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Preface

Principles of Mobile Communication, Fourth Edition, like its earlier editions, stresses mathematical modeling of physical
layer wireless communication systems. The basic pedagogic methodology is to include fully detailed derivations from the
first principles. The textbook is intended to provide enough principle material to guide the novice student, while at the same
time having plenty of detailed material to satisfy graduate students inclined to pursue research in the area. The textbook
stresses the principles of wireless communications that are applicable to a wide array of wireless systems standards. It is
intended to serve as a textbook and reference for graduate students and a useful reference for practicing engineers.

Organization of the Book

Chapter 1 begins with an overview that is intended to introduce a broad array of issues relating to wireless communications.
Included is a brief description of the evolution of various wireless standards from first-generation cellular standards through
emerging fifth-generation cellular standards. Afterwards, the basic concepts of cellular frequency reuse, the land mobile radio
propagation environment, link budget, and coverage and capacity of cellular radio systems are discussed at an introductory
level.

Chapter 2 provides an extensive treatment of radio propagation, since a good understanding of the physical wireless
channel is essential for the development and deployment of wireless systems. The chapter begins with a treatment of the
narrowband fading envelope for conventional fixed-to-mobile channels found in cellular radio systems, and mobile-to-
mobile channels found in mobile ad hoc networks. After establishing a foundation for understanding narrowband channels,
the chapter next treats the statistical characterization of wideband channels. Polarization and depolarization effects are
important in wireless systems, the text goes on to discuss the mechanisms and characteristics of channel depolarization.
The emulation of wireless channels is essential for the development and testing of wireless systems, and the chapter provides
a detailed discussion of multipath-fading channel simulation techniques. Finally, the chapter concludes with a discussion of
shadowing and path loss models for land mobile radio environments, including those for small cells, and emerging mm-wave
frequencies.

Chapter 3 provides a treatment of co-channel interference which, is the primary impairment in spectrally efficient cellular
frequency reuse systems. Very often the receivers in such systems are affected by multiple co-channel interferers. The
probability distribution of the total interfering power, and the power sum of noncoherent co-channel interferers are considered
in detail. Additionally, something of interest is a certain received signal-to-interference-plus-noise ratio outage threshold
performance under various large- and small-scale fading conditions.

Chapter 4 covers the various types of modulation schemes that are used in mobile communication systems along with their
spectral characteristics. The chapter begins with the mathematical representation of bandpass modulated signals, along with
Nyquist pulse shaping. Afterwards, a large variety of modulation schemes used in wireless systems are considered, including
both single-carrier and multi-carrier modulation, and both linear and nonlinear modulation techniques. This is followed by
a treatment of the power density spectrum of modulated signals. Although quite mathematical in nature, power spectrum
is an important topic, since wireless systems are required to operate within a specified out-of-band emission mask. For this
reason, all modulation schemes in Chap. 4 are expressed in terms of a generalized shaping function. The power spectrum is
first derived for the generalized shaping function, followed by that of particular modulation schemes.
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Chapter 5 discusses the error probability performance of various digital modulation schemes discussed in Chap. 4 on flat
fading channels. The performance is evaluated with a variety of receiver structures, including coherent detectors that assume
knowledge of the complex channel gain at the receiver and differentially coherent detectors and noncoherent detectors that
do not require carrier phase information.

Chapter 6 includes a treatment of multi-antenna techniques. The chapter begins with a discussion of various receiver
diversity techniques for coherent, differentially coherent, and noncoherent detection of signals on fading channels corrupted
by additive white Gaussian noise. Next, optimal combining is discussed, a technique that is effective when the primary
additive impairment is co-channel interference rather than noise. This is followed by a discussion of classical beam forming
with uniform linear arrays. The chapter next considers multiple-input multiple-output (MIMO) channels where multiple
antennas are used at both the transmitter and receiver to achieve high spectral efficiency. Next, the Alamouti transmit diversity
scheme is presented, followed by a brief treatment of MIMO detection. Then, the chapter explores the concept of spatial
modulation where a subset (often one) of an array of antenna elements is excited. The chapter concludes with a treatment of
massive MIMO, where many base station antennas are used with one or more mobile station antennas.

Chapter 7 considers digital signaling on intersymbol interference (ISI) channels that are typical of land mobile radio
systems. The chapter begins with the characterization of ISI channels and goes on to discuss techniques for combating ISI
based on time domain symbol-by-symbol equalization and sequence estimation. Afterwards, error probability for maximum
likelihood sequence estimation is considered. The chapter concludes with a discussion of co-channel demodulation on ISI
channels and considers a receiver for ISI channels that can reject co-channel interference.

Chapter 8 covers error control coding techniques for wireless systems. The chapter begins with a discussion of basic
block coding, including space-time block codes. Convolutional coding is considered next along with the Viterbi and BCJR
algorithms for decoding convolutional codes, followed by trellis coded modulation. The chapter then provides a detailed
discussion on the design and performance analysis of convolutional and trellis codes for AWGN channels, interleaved flat
fading channels, and fading ISI channels. Afterwards, space-time trellis codes are treated, and the chapter concludes with
Turbo coding.

Chapter 9 is devoted to spread spectrum techniques. The chapter begins with an introduction to direct sequence and
frequency hop spread spectrum. This is followed by a detailed treatment of spreading sequences. Also included is a discussion
of the effects of tone interference on direct sequence spread spectrum and the RAKE receiver performance on wideband
channels. This is followed by a discussion of the error probability of direct sequence code division multiple access (CDMA)
with a conventional correlation detector. The chapter wraps up with a discussion of CDMA multiuser detection.

Chapter 10 is devoted to multi-carrier techniques. The chapter first considers the performance of OFDM on frequency-
selective channels. The effects of residual intersymbol interference (ISI) due to an insufficient guard interval are considered,
followed by a remedy. Afterwards, the chapter examines single-carrier frequency domain equalization (SC-FDE) techniques.
This is followed by a treatment of orthogonal frequency division multiple access (OFDMA) on both forward, and reverse
links. The chapter concludes with a discussion of single-carrier frequency division multiple access (SC-FDMA).

Chapter 11 considers frequency planning techniques for cellular systems. The chapter begins with a discussion of cell
sectoring, cell splitting, and reuse partitioning. Afterwards, the chapter considers radio planning for OFDMA cellular
systems. This is followed by a detailed treatment of hierarchical overlay/underlay architectures based on cluster planning.
Finally, the chapter wraps up with macrodiversity TDMA cellular architectures.

Chapter 12 considers CDMA cellular systems, considering topics such as capacity and power control. This is followed by
a discussion of hierarchical macrodiversity CDMA architectures and their performance. Such systems allow, for example,
the signals that are received at multiple base stations to be forwarded to a central point for coherent combining, rather than
simple selection diversity.

Chapter 13 is devoted to cellular radio resource management. The chapter begins with an introduction to basic hard and
soft handoff. Afterwards, the chapter considers the important problem of link quality evaluation, including signal strength
averaging, velocity estimation, and velocity adaptive handoff algorithms. Afterwards, a detailed analysis of hard and soft
handoff is provided. Finally, the chapter wraps up with methods for estimating the received carrier-to-interference-plus-noise
ratio (CINR), which is an important quantity in many types of wireless systems.

Chapter 14 considers channel assignment techniques. This chapter first discusses basic channel assignment techniques and
then presents the details of some channel assignment techniques including centralized and decentralized dynamic channel
assignment.

Appendix A is a brief and focused tutorial discussion of probability and random processes. A good understanding of the
material in Appendix A is essential, since the concepts are widely used throughout the textbook.



Preface ix

Using This Book for Instruction

The book has been developed from a graduate-level course on physical wireless communications that I have taught at Georgia
Tech since 1993. The book contains more material than can be taught in a one-semester course. My own preference is to
cover material in Chaps. 1 through 6, followed by other material as time permits. Some adjustments will have to be made to
account for course prerequisites or the lack thereof.
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greatly appreciated.

Atlanta, GA, USA Gordon L. Stüber
May 2017



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Brief History of Wireless Systems and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 First Generation (1G) Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Second Generation (2G) Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Third Generation (3G) Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Fourth Generation (4G) Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Fifth Generation (5G) Cellular and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.6 Cordless Telephone Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.7 Wireless LANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.8 Wireless PANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Frequency Reuse and the Cellular Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Mobile Radio Propagation Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Co-Channel Interference and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Receiver Sensitivity and Link Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 Interference Loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Shadow Margin and Handoff Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Spectral Efficiency and Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.1 Bandwidth Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7.2 Spatial Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7.3 Trunking Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7.4 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Propagation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Fixed-to-Mobile Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Envelope Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Doppler Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.3 Received Envelope and Phase Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.4 Envelope Correlation and Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.1.5 Level Crossing Rate and Fade Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.6 Space-Time Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Mobile-to-Mobile Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2.1 Mobile-to-Mobile Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Statistical Characterization of Multipath-Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.1 Statistical Channel Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.2 Classification of Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.3 Power-Delay Profile and Coherence Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.4 System Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



xii Contents

2.4 Polarized Channel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.1 Geometric Model for Channel Depolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.2 XPD in Polarized Multipath-Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.3 Polarized Channel Model Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5 Simulation of Multipath-Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.1 Filtered White Gaussian Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.5.2 Sum of Sinusoids Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.5.3 Multiple Uncorrelated Faded Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.5.4 Wide-Band Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.5.5 Mobile-to-Mobile Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.5.6 Symbol-Spaced Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.6 Shadowing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.6.1 Shadow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.6.2 Composite Shadowing–Fading Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

2.7 Path Loss Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.7.1 Free Space Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.7.2 Flat Earth Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.7.3 Empirical Path Loss Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix 2A: COST 207 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Appendix 2B: COST 259 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Appendix 2C: ITU Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Appendix 2D: Derivation of Eq. (2.358) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Appendix 2E: Derivation of Eq. (2.374) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3 Co-Channel Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.1 Multiple Log-Normal Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.1.1 Fenton–Wilkinson Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.1.2 Schwartz & Yeh Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.1.3 Farley’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.1.4 Numerical Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.2 Log-Normal/Multiple Log-Normal Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.3 Rician/Multiple Rayleigh Interferers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.4 Log-Normal Nakagami/Multiple Log-Normal Nakagami Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.4.1 Statistically Identical Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.4.2 Statistically Nonidentical Co-Channel Interferers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4 Modulation and Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.1 Representation of Bandpass Modulated Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.1.1 Vector Space Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.1.2 Gram–Schmidt Orthonormalization Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.1.3 Signal Energy and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.2 Nyquist Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.2.1 Raised Cosine and Root Raised Cosine Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3 Quadrature Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.3.1 QAM Signal Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.3.2 PAM Signal Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.4 Phase Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.4.1 Offset QPSK (OQPSK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.4.2 �=4-DQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.5 Orthogonal Modulation and Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.5.1 Orthogonal FSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.5.2 Binary Orthogonal Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.5.3 Biorthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.5.4 Orthogonal Multipulse Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



Contents xiii

4.6 Orthogonal Frequency Division Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.6.1 DFT-Based OFDM Baseband Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.6.2 Adaptive Bit Loading and Discrete Multitone Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.6.3 Multiresolution Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.7 Continuous Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.7.1 Full Response CPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.8 Partial Response CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.8.1 Phase States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.8.2 Gaussian Minimum Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.8.3 Linearized GMSK (LGMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.8.4 Tamed Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.9 Power Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.9.1 Psd of the Complex Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.9.2 Psd of QAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.9.3 Psd of PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.9.4 Psd of OQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.9.5 Psd of �=4-DQPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.9.6 Psd of OFDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.9.7 Psd of Full Response CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.9.8 Psd of GMSK and TFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5 Detection of Known Signals in Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.1 Vector Space Representation of Received Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.2 Detection of Known Signals in AWGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.3 Probability of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5.3.1 Pairwise Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.3.2 Upper Bounds on Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.3.3 Lower Bound on Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
5.3.4 Bit Versus Symbol Error Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.3.5 Rotation and Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

5.4 Error Probability of PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.4.1 Error Probability of BPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.4.2 Error Probability of QPSK and OQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
5.4.3 Error Probability of M-PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.4.4 Error Probability with Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.4.5 Differential PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.5 Error Probability of PAM and QAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.5.1 Error Probability of M-PAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.5.2 Error Probability of M-QAM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.6 Error Probability of Orthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.6.1 Orthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.6.2 Biorthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5.7 Error Probability of OFDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5.7.1 Interchannel Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.8 Differential Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.8.1 Binary DPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.8.2 Differential Detection of �=4-DQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.9 Non-coherent Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.9.1 Error Probability of M-ary Orthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

