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This elementary introduction to the theory of options pricing presents the
Black—Scholes theory of options as well as such general topics in finance
as the time value of money, rate of return of an investment cash-flow se-
quence, utility functions and expected utility maximization, mean variance
analysis, optimal portfolio selection, and the capital assets pricing model.

The author assumes no prior knowledge of probability and presents all
the necessary preliminary material simply and clearly in chapters on proba-
bility, normal random variables, and the geometric Brownian motion model
that underlies the Black—Scholes theory. He carefully explains the concept
of arbitrage, using many examples, and he then presents the arbitrage theo-
rem and uses it, along with a multiperiod binomial approximation of geo-
metric Brownian motion, to obtain a simple derivation of the Black—Scholes
call option formula. Later chapters treat risk-neutral (nonarbitrage) pric-
ing of exotic options — both by Monte Carlo simulation and by multiperiod
binomial approximation models for European and American style options.
Finally, the author presents real price data indicating that the underlying
geometric Brownian motion model is not always appropriate and shows
how the model can be generalized to deal with such situations.

No other text presents such sophisticated topics in a mathematically ac-
curate but accessible way. This book will appeal to professional traders as
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Introduction and Preface

An option gives one the right, but not the obligation, to buy or sell a se-
curity under specified terms. A call option is one that gives the right
to buy, and a put option is one that gives the right to sell the security.
Both types of options will have an exercise price and an exercise time.
In addition, there are two standard conditions under which options oper-
ate: European options can be utilized only at the exercise time, whereas
American options can be utilized at any time up to the exercise time.
Thus, for instance, a European call option with exercise price K and ex-
ercise time ¢ gives its holder the right to purchase at time 7 one share of
the underlying security for the price K, whereas an American call op-
tion gives its holder the right to make that purchase at any time before
or at time f.

A prerequisite for a strong market in options is a computationally ef-
ficient way of evaluating, at least approximately, their worth; this was
accomplished for call options (of either American or European type) by
the famous Black—Scholes formula. The formula assumes that prices
of the underlying security follow a geometric Brownian motion. This
means that if S(y) is the price of the security at time y then, for any
price history up to time y, the ratio of the price at a specified future time
t + y to the price at time y has a lognormal distribution with mean and
variance parameters #/4 and to?, respectively. That is,

s (S(t+y))
sy

will be a normal random variable with mean 7. and variance to?. Black
and Scholes showed, under the assumption that the prices follow a geo-
metric Brownian motion, that there is a single price for a call option that
does not allow an idealized trader — one who can instantaneously make
trades without any transaction costs — to follow a strategy that will re-
sult in a sure profit in all cases. That is, there will be no certain profit
(i.e., no arbitrage) if and only if the price of the option is as given by
the Black—Scholes formula. In addition, this price depends only on the
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variance parameter o of the geometric Brownian motion (as well as on
the prevailing interest rate, the underlying price of the security, and the
conditions of the option) and not on the parameter .. Because the pa-
rameter o is a measure of the volatility of the security, it is often called
the volatility parameter.

A risk-neutral investor is one who values an investment solely through
the expected present value of its return. If such an investor models a secu-
rity by a geometric Brownian motion that turns all investments involving
buying and selling the security into fair bets, then this investor’s valu-
ation of a call option on this security will be precisely as given by the
Black—Scholes formula. For this reason, the Black—Scholes valuation
is often called a risk-neutral valuation.

Our first objective in this book is to derive and explain the Black—
Scholes formula. This does require some knowledge of probability, the
topic considered in the first three chapters. Chapter 1 introduces prob-
ability and the probability experiment. Random variables — numerical
quantities whose values are determined by the outcome of the proba-
bility experiment — are discussed, as are the concepts of the expected
value and variance of a random variable. In Chapter 2 we introduce
normal random variables; these are random variables whose probabil-
ities are determined by a bell-shaped curve. The central limit theorem
is presented in this chapter. This theorem, probably the most important
theoretical result in probability, states that the sum of a large number of
random variables will approximately be a normal random variable. In
Chapter 3 we introduce the geometric Brownian motion process; we de-
fine it, show how it can be obtained as the limit of simpler processes,
and discuss the justification for its use in modeling security prices.

With the probability necessities behind us, the second part of the text
begins in Chapter 4 with an introduction to the concept of interest rates
and present values. A key concept underlying the Black—Scholes for-
mula is that of arbitrage, the subject of Chapter 5. In this chapter we
show how arbitrage can be used to determine prices in a variety of situ-
ations, including the single-period binomial option model. In Chapter 6
we present the arbitrage theorem and use it to find an expression for the
unique nonarbitrage option cost in the multiperiod binomial model. In
Chapter 7 we use the results of Chapter 6, along with the approxima-
tions of geometric Brownian motion presented in Chapter 3, to obtain
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a simple derivation of the Black—Scholes equation for pricing call op-
tions. In addition, we show how to utilize a multiperiod binomial model
to determine an approximation of the risk-neutral price of an American
put option.

In Chapter 8 we note that, in many situations, arbitrage considerations
do not result in a unique cost. In such cases we show the importance
of the investor’s utility function as well as his or her estimates of the
probabilities of the possible outcomes of the investment. Applications
are given to portfolio selection problems, and the capital assets pricing
model is introduced. In addition we show that, even when a security’s
price follows a geometric Brownian motion and call options are priced
according to the Black—Scholes formula, there may still be investment
opportunities that have a positive expected gain with a relatively small
standard deviation. (Such opportunities arise when an investor’s eval-
uation of the geometric Brownian motion parameter p differs from the
value that turns all investment bets into fair bets.)

In Chapter 9 we introduce some nonstandard, or “exotic,” options
such as barrier, Asian, and lookback options. We explain how to use
Monte Carlo simulation techniques to efficiently determine the geomet-
ric Brownian motion risk-neutral valuation of such options. Our ways
of exploiting variance reduction ideas to make the simulation more effi-
cient have not previously appeared and are improvements over what is
presently in the literature.

The Black—Scholes formula is useful even if one has doubts about
the validity of the underlying geometric Brownian model. For as long
as one accepts that this model is at least approximately valid, its use
suggests the appropriate price of the option. Thus, if the actual trading
option price is below the formula price then it would seem that the op-
tion is underpriced in relation to the security itself, thus leading one to
consider a strategy of buying options and selling the security (with the
reverse being suggested when the trading option price is above the for-
mula price). However, one downside to the Black—Scholes formula is
that its very usefulness and computational simplicity has led many to au-
tomatically assume the underlying geometric Brownian motion model;
as a result, relatively little effort has gone into searching for a better
model. In Chapter 10 we show that real data cannot aways be fit by a
geometric Brownian motion model, and that more general models may
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need to be considered. For instance, one of the key assumptions of geo-
metric Brownian motion is that the ratio of a future security price to the
present price does not depend on past prices. In Chapter 10, we consider
approximately 3 years of data concerning the (nearest-month) price of
crude oil. Each day is characterized as being of one of four types: type 1
means that today’s final crude price is down from yesterday’s by more
than 1%; type 2 means that the price is down by less than 1%; type 3
means that it is up by less than 1%; and type 4 that it is up by more than
1%. The following table gives the percentage of time that a type-i day
was followed by a type-j day fori, j =1,...,4.

[
(28]
(O8]
~

31 23 25 21
21 30 21 28
15 28 28 29
27 32 16 25

B W -

Thus, for instance, a large drop (greater than 1%) was followed 31%
of the time by another large drop, 23% of the time by a small drop,
25% of the time by a small increase, and 21% percent of the time by
a large increase. Under the geometric Brownian motion model, tomor-
row’s change would be unaffected by today’s, and so the theoretically
expected percentages in the preceding table would be the same for all
rows. A standard statistical procedure indicates that, if the row probabil-
ities were equal (as implied by geometric Brownian motion), then data
as nonsupportive of this hypothesized equality as the data actually ob-
tained would occur only .5% of the time. Consequently, the hypothesis
that the prices of crude oil follow geometric Brownian motion is re-
jected. In Chapter 10 we then formulate an improved model that is both
intuitively reasonable and (most importantly) fits the data better than
geometric Brownian motion, and we show how to obtain a risk-neutral
option valuation based on this improved model.

In the case of commodity prices, there is a strong belief by many
traders in the concept of mean price reversion: that the market prices
of certain commodities have tendencies to revert to fixed values. In
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Chapter 11 we present a model, more general than geometric Brownian
motion, that can be used to model the price flow of such a commodity.

One technical point that should be mentioned is that we use the nota-
tion log(x) to represent the natural logarithm of x. That is, the logarithm
has base e, where e is defined by

e= lim (14 1/n)"
n—0o0
and is approximately given by 2.71828.....

We would like to thank Professors Ilan Adler and Shmuel Oren for some
enlightening conversations, Mr. Kyle Lin for his many useful comments,
and Mr. Nahoya Takezawa for his general comments and for doing the
numerical work needed in the final chapters.




1. Probability

1.1 Probabilities and Events

Consider an experiment and let S, called the sample space, be the set
of all possible outcomes of the experiment. If there are m possible out-
comes of the experiment then we will generally number them 1 through
m, and so S = {1, 2, ..., m}. However, when dealing with specific ex-
amples, we will usually give more descriptive names to the outcomes.

Example 1.1a (i) Let the experiment consist of flipping a coin, and
let the outcome be the side that lands face up. Thus, the sample space

of this experiment is
S = {h,t},

where the outcome is # if the coin shows heads and ¢ if it shows tails.

(ii) If the experiment consists of rolling a pair of dice — with the out-
come being the pair (i, j), where i is the value that appears on the first
die and j the value on the second — then the sample space consists of
the following 36 outcomes:

(1, 1), (1,2), (1,3), (1,4), (1,5), (1,6),
2,1, 2,2), (2,3), 2,4, 2,5), (2,6),
G, 1, 3,2), 3,3), 3,4, 3.5, (3,6),
4, 1), 4,2), 4,3), 4,4, 4.5), 4.6,
(5,1, (5,2), (5,3), 5.4, 5.5), (5,6),
6, 1), (6,2), (6,3), (6,4), (6,5), (6,6).

(iii) If the experiment consists of a race of r horses numbered 1, 2, 3,
..., r, and the outcome is the order of finish of these horses, then the
sample space is

S = {all orderings of the numbers 1,2, 3, ..., r}.
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For instance, if r = 4 then the outcome is (1, 4, 2, 3) if the number-1

horse comes in first, number 4 comes in second, number 2 comes in

third, and number 3 comes in fourth. O

Consider once again an experiment with the sample space S = {1, 2, ...,
m}. We will now suppose that there are numbers pj, ..., p, with

m
pi>0, i=1....m and Y pi=I
i=1

and such that p; is the probability that i is the outcome of the experi-
ment.

Example 1.1b In Example 1.1a(i), the coin is said to be fair or un-
biased if it is equally likely to land on heads as on tails. Thus, for a fair
coin we would have that

pr=p:=1/2.

If the coin were biased and heads were twice as likely to appear as tails,
then we would have

Ph=2/3, pt:1/3

If an unbiased pair of dice were rolled in Example 1.1a(ii), then all pos-
sible outcomes would be equally likely and so

pijy=1/36, 1<i<6,1=<j<6.

If r = 3 in Example 1.1a(iii), then we suppose that we are given the six
nonnegative numbers that sum to 1:

P1,2,3, P1,3,2s P2,1,3, P2,3,1, P3,1,2, P3,2,1,

where p; ; x represents the probability that horse i comes in first, horse
j second, and horse k third. O

Any set of possible outcomes of the experiment is called an event. That
is, an event is a subset of §, the set of all possible outcomes. For any
event A, we say that A occurs whenever the outcome of the experiment
is a point in A. If we let P(A) denote the probability that event A oc-
curs, then we can determine it by using the equation

Probabilities and Events 3

P(A) = Z pi. (L.1)
i€A
Note that this implies
P(S)=)Y pi=1 (1.2)
i

In words, the probability that the outcome of the experiment is in the
sample space is equal to 1 — which, since S consists of all possible out-
comes of the experiment, is the desired result.

Example 1.1c  Suppose the experiment consists of rolling a pair of fair
dice. If A is the event that the sum of the dice is equal to 7, then

A=1{1,6),(2,5,(3,4),43),5,2), (6 D}

and
P(A) =6/36 =1/6.

If we let B be the event that the sum is 8, then

P(B) = pa.s) + Pa.s) + Pa4 + Pi.3) + P62 = 5/36.

If, in a horse race between three horses, we let A denote the event that
horse number 1 wins, then A = {(1, 2, 3), (1, 3, 2)} and

P(A) = p1,2,3 + P1,3.2- a

For any event A, we let A°, called the complement of A, be the event
containing all those outcomes in § that are not in A. That is, A° occurs
if and only if A does not. Since

1=zi:Pi
=ZPi+ZPi

icA ie A
= P(A) + P(A°),
we see that
P(A°) =1— P(A). (1.3)

That is, the probability that the outcome is not in A is 1 minus the prob-
ability that it is in A. The complement of the sample space S is the null
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event ¥, which contains no outcomes. Since § = S¢, we obtain from
Equations (1.2) and (1.3) that

P®) =0.

For any events A and B we define AU B, called the union of A and B, as
the event consisting of all outcomes that are in A, or in B, or in both A
and B. Also, we define their intersection AB (sometimes written AN B)
as the event consisting of all outcomes that are both in A and in B.

Example 1.1d Let the experiment consist of rolling a pair of dice. If
A is the event that the sum is 10 and B is the event that both dice land
on even numbers greater than 3, then

A={46),5,5),06,4}, B={44),406),(6,4),(6,06).

Therefore,

AUB =1{4,4),4,6),(5,5),(6,4), (6, 6)},
AB = {(4,6), (6,4)}. O

For any events A and B, we can write

P(AUB)= }_ pi
ieAUB
P(A) =) pi,
i€A
P(B)=)  pi.
ieB

Since every outcome in both A and B is counted twice in P(A) + P(B)
and only once in P(A U B), we obtain the following result, often called
the addition theorem of probability.

Proposition 1.1.1
P(AU B) = P(A) + P(B) — P(AB).
Thus, the probability that the outcome of the experiment is either in A

orin B is: the probability that it is in A, plus the probability that it is in
B, minus the probability that it is in both A and B.

Conditional Probability 5

Example 1.1e  Suppose the probabilities that the Dow-Jones stock in-
dex increases today is .54, that it increases tomorrow is .54, and that it
increases both days is .28. What is the probability that it does not in-
crease on either day?

Solution. Let A be the event that the index increases today, and let B
be the event that it increases tomorrow. Then the probability that it in-
creases on at least one of these days is

P(AUB) = P(A) + P(B) — P(AB)
= .54 + .54 — .28 = .80.

Therefore, the probability that it increases on neither day is 1 — .80 =
.20. O

If AB = (), we say that A and B are mutually exclusive or disjoint.
That is, events are mutually exclusive if they cannot both occur. Since
P(®) = 0, it follows from Proposition 1.1.1 that, when A and B are mu-
tually exclusive,

P(AUB) = P(A) + P(B).

1.2 Conditional Probability

Suppose that each of two teams is to produce an item, and that the two
items produced will be rated as either acceptable or unacceptable. The
sample space of this experiment will then consist of the following four
outcomes:

S ={(a,a), (a,u), (u,a), (u,u)},

where (a, u) means, for instance, that the first team produced an accept-
able item and the second team an unacceptable one. Suppose that the
probabilities of these outcomes are as follows:

P(a,a) = .54,
P(a,u) = .28,
P(u,a) = .14,

P(u,u) = .04.




e e

6 Probability

If we are given the information that exactly one of the items produced
was acceptable, what is the probability that it was the one produced by
the first team? To determine this probability, consider the following rea-
soning. Given that there was exactly one acceptable item produced, it
follows that the outcome of the experiment was either (a, u) or (u, a).
Since the outcome (a, u) was initially twice as likely as the outcome
(u, a), it should remain twice as likely given the information that one of
them occurred. Therefore, the probability that the outcome was (a, u)
is 2 /3, whereas the probability that it was (u,a)is 1/3.

Let A = {(a, u), (a, a)} denote the event that the item produced by
the first team is acceptable, and let B = {(a, u), (u, a)} be the event that
exactly one of the produced items is acceptable. The probability that the
item produced by the first team was acceptable given that exactly one of
the produced items was acceptable is called the conditional probability
of A given that B has occurred; this is denoted as

P(A|B).

A general formula for P(A|B) is obtained by an argument similar to the
one given in the preceding. Namely, if the event B occurs then, in order
for the event A to occur, it is necessary that the occurrence be a point
in both A and B; that is, it must be in AB. Now, since we know that
B has occurred, it follows that B can be thought of as the new sample
space, and hence the probability that the event AB occurs will equal the
probability of AB relative to the probability of B. That is,

P(AB)

P(A|B) = PB)

(1.4)

Example 1.2a A coin is flipped twice. Assuming that all four points
in the sample space S = {(h, h), (h, 1), (¢, h), (t, 1)} are equally likely,
what is the conditional probability that both flips land on heads, given
that

(a) the first flip lands on heads, and
(b) at least one of the flips lands on heads?

Solution. Let A = {(h, h)} be the event that both flips land on heads;
let B = {(h, h), (h, t)} be the event that the first flip lands on heads; and
let C = {(h, h), (h, 1), (t, h)} be the event that at least one of the flips
lands on heads. We have the following solutions:

Conditional Probability 7
P(AB)
P(B)
_ P({(h.m))
~ P({(h, h), (h, D)
- 1/4
T 2/4
=1/2

P(A|B) =

and

P(AC)
P(C)

B P({(h, h)})

= P({(h, h), (h, 1), (t, D)D)
1/4

T34

=1/3.

P(A|IC) =

Many people are initially surprised that the answers to parts (a) and (b)
are not identical. To understand why the answers are different, note first
that — conditional on the first flip landing on heads — the second one is
still equally likely to land on either heads or tails, and so the probability
in part (a) is 1/2. On the other hand, knowing that at least one of the flips
lands on heads is equivalent to knowing that the outcome is not (¢, 1).
Thus, given that at least one of the flips lands on heads, there remain
three equally likely possibilities, namely (h, h), (h,t), (¢, h), showing
that the answer to part (b) is 1/3. O

It follows from Equation (1.4) that
P(AB) = P(B)P(A|B). (1.5)

That is, the probability that both A and B occur is the probability that
B occurs multiplied by the conditional probability that A occurs given
that B occurred; this result is often called the multiplication theorem of
probability.

Example 1.2b  Suppose that two balls are to be withdrawn, without
replacement, from an urn that contains 9 blue and 7 yellow balls. If each
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ball drawn is equally likely to be any of the balls in the urn at the time,
what is the probability that both balls are blue?

Solution. Let By and B, denote, respectively, the events that the first
and second balls withdrawn are blue. Now, given that the first ball with-
drawn is blue, the second ball is equally likely to be any of the remaining
15 balls, of which 8 are blue. Therefore, P(B2|B;) = 8/ 15.As P(By) =

9/16, we see that
98 3

The conditional probability of A given that B has occurred is not gener-
ally equal to the unconditional probability of A. In other words, knowing
that the outcome of the experment is an element of B generally changes
the probability that it is an element of A. (What if A and B are mutu-
ally exclusive?) In the special case where P(A|B) isequal to P(A), we
say that A is independent of B. Since

P(AB)

P(A|B) = PB)

we see that A is independent of B if
P(AB) = P(A)P(B). (1.6)

The relation in (1.6) is symmetric in A and B. Thus it follows that, when-
ever A is independent of B, B is also independent of A — that is, A and
B are independent events.

Example 1.2¢  Suppose that, with probability .52, the closing price of
a stock is at least as high as the close on the previous day, and that the
results for succesive days are independent. Find the probability that the
closing price goes down in each of the next four days, but not on the
following day.

Solution. Let A; be the event that the closing price goes down on day
i. Then, by independence, we have

P(A1A;A3A4AS) = P(A1) P(A) P(A3) P(A4) P(AY)
= (.48)*(.52) = .0276. O

Random Variables and Expected Values 9

3.3 Random Variables and Expected Values

Numerical quantities whose values are determined by the outcome of
the experiment are known as random variables. For instance, the sum
obtained when rolling dice, or the number of heads that result in a series
of coin flips, are random variables. Since the value of a random variable
is determined by the outcome of the experiment, we can assign proba-
bilities to each of its possible values.

Example 1.3a  Let the random variable X denote the sum when a pair
of fair dice are rolled. The possible values of X are 2,3,...,12, and
they have the following probabilities:

P{X =2} = P{1,1)} = 1/36,
P{X =3}=P{Q1,2),(2,1)} =2/36,
P{X =4} = P{(1, 3); (2, 2): (3, 1)} = 3/36,
P{X =5} = P{(1,4), (2,3), (3,2), (4, 1)} = 4/36,
P{X =6} = P{(1,5),(2,4), (3,3), 4,2), (5, 1)} = 5/36,
P{X =7} = P{(1,6),(2,5), (3,4), 4,3), (5,2), (6,1)} = 6/36,
P{X =8} = P{(2,6),(3,5),(4,4), (5,3), (6,2)} = 5/36,
P{X =9} = P{(3,6), (4,5), (5,4), (6,3)} =4/36,
P{X =10} = P{(4,6), (5,5), (6,4)} = 3/36,
P{X =11} = P{(5,6), (6,5)} =2/36,
P{X =12} = P{(6, 6)} = 1/36. a
If X is a random variable whose possible values are xj, x2, ..., X,, then
the set of probabilities P{X = x;} (j =1, ..., n) is called the proba-

bility distribution of the random variable. Since X must assume one of
these values, it follows that

Y PX=x}=1
j=1

Definition If X is a random variable whose possible values are x;, x5,
..., Xn, then the expected value of X, denoted by E[X], is defined by
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n
E[X]=) xP{X=ux).
j=1

Alternative names for E[X] are the expectation or the mean of X.

In words, E[X] is a weighted average of the possible values of X,
where the weight given to a value is equal to the probability that X as-
sumes that value.

Example 1.3b  Let the random variable X denote the amount that we
win when we make a certain bet. Find E[X] if there is a 60% chance
that we lose 1, a 20% chance that we win 1, and a 20% chance that we
win 2.

Solution.
E[X]=—1(.6) + 1(.2) +2(.2) = 0.

Thus, the expected amount that is won on this bet is equal to 0. A bet

whose expected winnings is equal to 0 is called a fair bet. O

Example 1.3¢ A random variable X, which is equal to 1 with proba-
bility p and to 0 with probability 1 — p, is said to be a Bernoulli random
variable with parameter p. Its expected value is

E[X]=1(p)+0(0 —p)=p. U
A useful and easily established result is that, for constants a and b,
ElaX + b] = aE[X] +b. 1.7)

To verify Equation (1.7), let Y = aX + b. Since Y will equal ax; + b
when X = x;, it follows that

n

E[Y]=) (ax; +b)P{X =x;}

j=1
=Y axP(X =x} + ) bP{X =x}
Jj=1 j=1

—a) yPIX=x}+b) P(X=x)
Jj=1 j=1

= aE[X]+b.

Random Variables and Expected Values 11

An important result is that the expected value of a sum of random
variables is equal to the sum of their expected values.

Proposition 1.3.1 For random variables X, ..., Xi,
k k
E[Z X,] =Y EIX;].
j=1 j=1

Example 1.3d Consider n independent trials, each of which is a suc-
cess with probability p. The random variable X, equal to the total num-
ber of successes that occur, is called a binomial random variable with
parameters n and p. We can determine its expectation by using the

representation
n
x=3 %
j=1

where X; is defined to equal 1 if trial j is a success and to equal 0 other-
wise. Using Proposition 1.3.1, we obtain that

E[X]1=) E[X;]=np,
j=1

where the final equality used the result of Example 1.3c. O

The random variables X, ..., X, are said to be independent if proba-
bilities concerning any subset of them are unchanged by information as
to the values of the others.

Example 1.3e  Suppose that k balls are to be randomly chosen from a
set of N balls, of which n are red. If we let X; equal 1 if the ith ball cho-
sen is red and O if it is black, then X, ..., X, would be independent if
each selected ball is replaced before the next selection is made but they
would not be independent if each selection is made without replacing
previously selected balls. (Why not?) O

Whereas the average of the possible values of X is indicated by its ex-
pected value, its spread is measured by its variance.



R

12 Probability

Definition The variance of X, denoted by Var(X), is defined by
Var(X) = E[(X — E[X])’].

In other words, the variance measures the average square of the differ-

ence between X and its expected value.

Example 1.3f Find Var(X) when X is a Bernoulli random variable
with parameter p.
Solution. Because E[X] = p (as shown in Example 1.3c), we see that

(1— p)?> with probability p

=} 2 =
(X — E[X]) { p? with probability 1 — p.

Hence,
Var(X) = E[(X — E[X])’]

=1-p’p+p’d-p)
=p-p- ]
If a and b are constants, then
Var(aX + b) = E[(aX + b — E[aX + b])]
= E[(aX —aE[X])?]  (by Equation (1.7))
= E[a*(X — E[X])*]
= a® Var(X). (1.8)

Although it is not generally true that the variance of the sum of ran-
dom variables is equal to the sum of their variances, this is the case when
the random variables are independent.

Proposition 1.3.2 If Xy, ..., X; are independent random variables,

then " "
Var<2 Xj) =) Var(X)).
1

j=1 j=

Example 1.3g Find the variance of X, a binomial random variable
with parameters n and p.

Covariance and Correlation 13

Solution. Recalling that X represents the number of successes in n in-
dependent trials (each of which is a success with probability p), we can

represent it as
n
X=) X,
j=1

where X; is defined to equal 1 if trial j is a success and 0 otherwise.
Hence,

Var(X) =) Var(X;)  (by Proposition 1.3.2)
j=1

= Z p(l—p) (by Example 1.3f)
j=1
=np(l — p). O

The square root of the variance is called the standard deviation. As we
shall see, a random variable tends to lie within a few standard deviations
of its expected value.

14 Covariance and Correlation

The covariance of any two random variables X and Y, denoted by
Cov(X,Y), is defined by

Cov(X,Y)=E[(X — E[X])(Y — E[YD].

Upon multiplying the terms within the expectation, and then taking ex-
pectation term by term, it can be shown that

Cov(X,Y) = E[XY] - E[X]E[Y].

A positive value of the covariance indicates that X and Y both tend to
be large at the same time, whereas a negative value indicates that when
one is large the other tends to be small. (Independent random variables
have covariance equal to 0.)

Example 1.4a Let X and Y both be Bernoulli random variables. That
is, each takes on either the value 0 or 1. Using the identity
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Cov(X,Y) = E[XY] — E[X]E[Y]

and noting that XY will equal 1 or O depending upon whether both X
and Y are equal to 1, we obtain that

Cov(X,Y)=P{X=1,Y=1}-P{X= 1}P{Y =1}.
From this, we see that

Cov(X,Y)>0 > P{X=1,Y=1}>P{X=1P{¥ =1}
P(X=1Y=1)

P(X=1)
e P{Y=1|X=1}> P{Y =1}

> P{Y =1}

That is, the covariance of X and Y is positive if the outcome that X = 1
makes it more likely that ¥ = 1 (which, as is easily seen, also implies
the reverse). a

The following properties of covariance are easily established. For ran-
dom variables X and Y, and constant c:

Cov(X, Y) = Cov(Y, X),
Cov(X, X) = Var(X),
Cov(cX,Y) =cCov(X,Y),
Cov(c,Y) =0.

Covariance, like expected value, satisfies a linearity property — namely,

Cov(X; + X3, Y) = Cov(Xy, Y) + Cov(X3, Y). 1.9)
Equation (1.9) is proven as follows:
Cov(X; + X2, Y) = E[(X; + X2)Y]1 — E[Xi + X]E[Y]

= E[X\Y + X,Y] — (E[X1] + E[X2])E[Y]

— E[X,Y] — E[X|]E[Y]+ E[X,Y] — E[Xz]E[Y]
= Cov(X1,Y) + Cov(X2, Y).
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Equation (1.9) is easily generalized to yield the following useful iden-
tity:

m

C0V<~i1 X,y Y,~> = 21: icOv(X,-, Y)). (1.10)
i= i=1 j=

j=1

Equation (1.10) yields a useful formula for the variance of the sum of
random variables:

Var(i X,) = COV( n X,‘, iXJ>
i=l1 i=l1 Jj=1
= zn: ZH:COV(X,', Xj)
i=1 j=1

- Xn:Cov(X,-, X)) + Z Y Cov(Xi, X))
i=1

i=1 j#i
- iVar(Xi) + Z Y Cov(Xi, X;).  (L11)
i=1 i=1 j#i

The degree to which large values of X tend to be associated with large
values of Y is measured by the correlation between X and Y, denoted
as p(X, Y) and defined by

Cov(X,7Y)
p(X,Y) = S
v/ Var(X) Var(Y)
It can be shown that
-1<pX,Y)=<1

If X and Y are linearly related by the equation
Y =a + bX,

then p(X, Y) will equal 1 when b is positive and —1 when b is negative.

1.5 Exercises

Exercise 1.1 When typing a report, a certain typist makes i errors with
probability p; (i > 0), where
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Po = .20, D1= .35, P2 = 25, pP3 = 15.

What is the probability that the typist makes

(a) at least four errors;
(b) at most two errors?

Exercise 1.2 A family picnic scheduled for tomorrow will be post-
poned if it is either cloudy or rainy. If the probability that it will be
cloudy is .40, the probability that it will be rainy is .30, and the proba-
bility that it will be both rainy and cloudy is .20, what is the probabilty
that the picnic will not be postponed?

Exercise 1.3  If two people are randomly chosen from a group of eight
women and six men, what is the probability that

(a) both are women;
(b) both are men;
(c) one is a man and the other a woman?

Exercise 1.4 A club has 120 members, of whom 35 play chess, 58 play
bridge, and 27 play both chess and bridge. If a member of the club is
randomly chosen, what is the conditional probability that she

(a) plays chess given that she plays bridge;
(b) plays bridge given that she plays chess?

Exercise 1.5 Cystic fibrosis (CF) is a genetically caused disease. A
child that receives a CF gene from each of its parents will develop the
disease either as a teenager or before, and will not live to adulthood. A
child that receives either zero or one CF gene will not develop the dis-
ease. If an individual has a CF gene, then each of his or her children
will independently receive that gene with probability 1/2.

(a) If both parents possess the CF gene, what is the probability that their
child will develop cystic fibrosis?

(b) What is the probability that a 30-year old who does not have cys-
tic fibrosis, but whose sibling died of that disease, possesses a CF
gene?
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Exercise 1.6 Two cards are randomly selected from a deck of 52 play-
ing cards. What is the conditional probability they are both aces, given
that they are of different suits?

Exercise 1.7 If A and B are independent, show that so are

(a) A and B¢;
(b) A€ and B°.

Exercise 1.8 A gambling book recommends the following strategy for
the game of roulette. It recommends that the gambler bet 1 on red. If
red appears (which has probability 18/38 of occurring) then the gam-
bler should take his profit of 1 and quit. If the gambler loses this bet, he
should then make a second bet of size 2 and then quit. Let X denote the
gambler’s winnings.

(a) Find P{X > 0}.
(b) Find E[X].

Exercise 1.9 Four buses carrying 152 students from the same school
arrive at a football stadium. The buses carry (respectively) 39, 33, 46,
and 34 students. One of the 152 students is randomly chosen. Let X
denote the number of students who were on the bus of the selected stu-
dent. One of the four bus drivers is also randomly chosen. Let Y be the
number of students who were on that driver’s bus.

(a) Which do you think is larger, E[X] or E[Y]?
(b) Find E[X] and E[Y].

Exercise 1.10 Two players play a tennis match, which ends when one
of the players has won two sets. Suppose that each set is equally likely
to be won by either player, and that the results from different sets are

independent. Find (a) the expected value and (b) the variance of the
number of sets played.

Exercise 1.11 Verify that

Var(X) = E[X?] — (E[X])%.
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Hint: Starting with the definition
Var(X) = E[(X — E[X])*],

square the expression on the right side; then use the fact that the ex-
pected value of a sum of random variables is equal to the sum of their

expectations.

Exercise 1.12 A lawyer must decide whether to charge a fixed fee of
$5,000 or take a contingency fee of $25,000 if she wins the case (and 0
if she loses). She estimates that her probability of winning is .30. De-
termine the mean and standard deviation of her fee if

(a) she takes the fixed fee;
(b) she takes the contingency fee.

Exercise 1.13 Let Xj,..., X, be independent random variables, all
having the same distribution with expected value p and variance o’
The random variable X, defined as the arithmetic average of these
variables, is called the sample mean. That is, the sample mean is
given by

Yz Xi

n

X=

(a) Show that E[X] = p.
(b) Show that Var(X) = a?/n.

The random variable S2, defined by

Z?:l(xi — )—()2

5=
n—1

is called the sample variance.

() Show that Y7 (X; — X)* = Y1, X} — nX>.
(d) Show that E[S?] = 0.

Exercise 1.14  Verify that

Cov(X,Y) = E[XY] — E[X]E[Y].
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Exercise 1.15 Prove:

(a) Cov(X,Y)=Cov(Y, X);
(b) Cov(X, X) = Var(X);

(c) Cov(cX,Y)=cCov(X,Y);
(d) Cov(c, Y)=0.

Exercise 1.16 If U and V are independent random variables, both hav-
ing variance 1, find Cov(X, Y) when

X =aU + bV, Y =cU+dV.

Exercise 1.17 If Cov(X;, X;) = ij, find

(@) Cov(X;+ X7, X3+ X4);
(b) Cov(X;+ X5 + X3, X5 + X3+ X4).

Exercise 1.18 Suppose that —in any given time period — a certain stock
is equally likely to go up 1 unit or down 1 unit, and that the outcomes
of different periods are independent. Let X be the amount the stock
goes up (either 1 or —1) in the first period, and let Y be the cumulative

amount it goes up in the first three periods. Find the correlation between
X and Y.

Exercise 1.19 Can you construct a pair of random variables such that
Var(X) = Var(Y) = 1and Cov(X,Y) = 2?

REFERENCE
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2. Normal Random Variables

2.1 Continuous Random Variables

Whereas the possible values of the random variables considered in the
previous chapter constituted sets of discrete values, there exist random
variables whose set of possible values is instead a continuous region.
These continuous random variables can take on any value within some
interval. For example, such random variables as the time it takes to com-
plete an assignment, or the weight of a randomly chosen individual, are
usually considered to be continuous.

Every continuous random variable X has a function f associated with
it. This function, called the probability density function of X, deter-
mines the probabilities associated with X in the following manner. For
any numbers a < b, the area under f between a and b is equal to the
probability that X assumes a value between a and b. That is,

P{a < X < b} = area under f between a and b.

Figure 2.1 presents a probability density function.

2.2 Normal Random Variables

A very important type of continuous random variable is the normal ran-
dom variable. The probability density function of a normal random
variable X is determined by two parameters, denoted by  and o, and
is given by the formula

flx) = —lezn;e‘(*'“)z/2°2, —00 < X < 00.

A plot of the normal probability density function gives a bell-shaped
curve that is symmetric about the value 4, and with a variability that is
measured by o. The larger the value of o, the more spread there is in f.
Figure 2.2 presents three different normal probability density functions.
Note how the curve flattens out as o increases.

Normal Random Variables 21

a b
P{a <X < b} = area of shaded region

Figure 2.1: Probability Density Function of X

u=2,0=0.5 pu=2,0=2

2
pu=2,0=4

Figure 2.2: Three Normal Probability Density Functions

It can be shown that the parameters 1 and o2 are equal to the expected
value and to the variance of X, respectively. That is,

w= E[X], o? = Var(X).
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A normal random variable having mean 0 and variance 1 is called a
standard normal random variable. Let Z be a standard normal random
variable. The function ®(x), defined for all real numbers x by

®(x) = P{Z <x},
is called the standard normal distribution function. Thus ®(x), the

probability that a standard normal random variable is less than or equal
to x, is equal to the area under the standard normal density function

2
e *1?, —00 < X < 00,

1
f) = T

between —oo and x. Table 2.1 specifies values of ®(x) when x > 0.
Probabilities for negative x can be obtained by using the symmetry of
the standard normal density about 0 to conclude (see Figure 2.3) that

P{Z < —x} = P{Z > x}
or, equivalently, that
d(—x) =1—P(x).

