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Preface

This is a translation of the (slightly revised) second German edition of our book

“Lineare Algebra”, published by Springer Spektrum in 2015. Our general view

of the field of Linear Algebra and the approach to it that we have chosen in this

book were already described in our Preface to the First German Edition, published

by Vieweg+Teubner in 2012. In a nutshell, our exposition is matrix-oriented, and

we aim at presenting a rather complete theory (including all details and proofs),

while keeping an eye on the applicability of the results. Many of them, though

appearing very theoretical at first sight, are of an immediate practical relevance. In

our experience, the matrix-oriented approach to Linear Algebra leads to a better

intuition and a deeper understanding of the abstract concepts, and therefore sim-

plifies their use in real-world applications.

Starting from basic mathematical concepts and algebraic structures we develop

the classical theory of matrices, vectors spaces, and linear maps, culminating in the

proof of the Jordan canonical form. In addition to the characterization of important

special classes of matrices or endomorphisms, the last chapters of the book are

devoted to special topics: Matrix functions and systems of differential equations, the

singular value decomposition, the Kronecker product, and linear matrix equations.

These chapters can be used as starting points of more advanced courses or seminars

in Applied Linear Algebra.

Many people helped us with the first two German editions and this English edition

of the book. In addition to those mentioned in the Preface to the First German

Edition, we would like to particularly thank Olivier Sète, who carefully worked

through the entire draft of the second edition and gave numerous comments, as well

as Leonhard Batzke, Carl De Boor, Sadegh Jokar, Robert Luce, Christian Mehl,

Helia Niroomand Rad, Jan Peter Schäfermeier, Daniel Wachsmuth, and Gisbert

v



Wüstholz. Thanks also to the staff of Springer Spektrum, Heidelberg, and

Springer-Verlag, London, for their support and assistance with editorial aspects of

this English edition.

Berlin Jörg Liesen

July 2015 Volker Mehrmann
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Preface to the First German Edition

Mathematics is the instrument that links theory and practice, thinking and observing;

it establishes the connecting bridge and builds it stronger and stronger. This is why our

entire culture these days, as long as it is concerned with understanding and harnessing

nature, has Mathematics as its foundation.1

This assessment of the famous mathematician David Hilbert (1862–1943) is even

more true today. Mathematics is found not only throughout the classical natural

sciences, Biology, Chemistry and Physics, its methods have become indispensable

in Engineering, Economics, Medicine, and many other areas of life. This continuing

mathematization of the world is possible because of the transversal strength of

Mathematics. The abstract objects and operations developed in Mathematics can be

used for the description and solution of problems in numerous different situations.

While the high level of abstraction of modern Mathematics continuously

increases its potential for applications, it represents a challenge for students. This is

particularly true in the first years, when they have to become familiar with a lot of

new and complicated terminology. In order to get students excited about mathe-

matics and capture their imagination, it is important for us teachers of basic courses

such as Linear Algebra to present Mathematics as a living science in its global

context. The short historical notes in the text and the list of some historical papers at

the end of this book show that Linear Algebra is the result of a human endeavor.

An important guideline of the book is to demonstrate the immediate practical

relevance of the developed theory. Right in the beginning we illustrate several

concepts of Linear Algebra in everyday life situations. We discuss mathematical

basics of the search engine Google and of the premium rate calculations of car

1
“Das Instrument, welches die Vermittlung bewirkt zwischen Theorie und Praxis, zwischen

Denken und Beobachten, ist die Mathematik; sie baut die verbindende Brücke und gestaltet sie

immer tragfähiger. Daher kommt es, dass unsere ganze gegenwärtige Kultur, soweit sie auf der

geistigen Durchdringung und Dienstbarmachung der Natur beruht, ihre Grundlage in der

Mathematik findet.”
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insurances. These and other applications will be investigated in later chapters using

theoretical results. Here the goal is not to study the concrete examples or their

solutions, but the presentation of the transversal strength of mathematical methods

in the Linear Algebra context.

The central object for our approach to Linear Algebra is the matrix, which we

introduce early on, immediately after discussing some of the basic mathematical

foundations. Several chapters deal with some of their most important properties,

before we finally make the big step to abstract vector spaces and homomorphisms.

In our experience the matrix-oriented approach to Linear Algebra leads to a better

intuition and a deeper understanding of the abstract concepts.

The same goal should be reached by the MATLAB-Minutes2 that are scattered

throughout the text and that allow readers to comprehend the concepts and results

via computer experiments. The required basics for these short exercises are intro-

duced in the Appendix. Besides the MATLAB-Minutes there are a large number of

classical exercises, which just require a pencil and paper.

Another advantage of the matrix-oriented approach to Linear Algebra is given

by the simplifications when transferring theoretical results into practical algorithms.

Matrices show up wherever data are systematically ordered and processed, which

happens in almost all future job areas of bachelor students in the mathematical

sciences. This has also motivated the topics in the last chapters of this book: matrix

functions, the singular value decomposition, and the Kronecker product.

Despite many comments on algorithmic and numerical aspects, the focus in this

book is on the theory of Linear Algebra. The German physicist Gustav Robert

Kirchhoff (1824–1887) is attributed to have said:

A good theory is the most practical thing there is.3

This is exactly how we view our approach to the field.

This book is based on our lectures at TU Chemnitz and TU Berlin. We would

like to thank all students, co-workers, and colleagues who helped in preparing and

proofreading the manuscript, in the formulation of exercises, and with the content

of lectures. Our special thanks go to André Gaul, Florian Goßler, Daniel Kreßner,

Robert Luce, Christian Mehl, Matthias Pester, Robert Polzin, Timo Reis, Olivier

Sète, Tatjana Stykel, Elif Topcu, Wolfgang Wülling, and Andreas Zeiser.

We also thank the staff of the Vieweg+Teubner Verlag and, in particular, Ulrike

Schmickler-Hirzebruch, who strongly supported this endeavor.

Berlin Jörg Liesen

July 2011 Volker Mehrmann

2MATLAB® trademark of The MathWorks Inc.
3
“Eine gute Theorie ist das Praktischste, was es gibt.”
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Chapter 1

Linear Algebra in Every Day Life

One has to familiarize the student with actual questions from applications, so that he learns

to deal with real world problems.1

Lothar Collatz (1910–1990)

1.1 The PageRank Algorithm

The PageRank algorithm is a method to assess the “importance” of documents with

mutual links, such as web pages, on the basis of the link structure. It was developed

by Sergei Brin and Larry Page, the founders of Google Inc., at Stanford University

in the late 1990s. The basic idea of the algorithm is the following:

Instead of counting links, PageRank essentially interprets a link of page A to page

B as a vote of page A for page B. PageRank then assesses the importance of a page

by the number of received votes. PageRank also considers the importance of the

page that casts the vote, since votes of some pages have a higher value, and thus also

assign a higher value to the page they point to. Important pages will be rated higher

and thus lead to a higher position in the search results.2

Let us describe (model) this idea mathematically. Our presentation uses ideas from

the article [BryL06]. For a given set of web pages, every page k will be assigned

an importance value xk ≥ 0. A page k is more important than a page j if xk > x j .

If a page k has a link to a page j , we say that page j has a backlink from page k.

In the above description these backlinks are the votes. As an example, consider the

following link structure:

1“Man muss den Lernenden mit konkreten Fragestellungen aus den Anwendungen vertraut machen,

dass er lernt, konkrete Fragen zu behandeln.”
2Translation of a text found in 2010 on http://www.google.de/corporate/tech.html.

© Springer International Publishing Switzerland 2015
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2 1 Linear Algebra in Every Day Life

Here the page 1 has links to the pages 2, 3 and 4, and a backlink from page 3.

The easiest approach to define importance of web pages is to count its backlinks;

the more votes are cast for a page, the more important the page is. In our example

this gives the importance values

x1 = 1, x2 = 3, x3 = 2, x4 = 3.

The pages 2 and 4 are thus the most important pages, and they are equally important.

However, the intuition and also the above description from Google suggests that

backlinks from important pages are more important for the value of a page than those

from less important pages. This idea can be modeled by defining xk as the sum of all

importance values of the backlinks of the page k. In our example this results in four

equations that have to be satisfied simultaneously,

x1 = x3, x2 = x1 + x3 + x4, x3 = x1 + x4, x4 = x1 + x2 + x3.

A disadvantage of this approach is that it does not consider the number of links

of the pages. Thus, it would be possible to (significantly) increase the importance of

a page just by adding links to that page. In order to avoid this, the importance values

of the backlinks in the PageRank algorithm are divided by the number of links of the

corresponding page. This creates a kind of “internet democracy”: Every page can

vote for other pages, where in total it can cast one vote. In our example this gives the

equations

x1 =
x3

3
, x2 =

x1

3
+

x3

3
+

x4

2
, x3 =

x1

3
+

x4

2
, x4 =

x1

3
+ x2 +

x3

3
. (1.1)

These are four equations for the four unknowns, and all equations are linear,3 i.e.,

the unknowns occur only in first power. In Chap. 6 we will see how to write the

equations in (1.1) in form of a linear system of equations. Analyzing and solving

such systems is one of the most important tasks of Linear Algebra. The example of

the PageRank algorithm shows that Linear Algebra presents a powerful modeling

3The term “linear” originates from the Latin word “linea”, which means “(straight) line”, and

“linearis” means “consisting of (straight) lines”.
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tool: We have turned the real world problem of assessing the importance of web

pages into a problem of Linear Algebra. This problem will be examined further in

Sect. 8.3.

For completeness, we mention that a solution for the four unknowns (computed

with MATLAB and rounded to the second significant digit) is given by

x1 = 0.14, x2 = 0.54, x3 = 0.41, x4 = 0.72.

Thus, page 4 is the most important one. It is possible to multiply the solution, i.e., the

importance values xk , by a positive constant. Such a multiplication or scaling is often

advantageous for computational methods or for the visual display of the results. For

example, the scaling could be used to give the most important page the value 1.00.

A scaling is allowed, since it does not change the ranking of the pages, which is the

essential information provided by the PageRank algorithm.

1.2 No Claim Discounting in Car Insurances

Insurance companies compute the premiums for their customers on the basis of the

insured risk: the higher the risk, the higher the premium. It is therefore important to

identify the factors that lead to higher risk. In the case of a car insurance these factors

include the number of miles driven per year, the distance between home and work,

the marital status, the engine power, or the age of the driver. Using such information,

the company calculates the initial premium.

Usually the best indicator for future accidents, and hence future insurance claims,

is the number of accidents of the individual customer in the past, i.e., the claims

history. In order to incorporate this information into the premium rates, insurers

establish a system of risk classes, which divide the customers into homogeneous risk

groups with respect to their previous claims history. Customers with fewer accidents

in the past get a discount on their premium. This approach is called a no claims

discounting scheme.

For a mathematical model of this scheme we need a set of risk classes and a

transition rule for moving between the classes. At the end of a policy year, the

customer may move to a different class depending on the claims made during the

year. The discount is given in percent of the premium in the initial class. As a simple

example we consider four risk classes,

C1 C2 C3 C4

% discount 0 10 20 40

and the following transition rules:

• No accident: Step up one class (or stay in C4).
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• One accident: Step back one class (or stay in C1).

• More than one accident: Step back to class C1 (or stay in C1).

Next, the insurance company has to estimate the probability that a customer who

is in the class Ci in this year will move to the class C j . This probability is denoted

by pi j . Let us assume, for simplicity, that the probability of exactly one accident for

every customer is 0.1, i.e., 10 %, and the probability of two or more accidents for

every customer is 0.05, i.e., 5 %. (Of course, in practice the insurance companies

determine these probabilities in dependence of the classes.)

For example, a customer in the class C1 will stay in C1 in case of at least one

accident. This happens with the probability 0.15, so that p11 = 0.15. A customer in

C1 has no accident with the probability 0.85, so that p12 = 0.85. There is no chance

to move from C1 to C3 or C4 in the next year, so that p13 = p14 = 0.00. In this way

we obtain 16 values pi j , i, j = 1, 2, 3, 4, which we can arrange in a 4 × 4 matrix as

follows:









p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44









=









0.15 0.85 0.00 0.00

0.15 0.00 0.85 0.00

0.05 0.10 0.00 0.85

0.05 0.00 0.10 0.85









. (1.2)

All entries of this matrix are nonnegative real numbers, and the sum of all entries in

each row is equal to 1.00, i.e.,

pi1 + pi2 + pi3 + pi4 = 1.00 for each i = 1, 2, 3, 4.

Such a matrix is called row-stochastic.

The analysis of matrix properties is a central topic of Linear Algebra that is

developed throughout this book. As in the example with the PageRank algorithm,

we have translated a practical problem into the language of Linear Algebra, and we

can now study it using Linear Algebra techniques. This example of premium rates

will be discussed further in Example 4.7.

1.3 Production Planning in a Plant

The production planning in a plant has to consider many different factors, in par-

ticular commodity prices, labor costs, and available capital, in order to determine a

production plan. We consider a simple example:

A company produces the products P1 and P2. If xi units of the product Pi are

produced, where i = 1, 2, then the pair (x1, x2) is called a production plan. Suppose

that the raw materials and labor for the production of one unit of the product Pi

cost a1i and a2i Euros, respectively. If b1 Euros are available for the purchase of raw

materials and b2 Euros for the payment of labor costs, then a production plan must
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satisfy the constraint inequalities

a11x1 + a12x2 ≤ b1,

a21x1 + a22x2 ≤ b2.

If a production plan satisfies these constraints, it is called feasible. Let pi be the profit

from selling one unit of product Pi . Then the goal is to determine a production plan

that maximizes the profit function

�(x1, x2) = p1x1 + p2x2.

How can we find this maximum?

The two equations

a11x1 + a12x2 = b1 and a21x1 + a22x2 = b2

describe straight lines in the coordinate system that has the variables x1 and x2 on its

axes. These two lines form boundary lines of the feasible production plans, which are

“below” the lines; see the figure below. Note that we also must have xi ≥ 0, since we

cannot produce negative units of a product. For planned profits yi , i = 1, 2, 3, . . . ,

the equations p1x1 + p2x2 = yi describe parallel straight lines in the coordinate

system; see the dashed lines in the figure. If x1 and x2 satisfy p1x1 + p2x2 = yi , then

�(x1, x2) = yi . The profit maximization problem can now be solved by moving the

dashed lines until one of them reaches the corner with the maximal y:

In case of more variables we cannot draw such a simple figure and obtain the

solution “graphically”. But the general idea of finding a corner with the maximum

profit is still the same. This is an example of a linear optimization problem. As before,

we have formulated a real world problem in the language of Linear Algebra, and we

can use mathematical methods for its solution.

1.4 Predicting Future Profits

The prediction of profits or losses of a company is a central planning instrument of

economics. Analogous problems arise in many areas of political decision making,
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for example in budget planning, tax estimates or the planning of new infrastructures.

We consider a specific example:

In the four quarters of a year a company has profits of 10, 8, 9, 11 million Euros.

The board now wants to predict the future profits development on the basis of these

values. Evidence suggests, that the profits behave linearly. If this was true, then

the profits would form a straight line y(t) = αt + β that connects the points

(1, 10), (2, 8), (3, 9), (4, 11) in the coordinate system having “time” and “profit”

as its axes. This, however, does neither hold in this example nor in practice. There-

fore one tries to find a straight line that deviates “as little as possible” from the given

points. One possible approach is to choose the parameters α and β in order to mini-

mize the sum of the squared distances between the given points and the straight line.

Once the parameters α and β have been determined, the resulting line y(t) can be

used for estimating or predicting the future profits, as illustrated in the following

figure:

The determination of the parameters α and β that minimize a sum of squares is

called a least squares problem. We will solve least squares problems using meth-

ods of Linear Algebra in Example 12.16. The approach itself is sometimes called a

parameter identification. In Statistics, the modeling of given data (here the company

profits) using a linear predictor function (here y(t) = αt + β) is known as linear

regression.

1.5 Circuit Simulation

The current development of electronic devices is very rapid. In short intervals, nowa-

days often less than a year, new models of laptops or mobile phones have to be issued

to the market. To achieve this, continuously new generations of computer chips have

to be developed. These typically become smaller and more powerful, and naturally

should use as little energy as possible. An important factor in this development is

to plan and simulate the chips virtually, i.e., in the computer and without producing

a physical prototype. This model-based planning and optimization of products is a

central method in many high technology areas, and it is based on modern mathemat-

ics.
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Usually, the switching behavior of a chip is modeled by a mathematical system

consisting of differential and algebraic equations that describe the relation between

currents and voltages. Without going into details, consider the following circuit:

In this circuit description, VS(t) is the given input current at time t , and the

characteristic values of the components are R for the resistor, L for the inductor, and

C for the capacitor. The functions for the potential differences at the three components

are denoted by VR(t), VL(t), and VC(t); I (t) is the current.

Applying the Kirchhoff laws4 of electrical engineering leads to the following

system of linear equations and differential equations that model the dynamic behavior

of the circuit:

L
d

dt
I = VL ,

C
d

dt
VC = I,

R I = VR,

VL + VC + VR = VS.

In this example it is easy to solve the last two equations for VL and VR , and hence

to obtain a system of differential equations

d

dt
I = −

R

L
I −

1

L
VC +

1

L
VS,

d

dt
VC = −

1

C
I,

for the functions I und VC . We will discuss and solve this system in Example 17.13.

This simple example demonstrates that for the simulation of a circuit a system

of linear differential equations and algebraic equations has to be solved. Modern

computer chips in industrial practice require solving such systems with millions

of differential-algebraic equations. Linear Algebra is one of central tools for the

theoretical analysis of such systems as well as the development of efficient solution

methods.

4Gustav Robert Kirchhoff (1824–1887).



Chapter 2

Basic Mathematical Concepts

In this chapter we introduce the mathematical concepts that form the basis for the

developments in the following chapters. We begin with sets and basic mathematical

logic. Then we consider maps between sets and their most important properties.

Finally we discuss relations and in particular equivalence relations on a set.

2.1 Sets and Mathematical Logic

We begin our development with the concept of a set and use the following definition

of Cantor.1

Definition 2.1 A set is a collection M of well determined and distinguishable objects

x of our perception or our thinking. The objects are called the elements of M .

The objects x in this definition are well determined, and therefore we can uniquely

decide whether x belongs to a set M or not. We write x ∈ M if x is an element of the

set M , otherwise we write x /∈ M . Furthermore, the elements are distinguishable,

which means that all elements of M are (pairwise) distinct.

If two objects x and y are equal, then we write x = y, otherwise x �= y. For

mathematical objects we usually have to give a formal definition of equality. As an

example consider the equality of sets; see Definition 2.2 below.

We describe sets with curly brackets { } that contain either a list of the elements,

for example

{red, yellow, green}, {1, 2, 3, 4}, {2, 4, 6, . . . },

1Georg Cantor (1845–1918), one of the founders of set theory. Cantor published this definition in
the journal “Mathematische Annalen” in 1895.

© Springer International Publishing Switzerland 2015
J. Liesen and V. Mehrmann, Linear Algebra, Springer Undergraduate
Mathematics Series, DOI 10.1007/978-3-319-24346-7_2

9
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or a defining property, for example

{x | x is a positive even number},

{x | x is a person owning a bike}.

Some of the well known sets of numbers are denoted as follows:

N = {1, 2, 3, . . . } (the natural numbers),

N0 = {0, 1, 2, . . . } (the natural numbers including zero),

Z = {. . . ,−2,−1, 0, 1, 2, . . . } (the integers),

Q = {x | x = a/b with a ∈ Z and b ∈ N} (the rational numbers),

R = {x | x is a real number} (the real numbers).

The construction and characterization of the real numbers R is usually done in an

introductory course in Real Analysis.

To describe a set via its defining property we formally write {x | P(x)}. Here

P is a predicate which may hold for an object x or not, and P(x) is the assertion

“P holds for x”.

In general, an assertion is a statement that can be classified as either “true” or

“false”. For instance the statement “The set N has infinitely many elements” is true.

The sentence “Tomorrow the weather will be good” is not an assertion, since the

meaning of the term “good weather” is unclear and the weather prediction in general

is uncertain.

The negation of an assertion A is the assertion “not A”, which we denote by ¬A.

This assertion is true if and only if A is false, and false if and only if A is true. For

instance, the negation of the true assertion “The set N has infinitely many elements”

is given by “The set N does not have infinitely many elements” (or “The set N has

finitely many elements”), which is false.

Two assertions A and B can be combined via logical compositions to a new

assertion. The following is a list of the most common logical compositions, together

with their mathematical short hand notation:

Composition Notation Wording

conjunction ∧ A and B

disjunction ∨ A or B

implication ⇒ A implies B

If A then B

A is a sufficient condition for B

B is a necessary condition for A

equivalence ⇔ A and B are equivalent

A is true if and only if B is true

A is necessary and sufficient for B

B is necessary and sufficient for A



2.1 Sets and Mathematical Logic 11

For example, we can write the assertion “x is a real number and x is negative” as

x ∈ R ∧ x < 0. Whether an assertion that is composed of two assertions A and B is

true or false, depends on the logical values of A and B. We have the following table

of logical values (“t” and “f” denote true and false, respectively):

A B A ∧ B A ∨ B A ⇒ B A ⇔ B

t t t t t t

t f f t f f

f t f t t f

f f f f t t

For example, the assertion A ∧ B is true only when A and B are both true. The

assertion A ⇒ B is false only when A is true and B is false. In particular, if A is

false, then A ⇒ B is true, independent of the logical value of B.

Thus, 3 < 5 ⇒ 2 < 4 is true, since 3 < 5 and 2 < 4 are both true. But

3 < 5 ⇒ 2 > 4 is false, since 2 > 4 is false. On the other hand, the assertions

4 < 2 ⇒ 3 > 5 and 4 < 2 ⇒ 3 < 5 are both true, since 4 < 2 is false.

In the following we often have to prove that certain implications A ⇒ B are true.

As the table of logical values shows and the example illustrates, we then only have to

prove that under the assumption that A is true the assertion B is true as well. Instead

of “Assume that A is true” we will often write “Let A hold”.

It is easy to see that

(A ⇒ B) ⇔ (¬B ⇒ ¬A).

(As an exercise create the table of logical values for ¬B ⇒ ¬A and compare it with

the table for A ⇒ B.) The truth of A ⇒ B can therefore be proved by showing that

the truth of ¬B implies the truth of ¬A, i.e., that “B is false” implies “A is false”.

The assertion ¬B ⇒ ¬A is called the contraposition of the assertion A ⇒ B and

the conclusion from A ⇒ B to ¬B ⇒ ¬A is called proof by contraposition.

Together with assertions we also often use so-called quantifiers:

Quantifier Notation Wording

universal ∀ For all

existential ∃ There exists

Now we return to set theory and introduce subsets and the equality of sets.

Definition 2.2 Let M, N be sets.

(1) M is called a subset of N , denoted by M ⊆ N , if every element of M is also an

element of N . We write M � N , if this does not hold.

(2) M and N are called equal, denoted by M = N , if M ⊆ N and N ⊆ M . We

write M �= N is this does not hold.
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(3) M is called a proper subset of N , denoted by M ⊂ N , if both M ⊆ N and

M �= N hold.

Using the notation of mathematical logic we can write this definition as follows:

(1) M ⊆ N ⇔ (∀ x : x ∈ M ⇒ x ∈ N ).

(2) M = N ⇔ (M ⊆ N ∧ N ⊆ M).

(3) M ⊂ N ⇔ (M ⊆ N ∧ M �= N ).

The assertion on the right side of the equivalence in (1) reads as follows: For all

objects x the truth of x ∈ M implies the truth of x ∈ N . Or shorter: For all x , if

x ∈ M holds, then x ∈ N holds.

A very special set is the set with no elements, which we define formally as follows.

Definition 2.3 The set Ø := {x | x �= x} is called the empty set.

The notation “:=” means is defined as. We have introduced the empty set by a

defining property: Every object x with x �= x is any element of Ø. This cannot hold

for any object, and hence Ø does not contain any element. A set that contains at least

one element is called nonempty.

Theorem 2.4 For every set M the following assertions hold:

(1) Ø ⊆ M.

(2) M ⊆ Ø ⇒ M = Ø.

Proof

(1) We have to show that the assertion “∀ x : x ∈ Ø ⇒ x ∈ M” is true. Since there

is no x ∈ Ø, the assertion “x ∈ Ø” is false, and therefore “x ∈ Ø ⇒ x ∈ M” is

true for every x (cp. the remarks on the implication A ⇒ B).

(2) Let M ⊆ Ø. From (1) we know that Ø ⊆ M and hence M = Ø follows by (2)

in Definition 2.2. ⊓⊔

Theorem 2.5 Let M, N , L be sets. Then the following assertions hold for the subset

relation “⊆”:

(1) M ⊆ M (reflexivity).

(2) If M ⊆ N and N ⊆ L, then M ⊆ L (transitivity).

Proof

(1) We have to show that the assertion “∀ x : x ∈ M ⇒ x ∈ M” is true. If “x ∈ M”

is true, then “x ∈ M ⇒ x ∈ M” is an implication with two true assertions, and

hence it is true.

(2) We have to show that the assertion “∀ x : x ∈ M ⇒ x ∈ L” is true. If “x ∈ M”

is true, then also “x ∈ N” is true, since M ⊆ N . The truth of “x ∈ N” implies

that “x ∈ L” is true, since N ⊆ L . Hence the assertion “x ∈ M ⇒ x ∈ L” is

true. ⊓⊔
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Definition 2.6 Let M, N be sets.

(1) The union2 of M and N is M ∪ N := {x | x ∈ M ∨ x ∈ N }.

(2) The intersection of M and N is M ∩ N := {x | x ∈ M ∧ x ∈ N }.

(3) The difference of M and N is M \ N := {x | x ∈ M ∧ x /∈ N }.

If M ∩ N = Ø, then the sets M and N are called disjoint. The set operations union
and intersection can be extended to more than two sets: If I �= Ø is a set and if for
all i ∈ I there is a set Mi , then

⋃

i∈I

Mi := {x | ∃ i ∈ I with x ∈ Mi } and
⋂

i∈I

Mi := {x | ∀ i ∈ I we have x ∈ Mi }.

The set I is called an index set. For I = {1, 2, . . . , n} ⊂ N we write the union and

intersection of the sets M1, M2, . . . , Mn as

n⋃

i=1

Mi and

n⋂

i=1

Mi .

Theorem 2.7 Let M ⊆ N for two sets M, N. Then the following are equivalent:

(1) M ⊂ N.

(2) N \ M �= Ø.

Proof We show that (1) ⇒ (2) and (2) ⇒ (1) hold.

(1) ⇒ (2): Since M �= N , there exists an x ∈ N with x /∈ M . Thus x ∈ N \ M , so

that N \ M �= Ø holds.

(2) ⇒ (1): There exists an x ∈ N with x /∈ M , and hence N �= M . Since M ⊆ N

holds, we see that M ⊂ N holds. ⊓⊔

Theorem 2.8 Let M, N, L be sets. Then the following assertions hold:

(1) M ∩ N ⊆ M and M ⊆ M ∪ N.

(2) Commutativity: M ∩ N = N ∩ M and M ∪ N = N ∪ M.

(3) Associativity: M ∩ (N ∩ L) = (M ∩ N )∩ L and M ∪ (N ∪ L) = (M ∪ N )∪ L.

(4) Distributivity: M ∪ (N ∩ L) = (M ∪ N ) ∩ (M ∪ L) and M ∩ (N ∪ L) =

(M ∩ N ) ∪ (M ∩ L).

(5) M \ N ⊆ M.

(6) M \ (N ∩ L) = (M \ N ) ∪ (M \ L) and M \ (N ∪ L) = (M \ N ) ∩ (M \ L).

Proof Exercise. ⊓⊔

2The notations M ∪ N and M ∩ N for union and intersection of sets M and N were introduced
in 1888 by Giuseppe Peano (1858–1932), one of the founders of formal logic. The notation of the
“smallest common multiple M(M, N )” and “largest common divisor D(M, N )” of the sets M and
N suggested by Georg Cantor (1845–1918) did not catch on.
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Definition 2.9 Let M be a set.

(1) The cardinality of M , denoted by |M |, is the number of elements of M .

(1) The power set of M , denoted by P(M), is the set of all subsets of M , i.e.,

P(M) := {N | N ⊆ M}.

The empty set Ø has cardinality zero and P(Ø) = {Ø}, thus |P(Ø)| = 1. For

M = {1, 3} the cardinality is |M | = 2 and

P(M) = { Ø, {1}, {3}, M },

and hence |P(M)| = 4 = 2|M |. One can show that for every set M with finitely many

elements, i.e., finite cardinality, |P(M)| = 2|M | holds.

2.2 Maps

In this section we discuss maps between sets.

Definition 2.10 Let X, Y be nonempty sets.

(1) A map f from X to Y is a rule that assigns to each x ∈ X exactly one y =

f (x) ∈ Y . We write this as

f : X → Y, x �→ y = f (x).

Instead of x �→ y = f (x) we also write f (x) = y. The sets X and Y are called

domain and codomain of f .

(2) Two maps f : X → Y and g : X → Y are called equal when f (x) = g(x)

holds for all x ∈ X . We then write f = g.

In Definition 2.10 we have assumed that X and Y are nonempty, since otherwise

there can be no rule that assigns an element of Y to each element of X . If one of

these sets is empty, one can define an empty map. However, in the following we will

always assume (but not always explicitly state) that the sets between which a given

map acts are nonempty.

Example 2.11 Two maps from X = R to Y = R are given by

f : X → Y, f (x) = x2, (2.1)

g : X → Y, x �→

{
0, x ≤ 0,

1, x > 0.
(2.2)

To analyze the properties of maps we need some further terminology.
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Definition 2.12 Let X, Y be nonempty sets.

(1) The map IdX : X → X , x �→ x , is called the identity on X .

(2) Let f : X → Y be a map and let M ⊆ X and N ⊆ Y . Then

f (M) := { f (x) | x ∈ M } ⊆ Y is called the image of M under f ,

f −1(N ) := { x ∈ X | f (x) ∈ N } is called the pre-image of N under f .

(3) If f : X → Y , x �→ f (x) is a map and Ø �= M ⊆ X , then f |M : M → Y ,

x �→ f (x), is called the restriction of f to M .

One should note that in this definition f −1(N ) is a set, and hence the symbol f −1

here does not mean the inverse map of f . (This map will be introduced below in

Definition 2.21.)

Example 2.13 For the maps with domain X = R in (2.1) and (2.2) we have the

following properties:

f (X) = {x ∈ R | x ≥ 0}, f −1(R−) = {0}, f −1({−1}) = Ø,

g(X) = {0, 1}, g
−1(R−) = g

−1({0}) = R−,

where R− := {x ∈ R | x ≤ 0}.

Definition 2.14 Let X, Y be nonempty sets. A map f : X → Y is called

(1) injective, if for all x1, x2 ∈ X the equality f (x1) = f (x2) implies that x1 = x2,

(2) surjective, if f (X) = Y ,

(3) bijective, if f is injective and surjective.

For every nonempty set X the simplest example of a bijective map from X to X

is IdX , the identity on X .

Example 2.15 Let R+ := {x ∈ R | x ≥ 0}, then

f : R → R, f (x) = x2, is neither injective nor surjective.

f : R → R+, f (x) = x2, is surjective but not injective.

f : R+ → R, f (x) = x2, is injective but not surjective.

f : R+ → R+, f (x) = x2, is bijective.

In these assertions we have used the continuity of the map f (x) = x2 that is discussed

in the basic courses on analysis. In particular, we have used the fact that continuous

functions map real intervals to real intervals. The assertions also show why it is

important to include the domain and codomain in the definition of a map.

Theorem 2.16 A map f : X → Y is bijective if and only if for every y ∈ Y there

exists exactly one x ∈ X with f (x) = y.

Proof ⇒: Let f be bijective and let y1 ∈ Y . Since f is surjective, there exists an

x1 ∈ X with f (x1) = y1. If some x2 ∈ X also satisfies f (x2) = y1, then x1 = x2



16 2 Basic Mathematical Concepts

follows from the injectivity of f . Therefore, there exists a unique x1 ∈ X with

f (x1) = y1.

⇐: Since for all y ∈ Y there exists a unique x ∈ X with f (x) = y, it follows that

f (X) = Y . Thus, f surjective. Let now x1, x2 ∈ X with f (x1) = f (x2) = y ∈ Y .

Then the assumption implies x1 = x2, so that f is also injective. ⊓⊔

One can show that between two sets X and Y of finite cardinality there exists a

bijective map if and only if |X | = |Y |.

Lemma 2.17 For sets X, Y with |X | = |Y | = m ∈ N, there exist exactly m! :=

1 · 2 · . . . · m pairwise distinct bijective maps between X and Y .

Proof Exercise. ⊓⊔

Definition 2.18 Let f : X → Y , x �→ f (x), and g : Y → Z , y �→ g(y) be maps.

Then the composition of f and g is the map

g ◦ f : X → Z , x �→ g( f (x)).

The expression g ◦ f should be read “g after f ”, which stresses the order of the

composition: First f is applied to x and then g to f (x). One immediately sees that

f ◦ IdX = f = IdY ◦ f for every map f : X → Y .

Theorem 2.19 Let f : W → X, g : X → Y , h : Y → Z be maps. Then

(1) h ◦ (g ◦ f ) = (h ◦ g) ◦ f , i.e., the composition of maps is associative.

(2) If f and g are injective/surjective/bijective, then g ◦ f is injective/

surjective/bijective.

Proof Exercise. ⊓⊔

Theorem 2.20 A map f : X → Y is bijective if and only if there exists a map

g : Y → X with

g ◦ f = IdX and f ◦ g = IdY .

Proof ⇒: If f is bijective, then by Theorem 2.16 for every y ∈ Y there exists an

x = xy ∈ X with f (xy) = y. We define the map g by

g : Y → X, g(y) = xy .

Let ỹ ∈ Y be given, then

( f ◦ g)(ỹ) = f (g(ỹ)) = f (x ỹ) = ỹ, hence f ◦ g = IdY .

If, on the other hand, x̃ ∈ X is given, then ỹ = f (̃x) ∈ Y . By Theorem 2.16, there

exists a unique x ỹ ∈ X with f (x ỹ) = ỹ such that x̃ = x ỹ . So with

(g ◦ f )(̃x) = (g ◦ f )(x ỹ) = g( f (x ỹ)) = g(ỹ) = x ỹ = x̃,
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we have g ◦ f = IdX .

⇐: By assumption g ◦ f = IdX , thus g ◦ f is injective and thus also f is injective

(see Exercise 2.7). Moreover, f ◦ g = IdY , thus f ◦ g is surjective and hence also f

is surjective (see Exercise 2.7). Therefore, f is bijective. ⊓⊔

The map g : Y → X that was characterized in Theorem 2.20 is unique: If there

were another map h : Y → X with h ◦ f = IdX and f ◦ h = IdY , then

h = IdX ◦ h = (g ◦ f ) ◦ h = g ◦ ( f ◦ h) = g ◦ IdY = g.

This leads to the following definition.

Definition 2.21 If f : X → Y is a bijective map, then the unique map g : Y → X

from Theorem 2.20 is called the inverse (or inverse map) of f . We denote the inverse

of f by f −1.

To show that a given map g : Y → X is the unique inverse of the bijective map

f : X → Y , it is sufficient to show one of the equations g ◦ f = IdX or f ◦ g = IdY .

Indeed, if f is bijective and g ◦ f = IdX , then

g = g ◦ IdY = g ◦ ( f ◦ f −1) = (g ◦ f ) ◦ f −1 = IdX ◦ f −1 = f −1.

In the same way g = f −1 follows from the assumption f ◦ g = IdY .

Theorem 2.22 If f : X → Y and g : Y → Z are bijective maps, then the following

assertions hold:

(1) f −1 is bijective with ( f −1)−1 = f .

(2) g ◦ f is bijective with (g ◦ f )−1 = f −1 ◦ g
−1.

Proof

(1) Exercise.

(2) We know from Theorem 2.19 that g ◦ f : X → Z is bijective. Therefore, there

exists a (unique) inverse of g ◦ f . For the map f −1 ◦ g
−1 we have

( f −1 ◦ g
−1) ◦ (g ◦ f ) = f −1 ◦

(
g

−1 ◦ (g ◦ f )
)

= f −1 ◦
(
(g−1 ◦ g) ◦ f

)

= f −1 ◦ (IdY ◦ f ) = f −1 ◦ f = IdX .

Hence, f −1 ◦ g
−1 is the inverse of g ◦ f . ⊓⊔

2.3 Relations

We first introduce the cartesian product3 of two sets.

3Named after René Descartes (1596–1650), the founder of Analytic Geometry. Georg Cantor (1845–
1918) used in 1895 the name “connection set of M and N” and the notation (M.N ) = {(m, n)}.
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Definition 2.23 If M, N are nonempty sets, then the set

M × N := {(x, y) | x ∈ M ∧ y ∈ N }

is the cartesian product of M and N . An element (x, y) ∈ M × N is called an

(ordered) pair.

We can easily generalize this definition to n ∈ N nonempty sets M1, . . . , Mn:

M1 × . . . × Mn := {(x1, . . . , xn) | xi ∈ Mi for i = 1, . . . , n},

where an element (x1, . . . , xn) ∈ M1 × · · · × Mn is called an (ordered) n-tuple. The

n-fold cartesian product of a single nonempty set M is

Mn := M × . . . × M︸ ︷︷ ︸
n times

= {(x1, . . . , xn) | xi ∈ M for i = 1, . . . , n}.

If in these definitions at least one of the sets is empty, then the resulting cartesian

product is the empty set as well.

Definition 2.24 If M, N are nonempty sets then a set R ⊆ M ×N is called a relation

between M and N . If M = N , then R is called a relation on M . Instead of (x, y) ∈ R

we also write x ∼R y or x ∼ y, if it is clear which relation is considered.

If in this definition at least one of the sets M and N is empty, then every relation

between M and N is also the empty set, since then M × N = Ø.

If, for instance M = N and N = Q, then

R = {(x, y) ∈ M × N | xy = 1}

is a relation between M and N that can be expressed as

R = {(1, 1), (2, 1/2), (3, 1/3), . . . } = {(n, 1/n) | n ∈ N}.

Definition 2.25 A relation R on a set M is called

(1) reflexive, if x ∼ x holds for all x ∈ M ,

(2) symmetric, if (x ∼ y) ⇒ (y ∼ x) holds for all x, y ∈ M ,

(3) transitive, if (x ∼ y ∧ y ∼ z) ⇒ (x ∼ z) holds for all x, y, z ∈ M .

If R is reflexive, transitive and symmetric, then it is called an equivalence relation

on M .

Example 2.26

(1) Let R = {(x, y) ∈ Q2 | x = −y}. Then R is not reflexive, since x = −x holds

only for x = 0. If x = −y, then also y = −x , and hence R is symmetric.

Finally, R is not transitive. For example, (x, y) = (1,−1) ∈ R and (y, z) =

(−1, 1) ∈ R, but (x, z) = (1, 1) /∈ R.
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(2) The relation R = {(x, y) ∈ Z2 | x ≤ y} is reflexive and transitive, but not

symmetric.

(3) If f : R → R is a map, then R = {(x, y) ∈ R2 | f (x) = f (y)} is an

equivalence relation on R.

Definition 2.27 let R be an equivalence relation on the set M . Then, for x ∈ M the

set

[x]R := {y ∈ M | (x, y) ∈ R} = {y ∈ M | x ∼ y}

is called the equivalence class of x with respect to R. The set of equivalence classes

M/R := {[x]R | x ∈ M}

is called the quotient set of M with respect to R.

The equivalence class [x]R of elements x ∈ M is never the empty set, since always

x ∼ x (reflexivity) and therefore x ∈ [x]R . If it is clear which equivalence relation

R is meant, we often write [x] instead oft [x]R and also skip the additional “with

respect to R”.

Theorem 2.28 If R is an equivalence relation on the set M and if x, y ∈ M, then

the following are equivalent:

(1) [x] = [y].

(2) [x] ∩ [y] �= Ø.

(3) x ∼ y.

Proof

(1) ⇒ (2) : Since x ∼ x , it follows that x ∈ [x]. From [x] = [y] it follows that

x ∈ [y] and thus x ∈ [x] ∩ [y].

(2) ⇒ (3) : Since [x] ∩ [y] �= Ø, there exists a z ∈ [x] ∩ [y]. For this element z we

have x ∼ z and y ∼ z, and thus x ∼ z and z ∼ y (symmetry) and, therefore,

x ∼ y (transitivity).

(3) ⇒ (1) : Let x ∼ y and z ∈ [x], i.e., x ∼ z. Using symmetry and transitivity, we

obtain y ∼ z, and hence z ∈ [y]. This means that [x] ⊆ [y]. In an analogous

way one shows that [y] ⊆ [x], and hence [x] = [y] holds. ⊓⊔

Theorem 2.28 shows that for two equivalence classes [x] and [y] we have either

[x] = [y] or [x]∩[y] = Ø. Thus every x ∈ M is contained in exactly one equivalence

class (namely in [x]), so that an equivalence relation R yields a partitioning or

decomposition of M into mutually disjoint subsets. Every element of [x] is called a

representative of the equivalence class [x]. A very useful and general approach that

we will often use in this book is to partition a set of objects (e.g. sets of matrices) into

equivalence classes, and to find in each such class a representative with a particularly

simple structure. Such a representative is called a normal form with respect to the

given equivalence relation.
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Example 2.29 For a given number n ∈ N the set

Rn := {(a, b) ∈ Z2 | a − b is divisible by n without remainder}

is an equivalence relation on Z, since the following properties hold:

• Reflexivity: a − a = 0 is divisible by n without remainder.

• Symmetry: If a − b is divisible by n without remainder, then also b − a.

• Transitivity: Let a − b and b − c be divisible by n without remainder and write

a − c = (a − b)+ (b − c). Both summands on the right are divisible by n without

remainder and hence this also holds for a − c.

For a ∈ Z the equivalence class [a] is called residue class of a modulo n, and

[a] = a + nZ := {a + nz | z ∈ Z}. The equivalence relation Rn yields a partitioning

of Z into n mutually disjoint subsets. In particular, we have

[0] ∪ [1] ∪ · · · ∪ [n − 1] =

n−1⋃

a=0

[a] = Z.

The set of all residue classes modulo n, i.e., the quotient set with respect to Rn , is

often denoted by Z/nZ. Thus, Z/nZ := {[0], [1], . . . , [n − 1]}. This set plays an

important role in the mathematical field of Number Theory.

Exercises

2.1 Let A, B, C be assertions. Show that the following assertions are true:

(a) For ∧ and ∨ the associative laws

[(A ∧ B) ∧ C] ⇔ [A ∧ (B ∧ C)], [(A ∨ B) ∨ C] ⇔ [A ∨ (B ∨ C)]

hold.

(b) For ∧ and ∨ the commutative laws

(A ∧ B) ⇔ (B ∧ A), (A ∨ B) ⇔ (B ∨ A)

hold.
(c) For ∧ and ∨ the distributive laws

[(A ∧ B) ∨ C] ⇔ [(A ∨ C) ∧ (B ∨ C)], [(A ∨ B) ∧ C] ⇔ [(A ∧ C) ∨ (B ∧ C)]

hold.

2.2 Let A, B, C be assertions. Show that the following assertions are true:

(a) A ∧ B ⇒ A.

(b) [A ⇔ B] ⇔ [(A ⇒ B) ∧ (B ⇒ A)].
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(c) ¬(A ∨ B) ⇔ [(¬A) ∧ (¬B)].

(d) ¬(A ∧ B) ⇔ [(¬A) ∨ (¬B)].

(e) [(A ⇒ B) ∧ (B ⇒ C)] ⇒ [A ⇒ C].

(f) [A ⇒ (B ∨ C)] ⇔ [(A ∧ ¬B) ⇒ C].

(The assertions (c) and (d) are called the De Morgan laws for ∧ and ∨.)

2.3 Prove Theorem 2.8.

2.4 Show that for two sets M, N the following holds:

N ⊆ M ⇔ M ∩ N = N ⇔ M ∪ N = M.

2.5 Let X, Y be nonempty sets, U, V ⊆ Y nonempty subsets and let f : X → Y

be a map. Show that f −1(U ∩ V ) = f −1(U ) ∩ f −1(V ). Let U, V ⊆ X be

nonempty. Check whether f (U ∪ V ) = f (U ) ∪ f (V ) holds.

2.6 Are the following maps injective, surjective, bijective?

(a) f1 : R \ {0} → R, x �→ 1
x
.

(b) f2 : R2 → R, (x, y) �→ x + y.

(c) f3 : R2 → R, (x, y) �→ x2 + y2 − 1.

(d) f4 : N → Z, n �→

{
n
2
, n even,

− n−1
2

, n odd.

2.7 Show that for two maps f : X → Y and g : Y → Z the following assertions

hold:

(a) g ◦ f is surjective ⇒ g is surjective.

(b) g ◦ f is injective ⇒ f is injective.

2.8 Let a ∈ Z be given. Show that the map fa : Z → Z, fa(x) = x + a is

bijective.

2.9 Prove Lemma 2.17.

2.10 Prove Theorem 2.19.

2.11 Prove Theorem 2.22 (1).

2.12 Find two maps f, g : N → N, so that simultaneously

(a) f is not surjective,

(b) g is not injective, and

(c) g ◦ f is bijective.

2.13 Determine all equivalence relations on the set {1, 2}.

2.14 Determine a symmetric and transitive relation on the set {a, b, c} that is not

reflexive.



Chapter 3

Algebraic Structures

An algebraic structure is a set with operations between its elements that follow certain

rules. As an example of such a structure consider the integers and the operation ‘+.’

What are the properties of this addition? Already in elementary school one learns

that the sum a + b of two integers a and b is another integer. Moreover, there is

a number 0 such that 0 + a = a for every integer a, and for every integer a there

exists an integer −a such that (−a) + a = 0. The analysis of the properties of such

concrete examples leads to definitions of abstract concepts that are built on a few

simple axioms. For the integers and the operation addition, this leads to the algebraic

structure of a group.

This principle of abstraction from concrete examples is one of the strengths and

basic working principles of Mathematics. By “extracting and completely expos-

ing the mathematical kernel” (David Hilbert) we also simplify our further work:

Every proved assertion about an abstract concept automatically holds for all con-

crete examples. Moreover, by combining defined concepts we can move to further

generalizations and in this way extend the mathematical theory step by step. Her-

mann Günther Graßmann (1809–1877) described this procedure as follows1: “... the

mathematical method moves forward from the simplest concepts to combinations of

them and gains via such combinations new and more general concepts.”

3.1 Groups

We begin with a set and an operation with specific properties.

Definition 3.1 A group is a set G with a map, called operation,

⊕ : G × G → G, (a, b) �→ a ⊕ b,

1“... die mathematische Methode hingegen schreitet von den einfachsten Begriffen zu den zusam-
mengesetzteren fort, and gewinnt so durch Verknüpfung des Besonderen neue and allgemeinere
Begriffe.”

© Springer International Publishing Switzerland 2015
J. Liesen and V. Mehrmann, Linear Algebra, Springer Undergraduate
Mathematics Series, DOI 10.1007/978-3-319-24346-7_3
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that satisfies the following:

(1) The operation ⊕ is associative, i.e., (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) holds for all

a, b, c ∈ G.

(2) There exists an element e ∈ G, called a neutral element, for which

(a) e ⊕ a = a for all a ∈ G, and

(b) for every a ∈ G there exists an ã ∈ G, called an inverse element of a, with

ã ⊕ a = e.

If a ⊕ b = b ⊕ a holds for all a, b ∈ G, then the group is called commutative or

Abelian.2

As short hand notation for a group we use (G,⊕) or just G, if is clear which

operation is used.

Theorem 3.2 For every group (G,⊕) the following assertions hold:

(1) If e ∈ G is a neutral element and if a, ã ∈ G with ã⊕a = e, then also a⊕ ã = e.

(2) If e ∈ G is a neutral element and if a ∈ G, then also a ⊕ e = a.

(3) G contains exactly one neutral element.

(4) For every a ∈ G there exists a unique inverse element.

Proof

(1) Let e ∈ G be a neutral element and let a, ã ∈ G satisfy ã ⊕ a = e. Then by

Definition 3.1 there exists an element a1 ∈ G with a1 ⊕ ã = e. Thus,

a ⊕ ã = e ⊕ (a ⊕ ã) = (a1 ⊕ ã) ⊕ (a ⊕ ã)a1 ⊕ ((̃a ⊕ a) ⊕ ã)

= a1 ⊕ (e ⊕ ã) = a1 ⊕ ã = e.

(2) Let e ∈ G be a neutral element and let a ∈ G. Then there exists ã ∈ G with

ã ⊕ a = e. By (1) then also a ⊕ ã = e and it follows that

a ⊕ e = a ⊕ (̃a ⊕ a) = (a ⊕ ã) ⊕ a = e ⊕ a = a.

(3) Let e, e1 ∈ G be two neutral elements. Then e1 ⊕ e = e, since e1 is a neutral

element. Since e is also a neutral element, it follows that e1 = e ⊕ e1 = e1 ⊕ e,

where for the second identity we have used assertion (2). Hence, e = e1.

(4) Let ã, a1 ∈ G be two inverse elements of a ∈ G and let e ∈ G be the (unique)

neutral element. Then with (1) and (2) it follows that

ã = e ⊕ ã = (a1 ⊕ a) ⊕ ã = a1 ⊕ (a ⊕ ã) = a1 ⊕ e = a1. ⊓⊔

2Named after Niels Henrik Abel (1802–1829), the founder of group theory.
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Example 3.3

(1) (Z,+), (Q,+) and (R,+) are commutative groups. In all these groups the neu-

tral element is the number 0 (zero) and the inverse of a is the number −a. Instead

of a + (−b) we usually write a − b. Since the operation is the addition, these

groups are also called additive groups.

The natural numbers N with the addition do not form a group, since there is no

neutral element in N. If we consider the set N0, which includes also the number

0 (zero), then 0 + a = a + 0 = a for all a ∈ N0, but only a = 0 has an inverse

element in N. Hence also N0 with the addition does not form a group.

(2) The sets Q \ {0} and R \ {0} with the usual multiplication form commutative

groups. In these multiplicative groups, the neutral element is the number 1 (one)

and the inverse element of a is the number 1
a

(or a−1). Instead of a · b−1 we also

write a
b

or a/b.

The integers Z with the multiplication do not form a group. The set Z includes

the number 1, for which 1 · a = a · 1 = a for all a ∈ Z, but no a ∈ Z \ {−1, 1}

has an inverse element in Z.

Definition 3.4 Let (G,⊕) be a group and H ⊆ G. If (H,⊕) is a group, then it is

called a subgroup of (G,⊕).

The next theorem gives an alternative characterization of a subgroup.

Theorem 3.5 (H,⊕) is a subgroup of the group (G,⊕) if and only if the following

properties hold:

(1) Ø 	= H ⊆ G.

(2) a ⊕ b ∈ H for all a, b ∈ H.

(3) For every a ∈ H also the inverse element satisfies ã ∈ H.

Proof Exercise. ⊓⊔

The following definition characterizes maps between two groups which are com-

patible with the respective group operations.

Definition 3.6 Let (G1,⊕) and (G2,⊛) be groups. A map

ϕ : G1 → G2, g �→ ϕ(g),

is called a group homomorphism, if

ϕ(a ⊕ b) = ϕ(a) ⊛ ϕ(b) for all a, b ∈ G1.

A bijective group homomorphism is called a group isomorphism.
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3.2 Rings and Fields

In this section we extend the concept of a group and discuss mathematical structures

that are characterized by two operations. As motivating example consider the integers

with the addition, i.e., the group (Z,+). We can multiply the elements of Z and this

multiplication is associative, i.e., (a ·b) ·c = a ·(b ·c) for all a, b, c ∈ Z. Furthermore

the addition and multiplication satisfy the distributive laws a · (b + c) = a · b + a · c

and (a + b) · c = a · c + b · c for all integers a, b, c. These properties make Z with

addition and multiplication into a ring.

Definition 3.7 A ring is a set R with two operations

+ : R × R → R, (a, b) �→ a + b, (addition)

∗ : R × R → R, (a, b) �→ a ∗ b, (multiplication)

that satisfy the following:

(1) (R,+) is a commutative group.

We call the neutral element in this group zero, and write 0. We denote the inverse

element of a ∈ R by −a, and write a − b instead of a + (−b).

(2) The multiplication is associative, i.e., (a ∗b)∗ c = a ∗ (b ∗ c) for all a, b, c ∈ R.

(3) The distributive laws hold, i.e., for all a, b, c ∈ R we have

a ∗ (b + c) = a ∗ b + a ∗ c,

(a + b) ∗ c = a ∗ c + b ∗ c.

A ring is called commutative if a ∗ b = b ∗ a for all a, b ∈ R.

An element 1 ∈ R is called unit if 1 ∗ a = a ∗ 1 = a for all a ∈ R. In this case R is

called a ring with unit.

On the right hand side of the two distributive laws we have omitted the parentheses,

since multiplication is supposed to bind stronger than addition, i.e., a + (b ∗ c) =

a + b ∗ c. If it is useful for illustration purposes we nevertheless use parentheses,

e.g., we sometimes write (a ∗ b) + (c ∗ d) instead of a ∗ b + c ∗ d.

Analogous to the notation for groups we denote a ring with (R,+, ∗) or just with

R, if the operations are clear from the context.

In a ring with unit, the unit element is unique: If 1, e ∈ R satisfy 1∗a = a ∗1 = a

and e ∗ a = a ∗ e = a for all a ∈ R, then in particular e = e ∗ 1 = 1.

For a1, a2, . . . , an ∈ R we use the following abbreviations for the sum and product

of these elements:

n∑

j=1

a j := a1 + a2 + . . . + an and

n∏

j=1

a j := a1 ∗ a2 ∗ . . . ∗ an.



3.2 Rings and Fields 27

Moreover, an :=
∏n

j=1 a for all a ∈ R and n ∈ N. If ℓ > k, then we define the

empty sum as
k∑

j=ℓ

a j := 0.

In a ring with unit we also define for ℓ > k the empty product as

k∏

j=ℓ

a j := 1.

Theorem 3.8 For every ring R the following assertions hold:

(1) 0 ∗ a = a ∗ 0 = 0 for all a ∈ R.

(2) a ∗ (−b) = −(a ∗ b) = (−a) ∗ b and (−a) ∗ (−b) = a ∗ b for all a, b ∈ R.

Proof

(1) For every a ∈ R we have 0 ∗ a = (0 + 0) ∗ a = (0 ∗ a) + (0 ∗ a). Adding

−(0 ∗ a) on the left and right hand sides of this equality we obtain 0 = 0 ∗ a. In

the same way we can show that a ∗ 0 = 0 for all a ∈ R.

(2) Since (a ∗b)+ (a ∗ (−b)) = a ∗ (b+ (−b)) = a ∗0 = 0, it follows that a ∗ (−b)

is the (unique) additive inverse of a ∗ b, i.e., a ∗ (−b) = −(a ∗ b). In the same

way we can show that (−a) ∗ b = −(a ∗ b). Furthermore, we have

0 = 0 ∗ (−b) = (a + (−a)) ∗ (−b) = a ∗ (−b) + (−a) ∗ (−b)

= −(a ∗ b) + (−a) ∗ (−b),

and thus (−a) ∗ (−b) = a ∗ b. ⊓⊔

It is immediately clear that (Z,+, ∗) is a commutative ring with unit. This is the

standard example, by which the concept of a ring was modeled.

Example 3.9 Let M be a nonempty set and let R be the set of maps f : M → R.

Then (R,+, ∗) with the operations

+ : R × R → R, ( f, g) �→ f + g, ( f + g)(x) := f (x) + g(x),

∗ : R × R → R, ( f, g) �→ f ∗ g, ( f ∗ g)(x) := f (x) · g(x),

is a commutative ring with unit. Here f (x) + g(x) and f (x) · g(x) are the sum and

product of two real numbers. The zero in this ring is the map 0R : M → R, x �→ 0,

and the unit is the map 1R : M → R, x �→ 1, where 0 and 1 are the real numbers

zero and one.

In the definition of a ring only additive inverse elements occur. We will now

formally define the concept of a multiplicative inverse.
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Definition 3.10 Let (R,+, ∗) be a ring with unit. An element b ∈ R is called an

inverse of a ∈ R (with respect to ∗), if a ∗ b = b ∗ a = 1. An element of R that has

an inverse is called invertible.

It is clear from the definition that b ∈ R is an inverse of a ∈ R if and only if

a ∈ R is an inverse of b ∈ R. In general, however, not every element in a ring must

be (or is) invertible. But if an element is invertible, then it has a unique inverse, as

shown in the following theorem.

Theorem 3.11 Let (R,+, ∗) be a ring with unit.

(1) If a ∈ R is invertible, then the inverse is unique and we denote it by a−1.

(2) If a, b ∈ R are invertible then a ∗ b ∈ R is invertible and (a ∗ b)−1 = b−1 ∗ a−1.

Proof

(1) If b, b̃ ∈ R are inverses of a ∈ R, then b = b ∗ 1 = b ∗ (a ∗ b̃) = (b ∗ a) ∗ b̃ =

1 ∗ b̃ = b̃.

(2) Since a and b are invertible, b−1 ∗ a−1 ∈ R is well defined and

(b−1 ∗ a−1)∗(a ∗ b) = ((b−1 ∗ a−1)∗ a)∗b = (b−1 ∗ (a−1∗ a))∗ b = b−1∗ b = 1.

In the same way we can show that (a ∗ b) ∗ (b−1 ∗ a−1) = 1, and thus

(a ∗ b)−1 = b−1 ∗ a−1. ⊓⊔

From an algebraic point of view the difference between the integers on the one

hand, and the rational or real numbers on the other, is that in the sets Q and R every

element (except for the number zero) is invertible. This “additional structure” makes

Q and R into fields.

Definition 3.12 A commutative ring R with unit is called a field, if 0 	= 1 and every

a ∈ R \ {0} is invertible.

By definition, every field is a commutative ring with unit, but the converse does

not hold. One can also introduce the concept of a field based on the concept of a

group (cp. Exercise 3.15).

Definition 3.13 A field is a set K with two operations

+ : K × K → K , (a, b) �→ a + b, (addition)

∗ : K × K → K , (a, b) �→ a ∗ b, (multiplication)



3.2 Rings and Fields 29

that satisfy the following:

(1) (K ,+) is a commutative group.

We call the neutral element in this group zero, and write 0. We denote the inverse

element of a ∈ K by −a, and write a − b instead of a + (−b).

(2) (K \ {0}, ∗) is a commutative group.

We call the neutral element in this group unit, and write 1. We denote the inverse

element of a ∈ K \ {0} by a−1.

(3) The distributive laws hold, i.e., for all a, b, c ∈ K we have

a ∗ (b + c) = a ∗ b + a ∗ c,

(a + b) ∗ c = a ∗ c + b ∗ c.

We now show a few useful properties of fields.

Lemma 3.14 For every field K the following assertions hold:

(1) K has at least two elements.

(2) 0 ∗ a = a ∗ 0 = 0 for all a ∈ K .

(3) a ∗ b = a ∗ c and a 	= 0 imply that b = c for all a, b, c ∈ K .

(4) a ∗ b = 0 imply that a = 0 or b = 0 for all a, b ∈ K .

Proof

(1) This follows from the definition, since 0, 1 ∈ K with 0 	= 1.

(2) This has already been shown for rings (cp. Theorem 3.8).

(3) Since a 	= 0, we know that a−1 exists. Multiplying both sides of a ∗ b = a ∗ c

from the left with a−1 yields b = c.

(4) Suppose that a ∗ b = 0. If a = 0, then we are finished. If a 	= 0, then a−1 exists

and multiplying both sides of a ∗ b = 0 from the left with a−1 yields b = 0. ⊓⊔

For a ring R an element a ∈ R is called a zero divisor,3 if a b ∈ R \ {0} exists

with a ∗ b = 0. The element a = 0 is called the trivial zero divisor. Property (4) in

Lemma 3.14 means that fields contain only the trivial zero divisor. There are also

rings in which property (4) holds, for instance the ring of integers Z. In later chapters

we will encounter rings of matrices that contain non-trivial zero divisors (see e.g. the

proof of Theorem 4.9 below).

The following definition is analogous to the concepts of a subgroup (cp. Defini-

tion 3.4) and a subring (cp. Excercise 3.14).

Definition 3.15 Let (K ,+, ∗) be a field and L ⊆ K . If (L ,+, ∗) is a field, then it

is called a subfield of (K ,+, ∗).

As two very important examples for algebraic concepts discussed above we now

discuss the field of complex numbers and the ring of polynomials.

3The concept of zero divisors was introduced in 1883 by Karl Theodor Wilhelm Weierstraß (1815–
1897).
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Example 3.16 The set of complex numbers is defined as

C := { (x, y) | x, y ∈ R } = R × R.

On this set we define the following operations as addition and multiplication:

+ : C × C → C, (x1, y1) + (x2, y2) := (x1 + x2, y1 + y2),

· : C × C → C, (x1, y1) · (x2, y2) := (x1 · x2 − y1 · y2, x1 · y2 + x2 · y1).

On the right hand sides we here use the addition and the multiplication in the field

R. Then (C,+, ·) is a field with the neutral elements with respect to addition and

multiplication given by

0C = (0, 0),

1C = (1, 0),

and the inverse elements with respect to addition and multiplication given by

−(x, y) = (−x,−y) for all (x, y) ∈ C,

(x, y)−1 =

(
x

x2 + y2
,−

y

x2 + y2

)
for all (x, y) ∈ C \ {(0, 0)}.

In the multiplicative inverse element we have written a
b

instead of a · b−1, which is

the common notation in R.

Considering the subset L := {(x, 0) | x ∈ R} ⊂ C, we can identify every x ∈ R

with an element of the set L via the (bijective) map x �→ (x, 0). In particular,

0R �→ (0, 0) = 0C and 1R �→ (1, 0) = 1C. Thus, we can interpret R as subfield of C

(although R is not really a subset of C), and we do not have to distinguish between

the zero and unit elements in R and C.

A special complex number is the imaginary unit (0, 1), which satisfies

(0, 1) · (0, 1) = (0 · 0 − 1 · 1, 0 · 1 + 0 · 1) = (−1, 0) = −1.

Here again we have identified the real number −1 with the complex number (−1, 0).

The imaginary unit is denoted by i, i.e.,

i := (0, 1),

and hence we can write i2 = −1. Using the identification of x ∈ R with (x, 0) ∈ C

we can write z = (x, y) ∈ C as

(x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1) · (y, 0) = x + iy = Re(z) + i Im(z).
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In the last expression Re(z) = x and Im(z) = y are the abbreviations for real

part and imaginary part of the complex number z = (x, y). Since (0, 1) · (y, 0) =

(y, 0) · (0, 1), i.e., iy = yi, it is justified to write the complex number x + iy as

x + yi.
For a given complex number z = (x, y) or z = x + iy the number z := (x,−y),

respectively z := x − iy, is called the associated complex conjugate number. Using
the (real) square root, the modulus or absolute value of a complex number is defined
as

|z| := (zz)1/2 =
(
(x + iy) (x − iy)

)1/2
=

(
x2 − ixy + iyx − i2 y2

)1/2
= (x2 + y2)1/2.

(Again, for simplification we have omitted the multiplication sign between two com-

plex numbers.) This equation shows that the absolute value of a complex number is

a nonnegative real number. Further properties of complex numbers are stated in the

exercises at the end of this chapter.

Example 3.17 Let (R,+, ·) be a commutative ring with unit. A polynomial over R

and in the indeterminate or variable t is an expression of the form

p = α0 · t0 + α1 · t1 + . . . + αn · tn,

where α0,α1, . . . ,αn ∈ R are the coefficients of the polynomial. Instead of α0 · t0,

t1 and α j · t j we often just write α0, t and α j t
j . The set of all polynomials over R

is denoted by R[t].

Let

p = α0 + α1 · t + . . . + αn · tn, q = β0 + β1 · t + . . . + βm · tm

be two polynomials in R[t] with n ≥ m. If n > m, then we set β j = 0 for j =

m + 1, . . . , n and call p and q equal, written p = q, if α j = β j for j = 0, 1, . . . , n.

In particular, we have

α0 + α1 · t + . . . + αn · tn = αn · tn + . . . + α1 · t + α0,

0 + 0 · t + . . . + 0 · tn = 0.

The degree of the polynomial p = α0 + α1 · t + . . . + αn · tn , denoted by deg(p),

is defined as the largest index j , for which α j 	= 0. If no such index exists, then the

polynomial is the zero polynomial p = 0 and we set deg(p) := −∞.

Let p, q ∈ R[t] as above have degrees n, m, respectively, with n ≥ m. If n > m,

then we again set β j = 0, j = m + 1, . . . , n. We define the following operations on

R[t]:
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p + q := (α0 + β0) + (α1 + β1) · t + . . . + (αn + βn) · tn,

p ∗ q := γ0 + γ1 · t + . . . + γn+m · tn+m, γk :=
∑

i+ j=k

αiβ j .

With these operations (R[t],+, ∗) is a commutative ring with unit. The zero is given

by the polynomial p = 0 and the unit is p = 1 · t0 = 1. But R[t] it is not a field,

since not every polynomial p ∈ R[t] \ {0} is invertible, not even if R is a field. For

example, for p = t and any other polynomial q = β0 + β1t + . . . + βm tm ∈ R[t]

we have

p ∗ q = β0t + β1t2 + . . . + βm tm+1 	= 1,

and hence p is not invertible.

In a polynomial we can “substitute” the variable t by some other object when the

resulting expression can be evaluated algebraically. For example, we may substitute

t by any λ ∈ R and interpret the addition and multiplication as the corresponding

operations in the ring R. This defines a map from R to R by

λ �→ p(λ) = α0 ·λ0 + α1 · λ1 + . . . + αn · λn, λk := λ · . . . · λ︸ ︷︷ ︸
k times

, k = 0, 1, . . . , n,

where λ0 = 1 ∈ R (this is an empty product). Here one should not confuse the ring

element p(λ) with the polynomial p itself, but rather think of p(λ) as an evaluation

of p at λ. We will study the properties of polynomials in more detail later on, and we

will also evaluate polynomials at other objects such as matrices or endomorphisms.

Exercises

3.1 Determine for the following (M,⊕) whether they form a group:

(a) M = {x ∈ R | x > 0} and ⊕ : M × M → M , (a, b) �→ ab.

(b) M = R \ {0} and ⊕ : M × M → M , (a, b) �→ a
b
.

3.2 Let a, b ∈ R, the map

fa,b : R × R → R × R, (x, y) �→ (ax − by, ay),

and the set G = { fa,b | a, b ∈ R, a 	= 0} be given. Show that (G, ◦) is a

commutative group, when the operation ◦ : G × G → G is defined as the

composition of two maps (cp. Definition 2.18).

3.3 Let X 	= Ø be a set and let S(X) = { f : X → X | f is bijective}. Show that

(S(X), ◦) is a group.

3.4 Let (G,⊕) be a group. For a ∈ G denote by −a ∈ G the (unique) inverse

element. Show the following rules for elements of G:

(a) −(−a) = a.

(b) −(a ⊕ b) = (−b) ⊕ (−a).

(c) a ⊕ b1 = a ⊕ b2 ⇒ b1 = b2.

(d) a1 ⊕ b = a2 ⊕ b ⇒ a1 = a2.
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3.5 Prove Theorem 3.5.

3.6 Let (G,⊕) be a group and for a fixed a ∈ G let ZG(a) = {g ∈ G | a ⊕ g =

g ⊕ a}. Show that ZG(a) is a subgroup of G.

(This subgroup of all elements of G that commute with a is called centralizer

of a.)

3.7 Let ϕ : G → H be a group homomorphism. Show the following assertions:

(a) If U ⊆ G is a subgroup, then also ϕ(U ) ⊆ H is a subgroup. If, further-

more, G is commutative, then also ϕ(U ) is commutative (even if H is not

commutative).

(b) If V ⊆ H is a subgroup, then also ϕ−1(V ) ⊆ G is a subgroup.

3.8 Let ϕ : G → H be a group homomorphism and let eG and eH be the neutral

elements of the groups G and H , respectively.

(a) Show that ϕ(eG) = eH .

(b) Let ker(ϕ) := {g ∈ G | ϕ(g) = eH }. Show that ϕ is injective if and only

if ker(ϕ) = {eG}.

3.9 Show the properties in Definition 3.7 for (R,+, ∗) from Example 3.9 in order

to show that (R,+, ∗) is a commutative ring with unit. Suppose that in Example

3.9 we replace the codomain R of the maps by a commutative ring with unit.

Is (R,+, ∗) then still a commutative ring with unit?

3.10 Let R be a ring and n ∈ N. Show the following assertions:

(a) For all a ∈ R we have (−a)n =

{
an, if n is even,

−an, if n is odd.

(b) If there exists a unit in R and if an = 0 for a ∈ R, then 1 − a is invertible.

(An element a ∈ R with an = 0 for some n ∈ N is called nilpotent.)

3.11 Let R be a ring with unit. Show that 1 = 0 if and only if R = {0}.

3.12 Let (R,+, ∗) be a ring with unit and let R× denote the set of all invertible

elements of R.

(a) Show that (R×, ∗) is a group (called the group of units of R).

(b) Determine the sets Z×, K ×, and K [t]×, when K is a field.

3.13 For fixed n ∈ N let nZ = {nk | k ∈ Z} and Z/nZ = {[0], [1], . . . , [n − 1]} be

as in Example 2.29.

(a) Show that nZ is a subgroup of Z.

(b) Define by

⊕ : Z/nZ × Z/nZ → Z/nZ, ([a], [b]) �→ [a] ⊕ [b] = [a + b],

⊙ : Z/nZ × Z/nZ → Z/nZ, ([a], [b]) �→ [a] ⊙ [b] = [a · b],

an addition and multiplication in Z/nZ, (with + and · being the addition

and multiplication in Z). Show the following assertions:
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(i) ⊕ and ⊙ are well defined.

(ii) (Z/nZ,⊕,⊙) is a commutative ring with unit.

(iii) (Z/nZ,⊕,⊙) is a field if and only if n is a prime number.

3.14 Let (R,+, ∗) be a ring. A subset S ⊆ R is called a subring of R, if (S,+, ∗)

is a ring. Show that S is a subring of R if and only if the following properties

hold:

(1) S ⊆ R.

(2) 0R ∈ S.

(3) For all r, s ∈ S also r + s ∈ S and r ∗ s ∈ S.

(4) For all r ∈ S also −r ∈ S.

3.15 Show that the Definitions 3.12 and 3.13 of a field describe the same mathemat-

ical structure.

3.16 Let (K ,+, ∗) be a field. Show that (L ,+, ∗) is a subfield of (K ,+, ∗) (cp.

Definition 3.15), if and only if the following properties hold:

(1) L ⊆ K .

(2) 0K , 1K ∈ L .

(3) a + b ∈ L and a ∗ b ∈ L for all a, b ∈ L .

(4) −a ∈ L for all a ∈ L .

(5) a−1 ∈ L for all a ∈ L \ {0}.

3.17 Show that in a field 1 + 1 = 0 holds if and only if 1 + 1 + 1 + 1 = 0.

3.18 Let (R,+, ∗) be a commutative ring with 1 	= 0 that does not contain non-trivial

zero divisors. (Such a ring is called an integral domain.)

(a) Define on M = R × R \ {0} a relation by

(x, y) ∼ (̂x, ŷ) ⇔ x ∗ ŷ = y ∗ x̂ .

Show that this is an equivalence relation.

(b) Denote the equivalence class [(x, y)] by x
y
. Show that the following maps

are well defined:

⊕ : (M/ ∼) × (M/ ∼) → (M/ ∼) with
x

y
⊕

x̂

ŷ
:=

x ∗ ŷ + y ∗ x̂

y ∗ ŷ
,

⊙ : (M/ ∼) × (M/ ∼) → (M/ ∼) with
x

y
⊙

x̂

ŷ
:=

x ∗ x̂

y ∗ ŷ
,

where M/ ∼denotes the quotient set with respect to∼ (cp. Definition 2.27).

(c) Show that (M/ ∼,⊕,⊙) is a field. (This field is called the quotient field

associated with R.)

(d) Which field is (M/ ∼,⊕,⊙) for R = Z?

3.19 In Exercise 3.18 consider R = K [t], the ring of polynomials over the field K ,

and construct in this way the field of rational functions.
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3.20 Let a = 2 + i ∈ C and b = 1 − 3i ∈ C. Determine −a,−b, a + b, a − b,

a−1, b−1, a−1a, b−1b, ab, ba.

3.21 Show the following rules for the complex numbers:

(a) z1 + z2 = z1 + z2 and z1z2 = z1 z2 for all z1, z2 ∈ C.

(b) z−1 = (z)−1 and Re(z−1) = 1
|z|2

Re(z) for all z ∈ C \ {0}.

3.22 Show that the absolute value of complex numbers satisfies the following prop-

erties:

(a) |z1z2| = |z1| |z2| for all z1, z2 ∈ C.

(b) |z| ≥ 0 for all z ∈ C with equality if and only if z = 0.

(c) |z1 + z2| ≤ |z1| + |z2| for all z1, z2 ∈ C.



Chapter 4

Matrices

In this chapter we define matrices with their most important operations and we study

several groups and rings of matrices. James Joseph Sylvester (1814–1897) coined the

term matrix1 in 1850 and described matrices as “an oblong arrangement of terms”.

The matrix operations defined in this chapter were introduced by Arthur Cayley

(1821–1895) in 1858. His article “A memoir on the theory of matrices” was the first

to consider matrices as independent algebraic objects. In our book matrices form the

central approach to the theory of Linear Algebra.

4.1 Basic Definitions and Operations

We begin with a formal definition of matrices.

Definition 4.1 Let R be a commutative ring with unit and let n, m ∈ N0. An array

of the form

A = [ai j ] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦

1The Latin word “matrix” means “womb”. Sylvester considered matrices as objects “out of which

we may form various systems of determinants” (cp. Chap. 5). Interestingly, the English writer

Charles Lutwidge Dodgson (1832–1898), better known by his pen name Lewis Carroll, objected to

Sylvester’s term and wrote in 1867: “I am aware that the word ‘Matrix’ is already in use to express

the very meaning for which I use the word ‘Block’; but surely the former word means rather the

mould, or form, into which algebraic quantities may be introduced, than an actual assemblage of

such quantities”. Dodgson also objected to the notation ai j for the matrix entries: “…most of the

space is occupied by a number of a’s, which are wholly superfluous, while the only important part

of the notation is reduced to minute subscripts, alike difficult to the writer and the reader.”
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with ai j ∈ R, i = 1, . . . , n, j = 1, . . . , m, is called a matrix of size n × m over R.

The ai j are called the entries or coefficients of the matrix. The set of all such matrices

is denoted by Rn,m .

In the following we usually assume (without explicitly mentioning it) that 1 �= 0

in R. This excludes the trivial case of the ring that contains only the zero element

(cp. Exercise 3.11).

Formally, in Definition 4.1 for n = 0 or m = 0 we obtain “empty matrices” of the

size 0 × m, n × 0 or 0 × 0. We denote such matrices by [ ]. They will be used for

technical reasons in some of the proofs below. When we analyze algebraic properties

of matrices, however, we always consider n, m ≥ 1.

The zero matrix in Rn,m , denoted by 0n,m or just 0, is the matrix that has all its

entries equal to 0 ∈ R.

A matrix of size n × n is called a square matrix or just square. The entries ai i for

i = 1, . . . , n are called the diagonal entries of A. The identity matrix in Rn,n is the

matrix In := [δi j ], where

δi j :=

{
1, if i = j,

0, if i �= j .
(4.1)

is the Kronecker delta-function.2 If it is clear which n is considered, then we just

write I instead of In . For n = 0 we set I0 := [ ].

The i th row of A ∈ Rn,m is [ai1, ai2, . . . , aim] ∈ R1,m , i = 1, . . . , n, where we

use commas for the optical separation of the entries. The j th column of A is

⎡
⎢⎢⎢⎣

a1 j

a2 j

...

anj

⎤
⎥⎥⎥⎦ ∈ Rn,1, j = 1, . . . , m.

Thus, the rows and columns of a matrix are again matrices.

If 1 × m matrices ai := [ai1, ai2, . . . , aim] ∈ R1,m , i = 1, . . . , n, are given, then

we can combine them to the matrix

A =

⎡
⎢⎢⎢⎣

a1

a2

...

an

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦ ∈ Rn,m .

2Leopold Kronecker (1823–1891).
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We then do not write square brackets around the rows of A. In the same way we can

combine the n × 1 matrices

a j :=

⎡
⎢⎢⎢⎣

a1 j

a2 j

...

anj

⎤
⎥⎥⎥⎦ ∈ Rn,1, j = 1, . . . , m,

to the matrix

A = [a1, a2, . . . , am] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦ ∈ Rn,m .

If n1, n2, m1, m2 ∈ N0 and Ai j ∈ Rni ,m j , i, j = 1, 2, then we can combine these

four matrices to the matrix

A =

[
A11 A12

A21 A22

]
∈ Rn1+n2,m1+m2 .

The matrices Ai j are then called blocks of the block matrix A.

We now introduce four operations for matrices and begin with the addition:

+ : Rn,m × Rn,m → Rn,m, (A, B) �→ A + B := [ai j + bi j ].

The addition in Rn,m operates entrywise, based on the addition in R. Note that the

addition is only defined for matrices of equal size.

The multiplication of two matrices is defined as follows:

∗ : Rn,m × Rm,s → Rn,s, (A, B) �→ A ∗ B = [ci j ], ci j :=

m∑

k=1

aikbk j .

Thus, the entry ci j of the product A ∗ B is constructed by successive multiplication

and summing up the entries in the i th row of A and the j th column of B. Clearly, in

order to define the product A ∗ B, the number of columns of A must be equal to the

number of rows in B.

In the definition of the entries ci j of the matrix A ∗ B we have not written the

multiplication symbol for the elements in R. This follows the usual convention of

omitting the multiplication sign when it is clear which multiplication is considered.

Eventually we will also omit the multiplication sign between matrices.
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We can illustrate the multiplication rule “ci j equals i th row of A times j th column

of B” as follows:

⎡
⎢⎣

b11

...

bm1

· · ·

· · ·

⎡
⎢⎣

b1 j

...

bmj

⎤
⎥⎦

· · ·

· · ·

b1s

...

bms

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1m

...
...

[ ai1 · · · aim ]
...

...

an1 · · · anm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

↓

−→ ci j

⎤
⎥⎥⎥⎥⎥⎦

It is important to note that the matrix multiplication in general is not commutative.

Example 4.2 For the matrices

A =

[
1 2 3

4 5 6

]
∈ Z2,3 , B =

⎡
⎣

−1 1

0 0

1 −1

⎤
⎦ ∈ Z3,2

we have

A ∗ B =

[
2 −2

2 −2

]
∈ Z2,2.

On the other hand, B ∗ A ∈ Z3,3. Although A ∗ B and B ∗ A are both defined, we

obviously have A ∗ B �= B ∗ A. In this case one recognizes the non-commutativity

of the matrix multiplication from the fact that A ∗ B and B ∗ A have different sizes.