5.10 Detection of CPM Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.10.1 Coherent Detection and Error Probability of MSK and GMSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.10.2 Coherent CPM Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.10.3 Non-coherent CPM Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



xiv Contents

6 Multi-Antenna Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6.1 Diversity Combining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
6.2 Selective Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
6.3 Maximal Ratio Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.3.1 Granlund Combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
6.4 Equal Gain Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6.5 Switched Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.6 Differential Detection with Equal Gain Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
6.7 Non-coherent Square-Law Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.8 Optimum Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

6.8.1 Optimum Combining Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
6.8.2 Distributed Antenna Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

6.9 Classical Beam-Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
6.10 MIMO Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

6.10.1 Analytical MIMO Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
6.11 Transmitter Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

6.11.1 Alamouti’s Transmit Diversity Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
6.12 MIMO Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.12.1 Maximum Likelihood Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
6.12.2 Minimum Mean-Square-Error Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
6.12.3 Inverse Channel Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6.12.4 Known Channel at the Transmitter and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

6.13 Spatial Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6.14 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

6.14.1 Massive MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
6.14.2 Reverse Link Pilots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
6.14.3 Reverse Link Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
6.14.4 Forward Link Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
6.14.5 Favorable Propagation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

7 Time Domain Equalization and Interference Cancelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.1 Modeling of ISI Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

7.1.1 Vector Representation of Received Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
7.2 Maximum Likelihood Receiver for ISI Channels with AWGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

7.2.1 Discrete-Time White Noise Channel Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
7.3 Symbol-by-Symbol Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

7.3.1 Linear Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
7.3.2 Decision Feedback Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

7.4 Sequence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
7.4.1 Maximum Likelihood Sequence Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
7.4.2 Delayed Decision-Feedback Sequence Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
7.4.3 Reduced-State Sequence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

7.5 Error Probability for MLSE on ISI Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
7.5.1 Static ISI Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7.5.2 Fading ISI Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

7.6 Error Probability for T=2-Spaced MLSE Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.6.1 T-Spaced MLSE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.6.2 T=2-Spaced MLSE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
7.6.3 Timing Phase Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.6.4 Practical T=2-Spaced MLSE Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

7.7 Co-channel Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
7.7.1 System and Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
7.7.2 Joint Maximum Likelihood Co-channel Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
7.7.3 Discrete-Time MIMO Channel Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378



Contents xv

7.7.4 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
7.7.5 Pairwise Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
7.7.6 T=2-Spaced MIMO J-MLSE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.7.7 Interference Rejection Combining MLSE Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
7.7.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Appendix 7A: Derivation of Eq. (7.202) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

8 Error Control Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.1 Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

8.1.1 Binary Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
8.1.2 Space-Time Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

8.2 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
8.2.1 Encoder Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
8.2.2 State and Trellis Diagrams, and Weight Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
8.2.3 Recursive Systematic Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
8.2.4 Maximum Likelihood Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
8.2.5 BCJR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

8.3 Trellis Coded Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
8.3.1 Encoder Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
8.3.2 Mapping by Set Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

8.4 Code Performance on AWGN Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
8.4.1 Union Bound for Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

8.5 Interleaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
8.5.1 Block Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
8.5.2 Convolutional Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

8.6 Code Performance on Interleaved Flat Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
8.6.1 TCM with Symbol Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
8.6.2 Bit Interleaved Coded Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

8.7 Performance of Space-Time Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
8.7.1 Space-Time Trellis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

8.8 Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
8.8.1 PCCC Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
8.8.2 PCCC Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
8.8.3 SCCC Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
8.8.4 Weight Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

9 Spread Spectrum Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
9.1 Basic Principles of Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

9.1.1 Direct Sequence Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
9.1.2 Frequency Hop Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

9.2 Spreading Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
9.2.1 Spreading Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
9.2.2 m-sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
9.2.3 Gold Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
9.2.4 Kasami Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
9.2.5 Barker Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
9.2.6 Walsh-Hadamard Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
9.2.7 Variable Length Orthogonal Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
9.2.8 Complementary Code Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
9.2.9 Zadoff–Chu Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

9.3 Power Spectral Density of DS Spread Spectrum Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464



xvi Contents

9.4 Performance of DS/QPSK in CW Tone Interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
9.4.1 Short Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
9.4.2 Short Code Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
9.4.3 Long Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

9.5 DS Spread Spectrum on Frequency-Selective Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
9.5.1 RAKE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
9.5.2 Error Probability of DS/BPSK with a RAKE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

9.6 Error Probability for DS CDMA on AWGN Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
9.6.1 Standard Gaussian Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
9.6.2 Improved Gaussian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

9.7 CDMA Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
9.7.1 Optimum CDMA Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
9.7.2 Decorrelating Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
9.7.3 Minimum Mean Square Error Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

10 Multi-Carrier Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
10.1 Orthogonal Frequency Division Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

10.1.1 Performance of OFDM on ISI Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
10.1.2 Residual ISI Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
10.1.3 Performance of the RISIC Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

10.2 Single-Carrier Frequency Domain Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
10.2.1 ZF and MMSE SC-FDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

10.3 Orthogonal Frequency Division Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
10.3.1 OFDMA Forward Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
10.3.2 OFDMA Reverse Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
10.3.3 Peak-to-Average Power Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

10.4 Single-Carrier Frequency Division Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
10.4.1 Peak-to-Average Power Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

11 Frequency Planning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
11.1 Cell Sectoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

11.1.1 Cell Sectoring with Wide-Beam Directional Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
11.2 Conventional Cell Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

11.2.1 Reuse Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
11.3 OFDMA/SC-FDMA Radio Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
11.4 Cluster-Planned Hierarchical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

11.4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
11.4.2 Underlaid Microcell Planning Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
11.4.3 Performance Analysis of Cluster-Planned Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

11.5 Macrodiversity Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
11.5.1 Co-channel Interference Outage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
11.5.2 Shadow Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
11.5.3 Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

12 CDMA Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
12.1 CDMA Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
12.2 Capacity of Cellular CDMA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

12.2.1 Reverse Link Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
12.2.2 Forward Link Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
12.2.3 Imperfect Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572



Contents xvii

12.3 Hierarchical Macrodiversity CDMA Cellular Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
12.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
12.3.2 Reverse Link Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
12.3.3 Forward Link Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Appendix 12A: Derivation of Eq. (12.78) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
Appendix 12B: Derivation of Eq. (12.79). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

13 Radio Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
13.1 Signal Strength Based Hard Handoff Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
13.2 Pilot-to-Interference Ratio Based Soft Handoff Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
13.3 Signal Strength Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

13.3.1 Choosing the Proper Window Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
13.3.2 Choosing the Proper Number of Samples to Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

13.4 Velocity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
13.4.1 Level Crossing Rate Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
13.4.2 Covariance Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
13.4.3 Velocity Estimator Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

13.5 Velocity Adaptive Hard Handoff Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
13.5.1 Effect of N� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
13.5.2 Corner Effects and Sensitivity to a and Wl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
13.5.3 Velocity Adaptive Handoff Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

13.6 Hard Handoff Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
13.6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

13.7 CDMA Soft Handoff Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
13.7.1 System Model and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
13.7.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

13.8 CINR Based Link Quality Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
13.8.1 Discrete-Time Model for Signal Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
13.8.2 Training Sequence Based C=.I C N/ Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Appendix 13A: Derivation of Equations (13.43) and (13.58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

14 Channel Assignment Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
14.1 Centralized DCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

14.1.1 Maximum Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
14.1.2 MAXMIN Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

14.2 Decentralized DCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
14.2.1 First Available and Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
14.2.2 Dynamic Resource Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

14.3 Fully Decentralized DCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
14.3.1 Channel Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
14.3.2 Channel Segregation with Variable Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
14.3.3 Minimum Interference Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
14.3.4 Aggressive and Timid DCA Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

14.4 Hybrid FCA/DCA Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
14.5 Borrowing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

14.5.1 Borrowing with Channel Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
14.5.2 Borrowing with Directional Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
14.5.3 Borrowing Without Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
14.5.4 Compact Pattern Based DCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

14.6 Directed Retry and Directed Handoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
14.7 Moving Direction Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
14.8 Reduced Transceiver Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

14.8.1 Reuse Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
14.9 Handoff Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657



xviii Contents

14.10 Example DCA Schemes for TDMA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
14.10.1 The Simple DCA (SDCA) Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
14.10.2 A Queueing DCA Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
14.10.3 An Aggressive DCA Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
14.10.4 Simulation Model, Results, and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

14.11 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

A Probability and Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
A.1 Conditional Probability and Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

A.1.1 Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
A.1.2 Bayes’ Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

A.2 Means, Moments, and Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
A.2.1 Bivariate Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

A.3 Some Useful Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
A.3.1 Discrete Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
A.3.2 Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

A.4 Upper Bounds on the cdfc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
A.4.1 Chebyshev Bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
A.4.2 Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

A.5 Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
A.5.1 Moments and Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
A.5.2 Cross-correlation and Crosscovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
A.5.3 Complex-Valued Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
A.5.4 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
A.5.5 Random Processes Filtered by Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
A.5.6 Cyclostationary Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
A.5.7 Discrete-Time Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709



Acronyms

AAoA Azimuth angle of arrival
AAoD Azimuth angle of departure
ADC Analog to digital converter
ADPCM Adaptive differential pulse-code modulation
AGC Automatic gain control
AMPS Advanced Mobile Phone Service
AoA Angle of arrival
AoD Angle of departure
APP A posteriori probability
ARQ Automatic repeat request
ASELP Algebraic code excitation linear prediction
AWGN Additive white Gaussian noise
BCH Bose-Chaudhuri-Hocquenghem
BCJR Bahl-Cocke-Jelinek-Raviv
BER Bit error rate
BICM Bit interleaved coded modulation
BPSK Binary phase shift keying
BS Base station
BSC Binary symmetric channel
BU Bad urban
CC Convolutional code
CCI Co-channel interference
CCIR Comité International des Radio-Communication
CCK Complementary code keying
CC-OFDMA Clustered-carrier orthogonal frequency division multiple access
cdf Cumulative distribution function
cdfc Complementary distribution function
CDMA Code division multiple access
CIR Carrier-to-interference ratio
CINR Carrier-to-interference-plus-noise ratio
CNR Carrier-to-noise ratio
COV Covariance
CPFSK Continuous phase frequency shift keying
CPM Continuous phase modulation
CSI Channel state information
CW Continuous wave
CWEF Conditional weight enumerating function
DAC Digital to analog converter
DCA Dynamic channel assignment
DDFSE Delayed decision feedback sequence estimation
DECT Digital enhanced cordless telephone

xix



xx Acronyms

DFE Decision feedback equalizer
DFT Discrete Fourier transform
DMT Discrete multitone modulation
DPSK Differential phase shift keying
DQPSK Differential quadrature phase shift keying
DS Direct sequence
DTFT Discrete-time Fourier transform
EAoA Elevation angle of arrival
EAoD Elevation angle of departure
EDGE Enhanced data rates for GSM evolution
EGC Equal gain combining
EFR Enhanced full rate
EIRP Effective isotropic radiated power
EVRC Enhanced variable rate codec
FEPL Flat Earth path loss
FDD Frequency division duplexing
FDE Frequency-domain equalization
FFH Fast frequency hopping
FFT Fast Fourier transform
FDMA Frequency division multiple access
FER Frame error rate
FH Frequency hop
FIR Finite impulse response
FSK Frequency shift keying
FSM Finite-state machine
FSPL Free-space path loss
GFSK Gaussian frequency shift keying
GMSK Gaussian minimum shift keying
GPRS General Packet Radio Service
GPS Global positioning system
GSM Global System for Mobile Communication
GTFM Generalized tamed frequency modulation
H-ARQ Hybrid-automatic repeat request
HF High frequency
HMRC Hierarchical maximum ratio combining
HSDPA High-speed downlink packet access
HSPA High-speed packet access
HSUPA High-speed uplink packet access
HT Hilly terrain
ICI Interchannel interference
IDFT Inverse discrete Fourier transform
I-FDMA Interleaved frequency division multiple access
IFFT Inverse fast Fourier transform
IIR Infinite impulse response
IoT Internet of things
IRC Interference rejection combining
ISI Intersymbol interference
ITU International Telecommunications Union
ITU-R International Telecommunications Union-Radio Communications
ITU-T International Telecommunications Union-Telecommunications
J-MLSE Joint maximum likelihood sequence estimation
LCR Level crossing rate
L-FDMA Localized frequency division multiple access
LGMSK Linearized Gaussian minimum shift keying
LLR Log-likelihood ratio