Example 2.2a Let Z be a standard normal random variable. For a <
b, express P{a < Z < b} in terms of ®.
Solution. Since

P{Z <b) = P{Z<a)+ Pla<Z<h},

we see that
Pla<Z <b}=®((b) — O (a). O

Example 2.2b Tabulated values of ®(x) show that, to four decimal
places,

P{Z| <1} = P{-1 < Z <1} = .6826,
P{|Z| <2} = P{-2 < Z <2} = .9544,

P{|Z| <3} = P{-3 < Z <3} =.9974. o
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Table 2.1: ®(x) = P{Z < x}

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 5557 .5596 .5636 .5675 5714 .5753
02 5793 .5832 5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
03 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 7157 .7190 .7224
0.6 7257 7291 7324 7357 7389 7422 7454 7486 7517 .7549
0.7 .7580 .7611 .7642 7673 7704 7734 7764 7794 7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
09 8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 8770 .8790 .8810 .8830
1.2 8849 8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 9032 .9049 .9066 .9082 .9099 9115 9131 9147 9162 9177
1.4 9192 9207 .9222 9236 .9251 .9265 .9279 .9292 9306 .9319

1.5 9332 9345 9357 9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 9452 9463 9474 9484 9495 9505 9515 .9525 9535 .9545
1.7 9554 9564 9573 9582 9591 .9599 .9608 .9616 9625 .9633
1.8 9641 .9649 9656 9664 9671 9678 9686 .9693 .9699 .9706
1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767

20 9772 9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817
2.1 9821 9826 .9830 .9834 9838 9842 9846 .9850 .9854 .9857
22 9861 9864 .9868 9871 9875 .9878 .9881 .9884 9887 .9890
23 9893 9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
24 9918 9920 .9922 .9925 9927 .9929 .9931 .9932 9934 .9936

2.5 9938 .9940 .9941 .9943 .9945 9946 .9948 .9949 .9951 .9952
2.6 9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 9965 .9966 .9967 .9968 .9969 .9970 .9971 9972 .9973 .9974
28 9974 9975 9976 9977 9977 .9978 .9979 .9979 9980 .9981
29 9981 .9982 .9982 .9983 .9984 .9984 9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 9990 .9991 .9991 9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 9993 9993 .9994 .9994 9994 .9994 9994 9995 .9995 .9995
3.3 .9995 9995 .9995 9996 .9996 .9996 .9996 .9996 .9996 .9997
34 9997 9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

When greater accuracy than that provided by Table 2.1 is needed, the
following approximation to ®(x), accurate to six decimal places, can
be used: For x > 0,

D(x) ~1— e (ary + azy* + azy® + asy* + asy”),

1
V21
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P{Z<-x} P{Z>x}

0
Figure 2.3: P{Z < —x}= P{Z > x}

where i
Y = 1¥ 2316419x
a; = 319381530,
a, = —.356563782,
az = 1.781477937,
as = —1.821255978,
as = 1.330274429,
and

P(—x) =1—d(x).

2.3 Properties of Normal Random Variables

An important property of normal random variables is that if X is a nor-
mal random variable then so is aX 4+ b, when a and b are constants. This
property enables us to transform any normal random variable X into a
standard normal random variable. For suppose X is normal with mean
w and variance o2. Then, since (from Equations (1.7) and (1.8))

X_
z=2"#

o
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has expected value 0 and variance 1, it follows that Z is a standard nor-
mal random variable. As a result, we can compute probabilities for any
normal random variable in terms of the standard normal distribution
function .

Example 2.3a IQ examination scores for sixth-graders are normally
distributed with mean value 100 and standard deviation 14.2. Whatis the

probability that a randomly chosen sixth-grader has an IQ score greater
than 1307

Solution. Let X be the score of a randomly chosen sixth-grader. Then,

X —100 130 — 100
P{X>130}=P >
14.2 14.2

{X—-IOO
= P

> 2.113}
=1-®(2.113)
= .017. O

Example 2.3b Let X be a normal random variable with mean p and
standard deviation o. Then, since

X —u<ao

is equivalent to

it follows from Example 2.2b that 68.26% of the time a normal random
variable will be within one standard deviation of its mean; 95.44% of the
time it will be within two standard deviations of its mean; and 99.74%
of the time it will be within three standard deviations of its mean. ]

Another important property of normal random variables is that the sum
of independent normal random variables is also a normal random vari-
able. That is, if X; and X, are independent normal random variables
with means @, and w, and with standard deviations o, and o,, then
X1 + X, is normal with mean

E[X;+ X2] = E[X1] + E[X2] = 1 + u2
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and variance

Var(X; + X) = Var(X;) + Var(X») = of +03.

Example 2.3¢  The annual rainfall in Cleveland, Ohio, is normally dis-
tributed with mean 40.14 inches and standard deviation 8.7 inches. Find
the probabiity that the sum of the next two years’ rainfall exceeds 84
inches.

Solution. Let X; denote the rainfall in yeari (i = 1,2). Then, assuming
that the rainfalls in successive years can be assumed to be independent, it
follows that X; + X» is normal with mean 80.28 and variance 2(8.7)* =
151.38. Therefore, with Z denoting a standard normal random variable,

84 — 80.28 }

+/151.38
= P{Z > .3023}

~ .3812. a

P{X|+ X, > 84} = P{Z >

The random variable Y is said to be a lognormal random variable with
parameters p and o if log(Y) isa normal random variable with mean p
and variance o2. That is, Y is lognormal if it can be expressed as

Y=ex,

where X is a normal random variable. The mean and variance of a log-
normal random variable are as follows:

E[Y]= ell«+02/2’

2 2 2 2
Var(Y) = eZp.+2a _eZ;H-a — eZ;L+zr (ea _ 1).

Example 2.3d  Starting at some fixed time, let S(n) denote the price
of a certain security at the end of n additional weeks, n > 1. A popu-
lar model for the evolution of these prices assumes that the price ratios
S(n)/S(n — 1) forn > 1 are independent and identically distributed
(i.i.d.) lognormal random variables. Assuming this model, with lognor-
mal parameters . = .0165 and o = .0730, what is the probability that

(a) the price of the security increases over each of the next two weeks;
(b) the price at the end of two weeks is higher than it is today?
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Solution. Let Z be a standard normal random variable. To solve part
(a), we use that log(x) increases in x to conclude that x > 1 if and only
if log(x) > log(l) = 0. As aresult, we have

SO 1 _ pfiog(S©
P{S(0> - 1] - P[k’g(S((») - 0}

-rlz> 5|
= P{Z > —.2260}
= P{Z < 2260}

~ 5894,

Therefore, the probability that the price is up after one week is .5894.

Since the successive price ratios are independent, the probability that

the price increases over each of the next two weeks is (.5894)% = .3474.
To solve part (b), reason as follows:

SQ) ) _ 5@ 50
P{S<0) g 1] = P{ S S©) 1}

S(2)
= Pllog( ===
{ °g<S<1>) o
_ P{Z> —.0330 }
073042
= P{Z > —.31965}
= P{Z < 31965}
~ 6254,

S(1)
g(‘s@) >°}

where we have used that log(%) + log(%), being the sum of in-
dependent normal random variables with a common mean .0165 and a
common standard deviation .0730, is itself a normal random variable

with mean .0330 and variance 2(.0730). O

24 The Central Limit Theorem

The ubiquity of normal random variables is explained by the central limit
theorem, probably the most important theoretical result in probability.



28 Normal Random Variables

This theorem states that the sum of a large number of independent ran-
dom variables, all having the same probability distribution, will itself be
approximately a normal random variable.

For a more precise statement of the central limit theorem, suppose
that X;, X, ... is a sequence of i.i.d. random variables, each with ex-
pected value p and variance o2, and let

.
i=1

Central Limit Theorem For large n, S, will approximately be a
normal random variable with expected value nu. and variance no?.

As a result, for any x we have

S, —nu "
P{ o /n §x}~d>(x),

with the approximation becoming exact as n becomes larger and larger.

Suppose that X is a binomial random variable with parameters n and
p. Since X represents the number of successes in n independent trials,
each of which is a success with probability p, it can be expressed as

X = Zn:Xi,
i=1

where X; is 1 if trial i is a success and is 0 otherwise. Since (from Sec-
tion 1.3)
E(X;]=p and Var(X;)=p(l-p),

it follows from the central limit theorem that, when n is large, X will
approximately have a normal distribution with mean np and variance

np(1— p).

Example 2.4a A fair coin is tossed 100 times. What is the probability
that heads appears fewer than 40 times?

Solution. If X denotes the number of heads, then X is a binomial ran-
dom variable with parameters n = 100 and p = 1/2. Since np = 50 we
have np(1 — p) = 25, and so
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P{X <40} = P{

X —-50 _ 40—50}
V25 V25
X —50
=P <=2
[ V25 }
~ 0(-2)
= .0228.

A computer program for computing binomial probabilities gives the ex-
act solution .0176, and so the preceding is not quite as acccurate as we
might like. However, we could improve the approximation by noting
that, since X is an integral-valued random variable, the event that X <
40 is equivalent to the event that X < 39 + c foranyc, 0 < ¢ < 1.
Consequently, a better approximation may be obtained by writing the
desired probability as P{X < 39.5}. This gives

X—50 _39.5-50
V25 V25

X —
=P{ 50<—2.1}

P{X <39.5) = P{

which is indeed a better approximation. O

2.5 Exercises

Exercise 2.1 For a standard normal random variable Z, find:

(a) P{Z < —.66});
(b) P{|Z| < 1.64};
(c) P{|Z| > 2.20}.

Exercise 2.2 Find the value of x when Z is a standard normal random
variable and

P{—2<Z<-1}=P{1<Z<x}.
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Exercise 2.3 Argue (a picture is acceptable) that
P{|Z] > x} = 2P{Z > x},

where x > 0 and Z is a standard normal random variable.

Exercise 2.4 Let X be a normal random variable having expected
value u and variance o2, and let Y = a + bX. Find values a, b (a #
0) that give Y the same distribution as X. Then, using these values, find
Cov(X,Y).

Exercise 2.5 The systolic blood pressure of male adults is normally
distributed with a mean of 127.7 and a standard deviation of 19.2.

(a) Specify an interval in which the blood pressures of approximately
68% of the adult male population fall.

(b) Specify an interval in which the blood pressures of approximately
95% of the adult male population fall.

(c) Specify an interval in which the blood pressures of approximately
99.7% of the adult male population fall.

Exercise 2.6 Suppose that the amount of time that a certain battery
functions is a normal random variable with mean 400 hours and standard
deviation 50 hours. Suppose that an individual owns two such batteries,
one of which is to be used as a spare to replace the other when it fails.

(a) What is the probability that the total life of the batteries will exceed
760 hours?

(b) What is the probability that the second battery will outlive the first
by at least 25 hours?

(c) What is the probability that the longer-lasting battery will outlive
the other by at least 25 hours?

Exercise 2.7 The time it takes to develop a photographic print is a ran-
dom variable with mean 18 seconds and standard deviation 1 second.
Approximate the probability that the total amount of time that it takes
to process 100 prints is

(a) more than 1,710 seconds;
(b) between 1,690 and 1,710 seconds.
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Exercise 2.8 Frequent fliers of a certain airline fly a random number
of miles each year, having mean and standard deviation of 25,000 and
12,000 miles, respectively. If 30 such people are randomly chosen, ap-
proximate the probability that the average of their mileages for this year
will

(a) exceed 25,000;
(b) be between 23,000 and 27,000.

Exercise 2.9 A model for the movement of a stock supposes that, if
the present price of the stock is s, then — after one time period — it will
either be us with probability p or ds with probability 1 — p. Assuming
that successive movements are independent, approximate the probabil-
ity that the stock’s price will be up at least 30% after the next 1,000 time
periods if u = 1.012, d = .990, and p = .52.

Exercise 2.10 In each time period, a certain stock either goes down 1
with probability .39, remains the same with probability .20, or goes up
1 with probability .41. Asuming that the changes in successive time pe-
riods are independent, approximate the probability that, after 700 time
periods, the stock will be up more than 10 from where it started.



3. Geometric Brownian Motion

3.1 Geometric Brownian Motion

Suppose that we are interested in the price of some security as it evolves
over time. Let the present time be time 0, and let S(yy) denote the price
of the security a time y from the present. We say that the collection of
prices S(y), 0 < y < oo, follows a geometric Brownian motion with
drift parameter x and volatility parameter o if, for all nonegative values
of y and ¢, the random variable

Sit+y)
S(y)

is independent of all prices up to time y; and if, in addition,

(S (t+ y))
log| ————
S(y)
is a normal random variable with mean s and variance to 2.

In other words, the series of prices will be a geometric Brownian mo-
tion if the ratio of the price a time ¢ in the future to the present price will,
independent of the past history of prices, have a lognormal probability
distribution with parameters ut and to2.

It follows that a consequence of assuming a security’s prices follow a
geometric Brownian motion is that, once u and o are determined, it is
only the present price — and not the history of past prices — that affects
probabilities of future prices. Furthermore, probabilities concerning the
ratio of the price a time ¢ in the future to the present price will not de-
pend on the present price. (Thus, for instance, the model implies that
the probability a given security doubles in price in the next month is the
same no matter whether its present price is 10 or 25.)

It turns out that, for a given initial price S(0), the expected value of
the price at time ¢ depends on both of the geometric Brownian motion
parameters. Specifically, if the initial price is so, then
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E[S(1)] = soe' “+7?).

Thus, under geometric Brownian motion, the expected price grows at
the rate u + 0%/2.

3.2 Geometric Brownian Motion as a Limit
of Simpler Models

Let A denote a small increment of time and suppose that, every A time
units, the price of a security either goes up by the factor u with proba-
bility p or goes down by the factor d with probability 1 — p, where

oVA d= e~oVA

u=-e ,

p=%O+§%g.

(]

That is, we are supposing that the price of the security changes only at
times that are integral multiples of A; at these times, it either goes up
by the factor u or down by the factor d.

As we take A smaller and smaller, so that the price changes occur
more and more frequently (though by factors that become closer and
closer to 1), the collection of prices becomes a geometric Brownian mo-
tion. Consequently, geometric Brownian motion can be approximated
by a relatively simple process, one that goes either up or down by fixed
factors at regularly specified times.

Let us now verify that the preceding model becomes geometric Brown-
ian motion as we let A become smaller and smaller. To begin, let ¥;
equal 1 if the price goes up at time iA, and let it be O if it goes down.
Now, the number of times that the security’s price goes up in the first
n time increments is Y ;_, ¥;, and the number of times it goes down is
n— Z?:l Y;. Hence, S(nA), its price at the end of this time, can be
expressed as

S(nA) = SOuZiai gn-Xia¥i

or

u z::l=lYi
S(nA) = d”S(O)(E) ’

If we now let n = t/A, then the preceding equation can be expressed as
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t/A
S(t) _ g Eomi ¥
S(@0) d ’
Taking logarithms gives
S(t) t/A
(S(O)) = —log(d) +10g( ) ZY
t/A
f 2m/_Z Y;, (3.1)

where Equation (3.1) used the definitions of u and d. Now, as A goes
to 0, there are more and more terms in the summation Zf/zAl Y;; hence,
by the central limit theorem, this sum becomes more and more normal,
implying from Equation (3.1) thatlog(S(¢)/S(0)) becomes a normal ran-
dom variable. Moreover, from Equation (3.1) we obtain that

E[lo (S(t) 17 2B
o(50)|= 7+ A2, BEE

—to
/4
VA AP

- Z+ (i EE)

= ut.

Furthermore, Equation (3.1) yields that

S(t t/A
Var (lo ( S((O)) )) =40°A Z Var(Y;) (by independence)
i=1

= 402tp(1 — p)

~ ot (since, for small A, p =~ 1/2).
Thus we see that, as Az becomes smaller and smaller, log(S(z)/S(0))
(and, by the same reasoning, log(S(# + y)/S(y))) becomes a normal
random variable with mean .t and variance to2. In addition, because
successive price changes are independent and each has the same proba-
bility of being an increase, it follows that S(z + y)/S(y) is independent

Brownian Motion 35

of earlier price changes before time y. Hence, as A goes to 0, both con-
ditions of geometric Brownian motion are met, showing that the model
indeed becomes geometric Brownian motion.

33 Brownian Motion

Geometric Brownian motion can be considered to be a variant of a long-
studied model known as Brownian motion. It is defined as follows.

Definition The collection of prices S(y), 0 < y < 00, is said to fol-
low a Brownian motion with drift parameter x and variance parameter
o2 if, for all nonegative values of y and ¢, the random variable

S@t+y) —S801)

is independent of all prices up to time y and, in addition, is a normal
random variable with mean ¢ and variance to2.

Thus, Brownian motion shares with geometric Brownian motion the
property that a future price depends on the present and all past prices
only through the present price; however, in Brownian motion it is the
difference in prices (and not the logarithm of their ratio) that has a nor-
mal distribution.

The Brownian motion process has an distinguished scientific pedi-
gree. It is named after the English botanist Robert Brown, who first
described (in 1827) the unusual motion exhibited by a small particle
that is totally immersed in a liquid or gas. The first explanation of this
motion was given by Albert Einstein in 1905. He showed mathemati-
cally that Brownian motion could be explained by assuming that the im-
mersed particle was continually being subjected to bombardment by the
molecules of the surrounding medium. A mathematically concise defi-
nition, as well as an elucidation of some of the mathematical properties
of Brownian motion, was given by the American applied mathematician
Norbert Wiener in a series of papers originating in 1918.

Interestingly, Brownian motion was independently introduced in 1900
by the French mathematician Bachelier, who used it in his doctoral dis-
sertation to model the price movements of stocks and commodities.
However, Brownian motion appears to have two major flaws when used
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to model stock or commaodity prices. First, since the price of a stock is a
normal random variable, it can theoretically become negative. Second,
the assumption that a price difference over an interval of fixed length has
the same normal distribution no matter what the price at the beginning of
the interval does not seem totally reasonable. For instance, many peo-
ple might not think that the probability a stock presently selling at $20
would drop to $15 (a loss of 25%) in one month would be the same as
the probability that when the stock is at $10 it would drop to $5 (a loss
of 50%) in one month.

The geometric Brownian motion model, on the other hand, possesses
neither of these flaws. Since it is now the logarithm of the stock’s price
that is a normal random variable, the model does not allow for negative
stock prices. In addition, since it is the ratios of prices separated by a
fixed length of time that have the same distribution, geometric Brownian
motion makes what many feel is the more reasonable assumption that it
is the percentage change in price, and not the absolute change, whose
probabilities do not depend on the present price. However, it should
be noted that — in both of these models — once the model parameters p
and o are determined, the only information that is needed for predict-
ing future prices is the present price; information about past prices is
irrelevant.

34 Exercises

Exercise 3.1 Suppose that S(y), y > 0, is a geometric Brownian mo-
tion with drift parameter 1 = .01 and volatility parameter o = .2. If
S(0) =100, find:

(@) E[SA0)];
(b) P{S(10) > 100};
(c) P{S(10) < 110}.

Exercise3.2 Repeat Exercise 3.1 when the volatility parameter is equal
to 4.

Exercise 3.3 Repeat Exercise 3.2 when the volatility parameter is
equal to .6.
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Exercise 3.4 It can be shown that if X is a normal random variable
with mean m and variance v?, then

E[eX] _ em+v2/2.
Use this result to verify the formula for E[S(¢)] given in Section 3.1.

Exercise 3.5 Use the result of the preceding exercise to find Var (S(¢))
when S(0) = 5.
Hint: Use the identity

Var(X) = E[X?] — (E[X])%
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4. Interest Rates and
Present Value Analysis

4.1 Interest Rates

If you borrow the amount P (called the principal), which must be re-
paid after a time T along with simple interest at rate r per time 7, then
the amount to be repaid at time T is

P+rP=Pl+r).

That is, you must repay both the principal P and the interest, equal to
the principal times the interest rate. For instance, if you borrow $100 to
be repaid after one year with a simple interest rate of 5% per year (i.e.,
r = .05), then you will have to repay $105 at the end of the year.

Example 4.1a Suppose that you borrow the amount P, to be repaid
after one year along with interest at a rate r per year compounded semi-
annually. What does this mean? How much is owed in a year?

Solution. In order to solve this example, you must realize that having
your interest compounded semiannually means that after half a year you
are to be charged simple interest at the rate of r/2 per half-year, and that
interest is then added on to your principal, which is again charged inter-
est at rate r/2 for the second half-year period. In other words, after six
months you owe

P(1+r/2).

This is then regarded as the new principal for another six-month loan at
interest rate r/2; hence, at the end of the year you will owe

PA+r/2)(A+r/2) = P(1+r/2)>. O

Example 4.1b If you borrow $1,000 for one year at an interest rate of
8% per year compounded quarterly, how much do you owe at the end of
the year?
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Solution. An interest rate of 8% that is compounded quarterly is equiv-
alent to paying simple interest at 2% per quarter-year, with each succes-
sive quarter charging interest not only on the original principal but also
on the interest that has accrued up to that point. Thus, after one quarter

you owe
1,000(1 + .02);

after two quarters you owe

1,000(1 +.02)(1 +.02) = 1,000(1 + .02)*;
after three quarters you owe

1,000(1 + .02)%(1 4 .02) = 1,000(1 + .02)°;
and after four quarters you owe

1,000(1 +.02)*(1 + .02) = 1,000(1 + .02)* = $1,082.40. O

Example 4.1c Many credit-card companies charge interest at a yearly
rate of 18% compounded monthly. If the amount P is charged at the be-
ginning of a year, how much is owed at the end of the year if no previous
payments have been made?

Solution. Such a compounding is equivalent to paying simple interest
every month at a rate of 18/12 = 1.5% per month, with the accrued in-
terest then added to the principal owed during the next month. Hence,
after one year you will owe

P(1 + .015)"2 = 1.1956 P. O

If the interest rate r is compounded then, as we have seen in Examples
4.1b and 4.1c, the amount of interest actually paid is greater than if we
were paying simple interest at rate r. The reason, of course, is that in
compounding we are being charged interest on the interest that has al-
ready been computed in previous compoundings. In these cases, we call
r the nominal interest rate, and we define the effective interest rate, call
it refr, by

amount repaid at the end of a year — P

Teff = P



40 Interest Rates and Present Value Analysis

For instance, if the loan is for one year at a nominal interest rate r that is
to be compounded quarterly, then the effective interest rate for the year
is

reg = (1+r/4)* — 1.

Thus, in Example 4.1b the effective interest rate is 8.24% whereas in
Example 4.1c it is 19.56%. Since

P(1 + regr) = amount repaid at the end of a year,

the payment made in a one-year loan with compound interest is the same
as if the loan called for simple interest at rate r¢ per year.

Suppose now that we borrow the principal P for one year at a nom-
inal interest rate of r per year, compounded continuously. Now, how
much is owed at the end of the year? Of course, to answer this we must
first decide on an appropriate definition of “continuous” compounding.
To do so, note that if the loan is compounded at n equal intervals in the
year, then the amount owed at the end of the year is P(1 + r/n)". As
it is reasonable to suppose that continuous compounding refers to the
limit of this process as n grows larger and larger, the amount owed at
time 1is

P lim (1+r/n)" = Pe".
n—o0

Example 4.1d If a bank offers interest at a nominal rate of 5% com-
pounded continuously, what is the effective interest rate per year?

Solution. The effective interest rate is

Pe® — P
Yoif = e r 5 =e% — 1~ .05127.

That is, the effective interest rate is 5.127% per year. O

If the amount P is borrowed for 7 years at a nominal interest rate of r
per year compounded continuously, then the amount owed at time ¢ is
Pe™. This is seen by interpreting the interest rate as being a continu-
ous compounding of a nominal rate of r¢ per time #; hence, the amount
owed at time ¢ is
P lim (1 +rt/n)" = Pe".
n—oo
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Example 4.1e The Doubling Rule If you put funds into an account
that pays interest at rate r compounded annually, how many years does
it take for your funds to double?

Solution. Since your initial deposit of D will be worth D(1 4 r)" after
n years, we need to find the value of n such that

Q+n"=2.

Now,

where the approximation is fairly precise provided that » is not too small.
Therefore,

implying that
log(2 .693
n~ ———Og( ) = —,

r r
Thus, it will take n years for your funds to double when

7
nx —.

r

For instance, if the interest rate is 1% (r = .01) then it will take approx-
imately 70 years for your funds to double; if r = .02, it will take about
35 years; if r = .03, it will take about 23% years; if r = .05, it will take
about 14 years; if r = .07, it will take about 10 years; and if r = .10, it
will take about 7 years.

As a check on the preceding approximations, note that (to three—
decimal-place accuracy):

(1.01)7° = 2.007,
(1.02)» = 2.000,
(1.03)33% = 1.993,
(1.05)" = 1.980,
(1.07)"° = 1.967,
(1.10)7 = 1.949. O
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4.2 Present Value Analysis

Suppose that one can both borrow and loan money at a nominal rate r
that is compounded periodically. Under these conditions, what is the
present worth of a payment of v dollars that will be made at the end of
period i? Since a bank loan of v(1 +r)~" would require a payoff of v at
period i, it follows that the present value of a payoff of v to be made at
time period i is v(1 4+ r)~".

The concept of present value enables us to compare different income
streams to see which is preferable.

Example4.2a Suppose that you are to receive payments (in thousands
of dollars) at the end of each of the next five years. Which of the fol-
lowing three payment sequences is preferable?

A. 12,14, 16, 18, 20;
B. 16, 16, 15, 15, 15;
C. 20, 16, 14, 12, 10.

Solution. If the nominal interest rate is r compounded yearly, then the
present value of the sequence of payments x; (i =1,2,3,4,5) is

5 .
Y A+n0"x;
i=l

the sequence having the largest present value is preferred. It thus fol-
lows that the superior sequence of payments depends on the interest rate.
If r is small, then the sequence A is best since its sum of payments is
the highest. For a somewhat larger value of r, the sequence B would be
best because — although the total of its payments (77) is less than that of
A (80) — its earlier payments are larger than are those of A. For an even
larger value of r, the sequence C, whose earlier payments are higher
than those of either A or B, would be best. Table 4.1 gives the present
values of these payment streams for three different values of r.

It should be noted that the payment sequences can be compared ac-
cording to their values at any specified time. For instance, to compare
them in terms of their time-5 values, we would determine which se-
quence of payments yields the largest value of
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Table 4.1: Present Values

Payment Sequence

r A B C

—

59.21 58.60 56.33
45.70 46.39 45.69
36.49 37.89 38.12

W

5 5
YA+ =1+ Y A+
i=1 i=1

Consequently, we obtain the same preference ordering as a function of
interest rate as before. a

Remark. Let a = (ag,ay,...,a,) and b = (bg, by, ..., b,) be cash
flow sequences, and suppose that the present value of the a sequence is
at least as large as that of the b sequence when the interest rate is r. That
is,

PV(a) = Zai(l +r)7t > Zb,-(l +7r)" = PV(b).

i=0 i=0

One way of seeing the superiority of the a sequence is to note that it
can be transformed, by borrowing and saving at the rate r, into a cash
flow sequence ¢ = (cy, ¢i, ..., ¢,) having ¢; > b; foreachi =0, ..., n.
We prove this fact by induction on n. As it is immediate when n =
0, assume that the result holds whenever the cash flow sequences are
of length n, and now consider cash flow sequences a and b that are of
length n + 1 and are such that the present value of a is greater than or
equal to that of b. There are two cases to consider.

Case 1: ag > by. In this case, start by putting aside the amount by
and depositing ag — by in a bank to be withdrawn in the next period. In
this manner, a is transformed into the cash flow sequence

(bo, 1 +r)(ag — by) + ay, ..., an).

Now, since
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n—1 n—1
(A +7r)@o—bo) + Y_aini(+n~ =3 b+~
i=0 i=0

= (1+r)[PV(a) — PV(b)] > 0,

it follows that the time-1 value of the cash flows (1 + r)(ao — bo) +
ai, ..., an to be received in periods 1, ..., n is at least as large as that
of the cash flows by, ..., b,. Hence, by the induction hypothesis we can
transform the cash flow sequence (bo, (1+7r)(ag—bo) +ay, ..., a,) into
a sequence (bo, ci, ..., ¢,) Which is such that ¢; > b; for each i. This
completes the induction proof in this case.

Case2: ay < by. Inthis case, start by borrowing by —ay, to be repaid
in period 1. This transforms the cash flow sequence a into the sequence
(bo, a1 — A1 +r)(bo — ao), az, ..., a,). It easily follows that the time-1

value of the cash flows a; — (1 +r)(bo — ayp), a2, ..., a, to be received
at the ends of periods 1, ..., n is at least as great as that of the cash flows
by, ..., by, so the result again follows from the induction hypothesis.

Example 4.2b A company needs a certain type of machine for the
next five years. They presently own such a machine, which is now worth
$6,000 but will lose $2,000 in value in each of the next three years, after
which it will be worthless and unuseable. The (beginning-of-the-year)
value of its yearly operating cost is $9,000, with this amount expected
to increase by $2,000 in each subsequent year that it is used. A new ma-
chine can be purchased at the beginning of any year for a fixed cost of
$22,000. The lifetime of a new machine is six years, and its value de-
creases by $3,000 in each of its first two years of use and then by $4,000
in each following year. The operating cost of a new machine is $6,000
in its first year, with an increase of $1,000 in each subsequent year. If the
interest rate is 10%, when should the company purchase a new machine?

Solution. The company can purchase a new machine at the beginning
of year 1, 2, 3, or 4, with the following six-year cash flows (in units of
$1,000) as a result:

* buy at beginning of year 1 -22, 7, 8,9, 10, —4;

* buy at beginning of year 2 -9, 24,7, 8,9, —8;

* buy at beginning of year 3 -9, 11, 26, 7, 8, —12;
* buy at beginning of year 4 -9, 11, 13, 28, 7, —16.
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To see why this listing is correct, suppose that the company will buy
a new machine at the beginning of year 3. Then its year-1 cost is the
$9,000 operating cost of the old machine; its year-2 cost is the $11,000
operating cost of this machine; its year-3 cost is the $22,000 cost of a
new machine, plus the $6,000 operating cost of this machine, minus the
$2,000 obtained for the replaced machine; its year-4 cost is the $7,000
operating cost; its year-5 cost is the $8,000 operating cost; and its year-6
cost is —$12, 000, the negative of the value of the 3-year-old machine
that it no longer needs. The other cash flow sequences are similarly
argued.

With the yearly interest rate » = .10, the present value of the first
cost-flow sequence is

7 8 9 10
22+ﬁ+ + 4

a0 A T A s - o8

The present values of the other cash flows are similarly determined, and
the four present values are

46.083, 43.794, 43.760, 45.627.

Therefore, the company should purchase a new machine two years from
now. O

Example 4.2¢  An individual who plans to retire in 20 years has de-
cided to put an amount A in the bank at the beginning of each of the next
240 months, after which she will withdraw $1,000 at the beginning of
each of the following 360 months. Assuming a nominal yearly interest
rate of of 6% compounded monthly, how large does A need to be?

Solution. Let r = .06/12 = .005 be the monthly interest rate. With
B = 1-++r’ the present value of all her deposits is

1_,3240
1-8

Similarly, if W is the amount withdrawn in the following 360 months,
then the present value of all these withdrawals is

A+AB+AB* +-- -+ AR =A

1— ,3360

W 4 WB2 4 ... 4+ WBS® = W2 —
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Thus she will be able to fund all withdrawals (and have no money left
in her account) if

1_ﬂ240_ 2401—ﬂ360
" = Wg™ -

With W = 1,000, and 8 = 1/1.005, this gives

A = 360.99.

That is, saving $361 a month for 240 months will enable her to withdraw
$1,000 a month for the succeeding 360 months.

Remark. In this example we have made use of the algebraic identity

l_bn—H
1-b

1+b+b*+- +b" =
We can prove this identity by letting
x=1+b+b*+ - +b"
and then noting that
x—1l=b+b*+---+b"

=b(l+b+-+b")

=b(x — b").
Therefore,

(1-b)x =1-b"",

which yields the identity. O

Example 4.2d Suppose you have just spoken to a bank about borrow-
ing $100,000 to purchase a house, and the loan officer has told you that a
$100,000 loan, to be repaid in monthly installments over 15 years with an
interest rate of .6% per month, could be arranged. If the bank charges a
loan initiation fee of $600, a house inspection fee of $400, and 1 “point,”
what is the effective annual interest rate of the loan being offered?
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Solution. To begin, let us determine the monthly mortgage payment,
call it A, of such a loan. Since $100,000 is to be repaid in 180 monthly
payments at an interest rate of .6% per month, it follows that

Ala +a? + - - + "1 = 100,000,

where @ = 1/1.006. Therefore,

_100,000(1 — a)

= 910.05.
a(l— ™)

So if you were actually receiving $100,000 to be repaid in 180 monthly
payments of $910.05, then the effective monthly interest rate would be
.6%. However, taking into account the initiation and inspection fees
involved and the bank charge of 1 point (which means that 1% of the
nominal loan of $100,000 must be paid to the bank when the loan is
received), it follows that you are actually receiving only $98,000. Con-
sequently, the effective monthly interest rate is that value of r such that

A[B + B+ --- + B8] = 98,000,

where B = (14 r)~L. Therefore,

1= 180
FAZP) _ 10769
1-8
or, since % =r,
1 (L)%
M— = 107.69.
"

Numerically solving this by trial and error (easily accomplished since
we know that r > .006) yields the solution

r = .00627.

Since (1 + .00627)'? = 1.0779, it follows that what was quoted as a
monthly interest rate of .6% is, in reality, an effective annual interest
rate of approximately 7.8%. O

Example 4.2e  Suppose that one takes a mortgage loan for the amount
L that is to be paid back over n months with equal payments of A at the
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end of each month. The interest rate for the loan is r per month, com-
pounded monthly.

(a) Interms of L, n, and r, what is the value of A?

(b) After payment has been made at the end of month j, how much ad-
ditional loan principal remains?

(c) How much of the payment during month j is for interest and how
much is for principal reduction? (This is important because some
contracts allow for the loan to be paid back early and because the
interest part of the payment is tax-deductible.)

Solution. The present value of the n monthly payments is

_A1-(m)
aA+rn* 14r 1-L

I+r

A A L A
1+r  (1+7)?

A -
=—[1-1A+n™"]
=

Since this must equal the loan amount L, we see that

Lr - L(ax —1)a"

A= = , 4.1
1-d+r™" a® —1 &

where
a=1+r.

For instance, if the loan is for $100,000 to be paid back over 360 months
at a nominal yearly interest rate of .09 compounded monthly, then r =
.09/12 = .0075 and the monthly payment (in dollars) would be

_100,000(.0075)(1.0075)*

= 804.62.
(1.0075)360 — 1

Let R; denote the remaining amount of principal owed after the pay-
ment at the end of month j (j =0, ..., n). To determine these quanti-
ties, note that if one owes R; at the end of month j then the amount owed
immediately before the payment at the end of month j +1is (1+7r)R;;
because one then pays the amount A, it follows that

Rj+1 = (1+V)Rj —A =(¥Rj —A.

‘ Starting with Ry = L, we obtain:
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Ri=aL — A,
Ry=aR;— A
=a(eL—A)—A |
=a’L — (1+a)A, ‘
Ry=aR, — A

=a(@’L —(1+a)d)— A
=o’L — (1+a+oz2)A.
In general, for j =0, ..., n we obtain
Ri=a/L—A(l+a+ - +a'™

) J
L — A% 1

La"(a/ —1)
o an—1
_ L@"—-a))
Toan—1

=a/L (from (4.1))

Let I; and P; denote the amounts of the payment at the end of month
J that are for interest and for principal reduction, respectively. Then,
since R;_; was owed at the end of the previous month, we have

Ij = er_1
_ L@—-D(@" —a’™
B a" —1

and
P=A-

L(a—1 .

