reduces (6.3a) to

Ep.r/ D 1

2
.r � r0/

2

�
@2Ep

@r2

�

rDr0

C 1

6
.r � r0/

3

�
@3Ep

@r3

�

rDr0

C : : : :

(6.3b)

For small elongations .r � r0/ all higher order terms with pow-
ers n � 3 can be neglected and (6.3b) gives for the force
F D �grad Ep the linear relation of Hooke’s law. For larger
elongations, however, the higher order terms can no longer be
neglected and must be taken into account.

Surpassing the linear range at the point P in Fig. 6.7 the relative
stretch " increases faster than the tensile stress � (Fig. 6.7). The
material is still elastic until the point F, i.e. it returns nearly
to its initial length after the stress is released. Above the yield
point F, internal shifts of atomic layers (lattice planes) occur
(Fig. 6.8). The body becomes malleable and the plastic flow
starts. Permanent changes of shape remain after the termination
of the external force. While for the elastic stretch the distances
r between the atoms increases linearly by �r � .�L=L/r0 the

Figure 6.7 Relative length change " of a body caused by an external tensile
force � . Beyond the point P the linear elongation changes to a nonlinear one.
The point F marks the yield point, the point Z the tear point

Figure 6.8 Model of plastic flow of a solid explained by shift of atomic planes
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Figure 6.9 Atomic model of elastic expansion of a solid. The atom A moves
in the potential well but does not leave it

flow process can be achieved by a shift of the atomic planes
against each other, as illustrated in Fig. 6.8.

This can be made clear by Fig. 6.9 which shows the potential en-
ergy of an atom A in an atomic plane. For small length changes
all atoms remain within their potential well. For larger changes
the atomic plane is shifted against the adjacent plane. The atom
can move from one minimum into the next only if the external
pulling force is sufficiently large to lift all atoms of this plane
over the potential hills. Since such a shift changes the distance
between atoms only slightly, the minima in Fig. 6.9 are much
shallower than the minimum of the potential energy between
two atoms in Fig. 6.1. The barrier height and the modulation
period of Ep.�L/ depends for an anisotropic crystal on the di-
rection of the pulling force relative to the crystal axes.

In a real crystal lattice, defects and dislocations are present
which influence the flow process and can increase or decrease
the renitence against stretches and shifts of crystal planes against
each other.

6.2.2 Transverse Contraction

When a rod is stretched by an external pulling force, not only
the length L in the direction of the force is prolonged but also
the cross section decreases (Fig. 6.10). For a rod with length L

and quadratic cross section d2 the change �V of its volume V

under a length stretch �L > 0 and �d < 0 is

�V D .d C�d/2 � .L C�L/ � d2L

D d2�L C 2L � d�d

C
�
L�d2 C 2d�d�L C�L�d2

�
:

For small deformations (�L � L and �d � d), the terms in
the bracket can be neglected, because they converge quadratic
or even cubic towards zero for�L ! 0. This reduces the above
equation to

�V

V
� �L

L
C 2

�d

d
: (6.4)

The quantity

�
DefD ��d

d

�
�L

L
(6.5)

Figure 6.10 Transverse contraction under the influence of longitudinal tensile
stress

is called the transverse contraction ratio because it is the ratio
of transverse contraction to longitudinal elongation. The relative
volume change is then expressed as

�V

V
D �L

L

�
1 C 2�d=d

�L=L

�
D " .1 � 2�/ : (6.6a)

Since a pulling force increases the volume (�V > 0), we obtain
for � the condition � < 0:5. According to Hooke’s law (6.2a)
is �L=L D �=E. Inserting this into (6.6a) gives

�V

V
D �

E
.1 � 2�/ : (6.6b)

If a pressure instead of a tensile stress is exerted onto the end
faces of a rod,�L and�V become negative but�d positive be-
cause the rod is compressed in the length direction which causes
an increase of its cross section. The resulting relative volume
change can be obtained from (6.6b) when � is replaced by the
pressure p.

In both cases is � > 0 because for the pulling force is �L > 0
and �d < 0 while in case of a pressure is �L < 0 and �d >
0, which means that the ratio in the bracket in (6.6a) does not
change its sign.

If the body is exerted to an isotropic pressure p D �� , which
acts onto all sides of the body, the resulting volume change can
be obtained by the following consideration.

The pressure acting on the end faces d2 decreases the length L

by �L D �L � p=E, the pressure acting on the sides decreases
the transverse edge length by �d D �d � p=E. However, be-
cause of the transverse action on the elongation this transverse
contraction increases the length by �L D C� � L � p=E. Taking
both effects in account the length L under the action of a uniform
pressure p changes by

�L D � .L � p=E/ .1 � 2�/ : (6.7)

In a similar way the transverse dimension d is changed by

�d D � .d � p=E/ .1 � 2�/ :
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Since �L � L and �d � d the higher order terms in the
expansion of �V=V D �L=L C 2�d=d can be neglected and
we obtain

�V

V
D �L

L
C 2�d

d
D �3p

E
.1 � 2�/ : (6.8)

Introducing the compressibility modulus K by the equation

p D �K � �V

V
(6.9)

and the coefficient of compressibility � D 1=K, Eq. 6.8 can be
written as

� D 1

K
D 3

E
.1 � 2�/ : (6.10)

This gives the relations between compressibility modulus K, co-
efficient of compressibility �, elastic modulus E and transverse
contraction number (Poisson number) �.

6.2.3 Shearing and Torsion Module

A shear force F is a force, which acts on a body parallel to a
plane surface A (Fig. 6.11). The shearing stress

� D F=A

is the tangential shearing force F per unit surface area A. The
result of the action of a shearing stress is a tilt of the axis of
the cuboid in Fig. 6.11 by an angle ˛. For sufficiently small
tilting angles ˛, the experiments prove that the tilting angle ˛ is
proportional to the applied shearing stress.

T D G � ˛ : (6.11)

The constant G is called modulus of shear (or modulus of tor-
sion).

Since the restoring forces under deformations of an elastic body
are due to interatomic forces, all elastic constants E, �, K and G

must be related to each other.

As can be proved [6.2] for isotropic bodies the following rela-
tion holds:

E=2G D 1 C � : (6.12a)

Figure 6.11 Shearing of a cube under the action of shearing stress �

Rearrangement of (6.10) yields

E=3K D 1 � 2� : (6.12b)

The division of (6.12a) by (6.12b) gives

2G=3K D 1 � 2�

1 C �
: (6.12c)

Example

Torsion of a wire: We assume a force F that acts tangen-
tial on a cylinder with radius R and length L and which
causes a torsion of the cylinder (Fig. 6.12). We subdivide
the cylinder in thin radial cylindrical shucks between the
radii r and rCdr and in axial strips with the angular width
ı'. If the upper end of the cylinder twists under the ac-
tion of a torsional force F by the angle ' the prismatic
column marked in red in Fig. 6.12 experiences a shear by
the angle ˛. For r � ' � L one finds ˛ D r � '=L.

Figure 6.12 Torsion of a circular cylinder

The shearing stress necessary to achieve this torsion is
according to (6.11)

� D G � r � '=L :

Since all surface elements of the upper annulus with the
area 2�r � dr are twisted by the same angle ' against their
position for � D 0 the amount of the force dF necessary
for the shear of the whole cylindrical shuck is

dF D � � 2�r � dr D 2�r2 � dr � ' � g=L

and the corresponding torque is

dD D r � dF D 2� � r3 � dr � G � '=L :
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The torsion of the whole cylinder with radius R by the
angle ' is then accomplished by the torque

D D 2�G'

L

RZ

0

r3dr D �

2
G

R4

L
� ' : (6.13)

At equilibrium, the retro-driving torque, due to the elastic
twist of the cylinder, must be equal to the external torque.
This gives for the retro-driving torque

D� D �Dr � ' with Dr D �

2
G

R4

L
: (6.14)

The constant Dr, which depends on the shear modulus
G and gives the torque per unit angle, is called restoring

torque.

If a body with the moment of inertia I with respect to the
symmetry axis, is fixed to the lower end of a wire this
torsional pendulum performs rotary oscillations after the
wire has been twisted (see Sect. 5.6.2) with the oscillation
period

T D 2�

s
I

Dr
D 2�

R2

s
2L � I

� � G
: (6.15)

Such a torsional pendulum is a very sensitive device
for measurements of small torques. Examples are the
Eötvös’s torsional pendulum for the measurement of
Newton’s gravitational constant (see Sect. 2.9.6), Cou-
lomb’s torsional pendulum for the measurement of the
electric force between charges (Vol. 2, Chap. 1) and many
modifications of Galvanometers for the measurement of
small electric currents (Vol. 2, Chap. 2). J

6.2.4 Bending of a Balk

For technical constructions (buildings, bridges, etc.) the bend-
ing of balks under the influence of suspended weights represents
an important problem and can decide about the stability of the
construction. We will illustrate the problem with a simple ex-
ample, where a rod with a rectangular cross section A D d � b

is clamped at one end while a force acts on the other free end
(Fig. 6.13). The calculation of such bending for arbitrary bodies
is very complicated and can be accomplished only numerically.

If a rectangular rod with cross section A D d � b is clamped
at x D 0 and a force F0 is acting in the �z-direction on the
other end at x D L, the bending of the rod can be approximately
described by approximating a short curved section of the rod
by a circle. When the central dashed curve in Fig. 6.14 has the
radius of curvature r, the length of the upper edge of the rod
section is .r C d=2/', that of the lower edge is .r � d=2/'.

Figure 6.13 Bending of a rod which is clamped at one end

While the length of the central curve does not change by the
bending (neutral filament) the length `.z/ of a layer in the upper
half of the rod (z > 0) increases by the amount

�`.z/ D z � ' D z � `=r :

A corresponding layer in the lower half .z < 0/ is shortened by
this amount. In order to achieve such an increase of the length `
a pulling force per unit cross section (tensile stress)

� D E ��`=` D z � E=r

has to be applied, while for the layer in the lower half .z < 0/ a
corresponding pressure

p D �� D �jzj � E=r

is necessary. The force on a rectangular element with width b,
heights dz and distance z from the neutral filament at z D 0 is
then

dF D �bdz D bE

r
zdz : (6.16a)

The force causes a torque

dDy D bE

r
z2dz (6.16b)

in the y-direction.

Figure 6.14 a Definition of the neutral filament at z D 0. b Illustration of
(6.17)
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Integration of this infinitesimal torque dDy over the total height
d of the rod gives

Dy D bE

r

Cd=2Z

�d=2

z2dz D Ed3b

12r
: (6.17)

This torque is caused by the vertical force F0 at the end x D L

of the rod. On the other hand the torque induced by the force F0

on a selected part of the rod at the position x is

Dy D F0.L � x/ with F0 D jF0j : (6.18)

The equilibrium position of the bent rod is determined by the
condition that the restoring torque of the elastic material (6.17)
must just compensate the torque (6.18). This yields the curva-
ture 1=r of the rod at the distance x from the fixed end at x D 0:

1=r D � 12F0

Ed3b
� .L � x/ : (6.19)

The neutral filament which is without a force the horizontal
straight line z D 0, becomes the bent curve z D z.x/. As is
shown in books on differential geometry the relation between
the curvature 1=r and the function z D z.x/ is

1=r D z00.x/

Œ1 C z0.x/2�3=2
;

where z0.x/ D dz=dx and z00.x/ D d2z=dx2. For small curvatures
is z0.x/ � 1 and therefore 1=r can be approximated by 1=r �
z00.x/. Integration of the equation

z00.x/ D a � .L � x/ with a D �12F0=Ed3b

derived from (6.17) and (6.18), gives with the boundary condi-
tions z.0/ D 0 and z0.0/ D 0 the function of the neutral filament
of the strained rod

z.x/ D a

2
Lx2 � a

6
x3 with a < 0 :

The free end of the rod at x D L bends by

smax D z.L/ D �4
L3

E � d3b
F0 (6.20)

compared to z.L/ D 0 for the straight rod. The bend of the rod
s D z.L/ is also called pitch of deflection sag.

The bend of a rectangular rod with length L and thickness
d is proportional to L3 and to 1=d3.

For x D 0 (at the clamped end of the rod) the curvature 1=r D
z00.0/ D a � L becomes maximum. The tensile stress at the upper
edge of the rod .z D Cd=2/ is

�max D E � d

2r
D 12F0 � L

2d2b
: (6.21)

Figure 6.15 Geometrical moments of inertia for some selected cross sections.
IFy : bending about the y-axis; IFz : about the z -axis

As soon as �max exceeds the fracture stress of the rod material,
the rod starts to notch at the upper edge at z D Cd=2 and x D 0
and the rod cracks.

Remark. The bend of rods with arbitrary cross section
A D

R
dydz can be treated in a similar way if one introduces

the geometrical moment of inertia (second moment of area)

IF
DefD
“

z2dydz ; (6.22a)

where z is the direction of the acting force F. For the rod with
rectangular cross section A D d � b (Fig. 6.15b) we get

IF D
Cd=2Z

zD�d=2

Cb=2Z

yD�b=2

z2dydz D 1

12
d3b : (6.22b)

The maximum deflection smax (pitch of deflection sag) is, in ac-
cordance with (6.20),

smax D � L3

3E � IF
F : (6.23)

For a rod with circular cross section (radius R) (Fig. 6.15e) we
get

IF D 1

4
�R4

and therefore

smax D � 4L3

3�ER4
F : (6.24)

For a double T-beam (Fig. 6.15d) is

IF D 1

12

�
b1d3

1 � b2d3
2

�
: (6.25)
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Figure 6.16 Bending of a rod, which is clamped at both ends

A beam with length L, supported on both ends by fixed bearings,
suffers by a force F acting at the midpoint x D L=2 (Fig. 6.16)
the maximum sag

smax D � 1

4E

L3

d3b
� F : (6.26)

Note, that here the sag is smaller by a factor 16! compared
to the rod which is fixed only at one end (because of the L3

dependence). The force is now distributed onto the two halves
of the rod with L=2 each.

6.2.5 Elastic Hysteresis; Energy of
Deformation

When a rod without deformation is exposed to an external ten-
sile stress � between the end faces the relative stretch " D �L=L

follows the curve OA in Fig. 6.17. For small values of " the
curve �."/ is linear until a point is reached where the deforma-
tion is no longer reversible and �."/ rises slower than linear. The
point A in Fig. 6.17 is already in the irreversible region. This
means that the curve �."/ does not return on the same curve
when the stress is released but arrives at the point B for � D 0.
This phenomenon is called elastic hysteresis, because the stress-
free state of the body depends on its past history (the Greek word
hysteresis means: lagging behind i.e. the length change lags be-
hind the applied stress).

When the body in the state B is exposed to an external pressure
p D �� onto the two end faces the curve �."/ reaches the point
C where it is also nonlinear. Releasing the pressure " does not
become zero for � D 0 but arrives at the point D in Fig. 6.17,
which corresponds in the atomic model of Fig. 6.1 to an inter-
atomic distance r < r0.

Under a periodic change between stretch and compression the
function �."/ passes through the closed loop ABCDA, which
is called the elastic hysteresis loop. During a roundtrip one
has to expend work against the interatomic forces because the
interatomic distances r are periodically increased (stress) and
decreased (compression). When the length L of a quadratic rod

Figure 6.17 Mechanical hysteresis curve

with cross section A increases by �L the necessary work is

W D
�LZ

0

FdL D
�LZ

0

A � �dL

D
"Z

0

A� � Ld" D V �
"Z

0

�d" :

(6.27)

The integral
R
� � d" represents the work per unit volume, nec-

essary for the relative length change ".

In the region where Hooke’s law is valid (linear region of �."/
is � D E � " and the work for the elastic length change�L

Welast D 1
2 E � V � "2 : (6.28)

Returning to the original stress-free state this energy is again re-
leased. The hysteresis curve simplifies to a straight line through
the origin � D " D 0.

Example

Elongation and compression of an elastic spiral spring
during the oscillation of a mass m that hangs on the
spring. During the oscillation with small amplitude with
the linear region of Hooke’s law, the potential energy of
the spring and the kinetic energy of the mass m are pe-
riodically converted into each other (see Example 2 in
Sect. 2.7.4 and Sect. 11.6). The total energy, however,
is always conserved. J

This is no longer true for the nonlinear part of the curve �."/ in
Fig. 6.17. Here the work

R
� � d" has to be put into the system in

order to proceed from the point O to the point A. This work is
equal to the area under the curve OA. However, after releasing
the tensile stress, only the work

R
� � d" that equals the area

under the curve AB can be regained. The rest is converted into
thermal energy, due to the non-elastic deformation of the body.

Altogether the net work per unit volume, put into the system
during a roundtrip along the curve ABCDA, is given by the area
enclosed by this hysteresis curve in Fig. 6.17.
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Table 6.2 Hardness scale according to Mohs

Selected materials
as measurement standards

1. Tallow 6. Feldspar
2. Gypsum 7. Quartz
3. Calcite 8. Topaz
4. Fluorite 9. Corundum
5. Apatite 10. Diamond

Examples

Aluminium 2.3–2.9
Lead 1.5
Chromium 8
Iron 3.5–4.5
Graphite 1
Tungsten 7

Figure 6.18 Hardness test according to Brinell

6.2.6 The Hardness of a Solid Body

The hardness of a body is a measure for the resistance, which
the body sets against a penetration of another body. Depending
on the measuring technique, there are some slightly different
hardness values. The scratch-method introduced 1820 by Mohs,
defines a body A as harder than a body B if it is possible to
scratch B with A. The hardness scale of Mohr is based on this
definition. Here the hardness scale is divided into 10 degrees of
hardness based on 10 selected minerals, listed in Tab. 6.2.

The scratch method measures in fact mainly the hardness of
the surface. This surface hardness is of particular importance
for technical applications, because the attrition of tools or of
axes and bearings depends on the surface hardness. Therefore,
several techniques have been developed for the enhancement of
the surface hardness. One example is the transformation of the
surface layers of a crystalline solid into an amorphous state by
irradiation with a powerful laser. Another example is the cover
of solid tools, e.g. drills or steel mills, with a thin layer of a hard
material such as carbon-nitride NC or titanium Ti.

For measuring the hardness of a body, often a technique is used
which had been proposed by Brinell in 1900. Here a hardened
steel ball with diameter D is pressed vertically with a constant
force F D a � D2 into the sample (Fig. 6.18). The diameter d of
the resulting circular notch in the sample gives the penetration
depth, which is a measure for the Brinell-hardness.

6.3 Static Liquids; Hydrostatics

In order to achieve a change of the shape of solid bodies sub-
stantial forces are required, even if the volume of the body does
not change (for example for a shear or a torsion). Although sim-
ilarly large forces are necessary for a compression of liquids,
a mere deformation of liquids at constant volume requires only

very small forces and are merely caused by friction or surface
effects.

At first we will discuss the simplified model of an ideal liquid,
where surface effects and friction are neglected. For the static
case of a liquid at rest, friction does not occur anyway. Surface
effects will be treated in Sect. 6.4 and the influence of friction
for streaming liquids is discussed in Chap. 8.

6.3.1 Free Displacement and Surfaces of
Liquids

For ideal liquids without friction, there is no force necessary to
deform a given liquid volume. In the atomic model this means:
While in solid bodies the atoms can vibrate around fixed equi-
librium positions, which do not change much under moderate
external forces, the atoms or molecules in liquids can freely
move around within the given liquid volume, determined by the
solid container (Fig. 6.5). In the macroscopic model this free
movement can be expressed by the statement:

The shear modulus of an ideal liquid is zero.

This implies that at the surface of an ideal liquid no tangential
forces can be present, because they would immediately deform
the liquid until the forces disappear and a minimum energy is
achieved. This force-free condition represents a stable state of
the liquid.

The surface of an ideal liquid is always perpendicular to the total
external force.

Examples

1. If only gravity acts onto a liquid, the surface of the
liquid forms always a horizontal plane (Fig. 6.19a)

2. The surface of a liquid in a cylinder which rotates
about a vertical axis (Fig. 6.19b) forms a surface
where the total force composed of gravity m � g in the
�z-direction and centrifugal force m!2 � r in the ra-
dial direction points perpendicular to the surface. The
slope of the intersection curve z.r/ of the surface at the
point A in Fig. 6.19b is

tan˛ D m!2r

m � g
D !2r

g
:

On the other hand the slope of the curve z.r/ is given
by tan˛ D dz=dr. Integration yields

z.r/ D !2

g

Z
rdr D !2

2g
r2 C C :
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For z.0/ D z0 is C D z0 and we get

z.r/ D !2

2g
r2 C z0 : (6.29)

The surface forms a rotational paraboloid with its axis
coincident with the rotation axis.

Figure 6.19 a Horizontal liquid surface in a container at rest. b Sur-
face as rotational paraboloid in a rotating container J

6.3.2 Static Pressure in a Liquid

Any external force acts only vertically on the surface of a liq-
uid. If a container with a liquid is closed by a movable piston
with surface A, onto which a vertical force F acts (Fig. 6.20) we
define the pressure onto the liquid as

p D F=A; with F D jFj :

6.3.2.1 Forces onto a Liquid Volume Element

We consider an arbitrary cuboid volume element dV D dx�dy�dz

inside the liquid (Fig. 6.21). We assume that a pressure p acts
in x-direction onto the left side dy � dz of the cuboid. Then a
pressure

p C @p=@x � dx

acts onto the opposite side. The resulting force on the volume
element is then

Fx D p � dydz �
�

p C @p

@x
dx

�
dydz D �@p

@x
dV :

Figure 6.20 The force F , acting on a piston with area A generates a pressure
p D F=A in the liquid

Figure 6.21 Relation between the pressure inside a volume element dV and
the forces acting onto the sides of dV

In an analogous way we obtain the force components in the other
directions

Fy D �@p

@y
dV and Fz D �@p

@z
dV :

We can condense these three equations into the vector equation

F D �grad p � dV : (6.30)

Because of the free mobility of any volume element inside the
liquid the total force onto a volume element at rest must be zero.
This implies that grad p D 0.

The pressure inside the whole liquid is constant as long as
no unisotropic forces act onto the liquid.

For a static liquid the same pressure acts onto all surface ele-
ments of the container!

This can be experimentally demonstrated by the simple device
shown in Fig. 6.22. A spherical container with small holes in
several directions of the x-y-plane is filled with dyed water and
placed above a blotting paper in the plane z D 0. When a piston

Figure 6.22 Demonstration of the isotropic pressure in a liquid. When the
piston is moved the pressure p increases and the dyed water splashes through
holes onto a white paper below the device, where the spots form a circle around
the center, indication equal pressure
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Figure 6.23 Hydraulic press (forces are drawn not to scale)

is pressed to increase the pressure the water streams out of the
holes and all water filaments follow projectile trajectories. Their
points of impact on the blotting paper in the plane z D 0 form
a circle which proves that they all had the same initial velocity,
i.e. they stream out driven by the same pressure.

Application: Hydraulic press (Fig. 6.23)
Two cylinders with cross sections A1 and A2 � A1 that are con-
nected with each other, and are therefore at the same pressure
p, are filled with a liquid. Applying the force F1 D p � A1 on
a piston in the narrow cylinder causes a force F2 D pA2 D
.A2=A1/ �F1 � F1 acting on a piston in the large cylinder which
presses a sample against a fixed mounting. For demonstration
experiments, large stones can be cracked by this device. For
a displacement �x2 of the large piston, the small piston has to
move by the much larger amount�x1 D .A2=A1/ ��x1, because
the volume�V2 D A2 ��x2 D �V1 D A1 ��x1 transferred from
the small to the large cylinder must be of course equal.

6.3.2.2 Hydrostatic Pressure

Taking into account that every volume element �V of a liquid
has a weight % �g ��V in the gravity field of the earth, even with-
out external force a pressure onto the bottom of the container is
present due to the weight of the liquid above the bottom. For a
height z D H of the liquid the hydrostatic pressure at the bottom
with area A is with dV D A � dz

p.z D 0/ D
HZ

0

% � g � A

A
dz D % � g � H ; (6.31)

if we assume that the density % is independent of the pressure p.

For real liquids, there is a small change of % with the pressure p.
A measure for this dependence is the compressibility

�
DefD � 1

V

@V

@p
; (6.32)

which describes the relative volume change�V=V for a change
�p of the pressure.

For liquids � is very small (for example for water is � D
5 � 10�10 m2=N/. This shows that the density % of a liquid
changes only by a tiny amount with pressure and in most cases
the density %.p/ D %0 can be assumed to be constant.

Figure 6.24 Pressure p.z/ in an incompressible liquid in the gravity field of
the earth, as a function of height z above ground

Then it follows from (6.31) for the pressure p.z/ in a liquid with
total heights H (Fig. 6.24)

p.z/ D % � g � .H � z/ :

The SI unit for the pressure is 1 Pascal D 1 Pa D 1 N=m2, which
corresponds to 10�5 bar.

Examples

1. A water column of 10 m heights causes a hydrostatic
pressure of p D % � g � h D 9:81 � 104 Pa D 0:981 bar D
1 atmosphere. At an ocean depth of 10:000 m (Philip-
pine rift) the hydrostatic pressure is � 108 Pa (about
1000 atm). The total force onto the outer surface of a
hollow steel sphere of an aquanaut with 3 m diameter
is at this depth F D 2:8 � 109 N.

Figure 6.25 a Water pressure acting onto a dam wall; b Additional
support by the mountain walls for a curved dam wall

2. The total force F onto the river dam with length L

caused by the water with heights H can be obtained
by integration over all contributions F.z/dz onto the
surface elements L � dz of the dam.

F D L

Z
p.z/dz D % � g � L

Z
.H � z/dz

D 1
2% � g � L � H2

This force can be partly supported by choosing a
curved dam where part of the force are balanced by
the mountain walls (Fig. 6.25b). The thickness of the
dam decreases with z in order to take into account the
decreasing hydrostatic pressure (Fig. 6.25a). J
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Figure 6.26 River dam of the river Eder, Germany. The bending of the dam towards the water side conducts part of the waterpressure against the mountain sides
(see Sect. 6.3). With kind permission of Cramers Kunstverlag, Dortmund

Figure 6.27 Hydrostatic paradoxon. The pressure onto the bottom is equal for
all containers filled up to the same height H

Equation 6.31 tells us that the pressure p at the upper surface
of a liquid volume element �V D A � �h with height �h is
smaller than at the bottom of this element by the amount % �
g � �h. This results in an upwards force F D A � % � g � �h,
which is just compensated by the weight G D M � g D % � g �
�V D % � g � A ��h of the volume element. The total force on an
arbitrary volume element �V inside a homogeneous liquid in a
homogeneous gravity force field is therefore zero.

Since the hydrostatic pressure at the bottom of a liquid container
depends only on the height H of the liquid but not on the shape
of the container, the pressure at the bottom is identical for all
four containers shown in Fig. 6.27, although the total mass of the
liquid and therefore also its weight is different. This hydrostatic

paradox leads to the following astonishing but true fact: When a
hollow cube with a volume 1 m3 is filled completely with water,
the hydrostatic pressure at the bottom is 0:1 bar. If now a thin
tube with 1 cm2 cross section but 10 m height is put through a
small hole in the top wall of the cube and filled with water the
pressure in the cube rises to 1 bar. Although the additional mass
of water is only 10�3 of the water in the cube the pressure rises
by a factor of 10.

6.3.3 Buoyancy and Floatage

If we immerse a cuboid with basic area A and volume V D A��h

into a liquid with density %L the pressure difference between
bottom and top surface is (Fig. 6.28)

�p D %L � g ��h :

This results in an upwards directed buoyancy force

FB D %L � g � A ��h D �GL ;

which is equal to the weight GL of the liquid displaced by the
body, but has the opposite direction.

This can be formulated as Archimedes’ Principle:

A body immersed in a liquid looses seemingly as much of
its weight as the weight of the displaced liquid.

This principle illustrated for the example of a cuboid, is valid for
any body with arbitrary shape as can be seen from the following
consideration:

Due to the hydrostatic pressure p D %fl � g � .H � z/ at the height
z in a liquid with total height H the force on a volume element
dV is

F D �grad p � dV D �.@p=@z/OezdV D %L � g � dV � Oez

D �%L � g � dV :

The buoyancy force on the whole body immersed in the liquid
is then

FB D �g

Z
%L � dV D �GL : (6.33)
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Buoyancy

p1

p2

h1

h2

Figure 6.28 Axiom of Archimedes and buoyancy

If the density %b of a body is smaller than the density %L of
the liquid, the buoyancy force becomes larger than the weight
Gb of the body and the body floats on the surface of the liquid.
Only part of the body immerses while the other part is above the
liquid surface. Equilibrium is reached if the buoyancy (it is the
weight GL of the displaced liquid) just cancels the weight Gb of
the total body.

Example

The density of ice is %i D 0:95 kg=dm3, the density of
salty sea-water at 0 ıC is %L D 1:05 kg=dm3. Therefore,
about 10% of the volume of an iceberg stick out of the
ocean surface, 90% are under water. J

Remark. Of course, the buoyancy is also present in gases.
However, because of the much smaller density of gases the
buoyancy force is correspondingly smaller. A body in a gas at-
mosphere loses (seemingly) as much of its weight as the weight
of the displaced gas. This is the basis for balloon flights (see
Sect. 7.2 and Fig. 7.6.

For the stability of a floating ship it is important that in case
of heeling induced by waves there is always a restoring torque
which brings the ship back into its vertical position. This sta-
bility criterion can be quantitatively formulated in the following
way:

We consider the torque generated by the gravity force Gg and
the buoyancy FB for a ship in an oblique position (Fig. 6.29).
The two forces form a couple of forces (Sect. 5.4) which cause
a torque about the center of mass SK. The point of origin for
the gravity force Gg is the center of mass SK of the ship, while
the point of origin for the buoyancy FB D �Gg is the center of
mass SB of the displaced water. The symmetry plane of the ship,
indicated in Fig. 6.29b by the dashed line, intersects the vertical
direction of the buoyancy in the point M, called the meta-center.
The vector r gives the distance between M and SK. As long as
M lies above SK the resulting torque

D D .r � GK/ D �.r � FB/ ;

FB

FB
FB

D

d)

FB

SB
SB

SB

SB

D

Figure 6.29 Stability of a floating body. a equilibrium position, b tilting below
the critical angle, c vector diagram of stable and unstable heeling

which has in Fig. 6.29c the counter-clockwise direction, brings
the ship back into the vertical stable position. If the slope be-
comes so large that M comes below SK (Fig. 6.29d) the resulting
torque acts into the clockwise direction and it brings the ship
into a larger slope. It overturns and sinks. It is therefore advan-
tageous for the stability to have the center of mass SK as low
as possible. This can be achieved by putting heavy masses at
the bottom of the ship. In case of container ships, the cargo is
loaded on top of the ship which decreases the stability. These
ships have therefore a double mantel at the bottom where the in-
terspace is filled with water, in order to bring the center of mass
down.

6.4 Phenomena at Liquid Surfaces

We will now upgrade our simple model of the ideal liquid in or-
der to introduce effects which occur at surfaces of real liquids
and which are not present in ideal liquids. While inside a liq-
uid the resulting time-averaged force on an arbitrary molecule,
exerted by all other molecules, is zero, (this allows the free relo-
catability of each molecule), this is no longer true for molecules
at the surface of liquids (Fig. 6.30) which are only attracted by
molecules in a half sphere inside the liquid. Therefore a resid-
ual force FR remains, which attracts the molecules towards the
interior of the liquid.

6.4.1 Surface Tension

If a molecule is brought from the inside of a liquid to the surface,
energy has to be supplied to move the molecule against the resid-
ual force FR. A molecule at the surface has therefore a higher
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Figure 6.30 Resulting force on a molecule by all other surrounding molecules
inside a liquid and at the surface of a liquid

Figure 6.31 Determination of surface tension by measuring the force on a
sliding straight wire, that extends a liquid skin

energy than a molecule inside the liquid. In order to enlarge the
surface by an amount �A molecules have to be transferred to
the surface which needs the energy�W . The ratio

" D �W

�A
I Œ"� D J

m2
(6.34)

is the specific surface energy. The value of " depends on the
binding forces between the molecules of the liquid. It can be
measured with the equipment shown in Fig. 6.31. Between the
two sides of a U-shaped frame a horizontal wire with length
L can be shifted vertically. When the system is dipped into a
liquid, a liquid lamella is formed with the surface area (on both
sides) A D 2L � s. For moving the horizontal wire by �s, the
force F is necessary. One has to supply the energy

�W D F ��s D " ��A D " � 2 � L ��s : (6.35)

The restoring force F, which is directed tangential to the surface
of the lamella, produces a tensile strain � D F=2L per length
unit which is called surface tension. According to (6.35) is

� D " :

Surface tension � and specific surface energy " are identi-
cal.

The surface tension can be impressively demonstrated by the ap-
paratus shown in Fig. 6.32. A metal strip bent into a circle hangs

Figure 6.32 Measurement of surface tension by liftig an immersed metal ring

on a spring balance. It is immersed into a glass container filled
with a liquid. When the container is lowered or the metal ring is
uplifted, the lower rim of the ring emerges more and more out
of the liquid, carrying a cylindrical liquid lamella. With soapy
water more than 10 cm heights of the lamella can be reached.
The spring balance measures the force

F D 4� � r � � ;
because the lamella has two surfaces, inside and outside of the
cylindrical membrane. The work necessary to lift the lamella up
to the height h is

W D 4� � r � � � h :

Example

Surface tension and pressure in a soap bubble (Fig. 6.33).
Because of its surface tension, the bubble tries to reduce
its surface. This increases the pressure inside the bubble.
Equilibrium is reached, if the work against the increas-
ing pressure during the decrease �r of the bubble radius
is equal to the work gained by the reduction �A of the
surface area A

" � 2 � 4�.r2 � .r ��r/2/ D 4� � r2 ��p :

Manometer

Figure 6.33 Measurement of overpressure �p in a soap bubble,
caused by surface tension
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Neglecting the term with .�r/2 gives the excess pressure

�p D 4"=r ; (6.36)

which shows that �p decreases with increasing radius r.
This can be demonstrated by the equipment in Fig. 6.34.
The lower ends of the tubes 1 and 2 are immersed into
soapy water and then lifted again. With open valves 1
and 2 but closed valve 3, two bubbles with different sizes
can be produced by blowing air into the corresponding
filling tubes. Now valves 1 and 2 are closed and valve
3 is opened. The smaller bubble starts to shrink and the
larger one inflates. This continues until the smaller bubble
completely disappears. It’s like in daily life. The powerful
people (larger ones) increase their power at the cost of the
little guys.

21

3

Figure 6.34 Demonstration of overpressure �p.r/ which increases
with decreasing radius r of a soap bubble

For liquids with positive surface energy each liquid
with a given volume tries to minimize its surface
area.

This can be demonstrated by adding drop wise mercury
through a pipette into a bowl filled with diluted sulfur
acid. At first many small mercury droplets are formed
which, however, soon merge into a single larger drop. J

6.4.2 Interfaces and Adhesion Tension

Up to now, we have only discussed surfaces of liquids as bound-
aries between liquid and gaseous phases. Often interfaces
between different liquids or between liquid and solid bodies can
occur. Analogue to the surface tension we define the boundary
tension �ik (identical with the specific interface energy "ik/ as
the energy that has to be spend (or is gained) when the interface
between the phases i and k is increased by 1 m2.

The sign of "ik can be obtained by the following considerations:

For stable interfaces between liquid and gas "ik has to be pos-
itive. Otherwise the liquid phase would be transferred into
the gas phase because energy would be gained, i.e. the liquid
would vaporize.
Also for stable interfaces between two different liquids "ik

must be positive. Otherwise the two liquids would intermix
and the interface would disappear.
For the interface between liquid and solid phases the sign
of "ik depends on the materials of the two phases. If the
molecules ML in the liquid are attracted more strongly by the
molecules Ms in the solid, than by neighboring molecules
in the liquid, is "ik < 0. If the attracting forces between
molecules ML are stronger than between ML and Ms is "ik >
0.
Also between a solid surface and a gas an interface energy
can occur, because the gas molecules can be attracted by the
solid surface (adhesion) or they can be repelled, depending
on the gas and the solid material.

We will illustrate these points by some examples: In Fig. 6.35
is the surface of a liquid 2 against the gas phase 3 close to a
vertical solid wall 1 depicted. Here the surface tensions �1;2;
�1;3 and �2;3 tangential to the corresponding surfaces have to be
considered. We regard a line element dl perpendicular to the
plane of the drawing through the point A, where all three phases
are in contact with each other. The force parallel to the solid
surface is Fks D .�1;2 ��1;3/dl and Fkl D �2;3dl is parallel to the
liquid surface. The resulting force causes a change of the liquid

Liquid film

Figure 6.35 Formation of a contact angle of a liquid surface with a vertical
solid wall. a Concave liquid surface for water-glass (�1;3 > �1;2); b convex
surface of Hg-glass (�1;3 < �1;2); c complete wetting for �1;3 � �1;2 > �2;3
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surface, which would be a horizontal plane under the action of
gravity without surface tension.

If we neglect the small change of the gravitational force due
to the change of the surface, which is very small compared to
the forces caused by surface tension, we have the equilibrium
condition that in the point A the vector sum of all forces must be
zero. For the vertical component parallel to the solid wall this
implies:

�1;2 C �2;3 cos' � �1;3 D 0 : (6.37)

The horizontal component �2;3 � sin' causes an imperceptibly
small deformation of the solid wall. This induces a restoring
deformation force which is opposite to the force �2;3 and has
the same magnitude and therefore compensates it. The wetting
angle ' can be obtained from the condition

cos' D �1;3 � �1;2

�2;3
: (6.37a)

It has a definite value only for j�1;3��1;2j � �2;3. We distinguish
the following cases:

�1;3 > �1;2 ! cos' > 0 ! ' < 90ı.
The liquid forms close to the solid wall a concave surface,
which forms an acute angle ' with the wall (Fig. 6.35a). It is
energetically favorable to increase the interface liquid-solid
at the cost of the interface solid–gas.
Example: Interfaces water–glas–air.
�1:3 < �1;2 ! cos' < 0 ! ' > 90ı.
The liquid forms close to the solid wall a convex surface
(Fig. 6.35b).
Example: interfaces mercury–glas–air.
For j�1;3 � �1;2j > �2;3 Eq. 6.37 cannot been fulfilled for any
angle '. In this case a force component parallel to the solid
surface is uncompensated. It pulls the liquid along the solid
surface until the whole surface is covered by a liquid film
(Fig. 6.35c). The interface solid–gas disappears completely.

If external forces are present, such as gravitational or inertial
forces in accelerated systems, the vector sum of all forces is in
general not zero. However, the liquid surface reacts always in
such a way, that the resultant force is perpendicular to the liq-
uid surface, i.e. its tangential component is always zero. This is
illustrated in Fig. 6.36 for the cases of a concave and a convex
curvature of the liquid surface close to the solid wall where be-
sides the gravitational force also the attractive force F4 between
liquid and solid surfaces is taken into account.

For a liquid in a container the total force is compensated by the
restoring elastic force of the container wall.

For two non-mixable liquids 1 and 2 (for example a fat drop on
water) the angles '1 and '2 in Fig. 6.37 adjust in such a way that
the equilibrium condition

�1;3 D �2;3 cos'2 C �1;2 cos'1 (6.38)

is fulfilled. This shows that a droplet of the liquid 2 can be only
formed, if �1;3 < �2;3 C �1;2. Otherwise the droplet would be
spread out by the surface tension �1;3 until it forms a thin film,
which covers the surface of liquid 1.

Figure 6.36 The vector sum of all forces acting onto a liquid sureface must
be always vertical to the surface, for non-wetting liquids. a Concave, b convex
curved surface

Figure 6.37 Formation of a liquid drop on the surface of another liquid

Example

For the interfaces water–oil–air the numerical values of
the surface tensions are:

�1:3(water-air) D 72:5 � 10�3 J=m2

�1;2(water-oil) D 46 � 10�3 J=m2

�2;3(oil-air) D 32 � 10�3 J=m2 :

This shows that �1;3 > �2;3 C �1;2. Therefore, oil cannot
form droplets on a water surface. J
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Fatty acid

Talcum

Figure 6.38 Formation of a mono-molecular layer of a fatty acid on a liquid
surface covered with a talcum powder layer

Figure 6.39 Fatty acid molecules forming a mono-molecular layer on a water
surface are oriented due to the attractive for one end of the interaction with the
water molecules and a repulsive interaction for the other end

If an oil drop is brought onto a water surface, it will spread out
to form a mono-molecular layer of oil which covers the whole
water surface if sufficient oil is contained in the drop. Other-
wise, the oil film forms a cohesive insula of this mono-molecular
film. This can be demonstrated by the following experiment
(Fig. 6.38): Onto a water surface, powdered with talc, a droplet
of fatty acid is supplied through a pipette. The droplet imme-
diately spreads out and displaces the talc layer. The fatty acid
molecules are oriented in such a way, that the attractive force
with the water molecules becomes maximum (Fig. 6.39). The
atomic groups COOH, which are directed against the water sur-
face, are called hydrophilic while the groups on the opposite side
of the molecule, which are repelled by the water molecules, are
called hydrophobic. The interaction with the water molecules
causes a displacement of the charges in the fatty acid molecules
while the water molecules, which are electric dipoles, are orien-
tated in such a way, that their positive pole is directed toward the
negative pole of the induced dipole molecules of the fatty acid
(see Vol. 2, Chap. 2).

6.4.3 Capillarity

When a capillary tube is dipped into a wetting liquid .�1;3 >
�1;2/, the wetting liquid rises in the capillary tube up to the
height h above the liquid surface (Fig. 6.40). This observation
can be explained as follows: If a liquid column in the capillary
with radius r is lifted up to the height h .h � r/ the potential
energy is increased by

dEp D m � g � dh D � � r2g � % � h � dh : (6.39a)

Figure 6.40 a Capillary rise of a wetting liquid, b derivation of the rise height

On the other hand, the surface energy changes by (see Fig. 6.36)

dEsurface D �2�r � dh.�13 � �12/

D 2�r � dh � �23 � cos' ;
(6.39b)

where Eq. 6.37a has been used. At equilibrium is dEp C
dEsurface D 0. This gives the resulting height

h D 2�23 � cos'=.r � g � %/
D 2� � cos'=.r � g � %/ : (6.40)

The wetting angle ' is determined by Eq. 6.37). The surface
tension �2;3 D � is the surface tension of the liquid against air,
introduced in Sect. 6.4.1.

For completely wetting liquids .�1;3 > �1;2 C �2;3/ is ' D 0.
The complete inner surface of the capillary tube is covered by
a thin liquid film and the capillary rise becomes according to
(6.40)

h D 2�

rg%
: (6.40a)

For non-wetting liquids .�1;3 < �1;2/ the liquid surface inside
the capillary is convex. This convex curvature causes a force,
which is directed downwards and leads to a capillary depression
(Fig. 6.41). The depression height �h is again given by (6.40),
where now cos' D .�1;3 � �1;2/=�2;3 < 0.

The capillary rise offers an experimental method for the mea-
surement of absolute values of surface tensions. Instead of

Figure 6.41 Capillary depression
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Figure 6.42 Demonstration of capillary rise h .d / / 1=d of a liquid confined
between two wedged plane walls with the wegde angle 2˛

capillary tubes one can also use two parallel plates with the dis-
tance d. A liquid between these plates has the capillary rise

h D 2�

%g
� 1

d
: (6.41)

The dependence h.d/ can be demonstrated by two nearly par-
allel plates, which are slightly inclined against each other by a
small angle ˛ (Fig. 6.42). Since the distance d.x/ D 2x � tan˛
increases linearly with x the height h.x/ / 1=x is a hyperbola.

6.4.4 Summary of Section 6.4

The many different phenomena at the boundaries of liquids can
be all quantitatively explained by the magnitude of the surface
tensions or surface energies. We can make the following state-
ments:

At each point of a stable liquid surface the total force is al-
ways perpendicular to the surface, its tangential component
is zero.
The boundary of a liquid with a given volume always ap-
proaches that shape that has the minimum surface area.
A bent convex liquid surface with radius of curvature r pro-
duces an inward pressure, that is proportional to 1=r and to
the surface tension.

6.5 Friction Between Solid Bodies

If two moving extended bodies touch each other, additional
forces occur which depend on the properties of the two surfaces.
Examples are a metal block sliding on a plane base, or a wheel
rotating around an axis. These forces are due to the interaction
between the atoms or molecules in the outer layers of the two
bodies. This interaction is reinforced by surface irregularities
and deformations, caused by the contact between the two bod-
ies. These forces are called friction forces. For point masses
they can be completely neglected because their surface area is

zero. In daily life and for technical problems they play a very
important role. Without friction we would not be able to walk
nor cars could run. Also most technical processes of machine
work on material, such as drilling, milling or cutting would not
be possible without friction. On the other hand, often friction
needs to be minimized in order to avoid energy dissipation.

We will therefore discuss the basic principles of friction phe-
nomena in more detail.

6.5.1 Static Friction

A body with a plane base (for example a cuboid) rests on a hor-
izontal plane table. In order to move it across the table we must
apply a force in the horizontal direction, which can be measured
with a spring balance (Fig. 6.43a). The experiment shows that
in spite of the applied force the body with mass m does not
move until the force exceeds a definite value Fs. When the body
is turned over (Fig. 6.43b) so that now another surface with a
different area touches the table, this critical force Fs does not
change in spite of the different surface area in contact with the
table. However, if the body is pressed by an additional force
against the table, the critical pulling force Fs increases. The ex-
periments show, that Fs is proportional to the total vertical force
FN exerted by the body on the table and on the roughness of the
two surfaces in contact.

The amount of this static friction force is

Fs D �s � FN : (6.42)

The static friction coefficient �s depends on the materials of the
bodies in contact and on the texture of the two surfaces.

The static friction can be explained in a simple model (Fig. 6.44)
by the roughness of the two surfaces in contact. Even a polished
plane surface is not an ideal plane but shows microscopic de-
viations from the ideal plane, which may be caused by lattice
defects, shifts of atomic planes etc. The envelope of this micro-
roughness gives the macroscopic deviations caused by imperfect
polishing or grinding. A measure for these deviations is the
mean quadratic deviation hz2.x; y/i from the ideal plane z D 0.
Since one measures generally not single points but surface ele-
ments dx � dy, the function z.x; y/ is averaged over the surface

Figure 6.43 Measurement of static friction with a spring balance
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Figure 6.44 Schematic model of the surface roughness as the cause of friction.
a micro roughness (exagerated) and macroscopic coarseness; b static friction
caused by interlocking of two rough surfaces

elements dx � dy and this average depends on the spatial resolu-
tion of the analyzing instrument i.e. on the size of the resolved
elements dx � dy. With modern surface analysis, using tunnel-
microscopes (see Vol. 3) even the roughness on an atomic scale
can be spatially resolved.

The two surfaces in contact interlock each other due to the force
that presses them together (Fig. 6.44b) and the force Fs is nec-
essary to release this interlocking. This can be achieved by
breaking away the “hills” of the rough surface, or by lifting the
body over these hills.

A possible way to determine experimentally the coefficient of
static friction uses the inclined plane with a variable inclination
angle ˛ in Fig. 6.45. The angle ˛ is continuously increased until
the body B with mass m starts to slide down for ˛ D ˛max.

The weight force G D m � g can be decomposed into two com-
ponents:

1. A component Fk D m � g � sin˛ parallel to the inclined plane

Figure 6.45 Measurement of coefficient of static friction with the inclined
plane

2. A component F? D m �g �cos˛ perpendicular to the inclined
plane, which is compensated by the opposite restoring force
of the elastic deformation of the plane.

The body starts to slide downwards as soon as Fk becomes larger
than the static friction force Fs D �s � F? D �s � m � g � cos˛.
This gives the condition for the coefficient �s

�s D Fk.˛max/

F?.˛max/
D tan˛max : (6.43)

If ˛ is increased beyond ˛max the body performs an accelerated
sliding motion. This indicates that the sliding friction force is
smaller than the static friction force.

6.5.2 Sliding Friction

When the body in Fig. 6.43 is moved by a force jFj > jFsj
the sliding motion is accelerated. In order to reach a uniform
motion of a sliding body with constant velocity, where the total
force is zero, one needs only the smaller force jFslj < jFsj.
Analogue to the static friction force, the sliding friction force
Fsl is proportional to the force FN normal to the surface of the
table on which it slides.

Fsl D �sl � FN : (6.44)

The coefficient of sliding friction �sl depends again on the ma-
terial of body and basis, but also on the relative velocity. It is,
however, always smaller than the coefficient of static friction.
This can be explained by the simplified model of the two sur-
faces in contact, shown schematically in Fig. 6.44, where the
roughness of the surfaces has been exaggerated. If the two bod-
ies are at rest the peaks and the valleys of the micro-mountains
interlock. This allows a minimum distance between the two at-
tracting surfaces resulting in a minimum energy. At the sliding
motion the two surfaces move above the peaks and the mean dis-
tance between the surfaces is larger. During the sliding motion,
parts of the peaks are ablated. This results in an attrition of the
surfaces.

The sliding motion dissipates energy, even for a horizontal mo-
tion. If the body is moved by the distance �x, the necessary
work is W D Fsl ��x, which is converted into heat.

Experiments show that the sling friction force increases with
the relative velocity. The reason is that with increasing velocity
more material of the two surfaces is ablated. The power P D
dW=dt, necessary to maintain the velocity v of a sliding motion,
increases with vn where n > 1.

Note: The friction between a moving body and the surrounding
air has different reasons. If the body moves through air at rest,
a thin layer of air close to the surface of the body sticks at the
surface and is therefore accelerated by the moving body. This
requires the energy 1=2mL � v2 where mL is the mass of the air
layer that also increases with the velocity v.
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6.5.3 Rolling Friction

When a round body rolls over a surface, also friction forces FR

occur which are caused by the interaction between the atoms
of the bodies at the line of contact. Furthermore, the base is
deformed by the weight of the round body (Fig. 6.46), which
leads to deformation forces. For the rolling of a round body
with constant angular velocity, a torque around the contact line
is necessary that just compensates the opposite torque of the
rolling friction. Around the depression of the base at the line
of contact, bulges are formed, which have to be overcome when
the body rolls.

The experiments tell us that the torque, necessary for keeping a
constant angular velocity, is proportional to the force FN normal
to the surface of the base

DR D �R � FN ; (6.45)

where the coefficient �R of rolling friction has the dimension of
a length in contrast to the dimensionless coefficients �s and �sl.

Similar to the measurement of�s the coefficient �R can be mea-
sured with an inclined plane (Fig. 6.47). A circular cylinder with
mass m and radius r does not roll down the inclined plane, if the
inclination angle ˛ is smaller than a critical angle ˛R, which
is, however, smaller than the angle ˛max measured for the static
friction in Fig. 6.45.

For this critical angle ˛R is the counter-clockwise torque DG D
m �g � r � sin˛R around the contact line just equal to the clockwise
torque DR D �R � FN D �R � m � g � cos˛R. This yields

�R D r � tan˛R : (6.46)

The rolling friction is proportional to the radius of the round
body. The rolling friction is much smaller than the sliding fric-
tion, because the surface irregularities, shown in Fig. 6.44, are
partly overrun. Therefore, the invention of the wheel was a great
progress for humankind. The comparison of the frictional forces
for sliding and rolling gives with (6.44) and (6.45) the ratio

Fs

FR
D Fs

FR=r
D r � �s

�R
: (6.47)

The much smaller rolling friction is utilized by ball bearings,
which reduce the friction of rotating axes compared to the slid-
ing friction without these ball bearings. In Fig. 6.48, some

Figure 6.46 Deformation of a surface around the contact line

Figure 6.47 Measurement of rolling friction with the inclined plane

technical realizations of different ball bearings and axial bear-
ings are shown. In Tab. 6.3, the friction coefficients for some
materials are listed.

Remark. For skating or tobogganing the snow melts under the
runners because of heat conduction from the warmer skates and
due to the heat produced by friction. The water film under the
vats reduces the friction considerably. Often one finds the ex-
planation that the pressure exerted by the weight of the skater is
the main reason for melting. This effect plays, however, only a
minor part, as can be calculated from the known decrease of the
melting point with increasing pressure. (see Sect. 10.4.2.4). The
much smaller sliding friction between solid surface and liquids
is also utilized by applying lubricants between the two surfaces,
for instance between a rotating axis and its fixed support or be-
tween the moving pistons of a car engine and the cylinders. The
oil film reduces the friction by about two orders of magnitude.

Figure 6.48 Ball bearings. a scheme of a radial grooves bearing; b realization;
c axial groove bearing



C
h

a
p

te
r

6

174 6 Real Solid and Liquid Bodies

Table 6.3 Coefficients of static, sliding and rolling friction of some materials
in contact with each other. The values strongly depend of the characteristics of
the surfaces. They therefore differ for different authors

Interacting materials �H �G �R=r

Steel–Steel 0.5–0.8 0.4 0.05

Steel with oil film 0.08 0.06 0.03–0.1

Al–Al 1.1 0.8–1.0

Steel–Wood 0.5 0.2–0.5

Wood–Wood 0.6 0.3 0.5

Diamond–Diamond 0.1 0.08

Glass–Glass 0.9–1.0 0.4

Rubber-tar seal

– dry 1.2 1.05

– wet without waterfilm 0.6 0.4

6.5.4 Significance of Friction for Technology

Friction plays an outstanding role for many technical problems.
In some cases it should be as large as possible (for example for
clutches in cars or other machinery). The rolling friction for car
tires should be as small as possible, but the static friction and
the sliding friction should be as large as possible.

For many sliding or rotating parts of machinery, friction is dam-
aging. It causes increased energy consumption and a destruction
of the sliding surfaces (attrition). For such cases, it is therefore
necessary to minimize friction. This can be achieved either by
reducing the sliding friction by liquid films or air buffers or by
using ball bearings. Because of its importance, meanwhile a
whole branch of science called tribology works on problems of
friction [6.4].

Example

Figure 6.49 Rotating axis a without ball bearing, b with ball bearing

In Fig. 6.49a is an axis shown that rotates with the angular
velocity !. A circular ring with area A D �.r2

2 � r2
1/ is

welded to the axis and exerts a force FN and a pressure
p D FN=A onto the support base. The sliding friction
causes a torque D on the rotating axis, which has to be
compensated by an opposite torque supplied by an exter-
nal force.

On the red annulus in the lower part of Fig. 6.49a acts
the force dFN D 2� � r � dr � p, which causes the torque
dD D r � dFs D �s � p � 2� � r2 � dr. Integrating over all
annuli gives the total torque

D D
r2Z

r1

dD D 2�

3
�sl � p �

�
r3

2 � r3
1

�
: (6.48)

The friction consumes the power P D D �!, which is con-
verted into heat. This dissipated power is proportional to
the coefficient �s of sliding friction, to the contact pres-
sure p and the angular velocity !. If the annulus with area
A is supported by ball bearings (Fig. 6.49b), the torque
caused by friction decreases by some orders of magni-
tude. J

Another solution uses the mounting in Fig. 6.49a but now with
a liquid film between the contacting surfaces. Often air is blown
with high pressure between the two surfaces and an air buffer
supports the rotating annulus.. This allows one to realize an
extremely low friction. Examples are very fast rotating turbo-
molecular vacuum pumps (see Sect. 9.2.1.3), where the rotating
blades are supported by the air blow.

6.6 The Earth as Deformable Body

At the end of this chapter, we will apply the results of the fore-
going sections to the interesting example of our earth, which can
be deformed by several forces acting on it. In addition friction
plays an important role for phenomena such as the tides or the
differential rotation of the inner parts of the earth. Since the
earth is composed of solid material as well as of liquid phases,
it gives a good example of a realistic and more complicated de-
formable body.

Our earth is not a rigid homogeneous sphere. It shows an in-
homogeneous radial density profile r.r/ (Fig. 6.50), which is
determined by the pressure profile p.r/, but also by the chemical
composition, which changes with the radius r. Furthermore, the
different solid and liquid phases in the interior of the earth con-
tribute to the inhomogeneous profile. The central region with
r < 1000 km is a solid kernel of heavy elements (iron, nickel),
while for r > 1000 km hot liquid phases of metals are predomi-
nant, covered by a relatively thin solid crust, consisting of large
plates, which float on the liquid material. The earth is there-
fore not a rigid body but can be deformed by centrifugal forces,
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Figure 6.50 Radial density profile of the earth

caused by the earth rotation, and by gravitational, forces due to
the attraction by the sun and the moon. These deformations are
partly elastic (tides of the earth crust) or plastic (= inelastic). In
the latter case, the deformed material does not come back to its
original location after the force ends and a permanent change
of the shape remains. The shift of the continental plates or the
eruption of volcanos with the formation of new islands or moun-
tains are examples of non-elastic deformations.

6.6.1 Ellipticity of the Rotating Earth

The rotation of the earth with the angular velocity ! D
2�=day D 7:3 � 10�5 s�1 causes a centrifugal force on a mass
element �m with the distance a from the rotation axis

Fcf D �m � a � !2 � Oecf (6.49a)

Figure 6.51 Deformation of the rotating earth due to centrifugal force

with the unit vector Oecf perpendicular to !. This force acts in
addition to the gravitational force

FG D �G � �m � M.r/

r2
Or ; (6.49b)

where M.r/ is the mass of that part of the earth inside the radius
r. Because of the plastic deformation the mass element �m

shifts until the total force F acting on it, is zero.

F D FG C Fcf C FR

is the sum of gravity force FG, centrifugal force Fcf and restor-
ing force FR. For a homogeneous earth this would result in
a rotational ellipsoid with the major diameter in the equatorial
plane

2a D 12 756:3 km ;

and with a minor diameter in the direction of the rotational axis
of

2b D 12 713:5 km :

The ellipticity " D .a � b/=a of this rotational ellipsoid is " D
3:353 � 10�3.

Because of the inhomogeneous mass distribution the shape of
the rotating earth deviates slightly from this rotational ellipsoid
but forms a nearly pear-shaped pattern called geoid (Fig. 2.56).
The surface of this geoid is the zero-surface for all geodetic mea-
surements. This means: all measurements of elevations z are
related to this zero surface z D 0 [6.5].

6.6.2 Tidal Deformations

Induced by the additional forces of the gravitational attraction
by the sun and the moon the earth surface deforms in a charac-
teristic time-dependent way. This deformation is maximum for
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Figure 6.52 The rotation of earth and moon about their common center of
mass S causes all points of the earth to rotate about the center S , that moves
with the revolution of the moon. This is shown, without the daily rotation of the
earth about its axis, for three different positions of the moon

the oceans (low tides and high tides) since for liquids the restor-
ing elastic force is zero. However, it also appears with smaller
elongation in the solid crust of the earth.

The deformation of the earth and the resulting tides have three
causes:

a) The centrifugal distortion due to the motion of earth and
moon about their common center of mass.

b) The gravitational force, effected by the masses of moon and
sun.

c) The centrifugal distortion due to the rotation of the earth
around its axis.

In order to understand this tidal deformation we discuss at first
the simplified model of the deformation of the non-rotating earth
and neglect the gravitational attraction by the sun and the rev-
olution of the earth around the sun. We restrict the discussion
therefore to the influence of the moon on the non-rotating earth.
Under the mutual gravitational attraction

FG D �G � ME � MMo

r2
0

Or0 ; (6.50)

earth and moon move around their common center of mass S

(also called bari-center) which lies still inside the earth (about
0.75 of the earth radius from the center). The distance between
the centers of earth and moon is r0. During a moon-period of
27.3 days the center M of the earth moves on a circle with radius
0:75R around the baricenter S, which always lies on the line
ME-MMo. All arbitrary points Pi in the earth move around S on
circles with radii Pi � S. However, the center of mass S has
no fixed position inside the earth but moves during one moon
period inside the earth on a circle with radius 0:75RE around the
center M of the earth, because the space-fixed center of mass S

lies always on the line between earth-center and moon center.

The motion of the non-rotating earth as extended body, de-
scribed in the coordinate system of the earth, is therefore not a

Figure 6.53 Only for the center M of the earth are gravitational attraction by
the moon and centrifugal force of the earth–moon rotation about S equal but
opposite and cancel each other

rotation about a fixed axis but rather a shift since the space-fixed
point S. has not a fixed location inside the earth. The revolution
of the moon and the earth about S with the angular velocity ˝
causes therefore for all points of the non-rotating earth the same
centrifugal force

Fcf D m˝2 � RS D m˝2 � 0:75R : (6.51)

On the other hand, the gravitational attraction between earth and
moon is different for the different points of the earth because
of their different distance from the moon center. For the earth
center M it is

FG D �G
ME � MMo

r2
Or0 (6.52)

with r D r0. Here gravitational force and centrifugal force just
compensate each other.

Fcf D ME˝
2 � 0:75R � Or0 D �FG.r0/ :

The total force in M is zero (Fig. 6.53). This is no longer true
for other points P because the distances to the moon are dif-
ferent and therefore the gravitational force differs while for the
non-rotting earth the centrifugal force is the same for all points
P. For example the gravitational force in the points A and B in
Fig. 6.54 is

FG.rA/ D �G
m � MMo

.r0 C R/2
Or0 ;

FG.rB/ D �G
m � MMo

.r0 � R/2
Or0 :

(6.53)

Compared with the gravitational force FG.r0/ in M the force
differences are �F.rA/ D FG.rA/ � FG.r0/ and �F.rB/ D
FG.rB/ � FG.r0/ which point in the direction of the connect-
ing line earth–moon. The magnitude of these differences can
be obtained from (6.52) and (6.53). Because R � r0, we can
approximate .1 C R=r0/

�2 � 1 � 2R=r0 and we get:

�F.rA/ D �G � m � MMo

r2
0

�
�

1

.1 C R=r0/2
� 1

�
Or0

� G � 2m � MMo

r3
0

R � Or0

D �2FG.r0/ � R

r0
� Or0 ;

�F.rB/ D C2FG.r0/ � R

r0
� Or0 ;

(6.54)
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Figure 6.54 Deformation of the earth by the tides (exagerated). The arrows
give magnitude and direction of the tidal forces

The difference �F.rB/ is directed from M to the center of the
moon, while �F.rA/ has the opposite direction. Both differ-
ences result in a convex curved deformation of the earth surface,
as shown exaggerated in Fig. 6.54. For a mass in the points C or
D the gravitational force caused by the moon

FG.rC/ D �G
m � MMo

r2
0 C R2

Or D fFx;Fyg

D FG.r0/
r2

0

r2
0 C R2

 
cos˛

� sin˛

! (6.55)

points to the center of the moon (Fig. 6.54b), while the centrifu-
gal force is directed as for all points of the earth in the direction
of r0 and is anti-collinear to FG, while the magnitude of both
forces are equal, i.e. FG.r0/ D �Fcf. (Note, that we regard
a non-rotating earth and Fcf is only due to the revolution of
earth and moon around the common center of mass S). With
cos˛ D r0=

p
.r2

0 C R2/ and sin˛ D �R=
p
.r2

0 C R2/ the result-
ing residual force is

�F.rC/ D Fcf C FG D FG.r0/

0
BB@

r3
0

.r2
0 C R2/3=2

� 1

� r2
0R

.r2
0 C R2/3=2

1
CCA

� FG.r0/
R

r0

 
3
2 .R=r0/

�1

!
;

(6.56)

because R � r0�F.rC/ points nearly into the �y-directions to
the center of the earth. it therefore decreases the curvature of
the earth surface (Fig. 6.57b) which causes low tide. Its amount

�F.rC/ D jFG.rC/ � FG.r0/j � G
m � MMo

r3
0

R

D FG.r0/ � R

r0
D 1

2
�F.rA/

(6.57)

Figure 6.55 Spring tide and neap tide caused by addition or subtraction of the
gravitational forces by moon and sun

is smaller by the factor 1=2 than in the points A and B. For all
other points of the earth surface the resulting forces �F have a
radial as well as a tangential component. The tangential com-
ponent causes an acceleration of the ocean water towards the
points A or B. The borderline between the different tangential
directions lies in Fig. 6.54a left of the line CD. where the x-
component of FG is

FGr D C 3
2 FG.r0/.R=r0/ : (6.58)

From (6.54) and (6.56) one can infer, that the maximum tide
force depends on the ratio MMo=r3. If the numerical values for r

and MMo are inserted one obtains MMo=r3 D 1:34 � 10�3 kg=m3

and a tide acceleration of a1 D �F=m D 1:1 � 10�6 m=s2. This
leads to a deformation of the solid earth crust of up to 0:5 m.
Since Msun=r3

sun D 6:6 � 10�4 kg=m3 the effect of the sun on the
tides is only about half of that of the moon and one obtains for
the contribution to the tide-acceleration a2 D 5:6 � 10�7 m=s2. If
sun and moon stand both on a line through the center of the earth
(this is the case for full moon and for new moon) the actions of
moon and sun add (spring-tide). If sun and moon are in quadra-
ture (the connecting lines sun–earth and moon–earth intersect in
the earth center under 90ı (Fig. 6.55)) the effects subtract (neap
tide).

Up to now, we have neglected the daily rotation of the earth. It
brings about two effects:

An additional centrifugal force, which causes the deforma-
tion of the earth into a oblate symmetric top (see Sect. 6.6.1)
The deformation, which amounts to about 21 km at the equa-
tor, is very much larger than that caused by the moon but it
is equal for all points on the same latitude and is not time
dependent in contrast to the tides caused by the moon.
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Figure 6.56 Influence of the inclination of the orbital plane of the moon on
the periodical variation of the tidal elevation

When the revolution of the moon around the earth is ignored,
the two tide maxima at the points A and B in Fig. 6.54 and the
low tides in the point C and D would travel around the earth
in 24 hours. At a fixed point one would experience every
12 hours a high tide and a low tide. The deformation of the
solid crust is about 0:5 m, that of the ocean away from the
coast about 1 m. Tide amplitudes up to 15 m are observed at
the coast and in particular in narrow bays. They are generated
by nonlinear effects during the propagation of tidal waves.

For a more accurate description of the tides the revolution of the
moon has to be taken into account. It demands the following
corrections of our simple model:

The moon moves around the earth–moon-center of mass S in
27.5 days with the same direction as the rotation of the earth.
Therefore, the round-trip time of the tides is 24:87 h instead
of 24 h.
The plane of the moon’s revolution is inclined against the
equator plane (Fig. 6.56). An observer in the point A ex-
periences a higher tide amplitude than an observer in B

12:4 h later. This can be seen as follows: The centrifu-
gal force (6.51) caused by the revolution of the earth–moon
system around S is in A parallel to the gravitational force
FGE caused by the mass of the earth. The resulting force
F D FGE C FGM C Fcf is perpendicular to the earth surface.
The total force has to include the centrifugal force FcE caused
by the rotation of the earth, which is perpendicular to the ro-
tation axis of the earth. In the point B the centrifugal force
Fcf has the same direction than in A, but the gravitational
force FGE has a nearly opposite direction and therefore the
vector sum of the two forces is in B smaller than in A. The
force FcE has for both points the same direction because they
are located on the same circle of latitude (Fig. 6.56). The
tide amplitudes show an amplitude modulation with a period
of about 12:4 h. The modulation index depends on the geo-
graphical latitude.
The motion of the moon changes the relative positions of the
interacting sun, moon and earth. Therefore, the vector sum
of the tide forces show also a periodic modulation.

These considerations illustrate that the total tide amplitude is de-
termined by the superposition of many effects and is therefore
a complicated function of time (Fig. 6.57). It can be measured
with various techniques. One of them uses the time variation
of the gravitational acceleration g which depends on the ge-

Figure 6.57 Time dependent course of the tidal elevation at a fixed point on
the earth surface, measured as the corresponding variation �g of the earth
acceleration g

ographic location and is affected by the tides. Another very
sensitive interferometric technique measure the local deforma-
tion of the earth crust (see Sect. 6.6.4).

6.6.3 Consequences of the Tides

With the tides of the oceans as well as with the periodic defor-
mations of the earth crust, friction occurs which causes a partial
transfer of kinetic energy into heat. This lost kinetic energy
slows down the rotation of the earth and causes an increase of
the rotation period by 90 ns per day. Within 106 years this pro-
longs the duration of the day by 0:5 min (see Probl. 1.4).

The gravitational force between earth and moon causes of
course also deformations on the moon. Accurate measurements
have proved that the shape of the moon is an ellipsoid with
the major axis pointing towards the earth. The general opin-
ion is that in former times the moon also rotated around its axis.
This rotation was, however, in the course of many million years
slowed down by friction until the moon no longer rotates and
shows always the same side to the earth.

The tidal friction of earth and moon has the following interesting
effect: The total angular momentum of the earth–moon system
is constant in time because the system moves in the central force
field of the sun (the additional non-central forces due to interac-
tions with the other planets are negligible). Since the rotation of
the earth around its axis slows down and its angular momentum
I �! decreases, the orbital angular momentum of the earth–moon
system

jLEMj D r � � � vrel� D IEM �˝

(r D distance earth–moon, vrel D relative velocity of the moon
against the earth, IEM D inertial moment of the earth–moon
system and ˝ D angular velocity of the rotating earth–moon
system) has to increase. The moon is accelerated by the tidal
wave running around the earth. This can be seen as follows
(Fig. 6.58): The earth rotating with the angular velocity ! � ˝
accelerates the tidal waves due to the friction forces: This
acceleration brings the tidal maximum slightly ahead of the con-
necting line between the centers of earth and moon. Due to the
slightly increased gravitational force, the moon is accelerated
while the earth rotation decreases. The larger kinetic energy
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Figure 6.58 Deceleration of the earth rotation and acceleration of the orbital
velocity of the moon by the tidal friction

of the moon increases its total energy .Ekin C Epot/ and there-
fore also its distance to the earth. In former times the moon
was closer to the earth. The nowadays generally accepted the-
ory [6.7a, 6.7b] assumes that the moon was part of the earth but
has been catapulted out of the earth by the impact of a heavy
asteroid some billion years ago (see Vol. 4).

6.6.4 Measurements of the Earth Deformation

The deformation of the earth by tidal effects can be measured
with different techniques. We will shortly discuss three of them:

6.6.4.1 Changes of the Gravitational Force

According to (6.54) the additional gravitational force caused by
the moon in the points A and B in Fig. 6.54 is

�FG � 2mMMo

r3
Mo

R : (6.59)

In the gravity meter shown in Fig. 6.59 a mass m is suspended by
a spring in such a way, that a small change�FG D m ��g due to
the corresponding change of g causes a large vertical deflection
of the arrow on the scale. This is achieved by a sloped mounting
of the spring with length L and a restoring force Fr D �D ��L.
With the slope angle ˛, the vertical deflection�z causes a length
increase of the spring�L D �z � sin˛ (Fig. 6.59b) and a change
of the restoring force �Fr D m ��g � sin˛.

α

α

tension spring

compression spring

Figure 6.59 Measurement of the gravitational force with a special spring bal-
ance

Well Wire

BallCondensor

plates

C ∝ 1/d

Figure 6.60 Measurement of the deviation of g from the vertical direction

The device measures the periodic changes of FG with a pe-
riod of 24:87 h from which the tidal amplitudes can be inferred
(Fig. 6.57). Because of the different contributing effects, �g.t/
follows a complicated curve.

The experimental arrangement of Fig. 6.60 allows to measure
the deviation from the vertical direction of the earth acceleration
g. Without external perturbation, g would point nearly to the
earth center (only for a spherical mass distribution it would point
exactly to the center). The additional gravitational force ex-
erted by the moon causes a slight deviation from this direction.
The maximum angular deviation, which depends on the latitude,
amounts only to about 2:1 � 10�6 rad.D 0:400/, the measurement
must be sufficiently accurate. This required accuracy can be
reached with a pendulum [6.9]. A metal ball suspended on a
long wire in a well is connected with one plate of a charged ca-
pacitor, while the other plate is fixed on the wall of the well. Any
deviation of the pendulum from the vertical direction changes
the distance between the two plates and therefore the voltage of
the capacitor (see Vol. 2, Sect. 5).

6.6.4.2 Measurements of the Earth Deformation

Here the change �L of the length L between two points A1 and
A2 connected with the earth ground is measured. Figure 6.61
illustrates the method. A very sensitive Laser interferometer is
located in a gold mine deep in the ground in order to eliminate
acoustic noise from the surroundings. The two mirrors of the
laser resonator are mounted on the ground base at the points A1

and A2 separated by the distance L. The optical frequency of the
laser �L D m � c=.2L/ is determined by the length L of the res-
onator and the large integer m � 1. If the length L changes due
to the deformation of the earth crust, the laser frequency changes
accordingly. This frequency change can be measured very accu-
rately, when the laser beam is superimposed on a detector with
the output beam of a reference laser with stabilized frequency �r.
The difference frequency �L � �r in the radio-frequency range
can be counted by a digital frequency counter. Existing devices
have resonator lengths of 100 m up to several km. They can
measure deformations of the earth crust of less than 10�9 m (see
Vol. 2, Sect. 10.4). This sensitivity is sufficient to measure the
deformation of the ground base in the Rocky Mountains caused
by the tidal waves of the Pacific Ocean [6.10].
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Figure 6.61 Laser interferometer for the measurement of the deformation of the earth crust

Summary

Elastic bodies show restoring forces for any deformation of
their shape. For sufficiently small deformations, these forces
are proportional to the elongation from the equilibrium posi-
tion.
For a relative length increase " D �L=L of a body with
length L, constant cross section and elastic modulus E one
needs a tensile stress � D E � " (Hooke’s law).
A length change �L of a rod with length L and quadratic
cross section A D d2 caused by the tensile stress � is ac-
companied by a change �A of its cross section. The relative
change of the volume V

�V

V
D �

E
.1 � 2�/

is determined by the elastic modulus E and the transvers con-
traction ratio � D �.�d=d/=.�L=L/.
Exposed to isotropic pressure p the relative volume change
�V=V D �� � p of a body is determined by the compress-
ibility � D .3=E/ � .1 � 2�/.
A force F acting tangentially on a wall of a body causes a
shear of the body. For a cuboid with the side area d2 the shear
angle ˛ is related to the shear stress � D F=d2 by � D G � ˛
where G is the modulus of shear.
A rod with length L and cross section d �b is fixed at one end.
The vertical force F acting on the other end causes a bending

s D .4L3 � F/=.E � d3 � b/ ;

which is proportional to the third power of the length L and
the vertical width d.
Beyond the linear range of Hooke’s law plastic deformations
occur. If a periodical tensile stress � acts on a rod with length
L, a closed hysteresis curve �."/ is traversed. The area en-
closed by this curve represents the energy that is transformed
into heat for every cycle.
Inside a liquid the same pressure is present for all volume
elements with the same distance �h from the surface. The
hydrostatic pressure p.z/ D p0 C % � g � .h � z/ at this height
increases linearly with the height .h � z/ of the liquid with

density % above the layer at z. At the upper surface z D H

of a liquid with total height H the pressure is p0 (for example
the barometric pressure of the air above the surface).
Each solid body with mass m and density %s experience in
a liquid a buoyant force FB which is equal but opposite to
the weight FG of the liquid volume displaced by the solid
body. If jFjB > m � g the body floats at the liquid surface, for
jFBj D m � g the body can float at any height in the liquid.
Because of the attractive forces between the molecules of a
liquid, energy is required to bring molecules from the interior
to the surface. The energy, necessary to increase the surface
by 1 m2, is the specific surface energy. It is equal to the spe-
cific surface tension.
The shape of the surface of a liquid in a container depends
on the different surface tensions for the boundaries between
container wall and liquid, liquid and air, container wall and
air and on the gravity force. It always takes that form, for
which the energy is minimum.
Because of the surface tension a liquid can rise in a capillary
(wetting liquid) or descend (non-wetting liquid).
When two bodies come into touch, friction forces appear,
which are different for a relative velocity zero (static friction)
or for a relative motion (sliding friction). The smallest fric-
tion is found, when a circular body rolls on a plane base. The
quantitative description uses friction coefficients �, which
depend on the materials of the two bodies. Generally it is
j�sj > j�slj > j�Rj, where �s is the coefficient for static
friction, �sl for sliding friction and �R for rolling friction. A
liquid film between the two solid bodies reduces the friction
considerably.
The earth is a deformable ellipsoid which is permanently de-
formed by its rotation and periodically by the gravitational
forces exerted by moon and sun, which cause tidal effects.
The periodic deformations are partly non-elastic and the fric-
tion transfers part of the rotational energy into heat. This
causes a slowdown of the earth rotation and a prolongation of
the day. Conservation of the total angular momentum leads
to an increase of the distance earth–moon.
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Problems

6.1 What is the change�L of a steel rope with L D 9 km,
a) which hangs in a vertical well?
b) What is the maximum length of the rope before its rupture?
c) How large is �L when the rope is lowered from a ship into

the ocean? (E D 2 � 1011 N=m2; %steel D 7:7 � 103 kg=m3,
%ocean D 1:03 � 103 kg=m3)

6.2 A steel beam with L D 10 m is clamped at one end. A
force F D 103 N acts on the other end in vertical z-direction.
How large is the bending of this end
a) for a rectangular cross section d � b with d D �z D 0:1 m;

b D �y D d=2?
b) for a double T-profile (Fig. 6.15d) with b1 D d1 D 0:1 m,

b2 D d2 D 0:05 m?

6.3 The deep ocean aquanaut Picard reached in his spherical
steel submarine a depth of 10:000 m in the Philippine trench.
How large are pressure and total force exerted on the sphere?
What is the volume change�V=V caused by the pressure
a) for a hollow sphere with wall thickness of 0:2 m?
b) for a full sphere?

6.4 A turbine drives a generator connected to a steel shaft
with length L and diameter D. By which angle ˛ are the two
ends of the shaft twisted if the power P D 300 kW is transferred
at a frequency ! D 2� � 25 s�1

a) for a steel shaft as full cylinder with D D 0:1 m; L D 20 m?
b) for a hollow cylinder with D1 D 5 cm and D2 D 10 cm?

6.5 What is the density of water with a compressibility � D
4:8 � 10�10 m2=N at a depth of 10:000 m?

6.6 A hollow steel cube .% D 7:8 � 103 kg=m3/ with edge
length a D 1 m and a wall thickness of d D 0:02 m and with an
open upper side floats on water.

a) How deep does it immerse?
b) What is the location of center of mass and metacenter?
c) What is the maximum angle of its symmetry axis against the

vertical direction before it becomes unstable?

6.7 Which energy has to be spent in order to lift a full cube
of steel from the bottom of a swimming pool with the water
depth of 4 m to a position where the lower side of the cube is at
the surface of the water?

6.8 Which force was necessary to separate the two hemi-
spheres in the demonstration experiment by Guericke in Magde-
burg with a diameter of 0:6 m, when the pressure difference
between inside and outside was �p D 90 kPa? Guericke had
used 16 horses. What should have been done in order to sepa-
rate the hemi-spheres already with 8 horses?

6.9 In order to verify that a gold bar is really made of gold
.%gold D 19:3 kg=dm3/ a goldsmith measures its weight in air
and when totally immersed in water. Which ratio of the two
values is obtained
a) for a 100% gold bar?
b) for a 20% admixture of copper .% D 8:9 kg=dm3/?
c) What is the minimum required accuracy of the measure-

ments for unambiguously distinguishing between the two
cases? What is the accuracy if an admixture of 1% of copper
should be detected?

6.10 A round cylinder of wood (L D 1 m, d D 0:2 m,
% D 525 kg=m3) is floating in water. How deep does it immerse
a) in a horizontal position?
b) if a steel ball with m D 1 kg is attached to one end in order

to bring it into a vertical floating position?
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Different from solid or liquid bodies, which change their vol-
ume only slightly under the action of external forces, gases can
be expanded readily. They occupy any volume that is offered to
them. Under the action of external pressure their volume can be
reduced by orders of magnitude up to a certain limit. The reason
for these differences is their much smaller density. At atmo-
spheric pressure, the gas density is smaller than that of solids or
liquids by about three orders of magnitude. The mean distance
between the atoms or molecules is therefore about ten times
larger. This has the consequence that their mean kinetic en-
ergy is much larger than the mean potential energy of the mutual
attraction or repulsion, while for liquid and solid bodies both en-
ergies are nearly equal at room temperature (see Sect. 6.1).

In this chapter we present at first the macroscopic properties of
gases before we will discuss in more detail the atomic expla-
nation of the observed macroscopic phenomena. The atomic
fundamentals, developed already in the 19th century as kinetic
gas theory, was one of the most powerful supports for the exis-
tence of atoms and their relevance as constituents of matter.

7.1 Macroscopic Model

The volume V of an enclosed gas can be changed by a movable
piston due to a variable pressure p (Fig. 7.1). For the relation
between V and p at a constant temperature T the experiment
gives the result

p � V D const (Boyle–Mariotte’s law) : (7.1)

From V D const =p we obtain by differentiation

dV

dp
D �const

p2
D �V

p
: (7.2)

As measure for the compressibility of a gas we define the quan-
tity

� D � 1

V

@V

@p
; Œ�� D m2

N
: (7.3a)

For a constant temperature it follows

@V

@p
D dV

dp
D �V

p
) � D 1

p
: (7.3b)

A gas is easier to compress for smaller pressures. For a total
mass M of a gas in a volume V the density is % D M=V. For an
enclosed gas its total mass M is constant. Its density % is then
inversely proportional to its volume V. Inserting V D M=% into
(7.1) gives

p D const

M
� % i.e. p / % : (7.4)

Figure 7.1 A movable piston changes volume V and pressure p of an enclosed
gas volume. a Principle, b demonstration of the Boyle–Marriotte law

For a constant temperature the density % of a gas is pro-
portional to its pressure.

Remark. This is also valid for non-enclosed gases, as for
example in the free atmosphere.

This can be seen from the general gas equation p � V D N � k � T

(see Sect. 10.3), where N is the total number of molecules in
the volume V, which is independent of the boundaries of the
volume V. Since n D N=V is the density of molecules with
mass m, which is proportional to the mass density % D n � m=V

we obtain p / %.

The gas pressure p with the unit Newton per square meter

Œp� D N

m2
D Pascal D Pa

can be measured with different techniques (see Sect. 9.3). A
simple method uses a mercury manometer (Fig. 7.2). In the
container with volume V is a gas under the pressure p. The
left branch of a U-shaped tube filled partly with liquid mercury
is closed at the upper end, while the right branch is connected
with the container. If the upper valve in Fig. 7.2 is open, the
pressure p causes a difference �h of the mercury heights in the
two branches. Equilibrium is reached if the pressure caused by
the gravity just compensates the pressure p in the container. This
gives the relation

% � g ��h D p � p0 ;

where p0 is the vapour pressure of mercury above the mercury
surface in the left branch.

Historical the pressure difference corresponding to �h D 1 mm
between the two mercury columns is named 1 torr, in honour of
the Italian physicist Torricelli. The unit used nowadays in the
SI-system is 1 Pascal. The following relations hold:
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Figure 7.2 Measurement of gas pressure with a mercury manometer

1 Pa D 1 N=m2

1 standard atmosphere D 1 atm D 101 325 Pa

1 torr D .1=760/ standard atmosphere D 133:3 Pa :

7.2 Atmospheric Pressure and
Barometric Formula

Similar to liquids also in gases a static pressure is present due
to the weight of the air. It can be measured with the Torricelli
U-tube in Fig. 7.3, filled partly with mercury. The left branch
is closed at the upper end, while the right branch is open. In
the left branch above the liquid mercury surface is the small
vapour pressure p0 of mercury (about 10�3 torr D 0:13 Pa at
room temperature) which can be neglected. Due to the atmo-

Figure 7.3 Torricelli manometer for measuring the barometric air pressure

Table 7.1 Units of pressure

Unit Athmosphere
abbreviation

Definition Conversion

1 Pascal 1 Pa 1 N=m2 –

1 Hektopascal 1 hPa 102 N=m2 102 Pa

1 Bar 1 bar 105 N=m2 105 Pa

1 Millibar 1 mbar 10�3 bar 102 Pa

1 Torricelli 1 Torr 1 mm hg 133:32 Pa

1 physical atmosphere 1 atm 760 Torr 101 325 Pa

1 technical atmosphere 1 at 1 kp=cm2 9:8 � 104 Pa

spheric pressure p the mercury in the right branch is depressed
by �h D p=.% � g/.

The pressure of the earth atmosphere at sea level h D 0 at
normal weather conditions is 101 325 Pa and is called normal

pressure or standard pressure which is often given in the unit 1
standard atmosphere (1 atm). This pressure causes in the mer-
cury manometer of Fig. 7.3 a height difference of 760 mm.

In meteorology the hecto-pascal .1 hPa D 100 Pa/ is a com-
monly used unit. In Tab. 7.1 the conversion factors for some
pressure units are listed [7.1].

The weight of the air column above an area A in the height h

decreases with increasing h (Fig. 7.4). Changing the position of
A from h to h C dh decreases the weight by % � g � A � dh and
therefore the pressure p decreases as

dp D �% � g � dh : (7.5)

In the case of liquids the density is independent of the height be-
cause of the small compressibility. The solution of (7.5) shows
the linear dependence p D �% �g �h of the pressure on the height
h (Fig. 7.5b). This is no longer true for gases, where the den-
sity is proportional to the pressure and therefore depends on the
heights in the atmosphere. From (7.4) we obtain for a constant
temperature T

p

%
D p0

%0
D const ) % D %0

p0
� p :

Inserting this into (7.5) gives

dp D �%0

p0
gp dh : (7.5a)

Figure 7.4 Derivation of barometric Eq. 7.6
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Figure 7.5 Comparison of pressure dependence p.s/ in the earth atmosphere
and in a water column of 10 m height

Integration yields

ln p D �%0

p0
gh C C : (7.5b)

With p.h D 0/ D p0 the integration constant C becomes C D
ln p0. Solving for p gives the barometric formula

p D p0 � e�%0g�h=p0 : (7.6a)

Note, that the ratio %0=p0 depends on the temperature T .

The atmospheric pressure of an isothermal atmosphere

(T D constant, independent of h) decreases exponential with

the height h (Fig. 7.5a).

Because % D .%0=p0/ � p the density % follows the same formula

% D %0e�%0gh=p0 : (7.6b)

Inserting the numerical values of the atmosphere (%0 D
1:24 kg=m3 and p0 D 1013 hPa) into (7.6a) yields

p D p0 � e�h=8:33 km : (7.6c)

For h D 8:33 km the pressure p has decreased to p0=e �
373 hPa.

The height h1=2 where the pressure has dropped to .1=2/p0 is ob-
tained from exp.g �h1=2%0=p0/ D 2 which gives h1=2 D 5:77 km.

On a mountain with an elevation of 5:77 km the barometric

pressure sinks to half of its value at h D 0.

The pressure decrease of an isothermal atmosphere follows the
exponential law (7.6a) contrary to the linear decrease in liquids.
The atmosphere has therefore no sharp boundary!

Note: The real earth atmosphere is not isothermal! The tem-
perature decreases with increasing height (see Sect. 7.6). The
pressure p.h/ is therefore slightly different from (7.6). Nev-
ertheless is (7.6) a useful approximation, which is sufficiently
accurate for many applications.

Analogue to the situation in liquids the Archimedes’ principle
of buoyancy is valid for bodies in air.

A body in air experiences a buoyancy force, that has the
opposite direction but the equal amount as the weight of
the displaced air.

This principle is the basis for balloon flights. A balloon can only
rise in air, if its weight (balloon + car + passengers) is smaller
than the buoyancy force. For a balloon with total mass M and
total volume V this gives the condition

M � g < V � %airg :

The balloon must therefore contain a gas with a smaller den-
sity than the surrounding air. Generally helium is used, since
hydrogen is too dangerous due to its possible explosion.

Another solution is the hot-air balloon, where a burner blows
hot air into the balloon shell. The density % D p=kT is inversely
proportional to the temperature T (Fig. 7.6).

Example

The density % at a temperature T D 80 ıC D 350 K is
smaller than air at room temperature T D 20 ıC D 290 K
by the factor 290=350 D 0:83. For a balloon volume of
3000 m3 the buoyancy force is then FB D g � V � �% D
8:270 N. The maximum mass of balloon + passengers is
then 843 kg. The mass of the balloon is about 100 kg,
that of the burner with propane supply about 200 kg. This
leaves a maximum weight for the passengers of 543 kg.

J

Since the density of the earth atmosphere decreases exponen-
tially with the height h, also the buoyancy decreases with h. This
limits the maximum altitude of weather- and research-balloons,
which should rise up to very high altitudes in order to investi-
gate the upper part of our atmosphere. One uses extremely large
balloon volumes which are at the ground only partly filled with
helium but blow up with increasing altitude because of the de-
creasing air pressure (Probl. 7.18) (Fig. 7.7).
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Figure 7.6 Lift of the first manned Montgolfiere. At the 21st of November 1783 the hot-air-balloon, named after its inventor Montgolfiere, started in the garden
of the castle Muette near Paris with two ballonists and landed safely after 25 min at a distance of 10 km from the starting point. The balloon was constructed with
thin branches of a willow tree, that stabilized the envelope of thin fabric, covered with coulorfully painted paper. The air inside the ballon was heated by a coal fire
in the center of the lower opening. With kind permission of Deutsches Museum München
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Figure 7.7 Start of a helium-filled research balloon for the investigation of the higher stratosphere. The balloon is filled only with a low He-pressure. With
increasing height the external pressure decreases and the balloon inflates, increasing its volume and the buoancy (SSC/DLR) (http://www.eskp.de/turmhohe-
forschungsballons-messen-ozonschicht/)

7.3 Kinetic Gas Theory

The kinetic gas theory, which was developed by Boltzmann,
Maxwell and Clausius in the second half of the 19th century,
attributes all observed macroscopic properties of gases to the
motion of atoms and their collisions with each other and the
wall. Its success has essentially contributed to the acceptance
of the atomic hypothesis (see Vol. 3, Chap. 2). The exact
theoretical description requires a more detailed and advanced
mathematical model. We will therefore restrict the treatment to
a simplified model, which, however, describes the essential ba-
sic ideas and the experimental findings correctly.

7.3.1 The Model of the Ideal Gas

The most simple gas model is based on the following assump-
tions: The gas consists of atoms or molecules which can be
described by rigid balls with radius r0. They move with statis-
tically distributed velocities inside the gas container. Collisions
with each other or with the walls are governed by the laws of
energy-and momentum conservation. The collisions are com-
pletely elastic. Any interaction between the balls only occurs
during collisions (direct touch of two balls). For distances

d > 2r0 the atoms do not interact. The interaction potential
in this model is therefore (Fig. 7.8)

Epot.r/D 0 for jrj > 2r0

Epot.r/D 1 for jrj � 2r0 :

Such a gas model is called ideal gas, if r0 is very small against
the mean distance hdi between the atoms. This means that the
atomic volume is negligible compared to the volume V of the
gas container. In this model the atoms can be treated as point
masses (see Sect. 2.1).

Figure 7.8 Interaction potential between two rigid balls with radius r0

http://www.eskp.de/turmhohe-forschungsballons-messen-ozonschicht/
http://www.eskp.de/turmhohe-forschungsballons-messen-ozonschicht/
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At a pressure of 1 bar and room temperature (T D 300 K)
1 cm3 of a gas contains about 3 � 1019 molecules. Their
mean relative distance is hdi D 3 nm. For helium atoms
is r0 � 0:05 nm, which implies r0=hdi D 0:017 � 1.
Helium at a pressure of 1 bar can be therefore regarded as
ideal gas. J

The pressure that the gas exerts onto the wall is caused by the
momentum transfer of the atoms to the wall. The force F acting
on the area A of the wall during collision of the atoms with the
wall is equal to the momentum transfer per second to the area A.
The pressure p D F=A is then

p D d

dt

�
momentum transfer to area A

area A

�
: (7.7)

If for instance N � dt atoms with mass m hit the wall within the
time interval dt with a velocity v in the direction of the surface
normal, the momentum transfer per second for elastic collisions
is 2N � m � v and the pressure onto the wall is p D 2N � m � v=A.

7.3.2 Basic Equations of the Kinetic Gas
Theory

We will at first regard the atoms as point masses and only take
into account their translational energy. The discussion of ro-
tationally or vibrationally excited molecules demands a farther
reaching discussion which will be postponed to Sect. 10.2

For N molecules in a volume V the number density is n D N=V.
At first we regard only that part nx of all molecules per cm3 in
a cubical volume, which move with the velocity vx into the x-
direction (Fig. 7.9). Within the time interval �t

Z D nx � vx � A ��t

molecules hit the surface area A. These are just those molecules
in the cuboid with length vx�t and cross section A, illustrated
in Fig. 7.9. Each of these molecules transfers the momentum

Figure 7.9 Derivation of Eq. 7.8

Figure 7.10 Momentum transfer for elastic collisions with a wall

�px D 2 m � vx. The force onto the area A is then F D Z �
�px=�t D 2Z � m � vx=�t and the pressure onto the wall is

p D F=A D 2m � nxv
2
x : (7.8)

When molecules with the velocity v D fvx; vy; vzg do not
move vertically to the wall, still only the momentum 2m � vx is
transferred, because the tangential components do not transfer
momentum to the wall (Fig. 7.10).

Not all molecules have the same velocity. Under station-
ary conditions the velocities of the molecules are isotropically
distributed, which means that each direction has the same prob-
ability. Since the pressure of a gas is isotropic, the mean
momentum transfer must be equal into all directions. The mean
square value of the velocities is�

hv2
x i D v2

x D 1

N

Z
N.vx/ v

2
x dvx D v2

y D v2
z ; (7.9)

where N.vx/dvx is the number of molecules in the volume V

with the velocity components vx in the interval from vx to vx C
dvx. Because on the average half of the molecules move into
the Cx-direction and the other half into the �x-direction, the
pressure, exerted by all molecules with a number density n D
N=V in the x-direction on the wall in the y-z-plane is given by

p D 1
2 n � 2mv2

x D n � m � v2
x : (7.10)

With v2 D v2
x C v2

y C v2
z it follows from (7.9)

v2
x D v2

y D v2
z D 1

3v
2 : (7.11)

This gives with (7.10)

p D 1

3
m � nv2 D 2

3
n � m

2
v2 D 2

3
n � Ekin ; (7.12a)

where Ekin D .m=2/ � n � v2 is the mean kinetic energy per
molecule. With n D N=V this can be written as

p � V D 2
3 N � 1

2 mv2 ; (7.12b)

where N D n � V is the total number of molecules in the volume
V.

� Remark. We use for the average values of a quantity A the notations hAi
as well as A.
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7.3.3 Mean Kinetic Energy and Absolute
Temperature

All experiments give the result that the product p � V depends
solely on the temperature and is for constant temperature con-
stant (Boyle–Mariotte’s law). This implies also that the mean
kinetic energy Ekin D .m=2/v2 depends on the temperature. It
turns out that it is convenient to define an absolute temperature
which is proportional to Ekin.

The absolute temperature T (with the unit 1 Kelvin D 1 K) is
defined by the relation

m

2
v2 D 3

2
kT ; (7.13)

where k D 1:38054 � 10�23 J=K is the Boltzmann constant.

With this definition Eq. 7.12 becomes the general gas-equation

p � V D N � k � T ; (7.14)

which represents a generalization of Boyle–Mariotte’s law (7.1)
and which reduces to (7.1) for T D const.

Each molecule can move into three directions x, y, and z. This
means it has three degrees of freedom for its translation. Col-
lisions with other molecules change direction and magnitude of
its velocity. In the time-average all directions are equally prob-
able. We therefore obtain for the mean square velocities the
relations

˝
v2

x

˛
t
D
˝
v2

y

˛
t
D
˝
v2

z

˛
t
D 1

3

˝
v2
˛
t
D 1

3v
2 :

The mean kinetic energy of a molecule at the temperature T is
then

Ekin D 1
2 kT per degree of freedom :

Remark. In statistical physics it is proved [7.2] that in a closed
system of many mutually interacting particles at thermal equi-
librium the time average hAit of a physical quantity A is equal
to the ensemble average

A D 1

N

X
Ai ;

averaged over all particles of the ensemble and determined at
a fixed time (ergoden hypothesis). This is however, only true
under certain conditions, which have to be proved for each case.
The “ergoden-theory” is a current field of research in mathemat-
ics and statistical physics.

Real molecules can rotate and vibrate. The energy of these de-
grees of freedom have to be taken into account in addition to the
translational energy. The number of degrees of freedom there-
fore becomes larger. For example diatomic molecules can rotate
around two axes perpendicular to the molecular axis. This gives
the additional energy Erot D L2=2I, where L is the angular mo-
mentum of the rotation and I the inertial moment (see Sect. 5.5).

At sufficiently high temperatures also vibrations of molecules
can be excited (see Sect. 10.3) which contribute to the total en-
ergy.

Equipartition Law

In a gas that is kept sufficiently long at a constant temper-
ature T the energy of the atoms or molecules is uniformly
distributed by collisions over all degrees of freedom.
Therefore each molecule has on the average the energy
Ekin D f � .1=2/kT where f is the number of degrees of
freedom, accessible to the molecule.

7.3.4 Distribution Function

After the descriptive discussion of the relation between mean
kinetic energy and the pressure of a gas for the special case of
a cuboid container we will now give a more quantitative repre-
sentation for the general case of an arbitrary volume. For this
purpose the velocity distribution has to be defined in a quanti-
tative way. This can be achieved with the distribution function
f .u/ (see Sect. 1.8), which describes how the quantity u is dis-
tributed among the different molecules. For u D vx we obtain

f .vx/dvx D N.vx/dvx

N

with N D
C1Z

�1

N.vx/dvx :

(7.15)

The quantity f .vx/dvxq gives the fraction of all molecules with a
velocity component vx in the interval vx to vx Cdvx. The number
of all particles within the interval vx to vx C dvx is then

N.vx/dvx D N � f .vx/dvx : (7.15a)

The number of molecules with vx � u is then

N.vx � u/ D N

1Z

vxDu

f .vx/dvx : (7.15b)

From (7.15) we obtain the normalization condition

C1Z

�1

f .vx/dvx D 1

N

C1Z

�1

N.vx/dvx D 1 : (7.16)

For u D jvj D v the quantity f .v/dv gives the fraction of all
molecules with velocity amounts between v and v C dv. The
normalization is now

1Z

0

f .v/dv D 1 : (7.16a)
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Unit sphere
(r = 1)

F
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ϑ

ϑ

φ

ϑ
dA·cos ϑ

dϑ

dφ

1

sin ϑ dφ

dΩ = dϑ·sin ϑ·dφ

sin ϑ

Figure 7.11 Illustration of Eq. 7.17 and 7.18. Because of the small area dA and the solid angle d˝ the velocity vectors of particles hitting dA within the solid
angle d˝ are approximately parallel

We consider a surface element dA, which is hit by molecules
from the upper half space (Fig. 7.11). Within the time interval
�t the number Z of molecules within the velocity interval from
v to vCdv coming from the angular range d˝ around the angle
# against the surface normal and impinging on dA is

Z D n � f .v/dv � dA cos# � v�t � d˝

4�
: (7.17)

This can be seen as follows: The product n � f .v/dv gives the
particle density within the velocity interval dv. Within the time
interval�t all molecules up to a distance v ��t from the surface
element dA can reach dA. From all molecules with isotropic
velocity distribution only the fraction d˝=4� reaches the effec-
tive area dA � cos# within the solid angle d˝ . The momentum
change j�pj of a molecule at the impact on dA is

j�pj D 2 m � v � cos# :

The momentum transfer of Z molecules per sec is then

�ptotal=dt D Z � j�pj=dt : (7.17a)

Integration over all velocities v and over all impact angles #
yields the total momentum transfer per sec which is equal to the
product p � dA of pressure p acting onto dA and the area dA.

Remark. The bold vector p denotes the momentum while the
scalar quantity p indicates the pressure. Although both quanti-
ties are labelled with the same letter (this is in agreement with
the general convention), there should be no confusion, because
it is clear from the text, which of the two quantities is meant.
With the solid angle

d˝ D r � d# � r � sin# � d'

r2
D d# � sin# � d' ; (7.18)

the pressure p can be obtained from (7.17)–(7.18) as

p Dj�pjtotal

dA ��t
D 2n � m

4�

1Z

vD0

v2f .v/dv

�
2�Z

'D0

�=2Z

#D0

cos2 # � sin# d# d' :

(7.19)

The first integral gives the quadratic means v2. The second dou-
ble integral can be analytically solved and has the solution 2�=3.

This gives finally the pressure p onto the area dA

p D 1
3 n � m � v2 ;

in accordance with (7.12a). In order to calculate the mean
square v2 we must determine the distribution function f .v/. This
will be the task of the next section.

7.3.5 Maxwell–Boltzmann Velocity
Distribution

The decrease of the air density with increasing height in our
atmosphere (barometric formula) discussed in the previous sec-
tion can be explained by the velocity distribution f .v/ of the air
molecules.

If we extend the exponent in (7.6b) with the volume V0 of a
gas with mass M D %0 � V0 and insert for p0 � V0 the general
gas-equation 7.14 Eq. 7.6b becomes

% D %0 � e�.Mgh/=.NkT/ : (7.20a)

For the number density n D %=m of gas molecules with mass m

we obtain with m D M=N

n.h/ D n0 � e�.mgh/=.kT/ D n0 � e�Ep=kT : (7.20b)
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Figure 7.12 Only molecules with initial velocites Vz .h D 0/ > u reach the
height z D h

The exponent in (7.20b) represents the ratio of potential en-
ergy Ep D mgh at the height h above ground and twice the
mean kinetic energy Ekin D .1=2/kT per degree of freedom
of a molecule, due to its thermal motion at the temperature
T . We regard here at first only a one-dimensional motion in
the z-direction, which is described by the distribution of the z-
components vz of the velocity v.

The barometric formula gives for an isothermal atmosphere the
ratio of particle densities in layers �z at different heights h. If
the molecules had no kinetic energy, they would all rest on the
earth surface and form a solid layer, i.e. the earth atmosphere
would disappear.

Let us first assume the atmosphere had been built up by
molecules that start from the ground z D 0 upwards with the
velocity vz D u. They reach the height h, given by

1

2
m � u2 D m � g � h

before they fall down in the earth gravitational field (Fig. 7.12).
In fact the primary earth atmosphere had been formed by
molecules outgassing through volcanos.

Since we have assumed an isothermal atmosphere, the veloc-
ity distribution at z D h must be the same as for z D 0. This
means, there are at z D h also molecules with vz D u which
move upwards until their kinetic energy is just cancelled by the
increase of the potential energy. The density of these molecules
is, however, smaller at z D h than at z D 0 because the num-
ber density n.h/ decreases exponentially with h according to the
barometric formula (7.20b). The specific choice of the group of
molecules starting from z D 0 does not constrict the following
argumentation.

Remark.

1. Some readers have argued that the decrease of v.z/ with
increasing z contradicts the assumption of an isothermal
atmosphere. This is, however, not true, because the tem-
perature is determined by the velocity distribution of all

molecules but not only by that of an arbitrarily selected sub-
group.

2. In the real atmosphere the temperature decreases with in-
creasing z. The main reason for that is the decreasing heat
flow from the ground into the atmosphere and the decreas-
ing absorption of the infrared radiation emitted by the earth
surface.

We will assume in the following an isothermal atmosphere
where collisions can be neglected, although collisions are re-
sponsible for the equipartition of the total energy onto all
molecules and therefore for establishing a temperature. How-
ever, this does not influence the validity of the following
derivation where we select a subgroup of all molecules with a
velocity component vz in the Cz-direction which fly upwards.

The number N>u.z D 0/ of molecules that start from a unit
area at z D 0 with velocity components vz > u is equal to the
number N>0.z D h/q of molecules that fly through a unit area in
the plane z D h with velocities vz > 0.

N>u.z D 0/ D N>0.z D h/ : (7.20c)

The number N.vz/ of molecules that pass per unit time with the
velocity vz through a unit surface (flux density) is given by the
product

N.vz/ D n.vz/ � vz

of number density n.vz/ and velocity vz (Fig. 7.13).

For an isothermal atmosphere with the constant temperature T

the mean square velocity v2 and the distribution function f .vz/
must be independent of h, since they depend only on the tem-
perature.

The flux density N>0.z D h/ can be expressed as

N�0.z D h/ D n.h/ �
1Z

vzD0

vzf .vz/dvz : (7.21a)

It is smaller than the flux density

N>0.z D 0/ D n.0/

1Z

0

vzf .vz/dvz : (7.21b)

Since the two integrals in the two equations are equal, it follows
with (7.20c)

Nvz>u.0/

Nvz>0.0/
D Nvz>0.z D h/

Nvz>0.0/
D n.h/

n.0/
: (7.21c)

Figure 7.13 Number of particles per unit volume n.vz /dvz within the intervall
u � vz � u C du
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From the definition of the distribution function f .vz/ in (7.15b)
and (7.15) it follows for the flux densities

Nvz�0.z D 0/ D n0

1Z

vzD0

vzf .vz/dvz

Nvz�u.z D 0/ D n0

1Z

vzDu

vzf .vz/dvz ;

(7.22)

with (7.20b) and the relation m � g � h D .1=2/m � v2 we obtain

1Z

u

vzf .vz/dvz D C1 � e� m
2 u2=kT ; (7.23)

where C1 is a constant which depends on the temperature T .

Differentiating both sides with respect to the lower limit u yields
on the left side the negative integrand for vz D u:

� u � f .u/ D �m � u

kT
� C1 � e� m

2 u2=kT

) f .u/ D C2 � e� m
2 u2=kT

with C2 D C1 � m

kT
D const :

The constant C2 can be obtained from the normalization condi-
tion Z

f .u/du D 1

and the integration
R

e�x2dx D p
� . This gives C2 D

.m=2�kT/.1=2/.

Replacing u by vz, finally yields the distribution function

f .vz/ D
r

m

2�kT
� e� m

2 v
2
z =kT : (7.24)

This is a symmetric Gauss-distribution illustrated in Fig. 7.14.

For a gas in a closed volume V, where the mean kinetic energy
is large compared to the difference of potential energies inside

Figure 7.14 Distribution function f .vz / of the velocity component vz

the volume, no direction for the motion of the molecules is pre-
ferred, all directions are equally probable as has been discussed
in Sect. 7.3.2. The distributions of the velocity components are
equal for all three components vx, vy, vz and are described by
(7.24).

The probability to find a molecule with the velocity v D
fvx; vy; vzg is equal to the product of the probabilities for vx, vy

and vz. One therefore obtains for the distribution function

f .vx; vy; vz/ D
�

m

2�kT

�.3=2/

e�.mv2/=.2kT / : (7.25)

In many cases only the magnitude jvj of the velocity is of in-
terest, where the direction can be arbitrary. The heads of all
velocity arrows with a length between v and v C dv are located
within a spherical shell with the volume 4�v2dv. Therefore the
integration Z

vx;vy;vz

f .vx; vy; vz/ dvx dvy dvz

over all values of v D fvx; vy; vzg within this spherical shell
gives for the number density n.v/dv of all molecules per unit
volume with velocities between v and v C dv the result

n.v/dv D n �
�

m

2�kT

�.3=2/

� 4�v2 � e�mv2=2kTdv :

(7.26)

This is the Maxwell–Boltzmann velocity distribution

(Fig. 7.15). The normalized distribution function is then
f .v/ D n.v/=n, where n is the total number density of molecules
with any velocity.

Note

Contrary to the symmetric distribution for the velocity
components, which extends from �1 to 1, the distri-
bution for the velocity magnitude is restricted to the range
v � 0, because there are no negative velocities. The dis-
tribution is therefore asymmetric. Because of the factor v2

it is also not symmetric around a mean value v.

Figure 7.15 Maxwell–Boltzmann velocity distribution n.v/dv with most prob-
able velocity vw , mean velocity hvi and the square root of the mean velocity

square
p
v2
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Remark. In unidirectional molecular beams generally not the
molecular density n.v/ is measured but rather the flux density
N D n.v/�v, for instance by a detector which measures the num-
ber of particles reaching the detector per unit time. The velocity
distribution of the flux density N.v/ D n �v � f .v/ in a collimated
molecular beam where all molecules fly within a small angular
cone around the x-direction differs from n.v/ in (7.26) by the
additional factor v. The prefactor of f .v/ is therefore v3 instead
of v2.

The maximum of the distribution (7.26) appears at the most
probable velocity vw . With the condition dn.v/=dvjmp D 0 one
obtains from (7.26) the value

vw D
r

2kT

m
: (7.27)

The mean velocity v is defined by

v D
1Z

0

v � f .v/dv

D 4� �
�

m

2�kT

�.3=2/
1Z

0

v3 � e�mv2=.2kT/dv :

Integration yields

v D
r

8kT

� � m
D 2vwp

�
: (7.28)

Finally we get for the mean square v2

v2 D
1Z

0

v2f .v/dv D 3kT

m
: (7.29)

This gives for the mean energy of a particle with three transla-
tional degrees of freedom the result

m

2
v2 D 3

2
kT D f � 1

2
kT ;

which has been already used in Sect. 7.3.2.

The sequence of magnitudes for the three special velocities is

vw < v <
p

hv2i :

With the most probable velocity vw (7.27) Eq. 7.26 can be writ-
ten as

n.v/dv D n � 4v2

v3
w

p
�

e�mv2=2kTdv

D n � 4v2

v3
w � p

�
e�v2=v2

w dv :

(7.30)

The velocity distribution depends strongly on the temperature
T . In Fig. 7.16 two distributions are shown for two different
temperatures T1 and T2 which are related by T1=T2 D 1 W 4. The

Table 7.2 Mean values of thermal velocities

Quantity Symbol Mathematical expression

Most probable velocity vw

q
2kT
m

Mean velocity v

q
8kT
�m

D 2p
�
vw

Square root
of mean velocity square

p
hv2i

q
3kT
m

D
q

3
2vw

Figure 7.16 Velocity distribution of N2-molecules at two different tempera-
tures. The area under the two curves represent the total number of particles per
unit volume. For a closed gas system the two areas are equal

numerical values of the velocities v, vw and .v2/.1=2/ change by
a factor of 2 because they are proportional to the square root of
the temperature (see also Tab. 7.2).

Example

The density of nitrogen gas N2 at room temperature T D
300 K and at a pressure of 1 bar is

%.N2/ D 1:12 kg=m3;m.n2/ D 4:67 � 10�26 kg :

This gives

n D %=m D 2:4 � 1025 N2 molecules=m3

D 2:4 � 1019 N2 molecules=cm3 :

The numerical values for the velocities can be calculated
from (7.27) and (7.29) as

vw D 422 m=sI v D 476 m=sI
p

hv2i D 517 m=s :

The mean kinetic energy of a molecule is Ekin D
.3=2/kT D 6:21 � 10�21 J the energy density of all
molecules per cm3 is n � Ekin D n � .3=2/kT D 0:15 J=cm3.

J
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7.3.6 Collision Cross Section and Mean Free
Path Length

The model of the ideal gas describes the gas particles by small
rigid spheres with a radius ri that is small compared to the av-
erage distance d between the spheres. A collision takes place if
the spheres touch each other, i.e. if d � .r1 C r2/.

We define the impact parameter b for the collision between two
particles A1 and A2 as the distance between two straight lines
(Fig. 7.17):

1. The path of the centre of A1 without any interaction.
2. The straight line through the centre of A2 parallel to line 1.

(see also Sect. 4.3).

In this model a collision takes place if b � .r1 C r2/. At the
collision the closest distance between the centres of A1 and A2

is d D r1 C r2. All particles A1 for which their centre passes
through the circular area

� D � � .r1 C r2/
2 (7.31a)

Figure 7.17 Impact parameter b and collision cross section � for collisions of
hard spheres with radiii r1 and r2

N0·

N0

N0/e

N

A
Total cross section
(circles) as fraction
of total areaScattering volume

of gas particles

Incident particles
as point masses

∆x

σ

Figure 7.18 Illustration of collision cross section and mean free path length � [7.10]

around the centre of A2 are deflected from their straight path.
This area � is called the collisional cross section (see Sect. 4.3).

If a beam of particles A1 passes in the x-direction through a gas
with n particles A2 per cm3 at a sufficiently small number density
n (the mean distance d should be large compared to .r1 C r2/ the
probability that a particle A1 suffers a collision during the path
length �x is given by the quotient

P
�

A
D n � � ��x � A

A
D n � � ��x (7.31b)

where
P
� is the sum of the cross sections of all atoms A2 in

the volume V D A � �x and A is the total cross section of the
incident beam (Fig. 7.18).

If N particles impinge per sec onto the area A of the volume
V D A � �x the fraction �N=N that suffers a collision after a
path length �x is

�N

N
D n � � ��x: (7.32a)

In its differential form this reads

dN

N
D �n � � � dx : (7.32b)

The negative sign should indicate that the particle flux N de-
creases because the collisions deflect the particles out of the
x-direction.