But even if A ∗ B and B ∗ A are both defined and have the same size, in general

A ∗ B �= B ∗ A. For example,

A =

[
1 2

0 3

]
∈ Z2,2, B =

[
4 0

5 6

]
∈ Z2,2

yield the two products

A ∗ B =

[
14 12

15 18

]
and B ∗ A =

[
4 8

5 28

]
.

The matrix multiplication is, however, associative and distributive with respect to

the matrix addition.
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Lemma 4.3 For A, Â ∈ Rn,m , B, B̂ ∈ Rm,ℓ and C ∈ Rℓ,k the following assertions

hold:

(1) A ∗ (B ∗ C) = (A ∗ B) ∗ C.

(2) (A + Â) ∗ B = A ∗ B + Â ∗ B.

(3) A ∗ (B + B̂) = A ∗ B + A ∗ B̂.

(4) In ∗ A = A ∗ Im = A.

Proof We only show property (1); the others are exercises. Let A ∈ Rn,m , B ∈ Rm,ℓ,

C ∈ Rℓ,k as well as (A ∗ B) ∗ C = [di j ] and A ∗ (B ∗ C) = [d̂i j ]. By the definition

of the matrix multiplication and using the associative and distributive law in R, we

get

di j =

ℓ∑

s=1

(
m∑

t=1

ai t bts

)
cs j =

ℓ∑

s=1

m∑

t=1

(ai t bts) cs j =

ℓ∑

s=1

m∑

t=1

ai t

(
btscs j

)

=

m∑

t=1

ai t

(
ℓ∑

s=1

btscs j

)
= d̂i j ,

for 1 ≤ i ≤ n and 1 ≤ j ≤ k, which implies that (A ∗ B) ∗ C = A ∗ (B ∗ C). ⊓⊔

On the right hand sides of (2) and (3) in Lemma 4.3 we have not written paren-

theses, since we will use the common convention that the multiplication of matrices

binds stronger than the addition.

For A ∈ Rn,n we define

Ak := A ∗ . . . ∗ A︸ ︷︷ ︸
k times

for k ∈ N,

A0 := In.

Another multiplicative operation for matrices is the multiplication with a scalar,3

which is defined as follows:

· : R × Rn,m → Rn,m, (λ, A) �→ λ · A := [λai j ]. (4.2)

We easily see that 0 · A = 0n,m and 1 · A = A for all A ∈ Rn,m . In addition, the

scalar multiplication has the following properties.

Lemma 4.4 For A, B ∈ Rn,m , C ∈ Rm,ℓ and λ,µ ∈ R the following assertions

hold:

(1) (λµ) · A = λ · (µ · A).

(2) (λ + µ) · A = λ · A + µ · A.

3The term “scalar” was introduced in 1845 by Sir William Rowan Hamilton (1805–1865). It origi-

nates from the Latin word “scale” which means “ladder”.
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(3) λ · (A + B) = λ · A + λ · B.

(4) (λ · A) ∗ C = λ · (A ∗ C) = A ∗ (λ · C).

Proof Exercise. ⊓⊔

The fourth matrix operation that we introduce is the transposition:

T : Rn,m → Rm,n, A = [ai j ] �→ AT = [bi j ], bi j := a j i .

For example,

A =

[
1 2 3

4 5 6

]
∈ Z2,3, AT =

⎡
⎣

1 4

2 5

3 6

⎤
⎦∈ Z3,2.

The matrix AT is called the transpose of A.

Definition 4.5 If A ∈ Rn,n satisfies A = AT , then A is called symmetric. If A =

−AT , then A is called skew-symmetric.

For the transposition we have the following properties.

Lemma 4.6 For A, Â ∈ Rn,m , B ∈ Rm,ℓ and λ ∈ R the following assertions hold:

(1) (AT )T = A.

(2) (A + Â)T = AT + ÂT .

(3) (λ · A)T = λ · AT .

(4) (A ∗ B)T = BT ∗ AT .

Proof Properties (1)–(3) are exercises. For the proof of (4) let A ∗ B = [ci j ] with

ci j =
∑m

k=1 aikbk j , AT = [̃ai j ], BT = [̃bi j ] and (A ∗ B)T = [̃ci j ]. Then

c̃i j = c j i =

m∑

k=1

a jkbki =

m∑

k=1

ãk j b̃ik =

m∑

k=1

b̃ik ãk j ,

from which we see that (A ∗ B)T = BT ∗ AT . ⊓⊔

MATLAB-Minute.

Carry out the following commands in order to get used to the matrix operations

of this chapter in MATLAB notation: A=ones(5,2), A+A, A-3∗A, A’, A’∗A,

A∗A’.

(In order to see MATLAB’s output, do not put a semicolon at the end of the

command.)
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Example 4.7 Consider again the example of car insurance premiums from Chap. 1.

Recall that pi j denotes the probability that a customer in class Ci in this year will move

to the class C j . Our example consists of four such classes, and the 16 probabilities

can be associated with a row-stochastic 4 × 4 matrix (cp. (1.2)), which we denote by

P . Suppose that the insurance company has the following distribution of customers

in the four classes: 40 % in class C1, 30 % in class C2, 20 % in class C3, and 10 % in

class C4. Then the 1 × 4 matrix

p0 := [0.4, 0.3, 0.2, 0.1]

describes the initial customer distribution. Using the matrix multiplication we now

compute

p1 := p0 ∗ P = [0.4, 0.3, 0.2, 0.1] ∗

⎡
⎢⎢⎣

0.15 0.85 0.00 0.00

0.15 0.00 0.85 0.00

0.05 0.10 0.00 0.85

0.05 0.00 0.10 0.85

⎤
⎥⎥⎦

= [0.12, 0.36, 0.265, 0.255].

Then p1 contains the distribution of the customers in the next year. As an example,

consider the entry of p0 ∗ P in position (1, 4), which is computed by

0.4 · 0.00 + 0.3 · 0.00 + 0.2 · 0.85 + 0.1 · 0.85 = 0.255.

A customer in the classes C1 or C2 in this year cannot move to the class C4. Thus,

the respective initial percentages are multiplied by the probabilities p14 = 0.00

and p24 = 0.00. A customer in the class C3 or C4 will be in the class C4 with the

probabilities p34 = 0.85 or p44 = 0.85, respectively. This yields the two products

0.2 · 0.85 and 0.1 · 0.85.

Continuing in the same way we obtain after k years the distribution

pk := p0∗Pk, k = 0, 1, 2, . . . .

(This formula also holds for k = 0, since P0 = I4.) The insurance company can

use this formula to compute the revenue from the payments of premium rates in the

coming years. Assume that the full premium rate (class C1) is 500 Euros per year.

Then the rates in classes C2, C3, and C4 are 450, 400 and 300 Euros (10, 20 and

40 % discount). If there are 1000 customers initially, then the revenue in the first year

(in Euros) is

1000 ·
(

p0 ∗ [500, 450, 400, 300]T
)

= 445000.
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If no customer cancels the contract, then this model yields the revenue in year
k ≥ 0 as

1000 ·
(

pk ∗ [500, 450, 400, 300]T
)

= 1000 ·
(

p0 ∗ (Pk ∗ [500, 450, 400, 300]T )

)
.

For example, the revenue in the next 4 years is 404500, 372025, 347340 and 341819

(rounded to full Euros). These numbers decrease annually, but the rate of the decrease

seems to slow down. Does there exists a “stationary state”, i.e., a state when the

revenue is not changing (significantly) any more? Which properties of the model

guarantee the existence of such a state? These are important practical questions for

the insurance company. Only the existence of a stationary state guarantees significant

revenues in the long-time future. Since the formula depends essentially on the entries

of the matrix Pk , we have reached an interesting problem of Linear Algebra: the

analysis of the properties of row-stochastic matrices. We will analyze these properties

in Sect. 8.3.

4.2 Matrix Groups and Rings

In this section we study algebraic structures that are formed by certain sets of matrices

and the matrix operations introduced above. We begin with the addition in Rn,m .

Theorem 4.8 (Rn,m,+) is a commutative group. The neutral element is 0 ∈ Rn,m

(the zero matrix) and for A = [ai j ] ∈ Rn,m the inverse element is −A := [−ai j ] ∈

Rn,m . (We write A − B instead of A + (−B).)

Proof Using the associativity of the addition in R, for arbitrary A, B, C ∈ Rn,m , we

obtain

(A + B) + C = [ai j + bi j ] + [ci j ] = [(ai j + bi j ) + ci j ] = [ai j + (bi j + ci j )]

= [ai j ] + [bi j + ci j ] = A + (B + C).

Thus, the addition in Rn,m is associative.

The zero matrix 0 ∈ Rn,m satisfies 0 + A = [0] + [ai j ] = [0 + ai j ] = [ai j ] = A.

For a given A = [ai j ] ∈ Rn,m and −A := [−ai j ] ∈ Rn,m we have −A + A =

[−ai j ] + [ai j ] = [−ai j + ai j ] = [0] = 0.

Finally, the commutativity of the addition in R implies that A+B = [ai j ]+[bi j ] =

[ai j + bi j ] = [bi j + ai j ] = B + A. ⊓⊔

Note that (2) in Lemma 4.6 implies that the transposition is a homomorphism (even

an isomorphism) between the groups (Rn,m,+) and (Rm,n,+) (cp. Definition 3.6).
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Theorem 4.9 (Rn,n,+, ∗) is a ring with unit given by the identity matrix In . This

ring is commutative only for n = 1.

Proof We have already shown that (Rn,n,+) is a commutative group (cp. Theo-

rem 4.8). The other properties of a ring (associativity, distributivity and the existence

of a unit element) follow from Lemma 4.3. The commutativity for n = 1 holds

because of the commutativity of the multiplication in the ring R. The example

[
0 1

0 0

]
∗

[
1 0

0 0

]
=

[
0 0

0 0

]
�=

[
0 1

0 0

]
=

[
1 0

0 0

]
∗

[
0 1

0 0

]

shows that the ring Rn,n is not commutative for n ≥ 2. ⊓⊔

The example in the proof of Theorem 4.9 shows that for n ≥ 2 the ring Rn,n has

non-trivial zero-divisors, i.e., there exist matrices A, B ∈ Rn,n \ {0} with A ∗ B = 0.

These exist even when R is a field.

Let us now consider the invertibility of matrices in the ring Rn,n (with respect to the

matrix multiplication). For a given matrix A ∈ Rn,n , an inverse Ã ∈ Rn,n must satisfy

the two equations Ã ∗ A = In and A ∗ Ã = In (cp. Definition 3.10). If an inverse of

A ∈ Rn,n exists, i.e., if A is invertible, then the inverse is unique and denoted by A−1

(cp. Theorem 3.11). An invertible matrix is sometimes called non-singular, while

a non-invertible matrix is called singular. We will show in Corollary 7.20 that the

existence of the inverse already is implied by one of the two equations Ã ∗ A = In

and A ∗ Ã = In , i.e., if one of them holds, then A is invertible and A−1 = Ã. Until

then, to be correct, we will have to check the validity of both equations.

Not all matrices A ∈ Rn,n are invertible. Simple examples are the non-invertible

matrices

A = [0] ∈ R1,1 and A =

[
1 0

0 0

]
∈ R2,2.

Another non-invertible matrix is

A =

[
1 1

0 2

]
∈ Z2,2.

However, considered as an element of Q2,2, the (unique) inverse of A is given by

A−1 =

[
1 − 1

2

0 1
2

]
∈ Q2,2.

Lemma 4.10 If A, B ∈ Rn,n are invertible, then the following assertions hold:

(1) AT is invertible with (AT )−1 = (A−1)T . (We also write this matrix as A−T .)

(2) A ∗ B is invertible with (A ∗ B)−1 = B−1 ∗ A−1.
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Proof

(1) Using (4) in Lemma 4.6 we have

(A−1)T ∗ AT = (A ∗ A−1)T = I T
n = In = I T

n = (A−1 ∗ A)T = AT ∗ (A−1)T ,

and thus (A−1)T is the inverse of AT .

(2) This was already shown in Theorem 3.11 for general rings with unit and thus it

holds, in particular, for the ring (Rn,n,+, ∗). ⊓⊔

Our next result shows that the invertible matrices form a multiplicative group.

Theorem 4.11 The set of invertible n×n matrices over R forms a group with respect

to the matrix multiplication. We denote this group by GLn(R) (“GL” abbreviates

“general linear (group)”).

Proof The associativity of the multiplication in GLn(R) is clear. As shown in (2)

in Lemma 4.10, the product of two invertible matrices is an invertible matrix. The

neutral element in GLn(R) is the identity matrix In , and since every A ∈ GLn(R)

is assumed to be invertible, A−1 exists with (A−1)−1 = A ∈ GLn(R). ⊓⊔

We now introduce some important classes of matrices.

Definition 4.12 Let A = [ai j ] ∈ Rn,n .

(1) A is called upper triangular, if ai j = 0 for all i > j .

A is called lower triangular, if ai j = 0 for all j > i (i.e., AT is upper triangular).

(2) A is called diagonal, if ai j = 0 for all i �= j (i.e., A is upper and lower triangular).

We write a diagonal matrix as A = diag(a11, . . . , ann).

We next investigate these sets of matrices with respect to their group properties,

beginning with the invertible upper and lower triangular matrices.

Theorem 4.13 The sets of the invertible upper triangular n × n matrices and of the

invertible lower triangular n × n matrices over R form subgroups of GLn(R).

Proof We will only show the result for the upper triangular matrices; the proof for the

lower triangular matrices is analogous. In order to establish the subgroup property

we will prove the three properties from Theorem 3.5.

Since In is an invertible upper triangular matrix, the set of the invertible upper

triangular matrices is a nonempty subset of GLn(R).

Next we show that for two invertible upper triangular matrices A, B ∈ Rn,n the

product C = A ∗ B is again an invertible upper triangular matrix. The invertibility

of C = [ci j ] follows from (2) in Lemma 4.10. For i > j we have
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ci j =

n∑

k=1

aikbk j (here bk j = 0 for k > j)

=

j∑

k=1

aikbk j (here aik = 0 for k = 1, . . . , j , since i > j)

= 0.

Therefore, C is upper triangular.

It remains to prove that the inverse A−1 of an invertible upper triangular matrix A

is an upper triangular matrix. For n = 1 the assertion holds trivially, so we assume

that n ≥ 2. Let A−1 = [ci j ], then the equation A ∗ A−1 = In can be written as a

system of n equations

⎡
⎢⎢⎢⎢⎣

a11 · · · · · · a1n

0
. . .

...
...

. . .
. . .

...

0 · · · 0 ann

⎤
⎥⎥⎥⎥⎦

∗

⎡
⎢⎢⎢⎢⎣

c1 j

...

...

cnj

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

δ1 j

...

...

δnj

⎤
⎥⎥⎥⎥⎦

, j = 1, . . . , n. (4.3)

Here, δi j is the Kronecker delta-function defined in (4.1).

We will now prove inductively for i = n, n − 1, . . . , 1 that the diagonal entry ai i

of A is invertible with a−1
i i = ci i , and that

ci j = a−1
i i

(
δi j −

n∑

ℓ=i+1

aiℓcℓj

)
, j = 1, . . . , n. (4.4)

This formula implies, in particular, that ci j = 0 for i > j .

For i = n the last row of (4.3) is given by

anncnj = δnj , j = 1, . . . , n.

For j = n we have anncnn = 1 = cnnann , where in the second equation we use the

commutativity of the multiplication in R. Therefore, ann is invertible with a−1
nn = cnn ,

and thus

cnj = a−1
nn δnj , j = 1, . . . , n.

This is equivalent to (4.4) for i = n. (Note that for i = n in (4.4) the sum is empty

and thus equal to zero.) In particular, cnj = 0 for j = 1, . . . , n − 1.

Now assume that our assertion holds for i = n, . . . , k + 1, where 1 ≤ k ≤ n − 1.

Then, in particular, ci j = 0 for k + 1 ≤ i ≤ n and i > j . In words, the rows

i = n, . . . , k + 1 of A−1 are in “upper triangular from”. In order to prove the

assertion for i = k, we consider the kth row in (4.3), which is given by
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akkck j + ak,k+1ck+1, j + . . . + akncnj = δk j , j = 1, . . . , n. (4.5)

For j = k (< n) we obtain

akkckk + ak,k+1ck+1,k + . . . + akncnk = 1.

By the induction hypothesis, we have ck+1,k = · · · = cn,k = 0. This implies akkckk =

1 = ckkakk , where we have used the commutativity of the multiplication in R. Hence

akk is invertible with a−1
kk = ckk . From (4.5) we get

ck j = a−1
kk

(
δk j − ak,k+1ck+1, j − . . . − akncnj

)
, j = 1, . . . , n,

and hence (4.4) holds for i = k. If k > j , then δk j = 0 and ck+1, j = · · · = cnj = 0,

which gives ck j = 0. ⊓⊔

We point out that (4.4) represents a recursive formula for computing the entries of

the inverse of an invertible upper triangular matrix. Using this formula the entries are

computed “from bottom to top” and “from right to left”. This process is sometimes

called backward substitution.

In the following we will frequently partition matrices into blocks and make use

of the block multiplication: For every k ∈ {1, . . . , n − 1}, we can write A ∈ Rn,n as

A =

[
A11 A12

A21 A22

]
with A11 ∈ Rk,k and A22 ∈ Rn−k,n−k .

If A, B ∈ Rn,n are both partitioned like this, then the product A ∗ B can be evaluated

blockwise, i.e.,

[
A11 A12

A21 A22

]
∗

[
B11 B12

B21 B22

]
=

[
A11 ∗ B11 + A12 ∗ B21 A11 ∗ B12 + A12 ∗ B22

A21 ∗ B11 + A22 ∗ B21 A21 ∗ B12 + A22 ∗ B22

]
.

(4.6)

In particular, if

A =

[
A11 A12

0 A22

]

with A11 ∈ GLk(R) and A22 ∈ GLn−k(R), then A ∈ GLn(R) and a direct compu-

tation shows that

A−1 =

[
A−1

11 −A−1
11 ∗ A12 ∗ A−1

22

0 A−1
22

]
. (4.7)
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MATLAB-Minute.

Create block matrices in MATLAB by carrying out the following commands:

k=5;

A11=gallery(’tridiag’,-ones(k-1,1),2∗ones(k,1),-ones(k-1,1));

A12=zeros(k,2); A12(1,1)=1; A12(2,2)=1;

A22=-eye(2);

A=full([A11 A12; A12’ A22])

B=full([A11 A12; zeros(2,k) -A22])

Investigate the meaning of the command full. Compute the products A∗B

and B∗A as well as the inverses inv(A) and inv(B). Compute the inverse of

B in MATLAB with the formula (4.7).

Corollary 4.14 The set of the invertible diagonal n × n matrices over R forms a

commutative subgroup (with respect to the matrix multiplication) of the invertible

upper (or lower) triangular n × n matrices over R.

Proof Since In is an invertible diagonal matrix, the invertible diagonal n×n matrices

form a nonempty subset of the invertible upper (or lower) triangular n × n matrices.

If A = diag(a11, . . . , ann) and B = diag(b11, . . . , bnn) are invertible, then A ∗ B is

invertible (cp. (2) in Lemma 4.10) and diagonal, since

A ∗ B = diag(a11, . . . , ann) ∗ diag(b11, . . . , bnn) = diag(a11b11, . . . , annbnn).

Moreover, if A = diag(a11, . . . , ann) is invertible, then ai i ∈ R is invertible for

all i = 1, . . . , n (cp. the proof of Theorem 4.13). The inverse A−1 is given by the

invertible diagonal matrix diag(a−1
11 , . . . , a−1

nn ). Finally, the commutativity property

A ∗ B = B ∗ A follows directly from the commutativity in R. ⊓⊔

Definition 4.15 A matrix P ∈ Rn,n is called a permutation matrix, if in every row

and every column of P there is exactly one unit and all other entries are zero.

The term “permutation” means “exchange”. If a matrix A ∈ Rn,n is multiplied

with a permutation matrix from the left or from the right, then its rows or columns,

respectively, are exchanged (or permuted). For example, if

P =

⎡
⎣

0 0 1

0 1 0

1 0 0

⎤
⎦, A =

⎡
⎣

1 2 3

4 5 6

7 8 9

⎤
⎦ ∈ Z3,3,
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then

P ∗ A =

⎡
⎣

7 8 9

4 5 6

1 2 3

⎤
⎦ and A ∗ P =

⎡
⎣

3 2 1

6 5 4

9 8 7

⎤
⎦ .

Theorem 4.16 The set of the n × n permutation matrices over R forms a subgroup

of GLn(R). In particular, if P ∈ Rn,n is a permutation matrix, then P is invertible

with P−1 = PT .

Proof Exercise. ⊓⊔

From now on we will omit the multiplication sign in the matrix multiplication

and write AB instead of A ∗ B.

Exercises

(In the following exercises R is a commutative ring with unit.)

4.1 Consider the following matrices over Z:

A =

[
1 −2 4

−2 3 −5

]
, B =

⎡
⎣

2 4

3 6

1 −2

⎤
⎦ , C =

[
−1 0

1 1

]
.

Determine, if possible, the matrices C A, BC , BT A, AT C , (−A)T C , BT AT ,

AC and C B.

4.2 Consider the matrices

A =
[
ai j

]
∈ Rn,m, x =

⎡
⎢⎣

x1

...

xn

⎤
⎥⎦ ∈ Rn,1, y = [y1, . . . , ym] ∈ R1,m .

Which of the following expressions are well defined for m �= n or m = n?

(a) xy, (b) xT y, (c) yx , (d) yxT , (e) x Ay, (f) xT Ay,

(g) x AyT , (h) xT AyT , (i) xy A, (j) xy AT , (k) Axy, (l) AT xy.

4.3 Show the following computational rules:

µ1x1 + µ2x2 = [x1, x2]

[
µ1

µ2

]
and A[x1, x2] = [Ax1, Ax2]

for A ∈ Rn,m , x1, x2 ∈ Rm,1 and µ1,µ2 ∈ R.
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4.4 Prove Lemma 4.3 (2)–(4).

4.5 Prove Lemma 4.4.

4.6 Prove Lemma 4.6 (1)–(3).

4.7 Let A =

⎡
⎣

0 1 1

0 0 1

0 0 0

⎤
⎦ ∈ Z3,3. Determine An for all n ∈ N ∪ {0}.

4.8 Let p = αntn + . . . + α1t + α0t0 ∈ R[t] be a polynomial (cp. Example 3.17)

and A ∈ Rm,m . We define p(A) ∈ Rm,m as p(A) := αn An + . . .+α1 A+α0 Im .

(a) Determine p(A) for p = t2 − 2t + 1 ∈ Z[t] and A =

[
1 0

3 1

]
∈ Z2,2.

(b) For a fixed matrix A ∈ Rm,m consider the map f A : R[t] → Rm,m , p �→

p(A). Show that f A(p + q) = f A(p) + f A(q) and f A(pq) = f A(p) f A(q)

for all p, q ∈ R[t].

(The map f A is a ring homomorphism between the rings R[t] and Rm,m .)

(c) Show that f A(R[t]) = {p(A) | p ∈ R[t]} is a commutative subring of Rm,m ,

i.e., that f A(R[t]) is a subring of Rm,m (cp. Exercise 3.14) and that the

multiplication in this subring is commutative.

(d) Is the map f A surjective?

4.9 Let K be a field with 1 + 1 �= 0. Show that every matrix A ∈ K n,n can be

written as A = M + S with a symmetric matrix M ∈ K n,n (i.e., MT = M)

and a skew-symmetric matrix S ∈ K n,n (i.e., ST = −S).

Does this also hold in a field with 1+1 = 0? Give a proof or a counterexample.

4.10 Show the binomial formula for commuting matrices: If A, B ∈ Rn,n with

AB = B A, then (A + B)k =
∑k

j=0

(
k

j

)
A j Bk− j , where

(
k

j

)
:= k!

j ! (k− j)!
.

4.11 Let A ∈ Rn,n be a matrix for which In − A is invertible. Show that (In −

A)−1(In − Am+1) =
∑m

j=0 A j holds for every m ∈ N.

4.12 Let A ∈ Rn,n be a matrix for which an m ∈ N with Am = In exists and let m

be smallest natural number with this property.

(a) Investigate whether A is invertible, and if so, give a particularly simple

representation of the inverse.

(b) Determine the cardinality of the set {Ak | k ∈ N}.

4.13 Let A =
{
[ai j ] ∈ Rn,n

∣∣ anj = 0 for j = 1, . . . , n
}
.

(a) Show that A is a subring of Rn,n .

(b) Show that AM ∈ A for all M ∈ Rn,n and A ∈ A.

(A subring with this property is called a left ideal of Rn,n .)

(c) Determine an analogous subring B of Rn,n , such that M B ∈ B for all

M ∈ Rn,n and B ∈ B.

(A subring with this property is called a left ideal of Rn,n .)

4.14 Examine whether (G, ∗) with
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G =

{[
cos(α) − sin(α)

sin(α) cos(α)

] ∣∣∣∣ α ∈ R

}

is a subgroup of GL2(R).

4.15 Generalize the block multiplication (4.6) to matrices A ∈ Rn,m and B ∈ Rm,ℓ.

4.16 Determine all invertible upper triangular matrices A ∈ Rn,n with A−1 = AT .

4.17 Let A11 ∈ Rn1,n1 , A12 ∈ Rn1,n2 , A21 ∈ Rn2,n1 , A22 ∈ Rn2,n2 and

A =

[
A11 A12

A21 A22

]
∈ Rn1+n2,n1+n2 .

(a) Let A11 ∈ GLn1
(R). Show that A is invertible if and only if A22 −

A21 A−1
11 A12 is invertible and derive in this case a formula for A−1.

(b) Let A22 ∈ GLn2
(R). Show that A is invertible if and only if A11 −

A12 A−1
22 A21 is invertible and derive in this case a formula for A−1.

4.18 Let A ∈ GLn(R), U ∈ Rn,m and V ∈ Rm,n . Show the following assertions:

(a) A + U V ∈ GLn(R) holds if and only if Im + V A−1U ∈ GLm(R).

(b) If Im + V A−1U ∈ GLm(R), then

(A + U V )−1 = A−1 − A−1U (Im + V A−1U )−1V A−1.

(This last equation is called the Sherman-Morrison-Woodbury formula;

named after Jack Sherman, Winifred J. Morrison and Max A. Woodbury.)

4.19 Show that the set of block upper triangular matrices with invertible 2 × 2

diagonal blocks, i.e., the set of matrices

⎡
⎢⎢⎢⎣

A11 A12 · · · A1m

0 A22 · · · A2m

...
. . .

. . .
...

0 · · · 0 Amm

⎤
⎥⎥⎥⎦, Ai i ∈ GL2(R), i = 1, . . . , m,

is a group with respect to the matrix multiplication.

4.20 Prove Theorem 4.16. Is the group of permutation matrices commutative?

4.21 Show that the following is an equivalence relation on Rn,n:

A ∼ B ⇔ There exists a permutation matrix P with A = PT B P .

4.22 A company produces from four raw materials R1, R2, R3, R4 five intermediate

products Z1, Z2, Z3, Z4, Z5, and from these three final products E1, E2, E3. The

following tables show how many units of Ri and Z j are required for producing

one unit of Zk and Eℓ, respectively:
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Z1 Z2 Z3 Z4 Z5

R1 0 1 1 1 2

R2 5 0 1 2 1

R3 1 1 1 1 0

R4 0 2 0 1 0

E1 E2 E3

Z1 1 1 1

Z2 1 2 0

Z3 0 1 1

Z4 4 1 1

Z5 3 1 1

For instance, five units of R2 and one unit of R3 are required for producing one

unit of Z1.

(a) Determine, with the help of matrix operations, a corresponding table which

shows how many units of Ri are required for producing one unit of Eℓ.

(b) Determine how many units of the four raw materials are required for pro-

ducing 100 units of E1, 200 units of E2 and 300 units of E3.



Chapter 5

The Echelon Form and the Rank of Matrices

In this chapter we develop a systematic method for transforming a matrix A with

entries from a field into a special form which is called the echelon form of A. The

transformation consists of a sequence of multiplications of A from the left by certain

“elementary matrices”. If A is invertible, then its echelon form is the identity matrix,

and the inverse A−1 is the product of the inverses of the elementary matrices. For a

non-invertible matrix its echelon form is, in some sense, the “closest possible” matrix

to the identity matrix. This form motivates the concept of the rank of a matrix, which

we introduce in this chapter and will use frequently later on.

5.1 Elementary Matrices

Let R be a commutative ring with unit, n ∈ N and i, j ∈ {1, . . . , n}. Let In ∈ Rn,n

be the identity matrix and let ei be its i th column, i.e., In = [e1, . . . , en].

We define

Ei j := ei e
T
j = [0, . . . , 0, ei︸︷︷︸

column j

, 0, . . . , 0] ∈ Rn,n,

i.e., the entry (i, j) of Ei j is 1, all other entries are 0.

For n ≥ 2 and i < j we define

Pi j := [e1, . . . , ei−1, e j , ei+1, . . . , e j−1, ei , e j+1, . . . , en] ∈ Rn,n . (5.1)

Thus, Pi j is a permutation matrix (cp. Definition 4.12) obtained by exchanging the

columns i and j of In . A multiplication ofA ∈ Rn,m from the left with Pi j means an

exchange ofthe rows i and j of A. For example,

© Springer International Publishing Switzerland 2015
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A =

⎡
⎣

1 2 3

4 5 6

7 8 9

⎤
⎦ , P13 = [e3, e2, e1] =

⎡
⎣

0 0 1

0 1 0

1 0 0

⎤
⎦ , P13 A =

⎡
⎣

7 8 9

4 5 6

1 2 3

⎤
⎦ .

For λ ∈ R we define

Mi (λ) := [e1, . . . , ei−1,λei , ei+1, . . . , en] ∈ Rn,n. (5.2)

Thus, Mi (λ) is a diagonal matrix obtained by replacing the i th column of In by λei .
A multiplication of A ∈ Rn,m from the left with Mi (λ) means a multiplication of the
i th row of A by λ. For example,

A =

⎡
⎣

1 2 3

4 5 6

7 8 9

⎤
⎦ , M2(−1) = [e1, −e2, e3] =

⎡
⎣

1 0 0

0 −1 0

0 0 1

⎤
⎦ , M2(−1)A =

⎡
⎣

1 2 3

−4 −5 −6

7 8 9

⎤
⎦ .

For n ≥ 2, i < j and λ ∈ R we define

G i j (λ) := In + λE j i = [e1, . . . , ei−1, ei + λe j , ei+1, . . . , en] ∈ Rn,n. (5.3)

Thus, the lower triangular matrix G i j (λ) is obtained by replacing the i th column of

In by ei + λe j . A multiplication of A ∈ Rn,m from the left with G i j (λ) means that

λ times the i th row of A is added to the j th row of A. Similarly, a multiplication of

A ∈ Rn,m from the left by the upper triangular matrix G i j (λ)T means that λ times

the j th row of A is added to the i th row of A. For example,

A =

⎡
⎣

1 2 3

4 5 6

7 8 9

⎤
⎦ , G23(−1) = [e1, e2 − e3, e3] =

⎡
⎣

1 0 0

0 1 0

0 −1 1

⎤
⎦ ,

G23(−1)A =

⎡
⎣

1 2 3

4 5 6

3 3 3

⎤
⎦ , G23(−1)T A =

⎡
⎣

1 2 3

−3 −3 −3

7 8 9

⎤
⎦ .

Lemma 5.1 The elementary matrices Pi j , Mi (λ) for invertible λ ∈ R, and G i j (λ)

defined in (5.1), (5.2), and (5.3), respectively, are invertible and have the following

inverses:

(1) P−1
i j = PT

i j = Pi j .

(2) Mi (λ)−1 = Mi (λ
−1).

(3) G i j (λ)−1 = G i j (−λ).

Proof

(1) The invertibility of Pi j with P−1
i j = PT

i j was already shown in Theorem 4.16;

the symmetry of Pi j is easily seen.
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(2) Since λ ∈ R is invertible, the matrix Mi (λ
−1) is well defined. A straightforward

computation now shows that Mi (λ
−1)Mi (λ) = Mi (λ)Mi (λ

−1) = In .

(3) Since eT
j ei = 0 for i < j , we have E2

j i = (ei e
T
j )(ei e

T
j ) = 0, and therefore

G i j (λ)G i j (−λ) = (In + λE j i )(In + (−λ)E j i )

= In + λE j i + (−λ)E j i + (−λ2)E2
j i = In.

A similar computation shows that G i j (−λ)G i j (λ) = In . ⊓⊔

5.2 The Echelon Form and Gaussian Elimination

The constructive proof of the following theorem relies on the Gaussian elimination

algorithm.1 For a given matrix A ∈ K n,m , where K is a field, this algorithm constructs

a matrix S ∈ GLn(K ) such that S A = C is quasi-upper triangular. We obtain this

special form by left-multiplication of A with elementary matrices Pi j , Mi j (λ) and

G i j (λ). Each of these left-multiplications corresponds to the application of one of

the so-called “elementary row operations” to the matrix A:

• Pi j : exchange two rows of A.

• Mi (λ): multiply a row of A with an invertible scalar.

• G i j (λ): add a multiple of one row of A to another row of A.

We assume that the entries of A are in a field (rather than a ring) because in the proof

of the theorem we require that nonzero entries of A are invertible. A generalization of

the result which holds over certain rings (e.g. the integers Z) is given by the Hermite

normal form,2 which plays an important role in Number Theory.

Theorem 5.2 Let K be a field and let A ∈ K n,m . Then there exist invertible matrices

S1, . . . , St ∈ K n,n (these are products of elementary matrices) such that C :=

St · · · S1 A is in echelon form, i.e., either C = 0 or

1Named after Carl Friedrich Gauß (1777–1855). A similar method was already described in Chap. 8,
“Rectangular Arrays”, of the “Nine Chapters on the Mathematical Art”. This text developed in
ancient China over several decades BC stated problems of every day life and gave practical math-
ematical solution methods. A detailed commentary and analysis was written by Liu Hui (approx.
220–280 AD) around 260 AD.
2Charles Hermite (1822–1901).
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C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋆ 0 0 0

1
⋆

0 ⋆

1

...
⋆

0
0

. . . 0
0

10

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here ⋆ denotes an arbitrary (zero or nonzero) entry of C.

More precisely, C = [ci j ] is either the zero matrix, or there exists a sequence of

natural numbers j1, . . . , jr (these are called the “steps” of the echelon form), where

1 ≤ j1 < · · · < jr ≤ m and 1 ≤ r ≤ min{n, m}, such that

(1) ci j = 0 for 1 ≤ i ≤ r and 1 ≤ j < ji ,

(2) ci j = 0 for r < i ≤ n and 1 ≤ j ≤ m,

(3) ci, ji = 1 for 1 ≤ i ≤ r and all other entries in column ji are zero.

If n = m, then A ∈ K n,n is invertible if and only if C = In . In this case A−1 =

St · · · S1.

Proof If A = 0, then we set t = 1, S1 = In , C = 0 and we are done.

Now let A �= 0 and let j1 be the index of the first column of

A(1) =
[
a

(1)

i j

]
:= A

that does not consist of all zeros. Let a
(1)

i1, j1
be the first entry in this column that is

nonzero, i.e., A(1) has the form

A(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...

0

a
(1)

i1, j1

⋆
...

⋆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⋆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j1

.

We then proceed as follows: First we permute the rows i1 and 1 (if i1 > 1). Then we

normalize the new first row, i.e., we multiply it with
(

a
(1)

i1, j1

)−1

. Finally we eliminate

the nonzero elements below the first entry in column j1. Permuting and normalizing

leads to
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Ã(1) =
[
ã

(1)

i, j

]
:= M1

((
a

(1)

i1, j1

)−1
)

P1,i1
A(1) =

⎡
⎢⎢⎢⎣ 0

∣∣∣∣∣∣∣∣∣

1

ã
(1)

2, j1
...

ã
(1)

n, j1

∣∣∣∣∣∣∣∣∣
⋆

⎤
⎥⎥⎥⎦

j1

.

If i1 = 1, then we set P1,1 := In . In order to eliminate below the 1 in column j1, we

multiply Ã(1) from the left with the matrices

G1,n

(
−ã

(1)

n, j1

)
, . . . , G1,2

(
−ã

(1)

2, j1

)
.

Then we have

S1 A(1) =

⎡
⎢⎢⎢⎣

0 1 ⋆

0

0
...

0

A(2)

⎤
⎥⎥⎥⎦

j1

,

where

S1 := G1,n

(
−ã

(1)

n, j1

)
· · · G1,2

(
−ã

(1)

2, j1

)
M1

((
a

(1)

i1, j1

)−1
)

P1,i1

and A(2) = [a
(2)

i j ] with i = 2, . . . , n, j = j1 + 1, . . . , m, i.e., we keep the indices of

the larger matrix A(1) in the smaller matrix A(2).

If A(2) = [ ] or A(2) = 0, then we are finished, since then C := S1 A(1) is in

echelon form. In this case r = 1.

If at least one of the entries of A(2) is nonzero, then we apply the steps described

above to the matrix A(2). For k = 2, 3, . . . we define the matrices Sk recursively as

Sk =

[
Ik−1 0

0 S̃k

]
, where S̃k A(k) =

⎡
⎢⎢⎢⎣

0 1 ⋆

0

0
...

0

A(k+1)

⎤
⎥⎥⎥⎦

jk

.

Each matrix S̃k is constructed analogous to S1: First we identify the first column jk
of A(k) that is not completely zero, as well as the first nonzero entry a

(k)

ik , jk
in that

column. Then permuting and normalizing yields the matrix

Ã(k) = [̃a
(k)

i j ] := Mk

((
a

(k)

ik , jk

)−1
)

Pk,ik
A(k).
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If k = ik , then we set Pk,k := In−k+1. Now

S̃k = Gk,n

(
−ã

(k)

n, jk

)
· · · Gk,k+1

(
−ã

(k)

k+1, jk

)
Mk

((
a

(k)

ik , jk

)−1
)

Pk,ik
,

so that Sk is indeed a product of elementary matrices of the form

[
Ik−1 0

0 T

]
,

where T is an elementary matrix of size (n − k + 1) × (n − k + 1).

If we continue this procedure inductively, it will end after r ≤ min{n, m} steps

with either A(r+1) = 0 or A(r+1) = [ ].

After r steps we have

Sr · · · S1 A(1) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋆ ⋆ ⋆ ⋆

1
⋆

⋆ ⋆

1

...
⋆

0
0

. . . ⋆
0

10

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.4)

By construction, the entries 1 in (5.4) are in the positions

(1, j1), (2, j2), . . . , (r, jr ).

If r = 1, then S1 A(1) is in echelon form (see the discussion at the beginning of

the proof). If r > 1, then we still have to eliminate the nonzero entries above the 1

in columns j2, . . . , jr . To do this, we denote the matrix in (5.4) by R(1) = [r
(1)

i j ] and

form for k = 2, . . . , r recursively

R(k) = [r
(k)

i j ] := Sr+k−1 R(k−1),

where

Sr+k−1 := G1,k

(
−r

(k−1)

1, jk

)T

· · · Gk−1,k

(
−r

(k−1)

k−1, jk

)T

.

For t := 2r − 1 we have C := St St−1 · · · S1 A in echelon form.

Suppose now that n = m and that C = St St−1 · · · S1 A is in echelon form. If A is

invertible, then C is a product of invertible matrices and thus invertible. An invertible

matrix cannot have a row containing only zeros, so that r = n and hence C = In .

If, on the other hand, C = In , then the invertibility of the elementary matrices
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implies that S−1
1 · · · S−1

t = A. As a product of invertible matrices, A is invertible and

A−1 = St · · · S1. ⊓⊔

In the literature, the echelon form is sometimes called reduced row echelon form.

Example 5.3 Transformation of a matrix from Q3,5 to echelon form via left multi-

plication with elementary matrices:

⎡
⎣

0 2 1 3 3

0 2 0 1 1

0 2 0 1 1

⎤
⎦

j1 = 2, i1 = 1

−→

M1

(
1
2

)

⎡
⎣

0 1 1
2

3
2

3
2

0 2 0 1 1

0 2 0 1 1

⎤
⎦ −→

G13(−2)

⎡
⎣

0 1 1
2

3
2

3
2

0 2 0 1 1

0 0 −1 −2 −2

⎤
⎦

−→

G12(−2)

⎡
⎣

0 1 1
2

3
2

3
2

0 0 −1 −2 −2

0 0 −1 −2 −2

⎤
⎦

j2 = 3, i2 = 2

−→

M2(−1)

⎡
⎣

0 1 1
2

3
2

3
2

0 0 1 2 2

0 0 −1 −2 −2

⎤
⎦

−→

G23(1)

⎡
⎢⎣

0 1 1
2

3
2

3
2

0 0 1 2 2

0 0 0 0 0

⎤
⎥⎦

−→

G12

(
− 1

2

)T

⎡
⎢⎣

0 1 0 1
2

1
2

0 0 1 2 2

0 0 0 0 0

⎤
⎥⎦ .

MATLAB-Minute.

The echelon form is computed in MATLAB with the command

rref (“reduced row echelon form”). Apply rref to [A eye(n+1)] in

order to compute the inverse of the matrix A=full(gallery(’tridiag’,

-ones(n,1),2∗ones(n+1,1),-ones(n,1))) for n=1,2,3,4,5 (cp. Exer-

cise 5.5).

Formulate a conjecture about the general form of A−1. (Can you prove your

conjecture?)

The proof of Theorem 5.2 leads to the so-called LU-decomposition of a square

matrix.

Theorem 5.4 For every matrix A ∈ K n,n , there exists a permutation matrix P ∈

K n,n , a lower triangular matrix L ∈ GLn(K ) with ones on the diagonal and an

upper triangular matrix U ∈ K n,n , such that A = PLU. The matrix U is invertible

if and only if A is invertible.
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Proof For A ∈ K n,n the Eq. (5.4) has the form Sn · · · S1 A = Ũ , where Ũ is upper

triangular. If r < n, then we set Sn = Sn−1 = · · · = Sr+1 = In . Since the matrices

S1, . . . , Sn are invertible, it follows that Ũ is invertible if and only if A is invertible.

For i = 1, . . . , n every matrix Si has the form

Si =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

si,i

si+1,i 1
...

. . .

sn,i 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pi, ji ,

where ji ≥ i for i = 1, . . . , n and Pi,i := In (if ji = i , then no permutation was
necessary). Therefore,

Sn · · · S1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

. . .

1

1

sn,n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1

. . .

1

sn−1,n−1

sn,n−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Pn−1, jn−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

1

sn−2,n−2

sn−1,n−2 1

sn,n−2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pn−2, jn−2
· · ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1

s22

s32 1

.

.

.
. . .

sn,2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

P2, j2

⎡
⎢⎢⎢⎢⎢⎢⎣

s11

s21 1

s31 1

.

.

.
. . .

sn,1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

P1, j1
.

The form of the permutation matrices for k = 2, . . . , n − 1 and ℓ = 1, . . . , k − 1

implies that

Pk, jk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

sℓ,ℓ

sℓ+1,ℓ 1
...

. . .

sn,ℓ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

sℓ,ℓ

s̃ℓ+1,ℓ 1
...

. . .

s̃n,ℓ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pk, jk
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holds for certain s̃ j,ℓ ∈ K , j = ℓ + 1, . . . , n. Hence,

Sn · · · S1 =

⎡
⎢⎢⎢⎢⎢⎣

1
. . .

1

sn−1,n−1

sn,nsn,n−1 sn,n

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

sn−2,n−2

s̃n−1,n−2 1

s̃n,n−2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎣

1

s22

s̃32 1
...

. . .

s̃n2 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

s11

s̃21 1

s̃31 1
...

. . .

s̃n,1 1

⎤
⎥⎥⎥⎥⎥⎦

Pn−1, jn−1
· · · P1, j1 .

The invertible lower triangular matrices and the permutation matrices form groups

with respect to the matrix multiplication (cp. Theorems 4.13 and 4.16). Thus,

Sn · · · S1 = L̃ P̃ , where L̃ is invertible and lower triangular, and P̃ is a permuta-

tion matrix. Since L̃ = [̃li j ] is invertible, also D := diag(̃l11, . . . , l̃nn) is invertible,

and we obtain A = P LU with P := P̃−1 = P̃T , L := L̃−1 D and U := D−1Ũ . By

construction, all diagonal entries of L are equal to one. ⊓⊔

Example 5.5 Computation of an LU -decomposition of a matrix from Q3,3:

⎡
⎣

2 2 4

2 2 1

2 0 1

⎤
⎦

j1 = 2, i1 = 1

−→

M1

(
1
2

)

⎡
⎣

1 1 2

2 2 1

2 0 1

⎤
⎦ −→

G13(−2)

⎡
⎣

1 1 2

2 2 1

0 −2 −3

⎤
⎦

−→

G12(−2)

⎡
⎣

1 1 2

0 0 −3

0 −2 −3

⎤
⎦ −→

P23

⎡
⎣

1 1 2

0 −2 −3

0 0 −3

⎤
⎦ = Ũ .

Hence, P̃ = P23,

L̃ = G12(−2)G13(−2)M1

(
1

2

)
=

⎡
⎣

1
2

0 0

−2 1 0

−2 1 1

⎤
⎦ , D = diag

(
1

2
, 1, 1

)
,

and thus, P = P̃T = PT
23 = P23,
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L = L̃−1 D =

⎡
⎣

1 0 0

1 1 0

1 0 1

⎤
⎦ , U = D−1Ũ =

⎡
⎣

2 2 4

0 −2 −3

0 0 −3

⎤
⎦.

If A ∈ GLn(K ), then the LU -decomposition yields A−1 = U−1L−1 PT . Hence

after computing the LU -decomposition, one obtains the inverse of A essentially by

inverting the two triangular matrices. Since this can be achieved by the efficient

recursive formula (4.4), the LU -decomposition is a popular method in scientific

computing applications that require the inversion of matrices or the solution of linear

systems of equations (cp. Chap. 6). In this context, however, alternative strategies

for the choice of the permutation matrices are used. For example, instead of the first

nonzero entry in a column one chooses an entry with large (or largest) absolute value

for the row exchange and the subsequent elimination. By this strategy the influence

of rounding errors in the computation is reduced.

MATLAB-Minute.

The Hilbert matrix3 A = [ai j ] ∈ Qn,n has the entries ai j = 1/(i + j − 1)

for i, j = 1, . . . , n. It can be generated in MATLAB with the command

hilb(n). Carry out the command [L,U,P]=lu(hilb(4)) in order to com-

pute an LU -decomposition of the matrix hilb(4). How do the matrices P, L

and U look like?

Compute also the LU -decomposition of the matrix

full(gallery(’tridiag’,-ones(3,1),2∗ones(4,1),-ones(3,1)))

and study the corresponding matrices P, L and U.

We will now show that, for a given matrix A, the matrix C in Theorem 5.2 is

uniquely determined in a certain sense. For this we need the following definition.

Definition 5.6 If C ∈ K n,m is in echelon form (as in Theorem 5.2), then the positions

of (1, j1), . . . , (r, jr ) are called the pivot positions of C .

We also need the following results.

Lemma 5.7 If Z ∈ GLn(K ) and x ∈ K n,1, then Z x = 0 if and only if x = 0.

Proof Exercise. ⊓⊔

Theorem 5.8 Let A, B ∈ K n,m be in echelon form. If A = Z B for a matrix Z ∈

GLn(K ), then A = B.

3David Hilbert (1862–1943).
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Proof If B is the zero matrix, then A = ZB = 0, and hence A = B.

Let now B �= 0 and let A, B have the respective columns ai , bi , 1 ≤ i ≤ m.

Furthermore, let (1, j1), . . . , (r, jr ) be the r ≥ 1 pivot positions of B. We will show

that every matrix Z ∈ GLn(K ) with A = Z B has the form

Z =

[
Ir ⋆

0 Zn−r

]
,

where Zn−r ∈ GLn−r (K ). Since B is in echelon form and all entries of B below its

row r are zero, it then follows that B = Z B = A.

Since (1, j1) is the first pivot position of B, we have bi = 0 ∈ K n,1 for 1 ≤ i ≤

j1 − 1 and b j1 = e1 (the first column of In). Then A = Z B implies ai = 0 ∈ K n,1

for 1 ≤ i ≤ j1 − 1 and a j1 = Zb j1 = Ze1. Since Z is invertible, Lemma 5.7 implies

that a j1 �= 0 ∈ K n,1. Since A is in echelon form, a j1 = e1 = b j1 . Furthermore,

Z = Zn :=

[
1 ⋆

0 Zn−1

]
,

where Zn−1 ∈ GLn−1(K ) (cp. Exercise 5.3). If r = 1, then we are done.

If r > 1, then we proceed with the other pivot positions in an analogous way:

Since B is in echelon form, the kth pivot position gives b jk = ek . From a jk = Zb jk

and the invertibility of Zn−k+1 we obtain a jk = b jk and

Z =

⎡
⎣

Ik−1 0 ⋆

0 1 ⋆

0 0 Zn−k

⎤
⎦ ,

where Zn−k ∈ GLn−k(K ). ⊓⊔

This result yields the uniqueness of the echelon form of a matrix and its invariance

under left-multiplication with invertible matrices.

Corollary 5.9 For A ∈ K n,m the following assertions hold:

(1) There is a unique matrix C ∈ K n,m in echelon form to which A can be trans-

formed by elementary row operations, i.e., by left-multiplication with elementary

matrices. This matrix C is called the echelon form of A.

(2) If M ∈ GLn(K ), then the matrix C in (1) is also the echelon form of M A, i.e.,

the echelon form of a matrix is invariant under left-multiplication with invertible

matrices.

Proof

(1) If S1 A = C1 and S2 A = C2, where C1, C2 are in echelon form and S1, S2 are

invertible, then C1 =
(
S1S−1

2

)
C2. Theorem 5.8 now gives C1 = C2.

(2) If M ∈ GLn(K ) and S3(M A) = C3 is in echelon form, then with S1 A = C1

from (1) we get C3 =
(
S3 M S−1

1

)
C1. Theorem 5.8 now gives C3 = C1. ⊓⊔



66 5 The Echelon Form and the Rank of Matrices

5.3 Rank and Equivalence of Matrices

As we have seen in Corollary 5.9, the echelon form of A ∈ K n,m is unique. In

particular, for every matrix A ∈ K n,m , there exists a unique number of pivot positions

(cp. Definition 5.6) in its echelon form. This justifies the following definition.

Definition 5.10 The number r of pivot positions in the echelon form of A ∈ K n,m

is called the rank4 of A and denoted by rank(A).

We see immediately that for A ∈ K n,m always 0 ≤ rank(A) ≤ min{n, m}, where

rank(A) = 0 if and only if A = 0. Moreover, Theorem 5.2 shows that A ∈ K n,n is

invertible if and only if rank(A) = n. Further properties of the rank are summarized

in the following theorem.

Theorem 5.11 For A ∈ K n,m the following assertions hold:

(1) There exist matrices Q ∈ GLn(K ) and Z ∈ GLm(K ) with

Q AZ =

[
Ir 0r,m−r

0n−r,r 0n−r,m−r

]

if and only if rank(A) = r .

(2) If Q ∈ GLn(K ) and Z ∈ GLm(K ), then rank(A) = rank(Q AZ).

(3) If A = BC with B ∈ K n,ℓ and C ∈ K ℓ,m , then

(a) rank(A) ≤ rank(B),

(b) rank(A) ≤ rank(C).

(4) rank(A) = rank(AT ).

(5) There exist matrices B ∈ K n,ℓ and C ∈ K ℓ,m with A = BC if and only if

rank(A) ≤ ℓ.

Proof

(3a) Let Q ∈ GLn(K ) be such that Q B is in echelon form. Then Q A = Q BC .

In the matrix Q BC at most the first rank(B) rows contain nonzero entries. By

Corollary 5.9, the echelon form of Q A is equal to the echelon form of A. Thus,

in the normal echelon form of A also at most the first rank(B) rows will be

nonzero, which implies rank(A) ≤ rank(B).

(1) ⇐: If rank(A) = r = 0, i.e., A = 0, then Ir = [ ] and the assertion holds for

arbitrary matrices Q ∈ GLn(K ) and Z ∈ GLm(K ).

If r ≥ 1, then there exists a matrix Q ∈ GLn(K ) such that Q A is in echelon

form with r pivot positions. Then there exists a permutation matrix P ∈ K m,m ,

that is a product of elementary permutation matrices Pi j , with

4The concept of the rank was introduced (in the context of bilinear forms) first in 1879 by Ferdinand
Georg Frobenius (1849–1917).
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P AT QT =

[
Ir 0r,n−r

V 0m−r,n−r

]

for some matrix V ∈ K m−r,r . If r = m, then V = [ ]. In the following, for

simplicity, we omit the sizes of the zero matrices. The matrix

Y :=

[
Ir 0

−V Im−r

]
∈ K m,m

is invertible with

Y −1 =

[
Ir 0

V Im−r

]
∈ K m,m .

Thus,

Y P AT QT =

[
Ir 0

0 0

]
,

and with Z := PT Y T ∈ GLm(K ) we obtain

Q AZ =

[
Ir 0

0 0

]
. (5.5)

⇒: Suppose that (5.5) holds for A ∈ K n,m and matrices Q ∈ GLn(K ) and

Z ∈ GLm(K ). Then with (3a) we obtain

rank(A) = rank(AZ Z−1) ≤ rank(AZ) ≤ rank(A),

and thus, in particular, rank(A) = rank(AZ). Due to the invariance of the

echelon form (and hence the rank) under left-multiplication with invertible

matrices (cp. Corollary 5.9), we get

rank(A) = rank(AZ) = rank(Q AZ) = rank

([
Ir 0

0 0

])
= r.

(2) If A ∈ K n×n , Q ∈ GLn(K ) and Z ∈ GLm(K ), then the invariance of the rank

under left-multiplication with invertible matrices and (3a) can again be used

for showing that

rank(A) = rank(Q AZ Z−1) ≤ rank(Q AZ) = rank(AZ) ≤ rank(A),

and hence, in particular, rank(A) = rank(Q AZ).
(4) If rank(A) = r , then by (1) there exist matrices Q ∈ GLn(K ) and Z ∈

GLm(K ) with Q AZ =

[
Ir 0

0 0

]
. Therefore,
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rank(A) = rank(Q AZ) = rank

([
Ir 0

0 0

])
= rank

([
Ir 0

0 0

]T
)

= rank((Q AZ)T )

= rank(Z T AT QT ) = rank(AT ).

(3b) Using (3a) and (4), we obtain

rank(A) = rank(AT ) = rank(CTBT ) ≤ rank(CT ) = rank(C).

(5) Let A = BC with B ∈ K n,ℓ, C ∈ K ℓ,m . Then by (3a),

rank(A) = rank(BC) ≤ rank(B) ≤ ℓ.

Let, on the other hand, rank(A) = r ≤ ℓ. Then there exist matrices Q ∈

GLn(K ) and Z ∈ GLm(K ) with Q AZ =

[
Ir 0

0 0

]
. Thus, we obtain

A =

(
Q−1

[
Ir 0r,ℓ−r

0n−r,r 0n−r,ℓ−r

]) ([
Ir 0r,m−r

0ℓ−r,r 0ℓ−r,m−r

]
Z−1

)
=: BC,

where B ∈ K n,ℓ and C ∈ K ℓ,m . ⊓⊔

Example 5.12 The matrix

A =

⎡
⎣

0 2 1 3 3

0 2 0 1 1

0 2 0 1 1

⎤
⎦ ∈ Q3,5

from Example 5.3 has the echelon form

⎡
⎢⎣

0 1 0 1
2

1
2

0 0 1 2 2

0 0 0 0 0

⎤
⎥⎦ .

Since there are two pivot positions, we have rank(A) = 2. Multiplying A from the

right by

B =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1 −1

0 0 0 −1 −1

⎤
⎥⎥⎥⎥⎦

∈ Q5,5,

yields AB = 0 ∈ Q3,5, and hence rank(AB) = 0 < rank(A).

Assertion (1) in Theorem 5.11 motivates the following definition.
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Definition 5.13 Two matrices A, B ∈ K n,m are called equivalent, if there exist

matrices Q ∈ GLn(K ) and Z ∈ GLm(K ) with A = Q B Z .

As the name suggests, this defines an equivalence relation on the set K n,m , since

the following properties hold:

• Reflexivity: A = Q AZ with Q = In and Z = Im .

• Symmetry: If A = Q B Z , then B = Q−1 AZ−1.

• Transitivity: If A = Q1 B Z1 and B = Q2C Z2, then A = (Q1 Q2)C(Z2 Z1).

The equivalence class of A ∈ K n,m is given by

[A] =
{

Q AZ | Q ∈ GLn(K ) and Z ∈ GLm(K )
}
.

If rank(A) = r , then by (1) in Theorem 5.11 we have

[
Ir 0r,m−r

0n−r,r 0n−r,m−r

]
=

[
Ir 0

0 0

]
∈ [A]

and, therefore, [ [
Ir 0

0 0

] ]
= [A].

Consequently, the rank of A fully determines the equivalence class [A]. The matrix

[
Ir 0

0 0

]
∈ K n,m

is called the equivalence normal form of A. We obtain

K n,m =

min{n,m}⋃

r=0

[ [
Ir 0

0 0

] ]
, where

[ [
Ir 0

0 0

] ]⋂[[
Iℓ 0

0 0

] ]
= Ø, if r �= ℓ.

Hence there are 1 + min{n, m} pairwise distinct equivalence classes, and
{[

Ir 0

0 0

]
∈ K n,m

∣∣∣∣ r = 0, 1, . . . , min{n, m}

}

is a complete set of representatives.

From the proof of Theorem 4.9 we know that (K n,n,+, ∗) for n ≥ 2 is a non-

commutative ring with unit that contains non-trivial zero divisors. Using the equiv-

alence normal form these can be characterized as follows:

• If A ∈ K n,n is invertible, then A cannot be a zero divisor, since then AB = 0

implies that B = 0.
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• If A ∈ K n,n \ {0} is a zero divisor, then A cannot be invertible, and hence 1 ≤

rank(A) = r < n, so that the equivalence normal form of A is not the identity

matrix In . Let Q, Z ∈ GLn(K ) be given with

Q AZ =

[
Ir 0

0 0

]
.

Then for every matrix

V :=

[
0r,r 0r,n−r

V21 V22

]
∈ K n,n

and B := Z V we have

AB = Q−1

[
Ir 0

0 0

] [
0r,r 0r,n−r

V21 V22

]
= 0.

If V �= 0, then B �= 0, since Z is invertible.

Exercises

(In the following exercises K is an arbitrary field.)

5.1 Compute the echelon forms of the matrices

A =

[
1 2 3

2 4 48

]
∈ Q2,3, B =

[
1 i

i 1

]
∈ C2,2, C =

⎡
⎢⎢⎣

1 i −i 0

0 0 0 1

5 0 −6i 0

0 1 0 0

⎤
⎥⎥⎦ ∈ C4,4,

D =

⎡
⎣

1 0

1 1

0 1

⎤
⎦ ∈ (Z/2Z)3,2, E =

⎡
⎣

1 0 2 0

2 0 1 1

1 2 0 2

⎤
⎦ ∈ (Z/3Z)3,4.

(Here for simplicity the elements of Z/nZ are denoted by k instead of [k].)

State the elementary matrices that carry out the transformations. If one of the

matrices is invertible, then compute its inverse as a product of the elementary

matrices.

5.2 Let A =

[
α β

γ δ

]
∈ K 2,2 with αδ �= βγ. Determine the echelon form of A and

a formula for A−1.

5.3 Let A =

[
1 A12

0 B

]
∈ K n,n with A12 ∈ K 1,n−1 and B ∈ K n−1,n−1. Show that

A ∈ GLn(K ) if and only if B ∈ GLn−1(K ).

5.4 Consider the matrix

A =

[
t+1
t−1

t−1
t2

t2

t+1
t−1
t+1

]
∈ (K (t))2,2,
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where K (t) is the field of rational functions (cp. Exercise 3.19). Examine

whether A is invertible and determine, if possible, A−1. Verify your result by

computing A−1 A and AA−1.

5.5 Show that if A ∈ GLn(K ), then the echelon form of [A, In] ∈ K n,2n is given

by [In, A−1].

(The inverse of an invertible matrix A can thus be computed via the transfor-

mation of [A, In] to its echelon form.)

5.6 Two matrices A, B ∈ K n,m are called left equivalent, if there exists a matrix

Q ∈ GLn(K ) with A = Q B. Show that this defines an equivalence relation on

K n,m and determine a most simple representative for each equivalence class.

5.7 Prove Lemma 5.7.

5.8 Determine LU -decompositions (cp. Theorem 5.4) of the matrices

A =

⎡
⎢⎢⎣

1 2 3 0

4 0 0 1

5 0 6 0

0 1 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

2 0 −2 0

−4 0 4 −1

0 −1 −1 −2

0 0 1 1

⎤
⎥⎥⎦ ∈ R4,4.

If one of these matrices is invertible, then determine its inverse using its LU -

decomposition.

5.9 Let A be the 4 × 4 Hilbert matrix (cp. the MATLAB-Minute above Defini-

tion 5.6). Determine rank(A). Does A have an LU -decomposition as in The-

orem 5.4 with P = I4?

5.10 Determine the rank of the matrix

A =

⎡
⎣

0 α β

−α 0 γ

−β −γ 0

⎤
⎦ ∈ R3,3

in dependence of α,β, γ ∈ R.

5.11 Let A, B ∈ K n,n be given. Show that

rank(A) + rank(B) ≤ rank

([
A C

0 B

])

for all C ∈ K n,n . Examine when this inequality is strict.

5.12 Let a, b, c ∈ Rn,1.

(a) Determine rank(baT ).

(b) Let M(a, b) := baT − abT . Show the following assertions:

(i) M(a, b) = −M(b, a) and M(a, b)c + M(b, c)a + M(c, a)b = 0,

(ii) M(λa + µb, c) = λM(a, c) + µM(b, c) for λ,µ ∈ R,

(iii) rank(M(a, b)) = 0 if and only if there exist λ,µ ∈ R with λ �= 0 or

µ �= 0 and λa + µb = 0,

(iv) rank(M(a, b)) ∈ {0, 2}.



Chapter 6

Linear Systems of Equations

Solving linear systems of equations is a central problem of Linear Algebra that

we discuss in an introductory way in this chapter. Such systems arise in numerous

applications from engineering to the natural and social sciences. Major sources of

linear systems of equations are the discretization of differential equations and the

linearization of nonlinear equations. In this chapter we analyze the solution sets of

linear systems of equations and we characterize the number of solutions using the

echelon form from Chap. 5. We also develop an algorithm for the computation of the

solutions.

Definition 6.1 A linear system (of equations) over a field K with n equations in m

unknowns x1, . . . , xm has the form

a11x1 + . . . + a1m xm = b1,

a21x1 + . . . + a2m xm = b2,

...

an1x1 + . . . + anm xm = bn

or

Ax = b,

where the coefficient matrix A = [ai j ] ∈ K n,m and the right hand side b = [bi ] ∈

K n,1 are given. If b = 0, then the linear system is called homogeneous, otherwise

non-homogeneous. Every x̂ ∈ K m,1 with Ax̂ = b is called a solution of the linear

system. All these x̂ form the solution set of the linear system, which we denote by

L (A, b).

The next result characterizes the solution set L (A, b) of the linear system Ax = b

using the solution set L (A, 0) of the associated homogeneous linear system Ax = 0.

© Springer International Publishing Switzerland 2015
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Lemma 6.2 Let A ∈ K n,m and b ∈ K n,1 with L (A, b) �= Ø be given. If x̂ ∈

L (A, b), then

L (A, b) = x̂ + L (A, 0) := {̂x + ẑ | ẑ ∈ L (A, 0)}.

Proof If ẑ ∈ L (A, 0), and thus x̂ + ẑ ∈ x̂ + L (A, 0), then

A(̂x + ẑ) = Ax̂ + Âz = b + 0 = b.

Hence x̂ + ẑ ∈ L (A, b), which shows that x̂ + L (A, 0) ⊆ L (A, b).

Let now x̂1 ∈ L (A, b) and let ẑ := x̂1 − x̂ . Then

Âz = Ax̂1 − Ax̂ = b − b = 0,

i.e., ẑ ∈ L (A, 0). Hence x̂1 = x̂ + ẑ ∈ x̂ + L (A, 0), which shows that L (A, b) ⊆

x̂ + L (A, 0). �

We will have a closer look at the set L (A, 0): Clearly, 0 ∈ L (A, 0) �= Ø. If

ẑ ∈ L (A, 0), then for all λ ∈ K we have A(λ̂z) = λ( Âz) = λ · 0 = 0, and hence

λ̂z ∈ L (A, 0). Furthermore, for ẑ1, ẑ2 ∈ L (A, 0) we have

A(̂z1 + ẑ2) = Âz1 + Âz2 = 0 + 0 = 0,

and hence ẑ1 + ẑ2 ∈ L (A, 0). Thus, L (A, 0) is a nonempty subset of K m,1 that is

closed under scalar multiplication and addition.

Lemma 6.3 If A ∈ K n,m , b ∈ K n,1 and S ∈ K n,n , then L (A, b) ⊆ L (S A, Sb).

Moreover, if S is invertible, then L (A, b) = L (S A, Sb).

Proof If x̂ ∈ L (A, b), then also S Ax̂ = Sb, and thus x̂ ∈ L (S A, Sb), which

shows that L (A, b) ⊆ L (S A, Sb). If S is invertible and ŷ ∈ L (S A, Sb), then

S Aŷ = Sb. Multiplying from the left with S−1 yields Aŷ = b. Since ŷ ∈ L (A, b),

we have L (S A, Sb) ⊆ L (A, b). �

Consider the linear system of equations Ax = b. By Theorem 5.2 we can find

a matrix S ∈ GLn(K ) such that S A is in echelon form. Let b̃ = [̃bi ] := Sb, then

L (A, b) = L (S A, b̃) by Lemma 6.3, and the linear system S Ax = b̃ takes the

form ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋆ 0 0 0

1
⋆

0 ⋆

1

...
⋆

0
0

. . . 0
0

10

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃1

...

b̃n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Suppose that rank(A) = r , and let j1, j2, . . . , jr be the pivot columns. Using a right-
multiplication with a permutation matrix we can move the r pivot columns of S A to
the first r columns. This is achieved by

PT := [e j1 , . . . , e jr , e1, . . . , e j1−1, e j1+1, . . . , e j2−1, e j2+1, . . . , e jr −1, e jr +1, . . . , em ] ∈ K m,m ,

which yields

Ã := S APT =

[
Ir Ã12

0n−r,r 0n−r,m−r

]
,

where Ã12 ∈ K r,m−r . If r = m, then we have Ã12 = [ ]. This permutation leads to

a simplification of the following presentation, but it is usually omitted in practical

computations.

Since PT P = Im , we can write S Ax = b̃ as (S APT )(Px) = b̃, or Ãy = b̃,

which has the form

⎡
⎢⎢⎢⎢⎢⎢⎣

Ir Ã12

0n−r,r 0n−r,m−r

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
= Ã:=S APT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

...

yr

yr+1

...

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=y:=Px

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃1

...

b̃r

b̃r+1

...

b̃n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=b̃:=Sb

. (6.1)

The left-multiplication of x with P just means a different ordering of the unknowns

x1, . . . , xm . Thus, the solutions of Ax = b can be easily recovered from the solutions

of Ãy = b̃, and vice versa: We have ŷ ∈ L ( Ã, b̃) if and only if x̂ := PT ŷ ∈

L (S A, b̃) = L (A, b).

The solutions of (6.1) can now be determined using the extended coefficient matrix

[ Ã, b̃] ∈ K n,m+1,

which is obtained by attaching b̃ as an extra column to Ã. Note that rank( Ã) ≤

rank([ Ã, b̃]), with equality if and only if b̃r+1 = · · · = b̃n = 0.

If rank( Ã) < rank([ Ã, b̃]), then at least one of b̃r+1, . . . , b̃n is nonzero. Then

(6.1) cannot have a solution, since all entries of Ã in the rows r + 1, . . . , n are zero.

If, on the other hand, rank( Ã) = rank([ Ã, b̃]), then b̃r+1 = · · · = b̃n = 0 and

(6.1) can be written as

⎡
⎢⎣

y1

...

yr

⎤
⎥⎦ =

⎡
⎢⎣

b̃1

...

b̃r

⎤
⎥⎦ − Ã12

⎡
⎢⎣

yr+1

...

ym

⎤
⎥⎦ . (6.2)
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This representation implies, in particular, that

b̃(m) := [̃b1, . . . , b̃r , 0, . . . , 0︸ ︷︷ ︸
m−r

]T ∈ L ( Ã, b̃) �= Ø.

From Lemma 6.2 we know that L ( Ã, b̃) = b̃(m)+L ( Ã, 0). In order to determine

L ( Ã, 0) we set b̃1 = · · · = b̃r = 0 in (6.2), which yields

L ( Ã, 0) =
{

[̂y1, . . . , ŷm]T | ŷr+1, . . . , ŷm arbitrary and (6.3)

[̂y1, . . . , ŷr ]
T = 0 − Ã12 [̂yr+1, . . . , ŷm]T

}
.

If r = m, then Ã12 = [ ], L ( Ã, 0) = {0} and thus |L ( Ã, b̃)| = 1, i.e., the solution

of Ãy = b̃ is uniquely determined.

Example 6.4 For the extended coefficient matrix

[ Ã, b̃] =

⎡
⎣

1 0 3 b̃1

0 1 4 b̃2

0 0 0 b̃3

⎤
⎦ ∈ Q3,4

we have rank( Ã) = rank([ Ã, b̃]) if and only if b̃3 = 0. If b̃3 �= 0, then L ( Ã, b̃) = Ø.

If b̃3 = 0, then Ãy = b̃ can be written as

[
y1

y2

]
=

[
b̃1

b̃2

]
−

[
3

4

]
[y3].

Hence, b̃(3) = [̃b1, b̃2, 0]T ∈ L ( Ã, b̃) and

L ( Ã, 0) =
{

[̂y1, ŷ2, ŷ3]
T | ŷ3 arbitrary and [̂y1, ŷ2]

T = −[3, 4]T [̂y3]
}
.

Summarizing our considerations we have the following algorithm for solving a

linear system of equations.

Algorithm 6.5 Let A ∈ K n,m and b ∈ K n,1 be given.

(1) Determine S ∈ GLn(K ) such that S A is in echelon form and define b̃ := Sb.

(2a) If rank(S A) < rank([S A, b̃]), then L (S A, b̃) = L (A, b) = Ø.

(2b) If r = rank(A) = rank([S A, b̃]), then define Ã := S APT as in (6.1).

We have b̃(m) ∈ L ( Ã, b̃) and L ( Ã, b̃) = b̃(m) + L ( Ã, 0), where L ( Ã, 0) is

determined as in (6.3), as well as L (A, b) = {PT ŷ | ŷ ∈ L ( Ã, b̃)}.

Since rank(A) = rank(S A) = rank( Ã) and rank([A, b]) = rank([S A, b̃]) =

rank([ Ã, b̃]), the discussion above also yields the following result about the different

cases of the solvability of a linear system of equations.
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Corollary 6.6 For A ∈ K n,m and b ∈ K n,1 the following assertions hold:

(1) If rank(A) < rank([A, b]), then L (A, b) = Ø.

(2) If rank(A) = rank([A, b]) = m, then |L (A, b)| = 1 (i.e., there exists a unique

solution).

(3) If rank(A) = rank([A, b]) < m, then there exist many solutions. If the field K

has infinitely many elements (e.g., when K = Q, K = R or K = C), then there

exist infinitely many pairwise distinct solutions.

The different cases in Corollary 6.6 will be studied again in Example 10.8.

Example 6.7 Let K = Q and consider the linear system of equations Ax = b with

A =

⎡
⎢⎢⎢⎢⎣

1 2 2 1

0 1 0 3

1 0 3 0

2 3 5 4

1 1 3 3

⎤
⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎣

1

0

2

3

2

⎤
⎥⎥⎥⎥⎦

.

We form [A, b] and apply the Gaussian elimination algorithm in order to transform

A into echelon form:

[A, b] �

⎡
⎢⎢⎢⎢⎣

1 2 2 1 1

0 1 0 3 0

0 −2 1 −1 1

0 −1 1 2 1

0 −1 1 2 1

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 2 2 1 1

0 1 0 3 0

0 0 1 5 1

0 0 1 5 1

0 0 1 5 1

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 2 2 1 1

0 1 0 3 0

0 0 1 5 1

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 0 2 −5 1

0 1 0 3 0

0 0 1 5 1

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 0 0 −15 −1

0 1 0 3 0

0 0 1 5 1

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

= [S A|̃b].

Here rank(S A) = rank([S A, b̃]) = 3, and hence there exist solutions. The pivot

columns are ji = i for i = 1, 2, 3, so that P = PT = I4 and Ã = S A. Now

S Ax = b̃ can be written as

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

−1

0

1

⎤
⎦ −

⎡
⎣

−15

3

5

⎤
⎦ [x4].
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Consequently, b̃(4) = [−1, 0, 1, 0]T ∈ L (A, b) and L (A, b) = b̃(4) + L (A, 0),

where

L (A, 0) =
{

[̂x1, . . . , x̂4]
T | x̂4 arbitrary and [̂x1, x̂2, x̂3]

T = −[−15, 3, 5]T [̂x4]
}
.

Exercises

6.1 Find a field K and matrices A ∈ K n,m , S ∈ K n,n and b ∈ K n,1 with L (A, b) �=

L (S A, Sb).

6.2 Determine L (A, b) for the following A and b:

A =

⎡
⎣

1 1 1

1 2 −1

1 −1 6

⎤
⎦ ∈ R3,3, b =

⎡
⎣

1

−2

3

⎤
⎦ ∈ R3,1,

A =

⎡
⎣

1 1 1 0

1 2 −1 −1

1 −1 6 2

⎤
⎦ ∈ R3,4, b =

⎡
⎣

1

−2

3

⎤
⎦ ∈ R3,1,

A =

⎡
⎢⎢⎣

1 1 1

1 2 −1

1 −1 6

1 1 1

⎤
⎥⎥⎦ ∈ R4,3, b =

⎡
⎢⎢⎣

1

−2

3

1

⎤
⎥⎥⎦ ∈ R4,1,

A =

⎡
⎢⎢⎣

1 1 1

1 2 −1

1 −1 6

1 1 1

⎤
⎥⎥⎦ ∈ R4,3, b =

⎡
⎢⎢⎣

1

−2

3

0

⎤
⎥⎥⎦ ∈ R4,1.

6.3 Let α ∈ Q,

A =

⎡
⎣

3 2 1

1 1 1

2 1 0

⎤
⎦ ∈ Q3,3, bα =

⎡
⎣

6

3

α

⎤
⎦ ∈ Q3,1.

Determine L (A, 0) and L (A, bα) in dependence of α.

6.4 Let A ∈ K n,m and B ∈ K n,s . For i = 1, . . . , s denote by bi the i th column of

B. Show that the linear system of equations AX = B has at least one solution

X̂ ∈ K m,s if and only if

rank(A) = rank([A, b1]) = rank([A, b2]) = · · · = rank([A, bs]).

Find conditions under which this solution is unique.
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6.5 Let

A =

⎡
⎢⎢⎢⎢⎣

0 β1

α2 0
. . .

. . .
. . . βn

αn 0

⎤
⎥⎥⎥⎥⎦

∈ K n,n, b =

⎡
⎢⎣

b1

...

bn

⎤
⎥⎦ ∈ K n,1

be given with βi ,αi �= 0 for all i . Determine a recursive formula for the entries

of the solution of the linear system Ax = b.



Chapter 7

Determinants of Matrices

The determinant is a map that assigns to every square matrix A ∈ Rn,n , where R is

a commutative ring with unit, an element of R. This map has very interesting and

important properties. For instance it yields a necessary and sufficient condition for

the invertibility of A ∈ Rn,n . Moreover, it forms the basis for the definition of the

characteristic polynomial of a matrix in Chap. 8.

7.1 Definition of the Determinant

There are several different approaches to define the determinant of a matrix. We use

the constructive approach via permutations.

Definition 7.1 Let n ∈ N be given. A bijective map

σ : {1, 2, . . . , n} → {1, 2, . . . , n}, j �→ σ( j),

is called a permutation of the numbers {1, 2, . . . , n}. We denote the set of all these

maps by Sn .

A permutation σ ∈ Sn can be written in the form

[
σ(1) σ(2) . . . σ(n)

]
.

For example S1 = {[1]}, S2 = {[1 2], [2 1]}, and

S3 = { [1 2 3], [1 3 2], [2 1 3], [2 3 1], [3 1 2], [3 2 1] }.

From Lemma 2.17 we know that |Sn| = n! = 1 · 2 · . . . · n.

© Springer International Publishing Switzerland 2015
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82 7 Determinants of Matrices

The set Sn with the composition of maps “◦” forms a group (cp. Exercise 3.3),

which is sometimes called the symmetric group. The neutral element in this group is

the permutation [1 2 . . . n].
While S1 and S2 are commutative groups, the group Sn for n ≥ 3 is non-

commutative. As an example consider n = 3 and the permutations σ1 = [2 3 1],
σ2 = [1 3 2]. Then

σ1 ◦ σ2 = [σ1(σ2(1)) σ1(σ2(2)) σ1(σ2(3))] = [σ1(1) σ1(3) σ1(2)] = [2 1 3],
σ2 ◦ σ1 = [σ2(σ1(1)) σ2(σ1(2)) σ2(σ1(3))] = [σ2(2) σ2(3) σ2(1)] = [3 2 1].

Definition 7.2 Let n ≥ 2 and σ ∈ Sn . A pair (σ(i),σ( j)) with 1 ≤ i < j ≤ n and

σ(i) > σ( j) is called an inversion of σ. If k is the number of inversions of σ, then

sgn(σ) := (−1)k is called the sign of σ. For n = 1 we define sgn([1]) := 1= (−1)0.

In short, an inversion of a permutation σ is a pair that is “out of order”. The term

inversion should not be confused with the inverse map σ−1 (which exists, since σ is

bijective). The sign of a permutation is sometimes also called the signature.

Example 7.3 The permutation [2 3 1 4] ∈ S4 has the inversions (2, 1) and (3, 1),

so that sgn([2 3 1 4]) = 1. The permutation [4 1 2 3] ∈ S4 has the inversions (4, 1),

(4, 2), (4, 3), so that sgn([4 1 2 3]) = −1.

We can now define the determinant map.

Definition 7.4 Let R be a commutative ring with unit and let n ∈ N. The map

det : Rn,n → R, A = [ai j ] �→ det(A) :=
∑

σ∈Sn

sgn(σ)

n∏

i=1

ai,σ(i), (7.1)

is called the determinant, and the ring element det(A) is called the determinant of A.

