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Preface

This book came out of an attempt to explain to a class of motivated students at the

University of Illinois at Chicago what sorts of problems I thought about in my

research. In the course, we had just talked about the integral solutions to the

Pythagorean Equation and it seemed only natural to use the Pythagorean Equation

as the context to motivate the answer. Basically, I motivated my own research, the

study of rational points of bounded height on algebraic varieties, by posing the

following question: What can you say about the number of right triangles with

integral sides whose hypotenuses are bounded by a large number X? How does this

number depend on X? In attempting to give a truly elementary explanation of the

solution, I ended up having to introduce a fair bit of number theory, the Gauss circle

problem, the Möbius function, partial summation, and other topics. These topics

formed the material in Chapter 13 of the present text.

Mathematicians never develop theories in the abstract. Despite the impression

given by textbooks, mathematics is a messy subject, driven by concrete problems

that are unruly. Theories never present themselves in little bite-size packages with

bowties on top. Theories are the afterthought. In most textbooks, theories are

presented in beautiful well-defined forms, and there is in most cases no motivation

to justify the development of the theory in the particular way and what example or

application that is given is to a large extent artificial and just “too perfect.” Perhaps

students are more aware of this fact than what professional mathematicians tend to

give them credit for—and in fact, in the case of the class I was teaching, even

though the material of Chapter 13 was fairly technical, my students responded quite

well to the lectures and followed the technical details enthusiastically. Apparently, a

bit of motivation helps.

What I have tried to do in this book is to begin with the experience of that class

and take it a bit further. The idea is to ask natural number theoretic questions about

right triangles and develop the necessary theory to answer those questions. For

example, we show in Chapter 5 that in order for a number to be the length of the

hypotenuse of a right triangle with coprime sides, it is necessary and sufficient that

all prime factors of that number be of the form 4kþ 1. This result requires deter-

mining all numbers that are sums of squares. We present three proofs of this fact:
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using elementary methods in Chapter 5, using geometric methods in Chapter 10,

and using linear algebra methods in Chapter 12. Since primes of the form 4kþ 1 are

relevant to this discussion, we take up the study of such primes in Chapter 6.

This study further motivates the Law of Quadratic Reciprocity which we state in

Chapter 6 and prove in Chapter 7. We also determine which numbers are sums of

three or more squares in Chapters 9, 10, 11, and 12.

When I was in high school, I used to think of number theory as a kind of

algebra. Essentially everything I learned involved doing algebraic operations with

variables, and it did not look like that number theory would have anything to do

with areas of mathematics other than algebra. In reality, number theory as a field of

study sits at the crossroads of many branches of mathematics, and that fact already

makes a prominent appearance in this modest book. Throughout the book, there are

many places where geometric, topological, and analytic considerations play a role.

For example, we need to use some fairly sophisticated theorems from analysis in

Chapter 14. If you have not learned analysis before reading this book, you should

not be disheartened. If anything, you should take delight in the fact that now you

have a real reason to learn whatever theorem from analysis that you may not

otherwise have fully appreciated.

Each chapter of the book has a few exercises. I recommend that the reader tries

all of these exercises, even though a few of them are quite difficult. Because of the

nature of this book, many of the ideas are not fully developed in the text, and the

exercises are included to augment the material. For example, even though the

Möbius function is introduced in Chapter 13, nowhere in the text is the standard

Möbius Inversion Formula presented, though a version of it is derived as

Lemma 13.3. We have, however, presented the Möbius Inversion Formula and

some applicants in the exercises to Chapter 13. Many of these exercises are

problems that I have seen over the years in various texts, jotted down in my

notebooks or assigned in exams, but do not remember the source. The classical

textbooks by Landau [L], Carmichael [Car], and Mossaheb [M] are certainly the

sources for a few of the exercises throughout the text. A few of the exercises in

the book are fairly non-trivial problems. I have posted some hints for a number

of the exercises on the book’s website at

http://www.math.uic.edu/~rtakloo

In addition to exercises, each chapter has a Notes section. The contents of these

sections vary from chapter to chapter. Some of them are concerned with the history

of the subject, some others give references to more advanced topics, and a few

describe connections to current research.

Numerical experiments and hands-on computations have always been a

cornerstone of mathematical discovery. Before computers were invented, or were so

commonplace, mathematicians had to do their numerical computations by hand.

Even today, it is hard to exaggerate the importance of doing computations by hand

—the most efficient way to understand a theorem is to work out a couple of small

examples with pen and paper. It is of course also extremely important to take

advantage of the abundant computational power provided by machines to do
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numerical computations, run experiments, formulate conjectures, and test strategies

to prove these conjectures. I have included a number of computer-based exercises in

each chapter. These exercises are marked by (z). These exercises are not written

with any particular computer programming language or computational package in

mind. Many of the standard computational packages available on the market can do

basic number theory; I highly recommend SageMath—a powerful computer algebra

system whose development is spearheaded by William Stein in collaboration with a

large group of mathematicians. Beyond its technical merits, SageMath is also freely

available both as a Web-based program and as a package that can be installed on a

personal computer. Appendix C provides a brief introduction to SageMath as a

means to get the reader started. What is in this appendix is enough for most of the

computational exercises in the book, but not all. Once the reader is familiar with

SageMath as presented in the appendix, he or she should be able to consult the

references to acquire the necessary skills for these more advanced exercises.

This is how the book is organized:

• We present a couple of different proofs of the Pythagorean Theorem in

Chapter 1 and describe the types of number theoretic problems regarding right

triangles we will be discussing in this book.

• Chapter 2 contains the basic theorems of elementary number theory, the theory

of divisibility, congruences, the Euler /-function, and primitive roots.

• We find the solutions of the Pythagorean Equation in integers in Chapter 3 using

two different methods, one algebraic and the other geometric. We then apply the

geometric method to find solutions to some other equations. We also discuss a

special case of Fermat’s Last Theorem.

• In Chapter 4, we study the areas of right triangles with integer sides.

• Chapter 5 is devoted to the study of numbers that are side lengths of right

triangles. Our analysis in this section is based on Gaussian integers which we

briefly review. We also discover the relevance of prime numbers of the form

4kþ 1 to our problem.

• Chapter 6 contains a number of theorems about the infinitude of primes of

various special forms, including primes of the form 4kþ 1. This chapter also

makes a case for a study of squares modulo primes, leading to the statement

of the Law of Quadratic Reciprocity.

• We present a proof of the Law of Quadratic Reciprocity in Chapter 7 using

quadratic Gauss sums.

• Gauss sums are used in Chapter 8 to study the solutions of the Pythagorean

Equation modulo various integers.

• In Chapter 9, we extend the scope of our study to include analogues of the

Pythagorean Equation in higher dimensions and prove several results about the

distribution of integral points on circles and spheres in various dimensions. In

this chapter, we state a theorem about numbers which are sums of two, three,

or more squares.

• Chapter 10 contains a geometric result due to Minkowski. We use this theorem

to prove the theorem on sums of squares.
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• Chapter 11 presents the theory of quaternions and uses these objects to give

another proof of the theorem on sums of four squares.

• Chapter 12 deals with the theory of quadratic forms. We use this theory to give a

second proof of the theorem on three squares.

• Chapters 13 and 14 are more analytic in nature than the chapters that precede

them. In Chapter 13, we prove a classical theorem of Lehmer from 1900 that

counts the number of primitive right triangles with bounded hypotenuse. This

requires developing some basic analytic number theory.

• In Chapter 14, we introduce the notion of height and prove that rational points of

bounded height are equidistributed on the unit circle with respect to a natural

measure.

• Appendix A contains some basic material we often refer to in the book.

• Appendix B reviews the basic properties of algebraic integers. We use these

basic properties in our proof of the Law of Quadratic Reciprocity.

• Finally, Appendix C is a minimal introduction to SageMath.

How to use this book. The topics in Chapters 2 through 7 are completely appro-

priate for a first course in elementary number theory. Depending on the level of the

students enrolled in the course, one might consider covering the proof of the Four

Squares Theorem from either Chapter 10 or Chapter 11. In some institutions,

students take number theory as a junior or senior by which time they have, often,

already learned basic analysis and algebra. In such instances, the materials in either

Chapter 13 or Chapter 14 might be a good end-of-semester topic. When I taught

from this book last year, in a semester-long course, I taught Chapters 1, 2, Example

8.6, 3, Chapters 6 and 7, the proofs of the Two Squares and Four Squares Theorems

from Chapter 10, Theorem 9.4, and Chapter 13.

The book may also be used as the textbook for a second-semester undergraduate

course, or an honors course, or a first-year master’s level course. In these cases, I

would concentrate on the topics covered in Chapters 8 through 14, though Chapter

4 might also be a good starting point as what is discussed in that chapter is not

usually covered in undergraduate classes. Except for the first two sections of

Chapter 9 that are referred to throughout the second part of the book, the other

chapters are independent of each other and they can be taught in pretty much any

order. Many of the major theorems in this book are proved in more than one way.

This is aimed to give instructors flexibility in designing their courses based on their

own interests, or who is attending the course.

I wish to thank the students of my Foundations of Number Theory class at UIC

in the fall term of 2016 for their patience and dedication. These students were

Samuel Coburn, William d’Alessandro, Victor Flores, Fayyazul Hassan, Ryan

Henry, Robert Hull, Ayman Hussein, McKinley Meyer, Natawut Monaikul,

Samantha Montiague, Shayne Officer, George Sullivan, and Marshal Thrasher.

They took notes, asked questions, and, in a lot of ways, led the project. Without

them, this book would have never materialized.
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I also wish to thank Jeffery Breeding-Allison, Antoine Chambert-Loir, Samit

Dasgupta, Harald Helfgott, Hadi Jorati, Lillian Pierce, Lior Silberman, William

Stein, Sho Tanimoto, Frank Thorne, and Felipe Voloch, as well as the anonymous

readers for many helpful suggestions. This book would have never seen the light

of the day had it not been for the support and encouragement of my editor Loretta

Bartolini.

My work on this project is partially supported by a Collaboration Grant from the

Simons Foundation.

This book was written at the Brothers K Coffeehouse in Evanston, IL. The

baristas at Brothers K serve a lot more than just earl gray. I thank Yelena Dligach

who suggested that I write this book and Dr. Joshua Nathan for his care and support

during the past few years.

Finally I thank my wife, Paria, and my children, Shalizeh and Arad, for their

patience and encouragement. It is to them that this book is humbly dedicated.
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Notation

The following notations are frequently used in the rest of the text:

• R: The field of real numbers.

• C: The field of complex numbers.

• Q: The field of rational numbers.

• Z: The ring of all integers.

• N: The set of all natural numbers, i.e., all positive integers.

• R½x�: For a ring R, this is the ring of all polynomials in the variable x with

coefficients in R.

• ½x�: The integer part of a real number x, i.e., the largest integer m with the

property that m� x.

• fxg: The fractional part of x, i.e., x� ½x�.
• jjjxjjj: The distance of x to the closest integer, i.e., minðfxg; 1� fxgÞ.
• a j b for integers a; b: a divides b, i.e., there is an integer c such that b ¼ ac.

• a - b for integers a; b: b is not divisible by a.

• a � b mod c, with a; b; c integers such that c 6¼ 0: cja� b.

• MnðRÞ: The ring of n� n matrices with entries in the set R.

• GLnðZÞ: The group of n� n integral matrices with determinant equal to �1.

• SLnðZÞ: The group of n� n integral matrices with determinant equal to þ 1.

• f ðxÞ ¼ OðgðxÞÞ for real functions f ; g: If there is a constant C[ 0 such that for

all x large enough, j f ðxÞj �CjgðxÞj.
• f ðxÞ ¼ oðgðxÞÞ for real functions f ; g: If

lim
x!1

f ðxÞ

gðxÞ
¼ 0:

• /ðnÞ for a natural number n: Euler totient function.

• rðnÞ for a natural number n: The sum of the divisors of n.
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• dðnÞ for a natural number n: The number of divisors of n.

• sq f ðnÞ for a natural number n: The square-free part of n, i.e., the smallest natural

number m such that n ¼ k2 � m for some natural number k.

• dkl: Kronecker’s delta function, equal to 1 if k ¼ l, 0 otherwise.

• vS for the subset S of a set X: The characteristic function of S, i.e., vSðxÞ ¼ 1 if

x 2 S, vSðxÞ ¼ 0 if x 2 X � S.

• #A for a finite set A: The number of elements of the set A.

xviii Notation



Part I

Foundational material



Chapter 1

Introduction

In the first section of this opening chapter we review two different proofs of the

Pythagorean Theorem, one due to Euclid and the other one due to a former president

of the United States, James Garfield. In the same section we also review some higher

dimensional analogues of the Pythagorean Theorem. Later in the chapter we define

Pythagorean triples; explain what it means for a Pythagorean triple to be primitive;

and clarify the relationship between Pythagorean triples and points with rational

coordinates on the unit circle. At the end we list the problems that we will be inter-

ested in studying in the book. In the notes at the end of the chapter we talk about

Pythagoreans and their, sometimes strange, beliefs. We will also briefly review the

history of Pythagorean triples.

1.1 The Pythagorean Theorem

Proposition XLVII of Book II of Euclid’s Elements [20] is the following theorem:

Theorem 1.1. In a right triangle ABC the square on the hypotenuse AB is equal to

the sum of the squares on the other sides AC and BC, that is,

AB2 = AC2 + BC2.

Theorem 1.1 is usually attributed to Pythagoras (580 BCE-500 BCE) or at least

to the Pythagorean school, and for that reason the equation

x2 + y2 = z2, (1.1)

satisfied by the side lengths of a right triangle, is referred to as the Pythagorean

Equation.

There are hundreds of proofs for the Pythagorean Theorem. We will momentarily

give the proof contained in Euclid’s Elements. The proof is truly geometric and very

© Springer Nature Switzerland AG 2018
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Fig. 1.1 Euclid’s proof of

Theorem 1.1. The triangle

ABC is a right angle triangle

with C being the right angle

C

BA

FLG

K

H

D

E

O

much in the Pythagorean tradition. In the argument, AB2 is interpreted as the area of

the square built on the edge AB, and the theorem is proved by showing that the area

of the square built on AB is equal to the sum of the areas of the squares built on AC

and BC.

Proof (Euclid). Draw squares ACHK , CBED, and ABFG as in Figure 1.1. Pick a

point O on AB such that CO ⊥ AB. Draw the altitude CO from C and extend it to

intersect GF at L. Draw CG and KB.

Since ABFG is a square, AG = AB. Similarly, AC = AK . Since ∠GAB and

∠CAK are right angles, ∠GAC = ∠BAK . Putting these facts together, we conclude

△KAB ≃ △CAG. In particular the areas of these triangles are equal.

Since ACB and HCA are both right angles, the line segment HB passes through C.

Consequently, the area of KAB is half the area of the square ACHK . Next, the area

of CAG is half the area of the rectangle OLGA as the shapes share the same base AG

and have equal heights. Hence, the area of ACHK is equal to the area of OLGA. A

similar argument shows that the area of the square CBED is equal to the area of the

rectangle OLFB. Finally, the sum of the areas of OLGA and OLFB is the area of the

square ABFG. ⊓⊔

This is by no means the easiest proof of the Pythagorean Theorem. Here we record

a famous proof published by James Garfield, the 20th president of the United States,

five years before he took office. This proof appeared in the New England Journal of

Education in 1876.

Proof (Garfield). Suppose a, b, c are the sides of a right triangle. Consider the trape-

zoid in Figure 1.2.
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Fig. 1.2 President James

Garfield’s proof of the

Pythagorean Theorem

a b

b
a

c
c

Fig. 1.3 Applying the

Pythagorean Theorem to

analytic geometry

a

b
r

A(a,b)

We calculate the area of the trapezoid in two different ways. First recall the

standard formula for the area of a trapezoid: If the parallel sides of a trapezoid of

height h have lengths x, y, then the area is equal to h(x + y)/2. By this formula, the

area of our trapezoid is (a + b)2/2. On the other hand, the trapezoid is the union of

three right triangles: two with legs equal to a, b, and one with legs equal to c. For

this reason the area of the trapezoid is equal to

2 ·
1

2
ab +

1

2
c2.

Setting the two expressions for the area equal to each other gives

2 ·
1

2
ab +

1

2
c2 =

1

2
(a + b)2.

Expanding and simplifying the sides of the equality gives the Pythagorean Equation.

⊓⊔

The Pythagorean Theorem is a fundamental theorem with many applications. For

example, the main identity of trigonometry, that for each angle θ

cos2 θ + sin2 θ = 1,

is nothing but the Pythagorean Theorem in a right triangle with hypotenuse of length

1. The theorem has an interesting interpretation in analytic geometry. Suppose we

have a point A with coordinates (a, b) in the xy-plane as in Figure 1.3.

If r is the distance from A to the origin, then applying the Pythagorean Theorem

to the gray right triangle gives

r2 = a2 + b2.
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Fig. 1.4 Applying the

Pythagorean Theorem to

three-dimensional analytic

geometry

y

z

x

B(a,b,0)

A(a,b,c)

c

Suppose, on the other hand, we have a fixed number r > 0 and we want to identify

all points (x, y) which have distance r to the origin. This is of course the circle of

radius r centered at the origin with equation

x2 + y2 = r2.

This picture can be generalized to higher dimensions. Suppose we have a point

A(a, b, c) in the three-dimensional space R3 as in Figure 1.4.

Again let r be the distance from the point A(a, b, c) to the origin O(0, 0, 0).

Applying the Pythagorean Theorem to the blue triangle gives

r2 = OB2 + c2 = a2 + b2 + c2.

As an application, we find that the equation of the sphere of radius r centered at the

origin is

x2 + y2 + z2 = r2.

Similarly, if we have a point with coordinates (x1, . . . , xn) in Rn, its distance r to

the origin satisfies

r2 = x2
1 + · · · + x2

n. (1.2)

We can use this result to write down the equation of a sphere in Rn of radius r centered

at the origin.

1.2 Pythagorean triples

In this book we are interested in those solutions of the Pythagorean Equation which

are interesting from the number theoretic perspective. This means we will work

with solutions x, y, z of Equation (1.1) which are elements of particular subsets of

the real numbers, e.g., natural numbers, integers, or rational numbers. In general, a

Diophantine equation is an equation of the form
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f (x1, x2, . . . , xn) = 0

where we search for solutions (x1, . . . , xn) ∈ Zn, though in some situations we may

seek solutions in other sets, e.g., N, Q, Z[i].
A Pythagorean triple is a triple of natural numbers x, y, z satisfying Equation

(1.1). A primitive Pythagorean triple is one where the three numbers do not share

any non-trivial common factors. Such triples are called primitive because if (a, b, c)

is some Pythagorean triple, there is a primitive Pythagorean triple (a′, b′, c′) and an

integer d such that

(a, b, c) = (da′, db′, dc′).

The most famous Pythagorean triple is (3, 4, 5), and one can easily check that 52 =
25 = 9+16 = 32 +42. The next few Pythagorean triples are (5, 12, 13), (7, 24, 25),

(8, 15, 17). We will determine all primitive Pythagorean triples in §3.1. A right

triangle whose side lengths form a Pythagorean triple is called an integral right

triangle. We call an integral right triangle primitive if its side lengths form a primitive

Pythagorean triple.

We can also study the solutions of the Pythagorean Equation in integers x, y, z.

Again, we call an integral solution primitive if x, y, z do not share any common

factors other than +1 or −1. If (x, y, z) satisfies the Pythagorean Equation, then we

have x2 + y2 = z2. If z 	= 0, then we divide by z2 to obtain

(x

z

)2

+
(y

z

)2

= 1,

i.e., the point (x/z, y/z) is a point with rational coordinates on the circle of radius 1

centered at the origin. For example, (3/5, 4/5) is a point on the unit circle centered

at the origin obtained from the Pythagorean triple (3, 4, 5). In fact the triple (3, 4, 5)

gives rise to eight different points on the circle:

(±3/5,±4/5), (±4/5,±3/5), (±3/5,∓4/5), (±4/5,∓3/5).

Though we have not yet developed the tools to prove this statement rigorously, the

reader should convince herself that there is a correspondence between primitive

integral solutions (x, y, z) of the Pythagorean Equation with z > 0 and points with

rational coordinates on the unit circle center at the origin. We can make similar

definitions for higher dimensional Pythagorean Equations

x2
1 + · · · + x2

n = z2, (1.3)

and relate integral solutions to points with rational coordinates on the higher dimen-

sional unit spheres centered at the origin.
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1.3 The questions

Understanding the integral solutions of the Pythagorean Equation and exploring the

fine properties of integral right triangles have been great sources of inspiration for

mathematicians throughout the history of mathematics in general, and number theory

in particular. Our purpose in this book is to explore some number theoretic problems

that have arisen in relation to right triangles. As we saw a moment ago the study

of right triangles and solutions to the Pythagorean Equation is intimately connected

with the study of points with rational (or integral) coordinates on circles and spheres.

These are some of the questions we address in this book:

1. What are the primitive solutions of the Pythagorean Equation? Does geometry

have anything to do with finding the solutions? We study these questions in

Chapter 3.

2. What integers are areas of integral right triangles? This is the subject matter of

Chapter 4.

3. What numbers are edges of integral right triangles? This question is answered in

Chapter 5.

4. How many solutions are there to the Pythagorean Equation modulo various inte-

gers? We answer this question in Chapter 8. For what it means to speak of a

number modulo an integer, see Chapter 2.

5. How are integral points distributed on big spheres? Some results in this direction

are obtained in Chapters 9 and 10.

6. Approximately, how many Pythagorean triples (x, y, z) are there with z < B, for

a larger number B? The answer to this question occupies Chapter 13.

7. How are points with rational coordinates distributed on the unit circle centered at

the origin in R2? This is discussed in Chapter 14.

The rest of the book is devoted to developing background material for these results,

or exploring related topics.

Exercises

1.1 Let a, b, c be the side lengths of a right angle triangle with c the length of

the hypotenuse. Use the dissection in Figure 1.5 of a c × c square into four

triangles and a square to give a proof of the Pythagorean Theorem. This proof

is due to the famous 12th century Indian mathematician Bhaskara, [9, §3.3].

1.2 Suppose a, b, c are the side lengths of a right triangle. Use Figure 1.6 to give

a proof of the Pythagorean Theorem. In the diagram, the three triangles are

similar to the original triangle with scaling factors a, b, and c.

1.3 Here is an alternative formulation of the idea exploited in Garfield’s proof.

Again, suppose a, b, c are the sides of a right triangle. Use Figure 1.7 to give

one more proof of the Pythagorean Theorem.



1.3 The questions 9

Fig. 1.5 The dissection in

Problem 1.1

Fig. 1.6 Figure for Problem

1.2

ab ab

a2 b2

c2

ac bc

Fig. 1.7 The diagram for

Problem 1.3

a

b

a b

a

b

b a

c

c

c

c

1.4 Let ABC be a triangle. Show that

sgn (∠A + ∠B − ∠C) = sgn (BC2 + AC2 − AB2).

Here sgn is the following function:

sgn (x) =

⎧

⎪

⎨

⎪

⎩

+1 x > 0;
0 x = 0;
−1 x < 0.

1.5 (�) List all Pythagorean triples (a, b, c), with a ≤ b < c ≤ 100.
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1.6 (�) Let N (B) be the number of Pythagorean triples (a, b, c), with a, b, c < B.

Compute N (B) for some large values of B like 1000, 15000, 100000. Does

N (B)/B approach a limit as B gets large? We will investigate this limit in

Chapter 13.

Notes

Pythagoreans

Pythagoreans certainly deserve a good deal of credit for their contributions to math-

ematics, if nothing else for their formalization of the concept of proof. While they

may have in fact been the first people in history to have written down a formal proof

of Theorem 1.1, there is no doubt that the theorem itself was known much earlier.

For example, the Babylonian clay tablet Plimpton 322 described in [9, §2.6], dated

between 1900 and 1600 BCE, contains fifteen pairs of fairly large natural numbers

x, z, every one of which is the hypotenuse and a leg of some right triangle with integer

sides. Even though the tablet does not contain a diagram showing a right triangle, it

is hard to imagine these numbers would have appeared in a context other than the

Pythagorean Theorem. Furthermore, given the sizes of the entries, 8161 and 18541,

among others, it is only natural to assume that these numbers were not the result

of random guesswork, and that the Babylonian mathematicians responsible for the

content of the tablet actually had a method to produce integral solutions.

Mathematicians in Egypt too were certainly aware of the Pythagorean Theorem.

The Cairo Mathematical Papyrus, described again in [9, §2.6], contains a variety of

problems, some of them fairly sophisticated, dealing directly with the Pythagorean

Theorem. There is also evidence to suggest that the theorem and something resem-

bling a geometric proof of it were known to Chinese mathematicians some 300 years

before Euclid, c.f. [9, §3.3]. Dickson [16, Ch. IV] reports that the Indian mathe-

maticians, Baudhayana and Apastamba, had obtained a number of solutions to the

Pythagorean Equation independently of the Greeks around 500 BCE.

At any rate, Pythagoreans were led to irrational numbers from the Pythagorean

Theorem. Kline [29, Ch. 3] writes: “The discovery of incommensurable ratios [irra-

tional numbers] is attributed to Hippasus of Metapontum (5th cent. B.C). The

Pythagoreans were supposed to have been at sea at the time and to have thrown

Hippasus overboard for having produced an element in the universe which denied

the Pythagorean doctrine that all phenomena in the universe can be reduced to whole

numbers or their ratios.”

This most likely refers to the discovery of
√

2. Some historians dispute the story

that Hippasus was thrown overboard. The basic argument seems to be that the drown-

ing of the discoverers sounds unlikely—which considering the fact that at the time of

this writing fundamentalism in all of its shapes and forms has been eradicated in the

world, the skepticism of these historians is justified. There is apparently no historical
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evidence that Pythagoras himself ever knew of irrational numbers—which, as little

as we know of the life of the man, this is not surprising. The earliest reference to irra-

tional numbers is in Plato’s Theaetetus [38, Page 200] where it is said of Theodorus:

“was writing out for us something about roots, such as the roots of three or five,

showing that they are incommensurable by the unit: he selected other examples up

to seventeen—there he stopped.”

Since Theodorus skips over 2 then presumably this means that the irrationality

of root 2 must have already been known. In fact there is mention of this in passing

in Aristotle’s Prior Analytics [3, §23] and this appears to be the first place this is

written down somewhere: “prove the initial thesis from a hypothesis, when something

impossible results from the assumption of the contradictory. For example, one proves

that the diagonal is incommensurable because odd numbers turn out to be equal to

even ones if one assumes that it is commensurable.”

To learn more about Pythagoras and his school, we refer the reader to [9], espe-

cially Chapter 3. For the philosophical contributions of the Pythagoreans, see Rus-

sell’s fantastic book [42]. For Greek mathematics in general, see Artman [5]. To see

some original writings by the Greek masters, see Thomas [51].

Pythagorean triples throughout history

Proclus, in his commentary on Euclid, states that Pythagoras had obtained the family

of Pythagorean triples
⎧

⎪

⎨

⎪

⎩

x = 2α + 1,

y = 2α2 + 2α,

z = 2α2 + 2α + 1,

for α a natural number, c.f. [16, §IV]. As we will see in §3.1 this family does not

cover all solutions. Euclid obtained the solutions
⎧

⎪

⎨

⎪

⎩

x = αβγ,

y = 1
2
α(β2 − γ 2),

z = 1
2
α(β2 + γ 2).

Diophantus may have been the first person to write the solutions as

⎧

⎪

⎨

⎪

⎩

x = m2 − n2,

y = 2mn,

z = m2 + n2.

(1.4)

Dickson [16, §IV] mentions an anonymous Arabic text from the tenth century where

necessary and sufficient conditions are derived for the integers m, n so that the triple

(1.4) is primitive. The same reference contains numerous other works by many
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mathematicians which provide various formulations of the solutions of the

Pythagorean Equation.

Our purpose here is not to review the history of Pythagorean Equation in its

entirety—the references [9, 16] do an impressive job at reviewing the history of

the subject, though, see Historical References in Notes to Chapter 2. Our goal in

mentioning the above isolated anecdotes is to highlight the fact that mathematics,

as all other branches of human knowledge, progresses very slowly—and sometimes

what in hindsight looks completely obvious, takes years, centuries, and sometimes

millennia, to develop and mature. We sometimes feel smarter than our predecessors

because we have learned their works, but in reality the mathematicians of the antiquity

were every bit as brilliant and hardworking as the best of us.



Chapter 2

Basic number theory

In this chapter we cover basic number theory and set up notations that will be used

freely throughout the rest of the book. The chapter starts with the basic notions of

divisibility and prime numbers with the goal of proving the Fundamental Theorem of

Arithmetic, Theorem 2.19. We then prove the Chinese Remainder Theorem (Theorem

2.24), Fermat’s Little Theorem (Theorem 2.26), Euler’s Theorem (Theorem 2.31),

discuss the basic properties of the totient function φ, and study polynomials modulo

primes, digit expansions, and finally primitive roots. In the Notes at the end of

the chapter, we talk about Euclid and his masterpiece the Elements; briefly discuss

natural numbers and induction; review two standard cryptographic methods based

on number theory; and finally, state Artin’s conjecture for primitive roots.

2.1 Natural numbers, mathematical induction,

and the Well-ordering Principle

The numbers 1, 2, 3, . . . are called natural numbers, and we denote the set of all nat-

ural numbers by N. A defining property of the set of natural number is the following:

Property 2.1 (Mathematical induction). Let A ⊂ N be such that

• 1 ∈ A;

• x ∈ A implies x + 1 ∈ A.

Then A = N.

The set of natural numbers has the following fundamental property as well:

Property 2.2 (Well-ordering Principle). Every non-empty subset of the set of natural

numbers has a smallest element.

For example, if we consider the subset of the set of natural numbers consisting

of all even numbers, then the smallest element of this set is the number 2; or, if the

© Springer Nature Switzerland AG 2018
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subset is the set of all multiples of 75, then the smallest element is 75. Intuitively, the

Well-ordering Principle is true because the set of natural numbers does not go all the

way down, though this is of course not a proof. In fact, the Well-ordering Principle

is equivalent to mathematical induction.

Theorem 2.3. The Well-ordering Principle is logically equivalent to mathematical

induction.

Proof. First we show that mathematical induction implies the Well-ordering Princi-

ple. Let Pn be the following statement: Every subset of N which contains a number

x such that x ≤ n has a smallest element. Clearly P1 is true, as in this case the subset

will contain 1, and 1 will be the smallest element. So now suppose we know Pk is

true, and we wish to show Pk+1 is true. Suppose A ⊂ N is such that A contains some

element x with x ≤ k +1. If A contains some element y with y ≤ k, then the validity

of Pk implies that A must have a smallest element. So assume there are no elements

in A which are less than or equal to k. Since we had assumed that A contains some

element less than or equal to k + 1, but nothing less than or equal to k, we conclude

that k + 1 ∈ A, and that k + 1 is the smallest element of A.

Next, we show that the Well-ordering Principle implies mathematical induction.

Suppose A ⊂ N is such that

• 1 ∈ A;

• x ∈ A implies x + 1 ∈ A;

• A �= N.

Let B = N − A. By assumption B is not empty. By the Well-ordering Principle B

has a smallest element b. Since 1 ∈ A, b �= 1, and as a result b − 1 ∈ N. On the

other hand, b − 1 < b, and as we had assumed that b is the smallest element of B,

this means b − 1 /∈ B. Consequently, b − 1 ∈ A, and this last statement implies that

(b − 1) + 1 ∈ A, i.e., b ∈ A, a contradiction. ⊓⊔

2.2 Divisibility and prime factorization

Definition 2.4. For integers a, b with b �= 0, we say b divides a if there is a c ∈ Z
such that a = bc. The integer b is then called a divisor of a, and a is called a multiple

of b. In this case, we write b | a. A natural number p is called prime if it has exactly

four distinct divisors. For integers a, b, n, with n �= 0, we write a ≡ b mod n, and

say a is congruent to b modulo n, if n | a − b.

For example, 3 | (−6) as −6 = 3 · (−2). The number 5 is a prime number, since

its divisors are ±1,±5; 6 is not a prime as it is divisible by ±1,±2,±3,±6, and 1 is

not a prime as it only has two divisors ±1. Finally, 13 ≡ 7 mod 3 as 3 | 13 − 7 = 6.

Congruence modulo 0 is equality.

The following lemma is an easy exercise; see Exercise 2.1.
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Lemma 2.5. For an integer n, congruence modulo n is an equivalence relation.

Definition 2.6. The equivalence classes of the congruence relation are called con-

gruence classes modulo n. The congruence class of an integer a modulo a non-zero

integer n is denoted by [a]n . The set of congruence classes modulo n is denoted by

Z/nZ.

Lemma 2.7. The set Z/nZ has a group structure defined by

[a]n + [b]n := [a + b]n.

Proof. The identity of the operation is given by [0]n . The inverse of the element [a]n

is [−a]n . Associativity is immediate from the associativity of addition of the group

Z. ⊓⊔

Theorem 2.8 (Division Algorithm). For integers a, b, with b �= 0, there are unique

integers q0, r0 with 0 ≤ r0 < |b|, such that

a = bq0 + r0.

If we allow negative values of r , we can choose q0, r0 such that

1. − |b|+1

2
≤ r0 ≤ |b|−1

2
, if b is odd;

2. − |b|
2

+ 1 ≤ r0 ≤ |b|
2

, if b is even.

Proof. By replacing q by −q if necessarily, it suffices to prove the theorem for b > 0.

If a, b, define

S = {a − bq | q ∈ Z, a − bq ∈ N}.

It is clear that S ⊂ N. We claim that S is non-empty. To see this, we recognize two

cases:

• If a > 0, then set q = 0. In this case a − 0b = a > 0, and a ∈ S;

• If a < 0 and b > 0, let q = 2a. We have a − qb = a − 2ab = −a(2b − 1) > 0.

Again, S �= ∅.

Since S is non-empty, Property 2.2 implies that S has a smallest element, call it x .

By the definition of S, there is q ∈ Z such that x = a − bq. We now claim x ≤ b. If

x = a − bq > b, then x − b = a − (b + 1)q > 0. This means x − b ∈ S, and since

x − b < x , this contradicts the choice of x as the smallest element of S.

Next, if the smallest element x = b, then a − (q + 1)x = x − b = 0, and we set

q0 = q + 1 and r0 = 0. If x < b, then we set q0 = q and r0 = x .

Now that we know the first part of the theorem, we can proceed to prove the

second part. Suppose b is odd—the proof for the even case is similar. By the first

part of the theorem we can write

a = bq0 + r0

with 0 ≤ r0 < |b|. If 0 ≤ r0 ≤ |b|−1

2
we are done, so assume |b|−1

2
< r0 < |b|. We

have
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a = bq0 + |b| + (r0 − |b|).

Note that bq0 + |b| is a multiple of b. Next, since |b|−1

2
< r0 < |b| we have

|b| − 1

2
− |b| < r0 − |b| < |b| − |b| = 0.

To finish the proof we need to verify that

|b| − 1

2
− |b| ≥ −

|b| + 1

2
,

but this is clear. ⊓⊔

Note that with the notations of Theorem 2.8, [a]b = [r0]b. This observation

provides a convenient way to write down representatives for equivalence classes in

Z/bZ. For example, suppose b = 6. When we divide an integer a by b, we will have

a remainder 0, 1, 2, 3, 4, 5. Consequently, the set {0, 1, 2, 3, 4, 5} will provide a set

of representatives for Z/6Z.

Lemma 2.9. For every non-zero integer n, #(Z/nZ) = |n|.

Proof. We define a map

resn : Z/nZ → {0, 1, · · · , |n| − 1}.

The strategy of the proof is to show that the map resn is a bijection. We define the

function as follows. Let u ∈ Z/nZ. Let a be an integer such that [a]n = u. Use

Theorem 2.8 to write

a = qn + r

with 0 ≤ r < |n|. We define resn(u) = r .

Since the definition of resn involves a choice of the integer a, we need to show

that resn(u) is independent of the choice of a. Suppose the integer b is such that

[b]n = [a]n = u. The assumption on b implies that a ≡ b mod n, i.e., there is

an integer k such that b − a = kn. If we use the fact that a = qn + r , we get

b = a + kn = qn + r + kn = (q + k)n + r with 0 ≤ r < qn. As a result,

resn([b]n) = r = resn([a]n).

We now show that resn is a bijection. That it is a surjective map is obvious.

In fact, for every r with 0 ≤ r < n, resn([r ]n) = r . To see that it is injective,

we suppose that resn(u) = resn(u
′) = r with u, u′ ∈ Z/nZ and some r with the

property that 0 ≤ r < n. Write u = [a]n and u′ = [b]n . It follows from the

definition of resn that a = q1n + r and b = q2n + r for integers q1, q2. As a result,

a − b = q1n − q2n = (q1 − q2)n. Consequently, n | a − b, or a ≡ b mod n. This

means [a]n = [b]n . ⊓⊔

Definition 2.10. Let n be an integer. By a complete system of residues modulo n we

mean a collection of n integers a1, . . . , an such that for each i, j with 1 ≤ i, j ≤ n,

we have ai ≡ a j mod n if and only if i = j . Alternatively, a complete system of

residues is a complete set of representatives for congruence classes modulo n.
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The notion of the greatest common divisor described in the following definition

is surprisingly important:

Definition 2.11. For integers a, b, the greatest common divisor of a, b, denoted

gcd(a, b), is an integer g with the following properties:

• g | a and g | b;

• If d is an integer such that d | a and d | b, then |d| ≤ g.

Integers a, b are called coprime if gcd(a, b) = 1. We also define the least common

multiple of the non-zero integers a, b, denoted by lcm(a, b) to be a positive integer

l with the following properties:

• a | l and b | l;

• If m is an integer such that a | m and b | m, then l ≤ |m|.

Basically, the greatest common divisor of integers a and b is precisely what the name

suggests: the greatest, common, divisor of a and b, and similarly for the lcm. We

similarly define the gcd and lcm of more than two numbers.

Theorem 2.12. If a, b are integers, then there are integers x, y such that

ax + by = gcd(a, b).

Proof. The theorem is easy if either of a or b is zero. For example, if a = 0, then

gcd(0, b) = b = 1 × 0 + 1 × b. So we may assume that neither a nor b is zero. By

changing the signs of x, y, if necessarily, we may assume a, b > 0. Define a set S

by

S = {ax + by | x, y ∈ Z, ax + by ∈ N}.

Clearly S ⊂ N and S �= ∅ as, in particular, a, b ∈ S. By Property 2.2, the set S has a

smallest element g. By definition, there are integers x0, y0 such that g = ax0 + by0

and g > 0.

If d is a common divisor of a, b, then d | ax0 + by0 = g. Consequently,

gcd(a, b) | g.

Now we claim every element of S is divisible by g. Let s = ax + by ∈ S. Divide

s by g, and use Theorem 2.8 to write

s = gq + r

for some 0 ≤ r < g. If r = 0, it follows that g | s and we are done. Otherwise, we

have

0 < r = s − gq = (ax + by) − (ax0 + by0)q = a(x − x0q) + b(y − y0q).

As a result, r ∈ S. Since 0 < r < g, this last statement contradicts the assumption

that g is the smallest element of S. Consequently, we have established the claim that

every element of S is divisible by g. In particular, since a, b ∈ S, we see that g | a

and g | b, i.e., g is a common divisor of a, b. As a result, g ≤ gcd(a, b). Since we
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had already established that gcd(a, b) | g, we conclude g = gcd(a, b). We have

proved

gcd(a, b) = ax0 + by0. ⊓⊔

A consequence of this theorem is the following interesting result:

Corollary 2.13. If a, b, d are integers such that d | a, d | b, then d | gcd(a, b).

Proof. Since d is a divisor of both a and b, for all integers x, y we have d | ax + by.

The result now follows from Theorem 2.12. ⊓⊔

Clearly, one way to find the greatest common divisor of a and b is to write the list of

all divisors of a and b, look for the common divisors, and find the greatest one. For

example, if a = 12 and b = 18, we have

Divisors of a = {±1,±2,±3,±4,±6,±12}

and

Divisors of b = {±1,±2,±3,±6,±9,±18}.

Next,

Common divisors of a and b = {±1,±2,±3,±6}.

Finally,

gcd(a, b) = 6.

Note that 6 = (+1) · 18 + (−1) · 12 in accordance with Theorem 2.12.

This is, of course, inefficient, especially when dealing with large numbers. Euclid

presented a clever procedure to compute the greatest common divisor of two integers

without listing the divisors of the individual integers. This is known as the Euclidean

Algorithm. The Euclidean Algorithm is based on the following lemma:

Lemma 2.14. If a, b ∈ N with a | b, then gcd(a, b) = a. If a, b ∈ N with a > b,

then

gcd(a, b) = gcd(a − b, b).

Proof. The first statement is easy. In fact, gcd(a, b) ≤ a as the gcd(a, b) is a divisor

of a. On the other hand, a is a common divisor of a and b, hence a ≤ gcd(a, b).

Combining these two observations shows that gcd(a, b) = a. Now we prove the

second statement by showing that the set of common divisors of a, b is equal to

the set of common divisors of a − b, b. This statement implies that the greatest

elements of the sets are the same, proving the lemma. To see the equality of the two

sets, suppose d is a common divisor of a, b. Then d | a, d | b, and consequently

d | a − b, i.e., d is a common divisor of b and a − b. Hence, the set of common

divisors of a, b is a subset of the set of common divisors of b and a − b. The reverse

inclusion is proved similarly. ⊓⊔
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As an example, we compute gcd(18, 12). We have

gcd(18, 12) = gcd(18 − 12, 12) = gcd(6, 12) = 6,

by applying Lemma 2.14. To see a slightly more interesting example, we examine

gcd(57, 12). We have

gcd(57, 12) = gcd(57 − 12, 12) = gcd(45, 12) = gcd(33, 12)

= gcd(21, 12) = gcd(9, 12) = gcd(12, 9) = gcd(12 − 9, 9) = gcd(3, 9) = 3.

In the first stage, we needed to subtract 12 from 57 four times. In effect, what we have

done is that we have replaced 57 by the remainder of its division by 12. In practice,

we do the following: In order to compute gcd(a, b) with a > b, we write a = bq +r

with 0 ≤ r < b; if r = 0, then gcd(a, b) = b; otherwise, gcd(a, b) = gcd(b, r).

Since a > b > r , we have replaced the pair (a, b) with the “smaller” pair (b, r) with

the same gcd. Let us formulate this procedure as a lemma:

Lemma 2.15 (Euclidean Algorithm). The following procedure computes the gcd

of a pair of natural numbers (a, b) with a > b:

1. The pair (a, b) is given with a > b;

2. Let r be the remainder of the division of a by b;

3. If r = 0, b is the gcd and we are done;

4. If r > 0, replace (a, b) by (b, r), and go back to (1).

At the time of this writing, we do not know how to find the prime factors of a large

integer n quickly. In contrast, the Euclidean Algorithm is incredibly fast. In fact, by

Theorem 12 of [46, Ch. I, §3], originally a theorem of Lamé from 1844, the number

of divisions needed is at most five times the number of digits in the decimal expansion

of the smaller number b.

The Euclidean Algorithm allows us to make Theorem 2.12 computationally effec-

tive. We will illustrate the idea in the following example:

Example 2.16. It is easy to see that gcd(57, 12) = 3. We wish to find integers x, y

such that

57x + 12y = 3.

We write

57 = 4 × 12 + 9;

12 = 1 × 9 + 3.

Now we write

3 = 12 − 9 = 12 − (57 − 4 × 12) = 12 − 57 + 4 × 12 = 5 × 12 − 57,

giving x = −1 and y = 5. We will see more examples of this procedure in the

exercises.

A consequence of Theorem 2.12 is the following important theorem:
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Theorem 2.17. If a | bc and gcd(a, b) = 1, then a | c.

Proof. Since gcd(a, b) = 1, there are integers x, y such that ax + by = 1. Multi-

plying the equality by c gives c = axc + bcy. Both terms on the right-hand side of

this equation are divisible by a: The term axc is clearly divisible by a, and bcy is

divisible by a by assumption. This means c is divisible by a and we are done. ⊓⊔

This theorem implies the following result of Euclid (Elements, Proposition 30,

Book VII):

Corollary 2.18 (Euclid’s First Theorem). Let p be a prime number, and p | ab

for integers a, b. Then either p | a or p | b.

Proof. Suppose p ∤ a. We claim that gcd(a, p) = 1. In fact, if d = gcd(a, p), then

d | p. This means that either d = 1 or d = p. We cannot have d = p, because

then p = d | a which is a contradiction. Hence, d = 1, and the result follows from

Theorem 2.17. ⊓⊔

Euclid’s Lemma is the main ingredient in the proof of the uniqueness assertion

of the following foundational result:

Theorem 2.19 (Fundamental Theorem of Arithmetic). Every natural number is

a product of prime numbers in an essentially unique fashion.

In the statement of the theorem, essentially unique means up to reordering of the

terms. For example, we can write

12 = 3 · 2 · 2 = 2 · 3 · 2 = 2 · 2 · 3.

Proof. We will prove the existence using induction. Since 1 is the empty product of

prime numbers, the theorem is true for 1. Now suppose n is a natural number, and

suppose we know the existence of a prime factorization for every natural number

smaller than n. If n is prime, there is nothing to prove. If n is not prime, then it has

a non-trivial divisor y such that 1 < y < n. Clearly, 1 < n/y < n. By the induction

assumption, y = p1 · · · pr and n/y = q1 · · · qs for primes p1, . . . , pr and q1, . . . , qs .

Then,

n = y ·
n

y
= p1 · · · pr · q1 · · · qs .

This gives the existence of a prime factorization.

We now prove the uniqueness. Suppose we have a natural number n which has

two different prime factorizations:

P1 · · · Pk = Q1 · · · Ql .

The sets of primes {P1, . . . , Pk} and {Q1, . . . , Ql} may have some common elements.

If necessary we simplify the common elements from the sides to obtain an equality

of the form

P1 · · · Pu = Q1 · · · Qv, (2.1)
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with the sides not having any common factors. Now, we have

P1 | Q1 · · · Qv.

An easy application of Euclid’s First Theorem, Corollary 2.18, says that there is an

i such that

P1 | Qi .

But since P1 and Qi are prime numbers, this divisibility implies that P1 = Qi , con-

tradicting the assumption that the sides of Equation (2.1) have no common elements.

⊓⊔

It is convenient to write the prime factorization of a number as a product of prime

powers. For example, instead of 12 = 2 · 3 · 2, we usually write 12 = 22 · 3. We

denote the prime factorization of a typical natural number n in the form

p
α1

1 · · · pαr

r ,

or similar expression. In such expressions, even when we do not explicitly mention

it, we assume that the prime numbers p1, . . . , pr are distinct. In this case we write

p
αi

i ||n, meaning p
αi

i |n but p
αi +1
i ∤ n, and call αi the multiplicity of pi in n. It is

sometimes convenient to allow the exponents αi to be equal to zero. For example, if

n = p
α1

1 · · · pαr

r ,

then every divisor of n can be written in the form

m = p
β1

1 · · · pβr

r ,

where for each i , 0 ≤ βi ≤ αi .

The Fundamental Theorem of Arithmetic has many applications. Here we list

three consequences. We leave the proofs to the reader; see Exercise 2.4 and Exercise

2.5.

Proposition 2.20. Let m =
∏

i p
ri

i and n =
∏

i p
si

i . Then

gcd(m, n) =
∏

i

p
min(ri ,si )
i ,

and

lcm(m, n) =
∏

i

p
max(ri ,si )
i .

Furthermore,

gcd(m, n) · lcm(m, n) = mn.

The following proposition is used a few times throughout the book:

Proposition 2.21. Suppose a, b are natural numbers such that gcd(a, b) = 1. If

ab = mk for natural numbers m and k, then a = mk
1 and b = mk

2 for natural

numbers m1, m2 such that m1m2 = m.
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Corollary 2.22. If n ∈ N is not a perfect kth power, there is no rational number γ

such that n = γ k .

2.3 The Chinese Remainder Theorem

Theorem 2.12 is a statement about the solvability of the equation

ax + by = gcd(a, b)

in integers x, y. More generally, one can ask about the solvability of a general linear

Diophantine equation

ax + by = c

in integers x, y. It is not hard to see that this equation is solvable if and only if

gcd(a, b) | c. For example if gcd(a, b) = 1, then every equation ax + by = c is

solvable. The following is a useful fact:

Theorem 2.23. Suppose a, b are coprime integers, and let x0, y0 ∈ Z be such that

ax0 + by0 = 1. Then if x, y ∈ Z satisfy ax + by = 1, there is h ∈ Z such that

x = x0 + bh, y = y0 − ah.

In general, if the equation ax +by = c is solvable, then since gcd(a, b) | ax +by,

we see that gcd(a, b) | c. Conversely, if gcd(a, b) | c, we can write c = c′ ·gcd(a, b).

By Theorem 2.12 we know that there are integers x0, y0 such that ax0 + by0 =
gcd(a, b). Multiplying by c′ gives a(x0c′) + b(y0c′) = gcd(a, b)c′ = c, and as a

result x = x0c′ and y = y0c′ are numbers that satisfy ax + by = c.

Formulated in terms of congruence equations, this is equivalent to saying that the

equation

ax ≡ c mod b (2.2)

is solvable if and only if gcd(a, b) | c. In particular if gcd(a, b) = 1, the equation is

solvable for every c. Back in the general case of Equation (2.2), since gcd(a, b) | c,

the equation is equivalent to

a

gcd(a, b)
x ≡

c

gcd(a, b)
mod

b

gcd(a, b)
. (2.3)

Now

gcd

(

a

gcd(a, b)
,

b

gcd(a, b)

)

= 1,

and as a result Equation (2.2) is solvable with solution

x ≡
(

a

gcd(a, b)

)−1
c

gcd(a, b)
mod

b

gcd(a, b)
.
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So every equation of the form (2.2), if solvable, has a solution of the form

x ≡ k mod m

for some m | b.

For example, the equation 4x ≡ 3 mod 6 is not solvable as 2 = gcd(4, 6) ∤ 3.

On the other hand, the equation 4x ≡ 2 mod 6 is solvable as 2 = gcd(4, 6) | 2. To

solve the equation 4x ≡ 2 mod 6, we divide by 2 to get 2x ≡ 1 mod 3, which has

the solution x ≡ 2 mod 3.

One can also ask about the solvability of systems of equations

{

a1x ≡ c1 mod b1,

a2x ≡ c2 mod b2.

Obviously we need each of the equations to be solvable, so our previous considera-

tions apply. In particular the solvability of this system reduces to the solvability of a

system of the form
{

x ≡ k1 mod m1,

x ≡ k2 mod m2.
(2.4)

It is not hard to see, Exercise 2.22, that this system is solvable if and only if

gcd(m1, m2) | k1 − k2.

If x1, x2 are solutions of the system (2.4), then x1 ≡ x2 mod [m1, m2].
For a system consisting of more than two equations the exact solvability condi-

tions are fairly painful to state. However, there is a useful special case with many

applications:

Theorem 2.24 (The Chinese Remainder Theorem). Suppose m1, . . . , mn are inte-

gers such that for all i, j with i �= j ,

gcd(mi , m j ) = 1.

Then for every string of integers a1, . . . , an the system of equations

⎧

⎪

⎨

⎪

⎩

x ≡ a1 mod m1,

· · ·
x ≡ an mod mn,

has a solution. If x1, x2 are solutions of the system, then

x1 ≡ x2 mod m1 · · · mn.

Example 2.25. Suppose we wish to find all x such that

⎧

⎪

⎨

⎪

⎩

x ≡ 1 mod 5;
x ≡ 2 mod 7;
x ≡ 3 mod 9.
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Every x satisfying the first equation is of the form 1 + 5k. Insert this expression in

the second equation to obtain

1 + 5k ≡ 2 mod 7.

This is the same as saying 5k ≡ 1 mod 7, which after multiplying by 3 gives k ≡
3 mod 7, i.e., k = 3+7l for some l. This means, x = 1+5k = 1+5(3+7l) = 16+35l.

Now we use the third equation to obtain

16 + 35l ≡ 3 mod 9.

Since 16 ≡ −2 and 35 ≡ −1 mod 9, we get −2 − l ≡ 3 mod 9, from which it

follows l ≡ 4 mod 9. Write l = 4 + 9r for some r ∈ Z. Going back to x , we have

x = 16 + 35l = 16 + 35(4 + 9r) = 156 + 315r . Consequently, in order for x to

satisfying the system of congruences it is necessary and sufficient that

x ≡ 156 mod 315.

2.4 Euler’s Theorem

Next, we discuss a beautiful theorem of Fermat:

Theorem 2.26 (Fermat’s Little Theorem). If p is prime, for all integers n, p |
n p − n.

First we consider p = 2. We know that n is even if and only if n2 is even. For this

reason n2 − n is always divisible by 2, establishing the theorem for p = 2. So we

assume that p is an odd prime. In this case it is clear that if the theorem is true for n,

it will also be true for −n. It suffices to prove the theorem for n a natural number. We

proceed by induction. The theorem is trivially true for n = 0, 1. Now suppose the

theorem is true for n. We wish to prove it is true for n +1. By the Binomial Theorem,

Theorem A.4, we have

(n + 1)p − (n + 1) = (n p − n) +
p−1
∑

k=1

(

p

k

)

nk .

Since by our induction hypothesis, p | n p−n, the theorem follows from the following

lemma:

Lemma 2.27. For each 0 < k < p,

p |
(

p

k

)

.

Proof. We have
(

p

k

)

=
p!

k!(p − k)!
=

p · (p − 1)!
k!(p − k)!

.
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Since
(

p

k

)

is an integer, this means k!(p − k)! | p.(p − 1)!; but since gcd(p, k!(p −
k)!) = 1, Theorem 2.17 implies k!(p−k)! | (p−1)!. Write (p−1)! = k!(p−k)! · A

for an integer A. Then
(

p

k

)

=
p · (p − 1)!
k!(p − k)!

= p · A.

The lemma is now obvious. ⊓⊔

We will record one more lemma that will be used in the proof of Theorem 6.8 in

Chapter 7.

Lemma 2.28. Let p be a prime number, and x1, . . . , xn some indeterminates. Then

all of the coefficients of the multivariable polynomial

(x1 + · · · + xn)
p − x

p

1 − . . . x p
n

are integers that are multiples of p.

We now describe Euler’s generalization of Fermat’s Little Theorem. The following

proposition is an easy consequence of Theorem 2.12:

Proposition 2.29. If a and n with gcd(a, n) = 1, then there exists an integer b such

that ab ≡ 1 mod n.

Proof. Since gcd(a, n) = 1, Theorem 2.12 implies that there are integers b and c

such that ab + cn = 1. This means n | ab − 1, i.e., ab ≡ 1 mod n.

For example if a = 3 and n = 7, then we may take b = 5, as in that case 3 × 5 ≡
1 mod 7. The congruence class of the b in the proposition is usually denoted by a−1

when there is no confusion about the modulus n. This means that the set of coprime

to n congruence classes forms a group under multiplication modulo n. We denote

this group by (Z/nZ)×.

Definition 2.30. Let n ∈ N. By a reduced system of residues modulo n we mean

a set of representatives for (Z/nZ)×. For a natural number n, we define the Euler

totient function, or Euler’s φ-function, by φ(n) = #(Z/nZ)×.

For every complete system of residues a1, . . . , an modulo n, the set

{ai | gcd(ai , n) = 1} (2.5)

is a reduced system of residues. It is clear that every reduced system of residues

modulo n has the same number of elements, φ(n). Furthermore, if a1, . . . , aφ(n) is a

set of distinct residue classes modulo n such that for each i we have gcd(ai , n) = 1,

then the set a1, . . . , aφ(n) is a reduced system of residues modulo n. Note that

φ(n) = #{1 ≤ a ≤ n | gcd(a, n) = 1}. (2.6)

If, for example, n = 12, then the numbers a with 1 ≤ a ≤ 12 which are coprime to

12 are 1, 5, 7, 11, and consequently, φ(12) = 4.
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Theorem 2.31 (Euler). Let n be a natural number. For all a with gcd(a, n) = 1 the

equation

aφ(n) ≡ 1 mod n

holds.

In particular when n = p is a prime number, we have φ(p) = p − 1, and we recover

Fermat’s Little Theorem, Theorem 2.26.

Proof. Suppose a1, . . . , aφ(n) is a reduced system of residues modulo n. Since

gcd(a, n) = 1, the set of numbers

aa1, . . . , aaφ(n)

is another reduced system of residues modulo n. In fact, for each 1 ≤ i ≤ φ(n),

gcd(aai , n) = 1. Furthermore, as gcd(a, n) = 1, aai ≡ aa j mod n for 1 ≤ i, j ≤
φ(n) implies ai ≡ a j mod n, which means i = j . Next, since

a1, . . . , aφ(n)

and

aa1, . . . , aaφ(n)

are both reduced systems of residues, we must have

φ(n)
∏

i=1

ai ≡
φ(n)
∏

i=1

aai mod n.

Rearranging terms gives

φ(n)
∏

i=1

ai ≡ aφ(n)

φ(n)
∏

i=1

ai mod n.

Since the ai ’s are coprime to n, their product is coprime to n as well. Simplifying
∏

i ai gives the result. ⊓⊔

The function φ(n) is explicitly computable. It is easy to see that for each prime

p and α ≥ 1 we have

φ(pα) = pα − pα−1 = pα(1 −
1

p
).

In fact,

φ(pα) = pα − #{1 ≤ a ≤ pα | gcd(a, pα) �= 1}

= pα − #{1 ≤ a ≤ pα | p|a}

= pα − pα−1.

The totient function is famously multiplicative:
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Theorem 2.32. For all natural numbers m, n with gcd(m, n) = 1, the identity

φ(mn) = φ(m)φ(n)

holds.

Proof. We prove this theorem by constructing a reduced system of residues modulo

mn. For r, s ∈ Z, set

f (r, s) = rn + sm.

Our first claim is that the set

R = { f (r, s) | 1 ≤ r ≤ m, 1 ≤ s ≤ n}

is a complete system of residues modulo mn. Clearly, we have mn pairs (r, s) as

above. We just need to show that for distinct pairs (r, s), the elements f (r, s) are

distinct modulo mn. Suppose, for 1 ≤ r1, r2 ≤ m and 1 ≤ s1, s2 ≤ n, we have

r1n + s1m ≡ r2n + s2m mod mn.

Considering this congruence modulo n gives

s1m ≡ s2m mod n,

which, since gcd(m, n) = 1, implies

s1 ≡ s2 mod n.

Since 1 ≤ s1, s2 ≤ n, this gives s1 = s2. Similarly, we conclude r1 = r2, and our

claim is proved.

Next, we claim that in order for gcd( f (r, s), mn) = 1, it is necessary and sufficient

that gcd(r, m) = 1 and gcd(s, n) = 1. In fact, since gcd(m, n) = 1, we have

gcd( f (r, s), mn) = gcd(rn + sm, m) gcd(rn + sm, n).

Next,

gcd(rn + sm, m) = gcd(rn, m) = gcd(r, m).

Similarly,

gcd(rn + sm, n) = gcd(s, n).

Consequently,

gcd( f (r, s), mn) = gcd(r, m) · gcd(s, n),

from which the second claim is immediate. The number of all pairs (r, s) such that

gcd(r, m) = 1 and gcd(s, n) = 1 is clearly φ(m)φ(n), and the theorem is proved. ⊓⊔

It then follows that for each natural number n with prime factorization n = p
α1

1 · · · p
αk

k

we have

φ(n) =
k

∏

i=1

φ(p
αi

i ) =
k

∏

i=1

p
αi

i

(

1 −
1

pi

)

= n

k
∏

i=1

(

1 −
1

pi

)

.
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We will record this computation as a theorem:

Theorem 2.33. For every natural number n,

φ(n) = n
∏

p|n
(1 −

1

p
).

This theorem means that in order to compute the value of φ(n) we just need to know

the prime factors of n, and not the prime factorization. For example, since the prime

factors of 12 are 2 and 3, we have

φ(12) = 12 ·
(

1 −
1

2

)

·
(

1 −
1

3

)

= 12 ×
1

2
×

2

3
= 4.

Theorem 2.33 has an interesting statistical interpretation. Suppose we have a num-

ber n with prime factors p1, p2, . . . , pk . The quotient φ(n)/n is the probability of

choosing a random number a in the set {1, . . . , n} subject to gcd(a, n) = 1. Now, a

number a satisfies gcd(a, n) = 1 if and only if for each i , pi ∤ a. The probability of

a randomly chosen number to be divisible by pi is 1/pi , and the probability that a

randomly chosen number is coprime to pi is 1−1/pi . If we pretend that coprimality

to distinct primes are independent events, we see that the probability that a number

is coprime to p1, . . . , pk is
k

∏

i=1

(

1 −
1

pi

)

,

which by Theorem 2.33 is precisely φ(n)/n.

The function φ viewed as a function N → R has many surprising properties. Here

is an example:

Theorem 2.34. For all natural numbers n,
∑

d|n
φ(d) = n.

Proof. By Theorem A.2 there are precisely n distinct complex numbers z such that

zn = 1, and they can be expressed as

e
2π ik

n , k = 0, . . . , n − 1.

For a complex number z with zn = 1, we define o(z) to be the smallest positive

integer k such that zk = 1. We claim o(z) | n. If not, by Theorem 2.8 there is an

integer q and 0 < r < o(z) such that n = qo(z) + r . Then

1 = zn = zqo(z)+r = (zo(z))q zr = zr ,

contradicting the definition of o(z). Next,

n = #{z ∈ C | zn = 1} =
∑

d|n
#{z ∈ C | zn = 1, o(z) = d}. (2.7)
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Our next step is to determine #{z ∈ C | zn = 1, o(z) = d}. In order to do this, we

pick 0 ≤ k ≤ n − 1 and determine o(e
2π ik

n ). Suppose for l > 0 we have

(

e
2π ik

n

)l

= 1.

This is equivalent to saying

e
2π ikl

n = 1.

Consequently, n | kl. Dividing by gcd(n, k) gives

n

gcd(n, k)
|

k

gcd(n, k)
· l.

Since

gcd

(

n

gcd(n, k)
,

k

gcd(n, k)

)

= 1,

Theorem 2.17 implies that
n

gcd(n, k)
| l.