=8 D @ — i)
a” —1

- L(a —Dai™!

T an—1

As a check, note that
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ipj =L.
j=1

It follows that the amount of principal repaid in succeeding months in-
creases by the factor & = 1 + r. For example, in a $100,000 loan for 30
years at a nominal interest rate of 9% per year compounded monthly,
only $54.62 of the $804.62 paid during the first month goes toward
reducing the principal of the loan; the remainder is interest. In each suc-
ceeding month, the amount of the payment that goes toward the principal
increases by the factor 1.0075. a

Consider two cash flow sequences,
bl,bz, ...,b,, and C1,€C2y.-+5Cn.

Under what conditions is the present value of the first sequence at least
as large as that of the second for every positive interest rate r? Clearly,
b; > ¢; (i =1,...,n) is a sufficient condition. However, we can obtain
weaker sufficient conditions. Let

Bi=zlbj and C,-=z;cj for i =1;c:050%
j= i=

then it can be shown that the condition
B;>C; foreachi=1,...,n

suffices. An even weaker sufficient condition is given by the following
proposition.

Proposition 4.2.1 If B, > C, and if

iBi ZZCi

i=1 i=1

foreachk =1, ...,n, then

ib,-(l +n7 2 ici(l +r)7
i=l1 i=1

for everyr > 0.
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In other words, Proposition 4.2.1 states that the cash flow sequence
by, ..., b, will, for every positive interest rate r, have a larger present
value than the cash flow sequence cy, ..., ¢, if (i) the total of the b-
cashflows is at least as large as the total of the c-cashflows and (ii) for
everyk=1,...,n,

kbi+(k—1Dby+ -4+ by >kci+ (k—Dcy+ -+ + ck.

4.3 Rate of Return

Consider an investment that, for an initial payment of a (a > 0), returns
the amount b after one period. The rate of return on this investment is
defined to be the interest rate r that makes the present value of the re-
turn equal to the initial payment. That is, the rate of return is that value

r such that

b b
=a or r=——1.
14r a

Thus, for example, a $100 investment that returns $150 after one year is
said to have a yearly rate of return of .50.

More generally, consider an investment that, for an initial payment of
a (a > 0), yields a string of nonnegative returns by, ..., b,. Here b; is
to be received at the end of periodi (i = 1,...,n), and b, > 0. We
define the rate of return per period of this investment to be the value of
the interest rate such that the present value of the cash flow sequence is
equal to zero when values are compounded periodically at that interest
rate. That is, if we define the function P by

P(r)=—-a+)» bi(l+n~, 4.2)
i=1

then the rate of return per period of the investment is that value r* > —1
for which

P(r*) =0.

It follows from the assumptions a > 0, b; > 0, and b, > 0 that P(r)
is a strictly decreasing function of r when r > —1, implying (since
lim,_,_; P(r) = oo and lim,_, » P(r) = —a < 0) that there is a unique
value r* satisfying the preceding equation. Moreover, since
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* r r* r

@) (b)
Figure 4.1: P() = —a+ 30, bil+71) 7 @ X, b <a; (D) )., bi > a

P(0) = ib,- —a,
i=1

it follows (see Figure 4.1) that r* will be positive if

n
Zb,’ >a
i=1

and that r* will be negative if

n
E b,’ <a.
i=1

That is, there is a positive rate of return if the total of the amounts re-
ceived exceeds the initial investment, and there is a negative rate of
return if the reverse holds. Moreover, because of the monotonicity of
P(r), it follows that the cash flow sequence will have a positive present
value when the interest rate is less than 7* and a negative present value
when the interest rate is greater than r*.

When an investment’s rate of return is r* per period, we often say that
the investment yields a 100r*-percent rate of return per period.

Example 4.3a  Find the rate of return from an investment that, for an
initial payment of 100, yields returns of 60 at the end of each of the first
two periods.
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Solution. The rate of return will be the solution to

60 60

100 = :
I+r  Aar?

Letting x = 1/(1 4+ r), the preceding can be written as

60x* + 60x — 100 = 0,
which yields that

Lo 60+ /602 + 4(60)(100)
B 120 '

Since —1 < r implies that x > 0, we obtain the solution

27 - 60
LY

Hence, the rate of return r* is such that
1+r* ——1 1.131
re ~ 1131

.8844

That is, the investment yields a rate of return of approximately 13.1%
per period. O

The rate of return of investments whose string of payments spans more
than two periods will usually have to be numerically determined. Be-
cause of the monotonicity of P(r), a trial-and-error approach is usually
quite efficient.

Remarks. (1) If we interpret the cash flow sequence by supposing that
by, ..., b, represent the successive periodic payments made to a lender
who loans a to a borrower, then the lender’s periodic rate of return r*
is exactly the effective interest rate per period paid by the borrower.

(2) The quantity r* is also sometimes called the internal rate of return.

Consider now a more general investment cash flow sequence cy, ¢y, ...,
c,. Here, if ¢; > 0 then the amount c¢; is received by the investor at the
end of period i, and if ¢; < 0 then the amount —c; must be paid by the
investor at the end of period i. If we let
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L .
P(r) =) al+n~
i=0

be the present value of this cash flow when the interest rate is r per pe-
riod, then in general there will not necessarily be a unique solution of

the equation
P(ry=0

in the region r > —1. As a result, the rate-of-return concept is unclear
in the case of more general cash flows than the ones considered here. In
addition, even in cases where we can show that the preceding equation
has a unique solution r*, it may result that P(r) is not a monotone func-
tion of r; consequently, we could nor assert that the investment yields a
positive present value return when the interest rate is on one side of r*
and a negative present value return when it is on the other side.

One general situation for which we can prove that there is a unique
solution is when the cash flow sequence starts out negative (resp. pos-
itive), eventually becomes positive (negative), and then remains non-
negative (nonpositive) from that point on. In other words, the sequence
Co, C1, ..., ¢, has a single sign change. It then follows — upon using
Descartes’ rule of sign, along with the known existence of at least one
solution — that there is a unique solution of the equation P(r) = 0 in the
region r > —1.

44 Continuously Varying Interest Rates

Suppose that interest is continuously compounded but with a rate that is
changing in time. Let the present time be time 0, and let 7 (s) denote the
interest rate at time s. Thus, if you put x in a bank at time s, then the

amount in your account at time s + h ~ x(1 +r(s)h) (h small).

The quantity r(s) is called the spot or the instantaneous interest rate at
time s.

Let D(¢) be the amount that you will have on account at time ¢ if you
deposit 1 at time 0. In order to determine D(¢) in terms of the interest
rates r(s), 0 < s < t, note that (for 4 small) we have

D(s +h) = D(s)(1 +r(s)h)
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or
D(s + h) — D(s) = D(s)r(s)h

or
D(s +h) — D(s)

h

~ D(s)r(s).

The preceding approximation becomes exact as 4 becomes smaller and
smaller. Hence, taking the limit as 2 — 0, it follows that

D'(s) = D(s)r(s)

or 5%
s
DGs) r(s),
implying that
/’ D) ds = /tr(s)ds
o D(s) 0
or

log(D(t)) — log(D(0)) = / r(s)ds.

0

Since D(0) = 1, we obtain from the preceding equation that

D(t) = exp{f r(s) ds}.
0

Now let P(t) denote the present (i.e. time-0) value of the amount 1
that is to be received at time ¢ (P(¢) would be the cost of a bond that
yields a return of 1 at time 7; it would equal e’ if the interest rate were
always equal to r). Because a deposit of 1/D(¢) at time 0 will be worth
1 at time ¢, we see that

1 t
P(t) = m = exp{—/ r(s) dS} (43)
0

Let 7 (¢) denote the average of the spot interest rates up to time ¢; that is,

r(t) = 1[ r(s)ds.
t Jo

The function 7 (¢), ¢ > 0, is called the yield curve.
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Example 4.4a Find the yield curve and the present value function if

)
r(s) = ml‘]'{'mrz.

Solution. Rewriting r(s) as

ry—rnr
1+s’

r(s)=r2+ >0,

shows that the yield curve is given by

1 [ ri—rp
r(t) = — ds
r(®) t,/o(r2+ 1+s)

ry—rnr;

=r2—+—

log(1+1).
Consequently, the present value function is

P(t) = exp{—tF(t)}
= exp{—rat}exp{—log((1 +1)"""")}
= exp{—rat}1+ )" .

4.5 Exercises

Exercise 4.1 What is the effective interest rate when the nominal in-
terest rate of 10% is

(a) compounded semiannually;
(b) compounded quarterly;
(c) compounded continuously?

Exercise4.2 Suppose that you deposit your money in a bank that pays
interest at a nominal rate of 10% per year. How long will it take for your
money to double if the interest is compounded continuously?

Exercise 4.3 If you receive 5% interest compounded yearly, approxi-
mately how many years will it take for your money to quadruple? What
if you were earning only 4%?
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Exercise 4.4 Give a formula that approximates the number of years
it would take for your funds to triple if you received interest at a rate r
compounded yearly.

Exercise 4.5 How much do you need to invest at the beginning of each
of the next 60 months in order to have a value of $100,000 at the end of
60 months, given that the annual nominal interest rate will be fixed at
6% and will be compounded monthly?

Exercise 4.6 The yearly cash flows of an investment are
—1,000, —1,200, 800, 900, 800.

Is this a worthwhile investment for someone who can both borrow and
save money at the yearly interest rate of 6%?

Exercise 4.7 Consider two possible sequences of end of year returns:
20, 20, 20, 15, 10, 5 and 10, 10, 15, 20, 20, 20.

Which sequence is preferable if the interest rate, compounded annually,
is: (a) 3%; (b) 5%; (c) 10%?

Exercise 4.8 A five-year $10,000 bond with a 10% coupon rate costs
$10,000 and pays its holder $500 every six months for five years, with
a final additional payment of $10,000 made at the end of those 10 pay-
ments. Find its present value if the interest rate is: (a) 6%; (b) 10%;
() 12%.

Exercise 4.9 A friend purchased a new sound system that was selling
for $4,200. He agreed to make a down payment of $1,000 and to make
24 monthly payments of $160, beginning one month from time of pur-
chase. What is the effective interest rate being paid?

Exercise4.10 Repeat Example 4.2b, this time assuming that the yearly
interest rate is 20%.

Exercise 4.11 Repeat Example 4.2b, this time assuming that the cost
of a new machine increases by $1,000 each year.
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Exercise 4.12  Suppose you have agreed to a bank loan of $120,000,
for which the bank charges no fees but 2 points. The quoted interest rate
is .5% per month. You are required to pay only the accumulated interest
each month for the next 36 months, at which point you must make a bal-
loon payment of the still-owed $120,000. What is the effective interest
rate of this loan?

Exercise4.13  You can pay off aloan either by paying the entire amount
of $16,000 now or you can pay $10,000 now and $10,000 at the end of ten
years. Which is preferable when the nominal continuously compounded
interest rate is: (a) 2%; (b) 5%; (c) 10%?

Exercise 4.14 A U.S. treasury bond (selling at a par value of $1,000)
that matures at the end of five years is said to have a coupon rate of 6%
if, after paying $1,000, the purchaser receives $30 at the end of each
of the following nine six-month periods and then receives $1,030 at the
end of the the tenth period. That is, the bond pays a simple interest rate
of 3% per six-month period, with the principal repaid at the end of five
years. Assuming a continuously compounded interest rate of 5%, find
the present value of such a stream of cash payments.

Exercise 4.15 A zero coupon rate bond having face value F pays the
bondholder the amount F when the bond matures. Assuming a contin-
uously compounded interest rate of 8%, find the present value of a zero
coupon bond with face value F = 1,000 that matures at the end of ten
years.

Exercise 4.16 Find the rate of return of a two-year investment that,
for an initial payment of 1,000, gives a return at the end of the first year
of 500 and a return at the end of the second year of: (a) 300; (b) 500;
(c) 700.

Exercise 4.17 Repeat the preceding exercise, reversing the order in
which the payments are received.

Exercise 4.18 The inflation rate is defined to be the rate at which
prices as a whole are increasing. For instance, if the yearly inflation rate
is 4% then what cost $100 last year costs $104 this year. Let r; denote

e
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the inflation rate, and consider an investment whose rate of return is r.
We are often interested in determining the investment’s rate of return
from the point of view of how much the investment increases one’s pur-
chasing power; we call this quantity the investment’s inflation-adjusted
rate of return and denote it as r,. Since the purchasing power of the
amount (1 + r)x one year from now is equivalent to that of the amount
(1 + r)x/(1 4+ r;) today, it follows that — with respect to constant pur-
chasing power units — the investment transforms (in one time period) the
amount x into the amount (1 4 r)x/(1 4 r;). Consequently, its inflation-
adjusted rate of return is

B 1+r
_1+r,-

Tq

When r and r; are both small, we have the following approximation:
Te ®r=r.

For instance, if a bank pays a simple interest rate of 5% when the infla-
tion rate is 3%, the inflation-adjusted interest rate is approximately 2%.
What is its exact value?

Exercise 4.19 Consider an investment cash flow sequence ¢y, ¢y, .
¢, where ¢; < 0,1 < n, and ¢, > 0. Show that if

vy

P(r) =) ci(l+r)~"
i=0

then, in the region r > —1,

(a) there is a unique solution of P(r) = 0;
(b) P(r) need not be a monotone function of r.

Exercise 4.20 Suppose you can borrow money at an annual interest
rate of 8% but can save money at an annual interest rate of only 5%. If
you start with zero capital and if the yearly cash flows of an investment
are

—1,000, 900, 800, —1,200, 700,

should you invest?
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Exercise 4.21 Show that, if r(¢) is an nondecreasing function of ¢,

then so is 7 (¢).

Exercise 4.22 Show that the yield curve 7(¢) is a nondecreasing func-
tion of ¢ if and only if

P(at) > (P(t))* foral 0 <a <1, t>0.
Exercise 4.23 If P(t) = e %% (t > 0), find: (a) r(2); (b) 7 ().

Exercise 4.24 Show that

Y log P(t
@) r() =—I;T(:)) and (b) () =— Ogt @

Exercise 4.25 Plot the spot interest rate function r (¢) of Example 4.4a
when

@ ri<ry
(b) rp <ry.

-

5. Pricing Contracts via Arbitrage

5.1 An Example in Options Pricing

Suppose that the nominal interest rate is r, and consider the following
model for pricing an option to purchase a stock at a future time at a fixed
price. Let the present price (in dollars) of the stock be 100 per share,
and suppose that we know that, after one time period, its price will be
either 200 or 50 (see Figure 5.1). Suppose further that, for any y, at a
cost of cy you can purchase at time 0O the option to buy y shares of the
stock at time 1 at a price of 150 per share. Thus, for instance, if you pur-
chase this option and the stock rises to 200, you would then exercise the
option at time 1 and realize a gain of 200 — 150 = 50 for each of the y
options purchased. On the other hand, if the price of the stock at time
1 is 50 then the option would be worthless. In addition to the options,
you may also purchase x shares of the stock at time 0 at a cost of 100x,
and each share would be worth either 200 or 50 at time 1.

We will suppose that both x and y can be positive, negative, or zero.
That is, you can either buy or sell both the stock and the option. For in-
stance, if x were negative then you would be selling —x shares of stock,
yielding you an initial return of —100x, and you would then be responsi-
ble for buying and returning —x shares of the stock at time 1 at a (time-1)
cost of either 200 or 50 per share. (When you sell a stock that you do
not own, we say that you are selling it short.)

We are interested in determining the appropriate value of ¢, the unit
cost of an option. Specifically, we will show that if r is the one period
interest rate then, unless ¢ = [100 — 50(1 4 r)~']/3, there is a combina-
tion of purchases that will always result in a positive present value gain.
To show this, suppose that at time 0 we

(a) purchase x units of stock, and
(b) purchase y units of options,

where x and y (both of which can be either positive or negative) are to
be determined. The cost of this transaction is 100x + cy; if this amount
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@ 200

100

® 50

| f time

= 0 t=1
Figure 5.1: Possible Stock Prices at Time 1

is positive, then it should be borrowed from a bank, to be repaid with in-
terest at time 1; if it is negative, then the amount received, —(100x + cy),
should be put in the bank to be withdrawn at time 1. The value of our
holdings at time 1 depends on the price of the stock at that time and 1s

given by

200x + 50y if the price is 200,

s = [ 50x if the price is 50.

This formula follows by noting that, if the stock’s price at time 1 is 200,
then the x shares of the stock are worth 200x and the y units of options
to buy the stock at a share price of 150 are worth (200 — 150)y. On the
other hand, if the stock’s price is 50, then the x shares are worth 50x
and the y units of options are worthless. Now, suppose we choose y so
that the value of our holdings at time 1 is the same no matter what the
price of the stock at that time. That is, we choose y so that

200x + 50y = 50x

or
y= —3x.

Note that y has the opposite sign of x; thus, if x > 0 and so x shares of
the stock are purchased at time 0, then 3x units of stock options are also
sold at that time. Similarly, if x is negative, then —x shares are sold and
—3x units of stock options are purchased at time 0.
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Thus, with y = —3x, the

time-1 value of holdings = 50x

no matter what the value of the stock. As a result, if y = —3x it fol-
lows that, after paying off our loan (if 100x + ¢y > 0) or withdrawing
our money from the bank (if 100x + ¢y < 0), we will have gained the
amount

gain = 50x — (100x + cy)(1 +r)
= 50x — (100x — 3xc)(1+7r)
= (14 r)x[3c — 100 + 50(1 + r)7'].

Thus, if 3¢ = 100 — 50(1 + r)~, then the gain is 0. On the other hand,
if 3¢ # 100 — 50(1 + r)~, then we can guarantee a positive gain (no
matter what the price of the stock at time 1) by letting x be positive
when 3¢ > 100 — 50(1 + r)~! and by letting x be negative when 3¢ <
100 — 50(1 + r)~.

For instance, if (1 + r)~' = .9 and the cost per option is ¢ = 20,
then purchasing one share of the stock and selling three units of options
initially costs us 100 — 3(20) = 40, which is borrowed from the bank.
However, the value of this holding at time 1 is 50 whether the stock price
rises to 200 or falls to 50. Using 40(1 + r) = 44.44 of this amount to
pay our bank loan results in a guaranteed gain of 5.56. Similarly, if the
cost of an option is 15, then selling one share of the stock (x = —1) and
buying three units of options results in an initial gain of 100 — 45 = 55,
which is put into a bank to be worth 55(1+r) = 61.11 at time 1. Because
the value of our holding at time 1is —50, a guaranteed profit of 11.11 is
attained. A sure-win betting scheme is called an arbitrage. Thus, for
the numbers considered, the only option cost ¢ that does not result in an
arbitrage is ¢ = (100 — 45)/3 = 55/3.

Remark. We can also use arbitrage to determine the cost of the option
by replicating the option by a combination of borrowing and purchasing
the security. To do so, note that if you buy the option at a cost ¢, then
the return from the option at time 1 is

50 if the stock’s price is 200,

turn =
retum { 0 if the stock’s price is 50.
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Now, suppose that at time 0 you borrow from a bank the amount

50
1+r

y

and put up from your own funds the amount

50
100 — ——
( 1+r)y

to purchase y shares of the stock. At time 1 you will owe the bank 50y;
so, after selling the stock and paying off this debt, you will have a return
given by

150y if the stock’s price is 200,

returm = { 0 if the stock’s price is 50.

Therefore, when y = 1/3, the return at time 1 is the same as that from
the option. In other words, by paying the initial amount (100 — £%)/3
(and borrowing the remaining amount needed to purchase 1/3 shares of
stock) you can replicate the payoff of the option. These two investment
returns are identical, so their costs must be also if one is to avoid an
arbitrage. Thus, if ¢ > (100 - li—or) /3, then a sure profit can be made
by using your own funds along with borrowed money to purchase 1/3
shares of stock while simultaneously selling one option share. If ¢ <
(100 - %07) /3, then a sure profit can be made by selling 1/3 shares of
the stock, using c of the returns of this sale to purchase the option, and

depositing the remaining 100/3 — c in a bank.

5.2 Other Examples of Pricing via Arbitrage

The type of option considered in Section 5.1is known as a call option be-
cause it gives one the option of calling for the stock at a specified price,
known as the exercise or strike price. An American style call option al-
lows the buyer to exercise the option at any time up to the expiration
time, whereas a European style call option can only be exercised at the
expiration time. Although it might seem that, because of its additional
flexibility, the American style option should be worth more, it turns out
that it is never optimal to exercise a call option early; thus, the two style
options have identical worths. We now prove this claim.
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Proposition 5.2.1 One should never exercise an American style call
option before its expiration time t.

Proof. Suppose that the present price of the stock is S, that you own
an option to buy one share of the stock at a fixed price K, and that the
option expires after an additional time 7. As soon as you exercise the op-
tion, you will realize the amount S — K. However, consider what would
transpire if, instead of exercising the option, you sell the stock short and
then purchase the stock at the exercise time, either by paying the market
price at that time or by exercising your option and paying K, whichever
is less expensive. Under this strategy, you will initially receive S, and
will then have to pay the minimum of the market price and the exercise
price K after an additional time . This is clearly preferable to receiv-
ing S and immediately paying out K. a

Our next example uses arbitrage considerations to derive a lower bound
on the cost of a call option.

Example 5.2a Let C denote the cost of an option to purchase a secu-
rity at time ¢ for the strike price K. If S is the present price of the security
and r is the continuously compounded interest rate, then

C>S—Ke.
To see why this must be true, suppose to the contrary that

C<S—Ke™"

or (equivalently) that
(S—C)e" > K.

However, if the foregoing inequality held then we could guarantee a sure
win by

(1) buying the option and
(2) selling the security.

These two transactions will lead to a cash gain of § — C, which we can
use to purchase a bond that matures at time ¢. At time ¢, we then return
the security previously sold by buying it for a cost equal to the minimum
of the strike price K of the option we own or the market price at time ¢.
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Consequently, at time ¢ we will receive (S — C)e”* from the bond, and
then use at most K of this amount to purchase the security, thus yielding
us a positive gain of at least

(S —Cle™ — K. O

In addition to call options there are also put options on stocks. These
give their owners the option of putting a stock up for sale at a specified
price. An American style put option allows the owner to put the stock up
for sale — that is, to exercise the option — at any time up to the expiration
time of the option. A European style put option can only be exercised
at its expiration time. Contrary to the situation with call options, it may
be advantageous to exercise a put option before its expiration time, and
so the American style put option may be worth more than the European.
The absence of arbitrage implies a relationship between the price of a
European put option having exercise price K and expiration time ¢ and
the price of a call option on that stock that also has exercise price K and
expiration time ¢. This is known as the put—call option parity formula,
which may be stated as follows.

Proposition 5.2.2 Let C be the price of a call option that enables its
holder to buy one share of a stock at an exercise price K at time t; also,
let P be the price of a European put option that enables its holder to sell
one share of the stock for the amount K at time t. Let S be the price of the
stock at time 0. Then, assuming that interest is continuously discounted
at a nominal rate r, either

S+P—-C=Ke™"

or there is an arbitrage opportunity.

Proof. If
S+P—-C<Ke™

then we can effect a sure win by initially buying one share of the stock,
buying one put option, and selling one call option. This initial payout
of S + P — C is borrowed from a bank to be repaid at time 7. Let us
now consider the value of our holdings at time 7. There are two cases
that depend on S(¢), the stock’s market price at time ¢. If S(¢) < K then
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the call option we sold is worthless, and we can exercise our put option
to sell the stock for the amount K. On the other hand, if S(¢) > K then
our put option is worthless and the call option we sold will be exercised,
forcing us to sell our stock for the price K. Thus, in either case we will
realize the amount K at time ¢. Since K > "’ (S + P — C), we can pay
off our bank loan and realize a positive profit in all cases.

When
S+P—-C>Ke™,

we can make a sure profit by reversing the procedure just described.
Namely, we now sell one share of stock, sell one put option, and buy one
call option. We leave the details of the verification to the reader. O

The arbitrage principle also determines the relationship between the
present price of a stock and the contracted price to buy the stock at a
specified time in the future. Our next two examples are related to these
forwards contracts.

Example 5.2b Forwards Contracts Let S be the present market price
of a specified stock. In a forwards agreement, one agrees at time 0 to
pay the amount F at time ¢ for one share of the stock that will be deliv-
ered at the time of payment. That is, one contracts a price for the stock,
which is to be delivered and paid for at time . We will now present an
arbitrage argument to show that, if interest is continuously discounted
at the nominal interest rate r, then in order for there to be no arbitrage
opportunity we must have

F = Se".
To see why this equality must hold, suppose that instead
F < Se"'.

In this case, a sure win is obtained by selling the stock at time 0 with the
understanding that you will buy it back at time . Put the sale proceeds
S into a bond that matures at time ¢ and, in addition, buy a forwards con-
tract for delivery of one share of the stock at time 7. Thus, at time ¢ you
will receive Se”* from your bond. From this, you pay F to obtain one
share of the stock, which you then return to settle your obligation. You
thus end with a positive profit of Se”” — F. On the other hand, if
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F > Se"

then you can guarantee a profit of F — Se” by simultaneously selling a
forwards contract and borrowing S to purchase the stock. At time ¢ you
will receive F for your stock, out of which you repay your loan amount
of Se. O

When one purchases a share of a stock in the stock market, one is pur-
chasing a share of ownership in the entity that issues the stock. On the
other hand, the commodity market deals with more concrete objects:
agricultural items like oats, corn, or wheat; energy products like crude
oil and natural gas; metals such as gold, silver, or platinum; animal parts
such as hogs, pork-bellies, and beef; and so on. Almost all of the ac-
tivity on the commodities market is involved with contracts for future
purchases and sales of the commodity. Thus, for instance, you could
purchase a contract to buy natural gas in 90 days for a price that is spec-
ified today. (Such a futures contract differs from a forwards contract in
that, although one pays in full when delivery is taken for both, in futures
contracts one settles up on a daily basis depending on the change of the
price of the futures contract on the commodity exchange.) You could
also write a futures contract that obligates you to sell gas at a specified
price at a specified time. Most people who play the commodities market
never have any actual contact with the commodity. Rather, an individ-
ual who buys a futures contract most often sells that contract before the
delivery date.

The relationship given in Example 5.2b does not hold for futures con-
tracts in the commodity market. For one thing, if F > Se’’ and you
purchase the commodity (say, crude oil) to sell back at time 7, then you
will incur additional costs related to storing and insuring the oil. Also,
when F < Se’, selling the commodity for today’s price requires that
you be able to deliver it immediately.

One of the most popular types of forward contracts involves currency
exchanges, the topic of our next example.

Example 5.2¢ The September 4, 1998, edition of the New York Times
gives the following listing for the price of a German mark (or DM):

e today —.5777,
e 90-day forward — .5808.
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In other words, you can purchase 1 DM today at the price of $.5777. In
addition, you can sign a contract to purchase 1 DM in 90 days at a price,
to be paid on delivery, of $.5808. Why are these prices different?

Solution. One might suppose that the difference is caused by the mar-
ket’s expectation of the worth in 90 days of the German DM relative to
the U.S. dollar. However, it turns out that the entire price differential is
due to the different interest rates in Germany and in the United States.
Suppose that interest in both countries is continuously compounded at
nominal yearly rates: r, in the United States and r, in Germany. Let §
denote the present price of 1 DM, and let F be the price for a forwards
contract to be delivered at time ¢. (This example considers the special
case where § = .5777, F = .5808, and t = 90/365.) We now argue
that, in order for there not to be an arbitrage opportunity, we must have

F = Setv="o",
To see why, suppose first that
Fe's" > Se".

To obtain a sure win, borrow S dollars to be repaid at time . Use these
dollars to buy 1 DM, which in turn is used to buy a German bond that
matures at time ¢. (Thus, at time ¢ you will have e”s* German marks and
you will owe an American bank Se” dollars.) Also, write a contract to
sell e”s" German marks at time 7 for a total price of Fe’s’ dollars. Then,
at time ¢ you sell your German marks for Fe’s' dollars, use Se” of this
to pay off your American debt, and end with a profit of Fe's" — Se"'.
On the other hand, if
Fe's' < Se™

then you can obtain a sure win by reversing the preceding operation as
follows: At time 0, buy a futures contract to purchase e’s* DM at time
t; borrow 1 DM from a German bank and sell it for S dollars, which
you then use to buy an American bond maturing at time ¢. Thus, at
time ¢ you will have Se”' dollars; use Fe's’ of it to pay for your fu-
tures contract. This gives you es’ marks, which you then use to retire
your German bank loan debt. Hence, you end with a positive profit of
Se’! — Fe's'. O
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53 Exercises

Exercise 5.1 For the example of Section 5.1, go through the details to
show that if ¢ < (100 = li—or) /3 then a sure win is obtained by using the
strategy given in the Remark at the end of that section.

Exercise 5.2 Suppose it is known that the price of a certain security
after one period will be one of the r values s, ..., s,. What should be
the cost of an option to purchase the security at time 1 for the price K
when K < mins;?

Exercise 5.3 Let C be the price of a call option to purchase a security
whose present price is S. Argue that C < S.

Exercise 5.4 Let P be the price of a put option to sell a security, whose
present price is S, for the amount K. Which of the following are true?

(@ P<S;
(b) P <K.

Exercise 5.5 Let P be the price of a put option to sell a security, whose
present price is S, for the amount K. Argue that

P>Ke " -8,

where ¢ is the exercise time and r is the interest rate.

Exercise 5.6 With regard to Proposition 5.2.2, verify that the strategy
of selling one share of stock, selling one put option, and buying one call
option is always a winning strategy when S + P — C > Ke™™.

Exercise 5.7 Explain why the price of an American put option hav-
ing exercise time  cannot be less than the price of a second put option
on the same security that is identical to the first option except that its
exercise time is earlier.

Exercise 5.8 Is the result of the preceding exercise valid for European
puts?
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Exercise 5.9 If a stock is selling for a price s immediately before it
pays a dividend d (i.e., the amount d per share is paid to every share-
holder), then what should its price be immediately after the dividend is
paid?

Exercise 5.10 Let S(¢) be the price of a given security at time 7. All of
the following options have exercise time ¢ and (unless stated otherwise)
exercise price K. Give the payoff at time ¢ that is earned by an investor
who:

(a) owns one call and one put option;

(b) owns one call having exercise price K; and has sold one put having
exercise price Ky;

(c) owns two calls and has sold short one share of the security;

(d) owns one share of the security and has sold one call.
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6. The Arbitrage Theorem

6.1 The Arbitrage Theorem

Consider an experiment whose set of possible outcomes is{l,2,...,m},
and suppose that n wagers concerning this experiment are available. If
the amount x is bet on wager i, then xr;(j) is received if the outcome
of the experiment is j (j =1, ..., m). In other words, r;(-) is the return
function for a unit bet on wager i. The amount bet on a wager is allowed
to be positive, negative, or zero.

A betting strategy is a vector X = (X1, X2, ..., X,), With the interpre-
tation that x; is bet on wager 1, x; is bet on wager 2, ..., X, is bet on
wager n. If the outcome of the experiment is j, then the return from the
betting strategy X is given by

n
return from X = me(j)-
=1

The following result, known as the arbitrage theorem, states that ei-
ther there exists a probability vector p = (pi, p2, ..., Pm) on the set of
possible outcomes of the experiment under which the expected return
of each wager is equal to zero, or else there exists a betting strategy that
yields a positive win for each outcome of the experiment.

Theorem 6.1.1 (The Arbitrage Theorem) Exactly one of the follow-
ing is true: Either

(a) there is a probability vector p = (p1, p2, - .., Pm) for which

N pr()=0 foralli=1,...,n,
j=1

or else
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(b) there is a betting strategy X = (x1, X2, ..., Xp) for which
n
inr,'(j) >0 forall j=1,...,m.
i=1

Proof. See Section 6.3.

If X is the outcome of the experiment, then the arbitrage theorem states
that either there is a set of probabilities (p;, p2, ..., pm) such that if

P{X=j}=p; forall j=1,....m

then
E[ri(X)]=0 forall i =1,...,n,

or else there is a betting strategy that leads to a sure win. In other words,
either there is a probability vector on the outcomes of the experiment
that results in all bets being fair, or else there is a betting scheme that
guarantees a win.

Example 6.1a In some situations, the only type of wagers allowed are
ones that choose one of the outcomes i (i =1, ..., m) and then bet that
i is the outcome of the experiment. The return from such a bet is often
quoted in terms of odds. If the odds against outcome i are o; (often
expressed as “o; to 1), then a one-unit bet will return either o; if i is
the outcome of the experiment or —1 if i is not the outcome. That is,
a one-unit bet on i will either win o; or lose 1. The return function for
such a bet is given by

. 0; if ] = i,
r; —
) { —1 i j#il
Suppose that the odds 0y, 02, ..., 0,, are quoted. In order for there not to
be a sure win, there must be a probability vector p = (pi1, P2, ..-s Pm)
such that, foreachi (i =1,...,m),

0= Ep[ri(X)]=o0ipi — (1 — pi).

That is, we must have

pi 1+o
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Since the p; must sum to 1, this means that the condition for there not
to be an arbitrage is that

1

m
;l+o,-=1'

That is, if Y7~ ,(1+0;)~" # 1, then a sure win is possible. For instance,
suppose there are three possible outcomes and the quoted odds are as
follows.

Outcome  Odds

1 1
2 2
3 3

That is, the odds against outcome 1 are 1 to 1; they are 2 to 1 against
outcome 2; and they are 3 to 1 against outcome 3. Since

1 1 1 13

2t3te=7h
a sure win is possible. One possibility is to bet —1 on outcome 1 (so you
either win 1 if the outcome is not 1 or you lose 1 if the outcome is 1) and
bet —.7 on outcome 2 (so you either win .7 if the outcome is not 2 or
you lose 1.4 if it is 2), and —.5 on outcome 3 (so you either win .5 if the
outcome is not 3 or you lose 1.5 if it is 3). If the experiment results in
outcome 1, you win —1 + .7 + .5 = .2; if it results in outcome 2, you
win 1 — 1.4 4+ .5 = .1; if it results in outcome 3, you win14+.7 — 1.5 =
.2. Hence, in all cases you win a positive amount. O

Example 6.1b Let us reconsider the option pricing example of Sec-
tion 5.1, where the initial price of a stock is 100 and the price after one
period is assumed to be either 200 or 50. At a cost of ¢ per share, we
can purchase at time 0 the option to buy the stock at time 1 for the price
of 150. For what value of ¢ is no sure win possible?

Solution. In the context of this section, the outcome of the experiment
is the value of the stock at time 1; thus, there are two possible outcomes.
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There are also two different wagers: to buy (or sell) the stock, and to
buy (or sell) the option. By the arbitrage theorem, there will be no sure
win if there are probabilities (p, 1 — p) on the outcomes that make the
expected present value return equal to zero for both wagers.

The present value return from purchasing one share of the stock is

200(1 4+ r)~' — 100 if the price is 200 at time 1,

t —
returm { 50(1+7r)"' =100 if the price is 50 at time 1.

Hence, if p is the probability that the price is 200 at time 1, then

200 50
E[return] = p| —— — 100 1— p)| —— — 100
[return] p[Hr ]+( p)[1+r ]

150 50

= — 100.
Pl +r * 1+r
Setting this equal to zero yields that
14 2r

P=3-

Therefore, the only probability vector (p, 1 — p) that results in a zero ex-
pected return for the wager of purchasing the stock has p = (1+2r)/3.
In addition, the present value return from purchasing one option is

50(14r)~! — ¢ if the price is 200 at time 1,

turn =
e [ —C if the price is 50 at time 1.

Hence, when p = (1 + 2r)/3, the expected return of purchasing one

option is
1+2r 50

3 14r

E[return] =

It thus follows from the arbitrage theorem that the only value of ¢ for
which there will not be a sure win is

_ 1+ 2r 50
T
that is, when
B 50 + 1007
“T3A+n
which is in accord with the result of Section 5.1. a
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6.2 The Multiperiod Binomial Model

Let us now consider a stock option scenario in which there are n periods
and where the nominal interest rate is r per period. Let S(0) be the ini-
tial price of the stock, and fori =1, ..., n let S(i) be its price at i time
periods later. Suppose that S(i) is either uS(i — 1) or dS(i — 1), where
d < 14+r < u. Thatis, going from one time period to the next, the price
either goes up by the factor u or down by the factor d. Furthermore, sup-
pose that at time 0 an option may be purchased that enables one to buy
the stock after n periods have passed for the amount K. In addition, the
stock may be purchased and sold anytime within these n time periods.