The formula (7.1) for det(A) is called the signature formula of Leibniz.1 The term

sgn(σ) in this definition is to be interpreted as an element of the ring R, i.e., either

sgn(σ) = 1 ∈ R or sgn(σ) = −1 ∈ R, where −1 ∈ R is the unique additive inverse

of the unit 1 ∈ R.

Example 7.5 For n = 1 we have A = [a11] and thus det(A) = sgn([1])a11 = a11.

For n = 2 we get

det(A) = det

([
a11 a12

a21 a22

])
= sgn([1 2])a11a22 + sgn([2 1])a12a21

= a11a22 − a12a21.

1Gottfried Wilhelm Leibniz (1646–1716).
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For n = 3 we have the Sarrus rule2:

det(A) = a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31.

In order to compute det(A) using the signature formula of Leibniz we have to

form n! products with n factors each. For large n this is too costly even on mod-

ern computers. As we will see in Corollary 7.16, there are more efficient ways for

computing det(A). The signature formula is mostly of theoretical relevance, since it

represents the determinant of A explicitly in terms of the entries of A. Considering

the n2 entries as variables, we can interpret det(A) as a polynomial in these variables.

If R = R or R = C, then standard techniques of Analysis show that det(A) is a

continuous function of the entries of A.

We will now study the group of permutations in more detail. The permutation

σ = [3 2 1] ∈ S3 has the inversions (3, 2), (3, 1) and (2, 1), so that sgn(σ) = −1.

Moreover,

∏

1≤i< j≤3

σ( j) − σ(i)

j − i
=

σ(2) − σ(1)

2 − 1

σ(3) − σ(1)

3 − 1

σ(3) − σ(2)

3 − 2

=
2 − 3

2 − 1

1 − 3

3 − 1

1 − 2

3 − 2
= (−1)3 = −1 = sgn(σ).

This observation can be generalized as follows.

Lemma 7.6 For each σ ∈ Sn we have

sgn(σ) =
∏

1≤i< j≤n

σ( j) − σ(i)

j − i
. (7.2)

Proof If n = 1, then the left hand side of (7.2) is an empty product, which is defined

to be 1 (cp. Sect. 3.2), so that (7.2) holds for n = 1.

Let n > 1 and σ ∈ Sn with sgn(σ) = (−1)k , i.e., k is the number of pairs

(σ(i),σ( j)) with i < j but σ(i) > σ( j). Then

∏

1≤i< j≤n

(σ( j) − σ(i)) = (−1)k
∏

1≤i< j≤n

|σ( j) − σ(i)| = (−1)k
∏

1≤i< j≤n

( j − i).

In the last equation we have used the fact that the two products have the same factors

(except possibly for their order). ⊓⊔

2Pierre Frédéric Sarrus (1798–1861).
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Theorem 7.7 For all σ1,σ2 ∈ Sn we have sgn(σ1 ◦ σ2) = sgn(σ1) sgn(σ2). In

particular, sgn(σ−1) = sgn(σ) for all σ ∈ Sn .

Proof By Lemma 7.6 we have

sgn(σ1 ◦ σ2) =
∏

1≤i< j≤n

σ1(σ2( j)) − σ1(σ2(i))

j − i

=

⎛
⎝ ∏

1≤i< j≤n

σ1(σ2( j)) − σ1(σ2(i))

σ2( j) − σ2(i)

⎞
⎠

⎛
⎝ ∏

1≤i< j≤n

σ2( j) − σ2(i)

j − i

⎞
⎠

=

⎛
⎝ ∏

1≤σ2(i)<σ2( j)≤n

σ1(σ2( j)) − σ1(σ2(i))

σ2( j) − σ2(i)

⎞
⎠ sgn(σ2)

=

⎛
⎝ ∏

1≤i< j≤n

σ1( j) − σ1(i)

j − i

⎞
⎠ sgn(σ2)

= sgn(σ1) sgn(σ2).

For each σ ∈ Sn we have 1 = sgn([1 2 . . . n]) = sgn(σ ◦ σ−1) = sgn(σ) sgn(σ−1),

so that sgn(σ) = sgn(σ−1). ⊓⊔

Theorem 7.7 shows that the map sgn is a homomorphism between the groups

(Sn, ◦) and ({1,−1}, ·), where the operation in the second group is the standard

multiplication of the integers 1 and −1.

Definition 7.8 A transposition is a permutation τ ∈ Sn , n ≥ 2, that exchanges

exactly two distinct elements k, ℓ ∈ {1, 2, . . . , n}, i.e., τ (k) = ℓ, τ (ℓ) = k and

τ ( j) = j for all j ∈ {1, 2, . . . , n} \ {k, ℓ}.

Obviously τ−1 = τ for every transposition τ ∈ Sn .

Lemma 7.9 Let τ ∈ Sn be the transposition, that exchanges k and ℓ for some

1 ≤ k < ℓ ≤ n. Then τ has exactly 2(ℓ−k)−1 inversions and, hence, sgn(τ ) = −1.

Proof We have ℓ = k + j for a j ≥ 1 and thus τ is given by

τ = [1, . . . , k − 1, k + j, k + 1, . . . , k + ( j − 1), k, ℓ + 1, . . . , n],

where the points denote values of τ in increasing and thus “correct” order. A simple

counting argument shows that τ has exactly 2 j − 1 = 2(ℓ − k) − 1 inversions. ⊓⊔
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7.2 Properties of the Determinant

In this section we prove important properties of the determinant map.

Lemma 7.10 For A ∈ Rn,n the following assertions hold:

(1) For λ ∈ R,

det

([
λ ⋆

0n,1 A

])
= det

([
λ 01,n

⋆ A

])
= λ det(A).

(2) If A = [ai j ] is upper or lower triangular, then det(A) =
∏n

i=1 ai i .

(3) If A has a zero row or column, then det(A) = 0.

(4) If n ≥ 2 and A has two equal rows or two equal columns, then det(A) = 0.

(5) det(A) = det(AT ).

Proof

(1) Exercise.

(2) This follows by an application of (1) to the upper (or lower) triangular matrix A.

(3) If A has a zero row or column, then for every σ ∈ Sn at least one factor in the

product
∏n

i=1 ai,σ(i) is equal to zero and thus det(A) = 0.

(4) Let the rows k and ℓ, with k < ℓ, of A = [ai j ] be equal, i.e., ak j = aℓj for

j = 1, . . . , n. Let τ ∈ Sn be the transposition that exchanges the elements k and

ℓ, and let

Tn := {σ ∈ Sn | σ(k) < σ(ℓ)}.

Since the set Tn contains all permutations σ ∈ Sn for which σ(k) < σ(ℓ), we

have |Tn| = |Sn|/2 and

Sn \ Tn = {σ ◦ τ | σ ∈ Tn}.

Moreover,

ai,(σ◦τ )(i) =

⎧
⎪⎨
⎪⎩

ai,σ(i), i 
= k, ℓ,

ak,σ(ℓ), i = k,

aℓ,σ(k), i = ℓ.

We have ak,σ(ℓ) = aℓ,σ(ℓ) and aℓ,σ(k) = ak,σ(k), Thus, using Theorem 7.7 and

Lemma 7.9, we obtain

∑

σ∈Sn\Tn

sgn(σ)

n∏

i=1

ai,σ(i) =
∑

σ∈Tn

sgn(σ ◦ τ )

n∏

i=1

ai,(σ◦τ )(i)

=
∑

σ∈Tn

(−sgn(σ))

n∏

i=1

ai,(σ◦τ )(i)

= −
∑

σ∈Tn

sgn(σ)

n∏

i=1

ai,σ(i).
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This implies

det(A) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

ai,σ(i)

=
∑

σ∈Tn

sgn(σ)

n∏

i=1

ai,σ(i) +
∑

σ∈Sn\Tn

sgn(σ)

n∏

i=1

ai,σ(i) = 0.

The proof for the case of two equal columns is analogous.

(5) We observe first that

{ (σ(i), i) | 1 ≤ i ≤ n } = { (i,σ−1(i)) | 1 ≤ i ≤ n }

for every σ ∈ Sn . To see this, let i with 1 ≤ i ≤ n be fixed. Then σ(i) = j if and

only if i = σ−1( j). Thus, (σ(i), i) = ( j, i) is an element of the first set if and

only if ( j,σ−1( j)) = ( j, i) is an element of the second set. Since σ is bijective,

the two sets are equal.

Let A = [ai j ] and AT = [bi j ] with bi j = a j i . Then

det(AT ) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

bi,σ(i) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

aσ(i),i

=
∑

σ∈Sn

sgn(σ−1)

n∏

i=1

aσ(i),i =
∑

σ∈Sn

sgn(σ−1)

n∏

i=1

ai,σ−1(i)

=
∑

σ∈Sn

sgn(σ)

n∏

i=1

ai,σ(i) = det(A).

Here we have used that sgn(σ) = sgn(σ−1) (cp. Theorem 7.7) and the fact that

the two products
∏n

i=1 aσ(i),i and
∏n

i=1 ai,σ−1(i) have the same factors. ⊓⊔

Example 7.11 For the matrices

A =

⎡
⎣

1 2 3

0 4 5

0 0 6

⎤
⎦ , B =

⎡
⎣

1 2 0

1 3 0

1 4 0

⎤
⎦ , C =

⎡
⎣

1 1 2

1 1 3

1 1 4

⎤
⎦

from Z3,3 we obtain det(A) = 1 · 4 · 6 = 24 by (2) in Lemma 7.10, and det(B) =
det(C) = 0 by (3) and (4) in Lemma 7.10. We may also compute these determinants

using the Sarrus rule from Example 7.5.

Item (2) in Lemma 7.10 shows in particular that det(In) = 1 for the identity

matrix In = [e1, e2, . . . , en] ∈ Rn,n . For this reason the determinant map is called

normalized.
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For σ ∈ Sn the matrix

Pσ := [eσ(1), eσ(2), . . . , eσ(n)]

is called the permutation matrix associated with σ. This map from the group Sn to

the group of permutation matrices in Rn,n is bijective. The inverse of a permutation

matrix is its transpose (cp. Theorem 4.16) and we can easily check that

P−1
σ = PT

σ = Pσ−1 .

If A = [a1, a2, . . . , an] ∈ Rn,n , i.e., a j ∈ Rn,1 is the j th column of A, then

APσ = [aσ(1), aσ(2), . . . , aσ(n)],

i.e., the right-multiplication of A with Pσ exchanges the columns of A according to

the permutation σ. If, on the other hand, ai ∈ R1,n is the i th row of A, then

PT
σ A =

⎡
⎢⎢⎢⎣

aσ(1)

aσ(2)

...

aσ(n)

⎤
⎥⎥⎥⎦ ,

i.e., the left-multiplication of A by PT
σ exchanges the rows of A according to the

permutation σ.

We next study the determinants of the elementary matrices.

Lemma 7.12 (1) For σ ∈ Sn and the associated permutation matrix Pσ ∈ Rn,n we

have sgn(σ) = det(Pσ). If n ≥ 2 and Pi j is defined as in (5.1), then det(Pi j ) =
−1.

(2) If Mi (λ) and G i j (λ) are defined as in (5.2) and (5.3), respectively, then

det(Mi (λ)) = λ and det(G i j (λ)) = 1.

Proof

(1) If σ̃ ∈ Sn and P̃σ = [ai j ] ∈ Rn,n , then aσ̃( j), j = 1 for j = 1, 2, . . . , n, and all
other entries of P̃σ are zero. Hence

det(P̃σ) = det(PT
σ̃ ) =

∑

σ∈Sn

sgn(σ)

n∏

j=1

aσ( j), j

︸ ︷︷ ︸
=0 for σ 
=σ̃

= sgn(̃σ)

n∏

j=1

aσ̃( j), j︸ ︷︷ ︸
=1

= sgn(̃σ).

The permutation matrix Pi j is associated with the transposition that exchanges

i and j . Hence, det(Pi j ) = −1 follows from Lemma 7.9.

(2) Since Mi (λ) and G i j (λ) are lower triangular matrices, the assertion follows from

(2) in Lemma 7.10. ⊓⊔
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These results lead to some important computational rules for determinants.

Lemma 7.13 For A ∈ Rn,n , n ≥ 2, and λ ∈ R the following assertions hold:

(1) The multiplication of a row of A by λ leads to the multiplication of det(A) by λ:

det(Mi (λ)A) = λ det(A) = det(Mi (λ)) det(A).

(2) The addition of the λ–multiple of a row of A to another row of A does not change

det(A):

det(G i j (λ)A) = det(A) = det(G i j (λ)) det(A), and

det(G i j (λ)T A) = det(A) = det(G i j (λ)T ) det(A).

(3) Exchanging two rows of A changes the sign of det(A):

det(Pi j A) = − det(A) = det(Pi j ) det A.

Proof

(1) If A = [amk] and Ã = Mi (λ)A = [̃amk], then

ãmk =

{
amk, m 
= i,

λamk, m = i,

and hence

det( Ã) =
∑

σ∈Sn

sgn(σ)

n∏

m=1

ãm,σ(m) =
∑

σ∈Sn

sgn(σ) ãi,σ(i)︸ ︷︷ ︸
=λai,σ(i)

n∏

m=1
m 
=i

ãm,σ(m)︸ ︷︷ ︸
=am,σ(m)

= λ det(A).

(2) If A = [amk] and Ã = G i j (λ)A = [̃amk], then

ãmk =

{
amk, m 
= j,

a jk + λaik, m = j,

and hence

det( Ã) =
∑

σ∈Sn

sgn(σ) (a j,σ( j) + λai,σ( j))

n∏

m=1
m 
= j

am,σ(m)

=
∑

σ∈Sn

sgn(σ)

n∏

m=1

am,σ(m) + λ
∑

σ∈Sn

sgn(σ)ai,σ( j)

n∏

m=1
m 
= j

am,σ(m).

The first term is equal to det(A), and the second is equal to the determinant of a

matrix with two equal columns, and thus equal to zero. The proof for the matrix

G i j (λ)T A is analogous.
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(3) The permutation matrix Pi j exchanges rows i and j of A, where i < j . This

exchange can be expressed by the following four elementary row operations:

Multiply row j by −1; add row i to row j ; add the (−1)–multiple of row j to

row i ; add row i to row j . Therefore,

Pi j = G i j (1)(G i j (−1))T G i j (1)M j (−1).

(One may verify this also by carrying out the matrix multiplications.) Using (1)

and (2) we obtain

det(Pi j A) = det
(
G i j (1)(G i j (−1))T G i j (1)M j (−1)A

)

= det(G i j (1)) det((G i j (−1))T ) det(G i j (1)) det(M j (−1)) det(A)

= (−1) det(A). ⊓⊔

Since det(A) = det(AT ) (cp. (5) in Lemma 7.10), the results in Lemma 7.13 for

the rows of A can be formulated analogously for the columns of A.

Example 7.14 Consider the matrices

A =

⎡
⎣

1 3 0

1 2 0

1 2 4

⎤
⎦ , B =

⎡
⎣

3 1 0

2 1 0

2 1 4

⎤
⎦ ∈ Z3,3.

A simple calculation shows that det(A) = −4. Since B is obtained from A by

exchanging the first two columns we have det(B) = − det(A) = 4.

The determinant map can be interpreted as a map of (Rn,1)n to R, i.e., as a map of

the n columns of the matrix A ∈ Rn,n to the ring R. If ai , a j ∈ Rn,1 are two columns

of A,

A = [. . . ai . . . a j . . .],

then

det(A) = − det([. . . a j . . . ai . . .])

by (3) in Lemma 7.13. Due to this property the determinant map is called an alter-

nating map of the columns of A. Analogously, the determinant map is an alternating

map of the rows of A.
If the kth row of A has the form λa(1) + µa(2) for some λ,µ ∈ R and a( j) =[

a
( j)

k1 , . . . , a
( j)

kn

]
∈ R1,n , j = 1, 2, then
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det(A) = det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

.

.

.

λa(1) + µa(2)

.

.

.

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ =

∑

σ∈Sn

sgn(σ)

(
λa

(1)
k,σ(k)

+ µa
(2)
k,σ(k)

) n∏

i=1
i 
=k

ai,σ(i)

= λ
∑

σ∈Sn

sgn(σ) a
(1)
k,σ(k)

n∏

i=1
i 
=k

ak,σ(k) + µ
∑

σ∈Sn

sgn(σ) a
(2)
k,σ(k)

n∏

i=1
i 
=k

ai,σ(i)

= λ det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

.

.

.

a(1)

.

.

.

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ + µ det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

.

.

.

a(2)

.

.

.

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

This property is called the linearity of the determinant map with respect to the rows

of A. Analogously we have the linearity with respect to the columns of A. Linear

maps will be studied in detail in later chapters.

The next result is called the multiplication theorem for determinants.

Theorem 7.15 If K is a field and A, B ∈ K n,n , then det(AB) = det(A) det(B).

Moreover, if A is invertible, then det(A−1) = (det(A))−1.

Proof By Theorem 5.2 we know that for A ∈ K n,n there exist invertible elementary

matrices S1, . . . , St such that Ã = St . . . S1 A is in echelon form. By Lemma 7.13 we

have

det(A) = det(S−1
1 ) · · · det(S−1

t ) det( Ã),

as well as

det(AB) = det
(
S−1

1 · · · S−1
t ÃB

)

= det(S−1
1 ) · · · det(S−1

t ) det( ÃB).

There are two cases: If A is not invertible, then Ã and thus also ÃB have a zero

row. Then det( Ã) = det( ÃB) = 0, which implies that det(A) = 0, and hence

det(AB) = 0 = det(A) det(B). On the other hand, if A is invertible, then Ã = In ,

since Ã is in echelon form. Now det(In) = 1 again gives det(AB) = det(A) det(B).

Finally, if A is invertible, then 1 = det(In) = det(AA−1) = det(A) det(A−1),

and hence det(A−1) = (det(A))−1. ⊓⊔

Since our proof relies on Theorem 5.2, which is valid for matrices over a field

K , we have formulated Theorem 7.15 for A, B ∈ K n,n . However, the multiplication

theorem for determinants also holds for matrices over a commutative ring R with unit.

A direct proof based on the signature formula of Leibniz can be found, for example,

in the book “Advanced Linear Algebra” by Loehr [Loe14, Sect. 5.13]. That book

also contains a proof of the Cauchy-Binet formula for det(AB) with A ∈ Rn,m and

B ∈ Rm,n for n ≤ m. Below we will sometimes use that det(AB) = det(A) det(B)
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holds for all A, B ∈ Rn,n , although we have shown the result in Theorem 7.15 only

for A, B ∈ K n,n .

The proof of Theorem 7.15 suggests that det(A) can be easily computed while

transforming A ∈ K n,n into its echelon form using elementary row operations.

Corollary 7.16 For A ∈ K n,n let S1, . . . , St ∈ K n,n be elementary matrices, such

that Ã = St . . . S1 A is in echelon form. Then either Ã has a zero row and hence

det(A) = 0, or Ã = In and hence det(A) = (det(S1))
−1 · · · (det(St ))

−1.

As shown in Theorem 5.4, every matrix A ∈ K n,n can be factorized as A = P LU ,

and hence det(A) = det(P) det(L) det(U ). The determinants of the matrices on

the right hand side are easily computed, since these are permutation and triangular

matrices. An LU -decomposition of a matrix A therefore yields an efficient way to

compute det(A).

MATLAB-Minute.

Look at the matrices wilkinson(n) for n=2,3,. . .,10 in MATLAB. Can you

find a general formula for their entries? For n=2,3,. . .,10 compute

A=wilkinson(n)

[L,U,P]=lu(A) (LU -decomposition; cp. the MATLAB-Minute above Defi-

nition 5.6)

det(L), det(U), det(P), det(P)∗det(L)∗det(U), det(A)

Which permutation is associated with the computed matrix P? Why is det(A)

an integer for odd n?

7.3 Minors and the Laplace Expansion

We now show that the determinant can be used for deriving formulas for the inverse

of an invertible matrix and for the solution of linear systems of equations. These

formulas are, however, more of theoretical than practical relevance.

Definition 7.17 Let R be a commutative ring with unit and let A ∈ Rn,n , n ≥ 2.

Then the matrix A( j, i) ∈ Rn−1,n−1 that is obtained by deleting the j th row and i th

column of A is called a minor3 of A. The matrix

adj(A) = [bi j ] ∈ Rn,n with bi j := (−1)i+ j det(A( j, i)),

is called the adjunct of A.

The adjunct is also called adjungate or classical adjoint of A.

3This term was introduced in 1850 by James Joseph Sylvester (1814–1897).
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Theorem 7.18 For A ∈ Rn,n , n ≥ 2, we have

A adj(A) = adj(A) A = det(A)In.

In particular A is invertible if and only if det(A) ∈ R is invertible. In this case

(det(A))−1 = det(A−1) and A−1 = (det(A))−1adj(A).

Proof Let B = [bi j ] have the entries bi j = (−1)i+ j det(A( j, i)). Then C = [ci j ] =
adj(A)A satisfies

ci j =
n∑

k=1

bikak j =
n∑

k=1

(−1)i+k det(A(k, i))ak j .

Let aℓ be the ℓth column of A and let

Ã(k, i) := [a1, . . . , ai−1, ek, ai+1, . . . , an] ∈ Rn,n,

where ek is the kth column of the identity matrix In . Then there exist permutation

matrices P and Q that perform k − 1 row and i − 1 column exchanges, respectively,

such that

P Ã(k, i)Q =
[

1 ⋆

0 A(k, i)

]
.

Using (1) in Lemma 7.10 we obtain

det(A(k, i)) = det

([
1 ⋆

0 A(k, i)

])
= det(P Ã(k, i)Q)

= det(P) det( Ã(k, i)) det(Q)

= (−1)(k−1)+(i−1) det( Ã(k, i))

= (−1)k+i det( Ã(k, i)).

The linearity of the determinant with respect to the columns now gives

ci j =
n∑

k=1

(−1)i+k(−1)k+i ak j det( Ã(k, i))

= det([a1, . . . , ai−1, a j , ai+1, . . . , an])

=

{
0, i 
= j

det(A), i = j

= δi j det(A),

and thus adj(A)A = det(A)In . Analogously we can show that A adj(A) = det(A)In .
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If det(A) ∈ R is invertible, then

In = (det(A))−1adj(A)A = A(det(A))−1adj(A),

i.e., A is invertible with A−1 = (det(A))−1adj(A). If, on the other hand, A is invert-

ible, then

1 = det(In) = det(AA−1) = det(A) det(A−1) = det(A−1) det(A),

where we have used the multiplication theorem for determinants over R (cp. our

comment following the proof of Theorem 7.15). Thus, det(A) is invertible with

(det(A))−1 = det(A−1), and again A−1 = (det(A))−1adj(A). ⊓⊔

Example 7.19

(1) For

A =
[

4 1

2 1

]
∈ Z2,2

we have det(A) = 2 and thus A is not invertible. But A is invertible when

considered as an element of Q2,2, since in this case det(A−1) = (det(A))−1 = 1
2
.

(2) For

A =
[

t − 1 t − 2

t t − 1

]
∈ (Z[t])2,2

we have det(A) = 1. The matrix A is invertible, since 1 ∈ Z[t] is invertible.

Note that if A ∈ Rn,n is invertible, then Theorem 7.18 shows that A−1 can be

obtained by inverting only one ring element, det(A).

We now use Theorem 7.18 and the multiplication theorem for matrices over a

commutative ring with unit to prove a result already announced in Sect. 4.2: In order

to show that Ã ∈ Rn,n is the (unique) inverse of A ∈ Rn,n , only one of the two

equations ÃA = In or AÃ = In needs to be checked.

Corollary 7.20 Let A ∈ Rn,n . If a matrix Ã ∈ Rn,n exists with ÃA = In or AÃ = In ,

then A is invertible and Ã = A−1.

Proof If ÃA = In , then the multiplication theorem for determinants yields

1 = det(In) = det( ÃA) = det( Ã) det(A) = det(A) det( Ã),

i.e., det(A) ∈ R is invertible with (det(A))−1 = det( Ã). Thus also A is invertible

and has a unique inverse A−1. For n = 1 this is obvious and for n ≥ 2 it was shown

in Theorem 7.18. If we multiply the equation ÃA = In from the right with A−1 we

get Ã = A−1.

The proof starting from AÃ = In is analogous. ⊓⊔
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Let us summarize the invertibility criteria for a square matrix over a field that we

have shown so far:

A ∈ GLn(K )
Theorem 5.2⇐⇒ The echelon form of A is the identity matrix In

Definition 5.10⇐⇒ rank(A) = n

clear⇐⇒ rank(A) = rank([A, b]) = n for all b ∈ K n,1

Algorithm 6.6⇐⇒ |L (A, b)| = 1 for all b ∈ K n,1

Theorem 7.18⇐⇒ det(A) 
= 0. (7.3)

Alternatively we obtain:

A /∈ GLn(K )
Theorem 5.2⇐⇒ The echelon form of A has at least one zero row

Definition 5.10⇐⇒ rank(A) < n

clear⇐⇒ rank([A, 0]) < n

Algorithm 6.6⇐⇒ L (A, 0) 
= {0}
Theorem 7.18⇐⇒ det(A) = 0. (7.4)

In the fields Q, R and C we have the (usual) absolute value | · | of numbers and

can formulate the following useful invertibility criterion for matrices.

Theorem 7.21 If A ∈ K n,n with K ∈ {Q, R, C} is diagonally dominant, i.e., if

|ai i | >

n∑

j=1
j 
=i

|ai j | for all i = 1, . . . , n,

then det(A) 
= 0.

Proof We prove the assertion by contraposition, i.e., by showing that det(A) = 0

implies that A is not diagonally dominant.

If det(A) = 0, then L (A, 0) 
= {0}, i.e., the homogeneous linear system of

equations Ax = 0 has at least one solution x̂ = [̂x1, . . . , x̂n]T 
= 0. Let x̂m be an

entry of x̂ with maximal absolute value, i.e., |̂xm | ≥ |̂x j | for all j = 1, . . . , n. In

particular, we then have |̂xm | > 0. The mth row of Ax̂ = 0 is given by

am1 x̂1 + am2 x̂2 + . . . + amn x̂n = 0 ⇔ amm x̂m = −
n∑

j=1
j 
=m

amj x̂ j .

We now take absolute values on both sides and use the triangle inequality, which

yields
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|amm | |̂xm | ≤
n∑

j=1
j 
=m

|amj | |̂x j | ≤
n∑

j=1
j 
=m

|amj ||̂xm |, hence |amm | ≤
n∑

j=1
j 
=m

|amj |,

so that A not diagonally dominant. ⊓⊔

The converse of this theorem does not hold: For example, the matrix

A =
[

1 2

1 0

]
∈ Q2,2,

has det(A) = −2 
= 0, but A is not diagonally dominant.

From Theorem 7.18 we obtain the Laplace expansion4 of the determinant, which

is particularly useful when A contains many zero entries (cp. Example 7.24 below).

Corollary 7.22 For A ∈ Rn,n , n ≥ 2, the following assertions hold:

(1) For each i = 1, 2, . . . , n we have

det(A) =
n∑

j=1

(−1)i+ j ai j det(A(i, j)).

(Laplace expansion of det(A) with respect to the i th row A.)

(2) For each j = 1, 2, . . . , n we have

det(A) =
n∑

i=1

(−1)i+ j ai j det(A(i, j)).

(Laplace expansion of det(A) with respect to the j th column of A.)

Proof The two expansions for det(A) follow immediately by comparison of the

diagonal entries in the matrix equations det(A) In = A adj(A) and det(A) In =
adj(A) A. ⊓⊔

The Laplace expansions allows a recursive definition of the determinant: For A ∈
Rn,n with n ≥ 2, let det(A) be defined as in (1) or (2) in Corollary 7.22. We can choose

an arbitrary row or column of A. The formula for det(A) then contains only matrices

of size (n−1)×(n−1). For each of these we can use the Laplace expansion again, now

expressing each determinant in terms of determinants of (n − 2) × (n − 2) matrices.

We can do this recursively until only 1 × 1 matrices remain. For A = [a11] ∈ R1,1

we define det(A) := a11.

Finally we state Cramer’s rule,5 which gives an explicit formula for the solution of

a linear system in form of determinants. This rule is only of theoretical value, because

in order to compute the n components of the solution it requires the evaluation of

n + 1 determinants of n × n matrices.

4Pierre-Simon Laplace (1749–1827) published this expansion in 1772.
5Gabriel Cramer (1704–1752).
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Corollary 7.23 Let K be a field, A ∈ GLn(K ) and b ∈ K n,1. Then the unique

solution of the linear system of equations Ax = b is given by

x̂ = [̂x1, . . . , x̂n]T = A−1b = (det(A))−1 adj(A)b,

with

x̂i =
det[a1, . . . , ai−1, b, ai+1, . . . , an]

det(A)
, i = 1, . . . , n.

Example 7.24 Consider

A =

⎡
⎢⎢⎣

1 3 0 0

1 2 0 0

1 2 1 0

1 2 3 1

⎤
⎥⎥⎦ ∈ Q4,4, b =

⎡
⎢⎢⎣

1

2

1

0

⎤
⎥⎥⎦ ∈ Q4,1.

The Laplace expansion with respect to the last column yields

det(A) = 1 · det

⎛
⎝
⎡
⎣

1 3 0

1 2 0

1 2 1

⎤
⎦
⎞
⎠ = 1 · 1 · det

([
1 3

1 2

])
= 1 · 1 · (−1) = −1.

Thus, A is invertible and Ax = b has a unique solution x̂ = A−1b ∈ Q4,1, which by

Cramer’s rule has the following entries:

x̂1 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 3 0 0

2 2 0 0

1 2 1 0

0 2 3 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ / det(A) = −4/(−1) = 4,

x̂2 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 1 0 0

1 2 0 0

1 1 1 0

1 0 3 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ / det(A) = 1/(−1) = −1,

x̂3 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 3 1 0

1 2 2 0

1 2 1 0

1 2 0 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ / det(A) = 1/(−1) = −1,

x̂4 = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 3 0 1

1 2 0 2

1 2 1 1

1 2 3 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ / det(A) = −1/(−1) = 1.
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Exercises

7.1 A permutation σ ∈ Sn is called an r-cycle if there exists a subset {i1, . . . , ir } ⊆
{1, 2, . . . , n} with r ≥ 1 elements and

σ(ik) = ik+1 for k = 1, 2, . . . , r − 1, σ(ir ) = i1, σ(i) = i for i /∈ {i1, . . . , ir }.

We write an r -cycle as σ = (i1, i2, . . . , ir ). In particular, a transposition τ ∈ Sn

is a 2-cycle.

(a) Let n = 4 and the 2-cycles τ1,2 = (1, 2), τ2,3 = (2, 3) and τ3,4 = (3, 4) be

given. Compute τ1,2 ◦ τ2,3, τ1,2 ◦ τ2,3 ◦ τ−1
1,2 , and τ1,2 ◦ τ2,3 ◦ τ3,4.

(b) Let n ≥ 4 and σ = (1, 2, 3, 4). Determine σ j for j = 2, 3, 4, 5.

(c) Show that the inverse of the cycle (i1, . . . , ir ) is given by (ir , . . . , i1).

(d) Show that two cycles with disjoint elements, i.e. (i1, . . . , ir ) and ( j1, . . . , js)

with {i1, . . . , ir } ∩ { j1, . . . , js} = Ø, commute.

(e) Show that every permutation σ ∈ Sn can be written as product of disjoint

cycles that are, except for the order, uniquely determined by σ.

7.2 Prove Lemma 7.10 (1) using (7.1).

7.3 Show that the group homomorphism sgn : (Sn, ◦) → ({1,−1}, ·) satisfies the

following assertions:

(a) The set An = {σ ∈ Sn | sgn(σ) = 1} is a subgroup of Sn (cp. Exercise 3.8).

(b) For all σ ∈ An and π ∈ Sn we have π ◦ σ ◦ π−1 ∈ An .

7.4 Compute the determinants of the following matrices:

(a) A = [en, en−1, . . . , e1] ∈ Zn,n , where ei is the i th column of the identity

matrix.

(b) B =
[
bi j

]
∈ Zn,n with

bi j =

⎧
⎪⎨
⎪⎩

2 for |i − j | = 0,

−1 for |i − j | = 1,

0 for |i − j | ≥ 2.

(c)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0

e 0 eπ 4 5 1
√

π

e2 1 17
31

√
6

√
7

√
8

√
10

e3 0 −e π e 0 πe

e4 0 10001 0 π−1 0 e2π

e6 0
√

2 0 0 0 −1

0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R7,7.
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(d) The 4 × 4 Wilkinson matrix6 (cp. the MATLAB-Minute at the end of

Sect. 7.2).

7.5 Construct matrices A, B ∈ Rn,n for some n ≥ 2 and with det(A + B) 
=
det(A) + det(B).

7.6 Let R be a commutative ring with unit, n ≥ 2 and A ∈ Rn,n . Show that the

following assertions hold:

(a) adj(In) = In .

(b) adj(AB) = adj(B)adj(A), if A and B ∈ Rn,n are invertible.

(c) adj(λA) = λn−1adj(A) for all λ ∈ R.

(d) adj(AT ) = adj(A)T .

(e) det(adj(A)) = (det(A))n−1, if A is invertible.

(f) adj(adj(A)) = det(A)n−2 A.

(g) adj(A−1) = adj(A)−1, if A is invertible.

Can one drop the requirement of invertibility in (b) or (e)?

7.7 Let n ≥ 2 and A = [ai j ] ∈ Rn,n with ai j = 1
xi +y j

for some x1, . . . , xn ,

y1, . . . , yn ∈ R. Hence, in particular, xi + y j 
= 0 for all i, j . (Such a matrix A

is called a Cauchy matrix.7)

(a) Show that

det(A) =
∏

1≤i< j≤n (x j − xi )(y j − yi )∏n
i, j=1 (xi + y j )

.

(b) Use (a) to derive a formula for the determinant of the n × n Hilbert matrix

(cp. the MATLAB-Minute above Definition 5.6).

7.8 Let R be a commutative ring with unit. If α1, . . . ,αn ∈ R, n ≥ 2, then

Vn :=
[
α

j−1
i

]
=

⎡
⎢⎢⎢⎣

1 α1 · · · αn−1
1

1 α2 · · · αn−1
2

...
...

...

1 αn · · · αn−1
n

⎤
⎥⎥⎥⎦ ∈ Rn,n

is called a Vandermonde matrix.8

(a) Show that

det(Vn) =
∏

1≤i< j≤n

(α j − αi ).

6James Hardy Wilkinson (1919–1986).
7Augustin Louis Cauchy (1789–1857).
8Alexandre-Théophile Vandermonde (1735–1796).
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(b) Let K be a field and let K [t]≤n−1 be the set of polynomials in the variable

t of degree at most n − 1. Show that two polynomials p, q ∈ K [t]≤n−1 are

equal if there exist pairwise distinct β1, . . . ,βn ∈ K with p(β j ) = q(β j ).

7.9 Show the following assertions:

(a) Let K be a field with 1 + 1 
= 0 and let A ∈ K n,n with AT = −A. If n is

odd, then det(A) = 0.

(b) If A ∈ GLn(R) with AT = A−1, then det(A) ∈ {1,−1}.

7.10 Let K be a field and

A =
[

A11 A12

A21 A22

]

for some A11 ∈ K n1,n1 , A12 ∈ K n1,n2 , A21 ∈ K n2,n1 , A22 ∈ K n2,n2 . Show the

following assertions:

(a) If A11 ∈ GLn1
(K ), then det(A) = det(A11) det

(
A22 − A21 A−1

11 A12

)
.

(b) If A22 ∈ GLn2
(K ), then det(A) = det(A22) det

(
A11 − A12 A−1

22 A21

)
.

(c) If A21 = 0, then det(A) = det(A11) det(A22).

Can you show this also when the matrices are defined over a commutative ring

with unit?

7.11 Construct matrices A11, A12, A21, A22 ∈ Rn,n for n ≥ 2 with

det

([
A11 A12

A21 A22

])

= det(A11) det(A22) − det(A12) det(A21).

7.12 Let A = [ai j ] ∈ GLn(R) with ai j ∈ Z for i, j = 1, . . . , n. Show that the

following assertions hold:

(a) A−1 ∈ Qn,n .

(b) A−1 ∈ Zn,n if and only if det(A) ∈ {−1, 1}.
(c) The linear system of equations Ax = b has a unique solution x̂ ∈ Zn,1 for

every b ∈ Zn,1 if and only if det(A) ∈ {−1, 1}.

7.13 Show that G = {A ∈ Zn,n | det(A) ∈ {−1, 1} } is a subgroup of GLn(Q).



Chapter 8

The Characteristic Polynomial

and Eigenvalues of Matrices

We have already characterized matrices using their rank and their determinant. In this

chapter we use the determinant map in order to assign to every square matrix a unique

polynomial that is called the characteristic polynomial of the matrix. This polynomial

contains important information about the matrix. For example, one can read off the

determinant and thus see whether the matrix is invertible. Even more important are

the roots of the characteristic polynomial, which are called the eigenvalues of the

matrix.

8.1 The Characteristic Polynomial

and the Cayley-Hamilton Theorem

Let R be a commutative ring with unit and let R[t] be the corresponding ring of

polynomials (cp. Example 3.17). For A = [ai j ] ∈ Rn,n we set

t In − A :=

⎡
⎢⎢⎢⎢⎣

t − a11 −a12 · · · −a1n

−a21 t − a22

. . .
...

...
. . .

. . . −an−1,n

−an1 · · · −an,n−1 t − ann

⎤
⎥⎥⎥⎥⎦

∈ (R[t])n,n.

The entries of the matrix t In − A are elements of the commutative ring with unit

R[t], where the diagonal entries are polynomials of degree 1, and the other entries

are constant polynomials. Using Definition 7.4 we can form the determinant of the

matrix t In − A, which is an element of R[t].
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Definition 8.1 Let R be a commutative ring with unit and A ∈ Rn,n . Then

PA := det(t In − A) ∈ R[t]

is called the characteristic polynomial of A.

Example 8.2 If n = 1 and A = [a11], then

PA = det(t I1 − A) = det([t − a11]) = t − a11.

For n = 2 and

A =

[
a11 a12

a21 a22

]

we obtain

PA = det

([
t − a11 −a12

−a21 t − a22

])
= t2 − (a11 + a22)t + (a11a22 − a12a21).

Using Definition 7.4 we see that the general form of PA for a matrix A ∈ Rn,n is

given by

PA =
∑

σ∈Sn

sgn(σ)

n∏

i=1

(
δi,σ(i)t − ai,σ(i)

)
. (8.1)

The following lemma presents basic properties of the characteristic polynomial.

Lemma 8.3 For A ∈ Rn,n we have PA = PAT and

PA = tn − αn−1tn−1 + . . . + (−1)n−1α1t + (−1)nα0

with αn−1 =
∑n

i=1 ai i and α0 = det(A).

Proof Using (5) in Lemma 7.10 we obtain

PA = det(t In − A) = det((t In − A)T ) = det(t In − AT ) = PAT .

Using PA as in (8.1) we see that

PA =

n∏

i=1

(t − ai i ) +
∑

σ∈Sn
σ �=[1 ··· n]

sgn(σ)

n∏

i=1

(
δi,σ(i)t − ai,σ(i)

)
.
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The first term on the right hand side is of the form

tn −

(
n∑

i=1

ai i

)
tn−1 + (polynomial of degree ≤ n − 2),

and the second term is a polynomial of degree ≤ n − 2. Thus, αn−1 =
∑n

i=1 ai i as

claimed. Moreover, Definition 8.1 yields

PA(0) = det(−A) = (−1)n det(A),

so that α0 = det(A). ⊓⊔

This lemma shows that the characteristic polynomial of A ∈ Rn,n always is of

degree n. The coefficient of tn is 1 ∈ R. Such a polynomial is called monic. The

coefficient of tn−1 is given by the sum of the diagonal entries of A. This quantity is

called the trace of A, i.e.,

trace(A) :=

n∑

i=1

ai i .

The following lemma shows that for every monic polynomial p ∈ R[t] of degree

n ≥ 1 there exists a matrix A ∈ Rn,n with PA = p.

Lemma 8.4 If n ∈ N and p = tn + βn−1tn−1 + . . . + β0 ∈ R[t], then p is the

characteristic polynomial of the matrix

A =

⎡
⎢⎢⎢⎢⎣

0 −β0

1
. . .

...

. . . 0 −βn−2

1 −βn−1

⎤
⎥⎥⎥⎥⎦

∈ Rn,n.

(For n = 1 we have A = [−β0].) The matrix A is called the companion matrix of p.

Proof We prove the assertion by induction on n.

For n = 1 we have p = t + β0, A = [−β0] and PA = det([t + β0]) = p.

Let the assertion hold for some n ≥ 1. We consider p = tn+1 + βntn + . . . + β0

and

A =

⎡
⎢⎢⎢⎢⎣

0 −β0

1
. . .

...

. . . 0 −βn−1

1 −βn

⎤
⎥⎥⎥⎥⎦

∈ Rn+1,n+1.
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Using the Laplace expansion with respect to the first row (cp. Corollary 7.22) and

the induction hypothesis we get

PA = det(t In+1 − A)

= det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

t β0

−1
. . .

...

. . . t βn−1

−1 t + βn

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= t · det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

t β1

−1
. . .

...

. . . t βn−1

−1 t + βn

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

+ (−1)n+2 · β0 · det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

−1 t

. . .
. . .

. . . t

−1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= t · (tn + βntn−1 + . . . + β1) + (−1)2n+2β0

= tn+1 + βntn + . . . + β1t + β0

= p. ⊓⊔

Example 8.5 The polynomial p = (t − 1)3 = t3 − 3t2 + 3t − 1 ∈ Z[t] has the

companion matrix

A =

⎡
⎣

0 0 1

1 0 −3

0 1 3

⎤
⎦ ∈ Z3,3.

The identity matrix I3 has the characteristic polynomial

PI3
= det(t I3 − I3) = (t − 1)3 = PA.

Thus, different matrices may have the same characteristic polynomial.

In Example 3.17 we have seen how to evaluate a polynomial p ∈ R[t] at a scalar

λ ∈ R. Analogously, we can evaluate p at a matrix M ∈ Rm,m (cp. Exercise 4.8).

For

p = βntn + βn−1tn−1 + . . . + β0 ∈ R[t]

we define

p(M) := βn Mn + βn−1 Mn−1 + . . . + β0 Im ∈ Rm,m,

where the multiplication on the right hand side is the scalar multiplication of β j ∈ R

and M j ∈ Rm,m , j = 0, 1, . . . , n. (Recall that M0 = Im .) Evaluating a given

polynomial at matrices M ∈ Rm,m therefore defines a map from Rm,m to Rm,m .
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In particular, using (8.1), the characteristic polynomial PA of A ∈ Rn,n satisfies

PA(M) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

(
δi,σ(i)M − ai,σ(i) Im

)
for all M ∈ Rm,m .

Note that for M ∈ Rn,n and PA = det(t In − A) the “obvious” equation PA(M) =

det(M − A) is wrong. By definition, PA(M) ∈ Rn,n and det(M − A) ∈ R, so that

the two expressions cannot be the same, even for n = 1.

The following result is called the Cayley-Hamilton theorem.1

Theorem 8.6 For every matrix A ∈ Rn,n and its characteristic polynomial PA ∈

R[t] we have PA(A) = 0 ∈ Rn,n .

Proof For n = 1 we have A = [a11] and PA = t − a11, so that PA(A) = [a11] −

[a11] = [0].

Let now n ≥ 2 and let ei be the i th column of the identity matrix In ∈ Rn,n . Then

Aei = a1i e1 + a2i e2 + . . . + ani en, i = 1, . . . , n,

which is equivalent to

(A − ai i In)ei +

n∑

j=1

j �=i

(−a j i In)e j = 0, i = 1, . . . , n.

The last n equations can be written as

⎡
⎢⎢⎢⎣

A − a11 In −a21 In · · · −an1 In

−a12 In A − a22 In · · · −an2 In

...
...

...

−a1n In −a2n In · · · A − ann In

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e1

e2

...

en

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0
...

0

⎤
⎥⎥⎥⎦ , or Bε = 0̂.

Hence B ∈ (R[A])n,n with R[A] := {p(A) | p ∈ R[t]} ⊂ Rn,n . The set R[A] forms

a commutative ring with unit given by the identity matrix In (cp. Exercise 4.8). Using

Theorem 7.18 we obtain

adj(B)B = det(B) În,

1Arthur Cayley (1821–1895) showed this theorem in 1858 for n = 2 and claimed that he had verified

it for n = 3. He did not feel it necessary to give a proof for general n. Sir William Rowan Hamilton

(1805–1865) proved the theorem for the case n = 4 in 1853 in the context of his investigations of

quaternions. One of the first proofs for general n was given by Ferdinand Georg Frobenius (1849–

1917) in 1878. James Joseph Sylvester (1814–1897) coined the name of the theorem in 1884 by

calling it the “no-little-marvelous Hamilton-Cayley theorem”.
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where det(B) ∈ R[A] and În is the identity matrix in (R[A])n,n . (This matrix has n

times the identity matrix In on its diagonal.) Multiplying this equation from the right

by ε yields

adj(B)Bε = det(B) Înε,

which implies that det(B) = 0 ∈ Rn,n . Finally, using Lemma 8.3 gives

0 = det(B) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

(δi,σ(i) A − aσ(i),i In)

=
∑

σ∈Sn

sgn(σ)

n∏

i=1

(δσ(i),i A − aσ(i),i In)

= PAT (A)

= PA(A),

which completes the proof. ⊓⊔

8.2 Eigenvalues and Eigenvectors

In this section we present an introduction to the topic of eigenvalues and eigenvectors

of square matrices over a field K . These concepts will be studied in more detail in

later chapters.

Definition 8.7 Let A ∈ K n,n . If λ ∈ K and v ∈ K n,1 \ {0} satisfy Av = λv, then λ

is called an eigenvalue of A and v is called an eigenvector of A corresponding to λ.

While by definition v = 0 can never be an eigenvector of a matrix, λ = 0 may be

an eigenvalue. For example,

[
1 −1

−1 1

] [
1

1

]
= 0

[
1

1

]
.

If v is an eigenvector corresponding to the eigenvalue λ of A and α ∈ K \ {0}, then

αv �= 0 and

A (αv) = α (Av) = α (λv) = λ (αv).

Thus, also αv is an eigenvector of A corresponding to λ.
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Theorem 8.8 For A ∈ K n,n the following assertions hold:

(1) λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial

of A, i.e., PA(λ) = 0 ∈ K .

(2) λ = 0 is an eigenvalue of A if and only if det(A) = 0.

(3) λ is an eigenvalue of A if and only if λ is an eigenvalue of AT .

Proof

(1) The equation PA(λ) = det(λIn − A) = 0 holds if and only if the matrix λIn − A

is not invertible (cp. (7.4)), and this is equivalent to L (λIn − A, 0) �= {0}.

This, however, means that there exists a vector x̂ �= 0 with (λIn − A)̂x = 0, or

Ax̂ = λx̂ .

(2) By (1), λ = 0 is an eigenvalue of A if and only if PA(0) = 0. The assertion now

follows from PA(0) = (−1)n det(A) (cp. Lemma 8.3).

(3) This follows from (1) and PA = PAT (cp. Lemma 8.3). ⊓⊔

Whether a matrix A ∈ K n,n has eigenvalues or not may depend on the field K

over which A is considered.

Example 8.9 The matrix

A =

[
0 1

−1 0

]
∈ R2,2

has the characteristic polynomial PA = t2 + 1 ∈ R[t]. This polynomial does not

have roots, since the equation t2 + 1 = 0 has no (real) solutions. If we consider A as

an element of C2,2, then PA ∈ C[t] has the roots i and −i. Then these two complex

numbers are the eigenvalues of A.

Item (3) in Theorem 8.8 shows that A and AT have the same eigenvalues. An

eigenvector of A, however, may not be an eigenvector of AT .

Example 8.10 The matrix

A =

[
3 3

1 1

]
∈ R2,2

has the characteristic polynomial PA = t2 −4t = t ·(t −4), and hence its eigenvalues

are 0 and 4. We have

A

[
1

−1

]
= 0

[
1

−1

]
and AT

[
1

−1

]
=

[
2

2

]
�= λ

[
1

−1

]
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for all λ ∈ R. Thus, [1, −1]T is an eigenvector of A corresponding to the eigen-

value 0, but it is not an eigenvector of AT . On the other hand,

AT

[
1

−3

]
= 0

[
1

−3

]
and A

[
1

−3

]
=

[
−6

−2

]
�= λ

[
1

−3

]

for all λ ∈ R. Thus, [1, −3]T is an eigenvector of AT corresponding to the eigen-

value 0, but it is not an eigenvector of A.

Theorem 8.8 implies further criteria for the invertibility of A ∈ K n,n (cp. (7.3)):

A ∈ GLn(K ) ⇔ 0 is not an eigenvalue of A

⇔ 0 is not a root of PA.

Definition 8.11 Two matrices A, B ∈ K n,n are called similar, if there exists a matrix

Z ∈ GLn(K ) with A = Z B Z−1.

One can easily show that this defines an equivalence relation on the set K n,n (cp.

the proof following Definition 5.13).

Theorem 8.12 If two matrices A, B ∈ K n,n are similar, then PA = PB .

Proof If A = Z B Z−1, then the multiplication theorem for determinants yields

PA = det(t In − A) = det(t In − Z B Z−1) = det(Z(t In − B)Z−1)

= det(Z) det(t In − B) det(Z−1) = det(t In − B) det(Z Z−1)

= PB

(cp. the remarks below Theorem 7.15). ⊓⊔

Theorem 8.12 and (1) in Theorem 8.8 show that two similar matrices have the same

eigenvalues. The condition that A and B are similar is sufficient, but not necessary

for PA = PB .

Example 8.13 Let

A =

[
1 1

0 1

]
, B =

[
1 0

0 1

]
= I2.

Then PA = (t − 1)2 = PB , but for every matrix Z ∈ GLn(K ) we have Z B Z−1 =

I2 �= A. Thus, we have PA = PB although A and B are not similar (cp. also

Example 8.5).
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MATLAB-Minute.

The roots of a polynomial p = αn tn + αn−1tn−1 + . . . + α0 can be computed

(or approximated) in MATLAB using the command roots(p), where p is a

1×(n+1) matrix with the entries p(i)= αn+1−i for i = 1, . . . , n+1. Compute

roots(p) for the monic polynomial p = t3 − 3t2 + 3t − 1 ∈ R[t] and display

the output using format long. What are the exact roots of p and how large

is the numerical error in the computation of the roots using roots(p)?

Form the matrix A=compan(p) and compare its structure with the one of the

companion matrix from Lemma 8.4. Can you transfer the proof of Lemma 8.4

to the structure of the matrix A?

Compute the eigenvalues of A with the command eig(A) and compare the

output with the one of roots(p). What do you observe?

8.3 Eigenvectors of Stochastic Matrices

We now consider the eigenvalue problem presented in Sect. 1.1 in the context of

the PageRank algorithm. The mathematical modeling leads to the equations (1.1),

which can be written in the form Ax = x . Here A = [ai j ] ∈ Rn,n (n is the number

of documents) satisfies

ai j ≥ 0 and

n∑

i=1

ai j = 1 for j = 1, . . . , n.

Such a matrix A is called column-stochastic. Note that A is column-stochastic if

and only if AT is row-stochastic. Such matrices also occurred in the car insurance

application considered in Sect. 1.2 and Example 4.7. We want to determine x =

[x1, . . . , xn]
T ∈ Rn,1 \{0} with Ax = x , where the entry xi describes the importance

of document i . The importance values should be nonnegative, i.e., xi ≥ 0 for i =

1, . . . , n. Thus, we want to determine an entrywise nonnegative eigenvector of A

corresponding to the eigenvalue λ = 1.

We first check whether this problem has a solution, and then study whether the

solution is unique. Our presentation is based on the article [BryL06].

Lemma 8.14 A column-stochastic matrix A ∈ Rn,n has an eigenvector correspond-

ing to the eigenvalue 1.

Proof Since A is column-stochastic, we have AT [1, . . . , 1]T = [1, . . . , 1]T , so that 1

is an eigenvalue of AT . Now (3) in Theorem 8.8 shows that also A has the eigenvalue

1, and hence there exists a corresponding eigenvector. ⊓⊔
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A matrix with real entries is called positive, if all its entries are positive.

Lemma 8.15 If A ∈ Rn,n is positive and column-stochastic and if x ∈ Rn,1 is an

eigenvector of A corresponding to the eigenvalue 1, then either x or −x is positive.

Proof If x = [x1, . . . , xn]
T is an eigenvector of A = [ai j ] corresponding to the

eigenvalue 1, then

xi =

n∑

j=1

ai j x j , i = 1, . . . , n.

Suppose that not all entries of x are positive or not all entries of x are negative. Then

there exists at least one index k with

|xk |=
∣∣

n∑

j=1

ak j x j

∣∣ <

n∑

j=1

ak j |x j |,

which implies

n∑

i=1

|xi | <

n∑

i=1

n∑

j=1

ai j |x j | =

n∑

j=1

n∑

i=1

ai j |x j | =

n∑

j=1

(
|x j | ·

n∑

i=1

ai j

︸ ︷︷ ︸
=1

)
=

n∑

j=1

|x j |.

This is impossible, so that indeed x or −x must be positive. ⊓⊔

We can now prove the following uniqueness result.

Theorem 8.16 If A ∈ Rn,n is positive and column-stochastic, then there exists a

unique positive x = [x1, . . . , xn]
T ∈ Rn,1 with

∑n
i=1 xi = 1 and Ax = x.

Proof By Lemma 8.15, A has a least one positive eigenvector corresponding to the

eigenvalue 1. Suppose that x (1) =
[
x

(1)
1 , . . . , x (1)

n

]T
and x (2) =

[
x

(2)
1 , . . . , x (2)

n

]T

are two such eigenvectors. Suppose that these are normalized by
∑n

i=1 x
( j)

i = 1,

j = 1, 2. This assumption can be made without loss of generality, since every

nonzero multiple of an eigenvector is still an eigenvector.

We will show that x (1) = x (2). For α ∈ R we define x(α) := x (1) + αx (2) ∈ Rn,1,

then

Ax(α) = Ax (1) + αAx (2) = x (1) + αx (2) = x(α).

If α̃ := −x
(1)
1 /x

(2)
1 , then the first entry of x(α̃) is equal to zero and thus, by

Lemma 8.15, x(α̃) cannot be an eigenvector of A corresponding to the eigenvalue 1.

Now Ax(α̃) = x(α̃) implies that x(α̃) = 0, and hence

x
(1)

i + α̃x
(2)

i = 0, i = 1, . . . , n. (8.2)
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Summing up these n equations yields

n∑

i=1

x
(1)

i

︸ ︷︷ ︸
=1

+ α̃

n∑

i=1

x
(2)

i

︸ ︷︷ ︸
=1

= 0,

so that α̃ = −1. From (8.2) we get x
(1)

i = x
(2)

i for i = 1, . . . , n, and therefore

x (1) = x (2). ⊓⊔

The unique positive eigenvector x in Theorem 8.16 is called the Perron eigenvec-

tor2 of the positive matrix A. The theory of eigenvalues and eigenvectors of positive

(or more general nonnegative) matrices is an important area of Matrix Theory, since

these matrices arise in many applications.

By construction, the matrix A ∈ Rn,n in the PageRank algorithm is column-

stochastic but not positive, since there are (usually many) entries ai j = 0. In order

to obtain a uniquely solvable problem one can use the following trick:

Let S = [si j ] ∈ Rn,n with si j = 1/n. Obviously, S is positive and column-

stochastic. For a real number α ∈ (0, 1] we define the matrix

Â(α) := (1 − α)A + αS.

This matrix is positive and column-stochastic, and hence it has a unique positive

eigenvector û corresponding to the eigenvalue 1. We thus have

û = Â(α)̂u = (1 − α)Aû + αSû = (1 − α)Aû +
α

n
[1, . . . , 1]T.

For a very large number of documents (e.g. the entire internet) the number α/n is

very small, so that (1 − α)Aû ≈ û. Therefore a solution of the eigenvalue problem

Â(α)̂u = û for small α potentially gives a good approximation of a u ∈ Rn,1 that

satisfies Au = u. The practical solution of the eigenvalue problem with the matrix

Â(α) is a topic of the field of Numerical Linear Algebra.

The matrix S represents a link structure where all document are mutually linked

and thus all documents are equally important. The matrix Â(α) = (1 − α)A + αS

therefore models the following internet “surfing behavior”: A user follows a proposed

link with the probability 1−α and an arbitrary link with the probability α. Originally,

Google Inc. used the value α = 0.15.

2Oskar Perron (1880–1975).
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Exercises

(In the following exercises K is an arbitrary field.)

8.1 Determine the characteristic polynomials of the following matrices over Q:

A =

[
2 0

0 2

]
, B =

[
4 4

−1 0

]
, C =

[
2 1

0 2

]
, D =

⎡
⎣

2 0 −1

0 2 0

−4 0 2

⎤
⎦ .

Verify the Cayley-Hamilton theorem in each case by direct computation. Are

two of the matrices A, B, C similar?

8.2 Let R be a commutative ring with unit and n ≥ 2.

(a) Show that for every A ∈ GLn(R) there exists a polynomial p ∈ R[t] of

degree at most n − 1 with adj(A) = p(A). Conclude that A−1 = q(A)

holds for a polynomial q ∈ R[t] of degree at most n − 1.

(b) Let A ∈ Rn,n . Apply Theorem 7.18 to the matrix t In − A ∈ (R[t])n,n

and derive an alternative proof of the Cayley-Hamilton theorem from the

formula det(t In − A) In = (t In − A) adj(t In − A).

8.3 Let A ∈ K n,n be a matrix with Ak = 0 for some k ∈ N. (Such a matrix is

called nilpotent.)

(a) Show that λ = 0 is the only eigenvalue of A.

(b) Determine PA and show that An = 0.

(Hint: You may assume that PA has the form
n∏

i=1

(t−λi ) for some λ1, . . . ,λn

∈ K .)

(c) Show that µIn − A is invertible if and only if µ ∈ K \ {0}.

(d) Show that (In − A)−1 = In + A + A2 + . . . + An−1.

8.4 Determine the eigenvalues and corresponding eigenvectors of the following

matrices over R:

A =

⎡
⎣

1 1 1

0 1 1

0 0 1

⎤
⎦ , B =

⎡
⎣

3 8 16

0 7 8

0 −4 −5

⎤
⎦ , C =

⎡
⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 −2 1

0 0 0 −2

⎤
⎥⎥⎦ .

Is there any difference when you consider A, B, C as matrices over C?

8.5 Let n ≥ 3 and ε ∈ R. Consider the matrix

A(ε) =

⎡
⎢⎢⎢⎢⎣

1 1

. . .
. . .

. . . 1

ε 1

⎤
⎥⎥⎥⎥⎦
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as an element of Cn,n and determine all eigenvalues in dependence of ε. How

many pairwise distinct eigenvalues does A(ε) have?

8.6 Determine the eigenvalues and corresponding eigenvectors of

A =

⎡
⎣

2 2 − a 2 − a

0 4 − a 2 − a

0 −4 + 2a −2 + 2a

⎤
⎦ ∈ R3,3, B =

⎡
⎣

1 1 0

1 0 1

0 1 1

⎤
⎦ ∈ (Z/2Z)3,3.

(For simplicity, the elements of Z/2Z are here denoted by k instead of [k].)

8.7 Let A ∈ K n,n , B ∈ K m,m , n ≥ m, and C ∈ K n,m with rank(C) = m and

AC = C B. Show that then every eigenvalue of B is an eigenvalue of A.

8.8 Show the following assertions:

(a) trace(λA + µB) = λ trace(A) + µ trace(B) holds for all λ,µ ∈ K and

A, B ∈ K n,n .

(b) trace(AB) = trace(B A) holds for all A, B ∈ K n,n .

(c) If A, B ∈ K n,n are similar, then trace(A) = trace(B).

8.9 Prove or disprove the following statements:

(a) There exist matrices A, B ∈ K n,n with trace(AB) �= trace(A) trace(B).

(b) There exist matrices A, B ∈ K n,n with AB − B A = In .

8.10 Suppose that the matrix A = [ai j ] ∈ Cn,n has only real entries ai j . Show

that if λ ∈ C\R is an eigenvalue of A with corresponding eigenvector v =

[ν1, . . . , νn]
T ∈ Cn,1, then also λ is an eigenvalue of A with corresponding

eigenvector v := [ν1, . . . , νn]
T .



Chapter 9

Vector Spaces

In the previous chapters we have focussed on matrices and their properties. We have

defined algebraic operations with matrices and derived important concepts associ-

ated with them, including their rank, determinant, characteristic polynomial, and

eigenvalues. In this chapter we place these concepts in a more abstract framework

by introducing the idea of a vector space. Matrices form one of the most important

examples of vector spaces, and properties of certain (namely, finite dimensional)

vector spaces can be studied in a transparent way using matrices. In the next chapter

we will study (linear) maps between vector spaces, and there the connection with

matrices will play a central role as well.

9.1 Basic Definitions and Properties of Vector Spaces

We begin with the definition of a vector space over a field K .

Definition 9.1 Let K be a field. A vector space over K , or shortly K -vector space,

is a set V with two operations,

+ : V × V → V, (v,w) �→ v + w, (addition)

· : K × V → V, (λ, v) �→ λ · v, (scalar multiplication)

that satisfy the following:

(1) (V,+) is a commutative group.

(2) For all v,w ∈ V and λ,µ ∈ K the following assertions hold:

(a) λ · (µ · v) = (λµ) · v.

(b) 1 · v = v.

(c) λ · (v + w) = λ · v + λ · w.

(d) (λ + µ) · v = λ · v + µ · v.

© Springer International Publishing Switzerland 2015
J. Liesen and V. Mehrmann, Linear Algebra, Springer Undergraduate
Mathematics Series, DOI 10.1007/978-3-319-24346-7_9
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An element v ∈ V is called a vector,1 an element λ ∈ K is called a scalar.

Again, we usually omit the sign of the scalar multiplication, i.e., we usually write

λv instead of λ · v. If it is clear from the context (or not important) which field we

are using, we often omit the explicit reference to K and simply write vector space

instead of K -vector space.

Example 9.2

(1) The set K n,m with the matrix addition and the scalar multiplication forms a

K -vector space. For obvious reasons, the elements of K n,1 and K 1,m are some-

times called column and row vectors, respectively.

(2) The set K [t] forms a K -vector space, if the addition is defined as in Exam-

ple 3.17 (usual addition of polynomials) and the scalar multiplication for

p = α0 + α1t + . . . + αntn ∈ K [t] is defined by

λ · p := (λα0) + (λα1)t + . . . + (λαn)t
n.

(3) The continuous and real valued functions defined on a real interval [α,β] with

the pointwise addition and scalar multiplication, i.e.,

( f + g)(x) := f (x) + g(x) and (λ · f )(x) := λ f (x),

form an R-vector space. This can be shown by using that the addition of two

continuous functions as well as the multiplication of a continuous function by

a real number yield again a continuous function.

Since, by definition, (V,+) is a commutative group, we already know some vector

space properties from the theory of groups (cp. Chap. 3). In particular, every vector

space contains a unique neutral element (with respect to addition) 0V , which is called

the null vector. Every vector v ∈ V has a unique (additive) inverse −v ∈ V with

v + (−v) = v − v = 0V . As usual, we will write v − w instead of v + (−w).

Lemma 9.3 Let V be a K -vector space. If 0K and 0V are the neutral (null) elements

of K and V , respectively, then the following assertions hold:

(1) 0K · v = 0V for all v ∈ V .

(2) λ · 0V = 0V for all λ ∈ K .

(3) −(λ · v) = (−λ) · v = λ · (−v) for all v ∈ V and λ ∈ K .

1This term was introduced in 1845 by Sir William Rowan Hamilton (1805–1865) in the context of
his quaternions. It is motivated by the Latin verb “vehi” (“vehor”, “vectus sum”) which means to
ride or drive. Also the term “scalar” was introduced by Hamilton; see the footnote on the scalar
multiplication (4.2).
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Proof

(1) For all v ∈ V we have 0K ·v = (0K +0K ) ·v = 0K ·v+0K ·v. Adding −(0K ·v)

on both sides of this identity gives 0V = 0K · v.

(2) For all λ ∈ K we have λ ·0V = λ ·(0V +0V) = λ ·0V +λ ·0V . Adding −(λ ·0V)

on both sides of this identity gives 0V = λ · 0V .

(3) For all λ ∈ K and v ∈ V we have λ · v + (−λ) · v = (λ − λ) · v = 0K · v = 0V ,

as well as λ · v + λ · (−v) = λ · (v − v) = λ · 0V = 0V . ⊓⊔

In the following we will write 0 instead of 0K and 0V when it is clear which null

element is meant.

As in groups, rings and fields we can identify substructures in vector spaces that

are again vector spaces.

Definition 9.4 Let (V,+, ·) be a K -vector space and let U ⊆ V . If (U ,+, ·) is a

K -vector space, then it is called a subspace of (V,+, ·).

A substructure must be closed with respect to the given operations, which here

are addition and scalar multiplication.

Lemma 9.5 (U ,+, ·) is a subspace of the K -vector space (V,+, ·) if and only if

Ø �= U ⊆ V and the following assertions hold:

(1) v + w ∈ U for all v,w ∈ U ,

(2) λv ∈ U for all λ ∈ K and v ∈ U .

Proof Exercise. ⊓⊔

Example 9.6

(1) Every vector space V has the trivial subspaces U = V and U = {0}.

(2) Let A ∈ K n,m and U = L (A, 0) ⊆ K m,1, i.e., U is the solution set of the

homogeneous linear system Ax = 0. We have 0 ∈ U , so U is not empty. If

v,w ∈ U , then

A(v + w) = Av + Aw = 0 + 0 = 0,

i.e., v + w ∈ U . Furthermore, for all λ ∈ K ,

A(λ v) = λ (Av) = λ 0 = 0,

i.e., λv ∈ U . Hence, U is a subspace of K m,1.

(3) For every n ∈ N0 the set K [t]≤n := {p ∈ K [t] | deg(p) ≤ n} is a subspace of

K [t].

Definition 9.7 Let V be a K -vector space, n ∈ N, and v1, . . . , vn ∈ V . A vector of

the form

λ1v1 + . . . + λnvn =

n∑

i=1

λivi ∈ V
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is called a linear combination of v1, . . . , vn with the coefficients λ1, . . . ,λn ∈ K .

The (linear) span of v1, . . . , vn is the set

span{v1, . . . , vn} :=
{ n∑

i=1

λivi | λ1, . . . ,λn ∈ K
}
.

Let M be a set and suppose that for every m ∈ M we have a vector vm ∈ V . Let

the set of all these vectors, called the system of these vectors, be denoted by {vm}m∈M .

Then the (linear) span of the system {vm}m∈M , denoted by span {vm}m∈M , is defined

as the set of all vectors v ∈ V that are linear combinations of finitely many vectors

of the system.

This definition can be consistently extended to the case n = 0. In this case

v1, . . . , vn is a list of length zero, or an empty list. If we define the empty sum of

vectors as 0 ∈ V , then we obtain span{v1, . . . , vn} = span Ø = {0}.

If in the following we consider a list of vectors v1, . . . , vn or a set of vectors

{v1, . . . , vn}, we usually mean that n ≥ 1. The case of empty list and the associated

zero vector space V = {0} will sometimes be discussed separately.

Example 9.8 The vector space K 1,3 = {[α1,α2,α3] | α1,α2,α3 ∈ K } is spanned

by the vectors [1, 0, 0], [0, 1, 0], [0, 0, 1]. The set {[α1,α2, 0] | α1,α2 ∈ K } forms

a subspace of K 1,3 that is spanned by the vectors [1, 0, 0], [0, 1, 0].

Lemma 9.9 If V is a vector space and v1, . . . , vn ∈ V , then span{v1, . . . , vn} is a

subspace of V .

Proof It is clear that Ø �= span{v1, . . . , vn} ⊆ V . Furthermore, span{v1, . . . , vn} is

by definition closed with respect to addition and scalar multiplication, so that (1) and

(2) in Lemma 9.5 are satisfied. ⊓⊔

9.2 Bases and Dimension of Vector Spaces

We will now discuss the central theory of bases and dimension of vector spaces, and

start with the concept of linear independence.

Definition 9.10 Let V be a K -vector space.

(1) The vectors v1, . . . , vn ∈ V are called linearly independent if the equation

n∑

i=1

λivi = 0 with λ1, . . . ,λn ∈ K

always implies that λ1 = · · · = λn = 0. Otherwise, i.e., when
∑n

i=1 λivi = 0

holds for some scalars λ1, . . . ,λn ∈ K that are not all equal to zero, then the

vectors v1, . . . , vn are called linearly dependent.
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(2) The empty list is linear independent.

(3) If M is a set and for every m ∈ M we have a vector vm ∈ V , the corresponding

system {vm}m∈M is called linearly independent when finitely many vectors of

the system are always linearly independent in the sense of (1). Otherwise the

system is called linearly dependent.

The vectors v1, . . . , vn are linearly independent if and only if the zero vector can

be linearly combined only in the trivial way 0 = 0 · v1 + . . . + 0 · vn . Consequently,

if one of these vectors is the zero vector, then v1, . . . , vn are linearly dependent. A

single vector v is linearly independent if and only if v �= 0.

The following result gives a useful characterization of the linear independence of

finitely many (but at least two) given vectors.

Lemma 9.11 The vectors v1, . . . , vn , n ≥ 2, are linearly independent if and only if

no vector vi , i = 1, . . . , n, can be written as a linear combination of the others.

Proof We prove the assertion by contraposition. The vectors v1, . . . , vn are linearly

dependent if and only if
n∑

i=1

λivi = 0

with at least one scalar λ j �= 0. Equivalently,

v j = −

n∑

i=1
i �= j

(λ−1
j λi ) vi ,

so that v j is a linear combination of the other vectors. ⊓⊔

Using the concept of linear independence we can now define the concept of the

basis of a vector space.

Definition 9.12 Let V be a vector space.

(1) A set {v1, . . . , vn} ⊆ V is called a basis of V , when v1, . . . , vn are linearly

independent and span{v1, . . . , vn} = V .

(2) The set Ø is the basis of the zero vector space V = {0}.

(3) Let M be a set and suppose that for every m ∈ M we have a vector vm ∈ V . The

set {vm | m ∈ M} is called a basis of V if the corresponding system {vm}m∈M is

linearly independent and span {vm}m∈M = V .

In short, a basis is a linearly independent spanning set of a vector space.

Example 9.13

(1) Let Ei j ∈ K n,m be the matrix with entry 1 in position (i, j) and all other entries 0

(cp. Sect. 5.1). Then the set



120 9 Vector Spaces

{Ei j | 1 ≤ i ≤ n and 1 ≤ j ≤ m} (9.1)

is a basis of the vector space K n,m (cp. (1) in Example 9.2): The matrices Ei j ∈

K n,m , 1 ≤ i ≤ n and 1 ≤ j ≤ m, are linearly independent, since

0 =

n∑

i=1

m∑

j=1

λi j Ei j = [λi j ]

implies that λi j = 0 for i = 1, . . . , n and j = 1, . . . , m. For any A = [ai j ] ∈

K n,m we have

A =

n∑

i=1

m∑

j=1

ai j Ei j ,

and hence

span{Ei j | 1 ≤ i ≤ n and 1 ≤ j ≤ m} = K n,m .

The basis (9.1) is called the canonical or standard basis of the vector space

K n,m . For m = 1 we denote the canonical basis vectors of K n,1 by

e1 :=

⎡
⎢⎢⎢⎢⎢⎣

1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

, e2 :=

⎡
⎢⎢⎢⎢⎢⎣

0

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

, . . . , en :=

⎡
⎢⎢⎢⎢⎢⎣

0
...

0

0

1

⎤
⎥⎥⎥⎥⎥⎦

.

These vectors are also called unit vectors; they are the n columns of the identity

matrix In .

(2) A basis of the vector space K [t] (cp. (2) in Example 9.2) is given by the set

{tm | m ∈ N0}, since the corresponding system {tm}m∈N0
is linearly independent,

and every polynomial p ∈ K [t] is a linear combination of finitely many vectors

of the system.

The next result is called the basis extension theorem.

Theorem 9.14 Let V be a vector space and let v1, . . . , vr , w1, . . . , wℓ ∈ V , where

r, ℓ ∈ N0. If v1, . . . , vr are linearly independent and span{v1, . . . , vr , w1, . . . , wℓ} =

V , then the set {v1, . . . , vr } can be extended to a basis of V using vectors from the

set {w1, . . . , wℓ}.

Proof Note that for r = 0 the list v1, . . . , vr is empty and hence linearly independent

due to (2) in Definition 9.10.

We prove the assertion by induction on ℓ. If ℓ = 0, then span{v1, . . . , vr } = V ,

and the linear independence of {v1, . . . , vr } shows that this set is a basis of V .
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Let the assertion hold for some ℓ ≥ 0. Suppose that v1, . . . , vr , w1, . . . , wℓ+1 ∈ V

are given, where v1, . . . , vr are linearly independent and span{v1, . . . , vr , w1, . . . ,

wℓ+1} = V . If {v1, . . . , vr } already is a basis of V , then we are done. Suppose,

therefore, that span{v1, . . . , vr } ⊂ V . Then there exists at least one j , 1 ≤ j ≤ ℓ+1,

such that w j /∈ span{v1, . . . , vr }. In particular, we have w j �= 0. Then

λw j +

r∑

i=1

λivi = 0

implies that λ = 0 (otherwise we would have w j ∈ span{v1, . . . , vr }) and,

therefore, λ1 = · · · = λr = 0 due to the linear independence of v1, . . . , vr .

Thus, v1, . . . , vr , w j are linearly independent. By the induction hypothesis we

can extend the set {v1, . . . , vr , w j } to a basis of V using vectors from the set

{w1, . . . , wℓ+1} \ {w j }, which contains ℓ elements. ⊓⊔

Example 9.15 Consider the vector space V = K [t]≤3 (cp. (3) in Example 9.6) and

the vectors v1 = t , v2 = t2, v3 = t3. These vectors are linearly independent,

but {v1, v2, v3} is not a basis of V , since span{v1, v2, v3} �= V . For example, the

vectors w1 = t2 + 1 and w2 = t3 − t2 − 1 are elements of V , but w1, w2 /∈

span{v1, v2, v3}. We have span{v1, v2, v3, w1, w2} = V . If we extend {v1, v2, v3} by

w1, then we get the linearly independent vectors v1, v2, v3, w1 which indeed span V .

Thus, {v1, v2, v3, w1} is a basis of V .

By the basis extension theorem every vector space that is spanned by finitely many

vectors has a basis consisting of finitely many elements. A central result of the theory

of vector spaces is that every such basis has the same number of elements. In order

to show this result we first prove the following exchange lemma.

Lemma 9.16 Let V be a vector space, let v1, . . . , vm ∈ V and let w =
∑m

i=1 λivi ∈

V with λ1 �= 0. Then span{w, v2, . . . , vm} = span{v1, v2, . . . , vm}.

Proof By assumption we have

v1 = λ−1
1 w −

m∑

i=2

(
λ−1

1 λi

)
vi .

If y ∈ span{v1, . . . , vm}, say y =
∑m

i=1 γivi , then

y = γ1

(
λ−1

1 w −

m∑

i=2

(
λ−1

1 λi

)
vi

)
+

m∑

i=2

γivi

=
(
γ1λ

−1
1

)
w +

m∑

i=2

(
γi − γ1λ

−1
1 λi

)
vi ∈ span{w, v2, . . . , vm}.

If, on the other hand, y = α1w +
∑m

i=2 αivi ∈ span{w, v2, . . . , vm}, then
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y = α1

(
m∑

i=1

λivi

)
+

m∑

i=2

αivi

= α1λ1v1 +

m∑

i=2

(α1λi + αi ) vi ∈ span{v1, . . . , vm},

and thus span{w, v2, . . . , vm} = span{v1, v2, . . . , vm}. ⊓⊔

Using this lemma we now prove the exchange theorem.2

Theorem 9.17 Let W = {w1, . . . , wn} and U = {u1, . . . , um} be finite subsets of a

vector space, and let w1, . . . , wn be linearly independent. If W ⊆ span{u1, . . . , um},

then n ≤ m, and n elements of U, if numbered appropriately the elements u1, . . . , un ,

can be exchanged against n elements of W in such a way that

span{w1, . . . , wn, un+1, . . . , um} = span{u1, . . . , un, un+1, . . . , um}.

Proof By assumption we have w1 =
∑m

i=1 λi ui for some scalars λ1, . . . ,λm that

are not all zero (otherwise w1 = 0, which contradicts the linear independence of

w1, . . . , wn). After an appropriate renumbering we have λ1 �= 0, and Lemma 9.16

yields

span{w1, u2, . . . , um} = span{u1, u2, . . . , um}.

Suppose that for some r , 1 ≤ r ≤ n−1, we have exchanged the vectors u1, . . . , ur

against w1, . . . , wr so that

span{w1, . . . , wr , ur+1, . . . , um} = span{u1, . . . , ur , ur+1, . . . , um}.

It is then clear that r ≤ m.

By assumption we have wr+1 ∈ span{u1, . . . , um}, and thus

wr+1 =

r∑

i=1

λiwi +

m∑

i=r+1

λi ui

for some scalars λ1, . . . ,λm . One of the scalars λr+1, . . . ,λm must be nonzero (oth-

erwise wr+1 ∈ span{w1, . . . , wr }, which contradicts the linear independence of

w1, . . . , wm). After an appropriate renumbering we have λr+1 �= 0, and Lemma 9.16

yields

span{w1, . . . , wr+1, ur+2, . . . , um} = span{w1, . . . , wr , ur+1, . . . , um}.

If we continue this construction until r = n − 1, then we obtain

2In the literature, his theorem is sometimes called the Steinitz exchange theorem after Ernst Steinitz
(1871–1928). The result was first proved in 1862 by Hermann Günther Graßmann (1809–1877).
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span{w1, . . . , wn, un+1, . . . , um} = span{u1, . . . , un, un+1, . . . um},

where in particular n ≤ m. ⊓⊔

Using this fundamental theorem, the following result about the unique number of

basis elements is a simple corollary.

Corollary 9.18 If a vector space V is spanned by finitely many vectors, then V has

a basis consisting of finitely many elements, and any two bases of V have the same

number of elements.

Proof The assertion is clear for V = {0} (cp. (2) in Definition 9.12). Let V =

span{v1, . . . , vm} with v1 �= 0. By Theorem 9.14, we can extend span{v1} using

elements of {v2, . . . , vm} to a basis of V . Thus, V has a basis with finitely many

elements. Let U := {u1, . . . , uℓ} and W := {w1, . . . , wk} be two such bases. Then

W ⊆ V = span{u1, . . . , uℓ}
Theorem 9.18

=⇒ k ≤ ℓ,

U ⊆ V = span{w1, . . . , wk}
Theorem 9.18

=⇒ ℓ ≤ k,

and thus ℓ = k. ⊓⊔

We can now define the dimension of a vector space.