This statement combined with l > 0 implies

l ≥
n

gcd(n, k)
.

In particular,

o(e
2π ik

n ) ≥
n

gcd(n, k)
.

We claim that equality holds. To see this, we note

(

e
2π ik

n

)
n

gcd(n,k) = e
2π ik

n
· n

gcd(n,k) = e
2π i · k

gcd(n,k) = 1,

as k
gcd(n,k)

is an integer. Hence, we have

o(e
2π ik

n ) =
n

gcd(n, k)
.

Now we can go back to determining #{z ∈ C | zn = 1, o(z) = d}. If o(e
2π ik

n ) = d,

then we have n
gcd(n,k)

= d. It follows, gcd(n, k) = n
d
. In particular, n

d
| k. Write

k = n
d

· k ′. Note 1 ≤ k ′ ≤ d. We have

n

d
= gcd(n, k) = gcd

(n

d
· d,

n

d
· k ′

)

=
n

d
· gcd(d, k ′).

Hence gcd(d, k ′) = 1. This means,

#{z ∈ C | zn = 1, o(z) = d} = #{1 ≤ k ′ ≤ d | gcd(d, k ′) = 1} = φ(d).

Combining this identity with (2.7) gives the theorem. ⊓⊔
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2.5 Polynomials modulo a prime

We often speak of polynomials modulo p, with p a prime number. By this we mean

a polynomial f (x) ∈ Z[x] where the coefficients and values are considered modulo

p. This is of course nothing but a polynomial in the variable x with coefficients in the

finite field Z/pZ, but for the purposes of this monograph we can prove the results

we need completely elementarily using the methods presented in this chapter.

Throughout this discussion we fix a prime number p. Let f (x) =
∑n

j=0 a j x
j ,

with a j ∈ Z, be a polynomial. We say f is a non-zero polynomial modulo p, if there

is a j with a j �≡ 0 mod p; we say f is of degree n if an �≡ 0 mod p. We call an

integer k a root of f (x) modulo p if f (k) ≡ 0 mod p. We call the roots k, l distinct

if k �≡ l mod p. For example, if p = 3, the polynomial f (x) = x5 + 2 is of degree

5 and has a root k = 1 modulo 3. One easily checks that l = 4 is another root of

f (x) modulo 3, but 1 and 4 are not distinct modulo 3, as 4 ≡ 1 mod 3.

Remark 2.35. Note that these notions depend on the choice of the prime p. For

example, if f (x) = 3x4 + 2x + 5, then f (x) is of degree 4 if p �= 3, but of degree 1

for p = 3. Also, f (2) = 57 = 3 × 19, so k = 2 is a root of f (x) modulo 3 and 19,

but not otherwise.

Our goal in this section is to prove the following useful statement:

Theorem 2.36. Let f (x) be a polynomial of degree n modulo a prime p. Then f (x)

has at most n distinct roots modulo p.

Our proof of this theorem relies on the following lemma the statement of which

the reader should compare with Theorem 2.8:

Lemma 2.37. Suppose f (x) and g(x) are polynomials with integer coefficients, and

suppose g(x) is a monic polynomial. Then there are unique polynomials q(x) and

r(x) with integral coefficients such that

f (x) = q(x)g(x) + r(x),

and either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).

Proof. We will prove the lemma by induction on deg f . If deg f < deg g, then

there is nothing to prove, as we can simply set q(x) = 0 and r(x) = f (x). Now

suppose deg f ≥ deg g, and write f (x) =
∑n

j=0 a j x
j and g(x) = xm +

∑m−1
l=0 bl x

l

with an �= 0. Then deg( f (x) − an xn−m g(x)) < deg f . By induction, there are

polynomials q ′(x), r ′(x) with integer coefficients such that either r ′(x) = 0 or

deg r ′(x) < deg g(x), and with the property that

f (x) − an xn−m g(x) = q ′(x)g(x) + r ′(x).

This equation implies f (x) = (q ′(x) + an xn−m)g(x) + r ′(x). Setting q(x) =
q ′(x) + an xn−m ∈ Z[x] and r(x) = r ′(x) gives the result. For uniqueness see

Exercise 2.31. ⊓⊔
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For example, if we divide the polynomial f (x) = 3x3 + 2 by the polynomial

g(x) = x2 + 2, we get q(x) = 3x and r(x) = −6x + 2, and deg r(x) < deg g(x).

Proof of Theorem 2.36. We prove this theorem by induction on the degree of the

polynomial f . If f (x) has no roots modulo p, then there is nothing to prove. So

suppose we have a root k. Use Lemma 2.37 to write

f (x) = (x − k)q(x) + r(x).

The lemma says that either r(x) = 0 or deg r(x) < deg(x − k) = 1. This means that

either r(x) = 0 or deg r(x) = 0, i.e., r(x) is a constant c which may be zero. In any

case, we write

f (x) = (x − k)q(x) + c.

Insert x = k in this expression to obtain f (k) = (k − k)q(k) + c = c. So we obtain

f (x) = (x − k)q(x) + f (k).

Since f (k) ≡ 0 mod p, we have

f (x) ≡ (x − k)q(x) mod p.

Consequently, the roots of f (x) modulo p consist of k plus whatever root modulo p

that q(x) may have. Since deg q(x) = deg f (x) − 1, by induction, q(x) has at most

deg f (x) − 1 roots. The result is now immediate. ⊓⊔

Remark 2.38. In general, if F is a field, and f (x) ∈ F[x] a non-zero polynomial,

then f (x) = 0 has at most deg f (x) roots in F .

Theorem 2.36 has numerous applications. The following example is a particularly

well-known application of this theorem.

Example 2.39. Fix a prime p. By Theorem 2.26, for all n ∈ Z we have

n p − n ≡ 0 mod p.

This means that if we set

f (x) = x p − x,

then every integer n is a root of f (x) modulo p. As a result, the elements of a

complete system of residues modulo p, e.g., S = {0, 1, . . . , p − 1}, are going to be

the distinct roots of f (x). On the other hand, we have a polynomial

g(x) = x(x − 1)(· · · )(x − p + 1) = x p + terms of lower degree.

with the elements of S as its roots. Now consider the polynomial

h(x) = f (x) − g(x).

It is clear that deg h(x) < p as the x p terms from the polynomial f (x) and g(x)

cancel each other out. Now, every element of S is a root of h(x) modulo p. But this
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would mean that the polynomial h which is of degree less than p has p roots which

contradicts Theorem 2.36, unless h(x) ≡ 0 mod p. Consequently,

x p − x ≡ x(x − 1)(· · · )(x − p + 1) mod p.

We may cancel out an x from the congruence to obtain the identity

x p−1 − 1 ≡ (x − 1)(· · · )(x − p + 1) mod p.

If we put in x = p in this identity we obtain the following statement known as

Wilson’s Theorem:

(p − 1)! ≡ −1 mod p. (2.8)

2.6 Digit expansions

It is common practice to express real numbers in terms of powers of 10. We call

such expressions decimal expansions. For example, when we write x = 347, what

we mean is that x is equal to the following expression

3 × 102 + 4 × 101 + 7 × 100.

In this expression the numbers 3, 4, 7 are called the digits of x . The digits are always

integers larger than or equal to 0 and less than or equal to 9. If we have a non-

integral real number, then we use a decimal point to separate the integer part from

the fractional part. For instance, when we write x = 23.6923 we mean

x = 2 × 102 + 3 × 100 + 6 × 10−1 + 9 × 10−2 + 2 × 10−3 + 3 × 10−4.

We wish to generalize this notion. Suppose g > 1 is a natural number. In this section

we discuss base g expansions of real numbers. We will show that every positive real

number x is representable in the form

∑

k∈Z,k<N

ak · gk

with N ∈ Z and ak’s integers satisfying 0 ≤ ak < g. Once we establish this, we

write

x = (aN−1 · · · a1a0.a−1a−2a−3 · · · )g,

if N > 0, and

x = (0.a−1a−2a−3 · · · )g

if N = 0, and

x = (0.0 · · · 0aN−1aN−2 · · · )g

if N < 0, where the number of zeros between the decimal point and aN−1 is −N .

We will also determine the extent to which this representation is unique. Throughout
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the remainder of this section we will use Exercise 2.47 without explicit mention

numerous times.

Suppose x ∈ R and x > 0. We write x = n + ξ with n ∈ N ∪ {0} and 0 ≤ ξ < 1.

Here, n = [x] and ξ = {x}. Our first step is to construct the base g expansion of n.

If n = 0, then we define the base g expansion of n to be 0. So we assume n ≥ 1.

By the Well-ordering Principle, Property 2.2, there is a smallest natural number N

such that n < gN . This means that

gN−1 ≤ n < gN ,

as otherwise n < gN−1 which would contradict the choice of N . By Theorem 2.8

there are integers q and n′ such that

n = q · gN−1 + n′

with 0 ≤ n′ < gN−1. We claim 0 ≤ q < g. In fact, if q > g, then

n = q · gN−1 + n′ > g · gN−1 = gN ,

contradicting the choice of N ; if q ≤ −1, then

n = q · gN−1 + n′ < −gN−1 + n′ < 0.

Now that we know 0 ≤ q < g, we denote it by aN−1. We have

n = aN−1 · gN−1 + n′

with 0 ≤ n′ < gN−1. By repeating this process we obtain the representation

n = aN−1 · gN−1 + · · · + a1 · g1 + a0 (2.9)

with each ai satisfying 0 ≤ ai < g. The expression on the right-hand side of (2.9) is

the base g expansion of n, and the ai ’s are called the digits of n.

Now we show that the base g expansion of a natural number is unique. Suppose

a natural number n has two different base g expansions:

n = aN−1 · gN−1 + · · · + a1 · g1 + a0 = bM−1 · gM−1 + · · · + b1 · g1 + b0, (2.10)

with M, N > 0 and 0 ≤ ai , b j < g, and let’s assume aN−1 �= 0, bM−1 �= 0. First we

show M = N . Suppose M > N . We observe

bM−1 · gM−1 + · · · + b1 · g1 + b0 ≥ gM−1.

Next,

aN−1 ·gN−1+· · ·+a1 ·g1+a0 ≤ (g−1)gN−1+(g−1)gN−2+· · ·+(g−1)g+(g−1)

= (g − 1)(gN−1 + · · · + g + 1) = (g − 1)
gN − 1

g − 1
= gN − 1 < gM−1.
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So on the one hand n ≥ gM−1 and on the other n < gM−1. This is a contradic-

tion, showing that M cannot be larger than N . Similarly, it follows that N > M is

impossible as well. As a result M = N .

With the equality M = N at hand, Equation (2.10) can be rewritten as

aN−1 · gN−1 + · · · + a1 · g1 + a0 = bN−1 · gN−1 + · · · + b1 · g1 + b0.

We will show that for each i , ai = bi . We will first show that aN−1 = bN−1. After

this has been established, the rest of the argument is an easy induction. Suppose

aN−1 �= bN−1. Then we have

0 =
∣

∣(aN−1 · gN−1 + · · · + a1 · g1 + a0) − (bN−1 · gN−1 + · · · + b1 · g1 + b0)
∣

∣

=
∣

∣(aN−1 − bN−1)g
N−1 + (aN−2 − bN−2)g

N−2 + · · · + (a1 − b1)g + (a0 − b0)
∣

∣

≥
∣

∣(aN−1 − bN−1)g
N−1

∣

∣ −
∣

∣(aN−2 − bN−2)g
N−2 + · · · + (a1 − b1)g + (a0 − b0)

∣

∣ ,

upon using the following version of the triangle inequality: For all real numbers x, y,

|x + y| ≥ |x | − |y|. Since aN−1 �= bN−1,

∣

∣(aN−1 − bN−1)g
N−1

∣

∣ ≥ gN−1.

Also, for each i , |ai − bi | ≤ g − 1. This inequality implies

∣

∣(aN−2 − bN−2)g
N−2 + · · · + (a1 − b1)g + (a0 − b0)

∣

∣

≤
∣

∣(aN−2 − bN−2)g
N−2

∣

∣ + · · · + |(a1 − b1)g| + |(a0 − b0)|

≤ (g − 1)gN−2 + · · · + (g − 1)g + (g − 1) = gN−1 − 1,

after using the triangle inequality in the following form: For all x1, x2, . . . , xk ∈ R,

we have |x1 + x2 + · · · + xk | ≤ |x1|+ |x2|+ · · ·+ |xk |. Putting everything together,

we have

0 ≥
∣

∣(aN−1 − bN−1)g
N−1

∣

∣−
∣

∣(aN−2 − bN−2)g
N−2 + · · · + (a1 − b1)g + (a0 − b0)

∣

∣

≥ gN−1 − (gN−1 − 1) = 1.

This is a contradiction, showing that aN−1 = bN−1. We have proved the following

lemma:

Lemma 2.40. Let g ∈ N and g > 1. Then every natural number n can be written

in a unique way as a sum

n = aN−1 · gN−1 + · · · + a1 · g1 + a0

with N ∈ N and ai ∈ N ∪ {0} satisfying 0 ≤ ai < g.

The integers a j are called the digits of n, and we write

n = (aN−1 . . . a1)g.
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Now we construct the base g expansion of ξ , the fractional part of the real number

x . Set

a−1 = [gξ ].

Next for each k > 1, set

a−k =

⎡

⎣gk

⎛

⎝ξ −
k−1
∑

j=1

a− j

g j

⎞

⎠

⎤

⎦ = [gkξ ] − gk

⎛

⎝

k−1
∑

j=1

a− j

g j

⎞

⎠ .

For example,

a−2 =
[

g2

(

ξ −
a−1

g

)]

= [g2ξ ] − g · a−1,

and

a−3 =
[

g3

(

ξ −
a−1

g
−

a−2

g2

)]

= [g3ξ ] − g2 · a−1 − g · a−2.

Now we claim that for each k > 0,

0 ≤ ξ −
k

∑

j=1

a− j

g j
<

1

gk
. (2.11)

If k = 1, then by the definition of the integer part we have

0 ≤ gξ − [gξ ] < 1.

Since a−1 = [gξ ], this gives 0 < gξ − a−1 < 1, from which upon dividing by g our

inequality follows. For k > 1, we have

0 ≤ gk

⎛

⎝ξ −
k−1
∑

j=1

a− j

g j

⎞

⎠ −

⎡

⎣gk

⎛

⎝ξ −
k−1
∑

j=1

a− j

g j

⎞

⎠

⎤

⎦ < 1.

By definition this means

0 ≤ gk

⎛

⎝ξ −
k−1
∑

j=1

a− j

g j

⎞

⎠ − a−k < 1.

Dividing by gk gives

0 ≤ ξ −
k−1
∑

j=1

a− j

g j
−

a−k

gk
<

1

gk
,

and this is the inequality (2.11).

Since 0 < ξ < 1, 0 < gξ < g, and as a result 0 ≤ [gξ ] < g. This means

0 ≤ a−1 < g. If k > 1, (2.11) implies
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0 ≤ gk

⎛

⎝ξ −
k−1
∑

j=1

a− j

g j

⎞

⎠ < g,

which gives

0 ≤ a−k < g.

Lemma 2.41. With a j ’s defined as above,

ξ =
∞

∑

j=1

a− j

g j
. (2.12)

Proof. Once we note that g−k → 0 as k gets large, this is a consequence of Equation

(2.11). ⊓⊔

As before we call the integers a− j ’s the digits of ξ , and we write

ξ = (0.a−1a−2a−3 . . . )g

and call it the base g expansion of ξ .

On the other hand we can consider expressions of the form

∞
∑

j=1

a− j

g j
(2.13)

with a j ’s integers satisfying 0 ≤ a− j < g and ask whether they correspond to base

g expansions of real numbers. First a lemma:

Lemma 2.42. Every expression of the form (2.13) is convergent.

Proof. In order to see this, set

sN =
N

∑

j=1

a− j

g j
.

By the definition of convergence, for ε > 0, we need to show there is N0 such that

if M, N > N0, then

|sN − sM | < ε.

Without loss of generality suppose N > M . Then,

|sN − sM | =
N

∑

j=M+1

a− j

g j
≤

N
∑

j=M+1

g − 1

g j
=

g − 1

gM+1

N−M−1
∑

k=0

1

gk

=
g − 1

gM+1
·

1 − 1
gM+N

1 − 1
g

=
1

gM
·

gM+N − 1

gM+N
<

1

gM
.



2.6 Digit expansions 37

So given ε > 0, we pick N0 such that

1

gN0
< ε.

Once this is done, the above computation shows that as soon as N > M > N0, then

|sN − sM | <
1

gM
<

1

gN0
< ε,

establishing the convergence. ⊓⊔

Now we ask whether distinct series of the sort considered in Equation (2.13) can

give the same real number. Suppose we have an identity

∞
∑

j=1

a− j

g j
=

∞
∑

j=1

b− j

g j
,

where each side is a series of the type considered above: For each j , a− j , b− j are

integers satisfying 0 ≤ a− j , b− j < g. Let N be the smallest natural number such

that a−N �= b−N . Then we have

0 =
∞

∑

j=1

a− j

g j
−

∞
∑

j=1

b− j

g j
=

∣

∣

∣

∣

∣

∣

∞
∑

j=1

a− j

g j
−

∞
∑

j=1

b− j

g j

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

j=N

a− j − b− j

g j

∣

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

a−N − b−N

gN

∣

∣

∣

∣

−
∞

∑

j=N+1

∣

∣

∣

∣

a− j − b− j

g j

∣

∣

∣

∣

≥
1

gN
−

∞
∑

j=N+1

g − 1

g j
= 0,

using an easy computation involving geometric series. As a result all the inequalities

appearing here should be equalities. This means that either a−N − b−N = 1 and for

each j > N , a− j = 0, b− j = g − 1, or a−N − b−N = −1, and for each j > N ,

a− j = g−1, b− j = 0. What this means, for example, is that if we have a sequence of

integers b− j , with 0 ≤ b− j < g such that for some N , and for all j > N , b− j = g−1,

then we can define a real number ξ by setting

ξ =
∞

∑

j=1

b− j

g j
.

Now if we write the base g digit expansion of ξ according to Lemma 2.41 we obtain

ξ =
b−1

g
+ · · · +

b−N+1

gN−1
+

1 + b−N

gN
. (2.14)

We call such a base g expansion a finite expansion. We say an expansion of the form
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∞
∑

j=1

b− j

g j

to be unacceptable if there is M such that for all j ≥ M , b− j = g − 1. We say an

expansion is acceptable if it is not unacceptable.

It is clear that the number ξ with expansion as in Equation (2.14) can be written

as

ξ =
r

gN

for some natural number r . By canceling out every common factor between r and gN

we arrive at a fraction of the form A/B where all the prime factors of B are prime

factors of g. Conversely, suppose we have a fraction of the form ξ = A/B with

B =
∏

p|g,p prime

pep

with integers ep ≥ 0. Let M = maxp ep, the largest number among the ep’s. Let

C =
∏

p|g,p prime

pM−ep .

Then BC = gM . We have

ξ =
A

B
=

AC

BC
=

r

gM

with r = AC . Now we write the base g expansion of r using Lemma 2.40 in the

form

r =
N−1
∑

k=0

ak · gk

for some N ∈ N, 0 ≤ ak < g. We then have

ξ =
∑N−1

k=0 ak · gk

gM
=

N−1
∑

k=0

ak · gk−M .

We summarize this discussion as the following proposition:

Proposition 2.43. An expression of the form

∞
∑

j=1

b− j

g j

is the base g expansion of some real number 0 ≤ ξ < 1 if and only if it is acceptable.

The base g expansion of a real number ξ is finite if and only if it is a rational number

expressible in the form A/B with B a divisor of gM for some M.

Putting everything together, we have the following theorem:
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Theorem 2.44. Let g > 1 be a natural number. Every positive real number can be

written as
∑

k∈Z,k<N

ak · gk

with N ∈ N, ak ∈ N ∪ {0}, 0 ≤ ak < g, subject to the additional requirement that

∑

k∈Z,k<0

ak · gk

be acceptable.

2.7 Digit expansions of rational numbers

In Proposition 2.43 we determined the base g expansions of rational numbers A/B

with B certain special numbers. In this section we determine what base g expansions

of arbitrary rational numbers look like.

The reader will probably remember from elementary school that decimal expan-

sions of rational numbers are eventually periodic, in the sense that there will be

blocks of digits that will repeat exactly. For example:

7

15
= 0.46666666 . . . ;

2

7
= 0.285714285714285714 . . . ;

7

12
= 0.583333333 . . . ;

1

19
= 0.052631578947368421052631578947368421052631578947368421 . . . .

In the first example, the repeating block is the single digit 6; in the second one, it is

285714; in the third one, 3; and in the last one, 052631578947368421. The common

practice is to draw a line above the repeating block so as to save space and avoid

confusion, e.g.,

7

17
= 0.46;

2

7
= 285714;

7

12
= 0.583;

1

19
= 0.052631578947368421.

We will see that similar results hold for base g expansions of rational numbers

for arbitrary natural numbers g > 1. We say a base g expansion is repeating if from

some point onward, the sequence of digits is the back to back repetitions of some

fixed finite sequence of numbers. The examples we gave above are all repeating

expansions for the base 10. In general, a repeating base g expansion will look like

this:

(aN−1 . . . a1.a−1a−2 . . . a−kb1b2 . . . bt )g, (2.15)



40 2 Basic number theory

where as before the line on top of b1b2 . . . bt means that this is the repeating sequence

of digits. We call the sequence b1 . . . bk the repeating block, and the number k, the

period. A base g expansion of the form (aN−1 . . . a1.b1b2 . . . bk)g is called purely

periodic.

Our goal is to prove the following theorem:

Theorem 2.45. Let g > 1 be a natural number. A positive real number is rational

if and only if its base g expansion is repeating.

Proof. Note that a finite base g expansion is repeating: The repeating sequence of

numbers is simply 0. We already saw in Proposition 2.43 that finite base g expansions

give rational numbers.

Let g > 1 be a natural number. Our first step is to show that repeating base g

expansions give rational numbers. Suppose we have a repeating base g expansion as

in Equation (2.15):

x = (aN−1 . . . a1.a−1a−2 . . . a−kb1b2 . . . bt )g

= (aN−1 . . . a1.a−1a−2 . . . a−k)g +
(0.b1b2 . . . bt )g

gk+1
.

By Proposition 2.43, or just by direct inspection, the number (aN−1 . . . a1.a−1a−2 . . .

a−k)g is rational. So in order to show that x is rational, we just need to show that

γ := (0.b1b2 . . . bt )g

is a rational number. In order to see this we observe

γ =
∞

∑

j=0

(

b1

g1+ jk
+

b2

g2+ jk
+ · · · +

bk

gk+ jk

)

=
(

b1

g1
+

b2

g2
+ · · · +

bk

gk

) ∞
∑

j=0

1

g jk

=
b1 · gk−1 + b2 · gk−2 + · · · + bk

gk(1 − g−k)
,

after using Exercise 2.47. We conclude that

γ =
b1 · gk−1 + b2 · gk−2 + · · · + bk

gk − 1
, (2.16)

clearly showing that γ is a rational number. We have shown that every repeating base

g expansion gives a rational number.

Next we show that the base g expansion of every positive rational number is

repeating. Suppose we have a rational number

x =
A

B
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with A, B ∈ N, and gcd(A, B) = 1. The starting point of the argument is to write

B = B1 · B2

with B1 the largest divisor of B which is coprime to g. This means that every prime

factor of B2 is prime factor of g. By an argument similar to the one used in the

paragraph preceding Proposition 2.43 there is an integer C and a natural number M

such that B2C = gM . We then have

x =
A

B
=

AC

BC
=

AC

B1 B2C
=

AC

B1gM
.

Note that if we show the base g expansion of AC/B1 is repeating, then we will be

done, as dividing by gM only introduces a shift in the base g expansion. So without

loss of generality, we may assume that

x = A/B

with A, B ∈ N, gcd(A, B) = 1, gcd(B, g) = 1. By Theorem 2.8 we can write

A = q B + r

with 0 ≤ r < B. This means

x = q +
r

B
.

If r = 0 there is nothing to prove, so suppose r �= 0. It suffices to show that the base

g expansion of r/B is repeating. The key to the argument is the expression we found

in Equation (2.16). Suppose there is an integer D such that B D = gk − 1 for some

k ∈ N. Then we have
r

B
=

r D

B D
=

r D

gk − 1
.

Now since r D < gk − 1, reversing the steps of the first part of the proof shows that

the base g expansion of r/B is repeating. So in order to finish the proof we just need

to prove the following assertion: If B with gcd(B, g) = 1, then there is a k ∈ N such

that B | gk − 1, i.e., gk ≡ 1 mod B. By Theorem 2.31 k = φ(B) works and we are

done. ⊓⊔

2.8 Primitive roots

In the proof of Theorem 2.45 we observed that if g, B with gcd(g, B) = 1, then

for each 0 < r < B, the fraction r/B has a purely periodic base g expansion with

period φ(B). In general the fraction r/B may have a smaller period. For example,

let’s consider the fraction 1/7. The base 2 expansion of the fraction 1/7 can be

computed as follows:
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1

7
=

1

23 − 1
=

1

23
·

1

1 − 2−3
=

1

23
·

∞
∑

k=0

1

23k
=

∞
∑

k=0

1

23k+3
.

From this computation it follows that

1

7
= (0.001001001001 . . . )2 = (0.001)2.

The period is 3, which is half of φ(7) = 6. Now we compute the base 3 expansion

of 1/7:

1

7
=

1

36 − 1
=

1

36
·

1

1 − 3−6
=

1

36
·

∞
∑

k=0

1

36k
=

∞
∑

k=0

1

36k+6
.

Consequently,

1

7
= (0.000001000001000001 . . . )3 = (0.000001)3,

and in this case the period is 6. So depending on the base g, sometimes the period of

the base g expansion of 1/7 is φ(7) = 6, and sometimes it is not. In fact, it follows

from the proof of Theorem 2.45 that the minimal period of the base g expansion of

1/n, if gcd(g, n) = 1, is the smallest positive integer k such that gk ≡ 1 mod n.

We make the following definition.

Definition 2.46. For a natural number n, and an integer a, with gcd(a, n) = 1, the

order of a modulo n, denoted by on(a), is the smallest positive integer k such that

ak ≡ 1 mod n.

Note that by Theorem 2.31, on(a) ≤ φ(n). Also, the congruence classes of the

elements

a j , 1 ≤ j ≤ on(a)

are distinct modulo n.

Lemma 2.47. If for some integer k, ak ≡ 1 mod n, then on(a) | k. In particular,

on(a) | φ(n).

Proof. Write k = qon(a) + r with 0 ≤ r < on(a). We have,

1 ≡ ak ≡ aqon(a)+r ≡
(

aon(a)
)q

ar ≡ (1)qar ≡ ar mod n.

Consequently, ar ≡ 1 mod n. Since 0 ≤ r < on(a), this last equation implies r = 0.

The last assertion follows from Theorem 2.31. ⊓⊔

Definition 2.48. A number g is called a primitive root modulo n if on(g) = φ(n).

In terms of fractions, this means that the base g expansion of 1/n is purely periodic of

period φ(n), the largest possible value. The existence of a primitive root is equivalent

to the cyclicity of the Abelian group (Z/nZ)×. Note that primitive roots may not
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exist. For example, if n = 8, then φ(n) = 4. However, for all odd numbers a,

a2 ≡ 1 mod 8. In fact, 12 ≡ 1, 32 = 9 ≡ 1, 52 = 25 ≡ 1, and 72 = 49 ≡ 1 mod 8. In

contrast, if n = 7, then 31 ≡ 3 mod 7, 32 ≡ 2 mod 7, 33 ≡ 6 mod 7, 34 ≡ 4 mod 7,

35 ≡ 5 mod 7, and 36 ≡ 1 mod 7, implying that 3 is a primitive root modulo 7.

The following theorem provides an extremely important class of situations where

we know primitive roots exist.

Theorem 2.49. If p is a prime, there is a primitive root modulo p.

Proof. If p = 2, then the result is trivial. So let’s assume p is odd. Let a1, . . . , ap−1

be a reduced system of residues modulo p. Since by Lemma 2.47 for each j , op(a j ) |
p − 1, we have

p − 1 =
∑

d|p−1

#{1 ≤ j ≤ p − 1 | op(a j ) = d}. (2.17)

In our case, Theorem 2.34 says

p − 1 =
∑

d|p−1

φ(d). (2.18)

Our strategy is to show that for each d | p − 1,

#{1 ≤ j ≤ p − 1 | op(a j ) = d} = φ(d). (2.19)

Once this is established, letting d = p − 1 gives

#{1 ≤ j ≤ p − 1 | op(a j ) = p − 1} = φ(p − 1) �= 0.

This means there are primitive roots modulo p, and in fact φ(p − 1) of them.

We now proceed to prove (2.19). Our first step is to show that for d | p − 1, if

#{1 ≤ j ≤ p − 1 | op(a j ) = d} �= 0, then it is equal to φ(d). So, let us assume

that this quantity is non-zero and pick a congruence class a modulo p such that

op(a) = d. Since the congruence classes of the d elements

a j , 1 ≤ j ≤ d

are distinct and all satisfy the equation xd ≡ 1 mod p, Theorem 2.36 implies that

these are all the solutions of the equation.

Now we determine which of these elements a j have the property op(a
j ) = d. In

order to do this, for an integer k, with 1 ≤ k ≤ d, let us determine op(a
k). If for a

positive integer l, (ak)l ≡ 1 mod p, we get akl ≡ 1 mod p. Lemma 2.47 implies that

op(a) | kl, or d | kl. This implies

d

gcd(d, k)
|

k

gcd(d, k)
· l.

Since

gcd

(

d

gcd(d, k)
,

k

gcd(d, k)

)

= 1,
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Theorem 2.17 implies d
gcd(d,k)

| l. We conclude

l ≥
d

gcd(d, k)
.

In particular,

op(a
k) ≥

d

gcd(d, k)
.

As in the proof of Theorem 2.34, we claim that equality holds. It suffices to check

that

(ak)
d

gcd(d,k) ≡ 1 mod p.

But this is immediate, as

(ak)
d

gcd(d,k) ≡ (ad)
k

gcd(d,k) ≡ 1 mod p.

We have used the fact that ad ≡ 1 mod p and k/ gcd(d, k) ∈ N. Now that we have

established

op(a
k) =

d

gcd(d, k)
,

we determine under what conditions on k, op(a
k) = d. In order for this to happen

we need to have
d

gcd(d, k)
= d,

or, what is the same, gcd(d, k) = 1. Consequently, if 1 ≤ k ≤ d with gcd(d, k) = 1,

op(a
k) = d. As a result, if op(a) = d, then

{ak | 1 ≤ k ≤ d, gcd(d, k) = 1}

is the set of elements whose congruence classes have order d modulo p. Since the

latter set has φ(d) elements, we conclude that if

#{1 ≤ j ≤ p − 1 | op(a
j ) = d} �= 0,

then

#{1 ≤ j ≤ p − 1 | op(a
j ) = d} = φ(d).

As a result, for each d | p − 1,

φ(d) − #{1 ≤ j ≤ p − 1 | op(a
j ) = d} ≥ 0.

Summing up over all d | p − 1 gives

∑

d|p−1

(

φ(d) − #{1 ≤ j ≤ p − 1 | op(a
j ) = d}

)

= 0,

after using (2.17) and (2.18). Since each term of the sum is nonnegative this

means every term has to be zero, establishing (2.19). The proof of the theorem is

complete. ⊓⊔
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Remark 2.50. If p is a small prime number, then it is easy to check whether a number

g is a primitive root. For example, one can check easily, by direct computation, that

g = 2 is a primitive root modulo 11. For large primes it is in general difficult to

decide if a natural number g is a primitive root modulo p. Later in Lemma 2.57 we

present a criterion to decide whether a number g is a primitive root modulo a prime

p. This criterion, unfortunately, requires the knowledge of the prime factors of p−1.

Next we use the above theorem to determine all numbers n for which there is a

primitive root modulo n.

Theorem 2.51. There is a primitive root modulo n if and only if n = 1, 2, 4, pα, 2pα ,

for an odd prime p.

We present the proof of this theorem as a series of lemmas.

Lemma 2.52. Suppose n can be written as mk, with gcd(m, k) = 1 and m, k > 2.

Then there are no primitive roots modulo n. In particular, if there is a primitive root

modulo n, then n = 2α, pα, 2pα for some odd prime p.

Proof. Let a be an integer such that gcd(a, n) = 1. Then gcd(a, m) = gcd(a, k) =
1. By Theorem 2.31, we have aφ(m) ≡ 1 mod m and aφ(k) ≡ 1 mod k. Since

φ(m) | lcm(φ(m), φ(k)),

alcm(φ(m),φ(k)) ≡ 1 mod m.

Similarly,

alcm(φ(m),φ(k)) ≡ 1 mod k.

By the uniqueness assertion of Theorem 2.24 we have

alcm(φ(m),φ(k)) ≡ 1 mod mk. (2.20)

Next, we observe that lcm(φ(m), φ(k)) < φ(mk). Indeed,

lcm(φ(m), φ(k)) =
φ(m)φ(k)

gcd(φ(m), φ(k))
=

φ(mk)

gcd(φ(m), φ(k))
,

after using Proposition 2.20 and Theorem 2.32. Since m, k > 2, Exercise 2.39 shows

that φ(m) and φ(k) are both even, and consequently, gcd(φ(m), φ(k)) is a non-zero

even number, hence lcm(φ(m), φ(k)) < φ(mk). Equation (2.20) now shows that

there is an integer 0 < u < φ(mk) such that for all a with gcd(a, mk) = 1 we have

au ≡ 1 mod mk. This proves the lemma. ⊓⊔

It is clear that if n = 1, 2 then 1 is a primitive root modulo n. Also, if n = 4 then

there is a primitive root, namely g = 3. Now we show that there are no primitive

roots for higher powers of 2.

Lemma 2.53. If n = 2α with α > 2, then there are no primitive roots modulo n.
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Proof. We have already seen that for all odd numbers a, a2 ≡ 1 mod 8. Since

φ(8) = 4, this means that for all a with gcd(a, 8) = 1 we have

a
φ(23)

2 ≡ 1 mod 23.

Our goal is to show that for all α > 2, and for all a with gcd(a, 2α) = 1, we have

a
φ(2α)

2 ≡ 1 mod 2α. (2.21)

Note that this identity proves the lemma. Since φ(2α) = 2α(1−1/2) = 2α−1, (2.21)

is equivalent to saying

a2α−2 ≡ 1 mod 2α. (2.22)

We will prove this assertion via mathematical induction. We already checked the

validity of the claim for α = 3. Now suppose we know (2.21) for α. This means

there is an integer k such that

a2α−2 = 1 + k2α.

Next,

a2α−1 =
(

a2α−2
)2

= (1+k2α)2 = 1+2·k2α+22α = 1+k2α+1+22α ≡ 1 mod 2α+1,

proving (2.22). The lemma has been proved. ⊓⊔

Remark 2.54. Compare the above proof with the proof of Lemma 8.5.

With these lemmas in place, we just need to prove the existence of primitive roots

for n = pα, 2pα for p an odd prime number. The key input is Theorem 2.49. First

we prove the existence of primitive roots for the powers of an odd prime.

Lemma 2.55. If p is an odd prime and α ∈ N, there is a primitive root modulo pα .

Proof. By Theorem 2.49 we know the result for α = 1. Let g be a primitive root

modulo p. We will show that either g or g + p is a primitive root modulo p2. We

know that op2(g) | φ(p2) = p(p − 1). On the other hand, since gop2 (g) ≡ 1 mod p2,

we have gop2 (g) ≡ 1 mod p. Consequently, p − 1 = op(g) | op2(g). This means that

op2(g) | p(p − 1) and p − 1 | op2(g). Consequently, there are two possibilities for

op2(g): Either op2(g) = p(p − 1) = φ(p2) in which case we have already found a

primitive root modulo p2, or op2(g) = p − 1. Suppose we are in this latter situation.

Since g+ p ≡ g mod p, g+ p, too, is a primitive root modulo p, and again op2(g+ p)

is either p − 1 or p(p − 1). We will show that op2(g + p) �= p − 1. In order to see

this we compute (g + p)p−1 by using the Binomial Theorem (Theorem A.4) and we

will show that it is not congruent to 1 modulo p2. By Theorem A.4 we have

(g + p)p−1 =
p−1
∑

k=0

(

p − 1

k

)

g p−1−k pk .
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Now we examine this identity modulo p2, noting that if k ≥ 2, pk ≡ 0 mod p2. We

have

(g + p)p−1 ≡ g p−1 + (p − 1)g p−2 p ≡ 1 + (p − 1)pg p−2 mod p2.

This expression is not congruent to 1 modulo p2, since otherwise,

1 + (p − 1)pg p−2 ≡ 1 mod p2

implies p2 | (p − 1)pg p−2, or p | (p − 1)g p−2 which is impossible. Consequently,

op2(g + p) = p(p − 1) = φ(p2).

Now suppose that for α ≥ 2 we have a primitive root g modulo pα . We will

show that g is also a primitive root modulo pα+1. As before, opα+1(g) | φ(pα+1) =
pα(p − 1) and pα−1(p − 1) = φ(pα) | opα+1(g). Again, there are two possibilities

for opα+1(g): Either it is equal to φ(pα+1) in which case we are done, or it is equal

to φ(pα). To reach a contradiction, let us assume

opα+1(g) = φ(pα) = pα−1(p − 1).

In particular,

g pα−1(p−1) ≡ 1 mod pα+1. (2.23)

Let m be the largest nonnegative integer such that pm | g pα−2(p−1) − 1, so that

g pα−2(p−1) = 1 + upm (2.24)

for some integer u with gcd(u, p) = 1. Note that this is indeed a sensible definition

as α ≥ 2. Furthermore, since by Theorem 2.26, g p−1 ≡ 1 mod p, m ≥ 1. Next,

g pα−1(p−1) = (g pα−2(p−1))p = (1 + upm)p.

Applying Theorem A.4 gives

g pα−1(p−1) = 1 + p · upm +
p

∑

k=2

(

p

k

)

(upm)k = 1 + u′ pm+1

with u′ an integer satisfying (u′, p) = 1. Going back to (2.23) we obtain

1 + u′ pm+1 ≡ 1 mod pα+1.

It then follows that pm+1 ≡ 0 mod pα+1, or what is the same, m ≥ α. Equation

(2.24) now shows

g pα−2(p−1) ≡ 1 mod pα.

This is a contradiction as g was assumed to be a primitive root modulo pα , and

pα−2(p − 1) < pα−1(p − 1) = φ(pα). This contradiction shows that opα+1(g) =
φ(pα+1) and we are done. ⊓⊔

Lemma 2.56. If p is an odd prime and α ∈ N, then there is a primitive root modulo

2pα .
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Proof. Note that φ(2pα) = φ(2)φ(pα) = φ(pα). By the above lemma, there is a

primitive root g modulo pα . Theorem 2.24 shows the existence of a number h such

that

h ≡ 1 mod 2, h ≡ g mod pα.

Clearly, h is coprime to 2pα . Furthermore, since the congruence classes of the num-

bers

g j , 1 ≤ j ≤ φ(pα)

are distinct modulo pα , the congruence classes of the numbers

h j , 1 ≤ j ≤ φ(pα) = φ(2pα)

are distinct modulo 2pα . This observation proves the lemma. ⊓⊔

Combining these lemmas gives Theorem 2.51. ⊓⊔
Next we discuss the problem of finding primitive roots when they exist. It is a

consequence of Lemma 2.55 and Lemma 2.56 that once we know primitive roots

modulo odd prime numbers, we can find primitive roots for odd prime powers and

twice prime powers. The following lemma is easy to prove:

Lemma 2.57. Let p be an odd prime number. Then a number g is a primitive root

modulo p if and only if for all prime factors q of p − 1, we have

g
p−1

q �≡ 1 mod p.

Proof. Suppose g is a primitive root. Then since for each prime factor q of p − 1,

(p − 1)/q < p − 1, we have g(p−1)/q �≡ 1 mod p. For the other direction, if g is

not a primitive root, then there is a divisor d of p − 1 such that 1 < d < p − 1 and

gd ≡ 1 mod p. Let q be a prime divisor of (p − 1)/d. Then d | (p − 1)/q, which

clearly implies g(p−1)/q ≡ 1 mod p. ⊓⊔

As we will see momentarily this lemma gives a nice method to determine whether a

given integer g is a primitive root modulo a prime number p, provided that p −1 has

easily detectable prime factors. This can be a real challenge for a randomly chosen

large prime number p. See the Notes at the end of this chapter for some comments

on how this idea has been applied to cryptography.

Example 2.58. In this example we will use the lemmas proved above to determine

primitive roots for the moduli n = 17α, 2 · 17α . The proofs of Lemma 2.55 and

Lemma 2.56 show that the key step is to find a primitive root modulo 17. In order to

apply Lemma 2.57, we note 17 − 1 = 24. Since the only prime factor of 17 − 1 is 2,

and (17 − 1)/2 = 8, Lemma 2.57 says that an integer g is a primitive root modulo

17 if and only if 17 ∤ g and g8 �≡ 1 mod 17. The easiest way to search for candidates

is by testing natural numbers in order starting with 2, jumping over squares. In our

case, it is easy to check that

28 = 256 ≡ 1 mod 17,
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so 2 is not a primitive root modulo 17. Next, we check g = 3. We have

38 ≡ 16 mod 17.

Hence g = 3 is indeed a primitive root modulo 17. Next, we check to see if g = 3

is a primitive root modulo 172. By the proof of Lemma 2.55, since 316 ≡ 171 �≡
1 mod 172, g = 3 is a primitive root modulo 172, and consequently a primitive

modulo 17α for all α ∈ N. Also, since 3 ≡ 1 mod 2, the proof of Lemma 2.56

implies that g = 3 is also a primitive root for 2 · 17α for every α ∈ N.

Example 2.59. Using the method of the above example one can show that g = 2 is

a primitive root modulo 19α for every α ∈ N. Note that in this case since 19 − 1 =
2 · 32, a number g is a primitive root modulo 19 if and only if g9 �≡ 1 mod 19 and

g6 �≡ 1 mod 19. Since 2 is even, it cannot be a primitive root modulo 2 · 19α for any

α. In this case g = 2 + 19α is a primitive root modulo 2 · 19α for all α.

Exercises

2.1 Prove Lemma 2.5.

2.2 Show that the alternative definitions in Definition 2.10 are equivalent.

2.3 Use the Euclidean Algorithm to give another proof for Theorem 2.12.

2.4 Prove Proposition 2.20.

2.5 Prove Proposition 2.21.

2.6 For the following pairs of integers (a, b), find integers x, y such that gcd(a, b)

= ax + by:

a. (13, 15);

b. (398, 270);

c. (162, 65).

2.7 (�) Find the gcd of 6437 and 12675. Find integers x, y such that 6437x +
12675y = gcd(6437, 12675).

2.8 (�) Find the gcd of 2594876242943772804330 and 11446995929696298.

2.9 Write the following number as a fraction a
b

with a, b ∈ N and gcd(a, b) = 1:

1059

(

1025

1024

)5 (

1048576

1048575

)8 (

6560

6561

)3 (

15624

15626

)8 (

9801

9800

)4

.

Determine the prime factorizations of a, b without the use of a computer.

Mossaheb [34] attributes this problem to Gauss.

2.10 Determine all natural numbers n such that
∏

d|n d = n2.

2.11 Suppose for integers a, m, n, k we have am ≡ 1 mod k and an ≡ 1 mod k.

Show that agcd(m,n) ≡ alcm(m,n) ≡ 1 mod k.

2.12 Show that if a rational number a
b
, with a, b ∈ Z and gcd(a, b) = 1, satisfies

the equation
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an xn + an−1xn−1 + +̇a1x + a0 = 0,

with a0, a1, . . . , an ∈ Z, then a | a0 and b | an . Use this result to find the

rational roots of the following equations:

a. 5x3 + 8x2 + 6x − 4 = 0;

b. x5 − 7x3 − 12x2 + 6x + 36 =;

c. 6x6 − x5 − 23x4 − x3 − 2x2 + 20x − 8 = 0.

2.13 Use the previous exercise to show
√

2 + 3
√

3 is irrational.

2.14 Show that for all integers a, b, c, d satisfying ad − bc = 1 we have gcd(a +
b, c + d) = 1.

2.15 Show that for all integers n > 1, 1 + 1/2 + 1/3 + · · · + 1/n is not an integer.

2.16 If f is a non-constant polynomial with integer coefficients, f (n) is composite

for infinitely many values of n.

2.17 Show that if p, q are prime numbers larger than 3, then the remainder of

division of p2 + q2 by each of the numbers 3, 4, 6, 12, and 24 is equal to 2.

2.18 (�) Show that a number n is prime if and only if it is not divisible by any

natural numbers m with 1 ≤ m ≤ n1/2. This result is known as the Sieve of

Eratosthenes. Use this idea to list all prime numbers between 1 and 1000.

2.19 (�) Find five natural numbers k such that 22 + 37k is a prime number.

2.20 Show that for all m, n ∈ N,

gcd(m, n)

n

(

n

m

)

is an integer.

2.21 Suppose Fn = 22n + 1. Show that for all m > n, Fn | Fm − 2.

2.22 Find necessary and sufficient conditions for the solvability of the system (2.4).

Find the general solution of the system.

2.23 Solve the system of congruence equations

⎧

⎪

⎨

⎪

⎩

3x ≡ 1 mod 4,

3x ≡ 1 mod 13,

5x ≡ 11 mod 21.

2.24 Find the general integral solution of the Diophantine equation

239x − 111y = 1.

2.25 Find all pairs of integers (x, y) satisfying the equation 6x + 9y = 12.

2.26 (�) Find all x such that 85x ≡ 970 mod 64322.

2.27 (�) Find all solutions of 37x ≡ 217 mod 8600.

2.28 (�) Find all x that satisfy the following system of congruence equations:
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⎧

⎪

⎨

⎪

⎩

x ≡ 12 mod 64;
x ≡ 1 mod 173;
x ≡ 5 mod 715.

2.29 Show that 5!25! ≡ 1 mod 31.

2.30 Show that if p ≡ 3 mod 4, then

(

(
p − 1

2
)!
)2

≡ 1 mod p.

2.31 Prove the uniqueness assertion of Lemma 2.37.

2.32 Give two different proofs for the statement that for all integers n, n5/5+n3/3+
7n/15 ∈ Z. Generalize.

2.33 Find all the solutions to the congruence x2 ≡ 1 mod 264.

2.34 By examining the solutions of the equation x2 ≡ 1 mod p, show that for all

primes p, (p −1)! ≡ −1 mod p. Show that if n > 4 is not prime, (n −1)! ≡ 0

mod n.

2.35 Let n ∈ N. Compute the product

∏

1≤d≤n

d2≡1 mod n

d.

Use your formula to determine

∏

1≤d≤n

gcd(d,n)=1

d.

2.36 Find the roots of the polynomials x2 − x + 1 and x2 − x + 2 modulo 7.

2.37 (�) Find an integer x such that x2 ≡ 1879121 mod 3698963.

2.38 (�) Find the last four digits of 24000.

2.39 Show that φ(n) is even if and only if n > 2.

2.40 Determine all n such that φ(n) = 6.

2.41 Determine all n such that φ(n) = 40n/77.

2.42 Show that for every odd integer n > 1 we have φ(n) >
√

n.

2.43 Determine all n with φ(n) | n.

2.44 Give a different proof for Theorem 2.32 using the Inclusion–Exclusion Prin-

ciple.

2.45 Prove the following generalization of Theorem 2.32: If gcd(m, n) = d, then

φ(mn) = φ(m)φ(n)
d

φ(d)
.

2.46 Use Theorem 2.33 to give another proof for Theorem 2.34.

2.47 Show that for each complex number α �= 1 and for each natural number n, we

have
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n−1
∑

k=0

αk =
1 − αn

1 − α
;

Show that if |α| < 1, then

∞
∑

k=0

αk =
1

1 − α
.

2.48 Show that for each g > 4, the number (4.41)g is the square of a rational number.

Find its square root. Repeat the same problem for (148.84)g for g > 8.

2.49 For what values of g, are the numbers (0.16)g, (0.20)g, (0.28)g the consecutive

terms of a geometric sequence?

2.50 If 25/128 = (0.0302)g , find g.

2.51 Find the base 5 expansion of 2877/3125.

2.52 Find the base 9 expansion of (200.211)3.

2.53 Determine the rational number with base 7 expansion (0.130)7. Solve the same

problem for (0.1296)12.

2.54 Find all primitive roots modulo 38.

2.55 (�) Find all primes p < 1000 for which 3 is a primitive root.

2.56 (�) Find five primitive roots modulo 100003.

2.57 (�) Find five primitive roots modulo 9876541032.

2.58 If p = 4q + 1 and q = 3r + 1 are prime, show that 3 is a primitive root

modulo p.

2.59 Let p, q be distinct primes. Find the number of solutions of x p ≡ 1 mod q in

terms of p, q.

2.60 Without using a computer, prove that 217 − 1 is prime. Hint: Show that if it is

not prime, it must be divisible by one of the numbers 103, 137, 239, or 307.

2.61 Let p be an odd prime such that (p − 1)/2 is an odd prime. Prove that if a is

a positive integer with 1 < a < p − 1, then p − a2 is a primitive root modulo

p.

2.62 Show that n is a square if and only if d(n) is odd.

2.63 Show that for all n, s, t ∈ N, with s �= t , s − t | d(ns) − d(nt ).

2.64 Show that for all m, n, s ∈ N, we have s | d(ms) − d(ns).

2.65 Find necessary and sufficient conditions on integers a, b, c, d so that there are

integers x, y, z satisfying the system of Diophantine equations

{

4x + y + az = b,

x + y + cz = d.

2.66 Let p be an odd prime. Show that if we write 1 + 1/2 + · · · + 1/(p − 1) as

a fraction a/b with a, b ∈ N, then p | a. A far more interesting problem is to

show that if p ≥ 5, p2 | a.
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Notes

Historical references

The standard reference for the history of classical number theory is Dickson’s History

of the theory of numbers in three volumes. Most of the material in this chapter has

been reviewed in the first volume [15], especially Ch. III, V, and VIII. A more current

reference for the history of mathematics is [9]. As impressive as these books are, like

many other books on the history of science, they are unfortunately very Eurocentric.

The history of mathematics as told through these and other similar texts runs like

this: The Greeks invented mathematics; then as Europe was falling into the Dark

Ages, Muslims ran to the rescue; Muslims carefully guarded mathematics for a few

centuries; with the arrival of the Renaissance, the Muslims handed mathematics back

to the Europeans who gracefully accepted the gift, and who have ever since been

championing the progress of mathematics. This Eurocentricity does not stop at the

history, and in fact it permeates every aspect of the practice of mathematics. In reality

the history of mathematics is far more complicated and far more multicultural than

a simple straight line connecting Athens of the antiquity to the North America and

Europe of 21st century.

In this book I have made a conscious effort to highlight contributions by non-

Europeans to number theory. However—and this is far from an acceptable excuse—

because of my lack of expertise as well my own Eurocentric education I am not able

to do justice to the subject. Getting the history right is not just a matter of intellectual

curiosity. Those of us who work as educators in North America are acutely aware of

the fact that a good portion of our students are not of European descent. To many of

our students mathematics is a European invention, and will continue to be practiced

by Europeans and people of European descent. Nothing could be further from the

truth. Mathematics has been practiced on every continent, by all sorts of people, for

thousands of years, and there are distinguished mathematicians of every imaginable

background today doing fantastic mathematics—and this should be emphasized in

our teaching. There is, unfortunately, a shortage of modern, easily accessible texts

putting in the correct historical perspective the progress of mathematics through the

millennia. Even in cases where a serious mathematician such as van der Waerden

[55] has attempted to write a history of mathematics as inspired by the progress made

by non-Europeans, the works of these non-Europeans are described in relation to and

within the framework of modern European mathematics, or the Greek mathematics of

the antiquity, in the sense that, what of the works of non-Europeans that has not been

superseded and swallowed by some mathematical work developed by a European

mathematician is often not considered worthy of review. The same problem exists in

most works written by European or North American historians of mathematics, with

a notable exception being Plofker [39]. Writings by historians like Roshdi Rashed,

especially the second volume of Encyclopedia of the history of Arabic sciences

[40] which covers mathematics, and Joseph [28] are good alternatives to standard

Eurocentric narratives that saturate the literature.
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On a personal note, growing up in Iran, I never felt that mathematics was a Euro-

pean invention or practice—I knew of Iranian mathematicians like Omar Khayyam,

Mohammad Al-Khwarizmi, and Mohammad Karaji, and these were people I identi-

fied with. I credit Iranian education pioneers like G. H. Mossahab, M. Hashtroodi, M.

Hessabi in the 1940s and 1950s, and more recently S. Shahshahani, P. Shahriari, O.

A. Karamzadeh, Y. Tabesh, and others starting in the 1970s, for initiating the effort

to instill the notion in the minds of the Iranian youth that mathematics, along with

other sciences, was as Iranian as apple pie is American. It is because of their efforts

that Iran has enjoyed a revitalization of mathematics in the last 25 years. Culture

building takes time, and, as in the case of those Iranian pioneers, one may not live

long enough to see the fruits of one’s labor, but with patience and perseverance great

things are possible.

Euclid and his Elements

Euclid (325–265 BCE) was the person who transformed mathematics from a number

of uncoordinated and loosely proven theorems into an articulated and surely grounded

science. Some of the theorems in Euclid’s Elements were previously known by other

mathematicians: Thales (624–546 BCE) who was according to Aristotle the first

Greek philosopher, Eudoxus (410–355 BCE), Pythagoras and other Pythagoreans,

etc. A predecessor to Euclid was Hippocrates (470-410 BCE) who wrote the first

Elements around 430 BCE. Euclid was extremely rigorous in his treatment of math-

ematics. (Though as noted by David Hilbert [26], Euclid should have augmented his

postulates by adding a few more.) E. T. Bell argues that if the world had followed

Archimedes as opposed to Euclid, Calculus would have been discovered before the

birth of Christ. This is a harsh criticism of the Euclidean rigor, and of the course of

history, but it is nonetheless most likely true that the sort of rigor that Euclid brought

into mathematics slowed down progress in some sense. Archimedes was a master

problem solver who was interested in the applications of mathematics in the real

world. Euclid, on the other hand, was interested in gaining a deep understanding

of concepts via systematic study. For what it is worth, almost 2500 years later, we

still practice mathematics the way Euclid did mathematics in his magnum opus. An

interesting feature of the Elements is that the writing is extremely homogeneous.

Euclid makes no distinction between trivial facts and deep theorems, and everything

is proved with the same degree of care. Was Euclid really not aware that some of his

results are more important than others? We will never know.

The theory of numbers is treated by Euclid in books 7-10 of the Elements. At

the beginning of Book 7 Euclid lists definitions: unit, numbers, multiple, even and

odd number, prime and composite numbers, square, proportional, perfect number,

etc. These are very much in the Pythagorean style, but with some modifications. We

refer the reader to the excellent commentary in Sir Thomas L. Heath’s “The Thirteen

Books of Euclid’s Elements” [20] published in 1926. In this book Sir Heath compares

Euclid’s definitions to those given by his predecessors. In the case of prime numbers,

Euclid’s definition varies slightly from the one written by the Pythagorean Philolaus
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(480–390 BCE) who seems to have been the first person to give a definition of prime

numbers.

For all their aura of naturalness, prime numbers almost never appear in nature for

reasons of primality. The only example of such a process is the life cycles of a certain

genus of cicadas. These insects spend most of their lives underground and emerge

to daylight every 13 or 17 years. The fact that 13 and 17 are prime numbers gives

these insects a computable but small evolutionary edge over their predators. Over

millions of years the evolutionary edge of these insects has helped them not go extinct.

Beyond this, we are not aware of any cosmic or earthly processes that produce prime

numbers for reasons of primality. Even within mathematics, as practiced by human

beings, it appears that prime numbers were an invention of the Greeks, and that no one

else in the ancient world had a notion of prime numbers. Mathematicians in Babylon,

India, China, and the Americas investigated very sophisticated mathematical theories,

including those applicable to astronomy and other sciences, but as far as we can tell

none of these mathematicians had a theory of prime numbers.

For more on Euclid’s work on prime numbers, see Notes, Chapter 6.

Natural Numbers and mathematical induction

In this book we will treat natural numbers in a common sense, intuitive fashion.

We assume the set of natural numbers N consists of positive integers 1, 2, 3, . . . ,

equipped with the standard addition and multiplication operations, enjoying the

familiar properties of commutativity and associativity for addition and multiplica-

tion, and distribution laws for multiplication over addition. We also know that we

can prove statements in the set of natural numbers using mathematical induction,

accepted as an axiom. In reality, however, all of these statements are non-trivial and

require close examination. The axiomatic study of the set of natural numbers has a

long, rich history. We refer the reader to [18, Ch. 1] for an accessible introduction to

this beautiful subject.

Number-theory-based cryptography

Many modern cryptographic methods are based on the material presented in this

chapter. Here we will explain two standard techniques. For an elementary treatment

of these methods and other number theoretic cryptosystems we refer the reader to

[53].

The RSA Cryptosystem, named after Ron Rivest, Adi Shamir, and Leonard Adle-

man, is based on the notion that while multiplying numbers is easy, finding the prime

factors of a large number is difficult. More specifically, if we know the prime factors

of a natural number n, then Theorem 2.33 tells us how to compute the value of φ(n).

However, without knowing the prime factors of n, we do not have a fast algorithm to
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compute φ(n). Presumably, one can take (2.6) as the definition of φ(n). This requires

going through the list of numbers 1 to n and examining the gcd of each one with n,

which, if the number n is of the order of 10500, would be impossible.

RSA is an example of a public key cryptosystem. In such a cryptographic scheme

an individual A sets up a public key K , which is available to everyone, and keeps

a private piece of information S, which is kept secret. The idea is that anyone who

wants to communicate with A will encrypt the message using the publicly available

key K but decrypting the encrypted message requires the secret information S. In

the case of RSA, the public key is a large natural number n which is the product of

prime numbers p, q. The prime numbers p and q are kept secret..

This is how RSA works. Suppose Azadeh wants to set up a public key. She picks

large prime numbers p, q. She computes n = pq, φ(n) = (p − 1)(q − 1), and she

picks a natural number e such that that gcd(e, φ(n)) = 1. She also finds an integer d

such that ed ≡ 1 mod φ(n), i.e, ed = 1 + uφ(n) for some integer u. She will keep

p, q, d, and φ(n) secret, but publishes the pair (n, e). Now suppose Azadeh’s friend,

Behnam, wants to communicate with Azadeh. Suppose the message that Behnam

wants to send has numerical value m, obtained using ASCII or some other method

(technically speaking, Behnam will have to make sure that gcd(m, n) = 1). Behnam

downloads the pair (n, e) from Azadeh’s public profile, and computes y := me mod n,

i.e., the remainder of the division of me by n which will be a number between 0 and

n. Behnam keeps the message m secret, but sends the message y to Azadeh over

some public channel, e.g., Facebook or SMS. Azadeh receives the message y, and

deciphers it by computing

yd ≡ (me)d ≡ m1+uφ(n) ≡ (mφ(n))u · m ≡ m mod n,

after using Theorem 2.31. On the other hand, Esmat, an evil person, is listening

to the conversation happening between Azadeh and Behnam. Esmat downloads the

message y. She also knows (n, e) as these are publicly available. However, at present

there is no reasonably fast way to get from the data y, (n, e) to m without knowing

d, and knowing d requires φ(n). As noted above computing φ(n), at the time of this

writing, requires knowing the prime factors of n, which Azadeh is keeping secret.

For example, suppose Azadeh picks the prime numbers p = 101 and q = 113

(this is just a prototype; in practice the prime numbers are a few hundred digits long).

Hence n = 101 × 113 = 11413. We have φ(n) = (101 − 1)(113 − 1) = 11200.

She also picks e = 3. Note that gcd(3, 11200) = 1. Azadeh’s public key is the pair

(11413, 3). What Azadeh is not sharing with the public are the prime numbers 101

and 113. She also keeps secret the number d such that 3d ≡ 1 mod 11200. Azadeh

can easily compute, for example using SageMath, Appendix C, that d = 7467 works.

Now suppose Behnam wants to transmit a message m with numerical value 77 to

Azadeh. Behnam computes me mod n. In this case since m = 77, e = 3, and

n = 11413, he computes

773 ≡ 13 mod 11413.

So Behnam’s message, which he can communicate over a public channel, is y =
13. Anyone can read this message x , and everyone knows Azadeh’s public key
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(11413, 3). So the problem that Esmat, the evil person, needs to solve is this: Find

m such that m3 ≡ 13 mod 11413. For Azadeh, this is easy. All she needs to do is

compute

137467 ≡ 77 mod 11413,

which she can easily do using SageMath.

The ElGamal Cryptosystem, named after the Egyptian computer scientist Taher

ElGamal, is based on the difficulty of the Discrete Log problem. As mentioned earlier

RSA cryptography is based on the idea that it is difficult to go from (me mod n, e, n)

to m. The flip side of this idea is the Discrete Log problem. Let n be a natural number

for which we have a primitive root g. Let 1 < x < n be a natural number that is

coprime to n. The Discrete Log problem asks for the determination of an integer

0 < l < φ(n) such that x ≡ gl mod n.

In the ElGamal Cryptosystem, Azadeh picks a large prime p, a primitive root g

modulo p, a random number l, with 1 < l < p − 1, and computes e = gl mod n.

Azadeh’s public key is (p, g, e) which she publishes. She keeps l secret. Behnam

wants to send a message m to Azadeh. Benham picks a random integer u, 1 < u <

p − 1, and computes x := gu mod p, and y := m · eu mod p. Behnam sends the

pair (x, y) over a public channel to Azadeh. Azadeh recovers m by computing

y · x−l ≡ m · (gl)u · (gu)−l ≡ m mod p.

We refer the reader to [53], especially Ch. 6 for RSA and Ch. 7 for ElGamal.