Integration of (7.32b) gives the particle flux

N.x/ D N0 � e�n�x ; (7.33)

after a path length x through the collision volume.

The path length � which a particle A1 passes on the average
without a collision is

� D 1

N0

1Z

0

xjdN.x/

dx
jdx

D n � �
1Z

0

x � e�n�xdx D 1

n�
;

(7.34a)
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where jdN.x/=dxj � dx gives the number of collisions on the path
interval dx. The probability of a collision in the interval dx is
then jdN.x/=N0j.
The quantity � D 1=.n � �/ is called mean free path.

The mean free path � represents that path length after

which the number of particles in the incident beam has de-

creased to 1=e of its initial value.

The average time interval � between two successive collisions
can then be defined as

� D �

hvi D 1

n�hvi : (7.34b)

If both particles A1 and A2 move with velocities v1 and v2 the
mean velocity hvi in (7.34b) has to be replaced by the mean
relative velocity �v D v1 � v2 D

p
2v2. For collisions in a gas

at the temperature Tone then obtains instead of (7.34b) the mean
free collision time

� D 1

n � � �
p

2v2
: (7.34c)

Examples

1. At atmospheric pressure p D 105 Pa the number
density of molecules in the atmosphere is n � 3 �
1019 cm�3. For the elastic collision cross section � D
45 � 10�16 cm2 the mean free path is

� D 1

n � � � 7 � 10�6 cm D 70 nm :

With the mean velocity hvi D 475 m=s at T D 300 K
the mean flight time between two collisions becomes

� D �p
2hv2i

D �

r
m

6kT
D 1:1 � 10�10 s :

This means that nitrogen molecules in a gas under
normal conditions (p D 105 Pa, T D 300 K) suffer
1:34 � 1010 collisions per second!

2. In an evacuated container with a residual pressure
of p D 10�4 Pa (10�9 bar) the density is n D 3 �
1010 cm�3. Now the mean free path is 70 m and
therefore large compared with the dimensions of the
container. Collisions between molecules are seldom
and the molecules fly on straight lines until they hit
the walls of the vacuum container. J

7.4 Experimental Proof of the
Kinetic Gas Theory

There are many experimental methods to prove the statements
of kinetic gas theory and to measure important quantities such as
velocity distribution, collision cross sections, mean free path at

different gas pressures and temperatures. We will here discuss
only a few of them that are based on molecular beams or on
transport phenomena in gases such as diffusion, viscosity and
heat conduction in gases.

7.4.1 Molecular Beams

When atoms or molecules effuse out of a reservoir (pressure p,
volume V, temperature T) through a small hole A into a vac-
uum chamber they fly on straight paths until they hit the wall, if
their mean free path � is longer than the dimensions D of the
chamber (Fig. 7.19). The pressure in the vacuum chamber must
be low enough which can be reached with diffusion pumps (see
Sect. 9.2).

Placing a slit B with width b at a distance d from A, only
molecules can be transmitted by the slit, that fly into the an-
gular range j# j < " with tan " D b=2d around the x-axis.
After passing the slit they form a collimated molecular beam.
For not too high pressures p in the reservoir the molecules in
the beam follow a modified Maxwell–Boltzmann-distribution
N.v/ D n �v � f .v/ and the angular distribution N.#/ / N0 �cos#
shows a cosine dependence. The angular distribution can be
measured with a detector slewing over the angular range # .

With a velocity selector (Fig. 7.20) subgroups of molecules with
velocities within the range vs � .1=2/�v < v < vs C .1=2/�v
can be selected.

Such a selector consist in principal of two metallic circular discs
with radius R at a distance a, each having a slit with width�S D
R � �'. The two slits are twisted against each other by S D
R � '. When the discs rotate with the angular velocity ! only

Figure 7.19 Schematic depiction of a molecular beam apparatus

Figure 7.20 Principle of mechanical velocity selector
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molecules with velocity v can pass both slits, if their flight time
T D a=v between the two slits equals the time T2 D R � '=.R �
!/ D '=!. Their velocity is then

v D ! � a

'
(7.35)

For a slit width �S D R � �' with �' � ' the transmitted
velocity interval is

�v D v � �'
'

: (7.36)

Varying the angular velocity ! of the discs one can select any
velocity subgroup with a velocities up to vmax D !max � a=',
where !max is the maximum value that can be technically real-
ized. This allows one to measure the velocity distribution of the
molecules in the beam.

Example

' D 20ı D 0:35 rad; a D 10 cm. If molecules with
v D 400 m=s should be selected, the velocity selector has
to rotate with ! D 1:4 � 103 s�1 which corresponds to
13 370 rpm. J

When the density n.v/ of molecules in the molecular beam
follows the Maxwell–Boltzmann-distribution (7.30) the flux
N.v/ D v � n.v/ is

N.v/ D n.v/ � v D n � 4v3

v3
w

p
�

� e�mv2=2kT : (7.37)

The number of molecules with velocities in the interval from
v to v C dv, passing per sec through the area of 1 cm2 is then
N.v/ � dv.

Remark. For the velocity selector in the above example also
molecules with v D 21 m=s would be transmitted for ' D 20ıC
360ı i.e. at the next full turn. In order to prevent this ambiguity
one has to use at least a third disc in the middle between the two
discs with a slit tilted by '=2. Generally many discs are used
with many slits (Fig. 7.21) in order to transmit more molecules
per sec. For q discs at a distance a=q the tilt of the slits between
two successive discs should be '=q.

For the detection of the transmitted molecules several different
detectors have been developed.

Bolometer (Fig. 7.22). This is a small semiconductor plate
cooled down to very low temperatures with a small heat ca-
pacity C and a small heat conductivity G to its surrounding.
The molecules impinging onto the cooled surface transfer
their kinetic energy Ekin D .1=2/mv2 to the semiconduc-
tor. This increases its temperature by �T D N.v/ � Ekin=G

(see Sect. 10.2.2). The temperature increase results in a
change �R D .@R=@T/�T of the electric resistance R of
the semiconductor. This can be measured by the correspond-
ing change of the electric current I D U0=.R C R0/ that
flows through the circuit of semiconductor and external re-
sistor R0 in series with R, if a constant voltage U0 is applied

Figure 7.21 Velocity selector with 6 rotating discs. a Principle of selecting a
velocity class with particle flux N .v/dv, b arrangement for measuring collision
cross sections �.v/ by detecting the number N .v/ D N0 � e�n ��.v/�L that have
passed the scattering chamber with length L

Cooling

system

Temperature

control

Molecules

Small heat leak

Figure 7.22 Schematic design of a bolometer for measuring the flux N .v/ of
neutral molecules

(see Vol. 2). With such a device, it is possible to measure
a transferred power as small as 10�14 W! This corresponds
to a minimum rate of N.v/dv D 2:8 � 106=s molecules with
v D 400 m=s.
Ionization detector (Fig. 7.23). The neutral molecules are
ionized by electron impact (see Vol. 3). The ions with charge
q D Ce are collected on an electrode at negative voltage.
For a flux N of neutral particles the electric output current of
the detector is I D � � N � e where � � 1 is the ionization
probability of each neutral molecule.
Langmuir–Taylor detector. This is a heated wire where all
neutral particles with ionization energies smaller than the
work function of the hot wire are ionized if they hit the wire.
In this case, energy is gained if the electron is transferred
from the molecule to the metal wire. The ions are extracted
by an electric field and collected on a detector, for instance a
Faraday cup.
Modern methods for the measurement of the velocity dis-
tribution are based on laser-spectroscopic techniques (see
Vol. 3).

When the pressure p in the reservoir is increased, the mean free
path of the molecules in the hole A of the reservoir becomes
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Figure 7.23 Principle of ionization detector

z

Figure 7.24 Narrowing of the velocity distribution N .v/ in a supersonic beam

smaller than the dimensions of the hole. In this case the parti-
cles suffer collisions during their expansion into the vacuum.
Because the faster particles hit the slower particles ahead of
them and they transfer part of their kinetic energy, they become
slower and the slow particles faster. This implies that the ve-
locity distribution becomes narrower (Fig. 7.24). If the mean
velocity exceeds the local velocity of sound, a supersonic beam
is formed. Its velocity distribution is described by

N.v/ D Cv3 � e�m.u�v/2=2kTt : (7.38)

The width of the distribution around the mean velocity u D hvi
can be characterized by a translational temperature Tt which is
a measure for the relative velocities of the particles in the beam.
With increasing pressure p the temperature Tt decreases, which
means that the relative velocities decrease. Translational tem-
peratures below 1 K have been realized, where all particles have
nearly the same velocity u.

7.5 Transport Phenomena in Gases

Because molecules in a gas can freely move around within the
gas container many transport processes can occur. When the
molecules collide with each other or with the wall of the con-
tainer energy and momentum can be transferred. In a gas flow

also mass is transported. If molecules A in a sub-volume V1

can move into a volume V2 where molecules B are present, the
two species mix with each other until both sorts are uniformly
distributed over the whole volume (diffusion).

There are mainly 3 such transport phenomena:

Diffusion (mass transport),
heat conduction (energy transport),
gas flow with viscosity (momentum transport).

They occur always when local differences (gradients) of den-
sity, temperature or flow velocities are present. The important
point is that all these transport phenomena can be explained by
the kinetic gas theory. The experimental investigation of these
macroscopic processes gives information about the size of the
gas molecules and their mutual interactions (see Vol. 3).

7.5.1 Diffusion

When a bottle of an intensively smelling substance (for example
a pleasantly smelling perfume or the badly smelling hydrogen
sulphide H2S) is opened the odour can be soon sensed in the
whole room. The molecules escaping out of the bottle must
travel in a short time over several meters through the air at at-
mospheric pressure in spite of the very small free mean path of
� D 10–100 nm! This migration of molecules A through a gas
of molecules B resulting in a uniform spatial distribution of both
sorts A and B is called diffusion.

The diffusion is illustrated by Fig. 7.25, where a volume V

is divided by a thin wall into two parts, each containing only
molecules of one type. After removing the separating wall the
two types A and B of the molecules mix and fill the whole vol-
ume with spatially uniform concentration.

Diffusion is a net transport of particles from a region with
higher concentration to a region with lower concentration.

Figure 7.25 Diffusion of two differrent particles with densities nA.t/ and nB.t/
after opening a hole in the dividing wall at t D 0
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Figure 7.26 a Density gradient driving the diffusion of particles A through a
gas of particles B . At time t D 0 a hole is opened in the dividing wall and the
particles A diffuse into the volume V2. b On the left side NA particles A per sec
are continuously supplied, which are pumped away on the right side. The curves
show the distribution nA.x/ at different times ti

The examples above illustrate that diffusion always takes place
if density gradients are present. Diffusion reduces these gra-
dients until a uniform spatial distribution is reached, where the
density gradients are zero (Fig. 7.26a) unless external conditions
maintain a stationary density gradient. This can, for example,
be realized if particles A are continuously supplied to the left
volume in Fig. 7.25 and particles A and B are simultaneously
removed on the right side, thus maintaining a concentration gra-
dient (Fig. 7.26b).

We will now discuss diffusion in a more quantitative way. We
assume the density nA.x/ of particles A to be constant in the y-
and z-direction but to vary in the x-direction (Fig. 7.27). The
thermal velocities of the particles A are isotropic. This means
that the following two probabilities are equal:

1. The probability P� that A flies after its last collision at x� D
x0���cos# (� D mean free path) with a velocity v under an
angle # against the Cx-direction and passes the plane x D x0

from left to right.

Figure 7.27 Illustration of the derivation of the diffusion coefficient

2. The probability PC that A flies after its last collision at xC D
x0 C � � cos# with the velocity v under an angle # against
the �x-direction through the plane x D x0 from right to left.

We have to take into account that the velocities are not equal
for all molecules but follow a Maxwell–Boltzmann distribution
with the distribution function f .v/. The directions of their ve-
locities are randomly distributed. With the density nC.x/ left of
the plane x D x0 the flux dNC of particles within the velocity in-
terval from v to vC dv that pass in the time interval dt from left
to right under the angle # within the solid angle d˝ the plane
dA at x D x0 is

dNC.v/ D nCf .v/dv v dt � dA � cos# � d˝=4� ; (7.39)

because the volume from where they come, is dV D dA � cos# �
v � dt (Fig. 7.28).

A corresponding equation is obtained for dN�.v/. The question
is now which densities nC and n� have to be used?

The particles start from the position x D x0 ˙ �x .�x � � �
cos#/ of their last collision. There are the densities

nC D n0 C�x
dn

dx
:

n� D n0 ��x
dn

dx
:

(7.40)

On the average is�x D � �cos# . We define the vertical particle
flux density by the vector

j D dN

dA � dt
Oe

where dN is the number of particles which pass the area dA in
the plane x D x0 during the time interval dt. For that part of the
net flux of particles with the velocity v in the interval dv within
the solid angle d˝

dj.v/dv D � 1

dA

�
dNC.v/

dt
� dN�.v/

dt

�
dv (7.41)
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Figure 7.28 The number of particles passing during the time interval dt
through the area dA inclined under the angle # against the x-direction is
dn D n � f .v/ � v dv dt dA � cos#d#=4�

we obtain from (7.39) with d˝ D sin# � d# � d'

djx.v/dv D �2�f .v/v dv
cos2 # sin# d#d'

4�

dn

dx
: (7.41a)

Integration over ' gives the factor 2� , over # .0 � # � �=2/
the factor 1=3, while the integration over all velocities gives the
mean velocity

v D
Z
v � f .v/dv : (7.42)

One obtains finally for the total mean particle flux in the x-
direction

Fick’s Law:

jx D �� � v
3

� dn

dx
D �D � dn

dx
: (7.43)

For the general three-dimensional case this modifies to the vec-
tor equation

j D �D � grad n:

The particle flux j due to diffusion is equal to the product of
diffusion coefficient D and concentration gradient grad n.

The diffusion coefficient

D D 1
3� � v (7.44)

is proportional to the product of mean free path � and mean
velocity v. Using (7.34) and (7.28) we can express the diffusion
coefficient

D D � � v
3

D 1

n � �

r
8kT

9�m
(7.45)

for the diffusion of particles A through a gas of particles B with
density n by the collision cross section � and the mass m of
particles A. This shows that heavy particles diffuse slower than
light ones.

This can be demonstrated by the experiment shown in Fig. 7.29.
A porous cylinder of clay shows in air the same pressure inside
and outside. At time t1 a baker is put over the cylinder and he-
lium is blown into the baker. The pressure gauge shows at first
a higher pressure inside the cylinder, which gradually decreases
until it becomes equal to the pressure outside. At time t2 the

Figure 7.29 Demonstration of the fact that light particles diffuse faster than
heavy particles

baker is removed. Now the pressure inside the cylinder drops
below the external pressure until it finally approaches the exter-
nal pressure.

The explanation is the larger diffusion velocity of the lighter he-
lium atoms. It diffuses faster into the cylinder than the air in the
cylinder diffuses out. The total pressure therefore increases, un-
til the air has diffused out and the pressure difference between
inside and outside becomes zero. After the baker has been re-
moved there is no longer helium outside. Therefore, the helium
diffuses from the inside of the cylinder to the outside faster than
the air diffuses the opposite way. Therefore the pressure inside
drops at first below the outside pressure.

7.5.2 Brownian Motion

The diffusion of a microscopic particle A suffering collisions
with molecules B in a gas at atmospheric pressure can be ob-
served through a microscope if the mass of A is much larger
than that of the molecules B. This can be realized with cigarette
smoke particles that have diameters of about 0:1 µm. Illuminat-
ing the diffusion chamber, makes the particles A visible (even if
their diameter is small compared to the wavelength of the illumi-
nating light) because they scatter the incident light and appear
in the microscope as bright spots (see Vol. 2). This particle A

which contains still about 105 molecules, performs a random
walk through the gas with particles B (Fig. 7.30a). When ob-
serving the motion of A with sufficient local and time resolution
the motion appears on short straight lines between successive
collisions that abruptly change the direction of the motion. The
length of these straight lines is the mean free path length of the
particle A. The directions of the straight lines are statistically
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Figure 7.30 a Random path of a particle (Brownian Motion) induced by colli-
sions with air molecules. b Histogram of the distribution of the mean free path
between successive collisions

distributed. Such a random walk can be mathematically simu-
lated, if the lengths and the directions are generated by a random
generator. Figure 7.30b shows a histogram N.Li/ for the lengths
Li of the straight lines. Each bar indicates how often the length
Li is observed within the interval L to L C �L. The analytical
curve as envelope of the different bars gives the probability of
finding the length L. It has the form

W.L/ D a � e�L=� : (7.46)

The random motion of microscopic particles in liquid solutions
was first discovered 1827 by the English botanist Robert Brown

who believed initially that he observed small living microbes
until he realized that the motion was completely irregular and
should be attributed to lifeless particles. Magnified by a micro-
scope and put on a large screen it allows a fascinating view into
the micro-world, accessible to a large auditorium.

The mathematical description first given by Albert Einstein will
be treated in Vol. 3.

The Brownian motion can be simulated by moving pucks on an
air bearing stage, where a large number of small discs are kept
in motion by vibrating wires at the 4 edges of the stage. A larger
puck with a small light bulb moves in between the small discs
and its random motion is detected by a video camera. In fact,
the random path in Fig. 7.30a has been obtained in this way.

7.5.3 Heat Conduction in Gases

Heat conduction is also based on the motion of molecules which
transfer during collisions part of their kinetic energy to the col-
lision partner. This results in a transport of energy from regions
with higher temperature to those of lower temperature. The
mechanism of heat conduction is different for gases, liquids and
solid bodies (see Sect. 10.2). In solids the atoms are fixed to
definite positions while they can freely move in gases.

We start the discussion of heat conduction in gases with a gas
between two parallel plates at a distance d (Fig. 7.31) that are
kept at different temperatures T1 and T2. The transport of heat

dA1

T1 T2<

P1 P2
v1

n1 > n2

d

v2

Figure 7.31 Heat conduction in gases. The distance d is small compared to
the extensions of the plates. A pressure sensor measures the different pressures
p1 and p2 at different sides of the sensor

energy from the hotter to the cooler plate depends on the ratio
�=d of free mean path � to plate separation d.

At low gas pressures is� > d and the molecules can fly between
the two plates without suffering collisions in the gas volume.
Molecules that leave the plate 1 have the mean kinetic energy

Ek1 D 1
2 m � v2 D 3

2 kT1

For an isotropic distribution of the velocity directions of the
molecules with a density n

�Z D n cos# �A

�Z
vf .v/dv

�
��t � d˝=4�

molecules leaving plate 1 with velocities v within the solid angle
d˝ D sin# �d# �d' under the angle # against the surface normal
reach within the time interval �t the surface element �A on
plate 2 (see Fig. 7.28).

Integration over all possible velocities yields

Z D n v�A�t

4�

�=2Z

0

sin# cos# d#

2�Z

'D0

d'

D n

4
v�A with v D

1Z

0

vf .v/ dv :

(7.47)

We will assume that every molecule impinging on plate 2 will
stay there for a short time, adapt the temperature of plate 2 and
desorbs again. The surface element �A of plate 1 loses energy
because of the desorbing molecules

dW1

dt
�A D � Z1

�t
�A � U1 ; (7.48a)
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where dW=dt is the energy loss per unit surface and unit time
and U1 D .f =2/kT1 is the energy of a molecule with f de-
grees of freedom (kinetic, rotational and vibrational energy, see
Sect. 10.3). On the other hand the surface element wins the en-
ergy

dW2

dt
�A D Z2

�t
�A � U2 with U2 D 1

2
f kT2 (7.48b)

by molecules coming from plate 2 and impinging on plate 1.
Under stationary conditions is Z1 D Z2.

Therefore the net energy flow is

dW

dt
� A1 D � � A1.T2 � T1/

with � D n � v � k � f

8

(7.49a)

The constant � is called heat transfer coefficient. It has the unit
Œ�� D 1 J s�1 m�2 K�1.

The heat conduction (energy flux per unit time) jW D dW=dt

in gases at low pressures (� � d) is proportional to the tem-

perature difference between the walls and to the density n of

the gas molecules.

Since v / m�1=2 heavy molecules have a lower heat conduction
than light molecules. Because of their larger number f of de-
grees of freedom molecules transport more energy than atoms.
Since the pressure p D n � k � T is the same within the whole
volume between the plates the molecular densities n1 and n2 in
front of the plates differ according to

n1

n2
D T2

T1
: (7.49b)

The gas density is therefore lower in regions with higher tem-
peratures.

In order to decrease the heat conduction, the gas density has to
be low, i.e. the space between the plates should be evacuated.
The thermos bottle is an example, where low heat conduction is
realized in order to keep a liquid for a longer time on a nearly
constant temperature.

If the mean free path � is low compared to the plate separa-
tion (� � d) the molecules often collide on their way between
the plates. The heat energy of the hotter plate is no longer
directly transported by molecules to the cooler plate but trans-
ferred within a path x � � during collisions to other molecules.
Therefore a temperature gradient dT=dx appears in the gas vol-
ume. The energy flow per unit time through the unit surface
element of the plane x D x0 between the plates is similar to the
discussion in Sect. 7.5.1

dW

dt
D 1

3
� � d

dx
.v � n � U/

D 1

3
� � n � f

2
kT � dv

dx
:

(7.50a)

Here the relation n � U D .1=2/n � f � kT of Eq. 7.49 has been
used.

With

dv=dx D dv

dT
� dT

dx
D
p

8k=�m

2 �
p

T
� dT

dx

this can be written as

dW

dt
D � � dT

dx
: (7.50b)

The constant

� D 1

12
f � n � kv�

is the heat conductivity, with the unit

Œ�� D 1
J

s � m � K
:

The heat conductivity is for � � d independent of the gas

density n because, according to (7.34), is � D 1=.n � �/ and
therefore

� D 1

12

f � k � v
�

: (7.50c)

7.5.4 Viscosity of Gases

As has been discussed in the previous sections diffusion and
heat conduction can be ascribed to mass- and energy transport
by molecules. They are accomplished by the thermal motion
of molecules at local variations of density (diffusion) and tem-
perature (heat conduction). Diffusion and heat conduction also
occur if the gas as a whole is at rest, i.e. if the macroscopic
momentum P D P

pi D 0.

When in addition to the thermal motion of the molecules a
macroscopic flow of the whole gas volume occurs (gas current),
further phenomena appear as for instance friction (viscosity), if
the flow velocity varies locally (Sect. 8.3). Also the viscosity is
related to the thermal motion of the molecules as can be illus-
trated by the following example:

We consider a gas, which flows into the y-direction with a flow
velocity u.x/ that varies in the x-direction (Fig. 7.32). An exam-
ple is the air flow over a lake with the water surface at the plane
x D 0. Layers of the streaming air close to the water surface are
retarded by friction with the water surface and have therefore a
smaller flow velocity than higher layers.

We select a layer between the planes x D x0˙�x=2 (Fig. 7.32b).
The velocity of the gas molecules is a superposition of their
thermal velocities with the flow velocity. Because of their ther-
mal velocities, the gas molecules pass from their layer x D
x0 ˙ �x=2 into adjacent layers and collide there with other
molecules. Since the y-component of their velocity is higher
than that of molecules in layers x > x0 they transfer part of
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Figure 7.32 Viscosity of gases. The gas streams into the y-direction with a
flow velocity u.x/, that decreases with increasing x . a velocity uy .x/; b molec-
ular model of viscosity

their momentum to these molecules and increase their mean y-
component. The amount of the transferred momentum depends
on the difference between the components vy.x/, i.e. on the gra-
dient du=dx of the flow velocities.

The transport of momentum occurs in the x-direction of decreas-
ing u.x/. When we define the momentum flux as the momentum
transfer through the unit area in the plane x D x0, the viscosity
law for gases with locally varying flow velocities can be written
as

jp D � � du

dx
: (7.51)

The factor � is the coefficient of internal friction or coefficient

of viscosity. A consideration similar to the derivation of the
diffusion coefficient (see Sect. 7.5.1) yields with (7.34)

� D 1
3 n � m � v �� : (7.52)

The momentum transfer in gas flows with a velocity gradient
du=dx is proportional to the particle density n and the mean ther-
mal velocity v D .8kT=n � m/1=2, to the mean free path � and
the flow velocity gradient du=dx.

It decreases with decreasing �, i.e. with increasing collision
cross section. Heavy particles cause a higher viscosity, because
of their higher momentum transfer.

7.5.5 Summary of Transport Phenomena

Diffusion, heat conduction and internal friction can be explained
by the thermal motion of the molecules and the exchange of en-
ergy and momentum during collisions. All these phenomena can
be described by the kinetic gas theory. Therefore from measure-
ment of the macroscopic quantities diffusion coefficient D, heat
conductivity � and viscosity coefficient �, which describe aver-
ages over the quantities of the individual molecules, information
can be obtained about the microscopic quantities mean free path
�, collision cross section � D 1=n � � and mean velocity v of
the molecules.

In order to recall and clarify the relations between the three
transport coefficients they are here again arranged in a compact
form.

At high gas pressures (� � d): Diffusion coefficient

D D 1
3v �� D 1

3v=.n � �/ : (7.53a)

Energy transport through heat conduction between two plates
at a distance d and temperature difference �T:

dW

dt
D �

d
��T (7.53b)

with the heat conductivity

� D 1

12

f � k � v
�

D 1

4
D � f � k � n (7.53c)

which is independent of the gas pressure, because D / .1=n/.
Viscosity coefficient:

� D 1
3 nmv �� D n � m � D (7.53d)

At low pressures (� � d): The energy transport becomes
proportional to the gas density

dW

dt
D � ��T

� D n � v � k � f

8
D 3

2

�

�
D 3

2
� � n � �

(7.53e)

In Tab. 7.3 the transport coefficients of some gases are compiled.

Table 7.3 Selfdiffusion coefficient D , heat conductivity �, and coefficient of
viscosity � of some gases at p D 105 Pa and T D 20 ıC

Gas D=m2=s �=J m�1s�1K�1 �=Pa � s

He 1:0 � 10�4 1:5 � 10�2 1:5 � 10�5

Ne 4:5 � 10�5 4:6 � 10�2 3:0 � 10�5

Ar 1:6 � 10�5 1:7 � 10�2 2:0 � 10�5

Xe 6:0 � 10�6 0:5 � 10�2 2:1 � 10�5

H2 1:3 � 10�4 1:7 � 10�1 8:0 � 10�6

N2 1:81 � 10�5 2:6 � 10�2 1:7 � 10�5

O2 2:4 � 10�5 2:0 � 10�2 2:0 � 10�5
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7.6 The Atmosphere of the Earth

Our atmosphere consists of a mixture of molecular and atomic
gases. In the lower part it contains also water vapour, aerosols
and dust particles. Its composition is listed in Tab. 7.4. The
density gradient dn=dz, described by Eq. 7.6 causes diffusion
which tries to establish a uniform density. However, the gravity
acts against this tendency and results in the exponential density
function n.z/. Stationary equilibrium is reached, when for all
values of z the upwards directed diffusion current jD is just com-
pensated by the downwards directed current jg of particles in the
gravity field of the earth

jD.z/C jg.z/ D 0 : (7.54)

The diffusion current is according to (7.43)

jD D �D � dn

dz
:

With n D n0 � e�.mgz=kT/ ) dn=dz D �.mg=kT/ � n one obtains

jD D CD � m � g

k � T
� n : (7.54a)

Opposite to the gravitational force is the friction force acting on
the falling molecules. This results in a constant fall velocity vg

and therefore a constant particle current

jg D n � vg : (7.55)

Since jg D �jD we obtain for the constant sink velocity

vg D �jD=n D m � g

kT
� D : (7.56)

It depends on the diffusion constant D and therefore according
to (7.44) on the mean free path �.

From (7.54) and (7.56) we obtain

�D
dn

dz
D n � m � g

kT
� D : (7.57)

Table 7.4 Gas composition of the earth atmosphere

Component Volume %

Nitrogen N2 78.084

Oxygen O2 20.947

Argon Ar 0.934

Carbon-Dioxyd CO2 0.032

Neon Ne 0.0018

Helium He 5:2 � 10�4

Methane CH4 2 � 10�4

Krypton Kr 1:1 � 10�4

Hydrogen H2 5 � 10�5

trace gases (e.g. SO2, O3, NO2) < 5 � 10�4

Figure 7.33 Stationary density distribution n.z/ in the isothermal atmosphere,
caused by the superposition of upwards diffusion and downward particle flux in
the gravitational field of the earth

Integration yields again the barometric formula

n D n0 � e�mgz=.kT/ : (7.58)

The exponential decrease of the density in the isothermal

atmosphere is due to the common action of diffusion and

gravitational force, namely the compensation of the upwards

diffusion due to the density gradient and the downwards

motion of the molecules due to the gravitation (Fig. 7.33).

The concentration ni.z/ of molecules with mass mi therefore
depends on their mass mi. For the different molecular compo-
nents in the earth atmosphere a different z-dependence appears
(Fig. 7.34). The density of the heavier components should
decrease more rapidly with increasing height than the lighter
component. However, the measurements show that the compo-
sition of the atmosphere up to altitudes of about 30 km does not
change much with the altitude. This has the following reason:
The atmosphere is not isothermal but the temperature changes
with increasing altitude (Fig. 7.35). These temperature dif-
ferences causes pressure differences and strong upwards and
downwards air currents which mix the different layers of the

Heavier 
component
m1

Lighter
component
m2

Figure 7.34 Density distribution of two molecular components with different
masses in an atmosphere in the gravity field of the earth, if the atmosphere is
governed by diffusion
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a) b)

Figure 7.35 Temperature trend T .h / in the earth atmosphere. a Measured dependence on a logarithmic scale; b Temperature trend on a linear scale. The black
curve gives the dependence T .h / of the standard atmosphere [7.10]

atmosphere. The temperature and its dependence on z is deter-
mined by the locally varying net energy flux into the different
layers.

There are at first the absorption of the sun radiation which heats
up the atmosphere. Furthermore the absorption of the infrared
radiation emitted by the earth surface contributes to the energy
flux. The radiation scattered back by the atmosphere diminishes
the energy of the different parts of the atmosphere in a different
way [7.5–7.8].

In order to standardize the description of the atmosphere, a
model atmosphere was defined which serves as the standard at-
mosphere [7.7]. It is divided into different layers (Fig. 7.35).
Within these layers the temperature T.h/ is a defined function
which should be close to the measured values. Between these
layers small regions appear where the temperature is nearly con-
stant. They are called “pauses”.

The troposphere extends from the ground to altitudes of about
8–12 km, where the upper limit depends on the season of the
year. In the troposphere our weather takes place. The temper-
ature decreases with increasing height with a slope dT=dz �
6ı=km from a mean value T.z D 0/ D 17 ıC to T.z D
12 km/ D �52 ıC. The nearly linear temperature decrease is
caused by the heat transport from the earth surface into the at-
mosphere (convection, heat conduction and infrared radiation)
which decreases nearly linear with increasing z.

Above the troposphere lies a thin layer, the tropopause, where
the temperature stays nearly constant. The range between 10
to 50 km altitudes is the stratosphere. In the lower part of the
stratosphere the temperature is nearly constant. With increasing

altitude it increases up to 0 ıC. The reason for the temperature
increase is the ozone layer between 30–50 km, which contains
O3-molecules that absorb the UV-radiation from the sun and are
excited into higher energy states. The excited ozone molecules
collide with other atmospheric molecules and transfer their ex-
citation energy into kinetic energy of the collision partners thus
raising the temperature.

Above the stratosphere lies the stratopause, followed by the
mesosphere between 50–80 km altitude. Here the tempera-
ture decreases with increasing altitude down to �93 ıC and the
molecular composition changes. With increasing altitude the
lighter elements prevail as shown in Fig. 7.34. Because of the
lower density the collision rate is much lower than in the tropo-
sphere and the mean free path is several kilometres. Therefore
air currents are less effective in mixing the different layers.

The mesopause separates the mesosphere form the higher ther-

mosphere, (85 km until 500–800 km) where the temperature
rises up to 1700 ıC. The temperature rise is due to collisions
with high energy particles (electrons and protons) from the sun
(sun wind) which also cause the polar light phenomena (aurora
polaris). The density decreases down to 10�6 Pa D 10�11 bar. In
spite of the low density, friction effects are-non negligible. The
international space station ISS in about 350 km above ground
flies through the thermosphere and it has to be lifted from time
to time, because it loses kinetic energy and therefore altitude due
to friction. The extreme ultraviolet radiation and the solar wind
cause dissociation and ionization of the atmospheric molecules.
Part of the components in the thermosphere are therefore ions.
The thermosphere is part of a larger range in the atmosphere
called the ionosphere which extends far into the space around
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Figure 7.36 Dependence of pressure p.h / and density n.h / on a logarithmic
scale [7.11]

the earth. It is no longer spherical symmetric because the mag-
netic field of the earth influences the path of charged particles
(see Vol. 2) which move on spiral paths around the magnetic
field lines. The variation of the temperature T.h/ with increas-
ing height h implicates that density n.h/ and pressure p.h/ are
no longer strictly proportional (Fig. 7.36).

The evaporation and condensation of water plays an important
role in the lower atmosphere. Also the spurious concentrations
of molecules with dipole moment such as OH, CO, CO2, NH4

etc. and dust particles and other aerosols have a pronounced
influence on the weather conditions in the troposphere. The
Chemistry of the atmosphere based on reaction of the differ-
ent species by collisions with each other, is a subject of intense
research and there are still many open questions [7.3a–7.5].

Summary

For a constant temperature the pressure p of a gas in a
closed but variable volume V obeys the Boyle–Mariotte law:
p � V D const
The air pressure in an isothermal atmosphere decreases
exponential with the altitude h above ground, due to the grav-
itational force.
For the particle density n.h/ holds:

N.h/ D n.0/ � expŒ�mgh=kT� :

Without mixing effects in the atmosphere the concentration
of particles with larger mass m therefore decreases faster
with h than for those with lighter mass.
The real earth atmosphere in not isothermal. Due to up-
wards and downwards air currents the different layers of the
atmosphere are mixed which leads to an equilibrium of the
concentrations of different masses.
The kinetic gas theory explains the macroscopic features
of gases such as pressure and temperature by the average
momentum and the kinetic energy of the gas molecules.
With the Boltzmann constant k the mean kinetic energy of
molecules with mass m is related to the temperature T by
.1=2/mv2 D .3=2/kT .
The velocity distribution n.v/ of gas molecules at ther-
mal equilibrium is the Maxwell–Boltzmann distribution
n.v/dv D v2 � expŒ�.1=2/mv2=kT�dv for the magnitude
v D jvj of the velocity. The distribution n.vi/, .i D x; y; z/ of
the velocity components vi is a Gaussian function, symmet-
ric to vi D 0.
These distributions can be experimentally determined in
molecular beams using mechanical velocity selectors. The

molecular beams are formed by expanding a gas from a reser-
voir through a small hole into the vacuum, where the mean
free path is longer than the dimensions of the vacuum cham-
ber. The beam can be collimated by small apertures which
transmit only molecules with small transverse velocities.
Always when gradients of concentrations in a gas exist,
diffusion processes occur which try to equalize the concen-
trations. The mean diffusion particle flux jD D �D � grad n

is proportional to the gradient of the particle density n. The
diffusion constant D depends on the kind of particles. Dif-
fusion causes a mass transport from regions of high particle
density n to those of low density.
If velocity gradient in a gas flow appear, viscosity causes mo-
mentum transfer from particles with higher flow velocity to
those with lower velocity.
If temperature gradients appear in a gas, energy is transported
by diffusing molecules from regions of higher temperature to
those of lower temperature. For a one-dimensional tempera-
ture gradient dT=dx the transferred heat power is dW=dt D
� � dT=dx. The heat conductivity � depends on the particle
density n, the mean velocity v, and the mean free path �.
The density distribution n.h/ in the atmosphere is determined
by the common action of gravitational attraction of the air
molecules by the earth and the diffusion current from regions
with higher density to those with lower density. In the real
earth atmosphere furthermore vertical and horizontal air cur-
rents occur caused by local heat sources due to absorption of
sun radiation and infrared radiation from the earth surface.
This convection leads to a mixing of different layers in the
lower atmosphere.
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Problems

7.1 What would be the density distribution in the atmo-
sphere, if the dependence of the gravitational force on the
altitude is taken into account?

7.2 At which altitude exists, according to (7.6), a pressure
of 1 mbar, if the constant value T D 300 K is assumed for the
temperature T.h/?

7.3 Calculate from (7.6) the pressure at h D 100 km and the
density n for T D 250 K.

7.4 A balloon with V D 3000 m3 floats at h D 1000 m and
a temperature of 20 ıC. What is the maximum weight of bal-
loon with ballast mass and passengers (without the weight of
the filling gas) if one uses as filling gas
a) helium
b) hydrogen gas H2

at a pressure equal to the external air pressure.
(%air D 1:293 kg=m3, %He D 0:1785 kg=m3, %H2 D 0:09 kg=m3

at T D 20 ıC and p D 105 Pa).

7.5 A shop for diving equipment offers for measuring the
diving depth a glass tube with movable piston that compresses a
gas volume V D A � x. Down to which depth is the uncertainty
of the device �z � 1 m if the piston edge can be read with an
accuracy of 1 mm and x.p0/ D 0:2 m.

7.6 Which fraction of all gas molecules has a free path that
is larger than
a) the mean free path �
b) 2�?

7.7 Calculate the probability that N2-molecules in a gas at
T D 300 K have velocities within the interval 900 m=s � v �
1000 m=s. What is the total number N.v/ of molecules with ve-
locities within this interval in a volume V D 1 m3 at T D 300 K
and p D 105 Pa?

7.8 What is the thickness �z of an isothermal atmospheric
layer at T D 280 K between the altitudes z1 and z2 with p.z1/ D
1000 hPa and p.z2/ D 900 hPa?

7.9 What is the square root of the mean square relative ve-
locities between two gas molecules
a) for a Maxwell distribution
b) if the magnitudes of all velocities are equal but the directions

uniformly distributed?

7.10 The mean free path � in a gas at p D 105 Pa and
T D 20 ıC is for argon atoms �Ar D 1 � 10�7 m and for N2

molecules �N2 D 2:7 � 10�7 m.
a) What are the collision cross sections �Ar and �N2 ?
b) How large are the mean times between two successive colli-

sions?

7.11 In a container is 0:1 kg helium at p D 105 Pa and T D
300 K. Calculate
a) the number of He-atoms,
b) the mean free path �,
c) the sum

P
Si of all path lengths Si which is passed by all

molecules in 1 s. Give this sum in the units m and light years.

7.12 The rotating disc of a velocity selector with a slit allows
N2 molecules with a Maxwellian distribution at T D 500 K to
pass for a time interval �t D 10�3 s. A detector at 1 m distance
from the disc measures the time distribution of the molecules.
What is the half width of this distribution?

7.13 What is the minimum velocity of a helium atom at
100 km above ground for leaving the earth into space? At which
temperature would half of the N2-molecules above 100 km alti-
tude escape into space?

7.14 The exhaust gases of a factory escaping out of a 50 m
high smokestack have the density % D 0:85 kg=m3. How large
is the pressure difference at the base of the smokestack to that
of the surrounding air with %air D 1:29 kg=m3?

7.15 Up to which volume a children’s balloon (m = 10g) has
to be blown and filled with helium at a pressure of 1.5 bar, in
order to let it float in air?

7.16 In the centre of the sun the density of protons and elec-
trons is estimated as n D 5 � 1029=m3 at a temperature of
1:5 � 107 K.
a) What is the mean kinetic energy of electrons and protons?

Compare this with the ionization energy of the hydrogen
atom (Eion D 13:6 eV).

b) What are the mean velocities?
c) How large is the pressure?

7.17 Determine the total mass of the earth atmosphere from
the pressure p D 1 atm D 1013 hPa the atmosphere exerts onto
the earth surface.

7.18 A research balloon has without filling a mass m D
300 kg. How large must be the volume of helium inside the
balloon to let it rise up if the helium pressure at any height is
always 0.1 bar higher than that of the surrounding air? (T.h D
0/ D 300 K, T.h D 20 km/ D 217 K)

7.19 What would be the height of the earth atmosphere
a) if the atmosphere is compressed with a pressure at the up-

per edge (assumed to be sharp) of 10 atm at a temperature of
300 K?

b) at T D 0 K where all gases are solidified?
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Up to now we have only considered liquids and gases at rest
where the total momentum P D P

pi D 0, although the mo-
menta pi of the individual molecules, because of their thermal
motion, are not zero but show a Maxwellian distribution with
directions uniformly spread over all directions.

In this chapter, we will discuss phenomena that occur for
streaming liquids and gases. Their detailed investigation has
led to a special research area, the hydrodynamics resp. aero-

dynamics which are treated in more detail in special text-
books [8.1a–8.3b].

The macroscopic treatment of fluids in motion generally ne-
glects the thermal motion of the individual molecules but
considers only the average motion of a volume element �V,
which can depend on the position r D fx; y; zg. Since even for
very small volume elements with dimensions in the mm-range
�V still contains about 1015 molecules, the averaging is justi-
fied. The main difference between streaming fluids and gases is
the density, which differs by about 3 orders of magnitude. This
is closely related to the incompressibility of liquids while gases
can be readily compressed. For streaming liquids, the density %
is constant in time, while the gas density can vary with time and
position.

A complete description of the macroscopic motion of liquids
and gases demands the knowledge of all forces acting on a vol-
ume element �V with the mass �m D % � �V. These forces
have different underlying causes:

pressure differences between different local positions induce
forces Fp D �grad p ��V on a volume element �V.
The gravity force Fg D �m � g D % � g � �V leads for fluid
flows with a vertical component to acceleration of �V.
If the flow velocity u depends on the position r this results
in friction forces Ff between layers of the fluid flow with
different values of u.
Charged particles in streaming fluids experience additional
forces by external electric or magnetic fields (Lorentz force
see Vol. 2). Such forces play an important role in stars and
in laboratory plasmas. They are therefore extensively inves-
tigated in Plasmaphysics and Astrophysics. We will discuss
them here, however, no longer, because their treatment is the
subject of magneto-hydrodynamics and it would exceed the
frame of the present textbook.

The Newtonian equation for the motion of a mass element
�m D % ��V in motion is then

F D Fp C Fg C Ff D �mRr

D % ��V � du

dt
;

(8.1)

where u D dr=dt is the flow velocity of the volume element�V.

Before we try to solve this equation we will discuss at first some
basic definitions and features of fluids in motion.

8.1 Basic Definitions
and Types of Fluid Flow

The motion of the whole liquid is known, if it is possible to
define the flow velocity u.r; t/ of an arbitrary volume element
dV at every location r and at any time t (Fig. 8.1). All values
u.r; t0/ for a given time t0 form the velocity field (also named
flow field) which can change with time. If u.r/ does not depend
on time, the velocity field is stationary.

For a stationary flow the velocity u.r/ is at any position r tem-
porally constant. It can, however, differ for different locations r

(Fig. 8.1b).

The location curve r.t/, which is traversed by a volume element
�V (e.g. visualized by a small piece of cork) is called its stream-

line or stream filament (Fig. 8.1). The density of streamlines is
the number of streamlines passing per second through an area of
1 m2. All streamlines passing through the area A form a stream

tube. Since the liquid is always moving along the stream lines
no liquid leaks out of the walls of a stream tube.

For a stationary flow the path r.t/ of a volume element dV fol-
lows the curve u.r/ of the flow field. For non-stationary flows
(@u=@t ¤ 0), this is generally not the case as is illustrated in
Fig. 8.2, where the curve u.r; t1/ of the velocity field at time t1
extends from P1 via P2 to P3. However, when the volume ele-
ment dV has arrived in P2 at the time t1 C�t, the velocity field
has changed meanwhile and the volume element follows now
the curve u.r; t1 C�t/ from P2 to P4.

Since the different forces in (8.1) generally have different direc-
tions and furthermore the friction force depends on the velocity
gradient the motion of dV depends on the relative contribution

Figure 8.1 a Stream line, stream tube and flow velocity u.r; t/; b Momentary
condition of a flow field (velocity field)
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Figure 8.2 In a nonstationary flow the path of a particle does not necessarily
follow a streamline u.r ; t/

Figure 8.3 Example of a laminar flow

Figure 8.4 Streamline apparatus. a Angle view, b Side view

of the different forces. Liquids where the friction forces are neg-
ligible compared to the other forces are called ideal liquids. If
the frictional forces are large compared to all other forces we
have the limiting case of viscous liquids.

Examples for the first case are the flow of liquid helium through
a pipe or of air along the smooth wing of an airplane, while
the second case is realized by the flow of honey or molasses
out of a sloped glass container onto a slice of bread or the slow
flow of heavy oil through pipelines. The real liquids and gases
are located between these two limiting cases. A flow where the
stream lines stay side by side without mixing is called a lam-

inar flow (Fig. 8.3). Laminar flows are always realized if the
frictional forces are dominant. They can be demonstrated with
the streamline generator. This is an apparatus where the bot-

Figure 8.5 Laminar flow from left to right around different obstacles, pho-
tographed with the streamline device of Fig. 8.4

Figure 8.6 A laminar flow coming from left becomes turbulent after impinging
on a plate

tom of two containers has narrow slits arranged in such a way,
that the liquid from each container streams alternately through
every second slit downwards between two parallel glass plates
(Fig. 8.4). When one container is filled with red dyed water and
the other with black tinted water the stream lines are alternately
black and red. With such a demonstration apparatus the stream
line conditions with different obstacles in the flow can be read-
ily shown to a large auditorium, if projected onto a large screen
(Fig. 8.5).

Turbulent flows are generated by friction between the wall and
the peripheral layer of the flow if the internal friction of the
flow is smaller than the accelerating forces. Vortices are formed
which can intermixe the stream lines completely (Fig. 8.6).
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8.2 Euler Equation for Ideal Liquids

A volume element dV with the flow velocity u.r; t/ passes dur-
ing the time interval dt a path length dr D udt. Starting from
the position r it reaches the position r C u � dt at time t C dt and
has there the velocity

u C du D u.r C u dt; t C dt/ : (8.2)

Even for stationary flows, the velocity can change with position.
For example, a liquid flowing through a pipe increases its veloc-
ity when the pipe cross section decreases (Fig. 8.3). The stream
line density is there increased. For nonstationary flows the ve-
locity changes also with time even at the same location, because
@u=dt ¤ 0.

We define the substantial acceleration of a volume element dV

as the total change of its velocity u D fux; uy; uzg when dV

passes during the time interval dt from the position r to r C dr.
This total acceleration has two contributions:

1. the temporal change @u=@t at the same position
2. the change of u when dV passes from r to rCdr. This change

is per second .@u=@r/ � .@r=@t/.

This can be written in components as

dux

dt
D @ux

@t
C @ux

@x

dx

dt
C @ux

@y

dy

dt
C @ux

@z

dz

dt
(8.3a)

with corresponding equations for the other components uy and
uz.

In vector form this reads with ux D dx=dt, uy D dy=dt, uz D
dz=dt

du

dt
D @u

@t
C .u � r/u : (8.3b)

Here u � ru is the scalar product of the vector u and the tensor

ru D

0
BBBBBB@

@ux

@x

@ux

@y

@ux

@z

@uy

@x

@uy

@y

@uy

@z

@uz

@x

@uz

@y

@uz

@z

1
CCCCCCA
:

The substantial acceleration is composed of the time derivative
@u=@t of the velocity at a fixed position r and the convection
acceleration .u � r/u. The first contribution is only nonzero for
nonstationary flows, the second only if the velocity changes with
the position r.

The equation of motion for an ideal liquid (frictional forces are
negligible) which experiences the accelerating forces of gravity
Fg D m �g and pressure gradient Fp D �grad p �dV is the Euler

equation

du

dt
D @u

@t
C .u � r/u D g � 1

%
grad p : (8.4)

This is the basic equation for the motion of ideal liquids, which
was already postulated by L. Euler in 1755.

8.3 Continuity Equation

We consider a liquid volume dV D A � dx, which flows in
x-direction through a pipe with variable cross section A.x/
(Fig. 8.7a). Its mass is dM D % � dV D % � A � dx. Through
the cross section A1 flows per time unit the mass

dM

dt
D %A1

dx

dt
D %A1ux1 : (8.5)

We assume, that at the position x D x0 the cross section A

changes to A2. For incompressible liquids % remains constant.
Since the liquid cannot escape through the side walls the mass
flowing per time unit through A2 must be equal to that flowing
through A1. This gives the equation

%A1ux1 D %A2ux2 ) ux1

ux2

D A2

A1
: (8.6)

Through the narrow part of the pipe the liquid flows faster than
through a wide part. The product

j D % � u (8.7)

is called mass flow density. The product I D j � A is the total

mass flow and gives the mass flowing per unit time through the
cross section A.

Equation 8.6 can then be written as I D const. The total mass
flow through a pipe is the same at every position in the pipe.

This statement about the conservation of the total mass flow can
be formulated in a more general way: The volume V contains at

Figure 8.7 Illustration of the continuity equation: a in a pipe with changing
diameter; b in a volume V with surface S with a mass flow dM=dt through V ;
c with a source inside a volume V
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time t the liquid mass

M D
Z

V

% dV : (8.8)

The mass per volume changes with time if mass flows out of
the volume or into the volume. The mass flowing per second
through its surface S is

�@M

@t
D
Z

S

% � u dS D
Z

S

j dS ; (8.9)

where the normal vector dS is perpendicular to the surface ele-
ment dA.

According to Gauß’ law (see textbooks on vector analysis
e.g. [8.8]) the surface integral can be converted into a volume
integral over the volume V enclosed by the surface S.

Z

S

% � u � dS D
Z

V

div.% � u/dV ; (8.10)

and we obtain from (8.8)–(8.10) for a constant volume V the
relation

� @

@t

Z

V

% dV D �
Z
@%

@t
dV D

Z
div.%u/dV : (8.11)

Since this must be valid for arbitrary volumes this gives the con-
tinuity equation

@%

@t
C div.%u/ D 0 ; (8.12)

which states that for any mass flow the total mass is conserved,
i.e. mass is neither produced nor annihilated.

For a constant volume element dV (8.12) can be written as

div.% � u/dV D �@%
@t

dV D � @

@t
.dM/ : (8.12a)

The expression div.% � u/ � dV gives the mass that escapes per
second out of the volume element dV. Therefore div.% � u/ is
called the source strength per unit volume. A source which
delivers the mass dM=dt per sec leads to a mass flow div.% � u/
per sec through the surface surrounding the source (Fig. 8.7c).

The continuity equation (8.12) is valid for liquids as well as for
gases. For incompressible liquids is @%=@t D 0 and % is further-
more spatially constant. The equation of continuity simplifies
then to

div.u/ D 0 (continuity equation for
incompressible liquids)

: (8.13a)

For the three components this equation reads

@ux

@x
C @uy

@y
C @uz

@z
D 0 : (8.13b)

In pipes with constant cross section A the liquid flows only into
one direction which we choose as the x-direction. Then uy D
uz D 0 and (8.13b) becomes @ux=@x D 0 ) ux D const.

8.4 Bernoulli Equation

If a liquid or a gas flows in x-direction through a pipe with vari-
able cross section A.x/ the flow velocity is larger at locations
with smaller cross section (continuity equation). The volume
elements therefore have to be accelerated and have a higher ki-
netic energy than at places with larger cross section. This results
in a decrease of the pressure p. This can be seen as follows:

In order to transport the volume element dV1 D A1 � �x1 in the
wider part of the pipe through the cross section A1 it has to be
shifted by �x1 against the pressure p1 (Fig. 8.8). This demands
the work

�W1 D F1�x1 D p1A1 ��x1

D p1�V1 :
(8.14a)

In the narrow part of the pipe is �V2 D A2 � �x2 and the work
necessary to shift �V2 by �x2 against the pressure p2 is

�W2 D p2A2�x2

D p2�V2 :
(8.14b)

The kinetic energy of the volume elements is

Ekin D 1
2�M � u2 D 1

2% � u2 ��V :

For ideal liquids (frictional forces are negligible) the sum of
potential and kinetic energy has to be constant (energy conser-
vation). This gives the equation

p1�V1 C 1
2%u2

1�V1 D p2�V2 C 1
2%u2

2�V2 : (8.15)

For incompressible liquid is % D constant and therefore �V1 D
�V2 D �V. This simplifies (8.15) to

p1 C 1
2%u2

1 D p2 C 1
2%u2

2 : (8.16)

For a frictionless incompressible liquid flowing through a hori-
zontal pipe with variable cross section (Fig. 8.9) we obtain for a
stationary flow from (8.16) the Bernoulli Equation

p C 1
2%u2 D p0 D const : (8.17)

The constant p0 is the total pressure which is reached at lo-
cations with u D 0. the quantity ps D .%=2/u2 D p0 � p

is the dynamic stagnation pressure (ram pressure), while
p D p0 � ps is the static pressure of the flowing liquid.

Figure 8.8 Illustration of Bernoulli-equation
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Figure 8.9 Demonstration of Bernoulli equation by pressure measurements in
stand pipes. The pressure difference is �p D % � g � �h . a For ideal liquids
without friction; b for real liquids with friction. The liquid streams from left to
right

The Bernoulli equation can be demonstrated with the arrange-
ment shown in Fig. 8.9, where dyed water flows through a
horizontal glass tube with variable cross section and vertical
stand pipes. The rise h in the vertical stand tube gives the static
pressure p D % � g � h. At the narrow parts of the horizontal pipe
the flow velocity is larger and therefore pressure and height h are
smaller. In Fig. 8.9a the situation for an ideal frictionless liquid
with p.x/ D constant for constant cross section is shown, while
Fig. 8.9b illustrates the influence of friction on the pressure p.x/.
For tubes with constant cross section a linear decrease of p.x/ is
observed.

The three quantities p, p0 and ps can be measured at arbitrary
locations in the flow with the devices shown in Fig. 8.10a–d.
With a pressure gauge, shown in Fig. 8.10a which has a small
hole in the sidewall of a tube, the liquid flow, streaming around
the tube creates a static pressure inside the tube, which is mon-
itored by a pressure manometer. The pitot-tube (Fig. 8.10b and
c) has a hole at the end of the tube. If the tube is aligned parallel
to the stream lines the flow velocity at the head of the tube is
u D 0, i.e. the measured pressure is the total pressure p0. It
can be measured either with a manometer (Fig. 8.10b), or with a
vertical stand pipe (Fig. 8.10c). With a combination of pressure
gauge and Pitot tube (Fig. 8.10d) the pressure p0 is measured
at the head of the horizontal tube while a hole in the sidewalls
monitors the pressure p. The difference ps D p0 � p is shown as
the difference of the heights of mercury in the U-shaped lower
part of the device.

For liquid flows in inclined pipes the difference of potential en-
ergies�Epot D %�g��h��V of a volume element�V at different

Figure 8.10 Measurement of pressure conditions in flows. a Measurement of
static pressure; b measurement of total pressure p0 with Pitot tube and pressure
manometer; c measurement of p0 with a stand pipe; d measurement of stagna-
tion pressure ps D p0 � p as difference of total pressure and static pressure

Figure 8.11 Flow of a liquid through an inclined pipe

heights h has to be taken into account. If the flow, for instance,
is directed in the x-z-plane (Fig. 8.11) the height is h D z.x/ and
we obtain from (8.17) the general equation

p C %gz.x/C 1
2%u2.x/ D const D p0 : (8.18)

For an ideal incompressible liquid % is constant within the whole
pipe. If the cross section of the pipe is constant also the flow
velocity u is constant throughout the whole pipe. If pC% �g � z �
p0 the flow ceases and u D 0 in the whole pipe.

Note: Although the Bernoulli equation (8.17) has been derived
for incompressible liquids the equation allows to obtain also the
pressure change of gases for laminar flows at not too high flow
velocities. For example, inserting for air flows the numerical
values p0 D 1 bar, u D 100 m=s, % D 1:293 kg=m3 into the
equation

p0 � p D 1
2% � u2

one obtains p D 0:935p0, i. e. a pressure decrease of 6.5%
and therefore also a corresponding decrease of the density %.
However, if the flow velocity approaches the velocity of sound
(c D 340 m=s) the change of the density becomes so large that
the condition of incompressibility is even approximately not ful-
filled.
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Figure 8.12 Hydrodynamic paradox: a Two curved aluminium plates, which
can swing around a yoke, are pressed together when blowing air between them;
b the lower circular plate is attracted to the upper plate when air is blown
through the pipe

The Bernoulli equation can be demonstrated by many simple ex-
periments which often astound the auditorium. One example is
the hydrodynamic paradox. Two curved aluminum plates are
hanging on a U-shaped wire bar (Fig. 8.12a). If one blows air
between the two plates they move towards each other, contrary
to the expectation that they will be pushed away from each other.
When air is blown through a vertical pipe fixed on one end to a
circular disc S1 with a hole (Fig. 8.12b) a second disc S2 below
the fixed disc is lifted to the upper disc by the air streaming be-
tween the two discs. The distance d between the two discs with
area A must be below a critical value where the flow velocity u

of the air is sufficiently large to cause an attractive force

F D A.p0 � p/ D 1
2% � u2 � A � m � g

between the two discs which can balance the weight m � g of the
lower disc.

The Bernoulli theorem is used for many practical applications.
Examples are the vaporizer or the spray bottle (Fig. 8.13) where
air streams out of a narrow nozzle and generates a reduced
pressure, which sucks the liquid out of the bottle into the air
stream. Here it is nebulized. Another example is the water
jet vacuum pump (Fig. 8.14). Here water streams with a large
velocity through a narrow nozzle where it generates a reduced

Figure 8.13 Vaporizer

Figure 8.14 Water jet pump

pressure. The air from the surrounding diffuses into the region
with reduced pressure where it penetrates into the water jet and
is transported out of the container into the outer space A, thus
evacuating the container. With such a device reduced pressures
down to 30 mbar can be achieved.

Undesirable effects of the Bernoulli theorem are the unroofing
of houses under the action of typhoons (Fig. 8.15). When wind

Figure 8.15 A strong wind can unroof a house due to the reduced pressure
above the roof
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Figure 8.16 Aerodynamic lift at a wing profile due to the higher velocity around the upper side of the profile

blows with the flow velocity u.x/ over the roof of a house, the
pressure difference �p D p0 � p results in an upwards directed
force

F D Ly �
Z
�p.x/dx D Ly �

Z
1
2%u2.x/dx

on the roof, where Ly is the length of the roof in y-direction. The
pressure difference depends on the flow velocity u.x/ which is
maximum at the top of the roof, where the stream lines have the
highest density.

The Bernoulli equation is the basis of the aerodynamic lift force
and therefore important for the whole aviation. In Fig. 8.16 the
profile of an airplane wing is shown with the stream lines of air
flowing below and above the wing. For the asymmetric profile
the air flows faster above than below the wing. This cause, ac-
cording to (8.17) for a wing area A and the air density %a a lift
force

F D .p2 � p1/ � A D 1
2%L

�
u2

2 � u2
1

�
� A :

Remark. Since air at high flow velocities is compressible
and therefore cannot be treated as ideal liquid, the situation for
a plane is more complex because the flow velocity of the air
relative to the flying plane is very large. Besides friction forces
turbulence and density changes play an important role for the
calculation of the upwards lift (see Sect. 8.6).

8.5 Laminar Flow

Laminar flows (Fig. 8.3) are always realized when the frictional
forces exceed the accelerating forces. Therefore, we will at
first discuss the internal friction in liquids and gases and then
illustrate the importance of laminar flow by several practical ex-
amples.

8.5.1 Internal Friction

Assume a plane sheet with area A in the y-z-plane is pulled
through a liquid with the velocity u0 into the horizontal direc-
tion (which we choose in Fig. 8.17 as the z-direction). The liquid
layers at x D x0 ˙dx adjacent to the two plate surfaces at x D x0

Figure 8.17 Internal friction of liquids. a A slab is pulled with the velocity ux

through a viscose liquid. It takes along boundary layers of the liquid. b Velocity
profile and thickness D of the boundary layer

will be dragged with the moving plate due to the static friction
between liquid and plate surfaces. These layers transfer part of
their momentum %L�uzdV to the neighbouring liquid layers. This
can be demonstrated by the experiment shown in Fig. 8.17a: In
a glass trough is a viscous liquid, for example glycerine. The
left part of the liquid is dyed. When an immersed plate is slowly
pulled through the liquid with the velocity u0 into the z-direction
one can see that the liquid layers adjacent to the plate surfaces
stick to the surfaces and are dragged with the velocity u0. Per-
pendicular to the plate surfaces a velocity gradient is present
(Fig. 8.17b). As has been discussed in Sect. 7.5, this gradient is
due to the thermal motion of the liquid molecules, which pene-
trate by about a mean free path � into the neighbouring layers
and transfer part of their momentum. This causes a velocity gra-
dient du=dx perpendicular to the velocity of the plate.

In Sect. 7.5.4 it was shown, that the momentum transferred per
second and unit area between neighbouring layers is jp D � �
duz=dx. Since the time derivative of the momentum is equal to
the acting force we obtain for the force between adjacent layers

F D � � A � du

dx
; (8.19)

which appears when the plate is pulled with the constant veloc-
ity u0 through the liquid, where A is the total surface of the plate
(both sides!). This force must just compensate the friction force
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Table 8.1 Dynamical viscosities of some liquids and gases at a temperature
T D 20 ıC

Substance �=.mPa � s/

Water 1.002
Benzene 0.65
Ethanol 1.20
Glycerine 1480.0
Heavy fuel oil 660
Mercure 1.55
Air (105 Pa) 1:8 � 10�2

Helium (105 Pa) 1:9 � 10�2

opposite to the direction of u0

Ff D �� � A � du

dx
: (8.20)

The factor � is the dynamic viscosity. It has the dimension Œ�� D
N � s=m2 D Pa � s. In the older literature often the unit Poise D
P D g � cm�1 � s�1 is used. The conversion is 1 P D 0:1 Pa � s;
1 centipoise D 1 cP D 10�3 Pa � s.

In Tab. 8.1 the numerical values of � for some liquids are com-
piled. They should be compared with the data for gases in
Tab. 7.3.

The dynamic viscosity � depends strongly on the temperature,
as can be seen from Tab. 8.2. For liquid helium a superfluid
phase exists at temperatures below 2:17 K, where � D 0 Pa �
s [8.5].

The distance D where the liquid is dragged by the moving plate
is called fluid dynamic boundary layer. Its value can be ob-
tained by the following consideration: In order to move the plate
by its length L against the frictional force Ff one has to accom-
plish the work

Wf D �Ff � L D �AL �
ˇ̌
ˇ̌du

dx

ˇ̌
ˇ̌ D �AL � u0

D
; (8.21)

where we have assumed that a linear velocity gradient du=dx D
u0=D is valid (Fig. 8.17b). The liquid layer with a mass dm

and a velocity u has the kinetic energy dEkin D .1=2/dm � u2.
With the constraint u.x D ˙D/ D 0 the velocity of the layer is
u D u0.1 � jxj=D/. Altogether the kinetic energy of all dragged

Table 8.2 Temperature dependence of the dynamical viscosity �.T / of water
and glycerine

T=ıC Viscosity �.T/=.mPa � s/

Water Glycerine

0 1.792 12 100
C20 1.002 1480
C40 0.653 238
C60 0.466 81
C80 0.355 31.8

C100 0.282 14.8

layers is

Ekin D 1

2

Z
u2dm D %

2

DZ

0

2u2
0 .1 � jxj=D/

2
A dx

D 1

3
A%Du2

0 :

(8.22)

Due to friction part of the spent work is converted into heat.
Therefore we get Ekin < Wf. This yields with (8.21) the relation

D <

�
3�L

%u0

�1=2

: (8.23)

The boundary layer has therefore the order of magnitude

D �
s
�L

%u0
: (8.24)

The boundary layer can only develop if the distance d to the
container walls is larger than D. For d < D the static friction
between the liquid and the wall forces the velocity u.d/ D 0,
the dragged boundary layer becomes smaller and the velocity
gradient larger.

For the derivation of the general friction force on a volume el-
ement dV D dx � dy � dz we choose a liquid flowing into the
z-direction with an arbitrary velocity gradient

grad uz D
�
@uz

@x
;
@uz

@y
;
@uz

@z

�
:

We regard in Fig. 8.18 at first a flow that has only a gradient
@uz=@x in x-direction (@uz=@y D @uz=@z D 0). The flow velocity
uz.x/ can be expanded into a Taylor series

uz.x0 C dx/ D uz.x0/C @uz

@x
dx C : : : ; (8.25)

which we truncate after the linear term.

The liquid layer between x D x0 and x D x0 C dx experiences a
friction force dFf per surface element dA D dy�dz. If @uz=dx > 0
this force is decelerating for the surface layer at x D x0 because
here the neighbouring layer at x D x0 � dx is slower but it is
accelerating for the surface layer at x D x0 C dx, because here
the adjacent layer is faster (Fig. 8.18b). The net tangential force
is therefore

.ıFf/z D dFf.x0 C dx/ � dFf.x0/

D � � dydz

"�
@uz

@x

�

xDx0Cdx

�
�
@uz

@x

�

xDx0

#
:

Inserting the derivatives from (8.25) yields for the bracket the
expression .@2u=@x2/ �dx and therefore for the net force onto the
volume element dV due to the velocity gradient @uz=@x

.ıFf/z D � � dx dy dz � @
2uz

@x2
D � � dV � @

2uz

@x2
: (8.26)
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Figure 8.18 Derivation of friction force acting on a volume element dx dy dz
in a flow with homogeneous velocity profile

A similar result is obtained for the velocity gradient @uz=@y in
y-direction.

For compressible media, e.g. for gases, a velocity gradient
@uz=@z can also appear for a flow into the z-direction if the den-
sity changes with z, while for incompressible media @uz=@z ¤ 0
only if the velocity changes, e.g. in tubes with variable cross
section.

From (8.25)–(8.26) we finally obtain for the total friction force
onto the volume element dV in case of a laminar flow with the
velocity uz the expression

.dFf/z D � dV

�
@2uz

@x2
C @2uz

@y2
C @2uz

@z2

�
: (8.26a)

The first two terms cause tangential forces (shear forces, see
Sect. 6.2.3), the third term, which is only nonzero for compress-
ible media causes a normal force onto the surface element dx�dy.
With the Laplace operator

� D @2

@x2
C @2

@y2
C @2

@z2

(see Sect. 13.1.6) the total friction force onto the volume ele-
ment dV, which moves with the velocity u D f0; 0; uz.x; y; z/g
can be written as

.dFf/z D � ��uzdV : (8.26b)

For arbitrary flow velocities u D fux; uy; uzg (8.26b) can be gen-
eralized to

Ff D � �
Z

V

�u dV ; (8.26c)

this is equivalent to the three equations .Ff/i D �
R
�ui � dV for

the components i D x; y; z.

8.5.2 Laminar Flow Between Two Parallel
Walls

In order to maintain a stationary flow with constant velocity into
the z-direction between two walls at x D �d and x D Cd one
has to apply a force opposite to the friction force Ff which just
compensates Ff. This force can be, for instance, caused by a
pressure difference between the planes z D �z0 and z D Cz0.
In the following we assume that the pressure is constant in a
plane z D constant, i.e. independent of x and y.

We consider in Fig. 8.19 a volume element dV D dx � dy � dz

with the width dy D b in y-direction and the height dz. At its
end faces z D z1 and z D z1 C dz the pressure forces

dF1 D b � dx � p.z1/ and dF2 D b � dx � p.z1 C dz/

are effective. They result in a total force onto the volume ele-
ment dV

dFz D �b dx
dp

dz
dz : (8.27)

Figure 8.19 Laminar flow between two parallel walls
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This pressure force compensates the friction force

.dFf/z D � dV�uz D � dy dx dz
d2uz

dx2
;

if the condition

d2uz

dx2
D � 1

�

dp

dz
) duz

dx
D � x

�
� dp

dz
C C1

is fulfilled. The integration constant C1 D .duz=dx/xD0 gives the
slope of the velocity profile u.x/ at x D 0.

Integration yields

uz D � x2

2�

dp

dz
C C1x C C2 ; (8.28)

since p and dp=dz do not depend on x.

For a liquid streaming between two parallel walls at x D �d and
x D Cd symmetry arguments demand .du=dx/xD0 D C1 D 0.
At x D ˙d the static friction between the liquid and the walls
causes u.x D ˙d/ D 0. This gives for the integration constant
C2

C2 D d2

2�

dp

dz
:

We then obtain for the velocity profile the parabola

u.x/ D 1

2�

dp

dz
.d2 � x2/ ; (8.29a)

with the crest at x D 0 midway between the two walls. If the
friction between the liquid and the walls is not high enough
(u.˙d/ ¤ 0), we get instead of (8.29a) the more general equa-
tion

u.x/ D 1

2�

dp

dz
.d2 � x2/C ud : (8.29b)

8.5.3 Laminar Flows in Tubes

The flow of liquids in cylindrical tubes plays an important role
for many technical applications (water pipes, oil pipelines), and
also in medicine (blood flow through veins). It is therefore
worthwhile to study this problem in more detail.

We assume, as in the previous example, a pressure difference
p1 � p2 between the planes z D 0 and z D L in a cylindrical
pipe with radius R (Fig. 8.20) which maintains a stationary flow.
Symmetry reasons demand that the flow velocity can only de-
pend on the distance r from the cylinder axis. For a coaxial small
cylinder with radius r the same reasoning as in the previous sec-
tion gives for the condition “friction force must compensate the
pressure force”

�� � 2r� � L
du

dr
D r2� � .p1 � p2/ :

Figure 8.20 a Derivation of Hagen–Poiseuille law; b velocity profile of a lam-
inar flow in a cylindrical tube

Integration over r yields

u.r/ D
RZ

r

p1 � p2

2�L
r dr D p1 � p2

4�L
�
�
R2 � r2

�
: (8.30)

This velocity profile is a rotational paraboloid. It can be vividly
demonstrated by the flow of coloured glycerine through a verti-
cal pipe (Fig. 8.20b).

The total liquid volume flowing per second through the plane
z D constant of the hollow cylinder with radii between r1 and
r1 C dr shown in Fig. 8.20a is according to (8.30)

d

dt
.V.r// D 2�r dr � u D 2�r dr � .R2 � r2/

4�L
.p1 � p2/ :

The total volume streaming during the time t through the pipe is

V D t �
RZ

rD0

2�r � u dr

D �R4.p1 � p2/

8�L
t D �R4�p

8�L
t :

(8.31)

The ratio �p=L D @p=@z is the linear pressure gradient along
the tube. The total volumetric flowrate (volume per second)
through the pipe is then

Hagen–Poiseuille Law

dV

dt
D �R4

8�L
�p D �R4

8�

@p

@z
(8.32)

Note the strong dependence of dV=dt from the radius R of the
pipe .�R4Š/.

The human body utilizes this dependence for the regulation of
the blood flow by adjusting the cross section area of the veins.
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8.5.4 Stokes Law, Falling Ball Viscometer

When a ball with radius R is dropped with the initial velocity
u D 0 into a liquid one observes at first an acceleration of the
ball due to the gravity force and after a short falling distance a
constant velocity. For this uniform motion the friction force Ff

which increases with increasing velocity just cancels the gravity
force

Fg D meff � g D .%k � %Fl/
4
3�R3 � g (8.33)

diminished by the buoyancy (Fig. 8.21).

Experiments with different liquids and balls with different radii
prove that the friction force is proportional to the viscosity � of
the liquid, to the radius R of the ball and to its velocity u. For
radii still small compared to the diameter of the container one
finds

Stokes Law

Ff D �6� � � � R � u0 : (8.34a)

The stationary final velocity u0 is obtained for Ff C Fg D 0

u0 D 2

9
g

R2

�
.%K � %Fl/ : (8.35)

Measuring u0 allows the determination of the viscosity �, if the
densities of liquid and ball and the ball radius R are known
(Falling ball viscometer Fig. 8.22). According to (8.35) the ratio
u0=R2 should be independent of the ball radius. This is indeed
observed for small radii R.

Stokes Law (8.34a) can be derived also theoretically. A more
detailed calculation [8.1a, 8.1b, 8.7] shows that (8.34) is only
an approximation. The exact expression for the friction force,
derived by Oseen, is

Ff D �6��R � u0

�
1 C 3%Fl � R � u0

8�

�
: (8.34b)

The second term in the bracket is for small radii R small com-
pared to 1 and can be neglected.

Figure 8.21 Uniform sink speed u0 of a ball in a viscose liquid

Figure 8.22 Viscosimeter with sinking ball and photoelectric barrier

Example

For steel balls .% D 7:8 kg=dm3/ with radius R D
0:1 cm falling in glycerine (% D 1260 kg=m3) and � D
1:48 Pa � s, the stationary velocity becomes u0 D 1 cm=s.
In this case the second term is 3:2 � 10�3 � 1. For
R D 1 cm, however, u0 D 1 m=s and the second term
becomes 2:5 > 1 and cannot be neglected.

The Stokes Law (8.34a) therefore is correct only for suf-
ficiently small products R � u0 of ball radius and final
velocity u0. J

8.6 Navier–Stokes Equation

In the previous sections we have discussed the different forces
acting onto a volume element dV in a streaming liquid. We can
now present the general equation of motion for a real viscous
streaming liquid. With the different contributions

dFf D � ��u � dV (friction force)

dFp D �grad p � dV (pressure force)

dFg D D % � g � dV (gravity force)

to the total force and the substantial acceleration (8.3)

du

dt
D @u

@t
C .u � r/

we obtain the Navier–Stokes equation

%

�
@

@t
C u � r

�
u D � grad p C % � g C ��u : (8.36a)

For ideal liquids with � D 0 this reduces to the special case of
the Euler equation (8.4). The friction term � � �u expands the
Euler equation, which is a first order differential equation, to
a second order differential equation, which is more difficult to
solve.

On the right hand side of (8.36a) the forces are listed and on the
left hand side the motion induced by these forces, which we will
now discuss in more detail.
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The first term @u=@t gives the time derivative of the velocity at
a fixed location. The second term describes the change of the
velocity of dV while it moves from the position r to r C dr.
Using the vector relation

.u � r/ u D 1
2 grad u2 � .u � rot u/ ; (8.36b)

that is deduced in textbooks on Vector Analysis [8.8, 8.9] (see
also Sect. 13.1.6) we see that this spatial change of u can be
composed of two contributions: The first term gives the change
of the amount of u, the second term the change of the direction
of u. This second term gives rise to vortices in the liquid, which
we will discuss next.

8.6.1 Vortices and Circulation

When a liquid streams around a circular obstacle one observes
for small velocities the streamline picture of laminar flow,
shown in Fig. 8.5. If the velocity is increased above a critical
velocity uc, which depends on the viscosity � of the liquid, vor-
tices appear behind the obstacle (Fig. 8.23). Such vortices can
be made visible by small cork pieces floating on the liquid and
moving along the streamlines. One observes that in a region
around the centre of the vortex the liquid rotates like a rigid
body. The rotational velocity

u D ! � r

increases linear with the distance r from the centre and all par-
ticles have the same angular velocity !. This region r < rk is
called the vortex kernel (Fig. 8.24). Inserting small cork pieces
with a fixed direction arrow to the surface of the liquid it be-
comes apparent that they turn once around their own axis while
circulating around the vortex. (Fig. 8.25) as expected for a rigid
rotation.

Outside of the vortex kernel .r > rk/ the angular velocity
! decreases with increasing distance r. The particles do no
longer rotate about their axis but keep their spatial orientation
(Fig. 8.25). This region of the vortex is called the circulation.
Here a deformation of the volume elements during the rotation
takes place (Fig. 8.26).

We can describe the vortex by the vortex vector

˝ D 1
2 rot u : (8.37)

Figure 8.23 Generation of vortices in a turbulent flow around a circular ob-
stacle

Kernel Circulation

Circulation

flow

Circulation

flow

Kernel of vortex

Figure 8.24 Kernel of vortex and circulation region

Figure 8.25 Orientation of cork pieces: a inside the vortex kernel (circular
motion with turning orientation), b in the circulation region (non turning orien-
tation)

Figure 8.26 Deformation of a plane element in the circulation region outside
the vortex kernel

The amount of ˝ gives the angular velocity ! inside the vortex
kernel (see below). Magnitude and direction of ˝ in a vortex are
generally not constant. They change because the vortex is not
necessarily fixed in space but moves with the flowing liquid to
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Vertex

tube

Vertex

lines

Figure 8.27 Vortex lines and tube

other locations and furthermore the energy of the vortex changes
because of friction and with it the magnitude of ˝ changes.
The curves which coincide at every place with the direction of
˝ are called vortex lines. When, for instance, the particles
move on circles in the x-y-plane the vector ˝ points into the
z-direction. All lines parallel to the z-direction inside the kernel
with x2 C y2 � r2

k are vortex lines (Fig. 8.27). All vortex lines
through the vortex area A form the vortex tube.

For a quantitative description of torques based on the Navier–
Stokes equation we have to study the rotational part .u � rot u/
in (8.36a,b). At first we must understand, that the term rot u

describes the rotation of moving particles. We therefore regard
in Fig. 8.28 the tangential velocity components along the edge of
the surface element dx �dy. As a measure of the torque strength

of the flow through the area A we define the circulation

Z D
I

u ds (8.38a)

along the edge of the surface in the counterclockwise direction.
Our surface element dx � dy contributes the share

dZ D ux dx C
�

uy C @uy

@x
dx

�
dy

�
�

ux C @ux

@y
dy

�
dx � uy dy

D
�
@uy

@x
� @ux

@y

�
dx dy D .rot u/zdx dy

(8.38b)

to the circulation, because the z-component of rot u D r � u is
defined as .r � u/z D .@uy=@x � @ux=@y/.

Analogous relations are obtained for the x- and y-components.
From these relations one obtains by integration the Stokes’ the-
orem I

u ds D
Z

A

rot u dA ; (8.38c)

which states: “The surface integral over rot u equals the path
integral along the border of the surface element”.

For a circular current of a liquid around a centre the circulation
at a distance r from the centre is

Z D
I

u ds D 2�ru.r/ : (8.38d)

Figure 8.28 Explanation of circulation and its relation with rot u

The average amount ˝ of the vortex vector ˝ D 1
2 rot u that

points into the direction perpendicular to the surface is, accord-
ing to Stokes’ theorem

˝ D 1

2A

Z
jrot uj dA D 1

2�r2

I
uds

D 2�ru

2�r2
D u

r
;

(8.38e)

where A is the area of the torque kernel.

Since the torque kernel rotates like a solid body, ˝ must be
independent of r. As illustrated in Fig. 8.24 the velocity u D
r �˝ increases linear with r.

The average ˝ D Z=2A of the magnitude of the torque vector
gives the circulation per surface unit and therefore the torque
strength per surface unit.

8.6.2 Helmholtz Vorticity Theorems

For an ideal liquid .� D 0/ the Navier–Stokes equation (8.36a)
without external fields (gravity is neglected ! g D 0) can be
transformed into an equation that illustrates certain conserva-
tion laws. This was first recognized in 1858 by Hermann von
Helmholtz.

On both sides of (8.36a) we apply the differential operator rot,
divide by the density % and obtain from (8.36b) and (8.37) with
rot grad p D r � rp D 0 the equation (see Probl. 8.11)

@˝

@t
C r � .˝ � u/ D 0 : (8.39)

Together with the equation of continuity div u D 0 (8.13) for
incompressible media this equation determines completely and
for all times the velocity field of an ideal streaming liquid. This
means: If the quantities ˝ and u are given at a certain time
(8.39) describes their future development unambiguously.

For example: If for t D t0 the vortex vector ˝ for the total liquid
is ˝ D 0, it follows from (8.39) @˝=@t D 0. This means: If
an ideal liquid without vortices is set into motion it will stay
vortex-free for all times.
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Figure 8.29 Deformation of a circular vortex during its flow with conservation
of total mass and angular momentum

If there are vortices in a liquid, it follows

˝ D 1
2 rot u ) div ˝ D r � .r � u/ � 0 : (8.40)

This means: Inside an ideal liquid, there are no sources or sinks
for the vortex lines. They are either closed lines or they end at
the boundary of the liquid, for instance at the walls of the liquid
tube.

Inside an ideal liquid the vortex strength Z D 2˝ � A is
constant in time. Vortices cannot be generated nor vanish.

The constancy of Z in a frictionless liquid is equivalent to the
conservation of angular momentum of the mass circulating in a
vortex. Because of � D 0 no tangential forces can act and the
pressure forces have only radial components. Therefore, there
is no torque and the angular momentum has to be constant.

These conservation laws can be summarized by the following
model: Vortices move like solid but strongly deformable bodies
through a liquid or a gas. Without friction, their total mass and
their angular momentum remain constant although the angular
velocity and the radius of a vortex can change. This is illustrated
in Fig. 8.29 by a cylindrical vortex. The constancy of the angular
momentum L D I � ! (see Sect. 5.5) with the moment of inertia
I D .1=2/Mr2 results in the equation

M1r2
1˝1 D M2r2

2˝2 :

Since M1 D M2 and the vortex area A D � � r2 this gives

A1 �˝1 D A2 �˝2 :

This means the vortex strength is constant.

8.6.3 The Formation of Vortices

In the previous section we have seen, that friction is essential for
the formation of vortices. On the other hand, it was discussed
in Sect. 8.5, that liquids with large friction show a laminar flow

Figure 8.30 Generation of vortices by instabilities at boundaries between liq-
uid layers with different velocities

where no vortices occur. Vortices must be therefore formed in
liquids with small viscosity where at certain places, e.g. at the
boundaries with walls, the friction has maxima. Here velocity
gradients occur between adjacent liquid layers because of the
static friction between these liquid layers and the wall. These
velocity gradients produce, due to friction, tangential forces,
which give rise to vortices.

When such boundary layers show small irregularities as shown
exaggerated in Fig. 8.30, the adjacent stream lines are deformed.
At the narrow positions the stream lines are compressed and the
flow velocity u increases. According to the Bernoulli equation,
a pressure gradient �p develops which further increases the ir-
regularities. Finally, an unstable condition arises which results
in the formation of vortices.

We will illustrate this vortex formation for the example of a flow
around a circular cylinder (Fig. 8.31). For sufficiently small flow
velocities u the influence of friction is small and a laminar flow
occurs (Fig. 8.5 and 8.31a). At the stagnation point S1 on the
forefront of the cylinder, the flow velocity is zero and according
to (8.17) the pressure equals the total pressure p0. From S1 the
liquid moves along the upper side of the cylinder and is accel-
erated until it reaches the point P, where the velocity reaches
its maximum and the pressure its minimum. The acceleration is
caused by the pressure difference �p D p0.S1/ � p.P/. At the
stagnation point S2 at the backside of the cylinder the velocity
becomes zero again, because the opposite pressure difference
decelerates the flow and brings the velocity down to zero.

When the flow velocity is increased the velocity gradient be-
tween the wall and the adjacent liquid layers also increases. This
increases the friction which is proportional to the velocity gradi-
ent. The liquid volume elements do not reach their full velocity
in the point P and therefore reach the velocity v D 0 already in
the point W before S2 (Fig. 8.31b and 8.32). The pressure force
caused by the pressure gradient between S2 and W now accel-
erates the volume elements into the opposite direction against
the flow velocity of the liquid layers farther away from the wall.
There are two opposite forces acting on the liquid layers close
to the wall (Fig. 8.32):

a the friction force due to the friction between the liquid lay-
ers close to the wall and the layers farther away which have
different velocities,

b the force due to the pressure gradient.

These two forces exert a torque onto the liquid layers which
cause a rotation. On each side of the cylinder a vortex is cre-
ated. The two vortices have an opposite direction of rotation
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Figure 8.31 a Laminar flow for small velocities around a circular cylinder. b Generation of vortices behind a circular cylinder for large velocities. c Pressure and
velocity behaviour for u < uc and u > uc

Figure 8.32 Illustration of torque necessary for the generation of vortices

(Fig. 8.31b), i.e. the vortex vector ˝1 points into the direction
into the drawing plane while ˝2 points out of this plane.

These vortices can be visualized by dyed streamlines produced
with the apparatus shown in Fig. 8.4.

Vortices can be also produced at the end of a circular tube,
through which a liquid flows with sufficently high velocity
(Fig. 8.33).

A nice demonstration experiment where vortices are produced
in air mixed with cigarette smoke, is shown in Fig. 8.34. A
box with a thin membrane at one side and a hole with 20–
30 cm diameter on the opposite side is filled with cigarette
smoke. Beating the membrane with a flat hand, produces a sud-
den pressure increase inside the box and drives the air-smoke

Figure 8.33 Generation of vortices at the end edge of a tube

Figure 8.34 Generation of smoke vortex by beating a membrane at the back-
side of a box filled with smoke

mixture through the hole out of the box. At the edges of the hole
vortices are produced which travel through the open air and can
be readily seen by a large auditorium. These vortices can ex-
tinguish a candle flame, several meters away from the box. The
vortices in air move nearly like a solid body through the air at
atmospheric pressure. Without vortices a pure pressure wave
would not be able to extinguish the candle flame because its in-
tensity decreases with the distance d from the box as 1=d2 (see
Sect. 11.9).

8.6.4 Turbulent Flows; Flow Resistance

The curls shown in Fig. 8.31 behind an obstacle, do not stay
at the location of their generation but move with the streaming
liquid due to internal friction. At the original location new vor-
tices can now emerge, which again detach from the surface of
the immersed body and follow the liquid flow. This leads to
the formation of a “Karman vortex street” (Fig. 8.35). It turns
out that the two vortices of a vortex pair do not detach simulta-
neously but alternatively from the upper and the lower side of
the obstacle. In the vortex street therefore the vortices with op-
posite angular momentum are shifted against each other. Car



8.6 Navier–Stokes Equation 225

C
h

a
p

te
r

8

Figure 8.35 Karman vortex street

drivers can experience such a vortex street, when driving behind
a fast truck, where they can feel the alternating directions of the
transverse gust of winds. Behind a starting jet plane the vortex
street can extend over several kilometres. Therefore there must
be always a minimum safety distance between starting planes.

The rotational energy Erot D .I=2/ �˝2 (I D inertial moment),
necessary for the generation of vortices has to come from the ki-
netic energy of the liquid flow. The flow velocity must therefore
decrease when vortices are formed.

In a laminar friction-free flow the flow velocity u in the point
S2 in Fig. 8.31 is zero and in S2 the same stagnation pressure
p0 appears as in S1. In a turbulent flow the velocity behind the
obstacle is not zero and therefore, according to the Bernoulli
theorem the pressure is lower than p0, causing a pressure differ-
ence between the regions before and behind the obstacle. This
results in a force F D �p � A on the obstacle with the cross sec-
tion A in the direction of the flow. In order to keep the body at
a fixed place, an opposite force has to be applied in addition to
the force against the friction force.

The pressure difference at S2 is according to Bernoulli’s theo-
rem �p / .1=2/% � u2. Therefore the force due to the pressure
difference can be written as

FD D cD � %
2

u2A ; (8.41a)

where the dimensionless constant cD is the pressure drag coef-

ficient. It depends on the form of the body (Fig. 8.36). This
force adds to the friction force that is also present for laminar
flows. According to the Hagen–Poiseuille law (8.31) the fric-
tion causes a pressure loss �pf (see Fig. 8.9b). The Bernoulli
equation for a viscose liquid flowing through a horizontal tube,
has to be augmented to

p1 C 1
2%u2

1 D p2 C�pf C 1
2%u2

2 I �pf < 0 :

The pressure difference�pf depends on the square of the veloc-
ity u. We can write the total resistance force

Ftotal D Ff C FD D 1
2 cw � % � u2 � A : (8.41b)

The proportional factor cw is called flow resistance coefficient.
It depends analogue to cD on the form of the body in the flow. In
Fig. 8.36 the values of cw for Air flows at atmospheric pressure
are compiled for some profiles. This figure illustrates that the
streamlined profile has the smallest flow resistance coefficient.
Bodies with edges on the side of the incoming flow have larger
flow resistance coefficients than spherical profiles.

Figure 8.36 Flow resistance coefficents cw for different shapes of obstacles

Figure 8.37 Experimental arrangement for the measurement of flow resis-
tance

By means of the stagnation pressure ps D .1=2/% � u2 Eq. 8.41b
can be written as

Fw D cw � ps � A : (8.41c)

Experimental values of cw can be measured with the arrange-
ment shown in Fig. 8.37. The body to be measured is suspended
by a bar that can turn around a horizontal axis. A fan blows air
against the body. Due to its flow resistance the body is pressed
to the right, thus expanding a spring balance on the other side of
the bar. The torque exerted by the flow resistance of the body
acting on the lever arm with length a is Fw � a where

Fw D 1
2 � cw � % � u2 � A ;

while the opposite torque of the spring balance is Fs�b. The force
Fs measured with the spring balance is a measure of the flow
resistance Fw and allows the determination of the coefficient cw.
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8.7 Aerodynamics

The knowledge of all forces that are present when air streams
around bodies with different shapes is very important not only
for aviation but also for the utilization of wind energy and the
optimization of car profiles. In this section only one aspect will
be discussed, namely the aerodynamic buoyancy (lift) and its
relation to the flow resistance of different body profiles. For a
more extensive treatment, the reader is referred to the special
literature [8.11a, 8.11b]

8.7.1 The Aerodynamical Buoyancy

In addition to the force on bodies in streaming media that acts in
the direction of the flow also a force perpendicular to the stream-
lines can occur. We will illustrate this by two examples: In
Fig. 8.38a we consider a laminar stream that flows around a cir-
cular cylinder. Because of symmetry reasons there could be no
net force perpendicular to the current and only a force in the di-
rection of the stream can occur which is caused by the friction
between the flowing medium and the surface of the cylinder.
However, if the cylinder rotates clockwise the relative velocity
between surface and flowing medium is smaller at the upper side
than at the lower side. This leads to a different friction on the
two sides causing a net force upwards. This can be seen as fol-
lows: Due to friction a layer of the flowing medium close to
the surface is dragged into the direction of the rotation causing
a circulation of the layers close to the surface, which is partly
transferred to adjacent layers (Fig. 8.38b).

Figure 8.38 Magnus effect: a laminar flow around a circular cylinder, b cir-
culation around a rotating cylinder in a liquid at rest, c streamlines around a
rotation cylinder in an airflow as a superposition of a and c

Flight direction

Figure 8.39 Demonstration of Magnus effect in air

Figure 8.40 Generation of dynamical lift of a wing profile. a Without circula-
tion; b With sole circulation; c Superposition of a and b

The superposition of this circulation and the laminar flow leads
to an increase of the flow velocity on the upper side and a de-
crease on the lower side, resulting in the streamlines shown in
Fig. 8.38c. The Bernoulli equation (8.17) tells us that this dif-
ference of the velocities results in a net upwards force �F D
F1 � F2 with jF1j > jF2j. This effect was first discovered by
Magnus and was used for the propulsion of ships. The Magnus
Effect can be demonstrated in Physics lectures with a hollow
cylinder of cardboard that can be brought into fast rotation by a
thin ribbon around the cylinder, which is fast pulled (Fig. 8.39).
The cylinder moves then against the pulling direction and rises
upwards because of the Magnus effect until its rotation is slowed
down due to friction and then slowly sinks down.

For bodies with asymmetric profiles in a flowing medium a per-
pendicular net force occurs even without rotation of the body
(dynamical buoyancy). It is again explained by the superposi-
tion of a circulation and the laminar flow. In this case, however,
the circulation is not caused by rotation but by the formation of
vortices. We will discuss this for the example of a wing profile
(Fig. 8.40).

For a laminar flow around the asymmetric wing profile the layers
of the flow medium close to the surface of the wing are decel-
erated due to friction. Because the path along the surface is
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Figure 8.41 Distribution of lift force along lower and upper surface of a wing
profile

longer at the upper side than at the lower side, the streaming
medium arrives at the point P1 at the upper side with lower ve-
locity than at P2 at the lower surface. The stagnation point S2 at
the backside is at the upper side behind P1. Behind the profile
a large velocity gradient grad u occurs between neighbouring
layers of the streaming medium. If this gradient surpasses a lim-
iting value, which depends on the velocity u and the viscosity �
of the medium, a vortex develops behind the wing profile.

This can be demonstrated, when the profile is moved with
increasing velocity through air or a liquid at rest. Above a crit-
ical velocity uc the generation of a vortex is observed (starting
vortex). Since the total angular momentum of the streaming
medium must be conserved, the angular momentum of this vor-
tex has to be compensated by a circulation around the total
profile with opposite direction of rotation. (Fig. 8.40b). The su-
perposition with the laminar flow leads, analogous to Fig. 8.38c,
to an increase of the velocity above the wing profile and a de-
crease below the wing (Fig. 8.40c). According to the Bernoulli
equation (8.17) this generates an upward force with the amount

FL D �p � A D cL � %
2

�
�
u2

1 � u2
2

�
A ; (8.42)

which is called the aerodynamical lift.

The lift coefficient cL depends on the shape of the profile. With
pressure probes, the pressure distribution along the wing profile
can be measured. Figure 8.41 shows a typical pressure distribu-
tion (difference �p to the pressure in the surrounding air) along
the upper and lower side of a wing profile, where the length of
the arrows indicates the magnitude of �p [8.12].

8.7.2 Relation between Dynamical and Flow
Resistance

The Eq. 8.41 and 8.42 show that the flow resistance FD and the
FL are both proportional to the kinetic energy per unit volume
of the medium streaming around the profile, where the propor-
tionality constants cD and cL both depend on the shape of the
profile and the smoothness of its surface.

Figure 8.42 Arrangement for simultaneous measurements of flow resistance
FD and lift force FL

Figure 8.42 shows a device (two-component balance) that al-
lows the simultaneous measurement of the resistance force FD

and the lift force FL for different model profiles.

It turns out that both forces (lift and drag) depend on the angle
˛ of the profile relative to the laminar flow (Fig. 8.43). Even a
flat plank shows for a certain range of ˛ a lift force, which is,
however, smaller than for a wing profile. The two curves cD.˛/
and cL.˛/ can be plotted in a polar diagram (Fig. 8.44) (polar
profile) which illustrates the relation between cD and cL for all
possible angles of attack. The optimum angel ˛ is chosen such
that the flow resistance is as small as possible, but the lift force
is still high enough. If ˛ is too large, vortices are generated at
the upper side of the wing profile which decrease the flow ve-
locity drastically and therefore reduce the force which can even
become negative.

Figure 8.43 Dependence of flow resistance coefficient cD and lift coefficient
cL on the angle of attack ˛ of a wing profile
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Figure 8.44 Polar diagram of a modern wing profile with small flow resistance
coefficient

8.7.3 Forces on a flying Plane

At first we will discuss the flight without motor (glider). For
a stationary flight of a glider with constant velocity v the total
force on the glider (including gravity) must be zero. The total
force is the vector sum of the lift force FL, the flow resistance
force FD (Fig. 8.45) which depend on the flow velocity u D �v
of the air streaming around the glider, and the gravity force m �g.
A stable flight is only possible, if the glider flies on a declining
path with the glide angle 
 . From the condition F D 0 we obtain
with FD D jFDj and FL D jFLj

tan 
 D �FD

FL
and sin 
 D FD

mg
: (8.43a)

The ratio FD=FL is called glide ratio. In order to realize a small
glide angle, the force FL should be as large as possible. As can
be seen from Fig. 8.44 there is a lower limit for the glide ratio.

Modern gliders reach glide ratios of 1=50. This implies that
a glider can reach 100 km flight distance without thermal lift,
when it starts from a height of 2 km. If the glide angle 
 is made
larger by operating the elevation unit, the velocity v of the glider
becomes larger, when 
 is made smaller, the velocity decreases
until the uplift breaks down and the glider becomes unstable.
Without an experienced pilot, this might lead to a crash down.

Figure 8.45 Forces at the gliding flight

Figure 8.46 Forces at the ascent of a motor plane

When the air locally heats up (for instance above a hot ground
or above chimneys of power stations) the air expands, its density
decreases and it rises upwards (thermal lift, see Sect. 6.3). This
gives an additional vertical component to the flow velocity of
the air relative to the glider. In this case the glide angle 
 can
become negative, i.e. the glider rises upwards.

For planes with an engine (Fig. 8.46) an additional pulling force
is produced by the propeller (or a corresponding propulsive
force for jet planes). A climb is only possible, if the pulling
force FZ is larger than the magnitude of the opposite drag FD.
For the flight with constant velocity v at constant height the
pulling force must just compensate the drag .FZ D FD/. The
angle of climb, 
 is given by the ratio

tan 
 D FZ � FD

FL
: (8.43b)

For FZ < FD the angle 
 becomes negative and the plane can
fly with constant velocity only on a continuous descent.

8.8 Similarity Laws;
Reynolds’ Number

In Sect. 8.6.3 we have seen that vortices are caused by friction
in the layers between liquid flow and walls. Although friction
inside the liquid flow is small compared to that at the walls, it
essentially influences the behaviour of the liquid flow, because
this internal friction acts on the surface layers and starts turbu-
lent flow.

Such boundary conditions are not included in the Navier–Stokes
equation, because this equation describes the motion of an in-
finitesimal volume element and its motion under the influence
of the different forces. It does not contain the special geometry
of the flow pipe. Its geometry, however, plays an important role
for the characteristics of the flow. It can be inserted into (8.36a)
as special boundary conditions, but a reliable solution demands
the knowledge of all details of such boundary conditions, which
is often missing. Therefore generally experimental solutions are
preferred which are obtained in the following way:

In hydro-and aero-dynamics the flow conditions for the motion
of large objects (ships, airplanes) is studied with small models
that have a similar but scaled down geometry. With such model
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experiments in wind channels or in small liquid flow chambers,
the optimum shape of a wing or a hulk can be found. In order to
obtain realistic results, not only the shape of the model must be
a true scaled down version of the true object, but also the flow
conditions must be accordingly scaled down in a correct way.
How this can be achieved, will be shortly outlined:

We normalize all length dimensions by a unit length L, all times
by a unit time T and all velocities by L=T . We therefore define
new values of length, time and velocity:

l0 D l=L I t0 D t=T I u0 D u=.L=T/ D u � T=L: (8.44a)

This gives for the gradient r 0 and the pressure p0

r 0 D r � L I p0 D p � .T=L/2=% ; (8.44b)

where r 0 D L � .@=@x; @=@y; @=@z/, L0, t0, u0 and p0 are dimen-
sionless quantities.

With these normalized quantities the Navier–Stokes equation
becomes

@u0

@t0
C .u0 � r 0/u0 D �r 0p0 C 1

Re
�0u0 ; (8.45)

with the dimensionless Reynolds’-Number

Re D % � L2

� � T
D % � U � L

�
; with U D L

T
: (8.46)

The quantity U D L=T is the flow velocity averaged over the
length L. For ideal liquids is � D 0 ! Re D 1. Here the
following statement can be made:

Flows of ideal liquids in geometrical similar containers for
which (8.44) is valid, are described by the same equation (8.45)
with the same boundary conditions. This means: At correspond-
ing positions r0 and times t0 one obtains the same dimensionless
quantities p0 and u0 in (8.45). Even non-stationary flows have the
same progression within time intervals that are proportional to
the container dimensions and inversely proportional to the flow
velocity u.

For viscous liquids with � ¤ 0 this is only valid if the Reynolds
number Re has the same value. Flows of viscous liquids are
only similar if the Reynolds number Re has the same value and
the flow proceeds in containers with similar geometrical dimen-
sions.

We will illustrate the physical meaning of the Reynolds num-
ber Re. When we multiply numerator and denuminator in the
fraction (8.46) by L2 � U we obtain

Re D % � L3 � U2

�L2 � U
D 2Ekin

Wf
: (8.47)

The numerator gives twice the kinetic energy of a volume
element L3, which moves with the velocity U, while the denom-
inator is the friction energy Wf, which is dissipated when the
volume element L3 moves with the velocity U over a distance L.

For small Reynolds’ numbers Ekin � Wf, which implies that the
accelerating forces are small compared to the friction forces.

The flow is laminar. Turbulent flows occur above a critical
Reynolds’ number Rec.

Experimental findings give for water flows in circular pipes with
diameter d the critical Reynolds’ Number

Rec D % � d � Uc=� D 2300 :

For prevention of turbulent flows the normalized flow velocity
must always obey the condition U < Uc ! Re < Rec. If Re is
only slightly smaller than Rec vortices are formed, which, how-
ever, have diameters that are smaller than the flow pipe diameter.
Their rotational energy is small compared to the kinetic energy
of the laminar flow and they therefore do not impede the flow
very much. Only for Re � Rec their rotational energy becomes
comparable to the friction energy and macroscopic vortices are
generated. The flow becomes completely turbulent.

8.9 Usage of Wind Energy

The kinetic energy of streaming air can be utilized for the gener-
ation of electric power by wind energy converters. This had been
already realized for many centuries by wind mills for grinding
grain or for pumping water.

Modern wind converters generally have three rotor blades
(coloured pictures 3 and 4). According to new insight in the
flow conditions of air around the rotor blades, the shape of
these rotors is formed in a complicated way in order to optimize
the conversion efficiency of wind energy into mechanic rota-
tion energy of the rotor, which is then further converted through
transmission gears and electric generators into electric power.

Most of the wind energy converters produce alternating current,
which is then rectified and again converted by dc-ac converters
into alternating current. This is necessary in order to synchro-
nize the phase of the ac-current with that of the countrywide
network.

The kinetic energy of a volume element dV of the airflow mov-
ing with the velocity v is

Ekin D 1
2 mv2 D 1

2%v
2dV : (8.48)

The air volume impinging per second onto the vertical area A is
dV D v � A. The maximum power (energy per second) of the air
flow hitting the area A is then

PW D 1
2% � v3 � A : (8.49)

In reality, only a fraction of the power can be converted into
rotational energy of the wind converter. Firstly the wind is not
completely decelerated to v D 0, because for v D 0 a tailback
of air would build up behind the wind converter which would
impede the air flow to the converter. Secondly, friction losses
diminish the kinetic flow energy and rise the temperature.

If the velocity of the air inflow is v1, it is decelerated to v < v1

because of the stagnation at the rotor blades, where the pressure
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Figure 8.47 Schematic illustration of velocity and pressure conditions for a
rotor blade at rest in an air flow [8.13]

increases from the initial value p0 to p1 > p0 (Fig. 8.47). At the
backside of the rotor the pressure sinks to p2 < p0. Behind the
rotor the pressure increases again to p0 and the airflow velocity
is down to v2 < v. Only after a larger distance behind the rotor
the wind velocity rises again to its initial value v D v1.

According to the Bernoulli equation is

p1 � p2 D %
�
v2

1 � v2
2

�
=2 : (8.50)

The force acting on the rotor blades with area A is

F D .p1 � p2/A D %
�
v2

1 � v2
2

�
A=2 : (8.51)

On the other hand this force can be written as

F D .v1 � v2/d=dt.mv/ D .v1 � v2/%vA : (8.52)

The comparison between (8.51) and (8.52) shows that v D .v1C
v2/=2.

Figure 8.48 Offshore Windpark in the North Sea

The power, transferred to the wind converter is then

�Pw D F � v D
�
v2

1 � v2
2

�
%v

A

2
D a � PW : (8.53)

Inserting Pw from (8.49) gives for the conversion factor a the
value a D .v1 C v2/ � .v2

1 � v2
2/=2v3

1 < 1. With a given initial
velocity v1 the maximum transferred power�Pw.v2/ is reached
for d.�Pw/=dv2 D 0. This gives with v D .v1 C v2/=2 the
condition

�2v2.v1 C v2/% � A=4 C .v2
1 � v2

2/% � A=4 D 0 ;

which yields v2 D 1
3v1.

For the efficiency factor a one obtains a D 0:59. This means that
without any other losses at most 59% of the initial wind energy
can be converted into rotational energy of the wind converter!

Example

v1 D 10 m=s, v2 D 4 m=s ! v D 7 m=s and a D 0:588.
A typical wind converter has rotor blades with L D 50 m
length and deliver several Megawatt electric power. At
the rotational frequency f D 1=s the velocity of the rotor
ends is already 300 m=s D 1080 km=h, which is close to
the limit of tensile strength of the blade material. J

Note, that the power transferred to the wind converter is pro-
portional to the third power of the initial wind velocity. This
means that already small changes of the wind velocity will
cause large changes of the power available from wind convert-
ers. Modern wind converters can operate at wind velocities
between 4 m=s and 25 m=s. For smaller velocities the trans-
ferred power is too small for a profitable operation. For higher
velocities v > 25 m=s the converters are shut down because of
possible destruction.

The efficiency of the energy conversion is reduced by several
losses. Firstly there are friction losses between different air lay-
ers with different velocities. They correspond to the friction
losses � in the Navier–Stokes equation. Furthermore there are
mechanical losses of the rotating blades and the transmission
gear. Finally the losses in the electric generator have to be con-
sidered.
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Figure 8.49 Windfarm Krummhörn. Rotor span width is 30 m, the nominal electric power output is 300 kW per wind converter. (With kind permission of EWE
corporation, Oldenbourg)

The available electric power is then

Pelectric D a � �air � �mech � �electric � Pw :

For our considerations about the wind velocities before and be-
hind the wind converter we have assumed that the rotor blades
are at rest. Because of their rotation the relative velocity be-
tween initial wind velocity and rotor velocity is smaller and the
wind does no longer impinge perpendicular to the blades. This
gives not only a smaller effective area Aeff < A but also a smaller
value of the transferred energy.

The power delivered by a wind converter, averaged over one
year, is only between 10% and 40% of the installed power
depending on the wind conditions at the converter location.
The highest efficiency is reached for offshore wind converters
(Fig. 8.48), because here the wind blows continuously and has
generally a higher velocity than above undulating solid ground.
For wind converters on solid ground the height should be as
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Figure 8.50 Growth of worldwide annually installed eletric power of wind converters in GW

large as technically possible, because the wind velocity at 100 m
altitude is much higher than directly above ground (Fig. 8.49).

In Tab. 8.3 the total installed electric power of wind convert-
ers is listed for the countries with the highest usage of wind
energy and in Fig. 8.50 the impressive increase of worldwide
annually new installed electric power from wind converters is
illustrated.

Now we will discuss the energy conversion of wind converters
in more detail: The forces driving the rotor blades can be com-
posed of the flow resistance force and the Bernoulli-force. Their
ratio depends on the shape of the blades and on their angle of at-
tack ˛. This is similar to the situation for air flowing around a
wing profile of an air plane (see Sect. 8.7.2 and Figs. 8.41 and
8.46). The pressure dependence p.x/ along a wing profile at rest
is shown for the upper and lower side of the profile in Fig. 8.51.
The pressure difference generates a lift force and a torque about
an axis in x-direction. Depending on the orientation of the pro-
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Table 8.3 Installed electric power of wind converters for different countries
(2014)

Ranking Country Power in GW

1 China 114.763
2 USA 65.879
3 Germany 39.165
4 Spain 22.987
5 India 22.465
6 UK 12.440
7 Canada 9.694
8 France 9.285
9 Italy 8.663
10 Brazil 5.939
11 Sweden 5.425
12 Portugal 4.914
13 Denmark 4.845
14 Poland 3.834
15 Australia 3.806
16 Turkey 3.763
17 Rumania 2.954
18 Netherland 2.805
19 Japan 2.789
20 Mexico 2.381

Worldwide 369.553
Europe 133.969

file against the direction of wind flow, the lift force as well as the
flow resistance force can be used for driving the rotor blades.

When the rotor blade rotates with the angular velocity !, the
velocity vB.r/ of the section of the blade at a distance r from the
rotation axis adds to the wind velocity v to an effective velocity
veff D v C vB.r/ (Fig. 8.52). The angle of attack ˛ against
the direction of veff must be chosen in such a way (Fig. 8.43),
that the optimum force can be used. Since veff changes with r

the profile of the blade must change with r. With increasing r

the blade must become slimmer and the direction of the profile
changes. The whole blade is therefore twisted (Fig. 8.53) in
order to reach for all sections of the rotating blade the optimum
usage of the lift force.

Figure 8.51 Pressure variation along the lower and upper surface of a rotor
profile at rest, with air flowing around the profile. The rotation axis lies above
the drawing plane [8.14]

Figure 8.52 Velocities and forces on the rotating rotor. The rotation axis points
into the direction of v and is above the drawing plane [8.13]

Figure 8.53 Rotor blade of a fast rotating wind converter. The red areas rep-
resent the rotor profile at different distances r from the rotation axis. In this
drawing they are turned by 90ı into the drawing plane. Also the wind direction
is turned. The wind comes really from above the drawing plane
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Summary

The motion of particles of a flowing medium (liquids or
gases) is determined by the total force F D Fg C Fp C Ff

which is the vector sum of gravity force, pressure force and
friction force. The equation of motion is

F D % ��V � du

dt
;

where u is the flow velocity of the volume element �V with
the mass density %.
In a stationary flow u.r/ is at every position r constant in time
but can vary for different positions ri.
Frictionless liquids .Ff D 0/ are called ideal liquids. For
them the Euler equation

@u

@t
C .u � r/u D g � 1

%
grad p

describes the motion of the liquid.
The continuity equation

@%

@t
C div.% � u/ D 0

describes the conservation of mass for a flowing medium.
For incompressible media .% D const/ the continuity equa-
tion reduces to div u D 0.
For frictionless incompressible flowing media the Bernoulli-
equation

p C 1
2% � u2 D const

represents the energy conservation Ep C Ekin D E D const.
The pressure decreases with increasing flow velocity u.
The Bernoulli equation is the basic equation for the expla-
nation of the dynamical buoyancy and therefore also for
aviation.
For flow velocities u below a critical value uc laminar flows
are observed, while for u > uc turbulent flows occur. This
critical value uc is determined by the Reynolds number Re D
2Ekin=Wf which gives the ratio of kinetic energy to the fric-
tion energy of a volume element �V D L3 when �V is
shifted by L.

For laminar flows where the inertial forces are small com-
pared to the friction forces no turbulence occurs and the
stream lines are not swirled.
For a laminar flow through a tube with circular cross section
�R2 the volumetric flow rate

Q D �R4

8�
grad p

flowing per second through the tube is proportional to R4 �
grad p but inversely proportional to the viscosity �.
A ball with radius r moving with the velocity u through a
medium with viscosity � experiences a friction force

Ff D �6��r � u ;

that is proportional to its velocity u.
The complete description of a flowing medium is provided
by the Navier–Stokes equation (8.36a) which reduces for
ideal liquids .� D 0/ to the Euler equation. The Navier–
Stokes equation describes also turbulent flows, but for the
general case no analytical solutions exist and the equation
can be solved only numerically.
For the generation and the decay of vortices friction is nec-
essary. Vortices are generally generated at boundaries (walls
and solid obstacles in the liquid flow).
The flow resistance of a body in a streaming medium is de-
scribed by the resisting force FD D cD �% � 1

2 u2 � A. It depends
on the cross section A of the body and its drag coefficient cD

which is determined by the geometrical shape of the body.
The force is proportional to the kinetic energy per volume
element �V of the streaming medium. In laminar flows, FD

is much smaller than in turbulent flows.
The aero-dynamical buoyancy is caused by the difference of
the flow velocities above and below the body. This differ-
ence is influenced by the geometrical shape of the body and
can be explained by the superposition of a laminar flow and
turbulent effects (circulation).
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Problems

8.1 Estimate the force that a horizontal wind with a veloc-
ity of 100 km=h (density of air D 1:225 kg=m3) exerts (% D
1:225 kg=m3; cD D 1:2)
a) on a vertical square wall of 100 m2 area
b) on a saddle roof with 100 m2 area and length L D 6 m and a

cross section that forms an isosceles triangle with ˛ D 150ı.

8.2 Why can an airplane fly “on the head” during flight
shows, although it should experience according to Fig. 8.41 a
negative buoyancy?

8.3 Why do the streamlines not intermix in a laminar flow
although the molecules could penetrate a mean free path � into
the adjacent layers?
Hint: Estimate the magnitude of� in a liquid.

8.4 Prove the relation (8.36b) using the component represen-
tation.

8.5 A cylinder is filled with a liquid up to the height H. The
liquid can flow out through a pipe at height h (Fig. 8.54)

Figure 8.54 To Probl. 8.5

a) Calculate for an ideal liquid (no friction) the position x.H/
where the outflowing liquid hits the ground and the velocity
vx.H/ and vz.H/ for z D 0. Compare this result with the
velocity of a free falling body starting from z D H.

b) What is the function z.t/ of the liquid surface in the cylin-
der with radius R for a liquid with the viscosity � streaming

through a pipe with length L and radius r � R at the height
z D 0?