Definition 9.19 If there exists a basis of a K -vector space V that consists of finitely

many elements, then V is called finite dimensional, and the unique number of basis

elements is called the dimension of V . We denote the dimension by dimK (V) or

dim(V), if it is clear which field is meant.

If V is not spanned by finitely many vectors, then V is called infinite dimensional,

and we write dimK (V) = ∞.

Note that the zero vector space V = {0} has the basis Ø and thus it has dimension

zero (cp. (2) in Definition 9.12).

If V is a finite dimensional vector space and if v1, . . . , vm ∈ V with m > dim(V),

then the vectors v1, . . . , vm must be linearly dependent. (If these vectors were linearly

independent, then we could extend them via Theorem 9.14 to a basis of V that would

contain more than dim(V) elements.)

Example 9.20 The set in (9.1) forms a basis of the vector space K n,m . This basis has

n · m elements, and hence dim(K n,m) = n · m. On the other hand, the vector space

K [t] is not spanned by finitely many vectors (cp. (2) in Example 9.13) and hence it

is infinite dimensional.

Example 9.21 Let V be the vector space of continuous and real valued functions on

the real interval [0, 1] (cp. (3) in Example 9.2). Define for n = 1, 2, . . . the function

fn ∈ V by
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fn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 1
n+1

,

0, 1
n

< x,

2n(n + 1)x − 2n, 1
n+1

≤ x ≤ 1
2

(
1
n

+ 1
n+1

)
,

−2n(n + 1)x + 2n + 2, 1
2

(
1
n

+ 1
n+1

)
< x ≤ 1

n
.

Every linear combination
k∑

j=1

λ j f j is a continuous function that has the value λ j

at 1
2

(
1
j
+ 1

j+1

)
. Thus, the equation

k∑
j=1

λ j f j = 0 ∈ V implies that all λ j must be

zero, so that f1, . . . , fk ∈ V are linearly independent for all k ∈ N. Consequently,

dim(V) = ∞.

9.3 Coordinates and Changes of the Basis

We will now study the linear combinations of basis vectors of a finite dimensional

vector space. In particular, we will study what happens with a linear combination if

we change to another basis of the vector space.

Lemma 9.22 If {v1, . . . , vn} is a basis of a K -vector space V , then for every v ∈ V

there exist uniquely determined scalars λ1, . . . ,λn ∈ K with v = λ1v1 + . . .+λnvn .

These scalars are called the coordinates of v with respect to the basis {v1, . . . , vn}.

Proof Let v =
∑n

i=1 λivi =
∑n

i=1 µivi for some scalars λi ,µi ∈ K , i = 1, . . . , n,

then

0 = v − v =

n∑

i=1

(λi − µi )vi .
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The linear independence of v1, . . . , vn implies that λi = µi for i = 1, . . . , n. ⊓⊔

By definition, the coordinates of a vector depend on the given basis. In particular,

they depend on the ordering (or numbering) of the basis vectors. Because of this,

some authors distinguish between the basis as “set”, i.e., a collection of elements

without a particular ordering, and an “ordered basis”. In this book we will keep the

set notation for a basis {v1, . . . , vn}, where the indices indicate the ordering of the

basis vectors.

Let V be a K -vector space, v1, . . . , vn ∈ V (they need not be linearly independent)

and

v = λ1v1 + . . . + λnvn

for some coefficients λ1, . . . ,λn ∈ K . Let us write

(v1, . . . , vn)

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ := λ1v1 + . . . + λnvn. (9.2)

Here (v1, . . . , vn) is an n-tuple over V , i.e.,

(v1, . . . , vn) ∈ V
n = V × . . . × V︸ ︷︷ ︸

n times

.

For n = 1 we have V1 = V . We then skip the parentheses and write v instead of

(v) for a 1-tuple. The notation (9.2) formally defines a “multiplication” as map from

Vn × K n,1 to V .

For all α ∈ K we have

α · v = (α · λ1)v1 + . . . + (α · λn)vn = (v1, . . . , vn)

⎡
⎢⎣

αλ1

...

αλn

⎤
⎥⎦ .

If µ1, . . . ,µn ∈ K and

u = µ1v1 + . . . + µnvn = (v1, . . . , vn)

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ ,

then

v + u = (λ1 + µ1)v1 + . . . + (λn + µn)vn = (v1, . . . , vn)

⎡
⎢⎣

λ1 + µ1

...

λn + µn

⎤
⎥⎦ .



126 9 Vector Spaces

This shows that if vectors are given by linear combinations, then the operations

scalar multiplication and addition correspond to operations with the coefficients of

the vectors with respect to the linear combinations.

We can further extend this notation. Let A = [ai j ] ∈ K n,m and let

u j = (v1, . . . , vn)

⎡
⎢⎣

a1 j

...

anj

⎤
⎥⎦ , j = 1, . . . , m.

Then we write the m linear combinations for u1, . . . , um as the system

(u1, . . . , um) =: (v1, . . . , vn)A. (9.3)

On both sides of this equation we have elements of Vm . The right-multiplication of

an arbitrary n-tuple (v1, . . . , vn) ∈ Vn with a matrix A ∈ K n,m thus corresponds

to forming m linear combinations of the vectors v1, . . . , vn , with the corresponding

coefficients given by the entries of A. Formally, this defines a “multiplication” as a

map from Vn × K n,m to Vm .

Lemma 9.23 Let V be a K -vector space, let v1, . . . , vn ∈ V be linearly independent,

let A ∈ K n,m , and let (u1, . . . , um) = (v1, . . . , vn)A. Then the vectors u1, . . . , um

are linearly independent if and only if rank(A) = m.

Proof Exercise. ⊓⊔

Now consider also a matrix B = [bi j ] ∈ K m,ℓ. Using (9.3) we obtain

(u1, . . . , um)B = ((v1, . . . , vn)A)B.

Lemma 9.24 In the previous notation,

((v1, . . . , vn)A)B = (v1, . . . , vn)(AB).

Proof Exercise. ⊓⊔

Let {v1, . . . , vn} and {w1, . . . , wn} be bases of V and let v ∈ V . By Lemma 9.22

there exist (unique) coordinates λ1, . . . ,λn and µ1, . . . ,µn , respectively, with

v = (v1, . . . , vn)

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ = (w1, . . . , wn)

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ .

We will now describe a method for transforming the coordinates λ1, . . . ,λn with

respect to the basis {v1, . . . , vn} into the coordinates µ1, . . . ,µn with respect to the

basis {w1, . . . , wn}, and vice versa.
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For every basis vector v j , j = 1, . . . , n, there exist (unique) coordinates pi j ,

i = 1, . . . , n, such that

v j = (w1, . . . , wn)

⎡
⎢⎣

p1 j

...

pnj

⎤
⎥⎦ , j = 1, . . . , n.

Defining P = [pi j ] ∈ K n,n we can write these n equations for the vectors v j

analogous to (9.3) as

(v1, . . . , vn) = (w1, . . . , wn) P. (9.4)

In the same way, for every basis vector w j , j = 1, . . . , n, there exist (unique)

coordinates qi j , i = 1, . . . , n, such that

w j = (v1, . . . , vn)

⎡
⎢⎣

q1 j

...

qnj

⎤
⎥⎦ , j = 1, . . . , n.

If we set Q = [qi j ] ∈ K n,n , then analogously to (9.4) we get

(w1, . . . , wn) = (v1, . . . , vn)Q.

Thus,

(w1, . . . , wn) = (v1, . . . , vn)Q = ((w1, . . . , wn)P)Q = (w1, . . . , wn)(P Q),

which implies that

(w1, . . . , wn)(In − P Q) = (0, . . . , 0).

This means that the n linear combinations of the basis vectors w1, . . . , wn , with

their corresponding coordinates given by the entries of the n columns of In − P Q,

are all equal to the zero vector. Since the basis vectors are linearly independent, all

coordinates must be zero, and hence In −P Q = 0 ∈ K n,n , or P Q = In . Analogously

we obtain the equation Q P = In . Therefore the matrix P ∈ K n,n is invertible with

P−1 = Q. Furthermore, we have

v = (v1, . . . , vn)

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ = ((w1, . . . , wn)P)

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ = (w1, . . . , wn)

⎛
⎜⎝P

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦

⎞
⎟⎠ .
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Due to the uniqueness of the coordinates of v with respect to the basis {w1, . . . , wn}

we obtain

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ = P

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ , or

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ = P−1

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ .

Hence a multiplication with the matrix P transforms the coordinates of v with respect

to the basis {v1, . . . , vn} into those with respect to the basis {w1, . . . , wn}; a multipli-

cation with P−1 yields the inverse transformation. Therefore, P and P−1 are called

coordinate transformation matrices.

We can summarize the results obtained above as follows.

Theorem 9.25 Let {v1, . . . , vn} and {w1, . . . , wn} be bases of a K -vector space V .

Then the uniquely determined matrix P ∈ K n,n is (9.4) is invertible and yields the

coordinate transformation from {v1, . . . , vn} to {w1, . . . , wn}: If

v = (v1, . . . , vn)

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ = (v1, . . . , vn)

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ ,

then ⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ = P

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦ .

Example 9.26 Consider the vector space V = R2 = {(α1,α2) | α1,α2 ∈ R} with

the entrywise addition and scalar multiplication. A basis of V is given by the set

{e1 = (1, 0), e2 = (0, 1)}, and we have (α1,α2) = α1e1 +α2e2 for all (α1,α2) ∈ V .

Another basis ofV is the set {v1 = (1, 1), v2 = (1, 2)}. The corresponding coordinate

transformation matrices can be obtained from the defining equations (v1, v2) =

(e1, e2)P and (e1, e2) = (v1, v2)Q as

P =

[
1 1

1 2

]
, Q = P−1 =

[
2 −1

−1 1

]
.

9.4 Relations Between Vector Spaces and Their Dimensions

Our first result describes the relation between a vector space and a subspace.

Lemma 9.27 If V is a finite dimensional vector space and U ⊆ V is a subspace,

then dim(U) ≤ dim(V) with equality if and only if U = V .
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Proof Let U ⊆ V and let {u1, . . . , um} be a basis of U , where {u1, . . . , um} = Ø

for U = {0}. Using Theorem 9.14 we can extend this set to a basis of V . If U is

a proper subset of V , then at least one basis vector needs to be added and hence

dim(U) < dim(V). If U = V , then every basis of V is also a basis of U , and thus

dim(U) = dim(V). ⊓⊔

If U1 and U2 are subspaces of a vector space V , then their intersection is given by

U1 ∩ U2 = {u ∈ V | u ∈ U1 ∧ u ∈ U2}

(cp. Definition 2.6). The sum of the two subspaces is defined as

U1 + U2 := {u1 + u2 ∈ V | u1 ∈ U1 ∧ u2 ∈ U2}.

Lemma 9.28 If U1 and U2 are subspaces of a vector space V , then the following

assertions hold:

(1) U1 ∩ U2 and U1 + U2 are subspaces of V .

(2) U1 + U1 = U1.

(3) U1 + {0} = U1.

(4) U1 ⊆ U1 + U2, with equality if and only if U2 ⊆ U1.

Proof Exercise. ⊓⊔

An important result is the following dimension formula for subspaces.

Theorem 9.29 If U1 and U2 are finite dimensional subspaces of a vector space V ,

then

dim(U1 ∩ U2) + dim(U1 + U2) = dim(U1) + dim(U2).

Proof Let {v1, . . . , vr } be a basis of U1 ∩ U2. We extend this set to a basis

{v1, . . . , vr , w1, . . . , wℓ} of U1 and to a basis {v1, . . . , vr , x1, . . . , xk} of U2, where

we assume that r, ℓ, k ≥ 1. (If one of the lists is empty, then the following argument

is easily modified.)

If suffices to show that {v1, . . . , vr , w1, . . . , wℓ, x1, . . . , xk} is a basis of U1 +U2.

Obviously,
span{v1, . . . , vr , w1, . . . , wℓ, x1, . . . , xk} = U1 + U2,

and hence it suffices to show that v1, . . . , vr , w1, . . . , wℓ, x1, . . . , xk are linearly

independent. Let
r∑

i=1

λivi +

ℓ∑

i=1

µiwi +

k∑

i=1

γi xi = 0,
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then

k∑

i=1

γi xi = −

(
r∑

i=1

λivi +

ℓ∑

i=1

µiwi

)
.

On the left hand side of this equation we have, by definition, a vector in U2; on the

right hand side a vector in U1. Therefore,
∑k

i=1 γi xi ∈ U1 ∩ U2. By construction,

however, {v1, . . . , vr } is a basis of U1 ∩U2 and the vectors v1, . . . , vr , w1, . . . , wℓ are

linearly independent. Therefore,
∑ℓ

i=1 µiwi = 0 implies that µ1 = · · · = µℓ = 0.

But then also

r∑

i=1

λivi +

k∑

i=1

γi xi = 0,

and hence λ1 = · · · = λr = γ1 = · · · = γk = 0 due to the linear independence of

v1, . . . , vr , x1, . . . , xk . ⊓⊔

If at least one of the subspaces in Theorem 9.29 is infinite dimensional, then

the assertion is still formally correct, since in this case dim(U1 + U2) = ∞ and

dim(U1) + dim(U2) = ∞.

Example 9.30 For the subspaces

U1 = {[α1,α2, 0] | α1,α2 ∈ K }, U2 = {[0,α2,α3] | α2,α3 ∈ K } ⊂ K 1,3

we have dim(U1) = dim(U2) = 2,

U1 ∩ U2 = {[0,α2, 0] | α2 ∈ K }, dim(U1 ∩ U2) = 1,

U1 + U2 = K 1,3, dim(U1 + U2) = 3.

The above definition of the sum can be extended to an arbitrary (but finite) number

of subspaces: If U1, . . . ,Uk , k ≥ 2, are subspaces of the vector space V , then we

define

U1 + . . . + Uk =

k∑

j=1

U j :=
{ k∑

j=1

u j | u j ∈ U j , j = 1, . . . , k
}
.

This sum is called direct, if

Ui ∩

k∑

j=1
j �=i

U j = {0} for i = 1, . . . , k,

and in this case we write the (direct) sum as
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U1 ⊕ . . . ⊕ Uk =

k⊕

j=1

U j .

In particular, a sum U1 +U2 of two subspaces U1,U2 ⊆ V is direct if U1 ∩ U2 = {0}.

The following theorem presents two equivalent characterizations of the direct sum

of subspaces.

Theorem 9.31 If U = U1 + . . . + Uk is a sum of k ≥ 2 subspaces of a vector space

V , then the following assertions are equivalent:

(1) The sum U is direct, i.e., Ui ∩
∑

j �=i U j = {0} for i = 1, . . . , k.

(2) Every vector u ∈ U has a representation of the form u =
∑k

j=1 u j with uniquely

determined u j ∈ U j for j = 1, . . . , k.

(3)
∑k

j=1 u j = 0 with u j ∈ U j for j = 1, . . . , k implies that u j = 0 for j =

1, . . . , k.

Proof

(1) ⇒ (2): Let u =
∑k

j=1 u j =
∑k

j=1 ũ j with u j , ũ j ∈ U j , j = 1, . . . , k. For

every i = 1, . . . , k we then have

ui − ũi = −
∑

j �=i

(u j − ũ j ) ∈ Ui ∩
∑

j �=i

U j .

Now Ui ∩
∑

j �=i U j = {0} implies that ui − ũi = 0, and hence ui = ũi for

i = 1, . . . , k.

(2) ⇒ (3): This is obvious.

(3) ⇒ (1): For a given i , let u ∈ Ui ∩
∑

j �=i U j . Then u =
∑

j �=i u j for some

u j ∈ U j , j �= i , and hence −u +
∑

j �=i u j = 0. In particular, this implies that

u = 0, and thus Ui ∩
∑

j �=i U j = {0}. ⊓⊔

Exercises

(In the following exercises K is an arbitrary field.)

9.1. Which of the following sets (with the usual addition and scalar multiplication)
are R-vector spaces?

{
[α1,α2] ∈ R1,2 | α1 = α2

}
,

{
[α1, α2] ∈ R1,2 | α2

1 + α2
2 = 1

}
,

{
[α1,α2] ∈ R1,2 | α1 ≥ α2

}
,

{
[α1,α2] ∈ R1,2 | α1 − α2 = 0 and 2α1 + α2 = 0

}
.

Determine, if possible, a basis and the dimension.

9.2. Determine a basis of the R-vector space C and dimR(C). Determine a basis of

the C-vector space C and dimC(C).

9.3. Show that a1, . . . , an ∈ K n,1 are linearly independent if and only if det([a1, …,

an]) �= 0.
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9.4. Let V be a K -vector space, � a nonempty set and Map(�,V) the set of maps

from � to V . Show that Map(�,V) with the operations

+ : Map(�,V) × Map(�,V) → Map(�,V), ( f, g) �→ f + g,

with ( f + g)(x) := f (x) + g(x) for all x ∈ �,

· : K × Map(�,V) → Map(�,V), (λ, f ) �→ λ · f,

with(λ · f )(x) := λ f (x) for all x ∈ �,

is a K -vector space.

9.5. Show that the functions sin and cos in Map(R, R) are linearly independent.

9.6. Let V be a vector space with n = dim(V) ∈ N and let v1, . . . , vn ∈ V . Show

that the following statements are equivalent:

(1) v1, . . . , vn are linearly independent.

(2) span{v1, . . . , vn} = V .

(3) {v1, . . . , vn} is a basis of V .

9.7. Show that (K n,m,+, ·) is a K -vector space (cp. (1) in Example 9.2). Find a

subspace of this K -vector space.

9.8. Show that (K [t],+, ·) is a K -vector space (cp. (2) in Example 9.2). Show

further that K [t]≤n is a subspace of K [t] (cp. (3) in Example 9.6) and determine

dim(K [t]≤n).

9.9. Show that the polynomials p1 = t5 + t4, p2 = t5 − 7t3, p3 = t5 − 1,

p4 = t5 + 3t are linearly independent in Q[t]≤5 and extend {p1, p2, p3, p4}

to a basis of Q[t]≤5.

9.10. Let n ∈ N and

K [t1, t2] :=
{ n∑

i, j=0

αi j t
i
1t

j

2

∣∣ αi j ∈ K
}
.

An element of K [t1, t2] is called bivariate polynomial over K in the unknowns

t1 and t2. Define a scalar multiplication and an addition so that K [t1, t2]

becomes a vector space. Determine a basis of K [t1, t2].

9.11. Show Lemma 9.5.

9.12. Let A ∈ K n,m and b ∈ K n,1. Is the solution set L (A, b) of Ax = b a subspace

of K m,1?

9.13. Let A ∈ K n,n and let λ ∈ K be an eigenvalue of A. Show that the set {v ∈

K n,1 | Av = λv} is a subspace of K n,1.

9.14. Let A ∈ K n,n and let λ1 �= λ2 be two eigenvalues of A. Show that any two

associated eigenvectors v1 and v2 are linearly independent.

9.15. Show that B = {B1, B2, B3, B4} and C = {C1, C2, C3, C4} with

B1 =

[
1 1

0 0

]
, B2 =

[
1 0

0 0

]
, B3 =

[
1 0

1 0

]
, B4 =

[
1 1

0 1

]
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and

C1 =

[
1 0

0 1

]
, C2 =

[
1 0

1 0

]
, C3 =

[
1 0

0 0

]
, C4 =

[
0 1

1 0

]

are bases of the vector space K 2,2, and determine corresponding coordinate

transformation matrices.

9.16. Examine the elements of the following sets for linear independence in the

vector space K [t]≤3:

U1 = {t, t2 + 2t, t2 + 3t + 1, t3}, U2 = {1, t, t + t2, t2 + t3},

U3 = {1, t2 − t, t2 + t, t3}.

Determine the dimensions of the subspaces spanned by the elements of U1,

U2, U3. Is one of these sets a basis of K [t]≤3?

9.17. Show that the set of sequences {(α1,α2,α3, . . .) | αi ∈ Q, i ∈ N} with entry-

wise addition and scalar multiplication forms an infinite dimensional vector

space, and determine a basis system.

9.18. Prove Lemma 9.23.

9.19. Prove Lemma 9.24.

9.20. Prove Lemma 9.28.

9.21. Let U1,U2 be finite dimensional subspaces of a vector space V . Show that the

sum U1 + U2 is direct if dim(U1 + U2) = dim(U1) + dim(U2).

9.22. Let U1, . . . ,Uk , k ≥ 3, be finite dimensional subspaces of a vector space V .

Suppose that Ui ∩ U j = {0} for all i �= j . Is the sum U1 + . . . + Uk direct?

9.23. Let U be a subspace of a finite dimensional vector space V . Show that there

exists another subspace Ũ with U ⊕ Ũ = V . (The subspace Ũ is called a

complement of U .)

9.24. Determine three subspaces U1,U2,U3 of V = R3,1 with U2 �= U3 and V =

U1 ⊕ U2 = U1 ⊕ U3. Is there a subspace U1 of V with a uniquely determined

complement?



Chapter 10

Linear Maps

In this chapter we study maps between vector spaces that are compatible with the two

vector space operations, addition and scalar multiplication. These maps are called

linear maps or homomorphisms. We first investigate their most important properties

and then show that in the case of finite dimensional vector spaces every linear map

can be represented by a matrix, when bases in the respective spaces have been chosen.

If the bases are chosen in a clever way, then we can read off important properties of

a linear map from its matrix representation. This central idea will arise frequently in

later chapters.

10.1 Basic Definitions and Properties of Linear Maps

We start our investigations with the definition of linear maps between vector spaces.

Definition 10.1 Let V and W be K -vector spaces. A map f : V → W is called

linear, when

(1) f (λv) = λ f (v), and

(2) f (v + w) = f (v) + f (w),

hold for all v,w ∈ V and λ ∈ K . The set of all these maps is denoted by L(V,W).

A linear map f : V → W is also called a linear transformation or (vector space)

homomorphism. A bijective linear map is called an isomorphism. If there exists an

isomorphism between V and W , then the spaces V and W are called isomorphic,

which we denote by

V ∼= W.

A map f ∈ L(V,V) is called an endomorphism, and a bijective endomorphism is

called an automorphism.

© Springer International Publishing Switzerland 2015
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It is an easy exercise to show that the conditions (1) and (2) in Definition 10.1

hold if and only if

f (λv + µw) = λ f (v) + µ f (w)

holds for all λ,µ ∈ K and v,w ∈ V .

Example 10.2

(1) Every matrix A ∈ K n,m defines a map

A : K m,1 → K n,1, x �→ Ax .

This map is linear, since

A(λx) = λAx for all x ∈ K m,1 and λ ∈ K ,

A(x + y) = Ax + Ay for all x, y ∈ K m,1

(cp. Lemmas 4.3 and 4.4).

(2) The map trace : K n,n → K , A = [ai j ] �→ trace(A) :=
∑n

i=1 ai i , is linear (cp.

Exercise 8.8).

(3) The map

f : Q[t]≤3 → Q[t]≤2, α3t3 + α2t2 + α1t + α0 �→ 2α2t2 + 3α1t + 4α0,

is linear. (Show this as an exercise). The map

g : Q[t]≤3 → Q[t]≤2, α3t3 + α2t2 + α1t + α0 �→ α2t2 + α1t + α2
0,

is not linear. For example, if p1 = t + 2 and p2 = t + 1, then g(p1 + p2) =

2t + 9 �= 2t + 5 = g(p1) + g(p2).

The set of linear maps between vector spaces forms a vector space itself.

Lemma 10.3 Let V and W be K -vector spaces. For f, g ∈ L(V,W) and λ ∈ K

define f + g and λ · f by

( f + g)(v) := f (v) + g(v),

(λ · f )(v) := λ f (v),

for all v ∈ V . Then (L(V,W),+, ·) is a K -vector space.

Proof Cp. Exercise 9.4. ⊓⊔

The next result deals with the existence and uniqueness of linear maps.

Theorem 10.4 Let V and W be K -vector spaces, let {v1, . . . , vm} be a basis of V ,

and let w1, . . . , wm ∈ W . Then there exists a unique linear map f ∈ L(V,W) with

f (vi ) = wi for i = 1, . . . , m.
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Proof For every v ∈ V there exist (unique) coordinates λ
(v)
1 , . . . ,λ(v)

m with v =∑m
i=1 λ

(v)

i vi (cp. Lemma 9.22). We define the map f : V → W by

f (v) :=

m∑

i=1

λ
(v)

i wi for all v ∈ V .

By definition, f (vi ) = wi for i = 1, . . . , m.

We next show that f is linear. For every λ ∈ K we have λv =
∑m

i=1(λλ
(v)

i )vi ,

and hence

f (λv) =

m∑

i=1

(λλ
(v)

i )wi = λ

m∑

i=1

λ
(v)

i wi = λ f (v).

If u =
∑m

i=1 λ
(u)

i vi ∈ V , then v + u =
∑m

i=1(λ
(v)

i + λ
(u)

i )vi , and hence

f (v + u) =

m∑

i=1

(λ
(v)

i + λ
(u)

i )wi =

m∑

i=1

λ
(v)

i wi +

m∑

i=1

λ
(u)

i wi = f (v) + f (u).

Thus, f ∈ L(V,W).
Suppose that g ∈ L(V,W) also satisfies g(vi ) = wi for i = 1, . . . , m. Then for

every v =
∑m

i=1 λ
(v)

i vi we have

f (v) = f
( m∑

i=1

λ
(v)
i vi

)
=

m∑

i=1

λ
(v)
i f (vi ) =

m∑

i=1

λ
(v)
i wi =

m∑

i=1

λ
(v)
i g(vi ) = g

( m∑

i=1

λ
(v)
i vi

)
= g(v),

and hence f = g, so that f is indeed uniquely determined. ⊓⊔

Theorem 10.4 shows that the map f ∈ L(V,W) is uniquely determined by the

images of f at the given basis vectors of V . Note that the image vectors w1, . . . , wm ∈

W may be linearly dependent, and that W may be infinite dimensional.

In Definition 2.12 we have introduced the image and pre-image of a map. We next

recall these definitions for completeness and introduce the kernel of a linear map.

Definition 10.5 If V and W are K -vector spaces and f ∈ L(V,W), then the kernel

and the image of f are defined by

ker( f ) := {v ∈ V | f (v) = 0}, im( f ) := { f (v) | v ∈ V}.

For w ∈ W the pre-image of w in the space V is defined by

f −1(w) := f −1({w}) = {v ∈ V | f (v) = w}.

The kernel of a linear map is sometimes called the null space (or nullspace) of

the map, and some authors use the notation null( f ) instead of ker( f ).
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Note that the pre-image f −1(w) is a set, and that f −1 here does not mean the

inverse map of f (cp. Definition 2.12). In particular, we have f −1(0) = ker( f ), and

if w /∈ im( f ), then f −1(w) = Ø,

Example 10.6 For A ∈ K n,m and the corresponding map A ∈ L(K m,1, K n,1) from

(1) in Example 10.2 we have

ker(A) = {x ∈ K m,1 | Ax = 0} and im(A) = {Ax | x ∈ K m,1}.

Note that ker(A) = L (A, 0) (cp. Definition 6.1). Let a j ∈ K n,1 denote the j th

column of A, j = 1, . . . , m. For x = [x1, . . . , xm]T ∈ K m,1 we then can write

Ax =

m∑

j=1

x j a j .

Clearly, 0 ∈ ker(A). Moreover, we see from the representation of Ax that ker(A) =

{0} if and only if the columns of A are linearly independent. The set im(A) is given

by the linear combinations of the columns of A, i.e., im(A) = span{a1, . . . , am}.

Lemma 10.7 If V and W are K -vector spaces, then for every f ∈ L(V,W) the

following assertions hold:

(1) f (0) = 0 and f (−v) = − f (v) for all v ∈ V .

(2) If f is an isomorphism, then f −1 ∈ L(W,V).

(3) ker( f ) is a subspace of V and im( f ) is a subspace of W .

(4) f is surjective if and only if im( f ) = W .

(5) f is injective if and only if ker( f ) = {0}.

(6) If f is injective and if v1, . . . , vm ∈ V are linearly independent, then f (v1), . . . ,

f (vm) ∈ W are linearly independent.

(7) If v1, . . . , vm ∈ V are linearly dependent, then f (v1), . . . , f (vm) ∈ W are lin-

early dependent, or, equivalently, if f (v1), . . . , f (vm) ∈ W are linearly inde-

pendent, then v1, . . . , vm ∈ V are linearly independent.

(8) If w ∈ im( f ) and if u ∈ f −1(w) is arbitrary, then

f −1(w) = u + ker( f ) := {u + v | v ∈ ker( f )}.

Proof

(1) We have f (0V) = f (0K · 0V) = 0K · f (0V) = 0V as well as f (v) + f (−v) =

f (v + (−v)) = f (0) = 0 for all v ∈ V .

(2) The existence of the inverse map f −1 : W → V is guaranteed by Theorem 2.20,

so we just have to show that f −1 is linear. If w1, w2 ∈ W , then there exist

uniquely determined v1, v2 ∈ V with w1 = f (v1) and w2 = f (v2). Hence,

f −1(w1 + w2) = f −1( f (v1) + f (v2)) = f −1( f (v1 + v2)) = v1 + v2

= f −1(w1) + f −1(w2).
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Moreover, for every λ ∈ K we have

f −1(λw1) = f −1(λ f (v1)) = f −1( f (λv1)) = λv1 = λ f −1(w1).

(3) and (4) are obvious from the corresponding definitions.

(5) Let f be injective and v ∈ ker( f ), i.e., f (v) = 0. From (1) we know that

f (0) = 0. Since f (v) = f (0), the injectivity of f yields v = 0. Suppose now

that ker( f ) = {0} and let u, v ∈ V with f (u) = f (v). Then f (u − v) = 0, i.e.,

u − v ∈ ker( f ), which implies u − v = 0, i.e., u = v.

(6) Let
∑m

i=1 λi f (vi ) = 0. The linearity of f yields

f
( m∑

i=1

λivi

)
= 0, i.e.,

m∑

i=1

λivi ∈ ker( f ).

Since f is injective, we have
∑m

i=1 λivi = 0 by (5), and hence λ1 = · · · =

λm = 0 due to the linear independence of v1, . . . , vm . Thus, f (v1), . . . , f (vm)

are linearly independent.

(7) If v1, . . . , vm are linearly dependent, then
∑m

i=1 λivi = 0 for some λ1, . . . ,λm ∈

K that are not all equal to zero. Applying f on both sides and using the linearity

yields
∑m

i=1 λi f (vi ) = 0, hence f (v1), . . . , f (vm) are linearly dependent.

(8) Let w ∈ im( f ) and u ∈ f −1(w).

If v ∈ f −1(w), then f (v) = f (u), and thus f (v − u) = 0, i.e., v − u ∈ ker( f )

or v ∈ u + ker( f ). This shows that f −1(w) ⊆ u + ker( f ).

If, on the other hand, v ∈ u +ker( f ), then f (v) = f (u) = w, i.e., v ∈ f −1(w).

This shows that u + ker( f ) ⊆ f −1(w). ⊓⊔

Example 10.8 Consider a matrix A ∈ K n,m and the corresponding map A ∈

L(K m,1, K n,1) from (1) in Example 10.2. For a given b ∈ K n,1 we have A−1(b) =

L (A, b). If b /∈ im(A), then L (A, b) = Ø (case (1) in Corollary 6.6). Now suppose

that b ∈ im(A) and let x̂ ∈ L (A, b) be arbitrary. Then (8) in Lemma 10.7 yields

L (A, b) = x̂ + ker(A),

which is the assertion of Lemma 6.2. If ker(A) = {0}, i.e., the columns of A are

linearly independent, then |L (A, b)| = 1 (case (2) in Corollary 6.6). If ker(A) �= {0},

i.e., the columns of A are linearly dependent, then |L (A, b)| > 1 (case (3) in

Corollary 6.6). If {w1, . . . , wℓ} is a basis of ker(A), then

L (A, b) =
{

x̂ +

ℓ∑

i=1

λiwi

∣∣λ1, . . . ,λℓ ∈ K
}
.

Thus, the solutions of Ax = b depend of ℓ ≤ m parameters.
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The following result, which gives an important dimension formula for linear maps,

is also known as the rank-nullity theorem: The dimension of the image of f is equal to

the rank of a matrix associated with f (cp. Theorem 10.22 below), and the dimension

of the kernel (or null space) of f is sometimes called the nullity1 of f .

Theorem 10.9 Let V and W be K -vector spaces and let V be finite dimensional.

Then for every f ∈ L(V,W) we have the dimension formula

dim(V) = dim(im( f )) + dim(ker( f )).

Proof Let v1, . . . , vn ∈ V . If f (v1), . . . , f (vn) ∈ W are linearly independent,

then by (7) in Lemma 10.7 also v1, . . . , vn are linearly independent, and thus

dim(im( f )) ≤ dim(V). Since ker( f ) ⊆ V , we have dim(ker( f )) ≤ dim(V), so

that im( f ) and ker( f ) are both finite dimensional.

Let {w1, . . . , wr } and {v1, . . . , vk} be bases of im( f ) and ker( f ), respectively, and

let u1 ∈ f −1(w1), . . . , ur ∈ f −1(wr ). We will show that {u1, . . . , ur , v1, . . . , vk} is

a basis of V , which then implies the assertion.

If v ∈ V , then by Lemma 9.22 there exist (unique) coordinates µ1, . . . ,µr ∈

K with f (v) =
∑r

i=1 µiwi . Let ṽ :=
∑r

i=1 µi ui , then f (̃v) = f (v), and hence

v − ṽ ∈ ker( f ), which gives v − ṽ =
∑k

i=1 λivi for some (unique) coordinates

λ1, . . . ,λk ∈ K . Therefore,

v = ṽ +

k∑

i=1

λivi =

r∑

i=1

µi ui +

k∑

i=1

λivi ,

and thus v ∈ span{u1, . . . , ur , v1, . . . , vk}. Since {u1, . . . , ur , v1, . . . , vk} ⊂ V , we

have

V = span{u1, . . . , ur , v1, . . . , vk},

and it remains to show that u1, . . . , ur , v1, . . . , vk are linearly independent. If

r∑

i=1

αi ui +

k∑

i=1

βivi = 0,

then

0 = f (0) = f

(
r∑

i=1

αi ui +

k∑

i=1

βivi

)
=

r∑

i=1

αi f (ui ) =

r∑

i=1

αiwi

and thus α1 = · · · = αr = 0, because w1, . . . , wr are linearly independent. Finally,

the linear independence of v1, . . . , vk implies that β1 = · · · = βk = 0. ⊓⊔

1This term was introduced in 1884 by James Joseph Sylvester (1814–1897).
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Example 10.10

(1) For the linear map

f : Q3,1 → Q2,1,

⎡
⎣

α1

α2

α3

⎤
⎦ �→

[
1 0 1

1 0 1

]⎡
⎣

α1

α2

α3

⎤
⎦ =

[
α1 + α3

α1 + α3

]
,

we have

im( f ) =

{[
α

α

] ∣∣∣∣ α ∈ Q

}
, ker( f ) =

⎧
⎨
⎩

⎡
⎣

α1

α2

−α1

⎤
⎦

∣∣∣∣∣∣
α1,α2 ∈ Q

⎫
⎬
⎭ .

Hence dim(im( f )) = 1 and dim(ker( f )) = 2, so that indeed dim(im( f )) +

dim(ker( f )) = dim(Q3,1).

(2) If A ∈ K n,m and A ∈ L(K m,1, K n,1) are as in (1) in Example 10.2, then

m = dim(K m,1) = dim(ker(A)) + dim(im(A)).

Thus, dim(im(A)) = m if and only if dim(ker(A)) = 0. This holds if and only if

ker(A) = {0}, i.e., if and only if the columns of A are linearly independent (cp.

Example 10.6). If, on the other hand, dim(im(A)) < m, then dim(ker(A)) =

m − dim(im(A)) > 0, and thus ker(A) �= {0}. In this case the columns of A

are linearly dependent, since there exists an x ∈ K m,1 \ {0} with Ax = 0.

Corollary 10.11 If V and W are K -vector spaces with dim(V) = dim(W) ∈ N

and if f ∈ L(V,W), then the following statements are equivalent:

(1) f is injective.

(2) f is surjective.

(3) f is bijective.

Proof If (3) holds, then (1) and (2) hold by definition. We now show that (3) is

implied by (1) as well as by (2).

If f is injective, then ker( f ) = {0} (cp. (5) in Lemma 10.7) and the dimension

formula of Theorem 10.9 yields dim(W) = dim(V) = dim(im( f )). Thus, im( f ) =

W (cp. Lemma 9.27), so that f is also surjective.

If f is surjective, i.e., im( f ) = W , then the dimension formula and dim(W) =

dim(V) yield

dim(ker( f )) = dim(V) − dim(im( f )) = dim(W) − dim(im( f )) = 0.

Thus, ker( f ) = {0}, so that f is also injective. ⊓⊔

Using Theorem 10.9 we can also characterize when two finite dimensional vector

spaces are isomorphic.
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Corollary 10.12 Two finite dimensional K -vector spaces V and W are isomorphic

if and only if dim(V) = dim(W).

Proof If V ∼= W , then there exists a bijective map f ∈ L(V,W). By (4) and (5) in

Lemma 10.7 we have im( f ) = W and ker( f ) = {0}, and the dimension formula of

Theorem 10.9 yields

dim(V) = dim(im( f )) + dim(ker( f )) = dim(W) + dim({0}) = dim(W).

Let now dim(V) = dim(W). We need to show that there exists a bijective f ∈

L(V,W). Let {v1, . . . , vn} and {w1, . . . , wn} be bases of V and W . By Theorem 10.4

there exists a unique f ∈ L(V,W) with f (vi ) = wi , i = 1, . . . , n. If v = λ1v1 +

. . . + λnvn ∈ ker( f ), then

0 = f (v) = f (λ1v1 + . . . + λnvn) = λ1 f (v1) + . . . + λn f (vn)

= λ1w1 + . . . + λnwn.

Since w1, . . . , wn are linearly independent, we have λ1 = · · · = λn = 0, hence v = 0

and ker( f ) = {0}. Thus, f is injective. Moreover, the dimension formula yields

dim(V) = dim(im( f )) = dim(W) and, therefore, im( f ) = W (cp. Lemma 9.27),

so that f is also surjective. ⊓⊔

Example 10.13

(1) The vector spaces K n,m and K m,n both have the dimension n ·m and are therefore

isomorphic. An isomorphism is given by the linear map A �→ AT .

(2) The R-vector spaces R1,2 and C = {x + iy | x, y ∈ R} both have the dimen-

sion 2 and are therefore isomorphic. An isomorphism is given by the linear map

[x, y] �→ x + iy.

(3) The vector spaces Q[t]≤2 and Q1,3 both have dimension 3 and are therefore

isomorphic. An isomorphism is given by the linear map α2t2 + α1t + α0 �→

[α2,α1,α0].

Although Mathematics is a formal and exact science, where smallest details mat-

ter, one sometimes uses an “abuse of notation” in order to simplify the presentation.

We have used this for example in the inductive existence proof of the echelon form

in Theorem 5.2. There we kept, for simplicity, the indices of the larger matrix A(1) in

the smaller matrix A(2) = [a
(2)

i j ]. The matrix A(2) had, of course, an entry in position

(1, 1), but this entry was denoted by a
(2)
22 rather than a

(2)
11 . Keeping the indices in the

induction made the argument much less technical, while the proof itself remained

formally correct.

An abuse of notation should always be justified and should not be confused with

a “misuse” of notation. In the field of Linear Algebra a justification is often given

by an isomorphism that identifies vector spaces with each other. For example, the

constant polynomials over a field K , i.e., polynomials of the form αt0 with α ∈ K ,

are often written simply as α, i.e., as elements of the field itself. This is justified since



10.1 Basic Definitions and Properties of Linear Maps 143

K [t]≤0 and K are isomorphic K -vector spaces (of dimension 1). We already used

this identification above. Similarly, we have identified the vector space V with V1 and

written just v instead of (v) in Sect. 9.3. Another common example in the literature

is the notation K n that in our text denotes the set of n-tuples with elements from

K , but which is often used for the (matrix) sets of the “column vectors” K n,1 or the

“row vectors” K 1,n . The actual meaning then should be clear from the context. An

attentive reader can significantly benefit from the simplifications due to such abuses

of notation.

10.2 Linear Maps and Matrices

Let V and W be finite dimensional K -vector spaces with bases {v1, . . . , vm} and

{w1, . . . , wn}, respectively, and let f ∈ L(V,W). By Lemma 9.22, for every f (v j ) ∈

W , j = 1, . . . , m, there exist (unique) coordinates ai j ∈ K , i = 1, . . . , n, with

f (v j ) = a1 jw1 + . . . + anjwn.

We define A := [ai j ] ∈ K n,m and write, similarly to (9.3), the m equations for the

vectors f (v j ) as

( f (v1), . . . , f (vm)) = (w1, . . . , wn)A. (10.1)

The matrix A is determined uniquely by f and the given bases of V and W .

If v = λ1v1 + . . . + λmvm ∈ V , then

f (v) = f (λ1v1 + . . . + λmvm) = λ1 f (v1) + . . . + λm f (vm)

= ( f (v1), . . . , f (vm))

⎡
⎣

λ1
...

λm

⎤
⎦

= ((w1, . . . , wn) A)

⎡
⎣

λ1
...

λm

⎤
⎦

= (w1, . . . , wn)

⎛
⎝A

⎡
⎣

λ1
...

λm

⎤
⎦
⎞
⎠ .

The coordinates of f (v) with respect to the given basis of W are therefore given by

A

⎡
⎣

λ1
...

λm

⎤
⎦ .
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Thus, we can compute the coordinates of f (v) simply by multiplying the coordinates

of v with A. This motivates the following definition.

Definition 10.14 The uniquely determined matrix in (10.1) is called the matrix rep-

resentation of f ∈ L(V,W) with respect to the bases B1 = {v1, . . . , vm} of V and

B2 = {w1, . . . , wn} of W . We denote this matrix by [ f ]B1,B2
.

The construction of the matrix representation and Definition 10.14 can be consis-

tently extended to the case that (at least) one of the K -vector spaces has dimension

zero. If, for instance, m = dim(V) ∈ N and W = {0}, then f (v j ) = 0 for every

basis vector v j of V . Thus, every vector f (v j ) is an empty linear combination of

vector of the basis Ø of W . The matrix representation of f then is an empty matrix

of size 0×m. If also V = {0}, then the matrix representation of f is an empty matrix

of size 0 × 0.

There are many different notations for the matrix representation of linear maps in

the literature. The notation should reflect that the matrix depends on the linear map

f and the given bases B1 and B2. Examples of alternative notations are [ f ]
B1

B2
and

M( f )B1,B2
(where “M” means “matrix”).

An important special case is obtained for V = W , hence in particular m = n, and

f = IdV , the identity on V . We then obtain

(v1, . . . , vn) = (w1, . . . , wn)[IdV ]B1,B2
, (10.2)

so that [IdV ]B1,B2
is exactly the matrix P in (9.4), i.e., the coordinate transformation

matrix in Theorem 9.25. On the other hand,

(w1, . . . , wn) = (v1, . . . , vn) [IdV ]B2,B1
,

and thus

(
[IdV ]B1,B2

)−1
= [IdV ]B2,B1

.

Example 10.15

(1) Consider the vector space Q[t]≤1 with the bases B1 = {1, t} and B2 = {t +

1, t − 1}. Then the linear map

f : Q[t]≤1 → Q[t]≤1, α1t + α0 �→ 2α1t + α0,

has the matrix representations

[ f ]B1,B1
=

[
1 0

0 2

]
, [ f ]B1,B2

=

[
1
2

1

− 1
2

1

]
, [ f ]B2,B2

=

[
3
2

1
2

1
2

3
2

]
.

(2) For the vector space K [t]≤n with the basis B = {t0, t1, . . . , tn} and the linear

map
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f : K [t]≤n → K [t]≤n,

αntn + αn−1tn−1 + . . . + α1t + α0 �→ α0tn + α1tn−1 + . . . + αn−1t + αn,

we have f (t j ) = tn− j for j = 0, 1, . . . , n, so that

[ f ]B,B =

⎡
⎣

1

. .
.

1

⎤
⎦ ∈ K n+1,n+1.

Thus, [ f ]B,B is a permutation matrix.

Theorem 10.16 Let V and W be finite dimensional K -vector spaces with bases

B1 = {v1, . . . , vm} and B2 = {w1, . . . , wn}, respectively. Then the map

L(V,W) → K n,m, f �→ [ f ]B1,B2
,

is an isomorphism. Hence L(V,W) ∼= K n,m and dim(L(V,W)) = dim(K n,m) =

n · m.

Proof In this proof we denote the map f �→ [ f ]B1,B2
by mat, i.e., mat( f ) =

[ f ]B1,B2
. We first show that this map is linear. Let f, g ∈ L(V,W), mat( f ) = [ fi j ]

and mat(g) = [gi j ]. For j = 1, . . . , m we have

( f + g)(v j ) = f (v j ) + g(v j ) =

n∑

i=1

fi jwi +

n∑

i=1

gi jwi =

n∑

i=1

( fi j + gi j )wi ,

and thus mat( f + g) = [ fi j + gi j ] = [ fi j ] + [gi j ] = mat( f ) + mat(g). For λ ∈ K

and j = 1, . . . , m we have

(λ f )(v j ) = λ f (v j ) = λ

n∑

i=1

fi jwi =

n∑

i=1

(λ fi j )wi ,

and thus mat(λ f ) = [λ fi j ] = λ [ fi j ] = λ mat( f ).

It remains to show that mat is bijective. If f ∈ ker(mat), i.e., mat( f ) = 0 ∈ K n,m ,

then f (v j ) = 0 for j = 1, . . . , m. Thus, f (v) = 0 for all v ∈ V , so that f = 0

(the zero map) and mat is injective (cp. (5) in Lemma 10.7). If, on the other hand,

A = [ai j ] ∈ K n,m is arbitrary, we define the linear map f : V → W via f (v j ) :=∑n
i=1 ai jwi , j = 1, . . . , m (cp. the proof of Theorem 10.4). Then mat( f ) = A and

hence mat is also surjective (cp. (4) in Lemma 10.7).

Corollary 10.12 now shows that dim(L(V,W)) = dim(K n,m) = n · m (cp. also

Example 9.20). ⊓⊔
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Theorem 10.16 shows, in particular, that f, g ∈ L(V,W) satisfy f = g if and

only if [ f ]B1,B2
= [g]B1,B2

holds for given bases B1 of V and B2 of W . Thus, we can

prove the equality of linear maps via the equality of their matrix representations.

We now consider the map from the elements of a finite dimensional vector space

to their coordinates with respect to a given basis.

Lemma 10.17 If B = {v1, . . . , vn} is a basis of a K -vector space V , then the map

�B : V → K n,1, v = λ1v1 + . . . + λnvn �→ �B(v) :=

⎡
⎣

λ1
...

λn

⎤
⎦ ,

is an isomorphism, called the coordinate map of V with respect to the basis B.

Proof The linearity of �B is clear. Moreover, we obviously have �B(V) = K n,1,

i.e., �B is surjective. If v ∈ ker(�B), i.e., λ1 = · · · = λn = 0, then v = 0, so that

ker(�B) = {0} and �B is also injective (cp. (5) in Lemma 10.7). ⊓⊔

Example 10.18 In the vector space K [t]≤n with the basis B = {t0, t1, . . . , tn} we

have

�B(αntn + αn−1tn−1 + . . . + α1t + α0) =

⎡
⎢⎢⎣

α0

α1
...

αn

⎤
⎥⎥⎦ ∈ K n+1.

On the other hand, the basis B̃ = {tn, tn−1, . . . , t0} yields

�B̃(αntn + αn−1tn−1 + . . . + α1t + α0) =

⎡
⎢⎢⎣

αn

αn−1
...

α0

⎤
⎥⎥⎦ ∈ K n+1.

If B1 and B2 are bases of the finite dimensional vector spaces V and W , respec-

tively, then we can illustrate the meaning and the construction of the matrix repre-

sentation [ f ]B1,B2
of f ∈ L(V,W) in the following commutative diagram:

V
f ��

�B1
��

W

�B2
��

K m,1
[ f ]B1,B2�� K n,1

We see that different compositions of maps yield the same result. In particular, we

have

f = �−1
B2

◦ [ f ]B1,B2
◦ �B1

, (10.3)
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where the matrix [ f ]B1,B2
∈ K n,m is interpreted as a linear map from K m,1 to K n,1,

and we use that the coordinate map �B2
is bijective and hence invertible. In the same

way we obtain

�B2
◦ f = [ f ]B1,B2

◦ �B1
,

i.e.,

�B2
( f (v)) = [ f ]B1,B2

�B1
(v) for all v ∈ V . (10.4)

In words, the coordinates of f (v) with respect to the basis B2 of W are given by the

product of [ f ]B1,B2
and the coordinates of v with respect to the basis B1 of V .

We next show that the consecutive application of linear maps corresponds to the

multiplication of their matrix representations.

Theorem 10.19 Let V , W and X be K -vector spaces. If f ∈ L(V,W) and g ∈

L(W,X ), then g ◦ f ∈ L(V,X ). Moreover, if V , W and X are finite dimensional

with respective bases B1, B2 and B3, then

[g ◦ f ]B1,B3
= [g]B2,B3

[ f ]B1,B2
.

Proof Let h := g ◦ f . We show first that h ∈ L(V,X ). For u, v ∈ V and λ,µ ∈ K

we have

h(λu + µv) = g( f (λu + µv)) = g(λ f (u) + µ f (v))

= λg( f (u)) + µg( f (v)) = λh(u) + µh(v).

Now let B1 = {v1, . . . , vm}, B2 = {w1, . . . , wn} and B3 = {x1, . . . , xs}. If

[ f ]B1,B2
= [ fi j ] and [g]B2,B3

= [gi j ], then for j = 1, . . . , m we have

h(v j ) = g( f (v j )) = g

(
n∑

k=1

fk jwk

)
=

n∑

k=1

fk jg(wk) =

n∑

k=1

fk j

s∑

i=1

gik xi

=

s∑

i=1

(
n∑

k=1

fk jgik

)
xi =

s∑

i=1

(
n∑

k=1

gik fk j

)

︸ ︷︷ ︸
=: hi j

xi .

Thus, [h]B1,B3
= [hi j ] = [gi j ] [ fi j ] = [g]B2,B3

[ f ]B1,B2
. ⊓⊔

Using this theorem we can study how a change of the bases affects the matrix

representation of a linear map.
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Corollary 10.20 Let V and W be finite dimensional K -vector spaces with bases

B1, B̃1 of V and B2, B̃2 of W . If f ∈ L(V,W), then

[ f ]B1,B2
= [IdW ]B̃2,B2

[ f ]B̃1,B̃2
[IdV ]B1,B̃1

. (10.5)

In particular, the matrices [ f ]B1,B2
and [ f ]B̃1,B̃2

are equivalent.

Proof Applying Theorem 10.19 twice to the identity f = IdW ◦ f ◦ IdV yields

[ f ]B1,B2
= [(IdW ◦ f ) ◦ IdV ]B1,B2

= [IdW ◦ f ]B̃1,B2
[IdV ]B1,B̃1

= [IdW ]B̃2,B2
[ f ]B̃1,B̃2

[IdV ]B1,B̃1
.

The matrices [ f ]B1,B2
and [ f ]B̃1,B̃2

are equivalent, since both [IdW ]B̃2,B2
and [IdV ]B1,B̃1

are invertible. ⊓⊔

If V = W , B1 = B2, and B̃1 = B̃2, then (10.5) becomes

[ f ]B1,B1
= [IdV ]B̃1,B1

[ f ]B̃1,B̃1
[IdV ]B1,B̃1

= ([IdV ]B1,B̃1
)−1[ f ]B̃1,B̃1

[IdV ]B1,B̃1
.

Thus, the matrix representations [ f ]B1,B1
and [ f ]B̃1,B̃1

of the endomorphism f ∈

L(V,V) are similar (cp. Definition 8.11).

The following commutative diagram illustrates Corollary 10.20:

K m,1
[ f ]B1,B2 ��

[IdV ]B1,B̃1

��

K n,1

V
f ��

�B̃1

����������

�B1
����������

W
�B̃2

����
��

��
��

�B2
����������

K m,1
[ f ]B̃1,B̃2 �� K n,1

[IdW ]B̃2,B2

��
(10.6)

Analogously to (10.3) we have

f = �−1
B2

◦ [ f ]B1,B2
◦ �B1

= �−1

B̃2
◦ [ f ]B̃1,B̃2

◦ �B̃1
.

Example 10.21 For the following bases of the vector space Q2,2,

B1 =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}
,

B2 =

{[
1 0

0 1

]
,

[
1 0

0 0

]
,

[
1 1

0 0

]
,

[
0 0

1 0

]}
,
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we have the coordinate transformation matrices

[IdV ]B1,B2
=

⎡
⎢⎢⎣

0 0 0 1

1 −1 0 −1

0 1 0 0

0 0 1 0

⎤
⎥⎥⎦

and

[IdV ]B2,B1
= ([IdV ]B1,B2

)−1 =

⎡
⎢⎢⎣

1 1 1 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤
⎥⎥⎦ .

The coordinate maps are

�B1

([
a11 a12

a21 a22

])
=

⎡
⎢⎢⎣

a11

a12

a21

a22

⎤
⎥⎥⎦ , �B2

([
a11 a12

a21 a22

])
=

⎡
⎢⎢⎣

a22

a11 − a12 − a22

a12

a21

⎤
⎥⎥⎦ ,

and one can easily verify that

�B2

([
a11 a12

a21 a22

])
= ([IdV ]B1,B2

◦ �B1
)

([
a11 a12

a21 a22

])
.

Theorem 10.22 Let V and W be K -vector spaces with dim(V) = m and dim(W) =

n, respectively. Then there exist bases B1 of V and B2 of W such that

[ f ]B1,B2
=

[
Ir 0

0 0

]
∈ K n,m,

where 0 ≤ r = dim(im( f )) ≤ min{n, m}. Furthermore, r = rank(F), where F is

the matrix representation of f with respect to arbitrary bases of V and W , and we

define rank( f ) := rank(F) = dim(im( f )).

Proof Let B̃1 = {̃v1, . . . , ṽm} and B̃2 = {w̃1, . . . , w̃n} be two arbitrary bases of V

and W , respectively. Let r := rank([ f ]B̃1,B̃2
). Then by Theorem 5.11 there exist

invertible matrices Q ∈ K n,n and Z ∈ K m,m with

Q [ f ]B̃1,B̃2
Z =

[
Ir 0

0 0

]
, (10.7)
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where r = rank([ f ]B̃1,B̃2
) ≤ min{n, m}. Let us introduce two new bases B1 =

{v1, . . . , vm} and B2 = {w1, . . . , wn} of V and W via

(v1, . . . , vm) := (̃v1, . . . , ṽm)Z ,

(w1, . . . , wn) := (w̃1, . . . , w̃n)Q−1, hence (w̃1, . . . , w̃n) = (w1, . . . , wn)Q.

Then, by construction,

Z = [IdV ]B1,B̃1
, Q = [IdW ]B̃2,B2

.

From (10.7) and Corollary 10.20 we obtain

[
Ir 0

0 0

]
= [IdW ]B̃2,B2

[ f ]B̃1,B̃2
[IdV ]B1,B̃1

= [ f ]B1,B2
.

We thus have found bases B1 and B2 that yield the desired matrix representation

of f . Every other choice of bases leads, by Corollary 10.20, to an equivalent matrix

which therefore also has rank r . It remains to show that r = dim(im( f )).

The structure of the matrix [ f ]B1,B2
shows that

f (v j ) =

{
w j , 1 ≤ j ≤ r,

0, r + 1 ≤ j ≤ m.

Therefore, vr+1, . . . , vm ∈ ker( f ), which implies that dim(ker( f )) ≥ m − r . On the

other hand, w1, . . . , w j ∈ im( f ) and thus dim(im( f )) ≥ r . Theorem 10.9 yields

dim(V) = m = dim(im( f )) + dim(ker( f )),

and hence dim(ker( f )) = m − r and dim(im( f )) = r . ⊓⊔

Example 10.23 For A ∈ K n,m and the corresponding map A ∈ L(K m,1, K n,1) from

(1) in Examples 10.2 and 10.6, we have im(A) = span{a1, . . . , am}. Thus, rank(A)

is equal to the number of linearly independent columns of A. Since rank(A) =

rank(AT ) (cp. (4) in Theorem 5.11), this number is equal to the number of linearly

independent rows of A.

Theorem 10.22 is a first example of a general strategy that we will use several

times in the following chapters:

By choosing appropriate bases, the matrix representation should reveal a desired

information about a linear map in an efficient way.

In Theorem 10.22 this information is the rank of the linear map f , i.e., the dimen-

sion of its image.

The dimension formula for linear maps can be generalized to the composition of

maps as follows.
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Theorem 10.24 If V , W and X are finite dimensional K -vector spaces,

f ∈ L(V,W) and g ∈ L(W,X ), then

dim(im(g ◦ f )) = dim(im( f )) − dim(im( f ) ∩ ker(g)).

Proof Let g̃ := g|im( f ) be the restriction of g to the image of f , i.e., the map

g̃ ∈ L(im( f ),X ), v �→ g(v).

Applying Theorem 10.9 to g̃ yields

dim(im( f )) = dim(im(̃g)) + dim(ker(̃g)).

Now

im(̃g) = {g(v) ∈ X | v ∈ im( f )} = im(g ◦ f )

and

ker(̃g) = {v ∈ im( f ) | g̃(v) = 0} = im( f ) ∩ ker(g),

imply the assertion. ⊓⊔

Note that Theorem 10.22 with V = W , f = IdV , and g ∈ L(V,X ) gives

dim(im(g)) = dim(V) − dim(ker(g), which is equivalent to Theorem 10.9.

If we interpret matrices A ∈ K n,m and B ∈ K s,n as linear maps, then Theo-

rem 10.24 implies the equation

rank(B A) = rank(A) − dim(im(A) ∩ ker(B)).

For the special case K = R and B = AT we have the following result.

Corollary 10.25 If A ∈ Rn,m , then rank(AT A) = rank(A).

Proof Let w = [ω1, . . . ,ωn]
T ∈ im(A) ∩ ker(AT ). Then w = Ay for a vector

y ∈ Rm,1. Multiplying this equation from the left by AT , and using that w ∈ ker(AT ),

we obtain 0 = AT w = AT Ay, which implies

0 = yT AT Ay = wT w =

n∑

j=1

ω2
j .

Since this holds only for w = 0, we have im(A) ∩ ker(AT ) = {0}. ⊓⊔
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Exercises

(In the following exercises K is an arbitrary field.)

10.1 Consider the linear map on R3,1 given by the matrix A =

⎡
⎣

2 0 1

2 1 0

4 1 1

⎤
⎦ ∈ R3,3.

Determine ker(A), dim(ker(A)) and dim(im(A)).

10.2 Construct a map f ∈ L(V,W) such that for linearly independent vectors

v1, . . . , vr ∈ V the images f (v1), . . . , f (vr ) ∈ W are linearly dependent.
10.3 The map

f : R[t]≤n → R[t]≤n−1,

αn tn + αn−1tn−1 + . . . + α1t + α0 �→ nαn tn−1 + (n − 1)αn−1tn−2 + . . . + 2α2t + α1,

is called the derivative of the polynomial p ∈ R[t]≤n with respect to the

variable t . Show that f is linear and determine ker( f ) and im( f ).

10.4 For the bases B1 =

⎧
⎨
⎩

⎡
⎣

1

0

0

⎤
⎦ ,

⎡
⎣

0

1

0

⎤
⎦ ,

⎡
⎣

0

0

1

⎤
⎦
⎫
⎬
⎭ of R3,1 and B2 =

{[
1

0

]
,

[
0

1

]}

of R2,1, let f ∈ L(R3,1, R2,1) have the matrix representation [ f ]B1,B2
=[

0 2 3

1 −2 0

]
.

(a) Determine [ f ]B̃1,B̃2
for the bases B̃1 =

⎧
⎨
⎩

⎡
⎣

2

1

−1

⎤
⎦ ,

⎡
⎣

1

0

3

⎤
⎦ ,

⎡
⎣

−1

2

1

⎤
⎦
⎫
⎬
⎭ of

R3,1 and B̃2 =

{[
1

1

]
,

[
1

−1

]}
of R2,1.

(b) Determine the coordinates of f ([4, 1, 3]T ) with respect to the basis B̃2.

10.5 Construct a map f ∈ L(K [t], K [t]) with the following properties:

(1) f (pq) = ( f (p))q + p( f (q)) for all p, q ∈ K [t].

(2) f (t) = 1.

Is this map uniquely determined by these properties or are there further maps

with the same properties?

10.6 Let α ∈ K and A ∈ K n,n . Show that the maps

K [t] → K , p �→ p(α), and K [t] → K m,m, p �→ p(A),

are linear and justify the name evaluation homomorphism for this map.

10.7 Let S ∈ GLn(K ). Show that the map f : K n,n → K n,n, A �→ S−1 AS is an

isomorphism.
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10.8 Let K be a field with 1 + 1 �= 0 and let A ∈ K n,n . Consider the map

f : K n,1 → K , x �→ xT Ax .

Is f a linear map? Show that f = 0 if and only if A + AT = 0.

10.9 Let V be a Q-vector space with the basis B1 = {v1, . . . , vn} and let f ∈

L(V,V) be defined by

f (v j ) =

{
v j + v j+1, j = 1, . . . , n − 1,

v1 + vn, j = n.

(a) Determine [ f ]B1,B1
.

(b) Let B2 = {w1, . . . , wn} with w j = jvn+1− j , j = 1, . . . , n. Show that

B2 is a basis of V . Determine the coordinate transformation matrices

[IdV ]B1,B2
and [IdV ]B2,B1

, as well as the matrix representations [ f ]B1,B2

and [ f ]B2,B2
.

10.10 Can you extend Theorem 10.19 consistently to the case W = {0}? What are

the properties of the matrices [g ◦ f ]B1,B3
, [g]B2,B3

and [ f ]B1,B2
?

10.11 Consider the map

f : R[t]≤n → R[t]≤n+1,

αntn + αn−1tn−1 + . . . + α1t + α0 �→
1

n + 1
αntn+1

+
1

n
αn−1tn + . . . +

1

2
α1t2 + α0t.

(a) Show that f is linear. Determine ker( f ) and im( f ).

(b) Choose bases B1, B2 in the two vector spaces and verify that for your

choice rank([ f ]B1,B2
) = dim(im( f )) holds.

10.12 Letα1, . . . ,αn ∈ R, n ≥ 2, be pairwise distinct numbers and let n polynomials

in R[t] be defined by

p j =

n∏

k=1
k �= j

(
1

α j − αk

(t − αk)

)
, j = 1, . . . , n.

(a) Show that the set B ={p1, . . . , pn} is a basis of R[t]≤n−1. (This basis is

called the Lagrange basis2 of R[t]≤n−1.)

(b) Show that the corresponding coordinate map is given by

2Joseph-Louis de Lagrange (1736–1813).
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�B : R[t]≤n−1 → Rn,1, p �→

⎡
⎣

p(α1)
...

p(αn)

⎤
⎦ .

(Hint: You can use Exercise 7.8 (b).)

10.13 Verify different paths in the commutative diagram (10.6) for the vector spaces

and bases of Example 10.21 and linear map f : Q2,2 → Q2,2, A �→ F A with

F =

[
1 1

−1 1

]
.



Chapter 11

Linear Forms and Bilinear Forms

In this chapter we study different classes of maps between one or two K -vector spaces

and the one dimensional K -vector space defined by the field K itself. These maps

play an important role in many areas of Mathematics, including Analysis, Functional

Analysis and the solution of differential equations. They will also be essential for

the further developments in this book: Using bilinear and sesquilinear forms, which

are introduced in this chapter, we will define and study Euclidean and unitary vector

spaces in Chap. 12. Linear forms and dual spaces will be used in the existence proof

of the Jordan canonical form in Chap. 16.

11.1 Linear Forms and Dual Spaces

We start with the set of linear maps from a K -vector space to the vector space K .

Definition 11.1 If V is a K -vector space, then f ∈ L(V, K ) is called a linear form

on V . The K -vector space V∗ := L(V, K ) is called the dual space of V .

A linear form is sometimes called a linear functional or a one-form, which stresses

that it (linearly) maps into a one dimensional vector space.

Example 11.2 If V is the R-vector space of the continuous and real valued functions

on the real interval [α,β] and if γ ∈ [α,β], then the two maps

f1 : V → R, g �→ g(γ),

f2 : V → R, g �→

∫ β

α

g(x)dx,

are linear forms on V .
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If dim(V) = n, then dim(V∗) = n by Theorem 10.16. Let B1 = {v1, . . . , vn} be

a basis of V and let B2 = {1} be a basis of the K -vector space K . If f ∈ V∗, then

f (vi ) = αi for some αi ∈ K , i = 1, . . . , n, and

[ f ]B1,B2
= [α1, . . . ,αn] ∈ K 1,n.

For an element v =
n∑

i=1

λivi ∈ V we have

f (v) = f
( n∑

i=1

λivi

)
=

n∑

i=1

λi f (vi ) =

n∑

i=1

λiαi = [α1, . . . ,αn]︸ ︷︷ ︸
∈K 1,n

⎡
⎢⎣

λ1

...

λn

⎤
⎥⎦

︸ ︷︷ ︸
∈K n,1

= [ f ]B1,B2
�B1

(v),

where we have identified the isomorphic vector spaces K and K 1,1 with each other.

For a given basis of a finite dimensional vector space V we will now construct a

special, uniquely determined basis of the dual space V∗.

Theorem 11.3 If V is K -vector space with the basis B = {v1, . . . , vn}, then there

exists a unique basis B∗ =
{
v∗

1 , . . . , v
∗
n

}
of V∗ such that

v∗
i (v j ) = δi j , i, j = 1, . . . , n,

which is called the dual basis of B.

Proof By Theorem 10.4, a unique linear map from V to K can be constructed by

prescribing its images at the given basis B. Thus, for each i = 1, . . . , n, there exists

a unique map v∗
i ∈ L(V, K ) with v∗

i (v j ) = δi j , j = 1, . . . , n.

It remains to show that B∗ := {v∗
1 , . . . , v

∗
n} is a basis of V∗. If λ1, . . . ,λn ∈ K

are such that
n∑

i=1

λiv
∗
i = 0V∗ ∈ V

∗,

then

0 = 0V∗(v j ) =

n∑

i=1

λiv
∗
i (v j ) = λ j , j = 1, . . . , n.

Thus, v∗
1 , . . . , v

∗
n are linearly independent, and dim(V∗) = n implies that B∗ is a

basis of V∗ (cp. Exercise 9.6). ⊓⊔

Example 11.4 Consider V = K n,1 with the canonical basis B = {e1, . . . , en}. If{
e∗

1, . . . , e∗
n

}
is the dual basis of B, then e∗

i (e j ) = δi j , which shows that
[
e∗

i

]
B,{1}

=

eT
i ∈ K 1,n , i = 1, . . . , n.
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Definition 11.5 Let V and W be K -vector spaces with their respective dual spaces

V∗ and W∗, and let f ∈ L(V,W). Then

f ∗ : W
∗ → V

∗, h �→ f ∗(h) := h ◦ f,

is called the dual map of f .

We next derive some properties of the dual map.

Lemma 11.6 If V , W and X are K -vector spaces, then the following assertions

hold:

(1) If f ∈ L(V,W), then the dual map f ∗ is linear, hence f ∗ ∈ L(W∗,V∗).

(2) If f ∈ L(V,W) and g ∈ L(W,X ), then (g ◦ f )∗ ∈ L(X ∗,V∗) and (g ◦ f )∗ =

f ∗ ◦ g∗.

(3) If f ∈ L(V,W) is bijective, then f ∗ ∈ L(W∗,V∗) is bijective and ( f ∗)−1 =

( f −1)∗.

Proof (1) If h1, h2 ∈ W∗, λ1,λ2 ∈ K , then

f ∗(λ1h1 + λ2h2) = (λ1h1 + λ2h2) ◦ f = (λ1h1) ◦ f + (λ2h2) ◦ f

= λ1(h1 ◦ f ) + λ2(h2 ◦ f ) = λ1 f ∗(h1) + λ2 f ∗(h2).

(2) and (3) are exercises.

⊓⊔

As the following theorem shows, the concepts of the dual map and the transposed

matrix are closely related.

Theorem 11.7 Let V and W be finite dimensional K -vector spaces with bases

B1 and B2, respectively. Let B∗
1 and B∗

2 be the corresponding dual bases. If

f ∈ L(V,W), then

[ f ∗]B∗
2 ,B∗

1
= ([ f ]B1,B2

)T .

Proof Let B1 = {v1, . . . , vm}, B2 = {w1, . . . , wn}, and let B∗
1 =

{
v∗

1 , . . . , v
∗
m

}
,

B∗
2 =

{
w∗

1, . . . , w
∗
n

}
. Let [ f ]B1,B2

= [ai j ] ∈ K n,m , i.e.,

f (v j ) =

n∑

i=1

ai jwi , j = 1, . . . , m,

and [ f ∗]B∗
2 ,B∗

1
= [bi j ] ∈ K m,n , i.e.,

f ∗
(
w∗

j

)
=

m∑

i=1

bi jv
∗
i , j = 1, . . . , n.
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For every pair (k, ℓ) with 1 ≤ k ≤ n and 1 ≤ ℓ ≤ m we then have

akℓ =

n∑

i=1

aiℓw
∗
k (wi ) = w∗

k

( n∑

i=1

aiℓwi

)
= w∗

k ( f (vℓ)) = f ∗
(
w∗

k

)
(vℓ)

=
( m∑

i=1

bikv
∗
i

)
(vℓ) =

m∑

i=1

bikv
∗
i (vℓ)

= bℓk,

where we have used the definition of the dual map as well as w∗
k (wi ) = δki and

v∗
i (vℓ) = δiℓ. ⊓⊔

Because of the close relationship between the transposed matrix and the dual map,

some authors call the dual map f ∗ the transpose of the linear map f .

Applied to matrices, Lemma 11.6 and Theorem 11.7 yield the following rules

known from Chap. 4:

(AB)T = BT AT for A ∈ K n,m and B ∈ K m,ℓ, and

(A−1)T = (AT )−1 for A ∈ GLn(K ).

Example 11.8 For the two bases of R
2,1,

B1 =

{
v1 =

[
1

0

]
, v2 =

[
0

2

]}
, B2 =

{
w1 =

[
1

0

]
, w2 =

[
1

1

]}
,

the elements of the corresponding dual bases are given by

v∗
1 : R

2,1 → R,

[
α1

α2

]
�→ α1 + 0, v∗

2 : R
2,1 → R,

[
α1

α2

]
�→ 0 +

1

2
α2,

w∗
1 : R

2,1 → R,

[
α1

α2

]
�→ α1 − α2, w∗

2 : R
2,1 → R,

[
α1

α2

]
�→ 0 + α2.

The matrix representations of these maps are

[
v∗

1

]
B1,{1}

=
[
1 0

]
,

[
v∗

2

]
B1,{1}

=
[
0 1

]
,

[
w∗

1

]
B2,{1}

=
[
1 0

]
,

[
w∗

2

]
B2,{1}

=
[
0 1

]
.

For the linear map

f : R
2,1 → R

2,1,

[
α1

α2

]
�→

[
α1 + α2

3α2

]
,
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we have

[ f ]B1,B2
=

[
1 −4

0 6

]
, [ f ∗]B∗

2 ,B∗
1

=

[
1 0

−4 6

]
.

11.2 Bilinear Forms

We now consider special maps from a pair of K -vector spaces to the K -vector space

K .

Definition 11.9 Let V and W be K -vector spaces. A map β : V ×W → K is called

a bilinear form on V × W , when

(1) β(v1 + v2, w) = β(v1, w) + β(v2, w),

(2) β(v,w1 + w2) = β(v,w1) + β(v,w2),

(3) β(λv,w) = β(v,λw) = λβ(v,w),

hold for all v, v1, v2 ∈ V , w,w1, w2 ∈ W , and λ ∈ K .

A bilinear form β is called non-degenerate in the first variable, if β(v,w) = 0 for

all w ∈ W implies that v = 0. Analogously, it is called non-degenerate in the second

variable, if β(v,w) = 0 for all v ∈ V implies that w = 0. If β is non-degenerate

in both variables, then β is called non-degenerate and the spaces V,W are called a

dual pair with respect to β.

If V = W , then β is called a bilinear form on V . If additionally β(v,w) =

β(w, v) holds for all v,w ∈ V , then β is called symmetric. Otherwise, β is called

nonsymmetric.

Example 11.10

(1) If A ∈ K n,m , then

β : K m,1 × K n,1 → K , (v,w) �→ wT Av,

is a bilinear form on K m,1 × K n,1 that is non-degenerate if and only if n = m

and A ∈ GLn(K ), (cp. Exercise 11.10).

(2) The bilinear form

β : R
2,1 × R

2,1 → R, (x, y) �→ yT

[
1 1

1 1

]
x,

is degenerate in both variables: For x̂ = [1, −1]T , we have β(̂x, y) = 0 for all

y ∈ R
2,1; for ŷ = [1, −1]T we have β(x, ŷ) = 0 for all x ∈ R

2,1. The set of

all x = [x1, x2]
T ∈ R

2,1 with β(x, x) = 1 is equal to the solution set of the

quadratic equation in two variables x2
1 + 2x1x2 + x2

2 = 1, or (x1 + x2)
2 = 1, for

x1, x2 ∈ R. Geometrically, this set is given by the two straight lines x1 + x2 = 1

and x1 + x2 = −1 in the cartesian coordinate system of R
2.
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(3) If V is a K -vector space, then

β : V × V
∗ → K , (v, f ) �→ f (v),

is a bilinear form on V × V∗, since

β(v1 + v2, f ) = f (v1 + v2) = f (v1) + f (v2) = β(v1, f ) + β(v2, f ),

β(v, f1 + f2) = ( f1 + f2)(v) = f1(v) + f2(v) = β(v, f1) + β(v, f2),

β(λv, f ) = f (λv) = λ f (v) = λβ(v, f ) = (λ f )(v) = β(v,λ f ),

hold for all v, v1, v2 ∈ V , f, f1, f2 ∈ V∗ and λ ∈ K . This bilinear form is

non-degenerate and thus V,V∗ are a dual pair with respect to β (cp. Exercise

11.11 for the case dim(V) ∈ N).

Definition 11.11 Let V and W be K -vector spaces with bases B1 = {v1, . . . , vm}

and B2 = {w1, . . . , wn}, respectively. If β is a bilinear form on V × W , then

[β]B1×B2
= [bi j ] ∈ K n,m, bi j := β(v j , wi ),

is called the matrix representation of β with respect to the bases B1 and B2.

If v =
∑m

j=1 λ jv j ∈ V and w =
∑n

i=1 µiwi ∈ W , then

β(v,w) =

m∑

j=1

n∑

i=1

λ j µi β(v j , wi ) =

n∑

i=1

µi

m∑

j=1

bi j λ j =
(
�B2

(w)
)T

[β]B1×B2
�B1

(v),

where we have used the coordinate map from Lemma 10.17.

Example 11.12 If B1 =
{
e
(m)

1 , . . . , e(m)
m

}
and B2 =

{
e
(n)

1 , . . . , e(n)
n

}
are the canon-

ical bases of K m,1 and K n,1, respectively, and if β is the bilinear form from (1) in

Example 11.10 with A = [ai j ] ∈ K n,m , then [β]B1×B2
= [bi j ], where

bi j = β
(
e
(m)

j , e
(n)

i

)
=

(
e
(n)

i

)T
Ae

(m)

j = ai j ,

and hence [β]B1×B2
= A.

The following result shows that symmetric bilinear forms have symmetric matrix

representations.

Lemma 11.13 For a bilinear form β on a finite dimensional vector space V the

following statements are equivalent:

(1) β is symmetric.

(2) For every basis B of V the matrix [β]B×B is symmetric.

(3) There exists a basis B of V such that [β]B×B is symmetric.
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Proof Exercise. ⊓⊔

We will now analyze the effect of a basis change on the matrix representation of

a bilinear form.

Theorem 11.14 Let V and W be finite dimensional K -vector spaces with bases

B1, B̃1 of V and B2, B̃2 of W . If β is a bilinear form on V × W , then

[β]B1×B2
=

(
[IdW ]B2,B̃2

)T
[β]B̃1×B̃2

[IdV ]B1,B̃1
.

Proof Let B1 = {v1, . . . , vm}, B̃1 = {̃v1, . . . , ṽm}, B2 = {w1, . . . , wn}, B̃2 =

{w̃1, . . . , w̃n}, and

(v1, . . . , vm) = (̃v1, . . . , ṽm)P, where P = [pi j ] = [IdV ]B1,B̃1
,

(w1, . . . , wn) = (w̃1, . . . , w̃n)Q, where Q = [qi j ] = [IdW ]B2,B̃2
.

With [β]B̃1×B̃2
= [̃bi j ], where b̃i j = β(̃v j , w̃i ), we then have

β(v j , wi ) = β
( m∑

k=1

pk j ṽk,

n∑

ℓ=1

qℓi w̃ℓ

)
=

n∑

ℓ=1

qℓi

m∑

k=1

β(̃vk, w̃ℓ)pk j

=

n∑

ℓ=1

qℓi

m∑

k=1

b̃ℓk pk j

=

⎡
⎢⎣

q1i

...

qni

⎤
⎥⎦

T

[β]B̃1×B̃2

⎡
⎢⎣

p1 j

...

pmj

⎤
⎥⎦ ,

which implies that [β]B1×B2
= QT [β]B̃1×B̃2

P , and hence the assertion follows. ⊓⊔

If V = W and B1, B2 are two bases of V , then we obtain the following special

case of Theorem 11.14:

[β]B1×B1
=

(
[IdV ]B1,B2

)T
[β]B2×B2

[IdV ]B1,B2
.

The two matrix representations [β]B1×B1
and [β]B2×B2

of β in this case are congruent,

which we formally define as follows.

Definition 11.15 If for two matrices A, B ∈ K n,n there exists a matrix Z ∈ GLn(K )

with B = Z T AZ , then A and B are called congruent.

Lemma 11.16 Congruence is an equivalence relation on the set K n,n .

Proof Exercise. ⊓⊔
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11.3 Sesquilinear Forms

For complex vector spaces we introduce another special class of forms.

Definition 11.17 Let V and W be C-vector spaces. A map s : V ×W → C is called

a sesquilinear form on V × W , when

(1) s(v1 + v2, w) = s(v1, w) + s(v2, w),

(2) s(λv,w) = λs(v,w),

(3) s(v,w1 + w2) = s(v,w1) + s(v,w2),

(4) s(v,λw) = λs(v,w),

hold for all v, v1, v2 ∈ V , w,w1, w2 ∈ W and λ ∈ C.

If V = W , then s is called a sesquilinear form on V . If additionally s(v,w) =

s(w, v) holds for all v,w ∈ V , then s is called Hermitian.1

The prefix sesqui is Latin and means “one and a half”. Note that a sesquilinear

form is linear in the first variable and semilinear (“half linear”) in the second variable.