Primitive roots and Artin’s conjecture

The notion of the order of a modulo n made an appearance in Gauss’s book [21,

articles 315-317], when he considered the decimal expansion of 1/p for a prime

number p, p �= 2, 5. In this case, the fraction 1/p is purely periodic and its period is

equal to op(10). In general, we saw in this chapter that if m, n are natural numbers

with gcd(m, n) = 1, then the base n expansion of 1/m is purely periodic with

minimal period equal to om(n). In particular the minimal period is at most equal to

φ(m). In the case where m = p is a prime number, φ(p) = p −1. The following is a

natural question: For a natural number n, are there infinitely many prime numbers p

such that the base n-expansion of 1/p has period p − 1? Note that in this case n will

have to be a primitive root modulo p. While the answer to the question is expected

to be yes, it is not known for any n, not even n = 10.

Conjecture 2.60 (Artin 1927). Fix an integer g �= −1, 0, 1 which is not a perfect

square. Then there are infinitely many primes p such that g is a primitive root

modulo p.

In fact, Artin conjectured an asymptotic formula for #{p prime | p ≤ X, op(g) =
p−1} of the form δ(g)X/ log X as X → ∞, for some constant δ(g) > 0. Artin gave a

heuristic argument to derive a formula for δ(g); however, in 1957 Derrick and Emma
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Lehmer observed that Artin’s predicted formula did not match numerical data. Artin

was then able to pinpoint the error in the original heuristic reasoning and corrected

the prediction. In 1967 Hooley [81] gave a proof of the predicted asymptotic formula

which relied on some version of Riemann’s Hypothesis, not yet proved; see Notes

to Chapter 13. See Murty’s expository article [89] for an accessible account of the

progress made toward the conjecture up until the time of its publication. For a more

up-to-date report on the conjecture and the methods and techniques used in its study,

see Moree’s survey [88].



Chapter 3

Integral solutions to the Pythagorean
Equation

In this chapter we present two different methods to find the solutions of the

Pythagorean Equation, one algebraic and one geometric. We then apply the geometric

method to find solutions of some other equations. The first class of non-Pythagorean

Equations that we will apply this method to is Pell’s equation, and the second class,

equations of degree three. As an application of our solution to the Pythagorean Equa-

tion we will prove a special case of Fermat’s Last Theorem. In the Notes, we briefly

review some classical works related to Pell’s Equation over integers; explain why

some cubic equations are called elliptic; give some references related to Fermat’s

Last Theorem; and discuss the abc Conjecture.

3.1 Solutions

Suppose (a, b, c) is a triple of integer solutions to the Pythagorean Equation. Then

by definition

a2 + b2 = c2. (3.1)

If a, b, c have a common factor λ, then

(a

λ

)2

+
(

b

λ

)2

=
( c

λ

)2

.

So without loss of generality we may assume that a, b, c have no common factors.

These are the triples we called primitive in Chapter 1. The Pythagorean triples we

consider in this chapter are all primitive. A quick computer search produces the

following list of the first few Pythagorean triples:

(3, 4, 5)

(5, 12, 13)

(8, 15, 17)

(7, 24, 25)
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(20, 21, 29)

(12, 35, 37)

(9, 40, 41)

(28, 45, 53)

...

Our goal in this section is to find all primitive solutions of Equation (3.1). Since

gcd(a, b, c) = 1, it is clear that not all a, b, c are even. We recognize several possi-

bilities.

• a, b, c odd. This is impossible, as one side will be odd and the other side even.

• a, b odd, c even. If a is odd, then a2 ≡ 1 mod 8, and b2 ≡ 1 mod 8; hence

a2 + b2 ≡ 2 mod 8. But since c is even, 4 | c2, so c2 ≡ 0, 4 mod 8. So this case

is impossible as well.

• a even, b odd, c odd.

• a odd, b even, c odd.

We will see momentarily that these last two cases are in fact possible. By symmetry

we may assume that a is even, and b odd. Write

b2 = c2 − a2 = (c − a)(c + a).

We claim that gcd(c − a, c + a) = 1. To see this, we have

gcd(c − a, c + a) = gcd(c + a, c + a − (c − a)) = gcd(c + a, 2a).

But since c + a is odd, gcd(c + a, 2a) = gcd(c + a, a) = gcd(c, a). If there is a

prime number p| gcd(c, a), then p|a2 and p|c2 so p|b2 = c2 − a2, and consequently,

p|b. This statement contradicts the assumption that gcd(a, b, c) = 1. Since the prod-

uct of the coprime numbers c + a and c − a is a square b2, by Proposition 2.21 each

of them individually is a square, i.e., there are odd coprime integers x, y such that

c + a = x2, c − a = y2.

Solving for c, and a, gives
⎧

⎪

⎨

⎪

⎩

a = x2−y2

2
,

b = xy,

c = x2+y2

2
.

It is of course true that

(

x2 − y2

2

)2

+ (xy)2 =
(

x2 − y2

2

)2

as one can easily check. For example, if (x, y) = (3, 1) we recover the well-known

triple (4, 3, 5), and if (x, y) = (5, 1), then we get (12, 5, 13). In general, instead of

writing a triple as ordered vector, we write the triple as a set. So instead of (12, 5, 13)

we write {12, 5, 13}, and our general solution will be written as
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{

x2 − y2

2
, xy,

x2 + y2

2

}

.

We summarize this discussion in the following theorem:

Theorem 3.1. Let a, b, c be the three sides of a primitive integral right triangle.

There are odd coprime integers x, y such that

{a, b, c} =
{

x2 − y2

2
, xy,

x2 + y2

2

}

.

3.2 Geometric method to find solutions

In this section we present a geometric method to find the solutions of the Pythagorean

Equation. First a piece of notation: For a point (x, y, z) ∈ R3 with z �= 0 we define

R(x, y, z) be the point (x/y, x/z) ∈ R2. If it is clear that if (x, y, z) ∈ Z3 with

z �= 0, then R(x, y, z) be a rational point, i.e., a point with coordinates that are

rational numbers in R2. Suppose (a, b, c) is a primitive solution of the Pythagorean

Equation. We have
(a

c

)2

+
(

b

c

)2

= 1.

This means that R(a, b, c) is a point with rational coordinates on the unit circle

x2 + y2 = 1. Now suppose we have a rational point (a/b, c/d), a, b, c, d ∈ Z, on

the unit circle centered at the origin, and suppose that the rational numbers a/b

and c/d are in reduced form, meaning gcd(a, b) = gcd(c, d) = 1. We wish to show

that there is a primitive solution (x, y, z) of the Pythagorean Equation such that

R(x, y, z) = (a/b, c/d). This claim is obvious if one of the coordinates a/b, c/d is

zero. So we assume that ac �= 0. After changing the signs if necessary we assume

a, b, c, d > 0. Since (a/b)2 + (c/d)2 = 1, a2d2 + c2b2 = b2d2. Since b2|c2b2 and

b2|b2d2 we conclude b2|a2d2, but since we have assume gcd(a, b) = 1, by Theorem

2.17, we have b2 | d2. This means b | d. Similarly, d | b. Consequently, b = d. As

a result every rational point in the first quadrant on the unit circle will be of the

form (a/b, c/b) with a, b, c natural numbers and gcd(a, b) = 1 and gcd(c, b) = 1.

Also, we have a2 + c2 = b2, i.e., (a, c, b) is a solution of the Pythagorean Equa-

tion. It is also easy to see that gcd(a, c) = 1. In fact, if u is a common factor of

a and c, then u2 | a2 + c2 = b2, giving u2 | b2, from which it follows u | b. This

implies u | gcd(a, b) = 1. Hence u = 1. Summarizing, for a rational point (x, y)

on the unit circle with x, y > 0, there are pairwise coprime natural numbers a, b, c

such that x = a/b, y = c/b and a2 + c2 = b2. This means R(a, c, b) = (x, y). Note

that R(−a,−c,−b) = (x, y) as well, and (a, c, b) and (−a,−b,−c) are the only

primitive Pythagorean triples whose R is (x, y). Finally if either of x or y is negative,

we can adjust the sign of a or c to get the correct sign. The map R is always 2-to-1

from primitive Pythagorean triples to the set of rational points on the unit circle.
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Fig. 3.1 Finding rational

points on the unit circle. Here

we have connected the point

(−1, 0) to the point (x0, y0)

(−1,0)

(x0,y0)

A consequence of this discussion is that in order to find Pythagorean triples it is

sufficient to determine rational points on the unit circle.

We proceed to determine the set of rational points on the unit circle. The circle

x2 + y2 = 1 in Figure 3.1 has some obvious solutions, e.g., (±1, 0) or (0,±1). Let’s

pick one of these points, say (−1, 0). The main observation is that if (x0, y0) is a

point with rational coordinates, then the slope of the line connecting this point to the

base point (−1, 0) is

m =
y0

x0 + 1

is a rational number.

Our idea is to do the opposite of this, i.e., pass a line with rational slope through

(−1, 0), look at the point of intersection of the line with the circle x2 + y2 = 1, and

hope that the resulting point is a rational point. The equation of the line with slope

m through (−1, 0) is

y = m(x + 1).

To find the point of intersection of this line with the circle we need to solve the system

of equations
{

y = m(x + 1),

x2 + y2 = 1.

Inserting the value of y from the first equation in the second equation gives

x2 + m2(x + 1)2 = 1.

Simplifying gives

(m2 + 1)x2 + 2m2x + (m2 − 1) = 0.
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Since the product of the roots of the equation is (m2 − 1)/(m2 + 1) and one of the

roots is −1, we see that the second root is

x =
1 − m2

1 + m2
.

By using the equation y = m(x + 1), we see that y = 2m/(1 + m2). This means that

the point of intersection is

Pm :=
(

1 − m2

1 + m2
,

2m

1 + m2

)

. (3.2)

Now we would like to derive a triple of integers (a, b, c) from this pair of rational

numbers. Let m = r/s with r, s coprime integers. Then we get

Pm =
(

s2 − r2

s2 + r2
,

2rs

s2 + r2

)

.

Now we find a primitive Pythagorean triple (u, v, w) such that

R(u, v, w) =
(

s2 − r2

s2 + r2
,

2rs

s2 + r2

)

.

We need to calculate

gcd(s2 − r2, s2 + r2), gcd(2rs, s2 + r2).

Lemma 3.2. For coprime integers r, s, define a function

δ(r, s) = gcd(2, s2 + r2).

Then

gcd(s2 − r2, s2 + r2) = gcd(2rs, s2 + r2) = δ(r, s).

Proof. Since gcd(r, s) = 1, we have

gcd(rs, s2 + r2) = 1.

Indeed, if p is a prime number and p | gcd(rs, s2 + r2), then either p | r or p | s.

If p | r , then since p | s2 + r2, we have p | s2, and as a result p | s. So p | r, p | s,

contradicting the coprimality assumption. As a result

gcd(2rs, s2 + r2) = gcd(2, s2 + r2).

Next,

gcd(s2 − r2, s2 + r2) = gcd(s2 + r2, s2 + r2 + (s2 − r2))

= gcd(s2 + r2, 2s2) = gcd(2, s2 + r2) = δ(r, s),

again as gcd(s2, s2 + r2) = 1.
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Note that

δ(r, s) =

{

2 if r ≡ s mod 2;
1 otherwise.

It follows from the lemma that

Pm =

(

s2−r2

δ(r,s)

s2+r2

δ(r,s)

,

2rs
δ(r,s)

s2+r2

δ(r,s)

)

,

and in this representations the coordinates of Pm are in reduced form. Consequently,

if we set

(u, v, w) =
(

s2 − r2

δ(r, s)
,

2sr

δ(r, s)
,

s2 + r2

δ(r, s)

)

,

then R(u, v, w) = Pm . If we do not care about the order, we may write {u, v, w} =
τ(r, s), where

τ(s, r) =
{

s2 − r2

δ(r, s)
,

2sr

δ(r, s)
,

s2 + r2

δ(r, s)

}

.

The trouble with this parametrization of Pythagorean triples is that it is not a

bijection with the set of coprime integers r, s. For example, if the pairs (r, s) = (1, 2)

and (1, 3) both give the famous Pythagorean triple 3, 4, 5. In fact, in general, if r, s

are both odd, we obtain

{u, v, w} =
{

s2 − r2

2
, sr,

s2 + r2

2

}

.

So the question that we now need to answer is: What happens to the cases where

either r or s is even. This has an amusing explanation.

Lemma 3.3. Let r, s be coprime integers of different parity. Then r + s and r − s

are coprime odd numbers and

τ(s, r) = τ(s + r, s − r).

Proof. An easy check shows that

(s + r)2 + (s − r)2

2
= s2 + r2;

(s + r)2 − (s − r)2

2
= 2sr;

and

(s + r)(s − r) = r2 − s2.

We have proved the following theorem:

Theorem 3.4. Let u, v, w be the three sides of a primitive integral right triangle.

There are coprime integers x, y of different parity such that

{u, v, w} = {x2 − y2, 2xy, x2 + y2}.
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For example, if x = 2, y = 1, we obtain 3, 4, 5; if x = 3, y = 2, we have 5, 12, 13;

if x = 4, y = 3, we find the triple 7, 24, 25.

Remark 3.5. It is important to compare the statement of Theorem 3.4 with Theorem

3.1.

Remark 3.6. The interesting thing about Equation (3.2) is that we do not have to

assume that m ∈ Q. In fact the same computation works over any field, e.g., R, C,

or even finite fields. In general care is needed to ensure the denominator 1 + m2 is

not zero. For fields like Q and R this is not an issue, but as soon as we work over a

field like C, then 1 + m2 can in fact be zero. We will return to this point in Chapters

8 and 14.

3.3 Geometric method to find solutions: Non-Pythagorean

examples

It might seem superfluous to use the geometric method of §3.2 to find the solutions

of the Pythagorean Equation in light of the much easier methods of §3.1. However,

the geometric methods of §3.2 have applications to situations where the elementary

methods of §3.1 give little or no information. To demonstrate this method we discuss

two examples in this section.

The first example we discuss is Pell’s Equation:

x2 − Dy2 = 1, (3.3)

where we assume D is a square-free positive integer. Typically this equation is

considered as a Diophantine equation with integral solutions where the solutions are

determined using the continued fraction expansion of the quadratic surd
√

D, cf.

[33, Ch. 7]. Here we would like to consider this equation over the rational numbers.

There are some obvious solutions, namely (+1, 0) and (−1, 0). We will use one of

these, say (−1, 0), to find the other rational solutions.

The equation of the straight line passing through (−1, 0) with slope m is

y = m(x + 1).

We find the points of intersection of this line with the curve with equation x2 − Dy2 =
1 by inserting the value of y from the equation of the straight line in the equation of

the curve. We obtain

x2 − Dm2(x + 1)2 = 1.

Expanding (x + 1)2 and collecting terms gives

(1 − Dm2)x2 − 2Dm2x − (Dm2 + 1) = 0.

Since we know that x = −1 is a solution of this equation, we find the other solution

to be
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Fig. 3.2 The graph of

x2 − Dy2 = 1. Here we

have drawn a straight line

with slope m through the

point (−1, 0)

(−1,0)

x2−Dy2 = 1

x =
1 + Dm2

1 − Dm2
.

With this at hand we find the corresponding y as

y = m

(

1 + Dm2

1 − Dm2
+ 1

)

=
2m

1 − Dm2
.

Consequently, we have proved the following theorem:

Theorem 3.7. Every solution of Pell’s Equation over the rational numbers other

than the pair (x, y) = (−1, 0) is expressible as

{

x = 1+Dm2

1−Dm2 ,

y = 2m
1−Dm2

for some m ∈ Q.

One can easily find integral solutions to the equation

X2 − DY 2 = Z2 (3.4)

by using the above rational parametrization; see Exercise 3.1. As an example, let’s

consider the case where D = 3. Then Theorem 3.7 says that the rational solutions

of the equation x2 − 3y2 = 1 are of the form

x =
1 + 3m2

1 − 3m2
, y =

2m

1 − 3m2

for m ∈ Q. If we put m = 2, then we get the pair (x, y) = (−13/11,−4/11), from

which the solution (X, Y, Z) = (−13,−4, 11) for the equation X2 − 3Y 2 = Z2 is
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obtained. If on the other hand we put m = 1/2, we obtain (x, y) = (7, 4). This pair

gives the solution (X, Y, Z) = (7, 4, 1) of X2 − 3Y 2 = Z2.

The above method works for any quadratic polynomial. Indeed, suppose f (x, y)

is a quadratic polynomial of degree two in the variables x, y with rational coefficients.

In the examples we have discussed so far, f (x, y) = x2 + y2 − 1 in the Pythagorean

case, or f (x, y) = x2 − Dy2 − 1 in the Pell case. Then the graph of f (x, y) = 0

either contains infinitely many points with rational coordinates, or none at all. The

proof of this fact is identical to our arguments for the examples we have discussed

so far.

In our next example, we consider the important case where the degree of the

polynomial f is equal to 3. The most general polynomial f (x, y) of degree 3 with

rational coefficients can be written as

a1x3 + a2 y3 + a3x2 y + a4xy2 + a5x2 + a6 y2 + a7xy + a8x + a9 y + a10.

Here we assume that the ai ’s are rational numbers and at least one of a1, a2, a3,

and a4 is non-zero. Let C be the graph of f . If we try and imitate what we did for

quadratic polynomials, we run into trouble. Indeed, suppose (a, b) is a point on the

curve C . Then the equation of the line passing through (a, b) with slope m is

y = m(x − a) + b.

If we insert this expression for y in the equation f (x, y) = 0 we obtain a degree 3

equation in x which has three roots. By construction, one of the roots of this equation

is x = a.. In general there is no reason that the resulting equation should have two

more rational solutions. We can see this in an example as follows.

Suppose, for example, that

f (x, y) = y2 + x3 + 1.

Then there is an obvious solution of (−1, 0). The line through this point with slope

m has equation

y = m(x + 1).

We then obtain the equation

m2(x + 1)2 + x3 + 1 = 0.

Expanding and simplifying give

x3 + m2x2 + 2m2x + (1 + m2) = 0.

Since this equation a priori has a root x = −1, the polynomial on the left should be

divisible by (x + 1). One easily sees that the polynomial factors as (x + 1) multiplied

by

x2 + (m2 − 1)x + (m2 + 1). (3.5)
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This quadratic equation will have rational roots if its discriminant is a rational square

t2, for some t ∈ Q. We calculate the discriminant as

Δ = (m2 − 1)2 − 4(m2 + 1) = m4 − 2m2 + 1 − 4m2 − 4 = m4 − 6m2 − 3.

So the equation we need to find rational solutions for is

t2 = m4 − 6m2 − 3

which is of higher degree than the original equation y2 + x3 + 1 = 0.

The above discussion suggests the following strategy: Instead of using one rational

point on the curve and a rational slope, use two rational points on the curve. Once

we have two points, connect the points using a straight line; look at the intersection

of the resulting line with the curve. This last point is then a new point with rational

coordinates on the curve. We demonstrate this idea with a couple of examples.

Example 3.8. Consider the curve y2 = x3 + 17. An inspection reveals the points

(−1, 4), (2, 5) with rational coordinates on the curve. The equation of the line con-

necting the points is

y =
1

3
x +

13

3
.

The intersection point of the line with the curve is the point determined by solving

the system of equations
{

y2 = x3 + 17,

y = 1
3
x + 13

3
.

To solve, we insert the value of y from the second equation in the first equation to

obtain
(

1

3
x +

13

3

)2

= x3 + 17.

Simplifying gives

x3 −
1

9
x2 −

26

9
x −

16

9
= 0.

We already know two of the roots of this equation, namely −1 and 2. Since the

product of the three roots of the equation is 16/9, we find that the third root is

x = −
8

9
.

Now we use the equation of the straight line to find y:

y =
109

27
.

It is easy to check that the point (−8/9, 109/27) is indeed on the curve. There are in

fact infinitely many pairs of rational numbers satisfying y2 = x3 + 17, but the proof

of this fact is beyond the scope of this book.
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Fig. 3.3 The cubic curve

y2 = x3 + 1 with the

colinear points (−1, 0),

(0, 1), and (2, 3)

(−1,0)

(0,1)

(2,3)

y2 = x3+1

What we did in the above example was choosing points A, B on the curve, con-

necting them, and looking at the point of the intersection of the resulting line with

the curve. Now suppose we choose the points A, B very close to each other. As the

points get close to each other, the line connecting them approaches the tangent line

to the curve at the point obtained from identifying A and B. So one way to obtain

rational points on a cubic curve is by starting from a rational point and drawing the

tangent line to the curve at that point. The other point of intersection of the tangent

line with the curve must then be a rational point. In the next example we show how

this idea is used in practice.

Example 3.9. The equation y2 = x3 + 1 in Figure 3.3 has the obvious solutions

(0, 1) and (−1, 0).

The straight line connecting the points is

y = x + 1.

The intersection of this line with the curve is the point (2, 3). Now that we have a

new point, we can draw the tangent line at the point (2, 3) to find more points. By

implicit differentiation we have

2yy′ = 3x2.

Hence the slope of the tangent line at the point (2, 3) is

m = 2.

The equation of the tangent line is y = 2x − 1. This is the dashed line in the figure.

The intersection of this line with the graph of y2 = x3 + 1 is the point (0,−1) which

is a new point, though not very interesting. In fact, by using more advanced techniques

than what is discussed in this book, one can show that the equation y2 = x3 + 1 has

only finitely many solutions in pairs of rational numbers.
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See the Notes at the end of this chapter for more on these cubic curves and the

connections to the theory of elliptic curves.

3.4 Application: X4
+ Y 4

= Z4

At some point around 1637, Pierre de Fermat famously declared in the margin of a

book that if n ∈ N is larger than 2, the Diophantine equation

Xn + Y n = Zn

will not have any solutions in integers X, Y, Z , except for those satisfying XY Z = 0.

He went on to say that he had an amazing proof of the fact, but that the margin was

too small to fit the proof. This claim is now known as Fermat’s Last Theorem even

though its proof was finally completed by Sir Andrew Wiles, then a professor at

Princeton University, in a joint work with Richard Taylor in 1994. Wiles’ work was

a crowning achievement of modern mathematics which built on works by many,

many mathematicians spanning, literally, hundreds of years. Nowadays very few

mathematicians believe that Fermat actually had a proof for the general case, neither

does anyone hope that one might ever be able to give a reasonably short, elementary

proof of the theorem accessible to Fermat. It is, however, possible to prove many

special cases of the theorem using elementary methods. Here we present a proof

of the special case for n = 4 discovered by Fermat. The proof we give uses our

knowledge of the solutions of the Pythagorean Equation.

Theorem 3.10 (Fermat). If the integers X, Y, Z satisfy X4 + Y 4 = Z2, then

XY = 0.

Proof. Suppose our claim is wrong, i.e., there are solutions (X, Y, Z) with X > 0,

Y > 0, and Z > 0. Property 2.2 allows us to choose among these solutions the triple

(x, y, z) with the smallest possible z. Clearly then gcd(x, y, z) = 1. By Theorem 3.4

there are coprime integers m, n such that

⎧

⎪

⎨

⎪

⎩

x2 = 2mn,

y2 = m2 − n2,

z = m2 + n2.

The second equation in the list can be rewritten as n2 + y2 = m2. Again, Theorem

3.4 tells us that there are coprime integers u, v of different parity such that

⎧

⎪

⎨

⎪

⎩

n = 2uv,

y = u2 − v2,

m = u2 + v2.
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Next, we have

x2 = 2mn = 4uv(u2 + v2).

Note that since u, v are coprime and of different parity, the integers u, v, and u2 + v2

are pairwise coprime; since their product is a square, each of them individually is a

square, i.e., there are integers r , s, and t such that

⎧

⎪

⎨

⎪

⎩

u = r2,

v = s2,

u2 + v2 = t2.

Combining these three equations gives

r4 + s4 = t2.

By construction r > 0, s > 0, t > 0. We now observe

0 < t ≤ t2 = u2 + v2 = m < z.

Hence we have found a solution (r, s, t) of the equation X4 + Y 4 = Z2 with 0 < t <

z. This contradicts our assumption that (x, y, z) was the solution with the smallest

possible z. ⊓⊔

The theorem has the following immediate corollary:

Corollary 3.11. If the integers X, Y, Z satisfy

X4 + Y 4 = Z4, (3.6)

then XY = 0.

This is how the proof of Theorem 3.10 works: Suppose we have some integral

solution (X, Y, Z) of the equation x4 + y4 = z2 with XY Z �= 0. Since z appears

in the equation with even exponent, we conclude that (X, Y, |Z |) will satisfy the

equation as well. This means that the equation will then have solutions (X, Y, Z)

with Z ∈ N. Now let S be the set of all such Z ’s. Since S is assumed to be non-

empty, Property 2.2 shows that S must have a smallest element Z0. The main piece

of the proof of the theorem consists of showing that there is another number Z1 ∈ S

such that Z1 < Z0, and this is a contradiction as we had assumed that Z0 was the

smallest element of S.

The method used in the proof of Theorem 3.10 is called infinite descent. The

method of infinite descent relies on the Well-ordering Principle, Property 2.2. As

we saw in Theorem 2.3, the Well-ordering Principle is nothing but mathematical

induction. Infinite descent was of the most powerful methods in Fermat’s arsenal of

tools and tricks. We will see some more applications of this method in the exercises.

We will also use this method in the proof of Theorem 4.4.
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Exercises

3.1 For an integer D, find the integral solutions of Pell’s Equation (3.4).

3.2 Find the rational solutions to x2 − y2 = 1 by writing x − y = m/n and x +
y = n/m.

3.3 Find every integral solution of the equation

a2 + b2 + c2 = d2.

3.4 Prove that the only integral solution to the equation x2 + y2 + z2 = 2xyz is

x = y = z = 0.

3.5 Find all the rational solutions of x2 + y2 = z2 + t2.

3.6 Show that for all natural numbers n, the equation x2 − y2 = n3 is solvable in

integers x, y. Determine the number of solutions if n is odd.

3.7 Show that the equation

x2 + (x + 1)2 + (x + 2)2 + (x + 3)2 + (x + 4)2 = y2

has no solutions in integers x, y ∈ Z.

3.8 Find all the solutions of the equation

3(x2 + y2) + 2xy = 664

in integers x, y.

3.9 Show that for every t ∈ Z the triple

(x, y, z) = (9t4, 1 − 9t3, 3t − 9t4)

satisfies

x3 + y3 + z3 = 1.

Also verify that for each t ∈ Z

(x, y, z) = (1 + 6t3, 1 − 6t3,−6t3)

is a solution of the equation x3 + y3 + z3 = 2. Show that the equation x3 +
y3 + z3 = 4 has no solutions in Z. It is in general not known how to solve

equations of the form x3 + y3 + z3 = n with x, y, z ∈ Z.

3.10 Find all integral right triangles whose hypotenuse is a square.

3.11 Find all right triangles one of whose legs is a square.

3.12 Find all primitive right triangles with square perimeter.

3.13 Show that for every n ∈ N, there are at least n distinct primitive right triangles

which share a leg.

3.14 Show that for every n ∈ N, there are at least n distinct primitive right triangles

which share their hypotenuse.

3.15 Find all integral right triangles whose side lengths form an arithmetic progres-

sion.
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3.16 Show that for every n there are n points in the plane, not all of which are on

a straight line, such that the distance between every two of them is an integer.

How about infinitely many points?

3.17 Show that for every Pythagorean triple (u, v, w) we have

(uv)4 + (vw)4 + (wu)4 = (w4 − u2v2)2.

Conclude that the equation

x4 + y4 + z4 = t2

has infinitely many solutions in integers x, y, z, t such that gcd(x, y, z) = 1.

3.18 Solve the system of Diophantine equations

{

x2 + t = u2,

x2 − t = v2.

3.19 Verify that the points (1, 0) and (0, 2) satisfy the equation

y2 = x3 − 5x + 4.

Use the geometric method of this chapter to find more solutions.

3.20 Verify that the point (−3, 9) satisfies the equation y2 = x3 − 36x . Use this

point to produce more solutions.

3.21 Use infinite descent to show that there is no rational number γ such that γ 2 = 2.

3.22 Show that there are no non-zero integral solutions to the following equations:

a. 2x4 − 2y4 = z2;

b. x4 + 2y4 = z2;

c. x4 − y4 = 2z2;

d. 8x4 − y4 = z2.

3.23 Show that the only solutions to x4 + y4 = 2z2 in integers are z = ±x2 and

|y| = |x |.
3.24 (�) Find the number of solutions (x, y, z) in integers of the equation x2 −

5y2 = z2 with |x |, |y|, |z| < 1000.

3.25 (�) Find 25 pairs of integers (x, y) such that x2 − 2y2 = 1. You might want

to use Equation (3.7) of the Notes.

3.26 (�) Find ten pairs of rational numbers (x, y) such that y2 = x3 + 3.

Notes

Pell’s Equation

Traditionally, Pell’s Equation is Equation (3.3) with the extra assumption that x, y

are integers. The equation
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x2 − Dy2 = −1,

too, is called Pell’s Equation. Calling any of these equations Pell’s Equation is a

famous mischaracterization by Euler. Historically these equations were of interest to

mathematicians for hundreds of years before Euler and his contemporaries; see, for

example, [27, Ch. 2]. This last reference states that in 628 the great Indian mathe-

matician Brahmagupta (598–670 CE) discovered the identity

(a2 − Db2)(p2 − Dq2) = (ap + Dbq)2 − D(aq + bp)2.

An immediate consequence of this fact is the remarkable statement that if Pell’s

Equation x2 − Dy2 = ±1 has a non-trivial integral solution, i.e., one where y �= 0,

it will have infinitely many integral solutions. In fact, let (x1, y1) be the solution of

the equation

x2 − Dy2 = ±1,

with x1, y1 > 0, and x1 the smallest possible. We call (x1, y1) the fundamental solu-

tion. Then, there are two possibilities:

1. If x2
1 − Dy2

1 = +1, then the equation x2 − Dy2 = −1 has no solutions. Fur-

thermore, every solution of the equation x2 − Dy2 = +1 is of the form (±xN ,±yN )

with

xN +
√

DyN = (x1 +
√

Dy1)
N (3.7)

for some N ∈ Z.

2. If x2
1 − Dy2

1 = −1, then the equation x2 − Dy2 = −1 has solutions

(±xN ,±yN ) determined by Equation (3.7) with N ∈ Z odd. The solutions of

x2 − Dy2 = +1 are the pairs (±xN ,±yN ) with N ∈ Z even.

For example when D = 2, the fundamental solution to x2 − 2y2 = ±1 is (1, 1)

which satisfies 12 − 2 · 12 = −1. If N = 2, we compute

(1 +
√

2)2 = 3 + 2
√

2,

and it is clear that (3, 2) satisfies 32 − 2.22 = +1. If N = 3,

(1 +
√

2)3 = 7 + 5
√

2,

and 72 − 2 · 52 = −1.

Because of these observations, finding the solutions of Pell’s Equation reduces

to the search for the fundamental solution. Note that even though the fundamental

solution (x1, y1) is the smallest solution of the equation, it does not have to be small in

any reasonable sense. For example, the smallest solution of x2 − 61y2 = 1 is (x, y) =
(1766319049, 226153980). The most effective way to write down the fundamental

solution is via continued fractions. This method was originally discovered by the

Indian mathematicians Jayadeva (c. 950–∼ 1000 CE) and Bhaskara (c. 1114 –1185

CE) who completed Brahmagupta’s method, though they gave no formal proof of

this. The formal proof was provided by Lagrange in the 18th century. For a complete

history of this subject we refer the reader to Weil’s book [57]. For details of this

method, see [27, Ch. 3] or [33, Ch. 7], especially §7.6.3.
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Fig. 3.4 Ellipse with

equation x2

a2 + y2

b2 = 1

b

a

y

x

Elliptic curves

The cubic curves considered in §3.3 are called elliptic curves. These are some of

the most important objects in all of mathematics, and they have been the subject of

intense research for a few hundred years. The genesis of the adjective in the name

of these curves goes back to 17th and 18th centuries. Let us briefly explain the

connection; see [92] for details and references.

Consider the ellipse with the equation

x2

a2
+

y2

b2
= 1,

with a > b. It is an easy integration exercise to show that the area of the ellipse is

equal to πab. Now suppose we want to compute the perimeter of the ellipse.

A parametrization for the ellipse is given by

{

x = a sin t

y = b cos t
0 ≤ t ≤ 2π.

By the arc length formula, itself an application of the Pythagorean Theorem, the

perimeter ℓ of the ellipse is equal to

ℓ =
∫ 2π

0

√

(

dx

dt

)2

+
(

dy

dt

)2

dt

= 4

∫ π/2

0

√

a2 cos2 t + b2 sin2 t dt

= 4a

∫ π/2

0

√

1 − k2 sin2 t dt,

with k2 = 1 − b2/a2. A change of variables with u = sin t gives
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ℓ = 4a

∫ 1

0

√
1 − k2u2

√
1 − u2

du. (3.8)

This is a special value of an elliptic integral of second kind. In general, elliptic

integrals of the second kind are defined as follows: For 0 ≤ w ≤ 1 we define

E(w) =
∫ w

0

√
1 − k2u2

√
1 − u2

du.

Elliptic integrals are in general not expressible in terms of elementary functions.

Because of their many applications in mathematical physics these types of integrals

attracted a lot of attention starting in the 18th century. It was Abel in the 19th century

who realized that the correct object of study is the inverse of the function E . The

motivation for this point of view is the sin−1 integral: We know

sin−1 w =
∫ w

0

du
√

1 − u2
,

but the more natural function to work with is the inverse function of sin−1, the

ubiquitous sine. Going back to Equation (3.8), we make one more change of variable

z = 1 − k2u2 to obtain

ℓ = 2a

∫ 1

λ

z
√

z(1 − z)(z − λ)
dz,

with λ = 1 − k2. Upon setting z = q + 1+λ
3

the integral transforms to

ℓ = 2a

∫ 2−λ
3

2λ−1
3

q + 1+λ
3

√

−q3 + 1
3
(λ2 + λ − 1)q + 1

27
(2λ3 + 3λ2 − 3λ − 2)

dq.

Finally (!), set q = − 3
√

4v to get

ℓ = 2
3
√

4a

∫ − 2λ−1

3
4√

3

− 2−λ

3
3√

4

− 3
√

4v + 1+λ
3

√

4v3 −
3
√

4
3

(λ2 + λ − 1)v + 1
27

(2λ3 + 3λ2 − 3λ − 2)

dv.

Let

g2 =
3
√

4

3
(λ2 + λ − 1),

and

g3 = −
1

27
(2λ3 + 3λ2 − 3λ − 2).

Karl Weierstrass defined a function ℘(u) with the property that

u =
∫ ∞

℘(u)

dv
√

4z3 − g2z − g3

.
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So clearly ℓ is related to the function ℘. A remarkable property of the ℘-function is

that it satisfies the functional equation

℘ ′(z)2 = 4℘(z)3 − g2℘(z) − g3,

i.e., the point (℘ (z), ℘ ′(z)) lies on the curve

y2 = 4x3 − g2x − g3. (3.9)

In fact, the points (℘ (z), ℘ ′(z)) give a full parametrization for the points with com-

plex coordinates on the curve. Furthermore,

℘(u + v) = −℘(u) − ℘(v) +
1

4

(

℘ ′(u) − ℘ ′(v)

℘ (u) − ℘(v)

)2

,

and

℘(−u) = ℘(u), ℘ ′(−u) = −℘ ′(u).

These formulae have an interesting interpretation for the points on the curve. We

define a group law ⊕ on the set of points of the curve as follows: For a point A on the

curve, define −A to be the reflection of A with respect to the x-axis; for three points

A, B, C , we say A ⊕ B = C if A, B, and −C are colinear; and O , the identity point,

is the point at infinity in the direction of the y axis, i.e. A ⊕ (−A) for any point A.

The work we did in §3.3 shows that if g2, g3 ∈ Q, then the ⊕ of any two points

with coordinates in Q will be again a point with coordinates in Q. Clearly, also, for

a point A with rational coordinates, −A will have rational coordinates. This means

that the collection of points on the curve with rational coordinates forms a group. It is

a truly surprising fact that, by a theorem of Mordell, this group is finitely generated.

We refer the reader to [48, Ch. 3] or [47, Ch. VIII] for details.

Fermat’s Last Theorem

Fermat’s Last Theorem is an esoteric statement with no applications as such, but

despite its obscurity it has given rise to an enormous amount of mathematics. Edwards

[19] presents algebraic number theory as it was originally motivated by false proofs

of Fermat’s Last Theorem. “The Proof”, a NOVA documentary [114] on Wiles’

work, is an excellent account of the last steps toward the proof. Charles Mozzochi’s

endearing photo essay “The Fermat Diary” [36] is a photo album of all those whose

works contributed to the proof of the theorem in the last fifty years. Finally, even

though it is written for experts, Sir Andrew Wiles’ introduction to his masterful paper

in the Annals of Mathematics [110] is a delight to read.
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The abc Conjecture

The abc Conjecture is an easy to state conjecture with many surprising consequences

in number theory. The conjecture was formulated by D. W. Masser and J. Oesterlé

in the 80’s. This is the statement:

Conjecture 3.12 (The abc Conjecture). If ε > 0, then the number of triples (a, b, c)

of coprime natural numbers such that c = a + b and

c >

⎛

⎝

∏

p|abc

p

⎞

⎠

1+ε

is finite.

The conjecture could also be formulated as follows: For every ε > 0, there is a con-

stant κε > 0 such that for every triple (a, b, c) of coprime natural numbers satisfying

c = a + b we have

c ≤ κε

⎛

⎝

∏

p|abc

p

⎞

⎠

1+ε

.

To see a quick application, let us apply the abc Conjecture to Fermat’s Last

Theorem. Suppose we have three coprime natural numbers x, y, z such that xn +
yn = zn . If ε > 0 is given, then applying the abc Conjecture with a = xn , b = yn ,

and c = zn shows that with the exception of finitely many choices of x, y, z we have

zn ≤

⎛

⎝

∏

p|xn yn zn

p

⎞

⎠

1+ε

Next, p | xn ynzn if and only if p | xyz. So we have

∏

p|xn yn zn

p =
∏

p|xyz

p.

Now we observe that if n is a natural number,
∏

p|n p ≤ n. Using this observation

we have
∏

p|xyz

p ≤ xyz < z3.

In the last step we have used the fact that x < z and y < z. Putting everything together,

we conclude that except for finitely many choices of x, y, z we have

zn < (z3)1+ε = z3(1+ε).

This implies that n < 3(1 + ε). Since the choice of ε is arbitrary, this means n ≤ 3.

What we have proved is the following:
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Corollary 3.13 (Assuming abc Conjecture). For each n > 3, Fermat’s equation

xn + yn = zn has at most finitely many solutions in coprime natural numbers x, y, z.

The statement of the abc Conjecture is ineffective. This means that for a fixed ε > 0

the conjecture does not provide any estimate for the number or the size of triples

(a, b, c) satisfying the conditions of the conjecture. There are several explicit versions

of the abc Conjecture in literature. Here we state one of these explicit conjectures

which is due to Alan Baker [63].

To state Baker’s abc Conjecture we need some notation. For a natural number n,

we set rad (n) to be the product of the prime divisors of n, i.e.,

rad (n) =
∏

p|n

p.

For example, rad (1) = 1, rad (12) = 2 × 3 = 6 and rad (25) = 5. We also letω(n) =
∑

p|n 1, i.e., the number of prime divisors of n. With this definition we have ω(1) = 0,

ω(12) = 2, ω(25) = 1. Using this notation, the original abc Conjecture asserts that

for ε > 0, there is κε > 0 such that for a triple (a, b, c) of coprime natural numbers,

we have

c < κε(rad (abc))1+ε.

Conjecture 3.14 (Baker’s abc Conjecture). Let (a, b, c) be a triple of coprime natural

numbers such that c = a + b. Let N = rad (abc) and r = ω(N ). Then

c <
6

5
N

(log N )r

r !
.

We leave it to the reader to verify that Baker’s abc Conjecture in fact implies the abc

Conjecture. The papers by Granville and Tucker [77] and Waldschmidt [107] outline

various applications of the abc Conjecture. In April of 2012, Shinichi Mochizuki of

Kyoto University announced a proof of the abc Conjecture occupying hundreds of

pages. At the time of this writing it is still not known if Mochizuki’s proof is correct,

and for that reason the abc Conjecture is still considered open.



Chapter 4

What integers are areas of right
triangles?

In this chapter we study the set of integers that are the area of a right triangle with

integer sides. We define a congruent number to be a natural number which is the

area of a right triangle with rational sides. After verifying some easy properties

of congruent numbers, we prove a theorem of Fermat (Theorem 4.4) that asserts

no square is a congruent number. Later in the chapter, we explain the connection

between congruent numbers and cubic equations. In the Notes, we review the history

of congruent numbers and state a celebrated theorem of Tunnell.

4.1 Congruent numbers

If a, b, c are the three sides of an integral right triangle, with c the hypotenuse, since

at least one of a, b is even then the area ab/2, is a natural number.

Question 4.1. Is there a criterion to decide whether a natural number n is the area

of some integral right triangle?

It will become apparent very quickly that this is a difficult problem. In fact at

the time of this writing, there is still no complete characterization of the set of areas

of integral right triangles. It is, however, possible to obtain some information using

elementary methods. We start with a definition.

Definition 4.2 (Congruent number). A natural number which is the area of a right

triangle with rational sides is called a congruent number. We denote the set of all

congruent numbers by S .

Let’s take a moment and clarify the connection between Question 4.1 and Def-

inition 4.2. It is clear that if we have integral right triangles T and T ′ with side

lengths a, b, c and λa, λb, λc, respectively, with λ ∈ N, then the area of T ′ is λ2

times the area of T . This means if n is the area of some integral right triangle, then

if λ ∈ N, λ2n ∈ S . This suggests that one should not be too concerned with the
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square factors that show up in areas of integral right triangles. There is a bit of trouble

here: Suppose we have a natural number n which is the area of some integral right

triangle with side lengths a, b, c, and suppose n has a square factor u2, u ∈ N, so

that n = u2 ·m with m ∈ N. As tempted as we might be to scale down the triangle by

a factor of u to get an integral triangle with side lengths a/u, b/u, c/u, sometimes

these latter quotients are not integers. For example, the right triangle with side lengths

(8, 15, 17) has area 60 = 22 · 15, but the triangle with half the size, with area 15, has

side lengths (4, 15/2, 17/2) which are rational, and not integral.

We define a function sqf , the square-free part of n, by defining its value for a

natural number n to be the smallest natural number m such that n = m · k2 for some

natural number k. For example, sqf (6) = 6, sqf (12) = 3, and sqf (9) = 1. The

following lemma is easy to prove.

Lemma 4.3. For n ∈ N, n ∈ S if and only if sqf (n) ∈ S .

The lemma shows that in order to determine the elements of the set S we just need

to determine its square free elements. An important point to note is that a square-free

element of S is not necessarily the area of a right triangle with integral sides. For

example, the right triangle with sides (8, 15, 17) has area 60, so 60 ∈ S . We have

sqf (60) = 15, so 15 ∈ S . However, as we see in Exercise 4.7, there are no integral

right triangles with area 15.

We saw in Theorem 3.4 that if a, b, c are the three sides of a primitive right

triangle, with c the hypotenuse, then there are co-prime integers x, y of different

parity such that

{a, b, c} = {x2 − y2, 2xy, x2 + y2}.

The area S of this triangle is then equal to

S =
1

2
ab = xy(x2 − y2).

For this reason, one way to produce congruent numbers is to define a function

f (x, y) = sqf (xy(x2 − y2))

with domain being the set of pairs of integers (x, y), gcd(x, y) = 1, x > y, and x, y

of different parity. Then a natural number is a congruent number if its square free

part is f (x, y) for some (x, y) as above. For example, the values of f (x, 1) for x

larger than 1 and even are as follows: 6, 15, 210, 14, 110, . . . .

It is very hard to know which numbers appear as values of f . In fact, even when

we know a number is a congruent number, it is not clear how one should go about

finding the pair (x, y) such that f (x, y) is equal to that number. For example, as

noted in [70], 53 is a congruent number, but the first time it appears as f (x, y) is

when

x = 1873180325, y = 1158313156.
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In fact,

xy(x2 − y2) = 53 × 2978556542849787902.

4.2 Small numbers

In general it is fairly difficult to determine with bare hands if a natural number is

congruent. We will see in a moment that 1 is not congruent. Lemma 4.3 then shows

that no perfect square is congruent. We will see in Exercise 4.9 that 2 and 3 are not

congruent. The smallest congruent number is 5: 5 is the area of the right triangle

with rational sides 20/3, 3/2, 41/6. We already saw that 6 is a congruent number as

it is the area of the right triangle with side lengths 3, 4, 5. As already stated at this

point despite all the progress made in the last few hundred years there are still many

basic questions about congruent number which we do not know how to answer; see,

however, the Notes to this chapter where we state a theorem of Tunnell and explain

some recent progress.

The following theorem goes back to Fermat. The proof of this theorem, like the

proof of Theorem 3.10, uses infinite descent.

Theorem 4.4 (Fermat). 1 /∈ S.

Proof. By Lemma 4.3 we need to show that there are no right triangles with rational

sides whose area is the square of a natural number. Suppose we have a right triangle

with rational sides a, b, c, with a, b the legs and c the hypotenuse, and suppose that

the area ab/2 is a perfect square t2. Let λ ∈ N be the common denominator between

a, b, c. If we scale the triangle by λ, we obtain a new triangle with integral sides

aλ, bλ, cλ, and area λ2t2 which is still a perfect square. So we may assume, without

loss of generality, that a, b, c ∈ N. If gcd(a, b) = δ, then we write a = a′δ, b = b′δ

with (a′, b′) = 1. Clearly, δ | c and we can write c = c′δ. Then t2 = ab/2 =

a′b′δ2/2. This implies that a′b′/2 = t ′2 for some integer t ′. Consequently, we have a

right triangle with side lengths a′, b′, c′ such that gcd(a′, b′, c′) = 1 and whose area

is a perfect square. So, we may without loss of generality assume that our original

numbers a, b, c are coprime. We have

{

c2 = a2 + b2,

ab = 2t2.

Observe that one of the a, b is even, so we may assume that a = 2k is even. So we

have

kb = t2.

Since gcd(a, b) = 1, we have gcd(k, b) = 1. Since the product of k and b is a perfect

square, by Proposition 2.21 each of k, b individually is a perfect square, i.e., k = m2

and b = n2, for some natural numbers m, n. Going back to a, b, we have a = 2m2,

b = n2. Now the Pythagorean Equation becomes
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4m4 + n4 = c2. (4.1)

This equation resembles Equation (3.6) which was studied in the proof of Theorem

3.10, and, in fact we use the method of infinite descent that was used in the proof of

Theorem 3.10 to show every solution to Equation (4.1) satisfies mn = 0.

As in the proof of Theorem 3.10, suppose we have a solution of (4.1) such that c

is the smallest possible. We use Theorem 3.4 to write

⎧

⎪

⎨

⎪

⎩

2m2 = 2uv,

n2 = u2 − v2,

c = u2 + v2,

for coprime integers u, v with different parities. Since m2 = uv and gcd(u, v) = 1,

Proposition 2.21 implies that u = r2, v = s2 for natural numbers r, s. If on the other

hand we write the middle equation as a Pythagorean Equation n2 + v2 = u2, we see

that u is odd and v is even, and also that there are coprime integers x, y of different

parity such that
⎧

⎪

⎨

⎪

⎩

n = x2 − y2,

v = 2xy,

u = x2 + y2.

Suppose x is even, x = 2α. Then we write the middle equation as s2 = 4αy. Since s

is even, we write αy = (s/2)2. Again, we conclude that α = β2, y = γ 2 for integers

β, γ . With these substitutions, the equation u = x2 + y2 becomes

4β4 + γ 4 = r2,

i.e., the numbers β, γ, r are another set of solutions of Equation (4.1). It is clear that

r < c, and this is a contradiction. ⊓⊔

4.3 Connection to cubic equations

The problem of determining congruent numbers is intimately related to the study of

rational solutions to the cubic equations considered in §3.3.

Theorem 4.5. Let n ∈ N be fixed. There is a one-to-one correspondence between

the following sets:

V1 = {(a, b, c) ∈ Q3 | a2 + b2 = c2, ab/2 = n}

and

V2 = {(x, y) ∈ Q2 | y2 = x3 − n2x, xy �= 0}.
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The correspondence is given by

f1 : V1 → V2,

(a, b, c) �→

(

nb

c − a
,

2n2

c − a

)

,

and

f2 : V2 → V1,

(x, y) �→

(

x2 − n2

y
,

2nx

y
,

x2 + n2

y

)

.

The proof of this theorem is straightforward, and not too tedious, Exercise 4.10.

Tunnell in the introduction of [105] attributes this construction to Don Zagier. The

wonderful paper [70] has a fun appendix where it is explained how one might have

found the above correspondence. One important point to note is that the correspon-

dence described in the theorem is valid over every field, not just Q. Furthermore,

it gives a bijection between pairs of positive rational numbers (x, y), and positive

rational numbers a, b, c described in the theorem, see Exercise 4.11.

The equation y2 = x3 − n2x has very few solutions with xy = 0. In fact, by the

easy Exercise 4.12, the only solutions of y2 = x3 − n2x with xy = 0 are (0, 0) and

(±n, 0). We call these solutions the trivial solutions. Hence we have the following

corollary:

Corollary 4.6 (Stephens [97]). A natural number n is a congruent number if and

only if the equation y2 = x3 − n2x has some non-trivial solution.

We now consider an explicit example. The paper [70] contains many numerical

examples of this nature.

Example 4.7. We start with the Pythagorean triple (5, 12, 13). The area of the trian-

gle with these side lengths is 5 × 12/2 = 30. In this case, Theorem 4.5 says that the

pair

(x, y) =

(

30 × 12

13 − 5
,

2 × 302

13 − 5

)

= (45, 225)

is a solution of the equation y2 = x3 − 302x . Now we proceed as in Example 3.9.

Implicit differentiation gives

y′ =
3x2 − 302

2y
,

and consequently the slope of the tangent line at the point (45, 225) is

m =
23

2
.

A computation shows that the equation of the tangent line is
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y =
23

2
x −

585

2
.

The points of intersection of this line with the curve y2 = x3 − 302x must satisfy

the system
{

y2 = x3 − 302x,

y = 23
2

x − 585
2

.

Inserting y from the second equation into the first equation gives

(

23

2
x −

585

2

)2

= x3 − 302x,

and this implies

x3 −

(

23

2

)2

x2 + Ax + B = 0

with numbers A, B the exact value of which is of no significant importance. Since

we obtained this equation using a tangent line, two of the solutions are x = 45. The

third solution must then satisfy

45 + 45 + x =

(

23

2

)2

.

This gives x = 169/4, and we obtain the point

(x, y) =

(

169

4
,

1547

8

)

on the curve y2 = x3 − 302x . Now we apply the bijection f2 from Theorem 4.5 to

this pair to obtain a right triangle with rational sides whose area is 30. Explicitly, we

have

(a, b, c) =

(

( 169
4

)2 − 302

1547
8

,
2 × 30 × 169

4

1547
8

,
( 169

4
)2 + 302

1547
8

)

=

(

119

26
,

1560

119
,

42961

3094

)

.

A quick computation shows that this triple in fact satisfies the Pythagorean Equation,

and that
1

2
×

119

26
×

1560

119
= 30.

We have obtained a new triangle with area 30.
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Fig. 4.1 The diagram for

Problem 4.6
A

B C D

Exercises

4.1 Determine all right triangles with integral sides such that the perimeter and the

area are equal.

4.2 Show that two right triangles with equal hypotenuse and area are congruent.

4.3 Show that for every n ∈ N, there are n distinct integral right triangles with the

same area.

4.4 A Heronian triangle is a triangle with rational sides whose area is a rational

number. Show that triangles with side lengths (13, 14, 15) and (65, 119, 180)

are Heronian.

4.5 Show that there are infinitely many isosceles Heronian triangles.

4.6 Let ABC and AC D be right triangles with rational sides which share a side AC

as in Figure 4.1. Show that the triangle AB D is Heronian. Conversely, suppose

AB D is a Heronian triangle with ∠B AD the largest angle of the triangle. Draw

the altitude AC and show that the triangles ABC and AC D are right triangles

with rational sides.

4.7 Show 15 /∈ S .

4.8 Show that a square-free natural number n is a congruent number if and only if

there is a rational number x such that x2 − n and x2 + n are squares of rational

numbers.

4.9 Show that 2 and 3 are not congruent numbers.

4.10 Prove Theorem 4.5 by direct computation.

4.11 Show that in Theorem 4.5, for n ∈ N, x, y are positive rational numbers, if and

only if a, b, c are positive rational numbers.

4.12 Show that the only solutions of y2 = x3 − n2x with xy = 0 are (0, 0) and

(±n, 0).

4.13 Find three rational right triangles with area 6.

4.14 (�) Find fifty congruent numbers.

4.15 (�) Find ten rational right triangles with area 30.

4.16 (�) Use Tunnell’s Theorem 4.8 from the Notes to find all congruent numbers

less than 100.
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Notes

The history of congruent numbers

Like many other concepts in elementary number theory, the standard reference for

the history of congruent numbers is Dickson’s classic book [16], especially Chapter

XVI. The definition that Dickson uses is different from ours. He defines a congruence

number to be a natural number n if there is a rational number x such that x2 − n

and x2 + n are squares of rational numbers; that this definition is equivalent to our

definition is Exercise 4.8. Let us mention here that if S is the area of the right triangle

with sides a, b, c, with c the hypotenuse, then

c2 ± 4S = c2 ± 2ab = a2 + b2 ± 2ab = (a ± b)2.

This means, we have a three term arithmetic progression

( c

2

)2

− S,

( c

2

)2

,

( c

2

)2

+ S

consisting of rational squares. This is perhaps the reason for the name congruent.

Dickson mentions that in tenth century an Iranian mathematician and this author’s

fellow townsman Mohammad Ben Hossein Karaji (953–1029) stated that the prob-

lem of determining congruent numbers was the “principal object of the theory of

rational right triangles.” Dickson [16, Ch. XVI] is a wonderful review of work by

various mathematicians on the problem of characterizing congruent numbers over

the millennium up to its publication. For a modern treatment of this subject we refer

the reader to [30, Ch. 1].

Tunnell’s theorem

The theory of rational points on cubic curves, the theory of elliptic curves, is a rich

active area of research with connections to many parts of modern mathematics [47].

In the last three decades many results about congruent numbers have been obtained

that use methods and techniques involving elliptic curves. It appears that Stephens’s

very short paper [97] was the first paper that made the connection to elliptic curves

explicit. Tunnell’s paper [105] pushed the theory far. Among other results, Tunnell

proved the following surprising theorem:

Theorem 4.8 (Tunnell). Define a formal power series in the variable q by

g = q

∞
∏

n=1

(1 − q8n)(1 − q16n),

and for each t ∈ N set θt =
∑

n∈Z
q tn2

. Define integers a(n) and b(n) via the

identities
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gθ2 =

∞
∑

n=1

a(n)qn,

and

gθ4 =

∞
∑

n=1

b(n)qn .

Then, we have

• If a(n) �= 0, then n is not a congruent number;

• If b(n) �= 0, then 2n is not a congruent number.

Conjecturally, both statements in the theorem should be if and only if. The coefficients

a(n), b(n) are computable in terms of the number of solutions in integers of equations

of the form

Ax2 + By2 + Cz2 = n

for A, B, C ∈ N. (We advise the reader to do this as an exercise!) Tunnell recovers

a number of previously known results from his numerical criterion. For example, he

shows a prime p of the form 8k + 3 is not congruent, as for such primes a(p) ≡

2 mod 4, or that if p, q are primes of the form 8k + 5, then 2pq is not congruent. It

is an easy exercise to derive Theorem 4.4 from Theorem 4.8.

At least conjecturally one expects the existence of many congruent numbers. For

example, we have the following conjecture which is a consequence of the Birch and

Swinnerton-Dyer Conjecutre [47, Conjecture 16.5]:

Conjecture 4.9 ([59, 60]). Every positive integer congruent to 5, 6, or 7 modulo 8

is a congruent number.

Recently some impressive results have been obtained in this direction [101, 102].

Smith [95] has proved that at least 55.9% of positive square free integers n ≡

5, 6, 7 mod 8 are congruent numbers. In contrast, Smith [96] has proved that con-

gruent numbers are rare among natural numbers n ≡ 1, 2, 3 mod 8.



Chapter 5

What numbers are the edges of a right
triangle?

In this chapter we study numbers that appear as the side lengths of primitive right

triangles. We use rings of Gaussian integers to prove our main theorems. We give a

quick review of the basic properties of the ring of Gaussian integers. We then prove

that the ring of Gaussian integers is a Euclidean domain, leading to the analogue

of the Fundamental Theorem of Arithmetic in this context. We also determine the

irreducible elements and units of Z[i]. For a more thorough exposition of the theory

of Gaussian integers we refer the reader to the classical text by Sierpinski [46] or

Conrad [69]. In this chapter we also determine what numbers are a sum of two

squares (Theorem 5.2) and determine the numbers which appear as the hypotenuse

of a primitive right triangle (Theorem 5.1). In the Notes we state a famous theorem of

Dirichlet (Theorem 5.11) and say a couple of words about algebraic number theory.

5.1 The theorem

If n is an odd number, then it is the side length of some right triangle. In fact, we can

always write n = xy with x, y coprime and odd. Then the following set

τ(x, y) =
{

x2 − y2

2
, n = xy,

x2 + y2

2

}

is the set of side lengths of a primitive right triangle.

If n is an even number, then we can write n = 2xy with x, y coprime. If one of x

or y is even, i.e., if n is divisible by 4, then again the set {x2 − y2, 2xy, x2 + y2} is

the set of side lengths of a primitive right triangle. If on the other hand 2||n, then n

cannot be the side length of a primitive right triangle.
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It turns out that the question of whether a natural number can occur as the length

of the hypotenuse of a primitive right triangle is more subtle. Recall the list of the

first few Pythagorean triples at the beginning of §3.1. The hypotenuse lengths that

occur in the list are 5, 13, 17, 25, 29, 29, 37, 41, 53. The prime numbers occurring

in the prime factorization of these numbers are 5, 13, 17, 29, 37, 41, 53, and a quick

check reveals that all of these prime numbers are of the form 4k + 1. In this chapter

we prove the following theorem:

Theorem 5.1. A number n is the length of the hypotenuse of some primitive right

triangle if and only if all of its prime factors are of the form 4k + 1.

Recall the formula for the hypotenuse of a primitive right triangle, x2 + y2 if

x, y are coprime of different parity, or (x2 + y2)/2 if x, y are coprime and both

odd. Clearly something is going on with sums of two squares! And in fact the first

step to prove the theorem is understanding what numbers can be written as a sum

of two squares. We start by examining the sequence of natural numbers. Clearly,

1 = 12 + 02, 2 = 12 + 12, 3 is not a sum of two squares, 4 = 22 + 02, 5 = 22 + 12,

6 is not, 7 is not, 8 = 22 + 22, 9 = 32 + 0, 10 = 32 + 12, 11 is not, 12 is not,

13 = 32 + 22, 14 is not, 15 is not, 16 = 42 + 02, 17 = 42 + 12, 18 = 32 + 32,

20 = 42 + 22, 21 is not, 22 is not, 23 is not, 24 is not, 25 = 52 + 02, 26 = 52 + 12,

27 is not, 28 is not, 29 = 52 + 22, 30 is not, 31 is not, 32 = 42 + 42, etc. While it

is not immediately clear that one should do this next thing, but we look at the prime

factorization of the integers that are not sums of two squares: 3, 6 = 2 · 3, 7, 11,

12 = 22 · 3, 14 = 2 · 7, 15 = 3 · 5, 21 = 3 · 7, 22 = 2 · 11, 23, 24 = 23 · 3, 27 = 33,

28 = 22 · 7, 30 = 2 · 3 · 5, 31. The common feature of all of these numbers is that

they all have at least one prime factor of the form 4k + 3 which appears with an odd

exponent. In fact, we will prove the following theorem:

Theorem 5.2. A number n is the sum of two squares if and only if every one of its

prime factors of the form 4k + 3 has even exponent in its prime factorization.

We refer to Theorem 5.2 as the Two Squares Theorem. As we noted it is clear

that 3 is not the sum of two squares. If on the other hand some number which is a

multiple of 3 is a sum of two squares a2 + b2, then this means 3 | a2 + b2. Now,

02 ≡ 0, 12 ≡ 0, 22 ≡ 1 mod 3. Consequently, in order for a2 + b2 ≡ 0 mod 3, we

need to have a ≡ 0, b ≡ 0 mod 3, i.e., both a, b are divisible by 3. This implies that

a2 + b2 is actually divisible by 32. Note that 3 is a prime of the form 4k + 3. The sort

of situation we just described does not happen for primes of the form 4k + 1 such as

5 as for example 5 = 12 + 22, and neither 1 nor 2 is divisible by 5.

The proof we present for these theorems is best expressed in terms of the arithmetic

of complex integers which we present in the next section. The idea is that if we have

a complex number z = x + iy, with x, y ∈ R, then |z|2 = x2 + y2, and these are the

sorts of expressions that we wish to study. Since in our theorem we need to look at

those cases where x, y ∈ Z, we are led to study complex numbers z = x + iy with

x, y ∈ Z.
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5.2 Gaussian integers

A Gaussian integer is a complex number x + iy with x, y ∈ Z. We define the ring

of Gaussian integers to be

Z[i] = {a + bi | a, b ∈ Z},

where here and elsewhere i2 = −1. Equipped with the standard addition and multi-

plication of complex numbers, Z[i] is a commutative ring with identity. For z ∈ Z[i],
we define z̄ to be the complex conjugate of z, i.e.,

a + bi = a − bi,

and we define the norm of z, N (z), to be

N (z) = z · z.

A computation shows that

N (a + ib) = a2 + b2.

We let |z| = N (z)1/2.

Lemma 5.3. For all z, w ∈ Z[i],

N (zw) = N (z)N (w).

Proof. It is easy to check that z · w = z · w. Then we have

N (zw) = zw · zw = zw · z · w = (zz) · (ww) = N (z)N (w).

⊓⊔

An element u ∈ Z[i] is called a unit, if there is a v ∈ Z[i] such that uv = 1. Taking

norms gives N (u) · N (v) = 1. Since the norm is always nonnegative, this identity

implies N (u) = 1. It is easy to check that these are indeed units. It is also easy to

check if u ∈ Z[i] satisfies N (u) = 1, then u is a unit, because then u ·u = N (u) = 1.