Acronyms xxi

LMS Least mean square
LoS Line-of-sight
LSFR Linear feedback shift register
LTE Long-Term Evolution
LTE-A Long-Term Evolution-Advanced
MAHO Mobile-assisted handoff
MAP Maximum a posteriori probability
MCHO Mobile-controlled handoff
MDS Maximum distance separable
MEDS Method of exact Doppler spreads
MIMO Multiple-input multiple-output
ML Maximum likelihood
MLSE Maximum likelihood sequence estimation
MMRC Macrodiversity maximal ratio combining
MMSE Minimum mean square error
MPSD Minimum product squared Euclidean distance
MRC Maximal ratio combining
MRM Multi-resolution modulation
MS Mobile station
MSE Mean square error
MSK Minimum shift keying
MSQ Mean square
MTD Minimum built-in time diversity
NCHO Network-controlled handoff
NLoS Non-line-of-sight
NMT Nordic Mobile Telephone
NPP Neighboring-cell pilot power
NTT Nippon Telephone and Telegraph
OC Optimum combining
OFDM Orthogonal frequency division multiplexing
OFDMA Orthogonal frequency division multiple access
OQASK Offset quadrature amplitude shift keying
OQPSK Offset quadrature phase shift keying
PDC Personal digital cellular
PAM Pulse amplitude modulation
PAPR Peak-to-average power ratio
PCCC Parallel concatenated convolutional code
pdf Probability density function
PHS Personal handy-phone system
PIR Pilot-to-interference ratio
PLL Phase locked loop
PN Pseudo-noise
psd Power spectral density
PSK Phase shift keying
PSI-CELP Pitch synchronous innovation-code excited linear prediction
QAM Quadrature amplitude modulation
QCELP Qualcomm code excited linear prediction
QPSK Quadrature phase shift keying
QoS Quality of service
RA Rural area
RCELP Relaxed code excited linear prediction
RI-OFDMA Random interleaving orthogonal frequency division multiple access
RLS Recursive least squares
rms Root mean square
RPE-LTP Regular pulse excitation-long-term prediction



xxii Acronyms

RSC Recursive systematic convolutional
RSSE Reduced state sequence estimation
SC Selective combining
SCCC Serial concatenated convolutional code
SC-FDE Single-carrier frequency domain equalization
SC-FDMA Single-carrier frequency division multiple access
SC-OFDMA Spaced-carrier orthogonal frequency division multiple access
SFH Slow frequency hopping
SIMO Single-input multiple-output
SINR Signal-to-interference-plus-noise ratio
SISO Single-input single-output
SM Spatial modulation
SNR Signal-to-noise ratio
SoS Sum-of-sinusoids
SSC Switch and stay combining
SSK Space shift keying
STTC Space-time trellis code
TCM Trellis coded modulation
TDAP Time domain aligned pilots
TDD Time division duplexing
TDM Time division multiplexing
TDMA Time division multiple access
TDSP Time domain staggered pilots
TDTD Time division transmit diversity
TFM Tamed frequency modulation
TSTD Time switched transmit diversity
TU Typical urban
ULA Uniform linear array
UMTS Universal mobile telecommunications system
US Uncorrelated scattering
VHF Very high frequency
VSELP Vector sum excited linear prediction
VoIP Voice over Internet Protocol
WCDMA Wideband code division multiple access
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless local area network
WPAN Wireless personal area network
WSS Wide sense stationary
WSSUS Wide sense stationary uncorrelated scattering
ZCR Zero crossing rate
ZF Zero-forcing



Chapter 1

Introduction

Commercial wireless systems and services have undergone rapid development and deployment, since first generation cellular
telephone systems were introduced in the early 1980s. These first generation (1G) cellular telephone systems were based on
analog frequency modulation (FM) technology and designed to carry narrow-band circuit-switched voice services. The first
generation cellular service providers seen an exponential growth rate in their subscriptions, and by the late 1980s capacity
limits were already reached in the largest markets with 1G cellular systems. In response to such heavy demand, second
generation (2G) digital cellular systems were developed and introduced in the early 1990s and their evolutions are still
in operation today. These 2G cellular systems were/are based on either time division multiple access (TDMA) or code
division multiple access (CDMA) technologies, and were initially designed to carry circuit-switched voice and data. During
the 1990s, these 2G systems were enhanced to provide packet-switched data in addition to circuit-switched voice. These
transitional 2G cellular systems with their enhanced data transmission capabilities later became known as 2.5G systems.
Third generation (3G) cellular systems were introduced after the year 2000 that allowed simultaneous use of speech and
data services and still higher data rates. These higher data rate capabilities were supplemented by geolocation information,
giving rise to location dependent services. Currently, fourth generation (4G) cellular systems are deployed that use voice
over Internet Protocol (VoIP) and multimedia applications with broadband access. These 4G systems are based on multi-
carrier modulation/multiplexing techniques such as orthogonal frequency division multiple access (OFDMA), or advanced
single-carrier modulation/multiplexing techniques such as single-carrier frequency division multiple access (SC-FDMA).
Fifth generation (5G) wireless systems are currently under research and development.

1.1 Brief History of Wireless Systems and Standards

Although this textbook is intended to address the fundamentals of wireless communications, it is nevertheless useful to have
some basic knowledge of the history and evolution of wireless systems and standards. The following gives a brief description
of the major standards that have been developed or are under development for cellular radio systems, cordless phone systems,
and wireless local and personal area networks.

1.1.1 First Generation (1G) Cellular Systems

The early 1970s saw the emergence of the radio technology that was needed for the deployment of mobile radio systems in
the 800/900 MHz band at a reasonable cost. In 1976, the World Allocation Radio Conference (WARC) approved frequency
allocations for cellular telephones in the 800/900 MHz band, thus setting the stage for the commercial deployment of cellular
systems. In the early 1980s, many countries deployed incompatible first generation (1G) cellular systems based on frequency
division multiple access (FDMA) and analog FM technology. With FDMA there is a single traffic channel per radio frequency
carrier. When a user accesses the network two carriers (channels) are actually assigned, one for the forward (base-to-mobile)
link and one for the reverse (mobile-to-base) link. Separation of the forward and reverse carrier frequencies is necessary
to allow implementation of a duplexer, an arrangement of filters that isolates the forward and reverse link channels, thus
preventing a radio transceiver from jamming itself.
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2 1 Introduction

Table 1.1 First generation (1G) cellular standards

Feature NTT NMT AMPS

Frequency band 925–940/870–885 890–915/917–950 824–849/869–894

RL/FLa 915–918.5/860–863.5

(MHz) 922–925/867–870

Carrier spacing 25/6.25 12:5b 30

(kHz) 6.25

6.25

Number of 600/2400 1999 832

channels 560

280

Modulation Analog FM Analog FM Analog FM
aRL D reverse link, FL D forward link
bfrequency interleaving using overlapping channels, where the channel spacing is half the nominal channel bandwidth

Table 1.2 Second generation (2G) digital cellular standards, GSM and IS-54/136

Feature GSM/DCS1800/PCS1900 IS-54/136

Frequency band GSM: 890–915/ 824–829/

RL/FLa 935–960 869/894

(MHz) DCS1800: 1710–1785/ 1930–1990/

1805–1880 1850–1910

PCS1900: 1930–1990/

1850–1910

Multiple access F/TDMA F/TDMA

Carrier spacing (kHz) 200 30

Modulation GMSK �=4-DQPSK

Baud rate (kb/s) 270.833 48.6

Frame size (ms) 4.615 40

Slots/Frame 8/16 3/6

Voice coding (kb/s) VSELP(HR 6.5) VSELP (FR 7.95)

RPE-LTP (FR 13) ACELP (EFR 7.4)

ACELP (EFR 12.2) ACELP (12.2)

Channel coding Rate-1/2 CC Rate-1/2 CC

Frequency hopping Yes No

Handoff Hard Hard
aRL D reverse link, FL D forward link

In 1979, the first analog cellular system, the Nippon Telephone and Telegraph (NTT) system, became operational. In
1981, Ericsson Radio Systems AB fielded the Nordic Mobile Telephone (NMT) 900 system, and in 1983 AT&T fielded
the Advanced Mobile Phone Service (AMPS) as a trial in Chicago, IL. Many other first generation analog systems were
also deployed in the early 1980s including TACS, ETACS, NMT 450, C-450, RTMS, and Radiocom 2000 in Europe, and
JTACS/NTACS in Japan. The basic parameters of NTT, NMT, and AMPS are shown in Table 1.1. All 1G cellular systems
are now extinct.

1.1.2 Second Generation (2G) Cellular Systems

Second generation (2G) digital cellular systems were developed in the 1980s and early 1990s, and widely deployed
throughout the world in the 1990s. These included the GSM/DCS1800/PCS1900 standard in Europe, the Personal Digital
Cellular (PDC) standard in Japan, and the IS-54/136 and IS-95 standards in the USA. Major parameters of the air interface
specifications of these standards are summarized in Tables 1.2 and 1.3, and a very brief description of each is provided below.
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Table 1.3 Second generation (2G) digital cellular standards, PDC and IS-95

Feature PDC IS-95

Frequency band 810–826/ 824–829/

RL/FLa 940–956 869–894

(MHz) 1429–1453/ 1930–1990/

1477–1501 1850–1910

Multiple access F/TDMA F/CDMA

Carrier spacing (kHz) 25 1250

Modulation �=4-DQPSK QPSK

Baud rate (kb/s) 42 1228.8 Mchips/s

Frame size (ms) 20 20

Slots/Frame 3/6 1

Voice coding (kb/s) PSI-CELP (HR 3.45) QCELP (8,4,2,1)

VSELP (FR 6.7) RCELP (EVRC)

Channel coding Rate-1/2 BCH FL: rate-1/2 CC

RL: rate-1/3 CC

Frequency hopping No N/A

Handoff Hard Soft
aRL D reverse link, FL D forward link

8.25357573

0.577 ms   Time Slot

R GR TCH C
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1
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R           Guard time for burst transient response (Ramp time)

TCH      Traffic channel

C           Control bit

SW        Synchronization word

G           Guard bits

Fig. 1.1 Time slot format for GSM. Units are in bits

1.1.2.1 GSM

European countries seen the deployment of incompatible 1G cellular systems that did not admit roaming throughout Europe.
As a result, the Conference of European Postal and Telecommunications Administrations (CEPT) established Groupe Spécial
Mobile (GSM) in 1982 with the mandate of defining standards for future Pan-European cellular radio systems. The GSM
system (now “Global System for Mobile Communications”) was developed to operate in a new frequency allocation, and
made improved quality, Pan-European roaming, and the support of data services its primary objectives. GSM was deployed
in late 1992 as the world’s first digital cellular system.

GSM can support full rate (8 slots/carrier) and half rate (16 slots/carrier) voice operation, and provide various synchronous
and asynchronous data services at 2.4, 4.8, and 9.6 kb/s. GSM uses TDMA with 200 kHz carrier spacings, eight channels per
carrier with a time slot (or burst) duration of 0.577 ms, and Gaussian minimum shift keying (GMSK) with a raw bit rate of
270.8 kb/s. The time slot format of the GSM traffic channels is shown in Fig. 1.1. Variants of GSM have also been developed
to operate in the 900 MHz and 1800 MHz bands in Europe, and the 850 MHz and 1900 MHz bands in North America.

GSM Release ’97 added packet data capabilities by aggregating all time slots together for a single user. This enhancement
provides data rates up to 140 kb/s and is called General Packet Radio Service (GPRS). GSM Release ’99 introduced higher
speed data transmission by using a higher-level 8-PSK modulation format (up to 473.6 kb/s with uncoded 8-PSK). This
enhancement is called Enhanced Data Rates for GSM Evolution (EDGE). Some parameters of the EDGE standard are shown
in Table 1.4. EDGE was deployed worldwide except for Japan and South Korea. GPRS and EDGE are generally branded as
2.5G systems.
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Table 1.4 Parameters of the
EDGE standard

Multiple access TDMA

Duplexing FDD

Carrier spacing (kHz) 200

Modulation 8-PSK/GMSK

Frame length (ms) 4.615

Slots/Frame 8

Maximum bit rate (kb/s) 473.6 (8-PSK)/140.8 (GMSK)

GSM has been a phenomenal success and is one of the most widely deployed cellular standards. By late 1993, over a
million subscribers were using GSM phone networks. By 2013, GSM had over 6.5 billion subscribers across 219 countries
and territories with roaming everywhere except for Korea and Japan. However, some cellular operators discontinued GSM
service starting in January 2017.