The following result characterizes Hermitian sesquilinear forms.

Lemma 11.18 A sesquilinear form on the C-vector space V is Hermitian if and only

if s(v, v) ∈ R for all v ∈ V .

Proof If s is Hermitian then, in particular, s(v, v) = s(v, v) for all v ∈ V , and thus

s(v, v) ∈ R.

If, on the other hand, v,w ∈ V , then by definition

s(v + w, v + w) = s(v, v) + s(v,w) + s(w, v) + s(w,w), (11.1)

s(v + iw, v + iw) = s(v, v) + is(w, v) − is(v,w) + s(w,w). (11.2)

The first equation implies that s(v,w) + s(w, v) ∈ R, since s(v + w, v +

w), s(v, v), s(w,w) ∈ R by assumption. The second equation implies analogously

that is(w, v) − is(v,w) ∈ R. Therefore,

s(v,w) + s(w, v) = s(v,w) + s(w, v),

−is(v,w) + is(w, v) = is(v,w) − is(w, v).

Multiplying the second equation with i and adding the resulting equation to the first

we obtain s(v,w) = s(w, v) ⊓⊔

Corollary 11.19 For a sesquilinear form s on the C-vector space V we have

2 s(v,w) = s(v + w, v + w) + is(v + iw, v + iw) − (i + 1) (s(v, v) + s(w,w)).

for all v,w ∈ V .

1Charles Hermite (1822–1901).
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Proof The result follows from multiplication of (11.2) with i and adding the result

to (11.1). ⊓⊔

Corollary 11.19 shows that a sesquilinear form on a C-vector space V is uniquely

determined by the values of s(v, v) for all v ∈ V .

Definition 11.20 The Hermitian transpose of A = [ai j ] ∈ C
n,m is the matrix

AH := [ai j ]
T ∈ C

m,n .

If A = AH , then A is called Hermitian.

If a matrix A has real entries, then obviously AH = AT . Thus, a real symmetric

matrix is also Hermitian. If A = [ai j ] ∈ C
n,n is Hermitian, then in particular ai i = ai i

for i = 1, . . . , n, i.e., Hermitian matrices have real diagonal entries.

The Hermitian transposition satisfies similar rules as the (usual) transposition

(cp. Lemma 4.6).

Lemma 11.21 For A, Â ∈ C
n,m , B ∈ C

m,ℓ and λ ∈ C the following assertions

hold:

(1) (AH )H = A.

(2) (A + Â)H = AH + ÂH .

(3) (λA)H = λ AH .

(4) (AB)H = B H AH .

Proof Exercise. ⊓⊔

Example 11.22 For A ∈ C
n,m the map

s : C
m,1 × C

n,1 → C, (v,w) �→ wH Av,

is a sesquilinear form.

The matrix representation of a sesquilinear form is defined analogously to the

matrix representation of bilinear forms (cp. Definition 11.11).

Definition 11.23 Let V and W be C-vector spaces with bases B1 = {v1, . . . , vm}

and B2 = {w1, . . . , wn}, respectively. If s is a sesquilinear form on V × W , then

[s]B1×B2
= [bi j ] ∈ C

n,m, bi j := s(v j , wi ),

is called the matrix representation of s with respect to the bases B1 and B2.

Example 11.24 If B1 =
{
e
(m)

1 , . . . , e(m)
m

}
and B2 =

{
e
(n)

1 , . . . , e(n)
n

}
are the canonical

bases of C
m,1 and C

n,1, respectively, and s is the sesquilinear form of Example 11.22

with A = [ai j ] ∈ C
n,m , then [s]B1×B2

= [bi j ] with
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bi j = s
(
e
(m)

j , e
(n)

i

)
=

(
e
(n)

i

)H
Ae

(m)

j =
(
e
(n)

i

)T
Ae

(m)

j = ai j

and, hence, [s]B1×B2
= A.

Exercises

(In the following exercises K is an arbitrary field.)

11.1. Let V be a finite dimensional K -vector space and v ∈ V . Show that f (v) = 0

for all f ∈ V∗ if and only if v = 0.

11.2. Consider the basis B = {10, t − 1, t2 − t} of the 3-dimensional vector space

R[t]≤2. Compute the dual basis B∗ to B.

11.3. Let V be an n-dimensional K -vector space and let
{
v∗

1 , . . . , v
∗
n

}
be a basis

of V∗. Prove or disprove: There exists a unique basis {v1, . . . , vn} of V with

v∗
i (v j ) = δi j .

11.4. Let V be a finite dimensional K -vector space and let f, g ∈ V∗ with f 
= 0.

Show that g = λ f for a λ ∈ K \ {0} holds if and only if ker( f ) = ker(g). Is

it possible to omit the assumption f 
= 0?

11.5. Let V be a K -vector space and let U be a subspace of V . The set

U
0 := { f ∈ V

∗ | f (u) = 0 for all u ∈ U}

is called the annihilator of U . Show the following assertions:

(a) U0 is a subspace of V∗.

(b) For subspaces U1,U2 of V we have

(U1 + U2)
0 = U

0
1 ∩ U

0
2 , (U1 ∩ U2)

0 = U
0
1 + U

0
2 ,

and if U1 ⊆ U2, then U0
2 ⊆ U0

1 .

(c) If W is a K -vector space and f ∈ L(V,W), then ker( f ∗) = (im( f ))0.

11.6. Prove Lemma 11.6 (2) and (3).

11.7. Let V and W be K -vector spaces. Show that the set of all bilinear forms on

V × W with the operations

+ : (β1 + β2)(v,w) := β1(v,w) + β2(v,w),

· : (λ · β)(v,w) := λ · β(v,w),

is a K -vector space.

11.8. Let V and W be K -vector spaces with bases {v1, . . . , vm} and {w1, . . . , wn}

and corresponding dual bases {v∗
1 , . . . , v

∗
m} and {w∗

1, . . . , w
∗
n}, respectively.

For i = 1, . . . , m and j = 1, . . . , n let

βi j : V × W → K , (v,w) �→ v∗
i (v)w∗

j (w).

(a) Show that βi j is a bilinear form on V × W .
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(b) Show that the set {βi j | i = 1, . . . , m, j = 1, . . . , n} is a basis of the

K -vector space of bilinear forms on V × W (cp. Exercise 11.7) and

determine the dimension of this space.

11.9. Let V be the R-vector space of the continuous and real valued functions on

the real interval [α,β]. Show that

β : V × V → R, ( f, g) �→

∫ β

α

f (x)g(x)dx,

is a symmetric bilinear form on V . Is β degenerate?

11.10. Show that the map β from (1) in Example 11.10 is a bilinear form, and show

that it is non-degenerate if and only if n = m and A ∈ GLn(K ).

11.11. Let V be a finite dimensional K -vector space. Show that V,V∗ is a dual pair

with respect to the bilinear form β from (3) in Example 11.10, i.e., that the

bilinear form β is non-degenerate.

11.12. Let V be a finite dimensional K -vector space and let U ⊆ V and W ⊆ V∗

be subspaces with dim(U) = dim(W) ≥ 1. Prove or disprove: The spaces

U ,W form a dual pair with respect to the bilinear form β : U × W → K ,

(v, h) �→ h(v).

11.13. Let V and W be finite dimensional K -vector spaces with the bases B1 and

B2, respectively, and let β be a bilinear form on V × W .

(a) Show that the following statements are equivalent:

(1) [β]B1×B2
is not invertible.

(2) β is degenerate in the second variable.

(3) β is degenerate in the first variable.

(b) Conclude from (a): β is non-degenerate if and only if [β]B1×B2
is

invertible.

11.14. Prove Lemma 11.16.

11.15. Prove Lemma 11.13.

11.16. For a bilinear form β on a K -vector space V , the map qβ : V → K ,

v �→ β(v, v), is called the quadratic form induced by β. Show the following

assertion:

If 1+1 
= 0 in K and β is symmetric, then β(v,w) = 1
2
(qβ(v+w)−qβ(v)−

qβ(w)) holds for all v,w ∈ V .

11.17. Show that a sesquilinear form s on a C-vector space V satisfies the polariza-

tion identity

s(v,w) =
1

4

(
s(v+w, v+w)−s(v−w, v−w)+is(v+iw, v+iw)−is(v−iw, v−iw)

)

for all v,w ∈ V .

11.18. Consider the following maps from C
3,1 × C

3,1 to C:

(a) β1(x, y) = 3x1x1 + 3y1 y1 + x2 y3 − x3 y2,

(b) β2(x, y) = x1 y2 + x2 y3 + x3 y1,

(c) β3(x, y) = x1 y2 + x2 y3 + x3 y1,
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(d) β4(x, y) = 3x1 y1 + x1 y2 + x2 y1 + 2ix2 y3 − 2ix3 y2 + x3 y3.

Which of these are bilinear forms or sesquilinear forms on C
3,1? Test whether

the bilinear form is symmetric or the sesquilinear form is Hermitian, and

derive the corresponding matrix representations with respect to the canonical

basis B1 = {e1, e2, e3} and the basis B2 = {e1, e1 + ie2, e2 + ie3}.

11.19. Prove Lemma 11.21.

11.20. Let A ∈ C
n,n be Hermitian. Show that

s : C
n,1 × C

n,1, (v,w) �→ wH Av,

is a Hermitian sesquilinear form on C
n,1.

11.21. Let V be a finite dimensional C-vector space with the basis B, and let s be

a sesquilinear form on V . Show that s is Hermitian if and only if [s]B×B is

Hermitian.

11.22. Show the following assertions for A, B ∈ C
n,n:

(a) If AH = −A, then the eigenvalues of A are purely imaginary.

(b) If AH = −A, then trace(A2) ≤ 0 and (trace(A))2 ≤ 0.

(c) If AH = A and B H = B, then trace((AB)2) ≤ trace(A2 B2).



Chapter 12

Euclidean and Unitary Vector Spaces

In this chapter we study vector spaces over the fields R and C. Using the definition of

bilinear and sesquilinear forms, we introduce scalar products on such vector spaces.

Scalar products allow the extension of well-known concepts from elementary geom-

etry, such as length and angles, to abstract real and complex vector spaces. This,

in particular, leads to the idea of orthogonality and to orthonormal bases of vector

spaces. As an example for the importance of these concepts in many applications we

study least-squares approximations.

12.1 Scalar Products and Norms

We start with the definition of a scalar product and the Euclidean or unitary vector

spaces.

Definition 12.1 Let V be a K -vector space, where either K = R or K = C. A map

〈·, ·〉 : V × V → K , (v,w) �→ 〈v,w〉,

is called a scalar product on V , when the following properties hold:

(1) If K = R, then 〈·, ·〉 is a symmetric bilinear form.

If K = C, then 〈·, ·〉 is an Hermitian sesquilinear form.

(2) 〈·, ·〉 is positive definite, i.e., 〈v, v〉 ≥ 0 holds for all v ∈ V , with equality if and

only if v = 0.

An R-vector space with a scalar product is called a Euclidean vector space1, and a

C-vector space with a scalar product is called a unitary vector space.

Scalar products are sometimes called inner products. Note that 〈v, v〉 is nonneg-

ative and real also when V is a C-vector space. It is easy to see that a subspace U of

1Euclid of Alexandria (approx. 300 BC).

© Springer International Publishing Switzerland 2015
J. Liesen and V. Mehrmann, Linear Algebra, Springer Undergraduate
Mathematics Series, DOI 10.1007/978-3-319-24346-7_12
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a Euclidean or unitary vector space V is again a Euclidean or unitary vector space,

respectively, when the scalar product on the space V is restricted to the subspace U .

Example 12.2

(1) A scalar product on R
n,1 is given by

〈v,w〉 := wT v.

It is called the standard scalar product of R
n,1.

(2) A scalar product on C
n,1 is given by

〈v,w〉 := wHv.

It is called the standard scalar product of C
n,1.

(3) For both K = R and K = C,

〈A, B〉 := Spur(B H A)

is a scalar product on K n,m .

(4) A scalar product on the vector space of the continuous and real valued functions

on the real interval [α,β] is given by

〈 f, g〉 :=
∫ β

α

f (x)g(x)dx .

We will now show how to use the Euclidean or unitary structure of a vector space

in order to introduce geometric concepts such as the length of a vector or the angle

between vectors.

As a motivation of a general concept of length we have the absolute value of

real numbers, i.e., the map | · | : R → R, x �→ |x |. This map has the following

properties:

(1) |λx | = |λ| · |x | for all λ, x ∈ R.

(2) |x | ≥ 0 for all x ∈ R, with equality if and only if x = 0.

(3) |x + y| ≤ |x | + |y| for all x, y ∈ R.

These properties are generalized to real or complex vector spaces as follows.

Definition 12.3 Let V be a K -vector space, where either K = R or K = C. A map

‖ · ‖ : V → R, v �→ ‖v‖,
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is called a norm on V , when for all v,w ∈ V and λ ∈ K the following properties

hold:

(1) ‖λv‖ = |λ| · ‖v‖.

(2) ‖v‖ ≥ 0, with equality if and only if v = 0.

(3) ‖v + w‖ ≤ ‖v‖ + ‖w‖ (triangle inequality).

A K -vector space on which a norm is defined is called a normed space.

Example 12.4

(1) If 〈·, ·〉 is the standard scalar product on R
n,1, then

‖v‖ := 〈v, v〉1/2 = (vT v)1/2

defines a norm that is called the Euclidean norm of R
n,1.

(2) If 〈·, ·〉 is the standard scalar product on C
n,1, then

‖v‖ := 〈v, v〉1/2 = (vHv)1/2

defines a norm that is called the Euclidean norm of C
n,1. (This is common

terminology, although the space itself is unitary and not Euclidean.)

(3) For both K = R and K = C,

‖A‖F := (trace(AH A))1/2 =
( n∑

i=1

m∑

j=1

|ai j |2
)1/2

is a norm on K n,m that is called the Frobenius norm2 of K n,m . For m = 1 the

Frobenius norm is equal to the Euclidean norm of K n,1. Moreover, the Frobenius

norm of K n,m is equal to the Euclidean norm of K nm,1 (or K nm), if we identify

these vector spaces via an isomorphism.

Obviously, we have ‖A‖F = ‖AT ‖F = ‖AH‖F for all A ∈ K n,m .

(4) If V is the vector space of the continuous and real valued functions on the real

interval [α,β], then

‖ f ‖ := 〈 f, f 〉1/2 =
( ∫ β

α

( f (x))2dx
)1/2

is a norm on V that is called the L2-norm.

(5) Let K = R or K = C, and let p ∈ R, p ≥ 1 be given. Then for

v = [ν1, . . . , νn]T ∈ K n,1 the p-norm of K n,1 is defined by

‖v‖p :=
( n∑

i=1

|νi |p
)1/p

. (12.1)

2Ferdinand Georg Frobenius (1849–1917).
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For p = 2 this is the Euclidean norm on K n,1. For this norm we typically omit

the index 2 and write ‖ · ‖ instead of ‖ · ‖2 (as in (1) and (2) above). Taking the

limit p → ∞ in (12.1), we obtain the ∞-norm of K n,1, given by

‖v‖∞ = max
1≤i≤n

|νi |.

The following figures illustrate the unit circle in R
2,1 with respect to the p-norm,

i.e., the set of all v ∈ R
2,1 with ‖v‖p = 1, for p = 1, p = 2 and p = ∞:

(6) For K = R or K = C the p-norm of K n,m is defined by

‖A‖p := sup
v∈K m,1\{0}

‖Av‖p

‖v‖p

.

Here we use the p-norm of K m,1 in the denominator and the p-norm of K n,1 in

the numerator. The notation sup means supremum, i.e., the least upper bound

that is known from Analysis. One can show that the supremum is attained by a

vector v, and thus we may write max instead of sup in the definition above.

In particular, for A = [ai j ] ∈ K n,m we have

‖A‖1 = max
1≤ j≤m

n∑

i=1

|ai j |,

‖A‖∞ = max
1≤i≤n

m∑

j=1

|ai j |.

These norms are called maximum column sum and maximum row sum norm

of K n,m , respectively. We easily see that ‖A‖1 = ‖AT ‖∞ = ‖AH‖∞ and

‖A‖∞ = ‖AT ‖1 = ‖AH‖1. However, for the matrix

A =
[

1/2 −1/4

−1/2 2/3

]
∈ R

2,2

we have ‖A‖1 = 1 and ‖A‖∞ = 7/6. Thus, this matrix A satisfies ‖A‖1 < ‖A‖∞
and ‖AT ‖∞ < ‖AT ‖1. The 2-norm of matrices will be considered further in

Chap. 19.
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The norms in the above examples (1)–(4) have the form ‖v‖ = 〈v, v〉1/2, where

〈·, ·〉 is a given scalar product. We will show now that the map v �→ 〈v, v〉1/2 always

defines a norm. Our proof is based on the following theorem.

Theorem 12.5 If V is a Euclidean or unitary vector space with the scalar product

〈·, ·〉, then

|〈v,w〉|2 ≤ 〈v, v〉 · 〈w,w〉 for all v,w ∈ V , (12.2)

with equality if and only if v,w are linearly dependent.

Proof The inequality is trivial for w = 0. Thus, let w �= 0 and let

λ :=
〈v,w〉
〈w,w〉

.

Then

0 ≤ 〈v − λw, v − λw〉 = 〈v, v〉 − λ〈v,w〉 − λ〈w, v〉 − λ(−λ)〈w,w〉

= 〈v, v〉 −
〈v,w〉
〈w,w〉

〈v,w〉 −
〈v,w〉
〈w,w〉

〈v,w〉 +
|〈v,w〉|2

〈w,w〉2
〈w,w〉

= 〈v, v〉 −
|〈v,w〉|2

〈w,w〉
,

which implies (12.2).

If v,w are linearly dependent, then v = λw for a scalar λ, and hence

|〈v,w〉|2 = |〈λw,w〉|2 = |λ〈w,w〉|2 = |λ|2|〈w,w〉|2 = λλ 〈w,w〉 〈w,w〉
= 〈λw,λw〉 〈w,w〉 = 〈v, v〉 〈w,w〉.

On the other hand, let |〈v,w〉|2 = 〈v, v〉〈w,w〉. If w = 0, then v,w are linearly

dependent. If w �= 0, then we define λ as above and get

〈v − λw, v − λw〉 = 〈v, v〉 −
|〈v,w〉|2

〈w,w〉
= 0.

Since the scalar product is positive definite, we have v − λw = 0, and thus v,w are

linearly dependent. ⊓⊔

The inequality (12.2) is called Cauchy-Schwarz inequality.3 It is an important

tool in Analysis, in particular in the estimation of approximation and interpolation

errors.

3Augustin Louis Cauchy (1789–1857) and Hermann Amandus Schwarz (1843–1921).
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Corollary 12.6 If V is a Euclidean or unitary vector space with the scalar product

〈·, ·〉, then the map

‖ · ‖ : V → R, v �→ ‖v‖ := 〈v, v〉1/2,

is a norm on V that is called the norm induced by the scalar product.

Proof We have to prove the three defining properties of the norm. Since 〈·, ·〉 is

positive definite, we have ‖v‖ ≥ 0, with equality if and only if v = 0. If v ∈ V and

λ ∈ K (where in the Euclidean case K = R and in the unitary case K = C), then

‖λv‖2 = 〈λv,λv〉 = λλ〈v, v〉 = |λ|2〈v, v〉,

and hence ‖λv‖ = |λ| ‖v‖. In order to show the triangle inequality, we use the

Cauchy-Schwarz inequality and the fact that Re(z) ≤ |z| for every complex number

z. For all v,w ∈ V we have

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉 + 〈v,w〉 + 〈w, v〉 + 〈w,w〉
= 〈v, v〉 + 〈v,w〉 + 〈v,w〉 + 〈w,w〉
= ‖v‖2 + 2 Re(〈v,w〉) + ‖w‖2

≤ ‖v‖2 + 2 |〈v,w〉| + ‖w‖2

≤ ‖v‖2 + 2‖v‖ ‖w‖ + ‖w‖2

= (‖v‖ + ‖w‖)2,

and thus ‖v + w‖ ≤ ‖v‖ + ‖w‖. ⊓⊔

12.2 Orthogonality

We will now use the scalar product to introduce angles between vectors. As motivation

we consider the Euclidean vector space R
2,1 with the standard scalar product and the

induced Euclidean norm ‖v‖ = 〈v, v〉1/2. The Cauchy-Schwarz inequality shows

that

−1 ≤
〈v,w〉

‖v‖ ‖w‖
≤ 1 for all v,w ∈ R

2,1 \ {0}.

If v,w ∈ R
2,1 \ {0}, then the angle between v and w is the uniquely determined real

number ϕ ∈ [0,π] with

cos(ϕ) =
〈v,w〉

‖v‖ ‖w‖
.
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The vectors v,w are orthogonal if ϕ = π/2, so that cos(ϕ) = 0. Thus, v,w are

orthogonal if and only if 〈v,w〉 = 0.

An elementary calculation now leads to the cosine theorem for triangles:

‖v − w‖2 = 〈v − w, v − w〉 = 〈v, v〉 − 2〈v,w〉 + 〈w,w〉
= ‖v‖2 + ‖w‖2 − 2‖v‖ ‖w‖ cos(ϕ).

If v,w are orthogonal, i.e., 〈v,w〉 = 0, then the cosine theorem implies the

Pythagorean theorem4:

‖v − w‖2 = ‖v‖2 + ‖w‖2.

The following figures illustrate the cosine theorem and the Pythagorean theorem for

vectors in R
2,1:

In the following definition we generalize the ideas of angles and orthogonality.

Definition 12.7 Let V be a Euclidean or unitary vector space with the scalar product

〈·, ·〉.
(1) In the Euclidean case, the angle between two vectors v,w ∈ V \ {0} is the

uniquely determined real number ϕ ∈ [0,π] with

cos(ϕ) =
〈v,w〉

‖v‖ ‖w‖
.

(2) Two vectors v,w ∈ V are called orthogonal, if 〈v,w〉 = 0.

(3) A basis {v1, . . . , vn} of V is called an orthogonal basis, if

〈vi , v j 〉 = 0, i, j = 1, . . . , n and i �= j.

If, furthermore,

‖vi‖ = 1, i = 1, . . . , n,

where ‖v‖ = 〈v, v〉1/2 is the norm induced by the scalar product, then

{v1, . . . , vn} is called an orthonormal basis of V . (For an orthonormal basis

we therefore have 〈vi , v j 〉 = δi j .)

4Pythagoras of Samos (approx. 570–500 BC).
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Note that the terms in (1)−(3) are defined with respect to the given scalar product.

Different scalar products yield different angles between vectors. In particular, the

orthogonality of two given vectors may be lost when we consider a different scalar

product.

Example 12.8 The standard basis vectors e1, e2 ∈ R
2,1 are orthogonal and {e1, e2}

is an orthonormal basis of R
2,1 with respect to the standard scalar product (cp. (1) in

Example 12.2). Consider the symmetric and invertible matrix

A =
[

2 1

1 2

]
∈ R

2,2,

which defines a symmetric and non-degenerate bilinear form on R
2,1 by

(v,w) �→ wT Av

(cp. (1) in Example 11.10). This bilinear form is positive definite, since for all v =
[ν1, ν2]T ∈ R

2,1 we have

vT Av = ν2
1 + ν2

2 + (ν1 + ν2)
2.

The bilinear form therefore is a scalar product on R
2,1, which we denote by 〈·, ·〉A.

We denote the induced norm by ‖ · ‖A.

With respect to the scalar product 〈·, ·〉A the vectors e1, e2 satisfy

〈e1, e1〉A = eT
1 Ae1 = 2, 〈e2, e2〉A = eT

2 Ae2 = 2, 〈e1, e2〉A = eT
2 Ae1 = 1.

Clearly, {e1, e2} is not an orthonormal basis of R
2,1 with respect to 〈·, ·〉A. Also note

that ‖e1‖A = ‖e2‖A =
√

2.

On the other hand, the vectors v1 = [1, 1]T and v2 = [−1, 1]T satisfy

〈v1, v1〉A = vT
1 Av1 = 6, 〈v2, v2〉A = vT

2 Av2 = 2, 〈v1, v2〉A = vT
2 Av1 = 0.

Hence ‖v1‖A =
√

6 and ‖v2‖A =
√

2, so that {6−1/2v1, 2−1/2v2} is an orthonormal

basis of R
2,1 with respect to the scalar product 〈·, ·〉A

We now show that every finite dimensional Euclidean or unitary vector space has

an orthonormal basis.

Theorem 12.9 Let V be a Euclidean or unitary vector space with the basis

{v1, . . . , vn}. Then there exists an orthonormal basis {u1, . . . , un} of V with

span{u1, . . . , uk} = span{v1, . . . , vk}, k = 1, . . . , n.
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Proof We give the proof by induction on dim(V) = n. If n = 1, then we set u1 :=
‖v1‖−1v1. Then ‖u1‖ = 1, and {u1} is an orthonormal basis of V with span{u1} =
span{v1}.

Let the assertion hold for an n ≥ 1. Let dim(V) = n + 1 and let {v1, . . . , vn+1}
be a basis of V . Then Vn := span{v1, . . . , vn} is an n-dimensional subspace of V . By

the induction hypothesis there exists an orthonormal basis {u1, . . . , un} of Vn with

span{u1, . . . , uk} = span{v1, . . . , vk} for k = 1, . . . , n. We define

ûn+1 := vn+1 −
n∑

k=1

〈vn+1, uk〉uk, un+1 := ||̂un+1||−1ûn+1.

Since vn+1 /∈ Vn = span{u1, . . . , un}, we must have ûn+1 �= 0, and Lemma 9.16

yields span{u1, . . . , un+1} = span{v1, . . . , vn+1}.
For j = 1, . . . , n we have

〈un+1, u j 〉 = 〈‖ûn+1‖−1ûn+1, u j 〉

= ‖ûn+1‖−1

(
〈vn+1, u j 〉 −

n∑

k=1

〈vn+1, uk〉 〈uk, u j 〉

)

= ‖ûn+1‖−1
(
〈vn+1, u j 〉 − 〈vn+1, u j 〉

)

= 0.

Finally, 〈un+1, un+1〉 = ‖ûn+1‖−2〈̂un+1, ûn+1〉 = 1 which completes the proof. ⊓⊔

The proof of Theorem 12.9 shows how a given basis {v1, . . . , vn} can be ortho-

normalized, i.e., transformed into an orthonormal basis {u1, . . . , un} with

span{u1, . . . , uk} = span{v1, . . . , vk}, k = 1, . . . , n.

The resulting algorithm is called the Gram-Schmidt method5:

Algorithm 12.10 Given a basis {v1, . . . , vn} of V .

(1) Set u1 := ‖v1‖−1v1.

(2) For j = 1, . . . , n − 1 set

û j+1 := v j+1 −
j∑

k=1

〈v j+1, uk〉uk,

u j+1 := ‖û j+1‖−1û j+1.

5Jørgen Pedersen Gram (1850–1916) and Erhard Schmidt (1876–1959).
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A slight reordering and combination of steps in the Gram-Schmidt method yields

(v1, v2, . . . , vn)︸ ︷︷ ︸
∈Vn

= (u1, u2, . . . , un)︸ ︷︷ ︸
∈Vn

⎛
⎜⎜⎜⎜⎝

‖v1‖ 〈v2, u1〉 . . . 〈vn, u1〉

‖û2‖
. . .

...

. . . 〈vn, un−1〉
‖ûn‖

⎞
⎟⎟⎟⎟⎠

.

The upper triangular matrix on the right hand side is the coordinate transformation

matrix from the basis {v1, . . . , vn} to the basis {u1, . . . , un} of V (cp. Theorem 9.25

or 10.2). Thus, we have shown the following result.

Theorem 12.11 If V is a finite dimensional Euclidean or unitary vector space with a

given basis B1, then the Gram-Schmidt method applied to B1 yields an orthonormal

basis B2 of V , such that [IdV ]B1,B2
is an invertible upper triangular matrix.

Consider an m-dimensional subspace of R
n,1 or C

n,1 with the standard scalar

product 〈·, ·〉, and write the m vectors of an orthonormal basis {q1, . . . , qm} as columns

of a matrix, Q := [q1, . . . , qm]. Then we obtain in the real case

QT Q = [qT
i q j ] = [〈q j , qi 〉] = [δ j i ] = Im,

and analogously in the complex case

Q H Q = [q H
i q j ] = [〈q j , qi 〉] = [δ j i ] = Im .

If, on the other hand, QT Q = Im or Q H Q = Im for a matrix Q ∈ R
n,m or Q ∈ C

n,m ,

respectively, then the m columns of Q form an orthonormal basis (with respect to the

standard scalar product) of an m-dimensional subspace of R
n,1 or C

n,1, respectively.

A “matrix version” of Theorem 12.11 can therefore be formulated as follows.

Corollary 12.12 Let K = R or K = C and let v1, . . . , vm ∈ K n,1 be linearly inde-

pendent. Then there exists a matrix Q ∈ K n,m with its m columns being orthonormal

with respect to the standard scalar product of K n,1, i.e., QT Q = Im for K = R or

Q H Q = Im for K = C, and an upper triangular matrix R ∈ GLm(K ), such that

[v1, . . . , vm] = Q R. (12.3)

The factorization (12.3) is called a Q R-decomposition of the matrix [v1, . . . , vm].
The Q R-decomposition has many applications in Numerical Mathematics (cp.

Example 12.16 below).

Lemma 12.13 Let K = R or K = C and let Q ∈ K n,m be a matrix with orthonor-

mal columns with respect to the standard scalar product of K n,1. Then ‖v‖ = ‖Qv‖
holds for all v ∈ K m,1. (Here ‖ · ‖ is the Euclidean norm of K m,1 and of K n,1.)
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Proof For K = C we have

‖v‖2 = 〈v, v〉 = vHv = vH (Q H Q)v = 〈Qv, Qv〉 = ‖Qv‖2,

and the proof for K = R is analogous. ⊓⊔

We now introduce two important classes of matrices.

Definition 12.14

(1) A matrix Q ∈ R
n,n whose columns form an orthonormal basis with respect to

the standard scalar product of R
n,1 is called orthogonal.

(2) A matrix Q ∈ C
n,n whose columns form an orthonormal basis with respect to

the standard scalar product of C
n,1 is called unitary.

A matrix Q = [q1, . . . , qn] ∈ R
n,n is therefore orthogonal if and only if

QT Q = [qT
i q j ] = [〈q j , qi 〉] = [δ j i ] = In.

In particular, an orthogonal matrix Q is invertible with Q−1 = QT (cp. Corol-

lary 7.20). The equation Q QT = In means that the n rows of Q form an orthonormal

basis of R
1,n (with respect to the scalar product 〈v,w〉 := wvT ).

Analogously, a unitary matrix Q ∈ C
n,n is invertible with Q−1 = Q H and

Q H Q = In = Q Q H . The n columns of Q form an orthonormal basis of C
1,n .

Lemma 12.15 The sets O(n) of orthogonal and U(n) of unitary n×n matrices form

subgroups of GLn(R) and GLn(C), respectively.

Proof We consider only O(n); the proof for U(n) is analogous.

Since every orthogonal matrix is invertible, we have that O(n) ⊂ GLn(R). The

identity matrix In is orthogonal, and hence In ∈ O(n) �= Ø. If Q ∈ O(n), then also

QT = Q−1 ∈ O(n), since (QT )T QT = Q QT = In . Finally, if Q1, Q2 ∈ O(n),

then

(Q1 Q2)
T (Q1 Q2) = QT

2 (QT
1 Q1)Q2 = QT

2 Q2 = In,

and thus Q1 Q2 ∈ O(n). ⊓⊔

Example 12.16 In many applications measurements or samples lead to a data set

that is represented by tuples (τi ,µi ) ∈ R
2, i = 1, . . . , m. Here τ1 < · · · < τm ,

are the pairwise distinct measurement points and µ1, . . . ,µm are the corresponding

measurements. In order to approximate the given data set by a simple model, one can

try to construct a polynomial p of small degree so that the values p(τ1), . . . , p(τm)

are as close as possible to the measurements µ1, . . . ,µm .

The simplest case is a real polynomial of degree (at most) 1. Geometrically, this

corresponds to the construction of a straight line in R
2 that has a minimal distance
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to the given points, as shown in the figure below (cp. Sect. 1.4). There are many

possibilities to measure the distance. In the following we will describe one of them

in more detail and use the Gram-Schmidt method, or the Q R-decomposition, for the

construction of the straight line. In Statistics this method is called linear regression.

A real polynomial of degree (at most) 1 has the form p = αt + β and we are

looking for coefficients α,β ∈ R with

p(τi ) = ατi + β ≈ µi , i = 1, . . . , m.

Using matrices we can write this problem as

⎡
⎢⎣

τ1 1
...

...

τm 1

⎤
⎥⎦
[

α

β

]
≈

⎡
⎢⎣

µ1

...

µm

⎤
⎥⎦ or [v1, v2]

[
α

β

]
≈ y.

As mentioned above, there are different possibilities for interpreting the symbol “≈”.

In particular, there are different norms in which we can measure the distance between

the given values µ1, . . . ,µm and the polynomial values p(τ1), . . . , p(τm). Here we

will use the Euclidean norm ‖ · ‖ and consider the minimization problem

min
α,β∈R

∥∥∥∥ [v1, v2]
[
α

β

]
− y

∥∥∥∥ .

The vectors v1, v2 ∈ R
m,1 are linearly independent, since the entries of v1 are

pairwise distinct, while all entries of v2 are equal. Let

[v1, v2] = [q1, q2]R

be a Q R-decomposition. We extend the vectors q1, q2 ∈ R
m,1 to an orthonormal

basis {q1, q2, q3, . . . , qm} of R
m,1. Then Q = [q1, . . . , qm] ∈ R

m,m is an orthogonal

matrix and
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min
α,β∈R

∥∥∥∥ [v1, v2]
[
α

β

]
− y

∥∥∥∥ = min
α,β∈R

∥∥∥∥ [q1, q2]R

[
α

β

]
− y

∥∥∥∥

= min
α,β∈R

∥∥∥∥ Q

[
R

0m−2,2

] [
α

β

]
− y

∥∥∥∥

= min
α,β∈R

∥∥∥∥ Q

([
R

0m−2,2

] [
α

β

]
− QT y

)∥∥∥∥

= min
α,β∈R

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎣

R

[
α

β

]

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

qT
1 y

qT
2 y

qT
3 y

...

qT
m y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Here we have used that Q QT = Im and ‖Qv‖ = ‖v‖ for all v ∈ R
m,1. The upper

triangular matrix R is invertible and thus the minimization problem is solved by

[
α̃

β̃

]
= R−1

[
qT

1 y

qT
2 y

]
.

Using the definition of the Euclidean norm, we can write the minimizing property

of the polynomial p̃ := α̃t + β̃ as

∥∥∥∥ [v1, v2]
[
α̃

β̃

]
− y

∥∥∥∥
2

=
m∑

i=1

( p̃(τi ) − µi )
2

= min
α,β∈R

( m∑

i=1

((ατi + β) − µi )
2
)
.

Since the polynomial p̃ minimizes the sum of squares of the distances between the

measurements µi and the polynomial values p̃(τi ), this polynomial yields a least

squares approximation of the measurement values.

Consider the example from Sect. 1.4. In the four quarters of a year, a company has

profits of 10, 8, 9, 11 million Euros. Under the assumption that the profits grows

linearly, i.e., like a straight line, the goal is to estimate the profit in the last quarter

of the following year. The given data leads to the approximation problem

⎡
⎢⎢⎣

1 1

2 1

3 1

4 1

⎤
⎥⎥⎦
[
α

β

]
≈

⎡
⎢⎢⎣

10

8

9

11

⎤
⎥⎥⎦ or [v1, v2]

[
α

β

]
≈ y.
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The numerical computation of a Q R-decomposition of [v1, v2] yields

[
α̃

β̃

]
=
[√

30 1
3

√
30

0 1
3

√
6

]−1

︸ ︷︷ ︸
=R−1

[
1√
30

2√
30

3√
30

4√
30

2√
6

1√
6

0 − 1√
6

]

︸ ︷︷ ︸
=[q1,q2]T

⎡
⎢⎢⎣

10

8

9

11

⎤
⎥⎥⎦ =

[
0.4

8.5

]
,

and the resulting profit estimate for the last quarter of the following year is p̃(8) =
11.7, i.e., 11.7 million Euros.

MATLAB-Minute.

In Example 12.16 one could imagine that the profit grows quadratically instead

of linearly. Determine, analogously to the procedure in Example 12.16, a poly-

nomial p̃ = α̃t2 + β̃t + γ̃ that solves the least squares problem

4∑

i=1

( p̃(τi ) − µi )
2 = min

α,β,γ∈R

(
4∑

i=1

(
(ατ 2

i + βτi + γ) − µi

)2
)

.

Use the MATLAB command qr for computing a Q R-decomposition, and

determine the estimated profit in the last quarter of the following year.

We will now analyze the properties of orthonormal bases in more detail.

Lemma 12.17 If V is a Euclidean or unitary vector space with the scalar product

〈·, ·〉 and the orthonormal basis {u1, . . . , un}, then

v =
n∑

i=1

〈v, ui 〉ui

for all v ∈ V .

Proof For every v ∈ V there exist uniquely determined coordinates λ1, . . . ,λn with

v =
∑n

i=1 λi ui . For every j = 1, . . . , n we then have 〈v, u j 〉 =
∑n

i=1 λi 〈ui , u j 〉 =
λ j . ⊓⊔

The coordinates 〈v, ui 〉, i = 1, . . . , n, of v with respect to an orthonormal basis

{u1, . . . , un} are often called the Fourier coefficients6 of v with respect to this basis.

The representation v =
∑n

i=1〈v, ui 〉ui is called the (abstract) Fourier expansion of

v in the given orthonormal basis.

6Jean Baptiste Joseph Fourier (1768–1830).
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Corollary 12.18 If V is a Euclidean or unitary vector space with the scalar product

〈·, ·〉 and the orthonormal basis {u1, . . . , un}, then the following assertions hold:

(1) 〈v,w〉 =
∑n

i=1〈v, ui 〉〈ui , w〉 =
∑n

i=1〈v, ui 〉〈w, ui 〉 for all v,w ∈ V (Parseval’s

identity7).

(2) 〈v, v〉 =
∑n

i=1 |〈v, ui 〉|2 for all v ∈ V (Bessel’s identity8).

Proof

(1) We have v =
∑n

i=1〈v, ui 〉ui , and thus

〈v,w〉 =
〈 n∑

i=1

〈v, ui 〉ui , w

〉
=

n∑

i=1

〈v, ui 〉〈ui , w〉 =
n∑

i=1

〈v, ui 〉〈w, ui 〉.

(2) is a special case of (1) for v = w. ⊓⊔

By Bessel’s identity, every vector v ∈ V satisfies

‖v‖2 = 〈v, v〉 =
n∑

i=1

|〈v, ui 〉|2 ≥ max
1≤i≤n

|〈v, ui 〉|2,

where ‖ · ‖ is the norm induced by the scalar product. The absolute value of each

coordinate of v with respect to an orthonormal basis of V is therefore bounded by

the norm of v. This property does not hold for a general basis of V .

Example 12.19 Consider V = R
2,1 with the standard scalar product and the Euclid-

ean norm, then for every real ε �= 0 the set

{[
1

0

]
,

[
1

ε

]}

is a basis of V . For every vector v = [ν1, ν2]T we then have

v =
(
ν1 −

ν2

ε

) [
1

0

]
+

ν2

ε

[
1

ε

]
.

If |ν1|, |ν2| are moderate numbers and if |ε| is (very) small, then |ν1 − ν2/ε| and

|ν2/ε| are (very) large. In numerical algorithms such a situation can lead to significant

problems (e.g. due to roundoff errors) that are avoided when orthonormal bases are

used.

7Marc-Antoine Parseval (1755–1836).
8Friedrich Wilhelm Bessel (1784–1846).
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Definition 12.20 Let V be a Euclidean or unitary vector space with the scalar product

〈·, ·〉, and let U ⊆ V be a subspace. Then

U
⊥ := {v ∈ V | 〈v, u〉 = 0 for all u ∈ U}

is called the orthogonal complement of U (in V).

Lemma 12.21 The orthogonal complement U⊥ is a subspace of V .

Proof Exercise. ⊓⊔

Lemma 12.22 If V is an n-dimensional Euclidean or unitary vector space, and if

U ⊆ V is an m-dimensional subspace, then dim(U⊥) = n − m and V = U ⊕ U⊥.

Proof We know that m ≤ n (cp. Lemma 9.27). If m = n, then U = V , and thus

U
⊥ = V

⊥ = {v ∈ V | 〈v, u〉 = 0 for all u ∈ V} = {0},

so that the assertion is trivial.

Thus let m < n and let {u1, . . . , um} be an orthonormal basis of U . We extend

this basis to a basis of V and apply the Gram-Schmidt method in order to obtain an

orthonormal basis {u1, . . . , um, um+1, . . . , un} of V . Then span{um+1, . . . , un} ⊆ U⊥

and therefore V = U + U⊥. If w ∈ U ∩ U⊥, then 〈w,w〉 = 0, and hence w = 0,

since the scalar product is positive definite. Thus, U ∩ U⊥ = {0}, which implies that

V = U ⊕ U⊥ and dim(U⊥) = n − m (cp. Theorem 9.29). In particular, we have

U⊥ = span{um+1, . . . , un}. ⊓⊔

12.3 The Vector Product in R
3,1

In this section we consider a further product on the vector space R
3,1 that is frequently

used in Physics and Electrical Engineering.

Definition 12.23 The vector product or cross product in R
3,1 is the map

R
3,1×R

3,1 → R
3,1, (v,w) �→ v×w := [ν2ω3 − ν3ω2, ν3ω1 − ν1ω3, ν1ω2 − ν2ω1]T ,

where v = [ν1, ν2, ν3]T and w = [ω1,ω2,ω3]T .

In contrast to the scalar product, the vector product of two elements of the vector

space R
3,1 is not a scalar but again a vector in R

3,1. Using the canonical basis vectors

of R
3,1,

e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , e3 = [0, 0, 1]T ,
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we can write the vector product as

v × w = det

([
ν2 ω2

ν3 ω3

])
e1 − det

([
ν1 ω1

ν3 ω3

])
e2 + det

([
ν1 ω1

ν2 ω2

])
e3.

Lemma 12.24 The vector product is linear in both components and for all v,w ∈
R

3,1 the following properties hold:

(1) v × w = −w × v, i.e., the vector product is anti commutative or alternating.

(2) ‖v × w‖2 = ‖v‖2 ‖w‖2 − 〈v,w〉2, where 〈·, ·〉 is the standard scalar product

and ‖ · ‖ the Euclidean norm of R
3,1.

(3) 〈v, v ×w〉 = 〈w, v ×w〉 = 0, where 〈·, ·〉 is the standard scalar product of R
3,1.

Proof Exercise. ⊓⊔

By (2) and the Cauchy-Schwarz inequality (12.2), it follows that v ×w = 0 holds

if and only if v,w are linearly dependent. From (3) we obtain

〈λv + µw, v × w〉 = λ〈v, v × w〉 + µ〈w, v × w〉 = 0,

for arbitrary λ,µ ∈ R. If v,w are linearly independent, then the product v × w is

orthogonal to the plane through the origin spanned by v and w in R
3,1, i.e.,

v × w ∈ {λv + µw | λ,µ ∈ R}⊥.

Geometrically, there are two possibilities:

The positions of the three vectors v,w, v×w on the left side of this figure correspond

to the “right-handed orientation” of the usual coordinate system of R
3,1, where the

canonical basis vectors e1, e2, e3 are associated with thumb, index finger and middle

finger of the right hand. This motivates the name right-hand rule. In order to explain

this in detail, one needs to introduce the concept of orientation, which we omit here.

If ϕ ∈ [0,π] is the angle between the vectors v,w, then

〈v,w〉 = ‖v‖ ‖w‖ cos(ϕ)
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(cp. Definition 12.7) and we can write (2) in Lemma 12.24 as

‖v × w‖2 = ‖v‖2 ‖w‖2 − ‖v‖2 ‖w‖2 cos2(ϕ) = ‖v‖2 ‖w‖2 sin2(ϕ),

so that

‖v × w‖ = ‖v‖ ‖w‖ sin(ϕ).

A geometric interpretation of this equation is the following: The norm of the vector

product of v and w is equal to the area of the parallelogram spanned by v and w.

This interpretation is illustrated in the following figure:

Exercises

12.1 Let V be a finite dimensional real or complex vector space. Show that there

exists a scalar product on V .

12.2 Show that the maps defined in Example 12.2 are scalar products on the cor-

responding vector spaces.

12.3 Let 〈·, ·〉 be an arbitrary scalar product on R
n,1. Show that there exists a matrix

A ∈ R
n,n with 〈v,w〉 = wT Av for all v,w ∈ R

n,1.

12.4 Let V be a finite dimensional R- or C-vector space. Let s1 and s2 be scalar

products on V with the following property: If v,w ∈ V satisfy s1(v,w) = 0,

then also s2(v,w) = 0. Prove or disprove: There exists a real scalar λ > 0

with s1(v,w) = λs2(v,w) for all v,w ∈ V .

12.5 Show that the maps defined in Example 12.4 are norms on the corresponding

vector spaces.

12.6 Show that

‖A‖1 = max
1≤ j≤m

n∑

i=1

|ai j | and ‖A‖∞ = max
1≤i≤n

m∑

j=1

|ai j |

for all A = [ai j ] ∈ K n,m , where K = R or K = C (cp. (6) in Example 12.4).

12.7 Sketch for the matrix A from (6) in Example 12.4 and p ∈ {1, 2,∞}, the sets

{Av | v ∈ R
2,1, ‖v‖p = 1 } ⊂ R

2,1.

12.8 Let V be a Euclidean or unitary vector space and let ‖ · ‖ be the norm induced

by a scalar product on V . Show that ‖ · ‖ satisfies the parallelogram identity

‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2)

for all v,w ∈ V .
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12.9 Let V be a K -vector space (K = R or K = C) with the scalar product 〈·, ·〉
and the induced norm ‖ · ‖. Show that v,w ∈ V are orthogonal with respect

to 〈·, ·〉 if and only if ‖v + λw‖ = ‖v − λw‖ for all λ ∈ K .

12.10 Does there exist a scalar product 〈·, ·〉 on C
n,1, such that the 1-norm of C

n,1

(cp. (5) in Example 12.4) is the induced norm by this scalar product?

12.11 Show that the inequality

( n∑

i=1

αiβi

)2

≤
n∑

i=1

(γiαi )
2 ·

n∑

i=1

(βi

γi

)2

holds for arbitrary real numbers α1, . . . ,αn,β1, . . . ,βn and positive real num-

bers γ1, . . . , γn .

12.12 Let V be a finite dimensional Euclidean or unitary vector space with the scalar

product 〈·, ·〉. Let f : V → V be a map with 〈 f (v), f (w)〉 = 〈v,w〉 for all

v,w ∈ V . Show that f is an isomorphism.

12.13 Let V be a unitary vector space and suppose that f ∈ L(V,V) satisfies

〈 f (v), v〉 = 0 for all v ∈ V . Prove or disprove that f = 0.

Does the same statement also hold for Euclidean vector spaces?

12.14 Let D = diag(d1, . . . , dn) ∈ R
n,n with d1, . . . , dn > 0. Show that 〈v,w〉 =

wT Dv is a scalar product on R
n,1. Analyze which properties of a scalar product

are violated if at least one of the di is zero, or when all di are nonzero but have

different signs.

12.15 Orthonormalize the following basis of the vector space C
2,2 with respect to

the scalar product 〈A, B〉 = trace(B H A):

{[
1 0

0 0

]
,

[
1 0

0 1

]
,

[
1 1

0 1

]
,

[
1 1

1 1

]}
.

12.16 Let Q ∈ R
n,n be an orthogonal or let Q ∈ C

n,n be a unitary matrix. What are

the possible values of det(Q)?

12.17 Let u ∈ R
n,1 \ {0} and let

H(u) = In − 2
1

uT u
uuT ∈ R

n,n .

Show that the n columns of H(u) form an orthonormal basis of R
n,1 with

respect to the standard scalar product. (Matrices of this form are called House-

holder matrices.9 We will study them in more detail in Example 18.15.)

12.18 Prove Lemma 12.21.

9Alston Scott Householder (1904–1993), pioneer of Numerical Linear Algebra.
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12.19 Let

[v1, v2, v3] =

⎡
⎢⎣

1√
2

0 1√
2

− 1√
2

0 1√
2

0 0 0

⎤
⎥⎦ ∈ R

3,3.

Analyze whether the vectorsv1, v2, v3 are orthonormal with respect to the stan-

dard scalar product and compute the orthogonal complement of span{v1, v2, v3}.
12.20 Let V be a Euclidean or unitary vector space with the scalar product 〈·, ·〉, let

u1, . . . , uk ∈ V and let U = span{u1, . . . , uk}. Show that for v ∈ V we have

v ∈ U⊥ if and only if 〈v, u j 〉 = 0 for j = 1, . . . , k.

12.21 In the unitary vector space C
4,1 with the standard scalar product let v1 =

[−1, i, 0, 1]T and v2 = [i, 0, 2, 0]T be given. Determine an orthonormal

basis of span{v1, v2}⊥.

12.22 Prove Lemma 12.24.



Chapter 13

Adjoints of Linear Maps

In this chapter we introduce adjoints of linear maps. In some sense these represent

generalizations of the (Hermitian) transposes of a matrices. A matrix is symmetric

(or Hermitian) if it is equal to its (Hermitian) transpose. In an analogous way, an

endomorphism is selfadjoint if it is equal to its adjoint endomorphism. The sets of

symmetric (or Hermitian) matrices and of selfadjoint endomorphisms form certain

vector spaces which will play a key role in our proof of the Fundamental Theorem of

Algebra in Chap. 15. Special properties of selfadjoint endomorphisms will be studied

in Chap. 18.

13.1 Basic Definitions and Properties

In Chap. 12 we have considered Euclidean and unitary vector spaces, and hence

vector spaces over the fields R and C. Now let V and W be vector spaces over a

general field K , and let β be a bilinear form on V × W .

For every fixed vector v ∈ V , the map

βv : W → K , w �→ β(v,w),

is a linear form on W . Thus, we can assign to every v ∈ V a vector βv ∈ W∗, which

defines the map

β(1) : V → W
∗, v �→ βv. (13.1)

Analogously, we define the map

β(2) : W → V
∗, w �→ βw, (13.2)

where βw : V → K is defined by v �→ β(v,w) for every w ∈ W .
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Lemma 13.1 The maps β(1) and β(2) defined in (13.1) and (13.2), respectively, are

linear, i.e., β(1) ∈ L(V,W∗) and β(2) ∈ L(W,V∗). If dim(V) = dim(W) ∈ Nand

β is non-degenerate (cp. Definition 11.9), then β(1) and β(2) are bijective and thus

isomorphisms.

Proof We prove the assertion only for the map β(1); the proof for β(2) is analogous.

We first show the linearity. Let v1, v2 ∈ V and λ1,λ2 ∈ K . For every w ∈ W we

then have

β(1)(λ1v1 + λ2v2)(w) = β(λ1v1 + λ2v2, w)

= λ1β(v1, w) + λ2β(v2, w)

= λ1β
(1)(v1)(w) + λ2β

(1)(v2)(w)

=
(
λ1β

(1)(v1) + λ2β
(1)(v2)

)
(w),

and hence β(1)(λ1v1+λ2v2) = λ1β
(1)(v1)+λ2β

(1)(v2). Therefore, β(1) ∈ L(V,W∗).

Let now dim(V) = dim(W) ∈ N and let β be non-degenerate. We show that β(1) ∈

L(V,W∗) is injective. By (5) in Lemma 10.7, this holds if and only if ker(β(1)) = {0}.

If v ∈ ker(β(1)), then β(1)(v) = βv = 0 ∈ W∗, and thus

βv(w) = β(v,w) = 0 for all w ∈ W.

Since β is non-degenerate, we have v = 0. Finally, dim(V) = dim(W)and dim(W)

= dim(W∗) imply that dim(V) = dim(W∗) so that β(1) is bijective (cp. Corol-

lary 10.11). ⊓⊔

We next discuss the existence of the adjoint map.

Theorem 13.2 If V and W are K -vector spaces with dim(V) = dim(W) ∈ Nand

β is a non-degenerate bilinear form on V × W , then the following assertions hold:

(1) For every f ∈ L(V,V) there exists a uniquely determined g ∈ L(W,W) with

β( f (v), w) = β(v, g(w)) for all v ∈ V and w ∈ W .

The map g is called the right adjoint of f with respect to β.

(2) For every h ∈ L(W,W) there exists a uniquely determined k ∈ L(V,V) with

β(v, h(w)) = β(k(v), w) for all v ∈ V and w ∈ W .

The map k is called the left adjoint of h with respect to β.

Proof We only show (1); the proof of (2) is analogous.

Let V∗ be the dual space of V , let f ∗ ∈ L(V∗,V∗)be the dual map of f , and

let β(2) ∈ L(W,V∗)be as in (13.2). Since β is non-degenerate, β(2) is bijective by

Lemma 13.1. Define

g := (β(2))−1 ◦ f ∗ ◦ β(2) ∈ L(W,W).
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Then, for all v ∈ V and w ∈ W ,

β(v, g(w)) = β(v, ((β(2))−1 ◦ f ∗ ◦ β(2))(w))

= β(2)
(
((β(2))−1 ◦ f ∗ ◦ β(2))(w)

)
(v)

= β(2)
(
(β(2))−1( f ∗(β(2)(w)))

)
(v)

=
(
β(2) ◦ (β(2))−1 ◦ β(2)(w) ◦ f

)
(v)

= β(2)(w)( f (v))

= β( f (v), w).

(Recall that the dual map satisfies f ∗(β(2)(w)) = β(2)(w) ◦ f .)

It remains to show the uniqueness of g. Let g̃ ∈ L(W,W)with β(v, g̃(w)) =

β( f (v), w) for all v ∈ V and w ∈ W . Then β(v, g̃(w)) = β(v, g(w)), and hence

β(v, (g̃ − g)(w)) = 0 for all v ∈ V and w ∈ W .

Since β is non-degenerate in the second variable, we have (g̃ − g)(w) = 0 for all

w ∈ W , so that g = g̃. ⊓⊔

Example 13.3 Let V = W = K n,1 and β(v,w) = wT Bv with a matrix B ∈

GLn(K ), so that β is non-degenerate (cp. (1) in Example 11.10). We consider the

linear map f : V → V , v �→ Fv, with a matrix F ∈ K n,n , and the linear map

h : W → W , w �→ Hw, with a matrix H ∈ K n,n . Then

βv : W → K , w �→ wT (Bv),

β(1) : V → W
∗, v �→ (Bv)T ,

β(2) : W → V
∗, w �→ wT B,

where we have identified the isomorphic vector spaces W∗ and K 1,n , respectively

V∗ and K 1,n , with each other. If g ∈ L(W,W) is the right adjoint of f with respect

to β, then

β( f (v), w) = wT B f (v) = wT B Fv = β(v, g(w)) = g(w)T Bv

for all v ∈ V and w ∈ W . If we represent the linear map g via the multiplication

with a matrix G ∈ K n,n , i.e., g(w) = Gw, then wT B Fv = wT GT Bv for all

v,w ∈ K n,1. Hence B F = GT B. Since B is invertible, the unique right adjoint is

given by G = (B F B−1)T = B−T F T BT .

Analogously, for the left adjoint k ∈ L(V,V)of h with respect to β we obtain the

equation

β(v, h(w)) = (h(w))T Bv = wT H T Bv = β(k(v), w) = wT Bk(v)

for all v ∈ V and w ∈ W . With k(v) = Lv for a matrix L ∈ K n,n , we obtain

H T B = BL and hence L = B−1 H T B.
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If V is finite dimensional and β is a non-degenerate bilinear form on V , then by

Theorem 13.2 every f ∈ L(V,V) has a unique right adjoint g and a unique left

adjoint k, such that

β( f (v), w) = β(v, g(w)) and β(v, f (w)) = β(k(v), w) (13.3)

for all v,w ∈ V . If β is symmetric, i.e., if β(v,w) = β(w, v)holds for all v,w ∈ V ,

then (13.3) yields

β(v, g(w)) = β( f (v), w) = β(w, f (v)) = β(k(w), v) = β(v, k(w)).

Therefore, β(v, (g − k)(w)) = 0 for all v,w ∈ V , and hence g = k, since β is

non-degenerate. Thus, we have proved the following result.

Corollary 13.4 If β is a symmetric and non-degenerate bilinear form on a finite

dimensional K -vector space V , then for every f ∈ L(V,V) there exists a unique

g ∈ L(V,V)with

β( f (v), w) = β(v, g(w)) and β(v, f (w)) = β(g(v), w)

for all v,w ∈ V .

By definition, a scalar product on a Euclidean vector space is a symmetric and non-

degenerate bilinear form (cp. Definition 12.1). This leads to the following corollary.

Corollary 13.5 If V is a finite dimensional Euclidean vector space with the scalar

product 〈·, ·〉, then for every f ∈ L(V,V) there exists a unique f ad ∈ L(V,V)with

〈 f (v), w〉 = 〈v, f ad(w)〉 and 〈v, f (w)〉 = 〈 f ad(v), w〉 (13.4)

for all v,w ∈ V . The map f ad is called the adjoint of f (with respect to 〈·, ·〉).

In order to determine whether a given map g ∈ L(V,V) is the unique adjoint of

f ∈ L(V,V), only one of the two conditions in (13.4) have to be verified: If for

f, g ∈ L(V,V) the equation

〈 f (v), w〉 = 〈v, g(w)〉

holds for all v,w ∈ V , then also

〈v, f (w)〉 = 〈 f (w), v〉 = 〈w, g(v)〉 = 〈g(v), w〉

for all v,w ∈ V , where we have used the symmetry of the scalar product. Similarly,

if 〈v, f (w)〉 = 〈g(v), w〉holds for all v,w ∈ V , then also 〈 f (v), w〉 = 〈v, g(w)〉 for

all v,w ∈ V .
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Example 13.6 Consider the Euclidean vector space R
3,1 with the scalar product

〈v,w〉 = wT Dv, where D =

⎡
⎣

1 0 0

0 2 0

0 0 1

⎤
⎦ ,

and the linear map

f : R
3,1 → R

3,1, v �→ Fv, where F =

⎡
⎣

1 2 2

1 0 1

2 0 0

⎤
⎦ .

For all v,w ∈ R
3,1 we then have

〈 f (v), w〉 = wT DFv = wT DF D−1 Dv = (D−T F T DT w)T Dv = 〈v, f ad(w)〉,

and thus

f ad : R
3,1 → R

3,1, v �→ D−1 F T Dv =

⎡
⎣

1 2 2

1 0 0

2 2 0

⎤
⎦ v,

where we have used that D is symmetric.

We now show that uniquely determined adjoint maps also exist in the unitary case.

However, we cannot conclude this directly from Corollary 13.4, since a scalar product

on a C-vector space is not a symmetric bilinear form, but a Hermitian sesquilinear

form. In order to show the existence of the adjoint map in the unitary case we construct

it explicitly. This construction works also in the Euclidean case.

Let V be a unitary vector space with the scalar product 〈·, ·〉 and let {u1, . . . , un}

be an orthonormal basis of V . For a given f ∈ L(V,V)we define the map

g : V → V, v �→

n∑

i=1

〈v, f (ui )〉ui .

If v,w ∈ V and λ,µ ∈ C, then

g(λv + µw) =

n∑

i=1

〈λv + µw, f (ui )〉ui =

n∑

i=1

(
λ〈v, f (ui )〉ui + µ〈v, f (ui )〉ui

)

= λg(v) + µg(w),
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and hence g ∈ L(V,V). Let now v =
∑n

i=1 λi ui ∈ V and w ∈ V , then

〈v, g(w)〉 =
〈 n∑

i=1

λi ui ,

n∑

j=1

〈w, f (u j )〉u j

〉
=

n∑

i=1

λi 〈w, f (ui )〉 =

n∑

i=1

λi 〈 f (ui ), w〉

= 〈 f (v), w〉.

Furthermore,

〈v, f (w)〉 = 〈 f (w), v〉 = 〈w, g(v)〉 = 〈g(v), w〉

for all v,w ∈ V . If g̃ ∈ L(V,V) satisfies 〈 f (v), w〉 = 〈v, g̃(w)〉 for all v,w ∈ V ,

then g = g̃, since the scalar product is positive definite. We can therefore formulate

the following result analogously to Corollary 13.5.

Corollary 13.7 If V is a finite dimensional unitary vector space with the scalar

product 〈·, ·〉, then for every f ∈ L(V,V) there exists a unique f ad ∈ L(V,V) with

〈 f (v), w〉 = 〈v, f ad(w)〉 and 〈v, f (w)〉 = 〈 f ad(v), w〉 (13.5)

for all v,w ∈ V . The map f ad is called the adjoint of f (with respect to 〈·, ·〉).

As in the Euclidean case, again the validity of one of the two equations in (13.5)

for all v,w ∈ V implies the validity of the other for all v,w ∈ V .

Example 13.8 Consider the unitary vector space C
3,1 with the scalar product

〈v,w〉 = wH Dv, where D =

⎡
⎣

1 0 0

0 2 0

0 0 1

⎤
⎦ ,

and the linear map

f : C
3,1 → C

3,1, v �→ Fv, where F =

⎡
⎣

1 2i 2

i 0 −i

2 0 3i

⎤
⎦ .

For all v,w ∈ C
3,1 we then have

〈 f (v), w〉 = wH DFv = wH DF D−1 Dv = (D−H F H DHw)H Dv

= 〈v, f ad(w)〉,

and thus

f ad : C
3,1 → C

3,1, v �→ D−1 F H Dv =

⎡
⎣

1 −2i 2

−i 0 0

2 2i −3i

⎤
⎦ v,
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where we have used that D is real and symmetric.

We next investigate the properties of the adjoint map.

Lemma 13.9 Let V be a finite dimensional Euclidean or unitary vector space.

(1) If f1, f2 ∈ L(V,V)and λ1,λ2 ∈ K (where K = R in the Euclidean and K = C

in the unitary case), then

(λ1 f1 + λ2 f2)
ad = λ1 f ad

1 + λ2 f ad
2 .

In the Euclidean case the map f �→ f ad is therefore linear, and in the unity case

semilinear.

(2) We have (IdV)ad = IdV .

(3) For every f ∈ L(V,V)we have ( f ad)ad = f .

(4) If f1, f2 ∈ L(V,V), then ( f2 ◦ f1)
ad = f ad

1 ◦ f ad
2 .

Proof

(1) If v,w ∈ V and λ1,λ2 ∈ K , then

〈(λ1 f1 + λ2 f2)(v), w〉 = λ1〈 f1(v), w〉 + λ2〈 f2(v), w〉

= λ1

〈
v, f ad

1 (w)
〉
+ λ2

〈
v, f ad

2 (w)
〉

=
〈
v,λ1 f ad

1 (w) + λ2 f ad
2 (w)

〉

=
〈
v,

(
λ1 f ad

1 + λ2 f ad
2

)
(w)

〉
,

and thus (λ1 f1 + λ2 f2)
ad = λ1 f ad

1 + λ2 f ad
2 .

(2) For all v,w ∈ V we have 〈IdV(v), w〉 = 〈v,w〉 = 〈v, IdV(w)〉, and thus

(IdV)ad = IdV .

(3) For all v,w ∈ V we have 〈 f ad(v), w〉 = 〈v, f (w)〉, and thus ( f ad)ad = f .

(4) For all v,w ∈ V we have

〈( f2 ◦ f1)(v), w〉 = 〈 f2( f1(v)), w〉 =
〈
f1(v), f ad

2 (w)
〉
=

〈
v, f ad

1

(
f ad
2 (w)

)〉

=
〈
v,

(
f ad
1 ◦ f ad

2

)
(w)

〉
,

and thus ( f2 ◦ f1)
ad = f ad

1 ◦ f ad
2 . ⊓⊔

The following result shows relations between the image and kernel of an endo-

morphism and of its adjoint.

Theorem 13.10 If V is a finite dimensional Euclidean or unitary vector space and

f ∈ L(V,V), then the following assertions hold:
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(1) ker( f ad) = im( f )⊥.

(2) ker( f ) = im( f ad)⊥.

Proof

(1) If w ∈ ker( f ad), then f ad(w) = 0 and

0 = 〈v, f ad(w)〉 = 〈 f (v), w〉

for all v ∈ V , hence w ∈ im( f )⊥. If, on the other hand, w ∈ im( f )⊥, then

0 = 〈 f (v), w〉 = 〈v, f ad(w)〉

for all v ∈ V . Since 〈·, ·〉 is non-degenerate, we have f ad(w) = 0 and, hence,

w ∈ ker( f ad).

(2) Using ( f ad)ad = f and (1) we get ker( f ) = ker(( f ad)ad) = im( f ad)⊥. ⊓⊔

Example 13.11 Consider the unitary vector space C
3,1 with the standard scalar prod-

uct and the linear map

f : C
3,1 → C

3,1, v �→ Fv, with F =

⎡
⎣

1 i i

i 0 0

1 0 0

⎤
⎦ .

Then

f ad : C
3,1 → C

3,1, v �→ F Hv, with F H =

⎡
⎣

1 −i 1

−i 0 0

−i 0 0

⎤
⎦ .

The matrices F and F H have rank 2. Therefore, dim(ker( f )) = dim(ker( f ad)) = 1.

A simple calculation shows that

ker( f ) = span

⎧
⎨
⎩

⎡
⎣

0

1

−1

⎤
⎦

⎫
⎬
⎭ and ker( f ad) = span

⎧
⎨
⎩

⎡
⎣

0

1

i

⎤
⎦

⎫
⎬
⎭ .

The dimension formula for linear maps implies that dim(im( f )) = dim(im( f ad)) = 2.

From the matrices F and F H we can see that

im( f ) = span

⎧
⎨
⎩

⎡
⎣

1

i

1

⎤
⎦ ,

⎡
⎣

1

0

0

⎤
⎦

⎫
⎬
⎭ and im( f ad) = span

⎧
⎨
⎩

⎡
⎣

1

−i

−i

⎤
⎦ ,

⎡
⎣

1

0

0

⎤
⎦

⎫
⎬
⎭ .

The equations ker( f ad) = im( f )⊥ and ker( f ) = im( f ad)⊥ can be verified by direct

computation.
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13.2 Adjoint Endomorphisms and Matrices

We now study the relation between the matrix representations of an endomorphism

and its adjoint. Let V be a finite dimensional unitary vector space with the scalar

product 〈·, ·〉 and let f ∈ L(V,V). For an orthonormal basis B = {u1, . . . , un} of V

let [ f ]B,B = [ai j ] ∈ C
n,n , i.e.,

f (u j ) =

n∑

k=1

ak j uk, j = 1, . . . , n,

and hence

〈 f (u j ), ui 〉 =
〈 n∑

k=1

ak j uk, ui

〉
= ai j , i, j = 1, . . . , n.

If [ f ad ]B,B = [bi j ] ∈ C
n,n , i.e.,

f ad(u j ) =

n∑

k=1

bk j uk, j = 1, . . . , n,

then

bi j = 〈 f ad(u j ), ui 〉 = 〈u j , f (ui )〉 = 〈 f (ui ), u j 〉 = a j i .

Thus, [ f ad ]B,B = ([ f ]B,B)H . The same holds for a finite dimensional Euclidean

vector space, but then we can omit the complex conjugation. Therefore, we have

shown the following result.

Theorem 13.12 If V is a finite dimensional Euclidean or unitary vector space with

the orthonormal basis B and f ∈ L(V,V), then

[ f ad ]B,B = ([ f ]B,B)H .

(In the Euclidean case ([ f ]B,B)H = ([ f ]B,B)T .)

An important special class are the selfadjoint endomorphisms.

Definition 13.13 Let V be a finite dimensional Euclidean or unitary vector space.

An endomorphism f ∈ L(V,V) is called selfadjoint when f = f ad .

Trivial examples of selfadjoint endomorphism in L(V,V) are f = 0 and IdV .

Corollary 13.14

(1) If V is a finite dimensional Euclidean vector space, f ∈ L(V,V) is selfadjoint

and B is an orthonormal basis of V , then [ f ]B,B is a symmetric matrix.
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(2) If V is a finite dimensional unitary vector space, f ∈ L(V,V) is selfadjoint and

B is an orthonormal basis of V , then [ f ]B,B is an Hermitian matrix.

The selfadjoint endomorphisms again form a vector space. However, one has to

be careful to use the appropriate field over which this vector space is defined. In

particular, the set of selfadjoint endomorphisms on a unitary vector space V does not

form a C-vector space. If f = f ad ∈ L(V,V)\ {0}, then (i f )ad = −i f ad = −i f �=

i f (cp. (1) in Lemma 13.9). Similarly, the Hermitian matrices in C
n,n do not form

a C-vector space. If A = AH ∈ C
n,n \ {0} is Hermitian, then (iA)H = −iAH =

−iA �= iA.

Lemma 13.15

(1) If V is an n-dimensional Euclidean vector space, then the set of selfadjoint

endomorphisms { f ∈ L(V,V) | f = f ad} forms an R-vector space of dimension

n(n + 1)/2.

(2) If V is an n-dimensional unitary vector space, then the set of selfadjoint endo-

morphisms { f ∈ L(V,V) | f = f ad} forms an R-vector space of dimension

n2.

Proof Exercise. ⊓⊔

A matrix A ∈ C
n,n with A = AT is called complex symmetric. Unlike the Her-

mitian matrices, the complex symmetric matrices form a C-vector space.

Lemma 13.16 The set of complex symmetric matrices in C
n,n forms a C-vector

space of dimension n(n + 1)/2.

Proof Exercise. ⊓⊔

Lemmas 13.15 and 13.16 will be used in Chap. 15 in our proof of the Fundamental

Theorem of Algebra.

Exercises

13.1. Let β(v,w) = wT Bv with B = diag(1,−1)be defined for v,w ∈ R
2,1.

Consider the linear maps f : R
2,1 → R

2,1, v �→ Fv, and h : R
2,1 → R

2,1,

w �→ Hw, where

F =

[
1 2

0 1

]
∈ R

2,2, H =

[
1 0

1 1

]
∈ R

2,2.

Determine βv , β(1) and β(2) as in (13.1)–(13.2) as well as the right adjoint of

f and the left adjoint of h with respect to β.

13.2. Let (V, 〈·, ·〉V) and (W, 〈·, ·〉W)be two finite dimensional Euclidean vec-

tor spaces and let f ∈ L(V,W). Show that there exists a unique g ∈

L(W,V)with 〈 f (v), w〉W = 〈v, g(w)〉V for all v ∈ V and w ∈ W .

13.3. Let 〈v,w〉 = wT Bv for all v,w ∈ R
2,1 with

B =

[
2 1

1 1

]
∈ R

2,2.
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(a) Show that 〈v,w〉 = wT Bv is a scalar product on R
2,1.

(b) Using this scalar product, determine the adjoint map f ad of f : R
2,1 →

R
2,1, v �→ Fv, with F ∈ R

2,2.

(c) Investigate which properties F needs to satisfy so that f is selfadjoint.

13.4. Let n ≥ 2 and

f : R
n,1 → R

n,1, [x1, . . . , xn]
T �→ [0, x1, . . . , xn−1]

T .

Determine the adjoint f ad of f with respect to the standard scalar product of

R
n,1.

13.5. Let V be a finite dimensional Euclidean or unitary vector space and let f ∈

L(V,V). Show that ker( f ad ◦ f ) = ker( f )and im( f ad ◦ f ) = im( f ad).

13.6. Let V be a finite dimensional Euclidean or unitary vector space, let U ⊆ V be

a subspace and let f ∈ L(V,V)with f (U) ⊆ U . Show that then f ad(U⊥) ⊆

U⊥.

13.7. Let V be a finite dimensional Euclidean or unitary vector space, let f ∈

L(V,V)andv ∈ V . Show that v ∈ im( f ) if and only if v ∈ ker( f ad)⊥.

“Matrix version”: For A ∈ C
n,n and b ∈ C

n,1 the linear system of equations

Ax = b has a solution if and only if b ∈ L (AH , 0)⊥.

13.8. Let V be a finite dimensional Euclidean or unitary vector space and let f, g ∈

L(V,V)be selfadjoint. Show that f ◦ g is selfadjoint if and only if f and g

commute, i.e., f ◦ g = g ◦ f .

13.9. Let V be a finite dimensional unitary vector space and let f ∈ L(V,V). Show

that f is selfadjoint if and only if 〈 f (v), v〉 ∈ R holds for all v ∈ V .

13.10. Let V be a finite dimensional Euclidean or unitary vector space and let f ∈

L(V,V)be a projection, i.e., f satisfies f 2 = f . Show that f is selfadjoint

if and only if ker( f ) ⊥ im( f ), i.e., 〈v,w〉 = 0 holds for all v ∈ ker( f )and

w ∈ im( f ).

13.11. Let V be a finite dimensional Euclidean or unitary vector space and let f, g ∈

L(V,V). Show that if gad ◦ f = 0 ∈ L(V,V), then 〈v,w〉 = 0 holds for all

v ∈ im( f )andw ∈ im(g).

13.12. For two polynomials p, q ∈ R[t]≤n let

〈p, q〉 :=

∫ 1

−1

p(t)q(t) dt.

(a) Show that this defines a scalar product on R[t]≤n .

(b) Consider the map

f : R[t]≤n → R[t]≤n, p =

n∑

i=0

αi t
i �→

n∑

i=1

iαi t
i−1,

and determine f ad , ker( f ad), im( f ), ker( f ad)⊥ and im( f )⊥.

13.13. Prove Lemma 13.15.

13.14. Prove Lemma 13.16.



Chapter 14

Eigenvalues of Endomorphisms

In previous chapters we have already studied eigenvalues and eigenvectors of matri-

ces. In this chapter we generalize these concepts to endomorphisms, and we inves-

tigate when endomorphisms on finite dimensional vector spaces can be represented

by diagonal matrices or (upper) triangular matrices. From such representations we

easily can read off important information about the endomorphism, in particular its

eigenvalues.

14.1 Basic Definitions and Properties

We first consider an arbitrary vector space and then concentrate on the finite dimen-

sional case.

Definition 14.1 Let V be a K -vector space and f ∈ L(V,V). If λ ∈ K and v ∈
V \ {0} satisfy

f (v) = λv,

then λ is called an eigenvalue of f , and v is called an eigenvector of f corresponding

to λ.

By definition, v = 0 cannot be an eigenvector, but an eigenvalue λ = 0 may occur

(cp. the example following Definition 8.7).

The equation f (v) = λv can be written as

0 = λv − f (v) = (λIdV − f )(v).

Hence, λ ∈ K is an eigenvalue of f if and only if

ker(λIdV − f ) �= {0}.
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We already know that the kernel of an endomorphism on V forms a subspace of V

(cp. Lemma 10.7). This holds, in particular, for ker(λIdV − f ).

Definition 14.2 If V is a K -vector space and λ ∈ K is an eigenvalue of f ∈ L(V,V),

then the subspace

V f (λ) := ker(λIdV − f )

is called the eigenspace of f corresponding to λ and

g(λ, f ) := dim(V f (λ))

is called the geometric multiplicity of the eigenvalue λ.

By definition, the eigenspace V f (λ) is spanned by all eigenvectors of f cor-

responding to the eigenvalue λ. If V f (λ) is finite dimensional, then g(λ, f ) =
dim(V f (λ)) is equal to the maximal number of linearly independent eigenvectors

of f corresponding to λ.

Definition 14.3 Let V be a K -vector space, let U ⊆ V be a subspace, and let

f ∈ L(V,V). If f (U) ⊆ U , i.e., if f (u) ∈ U holds for all u ∈ U , then U is called an

f -invariant subspace of V .

An important example of f -invariant subspaces are the eigenspaces of f .

Lemma 14.4 If V is a K -vector space and λ ∈ K is an eigenvalue of f ∈ L(V,V),

then V f (λ) is an f -invariant subspace of V .

Proof For every v ∈ V f (λ) we have f (v) = λv ∈ V f (λ). ⊓⊔

We now consider finite dimensional vector spaces and discuss the relationship

between the eigenvalues of f and the eigenvalues of a matrix representation of f

with respect to a given basis.

Lemma 14.5 If V is a finite dimensional K -vector space and f ∈ L(V,V), then

the following statements are equivalent:

(1) λ ∈ K is an eigenvalue of f .

(2) λ ∈ K is an eigenvalue of the matrix [ f ]B,B for every basis B of V .

Proof Let λ ∈ K be an eigenvalue of f and let B = {v1, . . . , vn} be an arbitrary

basis of V . If v ∈ V is an eigenvector of f corresponding to the eigenvalue λ, then

f (v) = λv and there exist (unique) coordinates µ1, . . . ,µn ∈ K , not all equal to

zero, with v =
∑n

j=1 µ jv j . Using (10.4) we obtain

[ f ]B,B

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ = �B( f (v)) = �B(λv) = λ�B(v) = λ

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ ,
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and thus λ is an eigenvalue of [ f ]B,B .

If, on the other hand, [ f ]B,B[µ1, . . . ,µn]T = λ[µ1, . . . ,µn]T with [µ1, . . . ,

µn]T �= 0 for a given (arbitrary) basis B = {v1, . . . , vn} of V , then we set

v :=
∑n

j=1 µ jv j . Then v �= 0 and

f (v) =
n∑

j=1

µ j f (v j ) = ( f (v1), . . . , f (vn))

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦ =

(
(v1, . . . , vn)[ f ]B,B

)
⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦

= (v1, . . . , vn)

⎛
⎜⎝λ

⎡
⎢⎣

µ1

...

µn

⎤
⎥⎦

⎞
⎟⎠ = λv,

i.e., λ is an eigenvalue of f . ⊓⊔

Lemma 14.5 implies that the eigenvalues of f are the roots of the characteristic

polynomial of the matrix [ f ]B,B (cp. Theorem 8.8). This, however, does not hold

in general for a matrix representation of the form [ f ]B,B̃ , where B and B̃ are two

different bases of V . In general, the two matrices

[ f ]B,B̃ = [IdV ]B,B̃ [ f ]B,B and [ f ]B,B

do not have the same eigenvalues.

Example 14.6 Consider the vector space R2,1 with the bases

B =
{[

1

0

]
,

[
0

1

]}
, B̃ =

{[
1

−1

]
,

[
1

1

]}
.

Then the endomorphism

f : R2,1 → R2,1, v �→ Fv, where F =
[

0 1

1 0

]
,

has the matrix representations

[ f ]B,B =
[

0 1

1 0

]
, [ f ]B,B̃ =

1

2

[
−1 1

1 1

]
.

We have det(t I2 − [ f ]B,B) = t2 − 1, and thus f has the eigenvalues −1 and 1. On

the other hand, the characteristic polynomial of [ f ]B,B̃ is t2 − 1
2
, so that this matrix

has the eigenvalues −1/
√

2 and 1/
√

2.