Let X; equal 1 if the stock’s price goes up by the factor u from period
i —1to i, and let it equal O if that price goes down by the factor d. That
is,

x| 1 if SO =usG -,
£ { 0 if SG)=dSi —1).

The outcome of the experiment can now be regarded as the value of the
vector (X1, X», ..., X,). It follows from the arbitrage theorem that, in
order for there not to be an arbitrage opportunity, there must be proba-
bilities on these outcomes that make all bets fair. That is, there must be
a set of probabilities

P{Xi=x,....X,=x,}, x;=0,1,i=1,...,n,

that make all bets fair.

Now consider the following type of bet: First choose a value of i (i =
1,...,n)and a vector (xi, ..., x;_1) of zeros and ones, and then observe
the first i — 1 changes. If X; = x; foreach j = 1,...,i — 1, immedi-
ately buy one unit of stock and then sell it back the next period. If the
stock is purchased, then its cost at time i — 1is S(i —1); the time-(i — 1)
value of the amount obtained when it is then sold at time i is either
(14 r)"'uS(@ — 1) if the stock goes up or (1 + r)~'dS(i — 1) if it goes
down. Therefore, if we let

a¢=P{Xi=x1,...., Xi_1=xi1}
denote the probability that the stock is purchased, and let

p=PXi=1|X1=x,..., Xi-1=x;1}
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denote the probability that a purchased stock goes up the next period,
then the expected gain on this bet (in time-(i — 1) units) is

alpd+r)uSG -+ A —p)(A+n7'dSi —1) — S — 1)].

Consequently, the expected gain on this bet will be zero, provided that

pe . A—pd .,
1+r I+r
or, equivalently, that
_1+r-d
b= u—d

In other words, the only probability vector that results in an expected
gain of zero for this type of bet has

1+r—d

P{X,- =1 | X] =JC1,...,X,'_1=X,'_1}=
u—d

Since xi, ..., x, are arbitrary, this implies that the only probability vec-
tor on the set of outcomes that results in all these bets being fair is the
one that takes Xj, ..., X, to be independent random variables with

P{X;=1}=p=1—-P{X; =0}, i=1,...,n, (6.1
where
_1+r—d

T —d (6.2)

It can be shown that, with these probabilities, any bet on buying stock
will have zero expected gain. Thus, it follows from the arbitrage theo-
rem that either the cost of the option must be equal to the expectation
of the present (i.e., the time-0) value of owning it using the preceding
probabilities, or else there will be an arbitrage opportunity. So, to deter-
mine the no-arbitrage cost, assume that the X; are independent 0-or-1
random variables whose common probability p of being equal to 1 is
given by Equation (6.2). Letting ¥ denote their sum, it follows that Y
is just the number of the X; that are equal to 1, and thus Y is a binomial
random variable with parameters n and p. Now, in going from period
to period, the stock’s price is its old price multiplied by either u or by d.
At time n, the price would have gone up Y times and down n — Y times,
so it follows that the stock’s price after n periods can be expressed as
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S(n) = u'd"~"5(0),

where Y = >""_| X; is, as previously noted, a binomial random variable
with parameters n and p. The value of owning the option after n peri-
ods have elapsed is (S, — K)™, which is defined to equal either S, — K
(when this quantity is nonnegative) or zero (when it is negative). There-
fore, the present (time-0) value of owning the option is

A+r7"(Sm) - K)*
and so the expectation of the present value of owning the option is
(1+n™"ES(n) — K)*1= 1+ "E[(SOu'da"" —K)"].
Thus, the only option cost C that does not result in an arbitrage is

C=0+r"TE[SOud"Y —K)"]. (6.3)

Remark. Although Equation (6.3) could be streamlined for computa-
tional convenience, the expression as given is sufficient for our main
purpose: determining the unique no-arbitrage option cost when the un-
derlying security follows a geometric Brownian motion. This is accom-
plished in our next chapter, where we derive the famous Black—Scholes
formula.

6.3 Proof of the Arbitrage Theorem

In order to prove the arbitrage theorem, we first present the duality theo-
rem of linear programming as follows. Suppose that, for given constants
c¢i,bj,anda; j i =1,...,n, j =1,...,m), we want to choose values
X1, ..., X, that will

n
maximize E CiX;

i=1
subject to
n
Za,"jx,'fbj, j=1,2,...,m.
i=1

This problem is called a primal linear program. Every primal linear
program has a dual problem, and the dual of the preceding linear pro-
gram is to choose values yy, ..., y, that
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m
minimize E bjyj
i=1

subject to
m

Zai,jyj =6 & =10m,
j=1
=0, j=1...,m.

A linear program is said to be feasible if there are variables (x, ..., x,
in the primal linear program or y, ..., y,, in the dual) that satisfy the
constraints. The key theoretical result of linear programming is the du-
ality theorem, which we state without proof.

Proposition 6.3.1 (Duality Theorem of Linear Programming) If a
primal and its dual linear program are both feasible, then they both
have optimal solutions and the maximal value of the primal is equal to
the minimal value of the dual. If either problem is infeasible, then the
other does not have an optimal solution.

A consequence of the duality theorem is the arbitrage theorem. Recall
that the arbitrage theorem refers to a situation in which there are n wa-
gers with payoffs that are determined by the result of an experiment
having possible outcomes 1, 2, ..., m. Specifically, if you bet wager i
at level x, then you win the amount xr;( j) if the outcome of the exper-
iment is j. A betting strategy is a vector X = (x, ..., x,), where each
x; can be positive or negative (or zero), and with the interpretation that
you simultaneously bet wager i at level x; foreachi = 1, ..., n. If the
outcome of the experiment is j, then your winnings from the betting

strategy x are
n
> xiri().
i=1

Proposition 6.3.2 (Arbitrage Theorem) Exactly one of the following

is true: Either

(1) there exists a probability vector p = (p1, ..., pm) for which
ijri(j) =0 foralli=1,... n;
j=I

or
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(ii) there exists a betting strategy X = (X1, ..., X,) such that
n
inri(j) >0 foral j=1,...,m.
i=1

That is, either there exists a probability vector under which all wagers
have expected gain equal to zero, or else there is a betting strategy that
always results in a positive win.

Proof. Let x, denote an amount that the gambler can be sure of win-
ning, and consider the problem of maximizing this amount. If the gam-

bler uses the betting strategy (xi, ..., x,) then she will win er'l:l x;ri(J)
if the outcome of the experiment is j. Hence, she will want to choose
her betting strategy (xi, ..., x,) and X, so as to

maximize Xx,4i

subject to
n
inri(j) > Xntl, Jj=1...,m.
i=1

Letting '
ai,j =-ri(j), i=1...,n, au,j=1,
we can rewrite the preceding as follows:

maximize Xx,4i

subject to
n+1

E a,"jx,‘fo, j=1,...,m.
i=l1

Note that the preceding linear program hasc; =c¢; =--- =¢, =0,
cn+1 = 1, and upper-bound constraint values all equal to zero (i.e., all
b; = 0). Consequently, its dual program s to choose variables yy, ..., yn
Ro38 10 minimize 0

subject to

m
E ai'jyj=0, i=1,...,n,
j=1

m
E An+1,jYj = 1,
j=1

=0, j=1...,m.
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Using the definitions of the quantities a; ; gives that this dual linear pro-
gram can be written as

minimize 0
subject to

m
Zri(j)}’j =0, i=1,...,n,
Jj=1

m
Z yi =1,
j=1

ijO, j=1...,m.

Observe that this dual will be feasible, and its minimal value will be
zero, if and only if there is a probability vector (yi, ..., y,,) under which
all wagers have expected return 0. The primal problem is feasible be-
cause x; = 0 (i = 1,...,n + 1) satisfies its constraints, so it follows
from the duality theorem that if the dual problem is also feasible then
the optimal value of the primal is zero and hence no sure win is possi-
ble. On the other hand, if the dual is infeasible then it follows from the
duality theorem that there is no optimal solution of the primal. But this
implies that zero is not the optimal solution, and thus there is a betting
scheme whose minimal return is positive. (The reason there is no pri-
mal optimal solution when the dual is infeasible is because the primal is
unbounded in this case. That is, if there is a betting scheme x that gives
a guaranteed return of at least v > 0, then cx gives a guaranteed return
of at least cv.) O

6.4 Exercises

Exercise 6.1 Consider an experiment with three possible outcomes
and odds as follows.

Outcome  Odds

1 1
2
3 5

Is there a betting scheme that results in a sure win?
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Exercise 6.2 Consider an experiment with four possible outcomes,
and suppose that the quoted odds for the first three of these outcomes

are as follows.

Outcome  Odds

1 2
2 3
3 4

What must be the odds against outcome 4 if there is to be no possible
arbitrage when one is allowed to bet both for and against any of the out-

comes?

Exercise 6.3 Repeat Exercise 6.1 when the odds are as follows.

Outcome  Odds

1 2
2 2
3 2

Exercise 6.4 Suppose, in Exercise 6.1, that one is also allowed to
choose any pair of outcomes i # j and bet that the outcome will be ei-
ther i or j. What should the odds be on these three bets if an arbitrage

opportunity is to be avoided?

Exercise 6.5 In Example 6.1a, show that if
=1

Zl+0,' 71

i=]1

then the betting scheme

. (1 +0i)_1
1 i - i)~V

will always yield a gain of exactly 1.

i=1,...,m,

Xi
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Exercise 6.6 In Example 6.1b, suppose one also has the option of pur-
chasing a put option that allows its holder to put the stock for sale at the
end of one period for a price of 150. Determine the value of P, the cost
of the put, if there is to be no arbitrage; then show that the resulting call
and put prices satisfy the put—call option parity formula (Proposition
5.2.2).

Exercise 6.7 Suppose that, in each period, the cost of a security either
goes up by a factor of 2 or down by a factor of 1/2 (i.e., u =2,d =
1/2). If the initial price of the security is 100, determine the no-arbitrage
cost of a call option to purchase the security at the end of two periods
for a price of 150.

Exercise 6.8 Suppose, in Example 6.1b, that there are three possible
prices for the security at time 1: 50, 100, or 200. (That is, allow for the
possibility that the security’s price remains unchanged.) Use the arbi-
trage theorem to find an interval for which there is no arbitrage if ¢ lies
in that interval.

A betting strategy x such that (using the notation of Section 6.1)
lerl(j)zos i=19~-~’m9
i=1

with strict inequality for at least one i, is said to be a weak arbitrage
strategy. That is, whereas an arbitrage is present if there is a strategy that
results in a positive gain for every outcome, a weak arbitrage is present
if there is a strategy that never results in a loss and results in a positive
gain for at least one outcome. (An arbitrage can be thought of as a free
lunch, whereas a weak arbitrage is a free lottery ticket.) It can be shown
that there will be no weak arbitrage if and only if there is a probability
vector p, all of whose components are positive, such that

S gy =0, i=1,...,n.
j=1

In other words, there will be no weak arbitrage if there is a probability
vector that gives positive weight to each possible outcome and makes
all bets fair.
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Exercise 6.9 In Exercise 6.8, show that a weak arbitrage is possible
if the cost of the option is equal to either endpoint of the interval deter-
mined.

Exercise 6.10 For the model of Section 6.2 with n = 1, show how an
option can be replicated by a combination of borrowing and buying the
security.
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7. The Black—Scholes Formula

7.1 The Black-Scholes Formula

Consider a call option having strike price K and exercise time ¢. That
is, the option allows one to purchase a single unit of an underlying secu-
rity at time ¢ for the price K. Suppose further that the nominal interest
rate is r, compounded continuously, and also that the price of the secu-
rity follows a geometric Brownian motion with variance parameter o-2.
Under these assumptions, we will find the unique cost of the option that
does not give rise to an arbitrage.

To begin, recall from Section 3.2 that the first # time units of a geomet-
ric Brownian motion with variance parameter o can be approximated
by a process that, at each time point t/n, 2t/n, ..., nt/n, either goes up
by the factor

2
t
u=eV" 14 0/t/n+ C;— 1)
n
or down by the factor

2
t
d=eVinx1_g t/n—{—(;—n, (12)

where n is a large positive integer (and where the approximations of
u and d are obtained by taking the first three terms of the Taylor se-
ries expansion about 0 of the function ¢*). As a consequence, we see
that the first ¢ time units of every geometric Brownian motion having
variance parameter o2, no matter what the value of its other parame-
ter i, can be approximated by an n-period binomial model whose up
and down factors are given by Equations (7.1) and (7.2). But we know
from Section 6.2 that there is a unique no-arbitrage option cost C for
this approximation model. Because the n-period approximation model
to geometric Brownian motion becomes exact as n increases, it follows
that, with r¢/n as the one-period interest rate, C will converge to the
unique no-arbitrage cost as n become larger and larger. We now give
the details.
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Let u and d be as given by Equations (7.1) and (7.2), and let Y be a
binomial random variable with parameters n and p, where
_l+4rt/n—d
B u—d
_rt/n+0oy/t/n—a’t/2n
20+/t/n
_ 1 ryt/n o t/n
T2 20 4

It follows from the results of Section 6.2 that the unique no-arbitrage
option cost for this n-period model is

C=(1+rt/n)"E[(SOud"Y — K)T]

N4 +
= +rt/n)’"E|:(S(O)(E) d" — K) ]

= (1+ rt/n) "E[(S(0)eX~1nY g=oml _ gy+]
= (1+rt/n) "E[(S(0)e” — K)*], (7.3)

W = 20./t/nY — o+/nt.

Since Y is a binomial random variable with parameters n and p, it fol-
lows that, as n becomes larger, Y becomes a normal random variable.
Also, since a constant plus a constant multiple of a normal random vari-
able is also normal, it follows that, as n becomes larger, W also becomes
a normal random variable. In addition, since E[Y ] = np,

E[W] = 20/t/nE[Y] — o+/nt
= 20+/t/nnp — o~/nt
=20+/nt(p —1/2)

~ 20’\/;1-(r 2;/’1 - 0\/7/;)

where

4
=(r —o?/21t. (7.4)

Moreover, Var(Y) = np(1 — p) and p ~ 1/2 for large n, so we have
that
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Var(W) = (20+/t/n)? Var(Y)
=40’tp(1 - p)
~ ot (7.5)
Because all approximations become exact as n grows larger, we see from
Equations (7.3)—(7.5) that C, the unique cost of the option that does not

result in an arbitrage when the underlying security’s price follows a geo-
metric Brownian motion with volatility parameter o, is

C =e"E[(S(0)" — K)T], (7.6)

where W is a normal random variable with mean (r — 0%/2)¢ and vari-
ance ot.

Using standard formulas for normal probabilities, the preceding ex-
pression for C can be evaluated to give the following, known as the
Black—Scholes option pricing formula:

C =S0)P(w) — Ke " ®(w — o/1), (7.7)

where
ot +02t/2 —1og(K/S(0))

o/t

and where ® (x) is the standard normal distribution function.

Remarks. (1) Another way of deriving the no-arbitrage option cost C is
by finding probabilities on the prices that make all security-buying bets
“fair,” in the sense that the expected present value of the amount gained
is zero for every such bet. Since, as shown in Section 6.2, there is a
unique set of probabilities in each of the n-period approximation mod-
els, it is reasonable to suppose the same is true for geometric Brownian
motion. However, it can be shown that all security-buying bets will be
fair if the price of the security follows a geometric Brownian motion
with parameters u and o, when

uw=r—o?2. (7.8)

Hence, it follows from the arbitrage theorem that — in order for there not
to be an arbitrage when one is also allowed to buy or sell the option —
the cost of the option must equal the present value of its expected worth
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at time ¢, where the expected worth is computed under the assump-
tion that the parameters of the underlying geometric Brownian motion
satisfy Equation (7.8). Consequently, the unique no-arbitrage cost of
an option to purchase the stock at time ¢ for the specified strike price
K is

C =e"E[(St) - K)T],

where S(7)/S(0) is lognormal with parameters (r — 0%/2)t and o?t.
However, letting
W = log(8(t)/S(0))

shows again that
C = e "E[(S(0)e” — K)*],

where W is normal with mean (r — 0>/2)t and variance o?t.

(2) If an investor is neutral toward risk in the sense that she values in-
vestments solely by their expected returns, and if she assumes that the
underlying security follows a geometric Brownian motion that makes all
security-buying and -selling bets fair, then her valuation of the cost of
the option would be precisely as given by the Black—Scholes formula.
As a result, the Black—Scholes valuation is often called a risk-neutral
valuation.

(3) Let C(s, t, K) be the no-arbitrage cost of an option having ex-
ercise price K and exercise time ¢ when the initial price is s. That is,
C(s,t, K) is the C of the Black—Scholes formula having S(0) = s. If,
at time y (0 < y < t), the price of the underlying security is S(y) =
sy, then C(sy, t —y, K) is the unique no-arbitrage cost of the option at
time y. This follows because, at time y, the option will expire after an
additional time ¢ — y with the same exercise price K, and for the next
t — y units of time the security will follow a geometric Brownian motion
with initial value sy.

(4) It follows from the put—call option parity formula given in Proposi-
tion 5.2.2 that the no-arbitrage cost of a European put option with initial
price s, strike price K, and exercise time 7 is given by

P(s,t,K)=C(s,t,K) + Ke™"" —s,

where C(s, t, K) is the no-arbitrage cost of a call option on the same
stock.
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(5) The rate of change in the value of the call option as a function of a
change in the price of the underlying security is described by the quan-
tity delta, denoted as A. Formally, if C(s, t, K) is the Black—Scholes
cost valuation of the option then A is its partial derivative with respect
to s; that is,

G]
A=—C(s,t,K).
as

Using Equation (7.7), we can show that
A = P(w),

where w is as given in that equation. Delta can be used to construct in-
vestment portfolios that hedge against risk. For instarice, suppose an
investor feels that a call option is underpriced and consequently buys
the call. To protect himself against a décrease in its price, he can simul-
taneously sell a certain number of shares of the security. To determine
how many shares he should sell, we note that if the price of the security
decreases by the small amount / then the worth of the option will de-
crease by the amount 2A, implying that the investor would be covered
if he had sold A shares of the security. Therefore, a reasonable hedge
might be to sell A shares of the security for each option purchased.

Example 7.1a Suppose that a security is presently selling for a price
of 30, the nominal interest rate is 8% (with the unit of time being one
year), and the security’s volatility is .20. Find the no-arbitrage cost of a
call option expiring in three months with a strike price of 34.

Solution. The parameters are
t=.25 r=.08, o0=.20, K =34, S(0) =30,

so we have that

.02 +.005 — log(34/30)
w= ~ —1.0016.
(2)(-3

Therefore,

C =309 (—1.0016) — 34e~"2d(—1.1016)
= 30(.15827) — 34(.9802)(.13532)
~ .2383.

Thus, the appropriate price of the option is 24 cents. O
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7.2 Properties of Black—Scholes Option Cost

The no-arbitrage option cost C = C(s, 1, K, 0, r) is a function of five
variables: the security’s initial price s; the exercise time ¢ of the option;
the strike price K ; the security’s volatility parameter o; and the interest
rate . We will now see what happens to the cost as each of these vari-
ables increases. However, as a preliminary to doing so, note first that a
normal random variable W with mean (r —0'2/2)t and variance 0% can

be expressed as
W=rt— azt/2 + a\/fZ,

where Z is a standard normal random variable with mean O and vari-
ance 1. Hence, using the representation of C as given by Equation (7.6),
we see that

C(s,t,K,0,r) =e "E[(se" — K)*]
= E[(sé" " — Ke")"], (7.9)

C(s,t,K,0,r) = E[(se " "**9V'Z _ Ke™)F]. (7.10)
The properties of C = C(s, ¢, K, o, r) may be described as follows.

C is increasing in s. This means that if the other four variables re-
main the same, then the cost of the option increases when the initial
price increases. This very intuitive result immediately follows from the
representation (7.9). For since W does not depend on s, the quantity
(se” " — Ke™")T increases as s increases, and therefore so does its
expected value, which by (7.9) is equal to C.

C is decreasing in K. This extremely intuitive result, that the value
of the option is larger when the strike price is smaller, also immediately
follows from Equation (7.9) since (se” "' — Ke™"")" is decreasing in K.

C is increasing in t. Although a mathematical argument can be given,
it requires some work. A simpler (and more intuitive) argument is ob-
tained by noting how we can see immediately that the option cost would
be increasing in ¢ if the option were an American call option (for any ad-
ditional time to exercise could not hurt, since one could always elect not
to use it). But, since the value of a European call option is the same as
that of an American call option (Proposition 5.2.1), the result follows.

C is increasing in o. Because an option holder will greatly benefit
from very large prices at the exercise time (while any additional price
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decrease below the exercise price will not cause any additional loss), this
result seems at first sight to be quite intuitive. However, it is more subtle
than it appears, since an increase in o results —not only in an increase in
the variance of the logarithm of the final price under the risk-neutral val-
uation — but also in a decrease in the mean (since E[log(S(t)/S(0))] =
(r — 02/ 2)t). Nevertheless, the result can be proved mathematically.

C is increasing in r. Although this property follows directly from
Equation (7.10), since (se~°"/2+oViZ _ ge=rt)+ i increasing in r, it is
probably the least intuitive of the five properties.

73 Estimating o

In order to use the Black—Scholes option cost formula given by Equation
(7.7), one must know the value of the parameter o of the underlying geo-
metric Brownian motion. As this value is initially unknown, historical
data must be used to estimate it. So, suppose that we have n consecu-
tive days of data concerning the security. Let Py be the closing price of
the security immediately before these n days, and let Py (k =1, ..., n)
be the closing price at the end of the kth day. If we now set

X = log(Py) —log(Pi—1),

then it follows (under the geometric Brownian motion model) that
Xi, ..., X, is a sequence of independent normal random variables with a
common mean and with common variance o%/252. Here we have taken
one year as the unit of time and have used the fact that there are approxi-
mately 252 business days in a year (so one day represents approximately
1/252 of the trading days in a year). We can now apply standard statis-
tical procedures for estimating this variance. Namely, let

ZZ:[ Xk
n

X =
be the average of the values of the X;, and then set

_ i X = X)?

n—1

V2

The quantity V? is called the sample variance, and its value can be taken
as the estimate of 02/252. Consequently, v/252V is the estimated value
of o.
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7.4 Pricing American Put Options

There is no difficulty in determining the risk-neutral prices of European
put options; using the put—call option parity formula, it follows that

P(s,t,K,0,r) =C(s,t,K,0,r) + Ke™"" —s,

where P(s, t, K, o, r) is the risk-neutral price of a European put having
strike price K at exercise time ¢ if the price at time 0 is s, the volatility
of the stock is o, the interest rate is r, and C (s, t, K, o, r) is the corre-
sponding risk-neutral price for the call option. However, because early
exercise is sometimes beneficial, the risk-neutral pricing of American
put options is not so straightforward. We will now present an efficient
technique for obtaining very accurate approximations of these prices.

The risk-neutral price of an American put option is the expected
present value of owning the option under the assumption that the prices
of the underlying security change in accordance with risk-neutral geo-
metric Brownian motion and that the owner utilizes an optimal policy in
determining when, if ever, to exercise that option. To approximate this
price, we approximate the risk-neutral geometric Brownian motion pro-
cess by a multiperiod binomial process as follows. Choose a number
and, with ¢ equal to the exercise time of the option, let 7, = kt/n (k =
0,1,...,n). Now suppose that:

(1) the option can be exercised only at one of the timest, (k=0,1,...,
n), and
(2) if S(t) is the price of the security at time #;, then

uS(t;) with probability p,
S(te+1) = . .
dS(t;) with probability 1 — p,
where
u=eNI g =eoNn,
_l+4rt/n—d
- u—d ’

The first two possible price movements of this process are indicated in
Figure 7.1.

We know from Section 7.1 that the preceding discrete time approxima-
tion becomes the risk-neutral geometric Brownian motion process as n

O
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Figure 7.1: Possible Prices of the Discrete Approximation Model

becomes larger and larger; in addition, since the price curve under geo-
metric Brownian motion can be shown to be continuous, it is intuitive
(and can be verified) that the expected loss — incurred in allowing the op-
tion to be exercised only at one of the times #; — goes to 0 as n becomes
larger. Hence, by choosing n reasonably large, the risk-neutral price of
the American option can be accurately approximated by the expected
present value return from the option, assuming that both conditions (1)
and (2) hold and also that an optimal policy is employed in determin-
ing when to exercise the option. We now show how to determine this
expected return.

To start, note that if i of the first £ price movements were increases
and k — i were decreases, then the price at time 7; would be

S(te) = u'd*'s.
Since i must be one of the values 0, 1, ..., k, it follows that there are

k + 1 possible prices of the security at time #;,. Now, let Vi (i) denote
the time-7; expected return from the put, given that the put has not been
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exercised before time 7, that the price at time 7 is S(tx) = u'd*~'s, and
that an optimal policy will be followed from time ¢, onward.

To determine V;(0), the expected present value return of owning the
put, we work backwards. That is, first we determine V,(i) for each of
its n + 1 possible values of i; then we determine V,—1(i) for each of its
n possible values of i; then V,,_,(i) for each of its n — 1 possible values
of i; and so on. To accomplish this task, note first that, since the option
expires at time #,, we have

V,(i) = max(K — u'd""'s, 0), (7.11)
which determines all the values V,(i), i =0, ..., n. Now, let
,3 = e_”/".

Suppose we are at time f, the put has not yet been exercised, and the
price of the stock is u'd*~'s. If we exercise the option at this point then
we will receive K — u'd*~'s. On the other hand, if we do not exercise
now then the price at time 7,1 will be either u'*'d*~'s (with probability
p) or u‘d*=i*1s (with probability 1 — p). If itis ' +'d*~'s and we employ
an optimal policy from that time on, then the time-#; expected return
from the put is BV;41(i + 1); similarly, the expected return if the price
decreases is BVi41(i). Hence, since the price will increase with proba-
bility p or decrease with probability 1 — p, it follows that the expected
time-7, return, if we do not exercise but thereafter continue optimally, is

PBVis1(i + 1) + (1 = p)BViy1 ().

Since K — u'd*'s is the return if we exercise and the preceding is the
maximal expected return if we do not exercise, it follows that the maxi-
mal possible expected return is the larger of these two. That is, for k =
0,....,n—1,

Vi(i) = max(K —u'd*"'s,
BpVi1(i +1) + B — p)Vk+1(i)), i =10,k (712)
To obtain the approximation, we first use Equation (7.11) to determine

the values of V,(i); we then use (7.12) with k = n — 1 to obtain the
values V,,_;(i); we then use (7.12) with k = n — 2 to obtain the values

—4—
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.V"_z(i ); and so on until we have the desired value of V;(0), the approx-
imation of the risk-neutral price of the American put option. Although
computationally messy when done by hand, this procedure is easily pro-
grammed and can also be done with a spreadsheet.

Remark. The computations can be simplified by noting that ud = 1

and also by making use of the following results, which can be shown to
hold.

(1) If the put is worthless at time #; when the price of the security is x,
then it is also worthless at time ¢, when the price of the security is
greater than x. That is,

Vi) =0 = Vi(j) =0 if j>i.

(2) Ifitis optimal to exercise the put option at time ¢, when the price is
x, then it is also optimal to exercise it at time #; when the price of
the security is less than x. That is,

Vi) = K —u'd"'s = Vi(j)=K —wd* s if j <i.

Example 7.4a  Suppose we want to price an American put option hav-
ing the following parameters:

§s=9, t=.25 K=10, o0=.3, r=.06.

To illustrate the procedure, suppose we let n = 5 (which is much too

small for an accurate approximation). With the preceding parameters,
we have that

u=eV% = 10694,
d=e V% = 9351,
p = .5056,

1— p = .4944,
B=eT"= 997

The possible prices of the security at time 75 are:
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9d° = 6.435,
ud* = 7.359,
9u’d® = 8.416,
9u’d* = 9.625,

9d> ' > 10 (i =4,5).

! ‘I‘ Hence,
| Vs(0) = 3.565,
;f‘i Vs(1) = 2.641,
I
I Vs(2) = 1.584,
Il Vs(3) = .375,

Vs(i) =0 (i =4,5).

Since 9u?d? = 9, Equation (7.12) gives

ercised at this time at any lower price, so
Il Va(1) = 10 — 9ud® = 2.130

I and
i Vi(0) = 10 — 9d* = 3.119.

\
| ‘ As 9u3d = 10.293, Equation (7.12) gives
f

Similarly,
Va(4) = BpVs(5) + B(1 — p)Vs(4) = 0.

‘ . .

\ Continuing, we obtain:
\

|

Va(2) = max(l, BpVs(3) + B(1 — p)V5(2)) = L,

which shows that it is optimal to exercise the option at time #4 when the
price is 9. From remark (2) it follows that the option should also be ex-

I Vi(3) = BpVs(@4) + B(1 — p)Vs(3) = .181.
\
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V3(0) = max(2.641, BpVi(1) + B(1 — p)V4(0)) = 2.641,
V(1) = max(1.584, BpV4(2) + B(1 — p)Vi(1)) = 1.584,
V3(2) = max(.375, BpVa(3) + B(1 — p)V4(2)) = .584,
V3(3) = BpVa(4) + B(1 — p)Va(3) = .089;
V2(0) = max(2.130, BpV3(1) + B(1 — p)V3(0)) = 2.130,
Va(1) = max(1, BpV3(2) + B(1 — p)V3(1)) = 1.075,
V2(2) = BpV3(3) + B(1 — p)V3(2) = .333;
V1(0) = max(1.584, BpV,(1) + B(1 — p)V2(0)) = 1.592,
Vi(1) = max(.375, BpV2(2) + B(1 — p)Va(1)) = .698.

As a result,
Vo(0) = max(1, BpVi(1) + B(1 — p)V1(0)) = 1.137.

That is, the risk-neutral price of the put option is approximately 1.137.
(The exact answer, to three decimal places, is 1.126, indicating a very
respectable approximation given the small value of n that was used.)

7.5 Comments

7.5.1 When the Option Cost Differs from the
Black—Scholes Formula

Suppose now that we have estimated the value of o and have inserted
that value into the Black—Scholes Equation (7.7) to obtain C. What if
the market price of the option is unequal to C? Is there really a strategy
that yields us a sure win?

Unfortunately, the answer to the preceding question is “probably not.”
For one thing, the arbitrage strategy when the actual trading price for the
option differs from that given by the Black—Scholes formula requires that
one continuously trade (buy or sell) the underlying security. Not only is
this physically impossible, but even if discretely approximated it might
(in practice) result in large transaction costs that could easily exceed the
gain of the arbitrage. A second reason for our answer is that even if we
are willing to accept that our estimate of the historical value of o is very
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precise, it is possible that its value might change over the option’s life.
Indeed, perhaps one reason that the market price differs from the formula
is because “the market” believes that the stock’s volatility over the life of
the option will not be the same as it was historically. Indeed, it has been
suggested that — rather than using historical data to estimate a security’s
volatility — a more accurate estimate can often be obtained by finding the
value of o that, along with the other parameters (s, ¢, K, and r) of the
option, makes the Black—Scholes valuation equal to the actual market
cost of the option. However, one difficulty with this implied volatility is
that different options on the same security, having either different exer-
cise times or strike prices or both, will often give rise to different implied
volatility estimates of 0. A common occurrence is that implied volatil-
ities derived from in-the-money call options (i.e., ones whose present
market price exceeds the strike price) are larger than ones derived from
out-of-the-money options (where the present price is less than the strike
price). With respect to the Black—Scholes valuation based on estimat-
ing o via historical data, these comments suggest that in-the-money call
options tend to be overpriced and that out-of-the-money options are un-
derpriced. One hypothesis that would resolve this seeming anomaly is
that the market’s prediction of a security’s future volatility depends on
its recent price movements; if it has recently increased, then the mar-
ket gives a lower prediction of its near future volatility. For consider an
out-of-the-money call option under such an hypothesis. In order for this
option to have a positive payoff the security’s price must rise, but if that
occurs then the market predicts that the security’s volatility will become
smaller, thus decreasing the value of the option.

A third (even more basic) reason why there is probably no way to guar-
antee a win is that our assumption that the underlying security follows
a geometric Brownian motion is only an approximation to reality, and —
even ignoring transaction costs — the existence of an arbitrage strategy
relies on this assumption. Indeed, many traders would argue against the
geometric Brownian motion assumption that future price changes are
independent of past prices, claiming to the contrary that past prices are
often an indication of an upward or downward trend in future prices.

7.5.2 When the Interest Rate Changes

We have previously shown that the option cost is an increasing function
of the interest rate. Does this imply that the cost of an option should
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increase if the central bank announces an increase in the interest rate
(say, on U.S. treasuries) and should decrease if the bank announces a
decrease in the interest rate? The answer is yes, provided that the se-
curity’s volatility remains the same. However, one should be careful
about making this assumption that a security’s volatility will remain
unchanged when there is a change in interest rates. An increase in in-
terest rates often has the effect of causing some investors to switch from
stocks to either bonds or investments having a fixed return rate, with the
reverse resulting when there is a decrease in interest rates; such actions
will probably result in a change in the volatility of a security.

7.5.3 Final Comments

If you believe that geometric Brownian motion is a reasonable (albeit ap-
proximate) model, then the Black—Scholes formula gives a reasonable
option price. If this price is significantly above (below) the market price,
then a strategy involving buying (selling) options and selling (buying)
the underlying security can be devised. Such a strategy, although not
yielding a certain win, can often yield a gain that has a positive expected
value along with a small variance.

Under the assumption that the security prices over time follow a geo-
metric Brownian motion with parameters . and o, one can often devise
strategies that have positive expected gains and relatively small risks
even when the cost of the option is as given by the Black—Scholes for-
mula. For suppose that, based on an estimation using empirical data,
you believe that the parameter u is unequal to the risk-neutral value
r—o?2. If

w>r—o?2

then both buying the security and buying the call option will result in
positive expected present value gains. Although you cannot avoid all
risks (since no arbitrage is possible), a low-risk strategy with a posi-
tive expected gain can be effected either by (a) introducing a risk-averse
utility function and then finding a strategy that maximizes the expected
utility, or (b) finding a strategy that has a reasonably large expected gain
along with a reasonably small variance. Such strategies would either
buy some security shares and sell some calls, or the reverse. Similarly,
if
p<r—o?2



(il

100 The Black—Scholes Formula

then both buying the security and buying the call option have negative
expected present value gains, and again we can search for a low-risk,
positive expectation strategy that sells one and buys the other. These
types of problems are considered in Chapter 8, which also introduces
utility functions and their uses.

It is our opinion that the geometric Brownian motion model of the
prices of a security over time can often be substantially improved upon,
and that — rather than blindly assuming such — one could sometimes do
better by using historical data to fit a more general model. If success-
ful, the improved model can give more accurate option prices, resulting
in more efficient strategies. The final two chapters of this book deal
with these more general models. In Chapter 10 we show that geometric
Brownian motion is not consistent with actual data on crude oil prices;
an improved model that allows tomorrow’s closing price to depend not
only on today’s closing price but also on yesterday’s is presented, and
a risk-neutral option price valuation based on this model is indicated.
In Chapter 11 we show that a generalization of the geometric Brownian
motion model results in an autoregressive model that can be used when
modeling a security whose prices have a mean reverting quality.

7.6 Exercises

Unless stated otherwise, the unit of time should be taken as one year.

Exercise 7.1 If the volatility of a stock is .33, what is the standard de-
viation of (a) log(S4(n)/Sa(n—1)) and (b) log(S,,(n)/Sm(n—1))? Here,
S4(n) and S,,(n) are (resp.) the prices of the security at the end of day n
and month n.