1.1.2.2 IS-54/136 and IS-95

In North America the primary driver for second generation systems was the capacity crunch felt by some AMPS operators
in the largest US markets by the late 1980s. One of the key objectives established by the Cellular Telephone Industry
Association (CTIA) at the time was a ten-fold increase in capacity over AMPS. Furthermore, since AMPS was already
deployed extensively throughout North America, it was desirable that any second generation cellular system be reverse
compatible with AMPS. This eventually led to the development of dual-mode cellular standards in North America.

While Europe seen a convergence to the GSM standard based on TDMA technology, North America saw a divergence to
two second generation digital cellular standards, IS-54/136 and IS-95, based on TDMA and CDMA technology, respectively.
The IS-54 standard, adopted in 1990, was based on TDMA with 30 kHz carrier spacings (the same as AMPS) and �=4 phase-
shifted quadrature differential phase shift keyed (�=4-DQPSK) modulation with a raw bit rate of 48.6 kb/s [104]. IS-54 and
IS-136 differed in the control channel; IS-54 used an analog control channel, whereas IS-136 used a digital control channel.
The IS-54/136 air interface specified 6 slots (or bursts) per frame, yielding 3 full rate channels or 6 half rate channels per
carrier. The burst format for the IS-54/136 traffic channel is shown in Fig. 1.2. IS-54/136 was once deployed widely in the
USA and Canada during the 1990s, but its use was discontinued in the 2007–2009 time frame in favor of GSM/GPRS/EDGE.

Just after the CTIA adopted IS-54 in 1990, another second generation digital cellular standard was proposed by Qualcomm
based on CDMA technology. The introduction of IS-95 proposal saw considerable debate and spirited exchanges over the
relative capacity and merits of TDMA and CDMA cellular systems at the time. Initial capacity claims for IS-95 were 40 times
AMPS. In March 1992, CDMA was adopted as the IS-95 standard [105]. Initial commercial deployments in Korea showed
a capacity gain of 6–10 times AMPS. The introduction of IS-95 CDMA cellular was of historical significance, because 3G
cellular systems are based on CDMA technology.

With IS-95, the basic user data rate is 9.6 kb/s for Rate Set 1 (RS1) and 14.4 kb/s for Rate Set 2 (RS2), which is spread by
using a pseudo-noise (PN) sequence with a chip rate of 1.2288 Mchips/s. The forward channel supports coherent detection
by using an unmodulated pilot channel for channel estimation. Information on the forward link is encoded by using a rate-1/2
convolutional code, interleaved, spread by using one of the 64 orthogonal Walsh codes, and transmitted in 20 ms bursts. Each
mobile station (MS) in a cell is assigned a different Walsh code, thus providing complete orthogonality under ideal channel
conditions. Final spreading with a PN code of length 215, having a phase offset that depends on each base station (BS), is
used to mitigate the multiple access interference to and from other cells.

CDMA systems are susceptible to the near-far effect, a phenomenon where MSs close into a BS will swamp out the signals
from more distant MSs. For CDMA systems to function properly, all signals to be recovered must be received with (nearly)
the same power. To combat the near-far effect, the IS-95 reverse link uses fast closed loop power control to compensate for
fluctuations in received signal power due to the radio propagation environment. The information on the IS-95 reverse link is
encoded by using a rate-1/3 convolutional code, interleaved, and mapped onto one of the 64 Walsh codes. Unlike the IS-95
forward channel that uses Walsh codes for spreading, the reverse link uses Walsh codes for 64-ary orthogonal modulation.
The BS receiver uses non-coherent detection, since no pilot signal is transmitted on the reverse link. Both the BSs and the
MSs use RAKE receivers to provide multipath diversity. To ensure that the power control algorithm is stable, CDMA cellular
systems must use soft handoff, where the MS maintains a radio link with multiple BSs when traversing between cells and
softer handoff when traversing between sectors of the same cell.
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Fig. 1.2 Burst format for IS-54/136 traffic channel. Units are in bits

In 1998, the IS-95B standard was approved to support packet switched data with rates up to 115.2 kbps by using multi-
code CDMA, where up to 8 Walsh codes are aggregated and assigned to a single user in a dynamic and scheduled manner.

1.1.2.3 PDC

In 1991, the Japanese Ministry of Posts and Telecommunications standardized Personal Digital Cellular (PDC). The air
interface of PDC is similar to IS-54/136. PDC uses TDMA with 3 full rate (6 half rate) channels per carrier, 25 kHz carrier
spacings, and �=4-DQPSK modulation with a raw bit rate of 42 kb/s. The burst format for the PDC traffic channels is shown
in Fig. 1.3. Notice that the synchronization word is placed near the center of the PDC burst, whereas it is placed near the
beginning of the IS-54/136 burst as shown in Fig. 1.2. This feature better enables the PDC receiver to track channel variations
over the time slot. Another key feature of PDC standard is the inclusion MS antenna diversity. Like IS-54/136, PDC suffers
from degraded performance under conditions of low delay spread due to the loss of multipath diversity. However, antenna
diversity in the PDC MS receiver provides spatial diversity under these conditions. More details on the PDC system can be
found in the complete standard [282]. PDC reached a peak of nearly 80 million subscribers, but the standard became extinct
in 2012 in favor of 3G cellular technologies.

1.1.3 Third Generation (3G) Cellular Systems

In March 1992, WARC approved a worldwide spectral allocation in support of IMT-2000 (International Mobile Telephone by
the Year 2000) in the 1885–2200 MHz band. The IMT-2000 standard was developed by the International Telecommunications
Union Radio Communications (ITU-R) and Telecommunications (ITU-T) sectors. Various standards bodies around the world
provided inputs to the IMT-2000 standard definition. IMT-2000 was envisioned as an ubiquitous wireless system that could
support voice, multimedia, and high speed data communication. The ITU provided no clear definition of the minimum or
average rates users could expect from 3G equipment or providers. However, it was generally expected at the time that 3G
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Fig. 1.3 Time slot format for Japanese PDC. Units are in bits

networks would provide a minimum downlink peak data rate of 2 Mbit/s for stationary or walking users, and 384 kbit/s in a
moving vehicle.

IMT-2000 was actually a family of standards. Two of the standards were based on TDMA approaches, namely EDGE
and Digital Enhanced Cordless Telephone (DECT). While the EDGE standard fulfilled the requirements for IMT-2000,
EDGE networks are typically branded as 2.5G networks rather than 3G networks. The most predominant forms of IMT-
2000 are cdma2000 developed by 3GPP2 and the Universal Mobile Telecommunications System (UMTS) family of
standards, which includes Wideband Code Division Multiple Access (WCDMA), developed by 3GPP. Sometimes WCDMA
is used synonymously with UMTS. Mobile WiMAX (Worldwide Interoperability for Microwave Access), developed by
the IEEE802.16 working group, is also included under the IMT-2000 umbrella as a 3.5G standard, although it is sometimes
referred to as a 4G standard for branding purposes. WiMAX is a multi-carrier scheme based on orthogonal frequency division
multiple access (OFDMA).

Table 1.5 summarizes the main parameters for WCDMA and cdma2000. The common attributes of WCDMA and
cmda2000 include the following:

• Provision of multi-rate services
• Packet data services
• Complex spreading
• A coherent uplink using a user dedicated pilot
• Additional pilot channel in the downlink for beam forming
• Seamless inter-frequency handoff
• Fast forward link power control
• Optional multi-user detection.

The major differences between WCDMA and cdma2000 center around the chip rate that is used, and synchronous
(cdma2000) vs. asynchronous (WCDMA) network operation. Synchronous operation with cdma2000 is achieved by using a
global positioning system (GPS) clock reference.
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Table 1.5 Parameters for WCDMA and cdma2000

Feature WCDMA cdma2000

Multiple access DS-CDMA DS-CDMA

Chip rate (Mcps) 3.84 1.2288

Carrier spacing (MHz) 5 1.25

Frame length (ms) 10 5/20

Modulation FL: QPSK FL: BPSK/QPSK

RL: BPSK RL: BPSK

64-ary orthogonal

Coding Rate-1/2, 1/3 Rate-1/2, 1/3, 1/4,

K D 9CC 1/6 K D 9CC

Rate-1/3 Rate-1/2, 1/3, 1/4,

K D 4 turbo code 1/5, K D 4 turbo code

Interleaving Inter/Intraframe Intraframe

Spreading FL: BPSK Complex

RL: QPSK

Inter BS Asynchronous Synchronous

synchronization

1.1.3.1 cdma2000

The cdma2000 family of standards developed by 3GPP2 evolved from IS-95A/B and included cdma2000 1x, cdma2000EV-
DO Rev. 0, cdma2000 EV-DO Rev. A, and cdma2000 EV-DO Rev. B. cdma2000 1x, also known as 1x and 1xRTT, is the
core cdma2000 wireless air interface standard, and was recognized by the ITU as an IMT-2000 standard in November 1999.
It was the first IMT-2000 technology deployed worldwide, in October 2000. The designation “1x” stands for 1 times Radio
Transmission Technology, and means that the system has the same RF bandwidth as IS-95: a duplex pair of 1.25 MHz
radio channels. cdma2000 1x almost doubles the capacity of IS-95 by adding 64 more traffic channels to the forward link,
orthogonal to (in quadrature with) the original set of 64 forward channels. The cmda2000 1x Release 0 standard supports
bi-directional peak data rates of up to 153 kbps and Release 1 can achieve peak data rates of up to 307 kbps in a single
1.25 MHz channel. cdma2000 1x supports a variety of applications including circuit-switched voice, short messaging service
(SMS), multimedia messaging service (MMS), games, GPS-based location services, music and video downloads.

EV-DO which now stands for “Evolution-Data Optimized” was initially developed by Qualcomm in 1999 to meet the
IMT-2000 requirements for a minimum 2-Mbit/s downlink speed for stationary or walking users, and is sometimes referred
to as IS-856. EV-DO uses a mixture of CDMA and TDMA to maximize both individual user’s throughput and the overall
system throughput. EV-DO was typically used for broadband Internet access and offered speeds of 2.4 Mbits/s downlink
and 153 kbit/s uplink. EV-DO Rev A was introduced to offer higher peak data rates of 3.1 Mbits/s downlink and 1.8 Mbit/s
uplink. EV-DO Rev A implemented multi-flow packet application (MFPA), where multiple application data flows can be
supported that are assigned different priorities according to their associated quality of service (QoS) profiles. EV-DO Rev A
has been adopted by many service providers in the USA, Canada, Mexico, Europe, Asia, Russia, Brazil, and Australia. As
of 2014, there were 175 EV-DO Rev A networks.

1.1.3.2 UMTS

UMTS was developed by 3GPP and is part of the global ITU IMT-2000 standard. The most common form of UMTS
uses WCDMA (IMT Direct Spread) as the underlying air interface. However, UMTS also includes the TD-CDMA and
TD-SCDMA (both IMT CDMA TDD) air interfaces. The first deployment of UMTS was the Release’99 architecture.
UMTS required new base stations and new frequency allocation over 2G cellular systems. However, it is closely related
to GSM/EDGE as it borrows and builds upon concepts from GSM. Further, most UMTS handsets also support GSM,
allowing seamless dual-mode operation. WCDMA uses paired 5 MHz channels and can support peak data rates of up to
384 kbit/s, both uplink and downlink, for Release’99 handsets. WCDMA systems were criticized for their large (5 MHz)
bandwidth requirement, which delayed deployment in countries (such as the USA) that acted relatively slowly in allocating
new frequencies specifically for 3G services.
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Starting in 2006, UMTS networks in many countries were upgraded to include High Speed Packet Access (HSPA),
sometimes known as 3.5G. High Speed Downlink Packet Access (HSDPA) enables peak downlink transfer speeds of
14 Mbit/s and High Speed Uplink Packet Access (HSUPA) has peak data rates of 5.8 Mbit/s in the uplink, although most
initial HSDPA network deployments had peak downlink speeds of 7.2 Mbps. As of 2014, HSPA was commercially deployed
by 550 operators in 203 countries. Evolved HSPA (also known as HSPA+) was defined in 3GPP Release 7 and 8 of the
WCDMA specification. In WCDMA Release 11, HSPA+ can theoretically reach up to 337 Mbit/s in the downlink and
34 Mbit/s in the uplink by using multiple-input multiple-output (MIMO) technologies and high-order modulation schemes.
However, these data speeds are rarely realized and most HSPA+ networks provide for 168 Mbit/s in the downlink and
22 Mbit/s in the uplink. As of 2014, there were 365 HSPA+ networks in 157 countries.