For two different bases B and B̃ of V the matrices [ f ]B,B and [ f ]B̃,B̃ are similar

(cp. the discussion following Corollary 10.20). In Theorem 8.12 we have shown that
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similar matrices have the same characteristic polynomial. This justifies the following

definition.

Definition 14.7 If n ∈ N, V is an n-dimensional K -vector space with the basis B,

and f ∈ L(V,V), then

P f := det(t In − [ f ]B,B) ∈ K [t]

is called the characteristic polynomial of f .

The characteristic polynomial P f is always a monic polynomial with

deg(P f ) = n = dim(V).

As we have discussed before, P f is independent of the choice of the basis of V . A

scalar λ ∈ K is an eigenvalue of f if and only if λ is a root of P f , i.e., P f (λ) = 0.

As shown in Example 8.9, in real vector spaces with dimensions at least two, there

exist endomorphisms that do not have eigenvalues.

If λ is a root of P f , then P f = (t − λ) · q for a monic polynomial q ∈ K [t],
i.e., the linear factor t − λ divides the polynomial P f ; we will show this formally in

Corollary 15.5 below. If also q(λ) = 0, then q = (t − λ) · q̃ for a monic polynomial

q̃ ∈ K [t], and thus P f = (t − λ)2 · q̃ . We can continue until P f = (t − λ)d · g for a

g ∈ K [t] with g(λ) �= 0. This leads to the following definition.

Definition 14.8 Let V be a finite dimensional K -vector space, and let f ∈ L(V,V)

have the eigenvalue λ ∈ K . If the characteristic polynomial of f has the form

P f = (t − λ)d · g

for some g ∈ K [t] with g(λ) �= 0, then d is called the algebraic multiplicity of the

eigenvalue λ of f . It is denoted by a(λ, f ).

If λ1, . . . ,λk are the pairwise distinct eigenvalues of f with corresponding alge-

braic multiplicities a(λ1, f ), . . . , a(λk, f ), and if dim(V) = n, then

a(λ1, f ) + . . . + a(λk, f ) ≤ n,

since deg(P f ) = dim(V) = n.

Example 14.9 The endomorphism f : R4,1 → R4,1, v �→ Fv with

F =

⎡
⎢⎢⎣

1 2 3 4

0 1 2 3

0 0 0 1

0 0 −1 0

⎤
⎥⎥⎦ ∈ R4,4,

has the characteristic polynomial P f = (t −1)2(t2 +1). The only real root of P f is 1,

and a(λ1, f ) = 2 < 4 = dim(R4,1).
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Lemma 14.10 If V is a finite dimensional K -vector space and f ∈ L(V,V), then

g(λ, f ) ≤ a(λ, f )

for every eigenvalue λ of f .

Proof Let λ ∈ K be an eigenvalue of f with geometric multiplicity m = g(λ, f ).

Then there exist m linear independent eigenvectors v1, . . . , vm ∈ V of f corre-

sponding to the eigenvalue λ. If m = dim(V), then these m eigenvectors form a

basis B of V . If m < dim(V) = n, then we can extend the m eigenvectors to a basis

B = {v1, . . . , vm, vm+1, . . . , vn} of V .

We have f (v j ) = λv j for j = 1, . . . , m and, therefore,

[ f ]B,B =
[
λIm Z1

0 Z2

]

for two matrices Z1 ∈ K m,n−m and Z2 ∈ K n−m,n−m . Using (1) in Lemma 7.10 we

obtain

P f = det(t In − [ f ]B,B) = (t − λ)m · det(t In−m − Z2),

which implies a(λ, f ) ≥ m = g(λ, f ). ⊓⊔

In the following we will try to find a basis of V , so that the eigenvalues of a

given endomorphism f can be read off easily from its matrix representation. The

easiest forms of matrices in this sense are diagonal and triangular matrices, since

their eigenvalues are just their diagonal entries.

14.2 Diagonalizability

In this section we will analyze when for a given endomorphism has a diagonal matrix

representation. We formally define this property as follows.

Definition 14.11 Let V be a finite dimensional K -vector space. An endomorphism

f ∈ L(V,V) is called diagonalizable, if there exists a basis B of V , such that [ f ]B,B

is a diagonal matrix.

Accordingly, a matrix A ∈ K n,n is diagonalizable when there exists a matrix

S ∈ GLn(K ) with A = SDS−1 for a diagonal matrix D ∈ K n,n .

In order to analyze the diagonalizablility, we begin with a sufficient condition for

the linear independence of eigenvectors. This condition also holds when V is infinite

dimensional.

Lemma 14.12 Let V be a K -vector space and f ∈ L(V,V). If λ1, . . . ,λk ∈ K ,

k ≥ 2, are pairwise distinct eigenvalues of f with corresponding eigenvectors

v1, . . . , vk ∈ V , then v1, . . . , vk are linearly independent.
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Proof We prove the assertion by induction on k. Let k = 2 and let v1, v2 be eigen-

vectors of f corresponding to the eigenvalues λ1 �= λ2. Let µ1,µ2 ∈ K with

µ1v1 + µ2v2 = 0. Applying f on both sides of this equation as well as multiplying

the equation with λ2 yields the two equations

µ1λ1v1 + µ2λ2v2 = 0,

µ1λ2v1 + µ2λ2v2 = 0.

Subtracting the second equation from the first, we get µ1(λ1 − λ2)v1 = 0. Since

λ1 �= λ2 and v1 �= 0, we have µ1 = 0. Then from µ1v1 + µ2v2 = 0 we also obtain

µ2 = 0, since v2 �= 0. Thus, v1 and v2 are linearly independent.

The proof of the inductive step is analogous. We assume that the assertion holds

for some k ≥ 2. Let λ1, . . . ,λk+1 be pairwise distinct eigenvalues of f with corre-

sponding eigenvectors v1, . . . , vk+1, and let µ1, . . . ,µk+1 ∈ K satisfy

µ1v1 + . . . + µkvk + µk+1vk+1 = 0.

Applying f to this equation yields

µ1λ1v1 + . . . + µkλkvk + µk+1λk+1vk+1 = 0,

while a multiplication with λk+1 gives

µ1λk+1v1 + . . . + µkλk+1vk + µk+1λk+1vk+1 = 0.

Subtracting this equation from the previous one we get

µ1(λ1 − λk+1)v1 + . . . + µk(λk − λk+1)vk = 0.

Since λ1, . . . ,λk+1 are pairwise distinct and v1, . . . , vk are linearly independent by

the induction hypothesis, we obtain µ1 = · · · = µk = 0. But then µk+1vk+1 = 0

implies that also µk+1 = 0, so that v1, . . . , vk+1 are linearly independent. ⊓⊔

Using this result we next show that the sum of eigenspaces corresponding to

pairwise distinct eigenvalues is direct (cp. Theorem 9.31).

Lemma 14.13 Let V be a K -vector space and f ∈ L(V,V). If λ1, . . . ,λk ∈ K ,

k ≥ 2, are pairwise distinct eigenvalues of f , then the corresponding eigenspaces

satisfy

V f (λi ) ∩
k∑

j=1

j �=i

V f (λ j ) = {0}

for all i = 1, . . . , k.
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Proof Let i be fixed and let

v ∈ V f (λi ) ∩
k∑

j=1

j �=i

V f (λ j ).

In particular, we have v =
∑

j �=i v j for some v j ∈ V f (λ j ), j �= i . Then −v +∑
j �=i v j = 0, and the linear independence of eigenvectors corresponding to pairwise

distinct eigenvalues (cp. Lemma 14.12) implies v = 0. ⊓⊔

The following theorem gives necessary and sufficient conditions for the diago-

nalizability of an endomorphism on a finite dimensional vector space.

Theorem 14.14 If V is a finite dimensional K -vector space and f ∈ L(V,V), then

the following statements are equivalent:

(1) f is diagonalizable.

(2) There exists a basis of V consisting of eigenvectors of f .

(3) The characteristic polynomial P f decomposes into n = dim(V) linear factors

over K , i.e.,

P f = (t − λ1) · . . . · (t − λn)

with the eigenvalues λ1, . . . ,λn ∈ K of f , and for every eigenvalue λ j we have

g(λ j , f ) = a(λ j , f ).

Proof

(1) ⇔ (2): If f ∈ L(V,V) is diagonalizable, then there exists a basis B =
{v1, . . . , vn} of V and scalars λ1, . . . ,λn ∈ K with

[ f ]B,B =

⎡
⎢⎣

λ1

. . .

λn

⎤
⎥⎦ , (14.1)

and hence f (v j ) = λ jv j , j = 1, . . . , n. The scalars λ1, . . . ,λn are thus eigen-

values of f , and the corresponding eigenvectors are v1, . . . , vn .

If, on the other hand, there exists a basis B = {v1, . . . , vn} of V consisting of

eigenvectors of f , then f (v j ) = λ jv j , j = 1, . . . , n, for scalars λ1, . . . ,λn ∈ K

(the corresponding eigenvalues), and hence [ f ]B,B has the form (14.1).

(2) ⇒ (3): Let B = {v1, . . . , vn} be a basis of V consisting of eigenvectors of f ,

and let λ1, . . . ,λn ∈ K be the corresponding eigenvalues. Then [ f ]B,B has the

form (14.1) and hence

P f = (t − λ1) · . . . · (t − λn),

so that P f decomposes into linear factors over K .
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We still have to show that g(λ j , f ) = a(λ j , f ) for every eigenvalue λ j . The

eigenvalue λ j has the algebraic multiplicity m j := a(λ j , f ) if and only if λ j

occurs m j times on the diagonal of the (diagonal) matrix [ f ]B,B . This holds if

and only if exactly m j vectors of the basis B are eigenvectors of f corresponding

to the eigenvalue λ j . Each of these m j linearly independent vectors is a element

of the eigenspace V f (λ j ) and, hence,

dim(V f (λ j )) = g(λ j , f ) ≥ m j = a(λ j , f ).

From Lemma 14.10 we know that g(λ j , f ) ≤ a(λ j , f ), and thus g(λ j , f ) =
a(λ j , f ).

(3) ⇒ (2): Let λ̃1, . . . , λ̃k be the pairwise distinct eigenvalues of f with correspond-

ing geometric and algebraic multiplicities g(̃λ j , f ) and a(̃λ j , f ), j = 1, . . . , k,

respectively. Since P f decomposes into linear factors, we have

k∑

j=1

a(̃λ j , f ) = n = dim(V).

Now g(̃λ j , f ) = a(̃λ j , f ), j = 1, . . . , k, implies that

k∑

j=1

g(̃λ j , f ) = n = dim(V).

By Lemma 14.13 we obtain (cp. also Theorem 9.31)

V f (̃λ1) ⊕ . . . ⊕ V f (̃λk) = V.

If we select bases of the respective eigenspaces V f (̃λ j ), j = 1, . . . , k, then we

get a basis of V that consists of eigenvectors of f .

⊓⊔

Theorem 14.14 and Lemma 14.12 imply an important sufficient condition for

diagonalizability.

Corollary 14.15 If V is an n-dimensional K -vector space and f ∈ L(V,V) has n

pairwise distinct eigenvalues, then f is diagonalizable.

The condition of having n = dim(V) pairwise distinct eigenvalues is, however, not

necessary for the diagonalizability of an endomorphism. A simple counterexample

is the identity IdV , which has the n-fold eigenvalue 1, while [IdV ]B,B = In holds

for every basis B of V . On the other hand, there exist endomorphisms with multiple

eigenvalues that are not diagonalizable.
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Example 14.16 The endomorphism

f : R2,1 → R2,1, v �→ Fv with F =
[

1 1

0 1

]
,

has the characteristic polynomial (t − 1)2 and thus only has the eigenvalue 1. We

have ker(V f (1)) = span{[1, 0]T } and thus g(1, f ) = 1 < a(1, f ) = 2. By Theo-

rem 14.14, f is not diagonalizable.

14.3 Triangulation and Schur’s Theorem

If the property g(λ j , f ) = a(λ j , f ) does not hold for every eigenvalue λ j of f ,

then f is not diagonalizable. However, as long as the characteristic polynomial P f

decomposes into linear factors, we can find a special basis B such that [ f ]B,B is a

triangular matrix.

Theorem 14.17 If V is a finite dimensional K -vector space and f ∈ L(V,V), then

the following statements are equivalent:

(1) The characteristic polynomial P f decomposes into linear factors over K .

(2) There exists a basis B of V such that [ f ]B,B is upper triangular, i.e., f can be

triangulated.

Proof

(2) ⇒ (1): If n = dim(V) and [ f ]B,B = [ri j ] ∈ K n,n is upper triangular, then

P f = (t − r11) · . . . · (t − rnn).

(1) ⇒ (2): We show the assertion by induction on n = dim(V). The case n = 1 is

trivial, since then [ f ]B,B ∈ K 1,1.

Suppose that the assertion holds for an n ≥ 1, and let dim(V) = n + 1. By

assumption,

P f = (t − λ1) · . . . · (t − λn+1),

where λ1, . . . ,λn+1 ∈ K are the eigenvalues of f . Let v1 ∈ V be an eigen-

vector corresponding to the eigenvalue λ1. We extend this vector to a basis

B = {v1, w2, . . . , wn+1} of V . With BW := {w2, . . . , wn+1} and W := span BW

we have V = span{v1} ⊕ W and

[ f ]B,B =

⎡
⎢⎢⎢⎣

λ1 a12 · · · a1,n+1

0 a22 . . . a2,n+1

...
...

. . .
...

0 an+1,2 · · · an+1,n+1

⎤
⎥⎥⎥⎦ .
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We define h ∈ L(W, span{v1}) and g ∈ L(W,W) by

h(w j ) := a1 jv1 and g(w j ) :=
n+1∑

k=2

ak jwk, j = 2, . . . , n + 1.

Then f (w) = h(w) + g(w) for all w ∈ W , and

[ f ]B,B =
[

λ1 [h]BW ,{v1}
0 [g]BW ,BW

]
.

Consequently,

(t − λ1)Pg = P f = (t − λ1) · . . . · (t − λn+1),

and hence Pg = (t − λ2) · . . . · (t − λn+1). Now dim(W) = n and the char-

acteristic polynomial of g ∈ L(W,W) decomposes into linear factors. By the

induction hypothesis there exists a basis B̂W = {ŵ2, . . . , ŵn+1} of W such that

[g]B̂W ,B̂W
upper triangular. Thus, for the basis B1 := {v1, ŵ2, . . . , ŵn+1} the

matrix [ f ]B1,B1
is upper triangular. ⊓⊔

A “matrix version” of this theorem reads as follows: The characteristic polynomial

PA of A ∈ K n,n decomposes into linear factors over K if and only if A can be

triangulated, i.e., there exists a matrix S ∈ GLn(K ) with A = S RS−1 for an upper

triangular matrix R ∈ K n,n .

Corollary 14.18 Let V be a finite dimensional Euclidian or unitary vector space

and f ∈ L(V,V). If P f decomposes over R (in the Euclidian case case) or C (in

the unitary case) into linear factors, then there exists an orthonormal basis B of V ,

such that [ f ]B,B is upper triangular.

Proof If P f decomposes into linear factors, then by Theorem 14.17 there exists a

basis B1 of V , such that [ f ]B1,B1
is upper triangular. Applying the Gram-Schmidt

method to the basis B1, we obtain an orthonormal basis B2 of V , such that [IdV ]B1,B2

is upper triangular (cp. Theorem 12.11). Then

[ f ]B2,B2
= [IdV ]B1,B2

[ f ]B1,B1
[IdV ]B2,B1

= [IdV ]−1
B2,B1

[ f ]B1,B1
[IdV ]B2,B1

.

The invertible upper triangular matrices form a group with respect to the matrix

multiplication (cp. Theorem 4.13). Thus, all matrices in the product on the right

hand side are upper triangular, and hence [ f ]B2,B2
is upper triangular. ⊓⊔

Example 14.19 Consider the Euclidian vector space R[t]≤1 with the scalar product

〈p, q〉 =
∫ 1

0
p(t)q(t) dt , and the endomorphism
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f : R[t]≤1 → R[t]≤1, α1t + α0 �→ 2α1t + α0.

We have f (1) = 1 and f (t) = 2t , i.e., the polynomials 1 and t are eigenvectors of

f corresponding to the (distinct) eigenvalues 1 and 2. Thus, B̂ = {1, t} is a basis

of R[t]≤1, and [ f ]B̂,B̂ is a diagonal matrix. Note that B̂ is not an orthonormal basis,

since in particular 〈1, t〉 �= 0.

Since P f decomposes into linear factors, Corollary 14.18 guarantees the existence

of an orthonormal basis B for which [ f ]B,B is upper triangular. In the proof of the

implication (1) ⇒ (2) of Theorem 14.17 one chooses any eigenvector of f , and

then proceeds inductively in order to obtain the triangulation of f . In this example,

let us use q1 = 1 as the first vector. This vector is an eigenvector of f with norm

1 corresponding to the eigenvalue 1. If q2 ∈ R[t]≤1 is a vector with norm 1 and

〈q1, q2〉 = 0, then B = {q1, q2} is an orthonormal basis for which [ f ]B,B is an upper

triangular matrix. We construct the vector q2 by orthogonalizing t against q1 using

the Gram-Schmidt method:

q̂2 = t − 〈t, q1〉q1 = t −
1

2
,

‖q̂2‖ =
〈
t −

1

2
, t −

1

2

〉1/2

=
1

√
12

,

q2 = ‖q̂2‖−1 q̂2 =
√

12t −
√

3.

This leads to the triangulation

[ f ]B,B =
[

1
√

3

0 2

]
∈ R2,2.

We could also choose q1 =
√

3t , which is an eigenvector of f with norm 1

corresponding to the eigenvalue 2. Orthogonalizing the vector 1 against q1 leads to

the second basis vector q2 = −3t + 2. With the corresponding basis B1 we obtain

the triangulation

[ f ]B1,B1
=

[
2 −

√
3

0 1

]
∈ R2,2.

This example shows that in the triangulation of f the elements above the diagonal can

be different for different orthonormal bases. Only the diagonal elements are (except

for their order) uniquely determined, since they are the eigenvalues of f . A more

detailed statement about the uniqueness is given in Lemma 14.22.

In the next chapter we will prove the Fundamental Theorem of Algebra, which

states that every non-constant polynomial over C decomposes into linear factors.

This result has the following corollary, which is known as Schur’s theorem.1

1Issai Schur (1875–1941).



210 14 Eigenvalues of Endomorphisms

Corollary 14.20 If V is a finite dimensional unitary vector space, then every endo-

morphism on V can be unitarily triangulated, i.e., for each f ∈ L(V,V) there exists

an orthonormal basis B of V , such that [ f ]B,B is upper triangular. The matrix [ f ]B,B

is called a Schur form of f .

If V is the unitary vector space Cn,1 with the standard scalar product, then we

obtain the following “matrix version” of Corollary 14.20.

Corollary 14.21 If A ∈ Cn,n , then there exists a unitary matrix Q ∈ Cn,n with

A = Q RQ H for an upper triangular matrix R ∈ Cn,n . The matrix R is called a

Schur form of A.

The following result shows that a Schur form of a matrix A ∈ Cn,n with n pairwise

distinct eigenvalues is “almost unique”.

Lemma 14.22 Let A ∈ Cn,n have n pairwise distinct eigenvalues, and let R1, R2 ∈
Cn,n be two Schur forms of A. If the diagonals of R1 and R2 are equal then R1 =
U R2U H for a unitary diagonal matrix U.

Proof Exercise. ⊓⊔

A survey of the results on unitary similarity of matrices can be found in the

article [Sha91].

MATLAB-Minute.

Consider for n ≥ 2 the matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 · · · n

1 3 4 · · · n + 1

1 4 5 · · · n + 2
...

...
...

...

1 n + 1 n + 2 . . . 2n − 1

⎤
⎥⎥⎥⎥⎥⎦

∈ Cn,n .

Compute a Schur form of A using the command [U,R] = schur(A) for n =
2, 3, 4, . . . 10. What are the eigenvalues of A? Formulate a conjecture about the rank

of A for general n. Can you prove your conjecture?

Exercises

(In the following exercises K is an arbitrary field.)

14.1. Let V be a vector space and let f ∈ L(V,V) have the eigenvalue λ. Show

that im(λIdV − f ) is an f -invariant subspace.

14.2. Let V be a finite dimensional vector space and let f ∈ L(V,V) be bijective.

Show that f and f −1 have the same invariant subspaces.
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14.3. Let V be an n-dimensional K -vector space, let f ∈ L(V,V), and let U be an

m-dimensional f -invariant subspace of V . Show that a basis B of V exists

such that

[ f ]B,B =
[

A1 A2

0 A3

]

for some matrices A1 ∈ K m,m , A2 ∈ K m,n−m and A3 ∈ K n−m,n−m .

14.4. Let K ∈ {R, C} and f : K 4,1 → K 4,1, v �→ Fv with

F =

⎡
⎢⎢⎣

1 2 3 4

0 1 2 3

0 0 1 1

0 0 −1 0

⎤
⎥⎥⎦ .

Compute P f and determine for K = R and K = C the eigenvalues of f

with their algebraic and geometric multiplicities, as well as the associated

eigenspaces.

14.5. Consider the vector space R[t]≤n with the standard basis {1, t, . . . , tn} and

the endomorphism

f : R[t]≤n → R[t]≤n,

n∑

i=0

αi t
i �→

n∑

i=2

i(i − 1)αi t
i−2 =

d2

dt2
p.

Compute P f , the eigenvalues of f with their algebraic and geometric mul-

tiplicities, and examine whether f is diagonalizable or not. What changes if

one considers as map the kth derivative (for k = 3, 4, . . . , n)?

14.6. Examine whether the following matrices

A =
[

0 1

−1 0

]
∈ Q2,2, B =

⎡
⎣

1 0 0

−1 2 0

−1 1 1

⎤
⎦ ∈ Q3,3, C =

⎡
⎢⎢⎣

3 1 0 −2

0 2 0 0

2 2 2 −4

0 0 0 2

⎤
⎥⎥⎦ ∈ Q4,4

are diagonalizable.

14.7. Is the set of all diagonalizable and invertible matrices a subgroup of GLn(K )?

14.8. Let n ∈ N0. Consider the R-vector space R[t]≤n and the map

f : R[t]≤n → R[t]≤n, p(t) �→ p(t + 1) − p(t).

Show that f is linear. For which n is f diagonalizable?

14.9. Let V be an R-vector space with the basis {v1, . . . , vn}. Examine whether the

following endomorphisms are diagonalizable or not:

(a) f (v j ) = v j + v j+1, j = 1, . . . , n − 1, and f (vn) = vn ,
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(b) f (v j ) = jv j + v j+1, j = 1, . . . , n − 1, and f (vn) = nvn .

14.10. Let V be a finite dimensional Euclidian vector space and let f ∈ L(V,V)

with f + f ad = 0 ∈ L(V,V). Show that f �= 0 if and only if f is not

diagonalizable.

14.11. Let V be a C-vector space and let f ∈ L(V,V) with f 2 = −IdV . Determine

all possible eigenvalues of f .

14.12. Let V be a finite dimensional vector space and f ∈ L(V,V). Show that

P f ( f ) = 0 ∈ L(V,V).

14.13. Let V be a finite dimensional K -vector space, let f ∈ L(V,V) and

p = (t − µ1) · . . . · (t − µm) ∈ K [t]≤m .

Show that p( f ) is bijective if and only if µ1, . . . ,µm are not eigenvalues of

f .

14.14. Determine conditions for the entries of the matrices

A =
[
α β

γ δ

]
∈ R2,2,

such that A is diagonalizable or can be triangulated.

14.15. Determine an endomorphism on R[t]≤3 that is not diagonalizable and that

cannot be triangulated.

14.16. Let V be a vector space with dim(V) = n. Show that f ∈ L(V,V) can be

triangulated if and only if there exist subspaces V0,V1, . . . ,Vn of V with

(a) V j ⊂ V j+1 for j = 0, 1, . . . , n − 1,

(b) dim(V j ) = j for j = 0, 1, . . . , n, and

(c) V j is f -invariant for j = 0, 1, . . . , n.

14.17. Prove Lemma 14.22.



Chapter 15

Polynomials and the Fundamental Theorem

of Algebra

In this chapter we discuss polynomials in more detail. We consider the division
of polynomials and derive classical results from polynomial algebra, including the
factorization into irreducible factors. We also prove the Fundamental Theorem of
Algebra, which states that every non-constant polynomial over the complex num-
bers has a least one complex root. This implies that every complex matrix and every
endomorphism on a (finite dimensional) complex vector space has at least one eigen-
value.

15.1 Polynomials

Let us recall some of the most important terms in the context of polynomials. If K

is a field, then

p = α0 + α1t + . . . + αntn with n ∈ N0 and α0,α1, . . . αn ∈ K

is a polynomial over K in the variable t . The set K [t] of all these polynomials forms a
commutative ring with unit (cp. Example 3.17). If αn �= 0, then deg(p) = n is called
the degree of p. If αn = 1, then p is called monic. If p = 0, then deg(p) := −∞,
and if deg(p) < 1, then p is called constant.

Lemma 15.1 For two polynomials p, q ∈ K [t] the following assertions hold:

(1) deg(p + q) ≤ max{deg(p), deg(q)}.
(2) deg(p · q) = deg(p) + deg(q).

Proof Exercise. ⊓⊔

We now introduce some concepts associated with the division of polynomials.

© Springer International Publishing Switzerland 2015
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Definition 15.2 Let K be a field.

(1) If for two polynomials p, s ∈ K [t] there exists a polynomial q ∈ K [t] with
p = s · q, then s is called a divisor of p and we write s|p (read this as “s divides
p”).

(2) Two polynomials p, s ∈ K [t] are called coprime, if q|p and q|s for some
q ∈ K [t] always imply that q is constant.

(3) A non-constant polynomial p ∈ K [t] is called irreducible (over K ), if p = s · q

for two polynomials s, q ∈ K [t] implies that s or q are constant. If there exist
two non-constant polynomials s, q ∈ K [t] with p = s · q, then p is called
reducible (over K ).

Note that the property of irreducibility is only defined for polynomials of degree
at least 1. A polynomial of degree 1 is always irreducible. Whether a polynomial of
degree at least 2 is irreducible may depend on the underlying field.

Example 15.3 The polynomial 2 − t2 ∈ Q[t] is irreducible, but the factorization

2 − t2 =
(√

2 − t
)
·
(√

2 + t
)

shows that 2 − t2 ∈ R[t] is reducible. The polynomial 1 + t2 ∈ R[t] is irreducible,
but using the imaginary unit i we have

1 + t2 = (−i + t) · (i + t),

so that 1 + t2 ∈ C[t] is reducible.

The next result concerns the division with remainder of polynomials.

Theorem 15.4 If p ∈ K [t] and s ∈ K [t] \ {0}, then there exist uniquely defined

polynomials q, r ∈ K [t] with

p = s · q + r and deg(r) < deg(s). (15.1)

Proof We show first the existence of polynomials q, r ∈ K [t] such that (15.1) holds.
If deg(s) = 0, then s = s0 for an s0 ∈ K \{0} and (15.1) follows with q := s−1

0 · p

and r := 0, where deg(r) < deg(s).
We now assume that deg(s) ≥ 1. If deg(p) < deg(s), then we set q := 0 and

r := p. Then p = s · q + r with deg(r) < deg(s).
Let n := deg(p) ≥ m := deg(s) ≥ 1. We prove (15.1) by induction on n. If

n = 1, then m = 1. Hence p = p1 · t + p0 with p1 �= 0 and s = s1 · t + s0 with
s1 �= 0. Therefore,

p = s · q + r for q := p1s−1
1 , r := p0 − p1s−1

1 s0,

where deg(r) < deg(s).
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Suppose that the assertion holds for an n ≥ 1. Let two polynomials p and s with
n + 1 = deg(p) ≥ deg(s) = m be given, and let pn+1( �= 0) and sm( �= 0) be the
highest coefficients of p and s. If

h := p − pn+1s−1
m s · tn+1−m ∈ K [t],

then deg(h) < deg(p) = n + 1. By the induction hypothesis there exist polynomials
q̃, r ∈ K [t] with

h = s · q̃ + r and deg(r) < deg(s).

It then follows that

p = s · q + r with q := q̃ + pn+1s−1
m tn+1−m,

where deg(r) < deg(s).
It remains to show the uniqueness. Suppose that (15.1) holds and that there exist

polynomials q̂, r̂ ∈ K [t] with p = s · q̂ + r̂ and deg( r̂ ) < deg(s). Then

r − r̂ = s · (q̂ − q).

If r̂ − r �= 0, then q̂ − q �= 0 and thus

deg(r − r̂) = deg(s · (q̂ − q)) = deg(s) + deg(q̂ − q) ≥ deg(s).

On the other hand, we also have

deg(r − r̂) ≤ max{deg(r), deg(̂r)} < deg(s).

This is a contradiction, which shows that indeed r = r̂ and q = q̂ . ⊓⊔

This theorem has some important consequences for the roots of polynomials. The
first of these is known as the Theorem of Ruffini.1

Corollary 15.5 If λ ∈ K is a root of p ∈ K [t], i.e., p(λ) = 0, then there exists a

uniquely determined polynomial q ∈ K [t] with p = (t − λ) · q.

Proof When we apply Theorem 15.4 to the polynomials p and s = t − λ �= 0, then
we get uniquely determined polynomials q and r with deg(r) < deg(s) = 1 and

p = (t − λ) · q + r.

The polynomial r is constant and evaluating it at λ gives

0 = p(λ) = (λ − λ) · q(λ) + r(λ) = r(λ),

1Paolo Ruffini (1765–1822).
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which yields r = 0 and p = (t − λ) · q. ⊓⊔

If a polynomial p ∈ K [t] has at least degree 2 and a root λ ∈ K , then the linear
factor t − λ is a divisor of p and, in particular, p is reducible. The converse of this
statement does not hold. For instance the polynomial 4−4t2+t4 = (2−t2)·(2−t2) ∈
Q[t] is reducible, but it does not have a root in Q.

Corollary 15.5 motivates the following definition.

Definition 15.6 If λ ∈ K is a root of p ∈ K [t] \ {0}, then its multiplicity is the
uniquely determined nonnegative integer m, such that p = (t − λ)m · q for a poly-
nomial q ∈ K [t] with q(λ) �= 0.

Recursive application of Corollary 15.5 to a given polynomial p ∈ K [t] leads to
the following result.

Corollary 15.7 If λ1 . . . ,λk ∈ K are pairwise distinct roots of p ∈ K [t] \ {0} with

the corresponding multiplicities m1, . . . , mk , then there exists a unique polynomial

q ∈ K [t] with

p = (t − λ1)
m1 · . . . · (t − λk)

mk · q

and q(λ j ) �= 0 for j = 1, . . . , k. In particular, the sum of the multiplicities of all

pairwise distinct roots of p is at most deg(p).

The next result is known as the Lemma of Bézout.2

Lemma 15.8 If p, s ∈ K [t] \ {0} are coprime, then there exist polynomials q1, q2 ∈
K [t] with

p · q1 + s · q2 = 1.

Proof We may assume without loss of generality that deg(p) ≥ deg(s) (≥ 0), and
we proceed by induction on deg(s).

If deg(s) = 0, then s = s0 for an s0 ∈ K \ {0}, and thus

p · q1 + s · q2 = 1 with q1 := 0, q2 := s−1
0 .

Suppose that the assertion holds for all polynomials p, s ∈ K [t] \ {0} with
deg(s) = n for an n ≥ 0. Let p, s ∈ K [t] \ {0} with deg(p) ≥ deg(s) = n + 1 be
given. By Theorem 15.4 there exist polynomials q and r with

p = s · q + r and deg(r) < deg(s).

Here we have r �= 0, since by assumption p and s are coprime.
Suppose that there exists a non-constant polynomial h ∈ K [t] that divides both

s and r . Then h also divides p, in contradiction to the assumption that p and s are
coprime. Thus, the polynomials s and r are coprime. Since deg(r) < deg(s), we can

2Étienne Bézout (1730–1783).
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apply the induction hypothesis to the polynomials s, r ∈ K [t] \ {0}. Hence there
exist polynomials q̃1, q̃2 ∈ K [t] with

s · q̃1 + r · q̃2 = 1.

From r = p − s · q we then get

1 = s · q̃1 + (p − s · q) · q̃2 = p · q̃2 + s · (q̃1 − q · q̃2),

which completes the proof. ⊓⊔

Using the Lemma of Bézout we can easily prove the following result.

Lemma 15.9 If p ∈ K [t] is irreducible and a divisor of the product s · h of two

polynomials s, h ∈ K [t], then p divides at least one of the factors, i.e., p|s or p|h.

Proof If s = 0, then p|s, because every polynomial is a divisor of the zero polyno-
mial.

If s �= 0 and p is not a divisor of s, then p and s are coprime, since p is irreducible.
By Lemma 15.8 there exist polynomials q1, q2 ∈ K [t] with p · q1 + s · q2 = 1, and
hence

h = h · 1 = (q1 · h) · p + q2 · (s · h).

The polynomial p divides both terms on the right hand side, and thus also p|h. ⊓⊔

By recursive application of Lemma 15.9 we obtain the Euclidean theorem, which
describes a prime factor decomposition in the ring of polynomials.

Theorem 15.10 Every polynomial p = α0 + α1t + . . . + αntn ∈ K [t] \ {0} has a

unique (up to the ordering of the factors) decomposition

p = µ · p1 · . . . · pk

with µ ∈ K and monic irreducible polynomials p1, . . . , pk ∈ K [t].

Proof If deg(p) = 0, and thus p = α0, then the assertion holds with k = 0 and
µ = α0.

Let deg(p) ≥ 1. If p is irreducible, then the assertion holds with p1 = µ−1 p

and µ = αn . If p is reducible, then p = p1 · p2 for two non-constant polynomials
p1 and p2. These are either irreducible, or we can decompose them further. Every
multiplicative decomposition of p that is obtained in this way has at most deg(p) = n

non-constant factors. Suppose that

p = µ · p1 · . . . · pk = β · q1 · . . . · qℓ (15.2)

for some k, ℓ, where 1 ≤ ℓ ≤ k ≤ n, µ,β ∈ K , as well as monic irreducible
polynomials p1, . . . , pk, q1, . . . , qℓ ∈ K [t]. Then p1|p and hence p1|q j for some j .
Since the polynomials p1 and q j are irreducible, we must have p1 = q j .
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We may assume without loss of generality that j = 1 and cancel the polynomial
p1 = q1 in the identity (15.2), which gives

µ · p2 · . . . · pk = β · q2 · . . . · qℓ.

Proceeding analogously for the polynomials p2, . . . , pk , we finally obtain k = ℓ,
µ = β and p j = q j for j = 1, . . . , k. ⊓⊔

15.2 The Fundamental Theorem of Algebra

We have seen above that the existence of roots of a polynomial depends on the
field over which it is considered. The field C is special in this sense, since here the
Fundamental Theorem of Algebra3 guarantees that every non-constant polynomial
has a root. In order to use this theorem in our context, we first present an equivalent
formulation in the language of Linear Algebra.

Theorem 15.11 The following statements are equivalent:

(1) Every non-constant polynomial p ∈ C[t] has a root in C.

(2) If V �= {0} is a finite dimensional C-vector space, then every endomorphism

f ∈ L(V,V) has an eigenvector.

Proof

(1) ⇒ (2): If V �= {0} and f ∈ L(V,V), then the characteristic polynomial P f ∈
C[t] is non-constant, since deg(P f ) = dim(V) > 0. Thus, P f has a root in C,
which is an eigenvalue of f , so that f indeed has an eigenvector.

(2) ⇒ (1): Let p = α0 + α1t + . . . + αntn ∈ C[t] be a non-constant polynomial
with αn �= 0. The roots of p are equal to the roots of the monic polynomial
p̂ := α−1

n p. Let A ∈ Cn,n be the companion matrix of p̂, then PA = p̂ (cp.
Lemma 8.4).
If V is an n-dimensional C-vector space and B is an arbitrary basis of V , then
there exists a uniquely determined f ∈ L(V,V) with [ f ]B,B = A (cp. Theo-
rem 10.16). By assumption, f has an eigenvector and hence also an eigenvalue,
so that p̂ = PA has a root. ⊓⊔

The Fundamental Theorem of Algebra cannot be proven without tools from Analy-
sis. In particular, one needs that polynomials are continuous. We will use the follow-
ing standard result, which is based on the continuity of polynomials.

Lemma 15.12 Every polynomial p ∈ R[t] with odd degree has a (real) root.

3Numerous proofs of this important result exist. Carl Friedrich Gauß (1777–1855) alone gave four
different proofs, starting with the one in his dissertation from 1799, which contained however a
gap. The history of this result is described in detail in the book [Ebb91].
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Proof Let the highest coefficient of p be positive. Then

lim
t→∞

p(t) = +∞, lim
t→−∞

p(t) = −∞.

Since the real function p(t) is continuous, the Intermediate Value Theorem from
Analysis implies the existence of a root of p. The argument in the case of a negative
leading coefficient is analogous. ⊓⊔

Our proof of the Fundamental Theorem of Algebra below follows the presentation
in the article [Der03]. The proof is by induction on the dimension of V . However,
we do not use the usual consecutive order, i.e., dim(V) = 1, 2, 3, . . . , but an order
that is based on the sets

M j := {2m · ℓ | 0 ≤ m ≤ j − 1, ℓ odd} ⊂ N, j = 1, 2, 3, . . . .

For instance,

M1 = {ℓ | ℓ odd} = {1, 3, 5, 7, . . . }, M2 = M1 ∪ {2, 6, 10, 14, . . . }.

Lemma 15.13

(1) If V is an R-vector space and if dim(V) is odd, i.e., dim(V) ∈ M1, then every

f ∈ L(V,V) has an eigenvector.

(2) Let K be a field and j ∈ N. If for every K -vector space V with dim(V) ∈ M j

every f ∈ L(V,V) has an eigenvector, then two commuting f1, f2 ∈ L(V,V)

have a common eigenvector. That is, if f1 ◦ f2 = f2 ◦ f1, then there exists a vector

v ∈ V \ {0} and two scalars λ1,λ2 ∈ K with f1(v) = λ1v and f2(v) = λ2v.

(3) If V is an R-vector space and if dim(V) is odd, then two commuting f1, f2 ∈
L(V,V) have a common eigenvector.

Proof

(1) For every f ∈ L(V,V) the degree of P f ∈ R[t] is odd. Hence Lemma 15.12
implies that P f has a root, and therefore f has an eigenvector.

(2) We proceed by induction on dim(V), where dim(V) runs through the elements of
M j in increasing order. The set M j is a proper subset of N consisting of natural
numbers that are not divisible by 2 j and, in particular, 1 is the smallest element
of M j .
If dim(V) = 1 ∈ M j , then by assumption two arbitrary f1, f2 ∈ L(V,V) each
have an eigenvector, i.e.,

f1(v1) = λ1v1, f2(v2) = λ2v2.

Since dim(V) = 1, we have v1 = αv2 for an α ∈ K \ {0}. Thus,

f2(v1) = f2(αv2) = α f2(v2) = λ2(αv2) = λ2v1,
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i.e., v1 is a common eigenvector of f1 and f2.
Let now dim(V) ∈ M j , and let the assertion be proven for all K -vector spaces
whose dimensions is an element of M j that is smaller than dim(V). Let f1, f2 ∈
L(V,V) with f1 ◦ f2 = f2 ◦ f1. By assumption, f1 has an eigenvector v1 with
corresponding eigenvalue λ1. Let

U := im(λ1IdV − f1), W := V f1(λ1) = ker(λ1IdV − f1).

The subspaces U and W of V are f1-invariant, i.e., f1(U) ⊆ U and f1(W) ⊆ W .
For the space W we have shown this in Lemma 14.4 and for the space U this can
be easily shown as well (cp. Exercise 14.1). The subspaces U and W are also
f2-invariant:
If u ∈ U , then u = (λ1IdV − f1)(v) for a v ∈ V . Since f1 and f2 commute, we
have

f2(u) = ( f2 ◦ (λ1IdV − f1))(v) = ((λ1IdV − f1) ◦ f2)(v)

= (λ1IdV − f1)( f2(v)) ∈ U .

If w ∈ W , then

(λ1IdV − f1)( f2(w)) = ((λ1IdV − f1) ◦ f2)(w) = ( f2 ◦ (λ1IdV − f1))(w)

= f2((λ1IdV − f1)(w)) = f2(0) = 0,

hence f2(w) ∈ W .
We have dim(V) = dim(U) + dim(W) and since dim(V) is not divisible by 2 j ,
either dim(U) or dim(W) is not divisible by 2 j . Hence either dim(U) ∈ M j or
dim(W) ∈ M j .
If the corresponding subspace is a proper subspace of V , then its dimension is
an element of M j that is smaller than dim(V). By the induction hypothesis then
f1 and f2 have a common eigenvector in this subspace. Thus, f1 and f2 have a
common eigenvector in V .
If the corresponding subspace is equal to V , then this must be the subspace W ,
since dim(W) ≥ 1. But if V = W , then every vector in V \ {0} is an eigenvector
of f1. By assumption also f2 has an eigenvector, so that there exists at least one
common eigenvector of f1 and f2.

(3) By (1) it follows that the assumption of (2) holds for K = R and j = 1, which
means that (3) holds as well. ⊓⊔

We will now prove the Fundamental Theorem of Algebra in the formulation (2)
of Theorem 15.11.

Theorem 15.14 If V �= {0} is a finite dimensional C-vector space, then every f ∈
L(V,V) has an eigenvector.
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Proof We prove the assertion by induction on j = 1, 2, 3, . . . and dim(V) ∈ M j .
We start with j = 1 and thus by showing the assertion for all C-vector spaces of

odd dimension. Let V be an arbitrary C-vector space with n := dim(V) ∈ M1. Let
f ∈ L(V,V) and consider an arbitrary scalar product on V (such a scalar product
always exists; cp. Exercise 12.1), as well as the set of self-adjoint maps with respect
to this scalar product,

H := {g ∈ L(V,V) | g = gad}.

By Lemma 13.15 the set H forms an R-vector space of dimension n2. If we define
h1, h2 ∈ L(H,H) by

h1(g) :=
1

2
( f ◦ g + g ◦ f ad), h2(g) :=

1

2i
( f ◦ g − g ◦ f ad)

for all g ∈ H, then h1 ◦ h2 = h2 ◦ h1 (cp. Exercise 15.8). Since n is odd, also n2 is
odd. By (3) in Lemma 15.13, h1 and h2 have a common eigenvector. Hence, there
exists a g̃ ∈ H \ {0} with

h1(g̃) = λ1g̃, h2(g̃) = λ2 g̃ for some λ1,λ2 ∈ R.

We have (h1 + ih2)(g) = f ◦ g for all g ∈ H and therefore, in particular,

f ◦ g̃ = (h1 + ih2)(g̃) = (λ1 + iλ2)g̃.

Since g̃ �= 0, there exists a v ∈ V with g̃(v) �= 0. Then

f (g̃(v)) = (λ1 + iλ2) (g̃(v)),

which shows that g̃(v) ∈ V is an eigenvector of f , so that the proof for j = 1 is
complete.

Assume now that for some j ≥ 1 and every C-vector space V with dim(V) ∈ M j ,
every f ∈ L(V,V) has an eigenvector. Then (2) in Lemma 15.13 implies that every
two commuting f1, f2 ∈ L(V,V) have a common eigenvector.

We have to show that for every C-vector space V with dim(V) ∈ M j+1, every
f ∈ L(V,V) has an eigenvector. Since

M j+1 = M j ∪ {2 j q | q odd},

we only have to prove this for C-vector spaces V with n := dim(V) = 2 j q for odd q.
Let V be such a vector space and let f ∈ L(V,V) be given. We choose an arbitrary
basis of V and denote the matrix representation of f with respect to this basis by
A ∈ Cn,n . Let
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S := {B ∈ Cn,n | B = BT }

be the set of complex symmetric n × n matrices. If we define h1, h2 ∈ L(S,S) by

h1(B) := AB + B AT , h2(B) := AB AT

for all B ∈ S, then h1 ◦ h2 = h2 ◦ h1 (cp. Exercise 15.9). By Lemma 13.16 the set
S forms a C-vector space of dimension n(n + 1)/2. We have n = 2 j q for an odd
natural number q. Thus,

n(n + 1)

2
=

2 j q (2 j q + 1)

2
= 2 j−1q · (2 j q + 1) ∈ M j .

By the induction hypothesis, the commuting endomorphisms h1 and h2 have a com-
mon eigenvector. Hence there exists a B̃ ∈ S \ {0} with

h1(B̃) = λ1 B̃, h2(B̃) = λ2 B̃ for some λ1,λ2 ∈ C.

In particular, we have λ1 B̃ = AB̃ + B̃ AT . Multiplying this equation from the left
with A yields

λ1 AB̃ = A2 B̃ + AB̃ AT = A2 B̃ + h2(B̃) = A2 B̃ + λ2 B̃,

so that (
A2 − λ1 A + λ2 In

)
B̃ = 0.

We now factorize t2 − λ1t + λ2 = (t − α)(t − β) with

α =
λ1 +

√
λ2

1 − 4λ2

2
, β =

λ1 −
√

λ2
1 − 4λ2

2
,

where we have used that every complex number has a square root. Then

(A − αIn)(A − β In) B̃ = 0.

Since B̃ �= 0, there exists a v ∈ Cn,1 with B̃v �= 0. If (A − β In)B̃v = 0, then B̃v is
an eigenvector of A corresponding to the eigenvalue β. If (A − β In)B̃v �= 0, then
(A − β In)B̃v is an eigenvector of A corresponding to the eigenvalue α. Since A has
an eigenvector, also f has an eigenvector. ⊓⊔
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MATLAB-Minute.

Compute the eigenvalues of the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
1 2 4 3 5
2 3 4 1 5
5 1 4 2 3
4 2 3 1 5

⎤
⎥⎥⎥⎥⎦

∈ R5,5

using the command eig(A).
By definition a real matrix A can only have real eigenvalues. The reason for the
occurrence of complex eigenvalues is that MATLAB interprets every matrix
as a complex matrix. This means that within MATLAB every matrix can be
unitarily triangulated, since every complex polynomial (of degree at least 1)
decomposes into linear factors.

As a direct corollary of the Fundamental Theorem of Algebra and (2) in
Lemma 15.13 we have the following result.

Corollary 15.15 If V �= {0} is a finite dimensional C-vector space, then two com-

muting f1, f2 ∈ L(V,V) have a common eigenvector.

Example 15.16 The two complex 2 × 2 matrices

A =
[

i 1
1 i

]
and B =

[
2i 1
1 2i

]

commute. The eigenvalues of A are ±1 + i and those of B are ±2 + i. Hence A

and B do not have a common eigenvalue, while [1, 1]T and [−1, 1]T are common
eigenvectors of A and B.

Using Corollary 15.15, Schur’s theorem (Corollary 14.20) can be generalized as
follows.

Theorem 15.17 If V �= {0} is a finite dimensional unitary vector space and f1, f2 ∈
L(V,V) commute, then f1 and f2 can be simultaneously unitarily triangulated, i.e.,

there exists an orthonormal basis B of V , such that [ f1]B,B and [ f2]B,B are both

upper triangular.

Proof Exercise. ⊓⊔



224 15 Polynomials and the Fundamental Theorem of Algebra

Exercises

(In the following exercises K is an arbitrary field.)

15.1. Prove Lemma 15.1.
15.2. Show the following assertions for p1, p2, p3 ∈ K [t]:

(a) p1|(p1 p2).
(b) p1|p2 and p2|p3 imply that p1|p3.
(c) p1|p2 and p1|p3 imply that p1|(p2 + p3).
(d) If p1|p2 and p2|p1, then there exists a c ∈ K \ {0} with p1 = cp2.

15.3. Examine whether the following polynomials are irreducible:

p1 = t3 − t2 + t − 1 ∈ Q[t], p4 = t3 − t2 + t − 1 ∈ R[t],
p2 = t3 − t2 + t − 1 ∈ C[t], p5 = 4t3 − 4t2 − t + 1 ∈ Q[t],
p3 = 4t3 − 4t2 − t + 1 ∈ R[t], p6 = t3 − 4t2 − t + 1 ∈ C[t].

Determine the decompositions into irreducible factors.
15.4. Decompose the polynomials p1 = t2 − 2, p2 = t2 + 2, p3 = t4 − 1 and

p4 = t2 + t + 1 into irreducible factors over the fields K = Q, K = R and
K = C.

15.5. Show the following assertions for p ∈ K [t]:

(a) If deg(p) = 1, then p is irreducible.
(b) If deg(p) ≥ 2 and p has a root, then p is not irreducible.
(c) If deg(p) ∈ {2, 3}, then p is irreducible if and only if p does not have a

root.

15.6. Let A ∈ GLn(C), n ≥ 2, and let adj(A) ∈ Cn,n be the adjunct of A. Show
that there exist n − 1 matrices A j ∈ Cn,n with det(−A j ) = det(A), j =
1, . . . , n − 1, and

adj(A) =
n−1∏

j=1

A j .

(Hint: Use PA to construct a polynomial p ∈ C[t]≤n−1 with adj(A) = p(A)

and express p as product of linear factors.)
15.7. Show that two polynomials p, q ∈ C[t] \ {0} have a common root if and only

if there exist polynomials r1, r2 ∈ C[t] with 0 ≤ deg(r1) < deg(p) such that
0 ≤ deg(r2) < deg(q) and p · r2 + q · r1 = 0.

15.8. Let V be a finite dimensional unitary vector space, f ∈ L(V,V), H = {g ∈
L(V,V) | g = gad} and let

h1 : H → L(V,V), g �→
1

2
( f ◦ g + g ◦ f ad),
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h2 : H → L(V,V), g �→
1

2i
( f ◦ g − g ◦ f ad).

Show that h1, h2 ∈ L(H,H) and h1 ◦ h2 = h2 ◦ h1.
15.9. Let A ∈ Cn,n , S = {B ∈ Cn,n | B = BT } and let

h1 : S → Cn,n, B �→ AB + B AT ,

h2 : S → Cn,n, B �→ AB AT .

Show that h1, h2 ∈ L(S,S) and h1 ◦ h2 = h2 ◦ h1.
15.10. Let V be a C-vector space, f ∈ L(V,V) and let U �= {0} be a finite di-

mensional f -invariant subspace of V . Show that U contains at least one
eigenvector of f .

15.11. Let V �= {0} be a K -vector space and let f ∈ L(V,V). Show the following
statements:

(a) If K = C, then there exists an f -invariant subspace U of V with
dim(U) = 1.

(b) If K = R, then there exists an f -invariant subspaceU of V with dim(U) ∈
{1, 2}.

15.12. Prove Theorem 15.17.
15.13. Construct an example showing that the condition f ◦ g = g ◦ f in Theo-

rem 15.17 is sufficient but not necessary for the simultaneous unitary trian-
gulation of f and g.

15.14. Let A ∈ K n,n be a diagonal matrix with pairwise distinct diagonal entries
and B ∈ K n,n with AB = B A. Show that in this case B is a diagonal matrix.
What can you say about B, when the diagonal entries of A are not all pairwise
distinct?

15.15. Show that the matrices

A =
[

−1 1
1 −1

]
, B =

[
0 1
1 0

]

commute and determine a unitary matrix Q such that Q H AQ and Q H B Q

are upper triangular.
15.16. Show the following statements for p ∈ K [t]:

(a) For all A ∈ K n,n and S ∈ GLn(K ) we have p(S AS−1) = Sp(A)S−1.
(b) For all A, B, C ∈ K n,n with AB = C A we have Ap(B) = p(C)A.
(c) If K = C and A ∈ Cn,n , then there exists a unitary matrix Q, such that

Q H AQ and Q H p(A)Q are upper triangular.

15.17. Let V be a finite dimensional unitary vector space. Let f ∈ L(V,V) be
normal, i.e., f satisfies f ◦ f ad = f ad ◦ f .
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(a) Show that if λ ∈ C is an eigenvalue of f , then V f (λ)⊥ is an f -invariant
subspace.

(b) Show (using (a)) that f is diagonalizable. (Hint: Show by induction on
dim(V), that V is the direct sum of the eigenspaces of f .)

(c) Show (using(a) or (b)), that f is even unitarily diagonalizable, i.e., there
exists an orthonormal basis B of V such that [ f ]B,B is a diagonal matrix.

(d) Let g ∈ L(V,V) be unitarily diagonalizable. Show that g is normal.
(This shows that an endomorphism on a finite dimensional unitary vector
space is normal if and only if it is unitarily diagonalizable. We will give
a different proof of this result in Theorem 18.2.)

15.18. Let V be a finite dimensional K -vector space, f ∈ L(V,V) and V = U1 ⊕U2,
where U1,U2 are f -invariant subspaces of V . Let, furthermore, f j := f |U j

∈
L(U j ,U j ), j = 1, 2.

(a) For every v ∈ V there exist unique u1 ∈ U1 and u2 ∈ U2 with v = u1+u2.
Show that then also f (v) = f (u1) + f (u2) = f1(u1) + f2(u2).
(We write this as f = f1 ⊕ f2 and call f the direct sum of f1 and f2

with respect to the decomposition V = U1 ⊕ U2.)
(b) Show that rank( f ) = rank( f1) + rank( f2) and P f = P f1 · P f2 .
(c) Show that a(λ, f ) = a(λ, f1) + a(λ, f2) for all λ ∈ K .

(Here we set a(λ, h) = 0, if λ is not an eigenvalue of h ∈ L(V,V).)
(d) Show that g(λ, f ) = g(λ, f1) + g(λ, f2) for all λ ∈ K .

(Here we set g(λ, h) = dim(ker(λIdV −h)) even if λ is not an eigenvalue
of h ∈ L(V,V).)

(e) Show that p( f ) = p( f1) ⊕ p( f2) for all p ∈ K [t].



Chapter 16

Cyclic Subspaces, Duality and the Jordan

Canonical Form

In this chapter we use the duality theory to analyze the properties of an endomorphism

f on a finite dimensional vector space V in detail. We are particularly interested in the

algebraic and geometric multiplicities of the eigenvalues of f and the characterization

of the corresponding eigenspaces. Our strategy in this analysis is to decompose the

vector space V into a direct sum of f -invariant subspaces so that, with appropriately

chosen bases, the essential properties of f will be obvious from its matrix represen-

tation. The matrix representation that we derive is called the Jordan canonical form

of f . Because of its great importance there have been many different derivations of

this form using different mathematical tools. Our approach using duality theory is

based on an article by Vlastimil Pták (1925–1999) from 1956 [Pta56].

16.1 Cyclic f -invariant Subspaces and Duality

Let V be a finite dimensional K -vector space. If f ∈ L(V,V) and v0 ∈ V \ {0}, then

there exists a uniquely defined smallest number m ∈ N, such that the vectors

v0, f (v0), . . . , f m−1(v0)

are linearly independent and the vectors

v0, f (v0), . . . , f m−1(v0), f m(v0)

are linearly dependent. Obviously m ≤ dim(V), since at most dim(V) vectors of V

can be linearly independent. The number m is called the grade of v0 with respect to

f . We denote this grade by m( f, v0). The vector v0 = 0 is linearly dependent, and

thus its grade is 0 (with respect to any f ).
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For v0 �= 0 we have m( f, v0) = 1 if and only if the vectors v0, f (v0) are linearly

dependent. This holds if and only if v0 is an eigenvector of f . If v0 �= 0 is not an

eigenvector of f , then m( f, v0) ≥ 2.

For every j ∈ N we define the subspace

K j ( f, v0) := span{v0, f (v0), . . . , f j−1(v0)} ⊆ V.

The space K j ( f, v0) is called the j th Krylov subspace1 of f and v0.

Lemma 16.1 If V is a finite dimensional K -vector space, f ∈ L(V,V), and v0 ∈ V ,

then the following assertions hold:

(1) If m = m( f, v0), then Km( f, v0) is an f -invariant subspace of V , and

span{v0} = K1( f, v0) ⊂ K2( f, v0) ⊂ · · · ⊂ Km( f, v0) = Km+ j ( f, v0)

for all j ∈ N.

(2) If m = m( f, v0) and U ⊆ V is an f -invariant subspace that contains the vector

v0, then Km( f, v0) ⊆ U . Thus, among all f -invariant subspaces of V that contain

the vector v0, the Krylov subspace Km( f, v0) is the one of smallest dimension.

(3) If f m−1(v0) �= 0 and f m(v0) = 0 for an m ∈ N, then dim(K j ( f, v0)) = j for

j = 1, . . . , m.

Proof

(1) Exercise.

(2) The assertion is trivial if v0 = 0. Thus, let v0 �= 0 with m = d( f, v0) ≥ 1 and

let U ⊆ V be an f -invariant subspace that contains v0. Then U also contains

the vectors f (v0), . . . , f m−1(v0), so that Km( f, v0) ⊆ U and, in particular,

dim(U) ≥ m = dim(Km( f, v0).

(3) Let γ0, . . . , γm−1 ∈ K with

0 = γ0v0 + . . . + γm−1 f m−1(v0).

If we apply f m−1 to both sides, then 0 = γ0 f m−1(v0) and thus γ0 = 0, since

f m−1(v0) �= 0. If m > 1, then we apply inductively f m−k for k = 2, . . . , m and

obtain γ1 = · · · = γm−1 = 0. Thus, the vectors v0, . . . , f m−1(v0) are linearly

independent, which implies that dim(K j ( f, v0)) = j for j = 1, . . . , m. ⊓⊔

The vectors v0, f (v0), . . . , f m−1(v0) form, by construction, a basis of the Krylov

subspace Km( f, v0). The application of f to a vector f k(v0) of this

basis yields the next basis vector f k+1(v0), k = 0, 1, . . . , m − 2, and the application

of f to the last vector f m−1(v0) yields a linear combination of all basis vectors, since

f m(v0) ∈ Km( f, v0). Due to this special structure, the subspace Km( f, v0) is called

a cyclic f -invariant subspace.

1Aleksey Nikolaevich Krylov (1863–1945).
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Definition 16.2 Let V �= {0} be a K -vector space. An endomorphism f ∈ L(V,V)

is called nilpotent, if f m = 0 holds for an m ∈ N. If at the same time f m−1 �= 0,

then f is called nilpotent of index m.

The zero map f = 0 is the only nilpotent endomorphism of index m = 1. If

V = {0}, then the zero map is the only endomorphism on V . This map is nilpotent

of index m = 1, where in this case we omit the requirement f m−1 = f 0 �= 0.

If f is nilpotent of index m and v �= 0 is any vector with f m−1(v) �= 0, then

f ( f m−1)(v) = f m(v) = 0 = 0 · f m−1(v). Hence f m−1(v) is an eigenvector of f

corresponding to the eigenvalue 0. Our construction in Sect. 16.2 will show that 0 is

the only eigenvalue of a nilpotent endomorphism (also cp. Exercise 8.3).

Lemma 16.3 If V �= {0} is a K -vector space and if f ∈ L(V,V) is nilpotent of

index m, then m ≤ dim(V).

Proof If f is nilpotent of index m, then there exists a v0 ∈ V with f m−1(v0) �= 0

and f m(v0) = 0. By (3) in Lemma 16.1 the m vectors v0, . . . , f m−1(v0) are linearly

independent, which implies that m ≤ dim(V). ⊓⊔

Example 16.4 In the vector space K 3,1 the endomorphism

f : K 3,1 → K 3,1,

⎡
⎣

ν1

ν2

ν3

⎤
⎦ �→

⎡
⎣

0

ν1

ν2

⎤
⎦ ,

is nilpotent of index 3, since f �= 0, f 2 �= 0 and f 3 = 0.

If U is an f -invariant subspace of V , then f |U ∈ L(U ,U), where

f |U : U → U , u �→ f (u),

is the restriction of f to the subspace U (cp. Definition 2.12).

Theorem 16.5 Let V be a finite dimensional K -vector space and f ∈ L(V,V).

Then there exist f -invariant subspaces U1 ⊆ V and U2 ⊆ V with V = U1 ⊕U2, such

that f |U1
∈ L(U1,U1) is bijective and f |U2

∈ L(U2,U2) is nilpotent.

Proof If v ∈ ker( f ), then f 2(v) = f ( f (v)) = f (0) = 0. Thus, v ∈ ker( f 2) and

therefore ker( f ) ⊆ ker( f 2). Proceeding inductively we see that

{0} ⊆ ker( f ) ⊆ ker( f 2) ⊆ ker( f 3) ⊆ · · · .

Since V is finite dimensional, there exists a smallest number m ∈ N0 with ker( f m) =

ker( f m+ j ) for all j ∈ N. For this number m let

U1 := im( f m), U2 := ker( f m).
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(If f is bijective, then m = 0, U1 = V and U2 = {0}.) We now show that the spaces

U1 and U2 satisfy the assertion.

First observe that U1 and U2 are both f -invariant: If v ∈ U1, then v = f m(w) for

some w ∈ V , and therefore f (v) = f ( f m(w)) = f m( f (w)) ∈ U1. If v ∈ U2, then

f m( f (v)) = f ( f m(v)) = f (0) = 0, and therefore f (v) ∈ U2.

We have U1 + U2 ⊆ V . An application of the dimension formula for linear maps

(cp. Theorem 10.9) to f m gives dim(V) = dim(U1) + dim(U2). If v ∈ U1 ∩ U2, then

v = f m(w) for some w ∈ V (since v ∈ U1) and hence

0 = f m(v) = f m( f m(w)) = f 2m(w).

The first equation holds since v ∈ U2. By the definition of m we have ker( f m) =

ker( f 2m), which implies f m(w) = 0, and therefore v = f m(w) = 0. From U1∩U2 =

{0} we obtain V = U1 ⊕ U2.

Let now v ∈ ker( f |U1
) ⊆ U1 be given. Since v ∈ U1, there exists a vector w ∈ V

with v = f m(w), which implies 0 = f (v) = f ( f m(w)) = f m+1(w). By the

definition of m we have ker( f m) = ker( f m+1), thus w ∈ ker( f m), and therefore

v = f m(w) = 0. This implies that ker( f |U1
) = {0}, i.e., f |U1

is injective and thus

also bijective (cp. Corollary 10.11).

If, on the other hand, v ∈ U2, then by definition 0 = f m(v) = ( f |U2
)m(v), and

thus ( f |U2
)m is the zero map in L(U2,U2), so that f |U2

is nilpotent. ⊓⊔

For the further development we recall some terms and results from Chap. 11. Let

V be a finite dimensional K -vector space and let V∗ be the dual space of V . If U ⊆ V

and W ⊆ V∗ are two subspaces and if the bilinear form

β : U × W → K , (v, h) �→ h(v), (16.1)

is non-degenerate, then U ,W is called a dual pair with respect to β. This requires that

dim(U) = dim(W). For f ∈ L(U ,U) the dual map f ∗ ∈ L(U∗,U∗) is defined by

f ∗ : U∗ → U∗, h �→ h ◦ f.

For all v ∈ U and h ∈ U∗ we have ( f ∗(h))(v) = h( f (v)). Furthermore, ( f k)∗ =

( f ∗)k for all k ∈ N0. The set

U0 := {h ∈ V∗ | h(u) = 0 for all u ∈ U}

is called the annihilator of U . This set is a subspace of V∗ (cp. Exercise 11.5).

Analogously, the set

W0 := {v ∈ V | h(v) = 0 for all h ∈ W}

is called the annihilator of W . This set is a subspace of V .
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Lemma 16.6 Let V be a finite dimensional K -vector space, f ∈ L(V,V), V∗ the

dual space of V , f ∗ ∈ L(V∗,V∗) the dual map of f , and let U ⊆ V and W ⊆ V∗ be

two subspaces. Then the following assertions hold:

(1) dim(V) = dim(W) + dim(W0) = dim(U) + dim(U0).

(2) If f is nilpotent of index m, then f ∗ is nilpotent of index m.

(3) If W ⊆ V∗ is an f ∗-invariant subspace, then W0 ⊆ V is an f -invariant sub-

space.

(4) If U ,W are a dual pair with respect to the bilinear form defined in (16.1), then

V = U ⊕ W0.

Proof

(1) Exercise.

(2) For all v ∈ V we have f m(v) = 0 and hence,

0 = h( f m(v)) = (( f m)∗(h))(v) = (( f ∗)m(h))(v)

for every h ∈ V∗ and v ∈ V , so that f ∗ is nilpotent of index at most m.

If ( f ∗)m−1 = 0, then ( f ∗)m−1(h) = 0 for all h ∈ V∗, and therefore 0 =

(( f ∗)m−1(h))(v) = h( f m−1(v)) for all v ∈ V . This implies that f m−1 = 0,

in contradiction to the assumption that f is nilpotent of index m. Thus, f ∗ is

nilpotent of index m.

(3) Let w ∈ W0. For every h ∈ W , we have f ∗(h) ∈ W , and thus 0 = f ∗(h)(w) =

h( f (w)). Hence f (w) ∈ W0.

(4) If u ∈ U ∩ W0, then h(u) = 0 for all h ∈ W , since u ∈ W0. Since U ,W is

a dual pair with respect to the bilinear form defined in (16.1), we have u = 0.

Moreover, dim(U) = dim(W) and using (1) we obtain

dim(V) = dim(W) + dim(W0) = dim(U) + dim(W0).

From U ∩ W0 = {0} we obtain V = U ⊕ W0. ⊓⊔

Example 16.7 We consider the vector space V = R
2,1 with the canonical basis

B = {e1, e2}. For the subspaces

U = span

{[
0

1

]}
⊂ V,

W =
{
h ∈ V∗

∣∣ [h]B,{1} = [α,α] for an α ∈ R
}

⊂ V∗,

we have

U0 =
{
h ∈ V∗

∣∣ [h]B,{1} = [α, 0] for an α ∈ R
}

⊂ V∗,

W0 = span

{[
1

−1

]}
⊂ V.
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In this example, we easily see that dim(V) = dim(W) + dim(W0) = dim(U) +

dim(U0), and that U ,W form a dual pair with respect to the bilinear form defined in

(16.1) with K = R. Moreover, V = U ⊕ W0.

The following theorem presents, for a given nilpotent f , a decomposition of V

into f -invariant subspaces. The idea of the decomposition is to construct a dual pair

of subspaces U ⊆ V and W ⊆ V∗, where U is f -invariant and W is f ∗-invariant.

By (3) in Lemma 16.6 then W0 is f -invariant and with (4) in Lemma 16.6 it follows

that V = U ⊕ W0.

Theorem 16.8 Let V be a finite dimensional K -vector space and let f ∈ L(V,V)

be nilpotent of index m. Let v0 ∈ V satisfy f m−1(v0) �= 0 and let h0 ∈ V∗ satisfy

h0( f m−1(v0)) �= 0.

Then m( f, v0) = m( f ∗, h0) = m, and the f - and f ∗-invariant subspaces Km( f, v0)

⊆ V and Km( f ∗, h0) ⊆ V∗, respectively, are a dual pair with respect to the bilinear

form defined in (16.1). Furthermore,

V = Km( f, v0) ⊕ (Km( f ∗, h0))
0,

where (Km( f ∗, h0))
0 is an f -invariant subspace of V .

Proof Let v0 ∈ V be a vector with f m−1(v0) �= 0. Since f m(v0) = 0, the space

Km( f, v0) is an m-dimensional f -invariant subspace of V (cp. (3) in Lemma 16.1).

Let h0 ∈ V∗ be a vector with

0 �= h0( f m−1(v0)) = (( f ∗)m−1(h0))(v0).

Then, in particular, 0 �= ( f ∗)m−1(h0) ∈ L(V∗,V∗). Since f is nilpotent of index m,

also f ∗ is nilpotent of index m (cp. (2) in Lemma 16.6), so that

( f ∗)m(h0) = 0 ∈ L(V∗,V∗).

Therefore, Km( f ∗, h0) is an m-dimensional f ∗-invariant subspace of V∗ (cp. (3) in

Lemma 16.1).

It remains to show that Km( f, v0),Km( f ∗, h0) are a dual pair. Let

v1 =

m−1∑

j=0

γ j f j (v0) ∈ Km( f, v0)

be a vector with h(v1) = β(v1, h) = 0 for all h ∈ Km( f ∗, h0). We show inductively

that then γ0 = · · · = γm−1 = 0, and thus v1 = 0.
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Using ( f ∗)m−1(h0) ∈ Km( f ∗, h0) our assumption on the vector v1 yields

0 = (( f ∗)m−1(h0))(v1) = h0( f m−1(v1)) =

m−1∑

j=0

γ j h0( f m−1+ j (v0))

= γ0h0( f m−1(v0)).

The last equation holds, since f m−1+ j (v0) = 0 for j = 1, . . . , m − 1 (because

f m = 0). From h0( f m−1(v0)) �= 0 we obtain γ0 = 0.

Suppose now that γ0 = · · · = γk−1 = 0 for a k, 1 ≤ k ≤ m − 2. Using

( f ∗)m−1−k(h0) ∈ Km( f ∗, h0) our assumption on the vector v1 yields

0 = (( f ∗)m−1−k(h0))(v1) = h0( f m−1−k(v1)) =

m−1∑

j=0

γ j h0( f m−1+ j−k(v0))

= γkh0( f m−1(v0)).

The last equation holds, since γ j = 0 for j = 0, . . . , k − 1 and f m−1+ j−k(v0) = 0

for j = k + 1, . . . , m − 1.

We have v1 = 0 as asserted, and therefore the bilinear form defined in (16.1)

for the spaces Km( f, v0),Km( f ∗, h0) is non-degenerate in the first variable. Anal-

ogously, the bilinear form is non-degenerate in the second variable, and hence

Km( f, v0),Km( f ∗, h0) are a dual pair.

Using (4) in Lemma 16.6 we now have V = Km( f, v0) ⊕ (Km( f ∗, h0))
0, where

the space (Km( f ∗, h0))
0, is by (3) in Lemma 16.6 an f -invariant subspace of V . ⊓⊔

16.2 The Jordan Canonical Form

Let V be a finite dimensional K -vector space and f ∈ L(V,V). If there exists

a basis B of V consisting of eigenvectors of f , then [ f ]B,B is a diagonal matrix,

i.e., f is diagonalizable. A necessary and sufficient condition for this is that the

characteristic polynomial P f decomposes into linear factors over K and that in

addition g( f,λ j ) = a( f,λ j ) for every eigenvalue λ j (cp. Theorem 14.14).

If P f decomposes into linear factors but g( f,λ j ) < a( f,λ j ) holds for at

least one eigenvalue λ j , then f is not diagonalizable but can still be triangulated,

i.e., there exists a basis B of V , such that [ f ]B,B is an upper triangular matrix

(cp. Theorem 14.17). From this triangular matrix we can read off the algebraic, but

usually not the geometric multiplicities of the eigenvalues. The goal of the following

construction is to determine a basis B of V , so that [ f ]B,B is upper triangular and in

addition to the algebraic also reveals the geometric multiplicities of the eigenvalues.

Under the assumption that P f decomposes into linear factors over K , we will

construct a basis B of V for which [ f ]B,B is a block diagonal matrix of the form
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[ f ]B,B =

⎡
⎣

Jd1
(λ1)

. . .

Jdm
(λm),

⎤
⎦

where each diagonal block has the form

Jd j
(λ j ) :=

⎡
⎢⎢⎢⎣

λ j 1
. . .

. . .

. . . 1

λ j

⎤
⎥⎥⎥⎦ ∈ K d j ,d j (16.2)

for some λ j ∈ K and d j ∈ N, j = 1, . . . , m. A matrix of the form (16.2) is called a

Jordan block of size d j corresponding to the eigenvalue λ j .

In the following construction we first do not assume that P f decomposes into

linear factors. We only assume the existence of a single eigenvalue λ1 ∈ K of f .

Using this eigenvalue, we define the endomorphism

g := f − λ1IdV ∈ L(V,V).

By Theorem 16.5 there exist g-invariant subspaces U ⊆ V and W ⊆ V with

V = U ⊕ W,

such that

g1 := g|U

is nilpotent and g|W is bijective. Then U �= {0}, since otherwise W = V and

g|W = g|V = g would be bijective, which contradicts the assumption that λ1 is an

eigenvalue of f .

Let g1 be nilpotent of index d1. Then by construction 1 ≤ d1 ≤ dim(U). Let

w1 ∈ U be a vector with g
d1−1
1 (w1) �= 0. Since g

d1

1 (w1) = 0, the vector g
d1−1
1 (w1) is

a eigenvector of g1 corresponding to the eigenvalue 0. By (3) in Lemma 16.1, the d1

vectors

w1, g1(w1), . . . , g
d1−1
1 (w1)

are linearly independent and U1 := Kd1
(g1, w1) is a d1-dimensional g1-invariant

subspace of U .

Consider the basis

B1 :=
{

g
d1−1
1 (w1), . . . , g1(w1), w1

}

of U1. Then the matrix representation g1|U1
with respect to the basis B1 is given by

[g1|U1
]B1,B1

= Jd1
(0) ∈ K d1,d1 .
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This shows, in particular, that the characteristic polynomial of g1|U1
is given by the

monomial td1 , and hence 0 is the only eigenvalue of g1|U1
. Moreover, by construction

[g1|U1
]B1,B1

= [g|U1
]B1,B1

.

If d1 = dim(U), then our construction is complete for the moment. If, on the other

hand, d1 < dim(U), then applying Theorem 16.8 to g1 ∈ L(U ,U) shows that there

exists a g1-invariant subspace Ũ �= {0} with U = U1 ⊕ Ũ , and we consider

g2 := g1|Ũ .

This map is nilpotent of index d2, where 1 ≤ d2 ≤ d1. We now carry out the same

construction as before:

We determine a vector w2 ∈ Ũ with g
d2−1
2 (w2) �= 0. Then g

d2−1
2 (w2) is an

eigenvector of g2, U2 := Kd2
(g2, w2) is a d2-dimensional g2-invariant subspace of

Ũ ⊂ U and for the basis

B2 :=
{

g
d2−1
2 (w2), . . . , g2(w2), w2

}

of U2 we have

[g2|U2
]B2,B2

= Jd2
(0) ∈ K d2,d2 ,

where again [g2|U2
]B2,B2

= [g|U2
]B2,B2

by construction.

After k ≤ dim(U) steps this procedure terminates. We then have found a decom-

position of U of the form

U = Kd1
(g1, w1) ⊕ . . . ⊕ Kdk

(gk, wk) = Kd1
(g, w1) ⊕ . . . ⊕ Kdk

(g, wk).

In the second equation we have used thatKd j
(g j , w j ) = Kd j

(g, wk) for j = 1, . . . , k.

If we combine the constructed bases B1, . . . , Bk to a basis B of U , then

[g|U ]B,B =

⎡
⎣

[g|U1
]B1,B1

. . .

[g|Uk
]Bk ,Bk

⎤
⎦ =

⎡
⎣

Jd1
(0)

. . .

Jdk
(0)

⎤
⎦ .

Thus, the nilpotent endomorphism g1 = g|U has the characteristic polynomial

td1+...+dk , and its only eigenvalue is 0.

We now transfer these results to

f = g + λ1IdV .

Every g-invariant subspace is f -invariant and one observes easily that

Kd j
( f, w j ) = Kd j

(g, w j ), j = 1, . . . , k
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(cp. Exercise 16.3). Hence, it follows that

U = Kd1
( f, w1) ⊕ . . . ⊕ Kdk

( f, wk).

For every j = 1, . . . , k and 0 ≤ ℓ ≤ d j − 1 we have

f
(
gℓ(w j )

)
= g

(
gℓ(w j )

)
+ λ1gℓ(w j ) = λ1gℓ(w j ) + gℓ+1(w j ), (16.3)

where gd j (w j ) = 0. The matrix representation of f |U with respect to the basis B of

U is therefore given by

[ f |U ]B,B =

⎡
⎣

[ f |U1
]B1,B1

. . .

[ f |Uk
]Bk ,Bk

⎤
⎦ =

⎡
⎣

Jd1
(λ1)

. . .

Jdk
(λ1)

⎤
⎦ . (16.4)

The map g|W = f |W − λ1IdW is bijective by construction, i.e., λ1 is not an

eigenvalue of f |W . Therefore, a( f,λ1) = dim(U) = d1 + . . . + dk . In order to

determine g( f,λ1), let v ∈ U be an arbitrary vector. Then there exist scalars α j,ℓ ∈ K

with

v =

k∑

j=1

d j −1∑

ℓ=0

α j,ℓgℓ(w j ).

Using (16.3) we obtain

f (v) =

k∑

j=1

d j −1∑

ℓ=0

α j,ℓ f
(

gℓ(w j )

)
=

k∑

j=1

d j −1∑

ℓ=0

α j,ℓλ1gℓ(w j ) +

k∑

j=1

d j −1∑

ℓ=0

α j,ℓgℓ+1(w j )

= λ1v +

k∑

j=1

d j −2∑

ℓ=0

α j,ℓgℓ+1(w j ).

The vectors in the last sum are linearly independent. Hence, f (v) = λ1v if and

only if α j,ℓ = 0 for j = 1, . . . , k and ℓ = 0, 1, . . . , d j − 2. This shows that every

eigenvector of f corresponding to the eigenvalue λ1 has the form

v =

k∑

j=1

α j g
d j −1(w j ),

where at least one α j is nonzero, so that we have

V f (λ1) = span{gd1−1(w1), . . . , gdk−1(wk)}.
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Since gd1−1(w1), . . . , gdk−1(wk) are linearly independent, it follows that g( f,λ1) =

k. The geometric multiplicity of the eigenvalue λ1 therefore is equal to the number of

Jordan blocks corresponding to the eigenvalue λ1 in the matrix representation (16.4).

Furthermore, we observe that in every subspace Kd j
( f, w j ), the endomorphism f

has exactly one (linear independent) eigenvector corresponding to the eigenvalue λ1.

We summarize these results in the following theorem.

Theorem 16.9 Let V be a finite dimensional K -vector space and let f ∈ L(V,V).

If λ1 ∈ K is an eigenvalue of f , then the following assertions hold:

(1) There exist f -invariant subspaces {0} �= U ⊆ V and W ⊂ V with V = U ⊕ W .

The map f |U − λ1IdU is nilpotent and the map f |W − λ1IdW is bijective. In

particular, λ1 is not an eigenvalue of f |W .

(2) The subspace U from (1) can be written as

U = Kd1
( f, w1) ⊕ . . . ⊕ Kdk

( f, wk)

for some vectors w1, . . . , wk ∈ U , where Kd j
( f, w j ) is a d j -dimensional f -

invariant subspace of V , j = 1, . . . , k. This is called a cyclic decomposition

of U .

(3) There exists a basis B of U with

[ f |U ]B,B =

⎡
⎣

Jd1
(λ1)

. . .

Jdk
(λ1)

⎤
⎦ .

(4) We have a( f,λ1) = d1 + . . . + dk and g( f,λ1) = k.

If f has a further eigenvalue λ2 �= λ1, then it is an eigenvalue of the restriction

f |W ∈ L(W,W) and we can apply Theorem 16.9 to f |W . The vector space W

then is the direct sum of the form W = X ⊕Y , where f |X −λ2IdX is nilpotent and

f |Y − λ2IdY is bijective. The space X has a cyclic decomposition analogous to (2)

in Theorem 16.9, and there exists a matrix representation of f |X analogous to (3).