An easy examination shows that u can only be one of the following elements: +1,

−1, i , and −i . Gaussian integers x, y are called associates if x = uy for a unit u.

Divisibility and unique factorization

There is a division algorithm in Z[i]:

Theorem 5.4. If a, b ∈ Z[i] with b �= 0, then there are q, r ∈ Z[i] such that

a = bq + r

with N (r) < N (b). Consequently, Z[i] is a Euclidean domain.
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Proof. We wish to write
a

b
= q +

r

b

with q ∈ Z[i] and N (r/b) < 1. Write a/b as ab/N (b), and set ab = u + iv. By the

last statement in Theorem 2.8 we can write

u = q1 N (b) + r1,

v = q2 N (b) + r2,

with |r1|, |r2| ≤ N (b)/2. Consequently,

a

b
=

ab̄

N (b)
=

u + iv

N (b)
= q1 + iq2 +

r1 + ir2

N (b)
.

If we set q = q1 + iq2, we get

a = qb +
r1 + ir2

b̄
.

Since a and qb are in Z[i], we see that

r :=
r1 + ir2

b̄
∈ Z[i].

We just need to show that

N (r) < N (b).

We have

N (r) = N (
r1 + ir2

b̄
) =

r2
1 + r2

2

N (b̄)

≤
N (b)2/4 + N (b)2/4

N (b)
=

N (b)

2
< N (b).

⊓⊔

Here is an alternative, geometric way to see the above theorem. Let’s fix the

non-zero Gaussian integer b as in the theorem, and examine the set of all Gaussian

integers of the form qb with q ∈ Z[i]. Write q = q1 + q2i with q1, q2 ∈ Z, to obtain

qb = (q1 + q2i)b = q1 · b + q2 · ib.

The Gaussian integer ib is obtained from b via a counterclockwise 90-degree rotation

around the origin as in Figure 5.1.

This means that 0, b, ib, and ib +b are the four vertices of a square. Furthermore,

since every Gaussian integer of the form qb is an integral linear combination of b

and ib, the set of all such points qb is going to be a square grid in the plane as in the

diagram. Now, every Gaussian integer a falls in one of these squares. The distance

between a to the closest vertex of the square in which it lives is at most the side
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Fig. 5.1 The geometric

proof of Theorem 5.4

b

ib

ib+b

length of the square, |b|, i.e., |a − qb| < |b| for some Gaussian integer q. Squaring

this inequality gives N (a − bq) < N (b), as claimed.

Since Z[i] is a Euclidean domain, it is a principal ideal domain (PID), and there-

fore a unique factorization domain; see [25, Ch. 3, §7]. The latter means that every

element of Z[i] is a product of irreducible elements in an essentially unique way.

Recall that we call an element ̟ of Z[i] an irreducible element if any identity of the

form ̟ = xy with x, y ∈ Z[i] implies either x or y is a unit. Since Z[i] is a UFD,

every irreducible element is prime. Recall that an element p of a domain R is called

prime if the principal ideal (p) is prime.

5.3 The proof of Theorem 5.2

The proof of Theorem 5.2 uses three ingredients:

Lemma 5.5 (Ingredient 1). If m and n are expressible as sums of squares, then so

is mn.

Proof. The easiest way to see this is by using complex numbers. If m = a2 +b2, then

m = N (a + ib), the norm of the complex number a + ib. Similarly, if n = c2 + d2,

then n = N (c + id). Next, by Lemma 5.3,

mn = N (a + ib)N (c + id) = N ((a + ib)(c + id))

= N ((ac − bd) + i(ad + bc)) = (ac − bd)2 + (ad + bc)2.

⊓⊔

Lemma 5.6 (Ingredient 2). If p is a prime of the form 4k + 3, and if for integers

a, b, p | a2 + b2, then p | a and p | b.

Proof. If p ∤ a, then a2 + b2 ≡ 0 mod p implies

(ba−1)2 ≡ −1 mod p.
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This means the equation x2 ≡ −1 mod p has a solution u modulo p. By Theorem

2.51 there is a g mod p such that op(g) = p − 1. We write u ≡ gi mod p for some

0 < i < p − 1. On the other hand, since g(p−1)/2 �≡ +1 mod p, and (g(p−1)/2)2 ≡
+1 mod p, we conclude that

g(p−1)/2 ≡ −1 mod p.

Consequently,

g2i ≡ g(p−1)/2 mod p.

Lemma 2.47 implies

2i ≡
p − 1

2
mod (p − 1).

But since 2i and p − 1 are even, and (p − 1)/2 is odd, this is a contradiction. ⊓⊔

We will see in Lemma 6.7 that the equation x2 ≡ −1 mod p has a solution

modulo p if and only if p is not of the form 4k + 3.

The next ingredient is a substantial theorem due to Fermat. Here we will give an

algebraic proof for the theorem. We will also present a geometric proof in Chapter

10 and another proof using the theory of quadratic forms in §12.2.

Theorem 5.7 (Ingredient 3). An odd prime number is expressible as a sum of two

squares if and only if it is of the form 4k + 1.

Proof. First suppose p = x2 + y2. Look at everything modulo 4. Then x2 ≡
0, 1 mod 4, and as a result x2 + y2 ≡ 0, 1, 2 mod 4. This means p ≡ 0, 1, 2 mod 4.

Obviously if p ≡ 0 mod 4, it cannot be a prime number. If p ≡ 2 mod 4, then

p = 2, and not odd. Consequently, p ≡ 1 mod 4 is the only possibility, proving the

necessity of the condition.

Now we show if p is of the form 4k + 1, then p is expressible as a sum of two

squares. The proof of this statement requires several steps:

Step 1. There exists a such that a2 ≡ −1 mod p.

By Wilson’s Theorem, Equation (2.8), (p − 1)! ≡ −1 mod p. Next,

x · (p − x) ≡ −x2 mod p.

Hence

−1 ≡ (p − 1)! ≡ (−1)(p−1)/2

(

(
p − 1

2
)!
)2

≡
(

(
p − 1

2
)!
)2

mod p

as for p ≡ 1 mod 4, (p − 1)/2 is even. Consequently, a = ((p − 1)/2)! satisfies

a2 ≡ −1 mod p. Note that this means a2 + 1 ≡ 0 mod p. It is also clear that if b is

another integer such that b2 ≡ −1 mod p, then a ≡ ±b mod p.
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Step 2. Now, with the choice of a as in Step 1, for every integer x we have

x2(a2 + 1) ≡ 0 mod p, or x2 + (ax)2 ≡ 0 mod p. This means p | x2 + (ax)2.

So if y is an integer such that y ≡ ±ax mod p, we have p | x2 + y2. Conversely,

suppose we have integers u, v such that p | u2 + v2, but p is not a factor of either

u or v. Then v2 ≡ −u2 mod p, and consequently, (vu−1)2 ≡ −1 mod p, so that

vu−1 ≡ ±a mod p, and v ≡ ±au mod p.

Step 3. Assume there are integers x, y such that p = x2 + y2. By Step 2, y ≡
±ax mod p. Furthermore, since x2 < p and y2 < p, we have x ≤ [√p] and

y ≤ [√p]. Conversely, suppose we have non-zero integers x, y such that x, y ≤
[√p] and y ≡ ±ax mod p. Then by Step 2, p | x2 + y2 ≤ [√p]2 + [√p]2 <
√

p
2 +√

p
2 = p + p = 2p. (Here we have used the fact that since p is not a square,√

p is not an integer, and as such, [√p] <
√

p.) Hence, x2 + y2 is a positive integer

smaller than 2p and divisible by p. This means x2 + y2 = p.

Step 4. So we are reduced to proving the following statement which is known as

Thue’s Lemma: Suppose a satisfies a �≡ 0 mod p. Then there are integers x, y ∈
{1, . . . , [√p]} such that y ≡ ±ax mod p. We prove this fact using the Pigeon-Hole

Principle, Theorem A.7. Look at the following set:

A = {ax − y | 0 ≤ x, y ≤ [
√

p]}.

The number of choices for the pairs (x, y) is (1 + [√p])2 > p. By Theorem A.7,

there are distinct pairs (x, y) and (x ′, y′) such that ax − y ≡ ax ′ − y′ mod p, or

y−y′ ≡ a(x −x ′) mod p. Note that −[√p] ≤ y−y′, x −x ′ ≤ [√p]. By multiplying

with appropriate signs we may assume that y − y′ ≥ 0 and x − x ′ ≥ 0. The price to

pay is an ambiguity of sign which we write as y − y′ ≡ ±a(x − x ′) mod p. Since

the pairs (x, y) and (x ′, y′) are distinct, at least one of the quantities y − y′ or x − x ′

is non-zero, but whichever is non-zero, it will also be non-zero modulo p, and the

relation y − y′ ≡ ±a(x − x ′) mod p implies that the other one is non-zero modulo

p as well, and consequently, non-zero. So if we let X = x − x ′ and Y = y − y′, we

see that X, Y are non-zero, 0 ≤ X, Y ≤ [√p] and Y ≡ ±aX mod p. This finishes

the proof of Thue’s Lemma, and hence the proof of the theorem. ⊓⊔

Corollary 5.8. The equation x2 ≡ −1 mod p has a solution modulo p if and only

if p is not of the form 4k + 3.

Now we can prove Theorem 5.2:

Proof of Theorem 5.2. It is clear that a number whose square-free part is a sum of

two squares is a sum of two squares. By Ingredient 3, every prime of the form 4k +1

is a sum of two squares, and also 2 = 12 + 12. By Ingredient 1, any product of such

is a sum of two squares. This proves one direction of the theorem.
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For the other direction, suppose n is a sum of two squares a2 + b2, and pα‖n. We

just need to show that if p is of the form 4k + 3, then α is even. Write n = pαm with

m coprime to p. By ingredient 2, p | a and p | b, hence we can write a = pc and

b = pd. Then

pαm = (pc)2 + (pd)2 = p2(c2 + d2),

so

pα−2m = c2 + d2.

If α is odd, by repeating this process we reach

pm = r2 + s2

for natural numbers r, s. Ingredient 2 again implies p | r, p | s, and consequently

p2 | pm. This last statement means p | m. This is a contradiction. ⊓⊔

5.4 Irreducible elements in Z[i]

We now determine the collection of irreducible elements in Z[i]. To start, we note

that if N (̟) is a prime number in Z, then ̟ is irreducible. For example, since

N (1 + i) = 2, 1 + i is irreducible. More interestingly, if p is a rational prime such

that p ≡ 1 mod 4, then by Theorem 5.7, p = a2 + b2 with a, b ∈ Z. This implies

N (a + ib) = p. Consequently, a + ib is irreducible in Z[i]. We now examine primes

of the form 4k + 3. Suppose p is one such prime and that we can write

p = z · w

for z, w ∈ Z[i]. Then by taking norms we get

p2 = N (z)N (w). (5.1)

This implies p | N (z)N (w). Hence, p must divide either N (z) or N (w). Suppose

z = α + iβ and p | N (z) = α2 +β2. By Lemma 5.6, p | α and p | β. Consequently,

p2 | α2 + β2. Equation (5.1) then implies N (z) = p2 and N (w) = 1. This means w

is a unit. This discussion provides support for the following theorem:

Theorem 5.9. The elements 1±i , a+ib with a2 +b2 a prime congruent to 1 modulo

4, and primes of the form 4k +3, and their associates are all the irreducible elements

in Z[i].

Proof. If ̟ is an irreducible element in Z[i], ̟ | ̟̟ = N (̟) ∈ Z. Write

the prime factorization of N (̟) as p1 p2 . . . pk , with p j ’s not necessarily distinct.

Now back in Z[i], ̟ | p1 p2 . . . pk . Since ̟ is irreducible, and Z[i] is a Euclidean

domain, it has to be prime, so there is at least one j such that ̟ | p j . This means

̟ must occur as a factor of some rational prime p. If p ≡ 1 mod 4 or p = 2, then

p = a2 + b2 for integers a, b, and as we observed in the paragraph preceding the
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statement of the theorem, a + ib and a − ib are irreducible elements in Z[i]. Since

̟ | p = (a + ib)(a − ib), we conclude that either ̟ | a + ib or ̟ | a − ib.

If ̟ | a + ib, since both of these are irreducible, they have to be associates, and

similarly for a − ib. On the other hand, if p ≡ 3 mod 4 we proceed as follows. Write

̟ = m + in. Since ̟ | p, then N (̟) | N (p) = p2. This means m2 + n2 | p2,

from which it follows that m2 + n2 = 1, or m2 + n2 = p, or m2 + n2 = p2. The case

m2 + n2 = 1 is not possible as that would imply that ̟ is a unit. If m2 + n2 = p,

then Lemma 5.6 shows that p | m, p | n, from which it follows p2 | m2 + n2, a

contradiction. So the only possibility is m2 +n2 = p2. Again Lemma 5.6 shows that

m = pm1 and n = pn1 for m1, n1 ∈ Z. Hence p2 = m2 +n2 = (pm1)
2 + (pn1)

2 =
p2(m2

1 + n2
1). As a result m2

1 + n2
1 = 1, implying that m1 + in1 is a unit in Z[i].

Consequently, ̟ = m + in = pm1 + i pn1 = p(m1 + in1), showing that ̟ is an

associate of p. ⊓⊔

If p is a prime number of the form 4k + 1, there is a unique representation of the

form p = a2 + b2 with a > b > 0. We set

̟p = a + ib.

We call the irreducibles 1 + i , ̟p and ̟ p for primes of the form 4k + 1, and primes

q of the form 4k + 3, standard. Every other irreducible is an associate of a standard

irreducible.

The following theorem follows from general properties of unique factorization

domains [25, Ch. 3, §7]:

Theorem 5.10. Every Gaussian integer can be written as

um(1 + i)a
∏

p≡1 mod 4

̟
ep

p ̟
f p

p

in an essentially unique fashion, i.e., unique up to a permutation of the factors. Here

u is one of the four units in Z[i]; m a rational integer which is a product of primes

of the form 4k + 3; and all but finitely many of the nonnegative integers ep, f p are

zero, meaning the product is finite.

For example, the number 2 considered as an element of Z[i] has the prime fac-

torization −i(1 + i)2, and

12 = −3 · (1 + i)4, 60 = −3 · (1 + i)4 · (2 + i) · (2 − i).

5.5 Proof of Theorem 5.1

Now we can prove the main theorem of this chapter, Theorem 5.1. By Theorem 3.4

the hypotenuse of a primitive right triangle is an odd number which is the sum of
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two squares that are coprime to each other. Using Ingredient 2 above we see that no

prime factor of such a number can be of the form 4k + 3. Next we show that every

number all of whose prime factors are of the form 4k + 1 is the hypotenuse of some

primitive right triangle.

We proceed in two steps:

Step 1. Suppose (m, n) = 1, and assume m = a2 + b2 and n = c2 + d2 with

(a, b) = 1 and (c, d) = 1. Then mn = (ac−bd)2 + (ad +bc)2 with (ac−bd, ad +
bc) = 1.

We have

mn = (ac − bd)2 + (ad + bc)2.

We claim that gcd(ac − bd, ad + bc) = 1. Suppose for a prime p, p | ac − bd and

p | ad + bc. Then

p | c(ac − bd) + d(ad + bc) = a(c2 + d2) = an,

and

p | −d(ac − bd) + c(ad + bc) = b(c2 + d2) = bn.

Similarly, p | cm and p | dm. Since gcd(m, n) = 1, p cannot divide both m and n,

so suppose p does not divide m. Then since p | cm, p | c and similarly p | d. This

contradicts the assumption that gcd(c, d) = 1. The case p ∤ n is similar.

Step 2. Let p be a prime of the form 4k + 1. Then if t ∈ N, pt is the sum of two

squares that are coprime to each other.

Note that this is not obvious. It is of course clear that if we write p = u2 + v2,

then (u, v) = 1, because if (u, v) = δ, then δ2 | p which is impossible, unless δ = 1.

Next, assuming p = u2 + v2, we get p3 = (pu)2 + (pv)2, so for t > 1, there are

certainly expressions pt = a2 + b2 such that a, b are not coprime. The content of

this step is that it is possible to find an expression pt = a2 + b2 such that a, b are

coprime, but not that every such expression has the property that (a, b) = 1.

Write p = u2 + v2 = N (u + iv). Then

pt = N (u + iv)t = N ((u + iv)t ) = N (ut + ivt ) = u2
t + v2

t ,

where ut and vt are defined to be the real and imaginary parts of (u+iv)t , respectively.

We claim gcd(ut , vt ) = 1. Suppose not, and let q be a prime factor of gcd(ut , vt ).

Then q | u2
t + v2

t = pt . This implies that q = p, meaning every prime factor of

gcd(ut , vt ) is equal to p, i.e., gcd(ut , vt ) = pr for some r . We wish to show r = 0.

We do this by induction on t . We already know the statement to be true for t = 1.

Suppose for some t ,

gcd(ut−1, vt−1) = 1.
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Then we have

ut + ivt = (u + iv)t = (u + iv)(u + iv)t−1 = (u + iv)(ut−1 + ivt−1)

= (uut−1 − vvt−1) + i(uvt−1 + vut−1).

As in the first step we conclude pr | ut−1(u
2 + v2) = put−1 and pr | pvt−1, but

since by assumption gcd(ut−1, vt−1) = 1, we conclude that r ≤ 1. If r = 0, we are

done. So assume r = 1. This means p | ut , which, if we use ut = uut−1 − vvt−1,

gives

uut−1 ≡ vvt−1 mod p. (5.2)

Now we write ut−1 and vt−1 in terms of u, v, ut−2, vt−2:

ut−1 = uut−2 − vvt−2, vt−1 = vut−2 + uvt−2.

Using these identities Equation (5.2) reads

u(uut−2 − vvt−2) ≡ v(vut−2 + uvt−2) mod p.

Rearranging terms gives

(u2 − v2)ut−2 ≡ 2uvvt−2 mod p.

Since u2 + v2 = p, −v2 ≡ u2 mod p, and we obtain

2u2ut−2 ≡ 2uvvt−2 mod p.

Canceling out 2u gives

uut−2 ≡ vvt−2 mod p.

As a result, p | uut−2 − vvt−2 = ut−1. Since v2
t−1 = pt−1 − u2

t−1, and t ≥ 2, we

conclude p | v2
t−1, and consequently, p | vt−1. As a result, p | ut−1, p | vt−1, and

this contradicts gcd(ut−1, vt−1) = 1. ⊓⊔

Exercises

5.1 Write the following numbers as a product of irreducibles of Z[i]:

a. 56;

b. 4 + 6i ;

c. 3 + 5i ;

d. 9 + i ;

e. 7 + 24i .

5.2 Compute gcd(6 − 17i, 18 + i).

5.3 Solve the equation x + y + z = xyz = 1 in Gaussian integers.
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5.4 Determine all irreducible elements with norm less than 100.

5.5 Devise a test to decide whether x + iy is the square of a Gaussian integer.

5.6 Determine all Gaussian integers which are the sum of two squares of Gaussian

integers.

5.7 Show that a Gaussian integer x + iy is a sum of the squares of three Gaussian

integers if and only if y is even.

5.8 What can you say about right triangles with integral sides such that the legs

differ by 1? What if the difference is a fixed number d?

5.9 What can you say about right triangles with integral sides such that the sum

of the legs is a fixed number s?

5.10 What can you say about a right triangle with integral sides such that the perime-

ter and the hypotenuse are squares?

5.11 Write 45305 as a sum of two squares.

5.12 For a natural number n, show that if the equation n = x2 + y2, x, y > 0, 2 | x ,

has more than one solution, then n is not prime.

5.13 Find a formula for the number of primitive right triangles with a leg equal to

a number n in terms of the divisors of n.

5.14 Prove the following result of Gauss [16, page 172]: Every hypotenuse com-

posed of k distinct primes belongs to

[

k

1

]

+ 2

[

k

2

]

+ 22

[

k

3

]

+ · · · + 2k−1

[

k

k

]

different right triangles. Of these triangles, 2k−1 are primitive.

5.15 (�) Determine if 31897485916040 is a sum of two squares. If it is, determine

in how many ways.

Notes

Primes of special forms

The problem of deciding which polynomials produce prime numbers goes back

centuries. Euler made the famously wrong claim that the polynomial f (x) = x2 −
x + 41 has the property that f (n) is a prime number for every integer n. The values

f (0), f (1), f (2), f (3), . . . , f (40) are all prime, though f (41) is clearly not. We

will see in Exercise 6.2 that there are no non-constant polynomials f (x) such that

f (n) is a prime number for every integral value of n. Despite this rather disappointing

statement, one could still ask whether there are polynomials that produce infinitely

many primes. The answer is a definite yes. For example, every odd prime is either

congruent to 1 modulo 4 or congruent to 3 modulo 4. This means that at least one of

the polynomials 4x + 1 or 4x + 3 produces infinitely many primes. We will see in

Chapter 6 that in fact both of these polynomials capture infinitely many primes.
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For a general polynomial of degree 1, one can effectively decide whether the

polynomial produces infinitely many primes. Suppose f (x) = ax +b with a, b ∈ Z.

If gcd(a, b) = d > 1, then the polynomial has no chance of producing infinitely

many primes. It turns out that this is the only obstruction. The following is a celebrated

theorem of Dirichlet [2, Theorem 7.3]:

Theorem 5.11. If a, b are integers with b > 0, and gcd(a, b) = 1, then the arith-

metic progression

a, a + b, a + 2b, a + 3b, a + 4b, . . .

contains infinitely many prime numbers.

Unfortunately, we do not know an algebraic/elementary proof of this fact. The stan-

dard proofs of Dirichlet’s Theorem use complex analysis and, though not terribly

hard, are beyond the scope of this small volume. We give several examples of this

theorem in Chapter 6. We also present the proof of an important special case in

Exercise 6.22.

For polynomials of degree larger than 1 the situation is considerably more compli-

cated. For example, in 1912, Landau conjectured that the polynomial f (x) = x2 +1

produces infinitely many primes. At the time of this writing it is still not known if

Landau’s Conjecture is true. The best result in this direction is due to Henryk Iwaniec

who in 1978 proved that there are infinitely many integers n such that n2 + 1 is the

product of at most two prime numbers.

If we consider quadratic polynomials in more than one variable, then the situation

is better understood. Theorem 5.7 gives a linear necessary and sufficient condition

for the representability of a prime by a quadratic expression—namely, that an odd

prime p is representable by the quadratic form x2 + y2 if and only if p is of the form

4k + 1, implying that there are infinitely many primes of the form x2 + y2. There are

other results of similar nature for representability of prime numbers by polynomials

of the form x2 +ny2 dating back to, at least, Fermat and Euler. For example, a prime

is of the form x2 + 2y2 for integers x, y if and only if p ≡ 1, 3 mod 8. See Cox

[14] for an in-depth study of primes that are representable by quadratic forms in two

variables.

Algebraic number theory

We understand the phrase algebraic number theory in two different, but related, ways.

The first one is algebraic number/theory, as in number theory done using algebraic

methods, and the second one is algebraic/number theory as in the theory of algebraic

numbers. In terms of the first interpretation, Chinese Remainder Theorem 2.24 is

really a statement about ideals in a general ring; Euler’s Theorem 2.31 is a special

case of Lagrange’s theorem in finite group theory; Lemma 2.49 is a consequence

of the statement that every finite subgroup of a field is cyclic. What we did in this
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chapter with Gaussian integers is part of the second interpretation, and as we saw

in this chapter we used our results on Gaussian integers to prove a statement about

ordinary integers. Another example is our results from Appendix B which we will

use in our proof of the Law of Quadratic Reciprocity in Chapter 7.

An important result in this chapter is Theorem 5.10 which establishes unique

factorization in Gaussian integers. Unfortunately, this uniqueness of factorization

fails in general number rings. A famous example is the ring Z[
√

−5] = {x + y
√

−5 |
x, y ∈ Z}. We have 6 = 2 ·3 = (1+

√
−5) · (1−

√
−5), and it is not hard to see that

2, 3, 1 +
√

−5, 1 −
√

−5 are all irreducible elements. It was Richard Dedekind who

discovered that the fix for the failure of unique factorization in this and other number

rings was to utilize ideals. Let us briefly explain Dedekind’s ideas in a slightly more

modern language than was available to him. We will use the notion of an algebraic

integer defined in Appendix B. We define a number field to be a field K obtained

by adjoining a finite number of algebraic integers to Q. Define the ring of integers

OK of K to be set of all algebraic integers contained in K . Theorem B.4 shows that

OK is a ring. Dedekind showed that every ideal of OK is a product of prime ideals

of OK in an essentially unique fashion. Since every ideal of Z and Z[i] is principal,

Dedekind’s result implies the unique factorization theorems of these rings.

Algebraic number theory was brought to new heights in the hands of David Hilbert

and Emil Artin who early in 20th century found spectacular generalizations of the

Law of Quadratic Reciprocity, known as Reciprocity Laws. These laws were further

generalized by Shimura and Taniyama, who also discovered new connections to the

theory of elliptic curves and modular forms. The most general reciprocity laws were

conjectured by Robert Langlands in the 60s and 70s. Even though these conjectures

remain largely open, they have inspired much progress in the last few decades.

For an elementary introduction to algebraic number theory, see [50]. Samuel

[43] is a timeless classic. Murty and Esmonde’s book [37] is a much recommended

problem-solving-based approach to algebraic number theory. More advanced readers

already familiar with basic algebraic number theory, abstract algebra, and measure

theory are encouraged to read Weil’s Basic Number Theory [56]. This book is far from

basic, but in the words of Norbert Schappacher, if you learn number theory from this

book, you will never forget it. Mazur [86] is an excellent expository article explaining

the connections between modular forms and Diophantine equations. The book [17]

is an account of the history of class field theory. Gelbart [75] is a not-so-elementary

introduction to the Langlands program.



Chapter 6

Primes of the form 4k + 1

The main goal of this chapter is to prove that there are infinitely many primes of

the form 4k + 1. We model the proof of this fact on Euclid’s proof of the infinitude

of prime numbers which we explain. We then discuss quadratic residues and study

their basic properties. We state, and prove in the next chapter, the Law of Quadratic

Reciprocity. At the end of the chapter we use the Law of Quadratic Reciprocity to

prove the infinitude of primes of the form 3k + 1. In the Notes, we discuss Euclid’s

original writing of his proof of the infinitude of prime numbers, talk about primality

testing, and review some recent progress on the Twin Prime Conjecture.

6.1 Euclid’s theorem on the infinitude of primes

We saw in Chapter 5 that in order for a prime to divide the side length of a primitive

right triangle, it has to be of the form 4k + 1. It would be extremely surprising, and

rather unfortunate, if there were only finitely many such primes. In this chapter we

will prove the following theorem:

Theorem 6.1. There are infinitely many primes of the form 4k + 1.

In general it is actually quite hard to prove there are infinitely many primes of

a special form. For example, at the time of this writing it is not known if there are

infinitely many primes of the form n2 + 1 (Landau’s Conjecture, Notes to Ch. 5), or

that there are infinitely many primes p such that p + 2 is also prime (Twin Prime

Conjecture, Notes to this chapter), or that there are infinitely many primes p such that

2p + 1 is prime (Infinitude of Sophie Germain Primes), etc. Even the proof of the

existence of infinitely many primes without any additional restrictions is a non-trivial

result that requires a real idea. This goes back to Euclid, and the proof we present

here is essentially Euclid’s original argument [20, Book IX, Proposition 20].
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Theorem 6.2 (Euclid). There are infinitely many prime numbers.

Proof. Suppose not, and let {p1, . . . , pm} be the (finite) set of all prime numbers.

Let

M = p1 · · · pm + 1.

The number M is not divisible by any of the primes pi , but M is divisible by some

prime q, which is necessarily one pi ’s. In particular, q | p1 · · · pm . Consequently,

q | M − p1 · · · pm = 1.

But 1 is not divisible by any primes. This is a contradiction. ⊓⊔

One can try to adapt this argument to prove Theorem 6.1. So let’s suppose that

{p1, . . . , pm} is the finite set of primes of the form 4k + 1, and set

M = p1 · · · pm + 1.

We would then ask if this number, for some reason, has to have a new prime factor

of the form 4k + 1. It is wise to do some experiments. Let us start with the first two

primes of the form 4k + 1, namely 5 and 13. Then,

M = 5 × 13 + 1 = 66 = 2 × 3 × 11,

none of whose factors are of the desired type, as 3 = 0 × 4 + 3 and 11 = 2 × 4 + 3.

One might complain that the issue with this approach was that the resulting number

M is not of the form 4k + 1—in fact, it is always even. So it makes sense to define

M this way:

M = 4p1 · · · pm + 1.

This idea fails too. For example, the numbers 5 and 17 are both primes of the form

4k + 1. We have

M = 4 × 5 × 17 + 1 = 341 = 11 × 31.

The primes 11 and 31 are both of the form 4k − 1. The problem is that when we

multiply two primes of the form 4k − 1, or of the form 4k + 3, we get a number of

the form 4k + 1:

(4m − 1)(4n − 1) = 16mn − 4m − 4n + 1 = 4(4mn − m − n) + 1.

But not all is lost! In fact, this last computation suggests that maybe instead of proving

the infinitude of primes of the form 4k + 1, Euclid’s idea can be adapted to prove the

infinitude of primes of the form 4k − 1. The key observation is that when we multiply

numbers of the form 4k + 1 the result is always a number of the form 4k + 1, i.e.,

(4m + 1)(4n + 1) = 16mn + 4m + 4n + 1 = 4(4mn + m + n) + 1. (6.1)
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Theorem 6.3. There are infinitely many primes of the form 4k − 1.

Proof. Let p1, . . . , pm be a finite set of primes of the form 4k − 1. Let

M = 4p1 · · · pm − 1.

The number M is of the form 4k − 1, and not divisible by any of the primes

p1, . . . , pm . Also, not all of M’s prime factors can be of the form 4k + 1, because

in that case by Equation (6.1) M would be of the form 4k + 1. As a result M has a

prime factor of the form 4k − 1 and we have found a new prime of the desired form.

⊓⊔

Going back to Theorem 6.1, the idea is to find an expression M in terms of

p1, . . . , pm , which is odd, not divisible by any of the pi ’s, and provably possessing

a new prime factor of the form 4k + 1. One way to do this to make sure that M has

no prime factors of the form 4k − 1. The key to making this happen is Lemma 5.6

of Chapter 5.

Proof of Theorem 6.1. Let p1, . . . , pm be the set of all primes of the form 4k + 1.

Let

M = (2p1 · · · pm)2 + 1.

This number is not divisible by any of the pi . It is odd, and by Lemma 5.6 none of

its prime factors can be of the form 4k − 1. Every prime factor of M is new prime

number of the form 4k + 1. ⊓⊔
For example, the numbers 5, 13, 17, 29, 37 are all primes of the form 4k + 1.

Then

(2 · 5 · 13 · 17 · 29 · 37)2 + 1 = 233 · 593 · 3301 · 12329,

with the factors on the right all being prime numbers of the form 4k + 1.

6.2 Quadratic residues

The main point of the proof of Theorem 6.1 is that a number of the form n2 + 1

cannot have any prime factors of the form 4k − 1. This suggests that one may be

able to prove the infinitude of other sets of prime numbers by exploring prime factors

of numbers of the form n2 − a for integers a. In the argument above, a = −1.

Question 6.4. For an integer a, for what primes p, are there no integers n such that

p | n2 − a?

Gauss systematically studied this question, [21, §IV, Article 95], and proved a

number of fundamental results. Let p be an odd prime. Suppose p does not divide

a, and define the Legendre symbol, or the quadratic residue symbol, by
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(

a

p

)

=

{

+1 ∃n, n2 ≡ a mod p;
−1 otherwise.

If p | a, we set
(

a

p

)

= 0.

We call an integer a a quadratic residue modulo p if p ∤ a and the equation x2 ≡
a mod p is solvable, i.e., if

(

a
p

)

= +1. It is clear that if a ≡ b mod p, then

(

a

p

)

=
(

b

p

)

,

so we often think of
(

·
p

)

as a function on the set of congruence classes modulo p.

Sometimes, when there is no danger of confusion, we write (a/p) instead of
(

a
p

)

.

Lemma 6.5 (Euler). Let p be an odd prime. We have

(

a

p

)

≡ a
p−1

2 mod p.

Proof. If a ≡ 0 mod p, the lemma is obvious. So we assume a �≡ 0 mod p. Let g

be a primitive root modulo p. Then if a ≡ gi mod p, we have

(

a

p

)

= (−1)i .

If i is even,

a
p−1

2 ≡ gi
p−1

2 ≡ g
i
2
·(p−1) ≡ 1 mod p.

On the other hand, if i is odd,

a
p−1

2 ≡ gi
p−1

2 ≡ g
p−1

2 mod p.

As we saw in the proof of Lemma 5.6

g
p−1

2 ≡ −1 mod p,

and this finishes the proof. ⊓⊔

Lemma 6.6. Let p be an odd prime. For all integers a, b,

(

a

p

)(

b

p

)

=
(

ab

p

)

. (6.2)
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Proof. By Lemma 6.5 we have

(

ab

p

)

≡ (ab)
p−1

2 ≡ a
p−1

2 b
p−1

2 ≡
(

a

p

) (

b

p

)

mod p.

This means

p |
(

ab

p

)

−
(

a

p

)(

b

p

)

.

Since the possible values of the quadratic residue symbol are +1,−1, the expression

on the right can take values +2, 0,−2. Of these numbers, the only one that is divisible

by p is 0, and this observation proves the identity. ⊓⊔

The following lemma is a reformulation of Corollary 5.8.

Lemma 6.7. If p is an odd prime, then

(

−1

p

)

= (−1)
p−1

2 . (6.3)

Proof. By Lemma 6.5 we have

(

−1

p

)

≡ (−1)
p−1

2 mod p.

Now an argument similar to the proof of Lemma 6.6 gives the lemma. ⊓⊔

This last statement means that there is an n such that n2 ≡ −1 mod p precisely when

(−1)
p−1

2 = +1,

i.e., when (p − 1)/2 is even, which is equivalent to p being of the form 4k + 1.

For example, 13 and 17 are primes of the form 4k + 1 and 52 ≡ −1 mod 13 and

42 ≡ −1 mod 17.

These facts are enough to compute quadratic residues modulo every prime number.

Let us illustrate this by computing
(

15
31

)

. By Equation (6.2) we have

(

15

31

)

=
(

3

31

)(

5

31

)

.

To compute
(

3
31

)

, we write

(

3

31

)

≡ 3
31−1

2 ≡ 315 ≡ 275 ≡ (−4)5 ≡ −45

≡ −43 · 42 ≡ −2 · 16 ≡ −1 mod 31.
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This means,
(

3
31

)

= −1. Next,

(

5

31

)

≡ 5
31−1

2 ≡ 515 ≡ (53)5 ≡ 1255 ≡ 15 ≡ 1 mod 31.

Consequently,
(

5
31

)

= +1. Putting everything together,

(

15

31

)

=
(

3

31

)(

5

31

)

= (−1) · (+1) = −1.

To see a slightly more complicated example, we also compute
(

17
31

)

. By Lemma

6.5 we have

(

17

31

)

≡ 17
31−1

2 ≡ 1715 ≡ (175)3 ≡ 263 ≡ (−5)3 ≡ −1 mod 31.

As a result,
(

17

31

)

= −1.

Equation (6.2) shows that in order to compute quadratic residues modulo p, we

need to know
(

q

p

)

for primes p. At first glance,
(

q

p

)

and
(

p

q

)

should have no

relationship with each other—we often think of primes numbers as independent of

each other, and in many situations they behave as if they are completely unaware

of each other’s presence. However, in this case, primes p and q, knowing either

of
(

q

p

)

and
(

p

q

)

, tells us the value of the other one. The exact relationship was

conjectured by Euler around 1745, and was proved rigorously for the first time by

Gauss in 1796, though Legendre had proved some special cases as early as 1785. By

the time he died, Gauss had produced eight different proofs for the theorem, the Law

of Quadratic Reciprocity.

Theorem 6.8 (Law of Quadratic Reciprocity).

1. If p, q are distinct odd primes, then
(

p

q

)

= (−1)
p−1

2
.

q−1

2

(

q

p

)

;

Explicitly, (p/q) = −(q/p) only when p ≡ q ≡ 3 mod 4, and in all other situ-

ations (p/q) = (q/p).

2. If p is an odd prime,
(

2

p

)

= (−1)
p2−1

8 .

Explicitly written out, this means if p ≡ 1, 7 mod 8, then 2 is a quadratic residue

modulo p, and if p ≡ 3, 5 mod 8, it is not.
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Even though at the time of this writing there are literally hundreds of proofs

of this fundamental fact available in print, unfortunately, none of them are trivial.

In the next chapter we will present one of Gauss’s original proofs using quadratic

Gauss sums. The Law of Quadratic Reciprocity is a truly impressive theorem. This

theorem has now been generalized magnificently through the works of Artin, Hilbert,

and Langlands [75], and has inspired an incredible amount of mathematics. In fact,

the works of four Fields medalists (V. Drinfeld, L. Lafforgue, B. C. Ngô, and M.

Bhargava) have been directly or indirectly inspired by Gauss’s work on the Law

of Quadratic Reciprocity and its generalizations. This is indeed one of the most

important theorems in all of mathematics.

One consequence of Theorem 6.8 is that it allows one to compute (a/p) very

quickly. For example, suppose we want to compute (194/7919). By Equation (6.2)

we have
(

194

7919

)

=
(

2

7919

) (

97

7919

)

.

By the second part of the theorem,

(

2

7919

)

= (−1)(79192−1)/8 = (−1)7838820 = +1.

Next, by the first part,

(

97

7919

)

= (−1)(97−1)(7919−1)/4

(

7919

37

)

=
(

7919

97

)

=
(

62

97

)

,

as 7919 ≡ 62 mod 97. So far we know

(

194

7919

)

=
(

62

97

)

.

Now we apply the same procedure to the latter quadratic residue. We have

(

62

97

)

=
(

2

97

)

·
(

31

97

)

.

By the second part of the theorem

(

2

97

)

= (−1)(972−1)/8 = +1.

Next, by the first part,

(

31

97

)

= (−1)(31−1)(97−1)/4

(

97

31

)

=
(

97

31

)

.
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Since 97 ≡ 4 mod 31, we have

(

97

31

)

=
(

4

31

)

=
(

2

31

)2

= +1.

Putting everything together, we have

(

194

7919

)

= +1.

6.3 An application of the Law of Quadratic Reciprocity

Let us return to Question 6.4. For a ∈ Z, one can use the Law of Quadratic Reciprocity

to characterize p such that
(

a

p

)

= +1.

For example, let us study the case where a = −3. Suppose p > 3. We have

(

−3

p

)

=
(

−1

p

)(

3

p

)

.

Equation (6.3) gives
(

−1

p

)

= (−1)
p−1

2 .

Quadratic Reciprocity implies

(

3

p

)

= (−1)(3−1)(p−1)/4
( p

3

)

= (−1)(p−1)/2
( p

3

)

.

Next,
(

−3

p

)

=
(

−1

p

) (

3

p

)

= (−1)(p−1)/2(−1)(p−1)/2
( p

3

)

=
( p

3

)

=

{

+1 p ≡ 1 mod 3;
−1 p ≡ 2 mod 3.

Let’s think a moment about what just happened. We are trying to determine for what

primes p, −3 is a quadratic residue modulo p. This is a question about quadratic

residues modulo p: There are (p − 1)/2 of these and that number grows with p, and

that’s somewhat of a moving target. The Law of Quadratic Reciprocity allows us to

turn the problem around and transform it into a problem about quadratic residues
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modulo 3. The beauty of this idea is that there is only one non-zero quadratic residue

modulo 3, the congruence class of 1.

Next, following the argument leading to the proof of the infinitude of primes of

the form 4k + 1, we observe that if we multiply numbers of the form 3k + 1 we will

get another number of the form 3k + 1:

(3m + 1)(3n + 1) = 3(3mn + m + n) + 1. (6.4)

This is significant, as every prime number p �= 3 either is of the form 3k + 1 or of

the form 3k + 2. We can now prove the following theorem:

Theorem 6.9. There are infinitely many primes of the form 3k + 1 and infinitely

many primes of the form 3k + 2.

Proof. The proof for 3k + 2 is easy. Let p1, . . . , pm be a collection of odd primes

of the form 3k + 2. Set

M = 6p1 · · · pm − 1.

The number M is not divisible by any of the pi ’s, and Equation (6.4) means that not

all of its prime factors can be of form 3k + 1, because then M itself would be of the

form 3k + 1, which it is not. As a result, M must have a new prime factor of the form

3k + 2, and this proves the second assertion of the theorem.

Next, we prove the first assertion. Again, let p1, . . . , pm be a collection of primes

of the form 3k + 1. Let

M = (2p1 · · · pm)2 + 3.

The number M is not divisible by 2, by 3, and by any of the pi ’s. But no prime factor

of M can be of the form 3k + 2, because if q | M , then the equation n2 ≡ −3 mod q

will have a solution in n, namely n = 2p1 . . . pm . This means M must only consist

of primes of the form 3k + 1, and we have found new primes not among the pi ’s. ⊓⊔

So far we have proved that each of the arithmetic progressions 2k + 1 (Euclid!),

3k + 1, 3k + 2, 4k + 1, and 4k + 3 contains infinitely many primes. As we mentioned

in the Notes to Chapter 5, a general theorem of Dirichlet, Theorem 5.11, provides a

unifying picture for all of these results.

Exercises

6.1 Suppose we have a non-constant polynomial f (x) ∈ Z[x]. Show that the set

of prime numbers p such that p | f (n) for some n is infinite.

6.2 Show for every non-constant polynomial f (x) ∈ Z[x] there are infinitely many

values of n for which f (n) is not prime.

6.3 Show that there are infinitely many primes of the form
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a. 8k + 1;

b. 8k + 3;

c. 5k + 4;

d. 12k + 1;

e. 12k + 5;

f. 12k + 7;

g. 12k + 11.

6.4 Compute the following Legendre symbols:

a. (13/29);

b. (67/193);

c. (30/103);

d. (62/569).

6.5 Give a group-theoretic interpretation for the Legendre symbol.

6.6 Suppose p is an odd prime, and p ∤ a. Show that the congruence ax2 + bx +
c ≡ 0 mod p is solvable if and only if u2 ≡ b2 − 4ac mod p is solvable.

6.7 Give a characterization for all primes p for which the equation x2 + 2x + 3 ≡
0 mod p is solvable.

6.8 Determine all primes p that satisfy (7/p) = +1.

6.9 Prove that a prime p is of the form x2 − 2y2 if and only if p = 2 or p ≡
±1 mod 8.

6.10 Prove if (n/p) = −1, then

∑

d|n

d
p−1

2 ≡ 0 mod p.

6.11 Determine the product of all quadratic residues modulo p.

6.12 Verify the identity

x8 − 16 = (x2 − 2)(x2 + 2)((x − 1)2 + 1)((x + 1)2 + 1).

Use the identity to determine the number of solutions of

x8 ≡ 16 mod p.

6.13 Determine the number of solutions of the congruence

x6 − 11x4 + 36x2 − 36 ≡ 0 mod p.

6.14 Show that if p | n4 − n2 + 1 for some n ∈ Z, then p ≡ 1 mod 12.

6.15 Compute
∑p−2

r=1 (r(r + 1)/p).

6.16 Let p > 2 be prime. Determine the number of 1 ≤ n ≤ p − 2 such that n and

n + 1 are both quadratic residues modulo p. To do this, consider
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1

4

p−2
∑

n=1

(

1 +
(

n

p

))(

1 +
(

n + 1

p

))

.

6.17 Show that if n is not a perfect square, there are infinitely many primes p such

that (n/p) = −1.

6.18 (�) We saw in Exercise 2.60 that p = 217 − 1 is prime. Compute the quadratic

residue symbols (q/p) for q every prime less than 20.

6.19 Prove that there are arbitrarily long non-constant arithmetic progressions such

that every two terms of the arithmetic progression are relatively prime.

6.20 Let k ∈ N. Show that there are integers a, b such that for all j ∈ N the number

of divisors of a + bj is divisible by k.

6.21 Fix a natural number l. Assuming Theorem 5.11 prove every arithmetic pro-

gression a + bk, k ≥ 0, with gcd(a, b) = 1, contains infinitely many terms

which are products of l distinct primes.

6.22 The goal of this exercise is to show that if n ∈ N, then there are infinitely many

primes of the form nk + 1.

a. Show that for each d ∈ N there is a monic polynomial Φd(x) ∈ Z[x], called

the d-th cyclotomic polynomial, such that

∏

d|n

Φd(x) = xn − 1.

b. Show that Φ1(0) = −1 and for d > 1, Φd(0) = 1.

c. (�) Find the first 100 or so cyclotomic polynomials. Pay close attention to

the coefficients of the polynomials.

d. Suppose n > 1 and a ∈ Z, and let p be a prime divisor of Φn(a). Then

show that gcd(a, p) = 1, and if h = op(a), h | n. Furthermore:

• if h < n, then

an − 1 ≡ (a + p)n − 1 ≡ 0 mod p2;

• if h < n, then p | n;

• if p ∤ n, then h = n and p ≡ 1 mod n.

e. Conclude there are infinitely many primes of the form nk + 1.

Notes

Infinitude of Prime Numbers in The Elements

To get a feel for Euclid’s style of writing, let us state Euclid’s First Theorem, Lemma

2.18:
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Theorem 6.10 (Elements, Book VII, Proposition 30). If two numbers by multiply-

ing one another make some number, and any prime number measures [divides] the

product, it will also measure one of the original numbers.

It may sound like a historical absurdity that Euclid never stated Theorem 2.19—in

fact, this particular fact had to wait almost 2000 years to be put in writing by Gauss.

However, any rigorous proof of Theorem 2.19 uses mathematical induction which

as a tool was not available to Euclid. At any rate, Euclid used this theorem to prove

the irrationality of
√

n for n non-square, which may have been his original goal in

writing the number theoretic parts of The Elements.

This is Euclid’s original formulation of Theorem 6.2:

Theorem 6.11 (Elements, Book IX, Proposition 20). Prime numbers are more

than any assigned multitude of prime numbers.

Here we will reproduce Euclid’s original argument. Note that here Euclid illus-

trates the idea by working out the proof for a special case:

Let A, B, and C be the assigned prime numbers. I say that there are more prime

numbers than A, B, and C.

Take the least number DE measured by A, B, and C. Add the unit DF to DE. Then

EF is either prime or not.

First, let it be prime. Then the prime numbers A, B, C, and EF have been found

which are more than A, B, and C.

Next, let EF not be prime. Therefore it is measured by some prime number. Let

it be measured by the prime number G. I say that G is not the same with any of the

numbers A, B, and C. If possible, let it be so.

Now A, B, and C measure DE; therefore G also measures DE. But it also measures

EF. Therefore G, being a number, measures the remainder, the unit DF, which is

absurd.

Therefore G is not the same with any one of the numbers A, B, and C. And by

hypothesis it is prime. Therefore the prime numbers A, B, C, and G have been found

which are more than the assigned multitude of A, B, and C.

Therefore, prime numbers are more than any assigned multitude of prime num-

bers.

At the time of this writing, the largest known prime number is 277,232,917 − 1

discovered in 2017. This number has 23, 249, 425 digits. For comparison, the number

of atoms in the entire observable universe is a number which is supposed to have

about 80 digits. The discovery of this largest prime was part of The Great Internet

Mersenne Prime Search accessible through

https://www.mersenne.org/

https://www.mersenne.org/
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Primality testing

The first primality test is due to Eratosthenes (276–194 BCE) who observed that

a number n is prime if and only if it is not divisible by any primes up to
√

n; see

Exercise 2.18. For n reasonably small this provides a quick way of determining the

primality of a number n, but as n gets large this method becomes impractical fairly

quickly. Ideally one would like to be able to find a way to tell the primality of a

number n in a number of steps that grows like a polynomial in the number of digits

of n, and Eratosthenes’ algorithm fails this expectation fairly miserably. Such an

algorithm was not available until 2004 when the now-famous paper by M. Agrawal,

N. Kayal, and N. Saxena [58] came out.

The algorithm presented in this paper is known as the AKS algorithm. Before

AKS what was available in literature was an array of probabilistic algorithms, and

some of these work quite well. A favorite example is the Miller–Rabin test [53,

§6.3] which is based on Fermat’s Little Theorem in elementary number theory. The

Miller–Rabin test is extremely quick, but the trouble is that it gives false positives,

in that some composite numbers are marked as primes.

A closely related problem we currently do not know how to solve, which is

mentioned in the Notes of Chapter 2, is to factorize a large number as a product of

its prime factors with reasonable efficiency. The solution of this problem would have

far reaching consequences in terms of cryptography and internet security.

Twin Prime Conjecture

The following conjecture is considered very difficult:

Conjecture 6.12 (de Polignac, 1849). For every even natural number h, there are

infinitely many prime numbers p such that p + h is prime.

The case h = 2 is known as the Twin Prime Conjecture which at the time of this writ-

ing is still open. In 1915 Viggo Brun attempted to prove the Twin Prime Conjecture

by proving that
∑

p,p+2 prime

1

p
(6.5)

diverges. This idea goes back to Euler who proved the infinitude of prime numbers

by showing that the series
∑

p prime

1

p

diverges. However, surprisingly, Brun proved that the series (6.5) is convergent! Even

more surprisingly, the proof was fairly elementary; see Exercise 9.2.7 of [35] and

the exercises leading up to it for a presentation of the argument. The theory of sieves
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that Brun used in his proof has now become a powerful tool in number theory. The

next major breakthrough, again involving the theory of sieves, was achieved in 1973

by Jingrun Chen [65] who showed that there are infinitely many primes p such that

p + 2 is the product of at most two primes. In the same paper Chen also proved

an approximation to Goldbach’s conjecture; Chen proved every even number is the

sum of a prime and a product of at most two primes. In 2005, Goldston, Pintz, and

Yıldırım [76] proved a truly remarkable theorem. To state their theorem we will

define a piece of notation. For a prime number p, let pnext be the smallest prime

number larger than p. Using this notation, the Twin Prime Conjecture would assert

the existence of infinitely many primes p such that pnext − p = 2. Goldston, Pintz,

and Yıldırım used the theory of sieves in an ingenious way to prove

lim inf
p→∞

pnext − p

log p
= 0.

It is clear that de Polignac’s conjecture for any h would imply this result, but know-

ing this result would not give any information about de Polignac’s conjecture. The

spectacular work of Yitang Zhang in 2013, building on the techniques of Goldston,

Pintz, and Yıldırım, changed the landscape overnight. Zhang [112] showed that there

are infinitely many primes p such that

pnext − p < 7 × 107.

This was a major achievement in that it showed the difference between consecutive

primes was bounded by a uniform bound. In the last few years the bound of 7 × 107

has been substantially improved by Maynard [85] and the Polymath Project [91]. At

the time of this writing we know by [91] that there are infinitely many primes p such

that

pnext − p ≤ 246.

At this time it is not clear how to reduce the bound 246, and this might require a new

idea. The same paper proves that there are infinitely many primes p such that

(pnext)next − p ≤ 38130.

It would also be of great interest to improve this bound, but, again, this might require

an entirely new idea.



Chapter 7

Gauss Sums, Quadratic Reciprocity, and

the Jacobi Symbol

Our first goal in this chapter is to present Gauss’ sixth proof of his Law of Quadratic

Reciprocity. The presentation here follows [32, §3.3] fairly closely, except that our

Gauss sums are over the complex numbers, as opposed to ibid. where Gauss sums are

considered over a finite field. Later in the chapter we introduce the Jacobi symbol and

study its basic properties. We will also prove the Law of Quadratic Reciprocity for

the Jacobi symbol. At the end of the chapter we will show examples that demonstrate

how the Jacobi symbol can be used to compute the Legendre symbol efficiently. The

Jacobi symbol will make an appearance in Chapter 10 when we give a proof of the

Three Squares Theorem. In the Notes, we give some references for the various proofs

of the Law of Quadratic Reciprocity.

7.1 Gauss sums and Quadratic Reciprocity

For an odd prime p, let ζ = e
2π i

p and define the pth Gauss sum by

τp =

p−1
∑

k=1

(

k

p

)

ζ k .

We start with the following lemma:

Lemma 7.1. For all odd primes p,

τ 2
p =

(

−1

p

)

p.

Proof. We have

τ 2
p =

p−1
∑

k=1

p−1
∑

l=1

(

k

p

) (

l

p

)

ζ k+l =

p−1
∑

k=1

p−1
∑

l=1

(

kl

p

)

ζ k+l .
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We make a change of variables by introducing a new variable m by l ≡ mk mod p.

When k, l range over {1, . . . , p − 1}, m varies over the same set. So we get

τ 2
p =

p−1
∑

k=1

p−1
∑

m=1

(

mk2

p

)

ζ k+mk =

p−1
∑

k=1

p−1
∑

m=1

(

m

p

)

ζ k+mk

=

p−1
∑

m=1

(

m

p

) p−1
∑

k=1

ζ k(m+1).

The innermost sum is a geometric sum, and if ζ m+1 �= 1, we get

p−1
∑

k=1

ζ k(m+1) =
(ζ p)m+1 − ζ m+1

ζ m+1 − 1
=

1 − ζ m+1

ζ m+1 − 1
= −1.

If on the other hand ζ m+1 = 1, we have

e
2π i(m+1)

p = 1.

Consequently, p|m + 1, and, since 1 ≤ m ≤ p − 1, we conclude that m = p − 1. In

this case,
p−1
∑

k=1

ζ k(m+1) = p − 1.

Putting everything together,

τ 2
p =

p−1
∑

m=1

(

m

p

) p−1
∑

k=1

ζ k(m+1)

=

p−2
∑

m=1

(

m

p

) p−1
∑

k=1

ζ k(m+1) + (p − 1)

(

p − 1

p

)

= −

p−2
∑

m=1

(

m

p

)

+ (p − 1)

(

p − 1

p

)

= −

p−1
∑

m=1

(

m

p

)

+

(

p − 1

p

)

+ (p − 1)

(

p − 1

p

)

= −

p−1
∑

m=1

(

m

p

)

+ p

(

p − 1

p

)

= −

p−1
∑

m=1

(

m

p

)

+ p

(

−1

p

)

.

So in order to prove the lemma it suffices to prove

p−1
∑

m=1

(

m

p

)

= 0.
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To see this, let

X =

p−1
∑

m=1

(

m

p

)

.

Pick an integer b, e.g, a primitive root modulo p, such that (b/p) = −1. Then

−X =

(

b

p

)

X =

p−1
∑

m=1

(

b

p

) (

m

p

)

=

p−1
∑

m=1

(

bm

p

)

.

But when m ranges over the numbers {1, . . . , p −1}, the product mb ranges over the

same set modulo p. Consequently, the last expression is equal to X as well. Hence

−X = X.

This implies X = 0, and we are done.

Now we can proceed to prove the Quadratic Reciprocity, presenting a variation

of Gauss’s extremely clever argument. This proof uses Gauss sums. In the course of

the proof we will use algebraic integers as introduced in Appendix B.

Proof of Theorem 6.8. For the first part we start with the observation that

τ q
p = (τ 2

p)
q−1

2 · τp =

((

−1

p

)

p

)
q−1

2

· τp

= (−1)
p−1

2
.

q−1

2 p
q−1

2 τp,

after using Lemma 6.7. Next,

τ q
p =

(

p−1
∑

k=1

(

k

p

)

ζ k

)q

.

By Lemma 2.28 this last expression is equal to

p−1
∑

k=1

(

k

p

)

ζ kq + qC (7.1)

for some complex number C . It follows from Theorem B.4 and the fact that roots of

unity are algebraic integers that the number C is an algebraic integer; see Exercise 7.3.

Let q−1 be the multiplicative inverse of q modulo p. Then the sum is equal to

p−1
∑

k=1

(

kq−1

p

)

ζ k =

(

q−1

p

) p−1
∑

k=1

(

k

p

)

ζ k =

(

q−1

p

)

τp,

Since q · q−1 ≡ 1 mod p, we have
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(

q−1

p

)

=

(

q

p

)

.

Putting everything together,

(

q

p

)

τp + qC = (−1)
p−1

2
.

q−1

2 p
q−1

2 τp.

Dividing by τp gives,

(

q

p

)

+ q
C

τp

= (−1)
p−1

2
.

q−1

2 p
q−1

2 . (7.2)

This expression in particular shows that m := qC/τp is an integer. We claim that m

is divisible by q. We have

m2 =
q2C2

τ 2
p

= ±
q2C2

p
. (7.3)

Since C is an algebraic integer, by Theorem B.4, C2 is an algebraic integer. Equation

7.3 shows that C2 is a rational number. Corollary B.3 shows that C2 ∈ Z.

Since p | q2C2 and (p, q2) = 1, Theorem 2.17 implies that p | C2. Consequently,

m2 is divisible by q2. This means m is divisible by q. Now that we know that qC/τp

is an integer which is divisible by q, we reduce Equation (7.2) modulo q. We have

by Lemma 6.5:

(

q

p

)

≡ (−1)
p−1

2
.

q−1

2 p
q−1

2 ≡ (−1)
p−1

2
.

q−1

2

(

p

q

)

mod q.

So we conclude that
(

q

p

)

≡ (−1)
p−1

2
.

q−1

2

(

p

q

)

mod q.

Since the two sides of the equation are ±1 and q is odd, an argument similar to the

one in the proof of Lemma 6.6 gives

(

q

p

)

= (−1)
p−1

2
.

q−1

2

(

p

q

)

,

as claimed.

We now proceed to prove the second part of Theorem 6.8. Set

ζ = e
π i
4 ,

an eighth root of unity. We have
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ζ 2 = e
π i
2 = cos

π i

2
+ i sin

π i

2
= i,

and

ζ−2 = i−1 = −i.

Now set

ρ = ζ + ζ−1.

We have

ρ2 = (ζ + ζ−1)2 = ζ 2 + ζ−2 + 2 = i + i−1 + 2 = 2.

Next,

ρ p = (ρ2)
p−1

2 · ρ = 2
p−1

2 · ρ.

On the other hand,

ρ p = (ζ + ζ−1)p = ζ p + ζ−p +

p−1
∑

k=1

(

p

k

)

ζ kζ−(p−k)

= ζ p + ζ−p +

(p−1)/2
∑

k=1

(

p

k

)

(ζ kζ−(p−k) + ζ−kζ p−k)

= ζ p + ζ−p +

(p−1)/2
∑

k=1

(

p

k

)

(ζ 2k−p + ζ p−2k).

If 8 | k, then ζ k = 1. For this reason, for an odd number l, the value of ζ l + ζ−l

depends only on the residue of l modulo 8. We only need to consider the residue

classes 1, 3, 5, 7:

• If l ≡ 1 mod 8, then ζ l + ζ−l = ζ + ζ−1 = ρ.

• If l ≡ 3 mod 8, then

ζ l = ζ 3 = e
3π i

4 = cos
3π

4
+ i sin

3π

4
= − cos

π

4
+ sin

π

4
= −ζ−1,

and similarly, ζ−l = −ζ . Hence,

ζ l + ζ−l = −ζ−1 − ζ = −ρ.

• If l ≡ 5 mod 8, then

ζ l = ζ 5 = cos
5π

4
+ i sin

5π

4
= − cos

π

4
− i sin

π

4
= −ζ,

and also ζ−l = −ζ . This means that in this case

ζ l + ζ−l = −ζ − ζ−1 = −ρ.

• If l ≡ 7 mod 8, then ζ l = ζ−1, ζ−l = ζ , and ζ l + ζ−l = ζ−1 + ζ = ρ.
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These computations mean

ζ p + ζ−p = (−1)
p2−1

8 ρ,

and for all 1 ≤ k ≤ p − 1,

ζ 2k−p + ζ p−2k = (−1)
(p−2k)2−1

8 ρ.

Consequently,

2
p−1

2 · ρ = (−1)
p2−1

8 ρ +

(p−1)/2
∑

k=1

(

p

k

)

(−1)
(p−2k)2−1

8 ρ.

Dividing by ρ gives

2
p−1

2 = (−1)
p2−1

8 +

(p−1)/2
∑

k=1

(

p

k

)

(−1)
(p−2k)2−1

8 . (7.4)

By Lemma 2.27, the binomial coefficient
(

p

k

)

for 1 ≤ k ≤ p − 1 is divisible by p.

Reduce Equation (7.4) modulo p to get

2
p−1

2 ≡ (−1)
p2−1

8 mod p.

Lemma 6.5 now gives the result. ⊓⊔

7.2 The Jacobi Symbol

In this section we introduce the Jacobi symbol which is a generalization of the

Legendre symbol.

Definition 7.2. Let b be an odd positive integer, and let a be an integer. We define

the Jacobi symbol
(

a
b

)

as follows. If b = p1 . . . pk , with pi ’s not necessarily distinct,

we set
(a

b

)

=

k
∏

i=1

(

a

pi

)

For example,
(

2

15

)

=

(

2

3

)(

2

5

)

.

In the case where b is an odd prime number, the Jacobi symbol is identical with

the Legendre symbol. There is an important difference between the Legendre symbol

and the Jacobi symbol, however. The Legendre symbol (a/p) for a prime number
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p determines the solvability of the congruence equation X2 ≡ a mod p. In general,

the Jacobi symbol (a/b) gives no information about the solvability of the equation

X2 ≡ a mod b. Suppose, for example, b = p2, with p a prime number. If X2 ≡

a mod b is solvable, then, since p | b, so is X2 ≡ a mod p. So if (a/p) = −1, the

equation X2 ≡ a mod b will not be solvable. However, (a/b) = (a/p2) = (a/p)2 =

(±1)2 = +1. The simplest example of this is when a = −1 and b = 9 = 32. In

this case, (−1/9) = (−1/3)2 = (−1)2 = +1, but the equation X2 ≡ −1 mod 9

is not solvable. Despite this issue the Jacobi symbol is a useful tool that allows to

compute the Legendre symbol without having to factorize integers. We will see some

examples at the end of this section.

We have the following theorem:

Theorem 7.3 (Quadratic Reciprocity for the Jacobi symbol).

1. If m is an odd natural number,

(

−1

m

)

= (−1)
m−1

2 .

2. If m is an odd natural number,

(

2

m

)

= (−1)
m2−1

8 .

3. For odd natural numbers m and n,
(m

n

)

=
( n

m

)

(−1)
m−1

2
· n−1

2 .