8.6 A pressure gauge as shown in Fig. 8.10c is placed into
flowing water. The water in the stand pipe rises by 15 cm. The
measurement with the device of Fig. 8.10a shows a pressure of
p D 10 mbar. How large is the flow velocity?

8.7 A funnel with the opening angle ˛ D 60ı is filled with
water up to the height H. The water can flow into a storage ves-
sel with volume V through a horizontal pipe at the bottom of the
funnel with length L and inner diameter d.
a) What is the height H.t/ in the funnel as a function of time?
b) What is the total flow mass M.t/?
c) After which time is the funnel empty for H D 30 cm,

d D 0:5 cm, L D 20 cm, and � D 1:002 mPa � s?
d) After which time is the storage vessel with a volume V D

4 litre full, if the water in the funnel is always kept at the
height H by supplying continuously water?

8.8 A water reservoir has at �h below the water surface a
drain pipe with inner diameter d D 0:5 cm and length L D 1 m
which is inclined by the angel ˛ below the horizontal.
a) How much water flows per second through the pipe for a

laminar flow with � D 10�3 Pa � s and �h D 0:1 m?
b) Above which angle ˛ the flow becomes turbulent if the crit-

ical Reynolds number is 2300?

8.9 What is the minimum diameter of a horizontal tube with
L D 100 m to allow a laminar flow of water of 1 l � s�1 from a
vessel with a water level 20 m above the horizontal tube?

8.10 What is the vertical path z.t/ of a ball with radius r

falling through glycerine .� D 1480 mPa � s/ if it immerses at
t D 0 and z D 0 into the glycerine with the initial velocity
v0 D 2 m=s
a) for r D 2 mm,
b) for r D 10 mm?

8.11 Derive the Helmholtz equation (8.39) starting from
(8.36a).
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The importance of vacuum physics for the development of mod-
ern physics and technology can be hardly overestimated. Only
after the realization of a sufficiently low vacuum, many ex-
periments in atomic, molecular and nuclear physics became
possible. These experiments have essentially contributed to the
understanding of the micro-structure of matter, of electrons and
nuclei as the building blocks and of the internal structure of
atoms and nuclei. Based on the results of these experiments
the quantum theory of matter could be successfully developed
(see Vol. 3).

Without vacuum technology, the manufacturing of semiconduc-
tor elements and integrated circuits would have been impossible
and therefore we would be still without computers.

Besides for basic research vacuum technology is nowadays used
as indispensable tool in many technical applications, which
reach from vacuum melting of special metal alloys over the pro-
duction of thin optical films to the dry freezing of food. It is
therefore essential for every physics student to study at least
some basic facts of vacuum physics and technology.

In this chapter we will discuss, after a summary of the most
important fundamentals, some techniques for the generation of
vacuum and the measurement of low pressures. More detailed
presentations can be found in [9.1, 9.2, 9.3].

9.1 Fundamentals and Basic
Concepts

Vacuum is produced in a container, when most of the gases
or vapours have been removed and the pressure p in the vol-
ume V becomes small compared to the atmospheric pressure
p0 � 1 bar. Devices, that can achieve such a reduction of the
pressure, are called vacuum pumps, because they pump part
of the gases or vapours in the volume V into other containers
or into the open air (Fig. 9.1). The achieved pressure, given in
the unit Pascal .1 Pa D 1 N=m2 D 10�2 hPa/ or often quoted
in millibar (1 mbar D 1 hPa D 100 Pa) (see Tab. 7.1) depends
essentially on the type of vacuum pumps used for the evacua-
tion. At low pressures .p < 10�4 hPa/ the walls of the vacuum
container and the gas molecules attached to the walls play an
important role for further evacuation because their outgasing es-
sentially influence the achievable vacuum pressure.

9.1.1 The Different Vacuum Ranges

We distinguish four different vacuum ranges, depending on the
lower pressure limit of the achievable vacuum.

Low vacuum

1 hPa < p < 1000 hPa D 1 bar

Medium vacuum

10�3 hPa < p < 1 hPa

Figure 9.1 Schematic drawing of a vacuum apparatus

High vacuum

10�7 hPa < p < 10�3 hPa

Ultrahigh Vacuum

p < 10�7 hPa.

The best vacuum, achievable today is about 10�13 hPa.

In order to give an impression how empty an evacuated con-
tainer really is, Tab. 9.1 compiles the number of gas molecules
per m3 for different pressures. It is illustrative to compare these
numbers with the number nw of molecules sitting per m2 in
a monomolecular layer on the surface of the container walls.
With a mean distance of 0:3 nm between the molecules of a
monomolecular layer we get nw D 1019 =m2. A cubic vac-
uum container with V D 1 m3 has a wall surface of 6 m2. At
a pressure of 2 � 10�5 hPa the number of molecules on the wall
therefore equals the number of all molecules in the volume of
the container. For pressures below 10�5 hPa the number of
molecules on the wall therefore exceeds the number in the vol-
ume and in order to reach a much lower vacuum the walls have
to be outgassed by heating.

Generally there are different gases (N2, O2, He, Ar with pres-
sures pi) and vapours (water, oil or other liquids with saturation

Table 9.1 Particle density n of air molecules, mean free path � and particle
flux density � onto the container surface for different pressures at room temper-
ature

p=hPa n=m�3 �=m �=m�2s�1

103 2:5 � 1025 6 � 10�8 3 � 1027

1 2:5 � 1022 6 � 10�5 3 � 1024

10�3 2:5 � 1019 6 � 10�2 3 � 1021

10�6 2:5 � 1016 60 3 � 1018

10�9 2:5 � 1013 6 � 104 3 � 1015
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pressures psi) in the vacuum container. The total pressure

p D
X

.pi C psi/ (9.1)

is then the sum of all partial pressures. The saturation pressure
which adjusts itself at the equilibrium between liquid and vapour
depends on the temperature (see Sect. 10.4.2).

For planning an experiment in the vacuum chamber the mean
free path � of the molecules is of great importance. It deter-
mines the collision probability between the molecules in the
chamber (see Sect. 7.3). Table 9.1 shows that in the fine vacuum
range � is small compared with the dimensions of commonly
used vacuum chambers. Collisions can be therefore not ne-
glected. On the other hand, in the high vacuum range for
p < 10�6 hPa, � becomes large compared with the dimensions
of the chamber and the molecules fly freely through the chamber
without suffering collisions until they hit a wall.

9.1.2 Influence of the Molecules at the Walls

The number of molecules, hitting per sec an area of 1 m2 of the
walls of a vacuum container (particle flux density˚ , last column
of Tab. 9.1) depends on the particle density n in the evacuated
volume V and on the mean thermal velocity v (see Sect. 7.3).
A molecule with the velocity v D fvx; vyvzg with the distance z

from the surface can reach the surface within the time�t � z=vz

as long as z is smaller than the mean free path� (Fig. 9.2). For a
mean particle density n the number of wall collisions per second
of molecules in the upper half volume is

Z D nAv

4�

�=2Z

0

sin# cos# d#

2�Z

0

d' : (9.2a)

The first integral gives the value 1=2, the second gives 2� . The
particle flux density ˚ D Z=A onto the unit area of the wall
surface is then

˚ D .1=4/n � v : (9.2b)

The numerical values in Tab. 9.1 show, that at a pressure of
p D 3 � 10�6 hPa and a mean velocity v D 500 m=s nearly
as many molecules hit the surface per second as are contained
in a mono-molecular layer on the surface. If all impinging
molecules would stick at the surface a clean surface would be
covered within 1 s with a monomolecular layer. This illustrates
that a really clean surface can be only realized at very low pres-
sures (ultrahigh vacuum) and if the molecules do not stick on
the surface. This can be achieved, when the surface is heated,
which causes all impinging molecules to leave the surface im-
mediately.

With decreasing temperature the evaporation decreases and the
inner wall of a vacuum chamber is therefore at low temperatures
always covered by a layer of adsorbed molecules. An equi-
librium adjusts itself which depends on the temperature of the
surface, on the density n in the chamber and on the molecular

Figure 9.2 Illustration of the collision rate with the wall

species, where the rates of adsorbing and desorbing molecules
become equal.

Our example above has shown that at pressures p � 10�3 hPa
the number of molecules adsorbed on the wall becomes larger
than the number in the evacuated volume. When a vac-
uum chamber is evacuated, the pressure in the chamber below
10�3 hPa will be at first essentially determined by the rate of
molecule desorbing from the wall, until the desorbing rate be-
comes smaller than the pumping rate that removes the molecules
out of the vacuum chamber.

9.1.3 Pumping Speed and Suction Capacity of
Vacuum Pumps

When a vacuum chamber is evacuated the gas in the chamber
has to pass through an opening and through pipes in order to
reach the vacuum pump. The volume flow rate of the pipe (of-
ten given in the unit litre per second D l=s or cubic meter per
hour D m3=h) is the gas volume that flows per sec through a
cross section of the pipe at a given pressure p and temperature
T .

Note, that the molecular density n D N=V decreases with the
pressure according to

p � V D NkT ! N D pV

kT
! n D p

kT
: (9.3)

Therefore even for a constant volume flow rate the number
of molecules passing per second through the cross section de-
creases with p! This means for equal volume flow rates dV=dt,
the number dN=dt of molecules pumped out of the vacuum
chamber depends on pressure p and temperature T .

The suction capacity

SV D dV

dt
given in Œl=s� or in Œm3=h� (9.4)

of a vacuum pump is defined as the volume flow rate dV=dt at
the suction intake of the pump.

The total mass flow of molecules with mass m

dM

dt
D % � dV

dt
D m

kT
p � dV

dt
; (9.5)



C
h

a
p

te
r

9

240 9 Vacuum Physics

that is pumped per second out of the vacuum chamber is the
mass suction capacity. It depends on the pressure and the vol-
ume flow rate through the chamber opening and the pipes.

Manufacturers of pumps generally give the suction capacity or
pumping speed of a pump in the unit

SL D p � dV

dt
; ŒSL� D hPa � l=s (9.6)

as the product of pressure p and volume flow rate dV=dt.

Example

With a suction capacity SV D 500 l=s about
1022 molecules per sec are pumped out of a vacuum cham-
ber at room temperature and p D 1 hPa. At the lower
pressure p D 10�6 hPa these are only 1016 molecules per
second at the same value of SV.

The suction capacity is for the first case SL D
500 hPa � l=s (corresponding to 50 Watt) while for the sec-
ond case SL is only 5 � 10�4 hPa � l=s .50 µW/. J

9.1.4 Flow Conductance of Vacuum Pipes

The dimensions of vacuum pipes play an important role for the
design of a vacuum apparatus. The mass flow

dM

dt
D Lm � .p2 � p1/ (9.7a)

through a vacuum pipe is proportional to the pressure difference
.p2 �p1/ between entrance and exit of the pipe. The proportion-
ality factor Lm is the coefficient of mass flow conductance given
in the unit Œ1 m � s�. Generally the pumping speed

p � dV

dt
D LS � .p2 � p1/ (9.7b)

is used with the unit ŒhPa � m3=h�. Because of p � V D N � kT !
p D .%=m/kT with m D M=N D mass of one molecule the
coefficient of volume flow conductance LS can be related to the
mass flow conductance by

LS D kT

m
� Lm : (9.7c)

LS depends on the mass m of the molecules, on the mean free
path � (because � / 1=p) and on the geometry of the vacuum
pipes. For simple geometries it can be calculated. For complex
geometries it must be determined experimentally. The values
are compiled in special tables [9.1].

The gas flow through pipes

dV

dt
D CS

�p

p
(9.7d)

strongly depends on the pressure. Here CS D LS is named
the volume flow conductance. The different pressure ranges are
characterized by the Knudsen number

Kn D �

d
; (9.8)

which gives the ratio of mean free path � and the diameter d

of openings or pipes. According to the magnitude of Kn we
distinguish between three ranges:

Range of laminar gas flow (for Reynolds numbers Re <
2200) or turbulent flow (for Re > 2200) which occurs for
Kn � 1. Here is � � d.
Range of Knudsen flow (also called transition range) where
Kn � 1 and � � d.
Range of free molecular flow where Kn � 1 and � � d.

In the range Kn � 1 the gas flow is essentially governed by
collisions between the gas molecules, which means that the vis-
cosity plays an important role. The flow can be described by
hydro-dynamical models (see Chap. 8). Depending on the mag-
nitude of the Reynolds number Re and the viscosity � the flow
is laminar for Re < 2200 or turbulent for Re > 2200. Under
the conditions relevant for most vacuum systems the Reynolds
number is generally smaller than 2200 and the flow is therefore
laminar.

In the range Kn � 1 collisions between the molecules can be
neglected. The viscosity � does no longer influence the gas flow
and collisions with the wall determine the suction capacity. The
flow conductance becomes independent of the pressure.

We will illustrate these conditions by some examples:

Examples

1. Volume flow conductance CS of a circular opening
with diameter d in the range of molecular flow .� �
d/. According to Eq. 9.2 the number of molecules
passing per sec through the hole with area A D �d2=4
is

Z D 1
4 A � n � v ;

with p � V D N � kT and Z D dN=dt we obtain for the
volume gas flow through the hole

dV

dt
D 1

4
A � n

p
kT v D 1

4
A � v;

since n D N=V D p=kT .
Since n � p the volume flow dV=dt becomes indepen-
dent of pressure. Inserting numerical values of v for
air at T D 300 K gives dV=dt D 11:6 � A in l=s if A is
given in cm2. A circular opening with d D 10 cm has
therefore at low pressures .� � d/ the volume flow
conductance CS D 900 l=s.

2. Flow through a pipe with length L and diameter d in
the range of laminar flow .� � d/. The pressures at
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the two ends of the pipe are p1 and p2. According to
the Hagen-Poisseuille-law (8.32)

p � dV

dt
D � � d4

128 �L
� p1 C p2

2
.p1 � p2/ ; (9.9)

we obtain for d D 5 cm, L D 1 m, p1 D 2 hPa, p2 D 0,
�air D 0:018 mPa � s, the numerical value p � dV=dt D
170 Pa �m2=s. According to (9.7) the volume flow con-
ductance then becomes CS D 0:85 m3=s D 850 l=s.
At a lower pressure of 10�1 hPa, where � D 0:06 cm
(Tab. 9.1) which is still smaller than d the flow con-
ductance decreases according to (9.7) and (9.9) to
CS D 42 l=s. Equation 9.9 is in this range, how-
ever, only approximately valid and the accurate value
is CS D 80 l=s.
In the range of molecular flow .� > d/ CS con-
verges with decreasing pressure towards the value
CS D 16 l=s. J

The reciprocal of the flow conductance

RS D 1=CS (9.10)

is the flow resistance. Completely analogue to the electrical re-
sistance in electricity the flow resistance of consecutive flow
pipes is the sum of the individual resistances, while for flow
pipes in parallel arrangements the individual flow conductances

add to the total conductance, as can be immediately seen from
(9.7).

9.1.5 Accessible Final Pressure

Every vacuum chamber has openings that allow access to the
experimental setup in its inside. They are closed by flange seals.
However, there are always leaks which are often difficult to find
and to close. Through these leaks molecules can penetrate from
the outside into the vacuum chamber. We define the gas rate
dGL=dt D p0 � dVL=dt (p0 D atmospheric pressure) which pen-
etrates through all leaks into the vacuum chamber as the leak

rate. It is given in the same units hPa � l=s as the pumping speed
defined in (9.6).

As has been previously discussed molecules can also be des-
orbed from the inner walls and delivered into the volume of the
vacuum chamber. This leads without pumping to a pressure in-
crease �p.

For the rate dNd=dt of desorbing molecules we obtain with p �
V D N � kT the pressure increase per second

dp

dt
D kT

V

dNd

dt
: (9.11)

The total rate of desorbed gas is

dGd

dt
D V � dp

dt
D kT

dNd

dt
: (9.12)

Desorption rate

Leak rate

Pumping speed

Figure 9.3 The achievable final pressure is determined by the compensation
of pumping speed by leak rate C desorption rate

The final pressure achieved in the vacuum chamber is deter-
mined by the pumping speed, the leak rate and the total rate of
desorbing molecules (Fig. 9.3). At the final pressure the pump-
ing speed just equals the sum of leak rate and desorbing gas rate.

Seff
L .p/ D dGL

dt
C dGd

dt
; (9.13)

where Seff
L is the effective pumping speed at the outlet opening

of the chamber to the pumping pipes. It is equal to the pumping
speed of the pump minus the flow conductance of the vacuum
lines between chamber and pump.

The attainable final pressure pf results then from (9.13) with
(9.6) and (9.12):

pf D dGd=dt C dGL=dt

SV
; (9.14)

where SV D dVp=dt is the effective suction capacity at the exit
of the vacuum chamber.

Example

For a suction capacity SV D 103 l=s, a leak rate of
10�4 hPa � l=s and a desorbing gas rate of 10�3 hPa � l=s
a final pressure of pf D 1:1 � 10�6 hPa can be reached.
After heating the walls the desorbing rate sinks below the
leak rate and a final pressure of pf D 10�7 hPa can be
achieved. J

9.2 Generation of Vacuum

In order to remove gas particles out of the vacuum chamber vac-
uum pumps are used. The different types can be divided into
three classes (Tab. 9.2):

Mechanical pumps,
Diffusion pumps (fluid acceleration vacuum pump),
Cryo pumps and sorption pumps.

We will briefly discuss these three classes. In Fig. 9.4 the pres-
sure ranges are compiled where the different pumps can be used.
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Table 9.2 Classification of the most important types of vacuum pumps

Mechanical
pumps

Fuel acceleration
pumps

Condensation pumps,
sorption pumps

Rotary vane pumps Liquid jet pumps Cool traps
Roots pumps Vapor jet pumps Kryo pumps,

sorption pumps
Turbopumps Diffusion pumps ion getterpumps

Rotary vane pump

Roots pump

Steam jet pump

Diffusion pump

Turbo-molecular pump

Kryo-pump

Mass spectrometer

Friction ball manometer

Capacitor membrane mano.

McLoid mano.

Ionization manometer

Penning mano.

Heat conduction mano.

Membrane mano.

Figure 9.4 Pressure ranges a of the differrent types of vacuum pumps, b of
pressure detectors

9.2.1 Mechanical Pumps

Already around 1600 Galileo Galilei has produced a low vac-
uum in a container by using a movable piston. More detailed
experiments were performed in 1643 by Evangelista Torricelli,
who was Galileo’ successor in Florence. In honour of Torricelli
the unit of pressure has been named torr (1 torr is the pressure of
1 mm mercury column D 133:3 Pa). The unit torr has been used
for several centuries before the SI unit 1 Pa was introduced.

Spectacular experiments with evacuated spheres were per-
formed 1645 by Otto von Guericke, the major of the German
city Magdeburg. He put two hemi-spheres together, sealed them
up with leather gaskets and evacuated the interior. This pressed
the two hemi-spheres tightly together. In order to demonstrate
the force on the hemi-spheres due to the external pressure he
roped 8 horses in on each side who tried unsuccessfully to sep-
arate the hemi-spheres. The large auditorium was very much
astonished that 16 horses could not separate the hemi-spheres
although they could be readily separated after the evacuated
sphere was filled again with air at the external pressure. Su-
perstitious people believed in a ghost inside the sphere. An
engraving of Caspar Schott illustrates this spectacular exper-

Figure 9.5 The demonstration experiment by Otto von Guericke. Engraving by
Caspar Schott

Figure 9.6 Ancient mechanical vacuum pump

iment (Fig. 9.5). At that time the evacuation with piston air
pumps (Fig. 9.6) was tedious, because the seals were imperfect.

Nowadays the mechanical pumps are mainly rotary vane pumps,
Roots pumps or turbo-molecular pumps, which are all driven by
electro motors.
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9.2.1.1 Rotary Vane Pumps

The basic principle of rotary vane pumps is schematically illus-
trated in Fig. 9.7. An eccentrically mounted rotor R1 rotates in a
cylindrical bore with an inlet S1 from the vacuum chamber and
an outlet A1 into the open air at atmospheric pressure. The rotor
has a slit in which two sliders are pushed by a coil spring against
the wall of the bore. When the rotor rotates in the direction of
the arrow the right side of the sliders sucks the gas from S1 and
drives it during half of a rotation period towards A1. This is re-
peated every half turn thus continuously evacuating the vacuum
chamber behind S1.

For single-stage pumps the outlet A1 is connected to the open
air (or an exhaust gas line) and the pressure p in A1 equals the
atmospheric pressure. Due to the pressure difference between
A1 and S1 always some gas can flow back from A1 to S1 because
the slider in the rotor does not completely seal the connection
between A1 and S1. This limits the attainable final pressure in
S1. In order to keep the leak rate as small as possible the pump
is filled with oil which forms a film between slider and wall
and not only gives a better seal but also acts as lubricant that
prevents jamming of the rotor. With such single-stage pumps
final pressures of 10�1–10�2 hPa are reached.

In order to obtain lower final pressures the outlet A1 can be
connected to a second pump (Fig. 9.8), which produces in A1 al-

Figure 9.7 Principle operation of a rotating vane pump [9.1]. With kind per-
mission of Leybold GmbH

Figure 9.8 Two stage rotary vane pump [9.1]. With kind permission of Leybold
GmbH

ready a pressure of 10�1 hPa, thus reducing the back-streaming
considerably. This leads to a final pressure of permanent gases
in S1 of about 10�3 to 10�4 hPa. However, now the saturation
vapour pressure of the pump oil (ps � 10�3 hPa at T D 350 K)
is the limiting factor for the final pressure. Using a cool trap
between S1 and the vacuum chamber can reduce the saturation
pressure and realizes an oil-free vacuum in the chamber.

Typical pumping speeds of such rotary van pumps reach from
1 m3=h for small pumps to 60 m3=h for larger ones. To prevent
back streaming of atmospheric pressure from A to S in case of
an accidental standstill of the pump a blocking valve V is built
in at A2.

9.2.1.2 Roots-Pump

The principle of a roots pump is shown in Fig. 9.9. Two symmet-
rically shaped rotors R1 and R2 rotate with opposite directions
about two axes. They are arranged in such a way that their sur-
faces nearly touch each other. The gap width between the two
rotors and between the rotors and the wall are only a few tenth
of a millimetre. For the momentary situation shown in Fig. 9.9
the gas volume V1 enclosed by the left rotor R2 is compressed
and pushed to the outlet A when the rotor rotates counterclock-
wise. A quarter of a full turn later the oppositely turning rotor
R1 pushes gas from S to a similar enclosed volume on the right
side and presses it to A. Since the rotors do not touch, there is no

Figure 9.9 Principle operation of roots pump [9.1]. With kind permission of
Leybold GmbH
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material abrasion and roots pumps can rotate with high angular
velocities, thus increasing the pumping speed. The disadvantage
of the gap between the rotors is the backstream of gas from A

to S. With decreasing pressure in A the flow resistance of the
gaps with width d becomes larger as soon as � � d. Therefore
the pressure in A should be lowered by a one-stage rotary vane
pump. Roots pumps need a forepump. Large roots pumps reach
pumping speeds of up to 105 m3=h.

9.2.1.3 Turbo-Molecular Pumps

The turbo-molecular pump, developed 1958 by W. Becker [9.5]
is based on the principle that molecules hitting a fast moving
surface, gain momentum in the direction of the surface motion
(Fig. 9.10).

The turbo pump consists of a staple of fast rotating rotors with
many blades (Fig. 9.11). Assume a gas molecule M with the
thermal velocity v impinges on a blade of the rotor which has the
same temperature T as the gas. For a resting rotor the molecule
M would desorb from the blade after a short time with the ve-
locity v0 which has about the same magnitude as v, (jvj � jv0j)
while its directions are distributed around the surface normal.

If the rotor blade moves with the velocity u the total velocity of
the desorbing molecules is the vector sum v� D v0 C u. Due

Figure 9.10 a Momentum transfer at the reflection of molecules M at a fast
moving surface; b basic principle of turbo pump

Figure 9.11 Rotor of a turbo pump. With kind permission of CIT Vacuum
Technique

to the direction of u to the left in Fig. 9.10, the number of im-
pinging molecules from the left half space is larger than that of
molecules from the right one. Because of the inclined blades the
velocities v0 are preferentially directed into the downward direc-
tion. The rotating blades therefore transport molecules from the
upper space (inlet of the pump) to the lower space (outlet of the
pump).

This is illustrated in Fig. 9.10b. If the rotor blade moves with
the velocity u to the left, molecules moving with the velocity
v0 < u from the upper space 1 can hit the blade only on the left
side.

9.2.2 Diffusion Pumps

Diffusion pumps are used for the generation of high- and
ultrahigh-vacuum. Their principle is shown in Fig. 9.12. A
pumping fluid 2 (oil or mercury) is evaporated by the heater at
the bottom of the pump. The vapour rises in the inner part of
the pump and leaves it at the upper end through nozzles where
it gains supersonic speed forming fast vapour jets, which are
directed downwards. Molecules from the vacuum chamber dif-
fuse into the vapour jets and are pushed downwards by collisions
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Figure 9.12 Operation principle of a diffusion pump. 1 D Heating, 2 D boil-
ing region, 3 D pump body, 4 D water cooling, 5 D high vacuum side, 6 D
particles from high vacuum side, 7 D vapor jet, 8 D pre vacuum tube, A–D D
nozzles for vapor jets. With kind permission of Leybold GmbH [9.1]

with the vapour molecules. Since the vapour jets are initially
free of gas, the diffusion rate into the jet is higher than out of the
jet.

After diffusion into the vapor jet the gas molecules experience
by collisions with the jet molecules an additional momentum
downwards into the direction of the jet. They come into lower
regions where they diffuse into the lower jets where they expe-
rience more collisions and are transported farther downwards.
Finally they reach the outlet of the diffusion pump where they
are pumped away by a mechanical pump. A pressure ratio
pi=p0 � 10�7 between the pressure pi at the input and p0 at
the outlet of the diffusion pump can be reached. When the fore-
pump maintains a pressure p0 D 10�2 hPa a pressure as low as
10�9 hPa can be realized at the high vacuum side.

The hot vapor jets hit the cooled wall of the pump where they
condense and flow as liquid film down to the heater. Here they
are again vaporized. In order to form oil vapor jets the free mean
path � must be sufficiently large, i.e. the pressure sufficiently
low. Diffusion pumps therefore can operate only at pressures
below 10�2–10�3 hPa. They do need a forepump, which gener-
ates the necessary minimum starting pressure.

The total pressure at the high vacuum side of the diffusion
pump is the sum of all partial pressures, including the saturation
pressure of the pump fuel. For mercury as fuel the saturation
pressure is 10�3 hPa at room temperature. For mercury pumps

Figure 9.13 a Cooled baffle for reduction of oil return flow. b Liquid nitrogen
condensation trap

therefore liquid nitrogen cool traps above the diffusion pump
are necessary in order to obtain a better high vacuum. Oil-
diffusion pumps operate with special oils that have saturation
pressures below 10�7 hPa. Therefore nowadays mainly oil dif-
fusion pumps are used.

In order to prevent oil molecules from reaching the vacuum con-
tainer a cooled baffle is mounted above the pump (Fig. 9.13a)
which blocks the direct way of the molecules. Another solution
is a liquid nitrogen trap (Fig.9.13b) where every oil molecule
on its way to the vacuum container hits at least one cooled wall
where the molecules are adsorbed.

The pumping speed of modern vacuum diffusion pumps ranges
from 60 l=s (for a small pump with 20 cm heights) to 50 000 l=s
(about 4–5 m high). Diffusion pumps are the favorite types of
high vacuum pumps. In Fig. 9.14 the pumping speed of medium
sized diffusion pumps as a function of the pressure on the high
vacuum side is compared with the performance of a turbo pump.
Important for the optimum performance of a pumping system is

Figure 9.14 Pumping speed S .p/ of different types of pumps
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the choice of the best forepump, which should be always able to
maintain a pressure below 10�2 hPa on the high pressure side of
the diffusion pump.

Example

A diffusion pump with a pumping speed of 2000 l=s
should maintain a pressure of 10�5 hPa in a container into
which continuously a gas streams. A gas volume of 2000 l
at p D 10�5 hPa corresponds to a volume of 2 l at a pres-
sure of 10�2 hPa. Therefore the forepump must have at
least a pumping speed of 2 l=s D 7:2 m3=h. Since the vac-
uum pipe between forepump and diffusion pump reduces
the pumping speed, a forepump with a pumping speed of
12 m3=h should be used. J

9.2.3 Cryo- and Sorption-Pumps;
Ion-Getter Pumps

A cryopump consists essentially of one or several cooled sur-
faces inside the vacuum container. All gases or vapors with
condensation temperatures above the temperature of the sur-
faces condense and are adsorbed as liquids or solids on the
surfaces. Liquid nitrogen cooltraps therefore can condense all
gases and vapors except hydrogen and helium which need liquid
helium traps. Most cryo-pumps use closed cycle lquid helium
cooling systems (Fig. 9.15), which reach temperatures down to
about T D 10 K.

The achievable final pressure is determined by the equilibrium
of the rate of molecules impinging onto the cold surface and the
rate of evaporating molecules. The latter is determined by the
vapor pressure of the component with the lowest evaporation
temperature. The impinging molecules have a mean velocity
v � p

Tw which depends on the temperature Tw of the walls of
the vacuum chamber, while the mean velocity of the evaporating
molecules v � p

Tc depends on the lower temperature Tc of the
cold surface.

Figure 9.15 Principle of cryo pump with closed cooling cycle

The rate of molecules impinging onto the area A is

Z D 1

4
n � vw � A ; (9.15)

which equals the desorbing rate under equilibrium conditions.
With p D nkT and v �

p
T we obtain the partial pressure of the

i-th vapor component in the container

pe.i/ D ps.i/ �
p

Tw=Tc ; (9.16a)

where ps is the saturation pressure. The attainable final pressure
is then

ptotal D
X

pe.i/ �
p

Tw=Tc : (9.16b)

Cryo-pumps need a forepump which lowers the pressure in the
container down to about 10�3 hPa, because for p > 10�3 hPa the
mean free path� is smaller than the dimensions of the container
and the heat conduction from the cold surfaces to the wall of the
container becomes too large (see Sect. 7.5). Furthermore at low
pressures the layer of condensed gases becomes too thick which
lowers the heat conduction from the surface of this layer to the
cooling body and increases the temperature of the surface.

The pumping speed of a cold surface Ac at a pressure p in the
vacuum container is according to (9.2) and (9.15)

Ls D 1

4
Acv

�
1 � ps

p

p
Tw=Tc

�

D 1

4
Acv � ˛ � 1 � pe

p
;

(9.17)

where ˛ � 1 is the sticking propability of an impinging
molecule on the cold surface, and ps D P

ps.i/ is the sum of
the saturation pressures of all vapor components at the tempera-
ture Tc of the cold surfaces.

Example

v D 400 m=s, ˛ D 1, Pe � p, A D 1 cm2 ! Ls D
10 l=s, i.e. the cold surface has a maximum pumping
speed of 10 l=s per cm2. J

The growth rate d�=dt of the adsorbed layer with thickness
�.t/ on the cold surface depends on the density n D N=V of
molecules with mass m in the container and on their mean ve-
locity v D .8kT=m�/.1=2/ at the temperature T .

According to Fig. 7.28 the number of molecules with mass m

hitting per sec the area dA is

dZ D 1

4
n � vdA : (9.18a)

With v D
p

8kT=m� we get the mass increase of the layer per
sec

dM

dt
D dZ � m D 1

4
n � m � v � dA

D 1

4
n �
p

8kTm=� :

(9.18b)
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Figure 9.16 Setup of a sorption pump. 1: inlet connector; 2: degasing
connector; 3: mechanical support; 4: pump body; 5: heat conduction sheets;
6: adsorption material [9.1]

The mass M of the layer with thickness� and density % is M D
% �� � dA.

This gives finally the growth rate of the layer

d�

dt
D n

%

p
kTm=2� (9.18c)

Example

For N2-molecules at a pressure of 10�5 hPa the growth
rate is 5 µm=h. J

The adsorbed layer should not be too thick, because the heat
conduction becomes worse with increasing thickness � and the
surface temperature of the layer increases. This increases the
evaporation rate of the adsorbed molecules.

The adsorbing surface can be greatly increased by using molec-
ular sieves (zeolites D alkali-aluminum silicate)). They consist
of small balls with many fine pores, into which the molecules
can diffuse and are then adsorbed. The effective surface of Ze-
olith is about 103 m2 per gramm. For Zeolith the diameter of the
pores is about 1:3 nm. For typical sizes of 0:5 nm for molecules
1 g Zeolith can adsorb about 2:5 � 1021 molecules in a mono-
layer. This corresponds to a gas volume of 10 000 l at a pressure
of 10�2 hPa.

The adsorption of the molecular sieves depends strongly on the
temperature. They can be therefore used at low temperatures
(liquid nitrogen temperature D 78 K) as a cryopump and later
on they can be degassed at higher temperatures and used again
as pumps. Such a sorption pump is shown schematically in
Fig. 9.16.

Another solution for high vacuum pumps are ion-getter pumps.
In a gas discharge ions are produced which are accelerated onto

Figure 9.17 Principle of getter ion pump [9.1]

the cathode. Here they sputter the cathode material (e.g. Tita-
nium) which is adsorbed on cold surfaces, where already a layer
of condensed gases has been formed. The titanium atoms form a
film, that covers the layer of adsorbed atoms and burries it com-
pletely. A new fresh metal surface is formed where further gas
molecules can be adsorbed. Since the vapor pressure of titanium
is very low, even at room temperature very low pressures can be
obtained.

Such ion-getter pumps (chemical getter pumps) are useful for
the generation of oil-free ultrahigh vacuum (p < 10�6 hPa). In
Fig. 9.17 a possible realization is shown. A titanium wire is
heated by direct electric current or by electron bombardment.
The sputtered titanium atoms are ionized by collisions with elec-
trons and are accelerated onto the cooled walls, which are kept
at ground potential. Here they push the adsorbed molecules
deeper into the wall and burry them under a metallic film of
neutral titanium atoms. A sputter rate of 5 mg=min represents at
p D 10�6 hPa a pumping speed of 3000 l=s.

9.3 Measurement of Low Pressures

For the measurement of pressures a variety of different measur-
ing techniques and instruments have been developed. We will
present only a small selection. Table 9.3 compiles some of these
devices suitable for the different pressure ranges.

Table 9.3 Pressure ranges of different pressure measuring devices

Device Pressure range/mbar

Liquid manometer 0:1–103

Mechanical spring vacuum meter 1–103

Membrane manometer 1–103

Capacity manometer 10�4–103

Heat conduction manometer 10�3–1
Heat conduction manometer with control
feedback

10�3–100

McLeod manometer 10�6–10�1

Penning ionization manometer 10�7–10�3

Ionization manometer 10�12–10�3

Friction manometer 10�7–10�1
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9.3.1 Liquid Manometers

Liquid manometers (Fig. 7.3) are simple devices for pressure
measurements, that have been already used in 1643 by Torri-
celli. Here the height difference �h of a liquid with density %
in the two legs of a U-shaped tube are measured. The pressure
difference �p D p2 � p1 between the two ends of the U-tube is
then

�p D % � g ��h : (9.19)

Example

With oil (% D 900 kg=m3) a pressure difference �p D
1 hPa causes a height difference �h D 11:3 mm. For
mercury (% D 13;546 kg=m3) one obtains �h D 1 mm
for �p D 1:33 hPa D 1 torr. J

When one leg of the U-tube is closed and evacuated (Fig. 7.2)
the volume above the liquid is filed with the vapour of the liquid
with the vapour pressure ps.T/, that depends on the temperature
T . The height difference is then

�h D 1

% � g
.p � ps/ � 1

%g
p for ps � p ; (9.19a)

which gives directly the pressure p above the open leg of the
U-tube.

The accuracy and sensitivity of liquid manometers can be
considerably increased with a device, developed by McLeod
(Fig. 9.18), which is based on the Boyle–Mariotte Law (see
Sect. 7.1). At the beginning of the measurement, the container B

is lowered until the liquid level in the left leg is at h1. The pres-
sure p1 above h1 is the pressure in the vacuum chamber. Now B

is lifted again until the liquid level rises above the point z. The

Figure 9.18 Principle of McLeod vacuum meter

volume V D V0 CVc of G and the capillary above G is now sep-
arated from the vacuum chamber. The container is lifted up to a
height where the liquid level in the very left tube (pressure p1)
is by �h higher than in the capillary above G where the higher
pressure p2 is present due to the compression of the closed vol-
ume V to the much smaller volume Vc D �r2 � x. According to
the Boyle–Marriot law we obtain

p1 � .V0 C Vc/ D p2 � � � r2 � x :

The measured height difference of the liquid between the left
tube and the capillary

�h D p2 � p1

% � g
D p1

% � g

�
V0

�r2x
C L

x
� 1

�
(9.20)

yields the pressure p1 in the vacuum chamber, after the volumes
V0, Vc D � �r2 �L and the length x of the gas-filled part of the cap-
illary have been determined. in case of mercury one has to take
into account the capillary depression to mercury (see Sect. 6.4).

9.3.2 Membrane Manometer

To measure the pressure in the low vacuum range robust and
simple membrane manometers are available (Fig. 9.19b). A thin
membrane separates the vacuum from the upper part at atmo-
spheric pressure. A wire is connected at one end with the centre
of the membrane and at the other end with a hand that can rotate
around a fixed axis. Due to the pressure difference, the mem-
brane sags and turns the hand by an angle that is proportional to
the pressure difference, which can be read on a calibrated scale.

Another realization (Fig. 9.19a) uses a bent thin hollow tube
that is connected to the vacuum chamber. The bending radius is

Flexible evacuated

tube acting as spring

To vacuum

container

Scale
Membrane

a) b)
To vacuum

container

Fixed

rotation axis

Figure 9.19 Two designs of robust and compact pressure detectors. a Spring
pressure gauge; b membrane pressure gauge



9.3 Measurement of Low Pressures 249

C
h

a
p

te
r

9

Figure 9.20 Membrane capacitor vacuum gauge. A thin membrane M pro-
vides together with two curved fixed plates two capacities C1 and C2, which are
arranged in a bridge circuit (see Vol. 2, Chap. 2). They are fed by two identical
ac-voltage sources

dependent on the pressure. When it changes the upper end of the
tube moves a hand which indicates the pressure on a calibrated
scale.

For lower pressures in the high vacuum range (p < 10�5 hPa)
capacitance membrane manometers (Fig. 9.20) can be used.
Here a thin membrane which separates the vacuum chamber
from a chamber with a fixed reference pressure. It forms one
electrode of two electric capacitors C1 and C2, When the pres-
sure in the vacuum chamber decreases the membrane bends to
the left side and decreases the electrode separation of C1 but
increases that of C2, thus increasing the capacitance of C1 and
decreases that of C2. This changes their AC resistance in an op-
posite direction, which can be measured with an electric bridge
arrangement where the two capacitors are charged by two iden-
tical AC voltage supplies (see Vol. 2. Chap. 1).

9.3.3 Heat Conduction Manometers

As has been shown in Sect. 7.5 the heat conduction of a gas in
the pressure range where the mean free path � is larger than
the dimensions of the vacuum chamber, is proportional to the
pressure p. This fact is used in the heat conduction manome-
ter (Fig. 9.21) for measuring pressures. A filament of length
L, heated by an electric current I, is clamped between to yokes
along the axis of a small cylindrical tube. Its temperature Td is
determined by the supplied electric power I2 � R and the power
loss due to heat conduction.

dW

dt
D 2�r � L � �.Td � Tw/ ; (9.21)

which is given by the surface 2�r � L of the filament, the heat
conduction � of the gas and the temperature difference �T D
.Td�Tw/ between filament and wall (see Sect. 7.5.3). Stationary
conditions are established, when the supplied power equals the
power loss. This yields

I2 � R D 2�r � L � � ��T : (9.21a)

The coefficient of heat transfer

� D n � v � k � f =8 D v � p � f =8T ; (9.21b)

Figure 9.21 Heat conduction vacuum gauge. a Mechanical design; b electric
circuit

(7.49a) is proportional to the gas density n D p=kT and therefore
to the pressure p and to the degrees of freedom f of the gas
molecules. The electric resistance then becomes

R.Td/ D 2�r � L � p � v � f � .Td � Tw/

4.Td C Tw/
: (9.21c)

It depends on the temperature Td. It can be measured with an
electric bridge (Fig. 9.21b) (see Vol. 2, Sect. 2.4.3) and yields
the wanted pressure measurement.

Since the heat conduction in the low vacuum range (� � d)
is independent of the pressure (see Tab. 9.1) heat conduction
manometers can be used only in the medium vacuum range
(1 � 10�3 hPa), for instance between diffusion pump and back-
ing pump. For pressures below 10�3 hPa the heat conduction
through the gas becomes smaller than other heat leaks (for
example through the yokes of the filament). Therefore the
accuracy of pressure measurements decreases strongly below
p D 10�3 hPa.

9.3.4 Ionization Gauge and Penning Vacuum
Meter

The vacuum meters that are used most often in the high vac-
uum range are the ionization gauge (Fig. 9.22) and the Penning
vacuum meter (Fig. 9.23). The ionization gauge consists of a
heated filament as cathode K emitting electrons that are acceler-
ated onto the anode A. On their way from K to A, they collide
with gas molecules and ionize them (see Vol. 3). When the free
mean path of the electrons is larger than the distance K–A the
number Nion of produced ions is proportional to the density n

of the gas molecules in the manometer and therefore also to the
pressure p D n � kT . It is

Nion D Nel �
X

i

ni � ˛i.Eel/ ; (9.22)
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Ion collector

To

vacuum

container

a) b)

Figure 9.22 Ionization vacuum meter. a Schematic principle; b design of
Bayard–Alpert tube

Figure 9.23 Penning vacuum gauge

where ni is the partial density of molecules of type i and ˛i.Eel/
the ionization probability, which depends on the energy Eel of
the electrons. The positive ions are collected on a wire D at a
negative potential against the anode.

The minimum of still detectable pressure is limited by several
factors: Firstly, the ion current decreases with decreasing pres-
sure, which demands good current amplifiers. Secondly, the
electrons impinging onto the anode generate X-rays that can
release electrons from the ion collector. Their number is in-
dependent of the pressure and form an underground current that
overlaps the wanted signal current.

Typical pressure ranges where the ionization gauge can be used
are 10�3 hPa � p � 10�12 hPa, where for the lower pressures
special designs have been developed which minimize the under-
ground current (Bayard–Alpert tube Fig. 9.22b).

Instead of the thermionic emission of electrons from a heated
filament at higher voltages (� 1000 V) also a cold electron
emission between two metal plates can be realized. Since the
ionization probability is small at such high electron energies,
the ionization path must be enlarged. This is achieved by a per-
manent magnet with a magnetic field B that forces the electrons
on spiral paths until they reach the anode (Fig. 9.23).

These Penning manometers are robust but not as accurate as the
ionization gauges. They can be used in the vacuum range from
10�3 to 10�7 hPa.

9.3.5 Rotating Ball Vacuum Gauge

The principle of this vacuum gauge is based on the deceleration
of a rotating ball due to friction with the rest gas molecules. A
small steel hollow sphere is contact-free hold in its position by
a magnetic field (Fig. 9.24). A rotating magnetic field produced
by special coils is superimposed onto the static magnetic field. It
causes the ball to rotate with an angular velocity of about ! D
2� � 400 s�1. After shut off the rotating field, the ball rotates
freely and is only decelerated by friction due to collisions with
the gas molecules. The slowing down time depends on the rate
of collisions and therefore on the gas pressure.

The angular momentum of the rotating ball is

L D I! D 2

5
MR2! D 8

15
�%R5! : (9.23)

The retarding collisions produce a mean torque

D D dL

dt
D I � P! ; (9.24)

onto the ball which is proportional to the gas pressure. The de-
crease rate of the angular velocity ! is then

d!

dt
D D

I
D a � ! � p : (9.25)

The proportionality factor a depends on the radius R of the ball,
on the density % and on the mean molecular velocity v. Af-
ter calibrating the system the factor a can be measured. The
pressure p, which is proportional to the density % can then be
determined from the relative deceleration d!=dt=!. The accu-
racy of the measurement is about �p=p D 3%. Therefore the
rotating ball gauge is the most accurate vacuum meter in the
vacuum range 0:1–10�7 hPa [9.6].

For more detailed and recent information on modern techniques
of vacuum physics, the reader is referred to the literature [9.7].

Figure 9.24 Section through the gauge head of a friction vacuum gauge. 1 D
Steel ball, 2 D gauge tube with one open end, which is welded to the flange
7, 3 D permanent magnet, 4 D stabilization coils, 5 D four driving coils, 6 D
horizontal position detector. With kind permission of Leybold GmbH
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Summary

A volume V is called evacuated if the total gas pressure in V

is small compared to the atmospheric pressure.
The different vacuum ranges are:
Low vacuum (1 hPa � p � 103 hPa)
Medium vacuum (10�3 hPa � p � 1 hPa)
High vacuum (10�7 hPa � p � 10�3 hPa)
Ultrahigh vacuum (p � 10�7 hPa)
Vacuum is generated with vacuum pumps. The most im-
portant types are mechanical pumps (rotary vane pumps)
and roots-pumps, (which are used as fore pumps for the
generation of fine vacuum), turbo-molecular pumps for the
generation of oil-free high- and ultrahigh vacuum, oil- and
mercury diffusion pumps, cryo-pumps and ion getter pumps
for the generation of ultrahigh vacuum.
The gas pressure in a vacuum chamber can be measured with
one of the following devices:
liquid barometer (0:1 hPa � p � 103 hPa)
membrane manometer (p � 1 hPa)

heat conduction manometer (p � 10�3 hPa)
capacitance manometer (p � 10�5 hPa)
friction vacuum manometer (p � 10�7 hPa)
ionization gauge (p � 10�12 hPa)
The suction capability SV D dV=dt is the gas volume flow
through the suction connection of a pump. Often the product
SL D p � SV of pressure and suction capability is called the
pumping speed.
The vacuum lines (tubes and pump connectors) between vac-
uum chamber and pump reduce the total suction capability.
Their flow conductance LS D p � dV=.p2 � p1/ should be
as high as possible, in order to make the pressure difference
between entrance and exit of the vacuum line small.
The achievable final pressure in the vacuum chamber is de-
termined by the pumping speed of the pump, by the leak rate
and the desorption rate of molecules from the inner walls of
the chamber.

Problems

9.1 A vacuum chamber is connected to the outside at atmo-
spheric pressure through a capillary tube with length L D 10 cm
and 0:5 mm inner diameter. What should be the effective suction
capacity of the vacuum pump in order to maintain a pressure of
10�3 hPa?

9.2 Which force was necessary to separate the two hemi-
spheres of Guericke’s demonstration experiment, when the di-
ameter of the spheres was 60 cm and the inner pressure 100 hPa?

9.3 In a cubic vacuum chamber with a volume V D 0:4 m3

a pressure of p D 10�5 hPa is maintained. What are the particle
density n, the mean free path � and the mean time � between
two successive collisions between particles at room tempera-
ture? How large is the ratio Z1=Z2 of the rate Z1 for mutual
collision between particles to the rate Z2 for collision of parti-
cles with the walls? How large is the total mean path length that
a particle traverses within 1 s, and what is the sum of the path
lengths of all particle in the chamber?

9.4 Assume, the vacuum chamber of Probl. 9.3 is operated
under ultrahigh vacuum and the inner walls are free from all ad-
sorbed molecules. At t D 0 oxygen is let in until the pressure
rises to 10�7 hPa. How long does it take until the walls are cov-

ered by a monomolecular layer, if each oxygen molecule covers
an area of 0:15 � 0:2 nm2 and its sticking probability is 1?

9.5 A vacuum chamber should be evacuated down to a pres-
sure of 10�6 hPa using a diffusion pump with the effective
pumping speed of 3000 l=s. What is the minimum effective
pumping speed of the mechanical fore pump in order to main-
tain a vacuum of 0:1 hPa at the outlet of the diffusion pump?

9.6 The ionization cross section of nitrogen molecules N2

for collisions with electrons of 100 eV energy is � D 1 �
10�18 cm2. How large is for an electron current of 10 mA the ion
current at a pressure of 10�7 hPa in the ionization gauge when
the path length of the electrons is 2 cm?

9.7 Through the heated filament of a thermal conductivity
gauge flows the electric current I D U=R.T/ at a constant
voltage U. The heating power under vacuum conditions is
Pel D U2=R0. What is the dissipation power due to heat con-
duction in a cylindrical chamber with diameter of 2 cm at a gas
pressure of p D 10�2 hPa when the temperature of the filament
is T1 D 450 K and that of the wall is T2 D 300 K? (The length of
the filament is 5 cm, its diameter 0:5 mm, the distance filament-
wall is 1 cm). Which fraction of the electric energy Eel D U � I

is dissipated by heat conduction if U D 0:5 V and I D 2 A?
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9.8 The total angular momentum transfer onto a ball at rest
in a gas at thermal equilibrium is zero. Why is the rotating ball
in a Langmuir friction gauge slowed down? Estimate the torque

that the gas molecules transfer to a ball with a radius of 1 cm
rotating with the angular velocity ! D 2� � 400 s�1 at a temper-
ature of T D 300 K and a pressure of p D 10�3 hPa. How long
does it take until ! has decreased by 1%?
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The insight, that heat is just one of several forms of energy
and can be explained by a mechanical model, is today common
knowledge, but it is only about 170 years old. The physician
Julius Robert Mayer (1814–1878) formulated in 1842 his ideas
about the energy conservation for the conversion of mechanical
energy into heat, and he could already give a numerical value
for the thermal energy equivalent (Sect. 10.1.5). However, only
after the development of the kinetic gas theory (see Sect. 7.3)
the microscopic explanation of heat of a macroscopic body as
the total energy (kinetic plus potential energy) of all molecules
of the body was possible. As has been explained in Sect. 7.3, a
measure of the mean kinetic energy of all particles with mass m
in a gas volume, which have three degrees of freedom for their
motion is the absolute temperature

T D 1

k
� 2

3
� m

2
� v2 : (10.1)

With this definition of the temperature all macroscopic phenom-
ena and the general laws derived from them (Boyle.-Marriott,
general gas law) could be reduced to microscopic models de-
scribing matter as composed of atoms and molecules.

In this chapter, we will discuss in more detail the measurement
of temperature, the definition of temperature scales, the experi-
mental findings of energy transport and conversion, of material
changes with temperature such as thermal expansion and phase
transitions. An important subject is the formulation of basic
laws of thermodynamics which can be regarded as a summary
of many experimental results. We try to explain all macroscopic
phenomena as far as possible by microscopic models, where,
however, some explanations need a deeper knowledge of atomic
physics, which will be imparted in volume 3 of this textbook
series.

At the end of this chapter a short excursion to the thermodynam-
ics of real gases and liquids is presented, which might be helpful
for the explanation of many phenomena observed in nature.

10.1 Temperature and
Amount of Heat

The definition of the absolute temperature, given in (10.1), is
for most practical applications of temperature measurements not
very helpful. One has to use measuring techniques that are reli-
able, accurate and easy to handle.

Qualitative information about the temperature can be already
obtained with the heat sensibility of our body. Our skin has
sensors that inform us whether a body is cold or hot. This sens-
ing is, however, not very accurate and depends on the previous
experience, as the following experiment illustrates: Three con-
tainers with (1) hot water, (2) lukewarm water and (3) cold water
are placed side by side. Dipping a finger at first into (1) and then
into (2) the lukewarm water seem to be cold, but dipping at first
into (3) and then into (2) the same lukewarm water seems to be
warm.

Figure 10.1 a Liquid thermometer; b thermo couple

This demonstrates that the sensing of our body is not reliable
and cannot be used for quantitative measurements. In order to
measure temperatures and the amount of heat, measuring instru-
ments and techniques have to be developed that are for practical
applications sufficiently easy to handle and which give reliable
and reproducible results.

10.1.1 Temperature Measurements,
Thermometer, and Temperature Scales

For the measurement of temperatures in principal all physical
effects can be used that depend on the temperature. These are
for instance:

The geometrical dimensions of solid, liquid or gaseous bod-
ies, which generally increase with the temperature. Metal
wires become longer, liquid or gas volumes expand with in-
creasing temperature at constant pressure.
The electrical resistance of a body changes with the temper-
ature T . For metals it increases with T for semiconductors it
decreases (see Vol. 2, Chap. 2)
The electric contact potential difference between two dif-
ferent metals in contact changes with temperature (Thermo-
voltage see Vol. 2, Sect. 2.9)
The radiation power emitted by a hot body increases with T4

and can be used for the measurement of the temperature of
remote bodies such as stars (Radiation Pyrometer see Vol. 2
Chap. 12).

Devices for the measurement of temperatures are called ther-

mometers (Tab. 10.1). For daily practice the expansion of
liquids are generally used (liquid thermometer, Fig. 10.1a) or
the change of the contact voltage (thermo-elements, Fig. 10.1b).

For the quantitative specification of a temperature, numerical
values for fixed temperatures have to be defined that can be ac-
curately reproduced under readily realizable external conditions
(temperature fix points). Furthermore, a temperature scale has
to be defined. This has been historically realized in different
ways.
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Table 10.1 The mostly used thermometers

Thermometer type Temperature range = ıC Measuring principle Error limits

Liquid thermometers:

Mercury �38 to C800

Alcohol �110 to C210

Pentane mixture �200 to �C30

Thermal expansion of liquid in glas capillary depending on scale division 0:1–1 ıC

Solid state thermometers:

Metal rod �150 to C1000
dependent on specific metal

Thermal expansion of metals 1–2% of scale range

Bimetal �150 to C500 Length expansion difference Dependent on model

Resistance thermometers:

Metal wire �250 to C1000 Temperature dependence of electric resistance 0:1–1 ıC

Semiconductor �273 to C400

Thermo couple:

Fe-CuNi (iron-constantan) �200 to C760 Temperature dependence of thermovoltage 0:1–1 ıC

Ni-CrNi �270 to C1000

Ni-CrNi �200 to C1370

Pt-PtRh �50 to C1700

W-WMo �200 to C3000

Pyrometer C800 to C3000 Heat radiation 2–10 ıC

10.1.1.1 The Celsius Scale

The astronomer Anders Celsius (1701–1744) proposed 1742 to
use the expansion of a mercury column for the measurement
of temperatures (mercury thermometer). Two fix points were
defined for the temperature scale: The melting point of ice
(TC D 0 ıC) and the boiling point of water (TC D 100 ıC at
a pressure of 1 atm D 1013:25 hPa). The range between these
two fix points is divided into 100 equal units, where each unit
corresponds to 1 ıC.

Note: We will label the Celsius temperature with TC in order to
distinguish it from the Fahrenheit temperature (TF) and Kelvin
temperature T .

10.1.1.2 The Fahrenheit Scale

The Fahrenheit scale, which was proposed by Daniel Gabriel
Fahrenheit (1686–1736) is still used in the USA. It defines as
fix points the melting point of a defined ice-water-ammonia
chloride solution at TF D 0 ıF (�17:8 ıC) and the normal
body temperature at TF D 100 ıF (C37:7 ıC). The range be-
tween the two fix points is equally divided into 100 units where
1 unit corresponds to 1 ıF. From this definition it follows that
0 ıC D 32 ıF and 100 ıC D 212 ıF. The conversion between
the two scales is as follows (Fig. 10.2):

TC=
ıC D 5

9 .TF=
ıF � 32/

TF=
ıF D 9

5 .TC=
ıC C 32/ :

(10.2)

10.1.1.3 The Absolute Temperature Scale

The absolute temperature scale needs only one fix point, which
is the triple point of water (see below). It is measured with gas
thermometers.

Figure 10.2 Comparison of Celsius and Fahrenheit scale. For the Kelvin scale
there is only one fixpoint (triple point of water at 0:01 ıC)

Its definition is: The Kelvin is the unit of the thermodynamic
temperature scale. 1 K is the 273.16th part of the temperature
Tp of the triple point of water. The zero point of the Kelvin
scale is the lower absolute limit of possible temperatures and is
defined by general laws of thermodynamics (see Sect. 10.3).

10.1.1.4 Accuracy of Thermometers

The temperature scale of liquid thermometers depends on the
choice of the liquid and also of the glass of the thermometer cap-
illary, because not only the liquid but also the glass expands with
rising temperature. The thermal expansion of liquids and solids
is generally not constant over the temperature range measured
by thermometers and is not necessarily linear (see next Section).
For mercury, the deviation from linearity is small. The compar-
ison with an alcohol thermometer shows that its scale differs
from that for the mercury thermometer and is not equidistant
(Fig. 10.3).
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Figure 10.3 Demonstration of non-uniform expansion of liquids by comparing
mercury and alcohol themometers

If higher accuracy is demanded, other thermometers have to be
found which have a better linear temperature scale. A possi-
ble solution is the thermal expansion of gas volumes at constant
pressure or the pressure increase at constant volume that are uti-
lized in the gas thermometer (see Sect. 10.1.3). They are used
for the definition of the absolute temperature scale (Kelvin scale,
Sect. 10.1.4).

10.1.2 Thermal Expansion of Liquids and
Solids

The length L of a rod changes with temperature. Experiments
show that the relative length change �L=L within a restricted
temperature range is approximately proportional to the temper-
ature change�T:

L.TC/ D L.0/ � .1 C ˛TC/ : (10.3)

The expansion coefficient

˛ D .dL=dT/=L (10.4)

gives the relative length change for a temperature change�T D
1 ıC.

Integration of (10.4) gives

L.T/ D L.0/ � e˛�T with �T D T � T0 : (10.4a)

Table 10.2 compiles numerical values of ˛ for some materials.
One can see that for most materials ˛ is positive, i. e. the length
L increases with T . The coefficients ˛ can be measured with
the device shown in Fig. 10.4. A tube made of the material to
be inspected, is clamped on one end A, but can freely slide on

Table 10.2 Thermal expansion of solids and liquids at T D 293 K D 20 ıC

Solids Linear
expansion
coefficient
˛=.10�6 K�1/

Liquids Volume
expansion
coefficient

=.10�4 K�1/

Aluminium 23.8 Water 2.07

Iron 12 Ethanol 11

V2A Steel 16 Acetone 14.3

Copper 16.8 Benzene 10.6

Sodium 71 Mercury 1.8

Tungsten 4.3 Glycerin 5.0

Invar 1.5 N-Pentane 15

Cerodur <0.1 Water at

Hard rubber 75–100 T D 0 ıC �0.7

T D 20 ıC C2.07

Figure 10.4 Demonstration of thermal expansion of metal tubes

the other end B where a turnable tongue is connected to the rod
that shows the length change on a calibrated scale. When hot
water vapour streams through the tube, it expands and turns the
tongue. The scale is set to zero at TC D 20 ıC. The temperature
of the tube is measured with a calibrated thermo-element. Metal
tubes can be also heated by an electric current through the tube.

The reason for the thermal expansion is the asymmetric potential
of the interaction between neighbouring atoms (Fig. 10.5). The
atoms of a solid are not fixed at a constant value r0 of the dis-
tance between neighbouring atoms but oscillate around r0 (see
Vol. 3). The length L of a rod is determined by the mean distance
hri of this oscillation. Increasing the temperature causes an in-
crease of the vibrational energy and of the oscillation amplitude
r.t/. Because of the asymmetric potential the mean value hri in-
creases with increasing amplitude r.t/ thus causing an increase
of the length L.

More detailed measurements prove that the thermal expansion
is not strictly linear. Expansion of (10.4a) gives

L.T/ D L.0/.1 C ˛ ��T C 1
2 .˛�T/2 C : : :/ : (10.4b)

This nonlinear expansion can be also expressed by a
temperature-dependent expansion coefficient ˛

˛.TC/ D ˛.TC D 0/C ˇ � TC D ˛0 C ˇ � TC : (10.4c)
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Figure 10.5 Atomic model of thermal expansion due to the anharmonic inter-
action potential

Instead of (10.3) the more accurate equation is then

L.TC/ D L0
�
1 C ˛0TC C ˇT2

C

�
: (10.5)

However, within the temperature range between 0 ıC and 100 ıC
the deviation from linearity is very small, i. e. ˇ � TC � ˛0. For
small temperature intervals�T the length L.TC/ can be approx-
imated by a straight line with a slope dL=dT D ˛0 C ˇ � TC that
slightly depends on TC.

Example

At room temperature the expansion coefficients of alu-
minium are ˛.TC D 20 ıC/ D 23:8 � 10�6= ıC, ˇ D
1:8 � 10�8=. ıC/2.

The relative proportion of the nonlinear expansion is
therefore ˇ � TC=˛ D 7:5 � 10�4. This implies that the
coefficient ˛ changes within a temperature range �T D
100 ıC only by 7:5%. J

For some alloys the expansion coefficient is very small. Exam-
ples are INVAR (64% iron and 36% nickel) or the glass ceramics
CERODUR (see Tab. 10.2 and 10.3) [10.1].

Since all length dimensions of a three-dimensional body vary
with the temperature, also the volume of the body must change.

Table 10.3 Dependence of mean thermal expansion coefficient ˛=10�6 K�1

on temperature (given in K)

T=K Al Cu Fe Al2O3 SiO2

50 3.5 3.8 1.3 0.0 �0:86
100 12.0 10.5 5.7 0.2 �0:80
150 17.1 13.6 8.4 1.0 �0:45
200 20.2 15.2 10.1 2.8 �0:1
250 22.4 16.1 11.1 4.0 C0:2
300 23.8 16.8 12.0 5.0 C0:4
350 24.1 17.3 12.6 6.0 C0:5
400 24.9 17.6 13.2 6.4 C0:55
500 26.5 18.3 14.3 7.2 C0:58

Figure 10.6 Bimetal thermometer. a Principle, b technical design

For homogenous and isotropic bodies applies

V.TC/D V0.1 C ˛TC/
3 with V0 D V.TC D 0 ıC/

� V0.1 C 3˛TC/ for ˛TC � 1

D V0.1 C 
TC/ with 
 D 3˛ :
(10.6)

For non-isotropic bodies the expansion may differ for the dif-
ferent directions and one obtains, instead of (10.6), the equation

V.TC/ D V0.1 C ˛1TC/ � .1 C ˛2TC/ � .1 C ˛3TC/

� V0 Œ1 C .˛1 C ˛2 C ˛3/TC�

D V0.1 C 3˛TC/ with ˛ D 1
3 .˛1 C ˛2 C ˛3/ :

(10.6a)

The difference of expansion coefficients of different metals
is utilized for bimetal thermometers (Fig. 10.6). When two
metal strips of different materials are bonded (e. g. by welding
or soldering) the double strip will bend when the temperature
changes. A special device converts the bending, which is pro-
portional to the temperature change �T , into the turn of a hand
with a scale (Fig. 10.6b) where after calibration the temperature
can be read on the scale.

If the thermal expansion should be prevented by an external
force very large forces are necessary, as the following experi-
ment demonstrates (Fig. 10.7). A thick rod S made of wrought
iron, is clamped between two stable mountings L1 and L2. On
one end a bolt B with 5 mm diameter fixes the rod S to the
mounting L1. Now the rod is heated with a Bunsen burner until
it is red glowing. The resulting thermal expansion loosens the
screw M on the right side at L2, which is tightened again at the
highest temperature of the rod. Now the rod cools down and
contracts. The contraction force is so large that the bold at the
left side cracks.

A quantitative calculation of the forces necessary to prevent
thermal expansion or contraction proceeds as follows:

The force necessary to achieve an elongation of a rod with
length L and cross section A � L2 and with an elastic modu-
lus E is according to (6.2) and (10.4)

F D E � A ��L=L D E � A � ˛ ��T : (10.7)
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Figure 10.7 Bolt cracker. Demonstration of large forces when the thermal
expansion is hindered. (B D bolt, S D hot rod, L1, L2 D mounts, M D screw
nut)

If the thermal expansion should be prevented by application of
external pressure, we obtain from (6.7) and (10.7) the required
pressure

p D ˛ � E

1 � 2�
��T ; (10.8)

where � is the transverse contraction ratio (Poisson number).

Examples

1. A steel rod (E D 120 GN=m2, ˛ D 16 �10�6= ıC) with
the cross section A D 100 cm2 suffers a temperature
change�T D 30 ıC. In order to prevent its expansion
a force F D 5:76 � 105 N is necessary.

2. A section of a railroad track of steel with L D 20 m
and ˛ D 16 � 10�6= ıC expands for a temperature dif-
ference �T D 40 ıC by �L D ˛ � L � �T D 1:3 cm.
For modern railroad tracks all sections are welded to-
gether at T D 20 ıC without gap. Without strong
mountings each section between the welding spots
would bend in such a way, that the length expan-
sion �L D ˛ � L�T could be realized. This would
give for �T D 60 ıC a maximum deviation from the
straight line of about 30 cm. This bending is prevented
by strong supports where at every meter the rails are
mounted. The force on the welding surfaces with a
cross section A D 0:02 m2 (d D 10 cm, b D 20 cm)
is then (see Probl. 10.2) F D 1:5 � 106 N. When the
rail track cools down to T D �20 ıC a tensile force
of the same magnitude acts onto the welding surfaces
which corresponds to a tensile stress of 8 � 107 N=m2.
This is still sufficiently far below the break stress of
7 � 108 N=m2. J

For the thermal expansion of liquids only the volume expansion
can be given. When measuring this volume expansion one has to
take into account that the solid container also expands. For the
measurement of thermal expansion of liquids a device proposed
by Dulong and Petit (Fig. 10.8) has been developed. The liquid
is contained in a U-shaped tube where one side is encased in a
jacket containing melting ice, while the other side is heated to
100 ıC by water vapour. Of course the inspected liquid should
not boil at 100 ıC and should not freeze at 0 ıC. Since the total

Water-ice

mixture 0°C
Boiling

water

100°C

Figure 10.8 Design of Dulong–Petit for the measurement of thermal expan-
sion of liquids

mass M D % � V of the liquid is constant, independent of the
temperature, the density

%.TC/ D %0

1 C 
TC

does depend on T: It is smaller in the hot side and larger in the
cold side. The height h0 of the liquid surface will be therefore
lower in the cold side by �h. Rearrangement of the equation
yields


 D 1

TC

�
%0

%.TC/
� 1

�
D 1

TC
� �%

%.TC/
:

From the equilibrium condition

h0 � %0 � g D h.TC/ � %.TC/ � g

gives

%0=% D h=h0 :

The thermal volume expansion coefficient 
 is then


 D 1

TC
� �h

h0
: (10.9)

Table 10.2 compiles some values of 
 .

Note, that they are much larger than the volume expansion coef-
ficients 3˛ of solids. This justifies the neglect of the glass tube
expansion for liquid thermometers.

10.1.3 Thermal Expansion of Gases;
Gas Thermometer

Experiments show that the volume of ideal gases (see Sect. 7.3)
increases at constant pressure proportional to the temperature.

V.TC/ D V0.1 C 
V � TC/ ; (10.10)

where the temperature is measured in ıC and V0 DV.TC D0 ıC/.



10.1 Temperature and Amount of Heat 259

C
h

a
p

te
r

1
0

Table 10.4 Thermal expansion coefficient of some gases

Gas 
=.10�3=K/

Ideal Gas 3.661
He 3.660
Ar 3.671
O2 3.674
CO2 3.726

The expansion coefficient


V D V.TC/ � V0

V0 � TC
(10.11)

gives the relative change �V=V0 per 1 ıC. The experimentally
obtained numerical values of 
V are compiled in Tab. 10.4.

For Helium, which comes closest to an ideal gas, one finds


V D 1

273:15
ıC�1 D 3:661 � 10�3 ıC�1 :

Accurate experiments performed at a constant gas volume give
for the temperature dependence of the pressure the completely
analogue relation

p D p0.1 C 
p � TC/

with 
p D 
V D 
 D 1

273:15
ıC�1 :

(10.12)

(Law of Gay-Lussac).

The gas thermometer (Fig. 10.9) utilizes this pressure depen-
dence for the measurement of temperatures. The volume V is
connected with a U-shaped tube filled with mercury. The height
of Hg in the left side of the U-tube can be changed by up- and
down lifting of the right side, which is connected with the left
side by a flexible tube. When the gas volume is heated, the pres-
sure rises. In order to keep the gas volume constant, the level
of the Hg in the left side is always kept at the same height. The
pressure is then indicated by the difference �h between the left
and the right side. It is p D %Hg � g � �h. The temperature,
obtained from (10.12)

TC D 1



� p � p0

p0
D 273:15

�p

p0

ıC (10.13)

Figure 10.9 Gas thermometer

is therefore determined by a pressure measurement. At the tem-
perature TC D 0 which is realized by immersing the gas volume
into a melting ice-water mixture, the height difference is ad-
justed to �h D 0. The pressure in the gas volume V is then
p D p0.

10.1.4 Absolute Temperature Scale

We will now discuss the relation between the Celsius scale and
the absolute temperature scale, which is also called (after its
creator Lord Kelvin) Kelvin scale or thermo-dynamical tem-

perature scale. In Sect. 7.3 the absolute temperature T was
used in the general gas equation

p � V D N � k � T ; (10.14a)

relating pressure p, particle number N in the gas volume V with
T . The absolute temperature T was defined by Eq. 10.1, which is
based on the results of the kinetic gas theory (see Sect. 7.3). The
general gas equation (10.14a) states that for constant pressure
and temperature the gas volume has a definite value, which is
the same for all ideal gases independent of the specific kind.

At a temperature T0 (at 0 ıC) and a pressure p0 D 1 bar D
103 hPa (normal conditions) Eq. 10.14a becomes

p0 � V0 D N � k � T0 : (10.14b)

From (10.14a) and (10.14b) we can conclude

p D p0 � V0

V
� T

T0
: (10.14c)

In the gas thermometer the volume V D V0 is kept constant.
The comparison of (10.14c) with (10.12) yields

p D p0 � T

T0
D p0.1 C 
 � TC/ : (10.15)

This gives with the experimental value 
 D .273:15/�1 the re-
lation

T D T0 � .1 C 
TC/ D T0 C T0

273:15
� TC (10.16)

between the absolute temperature T and the Celsius scale TC.

Note: The unit oft the absolute temperature scale is the Kelvin.

It is the 273.16th part of the thermodynamic temperature of

the triple point of water.

A definition of the absolute temperature that is independent
of the specific substance, can be given with their help of the
Carnot-Cycle (see Sect. 10.3.5)
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10.1.5 Amount of Heat and Specific Heat
Capacity

When a defined energy �W is transferred to a body, its temper-
ature rises by �T � �W . A simple demonstration (Fig. 10.10)
uses an immersion heater which is immersed into water in a
thermally isolated Dewar flask and heated for a time �t. The
electric energy �W D I � U � �t (I D electric current, U D
voltage, see Vol. 2 Chap. 2) causes a temperature rise �T that
depends on the mass of the water. The increase �Q of the heat
Q (often also called the amount of heat) is given by

�Q D �W D c � M ��T : (10.17)

The proportional constant c is the specific heat. It depends on
the specific material of the heated body. It gives the amount of
heat that increases the temperature of a body with M D 1 kg by
�T D 1 K. The product C D c �M is the heat capacity of a body
with mass M.

In former times the unit was the large calorie (1 kcal). This is the
amount of heat that increases the temperature of 1 kg water from
14:5 to 15:5 ıC. Nowadays the unit is 1 Joule (1 J D 1 W � s D
1 N � m). It has the great advantage, that for the conversion of
heat into electrical or mechanical energy the same units are used
and therefore the conversion factor is 1. This is not the case, if
the unit calorie is used. Here measurements give the electrical
heat equivalent

WEel D �Q Œcal�

�Wel ŒW s�
D 0:23885 Œcal=W s� : (10.18)

This equation means: If �Wel is measured in Joule, but �Q in
calories, the ratio �Q=�Wel has the numerical value 0:23885
i. e. 1 W s D 0:2389 cal or 1 cal D 4:1868 W s.

The temperature rise in the experiment shown in Fig. 10.10 does
not occur abruptly but continuously over the time interval�t of
the heating (Fig. 10.10b). During this time interval, a steady

Figure 10.10 Measurement of the electric heat equivalent with immersion
heater and Dewar flask. a Experimental setup; b time progression of electric
power and temperature

Thermometer

Handle

Ball

bearing

Figure 10.11 Measurement of mechanical heat equivalent

heat flux takes place between the hot water and its surround-
ing which decreases the temperature difference �T . In order to
consider this, a temperature progression for a sudden change
of �T is simulated, indicated by the vertical dashed line in
Fig. 10.10b. The time t1 is chosen such that the areas A1 and
A2 are equal in order to maintain the same value for the integralR

Tdt �
R

dQ D �Q.

Instead of heat generation by electrical power, heat can be also
produced by mechanical work due to friction. This is demon-
strated by the arrangement in Fig. 10.11. Here a metal tape is
wrapped around a copper cylinder, filled with water. A weight
with mass m presses the tape tightly onto the cylinder. Now the
cylinder with radius r is turned by a handle during a time in-
terval �t with such a frequency f that the weight G D m � g is
just compensated by the friction force between tape and cylin-
der. The work performed against the friction force by turning
the cylinder N-times during the time interval �t is

�W D m � g � 2�r � N

D .cW � MW C cCo � MCo/�T1 ;
(10.19a)

where MW is the mass of the water and MCo that of the cop-
per cylinder. Repeating the experiment without water filling a
larger temperature difference �T2 is measured. From these two
measurements we obtain from the relation

.cWmW C cCo � mCo/�T1 D cCo � mCo ��T2 D �W

for the heat, put into the water the relation

�Q D cWMW�T1 D
�

1 � �T1

�T2

�
�Wmech : (10.19b)

The mechanical heat equivalent, determined with such exper-
iments is

WEmech D �Q=cal

�Wmech=Nm
D 4:186 ; (10.19c)
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A2
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A1 = A2

Figure 10.12 Measurement of specific heat cK of a solid body using a mixture
calorimeter. a Experimental setup; b measurement of time-dependent tempera-
ture (t1 D immersion of solid body, T1 D initial temperature, TM D temperature
of mixture)

should of course have the same mechanical value as the electri-
cal heat equivalent, because of the definition 1 W � s D 1 N � m
in the SI system.

The specific heat cK of a body can be measured with the mixture
calorimeter shown in Fig. 10.12. In a well-isolated Dewar con-
tainer is water with the mass MW at the temperature T1. Now
a solid body with the mass MK that had been heated up to the
temperature T2 > T1 is inserted into the water. The temperature
TM.t/ of the mixed system (body + Dewar + water) is measured
as a function of time (Fig. 10.12b).

The heat (cKMK.T1 � TM/ transferred from the body to water
plus Dewar is equal to the heat change cW � MW C cD � MD of
water plus Dewar. This gives the specific heat of the body

cK D .MW � cW C CD/.TM � T1/

MK.T2 � TM/
; (10.20)

where CD D cD � MD is the heat capacity of the dewar. The tem-
perature TM of the mixture is determined in the same way as in
Fig. 10.10. The measured curve T.t/ in Fig. 10.12b is replaced
by the simulated red curve where the vertical line is placed at
the time t1 where the areas A1 D A2. This takes into account the
heat loss during the heat transfer form body to water. The in-
tersection points of the vertical line with the two horizontal red
curves give the correct temperatures T1 and TM.

The heat capacity CD D cD � MD of the Dewar can be mea-
sured when two portions of water with masses M1 and M2 at
temperatures T1 and T2 are mixed in the Dewar and the mixing
temperature TM is measured [10.1].

10.1.6 Molar Volume and Avogadro Constant

One mole is according to the definition given in Sect. 1.6 the
amount of a substance that contains as many atoms or molecules

as 12 g carbon 12C. The molar mass of a substance yX with the
atomic mass number y is then equal to .y=12/ � m.12C/g.

The molar volume VM contains 1 mol of the gas.

Examples

1 mol helium gas He are 4 g He,
1 mol hydrogen gas H2 are 2 g H2,
1 mol nitrogen N2 are 28 g N2. J

The number of atoms or molecules per mole is the Avogadro

constant NA. This number is independent of the specific sub-
stance.

It can be measured with different methods (see Vol. 3, Chap. 2).

The average value of many measurements is

NA D 6:022 � 1023=mol :

One mole of atoms or molecules always fills the same volume
under equal external conditions, independent of their specific
kind. One finds under normal conditions

VM.p D 1 atm D 101:3 kPa;TC D 0 ıC/ D 22:4 dm3

VM.p D 1 bar D 100 kPa; TC D 0 ıC/ D 22:7 dm3 :

The general gas equation (10.14a) can be written for 1 mol with
V D VM and N D NA

p � VM D NA � kT D R � T ; (10.21)

where the general gas constant

R D NA � k D 8:31 J=.K � mol/ (10.22)

is the product of Avogadro number NA and Boltzmann constant
k. All gases that obey this equation are called ideal gases.

For an arbitrary volume V D � � VM Eq. 10.14a can be written
as

p � V D � � R � T ; (10.21a)

where the number � quotes how many moles are contained in V.

10.1.7 Internal Energy and Molar Heat
Capacity of Ideal Gases

The amount of heat�Q supplied to one mole of a gas with molar
mass M (kg=mol) leads to a temperature rise �T:

�Q D c � MM ��T D C ��T :
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The product C D c � MM of specific heat and molar mass is
the molar heat capacity with the unit ŒC� D ŒJ=.mol � K/�. It
is the heat energy that increases the temperature of 1 Mole by
�T D 1 K. For an arbitrary mass M D � � MM is

�Q D � � C ��T :

The quotient�Q=�T D � � C ŒJ=K� is the heat capacity of the
body with mass M.

The molar specific heat of a gas depends on whether the gas is
heated at constant volume or at constant pressure. We will at
first discuss the situation for a constant volume.

We define the internal energy of a gas with volume V as the
total energy of its N molecules. It is composed of translational
energy plus possible rotational and vibrational energy. For non-
ideal gases also the potential energy of their mutual interaction
has to be taken into account (Fig. 10.5). The internal energy
of a gas depends on the number f of degrees of freedom of the
molecules. In Sect. 7.3 it was shown that the mean energy of a
molecule is hEi D f � 1

2 kT . The internal energy of a gas volume
with N molecules is then

U D 1
2 f � N � kT

and for 1 mol with N D NA it is

U.VM/ D 1
2 f � NA � kT D 1

2 f � R � T : (10.23)

Under thermal equilibrium the energy U is uniformly dis-
tributed among all degrees of freedom.

This equipartition is accomplished by collisions between the
molecules (see Sect. 4.2 and Vol. 3, Chap. 8).

When the heat �Q is supplied, the internal energy U increases
by �U D �Q, if the volume V of the gas stays constant. We
therefore obtain the equation

�Q D �U D �CV ��T ; (10.24)

and with �U D 1
2 f � � � R � �T the molar heat capacity at

constant volume

CV D 1
2 f � R : (10.25)

10.1.8 Specific Heat of a Gas
at Constant Pressure

When a gas is heated at constant volume the pressure increases
according to the general gas equation (10.14a). In order to
achieve a temperature increase at constant pressure, the gas vol-
ume must expand (Fig. 10.13b). Such an expansion can be

Figure 10.13 Determination of Cp . Heating of gas a at constant volume, b at
constant pressure

realized when the piston with area A moves by the distance �x

against the external pressure p. This requires the work

�W D F ��x D p � A ��x D p ��V : (10.26)

This energy �W must be supplied additionally. The heat �Q is
therefore

�Q D CV ��T C p ��V : (10.27)

The general gas equation for 1 mol of the gas before and after
the expansion is

p � V D R � T;

p.V C�V/ D R � .T C�T/ :

Subtraction yields

p ��V D R ��T :

Inserting this into (10.27) we obtain

�Q D .CV C R/�T D Cp ��T : (10.28)

The factor Cp is the molar specific heat at constant pressure

Cp D CV C R : (10.29a)

With

CV D 1
2 f � R ! Cp D 1

2 .f C 2/R ; (10.29b)

the quotient Cp/CV is called adiabatic index or specific heat

ratio

� D Cp

CV

D f C 2

f
: (10.29c)
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10.1.9 Molecular Explanation of the Specific
Heat

Since atoms or molecules can move into three directions, they
have three degrees of freedom of translation. Their mean trans-
lational energy is therefore

Etrans D 3 � 1
2 kT ;

the molar specific heat of atomic gases is therefore

CV D .3=2/R :

For molecules the supplied energy can be also converted into
rotational or vibrational energy. Nonlinear molecules can rotate
around three orthogonal axis. They have therefore three degrees
of freedom for the rotation. Linear molecules have only 2 rota-
tional degrees of freedom, because of the following reason:

The rotational energy
Erot D L2=2I

is determined by the angular momentum L and the moment
of inertia I (see Sect. 5.5). As shown in Quantum physics
(see Vol. 3 Chap. 4) the angular momentum has the amount
L D .l � .lC1//.1=2/ � „ with l D 1I 2I 3I : : :. The smallest angular
momentum is then Lmin D

p
2 � „, where „ D h=2� is Planck’s

quantum constant, divided by 2� . The moment of inertia for
a rotation around the axis of a linear molecule is very small
because the heavy nuclei are located on the axis and the light
electrons do not contribute much to I. Therefore the rotational
energy is very large, generally much larger than the translational
energy at accessible temperatures. Collisions cannot excited this
rotation and it therefore cannot contribute to the accessible en-
ergy.

The vibration of diatomic molecules is one-dimensional and
has therefore only one degree of freedom. However, the vi-
brational energy has two contributions: The kinetic and the
potential energy (see Sect. 11.6). The mean value of both contri-
butions is equal to 1

2 kT and the thermal energy of the vibration
is kT . Therefore two degrees of freedom .f D 2/ are for-
mally attributed to the vibration. A diatomic molecule has then
f D 3 C 2 C 2 D 7 degrees of freedom, if the temperature is
sufficiently high to excite the vibrations.

Note: Quantum Theory shows (see Vol. 3) that the classical
model of a vibrating oscillator with regard to the total energy
E D Ekin C Epot is correct, but that the energy can be only ab-
sorbed in discrete quanta h ��. This does, however, not influence
our argumentation above.

For polyatomic molecules with j atoms each atom has three de-
grees of freedom. If we subtract 3 degrees of freedom for the
translational motion of the whole molecule and 3 degrees of
freedom for the rotation (2 degrees for a linear molecule) we
end up with fvib D 3j � 6 (3j � 5 for linear molecules) vibra-
tional degrees of freedom.

The total internal energy U of a molecule with j atoms is then

U D 1
2 � f � NA � kT with f D ftrans C frot C fvib : (10.30)

a

b

Figure 10.14 Excitation of rotational degrees of freedom of a diatomic
molecule induced by collisions. The collision with an atom A causes a rota-
tion of the molecule about an axis perpendicular to the drawing plane (a), or
causes the excitation of a molecular vibration (b)

Since collisions can transfer translational energy to rotations or
vibrations only if the thermal energy of the collision partners
is sufficiently high, at low temperatures only translational de-
grees of freedom are available and feff D 3. With increasing
temperature at first the rotation can be excited (feff D 6 resp.
5 for linear molecules) and at still higher temperature also the
vibrations contribute to the specific heat, because their energy is
higher than that of the rotations (feff D 3 C 3 C 2 � .3j � 6/ resp.
3 C 2 C 2.3j � 5/ for linear molecules). This gives for diatomic
molecules feff D 3 C 2 C 2 D 7.

The molar specific heat is

CV D
�
@U

@T

�

V

D 1

2
feff � R : (10.31)

Here the partial derivative is used, because U can depend on
several variables (p, V, T). The index V indicates that the energy
supply occurs at constant volume.

Examples

1. For the atomic gas Helium is f D 3. Since the trans-
lational energy is not quantized all three degrees of
freedom are excited even at low temperatures. There-
fore the specific heat of Helium is independent of the
temperature (Fig. 10.15).

Figure 10.15 Temperature dependence of molar heat capacity of he-
lium, nitrogen N2 and nitrogen dioxyde NO2 (see also Sect. 10.1.10)
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2. For nitrogen gas consisting of the diatomic molecules
N2 kT is for very low temperatures smaller than the
energy of the lowest rotational level (see Probl. 10.3).
The rotational energy cannot be excited. Therefore
feff D 3. With increasing temperature when kT �
Erot feff approaches the value feff D 5. For still higher
temperatures kT � Evib feff becomes feff D 7 because
the vibrational degrees of freedom are counted twice
(see Sect. 10.1.9). The specific heat of a molecular gas
is therefore dependent on the temperature and reaches
its maximum value only if kT is sufficiently high to
excite all degrees of freedom.

3. Polyatomic gas (e. g. NO2 at T > 200 K where NO2

has a sufficiently high gas pressure). At this tempera-
ture already all three rotational modes can be excited.
We then obtain f D 3 C 3 D 6.
Above T D 300 K the bending vibration can be ex-
cited, rising f to f D 8. Only above T D 800 K
all three vibrational mods can be excited and we have
f D 12. The molar specific heat is then CV D 6R. J

10.1.10 Specific Heat Capacity of Solids

With decreasing temperature all gases become liquids and pass
finally into the solid state (except helium, which solidifies only
under high pressures). Considerations about the specific heat of
solids require a knowledge about the possible degrees of free-
dom for atoms and molecules in solids. Since the atoms in a
solid can only oscillate in three directions around their fixed
equilibrium positions but have no degrees of freedom for trans-
lation or rotation we would expect f D 2 � 3 D 6. However,
it turns out that the oscillation frequencies of all atoms are not
the same but spread over a large frequency range. In order to
get an idea about the frequency distribution, we regard a one-
dimensional arrangement of atoms in an ideal crystal where
all atoms are regularly placed at a distance d (Fig. 10.16a).
When an atom oscillates around its equilibrium positions, the
oscillation can be transferred to the neighbouring atoms, due
to the coupling force between the atoms. This results in elas-
tic waves travelling through the crystal (see Sect. 11.8). The
waves are reflected at the end faces of the crystal, superimpose
with the incoming waves and form stationary standing waves.
Longitudinal as well as transversal standing waves can develop,
depending on whether the oscillation occurs in the direction of
wave propagation or perpendicular to it. The standing wave with
the smallest possible wavelength � (i. e. the highest frequency
� D c=�) is realized, when the neighbouring atoms oscillates
against each other (Fig. 10.16a, b lowest line). The oscillation
with the largest possible wavelength (� D L with L D length of
the crystal) has the lowest energy h ��. At low temperatures only
those vibrations with the lowest energy can be excited. With in-
creasing temperature more and more vibrations can be excited.
The number of possible vibrations Z � N3 is proportional to

Figure 10.16 Stationary vibrational modes of a linear chain. a Transversal;
b longitudinal standing waves. c Number of vibrational modes per energy inter-
val dE of a solid body as function of temperature T

the third power of the number N of atoms in the crystal. This
means that the specific heat rises continuously with the temper-
ature (Fig. 10.16c) until at kT � Emax

vib all vibrations are excited
and the specific heat takes its maximum value. Since the in-
teraction between neighbouring atoms depends on the specific
kind of atoms the progression C.T/ differs for the different ma-
terials (Fig. 10.17). However, all curves C.T/ approach for high
temperatures the same value of the molar specific heat

CV D 6 � 1
2 NA � k D 3R (Dulong–Petit law) : (10.32)

Measurements of the temperature-dependent progression of
CV.T/ gives information about the distribution of the vibrational
frequencies and therefore about the coupling forces between the
atoms of the solid. They are furthermore a convincing experi-
mental proof of quantum theory (see Vol. 3).

Table 10.5 gives numerical values of CV for some materials.

Figure 10.17 Qualitative temperature dependence of molar heat capacity of
different solids
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Table 10.5 Specific heat c of some materials at 20 ıC and 1013:25 hPa, spe-
cific heat of fusion �f and heat of evaporation �e

Substance c=kJ kg�1K�1 �f=kJ kg�1 �e=kJ kg�1

Water 4.182 333.5 2256
Ethanol 2.43 105 840
Mercury 0.14 12.4 285
Aluminium 0.896 397 10,900
Iron 0.45 277 6340
Gold 0.13 65 16,500
Copper 0.383 205 4790
Ice at 0 ıC 2.1 332.8 –

10.1.11 Fusion Heat and Heat of Evaporation

When a constant heat power dQ=dt is supplied to a container
with 1 kg ice (specific heat ci) at a temperature TC < 0 ıC the
temperature

T.t/ D Ti C a � t with a D .dQ=dt/=ci (10.33)

rises linearly with the slope a D .dQ=dt/ � ci, (ci D specific heat
of ice) up to Tm D 0 ıC at t D t1. Here the temperature stays
constant until t2, when the ice is completely molten, in spite of
a constant power supply dQ=dt (Fig. 10.18). Then the temper-
ature rises again but with a different slope b D .dQ=dt/=cW

(cW D specific heat of water) up to T D 100 ıC at t D t3, where
the water starts to boil (at p D bar 1). Again the temperature re-
mains constant until t D t4 when the whole water is evaporated.
Then the temperature rises further with the slope .dQ=dt/=cvap.

The energy dQ=dt/ �.t2 � t1/ supplied during the melting process
is called fusion heat, the energy dQ=dt/ � .t4 � t3/ is the heat of

evaporation.

The energy �f D .dQ=dt/=m ŒJ=kg� necessary to melt 1 kg of a
substance is the specific fusion heat while the molar fusion heat
is labelled by�f ŒJ=mol�. Analogue label �e and�e the specific
and the molar heat of evaporation.

Since the temperature has not changed during the melting
process, also the kinetic energy must have stayed constant.

Figure 10.18 Temperature T .t/ of water under constant energy supply within
the temperature range from below the melting temperature up to above the
evaporation temperature (ice–water–water vapor)

Figure 10.19 Energy distribution N .E / and mean total energy E of molecules
just below the melting temperature, illustrated by the interaction potential V .r/

Therefore the supplied energy .dQ=dt/ � .t2 � t1/ must have in-
creased the potential energy of the atoms or molecules. This can
be explained by the molecular model as follows:

The molecules in a solid body are bound to the equilibrium
positions by attractive forces. This means that all molecules
vibrate in a potential V.r/ that is determined by the vector sum
F D P

Fi D �rV.r/ of all forces. At the melting temperature
the mean total energy E D Ekin CEpot is illustrated in Fig. 10.19
by the horizontal line close to the dissociation energy ED of
the interaction potential between the atoms or molecules. The
energy distribution N.E/ of the molecules follows a Maxwell–
Boltzmann distribution, as depicted in Fig. 10.19. Those
molecules with E > ED can leave their fixed equilibrium po-
sition without changing their kinetic energy.

Continuous energy supply increases the number of molecules
that leave their fixed position until all molecules can freely
move: The solid body has dissolved and has become a liquid.

The energy supplied during the melting process keeps the

kinetic energy constant but increases the potential energy.

An analogous process occurs during the evaporation process.
The molecules from the higher energy part of the Maxwell–
Boltzmann-distribution have sufficient energy to leave the liquid
against the attractive forces and enter the vapour phase. Since
the density of the vapour at atmospheric pressure is about 3
orders of magnitude smaller than that of the liquid, the mean
distance between the molecules if about 10 times larger. The
negative potential energy of the mutual attraction is therefore in
the gas phase negligible against their kinetic energy. Similar to
the melting process the supplied energy increases the potential
energy but not the kinetic energy because the temperature re-
mains constant. The potential energy increases from a negative
value (work function, surface tension, see Sect. 6.4) to nearly
zero.

The numerical values of fusion energy and evaporation energy
depend on the substance. In Tab. 10.5 the values for some ma-
terials are listed.
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10.2 Heat Transport

Always when a temperature difference exists between two dif-
ferent locations, heat is transported from the warmer to the
colder region (see Sect. 7.5.3) Such a heat transport is very
important for many technical problems and also for different
measuring methods. In many cases one tries to maximize heat
transport (for example for cooling heat generating systems) in
other cases it is minimized (for heat isolating devices such as
Dewars or refrigerators).

There are essentially three mechanisms of heat transport: Con-

vection, heat conduction and thermal radiation.

10.2.1 Convection

When the bottom of a container with water is heated,
(Fig. 10.20) the lowest liquid layer is heated first. Its temper-
ature increases and its density therefore decreases. This causes
a rise of this lower layer through the layers across, which sink
down. This process is called convection. It results in a heat
transport from the warmer to the colder region. This convec-
tion of liquids can be demonstrated by colouring the lower layer
and observing how this coloured layer moves upwards when the
bottom of the container is heated.

Convection occurs also for gases. It plays an essential role in
the earth atmosphere and is responsible for the generation and
the equalization of pressure differences (Fig. 10.21). Heated air
rises from the bottom just above the earth surface, creating a lo-
cal low pressure region. Air from the surrounding with higher
pressure streams into this region. The wind transports not only
mass but also heat [10.2a, 10.2b]. This mass- and heat transport
depends on the wind velocity and the temperature difference be-
tween high and low pressure region. The wind flow can be either
laminar or turbulent, depending on the boundary conditions.

Although the total energy received by the earth is due to ra-
diation from the sun, the local distribution of this energy is
essentially determined by convection. This is illustrated by sud-
den local temperature changes when the wind direction changes,
although the intensity of the sun radiation has not changed.

Figure 10.20 Convection in a liquid. a Lamination of dyed and pure water at
equal temperatures; b mixing of the layers by convection due to heating at the
bottom

Figure 10.21 Convection in the earth atmosphere. a Onshore wind during the
daytime, when the ocean surface is colder than the land surface; b wind flow
into a low pressure region which is created by uprising air (thermal lift)

Also the temperature distribution in the oceans is mainly de-
termined by convection. Examples are the gulf-stream, which
influences the climate in the northern part of Europe, or the
Humboldt current along the west coast of south America, caus-
ing the Atacama desert, because the cold water induces the
moisture of the west wind to rain down before it reaches the
dry areas.

When the temperature gradient of a liquid, heated at the bot-
tom, exceeds a certain value that depends on the viscosity of the
liquid, ordered macroscopic structures of the velocity field can
develop. Current roles are created and the liquid moves along
cylindrical stream lines (Fig. 10.22b). This sudden start of a

Figure 10.22 a Linear vertical temperature gradient; b Bénard instability
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“self-organization” is called Bénard-instability. When the liq-
uid is further heated, the rolls begin a wave-like motion along
the cylinder axis. Such organized motions that develop from
random conditions play an important role for the creation of or-
ganized structures from disordered systems. These processes
are investigated in the rapidly developing field of Synergetics,
which represents a frontier area between Physics, Chemistry,
Biology and Computer Science [10.3, 10.4].

10.2.2 Heat Conduction

Contrary to the situation for convection, for heat conduction
only energy transport takes place, but generally no mass trans-
port. Heat conduction can only occur in matter, i. e. in vacuum
no heat conduction is possible while thermal radiation also takes
place in vacuum (otherwise we would not receive the sun radia-
tion).

We will at first discuss heat conduction in solids, where the
atoms or molecules are bound to fixed equilibrium positions and
no convection can happen.

10.2.2.1 Heat Conduction in Solids

A rod with length L and cross section A is connected at both
ends with thermal reservoirs that keep the two ends always at
the fixed temperatures T1 and T2 with T1 < T2 (Fig. 10.23).
After a sufficient long time a stationary state appears, where a
temperature gradient dT=dx is established that depends on the
temperature difference �T D T1 � T2, and on the length L. If
we neglect heat losses through the side wall of the rod, a con-
stant heat energy

dQ

dt
D �� � A � dT

dx
(10.34a)

flows per sec through the cross section A of the rod . The con-
stant �.Œ�� D ŒW � m�1 � K�1�/ depends on the substance of the
rod and is called heat conductivity. In Tab. 10.6 the heat con-
ductivities of some substances are listed.

For a homogeneous rod with constant cross section A, the sta-
tionary temperature T(x) is a linear function of x, as can be seen
by integrating (10.34a), which yields

T.x/ D �dQ=dt

� � A
x C C : (10.34b)

Figure 10.23 Heat conduction in a stab

Table 10.6 Heat conduction coefficient of some materials at 20 ıC

Substance �=.W m�1K�1/

Aluminium 221
Iron 67
Gold 314
Copper 393
Zinc 112
Lead 35
Normal concrete 2.1
Foamed concrete 0.22
Glas 0.8
Glas wool 0.04
Wood 0.13
Ice 2.2
Water 0.6
Air (p D 1 atm) 0.026
CO2 (p D 1 atm) 0.015
Helium (p D 1 atm) 0.14

The integration constant C is determined by the boundary con-
dition T.x D 0/ D T1 D C. The energy supply necessary
to maintain the given temperature gradient dT=dx, is obtained
from

dQ=dt D � � A � .T1 � T2/=L :

For the general nonstationary heat conduction through inho-
mogeneous bodies with variable cross section the temperature
function T.x; t/ is more complicated. For its derivation we re-
gard a volume element dV between the planes x D x1 and x2

(Fig. 10.24).

Figure 10.24 Derivation of the heat conduction equation
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For the one-dimensional case (for instance a thin homogeneous
rod) the temperature changes only in one direction and we ob-
tain for the heat power, transported through the cross section A

at the position x1

dQ1

dt
D �� � A � @T

@x
: (10.35)

The partial derivative is used here, because the temperature
T.x; t/ depends on the two variables x and t. At the plane
x2 D x1 C dx the temperature has changed to

T.x2/ D T.x1/C .@T=@x/ � dx :

The heat passing per sec through the plane at x D x2 is

dQ2

dt
D �� � A � @

@x

�
T C @T

@x
� dx

�
: (10.36)

When the temperature is higher at x1 than at x2, the heat dQ1=dt

flows per sec from the left side in Fig. 10.24 into the volume
dV D A � dx, and the heat dQ2=dt leaves it per sec to the right
side. The change dQ=dt of the heat per second in the volume dV

is then

dQ

dt
D dQ1

dt
� dQ2

dt
D � � @

2T

@x2
� A � dx

D � � @
2T

@x2
� dV :

(10.37)

Because dQ D c � m � dT and m D % � dV this net supply of heat
power dQ changes the temperature T according to (10.37) by

@T

@t
D �

% � c
� @

2T

@x2
: (10.38a)

If the rod has heat losses H D dQV=dt through the side walls
(for example through cooling by the surrounding air) a loss term
H D h �.T �T0/ has to be added to (10.37) which is proportional
to the temperature difference between the rod temperature at the
position x and the surrounding temperature T0. The factor h has
the unit ŒW �K�1�. Equation 10.38a can then be generalized with
h� D h=.c � m/ as

@T

@t
D �

% � c
� @

2T

@x2
� h� � .T � T0/ : (10.38b)

If T depends also on y and z all net heat power contributions
supplied from all directions to the volume element dV add to
the total energy increase of dV. One obtains for this three-
dimensional case the general equation for the heat conduction

@T

@t
D �

c � %

�
@2T

@x2
C @2T

@y2
C @2T

@z2

�

D �

c � % ��T D �T ��T ;

(10.39)

with the Laplace operator� (see Sect. 13.1.6). The factor �T D
.�=c � %/ is the thermal diffusitivity.

Figure 10.25 Demonstration of the different heat conduction of some metals

The heat conduction in solids is accomplished by the coupling
between adjacent atoms, which causes the transport of the vibra-
tional energy of atoms at the plane x to the neighbouring position
x C dx without a transport of the atoms themselves.

In metals the freely moving electrons contribute essentially to
heat conduction by collisions with each other and with the
atoms. Because of their small mass, their thermal velocities
and in particular their Fermi-velocities (which can be only ex-
plained by quantum theory, see Vol. 3) are very high. They can
therefore transfer their large kinetic energy much faster by col-
lisions. The heat conductivity in metals is therefore mainly due
to the electrons. Experiments confirm in deed that for metals the
thermal conductivity (�) is proportional to the electrical conduc-
tivity (�), which is solely caused by electron transport.

This is expressed by the Wiedemann–Franz law

�=� D a � T with a D �2k2=3e2

D 2:45 � 10�8V2=K2 ;
(10.40)

where the constant a is determined by the Boltzmann constant k

and the elementary charge e.

This can be readily demonstrated by a simple experiment
(Fig. 10.25). The red centre plate of a cross with four arms of
different metals is heated by a small burner. At the ends of the
arms four matches are placed. After the heating starts it takes
different times ti until the ends of the arms reach the ignition
temperature. The matches are ignited at times t1 < t2 < t3 < t4.
This time sequence reflects the electrical conductivity of the
metals, where the arm 1 (Cu) has the highest electrical and ther-
mal conductivities.

In solids (even in non-metals) the thermal conductivity is much
larger than in gases, because of the much larger density and the
resulting larger coupling strength between neighbouring atoms
(see Tab. 10.6). However, the coefficient of heat conductivity
�T D �.c � %/, which gives the time constant of reaching a
stationary temperature, is for solids and gases nearly the same
because of the much smaller density % of gases.
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In gases temperature differences are equated in times com-
parable to those in solids.

One of the reasons is the much smaller heat energy to reach a
temperature rise �T for a given volume of a gas than for the
same volume of a solid.

For the measurement of heat conductivities stationary as well as
time resolving techniques have been developed [10.5].

For the stationary methods a constant heat power dQ=dt is sup-
plied to one end of the body (for instance a rod), which is
extracted on the other side by cooling. According to (10.35)
this results for a rod with constant cross section A in a constant
temperature gradient

@T

@x
D const D T1 � T2

L
D 1

� � A
� dQ

dt
; (10.41)

which can be determined by measuring the temperatures T1 and
T2 and the length L.

The dynamical methods for the measurement of the heat con-
duction under non-stationary conditions are based on a time-
dependent supply of the heat power. The heat power dQ=dt is
either periodically modulated or supplied in short pulses. If for
example the heat power supplied at x D 0 is

dQ=dt D dQ0=dt C a � cos.!t/ ;

the temperature at x D 0 is

T.0; t/ D T1 C�T � cos.!t/ ;

and one obtains from the heat conduction equation (10.38b) for
a thin cylindrical rod with heat losses h � .T � T0/ through the
side walls (Fig. 10.26) the solution

T.x; t/ D T0 C .T1 � T0/e�˛1x

C�Te�˛2x � cos.!t � kx/ :
(10.42)

Inserting this into (10.38b) yields for the coefficients

˛1 D
r
%ch�

�
D
s

h�

�T

;

˛2 D
�
.h�2 C !2/1=2 C h�

2�T

�1=2

I

k D
�
.h�2 C !2/1=2 � h�

2�T

�1=2

:

The temperature T.x/ along the rod is a superposition of a con-
stant time-independent contribution that decays exponentially
with x due to the heat losses through the sidewalls, and a damped
temperature wave with an exponentially decreasing amplitude.
The phase of this wave is determined by the loss coefficient h,

Figure 10.26 Damped temperature waves in a stab under periodic energy sup-
ply

the frequency! and the wavelength �T of the temperature wave.
The phase velocity of the wave

vPh D !

k
D
�

2!2 � �T

.!2 C h�2/1=2 C h�

�1=2

(10.42a)

depends on the frequency !.

Temperature waves show dispersion!

When amplitude and phase of temperature waves are measured
at selected points x for different frequencies !, the quantities h

and �T D �=% � c can be obtained.

Without heat losses (h D 0) (10.42) reduces to

T.x; t/ D T1 C�Te�˛x cos.!t � kx/

with ˛ D k D .!=2�T/
1=2 :

(10.42b)

10.2.2.2 Heat Conduction in Liquids

In liquids, there are no shear forces (see Sect. 6.2). Therefore,
the coupling between neighbouring atoms is much weaker than
in solids and the heat transport is slower. The heat conduc-
tion in liquids that have no electrical conductivity, is therefore
smaller than in solids (see Tab. 10.6). However, in liquids the
freely moving molecules can transfer energy by collisions. The
effective energy transfer depends on the mean velocity of the
molecules, the time between two collisions and the cross sec-
tion for energy transferring collisions.

In electrically conducting liquids (for example mercury or
melted metals) the free electrons make the major contribute to
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Ice

Grid

Water vapor

Figure 10.27 Demonstration of the small heat conductivity of water

the energy transfer, similar to the situation in solids. Their heat
conductivity is therefore much larger than for non-conductive
liquids, because of their much larger mass, the ions give only a
minor contribution.

Because of the free mobility of the molecules in liquids, gen-
erally convection occurs besides heat conduction. This can be
prevented when the liquid is heated from above, because then
the hot liquid layer has a smaller density and therefore remains
at the top.

The small heat conductivity of water can be demonstrated by
the experiment shown in Fig. 10.27. At the bottom of a glass
tube filled with water, are small ice cubes which are prevented
from uprising by a mesh. One can heat the upper part of the
water until it boils and emits water vapour. Nonetheless, the
ice cubes do not melt in spite of the temperature difference of
�T D 100 ıC between the lower and upper part of the tube due
to the poor heat conductivity of glass and water and the absence
of convection.

10.2.2.3 Heat Conduction in Gases

In Sect. 7.5 it was shown, that heat conduction in gases is caused
by collisional energy transfer between the molecules which
move with thermal velocities. According to Eq. 7.49 the heat
energy transferred per m2 between two parallel walls at temper-
atures T1 and T2 is

Jw D � � .T1 � T2/ :

According to (7.49a) the heat conduction coefficient is

˛ D n � v � k � f =8 � n �
p

T=m :

Because of the much smaller density n of gases compared to
liquids the heat conduction in gases is generally much smaller,
except for ionized gases where the electrons contribute essen-
tially to heat conduction. For neutral gases it is maximum for
hydrogen because of the small mass m of hydrogen molecules.

When the mean free path � is larger than the dimensions of the
gas container, the heat conduction becomes independent of the
gas pressure.

Tungsten wire

Figure 10.28 Demonstration of heat conduction in gases and its dependence
on the molecular mass

The influence of the molecular mass m on the heat conduction
can be demonstrated by the device shown in Fig. 10.28. A tung-
sten wire runs coaxially through two separated parts of a glass
tube, which are filled with hydrogen gas in the left part and nitro-
gen gas in the right part. When the wire is heated by an electric
current the right part has a higher temperature and is glowing
red while the left part remains much colder due to the differ-
ent heat conduction of the two gases. When removing the two
gases both parts of the wire glow equally strong. This effect is
intensified by two causes:

1. The electrical resistance R of tungsten decreases with de-
creasing temperature T . Therefore the electrical power
dW=dt D I2 � R supplied to the wire is smaller in the cold
part.

2. The visible radiation power of the glowing wire is propor-
tional to T4. Even a small change of the temperature T

results in a large change of the radiation power.

A modification of the demonstration experiment (Fig. 10.29)
uses a vertical glass tube with the coaxial wire, which is filled
with a gas mixture of H2 and N2. At first the heated wire glows
equally bright along the whole tube. After some minutes, the
lighter H2-gas diffuses to the upper part while the heavier N2-
gas sinks to the bottom (see Sect. 7.6 and Fig. 7.34). This effect
is even amplified by convection where the hot gas around the
wire rises up while the colder gas close to the inner wall of the
glass tube sinks down. Now the lower part of the wire is brighter
than the upper part.

Uniformly mixed Demixed

Initial Later

Figure 10.29 Demixing of a gas mixture by convection and diffusion in the
gravitation field of the earth
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For most situations the convection in gases at atmospheric pres-
sure gives a larger contribution to the energy transport than heat
conduction.

10.2.3 The Heat Pipe

Often the problem arises that heat produced in a volume V

should be extracted as effectively as possible, in order to reach
a sufficient cooling power. For the solution of this problem a
special device was developed, which uses evaporation of a liq-
uid on the hot side and condensation of the vapour on the cold
side. The heat transport occurs by convection. This heat pipe
allows a heat transport through the unit area that is larger by two
orders of magnitude than can be achieved with metals. Its basic
principle is illustrated in Fig. 10.30.

A tube of metal or another material is connected at the hot
side (left) with the volume at the temperature T1 that should be
cooled and on the cold side with a cooling bath at T D T2 < T1.
The evacuated tube is filled with a substance that has an evapo-
ration temperature Te < T1 and a melting temperature Tm < T2.
For instance, if water is used, the temperatures should be T1 >
100 ıC and T2 > 0 ıC.

At the hot side the substance boils which extracts the evapora-
tion heat from the volume to be cooled. The vapour streams to
the cold end where it condenses and delivers its heat of fusion to
the cooling bath. Along the tube a gradient of the vapour density
develops and an opposite gradient of the liquid density. An es-
sential part of the heat pipe is a mesh that is wrapped around the
inner part of the tube close to the wall. For the correct choice of
the materials for tube and mesh the liquid substance wets both
the mesh and the inner wall of the tube. Due to capillary action
the liquid then flows between mesh and wall from the fusion
zone back to the evaporation zone where it can be again evapo-
rated and extract heat. The heat transport of this cyclic process
depends on the vapour density and its flow velocity from the hot
to the cold zone, but mainly on the magnitude of evaporation
and fusion energy. For cooling media with a large evaporation
energy (for example water) and a large convection velocity a
very large heat transport per sec can be achieved.

Figure 10.30 Heat pipe

With the mass dm=dt evaporated per sec the energy extracted
per sec from the hot volume is

dW=dt D �e � dm=dt ;

where �e is the specific evaporation energy. This is much larger
than the heat cp.dm=dt/�T transported through the heat pipe
with a temperature difference �T D T1 � T2 (see Tab. 10.5). At
the cold end the heat

dW2=dt D .�f � Ccp�T/ � dm=dt

has to be transferred to the cooling water.

More details about the technical design and the applications of
heat pipes can be found in [10.6].

10.2.4 Methods of Thermal Insulation

While in Sect. 10.2.3 the realization of devices with a maximum
heat transport was discussed, in this section we will treat meth-
ods to prevent heat transport out of a volume or to make it at
least as small as possible. In order to reach this goal one has
to take into account the contributions of all three heat transport
mechanisms and minimize them. We will illustrate this by con-
sider the thermal isolation of a residential house.

The heat transport between the inside and outside is mainly gov-
erned by heat conduction through walls and windows and to a
minor part by air convection through leaky joints and during air-
ing of a room. Depending on the size and the technical features
of the windows also heat radiation can be important for heat ex-
change.

The heat flux through the area A of walls or windows with thick-
ness d and a temperature difference �T D Ti � To between
inside and outside is

dQ=dt D �.�=d/ � A ��T ; (10.43)

where � ŒW=.m � K/� is the heat conductivity, which depends
on the material. It is generally characterized by the constant
k D �=d, which gives the energy flux through the unit area
A D 1 m2 at a temperature difference �T D 1 K. For most esti-
mations of the heat isolation of houses the k value ŒW=.m2 � K/�
of walls and windows is given. For good heat insulation it
should be as small as possible. In Fig. 10.31 the k-values and
the temperature rise from an outside temperature T0 D �15 ıC
to the room temperature Ti D C20 ıC are depicted for dif-
ferent wall compositions. These figures illustrate, that even a
thin layer of Styrofoam considerably improves the thermal in-
sulation. The largest heat losses are caused by the windows,
where the heat transport process is more complex. We re-
gard at first a single-layer window (Fig. 10.32). In spite of the
small heat conductivity of glass (� D 0:9 W=.mK/) the k-value
k D 200 W=.m2 � K/ is much larger than that of the thick walls,
due to the small thickness (d D 4 mm) of the window.

Because of the temperature gradient in the air layers close to the
inside and outside of the glass a convective air current develops,
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Figure 10.31 Thermal insulation. a Temperature behaviour across a plastered
claybrick wall; b plastered wall of pumice stone; c pumice stone wall with styro-
foam layer. The arrows give the direction of the convection current

Figure 10.32 Heat transport across a single pane window

Figure 10.33 Double pane glas window. a Composition and temperature change across the window; b k -values as a function of the thickness d of the gas layer
between the two glas panes; c decrease of k -values through technical progress

which is for To < Ti downwards at the inside and upwards at
the outside (Fig. 10.32). Due to friction between glass and air
a thin boundary layer of air adheres on both sides of the glass
(see Sect. 8.4). The heat passes through these layers to the con-
vective air layers. Since the heat conduction is smaller for gas
at atmospheric pressure than for glass, the k-value is smaller for
these adhered air layers then for the pane of glass.

From Eq. 8.24 one obtains a thickness of 5 mm for the boundary
air layer with a k-value k D 3:4 W=.m2 � K/ for heat conduction,
compared to k D 200 W=.m2 � K/ for the pane of glass.

Another heat transport mechanism is heat radiation (see
Sect. 10.2.5). The room temperature in the inner part of the
house causes infrared radiation, which can escape through the
windows. The heat loss can be estimated as 4:6 W=.m2 � K/.
This gives a total k-value of the inner air layer k D
8 W=.m2 � K/.