This construction can be carried out for all eigenvalues of f . If the characteristic

polynomial P f decomposes into linear factors over K , then we finally obtain a cyclic

decomposition of the entire space V , which gives the following theorem.

Theorem 16.10 Let V be a finite dimensional K -vector space and let f ∈ L(V,V).

If the characteristic polynomial P f decomposes into linear factors over K , then there

exists a basis B of V , such that

[ f ]B,B =

⎡
⎣

Jd1
(λ1)

. . .

Jdm
(λm)

⎤
⎦ , (16.5)

where λ1, . . . ,λm ∈ K are the (not necessarily pairwise distinct) eigenvalues of f .

For every eigenvalue λ j of f then a( f,λ j ) is equal to the sum of the sizes of all
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Jordan blocks corresponding to λ j in (16.5), and g( f,λ j ) is equal to the number

of Jordan blocks corresponding to λ j in (16.5). A matrix representation of the form

(16.5) is called a Jordan canonical form2 of f .

From Theorem 14.14 we know that f ∈ L(V,V) is diagonalizable if and only

if P f decomposes into linear factors over K and g( f,λ j ) = a( f,λ j ) holds for

every eigenvalue λ j of f . If P f decomposes into linear factors, then the Jordan

canonical form (16.5) shows that g( f,λ j ) = a( f,λ j ) if and only if every Jordan

block corresponding to λ j is of size 1.

The Fundamental Theorem of Algebra yields the following corollary of Theo-

rem 16.10.

Corollary 16.11 If V is a finite dimensional C-vector space, then every f ∈ L(V,V)

has a Jordan canonical form.

The following uniqueness result justifies the name canonical form.

Theorem 16.12 Let V be a finite dimensional K -vector space. If f ∈ L(V,V) has

a Jordan canonical form, then it is unique up to the order of the Jordan blocks on

the diagonal.

Proof Let dim(V) = n and let B1, B2 be two bases of V with

A1 = [ f ]B1,B1
=

⎡
⎣

Jd1
(λ1)

. . .

Jdm
(λm)

⎤
⎦ ∈ K n,n,

as well as

A2 = [ f ]B2,B2
=

⎡
⎣

Jc1
(µ1)

. . .

Jck
(µk)

⎤
⎦ ∈ K n,n.

For a given eigenvalue λ j , 1 ≤ j ≤ m, we define

r (1)
s (λ j ) := rank

(
(A1 − λ j In)

s
)
, s = 0, 1, 2, . . . .

Then

d(1)
s (λ j ) := r

(1)

s−1(λ j ) − r (1)
s (λ j ), s = 1, 2, . . . ,

is equal to the number of Jordan blocks Jℓ(λ j ) ∈ K ℓ,ℓ on the diagonal of A1 with

ℓ ≥ s. The number of Jordan blocks corresponding to the eigenvalue λ j with exact

size s therefore is given by

d(1)
s (λ j ) − d

(1)

s+1(λ j ) = r
(1)

s−1(λ j ) − 2r (1)
s (λ j ) + r

(1)

s+1(λ j ) (16.6)

2Marie Ennemond Camille Jordan (1838–1922) derived this form 1870. Two years earlier, Karl

Weierstraß (1815–1897) proved a result that implies the Jordan canonical form.
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(cp. Example 16.13).

The matrices A1 and A2 are similar and, therefore, have the same eigenvalues,

i.e.,

{λ1, . . . ,λm} = {µ1, . . . ,µk}.

Furthermore,

rank
((

A1 − αIn

)m)
= rank

((
A2 − αIn

)m)

for all α ∈ K and m ∈ N0.

In particular, for every λ j there exists µi ∈ {µ1, . . . ,µk} with µi = λ j and for

this µi and the matrix A2 we get

r (2)
s (µi ) := rank

((
A2 − µi In

)s)
= r (1)

s (λ j ), s = 0, 1, 2, . . . .

Now (16.6) shows that the matrix A2 has, up to reordering, the same Jordan blocks

on the diagonal as the matrix A1. ⊓⊔

Example 16.13 This example illustrates the construction in the proof of Theo-

rem 16.12. If

A =

⎡
⎣

J2(1)

J1(1)

J2(0)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1 1

1

1

0 1

0

⎤
⎥⎥⎥⎥⎦

∈ R
5,5, (16.7)

then (A − 1 · I5)
0 = I5,

A − 1 · I5 =

⎡
⎢⎢⎢⎢⎣

0 1

0

0

−1 1

−1

⎤
⎥⎥⎥⎥⎦

, (A − 1 · I5)
2 =

⎡
⎢⎢⎢⎢⎣

0 0

0

0

1 −2

1

⎤
⎥⎥⎥⎥⎦

,

and we get

r0(1) = 5, r1(1) = 3, rs(1) = 2, s ≥ 2,

d1(1) = 2, d2(1) = 1, ds(1) = 0, s ≥ 3,

d1(1) − d2(1) = 1, d2(1) − d3(1) = 1, ds(1) − ds+1(1) = 0, s ≥ 3.
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We now consider the powers of a Jordan block Jd(λ) ∈ K d,d . Since Id and Jd(0)

commute,

(Jd(λ))
k = (λId + Jd(0))

k =

k∑

j=0

(
k

j

)
λk− j (Jd(0)) j =

k∑

j=0

p( j)(λ)

j !
(Jd(0)) j ,

for every k ∈ N0, where p( j) is the j th derivative of the polynomial p = tk with

respect to t ,

p(0) = (tk)(0) = tk, p( j) = (tk)( j) = k(k−1)·. . .·(k− j +1) tk− j , j = 1, . . . , k.

We can now easily show the following result.

Lemma 16.14 If p ∈ K [t] is a polynomial of degree k ≥ 0, then

p (Jd(λ)) =

k∑

j=0

p( j)(λ)

j !
(Jd(0)) j . (16.8)

Proof Exercise. ⊓⊔

Considered as a linear map from K d,1 to K d,1, the matrix Jd(0) represents an

“upshift”, since

Jd(0)

⎡
⎢⎢⎣

α1

α2
...

αd

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

α2
...

αd

0

⎤
⎥⎥⎦ for all

⎡
⎢⎢⎣

α1

α2
...

αd

⎤
⎥⎥⎦ ∈ K d,1.

Clearly,

(Jd(0))ℓ �= 0, ℓ = 0, 1, . . . , d − 1, (Jd(0))d = 0,

and hence the linear map Jd(0) is nilpotent of index d. The sum on the right hand

side of (16.8) therefore has at most d terms, even when deg(p) > d.

Moreover, the right hand side of (16.8) shows that p (Jd(λ)) is an upper triangular

matrix with constant entries on its diagonals. A matrix with constant diagonals is

called a Toeplitz matrix.3 In particular, on the main diagonal we have the entry p(λ).

From (16.8) we see that p(Jd(λ)) = 0 holds if and only if

p(λ) = p′(λ) = · · · = p(d−1)(λ) = 0.

Thus we have shown the following result.

3Otto Toeplitz (1881–1940).
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Lemma 16.15 Let p ∈ K [t] be a polynomial and Jd(λ) ∈ K d,d be a Jordan block.

(1) The matrix p(Jd(λ)) is invertible if and only if λ is not a root of p.

(2) We have p(Jd(λ)) = 0 ∈ K d,d if and only if λ is a d-fold root of p, i.e., if the

linear factor (t − λ)d is a divisor of p.

Let V be a finite dimensional K -vector space and let f ∈ L(V,V), where we

do not assume that P f decomposes into linear factors. From the Cayley-Hamilton

theorem (Theorem 8.6) we know that P f ( f ) = 0 ∈ L(V,V), i.e., there exists a monic

polynomial of degree at most dim(V), which annihilates the endomorphism f . Let

p1, p2 ∈ K [t] be two monic polynomials of smallest possible degree with p1( f ) =

p2( f ) = 0. Then (p1− p2)( f ) = 0, and since p1 and p2 are monic, p1− p2 ∈ K [t] is

a polynomial with deg(p1 − p2) < deg(p1) = deg(p2). The minimality assumption

on deg(p1) and deg(p2) implies that p1 − p2 = 0, i.e., p1 = p2. Thus, for every

f ∈ L(V,V) there exists a uniquely determined monic polynomial of minimal degree

which annihilates f . This justifies the following definition.

Definition 16.16 If V is finite dimensional K -vector space and f ∈ L(V,V), then

the uniquely determined monic polynomial of minimal degree that annihilates f is

called the minimal polynomial of f . We denote this polynomial by M f .

By construction we always have deg(M f ) ≤ deg(P f ) = dim(V).

Lemma 16.17 If V is a finite dimensional K -vector space and f ∈ L(V,V), then

the minimal polynomial M f divides every polynomial that annihilates f and is, in

particular, a divisor of the characteristic polynomial P f .

Proof For p = 0 we have p( f ) = 0 and M f divides p. If p ∈ K [t] \ {0} is a

polynomial with p( f ) = 0, then deg(M f ) ≤ deg(p). Using division with remainder

(cp. Theorem 15.4), there exist uniquely determined polynomials q, r ∈ K [t] with

p = q · M f + r and deg(r) < deg(M f ). Thus,

0 = p( f ) = q( f )M f ( f ) + r( f ) = r( f ).

The minimality of deg(M f ) implies that r = 0, and hence M f divides p. ⊓⊔

If P f decomposes into linear factors, then we can explicitly construct M f using

the Jordan canonical form of f .

Lemma 16.18 Let V be a finite dimensional K -vector space. If f ∈ L(V,V) has a

Jordan canonical form with pairwise distinct eigenvalues λ̃1, . . . , λ̃k and if d̃1, . . . , d̃k

are the respective maximal sizes of the corresponding Jordan blocks, then

M f =

k∏

j=1

(t − λ̃ j )
d̃ j .



242 16 Cyclic Subspaces, Duality and the Jordan Canonical Form

Proof We know from Lemma 16.17 that M f is a divisor of P f . Therefore,

M f =

k∏

j=1

(t − λ̃ j )
ℓ j

for some exponents ℓ1, . . . , ℓk . If

A =

⎡
⎣

Jd1
(λ1)

. . .

Jdm
(λm)

⎤
⎦

is a Jordan canonical form of f , then M f ( f ) = 0 ∈ L(V,V) is equivalent to

M f (A) = 0 ∈ K n,n , where n = dim(V). We have M f (A) = 0 if and only if

M f (Jd j
(λ j )) = 0 for j = 1, . . . , m. For this it is necessary and sufficient that

M f (Jd̃ j
(̃λ j )) = 0 for j = 1, . . . , k. By Lemma 16.15 this holds if and only if every

of the linear factors (t − λ̃ j )
d̃ j , j = 1, . . . , k, is a divisor of M f . Therefore, M f has

the desired form. ⊓⊔

Example 16.19 If f is an endomorphism with the Jordan canonical form A in (16.7),

then

P f = (t − 1)3 t2, M f = (t − 1)2 t2

and

M f (A) = (A − 1 · I5)
2 A2 =

⎡
⎢⎢⎢⎢⎣

0 0

0

0

1 −2

1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 2

1

1

0 0

0

⎤
⎥⎥⎥⎥⎦

,

which shows that M f (A) = 0 ∈ R
5,5 and M f ( f ) = 0 ∈ L(V,V).

The Jordan canonical form is of great importance in theoretical Linear Algebra.

In practical applications, however, where usually matrices over K = R or K = C

are considered, it is not so relevant, since there is no numerically stable method for

computing the Jordan canonical form of a general matrix in finite precision arithmetic.

The reason for the lack of such a method is that the entries of the Jordan canonical

form do not depend continuously on the entries of the given matrix.

Example 16.20 Consider the matrix

A(ε) =

[
ε 1

0 0

]
, ε ∈ R.
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For every given ε �= 0, the matrix A(ε) has the two distinct eigenvalues ε and 0, and

hence the diagonal matrix

J (ε) =

[
ε 0

0 0

]

is a Jordan canonical form of A(ε). However, for ε → 0, we obtain

A(ε) →

[
0 1

0 0

]
, J (ε) →

[
0 0

0 0

]
.

Thus, J (ε) does not converge to the Jordan canonical form of A(0) for ε → 0.

A similar example is given by the matrices in Exercise 8.5: While A(0) is a

Jordan block of size n corresponding to the eigenvalue 1, for every ε �= 0 we obtain

a diagonalizable matrix A(ε) ∈ C
n,n with n pairwise distinct eigenvalues.

MATLAB-Minute.

Let

A = T −1

[
1 0

1 1

]
T ∈ C

2,2,

where T ∈ C
2,2 is a random matrix constructed with the command T=

rand(2). Construct several such matrices and always compute the eigenvalues

using the command eig(A). Display the eigenvalues in format long.

One observes that the two eigenvalues are real or complex conjugates, and that

they always have an error starting from the 8th digit after the decimal point,

i.e., an error on the order of 10−8. This does not happen by chance, but is

due to the behavior of the eigenvalues under perturbations, which arise from

rounding errors in the computer.

16.3 Computation of the Jordan Canonical Form

We now derive a method for the computation of the Jordan canonical form of an

endomorphism f on a finite dimensional K -vector space V . We assume that P f

decomposes into linear factors over K , and that the roots of P f , i.e., the eigenvalues

of f , are known. The construction follows the important steps in the existence proof

of the Jordan canonical form in Sect. 16.2.

Suppose thatλ is an eigenvalue of f and that f has a corresponding Jordan block of

size s. Then there exist s linearly independent vectors t1, . . . , ts with [ f ]B̂,B̂ = Js(λ)
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for B̂ = {t1, . . . , ts}. With t0 := 0 and writing Id instead of IdV for simplicity of

notation, we then have

( f − λId)(t1) = t0,

( f − λId)(t2) = t1,

...

( f − λId)(ts) = ts−1,

hence ts− j = ( f − λId) j (ts) for j = 0, 1, . . . , s.

The vectors ts, ts−1, . . . , t1 form a sequence as the one we have constructed in the

context of the Krylov subspaces, and

span{ts, ts−1, . . . , t1} = Ks( f − λId, ts).

The reverse sequence

t1, t2, . . . , ts

is called a Jordan chain of f corresponding to the eigenvalue λ. The vector t1 is an

eigenvector of f corresponding to λ. For the vector t2 we then have ( f −λId)(t2) �= 0

and

( f − λId)2(t2) = ( f − λId)(t1) = 0.

Hence t2 ∈ ker(( f − λId)2) \ ker( f − λId), and in general

t j ∈ ker(( f − λId) j ) \ ker(( f − λId) j−1), j = 1, . . . , s.

This motivates the following definition.

Definition 16.21 Let V be a finite dimensional K -vector space, let f ∈ L(V,V)

have the eigenvalue λ ∈ K , and let k ∈ N. A vector v ∈ V with

v ∈ ker(( f − λId)k) \ ker(( f − λId)k−1)

is called a principal vector of level k of f corresponding to the eigenvalue λ.

Principal vectors of level one are eigenvectors. Principal vectors of higher levels

can be considered generalizations of eigenvectors, and they are therefore sometimes

called generalized eigenvectors.

For the computation of the Jordan canonical form of f , we thus need to know the

number and lengths of the Jordan chains corresponding to the different eigenvalues

of f . These correspond to the number and sizes of the Jordan blocks of f . If F is a

matrix representation of f with respect to an arbitrary basis, then (cp. the proof of

Theorem 16.12)
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ds(λ) := rank((F − λI )s−1) − rank((F − λI )s)

= dim(im(( f − λId)s−1)) − dim(im(( f − λId)s))

= dim(V) − dim(ker(( f − λId)s−1)) − (dim(V) − dim(ker(( f − λId)s)))

= dim(ker(( f − λId)s)) − dim(ker(( f − λId)s−1))

is the number of Jordan blocks corresponding to λ of size at least s. This implies, in

particular, that

ds(λ) ≥ ds+1(λ) ≥ 0, s = 1, 2, . . . ,

and ds(λ) − ds+1(λ) is the number of Jordan blocks of exact size s corresponding
to λ. There exists a smallest number m ∈ N with

{0} = ker(( f − λId)0) ⊂ ker(( f − λId)1) ⊂ · · · ⊂ ker(( f − λId)m) = ker(( f − λId)m+1).

Hence ds(λ) = 0 for all s ≥ m + 1, so that there is no Jordan block corresponding

to λ of size m + 1 or larger.

In order to compute the Jordan canonical form, we therefore proceed as follows:

(1) Determine the eigenvalues of f .

(2) For every eigenvalue λ of f carry out the following steps:

(a) Determine the smallest number m ∈ N with

ker(( f −λId)0) ⊂ ker(( f −λId)1) ⊂ · · · ⊂ ker(( f −λId)m) = ker(( f −λId)m+1).

Then dim(ker(( f − λId)m)) = a(λ, f ).

(b) For s = 1, . . . , m determine

ds(λ) = dim(ker(( f − λId)s)) − dim(ker(( f − λId)s−1)) > 0.

If s ≥ m + 1, then ds(λ) = 0, and

d1(λ) = dim(ker( f − λId)) = g(λ, f )

is the number of Jordan blocks corresponding to λ.

(c) To simplify notation, we write ds := ds(λ) and determine the Jordan chains

as follows:

(i) Since dm −dm+1 = dm , there exist dm Jordan blocks of size m. For each

of these blocks we determine a Jordan chain of dm principal vectors of

level m, i.e., vectors

t1,m, t2,m, . . . , tdm ,m ∈ ker(( f − λId)m) \ ker(( f − λId)m−1)
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with the following property:

If α1, . . . ,αdm
∈ K with

dm∑
i=1

αi ti,m ∈ ker(( f − λId)m−1), then α1 =

· · · = αdm
= 0. Here the first index in ti, j indicates the number of the

chain, and the second indicates the level of the principal vector (from

ker(( f − λId) j ) and not ker(( f − λId) j−1)).

(ii) For j = m, m − 1, . . . , 2 we proceed as follows:

When we have determined d j principal vectors of level j , say t1, j , t2, j ,

. . . , td j , j , we apply f − λId to each of these vectors, hence

ti, j−1 := ( f − λId)(ti, j ), 1 ≤ i ≤ d j ,

in order to determine the principal vectors of level j − 1.

If α1, . . . ,αd j
∈ K with

d j∑
i=1

αi ti, j−1 ∈ ker(( f − λId) j−2), then

0 = ( f − λId) j−2

⎛
⎝

d j∑

i=1

αi ti, j−1

⎞
⎠ = ( f − λId) j−1

⎛
⎝

d j∑

i=1

αi ti, j

⎞
⎠ ,

and thus
d j∑

i=1

αi ti, j ∈ ker(( f − λId) j−1) giving α1 = · · · = αd j
= 0.

If d j−1 > d j , then there exist d j − d j−1 Jordan blocks of size j − 1. For

these we need the Jordan chains of length j − 1. Thus we extend the

already computed

t1, j−1, t2, j−1, . . . , td j , j−1 ∈ ker(( f − λId) j−1) \ ker(( f − λId) j−2)

to d j−1 principal vectors of level ( j − 1) (but only if d j−1 > d j ) via

t1, j−1, t2, j−1, . . . , td j−1, j−1 ∈ ker(( f − λId) j−1) \ ker(( f − λId) j−2),

where the following must hold: If α1, . . . ,αd j−1
∈ K with

d j−1∑
i=1

αi ti, j−1 ∈

ker(( f − λId) j−2), then α1 = · · · = αd j−1
= 0.

After completing the step for j = 2, we have obtained (linearly independent)

vectors t1,1, t2,1, . . . , td1,1 ∈ ker( f − λId). Since dim(ker( f − λId)) = d1,

we have found a basis of ker( f − λId). In this way we have determined d1

different Jordan chains that we combine as follows:

Tλ :=
{
t1,1, t1,2, . . . , t1,m; t2,1, t2,2, . . . , t2,∗; . . . ; td1,1, . . . , td1,∗

}
.
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Each chain begins with an eigenvector, followed by principal vectors of

increasing levels. Here we use the convention that the chains are ordered

decreasingly according to their length.

(3) Jordan chains are linearly independent, if their first vectors (the eigenvectors)

are linearly independent. (Show this as an exercise.) Thus, if λ1, . . . ,λℓ are the

pairwise distinct eigenvalues of f , then

T =
{
Tλ1

, . . . , Tλℓ

}

is a basis, for which [ f ]T,T is in Jordan canonical form.

Example 16.22 We interpret the matrix

F =

⎡
⎢⎢⎢⎢⎣

5 0 1 0 0

0 1 0 0 0

−1 0 3 0 0

0 0 0 1 0

0 0 0 0 4

⎤
⎥⎥⎥⎥⎦

∈ R
5,5

as endomorphism on R
5,1.

(1) The eigenvalues of F are the roots of PF = (t − 1)2(t − 4)3. In particular PF

decomposes into linear factors and F has a Jordan canonical form.

(2) We now consider the different eigenvalues of F :

(a) For the eigenvalue λ1 = 1 we obtain

ker(F − I ) = ker

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

4 0 1 0 0

0 0 0 0 0

−1 0 2 0 0

0 0 0 0 0

0 0 0 0 3

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= span{e2, e4}.

Here dim(ker(F − I )) = 2 = a(1, F).

For the eigenvalue λ2 = 4 we obtain

ker(F − 4 I ) = ker

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

1 0 1 0 0

0 −3 0 0 0

−1 0 −1 0 0

0 0 0 −3 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= span{e1 − e3, e5},
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ker((F − 4 I )2) = ker

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0

0 9 0 0 0

0 0 0 0 0

0 0 0 9 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= span{e1, e3, e5}.

Here dim(ker((F − 4 I )2)) = 3 = a(4, F).

(b) For λ1 = 1 we have d1(1) = dim(ker(F − I )) = 2.

For λ2 = 4 we have d1(4) = dim(ker(F − 4 I )) = 2 and d2(4) =

dim(ker((F − 4 I )2)) − dim(ker(F − 4 I )) = 3 − 2 = 1.

(c) Computation of the Jordan chains:

• For λ1 = 1 we have m = 1. As principal vectors of level one we choose

t1,1 = e2 and t2,1 = e4. These form a basis of ker(F − I ): If α1,α2 ∈ R

with α1e2 + α2e4 = 0, then α1 = α2 = 0. For λ1 = 1 we are finished.

• For λ2 = 4 we have m = 2, and we choose a principal vector of level

two, say t1,2 = e1. For this vector we have: If α1 ∈ R with α1e1 ∈

span{e1 − e3, e5}, then α1 = 0. We compute

t1,1 := (F − 4 I )t1,2 = e1 − e3.

Since d1(4) = 2 > 1 = d2(4), we have to add to t1,1 another principal

vector of level one, and we choose t2,1 = e5. Since the vectors are linearly

independent, α1t1,1 + α2t2,1 ∈ ker((F − 4 I )0) = {0} implies that α1 =

α2 = 0.

In this way we get

Tλ1
=

⎡
⎢⎢⎢⎢⎣

0 0

1 0

0 0

0 1

0 0

⎤
⎥⎥⎥⎥⎦

and Tλ2
=

⎡
⎢⎢⎢⎢⎣

1 1 0

0 0 0

−1 0 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎥⎦

.

(3) The coordinate transformation matrix is T = [Tλ1
Tλ2

], and the Jordan canonical

form of F is

⎡
⎢⎢⎢⎢⎣

1

1

4 1

4

4

⎤
⎥⎥⎥⎥⎦

= T −1 FT, where T −1 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 1 0

0 0 −1 0 0

1 0 1 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

.
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Exercises

(In the following exercises K is an arbitrary field.)

16.1. Prove Lemma 16.1 (1).

16.2. Prove Lemma 16.6 (1).

16.3. Let V be a K -vector space, f ∈ L(V,V) and λ ∈ K . Prove or disprove: A

subspace U ⊆ V is f -invariant, if it is ( f − λIdV)-invariant.

16.4. Let V be a finite dimensional K -vector space, f ∈ L(V,V), v ∈ V and

λ ∈ K . Show that K j ( f, v) = K j ( f − λIdV , v) for all j ∈ N. Conclude

that the grade of v with respect to f is equal to the grade of v with respect to

f − λIdV .

16.5. Prove Lemma 16.14.

16.6. Let V be a finite dimensional Euclidean or unitary vector space and let f ∈

L(V,V) be selfadjoint and nilpotent. Show that then f = 0.

16.7. Let V �= {0} be a finite dimensional K -vector space, let f ∈ L(V,V) be

nilpotent of index m and suppose that P f decomposes into linear factors.

Show the following assertions:

(a) P f = tn with n = dim(V).

(b) M f = tm .

(c) There exists a vector v ∈ V of grade m with respect f .

(d) For every λ ∈ K we have M f −λIdV
= (t + λ)m .

16.8. Let V be a finite dimensional K -vector space and f ∈ L(V,V). Show the

following assertions:

(a) ker( f j ) ⊆ ker( f j+1) for all j ≥ 0 and there exists an m ≥ 0 with

ker( f m) = ker( f m+1). For this m we have ker( f m) = ker( f m+ j ) for all

j ≥ 1.

(b) im( f j ) ⊇ im( f j+1) for all j ≥ 0 and there exists an ℓ ≥ 0 with

im( f ℓ) = im( f ℓ+1). For this ℓ we have im( f ℓ) = im( f ℓ+ j ) for all

j ≥ 1.

(c) If m, ℓ ≥ 0 are minimal with ker( f m) = ker( f m+1) and im( f ℓ) =

im( f ℓ+1), then m = ℓ.

(Theorem 16.5 now implies that V = ker( f m) ⊕ im( f m) is a decompo-

sition of V into f -invariant subspaces.)

16.9. Let V be a finite dimensional K -vector space and let f ∈ L(V,V) be a

projection (cp. Exercise 13.10). Show the following assertions:

(a) v ∈ im( f ) implies that f (v) = v.

(b) V = im( f ) ⊕ ker( f ).

(c) There exists a basis B of V with

[ f ]B,B =

[
Ik

0n−k

]
,

where k = dim(im( f )) and n = dim(V). In particular, P f = (t−1)k tn−k

and λ ∈ {0, 1} for every eigenvalue λ of f .

http://dx.doi.org/10.1007/978-3-319-24346-7_13
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(d) The map g = IdV − f is a projection with ker(g) = im( f ) and im(g) =

ker( f ).

16.10. Let V be a finite dimensional K -vector space and let U ,W ⊆ V be two

subspaces with V = U ⊕ W . Show that there exists a uniquely determined

projection f ∈ L(V,V) with im( f ) = U and ker( f ) = W .

16.11. Determine the Jordan canonical form of the matrices

A =

⎡
⎢⎢⎣

1 −1 0 0

1 −1 0 0

3 0 3 −3

4 −1 3 −3

⎤
⎥⎥⎦ ∈ R

4,4, B =

⎡
⎢⎢⎢⎢⎣

2 1 0 0 0

−1 1 1 0 0

−1 0 3 0 0

−1 −1 0 1 1

−2 −1 1 −1 3

⎤
⎥⎥⎥⎥⎦

∈ R
5,5

using the method presented in Sect. 16.3. Determine also the minimal poly-

nomial.

16.12. Determine the Jordan canonical form and the minimal polynomial of the

linear map

f : C≤3[t] → C≤3[t], α0 + α1t + α2t2 + α3t3 �→ α1 + α2t + α3t3.

16.13. Determine (up to the order of blocks) all matrices J in Jordan canonical form

with PJ = (t + 1)3(t − 1)3 and MJ = (t + 1)2(t − 1)2.

16.14. Let V �= {0} be a finite dimensional K -vector space, f ∈ L(V,V), and sup-

pose that P f decomposes into linear factors. Show the following assertions:

(a) P f = M f holds if and only if g(λ, f ) = 1 for all eigenvalues λ of f .

(b) f is diagonalizable if and only if M f has only simple roots, i.e., roots

with multiplicity one.

(c) A root of λ ∈ K of M f is simple if and only if ker( f − λIdV) =

ker(( f − λIdV)2).

16.15. Let V be a K -vector space of dimension 2 or 3 and let f ∈ L(V,V) with P f

decomposing into linear factors. Show that the Jordan canonical form of f

is uniquely determined by P f and M f . Why does this not hold any longer if

dim(V) ≥ 4?

16.16. Let A ∈ K n,n be a matrix for which the characteristic polynomial decomposes

into linear factors. Show that there exists a diagonalizable matrix D and a

nilpotent matrix N with A = D + N and DN = N D.

16.17. Let A ∈ K n,n be a matrix that has a Jordan canonical form. We define

I R
n :=

[
δi,n+1− j

]
=

⎡
⎣

1

. .
.

1

⎤
⎦ , J R

n (λ) :=

⎡
⎢⎢⎢⎣

λ

. .
.

1

. .
.
. .

.

λ 1

⎤
⎥⎥⎥⎦ ∈ K n,n.
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Show the following assertions:

(a) I R
n Jn(λ)I R

n = Jn(λ)T .

(b) A and AT are similar.

(c) Jn(λ) = I R
n J R

n (λ).

(d) A can be written as a product of two symmetric matrices.

16.18. Determine for the matrix

A =

⎡
⎣

5 1 1

0 5 1

0 0 4

⎤
⎦ ∈ R

3,3

two symmetric matrices S1, S2 ∈ R
3,3 with A = S1S2.



Chapter 17

Matrix Functions and Systems

of Differential Equations

In this chapter we give an introduction to the area of matrix functions. We first define

general matrix functions and derive their most important properties. Using the exam-

ples of network analysis and chemical reactions, we illustrate how matrix functions

arise naturally in applications. The network analysis example involves the exponen-

tial function of matrices, and we study the properties of this important function in

detail. The analysis of chemical reaction kinetics leads to a system of ordinary differ-

ential equations, whose solution again is based on the matrix exponential function.

17.1 Matrix Functions and the Matrix Exponential

Function

In the following we will study functions that yield for a given n × n matrix again an

n × n matrix. A possible definition of such a function is given by the entrywise

application of scalar functions to the matrix. For instance, one could define for

A =
[
ai j

]
∈ C

n,n the function sin(A) by sin(A) :=
[
sin(ai j )

]
. However, such a

definition is not compatible with the matrix multiplication, since in general already

A2 �=
[
a2

i j

]
.

The following definition of the primary matrix function from [Hig08, Defini-

tion 1.1–1.2] will turn out to be consistent with the matrix multiplication. Since

this definition is based on the Jordan canonical form, we assume for simplicity that

A ∈ C
n,n . Our considerations also apply to square matrices over R, as long as they

have a Jordan canonical form.

Definition 17.1 Let A ∈ C
n,n have the Jordan canonical form

J = diag(Jd1
(λ1), . . . , Jdm

(λm)) = S−1 AS,
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and let � ⊂ C be such that {λ1, . . . ,λm} ⊆ �. A function f : � → C is said to be

defined on the spectrum of A, if the values

f ( j)(λi ) for i = 1, . . . , m and j = 0, 1 . . . , di − 1 (17.1)

exist. Here f ( j)(λi ), j = 1, . . . , di − 1, is the j th derivative of the function f (λ)

with respect to λ evaluated at λi . If λi ∈ R, then this is the real derivative, and for

λi ∈ C \R it is the complex derivative. Moreover, we assume that equal eigenvalues

that occur in different Jordan blocks are mapped to the same values in (17.1).

If f is defined on the spectrum of A then the primary matrix function f (A) is

defined by

f (A) := S f (J )S−1 where f (J ) := diag( f (Jd1
(λ1)), . . . , f (Jdm

(λm))) (17.2)

and

f
(
Jdi

(λi )
)

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λi ) f ′(λi )
f ′′(λi )

2! . . .
f (di −1)(λi )

(di −1)!

f (λi ) f ′(λi )
. . .

...

. . .
. . . f ′′(λi )

2!
. . . f ′(λi )

f (λi )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for i = 1, . . . , m. (17.3)

Note that for the definition of f (A) in (17.2)–(17.3) only the existence of the

values in (17.1) is required.

Example 17.2 Let A = I2 ∈ C
2,2 and let f (z) = √

z (the square root function).

If we set f (1) =
√

1 = +1, then f (A) =
√

A = I2 by Definition 17.1. If we

choose the other branch of the square root function, i.e., f (1) =
√

1 = −1, then

f (A) =
√

A = −I2. The matrices I2 and −I2 are primary square roots of A = I2.

Taking different branches of a function for different Jordan blocks corresponding to

the same eigenvalue is incompatible with Definition 17.1. For instance, the matrices

X1 =
[

1 0

0 −1

]
and X2 =

[
−1 0

0 1

]

are incompatible with Definition 17.1, despite the fact that X2
1 = I2 and X2

2 = I2.

All solutions X ∈ C
n,n of the matrix equation X2 = A are called square roots of

the matrix A ∈ C
n,n . But as Example 17.2 shows, some of these may not be primary

square roots according to Definition 17.1. In the following, by f (A) we will always

mean a primary matrix function according to Definition 17.1, and will usually omit

the term “primary”.

In (16.8) we have shown that for each polynomial p ∈ C[t] of degree k ≥ 0 we

have
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p(Jdi
(λi )) =

k∑

j=0

p( j)(λi )

j !
(Jdi

(0)) j . (17.4)

A simple comparison shows that this formula agrees with (17.3) for f = p. This

means that the computation of p(Jdi
(λi )) with (17.4) leads to the same result as the

definition of p(Jdi
(λi )) by (17.3). More generally, the following result holds.

Lemma 17.3 Let A ∈ C
n,n and p = αk tk + . . . + α1t + α0 ∈ C[t]. Then (17.2)–

(17.3) with f = p yields a matrix function f (A) that satisfies f (A) = αk Ak + . . .+
α1 A + α0 In .

Proof Exercise. ⊓⊔

If we consider, in particular, the polynomial f = t2 in (17.2)–(17.3), then the

resulting f (A) is equal to the product A ∗ A. This shows that the definition of the

primary matrix function f (A) is consistent with the matrix multiplication.

The following theorem, which is of great practical and theoretical importance,

shows that the matrix f (A) can always be written as a polynomial in A.

Theorem 17.4 Let A ∈ C
n,n have the minimal polynomial MA, and let f (A) be as

in Definition 17.1. Then there exists a uniquely determined polynomial p ∈ C[t] of

degree at most deg(MA) − 1 with f (A) = p(A). In particular, A f (A) = f (A)A,

f (AT ) = f (A)T as well as f (V AV −1) = V f (A)V −1 for all V ∈ GLn(C).

Proof We will not present the proof here since it requires advanced results from

interpolation theory. Details can be found in [Hig08, Chap. 1]. ⊓⊔

Using Theorem 17.4 we can show that the primary matrix function f (A) in

Definition 17.1 is independent of the choice of the Jordan canonical form of A. We

already know from Theorem 16.12, that the Jordan canonical form of A is unique

up to the order of the Jordan blocks. If

J = diag(Jd1
(λ1), . . . , Jdm

(λm)) = S−1 AS,

J̃ = diag(Jd̃1
(̃λ1), . . . , Jd̃m

(̃λm)) = S̃−1 AS̃

are two Jordan canonical forms of A, then J̃ = PT J P for a permutation matrix

P ∈ R
n,n , where the matrices J and J̃ are the same up to the order of diagonal

blocks. Hence

f (J ) = diag( f (Jd1
(λ1)), . . . , f (Jdm

(λm)))

= P
(
PT diag( f (Jd1

(λ1)), . . . , f (Jdm
(λm)))P

)
PT

= P
(
diag( f (Jd̃1

(̃λ1)), . . . , f (Jd̃m
(̃λm)))

)
PT

= P f ( J̃ )PT .
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Theorem 17.4 applied to the matrix J yields the existence of a polynomial p with
f (J ) = p(J ). Thus, we get

f (A) = S f (J )S−1 = Sp(J )S−1 = p(A) = p(S̃ J̃ S̃−1) = S̃ PT p(J )P S̃−1 = S̃ PT f (J )P S̃−1

= S̃ f ( J̃ )S̃−1.

Let us now consider the exponential function f (z) = ez that is infinitely often

complex differentiable throughout C. In particular, ez is defined (in the sense of

Definition 17.1) on the spectrum of every given matrix

A = Sdiag(Jd1
(λ1), . . . , Jdm

(λm))S−1 ∈ C
n,n .

If t ∈ C is arbitrary (but fixed), then the derivatives of the function et z with respect

to the variable z are given by

d j

dz j
et z = t j et z, j = 0, 1, 2, . . . .

We will use the notation exp(M) instead of eM for the exponential function of a matrix

M . For every Jordan block Jd(λ) of A we then have, by (17.3) with f (z) = ez ,

exp(t Jd(λ)) = etλ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2

2! . . . td−1

(d−1)!

1 t
. . .

...

. . .
. . . t2

2!
. . . t

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= etλ

d−1∑

k=0

1

k!
(t Jd(0))k , (17.5)

and the matrix exponential function exp(t A) is given by

exp(t A) = Sdiag(exp(t Jd1
(λ1)), . . . , exp(t Jdm

(λm)))S−1. (17.6)

The parameter t will be used in the next section in the context of linear differential

equations.

In Analysis it is shown that for every z ∈ C the function ez can be represented by

the absolutely convergent series

ez =
∞∑

j=0

z j

j !
.

Using this series and the equation (Jd(0))ℓ = 0 for all ℓ ≥ d, we obtain
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exp(t Jd(λ)) = etλ

d−1∑

ℓ=0

1

ℓ!
(t Jd(0))ℓ =

⎛
⎝

∞∑

j=0

(tλ) j

j !

⎞
⎠ ·

( ∞∑

ℓ=0

1

ℓ!
(t Jd(0))ℓ

)

=
∞∑

j=0

(
j∑

ℓ=0

(tλ) j−ℓ

( j − ℓ)!
·

1

ℓ!
(t Jd(0))ℓ

)

=
∞∑

j=0

t j

j !

(
j∑

ℓ=0

(
j

ℓ

)
λ

j−ℓ

i (Jd(0))ℓ

)

=
∞∑

j=0

t j

j !
(λId + Jd(0)) j

=
∞∑

j=0

1

j !
(t Jd(λ)) j . (17.7)

In this derivation we have used the absolute convergence of the exponential series

and the finiteness of the series with the matrix Jd(0). This allows the application of

the Cauchy product formula1 for absolutely convergent series, which is also proven

in Analysis.

Lemma 17.5 If A ∈ C
n,n , t ∈ C and exp(t A) is the matrix exponential function in

(17.5)–(17.6), then

exp(t A) =
∞∑

j=0

1

j !
(t A) j .

Proof In (17.7) we have shown this already for Jordan blocks. The assertion then

follows from
∞∑

j=0

1

j !
(t S J S−1) j = S

⎛
⎝

∞∑

j=0

1

j !
(t J ) j

⎞
⎠ S−1

and the representation (17.6) of the matrix exponential function. ⊓⊔

We immediately see from Lemma 17.5 that for a matrix A ∈ R
n,n and every real

t the matrix exponential function exp(t A) is a real matrix.

The following result presents further important properties of the matrix exponen-

tial function.

Lemma 17.6 If the two matrices A, B ∈ C
n,n commute, then exp(A + B) =

exp(A) exp(B). For every matrix A ∈ C
n,n we have exp(A) ∈ GLn(C) with

(exp(A))−1 = exp(−A).

1Augustin Louis Cauchy (1789–1857).
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Proof If A and B commute, then the Cauchy product formula yields

exp(A) exp(B) =

⎛
⎝

∞∑

j=0

1

j !
A j

⎞
⎠

( ∞∑

ℓ=0

1

ℓ!
Bℓ

)
=

∞∑

j=0

(
j∑

ℓ=0

1

ℓ!
Aℓ 1

( j − ℓ)!
B j−ℓ

)

=
∞∑

j=0

(
1

j !

j∑

ℓ=0

(
j

ℓ

)
Aℓ B j−ℓ

)
=

∞∑

j=0

1

j !
(A + B) j

= exp(A + B).

Here we have used the binomial formula for commuting matrices (cp. Exercise 4.10).

Since A and −A commute, we have

exp(A) exp(−A) = exp(A − A) = exp(0) =
∞∑

j=0

1

j !
0 j = In,

and hence exp(A) ∈ GLn(C) with (exp(A))−1 = exp(−A). ⊓⊔

For non-commuting matrices the statements in Lemma 17.6 in general do not hold

(cp. Exercise 17.9).

MATLAB-Minute.

Compute the matrix exponential function exp(A) for the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 −1 3 4 5

−1 −2 4 3 5

2 0 −3 1 5

3 0 0 −2 −3

4 0 0 −3 −5

⎤
⎥⎥⎥⎥⎦

∈ R
5,5

using the command E1=expm(A). (Look at help expm.)

Also compute the diagonalization of A using the command [S,D]=eig(A),

and form the matrix exponential function exp(A) as E2=S∗expm(D)/S.

Compare the matrices E1 and E2 and compute the relative error norm(E1-

E2)/norm(E2). (Look at help norm.)

Example 17.7 Let A = [ai j ] ∈ C
n,n be a symmetric matrix with ai i = 0 and ai j ∈

{0, 1} for all i, j = 1, . . . , n. We identify the matrix A with a graph G A = (VA, E A)

consisting of a set of n vertices VA = {1, . . . , n} and a set of edges E A ⊆ VA × VA.

For i = 1, . . . , n the row i of A is identified with the vertex i ∈ E A, and every entry

ai j = 1 is identified with an edge (i, j) ∈ E A. Due to the symmetry of A, we have

ai j = 1 if and only if a j i = 1. We therefore consider in the following the elements
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of E A as unordered pairs, i.e., (i, j) = ( j, i). The following example illustrates this

identification:

A =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 0

1 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

is identified with G A = (VA, E A), where

E A = {1, 2, 3, 4, 5}, VA = {(1, 2), (1, 3), (1, 4), (2, 4), (2, 5), (3, 5)},

and the graph G A can be displayed as follows:

A path of length m from the vertex k1 to the vertex km+1 is an ordered list of

vertices k1, k2, . . . , km+1, where (ki , ki+1) ∈ VA for i = 1, . . . , m. If k1 = km+1,

then this is a closed path of length m. In the above example, paths from 1 to 4 are

given by 1, 2, 4 and 1, 2, 5, 3, 1, 2, 4; these have the lengths 2 and 6, respectively.

In the mathematical field of Graph Theory one usually assumes that the vertices in

a path are pairwise distinct. Our deviation from this convention is motivated by the

following interpretation of a matrix A and its powers:

An entry ai j = 1 in the matrix A means that there exists a path of length 1 from

vertex i to vertex j , i.e., the vertices i and j are adjacent. If ai j = 0, then no such

path exists. The matrix A is therefore called the adjacency matrix of the graph G A.

If we square the adjacency matrix, then the entry in the (i, j) position is given by

(A2)i j =
n∑

ℓ=1

aiℓaℓj .

In the sum on the right hand side, we obtain for a given ℓ a 1 if and only if (i, ℓ) ∈ E A

and (ℓ, j) ∈ E A. The sum on the right had side therefore is equal to the number of

vertices that are adjacent to both i and j . Hence the (i, j) entry of A2 is equal to the

number of pairwise distinct paths from i to j (i �= j), or the pairwise distinct closed

paths from i to i of length 2 in G A. More generally, one can show the following (cp.

Exercise 17.10):

Let A = [ai j ] ∈ C
n,n be a symmetric adjacency matrix, i.e., A = AT with ai i = 0

and ai j ∈ {0, 1} for all i, j = 1, . . . , n, and let G A be the graph identified with A.

Then for each m ∈ N the (i, j) entry of Am is equal to the number of pairwise distinct

paths from i to j (i �= j) or the pairwise distinct closed paths from i to i of length

m in G A.
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For the above matrix A we obtain

A2 =

⎡
⎢⎢⎢⎢⎣

3 1 0 1 2

1 3 2 1 0

0 2 2 1 0

1 1 1 2 1

2 0 0 1 2

⎤
⎥⎥⎥⎥⎦

and A3 =

⎡
⎢⎢⎢⎢⎣

2 6 5 4 1

6 2 1 4 5

5 1 0 2 4

4 4 2 2 2

1 5 4 2 0

⎤
⎥⎥⎥⎥⎦

.

The 3 pairwise distinct closed paths of length 2 from 1 to 1 are

1, 2, 1, 1, 3, 1, 1, 4, 1

and the 4 pairwise distinct paths of length 3 from 1 to 4 are

1, 2, 1, 4, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 2, 4.

Numerous real world applications involve networks that can be modeled mathe-

matically using graphs. Examples include social, biological, telecommunication or

airline networks. The properties of such networks are studied in the interdisciplinary

area of Network Science. An important task is to identify participants in the network

that are central in the sense that their functionality has a significant impact on the

entire network. If the network has been modeled by a graph, then we can study the

centrality of the vertices. For example, a vertex can be considered central if it is con-

nected to a large part of the graph via many short closed paths. Longer connections

are usually less important, and thus paths should be scaled down according to their

length. If we use the scaling factor 1/m! for a path of length m, then for the vertex i

in the graph G A with the adjacency matrix A we obtain a centrality measure of the

form (
1

1!
A +

1

2!
A2 +

1

3!
A3 + . . .

)

i i

.

The relative ordering of the vertices according to this formula is not changed when

we add the constant 1. We then obtain the centrality of the vertex i as

(
I + A +

1

2
A2 +

1

3!
A3 + . . .

)

i i

= (exp(A))i i .

Another important quantity is the so-called communicability between the vertices i

and j for i �= j , which is given by the weighted sum of the pairwise distinct paths

from i to j , i.e., by

(
I + A +

1

2
A2 +

1

3!
A3 + . . .

)

i j

= (exp(A))i j .

For the above matrix A the MATLAB function expm yields
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exp(A) =

⎡
⎢⎢⎢⎢⎣

3.7630 3.1953 2.2500 2.7927 1.8176

3.1953 3.7630 1.8176 2.7927 2.2500

2.2500 1.8176 2.4881 1.2749 1.9204

2.7927 2.7927 1.2749 2.8907 1.2749

1.8176 2.2500 1.9204 1.2749 2.4881

⎤
⎥⎥⎥⎥⎦

.

The vertices 1 and 2 have the largest centrality, followed by 4, 3 and 5. If we would

define the centrality of a vertex as the number of adjacent vertices, then in this example

we could not distinguish between the vertices 3, 4 and 5. The largest communicability

in this example exists between the vertices 1 and 2.

Further information concerning the analysis of networks using adjacency matrices

and matrix functions can be found in the article [EstH10].

17.2 Systems of Linear Ordinary Differential Equations

A differential equation describes a relationship between a desired function and its

derivatives. Such equations are used in all areas of science and engineering for

modeling physical phenomena. Ordinary differential equations involve a function of

one variable and its derivatives, while partial differential equations involve functions

of several variables and their partial derivatives. In this section we focus on ordinary

differential equations of first order, i.e., those in which only the function and its first

derivative occur.

A simple example for the modeling with ordinary differential equations of first

order is the increase or decrease of a biological population, such as bacteria in a petri

dish. Let y = y(t) be the size of the population at time t . If there is enough food

and if the external conditions (e.g. temperature or pressure) are constant, then the

population grows with a (real) rate k > 0, that is proportional to the current number

of individuals. This can be described by the equation

ẏ :=
d

dt
y = ky. (17.8)

Clearly, one can also take k < 0, and then the population shrinks.

We are then looking for a function y : D ⊂ R → R that satisfies (17.8). The

general solution of (17.8) is given by the exponential function

y = cetk,

where c ∈ R is an arbitrary constant. For a unique solution of (17.8) we need to

know the size of the population at a given initial time t0. In this way we obtain the

initial value problem

ẏ = ky, y(t0) = y0,
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which, as we will show below, is solved uniquely by the function

y = e(t−t0)k y0.

Example 17.8 In a chemical reaction certain initial substances (called educts or

reactants) are transformed into other substances (called products). Reactions can be

distinguished concerning their order. Here we only discuss reactions of first order,

where the reaction rate is determined by only one educt. In reactions of second and

higher order one typically obtains nonlinear differential equations, which are beyond

our focus in this chapter.

If, for example, the educt A1 is transformed into the product A2 with the rate

−k1 < 0, then we write this reaction symbolically as

A1

k1
�� A2 ,

and we model it mathematically by the ordinary differential equation

ẏ1 = −k1 y1.

Here the value y1(t) is the concentration of the substance A1 at time t . For the

concentration of the product A2, which grows with the rate k1 > 0, we have the

corresponding equation ẏ2 = k1 y1.

It may happen that a reaction of first order develops in both directions. If A1

transforms into A2 with the rate −k1, and A2 transforms into A1 with the rate −k2,

i.e.,

A1

k1
��

A2 ,
k2

��

then we can model this reaction mathematically by the system of linear ordinary

differential equations

ẏ1 = −k1 y1 + k2 y2,

ẏ2 = k1 y1 − k2 y2.

Combining the functions y1 and y2 in a vector valued function y = [y1, y2]T , we

can write this system as

ẏ = Ay, where A =
[

−k1 k2

k1 −k2

]
.
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The derivative of the function y(t) is always considered entrywise,

ẏ =
[

ẏ1

ẏ2

]
.

Reactions can also have several steps. For example, a reaction of the form

A1

k1
�� A2

k2
��

A3

k3

��

k4
�� A4

leads to the differential equations

ẏ1 = −k1 y1,

ẏ2 = k1 y1 − k2 y2 + k3 y3,

ẏ3 = k2 y2 − (k3 + k4)y3,

ẏ4 = k4 y3,

and thus to the system

ẏ = Ay, where A =

⎡
⎢⎢⎣

−k1 0 0 0

k1 −k2 k3 0

0 k2 −(k3 + k4) 0

0 0 k4 0

⎤
⎥⎥⎦ .

The sum of the entries in each column of A is equal to zero, since for every decrease

in a substance with a certain rate other substances increase with the same rate.

In summary, a chemical reaction of first order leads to a system of linear ordinary

differential equations of first order that can be written as ẏ = Ay with a (real) square

matrix A.

We now derive the general theory for systems of linear (real or complex) ordinary

differential equations of first order of the form

ẏ = Ay + g, t ∈ [0, a]. (17.9)

Here A ∈ K n,n is a given matrix, a is a given positive real number, g : [0, a] → K n,1

is a given function, y : [0, a] → K n,1 is the desired solution, and we assume that

K = R or K = C. If g(t) = 0 ∈ K n,1 for all t ∈ [0, a], then the system (17.9) is

called homogeneous, otherwise it is called non-homogeneous. For a given system of

the form (17.9), the system

ẏ = Ay, t ∈ [0, a], (17.10)

is called the associated homogeneous system.
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Lemma 17.9 The solutions of the homogeneous system (17.10) form a subspace of

the (infinite dimensional) K -vector space of the continuously differentiable functions

from the interval [0, a] to K n,1.

Proof We will show the required properties according to Lemma 9.5. The function

w = 0 is continuously differentiable on [0, a] and solves the homogeneous system

(17.10). Thus, the solution set of this system is not empty. If

w1, w2 : [0, a] → K n,1

are continuously differentiable solutions and if α1,α2 ∈ K , then w = α1w1 +α2w2

is continuously differentiable on [0, a], and

ẇ = α1ẇ1 + α2ẇ2 = α1 Aw1 + α2 Aw2 = Aw,

i.e., the function w is a solution of the homogeneous system. ⊓⊔

The following characterization of the solutions of the non-homogeneous system

(17.9) is analogous to the characterization of the solution set of a non-homogeneous

linear system of equations in Lemma 6.2 (also cp. (8) in Lemma 10.7 ).

Lemma 17.10 If w1 : [0, a] → K n,1 is a solution of the non-homogeneous system

(17.9), then every other solution y can be written as y = w1 + w2, where w2 is a

solution of the associated homogeneous system (17.10).

Proof If w1 and y are solutions of (17.9), then ẏ − ẇ1 = (Ay + g) − (Aw1 + g) =
A(y − w1). The difference w2 := y − w1 thus is a solution of the associated homo-

geneous system and y = w1 + w2. ⊓⊔

In order to describe the solutions of systems of ordinary differential equations, we

consider for a given matrix A ∈ K n,n the matrix exponential function exp(t A) from

Lemma 17.5 or (17.5)–(17.6), where we now consider t ∈ [0, a] as real variable. The

power series of the matrix exponential function in Lemma 17.5 converges, and it can

be differentiated termwise with respect to the variable t , where again the derivative

of a matrix with respect to the variable t is considered entrywise. This yields

d

dt
exp(t A) =

d

dt

(
I + (t A) +

1

2
(t A)2 +

1

6
(t A)3 + . . .

)

= A + t A2 +
1

2
t2 A3 + . . .

= A exp(t A).

The same result is obtained by the entrywise differentiation of the matrix exp(t A) in

(17.5)–(17.6) with respect to t . With
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M(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2

2! . . . td−1

(d−1)!

1 t
. . .

...

. . .
. . . t2

2!
. . . t

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

we obtain

d

dt
exp(t Jd(λ)) =

d

dt

(
etλM(t)

)

= λetλM(t) + etλṀ(t)

= λetλM(t) + etλ Jd(0)M(t)

= (λId + Jd(0)) etλM(t)

= Jd(λ) exp(t Jd(λ)),

which also gives d
dt

exp(t A) = A exp(t A).

Theorem 17.11

(1) The unique solution of the homogeneous differential equation system (17.10)

for a given initial condition y(0) = y0 ∈ K n,1 is given by the function y =
exp(t A)y0.

(2) The set of all solutions of the homogeneous differential equation system (17.10)

forms an n-dimensional K -vector space with the basis {exp(t A)e1, . . . ,

exp(t A)en}.

Proof

(1) If y = exp(t A)y0, then

ẏ =
d

dt
(exp(t A)y0) =

(
d

dt
exp(t A)

)
y0 = (A exp(t A))y0

= A(exp(t A)y0) = Ay,

and y(0) = exp(0)y0 = In y0 = y0. Hence y is a solution of (17.10) that satisfies

the initial condition. If w is another such solution and u := exp(−t A)w, then

u̇ =
d

dt
(exp(−t A)w) = −A exp(−t A)w + exp(−t A)ẇ

= exp(−t A) (ẇ − Aw) = 0 ∈ K n,1,

which shows that the function u has constant entries. In particular, we then have

u = u(0) = w(0) = y0 = y(0) and w = exp(t A)y0, where we have used that

exp(−t A) = (exp(t A))−1 (cp. Lemma 17.6).
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(2) Each of the functions exp(t A)e j , . . . , exp(t A)en : [0, a] → K n,1, j = 1, . . . , n,

solves the homogeneous system ẏ = Ay. Since the matrix exp(t A) ∈ K n,n is

invertible for every t ∈ [0, a] (cp. Lemma 17.6), these functions are linearly

independent.

If ỹ is an arbitrary solution of ẏ = Ay, then ỹ(0) = y0 for some y0 ∈ K n,1. By

(1) then ỹ is the unique solution of the initial value problem with y(0) = y0, so

that ỹ = exp(t A)y0. As a consequence, ỹ is a linear combination of the functions

exp(t A)e1, . . . , exp(t A)en . ⊓⊔
To describe the solution of the non-homogeneous system (17.9), we need the

integral of functions of the form

w =

⎡
⎢⎣

w1

...

wn

⎤
⎥⎦ : [0, a] → K n,1.

For every fixed t ∈ [0, a] we define

∫ t

0

w(s)ds :=

⎡
⎢⎣

∫ t

0
w1(s)ds

...∫ t

0
wn(s)ds

⎤
⎥⎦ ∈ K n,1,

i.e., we apply the integral entrywise to the function w. By this definition we have

d

dt

(∫ t

0

w(s)ds

)
= w(t)

for all t ∈ [0, a]. We can now determine an explicit solution formula for systems of

linear differential equations based on the so-called Duhamel integral.2

Theorem 17.12 The unique solution of the non-homogeneous differential equation

system (17.9) with the initial condition y(0) = y0 ∈ K n,1 is given by

y = exp(t A)y0 + exp(t A)

∫ t

0

exp(−s A)g(s)ds. (17.11)

Proof The derivative of the function y defined in (17.11) is

ẏ =
d

dt
(exp(t A)y0) +

d

dt

(
exp(t A)

∫ t

0

exp(−s A)g(s)ds

)

= A exp(t A)y0 + A exp(t A)

∫ t

0

exp(−s A)g(s)ds + exp(t A) exp(−t A)g

2Jean-Marie Constant Duhamel (1797–1872).
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= A exp(t A)y0 + A exp(t A)

∫ t

0

exp(−s A)g(s)ds + g

= Ay + g.

Furthermore, we have

y(0) = exp(0)y0 + exp(0)

∫ 0

0

exp(−s A)g(s)ds = y0,

so that y also satisfies the initial condition.

Let now ỹ be another solution of (17.9) that satisfies the initial condition. By

Lemma 17.10 we then have ỹ = y + w, where w solves the homogeneous system

(17.10). Therefore, w = exp(t A)c for some c ∈ K n,1 (cp. (2) in Theorem 17.11).

For t = 0 we obtain y0 = y0 + c, where c = 0 and hence ỹ = y. ⊓⊔

In the above theorems we have shown that for the explicit solution of systems of

linear ordinary differential equations of first order, we have to compute the matrix

exponential function. While we have introduced this function using the Jordan canon-

ical form of the given matrix, numerical computations based on the Jordan canonical

form are not advisable (cp. Example 16.20). Because of its significant practical rele-

vance, numerous different algorithms for computing the matrix exponential function

have been proposed. But, as shown in the article [MolV03], no existing algorithm is

completely satisfactory.

Example 17.13 The example from circuit simulation presented in Sect. 1.5 lead to

the system of ordinary differential equations

d

dt
I = −

R

L
I −

1

L
VC +

1

L
VS,

d

dt
VC = −

1

C
I.

Using (17.11) and the initial values I (0) = I 0 and VC(0) = V 0
C , we obtain the

solution

[
I

VC

]
= exp

(
t

[
−R/L −1/L

−1/C 0

]) [
I 0

V 0
C

]

+
∫ t

0

exp

(
(t − s)

[
−R/L −1/L

−1/C 0

]) [
VS(s)

0

]
ds.

Example 17.14 Let us also consider an example from Mechanics. A weight with

mass m > 0 is attached to a spring with the spring constant µ > 0. Let x0 > 0 be the

distance of the weight from its equilibrium position, as illustrated in the following

figure:
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We want to determine the position x(t) of the weight at time t ≥ 0, where x(0) =
x0. The extension of the spring is described by Hooke’s law.3 The corresponding

ordinary differential equation of second order is

ẍ =
d2

dt2
x = −

µ

m
x,

with initial conditions x(0) = x0 and ẋ(0) = v0, where v0 > 0 is the initial velocity

of the weight. We can write this differential equation of second order for x as a

system of first order by introducing the velocity v as new variable. The velocity is

given by the derivative of the position with respect to time, i.e., v = ẋ , and thus for

the acceleration we have v̇ = ẍ , which yields the system

ẏ = Ay, where A =
[

0 1

− µ

m
0

]
and y =

[
x

v

]
.

The initial condition then is y(0) = y0 = [x0, v0]T .

By Theorem 17.11, the unique solution of this homogeneous initial value problem

is given by the function y = exp(t A)y0. We consider A as an element of C
2,2. The

eigenvalues of A are the two complex (non-real) numbers λ1 = iρ and λ2 = −iρ =
λ1, where ρ :=

√
µ

m
. Corresponding eigenvectors are

s1 =
[

1

iρ

]
∈ C

2,1, s2 =
[

1

−iρ

]
∈ C

2,1

and thus

exp(t A)y0 = S

[
eitρ 0

0 e−itρ

]
S−1 y0, S =

[
1 1

iρ −iρ

]
∈ C

2,2.

3Sir Robert Hooke (1635–1703).
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Exercises

17.1 Construct a matrix A = [ai j ] ∈ C
2,2 with A3 �=

[
a3

i j

]
.

17.2 Determine all solutions X ∈ C
2,2 of the matrix equation X2 = I2, and classify

which of these solutions are primary square roots of I2.

17.3 Determine a matrix X ∈ C
2,2 with real entries and X2 = −I2.

17.4 Prove Lemma 17.3.

17.5 Prove the following assertions for A ∈ C
n,n:

(a) det(exp(A)) = exp(trace(A)).

(b) If AH = −A, then exp(A) is unitary.

(c) If A2 = I , then exp(A) = 1
2
(e + 1

e
)I + 1

2
(e − 1

e
)A.

17.6 Let A = S diag(Jd1
(λ1), . . . , Jdm

(λm)) S−1 ∈ C
n,n with rank(A) = n. Deter-

mine the primary matrix function f (A) for f (z) = z−1. Does this function

also exist if rank(A) < n?

17.7 Let log : {z = reiϕ | r > 0,−π < ϕ < π} → C, reiϕ �→ ln(r) + iϕ, be the

principle branch of the complex logarithm (where ln denotes the real natural

logarithm). Show that this function is defined on the spectrum of

A =
[

0 1

−1 0

]
∈ C

2,2,

and compute log(A) as well as exp(log(A)).

17.8 Compute

exp

([
0 1

−1 0

])
, exp

([
−1 1

−1 −3

])
, sin

⎛
⎝

⎡
⎣

π 1 1

0 π 1

0 0 π

⎤
⎦

⎞
⎠ .

17.9 Construct two matrices A, B ∈ C
2,2 with exp(A + B) �= exp(A) exp(B).

17.10 Prove the assertion on the entries of Ad in Example 17.7.

17.11 Let

A =

⎡
⎣

5 1 1

0 5 1

0 0 4

⎤
⎦ ∈ R

3,3.

Compute exp(t A) for t ∈ R and solve the homogeneous system of differential

equations ẏ = Ay with the initial condition y(0) = [1, 1, 1]T .

17.12 Compute the matrix exp(t A) from Example 17.14 explicitly and thus show

that exp(t A) ∈ R
2,2 (for t ∈ R), despite the fact that the eigenvalues and

eigenvectors of A are not real.



Chapter 18

Special Classes of Endomorphisms

In this chapter we discuss some classes of endomorphisms (or square matrices)

whose eigenvalues and eigenvectors have special properties. Such properties only

exist under further assumptions, and in this chapter our assumptions concern the

relationship between the given endomorphism and its adjoint endomorphism. Thus,

we focus on Euclidean or unitary vector spaces. This leads to the classes of nor-

mal, orthogonal, unitary and selfadjoint endomorphisms. Each of these classes has

a natural counterpart in the set of square (real or complex) matrices.

18.1 Normal Endomorphisms

We start with the definition of a normal1 endomorphism or matrix.

Definition 18.1 Let V be a finite dimensional Euclidean or unitary vector space. An

endomorphism f ∈ L(V,V) is called normal if f ◦ f ad = f ad◦ f . A matrix A ∈ R
n,n

or A ∈ C
n,n is called normal if AT A = AAT or AH A = AAH , respectively.

For all z ∈ C we have zz = |z|2 = zz. The property of normality can therefore

be interpreted as a generalization of this property of complex numbers.

We will first study the properties of normal endomorphisms on a finite dimensional

unitary vector space V . Recall the following results:

(1) If B is an orthonormal basis of V and if f ∈ L(V,V), then ([ f ]B,B)H = [ f ad ]B,B

(cp. Theorem 13.12).

(2) Every f ∈ L(V,V) can be unitarily triangulated (cp. Corollary 14.20, Schur’s

theorem). This does not hold in general in the Euclidean case, since not every

real polynomial decomposes into linear factors over R.

1This term was introduced by Otto Toeplitz (1881–1940) in 1918 in the context of bilinear forms.
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Using these results we obtain the following characterization of normal endomor-

phisms on a unitary vector space.

Theorem 18.2 If V is a finite dimensional unitary vector space, then f ∈ L(V,V)

is normal if and only if there exists an orthonormal basis B of V such that [ f ]B,B is

a diagonal matrix, i.e., f is unitarily diagonalizable.

Proof Let f ∈ L(V,V) be normal and let B be an orthonormal basis of V such

that R := [ f ]B,B is an upper triangular matrix. Then RH = [ f ad ]B,B , and from

f ◦ f ad = f ad ◦ f we obtain

R RH = [ f ◦ f ad ]B,B = [ f ad ◦ f ]B,B = RH R.

We now show by induction on n = dim(V) that R is diagonal. This is obvious for

n = 1.

Let the assertion hold for an n ≥ 1, and let R ∈ C
n+1,n+1 be upper triangular with

R RH = RH R. We write R as

R =
[

R1 r1

0 α1

]
,

where R1 ∈ C
n,n is upper triangular, r1 ∈ C

n,1, and α1 ∈ C. Then

[
R1 RH

1 + r1r H
1 α1r1

α1r H
1 |α1|2

]
= R RH = RH R =

[
RH

1 R1 RH
1 r1

r H
1 R1 r H

1 r1 + |α1|2
]

.

From |α1|2 = r H
1 r1 + |α1|2 we obtain r H

1 r1 = 0, hence r1 = 0 and R1 RH
1 = RH

1 R1.

By the induction hypothesis, R1 ∈ C
n,n is diagonal, and therefore

R =
[

R1 0

0 α1

]

is diagonal as well.

Conversely, suppose that there exists orthonormal basis B of V such that [ f ]B,B

is diagonal. Then [ f ad ]B,B = ([ f ]B,B)H is diagonal and, since diagonal matrices

commute, we have

[ f ◦ f ad ]B,B = [ f ]B,B[ f ad ]B,B = [ f ad ]B,B[ f ]B,B = [ f ad ◦ f ]B,B,

which implies f ◦ f ad = f ad ◦ f , and hence f is normal. ⊓⊔

The application of this theorem to the unitary vector space V = C
n,1 with the

standard scalar product and a matrix A ∈ C
n,n viewed as element of L(V,V) yields

the following “matrix version”.

Corollary 18.3 A matrix A ∈ C
n,n is normal if and only if there exists an orthonor-

mal basis of C
n,1 consisting of eigenvectors of A, i.e., A is unitarily diagonalizable.



18.1 Normal Endomorphisms 273

The following theorem presents another characterization of normal endomor-

phisms on a unitary vector space.

Theorem 18.4 If V is a finite dimensional unitary vector space, then f ∈ L(V,V)

is normal if and only if there exists a polynomial p ∈ C[t] with p( f ) = f ad .

Proof If p( f ) = f ad for a polynomial p ∈ C[t], then

f ◦ f ad = f ◦ p( f ) = p( f ) ◦ f = f ad ◦ f,

and hence f is normal.

Conversely, if f is normal, then there exists an orthonormal basis B of V , such

that [ f ]B,B = diag(λ1, . . . ,λn). Furthermore,

[ f ad ]B,B = ([ f ]B,B)H = diag
(
λ1, . . . ,λn

)
.

Let p ∈ C[t] be a polynomial with p(λ j ) = λ j for j = 1, . . . , n. Such a polyno-

mial can be explicitly constructed using the Lagrange basis of C[t]≤n−1 (cp. Exer-

cise 10.12). Then

[ f ad ]B,B = diag
(
λ1, . . . ,λn

)
= diag

(
p(λ1), . . . , p(λn)

)
= p(diag(λ1, . . . ,λn))

= p
(
[ f ]B,B

)
= [p( f )]B,B,

and hence also f ad = p( f ). ⊓⊔

Several other characterizations of normal endomorphisms on a finite dimensional

unitary vector space and of normal matrices A ∈ C
n,n can be found in the arti-

cle [HorJ12] (see also Exercise 18.8).

We now consider the Euclidean case, where we focus on real square matrices.

All the results can be formulated analogously for normal endomorphisms on a finite

dimensional Euclidean vector space.

Let A ∈ R
n,n be normal, i.e., AT A = AAT . Then A also satisfies AH A = AAH

and when A is considered as an element of C
n,n , it is unitarily diagonalizable, i.e.,

A = SDSH holds for a unitary matrix S ∈ C
n,n and a diagonal matrix D ∈ C

n,n .

Despite the fact that A has real entries, neither S nor D will be real in general, since

A as an element of R
n,n may not be diagonalizable. For instance,

A =
[

1 2

−2 1

]
∈ R

2,2

is a normal matrix that is not diagonalizable (over R). Considered as element of C
2,2,

it has the eigenvalues 1 + 2i and 1 − 2i and it is unitarily diagonalizable.

To discuss the case of real normal matrices in more detail, we first prove a “real

version” of Schur’s theorem.
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Theorem 18.5 For every matrix A ∈ R
n,n there exists an orthogonal matrix

U ∈ R
n,n with

U T AU = R =

⎡
⎢⎣

R11 . . . R1m

. . .
...

Rmm

⎤
⎥⎦ ∈ R

n,n,

where for every j = 1, . . . , m either R j j ∈ R
1,1 or

R j j =

[
r

( j)

1 r
( j)

2

r
( j)

3 r
( j)

4

]
∈ R

2,2 with r
( j)

3 �= 0.

In the second case R j j has, considered as complex matrix, a pair of complex conjugate

eigenvalues of the form α j ± iβ j with α j ∈ R and β j ∈ R \ {0}. The matrix R is

called a real Schur form of A.

Proof We proceed via induction on n. For n = 1 we have A = [a11] = R and

U = [1].
Suppose that the assertion holds for some n ≥ 1 and let A ∈ R

n+1,n+1 be given.

We consider A as an element of C
n+1,n+1. Then A has an eigenvalue λ = α+ iβ ∈ C,

α,β ∈ R, corresponding to the eigenvector v = x + iy ∈ C
n+1,1, x, y ∈ R

n+1,1,

and we have Av = λv. Dividing this equation into its real and imaginary parts, we

obtain the two real equations

Ax = αx − βy and Ay = βx + αy. (18.1)

We have two cases:

Case 1: β = 0. Then the two equations in (18.1) are Ax = αx and Ay =
αy. Thus at least one of the real vectors x or y is an eigenvector corresponding

to the real eigenvalue α of A. Without loss of generality we assume that this is

the vector x and that ‖x‖2 = 1. We extend x by the vectors w2, . . . , wn+1 to an

orthonormal basis of R
n+1,1 with respect to the standard scalar product. The matrix

U1 := [x, w2, . . . , wn+1] ∈ R
n+1,n+1 then is orthogonal and satisfies

U T
1 AU1 =

[
α ⋆

0 A1

]

for a matrix A1 ∈ R
n,n . By the induction hypothesis there exists an orthogonal matrix

U2 ∈ R
n,n such that R1 := U T

2 A1U2 has the desired form. The matrix

U := U1

[
1 0

0 U2

]

is orthogonal and satisfies
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U T AU =
[

1 0

0 U T
2

]
U T

1 AU1

[
1 0

0 U2

]
=

[
α ⋆

0 R1

]
=: R,

where R has the desired form.

Case 2: β �= 0. We first show that x, y are linearly independent. If x = 0, then

using β �= 0 in the first equation in (18.1) implies that also y = 0. This is not possible,

since the eigenvector v = x + iy must be nonzero. Thus, x �= 0, and using β �= 0 in

the second equation in (18.1) implies that also y �= 0. If x, y ∈ R
n,1 \ {0} are linearly

dependent, then there exists a µ ∈ R \ {0} with x = µy. The two equations in (18.1)

then can be written as

Ax = (α − βµ)x and Ax =
1

µ
(β + αµ)x,

which implies that β(1 + µ2) = 0. Since 1 + µ2 �= 0 for all µ ∈ R, this implies

β = 0, which contradicts the assumption that β �= 0. Consequently, x, y are linearly

independent.

We can combine the two equations in (18.1) to the system

A[x, y] = [x, y]
[

α β

−β α

]
,

where rank([x, y]) = 2. Applying the Gram-Schmidt method with respect to the

standard scalar product of R
n+1,1 to the matrix [x, y] ∈ R

n+1,2 yields

[x, y] = [q1, q2]
[

r11 r12

0 r22

]
=: Q R1,

with QT Q = I2 and R1 ∈ GL2(R). It then follows that

AQ = A[x, y]R−1
1 = [x, y]

[
α β

−β α

]
R−1

1 = Q R1

[
α β

−β α

]
R−1

1 .

The real matrix

R2 := R1

[
α β

−β α

]
R−1

1

has, considered as element of C
2,2, the pair of complex conjugate eigenvalues α± iβ

with β �= 0. In particular, the (2, 1)-entry of R2 is nonzero, since otherwise R2 would

have two real eigenvalues.
We again extend q1, q2 by vectors w3, . . . , wn+1 to an orthonormal basis of R

n+1,1

with respect to the standard scalar product. (For n = 1 the list w3, . . . , wn+1 is empty.)
Then U1 := [Q, w3, . . . , wn+1] ∈ R

n+1,n+1 is orthogonal and we have

U T
1 AU1 = U T

1

[
AQ, A[w3, . . . , wn+1]

]
= U T

1

[
Q R2, A[w3, . . . , wn+1]

]
=

[
R2 ⋆

0 A1

]
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for a matrix A1 ∈ R
n−1,n−1. Analogously to the first case, an application of the

induction hypothesis to this matrix yields the desired matrices R and U . ⊓⊔

Theorem 18.5 implies the following result for real normal matrices.

Corollary 18.6 A matrix A ∈ R
n,n is normal if and only if there exists an orthogonal

matrix U ∈ R
n,n with

U T AU = diag(R1, . . . , Rm),

where, for every j = 1, . . . , m either R j ∈ R
1,1 or

R j =
[

α j β j

−β j α j

]
∈ R

2,2 with β j �= 0.

In the second case the matrix R j has, considered as complex matrix, a pair of complex

conjugate eigenvalues of the form α j ± iβ j .

Proof Exercise. ⊓⊔

Example 18.7 The matrix

A =
1

2

⎡
⎣

0
√

2 −
√

2

−
√

2 1 1√
2 1 1

⎤
⎦ ∈ R

3,3

has, considered as a complex matrix, the eigenvalues 1, i,−i. It is therefore neither

diagonalizable nor can it be triangulated over R. For the orthogonal matrix

U =
1

2

⎡
⎣

0 2 0

−
√

2 0
√

2√
2 0

√
2

⎤
⎦ ∈ R

3,3

the transformed matrix

U T AU =

⎡
⎣

0 1 0

−1 0 0

0 0 1

⎤
⎦

is in real Schur form.

18.2 Orthogonal and Unitary Endomorphisms

In this section we extend the concept of orthogonal and unitary matrices to endo-

morphisms.
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Definition 18.8 Let V be a finite dimensional Euclidean or unitary vector space.

An endomorphism f ∈ L(V,V) is called orthogonal or unitary, respectively, if

f ad ◦ f = IdV .

If f ad ◦ f = IdV , then f ad ◦ f is bijective and hence f is injective (cp. Exer-

cise 2.7). Corollary 10.11 implies that f is bijective. Hence f ad is the unique inverse

of f , and we also have f ◦ f ad = IdV (cp. our remarks following Definition 2.21).

Note that an orthogonal or unitary endomorphism f is normal, and therefore all

results from the previous section also apply to f .

Lemma 18.9 Let V be a finite dimensional Euclidean or unitary vector space and

let f ∈ L(V,V) be orthogonal or unitary, respectively. If B is an orthonormal basis

of V , then [ f ]B,B is an orthogonal or unitary matrix, respectively.

Proof Let dim(V) = n. For every orthonormal basis B of V we have

In = [IdV ]B,B = [ f ad ◦ f ]B,B = [ f ad ]B,B[ f ]B,B = ([ f ]B,B)H [ f ]B,B,

and thus [ f ]B,B is orthogonal or unitary, respectively. (In the Euclidean case

([ f ]B,B)H = ([ f ]B,B)T .) ⊓⊔

In the following theorem we show that an orthogonal or unitary endomorphism

is characterized by the fact that it does not change the scalar product of arbitrary

vectors.

Lemma 18.10 Let V be a finite dimensional Euclidean or unitary vector space with

the scalar product 〈·, ·〉. Then f ∈ L(V,V) is orthogonal or unitary, respectively, if

and only if 〈 f (v), f (w)〉 = 〈v,w〉 for all v,w ∈ V .

Proof If f is orthogonal or unitary and if v,w ∈ V , then

〈v,w〉 = 〈IdV(v), w〉 =
〈
( f ad ◦ f )(v), w

〉
= 〈 f (v), f (w)〉.

On the other hand, suppose that 〈v,w〉 = 〈 f (v), f (w)〉 for all v,w ∈ V . Then

0 = 〈v,w〉 − 〈 f (v), f (w)〉 = 〈v,w〉 −
〈
v, ( f ad ◦ f )(w)

〉

=
〈
v, (IdV − f ad ◦ f )(w)

〉
.

Since the scalar product is non-degenerate and v can be chosen arbitrarily, we have

(IdV − f ad ◦ f )(w) = 0 for all w ∈ V , and hence IdV = f ad ◦ f . ⊓⊔

We have the following corollary (cp. Lemma 12.13).

Corollary 18.11 If V is a finite dimensional Euclidean or unitary vector space with

the scalar product 〈·, ·〉, f ∈ L(V,V) is orthogonal or unitary, respectively, and

‖ · ‖ = 〈·, ·〉1/2 is the norm induced by the scalar product, then ‖ f (v)‖ = ‖v‖ for

all v ∈ V .
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For the vector space V = C
n,1 with the standard scalar product and induced norm

‖v‖2 = (vHv)1/2 as well as a unitary matrix A ∈ C
n,n , we have ‖Av‖2 = ‖v‖2 for

all v ∈ C
n,1. Thus,

‖A‖2 = sup
v∈Cn,1\{0}

‖Av‖2

‖v‖2

= 1

(cp. (6) in Example 12.4). This holds analogously for orthogonal matrices A ∈ R
n,n .

We now study the eigenvalues and eigenvectors of orthogonal and unitary endo-

morphisms.

Lemma 18.12 Let V be a finite dimensional Euclidean or unitary vector space and

let f ∈ L(V,V) be orthogonal or unitary, respectively. If λ is an eigenvalue of f ,

then |λ| = 1.

Proof Let 〈·, ·〉 be the scalar product on V . If f (v) = λv with v �= 0, then

〈v, v〉 = 〈IdV(v), v〉 = 〈( f ad ◦ f )(v), v〉 = 〈 f (v), f (v)〉 = 〈λv,λv〉 = |λ|2〈v, v〉,

and 〈v, v〉 �= 0 implies that |λ| = 1. ⊓⊔

The statement of Lemma 18.12 holds, in particular, for unitary and orthogonal

matrices. However, one should keep in mind that an orthogonal matrix (or an orthogo-

nal endomorphism) may not have an eigenvalue. For example, the orthogonal matrix

A =
[

0 −1

1 0

]
∈ R

2,2

has the characteristic polynomial PA = t2 +1, which has no real roots. If considered

as an element of C
2,2, the matrix A has the eigenvalues i and −i.

Theorem 18.13

(1) If A ∈ C
n,n is unitary, then there exists a unitary matrix U ∈ C

n,n with

U H AU = diag(λ1, . . . ,λn)

and |λ j | = 1 for j = 1, . . . , n.

(2) If A ∈ R
n,n is orthogonal, then there exists an orthogonal matrix U ∈ R

n,n with

U T AU = diag(R1, . . . , Rm),

where for every j = 1, . . . , m either R j = [λ j ] ∈ R
1,1 with λ j = ±1 or

R j =
[

c j s j

−s j c j

]
∈ R

2,2 with s j �= 0 and c2
j + s2

j = 1.
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Proof

(1) A unitary matrix A ∈ C
n,n is normal and hence unitarily diagonalizable (cp.