Before we start the proof of the theorem, we note that the above theorem is a gener-

alization of Theorem 6.8.

We start the proof of the theorem with a lemma:

Lemma 7.4. For an odd natural number q and a natural number α the following

identities hold:

1.
qα−1

2
≡

α(q−1)

2
mod 2;

2.
q2α−1

8
≡

α(q2−1)

8
mod 2.

Proof. Proof is by induction. Clearly both identities are true for α = 1. So assume

that the identities are true for α, and we wish to show their validity for α + 1.

We have

qα+1 − 1

2
=

qα+1 − qα + qα − 1

2
= qα

(

q − 1

2

)

+
qα − 1

2
.

This last expression, by the induction assumption, is congruent to
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q − 1

2
+

α(q − 1)

2
≡

(α + 1)(q − 1)

2
mod 2.

The second identity is proved in a completely similar way.

We can now prove the theorem.

Proof of Theorem 7.3. To prove the first part we do induction on the number of distinct

prime divisors of m. Write m = p
α1

1 . . . pαr
r , and we do induction on r . We need to

prove
p

α1

1 · · · pαr
r − 1

2
≡ α1

p1 − 1

2
+ · · · + αr

pr − 1

2
mod 2.

The r = 1 case is the first part of Lemma 7.4. Now suppose the identity is valid

for r , and we wish to prove it for r + 1. We have

p
α1

1 · · · pαr
r p

αr+1

r+1 − 1

2
=

p
α1

1 · · · pαr
r p

αr+1

r+1 − p
α1

1 · · · pαr
r + p

α1

1 · · · pαr
r − 1

2

= p
α1

1 · · · pαr

r

p
αr+1

r+1 − 1

2
+

p
α1

1 · · · pαr
r − 1

2

≡
p

αr+1

r+1 − 1

2
+

p
α1

1 · · · pαr
r − 1

2
mod 2 (as p

α1

1 · · · pαr

r is odd.)

≡ α1

p1 − 1

2
+ · · · + αr

pr − 1

2
+ αr+1

pr+1 − 1

2
mod 2

after using the first part of Lemma 7.4 and the induction hypothesis.

The proof of the second part of the theorem is completely similar to our proof of

the first part, except that here we need to use the second part of Lemma 7.4 and the

computation of (2/p) for an odd prime p from Theorem 6.8.

We now prove the last part of the theorem. Let m = p
α1

1 · · · pαr
r and n = q

β1

1 · · · q
βs
s

be the prime factorizations of m and n. If m and n are not coprime, both sides of the

identity are equal to zero, and there is nothing to prove. So we assume that the pi ’s

and q j ’s are distinct primes. By definition,

(m

n

)

=

r
∏

i=1

s
∏

j=1

(

pi

q j

)αi β j

=

r
∏

i=1

s
∏

j=1

(

q j

pi

)αi β j

(−1)αi β j
pi −1

2
·

q j −1

2 (by Theorem 6.8)

=
( n

m

)

r
∏

i=1

s
∏

j=1

(−1)αi β j
pi −1

2
·

q j −1

2 .



7.2 The Jacobi Symbol 127

So to prove the third part we just need to show that

m − 1

2
·

n − 1

2
≡

r
∑

i=1

s
∑

j=1

αiβ j

pi − 1

2
·

q j − 1

2
mod 2.

To see this, we note that by the proof of the first part of the Theorem,

m − 1

2
≡

r
∑

i=1

αi

pi − 1

2
mod 2,

and
n − 1

2
≡

s
∑

j=1

β j

q j − 1

2
mod 2.

Multiplying these identities gives the result. ⊓⊔

Now, we will use the Jacobi symbol to compute some Legendre symbols. Let’s

start with a small example. Suppose we want to compute

(

37

89

)

.

Since both 37 and 89 are odd primes we can use the Law of Quadratic Reciprocity,

Theorem 6.8, to obtain
(

37

89

)

= (−1)(37−1)(89−1)/4

(

89

37

)

=

(

89

37

)

.

Since 89 ≡ 15 mod 37, the latter quadratic residue symbol is equal to

(

15

37

)

.

If we were to use the methods of Chapter 6 at this point we would use the fact that

15 = 3 × 5 to write (15/37) = (3/37) · (5/37), and then we would apply the Law of

Quadratic Reciprocity twice to compute these latter quadratic residue symbols. The

problem with this approach is that it requires factorizing 15, and this is something

we can do because 15 is a small number. As mentioned in Notes to Chapters 2 and 6,

at present we do not know how to factorize a very large natural number in reasonable

time. Using the Jacobi symbol allows us to bypass this obstacle. In fact, by Theorem

7.3 we have
(

15

37

)

= (−1)(15−1)(37−1)/4

(

37

15

)

=

(

37

15

)

=

(

7

15

)

,

as 37 ≡ 7 mod 15. Applying Theorem 7.3 to (7/15) gives
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(

7

15

)

= (−1)(7−1)(15−1)/2

(

15

7

)

= −

(

15

7

)

= −

(

1

7

)

= −1,

after using 15 ≡ 1 mod 7. Putting everything together, we obtain

(

37

89

)

= −1.

Let us now examine an example involving larger numbers. We wish to compute the

Legendre symbol
(

2455927

36838897

)

.

By Theorem 7.3 we have

(

2455927

36838897

)

= (−1)(2455927−1)(36838897−1)/4

(

36838897

2455927

)

=

(

36838897

2455927

)

=

(

2455919

2455927

)

,

as 36838897 ≡ 2455919 mod 2455927. Again using Theorem 7.3 gives

(

2455919

2455927

)

= (−1)(2455919−1)(2455927−1)/4

(

2455927

2455919

)

=

(

2455927

2455919

)

=

(

8

2455919

)

=

(

2

2455919

)3

.

Here we have used the fact that 2455927 ≡ 8 ≡ 23 mod 2455919, and also the

multiplicativity of the Jacobi symbol. Since (±1)3 = ±1, the latter Jacobi symbol

is equal to (2/2455919). So we have established that

(

2455927

36838897

)

=

(

2

2455919

)

.

To finish the computation we use the second part of Theorem 7.3 to get

(

2

2455919

)

= (−1)(24559192−1)/8 = +1.

We have proved
(

2455927

36838897

)

= +1.

The important point to note here is that we did not have to worry the primality of the

numbers that showed up in the computation. In fact, 2455919 = 6841 × 359 is not

prime.
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Exercises

7.1 Compute τp for p = 3, 5, and verify Lemma 7.1 directly.

7.2 (�) Compute τp for p = 17.

7.3 Show that the complex number C defined in Equation (7.1) is an algebraic

integer.

7.4 Prove the second part of Lemma 7.4.

7.5 Prove the second part of Theorem 7.3.

7.6 Determine all natural numbers n such that (n/15) = +1.

7.7 Determine (215/997) and (113/1093) using the Jacobi symbol.

7.8 Find five pairs of integers (a, b) such that the Jacobi symbol (a/b) = +1 but

x2 ≡ a mod b is not solvable.

7.9 Show that for all n > 1 we have the following identities for Jacobi symbols

(

n

4n − 1

)

= −

(

−n

4n − 1

)

= 1.

7.10 Show that for an integer d with |d| > 1 we have

(

d

|d| − 1

)

=

{

1 d > 0;

−1 d < 0.

7.11 Let k ∈ N, and let gcd(d, k) = 1. Prove that the number of solutions of

x2 ≡ d mod 4k is

2
∑

f |k

f squarefree

(

d

f

)

.

7.12 Show that for an odd prime p, and a ∈ N with p ∤ a, we have

(

a

p

)

=

(

a

p − 4a

)

.

7.13 This exercise gives another proof of the Law of Quadratic Reciprocity due to

Rousseau [94]. The proof uses a bit of group theory. Let p, q be odd primes,

and define G = (Z/pqZ)×/{±1}.

a. Show that the set

S =

{

(x, y) | 1 ≤ x ≤ p − 1, 1 ≤ y ≤
q − 1

2

}

is a set of representatives for G. What is the product of elements of S modulo

{±1}?

b. Show that the set

S′ =

{

(z mod p, z mod q) | 1 ≤ z ≤
pq − 1

2

}
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is another set of representatives of G. Determine the product of elements of

S′ modulo {±1}.

c. Derive the Law of Quadratic Reciprocity from the first two parts.

Notes

Proofs of quadratic reciprocity

As mentioned in Chapter 6, the Law of Quadratic Reciprocity was conjectured by

Euler around 1745, in a paper titled “Theoremata circa divisores numerorum in hac

forma pa2 ± qb2 contentorum” available from the Euler Archive at

http://eulerarchive.maa.org/index.html

though here the conjecture is not explicitly stated as such. The explicit formulation

of the conjecture appears in a later paper of Euler’s, titled “Observationes circa

divisionem quadratorum per numeros primos” available at

http://eulerarchive.maa.org/pages/E552.html

Gauss noted in his notebook that he had found a proof on April 8, 1796. So far

over 200 proofs of the Law of Quadratic Reciprocity have been obtained by various

mathematicians. Franz Lemmermeyer, the author of [32], maintains a website that

keeps track of the various proofs of theorem. The website is available at

http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html

Generalizations

One can generalize the Law of Quadratic Reciprocity in two different directions, one

is by considering higher powers, and the other by considering other number fields,

introduced in the Notes to Chapter 5. For introductions to reciprocity laws for higher

powers we refer the reader to Lemmermeyer [32] or Cox [14], especially §4. For the

generalization of Quadratic Reciprocity to other number fields, known as Hilbert’s

Law of Reciprocity, see the Notes to Chapter 8.

http://eulerarchive.maa.org/index.html
http://eulerarchive.maa.org/pages/E552.html
http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html
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Chapter 8

Counting Pythagorean triples modulo an

integer

In this chapter we study the Pythagorean Equation in integers modulo a natural

number n and count the number of solutions. In the first section we consider the

case where n is a prime number. Later in the chapter we discuss the general case. By

using the Chinese Remainder Theorem we show that in order to count the number

of solutions modulo a natural number n, it suffices to count the number of solutions

modulo prime power divisors of n. We then devise a recursive process to count the

number of solutions modulo prime powers. At the end of the chapter we show how

the recursive process introduced earlier can be used to find solutions of equations

such as x2 ≡ 2 mod 7k for any natural number k. We will, for example, show that for

each k, this equation has precisely two solutions modulo 7k . The strategy used here

is what is usually called Hensel’s Lemma. We explore this lemma in Exercises 8.4

and 8.5. In the Notes, we discuss p-adic numbers. We finish with the statement of

Hilbert’s Law of Reciprocity which is a massive generalization of the Gauss’s Law

of Quadratic Reciprocity.

8.1 The Pythagorean Equation modulo a prime number p

One interesting feature of the geometric method discussed in §3.2 and explored

further in §3.3 is that one does not need to do the geometric constructions presented

there just in the real plane. One can repeat the same constructions over every field,

provided that one cares that the denominators of the fractions that appear are not

zero. This is not an issue over the real numbers, and obviously over the rationals, as

for m a real number, m2 + 1 is never zero. But as soon as we start working over the

complex numbers, there are in fact choices for m that make m2 + 1 equal to zero. The

same problem occurs when considering the Pythagorean Equation modulo a prime

number p.

We start by determining Np := #Sp with

© Springer Nature Switzerland AG 2018
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Sp = {(x, y) | 1 ≤ x, y ≤ p, x2 + y2 ≡ 1 mod p}.

Let’s examine a few small primes. We have

S3 = {(0, 1), (0, 2), (1, 0), (2, 0)}, N3 = 4 = 3 + 1;

S5 = {(0, 1), (0, 4), (1, 0), (4, 0)}, N5 = 4 = 5 − 1;

S7 = {(0, 1), (0, 6), (1, 0), (6, 0), (2, 2), (2, 5), (5, 2), (5, 5)}, N7 = 8 = 7 + 1;

S11 = {(0, 1), (0, 10), (1, 0), (10, 0), (3, 6), (3, 5), (8, 6), (8, 5),

(6, 3), (5, 3), (6, 8), (5, 8)}, N11 = 12 = 11 + 1;

S13 = {(0, 1), (0, 12), (1, 0), (12, 0), (2, 6), (2, 11), (11, 6), (11, 7),

(6, 2), (11, 2), (6, 11), (7, 11)}, N13 = 12 = 13 − 1.

In these examples, Np = p − a(p) with a(p) = +1 whenever p is of the form

4k + 1, for p = 5, 13, and a(p) = −1 when p is of the form 4k + 3, for p = 3, 7, 11.

Equation 6.3 shows that at least for these primes a(p) = (−1/p). So a reasonable

guess is

Np = p −
(

−1

p

)

.

We will show that this is indeed the case. In order to prove our guess we first find

a parametrization for all the solutions of the equation x2 + y2 ≡ 1 mod p. There

are several obvious solutions, e.g., (−1, 0) as in the real case. Fix a residue class

m mod p. We consider the intersection of the “line” of “slope” m passing through

(−1, 0), i.e., the collection of pairs (x, y) with 1 ≤ x, y ≤ p such that

y ≡ m(x + 1) mod p,

with the “circle” x2 + y2 ≡ 1 mod p. As before, we obtain

m2(x + 1)2 + x2 ≡ 1 mod p,

or

(m2 + 1)x2 + 2m2x + (m2 − 1) ≡ 0 mod p.

If m2 + 1 �≡ 0 mod p, then it will be invertible, and we obtain the equation

x2 + 2(m2 + 1)−1m2 + (m2 + 1)−1(m2 − 1) ≡ 0 mod p.

By construction, x ≡ −1 mod p is one of the solutions of this equation. There is a

second solution,

x ≡ (m2 + 1)−1(1 − m2) mod p.

By using the equation of the “line” we obtain y as

y ≡ (m2 + 1)−12m mod p.
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Consequently, the set of solutions of the equation x2 + y2 ≡ 1 mod p aside from the

pair (−1, 0) coincides with the collection of pairs

((m2 + 1)−1(1 − m2) mod p, (m2 + 1)−12m mod p)

for 1 ≤ m ≤ p subject to m2 + 1 �≡ 0 mod p. If p ≡ 3 mod 4, there is no m with

p | m2 + 1. For p ≡ 1 mod 4, there are two values of m that need to be excluded. If

p = 2, it is clear that m = 1 needs to be omitted. We should also not forget our seed

point (−1, 0). These observations mean:

Np =

⎧

⎪

⎨

⎪

⎩

p + 1 p ≡ 3 mod 4;
p − 1 p ≡ 1 mod 4;
2 p = 2.

For p odd this formula can be written alternatively as

Np = p −
(

−1

p

)

, (8.1)

confirming our observations.

We can also count the number of solutions of the three-variable Pythagorean

equation in numbers modulo p. Set

N (p) = #{(x, y, z) | 1 ≤ x, y, z ≤ p, x2 + y2 ≡ z2 mod p}.

The quantity N (p) can easily be computed knowing Np.

First we account for solutions of x2 + y2 ≡ z2 mod p where z �≡ 0 mod p. For

every (a, b) satisfying a2 + b2 ≡ 1 mod p, we have p − 1 solutions to x2 + y2 ≡
z2 mod p, namely, the triples

(ac, bc, c)

for 1 ≤ c ≤ p − 1.

Now we count the number of pairs (x, y) with 1 ≤ x, y ≤ p with x2 + y2 ≡
0 mod p. If p ≡ 3 mod 4, by Lemma 5.6, there is a unique pair (p, p) that satisfies

the equation. If p ≡ 1 mod 4, then we certainly have the solution (p, p), but we also

have solutions (x, y) with x, y not divisible by p. In fact, there are numbers u, v

such that u �≡ v mod p but u2 + 1 ≡ v2 + 1 ≡ 0 mod p. Then we have 2(p − 1)

additional solutions to the Pythagorean Equation:

(x, xu, 0), 1 ≤ x ≤ p − 1,

and

(x, xv, 0), 1 ≤ x ≤ p − 1.
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This means,

N (p) =

{

(p − 1)Np + 1 p ≡ 3 mod 4;
(p − 1)Np + 2(p − 1) + 1 p ≡ 1 mod 4.

Consequently,

N (p) = (p − 1)Np +
(

1 +
(

−1

p

))

(p − 1) + 1

= (p − 1)

(

p −
(

−1

p

))

+
(

1 +
(

−1

p

))

(p − 1) + 1 = p2.

Let us collect these findings as a proposition:

Proposition 8.1. If p is a prime number, then

Np =

{

p −
(

−1
p

)

p odd;
2 p = 2,

and

N (p) = p2.

We also present an alternative evaluation of N (p) using Gauss sums for p odd. For

x, y, whether there is a z, z �≡ 0 mod p, such that x2 + y2 ≡ z2 mod p is determined

by (x2 + y2/p). If there is a z, there will be exactly two of them. If on the other hand

x2 + y2 ≡ 0 mod p, then there is a unique z, i.e., z = p. Hence the total number of

solutions is

N (p) =
p

∑

x,y=1

(

1 +
(

x2 + y2

p

))

= p2 +
p

∑

x,y=1

(

x2 + y2

p

)

.

In order to evaluate the sum, we introduce a variation of the Gauss sum introduced

in Chapter 7. Recall the definition of the Gauss sum. We set ζ = e
2π i

p and define the

pth Gauss sum by

τp =
p−1
∑

k=1

(

k

p

)

ζ k .

For 1 ≤ a ≤ p, we set

τp(a) =
p−1
∑

k=1

(

k

p

)

ζ ak

Lemma 8.2. If p is prime, then

τp(a) =
(

a

p

)

τp.
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Proof. In fact, for 1 ≤ a ≤ p − 1 the identity follows from a change of variables in

k. When a = p the identity is equivalent to the statement that

p−1
∑

k=1

(

k

p

)

= 0.

We verified this last identity in the proof of Lemma 7.1. ⊓⊔

By the lemma,

p
∑

x,y=1

(

x2 + y2

p

)

=
1

τp

p
∑

x,y=1

τp(x2 + y2) =
1

τp

p
∑

x,y=1

p−1
∑

k=1

(

k

p

)

ζ k(x2+y2)

=
1

τp

p−1
∑

k=1

(

k

p

) p
∑

x,y=1

ζ k(x2+y2) =
1

τp

p−1
∑

k=1

(

k

p

)

(

p
∑

x=1

ζ kx2

)2

If we write the inner sum
∑

1≤x≤p ζ kx2

as
∑

1≤t≤p atζ
kt then we see that

at =

⎧

⎪

⎨

⎪

⎩

2 (t/p) = 1;
1 (t/p) = 0;
0 (t/p) = −1.

Consequently,

∑

1≤x≤p

ζ kx2 =
∑

1≤t≤p

(

1 +
(

t

p

))

ζ kt =
∑

1≤t≤p

ζ kt +
∑

1≤t≤p

(

t

p

)

ζ kt

= τp(k) =
(

k

p

)

τp,

as for 1 ≤ k ≤ p − 1
∑

1≤t≤p

ζ kt = 0.

In particular, for 1 ≤ k ≤ p − 1,

⎛

⎝

∑

1≤x≤p

ζ kx2

⎞

⎠

2

= τ 2
p .

This means

p
∑

x,y=1

(

x2 + y2

p

)

=
1

τp

p−1
∑

k=1

(

k

p

)

τ 2
p = τp

p−1
∑

k=1

(

k

p

)

= 0,

by the computation in the proof of Lemma 7.1. Again, we obtain



138 8 Counting Pythagorean triples modulo an integer

N (p) = p2.

The Gauss sum method described here is applicable to far more general equations

than just the Pythagorean Equation. See, for example, [8, Theorem 3, Ch. 1] and

[108].

8.2 Solutions modulo n for a natural number n

In this section we discuss the solutions of the Pythagorean Equation modulo a number

n which is not necessarily prime. For a natural number n we set Nn = #Sn with

Sn = {(x, y) | 1 ≤ x, y ≤ n, x2 + y2 ≡ 1 mod n}.

Lemma 8.3. The function Nn is multiplicative in n, i.e., if gcd(m, n) = 1, then

Nnm = Nn · Nm .

Proof. We will show there is a bijection Snm → Sn × Sm . This would then mean

#Snm = #Sn · #Sm , and that’s what we are trying to prove. In order to show the

existence of the bijection, we need some preparation. For n ∈ N, we set

An = {1, 2, . . . , n}.

We also let A2
n = An × An . Observe that for each n, Sn ⊂ A2

n .

Suppose n ∈ N and d | n. We construct a map

ρn/d : An → Ad ,

by defining ρn/d(x), for 1 ≤ x ≤ n, to be the unique 1 ≤ y ≤ d such that x ≡
y mod d. We also define a map ρ2

n/d : A2
n → A2

d by defining ρ2
n/d(x, y) = (ρn/d(x),

ρn/d(y)) for x, y ∈ An .

We start with the observation that if gcd(m, n) = 1, then the map

ρn,m : Anm → An × Am

defined by

ρn,m(x) = (ρnm/n(x), ρnm/m(x))

is a bijection. In fact, by the Chinese Remainder Theorem 2.24, if (y1, y2) ∈
{1, 2, . . . , n}×{1, 2, . . ., m}, then there is a unique 1 ≤ x ≤ nm such that ρmn/n(x) =
y1, ρnm/m(x) = y2. Clearly, ρn,m(x) = (y1, y2). The fact that x exists and is unique

means that ρn,m is a bijection.

We can also define a two variable version of ρn,m . We define a map
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ρ2
n,m : A2

nm → A2
n × A2

m

by defining

ρ2
n,m(x, y) = (ρ2

nm/n(x, y), ρ2
nm/m(x, y)),

for (x, y) ∈ A2
nm . The map ρ2

n,m , too, is a bijection provided that gcd(n, m) = 1.

Now consider the set ρ2
n,m(Snm) ⊂ A2

n × A2
m for gcd(n, m) = 1. Since ρ2

n,m is a

bijection, ρ2
n,m(Snm) is in bijection with Snm , and consequently,

#ρ2
n,m(Snm) = #Snm . (8.2)

We claim

ρ2
n,m(Snm) = Sn × Sm . (8.3)

Once we establish Equation (8.3) we obtain

#ρ2
n,m(Snm) = #Sn · #Sm .

Comparing this last statement with Equation (8.2) gives the result.

In order to prove Equation (8.3), as ρ2
n,m is a bijection, it suffices to prove

(ρ2
n,m)−1(Sn × Sm) = Snm .

We start with a general fact whose proof we leave as an exercise to the reader.

Suppose we have we sets X, Y and a map f : X → Y . Also let A ⊂ X, B ⊂ Y .

Then f −1(B) = A if the following statement holds: x ∈ A if and only if f (x) ∈
B. Because of this general statement we need to prove that (x, y) ∈ Snm if and

only if ρ2
n,m(x, y) ∈ Sn × Sm . In concrete terms this means that for integers x, y, if

gcd(n, m) = 1, x2 + y2 ≡ 1 mod nm if and only if x2 + y2 ≡ 1 mod n and x2 +
y2 ≡ 1 mod m. This last statement is completely obvious, and we are done.

⊓⊔
The lemma implies that in order to determine Nn for all n, we just need to determine

Npα for primes p, because then if n = p
α1

1 · · · p
αk

k , we have

Nn = Np
α1
1

· · · Np
αk
k

.

So we proceed to determine Npα . As a test case let’s start with Np2 for an odd prime

p. The key observation is that if x2 + y2 ≡ 1 mod p2, then x2 + y2 ≡ 1 mod p. This

determines a map

ηp2/p : Sp2 → Sp,

which is simply reduction modulo p.

We now fix an element (x0, y0) ∈ Sp, and study the set of (x, y) ∈ Sp2 that reduce

to (x0, y0), i.e., η−1
p2/p

(x0, y0) ⊂ Sp2 . Every such pair (x, y) would have to be of the

form

(x0 + kp, y0 + lp)

for some k, l mod p. We need to have

(x0 + pk)2 + (y0 + pk)2 ≡ 1 mod p2.
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Squaring gives

(x2
0 + y2

0 − 1) + 2p(kx0 + ly0) + p2(k2 + l2) ≡ 0 mod p2,

or

(x2
0 + y2

0 − 1) + 2p(kx0 + ly0) ≡ 0 mod p2.

Since x2
0 + y2

0 ≡ 1 mod p, x2
0 + y2

0 − 1 is divisible by p. Dividing by p gives

x2
0 + y2

0 − 1

p
+ 2(kx0 + ly0) ≡ 0 mod p.

Since p �= 2, 2 will have a multiplicative inverse 2−1 mod p. Then this last equation

says

kx0 + ly0 ≡ −2−1 x2
0 + y2

0 − 1

p
mod p.

Since (x0, y0) �= (0, 0), there are p choices for (k, l) that satisfy this congruence.

Consequently, we see that if p �= 2, then

Sp2 = pSp.

Indeed this is typical:

Lemma 8.4. If p �= 2, for each n ≥ 1,

Npn+1 = pNpn .

In particular, for n ≥ 1

Npn = pn −
(

−1

p

)

pn−1.

Proof. We define a map

Spn+1 → Spn

by reduction modulo pn . We will see in a moment that this map is surjective. Let

(x0, y0) ∈ Spn . We determine all (x, y) that reduce to (x0, y0). Every such pair (x, y)

will be of the form

(x0 + kpn, y0 + lpn)

for some x, y modulo p. Then x2 + y2 ≡ 1 mod pn+1 is equivalent to saying

(x0 + kpn)2 + (y0 + kpn)2 ≡ 1 mod pn+1,

or

(x2
0 + y2

0 − 1) + 2pn(kx0 + ly0) + p2n(k2 + l2) ≡ 0 mod pn+1.

Since 2n ≥ n + 1, this last equation is equivalent to

(x2
0 + y2

0 − 1) + 2pn(kx0 + ly0) ≡ 0 mod pn+1. (8.4)
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Dividing by pn gives

kx0 + ly0 ≡ −2−1 x2
0 + y2

0 − 1

pn
mod p.

This equation has p solutions in k, l mod p, and we are done. ⊓⊔

For p = 2 the situation is more complicated. For example, the map S2n+1 → S2n

is in general not surjective, i.e., there may be (x0, y0) ∈ S2n for which there is no

(x, y) ∈ S2n+1 satisfying x ≡ x0 mod 2n and y ≡ y0 mod 2n . To see this in a concrete

situation, let n = 2. Then a quick search gives

S4 = {(4, 1), (4, 3), (2, 1), (2, 3), (1, 4), (3, 4), (1, 2), (3, 2)}.

Similarly we have

S8 = {(4, 1), (4, 3), (4, 5), (4, 7), (8, 1), (8, 3), (8, 5), (8, 7), (1, 4),

(3, 4), (5, 4), (7, 4), (1, 8), (3, 8), (5, 8), (7, 8)}.

The image of the reduction modulo 4 map from S8 to S4 is

{(4, 1), (4, 3), (1, 4), (3, 4)},

which is visibly not all of S4.

This in particular means that Lemma 8.4 as written is not valid for p = 2. One

might of course try to trace the steps of the proof of Lemma 8.4 to see if any of it

can be salvaged for p = 2. The main issue with the proof of the lemma is that in

Equation (8.4) the term 2pn(kx0 + ly0) vanishes modulo 2n+1 if p = 2, so unless

x2
0 + y2

0 − 1 is already divisible by 2n+1, one gets nothing. However, the key to the

proof of Lemma 8.4 is that the term 2pn(kx0 + ly0) is divisible by pn and not pn+1.

In order to adapt this argument to p = 2, we make one small adjustment:

Lemma 8.5. The following identity holds:

N2n =

{

2 n = 1;
2n+1 n ≥ 2.

Proof. That N2 = 2 is obvious. We already determined N4 and N8. Our goal is to

show that

N2n+1 = 2N2n , (8.5)

for each n ≥ 2. Once we know this identity, an easy induction gives the lemma.

We start by obtaining some information about the structure of S2n . We define an

equivalence relation on S2n by defining (x, y) ∼ (x ′, y′) for (x, y), (x ′, y′) ∈ S2n if

x ≡ x ′ mod 2n−1 and y ≡ y′ mod 2n−1. Let E1,E2, . . . ,ER be the equivalence classes.
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Our first claim is that each equivalence class Ei has exactly four elements. In fact, if

(x, y), (x ′, y′) ∈ S2n and (x, y) ∼ (x ′, y′), then

{

x ′ ≡ x + k · 2n−1 mod 2n,

y′ ≡ y + l · 2n−1 mod 2n,
(8.6)

for k, l ∈ {0, 1}. Now, let (x, y) ∈ S2n , and for k, l ∈ {0, 1} define x ′, y′ by (8.6). We

will prove that (x ′, y′) ∈ S2n . In order to see this we compute

(x ′)2 + (y′)2 ≡ (x + k · 2n−1)2 + (y + l · 2n−1)2 mod 2n

≡ x2 + y2 + 2n(k + l) + (k2 + l2) · 22(n−1) mod 2n

≡ x2 + y2 mod 2n

≡ 1 mod 2n.

This means that every element of the equivalence class of (x, y) is of the form (8.6),

and every pair (x ′, y′) of the form (8.6) is equivalent to (x, y). Since there are four

choices for the pairs (k, l) we conclude that the equivalence class of (x, y) has four

elements, as claimed. Note that this means

N2n = 4R. (8.7)

For each i , fix a representative (xi , yi ) of Ei . The above analysis shows that

S2n =
R

⋃

i=1

⋃

k,l∈{0,1}

{(xi + k · 2n−1, yi + l · 2n−1)}. (8.8)

As before we consider the reduction map

η : S2n+1 → S2n .

Let (X, Y ) ∈ S2n+1 , and η(X, Y ) = (x, y). This means that

X ≡ x + r · 2n, Y ≡ y + s · 2n mod 2n+1.

Combined with (8.8) we conclude that there are k, l, r, s ∈ {0, 1}, and 1 ≤ i ≤ R

such that

X ≡ xi + k · 2n−1 + r · 2n, Y ≡ yi + l · 2n−1 + s · 2n mod 2n+1.

Now we examine the identity X2 + Y 2 ≡ 1 mod 2n+1 to see the types of restrictions

we need on k, l, r, s. We have

X2 + Y 2 ≡ (xi + k · 2n−1 + r · 2n)2 + (yi + l · 2n−1 + s · 2n)2 mod 2n+1

≡ (x2
i + y2

i ) + 2n(k · xi + l · yi ) mod 2n+1.

Since X2 + Y 2 ≡ 1 mod 2n+1 we conclude
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(x2
i + y2

i ) + 2n(k · xi + l · yi ) ≡ 1 mod 2n+1.

Consequently, we need

k · xi + l · yi ≡ −
x2

i + y2
i − 1

2n
mod 2. (8.9)

Since x2
i + y2

i ≡ 1 mod 2n , not both of xi , yi can be divisible by 2. As a result, there

will be two pairs (k, l) with k, l ∈ {0, 1} such that (8.9) is satisfied. Furthermore,

once appropriate k, l are chosen, any choice of r, s ∈ {0, 1} will work. Finally, N2n+1

is equal to the number of possible pairs (xi , yi ), which is equal to R, multiplied by

the number of acceptable pairs (k, l), equal to 2, multiplied by the number of all pairs

(r, s), equal to 4, i.e.,

N2n+1 = 2 · 4 · R = 8R.

Comparing this identity with (8.7) proves (8.5). ⊓⊔

Clearly this proof was much more subtle than the proof of Lemma 8.4. As noted

above, what prevented us from carrying out the proof of Lemma 8.4 for p = 2 was

the fact that in the binomial expansion

(x + y)2 = x2 + 2xy + y2

the middle term is divisible by 2—and this is zero modulo 2. This suggests that if

we were to consider an equation of the form

x3 ≡ a mod pn

then we should run into a problem for p = 3, the reason being that the coefficient of

x2 y in the binomial expansion

(x + y)3 = x3 + 3x2 y + 3xy2 + y3

is divisible by 3.

The coefficients that cause trouble in these examples are related to the derivatives

of the polynomials x2 and x3, respectively. There is an underlying general result,

Hensel’s Lemma, that explains these examples. See Exercise 8.4 below for Hensel’s

Lemma, and Exercise 8.5 for a generalization.

Example 8.6. In this example, following the method described above, we will show

that for each n, x2 ≡ 2 mod 7n has two solutions. We proceed by induction. If n = 1,

then x = 3, 4 are the two solutions. Now suppose the assertion is true for n, and let

xn be one of the two solutions of x2 ≡ 2 mod 7n . We will show that there is a unique

xn+1 mod 7n+1 such that xn+1 ≡ xn mod 7n and x2
n+1 ≡ 2 mod 7n+1. As before, let

xn+1 = xn + k · 7n . Since we wish to get x2
n+1 ≡ 2 mod 7n+1 we write
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(xn + k · 7n)2 ≡ x2
n + 2kxn · 7n + k2 · 72n ≡ x2

n + 2kxn · 7n mod 7n+1.

In the last step we used the fact that for n ≥ 1, 2n ≥ n + 1, and hence 72n ≡
0 mod 7n+1. Then we wish to have

x2
n + 2kxn · 7n ≡ 2 mod 7n+1,

or

(x2
n − 2) + 2kxn · 7n ≡ 0 mod 7n+1.

Since x2
n ≡ 2 mod 7n , 7n | x2

n − 2. Dividing the congruence by 7n gives

x2
n − 2

7n
+ 2kxn ≡ 0 mod 7.

Since 7 ∤ 2xn , 2xn is invertible modulo 7, and we obtain

k ≡ −(2xn)
−1 ·

x2
n − 2

7n
mod 7.

This means there is a unique choice for k modulo 7, and this is enough to establish

the induction step.

Let us illustrate this procedure by computing the first few values of xn . Suppose

we start with x1 ≡ 3 mod 7. Write x2 = 3 + 7k. We have

(3 + 7k)2 ≡ 2 mod 72.

Multiplying out gives 9 + 42k + 72k2 ≡ 2 mod 72. Consequently,

7 + 42k ≡ 0 mod 72.

Divide by 7 to obtain,

1 + 6k ≡ 0 mod 7.

This gives k = 1, and consequently, x2 = 10. We also examine x3. Write x3 = x2 +
l · 72 = 10 + l · 72. Then we have

(10 + l · 72)2 ≡ 100 + 2 · 10 · 72 · l + 74 ≡ 100 + 2 · 10 · 72 · l mod 73.

Since we wish to have x2
3 ≡ 2 mod 73, we get

100 + 2 · 10 · 72 · l ≡ 2 mod 73.

Consequently, 20 · 72 · l + 98 ≡ 0 mod 73. Divide by 2 · 72 to obtain

1 + 10l ≡ 0 mod 7.



8.2 Solutions modulo n for a natural number n 145

We obtain l ≡ 2 mod 7. This gives x3 = 10 + 2 · 72 = 108. So, x1 = 3, x2 = 3 + 7,

x3 = 3 + 7 + 2.72, and the process continues. If we had started with x1 = 4, we

would have gotten x2 = 39 = 4 + 5 · 7 and x3 = 235 = 4 + 5 · 7 + 4 · 72.

Exercises

8.1 Show that the equation a1x1 + · · · + an xn = b with the ai ’s integers is solvable

in integers if and only if the congruence equation

a1x1 + · · · + an xn ≡ b mod m

is solvable for all natural numbers m.

8.2 (�) Numerically verify Equation (8.1) for a few small values of p.

8.3 Find an explicit formula for Nn in terms of the prime factorization of n.

8.4 Prove Hensel’s Lemma: Let f ∈ Z[X ], and suppose x1 ∈ Z is such that

f (x1) ≡ 0 mod p, but f ′(x1) �≡ 0 mod p. Then for each n ≥ 1, there is

xn ∈ Z, uniquely determined modulo pn , such that f (xn) ≡ 0 mod pn , and

xn ≡ x1 mod p.

8.5 Here is a generalization of Hensel’s Lemma: Let f ∈ Z[x]. Suppose for some

N and a ∈ Z, we have p2N+1 | f (a), pN | f ′(a), but pN+1 ∤ f ′(a). Show that

for each M > N there is an xM ∈ Z, uniquely determined modulo pM , such

that f (xM) ≡ 0 mod pM and xM ≡ a mod pN+1.

8.6 Show that the equation

(x2 − 13)(x2 − 17)(x2 − 221) ≡ 0 mod m

is solvable for all m. This is [8, Page 3, Problem 4].

8.7 Find a homogeneous cubic polynomial in three variables x, y, z such that

f (x, y, z) ≡ 0 mod 2

has only the zero solution.

8.8 Let ζ be a primitive pth root of unity. Let f (x1, . . . , xn) be a polynomial of n

variables with integral coefficients. Show that the number of solutions of the

congruence equation

f (x1, . . . , xn) ≡ 0 mod p

is equal to
1

p

∑

x1,...,xn

∑

x

ζ x f (x1,...,xn)

where all the sums are over the set of integers {1, . . . , p}.
8.9 Let f (x, y) = x3 + 7y5. Use the previous exercise to give an estimate the

number of solutions of f (x, y) ≡ 0 mod p for a large enough prime number

p. For a generalization, see [8, Ch. 1, §2].
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8.10 (�) Let f (x) = x2 + 2x + 7. For each prime p, solve the equation f (x) ≡
0 mod p, and pick representatives for the roots 0 ≤ v1, v2 ≤ p − 1, allowing

for the possibility that v1 and v2 may be equal. Normalize the roots by consid-

ering v1/p, v2/p ∈ [0, 1]. How are these numbers distributed in the interval

[0, 1] as p gets large? Experiment with other polynomials, including quadratic

polynomials with or without rational roots, and polynomials of higher degree.

8.11 (�) Investigate the number of solutions of the equation x2 ≡ a mod 2n for

several values of a and n.

Notes

p-adic numbers

In the proofs of Lemma 8.4, Lemma 8.5, and in Example 8.6 we encountered

sequences (xn)n≥1 with the property that

• xn is a congruence class modulo pn , represented by an integer, denoted by the

same letter xn , 0 ≤ xn < pn;

• xn+1 ≡ xn mod pn , for each n ≥ 1.

We define a p-adic integer to be a sequence of integers (xn)n satisfying these prop-

erties. We denote the set of p-adic integers by Zp. Note that for each r ∈ Z, the

ordinary set of integers, we obtain a constant sequence r := (r mod pn)n≥1 ∈ Zp,

showing that Z is naturally a subset of Zp. (Here r mod p is the remainder of the

division of r by p, note that for p > r , r mod p = r .) The set Zp is a commutative

ring equipped with the following operations:

(xn)n≥1 + (yn)n≥1 := (xn + yn)n≥1;

(xn)n≥1 · (yn)n≥1 := (xn yn)n≥1.

The zero element and the multiplicative identity of Zp are given by the constant

sequences 0 and 1, respectively. When there is no confusion we drop the line on top

of an ordinary integer when thinking of it as a p-adic integer, e.g., we write 0 instead

of 0.

It is not hard to see that Zp has no zero divisors, i.e., if xy = 0, then either x = 0

or y = 0. We denote by Qp the field of fractions of Zp, and call it the field of p-adic

numbers. It is clear that Qp contains Q.

Let x = (xn) ∈ Zp. Since pn | xn+1 − xn , we can write xn+1 = xn + an pn for

some 0 ≤ an < p, and, if with analogy, we let x1 = a0, we get x1 = a0, x2 = a0 +
a1 · p, x3 = a0 + a1 · p + a2 · p2, x4 = a0 + a1 · p + a2 · p2 + a3 · p3, etc. We often

write the p-adic integer x as a formal sum
∑∞

k=0 ak · pk , with each ak in the
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set {0, . . . , p − 1}. For example, −1 =
∑∞

k=0(p − 1) · pk . If a0 �= 0, then x =
∑∞

k=0 ak · pk is invertible in Zp. If we denote the set of all invertible elements in

Zp by Z×
p , then every non-zero x ∈ Zp can be written as x = ε · pm with ε ∈ Z×

p ,

m ≥ 0. By considering quotients of such expressions, we see that every non-zero

element of Qp can be written as ε · pm for ε ∈ Z×
p , m ∈ Z.

Exercise 8.4 can be interpreted in terms of p-adic integers in the following form,

also known as Hensel’s Lemma: Let f ∈ Z[X ], and suppose x1 ∈ Z is such that

f (x1) ≡ 0 mod p, but f ′(x1) �≡ 0 mod p. Then there is x ∈ Zp such that f (x) = 0

in Zp. Let’s examine the equation x2 + 1 = 0. Clearly, this equation has no solutions

in Q. If p is an odd prime such that p ≡ 1 mod 4, then Equation (6.3) implies that

the equation x2 + 1 ≡ 0 mod p has a solution x1. Also if we let f (x) = x2 + 1,

f ′(x) = 2x , and this implies f ′(x1) �≡ 0 mod p. Hensel’s Lemma now implies that

x2 + 1 = 0 has a solution in Zp, and consequently in Qp. If on the other hand,

p ≡ 3 mod 4, then since x2 + 1 ≡ 0 mod p has no solutions, the equation x2 + 1 = 0

will have no solutions in Qp. It can also be shown that x2 + 1 = 0 has no solutions

in Q2.

The field of p-adic numbers can also be constructed using topology. This method

resembles the way R is constructed from Q via Cauchy sequences. Recall that a

Cauchy sequence of real numbers is a sequence (xn)n such that for every ε > 0, there

is N such that |xn − xm | < ε for all n, m > N . We say Cauchy sequences (xn)n, (yn)n

are equivalent, and write (xn)n ∼ (yn)n , if for all ε > 0, there is N > 0 such that

|xn − ym | < ε for all n, m > N . Then the field R can be thought of as the equivalence

classes of Cauchy sequences of rational numbers modulo this equivalence relation

∼. Note that in this construction we did not have to specify what | · | is because

presumably everyone is familiar with the ordinary absolute value. Let us define a

new absolute value on Q which depends on the choice of a prime number p. For a

non-zero rational number γ , we can write

γ = pr ·
a

b

with r ∈ Z, a, b ∈ Z, with gcd(p, ab) = 1. Then we define |γ |p = p−r . We also

define |0|p = 0. Then for all rational numbers x , |x |p ≥ 0, and |x |p = 0 if and only

if x = 0. Also, we have a triangle inequality, |x + y|p ≤ |x |p + |y|p. In fact, we have

the much stronger ultrametric inequality |x + y|p ≤ max(|x |p, |y|p).) This means

that if we define dp(x, y) = |x − y|p, we obtain a metric on Q, and it makes sense to

talk about Cauchy sequences. We define a p-Cauchy sequence of rational numbers

to be a sequence (xn)n such that for ε > 0, there is N such that |xn − xm |p < ε for

all n, m > N . We say the p-Cauchy sequences (xn)n, (yn)n are p-equivalent, and

write (xn)n ∼p (yn)n , if for all ε > 0, there is N > 0 such that |xn − ym |p < ε for

all n, m > N . The field Qp is nothing but the p-equivalence classes of p-Cauchy

sequences of rational numbers.

The beauty of the topological construction of p-adic fields is that it allows us to

construct p-adic type field from other number fields. Let K be a number field as in
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the Notes to Chapter 5, with O its ring of integers. Let p be a prime ideal in O . Then

if γ ∈ K is non-zero, then we can let ep(γ ) be the exponent with which the prime

ideal p occurs in the factorization of γO as a product of prime ideals. We then define

|γ |p = #(O/p)−ep(γ ).

Here #(O/p) is the number of element of the quotient additive group O/p. As before,

we define |0|p = 0. The function | · | : K → R gives rise to a metric, and again it

makes sense to talk about Cauchy sequences and equivalence classes of Cauchy

sequences. The set of equivalence classes of Cauchy sequences with respect to the

metric defined by | · |p is called the p-adic field and is denoted by Kp.

Fields of p-adic numbers have many applications in modern number theory,

through their algebraic, topological, and measure theoretic properties. We refer to

[41, Ch. 2, 3] for generalities regarding metric spaces and Cauchy sequences, and

[8], especially Ch. 1, 2, and 4 for some applications of p-adic numbers.

Hilbert’s Law of Reciprocity

Quadratic Reciprocity for fields other than Q is known as Hilbert Reciprocity. The

formulation of this reciprocity law requires the notion of p-adic numbers introduced

above. Let us explain Hilbert’s formulation of the Law of Quadratic Reciprocity over

Q. Let a, b be non-zero rational numbers. For each prime p, define the Hilbert Symbol

(a, b)p to be +1 if the equation ax2 + by2 = z2 has solutions in p-adic numbers

x, y, z, not all of which are zero; otherwise, we define (a, b)p to be equal to −1. We

define (a, b)∞ to be +1 or −1 depending on whether the equation ax2 + by2 = z2

has non-trivial solutions in real numbers, i.e., (a, b)∞ = −1 if a, b < 0, and +1

otherwise. If a, b are non-zero rational numbers, then (a, b)p = +1 for all but finitely

many primes p. Hilbert’s Law of Reciprocity for Q says that for all a, b non-zero

rational numbers we have

(a, b)∞ ·
∏

p prime

(a, b)p = +1.

It is a pleasant exercise to show that this theorem implies Gauss’s Law of Quadratic

Reciprocity (Hint: Let a = p, b = q, p, q odd prime numbers). For a proof of this

theorem over Q, see Serre [44, Ch. III].

For other number fields, we need to define the generalized Hilbert symbols. Let

K be a number field. First we define the analogues of (·, ·)p. For a prime ideal p of

K , if a, b are non-zero elements of K , then we define (a, b)p = +1 if the equation

ax2 + by2 = z2 has non-trivial solutions in Kp, otherwise we define it to be −1.

To define the analogue of (a, b)∞, we need the concept of a real embedding. A real

embedding of K is a non-zero function σ : K → R such that σ(xy) = σ(x)σ (y) and
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σ(x + y) = σ(x) + σ(y) for all x, y ∈ K . For the number field K , there are only

finitely many real embeddings, σ1, σ2, . . . , σr . For example, if K = Q(
√

2), then

every element of K can be written as u + v
√

2 with u, v ∈ Q, and the real embeddings

are σ1 : u + v
√

2 �→ u + v
√

2 and σ2 : u + v
√

2 �→ u − v
√

2. For 1 ≤ j ≤ r and

a, b as above, we define (a, b) j to be +1 if at least one of σ j (a), σ j (b) is a positive

number, otherwise we define it to be −1. If K = Q, since Q has only one real

embedding, (a, b)1 = (a, b)∞ defined earlier. Hilbert’s Law of Reciprocity for K is

the statement that if a, b ∈ K are non-zero, then

r
∏

j=1

(a, b) j ·
∏

p prime ideal

(a, b)p = +1.

Again, all but finitely many of the factors in this product are equal to 1, so the

product makes sense. Hilbert’s Law of Reciprocity for an arbitrary number field is

a hard theorem. Nowadays, it is most convenient to derive this theorem from the

general Artin’s Law of Reciprocity which includes all the reciprocity theorems we

have mentioned in this chapter. Cox [14, Ch. Two] provides a nice introduction to

Artin’s Law of Reciprocity. We refer to Lemmermeyer [32], especially the preface,

and the references therein, for a history of these ideas.



Chapter 9

How many lattice points are there on a
circle or a sphere?

A point in R
n with integral coordinates is called a lattice point. In this chapter we

study the distribution of lattice points on circles and spheres in R
n . We start by

finding a formula for the number r(n) of points with integral coordinates on the

circle x2 + y2 = n for a natural number n. We then prove a famous theorem of Gauss

that gives an expression for the sum
∑k

n=1 r(n). We then state similar theorems for

the number of points on higher dimensional spheres. At the end we state and prove

a theorem of Jarnik (Theorem 9.9), and a recent generalization due to Cilleruelo and

Córdoba (Theorem 9.10), about integral points on arcs. In the Note, we discuss the

error term in Gauss’ theorem mentioned above.

9.1 The case of two squares

For a natural number n, we let r(n) be the number of representations of n as a sum

of two integral squares, i.e., the number of integral points on the circle x2 + y2 = n.

By Theorem 5.7 we know that if we write

n = m · 2α
∏

p≡1 mod 4

pβp

with m a product of primes of the form 4k + 3, then r(n) = 0 unless m is a square.

Theorem 9.1. If m is a square,

r(n) = 4
∏

p

(1 + βp).

Proof. If n = x2 + y2, then n = N (x + iy). So we need to determine the number of

Gaussian integers z such that n = N (z). By Theorem 5.10 any such z is a product

z = uk(1 + i)a
∏

p≡1 mod 4

̟
ep

p ̟
f p

p .
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Here u is one of the four units in Z[i]; k ∈ N is a product of primes of the form 4k+3;

and all but finitely many of the non-negative integers ep, f p are zero, meaning the

product is finite. Then we have

N (z) = N (k)N (1 + i)a
∏

p≡1 mod 4

N (̟p)
ep N (̟ p)

f p

= k22a
∏

p≡1 mod 4

pep p f p = k22a
∏

p≡1 mod 4

pep+ f p .

Consequently, since N (z) = n we get

m2α
∏

j

p
β j

j = k22a
∏

p≡1 mod 4

pep+ f p .

This implies m = k2, a = α, and for each p of the form 4k + 1, ep + f p = βp. The

number of such ep, f p is 1 + βp. Since there are four possibilities for the unit u, i.e.,

±1,±i , we get a total of

4
∏

p

(1 + βp)

choices for z. This finishes the proof. ⊓⊔

For example, we have

180 = 32 · 22 · (2 + i) · (2 − i).

So we get the following numbers as the list of numbers z that have the property that

N (z) = 180:

u · 3 · (1 + i)2 · (2 + i) = u(−6 + 12i)

and

u · 3 · (1 + i)2 · (2 − i) = u(6 + 12i)

for u ∈ {+1,−1, i,−i}. This means that the possibilities for the ordered pairs (a, b)

such that 180 = a2 + b2 are:

(±6,±12), (±12,±6),

a total of eight possibilities.

Now that we have a formula for r(n) one could ask natural statistical questions

about it. For example, one could ask what the average behavior of r(n) is like. Let

us make this notion precise.

Definition 9.2. Suppose f : N → C is a function. We say f has average value equal

to c if the limit

lim
N→∞

1

N

N
∑

n=1

f (n)

exists and is equal to c.



9.1 The case of two squares 153

It should be clear that not every function has an average value, see Exercise 9.3.

There is a more general concept which is the following:

Definition 9.3. For functions f, g : N → C, we say f, g have the same average

order, or that g is an average order of f , if

lim
X→∞

∑

n≤X f (n)
∑

n≤X g(n)
= 1.

In applications, one of the functions, say f , is the one we are interested in, and the

idea is to find a nice function g which imitates the function f on average.

In the case of r(n), the sum
∑N

n=1 r(n) that appears in the definition of the average

value has a neat geometric interpretation. Indeed, we have

N
∑

n=1

r(n) =
N

∑

n=1

#{(x, y) ∈ Z
2 | x2 + y2 = n}

= #{(x, y) ∈ Z
2 | x2 + y2 ≤ N }.

This means that
∑N

n=1 r(n) is the number of integral points inside the circle of radius√
N . Intuitively, the number of integral points inside the circle of radius

√
N should

be about the area of the circle. One way to see this is to associate a unit square to

each integral point as shown in Figure 9.1 for the point (3, 2).

Fig. 9.1 The grey square is

completely within the circle

of radius 6. The point (5, 5)

is outside the circle of radius

6 but the blue square to its

lower left intersects the

circle. The point (−2,−5) is

within the circle of radius 6

but the red square to its

lower left is not contained in

the circle of radius 6
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The trouble here is that not every square based on a point inside the circle will

be completely within the circle, e.g., the red square in Figure 9.1 whose upper right

corner is the point (−2,−5) is not entirely within the circle of radius 6; and also some

integral points outside the circle of radius 6 shown in the picture will have squares

associated with them that intersect the circle, e.g., the blue square to the lower left

of the point (5, 5). The key point, however, is that the troublesome squares cannot

stray too much from the boundary of the circle with radius
√

N . In fact, since the

diagonal of a unit square is
√

2, each square to the lower left of an integral point

within the circle of radius
√

N will be fully contained in a circle of radius
√

N +
√

2.

For
√

N = 6, the purple circle in the figure has radius 6 +
√

2. Consequently, the

total area of all unit squares, which is equal to
∑N

n=1 r(n), is at most the area of the

circle with radius
√

N +
√

2. Hence,

N
∑

n=1

r(n) ≤ π(
√

N +
√

2)2 = π N + 2π
√

2
√

N + 2π.

Similarly, the entire area of the circle with radius
√

N −
√

2 is covered by unit

squares to the lower left of integral points within the circle of radius
√

N . In the

figure above the green circle is the one that has radius 6 −
√

2. This means,

N
∑

n=1

r(n) ≥ π(
√

N −
√

2)2 = π N − 2π
√

2
√

N + 2π.

Putting these inequalities together, we get

π N − 2π
√

2 ·
√

N + 2π ≤
N

∑

n=1

r(n) ≤ π N + 2π
√

2
√

N + 2π.

These inequalities imply

∣

∣

∣

∣

∣

N
∑

n=1

r(n) − π N − 2π

∣

∣

∣

∣

∣

≤ 2π
√

2
√

N .

We can write this inequality in terms of the big O notation. For real functions f, g,

we write f (x) = O(g(x)) if there is a constant C > 0 such that for all x large

enough, | f (x)| ≤ C |g(x)|. We use the big O notation if we do not have to worry

about the specific constants. Using this notation we can write

N
∑

n=1

r(n) = π N + 2π + O(
√

N ) = π N + O(
√

N ).

This last identity is a famous result of Gauss which for ease of reference we record

as a theorem:

Theorem 9.4 (Gauss). As N → ∞,
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N
∑

n=1

r(n) = π N + O(
√

N ).

This theorem has the following rather curious corollary:

Corollary 9.5. The average value of r(n) is π .

Remark 9.6. We will prove a variation of Theorem 9.4 in §13.1.

9.2 More than two squares

It is clear that the geometric argument of the proof of Theorem 9.4 can be adapted

to every dimension. For k ≥ 2 and n ∈ N, we set

rk(n) = #

{

(x1, . . . , xk) ∈ Z
k |

k
∑

i=1

x2
i = n

}

,

the number of integral points on the sphere in the k-dimensional space. We have

r2(n) = r(n). Then we have:

Theorem 9.7. As N → ∞,

N
∑

n=1

rk(n) =
π

k
2

Γ
(

k
2

+ 1
) N

k
2 + O(N

k−1
2 ).

For the definition and basic properties of the Gamma function Γ see [4] or [41,

Chapter 8]. We review some basic properties in Exercise 9.2. The proof of Theorem

9.7 is sketched in Exercises 9.4–9.6 below.

Note that Theorem 9.7 shows that for k > 2, the limit

lim
N→∞

1

N

N
∑

n=1

rk(N )

is not finite, and consequently rk(N ) does not have an average value.

Now we state an extension of Theorem 5.7 for k > 2.

Theorem 9.8. For n ∈ N, r3(n) �= 0 if and only if n is not of the form 4a(8n + 7).

If k > 3, for all n, rk(n) �= 0, i.e., every natural number is the sum of four integral

squares.

We will give a proof of this fact in Chapter 10 using a theorem of Minkowski. We

will give other proofs in Chapters 11 and 12. The most challenging part of the theorem
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is the statement for sums of three squares. We present two proofs for this theorem in

§10.5 and §12.4, but unfortunately, both of these proofs rely in substantial ways on

Dirichlet’s Arithmetic Progression Theorem, Theorem 5.11 in Notes to Chapter 5.

In Chapter 5 we referred to Theorem 5.2 as the Two Squares Theorem. Throughout

the text we refer to the portion of Theorem 9.8 that deals with sums of three squares

as the Three Squares Theorem, and to the part about the expressibility of every natural

number as the sum of four squares as the Four Squares Theorem often without explicit

reference to Theorem 9.8.

Generalizing Theorem 9.1 for k > 2 is far more problematic. Computing r3(n)

already poses a serious challenge, [113]. Erdös [73] claims that there is a constant

c > 0 such that

r3(n) ≥ c
√

n log log n

but does not provide a proof. For k = 4 there is a beautiful explicit formula, due to

Jacobi (1834), that says

r4(n) = 8
∑

d|n,4∤d

d.

The short paper [80] contains an elementary proof of this fact. For k > 5, the question

of determining rk has a long history. We refer the reader to [79] and [74] for some

early works.

9.3 Integral points on arcs

In §3.2 we studied the rational points on the unit circle. If we have a rational point

(a/c, b/c) on the unit circle, a, b, c ∈ Z, we obtain an integral point (a, b) on the

circle x2 + y2 = c2 of radius |c|, an integer. In general, if we have an integral point

(a, b) on some circle with equation x2 + y2 = R2, R need not be an integer, e.g., the

point (2, 1) is on the circle with radius
√

5. As we noted above, Theorem 9.1 counts

the number of integral points on the circle x2 + y2 = n for a natural number n. As

we will see below, it is in general difficult to gain a complete understanding of the

distribution of these integral points on the circle, and there are still open problems

that we do not know to solve. We learned the material of this section and Theorems

9.9 and 9.10 from Lillian Pierce (private communication).

Suppose we have three integral points A, B, C on a circle of radius R and let L

be an arc containing the three points, e.g.,
⌢
ACB , as in Figure 9.2 . Let a, b, c be the

lengths of the three sides of the triangle ABC and S the area of the triangle formed

by the points.

By Exercise 9.8 we have abc = 4S R. Then since a, b, c ≤ max{a, b, c} we have
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Fig. 9.2 Triangle ABC with

area S whose vertices are on

a circle of radius R

4S R = abc ≤ max{a, b, c}3.

But since any triangle with three vertices that are integral points has area at least 1/2

we have

max{a, b, c}3 ≥ 2R

and consequently,

max{a, b, c} ≥ (2R)1/3.

But the maximum of a, b, c is less than the length of the arc L . This means

L ≥ (2R)1/3.

We state this as the following important theorem:

Theorem 9.9 (Jarnik). An arc of length less than (2R)1/3 in a circle of radius R

contains at most two integral points.

In the case where we have more than three points the situation becomes com-

plicated very quickly. The following is a fairly recent result that gives a non-trivial

bound for any number of points.

Theorem 9.10 (Cilleruelo and Córdoba, [67]). On a circle of radius R centered

at the origin, an arc of length √
2R

1
2
− 1

4[m/2]+2

contains at most m integral points.

At the time of this writing the bound obtained in the theorem seems to be the best

available in literature; see [68, §5] for several comments on this theorem. The bound

is sharp for m = 3, but it is not clear whether for m ≥ 4 it provides the best bound
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possible. For m = 4 the theorem gives the exponent 2/5, and ibid. lists the following

as a non-trivial problem:

Question 9.11. Can the exponent 2/5 be improved?

Proof of Theorem 9.10. We use the notations of the proof of Theorem 9.1. If the circle

of radius R contains no lattice points, there is nothing to prove. So we assume that

R =
√

n for some natural number n, and by Theorem 9.1, we may further assume

n = k22α
∏

p≡1 mod 4

p
βp

j

with k a product of primes of the form 4k +3. Then the total number of lattice points

on the circle is

r(n) = 4
∏

p

(1 + βp).

This number r(n) corresponds to the various representations N (a + ib) = n, and in

fact one can write any such a + ib in the form

uk(1 + i)α
∏

p≡1 mod 4

̟
ep

p ̟
f p

p .

for a unit u ∈ {±1,±i} and ep + f p = βp with ep, f p ≥ 0. Here for each prime

p ≡ 1 mod 4, write

̟p =
√

pe2π iφp

and

̟ p =
√

pe−2π iφp .

Then

̟
ep

p ̟
f p

p = p
βp

2 e2π i(ep− f p)φp = p
βp

2 e2π i(βp−2 f p)φp .

Also each unit in Z[i] can be written as

e2π i t
4 , t ∈ {0, 1, 2, 3}.

Consequently, every a + ib with N (a + ib) = n can be written as

√
ne2π i(φ2+

∑

p γpφp+ t
4
) (9.1)

for t ∈ {0, 1, 2, 3}, |γp| ≤ βp and γp ≡ βp mod 2, and the sum in the exponent is

over primes p with p ≡ 1 mod 4, and φ2 =

{

0 α even;
1 α odd.

We divide the remainder of the proof into three steps.

Step One. Suppose we have m + 1 lattice points on an arc of length
√

2Rθ . We write

these points as

as + ibs =
√

ne2π i(φ2+
∑

p γ s
pφp+ ts

4
),



9.3 Integral points on arcs 159

s ∈ {1, . . . , m + 1}, with γ s
p, t s integers as above. For s, s ′ ∈ {1, . . . , m + 1},

γ s
p ≡ γ s ′

p mod 2. Define

ψ s,s ′ =
∑

p

γ s
p − γ s ′

p

2
φp +

t s − t s ′

8
.

Note that 2π |||ψ s,s ′ ||| is one half of the central angle between as + ibs and as ′ + ibs ′

in radians (Here and elsewhere, for a real number x , |||x ||| is the distance from x to

the closest integer). If the length of the arc connecting as + ibs and as ′ + ibs ′ is η,

then we have

2π |||ψ s,s ′ ||| =
η

2R
≤

√
2Rθ

2R
=

1
√

2
Rθ−1.

We obtain the first main inequality of this proof:

|||ψ s,s ′ ||| ≤
1

2π
√

2
Rθ−1. (9.2)

Step two. Now we proceed to obtain a lower bound for |||ψ s,s ′ |||. Comparing this

lower bound with Equation (9.2) gives the result. We recognize two cases:

• If t s ≡ t s ′
mod 2, then (t s − t s ′

)/8 = t s,s ′
/4 for some integer t s,s ′

. In this case,

2πψ s,s ′
is the angle corresponding to a representation of the number

∏

p

p
|γ s

p−γ s′
p |

2

as a sum of two squares;

• if t s �≡ t s ′
mod 2, then (t s − t s ′

) = 1/8 + t s,s ′
/4 for some integer t s,s ′

. In this

case, 2πψ s,s ′
is the angle corresponding to a representation of the number

2
∏

p

p
|γ s

p−γ s′
p |

2

as a sum of two squares.

Note that if ψ s,s ′
is an integer, then the linear independence of

1, φ2, φ3, φ5, . . .

over the rationals (Exercise 9.16) implies that t s = t s ′
and γ s

p = γ s ′

p for every p.