For the outer convective air layer the k-value is different because
the air flows upwards against the gravitation. Detailed calcula-
tions give a value k D 20 W=.m2 � K/ including radiation losses.
For successive layers the reciprocal k-values add (analogous to
electrostatics where the reciprocal electric conductivities add)
and we obtain from

1

k
D 1

ki
C 1

kg
C 1

ko
(10.44)

the total k-value k D 5:5 W=.m2 � K/. The comparison with the
k-value of the walls k < 1 W=.m2 � K/ shows that windows with
a single pane of glass constitute a major heat loss.

A much better heat insulation can be achieved with windows of
two panes of glass and an inert gas enclosed between the panes
(Fig. 10.33a).

The k-value of the gas depends on the thickness d of the gas
between the glass panes. For d � 1 cm the heat conduction is
dominant, while for larger values of d convection undertakes the
major part of heat transfer. Fig. 10.33b shows, that for d D 1 cm
the minimum k-value is reached because the boundary layers
that adhere to the glass walls, prevent convection.

For such a double glass window, the k-value for heat conduction
is substantially smaller than for a single pane window. In order
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to minimize also the radiation losses, the glass panes are cov-
ered by a thin dielectric layer [10.8], which reflects the infrared
radiation from the inside of the house (see Vol. 2, Sect. 10.4).
Without a reflecting layer, k-values of k � 3 W=.m2 � K/ can be
realized, while with reflecting layer the k-value decreases down
to k � 0:6 W=.m2 � K/. The k-values are then comparable to
those of the walls [10.8, 10.9].

The considerations above illustrate that all three heat-transfer
processes as heat conduction, convection and radiation have to
be taken into account in order to optimize the heat insulation of
a house. In Fig. 10.33c the technical progress of minimizing the
total k-value is illustrated.

A more quantitative representation of heat insulation can be
found in [10.7] and the references gives there and also in many
books on energy saving new house construction [10.9].

10.2.5 Thermal Radiation

Every body at a temperature TK exchanges energy with its
surrounding. If TK is higher than the temperature TS of the
surrounding, the energy emitted by the body is larger than the
energy received from the surrounding. If no energy is supplied
to the system body +surrounding, the system approaches ther-
mal equilibrium, where the temperature of the body is equal to
that of the surrounding (Fig. 10.34). This energy balance can be
reached by heat conduction, convection or radiation. If the body
is kept in vacuum, (for instance our earth) radiation is the only
way to exchange energy with the surrounding, because both heat
conduction and convection need matter for the transport of en-
ergy.

Extensive experiments have proved, that radiation emitted by
hot bodies represents electromagnetic waves, which can trans-
port energy through matter and also through vacuum.

Figure 10.34 Energy exchange by thermal radiation between a body and its
surroundings. At thermal equilibrium is dW1=dt D dW2=dt and TK D T2

Since the intensity and the spectral distribution of the radiation
emitted by a body depends essentially on the temperature of
the body, this radiation is called heat radiation or thermal ra-

diation. In this section we will discuss the characteristics of
thermal radiation.

10.2.5.1 Emissivity and Absorptivity of a Body

At first we will experimentally study, how the intensity of ther-
mal radiation depends on the surface conditions of the body. We
use a metal hollow cube filled with hot water, where the four side
walls have a different surface structure (black, white, shiny and
rough). All side walls have the same temperature. Four equal ra-
diation detectors, which measure the total radiation (integrated
over all wavelengths) are placed at the same distance d from the
four walls (Fig. 10.35). They all show different radiation pow-
ers. When the cube is turned by n � 90ı (n D 1, 2, 3, : : :) about
a vertical axis, it can be proved that the difference is not due to
differences of the detectors but that the different sidewalls really
emit different radiation powers. The experiment shows surpris-
ingly that the black side wall emits the maximum power and the
shiny white surface the minimum power. The radiation power
emitted from the surface area dA into the solid angle d˝ can be
quantitatively described by

dW

dt
D E� � dA � d˝ :

The constant E� is the emissivity of the surface. It gives the
radiation power dW=dt, integrated over all wavelengths that is
emitted from a surface element dA D 1 m2 into the solid angle
d˝ D 1 sr around the surface normal (Fig. 10.36). According
to the experiment the emissivity E� of a black surface is larger
than that of a white surface at the same temperature.

The integral absorptivity A� is defined as the mean value of the
quotient A� D absorbed radiation power = incident radiation
power, averaged over all wavelengths.

The ratio

K.T/ D E�.T/

A�.T/
(10.45)

Figure 10.35 Experimental setup for the measurement of emission
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Figure 10.36 Illustration of the emissivity E � of a surface element dA

depends solely on the temperature T and not on the material of
the body, as can be demonstrated by the following experiment:

Experiment

We place in Fig. 10.37a in front of the black surface A1

of the hot cube an equivalent surface A0
1 of the detector at

a distance d and in front of the shiny surface A2 a shiny
detector surface A0

2 at the same distance d. Measuring the
temperatures T1 of A0

1 and T2 of A0
2 one finds that T1 > T2.

Since the surface structure of A0
1 is equal to that of A1, and

that of A0
2 is equal to that of A2, the absorptivity A�

1 must
be equal to A0�

1 and A�
2 D A0�

2 .

Figure 10.37 Derivation of (10.47)

The power absorbed by the two detector surfaces is

dW 0
1=dt � E�

1 � A0�
1 and dW 0

2=dt � E�
2 � A0�

2 :

Since E�
1 > E�

2 (according to the foregoing experiment,
a black surface emits a larger power than a shiny one) and

A0�
1 > A0�

2 (a black surface has a higher absorptivity than a
shiny one) it follows that dW 0

1=dt > dW 0
2=dt ! T1 > T2.

Now the cube is turned about a vertical axis by 180ı and
the surface A1 now faces A0

2 and A2 faces A0
1 (Fig. 10.37b).

The absorbed powers are

dW1=dt � E�
2 � A0�

1 and dW2=dt � E�
1 � A0�

2 :

The experimental result is now T1 D T2 ! dW1=dt D
dW2=dt.

) E�
1 .T/

A�
1

D E�
2 .T/

A�
2

: (10.46)

J

A separate experiment proves that the absorptivity of the sur-
faces does not depend on the temperature at least within the
temperature range from 0–100 ıC, which is covered in the exper-
iment above. Therefore it follows from (10.46) for an arbitrary
body

E�
1 .T/

A�
1

D E�
2 .T/

A�
2

D K.T/ : (10.47)

The ratio of emissivity to absorptivity can be described
for any body by a function K.T/ that depends solely on
the temperature T .

A body with A� D 1 is called a black body.

It completely absorbs any incident radiation. According to
(10.47) a black body must also have the maximum emissivity
compared to all other bodies with equal temperature.

Note: Bodies with a large absorption coefficient ˛ but a sud-
den increase of ˛ at the glossy surface are not a black body,
because their reflectivity also increases (Fig. 10.38a). There-
fore the major part of the incident radiation is reflected and only
the minor part, that penetrates into the body is absorbed (see
Vol. 2, Chap. 8). In order to realize a black body, the absorp-
tion coefficient should not increase suddenly at the surface but
must continuously increase over a distance�z > � ( � D wave-
length of the incident radiation) from zero to its maximum value
(Fig. 10.38b). This can be for instance realized by a roughened
surface (black velvet, soot or graphite with a rough surface)
where the optical density rises slowly from the outside to the
inner part of the body. The sun is an example of a nearly perfect
black body, because the gas density and with it the absorptivity
increases slowly from the diffuse outer edge of the photosphere
to the interior.

Often the problem arises to keep a body at a constant tempera-
ture TK, that differs from the temperature TS of its surrounding
by supporting (TK > TS) or extracting (TK < TS) energy. This
energy can be minimized when heat conduction, convection and
radiation are minimized. The experimental realization uses ma-
terials with low heat conductance and radiation shields.
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Figure 10.38 a For bodies with a large gradient d˛=dz at the surface incident
radiation is mainly reflected and only partly absorbed inspite of the large ab-
sorption coefficient ˛. b Most of the incident radiation is absoorbed, if d˛=dz
is small, i. e. ˛.z/ rises slowly from ˛ D 0 to ˛ D ˛max

Examples
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Reflective coating

Vacuum
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b)
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Glass or steel wall
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Hot liquid

Liquid air

Heat insulation and
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Figure 10.39 a Thermos bottle; b Dewar gasket

1. A thermos bottle (Fig. 10.39a) consists of a double
wall glass flask. The space between the two walls
is evacuated and the two inner sides of the walls are
mirrored. The vacuum prevents heat conduction and
convection. The reflective walls minimize the escape
of thermal radiation to the outside. Therefore, the heat
losses from the inner volume are very small and the
coffee stays hot for a long time or cold drinks remain
cold.

2. For the storage of liquid nitrogen a Dewar is used
(Fig. 10.39b), which is based on the same principle as
the thermos bottle. Here the heat transfer from the out-
side is minimized in order to keep the evaporation of
the cold liquid nitrogen (T D 77 K) as low as possible.
The small portion of evaporating nitrogen extracts the
heat of evaporation and keeps the temperature in the
Dewar low.
If liquid air is used (78% N2 and 21% O2/, the nitrogen
evaporates faster because of its higher vapour pressure
and the concentration of the reactive oxygen increases
until an explosive concentration is reached. Therefore,
generally liquid air is dangerous and is only used for
special purposes. J

10.2.5.2 Characteristic Features of Thermal Radiation

The energy that is emitted by the surface element dA into the
solid angle d˝ around the direction � against the surface nor-
mal can be measured with a radiation detector (for example a
thermo-couple connected to a black surface). The detector area
dA2 at a distance r from the radiation source receives the radia-
tion within the solid angel

d˝ D dA2

r2
:

Experiments prove that for many radiation sources the angular
distribution of the measured radiation power is

dW.�/=dt D S� cos� � dA � d˝ : (10.48)

The quantity S� is the emittance or radiation density of the
source. It describes the radiation power per m2 of the radia-
tion source, emitted into the solid angle d˝ D 1 sr around the
surface normal (Fig. 10.40a).

The radiant intensity

J.�/ D
Z

F

S� cos �dA ; ŒJ� D 1
W

sr
(10.49)

is the total radiation power emitted by the radiation source into
the solid angle d˝ D 1 sr around the direction � against the
surface normal.

Note: The relation between the radiation density S� and the
emissivity E� is outlined in Sect. 10.2.5.3.
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Figure 10.40 a Illustration of radiant intensity J .�/. b The length of the arrow
is proportional to the radiant intensity J .�/

The emitted radiation power generally depends on the wave-
length � resp. the frequency � D c=� of the electromagnetic
wave. The spectral radiation intensity S�

� is defined by the equa-
tion

S� D
1Z

�D0

S�
�d� : (10.50)

The radiation of the source results in an electromagnetic field
with the energy density w ŒJ=m3� and the intensity I ŒW=m2�.
The spectral energy density w� is the energy per m3 within the
spectral frequency interval �� D 1 s�1. It is related to the total
energy density w by

w D
Z
w� � d� : (10.51)

For a radiation source with isotropic radiation (for instance the
sun) the relation between I D jSj and w is

I D .c=4�/ �w ; (10.52a)

and similar for the spectral quantities

I� D .c=4�/ � w� ; (10.52b)

where c is the velocity of light. For plane waves the relations
are I D c �w and I� D c � w� .
The detector element �A2 at a distance r from the isotropic
source receives from the source element �A1 the radiation
power

dW1

dt
D S�

1 cos �1�A1�˝

D
�
S�

1 cos �1�A1�A2 � cos �2
�
=r2 ;

(10.53)

where�˝ D �A2 � cos �2=r2 is the solid angle under which the
tilted surface element�A2 appears from the source (Fig. 10.41).

The Equation 10.53 is symmetric. Replacing S�
1 by the radiation

intensity of the surface element �A2 the equation describes the
radiation power dW2=dt received by �A1 from �A2.

Figure 10.41 The surface element �A2 receives from �A1 the radiation
power dW=dt D .S ��A1 ��A2 � cos �1 � cos �2/=r2

The ratio

dW2=dt

�A2
D
Z

A1

�
dA1S�

1 cos �1 cos �2
�
=r2 (10.54)

is the irradiance or intensity at the detector ŒW=m2�.

Note: The radiation power, absorbed by the detector with the
normalized absorptivity A�, the reflectivity R and the transmis-
sion T (A� C R C T D 1) is

dWabs

dt
D A� � dW1

dt
D .1 � R � T/ � dW1

dt
;

because the fraction (RCT) of the incident radiation is reflected
and transmitted.

10.2.5.3 Black Body Radiation

A black body with the absorptivity A� can be experimentally re-
alized by a cavity with absorbing walls and a small hole with
an area �A that is small compared to the total inner wall area A

of the cavity (Fig. 10.42). Radiation that penetrates through the
hole into the cavity, suffers many reflections at the absorbing
walls before it can eventually escape with a very small proba-
bility through the hole. The absorptivity of the hole area �A is
therefore A� � 1.

When the cavity is heated up to a temperature T , the hole area
�A acts as radiation source with an emissivity E� that is, accord-
ing to (10.47) larger than that of all other bodies with A� < 1
at the same temperature T (the black body radiation is therefore
also called cavity radiation). This can be demonstrated by the
following experiment (Fig. 10.43):

The letter H is milled deeply into a graphite cube. At room
temperature, the letter H appears darker than the surface of the
cube (left picture of Fig. 10.43). When the cube is heated, up to

Figure 10.42 A cavity with a small hole�A absorbs nearly all of the radiation
incident onto �A
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Figure 10.43 The letter H milled into a graphite block appears darker as its
surrounding at low temperatures but brighter at high temperatures

T D 1000 K the letter H appears much brighter than the other
surface elements (right figure).

Some simple considerations allow one to postulate some basic
laws of the black body radiation:

Under stationary conditions (T D const) emission and ab-
sorption of the cavity walls must be balanced. This implies
for all frequencies � of the radiation that the absorbed power
of an arbitrary surface element�A of the walls must be equal
to the emitted power:

dWa.�/=dt D dWe.�/=dt :

At this equilibrium we define the temperature T of the black
body radiation as the temperature of the walls.
The black body radiation is isotropic. The spectral irradiance
I� ŒW=.m2 � s�1 � sr� is for any point in the cavity indepen-
dent of the direction in the cavity and also of the material
or structure of the walls. If the radiation were not isotropic,
one could place a black disc into the cavity and orientate it
in such a way, that its surface normal points into the direc-
tion of maximum radiation intensity S�. The disc would then
absorb more radiation power and would heat up to higher
temperatures than the walls. This contradicts the second law
of thermodynamics (see Sect. 10.3).
The black body radiation is homogeneous, i. e. its energy
density is independent of the specific location inside the cav-
ity. Otherwise one could construct a perpetuum mobile of
the second kind (see Sect. 10.3).

When we place a body in the radiation field of the cavity, the
spectral radiation power S�

� � d� � dA � d˝ , falls within the solid
angle d˝ onto the body. The spectral power absorbed by the
surface element dA is

dWa

dt
D A�

�S�
�dA � d˝ � d� ; (10.55a)

while the emitted power is

dWe

dt
D E�

�dA � d˝ � d� : (10.55b)

At thermal equilibrium the absorbed power must be equal to the
emitted power. Since the cavity radiation is isotropic, this must

Figure 10.44 A body inside a closed cavity at thermal equilibrium with the
radiation field

be valid for all directions. Therefore it follows from (10.55a,b)
the Kirchhoff-Law

E�
�=A�

� D S�
� .T/ : (10.56)

For all bodies in the radiation field of the cavity the ratio of
spectral emissivity and absorptivity equals the spectral radiation
density S�

� of the radiation field.

For a black body is A� D 1 for all frequencies �. We can there-
fore conclude:

The spectral emissivity E�
� of a black body is equal to the

spectral radiation density S�
� of the cavity radiation.

10.2.5.4 The Emitted Radiation Power of a Hot Body

The surface S of a black body at the temperature T emits, ac-
cording to the Stefan–Boltzmann Law, (see Vol. 2, Sect. 12.3)
the radiation power

dW

dt
D � � S � T4 : (10.57)

For a black surface with A� D 1 the Stefan–Boltzmann constant
� has the numerical value � D 5:67051 � 10�8 W=.m2 � K/. For
bodies with A� < 1 the emissivity is smaller and therefore also
the emitted radiation power at the same temperature is smaller
than for a black body. The Stefan–Boltzmann Law can be de-
rived from Planck’s radiation law (see Vol. 3, Chap. 3). The
deviation of the experimental results for small wavelengths from
those predicted by the Stefan–Boltzmann law,. gave the impetus
for the development of quantum theory.

Note:

The radiation power of a hot body is proportional to the
fourth power of the surface temperature. With increasing
temperature it therefore represents an increasing fraction of
the total energy loss of a body.
The thermal radiation is an electromagnetic wave and there-
fore propagates also through vacuum. The energy transport
by radiation is not bound to matter. We own our existence to
the heat radiation from the sun because this is the only en-
ergy transport mechanism from the sun to the earth (except
the negligible contribution of particles such as electrons and
protons emitted by the sun).
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A more detailed and quantitative treatment of heat radiation will
be postponed to Vol. 3, because it demands some basic knowl-
edge of quantum theory.

10.2.5.5 Practical Use of Solar Energy

The radiation energy of the sun, received on earth, can be ei-
ther directly converted to heat by solar energy collectors or
transformed into electrical power by photovoltaic semiconduc-
tor elements. While the second technique is treated in Vol. 3,
the first will be shortly discussed here [10.10, 10.11].

The radiation power of the sun, incident on 1 m2 of a surface
black surface element outside of the earth atmosphere has an
annual average Pˇ D 1:4 kW=m2 (solar spectral irradiance).
However, even at a clear day without clouds only a smaller
power PE reaches the earth surface because of absorption and
light scattering in the atmosphere. For geographical latitudes
' D 40ı–50ı one measures PE � 0:5Pˇ. For an inclination an-
gle ˛ of the incident radiation to the surface normal the received
power at a clear sky is PE � 730 � cos˛W=m2.

With the absorptivity A� of the surface, the power absorbed
within the time interval �t by a plane surface with area �A is

Pa D A� ��A � PE � cos˛ ��t :

This results in a temperature increase�T of a sun collector with
mass m and specific heat c

�T D A� ��A � PE � cos˛ ��t=.c � m/ ; (10.58)

if no heat losses occur.

The temperature increases with irradiation time if the heat is
not dissipated. This dissipation can be achieved, when on the
backside of the sun collector tubes are welded with a good heat
contact to the sun collector and a liquid is pumped through the
tubes, which takes away the heat. In order to keep the tempera-
ture of the sun collector constant, the pumping speed is chosen
such that the heat transport just balances the received radiation
power.

With a mass flow dml=dt of the heat transporting liquid with
the specific heat cl and the temperature increase �T the energy
balance is given by the equation

A� � PE �A cos˛ D .dml=dt/ cl �T C .dW=dt/v : (10.59)

The angle ˛ depends on the inclination of the energy collecting
plane, on the latitude ' and on the daytime. In Fig. 10.45 the
daytime dependence of the sun energy received by a collector
with ˛ D 45ı in Kaiserslautern (' D 49ı) is illustrated for
three different dates. Two effects cause this variation with the
daytime: 1) The variation of the angle ˛ due to the apparent
motion of the sun and 2) The variation of the path length of
the sun radiation through the atmosphere during the day, where
absorption and scattering attenuates the radiation energy.

Figure 10.45 Variation of the sun radiation incident onto a sun radiation col-
lector at the lattitude ' D 49ı as a function of daytime for three different times
of the year

The area under the curves gives the integrated energy (J=m2� sun
hours) received during a whole day between sunrise t1 and sun
set t2.

WE D
t2Z

t1

PE cos˛ dt (10.60)

The average radiation power per day is then hPE � cos˛i D
WE=.t2 � t1/.

Example

A� D 0:8; hPE � cos˛i D 250 W=m2 during a clear day
in August at ' D 45ı; �A D 8 m2. With water as the
heat transporting liquid (cW D 4186 Ws=.kg � K/) which
is heated from 20 to 60 ıC. With a good heat insulation
the heat losses dWl=dt can be kept down to 50 W=m2 for
a temperature difference of �T D 40 ıC. The amount
of water heated per sec is then given by dmW=dt D
.A� � hPE � cos˛i � dWl=dt/ � A=.cW ��T/ D 0:0072 kg=s.
Within one hour 26 l water are heated from 20 to 60 ıC.

J

Figure 10.46 shows a possible realization of a sun power col-
lector for the heating of houses. It consists of a blackened

Solar radiation

Heat

radiation

Glas cover

Air

Water pipes

Absorbing sheet

Insulation

Figure 10.46 Cross section of a flat solar radiation collector which is mounted
on house roofs
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Figure 10.47 Thermal solar radiation collector for heating water with heat
exchanger

absorber plate with pipes connected to the backside with good
heat contact. Through the pipes a water-glycol mixture (to avoid
freezing at low temperatures) is pumped. In cases where temper-
atures above 100 ıC are reached, low viscosity oil is used. The
absorber plate is placed inside a heat insulating housing with a
glass plate in front. Heat losses are due to reflection of the sun
radiation by the glass plate, by heat radiation of the black ab-
sorber plate and by heat conduction from the hot part of the sun
radiation collector (including the pipes for the transport of the
hot liquid) and convective cooling by the wind that blows along
the device.

The heated liquid transfers its heat through a heat exchanger to
a thermal storage system inside the house that generates hot ser-
vice water (Fig. 10.47). A temperature sensor and a feedback
system controls the temperature of the service water and takes
care that it always has the wanted temperature. In case the sun
energy is not sufficient, a conventional heating system is con-
nected which only operates if the temperature sinks below the
wanted value. When the hot water is used for room heating,
a floor heating system is advantageous, because here the water
temperature can be lower than that for radiator heating [10.9–
10.11].

In large facilities for thermal solar energy conversion, it is more
effective to heat the liquid above its boiling point. The gener-
ated vapour drives turbines which can produce electric current
through electric generators. The technical realization uses large
spherical mirrors that focus the sun radiation onto a black sur-
face connected to a pipe system that transports the hot vapour.
Temperatures above 1000 ıC can be achieved and an electric
output power of many kW has been demonstrated. The installa-
tion costs for such systems are up to now very high and therefore
only a few pilot plants have been built. One example is the sys-
tem in Almeria in Spain.

10.3 The Three Laws of
Thermodynamics

We will define a thermodynamic system as a system of atoms
or molecules that interacts with its surroundings by exchange of
energy in form of heat or mechanical work. The system can be
described by physical quantities such as temperature, pressure,
volume, particle density etc. In this section we will discuss,
how the state of such a system changes by the exchange of
energy with its surroundings. The results of all investigations
can be condensed in three laws of thermodynamics, which have
a comparable importance for Physics as the conservation laws
of mechanics for momentum, angular momentum and energy.
These three laws are solely based on experimental data and can-
not be derived mathematically from first principles contrary to
a widespread false opinion.

At first we must discuss, which quantities are necessary to de-
scribe the state of a thermodynamic system.

10.3.1 Thermodynamic Variables

The state of a system is defined by all characteristic properties,
which are determined by the external conditions. A ther-
modynamic system is completely determined if the chemical
composition is known and the quantities pressure p, volume V

and temperature T are given. If these quantities do not change
with time, the system is in an equilibrium state and it is called
a stationary system. Most of the thermodynamic considerations
deal with stationary systems. Often a system changes so slowly,
that it can be described by a succession of equilibrium states.

Systems far away from equilibrium play an important role for
all chemical and biological reactions and they are intensively
discussed in modern physics. They are therefore shortly treated
at the end of this chapter. In this section, we will restrict the

discussion to ideal gases. The thermodynamics of real bodies
will be discussed later.

An equilibrium state of a system is unambiguously determined,
if the three quantities pressure p, volume V and temperature T

are fixed. These quantities are therefore called thermodynamic

variables.

Definition

A thermodynamic variable is a variable in the equation of
state of a thermodynamic system. It describes the momen-
tary state of the system and is independent of the way on
which the system has reached its momentary state. Be-
sides V, p and T also the total energy, the entropy and the
enthalpy are thermodynamic variables.



C
h

a
p

te
r

1
0

280 10 Thermodynamics

Figure 10.48 a Heating at constant pressure; b heating at constant volume;
c no heat supply

The thermodynamic variables are related to each other by the
equation of state for a gas volume V of an ideal gas with N

molecules

p � V D � � R � T ; (10.61)

where � D N=NA is the number of moles and NA the Avogadro
number. Also for real gases a corresponding equation can be
derived (see Sect. 10.4). For a given volume V and a pressure p

the temperature T determines the internal energy

U D 1
2 � � � f � R � T (10.62)

of molecules with f degrees of freedom. For ideal gases (for
instance helium) is f D 3. If the volume decreases (dV < 0) at
a constant pressure p the necessary work is

dW D �p � dV : (10.63)

The sign is chosen in such a way that the applied work
is positive, if the energy of the system increases. Work
performed by the system means a decrease of its internal
energy and is therefore defined as negative.

When a gas is heated at constant pressure p its volume increases
(Fig. 10.48a). The quantity


p D 1

V
�
�
@V

@T

�

p

; (10.64)

that describes the relative volume change per Kelvin tempera-
ture rise, is the isobaric expansion coefficient.

In an analogous way the heating of a gas at a constant volume
(Fig. 10.48b, where the pressure increases, is described by the
isochoric pressure coefficient


V D 1

p
�
�
@p

@T

�

V

; (10.65)

which describes the relative pressure increase �p=p for a tem-
perature rise of 1 K.

The isothermal compressibility


T D � D � 1

V
�
�
@V

@p

�

T

(10.66)

gives the relative volume change �V=V for a pressure change
�p at a constant temperature T .

As recollection keep in mind:

isothermal: T D const

isobaric: p D const

isochoric: V D const :

The total change dV of the volume V.p;T/, when both quantities
p and T are changing is

dV D
�
@V

@p

�

T

dp C
�
@V

@T

�

p

dT

D �� � V � dp C 
p � V � dT :

(10.67)

For isochoric processes the volume V stays constant, i. e. dV D
0. Then (10.67) reduces to

0 D � � � V � .dp/V C 
p � V � .dT/V

) � � dp D 
p � dT :
(10.68)

Division by dT yields with .dp=dT/V D 
V � p the relation


p D � � 
V � p (10.69)

between isobaric expansion coefficient 
p, isothermic compress-
ibility �, isochoric expansion coefficient 
V and pressure p.

10.3.2 The First Law of Thermodynamics

The heat�Q applied to a system can be either used for rising the
temperature T at a constant volume V, or for the expansion of
the volume V against the external pressure p where the system
has to perform the work �W . Energy conservation demands

�Q D �U ��W ; (10.70a)

where, as defined before, �W < 0 if the system performs
work (which decreases its own energy). This sign definition
is in agreement with the definition (2.35) for the work. If the
system, for instance, performs work against an external force
F D �p � A when a piston with area A is moved along the dis-
tance �x against the external pressure p, the work is

�W D F � �x D �p � A ��x D �p ��V with �V > 0 :
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Equation 10.70 is the first law of thermodynamics. It is a spe-
cial case of the general law of energy conservation. It can be
formulated as:

The sum of the external heat �Q, applied to a thermody-
namic system, and the supplied mechanical energy �W is
equal to the increase �U of the total internal energy U.

�U D �Q C�W (10.70b)

When the system performs work against an external force, is
�W < 0 and therefore �U < 0. Many inventors have tried
to construct machines that deliver more energy than they con-
sume. Such a machine could use part of the delivered energy for
its own operation. It could run continuously delivering energy
without external energy input. Therefore this hypothetical ma-
chine is called a perpetuum mobile. Because it contradicts the
first law of thermodynamics it is also called perpetuum mobile

of the first kind.

Equation 10.70 can be also formulated in a more floppy way as:

A perpetuum mobile of the first kind is impossible.

Note: This statement cannot be proved mathematically. It is
solely based on empirical knowledge.

For ideal gases the work performed during the expansion of the
volume V by infinitesimal amount dV against the external pres-
sure p is

dW D p � dV :

The first law of thermodynamics for ideal gases can therefore be
written in a differential form as

dU D dQ � p � dV : (10.71)

For dV > 0 the system releases energy and according to (10.71)
dU < dQ, i. e. the loss of internal energy cannot be compensated
by the supplied heat dQ. For dV < 0 the volume is compressed
and the system gains the energy p � dV. Now dU > dQ, the gain
of internal energy is larger than the supplied heat.

The relation between the thermodynamic variables p, V, T can
be derived from (10.71) for special processes where in each case
one of the variables p, V, T or the quantity Q is kept constant.

Note, that the quantity Q is not a thermodynamic variable! The
state of a system does change with the supply of heat dQ, but
one cannot unambiguously determine the final state of the sys-
tem, because either U or V or both variables can change. In a
mathematical language this means: dQ is not a complete differ-
ential.

10.3.3 Special Processes as Examples of the
First Law of Thermodynamics

Note: We will discuss the following processes for one mole of
a gas where the number of moles is � D V=VM D 1.

10.3.3.1 Isochoric Processes (V = const)

With dV D 0 it follows from (10.71)

dQ D dU D CV � dT : (10.72)

The heat supplied to the system is used solely for the increase of
the internal energy U. We can therefore relate the specific heat
to the internal energy U by

CV D
�
@U

@T

�

V

: (10.73)

10.3.3.2 Isobaric Processes (p = const)

The first law of thermodynamics has now the form

dQ D dU C p � dV D Cp � dT ; (10.74)

where we have used (10.28). When we introduce the enthalpy

H D U C p � V (10.75)

as new thermodynamic variable with

dH D dU C p � dV C V � dp D dQ C V � dp ; (10.76)

we can write the first law of thermodynamics as

dH D dU C p � dV D dQ : (10.77)

For isobaric processes the increase dH of the enthalpy H

is equal to the supplied heat dQ.

The specific heat at constant pressure is then

Cp D
�
@H

@T

�

p

: (10.78)

The variable H is often used for phase changes, chemical reac-
tions or other processes that take place at constant pressure, but
where the volume can change. A further example is the expan-
sion of a gas from a reservoir with constant pressure into the
vacuum where the pressure p D 0 is maintained by pumps.
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Figure 10.49 Isothermal and adiabatic curves in a p -V -diagram

10.3.3.3 Isothermal Processes (T = const)

Since the internal energy per mole of a gas depends solely on
the temperature T but not on the pressure p or the volume V, for
isothermal processes U must be constant, i. e. dU D 0. From
(10.71) it follows

dQ D p � dV : (10.79)

The external heat energy dQ supplied to the system is com-
pletely transferred to the work p � dV that the system releases
to the outside. Its internal energy does not change.

The equation of state p � V D R � T then reduces to the Boyle–
Marriott law (see Sect. 7.1)

p � V D const : (10.80)

The state p.V/ of the system can be plotted in a p-V-diagram
(Fig. 10.49) for isothermal and adiabatic processes at different
temperatures T . This gives for isothermal processes the hyper-
bolas

p D R � TK

V
D const

V
;

which are called isotherms (black curves in Fig. 10.49).

We will now discuss how large the work is that a system has
to perform for an isothermal expansion from a volume V1 to
V2 > V1 at constant temperature T .

W D �
V2Z

V1

p � dV D �R � T �
V2Z

V1

dV

V

D �R � T � ln
V2

V1
D R � T � ln

V1

V2
:

(10.81)

10.3.3.4 Adiabatic Processes

During adiabatic processes no heat is exchanged between the
system and its surroundings. Adiabatic processes occur in na-
ture, when changes of volume or pressure are so fast, that the
energy exchange during this short time period can be neglected.
An example is the propagation of acoustic waves at high fre-
quencies � through a medium (see Sect. 11.9). During one

oscillation period �T D 1=� nearly no energy exchange be-
tween maxima and minima of the wave can occur.

The first law of thermodynamics (10.71) can be written with
(10.73) for adiabatic processes

dU D CV � dT D �p � dV : (10.82)

From the equation of state (10.21) p � V D R � T we obtain
p D R � T=V. Inserting this into (10.82) yields

CV � dT=T D �R � dV=V :

Integration gives

CV � ln T D �R � ln V C const

) ln
�
TCV � VR

�
D const :

With R D Cp � CV this can be written as

TCV � V.Cp�CV / D const : (10.83a)

The 1=CV-th power of (10.83a) yields with the adiabatic index
� D Cp=CV the equation

T � V��1 D const ; (10.83b)

because T D p � V=R, this can be also written as

p � V� D const : (10.83c)

The Eq. 10.83a–c describe the relations between the thermody-
namic variables T , p, V for adiabatic processes. They are called
Poisson-adiabatic equations.

In a p–V-diagram (Fig. 10.49) the red adiabatic curves p.V/ /
1=V� (� > 1) are steeper than the isothermal curves p.V/ /
1=V.

For an ideal gas is f D 3 and � D .f C 2/=f D 5=3. For
molecular nitrogen N2 is f D 5 ! � D 7=5.

Example

In the pneumatic cigarette lighter, the volume V filled
with an air–benzene-mixture is suddenly compressed to
0:1 V. According to (10.83b) the temperature T rises from
room temperature (T1 D 293 K) to T2 D T1.V1=V2/

��1.
For air is � D 7=5 which gives T2 D 736 K D 463 ıC.
This is above the ignition temperature of the air–benzene-
mixture. J

10.3.4 The Second Law of Thermodynamics

While the first law of thermodynamics represents the energy
conservation when thermal energy is converted into mechanical
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energy, the second law of thermodynamics gives the maximum
fraction of thermal energy that can be really transferred into me-
chanical energy.

As we will see, this is connected with the question, into which
direction the transfer of one form of energy into another form
proceeds by its own, i. e. without external action. All of our
experience tells us, that heat flows by its own only from the
hotter region into the colder one, not vice versa. Furthermore all
experiments show, that mechanical energy can be completely
converted into heat, but that for the opposite process only part
of the heat can be converted into mechanical energy.

This fact, that is based solely on experimental experience, is
formulated in the second law of thermodynamics:

Heat flows by its own only from the warmer body to the
colder one, never into the opposite direction.

We will now discuss more quantitatively the transformation of
heat into mechanical work. This will be illustrated by con-
sidering thermodynamic cyclic processes, which leads us to a
quantitative formulation of the second law of thermodynamics.

10.3.5 The Carnot Cycle

A thermodynamic cycle is a series of processes where a ther-
modynamic system passes through several different states until
it finally reaches again its initial state. At the end of this cycle,
the system shows again the same thermodynamic variables as in
the initial state, although it has passed during the cycle through
different states with different variables. A simple example is a
system that is heated and then cooled again until it has reached
the initial temperature.

If the cyclic process can traverse into both directions the cycle is
called reversible (Fig. 10.50) otherwise it is called irreversible.
Although such reversible processes can occur in micro-physics
if only a few particles are involved, they represent in the

Figure 10.50 Thermodynamic cycle from the state 1 .T1; p1; V1/ via the state
2 .T2; p2; V2/ back to the state 1. a In a p–V -diagram; b in the temperature-
time diagram. Note: The cycle shown here, can only proceed, if energy is fed
into the system during the first step and energy is taken away from the system
during the second step

Figure 10.51 Carnot’s cycle

real world of many-particle systems only idealized “Gedanken-

experiments”, which represent limiting cases of real processes
that are always irreversible.

All periodically operating machines, such as steam engines or
car motors traverse irreversible cyclic processes. Although they
arrive at the end of the cycle again at the initial state, if they are
regarded as isolated systems, but they have lost energy during
the cycle (for instance friction losses) which has to be replaced
for each cycle.

The most famous reversible cyclic process is the Carnot-cycle
that represents an idealized loss-free cycle. It was published
in 1824 by Nicolas Leonard Sadi Carnot. This cyclic process
will enable us to calculate the maximum fraction of heat that
can be transformed into mechanical energy and therefore allows
the quantitative formulation of the second law of thermodynam-
ics. Furthermore, it illustrates nicely the difference between
reversible and irreversible processes.

The Carnot Cycle is a “Gedanken-Experiment”, where a ther-
modynamic system passes through two isothermal and two adi-
abatic processes during two expansion and compression events,
until it finally reaches its initial state again (Fig. 10.51).

Note: The following considerations are valid for 1 mol of an
ideal gas, where in Eq. 10.61 V D VM and � D 1.

The state of the system at the starting point 1 is defined by the
thermodynamic variables .V1; p1;T1/. The isothermal expan-
sion brings the system to the state 2 D .V2; p2;T1/. During this
process, the heat �Q1 has to be supplied to the system in order
to keep the temperature constant. Now an adiabatic expansion
follows and the system gets to the state 3 D .V3; p3;T2 < T1/.
In the next step the system is isothermally compressed and
reaches the state 4 with the conditions (V4, p4, T2). Here
the heat �Q2 has to be removed from the system. Finally
an adiabatic compression brings the system back to its initial
state 1 D .V1; p1;T1/. Such a virtual thermodynamic system
that passes through a Carnot cycle is called a Carnot Machine.

We will now calculate the heat energies �Q1 and �Q2 which
are exchanged between the system and a heat reservoir during
the isothermal processes.

1st process: Isothermal expansion from the state 1 to the
state 2. According to the first law of thermodynamics we ob-
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tain for an isothermal expansion

dQ D p � dV :

The heat supplied to the system is equal to the mechanical
work the system performs during the expansion.

With (10.81) it follows:

�Q1 D ��W12 D
V2Z

V1

p dV

D R � T1 � ln.V2=V1/ :

(10.84a)

2nd process: Adiabatic expansion from state 2 to state 3.
For adiabatic processes the heat exchange is zero. We therefore
obtain:

dQ D 0 ! dU D �p � dV D �W23 : (10.84b)

The work performed during the expansion is negative, because
it is delivered from the system to the surrounding. This results
in a decrease �U D U.T2/ � U.T1/ of the internal energy U

because T2 < T1.

3rd process: Isothermal compression from state 3 to state 4.
Similar to step 1 is the heat �Q2 delivered at the lower temper-
ature T2 to the heat reservoir equal to the work �W34 necessary
to compress the volume V

�W34 D R � T2 � ln.V3=V4/ D ��Q2 > 0 : (10.84c)

4th process: Adiabatic compression from state 4 to the start-
ing conditions in state 1. Similar to step 2 is here no heat
exchange with the surrounding and the work performed during
the compression is converted to the increase �U of the internal
energy

�U D U.T1/ � U.T2/ : (10.84d)

Total energy balance: The work delivered to the surrounding
during the 2nd process is equal to the work supplied to the
system during the 4th process. Therefore, only during the
isothermal processes a net energy is transferred. The net me-
chanical work during the Carnot cycle (Fig. 10.52) is

�W D �W12 C�W34

D R � T1 � ln.V1=V2/C R � T2 � ln.V3=V4/ :

For the adiabatic processes 2 ! 3 and 4 ! 1 the relations hold

T1 � V��1
2 D T2 � V��1

3 and

T1 � V��1
1 D T2 � V��1

4 :

Division of the two equations yields

V2=V1 D V3=V4 ) ln.V3=V4/ D � ln.V1=V2/ :

Figure 10.52 Heat exchange and net mechanical energy �W D �W34 �
�W12 of Carnot’s cycle

The net work is then

�W D R � .T1 � T2/ � ln.V1=V2/ : (10.85)

The Carnot Engine has received the heat �Q1 and has supplied
the mechanical work �W < 0 to the outside.

Such a machine that transfers heat into mechanical energy is
called heat engine.

The heat �Q2 supplied to the surrounding, is generally lost.
Therefore the efficiency of the engine is defined as the mechan-
ical work supplied by the engine divided by the heat �Q1 put
into the engine.

The efficiency of the Carnot Engine is then

� D
ˇ̌
ˇ̌�W

�Q1

ˇ̌
ˇ̌ D R.T1 � T2/ � ln.V2=V1/

R � T1 � ln.V2=V1/
D T1 � T2

T1

� D T1 � T2

T1
: (10.86)

This is a remarkable result: During the cycle the total received
heat cannot be transformed into mechanical work, but only the
fraction � D .T1 � T2/=T1 < 1. This fraction is called ex-

ergy. The remaining part (1 � �) of the input energy (Anergy) is
exchanged as heat �Q2 to the surrounding at the lower temper-
ature T2. The conservation of total energy can be written as

Energy D Exergy C Anergy :

The efficiency of the Carnot Engine increases with increasing
temperature difference T1 � T2. It is therefore advantageous to
choose T1 as high as possible and T2 as low as possible. We will
see in Sect. 10.3.10 that it is impossible to reach T2 D 0 K.

This implies that � is always smaller than 1.
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When the Carnot cycle is traversed into the opposite direction,
heat is transported from the lower temperature T2 to the higher
temperature T1. This requires the work

�W D R � .T2 � T1/ � ln.V1=V2/ :

This represents the ideal limiting case of a heat pump, which
is also used as refrigerating machine (see Sect. 10.3.14). Its
coefficient of performance (also called figure of merit) is defined
as the ratio of delivered heat�Q to the input work �W .

"hp D �Q1

�W
D T1

T1 � T2
D 1

�
:

Note, that "hp > 1.

Example

T1 D 30 ıC D 303 K,
T2 D 10 ıC D 283 K ) "hp D 15:2. J

Note:

1. The heat pump does not contradict the second law of ther-
modynamics, because here the heat does not flow by its own

from the colder to the hotter place but needs mechanical
work to drive this heat transport.

2. The Carnot Engine works with an ideal gas and all energy
losses are neglected. The Carnot Cycle is reversible. Real
engines have always losses that cannot be avoided. They are
due to friction of the moving pistons, friction in the non-ideal
gas, heat conduction from the system to the surroundings etc.
These losses decrease the efficiency of the engine. We will
now indeed prove, that:

There is no periodically working machine with
a higher efficiency than that of the Carnot engine.

Proof

Assume, there is a machine Mx with a higher efficiency
than the Carnot Engine. This “magic machine” needs
for a given mechanical energy output a smaller heat in-
put than the Carnot Engine, i. e. �Qx < �Q1. We now
combine Mx with a Carnot engine that passes the cy-
cle in opposite direction, i. e. it works as a heat pump
(Fig. 10.53). We adapt the size of Mx in such a way that it
delivers just the mechanical work �W , which the Carnot
engine needs as heat pump. The Carnot engine then trans-
ports the heat

j�Q1j D j�Q2j C j�Wj

from the colder to the warmer reservoir. Since we have as-
sumed that the magic machine Mx has a higher efficiency

than the Carnot Engine, it needs less heat from the reser-
voir at the temperature T1 for its operation than the Carnot
Engine transports to this reservoir. It furthermore delivers
less heat to the cold reservoir at T2 than the Carnot engine
needs for its operation as heat pump.

Figure 10.53 Proof of the impossibility of the perpetuum mobile of
the second kind

The combined system therefore transports heat from the
colder to the hotter reservoir without mechanical energy
input. This contradicts the second law of thermodynamics
which has been proved by numerous experiments. There-
fore a heat engine with a higher efficiency than that of the
Carnot engine is not possible! J

Remark. These considerations can be also applied to a heat
pump, where the cycle is traversed into the opposite direc-
tion. We replace the Carnot Engine in Fig. 10.53 by a “magic
heat pump” and the magic machine Mx by the Carnot Engine
(Fig. 10.54) and assume that the coefficient of performance "x

is larger than that of a Carnot heat pump. An analogous con-
sideration shows that "x < "C D 1=�C. This can be seen as
follows:

The Carnot engine in Fig. 10.54 now runs as heat engine that
extracts the heat �Q1 from the hot reservoir at the temperature
T1 and delivers the heat�Q2 D �Q2 ��W to the cold reservoir
at T2 < T1. The output energy �W is transferred to the magic
heat pump, which takes the heat �Q4 from the cold reservoir

| |

|Q3|

|Q2| |Q4|

Carnot

engine

Magic

heat pump

Figure 10.54 Proof, that the energy efficiency ratio of a heat pump is always
smaller than that of a Carnot-engine that operates as a heat pump
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and transports the heat �Q3 D �Q C�W to the hot reservoir.
Assume that the coefficient of performance "x D �Q3=�W of
the magic heat pump is larger than "C D 1=�C D �Q1=�W of
the Carnot engine. Then j�Q3j > j�Q1j and j�Q4j D j�Q3j �
W > j�Q2j D j�Q1j This implies that the combined system
Carnot engine plus magic heat pump can pump heat from the
cold to the hot reservoir without mechanical energy input. This
again contradicts the second law of thermodynamics.

The coefficient of performance "x of an arbitrary heat
pump cannot be larger than "C D 1=�C where �C is the
efficiency of the Carnot engine.

With other words: The coefficient of performance "x of any heat
pump cannot be larger than that of a Carnot heat pump "C D
T1=.T1 � T2/.

From the considerations above it follows: All reversible cycles
have the same efficiency

� D �W=�Q1 D .T1 � T2/=T1 ;

independent of the working material, which can be different
from an ideal gas.

10.3.6 Equivalent Formulations of the Second
Law

The considerations above allow the following statements:

The efficiency � D �W=�Q1 < 1 of any heat engine is
always smaller than 100%. This means that heat cannot com-
pletely converted into mechanical work.
The Carnot engine has the maximum possible efficiency:
� D .T1 � T2/=T1.

The value � D 1 would be only possible for T2 D 0. However,
we will see that this is excluded by the third law of thermody-
namics (see Sect. 10.3.13)

The first and second laws of thermodynamics are purely rules of
thumb, based on numerous experimental facts. They cannot be
proved mathematically without additional assumptions.

The second law can be formulated in different ways:

Heat flows by its own only from the hot to the cold region,
never into the opposite direction.
There is no periodically acting machine that can convert heat
completely into mechanical work without additional energy
supply.

Such a machine is called a perpetuum mobile of the second kind.
The second law can then be formulated similar to the first law:

The realization of a perpetuum mobile of the second kind is im-
possible.

Example

A perpetuum mobile of the second kind could be a ship
with engines that receive their energy solely from the heat
of the sea. Such a ship could move without additional
energy and would not need oil or coal. J

A perpetuum mobile of the second kind does not contradict the
first law of thermodynamics, because it does not violate the en-
ergy conservation. Therefore numerous inventors have tried to
construct such machines, however unsuccessful!

The Carnot cycle allows a method to measure the Kelvin temper-
ature, which is independent of the thermometer substance and
works down to very low temperatures where gas thermometers
are no longer useful, because all gases condense at such low
temperatures. From (10.84) we can deduce the ratio of the heat
energies �Q1 and �Q2 supplied from and released to the heat
reservoirs

�Q1

�Q2
D T1

T2
:

The temperatures of the two heat reservoirs can be compared,
when the heat energies, exchanged between the system and the
reservoirs, are measured. For instance, if one of the reservoirs
is kept at the temperature T1 D 273:16 K of the triple point of
water the temperature T2 is obtained from

T2 D 273:16 � j�Q2j
j�Q1j

D 273:16 � .1 � �/ :

The heat reservoir, kept at the temperature T1, can be electrically
heated, which allows the determination of �Q1. The efficiency
� can then be measured as the ratio of mechanical work �W D
p ��A ��x when a piston with area A moves by the distance�x

against the external pressure p and the supplied heat �Q1.

The temperature scale obtained by this way is called the ther-

modynamic temperature scale.

One Kelvin (1 K) is 1/273.16 times the temperature of the
triple point of water.

10.3.7 Entropy

By introducing the entropy as new thermodynamic variable, the
second law of thermodynamics can be mathematically formu-
lated in an elegant way. When the heat dQ is supplied to a
system at the temperature T we define as reduced heat the ra-
tio dQ=T .

For the Carnot cycle in Fig. 10.51 we can bring the system from
the point 1 to the point 3 on two different ways: 1 ! 2 ! 3
or 1 ! 4 ! 3. Only during the isothermal processes, heat is
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exchanged with the surroundings. The absolute values of the
reduced heat energies j�Q1j=T1 and j�Q2j=T2 on the two ways
are equal, as can be seen from (10.84a–c). This means: The
reduced energies do not depend on the way but only on starting
and final state of the system. This is not only valid for the Carnot
cycle but for all reversible processes.

We introduce the thermodynamic variable S called the entropy

with the dimension ŒS� D ŒJ=K�, in the following way. We define
the change dS of the entropy as the reduced heat exchanged on
an infinitesimal part of a reversible process

dS D dQ=T :

Since the change�S for a system that is brought from a defined
initial state into a defined final state is independent of the way
between these two states, and depends solely on initial and final
states of the system, the quantity S is a thermodynamic vari-
able which describes together with pressure p, temperature T

and volume V the state of a thermodynamic system.

In the Carnot Cycle the reduced heat energies change only dur-
ing the isothermal processes. According to (10.84) the entropy
then changes by

�S D �Q

T
D ˙R � ln

V2

V1
: (10.87)

For the complete reversible cycle we have

�Q1

T1
D ��Q2

T2
;

and therefore

�S D 0 :

For a reversible cycle the entropy S is constant.

Processes where S D const are called isentropic processes. For
these processes is �S D 0 and therefore �Q D 0 and T D
const. During isentropic processes the system must be kept at
a constant temperature. This distinguishes isentropic processes
from adiabatic processes where also �Q D 0 but where the
temperature changes.

With the first law of thermodynamics (10.71) the entropy change
dS during reversible processes of an ideal gas can be calculated
as

dS D dQrev

T
D dU C p dV

T
: (10.88)

For 1 mol of the gas is dU D CV � dT and p � VM D R � T . This
converts (10.88) to

dS D CV

dT

T
C R � dV

V
: (10.89)

Integration over the temperature range from T1 to T2 where the
molar heat capacity can be assumed as constant, yields for iso-
baric processes where V and T can change but p D const.

�Sisobar D CV ln
T2

T1
C R � ln

V2

V1
: (10.90)

In a similar way one obtains for isochoric processes (V D const)
with CV D Cp � R and p1=T1 D p2=T2

�Sisochor D CV ln
T2

T1
D .Cp � R/ ln

T2

T1

D Cp ln
T2

T1
� R ln

T2

T1

�Sisochor D Cp ln
T2

T1
� R � ln

p2

p1
: (10.91)

Since the entropy S is a thermodynamic variable, its change �S

does not depend on the kind of process but only on initial and
final state of the process. We can therefore determine �S also
for irreversible processes. This can be seen as follows:

We consider a substance at the temperature T1 (e. g. a solid
body) in a gas volume V. The body should be in thermal contact
with the gas. Now the gas is slowly expanded in an adiabatic
process, which results in a slow decrease of the temperature. If
this proceeds sufficiently slowly, the temperature of the body
is always equal to that of the gas, because sufficient time is
available for reaching temperature equilibrium. Finally the tem-
perature has decreased to T2. This process is reversible because
the initial state can be retrieved by slow adiabatic compression.

When the solid body is regarded as isolated body without the
gas, the cooling process is irreversible, because heat is trans-
ferred to the surrounding. The entropy change of the body is

�S D �Qirr

T

D CV

T2Z

T1

dT

T

D CV � ln
T2

T1
< 0 for T2 < T1 ;

(10.92)

as in the reversible process. However, since heat has been
transferred to the surroundings the entropy of the surroundings
increases. For the total change of the system body + surround-
ings �Sirrev > 0, i. e. the entropy increases!

Example

1. We regard in Fig. 10.55 two equal bodies with mass
m and specific heat c which have been brought by dif-
ferent energy supply to different temperatures T1 and
T2 < T1. Their heat energies are then Q1 D m � c � T1

and Q2 D m � c � T2. When they are brought into
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thermal contact heat flows from the hot body 1 to
the colder body 2 until the temperatures are equal to
the average temperature Tm. If no heat is transferred
to the surroundings the body 1 has lost the energy
�Q1 D m � c.Tm � T1/ and the body 2 has received
the energy �Q2 D �m � c � .T2 � Tm/. Because
�Q1 D �Q2 we obtain the average temperature

Tm D T1 C T2

2
: (10.93)

The entropy change�S of body 1 is

�S1 D
TmZ

T1

dQ

T
D mc

TmZ

T1

dT

T

D mc ln.Tm=T1/ :

Since Tm < T1 ! �S1 < 0.
The change of S2 is accordingly

�S2 D mc ln.Tm=T2/ ;

where�S2 > 0. The total change of the entropy of the
system of bodies is therefore

�S D �S1 C�S2

D mc ln
T2

m

T1 � T2
:

(10.94)

Since Tm D 1
2 .T1 C T2/ we get T2

m=.T1 � T2/ > 1
because the arithmetic mean is always � geometric
mean. This gives �S > 0. The entropy increases
during the irreversible process. The combination of
the two bodies at different temperatures to a com-
bined system is an irreversible process, because the
cooled body cannot heat up again by cooling the other
body without the supply of energy from outside (sec-
ond law).

Figure 10.55 Increase of entropy during the equalization of tempera-
tures at the contact of two bodies with different temperatures

2. The second example, which will give us a deeper in-
sight into the meaning of entropy, is related to the
diffusion of an ideal gas from a small volume V1

through a hole into a larger volume V2. Initially (for
times t � 0) the gas is confined to the small vol-
ume V1. At t D 0 the hole in the barrier separating
V1 from V2 is opened and the gas molecules diffuse
into the evacuated volume V2 (Fig. 10.56). After a

sufficiently long time t > 0 they are uniformly dis-
tributed over the whole volume V D V1 C V2. The
gas temperature remains constant during this isother-
mal expansion (experiment of Gay-Lussac) because
no work is needed for the expansion into the vacuum
(p � dV D 0).

Figure 10.56 Diffusion of molecules from a small volume V1 through
a hole into the large volume V2. After a sufficiently long time the
molecules are uniformly distributed over the total volume V1 C V2

The diffusion is irreversible, because it is highly im-
probable that all gas molecules diffuse back through
the hole into the small volume V1 (see below). It is,
however, nevertheless possible to calculate the entropy
change by using as reversible substitute process the
isothermal expansion (against an external pressure)
with the same initial and final states as the diffusion.
For this process, the supply of heat�Q is necessary in
order to keep the temperature constant (Sect. 10.3.5).
Since the reduced heat does not depend on the way
during the expansion but solely on initial and final
states the entropy change �S

�S D R � ln
V

V1
(10.95)

for the adiabatic expansions must be the same as for
the diffusion.
This can be also understood, when we substitute the
diffusion by a Gedanken-experiment, where the dif-
fusion is separated into two steps (Fig. 10.57). The
gas drives during the isothermal expansion a piston
and extracts from a heat reservoir the heat �Q1 as in
the Carnot cycle. The work �W D �Q1 performed
during the expansion drives a stirrer that releases the
heat �Q1 again to the heat reservoir due to frictional
losses. For this Gedankenexperiment initial and final
states are identical to those of the diffusion. Therefore,
the entropy change must be the same. Since in (10.95)
V � V1 ! �S > 0.
Based on this diffusion process a statistical expla-
nation of the entropy can be derived. We regard a
molecule in volume V1. Before the hole in the bar-
rier is opened, the probability of finding the molecule
in V1 is P1 D 1, because it must be for sure in V1. Af-
ter opening the hole the probability has decreased to
P1 D V1=.V1 C V2/ D V1=V.
For two molecules the probability of finding both
molecules in V1 is equal to the product P2 D P1 �P1 D



10.3 The Three Laws of Thermodynamics 289

C
h

a
p

te
r

1
0

P2
1 of the probabilities for each molecule. For N

molecules we therefore obtain

PN D
�

V1

V

�N

: (10.96)

For 1 mol is N D NA D R=k, where k is the Boltzmann
constant and NA the Avogadro number. We then get

PNA D
�

V1

V

�R=k

: (10.97)

Piston

Heat bath

Stirer

Figure 10.57 Separation of the diffusion process in Fig. 10.56 into two
steps: Isothermal expansion and conversion of the mechanical work into
heat at the heat reservoir J

Example

For V1 D .1=2/V, NA D 6 � 1023 =mol the probability that
all molecules are found in V1 is

PN D 2�6�1023

D 10�1:8�1023

� 0 (Fig. 10.58) :

Figure 10.58 The probability P that all N molecules are simultane-
ously in the volume V1 D .1=2/V is P D .1=2/N J

Because of the large numbers in the exponent it is more conve-
nient to use the logarithm of the probability P. From (10.97) we
obtain

k � ln P D R � ln
V1

V
D �R ln

V

V1
: (10.98)

According to (10.95) the right side of (10.98) is equal to the
change �S of the entropy. We therefore obtain for the change

�S during the transition from state 1 (all molecules are in vol-
ume V1) to state 2 (all molecules are distributes over the volume
V D V1 C V2 the result

�S D S.V/� S.V1/ D k � .ln P.V/ � ln P.V1//

D k � ln
Pfinal

Pinitial
:

(10.99a)

This illustrates that the entropy change �S during the diffusion
from state 1 with the probability Pinitial to the state 2 with the
probability Pfinal

�S D k �
�

ln
Pfinal

Pinitial

�
(10.99b)

is a measure for the probability that a system undergoes a tran-
sition from the initial to the final state. This can be formulated
in a more general way:

The probability that a system occupies a state i is propor-
tional to the number Z of possible ways that lead to this
state.

Example

When N particles, each with the energy niE0 that are in-
teger multiples of a minimum energy E0 occupy a state
with the total energy E D P

niE0, the number Z of possi-
ble realizations of this state equals the number of possible
combinations of the integers ni that fulfil the conditionP

ni D E=E0. J

The entropy S of a thermodynamic system state that can be re-
alized by Z D P possible ways is

S D k � ln P : (10.99c)

The entropy S of a thermodynamic state is proportional to
the number of possible realizations for this state.

As a third example, we will discuss the increase of entropy
for the mixing of two different kinds of molecules X and Y.
Initially all NX molecules X should be in volume V1 and all
NY molecules Y in volume V2. We assume that pressure p

and temperature T are equal in both volumes, which demands
NX=V1 D NY=V2. When we open a hole in the barrier between
the two volumes the molecules will diffuse through the hole un-
til a uniform distribution of both kinds of molecules is reached.
This process is irreversible and the entropy increases because
the molecules NX as well as the molecules NY fill now a larger
volume V D V1 CV2, and the number of possible realizations of
this situation is larger than that of the initial state. The increase
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of entropy for the NX molecules is

�SX D k � ln
�

V

V1

�NX

D k � NX ln
V

V1

D k � NX ln
NX C NY

NX
;

and for the NY molecules

�SY D k � NY ln
NX C NY

NY
:

The total change of entropy (called mixing entropy) is then

�Sm D �SX C�SY

D k

�
NX ln

NX C NY

NX
C NY ln

NX C NY

NY

�
:

(10.100)

These examples illustrate that only changes of entropy can be
measured. The absolute value of the entropy S.V;p;T/ of a ther-
modynamic state

S D S0 C�S (10.101)

is only defined, if the constant term S0 is known. We will show
in Sect. 10.3.10, how S0 can be determined.

10.3.8 Reversible and Irreversible Processes

For a completely elastic collision between two particles, en-
ergy and momentum of the two-body system are conserved
(Sect. 4.2). A movie of such a collision process could run
backwards and the observer would not notice this, because the
reverse process is equally probable (Fig. 10.59). The collision
process is reversible. One can also say that the process is time-
invariant, i. e. one con exchange t with �t without violating any
physical law.

Contrary to this situation, the collision process in Fig. 10.60,
where a bullet hits a glass ball that shatters in numerous pieces,
is irreversible. The inverse process, where the pieces come again
together to form a glass ball, which then emits the bullet, is
highly improbable. The following question now arises: Since
the glass ball consists of atoms and for each atom a reversible
collision process should occur, why is the macroscopic process
irreversible?

The answer to this question leads us again to the number of pos-
sible realizations of a macroscopic state that depends on a huge
number of atoms or molecules. While before the collision the
glass ball was at rest and the bullet had a well-defined energy
and momentum the final state could have a very large number of
possible realizations, because energy and momentum conserva-
tion still allows many different flight paths of the fragments as
long as the sum of all individual pieces fulfils the conservation
laws. The distribution of the fragments, observed for one exper-
iment, represents only one of many possible distributions. At

Figure 10.59 Reversible collision process. Reversing the time course of the
process inverts the direction of all momentum vectors

Figure 10.60 Collision of a steel ball with a glas hollow sphere, which bursts
into many fragments, as example of an irreversible process

a second experiment under identical conditions, another distri-
bution will be observed although both distributions obey energy
and momentum conservation. The entropy increases during this
collision process because the process starts from a state with a
well-defined realization and ends at a large number of possible
realizations. This is the signature of an irreversible process.

We can define an irreversible process as follows:

The change of a thermodynamic state of a closed system is ir-
reversible, if the reverse process that leads to the initial state,
does not proceed by its own but only with additional energy
supply from outside.
The change of a thermodynamic state is irreversible, if the
entropy increases during this process.
The transition from an ordered state to a non-ordered state
(for instance the melting of a crystal) always increases the
entropy.

Note, that these statements are only valid for closed systems,
which do not interact with their surroundings. For a macro-
scopic subsystem the entropy can indeed decrease if that of the
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other subsystems which, interact with the selected one, does in-
crease.

Examples

1. When single crystals are formed out of the molten
bath, a non-ordered state (the liquid) is transferred into
an ordered state (the single crystal). The entropy S of
the crystal is lower than that of the liquid, however, the
decrease of S for a subsystem is over-compensated by
the increase of S for the surroundings of the crystal.

2. All living beings (plants, animals, humans) decrease
their entropy S by building up ordered structures, but
at the expense of an increase of S of their surroundings
(for example the digestion of food increases S). J

In all of these cases the entropy of the total system increases!

Ordered structures therefore cannot be formed in closed sys-
tems. Their formation needs open systems far away from
thermal equilibrium. This nonequilibrium allows the exchange
of energy between the open system and its surroundings, which
can induce the decrease of the entropy of the open system.

For all macroscopic closed systems strictly speaking reversible
processes cannot occur, because always part of the kinetic en-
ergy (even if it is very small) is converted into heat by the
unavoidable friction. One of many examples is a swinging
pendulum, where the amplitude continuously decreases due to
friction by the air. The oscillation to the right will not be exactly
reproduced by the following oscillation to the left, because of
this amplitude decrease.

The interesting question, why the time has only one direction,
can be related to the increase of entropy. The time-derivative
dS=dt can define a time arrow that allows us to distinguish
between past and future [10.12]. For completely reversible pro-
cesses time reversal would not change the validity of physical
phenomena.

10.3.9 Free Energy and Enthalpy

The first and second law of thermodynamics contain the es-
sential statements of thermodynamics. For their application to
special problems it is useful to introduce as a new parameter the
free energy

F D U � T � S : (10.102)

With the entropy S we can formulate the first law in a more
specific form:

dU D dQrev C dQirr C dW : (10.103a)

With dQrev D T �dS and inserting the free energy F D U�T �S )
dF D dU � T � dS � S � dT , this becomes

dF D dQirr C dW � S dT � dW � SdT ; (10.103b)

where the equal sign holds for reversible and the <-sign for ir-
reversible processes.

For isothermal processes is dT D 0. This reduces (10.103) to

dF � dW ) �dW � �dF : (10.104a)

This means:

For isothermal processes, the maximum increase of the
free energy is equal to the mechanical work supplied to
the system.
The maximum work that a system can deliver during an
isothermal process, is equal to the decrease of its free
energy.

The difference

U � F D T � S

is called bound energy. From the relations

dU D dQ C dW and dF � dW

follows by subtraction

d.U � F/ � dQ :

For isothermal processes the bound energy U � F is completely
converted into heat and is therefore not available for mechanical
work. This explains the label “bound energy”.

The second law of thermodynamics makes the following state-
ment:

For isothermal processes, the change of the bound energy
is at least equal to the supplied heat. The increase of the
free energy is at most equal to the supplied mechanical
energy.

If the isothermal process occurs at a constant volume (dV D 0)
no mechanical energy is exchanged, i. e. dW D 0. Then

dF � dW D 0 ; (10.104b)

which means that the free energy decreases.

A spontaneous isothermal process without exchange of work al-
ways proceeds in the direction where the free energy decreases.
The entropy S then increases because of

T � S D U � F and U D const :
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Since most of the processes occurring in nature are irreversible,
the free energy of the universe decreases and therefore also the
capability to perform mechanical work. All irreversible pro-
cesses always tend to decrease existing temperature differences,
because then the entropy increases (see the examples in the pre-
vious section).

Pessimists say: “The universe strives towards its heat death.
This means, that all temperature differences approach zero,
where no longer any chemical and biological processes are
possible. However, it will take quite a while until this might
happen and furthermore it is not clear, which fate the universe
after many billion years will suffer, because it is still an open
question, whether the universe represents a closed or an open
system.”

As the last thermodynamic parameter we will introduce besides
the ethalpiy H D U C p � V the free enthalpy G (also called
Gibb’s chemical potential) defined by the relation

G D U C pV � TS D H � TS : (10.105)

The total differential of G is

dG D dU C p � dV C V � dp � T � dS � S � dT : (10.106a)

With the first law of thermodynamics

dU C p � dV D T � dS ; (10.106b)

this converts to

dG D V � dp � S � dT : (10.106c)

10.3.10 Chemical Reactions

Chemical reactions represent the basis of all living processes.
The utilization of food or the decomposition of waste products
proceed by chemical reactions. It is therefore of essential in-
terest, under which conditions chemical reactions proceed by
themselves and when they need external energy supply for their
start. For all reactions that proceed at constant pressure and con-
stant temperature the Gibbs’ potential is constant. That is the
reason why G is called chemical potential. Often several com-
ponents react with each other. If �i moles of the i-th component
exist before the reaction, the total free enthalpy is G D P

�i�i

(�i D Gibbs potential for one mole of the i-th component).

The mixing of the different components increases the entropy
(see (10.100)) by the amount

�Sm D �R �
X

i

�i ln xi ; (10.107)

where xi D �i=
P
�i is the mole fraction of the i-th component.

A chemical reaction between the molecules A which results in
the formation of molecules B is then described by

kX

iD1

�iAi !
pX

jDkC1

�jBj : (10.108)

The number of moles can change by the reaction. For instance
for the reaction

2H2 C O2 ! 2H2O

is �1 D 2; �2 D 1 and �3 D 2 ! P
�i ¤ P

�j.

If the number �i of moles for the i-th component changes by��i,
the free enthalpy G changes for processes with �p D �T D 0
according to (10.106a) by

�G D
X

��i�i � T ��Sm

D
X

��i�i � RT �
X

.�i C��i/ ln x0
i ;

(10.109a)

where x0
i D .�i C��i/=

P
.�i C��i/.

When a reaction proceeds by its own (without external energy
supply), its free enthalpy must decrease; i. e. �G < 0. Equilib-
rium is reached if G becomes minimal.

If the number of moles does not change during the reaction, one
can define a chemical equilibrium constant K by

K D exp
hX

�iGi=RT
i
:

The change of the free enthalpy can then be written as

�G D RT
h
ln K C

X
�i ln �i

i
; (10.109b)

where �i is the fraction of the component i that reacts.

When the quantity of all components is one mole (�i D 1)
Eq. 10.109b can be reduced to

�G.1 mol/ D RT ln K : (10.109c)

The equilibrium constant K is therefore directly related to the
change�G of the chemical potential G.

10.3.11 Thermodynamic Potentials; Relations
Between Thermodynamic Variables

The thermodynamic variables: internal energy U, free energy
F, Gibbs’ potential G and enthalpy H are also called thermody-

namic potentials. The advantage of their introduction is based
on the fact that all thermodynamic variables can be written as
partial derivatives of these potentials. The total differentials of
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the potentials are

dF D
�
@F

@V

�

T

dV C
�
@F

@T

�

V

dT

dU D
�
@U

@V

�

S

dV C
�
@U

@S

�

V

dS

dG D
�
@G

@p

�

T

dp C
�
@G

@T

�

p

dT

dH D
�
@H

@S

�

p

dS C
�
@H

@p

�

S

dp ;

where the lower index at the brackets denotes the quantity that
is kept constant. The comparison with the equations derived in
the previous sections

dF D �pdV � SdT ; (10.103)

dU D �pdV C TdS ; (10.88)

dG D Vdp � SdT ; (10.106c)

dH D dU C pdV C Vdp (10.76)

D dQ C Vdp

gives the following relations between the thermodynamic vari-
ables and the potentials.

For the entropy we obtain

S D �
�
@G

@T

�

p

D �
�
@F

@T

�

V

; (10.110a)

and for the pressure

p D �
�
@F

@V

�

T

D �
�
@U

@V

�

S

; (10.110b)

while the relation for the volume V is

V D
�
@G

@p

�

T

D
�
@H

@p

�

S

: (10.110c)

In the “Guggenheim Square”, each thermodynamic potential
can be placed in such a way, that the results of their deriva-
tives can be immediately seen by the following procedure: One
goes in the scheme from the potential symbol to the derivative
variable and from there to the opposite corner on the diagonal.
If this way on the diagonal is in the direction of the arrow, the
result is positive, if it is opposite to the arrow, it is negative.

Examples

@U

@S

ˇ̌
ˇ̌
V

D T I @G

@T

ˇ̌
ˇ̌
p

D �S I

@F

@V

ˇ̌
ˇ̌
T

D �p I @H

@p

ˇ̌
ˇ̌
V

D V : J

An example for the application of thermodynamic potentials is
given in Sect. 10.4.2.

10.3.12 Equilibrium States

The thermodynamic potentials play a comparable role in ther-
modynamics as the mechanical potential Ep that determines the
forces F D �grad Ep which governs the motion of particles.
In a similar way the gradient of the thermodynamic potentials
keeps the chemical processes running until the minimum of the
potentials is reached.

A system is at equilibrium, if without the action of external in-
fluences the state of the system does not change. If the state of a
system changes due to external action, but returns to its original
conditions after the external action ends, the equilibrium is sta-
ble. If, however, the system further removes from equilibrium,
even after the termination of the external influence, the equilib-
rium is unstable. A mechanical example is a mass m which is
fixed to a rigid rod that can rotate around a horizontal axis. At
the minimum of the potential energy, where the mass is just be-
low the horizontal axis the mass is in a stable equilibrium. When
the mass is at its maximum height vertically above the horizon-
tal axis, the equilibrium is unstable. Every slight perturbation
brings m downwards. In a thermodynamic system, the thermo-
dynamic potentials take the role of the potential energy in our
example. We will illustrate this for several specific processes.

We assume a thermodynamic system with the internal energy U

and the volume V at the temperature T and the pressure p. An
arbitrary change of the conditions of the system is described by
the differentials dU, dV, dT and dp. If the change is reversible,
the work dW D �p � dV performed by the system during an
adiabatic expansion, causes a decrease dU D dW of the internal
energy.

For irreversible processes, the system loses heat which causes a
decrease of the total energy. Equilibrium is reached, if no fur-
ther irreversible process is possible. Since for all irreversible
processes with constant volume the entropy increases, the equi-
librium condition can be formulated as

dS � 0 : (10.111)

For all possible processes, which bring a thermodynamic
system away from equilibrium the entropy must decrease.
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With other words:

A closed system with constant volume is in an equilibrium
state if its entropy is maximal.

The thermodynamic potentials of an equilibrium state have their
minimum value. This can be seen as follows:

With the change of entropy dS D dQ=T we obtain from the first
law of thermodynamics (10.71)

dU C p � dV � T � dS D 0 : (10.112)

For isothermal-isochoric processes is dV D 0 and T D const.
From (10.111) it follows: dS � 0. Inserting this into (10.112)
gives

d.U � TdS/ � 0 ! dF � 0 : (10.113)

Under isothermal and isochoric conditions a system has
reached its equilibrium state, if the free energy F has its
minimum value.

Under isothermal-isobaric conditions ( dT D 0 and dp D 0)
equilibrium is reached if

dU C pdV � TdS D d.U C p � V � T � S/ D dG D 0 ;

because for all processes that drive the system away from equi-
librium dG > 0, as can be seen in an analogous way as the
arguments above for dF > 0.

Under isothermal-isobaric conditions a system is in an
equilibrium state, if the Gibbs’ potential is minimal.

In a similar way it can be proved, that for adiabatic-isobaric pro-
cesses (dQ D 0 and dp D 0) the system is in an equilibrium state
if the enthalpy H D U C p � V is minimal.

For adiabatic-isochoric processes (dQ D 0 and dV D 0) the
internal energy < U must be minimal at equilibrium.

All reactions that are possible without external interaction
must start from states far away from equilibrium.

Therefore the thermodynamic treatment of chemical reactions
and biological processes is based on the description of systems
that are not at thermodynamic equilibrium.

10.3.13 The Third Law of Thermodynamics

We have seen in Sect. 10.3.7 that the entropy S is only deter-
mined apart from an additive constant S0. We will now show,
that for T ! 0

lim S.T/ D 0 :

This fixes the constant S0 D S.T D 0/ D 0.

For the proof we start with the free energy F D U � T � S.
Because of (10.110a) this can be also written as

F D U C T

�
@F

@T

�

V

: (10.114a)

We regard an isothermal chemical reaction where the system
starts with the free energy F1 and ends at F2. The change�F D
F1 � F2 is

�F D �U C T

�
@

@T
�F

�

V

: (10.114b)

For T > 0 the changes �F and �U differ, but for T ! 0 the
difference approaches zero

lim.�F ��U/ D 0 : (10.114c)

Nernst observed that with decreasing temperature the deriva-
tives d.�F/=dT and d.�U=dT/ decreased and that they ap-
proached zero for T ! 0. This means that the curves �F.T/
and �U.T/ come towards each other with horizontal slopes
(Fig. 10.61).

Nernst therefore postulated that also for the general case

lim
T!0

�
@�F

@T

�

V

D 0 and (10.115a)

lim
T!0

�
@�U

@T

�

V

D 0 : (10.115b)

because of (10.114a) it follows then

lim
T!0

�
@U

@T
� @F

@T

�
D 0 : (10.115c)

Figure 10.61 Nernst’s theorem: Temperature course of �U .T /; �F .T / near
the absolute zero temperature
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With �
@

@T
�F

�

V

D ��S

) lim
T!0

�S.T/ D 0 :

This means that at sufficiently low temperatures reactions in
pure condensed substances proceed always without changes of
entropy i. e. �S D 0. These reactions therefore proceed re-
versible.

Investigating the dependence S.T/ of condensed substances
(liquified or solid gases) at very low temperatures, one finds
indeed that the entropy does not depend on the crystal modifica-
tion or on the specific substance as long as it is a pure substance,
i. e. not a mixture of different substances. This suggests that the
entropy of all pure substances approaches for T ! 0 the same
value. Quantum theoretical considerations show (see Vol. 3) that
for all pure substances the entropy S approaches zero for T ! 0.

lim S.T/ D 0 : (10.116)

The relations (10.115)–(10.116) are named the 3rd law of ther-

modynamics or Nernst’s Theorem.

Regarding the statistical interpretation of the entropy S D k�ln W

the 3rd law can be also formulated as:

The thermodynamic equilibrium state at T D 0 is a state
with maximum order, which has only one possible realiza-
tion with P D 1. The entropy is then S D 0.

Note: The statement S.T D 0/ D 0 is only valid for pure sub-
stances. Mixed substances (for example mixed crystals) have
even for T D 0 an entropy S > 0, called the mixing entropy (see
Sect. 10.3.7).

The definition S0 D 0 for the zero point of the entropy allows
the determination of the absolute value of S.T > 0/.

For one mole one obtains

S.T/ D
TZ

0

dQrev

T 0 D
TZ

0

C.T 0/

T 0 dT 0 : (10.117)

In order to fulfil the condition lim S.T ! 0/ D 0 the specific
heat C.T/ must converge sufficiently fast towards zero for T !
0 This is indeed observed experimentally (see Sect. 10.1.10).
More detailed measurements show that for solids at very low
temperatures C.T/ / T3 (see Vol. 3). This is indeed observed
experimentally. The entropy S.T/ is then, according to (10.117),
also proportional to T3.

Remark. The first and second law of thermodynamics could
be formulated as the impossibility to realize a perpetuum mobile
of the first resp. the second kind. Also the third law can be
formulated as an impossibility statement:

It is impossible to reach the absolute zero T D 0 of the
thermodynamic D absolute temperature scale.

This can be seen as follows by an experimental argument.

If one tries to reach experimentally the absolute zero T D 0 this
could be only realized by an adiabatic process, because every
cooling process where heat is exchanged, requires a system that
is colder than the system to be cooled.

During an adiabatic process no entropy change occurs because
dQ D S � dT D 0. For an adiabatic isobaric process is

dS D @S

@V
dV C @S

@T
dT D 0 :

This gives

dT D � .@S=@V /T

.@S=@T/p
dV : (10.118a)

For the partial derivative applies

@S

@T
D lim

�T!0

�
�S

�T

�

p

D lim
�T!0

�
1

T

�Q

�T

�

p

D Cp

T
;

and with (10.110a) and (10.114a) it follows

�
@S

@V

�

T

D @

@V

�
@F

@T

�
:

For T ! 0 is with (10.115c)

@F

@T
! @U

@T
D CV ;

and we obtain from (10.118a)

dT D �T � CV

Cp

D �T � CV

CV C R
: (10.118b)

This shows that for T ! 0 also dT ! 0. The absolute zero
T D 0 for the temperature can be therefore not reached.

10.3.14 Thermodynamic Engines

When the Carnot cycle in Fig. 10.51 is traversed into the oppo-
site direction, i. e. counterclockwise, the corresponding engine
uses mechanical work to transport heat from the cold to the
warmer part of a system (Fig. 10.62). This has technical ap-
plications in refrigerators and heat pumps.

10.3.14.1 Refrigerators

In refrigerators the heat Q2 is extracted at a temperature T2 from
the volume V2 that should be cooled and a larger heat energy
Q1 D Q2 C W is transported to a warmer environment. This
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Figure 10.62 Principle of a refrigeration machine and heat pump based on the
inverse Carnot’s cycle

demands the supply of mechanical or electrical work W to the
system. We have neglected all energy losses by friction or heat
conduction. The coefficient of performance

Kref D Q2

W
D dQ2=dt

dW=dt
(10.119a)

gives the ratio of cooling rate dQ2=dt and power input dW=dt.

From the efficiency � of the Carnot engine we obtain for the
inverse Carnot cycle the coefficient of performance for the re-
frigerator the relation

Kref D 1=� D T2

T1 � T2
: (10.119b)

This shows that a refrigerator works more efficiently for small
temperature differences (T1 � T2) between the cooled volume
and the warmer environment.

10.3.14.2 Heat Pumps

Heat pumps use the heat reservoir of the environment (air,
ground) for heating water for floor heating of rooms or for
swimming pools. The basic principle is the same as that of re-
frigerators. Heat is transported from a cold to a warmer volume.
This demands the supply of mechanical or electrical energy.
The useful energy is the heat transported to the warmer vol-
ume. Therefore the coefficient of performance is defined as in
(10.119b)

Khp D Q1

W
D dQ1=dt

dW=dt
D T1

T1 � T2
: (10.120)

Contrary to the efficiency � < 1 of the Carnot engine the coef-
ficient Khp D 1=� is larger than 1! It increases with decreasing
temperature difference �T D T1 � T2.

Example

A heat pump used for heating a swimming pool takes the
heat from a river with a water temperature of 10 ıC D

Figure 10.63 Technical realization of a refrigerator

283 K and heats the swimming pool to a temperature of
T D 27 ıC D 300 K. The maximum coefficient of per-
formance is then Khp D 17:6. One therefore saves a
factor of 17:6 of heating costs compared with the direct
heating of the swimming pool. In this idealized example
all other losses of the heat pump system have been ne-
glected. Realistic values, taking into account all losses,
are Khp D 5–10. J

For practical applications heat pumps and refrigerators operate
with special cooling liquids, which are not permanent gases but
evaporate and condense during one cycle. This is illustrated
schematically in Fig. 10.63. The heat Q2 is transported from
the room to be cooled to the liquid cooling agent at the low tem-
perature T2 in the evaporator. The resulting temperature increase
of the cooling liquid results in the evaporation of the liquid . In
the condenser the heat Q1 is extracted by a heat exchanger from
the vapour at high pressure. This causes the condensation of the
vapour. The liquid under high pressure expands through a throt-
tle valve, which decreases its temperature and is again used for
heat extraction from the volume to be cooled.

10.3.14.3 Stirling Engine (Hot Air Engine)

The Stirling engine uses air as working agent, which is periodi-
cally expanded and compressed in a cycle of two isotherms and
two isochors (Fig. 10.64a). The red arrows indicate the heat ex-
change between the environment (white) and the system (red).
During the isothermal expansion 1 ! 2 the heat Q1 is supplied
at the temperature T1 to the system. During the isochoric cool-
ing 2 ! 3 the temperature drops to T2 < T1. Now isothermal
compression 3 ! 4 occurs where the heat Q2 is transported
to the environment. Finally the isochoric compression 4 ! 1
with heat supply Q4 brings the system back to its original state
1. The heat Q4 is necessary to increase the temperature from T2

to T1 > T2. Since no work is performed during the isochoric
processes, the energy balance demands

Q2 D �Q4 D Cv�T :
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Figure 10.64 Cycle of a Stirling engine, b Otto engine (gasoline engine),
c Diesel engine, d steam engine. The red curve gives the vapor pressure p.V / of
water vapor

Figure 10.65 Stirling engine with two pistons and two cylinders

Figure 10.66 Volume-diagram V .t/ of a Stirling engine: Left diagram: used as heat engine, right diagram: used as heat pump

Figure 10.67 Stirling motor with two pistons in one cylinder

When the extracted heat Q2 can be stored and resubmitted to
the system during the process 4 ! 1, the system does not loose
energy during a cycle and the efficiency of the Stirling process
would be comparable to that of the Carnot cycle.

This can be technically realized, at least approximately, by using
two pistons, the working piston and the displacer piston in two
different cylinders: a hot cylinder and a cold one (Fig. 10.65).
The two pistons are driven by the same crankshaft with a 90ı

phase shift against each other. The two cylinders are connected
by a pipe filled with an energy storage material (regenerator).
When the piston compresses the gas in the hot cylinder the hot
gas flows from the hot to the cold cylinder through the connect-
ing pipe and heats up the storage material. In the next step the
cold cylinder is compressed and the cold gas flowing through
the pipe is heated by the storage material. About 80% of the
energy exchanged during one cycle can be stored in the regen-
erator. In the diagrams of Fig. 10.66 the time sequence of the
total volume, the hot and the cold volume are depicted for the
Stirling engine, used as heat engine and as heat-pump.
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Isothermal

compression

Isochoric

cooling

Isothermal

expansion

Isochoric

heating

Heated wall: T1

Cold wall: T2

Slave piston

Heat storage

Working piston

Figure 10.68 Positions of working piston and slave piston during the four sections of a Stirling cycle. The energy necessary for the operation of the engine is
supplied by heating the upper wall

Another version of the Stirling engine uses only one cylinder
but still two pistons. The displacer piston presses the air pe-
riodically into the upper hot volume and in the next step into
the lower cold volume. During these processes the air streams
through a hole in the piston which is filled with metal cuttings.
They are heated during the passage 2 ! 3 of the hot air and
they transfer their heat during the passage 4 ! 1 to the cold
air.

In Fig. 10.67 and 10.68 the different steps durng a working cycle
are illustrated for a Stirling engine with one cylinder and two
pistons.

10.3.14.4 The Otto-Engine

The Otto-engine is used in many cars as effective drive. In the p-
V-diagram it passes a cycle consisting of two isentropic and two
isochoric processes (Fig. 10.64b). In the state 1 the gasoline-air
mixture is sucked in and compressed. At point 2 the ignition
oocurs where the mixture explodes so fast that the volume does
not change essentially. The heat Q1 released at the explosion
is fed into the system and increases the pressure very fast up
to point 3. Now an isentropic expansion (no further heat sup-
ply) follows until point 4 is reached. Here the exhaust valve is
opened and the exhaust gas streams into the exhaust pipe. This
causes a decrease of the pressure, a release of the heat Q2 and
the restitution of state 1.

The efficiency � depends on the compression ratio V1=V2. One
obtains (see Probl. 10.12)

� D 1 � 1

.V1=V2/��1
; (10.121)

where � D Cp=Cv is the specific heat ratio.

Example

V1=V2 D 9 and � D 9=7 ! � D 0:44. Note, that the real
efficiency is only about 0:3–0:35 due to energy losses by
friction and heat conduction. J

10.3.14.5 Diesel Engine

For the Diesel engine the cycle in the p-V-diagram (Fig. 10.64c)
consists of two isentropic, one isobaric and one isochoric pro-
cess. In the state 1 air is sucked in and the volume is compressed
until point 2 is reached. The compression ratio is much larger
(up to 1:20) as in the Otto-engine. During this compression the
temperature rises to 700–900 ıC, which is above the ignition
termperature of Diesel-fuel. Now Diesel fuel is injected, which
does not explode as in the Otto-engine but burns more slowly
(there is no electrical ignition). This causes the air-fuel-mixture
to expand isobaric until point 3 is reached, where the combus-
tion stops. The volume now further expands isentropically to
the point 4, where the exhaust valve opens and the pressure sud-
denly drops to the atmospheric pressure outside. Here the intial
point 1 is reached again.

The efficiency of the Diesel engine is higher thatn that of the
Otto-engine because of the higher compression ratio. Its theo-
retical value is about 0:55 but due to unavoidable losses the real
enegines only reach about 0:45. The disadvantage of the Diesel
engine is the higher output of NOx gases and soot particles.

10.3.14.6 Steam Engine

In a Steam Engine the cyclic process (Clausius–Rankine
Process) consists of two isentropic and two isobaric parts
(Fig. 10.64d). In the initial state 1 the system contains water.
A pump increases the pressure at a constant volume isentropic
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from p1 to p2. From point 2 to 3 heat is supplied at constant
pressure, which causes the volume to expand and increases the
temperature above the boiling point of water. The hot vapour
drives a piston during the isentropic expansion and the sys-
tem reaches point 4 where the temperature is cooled down, the
vapour condenses and the heat Q2 is transferred to the surround-
ing. Now the initial point 1 is reached again. Mechanical work
is performed on the part 3 ! 4.

The red curve in Fig. 10.64d gives part of the Van der Waals
curve p.V/ for water vapour (see Sect. 10.4.1). Inside this curve
water and vapour can exist simultaneously, in the region left of
the curve only the liquid phase exists, to the right hand of the
curve only the vapour phase.

10.3.14.7 Thermal Power Plants

In thermal power plants, heat is produced by burning fossil fuels,
such as coal, oil, wood or gas, or by fission of atomic nuclei.
For fossil fuels the heat comes from the reaction heat that is
released during the oxidation of atoms or molecules and is due
to the different chemical binding energies of reaction partners
and reaction products. The essential part of this energy stems
from the oxidation of carbon atoms C to CO2. The produced
heat is 8 kcal D 33 kJ for 1 g C. The fission of 1 g Uranium
produces an energy of 2:5 � 107 kJ. This is 7:5 � 105 times more!

The heat produced in thermal power plants is converted into
the generation of hot water vapour under high pressure, driv-
ing turbines that propel electric generators for the production of
electric energy. The maximum efficiency depends, according to
the second law, on the initial temperature T1 and the final tem-
perature T2.

The initial temperature is limited by technical conditions (heat
and pressure resistance of the hot vapour tank. Typical values
are between 600 and 700 ıC. Only for the high temperature re-
actors, temperatures above 800 ıC are realized.

For the choice of the final temperature T2 two options exist:

1. One chooses T2 D 100 ıC (condensation temperature of wa-
ter) and uses the rest energy of the hot water for heating of
houses. The efficiency for the conversion of heat into me-
chanical (or electric) energy is then for an initial temperature
of T1 D 600 ıC D 873 K: � D 500=873 D 0:57. In addi-
tion the heat �Q of the hot water can be delivered to houses
nearby the power station.

2. The final temperature of the water vapour is chosen as
T2 D 30 ıC. In order to avoid condensation one has to
lower the pressure below the atmospheric pressure by pump-
ing the expanding volume. This increases the efficiency to
� D 570=873 D 0:65. The work needed for evacuating the
expanding volume against the external pressure is smaller
than the additional energy gain due to the lower final tem-
perature.

In case 1 one does not win the total energy of the hot water �Q

compared to case 2 because here one could use the extra energy
due to the higher efficiency �2 D .600 � 30/=873 to transport
electric energy for heating. The increase of the efficiency for

case 2 compared to case 1 is

�2 � �1 D .70=873 � "/�Q

D .0:19 � "/�Q ;

where " � �Q is the mechanical work of the pump, necessary
to evacuate the volume down to a pressure that is equal to the
vapour pressure of water at T D 30 ıC.

10.4 Thermodynamics of Real Gases
and Liquids

Up to now, we have discussed the thermodynamics of ideal
gases, where the interaction between the atoms of the gas has
been neglected.

We will now discuss, which rules have to be generalized and
which are still valid without restrictions, when we treat the ther-
modynamics of real atoms and molecules including their size
and their mutual interactions.

While ideal gases remain gaseous at any temperature, real gases
condense below their boiling temperature and they can even be-
come solids below the melting temperature. In this section, we
will investigate what are the conditions for transitions between
the different phases solid, liquid and gaseous and what are the
equilibrium conditions of the different phases.

10.4.1 Van der Waals Equation of State

At very high pressures, the density of atoms or molecules be-
comes so high, that the internal volume of the molecules (also
called covolume) cannot be neglected compared with the free
volume V that is available for the molecules.

When we describe the atoms as rigid balls with radius r, two
atoms cannot come closer to each other than at a minimum dis-
tance d D 2r. If one atom is in the volume V the other atoms
cannot penetrate into the volume Vforbidden D .4=3/�d3 D 8Va,
where Va is the volume of one atom in the model of rigid balls
(Fig. 10.69a). Furthermore the centres of all balls must have the
minimum distance d D r from the walls of the container.

Assume there were only two atoms in the cubic volume V D l3.
The volume available for the second atom is then

V2 D .L � 2r/3 � 8Va (Fig. 10.69b) :

A third atom could only be found in the volume

V3 D .L � 2r/3 � 2 � 8Va ;

and the rest volume available for the n-th atom is then

Vn D .L � 2r/3 � .n � 1/ � 8Va :
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Figure 10.69 Illustration of the co-volume. a The center of B cannot be in the
bright red circle. b Forbidden volume (bright red ) of molecule B in the volume
L 3 with one atom A

An estimation of the real sizes shows, however, that, for ex-
ample, for N D 1020 atoms in a volume with L D 0:1 m the
forbidden volume at the wall is with r � 10�10 m completely
negligible compared to the internal volume N �Va of the N atoms
in the volume V. The average over all N atoms gives then for
the mean volume available to each atom

V D .L � 2r/3 � 1

N

NX

nD1

.n � 1/ � 8Va

D L3 � 6r � L2 � 6r2 � L C 8r3 � 4NVa

� L3 � 4NVa for N � 1 :

(10.122)

because the 2nd, 3rd and 4th term are neglible compared to the
1st and last term.

We therefore have to replace in the general gas-equation (10.21)
the volume V by the reduced volume

V � b D L3 � 4 � N � Va with b D 4 N � Va :

For the situation N � 1 the volume Vavailable available to
the N atoms in a volume V is reduced by 4 times the total
atomic volume N � Va D N � .4=3/� � r3.

The next question concerns possible corrections for the pressure
p due to the attractive or repulsive forces between the atoms. At
low temperatures or for high densities the interaction between
the atoms can be no longer neglected. The total force on a se-
lected atom resulting from the interaction with all other atoms

Figure 10.70 Illustration of the internal pressure. Forces on an atom A a inside
a gas, b at the boundary between wall and gas

cancels for atoms inside a liquid or a gas volume, because the
interaction forces are in the average uniformly distributed over
all directions (Fig. 10.70a) (see the similar discussion about the
surface tension in Sect. 6.4.1). At the boundaries between liquid
and gas or between gas and wall, the interaction forces are no
longer uniformly distributed but are directed only into the half
space of the medium. They do not cancel and the total force Fa

on one atom is not zero but is proportional to the number den-
sity na of atoms in the half-sphere shown in Fig. 10.70b, which
means to the density % D M=V, where M is the total mass of the
gas in the volume V.

The amount of the total force F D jPFij / na � Fa onto all na

atoms is therefore proportional to n2
a / %2. The force is directed

towards the interior of the gas and causes an intrinsic pressure

pb D a � %2 / a=V2 ;

which acts onto the atoms in addition to the external pressure p.

Taking into account this intrinsic pressure and the co-volume
b D 4N � Va the general gas equation for one mole of an ideal
gas

p � VM D R � T

has to be modified to the van der Waals-equation of real gases

�
p C a

V2

�
� .VM � b/ D R � T ; (10.123)

where the constant b D 4 � Na � Va gives 4-times the internal
volume of the NA atoms in the mole volume VM.

The progression of the function p.V/ at constant T for a real
gas, described by (10.123), depends on the constants a and b. In
Fig. 10.71 the isotherms of CO2 are shown for different temper-
atures. They confirm, that for high temperatures (Ekin � jEpotj)
the curves are similar to those of an ideal gas, but for low
temperatures closely above the condensation temperature they
deviate strongly.
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Figure 10.71 Van-der-Waals-isotherms of CO2 for different temperatures

Solving (10.123) for p at constant T gives a polynomial p.V/
of third order, which shows for low temperatures a maximum
and a minimum (Fig. 10.71). How looks the comparison of this
theoretical curve with experimental results? Let’s see this for
the example of CO2.

If one mole of CO2 is compressed at the temperature T D 0 ıC
starting at low pressures one finds in deed that the curve p.V/
follows quite nicely the theoretical curve until the point A in
Fig. 10.71. Further compression does not increase the pressure
p, which stays constant until the point C is reached where the
pressure shows a steep increase and follows again the van der
Waals curve.

The reason for this strange behaviour is the condensation of the
CO2 vapour that starts at the point A. On the way from A to
C the fraction of the liquid phase continuously increases until
in C the vapour is completely liquefied. On the way from C to
smaller volumes, the pressure increases steeply because of the
small compressibility of the liquid. Between A and C gas and
liquid can both exist (co-existence range).

For a quantitative description of the condensation process we
must discuss the different phases (aggregation states) in more
detail.

10.4.2 Matter in Different Aggregation States

The different aggregation states of matter (solid, liquid gas) are
called its phases. In this section we will discuss, under which
conditions a phase transition solid ! liquid, liquid ! gas or
solid ! gas can occur and when two or three phases can exist
side by side.

10.4.2.1 Vapour Pressure and Liquid–Gas Equilibrium

When a liquid is enclosed in a container which it fills only partly,
one finds that part of the liquid is vaporized and in the volume

Figure 10.72 Measurement of vapor pressure curve ps.T /

above the liquid surface a vapour phase has established at a
vapour pressure ps.T/ that acts upon the walls and the liquid
surface. The dependence of the vapour pressure ps.T/ on the
temperature can be measured with the pressure tank shown in
Fig. 10.72 that is equipped with a thermometer and a manome-
ter.

At a constant temperature T a constant saturation vapour pres-
sure ps.T/ is present where the liquid and the gaseous phase can
exist simultaneously under stable conditions.

The explanation given by molecular physics is based on the ki-
netic gas theory (Sect. 7.4). Similar to the situation in a gas also
the molecules in a liquid show a velocity distribution with ki-
netic energies that follow the Maxwell–Boltzmann distribution.
The fastest molecules in the high energy tail of the velocity dis-
tribution can leave the liquid, if their energy is larger than the
surface tension of the liquid (See Sect. 6.4). On the other hand,
when molecules in the gas phase hit the liquid surface, they can
enter into the liquid.

At the saturation vapour pressure ps.T/ the liquid and the gas-
phase are at equilibrium, which means that the rate of molecules
leaving the liquid is equal to the rate of molecules that reenter
the liquid from the gas phase.

The higher the temperature the more molecules have sufficient
energy to leave the liquid, i. e. the vapour pressure rises with in-
creasing temperature (Fig. 10.72). The quantitative form of the
vapour pressure curve ps.T/ can be calculated in the following
way:

In Fig. 10.73 we regard for 1 mol of the evaporating liquid a
cyclic process in the p, V-diagram of Fig. 10.71. In the state
C0.T C dT; ps C dps/ the vapour should be completely con-
densed and the liquid occupies the volume Vl. Now the volume
is isothermally expanded at the temperature T C dT , while the
pressure is kept constant. Here the heat dQ1 D �, which is
equal to the evaporation energy of 1 mol, has to be supplied
in order to keep the temperature constant. At A0 the total liq-
uid is evaporated. During the next step, the adiabatic expansion
A0 ! A, pressure and temperature are lowered by an infinites-
imal small amount. The system remains in the vapour phase
and reaches the point A.ps;T/. Now the vapour is isothermally
compressed while the pressure remains constant, because con-
densation progresses during the path from A to the point C. The
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Figure 10.73 Carnot cycle C0A0ACC0 in a p -V diagram of Fig. 10.71 illustrating
the derivation of the Clausius–Clapeyron-equation

condensation heat dQ2 is released to the surrounding. The step
A ! C corresponds to the curve ABC in Fig. 10.71. The liquid
state in point C is then transferred by an infinitesimal step to the
initial point C0.p C dp;T C dT/.

The temperature of the system changes only on the short paths
A0 ! A and C ! C0. During the isothermal expansion C0 ! A0

the system has delivered the work dW1 D .ps C dps/ � .Vl � Vv/,
while during the compression A ! C the work dW2 D ps �.Vv �
Vl/ has to be supplied to the system. The net work is therefore
dW D dW1 C dW2 D .Vl � Vv/ � dps.

In Sect. 10.3.5 it was shown that the efficiency � of the Carnot
engine for an arbitrary working material is

� D j�Wj
�Q1

D .Vv � Vl/dps

�

D T C dT � T

T C dT
� dT

T
;

because here is dT � T . This gives for the evaporation energy
for 1 mol evaporated liquid the Clausius–Clapeyron equation

� D T
dps

dT
.Vv � Vl/ : (10.124)

The evaporation heat is proportional to the difference of the
mole-volumes of the liquid and gaseous phases and to the slope
dps=dT of the vapour pressure curve.

Note: Often the specific evaporation energy � ŒkJ=kg� is given
instead of the molar evaporation energy ŒkJ=mol�. The conver-
sion factor is

1 kJ=mol D .10�3M/ kJ=kg ;

where M is the molar mass in g=mol.

The evaporation energy pro molecule is w D �=NA with NA D
Avogadro number.

The heat of evaporation has two causes: The first cause is the
energy necessary to enlarge the volume Vl of the liquid to the
larger volume Vv of the vapour against the external pressure p.

The second cause is the energy spend to enlarge the distance be-
tween the molecules against their mutual attraction. The second

contribution is by far the largest one. It is therefore nearly equal
to the heat of evaporation.

Example

The volume of 1 kg water expands during the evaporation
from Vl D 1 dm3 to Vv D 1700 dm3. The work performed
during the expansion against the external pressure of 1 bar
is W D p �dV D 105 Nm �1:7 m3 D 170 kJ. The measured
specific evaporation heat is � D 2080 kJ=kg. Therefore
the first contribution only amounts to 8%. J

As one of many applications of the thermodynamic poten-
tials we will derive the Clausius–Clapeyron equation (10.124)
with the help of the thermodynamic potentials, where here the
Gibbs’-potential G.p;T/ of (10.105) is used.

Differentiation of (10.105) gives

dG D @G

@p

ˇ̌
ˇ̌
T

dp C @G

@T

ˇ̌
ˇ̌
p

dT :

The compilation scheme of the potentials in Sect. 10.3.11 shows

@G

@p

ˇ̌
ˇ̌
T

D V and
@G

@T

ˇ̌
ˇ̌
p

D �S :

At the phase equilibrium is dG1 D dG2

! dG1 D V1dp � S1dT D V2dp � S2dT D dG2

.S2 � S1/dT D .V2 � V1/dp

dp

dT
D S2 � S1

V2 � V1
:

From the definition of the entropy we conclude

S2 � S1 D
2Z

1

dQrev

T
D �

T
;

which finally gives

dp

dT
D �

T.V2 � V1/
:

The heat supply does not increase the kinetic energy of the
molecules, (because the temperature stays constant), but only
the potential energy. Therefore in Fig. 10.18 the long horizontal
line T(t) appears during the evaporation process.

Since in (10.124) Vv � Vl we can neglect Vl in (10.124) and we
can also approximate in the general gas equation p � V D RT the
volume V � Vv ! Vv D R � T=ps. Inserting this into (10.124)
we get

1

ps

dps

dT
D �

RT2
:
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Figure 10.74 Phase diagram with vapor pressure curve ps.T / representing the
separating line between liquid and vapor phase from the triple point up to the
critical point P .pc; Tc/ and melting curve Psl.T / as separation line betweeen solid
and liquid phase

Integration yields

ln ps D � �

RT
C C

with the integration constant C. This gives with the boundary
condition ps.T0/ D p0

ps D p0 � A � e��=.RT/ with A D e�=RT0 : (10.125)

This van’t-Hoff equation shows that the vapour pressure rises
proportional to exp.�1=T/.

Along the vapour pressure curve ps.T/ the vapour phase and the
liquid phase are at equilibrium, i. e. at each temperature there
exists a vapour pressure ps.T/ where the two phases exist si-
multaneously and are both stable.

The vapour pressure curve divides the area in the p-T-diagram
into two sections (Fig. 10.74). For p.T/ < ps.T/ only the vapour
phase exists under equilibrium conditions, for p.T/ > ps.T/
only the liquid phase.

The vapour pressure curve terminates at the critical temperature
T D Tc. The corresponding vapour pressure pc D ps.Tc/ is the
critical pressure. Above the critical temperature Tc no distinc-
tion between liquid and vapour phase is possible. The densities
of both phases become equal. The slope of the vapour pressure
curve is there �

dps

dT

�

Tc

D pc ��
RT2

c
: (10.126)

The evaporation heat decreases with increasing temperature and
becomes zero at the critical temperature Tc. Just below Tc part of
the liquid changes statistically into the vapour phase and back.
This causes striations in the optical density which can be seen
in the transmitted light.

The critical temperature is related to the interaction potential be-
tween the molecules. Above Tc the mean kinetic energy of the
molecules is larger than the amount of the mean potential en-
ergy. In the p-V-diagram of Fig. 10.71 the isotherms have for Tc

three intersection points with the horizontal line p D const < pc.

Figure 10.75 Behaviour of Van-der-Waals isotherms p.V / around the critical
point .pc; Tc/

When the volume V is compressed, the real pressure curve
(Fig. 10.75) shows a kink at V D V2 and follows until V1 not
the van der Waals curve but the horizontal line p D const be-
cause here condensation takes place. The dashed black curve in
Fig. 10.75 gives the volume V2 where condensation starts and
V1 where the whole gas is liquefied. At the critical temperature
Tc the curve p.V/ has no longer minima and maxima but only an
inflection point, which indicates that there are no longer phase
transitions but only a unique phase is present, which is called the
supercritical phase. The tangent to the curve p(V) in the critical
point p.Tc;Vc/ is horizontal. The critical point can be calculated
from the van der Waals equation (10.123) with the conditions

�
@p

@V

�

Tc;Vc

D 0 and
�
@2p

@V2

�

Tc;Vc

D 0 :

This gives for pc and Tc the results

pc D 1

27

a

b2
I Vc D 3b I Tc D 8

27

a

R b
; (10.127a)

and for the van der Waals constants a and b

a D 3pcV
2
c I b D 1

3
Vc : (10.127b)

It is therefore possible to gain information about the attrac-
tive interaction between the molecules and their internal volume
from measurements of the critical parameters pc and Tc.

10.4.2.2 Boiling and Condensation

If the vapour pressure ps becomes larger than the external pres-
sure p acting on the liquid surface, vapour bubbles can form in
the inside of a liquid. They rise, due to buoyancy, to the liquid
surface: The liquid boils. The boiling temperature Tb depends
on the external pressure p. From (10.125) one obtains

Tb.p/ D Tb.p0/ � 1

1 � RTb.p0/

�
ln.p=p0/

: (10.128)
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Example

Water boils under a pressure p D 1 bar at Tb D 373 K D
100 ıC. For p D 400 mbar Tb D 77 ıC. Since the cooking
time of food strongly depends on the temperature, cook-
ing at high altitudes becomes tedious. Therefore one uses
a pressure cooker, which operates at about 1:5–2 bar and
reduces the cooking time considerably. J

If the vapour pressure becomes smaller than the external pres-
sure the vapour starts to condensate.

In our atmosphere the air mixed with water vapour generally
does not reach an equilibrium state (p, T), because the condi-
tions in the atmosphere change faster than the time necessary to
establish an equilibrium. The water vapour pressure is therefore
in general lower than the saturation pressure.

The concentration of water vapour in our atmosphere, measured
in g=m3, is called the absolute humidity 'a. The maximum pos-
sible concentration of water vapour is reached, when the water
vapour pressure pw is equal to the saturation pressure ps. The
humidity ' at this pressure is the saturation humidity 's.

The relative humidity is the quotient

'rel D 'a

's
D pw

ps
: (10.129)

Example

A relative humidity of 40% is reached, when the vapour
pressure of water is pw D 0:4ps (H2O). J

For a given absolute humidity the relative humidity increases
with decreasing temperature because the vapour pressure of wa-
ter decreases with T . (Fig. 10.76). When 'rel D 1 it starts to
rain. The temperature Td where 'rel D 1 is the dew point or
saturation temperature.

For the operation of air conditioning systems, this has to be
taken into account. If the air is cooled below the dew point,
the water vapour will condense and increase the humidity in the
cooled room. The air has therefore to be dried before it is cooled
down.

Figure 10.76 Illustration of relative and absolute humidity of air and of dew
point

10.4.2.3 Liquefaction of Gases;
Joule–Thomson Effect

In order to liquefy gases at the pressure p one has to lower their
temperature below the pressure-dependent boiling temperature
Ts.p/. There are several experimental realizations:

Adiabatic Cooling with Energy Output

Here the internal energy U of the gas at the pressure p1 de-
creases because the expanding gas delivers the work dW D p�dV

against the lower external pressure p, while no heat is exchanged
(dQ D 0). From the first law (10.82) we obtain for 1 mol

dU D Cv � dT D �p � dV :

This yields the temperature decrease

dT D � pp

Cv
dV :

Example

10 mol of a gas at room temperature T D 300� are ex-
panded against an external pressure of 10 bar D 106 Pa
by �V D 10�2 m3 (this corresponds to 5 mol volumes.
With Cv D 20:7 J=.mol � K/ we obtain �T D �4:8 K.

J

This adiabatic cooling can be realizes for ideal and also for real
gases. It comes from the decrease�U of the internal energy due
to the partial transfer into mechanical work.

Joule–Thomson Effect

For real gases cooling can be also achieved without the trans-
fer into mechanical work. The expansion of the volume V

increases the mean distance between the molecules. This re-
quires work against the attractive forces between the molecules,
which means that the potential energy of the system increases at
the expense of the kinetic energy and the temperature decreases.

When a real gas expands adiabatically through a nozzle at a
pressure p1 that is kept constant, from the volume V1 into the
volume V2 (Fig. 10.77) with the pressure p2 < p1 there is no
heat exchange with the surrounding (dQ D 0) and the enthalpy
H D U C p � V, is constant because the cooling is due to the
work against the attractive forces between the molecules during
the expansion.

The internal energy U of a real gas is the sum of the kinetic
energy Ekin D .f =2/ � R � T and a the potential energy

Ep D
V1Z

1

a

V2
dV D � a

V1
;

which is due to the attractive forces between the molecules and
causes the internal pressure (cohesion pressure).
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Figure 10.77 Comparison between adiabatic cooling and Joule–Thomson ef-
fect. a Adiabatic expansion with work delivery �W D pa � �V ; b adiabatic
expansion through a nozzle without work output

Solving the van der Waals equation (10.123) for p, we obtain

p D R � T

V � b
� a

V2
:

The enthalpy then becomes

H D U C p � V D f

2
RT � a

V
C
�

RT

V � b
� a

V2

�
� V

D RT

�
f

2
C V

V � b

�
� 2a

V
:

(10.130)

Since H is constant during the adiabatic expansion through the
nozzle, we get

dH D @H

@V
dV C @H

@T
dT D 0

) dT D �
@H

@V
dV

@H

@T

D

bT

.V � b/2
� 2a

RV2

f

2
C V

V � b

dV

� bRT � 2a

. 1
2 f C 1/RV2

dV :

(10.131)

For temperatures below the inversion temperature

Ti D 2a

bR
; (10.132)

we get dT < 0. The gas cools down although no heat ex-
change with the surrounding takes place. The value of the
inversion temperature depends on the ratio of the amount of
the attractive forces (described by the constant a) and the co-
volume b D 4N � Va of the molecules. For ideal gases is
a D b D 0 ) dT D 0 and no cooling occurs. The cooling of
real gases through adiabatic expansion through a nozzle is the
Joule–Thomson effect. It is only realized for real gases, not for
ideal gases. This can be seen as follows: When the gas flows

Figure 10.78 Schematic illustration of the Linde-process for liquefaction of air

through the nozzle, driven by the pressure p1, the energy p1 � V1

is released. The gas, streaming into V2, builds up the pressure p

which requires the energy p2 � V2. Energy conservation demands
U1 Cp1 �V1 D U2 Cp2 �V2 ) H1 D H2 (10.76). The expansion
therefore proceeds at constant enthalpy.

For temperatures above the inversion temperature is dT > 0, i. e.
the gas heats up. In order to use the Joule–Thomson effect for
cooling, the gas has at first to be precooled below the inversion
temperature. For higher pressures the density of molecules in-
creases and with it the relative share of the covolume b D 4N �Va

and the inversion temperature Ti becomes pressure dependent.
More detailed information on the curves Ti.p/ can be found
in [10.14].

In Tab. 10.7 the maximum values of Ti are compiled for some
gases. The numbers show that for air the inversion tempera-
ture lies above room temperature. Therefore precooling is not
necessary. The gases N2 and O2 can be cooled below their con-
densation temperatures solely with the Joule–Thomson effect.
This is realized with the Linde-gas liquefying system, which
uses the counter-current principle (Fig. 10.78). The gas is com-
pressed by the piston K and streams through the valve Vl1 into
the volume V2 where it is dehumidified. It then passes through a
cooling system where it is precooled, before it streams through
the counter current cooler and finally through a nozzle into the
container D at low pressure. During this last step, it further cools
down. The cooling rate is for air �T=�p D 0:25 K=bar. For a
pressure difference �p D 100 bar one reaches a cooling rate of
25 K per step. The cold vapour is guided through the counter-
current cooler and helps to precool the incoming gas. Finally, it
is sucked in through the valve Vl2 into the initial chamber dur-
ing the expansion phase of the piston. The next step starts then
already with a colder gas and reaches therefore a lower final
temperature. After several steps the cooling during the expan-
sion through the nozzle reaches the condensation temperature
and the gas is liquefied.

During the cooling of air, which is composed of N2 and O2, at
first the higher condensation temperature of oxygen is reached
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Table 10.7 Critical temperatures Tc, critical pressure pc , maximum inversion temperature Ti and boiling temperature for some gases

Gas Tc=K Pc=bar a=N � m4=mol2 b=106 m3=mol Ti=K Ts=K at p0 D 1:013 bar

Helium 5.19 2.26 0.0033 24 30 4.2
Hydrogen 33.2 13 0.025 27 200 20.4
Nitrogen 126 35 0.136 38.5 620 77.4
Oxygen 154.6 50.8 0.137 31.6 765 90.2
Air 132.5 37.2 – – 650 80.2
CO2 304.2 72.9 0.365 42.5 >1000 194.7
NH3 405.5 108.9 0.424 37.2 >1000 –
Water vapor 647.15 217.0 – – – 373.2

before N2 liquefies. Therefore the two gases can be readily sep-
arated.

Nowadays liquid nitrogen rather than liquid air is used for
many applications, because liquid oxygen contains the explo-
sive ozone O3. Liquid air that is kept in a Dewar increases its
O2 and O3 concentration in the course of time since N2 evapo-
rates faster due to its higher vapour pressure and therefore after
some time liquid air reaches a critical concentration of O3 which
explodes above a critical temperature.

The gases H2, He of Ne can be liquefied by precooling them
with liquid nitrogen below the inversion temperature before they
can be further cooled by the Joule–Thomson effect.