Exercise7.2 The prices of a certain security follow a geometric Brown-
ian motion with parameters . = .12 and o = .24. If the security’s price
is presently 40, what is the probability that a call option, having four
months to exercise time and with a strike price of K = 42, will be exer-
cised? (A security whose price at the time of expiration of a call option
is above the strike price is said to finish in the money.)

Exercise 7.3 If the interest rate is 8%, what is the risk-neutral valua-
tion of the call option specified in Exercise 7.27
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Exercise 7.4 What is the risk-neutral valuation of a six-month Euro-
pean put option to sell a security for a price of 100 when the current price
is 105, the interest rate is 10%, and the volatility of the security is .30?

Exercise 7.5 What should the price of a call option be if the strike
price is equal to zero?

Exercise 7.6 What value should the cost of a call option approach as
the exercise time becomes larger and larger? Explain your thinking (or
do the mathematics).

Exercise 7.7 A European asset-or-nothing call pays its holder a fixed
amount F if the price at expiration time is larger than K and pays 0 oth-
erwise. Find the risk-neutral valuation of such a call — one that expires
in six month’s time and has F' = 100 and K = 40 — if the present price
of the security is 38, its volatility is .32, and the interest rate is 6%.

Exercise 7.8 To determine the probability that a European call option
finishes in the money (see Exercise 7.2), is it enough to specify the five
parameters (K, S(0), r, t, and 0)? Explain your answer. If it is “no,”
what else is needed?

Exercise 7.9 Continue Figure 7.1 so that it gives the possible price pat-
terns for times ¢y, t, t, t3, and 4.

Exercise 7.10 Using the notation of Section 7.4, which of the follow-
ing statements do you think are true? Explain your reasoning.

(a) Vi(i) is nondecreasing in k for fixed i.
(b) Vi(i) is nonincreasing in k for fixed i.
(c) Vi(i) is nondecreasing in i for fixed k.
(d) Vi (i) is nonincreasing in i for fixed k.

Exercise 7.11 Give the risk-neutral price of a European put option
whose parameters are as given in Example 7.4a.

Exercise 7.12 Derive an approximation to the risk-neutral price of an
American put option having parameters

s=10, t=.25, K=10, o =.3, r =.06.
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Exercise 7.13 Explain how you can use the multiperiod binomial
model to approximate the risk-neutral geometric Brownian motion price
of an American asset-or-nothing call option.

Exercise 7.14 Derive an approximation to the risk-neutral price of an
American asset-or-nothing call option having parameters

s=10, t=.25 K=11, F=20, o=.3 r = .06.
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8. Valuing by Expected Ultility

8.1 Limitations of Arbitrage Pricing

Although arbitrage can be a powerful tool in determining the appropri-
ate cost of an investment, it is more the exception than the rule that it will
result in a unique cost. Indeed, as the following example indicates, a
unique no-arbitrage option cost will not even result in simple one-period
option problems if there are more than two possible next-period security
prices.

Example 8.1a Consider the call option example given in Section 5.1.
Again, let the initial price of the security be 100, but now suppose that
the price at time 1 can be any of the values 50, 200, and 100. That is,
we now allow for the possibility that the price of the stock at time 1 is
unchanged from its initial price (see Figure 8.1). As in Section 5.1, sup-
pose that we want to price an option to purchase the stock at time 1 for
the fixed price of 150.

For simplicity, let the interest rate r equal zero. The arbitrage theorem
states that there will be no guaranteed win if there are nonnegative num-
bers pso, p1oos P20o that (a) sum to 1 and (b) are such that the expected
gains if one purchases either the stock or the option are zero when p;
is the probability that the stock’s price at time 1is i (i = 50, 100, 200).
Letting G, denote the gain at time 1 from buying one share of the stock,
and letting S(1) be the price of that stock at time 1, we have

100 if S(1) = 200,
Gi=10 if S(1) =100,
=50 if §(1) = 50.
Hence,
E[Gs] = 100p200 — S50pso.

Also, if c is the cost of the option, then the gain from purchasing one
option is



R

104 Valuing by Expected Utility

@® 200

100 —-@ 100

b - time

t=0 t=1

Figure 8.1: Possible Stock Prices at Time 1

G, = { 50 —c¢ if S(1) =200,

—C if S(1) =100 or S(1) = 50.

Therefore,

E[G,] = (50 — ¢)p200 — c(pso + P10o)
= 50p200 — c.

Equating both E[G;] and E[G,] to zero shows that the conditions for
the absence of arbitrage are that there exist probabilities and a cost ¢
such that

P200 = %Pso and ¢ = 50p200.

Since the leftmost of the preceding equalities implies that poo < 1/3,
it follows that for any value of ¢ satisfying 0 < ¢ < 50/3 we can find
probabilities that make both buying the stock and buying the option fair
bets. Therefore, no arbitrage is possible for any option cost in the inter-
val [0, 50/3]. O

8.2 Valuing Investments by Expected Utility

Suppose that you must choose one of two possible investments, each of
which can result in any of n consequences, denoted Ci, ..., C,. Suppose
that if the first investment is chosen then consequence i will result with
probability p; (i =1,...,n), whereas if the second one is chosen then
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consequence i will result with probability ¢; (i = 1, ..., n), where
S pi = Y1, qi = 1. The following approach can be used to deter-
mine which investment to choose.

We begin by assigning numerical values to the different consequences
as follows. First, identify the least and the most desirable consequence,
call them ¢ and C respectively; give the consequence ¢ the value 0 and
give C the value 1. Now consider any of the other n — 2 consequences,
say C;. To value this consequence, imagine that you are given the choice
between either receiving C; or taking part in a random experiment that
earns you either consequence C with probability u or consequence c
with probability 1 — u. Clearly your choice will depend on the value of
u. If u = 1 then the experiment is certain to result in consequence C;
since C is the most desirable consequence, you will clearly prefer the
experiment to receiving C;. On the other hand, if # = 0 then the ex-
periment will result in the least desirable consequence, namely c, and
so in this case you will clearly prefer the consequence C; to the ex-
periment. Now, as u decreases from 1 down to 0, it seems reasonable
that your choice will at some point switch from the experiment to the
certain return of C;, and at that critical switch point you will be indif-
ferent between the two alternatives. Take that indifference probability
u as the value of the consequence C;. In other words, the value of C; is
that probability u such that you are indifferent between either receiving
the consequence C; or taking part in an experiment that returns conse-
quence C with probability u or consequence ¢ with probability 1 — u.
We call this indifference probability the utility of the consequence C;,
and we designate it as u(C;).

In order to determine which investment is superior, we must evalu-
ate each one. Consider the first one, which results in consequence C;
with probability p; (i =1, ...,n). We can think of the result of this in-
vestment as being determined by a two-stage experiment. In the first
stage, one of the values 1, ..., n is chosen according to the probabilities
P1, ..., pn; if value i is chosen, you receive consequence C;. However,
since C; is equivalent to obtaining consequence C with probability u(C;)
or consequence ¢ with probability 1 — u(C;), it follows that the result of
the two-stage experiment is equivalent to an experiment in which either
consequence C or ¢ is obtained, with C being obtained with probability

Zn:Piu(Ci)-
i=1
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Similarly, the result of choosing the second investment is equivalent to
taking part in an experiment in which either consequence C or c is ob-
tained, with C being obtained with probability

Y qiu(C).
i=1

Since C is preferable to c, it follows that the first investment is prefer-
able to the second if

> piu(C) > ZQiu(Ci)-
i=1 i=1

In other words, the value of an investment can be measured by the ex-
pected value of the utility of its consequence, and the investment with
the largest expected utility is most preferable.

In many investments, the consequences correspond to the investor re-
ceiving a certain amount of money. In this case, we let the dollar amount
represent the consequence; thus, u (x) is the investor’s utility of receiving
the amount x. We call u(x) a utility function. Thus, if an investor must
choose between two investments, of which the first returns an amount X
and the second an amount Y, then the investor should choose the first if

Elu(X)] > E[u(Y)]

and the second if the inequality is reversed, where u is the utility func-
tion of that investor. Because the possible monetary returns from an
investment often constitute an infinite set, it is convenient to drop the
requirement that u(x) be between 0 and 1.

Whereas an investor’s utility function is specific to that investor, a
general property usually assumed of utility functions is that u(x) is a
nondecreasing function of x. In addition, a common (but not universal)
feature for most investors is that, if they expect to receive x, then the
extra utility gained if they are given an additional amount A is nonin-
creasing in x; that is, for fixed A > 0, their utility function satisfies

u(x + A) — u(x) is nonincreasing in x.

A utility function that satisfies this condition is called concave. It can
be shown that the condition of concavity is equivalent to
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Figure 8.2: A Concave Function

u’(x) <0.

That is, a function is concave if and only if its second derivative is non-
positive. Figure 8.2 gives the curve of a concave function; such a curve
always has the property that the line segment connecting any two of its
points always lies below the curve.

An investor with a concave utility function is said to be risk-averse.
This terminology is used because of the following, known as Jensen'’s
inequality, which states that if u is a concave function then, for any ran-

dom variable X,
Elu(X)] < u(E[X]).

Hence, letting X be the return from an investment, it follows from Jen-
sen’s inequality that any investor with a concave utility function would
prefer the certain return of E[X] to receiving a random return with this
mean.

An investor with a linear utility function

u(x) =a+bx, b>0,
is said to be risk-neutral or risk-indifferent. For such a utility function,
E[u(X)] = a + bE[X]

and so it follows that a risk-neutral investor will value an investment
only through its expected return.
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Figure 8.3: A Log Utility Function

A commonly assumed utility function is the log utility function

u(x) = log(x);

see Figure 8.3. Because log(x) is a concave function, an investor with a
log utility function is risk-averse. This is a particularly important utility
function because it can be mathematically proven in a variety of situa-
tions that an investor faced with an infinite sequence of investments can
maximize long-term rate of return by adopting a log utility function and
then maximizing the expected utility in each period. In addition, such a
strategy will, for very large values of x, minimize the expected time un-
til the investor’s fortune is at least x (see chapter references [1] and [4]).
The following example shows how much a log utility investor should
invest in a simple favorable gamble.

Example 8.2a An investor with capital x can invest any amount be-
tween 0 and x; if y is invested then y is either won or lost, with respective
probabilities p and 1 — p. If p > 1/2, how much should be invested by
an investor having a log utility function?

Solution. Suppose the amount ax is invested, where 0 < & < 1. Then
the investor’s final fortune, call it X, will be either x + ax or x — ax
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with respective probabilities p and 1 — p. Hence, the expected utility of
this final fortune is
plog((1+a)x) + (1 — p)log((1 — er)x)

= plog(l + ) + plog(x) + (1 — p)log(1 — @) + (1 — p) log(x)
=log(x) + plog(1+ ) + (1 — p) log(1 — ).

To find the optimal value of «, we differentiate
plog(l+a)+ (1 — p)log(l—a)

to obtain

d . p 1-p
E(plog(l%—a)+(1—p)log(1—a))_1+a -

Setting this equal to zero yields
p—ap=l—p+a—ap or a=2p—1

Hence, the investor should always invest 100(2p — 1) percent of her
present fortune. For instance, if the probability of winning is .6 then the
investor should invest 20% of her fortune; if it is .7, she should invest
40%. (When p < 1/2, itis easy to verify that the optimal amount to in-
vest is 0.) d

Our next example adds a time factor to the previous one.

Example 8.2b  Suppose in Example 8.2a that, whereas the investment
ax must be immediately paid, the payoff of 2ax (if it occurs) does not
take place until after one period has elapsed. Suppose further that what-
ever amount is not invested can be put in a bank to earn interest at a rate
of r per period. Now, how much should be invested?

Solution. An investor who invests «x and puts the remaining (1 — a)x
in the bank will, after one period, have (1 + r)(1 — «)x in the bank, and
the investment will be worth either 2ax (with probability p) or 0 (with
probability 1 — p). Hence, the expected value of the utility of his for-
tune is
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plog(1+r) (A —a)x +2ax) + (1 — p)log((1 +r)(1 — a)x)
=log(x) + plog(l1+r +a —ar)
+ (A —=p)log(l+r)+ (1 — p)log(l — ).
Hence, once again the optimal fraction of one’s fortune to invest does

not depend on the amount of that fortune. Differentiating the previous
equation yields

pd—r)  1-p
l+r+a—ar 1—-a

d
— (expected utility) =
da
Setting this equal to zero and solving yields that the optimal value of &
is given by

a_p(l—r)—(l—p)(l-i—r)_2p—1—r
B l—r T l=r

For instance, if p = .6 and r = .05 then, although the expected rate of
return on the investment is 20% (whereas the bank pays only 5%), the
optimal fraction of money to be invested is

15
= — ~ .158.
=95
That is, the investor should invest approximately 15.8% of his capital
and put the remainder in the bank. O

Another commonly used utility function is the exponential utility func-
tion
u(x)=1—e", b>0.

The exponential is also a risk-averse utility function (see Figure 8.4).

8.3 The Portfolio Selection Problem

Suppose one has the positive amount w to be invested among n differ-
ent securities. If the amount a is invested in security i (i = 1,...,n)
then, after one period, that investment returns aX;, where X; is a non-
negative random variable. In other words, if we let R; be the the rate of
return from investment #, then
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0
Figure 8.4: An Exponential Utility Function
aX;
a = : or R i = X,' -1
1+ R;

If w; is invested in each security i = 1, ..., n, then the end-of-period
wealth is

n

W= Z w,~X i

i=l1

The vector wy, ..., w, is called a portfolio. The problem of determining

the portfolio that maximizes the expected utility of one’s end-of-period
wealth can be expressed mathematically as follows:

choose wy, ..., w, satisfying

n
w; >0, i=1,...,n, Ew,-:w,
i=1
to

maximize E[U(W)],

where U is the investor’s utility function for the end-of-period wealth.
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To make the preceding problem more tractable, we shall make the as-
sumption that the end-of-period wealth W can be thought of as being a
normal random variable. Provided that one invests in many securities
that are not too highly correlated, this would appear to be, by the central
limit theorem, a reasonable approximation. (It would also be exactly
true if the X;, i = 1, ..., n, have what is known as a multivariate normal
distribution.)

Suppose now that the investor has an exponential utility function

Ux)=1—e", b>0,

and so the utility function is concave. If Z is a normal random variable,
then eZ is lognormal and has expected value

E[e?] = exp{E[Z] + Var(Z)/2}.

Hence, as —bW is normal with mean —bE[W] and variance b2 Var(W),
it follows that

E[UW)] =1— E[e™®™] =1 — exp{—bE[W] + b? Var(W)/2}.

Therefore, the investor’s expected utility will be maximized by choos-
ing a portfolio that

maximizes E[W] — b Var(W)/2.

Observe how this implies that, if two portfolios give rise to random
end-of-period wealths Wy and W, such that W, has a larger mean and a
smaller variance than does W5, then the first portfolio results in a larger
expected utility than does the second. That is,

E[Wi] = E[W,] & Var(W,) < Var(Wy)
= E[UW)] = E[U(W2)]. (8.1)

In fact, provided that all end-of-period fortunes are normal random vari-
ables, (8.1) remains valid even when the utility function is not exponen-
tial, provided that it is a nondecreasing and concave function. Con-
sequently, if one investment portfolio offers a risk-averse investor an
expected return that is at least as large as that offered by a second in-
vestment portfolio and with a variance that is no greater than that of the
second portfolio, then the investor would prefer the first portfolio.

R h}]._M‘M‘_\- gl =0

i
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Let us now compute, for a given portfolio, the mean and variance of
W. With security i’s rate of return R; = X; — 1, let

ri=E[R], v} =Var(R).
Then, since
n n
W=) w+R)=w+) wk,
i=1 =]

we have that

EWl=w+ ) E[wiRi]

i=1

=w+ Y wir; (8.2)
i=1

Var(W) = Var(z w,-Ri)

i=l

— Z Val'(w,'R,‘)
i=1
+Y > Cov(w;R;, w;R;)  (by Equation (L.11))
i=1 j#i
=Y w4+ wwel, j), (8.3)
i=l1 i=1 j#i

where
C(i’ j) = COV(Ris R])'

Example 8.3a Suppose you are thinking about investing your fortune
of 100 in two securities whose rates of return have the following ex-
pected values and standard deviations:

ri=.15 v, =.20; r,=.18, v, =.25.

If the correlation between the rates of return is p = —.4, find the opti-
mal portfolio when employing the utility function

Ux) =1— %%,
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Solution. If w; = y and wy = 100 — y, then from Equation (8.2) we
obtain

E[W] =100 + .15y + .18(100 — y) = 118 — .03y.
Also, since ¢(1, 2) = pvv, = —.02, Equation (8.3) gives

Var(W) = y2(.04) + (100 — y)?(.0625) — 2y(100 — y)(.02)
= .1425y% — 16.5y + 625.

We should therefore choose y to maximize
118 — .03y — .005(.1425y* — 16.5y + 625)/2
or, equivalently, to maximize
01125y — .0007125y%/2.

Simple calculus shows that this will be maximized when

.01125

= ———— =15.789.
.0007125.

y

That is, the maximal expected utility of the end-of-period wealth is ob-
tained by investing 15.789 in investment 1 and 84.211 in investment 2.
Substituting the value y = 15.789 into the previous equations gives
E[W] = 117.526 and Var(W) = 400.006, with the maximal expected
utility being

1 — exp{—.005(117.526 + .005(400.006)/2)} = .4416.

This can be contrasted with the expected utility of .3904 obtained when
all 100 is invested in security 1 or the expected utility of .4413 when all
100 is invested in security 2. O

Example 8.3b Suppose only two securities are under consideration,
both with the same expected rate of return. Then, since every portfo-
lio will yield the same expected return, it follows that the best portfolio
for any concave utility function is the one whose end-of-period wealth
has minimal variance. If aw is invested in security 1 and (1 — a)w is
invested in security 2, then with ¢ = ¢(1, 2) we have

gt v e P e L
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Var(W) = azwzvf +1- a)zwzvg +2a(1 — a)w?e
= w?[a?v] + (1 — @)*v3 +2ca(l — a)].

Thus, the optimal portfolio is obtained by choosing the value of « that
minimizes a?v? + (1 — @)?v3 + 2ca (1 — «). Differentiating this quan-
tity and setting the derivative equal to zero yields

2av? — 2(1 — @)v3 +2¢ — 4ca = 0.
Solving for « gives the optimal fraction to invest in security 1:

2

0 e,
v +vi-2c

For instance, suppose the standard deviations of the rate of returns are
v; = .20 and v, = .30, and that the correlation between the two rates of
return is p = .30. Then, as ¢ = pvv, = .018, we obtain that the opti-
mal fraction of one’s investment capital to be used to purchase security 1

= 09 — 018
o =
04+ .09 — .036

That is, 76.6% of one’s capital should be used to purchase security 1 and
23.4% to purchase security 2.

If the rates of returns are independent, then ¢ = 0 and the optimal
fraction to invest in security 1 is

= 72/94 ~ .766.

v3 _ 1/v}
vZ+v2 102 +1/03

In this case, the optimal percentage of capital to invest in a security is
determined by a weighted average, where the weight given to a security
is inversely proportional to the variance of its rate of return. This result
also remains true when there are n securities whose rates of return are
uncorrelated and have equal means. Under these conditions, the optimal
fraction of one’s capital to invest in security i is
l/v?
AR o
=171
Determining a portfolio that maximizes the expected utility of one’s
end-of-period wealth can be computationally quite demanding. Often
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a reasonable approximation can be obtained when the utility function
U (x) satisfies the condition that its second derivative is a nondecreasing
function — that is, when

U’ (x) is nondecreasing in x. (8.4)
It is easily checked that the utility functions
Ux)=x% 0<a<l,
Ux)y=1-¢€e", b>0,
U(x) = log(x)

all satisfy the condition of Equation (8.4).

Assuming that U(x) satisfies condition (8.4), we can approximate
U(W) by using the first three terms of its Taylor series expansion about
the point u = E[W]. That is, we use the approximation

UW) ~ U(w) + U' ()W — ) + U" () (W — p)*/2.
Taking expectations gives that
E[UW)] ~ U(w) + U'(WEIW — ] + U"(w) ELW — 1)*1/2
=U(p) + U"(w)v?/2,
where v? = Var(W) and where we have used that
EW—-pl=EW]—pu=pn—un=0.

Therefore, a reasonable approximation to the optimal portfolio is given
by the portfolio that maximizes

U(E[W]) + U"(E[W]) Var(W)/2. (8.5)

If U is a nondecreasing, concave function that also satisfies condition
(8.4), then expression (8.5) will have the desired property of being both
increasing in E[W] and decreasing in Var(W).

Utility functions of the form U(x) = x* or U(x) = log(x) have the
property that there is a vector

n
* * * *
af,...,a,, o >0, E a; =1,
i=1
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such that the optimal portfolio under a specified one of these utility func-
tionsis way, ..., wa, for every initial wealth w. That is, for these utility
functions, the optimal proportion of one’s wealth w that should be in-
vested in security i does not depend on w. To verify this, note that

n
W=w Za,-X,-
i=1
for any portfolio wey, ..., wa,. Hence, if U(x) = x? then

E[UW)] = E[W*]

and so the optimal o; (i = 1, ..., n) do not depend on w. (The argument
for U(x) = log(x) is left as an exercise.)

An important feature of the approximation criterion (8.5) is that, when
U(x) = x? (0 < a < 1), the portfolio that maximizes (8.5) also has the
property that the percentage of wealth it invests in each security does
not depend on w. This follows since equations (8.2) and (8.3) show that,
for the portfolio w; = a;w (i =1, ..., n),

E[W] = wA, Var(W) = w’B,

where
n
A=1+ Z a;r;,
i=1
n n
B=Y alv}+) Y wacli, ).
i=1 i=1 j#i
Thus, since
U'(x) = a(a — 1)x*72,
we see that

U(E[W]) + U"(E[W]) Var(W)/2
= woA% +a(a — Dw*2A*2w?B/2
= w[A% + a(a — 1)A“"2B/2).
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Therefore, the investment percentages that maximize (8.5) do not de-
pend on w.

Example 8.3c Let us reconsider Example 8.3a, this time using the
utility function
U(x) = /x.

Then, with o; = o and @y = 1 — « we have
A =1+ 15a + .18(1 — @),
B = .04a* +.0625(1 — @)* — 2(.02)a(l — @),
and we must choose the value of « that maximizes
fla) = AY2 — A73/2B/8.

The solution can be obtained by setting the derivative equal to zero and
then solving this equation numerically. O

Suppose now that we can invest a positive or negative amount in any
investment and, in addition, that all investments are financed by borrow-
ing money at a fixed rate of r per period. If w; is invested in investment
i (i =1,...,n), then the return from this portfolio after one period is

R(w) = z": wi(l+ Ri) = (1 +7) Zn: w; = zn: wi(R; —r).

i=1 i=1 i=1
(If s = ), w;, then s is borrowed from the bank if s > 0 and —s is
deposited in the bank if s < 0.) Let

r(w) = E[R(W)], V(w) = Var(R(w))
and note that

r(aw) = ar(w),  V(aw) =a*V(w),

where aw = (awy, ..., aw,). Now, let w* be such that r(w*) = 1 and

V(w*) = min V(w).

w:r(w)=1

That is, among all portfolios w whose expected return is 1, the variance
of the portfolio’s return is minimized under w*.
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We now show that for any b > 0, among all portfolios whose ex-
pected return is b, the variance of the portfolio’s return is minimized
under bw*. To verify this, suppose that r(y) = b. But then

1Y 2 L =1
r(z)’)—br y) =1,

which implies (by the definition of w*) that
1
V(W) = b* V(W) < b2V<Ey) = V(y),

which completes the verification. Hence, portfolios that minimize the
variance of the return are constant multiples of a particular portfolio.
This is called the portfolio separation theorem because, when analyz-
ing the portfolio decision problem from a mean variance viewpoint, the
theorem enables us to separate the portfolio decision problem into a de-
termination of the relative amounts to invest in each investment and the
choice of the scalar multiple.

8.3.1 Estimating Covariances

In order to create good portfolios, we must first use historical data
to estimate the values of r; = E[R;], vi2 = Var(R;), and c(i, j) =
Cov(R;, R;) for all i and j. The means r; and variances vi2 can be es-
timated, as was shown in Section 7.3, by using the sample mean and
sample variance of historical rates of return for security i. To estimate
the covariance c(i, j) for a fixed pair i and j, suppose we have historical
data that covers m periods and let r; ; and r; ; denote (respectively) the
rates of return of security i and of security j for period k, k =1, ..., m.
Then, the usual estimator of

Cov(R;i, Rj) = E[(R; — ri)(R; —rj)]
is
Yoiei(rie — F)(rjk —15)

m—1

9
where 7; and 7; are the sample means

m m
= D ki ik o D i1 Tik
ri==—, rj = =/,
m m
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84 The Capital Assets Pricing Model

The Capital Assets Pricing Model (CAPM) attempts to relate R;, the
one-period rate of return of a specified security i, to R, the one-period
rate of return of the entire market (as measured, say, by the Standard
and Poor’s index of 500 stocks). If ry is the risk-free interest rate (usu-
ally taken to be the current rate of a U.S. Treasury bill) then the model
assumes that, for some constant S;,

Ri =1+ Bi(Ry —17) t+ i,

where ¢; is a normal random variable with mean O that is assumed to be
independent of R,,. Letting the expected values of R; and R,, be r; and
rm (resp.), the CAPM model (which treats r; as a constant) implies that

ri =15+ Bi(tm —ry)
or, equivalently, that
ri —rg = Bilrm —ry).

That is, the difference between the expected rate of return of the security
and the risk-free interest rate is assumed to equal B; times the difference
between the expected rate of return of the market and the risk-free in-
terest rate. Thus, for instance, if 8; = 1 (resp. % or 2) then the expected
amount by which the rate of return of security i exceeds ry is the same
as (resp. one-half or twice) the expected amount by which the overall
market’s rate of return exceeds ry. The quantity j; is known as the beta
of security i.

Using the linearity property of covariances — along with the result that
the covariance of a random variable and a constant is 0 — we obtain from
the CAPM that

Cov(R;, R,) = Bi Cov(R,, R,) + Cov(e;, Ry)

= B; Var(R,,) (since ¢; and R,, are independent).

Therefore, letting v2, = Var(R,,), we see that

_ Cov(Ri, Ry)

i 2
vm

5
b
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Example 8.4a Suppose that the current risk-free interest rate is 6%
and that the expected value and standard deviation of the market rate of
return are .10 and .20, respectively. If the covariance of the rate of re-
turn of a given stock and the market’s rate of return is .05, what is the
expected rate of return of that stock?

Solution. Si
olution. Since 05

T (202
it follows (assuming the validity of the CAPM) that

B = 1.25,

ri =.06 +1.25(.10 — .06) = .11.

That is, the stock’s expected rate of return is 11%. O

If we let vi2 = Var(R;) then under the CAPM it follows, using the as-
sumed independence of R,, and ¢;, that

v} = B*v? + Var(e;).

If we think of the variance of a security’s rate of return as constituting
the risk of that security, then the foregoing equation states that the risk
of a security is the sum of two terms: the first term, 22, is called the
systematic risk and is due to the combination of the security’s beta and
the inherent risk in the market; the second term, Var(e;), is called the

specific risk and is due to the specific stock being considered.

8.5 Mean Variance Analysis of Risk-Neutral-Priced
Call Options

Suppose that the prices of a certain security follow a geometric Brown-
ian motion with parameters u and o. Let r be the interest rate, and
suppose that

u#r—o?2.

Furthermore, suppose that a call option to purchase the stock at time ¢
for the price K is selling at the price C specified by the Black—Scholes
formula. Then, although there is no sure win, one can still make invest-
ments whose present value gain has a positive expectation and a small
variance.
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To begin, suppose that at time 0 we purchase x; units of the security
and x, units of the option for a total price of sx; + Cx». If we intend to
close out the investment at time ¢, then its present value gain is

P = e_"(xIS(t) + x2(8(t) — K)+) —x15 —x2C.

To compute E[P] and Var(P), let

_ pt— log(K/s)

d
o/t

and let
F(b) = exp{but + b*c*t/2}®(bo+/t +d),

where @ is the standard normal distribution function. Now, we let

A = sF(l) — KF(0),

B = s’F(2) — KsF(1),

D = s2F(2) — 2KsF(1) + K*F(0),
E = sexp{ut + ta?/2},

G = s*exp{2ut + 2t0%}.

It can be shown that

A=E[(S®) - K)'],

B = E[St)(S(t) — K)'],
D = E[(S¢) — K)")?],
E = E[S(®)],

G = E[S*(1)].

The preceding yields that
E[P] = e "(x1E + x2A) — x15 — x2C (8.6)

and
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Var(P) = e~ Var(x; S(t) + x2(S(t) — K)*)

= e (E[(x1S() + x2(S(1) — K)*)’]
— E*[x1S(1) + x2(S(1) — K)*])
= e '(x2G + x2D + 2x1x,B — (x,E + x2A)?). (8.7)

One can then experiment with different values of x; and x,, one of
which should be positive and the other negative; Equations (8.6) and
(8.7) can be used to determine the resulting means and variances. If one
can find values of the x; that give a positive expected gain with an ac-
ceptably small variance, then an investment having a relatively small
risk can be made.

Example 8.5a Consider a call option to purchase a security in five
months for a price of 60 when the current price of the security is s = 62,
the volatility of the security is .20 per year, and the interest rate is 10%.
In addition, suppose that the call is selling for its Black—Scholes price
valuation of C = 5.80. If you think that the drift parameter of the geo-
metric Brownian motion that describes the security’s price over time is
u = .10 then, as
10 > .10 — (.2)%/2 = .08,

it follows (based on your evaluation) that both the security and the call
option have positive expected present value gains. With the notation de-
fined in this section, it turns out that

d =.5767, A =64502, B =476.1476,
D =89.0516, E =65.1788, G = 4,319.387.

Consequently, from Equations (8.6) and (8.7) we obtain that

E[P] = .5188x; + .3870x,,
Var(P) = 65.4253x7 + 43.6529x% 4 102.5505x, x5.

Therefore, if you buy one share of the stock, then the present value of
your gain has expected value $.52 and standard deviation $8.09; on the
other hand, if you buy one call option, then your expected present value
gain is $.39 with a standard deviation of $6.61. Because buying .746
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shares of the security will result in an expected present value gain of
$.39 with a standard deviation of $6.04, buying the security is a better
investment (in mean-value sense) than is buying the option. However,
we can obtain an expected present value gain equal to 1 by letting

_ 1-.3870x,
= 75188

If we then choose x; to minimize Var(P), the solution is

X1 = 2.93, Xy = —1.34,

v/ Var(P) = 15.38.

(As a comparison, buying 1/.52 shares of the security results in an ex-
pected present value gain of 1 but with a standard deviation of 8.09/.52 =
15.56.) Thus, the optimal policy (in the sense of minimizing the vari-
ance for a specified mean return) is to sell 1.34 options for every 2.93
shares purchased (or, equivalently, to sell 1.34/2.93 = .46 options for
every security share purchased). O

which results in

8.6 Rates of Return: Single-Period and Geometric
Brownian Motion

Let S;(z) be the price of security i at time ¢ (f > 0), and assume that
these prices follow a geometric Brownian motion with drift parameter
w; and volatility parameter o;. If R; is the one-period rate of return for
security #, then S

= =50

1+ R; ©
or, equivalently,

e o _ S
CSi0)

Since S;(1)/S;(0) has the same probability distribution as e* when X is
a normal random variable with mean w; and variance 0,.2, it follows that

o1
Si(0)
= E[e¥]—1

ri = E[R,] = El:

= exp{u; +07/2) — 1.
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Also,

v2 = Var(R;) = Var(Si(l)>
$:(0)

= Var(e*)

= E[e*] — (E[e*])?

= exp{2u; + 207} — (exp{u; + 07/2))*

= exp{2; + 207} — exp{2u; + 07},
where the next-to-last equality used the fact that 2X is normal with mean
2u; and variance 407 to determine E[e2X].

Thus, the expected one-period rate of return is exp{u; + 02/2} — 1;

note that this is not the expected value of the average spot rate of return

by time 1. For if we let R;(z) be the average spot rate of return by time
t (i.e., the yield curve), then

Si) _ eRi®)
Si(0) ’

= 1 Si(1)
Ri(t) = —log| —= ).
=1 Og(s,-w))
Since log(S;(¢)/S:(0)) is a no_rmal random variable with mean ;7 and
variance taiz, it follows that R;(¢) is a normal random variable with

implying that

E[R(D] = pi,  Var(Ri(t)) = a2/t
Thus, the expected value and variance of the one-period yield function

for geometric Brownian motion are its parameters x; and 0.

8.7 Exercises

Exercise 8.1 Suppose, in Example 8.1a, that possible prices of the se-
curity at time 1 are 50, 175, and 200. Find the range of no-arbitrage
option costs. What conclusion can you draw?

Exercise 8.2 The degree of risk aversion indicated by the utility func-
tion u(x) is defined as




e
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u//( x)
w'(x)’

where ' and u” are the first two derivatives of U. The quantity a(x)
is called the Arrow—Pratt absolute risk-aversion coefficient. Calculate
this coefficient when

(a) u(x) =log(x);
(b) u(x) =1—e"*.

Exercise 8.3 In Example 8.2a, show that if p < 1/2 then the optimal
amount to invest is 0.

Exercise 8.4 In Example 8.2b, show that if p < 1/2 then the optimal
amount to invest is 0.

Exercise 8.5 Suppose in Example 8.3a that p = 0. What is the opti-
mal portfolio?

Exercise 8.6 Suppose in Example 8.3a that r; = .16. Determine the
maximal expected utility and compare it with (a) the expected utility
obtained when everything is invested in security 1 and (b) the expected
utility obtained when everything is invested in security 2.

Exercise 8.7 Show that the percentage of one’s wealth that should be
invested in each security when attempting to maximize E[log(W)] does
not depend on the amount of initial wealth.

Exercise 8.8 Verify that U”(x) is nondecreasing in x when x > 0 and
when

(a) Ux)=x%0<a<]
(b) Ux)=1—e"b>0;
(c) U(x) = log(x).

Exercise 8.9 Does the percentage of one’s wealth that is to be invested
in each security when attempting to maximize the approximation (8.5)
depend on initial wealth when U(x) = log(x)?

Exercise 8.10 Use the approximation to E[U(W)] given by (8.5) to
determine the optimal amounts to invest in each security in Example 8.3a
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—.005x

when using the utility function U(x) =1—e . Compare your re-

sults with those obtained in that example.

Exercise 8.11 Suppose we want to choose a portfolio with the objec-
tive of maximizing the probability that our end-of-period wealth is at
least g, where g > w. Assuming that W is normal, the optimal portfo-
lio will be the one that maximizes what function of E[W] and Var(W)?

Exercise 8.12 Find the optimal portfolio in Example 8.3a if your ob-
jective is to maximize the probability that your end-of-period wealth is
at least: (a) 110; (b) 115; (c) 120; (d) 125.

Exercise 8.13 Find the solution of Example 8.3c.

Exercise 8.14 If the beta of a stock is .80, what is the expected rate of
return of that stock if the expected value of the market’s rate of return
is .07 and the risk-free interest rate is 5%? What if the risk-free interest
rate is 10%? Assume the CAPM.

Exercise 8.15 If B; is the beta of stock i fori =1, ..., k, what would
be the beta of a portfolio in which «; is the fraction of one’s capital that
is used to purchase stocki (i =1, ..., k)?

Exercise 8.16 A single-factor model supposes that R;, the one-period
rate of return of a specified security, can be expressed as

Ri =a,~+b,~F+e,~,

where F is a random variable (called the “factor”), e; is a normal ran-
dom variable with mean 0 that is independent of F, and a; and b; are
constants that depend on the security. Show that the CAPM is a single-
factor model, and identify a;, b;, and F.