1.1.4 Fourth Generation (4G) Cellular Systems

Fourth generation cellular systems have capabilities defined by the ITU in IMT-Advanced. IMT-Advanced specifies peak
data rates of 100 Mbps in high mobility applications and 1 Gbps in stationary or low mobility applications. IMT-Advanced
has the following requirements:

• Flexible channel bandwidth, between 5 and 20 MHz, optionally up to 40 MHz.
• A nominal peak data rate of 100 Mbps in high mobility, and 1 Gbps for stationary environments.
• A data rate of at least 100 Mbps between any two points in the world.
• Bandwidth efficiency of up to 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in the uplink.
• Spectral efficiency of up to 3 bit/s/Hz/cell in the downlink.
• Smooth handoff across heterogeneous networks.
• Seamless connectivity and global roaming across multiple networks.
• High quality of service (QoS) for next generation multimedia support.
• Backward compatibility with existing wireless standards.
• All Internet Protocol (IP) packet-switched network.

Two candidate 4G systems have been standardized and deployed commercially, (1) Long Term Evolution (LTE) as
standardized by 3GPP, and (2) IEEE 802.16e (Mobile WiMAX) as standardized by the IEEE. However, it is debatable
as to whether or not these first versions should be considered 4G standards at all, since they do not meet the IMT-Advanced
requirements. Nevertheless, LTE and Mobile WiMAX are often branded as being 4G systems as they are technical precursors
to their more advanced versions Long Term Evolution Advanced (LTE-A) and Mobile WiMAX Release 2 (IEEE 802-2012).
Unlike the 3G cellular systems that use CDMA technology, the 4G cellular system proposals use multi-carrier methods,
namely orthogonal frequency division multiple access (OFDMA) and single carrier frequency division multiple access (SC-
FDMA).

Long Term Evolution (LTE) and Long Term Evolution—Advanced (LTE-A) have been commercially deployed, and
LTE-A Pro has seen initial deployment. LTE-A Pro is a new radio interface for low data rate narrow-band Internet of Things
(NB-IoT). As of 2016Q2, a total of 521 operators have commercially launched LTE, LTE-A, or LTE-A Pro networks in 170
countries. Of these, 147 mobile operators have launched LTE-Advanced or LTE-Advanced Pro networks in 69 countries with
9 LTE-Advanced Pro networks deployed. During 2016 Q2, the number of LTE subscribers worldwide doubled to 1.29 billion.
By the end of 2016, it is expected that there will be 560 LTE, LTE-A, or LTE-A Pro networks. It is also expected that 1-Gbps
LTE services could be introduced before the end of 2016. Operators in all regions are also ramping up the deployment of
voice-over-LTE (VoLTE) to support voice-over-Internet (VoIP). A total of 82 operators in 43 countries have so far launched
commercial VoLTE services. As many LTE operators have relied on circuit switch fall back to GSM to accommodate voice
calls, LTE operators will start discontinuing GSM as VoLTE is deployed.

WiMAX has also been commercially deployed. In 2014, there were 580 commercial WiMAX networks in 149 countries,
with 33.4 million subscribers worldwide. However, since 2015 the number of WiMAX subscribers has been declining
worldwide while the number of LTE subscribers is increasing rapidly. Some operators are ending their WiMAX service
and deploying LTE, LTE-A, or LTE-A Pro networks instead.
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Table 1.6 Basic parameters for LTE and LTE-A

Feature LTE LTE-A

Multiple access FL: OFDMA FL: OFDMA

RL: SC-FDMA RL: single-carrier property

not preserved for

SC-FDMA uplink

Carrier spacing (MHz) 1.4, 3, 5, 10, 15, 20 Additionally supports

up to 100 MHz downlink

and 40 MHz uplink

with carrier aggregation

Duplexing FDD, TDD, half-duplex FDD FDD, TDD, half-duplex FDD

Mobility (km/hr) 500 500

Frame length (ms) 1 1

Modulation FL: QPSK, 16QAM, 64QAM FL: QPSK, 16QAM, 64QAM,

256QAM

RL: QPSK, 16QAM, RL: QPSK, 16QAM,

64QAM(optional) 64QAM(optional)

Coding Turbo code Turbo code

MIMO FL: 2� 2, 4� 2, 4� 4 FL: up to 8� 8

RL: 1� 2, 1� 4 RL: up to 4� 4

Peak data rate FL: 150 Mbps(2� 2 MIMO, 20 MHz), FL: 3 Gbps (8� 8 MIMO, 100 MHz)

300 Mbps(4� 4 MIMO, 20 MHz)

RL: 75 Mbps(20 MHz) RL: 500 Mbps (4� 4 MIMO, 40 MHz)

Latency (ms) �10 <5

1.1.4.1 LTE, LTE-A, and LTE-A Pro

LTE is an all IP technology that uses OFDMA on the downlink and SC-FDMA on the uplink. LTE is compatible with
previous mobile technologies including GSM, GPRS, UMTS, EDGE, WCDMA, HSPA, cdmaOne, cdma2000, and EV-DO.
LTE-A builds on LTE to further increase data rate as defined in 3GPP Releases 10 and 11. There are five major features:
carrier aggregation, increased MIMO, coordinated multipoint transmission or cooperative MIMO, heterogeneous network
(HetNet) support, and relays. Carrier aggregation combines up to five 20 MHz channels into one to increase data speed.
The channels can be contiguous or non-contiguous. With a maximum 8 � 8 MIMO configuration, 64QAM, and 100 MHz
bandwidth, a peak downlink data rate of 1 Gbit/s is possible. LTE-A and LTE-A Pro are the only truly 4G technologies.
The basic parameters of LTE, LTE-A are summarized in Table 1.6. LTE-A Pro will have the following key attributes:
(1) Data speeds in excess of 3 Gbps (LTE-A: 1 Gbps), (2) 640 MHz of carrier bandwidth (LTE-A: 100 MHz), (3) Latency:
2 ms (LTE-A: 10 ms).

1.1.4.2 WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) is a telecommunications protocol that provides fixed and fully
mobile Internet access. There are several versions of the WiMAX standard. IEEE 802.16-2004, also known as 802.16d,
is sometimes referred to as “Fixed WiMAX,” since it does not support mobility. IEEE 802.16e-2005, often abbreviated as
802.16e, includes support for mobility among other things and is commonly known as “Mobile WiMAX.” Mobile WiMAX
can deliver mobile broadband services, with peak data rates up to 40 Mbit/s, at vehicular speeds greater than 120 km/hr while
maintaining a quality of service (QoS) comparable to broadband wireline access.

Some of the key features and attributes of WiMAX include the following:

• Tolerance to delay spread and multi-user interference due to orthogonality of OFDMA sub-carriers in both the downlink
(DL) and uplink (UL) directions.

• Scalable channel bandwidths ranging from 1.25 to 20 MHz through adjustment of the Fast Fourier Transform (FFT) size
in the baseband modulator/demodulator. Supported FFT sizes are 128, 256, 512, 1024, 2048.

• Hybrid-Automatic Repeat Request (H-ARQ) to provide robustness in high mobility environments.
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• Adaptive sub-carrier allocation (in time and frequency) to optimize connection quality based on relative signal strengths
on a connection-by-connection basis.

• Advanced modulation and coding schemes that use BPSK, QPSK, 16-QAM, 64-QAM together with convolutional and
turbo coding.

• Power management to ensure power efficient operation of mobile and portable devices in sleep and idle modes.
• Network-optimized hard handoff to minimize overhead and achieve a handoff delay of less than 50 ms.
• Advanced antenna systems including MIMO, beam forming, space-time coding, and spatial multiplexing.
• Fractional frequency reuse to achieve high spectral efficiency.

1.1.5 Fifth Generation (5G) Cellular and Beyond

5G wireless networks are currently being researched and developed, and are expected to be deployed between 2020 and
2030. The objectives of 5G cellular systems are varied. With the proliferation of wireless data and the Internet of Things
(IoT), 5G wireless systems are sought that will support 100–1000-fold gains in network sum capacity, provide connections
for at least 100 billion devices, low-data-rate machine-to-machine communication, offer 10 Gbps peak data rates with sub-
millisecond latencies and response times, and provide for very high reliability. Low latency and extremely high reliability
will be essential for mobile industrial automation, vehicular connectivity and automated driving, and other IoT applications.
5G radio access will be built upon evolved existing wireless technologies, particularly LTE-A, LTE-A Pro, and evolved
WiFi, while also introducing new radio access means, particularly mm-wave cellular. The basic premises for 5G cellular are
massive connectivity and massive capacity, a growing variety of low and high data rate applications with grossly different
QoS requirements, and radio interfaces that simultaneously operate in different frequency bands. Finally, energy-per-bit
usage should be reduced by a factor of 10–100 to improve upon wireless device battery life.

The demanding requirements of 5G systems will require innovations in several key technology areas relating to future
wireless communication, including but not limited to

• Ultra dense networks using hierarchical cellular architectures, simultaneous network participation
• Ultra reliable and low latency communication
• Operation at higher frequencies, particularly at mm-wave frequencies
• Advanced coding, modulation, and multi-access techniques
• Advanced radio resource management protocols for interference management
• Moving networks, such as on trains, planes, and buses
• Massive MIMO
• Device-to-device communication
• Massive machine communications in IoT
• Low power communications
• Software defined networking and cloud-based systems
• Robust security.

1.1.6 Cordless Telephone Systems

Similar to cellular telephones, first generation cordless telephones were based on analog frequency modulation technology.
After their introduction, cordless telephones gained high popularity, which made them victims of their own success; the
voice quality was often unacceptable due to uncoordinated deployment and resulting mutual interference between cordless
phones operating on the same frequency. This led to the development of digital cordless telephones. The most predominant
cordless phone standard is DECT. DECT originated in Europe, where it is the universal standard, replacing earlier cordless
phone standards. It has been adopted by Australia, and most countries in Asia and South America. Adoption in the USA
was delayed due to radio licensing regulations, and earlier technologies are still competitive. In the USA, DECT operates
in the 1920–1930 MHz, or 1.9 GHz band, and is branded as DECT 6.0. DECT is recognized by the ITU as fulfilling the
IMT-2000 requirements and, thus, it actually qualifies as a 3G system. The major technical properties of DECT are described
in Table 1.7.
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Table 1.7 Cordless telephone standards

Feature DECT PHS

Frequency band (MHz) 1880–1900 (Europe) 1895–1918

1900–1920 (China)

1910–1930 (Latin America)

1920–1930 (United States, Canada)

Multiple access F/TDMA F/TDMA

Duplexing TDD TDD

Carrier spacing (kHz) 1728 300

Modulation GFSK �=4-DQPSK

Number of carriers 10 (Europe) 77

Number of carriers 5 (United States)

Channels/Carrier 12 4

Bit rate (kb/s) 1152 384

Speech coding ADPCM ADPCM

32 kb/s 32 kb/s

Frame size (ms) 10 5

Mean TX power (mW) 10 (Europe) 10

4 (United States)

Peak TX power (mW) 250 (Europe) 80

100 (United States)

Table 1.8 2.4 and 5 GHz bands for license exempt use. B D �26 dB emission bandwidth in MHz

Frequency Maximum output

Location Range (GHz) Power (mW or dBm)

North America 2.400–2.4835 1000 mW

Europe 2.400–2.4835 100 mW EIRP

Japan 2.471–2.497 10 mW

United States 5.150–5.250 minimum of 50 mW or 4 dBm

(UNII lower band) C10log10B

United States 5.250–5.350 minimum of 250 mW or 11 dBm

(UNII middle band) C10log10B

United States 5.725–5.825 minimum of 1000 mW or 17 dBm

(UNII upper band) C10log10B

The Personal Handy-phone System (PHS) is a mobile network system developed by NTT Laboratory in Japan in 1989. It
is deployed mainly in Japan, China, Taiwan, and some other Asian countries. PHS is a cordless telephone like DECT, with
the capability to handover from one cell to the next. PHS operates in the 1880–1930 MHz frequency band, and is far simpler
to implement and deploy than cellular systems like PDC or GSM. However, the PHS cells are small due to a maximum base
station transmit power of 500 mW, and cell radii are typically in the order of tens or at most hundreds of meters in non-line-
of-sight conditions. While the small cell size makes PHS suitable for dense urban areas, it is impractical for rural areas, and
the small cell size also makes it difficult if not impossible to make calls from moving vehicles. For this reason PHS has seen
declining popularity in Japan. Nevertheless, PHS has seen a resurgence in markets like China, Taiwan, Vietnam, Bangladesh,
Nigeria, Mali, Tanzania, and Honduras where its low deployment costs make it attractive to operators. The major technical
properties of PHS are described in Table 1.7.