10.4.2.4 Equilibrium Between Solid and Liquid
Phase; Melting Curve

If the temperature of a solid material is increased above a certain
temperature that depends on the material, the solid phase starts
to convert into the liquid phase. Only at the melting tempera-
ture Tm, both phases can coexist under equilibrium conditions.
The pressure dependence dTm=dp of the melting temperature
is much smaller than that of the evaporation temperature, i. e.
the slope of the curve p.T/ in the p-T-diagram of Fig. 10.79
is much larger than that of the evaporation curve. One of the
reasons is the much smaller change of the volume during the
melting process, compared with the much larger change during
the evaporation process. A similar consideration as that result-
ing in Eq. 10.124 for the heat of evaporation gives the heat of
fusion

�m D T � dp

dT
.Vliquid � Vsolid/ : (10.133)

For most materials the density decreases during the melting
process, i. e. Vliquid > Vsolid. This gives dp=dT > 0, be-
cause �m > 0. There are some substances (e. g. water) where
Vliquid < Vsolid. For these substances is dp=dT < 0, the melting
curve has a negative slope (anomaly of water) (Fig. 10.79b).

Note: The fact that for water Vliquid < Vsolid ! %liquid > %solid

is essential for many processes in nature. Lakes freeze up from
the top to the bottom. Since the heat conductivity of ice is small,
this gives an isolating layer at the top, preventing the complete
freezing of the water, thus protecting fishes and other sensitive
creatures.

The fact, that water has its maximum density at T D 4 ıC is
called its anomaly. It is due to the temperature dependent molec-
ular structure of water. Liquid water does not solely consist of

H2O molecules but also contains multimers (H2O)n in a con-
centration that depends on the temperature and on the distance
from the surface of water. In the multimers the different H2O
molecules are connected by hydrogen bonds. At higher temper-
atures theses weak bonds break and a structural change results
in a change of the mean distance and therefore also a change of
the density. In the solid phase the H2O-molecules form a regular
lattice with empty space between the molecules. Therefore the
density of the solid is smaller than that of the liquid phase.

Example

At T D 0 ıC the density of solid ice is % D 0:917 kg=dm3,
that of sea water is % D 1:04 kg=dm3. Therefore, only
about 12% of an iceberg are above the seawater surface,
but 88% are below. J

Application of external pressure decreases the mean distance be-
tween the molecules and therefore the ice can melt, according to
the principle of minimum constraint. This is utilized by skaters,

Figure 10.79 Melting curve, vapor pressure curve and triple point for a a pos-
itive, b a negative slope of the melting curve. a represents the phase diagram
of CO2, b that of water
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Figure 10.80 Apparently convincing demonstration of the lowering of the
melting temperature by pressure

where the high pressure below the sharp ice skates forms a thin
liquid layer with low friction (see, however, the remarks below).

The lowering of the melting temperature �Tm D .dTm=dp/ ��p

is often demonstrated by a wire that is pulled through an ice
block by a heavy weight (Fig. 10.80).

Remark. More detailed calculations show, however, that the
major part of the necessary melting energy comes from heat
conduction from the higher temperature of the wire to the ice
surface (see Probl. 10.11).

Even without external pressure a thin liquid layer is formed at
the surface of ice above T D �33 ıC. The necessary energy
for melting this layer is provided by the gain in surface en-
ergy. The boundary ice-air needs more energy for evaporating
molecules than the boundary ice-liquid. A liquid layer therefore
has a lower potential energy and the loss of potential energy is
larger than the melting energy.

10.4.2.5 Coexistence of different phases; Triple Point

Since the melting curve in the p-V-diagram of Fig. 10.76 has a
larger slope than the vapor curve the two curves must intersect
in a point .ptr;Ttr/, called the triple point. Here the three phases
solid, liquid and gase can coexist.

For T < Ttr there is one boundary curve (sublimation curve)
that separates the solid and the gaseous phases. It has in the
.p;V/-diagram generally a positive slope. Solid materials can
directly pass into the gaseous phase without becoming liquid.
This process is called sublimation. Because of the small vapor
pressure of solids this process is, however, very slow.

If there are more than one phase of a material in a container,
pressure p and temperature T are no longer independent of each
other. For example, the coexistence of the liquid and the vapor
phase is only possible on the vapor curve pS.T/. This implies
that p and T are related by the evaporation coefficient � in
(10.125). It is possible to change T but then pS.T/ is fixed.
At the triple point .ptr; Ttr/ p and T are connected by two con-
ditions: the vapor curve and the sublimation curve. This means

that none of the two variables p and T can be changed without
leaving the triple point.

This can be generalized by Gibb’s phase rule, which relates the
number f of the degrees of freedom in the choice of the variables
p and T with the number q of coexisting phases. It states:

f D 3 � q (10.134)

At the triple point is q D 3 ! f D 0, i.e. no degree of freedom
in choosing the variables p and T . If only one phase is present
.q D 1/ we obtain f D 2. The pressure p as well as the temper-
ature T can be chosen independently (within certain limits). On
the vapor curve is q D 2 and therefore f D 1. We can choose
one variable and the other is then fixed.

For a mixture of different chemical components, which can be
present in different phases the generalized Gibbs phase rule
states:

f D k C 2 � q (10.135)

where k is the number of components.

10.4.3 Solutions and Mixed States

Up to now we have discussed only pure substances, which are
composed of only one component and do not contain any impu-
rities. We have explained the different phases of solid, liquid and
gaseous states and possible transitions between these phases.
In nature, however, often mixed substances are present where
molecules of different species are mixed together. Examples are
NaCl-molecules or sugar molecules, which are dissolved in wa-
ter and dissociate into their atomic components. Other examples
are metal alloys

For the complete characterization of such mixed states pressure
and temperature are not sufficient, but also the concentration of
the different components have to be defined.

The concentration of a substance dissolved in a liquid is gen-
erally given in g/litre or in mole/litre. Often not the complete
substance has dissolved but a rest remains as solid sediment
(if %solid > %liquid) or as layer on the liquid surface (if %solid <
%liquid).

The solution of substances can alter the characteristic features of
the liquid considerably. In this section we will shortly discuss
the most important features of solutions.

10.4.3.1 Osmosis and Osmotic Pressure

Assume a container with a semipermeable membrane including
a solution with the concentration c of the dissolved substance
is submerged into a reservoir with the pure liquid (Fig. 10.81).
One observes that the level of the solution in a standing pipe
rises above the level of the pure solution, if the molecules of the
solvent can penetrate through the semipermeable membrane but
not the molecules of the dissolved substance. Such permeable
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Figure 10.81 Demonstration of osmosis in a Pfeffer cell

membranes with substance-specific transmission play an impor-
tant role in biological cells.

In the example of Fig. 10.81 the concentration difference of the
dissolved substance between outside and inside of the container
results in a diffusion of the solvent molecules into the solution
through the permeable membrane. This builds up a pressure
difference, indicated by the height h in the standing pipe.

�p D % � g � h ;

which stops the net diffusion, because now an equal number of
molecules diffuses into and out of the container.

The net diffusion caused by the concentration difference is
called Osmosis and the pressure difference �p is the osmotic

pressure.

The osmotic pressure posm is proportional to the concentration
of the dissolved molecules and to the temperature.

Experiments show that

posm � V D � � R � T ; (10.136)

where � is the number of moles dissolved in the volume V of
the solvent.

This van’t Hoff’s Law is the analogue to the general gas equa-
tion

p � V D � � R � T :

The osmotic pressure of a solution exerted onto the walls
of the container equals the pressure that would be present,
if the dissolved molecules were in the gas phase at the
temperature T .

10.4.3.2 Reduction of Vapour Pressure

Due to the additional attractive forces between the dissolved
molecules and the solvent molecules the work function of the

Figure 10.82 a Decrease of vapor pressure and increase of boiling tempera-
ture�Tb of a solution compared to that of a pure solvent; b decrease of melting
temperature�Tm

solvent molecules increases. This means that at identical tem-
peratures less molecules evaporate than in pure liquids. The
vapour pressure is therefore lower than in a pure solvent.

The vapour pressure reduction �p is proportional to the con-
centration of the dissolved molecules (if their vapour pressure is
negligible).

Francois Marie Raoult formulated in 1882 the law

�ps

ps0
D � �1

�0 C �1
; (10.137a)

here ps0 is the vapour pressure of the pure solvent, �0 is the
number of moles of the solvent and �1 that of the dissolved sub-
stance. For diluted solutions is �1 � �0 and (10.137a) reduces
to

�ps D �ps0 � �1

�0
: (10.137b)

The lowering of the vapour pressure causes an increase �Tb of
the boiling temperature as shown in Fig. 10.82a. The vapour
pressure has to rise by �ps to reach the external pressure pa.
From the vapour pressure curve ps.T/ in Eq. 10.125 we can
derive the relation between �ps and �Tb. Differentiation of
(10.125) gives

dps

dT
D �

RT2
ps ) �T D RT2

�

�ps

ps
: (10.137c)
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Together with (10.137) this yields the Raoult’ Law

�Tb D RT2

�

�1

�0
: (10.138a)

When several substances with the molar concentrations �i are
dissolved, this generalizes to

�Tb D RT2

��0

X

i

�i : (10.138b)

Since�Tb depends on the molar evaporation heat�, it is depen-
dent not only on the dissolved substances but also on the specific
solvent.

For dissolved substances that partly dissociate (for instance dis-
sociates NaCl into NaC + Cl�) the sum in (10.138b) extends
over all dissociated and non-dissociated components dissolved
in the solvent.

The lowering of the vapour pressure also results in a lowering of
the melting temperature Tm (Fig. 10.82b). Similar to (10.138a)
one gets

�Tm D �RT2

�m

�1

�0
; (10.139)

where �m is the molar melting heat.

Example

For water with the concentration of �1 moles of a dis-
solved substance is the lowering of the melting tempera-
ture

�Tm D �1:85 K � �1 :

When 50 g NaCl are dissolved in 1 litre water, (1 mol
NaCl are 58 g), the lowering of the melting temperature
is with

P
�i D 2 � 50=58 D 1:72 mol: �Tm D �3:2 K.

J

Seawater has a melting temperature that lies several degrees be-
low 0 ıC depending on the salt concentration.

The lowering of the melting temperature is used to clear icy
roads from ice and snow by salting the roads.

The zero point of the Fahrenheit temperature scale is defined by
the melting temperature of a specific salt-water solution. From
(10.2) and (10.139) the zero point can be obtained as

0 ıF D �17:8 ıC :

Solutions with dissolved substances have generally a
larger temperature range of the liquid phase than pure sol-
vents, because the boiling point rises and the melting point
is lowered.

10.5 Comparison of the Different
Changes of State

Here we will summarize all possible changes of thermodynamic
states and the corresponding equations.

1. Isochoric processes: V D const

dQ D CV � dT (10.140a)

2. Isobaric processes: p D const

dQ D Cp � dT D dU C p � dV (10.140b)

3. Isothermal processes: T D const

dU D 0; dQ D p � dV; p � V D const (10.140c)

4. Adiabatic processes: dQ D 0

p � V� D constI � D Cp=CV (10.140d)

5. Isentropic processes: S D const

dS D CV � dT=T C R � dV=V D 0

) T � V��1 D const
(10.140e)

A reversible adiabatic process is always isentropic, but

not every isentropic process is also adiabatic.

6. Isoenthalpic processes

H D U C p � V D const

dH D .@H=@p/TDconst C .@H=@T/pDconst
(10.140f)

10.6 Energy Sources and Energy
Conversion

The supply of sufficient energy that can replace to a large extent
manual work, has changed our life considerably. It is fair to say
that only the provision of sufficient and affordable energy has
essentially improved our standard of life. This is the reason why
in developing countries the desire for more energy will cause a
drastic increase of worldwide energy consumption.

The first law of thermodynamics teaches us, however, that en-
ergy can be neither generated nor annihilated. The phrase
“energy generation” (for example in power stations) means cor-
rectly speaking the conversion of energy from a specific form
into another (for instance from thermal energy into electric en-
ergy).

In fossil power stations the potential energy of CO- and
CO2-molecules is transferred into heat (kinetic energy of the
molecules and atoms), which is further converted via turbines
into mechanic energy of the rotating turbine, which drives an
electric generator that produces electric energy.
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Figure 10.83 Cooling towers of the coal power plant Staudinger. The plant delivers 500 MW electric power and 300 MW heat power. It reaches an efficiency of
42.5% (With kind permission of Preußen Elektra AG, Hannover)

In car engines this molecular potential energy is converted into
mechanical energy that drives the car. In nuclear power stations
the potential energy of uranium nuclei (which exceeds that of
molecular bindings by 6 orders of magnitude) is converted by
nuclear fission into kinetic energy of the fission products and
then into heat of circulating cooling water.

Wind energy converters convert the kinetic energy of airflow
into rotation energy of the converter rotor blades, which drive

an electric generator. The wind energy has its origin in the solar
radiation energy, which in turn stems from nuclear fusion energy
in the interior of the sun.

In order to realize an energy conversion efficiency as high as
possible, one has to understand the basic physical processes
of the different conversion processes. We have learned in
Sect. 10.3.3 that the maximum possible conversion factor for
the conversion of heat into mechanical energy is given by the
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efficiency of the Carnot engine which depends on initial and fi-
nal temperature during the conversion. The maximum initial
temperature is generally limited by the material of the container
walls which enclose the working gas. The lowest final tempera-
ture is often limited by the temperature of the surrounding. By
using the rest energy of the cooled gas for heating (combined
heat and power) the energy efficiency can be improved. This
reduces the waste of energy which would otherwise heat up the
environment. The non-usable rest heat energy is taken away by
cooling towers (Fig. 10.83).

The increasing concern about the warming of our atmosphere
(global warming) by man-made emission of molecular gases
such as CO2, CH4, NO2 etc., which absorb the infrared emis-
sion of the earth surface thus heating up the atmosphere, has led
to the proposal and partly realization of several different “energy
sources”, i. e. energy conversion processes. In particular regen-
erative energy sources, where the working material is available
in unlimited quantities, or where the consumption of the work-
ing material is replaced by nature over time intervals of many
centuries, are favourable candidates. Such energy conversion
processes should not contribute to global warming. Examples
are nuclear energy conversion, wind energy, solar energy and
energy conversion based on the tides of the ocean. The most
important renewable energy conversion processes include:

Hydro-electric power plants (based on the potential or kinetic
energy of water)
Wind-energy converters
Geothermic plants
Solar-thermal power plants
Solar-electric conversion (photo-voltaic devices)
Bio-energy (burning of regrowing biological material such as
wood, plants)

Some examples shall illustrate these different “energy sources”.

At first we will clarify some often used definitions.

The primary energy is the energy directly obtained from the
different sources (coal, oil, gas, water, wind, sun radiation, nu-
clear fission) while the secondary energy is won by conversion
of the primary energy into other energy forms (mechanical en-
ergy, electric energy, etc.). The conversion of primary into
secondary energy has an efficiency � < 1. This means a frac-
tion (1 � �) is lost and is delivered as heat into the surrounding.
If the consumption of primary energy in a country is larger than
the production of energy sources, the country has to import coal,
oil or gas.

In Tab. 10.8 the increase of the worldwide primary energy con-
sumption is summarized from 1990 to 2012. Note the large
increase of the electric power consumption. In Fig. 10.84 the

Table 10.8 Worldwide total energy consumption (in 103 TWh) and electric en-
ergy

Year Total energy Electric energy

1990 71 6
2000 117 15
2012 155 23

quadrillion Btu
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Source: U.S. Energy Information Administration

(Report #.DOE/EIA-0484(2010))
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Figure 10.84 Worldwide energy consumption of different energy sources in
units of 1015 Btu � 1018 J � 300 TWh

contributions of the different energy sources to the total world-
wide energy consumption are illustrated and Tab. 10.9 lists some
countries with the highest energy consumption. It illustrates the
enormous increase during the last 40 years.

The units for energy and their abbreviations are given below:

1 Kilojoule D 1 kJ D 103 J

1 Megajoule D 1 MJ D 106 J

1 Gigajoule D 1 GJ D 109 J

1 Terrajoule D 1 TJ D 1012 J

1 Petajoule D 1 PJ D 1015 J

1 Exajoule D 1 EJ D 1018 J

1 Kilowatt hour D 1 kWh D 3:6 MJ

It is interesting to compare the total energy consumption of Ger-
many (13 400 PJ per year) with the energy that it receives per
year from the sun. The energy of solar radiation per sec and m2

outside the atmosphere (solar constant) is 1:367 kW=.m2 � s/.
During its transit through the atmosphere, the radiation power
decreases through backscattering (30%) and absorption (20%)

Table 10.9 The countries with the highest consumption of primary energy (in
Megatons Oil-Units) [10.31]

Pos. Country 1970 2000 2010 2013 %

1 China 202.1 980.3 2339.6 2852.4 22.4
2 USA 1627.7 2313.7 2284.9 2265.8 17.8
3 Russia 483.0 619.4 674.1 699.0 5.5
4 India 64.8 295.8 510.2 595.0 4.7
5 Japan 279.9 518.0 506.8 474.0 3.7
6 Canada 156.4 303.0 315.6 332.9 2.6
7 Germany 309.6 333.0 322.5 325.0 2.6
8 Brasilia 36.8 185.8 257.4 284.0 2.2
9 South Korea 14.3 193.9 254.6 271.3 2.1
10 France 155.8 258.7 253.3 248.4 2.0
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and therefore only about 50% reach the earth surface. Since
the sun radiation generally does not incide vertically onto a
surface element but under an angle ˛ that depends on the day-
time, the latitude and the yearly season, the annual average
P D P0 � cos˛ of the incident radiation intensity is for a latitude
of 45ı about 300 W=.m2 � s/. With an annual sunshine duration
of 1000 h=year (3:6 � 106 s=year) we receive the annual average
of solar radiation energy of about 1 GJ per m2 and year. In order
to match the energy consumption one needs in Germany an area
of 3 � 104 km2 for solar energy collectors with an efficiency of
50%.

For the whole earth (the hemi-sphere with the area of 2:55 �
108 km2) the total incident sun radiation power is 1015 � 2:55 �
108 D 2:55 � 1023 J=year. The total energy consumption in the
year 2011 was, however, only 5�1020 J=year which is about 0.2%
of the incident sun energy.

10.6.1 Hydro-Electric Power Plants

Most of the hydro-electric power plants use water reservoirs
where the water outlet streams through pipes and drives turbines
that generate electric power. Here the potential energy of the
damned up water is converted into kinetic energy of the water
flowing through the pipe.

For a storage height h an area A of the reservoir and a density %
of the water the total potential energy is

Epot D % � g � h � A ��h ;

when the storage height is lowered by �h � h.

Example

A D 1 km2 D 106 m2, h D 30 m, �h D 5 m ! Epot D
1:5 � 1012 J D 1:5 TJ. J

Some hydro-electric power stations use the flow energy of
rivers, where in most cases, however, the river has several bar-
rages where again the potential energy of the dammed river is
used to drive turbines. This method was often used in earlier
times to drive corn mills and hammer mills which only need
moderate powers.

Example

When a channel with a width of 5 m and a depth of
3 m is branched off a river the water with a velocity of
v D 6 km=h D 1:67 m=s drives a turbine, the maximum
available power is

P D 1
2 Mv2 D % � B � h � v2=2 :

With the numerical values given above this yields P D
21 kW. J

10.6.2 Tidal Power Stations

Tidal power stations use the tidal range between low and high
tide for power generation. This range is in particular large in
the mouth of rivers, where it can reach up to 16 m. The water
passes through turbines built into logs in the river. At low tides,
the water streams seawards and at high tides against the river.
This streaming water drives the turbines at low tides as well as
at high tides (Fig. 10.85), which activates generators for produc-
ing electric energy. At a water level difference �h between the
dammed river and the sea level the energy that can be converted
is

W D
Z
.dM=dt/ � g ��h.t/dt ;

where dM=dt is the mass of water passing pro second through
the turbines, �h is the time dependent level difference and T

(about 5 h) the time duration of low resp. high tide.

Here the gravitational energy of earth-moon attraction and the
decrease of the rotation energy of the earth (due to friction by the
tides) are the primary energy sources. During the time intervals
where �h D 0 the tidal power station cannot deliver energy.

The first tidal power station was built in France in the mouth
of the river Rance (Fig. 10.86) where a tidal range of 16 m is
obtained. The river dam is 750 m long and has 24 passages
where the turbines are located. The total power station deliv-
ers an electric power of 240 MW and per year an electric energy
of 600 GWh. This equals the energy delivered by 240 wind con-
verters with 1 MW power each and 3000 hours of full operation
per year.

The disadvantage of such tidal power stations is the separation
of the bay at the mouth of the river. This can change the bio-
logical conditions for plants and fishes and it can furthermore
influence the tidal range in neighbouring bays with the danger
of flooding.

Figure 10.85 Schematic illustration of a tidal power station
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Figure 10.86 Tidal Power Station St.Malo. Aerial view of the power station in the estuary of the river Rance in France. Here the tidal amplitude is about 8 m (see
Sect. 6.6). With kind permission © Foto dpa

10.6.3 Wave Power Stations

Wave power stations use the kinetic and potential energy of sea
waves for the generation of electric energy. Their basic princi-
ple is illustrated in Fig. 10.87. A pneumatic chamber is filled
with air in its upper part while the lower part has a connection
to the sea. The incoming waves induce a periodic change of
the water level in the lower part of the chamber. This causes
a periodic change of the air pressure in the upper part and an
air flow through the pipe at the top of the chamber that peri-
odically changes its direction. In the upper part of the pipe a

Generator

Ground

Water

Periodic

lift

Air flow wells

Turbine Incomming

wave

Figure 10.87 Concept of a wave-power station

Wells-turbine is installed, that always rotates in the same direc-
tion independent of the direction of the air flow. This turbine
has symmetric blade profiles in contrast to normal turbines that
have asymmetric blade profiles, optimized for one direction of
the airflow. The efficiency of the Wells-turbine is smaller than
that of normal turbines. It has, however, the advantage that it
rotates continuously for both directions of the air flow.

Wave power stations do not use the tide difference between high
and low tide but the wave energy, which is in turn driven mainly
by the wind energy and only to a minor part by the tides [10.32,
10.33].

10.6.4 Geothermal Power Plants

The temperature of the earth’s interior increases with increas-
ing depth by about 3–5 ıC=100 m, because heat flows from the
hot kernel to the outer parts of the earth. The heat in the kernel
was mainly generated in the formation period of the earth (about
4 billion years ago) where heavier elements dropped down to the
kernel due to gravitational forces. This increased the tempera-
ture of the kernel. Another cause for the production of heat is
the radioactive decay of elements such as Uranium, Thorium
and Potassium that are contained in the kernel as well as in the
earth mantle.
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Figure 10.88 Schematic illustration of a geothermic power station

In regions with volcanic activities, water rising from the interior
to the surface of the earth has a sufficiently high temperature to
be useful as energy source. For example in Iceland residences,
green houses and swimming pools are heated by hot water from
the earth interior. This energy streaming out of the earth interior
is called geo-thermal energy.

Iceland can cover about 80% of its primary energy consumption
(40 PJ D 40 � 1015 J) by this geothermal sources.

In regions without such active volcanism, one can drill deep
bore holes (3000–5000 m) in order to utilize geothermal energy.
The temperature at a depth of 5000 m is about 200–300 ıC. For
energy production water is pumped into the bore holes which
interacts with the hot rock and is heated up. The hot water is
pumped back to the surface and can be used for heating purposes
or, if its temperature is above 100 ıC it can produce through heat
exchangers hot steam that drives turbines (Fig. 10.88).

The limitations of the geothermal energy usage in non-volcanic
regions is the slow transport of heat from the surrounding of a
bore hole, which is mainly due to heat conduction. When the
heat extraction becomes larger than the supply of energy from
the surroundings the temperature drops and the efficiency of the
plant decreases accordingly [10.24]. A much more serious prob-
lem are possible geological dislocations. The water pumped
under high pressure into the bore hole can modify the rock in
the surroundings of the bore hole and can increase the volume
of such chemically altered porous rocks. This will cause local
uplifts at the earth surface which can damage buildings. Such
geothermal plants should be therefore operated far away from
inhabited areas.

10.6.5 Solar-Thermal Power Stations

These power stations use the heating of material that absorbs the
sun radiation and transfers the heat to a liquid transport medium,
such as water or oil. In order to reach sufficiently high tem-
peratures the sun radiation is focused by parabolic or spherical
mirrors onto the heated devices.

Absorber

pipe

Parabolic

reflector

Pipes heated by

sunradiation

Sun light

Figure 10.89 Thermal solar power station using parabolic reflectors

Tracking

parabolic mirror

Stirling engine

Figure 10.90 Solar power station with parabolic mirrors, that follow up the
sun position and focus the sun radiation onto a Stirling motor [10.26]

In the parabolic gullies construction the water or oil is pumped
through pipes that are located in the focal line of cylindrical
mirrors with parabolic profile (Fig. 10.89), which concentrates
the sun radiation onto the pipes [10.25].

Another modification consists of several hundred parabolic mir-
rors (heliostats) that follow up the changing sun position during
the day (Fig. 10.90) and concentrate the sun radiation, nearly
independent of the position of the sun, onto a small volume at
the top of a high tower (Fig. 10.91).

The achievable radiation density of this device is much higher
than in the parabolic gully construction and temperatures of
about 1000 ıC can be reached. This increases the efficiency for
the conversion into electric energy. The generated hot steam
drives turbines as in fossil power stations.

An example of such a solar-thermal power station is the plant
“Plataforma solar de Almeria” in Spain (Fig. 10.92). Here
300 heliostats with 40 m2 parabolic mirror surface each concen-
trate the sun radiation onto the radiation collector at the top of an
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Figure 10.91 Solar tower power station

80 m high tower. This plant produces an average electric power
of 40 MW.

The solar-thermal power plants discussed so far only work effi-
ciently for direct sun radiation, i. e. under a clear sky, because
the concentration by the heliostats onto a small volume does not
work efficiently for the diffuse radiation at cloudy days.

Here another type of solar power stations, the upwind plant,
is favourable (Fig. 10.93). The air above a large area under a
sloped glass roof that is formed like a cone, is heated by di-
rect or diffuse sun radiation. The hot air streams to the centre
of the area where it rises up into a chimney, driving a turbine.
Although the efficiency of such a plant is only about 5% it still
pays off because of the low construction and operation costs.

An example is the plant “Fuente el Fresno” in Spain, where an
area of 2:5 km2 is covered by the glass roof. The chimney is
750 m high and the delivered electric power amounts to 40 MW.
The large area is not lost for agriculture but can be used for
growing plants and fruits even during colder periods, since it
operates like a green house.

Figure 10.92 Gemasolar power station close to Sevilla. 2650 mirrors reflect the sun light onto a tower where a salt solution is heated. It will deliver electric
energy of 110 GWh per year. (Torresol Energy Investment S.A.)

Upwind

Chimney

Turbine

Glas roof

Air
Generator

Figure 10.93 Upwind solar power station

10.6.6 Photovoltaic Power Stations

Here the sun radiation energy is directly converted into electric
energy by photovoltaic semiconductors. The efficiency amounts
to 5–20% depending on the semiconductor material. The basic
physics of these devices is explained in Vol. 3.

The price per kWh was very high in the beginning but decreases
now rapidly due to mass production of solar cells or thin film
photovoltaic devices. In view of the rising prices for fossil en-
ergy sources it will soon be able to compete with conventional
power plants.

The large disadvantage of all solar power plants is the de-
pendence on the unreliable sunshine duration. It is therefore
necessary to realize energy storage devices which can bridge
the time periods where the sun does not shine.
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10.6.7 Bio-Energy

The burning of farming refuse, such as waste wood, stray,
garbage or biogas, which remains in agriculture can produce
useful energy, named bio-energy, because the burned material
is of biological origin. The advantage of this energy source is
that it is renewable as long as the consumption does not exceed
the natural production. Its disadvantage is the emission of CO2

which generally exceeds the consumption of CO2 by the grow-
ing plants, although the net emission balance is more favourable
than for conventional fossil power plants. Furthermore other
species such as SO2, phosphor and heavy metal compounds
are emitted. If only substances as burning material are used,
which cannot be utilized for other purposes, the bio-energy can
be judged positively. However, if food is used for the produc-
tion of gasoline, this is contra-productive and should be rejected.
Also the burning of wood pellets only makes sense, if they are
produced from wood waste, but this technique is nonsense if the
pellets are pressed from trees that could have been used else-
where.

10.6.8 Energy Storage

The increasing production of energy from renewable resources
that are not continuously available, demands the realization of
sufficient energy storage systems in order to bridge time periods
where these sources cannot deliver sufficient energy. There are
several proposals for such storage systems, where some of them
have been already realized.

The oldest energy storage systems are pumped hydro storage
plants. Here water is pumped from a lower storage reservoir
into a higher one during times, where sufficient energy is avail-
able. During periods where more energy is needed, the water
runs back from the higher into the lower reservoir and drives
turbines, which activate electric generators. The generators are
used during the up-pumping period as electric motors that drive
the pumps. This method is up to now the most efficient, but
it needs sufficient space on the top of mountains for the upper
reservoir. One of many examples is the Walchensee plant in
Bavaria, Germany, where the water is pumped from the lower
Kochelsee into the 200 m higher Walchensee.

For bridging the night periods, where solar plants cannot work,
salt storage systems have been developed. Here the surplus en-
ergy produced during daytime is used to heat up and melt a salt
solution. During night time the heat of the hot solution and the
heat of fusion that is released when the solution solidifies, can
be used to bridge the energy gap. With multi-component salt
solutions, there are several melting temperatures and the heat of
fusion is more uniformly delivered during the cooling of the so-
lution. Examples of such salt solutions are Mg.NO3/2 � 6H2O,
or CaCl2 � 6H2O.

For small energy demands during night-time compact lithium
batteries have been developed which have a storage capacity of

Electrolysis

of H2O H2-

reservoir

Combustion

H2O

O2

H2

2 H2O 2 H2 + O2

Figure 10.94 Hydrogen gas as energy reservior

0:2 kWh per kilogram mass. For a volume of 0:5 m3 of the bat-
tery system one can reach a storage energy of 20 kWh. This
is sufficient for most private households, which may have so-
lar collectors on the roof and can provide with such a combined
system their energy demands during day and night.

A promising storage medium is hydrogen gas H2, which can
be produced by electrolysis during times where surplus solar or
wind energy is available. According to the endothermic reaction

2H2O ! 2H2 C O2 ; (a)

(Fig. 10.94) hydrogen gas is produced by electrolysis of water.
In the reverse exothermic reaction

2H2 C O2 ! 2H2O (b)

energy is released. The advantage is, that no environmentally
dangerous gases such as CO2 or NH3 are emitted. The elec-
trolytic systems can be placed directly inside the tower of wind
converters and the produced hydrogen gas can be stored in high
pressure bottles. The systems can be controlled in such a way,
that reaction (a) operates during the time period of wind energy
surplus and reaction (b) during times of wind energy shortage.
For large plants the hydrogen gas is stored in huge underground
caverns, for instance in no longer used salt mines and is trans-
ported by underground pipes to special power stations which can
burn hydrogen gas. Meanwhile long-time experience is present
for the storage of hydrogen gas in caverns.

Example

The cavern Clemens Dome, close to Lake Jackson USA,
has a volume of 580 000 m3. The stored gas at a pressure
of 10 MPa can deliver an energy of 90 GWh. It is operated
since 1986. J

While for H2 storage the reaction energy of the reaction (b) is
used, for air storage at high pressures the potential energy p�V of
the gas volume is utilized. When the gas flows from the storage
tank through a pipe, the potential energy is converted into kinetic
energy, which is used to drive a turbine (Fig. 10.95).
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Figure 10.95 Scheme of a high pressure gas reservior

Example

p D 100 atm D 10 MPa, V D 500 000 m3 ! Epot D
p � V D 5 � 1012 N � m D 5 � 1012 Ws D 1:39 GWh. J

Summary

The temperature of a body is given either as absolute temper-
ature T in Kelvin or as Celsius temperature TC=

ıC or in the
US as Fahrenheit temperature. The relations are

T=K D TC=
ıC C 273:15;

T=F D .9=5/TC
ıC C 32

D .9=5/ŒT=K � 273:15/C 32

D .9=5/T=K � 459:67 :

For temperature measurements all quantities can be used,
that depend on the temperature (expansion of a liquid vol-
ume, electric resistance, thermo-voltage, conductivity of
semiconductors).
The thermal expansion of bodies is caused by the non-
harmonic interaction potential between neighbouring atoms.
The absolute temperature is determined with the gas ther-
mometer, where the increase of the gas pressure with temper-
ature in a constant volume is proportional to the temperature
increase.
The thermal energy of a body is determined by the kinetic
and potential energy of the atoms or molecules. The tempera-
ture increase�T of the system is proportional to the supplied
heat energy �Q D C ��T .
The molar heat capacity for a constant volume of a gas
CV D R � f =2, is equal to the product of gas constant R D
k � NA times one half of the number f of degrees of freedom
of the atoms or molecules in the gas.
The molar heat capacity at constant pressure is Cp D CV C R

The transition from the solid to the liquid phase requires the
molar melting energy W D �m per mole. During the melt-
ing the potential energy of the atoms or molecules increases
while the kinetic energy stays constant. Similar the transi-
tion from the liquid to the gaseous phase needs the energy
per mole W D �e (heat of evaporation).
Thermal energy can be transported from one area to another
– by heat conduction
– by convection
– by thermal radiation

The amount of heat transported per second by heat con-
duction in the direction r through the area A is dQ=dt D
�� � A � .grad T/r, i. e. the product of heat conductivity �,
area A and temperature gradient in the direction of r.
For metals the heat conductivity is proportional to the elec-
trical conductivity, which indicates that the electrons are
mainly responsible for both conductivities.
The thermodynamic state of a system is unambiguously de-
termined by the state variables pressure p, volume V and
temperature T . For � moles of an ideal gas in the volume
V the general gas equation is

p � V D � � R � T :

The number of internal state variables in real gases is given
by Gibbs’ phase rule (10.134).
The entropy S of a system is a measure for the number of
possible ways the state of the system can be realized. The
change of the entropy is dS D dQ=T where dQ is the heat
energy supplied to or by the system.
The first law of thermodynamics �U D �Q C �W de-
scribes the energy conservation. The change �U of internal
energy U D N � .f =2/kT of a system with N atoms or
molecules equals the sum of supplied heat �Q and mechan-
ical work �W performed on or by the system. For real gases
is U D Ekin C Epot, because the interaction energy between
the atoms has to be taken into account.
Special processes in a system of an ideal gas are:
isochoric processes (V D const) ) dU D CV � dT ,
isobaric processes (p D const) ) dU D dQ � pdV,
isothermal processes (T D const) ) p � V D constant,
adiabatic processes (dQ D 0) ) dU D dW and p � V� D
constant with � D Cp=CV D adiabatic index.
The second law of thermodynamics states that at the con-
version of heat into mechanical energy at most the fraction
� D .T1 � T2/=T1 can be converted when the heat reservoir
is cooled from the temperature T1 to T2.
The entropy S D k � ln P is a measure for the number P of re-
alization possibilities for a system with a given temperature
T and total energy E.
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Reversible processes are ideal processes where a system
passes a cycle of processes and reaches its initial state with-
out any losses. An example is the Carnot Cycle where the
system passes through two isothermal and two adiabatic pro-
cesses.
For reversible processes the entropy remains constant. For
all irreversible processes the entropy increases and the free
energy F D U � T � S decreases.
The entropy S approaches zero for T ! 0 (third law of ther-
modynamics).
For real gases the Eigen-volume of the atoms and the inter-
action between the atoms cannot be neglected as for ideal
gases. The equation of state p � V D � � R � T of ideal gases is
modified to the van der Waals equation .pCa=V2/�.V �b/ D
R � T , where a=V2 denotes the internal pressure and b=4 the
Eigen-volume of the NA molecules per mole.

The heat of evaporation of a liquid� D T �dps=dT �.Vv�Vl/ is
due to the mechanical work necessary to enlarge the volume
Vl of the liquid to the much larger volume Vv of the vapour
against the external pressure and against the internal attrac-
tive forces between the molecules. The second contribution
is much larger than the first one.
In a p.T/ phase diagram the liquid and gaseous phases are
separated by the vapour phase curve and the liquid and solid
phase by the melting curve. The two curves intersect in the
triple point (Ttr; ptr) where all three phases can coexist.
The vapour pressure of a liquid is lowered by addition of
solvable substances, which increases the evaporation temper-
ature. Also the melting temperature can be lowered.

Problems

10.1 Give a physically intuitive explanation, why the thermal
expansion coefficient for liquids is larger than that of solids.

10.2 Prove example 2 in Sect. 10.1.2.

10.3 A container with 1 mol helium and a container of equal
size with 1 mol nitrogen are heated with the same heat power
of 10 W. Calculate after which time the temperature of the gas
in the containers has risen from 20 to 100 ıC. The heat capac-
ity of the containers is 10 Ws=K. How long does it take, until
T D 1000 ıC is reached, when we assume that the vibrational
degrees of freedom of N2 can be excited already at T D 500 ıC?
All heat losses should be neglected.

10.4 Give a vivid and a mathematical justification for the time
dependent temperature function T.t/ during the mixing experi-
ment of Fig. 10.12.

10.5 A container (m D 0:1 kg) with 10 mol air at room tem-
perature rests on the ground. What is the probability that it lifts
by itself 10 cm above ground? Such an event would cause a
cooling (conversion of thermal into potential energy). How large
is the decrease of the temperature? (Specific heat of the gas is
.5=2/R, that of the container is 1 kJ=.kg � K/.)

10.6 A volume of 1 dm3 of helium under standard condi-
tions (p0 D 1 bar, T0 D 0 ıC) is heated up to the temperature
T D 500 K. What is the entropy increase for isochoric and for
isobaric heating?

10.7 The critical temperature for CO2 (M D 44 g=mol) is
Tc D 304:2 K and the critical pressure pc D 7:6 � 106 Pa, its
density at the critical point is % D 46 kg=m3. What are the van
der Waals constants a and b?

10.8 What is the entropy increase �S1 when 1 kg water is
heated from 0 to 50 ıC? Compare�S1 with the entropy increase
�S2 when 0:5 kg water of 0 ıC is mixed with 0:5 kg of 100 ıC.

10.9 A power station delivers the mechanical work W1 when
water vapour of 600 ıC drives a turbine and cools down to
100 ıC.
a) What is the Carnot efficiency?
b) How many % of the output energy can one win, when the

water of 100 ıC is used for heating and cools down to 30 ıC?

10.10 A hot solid body (m D 1 kg, c D 470 J=.kg � K/,
T D 300 ıC) is immersed into 10 kg of water at 20 ıC.
a) What is the final temperature?
b) What is the entropy increase?

10.11 Calculate the pressure that a wire with 1 mm diameter
exerts onto an ice block with a width of 10 cm (according to
Fig. 10.80) when both ends are connected with a mass m D 5 kg.
What is the increase of the melting temperature? What is the
heat supplied to the ice block by the wire, if the outside temper-
ature and the wire temperature are 300 K‹ How much ice can be
melted per second by the wire?

10.12 Calculate from the diagram of Fig. 10.64b the theoretical
efficiency of the Otto-motor.

10.13 Show that for a periodically supplied heat at x D 0
Eq. 10.42 is a solution of the Eq. 10.38b for one-dimensional
heat conduction.

10.14 What is the maximum power an upwind power plant
can deliver (area 5 km2, temperature below the glass roof T D
50 ıC, height of the tower 100 m, outside temperature 20 ıC at
the top of the chimney).
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322 11 Mechanical Oscillations and Waves

Mechanical oscillations play an important role in basic sci-
ences as well as for technical applications. Their significance
as sources of acoustic waves and for the realization of musi-
cal performances, in sensors for hearing is obvious. Often the
prevention of unwanted acoustic resonances of buildings and
bridges represents a technical challenge. All these points jus-
tify a more detailed study of the basic physics of oscillations
and waves.

Their mathematical treatment is in many aspects very similar to
that of electric oscillations and waves (see Vol. 2, Chap. 6). The
investigation of common features and differences between me-
chanical and electro-magnetic oscillations and waves not only
intensifies our knowledge of macroscopic oscillation phenom-
ena but also gives a deeper insight into the microscopic structure
of matter. (atomic and molecular vibrations in solids).

In this chapter we will discuss mechanical oscillations, where
matter is moved, and mechanical waves where this motion is
transported by couplings between neighbouring layers of gases,
liquids or solids. At the end of this chapter some interesting
applications of ultrasonics in medicine and of acoustics in music
are presented.

11.1 The Free Undamped Oscillator

In Chap. 2 the basic equations of motion for the simplified
model of point masses were derived. In a similar way the basic
facts of mechanical oscillations can be best understood when we
start with the idealized model of point masses before we proceed
to oscillations of extended bodies.

A point mass m suspended by a spring has its equilibrium po-
sition at x D 0 where the gravity force is just compensated by
the opposite restoring force of the spring. When the mass m is
removed from its equilibrium position by a small displacement
x (Fig. 11.1) a restoring force occurs, which is, according to
Hooke’s Law (Sect. 6.2) proportional to x:

F D �D � x ;

where D is the spring constant that depends on the strength of
the spring. This force drives the mass m back to its equilibrium
position x D 0. The one-dimensional equation of motion is then

m � d2x

dt2
D �Dx : (11.1a)

With the abbreviation !2
0 D D=m this becomes

d2x

dt2
C !2

0x D 0 : (11.1b)

This is the equation for the harmonic oscillator (which is called
“harmonic” because its oscillation generates a “pure” sinusoidal
tone at the frequency !0. Together with its overtones n � !0 it
forms a superposition of tones that are felt by human ears as
harmony).

Figure 11.1 Undamped harmonic oscillator

In Sect. 2.9.7 we had already derived the oscillation equation for
the simple pendulum, where we had found for small elongations
the same equation R' C .g=L/' D 0 for the angle ' (Eq. 2.79b).

The equation (11.1) has the solution

x D c � e�t ; (11.2)

where c is an arbitrary constant. Inserting (11.2) into (11.1)
gives the quadratic equation for the parameter �:

�2 C !2
0 D 0 ;

which has the two solutions

�1 D Ci � !0 and �2 D �i � !0 :

We therefore obtain the two solutions of (11.1)

x1.t/ D c1ei!0 t and x2.t/ D c2e�i!0 t ;

which are linearly independent for !0 ¤ 0. The general solu-
tion of the linear differential equation (11.1) is then the linear
combination of the two solutions

x.t/ D c1ei!0 t C c2e�i!0 t : (11.3)

Since x.t/ must be a real function (not complex) it follows for
the complex constants c1 D c�

2 D c. The solution for the oscil-
lation amplitude is then

x.t/ D cei!0 t C c�e�i!0 t with c D a C ib : (11.4a)

The real constants a and b can be determined from the initial
conditions for the special oscillation problem.

Example

When the mass m in Fig. 11.1 passes at t D 0 with the
velocity v0 through the equilibrium position x D 0, we
obtain from (11.4a): c� C c D 0 ) a D 0 and v0 D
i � !0.c � c�/ D i!0 � 2ib D> b D v0=2!0. Therefore is

x.t/ D v0

!0
sin!0t : J

Remark. The oscillating mass on a spring is only one exam-
ple for a harmonic oscillator. Other examples are a mass that
oscillates on a parabolic air track, or the simple pendulum sus-
pended by a string, or an electron in the lowest energy level of
the hydrogen atom.
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11.2 Mathematical Notations of
Oscillations

When we write the complex amplitudes c and c� in (11.4) as
polar representation

c D jcj � ei' ; c� D jcj � e�i' :

We obtain the representation

x.t/ D jcj
�
ei.!0 tC'/ C e�i.!0 tC'/� ; (11.4b)

that is equivalent to (11.4a).

According to Euler’s formula for complex numbers

eix D cos x C i � sin x :

We can write (11.4a) also in the form

x.t/ D C1 cos!0t C C2 sin!0t

with

(
C1 D c C c�

C2 D i.c � c�/

)
:

(11.4c)

A forth equivalent representation is

x.t/ D A � cos.!0t C '/ : (11.4d)

The comparison with (11.4c) gives

C1 D A � cos' ; C2 D �A � sin'

) � tan ' D C2

C1
and A D

q
C2

1 C C2
2 :

All 4 representations (11.4a–d) for the solution of (11.1) are
equivalent (Fig. 11.2). They represent a harmonic oscillation
with the frequency !0 and the amplitude A D 2jcj (Fig. 11.3).

For our example above with the initial conditions x.0/ D 0 and
.dx=dt/0 D v0 all forms (11.4a–d) give the solution

x.t/ D v0

!0
sin.!0t/ ;

as can be immediately proved by inserting x.t/ into (11.4a–d).

Imaginary part

Real part

Figure 11.2 Relations betwenn different equivalent representations of har-
monic oscillations

Figure 11.3 Period T , amplitude A and phase shift ' of a harmonic oscillation

Figure 11.4 Elongation x.t/, velocity Px.t/ and acceleration Rx.t/ of a harmonic
oscillation

The argument (!0t C ') in the cosine function (11.4d), which
determines the momentary value of the elongation x.t/, is called
the phase of the oscillation. The time origin x D 0 can be chosen
in such a way that ' D 0. This reduces (11.4d) to

x.t/ D A � cos!0t : (11.4e)

After a time t D 2�=!0 D T always the same value of x.t/ is
reached. This means

x.t C T/ D x.t/ :

The time interval T is called the oscillation period, while the
reciprocal � D 1=T is the oscillation frequency and ! D 2��
is the circular frequency. The mass that experiences a restoring
force proportional to the displacement (x � x0) from the equilib-
rium position x0 is called a harmonic oscillator.

In Fig. 11.4 the elongation x.t/ D A � cos.!t/, the velocity dx=dt

and the acceleration d2x=dt2 are shown. The figure illustrates
that the acceleration always has the opposite phase as the elon-
gation, i. e. x.t/ shows a phase shift of � against d2x=dt2.

Example

x1.t/ D A � cos.!0t/ and x2.t/ D A � cos.!0 C '/ are
two harmonic oscillators with the same frequency and
the same amplitude but with a phase shift ' against each
other. The maxima of the two oscillations are shifted
against each other by the time �t D '=!0 (Fig. 11.5).
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Figure 11.5 Two harmonic oscillations with equal frequency but rela-
tive phase shift ' J

11.3 Superposition of Oscillations

In nature, pure harmonic sine oscillations are rare. Generally
more or less complex forms of oscillations occur. It turns out,
however, that even complex non-harmonic oscillations can be
represented by a superposition of pure harmonic oscillations
with different amplitudes, frequencies and phases. We will dis-
cuss in this Section such superpositions. If the elongations of
all pure harmonic oscillations point into the same direction (for
instance into the x-direction), we have a one-dimensional su-
perposition. In the general case of two- or three-dimensional
superpositions the elongations of the different oscillators can
point into arbitrary directions.

11.3.1 One-Dimensional Superposition

The sum of the different oscillations

x.t/ D
X

n

xn.t/ D
X

n

an cos.!nt C 'n/ (11.5)

depends on the amplitudes an, the frequencies !n and the phases
'n of the different summands.

11.3.1.1 Two Oscillations of Equal Frequencies

If the two oscillations

x1.t/ D a � cos.!t C '1/

x2.t/ D b � cos.!t C '2/

with equal frequencies !, but different amplitudes and phases
are superimposed, one obtains according to the addition theorem
of trigonometric functions

x.t/ D x1.t/C x2.t/ D A � cos!t C B � sin!t

D C � cos.!t C '/
(11.6)

Figure 11.6 One-dimensional superposition of two oscillations with equal fre-
quencies but different phases '1 and '2

with the relations

A D a � cos'1 C b � cos'2 ;

B D �a � sin '1 � b � sin '2 ;

C D
p

A2 C B2 and tan ' D �B

A
:

The superposition is therefore again a harmonic oscillation with
the same frequency but amplitude and phase differ from that of
the partial oscillations (Fig. 11.6).

Special Cases:

1. a D b and '1 D '2 D '

) x D x1 C x2 D 2a � cos.!t C '/

Both oscillations add in phase and the resulting oscillation
has twice the amplitude of the two summands.

2. a D b but '1 ¤ '2

x.t/ D aŒcos.!t C '1/C cos.!t C '2/�

D aŒcos!t.cos'1 C cos'2/ � sin!t.sin '1 C sin '2/�

Ansatz:

x.t/ D b � cos.!t C '/

D b � Œcos!t cos' � sin!t sin'�

) a.cos'1 C cos'2/D b � cos'

a.sin'1 C sin'2/D b � sin '

)
)

tan ' D sin'1 C sin '2

cos'1 C cos'2
D tan

'1 C '2

2

) ' D '1 C '2

2

) b D a �
p

2 C 2 cos.'1 � '2/

) x.t/ D a �
p

2 C 2 cos.'1 � '2/ cos.!t C '/

The resultant amplitude is smaller than 2a and the phase dif-
fers from '1 and '2. For '1 D '2 C � the two oscillations
have opposite phases. The two oscillations cancel each other
and x.t/ � 0, i. e. the total amplitude is zero.
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11.3.1.2 Different Frequencies, Beats

A different situation arises when two oscillations with different
frequencies are superimposed (Fig. 11.7). For equal amplitudes
a D b the sum of the two oscillations

x1.t/ D a � cos!1t I x2.t/ D a � cos!2t

gives with the trigonometric theorem

cos˛ C cosˇ D 2 cos
˛ � ˇ

2
� cos

˛ C ˇ

2
;

the superposition

x.t/ D 2a � cos
�!1 � !2

2
t
�

� cos

�
!1 C !2

2
t

�
: (11.7)

If the two frequencies do not differ much, i. e. .!1 � !2/ �
! D 1

2 .!1 C !2/ Eq. 11.7 can be interpreted as an oscillation

Amplitude

Envelope

Figure 11.7 One-dimensional superposition of two oscillations with different
frequencies

Microphone

Resonance boxes

Oscilloscope

Figure 11.9 Experimental setup for the acoustic and visible demonstration of beats

Envelope

Figure 11.8 Beat pattern of the superposition of two oscillations with frequen-
cies !1 and !2 and ı! � ! D 1

2 .!1 C !2/

with the frequency ! and an amplitude A.t/ D 2a � cosŒ 1
2 .!1 �

!2/t� that oscillates slowly with a period � D 2�=.!1 � !2/,
which is long compared with the mean oscillation period T D
2�=! (Fig. 11.8). This oscillation x.t/ is called a beat and the
period � is the beat period or beat cycle.

Acoustic beats can be realized by two vibrating tuning forks,
which are slightly detuned against each other. With a micro-
phone they can be made audible to a large auditorium and they
can be also made visible on an oscilloscope (Fig. 11.9) (see also
Sect. 11.10).

11.3.1.3 Superposition of Several Oscillations;
Fourier-Analysis

When N oscillations with frequencies !n are superimposed, the
resultant oscillation

x.t/ D
NX

nD1

an cos.!nt C 'n/ (11.8)

is generally complex (Fig. 11.10). It is, however, still periodic
with a period T D 2�=!m where !m is the maximum common
factor of all involved frequencies !n. For the special case !n D
n � !1 .n D 1I 2I 3I : : :/ the period of the superposition is T D
2�=!1.

Conversely every periodic function f .t/ with f .t/ D f .t C T/,
can be expressed by a sum of sin- and cos-functions with fre-
quencies !n D n � !1 .n D integer/. It is

f .t/ D a0 C
1X

nD1

an cos.n � !1 � t C 'n/ : (11.9)
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Figure 11.10 Superposition of five oscillations xn D a � sin.n!t/ with equal
amplitudes An and frequencies!n D n �!1 (dashed curve) and!n D .2n�1/!1

(solid curve). The amplitude of the superposition has been reduced by a factor
3:66

The oscillation a1 �cos!1t is the fundamental oscillation,
the members with higher frequencies n�!1 are higher har-

monics. In acoustics, they are called fundamental tone

and overtones.

The partition of a periodic function into harmonics i. e. the rep-
resentation of f .t/ as a Fourier-series is called Fourier analysis.
Its general from is discussed in Sect. 13.4.

The experimental Fourier analysis can be performed with the
vibrating reed frequency meter, shown in Fig. 11.11. It consists
of a series of flat springs with different lengths and resonance
frequencies ! D n �!1 .n D 1; 2; 3; : : :/. When they are excited
by a mechanical vibration their oscillation amplitude becomes
maximum, when the exciting frequency matches the resonance
frequency determined by the length of the spring.

The human inner ear embodies such vibrating springs in the
form of thin hairs with different resonance frequencies. Their vi-
brations are transformed into electric signals that are conducted
to the brain (see Sect. 11.5 and 11.14). If the hairs are exposed

Stroboscobic

illumination

Leaf spring

Figure 11.11 Reed frequency meter

5
Sound source

Frequency filter

Microphone

Oscilloscope

Figure 11.12 Electrical detection of mechanical oscillation and Fourier-
analysis with frequency filters

to excessive sound intensities, they can break and the ear can no
longer hear the corresponding frequencies.

In a more elegant way mechanical oscillations can be detected
and measured by microphones, which transform them into elec-
trical signals that can be viewed for instance, on the screen of an
oscilloscope. If the source emits several frequencies, they can
be selected by parallel-connected electrical filters (Fig. 11.12).
that act as Fourier-analysers.

In Fig. 11.13 the Fourier-analysis of a periodic rectangular func-
tion

f .t/ D
(

A for 0 < t < T
2

0 for T
2 � t � T

)
and f .t C T/ D f .t/ I

f .t/ D a0 C
1X

nD1

an sin.n!t/ I ! D 2�

T

a0 D A

2
I a2n�1 D 2A

.2n � 1/�
I a2n D 0

is shown with the corresponding magnitude distribution of the
amplitudes an.

Remark. Even an arbitrary not necessary periodic function can
be represented as a superposition of periodic functions. Instead
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Figure 11.13 Fourier-analysis of an equidistant sequence of rectangular pro-
files

of the sum one obtains now the integral

f .t/ D
1Z

0

Œa.!/ cos!t C b.!/ sin!t� d!

with the coefficients

a.!/ D 1

�

C1Z

�1

f .t/ cos!tdt ; b.!/ D 1

�

C1Z

�1

f .t/ sin!tdt :

11.3.2 Two-dimensional Superposition;
Lissajous-Figures

When two oscillations with the same frequency ! and a phase
shift ',

x D a � cos.!t/ ; y D b � cos.!t C '/ ; (11.10)

which oscillate into directions that are orthogonal to each other,
are superimposed, one obtains the two-dimensional representa-
tion

x

a
D cos!t I

y

b
D cos!t cos' � sin!t sin '

D x

a
cos' � sin!t sin ' :

Rearrangement gives

sin!t � sin' D x

a
cos' � y

b

cos!t � sin ' D x

a
sin ' :

Elimination of time t by squaring and adding the two equations
yields

sin2 ' D x2

a2
C y2

b2
� 2xy

ab
cos' :

Figure 11.14 Trajectories y.x/ of the superposition x.t/C y.t/ with x.t/ D
b � sin.!t C �'/ and y.t/ D a � sin!t for different values of the phase shift
�'. a for a ¤ b and b for a D b . c Illustration of the functions y.t/ and x.t/
for�' D �=6

This can be rearranged into the ellipse equation for the motion
of the oscillating point mass in the x–y-plane.

x2

a�2
C y2

b�2
� 2xy cos'

a�b� D 1 ; (11.11)

which describes an ellipse with axes tilted by the angle ' against
the x- and y-axes. The length of the half axes a� D a � sin'
and b� D b � sin ' depends on the amplitudes a and b of the
oscillations and on the phase shift ' (Fig. 11.14).

For the special case ' D 0 the ellipse reduces to the straight line
y D .b=a/x.
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Figure 11.15 Lissajous-figures y D f .x/ of oscillations (11.12) for different
values of the frequency-ratio !1=!2 and phase differences�' D '1 � '2 and
'1 D 0

For ' D �=2 one obtains an ellipse with the axes a� D a and
b� D b in the direction of the x- and y-axes. For ' D �=2 and
a D b the trajectory is a circle.

For demonstration experiments these two-dimensional oscilla-
tions can be realized when a pendulum with a hollow sphere of
magnetic material, filled with white sand is excited in the x- and
the y-directions by electromagnets. When the sand runs through
a small hole in the hollow sphere onto a plane of black velvet it
writes the resulting trajectories for different values of a, b and
'. In a simpler demonstration the x- and y-input of an oscillo-
scope are fed by periodic voltages with different amplitudes and
phase shifts. In Fig. 11.14 the trajectories in the x–y-plane are
illustrated for some ratios a=b and different phase shifts '.

If two oscillations in x- and y-directions

x D a � cos.!1t C '1/

y D b � cos.!2t C '2/ ;
(11.12)

with different frequencies !1 and!2 are superimposed the resul-
tant trajectory is generally more complex. It describes a closed
curve only if the ratio !1=!2 is a rational number. Such a curve
is called a Lissajous-figure. If !1=!2 is irrational the trajectory
fills in the course of time the whole area of the rectangle

�a � x � Ca I �b � y � Cb

in the x–y-plane [11.5]. In Fig. 11.15 some Lissajous figures are
shown for different values of !1=!2 and '.

11.4 The Free Damped Oscillator

If the mass of the oscillator in Fig. 11.1 moves through a viscous
liquid (Fig. 11.16) the friction can no longer be neglected. In
addition to the restoring spring force F D �D � x the Stokes
friction force (8.34)

Ff D �6�� � r � v (11.13)

influences the oscillation.

For the general case where the friction force is opposite to the
velocity v and proportional to the magnitude v D jvj we can
describe oscillations by the differential equation

m � Rx D �D � x � b � Px : (11.14)

With the abbreviations

!2
0 D D

m
and 2
 D b

m

we obtain the general equation of motion

Rx C 2
 Px C !2
0 x D 0 (11.15)

of the damped oscillation with the damping constant 
 . Similar
to the problem in Sect. 11.1 we make the ansatz for the solution

x.t/ D c � e�t :

Inserting this into (11.15) one obtains the equation for the pa-
rameter �

�2 C 2
�C !2
0 D 0

with the solutions

�1;2 D �
 ˙
q

2 � !2

0 : (11.16)

This gives analogous to (11.3) the general solution for the am-
plitude

x.t/ D e�
 t
h
c1e

p

2�!2

0 �t C c2e�
p

2�!2

0 �t
i
: (11.17a)

Figure 11.16 Damped oscillator
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The time behaviour of x.t/ essentially depends on the ratio of

mean restoring force

mean friction force
D hjD � xji

hjb � Pxji

D m!2
0

p
x2

2
m
p

Px2
D !0

2

:

This means that it depends on the relative magnitude of !0 and

 . We distinguish between the following three cases:

11.4.1 
 < !0, i. e. weak damping

With the abbreviation !2 D !2
0 � 
2 is

�1;2 D �
 ˙
p

�!2 D �
 ˙ i! :

The general solution (11.17a) is then

x.t/ D e�
 t
�
cei!t C c�e�i!t

�

D Ae�
 t cos.!t C '/ ;
(11.17b)

where, as in Sect. 11.1

A D 2jcj and tan ' D � i.c � c�/

c C c� D Imfcg
Refcg :

Equation 11.17b describes a damped oscillation, where the am-
plitude A�e�
 t decays exponentially. It is illustrated in Fig. 11.17
for the initial conditions x.0/ D A and .dx=dt/.0/ D v0, for
which the solution (11.17b) is

x.t/ D Ae�
 t cos!t : (11.17c)

With v0 D �A � 
 we obtain

v.t/ D v0e�
 t

�
cos!t C !



sin!t

�
: (11.17d)

Two successive maxima of the damped oscillation have the am-
plitude ratio

x.t C T/

x.t/
D e�
T (11.18)

with the period T D 2�=!.

The natural logarithm of the inverse ratio

ln

�
x.t/

x.t C T/

�
D 
 � T D ı

is called the logarithmic decrement.

After the time t D � D 1=
 the envelope f .t/ D A � e�
 t of the
oscillation has decreased to 1=e of its initial value f .0/ D A.

x

Figure 11.17 Damped oscillation with damping constant 
 and oscillation pe-
riod T for the initial conditions x.0/ D A (black curve ) and x.0/ D 0 (red
curve )

The frequency ! D
q
!2

0 � 
2 of the damped oscillator is
for the same spring constant D slightly smaller than that
of the undamped oscillator. The frequency shift �! in-
creases with increasing damping 
 .

Examples

1. 
=!0 D 0:01 ) .!0 � !/ D 5 � 10�5 � !0; ı D 0:06,
i. e. after about 16 oscillation periods the amplitude
has dropped to 1=e of its initial value, i. e. � D 16T .

2. 
=!0 D 0:1 ) .!0 � !/ D 5 � 10�3!0; ı D 0:6,
) � D 1:6T , i. e. after 1.6 oscillation periods the am-
plitude has already decreased to 1=e. J

11.4.2 
 > !0, i. e. strong Damping

The coefficients � (11.16) are now real.

�1;2 D �
 ˙
q

2 � !2

0 D �
 ˙ ˛

with ˛ D
q

2 � !2

0

The general solution (11.17) is therefore

x.t/ D e�
 t
�
c1e˛t C c2e�˛t

�
: (11.19a)

With the initial conditions x.0/ D 0 and dx=dt.0/ D v0 one
obtains c1 C c2 D 0 and c1 � c2 D v0. This gives the special
solution

x.t/ D v0

2˛
e�
 t

�
e˛t � e�˛t

�
: (11.19b)

With the hyperbolic sine-function sinh.˛t/ D 1=2.e˛t � e�˛t/
this can be written as

x.t/ D v0

˛
e�
 t sinh.˛t/ : (11.19c)
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Critical damping

Critical damping

Subcritical damping

Strong damping
(creeping case)

Strong damping

Figure 11.18 Elongation x.t/ of the damped oscillation for critical damping
(red curve ) and super-critical damping (black curve, creeping case). Initial con-
ditions: a x.0/ D 0; Px.0/ D v0; b x.0/ D A ; Px.0/ D 0

The “oscillation” (11.19c) consist of a single elongation, which
converges slowly to zero for t ! 1 (Fig. 11.18a). This situa-
tion is also called the “creep-case” because x.t/ creeps after its
maximum very slowly towards zero.

For different initial conditions x.0/ D A and dx=dt.0/ D 0 the
coefficients ci become

c1 D ˛ C 


2˛
A I c2 D ˛ � 


2˛
A ;

which gives

x.t/ D A

˛
e�
 tŒ˛ cosh.˛t/C 
 sinh.˛t/� : (11.19d)

11.4.3 
 D !0 (aperiodic limiting case)

The two parameters � (11.16) now become

�1 D �2 D � D �
 :
The general solution of the differential equation (11.15) must
have two independent integration constants. In order to find
these constants we try the ansatz

x.t/ D C.t/ � e�t (11.20)

with the time-dependent factor C.t/. Inserting this into (11.15)
we obtain for the function C.t/ the equation

RC C .2�C 2
/ PC C .�2 C 2
�C !2
0 /C D 0 :

For the solution � D �
 D �!0 the two expressions in the
brackets become zero and our equation reduces to

d2C

dt2
D 0 ! C D c1t C c2 :

The general solution (11.20) then becomes

x.t/ D .c1t C c2/e�
 t : (11.21)

With the initial conditions x.0/ D 0, dx=dt.0/ D v0 this reduces
to

x.t/ D v0te�
 t ; (11.21a)

which is illustrated in Fig. 11.18a). The oscillation is de-
generated to a single elongation, like in the creeping case
(Sect. 11.4.2), it starts, however, with a linear rise and, after the
maximum, it reaches zero faster than for the case in Sect. 11.4.2.
The maximum is reached at t D 1=
 . For t D 5=
 the amplitude
has already decreased to x D 0:1xmax.

For different initial conditions x.0/ D A and dx=dt.0/ D 0 the
solution is

x.t/ D A.1 C 
 t/e�
 t : (11.21b)

The amplitude starts at x D A and proceeds initially
with horizontal slope until it decreases exponentially to zero
(Fig. 11.18b).

11.5 Forced Oscillations

If the upper end of the spring in Fig. 11.16 is not kept at a fixed
position, but is moved up and down by a periodic external force
(Fig. 11.19), this force is transferred through the spring onto the
mass m. The equation of motion is now

m � Rx D �Dx � bPx C F0 cos!t : (11.22a)

With the abbreviations

!2
0 D D

m
I 
 D b

2m
I K D F0

m
;

this changes into the inhomogeneous differential equation

Rx C 2
 Px C !2
0x D K � cos!t ; (11.22b)

which differs from the homogeneous equation (11.15) of the
damped free oscillator by the expression K � cos.!t/ of the ex-
ternal force, which is independent of x.

The general solution of this inhomogeneous equation is the sum
of the general solution (11.17a) of the homogeneous equation
(11.15) with F D 0, and a special solution of the inhomoge-
neous equation (11.22b). It therefore must have the form

x.t/ D A1e�
 t � cos.!1t C '1/C A2 cos.!t C '/ ; (11.23a)

where !1 D
q
!2

0 � 
2 is the frequency of the free damped
oscillator (11.15) with weak damping.

After a sufficiently long time t � 1=
 the amplitude A1 � e�
 t

becomes so small that we can neglect it against the second term
in (11.23a). This second term depends on the frequency ! of
the periodic driving force, which enforces its frequency ! onto
the system (forced oscillation).

The second term in (11.23a) therefore represents the station-

ary oscillation state while the first term gives the transient

response valid for times t < 1=
 .
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Figure 11.19 Forced oscillation

11.5.1 Stationary State

We will at first discuss the stationary state of the forced oscilla-
tion, where the transient response of the damped oscillation of
the free oscillator has already decayed. We make the ansatz

x.t/ D A2 � cos.!t C '/ ; (11.23b)

which has the two free parameters amplitude A2 and phase '
of the forced oscillation. Inserting (11.23b) into (11.22b) gives
with the trigonometric addition theorem and after rearrangement
of the summands the result

��
!2

0 � !2
�

A2 cos' � 2
A2! sin ' � K
�

cos!t

�
��
!2

0 � !2
�

A2 sin' C 2
A2! cos'
�

sin!t D 0 :

Since this equation must be valid for arbitrary times the two
prefactors of the time dependent terms cos!t and sin!t in the
cornered brackets must be identical zero. This gives the two
equations

A2
�
!2

0 � !2
�

cos' � 2A2
! sin ' � K D 0 : (11.24a)
�
!2

0 � !2
�

sin ' C 2
! cos' D 0 : (11.24b)

From (11.24b) we conclude

tan ' D � 2
!

!2
0 � !2

: (11.25)

The phase shift '.!/ of the forced oscillation with 
 > 0 against
the enforcing oscillation increases for ! � !0 from 0 to ��=2.
For ! > !0 from ��=2 to �� (Fig. 11.20). It is negative, i. e.
the forced oscillation lags behind the enforcing oscillation.

The phase shift '.!/ depends on the damping constant 
 and
on the frequency difference !0 – ! between the eigen-frequency
!0 of the free oscillator and the frequency ! of the driving force
(Fig. 11.20).

For ! D 0 is ' D 0. For ! D !0 the phase shift ' reaches
the value ' D ��=2, where d'=d! has its maximum value and
converges for ! ! 1 towards ' D �� .

–  /2
Strong damping

Weak damping

Figure 11.20 Phase shift ' between forced oscillation and exciting oscillation
for different damping coefficients

When we solve (11.24a) for A2 cos' and A2 sin ' and insert
(11.24b), we obtain

A2 sin' D � 2
!K

.!2
0 � !2/2 C .2
!/2

;

A2 cos' D .!2
0 � !2/K

.!2
0 � !2/2 C .2
!/2

:

Squaring both equations and adding the results gives

A2.!/ D F0=mq
.!2

0 � !2/2 C .2
!/2
: (11.26)

Note: With a complex Ansatz for the driving force we get
instead of the real equation (11.22) the complex equation for
z D x C iy

Rz C 2
 Pz C !2
0z D K � ei!t with z D x C iy : (11.27)

This equation allows a faster and more elegant way to the so-
lution than the derivation (11.24)–(11.26). Inserting the Ansatz
z D A � ei!t into (11.27) gives immediately the amplitude

A D K � .!2
0 � !2 � 2i
!/

.!2
0 � !2/2 C .2
!/2

D a C ib D jAj � ei' ; (11.27a)

with the real part

a D K.!2
0 � !2/

.!2
0 � !2/2 C .2
!/2

D A2 cos' ; (11.27b)

and the imaginary part

b D � 2K
!

.!2
0 � !2/2 C .2
!/2

D A2 sin ' : (11.27c)

With tan ' D b=a this allows the direct determination of the
phase ' and the real amplitude jAj D

p
a2 C b2 (Fig. 11.21).

This derivation uses the fact that for complex solutions of linear
differential equations the real part as well as the imaginary part
are solutions. It can be shown (see Probl. 11.3) that only the
imaginary part b describes the consumption of energy, which
is supported by the driving force. The real part describes the
periodic acceptance and delivery of energy during the oscillation
cycles.
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a

b

Figure 11.21 Complex representation of a forced oscillation with a D Re.A /
and b D Im.A /

The amplitude of the forced oscillation depends on

the amplitude K D F0=m of the driving force
the damping constant 

the frequency difference .!0 � !/ between the eigen-
frequency !0 of the free oscillator and the frequency ! of
the driving force.

If we differentiate the radicand in (11.26) with respect to ! and
set the derivative equal to zero, we obtain the minimum of the
denominator, i. e., the maximum of the amplitude A2.!/. This
yields for the resonance frequency of the forced oscillator

!R D
q
!2

0 � 2
2 : (11.27d)

This is not exactly the resonance frequency !1 D
p
!2

0 � 
2 of
the free damped oscillator. The deviation is, however, small for

 � !0.

The resonance curve A2.!/ of the forced oscillation is shown
in Fig. 11.22 for different values of the ratio 
=!0 of damping
constant and eigen-frequency !0. Note, that the curves are not
symmetric with respect to !0. and are also not centered around
the resonance frequency !R D

p
!2

0 � 
2 of the free damped
oscillator. The asymmetry increases with increasing damping
constant.

We will now determine the half width (FWHM D full width
at half maximum) of the resonances. The amplitude A.!/ in
(11.26) becomes maximum for the resonance frequency !R

in (11.27d), where the denominator in (11.26) has the value
2
.!2

R C 
2/1=2. The amplitude decreases to 1=2 of its maxi-
mum value at the frequencies !1;2, when the radicand in (11.26)
takes four times the value of the radicand for the resonance fre-
quency !R.

Taking into account (11.27d) we obtain the condition

.!2
0 � !2

1;2/
2 C .2
!1;2/

2 D 4 � Œ.!2
0 � !2

R/
2 C .2
!2

1;2/
2�

D 16
2.!2
R C 
2/ :

Solving for !1;2 gives

!1;2 D !2
R ˙

q
3!2

R C 3
2 :

Figure 11.22 a Resonance curve of forced oscillation for different damping.
Note the shift of the maximum with increasing damping. b Quantitative be-
haviour of '.!=!0/

The full half width �! D !1 � !2 is then

�! D
�
!2

R C 2

q

3!2
R C 3
2

�1=2

�
�
!2

R � 2
 �
q

3!2
R C 3
2

�1=2

:

(11.27e)

The asymmetry of the curve A2.!/ and the shift of the maximum
becomes more obvious in Fig. 11.23, where the frequency scale
is compressed in order to show a larger frequency range.

For 
 � !R is !2
1;2 � !2

R D .!1;2 C !R/ � .!1;2 � !R/ �
2 � !R � 1=2�! and we can approximate the half width by

�! D 2


!R

q
3!2

R C 3
2 � 2
 �
p

3 : (11.27f)

For 
 D 0 is �! D 0 and the amplitude is A2.!R/ D 1 (Res-
onance disaster). The damping restricts the amplitude to such
finite value, where the energy supplied per second by the exter-
nal force just compensates the friction losses (see Sect. 11.15).
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Figure 11.23 Normalized amplitude A2.!/ of a forced oscillation for different
values of 
=!0

11.5.2 Transient State

In the stationary phase of the forced oscillator the eigen-
frequency !0 appears only indirectly: Although the system
oscillates with the frequency ! of the external periodic force,
amplitude and phase of the system depend on the difference
!0 � ! between eigen-frequency !0 and enforced frequency !.

The situation is different during the initial transient time where
the eigen-frequency has not yet decayed. The characteristic tone
quality of musical instruments is mainly caused by this initial
transients (see Sect. 11.15). If these transients are suppressed
it will be very difficult to distinguish between the sound of the
different instruments.

11.6 Energy Balance for the
Oscillation of a Point Mass

The kinetic energy of the harmonic oscillator is according to
(11.4e)

Ekin D 1
2 mPx2 D 1

2 m!2
0 A2 sin2 !0t : (11.28a)

The average over one oscillation period is

hEkini D 1

T

TZ

0

1

2
mPx2dt D 1

4
mA2!2

0 : (11.28b)

For the potential energy we obtain

Epot D
xZ

0

Fdx D 1

2
Dx2 D 1

2
DA2 � cos2 !0t

D 1

2
m!2

0 A2 cos2 !0t

(11.29a)

with the average

hEpoti D 1

T

TZ

0

1

2
Dx2dt D 1

4
mA2!2

0 : (11.29b)

The sum of kinetic plus potential energy

Ekin.t/C Epot.t/ D 1
2 m!2

0 A2.cos2 !0t C sin2 !0t/

D 1
2 m!2

0 A2 D E D const
(11.29c)

remains for all times constant and is equal to the constant total
energy.

For the harmonic oscillation the time averaged values of
kinetic and potential energy are equal. They are propor-
tional to the squares of amplitude A and frequency !.

Example

A mass with m D 1 g, which oscillates with the frequency
!0 D 2� � 103 s�1 and the amplitude A D 1 cm has a total
energy E D 1=2m � !2

0 � A2 � 2 J. J

For the damped oscillation, part of the total energy E D Ekin C
Epot is converted by friction into heat. This can be quantitatively
derived when we multiply (11.14) on both sides by dx=dt. This
gives

mRxPx C DxPx D �bPx2 ; (11.30)

which is equivalent to

d

dt

�
m

2
Px2 C 1

2
Dx2

�
D �bPx2 D �2
mPx2 : (11.31)

The term in the bracket is the sum of kinetic and potential energy
and the right side of (11.31) gives the loss of energy per second
due to friction.

Integration over one oscillation period yields the energy loss per
oscillation period.

W D �2
m

TZ

0

Px2dt

D �2
m

TZ

0

A2e�2
 t.
 cos!t C ! sin!t/2dt

D m

2
A2
�
!2

0 C 
2
� �

e�2
T � 1
�
;

(11.32)

where A is the initial amplitude of the first maximum at t D 0.



C
h

a
p

te
r

1
1

334 11 Mechanical Oscillations and Waves

For weak damping .
 � !0/ is 
 � T � 1 and the expansion of
the exponential e�x � 1 � x gives the approximate energy loss
per oscillation period T

W � �mA2
�
!2

0 C 
2
�

� 
T : (11.33)

The friction losses for weak damping increase linearly with 
 .
They are proportional to the square A2 of the amplitude and the
square !2

0 of the frequency. For strong damping .
 � !0/ they
are proportional to 
3. Here there is no longer a real oscillation
(see Sect. 11.4.3) and therefore !0 is not really defined.

We get a better insight into the energy balance of the forced

oscillation, when we multiply (11.22) with Px. This gives, similar
to (11.31)

mRxPx C DxPx D �bPx2 C F.t/Px

) d

dt

�
m

2
Px2 C D

2
x2

�
D �bPx2 C F.t/ � Px :

(11.34)

The left side describes the change of the total energy (kinetic C
potential energy) with time. It is reduced by the amount �b � Px2

due to friction and enlarged by F.t/ � Px supplied by the external
force. In the stationary state the total energy is constant, i. e. the
energy loss by friction is just compensated by the energy sup-
plied by the external force. The energy supplied by the external
force is completely transferred into friction heat.

The energy, supplied per oscillation period to the system is

W D
tCTZ

t

bPx2dt D b!2A2
2

tCTZ

t

sin2.!t C '/dt

D b

2
!2A2

2T ;

(11.35)

where A2 is the amplitude of the forced oscillation (11.26) in the
stationary state.

The power received by the system is with b D 2
 � m

P D W

T
D m
!2A2

2 : (11.36)

It is proportional to the damping constant 
 and the squares of
amplitude A and frequency !.

Inserting for A2 the expression (11.26) one can derive that
dP=d! D 0 for ! D !0. This means that the energy fed into
the oscillating system becomes maximum for the resonance case
! D !0.

Pmax.!0/ D F2
0

4m � 
 (11.37)

The curve P.!/ of the received external power has a maximum
at ! D !0, (Fig. 11.24) different from the oscillation amplitude,
which becomes maximum for ! D !R (11.27d).

Resonance phenomena play an important role in daily life. All
machines and cars that are subjected to periodic forces must
avoid resonance frequencies within the frequency range of the
external forces. Such resonances can be extremely dangerous
for bridges which are exposed to turbulent wind (see the im-
pressive film on the breakdown of the Tacoma suspension bridge
(http://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge).

Figure 11.24 Accepted power P .!/ of the damped oscillator

11.7 Parametric Oscillator

In the equation (11.1b) of the harmonic oscillator the frequency
!0 can be regarded as a parameter that is defined by the mass m

and the spring constant D D m � !2
0 .

If !0 is not constant but changes periodically with time, the
other characteristic features (amplitude, phase) of the oscilla-
tor must also change. Such a system with periodical changes of
its parameters is called a parametric oscillator. Its equation of
motion is

Rx C !2.t/x D 0 : (11.38)

A simple example is a string pendulum with a periodically
changing string length L.t/. It can be realized when the upper
end of the string is suspended by an eccentric wheel (Fig. 11.25).
If frequency and phase of this periodic length change are cor-
rectly chosen, the amplitude of the oscillation can increase. If,
for instance, the string length L is shortened by �L at the phase
' D 0 the potential energy of the pendulum increases by

�E1 D m � g ��L :

If L is again lengthened by �L at the turning points ' D '0,
the potential energy decreases by �E2 D m � g � �L � cos'0.
Since �E2 < �E1 the energy of the system increases. Energy
is pumped into the system. Every child on a swing does that
intuitively when it tries to increase the swing amplitude by pe-
riodic changes of its posture at the right phases. This causes a
periodic change of the position of the centre of mass.

The periodic change of the string length L (D distance between
suspension point A and centre of mass results in a corresponding
change of the oscillation frequency ! D

p
g=L (see Sect. 2.9).

For a quantitative description we define

!2.t/ D !2
0 .1 C h cos˝t/ : (11.39)

We assume, that the maximum relative frequency swing h D
.!2 � !2

0/=!
2
0 � 2.! � !0/=!0 � 1 is small compared to 1.

The equation of motion (11.38) then reduces to

Rx C !2
0 Œ1 C h cos˝t� � x D 0 : (11.40)

This is a Mathieu’s differential equation [11.7]. The example of
the swing (Fig. 11.25) illustrates that the optimum frequency of

http://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge


11.8 Coupled Oscillators 335

C
h

a
p

te
r

1
1

Excenter

Figure 11.25 Parametric oscillator as string pendulum with periodically
changing string length. The lower red curve represents the trajectory of the
center of mass for the childrens swing, the upper red curve corresponds to the
here discussed case of the string pendulum with periodic change of the string
length

the energy supply should occur with twice the eigen-frequency
of the swing. This means that the excitation frequency˝ should
be

˝ D 2!0 C " with j"j � !0 : (11.41)

The system then performs a forced oscillation with the fre-
quency ˝=2. For the solution of (11.40) we try, similar to
(11.4c), the ansatz:

x D c1.t/ cos

�
˝

2
t

�
C c2.t/ sin

�
˝

2
t

�
; (11.42)

where now the coefficients ci are, compared with 1=˝ , slowly
varying functions of time. This implies that the second deriva-
tives d2ci=dt2 can be neglected.

Inserting (11.42) into (11.40) one obtains, when using the re-
lation cos˛ � cos 2˛ D 1=2.cos˛ C cos 3˛/ and neglecting all
terms that contain cos.3˝=2/ or "=!0

�
�

2Pc1 C
�
"C h!0

2

�
c2

�
sin

�
˝

2
t

�

C
�

2Pc2 �
�
" � h!0

2

�
c1

�
cos

�
˝

2
t

�
D 0 :

Since this equation must be fulfilled for all times, the expres-
sions in the cornered brackets have to be zero (see the similar
argumentation in (11.24)). This gives the result:

Pc1 D �1

2

�
"C h!0

2

�
c2 ;

Pc2 D C1

2

�
" � h!0

2

�
c1 :

Differentiating the first equation with respect to t and inserting
for c2 we obtain

Rc1 D �1

4

"
"2 �

�
h!0

2

�2
#

c1 D �ˇ2c1

with the solution

c1.t/ D A � e�iˇt with ˇ D 1

2

s

"2 �
�

h!0

2

�2

:

For ˇ2 < 0 ! "2 < . h�!0
2 /2 the function

c1.t/ D A � exp

8
<
:

1

2

"�
h!0

2

�2

� "2

#1=2

t

9
=
; (11.43)

grows exponentially with time t. This means that only within
the narrow frequency range

2!0 � " � ˝ � 2!0 C "

the amplitude of the undamped parametric oscillator rises ex-
ponentially towards c D 1. For all other frequencies, the
amplitude remains finite.

For a damped oscillator with the damping constant 
 the range
of possible "-values is more restricted to

�
s�

h!0

2

�2

� 
2 < " < C
s�

h!0

2

�2

� 
2 : (11.44)

An amplitude increase is only possible for h � 2
=!0. This
means that the frequency swing must have a minimum value for
compensating the friction losses through the energy provided by
the excitation force.

Parametric oscillators are not only significant for mechanical
oscillation problems but also in the quadrupole mass spectrom-
eter (see Vol. 3) and for optical parametric oscillators. These
devices, which have been developed during the last decades,
represent wavelength-tunable coherent radiation sources, which
are pumped by lasers but often surpass most lasers regarding
tunability over extended frequency ranges (see Vol. 3).

11.8 Coupled Oscillators

Coupled oscillating systems play an important role in physics
and for technical applications. The coupling causes an energy
transfer between different oscillating subsystems. If many lo-
cally separated oscillating systems are coupled, the oscillation
energy can travel as mechanical wave through the total sys-
tem. Without such coupling no mechanical waves can develop.
In this section we will at first deal with the coupling of point
masses before we discuss the more complex case of coupling
between extended bodies.

11.8.1 Coupled Spring Pendulums

If two point masses m1 and m2 that are bound to their equi-
librium positions x1 D 0 and x2 D 0 by springs with spring
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Figure 11.26 Two coupled spring pendulums

constants D1 and D2, are coupled to each other by a spring with
D12 (Fig. 11.26), the elongation of the coupling spring depends
on the momentary positions of the two masses. Therefore the
force acting on one mass depends not only on its own position
but also on the position of the other mass. The two oscillating
masses are coupled to each other.

The equations of motion are

m1 Rx1 D �D1x1 � D12.x1 � x2/ (11.45a)

m2 Rx2 D �D2x2 � D12.x2 � x1/ ; (11.45b)

where xi is the deviations from the equilibrium position of mass
mi. The Eq. 11.45 represent a system of coupled differential
equations, because each equation contains the time-dependent
positions x1 and x2 of both masses.

A suitable transformation of the variables allows the separation
of the two coupled equations. For example, for equal masses
m1 D m2 D m and equal spring constants D1 D D2 D D addi-
tion and substraction of the two equations yields the decoupled
equations

m.Rx1 C Rx2/ D �D.x1 C x2/

m.Rx1 � Rx2/ D �D.x1 � x2/ � 2D12.x1 � x2/ :

With the new coordinates

�C D 1=2.x1 C x2/ I �� D 1=2.x1 � x2/ ;

this gives the simple decoupled equations

m � R�C D �D � �C

m � R�� D �.D C 2D12/ � �� :
(11.46)

The general solutions are the harmonic oscillations

�C.t/ D A1 � cos.!1t C '1/

with !2
1 D D=m (11.47a)

��.t/ D A2 � cos.!2t C '2/

with !2
2 D .D C 2D12/=m : (11.47b)

These harmonic oscillations of the coupled system are called
normal vibrations and the coordinates � the normal coordi-

nates.

For this simple example the normal coordinates �C D 1=2.x1 C
x2/ and �� D 1=2.x1 � x2/ give the arithmetic mean and half the

Figure 11.27 Oscillation amplitudes x1.t/ and x2.t/ of coupled oscillators,
showing the beat period T and the two normal oscillations �C.t/ and ��.t/

difference of the local coordinates. The transformation to the
normal coordinates allows the description of the coupled system
as superposition of two harmonic oscillations with the frequen-
cies !1 and !2.

For equal amplitudes A1 D A2 D A the oscillations of the
two masses can be described in local coordinates by back-
transformation to xi. This gives

x1 D .�C C ��/ D A Œcos.!1t C '1/C cos.!2t C '2/�

D 2A � cos
�!1 � !2

2
t C '1 � '2

2

�

� cos
�
!1 C !2

2
t C '1 C '2

2

�
; (11.48a)

x2 D .�C � ��/ D A Œcos.!1t C '1/ � cos.!2t C '2/�

D �2A � sin
�!1 � !2

2
t C '1 � '2

2

�

� sin

�
!1 C !2

2
t C '1 C '2

2

�
: (11.48b)

These are the beats with the period T D 4�=.!1 � !2/, shown
in Fig. 11.27. The maxima of the beats for x1 are shifted against
those for x2 where the shift depends on the phases '1 and '2.

After a half cycle of the beat

� D T

2
D 2�

!2 � !1

D 2�
� r

D C 2D12

m
�
r

D

m

!
;

(11.49a)

the oscillation energy has been transferred from m1 to m2. This
is the time interval between two successive standstills of each
oscillator i. e. when the energy of one of the masses is zero.
During the full beat period T the oscillation energy is transferred
from m1 to m2 and back to m1.
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The first square root in (11.49a) can be written as
p

D=m �p
1 C 2D12=D. For D12 � D this can be expanded according

to
p

1 C x � 1 C x=2, which reduces (11.49a) to

� D 2�

s
m � D

D2
12

: (11.49b)

Example

For D12 D 0:1D the half beat period � is 10 times the
period of the free uncoupled oscillator, i. e. after 10 os-
cillation periods the energy of one oscillator has been
completely transferred to the other (Fig. 11.27).

For special initial conditions the normal oscillations can
be directly excited and pure harmonic oscillations are ob-
tained. In order to excite �C.t/, both oscillators must start
in phase. In this case is in (11.47)

�� D 0 I '1 D '2 D ' I and A1 D A2 )
x1 D x2 D �C D A1 � cos.!1t C '/ :

(11.50a)

If both masses oscillate with opposite phases, i. e. x1 D
�x2, we have

�C D 0 I '1 D '2 D ' I and A1 D �A2 )
x1.t/ D �x2.t/ D ��.t/ D A2 � cos.!2t C '/

(11.50b)

with

!1 D
r

D

m
and !2 D

r
D C D12

m
:

Coupled oscillators can be demonstrated by two simple
pendulums, coupled by a spring (Fig. 11.28) where two
masses m1 D m2 D m are suspended by strings with
length L. The coupling spring is connected to the strings
at the distance L1 below the suspension points. The fre-
quencies of the normal oscillations are now

!1 D
r

g

L
I !2 D

s
g

L
C
�

L1

L

�
� 2D12

m
: (11.50c)

When the two string pendula are coupled by a bar
(Fig. 11.29a) the frequencies are

!1 D
r

g

L
I !2 D

r
g

L2
: (11.50d)

A special case of a spring-coupled pendulum is the tor-
sion pendulum (Fig. 11.29c). A bar with two end masses

at the lower end of a spring is induced to torsional os-
cillation. The torsion of the spring changes the length of
the spring and causes up- and down oscillations. After N

torsional periods the total torsional energy is transferred
to the vertical oscillation. Now the transfer begins in the
opposite direction until the energy of the vertical oscilla-
tion is completely transferred into torsional motion. The
number N depends on the coupling strength of the spring.

Opposite phasesIn phase

L

L1

L2

(2D12 / m) L1 / L

Figure 11.28 Initial conditions for the excitation of the two normal
oscillations �C.t/ and ��.t/

Coupled oscillators can be demonstrated with several ex-
perimental setups. In Fig. 11.29 some examples are
shown. The coupling between two pendulums can be re-
alized by a spring or by a bar. In case of the spring the
spring constant D12 determines the strength of the cou-
pling, in case of the bar the coupling is proportional to the
ratio L1=L2.

String
Bar

Rigid bar

Torsional

oscillatium

L1 L1

L2 L2

Flat springSpiral

spring

Figure 11.29 Some experimental setups for demonstrating coupled
oscillators. a The coupling strength is given by the ratio L1=L2. b The
restoring force of the spring determines the coupling strength. c The
torsional oscillation is induced by the torsion of the oscillating spring

J
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11.8.2 Forced Oscillations of Two Coupled
Oscillators

When the coupled oscillators in Fig. 11.26 are exposed to an ex-
ternal periodic force F D F0 cos!t that acts on m1 (Fig. 11.30a)
both masses are excited to forced oscillations, due to the cou-
pling between m1 and m2. The equations of motion (11.45) then
become with m1 D m2 D m

mRx1 D �D1x1 � D12.x1 � x2/

� 2m
 Px1 C F0 � cos!t (11.51a)

mRx2 D �D2x2 C D12.x1 � x2/

� 2m
 Px2 ; (11.51b)

where 
 D b=2m is the damping constant.

For 
 D 0 and F0 D 0 we obtain Eq. 11.45 of the undamped
coupled oscillators. When we introduce again the normal coor-
dinates

�C D x1 C x2

2
and �� D x1 � x2

2
:

We obtain after adding and subtracting the two equations for the
case D1 D D2 D D the decoupled equations

m R�C D �D�C � 2m
 P�C C 1
2 F0 cos!t ; (11.52a)

m R�� D �.D C 2D12/�
� � 2m
 P�� C 1

2 F0 cos!t : (11.52b)

Each of these equations represents a forced oscillation. This
means that the two normal oscillations can be regarded as forced
oscillations with the eigen-frequencies

!1 D
p
.D=m � 
2/ I !2 D

p
.D C D12=m � 
2/ :

Excenter

Figure 11.30 Forced oscillation of coupled oscillators. a Coupling by springs;
b coupling by a bar

B

B

Figure 11.31 Amplitudes A �
1 (black curves ), B1 (red curves ) and A �

2 ; B2 of the
amplitudes of coupled forced oscillators, that are driven by the force F0 � cos!t ,
acting on pendulum 1

Their amplitudes can be determined from (11.52), where for �C

the eigen-frequency is ! D !1 and for �� it is ! D !2.

When the exciting frequency ! is tuned one observes reso-
nances at the frequencies !�

1 D
p

D=m � 2
2 and !�
2 Dp

.D C 2D12/=m � 2
2 (see (11.27d).

For the oscillations of the two pendulums in Fig. 11.30b with

x1 D �C C �� D A1 cos!t C B1 � sin!t

x2 D �C � �� D A2 cos ;

we obtain for the representation

xi D Ai � sin ' C Bi � cos'

the amplitudes A1, B1 and A2, B2. Art the frequency !�
1 only the

oscillation �C contributes essentially, for !�
2 only ��.

In Fig. 11.31 the amplitudes A�
1 D 2.!2

1=K/ � A1 and A�
2 D

2.!2
2=K/ � A2, are plotted, normalized to the driving force

F D K � ei!t D K.cos!t C i � sin!t/ ;

with K D F0=m (black curves) and B�
i D 2.!2

i =K/Bi (red
curves).

Such coupled forced oscillations can be demonstrated by differ-
ent arrangements. One example is shown in Fig. 11.30b, where
two spring pendulums are coupled by a rigid bar while m1 is
coupled to the external force driven by an excenter. The cou-
pling strength between the two pendulums can be varied with
the height of the bar and the coupling to the external force by
the modulation amplitude of the excenter.



11.9 Mechanical Waves 339

C
h

a
p

te
r

1
1

11.8.3 Normal Vibrations

In nature one finds many examples of coupled vibrations. The
number N of coupled oscillations is not restricted to N D 2 but
can be large integers. For instance in a solid crystal all N atoms
are coupled by electromagnetic forces interacting between the
atoms. For a crystal with a volume of 1 cm3 is N D 1023. If one
atom is excited to vibrations, it transfers its excitation energy to
many atoms in the crystal.

We will at first consider the one-dimensional case of N atoms on
a line, which are all coupled by springs with the same coupling
constant as illustrated for N D 5 in Fig. 11.32. The possible 5
coupled oscillations are also shown.

Analogue to the Eq. 11.45 one obtains a system of 5 equations.
They can be arranged in form of a matrix, where equal masses
are assumed.

m �

0
BBBBBBB@

Rx1

Rx2

Rx3

Rx4

Rx5

1
CCCCCCCA

D

0
BBBBBBB@

�2D D 0 0 0

D �2D D 0 0

0 D �2D D 0

0 0 D �2D D

0 0 0 D �2D

1
CCCCCCCA

0
BBBBBBB@

x1

x2

x3

x4

x5

1
CCCCCCCA

: (11.53a)

The solutions of these equations give the frequencies !N .N D
0; 1; 2; 3; 4/. The result is

!0 D
q
.2 �

p
3/D=m I !1 D

p
D=m I

!2 D
p

2D=m I !3 D
p

3D=m I

!4 D
q
.2 C

p
3/D=m :

(11.53b)

Each of these 5 normal vibrations describes a state where all
masses perform harmonic oscillations with the same frequency
!N .

Every arbitrary oscillation of the system can be always de-
scribed as a superposition of normal vibrations.

Figure 11.32 Longitudinal oscillation of a linear chain of five equal masses

Figure 11.33 The three normal vibrations of a nonlinear triatomic molecule
AB2, where the center of mass remains at rest

Examples of oscillations where the masses do not move along
a line, are the vibrations of polyatomic molecules (see Vol. 3).
They can be also described as superposition of normal vibra-
tions, which can be deduced by the following considerations.

Each of the N atoms of a molecule has 3 degrees of freedom
for its motion. A molecule with N atoms therefore has 3N de-
grees of freedom. If the molecule would be a rigid body (i. e.
the atoms could not vibrate) its motion could be described as a
superposition of the translation of its centre of mass (3 degrees
of freedom) and a rotation around this centre (3 degrees of free-
dom, see Sect. 5.1). For the vibrations therefore 3N � 6 degrees
of freedom are left. This is valid for nonlinear molecules. Linear
molecules cannot rotate around their axis (because the moment
of inertia would be extremely small and therefore its rotation
energy extremely high (see Eq. 5.16b)).

In summary: Linear molecules with N atoms have 3N � 5 de-
grees of freedom for their vibrations and therefore 3N�5 normal
vibrations. Nonlinear molecules have 3N�6 vibrational degrees
of freedom and 3N � 6 normal vibrations. Since translation and
rotation are already subtracted normal vibrations are those mo-
tions of the nuclear frame of the molecule, where the centre of
mass does not move and the rotational angular momentum is
zero.

In Fig. 11.33 the three normal vibrations of a triatomic bend
molecule are shown. For all three normal vibrations the centre
of mass is locally fixed and the angular momentum is zero.

11.9 Mechanical Waves

When an oscillating point mass m1 is coupled with other neigh-
bouring masses the oscillation energy is transported from m1 to
the neighbours. (Fig. 11.34). For a transport velocity v and
a distance to the neighbouring masses �z the energy transport
needs the time�t D �z=v.

This spatial transport of oscillation energy is called a wave. Ex-
amples for mechanical waves are water waves, acoustic waves
or pressure waves in solids, liquids or gases.
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Figure 11.34 Propagation of a mechanical wave with velocity v as local trans-
port of oscillation energy due to the coupling between neighbouring oscillators
with distance�z

A wave is a process, where oscillation energy is trans-
ported from the location of its generation to adjacent
places where matter can oscillate. The transport is due to
couplings between the excitation place and its surround-
ings. The wave velocity depends on the coupling strength
and on the oscillating masses.

In this section we will at first discuss those waves that travel only
into one direction before we deal with the more general case of
wave propagation into all directions.

Remark. We will denote the displacement amplitude of the
wave by the letter � . In the general case � is not necessarily the
displacement of matter, but can also describe a local pressure
change or for electromagnetic waves a local change of the elec-
tric field strength. All such waves can, however, be described by
the Eq. 11.54 to 11.58 discussed below.

11.9.1 Different Representations of Harmonic
Plane Waves

We start with a simple experiment: We pull into the �z-direction
with constant velocity v a plate with black velvet below a sand
pendulum, oscillating in the x-direction. The white sand that
pours out of the pendulum writes a sine wave onto the velvet
(Fig. 11.35). For an observer O sitting on the plate and moving
with the velocity �v into the �z-direction, the linear harmonic
oscillation � D A � sin.!t/ has spread with the velocity Cv into
the Cz-direction. For O the elongation �.t; z/ becomes a func-
tion of time t and location z:

�.z; t/ D A � sin
h
!

t � z

v

i
: (11.54a)

We call all waves that describe the propagation of harmonic os-
cillations as harmonic waves.

λ

Figure 11.35 Demonstration of the relation between oscillation and wave
with the help of a sand pendulum

With the wavenumber k D 2�=� we can write (11.54a) as

�.z; t/ D A � sin.!t � kz/ : (11.54b)

At a given time t D t0 the phase ' D ! � t � k � z of the wave
is equal for all locations on the plane z D z0. The plane z D z0

is called the phase plane and all waves (11.54) are plane waves.
For plane waves propagating into the z-direction the displace-
ment � does not depend on x or y, but only on z and t.

The wavelength � of a wave is defined as the distance �z D
z1 � z2 between two planes z D z1 and z D z2 where the
phases '.t0; z1/ and '.t0; z2/ at the same time t D t0 differ by
2� . The displacements � are the same for both planes. For in-
stance, � is equal to the distance between two maxima of the
wave (Fig. 11.36): The velocity of the propagation of constant
phase is the phase velocity vPh. The relations

! � z1=vPh C 2� D !.z1 C �/=vPh

) � D 2� � vPh=! D vPh=� D vPh � T

with � D !=2� D 1=T :

(11.55a)

The wavelength � is the distance that the wave propagates
during one oscillation period T .

Figure 11.36 Relations between oscillation period T D 1=�, wavelength �
and phase velocity vPh
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For an observer who moves with the phase velocity of the wave
(he is, for example, always sitting on a maximum of the wave),
the phase of the wave stays constant. For him is

d.!t � kz/

dt
D 0 ) ! � k � dz

dt
D 0 ) dz

dt
D !

k
:

The phase velocity in (11.55a) is then with � D !=2�

vPh D !

k
D � � � : (11.55b)

The phase velocity vPh is equal to the ratio of angular ve-
locity ! and wave number k.

It depends on the coupling strength between neighbouring
atoms. their density and on the mass of the oscillating atoms.

The following descriptions of plane waves propagating into the
z-direction are equivalent:

�.z; t/ D A � sin.!t � kz/

D A � sin

�
2�

�
.vPh � t � z/

�

D A � sin
h
2�
vPh � t � z

�

i
:

(11.56)

In Sect. 11.1 it was shown, that oscillations can be also de-
scribed by complex functions. This means that the real part as
well as the imaginary part of the complex function

ei!t D cos!t C i � sin!t

are solutions of the oscillation equation. In a similar way har-
monic waves can be written in a complex form as

�.z; t/ D C � ei.!t�kz/ C C� � e�i.!t�kz/ : (11.57a)

This is equivalent to

�.z; t/ D A � cos.!t � kz/C B � sin.!t � kz/

with A D C C C� and B D i.C � C�/ :
(11.57b)

Often only the complex amplitude is written as an abbreviated
version:

�.z; t/ D C � ei.!t�kz/ : (11.57c)

The real and the imaginary part are then the representations of
the real wave.

11.9.2 Summary

Each of the representations (11.56), (11.57) of a harmonic wave
describes:

Figure 11.37 Illustration of a harmonic wave a as stationary oscillator �.zo ; t/
at a fixed position z0, b as spatially periodic function �.z ; t0/ at a fixed time t0

at a fixed position z D z0 a periodic harmonic oscillation

�.t/ D A � sin.!t � kz0/ D A � sin.!t � '/ (11.58a)

with the period T D 2�=! and the phase '.t D 0/ D k � z0

(Fig. 11.37a),
at a fixed time t D t0 a spatially period function

�.z/ D A � cos.!t0 � kz/ (11.58b)

with the wavelength � D 2�=k and the initial phase '.z D
0/ D ! � t0 (Fig. 11.37b).

11.9.3 General Description of Arbitrary
Waves; Wave-Equation

The harmonic sine wave described so far, is only a special type
of a great variety of different wave forms. We will therefore
discuss a more general description of waves propagating into
the z-direction. The following consideration will lead us to such
a general description:

A physical quantity (for example pressure, temperature, me-
chanical displacement, electrical field strength etc.) should
experience a local perturbation � as deviation from the equi-
librium conditions. Due to the coupling with the neighbouring
particles this perturbation will propagate in space in the course
of time. We call this propagation process a wave. We will study
its characteristics at first for one-dimensional waves that propa-
gate into the z-direction. A simple example is the deflection of
a string stretched in the z-direction at t D 0 (Fig. 11.38). In the
course of time this deflection will propagate into the z-direction.

If the perturbation � occurs at the time t D 0 at the position
z D z0 it will propagate with the velocity v and reach at a later



C
h

a
p

te
r

1
1

342 11 Mechanical Oscillations and Waves

z1 = z0 + v(t1 – t0)z0

(z0, t0)

Figure 11.38 Propagation of a short pulse on a stretched string

time t1 the position z1 D z0 C v � t1. If we assume that the form
of the deviation does not change during its propagation into the
z-direction, we obtain the equation for the time- and position-
dependent perturbation � as

�.z1; t1/ D �.z1 � vt1; 0/ D �.z0; 0/ : (11.59)

This shows that the function �.z; t/ remains constant for a con-
stant argument .z � v � t/, i. e. for all positions z D v � t C z0. We
therefore can write the wave function �.z; t/ as functions of the
argument .z � v � t/ in the general form

�.z; t/ D f .z � vt/ : (11.60)

If the function f .z�v �t/ does not depend on x or y, the amplitude
� is constant on the plane z D const for a given time t D t0.

Such a wave is called a plane wave that propagates in the Cz-
direction with the phase velocity v D vPh. The planes z D const
where the phase .z�v � t/ of the wave function is the same for all
points of this plane, is called the equiphase surface of the plane
wave.

A plane wave propagating into the �z-direction can be described
by the general function f .z C v � t/.

The second derivative of Eq. 11.60 with respect to z and to t

gives with the abbreviation u D z � v � t, �.z; t/ D f .u/ and
f 0.u/ D df =du the equations

@�

@z
D df

du
� du

dz
D f 0.u/ � 1

@2�

@z2
D d2f

du2
D f 00.u/ (11.61a)

@�

@t
D df

du
� @u

@t
D �v � f 0.u/

@2�

@t2
D d2f

du2
� v2 D f 00.u/ � v2 : (11.61b)

The comparison of (11.61a and b) gives the wave equation

@2�

@z2
D 1

v2

@2�

@t2
(11.62)

of a wave �.z; t/ that propagates with the phase velocity v into
the Cz-direction. All solutions of this equation represent possi-
ble waves. By imposing certain initial conditions, special waves
are selected from the infinite number of possible solutions.

Note: The solutions of (11.62) are not necessary harmonic
waves and even not periodic waves. Also short pulses �.z; t/ that
propagate into the z-direction (Fig. 11.38) can fulfil the wave
equation (11.62) and are therefore also called “waves”.

The quantity � can be also the electric or magnetic field strength.
Therefore (11.62) not only describes mechanical waves but also
electro-magnetic waves. The phase velocity v D c then be-
comes the velocity of light c (see Vol. 2).

11.9.4 Different Types of Waves

The different types of waves depend on the physical meaning of
the quantity � and on the time behaviour �.z0; t/ of the oscilla-
tion at the location z0 where the wave is generated.

11.9.4.1 Plane Waves in z-Direction

For the harmonic wave � D A � cos.!t � kz/ the wave equation
(11.62) becomes

@2�

@z2
D �k2� and

@2�

@t2
D �!2 � � : (11.63)

The phase velocity is then vPh D !=k D � � �, which is equal to
the Eq. 11.55b.

If the quantity x describes a mechanical deviation of particles in
a medium, the displacement can occur either in the z-direction
of wave propagation or perpendicular to this direction. In the
first case the wave is called longitudinal, in the second case
transversal.

The Fig. 11.39 and 11.40 illustrate both cases by the examples
of a transverse sine wave

�x.z; t/ D AOx sin.kz � !t/ ; (11.64a)

Figure 11.39 Momentary state of a transversal wave at time t0. The arrows
give the velocity Px.t0/ of the elongation x.t0/
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Figure 11.40 Longitudinal wave with elongation � of the particles and their
velocities vz (arrows ) in the propagation direction z . The lower part illustrates
schematically the shifts of the oscillating particles at t D t0

with the amplitude �x D x � x0, where Ox is the unit vector in
x-direction.

For the longitudinal wave we obtain

�z.z; t/ D BOz sin.kz � !t/ ; (11.64b)

where the displacement of the oscillating particles occurs in the
propagation direction of the wave.

We will see below, that the phase velocity vPh D !=k of the
different wave types generally will be different because the
restoring forces that determine the oscillation frequency ! is
different for shear displacements and for compression. The
velocity depends, of course, also on the medium, because the
coupling strength between neighbouring atoms may be different
for different materials.

When the displacement of the particles in a transverse wave oc-
curs in a fixed plane (for instance in the x-direction) the wave
is linearly polarized (Fig. 11.41a). The wave (11.64a) is for ex-
ample for A D const a transverse wave, linearly polarized in
x-direction and propagating into the z-direction.

Figure 11.41 a Linear polarized wave; b elliptical polarized wave

When two oscillations

x D A sin.!t C '1/

y D B sin.!t C '2/

with '1 ¤ '2 are superimposed, an elliptical oscillation in the
x–y-plane is generated (see Sect. 11.3). If such an oscillation
propagates into the z-direction, an elliptical polarized transverse
wave emerges (Fig. 11.41b) which becomes for A D B and
'1 D '2 ˙ �=2 a circular polarized wave. Any elliptically po-
larized wave can be generated by superposition of two linearly
polarized waves with orthogonal polarization.

The complex representation of an elliptically polarized wave is
for equal phase velocity of the two linearly polarized waves

� D �1 C �2 D
�
AOx C BOyei�'

�
ei.!t�kz/ : (11.65)

The real part as well as the imaginary part give the amplitude �
of the wave (Fig. 11.41b).

11.9.4.2 Plane Waves with Arbitrary Propagation
Direction

When a plane wave propagates into an arbitrary direction we
describe the propagation direction by the wave vector

k D fkx; ky; kzg : (11.66)

The absolute value k D jkj D 2�=� is the wavenumber, already
introduced in Sect. 11.9.1 (Fig. 11.42).

Since the equiphasic surfaces of a plane wave are planes perpen-
dicular to the propagation direction k, the position vector r of a
point on this surface must obey the condition k � r D const. This
can be seen as follows: For the position vectors r1 and r2 of two
points on the surface the difference r1�r2 must be a vector in the
surface. This implies: k � .r1 � r2/ D 0 ! k � r1 D k � r2 D const.

The representation of the plane harmonic wave is then

� D A sin.!t � k � r/ ; (11.67a)

because this ensures that for a fixed time all point on the
equiphasic surface k � r D const have the same phase. The am-
plitude vector A is perpendicular to k.

Figure 11.42 Plane wave with arbitrary propagation direction k
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The shorter complex description is

� D Aei.!t�k�r/ with A D a C ib ; (11.67b)

where the amplitude of the wave is jAj.
The general description of a wave that propagates into an arbi-
trary direction is the function

� D Af .!t � k � r/ :

The three partial second derivatives are

@2�

@x2
D Ak2

x

d2f

du2
;

@2�

@y2
D Ak2

y

d2f

du2
;

@2�

@z2
D Ak2

z

d2f

du2
;

@2�

@t2
D A!2 d2f

du2
;

with the abbreviation u D !t � k � r. The addition of all three
derivatives yields the general wave equation

�� D 1

v2

@2�

@t2
(11.68)

with the Laplace operator� D @2=.@x2/C @2=.@y2/C @2=.@z2/
and the phase velocity v D vPh D !=k.

It is easy to prove, that the special waves (11.67a, b) obey this
general wave equation.

11.9.4.3 Spherical Waves

When a perturbation proceeds from a pointlike excitation source
into all directions, the equiphasic surfaces must be spheres. The
radial propagation directions are perpendicular to these spheres
(Fig. 11.43). The description of a spherical wave is then

�.r; t/ D f .r/ sin.!t � kr/ ; (11.69)

where f .r/ is a spherical symmetric function. In (11.29) it was
shown that the energy of the oscillation is proportional to the

Figure 11.43 Spherical wave

M

Plane

phase

front

r

Figure 11.44 Reflection of a plane wave by a spherical mirror with focal point
M and radius r

square of the amplitude. Since the energy produced in the ex-
citation centre propagates into all directions, the energy flow
through the surface 4� � r2 must be independent of the radius r.

We will prove in Sect. 11.9.6 that the product v � �2 of phase
velocity v and the square of the amplitude � is proportional to
the energy flux density (this is the energy that is transported per
sec through 1 m2 of the surface). Therefore the amplitude f .r/
of the spherical wave must obey the condition

v � f .r/2 � 4�r2 D const

) f .r/ / A=r :

The representation of a spherical harmonic wave that is excited
in the centre r D 0 is then for all r > 0

�.r; t/ D A

r
sin.!t � kr/ ; (11.70a)

or in the complex notation

�.r; t/ D A

r
ei.!t�kr/ : (11.70b)

It differs from the plane wave not only in the decreasing ampli-
tude A / 1=r but also in the phase (!t � kr), because here the
product kr of two scalars that is the same for all directions, re-
places the scalar product k � r D kr � cos# of two vectors in the
plane wave.

A spherical wave can be produced by reflecting a plane wave by
a spherical mirror. The wave is then focused into the focal point
M of the mirror (Fig. 11.44). The reflected wave

�.r; t/ D A

r
ei.!tCkr/ (11.70c)

is a spherical wave propagating towards the focus of the mirror
into the opposite direction as an outgoing spherical wave.

11.9.5 Propagation of Waves in Different
Media

The mathematical description of waves, given in the previous
section, is true for all kind of waves, also for electromagnetic
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waves with a phase velocity c that is higher by 5–6 orders of
magnitude than that of mechanical waves. In this section we
will show, how the phase velocity of mechanical waves depends
on the characteristic properties of media. For illustration, the
propagation of mechanical waves through gaseous, liquid and
solid materials will be discussed.

11.9.5.1 Elastic Longitudinal Waves in Solids

As an example of a longitudinal wave we regard in Fig. 11.45 a
compression wave that runs through a long solid rod with cross
section A, density % and elastic modulus E. The wave can be
generated, for instance, by a loudspeaker attached to one end of
the rod.

The particles of the rod in the layer z D z0 shall have the oscil-
lation amplitude � . Particles in a neighbouring layer z D z0 Cdz

have then the amplitude

� C d� D � C @�

ız
dz :

The longitudinal oscillation of the particles changes the thick-
ness dz of the layer by the amount .@�=@z/dz. Due to the
resulting elastic tension this causes an elastic force F D � � A

where � is the mechanical stress (force per unit area). Accord-
ing to Hooke’s law � is related to the elastic modulus E by

� D E � @�
@z
: (11.71)

At the right side of the layer, the elastic tension is

� C d� D � C @�

@z
� dz D � C E � @

2�

@z2
dz :

The net force on the volume element dV D A � dz is then

dF D A � .� C d� � �/ D A � d�

D A � @�
@z

dz D A � E � @
2�

@z2
dz :

(11.72a)

This net force results in an acceleration @2�=@t2 of the mass
element dm D % � dV, which can be obtained from Newton’s
equation of motion

dF D dm � @
2�

@t2
D % � @

2�

@t2
dV

D % � Adz
@2�

@t2
:

(11.72b)

Figure 11.45 Illustration of the derivation of the wave equation (11.73)

Inserting (11.72a) gives the wave equation

@2�

@t2
D E

%

@2�

@z2
: (11.73)

The comparison with (11.62) yields the velocity of a sound wave
in a solid isotropic medium with elastic modulus E and density %

vPh D
p

E=% : (11.74a)

Measurements of the velocity of sound therefore allows the de-
termination of the elastic modulus E.