Exercise 8.17 In Example 8.5a, find the expected value and the stan-
dard deviation of an investment that purchases

(a) 3 shares of the security and —2 options;
(b) 3 options and —2 shares of the security.
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9. Exotic Options

9.1 Introduction

The options we have so far considered are sometimes called “vanilla”
options to distinguish them from the more exotic options, whose preva-
lence has increased in recent years. Generally speaking, the value of
these options at the exercise time depends not only on the security’s
price at that time but also on the price path leading to it. In this chapter
we introduce three of these exotic-type options — barrier options, Asian
options, and lookback options —and show how to use Monte Carlo simu-
lation methods efficently to determine their geometric Brownian motion
risk-neutral valuations. In the final section of this chapter we present an
explicit formula for the risk-neutral valuation of a “power” call option,
whose payoff when exercised is the amount by which a specified power
of the security’s price at that time exceeds the exercise price.

9.2 Barrier Options

To define a European barrier call option with strike price K and exercise
time ¢, a barrier value v is specified; depending on the type of barrier
option, the option either becomes alive or is killed when this barrier is
crossed. A down-and-in barrier option becomes alive only if the secu-
rity’s price goes below v before time ¢, whereas a down-and-out barrier
option is killed if the security’s price goes below v before time z. In
both cases, v is a specified value that is less than the initial price s of
the security. In addition, in most applications, the barrier is considered
to be breached only if an end-of-day price is lower than v; that is, a
price below v that occurs in the middle of a trading day is not consid-
ered to breach the barrier. Now, if one owns both a down-and-in and a
down-and-out call option, both with the same values of K and ¢, then
exactly one option will be in play at time ¢ (the down-and-in option if
the barrier is breached and the down-and-out otherwise); hence, owning
both is equivalent to owning a vanilla option with exercise time ¢ and
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exercise price K. As a result, if D;(s, t, K) and D,(s, t, K) represent,
respectively, the risk-neutral present values of owning the down-and-in
and the down-and-out call options, then

D;(s,t,K)+ D,(s,t,K) = C(s,t, K),

where C(s, t, K) is the Black—Scholes valuation of the call option given
by Equation (7.7). As a result, determining either one of the values
Di(s,t, K) or D,(s, t, K) automatically yields the other.

There are also up-and-in and up-and-out barrier call options. The up-
and-in option becomes alive only if the security’s price exceeds a barrier
value v, whereas the up-and-out is killed when that event occurs. For
these options, the barrier value v is greater than the exercise price K.
Since owning both these options (with the same ¢ and K) is equivalent
to owning a vanilla option, we have

Ui(s,t, K) + Uy(s,t, K) = C(s,1, K),

where U; and U, are the geometric Brownian motion risk-neutral valu-
ations of (resp.) the up-and-in and the up-and-out call options, and C is
again the Black—Scholes valuation.

9.3 Asian and Lookback Options

Asian options are options whose value at the time ¢ of exercise is depen-
dent on the average price of the security over at least part of the time
between 0 (when the option was purchased) and the time of exercise. As
these averages are usually in terms of the end-of-day prices, let N de-
note the number of trading days in a year (usually taken equal to 252),
and let

Sa(i) = S(i/N)

denote the security’s price at the end of day i. The most common Asian-
type call option is one in which the exercise time is the end of » trading
days, the strike price is K, and the payoff at the exercise time is

(530 ).

i=l
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Another Asian option variation is to let the average price be the strike
price; the final value of this call option is thus

n S.(i +
(s-257)

i=1

when the exercise time is at the end of trading day n.

Another type of exotic option is the lookback option, whose strike
price is the minimum end-of-day price up to the option’s exercise time.
That is, if the exercise time is at the end of n trading days, then the pay-
off at exercise time is

ey

Because their final payoffs depend on the end-of-day price path fol-
lowed, there are no known exact formulas for the risk-neutral valua-
tions of barrier, Asian, or lookback options. However, fast and accurate
approximations are obtainable from efficient Monte Carlo simulation
methods.

94 Monte Carlo Simulation

Suppose we want to estimate 6, the expected value of some random vari-
able Y:
6 =E[Y].

Suppose, in addition, that we are able to genererate the values of inde-
pendent random variables having the same probability distribution as
does Y. Each time we generate a new value, we say that a simulation
“run” is completed. Suppose we perform k simulation runs and so gen-
erate the values of (say) Y1, Ya, ..., Yi. If we let

be their arithmetic average, then ¥ can be used as an estimator of 6. Its
expected value and variance are as follows. For the expected value we
have
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_ 1 &
E[Y] = . Z E[Y:] = 6.
i=l1

Also, letting
v? = Var(Y),

we have that

(by independence)

Also, it follows from the central limit theorem that, for large k, X will
have an approximately normal distribution. Hence, as a normal ran-
dom variable tends not to be too many standard deviations (equal to the
square root of its variance) away from its mean, it follows that if v/Vk
is small then X will tend to be near 6. (For instance, since more than
95% of the time a normal random variable is within two standard devi-
ations of its mean, we can be 95% certain that the generated value of X
will be within 2v/+/k of 6.) Hence, when & is large, X will tend to be
a good estimator of 6. (To know exactly how good, we would use the
generated sample variance to estimate v?.) This approach to estimating
an expected value is known as Monte Carlo simulation.

9.5 Pricing Exotic Options by Simulation

Suppose that the nominal interest rate is » and that the price of a security
follows the risk-neutral geometric Brownian motion; that is, it follows
a geometric Brownian motion with variance parameter o' and drift pa-

rameter i, where
w=r—o?2.

Let S, (i) denote the price of the security at the end of day i, and let

-
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Successive daily price ratio changes are independent under geometric
Brownian motion, so it follows that X(1), ..., X(n) are independent nor-
mal random variables, each having mean p/N and variance 0'2/N (as
before, N denotes the number of trading days in a year). Therefore, by
generating the values of n independent normal random variables having
this mean and variance, we can construct a sequence of n end-of-day
prices that have the same probabilities as ones that evolved from the risk-
neutral geometric Brownian motion model. (Most computer languages
and almost all spreadsheets have built-in utilities for generating the val-
ues of standard normal random variables; multiplying these by o/~/N
and then adding ;/N gives the desired normal random variables.)

Suppose we want to find the risk-neutral valuation of a down-and-in
barrier option whose strike price is K, barrier value is v, initial value is
S(0) = s, and exercise time is at the end of trading day n. We begin by
generating n independent normal random variables with mean /N and
variance o2/N. Set them equal to X(1), ..., X(n), and then determine
the sequence of end-of-day prices from the equations

$4(0) =,
Sa(1) = S4(0)e* D,
54(2) = 8;(1)e*@;

Sa(i) = Sa(i — 1)e*®;

S;(n) = Sy(n —1)eX™.

In terms of these prices, let / equal 1 if an end-of-day price is ever below
the barrier v, and let it equal O otherwise; that is,

[ 1 if S;(i) <vforsomei=1,...,n,
"1 0 if S4(G) >vforalli=1,...,n.

Then, since the down-and-in call option will be alive only if I = 1, it
follows that the time-0 value of its payoff at expiration time  is

payoff of the down-and-in call option = e ~""/N[(S;(n) — K)™.
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Call this payoff Y;. Repeating this procedure an additional kK — 1 times
yields Yy, ..., Y%, a set of k payoff realizations. We can then use their
average as an estimate of the risk-neutral geometric Brownian motion
valuation of the barrier option.

Risk-neutral valuations of Asian and lookback call options are sim-
ilarly obtained. As in the preceding, we first generate the values of
X(1), ..., X(n) and use them to compute S;(1), ..., S;(r). For an Asian
option, we then let

n S o +
Y - e—rn/N(Z d(l) L= K)
i=1 B

if the strike price is fixed at K and the payoff is based on the average
end-of-day price, or we let

_ 2 Sa()\'
_ rn/N
Y=e (Sd(n)— E ., )

i=l1

if the average end-of-day price is the strike price. In the case of a look-
back option, we would let

Y = e "N(Sy(n) — min $,(7)).

Repeating this procedure an additional k — 1 times and then taking the
average of the k values of Y yields the Monte Carlo estimate of the
risk-neutral valuation.

9.6 More Efficient Simulation Estimators

In this section we show how the simulation of valuations of Asian and
lookback options can be made more efficient by the use of control and
antithetic variables, and how the valuation simulations of barrier options
can be improved by a combination of the variance reduction simulation
techniques of conditional expectation and importance sampling.

9.6.1 Control and Antithetic Variables in the Simulation
of Asian and Lookback Option Valuations

Consider the general setup where one plans to use simulation to estimate

6 =E[Y].
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Suppose that, in the course of generating the value of the random vari-
able Y, we also learn the value of a random variable V whose mean value
is known to be uy = E[V]. Then, rather than using the value of Y as
the estimator, we can use one of the form

Y +c(V —puy),

where c is a constant to be specified. That this quantity also estimates 6
follows by noting that

E[Y +c(V —uy)] = E[Y]+cE[V — uy] =6 + c(uy — puy) = 6.

The best estimator of this type is obtained by choosing c to be the value
that makes Var(Y + ¢(V — uy)) as small as possible. Now,
Var(Y + c(V — uy)) = Var(Y +cV)

= Var(Y) + Var(cV) 4+ 2 Cov(Y, cV)

= Var(Y) + ¢* Var(V) + 2¢Cov(Y, V).  (9.1)
If we differentiate Equation (9.1) with respect to c, set the derivative

equal to 0, and solve for ¢, then it follows that the value of ¢ that mini-
mizes Var(Y + c¢(V — uy)) is

*—

_COV(Y, V)
Var(V)

Substituting this value back into Equation (9.1) yields

2
Var(¥ + c*(V — uy)) = Var(¥) — %é)v) 9.2)

Dividing both sides of this equation by Var(Y) shows that

Var(Y +c*(V —uy)) _ . 2
Var(7) =1—Corr“(Y, V),

where
Cov(Y, V)

v/ Var(Y) Var(V)

is the correlation between Y and V. Hence, the variance reduction ob-
tained when using the control variate V is 100 Corr?(Y, V) percent.

Corr(Y, V) =
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The quantities Cov(Y, V) and Var(V), which are needed to determine
c*, are not usually known and must be estimated from the simulated
data. If k simulation runs produce the output ¥; and V; (i = 1,...,k)

then, letting
k
7=
i=1

be the sample means, Cov(Y, V) is estimated by

! and V=

>~ =<

x| =
i

1

Y W =T)Vi-V)
k—1

and Var (V) is estimated by the sample variance

YV = V)
k—1 )
Combining the preceding estimators gives the estimator of c*, namely,
s_ _Zia®i-DHv -V
ia(Vi = V)

and produces the following controlled simulation estimator of 6:

k
3 (i + Vi = ).
i=1

| =

Let us now see how control variables can be gainfully employed when
simulating Asian option valuations. Suppose first that the present value
of the final payoff is

Y = e—rn/N(Zn: Sd(l) _ K)+
n

=1

It is clear that Y is strongly positively correlated with

V=2 5Si0),
i=0

so one possibility is to use V as a control variable. Toward this end, we
must first determine E[V] as follows. Because

More Efficient Simulation Estimators 137
E[S4()] = ¢"""S(0)

for a risk-neutral valuation, we see that
E[V1=E [ b3 s,,(i)]
i=0
=Y E[S4()]
i=0

=50)) ™)
i=0

1— er(n+1)/N
= S(0) N
Another choice of control variable that could be used is the payoff from
a vanilla option with the same strike price and exercise time. That is,
we could let
V = (Sa(n) — K)*
be the control variable.

A different variance reduction technique that can be effectively em-
ployed in this case is to use antithetic variables. This method generates
the data X(1), ..., X(n) and uses them to compute Y. However, rather
than generating a second set of data, it re-uses the same data with the
following changes:

2(r — 0?2
X(i) = _(’_"Q — X(@).
N
That is, it lets the new value of X(i) be 2(r — */2)/N minus its old
value, foreachi = 1, ..., n. (The new value of X(i) will be negatively

correlated with the old value, but it will still be normal with the same
mean and variance.) The value of Y based on these new values is then
computed, and the estimate from that simulation run is the average of
the two Y values obtained. It can be shown (see [5]) that re-using the
data in this manner will result in a smaller variance than would be ob-
tained by generating a new set of data.

Now let us consider an Asian call option for which the strike price is
the average end-of-day price; that is, the present value of the final pay-
off is
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n o\ +
Y = e—"/N _ Sa (i) )
e (Sd (n) E " .

i=1

Recall that a simulation run consists of (a) generating X(1), ..., X(n)
independent normal random variables with mean (r —o2/2)/N and vari-
ance 0%/N, and (b) setting

Sa(1) = S)eXWO++XO 1 g

Since the value of Y will be large if the latter values of the the sequence
X(1), X(2), ..., X(n) are among the largest (and small if the reverse is
true), one could try a control variable of the type

V= i w; X(i),
i=1

where the weights w; are increasing in i. However, we recommend that
one use all of the variables X (1), X(2), ..., X(n) as control variables.
That is, from each run one should consider the estimator

n )
Y + Zc,-(X(i) . r—;ﬁ)
i=1

Because the control variables are independent, it is easy to verify (see
Exercise 9.4) that the optimal values of the c; are

_ JEONXGLY)
i = VaI(X(l)) , L=1,...

» 15

these quantities can be estimated from the output of the simulation runs.
We suggest this same approach in the case of lookback options also:
again, use all of the variables X (1), X(2), ..., X(n) as control variables.

9.6.2 Combining Conditional Expectation and
Importance Sampling in the Simulation of
Barrier Option Valuations

In Section 9.5 we presented a simulation approach for determining the
expected value of the risk-neutral payoff under geometric Brownian mo-
tion of a down-and-in barrier call option. The X (i) were generated and
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used to calculate the successive end-of-day prices and the resulting pay-
off from the option. We can improve upon this approach by noting that,
in order for this option to become alive, at least one of the end-of-day
prices must fall below the barrier. Suppose that with the generated data
this first occurs at the end of day j, with the price at the end of that day
being S;(j) = x < v. At this moment the barrier option becomes alive
and its worth is exactly that of an ordinary vanilla call option, given that
the price of the security is x when there is time (n — j)/N that remains
before the option expires. But this implies that the option’s worth is
now C(x, (n — j)/N, K). Consequently, it seems that we could (a) end
the simulation run once an end-of-day price falls below the barrier, and
(b) use the resulting Black—Scholes valuation as the estimator from this
run. As a matter of fact, we can do this; the resulting estimator, called
the conditional expectation estimator, can be shown to have a smaller
variance than the one derived in Section 9.5.

The conditional expectation estimator can be further improved by
making use of the simulation idea of importance sampling. Since many
of the simulation runs will never have an end-of-day price fall below
the barrier, it would be nice if we could first simulate the data from a
set of probabilities that makes it more likely for an end-of- day price to
fall below the barrier and then add a factor to compensate for these dif-
ferent probabilities. This is exactly what importance sampling does. It
generates the random variables X (1), X(2), ... from a normal distribu-
tion with mean (r — 0'*/2)/N — b and variance o?/N, and it determines
the first time that a resulting end-of-day price falls below the barrier.
If the price first falls below the barrier at time j with price x, then the
estimator from that run is

. jb*N  Nb U jb o
C(x, (n — j)/N, K) exp{ PR Y ;<,_ ?)}

202 0% &

(see [6] for details); if the price never falls below the barrier then the
estimator from that run is 0. The average of these estimators over many
runs is the overall estimator of the value of the option. Of course, in
order to implement this procedure one needs an appropriate choice of b.
Probably the best approach to choosing b is empirical; do some small
simulations in cases of interest, and see which value of b leads to a small
variance. In addition, the choice
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r—o%/2 - 210g(¥) + log(%)
N n

b=

was shown (in [1]) to work well for a less efficient variation of our
method.

9.7 Options with Nonlinear Payoffs

The standard call option has a payoff that, provided the security’s price
at exercise time is in the money, is a linear function of that price. How-
ever, there are more general options whose payoff is of the form

(h(S(t)) — k)",

where A is an arbitrary specified function, ¢ is the exercise time, and
K is the strike price. Whereas a simulation or a numerical procedure
based on a multiperiod binomial approximation to geometric Brown-
ian motion is often needed to determine the geometric Brownian motion
risk-neutral valuations of these options, an exact formula can be derived
when £ is of the form

h(x) = x*.

Options having nonlinear payoffs (S(r) — K)* are called power op-
tions, and « is called the power parameter.

Let Cy (s, ¢, K, 0, r) be the risk-neutral valuation of a power call op-
tion with power parameter « that expires at time ¢ with an exercise price
K, when the interest rate is r, the underlying security initially has price
s, and the security follows a geometric Brownian motion with volatil-
ity o. As usual, let C(s, 1, K,0,r) = Ci(s,t, K, 0, r) be the Black—
Scholes valuation. Also, let X be a normal random variable with mean
(r —o0?/2)t and variance o%¢. Because e has the same probability dis-
tribution as does S(t)/s, it follows that

e"C(s,t,K,0,r) = E[(S(t) — K)T] = E[(seX — K)*]. (9.3)

In addition, since (S(¢)/s)* = S*(t)/s* has the same distribution as
does e®X | it follows that

E[(S%(t) — K)'] = E[(s%** — K)*]. 9.4)
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But since o X is a normal random variable with mean a(r — 0?/2) and
variance o20 21, it follows from Equation (9.3) that if we let r, and o,

be such that

ra—03/2=a(r—02/2) and af:azaz

then
e C(s%, 1, K, 04, 14) = E[(s"¢** — K)*1.

Hence, from Equation (9.4) we obtain that

e "E[(S*(1) — K)T]
=e "™ C(s* t, K, a0, ry)
= exp{(a(r — 0¥/2) + a®c%/2 — r)t}C(s%, 1, K, a0, 1)
= exp{(a — D(r + ac¥/2)t}C(s*, t, K, a0, ry).
That is,
Cu(s,t, K, 0,r) = exp{(a — )(r + ac?/2)t}C(s*, t, K, a0, ry),

where
re = a(r —o?/2) +a’s?/2.

9.8 Pricing Approximations via Multiperiod
Binomial Models

Multiperiod binomial models can also be used to determine efficiently
the risk-neutral geometric Brownian motion prices of certain exotic op-
tions. For instance, consider the down-and-out barrier call option having
initial price s, strike price K, exercise time t = n/N (where N is the
number of trading days in a year), and barrier value v (v < s). To begin,
choose an integer j, let m = nj, and let t;y = kt/m (k = 0,1, ..., m).
We will consider each day as consisting of j periods and willl approxi-
mate using an m-period binomial model that supposes

uS(t;) with probability p,

Stev1) = [ dS(t;) with probability 1 — p,

where
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U= ed./t/m’ d=e° t/m’

_1+rt/m—d
N u—d

As in Section 7.4, we note that if i of the first k price movements are
increases and k — i are decreases, then the price at time ¢ is

S(tp) = u'd* .

Letting Vi (i) denote the expected payoff from the barrier call option
given that the option is still alive at time 7, and that the price at time 7, is
S(tx) = u'd*'s, we can approximate the expected present value payoff
of the European barrier call option by e " V;,(0). The value of V;(0) can
be obtained by working backwards. That is, we start with the identity

V(i) = Wd™ s — K)*, i=0,...,m,

to determine the values of V,,(i) and then repeatedly use the following
equation (initially with k = m — 1, and then decreasing its value by 1
after each interation):

Vi) = pVir1 (i + 1) + (1 = p) Wi (i), 9.5
where
, 0 if u'd*'~is < v and j divides k + 1,
Wi (i) = Voo (i .
k+1(i) otherwise.

Note that Wy(i) is defined in this fashion because if j divides k + 1
then the period-(k + 1) price is an end-of-day price and will thus kill the
option if it is less than the barrier value.

If we wanted the risk-neutral price of a down-and-in call option then
we could use an analogous procedure. Alternatively, we could use the
preceding to determine the price of a down-and-out call option with the
same parameters and then use the identity

D,‘(S, t’ K) +D0(sy ts K) = C(sa tv K)’

where D;, D,, and C refer to the risk-neutral price of (respectively)
a down-and-in call option, a down-and-out call option, and a vanilla
Black—Scholes call option.

R
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Risk-neutral prices of other exotic options can also be approximated
by multiperiod binomial models. However, the computational burden
can be demanding. For instance, consider an Asian option whose strike
price is the average of the end-of-day prices. To recursively determine
the expected value of the final payoff given all that has occurred up to
time 7;, we need to specify not only the price at time #; but also the sum
of the end-of-day prices up to that time. That is, in order to approxi-
mate an n-day call option with an n-period binomial model, we would
need to recursively compute the values Vi (i, x) equal to the expected fi-
nal payoff given that the price after k periods is u'd*~'s and that the sum
of the first k prices is x. Since there can be as many as (f ) possible sums
of the first k prices when i of them are increases, it can require a great
deal of computation to obtain a good approximation. Generally speak-
ing, we recommend the use of simulation to estimate the risk-neutral
prices of most path-dependent exotic options.

9.9 Exercises

Exercise 9.1 Consider an American call option that can be exercised
at any time up to time 7; however, if it is exercised at time y (where 0 <
y < t) then the strike price is Ke*” for some specified value of u. That
is, the payoff if the call is exercised at time y (0 < y <t) is

(S(y) —e“K)*.

Argue that if u < r then the call should never be exercised early, where
r is the interest rate.

Exercise 9.2 A lookback put option that expires after n trading days
has a payoff equal to the maximum end-of-day price achieved by time
n minus the price at time n. That is, the payoff is

max Sy(i) — Sq(n).

0<i<n

Explain how Monte Carlo simulation can be used efficiently to find the
geometric Brownian motion risk-neutral price of such an option.

Exercise 9.3 In Section 9.6.1, it is noted that V = (S;(n) — K)™ can
be used as a control variate. However, doing so requires that we know
its mean; what is E[V]?
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Exercise 9.4 Let Xj,..., X, be independent random variables with
expected values E[X;] = u;, and consider the following simulation es-
timator of E[Y]:

W=Y+) alXi— )
i=1
(a) Show that

Var(W) = Var(Y) + ) c? Var(X;) + 2 "¢ Cov(Y, X)).

i=1 i=1

(b) Use calculus to show that the values of cy, ..., ¢, that minimize
Var(W) are
Cov(Y, X;)
ci=——-, i=1,...,n.
Var(X;)

Exercise 9.5 Perform a Monte Carlo simulation to estimate the risk-
neutral valuation of some exotic option. Do it first without any attempts
at variance reduction and then a second time with some variance reduc-
tion procedure.

Exercise 9.6 Give the equations that are needed when using a multi-
period binomial model to approximate the risk-neutral price of a down-
and-in barrier call option.

Exercise 9.7 Explain how you can approximate the risk-neutral price
of a down-and-out American call option by using a multiperiod bino-
mial model.

Exercise 9.8 Explain why Equation (9.5) is valid.
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10. Beyond Geometric Brownian
Motion Models

10.1 Introduction

As previously noted, a key premise underlying the assumption that the
prices of a security over time follow a geometric Brownian motion (and
hence underlying the Black—Scholes option price formula) is that fu-
ture price changes are independent of past price movements. Many
investors would agree with this premise, although many others would
disagree. Those accepting the premise might argue that it is a conse-
quence of the efficient market hypothesis, which claims that the present
price of a security encompasses all the presently available information —
including past prices — concerning this security. However, critics of
this hypothesis argue that new information is absorbed by different in-
vestors at different rates; thus, past price movements are a reflection
of information that has not yet been universally recognized but will af-
fect future prices. It is our belief that there is no a priori reason why
future price movements should necessarily be independent of past move-
ments; one should therefore look at real data to see if they are consis-
tent with the geometric Brownian motion model. That is, rather than
taking an a priori position, one should let the data decide as much as
possible.

In Section 10.2 we analyze the sequence of nearest-month end-of-day
prices of crude oil from 3 January 1995 to 19 November 1997 (a pe-
riod right before the beginning of the Asian financial crisis that deeply
affected demand and, as a result, led to lower crude prices). As part
of our analysis, we argue that such a price sequence is not consistent
with the assumption that crude prices follow a geometric Brownian mo-
tion. In Section 10.3 we offer a new model that is consistent with the
data as well as intuitively plausible, and we indicate how it may be
used to obtain option prices under (a) the assumption that the future
resembles the past and (b) a risk-neutral valuation based on the new
model.

Crude Oil Data 147

28 T T T T T T T

26 | .

24 _

22 + e

20 ‘ S

18 7

16 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Figure 10.1: Successive End-of-Day Nearest-Month Crude Oil Prices

10.2 Crude Oil Data

With day 0 defined to be 3 January 1995, let P(n) denote the nearest-
month price of crude oil (as traded on the New York Mercantile Ex-
change) at the end of the nth trading day from day 0. The values of P(n)
forn =1, ...,752 are given in Figure 10.1 (and in Table 10.5, located at
the end of this chapter).

Let

L(n) = log(P(n)),

and define
D(n)=L(n)— Ln —1).

That is, D(n) for n > 1 are the successive differences in the logarithms
of the end-of-day prices. The values of the D(n) are also given in Ta-
ble 10.5, and Figure 10.2 presents a histogram of those data.
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Figure 10.2: Histogram of Log Differences

Note that, under geometric Brownian motion, the D(n) would be in-
dependent and identically distributed normal random variables; the his-
togram in Figure 10.2 is consistent with the hypothesis that the data come
from a normal population. However, a histogram — which breaks up the
range of data values into intervals and then plots the number of data val-
ues that fall in each interval — is not informative about possible depen-
dencies among the data. To consider this possibility, let us classify each
day as being in one of four possible states as follows: the state of day n is

1 if D(n) < -.01,

2 if —.0l<D(n) <0,
3 if 0< D)< .01,

4 if D(n) > .0l.

That is, day » is in state 1 if its end-of-day price represents a loss of
more than 1% (e~*"! &~ .99005) from the end-of-day price on day n — 1;
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Table 10.1

i 1 2 3 4 Total

55 41 44 36 176
44 65 45 60 214
26 46 47 49 168
52 62 31 48 193

S W -

it is in state 2 if the percentage loss is less than 1%i; it is in state 3 if the
percentage gain is less than 1% (e'” ~ 1.0101); and it is in state 4 if its
end-of-day price represents a gain of more than 1% from the end-of-day
price on day n — 1."Note that, if the price evolution follows a geomet-
ric Brownian motion, then tomorrow’s state will not depend on today’s
state. One way to verify the plausibility of this hypothesis is to see how
many times that a state i day was followed by a state j day for i, j =
1, ...,4. Table 10.1 gives this information and shows, for instance, that
26 of the 168 days in state 3 were followed by a state-1 day, 46 were
followed by a state-2 day, and so on.

The implications of Table 10.1 become clearer if we express the data
in terms of percentages, as is done in Table 10.2. Thus, for instance,
a large drop (more than 1%) was followed 31% of the time by another
large drop, 23% of the time by a small drop, 25% of the time by a small
increase, and 21% of the time by a large increase. Itis interesting to note
that, whereas a moderate gain was followed by a large drop 15% of the
time, a large gain was followed by a large drop 27% of the time. Un-
der the geometric Brownian motion model, tomorrow’s change would
be unaffected by today’s change and so the theoretically expected per-
centages in Table 10.2 would be the same for all rows. To see how
likely it is that the actual data would have occurred under geometric
Brownian motion, we can employ a standard statistical procedure (test-
ing for independence in a contingency table); using this procedure on
our data results in a p-value equal to .005. This means that if the row
probabilities were equal (as implied by geometric Brownian motion),
then the probability that the resulting data would be as nonsupport-
ive of this hypothesized equality as our actual data is only about 1 in
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Table 10.2

31 23 25 21
21 30 21 28
15 28 28 29
27 32 16 25

W=

200. (The value of the test statistics is 23.447, resulting in a p-value
of .00526.)

Let us now break up the data, which consists of 751 D(n) values, into
four groupings: the first group consists of the 176 values (of the log of
tomorrow’s price minus the log of today’s) for which today’s state is 1,
and so on with the other groupings. Figures 10.3-10.6 present the his-
tograms of the data values in each group. Note that each histogram has
(approximately) the bell-shaped form of the normal density function.

Let ¥; and s; be, respectively, the sample mean and sample standard
deviation (equal to the square root of the sample variance) of grouping
i fori = 1,2,3,4. A computation produces the values listed in Ta-
ble 10.3.

Under the geometric Brownian motion model, the four data sets will
all come from the same normal population and hence we could use a
standard statistical test — called a one-way analysis of variance — to test
the hypothesis that all four data sets describe normal random variables
having the same mean and variance. The necessary calculations reveal
that the test statistic (which, when the hypothesis is true, has an F dis-
tribution with 3 numerator and 747 denominator degrees of freedom)
has a value of 4.50, which is quite large. Indeed, if the hypothesis were
true then the probability that the test statistic would have a value at least
this large is less than .001, giving us additional evidence that the crude
oil data does not follow a geometric Brownian motion. (We could also
test the hypothesis that the variances — but not necessarily the means —
are equal by using Bartlett’s test for the equality of variances; using
our data, the test statistic has value 9.59 with a resulting p-value less
than .025.)
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Figure 10.3: Histogram of Post—State-1 Outcomes (n = 176)
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Figure 10.5: Histogram of Post—State-3 Outcomes (n = 168)
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Figure 10.6: Histogram of Post—State-4 Outcomes (n = 193)
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Table 10.3

Meanx; S.D.s;

~

1 —.0036 0194
2 .0024 .0188
3 .0025 .0165
4 —.0011 .0208

10.3 Models for the Crude Oil Data

A reasonable model is to suppose that there are four distributions that
determine the difference between the logarithm of tomorrow’s price and
the logarithm of today’s, with the appropriate distribution depending on
today’s state. However, even within this context we still need to decide
if we want a risk-neutral model or one based on the assumption that
the future will tend to follow the past. In the latter case we could use a
model that supposes, if today’s state is i, that the logarithm of the ratio
of tomorrow’s price to today’s price is a normal random variable with
mean x; and standard deviation s;, where these quantities are as given in
Table 10.3. However, it is quite possible that a better model is obtained
by forgoing the normality assumption and using instead a “bootstrap”
approach, which supposes that the best approximation to the distribu-
tion of a log ratio from state i is obtained by randomly choosing one
of the n; data values in this grouping (where, in the present situation,
ny = 176, ny = 214, n3 = 168, and ns = 193). Whether we assume
that the group data are normal or instead use a bootstrap approach, a
Monte Carlo simulation (see Chapter 9) will be needed to determine
the expected value of owning an option — or even the expected value
of a future price. However, such a simulation is straightforward, and
variance reduction techniques are available that can reduce the compu-
tational time.

A risk-neutral model would appear to be the most appropriate type
for assessing whether a specified option is underpriced or overpriced in
relation to the present price of the security. Such a model is obtained in
the present situation by supposing that, when in state i, the next log ra-
tio is a normal random variable with standard deviation (i.e. volatility)
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Figure 10.7: Volatility as a Function of State

s; and mean p;, where
wi =r/N — s,.2/2;

r is the interest rate, and N (usually taken equal to 252) is the number
of trading days in a year. Again, a simulation would be needed to de-
termine the expected worth of an option.

Whereas we have chosen to define four different states depending on
the ratio of successive end-of-day prices, it is quite possible that a better
model could be obtained by allowing for more states. Indeed, one ap-
proach for obtaining a risk-neutral model is to assess the volatility as a
function of the most recent value of D(n) — by assuming that the volatil-
ity is equal to s; when D(n) is the midpoint of region i — and then to use
a general linear interpolation scheme (see Figure 10.7).

Rather than having four different states, we might rather have defined
six states as follows: the state of day n is

1 if D(n) <-.02,
2 if —.02 < D(n) <.01,
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Table 10.4

i 1 2 3 + 5 6  Total

10 12 25 19 12 3 81
17 16 16 25 12 9 95
18 26 65 45 31 29 214
11 15 46 47 30 19 168
4 15 39 19 13 10 110
12 11 23 12 12 13 83

NN B W=

if —.01<D(®m) <0,
if 0 < D(n) < .01,

if .01 < D(n) < .02,
if D(n) > .02.

N W B W

With these states, the number of times that a state-i day was followed
by a state-j day is as given in row i, column j of Table 10.4. The re-
sulting model can then be analyzed in exactly the same manner as was
the four-state model.

10.4 Final Comments

We have seen in this chapter that not all security price data is consistent
with the assumption that its price history follows a geometric Brown-
ian motion. Geometric Brownian motion is a Markov model, which is
one that supposes that a future state of the system (i.e., price of the se-
curity) depends only on the present state and not on any previous states.
However, to many people it seems reasonable that a security’s recent
price history can be somewhat useful in predicting future prices. In this
chapter we have proposed a simple model for end-of-day prices, one
in which the successive ratios of the price on day n to the price on day
n — 1 are assumed to constitute a Markov model. That is, with regard
to the successive ratios of prices, geometric Brownian motion supposes
that they are independent whereas our proposed model allows them to
have a Markov dependence.
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In using the model to value an option, we recommend that one collect
up-to-date data and then model the future under the assumption that it
will follow the past, either by using a bootstrap approach or by assum-
ing normality and using the estimates x; and s;. However, if one wants
to determine whether an option is underpriced or overpriced in relation
to the security itself, we recommend using the risk-neutral variant of the
model. This latter model takes r/N — siz/ 2, rather than x;, as the mean
of a log ratio from state i. This risk-neutral model, which allows the
volatility to depend on the most recent daily change, is consistent with
a variant of the efficient market hypothesis which states that the present
price of a security is the “fair price,” in the sense that the expectation of
the present value of a future price is equal to the present price (this is
known as the martingale hypothesis).
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Table 10.5: Nearest-Month Crude Oil Data (dollars)

Date Price Log Difference Date Price Log Difference
1/3/95 17.44 3/7/95 18.63 0.00214938
1/4/95 17.48 0.00229095 3/8/95 18.33 —0.0162341
1/5/95 17.72 0.0136366 3/9/95 18.02 —0.0170568
1/6/95 17.67 —0.00282566 3/10/95 17.91 —0.00612304
1/9/95 17.4 —0.0153981 3/13/95 18.19 0.0155128
1/10/95 17:37 —0.00172563 3/14/95 17.94 —0.0138391
1/11/95 17.72 0.0199494 3/15/95 18.11 0.00943142
1/12/95 17.72 0 3/16/95 18.16 0.0027571
1/13/95 17.52 —0.0113509 3/17/95 18.26 0.0054915

1/16/95 17.88 0.0203397 3/20/95 18.56 0.0162959
1/17/95 18.32 0.0243106 3/21/95 18.43 —0.00702896
1/18/95 18.73 0.0221332 3/22/95 18.96 0.0283517
1/19/95 18.69 . —0.00213789 3/23/95 18.92 —0.00211193
1/20/95 18.65 —0.00214248 3/24/95 18.78 —0.00742709
1/23/95 18.1 —0.0299342 3/27/95 19.07 0.0153239
1/24/95 18.39 0.0158951 3/28/95 19.05 —0.00104932
1/25/95 18.39 0 3/29/95 19.22 0.0088843
1/26/95 18.24 —0.00819005 3/30/95 19.15 —0.00364869
1/27/95 17.95 —0.0160269 3/31/95 19.17 0.00104384
1/30/95 18.09 0.00776918 4/3/95 19.03 —0.00732988
1/31/95 18.39 0.0164477 4/4/95 19.18 0.00785139
2/1/95 18.52 0.00704419 4/5/95 19.56 0.0196186
2/2/95 18.54 0.00107933 4/6/95 19.77 0.010679
2/3/95 18.78 0.0128619 4/7/95 19.67 —0.005071
2/6/95 18.59 —0.0101687 4/10/95 19.59 —0.0040754
2/7/95 18.46 —0.00701757 4/11/95 19.88 0.014695
2/8/95 18.3 —0.00870517 4/12/95 19.55 —0.0167389
2/9/95 18.24 —0.00328408 4/13/95 19.15 —0.0206726
2/10/95 18.46 0.0119892 4/17/95 19.15 0
2/13/95 18.27 —0.0103459 4/18/95 19.73 0.0298376
2/14/95 18.32 0.00273299 4/19/95 20.05 0.0160888
2/15/95 18.42 0.00544367 4/20/95 20.41 0.0177958
2/16/95 18.59 0.00918677 4/21/95 20.52 0.00537504
2/17/95 18.91 0.0170671 4/24/95 20.41 —0.00537504
18.91 0 4/25/95 20.12 —0.0143106
2/21/95 18.86 —0.00264761 4/26/95 20.29 0.00841381
2/22/95 18.63 —0.0122701 4/27/95 20.15 —0.00692387
2/23/95 18.43 —0.0107934 4/28/95 20.43 0.0138001
2/24/95 18.69 0.0140088 20.38 —0.00245038
2/27/95 18.66 —0.00160643 5/1/95 20.5 0.00587086
2/28/95 18.49 —0.00915215 5/2/95 20.09 —0.0202027
3/1/95 18.32 —0.00923669 5/3/95 19.89 —0.0100051
3/2/95 18.35 0.00163622 5/4/95 20.29 0.0199111
3/3/95 18.63 0.0151436 5/5/95 20.33 0.00196947
3/6/95 18.59 —0.00214938 5/8/95 20.29 —0.00196947



158 Beyond Geometric Brownian Motion Models Final Comments 159

Table 10.5 (cont.) Table 10.5 (cont.)