1.1.7 Wireless LANs

A variety of wireless local area network (WLAN) standards have been developed to operate in unlicensed bands. Table 1.8
lists some of the unlicensed bands that are used in various regions of the world.
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Table 1.9 Key parameters of the
IEEE 802.11a OFDM standard,
from [328]

Bandwidth 20 MHz

Data rate 6, 9, 12, 18, 24, 36, 48, 54 Mb/s

Modulation BPSK, QPSK, 16-QAM, 64-QAM

Coding 1/2, 2/3, 3/4 CC

Number of sub-carriers 52

Number of pilots 4

OFDM symbol duration 4�s

Guard interval 800 ns

Sub-carrier spacing 312.5 kHz

3 dB bandwidth 16.56 MHz

Table 1.10 Key parameters of the IEEE 802.11ac OFDM standard

Bandwidth Mandatory 20, 40, and 80 MHz channel bandwidth, 160 MHz (optional)

Data Rate 86.7–6933 Mb/s depending on configuration

Modulation BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM

Coding Convolutional code 1/2, 2/3, 3/4, 5/6, or LDPC (optional)

MIMO up to 8� 8 MIMO providing 8 spatial streams

single or multi-user MIMO

FFT size 64, 128, 256, and 512 (optional)

Data sub-carriers/Pilots 52/4, 108/6, 234/8, and 468/16 (optional)

OFDM symbol duration 4�s, 3.6�s (optional)

Guard interval 800 ns and 400 ns (optional)

Sub-carrier spacing 312.5 kHz

In 1997, the IEEE 802.11 standards group established the first WLAN standard to provide 1 and 2 Mb/s aggregate data
rates, commonly known as WiFi. IEEE 802.11 uses direct sequence spread spectrum with a length-11 Barker sequence
for spreading, and either BPSK (1 Mbps) or QPSK (2 Mbps) peak data speeds. Barker sequences are discussed in Chap. 9.
In 1998, the IEEE 802.11b standard was defined to provide 5.5 and 11 Mbps aggregate data rates. IEEE 802.11b uses
complementary code keying (CCK), which is also described in Chap. 9. In 1998, the IEEE 802.11a standard was defined for
operation in the newly unlicensed 5 GHz UNII bands in the USA. IEEE 802.11a is based on a combination of orthogonal
frequency division (OFDM) and time division multiplexing (TDM), and can provide a range of aggregate data rates ranging
from 6 to 54 Mbps. The parameters of the IEEE 802.11a OFDM standard are summarized in Table 1.9. The same network
has been adopted as IEEE 820.11g for operation in the 2.4 GHz unlicensed band.

The IEEE802.11n standard was released in 2009 to provide up to 4 MIMO streams. Similar to IEEE802.11a/g, the
IEEE802.11n standard uses OFDM and operates in either the 2.4 GHz or 5 GHz unlicensed bands. However, IEEE802.11n
may use a bandwidths of either 20 MHz or 40 MHz. The standard allows up to 4MIMO streams providing a data rate ranging
from 54 Mbit/s to 600 Mbit/s.

The IEEE802.11ac standard was released in 2013 and builds on IEEE802.11n. Changes include the use of wider channel
bandwidths 80 or 160 MHz versus 40 MHz, however, operating only in the 5 GHz band. IEEE802.11ac also added more
spatial MIMO streams (up to eight vs. four), higher-order modulation (up to 256-QAM vs. 64-QAM), and the addition of
multi-user MIMO (MU-MIMO). Data rates with IEEE802.11ac depend on the configuration and range from 7.2 Mbps to
6.9333 Gpbs in the maximum configuration with 160 MHz bandwidth, 8 MIMO streams, and 256QAM modulation. Key
parameters of the IEEE802.11ac standard are listed in Table 1.10.

The IEEE802.11ad standard is similar to IEEE802.11ac, except for operation in the 60 GHz mm-wave band. Radio
propagation at 60 GHz suffers from higher path loss attenuation than at 5 GHz, so the range of IEEE802.11ad is roughly
10 m as compared to 100 m for IEEE802.11ac. The IEEE802.11ad standard is branded as WiGig.

IEEE 802.11af, branded as Super WiFi, was standardized in February 2014 to allow operation in TV white space in the
VHF and UHF bands between 54 and 790 MHz. Due to the low path loss attenuation of VHF frequencies, the range of
IEEE 802.11af can extend up to 1000 m. So as to coexist with commercial TV broadcasting and wireless microphones, IEEE
802.11af access points and stations determine their position using global positioning system (GPS) and query a geolocation
database (GDB) over the Internet to discover what frequency channels are available for use at a given time and position.
The physical layer is based on 802.11ac, however, the frequency channels are 6–8 MHz wide depending on the regulatory
domain. Up to four TV channels may be bonded in either one or two contiguous blocks. MIMO operation is possible with
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up to four streams used for either space-time block code (STBC) or multi-user (MU) operation. The achievable data rate
per spatial stream is 26.7 Mbit/s for 6 and 7 MHz channels, and 35.6 Mbit/s for 8 MHz channels. With four spatial streams
and four bonded channels, the maximum data rate is 426.7 Mbit/s for 6 and 7 MHz channels and 568.9 Mbit/s for 8 MHz
channels.

1.1.8 Wireless PANs

A variety of wireless personal area network (WPAN) standards have been developed to operate in unlicensed bands. A WPAN
is used for communication among devices such as computers and telephones that are in close proximity. The physical size
of a WPAN is typically less than 10 m. WPANs can be used for communication among the devices themselves, or to connect
to the Internet. A key feature WPAN technology is the ability to “plug-in” devices, such that when any two WPAN-equipped
devices are in close proximity, they can communicate with each other. Another important feature is the ability of each device
to lock out other devices selectively, thus preventing unauthorized access.

In 1999, the IEEE802.15 Working Group was created to define Wireless Personal Area Network (WPAN) standards.
The Bluetooth v1.1 specification [153] was adopted as the IEEE 802.15.1-2002 standard and was later published as IEEE
802.15.1-2005 based upon the additions incorporated into Bluetooth v1.2. A Bluetooth WPAN is also called a piconet,
and consists of up to 8 active devices connected in a master-slave configuration (others maybe in idle mode). The first
Bluetooth device in the piconet is the master, and all other devices are slaves that communicate with the master. Bluetooth
uses Frequency Hop CDMA (FH-CDMA) with a set of 79 hop carriers with a spacing of 1 MHz and a hop dwell time of
625�s. Classical Bluetooth uses Gaussian frequency shift keying (GFSK) with a modulation index of 0.3 and either a very
simple rate-1/3 3-bit repetition code or a simple rate-2/3 shortened Hamming code. Classical Bluetooth supports a data rate
of 1 Mbps. Extended data rate Bluetooth systems are available that use �=4-DQPSK and 8-DPSK, giving 2 and 3 Mbps,
respectively.

Other than Bluetooth, two approaches have been pursued in IEEE802.15 regarding personal area networks. These include
IEEE 802.15.4: Low Rate WPAN and IEEE 802.15.3: High Rate WPAN. High rate WPAN is dormant, and only Low Rate
WPAN is available in various open standard and propriety networks.

1.2 Frequency Reuse and the Cellular Concept

A cellular land mobile radio network is a collection of individual cells that are served by cell sites or base stations (BSs).
Each BS covers a defined geographical area called a cell. By integrating the coverage of a plurality of cells, a cellular network
provides radio coverage over a large geographic area. A group of BSs is sometimes called a location area, or a routing area. A
cellular land mobile radio system has two basic functions; it must locate and track both active and idle subscribers or mobile
stations (MSs), and it must always attempt to connect the MSs to the best available BSs. The former task is the subject of
mobility management, and requires a location update procedure which allows a MS to inform the cellular network, whenever
it moves from one location area to the next. The latter task is the subject of radio resource management and requires the
continuous evaluation of the radio link quality with the serving BS(s), and the radio link qualities of alternate BSs. This
monitoring is performed by a base station controller (BSC) or mobile switching center (MSC) that uses knowledge of the
link quality evaluations on the forward and reverse channels, in addition to the system topology and traffic flow, to decide
upon the best BS(s) to serve a particular MS.

A cellular land mobile radio system uses low power radio communication between a MS and a grid of BSs. Movement
of the MS, however, leads to highly erratic radio link conditions, and careful monitoring and control are required to keep the
radio link quality acceptable. Evaluation of radio link quality is based upon a large number of criteria, but at the core is a
statistical measurement process based on prior knowledge of the expected radio channel characteristics. The time required
to measure the radio link quality and the accuracy of the measurement depends on the local propagation characteristics.
Time consuming link quality measurements will limit the ability of the cellular system to react to changes in link quality
and compensate by changing the set of serving BSs and the allocation of BS and MS power and bandwidth resources.
Conversely, if the link quality measurements can be made quickly, then the time required for the cellular system to process
the link quality measurements, make decisions, and transmit desired changes to the network entities, including the MSs,
will limit the adaptability of the cellular system. Limitations on the speed of link quality measurement and network control
essentially determine overall link quality and the size and distribution of cells in cellular systems. The cell sizes, the ability
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radio links to withstand interference, and the ability of the cellular system to react to variations in traffic are the main factors
that determine the spectral efficiency of a cellular system.

In cellular systems, the available spectrum is partitioned among the BSs, and a given frequency is reused at the closest
possible distance that the radio link will allow. Smaller cells have a shorter distance between reused frequencies, and this
results in an increased spectral efficiency and traffic carrying capacity. Dramatic improvement in spectral efficiency is the
main reason for the deployment of small cells known as microcells and picocells. However, the microcellular and picocellular
propagation environment is also highly erratic and the radio links are more difficult to control due to the combination of
small cell sizes and mobility. Distributed radio resource management algorithms are typically used to maintain acceptable
link quality and high spectral efficiency.

Cellular systems are designed to have high spectral efficiency and offer ubiquitous service coverage. These systems
require (1) effective cellular architectures, (2) fast and accurate link quality measurements, (3) rapid control in all types
of environments, (4) installation of BSs to provide radio coverage virtually everywhere, and (5) power and bandwidth
efficient air interface schemes that can mitigate the harsh effects of the propagation environment and tolerate high levels
of interference. Since the radio links in high capacity cellular systems will interfere with each other due to frequency reuse,
it is always desirable to maintain each radio link at a target QoS while using the lowest possible transmit power. This means
that radio links should not significantly exceed their target QoS since doing so will cause unnecessary interference to other
radio links.