Corollary 18.3). By Lemma 18.12, all eigenvalues of A have absolute value 1.

(2) An orthogonal matrix A is normal and hence by Corollary 18.6 there exists an

orthogonal matrix U ∈ R
n,n with U T AU = diag(R1, . . . , Rm), where either

R j ∈ R
1,1 or

R j =
[

α j β j

−β j α j

]
∈ R

2,2

with β j �= 0. In the first case then R j = [λ j ] with |λ j | = 1 by Lemma 18.12.

Since A and U are orthogonal, also U T AU is orthogonal, and hence every

diagonal block R j is orthogonal as well. From RT
j R j = I2 we obtainα2

j +β2
j = 1,

so that R j has the desired form. ⊓⊔

We now study two important classes of orthogonal matrices.

Example 18.14 Let i, j, n ∈ N with 1 ≤ i < j ≤ n and let α ∈ R. We define

Ri j (α) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

1

cos(α) − sin(α)

1

. . .

1

sin(α) cos(α)

1

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i

← j

.

↑ ↑
i j

The matrix Ri j (α) = [ri j ] ∈ R
n,n is equal to the identity matrix In except for its

entries

ri i = cos(α), ri j = − sin(α), r j i = sin(α), r j j = cos(α).

For n = 2 we have the matrix

R12(α) =
[

cos(α) − sin(α)

sin(α) cos(α)

]
,
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which satisfies

R12(α)T R12(α) =
[

cos(α) sin(α)

− sin(α) cos(α)

] [
cos(α) − sin(α)

sin(α) cos(α)

]

=
[

cos2(α) + sin2(α) 0

0 cos2(α) + sin2(α)

]

= I2 = R12(α)R12(α)T .

One easily sees that each of the matrices Ri j (α) ∈ R
n,n is orthogonal. The multipli-

cation of a vector v ∈ R
n,1 with the matrix Ri j (α) results in a (counterclockwise)

rotation of v by the angle α in the (i, j)-coordinate plane. In Numerical Mathe-

matics, the matrices Ri j (α) are called Givens rotations.2 This is illustrated in the

figure below for the vector v = [1.0, 0.75]T ∈ R
2,1 and the matrices R12(π/2) and

R12(
2π
3

), which represent rotations by 90 and 120 degrees, respectively.

Example 18.15 For u ∈ R
n,1 \ {0} we define the Householder matrix

H(u) := In −
2

uT u
uuT ∈ R

n,n, (18.2)

and for u = 0 we set H(0) := In . For every u ∈ R
n,1 then H(u) is an orthogonal

matrix (cp. Exercise 12.17). The multiplication of a vector v ∈ R
n,1 with the matrix

H(u) describes a reflection of v at the hyperplane

(span{u})⊥ =
{

y ∈ R
n,1 | uT y = 0

}
,

i.e., the hyperplane of vectors that are orthogonal to u with respect to the standard

scalar product. This is illustrated in the figure below for the vector v = [1.75, 0.5]T ∈
R

2,1 and the Householder matrix

H(u) =
[

0 1

1 0

]
,

which corresponds to u = [−1, 1]T ∈ R
2,1.

2Wallace Givens (1910–1993), pioneer of Numerical Linear Algebra.
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MATLAB-Minute.

Let u = [5, 3, 1]T ∈ R
3,1. Apply the command norm(u) to compute

the Euclidean norm of u and form the Householder matrix H=eye(3)-

(2/(u’∗u))∗(u∗u’). Check the orthogonality of H via the computation of

norm(H’∗H-eye(3)). Form the vector v=H∗u and compare the Euclidean

norms of u and v.

18.3 Selfadjoint Endomorphisms

We have already studied selfadjoint endomorphisms f on a finite dimensional Euclid-

ean or unitary vector space. The defining property for this class of endomorphisms

is f = f ad (cp. Definition 13.13).

Obviously, selfadjoint endomorphisms are normal and hence the results of

Sect. 18.1 hold. We now strengthen some of these results.

Lemma 18.16 For a finite dimensional Euclidean or unitary vector space V and

f ∈ L(V,V), the following statements are equivalent:

(1) f is selfadjoint.

(2) For every orthonormal basis B of V we have [ f ]B,B = ([ f ]B,B)H .

(3) There exists an orthonormal basis B of V with [ f ]B,B = ([ f ]B,B)H .

(In the Euclidean case ([ f ]B,B)H = ([ f ]B,B)T .)

Proof In Corollary 13.14 we have already shown that (1) implies (2), and obvi-

ously (2) implies (3). If (3) holds, then [ f ]B,B = ([ f ]B,B)H = [ f ad ]B,B (cp. Theo-

rem 13.12), and hence f = f ad , so that (1) holds. ⊓⊔

We have the following strong result on the diagonalizability of selfadjoint endo-

morphisms in both the Euclidean and the unitary case.

Theorem 18.17 If V is a finite dimensional Euclidean or unitary vector space and

f ∈ L(V,V) is selfadjoint, then there exists an orthonormal basis B of V such that

[ f ]B,B is a real diagonal matrix.
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Proof Consider first the unitary case. If f is selfadjoint, then f is normal and hence

unitarily diagonalizable (cp. Theorem 18.2). Let B be an orthonormal basis of V so

that [ f ]B,B is a diagonal matrix. Then [ f ]B,B = [ f ad ]B,B = ([ f ]B,B)H implies that

the diagonal entries of [ f ]B,B , which are the eigenvalues of f , are real.

Let V be an n-dimensional Euclidean vector space. If B̃ = {v1, . . . , vn} is an

orthonormal basis of V , then [ f ]B̃,B̃ is symmetric and in particular normal. By Corol-

lary 18.6, there exists an orthogonal matrix U = [ui j ] ∈ R
n,n with

U T [ f ]B̃,B̃U = diag(R1, . . . , Rm),

where for j = 1, . . . , m either R j ∈ R
1,1 or

R j =
[

α j β j

−β j α j

]
∈ R

2,2 with β j �= 0.

Since U T [ f ]B̃,B̃U is symmetric, a 2 × 2 block R j with β j �= 0 cannot occur. Thus,

U T [ f ]B̃,B̃U is a real diagonal matrix.

We define the basis B = {w1, . . . , wn} of V by

(w1, . . . , wn) = (v1, . . . , vn)U.

Then, by construction, U = [IdV ]B,B̃ and hence U T = U−1 = [IdV ]B̃,B . Therefore,

U T [ f ]B̃,B̃U = [ f ]B,B . If 〈·, ·〉 is the scalar product on V , then 〈vi , v j 〉 = δi j ,

i, j = 1, . . . , n. With U T U = In we get

〈wi , w j 〉 =
〈 n∑

k=1

ukivk,

n∑

ℓ=1

uℓjvℓ

〉
=

n∑

k=1

n∑

ℓ=1

uki uℓj 〈vk, vℓ〉 =
n∑

k=1

uki uk j = δi j .

Hence B is an orthonormal basis of V . ⊓⊔

This theorem has the following “matrix version”.

Corollary 18.18

(1) If A ∈ R
n,n is symmetric, then there exist an orthogonal matrix U ∈ R

n,n and a

diagonal matrix D ∈ R
n,n with A = U DU T .

(2) If A ∈ C
n,n is Hermitian, then there exist a unitary matrix U ∈ C

n,n and a

diagonal matrix D ∈ R
n,n with A = U DU H .

The statement (1) in this corollary is known as the principal axes transformation.

We will briefly discuss the background of this name from the theory of bilinear forms

and their applications in geometry. A symmetric matrix A = [ai j ] ∈ R
n,n defines a

symmetric bilinear form on R
n,1 via
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βA : R
n,1 × R

n,1 → R, (x, y) �→ yT Ax =
n∑

i=1

n∑

j=1

ai j xi y j .

The map

qA : R
n,1 → R, x �→ βA(x, x) = xT Ax,

is called the quadratic form associated with this symmetric bilinear form.

Since A is symmetric, there exists an orthogonal matrix U = [u1, . . . , un] such

that U T AU = D is a real diagonal matrix. If B1 = {e1, . . . , en}, then [βA]B1×B1
= A.

The set B2 = {u1, . . . , un} forms an orthonormal basis of R
n,1 with respect to the

standard scalar product, and [u1, . . . , un] = [e1, . . . , en]U , hence U = [IdRn,1]B2,B1
.

For the change of bases from of B1 to B2 we obtain

[βA]B2×B2
=

(
[IdRn,1]B2,B1

)T [βA]B1×B1
[IdRn,1]B2,B1

= U T AU = D

(cp. Theorem 11.14). Thus, the real diagonal matrix D represents the bilinear form

βA defined by A with respect to the basis B2.
The quadratic form qA associated with βA is also transformed to a simpler form

by this change of bases, since analogously

qA(x) = xT Ax = xT U DU T x = yT Dy =
n∑

i=1

λi y2
i = qD(y), y =

⎡
⎢⎣

y1
.
.
.

yn

⎤
⎥⎦ := U T x .

Thus, the quadratic form qA is turned into a “sum of squares”, defined by the quadratic

form qD .

The principal axes transformation is given by the change of bases from the canon-

ical basis of R
n,1 to the basis given by the pairwise orthonormal eigenvectors of A in

R
n,1. The n pairwise orthogonal subspaces span{u j }, j = 1, . . . , n, form the n prin-

cipal axes. The geometric interpretation of this term is illustrated in the following

example.

Example 18.19 For the symmetric matrix

A =
[

4 1

1 2

]
∈ R

2,2

we have

U T AU =
[

3 +
√

2 0

0 3 −
√

2

]
= D,
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with the orthogonal matrix U = [u1, u2] ∈ R
2,2 and

u1 =
[

c

s

]
, u2 =

[
−s

c

]
, where

c =
1 +

√
2√

(1 +
√

2)2 + 1

= 0.9239, s =
1√

(1 +
√

2)2 + 1

= 0.3827.

(The numbers here are rounded to the fourth significant digit.) With the associated

quadratic form qA(x) = 4x2
1 + 2x1x2 + 2x2

2 , we define the set

E A = {x ∈ R
2,1 | qA(x) − 1 = 0}.

As described above, the principal axes transformation consists in the transformation

from the canonical coordinate system to a coordinate system given by an orthonormal

basis of eigenvectors of A. If we carry out this transformation and replace qA by the

quadratic form qD , we get the set

ED =
{

y ∈ R
2,1 | qD(y) − 1 = 0

}
=

{
[y1, y2]T ∈ R

2,1

∣∣∣∣
y2

1

β2
1

+
y2

2

β2
2

− 1 = 0

}
,

where β1 =

√
1

3 +
√

2
= 0.4760, β2 =

√
1

3 −
√

2
= 0.7941.

This set forms the ellipse centered at the origin of the two dimensional cartesian

coordinate system (spanned by the canonical basis vectors e1, e2) with axes of lengths

β1 and β2, which is illustrated on the left part of the following figure:

The elements x ∈ E A are given by x = U y for y ∈ ED . The orthogonal matrix

U =
[

c −s

s c

]



18.3 Selfadjoint Endomorphisms 285

is a Givens rotation that rotates the ellipse ED counterclockwise by the angle

cos−1(c) = 0.3926 (approximately 22.5 degrees). Hence E A is just a “rotated ver-

sion” of ED . The right part of the figure above shows the ellipse E A in the cartesian

coordinate system. The dashed lines indicate the respective spans of the vectors u1

and u2, which are the eigenvectors of A and the principal axes of the ellipse E A.

Let A ∈ R
n,n be symmetric. For a given vector v ∈ R

n,1 and a scalar α ∈ R,

Q(x) = xT Ax + vT x + α, x ∈ R
n,1

is a quadratic function in n variables (the entries of the vector x). The set of zeros of

this function, i.e., the set {x ∈ R
n,1 | Q(x) = 0}, is called a hypersurface of degree

2 or a quadric. In Example 18.19 we have already seen quadrics in the case n = 2

and with v = 0. We next give some further examples.

Example 18.20

(1) Let n = 3, A = I3, v = [0, 0, 0]T and α = −1. The corresponding quadric

{
[x1, x2, x3]T ∈ R

3,1 | x2
1 + x2

2 + x2
3 − 1 = 0

}

is the surface of the ball with radius 1 around the origin:

(2) Let n = 2, A =
[

1 0

0 0

]
, v = [0, 2]T and α = 0. The corresponding quadric

{
[x1, x2]T ∈ R

2,1 | x2
1 + 2x2 = 0

}

is a parabola:
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(3) Let n = 3, A =

⎡
⎣

1 0 0

0 0 0

0 0 0

⎤
⎦, v = [0, 2, 0]T and α = 0. The corresponding quadric

{
[x1, x2, x3]T ∈ R

3,1 | x2
1 + 2x2 = 0

}

is a parabolic cylinder:

Corollary 18.18 motivates the following definition.

Definition 18.21 If A ∈ R
n,n is symmetric or A ∈ C

n,n is Hermitian with n+
positive, n− negative and n0 zero eigenvalues (counted with their corresponding

multiplicities), then the triple (n+, n−, n0) is called the inertia of A.

Let us first consider, for simplicity, only the case of real symmetric matrices.

Lemma 18.22 If A ∈ R
n,n symmetric has the inertia (n+, n−, n0), then A and

SA = diag(In+ ,−In− , 0n0
) are congruent.

Proof Let A ∈ R
n,n be symmetric and let A = U�U T with an orthogonal matrix

U ∈ R
n,n and � = diag(λ1, . . . ,λn) ∈ R

n,n . If A has the inertia (n+, n−, n0), then

we can assume without loss of generality that

� =

⎡
⎣

�n+

�n−

0n0

⎤
⎦ = diag(�n+ ,�n− , 0n0

),

where the diagonal matrices �n+ and �n− contain the positive and negative eigen-

values of A, respectively, and 0n0
∈ R

n0,n0 . We have � = �SA�, where

SA := diag(In+ ,−In− , 0n0
) ∈ R

n,n,

� := diag((�n+)1/2, (−�n−)1/2, In0
) ∈ GLn(R).
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Here (diag(µ1, . . . ,µm))1/2 = diag(
√

µ1, . . . ,
√

µm) and thus

A = U�U T = U�SA�U T = (U�)SA(U�)T . ⊓⊔

This result will be used in the proof of Sylvester’s law of inertia.3

Theorem 18.23 The inertia of a symmetric matrix A ∈ R
n,n is invariant under

congruence, i.e., for every matrix G ∈ GLn(R) the matrices A and GT AG have the

same inertia.

Proof The assertion is trivial for A = 0. Let A �= 0 have the inertia (n+, n−, n0),

then not both n+ and n− can be equal to zero. We assume without loss of generality

that n+ > 0. (If n+ = 0, then the following argument can be applied for n− > 0.)

By Lemma 18.22 there exist G1 ∈ GLn(R) and SA = diag(In+ ,−In− , 0n0
) with

A = GT
1 SAG1. Let G2 ∈ GLn(R) be arbitrary and set B := GT

2 AG2. Then B

is symmetric and has an inertia (̃n+, ñ−, ñ0). Therefore, B = GT
3 SB G3 for SB =

diag(Iñ+ ,−Iñ− , 0ñ0
) and a matrix G3 ∈ GLn(R). If we show that n+ = ñ+ and

n0 = ñ0, then also n− = ñ−.

We have

A =
(
G−1

2

)T
BG−1

2 =
(
G−1

2

)T
GT

3 SB G3G−1
2 = GT

4 SB G4, G4 := G3G−1
2 ,

and G4 ∈ GLn(R) implies that rank(A) = rank(SB) = rank(B), hence n0 = ñ0.

We set

G−1
1 = [u1, . . . , un+ , v1, . . . , vn− , w1, . . . , wn0

] and

G−1
4 = [̃u1, . . . , ũ ñ+ , ṽ1, . . . , ṽñ− , w̃1, . . . , w̃n0

].

Let V1 := span{u1, . . . , un+} and V2 := span{̃v1, . . . , ṽñ− , w̃1, . . . , w̃n0
}. Since n+ >

0, we have dim(V1) ≥ 1. If x ∈ V1 \ {0}, then

x =
n+∑

j=1

α j u j = G−1
1 [α1, . . . ,αn+ , 0, . . . , 0]T

for some α1, . . . ,αn+ ∈ R that are not all zero. This implies

xT Ax =
n+∑

j=1

α2
j > 0.

3James Joseph Sylvester (1814–1897) proved this result for quadratic forms in 1852. He also

coined the name law of inertia which according to him is “expressing the fact of the existence of

an invariable number inseparably attached to such [bilinear] forms”.
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If, on the other hand, x ∈ V2, then an analogous argument shows that xT Ax ≤ 0.

Hence V1 ∩ V2 = {0}, and the dimension formula for subspaces (cp. Theorem 9.29)

yields

dim(V1)︸ ︷︷ ︸
=n+

+ dim(V2)︸ ︷︷ ︸
=n−ñ+

− dim(V1 ∩ V2)︸ ︷︷ ︸
=0

= dim(V1 + V2) ≤ dim(Rn,1) = n,

and thus n+ ≤ ñ+. If we repeat the same construction by interchanging the roles of

n+ and ñ+, then ñ+ ≤ n+. Thus, n+ = ñ+ and the proof is complete. ⊓⊔

In the following result we transfer Lemma 18.22 and Theorem 18.23 to complex

Hermitian matrices.

Theorem 18.24 Let A ∈ C
n,n be Hermitian with the inertia (n+, n−, n0). Then

there exists a matrix G ∈ GLn(C) with

A = G H diag(In+ , In− , 0n0
) G.

Moreover, for every matrix G ∈ GLn(C) the matrices A and G H AG have the same

inertia.

Proof Exercise. ⊓⊔

Finally, we discuss a special class of symmetric and Hermitian matrices.

Definition 18.25 A real symmetric or complex Hermitian n × n matrix A is called

(1) positive semidefinite, if vH Av ≥ 0 for all v ∈ R
n,1 resp. v ∈ C

n,1,

(2) positive definite, if vH Av > 0 for all v ∈ R
n,1 \ {0} resp. v ∈ C

n,1 \ {0}.

If in (1) or (2) the reverse inequality holds, then the corresponding matrices are called

negative semidefinite or negative definite, respectively.

For selfadjoint endomorphisms we define analogously: If V is a finite dimensional

Euclidean or unitary vector space with the scalar product 〈·, ·〉 and if f ∈ L(V,V) is

selfadjoint, then f is called positive semidefinite or positive definite, if 〈 f (v), v〉 ≥ 0

for all v ∈ V resp. 〈 f (v), v〉 > 0 for all v ∈ V \ {0}.
The following theorem characterizes symmetric positive definite matrices; see

Exercise 18.19 and Exercise 18.20 for the transfer of the results to positive semidef-

inite matrices resp. positive definite endomorphisms.

Theorem 18.26 If A ∈ R
n,n is symmetric, then the following statements are equiv-

alent:

(1) A is positive definite.

(2) All eigenvalues of A are real and positive.

(3) There exists a lower triangular matrix L ∈ GLn(R) with A = L LT .
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Proof

(1) ⇒ (2): The symmetric matrix A is diagonalizable with real eigenvalues (cp.

(1) in Corollary 18.18). If λ is an eigenvalue with associated eigenvector v, i.e.,

Av = λv, then λvT v = vT Av > 0 and vT v > 0 implies that λ > 0.

(2) ⇒ (1): Let A = U T diag(λ1, . . . ,λn) U be a diagonalization A with an orthog-

onal matrix U ∈ R
n,n (cp. (1) in Corollary 18.18) and λ j > 0, j = 1, . . . , n.

Let v ∈ R
n,1 \ {0} be arbitrary and let w := Uv. Then w �= 0 and v = U T w, so

that

vT Av = (U T w)T U T diag(λ1, . . . ,λn) U (U T w) = wT diag(λ1, . . . ,λn) w

=
n∑

j=1

λ jw
2
j > 0.

(3) ⇒ (1): If A = L LT with L ∈ GLn(R), then for every v ∈ C
n,1 \ {0} we have

vT Av = vT L LT v = ‖LT v‖2
2 > 0,

since LT is invertible. (Note that here we do not need that L is lower triangular.)

(1) ⇒ (3): Let A = U T diag(λ1, . . . ,λn) U be a diagonalization of A with an

orthogonal matrix U ∈ R
n,n (cp. (1) in Corollary 18.18). Since A is positive

definite, we know from (2) that λ j > 0, j = 1, . . . , n. We set

�1/2 := diag(
√

λ1, . . . ,
√

λn),

and then have A = (U�1/2)(�1/2U T ) =: BT B. Let B = Q R be a Q R-

decomposition of the invertible matrix B (cp. Corollary 12.12), where Q ∈ R
n,n

is orthogonal and R ∈ R
n,n is an invertible upper triangular matrix. Then A =

BT B = (Q R)T (Q R) = L LT , where L := RT . ⊓⊔

One easily sees that an analogous result holds for complex Hermitian matrices

A ∈ C
n,n . In this case in assertion (3) the lower triangular matrix is L ∈ GLn(C)

with A = L L H .

The factorization A = L LT in (3) is called a Cholesky factorization4 of A. It

is special case of the LU -decomposition in Theorem 5.4. In fact, Theorem 18.26

shows that an LU -decomposition of a (real) symmetric positive definite matrix can

be computed without row permutations.

In order to compute the Cholesky factorization of the symmetric positive definite

matrix A = [ai j ] ∈ R
n,n , we consider the equation

4André-Louis Cholesky (1875–1918).
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A = L LT =

⎡
⎢⎣

l11

...
. . .

ln1 · · · lnn

⎤
⎥⎦

⎡
⎢⎣

l11 · · · ln1

. . .
...

lnn

⎤
⎥⎦ .

For the first row of A we obtain

a11 = l2
11 =⇒ l11 =

√
a11, (18.3)

a1 j = l11l j1 =⇒ l j1 =
a1 j

l11

, j = 2, . . . , n. (18.4)

Analogously, for the rows i = 2, . . . , n of A we obtain

ai i =
i∑

j=1

li j li j =⇒ li i =
(

ai i −
i−1∑

j=1

l2
i j

)1/2

, (18.5)

ai j =
n∑

k=1

likl jk =
i∑

k=1

likl jk =
i−1∑

k=1

likl jk + li i l j i

=⇒ l j i =
1

li i

(
ai j −

i−1∑

k=1

likl jk

)
, for j > i. (18.6)

The symmetric or Hermitian positive definite matrices are closely related to the

positive definite bilinear forms on Euclidian or unitary vector spaces.

Theorem 18.27 If V is a finite dimensional Euclidian or unitary vector space and

if β is a symmetric or Hermitian bilinear form on V , respectively, then the following

statements are equivalent:

(1) β is positive definite, i.e., β(v, v) > 0 for all v ∈ V \ {0}.
(2) For every basis B of V the matrix representation [β]B×B is (symmetric or Her-

mitian) positive definite.

(3) There exists a basis B of V such that the matrix representation [β]B×B is (sym-

metric or Hermitian) positive definite.

Proof Exercise. ⊓⊔

Exercises

18.1 Let A ∈ R
n,n be normal. Show that αA for every α ∈ R, Ak for every k ∈ N0,

and p(A) for every p ∈ R[t] are normal.

18.2 Let A, B ∈ R
n,n be normal. Are A + B and AB then normal as well?

18.3 Let A ∈ R
2,2 be normal but not symmetric. Show that then

A =
[

α β

−β α

]
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for some α ∈ R and β ∈ R \ {0}.
18.4 Prove Corollary 18.6 using Theorem 18.5.

18.5 Show that real skew-symmetric matrices (i. e., matrices with A = −AT ∈
R

n,n) and complex skew-Hermitian matrices (i. e., matrices with A = −AH ∈
C

n,n) are normal.

18.6 Let V be a finite dimensional unitary vector space and let f ∈ L(V,V) be

normal. Show the following assertions:

(a) If f = f 2, then f is selfadjoint.

(b) If f 2 = f 3, then f = f 2.

(c) If f is nilpotent, then f = 0.

18.7 Let V be a finite dimensional real or complex vector space and let f ∈ L(V,V)

be diagonalizable. Show that there exists a scalar product on V such that f is

normal with respect to this scalar products.

18.8 Let A ∈ C
n,n . Show the following assertions:

(a) A is normal if and only if there exists a normal matrix B with n distinct

eigenvalues that commutes with A.

(b) A is normal if and only if A + aI is normal for every a ∈ C.

(c) Let H(A) := 1
2
(A + AH ) be the Hermitian and S(A) := 1

2
(A − AH ) the

skew-Hermitian part of A. Show that A = H(A)+S(A), H(A)H = H(A)

and S(A)H = −S(A). Show, furthermore, that A is normal if and only if

H(A) and S(A) commute.

18.9 Show that if A ∈ C
n,n is normal and if f (z) = az+b

cz+d
with ad − bc �= 0 is

defined on the spectrum of A, then f (A) = (a A + bI )(cA + d I )−1.

(The map f (z) is called a Möbius transformation.5 Such transformations play

an important role in Function Theory and in many other areas of Mathematics.)

18.10 Let V be a finite dimensional Euclidian or unitary vector space and let f ∈
L(V,V) be orthogonal or unitary, respectively. Show that f −1 exists and is

again orthogonal or unitary, respectively.

18.11 Let u ∈ R
n,1 and let the Householder matrix H(u) be defined as in (18.2).

Show the following assertions:

(a) For u �= 0 the matrices H(u) and [−e1, e2, . . . , en] are orthogonally

similar, i.e., there exists an orthogonal matrix Q ∈ R
n,n with

QT H(u)Q = [−e1, e2, . . . , en].

(This implies that H(u) only has the eigenvalues 1 and −1 with the

algebraic multiplicities n − 1 and 1, respectively.)

(b) Every orthogonal matrix A ∈ R
n,n can be written as product of n House-

holder matrices, i.e., there exist u1, . . . , un ∈ R
n,1 with A = H(u1) . . .

H(un).

5August Ferdinand Möbius (1790–1868).
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18.12 Let v ∈ R
n,1 satisfy vT v = 1. Show that there exists an orthogonal matrix

U ∈ R
n,n with Uv = e1.

18.13 Transfer the proofs of Lemma 18.22 and Theorem 18.23 to complex Hermitian

matrices and thus show Theorem 18.24.

18.14 Determine for the symmetric matrix

A =
[

10 6

6 10

]
∈ R

2,2

an orthogonal matrix U ∈ R
2,2 such that U T AU is diagonal. Is A positive

(semi-)definite?

18.15 Let K ∈ {R, C} and let {v1, . . . , vn} be a basis of K n,1. Prove or disprove: A

matrix A = AH ∈ K n,n is positive definite if and only if vH
j Av j > 0 for all

j = 1, . . . , n.

18.16 Use Definition 18.25 to test whether the symmetric matrices

[
1 1

1 1

]
,

[
1 2

2 1

]
,

[
2 1

1 2

]
∈ R

2,2

are positive (semi-)definite. Determine in all cases the inertia.

18.17 Let

A =
[

A11 A12

AT
12 A22

]
∈ R

n,n

with A11 = AT
11 ∈ GLm(R), A12 ∈ R

m,n−m and A22 = AT
22 ∈ R

n−m,n−m . The

matrix S := A22 − AT
12 A−1

11 A12 ∈ R
m,m is called the Schur complement6 of

A11 in A. Show that A is positive definite if A11 and S are positive definite.

(For the Schur complement, see also Exercise 4.17.)

18.18 Show that A ∈ C
n,n is Hermitian positive definite if and only if 〈x, y〉 = yH Ax

defines a scalar product on C
n,1.

18.19 Prove the following version of Theorem 18.26 for positive semidefinite matri-

ces.

If A ∈ R
n,n is symmetric, then the following statements are equivalent:

(1) A is positive semidefinite.

(2) All eigenvalues of A are real and nonnegative.

(3) There exists an upper triangular matrix L ∈ R
n,n with A = L LT .

18.20 Let V be a finite dimensional Euclidian or unitary vector space and let f ∈
L(V,V) be selfadjoint. Show that f is positive definite if and only if all

eigenvalues of f are real and positive.

18.21 Let A ∈ R
n,n . A matrix X ∈ R

n,n with X2 = A is called a square root of A

(cp. Sect. 17.1).

6Issai Schur (1875–1941).
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(a) Show that a symmetric positive definite matrix A ∈ R
n,n has a symmetric

positive definite square root.

(b) Show that the matrix

A =

⎡
⎣

33 6 6

6 24 −12

6 −12 24

⎤
⎦

is symmetric positive definite and compute a symmetric positive definite

square root of A.

(c) Show that the matrix A = Jn(0), n ≥ 2, does not have a square root.

18.22 Show that the matrix

A =

⎡
⎣

2 1 0

1 2 1

0 1 2

⎤
⎦ ∈ R

3,3

is positive definite and compute a Cholesky factorization of A using (18.3)–

(18.6).

18.23 Let A, B ∈ C
n,n be Hermitian and let B be furthermore positive definite.

Show that the polynomial det(t B − A) ∈ C[t]≤n has exactly n real roots.

18.24 Prove Theorem 18.27.



Chapter 19

The Singular Value Decomposition

The matrix decomposition introduced in this chapter is very important in many

practical applications, since it yields the best possible approximation (in a certain

sense) of a given matrix by a matrix of low rank. A low rank approximation can be

considered a “compression” of the data represented by the given matrix. We illustrate

this below with an example from image processing.

We first prove the existence of the decomposition.

Theorem 19.1 Let A ∈ C
n,m with n ≥ m be given. Then there exist unitary matrices

V ∈ C
n,n and W ∈ C

m,m such that

A = V �W H with � =

[
�r 0r,m−r

0n−r,r 0n−r,m−r

]
∈ R

n,m, �r = diag(σ1, . . . ,σr ),

(19.1)

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r = rank(A).

Proof If A = 0, then we set V = In , � = 0 ∈ C
n,m , �r = [ ], W = Im , and we are

finished.

Let A �= 0 and r := rank(A). Since n ≥ m, we have 1 ≤ r ≤ m, and since

AH A ∈ C
m,m is Hermitian, there exists a unitary matrix W = [w1, . . . , wm] ∈ C

m,m

with

W H (AH A)W = diag(λ1, . . . ,λm) ∈ R
m,m

(cp. (2) in Corollary 18.18). Without loss of generality we assume that λ1 ≥ λ2 ≥

· · · ≥ λm . For every j = 1, . . . , m then AH Aw j = λ jw j , and hence

λ jw
H
j w j = wH

j AH Aw j = ‖Aw j‖
2
2 ≥ 0,

i.e., λ j ≥ 0 for j = 1, . . . , m. Then rank(AH A) = rank(A) = r (to see this, modify

the proof of Lemma 10.25 for the complex case). Therefore, the matrix AH A has

exactly r positive eigenvalues λ1, . . . ,λr and m − r times the eigenvalue 0. We then
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define σ j := λ
1/2

j , j = 1, . . . , r , and have σ1 ≥ σ2 ≥ · · · ≥ σr . Let �r be as in

(19.1),

D :=

[
�r 0

0 Im−r

]
∈ GLm(R), X = [x1, . . . , xm] := AW D−1,

Vr := [x1, . . . , xr ], and Z := [xr+1, . . . , xm]. Then

[
V H

r Vr V H
r Z

Z H Vr Z H Z

]
=

[
V H

r

Z H

]
[Vr , Z ] = X H X = D−1W H AH AW D−1 =

[
Ir 0

0 0

]
,

which implies, in particular, that Z = 0 and V H
r Vr = Ir . We extend the vectors

x1, . . . , xr to an orthonormal basis {x1, . . . , xr , x̃r+1, . . . , x̃n} of C
n,1 with respect to

the standard scalar product. Then the matrix

V := [Vr , x̃r+1, . . . , x̃n] ∈ C
n,n

is unitary. From X = AW D−1 and X = [Vr , Z ] = [Vr , 0] we finally obtain

A = [Vr , 0]DW H and A = V �W H with � as in (19.1). ⊓⊔

As the proof shows, Theorem 19.1 can be formulated analogously for real matrices

A ∈ R
n,m with n ≥ m. In this case the two matrices V and W are orthogonal. If

n < m we can apply the theorem to AH (resp. AT in the real case).

Definition 19.2 A decomposition of the form (19.1) is called a singular value

decomposition or short SVD1 of the matrix A. The diagonal entries of the matrix

�r are called singular values and the columns of V resp. W are called left resp. right

singular vectors of A.

From (19.1) we obtain the unitary diagonalizations of the matrices AH A and

AAH ,

AH A = W

[
�2

r 0

0 0

]
W H and AAH = V

[
�2

r 0

0 0

]
V H .

The singular values of A are therefore uniquely determined as the positive square

roots of the positive eigenvalues of AH A or AAH . The unitary matrices V and W in

the singular value decomposition, however, are (as the eigenvectors in general) not

uniquely determined.

1In the development of this decomposition from special cases in the middle of the 19th century to its

current general form many important players of the history of Linear Algebra played a role. In the

historical notes concerning the singular value decomposition in [HorJ91] one finds contributions

of Jordan (1873), Sylvester (1889/1890) and Schmidt (1907). The current form was shown in 1939

by Carl Henry Eckart (1902–1973) and Gale Young.
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If we write the SVD of A in the form

A = V �W H =

(
V

[
Im

0n−m,m

]
W H

) (
W

[
�r 0

0 0m−r

]
W H

)
=: U P,

then U ∈ C
n,m has orthonormal columns, i.e., U H U = Im , and P = P H ∈ C

m,m

is positive semidefinite with the inertia (r, 0, m − r). The factorization A = U P is

called a polar decomposition of A. It can be viewed as a generalization of the polar

representation of complex numbers, z = eiϕ|z|.

Lemma 19.3 Suppose that the matrix A ∈ C
n,m with rank(A) = r has an SVD

of the form (19.1) with V = [v1, . . . , vn] and W = [w1, . . . , wm]. Considering

A as an element of L(Cm,1, C
n,1), we then have im(A) = span{v1, . . . , vr } and

ker(A) = span{wr+1, . . . , wm}.

Proof For j = 1, . . . , r we have Aw j = V �W Hw j = V �e j = σ jv j �= 0, since

σ j �= 0. Hence these r linear independent vectors satisfy v1, . . . , vr ∈ im(A). Now

r = rank(A) = dim(im(A)) implies that im(A) = span{v1, . . . , vr }.

For j = r +1, . . . , m we have Aw j = 0, and hence these m−r linear independent

vectors satisfy wr+1, . . . , wm ∈ ker(A). Then dim(ker(A)) = m − dim(im(A)) =

m − r implies that ker(A) = span{wr+1, . . . , wm}. ⊓⊔

An SVD of the form (19.1) can be written as

A =

r∑

j=1

σ jv jw
H
j .

Thus, A can be written as a sum of r matrices of the form σ jv jw
H
j , where

rank
(
σ jv jw

H
j

)
= 1. Let

Ak :=

k∑

j=1

σ jv jw
H
j for some k, 1 ≤ k ≤ r. (19.2)

Then rank(Ak) = k and, using that the matrix 2-norm is unitarily invariant (cp.

Exercise 19.1), we get

‖A − Ak‖2 = ‖diag(σk+1, . . . ,σr )‖2 = σk+1. (19.3)

Hence A is approximated by the matrix Ak , where the rank of the approximating

matrix and the approximation error in the matrix 2-norm are explicitly known. The

singular value decomposition, furthermore, yields the best possible approximation

of A by a matrix of rank k with respect to the matrix 2-norm.

Theorem 19.4 With Ak as in (19.2), we have ‖A − Ak‖2 ≤ ‖A − B‖2 for every

matrix B ∈ C
n,m with rank(B) = k.
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Proof The assertion is clear for k = rank(A), since then Ak = A and ‖A− Ak‖2 = 0.

Let k < rank(A) ≤ m. Let B ∈ C
n,m with rank(B) = k be given, then

dim(ker(B)) = m − k, where we consider B as an element of L(Cm,1, C
n,1). If

w1, . . . , wm are the right singular vectors of A from (19.1), then U := span{w1, . . . ,

wk+1} has the dimension k + 1. Since ker(B) and U are subspaces of C
m,1 with

dim(ker(B)) + dim(U) = m + 1, we have ker(B) ∩ U �= {0}.

Let v ∈ ker(B) ∩ U with ‖v‖2 = 1 be given. Then there exist α1, . . . ,αk+1 ∈ C

with v =
∑k+1

j=1 α jw j and
∑k+1

j=1 |α j |
2 = ‖v‖2

2 =1. Hence

(A − B)v = Av − Bv︸︷︷︸
=0

=

k+1∑

j=1

α j Aw j =

k+1∑

j=1

α jσ jv j

and, therefore,

‖A − B‖2 = max
‖y‖2=1

‖(A − B)y‖2 ≥ ‖(A − B)v‖2 =
∥∥

k+1∑

j=1

α jσ jv j

∥∥
2

=
( k+1∑

j=1

|α jσ j |
2
)1/2

(since v1, . . . , vk+1 are pairwise orthonormal)

≥ σk+1

( k+1∑

j=1

|α j |
2
)1/2

(since σ1 ≥ · · · ≥ σk+1)

= σk+1 = ‖A − Ak‖2,

which completes the proof. ⊓⊔

MATLAB-Minute.

The command A=magic(n) generates for n ≥ 3 an n ×n matrix A with entries

from 1 to n2, so that all row, column and diagonal sums of A are equal. The

entries of A therefore from a “magic square”.

Compute the SVD of A=magic(10) using the command [V,S,W]=svd(A).

What can be said about the singular values of A and what is rank(A)? Form

Ak for k = 1, 2, . . . , rank(A) as in (19.2) and verify numerically the equation

(19.3).

The SVD is one of the most important and practical mathematical tools in almost

all areas of science, engineering and social sciences, in medicine and even in psychol-

ogy. Its great importance is due to the fact that the SVD allows to distinguish between

“important” and “non-important” information in a given data. In practice, the latter
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corresponds, e.g., to measurement errors, noise in the transmission of data, or fine

details in a signal or an image that do not play an important role. Often, the “impor-

tant” information corresponds to the large singular values, and the “non-important”

information to the small ones.

In many applications one sees, furthermore, that the singular values of a given

matrix decay rapidly, so that there exist only few large and many small singular

values. If this is the case, then the matrix can be approximated well by a matrix with

low rank, since already for a small k the approximation error ‖A − Ak‖2 = σk+1 is

small. A low rank approximation Ak requires little storage capacity in the computer;

only k scalars and 2k vectors have to be stored. This makes the SVD a powerful tool

in all applications where data compression is of interest.

Example 19.5 We illustrate the use of the SVD in image compression with a picture

that we obtained from the research center Matheon: Mathematics for Key Tech-

nologies2. The greyscale picture is shown on the left of the figure below. It consists

of 286 × 152 pixels, where each of the pixels is given by a value between 0 and 64.

These values are stored in a real 286 × 152 matrix A which has (full) rank 152.

We compute an SVD A = V �W T using the command [V,S,W]=svd(A) in MAT-

LAB. The diagonal entries of the matrix S, i.e., the singular values of A, are ordered

decreasingly by MATLAB (as in Theorem 19.1). For k = 100, 20, 10 we now

compute matrices Ak with rank k as in (19.2) using the command Ak=V(:,1:k)∗

S(1:k,1:k)∗W(:,1:k)’. These matrices represent approximations of the original

picture based on the k largest singular values and the corresponding singular vectors.

The three approximations are shown next to the original picture above. The quality

of the approximation decreases with decreasing k, but even the approximation for

k = 10 shows the essential features of the “Matheon bear”.

Another important application of the SVD arises in the solution of linear systems

of equations. If A ∈ C
n,m has an SVD of the form (19.1), we define the matrix

A† := W�†V H ∈ C
m,n, where �† :=

[
�−1

r 0

0 0

]
∈ R

m,n . (19.4)

2We thank Falk Ebert for his help. The original bear can be seen in front of the Mathematics building

of the TU Berlin. More information on MATHEON can be found at www.matheon.de.
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One easily sees that

A† A = W

[
Ir 0

0 0

]
W H ∈ R

m,m .

If r = m = n, then A is invertible and the right hand side of the above equation is

equal to the identity matrix In . In this case we have A† = A−1. The matrix A† can

therefore be viewed as a generalized inverse, that in the case of an invertible matrix

A is equal to the inverse of A.

Definition 19.6 The matrix A† in (19.4) is called Moore-Penrose inverse3 or pseudo-

inverse of A.

Let A ∈ C
n,m and b ∈ C

n,1 be given. If the linear system of equations Ax = b has

no solution, then we can try to find an x̂ ∈ C
m,1 such that Ax̂ is “as close as possible”

to b. Using the Moore-Penrose inverse we obtain the best possible approximation

with respect to the Euclidean norm.

Theorem 19.7 Let A ∈ C
n,m with n ≥ m and b ∈ C

n,1 be given. If A = V �W H is

an SVD, and A† is as in (19.4), then x̂ = A†b satisfies

‖b − Ax̂‖2 ≤ ‖b − Ay‖2 for all y ∈ C
m,1,

and

‖x̂‖2 =

⎛
⎝

r∑

j=1

∣∣∣∣∣
vH

j b

σ j

∣∣∣∣∣

2
⎞
⎠

1/2

≤ ‖y‖2

for all y ∈ C
m,1 with ‖b − Ax̂‖2 = ‖b − Ay‖2.

Proof Let y ∈ C
m,1 be given and let z = [ξ1, . . . , ξm]T := W Hy. Then

‖b − Ay‖2
2 = ‖b − V �W Hy‖2

2 = ‖V (V H b − �z)‖2
2 = ‖V H b − �z‖2

2

=

r∑

j=1

∣∣vH
j b − σ jξ j

∣∣2
+

n∑

j=r+1

∣∣vH
j b

∣∣2

≥

n∑

j=r+1

∣∣vH
j b

∣∣2
. (19.5)

Equality holds if and only if ξ j =
(
vH

j b
)

/σ j for all j = 1, . . . , r . This is satisfied

if z = W Hy = �†V H b. The last equation holds if and only if

y = W�†V H b = A†b = x̂ .

3Eliakim Hastings Moore (1862–1932) and Sir Roger Penrose (1931–).



19 The Singular Value Decomposition 301

The vector x̂ therefore attains the lower bound (19.5).

The equation

‖x̂‖2 =

⎛
⎝

r∑

j=1

∣∣∣∣∣
vH

j b

σ j

∣∣∣∣∣

2
⎞
⎠

1/2

is easily checked. Every vector y ∈ C
m,1 that attains the lower bound (19.5) must

have the form

y = W

[
vH

1 b

σ1

, . . . ,
vH

r b

σr

, yr+1, . . . , ym

]T

for some yr+1, . . . , ym ∈ C, which implies that ‖y‖2 ≥ ‖x̂‖2. ⊓⊔

The minimization problem for the vector x̂ can be written as

‖b − Ax̂‖2 = min
y∈Cm,1

‖b − Ay‖2.

If

A =

⎡
⎢⎣

τ1 1
...

...

τm 1

⎤
⎥⎦ ∈ R

m,2

for (pairwise distinct) τ1, . . . , τm ∈ R, then this minimization problem corresponds

to the problem of linear regression and the least squares approximation in Exam-

ple 12.16, that we have solved with the Q R-decomposition of A. If A = Q R is this

decomposition, then A† = (AH A)−1 AH (cp. Exercise 19.5) and we have

A† = (RH Q H Q R)−1 RH Q H = R−1(RH )−1 RH Q H = R−1 Q H .

Thus, the solution of the least-squares approximation in Example 12.16 is identical

to the solution of the above minimization problem using the SVD of A.

Exercises

19.1 Show that the Frobenius norm and the matrix 2-norm are unitarily invariant,

i.e., that ‖P AQ‖F = ‖A‖F and ‖P AQ‖2 = ‖A‖2 for all A ∈ C
n,m and

unitary matrices P ∈ C
n,n , Q ∈ C

m,m .

(Hint: For the Frobenius norm one can use that ‖A‖2
F = trace(AH A).)

19.2 Use the result of Exercise 19.1 to show that ‖A‖F =
(
σ2

1 + . . . + σ2
r

)1/2
and

‖A‖2 = σ1, where σ1 ≥ · · · ≥ σr > 0 are the singular values of A ∈ C
n,m .

19.3 Show that ‖A‖2 = ‖AH‖2 and ‖A‖2
2 = ‖AH A‖2 for all A ∈ C

n,m .

19.4 Show that ‖A‖2
2 ≤ ‖A‖1 ‖A‖∞ for all A ∈ C

n,m .
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19.5 Let A ∈ C
n,m and let A† be the Moore-Penrose inverse of A. Show the fol-

lowing assertions:

(a) If rank(A) = m, then A† = (AH A)−1 AH .

(b) The matrix X = A† is the uniquely determined matrix that satisfies the

following four matrix equations:

(1) AX A = A,

(2) X AX = X ,

(3) (AX)H = AX ,

(4) (X A)H = X A.

19.6 Let

A =

⎡
⎣

2 1

0 3

1 −2

⎤
⎦ ∈ R

3,2, b =

⎡
⎣

5

2

−5

⎤
⎦ ∈ R

3,1.

Compute the Moore-Penrose inverse of A and a vector x̂ ∈ R
2,1 such that

(a) ‖b − Ax̂‖2 ≤ ‖b − Ay‖2 for all y ∈ R
2,1, and

(b) ‖x̂‖2 ≤ ‖y‖2 for all y ∈ R
2,1 with ‖b − Ay‖2 = ‖b − Ax̂‖2.

19.7 Prove the following theorem:

Let A ∈ C
n,m and B ∈ C

ℓ,m with m ≤ n ≤ ℓ. Then AH A = B H B if and only

if B = U A for a matrix U ∈ C
ℓ,n with U H U = In . If A and B are real, then

U can also be chosen to be real.

(Hint: One direction is trivial. For the other direction consider the unitary

diagonalization of AH A = B H B. This yields the matrix W in the SVD of A

and of B. Show the assertion using these two decompositions. This theorem

and its applications can be found in the article [HorO96].)



Chapter 20

The Kronecker Product and Linear Matrix

Equations

Many applications, in particular the stability analysis of differential equations, lead

to linear matrix equations, such as AX + X B = C . Here the matrices A, B, C are

given and the goal is to determine a matrix X that solves the equation (we will give

a formal definition below). In the description of the solutions of such equations,

the Kronecker product,1 another product of matrices, is useful. In this chapter we

develop the most important properties of this products and we study its application in

the context of linear matrix equations. Many more results on this topic can be found

in the books [HorJ91, LanT85].

Definition 20.1 If K is a field, A = [ai j ] ∈ K m,m and B ∈ K n,n , then

A ⊗ B := [ai j B] =

⎡
⎢⎣

a11 B · · · a1m B
...

...

am1 B · · · amm B

⎤
⎥⎦ ,

is called the Kronecker product of A and B.

The Kronecker product is sometimes called the tensor product of matrices. This

product defines a map from K m,m × K n,n to K mn,mn . The definition can be extended

to non-square matrices, but for simplicity we consider here only the case of square

matrices. The following lemma presents the basic computational rules of the Kro-

necker product.

Lemma 20.2 For all square matrices A, B, C over K , the following computational

rules hold:

(1) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

1Leopold Kronecker (1832–1891) is said to have used this product in his lectures in Berlin in the

1880s. It was defined formally for the first time in 1858 by Johann Georg Zehfuss (1832–1901).
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(2) (µA) ⊗ B = A ⊗ (µB) = µ(A ⊗ B) for all µ ∈ K .

(3) (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C), whenever A + B is defined.

(4) A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C), whenever B + C is defined.

(5) (A ⊗ B)T = AT ⊗ BT , and therefore the Kronecker product of two symmetric

matrices is symmetric.

Proof Exercise. ⊓⊔

In particular, in contrast to the standard matrix multiplication, the order of the

factors in the Kronecker product does not change under transposition. The following

result describes the matrix multiplication of two Kronecker products.

Lemma 20.3 For A, C ∈ K m,m and B, D ∈ K n,n we have

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D).

Hence, in particular,

(1) A ⊗ B = (A ⊗ In)(Im ⊗ B) = (Im ⊗ B)(A ⊗ In),

(2) (A ⊗ B)−1 = A−1 ⊗ B−1, if A and B are invertible.

Proof Since A ⊗ B = [ai j B] and C ⊗ D = [ci j D], the block Fi j ∈ K n,n in the

block matrix [Fi j ] = (A ⊗ B)(C ⊗ D) is given by

Fi j =

m∑

k=1

(aik B)(ck j D) =

m∑

k=1

aikck j B D =
( m∑

k=1

aikck j

)
B D.

For the block matrix [G i j ] = (AC) ⊗ (B D) with G i j ∈ K n,n we obtain

G i j = gi j B D, where gi j =

m∑

k=1

aikck j ,

which shows (A⊗ B)(C ⊗ D) = (AC)⊗ (B D). Now (1) and (2) easily follow from

this equation. ⊓⊔

In general the Kronecker product is non-commutative (cp. Exercise 20.2), but we

have the following relationship between A ⊗ B and B ⊗ A.

Lemma 20.4 For A ∈ K m,m and B ∈ K n,n there exists a permutation matrix

P ∈ K mn,mn with

PT (A ⊗ B)P = B ⊗ A.

Proof Exercise. ⊓⊔

For the computation of the determinant, trace and rank of a Kronecker product

there exist simple formulas.
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Theorem 20.5 For A ∈ K m,m and B ∈ K n,n the following rules hold:

(1) det(A ⊗ B) = (det A)n (det B)m = det(B ⊗ A).

(2) trace(A ⊗ B) = trace(A) trace(B) = trace(B ⊗ A).

(3) rank(A ⊗ B) = rank(A) rank(B) = rank(B ⊗ A).

Proof (1) From (1) in Lemma 20.3 and the multiplication theorem for determinants

(cp. Theorem 7.15) we get

det(A ⊗ B) = det ((A ⊗ In) (Im ⊗ B)) = det(A ⊗ In) det(Im ⊗ B).

By Lemma 20.4 there exists a permutation matrix P with A⊗ In = P(In⊗A)PT .

This implies that

det(A ⊗ In) = det
(
P(In ⊗ A)PT

)
= det(In ⊗ A) = (det A)n.

Since det(Im ⊗ B) = (det B)m , it then follows that det(A ⊗ B) = (det A)n

(det B)m , and therefore also det(A ⊗ B) = det(B ⊗ A).

(2) From (A ⊗ B) = [ai j B] we obtain

trace(A ⊗ B) =

m∑

i=1

n∑

j=1

ai i b j j =
( m∑

i=1

ai i

)( n∑

j=1

b j j

)
= trace(A) trace(B)

= trace(B) trace(A) = trace(B ⊗ A).

(3) Exercise. ⊓⊔

For a matrix A = [a1, . . . , an] ∈ K m,n with columns a j ∈ K m,1, j = 1, . . . , n,

we define

vec(A) :=

⎡
⎢⎢⎢⎣

a1

a2

...

an

⎤
⎥⎥⎥⎦ ∈ K mn,1.

The application of vec turns the matrix A into a “column vector” and thus “vectorizes”

A.

Lemma 20.6 The map vec : K m,n → K mn,1 is an isomorphism. In particular,

A1, . . . , Ak ∈ K m,n are linearly independent if and only if vec(A1), . . . , vec(Ak) ∈

K mn,1 are linearly independent.

Proof Exercise. ⊓⊔

We now consider the relationship between the Kronecker product and the vec

map.
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Theorem 20.7 For A ∈ K m,m , B ∈ K n,n and C ∈ K m,n we have

vec(AC B) = (BT ⊗ A)vec(C).

Hence, in particular,

(1) vec(AC) = (In ⊗ A)vec(C) and vec(C B) = (BT ⊗ Im)vec(C),

(2) vec(AC + C B) =
(
(In ⊗ A) + (BT ⊗ Im)

)
vec(C).

Proof For j = 1, . . . , n, the j th column of AC B is given by

(AC B)e j = (AC)(Be j ) =

n∑

k=1

bk j (AC)ek =

n∑

k=1

(bk j A)(Cek)

= [ b1 j A, b2 j A, . . . , bnj A ] vec(C),

which implies that vec(AC B) = (BT ⊗ A)vec(C). With B = In resp. A = Im we

obtain (1), while (1) and the linearity of vec yield (2). ⊓⊔

In order to study the relationship between the eigenvalues of the matrices A, B and

those of the Kronecker product A⊗B, we use bivariate polynomials, i.e., polynomials

in two variables (cp. Exercise 9.10). If

p(t1, t2) =

l∑

i, j=0

αi j t
i
1t

j

2 ∈ K [t1, t2]

is such a polynomial, then for A ∈ K m,m and B ∈ K n,n we define the matrix

p(A, B) :=

l∑

i, j=0

αi j Ai ⊗ B j . (20.1)

Here we have to be careful with the order of the factors, since in general Ai ⊗ B j �=

B j ⊗ Ai (cp. Exercise 20.2).

Example 20.8 For A ∈ R
m,m, B ∈ R

n,n and p(t1, t2) = 2t1+3t1t2
2 = 2t1

1 t0
2 +3t1

1 t2
2 ∈

R[t1, t2] we get the matrix p(A, B) = 2A ⊗ In + 3A ⊗ B2.

The following result is known as Stephanos’ theorem.2

2Named after Cyparissos Stephanos (1857–1917) who in 1900 showed besides this result also the

assertion of Lemma 20.3.
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Theorem 20.9 Let A ∈ K m,m and B ∈ K n,n be two matrices that have Jordan nor-

mal forms and the eigenvalues λ1, . . . ,λm ∈ K and µ1, . . . ,µn ∈ K , respectively.

If p(A, B) is defined as in (20.1), then the following assertions hold:

(1) The eigenvalues of p(A, B) are p(λk,µℓ) for k = 1, . . . , m and ℓ = 1, . . . , n.

(2) The eigenvalues of A ⊗ B are λk · µℓ for k = 1, . . . , m and ℓ = 1, . . . , n.

(3) The eigenvalues of A⊗In+Im⊗B areλk+µℓ for k = 1, . . . , m and ℓ = 1, . . . , n.

Proof Let S ∈ GLm(K ) and T ∈ GLn(K ) be such that S−1 AS = JA and T −1 BT =

JB are in Jordan canonical form. The matrices JA and JB are upper triangular. Thus,

for all i, j ∈ N0 the matrices J i
A, J

j

B and J i
A⊗ J

j

B are upper triangular. The eigenvalues

of J i
A and J

j

B are λi
1, . . . ,λ

i
m and µ

j

1, . . . ,µ
j
n , respectively. Thus, p(λk,µℓ), k =

1, . . . , m, ℓ = 1, . . . , n, are the diagonal entries of the matrix p(JA, JB). Using

Lemma 20.3 we obtain

p(A, B) =

l∑

i, j=0

αi j (S JA S−1)i ⊗ (T JB T −1) j =

l∑

i, j=0

αi j (S J i
A S−1) ⊗ (T J

j

B T −1)

=

l∑

i, j=0

αi j

(
(S J i

A) ⊗ (T J
j

B)

)
(S−1 ⊗ T −1)

=

l∑

i, j=0

αi j (S ⊗ T )(J i
A ⊗ J

j

B)(S ⊗ T )−1

= (S ⊗ T )

⎛
⎝

l∑

i, j=0

αi j (J i
A ⊗ J

j

B)

⎞
⎠ (S ⊗ T )−1

= (S ⊗ T )p(JA, JB)(S ⊗ T )−1,

which implies (1).

The assertions (2) and (3) follow from (1) with p(t1, t2) = t1t2 and p(t1, t2) =

t1 + t2, respectively. ⊓⊔

The following result on the matrix exponential function of a Kronecker product

is helpful in applications that involve systems of linear differential equations.

Lemma 20.10 For A ∈ C
m,m , B ∈ C

n,n and C := (A ⊗ In) + (Im ⊗ B) we have

exp(C) = exp(A) ⊗ exp(B).

Proof From Lemma 20.3 we know that the matrices A ⊗ In and Im ⊗ B commute.

Using Lemma 17.6 we obtain
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exp(C) = exp(A ⊗ In + Im ⊗ B) = exp(A ⊗ In) exp(Im ⊗ B)

=

⎛
⎝

∞∑

j=0

1

j !
(A ⊗ In)

j

⎞
⎠

(
∞∑

i=0

1

i !
(Im ⊗ B)i

)

=

∞∑

j=0

1

j !

∞∑

i=0

1

i !
(A ⊗ In)

j (Im ⊗ B)i

=

∞∑

j=0

1

j !

∞∑

i=0

1

i !
(A j ⊗ B i )

= exp(A) ⊗ exp(B),

where we have used the properties of the matrix exponential series

(cp. Sect. 17.1). ⊓⊔

For given matrices A j ∈ K m,m , B j ∈ K n,n , j = 1, . . . , q, and C ∈ K m,n an

equation of the form

A1 X B1 + A2 X B2 + . . . + Aq X Bq = C (20.2)

is called a linear matrix equation for the unknown matrix X ∈ K m,n .

Theorem 20.11 A matrix X̂ ∈ K m,n solves (20.2) if and only if x̂ := vec(X̂) ∈

K mn,1 solves the linear system of equations

Gx = vec(C), where G :=

q∑

j=1

BT
j ⊗ A j .

Proof Exercise. ⊓⊔

We now consider two special cases of (20.2).

Theorem 20.12 For A ∈ C
m,m , B ∈ C

n,n and C ∈ C
m,n the Sylvester equation3

AX + X B = C (20.3)

has a unique solution if and only if A and −B have no common eigenvalue. If all

eigenvalues of A and B have negative real parts, then the unique solution of (20.3)

is given by

X̂ = −

∞∫

0

exp(t A)C exp(t B)dt.

(As in Sect.17.2 the integral is defined entrywise.)

3James Joseph Sylvester (1814–1897).
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Proof Analogous to the representation in Theorem 20.11, we can write the Sylvester

equation (20.3) as

(In ⊗ A + BT ⊗ Im)x = vec(C).

If A and B have the eigenvalues λ1, . . . ,λm and µ1, . . . ,µn , respectively, then G =

In ⊗ A+ BT ⊗ Im by (3) in Theorem 20.9 has the eigenvalues λk +µℓ, k = 1, . . . , m,

ℓ = 1, . . . , n. Thus, G is invertible, and the Sylvester equation is uniquely solvable,

if and only if λk + µℓ �= 0 for all k = 1, . . . , m and ℓ = 1, . . . , n.

Let A and B be matrices with eigenvalues that have negative real parts. Then A and

−B have no common eigenvalues and (20.3) has a unique solution. Let JA = S−1 AS

and JB = T −1 BT be Jordan canonical forms of A and B. We consider the linear

differential equation d Z

dt
= AZ + Z B, Z(0) = C, (20.4)

that is solved by the function

Z : [0,∞) → C
m,n, Z(t) := exp(t A)C exp(t B)

(cp. Exercise 20.10). This function satisfies

lim
t→∞

Z(t) = lim
t→∞

exp(t A)C exp(t B)

= lim
t→∞

S exp(t JA)︸ ︷︷ ︸
→0

S−1CT︸ ︷︷ ︸
constant

exp(t JB)︸ ︷︷ ︸
→0

T −1 = 0.

Integration of equation (20.4) from t = 0 to t = ∞ yields

−C = − Z(0) = lim
t→∞

(Z(t) − Z(0)) = A

∞∫

0

Z(t)dt +

⎛
⎝

∞∫

0

Z(t)dt

⎞
⎠ B.

(Here we use without proof the existence of the infinite integrals.) This implies that

X̂ := −

∞∫

0

Z(t)dt = −

∞∫

0

exp(t A)C exp(t B)dt

is the unique solution of (20.3). ⊓⊔

Theorem 20.12 also gives the solution of another important matrix equation.

Corollary 20.13 For A, C ∈ C
n,n the Lyapunov equation4

AX + X AH = −C (20.5)

4Alexandr Mikhailovich Lyapunov (also Ljapunov or Liapunov; 1857–1918).
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has a unique solution X̂ ∈ C
n,n if the eigenvalues of A have negative real parts.

If, furthermore, C is Hermitian positive definite, then also X̂ is Hermitian positive

definite.

Proof Since by assumption A and −AH have no common eigenvalues, the unique

solvability of (20.5) follows from Theorem 20.12, and the solution is given by the

matrix

X̂ = −

∞∫

0

exp(t A)(−C) exp
(
t AH

)
dt =

∞∫

0

exp(t A)C exp
(
t AH

)
dt.

If C is Hermitian positive definite, then X̂ is Hermitian and for x ∈ C
n,1 \ {0} we

have

x H X̂ x = x H

⎛
⎝

∞∫

0

exp(t A)C exp
(
t AH

)
dt

⎞
⎠ x =

∞∫

0

x H exp(t A)C exp
(
t AH

)
x

︸ ︷︷ ︸
>0

dt > 0.

The last inequality follows from the monotonicity of the integral and the fact that for

x �= 0 also exp(t AH )x �= 0, since exp
(
t AH

)
is invertible for every real t . ⊓⊔

Exercises

20.1 Prove Lemma 20.2.

20.2 Construct two square matrices A, B with A ⊗ B �= B ⊗ A.

20.3 Prove Lemma 20.4.

20.4 Prove Theorem 20.5 (3).

20.5 Prove Lemma 20.6.

20.6 Show that A ⊗ B is normal if A ∈ C
m,m and B ∈ C

n,n are normal. Is it true

that if A ⊗ B is unitary, then A and B are unitary?

20.7 Use the singular value decompositions of A = VA�AW H
A ∈ C

m,m and B =

VB�B W H
B ∈ C

n,n to derive the singular value decomposition of A ⊗ B.

20.8 Show that for A ∈ C
m,m and B ∈ C

n,n and the matrix 2-norm, the equation

‖A ⊗ B‖2 = ‖A‖2‖B‖2 holds.

20.9 Prove Theorem 20.11.

20.10 Let A ∈ C
m,m , B ∈ C

n,n and C ∈ C
m,n . Show that Z(t) = exp(t A)C exp(t B)

is the solution of the matrix differential equation d Z
dt

= AZ + Z B with the

initial condition Z(0) = C .



Appendix A

A Short Introduction to MATLAB

MATLAB1 is an interactive software system for numerical computations, simulations
and visualizations. It contains a large number of predefined functions and allows users
to implement their programs in so-called m-files.

The name MATLAB originates from MATrix LABoratory, which indicates the
matrix orientation of the software. Indeed, matrices are the major objects in MAT-
LAB. Due to the simple and intuitive use of matrices, we consider MATLAB well
suited for teaching in the field of Linear Algebra.

In this short introduction we explain the most important ways to enter and operate
with matrices in MATLAB. One can learn the essential matrix operations as well as
important algorithms and concepts in the context of matrices (and Linear Algebra
in general) by actively using the MATLAB-Minutes in this book. These only use
predefined functions.

A matrix in MATLAB can be entered in form of a list of entries enclosed by
square brackets. The entries in the list are ordered by rows in the natural order of the
indices, i.e., from “top to bottom” and “left to right”). A new row starts after every
semicolon. For example, the matrix

A =

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ is entered in MATLAB by typing A=[1 2 3;4 5 6;7 8 9];

A semicolon after the matrix A suppresses the output in MATLAB. If it is omitted
then MATLAB writes out all the entered or computed quantities. For example, after
entering

A=[1 2 3;4 5 6;7 8 9]

1MATLAB® is a registered trademark of The MathWorks Inc.
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MATLAB gives the output

A =
1 2 3
4 5 6
7 8 9

One can access parts of matrices by the corresponding indices. The list of indices
from k to m is abbreviated by

k:m .

A colon : means all rows for given column indices, or all columns for given row
indices. If A is as above, then for example

A(2,1) is the matrix [4],

A(3,1:2) is the matrix [7 8],

A(:,2:3) is the matrix

[

2 3
5 6
8 9

]

.

There are several predefined functions that produce matrices. In particular, for
given positive integers n and m,

eye(n) the identity matrix In,

zeros(n,m) an n × m matrix with all zeros,

ones(n,m) an n × m matrix with all ones,

rand(n,m) an n × m “random matrix”.

Several matrices (of appropriate sizes) be combined to a new matrix. For example,
the commands

A=eye(2); B=[4;3]; C=[2 -1]; D=[-5]; E=[A B;C D]

lead to

E =
1 0 4
0 1 3
2 -1 -5

The help function in MATLAB is started with the command help. In order to get
information about specific functions one adds the name of the function. For example:
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Input: Information on:
help ops operations and operators in MATLAB

(in particular addition, multiplication, transposition)
help matfun MATLAB functions that operate with matrices
help gallery collection of example matrices
help det determinant
help expm matrix exponential function



Selected Historical Works on Linear Algebra

(We describe the content of these works using modern terms.)

• A. L. Cauchy, Sur l’équation à l’aide de laquelle on détermine les inégalités séculaires des
mouvements des planètes, Exercises de Mathématiques, 4 (1829).
Proves that real symmetric matrices have real eigenvalues.

• H. Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Otto Wiegand,
Leipzig, 1844.
Contains the first development of abstract vector spaces and linear independence, including the
dimension formula for subspaces.

• J. J. Sylvester, Additions to the articles in the September Number of this Journal, “On a new
Class of Theorems,” and on Pascal’s Theorem, Philosophical Magazine, 37 (1850), pp. 363–370.
Introduces the terms matrix and minor.

• J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial
is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares,
Philosophical Magazine, 4 (1852), pp. 138–142.
Proof of Sylvester’s law of inertia.

• A. Cayley, A memoir on the theory of matrices, Proc. Royal Soc. of London, 148 (1858),
pp. 17–37.
First presentation of matrices as independent algebraic objects, including the basic matrix oper-
ations, the Cayley-Hamilton theorem (without a general proof) and the idea of a matrix square
root.

• K. Weierstrass, Zur Theorie der bilinearen und quadratischen Formen, Monatsber. Königl.
Preußischen Akad. Wiss. Berlin, (1868), pp. 311–338.
Proof of the Weierstrass normal form, which implies the Jordan normal form.

• C. Jordan, Traité des substitutions et des équations algébriques, Paris, 1870.
Contains the proof of the Jordan normal form independent of Weierstrass’ work.

• G. Frobenius, Ueber lineare Substitutionen und bilineare Formen, J. reine angew. Math., 84
(1878), pp. 1–63.
Contains the concept of the minimal polynomial, the (arguably) first complete proof of the
Cayley-Hamilton theorem, and results on equivalence, similarity and congruence of matrices (or
bilinear forms).

• G. Peano, Calcolo Geometrico secondo l’Ausdehnungslehre di H. Grassmann preceduto dalle
operazioni della logica deduttiva, Fratelli Bocca, Torino, 1888.
Contains the first axiomatic definition of vector spaces, which Peano called “sistemi lineari”, and
studies properties of linear maps, including the (matrix) exponential function and the solution of
differential equation systems.
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• I. Schur, Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung
auf die Theorie der Integralgleichungen, Math. Annalen, 66 (1909), pp. 488–510.
Proof of the Schur form of complex matrices.

• O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejér, Math. Zeitschrift, 2 (1918),
pp. 187–197.
Introduces the concept of a normal bilinear form and proves the equivalence of normality and
unitary diagonalizability.

• F. D. Murnaghan and A. Wintner, A canonical form for real matrices under orthogonal
transformations, Proc. Natl. Acad. Sci. U.S.A., 17 (1931), pp. 417–420.
Proof of the real Schur form.

• C. Eckart and G. Young, A principal axis transformation for non-hermitian matrices, Bull.
Amer. Math. Soc., 45 (1939), pp. 118–121.
Proof of the modern form of the singular value decomposition of a general complex matrix.
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A

Abuse of notation, 142
Adjacency matrix, 259
Adjoint, 188

Euclidean vector space, 190
unitary vector space, 192

Adjunct matrix, 91
Adjungate matrix, 91
Algebraic multiplicity, 202
Alternating, 89
Angle between vectors, 173
Annihilator, 164, 230
Assertion, 10

B

Backward substitution, 48
Basis, 119

dual, 156
Basis extension theorem, 120
Bessel’s identity, 181
Bijective, 15
Bilinear form, 159

non-degenerate, 159
positive definite, 290
symmetric, 159

Binomial formula, 51
Bivariate polynomial, 132
Block matrix, 39
Block multiplication, 48

C

Canonical basis of K n,m , 120
Cartesian product, 18
Cauchy-Schwarz inequality, 171
Cayley-Hamilton theorem, 105

Centralizer, 33
Characteristic polynomial

of a matrix, 102
of an endomorphism, 202

Chemical reaction, 262
Cholesky factorization, 289
Circuit simulation, 6, 267
Codomain, 14
Column vector, 116
Commutative, 24
Commutative diagram, 146, 148
Companion matrix, 103
Complex numbers, 30

absolute value, 31
modulus, 31

Composition, 16
Congruent matrices, 161
Conjunction, 10
Contraposition, 11
Coordinate map, 146
Coordinates, 124
Coordinate transformation matrix, 128, 144
Cosine theorem, 173
Cramer’s rule, 96
Cross product, 182
Cycle, 97
Cyclic decomposition, 237
Cyclic subspace, 228

D

De Morgan law, 21
Derivative of a polynomial, 152
Determinant, 82

alternating, 89
computation via LU -decomposition, 91
computational formulas, 88
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continuous, 83
linear, 90
multiplication theorem, 90
normalized, 86

Diagonal matrix, 46
Diagonalizable, 203
Dimension formula

for linear maps, 140
for subspaces, 129

Dimension of a vector space, 123
Direct sum, 130, 226
Disjoint, 13
Disjunction, 10
Division with remainder, 214
Domain, 14
Dual basis, 156
Dual map, 157
Dual pair, 159
Dual space, 155
Duhamel integral, 266

E

Echelon form, 57
Eigenspace, 200
Eigenvalue

algebraic multiplicity, 202
geometric multiplicity, 200
of a matrix, 106
of an endomorphism, 199

Eigenvector
of a matrix, 106
of an endomorphism, 199

Elementary matrices, 55
Elementary row operations, 57
Empty list, 118
Empty map, 14
Empty product, 27
Empty set, 12
Empty sum, 27, 118
Endomorphism, 135

diagonalizable, 203
direct sum, 226
nilpotent, 229
normal, 225, 271
orthogonal, 277
positive (semi-)definite, 288
selfadjoint, 195
simultaneous triangulation, 223
triangulation, 207
unitarily diagonalizable, 226, 272
unitary, 277
unitary triangulation, 210

Equivalence, 10
Equivalence class, 19
Equivalence normal form, 69
Equivalence relation, 18

congruent matrices, 161
equivalent matrices, 69
left equivalent matrices, 71
normal form, 19
similar matrices, 108

Equivalent matrices, 69, 148
Euclidean theorem, 217
Evaluation homomorphism, 152
Exchange lemma, 121
Exchange theorem, 122
Extended coefficient matrix, 75

F

Field, 28
Finite dimensional, 123
Fourier expansion, 180
Fundamental Theorem of Algebra, 218

G

Gaussian elimination algorithm, 57
Generalized eigenvector, 244
Geometric multiplicity, 200
Givens rotation, 280
GLn(R), 46
Grade of a vector, 227
Gram-Schmidt method, 175
Graph, 258
Group, 23

additive, 25
homomorphism, 25
multiplicative, 25

Group of units, 33

H

Hermitian, 162, 163
Hilbert matrix, 64, 71, 98
Homogeneous, 73, 263
Homomorphism, 135
Hooke’s law, 268
Householder matrix, 185, 280

I

Identity, 15
Identity matrix, 38
Image, 15, 137
Implication, 10
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Index set, 13
Inertia, 286
Initial value problem, 261
Injective, 15
Inner product, 167
Insurance premiums, 3, 43
Integral domain, 34
Invariant subspace, 200
Inverse, 17
Inverse map, 17
Invertible, 17, 28, 45
Isomorphism, 135

J

Jordan block, 234
Jordan canonical form, 238

algorithm for computing, 245
Jordan chain, 244

K

Kernel, 137
Kronecker delta-function, 38
Kronecker product, 303
Krylov subspace, 228

L

Lagrange basis, 153
Laplace expansion, 95
Least squares approximation, 6, 179, 301
Left adjoint, 188
Left ideal, 51
Linear, 2, 135
Linear factor, 202
Linear form, 155
Linear functional, 155
Linearly independent, 118
Linear map, 135

change of bases, 148
dual, 157
matrix representation, 144
rank, 149
transpose, 158

Linear matrix equation, 308
Linear optimization problem, 5
Linear regression, 6, 178, 301
Linear span, 117
Linear system, 73

homogeneous, 73
non-homogeneous, 73
solution algorithm, 76
solution set, 73, 139

Logical values, 11
Low rank approximation, 299
LU -decomposition, 61
Lyapunov equation, 309

M

Map, 14
MATLAB-Minute, 42, 49, 61, 64, 91, 108,

210, 223, 243, 258, 281, 298
Matrix, 37

(non-)singular, 45
block, 39
column-stochastic, 109
complex symmetric, 196
diagonal, 46
diagonal entries, 38
diagonalizable, 203
diagonally dominant, 94
empty, 38
Hermitian, 163
Hermitian part, 291
Hermitian transpose, 163
invertibility criteria, 94, 108
invertible, 45, 64, 71, 93
negative (semi-)definite, 288
nilpotent, 112
normal, 271
orthogonal, 177
positive, 110
positive (semi-)definite, 288
row-stochastic, 4
skew-Hermitian part, 291
skew-symmetric, 42
square, 38
symmetric, 42
transpose, 42
triangular, 46
triangulation, 208
unitarily diagonalizable, 272
unitary, 177
unitary triangulation, 210
zero divisor, 45, 69

Matrix exponential function, 257
Matrix function, 253
Matrix operations, 39
Matrix representation

adjoint map, 195
bilinear form, 160
dual map, 157
linear map, 144
sesquilinear form, 163

Minimal polynomial, 241
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Minor, 91
Möbius transformation, 291
Monic, 103
Moore-Penrose inverse, 300
Multiplication theorem for determinants, 90

N

Negative (semi-)definite, 288
Network, 260

centrality, 260
communicability, 260

Neutral element, 23
Nilpotency index, 229
Nilpotent, 33, 112, 229
Non-homogeneous, 73, 263
Norm, 168

L2-, 169
∞-, 170
p-, 169
Euclidean, 169
Frobenius, 169
induced by a scalar product, 172
maximum column sum, 170
maximum row sum, 170
unitarily invariant, 301

Normal, 225, 271
Normal form, 19
Normed space, 169
n-tuple, 18
Nullity, 140
Null ring, 38
Null space, 137
Null vector, 116

O

One-form, 155
Ordered pair, 18
Ordinary differential equation, 261
Orthogonal basis, 173
Orthogonal complement, 182
Orthogonal endomorphism, 277
Orthogonal matrix, 177
Orthogonal vectors, 173
Orthonormal basis, 173

P

PageRank algorithm, 1, 109
Parallelogram identity, 184
Parseval’s identity, 181
People

Abel, Niels Henrik (1802–1829), 24
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181

Bézout, Étienne (1730–1783), 216
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98, 171, 257
Cayley, Arthur (1821–1895), 37, 105
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289
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Eckart, Carl Henry (1902–1973), 296
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167
Fourier, Jean Baptiste Joseph (1768–

1830), 180
Frobenius, Ferdinand Georg (1849–

1917), 66, 105, 169
Gauß, Carl Friedrich (1777–1855), 57,

218
Givens, Wallace (1910–1993), 280
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175
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1877), 23, 122
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1865), 41, 105, 116
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Hooke, Sir Robert (1635–1703), 268
Householder, Alston Scott (1904–1993),

185
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viii, 7
Kronecker, Leopold (1832–1891), 38,

303
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291
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300
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181
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Penrose, Sir Roger (1931–), 300
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Steinitz, Ernst (1871–1928), 122
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Toeplitz, Otto (1881–1940), 240, 271
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(1735–1796), 98
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(1815–1897), 29, 238
Wilkinson, James Hardy (1919–1986),

98
Zehfuss, Johann Georg (1832–1901),

303
Permutation, 81

associated permutation matrix, 87
inversion, 82

Permutation matrix, 49
Perron eigenvector, 111
Pivot positions, 64
Polar decomposition, 297
Polarization identity, 165
Polynomial, 31

common root, 224
constant, 213
coprime, 214
degree, 31, 103, 213
divisor, 214
irreducible, 214
monic, 103
multiplicity of a root, 216

Positive definite, 167, 288, 290
Positive semidefinite, 288
Power set, 14
Predicate, 10
Pre-image, 15, 137
Principal axes transformation, 282

Principal vector, 244
Projection, 197, 249
Proof by contraposition, 11
Pseudoinverse, 300
Pythagorean theorem, 173

Q

Q R-decomposition, 176
Quadratic form, 165, 283
Quadric, 285
Quantifiers, 11
Quotient field, 34
Quotient set, 19

R

Rank, 66, 149
Rank-nullity theorem, 140
Rational functions, 34
Reflection matrix, 280
Reflexive, 18
Relation, 18
Residue class, 20
Restriction, 15
Right adjoint, 188
Right-hand rule, 183
Ring, 26

multiplicative inverse, 28
of matrices, 45
of polynomials, 31

Ring homomorphism, 51
Root of a polynomial, 107

simple, 250
Rotation matrix, 280
Row vector, 116

S

Sarrus rule, 83
Scalar product, 167
Schur complement, 52, 292
Schur form

of a matrix, 210
of an endomorphism, 210
real, 274

Schur’s theorem, 209
Selfadjoint, 195
Sesquilinear form, 162
Set, 9

cardinality, 14
difference, 13
intersection, 13
union, 13
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Sherman-Morrison-Woodbury formula, 52
Sign, 82
Signature, 82
Signature formula of Leibniz, 82
Similar matrices, 108, 148
Singular value decomposition (SVD), 296
Skew-symmetric, 42
Standard basis of K n,m , 120
Standard scalar product of C

n,1, 168
Standard scalar product of R

n,1, 168
Stephanos’ theorem, 307
Subfield, 29
Subgroup, 25
Subring, 34
Subset, 11
Subspace, 117

complement, 133
invariant, 200

Surjective, 15
Sylvester equation, 308
Sylvester’s law of inertia, 287
Symmetric, 18, 42, 159
Symmetric group, 82
System of linear differential equations, 263

T

Tensor product, 303
Toeplitz matrix, 240
Trace, 103, 113, 168
Transitive, 18
Transposition, 42, 84
Triangle inequality, 169
Triangular matrix, 46

Triangulation, 207

U

Unit circle, 170
Unit vectors, 120
Unitarily diagonalizable, 226, 272
Unitary endomorphism, 277
Unitary matrix, 177
Unitary triangulation, 210

V

Vandermonde matrix, 98
Vec map, 305
Vector product, 182
Vector space, 115

Euclidean, 167
of bilinear forms, 164
of continuous functions, 116
of homomorphisms, 136
of matrices, 116
of polynomials, 116
unitary, 167

W

Wilkinson matrix, 91, 98

Z

Zero divisor, 29, 45, 69
Zero matrix, 38
Zero vector space, 118
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