The longitudinal contortions cause transverse contractions and
elongations. If this is taken into account, Eq. 11.74a must be
refined to

vPh D
s

E.1 � �/
%.1 C �/.1 � 2�/

: (11.74b)

11.9.5.2 Transverse Waves in Solids

When a transverse wave �.z; t/ propagates through a medium,
neighbouring layers are shifted against each other in the di-
rection of � perpendicular to the propagation direction. The
coupling between neighbouring layers is caused by shear forces.
The wave velocity therefore depends on the shear-modulus G of
the medium (see Sect. 6.2.3). Since for ideal liquids G D 0 no
transversal waves can propagate through the interior of friction-
less liquids, while at the surface the surface tension provides
transversal forces and transversal waves are therefore possible
on the surface of liquids.

The derivation of the wave equation proceeds similar to that in
the last section. Instead of the displacement d� in the propaga-
tion direction k we now have a displacement d� perpendicular
to k against the shear force with a shear stress � D G � ˛ (see
Eq. 6.11). For small displacements we obtain d�=dz D tan˛ �
˛ and the phase velocity becomes

vPh D
p

G=% : (11.75)

Table 11.1 Phase velocities of longitudinal and transverse acoustic waves in
some isotropic solids at T D 20 ıC

Material vlong=m s�1 vtrans=m s�1

Aluminium 6420 3040
Titanium 6070 3125
Iron 5950 3240
Lead 1960 690
Optical glas 5640 3280
Flint glas 3980 2380
Nylon 2620 1070
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Table 11.1 lists for some materials the phase velocity of lon-
gitudinal and transversal sound waves in isotropic media at
T D 20 ıC. It illustrates that the velocity of longitudinal waves
is higher than that of transversal waves, because E > G.

11.9.5.3 Sound Waves in Anisotropic Solids

If the solid body is not isotropic (for example a single crystal)
the restoring forces depend on the direction (the elastic modulus
becomes a tensor). and therefore the phase velocity depends on
the propagation direction and for transversal waves also on the
direction of the displacement � .

Measurements of the sound velocity in anisotropic solids gives
information about the restoring forces and their dependence
on the direction, i. e. on the components of the elastic tensor
E [11.8, 11.9].

When we denote with Fxy the shear force component acting in
the x-direction on a plane with its normal in the y-direction we
can formulate the connection between the tensile forces (Fxx,
Fyy, Fzz) or the shear forces (Fxy, Fxz, Fyx: : :) and the deforma-
tions of an anisotropic elastic solid body. The deformations are
defined as follows:

Before the deformation a Cartesian Coordinate system Or D
fOx; Oy; Ozg with the unit vector Or is defined with its origin at the
point P. The deformation transfers these coordinates into new
coordinates

x0 D .1 C exx/Ox C exy Oy C exzOz
y0 D eyx Ox C .1 C eyy/Oy C eyzOz
z0 D ezx Ox C ezyOy C .1 C ezz/Oz ;

which can be written as linear combinations of the old coordi-
nates.

The diagonal components exx, eyy, ezz give the relative stretches,
the non-diagonal components exy, exz, eyx, : : : the shear.

With the notations 1 D xx, 2 D yy, 3 D zz, 4 D yz, 5 D zx,
6 D xy for the double indices the relation between the stretch-
resp. shear forces and the deformations can be written as

Fk D
6X

iD1

Cki � ei .k D 1; 2; : : : 6/ :

The Ck are the components of the symmetric elasticity tensor
E, written in reduced form. They can be determined by mea-
suring the velocity of longitudinal acoustic waves in different
directions k and of transversal waves for different polarizations
� and different propagation directions k.

In Fig. 11.46 the phase velocities for longitudinal- and transver-
sal waves in a cubic crystal for 3 different propagation directions
are shown. In Fig. 11.46a vPh is parallel to an edge of the cube.
Here the two polarizations of the transversal waves T1 and T2

give the same velocity, which is, however, different from that
of the longitudinal wave. In Fig. 11.46b vPh is parallel to the
surface diagonal. Here T1 and T2 have different phase velocities

Table 11.2 Elastic constants Cki in units of 1010 N=m2 for some single crystals
with cubic symmetry

Substance C11 C12 C44

Aluminium 10.82 6.1 2.8
Iron 23.7 14.1 11.6
NaCl 4.9 1.24 1.26

Figure 11.46 Different possible transversal waves in a cubic non-isotropic
crystal with propagation in the direction a of the edges of the cube, b of the
surface diagonal and c the space diagonal

that also differ from that of the longitudinal wave. In Fig. 11.46c
vPh is parallel to the space diagonal. In Tab. 11.2 the elastic
components Cik of the elasticity tensor are listed for some sin-
gle crystals of different materials.

11.9.5.4 Transversal Waves Along a Stretched String

When a stretched string in z-direction, that is clamped at both
ends is pulled into the x-direction, a restoring force in the �x-
direction acts on the length element ds (Fig. 11.47) which is

dFx D .F � sin#/zCdz � .F � sin#/z

D .F � sin#/z C @

@z
.F � sin#/dz � .F � sin#/z

D @

@z
.F � sin#/dz ;

where F is the force in z-direction that stretches the string. For
small displacements dx the angle # is small and we can approx-
imate sin# � tan# D @x=@z. The force on ds is then

dFx D F � @
2x

@z2
dz :

With the mass density � of the string (mass per unit length)
we obtain for ds � dz the Newton equation of motion as wave
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Figure 11.47 Illustration of the propagation of a transversal wave along a
stretched string

equation

� � dz � @
2x

@t2
D F � @

2x

@z2
dz : (11.76)

The velocity of the transversal wave propagating along the string
is then

vPh D
p

F=� : (11.77)

The velocity of the transverse wave depends on the force
that stretches the string and on the mass density �, but not
on the elastic modulus E as for longitudinal waves or from
the torsion modulus G as for transverse waves in extended
solid bodies.

11.9.5.5 Sound Waves in Gases

While in solids longitudinal waves (where the elastic modulus
E determines the strength of the coupling) as well as transverse
waves (where the shear modulus determines the coupling) are
possible, in gases only longitudinal waves can occur, because
the shear modulus in gases is zero. In gas flows a viscosity
(see Sect. 8.5) is indeed present that causes a coupling between
neighbouring layers with different velocities. This coupling
causes, however, only damping effects and there is no restor-
ing force, because this friction force is proportional to ru for a
flow velocity u and not to du=dt as for restoring forces.

For longitudinal waves the local compression leads to pres-
sure maxima and minima. We regard in Fig. 11.48 similar to
Sect. 11.9.5.1 a volume dV D A�dz which is traversed by a plane
longitudinal wave in z-direction. The displacement amplitude at
the position z D z0 is again denoted by � . The displacement at
z D z0 C dz is then

�.z0 C dz/ D �.z0/C @�

@z
dz : (11.78a)

Figure 11.48 Propagation of a plane acoustic wave in gases

The volume dV changes then by

dV D A � @�
@z

dz : (11.78b)

In an isothermal gas this volume change causes a pressure
change

dp D �p
dV

V
D �p

@�

@z
: (11.79a)

The force on the volume element dV is F D grad p � dV. The
net force (force in the direction of the pressure gradient) has the
z-component

dFz D �A � dz � @
@z
.dp/ D pA � @

2�

@z2
dz ; (11.79b)

that acts on the mass dm D % �dV D % �A �dz. Newton’s equation
of motion is therefore

p � A � @
2�

@z2
D % � A � @

2�

@t2
) @2�

@t2
D p

%

@2�

@z2
: (11.80)

This is the wave equation for the displacement � of particles in a
gas with density % and pressure p. The comparison with (11.62)
gives the phase velocity of the longitudinal wave

vPh D
p

p=% : (11.81a)

Introducing the compression modulus K the comparison of (6.9)
and (11.79a) shows that the pressure p in (11.79a) can be re-
placed by the compression modulus K. This gives another
relation for the phase velocity

vPh D
p

K=% : (11.81b)

From the gas equation (7.14) we get the relation

p

%
D p � V

n � m
D nkT

n � m
D kT

m
;

where n is the number of molecules with mass m in the volume
V. According to (7.29) the square root of the mean velocity
square

p
hv2i D

r
3kT

m
D
p

3p=% D vPh �
p

3 (11.81c)
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Table 11.3 Velocities of sound waves in gases and liquids at p D 1 bar, T D
0 ıC und 100 ıC

Medium vPh=m s�1 at 0 ıC vPh=m s�1 at 100 ıC

Air 331.5 387.5
H2 1284 1500
O2 316 369
Helium 965 1127.1
Argon 319 372.6
CO2-Gas 259 313
Water 1402 1543
Methanol 1189
Pentane 951
Mercury 1450

is larger by a factor
p

3 than the velocity of sound (phase veloc-
ity of the wave).

Note: We have assumed that the temperature of the gas remains
constant. This is, however, no longer true for sound frequen-
cies above 1kHz. The periodic compression and expansion of
the gas causes a general temperature rise. The temperature
at the pressure maxima is higher than in the pressure minima.
If the settlement of temperature equilibrium takes longer than
the period T of the wave the heat flow from pressure maxima
to the minima can be neglected (adiabatic approximation, see
Sect. 10.3). With the adiabatic equation p � V� D const one
obtains instead of (11.81a) the relation

vPh D
r

p

%
� � ; (11.81d)

where the adiabatic exponent � D Cp=Cv gives the ratio of the
molar specific heats at constant pressure or constant volume. For
air is � � 1:4 (see Sect. 10.1).

The velocity of sound in gases depends on the temperature
(Tab. 11.3). For constant pressure one obtains with % D
const =T the relation

vPh.T/ D vPh.T0/
p

T=T0 : (11.81e)

The adiabatic exponent � D .f C 2/=f depends on the number f

of degrees of freedom. For molecular gases the vibrations with
higher energy can be only excited by waves with sufficient en-
ergy. Since the energy density of a wave is proportional to the
square of its frequency (see Sect. 11.9.6), the index � depends
on the frequency ! of the wave. Therefore also the phase veloc-
ity depends on the frequency, i. e. acoustic waves in molecular

gases show dispersion.

11.9.5.6 Waves in Liquids

Inside liquids only longitudinal waves can propagate, because
the shear modulus of liquids is zero. The particles in a liquid
can freely move without restoring forces (see Sect. 6.3.1).

Figure 11.49 Surface wave in liquids

For the wave equation a completely analogous result is obtained
as for gases. Because of the much higher compression modu-
lus K the phase velocity

vPh D
p

K=% (11.81f)

is higher than in gases in spite of the higher density % (see
Tab. 11.3).

Note: At the surface of liquids, surface tension and gravity can
act as restoring forces. Therefore, transversal surface waves are
possible (Fig. 11.49).

The detailed description of surface waves and their velocities
is rather elaborate. It turns out that each volume element dV

at the surface traverses a curve that can be approximated by a
circle around a fixed centre in the middle plane of the wave
(Fig. 11.50). The liquid particles themselves are not trans-
ported with the wave but stay essentially locally fixed, besides
its motion on the circle with a radius that equals about half the
wavelength. The wave itself does not transport material but only
energy.

Remark. If ocean currents are superimposed on the wave,
there is, indeed a material transport, as many swimmers in the
ocean have experienced.

The phase velocity of the wave depends on the surface tension,
the density % and the ratio h=� of water depth h and wavelength
�. A detailed calculation proves [11.12] that

vPh D
s�

g � �
2�

C 2��

% � �

�
� tanh

�
2�h

�

�
: (11.82)

Figure 11.50 Momentary picture of the motion of liquid volume elements dur-
ing an oscillation period a at different times at a fixed position. b Velocities of
volume elements, measured by an observer who moves with the phase velocity
of the wave, always sitting on a wave peak
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Water waves show dispersion, i. e. their phase velocity de-
pends on the wavelength � (Fig. 11.51).

If the first term in (11.82) is dominant, gravity represents the
main part of the restoring force and the waves are called sur-

face gravity waves. Their wavelength is rather large (� �
2� �

p
�=% � g). In this case dvPh=d� > 0. The phase ve-

locity increases with increasing wavelength (Fig. 11.51). For
� < 2� �

p
�=%g � 5 cm the second term in (11.82) is dominant

and capillary waves occur. Because dvPh=d� < 0 the veloc-
ity decreases with increasing wavelength. Inserting numerical
values for sea water (� D 7:3 � 10�2 N=m and % D 103 kg=m3

the function vPh.�/ has a minimum at �m D 2� �
p
�=%g D

Figure 11.52 Breaking waves which occur when the water depth becomes smaller than the wavelength. (With kind permission of Elmar Hauck, Creative Studio,
Lauda-Königshofen)

Capillary

waves

Gravity

waves

Figure 11.51 Dispersion of surface waves on water

1:5 cm. Capillary waves on water surfaces have wavelengths
below 1 cm, while for surface gravity waves � > 10 cm. The
range between these limits is a transition range where both types
superimpose.
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11.9.6 Energy Density and Energy Transport in
a Wave

In a mechanical wave mass elements dm D % � dV oscillate. The
kinetic and potential energy of this oscillation propagates with
the wave caused by the coupling between neighbouring mass
elements. It should be again stressed that no mass is trans-

ported by the wave, but only the energy of the oscillation.

The kinetic energy of an oscillating mass element �m in the
wave

� D A � cos.!t � kz/

is

Ekin D 1
2�m � P�2 D 1

2% ��V � A2!2 sin2.!t � kz/ :

The mean energy density, averaged over one oscillation period
is then

.Ekin=�V/ D 1

4
%A2!2 : (11.83)

The potential energy of a mass element dm, that oscillates with
the amplitude � against the restoring force F D �D � � is with
D D !2dm

Epot D �
�Z

0

F.x/dx D 1
2 D�2

D 1
2 DA2 cos2.!t � kz/ :

(11.84)

The time average of the potential energy per volume element
�V is then

Epot=�V D 1
4%A2!2 D Ekin=�V : (11.85)

The total energy density W=�V D .Epot C Ekin/=�V of the
wave is therefore

%e D W

�V
D 1

2
%A2!2 : (11.86)

Definition

The intensity I or energy flux density of a wave is the
energy that is transported per second through a unit area
perpendicular to the propagation direction of the wave.

Since the energy transport occurs with the wave velocity vPh the
intensity can be written as the product

I D vPh � %e D 1
2vPh � %A2!2 : (11.87)

The intensity of a wave is proportional to the square A2 of
the wave amplitude and the square !2 of its frequency.

11.9.7 Dispersion; Phase- and Group-Velocity

We have seen in the previous section that for some wave types
the phase velocity vPh depends on the wavelength � of the
wave (see for example Eq. 11.82). This phenomenon is called
dispersion. The relation between vPh and wavelength � resp.
wavenumber k D 2�=�

vPh D !

k
(11.88a)

is the dispersion relation.

A well-known example is the dispersion of light waves in glass

vPh D c D !

k
D !

k0n.!/
; (11.88b)

where this relation is described by the wavelength-dependent re-
fractive index n.�/ of the glass and c0 D !=k0 is the velocity
of light waves in vacuum (see Vol. 2). If a parallel ray of white
light passes through a glass prism it is diffracted into the differ-
ent contributions of different wavelength, which are dispersed
into different directions. Behind the prism appears a band of
light with separated colours (rainbow).

For monochromatic harmonic waves (only one wavelength)
there is a unique phase velocity vPh D !=k with ! D 2�� D
2�vPh=�.

The situation is different for waves with many wavelengths or
with a broad continuous distribution over the interval ��, resp.
the frequency interval �! D !m ˙ �!=2. A short pulse
with time duration�t contains a continuous frequency spectrum
within the interval �! D 2�=�t. If the different frequencies
propagate with different velocities the relative phases of the dif-
ferent contributions change and therefore the time profile of the
pulse is modified.

We regard in Fig. 11.53a an arbitrary perturbation �.t/, which
propagates into the z-direction. According to the Fourier-
theorem (see Sect. 11.3.1) the function �.t; z/ can be described
by a superposition of an infinite number of harmonic waves with
frequencies !

�.t; z/ D
1Z

0

A.!/ � ei.!t�kz/d! (11.89a)

with amplitudes A.!/ that follow the frequency distribution
shown in Fig 11.53b. The amplitudes A.!/ can be determined
by the inverse Fourier-transformation

A.!/ D 1

�

C1Z

�1

�.t; z/e�i.!t�kz/dt : (11.89b)
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Figure 11.53 Phase velocity and group velocity. a Propagation of a perturba-
tion �.t/ in z -direction; b Fourier-transform of the amplitudes A .!/

This superposition results only in the interval �z � vPh=�!
to a significant total amplitude �.t; z ˙�z/ of the perturbation.
In all other spatial points, � averages to zero due to destructive
interference of the partial waves with different frequencies.

Such a superposition of an infinite number of harmonic
waves with frequencies ! within the range ! D !m ˙
�!=2 is called a wave packet (sometimes also a wave
group). The wave packet is characterized by its amplitude
distribution A.!/, its centre frequency !m and the inter-
val width �!, which also determines its spatial extension
�z / 1=�!.

The velocity of the maximum of the wave packet is the group
velocity vG D d!=dk.

While the phase velocity vPh.!/ can differ for the different
waves in the wave group, the group velocity is unambiguously
defined . We will illustrate this by a simple example:

We select out of the wave packet two harmonic waves with fre-
quencies !1 and !2 and amplitudes A1 D A2 D A.

�1 D A � cos.!1t � k1z/ ;

�2 D A � cos.!2t � k2z/ :

Their superposition is

� D �1 C �2

D 2A � cos

�
�!

2
t � �k

2
z

�
� cos.!mt � kmz/ :

(11.90)

This is a beat wave (Fig. 11.54a) which can be described as a
wave with the mid frequency !m D .!1 C !2/=2, the wave
number km D .k1 C k2/=2 and an envelope of the amplitudes
which propagates like a wave with the frequency .!1 � !2/=2
and a wave number .k1 � k2/2. While a selected maximum of

Figure 11.54 a Beat wave for the superposition of two monochromatic waves
with slightly different frequencies. The black point with the arrow gives the
locations of equal phase during the wave propagation. The symbol ˚ indicates
the maximum of the envelope of the wave packet, that moves with the group
velocity vG ¤ vPh. b Different slopes of .1=vPh/ and .1=vG/

the wave cos.!mt � kmz/ (marked by a black dot in Fig. 11.54)
propagates with the phase velocity vPh D !m=km, the maximum
of the envelope (marked in Fig. 11.54 by the symbol ˚) propa-
gates with the group velocity

vG D d!

dk
: (11.91)

In Fig. 11.54b the propagation of the phase (indicated by the
black dots) is compared with that of the maximum of the wave
group (indicated by the symbols ˚). The slopes of the black and
red lines are / .1=vPh/ resp. .1=vG/.
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The relation between phase- and group-velocities can be derived
as follows:

vG D d!

dk
D d

dk
.vPh � k/ D vPh � dk

dk
C k � dvPh

dk

D vPh C k � dvPh

dk
:

(11.92a)

With k D 2�=� this can be written as

vG D vPh � � � dvPh

d�
: (11.92b)

Without dispersion is dvPh=d� D 0 and therefore vG D vPh.
Phase velocity and group velocity are equal. The wave packet
does not change its form during the propagation.

The relation between phase- and group-velocities can be illus-
trated graphically by the functions !.k/ or vPh.�/. This is
demonstrated in Fig. 11.55) for the example of water waves. For
small wavelength � (capillary waves with � � 2� �

p
�=.% � g/)

we obtain from (11.82)

dvPh

d�
D � ��

% � �2vPh

�
tanh x C 2�h

� tanh x

�
� 0 :

For gravity waves is � � 2� �
p
�=.% � g/ and the dispersion

function is

dvPh

d�
D g

2vPh

�
1

2�
tanh x � 2�h

� tanh x

�

> 0 for � > h and x < 1 :

For the function !.k/ it follows from (11.82) with vPh D !=k

!.k/ D
p
.g � k C .�=%/k3/ tanh.h � k/ ; (11.92c)

which reduces for gravity waves to

!2 � g � k D g � 2�=� : (11.92d)

(kh)

Figure 11.55 Dispersion curves for !.k / and vPh.�/ for surface gravity waves
on water

The group velocity is

vG D d!

dk
D 1

2
g=
p

gk D 1

2
g=

q
1
2 g

p
g � 2�=� D 1

2
vPh :

(11.92e)

The group velocity of water waves with large � is equal to one
half of the phase velocity.

11.10 Superposition of Waves;
Interference

For linear differential equations, such as the wave equation
(11.68) the following statement holds:

If �1.r; t/ and �2.r; t/ are solutions of the linear equation (11.68)
then also every linear combination of �1 and �2 is a solution, in
particular the sum �1 C �2. This implies for the superposition
of waves: When different waves superimpose each other, their
amplitudes at the same location and at the same time add. Such
a superposition is called interference.

11.10.1 Coherence and Interference

The superposition of different waves results in a stationary wave
field with visible interference structures only if some essential
conditions are fulfilled:

All waves must have the same frequency, because otherwise
beats would occur that wash out in the time average all inter-
ference structures.
The phase differences between all partial waves at the same
position r must be constant in time. It can differ, of course,
for different positions r. Such waves are called spatially co-

herent. The superposition of coherent partial waves result
in a stationary wave field, which generally changes with the
position r. Stationary interference structures can be only ob-
served for the superposition of coherent waves.
There are two experimental possibilities to produce coherent
partial waves
a) Two oscillators Q1 and Q2 with equal frequencies at two

different positions are coupled to each other with constant
phase difference (Fig. 11.56a). This results in a temporally
constant phase difference between the waves emitted by
Q1 and Q2 at each position r.

b) The wave emitted by one source Q is divided by reflection
or diffraction into two partial waves which are subse-
quently superimposed after having traversed paths s1 and
s2 with different lengths (Fig. 11.56b). The phase differ-
ence �' D .2�=�/ � ıs between the two partial waves
depends on the path difference ıs.r/ D s1 � s2 which is
different for different observation points ri.

For acoustic waves, the case a) can be realized with two
phase-locked loud speakers. For optical waves, this is only
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Figure 11.56 Two possibilities for the generation and superposition of coher-
ent waves; a phase-coupled sources; b splitting of the wave emitted by a single
source and superposition of the two partial waves after they have transversed
different path length�s ; c general case

possible with lasers (see Vol. 3) because a phase-locked cou-
pling is only possible between coherent light sources but not
between two incoherent light sources, such as light bulbs
or gas discharge lamps where the excited atoms emit the
radiation with randomly varying phases. With “classical”
incoherent light sources only case b) can be realized for pro-
ducing stationary interference patterns.

11.10.2 Superposition of Two Harmonic Waves

The superposition of two harmonic waves emitted from two
phase-locked sources Q1 and Q2 givers at a fixed position P.r0/
the total amplitude (Fig. 11.56c)

� D �1 C �2

D A1 cos.!t � k1 � r0 C '01/

C A2 cos.!t � k2 � r0 C '02/ ;

(11.93a)

where '01 and '02 are the phases of the two partial waves at the
location of the sources at the time t D t0.

With 'i D ki � r0 � '0i and �' D '1 � '2 we obtain

� D A1 cos.!t � '1/C A2 cos.!t � '2/

D C cos.!t � '/
D C.cos!t cos' C sin!t sin '/ :

(11.93b)

Comparison of the coefficients in a) and b) yields

C � cos' D A1 cos'1 C A2 cos'2

C � sin ' D A1 sin '1 C A2 sin '2 :

Squaring and addition of the two equations gives the equation
for the coefficient C and the phase '

C D
�
A2

1 C A2
2 C 2A1A2 cos�'

�1=2
;

tan ' D A1 sin '1 C A2 sin'2

A1 cos'1 C A2 cos'2
:

The superposition of the two waves results again in a harmonic
wave with an amplitude C that depends on the amplitudes of
the partial waves and their phase difference �'. For the phase
difference �' D 2m � �.m D 1; 2; 3; : : :/ the total amplitude is
C D A1 C A2 (constructive interference). For�' D .2m C 1/�
is C D A1 � A2 (destructive interference).

The intensity of a wave is proportional to the square of its am-
plitude:

I / .�1 C �2/
2 D �2

1 C �2
2 C 2�1�2

D A2
1 cos2.!t C '1/C A2

2 cos2.!t C '2/

C 2A1A2 cos.!t C '1/ � cos.!t C '2/ :

(11.94)

If the period T D 2�=! is short compared to the detection time
the detector measures the time average over the period T . With
hcos2 xi D 1=2 and cos x � cos y D 1=2Œcos.x C y/C cos.x � y/�
we obtain

2 � cos.!t C '1/ � cos.!t C '2/

D cos.2!t C '1 C '2/C cos.'1 � '2/ :

Since the time average hcos.2!t C '1 C '2/i D 0, we obtain
the time averaged intensity

hIi D 1

2

�
A2

1 C A2
2

�
C A1A2 cos�' : (11.95)

For coherent waves the phase difference �' D .k1 � k2/ � r has
at any location r a constant value for all times. The intensity is
therefore only a function of r. it varies for constant�' between
hIi D 1=2.A1�A2/

2 for�' D .2mC1/� (interference minima)
up to hIi D 1=2.A1 C A2/

2 for �' D 2 m � � (interference
maxima) (Fig. 11.57).

For incoherent waves is �'.t/ a randomly varying function of
time. Therefore, the time average hr � cos�'i D 0 for all lo-
cations r. This implies that no stationary interference structures
are observed. The average intensity hIi D 1=2.A1 C A2/

2 is
equal to the sum of the average intensities of the partial waves.

The average total energy of the wave field must be, of course,
equal for both cases, because no energy is lost. In case of the
coherent superposition the energy is non-uniformly distributed
in space, while for the incoherent case it is equally spread over
the whole interference region. For the coherent superposition,
the energy density in the interference maxima is larger than for
the incoherent case, while for the minima it is smaller.
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a)

b)

BS1

M1 M2

BS2

Q

Figure 11.57 a Mean intensity I of the superpostion of two coherent waves
as a function of their phase different �'. b Experimental arrangement for the
interference of copropagation plane waves

Examples

1. Superposition of plane waves with equal frequencies

and equal amplitudes but different phases, propagat-

ing both into the z-direction.

�1 D A � cos.!t � kz/ I
�2 D A � cos.!t � kz C '/

Their superposition gives the total amplitude

� D �1 C �2 D 2A � cos.'=2/

� cos.!t � kx C '=2/

D B.'/ � cos.!t � kx C '=2/ :

(11.96)

This is again a harmonic plane wave with a phase that
is equal to the mean value h'i D .1=2/ ' and an am-
plitude B.'/ that depends on the phase difference�'.
For �' D .2m C 1/� the total amplitude � is zero in
the whole superposition region. Where has the energy

gone?

Figure 11.57b shows an experimental arrangement
that can realize the superposition described above
(Mach-Zehnder Interferometer). The wave, emitted
by the source Q is divided by the beam splitter BS 1
into a reflected partial wave and a transmitted wave.

The reflected wave is again reflected by the mirrors
M1 and M2 and is then superimposed by beam split-
ter BS 2 onto the first transmitted partial wave. The
phase difference between the two partial waves can
be adjusted by moving the mirrors up or down, thus
changing the path length difference between the two
interfering waves.

2. Superposition of two spherical waves, emitted by the

sources Q1 and Q2 (Fig. 11.58).
At the point P.r/ the phase difference is �' D k �
.r1 � r2/. The interference maxima are located on the
curves for which �' D k � .r1 � r2/ D 2m � � . This
are hyperbolas (in Fig. 11.58 marked by dashed red
curves), where the two sources Q1 and Q2 are the focal
points.

Figure 11.58 Superposition of the spherical waves emitted by two
phase-coupled sources Q1 and Q2 J

When spherical waves, emitted by two phase-coupled sources,
are superimposed, one observes hyperbolas as interference
structures. The form of the hyperbolas depends on the distance
d between Q1 and Q2.

11.11 Diffraction, Reflection and
Refraction of Waves

The propagation direction and the local amplitude distribution
can be altered by reflection on surfaces, by refraction in media
with a different refractive index or by diffraction at obstacles
such as slits, apertures, or small objects in the path of the wave.
All these processes can be described by Huygen’s principle,
which was postulated by the Dutch scientist Christian Huygens
around 1600.
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11.11.1 Huygens’s Principle

The propagation of waves in space can be described when each
point of a phase surface is considered as the source of a new
spherical wave (secondary wave or elementary wave). These
spherical waves propagate into all directions and superimpose
(Fig. 11.59a). Assume that all elementary waves on a phase sur-
face '.r0; t0/ are generated at the same time t0. They proceed
during the time�t over a distance r D vPh ��t. The tangent sur-
face as the envelope of all spherical waves at the time t D t0C�t

forms again a phase surface of the wave which has propagated
in space by the distance r D vPh ��t.

This principle that has been formulated more than 400 years
ago, can be explained by modern concepts of atomic physics.
In case of sound waves which can propagates only in matter but
not in vacuum, all atoms on a phase surface are excited by the
acoustic wave to oscillate in phase. They transfer their oscilla-
tion energy to neighbouring atoms due to their mutual coupling.
The oscillating atoms are the sources for the elementary waves.
In isotropic media, the coupling is independent of the direction.
This means that the phase velocity of the elementary waves is
isotropic. Therefore, spherical waves are generated. In vac-

Isotropic

medium

a)

b)

Unisotropic

medium

Incident

wave

Transmitted

wave

Phasefronts

for reflected

wave

Phasefronts

in unisotropic

medium

Elementary

waves

Pase

fronts

Figure 11.59 a Huygen’s principle. b Transmission of a wave in an unisotropic
medium. The phasefront is the tangent to the phasefronts of the elementary
waves
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Figure 11.60 Superposition of the spherical waves emitted by N sources lo-
cated on a plane z D const

uum, there are no atoms, and therefore no sources for acoustic
waves are present. This can be experimentally demonstrated by
an electric alarm clock in a container that is evacuated. As soon
as the air pressure in the container drops below a certain value,
the alarm clock can no longer be heard.

In contrast to acoustic waves electromagnetic waves can also
propagate through vacuum (otherwise we would not see the sun
and the stars). Their propagation also follows Huygens’s princi-
ple. This is explained in Vol. 2.

For the general case of non-isotropic media, the phase velocity
does depend on the direction and the elementary waves have an
elliptic envelope (Fig. 11.59b). The envelope to the elliptical
waves at a time t D t0 C�t is a phase-plane that is tilted against
the phase-plane of the incoming wave by an angle ˛.

Up to now we have considered the case of an infinite number of
source points for the elementary waves with a continuous dis-
tribution on the phase surface. We will now discuss the case of
N distinct sources on the phase-plane with a distance ı between
adjacent source points Qi that are phase-locked to each other
(Fig. 11.60). The phase difference between the different ele-
mentary waves depends on the direction ˛ against the direction
k0 of the incident plane wave.

The path difference of waves from adjacent points in the direc-
tion ˛ is �s D ı � sin˛ and the corresponding phase difference

�' D 2�

�
��s D k � ı sin˛ with k D 2�

�
: (11.97)

The superposition of all spherical waves emitted into the direc-
tion ˛ from all N sources Qi that are located on the phase front
over a distance d D N � ı gives the total amplitude at the point P
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Figure 11.61 Illustration of the calculation of the interference intensity at the
point P

(Fig. 11.61)

�.˛/ D
NX

nD1

a � ei.krn�!t/ ; (11.98)

where we have assumed that all amplitudes ai of the partial
waves are equal (ai D a) and that the distance r � d of P

from the sources is large compared to the total extension d of all
N sources.

With rn D r C .1=2.N C 1/ � n/ � ı � sin˛ (Fig. 11.61) and
�' D k � ı � sin˛ we obtain from (11.98)

�.˛/ D a � ei .NC1/
2 �' �

NX

nD1

e�in�' � ei.kr�!t/

D A � ei.kr�!t/ :

(11.99)

The calculation of the geometrical series yields
NX

nD1

e�in�' D e�i�' e�iN�' � 1

e�i�' � 1

D e�i .NC1/
2 �' � ei N

2 �' � e�i N
2 �'

ei�'=2 � e�i�'=2
:

The last factor can be written as

sin
�

1
2 N ��'

�

sin
�

1
2�'

� :

Figure 11.62 Intensity I .P / as a function of the angle ˛: a for ı < �, b and c ı > �. The total width d D N � ı is equal for (a) and (b), in (c) twice as large.
Note the different abscissa scale in (a) compared to that in (b) and (c)

This gives for the amplitude A in (11.99) the result

A.˛/ D a � ei�' � sin
�

N
2�'

�

sin
�

1
2�'

� : (11.100)

The intensity of the wave I.˛/ / jA.˛/j2 is proportional to the
square of the amplitude. This gives the intensity

I.˛/ / a2 � sin2
�

N
2�'

�

sin2
�

1
2�'

�

D a2 sin2
�

1
2 Nkı sin˛

�

sin2
�

1
2 kı sin˛

� :

(11.101)

In Fig. 11.62 I.˛/ is plotted for N � 1 and the two cases ı < �
and ı > � (b) and (c).

This illustrates that for � > N � ı D d (the wavelength
is larger than the extension of all N sources) only a single
maximum appears at ˛ D 0. The wave propagates only
within a small angular range �˛ / 1=N around ˛ D 0.
The angular width of this maximum is proportional to the
inverse number of sources.

For the second case � < N � ı further intensity maxima appear
at angles ˛n that obey the condition

sin˛n D n � �

N � ı with n D 0; 1; 2; 3; : : : : (11.102)

11.11.2 Diffraction at Apertures

We will now increase the number N in (11.101) towards the
limit N D 1, while the total width d D N � ı remains con-
stant, which implies that the distance ı between the sources
approaches zero. This can be realized when a parallel plane
wave impinges normal (k ? slit) on a slit with width d. The
intensity I.˛/ is measured behind the slit as a function of the
deflection angle ˛ (Fig. 11.63).
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Figure 11.63 Diffraction of a wave when passing through a slot with width d

We can write (11.101) as

I.˛/ / a2
sin2

�
1

2
kd sin˛

�

sin2

�
kd

2N
sin˛

� :

For large values of N the sine function in the denominator can be
replaced by its argument and we obtain with�' D k �d �sin˛ D
2�d � sin˛=�.

I.˛/ / N2a2 � sin2.�'=2/

.�'=2/2
: (11.103)

The function sin2 x=x2 is plotted in Fig. 11.64a, where x D
�'=2 D .� � d � sin˛/=�. It is 1 for x D 0 and is 0 for
x D ˙� , i. e. sin˛ D �=d. The two maxima at x D 3�=2
have only the height 4=.9�2/ � 0:045 of the central maximum.
In Fig. 11.64b the form of I.˛/ is illustrated for different ratios
d=� of slit width d and wavelength �. The angular width of the
central maximum at the base (distance between the two adjacent
zeros) is for �=d � 1.

�˛0 D 2 � �=d

For d ! 1 the function (11.103) converges towards a delta
function that is always zero except for x D 0 where it is 1 (black
vertical line in Fig. 11.64b).

The foregoing considerations have brought the following impor-
tant result:

In spite of the fact, that the different elementary waves prop-
agate into all directions their superposition leads for d � �
to constructive interference only for ˛ D 0 i. e. into the di-
rection of the incident wave. In all other directions the partial
waves interfere destructively, they extinguish themselves. This
can be understood a follows: We order all elementary waves in
the direction ˛ > 0 in pairs of waves with a phase shift of � .
For each elementary wave within the interval d � � there is
another elementary wave with a phase shift of � . These two
waves therefore interfere completely destructive and extinguish
themselves. This is true for all pairs and therefore all waves
extinguish themselves for ˛ > 0.

This is no longer true for d=� � 1. If the cross section of the
incident wave is limited by an aperture, and the diameter of the

Figure 11.64 a The function sin2 x=x2. b Intensity distribution I .˛/ of the
diffracted wave behind a slit with width d for different values of �=d

wave is of the same order of magnitude or smaller than the wave-
length. In this case the maximum path difference �s D d � sin˛
between the elementary waves from different points of the aper-
ture is smaller than �, i. e. the phase difference is smaller than � .
Now we do not find pairs with a phase shift of � and therefore
destructive interference cannot be complete. In Fig. 11.64b the
intensity distribution I.˛/ is plotted for different values of d=�.

The deflection of waves transmitted through apertures into an
angular range �1 < ˛ < C1 is called diffraction. It is
caused by incomplete interference. Not every elementary wave
finds a partner with a phase delay�' D � . Therefore a residual
total amplitude remains even for ˛ ¤ 0. With increasing values
of d=� the residual amplitudes for ˛ > 0 decreases.

When P0 is the total power transmitted through the aperture, the
central diffraction maximum around ˛ D 0 contains the fraction
� D P1=P0. This fraction can be calculated as

� D
R C�=d

��=d
I.˛/d˛

R C�=2
��=2 I.˛/d˛

D 1

P0

C�=dZ

��=d

I.˛/d˛ � 0:95 ;

which proves that 95% of the transmitted power is included in
the central maximum.
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11.11.3 Summary

Without limiting boundaries waves propagate in isotropic
media straightforward. Their propagation can be described
by Huygens’s principle where each phase front of the wave
can be regarded as an infinite number of sources that emit
elementary waves, which interfere with each other. For
d � � this interference is always completely destructive
for deflection angles ˛ ¤ 0. Therefore the wave propagates
straightforward.
The intensity distribution I.˛/ as a function of the deflection
angel ˛ against the direction of the incident wave depends on
the ratio d=� of aperture diameter d and wavelength �.

11.11.4 Reflection and Refraction of Waves

When a wave passes through a boundary between two media,
where the wave has different phase velocities, part of the wave
is reflected and the transmitted part changes its direction. This
can be also described by Huygens’s principle.

We will show this at first for the reflection of a plane wave at
the plane boundary between two different media (Fig. 11.65).
When the phase plane 'e D constant has reached the point A at
the time t D 0, an elementary spherical wave is emitted from A,
which spreads out into the whole upper plane. When the same
phase front has reached the point B at the time t0 D DB=vPh also
an elementary spherical wave is emitted from B. Meanwhile the
first elementary wave has propagated along the distance r D
vPh � t0.

The elementary waves emitted from points Pn between A and
B have been excited at times tn D t0 � .APn/=AB and until the
time t0 they have travelled the distance rn D vPh � .t0 � tn/ D
vPh.PnB=AB/. The tangent BE to all spheres of the elementary
waves at time t0 is the phase plane of the reflected wave. From
Fig. 11.65 it can be seen that

AE D DB ) ^.ABE/ D ^.BAD/ D ˛ :

Figure 11.65 Explanation of the reflection law based on Huygen’s priciple

Figure 11.66 Derivation of the refraction law from Huygen’s principle

We name the angle ˛ between the wave vector ke of the incident
wave and the normal vector N of the reflecting plane the angle

of incidence. We then can formulate the law of reflection:

When a plane wave is reflected at a plane boundary be-
tween two media, the angle of reflection is equal to the
angle of incidence.

For that part of the wave that penetrates into the medium 2
(Fig. 11.66), the velocity v D v2 of the elementary waves is
different from the velocity v D v1 in medium 1. During the
time t0 D DB=v1, where the wave front in medium 1 travels
from D to B the elementary wave starting from A has travelled
in medium 2 the distance AE D v2 � t0 D DB � v2=v1. This im-
plies AE=DB D v2=v1. From the triangles ABD and AEB with
the same base length we conclude:

sin˛

sinˇ
D v1

v2
: (11.104)

Equation 11.104 is Snellius’ refraction law (after the Dutch
Astronomer Willebrord Snellius van Royen 1580–1626, who
published this law for the first time although it was known be-
fore). It holds for arbitrary waves, not only for acoustic but also
for light waves (see Vol. 2).

Reflection and refraction of waves can be substantiated by a
more general law, called Fermat’s principle.

A wave always travels that path for which the runtime for
a phase front between two points P1.x1; y1/ and P2.x2; y2/ is
minimum. This is illustrated for the refraction of waves in
Fig. 11.67). The run-time T for a phase front from P1.x1; y1/
to P2.x2; y2/ is

T D S1

v1
C S2

v2

D 1

v1

q
.x � x1/2 C y2

1 C 1

v2

q
.x2 � x/2 C y2

2 :

(11.105)
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Figure 11.67 Explanation of the refraction law with the Fermat principle

When we shift the point P.x; y/ along the boundary surface y D
0, the run-time T changes by

dT

dx
D .x � x1/=v1q

.x � x1/2 C y2
1

� .x2 � x/=v2q
.x2 � x/2 C y2

2

:

If T should be minimum, the derivative dT=dx must be zero.
This gives with sin ˛ D .x � x1/=s1 and sinˇ D .x2 � x/=s2 the
condition

sin˛

v1
D sinˇ

v2
; (11.106)

which is identical to Snellius’ law (11.104).

11.12 Standing Waves

Special superpositions of running waves result in stationary os-
cillation patterns where certain points, lines or planes in space
are always at rest, which means that here the oscillation ampli-
tude is zero (nodes of oscillation). The pattern of nodes depends
on the frequency and the boundary conditions. We will illustrate
this by several examples.

Nodes

Oscillation maxima

Figure 11.68 a Standing wave as superposition of a wave propagating into the Cz -direction and the reflected wave running into the �z -direction. b Periodic
maxima and nodes of a standing wave

11.12.1 One-Dimensional Standing Waves

When a plane wave � D A � cos.!t C kz/ that propagates into
the �z-direction is reflected by a plane z D 0 (Fig. 11.68) the
reflected wave � D A � cos.!t � kz/ propagates into the Cz-
direction. For z > 0 the two waves superimpose and the total
wave field is

� D �1 C �2

D AŒcos.!t C kz/C cos.!t � kz C '/� ;
(11.107)

where a phase jump ' at the reflection has been taken into ac-
count. According to the addition theorem of the cos-functions
this can be written as

� D 2A � cos
�

kz � '

2

�
� cos

�
!t C '

2

�
: (11.108)

This represents an oscillation cos.!t C'=2/ with the amplitude
2A � cos.k � z � '=2/ that depends periodically on the location z.
It is called a standing wave. At the positions z D .�=4�/Œ.2nC
1/�C'� the amplitude of the standing wave is zero. These zero
points are the oscillation nodes. For z D .�=4�/.2n� C '/ the
amplitude becomes maximum. It changes during one oscillation
period T D 2�=! from �2A to C2A. These maxima of the
standing wave are called the oscillation antinodes.

Note the difference to the running wave � D A � cos.!t � k � z/.
Here the nodes and antinodes propagate with the velocity vPh D
!=k into the Cz-direction, while for the standing wave they are
fixed in place.

The spatial amplitude distribution of the standing wave and the
positions of the nodes and antinodes depend on the phase jump
at the reflection. We will discuss some special cases:

Reflection at a fixed end at z D 0 (Fig. 11.69a).
This can be realized by a rope with its right end fixed to a
wall, while the left end is connected to an oscillator, for ex-
ample a hand that shakes up and down. Since �.0/ D 0 it
follows from (11.108)

'=2 D ˙�=2 ) ' D ˙� :
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Incident wave

Fixed end

Wire

Loose end

z

Reflected wave

Figure 11.69 Reflection of a wave on a rope: a at a fixed end, b at a loose
end

For the reflection at a fixed end the wave undergoes a phase
jump of � . The standing wave is then

�.z; t/ D �2A � sin.k � z/ � sin.!t/ : (11.108a)
Reflection at a loose end at z D 0 (Fig. 11.69b).
This can be realized with a rope that is not fixed directly to
a wall but hangs freely on a strand that is connected to the
wall. Here is �.0/ D �0 D 2A ) ' D 0. There is no phase
jump at the reflection and the superposition of the incident
and the reflected wave gives the standing wave

�.z; t/ D 2A � cos.kz/ � cos.!t/ : (11.108b)

In optics this corresponds to the reflection of a light wave at
the boundary from a medium with refractive index n1 to one
with n2 < n1 (see Vol. 2). The standing wave is shifted in
time by 90ı and in space by �=4 against the standing wave
in case a).

The one-dimensional standing waves are general solutions of
the one-dimensional wave equation (11.62), just as the running
waves (11.54). Special forms are selected by the boundary con-
ditions.

Standing waves can be regarded as resonant oscillations of a
one-dimensional medium, for instance a clamped string (see
Sect. 11.9.5.4).

With a length L of the string and a tensile force F all frequencies
�n are possible for which

�n D vPh=�n D 2L=n with n D 1; 2; 3; : : : : (11.109a)

According to (11.77) is the frequency �1 of the fundamental os-
cillation with n D 1

�1 D vPh=2L D 1

2L
�
p

F=� : (11.109b)

The fundamental oscillation and all overtones �n with n > 1 are
resonant oscillations of the string. Their frequencies depend on
the length L of the string, on the tensile force F and on the mass
� per unit length.

11.12.2 Experimental Demonstrations of
Standing Waves

One-dimensional standing waves can be demonstrated in many
different ways. One example is the demonstration of standing
waves in a gas visualized with Kundt’s cork-powder structures
(Fig. 11.70). In a glass tube, cork powder is uniformly dis-
tributed. At the end of the tube a loud speaker generates acoustic
oscillations which produce standing waves if the resonance con-
dition (11.109) is fulfilled. These standing acoustic waves
change the distribution of the cork powder. At the maxima of
the standing wave, the powder is slung away by the acoustic
oscillations, while at the nodes it remains at rest. From the dis-
tance �L D �=2 between the nodes the wavelength � can be
determined and with the known frequency � of the loud speaker
the phase velocity vPh D � � � of acoustic waves in the gas is
obtained.

Instead of using a loud speaker a metal rod with length L, which
is clamped at its centre, can be excited to oscillations by a piezo
crystal at its outer end. (Fig. 11.70). A metal plate is connected
to the inner end, which converts the vibrations into acoustic
waves in the gas. The ratio of the wavelengths in the gas and
in the metal rod are equal to the ratio of the phase velocities,
because the frequency is the same in both media.

�gas

�solid
D v

gas
Ph

vsolid
Ph

D
p

p � �=%gasp
E=%solid

D
p

K�=%gasp
E=%solid

(11.110)

with � D Cp=Cv and E D elastic modulus. If the densities
% are known, the measurement yields the ratio of compression
modulus of the gas to the elastic modulus of the rod.

A very impressive demonstration of standing waves in a gas is
Rubens’s flame tube (Fig. 11.71). This is a tube with many small
holes on the upper side along the 1–2 m long tube. When the
tube is connected to gas supply and filled with a few millibar
of propane gas the gas streams out of the holes. With a match
this out streaming gas can be ignited resulting in a row of small

Amplitude maxima

Figure 11.70 Generation of Kundt’s cork dust figures

Pressure maxima

Sound

source
Gas

Figure 11.71 Flame tube of Rubens
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Oscillation nodes

Oscillation maxima and pressure nodes

Figure 11.72 Oscillation amplitude and spatial pressure variation of a stand-
ing wave in a gas

Loudspeaker

Open upper

end

Closed upper

end

Figure 11.73 Resonance tube of Quinck

flames all with the same height. A loudspeaker at one end of the
tube produces acoustic waves in the gas. For certain frequencies
resonant standing waves are generated. In the amplitude nodes
of the standing waves the gas pressure is maximum because here
the gas molecules flow against each other thus increasing the
pressure (Fig. 11.72). The standing pressure wave is therefore
shifted by �=4 against the standing amplitude wave. At the pres-
sure maxima more gas streams out of the holes and the height of
the flame becomes larger. Therefore the standing waves in the
inside of the tube are visualized as periodic modulation of the
flame height.

A very simple demonstration of standing waves in a gas is pos-
sible with the resonance tube of Quincke that has two open ends
(Fig. 11.73). A loudspeaker is mounted above the upper end
of the tube. The lower end is immersed into water. When the
tube is lowered or raised the length L of the air column changes.
At certain lengths Ln resonances occur which can be heard by a
significant increase of the sound level.

Since at the water surface an amplitude node appears but at the
upper end of the tube a pressure node (because of the constant
pressure of the air above the tube) the resonance condition is

L D .2n C 1/ � �=4 ) �n D .2n C 1/
vPh

4L
:

When the upper end of the tube is closed by a cap, then ampli-
tude nodes occur also at this end and the resonance condition is
now

L D .n C 1/�=2 ) �n D .n C 1/
vPh

2L
:

The fundamental resonance appears at

�0 D 2L ) �0 D vPh

2L
:

Tubes that are closed on both ends, or open on both ends have
a fundamental resonance frequency that is twice as high as that
for tubes with one end open and the other closed. This can be
utilized for organ pipes to cover a large frequency range.

11.12.3 Two-dimensional Resonances of
Vibrating Membranes

For the investigation of eigen-resonances of two-dimensional
surfaces we have to solve the two-dimensional wave equation

@2�

@x2
C @2�

@y2
D 1

v2
Ph

@2�

@t2
(11.111)

with the given boundary conditions. Examples for two-
dimensional standing waves are the resonance oscillations of
plates, drum membranes or soap bubbles inserted in a frame.

The solutions of (11.111) can be written in the form

�.x; y; t/ D A.x; y/ � cos!t ; (11.112a)

where the amplitude function depends on the boundary condi-
tions. For a thin rectangular membrane which is fixed along the
boundary lines x D 0, x D a, y D 0 and y D b the solutions are

�m;n.x; y/ D A � sin
.m C 1/�x

a

� sin
.n C 1/�y

b
� cos.!m;nt/ ;

(11.112b)

as can be readily checked by inserting these functions into the
wave equation (11.111) and taking into account the boundary
conditions. The integer m gives the number of nodal lines x D
xm vertical to the x-direction, while n gives the number of nodal
lines y D yn vertical to the y-direction (Fig. 11.74).

Such eigen-oscillations can be regarded as superposition � D
�1 C �2 of two waves with wave vectors k D fk1; k2g and k2 D
�k1 which obey the boundary conditions

�.x D 0; aI y D 0; b/ D 0 :

The relation

k2 D k2
x C k2

y D 4�2

 
1

�2
x

C 1

�2
y

!
(11.113)
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Nodeline Nodeline

Figure 11.74 Two-dimensional oscillation modes for a rectangular clamp of
the membrane

between wave vector and wavelength gives for the eigen-
frequencies ! D 2� � vPh=� the equation

!m;n D �

vuut�

%

"�
m C 1

a

�2

C
�

n C 1

b

�2
#
: (11.114)

Here we have assumed that the membrane is sufficiently thin
that torsion- and bending forces can be neglected. The only
restoring forces are then due to tensile stress � , which acts be-
cause of the length change in x- and y-directions.

For a circular frame where the membrane is fixed the node lines
have circular symmetry. Therefore, polar coordinates are con-
venient for the wave equation (11.111)

1

r

1

@r

�
r
@�

@r

�
C 1

r2

@2�

@'2
D 1

vPh2

@2�

@t2
: (11.115)

The solutions

�.r; '; t/ D �.r/ � �.'/ � cos!t

can be written as the product of three one-dimensional func-
tions, analogous to (11.112a, b). For a radius R of the circular
membrane one obtains the solutions

�n;p.r; '; t/ D Jp

�
r � rn;p

R

�
� ŒA1 cos.p'/

C A2 sin.p'/� � cos.!n;pt/ ;
(11.116)

where n and p are integers and Jp is the Bessel-function of or-
der p. The frequency

!n;p D rn;p

R

r
�

�
(11.117)

is the resonance frequency of the standing wave with n radial
circular nodes and p azimuthal nodes along radial lines on a
circular membrane with mass density� (mass per unit area) and
the tensile stress � (Fig. 11.75) The dimensionless number rn;p

is the n-th root of the Bessel function Jp.

Such two-dimensional standing waves can be demonstrated by
different means:

Figure 11.75 Oscillation modes of a circularly clamped membrane

Chladni’s Figures. A thin rectangular or circular dark metal
plate is clamped at one point in the mid of the plate. It is
uniformly powdered with colophony and then a violin bow
is stroked along an edge of the plate, which excites two-
dimensional resonant vibrations of the plate. On the nodal
lines the powder remains on the surface, while at all other
places it is removed by the vibration. The nodal lines ap-
pear as bright lines on a dark background. Depending on the
contact pressure of the violin bow and on the velocity of the
bow motion different figures appear, which are typical for the
sound of the violin (Fig. 11.76).
Oscillations of lamellar soap bubbles. When a rectangu-
lar or circular wire-frame with a handle is immersed into
a soap solution and then carefully lifted, a soap lamella is
formed over the whole area within the wire frame, which can
be made visible by a proper illumination. by skilful move-
ments of the frame different eigen-vibrations (11.112b) resp.
(11.116) of the soap lamella can be excited. For a frame area
of 40 � 100 cm2 vibrational amplitudes up to 20 cm can be
realized. (see the demonstration movie “Standing Waves” by
Ealing corporation [11.22]).

Figure 11.76 Oscillation modes of a quadratic metal plate, clamped in the
center. The oscillations are excited by a violin bow, sweeping along the edges of
the plate (Chladnic’s sound patterns)
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11.13 Waves Generated by Moving
Sources

Up to now we have considered waves emitted from sources at
rest and detected by observes at rest. For situations where the
source or the observer move against a chosen coordinate frame,
new phenomena occur, which will be discussed in this section.

11.13.1 Doppler-Effect

When a source of acoustic waves moves relative to the medium
that transmits the acoustic waves, the frequency of the sound
changes for an observer. This can be seen as follows:

During the oscillation period T D 1=�0 the wave emitted in z-
direction travels the distance �z D vPh � T D �0. If the source
moves with the velocity uS D uz in the direction towards the
observer, the distance between the phase surfaces with phases '
and ' C 2� has decreased to

�z D � D �0 � uS � T D .vPh � uS/=�0 :

This distance between two phase-fronts with phases differing by
2� is defined as the wavelength � of the wave. The wavelength
measured by an observer at rest is therefore shorter and the fre-
quency

� D vPh

�
D �0 � vPh

vPh � uS

D �0
1

1 � uS=vPh

(11.118a)

higher as for sources at rest.

If the source moves with the velocity uS D �uz away from the
observer. the frequency measured by the observer

� D �0
1

1 C uS=vPh
(11.118b)

is smaller.

This Doppler-effect, first described in 1846 by Christian
Doppler (1803–1853) is familiar to us when a police car with
its siren blaring passes an observer. As long as it approaches the
observer the tone is high. As soon as it passes by the tone drops
noticeably.

A similar effect occurs when the observes moves with the ve-
locity uobs towards a source at rest or away from it. During the
oscillation period T D 1=�0 the observer moves along a distance
�z D uobs � T . He therefore measures �n D �z=�0 additional
oscillation periods. The oscillation frequency measured by him
is therefore

� D �0 C uobs

�0
D �0 C uobs

vPh
� �0

D �0

�
1 C uobs

vPh

�
;

(11.119a)

Figure 11.77 Doppler-effect: a moving source; b moving observer; c general
case; B D observer, Q D source

when he moves towards the source, and

� D �0

�
1 � uobs

vPh

�
; (11.119b)

when he moves away from the source.

The Eq. 11.118, 11.119 can be generalized for the case that
source as well as observer move. This gives the equation

� D �0
.1 ˙ uobs=vPh/

.1 � uS=vPh/
; (11.120)

where the upper sign applies when source and observer move
towards each other and the lower sign if they move away from
each other. The frequency shift �� D � � �0 is the Doppler-

shift.

For the general case of arbitrary directions of the velocities uS

and uobs Eq. 11.120 can be written in vector form as

! D !0
!0 � k � uobs

!0 C k � uS
(11.120a)

with ! D 2�� and the wave vector k, .jkj D 2�=� D !=vPh/
(see Fig. 11.77c).

Equation 11.120a can be verified by starting with the general
representation of a wave propagating into the direction of k

� D A � cos.!0t � k � r/ ;

where r is the position vector starting from the origin r D 0.
The equation of motion for the moving observer is

r D uobst C r0 :

The wave for the observer is then

� D A � cos Œ!0t � k � .uobs � t C r0/�

D A � cos.!t � k � r0/

with ! D !0 � k � uobs :
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A similar expression can be derived when the source is moving.

Note: For light waves the Doppler-shift depends only on the
relative velocity between source S and observer. This is different
for sound waves, where the Doppler shift differs for the case
when the source is moving from that for a moving observer.
The reason for this difference is the fact that the propagation of
sound waves needs a medium and the motion of the source S
against this medium has another effect than the motion of the
observer. Only for u � vPh the two Eq. 11.118 and 11.119
converge because of 1=.1 � x/ � 1 C x for x � 1.

The Doppler-effect can be already quantitatively demonstrated
for small velocities u. One acoustic source is mounted on a
glider moving on an air-track while a second source with the
same frequency is at rest. Due to the Doppler-shift the superpo-
sition of the two sound waves generates a beat signal which can
readily be measured, thus giving the Doppler-shift

�� D �0 � u

vPh
:

Numerical Example

�0 D 5 kHz, vPh D 330 m=s, u D 0:05 m=s ) �� D
0:75 Hz. One hears a modulation of the 5 kHz frequency
at 0:75 Hz. J

In another demonstration experiment the acoustic source is
mounted at the swinging end of a long pendulum with length
L. If the pendulum moves in the direction x of the line of sight
the frequency shift is

�� D �0 � ux

vPh
D �0

vPh
�
p

2g � L.1 � cos'/ :

With L D 10 m the oscillation period is T D 6 s. With an elon-
gation 'max D 10ı from the equilibrium position ' D 0 the
maximum velocity of the acoustic source at ' D 0 is

umax D
p

2g � L.1 � cos'max/ D
p

2:9807 D 1:73 m=s :

(Check this result by using the energy conservation during one
oscillation period!). At a frequency �0 D 5 kHz the fre-
quency changes during one oscillation period from 4:974 kHz
to 5:026 kHz. This can be measured by superimposing a sound
wave with fixed frequency �0 and determining the beat fre-
quency �0 � �.

11.13.2 Wave Fronts for Moving Sources

We consider a point-like acoustic source, which moves with
the velocity u into the z-direction. During its motion, it emits
continuously spherical waves with frequency �0 (Fig. 11.78).
According to the considerations in the last section the distance
between two phase fronts that differ by �' D 2�

�.˛/ D 1

�0
.vPh � u � cos˛/ (11.121)

Shock front

z

z

Shock front

Figure 11.78 Generation of a shock front, if the velocity of the source S ap-
proaches the velocity of sound

depends on the angle ˛ against the direction of the velocity u

of the source. If the velocity u of the source reaches the veloc-
ity vPh of the acoustic waves, the phase front distance becomes
�.0/ D 0 (Fig. 11.78c). The amplitudes of the waves emitted
at different times into the z-direction all superimpose in phase
resulting in a shock-wave with exceedingly large amplitude.

For u > vPh �.˛/ becomes zero for ˛ D arccos.vPh=u/. The
amplitudes of all waves emitted at different times all add up in
phase at a cone with the opening angle ˇ D 90ı �˛. According
to (11.121) and Fig. 11.79 is cos˛ D vPh=u which gives

sinˇ D vPh

u
D 1

M
: (11.122)

This shock-wave cone is called Mach’s cone and the ratio M D
u=vPh of source velocity to sound velocity is the Mach number,
named after the Austrian physicist Ernst Mach (1838–1916).

Such shock-wave cones can be observed as bow waves along a
ship on a lake, when the velocity u of the ship becomes larger
than the velocity vPh of water surface waves [11.16]. The sit-
uation is here, however, more complex, because water surface
waves show dispersion (see Sect. 11.9.7). The ship generates

Shock front

Figure 11.79 Calculation of the aperture angle of the Mach-cone
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Bow wave front

Figure 11.80 Generation of the bow wave by a ship with velocity juj > jvjPh

waves within a broad frequency range. In Fig. 11.80 these waves
are generated at time t D 0 in the point S1. At time t D T when
the ship has reached the point S2 the wave with the mid wave-
length �0 has reached the point W0. Since the partial waves with
other frequencies have different phase velocities their phases
are distributed in W0 between ' D 0 around ' D 2� . their
superposition will therefore have the average zero. No shock
wave is generated in W0. The maximum of the wave group,
which propagates with the group velocity vG D .1=2/ vPh.�0/
has reached at time T only the point G0, where for the distances
holds: S1G0 D .1=2/S1W0. The angle ˇ0 between the straight
lines S1S2 and W0S2 is larger than the angle � between S1S2

and S2G0. The straight line S2G0 represents the bow wave front
because the maximum of the wave group has reached at time T

the point G0. With S2G0 D d and S1G0 D s D .1=2/S1W0 we
obtain the relations

tanˇ0 D 2s=d I tan.ˇ0 ��/ D s=d

! � D arctan.2s=d/� arctan.s=d/ :

When the line S1G0 represents the bow wave front, the condition
d�=ds D 0 must be fulfilled. This gives

d�

ds
D 2

1 C 4s2
� 1

1 C s2
D 0

) sobs D d=
p

2 ) �obs D tanh
p

2 � tanh
�
1=

p
2
�

D 19:5ı :

While ˇ in fact depends according to (11.122) on the velocity u

of the boat, this is not true for �, which is independent of u.

11.13.3 Shock Waves

The enhancement of the wave amplitude in case when the source
velocity u approaches or surpasses the sound velocity is not the
only cause for the generation of shock waves. A very impressive
example for the generation of excessive increase of the wave
amplitude can be seen, when the phase velocity of ocean wa-
ter waves approaching the coast decreases because it reaches
shallow water. Now following waves can surpass the preceding
waves and their amplitudes add up. If the total amplitude be-
comes larger than the water depth, the wave turns over because

M

Figure 11.81 Shockwave tube

the wave maxima still propagate but the minima are slowed
down due to friction with the ground. One observes rollers,
which can give an impressive spectacle. This phenomenon of
rollers can be demonstrated in a wave trough, with a sloped bot-
tom.

Another spectacular example of shock waves is provided by ex-
ploding stars. The star material ejected with very high velocities
collides with the molecules in the interstellar space. This results
in a spherical compression wave with very high temperatures. It
can be observed as luminous Ring Nebula. A famous example
is the Ring Nebula in the constellation Lyra.

The investigation of shock waves in gases is performed in shock
wave tubes (Fig. 11.81). A thin membrane separates the volume
V1 with a high gas pressure p1 from the volume V2 with low
gas pressure p2. At time t D 0 the membrane is burst, which
generates the propagation of a pressure wave into the volume
V2. Pressure sensors measure the pressure p.z/ at different loca-
tions z. Spectroscopic techniques allow the determination of the
temperature T.z/ and density %.z/.

If the phase velocity of a wave depends on the wave amplitude
nonlinear phenomena occur. Under certain conditions special
wave fronts are generated which are called Solitons and which
travel with constant amplitude without damping [11.14]. The
have meanwhile found many interesting applications, as for in-
stance in the telecom unication with laser pulses. They cannot

Bow wave front Wake

Figure 11.82 Shock waves of a supersonic plane
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be described by the linear wave equation (11.62) because they
represent essential nonlinear behaviour.

Shock waves are experienced as unpleasant bang, when a plane
flies at low altitudes with supersonic velocities. Two bangs are
heard generated by the bow wave and the tail wave (Fig. 11.82).
The wave fronts of both contributions are curved, because the
sound velocity depends on the altitude h since pressure p.h/ and
temperature T.h/ vary with the height.

11.14 Acoustics

The acoustics covers the generation, propagation and detection
of mechanical vibrations and acoustic waves. It therefore deals
with the various applications of the subjects discussed in the
previous sections of this chapter. Periodic pressure changes in
air, which cause vibrations of our ear drum, are perceived by
the human ear as sound. The frequency scale of sound waves
extends, however, far beyond the audible range between 16 Hz
and 16 kHz. The frequency range below 16 Hz is named infra-
sound, that above 16 kHz ultra-sonic.

11.14.1 Definitions

The whole frequency spectrum of acoustics can be divided into
the 4 ranges:

Infra-sound � < 16 Hz,
audible sound 16 Hz < � < 16 kHz,
ultra-sonics � > 16 kHz,
hyper-sonics � > 10 MHz.

Since the human ear is still the dominant instrument for the
detection of sound, the sound waves audible for the ear are
classified according to their frequency spectrum and their time-
dependent amplitude A.t/.

We distinguish between:

tone: A pure harmonic oscillation with an amplitude that is
either constant or changes slowly compared with the period
T of the oscillation. The pitch is determined by the frequency
of the oscillation, the intensity of sound by the square A2 of
the amplitude.
clang: A periodic but not purely sinusoidal oscillation. The
Fourier-analysis gives a sum of sin- or cos oscillations. A
clang is therefore a superposition of different tones.
noise: Completely inharmonic oscillations. The frequen-
cies and amplitudes of its Fourier components are randomly
changing in time.
bang: A sound pulse with rapidly increasing and decaying
amplitude and a broad frequency spectrum.

The sensitivity of the human ear depends on the frequency. It
has its maximum at about 3–4 kHz. The sound level sensed by
the brain is proportional to the logarithm of the sound intensity

(Weber–Fechner-law). The lowest sound intensity still audible
by a healthy ear at � D 1 kHz is the threshold of hearing

Imin.� D 1 kHz/ D 10�12 W=m2 :

Since the area of the outer ear is about 10�3 m2, a healthy ear
can still detect a sound power of 10�15 W! Nature has optimized
this hearing threshold in such a way, that the sound produced by
the blood flow is just at this level. Children often press a shell
against one ear and hear a noise. They are told that this is the
noise of the ocean waves, but in fact it is the noise of the blood
flow, which is amplified by the enlargement of the ear detection
area.

One defines the subjectively sensed sound pressure level
SL of a sound wave with the pressure p and the intensity
I.�/ D p � u / p2 (u D velocity of the particles oscillating
in the sound wave) as

SL D 20 � log10

�
p

p0

�
D 10 � log10

�
I.�/

Imin

�
; (11.123)

where Imin.1 kHz/ D 10�12 W=m2 D p0u is the hearing thresh-
old and p0 D 20 µPa D 2�10�5 Pa is the lower threshold pressure
of the ear at a frequency of 2 kHz. It is given in the unit 1 phon
(although it is a dimensionless number). The threshold of pain
of our ear is at 130 phons, this is 1013 times higher than the
hearing threshold, which is at 0 phons. When the phon number
increases by 10, the sound intensity increases by a factor 10, i.e.
10 times.

In a harmonic acoustic wave

� D A � cos.!t � kz/

is the velocity u of the oscillating particles

u D @�

@t
D �! � A � sin.!t � kz/ :

Its maximum value

u0 D ! � A

is the velocity amplitude (maximum sound particle velocity).

Rather than using the subjectively sensed units phon an objec-
tive measure of the sound power, which is independent of the
special person is the decibel.

It is defined by the sound power level

LP D 10 � log
P

P0
decibel ;

where P is the power emitted by a source and P0 D 10�12 W
is the hearing threshold for sound waves with a cross section of
1 m2 in air.
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Table 11.4 Examples of phon numbers for some acoustic sources

Low whisper 10 phon
Clear speech 50 phon
Jet plane at 100 m distance � 120 phon
Discotheque 100–130 phon
Jack hammer at 1 m distance 130 phon

Examples

An acoustic source that emits a power of 1 W has a sound
power level of 10 � log 1012 D 120 decibel. The sound
power level at the hearing threshold 10�12 W is LP D 10 �
log 1 D 0 decibel. A source S1 that emits 100 times the
power emitted by S2 differs by 20 decibels by a factor of
100. If the decibel level increases by a factor of ten, the
sound power also increases 10 fold (Tab. 11.4). J

The sound power is a characteristic property of the sound
source. It is independent of the distance, in contrast the sound
pressure level and the sound intensity which decrease as 1=r2

with the distance r from the source.

11.14.2 Pressure Amplitude and Energy
Density of Acoustic Waves

According to Eq. 11.79a and 11.80 the relation between the
pressure p D p0 C �p in an acoustic wave in gases and the
amplitude � is given by

@p

@z
D �% � @

2�

@t2
: (11.124)

With � D �0 � cos.!t � kz/ this gives

@p

@z
D % � !2�0 cos.!t � kz/ : (11.125)

Integration over z yields with k D 2�=�

p D �% � !2 � �
2�
�0 � sin.!t � kz/C C :

The integration constant C is determined by the condition that
without the sound wave (� D 0) the pressure is p D p0, because
�p D 0. This gives the equation for the pressure wave

p D p0 C�p0 � sin.!t � kz/ (11.126)

with the pressure amplitude

�p0 D �vPh%!�0 D �vPh%u0 ; (11.127)

where the relations vPh D !=k and u0 D .@�=@t/0 D ! � �0 have
been used.

The mean energy density of the wave follows from (11.86) and
(11.127) as

dW

dV
D w D 1

2
%!2�2

0 D 1

2

�p2
0

% � v2
Ph

: (11.128)

The relation between the energy density and the particle veloc-
ity u in a sound wave can be derived as follows:

In a harmonic acoustic wave

� D �0 � cos.!t � kz/ ;

the velocity of the oscillating particles is

u D @�=@t D �! � �0 � sin.!t � kz/ :

Its maximum value is according to (11.127)

u0 D ! � A D �p0=.% � vPh/ ;

and is named the acoustic particle velocity.

Inserting u0 into (11.128), the energy density can be written as

w D 1

2
% � u2

0 ;

which is equal to the kinetic energy of the particles per unit vol-
ume oscillating in the acoustic wave.

The energy flux density of the wave (intensity I with the dimen-
sion W=m2 is then

I D vPh � dW

dV
D 1

2

�p2
0

% � vPh
D 1

2
vPh%u2

0 : (11.129)

The total power P emitted by an acoustic source is equal to the
intensity of the emitted wave, integrated over a closed surface
surrounding the source

P D
I

I � dA :

The sound pressure level is defined as

Lp D 10 log10

�
�p

�ps

�2

D 20 log10
�p

�ps
; (11.129a)

where �ps D 2 � 10�5 Pa D 2 � 10�10 bar is the sound pressure
at the threshold of hearing.

Both quantities, the sound pressure level Lp and the sound power
level LP are relative quantities, giving the ratio of sound pressure
to a given lower limit �ps, measured in decibel dB resp. the
ratio of sound power to the power at the threshold of hearing,
also given in decibel (Tab. 11.5). They are a measure for the
logarithm of the ratios �p=�ps of sound pressures or P=Ps of
power levels.
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Table 11.5 Sound power and sound power levels of some sound sources

Sound source Sound
power

Sound
power level

Rocket propulsion engine 106 W 180 dB
Jet propulsion engine 104 W 160 dB
Sirene 103 W 150 dB
Jack hammer 1 W 120 dB
Loud speech 10�3 W 90 dB
Normal conversation 10�5 W 70 dB
Average apartment in quiet surrounding 10�7 W 50 dB
Whisper 10�9 W 30 dB
Rustling of leaves 10�10 W 20 dB
Hearing threshold 10�12 W 0 dB

Pain threshold

Hearing threshold

Figure 11.83 Frequency dependence of sound intensity I .�/ (measured in dB)
compared with the phon numbers illustrated by the horizontal lines

Examples

1. The sound pressure level is 60 dB, when 20 �
log.�p=�ps/ D 60 ) log.�p=�ps/ D 3 ) �p D
103 ��ps D 2 � 10�2 Pa.

2. The sound power level is 80 dB if log.P=Ps/ D 8 )
P D 108 � Ps D 10�4 W. J

The sensitivity of the ear depends on the frequency. Therefore
the curves of equal phon values as a function of frequency are
not horizontal lines in a diagram of sound power level against
frequency (Fig. 11.83) but have a minimum at the frequency of
about 4 kHz where the sensitivity is maximum.

11.14.3 Sound Generators

Sound waves can be generated by free or forced oscillations of
solid bodies, which emit their oscillation energy into their sur-
roundings. Examples are loud speakers, vibrating strings and
tuning forks or vibrating membranes (Fig. 11.84). Also a gas

Compressed

air

Figure 11.84 Different soundwave sources: a Hooter with n teeth of the ro-
tation disc; b tuning fork; c vibrating string

Electrodes

Piezo disc

Acoustic wave

in rod

Detector

Mounting

Figure 11.85 Piezo disc as acouctic source mounted on the end of a solid rod

stream, periodically interrupted, produces sound waves. It is
used in hooters and in all wind instruments, such as trumpets,
horns or flutes.

For the investigation of sound waves in solids and their prop-
agation piezo-crystals can be used. They consist of materials
that expand or contract if an external electric voltage is applied.
If a disc of piezo material is attached to the end face of a rod
(Fig. 11.85), application of an alternating voltage between the
two end faces of the piezo disc produces mechanical oscillation
of the disc, which propagate as acoustic waves through the rod.
A second piezo disc at the other end of the rod serves as detector
of the acoustic waves. Measuring the phase difference between
the sound generation and the detection yields the sound velocity
through the rod.

A commonly used acoustic source is the loudspeaker
(Fig. 11.86), where a membrane is attached to a solenoid in a
permanent magnet. If an electric current is send through the
solenoid, it becomes magnetic and is attracted or repelled in the
field of a permanent magnet, depending on its magnetic polarity
(see Vol. 2). The attached membrane follows the movement of
the solenoid which produces pressure waves that propagate as
acoustic waves in the surrounding air.

11.14.4 Sound-Detectors

Besides the human ear, all devices, sensitive to pressure
changes, can be used as sound detectors. Examples for demon-
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Figure 11.86 a Principle of a loudspeaker; b Technical realization of a loudspeaker

stration experiments are the Rubens’s flame tube (Fig. 11.71) or
Kundt’s powder figures (Fig. 11.70). In practice mainly micro-
phones are used because of their sensitivity and simple usage.
They convert mechanical oscillations into electric alternating
voltages. They can be regarded as the reversals of loudspeak-
ers.

For higher frequencies (ultrasonics), the inverse piezo effect in
ceramic materials (for instance BaTiO3) can be utilized where
pressure changes between the end faces of a piezo crystal induce
electric voltages.

Nowadays more and more optical detectors for acoustic waves
are used.

For instance, the vibration of a membrane can be made visible
by a stroboscopic technique: The membrane is illuminated by a
periodic sequence of optical pulses with a variable frequency f .
If the difference frequency f � � between the pulse frequency f

and the vibration frequency � is sufficiently small, the vibration
can be seen at the difference frequency. This allows the obser-
vation of details during one cycle of the vibration. If f D � the
membrane seems to stand still.

Another optical detection technique is based on the Doppler
shift. When a vibrating plane z D z0 Ca �cos.˝t/ is illuminated
with a monochromatic light beam with the optical frequency !0

(for example a laser beam) the frequency of the reflected light is
Doppler-shifted to

! 0 D !0

�
1 C 2a

c
˝ sin˝t

�
: (11.130)

The superposition of the reflected with the incident light beams
results in a beat frequency ˝ , which is equal to the vibration
frequency of the plane.

A standing acoustic wave in transparent media results in a spa-
tially periodic variation of the pressure and therefore also of the
refractive index (See Vol. 2). This periodic variation of the re-
fractive index acts as an optical phase grating. When a light
beam passes through this grating diffraction phenomena occur
which depend on the period of the grating and can be therefore
used to measure the acoustic wavelength.

Vapor deposition of electrodes

Oscillation

of thickness

Sound emission

Figure 11.87 Principle of piezo-electric sound generation

11.14.5 Ultrasound

Acoustic waves with frequencies above the audible range (� >
20 kHz) are named supersonic waves. They are generated by
electro-acoustic transducers, which convert electrical high fre-
quency voltages into acoustic vibrations. Examples are Piezo-
discs (consisting of silica, Barium-Titanate BaTiO3, PbTiO3 or
PbZrO3: These are crystals that change the thickness of the disc
when an electric voltage is applied (Fig. 11.87). An rf-voltage
between the two sides of the disc induces mechanical vibrations.
Either single discs can be used or stacks of many discs up to 150.

Sometimes also stacks of nickel sheets are used as magneto-
strictive transducers. Here an external magnetic rf-field presses
the sheets together or increases the distance between the sheets,
thus causing a periodic change of the thickness of the whole
stack.

The mechanical oscillation amplitude becomes maximum, when
a resonant standing acoustic wave is built up in the oscillating
system. For the piezo discs this means that the thickness d of
the disc must be an odd integer multiple of the half wavelength �
.d D .2mC1/��=2/, because at both surfaces must be oscillation
maxima of the standing ultrasonic wave.

Example

From the relation vPh D � � � is follows that for a fre-
quency � D 1 MHz and a phase velocity vPh D 5000 m=s
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in the piezo crystal the wavelength is � D 5 mm. For
d D �=2 ) d D 2:5 mm. For a higher frequency
� D 10 MHz the thickness d for the fundamental reso-
nance would be d D 0:25 mm and therefore too thin for
sufficient mechanical stability. In such cases one has to
use higher harmonics with d D .2m C 1/�=2 for the res-
onances. For m D 4 ) d D 2:25 mm, which ensures a
sufficiently stable disc. J

The propagation of ultrasonic waves in solids is influenced by
absorption, scattering and reflection at surfaces. The absorp-
tion strongly depends on the frequency and on the material of
the probe. Scattering is mainly caused by inhomogeneities with
spatial extensions between 0:1� to 5�. The reflection occurs at
boundary surfaces between different materials with a different
acoustic impedance Zacoustic, which is defined as

Zacoustic D % � vs ;

where % is the density of the material and vs the sound velocity.
The reflection coefficient R is

R D Ir=Iinc D Œ.Z1 � Z2/=.Z1 C Z2/�
2 ;

where Iinc is the incident intensity and Ir the reflected intensity.
The reflection of sound waves at boundary surfaces increases
with the difference of the two acoustic impedances. This is
quite similar to the reflection of light waves where the acous-
tic impedance is replaced by the index of refraction.

The reflection can be reduced by placing an anti-reflection layer
of a material with acoustic thickness �=4 between ultrasonic
source and sample. This causes nodes of the standing wave at
both boundaries, which suppresses any reflection.

For medical ultrasonic inspection a special gel which is applied
between the ultrasonic transducer and the skin is used as antire-
flection layer.

11.14.6 Applications of Ultrasound

The technical development of new sources and detectors for ul-
trasonic with increasing performance have greatly enlarged the
different fields of their applications. For the solution of technical
problems as well as in medical diagnostics ultrasonic inves-
tigations are routinely applied [11.17–11.18b]. The optimum
frequency of the ultrasonic waves depends on the wanted spatial
resolution and the penetration depth into the sample.

11.14.6.1 Technical Applications

There are many examples where ultrasonic can be applied for
the solution of technical problems: measurements of wall thick-
ness in pipes and containers, investigations of inhomogeneity in
solids, e. g. internal fissures in walls or formation of granules
in crystals. The spatial resolution is limited by the wavelength

� of the ultrasonic wave. For a frequency of 10 MHz and a
phase velocity vPh D 5000 m=s in solids the wavelength is
� D vPh=� D 0:5 mm. For achieving a higher resolution, one
has to increase the frequency. Typical frequencies are within the
range from 250 kHz to 100 MHz resulting in a spatial resolution
between 2 cm and 50 µm.

The determination of wall thicknesses uses short ultrasonic
pulses. It is based on the measurement of time intervals be-
tween the pulse reflected at the front side of the sample and the
pulse reflected at the backside.

Example

With a time resolution of 10�7 s and a sound velocity of
5000 m=s the thickness can be measured with an accuracy
of 0:5 mm. J

An important field of applications is the cleaning of surfaces and
fabrics. The sample to be cleaned is placed in a tank filled with a
liquid. An ultrasonic transducer at the wall of the tank irradiates
the sample. The vibrations of the water molecules impinging on
the sample leads to a mechanical removal of the dirt particles.
Modern developments use already washing machines without
detergents, which clean the laundry with ultrasonic, thus avoid-
ing the pollution of the drain water by phosphates.

11.14.6.2 Applications in Medicine

While X-ray diagnostics mainly detects hard substances in the
body (bones, cartilages and sclerotic precipitates) ultrasonic
inspection is also sensitive for soft tissue (kidney, liver, hall
bladder, stomach, sinews or ligaments). Because of the smaller
sound velocity in tissue (v D 1000 m=s) a higher spatial resolu-
tion as in technical solids can be obtained at the same ultrasonic
frequency.

Example

For frequencies � > 1 MHz and a sound velocity of
vs D 1000 m=s a spatial resolution �r < 1 mm can be
reached. Modern devices allow a resolution of 0:1 mm
and are able to resolve finer details inside our body. In
order to reduce the sound resistance between the trans-
ducer and the skin of the body a coupling gel is applied.
An important application of ultrasonic is the examination
of pregnant women, where the development of the foe-
tus can be followed up during the different stages of the
pregnancy. J

An advantage of ultrasonic inspection against X-ray diagnosis
is not only the absent radiation damage but also the better time
resolution which allows the inspection of dynamical processes
in the body. For instance, it is meanwhile possible to visualize
in detail the contraction and expansion of the heart during one
beat cycle [11.18a, 11.18b].
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11.14.7 Techniques of Ultrasonic Diagnosis

Different techniques for ultrasonic diagnosis have been devel-
oped. Here we will discuss only two of them.

11.14.7.1 The Echo-Pulse Method

Here short ultrasonic pulses with a pulse sequence frequency f

(i. e. a time interval T D 1=f between the pulses) are sent into
the sample (Fig. 11.88). The pulse reflected by a surface at the
distance d from the source is received by the detector at time
�t D 2d=vs < T . During the pulse-free time T between two
pulses, the ultrasonic source consisting of a piezo-crystal with
an applied rf-voltage acts now as detector. The reflected sound
waves induce vibrations in the piezo-crystal, which generate
electrical oscillations. On the oscilloscope the emitted pulse and
the reflected pulses appear. The third pulse comes from the back
surface of the sample. The heights of the pulses depends on the
reflectivity of the surfaces. The time interval between the pulses
allows the determination of the location of the reflecting surface
and the pulse height gives the sound wave resistances of the dif-
ferent media in the sample.

This technique gives a one-dimensional image of the inspected
sample. Since the amplitude of the pulses are measured, the
technique is called A-image technique.

11.14.7.2 The B-Image Technique

This method yields sectional images, where the letter B stands
for “brightness-modulation”. The reflected pulses control the
brightness of the oscilloscope. The ultrasonic transducer is
shifted perpendicular to the sound wave propagation or is tilted
and the resulting sectional images are recorded, stored and
added to a two-dimensional picture on the scope. The electron
beam impinging on the oscilloscope screen is synchronously
shifted with the motion of the ultrasonic transducer. The in-
tensity of the reflected ultrasonic waves is converted into the
grey scale or the colour of the composite oscilloscope picture.
This facilitates the recognition of structures in the investigated
tissue. If only reflected pulses that arrive within a certain time
interval are selected, a specified layer of the tissue is monitored.
This tomogram technique gives a three-dimensional picture of
the inspected material.

RF

transmitter

Electrode

Piezo

Sample

RF transducer

Oscillograph

Figure 11.88 Schematic illustration of the design for the ultrasonic echo-pulse
technique

Figure 11.89 a Shift of ultrasonic transducer in x-direction for getting
different sectional images in the x–z -plane; b principle of echo-technique;
c one-dimensional recording; d two-dimensional echo-image obtained with the
B-method

In Fig. 11.89 the one-dimensional A-method is schematically
compared with the three-dimensional B-method, where the
time-measurement gives information on the third dimension.

The advantage of the A-method is its larger recording speed,
which allows the visualization of fast processes in the human
body in real time. Examples are the detailed visualization of the
motion of selected parts of the pulsating heart, or the motion of
an embryo in the uterus.

Example

Heart inspection by ultrasonic:
The ultrasonic transducer is places on the skin of the pa-
tient. The distance from the skin to the heart is about
15 cm. The time between emitted and received ultrasonic
pulse is

�t D 2 � �s

vPh
D 2 � 0:15 m

1500 m=s
D 100 µs :

The maximum pulse repetition frequency is then 5 kHz.
J

The advantage of the B-method is its capability of producing
two-or three-dimensional pictures, which give a better impres-
sion of the spatial structure of selected parts of the body. This is
further improved by the ultrasonic tomography, where similar to
the X-ray tomography many sectional images are composed by
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the computer to a total three-dimensional image. By combina-
tion with the time-resolved echo-technique the spatial resolution
and the contrast of the imaged structures can be greatly en-
hanced. With modern high frequency ultrasonic devices a
spatial resolution in the sub-millimetre range can be achieved.
This allows the recognition of abnormalities of a foetus in the
uterus and opens the possibility of early corrective action.

Blood stream velocities in the artery or veins can be measured
with the Doppler-ultrasonic method. Here the frequency shift
between the emitted and the reflected pulse is utilized to mea-
sure with high spatial resolution the blood stream velocity and
detect a local narrowing of the artery or widening of the arteries
(aneurism). Both phenomena can lead to the death of a patient.
Also the motion of the heart valves can be visualized thus allow-
ing the detection of heart valve failures.

The great advantage of ultra-sonic versus X-ray diagnostics is
the fact that no damage of the body occurs (if excessive sound
intensities are avoided). Therefore, also pregnant women or
small children can be examined without the danger of damages.

11.15 Physics of Musical Instruments

The basic physical laws of musical instruments have fasci-
nated many scientists already in the 19th century [11.19]. This
had, however, nearly no influence on the construction and op-
timization of these instruments, which were still based on old
traditional recipes, and on techniques that were passed on to
many generations within a family. The skilfulness and the sense
of hearing of the instrument maker were the essential basis for
making a good instrument.

During recent years, the scientific investigation of the quality
of musical instruments has found increasing interest, both by
physicists as well as by instrument makers. This has led to
an intense cooperation. The main reason is the availability of
new measuring techniques and detectors such as microphones,
storage oscilloscopes, Fourier-analysers and computer simula-
tions, which are able to characterize the tone colour of a musical
instrument in more detail and can reproduce it in form of a
Fourier-diagram in an objective way, independent of the mu-
sical sensibility of the listener. The question why a Stradivari

violin sounds so much better than an ordinary violin or what
distinguishes a Bechstein grand piano from an ordinary piano
can thus be answered by scientific methods.

The aim of such investigations is the answer to the following
questions:

Which properties of the material influence in which way the
tone quality of the instrument?
How do acoustic resonances determine the tone quality?
Which relations exist between the Fourier-spectrum of an in-
strument and the subjective feeling of its quality?
Why do aging processes of the material affect the tone qual-
ity?

The hope is a scientific understanding of the quantitative re-
lations between the Fourier-spectrum and the appraisal of an

instrument and the possibility of giving quantitative instructions
for making a Stradivari violin or a Bechstein-piano and to select
the proper material in order to achieve this goal.

11.15.1 Classification of Musical Instruments

Musical instruments can be sorted in 5 groups according to the
kind of sound generation:

String instruments, where tight strings are excited to oscilla-
tions by plucking (guitar, harp and harpsichord), by striking
(piano) or by bowing (violin, cello, contrabass).
The different tone colour of the various string instruments is
caused by the string tension, the string materials, the form
and material of the resonance body and in particular by the
strength and duration of the string plucking, i. e. by the mu-
sician.
Wind instruments, which use the oscillations of air columns
in cylindrical, conical or bent pipes for the generation of
tones. To this group belong all wood instruments such as
recorders, oboe and bassoon, the brass instruments (Trum-
pet, Trombone, tuba, natural horn), and the organ with its
different wind pipes.
Percussion instruments, where oscillations of membranes
(drum, tympanum), or of special forms of solid bodies
(triangle, cimbalom, xylophone, button gong, chimes and
carillon).
Electronic musical instruments, where electronic oscillations
are generated, which are converted into acoustic oscillations
by a loud speaker. The frequency spectrum of these instru-
ments and its time variations can be controlled mechanically
or by computer programs. Therefore the tone colour of all
other instruments can be imitated.
Of course the human voice should be also regarded as musi-
cal instrument. Because of its wide variety of tone colour and
frequency spectrum and its modulation capability, it is often
called the Queen of all instruments. Lovers of the organ use
this name, however, for the organ. In a physical sense the
human voice belongs to the wind instruments.

11.15.2 Chords, Musical Scale and Tuning

A “tone” of an musical instrument is generally no pure sine-
oscillation but includes besides the fundamental frequency �
several overtones with frequencies n � � .n D 2; 3; 4; : : :/. This
overtone spectrum I.n � �/ is characteristic for the different in-
struments. The violin, for example, has a completely different
overtone spectrum than the piano.

We perceive the superposition of two or more tones as harmonic,
if the tones have as many common overtones as possible. The
superposition of more than two such tones is called a chord.

The most common overtones have two fundamental tones with
a frequency ratio �1 W �2 D 2 W 1. The interval between these
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Table 11.6 Tone interval for a “pure tune” within one octace

Interval Frequency ratio �2 W �1

Octave 2 : 1
Fifth 3 : 2
Fourth 4 : 3
Major third 5 : 4
Minor third 6 : 5
Major sixth 5 : 3
Minor sixth 8 : 5
Minor seventh 9 : 5
Major seventh 15 : 8
Major second 9 : 8
Minor second 16 : 15

two tones is the octave. The intervals of tones within one oc-
tave are in the European music ratios of small integers, which
allow the formation of many harmonic chords. Our polyphonic
music is based on these harmonic chords. They are compiled in
Tab. 11.6.

The series of tones that is ordered within one octave according
to increasing frequencies is called a musical scale. In Tab. 11.7
the C-major scale is listed as one example.

The two tables illustrate that the frequency ratios of most inter-
vals are indeed ratios of small integers and have therefore many
common overtones. A musical instrument (e. g. a piano) that
is tuned according to the frequency intervals of Tab. 11.7 has a
pure tuning, because it sounds in this key particularly pure and
harmonic. This pure tuning is also called Pythagorean tuning,
because Pythagoras found already 2000 years ago that a string,
fixed on both sides generates harmonic tones when it is subdi-
vided in two parts with certain lengths ratios.

The numerical values given in Tab. 11.7 illustrate, that the fre-
quency ratios of two successive tones do not always have the
same value, but attain the ratios 9=8, 10=9, and 16=15. This has
the consequence that an instrument that has a pure tuning for the
C-major key, does not sound purely in another key. For example
the quint C–G in the C-major key has the frequency ratio 3 W 2

Figure 11.90 Pure tuning �phys, equally tempered scale �temp and frequency ratios of the successive tones of the C-major scale

Table 11.7 C-major scale

Tone Relative

Frequency

Frequency

ratio

Equally tempered 

scale

Interval

c

d

e

f

g

a

h

c

9/8

5/4

4/3

3/2

5/3

15/8

Major second

Major third

Fourth

Fifth

Major sixth

Major seventh

Octave

but the quint D-A for the D-major key the ratio 40=27. Musical
instruments (e. g. the violin) that can be readily tuned to any key
by varying the frequency, can overcome this problem and can be
played with a pure tuning. The tone “a” has then in the C-major
key a slightly different frequency than in the D-major key.

In order to use instruments that cannot be tuned readily to any
key (for instance the piano or the organ) the musicians have
agreed to the compromise of the equally tempered scale. Here
the frequency ratios of two subsequent tones within an octave
of twelve halftones is always 12

p
2 D 1:05946. The only pure

interval is now the octave with a frequency ratio 2 W 1 (see
Fig. 11.90). In order to show that with this agreement an instru-
ment could be played in all keys, J. S. Bach wrote his famous
work “Wohltemperiertes Klavier” D piano with equally tem-
pered scale), where he composed pieces in all possible keys.

In this equally tempered scale there are intervals with �x=�x�1 D
6
p

2 called whole-tones and intervals with �x=�x�1 D 12
p

2, called



C
h

a
p

te
r

1
1

374 11 Mechanical Oscillations and Waves

Figure 11.91 Triads and their frequency-ratios

half-tones. In the C-major key the only half-tones are the inter-
vals e–f and h–c, while all other intervals are whole-tones. The
only really pure interval in the equally tempered scale is the oc-
tave.

Since most instruments span a scale over several octaves, the
tones in different octaves must be differently marked. This
is done by defining the absolute frequency of a tone. One
chooses as standard tone the concert pitch “a” with a frequency
fa D 440 Hz. All tones within the same octave as the concert
pitch a are marked by the upper exponent 1 or by an upper apos-
trophe ’. The C-major scale around the concert pitch a is then c’,
d’, .e’, f’, g’, a’, h’. All tones in the octave above are marked by
the upper exponent 2 or by a double apostrophe ’’, etc. The oc-
tave below the concert pitch are named as small octave, grand

octave and contra-octave. The lowest tone c on the piano has
the frequency f D 32 Hz, the next higher c has f D 65 Hz. The
highest c = c’’’’ has f D 4158 Hz.

Consonant chores are a superposition of overtones with the same
fundamental tone. Examples are shown in Fig. 11.91.

11.15.3 Physics of the Violin

The primary sound source of the violin is the string, clamped on
both sides, which is bowed by a violin bow. The vibration of the
string is transferred by a violin bridge and through the air to the
resonance body of the violin. This resonance body has a special
form and is made of selected wood, which has been stored for
many years in order to have the optimum resonance condition
for the sound produced by bowing the strings.

When the violin bow is uniformly bowed over the string, the
string will be taken along with the moving bow at the touch
point due to the static friction, until the restoring force of the
deflected string becomes larger than the static friction force.
Now the string jumps back into its equilibrium position, be-
cause the sliding friction is smaller than the static friction (see

Figure 11.92 Elongation 
.t/ and velocity v.t/ D P
.t/ of the string at the
location of the bow under a uniform bow stroke. a Strong; b medium; c weak
press-on string [11.20]

Sect. 5.6.2). The detailed motion of the string depends on the
force with which the bow is pressed against the string and on
the position of the touch point relative to the fix points of the
string (Fig. 11.92).

The oscillation of the string is therefore by no means a sine func-
tion, it has a rich overtone spectrum (see Sect. 11.3.1). The
fundamental tone is determined by the length L of the string, its
mass � per unit length and by its tensile force. From equation
(11.77) we obtain for the phase velocity

vPh D
p

F=� D � � � D 2�0 � L

) �0 D 1

2L

p
F=� :

(11.131)

Oscillation center

Time

Figure 11.93 Migration of the elongation kink along the violin string during
one oscillation period
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Figure 11.94 Amplitudes an .t/ of fundamental tune and first overtune for
uniform bow

The kink-shaped deflection of the string moves during one os-
cillation period along the whole string, as shown in Fig. 11.93.
The kink passes along the dashed curve, which represents a mo-
mentary picture of a standing sine-wave with the wavelength
� D 2L at the time of the maximum elongation.

The time-dependent deflection of the string can be described by
the Fourier series

�.x; t/ D
X

n

an.t/ � sin
n�x

L
sin.n!t/ : (11.132)

The amplitudes a.t/ of the different overtones are not constant,
even for a uniform bow motion but show a behaviour as illus-
trated in Fig. 11.94.

Of particular importance for the sound of a violin is the reso-
nance body. For a good violin, it has a broad resonance spectrum
around the maximum of the ear sensitivity. The wider the reso-
nance spectrum is the more brilliant is the sound of the violin.
For comparison, Fig. 11.95 shows the average values of the res-
onance curves of ten Old Italian violins (upper curve) and that
of trivial violins. Significant differences in the range between
1 kHz and 4 kHz are obvious.

Figure 11.95 Comparison of the frequency spectrum of an old Italian violin
(above ) and a cheap manufactured violin (below )

Figure 11.96 Holographic interferograms of the violin top (above ) and bottom
(below ) for different frequencies. The patterns give mean elongations of the
surface, which differ between lines of equal elongation by �.� 0:6 µm/

With stroboscopic and holographic methods, the elongations of
the cap (above) and the bottom (below) of the resonance body
can be visualized for different frequencies. Such pictures show
which part of the resonance body preferentially emits sound
wave (Fig. 11.96).

11.15.4 Physics of the Piano

In the piano, a tone is generated by a key stroke, activating a
hammer of felt that strikes a tense string. The sound of the
generated tone depends on the material of the hammer and the
character of the string (thickness and tensile force) and on the
resonance body. In Fig. 11.97 the amplitudes �.t/ of the trans-
verse elongations are shown for three strings excited at different
fundamental frequencies. It shows that the duration ta of the
hammer stroke is for low frequencies small compared with the
oscillation period T D 1=�0. It furthermore illustrates that the
oscillation strongly deviates from a sine function. For higher
frequencies, the stroke duration ta becomes comparable with the
oscillation period.

The overtone spectrum of a C4 string with the fundamental fre-
quency �1 D 262 Hz, shown in Fig. 11.98, demonstrates that for
hard strokes the overtone spectrum is much more pronounced
than for soft strokes.

The frequencies of the overtones of the fundamental �1 are
not exactly at n � �1 (Fig. 11.99), because the acoustic ve-
locity vPh depends on the frequency and since the frequency
�.n/ D vPh=� D vPh.�/=L=n of the n-th harmonic is not equal
to n � �1. The physical reason for this inharmonicity is the larger
rigidity of thick strings (for low tones) compared with that of
thin strings for the higher tones. This inharmonicity essentially
influences the sound of the piano tone.
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Figure 11.97 Transversal elongations �.t/ of three piano strings for different
tone frequencies. Relation between strike time of hammer ta and oscillation
period T

kHz

Hard stroke

Normal stroke

Soft stroke

Figure 11.98 Frequency spectrum Lst.�/ of the C4-string (�0 D 262 Hz) of the piano under soft, normal und hard strokes

Overtone number n

Figure 11.99 Anharmonicity of overtunes n � �0 of the lowest piano string A.
The real frequenciy of the overtunes is higher than n � �0 [11.21]

Summary

The free undamped one-dimensional oscillator performs a
harmonic motion x D A � cos.!t C '/ that is determined
by its amplitude A, its circlar frequency ! D 2� � � and its
phase shift '. The total energy of the oscillation as the sum
of kinetic and potential energy is constant in time.
As long as the deviation from the equilibrium position is
sufficiently small, the restoring force is proportional to the

elongation and the oscillation amplitude is a linear function
of the restoring force. Such linear oscillations are mathemat-
ically described by real sine-or cos-functions or by complex
functions ei!t C e�i!t which, however, must be combined in
such a way that the total amplitude of the oscillation is al-
ways real.
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The superposition of different one-dimensional oscillations
with equal frequencies gives again an oscillation with the
same frequency but a phase ', that depends on the phases
of the superposed oscillations. For different frequencies the
superposition is a more complicated oscillation with time de-
pendent amplitude which is determined by the amplitudes,
the phases and the frequencies of the different partial oscil-
lations. The superposition can be reduced to the sum of the
partial oscillations by a Fourier-analysis.
The superposition of oscillations in the x and the y-direction
gives two-dimensional curves in the x–y-plane (Lissajous-
figures). These are closed curves if the frequency ratio !1=!2

of the two frequencies are rational numbers.
For a damped oscillator kinetic energy of the oscillation
is transferred into other forms of energy, e. g. into heat of
friction. For small damping the oscillation amplitude de-
creases exponentially. For large friction no oscillation can
be realized. The amplitude decreases after a first elongation
exponentially against zero.
For a forced oscillation external energy is periodically fed
into the oscillating system. After an initial transient period
a stationary oscillation appears with the frequency of the
external force. The losses of the damped system are just
compensated by the external energy supply. For the reso-
nance case (exciting frequency D resonance frequency of the
system) very large amplitudes are reached which might even
destroy the system (resonance disaster).
For a parametric oscillator the oscillation parameters (ampli-
tude, frequency or phase) are periodically changed. This is
achieved by a periodic external energy supply. The paramet-
ric oscillation characteristics depends on the ratio of exciting
frequency to resonance frequency of the system.
A coupling between two independent oscillators leads to a
periodic energy exchange between the two oscillators. The
oscillation amplitudes change periodically, where the fre-
quency of the modulation depends on the strength of the
coupling. The complicated motion of the system of N cou-
pled oscillators with different frequencies can be always
reduced to the superposition of N normal vibrations.
A wave is the propagation in space of a local perturbation
of the equilibrium state. The propagation of a harmonic os-
cillation gives a harmonic sine-wave. The propagation of a
mechanical wave is accomplished by the coupling of oscil-
lating mass particles to its neighbouring particles.
For transverse waves the elongation occurs perpendicular to
the propagation direction, for longitudinal waves in the prop-
agation direction. Transverse wave can occur only in media
with a shear modulus G ¤ 0. In the inside of liquids is G D 0
and no transverse waves can appear. At the surface of liquids
surface tension and gravity act as restoring forces which can
enable the propagation of transvers waves.
The phase velocity vPh D !=k of a wave traveling through
a medium depends on the properties of this medium. When
vPh.�/ depends on the wavelength, the medium shows dis-
persion.
Longitudinal waves in solids have the phase velocity vPh Dp

E=%, which depends on the elasticity modulus E and den-

sity %, while for transverse waves vPh D
p

G=% depends on
the shear modulus G.
In gases only longitudinal waves are possible. Their phase
velocity vPh D

p
p=% depends on pressure and density of the

gas.
The phase velocity of transverse waves at liquid surfaces de-
pends on the surface tension, on the depth of the liquid and
on the wavelength. These waves show dispersion.
The intensity of a wave I D .1=2/ vPh � % � A2 � !2 gives the
energy flux density measured in ŒW=m2�. It is proportional
to the squares of amplitude and frequency.
A wave packet (D wave group) is generated by the superpo-
sition of an infinite number of partial waves with frequencies
inside a spectral range �! around a mid-frequency !0. Its
group velocity vG D d!=dk gives the velocity of the maxi-
mum Amax.!0/ of the amplitude distribution A.!/. In media
with dispersion, group velocity and phase velocity are differ-
ent.
Huygens’ principle states that every point on a wave front
is the source of a spherical wave. The resultant wave is the
superposition of all such elementary waves. This principle
explains all phenomena of the wave propagation, such as re-
flection, refraction and diffraction.
Two waves with equal frequencies are called coherent if their
superposition gives at every point within the superposition
region a constant phase difference between the two waves.
The superposition of coherent waves results in interference
structures.
Transverse waves can be realized with linear, circular or el-
liptical polarization. For longitudinal waves there is only one
type because the oscillation direction is always in the propa-
gation direction.
All linear waves are solutions of the linear wave equation

�� D .1=v2/@2�=@t2

with v D vPh.
Standing waves are generated by the superposition of run-
ning waves under specific boundary conditions. They repre-
sent spatially periodic stationary oscillation patterns.
Shock waves are non-periodic waves where a short local per-
turbation propagates as a singular steep pressure change.
The energy of a sound wave in the volume�V

�W D .1=2/�p2=.% � v2
Ph/ ��V

is proportional to the square of the pressure change�p.
The energy density is �W=�V, the energy flux density (in-
tensity) of a sound wave is I D vPh ��W=�V.
Sound waves in gases are generated by oscillating solid
bodies that transfer their oscillation energy partly to the sur-
rounding gas. Examples are electro-strictive piezo materials
or loud speakers.
Sound waves can be detected by membranes that are ex-
cited to oscillations by the acoustic wave. If the oscillations
occur in a magnetic field electric signals are generated (mi-
crophone).
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Problems

11.1 An elastic spring is elongated by the force F D 1 N by
5 cm. What is the oscillation period T if a mass of 1 kg is at-
tached to one end of the spring? The mass of the spring can be
neglected.

11.2 A homogeneous steel wire with length L and mass M

is vertically suspended. At its lower end a mass m is attached.
Now the upper suspension is shifted for a short moment in the
horizontal direction, causing a transvers wave pulse travelling
downwards. At the same time a steel ball is released from the
suspension point of the wire and falls down. Where does the ball
overtake the wave pulse (air friction can be neglected). What is
the minimum value of the ratio m=M in order to realize the over-
taking?

11.3 Show, that for a complex representation of a forced os-
cillation only the imaginary part consumes energy. What is the
role of the real part?

11.4 A soap bubble with radius R, wall thickness d and den-
sity % performs radial oscillations due to the restoring force of
the surface tension � . Calculate the oscillation period T as a
function of R, %, and � .

11.5 A plane longitudinal acoustic wave with the frequency
� D 10 kHz and the amplitude A D 10�4 m propagates through
a steel rod (E D 22 � 1010 N=m2, density % D 8 � 103 kg=m3).
How large are the maximum tension � and the phase velocity
vPh?

11.6 How large is the oscillation amplitude of a sound wave
in air and the maximum velocity of the oscillating particles for
a frequency � D 1 kHz
a) at the hearing threshold (0 dB)
b) at the absolute threshold of pain (130 dB)?
Compare the results with the mean free pathlength � in air and
the thermal velocity of the molecules at T D 300 K.

11.7 A U-shaped tube with 2 cm inner diameter contains wa-
ter with the mass 0:5 kg. When the water column in one branch
is shortly pressed down by �z D 10 cm and then released, the
water column begins to oscillate. How large is the oscillation
period and what are the maximum velocity and acceleration of
the water? How large is the damping, if we use the values for
the viscosity � in Tab. 8.1.

11.8 A sound wave with a frequency of 2 kHz impinges verti-
cally onto a sound-damping wall, which has, however, a vertical
free slit with 0:5 m width. A pedestrian walks on the other side
of the wall parallel to the wall at a distance of 20 m. Along
which path length can he receive more than 50% (5%) of the
sound power incident onto the other side of the wall.

11.9 A plane sound wave impinges vertically onto a water
surface The sound velocities are: vair D 334 m=s; vwater D
1480 m=s. Which fraction of the incident sound power is re-
flected, which fraction propagates into the water? Compare also
the intensities of the reflected and transmitted sound waves.

11.10 Two plane sound waves � D A � cos.800t � 2z/ and
�2 D A � cos.630t � 1:5z/ superimpose. How looks the inter-
ference pattern? What is the group velocity compared with the
phase velocities of the partial waves?

11.11 What is the phase velocity of ocean waves with � D
500 m at a large water depth. Compare this result with waves on
a lake with � D 0:5 m, which are generated by throwing a stone
into the water.

11.12 A string with length L D 1 m, density % D 7:8 �
103 kg=m3 and mass m D �L is clamped on both ends. A ten-
sile stress � D 3 � 1010 N=m2 acts on the string. The string is
deflected in its mid by�r � L. The form of the deflected string
can be represented by a triangle. What are oscillation frequency
and oscillation period after ending the deflection.

11.13 A mass m D 2000 kg is suspended at the lower end of a
thin steel rope with L D 2 m. What is the period of vertical os-
cillations of the mass m? Compare the result with the horizontal
pendulum oscillation of the mass m.

11.14 At the end of a thin laminated spring of length L D
10 cm with the resonance frequency ! D 2� � 100 s�1 is a mass
m D 100 g attached. What is the frequency shift by this mass?

11.15 A buoy consisting of a cylindrical pipe with length L

floats vertically in water. Without waves, the part a � L.a < 1/
immerses in the water. What is the amplitude of the vertical os-
cillation of the buoy, when sine waves with the total heights 2h

(from the wave maximum to the minimum) with the period T

appear? Numerical example: a � L D 30 m, h D 2 m, T D 5 s.
How large must L be that the wave maximum just reaches the
upper peak of the buoy?

11.16 Prove that the spherical wave � D .A=r/ � ei.!t�kr/ is a
solution of the wave equation�� D .1=v2

Ph/@
2�=@t2.

11.17 The first tone of a police siren has the frequency �1 D
390 Hz, the second tone has �2 D 520 Hz (the tone ratio is a
major fourth).
a) At which speed of the approaching police car are both tones

higher by a whole tone (�0
1 D 1:12246��1, �0

2 D 1:12246��2).
b) At which velocity has the observer to approach the police car

at rest, in order to hear the same tone shift?
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11.18 A cube with mass m D 2 kg is at rest in the mid be-
tween two springs with the spring constants D0 D 100 N=m. It
can slide on a horizontal rail (Fig. 11.100). The friction force is
Ff D f � m � g. The coefficient of the sliding friction is f1 D 0:3,
that of the static friction f0 D 0:9.

Figure 11.100 To Probl. 11.18

a) According to which physical law do the amplitudes de-
crease? (Hint: Consider the energy ratio at successive
reversal points xn and xnC1 at opposite sides of the oscilla-
tion.)

b) At which x-position comes the mass to a rest, if it has been
released at a position 22 cm away from the equilibrium posi-
tion?

c) What is the time difference between two successive reversal
points?
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382 12 Nonlinear Dynamics and Chaos

In Chap. 2 we have discussed the motion of point masses under
the influence of forces. The equations of motion are linear dif-
ferential equations. If the complete initial conditions are given,
(e. g. location and velocity at time t D 0) the solution of the dif-
ferential equation determines exactly the future fate of the point
mass (its location and velocity at future times t > 0), as long as
the forces and their changes with time are known.

For cases where the equation of motion has no analytical solu-
tions and requires a numerical integration the accuracy of the
results is only limited by numerical uncertainties, which can be
minimized by using sufficiently fast computers.

In such cases of exact predictions, the motion of a body or the
time development of a system are called strictly deterministic.
For exact initial conditions, exact predictions of the future de-
velopment are possible.

If small deviations of the initial conditions cause only
small changes of the future development of the system,
we call the solutions of the equation of motion stable.

Examples of such stable solutions are the motion of the moon
around the earth, or of the earth around the sun. Small perturba-
tion of the central gravitational force field by the influences of
the other planets (or in case of the moon by the sun) lead only
to small corrections of the trajectories of the earth or the moon,
which can be calculated within the framework of perturbation
theory. As long as the solutions of the equation of motion are
stable, such small corrections do not destroy the predictability
of future positions and velocities.

Although we are accustomed in daily life to the normality of
stable solutions, there are numerous examples of unstable so-
lutions, where tiny changes of the initial conditions result in a
completely different future development of a system, which then
lead to completely different final states.

A simple example is a ball, that is released from the point (x D
0, z D h) and falls down. During its fall it hits a body with two
sloped plain surfaces and a sharp edge at the top (Fig. 12.1). If
the initial point is only shifted by a tiny amount ıx to the right,
the ball hits the right slope of the obstacle and is reflected to the
point (x D x1, z D 0) while for ıx < 0 the ball hits the left side
and is deflected to the point (x D �x1, z D 0).

A second example is the parametric oscillator (see Sect. 11.7) as
an oscillating system that is driven by an external periodic force.
It can be realized, for instance, by a simple pendulum with a
string length L D L0 C �L0 � cos.!t C ˛/ that is periodically
changed and a large oscillation amplitude where the restoring
force m � g � sin ' can no longer approximated by m � g � ' (see
Sect. 2.9.6), Eq. 2.79). The equation of motion of such a driven
pendulum

.L0 C�L0 cos.!t C ˛// R' C 
 P' C g � sin' D 0 (12.1)

is nonlinear. For certain regimes of the parameters �L0, ! and
˛ (amplitude, frequency and phase of the external force) the
amplitude grows until the angel ' exceeds the value � . Then

Figure 12.1 The final location of the falling ball depends very sensitive on the
initial position around x D 0

the periodic pendulum motion changes into an irregular circu-
lar motion where the function '.t/ shows a chaotic behaviour
(Fig. 12.2).

Another example is the motion of a planet that moves in the
gravitational field of two stars (double star system) that is quite
common in the universe. Its trajectory depends critically on the
initial conditions. It can be stable, for instance, but for tiny
changes of the initial conditions the motion of the planet be-
comes unstable. It either leaves the system or it collides with
one of the two stars.

A more difficile example is the motion of a body around the
planet Saturn in the range of the ring system. Here ranges for
the distances r to Saturn are found where the superposition of
the gravitational forces by Saturn and by its inner moons leads
to unstable trajectories of the body while slightly different radii
show stable motions. The unstable ranges are those where the
gaps in the ring system occurs. In the unstable ranges the ratio
Tb=Tm of the circulation periods of the body and of one of the
inner moons equals the ratio p=q of small integers p and q. A
very small change of the initial radius r can convert a stable
trajectory into an unstable one.

Figure 12.2 Pendulum oscillations driven by an external force. a Small am-
plitude in the stable linear range; b in the unstable range with large amplitude.
The ordinate scale is in (b) 100 times larger than in (a)
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A similar phenomenon occurs in the asteroid belt between Mars
and Jupiter, where the time-dependent gravitational attraction
between asteroid and Jupiter leads for certain radii to unstable
asteroid trajectories and causes the observed gaps in the asteroid
belt.

All of these examples correspond to equations of motion that
contain at least one nonlinear term that is responsible for the
unstable motion. For the example of the parametric pendulum,
these are the nonlinear restoring force m � g � sin ' and the non-
linear driving force. For certain ranges of the parameters a and
b (a D ratio of the resonance frequency !0 to the driving fre-
quency !, and b gives the ratio of the amplitudes of driving
force to restoring force) the motion becomes unstable.

The solutions of linear equations have the following noteworthy
property: They obey the superposition principle, which has been
demonstrated in Sect. 11.3 for the example of linear oscillations:
If x1.t/ and x2.t/ are solutions of the linear equation, every linear
combination x.t/ D a � x1.t/C b � x2.t/ is also a solution.

We will show that this superposition principle no longer holds
for the solutions of nonlinear equations It is replaced by another
principle: The scale invariance or self-similarity.