This means as + ibs = as ′ + ibs ′ . Consequently, if s �= s ′, then |||ψ s,s ′ ||| > 0. By

the above discussion, ψ := 2π |||ψ s,s ′ ||| is the angle of a lattice point P(x0, y0) not

on the x axis and on a circle of radius

Rs,s ′ := 2ν/2
∏

p

p
|γ s

p−γ s′
p |

4
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Fig. 9.3 In this diagram, η′

is the length of the arc

connecting P(x0, y0) to

(Rs,s′ , 0)

with ν = 0 or 1, depending on whether ts ≡ ts ′ mod 2 or not. Let η′ be the length

of the arc connecting the P to the point (Rs,s ′ , 0) as in Figure 9.3. Then η′ is longer

than the straight line distance between P and (Rs,s ′ , 0).

This means,

η′ >

√

(x0 − Rs,s ′)2 + y2
0 ≥

√

y2
0 ≥ 1.

Then, in the circle of radius Rs,s ′ we have

2π |||ψ s,s ′ ||| =
η′

Rs,s,

>
1

Rs,s ′
≥

1

√
2

∏

p p
|γ s

p−γ s′
p |

4

.

We have then obtained our second main inequality:

|||ψ s,s ′ ||| >
1

2π
√

2
∏

p p
|γ s

p−γ s′
p |

4

(9.3)

for s �= s ′.

Step three. Comparing (9.2) and (9.3) gives the following inequality: For all s �= s ′

we have
1

∏

p p
|γ s

p−γ s′
p |

4

< Rθ−1. (9.4)
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Step four. There are m(m + 1)/2 choices for the unordered pairs of numbers s, s ′.

Multiplying inequalities (9.4) over all of these choices gives

1

∏

s,s ′
∏

p p
|γ s

p−γ s′
p |

4

< R(θ−1)m(m+1)/2.

We would like to find a lower bound for the left hand side of the above inequality.

In order to do this we need to maximize

∏

s,s ′

∏

p

p
|γ s

p−γ s′
p |

4 =

(

∏

p

p
∑

s,s′ |γ s
p−γ s′

p |

)
1
4

.

In order to do this, we need to maximize
∑

s,s ′

|γ s
p − γ s ′

p |

subject to the following conditions: for each s, |γ s
p | ≤ βp and γ s

p ≡ βp mod 2. By

Exercise 9.17, the maximum value of this expression is

(m + 1)2 − δ(m + 1)

2
βp,

with the function δ being given by

δ(n) =
1 − (−1)n

2
=

{

0 n even;
1 n odd.

Putting everything together, we obtain

R(θ−1)m(m+1)/2 >

(

∏

p

p
(m+1)2−δ(m+1)

2
βp

)− 1
4

≥ R− (m+1)2+δ(m+1)

4 .

This inequality implies

θ > 1 −
(m + 1)2 − δ(m + 1)

2m(m + 1)
=

1

2
−

1

4[m/2] + 2
. (9.5)

This finishes the proof of the theorem. ⊓⊔

We finish this chapter with the following conjecture:

Conjecture 9.12 ([68], Conjecture 14). The number of lattice points on an arc of

length R1−θ on the circle with equation x2 + y2 = R2 is bounded uniformly in R.
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Exercises

9.1 (�) Investigate the error term in the asymptotic formula of Theorem 9.4.

9.2 In this exercise we assume the reader is familiar with basic complex analysis.

a. Show that for each s ∈ C with ℜs > 0, the integral

Γ (s) :=
∫ ∞

0

t s−1e−t dt

is absolutely convergent.

b. Show that the for all s with ℜs > 0 we have

Γ (s + 1) = sΓ (s).

c. Conclude that the function Γ (s), originally defined on ℜs > 0, has an

analytic continuation to a meromorphic function on all of C with simple

poles at s = 0,−1,−2,−3, . . . . Compute the residues at the poles.

d. Show that 1/Γ (s) is entire.

e. Show that for each natural number n, Γ (n) = (n − 1)!.
f. Show that for all s1, s2 with ℜs1,ℜs2 > 0, we have

∫ 1

0

t s1−1(1 − t)s2−1 dt =
Γ (s1)Γ (s2)

Γ (s1 + s2)
.

9.3 Find an easy function f : N → C which does not have an average value.

9.4 Compute the volume of the sphere of radius R in R
k .

9.5 Compute the diameter of the unit hypercube in R
k .

9.6 Prove Theorem 9.7.

9.7 Show that the function rk for k > 2 does not have an average value. Find a

continuous function f : R → R with the same average order as rk .

9.8 Prove that for a triangle with side lengths a, b, c with area S which is inscribed

in a circle of radius R we have

abc = 4RS.

9.9 Show that if a circle of radius r in R
2 has three points A, B, C such that the

distances AB, AC, BC are rational numbers, then r is a rational number.

9.10 Show that every circle in R
2 with rational radius contains infinitely many points

every two of which have rational distance.

9.11 Justify Equation (9.1).

9.12 Show that for all real numbers ξ , |||ξ ||| = |ξ + [ξ ] − [2ξ ]|.
9.13 Show that for all real numbers ξ, η,

|||ξ + η||| ≤ |||ξ ||| + |||η|||.

9.14 Show that for all ξ ∈ R and n ∈ Z, |||nξ ||| ≤ |n| · |||ξ |||.
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9.15 Show that for all natural numbers n,

n · |||n
√

2||| ≥ 2 · |||2
√

2||| = 6 − 4
√

2.

9.16 Show that the real numbers 1, φ2, φ3, φ5, . . . appearing in the proof of

Theorem 9.10 are linearly independent over the rational numbers.

9.17 Suppose β is a positive integer, and k a natural number. Show that for each

choice of γ1, . . . , γk such that for i , |γi | ≤ β and γi ≡ β mod 2, we have

∑

1≤i< j≤k

|γi − γ j | ≤
k2 − δ(k)

2
β

where δ(k) =

{

0 k even;
1 k odd.

. Show that equality is attained if

a. k even: k/2 of the γi ’s are equal to β and the other k/2 are equal to −β;

b. k odd: (k + 1)/2 of the γi ’s are equal to β and the remaining (k − 1)/2

are equal to −β.

9.18 Prove inequality (9.5).

9.19 Show that for every natural number m there are infinitely many circles centered

at the origin with precisely m integral points on their perimeters.

9.20 Show that for each natural number n, there are infinitely many circles in R
2

which contain exactly n lattice points.

9.21 This problem is about the celebrated theorem of Georg Pick (1859–1942,

Theresienstadt Concentration Camp). A simple proof of this theorem appears

in [103].

a. Suppose T is a triangle in the plane all of whose vertices are lattice points.

Let S be the area of the triangle, E the number of lattice points on the

edges, and I the number of lattice points inside the triangle. Show that

S = I +
1

2
E − 1.

b. Prove Pick’s theorem: Let P be a closed non self-intersecting polygon in

R
2 whose vertices are lattice points. Let S be the area, E the number of

lattice points on the edges, and I the number of lattice points inside P.

Then we have

S = I +
1

2
E − 1.

9.22 (�) Investigate Question 9.11.

9.23 (�) Do you believe Conjecture 9.12?

9.24 (�) For each natural number n, consider the sphere Sn defined by

x2 + y2 + z2 = n
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in R
3, and define Sn(Z) to be the collection of points on Sn that have integral

coordinates. If (x, y, z) ∈ Sn(Z), then

(
x

√
n
,

y
√

n
,

z
√

n
) ∈ S1.

Investigate the distribution of the resulting points on the sphere S1. Experiment

with restricting the sequence of n’s, e.g., squares, primes, etc.

Notes

Gauss’ Circle Theorem

In Theorem 9.4 we showed that if we have a circle of radius r , then the number

of lattice points inside the circle is πr2 + O(r). There is a famous conjecture [23,

Section F1] asserting that the error term in Gauss’ Circle Theorem is O(r1/2+ǫ) for

any ε > 0. Richard Guy describes the problem of proving this conjecture as very

difficult. The best result in this direction is due to Martin Huxley who around the

year 2000 proved that the error is O(r131/208) improving his own earlier result of

O(r46/73). Note that 46/73 − 131/208 = 0.000329....



Chapter 10

What about geometry?

In this chapter we present a geometric theorem of Minkowski, and use it to prove

Theorem 9.8. We start with the basic theory of lattices in Rn , discuss the volume of

a lattice, and explain the connection of the volume of a lattice to the determinants of

certain matrices. We then prove two foundational results of Minkowski, Proposition

10.8 and Theorem 10.10. The remainder of the chapter is devoted to studying sums

of squares using the results of Minkowski just mentioned. The Two and Four Square

Theorems are relatively easy to prove using Theorem 10.10, but the Three Square

Theorem is hard. The proof of the Three Square Theorem occupies §10.5. In the

Notes, we discuss Waring’s Problem, introduce the functions g(k) and G(k), and

explain some recent results obtained using the Circle Method (we also include an

explanation of the Circle Method). At the end of the Notes, we say a few words about

geometry of numbers.

10.1 Lattices in Rn

Definition 10.1. Let B = {v1, . . . , vn} be a basis of Rn , i.e., a set of n R-linearly

independent vectors in Rn . The lattice generated by B, denoted by ΛB , is the set of

all linear combinations

c1v1 + · · · + cnvn

with ci ∈ Z. We define the fundamental parallelogram PB by

PB = {α1v1 + · · · + αnvn | 0 ≤ α1, . . . , αn < 1}.

We define Vol PB to be the n-dimensional volume of the fundamental parallelogram

PB .

In Figure 10.1, n = 2, B = {(2, 1), (1, 3)}, and the marked points are the elements

of the lattice ΛB . Here, the fundamental parallelogram is painted yellow. In this case,

Vol ΛB = 5.
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Fig. 10.1 A lattice in R2.

The fundamental

parallelogram is painted

yellow

Note that the set ΛB does not uniquely identify the basis B. In fact it is easy to

construct distinct bases B and B′ of Rn such that

ΛB = ΛB ′;

see Exercise 10.1.

Definition 10.2. By a lattice in Rn , we understand a set of the form ΛB for some

basis B of Rn .

The quintessential example of a lattice in Rn is Zn built from the standard basis:

e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0),

. . .

en = (0, 0, . . . , 1).

The fundamental parallelogram associated to this basis is the unit cube in Rn whose

volume is 1.

Proposition 10.3. Suppose

v1 = (a11, a12, . . . , a1n),

v2 = (a21, a22, . . . , a2n),

. . .

vn = (an1, an2, . . . , ann)

are n linearly independent vectors in Rn . Set B = {v1, . . . , vn}. Then
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Vol PB = | det(ai j )i j | �= 0

Proof. It is well known, e.g., [25, Ch. 6, §9], that the determinant det(ai j )i j is non-

zero if and only if the vectors v1, . . . , vn are linearly independent. For the volume

statement, see Exercise 10.2. ⊓⊔

Example 10.4. Define a set Λ ⊂ Z2 as follows:

Λ = {(x, y) ∈ Z2 | x ≡ y mod 2}.

Let v1 = (2, 0), v2 = (1, 1), and set B = {v1, v2}. We will show that Λ = ΛB .

It is clear that v1, v2 ∈ Λ, and consequently, ΛB ⊂ Λ. Now we show the opposite

inclusion. Observe that 2v2 −v1 = (2, 2)−(2, 0) = (0, 2). Now suppose (x, y) ∈ Λ.

Since x ≡ y mod 2, there are two possibilities:

• x, y are even. In this case, (x, y) = (2k, 2l) for integers k, l. Then

(x, y) = k(2, 0) + l(0, 2) = kv1 + l(2v2 − v1) = (k − l)v1 + 2lv2 ∈ ΛB ;

• x, y are odd. In this case, (x, y) = (2k + 1, 2l + 1) for integers k, l. Then

(x, y) = k(2, 0) + l(0, 2) + (1, 1) = (k − l)v1 + (2l + 1)v2 ∈ ΛB .

The fundamental domain PB is painted yellow in Figure 10.2. Proposition 10.3

shows that

Vol PB =
∣

∣

∣

∣

det

(

2 0

1 1

)
∣

∣

∣

∣

= 2.

Another relevant basis here is B′ = {v′
1, v2} with v′

1 = (1, 3) and v2 as above. The

associated fundamental domain PB ′ is painted green in Figure 10.2. One easily

Fig. 10.2 The regions

painted yellow and green are

both fundamental domains
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checks that Λ = ΛB ′ . Then we have

Vol PB ′ =
∣

∣

∣

∣

det

(

0 2

1 1

)
∣

∣

∣

∣

= | − 2| = 2.

Even though the bases B and B′ are different, the fundamental parallelograms PB

and PB ′ have the same volume.

In general, for a lattice Λ ⊂ Rn there are infinitely many bases B such that

Λ = ΛB . We will see in Exercise 10.3 that even though the set PB depends on the

choice of B, its volume, Vol PB , is independent of it, and that it depends only on

the lattice Λ. This statement inspires the following definition:

Definition 10.5. If Λ ⊂ Rn is a lattice, then we define Vol Λ to be Vol PB for any

basis B such that Λ = ΛB .

10.2 Minkowski’s Theorem

Let’s start with a question:

Question 10.6. Suppose Λ ⊂ Rn is a lattice and let S ⊂ Rn be some subset . Under

what conditions on S and Λ does S contain a non-zero point of Λ?

It is impossible to give exact necessary and sufficient conditions in this generality.

In this section we state and prove an important theorem of Minkowski from 1896,

Theorem 10.10, that gives necessary conditions for the existence of a point as asked

in the question in some fairly narrow special cases. The surprising thing is that

this theorem has some powerful applications in number theory. Our discussion of

Minkowski’s Theorem, while not particularly complicated, is, unfortunately, fairly

abstract. It is only in the later parts of this chapter, starting with §10.3, that the

relevance of what we do in this section to our concrete problems becomes clear.

First some preparation. If x is a vector in Rn and S ⊂ Rn , we define

x + S = {x + s | s ∈ S}.

Hence x + S is obtained from shifting the whole set S by the vector x . For example,

if S is the disk of radius r centered at the origin in R2, x + S will be the disk of radius

r centered at x .

Lemma 10.7. Let Λ be a lattice in Rn , and let B = {v1, . . . , vn} be a basis of Rn

such that Λ = ΛB . Then,

Rn =
⋃

λ∈Λ

(λ + PB ), (10.1)

a disjoint union.
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Proof. Let v ∈ Rn . Since B is a basis, we can write

v = r1v1 + . . . rnvn,

for ri ∈ R. Next, for each i , write ri = [ri ] + {ri }. We obtain

v =
n

∑

i=1

[ri ]vi +
n

∑

i=1

{ri }vi .

It is clear that
∑n

i=1[ri ]vi ∈ Λ and
∑n

i=1{ri }vi ∈ PB . Now we show the union in

(10.1) is disjoint. Suppose for vectors λ, λ′ ∈ Λ, we have

(λ + PB ) ∩ (λ′ + PB ) �= ∅. (10.2)

Write

λ =
n

∑

i=1

ci vi , λ′ =
n

∑

i=1

c′
i vi

for integers c1, c′
1, . . . , cn, c′

n . Equation (10.2) means that there are real numbers

α1, α
′
1, . . . , αn, α

′
n with 0 ≤ αi , α

′
i < 1 for each i such that

n
∑

i=1

ci vi +
n

∑

i=1

αi vi =
n

∑

i=1

c′
i vi +

n
∑

i=1

α′
i vi .

Consequently,
n

∑

i=1

(ci + αi )vi =
n

∑

i=1

(c′
i + α′

i )vi .

Since B is a basis of Rn , this last identity implies that for all i we have

ci + αi = c′
i + α′

i ,

from which it immediately follows that ci = c′
i for all i . Hence, λ = λ′, and we are

done. ⊓⊔

If we consider the example considered earlier where n = 2, B = {(2, 1), (1, 3)},
we get the partition of R2 as a union of parallelograms as in Figure 10.3. (Care is

needed about the boundary of each parallelogram!)

The following simple proposition is fundamental:

Proposition 10.8 (Minkowski). Let Λ be a lattice in Rn . Suppose U is an open set

in Rn such that Vol U > Vol Λ. Then there are distinct vectors u1, u2 ∈ U such that

u1 − u2 ∈ Λ.

Proof. The starting point is Equation (10.1). Intersecting with the open set U gives

U =
⋃

λ∈Λ

{(λ + PB ) ∩ U } ,
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Fig. 10.3 The partition of

R2 as a union of the

translates of the fundamental

domain as in Lemma 10.7

a disjoint union. Now we consider the volume of the set U . Since the right-hand side

of the above equation is a disjoint union we have

Vol U =
∑

λ∈Λ

Vol {(λ + PB ) ∩ U } . (10.3)

Next, since volume in Rn is translation invariant, we have

Vol {(λ + PB ) ∩ U } = Vol {PB ∩ (−λ + U )} .

Denote the set PB ∩ (−λ + U ) by Pλ. Note that Pλ ⊂ PB . Since by assumption

Vol U > Vol Λ = Vol PB , Equation (10.3) gives

Vol PB <
∑

λ∈Λ

Vol Pλ.

This equation implies that there are distinct elements λ1, λ2 ∈ Λ such that Pλ1
∩

Pλ2
�= ∅. This means that there are u1, u2 ∈ U such that −λ1+u1 = −λ2+u2 with.

This last equation implies the statement of the proposition with λ = λ1 − λ2. ⊓⊔

Before we state the main theorem of this chapter we need a couple of definitions.

Definition 10.9. Let S be a set in Rn .

• We call S symmetric if x ∈ S implies −x ∈ S.

• We call S convex if for x, y ∈ S and 0 < α < 1 we have

αx + (1 − α)y ∈ S,

i.e., if x, y ∈ S, the line segment connecting x and y lies in S.

The quintessential example of a convex symmetric set in R2 is a filled ellipse of the

form
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x2

a2
+

y2

b2
< 1.

A particularly important example that makes an appearance later in this chapter is a

disk

x2 + y2 < r2.

The set

1 < x2 + y2 < 4

is symmetric but not convex, and the disk

(x − 2)2 + y2 < 3

is convex but not symmetric.

We can now state and prove the following important theorem:

Theorem 10.10 (Minkowski). Let Λ be a lattice in Rn . Suppose S is a convex

symmetric open set in Rn such that Vol S > 2nVol Λ. Then there is a non-zero vector

in the intersection Λ ∩ S.

Proof. Let S′ = (1/2)S be the scaled down version of S. Then S′ is open and

Vol S′ > Vol Λ. By Proposition 10.8, there are distinct elements u1, u2 ∈ S such that

u :=
u1

2
−

u2

2
∈ Λ − {0} .

Since u2 ∈ S and S is symmetric, −u2 ∈ S. Also (u1 − u2)/2 ∈ S as S is convex

and (u1 − u2)/2 is the middle point of the line segment connecting u1,−u2 ∈ S.

The theorem is proved. ⊓⊔

Example 10.11. A lattice Λ is called unimodular if Vol Λ = 1. Let Λ be a unimod-

ular lattice in R2. Define the set Sr ⊂ R2 to be the disk

x2 + y2 < r2.

For each r > 0, Sr is convex, symmetric, and open, and has area πr2. If r > 2/
√

π =
1.12837916709551..., then Vol Sr > 4 = 22 · Vol Λ. Theorem 10.10 implies that the

set Ar := Sr ∩ Λ − {(0, 0)} is a finite non-empty set. Basic properties of compact

sets, e.g., [41, Theorem 2.36], imply that

A :=
⋂

r>2/
√

π

(Sr ∩ Λ − {(0, 0)}) = S2/
√

π ∩ Λ − {(0, 0)}

is non-empty. This means that every unimodular lattice Λ ⊂ R2 contains at least

one non-zero vector v whose length is less than or equal to 2/
√

π . This result can be

generalized to every dimension; see Exercise 10.13.
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Despite its innocent abstract appearance, Theorem 10.10 is a powerful result with

many applications. In the remainder of this chapter we give three applications of this

theorem to questions involving sums of squares.

10.3 Sums of two squares

In our first application we give a second proof of Theorem 5.7.

The second proof of Theorem 5.7. Recall that the non-trivial part of Theorem 5.7 is

the statement that every prime p of the form 4k + 1 is a sum of two squares. As we

observed in our proof of Theorem 5.7, it suffices to find a pair of integers (u, v) with

the following properties:

1. u2 + v2 < 2p;

2. p|u2 + v2;

3. (u, v) �= (0, 0).

Consider the set

S = {(x, y) ∈ R2 | x2 + y2 < 2p}.

The set S is convex, symmetric, and open. Also, Vol S = 2πp. In order to apply

Theorem 10.10, we need to find a lattice Λ such that

(i) 4Vol Λ < 2πp;

(ii) for all (a, b) ∈ Λ, p | a2 + b2.

Note that since p is of the form 4k +1, by (6.3), there is z such that z2 +1 ≡ 0 mod p.

Clearly, the sensible thing to do is to use z to construct the lattice. Consider the vectors:

v1 = (p, 0), v2 = (z, 1).

We have

det

(

p 0

z 1

)

= p �= 0,

hence the vectors v1, v2 are linear independent. Let Λ be the lattice generated by

v1, v2. By Proposition 10.3, Vol Λ = p. Since 4p < 2πp, condition (ii) is satisfied.

Next, we verify (i). A typical vector in Λ can be written as c1v1+c2v2 with c1, c2 ∈ Z.

We compute the coordinates of the vector as

c1v1 + c2v2 = (c1 p + c2z, c2).

We compute the sum of the squares of the coordinates to obtain

(c1 p + c2z)2 + c2
2 ≡ c2

2(z
2 + 1) ≡ 0 mod p.

This finishes the proof. ⊓⊔
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10.4 Sums of four squares

In this section and the next we give a proof of Theorem 9.8. Our goal in this section

is to show that every natural number is a sum of four squares following an idea

of Davenport [71]. Davenport gives credit to Hermite (1830) for this proof, though

Hermite did not have Theorem 10.10 at his disposal, so he had to use other methods.

Davenport notes this is a very non-trivial result. According to [71], Euler tried to

prove the result unsuccessfully many times between 1730 and 1750, see [90]. This

is a testimony to the effectiveness of Minkowski’s innocuous looking theorem. We

will present another proof of the Four Squares Theorem in Chapter 11 where we will

use quaternions.

We start with an identity discovered by Euler [90]. This identity is the analogue

of Lemma 5.3 in this setting.

Lemma 10.12 (Euler’s identity). For all complex numbers a, b, c, d, e, f, g, h,

(a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2) =

(ae − b f − cg − dh)2 + (a f + be + ch − dg)2

+(ag − bh + ce + d f )2 + (ah + bg − c f + de)2

Proof. See Exercise 10.14 or Lemma 11.4 for a conceptual proof. ⊓⊔

Lemma 10.12 implies that in order to prove that every natural number is the sum

of four squares, it suffices to prove that every prime number is a sum of four squares.

Since

2 = 12 + 12 + 02 + 02,

we just need to prove the assertion for an odd prime p. As in the case of the Two

Squares Theorem, we need to show that there are integers u, v, w, t such that

1. u2 + v2 + w2 + t2 < 2p;

2. p | u2 + w2 + v2 + t2;

3. (u, v, w, t) �= (0, 0, 0, 0).

By Exercise 9.4 the volume of the set S in R4 defined by

S = {(u, v, w, t) ∈ R4 | u2 + v2 + w2 + t2 < 2p}

is
π2

2
(
√

2p)4 = 2π2 p2.

Also, we note that the set S is convex, symmetric, and open. In order to apply Theorem

10.10 we need to construct a lattice Λ such that

(i) 16Vol Λ < Vol S;

(ii) for all (a, b, c, d) ∈ Λ, p | a2 + b2 + c2 + d2.
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We need a lemma:

Lemma 10.13. If p is an odd prime number, there are integers r, s such that

r2 + s2 + 1 ≡ 0 mod p.

Proof. We define functions f, g from Z to Z/pZ, the set of congruence classes

modulo p, by setting f (x) = x2 mod p and g(x) = −1 − x2 mod p. The assertion

of the lemma is equivalent to the existence of integers r, s such that f (r) = g(s).

We claim

# f (Z) = #g(Z) =
p + 1

2
,

where here, for example, f (Z) is the image of the function f and # f (Z) is the

number of elements in the image. We will prove the statement involving f ; the

one for g follows similarly. The first point to note is that if x ≡ y mod p, then

f (x) = f (y) as an element of Z/pZ. This means that we may in fact think of f as

a function from Z/pZ to Z/pZ. Next, f (x) = f (y) if and only if x ≡ ±y mod p.

Now, if x �≡ 0 mod p, then x �≡ −x mod p. This means that f is 2-to-1 for non-

zero congruence classes. Since there are p − 1 non-zero congruence classes, there

will be (p − 1)/2 elements in the images of these classes. We also need to account

for f (0) = 0. Consequently, the total number of elements in the image of f is

(p − 1)/2 + 1 = (p + 1)/2. This finishes the proof of # f (Z) = (p + 1)/2. As

mentioned above, the proof of #g(Z) = (p + 1)/2 is similar. Now, we notice

# f (Z) + #g(Z) =
p + 1

2
+

p + 1

2
= p + 1 > p,

hence by the Pigeon-Hole Principle, Theorem A.7, there has to be an overlap between

the images of the functions f, g. ⊓⊔

Fix r, s as in the lemma, and consider the four vectors

v1 = (p, 0, 0, 0), v2 = (0, p, 0, 0), v3 = (r, s, 1, 0), v4 = (s,−r, 0, 1).

We have

det

⎛

⎜

⎜

⎝

p 0 0 0

0 p 0 0

r s 1 0

s −r 0 1

⎞

⎟

⎟

⎠

= p2 �= 0,

and consequently the vectors {v1, v2, v3, v4} are linearly independent. If Λ is the

lattice generated by these vectors, Proposition 10.3 implies that Vol Λ = p2. Note

that since 2π2 > 16,

16Vol Λ < Vol S.

Now we can apply Theorem 10.10 to conclude that there is (a, b, c, d) ∈ S ∩Λ such

that (a, b, c, d) �= (0, 0, 0, 0). Next, we show that if (a, b, c, d) ∈ Λ, then
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p | a2 + b2 + c2 + d2.

In order to see this, we write

(a, b, c, d) = c1v1 + c2v2 + c3v3 + c4v4

with c1, c2, c3, c4 ∈ Z. Then

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a = c1 p + c3r + c4s,

b = c2 p + c3s − c4r,

c = c3,

d = c4.

Finally,

a2 + b2 + c2 + d2 ≡ (c1 p + c3r + c4s)2 + (c2 p + c3s − c4r)2 + c2
3 + c2

4

≡ (c3r + c4s)2 + (c3s − c4r)2 + c2
3 + c2

4

≡ c2
3(r

2 + s2 + 1) + c2
4(r

2 + s2 + 1) ≡ 0 mod p

by the choices of r, s. This finishes the proof of the Four Square Theorem.

Remark 10.14. Davenport’s original proof [71] differs slightly from the above argu-

ment. Davenport notes that if

m = x2 + y2 + z2 + t2,

then

2m = (x + y)2 + (x − y)2 + (z + t)2 + (z − t)2.

So it suffices to prove the theorem for odd m. So we assume that m is an odd natural

number. There are integers r, s such that

r2 + s2 + 1 ≡ 0 mod m.

Then consider the four vectors

v1 = (m, 0, 0, 0), v2 = (0, m, 0, 0), v3 = (r, s, 1, 0), v4 = (s,−r, 0, 1).

and form the lattice Λ generated by them. The remainder of the argument is identical

to what was presented above. Davenport’s clever idea of reducing the general case

to the odd m case should be compared to the division-by-(1 + i) step in the proof of

the Four Square Theorem presented in §11.3.
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10.5 Sums of three squares

We now give a proof of the only remaining statement of Theorem 9.8 that a positive

integer m is expressible as a sum of three squares if and only if m is not of the form

4a(8n + 7). We will give one more proof of this fact using the theory of quadratic

forms in §12.4.

The fact that numbers of the form 4a(8n + 7) are not expressible as a sum of

three squares is not hard; see Exercise 10.17; however, the fact that a number m

not of the form 4a(8n + 7) is expressible as a sum of three squares is a much

harder theorem. There are several proofs of this result available in literature. We will

present a beautiful proof due to Dirichlet in Chapter 12 following the exposition of

the classical text by Landau [31]. The remarkable proof we give in this chapter is

due to Ankeny [61].

It is clear that we may assume that m is square-free. Following [61], we present

the detailed proof for the case where m ≡ 3 mod 8 to illustrate the method, and refer

the reader to the exercises for the remaining cases.

Suppose m = p1 · · · pr is a square-free integer such that m ≡ 3 mod 8.

Step 1. There is a prime number q such that

• For each i , 1 ≤ i ≤ r ,
(

−2q

pi

)

= +1;

• q ≡ 1 mod 4.

To see this, we note that each condition (−2q/pi ) = +1 means that q belongs

to some congruence classes modulo pi . The Chinese Remainder Theorem 2.24 then

implies that there is a congruence condition of the form q ≡ a mod 4m such that

all of these conditions are satisfied. Dirichlet’s Arithmetic Progression Theorem,

Theorem 5.11 in Notes to Chapter 5, implies the existence of infinitely many primes

q with this property.

Step 2. There is an odd integer b and an integer h such that

b2 − 4hq = −m.

To see this, we first have to show
(

−m

q

)

= +1.

In fact,

+1 =
r

∏

i=1

(

−2q

pi

)

=
r

∏

i=1

(

−2

pi

) (

q

pi

)

=
(

−2

m

) r
∏

i=1

(

q

pi

)

.
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Here (−2/m) is the Jacobi symbol of §7.2. By Quadratic Reciprocity,

(

q

pi

)

= (−1)
q−1

2
· pi −1

2

(

pi

q

)

=
(

pi

q

)

as q ≡ 1 mod 4. Hence,

+1 =
(

−2

m

)

∏

i

(

pi

q

)

=
(

−2

m

) (

m

q

)

.

This means
(

−2

m

)

=
(

m

q

)

.

Next, since q ≡ 1 mod 4, (−1/q) = +1, we have,

(

−m

q

)

=
(

−1

q

) (

m

q

)

=
(

m

q

)

.

Putting these identities together gives

(

−m

q

)

=
(

−2

m

)

.

Next, by Theorem 7.3,

(

−2

m

)

=
(

−1

m

) (

2

m

)

= (−1)
m−1

2 (−1)
m2−1

8 = (−1).(−1) = +1,

as m ≡ 3 mod 8. We finally obtain

(

−m

q

)

= +1. (10.4)

This means there is an integer b such that b2 ≡ −m mod q. By adding q to b if

necessary, we assume b is odd. Consequently, there is an integer h1 such that

b2 − qh1 = −m.

Since b and q are odd, and m ≡ 3 mod 8, viewing this equation modulo 4 gives

1 − h1 ≡ +1 mod 4, or h1 ≡ 0 mod 4. Write h1 = 4h to get

b2 − 4qh = −m

as claimed.

Step 3. There is an integer t such that

t2 ≡ −1/(2q) mod m.

In fact, by the choice of q, for each i , there is an integer si such that
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s2
i ≡ −2q mod pi .

If we set ti ≡ s−1
i mod pi , then t2

i ≡ −1/(2q) mod pi . By the Chinese Remainder

Theorem, there is a t modulo m such that for each i , t ≡ ti mod pi . This means

t2 ≡ t2
i ≡ −1/(2q) mod pi . Consequently, as m = p1 . . . pr , t2 ≡ −1/(2q) mod m.

Step 4. Define

S = {(u, v, w) ∈ R3 | u2 + v2 + w2 < 2m}.

Then S is an open ball in the three-dimensional space, and as such it is convex,

symmetric, and open. The volume of S is

4

3
π(2m)

3
2 .

Step 5. We now define a lattice. Set

v1 = (2tq, (2q)1/2, 0), v2 = (tb, b/(2q)1/2, m1/2/(2q)1/2), v3 = (m, 0, 0).

Since

det

⎛

⎝

tb b/(2q)1/2 m1/2/(2q)1/2

2tq (2q)1/2 0

m 0 0

⎞

⎠ = −m3/2 �= 0,

{v1, v2, v3} is a linearly independent set in R3. Let Λ be the lattice generated by these

vectors. Then Vol Λ = m3/2.

Step 6. If (u, v, w) ∈ Λ, then v, w are not integers. However, we show that u2+v2+w2

is an integer, and that

u2 + v2 + w2 ≡ 0 mod m.

We have for three integers x, y, z,

(u, v, w) = xv1 + yv2 + zv3

= (2tqx + tby + mz, (2q)1/2x + b/(2q)1/2 y, m1/2/(2q)1/2 y).

Consequently,

u2 +v2 +w2 = (2tqx + tby +mz)2 + ((2q)1/2x +b/(2q)1/2 y)2 + (m1/2/(2q)1/2 y)2

= (2tqx + tby + mz)2 +
1

2q
(2qx + by)2 +

my2

2q
(10.5)

= (2tqx + tby + mz)2 + 2(qx2 + bxy + hy2). (10.6)

This shows that u2 + v2 + w2 is an integer. We now that it is divisible by m. From

(10.5) we have

u2 + v2 + w2 ≡ t2(2qx + by)2 + (2qx + by)2/2q ≡ 0 mod m

by the choice of t .
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Step 7. Recall Vol Λ = m2/3 and Vol S = 4
3
π(2m)

3
2 . Since

4

3
π(2m)

3
2 > 8m2/3,

we see that Vol S > 23Vol Λ. Theorem 10.10 implies that there is a non-zero triple

of integers (x1, y1, z1) such that

(u1, v1, w1) := x1v1 + y1v2 + z1v3 ∈ S.

Since (u1, v1, w1) ∈ S, we have u2
1 + v2

1 + w2
1 < 2m. Step 6 says u2

1 + v2
1 + w2

1 is a

non-zero integer, and that m | u2
1 + v2

1 + w2
1 . This means

u2
1 + v2

1 + w2
1 = m. (10.7)

Now let

R1 = 2tqx + tby + mz, v = qx2 + bxy + hy2. (10.8)

The identity (10.6) combined with (10.7) shows

m = R2
1 + 2v. (10.9)

Step 8. Finally, we show that 2v is a sum of two squares, and this fact combined with

Equation (10.9) finishes the proof of the theorem for m ≡ 3 mod 8.

It suffices to show that v is a sum of two squares. Indeed, 2 = 12 + 12, and by

Lemma 5.5 if v is a sum of two squares, 2v will be a sum of two squares.

To show that v is a sum of two squares, by Theorem 5.2, we need to show that if

p2k+1 | v but p2k+2 ∤ v, then p ≡ 1 mod 4.

There are two cases to consider: p ∤ m, and p|m. We treat each case separately.

If p ∤ m, then reducing Equation (10.9) modulo p implies
(

m
p

)

= +1. If p = q,

then by Equation (10.4), (−1/p) = +1, and Lemma 6.7 implies p ≡ 1 mod 4.

Now suppose p �= q. The definition of v from (10.8) shows

4qv = (2qx1 + by1)
2 + my2

1 .

This equation implies that p2k+1 divides an expression of the form e2 + m f 2, but

p2k+2 does not. Consequently, again,

(

−m

p

)

= +1.

Again, as before, (−1/p) = 1, and p ≡ 1 mod 4. This settles the case where p ∤ m.

Now we consider the case where p|m. Recall that we have

R2
1 + 2v = m.

This identity implies that p|R1. We can now rewrite this equation in the following

form
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R2
1 +

1

2q
((2qx1 + by1)

2 + my2
1 ) = m,

and this identity implies p|(2qx1 +by1). Since by assumption m is square-free, these

statements show
1

2q

m

p
y2

1 ≡
m

p
mod p,

or what is the same

y2
1 ≡ 2q mod p.

Consequently, (2q/p) = +1. Recall from Step 1 that since p | m, we have

(−2q/p) = +1. Hence, (−1/p) = +1, and again we arrive at the conclusion

that p ≡ 1 mod 4.

For the cases where m ≡ 1, 2, 5, 6 mod 8, see Exercise 10.19.

Exercises

10.1 Find bases B and B′ of R2 which generate the same lattice but PB �= PB ′ .

10.2 Prove Proposition 10.3.

10.3 Show that the volume of PB is independent of the choice of the basis of B

that generates the lattice Λ.

10.4 Show that for n > 3 we have

det((i j − 1)2)1≤i, j≤n = 0.

10.5 Show that for all n > 4

det((i j − 1)3)1≤i, j≤n = 0.

10.6 Generalize the previous two problems by showing that for natural numbers

n, k, if n > k + 1, we have

det((i j − 1)k)1≤i, j≤n = 0.

10.7 Define a matrix D = (ai j )1≤i, j≤n by setting

ai j =

⎧

⎪

⎨

⎪

⎩

0 i = j;
1 i < j;
−1 i > j.

Show that

det D =

{

0 n odd;
1 otherwise.

10.8 Define a matrix E = (bi j )1≤i, j≤n by setting
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bi j =

⎧

⎪

⎨

⎪

⎩

1 + x2 i = j;
x |i − j | = 1;
0 otherwise.

Compute det E . Hint: Let Dn = det E . Show that for n ≥ 3 we have Dn −
Dn−1 = x2(Dn−1 − Dn−2).

10.9 For three complex numbers α, β, γ , and r ∈ N, set σr = αr +βr +γ r . Show

that for n ∈ N,

det(σn+i+ j−2)1≤i, j≤3 = (αβγ )n{(α − β)(β − γ )(γ − α)}2.

10.10 Define a matrix Fn = (ci j )1≤i, j≤n by setting ci j = 1 + δi j x , where δi j is Kro-

necker’s delta. Compute fn(x) := det Fn by showing that f ′
n(x) = n fn−1(x).

10.11 Define a subset Λ ⊂ Z2 by setting

Λ = {(x, y) ∈ Z2 | x + y ≡ 0 mod 3}.

Show that Λ is a lattice by finding a basis B of R2 such that Λ = ΛB .

Compute Vol Λ.

10.12 Fix a prime p. Define a subset Λp,n ⊂ Zn by setting

Λp,n =

{

(x1, . . . , xn) ∈ Zn |
n

∑

i=1

xi ≡ 0 mod p

}

.

Prove that Λp,n is a lattice. Compute Vol Λp,n .

10.13 Verify the details of the argument in Example 10.11. Generalize to all Rn .

10.14 Prove Lemma 10.12 by direct computation.

10.15 Supply the details of Davenport’s proof of the Four Square Theorem.

10.16 (�) Write 4594043492117928 as a sum of four squares. In how many ways

is it possible to do this?

10.17 Show that a number of the form 4a(8n + 7) is not expressible as a sum of

three squares.

10.18 (�) Can you write 4594043492117928 as a sum of three squares? In how

many ways?

10.19 Complete Ankeny’s proof of the remaining cases of the Three Square The-

orem, i.e., for the cases where m ≡ 1, 2, 5, 6 mod 8. Let q be prime,

(−q/p j ) = +1 for all odd prime divisors of m, and q ≡ 1 mod 4, and

if m is even, m = 2m1, (−2/q) = (−1)(m1−1)/2, t2 ≡ −1/q mod p j , t

odd, b2 − qh = −m, and v1 = (tq, q1/2, 0), v2 = (tb, b/q1/2, m1/2/q1/2),

v3 = (m, 0, 0).

10.20 Show that every integer can be represented as a sum of five cubes of integers

in infinitely many ways. Show that 3 can be written as a sum of four cubes

not equal to 0 or 1 in infinitely many ways.
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Notes

Waring’s Problem

In 1770 Edward Waring asked whether for a natural number k, there is an integer

s, depending on k, such that every natural number could be written as the sum of

at most s natural numbers everyone of which is a k-th power. If the answer is yes,

then the smallest possible value of s is denoted by g(k). For example, in this chapter

we showed that every natural number is the sum of at most four perfect squares.

We also saw that there are many integers that are not sums of three squares. This

means that g(2) = 4. David Hilbert showed in 1909 that the answer to Waring’s

question was yes. The first few values of g(k) are as follows: g(2) = 4, g(3) = 9,

g(4) = 19, g(5) = 37, g(6) = 73, etc. The sequence of integers g(k) appears as

sequence A002804 in the Online Encyclopedia of Integer Sequences available at

https://oeis.org/A002804

The following conjecture dates back to the 19th century:

Conjecture 10.15 (The Ideal Waring’s Theorem). For all k we have

g(k) = 2k + [(3/2)k] − 2,

where in this formula [x] denotes the integer part of a real number x .

It is a theorem of L. E. Dickson and S. S. Pillai from 1936 that this formula for g(k)

holds if

2k{(3/2)k} + [(3/2)k] ≤ 2k . (10.10)

This last inequality is known to be true for k ≤ 471, 600, 000, and for k large enough

by a result of K. Mahler from 1957. Equation (10.10) is expected to hold for all k;

see [106]. In fact, it is a result of David, Waldschmidt, and Laishram [82, 107] that

an explicit form of the abc Conjecture implies the Ideal Waring’s Theorem. For the

statement of the abc Conjecture and its explicit form see Notes to Chapter 3.

A related sequence which is considerably more difficult to study is the sequence

G(k) defined as the smallest positive integer s such that every sufficiently large

positive integer can be written as the sum of s k-th powers. It is clear that G(k) ≤ g(k).

One could, however, imagine that there may exist some rogue integers early on that

require a lot of k-powers, but past a certain point the situation would stabilize. The

only values of G(k) that are currently known are G(2) = 4 and G(4) = 16 obtained

in 1939 by Davenport. It appears that the best available upper bound for G(k) is

provided by Trevor Wooley in 1995:

G(k) ≤ k(log k + log log k + 2 + O(log log k/ log k)).

https://oeis.org/A002804
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This should be compared with the conjectured formula for g(k) mentioned earlier.

The conjectured value of g(k) grows exponentially with k, whereas the inequality

proved by Wooley shows that G(k) grows essentially in a linear fashion. (Professor

Ram Murty often jokes that analytic number theorists say “log, log, log” when they

drown.)

A powerful method that has been employed to prove many of the results related

to Waring’s Problem, and other additive questions in number theory, is the Circle

Method originally invented by Hardy and Ramanujan around 1916. The idea is to

define a function

fk(x) =
∞

∑

n=0

e2π ink x

on the interval [0, 1]. Fix a natural number s, and suppose we wish to show that every

natural number is the sum of s k-th powers. We have

fk(x)s =
∑

n1

∑

n2

· · ·
∑

ns

e2π i x
∑s

j=1 nk
j =

∞
∑

n=0

Rs(n)e2π inx

with Rs(n) being the number of representations of n as a sum of s k-th powers.

Theorem A.3 now implies that for each l,

∫ 1

0

fk(x)se−2π ilx dx =
∞

∑

n=0

Rs(n)

∫ ∞

0

e2π i(k−l)x dx =
∞

∑

n=0

Rs(n)δnl = Rs(l),

with δnl being Kronecker’s delta. So in order to show that Rs(l) �= 0 to gain infor-

mation about g(k), or Rs(l) �= 0 for l large enough to gain information about G(k)

one needs to show that
∫ 1

0

fk(x)se−2π ilx dx �= 0.

In order to see that this integral is non-zero the idea is to concentrate on those x’s for

which the value of f (x) is large. Note that if x is a rational number, then e2π ik2x = 1

for infinitely many k. So for such x , the function f (x) blows up. The art of the Circle

Method is to partition [0, 1] to two pieces: M, called the major arcs, consisting of

those x’s which are close to a rational number with small denominator, and m, the

minor arcs, the complement of M. Then we have

∫ 1

0

fk(x)se−2π ilx dx =
∫

M

fk(x)se−2π ilx dx +
∫

m

fk(x)se−2π ilx dx .

In most applications, including Waring’s Problem, the major arcs integral is not too

hard to analyze to obtain a fairly explicit asymptotic formula. The real problem is

to show that the contribution of the major arcs is not canceled out by the integral

over the minor arcs. To see how this is done in a series of instructive examples, see

Vaughan [54]. To see the analysis of the major arcs in a situation where we do not

know how to handle the minor arcs see [33, Ch. 14]. A major new development in
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applications of the Circle Method is Harald Helfgott’s recent proof of the Ternary

Goldbach Conjecture which asserts that every odd integer larger than 5 is the sum of

three prime numbers, available at

https://arxiv.org/abs/1312.7748

Geometry of numbers

Minkowski’s Theorem 10.10 and Gauss’ Circle Theorem 9.4 belong to an area of

mathematics called geometry of numbers. Minkowski proved Theorem 10.10 in the

course of his work on quadratic forms in relation to Diophantine approximation. To

get a feel for the sort of problem Minkowski was interested in, suppose we want to

study minimal values of positive definite quadratic forms on integral points. Note

if f (x1, . . . , xn) is a positive definite quadratic form with real coefficients, then the

set of real points (x1, . . . , xn) such that f (x1, . . . , xn) < λ is a bounded convex

symmetric domain of the sort considered in this chapter. The volume of this set is

Vol { f < 1} · λ
n
2 . Since Vol Zn = 1, Theorem 10.10 implies that if

Vol { f < 1} · λ
n
2 > 2n, i.e., λ >

4

Vol { f < 1}2/n
,

then there is at least one non-zero integral point x ∈ Zn such that f (x) < λ. This

means that the minimal value of f on non-zero points in Zn is at most

4

Vol { f < 1}2/n
.

Suppose, for example, that n = 2, and f (x1, x2) = ax2
1 +bx1x2 +cx2

2 . The positive-

definiteness of f means a, c > 0 and b2 < 4ac. In this case, it is a nice exercise to

show that

Vol { f < 1} =
2π

√
4ac − b2

.

Putting everything together, we see that the minimum value of a positive definite

quadratic form f (x1, x2) = ax2
1 + bx1x2 + cx2

2 on non-zero integral points (x1, x2)

is at most
2

π

√

4ac − b2.

Analogues of the Gauss’s Circle Theorem 9.4 appear often in contemporary research

papers. In many number theoretic problems one needs to count integral points in a

certain domain. Ideally one should be able to replace the number of integral points

by the area of the region, which is often not too hard to compute, plus an error term

contributed by the points along, or close to, the boundary. However, in order to bound

the error one needs to show that there are not too many points on the boundary of the

regions, or tucked away in corners. This can be a real challenge, as anyone studying

the works of Manjul Bhargava (Fields medal, 2014) might notice. Geometry of

https://arxiv.org/abs/1312.7748
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numbers methods have featured prominently in Bhargava’s groundbreaking works.

To see an expository article on the work of Bhargava and the role played by the

geometry of numbers, see Gross’ article [78].

Davenport’s little article [71] is a nice entry way to the subject of geometry of num-

bers. The classical texts by Cassels [11] and Siegel [45] are wonderful introductions

to this exciting area.



Chapter 11

Another proof of the four squares

theorem

The goal of this chapter is to give a second proof of the Four Squares Theorem. This

proof uses the theory of quaternions, which we will briefly discuss. The proof of the

Four Squares Theorem in this chapter is in the spirit of the argument for the Two

Squares Theorem we presented in Chapter 5 using Gaussian integers. Recall that if

we have a complex number z = x+iy, then if we define N (z) = x2+y2, for complex

numbers z, w, we have N (z · w) = N (z) · N (w). We used this identity to reduce

the Two Squares Theorem to determining which prime numbers are expressible as

a sum of two squares. In this chapter we develop a similar method for sums of four

squares. Among other things we provide an “explanation” for why Lemma 10.12 is

true, though historically speaking, the theory of quaternions was developed because

of Lemma 10.12. In the Notes at the end of this chapter, we introduce Octonions that

provide a framework for identities involving eight squares.

11.1 Quaternions

We typically think of the set of complex numbers as the two-dimensional real vector

space consisting of all expressions of the form

a + bi

with a, b real numbers, and i a formal symbol satisfying i2 = −1. We define the

space of the quaternions similarly.

Definition 11.1. We define H, the space of Hamilton quaternions, to be the four-

dimensional real vector space consisting of all elements of the form

x = a + bi + cj + dk

with a, b, c, d real numbers, and i, j, k formal symbols commuting with real numbers

and satisfying

© Springer Nature Switzerland AG 2018
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i2 = j2 = k2 = i jk = −1.

We call a, b, c, d the coordinates of x .

Theorem 11.2. The vector space H is an associative algebra with an identity ele-

ment.

The direct proof of this theorem is an excruciating exercise in endurance, and we

omit it here. However, we will show in Lemma 11.5 that quaternions can be realized

as a set of 2×2 complex matrices. We will use this lemma to give a reasonable proof

of the theorem.

It is not hard to check (Exercise 11.1) that

i j = − j i = k, jk = −k j = i, ki = −ik = j. (11.1)

For example,

i j = −i jk2 = −(i jk)k = −(−1)k = k.

One can use these identities to write down the explicit multiplication formula for

quaternionic multiplication:

(a + bi + cj + dk)(e + f i + g j + hk) =

(ae − b f − cg − dh) + (a f + be + ch − dg)i

+(ag − bh + ce + d f ) j + (ah + bg − c f + de)k.

The proof of this identity is tedious but completely straightforward. In practice, when

multiplying quaternions, we do not use this formula. Instead, we just use standard

distribution laws. For example,

(1 + 2i) · (2 j + 5k) = 1 · 2 j + 1 · 5k + 2i · 2 j + 2i · 5k = 2 j + 5k + 4i · j + 10i · k

= 2 j + 5k + 4k − 10 j = −8 j + 9k,

after using i · j = k and i · k = − j .

For a quaternion

τ = a + bi + cj + dk,

we define the conjugate of τ , usually denoted by τ in analogy with complex conju-

gation, by

τ = a − bi − cj − dk.

Lemma 11.3. If τ1, τ2 ∈ H, then

τ1 · τ2 = τ2 · τ1.

Proof. Computation. ⊓⊔
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A straightforward computation shows

τ · τ = a2 + b2 + c2 + d2 ∈ R.

The square root of the latter is usually denoted by |τ |, i.e.,

|τ |2 = τ · τ .

In particular, if τ �= 0, then |τ | �= 0. We usually call |τ | the length of τ , and |τ |2 its

norm. This has the following interesting consequence:

τ ·
1

|τ |2
τ = 1, (11.2)

i.e., non-zero quaternions are invertible. In particular, H is a division ring.

Lemma 10.12 has the following beautiful interpretation:

Lemma 11.4. If τ1, τ2 ∈ H, then

|τ1 · τ2| = |τ1| · |τ2|.

Proof. We have by Lemma 11.3,

|τ1 ·τ2|
2 = τ1 ·τ2 ·τ1 · τ2 = τ1 ·τ2 ·τ2 ·τ1 = τ1 · |τ2|

2 ·τ1 = |τ2|
2 ·τ1 ·τ1 = |τ1|

2 · |τ2|
2.

⊓⊔

11.2 Matrix representation

In this section we discuss a method to represent quaternions as 2 × 2 matrices with

complex entries, called matrix representation. We will use the matrix representation

to prove Theorem 11.2. The representation also clarifies the meaning of Lemma 11.3.

Since this representation of quaternions is similar to the matrix representations of

complex numbers, we start by recalling the latter as a means to motivate the matrix

representation of quaternions.

For a complex number z = a + ib, with a, b ∈ R, we define

mC(z) =

(

a b

−b a

)

.

Then direct computation shows that for all z1, z2 ∈ C,

mC(z1 + z2) = mC(z1) + mC(z2), mC(z1z2) = mC(z1)mC(z2).

Furthermore, for z ∈ C,
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mC(z) = mC(z)T ,

where for every matrix A, AT is the transpose of the matrix. And finally,

|z|2 = det(m(z)).

We now explain the matrix representation for quaternions. It is clear that C ⊂ H,

and in fact every element τ of H can be written as

τ = x + y j

with x, y ∈ C. We define

mH(τ ) =

(

x y

−y x

)

.

Note that if y = 0, i.e., τ ∈ C, then

mC(τ ) = mH(τ ).

Lemma 11.5. 1. For τ1, τ2 ∈ H,

mH(τ1 + τ2) = mH(τ1) + mH(τ2), mH(τ1τ2) = mH(τ1)mH(τ2).

2. For τ ∈ H,

mH(τ ) = mH(τ )
T
.

Here, for a complex matrix A =

(

a b

c d

)

, we define A =

(

ā b̄

c̄ d̄

)

.

3. For τ ∈ H,

|τ |2 = det mH(τ ).

Proof. This is a computation; see Exercise 11.4. ⊓⊔

Proof of Theorem 11.2. The only non-trivial part is the associativity of multiplication.

Lemma 11.5 shows that H is a subalgebra of M2(C) considered as an 8-dimensional

algebra over R. Consequently, the associativity follows from the associativity of

multiplication of 2 × 2 matrices. ⊓⊔

11.3 Four squares

In this section we will explain a proof of the Four Squares Theorem which we learned

from Lior Silberman (based on Notes by Matilde Lalin). To see another proof of the

Four Squares Theorem using quaternions, see Herstein [25, Ch. 7, §4].

As in §10.4 it is sufficient to show that every odd prime is a sum of four squares.

By Lemma 10.13 there are integers r, s such that
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r2 + s2 ≡ −1 mod p.

This means r2 + s2 + 1 = zp for some integer z. Since the set {−(p − 1)/2,−(p −

1)/2+1, . . . , (p −1)/2−1, (p −1)/2} is a complete system of residues modulo p,

we may assume that |r |, |s| ≤ (p −1)/2, and as a result zp ≤ 2(p −1)2/4+1 < p2,

i.e., z < p. We let Q be the set of all quaternions z = a + bi + cj + dk with

a, b, c, d ∈ Z, and Q p the set of all elements x ∈ Q with |x |2 = mp for some

integer m with 0 < m < p. Then 1 + ri + s j ∈ Q p, and in particular Q p �= ∅.

Now, pick an element τ = a + bi + cj + dk ∈ Q p with minimal length among

the elements of Q p. We write |τ |2 = m0 p, with 0 < m0 < p. Our goal is to show

that m0 = 1, i.e., |τ |2 = p.

Our first observation is that m0 is odd. Suppose not. Then |τ |2 = a2+b2+c2+d2 =

m0 p is even. Consequently, either a ≡ b, c ≡ d mod 2, or a ≡ c, b ≡ d mod 2, or

a ≡ d, b ≡ c mod 2. Without loss of generality, suppose we are in the first situation

where a ≡ b, c ≡ d mod 2. Consider, τ/(1 + i). We have

∣

∣

∣

∣

τ

1 + i

∣

∣

∣

∣

2

=
|τ |2

|1 + i |2
=

m0 p

12 + 12
=

m0

2
· p.

So p | |τ/(1 + i)|2, but p2 ∤ |τ/(1 + i)|2. Now we compute τ/(1 + i) explicitly. By

Equation (11.2),

τ

1 + i
=

τ · (1 − i)

2
=

(a + bi + cj + dk)(1 − i)

2

=

(

a + b

2

)

+

(

−a + b

2

)

· i +

(

c − d

2

)

· j +

(

c + d

2

)

· k.

Since we assumed a ≡ b, c ≡ d mod 2, it followed that τ/(1 + i) ∈ Q p, but since

|τ/(1 + i)| < |τ |, we reach a contradiction as we had picked τ to have minimal

length among the elements of Q p. If instead of the congruences a ≡ b, c ≡ d mod 2

we had assumed a ≡ c, b ≡ d mod 2, then we would need to consider τ/(1 + j); if

a ≡ d, b ≡ c mod 2, then we would consider τ/(1 + k).

Before moving on, let us introduce a piece of notation. For xl = al +bl i+cl j+dlk,

l = 1, 2, elements of Q, and m an integer, write x1 ≡ x2 mod m if a1 ≡ a2, b1 ≡

b2, c1 ≡ c2, d1 ≡ d2 mod m. It is easy to check that if x1 ≡ x2 mod m, then

x1 ≡ x2 mod m. Also if x1 ≡ x2, y1 ≡ y2 mod m, then x1 ± y1 ≡ x2 ± y2 mod m

and x1 · y1 ≡ x2 · y2 mod m.

Suppose m0 �= 1. Pick an element σ ∈ Q with minimal length such that σ ≡

τ mod m0. Note that σ �= 0, as otherwise this would mean that τ ≡ 0 mod m0, and its

norm would be divisible by m2
0 which we assume not to be the case, unless of course

m0 = 1. Since m0 is odd, the set of integers S = {−m0−1
2

,−m0−1
2

+ 1, . . . , m0−1
2

−

1, m0−1
2

} is a complete system of residues modulo m0. In particular, as we are making

the coordinates as small as possible in their congruence class, we see that if we write

σ = u + vi + w j + tk, then u, v, w, t ∈ S. Then
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|σ |2 = u2 + v2 + w2 + t2 ≤ 4

(

m0 − 1

2

)2

< m2
0.

Next, since σ ≡ τ mod m0, σ ≡ τ mod m0, and as a result |σ |2 ≡ σ · σ ≡ τ · τ ≡

m0 p ≡ 0 mod m0. So 0 < |σ |2 < m2
0 and |σ |2 is divisible by m0, and this implies

that |σ |2 = rm0 for some 0 < r < m0 < p.

Now let ξ = τ · σ . Then

|ξ |2 = |τ |2 · |σ |2 = |τ |2 · |σ |2 = m2
0r p.

Next,

ξ ≡ τ · σ ≡ τ · τ ≡ m0 p ≡ 0 mod m0.

This last congruence means that the coordinates of ξ are divisible by m0. Now, set

ξ̃ = ξ/m0. Clearly, ξ̃ ∈ Q, and if m0 > 1, |ξ̃ |2 = r p < |τ |2, contradicting the

choice of τ as the element with minimal length among the elements of Q p.

The contradiction shows that m0 = 1. This means that |τ |2 = p and we are done.

Exercises

11.1 Verify the statements in (11.1).

11.2 Show that if z is a quaternion such that z · τ = τ · z for all τ ∈ H, then z ∈ R.

11.3 Prove Lemma 11.3.

11.4 Prove Lemma 11.5.

11.5 Determine all quaternions z ∈ H such that z2 + 1 = 0.

11.6 Let Q ⊂ H be the set of all quaternions z = a + bi + cj + dk with a, b,

c, d ∈ Z. Let z1, z2 ∈ Q, with z2 �= 0. Show that it is not always possible to

find quaternions q, r ∈ Q such that z1 = qz2 + r and |r | < |z2|.

11.7 Find all z ∈ Q such that z−1 ∈ Q.

11.8 Define the set of integral quaternions HZ to be

{aζ + bi + cj + dk | a, b, c, d ∈ Z}

with ζ = 1
2
(1 + i + j + k). Show that HZ is a subring of H which is closed

under conjugation.

11.9 Show that for all z ∈ HZ, |z|2 ∈ Z.

11.10 Determine the group of units in HZ.

11.11 Show that for all z ∈ HZ, there are integers b, c such that z2 + bz + c = 0,

i.e., α is integral over Z. Is HZ the integral closure of Z in H?

11.12 Let z1, z2 ∈ HZ, with z2 �= 0. Show that there are quaternions q, r ∈ Q such

that z1 = qz2 + r and |r | < |z2|.

11.13 (�) Investigate the solutions of the equation x2 + 2x + 7 = 0 in H.
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Notes

Octonions

A division algebra over a field k is a ring with identity containing a copy of k such

that ab = 0 implies that either a = 0 or b = 0. For example, C is a division algebra

over R. A classical theorem of Frobenius asserts that R, C, and H, respectively of

dimension 1, 2, and 4 as vector spaces over R, are the only division algebras over R.

Note that in going from R to C we had to give up the order relation, and from C to

H we gave up commutativity. A question that arises is whether we can further relax

the definition of a ring by removing associativity to obtain larger rings. The answer

is yes. Here we briefly explain the construction of a ring called Octonions, denoted

by O, which is a non-associative, non-commutative, division algebra of dimension 8

over R. The ring O has the interesting property that the subalgebra generated by any

two elements is associative. It is a theorem going back to 1958, due independently to

Kervaire and Bott–Milnor that R, C, H, and O are the only division algebras over R.

We warn the reader that when dealing with non-associative algebras there are many

subtleties that one needs to worry about. For example, an associative algebra is a

division algebra if and only if every non-zero element has a multiplicative inverse,

but this statement may not hold in a non-associative algebra; see [62, §2] for an

example. Our reference here is Baez [62]. Another great reference for quaternions

and Octonions is the charming book [13].

We define O to be the 8-dimensional real vector space consisting of all vectors of

the form

x0 + x1e1 + · · · + x7e7

with x0, . . . , x7 ∈ R. We make O into an algebra by requiring that the ei ’s have the

following multiplication properties:

• e1e2 = e4;

• e2
1 = e2

2 = · · · = e2
7 = −1;

• For all i �= j , ei e j = −e j ei ;

• ei e j = ek implies ei+1e j+1 = ek+1;

• ei e j = ek implies e2i e2 j = e2k .

All indices are computed modulo 7 and we take as a complete system of residues

modulo 7 the set {1, 2, . . . , 7}. For example, since e1e2 = e4, we conclude that

e2e4 = e8 = e1. This latter equality in turn implies e3e5 = e2, etc. This is of course

not easy to remember, and [62] contains a couple of different mnemonic devices to

remember the multiplication table for Octonions, but since we will not be doing any

computations with them in this book we will not review them here. Let us just note

here that it follows from the multiplication table that for all i, j, k distinct, we have

(ei e j )ek = −ei (e j ek) which shows that the algebra O is not associative.

A conceptually pleasant method to build the Octonions is the Cayley–Dickson

construction which we now explain. We often view complex numbers as pairs of
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real numbers (a, b), to represent the complex number a + bi , with addition done

componentwise and multiplication given by

(a, b)(c, d) = (ac − db, ad + cb).

Complex conjugation is defined by (a, b) = (a,−b). We can similarly construct

quaternions from complex numbers. Since i j = k, we have a + bi + cj + dk =

(a + bi)+ (c + di) j . In this expression, a + bi, c + di ∈ C, and as a result H can be

identified pairs of complex numbers. Clearly, addition is done componentwise, and

a computation shows that

(a, b)(c, d) = (ac − db̄, ād + cb), (11.3)

and

(a, b) = (ā,−b). (11.4)

Finally, we define O to be the collection of pairs of quaternions (a, b) with addition

defined componentwise, and multiplication and conjugation defined by Equation

(11.3) and Equation (11.4), respectively. We can certainly continue this process,

known as the Cayley–Dickson construction and build more algebras, but the 16-

dimensional algebra constructed from O will no longer be a division algebra.