Cellular mobile radio systems rely upon frequency reuse, where users in geographically separated cells simultaneously use
the same carrier frequency and/or time slot. The cellular layout of a conventional macrocellular system is very often described
by a grid of hexagonal cells or radio coverage zones. In reality the cells are neither hexagonal or circular, but instead are
irregular and overlapping regions. The hexagon is a common choice for representing macrocellular coverage areas, because
it closely approximates a circle and offers a wide range of tessellating frequency reuse cluster sizes. Tessellating frequency
reuse clusters are those that will fit together without leaving any gaps. A tessellating reuse cluster of size N can be constructed
if [256]

N D i2 C ij C j2; (1.1)

where i and j are non-negative integers, and i � j. It follows that the allowable hexagonal cluster sizes are N D
1; 3; 4; 7; 9; 12; : : : Examples of 3-, 4-, and 7-cell reuse clusters are shown in Fig. 1.4. The reuse clusters are tessellated to
form a frequency plan. A simplified 7-cell frequency reuse plan is shown in Fig. 1.5, where cells marked with the same letter
label use identical sets of carrier frequencies.

The co-channel reuse factor D=R is defined as the ratio of the co-channel reuse distance D between cells using the same
set of carrier frequencies and the cell radii R, where R is the distance from the center to the corner of a cell. For regular
hexagonal cells, the reuse cluster size N and co-channel reuse factor D=R are related by (see Problem 1.2)

D=R D
p
3N: (1.2)

For microcellular systems with lower BS antenna heights, regular hexagons may no longer appropriate for approximating
the radio coverage areas. Typical microcell BSs use an antenna height of about 15 m, well below the skyline of any buildings
that might be present, and acceptable link quality can be obtained anywhere within 200–500 m of the BS. For microcells, the
choice of cell shape depends greatly upon the local topography. For example, the linear cells shown in Fig. 1.6 can be used
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to model microcells that are deployed along a highway with directional antennas. In a dense metropolitan area with urban
canyons, the buildings act as wave guides to channel the radio waves along the street corridors. Figure 1.7 shows a typical
“Manhattan” street cell deployment that can be used to model microcells that are deployed in city centers.

1.3 Mobile Radio Propagation Environment

Radio signals in cellular land mobile radio systems generally propagate according to the three mechanisms: reflection,
diffraction, and scattering. Reflections arise when radio waves are incident upon a surface with dimensions that are large
compared to the wavelength. The radio wave reflects off the surface with an angle of departure equal to the angle of incidence,
while the amplitude and phase of the reflected wave depend on the surface characteristics. Diffraction occurs according to
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the Huygens–Fresnel principle when there is an obstruction between the transmitter and receiver antennas, and secondary
waves are generated behind the obstructing body. Scattering occurs when the radio waves are incident upon an object whose
dimensions are on the order of a wavelength or less, and causes the energy to be redirected in many directions. A good
example occurs at millimeter wave frequencies, where rain drops cause scattering that manifests itself in a phenomenon
called rain attenuation. The relative importance of these three propagation mechanisms depends on the particular propagation
scenario.

As a result of the above three mechanisms, cellular land mobile radio propagation can be roughly characterized by three
nearly independent phenomenon: path loss with distance, shadowing, and multipath-fading. Each of these phenomenon
is caused by a different underlying physical principle. Multipath-fading results in rapid variations in the envelope of the
received signal and is caused when plane waves arrive from many different directions with random phases and combine
vectorially at a receiver antenna. Typically, the amplitude of a narrow-band received envelope can vary by as much as 30–
40 dB over a fraction of a wavelength due to constructive and destructive addition. Multipath also causes time dispersion,
because the multiple replicas of the transmitted signal propagate over transmission paths of different lengths and, therefore,
reach the receiver antenna with different time delays. Time dispersion can be combatted and exploited by using time domain
equalization in TDMA systems, RAKE receivers in CDMA systems, and frequency domain equalization in OFDM systems.
Multipath-fading is discussed in detail in Chap. 2.

Free space propagation does not apply in a land mobile radio environment and the propagation path loss depends not only
on the distance and frequency, but also on the antenna heights and topography. The simplest empirical land mobile radio
propagation model assumes that the average received power at distance d from an emitter is

˝p.d/ D
�˝p.do/�

.d=do/
ˇ
; (1.3)

or after converting to decibel units

˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇ log10fd=dog C �.dB/; (1.4)

where �˝p .dBm/.do/ D EŒ˝p .dBm/.do/� is the average received signal power (in dBm) at a known reference distance that
is in the far field of the transmitting antenna. Typically, do is on the order of 1.6 km for macrocells, 100 m for outdoor
microcells, and 1 m for indoor picocells. The value of �˝p .dBm/.do/ will depend on the frequency, antenna heights and gains,
and other factors. The parameter ˇ is called the path loss exponent and is a key parameter that describes the slope of the
path loss characteristic (in dB) as a function of distance. The path loss is strongly dependent on the cell size and local terrain
characteristics. The path loss exponent ranges from 3 to 4 for a typical urban macrocellular environment, and from 2 to 8
for a microcellular environment. As mentioned earlier, path loss exponents are often determined by curve fitting to measured
data. The above and other path loss models are the subject of Sect. 2.7.

The parameter � is modeled a log-normally distributed random variable representing the effects of large scale fading
otherwise known as shadowing. Shadowing is caused by large terrain features such as buildings, hills, and valleys. The
random variable �.dB/ D 10log10.�/ in (1.4) is a zero-mean Gaussian random variable, and represents the error between the
actual and predicted path loss at a given distance. For log-normal shadowing, the probability density function of ˝p .dBm/.d/

has the normal distribution

p˝p .dBm/.d/.x/ D
1p
2��˝

exp

(

�
�

x � �˝p .dBm/.d/
�2

2�2˝

)

; (1.5)

where

�˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇ log10fd=dog .dBm/; (1.6)

is the average received signal power.
The parameter �˝ is called the shadow standard deviation. A more accurate path loss model will result in a smaller �˝ .

However, there will always be some residual error between the actual and predicted path loss due to terrain irregularities.
For macrocells �˝ typically ranges from 5 to 12 dB, with �˝ D 8 dB being a commonly used value. Furthermore, �˝ has
been observed to be nearly independent of the radio path length d. The received signal power in the absence of shadowing
as defined by (1.6) is called the area mean, while the received signal power in the presence of shadowing as defined by (1.4)
is called the local mean. Figure 1.8 illustrates the above concepts by plotting the received signal strength as a function of the
radio path length for both free space and a typical macrocellular environment. Shadowing is discussed in further detail in
Sect. 2.6.
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1.4 Co-Channel Interference and Noise

Frequency reuse in cellular systems introduces co-channel interference (CCI), which is the primary factor that limits cellular
spectral efficiency. CCI arises when the same carrier frequency is used in different cells and/or cell sectors. In this case,
the power density spectra of the desired and interfering signals overlap. Frequency reuse also introduces adjacent channel
interference. This type of interference arises when neighboring cells use carrier frequencies that are spectrally adjacent to
each other. In this case the power density spectrum of the desired and interfering signals partially overlap. However, since
adjacent frequencies are used at close distances, the interference can still be significant. Consequently, the transmit power is
regulated to fit within a regulatory or standard emission mask. Modulation schemes along with their power spectra are the
subject of Chap. 4.

Radio links exhibit a link performance threshold according to a defined QoS criterion. For large cells carrying light
traffic, the links are noise limited such that QoS is acceptable if received carrier-to-noise ratio, 	 , exceeds a certain defined
threshold 	th. Otherwise, the QoS is unacceptable and a service outage occurs. The probability of outage due to thermal
noise is defined as

ON D PŒ	 < 	th�: (1.7)

For dense cellular deployments carrying heavy traffic, the links are typically interference limited such that the QoS is
acceptable if the received carrier-to-interference ratio, �, exceeds a certain defined threshold �th, and a service outage
occurs otherwise. The CCI outage is defined as

OI D PŒ� < �th�: (1.8)

CCI outage is the subject of Chap. 3.
The thresholds 	th and �th depend on many parameters of the radio link, including the modulation and coding scheme

that is employed, and the particular receiver processing algorithms that are implemented. Often the thresholds exhibit a cliff
effect in terms of QoS, especially when powerful modulation and coding techniques are used.
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1.5 Receiver Sensitivity and Link Budget

Receiver sensitivity refers to the ability of the receiver to detect signals in the presence of noise. The ratio of the desired carrier
power to noise power before detection is commonly called the carrier-to-noise ratio, 	 . The parameter 	 is a function of
the communication link parameters, such as the transmitted power or effective isotropic radiated power (EIRP), path loss,
receiver antenna gain, and the effective input-noise temperature of the receiving system. The formula that relates 	 to the
link parameters is called the link budget . A simplified link budget for cellular radio systems can be expressed in terms of the
following parameters:

˝t D transmit carrier power

GT D transmit antenna gain

Lp D path loss

GR D receiver antenna gain

˝p D receive signal power

Ec D receive energy per modulated symbol

To D receiving system noise temperature in degrees Kelvin

Bw D receiver noise equivalent bandwidth

No D thermal noise power spectral density

Rc D modulation symbol rate

k D 1:38 � 10�23 Ws/K D Boltzmann’s constant

F D noise figure, typically 5–6 dB

LRX D receiver implementation losses

LI D interference margin

Mshad D shadow margin

GHO D handoff gain

˝th D receiver sensitivity

Many other parameters may be included in a detailed link budget, such as cable losses, but they are not included here.
The average received carrier power (or local mean) can be expressed as

˝p D
˝tGTGR

LRX Lp

; (1.9)

where ˝t is the transmitted power, and GT and GR are the transmitter and receiver antenna gains. Receiver implementation
losses are included in the denominator of (1.9), since imperfect receiver implementation often results in a loss of effective
received signal power. Sometimes it also increases the effective noise power as well.

The total input thermal noise power to the detector is [123]

N D kToBwF: (1.10)

The value of kTo at a room temperature of 17 ıC .290 ıK/ is kTo D �174 dBm/Hz. The noise figure F is a degradation caused
by elements in a radio frequency signal chain introducing noise. The noise figure of a system, for example an amplifier, is
defined by the ratio of the input signal-to-noise ratio to output signal-to-noise ratio. The noise figure is always greater than
or equal to unity, and a lower noise figure indicates better performance.

The received carrier-to-noise ratio, 	 , defines the link budget, where

	 D ˝p

N
D ˝tGTGR

kToBwFLRX Lp

: (1.11)
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The carrier-to-noise ratio, 	 , and modulated symbol energy-to-noise ratio, Es=No, are related as follows [123]:

Es

No

D 	 � Bw

Rs

: (1.12)

Hence, the link budget can be written as

Es

No

D ˝tGTGR

kToRsFLRX Lp

: (1.13)

Converting to decibel units gives

Es=No.dB/ D ˝t .dBm/ C GT .dB/ C GR .dB/ � kTo.dBm/=Hz � Rs .dBHz/ � F.dB/ � LRX .dB/ � Lp .dB/: (1.14)

The receiver sensitivity is defined as

˝th D LRX kToF.Es=No/Rs (1.15)

or converting to decibel units

˝th .dBm/ D LRX .dB/ C kTo.dBm/=Hz C F.dB/ C Es=No.dB/ C Rs .dBHz/: (1.16)

In (1.16), all parameters are usually fixed except for Es=No.dB/. To determine the receiver sensitivity, the minimum Es=No.dB/

is first found that will yield an acceptable link QoS, and this value is then substituted into (1.16). Then by substituting the
resulting value for ˝th .dBm/ into (1.14) and solving for Lp .dB/, the maximum allowable path loss that the link can tolerate is
obtained as

Lmax .dB/ D ˝t .dBm/ C GT .dB/ C GR .dB/ �˝th .dBm/: (1.17)

Once the maximum allowable path loss is known, a path loss model can be applied to determine the maximum radio path
length which is equal to the cell radii. For cellular radio systems, there are three other relevant link budget parameters: (1) the
margin for system loading or interference loading, (2) the shadow margin, and (3) the handoff gain. The first two quantities
will reduce the maximum allowable path loss, while the third increases it.

1.5.1 Interference Loading

Frequency reuse results in co-channel and adjacent channel interference. As the system load increases the level of interference
will also increase. This increase in interference will cause the cell radii to shrink since the radio receivers will be subjected to
interference in addition to the thermal noise. Once the cell radii shrink, MSs that are located near the edges of the cells will
experience an unacceptably low QoS. This will result in some links being dropped. However, as the connections are dropped
the level of interference will decrease. This in turn will expand the cell radii and MSs located near the edges of the cells will
again be able to establish links. This will once again increase the system load, and the entire process will repeat itself. This
phenomenon of shrinking and expanding cell boundaries due to interference is sometimes called cell breathing.