Date Price Log Difference Date Price Log Difference Date Price Log Difference Date Price Log Difference
5/9/95 19.61 —0.0340885 7/11/95 17.32 —0.00115407 9/12/95 18.64 0.00916202 11/14/95 17.82 0.00112296
5/10/95 19.75 0.00711385 7/12/95 17.49 0.00976739 9/13/95 18.54 —0.00537925 11/15/95 17.93 0.00615387
5/11/95 19.41 —0.0173651 7/13/95 17.25 —0.0138171 9/14/95 18.85 0.0165824 11/16/95 18.19 0.0143967
5/12/95 19.52 0.00565118 7/14/95 17.32 0.00404976 9/15/95 18.92 0.00370665 11/17/95 18.57 0.0206754
5/15/95 19.9 0.0192802 7/17/95 17.2 —0.00695252 9/18/95 18.93 0.000528402 11/20/95 18.06 —0.0278478
5/16/95 20.08 0.00900456 7/18/95 17.35 0.00868312 9/19/95 18.95 0.00105597 11/21/95 17.97 —0.00499585
5/17/95 19.96 —0.00599402 7/19/95 17.33 —0.0011534 9/20/95 18.69 —0.0138153 11/22/95 17.96 —0.000556638
5/18/95 20 0.002002 7/20/95 17.01 —0.0186377 9/21/95 17.56 —0.062365 11/23/95 17.96 0
5/19/95 20.06 0.00299551 7/21/95 16.79 —0.0130179 9/22/95 17.25 —0.0178114 11/24/95 17.96 0
5/22/95 19.81 —0.0125409 7/24/95 16.88 0.00534602 9/25/95 17.47 0.012673 11/27/95 18.38 0.0231161
5/23/95 19.77 —0.00202122 7/25/95 16.93 0.00295771 9/26/95 17.33 —0.00804602 11/28/95 18.33 —0.00272406
5/24/95 19.41 —0.0183772 7/26/95 17.5 0.0331137 9/27/95 17.57 0.0137538 11/29/95 18.26 —0.00382619
5/25/95 19.26 —0.00775799 7/27/95 17.49 —0.000571592 9/28/95 17.76 0.0107558 11/30/95 18.18 —0.00439079
5/26/95 18.69 —0.0300418 7/28/95 17.43 —0.00343643 9/29/95 17.54 —0.0124648 12/1/95 18.43 0.0136577
18.69 0 7/31/95 17.56 0.00743073 10/2/95 17.64 0.00568506 12/4/95 18.63 0.0107934
5/30/95 18.78 0.00480385 8/1/95 17.7 0.00794105 10/3/95 17.56 —0.00454546 12/5/95 18.67 0.00214477
5/31/95 18.89 0.00584021 8/2/95 17.78 0.00450959 10/4/95 17.3 —0.0149171 12/6/95 18.77 0.00534189
6/1/95 18.9 0.000529241 8/3/95 17.72 —0.00338028 10/5/95 16.87 —0.0251696 12/7/95 18.73 —0.00213333
6/2/95 19.14 0.0126185 8/4/95 17.71 —0.000564493 10/6/95 17.03 0.0094396 12/8/95 18.97 0.0127323
6/5/95 19.25 0.00573067 8/7/95 17.65 —0.00339367 10/9/95 17.31 0.0163079 12/11/95 18.66 —0.0164766
6/6/95 19.06 —0.00991916 8/8/95 17.79 0.00790072 10/10/95 17.42 0.0063346 12/12/95 18.73 0.00374432
6/7/95 19.18 0.00627617 8/9/95 17.78 —0.000562272 10/11/95 17.29 —0.00749067 12/13/95 19 0.0143125
6/8/95 18.91 —0.0141772 8/10/95 17.89 0.00616767 10/12/95 17.12 —0.00988093 12/14/95 19.11 0.00577278
6/9/95 18.8 —0.00583401 8/11/95 17.86 —0.00167832 10/13/95 17.41 0.0167974 12/15/95 19.51 0.0207154
6/12/95 18.86 0.00318641 8/14/95 17.48 —0.0215062 10/16/95 17.59 0.0102858 12/18/95 19.67 0.00816748
6/13/95 18.91 0.00264761 8/15/95 17.47 —0.000572246 10/17/95 17.68 0.0051035 12/19/95 19.12 —0.0283597
6/14/95 19.05 0.00737622 8/16/95 17.55 0.00456883 10/18/95 17.61 —0.00396713 12/20/95 18.97 —0.00787612
6/15/95 18.94 —0.00579101 8/17/95 17.66 0.00624825 10/19/95 17.32 —0.016605 12/21/95 18.96 —0.000527287
6/16/95 18.84 —0.00529382 8/18/95 17.87 0.0118211 10/20/95 17.37 0.00288268 12/22/95 19.14 0.00944889
6/19/95 18.22 —0.0334624 8/21/95 18.25 0.0210418 10/23/95 17.21 —0.00925397 12/25/95 19.14 0
6/20/95 18.01 —0.0115927 8/22/95 18.54 0.0157655 10/24/95 17.32 0.00637129 12/26/95 19.27 0.0067691
6/21/95 17.46 —0.0310146 8/23/95 18 —0.0295588 10/25/95 17.32 0 12/27/95 195 0.011865
6/22/95 17.5 0.00228833 8/24/95 17.86 —0.00780818 10/26/95 17.58 0.0149 12/28/95 19.36 —0.00720538
6/23/95 17.49 —0.000571592 8/25/95 17.86 0 10/27/95 17.54 —0.00227791 12/29/95 19.55 0.0097662
6/26/95 17.64 0.00853976 8/28/95 17.82 —0.00224215 10/30/95 17.62 0.00455063 1/1/96 19.55 0
6/27/95 17.77 0.00734259 8/29/95 17.82 0 10/31/95 17.64 0.00113443 1/2/96 19.81 0.0132116
6/28/95 17.97 0.0111921 8/30/95 17.79 —0.00168492 11/1/95 17.74 0.00565293 1/3/96 19.89 0.00403023
6/29/95 17.56 —0.0230801 8/31/95 17.84 0.00280663 11/2/95 17.98 0.0134381 1/4/96 19.91 0.00100503
6/30/95 17.4 —0.00915338 9/1/95 18.04 0.0111484 11/3/95 17.94 —0.00222717 1/5/96 20.26 0.0174264
174 0 18.04 0 11/6/95 17.71 —0.0129034 1/8/96 20.26 0
17.4 0 9/5/95 18.58 0.0294942 11/7/95 17.65 —0.00339367 1/9/96 19.95 —0.0154194
7/5/95 17.18 —0.0127243 9/6/95 18.36 —0.0119113 11/8/95 17.82 0.00958564 1/10/96 19.67 —0.0141345
7/6/95 17.37 0.0109987 9/7/95 18.27 —0.00491401 11/9/95 17.84 0.00112171 1/11/96 18.79 —0.0457698
7/7/95 17.14 —0.0133297 9/8/95 18.44 0.00926185 11/10/95 17.83 —0.000560695 1/12/96 18.25 —0.0291597
7/10/95 17.34 0.0116011 9/11/95 18.47 0.00162558 11/13/95 17.8 —0.00168397 1/15/96 18.38 0.00709804
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Table 10.5 (cont.)

Date Price Log Difference Date Price Log Difference
1/16/96 18.05 —0.0181174 3/19/96 24.34 0.0449561
1/17/96 18.52 0.0257055 3/20/96 23.06 —0.0540216
1/18/96 19.18 0.0350168 3/21/96 21.05 —0.091199
1/19/96 18.94 —0.012592 3/22/96 21.95 0.0418666
1/22/96 18.62 —0.0170398 3/25/96 224 0.0202938
1/23/96 18.06 —0.0305367 3/26/96 22.19 —0.00941922
1/24/96 18.28 0.012108 3/27/96 21.79 —0.0181906
1/25/96 17.67 —0.0339393 3/28/96 21.41 —0.017593
1/26/96 17.73 0.00338983 3/29/96 21.47 0.00279851
1/29/96 17.45 —0.0159185 4/1/96 22.26 0.0361347
1/30/96 17.56 0.00628394 4/2/96 22.7 0.0195736
1/31/96 17.74 0.0101984 4/3/96 22.27 —0.0191244
2/1/96 17.71 —0.00169253 4/4/96 2275 0.0213247
2/2/96 17.8 0.00506901 4/5/96 22.75 0
2/5/96 17.54 —0.0147145 4/8/96 23.03 0.0122326
2/6/96 17.69 0.00851552 4/9/96 23.06 0.0013018
2/7/96 17.74 0.00282247 4/10/96 2421 0.0486663
2/8/96 17.76 0.00112676 4/11/96 25.34 0.0456184
2/9/96 17.78 0.00112549 4/12/96 24.29 —0.0423194
2/12/96 17.97 0.0106295 4/15/96 25.06 0.0312082
2/13/96 18.91 0.0509872 4/16/96 24.47 —0.0238251
2/14/96 18.96 0.00264061 4/17/96 24.67 0.00814005
2/15/96 19.04 0.00421053 4/18/96 23.82 —0.0350624
2/16/95 19.16 0.00628274 4/19/96 23.95 0.00544276
2/19/96 19.16 0 4/22/96 24.07 0.00499793
2/20/96 21.05 0.0940758 4/23/96 22.7 —0.0586013
2/21/96 19.71 —0.0657744 4/24/96 224 —0.013304
2/22/96 19.85 0.00707789 4/25/96 222 —0.00896867
2/23/96 19.06 —0.0406121 4/26/96 22.32 0.00539085
2/26/96 19.39 0.0171656 4/29/96 2243 0.00491621
2/27/96 19.7 0.0158612 4/30/96 21.2 —0.0563982
2/28/96 19.29 —0.0210318 5/1/96 20.81 —0.0185675
2/29/96 19.54 0.0128768 5/2/96 20.86 0.00239981

3/1/96 19.44 —0.00513085 5/3/96 21.18 0.0152239
3/4/96 19.2 —0.0124225 5/6/96 21.04 —0.00663195
3/5/96 19.54 0.0175534 5/7/96 21.11 0.00332147
3/6/96 20.19 0.0327238 5/8/96 21 —0.00522442
3/7/96 19.81 —0.0190006 5/9/96 20.68 —0.0153554
3/8/96 19.61 —0.0101472 5/10/96 21.01 0.0158315
3/11/96 19.91 0.0151825 5/13/96 21.36 0.0165215
3/12/96 20.46 0.0272496 5/14/96 21.42 0.00280505
3/13/96 20.58 0.00584797 5/15/96 21.48 0.0027972
3/14/96 21.16 0.0277929 5/16/96 20.78 —0.0331313
3/15/96 21.99 0.0384752 5/17/96 20.64 —0.00676005
3/18/96 23.27 0.0565772 5/20/96 22.48 0.0853951
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Date Price Log Difference Date Price Log Difference
5/21/96 22.65 0.00753383 7/23/96 21.01 —0.0183924
5/22/96 21.4 —0.0567689 7/24/96 20.68 —0.0158315
5/23/96 21.23 —0.00797565 7125/96 20.74 0.00289715
5/24/96 21.32 0.00423032 7/26/96 20.11 —0.030847

21.32 0 7/29/86 20.28 0.00841797
5/28/96 21.11 —0.00989874 7/30/96 20.33 0.00246245
5/29/96 20.76 —0.0167188 7/31/96 20.42 0.00441719
5/30/96 19.94 —0.0403003 8/1/96 21.04 0.0299106
5/31/96 19.76 —0.00906807 8/2/96 21.34 0.0141579
6/3/96 19.85 0.00454431 8/5/96 21.23 —0.00516797
6/4/96 20.44 0.0292898 8/6/96 21.13 —0.00472144
6/5/96 19.72 —0.0358604 8/7/96 21.42 0.0136312
6/6/96 20.05 0.0165958 8/8/96 21.55 0.00605075
6/7/96 20.28 0.011406 8/9/96 21.57 0.000927644
6/10/96 20.25 —0.00148039 8/12/96 2222 0.0296893
6/11/96 20.1 —0.00743498 8/13/96 22.37 0.00672799
6/12/96 20.09 —0.000497636 8/14/96 22.12 —0.0112386
6/13/96 20.01 —0.00399003 8/15/96 21.9 —0.00999554
6/14/96 20.34 0.0163572 8/16/96 22.66 0.0341146
6/17/96 22.14 0.0847965 8/19/96 23.26 0.0261339
6/18/96 21.46 —0.0311952 8/20/96 22.86 —0.0173465
6/19/96 20.76 —0.0331627 8/21/96 21.72 —0.0511552
6/20/96 20.65 —0.00531274 8/22/96 223 0.0263532
6/21/96 19.92 —0.0359911 8/23/96 21.96 —0.0153641
6/24/96 19.98 0.00300752 8/26/96 21.62 —0.0156038
6/25/96 19.96 —0.0010015 8/27/96 21.56 —0.00277907
6/26/96 20.65 0.033985 8/28/96 21.71 0.00693324
6/27/96 21.02 0.017759 8/29/96 22.15 0.0200645
6/28/96 20.92 —0.00476873 8/30/96 22.25 0.00450451
7/1/96 21.53 0.0287417 9/2/96 22.25 0
7/2/196 21.13 —0.0187535 9/3/96 234 0.050394
7/3/96 21.21 0.00377894 9/4/96 23.24 —0.00686109
7/4/96 21.21 0 9/5/96 23.44 0.00856903
7/5/196 21.21 0 9/6/96 23.85 0.0173403
7/8/96 21.27 0.00282486 9/9/96 23.73 —0.00504415
7/9/96 21.41 0.00656047 9/10/96 24.12 0.0163013
7/10/96 21.55 0.00651771 9/11/96 24.75 0.0257841
7/11/96 21.95 0.0183913 9/12/96 25 0.0100503
7/12/96 21.9 —0.0022805 9/13/96 2451 —0.0197946
7/15/96 22.48 0.0261394 9/16/96 23.19 —0.05536
7/16/96 22.38 —0.00445832 9/17/96 23.31 0.0051613
7/17/96 21.8 —0.0262577 9/18/96 23.89 0.0245775
7/18/96 21.68 —0.00551979 9/19/96 23.54 —0.0147589
7/19/96 21 —0.0318677 9/20/96 23.63 0.00381599
7/22/96 21.4 0.0188685 9/23/96 23.37 —0.0110639
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Table 10.5 (cont.)

Date Price Log Difference Date Price Log Difference
9/24/96 24.07 0.0295131 11/26/96 23.62 0.00551901
9/25/96 24.46 0.0160729 11/27/96 23.75 0.00548872
9/26/96 24.16 —0.0123408 11/28/96 23.75 0
9/27/96 24.6 0.0180481 11/29/96 23.75 0
9/30/96 24.38 —0.00898322 12/2/96 24.8 0.0432611
10/1/96 24.14 —0.00989291 12/3/96 24.93 0.00522824
10/2/96 24.05 —0.00373522 12/4/96 24.8 —0.00522824
10/3/96 24.81 0.0311118 12/5/96 25.58 0.0309671
10/4/96 24.73 —0.00322972 25.62 0.0015625
10/7/96 25.24 0.020413 12/9/96 253 —0.0125689
10/8/96 25.54 0.0118158 12/10/96 24.42 —0.0354019
10/9/96 25.07 —0.0185739 12/11/96 23.38 —0.0435215
10/10/96 24.26 —0.032843 12/12/96 23.72 0.0144376
10/11/96 24.66 0.0163536 12/13/96 24.47 0.0311293
10/14/96 25.62 0.0381908 12/16/96 25.74 0.0505983
10/15/98 25.42 —0.00783703 12/17/96 25.71 —0.00116618
10/16/96 25.17 —0.00988346 12/18/96 26.16 0.0173515
10/17/96 25.42 0.00988346 12/19/96 26.57 0.0155512
10/18/96 25.75 0.0128984 12/20/96 25.08 —0.057712
10/21/96 25.92 0.00658024 12/23/96 24.79 —0.0116304
10/22/96 25.75 —0.00658024 12/24/96 25.1 0.0124275
10/23/96 24.86 —0.0351745 12/25/96 25.1 0
10/24/96 24.51 —0.0141789 12/26/96 24.92 —0.00719715
10/25/96 24.86 0.0141789 12/27/96 25.22 0.0119666
10/28/96 24.85 —0.000402334 12/30/96 25.37 0.00593004
10/29/96 24.34 —0.0207367 12/31/96 25.92 0.0214475
10/30/96 24.28 —0.00246812 25.92 0
10/31/96 23.35 —0.039056 1/2/197 25.69 —0.00891306
11/1/96 23.03 —0.0137993 1/3/97 25.59 —0.00390016
11/4/96 22.79 —0.0104759 1/6/97 26.37 0.0300254
11/5/96 22.64 —0.00660359 1/7/197 26.23 —0.00532321
11/6/96 22.69 0.00220605 1/8/97 26.62 0.014759
11/7/96 22.74 0.00220119 1/9/97 26.37 —0.00943581
11/8/96 23.59 0.0366974 1/10/97 26.09 —0.0106749
11/11/96 23.37 —0.00936974 1/13/97 25.19 —0.035105
11/12/96 23.35 —0.000856164 1/14/97 25.11 —0.00318092
11/13/96 24.12 0.0324444 1/15/97 25.95 0.0329054

‘ 11/14/96 24.41 0.0119515 1/16/97 25.52 —0.0167072
11/15/96 24.17 —0.00988069 1/17/97 25.41 —0.00431966
11/18/96 23.88 —0.0120709 1/20/97 25.23 —0.00710903

‘ 11/19/96 24.49 0.0252236 1/21/97 24.8 —0.0171901
11/20/96 23.76 —0.0302614 1/22/97 24.24 —0.0228395
11/21/96 23.84 0.00336135 1/23/97 24.18 —0.00247832
11/22/96 23.75 —0.00378231 1/24/97 24.05 —0.00539085
11/25/96 23.49 —0.0110077 1/27/97 23.94 —0.0045843

Date Price Log Difference Date Price Log Difference
1/28/97 239 —0.00167224 4/1/97 20.28 —0.0063898
1/29/97 24.47 0.0235694 4/2/197 19.47 —0.0407604
1/30/97 24.87 0.0162144 4/3/97 19.47 0
1/31/97 24.15 —0.0293779 4/4197 19.12 —0.0181399
2/3/97 24.15 0 417197 19.23 0.00573665
2/4/97 24.02 —0.00539756 4/8/97 19.35 0.00622086
2/5/97 23.91 —0.00459004 4/9/97 19.27 —0.00414294
2/6/97 23.1 —0.0344642 4/10/97 19.57 0.0154483
217197 22.23 —0.0383899 4/11/97 19.53 —0.00204604
2/10/97 22.46 0.0102932 4/14/97 19.9 0.018768
2/11/97 2242 —0.00178253 4/15/97 19.83 —0.00352379
2/12/97 21.86 —0.0252949 4/16/97 19.35 —0.0245035
2/13/97 22.02 0.00729265 4/17/97 19.42 0.00361104
2/14/197 22.41 0.0175562 4/18/97 19.91 0.0249187
2/17/97 22.41 0 4/21/97 20.38 0.0233319
2/18/97 22.52 0.00489652 4/22/97 19.6 —0.0390245
2/19/97 22.79 0.011918 4/23/97 19.73 0.00661075
2/20/97 21.98 —0.0361889 4/24/97 20.03 0.0150908
2/21/97 21.39 —0.0272094 4/25/97 19.99 —0.001999
2/24/97 20.71 —0.0323068 4/28/97 19.91 —0.00401003
2/25/97 21 0.0139058 4/29/97 20.44 0.0262716
2/26/97 21.11 0.00522442 4/30/97 20.21 —0.0113162
2/27/97 20.89 —0.0104763 5/1/97 1991 —0.0149554
2/28/97 20.3 —0.0286497 5/2/97 19.6 —0.0156926
3/3/97 20.25 —0.00246609 5/5/97 19.63 0.00152944
3/4/97 20.66 0.0200447 5/6/97 19.66 0.00152711
3/5/97 20.49 —0.0082625 5/7197 19.62 —0.00203666
3/6/97 20.94 0.0217242 5/8197 20.34 0.0360399
3/7197 21.28 0.0161065 5/9/197 20.43 0.00441502
3/10/97 20.49 —0.0378307 5/12/97 21.38 0.0454515
3/11/97 20.11 —0.0187198 5/13/97 21.37 —0.000467836
3/12/97 20.62 0.0250443 5/14/97 21.39 0.000935454
3/13/97 20.7 0.00387222 5/15/97 21.3 —0.00421645
3/14/97 21.29 0.0281038 5/16/97 22.12 0.0377751
3/17/97 20.92 —0.0175318 5/19/97 21.59 —0.0242519
3/18/97 22.06 0.0530604 5/20/97 21.19 —0.0187009
3/19/97 22.04 —0.00090703 5/21/97 21.86 0.0311291
3/20/97 22.32 0.0126242 5/22/97 21.86 0
3/21/97 21.51 —0.0369652 5123/97 21.63 —0.0105772
3/24/97 21.06 —0.0211424 5/26/97 21.63 0
3/25/97 20.99 —0.00332937 5127197 20.79 —0.0396091
3/26/97 20.64 —0.0168152 5/28/97 20.79 0
3/27/97 20.7 0.00290276 5/29/97 20.97 0.00862074
3/28/97 20.7 0 5/30/97 20.88 —0.00430108
3/31/97 20.41 —0.0141087 6/2/97 21.12 0.0114287
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w Table 10.5 (cont.) Table 10.5 (cont.)

Date Price  Log Difference Date Price Log Difference Date Price  Log Difference Date Pricce  Log Difference
6/3/97 20.33 —0.0381228 8/5/97 20.81 0.00288739 10/7/97 21.96 0.00136705 10/29/97 20.71 0.0121449
6/4/97 20.12 —0.0103833 8/6/97 20.46 —0.0169619 10/8/97 22.18 0.00996837 10/30/97 21.22 0.0243275
6/5/97 19.66 —0.0231282 8/7/97 20.09 —0.0182496 10/9/97 22.12 —0.00270881 10/31/97 21.08 —0.00661941
6/6/97 18.79 —0.0452613 8/8/97 19.54 —0.0277585 10/10/97 22.1 —0.000904568 11/3/97 20.96 —0.00570886
6/9/97 18.68 —0.00587138 8/11/97 19.69 0.00764725 10/13/97 21.32 —0.035932 11/4/97 20.7 —0.0124822
6/10/97 1867  —0.000535475 8/12/97  19.99 0.0151213 10/14/97 207 —0.0295119 11/5/97 2031 —0.0190203
6/11/97 1853  —0.00752692 8/13/97  20.19 0.00995528 10/15/97 2057  —0.0063 11/6/97 2039 0.00393121
6/12/97 18.69 0.00859758 8/14/97 20.08 —0.00546314 10/16/97 20.97 0.0192591 11/7/97 20.77 0.0184651
6/13/97  18.83 0.00746272 8/15/97 2007  —0.000498132 10/17/97 2059  —0.0182873 11/10/97  20.4 —0.0179747
6/16/97 19.01 0.00951381 8/18/97 19.91 —0.00800404 10/20/97 20.7 0.00532818 11/11/97 20.51 0.00537767
6/17/97 19.23 0.0115064 8/19/97 20.12 0.0104922 10/21/97 20.67 —0.00145033 11/12/97 20.49 —0.00097561
6/18/97 1879  —0.0231467 8/20/97 2006  —0.00298656 10/22/97 2142 0.0356417 11713/97  20.7 0.0101967
6/19/97 18.67 —0.00640686 8/21/97 19.66 —0.0201417 10/23/97 21.09 - —0.0155261 11/14/97 21 0.0143887
6/20/97 18.55 —0.00644817 8/22/97 19.7 0.00203252 10/24/97 20.97 —0.00570615 11/17/97 20.26 —0.0358739
6/23/97 19.14 0.0313106 8/25/97 19.26 —0.0225882 10/27/97 21.07 0.00475738 11/18/97 20.04 —0.0109182
6/24/97 19.03 —0.0057637 8/26/97 19.28 0.00103788 10/28/97 20.46 —0.0293785 11/19/97 19.8 —0.0120483
6/25/97 19.52 0.0254229 8/27/97 19.73 0.023072
6/26/97 19.09 —0.0222749 8/28/97 19.58 —0.00763168
6/27/97 19.46 0.0191964 8/29/97 19.61 0.001531
6/30/97 19.8 0.0173209 9/1/97 19.61 0
7/1/97 20.12 0.0160324 9/2/97 19.65 0.0020377
7/2197 20.34 0.010875 9/3/97 19.61 —0.0020377
7/3/197 19.56 —0.0391027 9/4/97 19.4 —0.0107666
7/4197 19.56 0 9/5/197 19.63 0.0117859
717/97 19.52 —0.00204708 9/8/97 19.45 —0.00921194
7/8/97 19.73 0.0107007 9/9/97 19.42 —0.00154361
7/9/97 19.46 —0.0137792 9/10/97 19.42 0

\ 7/10/97 19.22 —0.0124097 9/11/97 19.37 —0.00257799

‘ 7/11/97 19.33 0.00570689 9/12/97 19.32 —0.00258465

‘ 7/14/97 18.99 —0.0177458 9/15/97 19.27 —0.00259135
7/15/97 19.67 0.0351821 9/16/97 19.61 0.0174902
7/16/97 19.65 —0.00101729 9/17/97 19.42 —0.00973618
7117197 19.99 0.0171548 9/18/97 19.38 —0.00206186
7/18/97 19.27 —0.0366827 9/19/97 19.35 —0.00154919
7/21/97 19.18 —0.00468141 9/22/97 19.6 0.0128371
7/22/97 19.08 —0.0052274 9/23/97 19.79 0.00964719
7/23/97 19.63 0.0284183 9/24/97 19.94 0.007551
7/24/97 19.77 0.00710663 9/25/97 20.39 0.0223168
7/25/97 19.89 0.00605146 9/26/97 20.87 0.0232681
7/28/97 19.81 —0.00403023 9/29/97 21.26 0.0185147
7/29/97 19.85 0.00201715 9/30/97 21.18 —0.00377003
7/30/97 20.3 0.0224169 10/1/97 21.05 —0.00615678
7/31/97 20.14 —0.007913 10/2/97 21.77 0.0336323
8/1/97 20.28 0.00692729 10/3/97 22.76 0.0444717

8/4/197 20.75 0.0229111 10/6/97 21.93 —0.037149




11. Autoregressive Models and
Mean Reversion

11.1 The Autoregressive Model

Let S4(n) be the price of a security at the end of day n. If we also let
L(n) = log(S4(n)),
then the geometric Brownian motion model implies that
L(n)y=a+ Ln—1)+e(n), (11.1)

where e(n), n > 1, is a sequence of independent and identically dis-
tributed normal random variables with mean 0 and variance o?/N (with
N = 252 as the number of trading days in a year) and a is equal to x/N.
As before, w is the mean (or drift) parameter of the geometric Brownian
motion and o is the associated volatility parameter.

Looking at Equation (11.1), it is natural to consider fitting a more gen-
eral equation for L(n); namely, the linear regression equation

L(n) =a+bL(n—1)+e(n), (11.2)

where b is another constant whose value would need to be estimated.
That is, rather than arbitrarily taking » = 1, an improved model might
be obtained by letting b’s value be determined by data. Equation (11.2)
is the classical linear regression model, and the technique for estimating
a, b, and o is well known. Because the linear regression model given by
Equation (11.2) specifies the log price at time n in terms of the log price
one time period earlier, it is called an autoregressive model of order 1.
The parameters a and b of the autoregressive model given by (11.2)
are estimated from historical data in the following manner. Suppose
L(0), L(1), ..., L(r) are the logarithms of the end-of-day prices for r
successive days. Then, when a and b are known, the predicted value of
L (i) based on prior log prices is @ +bL (i —1); hence, the usual approach
to estimating a and b is to let them be the values that minimize the sum of
squares of the prediction errors. That is, a and b are chosen to minimize
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Z(L(i) —a—bL(i — )%
i=1

There are many standard statistical software packages that can be used
to calculate the minimimizing values and also to estimate o .

Remark. The model specified by Equation (11.2) is a risk-neutral model
only when a = (r — 0%?/2)/N and b = 1. That is, it is risk-neutral only
when it reduces to the risk-neutral geometric Brownian motion model.
Consequently, no arbitrage is possible when all investments are priced
according to their expected present values when a = (r — 0%/2)/N
and b = 1. However, an investor who believes that ¢ and b have some
other values can often make an investment that, although not yielding a
sure win, can generate a return with a large expected value and a small
variance when these latter quantities are computed according to the in-
vestor’s estimated values of a and b.

11.2 Valuing Options by Their Expected Return

Assume that the end-of-day log prices follow Equation (11.2) and that
the parameters a, b, o have been determined, and consider an option
whose exercise time is at the end of n trading days. In order to assess
the expected value of this option’s payoff, we must first determine the
probability distribution of L(n). To accomplish this, start by rewriting
the Equation (11.2) as

L) =e()+a+bL3i—1).

Now, continually using the preceding equation — first with i = n, then
with i = n — 1, and so on — yields

L(n) =e(n)+a+bL(n—1)
=e(n)+a+blen—1)+a+bL(n—2)]
=e(n) +be(n —1) +a +ab + b*L(n —2)
=e(n) 4+ be(n — 1) +a +ab + b*[e(n —2) +a + bL(n — 3)]
=e(n) +be(n —1) + b*e(n —2)
+a+ab+ ab* 4+ b’L(n - 3).
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Continuing on in this fashion shows that, for any k£ < n,
ko k
L(n) =) betn—i)+ay b +b*'Lin—k-1).
i=0 i=0
Hence, with k = n — 1, the preceding equation yields

n—1 n—1

L(n) = Z ble(n —i) +a Z b’ + b"L(0)
i=0 i=0

a(l—b")

T + b"L(0). (11.3)

n—1
= be(n—i)+

i=0
Note Fhat b'e(n —i) is a normal random variable with mean 0 and vari-
ance b%o?/N. Thus — using that the sum of independent normal random

variables is also a normal random variable — we see that Z,'-'__é bie(n—i)
is a normal random variable with mean

n—1 n—1
E[Zb’e(n = i)] = ZbiE[e(n -]=0 (11.4)
i=0 i=0

and variance
n—1 ) n—1
Var[ Zb’e(n = i)] = Z Var[ble(n — i)]
i=0 i=0
o N 2i

== ;b
B 0,2(1 _ b2n)
= ——N(I Y (11.5)

Hence, from Equations (11.3), (11.4), and (11.5) we obtain that if the log-
arithm of the price at time 0 is L(0) = g, then L(n) is a normal random
variable with mean m(n) and variance v(n), where

a(l—>b")

B

+b"g (11.6)
and
0,2(1 _ b2n)

v = Ny

(11.7)
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The present value of the payoff of a call option (whose strike price is
K and whose exercise time is at the end of n trading days) is

e-—rn/N(Sd(n) _ K)+ — e—rn/N(eL(n) o K)+,

where r and N are (respectively) the interest rate and the number of trad-
ing days in a year. Using that L(n) is normal with mean and variance as
given by Equations (11.6) and (11.7), it can be shown that the expected
value of this payoff is

E[e—rn/N(eL(n) _ K)+]
_ e—rn/N(em(n)+v(n)/2<p( /v(n) — h) — Kd)(—h)), (11.8)

where @ is the standard normal distribution function and where
B log(K) — m(n)
Jv(n) '

Example11.2a  Assuming that an autoregressive model is appropriate
for the crude oil data from Chapter 10, the estimates of a, b, and o/~N
obtained from a standard statistical package are

a= 0487, b= 9838, o/v/N =.01908.
That is, the estimated autoregressive equation is
L(n) = .0487 + .9838L(n — 1) + e(n),

where e(n) is a normal random variable having mean 0 and standard
deviation .01908. Consequently, if the present price is 20, then the log-
arithm of the price at the end of another 50 trading days is a normal
random variable with mean

.0487(1 — .9838%)

log(20)(. 0 —13.00
R +10g(20)(.9838) 3.0016

m(50) =

and variance

1 — (.9838)!%
1= (9838) 7 ooo.

1 — (.9838)?
Suppose now that the interest rate is 8% and that we want to determine

the expected present value of the payoff from an option to purchase the
security at the end of 50 trading days at a strike price K = 2. Because

v(50) = (.0191)*
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log(21) — 3.001
p = 08D = 30016 _ o0,
+/.0091

it follows from Equation (11.8) that the present value of the expected
payoff is

e 0%00/252(20.2094 0 (—.3545) — 210 (—.4499)) = .4442.

That is, the expected present value payoff is 44.42 cents.

It is interesting to compare the preceding result with the geometric
Brownian motion Black—Scholes option cost. Using the notation of
Section 7.2, the data set of the crude oil prices results in the following
estimate of the volatility parameter:

o =.3032 (o/v/N = .01910).
As this gives w = —.1762 and o4/t = .1351, the Black—Scholes cost is
C =209 (—.1762) — 21e=*/?2d(—.3113) = .7911.

Thus the geometric Brownian motion risk-neutral cost valuation of 79
cents is quite a bit more than the expected present value payoff of 44
cents when the autoregressive model is assumed. The primary reason
for this discrepancy is that the variance of the logarithm of the final price
is .01824 under the risk-neutral geometric Brownian motion model but
only .0091 under the autoregresssive model. (The means of the loga-
rithms of the price at exercise time are roughly equal: 3.0025 under the
risk-neutral geometric Brownian motion model and 3.0016 under the
autoregressive model.)

For additional comparisons, a simulation study yielded that the ex-
pected present value of the option payoff under the model of Chapter 10
is 64 cents when the sample means are used as estimators of the mean
drifts versus 81 cents when the risk-neutral means are used. O

11.3 Mean Reversion

Many traders believe that the prices of certain securities (often com-
modities) tend to revert to fixed values. That is, when the current price
is less than this value, the price tends to increase; when it is greater,
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it tends to decrease. Although this phenomenon — called mean rever-
sion — cannot be explained by a geometric Brownian motion model, it
is a very simple consequence of the autoregressive model. For consider

the model
L(n)=a+bL(n —1)+e(n),

which is equivalent to
Sa(n) = e+ (Sy(n — 1))’

Since ,
E[ea+e(n)] = ea+a /2N

it follows that, if the price of the security at the end of day n — -1 is s,
then the expected price of the security at the end of the next day is

E[S4(n)] = ea+o"/2Nsb, (11.9)

Now suppose that 0 < b < 1, and let

. [a+02/2N}
SEE I TIoe

We will show that if the present price is s then the expected price at the

end of the next day is between s and s*.
Toward this end, first suppose that s < s*. That is,

22N
5 < exp{g%/;—}, (11.10)

which implies that
s'=? < exp{a + 0%/2N}

or
s < exp{a + 0*/2N}s® = E[S4(n)]. (11.11)

Moreover, Equation (11.10) also implies that

b(a +02/2N)}
1-b

st < cxp[

or
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a+o?%/2N
st < exp{ _I/T —(a+ 0'2/2N)],

which is equivalent to

(11.12)

2
E[S;(n)] = exp{a + 0%/2N}s? < exp{w} =

1-b

Consequently, from (11.11) and (11.12) we see that, if Sy(n — 1) =
s < s* then

s < E[S;(n)] < s*.
In a similar manner, it follows that if S;(n — 1) = s > s* then
s* < E[S;(n)] < s.