As was illustrated by the forgoing examples, for many parameter
ranges there are no stable solutions of nonlinear equations. This
means that even for very small changes of the initial conditions
the time development of a system leads to completely different
final states. Since generally the initial states are not exactly de-
fined (because of measuring uncertainties), the predictability is
severely limited for such systems.

Most processes in nature can be described only approximately
by linearized equations, although in many cases an admirable
accuracy is reached (for example by prediction of moon- or so-
lar eclipses). The exact equation of motion should contain the
nonlinear terms. If these terms lead to unstable developments
of the system, we called this a chaotic behaviour. Examples of
such chaotic behaviour can be for instance, found in Meteorol-
ogy. They demonstrate that the difficulty to predict exactly the
forthcoming weather is not an indication of the missing capabil-
ity of the meteorologists but an inherent feature of the chaotic
system.

In spite of these difficulties a lot of surprising statements can
be made about the solutions of nonlinear equations and the
behaviour of nonlinear systems. The investigation of chaotic
systems is the subject of Chaos Research, which can be only
shortly discussed here. For a more extensive study of this fasci-
nating field the reader is referred to the literature [12.1a–12.6b]

12.1 Stability of Dynamical Systems

A dynamical system changes with time, in contrast to a station-
ary system, which has reached an equilibrium state that does no
longer change in time.

The dynamical system can be described by time-dependent pa-
rameters �i.t/ .i D 1; 2; 3; : : :;N/. The quantities �.t/ can be, for

example, the coordinates xi.t/ and the velocities vi.t/ of a point
mass moving on its trajectory, or they characterize the time de-
pendent state of a system of many particles, for instance pressure
p.t/ and temperature T.t/. They can also describe the number
of subjects in a biological system where the population changes
with time.

If the state of a dynamical system at time t2 is unambiguously
determined by its state at the earlier time t1 < t2 we call the
dynamics deterministic, in contrast to the stochastic or random
dynamics, where for the development of the system only proba-
bilities can be given, no certain and unambiguous predictions.

When the state of a system at time t is characterized by the N

quantities

X.t/ D f�1.t/; �2.t/; : : : ; �N.t/g ; (12.2)

which we can condense in the vector X.t/, the change of the
system in time is described by

PX.t/ D
�

d�1.t/

dt
;

d�2.t/

dt
; : : : ;

d�N.t/

dt

�
: (12.3)

If the system converges towards a stationary (time-independent)
state and reaches it in a finite time tf the condition

PX.tf/ D 0

must be fulfilled. If the stationary state is only reached at t D 1,
the condition is

lim
t!1

PX.t/ D 0 :

An example for the first kind is the function

X.t/ D X0 C a � t2 for t < 0 and X D X0 for t > 0;

! PX.t/ D 2at for t < 0 and PX.t/ D 0 for t � 0 :

In many cases the system approaches a stationary state only
asymptotically and reaches it for t D 1.

Example: The population of radioactive atoms, decaying with a
decay constant � is

N D N0e��t ;

it approaches N.t D 1/ D 0 only after an infinite time.

Often the situation occurs that the state of a system does not
change continuously but in finite steps. An example is the
number of living species in a biological population, where the
birth rate is not constant over the year but births happen only
in spring. Such discrete dynamics can be described by finite
difference-equations compared to differential equations for con-
tinuous dynamics. For example the number NnC1 of subjects in
the .n C 1/th generation is determined by the population in the
nth generation and the birth- and death-rate:

NnC1 D Nn C Bn � Dn ; (12.4)

where the difference NnC1 � Nn, which is determined by the
birth- and death-rate, is not a continuous but discrete function
of time (see Sect. 12.2).
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We name the N-dimensional space with the coordinates
f�1; �2; : : : ; �Ng the phase space of the system. In this phase
space the state of the system at time t0 is represented by the point
X.t0/. The time-development of the system then corresponds to
the trajectory X.t/ in the phase space. This representation of
the time development of the system by a trajectory in the phase
space is called the mapping of the system. The vector PX.t/,
which gives the velocity of the point X.t/ in the phase space,
maps how fast the system changes its state. The stationary states
of the system, given by PX.t/ D 0 are called the fix points. If
the system is deterministic, only one trajectory can pass through
each point X.t/, which is not a fix point. Only in a fix point many
(often an infinite number) of trajectories can concur. Therefore
such a fix point is also called an attractor. The range of all
X-values that converge towards an attractor is called the intake
area of the attractor:

In nonlinear systems not only points but also curves or areas can
occur as attractors. However, they do not represent fix points
(see Example 5).

Examples

1. The undamped harmonic oscillator with linear restor-
ing force F D �D � x has the energy (see Sect. 11.6)

E D m

2
Px2 C 1

2
Dx2 ; (12.5)

and the oscillation frequency !0 D
p

D=m.
From (12.5) one obtains immediately the two-
dimensional phase space trajectory

x2 C
� Px
!0

�2

D 2E

D
:

In a phase space with the axes x and Px=!0 the trajec-
tory becomes a circle around the origin with the radius
R D

p
2E=D (Fig. 12.3a) For each value of E (initial

condition) the system passes with constant frequency
a well-defined circle. The motion is stable.

2. For the damped oscillator the energy decreases expo-
nentially (Sect. 11.6). The corresponding trajectory in
phase space is obtained from the equation of motion

Rx C 2
 Px C !2
0x D 0 : (12.6)

Equation 12.6 can be also written as (see Eq. 11.31)

d

dt

 
x2 C

� Px
!0

�2
!

D �4

� Px
!0

�2

: (12.7)

Equation 12.7 represents in a phase space with coordi-
nates x and Px=! a spiral, which converges against the
origin as a stable attractor (Fig. 12.3b)

3. For a negative damping (the energy loss is over-
compensated by an external force) the oscillation
amplitude increases with time and the trajectory is a
spiral with increasing radius, approaching r D 1.

Figure 12.3 Phase space trajectories of the undamped (a) and
damped (b) harmonic ascillators. In (c) with negative damping (
 < 0);
(d) shows the trajectoriy of the chaotic motion in the unstable range of
the nonlinear forced oscillator with large amplitude

For a pendulum with negative damping, the deflection
angle ' and its time derivative d'=dt can be used as
coordinates in phase space. One then obtains the open
spiral in Fig. 12.3c.

4. For the parametric oscillator with the equation of
motion (12.1) the trajectory in phase space that cor-
responds to the motion in the chaotic range, is an
irregular non-closed curve, which is schematically
shown in Fig. 12.3d.

5. A rotating paraboloid z.r/ D a � r2 D a � .x2 C y2/
contains steel balls that participate in the rotation
(Fig. 12.4). The forces that act on the balls are the
gravity m �g, the centrifugal force m!2 �r � Or0 and a fric-
tion force Ff / vk parallel to the wall. A stable path
for the balls is at the heights z D zs D .1=2/.!2=g/r2

where the vector sum of gravity force and centrifu-
gal force is perpendicular to the wall (Fig. 6.19b).

Attractor

Figure 12.4 Potential surface and attractor curve (red ) for the exam-
ple 5
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Balls at z > zs experience a force parallel to the wall,
that drives the balls downwards, balls with z < zs are
driven upwards. For a given frequency ! the curve
z D a � r2

s as stable curve is an attractor for all unstable
circular trajectories.

6. A further interesting example is the simple pendulum
(Eq. 2.79a) with the equation of motion

m � L � R' C m � g � sin' D 0 : (12.8)

Integration and division by m � L gives with !2 D g=L

1
2 � P'2 � !2 � cos' D C : (12.9)

Plotting the trajectories in a phase diagram one ob-
tains, depending on the values of ' the curves in
Fig. 12.5. They are closed for ' < � but lead into
an unstable region for ' � � , here the angle increases
continuously. The two regions are separated by the
red curve, which is called the seperatrix. Multiplying
(12.9) with m � L2 and adding m � g � L to both sides
yields

1
2 m � L2 P'2 C m � Lg.1 � cos'/ D C1

with C1 D C � mL2 C mgL

) Ekin C Epot D C1 D E :

(12.10)

This shows that the seperatrix is the curve on which
E D 0 ! C D �g=L. The point A in Fig. 12.5 is the
attractor, its intake area are all '-values with j'j < � .
The point B is a metastable equilibrium point, because
it corresponds to the metastable position of the pen-
dulum with ' D � . Every small perturbation can
completely change the state.

Figure 12.5 Phase space trajectories of the non-linear undamped os-
cillator. The red curve is the seperatrix between the stable (j'j < � )
and unstable (j'j > � ) range J

We will now define more quantitatively the stability of fix points
of a dynamical system. We consider at first a nonlinear system
that depends only on one coordinate x. At discrete times tn it
passes through the coordinates xn. The value xnC1, which the
system takes at the time tnC1 depends on the foregoing value xn:

xnC1 D f .xn/ ; (12.11)

where the function f describes the development of the system.

If the system has reached a fixpoint, the development stops and
stays stationary. This means

xf D f .xf/ : (12.12)

If the system converges towards a fixpoint (xf D limn!1.xn/)
the deviation

ı D xn � xf ! 0

must converge towards zero for n ! 1. For the difference ınC1

one obtains
ınC1 D xnC1 � xf D f .xn/ � xf

D f .xf C ın/ � xf :
(12.13)

Expanding f .xf C ın/ into a Taylor series around xf and neglect-
ing for small ın the higher order terms, Eq. 12.13 gives

ınC1 D df .x/

dx

ˇ̌
ˇ̌
xDxf

� ın : (12.14)

If the deviations ın should converge towards zero for n ! 1
the condition ˇ̌

ˇ̌df .x/

dx

ˇ̌
ˇ̌
xDxf

< 1 (12.15)

must be fulfilled.

A system that starts with two slightly different initial values x0

and x0 C "0 can only reach the same final stationary state (fix-
point), if condition (12.15) hold.

The deviation after the first step is according to (12.11)

x1 C "1 D f .x0 C "0/ ) "1 D f .x0 C "0/ � f .x0/ ;

and after the second step

x2 C "2 D f .x1 C "1/ D f .f .x0 C "0// D f 2.x0 C "0/ ;

and therefore after the nth step

"n D f n.x0 C "0/ � f n.x0/ : (12.16)

As a measure of the stability, one defines the Ljapunov expo-

nent �

�.x0/ D lim
n!1

lim
"0!0

1

n
log

ˇ̌
ˇ̌ f

n.x0 C "0/ � f n.x0/

ı0

ˇ̌
ˇ̌

D lim
n!1

1

n
log

ˇ̌
ˇ̌df n.x/

dx

ˇ̌
ˇ̌
xDx0

:

(12.17)

The condition (12.15) can then be written for large values of n

as

ınC1 D ın � e� : (12.18)

For � < 0 the system converges against a stable fixpoint. For
� > 0 the deviations increase exponentially and no fixpoint ex-
ists (Fig. 12.6). The case L D 0 will be discussed later.



C
h

a
p

te
r

1
2

386 12 Nonlinear Dynamics and Chaos

Figure 12.6 Time development of a small deviation " from the fixpoint xf for
� > 0 and � < 0

The stability of fixpoints is illustrated by Fig. 12.7a, where the
schematically drawn trajectory in the phase space (x; Px) is the
representation of a one-dimensional equation of motion. The
intersection points of the curve with the horizontal line Px D 0
are the fixpoints. The points x1 and x3 are unstable fixpoints,
because small negative deviations bring the system to nega-
tive velocities, that further remove the system from the fixpoint,
while positive deviations cause positive velocities that bring the
system further upwards in the diagram. On the other hand is x2

a stable fixpoint because any deviation brings the system back
to x2. It acts as attractor with a intake range from x1 to x3. All
states of the system within this range tend to converge to x2.

An example for such a system is a particle with mass m in a
double well potential (Fig. 12.7b) with the potential energy

Epot.x/ D �ax2 C bx4 ; (12.19)

where the nonlinear force

Fx.x/ D �dEpot

dx
D 2ax � 4bx3 (12.20)

acts on the particle. Its equation of motion is

mRx � 2ax C 4bx3 D 0 : (12.21)

Energy conservation .1=2/mPx2CEpot.x/ D E yields the velocity
of the particle

v D Px D
r

2

m

�
E � Epot

�
: (12.22)

For E D Epot ! Ekin D 0 the velocity becomes Px D 0 at the
position x D 0 because there is Epot.0/ D 0. However, this is no
stable fixpoint, because small deviations bring the particle either
to the left or the right minimum. If its velocity converges to zero
due to frictional losses, it finally rests in one of the two minima
at x D ˙

p
a=2b. They are stable fixpoints. The intake range

for the fixpoint x1 D
p

a=2b includes all x-values x > 0, while
for the other fixpoint x2 D �

p
a=2b all negative x-values x < 0

belong to its intake range.

Catchment area

for fixpoint x2

unstable

stable stable

Catchment area

Figure 12.7 a Trajectory in phase space with unstable fixpoints x1, x3 and an
attractor at x2 with a catchment area from x1 to x3. b Particle in a potential
Epot D �ax2 C bx4 (for a D 2, b D 0:5) has a maximum at x D 0, which is
unstable and a stable minimum, where Px ! 0

12.2 Logistic Growth Law;
Feigenbaum-Diagram

A very instructive example of a nonlinear system is the biolog-
ical population where the number NnC1 of the members in the
.n C 1/th generation is proportional to the number Nn in the
foregoing generation.

NnC1 D a � Nn ; (12.23)

where a is the growth factor. Due to food shortage the growth
factor a decreases to a.1�b �Nn/, because the food consumption
is proportional to the number Nn of consumers. Inserting this
into (12.23) gives

NnC1 D a � Nn.1 � bNn/ : (12.24)

A stationary state (fixpoint) is reached for

NnC1 D Nn D Nst ) b D a � 1

a � Nst
: (12.25)

This is realized for a D 1 ) b D 0. No food shortage is
present.

For a < 1 is NnC1 < Nn i. e. the population decreases even
for b D 0 when no food shortage occurs, while for a > 1 the
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Figure 12.8 Logistic diagram: a in the stable range a D 2 with stable fixpoint
xf D 0:5; b in the oscillation range with a D 3:5

population increases until the food shortage b � Nn increases and
brings the effective growth factor again back to 1.

With the normalization x D bN � 1 (12.24) converts to the
Verhulst-Equation

xnC1 D axn.1 � xn/ D axn � ax2
n : (12.26)

With the given normalization x � 1 the possible values of the
parameter a are restricted to the interval 0 � a � 4.

The solution of Eq. 12.26 for the different generations n and
their dependence on the growth parameter a can be illustrated
graphically, when the parabola y D ax�ax2 and the linear slope
y D x are plotted in a .y; x/-diagram (Fig. 12.8). For each value
xn < 1 one finds from (12.26) the corresponding value xnC1 as
ordinate y D ax � ax2 D xnC1 on the parabola. In order to find
the new starting point xnC1 one must go from (xn; yn D xnC1)
into the horizontal direction to the intersection with the straight
line y D x. A vertical line through this intersection point reaches
the parabola at the point (xnC1; ynC1 D xnC2).

In this way one obtains the sequence xn .n D 0; 1; 2; : : :/ as step
function starting from an arbitrarily chosen initial starting point
x0.

This is illustrated in Figs. 12.8a and 12.9a for x D 0:1 and a D
2. One can see that the sequence xn converges relatively fast
against the fixpoint xf D 0:5.

Figure 12.9 The first members of the series xn : a fast convergence for a D 2;
b oscillating behaviour for a D 3:5

A completely different situation occurs for the same starting
point x0 D 0:1 but another growth factor a D 3:5 (Figs. 12.8b
and 12.9b). Here the sequence oscillates between 4 limiting val-
ues.

It turns out that for a > 3:57 the behaviour of the sequence
depends critically on the growth factor a, while the values of
the sequence memers xn do not depend on the initial value x0 as
long as a < 3:57.

Plotting the limits limn!1 xn of the logistic equation (12.26) as
a function of the growth parameter a one gets the Feigenbaum-
diagram shown in Fig. 12.10, which was first published 1978 by
S. Großmann [12.6a] and analysed by M. Feigenbaum [12.6b].
One can see the following surprising results of the logistic
growth law:

For a � 1 the sequence xn converges against zero. The closer
the value of a comes to a D 1 the slower the sequences con-
verges. The stable fixpoint is xf D 0.
For 1 < a < 3 a stable fixpoint exists: limn!1 xn D xf < 1
but ¤ 0.
For 3 < a1 the values of xn oscillate between 2k limiting
values, where a1 D 3:57 (see below). The exponent k is
k D 1 for 3 < a < 3:449; k D 2 for 3:449 < a < 3:544. The
points .a; x/ in the Feigenbaum diagram where k increases
by 1 are called bifurcation points. At the first bifurcation
point in Fig. 12.10 the curve xf D 1 � 1=a represents the
fixpoints xf as a function of a, until a D 3, where the curve
xf.a/ splits into two curves. These cures give the limits xf.a/
as a function of the growth parameter a between which the
values of xn oscillate. Each of these curves splits again at the
second bifurcation point, etc.



C
h

a
p

te
r

1
2

388 12 Nonlinear Dynamics and Chaos

Figure 12.10 Feigenbaum diagram: Value of the fixpoint xf as a function of the control parameter a . The values ai give the bifurcation points a1 D 3:0;
a2 D 3:449: : :; a3 D 3:544: : :; a4 D 3:564: : :

The system has therefore 2k attractors for all values of the
growth parameter a in the range ak � a � akC1 between the
bifurcation points ak and akC1.
With increasing values of a the interval between two bifurca-
tion points becomes smaller and smaller. The values of the
bifurcation points of order k follow a geometrical sequence

ak D a1 � c � ı�k for k � 1 : (12.27)

For the distance�k D ak � ak�1 we obtain

�k D c � ı�k.ı � 1/ : (12.28)

The Feigenbaum-constant ıF D limn!1.�k=�kC1/ has the
numerical value

ıF � 4:669201660910: : : :

The sequence of bifurcation points converges against the
limit

a1 D lim
k!1

ak D 3:5699456: : : :

The Ljapunov exponent � is in the range 3 < a < a1 always
negative, except at the bifurcation points where is � D 0.
In the range a1 < a < 4 chaotic regions occur where
the values of the fixpoints scatter randomly. Here is the
Ljapunov exponent � > 0 (Fig. 12.11) between these chaotic
ranges periodic windows appear where stable fixpoints oc-
cur. The sequence xn oscillates between these fixpoints. The
Ljapunov exponent � is negative in these windows. With in-
creasing values of the growth parameter a the chaotic regions
more and more displace the windows of stable regions.
In the chaotic regions rational start values give fixpoints,
while for irrational start values no convergence is possible
For a D 4 the logistic equation

xnC1 D 4xn.1 � xn/ (12.29)

can be exactly solved and gives the solution

xn D sin2.2n�x0/ ; (12.30)

where x0 is the start value.

Figure 12.11 The fixpoints of the logistic mapping for different values of the
parameter a for illustration of the bifurcation

12.3 Parametric Oscillator

The equation of the undamped parametric oscillator, depicted in
Fig. 11.25 with the pendulum length

L.t/ D L0 ��L0 cos˝t (12.31)

and �L0=L0 � 1, can be written as

R' C !2
0

�
1 C �L0

L0
cos˝t

�
sin ' D 0 ; (12.32)

where the approximations

1

L
D 1

L0

�
1 � �L0

L0
cos˝t

� � 1

L0

�
1 C �L0

L0
cos˝t

�

have been used with the frequency

!2 D !2
0

�
1 C �L0

L0
cos˝t

�
:

Introducing the abbreviations !2
0 D g=L0; ˛ D !2

0=˝
2; ˇ D

�L0=L0 and � D ˝ � t the Eq. 12.32 converts into the Mathieu-
equation

' 00 C ˛ .1 C ˇ cos �/ ' D 0 ; (12.33)
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Figure 12.12 Stable (white ) and unstable (red ) ranges for the solutions of the
Mathieu equation

where ' 00 D d2'=d�2. The solutions of this linear differential
equation depend on the parameters ˛ and ˇ. There exist sta-
ble solutions for certain ranges (˛; ˇ) which are shown as white
areas in Fig. 12.12 while for the red areas (resonance ranges)
unstable solutions exist, where ' increases unlimited.

The first instable range appears for ˛ D .1=4/, ! ˝ D 2!0.
This is the parameter range which a child instinctively uses to
enhance the oscillation amplitude of its swing by uplifting and
lowering its centre of mass at the right moment twice per oscilla-
tion period. Without damping the oscillation amplitude becomes
infinite in the red regions and the solutions of (12.33) lead to
useless results.

The situation changes if we do not use the approximate linear
equation but the exact nonlinear equation (12.32) for the so-
lution of the problem. We start with the trivial case ' D 0,
where the pendulum does not perform angular oscillations '.t/
but only vertical periodic changes of the pendulum length L.t/.
The mass m then executes vertical oscillations with the exciting
frequency˝ , where always ' D 0. This is true for ˛ < 1=4 and
ˇ � 1. If for ˛ D 1=4 the amplitude exceeds a critical ampli-
tude ˇc the oscillation becomes unstable and the vertical motion
switches into a '-oscillation (Fig. 12.13) with an amplitude that
depends on the parameter ˇ. The frequency!0 of this '.t/ oscil-
lation is one half of the exciting frequency ˝ .!0 D .1=2/˝/.
At the bifurcation point B in Fig. 12.13 a doubling of the period
length T occurs. When further increasing ˇ, more and more

Figure 12.13 The first bifurcation of the pendulum that oscillates initially only
vertical. The abscissa ˇ D �L=L0 corresponds in the stability diagram of
Fig. 12.12 a vertical line

Figure 12.14 Phase diagram of the parametrically driven pendulum a in the
stable, b in the unstable region

bifurcation points are passed until the chaotic range is reached
where the motion of the pendulum becomes random. Here a
statistic motion of vertical and angular oscillation takes place.
The phase diagram of the regula and chaotic ranges is shown in
Fig. 12.14.

In the chaotic regime the motion is very sensitive to small
changes of the initial conditions. Plotting '.t/ against t small
changes of '.0/ or d'=dt.0/ result in large changes of �'.t/
which can grow exponentially with time t [12.4].

12.4 Population Explosion

We will describe the growth of the world population by a simple
model that allows in spite of its simplicity, a good insight into
the problem [12.5].

We will take zf.t/ as the female and zm.t/ as the male population
at time t. We denote the death rate of the females as af � zf and
that of the males as am � zm. The birth-rate is proportional to the
product zf � zm. For the change of the population per unit time
we then obtain

Pzm D �amzm C bmzmzf ; (12.34a)

Pzf D �afzf C bfzfzm : (12.34b)

The “symbiosis”-terms bmzm � zf and bf � zf � zm cause the nonlin-
earity of the equation and couple them with each other.

It turns out that birth rates and death rates do not differ much
between males and females. We therefore can approximate
am D af D a and bm D bf D b. Furthermore the popula-
tion statistics shows that the populations of males and females
is approximately equal, i. e. zm � zf.

With these assumptions we obtain for the total population z D
zm C zf by addition of the two Eqs. 12.34a,b the nonlinear equa-
tion

Pz D �a � z C b

2
z2 : (12.35)

For b D 0 (zero birth-rate) we get the solution

z.t/ D z0e�at : (12.36)
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Figure 12.15 Population explosion for fixed values of a and b (red curve ).
If the birth rate b is suddenly reduced to b D 2a=z.t1/ at the time t1 the
population stagnates at z D z.t1/ (red dashed lines )

For a D 0 and b ¤ 0 (zero death rate) one obtains an unlimited
growth

z.t/ D z0
2

2 � bz0t
; (12.37)

as can be verified by inserting (12.37) into(12.36). After a time

tex D 2

bz0
; (12.38)

the population grows to infinity with our unrealistic assumption
a D 0.

For a ¤ 0 and b ¤ 0 the solution of (12.36) is

z.t/ D z0
2a

bz0 � 2 � .bz0=2 � a/ eCat
: (12.39)

For a D bz0=2 birth rate and death rate just compensate and
the population remains stable (dz=dt D 0) at its initial value z0

(Fig. 12.15). Note, that the birth-rate depends quadratic on the
population, but the death rate only linearly.

For bz0 > 2a is dz=dt > 0 and the population “explodes”, At
the finite time

t D tex D �1

a
ln

�
1 � 2a

bz0

�
(12.40)

the population becomes z.tex/ D 1. Note, that in our model this
explosion takes place not at t D 1 but at the finite time tex. Of
course, in reality the death rate would increase and the birth rate
decrease before this time, because of food shortage and conflicts
and wars for food supply. In order to avoid such catastrophic
situations, the condition a � b � zst=2 must be reached early
enough. Since in our real world the death rate decreases (in
particular for children), due to a better medical treatment and a
larger food supply, the birth rate b � z2=2 has to be drastically
reduced in order to avoid this catastrophic case. Comparing in
Fig. 12.16 the growth function (12.39) of our model with the
real population growth as investigated by the UNESCO, one can
see that the population growth proceeds with increasing growth
factor (b � z0=2 � a). While within the time span from 1750
to 1880 the doubling time of the population was 130 years, it
dropped from 1950 to 1985 to 35 years! Therefore the actual
population curve z.t/ increases faster than the growth function
(12.39) of our model. This aggravates the problem further.

year

Figure 12.16 Comparison of the population development, empirically deter-
mined by the UNO (curve 1 ) with the model of Eq. 12.18 for the numerical
values bz0=2 � a D 0:003 for the year 1750 (curve 2 ). The dashed red curve is
the extrapolation assuming a net growth of 2%. The black dashed curve for 1%

Example

For the year 1992 the world population was estimated as
z D 6 �109. With an average life expectation � D 50 years
the death rate constant becomes a D 1=� D 0:02 and the
death rate a � z D 120 Million=year. With an average
birth rate of 240 Millions=year the population increases
by 2% per year, which means by 120 Millions. Under
the assumption of constant birth and death rates the pop-
ulation would double after 50 years. With an increasing
growth factor, which is in reality observed, the doubling
time would be shorter.

In fact, the real growth factor increases with time.

Inserting the numerical values into (12.40) gives the “ex-
plosion time” when the population becomes infinite:

tex D �50 � ln
0:02

0:04
D 50 ln 2 � 35 years :

This means that without decreasing the birth rate the
catastrophe will happen in 35 years, which means in the
year 2050.

Even when the birth rate is lowered to such a value, that
the net population growth decreases to 1%, tex increases
only to 55 years, which means that the catastrophe is not
abandoned but only delayed. J

12.5 Systems with Delayed
Feedback

In many real situations, systems with delayed feedback are
found. An example is a microphone that receives not only the di-
rect words of the speaker, but also, with a time delay, the output
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Figure 12.17 Time variation of the distance dn D xn � xnC1 in a car convoy,
when the first car (n D 1) brakes and accelerates again, for two different values
of a � T [12.7]

of a loud speaker in a large room that amplifies this speech. This
time-delayed signal received by the microphone, is again fed
into the amplifier and the loud speaker. If the electronic system
is not optimized to handle this problem properly, an overload of
the loud speaker occurs, resulting in a distortion of the words or
even to loud howling noise.

Another example that is a nuisance for every motorist, is the
traffic jam arising without obvious reasons when the traffic den-
sity surpasses a critical value. We will discuss the reasons for
this situation.

In a car sequence on the motorway the driver of the .n C 1/ car
changes his speed vnC1, if the foregoing nth car diminishes his
sped vn. The more n brakes the more .nC1/ does so. because of
the finite reaction time T the change of his velocity occurs with
a time delay T . We therefore assume, that the braking (decel-
eration) of .n C 1/ at time t C T is proportional to the velocity
difference vn.t/ � vnC1.t/.

RxnC1 .t C T/ D a � ŒPxn.t/ � PxnC1.t/� : (12.41)

The factor a states how strongly the driver .n C 1/ reacts on the
change of the relative velocity vn.t/� vnC1.t/. It can depend on
his velocity vnC1, on the distance dn.t/ D xn � xnC1 and on the
reaction time T .

The most simple case is present for a D constant. Even for this
case (12.41) cannot be solved analytically, but only numerical
solutions exist. They are plotted in Fig. 12.17 for an initial dis-
tance d.t D 0/ D 23 m and for different values of the product
a � T .

The curves dn.t/ illustrate, that for a � T D 0:5 the distance
changes decrease for increasing n. This means, when the first

driver brakes, a damped distance wave propagates along the fol-
lowing cars. For the 10th driver it is barely noticeable. For
the higher value a � T D 0:75, however, the distance changes
increase with n. If the minimum of the distance wave reaches
d D 0 the two sequenced cars collide and cause a traffic jam.

But also without collision a jam can arise.

When driver n brakes because the foregoing car reduces its
speed, he will generally over-react and reduces his speed be-
low that of the foregoing car. The following car .n C 1/ reduces
its speed even more, until the .n C x/th car comes to a standstill.
Such a traffic jam often occurs when the traffic density is high
and the distance between the cars is small.

In order to avoid such unnecessary jams the product a � T ust
be sufficiently small. Since the reaction time of most drivers
has a lower limit of about 0:1 s (at a speed of 130 km=h this
time corresponds to a distance of 36 m) the best way for safe

driving without causing a traffic jam is a sufficiently large

distance between successive cars.

12.6 Self-Similarity

The linear differential equation

Px D �a � x.t/ (12.42)

has the solution

x.t/ D x0 � e�at : (12.43)

The arbitrary initial value of x and the constant parameter a
determine the time dependence of x.t/. If we choose two so-
lutions x1.t/ and x2.t/ with different initial conditions, e. g. with
different values of x1.0/ and x2.0/ every linear combination
c1 � x1.t/C c2 � x2.t/ is again a solution of (12.42), and is again
an exponential function.

For a nonlinear equation this is no longer true, as can be exem-
plified by the equation

Px D �a � x2 : (12.44)

The solution of this nonlinear equation is

x.t/ D x0

1 C ax0t
: (12.45)

For two different solutions

x1.t/ D x01

1 C ax01t
and x2.t/ D x02

1 C ax02t
;

the sum x1.t/C x2.t/ is not a solution of (12.44).

For long times t, when a � x0 � t � 1 the function x.t/ can be
approximated by

x.t/ � 1

at
: (12.46)

Now the solution does not depend on the initial value x0.
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When the time is measured in other units (for example in hours
instead of seconds) the time t is replaced by � � t. This converts
(12.46) to

x.� � t/ D 1

�at
D x.t/

�
: (12.47)

The solutions are similar even for different time scales! For
example, with � D 10 one obtains the same time behaviour for
the function x.�t/ as for x.t/ if a tenfold stretched time scale is
used.

This scale similarity can be mathematically expressed as

x.�t/ D �� � x.t/ : (12.48)

The quantity � is the scale exponent or similarity exponent. For
the nonlinear equation (12.44) with the approximation (12.46)
is � D �1.

The time dependence of the solution x.t/ of (12.48) can be ex-
pressed as

x.t/ / t� ; (12.49)

because this gives x.�t/ / �� � x.t/.

Note: For linear equations such a scale similarity does not exist.
This can be seen by replacing in (12.43) t by t0 D �t. This gives
another exponential decay

x.t0/ D x0 � e�a�t D .x.t//�

x��1
0

: (12.50)

Only if the relaxation constant a is changed to a=� the same time
behaviour is obtained.

This means: The constant “a” fixes a time scale for the solu-
tion of the linear equation (12.42) After the time t D 1=a has
x.t/ decreased to 1=e of its initial value at time t D 0. The
mean lifetime � D 1=a gives a natural time scale for the solu-
tion (12.43).

In contrast to this behaviour of the solutions of linear equations
the parameter a in the nonlinear equation does not determine
such a benchmark. An arbitrary time stretch can be always com-
pensated by a corresponding change of the x-scale.

The self-similar solutions of nonlinear equations do not
have a natural benchmark.

This is not only valid for time-dependent problems but also for
many other interesting phenomena, which can be only partly
presented in the next section. For further examples the reader is
referred to the literature [12.1a–12.6b].

12.7 Fractals

The measured length of a real coastline with many bays, juts
and mountain ledges depends on the resolution of the mea-
suring gauge. This is illustrated by the famous example of

Figure 12.18 Construction of Koch’s curve

the Koch’s curve that is constructed in the following way: A
straight line with length L0 is divided into three sections. The
middle section is replaced by the two sides of an equilateral tri-
angle (second line in Fig. 12.18). Each section has the length
L0=3, the total length is then .4=3/L0 D 1:33L0. Now each
of the 4 sections is again divided into three subsections and the
middle subsection is replaced by the two sides of an equilat-
eral triangle (third line in Fig. 12.18). The total length is now
L D .16=9/L0 D .4=3/2L0 D 1:78L0.

This procedure is continued. After n steps the total length is

Ln D
�

4

3

�n

L0 : (12.51)

With increasing number n of steps, the total length Ln becomes
infinite.

lim
n!1

Ln D 1

The Koch’s curve shows self-similarity, because at the nth iter-
ation the scale length ln (i. e. the length ln of each subsection) is
ln D L0=3n. The total number of subsections is Nn D 4n. We
therefore obtain the relation

N.l=3/ D 4N.l/ ; (12.52)

because at each step the scale length is reduced by a factor 3,
but the number of subsections increases by the factor 4. The
comparison with the scale law (12.49), which can be written as

N.� � l/ D �� � N.l/ (12.53)

yields the value � D 1=3 and �� D 4. The scale parameter � is
then

� D � ln 4

ln 3
D �1:2618 :

The scale law (12.53) can be written as

N.l/ / l� : (12.54)

The length of the Koch’s curve is then with a scale length l

L.l/ D l � N.l/ / l�C1 : (12.55)
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Figure 12.19 Koch’s curve in closed form

This shows again that liml!0 L.l/ D 1, although the direct
distance � D x1 � x2 between the two ends (start point and
endpoint) of the Koch’s curve remains finite. The reason for the
infinite length of the curve is the increasing refinement of the
tooth structure.

Covering the curve by N.l/ squares with side length l, which are
put together, the total area of all squares is

A.l/ D l2 � N.l/ / l2 � l� D l0:7382 :

The limit of this area is

lim
l!0
.A.l// D 0 :

The Koch’s curve is in a certain sense more than a one-
dimensional line (because its length tends with l ! 0 towards
infinity. It is, however, less than a two-dimensional area (be-
cause its area, defined by the squares, converges to zero).

If a fictional dimension is attribute to the Koch’s curve it should
be between 1 and 2.

One can formally define the d-dimensional volume, where d is
an arbitrary number (not necessarily an integer)

Vd.l/ / ld � N.l/ / ldC� ; (12.56)

the value of liml!0.Vd.l// jumps at d D �� from 1 to 0.

The number

d D df D �� (12.57)

is defined as the fractional dimension of the curve or area, be-
cause df D 1:2618 is not an integer but by the fraction 0:2618
larger the 1. For this value of df the df-dimensional volume Vdf

has a finite value, that is independent of the scale actor. From
(12.47) it follows for d D ��

Vdf.� � l/ / .� � l/dfC� D .� � l/0 D 1 : (12.58)

When the Koch’s curve is drawn in a closed form (Fig. 12.19)
one can see, that it surrounds a finite area, that remains finite
even for l ! 0 although the length of the surrounding curve
tends to infinity.

The fractional dimensions were already introduced by Felix
Hausdorff (1868–1942). The fractional dimension df of the vol-
ume Vd which jumps from 1 to 0 at df D �� is therefore also
called the Hausdorff dimension.

There are many more examples for entities with fractional di-
mensions. One of them is the plane Sierpinski lattice, shown

Figure 12.20 Construction of the Sierpinski-grid

in Fig. 12.20. It is constructed by dividing the area of an equi-
lateral triangle into four sub-triangles with equal areas and then
remove the middle triangle. Its fractional dimension is

d D ln 3

ln 2
D 1:5849 : : : :

12.8 Mandelbrot Sets

In Sect. 12.2 we have illustrated for the example of the Verhulst
dynamics the path from a stable system over the bifurcation
point to the chaotic regime. A more general way to chaos, which
leads to very beautiful computer graphics, was shown 1980 by
B. Mandelbrot [12.9].

The basic idea relies on a nonlinear feedback algorithm for com-
plex numbers. Instead of the one-dimensional iteration (12.26)
of the logistic growth here points in the two-dimensional plane
of complex numbers are used, following the iteration rule

znC1 D z2
n C c ; (12.59)

where c is a complex number, which determines the pattern of
the generated points in the complex plane. For a given initial
starting point z0 the sequence zn can be calculated by the com-
puter according to the scheme in Fig. 12.21 and plotted in the
x–y-plane.

We will illustrate this by some examples:

c D 0, initial start value z0 with jz0j < 1. With increasing
n the zn decrease more and more and the points in the x–y-
plane spiral towards z1 D 0 which is the attractor for all
z-values with jzj < 1, i. e. for all points inside the circle with
radius r D 1 (Fig. 12.22).
For a starting value z with jzj > 1 the sequence zn diverges.
One may formally call z D 1 as the attractor for all points
with jzj > 1. For start values z0 with jz0j D 1 all points of
the sequence remain on the circle, because jznj D jz0j D 1,
the circle represents the borderline between the intake areas
of the two attractors z.A1/ D 0 and z.A2/ D 1.

Figure 12.21 Iteration scheme for the generation of Mandelbrot sets
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Figure 12.22 Stable range of the progression znC1 D z2
n is the area inside the

circle jz j D 1. All initial values with jz0j < 1 converge against z1 D 0, with
jz0j D 1 against points on the circle and for jz0j > 1 they diverge

Figure 12.24 Mandelbrot set of all c -values for which the progression (12.59) with z0 D 0 converges (white area ). All grey areas represent c -values, that result
in diverging progressions. The shading indicates the value of n at which zn leaves the white area

Figure 12.23 Boundary curve of the stable region for the parameter c D
�0:12375 C 0:56508i. The black point is the attractor
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Figure 12.25 Strongly enlarged section of Fig. 12.24 around the intersection point of the two arrows, with an area of 1 mm2 in Fig. 12.24

If we choose c ¤ 0 we get surprising sequences. For in-
stance, starting with z0 D 0 the sequence (12.59) reads:

z1 D c I z2 D c2 C c I
z3 D .c2 C c/2 C c I : : : :

For c D 1 C i this gives:

z1 D 1 C i I z2 D 1 C 3i I z3 D �7 C 7i I
z4 D 1 � 97i I z5 D �9407 � 193i I : : : :

This shows that the points zn in the x–y-plane perform large
jumps from one to the next iteration step and that the sequence
of our example diverges.

Also for c ¤ 0 there is a region in the complex plane where the
sequence converges. The attractor is now generally not zero and
the borderline between stable and unstable regions is no longer
a circle but (Fig. 12.23) a more complicated curve. Similar to
the Koch’s curve the borderline shows self-similarity i. e. it has
a fractional structure. When it is magnified, every magnified
segment shows a similar structure as the non-magnified larger
section. Such self-similar border curves are called Julia sets.

The Mandelbrot set consists of all numbers c of the sequence
(12.59) with z0 D 0 that do not diverge. These are for instance
all values of c D a C ib with �2 < a < C1 and �1:5 <
b < C1:5. In order to generate the Mandelbrot set, one has to
design a computer program that calculates for such sequences
the border curves of the stable region.

Choosing, for instance, a rectangle �A � x � CA; �B � y �
CB in the complex plane, one can find out for every value of
c D x C iy within this range, whether the sequence (12.59)
converges or diverges. Now a certain colour is assigned to
each value of c, depending on the number of iterations before
the points c leave the rectangle. In Fig. 12.24 the colours are
substituted by different grey shades. The white areas are the
Mandelbrot set, imaging those zn values which lead to stable
sequences. Enlarging the tiny region in Fig. 12.24 which lies
around the intersection of the two arrows, one gets the magni-
fied Fig. 12.25.

The aesthetic beauty of such Mandelbrot sets becomes obvious
with coloured computer graphics (see Fig. 12.26 and [12.10a–
12.13]).
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Figure 12.26 Coloured picture of the iteration x !
�
.x2 C q � 1/

ı
.2x C q � 2/

�2
with Re.q/ D 1:2882–1:2963 and Im.q/ D 0:9695–0:9753. The large

upper picture is a magnified section of the central part in the left lower picture with different color choice. The right lower picture is the enlarged section, marked
in the lower left picture, with Re.q/ D 1:290681–1:291136 and Im.q/ D 0:97277–0:973098 (With kind permission of Prof. H.O. Peitgen and Prof. P.H. Richter,
Bremen)
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12.9 Consequences for
Our Comprehension
of the Real World

Until the end of the 19th century most physicists were con-
vinced, that all processes in nature proceed strictly deterministic
and that it is, at least in principle, possible to determine the ini-
tial conditions of a system so accurately, that the future fate
of the system can be exactly described for all times. This is
substantiated by the famous statement of Laplace, published in
1776:

The momentary state of a system is obviously the consequence of the
state at an earlier moment. If we assume an intelligent creature that
is able to calculate at one moment all relations between the different
parts of the universe, it could predict all motions and all relations at
all locations now and forever.

Such a Laplace demon would be able to predict the fate of all
mankind if he knows the relevant data at a given time.

This strictly deterministic conception of the world arises the
question: What can the free will of a human being change, if
everything is already determined by initial conditions which we
cannot influence? How much is a criminal responsible for his
crime, if his future fate is already determined?

This strictly mechanistic conception has been shaken by two de-
velopments: The nonlinear dynamics and the quantum theory.

Poicaré, who has performed important spade work in nonlinear
dynamics, wrote 1903:

A very tiny effect, which we even may not notice, causes a large ef-
fect, that we cannot overlook. Then we say: This effect is accidental,
because we have overlooked the real cause.

We see, that by no means the deterministic character of nature
is questioned. This means that the principle of causality is ac-
cepted. However, the assumption that the initial conditions can
be determined with sufficient accuracy, is no longer valid for
instable systems, because here tiny changes of the initial con-
ditions can cause large deviations of the final states. Often the
uncertainty of the measurement limits the accuracy of predic-
tions for many cases in nonlinear dynamics.

Quantum mechanics adds another principle argument: The un-
certainty principle (see Vol. 3) states that it is impossible to
determine exactly both the momentum and the position of a
particle simultaneously. The more accurate one quantity is
measured, the larger is the uncertainty for the other quantity.
this implies that the initial state of a system cannot be deter-
mined with arbitrary accuracy, not only because of measurement
errors, but because of the principle quantum mechanical restric-
tions.

For stable systems these small uncertainties have no big effect,
but for unstable systems (chaotic systems) they can be disas-
trous, because they principally limit the predictions of future
behaviour.

These few considerations illustrate that investigations of non-
linear phenomena bring about many new and surprising results
when leaving the approximations of basic linear equations. This
research field has developed only recently and more and more
scientists are now interested in its basic physics and possible ap-
plications besides the gain of insight into the complexity of our
real world [12.17–12.20].

There is in addition a psychological problem: How the spon-
taneous human interference in natural phenomena changes the
predictability of processes and how spontaneous such interfer-
ence really is, belongs into the field of psychology and cannot
be solved in Physics.

Summary

For phenomena described by nonlinear equations, the time
development of the solutions often depends critically on the
initial conditions. Unstable solutions are those, where in-
finitesimal small changes of the initial conditions cause large
changes of the final states.
The dynamical development of a system can be represented
by a curve in phase space.
The development of a system described by the Verhulst equa-
tion

xnC1 D a � xn � a � x2
n

depends on the control parameter a. For certain values of a
the solutions xf D limn!1.xn/ split into two possible values

(bifurcation). For larger values of a each of these two values
split again into two possible values. This splitting continuous
with increasing a, until the chaotic regime is reached where
no predictions of the final states are possible.
Examples of applications of this equation are the population
explosion, the parametric oscillator and the origin of traffic
jams without identifiable causes, often caused by the delayed
reaction of the driver.
While for linear equations the superposition principle holds
(i. e. with two independent solutions also their linear com-
bination is a solution), this is no longer true for nonlinear
equations. For special nonlinear equations the solutions
show self-similarity.
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Self similarity is present, if

x.�t/ D ��x.t/ ) x.t/t� ;

where � is a positive or negative number, not necessary an
integer.
The number � is the fractional dimension.
For self-similar solutions of nonlinear equations a natural
scale is missing. An arbitrary stretching of time can be com-
pensated by a corresponding change of the x-scale.

All complex numbers which are generated by the sequence
znC1 D z2

n C c form a set in the complex plane. The set of all
non-divergent sequences with z0 D 0 generate the Mandel-
brot set.
Such sets can be graphically displayed by simple computer
programs.

Problems

12.1 A mass m is hold in its equilibrium position .0; 0/ in the
x; y-plane by four springs with length L and restoring force con-
stant k. aligned in the ˙x- and ˙y-directions.
a) What is the equation of motion, when the mass m is dis-

placed in the Cx-direction?
b) Bring this equation for x � L in the form d2x=dt2 C ax C

bx3 D 0. How large are a and b?
c) What is the oscillation frequency for bx3 � a in the linear

approximation and how does it change in the nonlinear form
of the equation in b)?

12.2 Show, that the nonlinear equation in Probl. 12.1b with
the initial conditions x.0/ D x0 and dx=dt.0/ D 0 has periodical
solutions.

12.3

a) Show that the non linear equation m d2x=dt2 D �k1x � k2x

with the initial conditions x.0/ D x0, .dx=dt/.0/ D 0 can
be transformed by the substitutions !2

0 D k1=m, y D x=x0,
L� D !0L into the dimensionless form d2y=dL�2 C y C "y2

with " D x0k2=k1.
b) Calculate for " D 0:1 the frequency shift against !0.

12.4 Determine the fix points for the system of differential
equations dx1=dt D �1x1 � �2x1x2.
For which values of �1 and �2 are the fix points stable,
metastable or unstable?

12.5 The equation of motion for the damped pendulum oscil-
lation is R' C 
 P' C !2

0 sin' D 0 with !2
0 D g=L.

Determine the oscillation period T.'/ and calculate the ratios
T.'/=T.0/ for ' D �=4, �=2, .3=4/� and � .

12.6
a) What is the solution of the logistic growth function Pz.t/ D

az � bz2?
b) After which time has the function z.t/ doubled for a D b?
c) What is the limit for z.t ! 1/?

12.7 Determine the fixpoints xf and the Ljapunov exponent �
of the logistic equation xnC1 D axn .1 � xn/ for a D 3:1 and
a D 3:3.

12.8 Show, that the fractional dimension of the Sierpinski grid
is d1 D 1:5849.

12.9 Determine fixpoints and attractor for the differential
equation in polar coordinates dr=dt D �r .�a C r2/ for a < 0
and a > 0, d'=dt D !0 D const.

12.10 A particle with mass m moves in the potential Epot D
Epot.x0/C a.x � x0/

2 C b.x � x0/
3.

a) Determine the nonlinear equation of motion.
b) Up to which amplitude xmax is the solution a harmonic oscil-

lation?
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13.1 Vector Algebra and Analysis

13.1.1 Definition of Vectors

A vector is an oriented line segment. Its length is the magni-

tude of the vector. Vectors are denoted in this textbook by bold
letters.

Two vectors are equal, if they have the same direction and mag-
nitude. The magnitude of a vector is a pure number (scalar),
independent of the direction of the vector.

Since a parallel displacement of a vector in space does not
change its direction nor its magnitude, all parallel vectors
with the same magnitude are equal, independent of the co-
ordinates of their starting points.

The starting point of a vector is also called point of origin.

A vector starting from the origin and ending at a point P is called
position vector, because it defines the position of P in space.

Multiplying a vector with a scalar number changes its length but
not its direction.

13.1.2 Representation of Vectors

Every vector in a three-dimensional space can be represented by
three linear independent basis vectors. The selection of these
basis vectors depends on the chosen coordinate system.

13.1.2.1 Cartesian Coordinates

When we plot a vector r in a Cartesian coordinate system
.x; y; z/ with the point of origin .0; 0; 0/ it ends at the point
P.x; y; z/ with the coordinates x; y; z (Fig. 13.1). These coor-
dinates are the projection of the vector onto the three coordinate
axes. They are called the components of the vector.

The component representation of the vector r is

r D fx; y; zg : (13.1a)

A vector r is uniquely defined by its components, because its
magnitude (written as jrj) is

r D jrj D
p

x2 C y2 C z2 ; (13.1b)

as can be derived by Fig. 13.1 and the theorem of Pythagoras.

The direction of a vector is defined by its components. It can be
also represented by the three angles ˛; ˇ; 
 against the coordi-
nate axes. It is

cos˛ D x=r ; cosˇ D y=r ; cos 
 D z=r :

Figure 13.1 Cartesian coordinate system

A vector with the length L D 1 .
p

x2 C y2 C z2 D 1/ is called
unit vector. It is often represented by

Or D r=jrj D Oe : (13.1c)

Special unit vectors are the three vectors

Oe1 D f1; 0; 0g I Oe2 D f0; 1; 0g I Oe3 D f0; 0; 1g : (13.1d)

Every vector r D fx; y; zg can be written as linear combination
of the three basis vectors

r D xOe1 C yOe2 C zOe3 : (13.2)

13.1.2.2 Spherical Coordinates

The position vector r pointing from the origin .0; 0; 0/ to the
point P.r; #; '/ is defined in spherical coordinates (also called
polar coordinates) by its length r D jrj and the angles # and '
that define uniquely its direction (Fig. 13.2).

The conversion to Cartesian coordinates is given by

x D r � sin# � cos' ;

y D r � sin# � sin ' ;

z D r � cos# :

Figure 13.2 Spherical coordinates r , # , '
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Figure 13.3 Cylindrical coordinates %, ', z

13.1.2.3 Cylindrical Coordinates

The point P.%; '; z/ in Fig. 13.3 is defined in cylindrical coor-
dinates .%; ':z/ by the vector r D f%; '; zg where % gives the
distance from the z-axis, z the distance from the x–y-plane and
' the angle of the projection of r onto the x–y-plane against the
x-axis. The conversion to Cartesian coordinates is:

x D % � cos' ;

y D % � sin ' ;

z D z :

The length of the vector r is

jrj D
p
%2 C z2 :

The direction of r is defined by the angle ' and the ratio z=%.

13.1.3 Polar and Axial Vectors

The transformation x ! �x; y ! �y; z ! �z (mirror imaging
of the coordinate system) transforms the position vector r !
�r. Therefore r is called a polar vector.

Besides these polar vectors which are defined by their length
and their direction, there are also vectors that define apart from
direction and magnitude a sense of rotation.

Example

Magnitude and orientation of a surface element can be
characterized by the normal vector A perpendicular to the
surface element (Fig. 13.4). The magnitude of the vec-
tor gives the area of the surface element and its direction
the orientation of the surface element. In order to define
uniquely on which of the two sides of the surface element
the vector A starts, its direction is defined such, that it
forms a right hand screw (like a corkscrew) when the sur-
face element is counterclockwise circulated.

Figure 13.4 Surface normal vector A as axial vector, that is charac-
terized by its direction of orientation. At the coordinate transformation
r ! �r, A keeps its orientation as a right hand helix J

Under the coordinate transformation x ! �x, y ! �y, z ! �z

the sense of rotation of A is preserved, i. e. A ! CA but not
A ! �A, i. e. A forms again a right-handed screw. Such vectors
are called axial vectors. Examples are the angular momentum
vector L D r � p (see Sect. 2.8 and 13.1.5.3).

13.1.4 Addition and Subtraction of Vectors

Definition

Vectors are added by adding their components (Fig. 13.5).
The sum of the two vectors a D fa1; a2; a3g and b D
fb1; b2; b3g is the vector

c D a C b D fa1 C b1; a2 C b2; a3 C b3g : (13.3)

According to this rule each vector can be written as the sum of
its component vectors

a D fa1; a2; a3g D a1 Oe1 C a2 Oe2 C a3 Oe3 :

The graphical representation of vector addition shown in
Fig. 13.5, illustrates that the sum vector c is the diagonal in the
parallelogram of the vectors a and b.

Figure 13.5 Addition of vectors
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Problem

Show that this graphical representation fulfils the rules of
vector addition. J

13.1.5 Multiplication of Vectors

13.1.5.1 Multiplication of a Vector with a Scalar

The vector a is multiplied by a scalar c by multiplying each
component of a by c.

c � a D c � fa1; a2; a3g D fc � a1; c � a2; c � a3g ;
jc � aj D jcj � jaj :

13.1.5.2 The Scalar Product

The scalar product of two vectors

a D fa1; a2; a3g and b D fb1; b2; b3g

with the angle ˛ between them is defined as the scalar

c D a � b D jaj � jbj � cos˛ : (13.4a)

It is the product of the projection jbj � cos˛ of b on a times
the amount jaj of a. For ˛ D 90ı is the scalar product zero
(Fig. 13.6).

Two vectors ¤ 0 are perpendicular to each other only if
their scalar product is zero.

For the three unit vectors Oe1, Oe2, Oe3 hold the relation

Oei � Oek D ıik ;

where ıik is the Kronecker symbol which is defined by

ıik D
(

1 for i D k ;

0 for i ¤ k :

Figure 13.6 The scalar product a�b represents the area A D a�b D a �b �cos˛

The scalar product can be also expressed by the vector compo-
nents. For

a D a1 Oe1 C a2 Oe2 C a3 Oe3 ;

b D b1 Oe1 C b2 Oe2 C b3 Oe3 ;
(13.4b)

the scalar product becomes

a � b D .a1Oe1 C a2 Oe2 C a3 Oe3/ � .b1Oe1 C b2 Oe2 C b3 Oe3/ ;

D a1b1 C a2b2 C a3b3 since Oei � Oek D ıik :
(13.5)

13.1.5.3 The Vector Product

Definition

The vector product of two vectors a and b is the vector
c D a � b

that is perpendicular to a and b,
that forms a right handed screw when a is rotated to-
ward b on the shortest way,
that has the magnitude jcj D jaj � jbj � sin˛, where ˛ is
the angle between a and b.

The vector c defines besides magnitude and direction also the
orientation. It is therefore an axial vector.

Note, that

.a � b/ D �.b � a/ :

The absolute value jaj � jbj � sin˛ of the vector product a � b

is equal to the area of the parallelogram, formed by a and b

(Fig. 13.7). The vector product can be therefore regarded as
the surface normal of the parallelogram generated by the two
vectors a and b.

c D .a � b/ is an axial vector, because under reflection of all
coordinates at the origin we have a ! �a; b ! �b ) c ! c

(Fig. 13.7b).

For the unit vectors we get the relations:

Oe1 � Oe2 D Oe3 ; Oe2 � Oe3 D Oe1 ; Oe3 � Oe1 D Oe2 :

Figure 13.7 The vectorial product as normal vector to the area ja � bj
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We therefore get the component representation of the vector
product

.a � b/ D fa2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1g : (13.6)

Check this relation by multiplication of the six vector compo-
nents.

This component representation can be abbreviated by the sym-
bolic determinant notation

c D

ˇ̌
ˇ̌
ˇ̌
ˇ

Oe1 Oe2 Oe3

a1 a2 a3

b1 b2 b3

ˇ̌
ˇ̌
ˇ̌
ˇ

(13.7)

D .a2b3 � a3b2/Oe1 C .a3b1 � a1b3/Oe2 C .a1b2 � a2b1/Oe3 :

13.1.5.4 Multiple Products

Scalar Products of a Polar and an Axial Vector

The dot product (scalar product) d D c.a�b/ of the polar vector
c and the axial vector .a � b/ gives a scalar number d that trans-
forms into �c when all coordinates are reflected at the origin,
because the axial vector .a � b/ does not change its sign, while
the scalar number c does. The number d is called a pseudo-

scalar.

The product d D jcj � ja � bj � cosˇ describes the volume of the
parallel-epiped (oblique angled cuboid) which is formed by the
vectors a, b and c (Fig. 13.8).

This scalar triple product can be written as a determinant

c � .a � b/ D

ˇ̌
ˇ̌
ˇ̌
ˇ

a1 a2 a3

b1 b2 b3

c1 c2 c3

ˇ̌
ˇ̌
ˇ̌
ˇ
: (13.8)

Vector Product of a Polar and an Axial Vector

d D c � .a � b/ :

Since the vector .a � b/ is perpendicular to a and to b and the
vector d is perpendicular to .a � b/, d must lie in the plane of

Figure 13.8 Scalar triple products d D c � .a � b/ represents the volume of
the parallel-epiped generated by vectors a, b and c

a and b which we choose as the x–y-plane. It therefore can be
described as a linear combination of a and b.

d D x � a C y � b ; (x and y are real numbers) :

Inserting the components of a, b and c gives, following the rules
given above for the components,

x D c1b1 C c2b2 C c3b3 ;

y D �c1a1 � c2a2 � c3a3 :

These relations give the vector equation

c � .a � b/ D .c � b/a � .c � a/b : (13.9)

Since the vector product changes its sign when the sequence of
the factors are interchanged, we get the relations

.a � b/ � c D �c � .a � b/ ;

.a � b/ � c ¤ a � .b � c/ ¤ .a � c/ � b :

Neither the commutative law nor the associative law are valid
for the triple vector products.

From Eq. 13.9 follows

a � .b � c/C b � .c � a/C c � .a � b/ D 0 : (13.10)

Scalar Product of Two Axial Vectors

From the relations above we can conclude

.a � b/ � .c � d/ D .a � c/.b � d/ � .a � d/.b � c/ ; (13.11a)

.a � b/2 D a2b2 � .a � b/2 : (13.11b)

13.1.6 Differentiation of Vectors

13.1.6.1 Vector-Fields

If it is possible to attribute to each space point P.x; y; z/ a vector
a D fax; ay; azg the entity of all vectors a D a.x; y; z/ is called
a vector field. Each component of a is a function of the coordi-
nates .x; y; z/:

ax D f1.x; y; z/ I ay D f2.x; y; z/ and az D f3.x; y; z/ :

This means that length and direction of the vector a depend on
the coordinates .x; y; z/. If the components depend additionally
on the time t, a.x; y; z/ represents a time-dependent vector field.
If a does not depend on time, the field is called stationary or
static.

Examples

1. The velocity of particles in a fluid, flowing through
a pipe with locally variable cross section represents
a vector field. If the pressure is time dependent, the
vector field v D f.x; y; z; t/ is non-stationary.
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2. The force on a mass in the gravitation field of the earth
depends on the distance from the earth centre. The
force field is stationary because the force is indepen-
dent of time. J

13.1.6.2 Scalar Differentiation of a Vector

We assume that the position vector r.x; y; z; t/ is a continuous
function f .t/ of time t, i. e. its components are continuous func-
tion of time. The variation of r with time is determined by
the corresponding variation of the components. The equation
(Fig. 13.9)

�r

�t
D r.t C�t/ � r.t/

�t

is the abbreviation for the three equations for the components

�x

�t
D x.t C�t/ � x.t/

�t

with corresponding equation for y and z.

For the limes �t ! 0 the equation converges towards

lim
�t!0

�x

�t
D dx

dt
; ect. for y and z :

The time derivative of the vector r then becomes

dr

dt
D Pr DefD fPx; Py; Pzg : (13.12)

The derivative of a vector with respect to a scalar (e. g. the
time t) is formed by differentiating all three components.

For the differentiation of products of vectors, the same rules are
valid as for scalar quantities:

d

dt
.a � b/ D Pa � b C a � Pb (13.13a)

d

dt
.a � b/ D .Pa � b/C .a � Pb/ : (13.13b)

Note, that the succession of the factors in the product is essential
because .a � b/ D �.b � a/.

Figure 13.9 Differentiation of a vector with respect to time

Figure 13.10 The gradient rf is a vector, perpendicular to the contour lines
f D z.x ; y/ D const. The dark red spot indicates the top of the mountain

13.1.6.3 The Gradient of a Scalar Quantity

The partial derivative @f =@x of a scalar function f .x; y; z/ gives
the change of f per unit length in x-direction, while y and z are
kept constant. For example, for a surface z D f .x; y/ the expres-
sion .@f =@x/P gives the slope of the surface in the x-direction at
the point P. Analogue expressions apply for @f =@y and @f =@z.

The vector

grad f D r f D
�
@f

@x
;
@f

@y
;
@f

@z

�
; (13.14)

with the partial derivatives as components is called the gradient

of the function f .x; y; z/. It is denoted b the symbol r (nabla,
which is the symbol for an Egyptian musical string instrument,
similar to our harp).

The differential operator is then expressed by the vector

r D
�
@

@x
;
@

@y
;
@

@z

�
; (13.15)

which gets its significance only when applied to the scalar func-
tion f .x; y; z/. One can formally write grad f as the product of
the differential operator r and the function f .

The total change of the function f .x; y; z/ obtained when passing
from a point P.x; y; z/ D P.r/ into an arbitrary direction dn to
the neighbouring point P.r C dn/ is

.df /n D @f

@x
dnx C @f

@y
dny C @f

@z
dnz D dn � r f : (13.16)

.dfn/ becomes maximum, when dn is parallel to grad f .

The gradient r f gives the direction of the maximum change

of f.x; y; z/ (Fig. 13.10).

Example

For the surface z D f .x; y/ which gives the height z as a
function of the coordinates x and y, rz is always perpen-
dicular to the contour lines z D const. The gradient is
therefore the tangent vector to the trajectory of maximum
slope. J
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13.1.6.4 The Divergence of a Vector Field

The scalar product of the vector r with a vector function
u.x; y; z/ (for example the locally varying velocity field of a fluid
flow) is called the divergence of the vector field.

div u.x; y; z/ D r � u (13.17)

According to the definition of the Nabla-operator in (13.15) this
is equal to

r � u D @ux

@x
C @uy

@y
C @uz

@z
: (13.18)

As has been shown in Sect. 8.3 the divergence of a volume ele-
ment

div u � dV D u � dS

gives the vector flux passing per sec through the surface dS that
surrounds the volume element dV. It is therefore also called the
source function of the vector field u.x; y; z/.

13.1.6.5 The Curl of a Vector Field

The vector product

r � u D curl u (13.19)

of the vector r with the vector u.x; y; z/ is the curl of the vector
field u.x; y; z/.

According to the algorithm for vector products we obtain for the
components of r � u

.r � u/x D
�
@uz

@y
� @uy

@z

�
;

.r � u/y D
�
@ux

@z
� @uz

@x

�
;

.r � u/z D
�
@uy

@x
� @ux

@y

�
:

(13.20)

As has been shown in Chap. 8 is curl u (also written as rot u)
a measure for the rotation of a vortex in a fluid flow with the
velocity field u.x; y; z/.

13.1.6.6 Second Derivatives

With the nabla operator r higher derivatives of scalar functions
f .x; y; z/ or of vector fields u.x; y; z/ can be written in a clear
way:

r � .r f / D div grad f

D @

@x

�
@f

@x

�
C @

@y

�
@f

@y

�
C @

@z

�
@f

@z

�

D @2f

@x2
C @2f

@y2
C @2f

@z2
D � f ;

(13.21)

where the symbol� is the Laplace operator.

r .r � u/ D grad div u is a vector with the three components

r .r � u/x D @

@x

�
@ux

@x
C @uy

@y
C @uz

@z

�

D @

@x
.div u/ ;

(13.22)

and similar equations for the y- and z-components.

r � .r � u/ D curl curl u.

From the rules in Sect. 13.1.5 we obtain

r � .r � u/ D r.r � u/ � r � .ru/

D grad div u � div grad u :
(13.23)

This is a vector equation because r � ru is the scalar product
of the vector r with the tensor ru (see below). The equation
for the x-components is

.r � r � u/x

D @

@x

�
@ux

@x
C @uy

@y
C @uz

@z

�
��ux :

(13.23a)

Similar equations hold the y- and z-component.

Besides the gradient of a scalar field there is also a vector
gradient ru, which can be written in tensor form as

ru D

0
BBBBB@

@ux

@x

@ux

@y

@ux

@z
@uy

@x

@uy

@y

@uy

@z
@uz

@x

@uz

@y

@uz

@z

1
CCCCCA
: (13.24)

The product r � ru gives a vector with the components

r � ru D f�ux;�uy; �uzg ; (13.25)

where � is the Laplace operator.

.r � r f / D curl grad f � 0 ; (13.26)

which can be proved with (13.14) and (13.20) for functions
f that have a continuous second derivative.
Finally we consider the product div rot u

r � .r � u/ D div curl u � 0 ; (13.27)

because

r � .r � u/ D @

@x

�
@uz

@y
� @uy

@z

�

C @

@y

�
@ux

@z
� @uz

@x

�
C @

@z

�
@uy

@x
� @ux

@y

�
� 0 :

13.2 Coordinate Systems

The mathematical description of a physical process can be often
essentially simplified when choosing the optimum coordinate
system.
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13.2.1 Cartesian Coordinates

The coordinate system consists of three coordinate axes .x; y; z/
that are perpendicular to each other.

The coordinate planes

x D const ;

y D const ;

z D const

are planes perpendicular to the x, resp. y or z-axis. The inter-
section lines between two coordinate planes give the coordinate
axes.

The intersection line between the( x–y)-plane (z D const) and
the (x–z)-plane (y D const) is the x-axis. The y-axis is the in-
tersection of the (x–y)-plane (z D const) with the (y–z)-plane
(x D const), while the z-axis is the intersection of the (x–z) and
the (y–z)-planes.

The vector r from the origin to the point P.x; y; z/ has the com-
ponents

r D fx; y; zg :

The three orthogonal unit vectors pointing int the three coordi-
nate axes are

Oe1 D f1; 0; 0g ; Oe2 D f0; 1; 0g ; Oe3 D f0; 0; 1g ;
! r D x � Oe1 C y � Oe2 C z � Oe3 :

The line element dr on a curve between the points P.r/ and
P.r C dr/ is

dr D fdx; dy; dzg : (13.28)

The velocity of a point moving along the curve is

v D dr

dt
D fPx; Py; Pzg : (13.29)

The acceleration is then

a D dv

dt
D d2r

dt2
D Pv D fRx; Ry; Rzg : (13.30)

Figure 13.11 a Line element dr and its components dx , dy , dz ; b volume
element dV D dx � dy � dz

A volume element dV consists of the side edges dx, dy, dz and
has the volume

dV D dx � dy � dz : (13.31)

13.2.2 Cylindrical Coordinates

When we use in the x–y-plane polar coordinates but keep for
the z-direction the Cartesian z-coordinate we get cylindrical

coordinates (%; '; z) (Fig. 13.12). They are useful for the de-
scription of problems with rotational symmetry (calculation of
bodies with cylindrical symmetry, two-atomic molecules, fluid
flow through circular pipes etc).

A space point P.%; '; z/ is described in cylindrical coordinates
by its three coordinates %, ' and z, where % is the distance from
the z-axis, ' the angle between the x-axis and the projection of
P onto the x–y-plane and z its distance from the x–y-plane.

The conversion to cartesian coordinates is

x D % cos'

y D % sin'

z D z

9
>=
>;

)
%D

p
x2 C y2

' D arctan.y=x/

z D z :

(13.32)

The coordinate planes are

% D const
D rotational cylinder surface around the z-axis,
' D const
D planes through the z-axis,
z D const
D planes perpendicular to the z-axis.

The coordinate lines are

%-lines (' D const, z D const)
D straight lines through the z-axis parallel to the x–y-plane,
'-lines (% D const, z D const)
D horizontal circles around the z-axis,
z-lines (' D const, % D const)
D straight lines parallel to the z-axis.

The three unit vectors form for each point P.%; '; z/ an orthog-
onal tripod Oe% D fcos'; sin'; 0g

Oe' D f� sin'; cos'; 0g
Oez D f0; 0; 1g :

(13.33)

The line element ds (Fig. 13.12) has the three components

ds D fd%; %d'; dzg : (13.34)

The velocity v D ds=dt therefore has the components

v D f P%; % P'; Pzg D P%Oe% C % P' Oe' C PzOez ; (13.35)

and the acceleration is

a D dv

dt
D R%Oe% C P%dOe%

dt
C P% P' Oe' C % R' Oe'

C % P' dOe'
dt

C RzOez C Pz dOez

dt
:

(13.36)
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Figure 13.12 a Line element ds D fd%; %d'; dzg in cylindrical coordinates;
b volume element dV D %d%d'dz

Inserting (13.33) gives

a D . R%� % P'2/Oe% C .2 P% P' C % R'/Oe' C RzOez : (13.37a)

The absolute value of the acceleration is then

a D jaj
q�

R% � % P'2
�2 C

�
2 P% P' C % R'

�2 C Rz2 : (13.37b)

The surface element on the cylinder surface is

dS D % � d' � dz ; (13.38)

and the volume element

dV D d% � dS D % � d% � d' � dz : (13.39)

13.2.3 Spherical Coordinates

They are useful for all spherical symmetric problems, i. e. if the
calculated quantities depend solely on the distance r from the
centre.

Example

Motion of particles in a central force field. J

The position vector from the origin to the point P.rI#; '/ is de-
fined by its length r and the angles # and '. (Fig. 13.13).

The conversion relations between spherical and Cartesian coor-
dinates are

x D r sin# cos'

y D r sin# sin '

z D r cos#

9
>>>>>>=
>>>>>>;

r D
p

x2 C y2 C z2

# D arccos
zp

x2 C y2 C z2

' D arctan.y=x/ :

Figure 13.13 a Spherical coordinates; b orthogonal tripod of the unit vectors
Oer , Oe# , Oe' at the point P ; c surface element dS D r2 � sin# d# d' on the surface
of the sphere

Example

The unit sphere has in spherical coordinates the equation
r D 1, in Cartesian coordinates x2 C y2 C z2 D 1, in
cylindrical coordinates %2 C z2 D 1. J

The coordinate surfaces are:

r D const: concentric spheres around r D 0,
# D const: rotational cones around the z-axis with the peak
at the origin,
' D const planes through the z-axis.

The coordinate lines are:

r-lines (' D const, # D const): straight lines through the
origin,
#-lines (r D const, ' D const): longitudinal circles (meridi-
ans),
'-lines (r D const, # D const): parallel circles around the
z-axis (circles of lattitude).

The unit vectors in the point P.r; #; '/ are (Fig. 13.13b)

Oer D fsin# cos'I sin# sin 'I cos#g ;
Oe# D fcos# cos'I cos# sin 'I � sin#g ;
Oe' D f� sin'I cos'I 0g :

(13.40)

Oer points into the r-direction, Oe# is tangent to the longitudinal
circles (meridians) in the point P and Oe' is tangent to the circles
of lattitude in P (Fig. 13.13b).
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The line elements of the coordinate lines are

dr; r � d#; r � sin#d' : (13.41a)

The line element of an arbitrary curve in the threedimensional
space is then

ds D fdr; rd#; r � sin#d'g : (13.41b)

A surface element on the surface of the sphere is

dA D r2 sin#d#d' : (13.42)

A volume element is

dV D r2 sin#dr d#d' : (13.43)

The velocity of a point mass m on the trajectory s.t/ is according
to (13.41b)

v D ds

dt
D
˚
Pr; r � P#; r � sin# P'



: (13.44)

The acceleration a D dv=dt is obtained by differentiation of
(13.44). This gives

a D Rr Oer C Pr dOer

dt
C
�
Pr P# C r R#

�
Oe# C r P# dOe#

dt

C
�
Pr sin# P' C r cos# P# P' C r sin# R'

�
Oe'

C r sin# P' dOe'
dt

:

(13.45)

This can be written (using (13.40)) as linear combination of
Oer; Oe# ; Oe' .

13.3 Complex Numbers

The solution of the quadratic equation x2 C 1 D 0 gives x1;2 D
˙

p
�1, which do not belong to the real numbers, for which the

square of a real number x must be always � 0.

Numbers x with x2 < 0 are named imaginary numbers. Their
unit element is i D C

p
�1.

Similar to the assignment of real numbers to the axis of real
numbers (generally the x-axis) the imaginary numbers are as-
signed to the y-axis, called the imaginary axis.

The two axis define a plane, called the complex plane. One
attributes to each point P.x; y/ in the complex plane a complex
number

z D x C iy ; (13.46)

where the first number x is the real part and the second number
y the imaginary part of the complex number (Fig. 13.14).

Introducing the unit vectors Oex and Oey in the complex plane, each
point P.x; y/ in this plane with the position vector r can be char-
acterized by

r D x � Oex C iyOey : (13.47)

Figure 13.14 Representation of a complex number z as a point in the complex
plane .x; iy/

The absolute value of the complex number z is

jzj D
p

x2 C y2 : (13.48)

It represents the distance r D jrj of P.x; y/ from the origin .0;0/.
The number

z� D x � iy (13.49)

is the conjugate complex of z D x C iy.

13.3.1 Calculation rules of Complex Numbers

The following rules for addition, multiplication and division of
complex numbers are analogous to those of two-dimensional
vectors r D fx; yg.

Addition

z1 C z2 D fx1; y1g C fx2; y2g DefD fx1 C x2; y1 C y2g : (13.50)

Two complex numbers are added by adding the real parts and
the imaginary parts. When z and z� are added, this gives

z C z� D fx C iyg C fx � iyg D 2x ; (13.51)

i.e. twice the real part.

Multiplication

z1 � z2 D fx1; y1g � fx2; y2g D .x1 C iy1/ � .x2 C iy2/

D .x1 � x2 � y1 � y2/C i � .x1y2 C x2y1/ (13.52)

The product

z � z� D .x C iy/ � .x � iy/ D .x2 C y2/ D jzj2 (13.53)

gives the square of the absolute value jzj.
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Division

z1

z2
D x1 C iy1

x2 C iy2
:

Multiplication of numerator and denumerator with .x2 � iy2/
gives

z1

z2
D .x1 C iy1/ � .x2 � iy2/

x2
2 C y2

2

D .x1x2 C y1y2/C i.x2y1 � x1y2/

x2
2 C y2

2

D a C ib :

This gives again a complex number with the real part

a D .x1x2 C y1y2/

x2
2 C y2

2

and the imaginary part

b D x2y1 � x1y2

x2
2 C y2

2

:

13.3.2 Polar Representation

Often the representation of a complex number in polar coordi-
nates r and ' is more convenient (Fig. 13.14).

With
x D r � cos' I y D r � sin'

we obtain
z D x C iy D r.cos' C i sin '/ D r � ei'

z� D x � iy D r � e�i'

) z � z� D r2 I jzj D
p

x2 C y2 D r :

From Fig. 13.14 we see that

tan ' D iy

x
D Im.z/

Re.z/
) ' D arctan

Im.z/

Re.z/
:

Note: The polar representation is not unambiguous, because all
angles 'n D '0 C n � 2� .n D 1; 2; 3; : : :/ represent the same
complex number z. The representation with n D 0 is called the
principal value.

From z D r � ei' ) ln z D ln r C i.'0 C 2n�/.

The polar representation facilitates multiplication and division
of complex numbers

z1 � z2 D r1 � r2 � ei.'1C'2/

z1

z2
D r1

r2
� ei.'1�'2/ :

For arbitrary n one obtains

zn D .r � ei'/n D rn � ein' :

Complex numbers are raised to higher powers n by calculatuing
the n-th power of r and multiplying ' by n. In the same way we
see the relation

n
p

z D z1=n D n
p

r � ei'=n :

The general rule for complex numbers can be formulated as (see
mathematics text books):

The set of complex numbers z D .x; y/ forms a body
which includes the real numbers .x; 0/ as subset.

13.4 Fourier-Analysis

In mathematical textbooks it is proved, that every continuously
differentiable function f .x/ can be written as infinite series of
basis functions g.x/, if the g.x/ represent a complete set.

We choose as basis functions the trigonometric functions sin.nx/
and cos.nx/ .n D 0; 1; 2; : : :/.

The Fourier-theorem states:

f .x/ D a0

2
C

1X

nD1

�
an cos.nx/C bn sin.nx/

�
: (13.54)

(13.54) is called “Fourier-Series”. By multiplication of (13.54)
with cos.mx/ or sin.mx/ respectively and integration over x from
x D 0 to x D 2� one obtains because of

2�Z

0

cos.nx/ cos.mx/ dx D
(

0 for m ¤ n

� for n D m ¤ 0

2�Z

0

cos.nx/ sin.mx/ dx D 0 for m R n

2�Z

0

sin.nx/ sin.mx/ dx D
(

0 for n ¤ m

� for n D m ¤ 0

(13.55)

the coefficients an and bn as

a0 D b0 D 1

�

2�Z

0

f .x/ dx I an D 1

�

2�Z

0

f .x/ cos.nx/ dx I

bn D 1

�

2�Z

0

f .x/ sin.nx/ dx :

(13.56)

It is therefore possible to determine the coefficients an, bn in the
Fourier-Series (13.54) by integration of f .x/.
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For x D ! � t the coefficients give the amplitudes of the contri-
butions n! to the total function f .!; t/ (Fourier-Analysis) with
x D !t and T D 2�=! (13.55) transfers to

an D 2

T

TZ

0

f .t/ cos.n!t/dt ;

bn D 2

T

TZ

0

f .t/ sin.n!t/ dt :

(13.57)
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414 14 Solutions of the Problems

14.1 Chapter 1

1.1 180 km=h.

1.2 The length measurement can be performed in different
ways:
For example the period of the earth’s rotation depends on
the moment of inertia and is therefore proportional to R�2.
Independent measurements of length and time can decide
the question.

1.3 This is one, but not the only requirement for a length stan-
dard. Similarly important is the accuracy of the compari-
son between the length to be measured and the standard.

1.4 The length T of a day increases per year by 10�4 s. The
relative prolongation of a day per year is then

dT=T D a D 10�4

24 � 3600
D 1:1 � 10�9 :

a) Since the length of a day increases per year by 10�4 s, it
is after 104 years longer by 1 s.
b) How often must a leap second be inserted?
The length of a day increases per day by ıt D
10�4 s=365 d D 2:74 � 10�8 s=d. The total time delay af-
ter x days is

�t D ıt

xZ

0

n dn D 1

2
ıt � n2

ˇ̌x
0

D 1
2 x2ıt D 1 s ! x2 D 2

ıt

! x D 8600 d D 23:5 years :

The distance xnC1 � xn D .2=aT0/
1=2 � .

p
n C 1 � p

n/
between two leap times becomes shorter and shorter and
reaches for n � 1 the value 1=.aT0/

1=2=
p

2n.

1.5 1 light year D 9:46 � 1015 m ) T D 4:5 years. The dis-
tance is 1.39 parsec, the angle 1=1:39 D 0:700.

1.6 L D 2 � 103 � tan.˛=2/ D 17:45 m for ˛ D 1ı. For ˛ D
1ı ˙ 10 ) L D 17:45 ˙ 0:29 m.

1.7 Since the orbital speed of the earth varies during one rev-
olution, the time between two culminations of the sun
also varies (see Fig. 1.22 and 1.23). Further reasons are
variations of the mass distribution inside the earth, which
changes the moment of inertia, caused by magma flow,
earth quakes and melting of glaciers.

1.8 The mass of a hydrogen atom is mH D 1:673 � 10�27 kg )
N D 5:98 � 1026 =kg.

1.9 The mass of a H2O-molecules is mH2O D 3:0 � 10�26 kg;
%H2O D 1 kg=litre; ) N D 3:0 � 1025 =litre.

1.10 The mass of the uranium nucleus is m.238U/ D 1:661 �
238 � 10�27 kg. Its density is then % D m=.4 � 1

3�r3/ D
1:4 � 1017 kg=m3.

1.11 From s D 1=2gt2 it follows for the falling time t Dp
2s=g D 0:45 s.

�m D
�P

.x � xi/
2

n.n � 1/

�1=2

D
�

40 � 0:01

40 � 39

�1=2

s

D 1:6 � 10�2 s

) �m=x D 1:6 � 10�2

0:45
D 3:5% :

1.12 a) e�x2=2 D 0:5 ) x2 D 2 ln 2 ) x D
p

2 ln 2 � 1:177;
b) e�x2=2 D 0:1 ) x2 D 2 ln 10 ) x D

p
2 ln 10 � 2:156.

1.13 A D x � y2 ) @A=@x D 1 and @A=@y D �2y

�A D
�
.1000 � 10�3 � 1/2 C .30 � 3 � 10�3 � 60/2

�1=2

D Œ1 C 29�1=2 � 5:5 :

1.14 Quartz clock �Tmax D 10�9 � 3:16 � 107 s � 0:03 s D
30 ms.
Atomic Clock: �Tmax D 0:3 µs.

1.15 For the five points we obtain from (1.35) with n D 5:

a D 5 �P xiyi �P
xi

P
yi

5 � .P x2
i / � .P xi/2

D 5 � .3 C 6 C 20 C 25/ � 12 � 18

5 � .1 C 4 C 16 C 25/� 122
D 0:628 ;

b D .
P

x2
i / � .P yi/ � .P xi/ � .P xiyi/

5 � .P x2
i / � .P xi/2

D 828 � 684

230 � 144
D 2:093

) y D 0:628x C 2:093 I

�y D
r

0:430

n � 2
D 0:38 :

Note, that here .n � 2/ instead of .n � 1/ has to be used,
because already two values are determined by the equation
y D ax C b.

�2
a D

5 � �2
y

86
D 0:006 ) �a D 0:077 ;

�2
b D

�2
y �P x2

i

86
D 0:102 � .1 C 4 C 16 C 25/

86
D 0:055

) �b D 0:23 :

14.2 Chapter 2

2.1 a) The acceleration time t1 can be obtained from

v1 D v0 C at1

) t1 D v1 � v0

a
D .100 � 80/m=s

3:6 � a m=s2
D 4:27 s :
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b) The time t2 from the end of the acceleration period until
the end of overtaking is obtained from the equation for the
distance

s D v0t1 C 1
2 at2

1 C v1t2 :

This distance s is

s D Œv0.t1 C t2/C .40 C 25 C 40/�m :

where the first term gives the distance, the truck has passed
during the overtaking time. The comparison yields

v0t1 C 1
2 at2

1 C v1t2 D v0.t1 C t2/C 105 :

With t1 D 4:27 s ) t2 D 16:77 s.
c) The total overtaking time is then t D t1 C t2 � 21 s and
the total overtaking distance 570:6 m.
The overtaking would have been therefore not successful
but lethal and should not have been tried!

2.2 The driving times are: t1 D x
2v1

; t2 D x
2v2

.
The total driving time is t D t1 C t2.
The average velocity is

hvi D x

t1 C t2
D 2v1v2

v1 C v2
D 2 � 40 � 80

120

D 53:33 km=h :

2.3 From s D v0t C 1
2 at2 one obtains: a D �1 cm=s2.

2.4 From v D v0 C at ) t D .v � v0/=a. Inserting into
s D v0t C 1

2 at2 D 0:04 m gives v0 D 5 � 106 m=s.

2.5 From s D h C v0t � 1
2 gt2 D 0 it follows:

a) t1.v0 D 5 m=s/ D 2:3 s ,
b) t2.v0 D �5 m=s/ D 1:3 s ,
c) derivation of Eq. 2.13 (see figure)

XXXs w0

H=y(x  )
y(0)

s

y

Vo cos ϕ

ϕ
Vo

Vo

sin ϕ

→

vx D v0 � cos', vy D v0 � sin ', ts D rise time,
tf D fall time, H D rise height

y.t/ D �g

2
t2 C v0 sin' C h ;

g � ts D v0 sin ' ) ts D v0 sin '

g
;

H D y.ts/ :

For tf the equation holds (free fall)

H D 1

2
gt2

f ) tf D
s

2H

g
;

xw D vx � .ts C tf/

D v0 � cos'

"
v0 � sin '

g
C
s

2H

g

#
;

H D �g

2
t2
s C v0 � sin ' C h :

Inserting H into xw yields

xw D v2
0

g
� cos'

"
sin ' C

s
2gh

v2
0

C sin2 '

#
:

2.6 If the vector of acceleration is not parallel to the tangent
on the trajectory the result is a curved trajectory and no
straight line.

2.7 v D gt I

s D 1

2
gt2 D 1

2
v2=g D 1

2

�
100

3:6

�2 1

9:81
m D 39:3 m :

2.8 a) If ! is constant the acceleration a D !2 � R is also con-
stant. This demands an additional tangential acceleration,
that compensates in each point of the trajectory the tangen-
tial component g �cos˛ of the gravity acceleration, where ˛
is the angle between the vertical direction and the tangent
to the trajectory.
b) Velocity in point C: v D p

2gh; in the point B: v Dp
2g.h � 2R/.

From the condition .v2=R/ > g ) v.R/ >
p

R � g ) h >
5
2 R; vmin.B/ D p

g � R.

2.9 a) Potential energy of the moon

Ep D �G
MMoME

r
:

Kinetic energy:

Ekin D 1
2 MMor2!2 :

From MMo!
2 � r D G � MMo � ME=r2 ) !Mo D .G �

ME=r3/1=2.
The condition Ep C Ekin D E > 0 yields

!2 >
2G � ME

r3
D 2!2

Mo :

The velocity of the moon at the same radius r must be en-
larged by the factor

p
2.

b) v > .2G � MMo=rMo/
1=2 gives with MMo D 7:36 �

1022 kg ) v D 2:38 km=s.

2.10 Velocity of the starting point at the equator:

v0 D ˙ 4 � 107

24 � 3600
m=s D ˙4:6 � 102 m=s :
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Rocket equation (neglecting the vertical acceleration if g �
T � v0):

v D v0 C ve ln.m0=m/ :

With m0 D m C mx (mx D fuel mass) it follows:

ln
�

1 C mx

m

�
D .7:9 � 103 � 4:6 � 102/=.4:5 � 103/

) mx D 2103 kg for a launch into the east direction and
mx D 2705 kg into the west direction, if the mass of the
fuel container is neglected.

2.11 .mv2
0=2/ > G�m�ME

R
D mgR ) v0 >

p
2gR.

2.12 Because the velocity of the earth at the launch point is vE D
463 m=s. The initial velocity of the rocket is not zero but
v0 D vE � cos 30ı D 400 m=s. One wins the initial kinetic
energy 1

2 mv2
0 . For a vertical launch one would need the

escape velocity vE D p
2gR D 11;200 m=s (see (2.30)).

Therefore one only needs to accelerate from 400 m=s until
11;200 m=s. This requires the kinetic energy�Ekin D 1

2 m �
.v2

E � v2
0/. The relative energy saving is .1 � �E=E/ D

0:004. One saves only 0.4%.

2.13 The total force is F D FA � m � g D g ��r2.z � %w � h � %H/.
For z D 2

3 h ! F D 0 ,

) %H D 2
3%w :

The work is

W D
ıZ

zD2h=3

F dz D
ıZ

2h=3

g�r2.z%w � h%H/ dz

D 2
9 g�r2h2%w D 24:7 J :

Without water twice the work would be necessary.

2.14 Ekin.h1/ D 1
2 mv2.h1/ D 200 N � m ,

mg.h2 � h1/ D Ekin.h/ ;

) h2 D Ekin.h1/

mg
C h1 D 35:5 m :

2.15 F D �Dx1 ) D D F1
x1

D 400 N=m.

W D
l0Z

0

Dx dx D 1
2 Dl20 D 128 N � m :

2.16 The neutral point between earth and moon, where the
opposite gravitational forces just compensate, has the dis-
tance r2 from the earth and r1 from the moon. From F D 0
it follows:

G � MMo

r2
1

D G � ME

r2
2

and r D r1 C r2

) r2 D r

1 C .MMo=ME/1=2
D 3:84 � 108 m

1 C 0:11

� 3:46 � 108 m :

In order to reach the distance r1 for the earth the initial
kinetic energy must be

1

2
mv2

0 � G � MEm

r2Z

R

dr

r2
:

Since MMo D 0:012ME we can neglect the attraction by the
moon at the start of the rocket. It follows:

v2
0 � 2G � ME

�
1

R
� 1

r2

�
� 0:98 v2

0.1/ :

The energy saving is 2% compared with the case where the
second escape velocity is required to reach r D 1.

2.17 a) m!2r D mG � ME=r2 ) r3 D G � ME=!
2 ,

T D 2�

!
D 1 day D 24 � 3600 s

) ! D 7:2 � 10�5 s�1

) r D 4:25 � 107 m D 42;500 km :

b) The energy of the body in the geostationary orbit com-
pared to a body resting on the earth surface is

E D Ekin C Ep D mv2

2
C

rSZ

rDR

GmME

r2
dr

D m!2r2
S

2
C GmME

�
1

R
� 1

rS

�

with rS D 42;500 km. It needs the energy supply

E D m
�

1
2 � !2rS C gR.1 � R=rS/

�
:

c) In order to get the accuracy 0:1 km=day of its position
the upper limit for the accuracy of the angular velocity is

�!

day
D 0:1

42;500
D 2:4 � 10�6 per day :

The minimum relative stability has to be �!=! �
2:4 � 10�6=2� D 3:8 � 10�7

Since !2 D G � ME=r3 ) �r=r D �2=3�!=! ) �r �
10:6 m.

2.18 Ep D �G � m � ME

r
D �m � g � R2

r
with R D radius of earth.

Ekin D CG � m � ME

2r
D �1

2
Ep ;

E D Ep C Ekin D �G � m � ME

2r
D �Ekin :

2.19 Ep D mgL.1 � cos'/; Ekin D mv2

2
D m

2
L2 P'2;

E D Ekin C Ep :
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The equation of motion is m � L � d2'=dt2 D �m � g � sin '.
Multiplication with L � d'=dt gives

d

dt

�m

2
L2 P'2

�
D d

dt
.m � g � L � cos'/ ;

d

dt
Ekin D d

dt
.E � Ep/

) Ekin C Ep D E D const :

2.20 T D 2�
p

L=g ) g D 2�L=T2

�g D
"�

dg

dL
�L

�2

C
�

dg

dT
�T

�2
#1=2

D g

"�
�L

L

�2

C
�

2�T

T

�2
#1=2

;

�L

L
D 10�5 :

The uncertainty of the length measurement results in a rel-
ative error of time determination

�T1

T
D 1

2

�L

L
D 5 � 10�6 :

The uncertainty of time measurement �T D 10�2 s gives
with T D 6:34 s a relative error of

�T2

T
D 1:5 � 10�3 :

The uncertainty 2�T2=nT D 10�5 which corresponds to
the error in the length measurement can be only achieved
for n � T D 2000 s ! n � 316.
With this uncertainty the relative error �g=g D f2 �
10�10g1=2 � 1:4 � 10�5 ) �g D 1:37 � 10�4 m=s2.

2.21 From (2.84) one obtains �G=G D �'=' D 10�4 )
�' D 10�4 � ' / % � R3

2=r2. Since r > R1 C R2 � R2

the maximum elongation angle is 'max / R2. For a tenfold
mass the elongation angle increases only by 101=3 � 2:1.
For the angle ' the limitation is ' � R2=L (Fig. 2.60). If
the measuring uncertainty �', which is due to air turbu-
lence and vibrations of the ground is reduced by a factor of
10, the uncertainty of the value of G is only reduced by a
factor 101=3.

2.22 According to Kepler’s 3rd law the major axis a of the comet
trajectory is

a D
�

T2

4�2
GMˇ

�1=3

D 2:68 � 1012 m :

With rmin D a.1 � "/ D 0:59 AU D 0:88 � 1011 m ) " D
1 � r=a D 0:967.

2.23 The escape velocity is v0 D 23:6 km=s, g D 11:6 m=s2.

v0 D
p

2Rg ) R D v2
0=2g D 2:4 � 107 m :

The centripetal acceleration is a D !2 � R

) ! D
p

a=R D 1:12 � 10�4 s�1

) T D 2�

!
D 5:71 � 104 s D 15:8 h

g D G � M=R2 ) M D g � R2=G

D 11:6 � 2:42 � 1014=.6:67 � 10�11/ kg

D 1 � 1026 kg :

The wanted planet is Neptune.

2.24 The gravitational force between the sun and the earth-moon
system causes the accelerated motion of the system around
the sun. In order to remove the moon from its orbit around
the earth, the difference-acceleration �a D a1 � a2 be-
tween a1 (sun–moon) and a2 (sun–earth) must be larger
than the acceleration a3 (earth–moon). A fast estimation
shows that this is not the case.

2.25 The pendulum period is T D 2� �
p

L=gMo D .gE=gMo/
1=2 �

TE. Because g D G � M=R2 ) .gE=gMo/
1=2. TE D

.RMo=RE/ � .ME=MMo/
1=2 D 2:47 ) T D 2:47 s.

2.26 From (2.81) one obtains for the force, that causes the ac-
celeration F D �a � R with a D G � ME � m=R3

0.
The force is proportional to R and the motion of the body
therefore a harmonic oscillation R D R0 � cos.!t/ with
!2 D a=m D G ME=R3

0.
The travel time Tt (half the oscillation period)

Tt D �

!
D �R0

p
R0=G � ME

is exactly as long as that of the satellite flying around half
of the earth at a low distance above the surface.

2.27 From !2 � r D G � ME=r2 D g � R2=r2

) r D
�

g � R2T2

4�2

�1=3

D 3:8 � 108 m :

2.28 M D 4

3
�R3% ) R D Œ3M=4�%�1=3 D 5:8 � 107 m

) g D G � M=R2 D 11:3 m=s2 :

2.29
�g

g
D 1=R2 � 1=.R C h/2

1=R2
D 1 � R2

.R C h/2
� 2h

R

D 320

6380
D 0:05 D 5% :

2.30 The acceleration which the moon causes on the earth due to
the gravitational force is gMo D G �MMo=r2 � 3:3 �10�6gE.
It causes the accelerated motion of the earth around the
common centre of mass of the earth-moon-system. For the
sun we get: gˇ D G � Mˇ=r2 � 5:4 � 10�4g. However,
measurements on earth detect only the difference between
the gravitational attraction by the sun acting on the centre
of the earth (which is compensated by the centrifugal force
of the earth motion around the sun) and the effect on the
earth surface. This difference causes the contribution of
the sun to the tides on earth (see Chap. 6).
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2.31 The distance between the centres of the balls is
a) d D 0:2.1 � L=R/ D 0:2.1 � 1:57 � 10�5/.
b) Due to the gravitational attraction between the balls the
balls do not hang exactly vertical but form an angle �' D
G � m=.d2 � g/ � 3:4 � 10�9 against the vertical direction.
The distance between the balls changes therefore by�d D
L ��' D 3:4 � 10�7 m D 0:34 µm.

2.32 Ekin D E � Ep D E C G � MEMˇ=r with E D const. In
the perihelion is r D rmin D a.1 � "/ with the eccentricity
" D 0:0167, in the aphelion is r D rmax D a.1 C "/. The
potential energy changes between perihelion and aphelion
by

�Ep

Ep
D 2"

1 � "2
D 0:033 D 3:3% :

Since Ekin � � 1
2 Ep is �Ekin=Ekin D �3:3%. Because

�v=v D 1
2�Ekin=Ekin ) �v=v � 1:65%. With v D

2�a=T � 30 km=s ) vmax D 30:25 km=s and vmin D
29:75 km=s.

2.33 Conservation of energy demands:
1

2
mv2 D E C G

mME

r
:

With GME D gR2 we get

v2
max

2E

m
C gR2

a.1 � "/ ; v2
min

2E

m
C gR2

a.1 C "/
;

subtraction yields

v�v D gR2 "

a.1 � "2/
:

The semi-major axis can be obtained from

v2=a D gR2=a2 :

The result is a D 1:1 � 107 m. The solution of the quadratic
equation for " gives

" D 0:268 ) rmax D 13;950 km I rmin D 8050 km :

14.3 Chapter 3

3.1 For the motion of the ball relative to the elevator we get
a) s D 2:50 m D 1

2 .g � a/t2 D 1
2 � 8:81t2 ) t Dp

5=8:81 s � 0:75 s after the release at t D 0.
b) The fall distance in the lift shaft is

s2 D
�

1
2 a.t C t0/

2 C s
�

D 9:35 m with t0 D 3 s :
(14.1a)

In the coordinate system at rest one obtains:

s D 1
2 gt2 C v0t D 2:5 m C 1

2 at2 C v0t ; (14.1b)

where v0 D 3 m=s is the velocity of the lift at the time of
the release t D 0. The result is, of course, identical with
that obtained in the moving system.
c) In the rest system the ball has the velocity v D v0Cg�t D
.3a C 9:81 � 0:7/m=s D 9:87 m=s. In the system of the
moving lift, the ball has the impact velocity v2 D .g�a/t D
6:17 m=s.

3.2 a) When launching into the north direction is v k ! )
ac D 0. The trajectory of the rocket is along a circle of
longitude (meridian).
b) When launching into the north-east direction (45ı

against the equator) the magnitude of the Coriolis accelera-
tion is jacj D 2v0 �! � sin 45ı D v0! �

p
2 D 4:2 �10�2 m=s2.

The acceleration ac points into the radial direction away
from the centre of the earth. The effective acceleration
is the difference between g and ac. The bullet flies on a
slightly upwards curved trajectory in the north-east direc-
tion.
c) When v points into the north-west direction, ac is point-
ing radially downwards towards the centre of the earth. The
two accelerations g and ac are parallel and must be added.
The trajectory if curved downwards.

3.3 tan˛ D !2r=g; r=L D sin˛ D !2r=
p
!4r2 C g2 ) r Dp

L2 � g2=!4 D 7:836 m ) sin˛ D 0:7836 ) ˛ D
51:6ı; v D !r D 9:85 m=s.

3.4 The vertical component of the angular velocity of the ro-
tating earth is !s D ! � sin' � 4:7 � 10�5 s�1. The Coriolis
acceleration ac D 2! � v � sin' D 9:4 � 10�5 � 33:3 m=s2

points into the horizontal direction. It causes the curvature
of the air flow which would stream radially into the centre
of the deep pressure region for a non-rotating earth. For the
radius r of curvature one obtains from ac D v2=r ) r D
v2=ac D 3:5 � 105 m D 350 km.

3.5 Fc D m � ac D 2m �! � v � sin' D 1:8 � 104 N. The Coriolis
force is directed toward west.

3.6 The centrifugal force is a) for a horizontal motion

Fcf D m!2r ) ! D .F=mr/1=2

!max D .1000=5/1=2 s�1 D 14:14 s�1

) �max D 2:25 s�1 :

For constant ! the force on the string is constant.
b) If the body rotates around a horizontal axis in the gravity
field of the earth ! is not constant. The tangential acceler-
ation is

at D g � sin '.t/ ;
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where ' is the angle between the radius vector r and the
vertical z-axis. The angular velocity is then

! D !0 C .g=r/

'Z

0

sin'.t/ dt ;

where !0 D !.' D 0/ is the velocity at the upper point of
the circle. The maximum value of ! is reached for ' D �
at the lowest point of the circle. The following relations
hold:

!max D !0 C
�g

r

� �Z

0

sin '.t/dt

D !0 C
�g

r

� .cos'/

P'

ˇ̌
ˇ̌
0

�

:

(14.2)

With d'=dt D ! we obtain

! !max D !0 C g

.r � !0/
C g

.r � !max/
;

! !max D 1

2r

�
r � !0 C g

!0

�

C 1

2

s
!2

0 C 6g

N
C g2

N2!2
0

:

(14.3)

For !min the plus sign before the square root must be re-
placed by a minus sign.
The maximum force onto the string occurs at the lower
point %' D � .
The condition that the string does not break gives the rela-
tion

F D m!2
max � r C m � g � 1000 N

! !max �
�
.1000=5 � g/

r

�1=2

D 13:8 s�1 :

The maximum allowed angular velocity !0 at the lower
point ' D 0 can be calculated either from (3) or from the
law of energy conservation

1
2 mv2

0 D 1
2 mv2

max � 2mg � r with v D r � ! :

Inserting the numerical values gives

!0 D 12:3 s�1 :

The difference between the velocities in the upper and
lower point is

1
2v

2
min C 2rg D 1

2v
2
max ) !2

max � !2
min D 4g

r
:

3.7 At a radial velocity vr D 10 m=s the ball needs 10�2 s to
reach the outer edge of the disc. For a non-rotating disc
the ball would fly on a straight line with the velocity v D
fvr; v'g in the lab system as well as in the system of the disc
(which are identical for the non-rotating disc). It would
reach the edge of the disc at the displacement R �' from the
position ' D 0 which can be obtained from R � ' D �t �
v' D 0:05 m at the angle ' D 0:05 m=0:2 m D 0:25 rad D
14:8ı. When the disc rotates with ! D 2� � 10 s�1, its
edge turns during the time T D 0:01 s by R' D R!T D
0:126 m ) ' D 39ı. For a radial velocity (d'=dt D 0)
the bullet would reach the edge at ' D �39ı. With v' D
5 m=s the bullet reaches the edge at ' D 14:5ı � 39ı D
�24:5ı. From the point of view of the observer at rest the
bullet flies on a straight line, but viewed by an observer
on the disc it flies along a curved line with the tangential
acceleration

a' D 2vr � ! :

The trajectory on the disc is a parabola. The velocity is
v D fvr; v' � 2vr!tg where vr and v' are the velocity
components in the rest frame while vr and v' � 2vr!t are
the components in the system of the rotating disc.

3.8 The centrifugal acceleration is

acf D !2r D !2R cos' .R D earth radius/

D 3:7 � 10�9 � 6:37 � 106 m=s2

D 2:36 � 10�2 m=s2 :

It is acting radially outwards, perpendicular to the angular
velocity !.
The Coriolis acceleration is parallel to acf. Numerical val-
ues: acf D 0:023 m=s2, aC D 1:02 m=s2. The Coriolis
acceleration is for this case 44 times as large as the cen-
trifugal force.

3.9 a) According to the Galilei-transformations is:

u0
x D ux � vx D 0:5c � 1

3 c D 1
6 c

u0
y D uy D 0:1 c

u0
z D uz D 0 :

b) The Lorentz-transformations give:

u0
x D 1

5 c I u0
y D 0:113c I u0

z D 0

) u0 D f0:2; 0:113; 0gc :
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The relative errors of the Galilei transformations are with
�u D uLo � uGa

�u0
x

u0
x

D 1=5 � 1=6

1=5
D 1

6
� 16:7% ;

�u0
y

u0
u

D 0:013

0:113
� 11:5% ;

�u0
z D 0 :

3.10 
 D .1 � v2=c2/�1=2 D 2:785 ) L0 D L=
 D 0:36L.

3.11 The nearest distance Earth–Neptune is (Tab. 2.1)

L D 28:8 AU D 4:3 � 1012 m :

The travel time according to the measurement of the pilot:

T 0 D 2L


v
D 2L

v

p
1 � v2=c2 D 1 d ¶ 8:64 � 104 s :

Resolving for v yields

v D 2L

.T2 C 4L2=c2/1=2
D 0:94 � 108 m=s D 0:3c

) 
 D 1:048 :

Travel time according to the observers at rest on earth:

T D T 0
 D 9:05 � 104s

D 1 d C 1:41 � 104 s D 1 d C 1:15 h :

3.12 a) In the rest frame the observer O sits in the middle be-
tween A and B. This is also true, when A, B and O move
with the same constant velocity v.
b) When O0 moves with the velocity vx against the length
AB, he measures the simultaneous arrival of the light pulses
from A and B at the point C, if C is away from A by
.L=2/.1 � v=c/. C is therefore closer to A than to B.

3.13 v D 0:8c ) 
 D 5=3.
The travelling time is according to B: T D 2L=v D
10 years. According to A is T 0 D 2L=.v
/ D 6 years.
The number of pulses sent by B is

N D f T D 1 � 10 D 10 :

Number of pulses sent by A:

N 0 D f T 0 D 6 :

Number of pulses received by A during the journey out:

N 0
1 D .L=v/.1 � ˇ/ D 5 � 0:2 D 1 :

On the journey back:

N 0
2 D .L=v/.1 C ˇ/ D 5 � 1:8 D 9 :

3.14 For C the two astronauts A and B meet after a distance x

(in ly) with x D 0:8ct C 0:1ct D 0:9ct, when t is measured
in years.

) t D 8 years after the departure of B, ) x D 7:2 ly.
For A the travelling time is t0A D 1=
A with 
A D .1 �
0:82/�1=2 D 1:67 ) t0A D 4:8 years.
For B is t0B D 1=
B with 
B D .1 � 0:92/�1=2 D 2:3 )
t0B D 3:49 years.

14.4 Chapter 4

4.1 All particles move into the ˙x-direction, ) v D fvx; 0; 0g;
jvj D v.
The centre of mass velocity is

vCM D mv � 3mv

4m
D �1

2
v :

The particle velocity in the CM-system is

v1CM D v1 � vCM D 3
2v ;

v2CM D v2 � vCM D 1
2v :

a) Elastic collision:

v0
1CM D �v1CM D � 3

2v ;

v0
2CM D �v2CM D C 1

2v

)

)
v0

1 D v0
1CM C vCM D �2v ;

v0
2 D v0

2CM C vCM D 0

)

)
E0

kin.m1/D m
2 v

0 2
1 D 2mv2 ;

E0
kin.m2/D 0 :

Before the collisions was

Ekin.m1/ D m

2
v2 I Ekin.m2/ D 3

2
mv2

)
X

Ekin D
X

E0
kin :

b) Completely inelastic collision: The two particles stay to-
gether after the collision. The total mass M D 4 m moves
with the velocity vCM D v0

CM D � 1
2v

) E0
kin D 4m

2
v2

CM D 1

2
mv2 :

The rest .3=2/mv2 of the initial energy 2mv2 is transferred
into heat energy, ) 75% are converted into heat, only 25%
remain as kinetic energy.

4.2 The momentum of the bullet: m2v
) the velocity of wooden block C bullet is

v0 D m2v

M
with M D m1 C m2 :

) Ekin D 1
2 Mv0 2 D 1

2
m2

2
M
v2

D Ep D MgL.1 � cos'0/
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) cos'0 D 1 � 1

2

m2
2

M2gL
v2 D 1 � 0:196 D 0:804

) '0 D 36:5ı :

4.3 We assume that the incident proton moves into the Cx-
direction.
a) The momentum conservation for the x- and the y-direction
demands:

xW mv0
1 cos �1 C 2mv0

2 cos 45ı D mv1 (14.4a)

yW mv0
1 sin �1 D 2mv0

2 sin 45ı : (14.4b)

Division by m gives for (14.4b):

v0
1 D 2v0

2
sin 45ı

sin �1
:

Inserting in (14.4a) gives:

v0
2 D 1

2

v1

cos 45ı C sin 45ı= tan �1

D v1p
2 .1 C cot �1/

;

v0
1 D v1

sin �1 C cos �1
:

Energy conservation demands

v2
1 D v0 2

1 C 2v0 2
2

) 1 D 1

.sin �1 C cos �1/2
C 1

.1 C cot �1/2

) tan �1 D 2 ) �1 D 63:435ı :

b) vCM D m1v1

m1 C m2
with 2 m1 D m2

) vCM D 1
3v1 D v0

CM :

c) v02
1 D v2

1�
1 C m2

m1

�2

"�
m2

m1

�2

C 2
m2

m1
cos#1 C 1

#

D v2
1

4 C 4 cos 63:435ı C 1

9
D 0:75 v2

1

) v0
1 D 0:866 v1 :

v02
2 D 1

2
.v2

1 � v02
1 / D 1

2
0:25 v2

1 D 0:125 v2
1

) v0
2 D 0:35 v1 :

4.4 a) Energies in the Lab-system:

Ekin.m1/ D m

2

�
v2

x C v2
y C v2

z

�

D 1 � .9 C 4 C 1/ D 14 N m ;

Ekin.m2/ D 36 N m :

Velocity of the centre of mass:

vCM D 1

M

X
mi � vi

D
˚
vxCM; vyCM; vzCM



D f0; 2; 2g m=s :

Relative velocities:

v1CM D v1 � vCM D f3; 0;�3g m=s

v2CM D v2 � vCM D f�2; 0; 2g m=s

)
)

E
.CM/
kin .m1/ D m1

2
v2

1CM D 18 N m ;

E
.CM/
kin .m2/ D m2

2
v2

2CM D 12 N m :

b) The centre of mass momentum equals the momentum of
the compound particles after the collision.

MvCM D M f0; 2; 2g kg m=s ;

E0
kin.M/ D M

2
v2

CM D 20 N m :

c) The fraction of the converted kinetic energy is

� D 1 � E0
kin.M/

Ekin.m1/C Ekin.m2/
D 50 � 20

50
D 0:6 :

In the centre of mass system is ECM
kin D 0. The total kinetic

energy is converted into heat.

4.5 We choose the x-axis as the direction of v1.
a) Conservation of momentum for the x- and y-components
yields:

m1v1x C m2v2x D m1v
0
1x C m2v

0
2x ;

v1 D f4; 0g m=s I v0
1 D f2; 2g m=s I

v0
2 D f1;�1g m=s ) v2x D 0 ;

m1v1y C m2v2y D m1v
0
1y C m2v

0
2y

0 C 2v2y D 2 � 2 � 1 m=s ;

) v2y D 0 m=s

) v2 D f0; 0g m=s ;

i. e. m2 was at rest before the collision.
b) Energy conservation (4.17) gives:

Q D E0
kin � Ekin

D 1
2

�
m1v

0 2
1 C m2v

0 2
2 � m1v

2
1 � m2v

2
2

�

D �2 N m :

Ekin D 8 N m ) 25% of the initial energy is converted into
heat.
The centre of mass velocity is

vCM D 1

M

˚
m1v1x C m2v2xI m1v1y C m2v2y




D 1
3 f4; 0g m=s :
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The energy of the centre of mass is

E
.CM/
kin D 1

2 Mv2
CM D 2:66 N m :

For a completely inelastic collision the fraction Q D Ekin �
E
.CM/
kin is converted into heat. Since the collision of our exam-

ple is not a central collision, jQj is smaller. In the C-system
37.5% are converted.
c) Velocities in the CM-system:

v1CM D v1 � vCM D
˚

8
3 ; 0



m=s ;

v0
1CM D v0

1 � vCM D
˚

2
3 ; 2



m=s I

cos#1 D v1CM � v0
1CM

jv1CMjjv0
1CMj D 16=9q

64
9 � 40

9

D 0:316

) #1 D 71:578ı I

v2CM D
˚
� 4

3 ;
2
3



m=s I v0

2CM D
˚
� 1

3 ;� 7
3



m=s

) #2 D 121:6ı :

4.6 Conservation of momentum gives

m1v0
1 C m2v0

2 D m2v2 :

Conservation of energy gives:

m1v
0 2
1 C m2v

0 2
2 D m2v

2
2 :

a) After the collision is v0
2 D �v0

1

) v0
2

�
1 � m1

m2

�
D v2 ; v0 2

2

�
1 C m1

m2

�
D v2

2

) m1=m2 D 3 :

b) The travel time for m1 resp. m2 until the left barrier are

t1 D 1:6 m

v0
1

> t2 D 2:4 m

v0
2

) v0
2

v0
1

> 1:5 :

Energy conservation demands with x D m1=m2

v0 2
2

v0 2
1

D v2
2

v0 2
1

� x :

Using momentum conservation gives:

v0
2

v0
1

D 1

2
.x � 1/ ) x > 4 :

c) The velocity of the CM is

vCM D v0
CM D 1

3
v2 :

The velocities in the lab-system are after the collision:

v0
1 D 2

3
v2I v0

2 D �1

3
v2 :

The two masses meet for the first time at x0 D 1:6 m at the
time t1 D 0, for the second time t2 at the location x (x D 0
is at the left wall). According to the calculation in a) the
masses meet for the second time only after the reflection of
m1 at the left wall. It is:

t2 D x0 C x

v0
1

D 0:8 C x0 � x

v0
2

) x D 1:07 m :

The two masses meet at x D 1:07 m from the left wall after
m1 has suffered a reflection at the left wall and m2 at the
right wall.

4.7 The velocity of the steel ball at the impact is

m1Lg D 1
2 m1v

2
1 ) v1 D

p
2gL D 4:43 m=s :

The energy transferred to m2

�E D 4
m1m2

M2
E1 :

The steel ball has therefore the energy after the collision

E0
kin D

�
1 � 4

m1m2

M2

�
E1 D 4

9
E1 :

It rises up to the height H D L.1 � cos'/ D 4
9 L ) cos' D

5
9 ) ' D 56:15ı.