We can now establish some basic properties of the algebra O. It is not hard to see

that if (a, b), (c, d) ∈ O then (a, b) = (c, d) if and only if (a, b) = (c, d). Also if

(a, b), (c, d) ∈ O, then

(a, b)(c, d) = (c, d) · (a, b).

If (a, b) ∈ O, then

(a, b) · (a, b) = (a, b) · (a, b) = (|a|2 + |b|2)(1, 0).

Consequently, if (a, b) �= (0, 0), (a, b) is invertible, and

(a, b)−1 =
1

|a|2 + |b|2
(a, b).

Also, if we set

|(a, b)| =

√

(a, b) · (a, b),

then

|(a, b)(c, d)|2 = |(a, b)|2 · |(c, d)|2.

Note that the expression on the right is the product of two sums of eight squares, and

the formula expresses this massive product as a sum of eight squares. Compare this

identity with Euler’s identity, Lemma 10.12. Finally, if x, y ∈ O, then

(xx)y = x(xy), (xy)x = x(yx), (yx)x = y(xx).

Octonions have many applications in number theory, algebra, and geometry. We

refer the reader to [62] and [13] for a survey of these applications.
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Quadratic forms and sums of squares

Our goal in this chapter is to develop the theory of quadratic forms so we can give

another proof of Theorem 9.8, especially in the three square case. Our exposition

follows [31, Part 3, Chap IV] closely. We start with the basic theory of quadratic forms

and explain the notion of equivalence. We then discuss the concept of representability

of an integer by a quadratic form. Since the goal of the chapter is to give a proof of the

Three Square Theorem we set the stage by giving a proof of the Two Squares Theorem

in §12.2. In this section we develop the theory of binary quadratic forms with integral

coefficients, determine representatives for the equivalence classes of positive definite

binary quadratic forms of a given discriminant, and use this knowledge to prove the

Two Squares Theorem. In the next two sections we develop the analogous theory for

ternary quadratic forms and prove the Three Squares Theorem. In the Notes to this

chapter, we explain Gauss’s beautiful composition law for binary quadratic forms.

12.1 Quadratic forms with integral coefficients

In Chapters 5 and 9 we determined what numbers can be represented as a sum of two,

three, or four squares. One way to view these results is to think of them as theorems

about the numbers that are represented by certain quadratic forms. For example, if

we let

f (x, y) = x2 + y2,

then Theorem 5.2 tells us what f (Z2) is. This is an example of a quadratic form with

integral coefficients.

Definition 12.1. Let A = (ai j )1≤i, j≤n be an n × n symmetric matrix with integer

entries. We call a function f : Z
n → Z defined by

f (x1, . . . , xn) =
∑

1≤i≤n

1≤ j≤n

ai j xi x j
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a quadratic form with integral coefficients associated to the matrix A. We define the

discriminant of the form f , denoted disc f , to be the determinant of the matrix A.

We call a quadratic form f with integral coefficients primitive if it is not an integral

multiple of another quadratic form with integral coefficients.

For example, if n = 2 and

A =
(

a b

b c

)

with a, b, c ∈ Z, then the quadratic form associated to A is

f (x, y) = ax2 + 2bxy + cy2.

It is easy to check that

f (x, y) =
(

x y
)

(

a b

b c

) (

x

y

)

= vT Av

with v =
(

x

y

)

. This is of course a completely general fact: If f is the quadratic form

associated to the matrix A, then

f (x1, . . . , xn) = vT Av (12.1)

with v =

⎛

⎜

⎜

⎜

⎝

x1

x2

...

xn

⎞

⎟

⎟

⎟

⎠

the column vector with entries x1, . . . , xn .

Lemma 12.2. The quadratic form f uniquely determines the matrix A.

Proof. Suppose f is associated to matrices A = (ai j )1≤i, j≤n and A′ = (a′
i j )1≤i, j≤n .

Then we have

vT Av = vT A′v (12.2)

for all v. We will prove A = A′ by induction on n. If n = 1, then

a11x2
1 = a′

11x2
1

for all x1 ∈ Z immediately implies a11 = a′
11. Now suppose the lemma is true for

n − 1. Let w =

⎛

⎜

⎜

⎜

⎝

w1

w2

...

wn−1

⎞

⎟

⎟

⎟

⎠

∈ Z
n−1 be a column vector, and for each 1 ≤ j ≤ n let

w( j) =

⎛

⎜

⎜

⎜

⎝

w1( j)

w2( j)
...

wn( j)

⎞

⎟

⎟

⎟

⎠

be the vector in Z
n which is defined as follows:
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wi ( j) =

⎧

⎪

⎨

⎪

⎩

wi i < j;
0 i = j;
wi−1 i ≥ j.

For example, if n = 3 and w =

⎛

⎝

x

y

z

⎞

⎠, then

w(3) =

⎛

⎜

⎜

⎝

x

y

0

z

⎞

⎟

⎟

⎠

.

Next, for each n × n matrix B = (bkl)1≤k,l≤n and each 1 ≤ j ≤ n define a matrix

B( j) to be the (n − 1) × (n − 1) matrix which is obtained from B by deleting the

j th rows and j th column of B, i.e., if we write B( j) = (bkl( j))1≤k,l≤n−1, then

bkl( j) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

bkl k, l < j;
bk,l+1 k < j, l > j;
bk+1,l k > j, l < j;
bk+1,l+1 k > j, l > j.

For example, if

B =

⎛

⎜

⎜

⎝

a b c d

e f g h

i j k l

m n o p

⎞

⎟

⎟

⎠

,

then

B(1) =

⎛

⎝

f g h

j k l

n o p

⎞

⎠ , B(3) =

⎛

⎝

a b d

e f h

m n p

⎞

⎠ .

The importance of the matrix B( j) lies in the fact that for each w ∈ Z
n−1 and each

B ∈ Mn(Z) we have

w( j)T Bw( j) = wT B( j)w. (12.3)

Now we go back to Equation (12.2), and apply it to column vectors of the form w( j),

1 ≤ j ≤ n. For each j we have

wT A( j)w = w( j)T Aw( j) = w( j)T A′w( j) = wT A′( j)w.

Since we are assuming the lemma is true for n − 1, this last equation implies that for

each j ,

A( j) = A′( j).

The assertion now follows from Exercise 12.2. ⊓⊔
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Since the matrix A is symmetric and xi x j = x j xi for all i, j , we have

f (x1, . . . , xn) =
n

∑

i=1

ai i x
2
i + 2

∑

1≤i< j≤n

ai j xi x j ,

This points to a caveat in our theory, namely that the quadratic forms that we consider

have even coefficients for their “mixed” terms, i.e., the terms of the form xi x j with

i 	= j . This means that our theory does not include quadratic forms like

x2 + xy + y2, x2 + y2 + z2 + 3xy + 4xz.

One way to avoid this problem is to consider matrices that are not symmetric, or

by allowing the off diagonal terms in A be half integers, but either of these ideas

brings about complications that we do not want to deal with in this book. We refer

the reader to Cassels [12] for a more thorough treatment of quadratic forms over the

field of rational numbers.

Definition 12.3. For quadratic forms f and g with integral coefficients, we say f is

equivalent to g, and write f ∼ g, if there is a matrix P = (pi j ) ∈ SLn(Z) such that

f (

n
∑

j=1

p1 j x j ,

n
∑

j=1

p2 j x j , . . . ,

n
∑

j=1

pnj x j ) = g(x1, x2, . . . , xn).

For example if f (x, y) = x2 + y2 and g(x, y) = x2 + 2xy + 2y2, then f ∼ g.

The reason is that f (x + y, y) = g(x, y), i.e., the definition holds with P =
(

1 1

1

)

∈

SL2(Z).

In the above notation, note that
⎛

⎜

⎜

⎜

⎜

⎝

∑n
j=1 p1 j x j

∑n
j=1 p2 j x j

...
∑n

j=1 pnj x j

⎞

⎟

⎟

⎟

⎟

⎠

= P.

⎛

⎜

⎜

⎜

⎝

x1

x2

...

xn

⎞

⎟

⎟

⎟

⎠

.

Now if we suppose f and g are associated to the matrices A and B, respectively,

then f ∼ g means

(Pv)T A(Pv) = vT Bv

for all v =

⎛

⎜

⎜

⎜

⎝

x1

x2

...

xn

⎞

⎟

⎟

⎟

⎠

∈ Z
n . Since transposition is order reversing, (XY )T = Y T X T , this

equation now implies

vT (PT AP)v = vT Bv.
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Lemma 12.2 says

PT AP = B. (12.4)

It is clear that this process can be reversed, meaning if there is P ∈ SLn(Z) such that

Equation (12.4) holds, then f ∼ g. We summarize this discussion as the following

lemma:

Lemma 12.4. Suppose f, g are quadratic forms associated to matrices A, B. Then

f ∼ g if and only if there is P ∈ SLn(Z) such that

PT AP = B.

This lemma has the following important consequence:

Proposition 12.5. The relation ∼ on quadratic forms is an equivalence relation that

preserves the discriminant.

Proof. We need to show that ∼ is symmetric, reflexive, and transitive, and that if

f ∼ g, then det f = det g. We use Lemma 12.4 repeatedly.

Reflexive. We need: f ∼ f . Clearly In , the n × n identity matrix, is in SLn(Z), and

A = I T
n AIn .

Symmetry. We need: f ∼ g implies g ∼ f . Suppose f and g are associated to A, B,

respectively. If there is a matrix P ∈ SLn(Z) such that PT AP = B, then since

(PT )−1 = (P−1)T , (P−1)T B(P−1) = A, and P−1 ∈ SLn(Z). This means g ∼ f .

Transitive. We need: f ∼ g and g ∼ h implies f ∼ h. Suppose f, g, h are associated

to A, B, C , respectively, and that there are P, Q ∈ SLn(Z) such that PT AP = B

and QT B Q = C . Then

C = QT B Q = QT PT AP Q = (P Q)T A(P Q).

Determinant preservation. We need: f ∼ g implies det f = det g. Suppose f, g are

associated to A, B, respectively, and that there is P ∈ SLn(Z) such that B = PT AP .

We have

disc g = det B = det(PT AP) = det(PT ) det P det A

by multiplicativity of determinant. Then we note that det PT = det P = 1 as trans-

position does not change the value of determinant. This means that

disc g = det A = disc f.

⊓⊔

Definition 12.6. For a quadratic form f and an integer m, we say f represents m if

there are integers x1, . . . , xn such that
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f (x1, . . . , xn) = m.

We call f positive definite if for all x1, . . . , xn ∈ Z
n , not all of which are zero, we

have

f (x1, . . . , xn) > 0.

The following proposition is central to our discussion:

Proposition 12.7. Suppose f, g are quadratic forms, and f ∼ g. Then

1. The quadratic forms f and g represent the exact same set of numbers.

2. The quadratic form f is positive definite if and only if the quadratic form g is.

Proof. Following the notation of Equation (12.1) write

f (x1, . . . , xn) = vT Av, g(x1, . . . , xn) = vT Bv

with v =

⎛

⎜

⎜

⎜

⎝

x1

x2

...

xn

⎞

⎟

⎟

⎟

⎠

the column vector with entries x1, . . . , xn . For simplicity we write

f (v) and g(v) instead of f (x1, . . . , xn) and g(x1, . . . , xn), respectively. The assump-

tion on the f and g means there is a matrix P ∈ SLn(Z) such that B = PT AP .

In terms of f and g this means that for all v, g(v) = f (P · v). As a result,

g(Zn) = f (P · Z
n). Once we show P · Z

n = Z
n , the first assertion follows. Since P

has integer entries, P · Z
n ⊂ Z

n . Similarly, since P ∈ SLn(Z), P−1, too, has integer

entries. Therefore, P−1 · Z
n ⊂ Z

n . Multiplying by P gives Z
n ⊂ P · Z

n . Putting the

inclusions P · Z
n ⊂ Z

n and Z
n ⊂ P · Z

n together gives P · Z
n = Z

n , and we are

done with the first part. The second statement follows from the first statement, and

the statement that for v ∈ Z
n , v = 0 if and only if Pv = 0. ⊓⊔

Lemma 12.8. If for a quadratic form f , disc f is square-free, then f is primitive.

Equivalence preserves primitivity.

Proof. If f = mg, then disc f = mndisc g. This observation implies the first asser-

tion. The second statement is obvious. ⊓⊔

12.2 Binary forms

We now discuss the case where n = 2, the so-called binary forms, in detail. Here

we do not address questions of representability of integers by binary forms. The

wonderful book Cox [14], especially Chapter 1, provides an accessible introduction

to this important topic.
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Suppose we have a binary quadratic form f which is associated to the symmetric

matrix

A =
(

a b

b c

)

.

Then disc f = det A = ac − b2.

Lemma 12.9. The form f is positive definite if and only if a > 0 and disc f > 0.

Proof. Suppose f is positive definite. Since f (1, 0) = a we immediately see a > 0.

Next,

0 < f (−b, a) = ab2 − 2b2a + ca2 = −b2a + ca2 = a(ac − b2) = adisc f.

Since we have already established a > 0, adisc f > 0 implies disc f > 0.

Now suppose a > 0 and disc f > 0. Then

a f (x, y) = a2x2 + 2abxy + acy2 = (a2x2 + 2abxy + b2 y2) + (ac − b2)y2

= (ax + by)2 + (disc f )y2.

Since a > 0 and disc f > 0, the identity

a f (x, y) = (ax + by)2 + (disc f )y2 (12.5)

shows that f (x, y) ≥ 0, and f (x, y) = 0 only if (disc f )y2 = 0 and (ax + by)2 = 0,

which immediately implies x = y = 0. This means f is positive definite. ⊓⊔

Theorem 12.10. Every equivalence class of positive definite binary quadratic forms

contains a form f whose associated matrix A =
(

a b

b c

)

satisfies

2|b| ≤ a ≤ c.

Proof. Suppose we have a positive definite form g associated to Ag =
(

a0 b0

b0 c0

)

. We

wish to show that there is a form f with f ∼ g for which the inequalities of the

theorem hold. Let a be the smallest positive number represented by g. There are

integers r, t such that g(r, t) = a. We claim gcd(r, t) = 1. Otherwise, if p | r and

p | t , then p2 | a, and we would have g(r/p, t/p) = a/p2, and that contradicts the

choice of a. Since gcd(r, t) = 1, there are integers s, u such that ru − st = 1. By

Theorem 2.23 if we fix one solution s0, u0 every other solution is of the form

s(h) = s0 + rh, u(h) = u0 + ht, h ∈ Z.

Now consider the functions a(h), b(h), and c(h), for h ∈ Z, defined by the following

matrix identity

(

a(h) b(h)

b(h) c(h)

)

=
(

r s(h)

t u(h)

)T (

a0 b0

b0 c0

) (

r s(h)

t u(h)

)

.
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Explicitly, we have

⎧

⎪

⎨

⎪

⎩

a(h) = a0r2 + 2b0r t + c0t2 = a,

b(h) = s(h)(ra0 + tb0) + u(h)(rb0 + tc0),

c(h) = a0s(h)2 + 2b0s(h)u(h) + c0u(h)2.

Simplification gives

b(h) = s0(a0r + b0t) + u0(b0r + c0t) + (a0r2 + 2b0r t + c0t2)h

= s0(a0r + b0t) + u0(b0r + c0t) + ah.

Since the coefficient of h is a > 0, and h is arbitrary, we may choose an h0 so that

b(h0) satisfies |b(h0)| ≤ a/2. The expression for c(h) shows that

c(h0) = g(s(h0), u(h0)),

and consequently a ≤ c(h0). It is clear that the quadratic form associated to the

matrix
(

a(h0) b(h0)

b(h0) c(h0)

)

satisfies the requirements. ⊓⊔

Definition 12.11. A primitive binary form f (x, y) = ax2 + 2bxy + cy2 is called

reduced if its coefficients satisfy the inequalities of Theorem 12.10.

For example, the forms x2 + y2 and 4x2 + 2xy + 5y2 are reduced, and 5x2 + 2xy +
4y2 is not.

Corollary 12.12. Every positive definite binary quadratic form of discriminant 1 is

equivalent to x2 + y2.

Proof. By Theorem 12.10 and Proposition 12.5 every such quadratic form is equiv-

alent to a quadratic form whose associated matrix

(

a b

b c

)

satisfies 2|b| ≤ a ≤ c and

ac − b2 = 1. Then we have

a2 ≤ ac = b2 + 1 ≤
a2

4
+ 1.

Consequently, a2 ≤ 4/3. From this inequality it follows that a = 1. Since 2|b| ≤ 1,

we see b = 0. Since ac = b2 + 1 = 1, we see c = 1. ⊓⊔

Let us now use this last result to give another proof for Theorem 5.7, namely that

every prime of the form 4k + 1 is a sum of two squares.

One more proof of Theorem 5.7. Suppose p is of the form 4k + 1. We wish to show

that p is represented by the binary quadratic form x2 + y2. Since by Corollary 12.12

every positive definite binary form of discriminant 1 is equivalent to x2 + y2, and by
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Proposition 12.7 equivalent forms represent the same set of numbers, it suffices to

find some positive definite binary form

ax2 + 2bx + cy2

with discriminant 1 which represents p. We will show that we may even take a = p,

see Exercise 12.7. Clearly, the form

g(x, y) = px2 + 2bxy + cy2

represents p, as g(1, 0) = p. We just need to choose b, c so that disc g = 1. We have

disc g = pc − b2.

As a result, the existence of b, c is equivalent to b2 ≡ −1 mod p, or (−1/p) = +1.

But for p of the form 4k + 1 this is a consequence of Equation (6.3). ⊓⊔

12.3 Ternary forms

In this section we study quadratic forms in three variables. Our goal here is to prove

the analogue of Corollary 12.12 in this setting. Namely, we will prove:

Theorem 12.13. Every positive definite ternary quadratic form of discriminant 1 is

equivalent to x2 + y2 + z2.

The proof of this theorem, though in principle similar to the proof of Corollary 12.12,

is fairly complicated. The reader might want to skip the rest of this subsection in the

first reading and go straight to §12.4 where the Three Square Theorem is proved.

Theorem 12.14. Suppose f is a ternary quadratic form associated to the symmetric

matrix

A =

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ .

Then f is positive definite if and only if

• a11 > 0;

• det

(

a11 a12

a21 a22

)

> 0;

• det A > 0.

Before we prove the theorem, we need a lemma that is the analogue of Equation

(12.5) for ternary forms:

Lemma 12.15. With notations as above,

a11 f (x, y, z) = (a11x + a12 y + a13z)2 + K (y, z)
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with K (y, z) a binary quadratic form associated to the matrix

(

a11a22 − a2
12 a11a23 − a12a13

a11a23 − a12a13 a11a33 − a2
13

)

.

Furthermore, disc K = a11disc f . Finally, if f is positive definite, K will be positive

definite.

Proof. Every statement in the lemma, except for the last one, is a straightforward

computation; see Exercise 12.10. The last statement follows from Lemma 12.9. ⊓⊔

We can now prove the theorem:

Proof of Theorem 12.14. Since a11 = f (1, 0, 0), we see that a11 > 0 if f is positive

definite. So we will assume a11 > 0.

If f is positive definite, Lemma 12.15 implies that K is positive definite. Lemma

12.9, applied to K , implies that a11a22 − a2
12 > 0 and disc K = a11disc f > 0. These

are the conditions required by the theorem.

Conversely, suppose the inequalities of the theorem are satisfied. Then, as above,

it follows that K is positive definite. Suppose, to achieve a contradiction, that f is

not positive definite. Then for some (x, y, z) 	= (0, 0, 0), f (x, y, z) ≤ 0. Then we

have

(a11x + a12 y + a13z)2 + K (y, z) ≤ 0.

Since K is positive definite, this equation implies K (y, z) = 0 and a11x + a12 y +
a13z = 0. The first of these implies y = z = 0, and then we conclude x = 0 as well.

⊓⊔
Our next theorem is the analogue of Exercise 12.3 for ternary forms.

Theorem 12.16. Every positive definite ternary quadratic form f of discriminant d

is equivalent to some quadratic form g whose associated matrix A = (ai j ) satisfies

a11 ≤
4

3

3
√

d, 2|a12| ≤ a11, 2|a13| ≤ a11.

Proof. Suppose f is associated to the matrix B, and let a11 be the smallest natural

number represented by f . Then there are integers c11, c21, c31 such that

a11 = f (c11, c21, c31).

As in the proof of Theorem 12.10 we have

gcd(c11, c21, c31) = 1.

Exercise 12.11 shows that there is a 3 × 3 matrix C = (ci j ) whose first column is

the numbers c11, c21, c31 and whose determinant is 1. Let g be the quadratic form

whose associated matrix is

D = CT BC.
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Now

g(1, 0, 0) = f (c11, c21, c31) = a11.

Next, consider a form h whose associated matrix is

E =

⎛

⎝

1 r s

0 t u

0 v w

⎞

⎠

T

D

⎛

⎝

1 r s

0 t u

0 v w

⎞

⎠ .

Here we assume r, s, t, u, v, w ∈ Z, and tw − uv = 1, so that for every r, s the deter-

minant of the transformation matrix is 1.

We write D = (bkl) and E = (akl). If
⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

1 r s

0 t u

0 v w

⎞

⎠

⎛

⎝

y1

y2

y3

⎞

⎠ ,

then one can check

b11x1 + b12x2 + b13x3 = a11 y1 + a12 y2 + a13 y3.

Now we apply Lemma 12.15 to obtain positive definite binary forms K and L such

that

a11g(x1, x2, x3) = (b11x1 + b12x2 + b13x3)
2 + K (x2, x3)

and

a11h(y1, y2, y3) = (a11 y1 + a12 y2 + a13 y3)
2 + L(y2, y3).

The form K is transformed to L via

(

t u

v w

)

. The form L has discriminant a11disc f ,

and the coefficient of y2
2 is a11a22 − a2

12. Consequently, by Exercise 12.3 we can

choose u, v, w, t such that

a11a22 − a2
12 ≤

2
√

3

√

a11d.

It is easy to see that

a12 = ra11 + tb12 + vb13

and

a13 = sa11 + ub12 + wb13.

Since r, s are arbitrary, we can choose them so that

|a12| ≤ a11/2, |a13| ≤ a11/2.

Also, since a22 = h(0, 1, 0), we must have a22 ≥ a11. Hence,

a2
11 ≤ a11a22 = (a11a22 − a2

12) + a2
12 ≤

2
√

3

√

a11d +
a2

11

4
,
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from which it immediately follows that

a11 ≤
4

3

3
√

d. ⊓⊔

Now we proceed to prove the main theorem of this section:

Proof of Theorem 12.13. By Theorem 12.16 we know that our quadratic form is

equivalent to a form whose associated matrix has the properties

a11 ≤ 4/3, 2|a12| ≤ a11, 2|a13| ≤ a11.

Clearly, a11 = 1, a12 = 0, and a13 = 0. Consequently, our form is equivalent to a

form

g = x2
1 + K (x2, x3)

with K a positive definite binary quadratic form of discriminant 1. By Corollary

12.12 there is a transformation

(

t u

v w

)

that sends K to x2
2 + x2

3 . Finally,

⎛

⎝

1 0 0

0 t u

0 v w

⎞

⎠

sends g to x2
1 + x2

2 + x2
3 , and we are done. ⊓⊔

12.4 Three squares

In this section we give a proof of the most non-trivial part of Theorem 9.8. Namely,

we will prove that if n is not of the form 4a(8k + 7) then n is a sum of three squares.

Clearly if n = x2 + y2 + z2, then 4n = (2x)2 + (2y)2 + (2z)2, so we may factor out

any factor 4m from n and assume that either n is odd or it is twice an odd number.

This means that we may assume

n ≡ 1, 2, 3, 5, 6 mod 8.

Theorem 12.13 and Proposition 12.7 imply that it suffices to find a positive definite

ternary form of discriminant 1 that represents n. This means we need to find a 3 × 3

matrix (ai j ) with integer entries and three integers x1, x2, x3 such that

a11 > 0, a11a22 − a2
12 > 0, det(ai j ) = 1,

and

n =
∑

i j

ai j xi x j .

We take

a13 = a31 = 1, a23 = a32 = 0, a33 = n, x1 = 0, x2 = 0, x3 = 1.

Then if we set b = a11a22 − a2
12, computing the determinant of (ai j ) using the bottom

row gives
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1 = det(ai j ) = det

⎛

⎝

a11 a12 1

a21 a22 0

1 0 n

⎞

⎠ = −a22 + n det

(

a11 a12

a12 a22

)

= −a22 + nb.

So we just need

• a11 > 0;

• b = a11a22 − a2
12 > 0;

• a22 = bn − 1.

If n > 1, then a11 > 0 is a consequence of the other statements. The reason for

this is that

a22 = bn − 1 > b − 1 ≥ 0,

and

a11a22 = a2
12 + b > 0.

The latter implies a11 > 0. So we need

• b = a11a22 − a2
12 > 0;

• a22 = bn − 1,

or, equivalently, we need to show that there is b > 0 such that the equation

X2 ≡ −b mod (bn − 1)

has a solution. We separate the cases where n is even or odd.

The even case: n ≡ 2, 6 mod 8. Since gcd(4n, n − 1) = 1, Dirichlet’s Arithmetic

Progression Theorem, Theorem 5.11, shows that there is a natural number v such

that

p = 4nv + n − 1 = (4v + 1)n − 1

is prime. Note that p ≡ 1 mod 4. Let b = 4v + 1 > 0. By Theorem 7.3 we have

(

−b

p

)

=
(

−1

p

) (

b

p

)

=
(

b

p

)

=
( p

b

)

=
(

bn − 1

b

)

=
(

−1

b

)

= +1.

The odd case: n ≡ 1, 3, 5 mod 8. First let us assume n ≡ 3 mod 8. Then (n−1)/2 is

odd, and consequently, gcd(4n, (n − 1)/2) = 1. By Dirichlet’s Arithmetic Progres-

sion Theorem, Theorem 5.11, there is an integer v such that

p = 4nv +
n − 1

2
=

(8v + 1)n − 1

2

is prime, and p ≡ 1 mod 4. Set b = 8v + 1. Then b > 0 and 2p = bn − 1. Since

b ≡ 1 mod 8, by Theorem 7.3, (−2/b) = 1. Then
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(

−b

p

)

=
(

b

p

)

= (−1)
b−1

2
.

p−1

2

( p

b

)

=
( p

b

)

=
( p

b

)

(

−2

b

)

=
(

−2p

b

)

=
(

1 − nb

b

)

=
(

1

b

)

= 1.

If n ≡ 1, 5 mod 8, then we consider primes of the form p = 4nv + 3n−1
2

, and we

let b = 8v + 3. The remainder of the argument is completely similar; see Exercise

12.13.

Exercises

12.1 Verify Equation (12.3).

12.2 This exercise uses the notations of the proof of Lemma 12.2. Suppose A, A′ ∈
Mn(R) for some ring R, and suppose for all j we have A( j) = A′( j). Show

that A = A′.

12.3 Show that every positive definite binary quadratic form of discriminant d is

equivalent to a quadratic form whose associated matrix

(

a b

b c

)

satisfies

2|b| ≤ a ≤
2

√
3

√
d.

12.4 Show that a reduced binary quadratic form cannot be equivalent to a different

reduced binary quadratic form.

12.5 Show that for every natural number d there are only finitely many equivalence

classes of positive definite binary quadratic forms of discriminant d.

12.6 Find representatives for equivalence classes of positive definite binary

quadratic forms of discriminant d when

a. d = 2;

b. d = 3;

c. d = 5.

12.7 We say that a binary form f represents m properly if there are a, b ∈ Z

with gcd(a, b) = 1 such that f (a, b) = m. Show that a binary quadratic form

represents an integer m properly if and only if it is equivalent to a binary form

mx2 + bxy + cy2 for some b, c ∈ Z.

12.8 Find reduced forms that are equivalent to the following forms:

a. 4x2 + y2;

b. 9x2 + 2xy + y2;

c. 126x2 + 74xy + 13y2.
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12.9 (�) List all reduced primitive positive definite binary quadratic forms of dis-

criminant bounded by 100. For each d, find the number of forms with that

discriminant.

12.10 Prove Lemma 12.15.

12.11 Suppose a, b, c ∈ Z are such that gcd(a, b, c) = 1. Then prove that there are

integers d, e, f, g, h, i such that the matrix

⎛

⎝

a b c

d e f

g h i

⎞

⎠

has determinant 1.

12.12 Prove that the Three Square Theorem implies the Four Square Theorem.

12.13 Finish the proof of the Three Square Theorem for n ≡ 1, 5 mod 8.

12.14 Show that if p > 17 is a prime number p ≡ 5 mod 12 then p is a sum of three

distinct positive squares. Hint: Use the identity,

9(a2 + b2) = (2a − b)2 + (2a + 2b)2 + (2b − a)2.

Notes

Gauss Composition

The easy identity

(x2 + y2)(z2 + w2) = (xz + yw)2 + (xw − zy)2 (12.6)

has been known for hundreds of years. As we noted in the Notes to Chapter 3, the

master Indian mathematician Brahmagupta discovered the more general identity

(x2 + dy2)(z2 + dw2) = (xz + dyw)2 + d(xw − yz)2 (12.7)

at some point in the seventh century CE. Over a thousand years later, Lagrange
discovered the identities

(2x2 + 2xy + 3y2)(2z2 + 2zw + 3w2) = (2xz + xw + yz + 3yw)2 + 5(xw − yz)2,

(12.8)
and

(3x2 + 2xy + 5y2)(3z2 + 2zw + 5w2) = (3x2 + xw + yz + 5yw)2 + 14(xw − yz)2.

(12.9)

All of these identities are of the form

f (x, y) f (z, w) = g(B1(x, y, z, w), B2(x, y, z, w)); (12.10)
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with f and g positive definite binary quadratic forms of the same discriminant, and

B1, B2 homogeneous quadratic forms in the four variables x, y, z, w. The binary

quadratic forms in Equation (12.6) have discriminant 1, in Equation (12.7) they have

discriminant d, in Equation (12.8) they have discriminant 5, and in Equation (12.9)

they have discriminant 14. Gauss proved a truly impressive theorem that generalizes

all such identities. In fact, he showed the following theorem: Let f1, f2 be posi-

tive definite binary quadratic forms of discriminant d. Then there are homogeneous

polynomials B1, B2 of degree 2 in the variables x, y, z, t such that

f1(x, y) f2(z, w) = g(B1(x, y, z, w), B2(x, y, z, w));

for some positive definite binary quadratic form g of discriminant d. Gauss called

the quadratic form g the composition of f1 and f2, and for that reason the theorem is

called the composition law. The binary quadratic forms we studied in this chapter all

had an even middle coefficient, i.e., they were of the form ax2 + 2bxy + cy2 with

b an integer. Gauss considered the more general quadratic forms ax2 + bxy + cy2

with b integral. For such forms the discriminant as we defined it is not necessarily an

integer, so the discriminant is generally defined to be 4ac − b2 ∈ Z. Gauss illustrated

his theory with the following example:

(4x2 + 3xy + 5y2)(3z2 + zw + 6w2)

= (xz − 3xw − 2yz − 3yw)2 + (xz − 3xw − 2yz − 3yw)(xz + xw + yz − yw)

+9(xz + xw + yz − yw)2.

Let us denote the composition of the forms f1 and f2 by f1 ◦ f2. An important

feature of Gauss’s composition is that if f1 is equivalent to a form f ′
1, then f1 ◦ f2 ∼

f ′
1 ◦ f2. This means that the composition provides a well-defined operation on the

finite set of equivalence classes of binary quadratic forms of discriminant d, turning

it into a finite abelian group, the class group of binary forms. It was Dirichlet who

interpreted the composition of binary quadratic forms in terms of ideal multiplication,

whereby connecting the class group of binary forms to the ideal class group of modern

algebraic number theory. After about 200 years since the publication of [21], in a

series of groundbreaking works, Manjul Bhargava generalized the Gauss composition

laws and found numerous other composition laws. Gauss’s proof of his composition

law is extremely complicated; see [21, Ch. V]. Cox [14, §3] contains a motivated

introduction to Gauss’s theory of quadratic forms. We refer the reader to Andrew

Granville’s lecture at a summer school in 2014 for a review of Gauss’s work and

the works of other mathematicians that preceded it, as well as an introduction to

Bhargava’s works:

http://www.crm.umontreal.ca/sms/2014/pdf/granville1.pdf

http://www.crm.umontreal.ca/sms/2014/pdf/granville1.pdf


Chapter 13

How many Pythagorean triples are there?

In this chapter we determine an asymptotic formula for the number of primitive right

triangles with bounded hypotenuse, giving a proof of a theorem of Lehmer from

1900. We start by relating the quantity we are interested in, namely the number of

elements of the set

S(B) = {(a, b, c) ∈ Z
3 | a2 + b2 = c2, gcd(a, b, c) = 1, |a|, |b|, |c| ≤ B},

using our solution to the Pythagorean Equation, to the number of pairs of coprime

integers satisfying certain conditions. Determining the latter number requires two

inputs: an analogue of Gauss’s Circle Theorem (Theorem 9.4) and a tool to ensure

the coprimality of the integers; the tool we use to sieve out the non-coprime pairs

is the function μ whose basic properties are collected in Lemmas 13.2 and 13.3. In

the course of the proof we need to determine a quantity C2 =
∑

δ odd μ(δ)/δ2. In

§13.2 we show that the value C2 is related to the value of the Riemann zeta function

at 2, ζ(2), and explicitly calculate it. The main theorem of the chapter is Theorem

13.5. In the Notes to this chapter, we give some references for a conjecture of Manin

that puts Lehmer’s Theorem in a conceptual, geometric framework. The next item

in the Notes is a disambiguation of the three number theorists with the last name of

Lehmer (Hint: They were related!). The last part of the Notes is concerned with the

Riemann zeta function, its analytic continuation, and the Riemann Hypothesis.

13.1 The asymptotic formula

It is clear that there are infinitely many right triangles with integer sides, but it still

makes sense to obtain finer quantitative information about the set of right triangles.

How many triples of integers (a, b, c) are there such that a2 +b2 = c2 and |a|, |b|, |c|
are bounded by a fixed number? What if we required that the numbers a, b, c be

coprime? For a positive real number B, we define

© Springer Nature Switzerland AG 2018
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Undergraduate Texts in Mathematics, https://doi.org/10.1007/978-3-030-02604-2_13
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S(B) = {(a, b, c) ∈ Z
3 | a2 + b2 = c2, gcd(a, b, c) = 1, |a|, |b|, |c| ≤ B}.

and set N (B) = #S(B). Can we find an exact formula for N (B)? Or, in the

absence of a useful explicit formula, can we study the behavior of the function, e.g.,

its asymptotic behavior as B goes to infinity? And a related question, how many

primitive right triangles are there with side lengths bounded by B? It will become

clear in a moment that these questions are fairly easily tractable, and that one can

give a beautiful formula describing the asymptotic behavior of the function N (B).

We start with some preliminary observations. By the proof of Theorem 3.1, if

(a, b, c) ∈ S(B), with c > 0, there are odd coprime integers x, y such that

⎧

⎪

⎨

⎪

⎩

a = x2−y2

2
;

b = xy;
c = x2+y2

2
,

if a is even, and
⎧

⎪

⎨

⎪

⎩

a = xy;
b = x2−y2

2
;

c = x2+y2

2
,

if b is even. Also, since |a|, |b|, |c| ≤ |c|, this means that we just need to require

(x2 + y2)/2 ≤ B. One needs to be careful about signs here. For examples, in these

formulae (x2 + y2)/2 is always positive, whereas we wish to count all elements of

S(B). So, our first guess might be that N (B) is equal to

N1(B) = #{x, y ∈ Z | x, y odd, gcd(x, y) = 1, x2 + y2 ≤ 2B}.

But this is not the whole story. For one, we need to multiply N1(B) by 2 to account

for the sign of c. Also, we need to multiply it by another factor of 2 to account for

the odd and evenness of a and b. But then we need to divide by 2, as changing (x, y)

to (−x,−y) does not change the triple (a, b, c). Consequently,

N (B) = 2N1(B).

To study the function N1(B) we introduce the related function

h(B) = #{(x, y) �= (0, 0) | x, y ∈ Z, odd, gcd(x, y) = 1, x2 + y2 ≤ B}.

Then clearly, N1(B) = h(2B) and N (B) = 2h(2B).

To get an asymptotic formula for h(B), first we relax the coprimality condition

and define

h̃(B) = #{(x, y) �= (0, 0) | x, y ∈ Z, odd, x2 + y2 ≤ B}.
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(1,3)

(5,7)

(−3,−5)

Fig. 13.1 The diagram for the proof of Lemma 13.1

Then we have the following lemma:

Lemma 13.1. As B → ∞,

h̃(B) =
1

4
π B + O(

√
B).

Proof. Our proof of this lemma is modeled on the proof of Theorem 9.4. In this case,

for every integral point (x, y) with x, y inside the circle, we draw a 2 × 2 square

whose upper right corner is (x, y) as in Figure 13.1 with the point (1, 3).

As in the proof of Theorem 9.4, not every square based on a point (x, y) inside

the circle will be completely within the circle, e.g., the red square whose upper right

corner is the point (−3,−5) is not entirely within the circle of radius 7; and also some

integral points outside the circle of radius 7 shown in the picture will have squares

associated with them that intersect the circle, e.g., the blue square to the lower left

of the point (5, 7). Since the diameter of a 2 × 2 square is 2
√

2 and its area is 4, by

emulating the proof of Theorem 9.4, we have

π(
√

B − 2
√

2)2 ≤ 4h̃(B) ≤ π(
√

B − 2
√

2)2.

This proves the lemma. ⊓⊔

We now relate the functions h and h̃. Suppose (x, y) �= (0, 0) is an integral point

such that x2 + y2 ≤ B. Then we have
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(
x

gcd(x, y)
)2 + (

y

gcd(x, y)
)2 ≤

B

gcd(x, y)2
.

Clearly, if x, y areoddnumbers,gcd(x, y) isodd,andgcd(x/ gcd(x, y), y/ gcd(x, y))

= 1. The map

(x, y) 
→ (x/ gcd(x, y), y/ gcd(x, y))

establishes a one-to-one correspondence between the sets

{(x, y) �= (0, 0) | x, y ∈ Z, odd, x2 + y2 ≤ B}

and

⊔

δ≤B

{

(x, y) �= (0, 0) | x, y ∈ Z, odd, gcd(x, y) = 1, x2 + y2 ≤
B

δ2

}

,

a disjoint union. As a result,

h̃(B) =
∑

δ2≤B

δ odd

h

(

B

δ2

)

.

We now express the function h in terms of the function h̃. For B < 1, h(B) = 0.

If 1 ≤ B < 9, then since δ2 ≤ B, with δ odd, means δ = 1, we see that

h(B) = h̃(B)

for 1 ≤ B < 9. Next, let 9 ≤ B < 25. Then

h̃(B) = h(B) + h

(

B

9

)

.

Now we note that for 9 ≤ B < 25, 1 ≤ B/9 < 25/9 < 9, and as a result h̃(B/9) =
h(B/9). Hence, for such B,

h̃(B) = h(B) − h

(

B

9

)

.

We note that this formula is valid even if B < 9, as in that case B/9 < 1, and h(B/9)

= 0. Now let’s suppose 25 ≤ B < 49. Then as before,

h̃(B) = h(B) + h

(

B

9

)

+ h

(

B

25

)

.

Since 1 ≤ B/25 < 49/25 < 9, we see that h̃( B
25

) = h( B
25

). Also, 1 ≤ B/9 < 16/9 <

4, so again f̃ ( B
9
) = f ( B

9
). Hence, for 9 ≤ B < 16 we have

h(B) = h̃(B) − h̃

(

B

9

)

− h̃

(

B

25

)

.
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Again, this identity is valid for all 1 ≤ B < 49. Further experimentation with

intervals of the form k2 ≤ B < (k + 1)2 suggests that there should exist a function

u : N → {+1,−1} such that

h(B) =
∑

δ2≤B

δ odd

h̃

(

B

δ2

)

u(δ).

Suppose for a moment that this is indeed true. Then we would have

h̃(B) =
∑

δ2≤B

δ odd

h

(

B

δ2

)

=
∑

δ2≤B

δ odd

∑

η2≤B/δ2

η odd

h̃

(

B/δ2

η2

)

u(η)

=
∑

δ2≤B

δ odd

∑

η2δ2≤B

η odd

h̃

(

B

δ2η2

)

u(η).

Now we switch the order of summation by letting δη = n. It is clear that n is odd

and n2 ≤ B. Also, the η summation is over all divisors of n. So the above sum is

equal to
∑

n2≤B

h̃

(

B

n2

)

∑

η|n
u(η).

So, in order for the latter to be equal to h̃(B) for all B ≥ 1, it would be sufficient to

find a function u : N → {+1,−1} such that

∑

η|n
u(η) =

{

1 n = 1;
0 n > 1.

(For the purposes of the problem we are discussing here it is sufficient to define the

function u for odd numbers only, but this is a minor issue.) The interesting thing is

that this last identity uniquely determines a function. In fact, it is clear that u(1) = 1.

By setting n = p, a prime number, we see

u(1) + u(p) = 0

and, consequently, u(p) = −1. Next we try n = pq, with p, q distinct prime

numbers. We have

u(1) + u(p) + u(q) + u(pq) = 0.

This gives, u(pq) = +1. Similarly, u(pqr) = −1 with p, q, r distinct primes. We

can easily see using an easy inductive argument that if p1, . . . , ps are distinct prime

numbers, then

u(p1 · · · ps) = (−1)s .

The function u above is called the Möbius function, and it is usually denoted by

μ(n). This is a very important function in analytic number theory. See the exercises
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for the list of basic properties. In the sequel, we follow standard notation and use μ

instead of u. We summarize this discussion as the following lemma:

Lemma 13.2. If we define a function μ by

μ(n) =

⎧

⎪

⎨

⎪

⎩

1 n = 1;
(−1)s n = p1 · · · ps, with pi distinct primes;
0 n not square-free,

then for each natural number n

∑

d|n
μ(d) =

{

1 n = 1;
0 n �= 1.

Proof. Exercise 13.1. ⊓⊔

Because of its importance we package the above discussion as the following

lemma:

Lemma 13.3. Suppose F, G are functions defined on the set of positive real num-

bers. If for all B > 0,

F(B) =
∑

δ≤
√

B

δ odd

G

(

B

δ2

)

,

then

G(B) =
∑

δ≤
√

B

δ odd

F

(

B

δ2

)

μ(δ).

Remark 13.4. This lemma is still valid if we remove the oddness condition.

Now that we know how to express h in terms of the function h̃, we can use Lemma

13.1 to find an asymptotic formula for the function h. By Lemma 13.3 and Lemma

13.1, we have

h(B) =
∑

δ2≤B

δ odd

h̃

(

B

δ2

)

μ(δ)

=
∑

δ2≤B

δ odd

(

1

4
π

B

δ2
+ O(

√

B/δ2)

)

μ(δ)

=
1

4
π B

∑

δ2≤B

δ odd

μ(δ)

δ2
+ O

⎛

⎜

⎝

√
B

∑

δ2≤B

δ odd

1

δ

⎞

⎟

⎠
.
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Note that we have replaced O(μ(δ)) by O(1) in the last sum. We write the last sum

as

=
1

4
π B

∞
∑

δ=1
δ odd

μ(δ)

δ2
−

1

4
π B

∑

δ2>B

δ odd

μ(δ)

δ2
+ O

⎛

⎝

√
B

∑

δ2≤B

1

δ

⎞

⎠

=
1

4
π B

∞
∑

δ=1

δ odd

μ(δ)

δ2
+ O

(

B
∑

δ2>B

1

δ2

)

+ O

⎛

⎝

√
B

∑

δ2≤B

1

δ

⎞

⎠ .

By comparison with the convergent series
∑

δ≥1 1/δ2 we see that the series
∑

δ odd μ(δ)/δ2 is convergent. Let’s denote its value by C2. We will calculate the

exact value of C2 in §13.2. Also,

∑

δ2>B

1

δ2
≤

∫ ∞

√
B

dt

t2
≪

1
√

B
,

and
∑

δ2≤B

1

δ
≤

∫

√
B

1

dt

t
≪ log B.

So we get

h(B) =
1

4
πC2 B + O(

√
B) + O(

√
B log B) =

1

4
πC2 B + O(

√
B log B). (13.1)

We will show in §13.2 that C2 = 8/π2. Putting everything together, we get

Theorem 13.5. As B → ∞,

N (B) =
4

π
B + O(

√
B log B)

Corollary 13.6 (Lehmer, 1900). The number of primitive right triangles with

hypotenuse bounded by B is

1

2π
B + O(

√
B log B)

as B → ∞.

13.2 The computation of C2

In this section we will prove the following identity:

C2 =
8

π2
.
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In fact, we will prove a more general result. For each natural number k ≥ 1, let

C2k =
∞

∑

n=1
n odd

μ(n)

n2k
,

and

ζ(2k) =
∞

∑

n=1

1

n2k
,

The series ζ(2k) is convergent absolutely, and comparison implies that C2k is abso-

lutely convergent too.

Lemma 13.7. For all natural numbers k,
(

1 −
1

22k

)

C2k · ζ(2k) = 1.

Proof. The first observation is that

(

1 −
1

22k

)

C2k =
∞

∑

n=1

μ(n)

n2k
.

Next, since all of our series are absolutely convergent we have

(

1 −
1

22k

)

C2k · ζ(2k) =
∞

∑

n=1

μ(n)

n2k

∞
∑

m=1

1

m2k
=

∞
∑

n=1

∞
∑

m=1

μ(n)

n2km2k

=
∞

∑

δ=1

∑

mn=δ

μ(n)

n2km2k
=

∞
∑

δ=1

1

δ2k

∑

mn=δ

μ(n) =
∞

∑

δ=1

1

δ2k

∑

n|δ
μ(n).

Now by Lemma 13.2 whenever δ �= 1, the expression
∑

n|δ μ(n) is equal to zero.

Consequently, the only term that survives is δ = 1, and the corresponding term is

equal to 1. ⊓⊔

This means in order to compute C2k it suffices to compute ζ(2k).

The problem of computing the constant ζ(2), known as the Basel Problem, has

a long history. Euler solved this problem in 1735 proving ζ(2) = π2/6. There are

many proofs of this fact available in literature; see [64, 99]. Here we offer two proofs

for Euler’s identity using a product formula for the sine function. We will also suggest

another approach using Fourier series in Exercise 13.20.

The starting point of both arguments is the infinite product formula

sin z = z

∞
∏

n=1

(

1 −
z2

n2π2

)

(13.2)

for the function sin z; see [1, Ch. 5, §2.3].
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We now give the first proof. We write the Taylor expansion of sin z/z to obtain

∞
∑

k=0

(−1)k z2k

(2k + 1)!
=

∞
∏

n=1

(

1 −
z2

n2π2

)

If we equate the coefficients of z2 we obtain

−
1

6
= −

∞
∑

n=1

1

n2π2
.

Consequently,

ζ(2) =
∞

∑

n=1

1

n2
=

π2

6
.

In the second proof we actually compute ζ(2k) for all k ∈ N. Again we use the

formula (13.2). Take the logarithm of both sides to obtain

log sin z = log z +
∞

∑

n=1

log

(

1 −
z2

n2π2

)

.

Differentiating gives

cos z

sin z
=

1

z
+

∞
∑

n=1

−2z
n2π2

1 − z2

n2π2

=
1

z
+

∞
∑

n=1

−2z

n2π2

∞
∑

k=0

z2k

n2kπ2k

=
1

z
− 2

∞
∑

k=0

z2k+1

π2k+2

∞
∑

n=1

1

n2k+2
.

Consequently,

z
cos z

sin z
= 1 − 2

∞
∑

k=1

ζ(2k)

π2k
z2k . (13.3)

On the other hand, by Theorem A.1

cos z =
ei z + e−i z

2

and

sin z =
ei z − ei z

2i
.

So we have

z
cos z

sin z
= i z

ei z + e−i z

ei z − e−i z
=

2i z

e2i z − 1
+ i z. (13.4)
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The function t/(et − 1) whose value at 2i z appears in the above expression has a

particularly well-known Taylor expansion with a long history. We define the Bernoulli

numbers Bm , for m ≥ 0, by

t

et − 1
=

∞
∑

m=0

Bm

tm

m!
.

It is not hard to see that B1 = −1/2, and that for odd m > 1, Bm = 0. The first few

non-zero Bm’s are B0 = 1, B2 = 1/6, B4 = −1/30, B6 = 1/42, .... Furthermore,

for all m, Bm is rational. See the exercises for more properties.

Going back to (13.4) we find that

z
cos z

sin z
= i z +

∞
∑

m=0

Bm

(2i z)m

m!
= 1 +

∞
∑

k=1

(−1)k 22k B2k

(2k)!
z2k .

Comparing this last expression with (13.3) gives:

Theorem 13.8. For all natural numbers k,

ζ(2k) = (−1)k−1 22k−1 B2k

(2k)!
π2k .

Lemma 13.7 implies

Corollary 13.9. With C2 as above,

C2 =
8

π2
.

Exercises

13.1 Prove Lemma 13.2.

13.2 Prove Corollary 13.6.

13.3 An arithmetic function is a function f : N → C. For arithmetic functions

f, g, we define the arithmetic function f ∗ g by

( f ∗ g)(n) =
∑

d|n
f (d)g(

n

d
).

Show that for all arithmetic functions f, g, h we have the following properties:

a. f ∗ (g ∗ h) = ( f ∗ g) ∗ h;

b. f ∗ g = g ∗ f ;

c. If e(n) = δn0, Kronecker’s delta, then f ∗ e = e ∗ f = f . Note that
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e(n) =
{

1 n = 1;
0 n �= 1.

13.4 Prove the claim in Remark 13.4.

13.5 (�) Investigate the error term in Lemma 13.1.

13.6 (�) Numerically verify the assertion of Theorem 13.5 and Corollary 13.6.

Investigate the error terms in these results.

13.7 Define a function 1 by 1(n) = 1 for all n. Show that 1 ∗ μ = e.

Prove the Möbius Inversion Formula: If f (n) =
∑

d|n g(d), then g(n) =
∑

d|n μ(d) f ( n
d
).

13.8 Show that
∑

d|n ϕ(d) = n. Use this relation to derive a formula for the ϕ-

function.

13.9 An arithmetic function f is called multiplicative if for every m, n with

gcd(m, n) = 1 we have f (mn) = f (m) f (n). Show that if f, g are mul-

tiplicative, then so is f ∗ g.

13.10 For a natural number n set σ(n) =
∑

d|n d. Find a formula for σ(n) in terms

of the prime factorization of n.

13.11 Show that for all a, b ∈ N with a, b > 1 we have

σ(a)

a
<

σ(ab)

ab
<

σ(a)σ (b)

ab
.

13.12 Show that for a, b > 1,

σ(ab) > 2σ(a)1/2σ(b)1/2.

13.13 Show that for all a, b ∈ N,

σ(a)σ (b) =
∑

d|gcd(a,b)

dσ

(

ab

d2

)

.

In particular, σ is a multiplicative function.

13.14 Find an asymptotic formula for

∑

a,b≤X

gcd(a,b)=1

ab

as X → ∞.

13.15 Find an asymptotic formula for

∑

n≤X

ϕ(n)

as X → ∞.

13.16 Prove the following statement: Let (cn)n be a sequence of complex numbers,

and f : [1,∞) → C a function with continuous derivative. Then
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∑

n≤x

cn f (n) =
(

∑

n≤x

cn

)

f (x) −
∫ x

1

(

∑

n≤t

cn

)

f ′(t) dt.

13.17 Show
∑

d≤x

1

d
= log x + O(1).

13.18 Recall the notion of average order from Definition 9.3.

a. Let d(n) be the number of divisors of n. Show that

∑

k≤n

d(k) =
∑

k≤n

[n

k

]

.

Conclude that d(n) has average order log x ;

b. Let φ(n) be the Euler totient function. Show that the average order of φ(n)

is ζ(2)x ;

c. Let ω(n) be the number of distinct prime divisors of n. Show that the

average order of ω(n) is log log x .

13.19 Find a multiplicative function f such that

∑

d|n

μ(d)d2 f (n/d)

φ(d)
= σ(n) f (n), n ∈ N.

13.20 Use Parseval’s formula [41, Theorem 8.16] applied to the function f (x) = x

on the interval [0, 1] to give another proof for Euler’s identity, ζ(2) = π2/6.

13.21 Pick two natural numbers at random. What is the probably that they are

coprime?

13.22 Prove that for each natural number r ,

Br = −
r−1
∑

k=0

(

r

k

)

Bk

r − k + 1
.

Use this relation to find the first few Bernoulli numbers.

13.23 Show that all Bernoulli numbers are rational.

13.24 Show that for each natural number r , B2r+1 = 0.

13.25 Find an asymptotic formula for the number of primitive right triangles with

perimeter bounded by X as X → ∞.
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Notes

Lehmer’s theorem and Manin’s conjecture

Lehmer [83] published a different proof of Corollary 13.6 in 1900. The argument we

present here shows that any power saving improvement in the error term of Lemma

13.1 would improve the error terms in Theorem 13.5 and Corollary 13.6 to O(
√

B).

The quantity considered in Corollary 13.6 appears in the Online Encyclopedia of

Integer Sequences:

http://oeis.org/A156685

The question of counting integral solutions with bounded size to algebraic equations

with infinitely many solutions is a very active area of research of current interest.

Theorem 13.5 has now been greatly generalized. Yuri Manin has formulated several

conjectures that connect the arithmetic features of some classes of equations where

one expects a lot of solutions to the geometry of the resulting solution sets; see [104]

for various questions and conjectures.

A family of number theorists

The Lehmer of Corollary 13.6 is Derrick Norman Lehmer (July 27, 1867–September

8, 1938). He was the father of Derrick Henry Lehmer (February 23, 1905–May 22,

1991) who was a mathematician credited with many contributions to number theory.

D. H. Lehmer was married to Emma Markovna Lehmer (née Trotskaia) (November

6, 1906–May 7, 2007) who was a number theorist herself with over 50 publications to

her name, [84]. There have been several other families of mathematicians in history,

most notably the Bernoulli family. And here is a joke: What was the most influential

mathematician family in history? Clearly Gauss’s family, because it doesn’t matter

what the rest of his family did.

The Riemann zeta function

The complex function

ζ(s) =
∞

∑

n=1

1

ns

is called the Riemann zeta function. This series converges absolutely for ℜs > 1.

Riemann was certainly not the first person to study this function. In fact, by the

time of the publication of Riemann’s work in 1859 various mathematicians, Euler in

particular, had studied the values of the zeta function for integer values of s for at

least two centuries; see [109] for a survey. The problem of computing ζ(2) which we

http://oeis.org/A156685


224 13 How many Pythagorean triples are there?

discussed in this chapter was posed by Pietro Mengoli in 1650 and solved by Euler

in 1735. Riemann, in a spectacular paper [93], proved the analytic continuation of

the zeta function, proved the functional equation, discussed the connection to the

distribution of prime numbers, and formulated a conjecture about prime numbers,

nowadays known as the Riemann Hypothesis.

First a word about analytic continuation. Suppose we have a function f (s) which

is holomorphic on an open subset U of complex numbers, and suppose V is an

open set in C containing U . We call a function g, holomorphic on V , the analytic

continuation of f if the restriction of g to U is equal to f . It is not terribly hard to

show that for ℜs > 1 we have

ζ(s) = s

∫ ∞

1

[x]
x s+1

dx =
s

s − 1
− s

∫ ∞

1

{x}
x s+1

dx .

The expression on the right-hand side is meromorphic on ℜs > 0 with a simple pole

at s = 1, however, and this provides an analytic continuation for ζ(s) to a larger

domain. But this is not where the analytic continuation stops. In fact, if we set

ξ(s) = s(s − 1)π−s/2Ŵ
( s

2

)

ζ(s),

then Riemann showed that ξ(s) is holomorphic on ℜs > 0 and

ξ(1 − s) = ξ(s). (13.5)

Since ξ(s) is holomorphic for ℜs > 0, and ξ(1−s) is holomorphic for ℜ(1−s) > 0,

i.e., ℜs < 1, we obtain the holomorphy of ξ(s) on the entire set of complex numbers.

This further shows that ζ(s) has an analytic continuation to the entire complex plane

to a meromorphic function with a unique simple pole at s = 1 with residue 1. Since

we already have computed the value of ζ(s) for even positive integers 2k, we can use

the functional equation (13.5) to compute the values of the analytic continuation of

ζ(s) for odd negative numbers. In fact, for n ∈ N,

ζ(1 − 2n) = −
B2n

2n
.

For example, ζ(−1) = −1/12. One can similarly compute the value of ζ(0) to

be −1/2. Again, we should emphasize that these are the values of the analytically

continued function, and they should not be taken to mean

1 + 1 + 1 + · · · = −
1

2
,

or

1 + 2 + 3 + · · · = −
1

12
.
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Let us illustrate what is happening here with an easy example. Suppose U = {s ∈
C | |s| < 1} and f (s) =

∑∞
k=0 sk . The series defining f is absolutely convergent

on U and defines a holomorphic function there. By general properties of geometric

series, for |s| < 1, we have

f (s) =
1

1 − s
.

The function g(s) = 1/(1 − s) is holomorphic on the much larger domain V = {s ∈
C | s �= 1}. Note that outside the open set U the function g(s) is not given by the

original series defining f (s). This important point is the source of many paradoxes

in the theory of infinite series. For example, the value of the function g(s) at s = 2

is equal to −1. If we set s = 2 in the formula for f (s) we formally get

1 + 2 + 4 + 8 + 16 + 32 + 64 + . . .

Does this then mean

1 + 2 + 4 + 8 + 16 + 32 + 64 + · · · = −1?

Absolutely not! In fact the series defining f (s) is not even defined for s = 2.

We now turn to the connections between the zeta function and the distribution of

prime numbers. Euler observed the product formula that now bears his name: For

ℜs > 1 we have

ζ(s) =
∏

p prime

1

1 − p−s
.

If we use this formula to compute (d/ds) log ζ(s) we obtain

−
ζ ′(s)

ζ(s)
=

∑

k≥1

∑

p prime

log p

pks
=

∞
∑

n=1

Λ(n)

ns
, (13.6)

with Λ(n) being the von Mangoldt function defined by

Λ(n) =
{

log p n = pk, p prime;
0 otherwise.

An idea that Riemann brought into this subject was contour integration. For a com-

plex function f (s) and a real number c let us define

∫

(c)

f (s) ds = lim
R→∞

∫ c+i R

c−i R

f (s) ds.

Fix a real number c > 1. A contour integration computation shows that for x > 1,

non-integer,
∑

n<x

Λ(n) =
1

2π i

∫

(c)

(

−
ζ ′(s)

ζ(s)

)

x s

s
ds.
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The function −ζ ′(s)/ζ(s) has a simple pole at s = 1 with residue 1. Suppose we can

shift the contour back to (c′), for a number c′ < 1. Then we would obtain

∑

n<x

Λ(n) = x +
1

2π i

∫

(c′)

(

−
ζ ′(s)

ζ(s)

)

x s

s
ds. (13.7)

Riemann’s idea then was to prove that this last integral contributes less than x to the

formula, and hence obtain
∑

n<x

Λ(n) ∼ x, x → ∞. (13.8)

Exercise 13.16 can now be used to prove

#{p ≤ x} ∼
x

log x
(13.9)

which is the celebrated Prime Number Theorem, conjectured by Gauss. Also, know-

ing the specific value of c′ would lead to error estimates for the Prime Number

Theorem. So, the question that Riemann was faced with was to determine how far

back the contour could be moved. In general, the logarithmic derivative of a mero-

morphic function has poles whenever the function has poles or zeros. In particular

in order to know the poles of ζ ′(s)/ζ(s) we need to know where the function ζ(s)

is zero. Riemann computed several zeros of the zeta function in the domain ℜs > 0

and observed that they are all on the line ℜs = 1/2, and conjectured that this would

be the case for all zeros. If one assumes the Riemann Hypothesis, then it follows that

#{p ≤ x} = Li x + O(x1/2+ε)

for all ε > 0, with

Li x =
∫ x

2

dt

log t
.

At present, the Riemann Hypothesis appears out of reach.

Titchmarsh’s classic [52] is a much recommended, comprehensive introduction

to the theory of the Riemann zeta function.



Chapter 14

How are rational points distributed,

really?

In §3.2 we found a description of all the points with rational coordinates on the

unit circle x2 + y2 = 1. In this chapter we examine some topological and analytic

properties of these rational points. In particular, we will show that points with ratio-

nal coordinates are equidistributed with a respect to a natural measure on the unit

circle centered at the origin. The starting point of our investigation is the concept

of equidistribution on the real line, and addressing the equidistribution properties of

rational numbers according to a natural measure on the real line. This requires intro-

ducing an ordering of the set of rational numbers. The ordering we use is determined

by the height of the rational number. The proof of Theorem 14.3, while in principle

straightforward, is very complicated. We end the first section of this chapter with a

strengthening of the latter theorem, Theorem 14.4. The proof of this theorem uses

some technical tools from analysis. We prove the equidistribution of rational points

on the unit circle in the second section of the chapter. In the Notes, we state a general

theorem of Bohl, Sierpiński, and Weyl, proved independently of each other, about

the distribution of a sequence of numbers in the interval [0, 1]. We also make some

comments about the general question of the equidistribution of rational points on

higher dimensional spheres.

14.1 The real line

It is a well-known fact that the set of rational numbers is dense in the set of real

numbers. Our first goal here is to quantify this density statement.

Definition 14.1. Suppose I = (α, β) is an interval in R, and ϑ a Riemann integrable

function on I . We say a sequence {xn}∞n=1 of elements of I is ϑ-equidistributed, or

equidistributed with respect to the function ϑ , if for each subinterval J ⊂ I we have

lim
X→∞

#{n ≤ X | xn ∈ J }
X

=
∫

J

ϑ(x) dx .
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If ϑ(x) = 1/(β − α) for all x ∈ I , we simply say the sequence {xn} is equidistributed

in I .

We note that if a sequence {xn} is equidistributed in the interval I it will be dense in

the interval, but not vice versa. In fact, it is possible to construct sequences {xn}∞n=1

and {yn}∞n=1 with the property that

{xn | n ∈ N} = {yn | n ∈ N}

with {xn}n equidistributed, and {yn}n not equidistributed; see Exercise 14.1. These

examples also show that whether a sequence {xn}n is equidistributed in an interval I

depends strongly on the particular ordering of the elements of {xn}n .