Therefore, if 0 < b < 1 then, for any current end-of-day price s, the
mean price at the end of the next day is between s and s*. In other words,
there is a mean reversion to the price s*.

Example 11.3a  For the data of Example 11.2a, the estimated regres-
sion equation is

L(n) = .0487 4 .9838L(n — 1) + e(n),

where e(n) is a normal random variable having mean 0 and standard de-
viation .0191. Since the estimated value of b is less than 1, this model
predicts a mean price reversion to the value

N { .0487 + (.0191)%/2
exp

et } = 20.44.

114 Exercises

Exercise 11.1 For the model
L(n) =54 .8L(n —1) 4+ e(n),

where e(n) is a normal random variable with mean 0 and variance .2,
find the probability that L(n + 10) > L(n).
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Exercise 11.2 Let L(n) denote the logarithm of the price of a security
at the end of day n, and suppose that

L(n) =12+ .7L(n —1) +e(n),

where e(n) is a normal random variable with mean 0 and variance .1.
Find the expected present value payoff of a call option that expires in
60 trading days and has strike price 50 when the interest rate is 10% and
the present price of the security is: (a) 48; (b) 50; (c) 52.

Exercise 11.3  Use a statistical package on the first 100 data values for
heating oil (presented in Table 11.1, pp. 174-82) to fit an autoregressive
model.

Exercise 11.4 To what value does the expected price of the security in
Exercise 11.2 revert?

Exercise 11.5 For the model of Section 11.3, show that if S;(n — 1) =

s > s* then
s* < E[S4(n)] < s.

Exercise 11.6 For the model of Section 11.3, show that if S;(n — 1) =
s* then
E[Ss(n)] = s*.
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Table 11.1: Nearest-Month Commodity Prices (dollars) Table 11.1 (cont.)

Unleaded Heating Unleaded Heating Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas 0il Date Gas Oil Date Gas Oil
03-Jan-95 52.75 49.94 07-Mar-95 56.78 46.36 09-May-95 62.56 49.14 11-Jul-95 54.19 46.96
04-Jan-95 53.43 49.64 08-Mar-95 55.83 45.25 10-May-95 63.29 49.95 12-Jul-95 54.96 47.23
05-Jan-95 54.51 49.96 09-Mar-95 54.35 45.14 11-May-95 63.28 49.09 13-Jul-95 54.39 46.68
06-Jan-95 53.77 49.52 10-Mar-95 52.47 45.25 12-May-95 63.67 49.54 14-Jul-95 54.54 46.53
09-Jan-95 53.9 48.33 13-Mar-95 53.81 45.61 15-May-95 64.9 49.86 17-Jul-95 53.98 46.49
10-Jan-95 53.66 47.38 14-Mar-95 52.79 44.34 16-May-95 66.3 50.45 18-Jul-95 53.58 46.98
11-Jan-95 54.54 47.98 15-Mar-95 54.04 45.14 17-May-95 66.76 50.4 19-Jul-95 52.69 46.47
12-Jan-95 54.92 47.85 16-Mar-95 54.93 45.37 18-May-95 66.5 50.56 20-Jul-95 52.18 46.1
13-Jan-95 85 46.68 17-Mar-95 55.37 46.07 19-May-95 66.34 51.01 21-Jul-95 52.05 46.14
16-Jan-95 56.88 47.35 20-Mar-95 56.15 45.85 22-May-95 66.46 51.29 24-Jul-95 53.26 46.56
17-Jan-95 57.8 48.67 21-Mar-95 56.15 45.65 23-May-95 66.15 52.29 25-Jul-95 52.37 46.51
18-Jan-95 59.48 49.08 22-Mar-95 55.9 47.02 24-May-95 64.93 51.13 26-Jul-95 52.89 48.62
19-Jan-95 58.12 48.28 23-Mar-95 57.53 46.56 25-May-95 65.81 51.25 27-Jul-95 53.69 48.13
20-Jan-95 57.4 48.14 24-Mar-95 57.82 46.32 26-May-95 64.07 48.72 28-Jul-95 53.75 48
23-Jan-95 56.38 47.82 27-Mar-95 58.6 47.46 29-May-95 64.07 48.72 31-Jul-95 54.08 48.27
24-Jan-95 57.6 47.87 28-Mar-95 58.73 47.46 30-May-95 63.5 48.56 01-Aug-95 54.35 48.79
25-Jan-95 57.25 47.47 29-Mar-95 59.99 47.08 31-May-95 63 48.47 02-Aug-95 54.44 49.44
26-Jan-95 57.44 47.27 30-Mar-95 60.68 47.19 01-Jun-95 59.78 49.53 03-Aug-95 53.93 49.24
27-Jan-95 56.07 47.27 31-Mar-95 59.47 47.06 02-Jun-95 60.94 49.9 04-Aug-95 53.97 49.18
30-Jan-95 56.21 47.42 03-Apr-95 57.44 47.47 05-Jun-95 61.79 49.6 07-Aug-95 54.05 49.32
31-Jan-95 57.76 46.86 04-Apr-95 58.6 47.96 06-Jun-95 61.39 49.1 08-Aug-95 54.38 49.7
01-Feb-95 56.77 47.8 05-Apr-95 60.48 48.01 07-Jun-95 61.77 48.95 09-Aug-95 54.78 49.45
02-Feb-95 55.95 48.55 06-Apr-95 61.68 49.21 08-Jun-95 60.64 48.65 10-Aug-95 55.65 49.55
03-Feb-95 57.35 49.44 07-Apr-95 61.29 49.5 09-Jun-95 60.8 48.1 11-Aug-95 55.72 49.38
06-Feb-95 57.3 49.2 10-Apr-95 61.22 49.28 12-Jun-95 61.15 48.5 14-Aug-95 55.23 48.77
07-Feb-95 56.99 49.13 11-Apr-95 61.59 50.15 13-Jun-95 60.93 48.53 15-Aug-95 54.82 48.74
08-Feb-95 56.1 47.98 12-Apr-95 61.37 49.54 14-Jun-95 62 49.19 16-Aug-95 53.92 49.22
09-Feb-95 55.84 47.65 13-Apr-95 60.44 48.79 15-Jun-95 61.87 48.88 17-Aug-95 54.29 49.27
10-Feb-95 55.64 48.28 14-Apr-95 60.44 48.79 16-Jun-95 61.5 48.29 18-Aug-95 54.23 49.7
13-Feb-95 55.56 47.29 17-Apr-95 62.03 50.01 19-Jun-95 60.28 47 21-Aug-95 54.46 50.29
14-Feb-95 56.16 47.5 18-Apr-95 63.69 50.19 20-Jun-95 60.15 47.14 22-Aug-95 54.57 50.18
15-Feb-95 56.22 46.89 19-Apr-95 63.15 50.15 21-Jun-95 58.73 46.54 23-Aug-95 55.27 50.5
16-Feb-95 57.91 46.92 20-Apr-95 63.22 50.28 22-Jun-95 58.33 46.65 24-Aug-95 55.86 50.2
17-Feb-95 58.76 47.72 21-Apr-95 63.2 50.64 23-Jun-95 56.98 46.31 25-Aug-95 55.97 49.97
20-Feb-95 58.76 47.72 24-Apr-95 62.21 50.02 26-Jun-95 56.71 46.78 28-Aug-95 55.62 49.8
21-Feb-95 59.11 47.62 25-Apr-95 62.91 50.78 27-Jun-95 57.38 47.23 29-Aug-95 55.51 49.52
22-Feb-95 59.84 47.89 26-Apr-95 63.81 50.45 28-Jun-95 59.59 47.69 30-Aug-95 56.45 49.65
23-Feb-95 58.36 47.44 27-Apr-95 64.96 51.26 29-Jun-95 59.01 46.92 31-Aug-95 56.25 50.15
24-Feb-95 58.76 47.75 28-Apr-95 65.33 51.19 30-Jun-95 59.15 46.72 01-Sep-95 54.25 51.43
27-Feb-95 58.97 47.19 01-May-95 64.15 51.09 03-Jul-95 59.15 46.72 04-Sep-95 54.25 5143
28-Feb-95 57.58 46.9 02-May-95 63.65 50.95 04-Jul-95 59.15 46.72 05-Sep-95 56.23 52.97
01-Mar-95 56.74 46.44 03-May-95 62.55 50.25 05-Jul-95 54.37 46.51 06-Sep-95 55.32 52.11
02-Mar-95 55.59 46.52 04-May-95 63.59 51.27 06-Jul-95 54.74 47.19 07-Sep-95 54.55 51.44
03-Mar-95 55.94 47.41 05-May-95 63.99 51.34 07-Jul-95 53.8 46.37 08-Sep-95 54.79 51.83
06-Mar-95 56.21 46.66 08-May-95 64.21 51.15 10-Jul-95 54.74 47.1 11-Sep-95 54.92 51.65
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Table 11.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil
12-Sep-95 55.74 51.95 14-Nov-95 5043 51.56
13-Sep-95 55.34 51.25 15-Nov-95 51.24 51.71
14-Sep-95 56.81 51.8 16-Nov-95 51.55 52.22
15-Sep-95 56.63 51.53 17-Nov-95 52.79 52.96
18-Sep-95 57.73 51.65 20-Nov-95 52.9 52.73
19-Sep-95 57.23 51.37 21-Nov-95 53.12 52.28
20-Sep-95 56.39 493 22-Nov-95 54.12 52.54
21-Sep-95 54.87 48.67 23-Nov-95 54.12 52.54
22-Sep-95 53.49 48.09 24-Nov-95 54.12 52.54
25-Sep-95 54.01 48.85 27-Nov-95 5545 53.42
26-Sep-95 53.79 48.23 28-Nov-95 56.24 52.95 |
27-Sep-95 54.55 49.02 29-Nov-95 57.45 52.2
28-Sep-95 56.05 49.5 30-Nov-95 57.36 51.62
29-Sep-95 57.67 48.65 01-Dec-95 53.02 52.67
02-Oct-95 52.78 49.26 04-Dec-95 53.56 54.03
03-Oct-95 51.93 49.28 05-Dec-95 54 54.22
04-Oct-95 50.74 48.85 06-Dec-95 53.89 54.75
05-Oct-95 48.89 47.97 07-Dec-95 54.06 55.28
06-Oct-95 49.15 48.21 08-Dec-95 54.65 56.59
09-Oct-95 50.24 48.74 11-Dec-95 54.69 56.75
10-Oct-95 50.33 48.67 12-Dec-95 55.58 56.81
11-Oct-95 50.48 48.8 13-Dec-95 57.55 57.69
12-Oct-95 49.86 48.46 14-Dec-95 57.86 57.3
13-Oct-95 50.29 48.92 15-Dec-95 59.59 57.99
16-Oct-95 50.7 48.85 18-Dec-95 59.93 59.11
17-Oct-95 50.33 48.82 19-Dec-95 59.26 59.23
18-Oct-95 49.88 48.42 20-Dec-95 57.75 59.9
19-Oct-95 49.36 48.15 21-Dec-95 56.91 60.01
20-Oct-95 49.7 48.58 22-Dec-95 57.59 60.09
23-Oct-95 49.81 48.94 25-Dec-95 57.59 60.09
24-Oct-95 49.87 49.36 26-Dec-95 58.69 60.5
25-Oct-95 49.69 49.58 27-Dec-95 60.26 62.33
26-Oct-95 50 50.44 28-Dec-95 59.28 60.32
27-Oct-95 50.06 50.34 29-Dec-95 58.6 58.63
30-Oct-95 50.74 50.59 01-Jan-96 58.6 58.63
31-Oct-95 50.83 50.4 02-Jan-96 59.09 59.93
01-Nov-95 50.55 50.95 03-Jan-96 58.74 59.44
02-Nov-95 51.72 52.04 04-Jan-96 59.44 59.28
03-Nov-95 51.51 51.72 05-Jan-96 60.48 60.64
06-Nov-95 51.03 51.15 08-Jan-96 60.48 60.64
07-Nov-95 51.14 50.99 09-Jan-96 58.65 60.43
08-Nov-95 51.42 51.45 10-Jan-96 58.19 59.59
09-Nov-95 51.06 51.62 11-Jan-96 54.44 56.16
10-Nov-95 50.7 51.63 12-Jan-96 53.1 53.57
13-Nov-95 50.3 51.57 15-Jan-96 53.9 533

Exercises 177
Table 11.1 (cont.)
Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil
16-Jan-96 53.33 52.43 19-Mar-96 65.15 62.26
17-Jan-96 54.98 53.13 20-Mar-96 64.38 63:12
18-Jan-96 55.21 54.37 21-Mar-96 64.03 61.33
19-Jan-96 55.41 54.22 22-Mar-96 65.49 62.65
22-Jan-96 54.88 53.67 25-Mar-96 67 63.2
23-Jan-96 53.66 52.95 26-Mar-96 66.25 64.88
24-Jan-96 542 52.72 27-Mar-96 65.72 65.93
25-Jan-96 52.67 50.51 28-Mar-96 64.44 63.54
26-Jan-96 52.97 50.93 29-Mar-96 64.94 62.76
29-Jan-96 52.46 51.13 01-Apr-96 66 57.98
30-Jan-96 53.37 52.28 02-Apr-96 68.11 59.72
31-Jan-96 54.1 53.51 03-Apr-96 67.69 58.22
01-Feb-96 53.14 52.41 04-Apr-96 68.76 59.57
02-Feb-96 53.74 53.26 05-Apr-96 68.76 59.57
05-Feb-96 52.06 51.6 08-Apr-96 69.86 60.19
06-Feb-96 52.38 51.64 09-Apr-96 70.52 60.64
07-Feb-96 52.23 52.46 10-Apr-96 72.99 62.51
08-Feb-96 52.44 53.14 11-Apr-96 74.3 64.02
09-Feb-96 5291 53.62 12-Apr-96 72.17 62.02
12-Feb-96 53 53.69 15-Apr-96 71.71 62.62
13-Feb-96 55.11 56.74 16-Apr-96 69.45 59.54
14-Feb-96 55.2 58.21 17-Apr-96 68.12 58.09
15-Feb-96 55.44 57 18-Apr-96 66.4 55.4
16-Feb-96 55.77 56.87 19-Apr-96 67.49 55.72
19-Feb-96 55.77 56.87 22-Apr-96 70.19 55.06
20-Feb-96 57.71 56.39 23-Apr-96 73.18 57.3
21-Feb-96 59.45 58.84 24-Apr-96 74.1 58.2
22-Feb-96 60.04 60.53 25-Apr-96 75.61 58.76
23-Feb-96 58.73 60.66 26-Apr-96 76.81 59.27
26-Feb-96 59.76 62.85 29-Apr-96 77.01 62.28
27-Feb-96 60.31 64.28 30-Apr-96 72.39 61.82
28-Feb-96 59.46 59.68 01-May-96 67.42 54.16
29-Feb-96 59.35 61.81 02-May-96 68.4 53.94
01-Mar-96 59.75 53.42 03-May-96 69.92 54.74
04-Mar-96 58.73 52.15 06-May-96 68.85 54.56
05-Mar-96 59.09 53 07-May-96 68.81 54.79
06-Mar-96 59.75 54.22 08-May-96 68.37 54.87
07-Mar-96 59.18 53.78 09-May-96 67.23 54.56
08-Mar-96 58.75 53.44 10-May-96 68.48 54.95
11-Mar-96 59.32 55.15 13-May-96 69.11 56.19
12-Mar-96 60.56 54.83 14-May-96 68.43 55.32
13-Mar-96 61.61 54.59 15-May-96 67.2 54.81
14-Mar-96 62.45 55.07 16-May-96 64.2 53
15-Mar-96 62.92 57.87 17-May-96 63.03 52.94
18-Mar-96 64.31 60.28 20-May-96 66.04 55.24



178 Autoregressive Models and Mean Reversion Exercises 179
Table 11.1 (cont.) J] Table 11.1 (cont.)
i
Unleaded Heating Unleaded Heating .l Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas 0Oil i Date Gas Oil Date Gas QOil
21-May-96 64.95 54.06 23-Jul-96 63.08 55.94 24-Sep-96 62.83 69.69 26-Nov-96 69.01 71.24
22-May-96 64.3 54.99 24-Jul-96 61.87 55.95 25-Sep-96 63.1 71.77 27-Nov-96 69.35 71.97
23-May-96 64.25 54.39 25-Jul-96 61.66 56.25 “ 26-Sep-96 62.99 70.9 28-Nov-96 69.35 71.97
24-May-96 64.72 54.46 26-Jul-96 60.16 55.04 ; 27-Sep-96 64.6 71.49 29-Nov-96 69.35 71.97
27-May-96 64.72 54.46 29-Jul-96 60.52 55.19 4’ 30-Sep-96 62.71 71.51 02-Dec-96 68.12 73.57
28-May-96 63.15 54.18 30-Jul-96 61.23 55.65 01-Oct-96 62.82 70.76 03-Dec-96 69.13 74.22
29-May-96 62.36 54.06 31-Jul-96 61.8 57.08 02-Oct-96 62.42 71.98 04-Dec-96 68.24 73.57
30-May-96 59.88 52.09 01-Aug-96 61.38 57.53 03-Oct-96 63.68 74.69 05-Dec-96 69.68 75.11
31-May-96 59.12 50.85 02-Aug-96 62.12 58.71 04-Oct-96 63.63 74.43 06-Dec-96 69.8 74.66
03-Jun-96 58.99 51.25 05-Aug-96 61.31 58.29 07-Oct-96 66.34 76.49 09-Dec-96 68.88 72.13
04-Jun-96 60.69 51.52 06-Aug-96 61.23 57.43 / 08-Oct-96 66.5 76.19 10-Dec-96 66.86 69.62
05-Jun-96 59.39 50.85 07-Aug-96 62 58.22 : 09-Oct-96 65.59 73.97 11-Dec-96 63.56 66.82
06-Jun-96 60.22 51.04 08-Aug-96 62.27 58.79 ‘ 10-Oct-96 63.52 70.92 12-Dec-96 64.72 68.67
07-Jun-96 60.91 51.78 09-Aug-96 61.87 58.49 11-Oct-96 65.52 71.43 13-Dec-96 67.04 71.71
10-Jun-96 61.4 51.4 12-Aug-96 62.89 59.56 14-Oct-96 67.7 74.07 16-Dec-96 69.52 74.82
11-Jun-96 60.8 50.79 13-Aug-96 63.09 60.01 “ 15-Oct-96 67.08 73.07 17-Dec-96 69.77 73.54
12-Jun-96 59.68 50.88 14-Aug-96 62.49 60.41 v 16-Oct-96 65.45 71.56 18-Dec-96 71.17 74.18
13-Jun-96 58.89 50.95 15-Aug-96 61.96 59.68 | 17-Oct-96 66.53 72.29 19-Dec-96 71.22 73.78
14-Jun-96 59.5 51.55 16-Aug-96 63.38 61.63 18-Oct-96 67.94 74.06 20-Dec-96 70.19 72.97
17-Jun-96 61.21 53.34 19-Aug-96 65.27 62.58 21-Oct-96 67.92 73.63 23-Dec-96 68.9 71.08
18-Jun-96 60.24 52.5 20-Aug-96 64.01 61.67 22-Oct-96 69.12 73.45 24-Dec-96 69.56 71.4
19-Jun-96 57.96 51.12 21-Aug-96 63.12 60.98 23-Oct-96 68.16 70.96 25-Dec-96 69.56 71.4
20-Jun-96 58.68 51.53 22-Aug-96 63.88 62.48 24-Oct-96 69.22 70.49 26-Dec-96 69.51 70.06
21-Jun-96 58.74 51.36 23-Aug-96 63.22 61.99 25-Oct-96 70.1 71.72 27-Dec-96 69.74 70.55
24-Jun-96 58.23 513 26-Aug-96 61.62 61.03 28-Oct-96 70.3 71.46 30-Dec-96 69.61 70.57
25-Jun-96 57.46 51.17 27-Aug-96 61.21 61.13 29-Oct-96 69.1 69.83 31-Dec-96 70.67 72.84
26-Jun-96 58.36 52.34 28-Aug-96 62.33 62.04 30-Oct-96 70 68.46 01-Jan-97 70.67 72.84
27-Jun-96 59.36 53.64 29-Aug-96 63.72 63.67 31-Oct-96 66.56 66.34 02-Jan-97 71.1 72.11
28-Jun-96 60.03 53.95 30-Aug-96 62.82 62.82 . 01-Nov-96 64.7 66.6 03-Jan-97 70.7 71.29
01-Jul-96 61.51 55.14 02-Sep-96 62.82 62.82 r 04-Nov-96 65 65.95 06-Jan-97 72.52 73.64
02-Jul-96 60.89 54.28 03-Sep-96 62.96 65.07 ‘ 05-Nov-96 64.61 65.42 07-Jan-97 72.1 72.49
03-Jul-96 62.47 54.71 04-Sep-96 62.96 64.21 ’ 06-Nov-96 63.63 66.45 08-Jan-97 72.19 73.43
04-Jul-96 62.47 54.71 05-Sep-96 64.41 65.03 i 07-Nov-96 63.8 66.89 09-Jan-97 70.48 73.05
05-Jul-96 62.47 54.71 06-Sep-96 65.27 66.4 b 08-Nov-96 65.27 68.93 10-Jan-97 70.36 72.15
08-Jul-96 61.68 54.89 09-Sep-96 64.09 65.95 11-Nov-96 65.02 68.35 13-Jan-97 68.09 69.7
09-Jul-96 61.81 55.26 10-Sep-96 64.85 66.67 12-Nov-96 65.77 68.25 14-Jan-97 67.04 69.42
10-Jul-96 63.11 55.59 11-Sep-96 65.91 68.19 ‘ 13-Nov-96 68.34 71.2 15-Jan-97 68.85 71.42
11-Jul-96 64.59 56.7 12-Sep-96 65.91 69.17 j 14-Nov-96 68.92 734 16-Jan-97 68.69 69.92
12-Jul-96 64 56.62 13-Sep-96 64.6 67.94 i 15-Nov-96 66.92 72.61 17-Jan-97 68.09 68.44
15-Jul-96 65.56 57.72 16-Sep-96 62.87 65.29 ; 18-Nov-96 65.77 71.85 20-Jan-97 67.23 66.94
16-Jul-96 65.13 57.18 17-Sep-96 62.74 65.59 | 19-Nov-96 67.39 73.68 21-Jan-97 67.44 66.03
17-Jul-96 63.89 56.32 18-Sep-96 63.06 67.87 20-Nov-96 65.39 72.09 22-Jan-97 68.22 66.89
18-Jul-96 63.87 56.74 19-Sep-96 61.32 66.77 : 21-Nov-96 67.04 73.85 . 23-Jan-97 68.42 66.35
19-Jul-96 62.41 56.02 20-Sep-96 61.09 67.42 | 22-Nov-96 67.8 72.79 24-Jan-97 67.75 66.77
22-Jul-96 62.76 55.85 23-Sep-96 60.07 67.48 25-Nov-96 67.99 72.23 27-Jan-97 67.62 67.29
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Table 11.1 (cont.)

Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil
28-Jan-97 67.04 66.83 01-Apr-97 62.67 53.95
29-Jan-97 68.23 68.84 02-Apr-97 60.61 52.52
30-Jan-97 69.82 70.34 03-Apr-97 60.9 53.26
31-Jan-97 68.47 68.65 04-Apr-97 60.48 53.14
03-Feb-97 68.35 65.28 07-Apr-97 60.72 53.13
04-Feb-97 68.31 64.18 08-Apr-97 61.17 52.89
05-Feb-97 67.54 63.32 09-Apr-97 60.7 53.11
06-Feb-97 65.3 61.45 10-Apr-97 61.07 54.86
07-Feb-97 63.06 60.53 11-Apr-97 60.88 53.87
10-Feb-97 63.53 61.76 14-Apr-97 61.96 54.67
11-Feb-97 63.96 61.86 15-Apr-97 61.9 54.85
12-Feb-97 62.89 60.85 16-Apr-97 60.38 53.48
13-Feb-97 63.18 59.92 17-Apr-97 60.7 54
14-Feb-97 64.25 60.81 18-Apr-97 61.49 54.68
17-Feb-97 64.25 60.81 21-Apr-97 62.8 55.48
18-Feb-97 64.16 59.42 22-Apr-97 61.77 54.83
19-Feb-97 64.68 59.59 23-Apr-97 61.74 55.65
20-Feb-97 62.78 58.04 24-Apr-97 62.84 55.89
21-Feb-97 61.82 57.85 25-Apr-97 62.5 55.9
24-Feb-97 60.24 55.47 28-Apr-97 62.34 56.53
25-Feb-97 62.23 56.82 29-Apr-97 63.36 5891
26-Feb-97 62.26 56.68 30-Apr-97 63.91 58.07
27-Feb-97 62.67 56.03 01-May-97 62.63 54.33
28-Feb-97 61.65 54.76 02-May-97 60.52 53.02
03-Mar-97 61.77 53.18 05-May-97 60.54 53.05
04-Mar-97 62.89 53.34 06-May-97 60.31 53.53
05-Mar-97 63.33 52.54 07-May-97 60.92 53.08
06-Mar-97 64.48 53.43 08-May-97 62.5 54.38
07-Mar-97 65.67 54.08 09-May-97 62.89 54.52
10-Mar-97 64.36 53.08 12-May-97 64.47 56.65
11-Mar-97 63.86 52.83 13-May-97 64.76 56.48
12-Mar-97 64.63 54.08 14-May-97 64.38 56.42
13-Mar-97 64.23 54.22 15-May-97 64.04 56.48
14-Mar-97 65.77 55.33 16-May-97 65.87 58.47
17-Mar-97 65.26 54.3 19-May-97 65.21 57.92
18-Mar-97 67.48 56.18 20-May-97 65.39 57.64
19-Mar-97 67.96 56.29 21-May-97 66.53 57.55
20-Mar-97 67.58 55.94 22-May-97 66.93 57.8
21-Mar-97 67.64 55.98 23-May-97 66.92 57.52
24-Mar-97 66.51 55.73 26-May-97 66.92 57.52
25-Mar-97 66.52 56.83 27-May-97 65.38 55.27
26-Mar-97 64.82 55.43 28-May-97 65.8 55.39
27-Mar-97 64.63 56.07 29-May-97 65.15 56
28-Mar-97 64.63 56.07 30-May-97 63.68 56.49
31-Mar-97 63.68 56.72 02-Jun-97 63.68 56.32

Exercises 181
Table 11.1 (cont.)
Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil
03-Jun-97 61.44 54.62 05-Aug-97 67.1 58.32
04-Jun-97 60.42 54.16 06-Aug-97 66.06 56.98
05-Jun-97 59.82 53.32 07-Aug-97 64.33 55.3
06-Jun-97 57.13 51.52 08-Aug-97 61.99 54.29
09-Jun-97 56.2 51.5 11-Aug-97 61.47 54.36
10-Jun-97 56.4 51.65 12-Aug-97 63.71 55.1
11-Jun-97 56.54 51.52 13-Aug-97 66.08 56.04
12-Jun-97 57.08 51.62 14-Aug-97 66.33 55.87
13-Jun-97 574 51.64 15-Aug-97 66.81 55.25
16-Jun-97 58.03 51.94 18-Aug-97 65.44 55.09
17-Jun-97 58.48 52.45 19-Aug-97 67.58 55.71
18-Jun-97 56.78 51.44 20-Aug-97 69.64 55.1
19-Jun-97 56.09 51.45 21-Aug-97 67.15 53.48
20-Jun-97 55.48 51.33 22-Aug-97 67.48 5341
23-Jun-97 55.64 51.92 25-Aug-97 64.5 522
24-Jun-97 55.68 51.57 26-Aug-97 63.81 52.09
25-Jun-97 56.97 52.99 27-Aug-97 66.4 53.26
26-Jun-97 56.79 52.02 28-Aug-97 67.51 52.51
27-Jun-97 57.91 53.33 29-Aug-97 68.82 51.85
30-Jun-97 58.12 53.7 01-Sep-97 68.82 51.85
01-Jul-97 58.78 54.84 02-Sep-97 62.79 53.4
02-Jul-97 59.29 54.92 03-Sep-97 62.55 53.35
03-Jul-97 57.92 52.76 04-Sep-97 59.92 52.54
04-Jul-97 57.92 52.76 05-Sep-97 60.12 53.78
07-Jul-97 57.94 52.78 08-Sep-97 59.32 53.14
08-Jul-97 58.92 53 09-Sep-97 59.49 52.83
09-Jul-97 58.23 52.65 10-Sep-97 58.33 51.57
10-Jul-97 58.6 52.11 11-Sep-97 58.78 52.05
11-Jul-97 59.26 52.35 12-Sep-97 58.77 52.58
14-Jul-97 58.35 51.67 15-Sep-97 58.22 52.52
15-Jul-97 59.94 52.95 16-Sep-97 59.04 53.85
16-Jul-97 60.46 52.68 17-Sep-97 58.45 53.35
17-Jul-97 61.89 53.89 18-Sep-97 57.25 53.44
18-Jul-97 60.05 52.22 19-Sep-97 57.48 53.45
21-Jul-97 60.04 52.35 22-Sep-97 58.58 54.73
22-Jul-97 60.02 52.7 23-Sep-97 58.36 54.64
23-Jul-97 61.12 53.28 24-Sep-97 58.37 55.24
24-Jul-97 62.21 53.39 25-Sep-97 59.25 56.51
25-Jul-97 64.03 53.99 26-Sep-97 61.34 57.92
28-Jul-97 64.84 54.14 29-Sep-97 63.13 59.25
29-Jul-97 66.47 54.31 30-Sep-97 62.63 58.77
30-Jul-97 69.9 55.78 01-Oct-97 59.9 58.19
31-Jul-97 67.84 55.61 02-Oct-97 61.43 59.8
01-Aug-97 65.07 56.56 03-Oct-97 62.99 62.01
04-Aug-97 66.74 58.44 06-Oct-97 61.3 59.69
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Table 11.1 (cont.) Index
Unleaded Heating Unleaded Heating
Date Gas Oil Date Gas Oil
07-Oct-97 60.91 59.6 07-Nov-97 59.95 57.99
08-Oct-97 61.5 60.16 10-Nov-97 59.18 57.28
09-Oct-97 61.18 60.08 11-Nov-97 59.06 57.82 addition theorem of probability, 4 complement of an event, 3
10-Oct-97 61.24 59.95 12-Nov-97 58.62 57.92 American options, xi, 64-9 concave function, 1067
13-Oct-97 59.83 58.27 13-Nov-97 59.55 58.62 call, 65, 143 conditional expectation simulation
14-Oct-97 58.88 57.01 14-Nov-97 60.99 59.54 put, 92 estimator, 139
15-Oct-97 58.2 56.94 17-Nov-97 59.44 57.85 antithetic variables in simulation, 137 conditional probability, 5-8
16-Oct-97 59.68 58.01 18-Nov-97 58.65 57.61 i arbitrage, 63 control variates in simulation, 134—6
17-Oct-97 59.31 574 19-Nov-97 58.65 56.67 arbitrage theorem, 72-3, 74, 75, 79-81  correlation, 15
20-Oct-97 59.66 57.82 20-Nov-97 57.22 55.45 weak arbitrage, 83, 84 coupon rate, 58
21-Oct-97 59.08 57.64 21-Nov-97 57.74 55.48 : Arrow—Pratt absolute risk-aversion covariance, 13-15
22-Oct-97 60.79 58.77 24-Nov-97 58.69 55.6 i coefficient, 126 estimating, 119
23-et:97 60.26 58.09 25-Nov-97  59.08 55.49 i Asian call options, 130-1 crude oil data, 147-55, 15765
24-0ct07 9.6 5103 26-Nov-97 57.31 33.1 ! risk-neutral valuation by simulation currency exchanges, 68-9
27-Oct-97 59.95 57.74 27-Nov-97 57.31 53.1 ‘ 134. 136-8 , ’
28-Oct-97 58.88 56.52 28-Nov-97 57.31 53.1 L. .
29-0ct-97 60.09 57.19 01-Dec97 5625 52.71 smsekar-aBiingrealoptian. [l deiti, &
30-0ct-97 6067 58.12 02Dec-97 5643 53.25 Auforcgressive fodel, 166 disyoint events, 2
31-0ct97  60.22 57.71 03-Dec-97  56.55 53.5 mean reversion, 171-2 doubling rule, 41 .
03-Nov-97 598 58.78 04-Dec97 5634 5335 | aptingvaluations under, 167-70 dialily theotomof Lineat progiammmig,
04-Nov-97 5896 8.1 05-Dec97 5659 5338 : . b
05Nov-97 582 57.18 08Dec-97 5696 53.52 Satzict call.options, 125-30 . .
06-Nov-97 59.26 57.43 down-and-in, 129-30; risk-neutral efficient market hypothesis, 146, 156
valuation by simulation, 133—4, European options, xi, 64
138-40 event, 2

down-and-out, 129-30 exercise price, xi, 64

up-and-in, 130 exercise time, xi

up-and-out, 130 expectation, see expected value

: Bernoulli random variable, 10, 12, 13-14 expected value, 9-11
beta, 120
binomial approximation models, 76—8 forwards contracts, 67-9

: for pricing American put options, 92-5  futures contracts, 68
: for pricing exotic options, 141-3

binomial random variable, 11, 12-13, geometric Brownian motion, xi, 32-3
28-9 drift parameter, 32

Black—Scholes option pricing formula, 87 as a limiting process, 33-5

properties of, 901 testing the model, 149-50

bootstrap approach to data analysis, 153 volatility parameter, xii, 32; estimation

Brownian motion, 35-6 of, 91

capital assets pricing model (CAPM), histogram, 148
120-1

central limit theorem, 27-8 implied volatility, 98

commodities, 68 importance sampling in simulation, 139
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independent events, 8
independent random variables, 11
inflation rate, 58-9
interest rate, 38

compound, 38-9

continuously compounded, 40

effective, 39-40

nominal, 39

simple, 38

spot, 54
internal rate of return, see rate of return
intersection of events, 4
in-the-money options, 98

Jensen’s inequality, 107

linear program, 78-9
linear regression model, 166
lognormal random variable, 267
lookback call options, 131
risk-neutral valuation by simulation,
134,138
lookback put options, 143

Markov model, 155-6
martingale hypothesis, 156
mean, see expected value
mean reversion, 170-1
mean variance analysis
of portfolios, 11415
of risk-neutral—priced call options,
121-4
Monte Carlo simulation, 131-2
pricing exotic options, 132-40
mortgage, 47-50
multiplication theorem of probability, 7

normal random variables, 20, 24-7, 30,
37
standard normal, 22

odds, 73
option, xi, 64
call, xi, 65, 70
put, xi, 66, 70
options with nonlinear payoffs, 140-1
out-of-the-money options, 98

portfolio selection, 110-19
exponential utility function, 112,
113-14
mean variance analysis, 114-15,
portfolio separation theorem, 118-19
power options, 140-1
present value, 42-5, 50-1
probability, 2
probability density function, 20
probability distribution, 9
put—call option parity formula, 667

random variables, 9
continuous, 20
rate of return, 51-4
inflation-adjusted, 59
unit period under geometric Brownian
motion, 124-5
risk-averse, 107
risk-neutral, xii
risk-neutral valuations, 88

sample mean, 18

sample space, 1

sample variance, 18

short selling, 61

standard deviation, 13

standard normal density function, 22

standard normal distribution function, 22,
23-4

strike price, see exercise price

unbiased, 2
union of events, 4
utility, 105
expected utility valuation, 104—6
utility function, 106
exponential utility function, 110
linear and risk neutrality (risk
indifference), 107
log utility function, 108-10, 116, 117

vanilla options, 129
variance, 12-13, 15

yield curve, 55-6
expected value under geometric
Brownian motion, 125
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