4.8 The distance between ball and lift is �s D 20 m. The time
until the impact onto the ceiling of the lift is obtained from

1
2 gt2

1 C vt1 D �s D 20 m ) t1 D 1:8 s :

During this time the lift has moved over the distance vt1 D
3:6 m. The impact point is therefore 26:4 m below A.
b) In the lab system the impact velocity of the ball is v1 D
gt1 D 17:66 m=s. The centre of mass moves because M �
m with the velocity vCM D v D 2 m=s upwards. In the
centre of mass system (which is nearly identical with the
system of the lift) the ball has the velocity v1CM D v1 C
vCM D 19:66 m=s downwards. After the completely elastic
reflection at the lift ceiling the ball has the upward velocity
v0

1CM D 19:66 m=s.
In the Lab system is v0

1 D v0
1CM C vCM D 21:66 m=s. The

ball has won twice the velocity of the lift by the reflection at
the moving lift. It rises now by the distance �h1 D v02

1 =2g

above the impact point. Inserting the numerical values gives:
�h1 D 23:9 m. Its upper return point is then 2:5 m below A.
c) It hits the ceiling of the lift for a second time at the time
t2. During the time �t D t2 � t1 the lift has moved upwards
by �h2 D v�t.
The ball needs a rise time�t1 obtained from v.�h1/ D 0 D
v0

10g�t1 ) �t1 D v0
1=g D 2:2 s. Its drop time is �t2 D

1:9 s which is obtained from

1
2 g�t2

2 D �h1 � v.2:2 s C�t2/ :

This gives the time �t D �t1 C �t2 D 4:1 s ) �h2 D
8:2 m. The second impact occurs 8:2 m above the first im-
pact point, i. e. 18:2 m below A.
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4.9 a) The ˛-particle should fly into the Cx-direction. For the
y-components of the momenta we get

0 D m1v
0
1 sin 64ı � m2v

0
2 sin 51ı

) v0
1

v0
2

D 4 � sin 51ı

sin 64ı D 3:46 since m2 D 4m1 :

b) E0
kin.m1/

E0
kin.m2/

D m1v
0 2
1

m2v
0 2
2

D 1

4
� 3:462 � 3:0 :

4.10
E D c

q
m2

0c2 C p2 ;

with E D 6 GeV and pc D 4 GeV

) m0c2 D
p

20 GeV ;

) E0 D
p

20 C 25 GeV D 6:71 GeV :

With

E D mc2

E0 D m0c2

)
) m0

m
D 6:7

6
D 1p

1 � v2=c2

) v

c
D 0:445 :

The two systems move with v D 0:445c against each other.

14.5 Chapter 5

5.1 When we cut a cone with full aperture angle 2˛ out of a
sphere we choose the origin of our coordinate system at the
peak of the cone. The z-axis is the symmetry axis. Then the
coordinates of the centre of mass are

xCM D yCM D 0 ;

zCM D 1

V

RZ

rD0

�=2Z

#D�=2�˛

2�Z

'D0

r3 cos# sin# dr d# d'

D 1

V

�

4
R4
h
1 � sin2

��
2

� ˛
�i

D 1

V

�

4
R4 sin2 ˛ :

The volume of the cone is V D 2
3�R3.1 � cos˛/. Then we

get

zCM D 3

8
R

�
sin2 ˛

1 � cos˛

�
D 3

8
R.1 C cos˛/ :

5.2 a) ICM D 2
5 MR2 D 9:7 � 1037 kg m2;

L D ICM! D 7:07 � 1033 kg m2 s�1

) Ecurl D 1

2
ICM!

2 D 1

5
MR2!2 D 2:57 � 1029 J :

b) The mass of the earth is for this case

ME D 4

3
�%1

R3

8
C 4

3
�%2

�
R3 � 1

8
R3

�
D 4

3
�%R3 :

With % D M=V D mean density

) %1 C 7%2 D 8% :

With %1 D 2%2

) %2 D 8

9
% ; %1 D 16

9
% :

The moment of inertia is therefore

ICM D 2

5
� 4

3
�

0
@%1

�
R

2

�3 �
R

2

�2

C%2

"
R3R2 �

�
R

2

�3 �
R

2

�2
#1
A

D 8

15
�

�
%1

R5

32
C %2

31

32
R5

�

D 1

60
�R5

�
16

9
%C 31 � 8

9
%

�

D 22

45
�R5% D 11

30
MR2 D 0:367 MR2 :

This should be compared with the moment of inertia ICM D
.2=5/MR2 D 0:4MR2 D 9:72 � 1037 kg m2 of the homoge-
neous earth.
c) If all N D 5�109 adults on earth would run simultaneously
on the equator eastwards their torque exerted on the earth
would be D D N �m �a �R D 5 �109 �70 �2 �6:37 �106 N � m D
4:46 � 1018 N m. This would lead to a relative decrease
�!=! D �L=L of the earth rotation. Inserting the numeri-
cal value for the angular momentum L

L D ICM! D 0:71 � 1034 kg m2=s

we get

�!=�t

!
D 1

L

�L

�t
D D

L
D 6:3 � 10�16 s�1 ;

which is so small, that it falls below the detection limit.

5.3 a) I0 D 1
2 MR2 D 5 � 10�4 kg m2

L D I0!0 D 1
2 MR2!0 D 3:14 � 10�2 N m s ;

E0
curl D 1

2 I0!
2
0 D 0:987 N m :

b) I D I0 C mR2 D .5 C 1/ � 10�4 kg m2 D 6 � 10�4 kg m2.
The angular momentum does not change, because the bug
falls onto the disc parallel to the rotation axis.

) ! D L0

I
D 5

6
!0

Ecurl D 1

2
I!2 D 5

6
E0

curl D 0:823 N m :
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The energy difference �E D 0:164 N � m is converted by
friction into heat energy, which is lost during the equaliza-
tion of the tangential velocities of bug and disc (which are
here assumed to occur instantaneously).
c)

!.r/ D 1

1 C mr2=I0
!0

L.r/ D L0; independent of r ;

Ecurl D E0
curl

1 C mr2=I0
:

5.4 a) I D
Z

V

r2% dV D 2�H%0

RZ

rD0

�
1 C

� r

R

�2
�

r3 dr

D 2�%0H

�
1

4
R4 C 1

6
R4

�
D 10�

12
%0HR4

D 5

6
%0R2V :

The mass is M D R
V
% dV D 3

2�%0HR2

) I D 5

9
MR2 :

Numerical values: M D 18:85 kg, I D 0:105 kg m2.

b) a D g sin˛

1 C ICM=.MR2/
D g sin 10ı

14=9

h D 1
2 at2 ) t D .2h=a/1=2 D 1:35 s :

5.5 For the isosceles triangle with height h and side length d the
centre of mass S D .xCM; yCM/ has the coordinates xCM D 0,
yCM.˛/.
The moments of inertia around the principal axes are

Ia D 2my2
CM C m.h � yCM/

2 ;

Ib D 2mx2 ;

Ic D m.h � yCM/
2 C 2m.x2 C y2

CM/ D Ia C Ib ;

x D d sin.˛=2/ D 0:204 nm ;

h D d cos.˛=2/ D 0:247 nm ;

yCM D 1
3 h D 0:082 nm :

For the moments of inertia we get:

Ia D 0:93 AMU nm2 ;

Ib D 1:91 AMU nm2 ;

Ic D 2:85 AMU nm2 :

1 AMU D 1:67 � 10�27 kg .
The rotational energy is then

Erot D L2

2I
with L2 D l � .l C 1/„2 :

Where l D 1; 2; 3; : : : and „ D h=2� D 1:06 � 10�34 J � s is
the reduced Planck constant and it is the smallest unit of the
rotational angular momentum.
This gives with 1 eV D 1:6 � 10�19 J

Ea D 2:2 � 10�5 eV ;

Eb D 1:1 � 10�5 eV ;

Ec D 0:73 � 10�5 eV :

5.6 The inertial moment of a rod with length L is

ICM D 1
12 ML2 D 1:33 � 10�2 kg m2 :

The angular momentum of the bullet referred to the CM of
the rod is

LB D jr � pj D 1
2 Lmv D 0:4 N m s :

The rotational velocity of the rod is

! D LB

I
D LB

ICM C m.L=2/2

D 29:2 s�1 ) � D 4:65 s�1 :

) Erot D 1
2 I!2 D 5:67 N m ;

Ekin D 1
2 mv2 D 200 N m ;

) Erot=Ekin D 2:8 � 10�2 D 2:8% :

97.1% of the kinetic energy of the bullet is lot as heat energy.
Compare this with the case of a completely inelastic central
collision of a bullet with mass m hitting a free mass M. Here
the ratio

E0
kin=Ekin D .m C M/v2

CM

mv2
(see Sect. 4.2.4) :

With vCM D m

M C m
v ) E0

kin=Ekin � m

M
D 0:01.

Question: Why is the transfer of kinetic energy of the bullet
into rotational energy more efficient?
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5.7 ICM D 1

2
MR2 I D D ICM � d!

dt

) ! D !0 C 1

ICM

tZ

0

D dt0

D !0 C D0

ICM

tZ

0

e�at0 dt0

D !0 C 2D0

aMR2

�
1 � e�at

�
:

For t ! 1 ) !.1/ D !0 C .2D0=aMR2/.
Numerical example: !.t D 10 s/ D 136:4 s�1 (because
!0 D 10 s�1).

5.8 Ekin D Erot C Etrans D 1
2 ICM!

2
0 C 1

2 MR2!2
0

Ep D Mgh D Ekin

) h D !2
0

2Mg
.ICM C MR2/ :

a) Full cylinder: ICM D 1

2
MR2 ) h1 D 3

4

!2
0R2

g
.

b) Hollow cylinder: ICM D MR2 ) h2 D !2
0R2

g
.

Numerical example: h1 D 17:2 cm; h2 D 22:9 cm.

14.6 Chapter 6

6.1 Tensile strength in the height z above the end of the rope:

� D % � g � z :

Relative elongation:

".z/ D 1

E
�.z/ :

Total elongation

�L D
LZ

0

".z/ dz D 1

E

LZ

0

�.z/ dz

D %g

E

LZ

0

z dz D %g

2E
L2 :

a) %St D 7:7 � 103 kg=m3, E D 2 � 1011 N=m2 ) �L D
15:3 m.
b) �% D %St � %W D 6:67 � 103 kg=m3 ) �L D 13:3 m.
c) The maximum tensile stress �max D % � g � L appears for
z D L at the upper end of the rope. It should be smaller
than �tear D 8 � 108 N=m2

) L <
�tear

%g
D 104 m :

6.2 The maximum deflection is according to (6.23)

s D L3

3EI
F with I D cross sectional moment of inertia :

a) I D 1
12 d3b D 4:2 � 10�6 m4 ) s D 0:4 m.

b) I D 1
12 .b1d3

1 � b2d3
2/ D 7:8 � 10�6 m4

) s D 0:22 m :

The two cross sectional areas are
a) 5 � 10�3 m2, b) 7:5 � 10�3 m2.
Although the area in b) is only 1.5 times larger than in
a) the double-T-profile has twice the stability in the z-
direction and 10 times higher stability when bending into
the y-direction.

6.3 p.h D 10;000 m/ � 108 Pa � 103 atm.
F D 4�r2 � p D 2:8 � 109 N. This force equals the weight
of 2:8 � 105 tons.
According to (6.9) is �V D �p � V=K. After Tab. 6.1 is
K D 1=� D 1:56 � 1011 N=m2.

a) ) �V

V
D � 1018

1:56 � 1011
D 6:4 � 10�4

) �r

r
D 1

3

�V

V
� 2:1 � 10�4 :

The radius of the solid sphere decreases by 0:3 mm. This
can be also obtained in the following way: �V=V D �p �
� and � D .3=E/.1 � 2�/ ) �r=r D �p=E.1 � 2�/.
Inserting the numerical values for E and � from Tab. 6.1
one obtains the same results for �r=r.
b) Compression of a hollow sphere with radius r and wall
thickness d: Now the elastic back pressure during the
compression is missing since the inner sphere with radius
(r � d) is a gas volume, where the compression modulus
is smaller by 3 orders of magnitude. We therefore get for
d � r the pressure

p D � E

1 � 2�

�
�r

r
� �r

r � d

�
� E

1 � 2�

d�r

r2

) �r

r
� � p

E

r

d
.1 � 2�/ :

For d D 0:2 m and r D 1:5:m ) r=d D 7:5 ) �r=r1:5 �
10�3. The compression is larger by a factor 7:5 compared
to the solid sphere.

6.4 The tangential force acting on the wave is

F D power

lenght/time
D 3 � 105

2�R � 25
N D 3:8 � 104 N :

a) The torque acting on the axis is

D D FR D �

2
G

R4

L
' ) ' D 2FL

�GR3

D 1

G
3:87 � 109 rad :

With G D 8 � 1010 N=m2 ) ' D 5:2 � 10�2 rad � 3ı.



C
h

a
p

te
r

1
4

426 14 Solutions of the Problems

6.5 From � D �.1=V / dV=dp (6.32) ) dV=V D ��dp. Inte-
gration yields

ln V D �� � p C C with C D ln V.p D 0/ D ln V0

) V D V0e��p

) % D %0eC�p

with � D 4:8 � 10�10 m2=N and a pressure p D 108 N=m2

at 104 m water depth we get � � p D 0:048. This gives

% D %0 � e0:048 � %0.1 C 0:048/ :

The density rises by 4.8%.

6.6 M D %Œ1 m3 � .1 � 2d /2.1 m � d /� D % � 0:0968 m3 D
755 kg.
The cube immerses about 0:755 m. Its centre of gravity Sb

is 0:4069 m above its lower edge, i. e. 0:348 m below the
water surface. The centre of gravity of the displaced water
is 0:3775 m below the water surface i. e. below Sb.
For a tilt angle ' D 24ı the deeper upper edge of the open
cube comes below the water surface. The cube runs full
with water. For this angle ' the meta-centre M is still above
Sb, i. e. the position of a closed cube would be stable.

6.7 W D g

�
.%b � %l/a

3.h � a/

C
aZ

0

�
.%b � %l/a

2.a � z/C %ba2z
�
dz

�

D gha3 Œ%b � %l.1 � a=2h/� :

With %b D 7:8�103 kg=m3 ) W D 2:51�6:85�103 N � m D
1:72 � 104 N � m.
The lift in air would require the work mgh D gh � a3%b D
1:96 � 104 N � m.

6.8 F D A�p D �r2�p D 1
4�d2�p D 2:5 � 104 N for each

of the two semi-spheres., i. e. each horse had to pull with
3:125 N ¶ 318 kp. If one side of the sphere had been tied
to a tree, 8 horses with the pulling force 318 kp each would
have been sufficient but less impressive.

6.9 a) The ratio of the two measured values is

%goldV

.%gold � %l/V
D 19:3

18:3
D 1:0546 :

b) 0:8%gold C 0:2%copper

0:8%gold C 0:2%copper � 1
D 17:2

16:2
D 1:062 :

c) 1:0550 � 1:0546

1:0546
� 3:8 � 10�4 :

6.10 Mwood D L�r2%s D %lVi; Ve=Vcyl D 0:525=1 D %wood=%l,
where r D d=2 and Vi is the immersed volume.
) M D 16:5 kg ) Vi D 1:65 � 10�2 m3.
a) The immersed segment of the cylinder has the volume
(see the figure)

Vi D 1
2 L
�
r2˛ � .r � h/ sin.˛=2/r

�
;

where h is the height below the water surface and ˛ is the
segment angle. With

h D r.1 � cos˛=2/ ) Vi D 1
2 Lr2

�
˛ � 1

2 sin˛
�
:

Inserting Vi D 1:65 � 10�2 m3 and r D 0:1 m we get ˛ �
184:5ı ) h D 0:108 m. The cylinder immerses slightly
more than half of it height.
b) The sphere has the volume Vk D 4

3�R3 and the mass
Mk D Vk � %steel. It experiences a buoyancy g � Vk � %l D
g �Mk �%l=%steel. At equilibrium is reached by an immersion
depth where the buoyancy just compensates the weight of
the sphere.

.Mcyl C MK/g D .�r2%lH C MK%l=%steel/g

) h D 0:553 m at %steel D 7800 kg=m3 :

14.7 Chapter 7

7.1 g.h/ D G
ME

.R C h/2
D G

ME

R2.1 C h=R/2

� g.h D 0/.1 � 2h=R/ :

Inserting into (7.5a) gives

dp

p
D �%0

p0
g � .1 � 2h=R/ dh :

Integration yields

ln p D �%0

p0
gh C %0

p0R
gh2 C C

) p D p0 exp

�
�%0g � .h � h2=R/

p0

�
:

7.2 p0 D 1 bar. The altitude where p=1 mbar is obtained from

e�h=8:33 km D 10�3

) h D 8:33 ln.103/ km D 57:5 km :

7.3 p.h D 100 km/ � 6 � 10�6 bar D 0:6 Pa :

For T D 250 K ) n D p

kT
) n D 1:7 � 1020 =m3 D 1:7 �

1014 cm3. % D nm D 1:7 � 1020 � 28 AMU D 8 � 10�6 kg=m3

(for N2).
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7.4 The buoyancy GA D weight of the displaced air ) GA D
%.h/gV D %0ge�1=8:33 � 3 � 103 m3 D 3:37 � 104 N.
The mass of balloon C load C gas fill can be at most 3:44 �
103 kg. The pressure of the fill gas is p.h/ D 0:887 p0 D
8:87 � 104 Pa.
The mass of the fill gas
a) helium: %0 D 0:1785 kg=m3 ) %.h/ D 0:1583 kg=m3

) mHe D 475 kg; ) mass of balloon C load can be at
most D 2965 kg.
b) H2: %0 D 0:09 kg=m3 ) %.h/ D 0:08 kg=m3 ) mH2 D
240 kg ) mass of balloon C load should be smaller than
3200 kg.

7.5 For h D 0 the pressure is p D p0 D 105 Pa and x D x0 D
0:2 m. According to the Boyle–Marriott law is

.p0 C %gh/Ax D p0Ax0

) h D a
x0 � x

x
with a D p0

%g
D 10:2 m

) �h

�x
� �a

x0

x2
< 0

) x D
s

ax0

ˇ̌
ˇ̌�x

�h

ˇ̌
ˇ̌ ;

with �x D 10�3 m and �h D 1 m. The device is usable
down to a depth of 35 m with an accuracy of ˙1 m.

7.6 The number of particles that have passed at least the dis-
tance x without collisions is according to (7.33)

N.x/ D N0e�x=� :

a) N.x � �/ D N0e�1 ) N.�/=N0 D 0:368 D 36:8%.
b) N.x � 2�/ D N0e�2 ) N.2�/=N0 D 13:5%.

7.7 The probability W is

W D
v2Z

v1

f .v/ dv D 4p
�v3

W

v2Z

v1

v2e�v2=v2
W dv

� 4v2

p
�v3

W

�ve�v2=v2
W ;

with v D .v1 C v2/=2 D 950 m=s and �v D .v1 �
v2/ D 100 m=s. For N2-molecules at T D 300 K is
vW D 422 m=s.

) W D 4 � 9502 � 100p
� � 4223

� e�5:06 D 1:7 � 10�2 :

7.8 From (7.6) we obtain

ln
p1

p2
D %1

p1
g�h :

The density is obtained from %1 D m � p1=.kT/ with m D
0:71mN2 C 0:29mO2 as %1 D 1:24 kg=m3

) �h D 866 m :

7.9 �v D v1 � v2 ) .�v/2 D v2
1 C v2

2 � 2v1v2 cos˛.
a) Since the direction s of the velocity vectors are uni-

formly distributed the average values v2
1 D v2

2 D v2 and
cos˛ D 0:

.�v/2 D 2v2 )
q
.�v/2 D

p
2
p
v2 ;

�v D j�vj

D
q
.vx1 � vx2/2 C .vy1 � vy2/2 C .vz1 C vz2/2

D
�
v2

x1 C v2
x2 C v2

y1 C v2
y2 C v2

z1 C v2
z2

� 2.vx1vx2 C vy1vy2 C vz1vz2/
�1=2 I

with v2
x D v2

y D v2
z D 1

3v
2 and vx D vy D vz D 0

) �v2 D 6 � 1
3v

2 D 2 � v2 :

b) Here all absolute values v of the velocity v have the
same value ) �v D

p
2v.

7.10 The molecular density at p D 105 Pa and T D 20 ıC is
n D 2:5 � 1019=cm3

) �Ar D 1

n�
D 10�25 � 107

2:5 � 1:5

D 2:6 � 10�19 m2 D 26 Å2 :

If both collision partners are moving, the mean time be-
tween two collisions is � D �=�v where �v is the mean
relative velocity. We have the following numerical values:

�N2 D 31 � 10�16 cm2 ;

�vAr D
p

2v D 565 m=s

) �Ar D �=�v D 2:6 � 10�10 s ;

�N2 D 1:8 � 10�10 s :

7.11 The density is (as in 7.10) n D 2:5 � 1019=cm3.

a) N D M

mHe
D 0:1

6:68 � 10�27
D 1:5 � 1025, where N is the

total number of the He-atoms in the container.
b) �He�He D 10 � 10�16 cm2

) � D 1

n�
D 4 � 10�7 m :

c) The sum
P

i Si is:

X

i

Si D
X

i

Nivi �t D Nv�t

D 1:5 � 1025 � 1260 m for �t D 1 s

D 6:3 � 1019 light seconds

D 2 � 1012 light years :
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7.12 Assume, two atoms with velocities v1 and v2 pass the disc
at t D 0. Their arrival times at the detector are

t1 D L

v1
I t2 D L

v2
) �t D L

�v

v1v2

with �v D v1 � v2.
If one atom passes the disc at the beginning of the opening
time �t0, the other atom at the end, the time difference
between the arrival times at the detector is

�tmax D �t C�t0 :

The time spectrum N.t/ of the arriving atoms with the ve-
locity distribution N.v/ D N � f .v/ can be obtained as
follows: With v D L=t and dv D �.L=t2/dt D .v=t/dt

we get the distribution function

f .v/ dv D 1

t
vf

�
L

t

�
dt :

The function f .v/ / v2e�v2=v2
W (see (7.30)) is then con-

verted to

f .v; t/ / L3

t4
e�L2=t2v2

W dt :

If the time profile of the velocity selector is g.t/ the time
dependence of the detector signal is

S.t/ D
C1Z

�1

g.t0/ f .t � t0/ dt0 :

If the opening time�t0 of the selector were infinitely short
(�t0 ! 0), the difference �t of the arrival times of the
atoms at the detector (because of their different velocities)
would be

�t D t2

L
�v D L

v2
W

�v D 1

6002
D 1:6 ms :

Taking into account the finite opening time, the convolu-
tion S.t/ gives a time profile with a half width �t which is
for a rectangular opening time profile g.t/with�t0 D 1 ms
approximately �t � 2:5 ms.

7.13
m

2
v2

0 > G
MEm

R C h
) v0 >

r
2GME

R C h

) v0.h/ D v0.h D 0/

s
1

1 C h=R

� v0.0/

�
1 � 1

2
h=R

�
:

For h D 100 km, ) v0.h/ D 0:992v0.0/ D 11:1 km=s.
a) If half of all molecules within the Maxwell distribution
has a velocity v > v

) v > v D
r

8kT

�m
D 11:1 km=s

) T D 1:6 � 105 K :

7.14 The density of the outside air in a height of 50 m at T D
300 K is

% D %0e�%0gh=p0 ;

with %0 D 1:29 kg=m3, p0 D 105 N=m2 ) % D
1:28 kg=m3.
The exhaust gases must have a temperature T > T0.
Because the pressure at the upper end of the smokestack is
at the same temperature the same for the exhaust gases and
the outside air it follows

) %1=%2 D T2=T1 ) T2 D 452 K :

For the outside air is p1 D p0e�%1gh=p0 and for the exhaust
gases inside of the smokestack p2 D p0

0 � e�%2gh=p0
0 . With

p0
0 D p2.h D 0/ and p1.h/ D p2.h/ we obtain with the

approximation ex � 1 C x

p0
0 � %2gh D p0 � %1gh

) �p0 D p0 � p0
0 D �%gh

D .1:28 � 0:85/ � 9:81 � 50 Pa D 211 Pa :

7.15 %0.He/ D 0:178 kg=m3 at p0 D 1 bar.

) %He.1:5 bar/ D 0:267 kg=m3.

From mHe C mBal D V%Air )

V D mBal

%Air � %He.1:5 bar/

D 0:01

1:023
m3 D 9:8 � 10�3 m3 :

7.16 a) 1
2 m � hv2i D 3

2 kT D 3:1 � 10�16 J ¶ 1:9 � 103 eV.
The ionization energy of the H-atom is 13:5 eV. At a den-
sity of 5 � 1029 =m3 the mean distance between the protons
is 1:25 � 10�10 m. The mean potential energy, due to the
Coulomb repulsion, is Ep � 1:8 � 10�18 J which is small
compared to the mean kinetic energy at a temperature of
15 million Kelvin. This means that the matter in the cen-
tral part of the sun can be safely regarded as ideal gas.

b) v D
r

8kT

�m
vp D 5:6 � 105 m=s;

vel D 2:4 � 107 m=s D 0:08 c.

c) p D nkT D 1 � 1014 Pa ¶ 109 atm.

7.17 MAtm D 4�R2 � 1:013 � 105 N

9:81 m=s2
D 5:3 � 1018 kg.

The comparison with the earth mass ME D 6�1024 kg shows
that MAtm � 10�6 ME.

7.18 MB C %He � V D %Air � V

) V D MB

%Air � %He
:

a) h D 0, T D 300 K ) pAir D 1 bar, pHe D 1:1 bar )
%Air D 1:23 kg=m3, %He.p D 1:1 bar/ D 0:196 kg=m3

) V D 300 kg

.1:23 � 0:196/kg=m3
D 290 m3 :
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b) h D 20 km, T D 217 K, p D 5:5 � 10�2 bar

) %Air D 0:9 kg=m3 ; %He.p D 0:055 bar/

D 0:042 kg=m3

) V D 300

0:09 � 0:042
m3 D 6250 m3 :

The balloon has to expand considerably. On the ground it
has only 5% of its maximum volume.

7.19 a) If the pressure at the upper end of the atmosphere (which
is here assumed to have a sharp edge) should be p1 D
10 bar, the pressure at the bottom must be p0 D 11 bar.
We assume as mean pressure

) %Air.p D 10:5 bar ;T D 300 K/

D 1:23 � 10:5 kg=m3 D 12:9 kg=m3 ;

) % � g � h D 105 Pa

) h D 105

12:9 � 9:81 m
D 7:9 � 102 m ;

b) The density of solid air at T D 0 K is % D 103 kg=m3.
) h D 10 m.

14.8 Chapter 8

8.1 a) The force acting on the area A is according to (8.41b)

Fw D cw
%

2
u2 � A :

Numerical values: A D 100 m2, %L D 1:225 kg=m3, u D
100 km=h D 27:8 m=s.
) F D 5:67 � 104 N. This corresponds to a weight of
5.8 tons.
b) For a simple estimation we assume that the streamlines
of the wind above the roof are following the roof profile.
The air above the roof then passes through a path length
S2 D 2 � 6 m D 12 m. In the same time the horizontal
wind flow passes only a distance S1 D 2 � 6 m � sin.˛=2/ D
11:6 m. The velocity is then u2 D 100 km=h � 12=11:6 D
103:4 km=h D 28:7 m=s. From the Bernoulli equation

p D p0 � 1
2% � u2

2 :

we can determine the pressure difference �p D p � p0.
With p0 (pressure below the roof) D 105 N=m2 and 1

2%u2
2 D

531 N=m2 the pressure p becomes p D .105 � 531/N=m2

and the difference 531 N=m2. The force is F D A � �p.
With A D 2Ly �6 m � sin.˛=2/ D 96:7 m2 effective roof area
(projection onto a horizontal plane) we get

F D 531 � 96:7 N D 5:1 � 104 N :

8.2 The buoyancy depends not only on the wing profile but also
on the stalling angle (Fig. 8.43). When a plane flies upside
down the buoyancy is much smaller but can be still larger
than zero if the stalling angle is correctly chosen.

8.3 The mean free path length � D 1=.n � �/ in liquids with
typical densities n D 3 � 1028 =m3 and � D 10�19 m2 )
� D 3 � 10�10 m. The boundary layer where molecules
diffuse from neighbouring layers is therefore very thin.
The appearance of curls at large velocities is not caused by
diffusion but by macroscopic turbulence (Convection).

8.4 The following relations apply:

grad .a � b/ D .b � r / a C .a � r / b C a � .r � b/

C b � .r � a/

) grad .u � u/ D grad u2

D 2 � .u � r/ u C 2 � u � .r � u/ :

The last equation can be verified in component representa-
tion. For the x-component the left hand side can be written
as:

@

@x

�
u2

x C u2
y C u2

z

�

D 2ux

@ux

@x
C 2uy

@uy

@x
C 2uz

@uz

@x
:

(14.5)

For the components on the right hand side is

2

�
ux

@

@x
C uy

@

@y
C uz

@

@z

�
ux

C 2
�
uy.curl u/z � uz.curl u/y

�
:

(14.6)

The second bracket Œ � in Eq. 14.6 is in the component rep-
resentation

uy

�
@

@x
uy � @

@y
ux

�
� uz

�
@

@z
ux � @

@x
uz

�
:

Inserting this into (14.5) the right hand side gives the same
expression as the left hand side.
Analogous results are obtained for the y- and z-component.

8.5 The pressure at the height h is

p.h/ D % � g � .H � h/C p0 :

At the exit of the pipe the Bernoulli equation yields

�p D p.h/� p0 D 1
2%u2

x

u2
x D 2g.H � h/ :

The trajectory of the liquid stream is a parabola. The initial
velocity is

v D fux; uy D 0; uz D 0g :

The drop time can be obtained from h D .1=2/gt2 ) t Dp
2h=g.
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a) The point of impinge is

P D fxi D ux � t I y D z D 0g D
n
2
p

h.H � h/; 0; 0
o
:

The velocity at P is

v.P/ D fux; uz D gtg

jvj D
q

u2
x C u2

z D
p

2gH :

This is the same velocity as for body falling vertically from
the height H.
b) According to the Hagen–Poiseuille Law is:

�dV

dt
D ��R2 dH

dt
D �r4

8�L
�p

with �p D %gH C p0 � p0

) dH

dt
D � r4

R2

%gH

8�L
) H D H0e�at

with H0 D H.t D 0/ and a D r4%g

8R2L � � .

8.6 The probe in Fig. 8.10c measures the total pressure

p0 D p C 1
2%u2 D %gh

D 103 � 9:81 � 1:5 � 10�1 Pa D 1470 Pa :

The results of the measurements in Fig. 8.10a give p D
10 mbar D 103 Pa
) 0:5%u2 D 470 Pa ) u D 0:97 m=s.

8.7 If the funnel is filled up to the height H the radius R of the
water surface is R D H � tan.˛=2/. The volume of the water
is then

V D 1
3�R2H D 1

3�H3 tan2.˛=2/ D 1
9�H3 ;

because tan2 30ı D 1=3.
a) The reduction of the water volume per time unit is

dV

dt
D dV

dH

dH

dt
D 1

3
�H2 dH

dt
:

On the other side the Hagen–Poiseuille Law demands

dV

dt
D ��r4

8�L
�p

with r D d=2 and �p D %gH

) dH

dt
D �3

8

r4%g

�LH
) H dH D �a dt

with a D 3
8

r4%g

�L
� 7:2 � 10�4 m2s2.

Integration gives:

H2 D �2at C H2
0

with H0 D H.t D 0/

) H D
q

H2
0 � 2at :

b) dM

dt
D %

dV

dt
D �1

3
�aH%

D �1

3
�a%

q
H2

0 � 2at

) M.t/ D 1
9�%

�
H2

0 � 2at
�3=2

:

c) The time when all of the water has streamed out of the
funnel (i. e. H.t/ D 0) is

T D H2
0=2a :

With H0 D 0:3 m, r D 2:5 � 10�3 m, L D 0:2 m, � D
1:0 � 10�3 Pa s ) T D 62:5 s.
d) With 4 litre water ) H0 D .9V=�/1=3 D 0:225 m.
The time to fill the container with V D 4 l completely is
with a D 7:2 � 10�4 T D 35 s. If the outflowing water in
the funnel is continuously substituted by pouring water into
the funnel in order to keep the water level always constant
at H D H0, the time to fill the 4 l container is obtained by:

V D 1

3
�aH0 � t

) t D 3 � 4 � 10�3

� � 7:2 � 10�4 � 0:225 s
D 23:6 s :

8.8 dV

dt
D �R4

8�L
�p with �p D %g.�h C L sin˛/

D 1:5 � 10�4.0:1 C sin˛/m3=s:

The mean flow velocity is

u D 1

A

dV

dt
D 1

�r2

dV

dt
D 7:6.0:1 C sin˛/m=s :

The Reynold’s number is

Re D 2300 D %ruc

�
:

This gives the critical velocity

uc D �Re

%r
D 0:92 m=s :

The inclination angle ˛ is then for u D uc

sin˛ D 0:021 ) ˛ D 1:2ı :

8.9 dV

dt
D �R4

8�L
%g�h D 10�3 m3I �h D 20 m

) R D
�

10�3 � 8�L

�%g ��h

�1=4

D 6 � 10�3 m D 6 mm

) d D 1:2 cm

) u D 8:8 m=s :
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This is already above the critical velocity, which means that
d has to be larger because the flow resistance is for u > uc

larger than obtained from the Hagen–Poiseuille law.
8.10 The total force acting on the ball is

F D am D m�g � 6��rv with m� D .%K � %l/
4

3
�r3

) dv

dt
D m�

m
g � 6��rv

m
:

Rearrangement, division by m� and multiplication by m

yields

dv

g � .6��rv=m�/
D m�

m
dt ;

with the abbreviations

b D 6��r

gm� and c D g
m�

m

) dv

1 � bv
D c dt :

Integration gives

�1

b
ln.1 � bv/ D ct C C1

) v D 1

b

�
1 � e�bC1 e�bct

�
:

Since v.0/ D v0 ) e�bC1 D 1 � v0b

) v.t/ D 1

b

�
1 C .v0b � 1/e�bct

�

) z.t/ D 1

b
t � v0b � 1

b2c
e�bct :

8.11 Division of (8.36a)by % and applying the differential oper-
ator rot D r� onto both sides yields

@

@t
rot u C r � .u � r/u

D � 1

%
r � .rp/� r � g C �

%
r � div grad u :

Now we use the relations r�rp D 0 and r�r�.ru/ D 0.
If the influence of gravity can be neglected () g D 0) we
obtain with ˝ D rot u the relation

.u � r/u D 1
2 grad u2 � u � rot u

D 1
2 ru2 C .˝ � u/ :

Vector multiplication with r gives with r � r D 0

r � .u � r/u D r � .˝ � u/ :

Then (8.36a) converts to

@˝

@t
C r � .˝ � u/ D 0 :

14.9 Chapter 9

9.1 Through the capillary flows per second the air mass % �
dV=dt / p � dV=dt. At the high pressure side this is p1 �
dV1=dt and at the low pressure side p2 � dV2=dt. It is

p1
dV1

dt
D p2

dV2

dt
:

The pumped-out volume is V2. According to Hagen–
Poiseuille we get

p2
dV

dt
D �R4

8�L
.p1 � p2/

p1 C p2

2

with p1 D 105 Pa, p2 D 10�1 Pa

) p2
dV

dt
D 4:25 � 10�3 m3 Pa=s :

In order to maintain a pressure of 10�3 hPa D 10�1 Pa the
throughput of the vacuum pump must be at least dV=dt D
4:25 � 10�2 m3=s D 42:5 l=s.

9.2 The force acting on each hemisphere is

F D � �
�

d

2

�2

�p D 2:5 � 104 N :

One has to pull on each hemisphere with this force in order
to separate the two hemispheres.

9.3 For p D 10�5 hPa is n D 2:5 � 1017 =m3.

� D 6 m ; � D �

v
� 1:2 � 10�2 s for v D 500 m=s

Z1 D n � � � vrel � n�
p

2 � v with � D 10�14 cm2

The number Z1 of collisions between the molecules is

Z1 � 180 s�1 :

The number Z2 of collisions per sec with the wall is

Z2 D 1
4 nv � 3 � 1019 m�2s�1 :

Onto the whole container wall with A D 3:26 m2 impinge
9:8 � 1019 molecules per second ) Z1=Z2 D 1:8 � 10�18;P

si D n � V ��=� D n � V � v D 5 � 1019 m=s.

9.4 The number of collisions per second and per m2 with the
wall is Z2 D 1

4 n � v. At a pressure p D 10�7 hPa ) n D
2:5 � 1015 m�3. With v D 500 m=s ) Z2 D 3 � 1017m�2 s�1.
A complete monolayer on the wall is achieved for Z colli-
sions, where

Z D 1 m2

(surface area per molecule)

D 1

0:15 � 0:2 � 10�18
D 3:3 � 1019 :

Since the number of wall colissions per sec and m2 is
Z2 D 3 � 1017, it follows that after about 100 s the wall is
completely covered by a monolayer.
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9.5 The suction capacity dV=dt of a mechanical pump at the
pressure p1 D 0:1 hPa must be equal to the suction capacity
of the diffusion pump at the pressure p2 D 10�6 hPa.

p2 � 3000 l=s D p1.dV=dt/mech. pump

) dV

dt
D p2

p1
� 3000 l=s D 3 � 10�2 l=s D 0:1 m3=h :

It is, however, advisable to use a larger mechanical pump.
Because the diffusion pump reaches its full suction capac-
ity already at a pressure of 10�4 hPa, where the mechanical
pump needs a suction capacity of dV=dt D 10�3 �3000 l=s D
10 m3=h in order to prevent the rise of the pressure p1 above
10�1 hPa.

9.6 When passing through the gas the intensity of the electron
beam decreases according to I D I0e�n�� �x. The number
of produced ions is then equal to the difference .I0 � I/=q,
where q D �e D �1:6 � 10�19 C is the electron charge. For
n � � � x � 1 we obtain

I0 � I

e
D I0

e
n�x

D 10�2

1:6 � 10�19
� 2:5 � 1015 � 10�18 � 2 � 10�2 s�1

D 3 � 1012 ions=s :

The ion current is then 0:5 µA.

9.7 The mean free path length � at a pressure p D 10�2 hPa is
� D 6 � 10�3 m (see Tab. 9.1) and therefore comparable to
the distance d D 1 cm between the hot wire and he wall.
This case is between the limiting cases � � d and � � d.
For� � d we get from (7.49)

dW

dt
D �F�T D 52 mW :

For � D n1 � v .f =2/k D 4:4 N m�1 K�1 F D 2�r1 � l D
7:8 � 10�5 m2 und �T D 150 K.
For� � d we obtain

dW

dt
D � � F

dt

dx
D 60 mW :

If we choose for� � d the average of the two values we get

dW

dt
� 56 mW :

The electric power input is

Pe D U � I D 1 W :

Only 5.6% of the input power are transported by heat con-
duction through the gas. The major part (94.4%) are lost due
to heat radiation and heat conduction through the mountings.

9.8 We assume that every molecule that hits the wall sticks there
for some time and then evaporates again. For a ball at rest

with a temperature equal to that of the gas the velocity dis-
tribution of the evaporating molecules is equal to that of
the impinging molecules. Therefore there is no net angular
momentum transfer. This is different for the rotating ball.
Molecules that impinge onto a strip around the latitude #
get the rotational velocity

u D ! � r � sin# ;

while resting on the rotating sphere. We choose the z-axis
into the direction of the rotational axis. The velocity perpen-
dicular to the rotational axis is for the impinging molecules
v? D .v2

x C v2
y /

1=2 and the evaporating molecules have the
velocity v0

? D .v2
x C v2

y C u2/1=2.
The number of molecules impinging per sec onto the surface
element dA D 2�r2 sin# d# (the grey strip in the Figure) is
according to (7.47)

dN

dt
D n

4
v dA :

Each evaporating molecule wins the additional momentum
m � u in tangential direction. The total number impinging on
dA gets the additional momentum per sec

�p.#/ D n

4
vmu dA

D n

4
vm!r sin# � 2�r2 sin# d# :

The torque transferred to the ball by these molecules is then
with F D dp=dt

dD.#/ D n

2
�vm!r4 sin3 #d# :

Integration over all # gives with

C�=2Z

��=2

sin3 # d# D 4

3
;

the torque

D D 2
3�mv!nr4

D 1
2 Vspheremv!nr with V D M=%
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D D � d

dt
L D �I

d!

dt

) d!

dt
D � D

.2=5/Mr2
D �a!

with

a D 5nmv

4r%
D 10

�

p

r%v
� 3:18

p

r%v
;

where the relations p D .1=3/n � m � v2 and v2 D .3kT/=m

have been used.

) d!

!
D �a dt ) ! D !0e�at :

For ! D 0:99!0 we get e�at D 0:99

) t D 1

a
ln

100

99
D 0:01

a
:

Numerical example:

r D 1 � 10�3 m;

% D 5 � 103 kg=m3;

v D 5 � 102 m=s;

p D 10�3 hPa D 10�1 Pa

) a D 1:3 � 10�4 s�1 ) t D 78 s:

14.10 Chapter 10

10.1 The ratio of Ekin=Epot is generally larger for liquids than
for solids. Therefore, the atoms move in the upper part
of the interaction potential V.rik/ between neighbouring
atoms. Here the slope of the attractive part of the poten-
tial is smaller, therefore, the mean distance hriki increases
faster with increasing energy than in the lower part of the
potential (Fig. 6.1).

10.2 a) �L D ˛ � L ��T

D 16 � 10�6 � 20 � 40 m

D 1:28 � 10�2 m D 1:28 cm :

b) The maximum distortion can be obtained from the fig-
ure below as

x D R � d D R.1 � cosˇ/ :

Since the length L increases by �L D 1:28 cm, the half
length of the circular arc is

R � ˇ D .10 C 0:64 � 10�2/ D 10:0064 m

10

R
D sinˇ :

Division by R � sinˇ gives

) ˇ

sinˇ
D 1:00064 ) 1

1 � 1
6ˇ

2
D 10:0064 m

) ˇ D 0:00623 ¶ 3:57ı

) R D 10 m

sin 3:57ı D 160:6 m

) x D 160:6 � .1 � cos 3:57ı/ D 0:31 m :

c) If the distortion should be prevented, the necessary
pressure onto the rail in the longitudinal direction can be
obtained from the relation

) F

A
D E � �L

L
D 200 � 109 N=m2 � 0:0128

20
D 0:128 GPa

F D A � E � �L

L
D 2:56 � 106 N :

10.3 The heat energy of one mole is

Q D f

2
� R � T :

a) For helium is f D 3 ) Q D 3
2 R � T

The heating energy is then

W D 10 � t W s

D 3
2 R.100 � 20/K C 10 W s=K � 80 K ;

where the last term takes into account the heating of the
container wall. With R D 8:3 J=.K � mol/ we get

t D 120 � 8:31 C 800

10
s D 180 s D 3 min :

For N2-molecules at the temperature T > 300 K is f D
5=2.

) t D 200 � 8:31 C 800

10
s D 246 s D 4:1 min :

b) The heating up to 1000 ıC takes for helium the time

t D 980 � 3R=2 C 9800

10
s � 2200 s � 37 min I
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for N2 is f in the range from 20–500 ıC f D 5; for T >
500 ıC is f D 7=2.

dQ D U.T2/ � U.T1/ D R. 7
2 T2 � 5

2 T1/

D 2:89 � 104 J

) t D dQ

10
s D 2:89 � 103 s D 48 min :

10.4 If T is lower than the temperature TS of the surrounding
the temperature T will be approach TS by heat conduction.
After the mixing the temperature Tm is above TS. The
heat losses are proportional to the temperature difference
(T � TS). Therefore the temperature decline

dT=dt D �a � .T � TS/ :

The time-dependence of T.t/ after the mixture at t D t1 is
then

dT

T � TS
D �a.t � t1/ ) T � TS D C e�a.t�t1/ :

If the mixing process occurs in a very short time at t D t1
it is T.t D t1/ D Tm ) C D Tm � TS ) T.t/ D
TS C .Tm � TS/ � e�a�.t�t1/.
If the real measured temperature curve T.t/ is replaced
by the dashed curve in Fig. 10.12b in such a way, that the
areas A1 and A2 are equal, the true mixing temperature is
obtained. The dashed curve represents the ideal case of an
infinitesimal short mixing process, where the heat losses
are zero during the mixing process.

10.5 1 Mole air (N2/O2-mixture) has a mass of about 29 g and
contains 6 � 1023 molecules. For the lift of the container
by 10 cm in the gravity field of the earth the energy

E D m � g � h D 0:129 kg � 9:81 m=s2 � 0:1 m

D 0:13 N � m

is required.
The thermal energy of the gas at room temperature is

E
gas
th D .5=2/R � T D 6:2 � 103 N � m ;

and that of the container with the specific heat c is

Econt
th D mC � c � T D 0:1 � 103 � 300

D 3 � 104 N � m

) Etot D 3:6 � 104 N � m :

The energy additionally required for the lift is therefore
very small compared to the thermal energy. And the
cooling after the lift would be only�T D 1�10�3 K. Nev-
ertheless this lift is extremely improbable, not because of
energetic reasons but because of statistical reasons:
For the lift the z-component of the momentum must be at
least pz D m �v0z D m � p2gh ) pz > 0:18 kg � m=s. The
mean velocity component hvzi of all molecules, which is

hvzi D 0 at thermal equilibrium, must be hvzi > v0 D
pz=mgas D 6:2 m=s. The probability that a molecule has a
velocity component vz > v0 is given by the integral

W.vz > v0/ D
1Z

v0

e�v2
z m=2kTdvz

. C1Z

�1

e�v2
z m=2kTdvz :

With x2 D 1
2 m � v2

z =kT and x.v0/ � 1 )

1Z

x0

D �
x0Z

0

C
1Z

0

with

x0Z

0

e�x2
dx �

x0Z

0

.1 � x2/dx D x0 � x3
0

3
:

This gives with v0 D 6:2 m=s ) W.vz > v0/ D 0:49.
The probability that all 6 �1023 molecules have at the same
time the velocity component vz > v0 is then

W D 0:49�6�1023
< 10�10�23

;

and therefore practically zero.

10.6 a) The entropy change�S for an isobaric temperature rise
from T0 D 273 K to T1 D 500 K is

�Sisobaric D �

�
CV ln

T1

T0
C R ln

V1

V0

�
;

where � D 1=22:4 is the mole fraction.
With V1=V0 D T1=T0 for p D const and Cp D R C CV we
obtain

�Sisobaric D �Cp ln.T1=T0/

with Cp D 21 J=.K � mol/

) �Sisobaric D 21

22:4
ln

500

273
D 0:57 J=K :

b) isochoric heating:

�Sisochoric D �CV ln
T1

T0

with CV D 12:7 J=.K � mol/

) �Sisochoric D 0:34 J=K :

10.7 With M D % � V the critical mole volume is

Vc D 0:044 kg

%c
D 0:044

46

D 9:56 � 10�4 m3 D 0:956 l :

The mole volume is compressed from 22:4 l at standard
conditions of an ideal gas to 0:956 l.
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From the general gas equation of an ideal gas it follows:

Vc D RTc

pc
D 0:33 � 10�3 m3 :

This shows that eigen-volume and internal pressure of a
real gas around the critical point cause considerable devi-
ations from the ideal gas. From Eq. 10.129 we obtain the
van-der-Waals constants

b D 1

3
Vc ) b D 0:32 � 10�3 m3 ;

a D 3pcV
2
c ) a D 20:8 N � m4 :

Under standard conditions (p D 1 bar, T D 273 K) the
internal pressure is for 1 mole

a

V2
D 4:1 � 104 N=m2

¶ 41% of normal pressure!

The eigen-volume of CO2 molecules is b=4 D 8 � 10�5 m3

and the relative correction b=V D 0:32�10�3

22:4�10�3 D 1:4%.

10.8 �S1 D mcv ln
323:15

273:15
J=K

D 4:18 � 103 ln 1:183 J=K

D 689 J=K I

�S2 D mcv ln
T2

m

T1T2

D 0:5 � 4:18 � 103 � ln
323:152

273:15 � 373:15
D 49:62 J=K :

10.9 The theoretically possible maximum efficiency for T1 D
600 ıC and T2 D 100 ıC is

� D T1 � T2

T1
D 500 K

873 K
D 0:57 :

The heat delivered at 100 ıC amounts therefore to 43%
of the heat reveived at 600 ıC. When using the technique
of “cogeneration of heat and mechanical power” the heat
delivered at 100 ıC can be partly used for heating of build-
ings. The efficiency increase for cooling down to 30 ıC is

" D 100 � 30

373
D 18:8% :

However, this saves only part of this efficiency increase,
because when the additional heat energy available by
cooling from 100 ıC down to 30 ıC can be used for driv-
ing a gas-turbine connected to an electric generator, this
can deliver additional electric power. The theoretical effi-
ciency of the power station increases then from � D 57%
to � D 570=873 D 0:65 D 65%. In order to prevent the
water vapour to condensate at temperatures below 100 ıC
one has to decrease the pressure in the expansion cham-
ber. This demands additions energy for the expansion
against the external pressure.

10.10 a) m1c1.T1 � Tm/ D m2c2.Tm � T2/

) Tm D m1c1T1 C m2c2T2

m1c1 C m2c2
:

Numerical values:

m1 D 1 kg; c1 D 470 J=.kg � K/;

m2 D 10 kg; c2 D 4:17 � 103 J=.kg � K/

) Tm D 23:2 ıC ¶ 296:34 K :

b)
�S1 D Cmc ln

Tm

T1
D 1 � 470 ln

296:34

573:15
D �310 J=K

�S2 D 10 � 4:1 � 103 ln
296:34

293:15
D C445 J=K

�S D �S1 C�S2 D C135 J=K :

10.11 a) A mass M D 2 �5 kg D 10 kg exerts a pressure onto the
area 0:1 m � 10�3 m D 10�4 m2

p D 98

10�4
N=m2 D 9:8 � 105 Pa :

Since the increase of the melting temperature Tm under
the pressure p at T D �8 ıC is given by dTm=dp D
10�7 ıC =Pa the resulting temperature increase is dTm D
10�7 � 9:8 � 105 ıC D 0:1 ıC. Ice at T D �8 ıC therfore
cannot melt solely due to the pressure.
b) The heat conduction is, according to (10.35)

dQ

dt
D � � A � dT

dx
:

With A D �r2 D � � 0:25 � 10�6 m2 D 7:8 � 10�7 m2,
dx D 5 cm D 0:05 m, dT D 35 ıC D 35 K and � D
67 W=m�1 � K�1, for steel we get

dQ=dt D 0:037 W :

This heat energy flows into the horizontal part of the wire
and in the surrounding volume of the ice. Since the sur-
face 2�rL of the wire with radius r and length L is large
compared to its volume, we can assume that nearly all of
the heat energy flows into the ice. If the wire should melt
the ice, it has to increase the temperature up to Tm and in
addition it has to supply the heat of fusion. The energy
balance requires:

dQ

dt
D .cIce ��T C Wm/% � dV

dt
:

This gives the velocity with which the wire melts through
the ice block:

dz

dt
D 1

L � d � % � dQ=dt

c ��T C Wm
:
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Inserting the numerical values gives: c D 2:1 kJ=.kg � K/,
% D 0:9 � 103 kg=m3, L D 0:1 m, d D 10�3 m, Wm D
333 kJ=kg, �T D 8 K.
This finally yields the result:

dz

dt
D 10�6 m=s :

The observed velocity is higher by one order of magni-
tude. The reason for this is the heat, transferred directly
from the warm wire at the edges of the horizontal part into
the ice. This increases dQ=dt considerably.

10.12 During the compression of V1 to V2 < V1 the work sup-
plied to the system is

dW1 D
V2Z

V1

p dV :

With dS D dQ=T D 0 ) dQ D 0 )

p � V� D const D C1 )

dW1 D �
V2Z

V1

C1

V�
dV D C1

� � 1

�
1

V��1
2

� 1

V��1
1

�

D C1

.� � 1/ � V��1
2

�
1 � 1

.V1=V2/��1

�
:

During the transition 3 ! 4 the system delivers the work

dW2 D C2

� � 1

�
1

V��1
1

� 1

V��1
2

�
:

The gain of energy during one cycle is then

�W D C1 � C2

.� � 1/V��1
2

�
1 � 1

.V1=V2/��1

�
:

For the isochoric processes 2 ! 3 and 4 ! 1 is�W D 0.
The heat energy supplied to the ssterm is for 1 mole

Q1 D CV.T.3/� T.1// :

For isentropic processes is dQ D 0, T � V��1 D const D
C1 for the point 2 and C2 for the point 3.
With � D Cp=CV ) .� � 1/ � CV D Cp � CV D R. The
efficiency then becomes

� D �W

Q1
D 1 � 1

.V1=V2/��1
:

Example: V1 D 10 V2, � D 1:4 ) � D 0:6.
Note that � does not depend on the temperature but only
on the compression ration V1=V2.

10.13 We treat at first the stationary case with �T D 0

) T D T0 C .T1 � T0/e
�˛1x

) @2T

@x2
D ˛2

1.T1 � T0/e
�˛1x :

(14.7)

The stationary heat conduction equation (10.38a) gives
with @T=@=t D 0

�

% � c

@2T

@x2
D h� � .T � T0/ :

Inserting of (14.7) yields

@2T

@x2
D %ch�

�
.T1 � T0/e

�˛1x

) ˛2
1 D %ch�

�
) ˛1 D

r
%ch�

�
D
r
% � h

m � � :

For �T ¤ 0 ) T D T0 C .T1 � T0/e�˛1x C
�Te�˛2x cos.!t � kx/,

@T

@t
D ��T � e�˛2x � ! sin.!t � kx/ ;

@2T

@x2
D ˛2

1.T1 � T0/e
�˛1x C .˛2

2 � k2/�Te�˛2x

� cos.!t � kx/ � 2˛2�Te�˛2x � k � sin.!t � kx/ :

Inserting into (10.38a) gives the stated relations by com-
paring the coefficients of sin and cos.

14.11 Chapter 11

11.1 F D D � x. With F D 1 N and x D 0:05 m ) D D
20 N=m. ) T D 2�

p
m=D D 1:4 s.

11.2 a) Approximation m � M D � � L.
Velocity of the transverse wave

vPh D
p

F=� D
p

mg=� :

Running time of the wave over the distance z:

t1 D z

vPh
D z

p
�=mg :

Falling time of the ball:

t2 D
p

2z=g :

For t1 D t2 the ball overtakes the wave pulse.

) z D 2m=� ;

) with M D � � L this gives

z D 2m

M
L :

This shows, that for m > M ) z > L the ball cannot
overtake the wave.
b) More accurate calculation for an arbitrary ratio m=M:
For the distance z below the suspension point z D 0 the
force

F D �.L � z/g C mg
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acts on the rope due to the weight of rope C mass m. The
phase velocity of the wave is

vPh.z/ D Œ.L � z C m=�/g�1=2 :

It decreases with increasing z (due to the decreasing
weight force) according to

dv

dz
D � g

2v.z/
:

With
dv

dt
D dv

dz
� dz

dt
D � g

2v
v D �g

2
) v.t/ D v.z D 0/� 1

2 gt :

The distance z that the wave propagates during the time t

is then

z1.t/ D v0t � 1
4 gt2 :

The ball falls in this time the distance z2.t/ D 1
2 gt2.

The meeting point is t at z1 D z2

) v0t1 � 1

4
gt2

1 D 1

2
gt2

1

) t1 D 4

3
v0=g D 4

3

s
�L C m

g�
:

This gives the meeting point

zm D 1

2
gt2

1 D 8

9

�
L C m

�

�
D 8

9
L

�
1 C m

M

�
:

11.3 According to (11.36) the power supplied to the oscillating
system is

P D m � 
!2A2
2

D
�
F2

0=m
�

� 
 � !2

�
!2

0 � !2
�2 C .2
!/2

:

It is proportional to the square of the imaginary part b

in equation (11.27c), because only the friction consumes
energy. The real part a in (11.27b) determines the phase
shift ', because tan' D b=a, but does not consume en-
ergy. For b D 0 and ! ¤ !0 is ' D 0.
For b D 0 and ! D !0 no stationary oscillation is pos-
sible. The amplitude A of the forced oscillation increases
until A D 1 (resonance catastrophe). In this case energy
is supplied by the exciter which increases the amplitude
until the oscillating system is destroyed.

11.4 The pressure at equilibrium is p D 4"=r with " D � .
Changing the radius r changes the pressure by

dp D dp

dr
dr D �4"

r2
dr :

Therefore the restoring force is

dF D 4�r2 dp D �16�" dr ) F D �16�"r:

With the restoring constant D D 16�" the oscillation pe-
riod becomes

T D 2�
p

m=D D 1
2

p
�m=" D �r

p
%d=ep

with the mass m D 4�r2 � % � d and the thickness d of the
skin of the soap bubble.
(The small change of the air pressure inside the bubble
due to the small change of the volume is negligible).

11.5 The phase velocity is

vPh D
p

E=% D 5:2 � 103 m=s :

The wavelength is

� D vPh=� D 0:52 m :

The maximum change of the length appears between
maxima and minima of the longitudinal wave. Therefore
we obtain

.�L=L/max D 2A=.�=2/ D 4A=�

) �L=L D 7:7 � 10�4

) �max D E

�
�L

L

�

max
D 1:7 � 108 N=m2 :

This is below the tensile strength by a factor 9.

11.6 The intensity of the sound wave is

I D 1

2

�p2
0

%vPh
) �p0 D

p
2%vPhI :

At the hearing limit is I D 10�12 W=m2. With % D
1:25 kg=m3, vPh D 300 m=s is

�p0 D 2:74 � 10�5 N=m2 :

With �p0 D vPh � % � ! � �0 the oscillation amplitude be-
comes

�0 D 1:2 � 10�11 m D 0:12 Å :

The amplitude is therefore smaller as one atomic diame-
ter. The acoustic particle velocity u0 is

u0 D !�0 D 7 � 10�8 m=s :

This is small compared to the thermal velocity hvi D 5 �
102 m=s of the molecules.

11.7 a) The surface of the liquid at rest is z D 0 in both sides
of the U-tube. For a change�z D z0 � z D �z in one side
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of the tube rises the liquid in the other side by Cz. The
restoring force is then for an ideal liquid (no friction)

F D �2z%gA D mRz

) z.t/ D �z sin

 r
2%gA

m
t

!
D �z sin!t

) ! D 3:5 s�1 ) T D 2�

!
D 1:8 s :

The velocity v is then

v D Pz D ! �z cos!t :

With �z D 0:1 m is follows: vmax D ! ��z D 0:35 m=s.
The acceleration is

a D Rz D �!2�z sin!t ) amax D 1:23 m=s2 :

b) Taking into account friction:
According to Hagen–Poiseuille the velocity profile is

u.r/ D �p

4�L

�
R2 � r2

�
:

Defining a mean velocity u, averaged over the cross sec-
tion � � r2 we obtain with (8.31) and Ff D �p � �r2 the
friction force on a liquid column of length L

Ff D 8��Lu with u D 1

�R2

RZ

0

u.r/2�r dr :

In the equation of motion

m � Rz � b � Pz � 2%g�R2z D 0 :

With dz=dt D u, b D 8��L the damping constant


 D b=.2 m/ D 4��L=m D 4 � 10�2 s�1 ;

where

L D m

%�R2
D 1:6 m and � D 10�3 Pa � s

have been inserted. After the time � D 25 s the oscillation
amplitude has decreased to 1=e of its initial value.

11.8 The intensity distribution of the wave, diffracted by the
slit is

I.˛/ D I0
sin2.�d sin˛=�/

.�d sin˛=�/2
;

where ˛ is the diffraction angle.
a) For I.˛/=I0 D 0:5 is

sin2 x

x2
D 0:5 ) x � 1:4 ) sin˛ D 1:4�=.�d / :

With � D c=� D 330=.2 � 103/ D 0:165 m und d D
0:5 m ) sin˛ D 0:147 ) ˛ D 9:4ı

) �s D 2 � 20 � tan˛ D 6 m :

b) For I.˛/=I0 D 0:05 ) x � 2:5 ) ˛ D 17:0ı

) �s D 10:9 m :

11.9 Conservation of energy demands for the intensities of the
waves:

Ie D Ir C Id

with I D 1
2%vPhu2

0 (u0 D sound particle velocity).

) 1
2%1vPh1u2

0e D 1
2%1vPh1u2

0r C 1
2%2vPh2u2

0d :

With the wave resistance z D % � vPh this can be written as

z1
�
u2

0e � u2
0r

�
D z2u2

0d :

At the boundary is u0e C u0r D u0d

) u0r D u0e
z1 � z2

z1 C z2
and u0d D u0e

2z1

z1 C z2

) Ir D 1

2
z1u2

0r D Ie

�
z2 � z1

z2 C z1

�2

D RIe ; R D reflection coefficient

Id D 1

2
z2u2

0d D 4Ie
z1z2

.z1 C z2/2

D TIe ; T D transmission coefficient :

With the numerical values

%Air D 1:29 kg=m3 ; %Water D 103 kg=m3 ;

vAir
Ph D 334 m=s ; vWater

Ph D 1480 m=s

we obtain

Z1 D 1:29 � 334 kg=.m2 � s/ ;

Z2 D 103 � 1480 kg=.m2 � s/

) R D 99:88% I T D 0:12% :

11.10 � D �1 C �2

D 2A cos

�
�!

2
t � �k

2
z

�
cos .!mt � kmz/

D 2A cos.85t � 0:25z/ cos.715t � 1:75z/ I

v1Ph D !1

k1
D 800

2
m=s D 400 m=s ;

v2Ph D !2

k2
D 630

1:5
m=s D 420 m=s ;

vG D �!

�k
D 170

0:5
m=s D 340 m=s :
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11.11 For large values of � the term 2��=.%�/ in equation
(11.86) can be neglected. This gives

vPh D
r

g�

2�
tanh

2�h

�
:

For � D 500 m and h > � is tanh.2�h=�/� 1.

) vPh D 28 m=s :

For � D 0:5 m is g � �=2� � 0:78 m2=s2 and with � D
7:25 J=m2 is 2��=.% � �/ � 9:1 � 10�2 m2=s2

) vPh D 0:93 m=s :

11.12 The frequency of the fundamental oscillation is

�0 D 1

2L

p
F=� D 1

2L

p
�=% ;

�0 D 2L ) vPh D �0�0 D
p
�=% :

With � D 3 � 1010 N=m2 D 3 � 104 N=mm2 und % D
7:8 � 103 kg=m3, L D 1 m

) �0 D 103 s�1

) T0 D 1

�0
D 1 ms

) �0 D 2 m ; vPh D 2 � 103 m=s :

11.13 The weight m � g is compensated by the elastic restoring
force FE D �r2E�L

L

m � g D �k�L with k D �r2E=L :

) k D m � g

�L
:

The oscillation period is

T D 2�
p

m=k D 2�
p
�L=g :

It is independent of m as long as the mass of the rope is
negligible.
With �L D 2 � 10�3 m ) T D 0:09 s.
A pendulum with the length L has the oscillation period
T D 2�

p
L=g. In our example the period would be T D

2:84 s, i.e. 30 times as long.

11.14 A force F acting onto the end of the flat spring bends the
end by a distance (see (6.20))

�s D � 4L3

Ed3b
F

) F D �k�s with k D Ed3b

4L3
:

The oscillation period of the spring without additional
mass is

!0 D
p

4k=mF D 2
p

k=mF :

Here the fourfold restoring force constant has to be in-
serted because the mean deflection of the spring is

�s D 1

L

LZ

xD0

�s.x/ dx D 1

4
�s.L/ :

With mF D % � b � d � L and k D Ed3b

4L3
we obtain

!0 D d

L2

p
E=% :

The frequency deceases with 1=L3!
With !0 D 2� � 100 s�1, L D 0:1 m, E D 2 � 1011 N=m2

and % D 7:8 � 103 kg ) d D 0:63 mm.
If a mass m is attached to the end of the spring, the fre-
quency becomes

! D
p

k=.m C mF=4/

) !0

!
D 2

s
m C m

F=4

mF=4
D 2

s
1 C 4m

mF
:

11.15 Without waves the equilibrium position is given by:
buoyancy D weight,

) aqL%l � g D m � g ) m D aLq%l :

If the buoy is immersed by �z below its equilibrium po-
sition and then released it performs an oscillation because
of the restoring force F D �q%lg�z

z D �z sin!0t with !2
0 D q%lg

m
D g

aL
:

If waves are present the water surface at the location of
the buoy is

z D z0 C h � sin!0t with !0 D 2�

T
and z0 D 0 :

The waves generate an additional periodic buoyancy

�FB D h � q � g � %l � sin!t ;

which results in a forced oscillation

�z D A sin.!t C '/ :

The oscillation amplitude is then, according to (11.26)
when we neglect friction

A.!/ D hg=.aL/

.!2
0 � !2/

:

Numerical values: a � L D 30 m, h D 2 m, T D 5 s )
! D 1:25 s�1, !0 D 0:57 s�1 ) A.!/ D 0:525 m.
Without waves (plane water surface) the fraction .1 � a/L
of the buoy are above the water surface, at the wave peak
only x D Œ.1 � a/L � .2m � 0:525m/�. If the buoy should
be just under water at the wave peak we must set x D 0.
This gives L D 32:475 m.
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11.16 The radial part of the Laplace-operator is

�r D 2

r

@

@r
C @2

@r2
:

If it is applied to � D .A=r/ei.kr�!t/, we obtain

�r� D
�
� 2

r3
C ik

r2
C 2

r3
� 2ik

r2
� k2

r

�
Aei.kr�!t/

D �k2

r
Aei.kr�!t/ D �k2� ;

@2�

@t2
D �!2� ) @2�

@t2
D !2

k2
�r� ) c D !

k
:

11.17 a) � D �0
1

1 � u=vPh
; From �=�0 D 1:12246

) uQ D vPh

�
1 � 1

1:12246

�
D 0:1091vPh

with vPh D 330 m=s;

uQ � 36 m=s D 130 km=h :

b) � D �0

�
1 C uB

vPh

�
) 1 C uB

vPh
D 1:12246

) uB D 0:12246vPh � 145 km=h :

11.18 We choose x D 0 as equilibrium position. When the block
is shifted to an elongation x0 > 0, is potential energy is

Epot0 D
x0Z

0

2D0x dx D D0x2
0 :

a) After releasing the block it slides until the reverse point
x1 and loses on the way the energy by friction

Ef D f1mg.x0 � x1/ with x1 < 0 :

) D0x2
1 D D0x2

0 � f1mg.x0 � x1/

) x1 D f1mg

D0
� x0 < 0 :

The absolute values of the elongations are

jx1j D jx0j � f1mg=D0 :

For the general reverse points we obtain

jxnj D jxn�1j � f1mg=D0 D jxn�1j � 0:059 m ;

jxnj D jx0j � nf1mg=D0 D jx0j � n � 0:059 m :

The distances between the revers points decrease linearly
with n. The motion of the block is a damped, but not
harmonic oscillation.

b) The block sticks at the nth reverse point, if here the
restoring force is smaller than the static friction coeffi-
cient.

) 2D0jxnj < f0 � m � g ) n >
D0x0

f1mg
� f0

2f1
:

Inserting the numerical values gives

n >
100 � 0:22

0:3 � 2 � 9:81
� 0:9

2 � 0:3
D 2:3 ;

i. e. the block sticks at least at the 3rd reverse point, if it
reaches it at all. In order to check this we determine its
start energy at the 2nd reverse point:

Ep D D0x2
2 D D0.x0 � 2f1mg=D0/

2 :

It should be larger than the friction energy f1 � m � gjx3 �
x2j, if it should reach the reverse point x3. Inserting the
numerical values gives: Ep.x1/ D 1:05 N � m, f1 �m �gjx3 �
x2j D 0:346 N � m. This proves that the block reaches x3

but sticks there.
c) The total energy is

E D 1
2 D0x2

0 D 1
2 D0x2 C 1

2 mv2 C f1 � mg � .x0 � x/

) v2 D .D0=m/
�
x2

0 � x2
�

� 2f1g.x0 � x/ :

The block is released at x0. The time T at which it reaches
x1 is

T D
t0Z

tD0

dt C
t1Z

t0

dt where
t0 D t.x D 0/
t1 D t.x D x1/

�dx D v dt ) dt D �dx=v

) T D �
0Z

x0

dx

v
�

x1Z

0

dx

v
D

x0Z

x1

dx

v
:

Inserting of

v D
q
.D0=m/.x2

0 � x2/ � 2f1g.x0 � x/

gives with the substitutions

z D .x0 � x/ ) x2
0 � x2 D .x0 � x/ � .x0 C x/

D z � .2x0 � z/ I dx D �dz

) x D x0 ) z D 0 I x D x1 ) z D z1 D x0 � x1

a D D0=m I b D 2 � a � x0 � 2f1g

T D
0Z

zDz1

dz

.�az2 C bz/
1=2

:

The integral can be solved analytically and gives

T D � 1p
a

�
arcsin

�2az C b

b

�ˇ̌
ˇ̌
0

z1

:
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The revers point x1 can be obtained from

x1 D f1mg

D0
� x0 < 0 :

With x0 D 0:22 m ) x1 D �0:161 m ) z1 D 0:22 C
0:16 D 0:38 m

) T D C 1p
D0=m

�
arcsin 1 � arcsin

�
1 � 2az1

b

��
:

14.12 Chapter 12

12.1 a) m � Rx C 2kx

�
1 C L

.L2 C x2/1=2

�
D 0 :

b) m � Rx C 4kx � .k=L2/x3 D 0 :

c) m � Rx C 4kx D 0 I !0 D .4k=m/1=2 :

For x0=L D " is ! D !0 � K."/ � !0.1 � "2=2/, where
K."/ is the elliptical integral, that has been discussed in
Sect. 2.9.7).

12.2 Rx C ax C bx3 D 0 ; a; b > 0

v D dx

dt
) d2x

dt2
D dv

dt
D dv

dx
� dx

dt
D v

dv

dx

D 1

2

d.v2/

dx
:

Inserting and integration over x and multiplication with
the factor 2 yields the equation

v2 C ax2 C b

2
x4 D const D ax2

0 C b

2
x4

0 D A :

The function v.x/ represents in an x-v-diagram a closed
curve (called phase-space trajectory) where x0 D x.t D
0/ and v.t D 0/ D 0.

v.x/ D ˙
�

A � ax2 � b

2
x4

�1=2

;

which is periodically traversed. For v D 0 we obtain the
intersection points of v.x/ with the x-axis

xm D ˙

2
4�a

b
˙
s

a2

b2
C 2A

b

3
5

1=2

:

The time for one circulation is obtained from

v D dx

dt
) dt D dx

v.x/

) T D 4

xmZ

xD0

dx
�
A � ax2 � b

2 x4
�1=2

;

because the path from x D 0 until xm is traversed in the
time T=4. The elliptical integral can be found in integral
tables.

12.3 a) With y D x=x0 and t� D !0t we get

d2x

dt2
D x0

d2y

dt2
and dt D 1

!0
dt�

) d2x

dt2
D !2

0x0
d2y

dt�2
:

The differential equation then transformes into

d2y

dt�2
C k1x0

!2
0x0m

y C k2x2
0

!2
0x0m

y2 D 0 :

This yields with !2
0 D k1=m and " D .k2=k1/x0

d2y

dt�2
C y C "y2 D 0

with the initial conditions: y.0/ D 1 and Py.0/ D 0.
b) With t� D ! � t we obtain the equations

d2y

dt�2
C y C "y2 D 0 ; (14.8a)

d2y

dt2
C !2y C "!2y2 D 0 ; (14.8b)

d2y

dt2
C !2yŒ1 C "y� D 0 : (14.8c)

The last equation can be solved by series expansion with
regard to ", because the term .1 C "/ can be regarded as
perturbation term of the unperturbed equation with " D 0.
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We make the ansatz

y.t; "/ D y0.t/C "y1.t/C "2y2.t/C : : :

! D !0 C "!1 C "2!2 C : : : :

Inserting this into the differential equation (14.8) and or-
dering the term according to the power exponents of ",
the different “coefficients” of "n have to be zero, if the
equation should hold for arbitrary values of ".
For the "-free terms with "0 one obtains the unperturbed
equation for the oscillation

d2y0

dt2
C !2

0 y0 D 0 ) y0 D A0 � cos!0t :

For the term with "1 this gives

d2y1

dt2
C !2

0.y
2
0 C y1/C 1!0!1y0 D 0 :

Inserting y0 from the previous equation we get

d2y1

dt2
C !2

0.A
2
0 cos2 !0t C y1/C 2!0y1A0 cos!t D 0 :

Proceeding to the quadratic term with "2 one obtains after
some efforts

!."/ D !0

�
1 � 5A2

12
"2 C O."3/

�
:

For " D 0:1 ) ! D !0.1 � 4:17 � 10�3A2
0/.

12.4 Fixpoints occur for dx=dt D 0. From the two equations
of the problem we get for the fix points
a) F D .xF1; xF2/ D .0; 0/.
b) F D .xF1; xF2/ D .�3=�2; �1=�2/.
They are stable, if for an elongation�x from the fix point
the conditions hold

Px1 > 0 for �xi < 0 I i D 1; 2 ;

x1 < 0 for �xi > 0 I i D 1; 2 :

If the stability condition only holds for one direction (for
instance x1 but not for x2) than the fix point is stable for
shifts in the direction of x1 but not for a shift in the direc-
tion of x2.
In analogy to a saddle point on a curved surface this fix
point is called saddle point. If the stability condition does
not hold for both directions, the fix point is unstable.
Which of the cases applies for x1 and x2 can be obtained
as follows:
Addition of the two equations yields

Px1 C Px2 D �1x1 � �3x2 :

The stability depends on the sign of �1 and �3. That of �2

is not significant.
We distinguish between the 4 cases listed in the table. The
arrows indicate the motion of the point F D .0;0/ at a

�1 �3 F.0; 0/

> 0 < 0 Saddle

#

 F ! x1

"

x2

> 0 < 0 Unstable

"

 F !

#

< 0 > 0 Stable

#

! F  

"

< 0 < 0 Saddle

"

! F  

#

displacement. If the arrows point towards F the fix point
F is stable against displacements in this direction, if they
point away from F it is unstable in this direction.
For the second fix point F D .�3=�2; �1=�2/ no stable
position exists. For .�1 > 0; �3 < 0/ and .�1 < 0; �3 >
0/ saddle-points exist. For the other two possible cases F

moves on an elliptical path.
12.5 In Sect. 2.9.7 it was shown that the oscillation period T of

the undamped pendulum is given by

T D 2

�
T0F.'0/

with

F.'0/ D
�=2Z

0

d�p
1 � sin2.'0=2/ sin2 �

:

As can be seen in tables of elliptical integrals [2.6a, 2.6b],
is

F

�
'0 D �

4

�
D 1:63 I F

�
'0 D �

2

�
D 1:84 I

F

�
'0 D 3

4
�

�
D 2:4 I F

�
'0 D �

2

�
D 1 :

The oscillation periods of the undamped pendulum are
then

T.'/ D a � T0 with

a D 1:038 for ' D �=4 ;
a D 1:17 for ' D �=2 ;
a D 1:53 for ' D 3

4�

a D 1 for ' D � :

For the last case the pendulum reaches the metastable
position in the upper reversal point where it could stay
(without perturbation) infinitely long.
The equation for the damped oscillation can be solved
only approximately, when using the expansion sin ' D
' � 1

6'
3 C : : :
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The resulting equation

R' C !2
0' C 
 P' � !2

0

6
'3 D 0

can be solved for the case 
=!0 � 1 with the ansatz
' D '0 C "'1 C : : :
This gives the oscillation period

T D T0
4F.'0/q
1 C 1

6 A2
with T0 D 2�q

!2
0 � 
2

;

where F.'0/ is again the elliptical integral and A D '.t D
0/ the initial amplitude (see Probl. 12.2).

12.6
z.t/ D

�
b

a
C
�

1

z0
� b

a

�
e�a.t�t0/

��1

with z.t D 0/ D z0, z.t ! 1/ D a=b.
The doubling time for the case a D b:

T D 1

a
ln

2 � 2z0

1 � 2z0
:

This shows that z doubles for 0 < z0 < 0:5 within a finite
time, but for z0 D 0:5 only after an infinite time. For
z0 > 0:5 there is no doubling at all.

12.7 The numerical analysis of the equation

xnC1 D 3:1xn.1 � xn/

gives for x0 D 0:5

lim
n!1

x2n D 0:5580 : : : D xF1 ;

lim
n!1

x2nC1 D 0:7646 : : : D xF2 :

For x0 D 1=4 the two quantities xF1 and xF2 interchange
their values remain, however, independent of the initial
value x0.
For a D 3:3 one obtains

xF1 D 0:4794 : : : ; xF2 D 0:8236 : : : :

The Ljapunov exponent is

� D lim
N!1

1

N

N�1X

iD0

lnjf 0.xi/j :

With f .xn/ D axn.1 � xn/ ) f 0.xn/ D a � 2axn

) � D ln a C 1
2 lnj1 � 2xF1j C 1

2 lnj1 � 2xF2j :

For a D 3:1 ) � D �0:264.

For a D 3:3 ) � D �0:619.

12.8 For each iteration the length of a triangle side is cut in
halves, but the number of sides becomes threefold larger.
The total length therefore becomes

Ln D
�

3
2

�n
L0 and N.L=2/ D 3N.L/ :

In Eq. 12.54 is � D 1=2 and �� D 3.

) � D � ln 3

ln 2
) d D �� D 1:58496 : : : :

12.9 The condition for the boundary curve is: Pr D 0.

) .a � r2/r D 0 ) r1 D 0 ; r2 D p
a :

The first solution r1 D 0 gives the stable fix point. The
second solution r2 D p

a and ' D !0t gives as boundary
curve a circle with radius

p
a and centre r D 0, which is

traversed with constant angular velocity.

12.10
F D �dV

dx
D �2a.x � x0/ � 3b.x � x0/

2:

The equation of motion: F D mRx

) Rx C 2a � 6bx0

m
x C 3b

m
x2 C �2ax0 C 3bx2

0

m
D 0

Rx C Ax C Dx2 C C D 0 :

Besides the minimum at x D x0, V.x/ has a maximum

dV

dx
D 2a.x � x0/C 3b.x � x0/

2 D 0

) xmax D x0 � 2a

3b
:

The maximum amplitude is then 2a=3b. For jx � x0j >
2a=b no periodic motion is possible.



Index

A

Absolute error, 28
Absolute humidity, 304
Absolute temperature, 190, 254
Absolute temperature scale, 255, 259
Absolute zero, 295
Absorptivity, 273
Accelerated motion, 42
Acceleration, 41
Acceleration of a rocket, 55
Acoustic particle velocity, 367
Acoustics, 366
Addition of forces, 47
Addition of vectors, 403
Adhesion tension, 168
Adhesive force, 169
Adiabatic cooling, 304
Adiabatic index, 262
Adiabatic process, 282, 309
Aerodynamical buoyancy, 226
Aerodynamical lift, 227
Aerodynamics, 210, 226
Aggregate state, 154
Aggregation state, 301
Ampere, 9, 25
Anaxagoras, 6
Anergy, 284
Ångström, 18
Angular momentum, 63, 105
Angular momentum axis, 145
Angular velocity, 44
Anharmonicity of overtunes, 376
Anomaly, 306
Anomaly of water, 306
Anti-reflection layer, 370
Aperiodic limiting case, 330
Arbitrary force fields, 53
Archimedes, 6
Archimedes’ principle, 165, 186
Aristotle, 2, 6
Arithmetic mean value, 28
Astronomical unit AU, 18
Astrophysics, 15
Asymmetric top, 142
Atmospheric pressure, 185
Atomic clock, 22, 23
Atomic model of thermal expansion, 257
Atomic physics, 13
Attractor, 384
AU, 20
Audible sound, 366
Avogadro, 8
Avogadro constant, 261
Avogadro’s number, 24
Axial vector, 403, 404

B

Baffle, 245
Ball bearing, 173
Balloon flight, 186
Bang, 366
Barometric formula, 185, 204
Basic Units, 16
Basis vector, 402
Bayard–Alpert tube, 250
Beat, 325
Beat pattern, 325
Bénard instability, 266, 267
Bending of balks, 159
Bernoulli equation, 213
Bifurcation of the pendulum, 389
Bifurcation point, 387
B-image technique, 371
Bio-energy, 316
Biological population, 386
Biophysics, 14
Black body, 274
Black body radiation, 276
Boiling, 303
Boiling temperature, 306
Bolometer, 197
Bolt cracker, 258
Boltzmann, 9, 188
Boltzmann constant, 190
Bound energy, 291
Boundary layer, 217
Bow wave, 365
Boyle, 7
Boyle–Mariotte’s law, 184
Bragg, 9
Brinell-hardness, 162
Brown, Robert, 201
Brownian motion, 8, 200
Bunsen, 10
Buoyancy, 165
Buoyancy force, 165
Burning time, 56

C

Caesium atomic clock, 21, 22
Caliper gauge, 19
Candela, 25
Capillarity, 170
Capillary wave, 349
Carnot, 8
Carnot cycle, 283
Cartesian coordinate, 402, 408
Causality, 99
Cavendish, Henry, 71
Cavity radiation, 277
Celsius, 8

Celsius scale, 255
Celsius, Anders, 255
Center of mass, 104, 130
Center of mass system, 104
Central collisions, 109
Central force field, 48, 63, 76
Centrifugal acceleration, 86
Centrifugal potential, 69
Centripetal-acceleration, 44
Cgs-system, 56
Chaos research, 15, 383
Chemical equilibrium constant, 292
Chemical potential, 292
Chemical reaction, 292
Chladni’s Figures, 362
Chord, 372
Circular motion, 40, 44
Circular pendulum, 48
Circulation, 221
Circulation region, 221
Clang, 366
Clausius, 8, 188
Clausius–Clapeyron equation, 302
Closed system, 52, 104
CODATA, 27
Coefficient of performance, 296
Coefficient of viscosity, 203
Coherence, 352
Coherent wave, 353
Cohesion pressure, 304
Collision, 107
Collision cross section, 195
Collision of two hard spheres, 116
Collision rate with the wall, 239
Collisional cross section, 195
Collisional excitation, 114
Complex representation of a forced oscillation,

332
Complex systems, 2
Component of the vector, 402
Compressibility of a gas, 184
Concept of Models, 3
Condensation, 303
Confidence range, 31
Conic section, 67
Conservation law, 123
Conservation of angular momentum, 124
Conservation of momentum, 123
Conservative force field, 58, 61
Constant forces, 53
Constructive interference, 353
Contact angle, 168
Continuity equation, 213
Control parameter, 388
Convection, 266
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Coriolis force, 86
Coriolis-acceleration, 86
Cosmic velocity, 54
Coulomb, 9
Coulomb potential, 61
Couple of forces, 132
Coupled oscillators, 335
Coupled spring pendulums, 335, 336
Critical damping, 330
Critical point, 303
Critical pressure, 306
Critical temperature, 303, 306
Cryopump, 246
Culmination of the sun, 21
Curl of the vector field, 407
curl F, 58
Curvilinear integral, 57
Cylindrical coordinate, 403, 408

D

Dalton, 7
Damped oscillator, 328
Damped temperature wave, 269
Death-hurricane, 89
Deceleration of the earth rotation, 179
Decibel, 366
Deductive method, 4
Deep-pressure region, 89
Definition of physics, 2
Definition of the absolute temperature, 259
Definition of the second, 21
Deflection angle, 109, 115
Deflection function, 116
Deformation of a surface, 173
Deformation of the earth crust, 180
Deformation of the rotating earth, 175
Degree of freedom, 132, 190
Delayed feedback, 390
Democritus, 6
Density, 74
Derivation of friction force, 218
Derivation of the refraction law, 358
Destructive interference, 353
Determinant notation, 405
Determination of g, 74
Deterministic, 382
Deterministic conception of the world, 397
Deviation of g, 179
Dewar, 275
Diameter of atoms, 12
Diesel engine, 297, 298
Differentiation of vectors, 405
Diffraction at apertures, 356
Diffraction of a wave, 357
Diffraction of waves, 354
Diffusion, 198
Diffusion coefficient, 199, 200, 203
Diffusion pump, 244
Dipole force field, 49
Discus, 144
Dispersion, 348, 350
Dispersion curve, 352
Dispersion of surface waves, 349
Displacement amplitude, 347
Distribution function, 30, 190, 193
Divergence of the vector field, 407
DNA, 14
Doppler effect, 363

Doppler, Christian, 363
Doppler-effect of the signal frequency, 98
Doppler-ultrasonic method, 372
Double glass window, 272
Double Helix, 14
Double star system, 382
Double well potential, 386
Dulong–Petit law, 264
Dwarf planet, 68
Dynamic viscosity, 217
Dynamical system, 383

E

Earth atmosphere, 204
Earth deformation, 179
Earth radius R, 74
Echo-pulse method, 371
Ecliptic pole, 149
Effective potential, 68
Efficiency factor, 230
Efficiency of the Carnot engine, 284
Einstein, 10
Elastic collision, 108
Elastic constants, 346
Elastic hysteresis, 161
Elastic longitudinal wave, 345
Elastic modulus E, 156, 180
Electric heat equivalent, 260
Electrical filter, 326
Electrical heat equivalent, 260
Electrodynamics, 13
Electron mass, 27
Electron microscopy, 14
Electronic musical instrument, 372
Elementary cell, 154
Elementary particle, 11, 12
Elementary particle physics, 13
Elevator experiment, 85
Ellipse equation, 327
Elliptical integrals, 67
Elliptical polarized wave, 343
Elongation kink, 374
Emissivity, 273
Emittance, 275
Empedocles, 6
Endothermic reactive collisions, 118
Energy conservation, 56, 61, 124
Energy consumption, 311
Energy conversion, 309
Energy density, 367
Energy flux density, 344, 367
Energy loss per oscillation period, 333
Energy source, 309
Energy storage, 316
Energy transfer, 110, 112
Energy transport in a wave, 350
Ephemeris time, 21
Equalization calculus, 32
Equally tempered scale, 373
Equation for an ellipse, 67
Equation of a parabola, 67
Equilibrium of forces, 48
Equilibrium state, 293
Equipartition Law, 190
Equipotential surface, 48
Equivalence principle, 53
Ergoden hypothesis, 190
Error distribution, 29

Error propagation, 31
Escape velocity, 54
Euler equation, 144, 212
Euler, Leonhard, 212
Exajoule, 311
Exergy, 284
Exothermic reactive collisions, 118
Expansion coefficient, 256

F

Fahrenheit scale, 255
Family tree of physics, 13
Faraday, 9
Feigenbaum constant, 388
Feigenbaum diagram, 388
Feigenbaum, Mitchell, 387
Femtosecond, 23
Fermat’s principle, 358
Fermi, 18
Fick’s Law, 200
Fictitious force, 84
Figure axis, 145
Final pressure, 241
First law of thermodynamics, 281
Fix point, 384
Flame tube of Rubens, 360
Flow conductance, 240
Flow resistance, 227, 241
Flow resistance coefficent, 225
Flow velocity u, 210
Flux density, 194
Force, 47
Force concept, 50
Force field, 48
Forced oscillation, 330
Forced oscillation of two coupled oscillators,

338
Force-lines, 48
Foucault pendulum, 88
Fourier-analyser, 326
Fourier-analysis, 325
Four-momentum, 123
Fractal, 392
Fractional dimension, 393
Free axis, 144
Free body, 47
Free damped oscillator, 328
Free energy, 291
Free enthalpy, 291, 292
Free fall, 43
Free particle, 51
Free rotational axis, 143
Free undamped oscillator, 322
Frequency stabilized Laser, 23
Fresnel, 9
Friction, 171
Friction vacuum gauge, 250
Full cylinder, 135
Fundamental oscillation, 326
Fundamental tone, 326
Fusion heat, 265

G

Galilei transformation, 83
Galilei, Galileo, 2, 6
Gap in the ring system, 382
Gas thermometer, 259
Gaussian distribution, 30, 193
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Gedanken-experiment, 53, 121, 283
General gas constant, 261
General gas-equation, 190
Generation of Mandelbrot sets, 393
Geoid, 71, 175
Geometrical moment of inertia, 160
Geophysics, 15
Geothermal energy, 314
Geothermal power plant, 313
Gibb’s chemical potential, 292
Gibb’s phase rule, 307
Gigahertz, 22
Gigajoule, 311
Gilbert, 9
Gimbal mount, 148
Giotto-space probe, 15
Glide ratio, 228
Global Positioning System, 19, 20
Gluon, 11
Goal of research, 2
GPS, 19, 20
Gradient, 62
Gradient of a scalar quantity, 406
Graphite surface, 16
Gravitation, 64
Gravitational constant, 66, 73
Gravitational field, 69
Gravitational field of a full sphere, 71
Gravitational field of a hollow sphere, 70
Gravitational field strength, 62
Gravitational field-strength of a hollow sphere,

69
Gravitational force, 54
Gravitational force field, 49
Gravitational torsion balance, 73
Graviton, 11
Gravity wave, 352
Grazing elastic collision, 119
Grimaldi, 8
Group velocity, 350–352
Group velocity of water, 352
Growth function, 390
Guggenheim square, 293
Gyro-compass, 149

H

Hagen–Poiseuille Law, 219
Half tone, 374
Hamilton, 7
Hardness, 162
Hardness scale, 162
Hardness test, 162
Harmonic chord, 373
Harmonic motion, 61
Harmonic oscillator, 322, 323
Harmonic plane wave, 340
Hausdorff dimension, 393
Hearing threshold, 366
Heat capacity, 261
Heat conduction, 198, 202, 267
Heat conduction coefficient, 267
Heat conduction in gases, 270
Heat conduction manometer, 249
Heat conductivity, 202, 203, 267
Heat death, 292
Heat engine, 284
Heat of evaporation, 265, 302
Heat pipe, 271

Heat pump, 285, 296
Heat radiation, 273
Heat transfer coefficient, 202
Hektopascal, 185
Helmholtz vorticity theorem, 222
Helmholtz, Hermann von, 222
Herpohodie cone, 146
Hierarchy of Physics, 13
High pressure gas reservior, 317
High vacuum, 238
Higher harmonics, 326
Hollow cylinder, 135
Holographic interferogram, 375
Homogeneity of space, 124
Homogeneity of time, 125
Homogeneous body, 154
Homogeneous force field, 50
Hooke’s law, 156
Hooter, 368
Hot-air balloon, 186
Huygens, 9
Huygens’s principle, 355
Hydraulic press, 164
Hydrodynamic paradox, 215
Hydrodynamics, 210
Hydro-electric power plants, 312
Hydrogen atom, 12
Hydrophilic, 170
Hydrophobic, 170
Hydrostatic, 162
Hydrostatic paradoxon, 165
Hydrostatic pressure, 164
Hyper-sonics, 366
Hysteresis curve, 161

I

Ideal gas, 188, 261
Ideal liquid, 162, 211
Illustration of twin paradox, 98
Impact parameter, 64, 115, 195
Impossibility statement, 295
Inclination angle, 68
Inclined plane, 48
Incompressible liquid, 164
Increase of entropy, 288
Inductive method, 4
Inelastic collision, 108, 113
Inertia, 52
Inertial ellipsoid, 140, 141
Inertial force, 83, 84
Inertial system, 82
Inertial tensor, 140
Infra-sound, 366
Intake area, 384
Intensity, 276, 367
Interface, 168
Interference, 352
Internal friction, 216
Internal pressure, 300
Inversion temperature, 305, 306
Ion physics, 13
Ion-getter pump, 247
Ionization detector, 198
Ionization gauge, 249
Ionosphere, 205
Irradiance, 276
Irreversible, 283
Irreversible process, 290

Isentropic process, 287, 309
Isobaric expansion coefficient, 280
Isobaric process, 281, 309
Isochoric pressure coefficient, 280
Isochoric process, 281, 309
Isoenthalpic process, 309
Isothermal atmosphere, 186, 192
Isothermal compressibility, 280
Isothermal process, 282, 309
Isotropic pressure, 163
Isotropy of space, 125

J

Johannes Kepler, 64
Joule–Thomson effect, 304
Julia set, 395

K

Kant, 16
Karman vortex street, 225
Kelvin, 8, 24, 259
Kelvin scale, 259
Kepler’s law, 64
Key stroke, 375
Kilogram, 23
Kilohertz, 22
Kilojoule, 311
Kilowatt hour, 311
Kinetic energy, 61
Kinetic gas theory, 188
Kirchhoff, 10
Knudsen flow, 240
Knudsen number, 240
Koch’s curve, 392
Krypton lamp, 17
Kundt’s cork dust figures, 360
k-value, 271

L

Laboratory system, 104
Lagrange, 7
Laminar flow, 211, 216, 218
Laminar flows in tubes, 219
Langmuir–Taylor detector, 197
Laplace demon, 397
Laplace operator, 407
Laser interferometer, 180
Laue, 9
Launch of a body, 54
Lavoisier, 7, 8
Law of Gay-Lussac, 259
Law of gravity, 66
Lenght scale, 93
Length contraction, 95
Length unit, 17
Length unit 1 m, 18
Lepton, 11
Lidar-technique, 20
Lifetime of relativistic muons, 96
Light intensity, 25
Light year, 18
Linde process, 305
Linear chain, 264, 339
Linear polarized wave, 343
Line-integral, 57
Lipershey, 7
Liquefaction of air, 305
Liquid, 155
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Liquid drop, 169
Liquid manometer, 248
Liquid surface, 163, 166
Liquid thermometer, 254
Lissajous-figures, 327, 328
Ljapunov exponent, 385
Logarithmic decrement, 329
Logistic diagram, 387
Logistic mapping, 388
Long range order, 155
Longitudinal wave, 342, 343
Lorentz contraction, 94
Lorentz transformation, 90, 91
Loschmidt, 8
Loudspeaker, 369
Low vacuum, 238
Lowering of the melting temperature, 307
Luminosity unit, 25

M

Mach cone, 364
Mach number, 364
Mach, Ernst, 364
Mach-Zehnder interferometer, 354
Magneto-hydrodynamics, 210
Magnitude of the vector, 402
Magnus effect, 226
Mandelbrot set, 393
Mass, 52
Mass flow density, 212
Mass of the earth, 74
Mass unit, 23, 26
Mathematical notation of oscillations, 323
Mathieu’s differential equation, 334
Maximum deflection angle � , 109
Maxwell, 9, 188
Maxwell–Boltzmann velocity distribution, 193
Maxwell’s Wheel, 138
Mayer, 8
Mayer, Julius Robert, 254
McLeod vacuum meter, 248
Mean density of sun, 74
Mean free path, 196
Mean free path length, 195
Mean kinetic energy, 190
Mean sun, 20
Mean velocity v, 194
Measurement, 73
Measurement of elevations z, 175
Measurement of G, 71
Measurement of rolling friction, 173
Mechanical heat equivalent, 260
Mechanical pump, 242
Mechanical work, 56
Mechanics, 13
Medical physics, 14
Medium vacuum, 238
Megahertz, 22
Megajoule, 311
Megaton, 24
Melting curve, 306
Membrane capacitor vacuum gauge, 249
Membrane manometer, 248
Mendelejew, 8
Mercury droplet, 168
Mesopause, 205
Mesosphere, 205
Meta-center, 166

Meteorology, 15
Met-glasses, 16
Meyer, 8
Michelson, 10
Microgram, 24
Microhertz, 22
Micrometer caliper, 19
Micrometer screw, 19
Migration of the north pole, 150
Milligram, 24
Millihertz, 22
Minkowski-Diagram, 93
Minkowski-force, 123
Mks-system, 26
Model of a point mass, 3
Model of extended deformable bodies, 3
Modern gravimeter, 75
Modulus of shear, 158
mol, 24
Molar heat capacity, 262
Molar quantity unit, 24
Molar specific heat, 262, 263
Molar volume V, 261
Molecular beam, 196
Molecular beam apparatus, 196
Molecular physics, 13
Molecular sieve, 247
Molecules, 12
Molecules at the walls, 239
Moment of inertia, 134
Moment of inertia of a sphere, 136
Momentary rotation axis, 145
Momentary velocity, 42
Momentum, 51
Momentum diagram, 109
Mono-molecular film, 170
Mono-molecular layer, 170
Moon trajectory, 41
Most probable value, 34
Most probable velocity, 194
Motion of a rigid body, 131
Motion of the moon, 107
Motion on a straight line, 40
Mountaineer, 57
Moving source, 364
Musical instrument, 372

N

Nabla, 62
Nanogram, 24
Navier–Stokes equation, 220
Neap tide, 177
Nernst’s theorem, 294, 295
Net energy flow, 202
Neutral filament, 159
New definition of the second, 22
Newton, Isaac, 7
Newton-diagram, 114
Newtonian axiom, 51
Newton’s first law, 51
Newton’s law, 66
Newton’s third law, 52
Noise, 366
Non-collinear collisions, 110
Non-conservative Force Fields, 59
Nonlinear triatomic molecule, 339
Non-stationary flow, 210, 211
Non-uniform expansion, 256

Normal acceleration, 45
Normal coordinate, 336
Normal vector, 403
Normal vibration, 336, 339
Normal zero surface, 71
Normalized amplitude of a forced oscillation,

333
Normalized statistical distribution, 30
Nuclear fission, 16
Nuclear physics, 13
Nutation cone, 146
Nutation period, 150

O

Oblate symmetric top, 142
One-dimensional superposition, 324
Optical frequency comb, 23
Optics, 13
Oscillation frequency, 323
Oscillation modes of a quadratic metal plate, 362
Oscillation of lamellar soap bubbles, 362
Oscillation period, 323
Osmosis, 307
Osmotic pressure, 307
Otto engine, 297, 298
Overtone, 326
Ozone layer, 205

P

Parabolic reflector, 314
Parachute, 46
Parametric oscillator, 334
Parsec, 18
Particle flux, 195
Pascal, 164
Path-independent work, 58
Pendulum, 74
Penning vacuum gauge, 250
Percussion instrument, 372
Permeable membrane, 308
Perpetuum mobile, 281
Perpetuum mobile of the second kind, 285, 286
Petajoule, 311
Pfeffer cell, 308
Phase diagram, 303
Phase space, 384
Phase space trajectory, 384
Phase velocity, 341
Phase-coupled source, 353
Philosophy, 16
Phon number, 366
Photovoltaic power station, 315
Physical atmosphere, 185
Physical law, 2
Physics of liquids and gases, 13
Piezo disc, 368
Piezo-electric sound generation, 369
Pikogram, 24
Pitch of deflection, 160
Pitot tube, 214
Planck, 10
Planet, 74
Planetary motion, 64
Planetary orbit, 66
Planetary system, 49
Plato, 6
Pneumatic cigarette lighter, 282
Point mass, 40
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Point of origin, 402
Poisson number, 258
Poisson-adiabatic equation, 282
Polar vector, 403
Polhodie, 146
Population development, 390
Population explosion, 389, 390
Position vector, 40, 154, 402
Potential barrier, 118
Potential energy, 59
Potential scattering, 116
Power, 56
Precession, 147
Precession frequency, 147
Pressure amplitude, 367
Pressure drag coefficient, 225
Pressure manometer, 214
Primary energy, 311
Principal moments of inertia, 141
Projectile motion, 43
Projectile parabola, 43
Prolate symmetric top, 142
Propagation direction, 343
Propagation of waves, 344
Pseudo-force, 84
Pseudo-scalar, 405
Pumping speed, 239, 240
Pure tune, 373
Pythagoras, 6

Q

Quantum electrodynamics, 10, 12
Quark, 11
Quartz Clock, 23

R

Radial potential, 69
Radian, 25
Radiation density, 275
Radiation power, 277
Ram pressure, 213
Range of actual lengths, 18
Raoult’s law, 308
Reactive collision, 108, 118
Real gas, 299
Rectilinear motion, 41
Reduced mass, 105
Reduction of vapour pressure, 308
Reference point, 60
Reflection coefficient, 370
Reflection law, 358
Refrigerator, 295, 296
Relative humidity, 304
Relative length change, 156
Relative motion, 82
Relativistic energy, 121
Relativistic mass increase, 119
Relativistic momentum, 120
Resonance curve of forced oscillation, 332
Resonant oscillation of the string, 360
Rest-mass, 120
Retardation, 50
Reversible, 283
Reversible collision process, 290
Reversible process, 283
Reynolds number, 229
Rigid body, 130
Rocket, 55

Roentgen, 9
Rolling friction, 173
Roots pump, 243
Rotary oscillation, 139
Rotary vane pump, 243
Rotating ball vacuum gauge, 250
Rotating earth, 175
Rotating rotor, 232
Rotating system, 85
Rotating vane pump, 243
Rotation axis, 145
Rotation of a rigid body, 136
Rotational degrees of freedom, 263
Rotational inertia, 133
rot F, 58
Rotor blade of a wind converter, 232
Rotor of a turbo pump, 244
Rubens’s flame tube, 360

S

Sand pendulum, 340
Saturation humidity, 304
Saturn rocket, 55
Scalar, 402
Scalar differentiation of a vector, 406
Scalar product, 404
Scalar product of two axial vectors, 405
Scalar triple product, 405
Scale invariance, 383
Scale parameter, 392
Schrödinger, 10
Second derivative, 407
Second law of thermodynamics, 282
Second moment of area, 160
Second Newtonian Axiom, 51
Secondary energy, 311
Selfdiffusion coefficient, 203
Self-similarity, 383, 391
Shearing, 158
Shock wave, 365
Shockwave tube, 365
Short range order, 155
SI unit, 26
Sidereal day, 20, 21
Sierpinski lattice, 393
Simple pendulum, 322
Simultaneity, 90, 92
SI-System, 26
Sliding friction, 172
Sloped plane, 48
Snellius, 8
Snellius’ refraction law, 358
Soap bubble, 167
Solar day, 20, 21
Solar energy, 278
Solar radiation collector, 278, 279
Solar second, 20
Solar system, 68
Solar tower power station, 315
Solar-thermal power station, 314
Solid angle, 25
Solid crystal, 154
Solidstate physics, 13
Solution, 307
Sorption pump, 246
Sound detector, 368
Sound generator, 368
Sound intensity, 367

Sound power, 367, 368
Sound power level, 366, 368
Sound pressure level, 367
Sound wave, 346
Sound wave in gases, 347
Source strength, 213
Space-time event, 99
Special relativity, 92
Specific evaporation energy, 271
Specific heat cK, 260–262
Specific heat of solids, 264
Specific heat ratio, 262
Specific surface energy, 167
Speed of light, 18
Spherical coordinate, 402, 409
Spherical top, 143
Spherical wave, 344
Spinning top, 139
Spring balance, 50, 179
Spring model, 155
Spring tide, 177
Stability criterion, 166
Stagnation pressure, 213
Stand pipe, 214
Standard, 17
Standard atmosphere, 185, 205
Standard deviation, 28
Standard kilogram, 23
Standard pressure, 185
Standing wave, 359
Static friction, 171
Static friction coefficient �, 171
Static pressure, 213
Stationary state, 331
Statistical error, 27
Steam engine, 297, 298
Stefan–Boltzmann law, 277
Steiner’s theorem, 134
Stirling engine, 296, 297
Stirling process, 297
Stokes law, 220
Stratosphere, 205
Stream filament, 210
Stream tube, 210
Streamline, 210
Streamline apparatus, 211
Stretched string, 346
String instrument, 372
Strong damping, 329
Sublimation, 307
Sublimation curve, 307
Substantial acceleration, 212
Suction capacity, 239
Sun radiation, 278
Superelastic collision, 108
Superposition of harmonic waves, 351
Superposition of plane waves, 354
Superposition of the spherical waves, 354
Superposition of two spherical waves, 354
Superposition of waves, 352
Superposition principle, 383
Supersonic plane, 365
Surface roughness, 172
Surface tension, 166, 167
Surface wave, 348
Symmetric top, 142
Symmetry, 124
Synergetics, 267
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System of units, 26
Systematic error, 27

T

Tangential acceleration, 45
Taylor expansion, 31
Technical atmosphere, 185
Technology, 15
Temperature measurement, 254
Temperature scale, 254
Temperature unit, 24
Temperature wave, 269
Tensile stress, 156
Terahertz, 22
Terrajoule, 311
Testing Newton’s law, 72
Thales, 6
Thermal diffusitivity, 268
Thermal expansion, 256
Thermal expansion coefficient, 259
Thermal insulation, 271, 272
Thermal power plant, 299
Thermal radiation, 273
Thermo couple, 254
Thermodynamic engine, 295
Thermodynamic potential, 292
Thermodynamic system, 279
Thermodynamic variable, 279
Thermo-dynamical temperature scale, 259
Thermodynamics, 8
Thermometer, 254, 255
Thermos bottle, 275
Thermosphere, 205
Thin disc, 134
Thin rod, 135
Third law of thermodynamics, 294
Third Newtonian Axiom, 52
Threshold of hearing, 366
Tidal deformation, 175
Tidal friction, 178, 179
Tidal power station, 312
Tide amplitude, 178
Time arrow, 291
Time dilatation, 96
Time units, 20
Time-dependent forces, 54
Ton, 24
Tone, 366
Torque, 63
Torque of the force, 63
Torque strength, 222
torr, 184
Torricelli, 184
Torricelli manometer, 185
Torsion balance, 71

Torsion of a wire, 158
Torsional oscillation, 337
Torsional pendulum, 159
Torsional rigidity, 139
Traffic jam, 391
Trajectory, 40
Transient state, 333
Translational temperature, 198
Transport phenomena, 198
Transvers contraction ratio �, 180
Transversal wave, 342
Transverse contraction, 157
Transverse contraction ratio, 157
Transverse wave in solids, 345
Tribology, 174
Triple point, 24, 255, 303, 306, 307
Triple point of water, 286
Tropical year, 21
Tropopause, 205
Troposphere, 205
Tuning fork, 368
Tunnel microscope, 16
Turbo-molecular pump, 244
Turbulent flow, 211, 221
Turntable, 139
Twin-paradox, 97
Two-dimensional oscillation mode, 362
Tycho de Brahe, 64

U

Ultrahigh Vacuum, 238
Ultra-sonics, 366
Ultrasound, 369
Uniform motion, 41
Unisotropic crystal, 155
Unit of angle, 25
Unit of luminous intensity, 25
Unit of the electric current, 25
Unit of the force, 52
Unit vector, 402
Upwind solar power station, 315

V

Van der Waals equation, 299, 300
Van der Waals isotherms, 301
van’t Hoff’s law, 308
van’t-Hoff equation, 303
Vapor pressure curve, 306
Vapor pressure curve p, 301
Vaporizer, 215
Vapour pressure, 301
Variance, 29, 30
Vector, 402
Vector field, 405
Vector product, 404

Vector sum, 47
Velocity, 41
Velocity amplitude, 366
Velocity distribution, 191
Velocity field, 210
Velocity of light, 89
Velocity of sound waves, 348
Velocity profile, 219
Velocity selector, 196, 197
Verhulst equation, 387
Vibrating membrane, 361
Violin, 374
Viscosimeter, 220
Viscosity, 198
Viscosity of gases, 202, 203
Volta, 9
Volume expansion coefficient 
 , 258
Volume flow rate, 239
Vortex, 211, 221
Vortex formation, 223
Vortex kernel, 221
Vortex line, 222
Vortex tube, 222

W

Water jet vacuum pump, 215
Wave equation, 341, 342
Wave in liquids, 348
Wave power station, 313
Wavelength, 340
Weak damping, 329
Weber–Fechner-law, 366
Weightlessness, 87
Wetting angle, 169
Whole tone, 373
Wiedemann–Franz law, 268
Wind converter, 230
Wind energy, 229
Wind instrument, 372
Work, 56
Working hypothesis, 4
World line, 93
World population, 389

X

X-unit, 18

Y

Young, 9

Z

Zeolite, 247
Zero point of the Fahrenheit temperature scale,

309
Zero surface, 175



Values of Physical Fundamental Constants�

Quantity Symbol Value Unit Relative uncertainty
in 10�6

Speed of light in vacuum c 29;9792;458 m s�1 exact
Gravitation constant G 6:67384 � 10�11 m3 kg�1 s�2 120
Planck constant h 6:62606957 � 10�34 J s 0:044
Reduced Planck constant „ 1:054571726 : : : � 10�34 J s 0:044
Molar gas constant R 8:3144621 J mol�1 K�1 0:9
Avogadro constant NA 6:022140857 � 1023 mol�1 0:012
Lohschmidt constant (T D 273:15 K, p D 100 kPa) NL 2:6516467 � 1025 m�3 0:57
Boltzmann constant R=NA k 1:38064852 � 10�23 J K�1 0:57
Molar volume VM

(T D 273:15 K, p D 101;325 Pa) 22:413968 � 10�3 m3 mol�1 0:57
(T D 273:15 K, p D 100 kPa) 22:710947 � 10�3 m3 mol�1 0:57

Elementary charge e 1:6021766208 � 10�19 A s
DefDC 0:006

Electron mass me 9:10938356 � 10�31 kg 0:01
Proton mass mp 1:672621898 � 10�27 kg 0:01
Magnetic constant �0 4� � 10�7 D 1:2566370614 � 10�6 V s A�1 m�1 exact
Electric constant 1=.�0c2/ "0 8:854187817 : : : � 10�12 A s V�1 m�1 exact
Fine structure constant �0ce2=2h ˛ 7:2973525664 � 10�3 – 0:00023
Rydberg constant mec˛2=2h Ry1 1:0973731568508 � 107 m�1 0:0000059
Bohr radius ˛

ı
.4�Ry1/ a0 5:2917721067 � 10�11 m 0:00023

Proton–Electron mass ratio mp=me 1836:15267389 – 0:00009
Electron charge-to-mass quotient �e=me �1:758820024 � 1011 C kg�1 0:006
Proton charge-to-mass quotient Ce=mp C9:578833226 � 107 C kg�1 0:006
Atomic mass unit 1

12 m.12C/ AMU 1:660539040 � 10�27 kg 0:02

Conversion factor
1 eV D 1:60217653 � 10�19 J
1 eV=hc D 8065:541 cm�1

1 Hartree D 27:2113845 eV
1 Hartree=hc D 2:194746313 � 105 cm�1

� CODATA, international recommended values (NIST 2014)

Astronomical Constants

Mass of earth ME D 5:9736 � 1024 kg
Mass of moon MMo D 7:35 � 1022 kg ¶ 0:0123 ME

Mass of sun Mˇ D 1:989 � 1030 kg ¶ 3:33 � 105 ME

Radius of sun 6:96 � 108 m
Distance earth–moon

Minimum (perihelium): 3:564 � 108 m
Maximum (aphelium): 4:067 � 108 m

Mean distance earth–sun 1:496 � 1011 m
1 AU (astronomical unit) 1:49597870691 � 1011 m

1 parsec D 1 pc � 3:3 light years
Distance to closest star (except sun) proxima centauri 4:2 light years



Useful Conversion Factors

Lengths

Symbol Unit Conversions

1 Å D 1 Ångström ¶ 10�10 Œm� ¶ 100 pm
1 f D 1 Fermi ¶ 10�15 m ¶ 1 fm
1 AU D 1 Astronom. unit ¶ 1:49598 � 1011 m
1 ly D 1 light year ¶ 9:46 � 1015 m
1 pc D 1 Parsec ¶ 3:09 � 1016 m

Times

1 year D 3:156 � 107 s
1 day D 8:64 � 104 s

Energy

1 eV D 1:60218 � 10�19 J
1 kWh D 3:6 � 106 J
1 kcal D 4:1868 kJ
1 kcal=mol D 4:34 � 10�2 eV per molecule
1 kJ=mol D 1:04 � 10�2 eV per molecule

From E D mc2 follows 1 kg � c2 D 8:98755 � 1016 J.
From k D 1:380658 � 10�23 J K�1 follows 1 eV ¶ k � T at T D 11;604 K.
From h � � D E follows for the frequency � of electromagnetic radiation
� D E � 2:418 � 1014 Hz eV�1

Angles

1 rad D 57:2958ı

1ı D 0:0174 rad
10 D 2:9 � 10�4 rad
100 D 4:8 � 10�6 rad

Mathematical constants

� D 3:141592653589: : :
e D 2:718281828459: : :
ln 2 D 0:693147180559: : :p

2 D 1:414213562373: : :p
3 D 1:732050807568: : :

Approximation Formula for |x | ≪ 1

.1 ˙ x/n � 1 ˙ nx cos x � 1 � x2=2p
1 ˙ x � 1 ˙ 1

2 x ex � 1 C x

sin x � x ln.1 C x/ � x

The Greek Alphabet

Letter Name

A; ˛ Alpha
B; ˇ Beta
�; 
 Gamma
�; ı Delta
E; " Epsilon
Z; � Zeta
H; � Eta
�; # Theta
I; � Iota
K; � Kappa
�; � Lambda
M; � Mu

Letter Name

N; � Nu
�; � Xi
O; o Omicron
˘;� Pi
P; % Rho
˙; � Sigma
T; � Tau
�; � Upsilon
˚; ' Phi
X; � Chi
(; Psi
˝;! Omega
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