We now turn our attention to the study of the distribution of rational numbers in

real numbers. It is already an interesting problem to find a function ϑ such that the

set of rational numbers is ϑ-equidistributed in the set of real numbers. As pointed

out earlier, the function ϑ depends very much on the choice of the ordering of the set

of rational numbers. Let us describe one such ordering which is particularly natural.

Definition 14.2. For a rational number γ = r/s with r, s ∈ Z with gcd(r, s) = 1,

we define the height of γ by

H(γ ) =
√

r2 + s2.

The motivation behind this definition is that we tend to think of the rational number

5000001473

5000003010

as a more arithmetically complicated rational number than 1.02 = 51/50, even

though both numbers are approximately 1. The height function quantifies this notion,

in the sense that

H

(

5000001473

5000003010

)

=
√

50000030102 + 50000014732

is much bigger than

H(1.02) =
√

512 + 502.

An interesting property of our height function is that for all finite B > 0 the number

of rational numbers γ with H(γ ) ≤ B is finite. In fact, if γ = r/s with gcd(r, s) = 1,

H(γ ) ≤ B means |r | ≤ B and |s| ≤ B. There are only finitely many such integers r

and s. For example, the following rational numbers γ have the property H(γ ) ≤ 4:

0,±1,±2,±1/2,±3,±1/3,±2/3,±3/2.

The proof of the following theorem occupies most of the remainder of this chapter:

Theorem 14.3. Rational numbers ordered by their height are equidistributed in

every interval (α, β), including unbounded intervals, with respect to
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ϑ(t) =
1

π
·

1

1 + t2
.

Proof. We need to compute the limit

S(α, β) := lim
X→∞

#{γ ∈ Q ∩ (α, β) | H(γ ) ≤ X}
#{γ ∈ Q | H(γ ) ≤ X}

(14.1)

for each α < β.

Two basic observations:

• For each α < β, S(α, β) = S(−β,−α);

• for each α < β < δ, we have S(α, β) + S(β, δ) = S(α, δ).

These observations imply that it suffices to compute S(α, β) in the following three

cases:

1. 0 < α < β < 1;

2. 1 < α < β.

3. 1 < α and β = +∞.

We will compute S(α, β) in each case.

First we find a formula for the denominator of the expression in Equation (14.1),

n(X) := #{γ ∈ Q | H(γ ) ≤ X}.

For a non-zero rational number γ = m/n with gcd(m, n) = 1, we have

H(γ ) = H(−γ ) = H(γ −1) = H(−γ −1) =
√

m2 + n2.

It is now not hard to see (Exercise 14.7) that

n(X) =
1

2
f (X2) + O(1). (14.2)

with f defined by

f (B) = #{(x, y) �= (0, 0) | x, y ∈ Z, gcd(x, y) = 1, x2 + y2 ≤ B}.

By the computation of C2 from §13.2 and Exercise 14.8, we have

n(X) =
1

2ζ(2)
X2 + O(X log X). (14.3)

Now we find an expression for

nα,β(X) := #{γ ∈ Q ∩ (α, β) | H(γ ) ≤ X}. (14.4)
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Suppose 0 < α < β < 1, and that we have a reduced fraction n/m ∈ (α, β) with

H(n/m) ≤ X . This means, m, n ∈ N, gcd(m, n) = 1, m2 + n2 ≤ X2, and αm <

n < βm.

Our strategy is to write nα,β as a sum of 1’s over the defining conditions on m, n,

and then use the function µ from Chapter 13 to handle the coprimality condition on

m, n. Eventually we will use the geometric method of the proof of Theorem 9.4 to

finish the computation.

By Lemma 13.2 applied to gcd(m, n) we have

∑

d|gcd(m,n)

µ(d) =
{

1 if m, n coprime;
0 otherwise.

We have

nα,β(X) =
∑

m,n∈N,gcd(m,n)=1

m2+n2≤X2 ,αm<n<βm

1 =
∑

m,n∈N

m2+n2≤X2 ,αm<n<βm

∑

d|gcd(m,n)

µ(d)

=
∑

d≤X

µ(d)
∑

m,n∈N,d|m,d|n
m2+n2≤X2 ,αm<n<βm

1 =
∑

d≤X

µ(d)
∑

m,n∈N

m2+n2≤X2/d2 ,αm<n<βm

1.

Consequently, if we set

ñα,β(X) =
∑

m,n∈N

m2+n2≤X2 ,αm<n<βm

1,

we have

nα,β(X) =
∑

d≤X

µ(d)ñα,β(
X

d
).

Our immediate task is to find a formula for ñα,β(X). For simplicity we will assume

that α, β are irrational numbers; also since eventually we will be letting X → ∞,

we will assume that α−1(1 + β2) < X .

We start by writing

ñα,β(X) =
∑

m≤X

max(αm,1)≤n≤min(βm,

√
X2−m2)

1 =
∑

m<α−1

1≤n≤min(βm,

√
X2−m2)

1 +
∑

α−1<m≤X

αm≤n≤min(βm,

√
X2−m2)

1.

In the first sum, since X > α−1
√

1 + β2, we have

βm <
√

X2 − m2.

Hence,
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∑

m<α−1

1≤n≤min(βm,

√
X2−m2)

1 =
∑

m<α−1

1≤n≤βm

1 = O(1)

as the whole sum can be bounded independent of X .

So we have shown
∑

m<α−1

1≤n≤min(βm,

√
X2−m2)

1 = O(1). (14.5)

Now we examine the second sum
∑

α−1<m<X

αm≤n≤min(βm,

√
X2−m2)

1.

We note that if

α−1 < m ≤
X

√

1 + β2
,

then

βm ≤
√

X2 − m2,

and if
X

√

1 + β2
< m ≤ X,

then
√

X2 − m2 ≤ βm.

As a result the sum is equal to

∑

α−1<m<X

αm≤n≤min(βm,

√
X2−m2)

1 =
∑

α−1<m≤ X√
1+β2

αm≤n≤βm

1 +
∑

X√
1+β2

<m≤X

αm≤n≤
√

X2−m2

1.

We analyze each piece separately.

We have
∑

α−1<m≤ X√
1+β2

αm≤n≤βm

1 =
∑

α−1<m≤ X√
1+β2

([βm] − [αm])

=
∑

α−1<m≤ X√
1+β2

(β − α)m + O(1) =
β − α

2(1 + β2)
X2 + O(X),

after using Corollary A.6.

We have shown
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∑

α−1<m≤ X√
1+β2

αm≤n≤βm

1 =
β − α

2(1 + β2)
X2 + O(X). (14.6)

Next, we consider the sum
∑

X√
1+β2

<m≤X

αm≤n≤
√

X2−m2

1.

The important point to note is that for some values of m, αm >
√

X2 − m2, and

for such values, the n-sum is empty. To have αm ≤
√

X2 − m2, we need to have

m ≤ X (1 + α2)−1/2 as an easy computation shows. Consequently,

∑

X√
1+β2

<m≤X

αm≤n≤
√

X2−m2

1 =
∑

X√
1+β2

<m≤ X√
1+α2

αm≤n≤
√

X2−m2

1 =
∑

X√
1+β2

<m≤ X√
1+α2

([
√

X2 − m2] − [αm])

=
∑

X√
1+β2

<m≤ X√
1+α2

([
√

X2 − m2] − αm + O(1))

=
∑

X√
1+β2

<m≤ X√
1+α2

[
√

X2 − m2] − α
∑

X√
1+β2

<m≤ X√
1+α2

m + O(X)

=
∑

X√
1+β2

<m≤ X√
1+α2

[
√

X2 − m2] − α

(

X2

2(1 + α2)
−

X2

2(1 + β2)

)

+ O(X).

The sum
∑

X√
1+β2

<m≤ X√
1+α2

[
√

X2 − m2]

is the number of integral points (m, n) within the disk x2 + y2 ≤ X2 with positive

y-coordinates such that the x-coordinate is in the interval

X
√

1 + β2
< m ≤

X
√

1 + α2
.

These are the points with integral coordinates in the yellow region, including the

boundary, in Figure 14.1.

By an argument similar to proof of Theorem 9.4 (Exercise 14.9), this number is

equal to
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Fig. 14.1 The integral

points (m, n) within the disk

x2 + y2 ≤ X2 with positive

y-coordinates such that the

x-coordinate is in the interval
X√

1+β2
< m ≤ X√

1+α2
X

X
√

1+ 2

X
√

1+ 2

∫ X√
1+α2

X√
1+β2

√

X2 − t2 dt + O(X) = X2

∫ 1√
1+α2

1√
1+β2

√

1 − t2 dt + O(X).

We have
∫

√

1 − t2 dt =
1

2
sin−1 t +

1

2
t
√

1 − t2 + C.

Consequently,

∫ 1√
1+α2

1√
1+β2

√

1 − t2 dt =
1

2
sin−1 1

√
1 + α2

−
1

2
sin−1 1

√

1 + β2
+

α

2(1 + α2)
−

β

2(1 + β2)
.

So we have proved

∑

X√
1+β2

<m≤X

αm≤n≤
√

X2−m2

1 = X2

(

1

2
sin−1 1

√
1 + α2

−
1

2
sin−1 1

√

1 + β2

)

+X2

(

α

2(1 + α2)
−

β

2(1 + β2)

)

− α

(

X2

2(1 + α2)
−

X2

2(1 + β2)

)

+ O(X).

Putting everything together, we have

ñα,β(X) =
β − α

2(1 + β2)
X2 + X2

(

1

2
sin−1 1

√
1 + α2

−
1

2
sin−1 1

√

1 + β2

)
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+X2

(

α

2(1 + α2)
−

β

2(1 + β2)

)

− α

(

X2

2(1 + α2)
−

X2

2(1 + β2)

)

+ O(X)

= X2

(

1

2
sin−1 1

√
1 + α2

−
1

2
sin−1 1

√

1 + β2

)

+ O(X).

We set

η(t) =
1

2
sin−1 1

√
1 + t2

.

We can now analyze nα,β(X). We have

nα,β(X) =
∑

d≤X

µ(d)ñα,β

(

X

d

)

=
∑

d≤X

µ(d)

{

(η(α) − η(β))

(

X

d

)2

+ O

(

X

d

)

}

=
η(α) − η(β)

ζ(2)
X2 + O(X log X).

Finally,

S(α, β) = lim
X→∞

nα,β(X)

n(X)
= lim

X→∞

η(α)−η(β)

ζ(2)
X2 + O(X log X)

π
2ζ(2)

X2 + O(X log X)
=

η(α) − η(β)

π
.

Hence we have proved for 0 < α < β < 1,

S(α, β) =
1

π

(

sin−1 1
√

1 + α2
− sin−1 1

√

1 + β2

)

=
1

π

∫ β

α

dt

1 + t2
.

Now we handle the case where 1 < α < β. In this case we have

nα,β(X) =
∑

m,n∈N,gcd(m,n)=1

m2+n2≤X2 ,αm<n<βm

1 =
∑

m,n∈N,gcd(m,n)=1

m2+n2≤X2 ,β−1n<m<α−1n

1 = nβ−1,α−1(X).

Consequently, if 1 < α < β, we have

S(α, β) =
1

π

∫ α−1

β−1

dt

1 + t2
.

It is easy to see (Exercise 14.10) that the latter integral is equal to

1

π

∫ β

α

dt

1 + t2
.
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Now we treat the third case, where β = +∞. The argument in this case is very

similar to the first case, so we only sketch the proof. In this case we abbreviate

nα,+∞(X) and ñα,+∞(X) to nα(X) and ñα(X), respectively. As before, we have

nα(X) =
∑

d≤X

µ(d)ñα

(

X

d

)

.

We start by writing

ñα(X) =
∑

m≤X

αm≤n≤
√

X2−m2

1.

Since we want αm ≤
√

X2 − m2 we need to have

m ≤
X

√
1 + α2

.

Thus,

ñα(X) =
∑

m≤ X√
1+α2

αm≤n≤
√

X2−m2

1 =
∑

m≤ X√
1+α2

([
√

X2 − m2] − [αm])

=
∑

m≤ X√
1+α2

([
√

X2 − m2] − α
∑

m≤ X√
1+α2

m + O(X)

= X2

∫ 1√
1+α2

0

√

1 − t2 dt −
α

2(1 + α2)
X2 + O(X)

= X2

(

1

2
sin−1 1

√
1 + α2

+
α

2(1 + α2
)

)

−
α

2(1 + α2)
X2 + O(X)

= X2

(

1

2
sin−1 1

√
1 + α2

)

+ O(X).

Again if we set

η(t) =
1

2
sin−1 1

√
1 + t2

,

we have proved

ñα(X) = η(α)X2 + O(X).

We can now analyze nα(X). We have

nα(X) =
∑

d≤X

µ(d)ñα(
X

d
) =

∑

d≤X

µ(d)

{

η(α)

(

X

d

)2

+ O

(

X

d

)

}

=
η(α)

ζ(2)
X2 + O(X log X).
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Finally,

S(α,+∞) = lim
X→∞

nα(X)

n(X)
= lim

X→∞

η(α)

ζ(2)
X2 + O(X log X)

π
2ζ(2)

X2 + O(X log X)
=

2η(α)

π
.

Hence we have proved for 1 < α,

S(α,+∞) =
1

π
sin−1 1

√
1 + α2

=
1

π

∫ +∞

α

dt

1 + t2
.

⊓⊔

Theorem 14.3 has an interesting consequence. We call a real function f on R
locally Riemann integrable if for each finite interval I , the restriction of f to I is

Riemann integrable on I .

Theorem 14.4. Let f be a bounded locally Riemann integrable function on R. Then

lim
X→∞

1

#{γ ∈ Q | H(γ ) ≤ X}
∑

γ∈Q,H(γ )≤X

f (γ ) =
1

π

∫ +∞

−∞

f (t)

1 + t2
dt.

We note that for a bounded locally Riemann integrable function f as in the theorem,

the integral
∫ +∞

−∞

f (t)

1 + t2
dt

converges absolutely, Exercise 14.11.

Before we can start the proof of the theorem we need a general lemma:

Lemma 14.5. A sequence {xn} is ϑ-equidistributed in a finite interval I = (α, β) if

and only if for every Riemann integrable function f on I we have

lim
N→∞

1

N

N
∑

n=1

f (xn) =
∫ β

α

f (x)ϑ(x) dx . (14.7)

Proof. The definition of ϑ-equidistribution is equivalent to the validity of (14.7) for

the characteristic function of each subinterval of I . This shows the sufficiency of the

condition.

Now suppose the sequence {xn} is ϑ-equidistributed. Then Equation (14.7) is

valid for all characteristic functions of subintervals of I . Since the two sides of

(14.7) are linear in the function f , we conclude that (14.7) is also true for all linear

combinations of characteristic functions of subintervals, i.e., step functions.

Now let f be a Riemann integrable function. Fix ε > 0. By [41, Theorem 6.6]

there are step functions f1, f2 on I such that for all x ∈ I , f1(x) ≤ f (x) ≤ f2(x),

and
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∫ β

α

f2(x)ϑ(x) dx −
∫ β

α

f1(x)ϑ(x) dx < ε. (14.8)

Then
∫ β

α

f1(x)ϑ(x) dx = lim
N→∞

1

N

N
∑

n=1

f1(xn) ≤ lim inf
N→∞

1

N

N
∑

n=1

f (xn)

≤ lim sup
N→∞

1

N

N
∑

n=1

f (xn) ≤ lim
N→∞

1

N

N
∑

n=1

f2(xn) =
∫ β

α

f2(x)ϑ(x) dx .

Finally, (14.8) implies

∣

∣

∣

∣

∣

lim sup
N→∞

1

N

N
∑

n=1

f (xn) − lim inf
N→∞

1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ β

α

f2(x)ϑ(x) dx −
∫ β

α

f1(x)ϑ(x) dx

∣

∣

∣

∣

< ε.

Since ε > 0 is arbitrary, we have

lim sup
N→∞

1

N

N
∑

n=1

f (xn) = lim inf
N→∞

1

N

N
∑

n=1

f (xn).

Hence it makes sense to speak of the limit limN

∑

n≤N f (xn)/N . Revisiting the

earlier inequalities gives

∫ β

α

f1(x)ϑ(x) dx ≤ lim
N→∞

1

N

N
∑

n=1

f (xn) ≤
∫ β

α

f2(x)ϑ(x) dx .

Since by definition

∫ β

α

f1(x)ϑ(x) dx ≤
∫ β

α

f (x) dx ≤
∫ β

α

f2(x)ϑ(x) dx,

we have
∣

∣

∣

∣

∣

lim
N→∞

1

N

N
∑

n=1

f (xn) −
∫ β

α

f (x)ϑ(x) dx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ β

α

f2(x)ϑ(x) dx −
∫ β

α

f1(x)ϑ(x) dx

∣

∣

∣

∣

< ε.

Again, since ε > 0 is arbitrary, the theorem follows. ⊓⊔

Now we can prove the theorem:

Proof of Theorem 14.4. Our first claim is that it suffices to prove the theorem for

bounded locally Riemann integrable functions f which are nonnegative, i.e., f (x) ≥
0 for all x ∈ R. In fact, for a function f , if we define the functions f+, f− by
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(−n−1,0) (n+1,0)

(n,1)(−n,1)

Fig. 14.2 The graph of uk

f+(x) = max( f (x), 0), f−(x) = − min( f (x), 0),

then by Exercise 14.12,

1. f+(x), f−(x) ≥ 0 for all x ∈ R;

2. f+, f− are locally Riemann integrable functions if f is.

It is clear that if we know the theorem for the nonnegative functions f+, f−, then we

will know the result for the function f .

For reasons that will become clear in a moment, for a natural number k we define

a function uk(x) : R → [0, 1] by

uk(x) =

⎧

⎪

⎨

⎪

⎩

+1 |x | < k;
k + 1 − |x | k ≤ |x | ≤ k + 1;
0 |x | > k + 1.

The graph of the function uk looks like the diagram in Figure 14.2.

Now fix a nonnegative bounded locally Riemann integrable function f on R, and

suppose for each x ∈ R we have f (x) ≤ C for some constant C . For each natural

number n, define a function fk by

fk(x) = f (x)uk(x).

Note that

• for x ∈ R, f1(x) ≤ f2(x) ≤ f3(x) ≤ · · · ;

• limk→∞ fk(x) = f (x).

• for all k and all x ∈ R, f (x) − fk(x) ≤ Cχ[n,∞](x).

For a function g and a real number X we set

S(g, X) =
1

#{γ ∈ Q | H(γ ) ≤ X}
∑

γ∈Q,H(γ )≤X

g(γ ).
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Note that S(g, X) is linear and increasing in terms of g, meaning if g1(x) ≤ g2(x)

for all x , then S(g1, X) ≤ S(g2, X).

By Lemma 14.5, for all k

lim
X→∞

S( fk, X) =
1

π

∫ +∞

−∞

fk(t)

1 + t2
dt.

We have

S( f, X) = S( fk, X) + S( f − fk, X) ≤ S( fk, X) + C S(χ[k,+∞), X).

Hence for all k and all X ,

S( fk, X) ≤ S( f, X) ≤ S( fk, X) + C S(χ[k,+∞), X). (14.9)

By Theorem 14.3 we have

lim
X→∞

S(χ[k,+∞), X) = lim
X→∞

#{γ ∈ Q ∩ [k,∞) | H(γ ) ≤ X}
#{γ ∈ Q | H(γ ) ≤ X}

=
1

π

∫ +∞

k

1

1 + t2
dt <

1

π

∫ +∞

k

dt

t2
=

1

πk
.

Now in (14.9) we let X → ∞ to obtain

1

π

∫ +∞

−∞

fk(t)

1 + t2
dt = lim

X→∞
S( fk, X) ≤ lim inf

X→∞
S( f, X)

≤ lim sup
X→∞

S( f, X) ≤ lim
X→∞

S( fk, X) +
C

πk
=

1

π

∫ +∞

−∞

fk(t)

1 + t2
dt +

C

πk
.

Now we let k → ∞. We obtain

lim
k→∞

1

π

∫ +∞

−∞

fk(t)

1 + t2
dt ≤ lim inf

X→∞
S( f, X)

≤ lim sup
X→∞

S( f, X) ≤ lim
k→∞

1

π

∫ +∞

−∞

fk(t)

1 + t2
dt.

At this point we can simply use the Monotone Convergence Theorem [41, Theorem

11.28] to conclude

lim
k→∞

∫ +∞

−∞

fk(t)

1 + t2
dt =

∫ +∞

−∞

f (t)

1 + t2
dt, (14.10)

but we will prove this using an elementary argument to avoid relying on measure

theory. By the remark after the statement of the theorem, the integrals
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∫ +∞

−∞

f (t)

1 + t2
dt,

∫ +∞

−∞

fk(t)

1 + t2
dt,

∫ +∞

−∞

f (t) − fk(t)

1 + t2
dt,

are all absolutely convergent. Hence we can safely write

∫ +∞

−∞

f (t)

1 + t2
dt =

∫ +∞

−∞

fk(t)

1 + t2
dt +

∫ +∞

−∞

f (t) − fk(t)

1 + t2
dt.

The functions f (x) and fk(t) are equal on the interval [−k, k], and for |x | > k,

0 ≤ f (x) − fk(x) ≤ C . Hence,

0 <

∫ +∞

−∞

f (t) − fk(t)

1 + t2
dt

≤ C

∫

|t |>k

dt

1 + t2
< C

∫

|t |>k

dt

t2
=

2C

k
= O(

1

k
).

Consequently,
∫ +∞

−∞

f (t)

1 + t2
dt =

∫ +∞

−∞

fk(t)

1 + t2
dt + O(

1

k
).

Letting k → ∞ establishes (14.10), and the theorem is proved. ⊓⊔

14.2 The unit circle

We now turn our attention to rational points on the circle S1 : x2 + y2 = 1. Our first

statement is the following easy proposition:

Proposition 14.6. The set of points with rational coordinates is dense in the unit

circle.

Proof. It is clear that it suffices to show that rational points are dense among points

with positive y-coordinates. The points P and Q on the circle with positive y-

coordinates are “close” to each other if and only if their x-coordinates are close to

each other. Now suppose P = (α, β), with β > 0, is a point on the unit circle. Fix

ε > 0. We will show that there is a point of the form

Pm :=
(

1 − m2

1 + m2
,

2m

1 + m2

)

with rational m such that the difference between the x-coordinates of P and Pm is

less than ε. Without loss of generality assume α > 0. We also assume that ε is much

smaller than α and β. Note there is an m ∈ Q such that

α − ε <
1 − m2

1 + m2
< α + ε.

Indeed, in order for these inequalities to hold we need
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√

1 − (α + ε)

1 + α + ε
< m <

√

1 − (α − ε)

1 + α − ε

and there is certainly a rational number m satisfying these inequalities. ⊓⊔

Our purpose in the remainder of this chapter is to give a quantitative version of

this density statement, and, as before, the concept that is central to our analysis is

equidistribution.

In order to speak of equidistribution we need to have a notion of integral. In the

case of the unit circle if we parametrize the circle as

(cos γ, sin γ ), 0 ≤ γ < 2π

then the natural integration will be relative to dγ , i.e., if f is a continuous function

on the circle then we define
∫

S1

f :=
1

2π

∫ 2π

0

f (cos γ, sin γ ) dγ.

Definition 14.7. Suppose ϑ is a function on S1. We say a sequence {xn}∞n=1 of

elements of S1 is ϑ-equidistributed, or equidistributed with respect to the function ϑ ,

if for every continuous function f on S1 we have

lim
N→∞

1

N

N
∑

n=1

f (xn) =
∫

S1

f ϑ.

If ϑ(x, y) = 1 for all (x, y) ∈ S1, we simply say the sequence {xn} is equidistributed

on S1.

Recall from §3.2 that we have an explicit parametrization of the points on the

circle S1:

η(t) :=
(

1 − t2

1 + t2
,

2t

1 + t2

)

(14.11)

with t ∈ R, plus the point (−1, 0) which corresponds to t being equal to “infinity.”

Also, recall that if γ ∈ Q, then η(γ ) is a point with rational coordinates on the circle,

and that the set of points η(γ ) for γ ∈ Q with the point (−1, 0) is equal to the set of

points with rational coordinates on the circle.

In order to speak of equidistribution of rational points on the circle, we need a

notion of ordering. A natural way to order rational points η(γ ), γ ∈ Q, is according

to the height of the rational numbers γ . As an example, earlier in this chapter we

determined all rational numbers γ with H(γ ) ≤ 4:

0,±1,±2,±1/2,±3,±1/3,±2/3,±3/2.
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Fig. 14.3 Points of the form

η(γ ) with H(γ ) ≤ 4

If we draw all points of the form η(γ ) for γ in the above list we obtain the following

picture in Figure 14.3.

Theorem 14.8. The rational points h(γ ), γ ∈ Q, ordered according to the height

of γ are equidistributed on the unit circle, i.e., for each arc ω with length t,

lim
X→∞

#{γ ∈ Q | H(γ ) ≤ X, η(γ ) ∈ ω}
#{γ ∈ Q | H(γ ) ≤ X}

=
t

2π
.

For a piecewise continuous function f on the unit circle,

1

#{γ ∈ Q | H(γ ) ≤ X}
∑

H(γ )≤X

f (η(γ )) →
∫

S1

f

as X → ∞.

Proof. Since S1 is a compact space and f is continuous, f is bounded. By Theorem

14.4, the limit is equal to

1

2π

∫ +∞

−∞
f (

1 − t2

1 + t2
,

2t

1 + t2
)

dt

1 + t2
.

A change of variable t = tan(γ /2) with −π < γ < +π gives the result. The first

statement of the theorem follows if we let f be the characteristic function of an arc.

⊓⊔



14.2 The unit circle 243

Exercises

14.1 Construct examples of sequences {xn}∞n=1 and {yn}∞n=1 with the property that

{xn | n ∈ N} = {yn | n ∈ N}

with {xn}n equidistributed, and {yn}n not equidistributed.

14.2 Prove that for η, ξ ∈ R, if ξ < η then

∑

ξ<n≤η

1 = [η] − [ξ ]

14.3 Show that if ξ ∈ R and ξ ≥ 0,

∑

0≤n≤ξ

1 = [ξ ] + 1;

∑

−ξ≤n≤ξ

= 2[ξ ] + 1.

14.4 Show that for all natural numbers n,

[
√

n +
√

n + 1] = [
√

n +
√

n + 2];

[
√

n +
√

n + 1] = [
√

4n + 2].

14.5 Let n be a natural number. Define a set Dn to be the collection of pairs

(x, y) ∈ Z2 such that

0 < x ≤ n/2, 0 < y ≤ n/2, n/2 ≤ x + y < n.

Prove that

#Dn =
{

(n−2)(n+8)

8
, 2 | n;

n2−1
8

, 2 ∤ n.

14.6 Fix n, r ∈ N. Find the number of solutions of

|x1| + · · · + |xr | ≤ n

in integers x1, . . . , xr .

14.7 Prove Equation (14.2).

14.8 Prove Equation (14.3).

14.9 Suppose u > v > 1. Prove that the number of integral points (m, n) within

the disk x2 + y2 ≤ X2 such that n > 0 and

X

u
< m ≤

X

v

is equal to
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∫ X
v

X
u

√

X2 − t2 dt + O(X).

14.10 Show that for each 0 < α < β we have

∫ α−1

β−1

dt

1 + t2
=

∫ β

α

dt

1 + t2
.

14.11 Prove that for a bounded locally Riemann integrable function f on R, the

integral
∫ +∞

−∞

f (t)

1 + t2
dt

converges absolutely.

14.12 For a function f : R → R, we define the functions f+, f− by

f+(x) = max( f (x), 0), f−(x) = − min( f (x), 0).

For all x , f+(x), f−(x) ≥ 0. Show that f is locally Riemann integrable if and

only if f+, f− are locally Riemann integrable functions.

14.13 We can define another, and perhaps more natural, height function on the set

of rational numbers as follows. For a rational number γ = r/s with r, s ∈ Z,

gcd(r, s) = 1, we set

H ′(γ ) := max(|r |, |s|).

a. List all rational numbers γ with H ′(γ ) ≤ 4.

b. Show that there is a real number C > 1 such that

C−1 H(γ ) ≤ H ′(γ ) ≤ C H(γ )

for all γ ∈ Q.

c. Find asymptotic formulae for

N ′(X) := #{γ ∈ Q | H ′(γ ) ≤ X}.

and

N ′
1(X) := #{γ ∈ Q ∩ [0, 1] | H ′(γ ) ≤ X}.

d. Show that for a continuous function f on [0, 1] we have

lim
X→∞

1

N ′
1(X)

∑

γ∈Q∩[0,1]
f (γ ) =

∫ 1

0

f (x) dx .

Hint. Prove the statement for a function of the form f (x) = xk , and then

use the Stone–Weierstrass Theorem (in fact, Weierstrass’s Theorem [41,

Theorem 7.26] is sufficient).

e. Find the function η with respect to which rational points listed according

to their H ′ height are equidistributed.
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f. Find the function θ ′ on the circle S1 which respect to which the points

η(γ ) listed according to the H ′ of γ are equidistributed.

14.14 (�) Draw a unit circle. Mark the points η(t) with η as in Equation (14.11)

and t ranging over rational number a
b

with |a|, |b| < 1000 and gcd(a, b) = 1.

14.15 (�) For each integral point (x, y) ∈ Z2 with (x, y) �= (0, 0), define a point

σ(x, y) ∈ R2 with

σ(x, y) =
(

x
√

x2 + y2
,

y
√

x2 + y2

)

.

Show that σ(x, y) ∈ S1. Draw three unit circles and on each one mark one of

the following collections of points:

a. σ(x, y), (x, y) ∈ Z2, (x, y) �= (0, 0), |x |, |y| ≤ 1000;

b. σ(x, y), (x, y) ∈ Z2, (x, y) �= (0, 0), |x | + |y| ≤ 1000;

c. σ(x, y), (x, y) ∈ Z2, (x, y) �= (0, 0),
√

x2 + y2 ≤ 1000.

Do you see any difference between the patterns you obtain?

14.16 (�) Compare the patterns you obtain in the previous two exercises.

Notes

The theorem of Bohl, Sierpiński, and Weyl

Piers Bohl, Wacław Sierpiński, and Hermann Weyl proved the following important

theorem around 1910 independently of each other: For each irrational α, the sequence

xn = {nα}, n ∈ N, is equidistributed in the interval [0, 1], where here {nα} is the frac-

tional part of the real number nα. In 1916, Weyl proved the remarkable theorem that

{n2α}, too, is equidistributed in [0, 1], and that is how the theory of equidistribution

started. Weyl also proved the following general criterion for the equidistribution of a

sequence in the interval [0, 1]: Suppose a1, a2, a3, . . . is a sequence of real numbers.

Then the sequence {a1}, {a2}, {a3}, . . . is equidistributed in the interval [0, 1] if and

only if for all non-zero integers m,

lim
N→∞

1

N

N
∑

k=1

e2π imak = 0.

See [33, Ch. 12] or [22, Ch. 1] for comments on the proofs of these statements.

The book [22] is a useful collection of articles exploring the various ways in which

equidistribution makes an appearance in number theory.
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Rational points on the sphere

In this chapter we proved the equidistribution of rational points on the unit circle.

Proving the equidistribution of rational points on higher dimensional spheres, even

the standard sphere in R3, is much more difficult. In fact, Duke [72] proved the

equidistribution of rational points on the standard sphere in R3 only in 1998 (!). See

[87] for a contemporary treatment of these problems.
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Background

A.1 Sine, cosine, and exponentials

Theorem A.1. For all complex numbers z,

ei z = cos z + i sin z.

Consequently,

cos z = ei z + e−i z

2

and

sin z = ei z − e−i z

2i
.

Proof. It is well known that for a complex number z

ez =
∞

∑

k=0

zk

k! ;

cos z =
∞

∑

k=0

(−1)k z2k

(2k)! ;

sin z =
∞

∑

k=0

(−1)k z2k+1

(2k + 1)! .

Once we observe i4k+1 = i, i4k+2 = −1, i4k+3 = −i, i4k = 1, the theorem is an easy

consequence of these Taylor expansions. ⊓⊔

Theorem A.2. There are n distinct complex numbers z such that zn = 1. They can

be expressed as

e
2πik

n , k = 0, . . . , n − 1.
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Proof. The equation zn = 1 has at most n solutions. On the other hand, the above

numbers, n distinct numbers, all satisfy the equation. ⊓⊔
The following property of the exponential function is the basis of Fourier theory:

Theorem A.3. Let k be an integer. Then

∫ 1

0

e2πikx dx =
{

1 k = 0;
0 k �= 0.

Proof. See Exercise A.1.1. ⊓⊔

A.2 The Binomial Theorem

For natural number n and k, with 0 ≤ k ≤ n we define
(

n

k

)

= n!
k!(n − k)! .

The following theorem is fundamental:

Theorem A.4 (The Binomial Theorem). If n is a natural number, then

(x + y)n =
n

∑

k=0

(

n

k

)

xk yn−k .

Proof. The proof is an easy induction and ultimately relies on the fact that

(

n

k

)

=
(

n − 1

k − 1

)

+
(

n − 1

k

)

.

⊓⊔
We now use the Binomial Theorem to prove the following theorem:

Theorem A.5. For k, y ∈ N define

σk(y) =
y

∑

m=1

mk .

Then there is a polynomial fk(x) with rational coefficients with leading term

xk+1/(k + 1) such that

σk(y) = fk(y).

Proof. We will prove the theorem by induction. For k = 1 we have

y
∑

m=1

m = 1

2
y2 + 1

2
y.
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Now suppose we know the theorem for every l < k. By the Binomial Theorem

(m + 1)k+1 − mk+1 =
k−1
∑

j=0

(

k

j

)

m j .

As a result

(y + 1)k+1 − 1 =
y

∑

m=1

{

(m + 1)k − mk
}

=
k

∑

j=0

(

k + 1

j

)

σ j (y).

Consequently,

(

k + 1

k

)

σk(y) = (y + 1)k+1 − 1 −
k−1
∑

j=0

(

k + 1

j

)

f j (y).

By the induction hypothesis the right-hand side is a polynomial of degree k + 1 with

leading term yk+1. Once we observe

(

k + 1

k

)

= k + 1

the theorem follows. ⊓⊔

Corollary A.6. For all natural numbers k,

σk(y) = yk+1

k + 1
+ O(yk).

A.3 The Pigeon-Hole Principle

The Pigeon-Hole Principle is the following intuitively obvious statement: If we

distribute n balls among m boxes, with n > m > 0, then at least one box will end

up with more than one ball. Stated differently, if we have n pigeon trying to get in m

pigeon-holes, with n > m > 0, then at least one of the pigeon-holes will have two

pigeons in it, hence the title The Pigeon-Hole Principle. The Pigeon-Hole Principle

is also known as Dirichlet’s Box Principle. Dirichlet (1834) used this principle to

prove a theorem about rational approximation to irrational numbers. We present this

theorem in Example A.11 below. The Pigeon-Hole Principle is an extremely useful

statement with many applications. In this appendix we give a proof of this statement

using mathematical induction. We then give several applications. The appendix ends

with a few standard problems.

The Pigeon-Hole Principle should be thought of as a statement about functions.

Let A be the set of pigeons and B the set of pigeon-holes. Then the process of sending



250 Appendix A: Background

pigeons to pigeon-holes is a function from A → B. The technical statement of the

Pigeon-Hole Principle is the following:

Theorem A.7. Let A, B be finite sets with # A > #B. Then there are no injective

maps f : A → B.

Proof. We will prove this by induction on #B. If #B = 1, and # A > 1, it is clear that

we cannot have an injective function f : A → B as there is only one option for the

image of the function f . Now suppose #B = k ≥ 2 and that we know the theorem

for every set of size k − 1. Suppose A is a set with # A > #B and let f : A → B be

an injective map. Pick an element b ∈ B. Since f is injective, f −1(b) consists of a

single element a ∈ A. Then #(B − {b}) = k − 1, and the restriction of f to A − {a}
gives a function f̃ : A − {a} → B − {b}. By the induction hypothesis this function

f̃ is not injective, hence the original function f could not be injective. ⊓⊔

Similarly one can show that if we have sets A, B with # A > k#B for some natural

number k, then there is at least one element b ∈ B such that

# f −1(b) ≥ k + 1.

We now give some examples.

Example A.8. Of every eight people, there are at least two who are born on the same

day of the week. Of every fifteen people, there are at least three born on the same

day of the week.

Example A.9. Of every n +1 integers, there are at least two with difference divisible

by n. In order to see this write Z as the disjoint union of the following n subsets Za ,

0 ≤ a ≤ n − 1. For each a, let Za be the set of integers k such that k ≡ a mod n.

Since we have n + 1 elements and n sets Za , there is an a with the property that Za

contains at least two elements x, y of the set. Since x ≡ a and y ≡ a, it follows

x ≡ y mod n and consequently, n | x − y.

Example A.10. We will show that of every five distinct real numbers at least two of

them satisfy

0 <
a − b

1 + ab
< 1.

Let the five numbers be a1, . . . , a5. Since the map tan : (−π/2,π/2) → R is a

bijection, there will be five angles θi ∈ (−π/2,π/2), 1 ≤ i ≤ 5, such that ai =
tan θi . Now divide up the interval (−π/2,π/2) to four subintervals (−π/2,−π/4],
(−π/4, 0], (0,π/4], and (π/4,π/2). Since we have five θi ’s and four subintervals,

by the Pigeon-Hole Principle at least two of them will be in the same subinterval.

This means that there are indices i, j such that

0 < θi − θ j < π/4.

Since tan is monotone increasing on the interval (−π/2,π/2), we have
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tan 0 < tan(θi − θ j ) < tan(π/4).

Now we recall tan 0 = 0, tan(π/4) = 1, and that for angles α,β,

tan(α − β) = tan α − tan β

1 + tan α · tan β
.

We finally get

0 <
ai − a j

1 + ai a j

< 1

and we are done.

Example A.11 (Dirichlet). If α is an irrational number, then there are infinitely many

rational numbers p/q, with gcd(p, q) = 1, such that
∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

<
1

q2
.

Let n be a natural number. We will prove that there is a rational number p/q such

that 1 ≤ q ≤ n with the property that
∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

<
1

qn
. (A.1)

It is not hard to see that the main claim of this example follows from this statement.

Equation A.1 is equivalent to the existence of a pair of integers (p, q) with 1 ≤ q ≤ n

such that

|qα − p| <
1

n
.

Consider the fractional parts {α}, {2α}, . . . , {nα}. These are n numbers in the interval

(0, 1), and never a rational number, as otherwise α would be a rational number. In

particular, each of them lands in the one of the following pigeon-holes: (0, 1/n),

(1/n, 2/n), . . . , (1 − 1/n, 1). If one of the {kα} falls in the first of these intervals

(0, 1/n), then we have 0 < {kα} < 1/n, which gives 0 < kα − [kα] < 1/n.

This verifies the assertion with p = [kα] and q = k. If none of the fractional parts

falls in the first interval, then we have n fractional parts in n − 1 intervals. By the

Pigeon-Hole Principle two of the fractional parts, {kα} and {lα} say, will be in the

same interval. Without loss of generality assume k > l. Since the length of each of

the intervals is 1/n we will have

|{kα} − {lα}| < 1/n.

The left-hand side of the inequality is equal to

|kα − [kα] − lα + [lα]| = |(k − l)α − ([kα] − [lα])|.

The result follows with q = (k − l) < n and p = [kα] − [lα].
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Exercises

A.1.1 Use Theorem A.1 or any other method to prove Theorem A.3.

A.1.2 Use Theorem A.1 to give a proof for the addition formula for sine and cosine:

sin(α + β) = sin α cos β + cos α sin β,

cos(α + β) = cos α cos β − sin α sin β.

A.1.3 Compute cos π
7

· cos 2π
7

· cos 3π
7

.

A.1.4 Compute the value of cos π
7

− cos 2π
7

+ cos 3π
7

.

A.1.5 Let η1 = 1, η2, η3 be the three third roots of 1 in C. Find a formula for the

value of ηn
1 + ηn

2 + ηn
3 for n ∈ Z.

A.2.1 Show that for n ∈ N,

n
∑

k=0

(

n

k

)

= 2n,

n
∑

k=0

(−1)k

(

n

k

)

= 0.

A.2.2 Prove that for all natural numbers n,

n
∑

k=0

(

k

r

)

=
(

n + 1

r + 1

)

.

A.2.3 Show that for all n ∈ N,

n
∑

k=0

(

n

k

)2

=
(

2n

n

)

.

A.2.4 Prove that for all natural n

n
∑

k=0

(−1)k

(

2n

k

)

= −1

n

(

2n

n

)

.

A.2.5 Prove the identity

n
∑

k=1

k2−2k

(

2k

k

)

= n(n + 1)

3 · 22n+1

(

2n + 2

n + 1

)

.

A.2.6 Show that for all n ∈ N, n2 | (n + 1)n − 1.

A.2.7 Show that for all natural numbers n, k,

1

k + 1
nk+1 <

n
∑

r=0

r k <

(

1 + 1

n

)k+1
1

k + 1
nk+1.

A.3.1 Show that if we have six numbers from the set {1, 2, . . . , 10} two of them add

up to an odd number.
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A.3.2 Show that if we have a subset A ⊂ {1, 2, . . . , 100} with ten elements, then

the set A has disjoint subsets S, T whose elements have the same sum.

A.3.3 Show that if we choose a subset S ⊂ {1, 2, . . . , 2n} with n + 1 elements, then

there are at least two integers x, y ∈ S such that x | y.

A.3.4 Show that if we choose five points in a unit square, there are at least two of

them that are at most
√

2/2 apart.

A.3.5 Show that of every group of n people there are two with an identical number

of friends in the group.

A.3.6 Suppose we have an infinite array of natural numbers (ai j )i, j∈N with the prop-

erty that ai j ≤ i j . Show that for every natural number k, there is at least one

natural number m which is repeated at least k times in the array.
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Algebraic integers

Let f ∈ Z[x] be a polynomial with integer coefficients. We write

f (x) =
n

∑

k=0

ak xk,

with an �= 0. Then n is called the degree, and an the leading coefficient. If the leading

coefficient of f is equal to 1, then f is called monic. For example, 3x5 − 7x + 1 is a

polynomial of degree 5 with leading coefficient 3, and the polynomial x7 −10487x2 +
57 is monic.

Definition B.1. A complex number α is called an algebraic integer if there is a

monic polynomial f ∈ Z[x] such that f (α) = 0.

For example, it is clear that all integers are algebraic integers, and numbers like 1/5

and 327/82 are not. The complex number i is an algebraic integer as it satisfies

f (i) = 0 with f (x) = x2 + 1. More generally, every element of Z[i] is an algebraic

integer. Every root of unity is an algebraic integer. The quadratic irrationality −
√

2

is an algebraic integer since it satisfies the equation x2 − 2 = 0.

Lemma B.2. If α is an algebraic integer, then there is a monic polynomial f ∈ Z[x]
such that f is irreducible over Q, and

f (α) = 0.

Proof. This is immediate from Gauss’s Lemma (Corollary to Theorem 3.1,

[25, Ch. 3]). ⊓⊔

The irreducible polynomial f in Lemma B.2 is called the minimal polynomial

of α.

The following corollary is immediate from the lemma.
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Corollary B.3. If a rational number γ is an algebraic integer, then γ ∈ Z.

The following theorem is the main result of this section:

Theorem B.4. If α,β are algebraic integers, then so are α + β, α − β, and αβ.

The proof of the theorem requires a bit of preparation.

Definition B.5. A polynomial F in the n indeterminates x1, . . . , xn is called sym-

metric if for every σ ∈ Sn , the group of permutations of the set {1, . . . , n},

F(x1, . . . , xn) = F(xσ(1), xσ(2), . . . , xσ(n)).

For example, the polynomial x + y is a symmetric polynomial of the two variables

x, y. The polynomial x + y2 is not symmetric. The polynomial

x2 + y2 + z2

is symmetric in the three variables x, y, z.

The simplest symmetric polynomials in the n indeterminates x1, . . . , xn are

denoted by

s1 =
∑

1≤i≤n

xi ;

s2 =
∑

1≤i< j≤n

xi x j ;

s3 =
∑

1≤i< j<k≤n

xi x j xk

. . .

sn = x1 · · · xn.

These symmetric polynomials occur in nature as the coefficients of the polynomials

with roots x1, . . . , xn , i.e.,

(x − x1) · · · (x − xn) = xn − s1xn−1 + s2xn−2 + · · · + (−1)nsn.

Not only are the si ’s the simplest symmetric polynomials, they are in fact the

building blocks of all symmetric polynomials in the variables x1, . . . , xn .

Theorem B.6. Let F ∈ Z[x1, . . . , xn] be a symmetric polynomial. Then there is a

polynomial G ∈ Z[x1, . . . , xn] such that

F(x1, . . . , xn) = G(s1, s2, . . . , sn).

Proof. Write F in the form

F(x1, . . . , xn) =
∑

r1,r2,...,rn∈N∪{0}
c(r1, . . . , rn)x

r1

1 · · · xrn

n
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with c(r1, . . . , rn) ∈ Z. Pick the n-tuple (r1, . . . , rn) with the following three prop-

erties:

• c(r1, . . . , rn) �= 0;

• r1 ≥ · · · ≥ rn;

• w = nr1 + (n − 1)r2 + · · · + rn is maximal. Call w the weight of F and denote

it by w(F).

Now consider the polynomial

F1(x1, . . . , xn) := F(x1, . . . , xn) − c(r1, . . . , rn)s
r1−r2

1 s
r2−r3

2 · · · s
rn−1−rn

n−1 srn

n .

It is easy to see that F1 has integral coefficients and that w(F1) < w(F). Apply the

same procedure to F1 to obtain a polynomial F2 with w(F2) < w(F1). By repeating

this process we obtain a sequence of symmetric polynomials F, F1, F2, . . . such

that w(F) > w(F1) > w(F2) > . . . . For some k, we will have w(Fk) = 0, and that

means Fk is a constant. This proves the theorem. ⊓⊔

Now we can go back and prove our main theorem.

Proof of Theorem B.4. We will prove that αβ is algebraic. The other cases are similar.

Suppose α satisfies the equation f (α) = 0 with f a monic polynomial with

integer coefficients. Write

f (x) =
k

∏

i=1

(x − αi ).

The algebraic integer α is one of the αi ’s. As f ∈ Z[x], we see that

s1 =
∑

i

αi ,

s2 =
∑

i< j

αiα j ,

...

sk = α1 · · ·αk,

are integers.

Similarly, β satisfies an algebraic equation g(x) = 0 with g ∈ Z[x] a monic

polynomial. Write

g(x) =
l

∏

i=1

(x − βi ).

The algebraic integer β is one of the βi ’s. Then, as before, the complex numbers
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t1 =
∑

i

βi ,

t2 =
∑

i< j

βiβ j ,

...

tl = β1 · · · βl

are integers.

Now consider the equation

h(x) =
k

∏

i=1

l
∏

j=1

(x − αiβ j ).

This expression has αβ as a root. Also, it is symmetric in the variables αi ’s and in

the variables β j ’s, separately. We want to show h(x) ∈ Z[x].
First write

h(x) =
∑

r1,...,rk ,t∈N∪{0}
c(r1, . . . , rk, t)α

r1

1 . . . α
rk

k x t

with c(r1, . . . , rk, t) symmetric polynomials with integer coefficients in β j ’s. By

Theorem B.6 and the earlier remarks c(r1, . . . , rk, t) ∈ Z. Now we write

h(x) =
∑

t

ct x
t

with

ct =
∑

r1,...,rk

c(r1, . . . , rk, t)α
r1

1 . . . α
rk

k .

Again another application of Theorem B.6 shows that each ct is an integer and we

are done. ⊓⊔

Remark B.7. There are several proofs for Theorem B.4. Here we briefly sketch two

proofs of the theorem that rely on linear algebra methods. We encourage the reader

to work out the details as an exercise.

The first proof uses the statement that a complex number α is an algebraic integer

if and only if Z[α] is Z-module of finite rank. Now let α,β be algebraic integers. Then

it is easy to see that Z[α,β] is a Z-module of finite rank, which, by the classification

theorem of Z-modules of finite rank, is free. Next, since α + β,αβ ∈ Z[α,β], it

follows that Z[αβ] and Z[α + β] are Z-submodules of Z[α,β], and consequently

free of finite rank. This statement implies that αβ and α + β are algebraic integers.
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Another beautiful argument which we learned from Antoine Chambert-Loir uses

the notion of the companion matrix of a polynomial. Let α be an algebraic integer

and fα be its minimal polynomial, and let nα be the degree of fα. We let Cα be the

companion matrix of fα. By definition, the characteristic polynomial of Cα is the

polynomial fα. The Cayley–Hamilton Theorem implies that Cα satisfies fα(Cα) = 0,

but since fα is irreducible, this implies that fα is the minimal polynomial of Cα. Then

Cα : Cnα → Cnα is a linear transformation with the roots of fα as its eigenvalues.

Similarly, for an algebraic integer β, we define fβ, nβ , and Cβ : Cnβ → Cnβ as

above. Then the fact that α + β is an algebraic integer follows from the following

two statements:

• α +β is an eigenvalue of Cα ⊗ Inβ
+ Inα

⊗ Cβ : Cnα ⊗ Cnβ → Cnα ⊗ Cnβ . Here

for each n, In : Cn → Cn is the identity map.

• The characteristic polynomial of operator Cα ⊗ Inβ
+ Inα

⊗ Cβ is monic with

integer coefficients.

The proof for αβ is similar, except that here one considers Cα ⊗ Cβ : Cnα ⊗ Cnβ →
Cnα ⊗ Cnβ .

Exercises

B.1 Show that
√

2 + 3
√

5 is an algebraic integer by explicitly finding the algebraic

equation that this number satisfies.

B.2 Write the following polynomials in the terms of the basic symmetric functions:

a. x2 + y2 + z2;

b. x3 + y3 + z3;

c. x4 + y4 + z4;

d. (x − y)2(y − z)2(z − x)2.

B.3 Let α,β, γ be the three roots of the polynomial x3 + 7x2 − 8x + 3. Find the

polynomial with rational coefficients whose roots are the following numbers:

a. α2,β2, γ2;

b. 1/α, 1/β, 1/γ;

c. α3,β3, γ3.
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SageMath

SageMath is a free, open-source mathematical software which is a viable, powerful

alternative to commercial computing packages such as Maple, or Mathematica. In

this appendix we give a minimal introduction to SageMath. Bard’s book [6], freely

available online, is a good comprehensive introduction to the software with many

examples. This book is our main reference for this appendix. Another useful reference

for number theoretic applications of SageMath is Stein [49] where many numerical

examples are worked out using SageMath.

SageMath is freely available for download from http://www.sagemath.org/. There

are also two internet-based ways to use SageMath:

• SageMathCell is a web interface for SageMath, suitable for almost any everyday

quick computation including all the computational exercises in this book. The

website is https://sagecell.sagemath.org/

• CoCalc is a web service for online computation with the capability to support

large volume computations, classroom support, etc., available at https://cocalc.

com/

Here are some resources to get you started on SageMath. The online reference

for SageMath is

www.sagemath.org/doc/reference

The online tutorial is available here

www.sagemath.org/doc/tutorial

A number of quick reference sheets containing very minimal lists of commands are

available at

https://wiki.sagemath.org/quickref

To get acquainted with SageMath, the easiest way is to work within SageMathCell.

This interface provides a window in which to type commands. There is also an

Evaluate button to execute the commands (or one could press Shift and Enter

at the same time).
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C.1 Basic operations

To add numbers, one just types +, e.g., 2 + 3 gives 5. Multiplication is *, 2*3

will evaluate to 6, as it should. Power operation is written as 2ˆ3, which will give 8.

Division is more interesting: evaluating 4/5 gives 4/5. In order to get the decimal

expansion, one needs to enter N(4/5), which returns 0.800000000000000.

Square root is similar. Evaluating sqrt(8) produces 2 * sqrt(2). Typing

N(sqrt(8)) and pressing Evaluate gives 2.82842712474619. For other

roots, one can type in

N(3ˆ(1/6)).

For the exponential function one can try exp(3) or eˆ 3, or for the numerical

value N(exp(3)). Logarithms are also easy: log(3) returns the natural log of

3, whereas log(3, 7) gives the logarithm of 3 in base 7. Entering sqrt(-4,

all=true) gives [2*I , -2 *I], which means the list consisting of the com-

plex numbers 2i and −2i . To try something a little more complicated one could try

typing in

N(100*(1 + sqrt(2) + log(5, 62) )ˆ5)

which immediately returns 17339.1704246701. For more precision, one could

type

N(100*(1 + sqrt(2) + log(5, 62) )ˆ5, prec=200)

or

numerical_approx(100*(1 + sqrt(2) + log(5, 62) )ˆ5,

digits=200)

which returns 200 digits.

SageMath can, very easily, plot functions. For example, plot(3*exp(x+5))

plots the function f (x) = 3ex+5 for −1 < x < +1. To get other ranges, e.g.,

−3 < x < 5, one types

plot(3*exp(x+5), -3, 5)

There are various other things one can do with plot, e.g., setting bounds in the

y direction, superimposing graphs, etc., see [6, Ch. 3] for more details on plotting

functions. One can also define functions. For example, one can define a function

f (x) by

f(x) = xˆ2 - 2



Appendix C: SageMath 263

Next, evaluating f(3) returns 7. One could also plot the function by typing

plot(f(x)).

C.2 Basic number theory

Here we review some of the most basic number theoretic operations that SageMath

can do.

Prime numbers

The command

primes_first_n(55)

lists the first 55 prime numbers:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149,

151, 157, 163, 167, 173, 179, 181, 191, 193,

197, 199, 211, 223, 227, 229, 233, 239, 241,

251, 257]

The command

is_prime(157)

checks the primality of 157, and returns True. Typing

next_prime(10057)

gives 10061 which is the next prime after 10057. There is also a similar command

previous_prime(10057)

The get the prime numbers in a certain range, e.g., 120 to 137, we use the command

prime_range(120, 137)
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We get [127, 131] as the answer. If we need to find the 112th prime number, all

we need to do is to type

nth_prime(112)

to see that that number is 613. Another useful command is

random_prime(10ˆ20,10ˆ30)

which returns a random prime number between 1020 and 1030. Typing

prime_pi(x)

returns the number of prime numbers up to x .

Divisors

The command factor factorizes a number into a product of its prime factors, e.g.,

factor(12) gives

2ˆ2 * 3

To get the list of divisors of a number we use the command divisors. For example

divisors(325) gives the answer

[1, 5, 13, 25, 65, 325]

The function σk(n) =
∑

d|n dk is given by sigma(n, k). For example,

sigma(325, 0) simply counts the number of divisors of 325 and returns 6. The

command len(divisors(325)) would have done the same thing. The com-

mands gcd and lcm compute gcd and lcm. For example, gcd(12, 18) returns 6,

andlcm(12, 18) returns 36. The commandxgcd(a,b) returns a triple (d, u, v)

with d = gcd(a, b) and au+bv = d. For example,xgcd(12,15) gives(3, -1,

1).

Modular arithmetic

Suppose we divide a by b, and we write a = bq + r . To find the remainder r of a

when divided by b, one can type a % b. For example

329 % 162
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returns 5. We could have alternatively used the command mod(329, 162) to get

the same answer. To find the integer quotient q, we write a//b. For example, 329

// 162 gives 2. To find the modular inverse of the number 3 modulo 2005 we enter

inverse_mod(3, 2005).

The answer is 1337. One can verify this by checking that

(1337*3)%2005

in fact returns 1.

SageMath has the capability to do modular arithmetic. Suppose we want to com-

pute the order of 5 modulo 7. In order to do this, we type

R = Integers(7)

a = R(5)

multiplicative_order(a)

This will produce 6 as the answer, which means that 5 is a primitive root modulo 7.

One can check this by entering

[cˆi for i in range(6)]

This last command produces [1, 5, 4, 6, 2, 3].

An alternative way to do modular arithmetic is to use the Mod operator. For

example, if we want to compute 275 mod 1000, we can simply type

Mod(2, 1000)ˆ75

which very quickly returns 568. To compute the multiplicative inverse we can execute

the command

Mod(3, 1000)ˆ(-1)

which produces 667.

The Chinese Remainder Theorem

A useful command is the Chinese Remainder Theorem command CRT. Entering

CRT(a, b, m, n) finds an integer x such that

{

x ≡ a mod m

x ≡ b mod n.
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For example,CRT(2, 1, 3, 5) returns 11. If we have more than two congruence

equations, we have to use

CRT_list([a_1, a_2, \dots, a_m], [n_1, n_2, \dots, n_m])

For example,

CRT_list([1, 2, 3], [5, 7, 9])

returns 156.

The Euler totient function

To calculate the Euler totient function of a number, e.g., 10032 we type in

euler_phi(10032)

to obtain 2880. SageMath can also find primitive roots. Typing

primitive_root(25)

returns 2 which is a primitive root modulo 25—in fact, this command returns the

smallest primitive root modulo 25. If one enters

primitive_root(36)

the output will be the message ValueError: no primitive root.

Quadratic residues

SageMath has built-in functions to handle quadratic residues and related functions.

For example,

quadratic_residues(7)

produces [0, 1, 2, 4] which is the list of quadratic residues modulo 7 plus 0.

Note that this is different from our convention in Chapter 6 where a quadratic residue

was defined to be coprime to p. The command for the Legendre symbol is

legendre_symbol(a, p)
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For example,

legendre_symbol(3, 7)

gives −1. The command for the Jacobi symbol is

jacobi_symbol(a, n)

which works similar to the Legendre symbol.

Sums of squares

The command

two_squares(5)

returns [1, 2], and 5 = 12 + 22. The command

three_squares(6)

gives [1, 1, 2]. The command

four_squares(8)

produces [0, 0, 2, 2].

C.3 Polynomial operations

Here we briefly explain how to work with polynomials in SageMath.

Polynomials over the real or complex numbers

Let us define the polynomials a(x) and b(x) by setting

a(x) = xˆ3 - 1

b(x) = xˆ2 - x - 2

Evaluating a(2) gives 7. The command a(x) + b(x) returns

xˆ3 + xˆ2 - x - 3
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Typing a(x)*b(x) gives

(xˆ3 - 1)*(xˆ2 - x - 2)

To do the multiplication one needs to enter expand(a(x)*b(x)) which returns

xˆ5 - xˆ4 - 2*xˆ3 - xˆ2 + x + 2

The command factor(a(x)) returns

(xˆ2 + x + 1)*(x - 1)

One can also compute the gcd of the polynomials by entering gcd(a(x), b(x))

to obtain 1. Typing in factor(lcm(a(x),b(x))) gives

(xˆ2 + x + 1)*(x + 1)*(x - 1)*(x - 2)

To solve the equationa(x)=0 one simply typessolve(a(x),x). The outcome is

[x == 1/2*I*sqrt(3) - 1/2, x == -1/2*I*sqrt(3) - 1/2,

x == 1]

The solve operator that we just introduced is a useful, versatile device that can be

used in a variety of settings. For example, entering

var(’z’)

solve([a(x)-z==0, b(x)-2*zˆ2==5], x, z)

solves the system
{

a(x) − z = 0,

b(x) − 2z2 = 5.

The answer is

[[x == (1.214514354475611 + 0.4405103357723433*I),

z == (0.0844362836387264 + 1.863837112673745*I)],

[x == (1.214514354475611 - 0.4405103357723433*I),

z == (0.08443628363872642 - 1.863837112673745*I)],

[x == (-0.9751234960329906 + 0.7411666213498296*I),

z == (-0.3202238106249589 + 1.707106500754547*I)],

[x == (-0.9751234960329906 - 0.7411666213498296*I),

z == (-0.320223810624959 - 1.707106500754547*I)],

[x == (-0.2393908584426201 + 1.319030559283378*I),

z == (0.2357875269862346 - 2.068131317220872*I)],

[x == (-0.2393908584426201 - 1.319030559283378*I),

z == (0.2357875269862422 + 2.068131317220871*I)]]
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Note that we did not have to declare the variable x as it is the default variable.

We refer the reader to the first chapter of [6] for other operations involving poly-

nomials.

Polynomials modulo integers

We can specify the polynomial ring we work in using the command

R.<x> = PolynomialRing(Integers(7))

Then if we type

expand((3*xˆ2+5)*(2*xˆ3+3))

we obtain

6*xˆ5 + 3*xˆ3 + 2*xˆ2 + 1

If we type in

(xˆ3+1).roots()

we receive [(6, 1), (5, 1), (3, 1)]which lists the roots of x3 +1 in mod

7 numbers and their multiplicities. If we type

(3*xˆ2+5).roots()

we get [] in response which means the empty set, i.e., the polynomial 3x2 + 5 has

no roots in mod 7 numbers.

Elliptic curves

In the Notes to Chapter 3 we defined a group law on the set of rational points on an

elliptic curve y2 = x3 + ax + b with a, b ∈ Q. The command

E = EllipticCurve([0, 17])

defines the elliptic curve y2 = x3 + 0 · x + 17, and typing the command

E
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returns

Elliptic Curve defined by yˆ2 = xˆ3 + 17 over Rational Field

We can also add points on elliptic curves:

A=E([-1, 4])

B=E([2,5])

A+B

will produce

(-8/9 : -109/27 : 1)

or

A+A

will give

(137/64 : -2651/512 : 1)

Note that the answers are always produced as triples (a : b : c) considered in the

projective space with c = 0 or 1. If c = 0, then the resulting point is the identity

point of the elliptic curve group law, i.e., the point at infinity. SageMath can compute

elliptic curve invariants such as torsion subgroup and rank but since we are not using

those quantities in this book, we will not review them in this brief appendix.

SageMath is incredibly diverse, and this brief appendix is far from a satisfactory

introduction. As mentioned at the beginning of this appendix, there are a variety

of resources available on the web which one can use to look up commands. The

wonderful thing about SageMath is that it is an open-source Python-based software,

and one can do actual Python programming within the software. Also, SageMath is

constantly growing thanks to a large group of individuals who have devoted many,

many hours developing the code to perform various mathematical tasks. And if any-

one realizes that there is something that SageMath is missing, they can get involved

in the effort.
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