To ensure coverage and prevent dropped links as the system load increases, an interference margin must be included in
the link budget. Note that the received carrier-to-interference-plus-noise ratio is

	IN D
˝p

I C N
D ˝p=N

1C I=N
; (1.18)

where I is the total interference power. A key parameter in this equation is the interference-to-noise ratio, I=N. The net
effect of such interference is to reduce the carrier-to-noise ratio ˝p=N by the factor LI D .1 C I=N/. To allow for system
loading, the maximum allowable path loss in (1.17) must be reduced by an amount equal to LI .dB/, otherwise known as the
interference margin. The required LI .dB/ depends on the particular cellular system under consideration and the traffic load.
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The interference margin can be quite difficult to derive since it depends not only on the parameters of the radio link but also
on the detailed resource management algorithms being used for power control and handoff. CDMA systems typically require
a higher interference margin than TDMA systems due to their universal frequency reuse. With universal frequency reuse,
every cell and cell sector in the network can reuse the same set of carrier frequencies, and the emitter will act as a source
of interference to a relatively large number of receivers (compared to larger reuse clusters) due to the small reuse distance.
In any case, comparisons between different systems should always be made using the same total system bandwidth and the
same level of traffic loading.

1.5.2 Shadow Margin and Handoff Gain

Suppose that an outage due to thermal noise occurs whenever the received carrier-to-noise ratio at distance d, 	 D ˝p.d/=N

drops below some threshold 	th. Once the noise power N in (1.10) is specified, an outage will occur when the local mean
drops below the receiver sensitivity, i.e., ˝p .dBm/.d/ < ˝th .dBm/. The outage probability due to noise on the cell boundary
is defined as the probability that ˝p .dBm/.R/ < ˝th .dBm/, where d D R for a MS located on the cell edge. The area
averaged noise outage probability is defined as the probability that ˝p .dBm/.d/ < ˝th .dBm/, where the average is taken
over the random location of a MS in the entire cell area. If the spatial distribution of MSs unknown, then the MSs may be
assumed to be uniformly distributed throughout the cell area. To ensure a specified edge or area averaged outage probability,
a shadow margin, Mshad, must be included in the link budget. Finally, the outage probability will depend on the transmit
power. In cellular systems, the BSs and MSs are power controlled so an outage is generally calculated under the condition of
maximum allowable transmit power.

The outage probability due to noise on the cell edge is

ON.R/ D PŒ˝p .dBm/.R/ < ˝th .dBm/�

D
Z ˝th.dBm/

�1

1p
2��˝

exp

(

�
�

x � �˝p .dBm/.R/
�2

2�2˝

)

dx

D Q

�
Mshad

�˝

�

; (1.19)

where

Q.x/ D
Z 1

x

1p
2�

e�y2=2dy: (1.20)

and

Mshad D �˝p .dBm/.R/ �˝th .dBm/: (1.21)

is the shadow margin. The outage probability, ON.R/ is plotted against Mshad in Fig. 1.9 for various shadow standard
deviations.

Example 1.1. Suppose it is desirable to have ON.R/ D 0:1. To determine the required shadow margin, Mshad is chosen
so that the shaded area under the Gaussian density function in Fig. 1.10 is equal to 0.1. Thus

0:1 D Q

�
Mshad

�˝

�

: (1.22)

(continued)
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Example 1.1 (continued)
Hence,

Mshad

�˝
D Q�1.0:1/ D 1:28: (1.23)

For �˝ D 8 dB, the required shadow margin is

Mshad D 1:28 � 8 D 10:24 dB: (1.24)

To obtain a relationship between the edge and area averaged noise outage probabilities, models are needed for the
propagation path loss and spatial distribution of MSs. It is common to assume that the MSs are uniformly distributed
throughout each cell area. This assumption along with the path loss model in (1.6) yields an area averaged noise outage
probability [122]

ON D
1

�R2

Z R

0

ON.r/2�rdr

D Q.X/ � eXYCY2=2Q.X C Y/ (1.25)
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where

X D Mshad

�˝
; Y D 2�˝�

ˇ
(1.26)

where � D ln.10/=10. The first term of this expression is equal to the noise outage probability on the cell edge, ON.R/, while
the second term is a correction factor. This obviously means that the edge outage probability is higher than the area averaged
outage probability.

The above argument applies to the case of a single isolated cell. For cellular systems where the geographical area is
covered by multiple cells, the situation is more complicated. As a MS moves from one cell to the next, handoffs or handovers
will be executed to maintain service continuity. Consider a MS that is located in the boundary area between two cells.
Although the link to the serving BS may be shadowed and be in an outage condition, the link to an alternate BS may at
the same time provide an acceptable link quality. This is due to the fact that different shadowing conditions are usually
encountered on links with different BSs. Hence, at the boundary area between two cells, a macrodiversity gain is obtained.
The word macrodiversity is used to describe the case where the multiple receiver antennas are located in different base
stations, as opposed to microdiversity where the multiple antennas are collocated in the same base station. Handoffs take
advantage of macrodiversity, and they will increase the maximum allowable path loss by an amount equal to the handoff
gain, GHO. There are a variety of handoff algorithms that are used in cellular systems. CDMA cellular systems such as IS-
95A/B, cdma2000, and WCDMA use soft handoff, while TDMA cellular systems such as GSM/GPRS/EDGE and OFDMA
cellular systems such as LTE/LTE-A and WiMAX typically use hard handoff.

To illustrate the principle of handoff gain, consider a cluster of 7 cells; the target cell is in the center and surrounded by
6 adjacent cells. Although the MS is located in the center cell, it is possible that the MS could be connected to any one of
the 7 BSs. The area averaged noise outage probability for the target cell is to be calculated, assuming that the MS location
is uniform distributed over the target cell area. This can be done quite effectively by using Monte Carlo approaches with a
large number of trials. Our results assume that the links to the serving BS and the six neighboring BSs experience correlated
log-normal shadowing. The shadow gain at BSi is obtained as

�i .dB/ D a� C b�i; (1.27)

where

a2 C b2 D 1;

and � and �i are generated once each simulation trial, and constitute independent Gaussian random variables with zero mean
and variance �2˝ . It follows that the shadow gains (in decibel units) have the correlation

EŒ�i .dB/�j .dB/� D a2�2˝ D ��2˝ ; i ¤ j: (1.28)

where � D a2 is the correlation coefficient. Here we assume that � D 0:5.
Let ˝p;k .dBm/; k D 0; : : : ; 6 denote the received signal strength associated with the target BS (k D 0) and each of the

six neighboring BSs (k D 1; : : : ; 6). Three cases are considered: a single isolated cell to compare with earlier results, soft
handoffs, and hard handoffs. For the case of a single isolated cell, no handoffs are used and the outage probability is identical
to that obtained in (1.19) or (1.25). With a soft handoff algorithm, the BS that provides the largest instantaneous received
signal strength is always selected as the serving BS. The instantaneous received signal strength is affected by not only the
path loss and shadowing variations, but envelope fading as well. However, for the present purpose envelope fading is not
considered.1 If any BS has an associated received signal power that is above the receiver sensitivity, ˝th .dBm/, then the link
quality is acceptable; otherwise an outage will occur. Other more sophisticated and effective soft handoff and power control
strategies are the subject of Chaps. 12 and 13.

With a hard handoff algorithm, the received signal power at the target MS from the serving BS is denoted as˝p;0 .dBm/. If
this value exceeds the receiver sensitivity, ˝th .dBm/, then the link quality is acceptable. Otherwise, the six surrounding BSs
are evaluated for handoff candidacy by using a mobile assisted handoff (MAHO) algorithm. BS k is included in the neighbor

1As discussed in Sect. 2.6.2.1, a composite Nakagami-log-normal random variable can be approximated by a purely log-normal random variable
with an appropriate area mean and shadow variance.
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set if ˝p;k .dBm/ � ˝p;0 .dBm/ � H.dB/, where H.dB/ is the handoff hysteresis. If the received signal power for any member
of the neighbor set is above the receiver sensitivity, ˝th .dBm/, then link quality is acceptable; otherwise an outage occurs. A
more detailed description and analysis of hard handoff is provided in Chap. 13.

Figure 1.11 compares hard and soft handoffs, for H.dB/ D 6 dB. Note that a 10% area noise outage probability (90%
coverage) requires a shadow margin of 5.6 dB for a single isolated cell (no handoff). With soft handoffs, the required shadow
margin is only 1.8 dB. The difference of 3.8 dB between the two is the soft handoff gain. The corresponding hard handoff
gain is about 2.8 dB. Note that the soft handoff gain is always greater than the hard handoff gain. However, the true relative
advantage of soft handoff over hard handoff depends on many factors, such as hard handoff delay, and is difficult to predict.

The maximum allowable path loss with the inclusion of the margins for shadowing, interference loading, and handoff
gain is

Lmax .dB/ D ˝t .dBm/ C GT .dB/ C GR .dB/ �˝th .dBm/ �Mshad .dB/ � LI .dB/ C GHO .dB/: (1.29)

1.6 Coverage

Coverage refers to the number of base stations or cell sites that are required to cover or provide service to a given geographical
area with an acceptable quality of service. This is an important consideration when a new cellular network is deployed.
Clearly the choice of cellular system that requires the fewest number of cell sites to cover a given geographic area has an
infrastructure cost advantage. However, it is always important to include interference margin into the coverage calculation to
allow for system loading and this is often where the difficulty lays in comparing the different options. First, the traffic loads
must be the same to allow for a fair comparison. Second, the function relating the required interference margin, LI .dB/, to the
system load can be quite complicated, especially for CDMA cellular systems with universal frequency reuse.

The number of cell sites that are required to cover a given area is determined from knowledge of the maximum allowable
path loss and the path loss characteristic with distance. To compare the coverage of different cellular systems, the maximum
allowable path loss is first determined for the different systems at the same QoS. From (1.6), it is apparent that

Lmax .dB/ D CC 10ˇlog10fdmaxg .dB/ (1.30)
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where dmax is the distance corresponding to the maximum allowable path loss and C is some constant that depends on factors
that are common to different cellular system alternatives, such as the antenna heights and operating frequency. The quantity
dmax is equal to the radius of the cell. To provide good coverage it is desirable that dmax be as large as possible. A variety of
theoretical and empirical path loss models will be considered in detail in Sect. 2.7.

Once Lmax has been determined for the various cellular systems to be evaluated, the relative coverage of the different
systems can be compared, all other factors being equal. For example, suppose that System 1 has Lmax .dB/ D L1 and System 2
has Lmax .dB/ D L2, with corresponding radio path lengths of d1 and d2, respectively. The difference in the maximum
allowable path loss is related to the cell radii through the following relationship:

L1 � L2 D 10ˇ .log10fd1g � log10fd2g/

D 10ˇlog10

�
d1

d2

�

: (1.31)

Looking at things another way

d1

d2
D 10.L1�L2/=.10ˇ/: (1.32)

Since the area of a cell is equal to A D �d2 (assuming a circular cell) the ratio of the cell areas is

A1

A2
D d21

d22
D
�

d1

d2

�2

(1.33)

and, hence,

A1

A2
D 102.L1�L2/=.10ˇ/: (1.34)

Suppose that Atot is the total geographical area to be covered. Then the ratio of the required number of cell sites for Systems 1
and 2 is

N1

N2
D Atot=A1

Atot=A2
D A2

A1
D 10�2.L1�L2/=.10ˇ/: (1.35)

As an example, suppose that ˇ D 3:5 and L1 � L2 D 2 dB. Then N2=N1 D 1:30. Hence, System 2 requires 30% more base
stations to cover the same geographical area. In conclusion, a seemingly small difference in link budget translates into a
substantial difference in infrastructure cost. Since parameters such as the Ec=No.dB/ required, handoff gain and interference
margin can each vary considerably from one system to the next, careful consideration is required when comparing different
cellular system alternatives.

1.7 Spectral Efficiency and Capacity

Spectral efficiency is of primary concern to cellular system operators. There are a variety of definitions for spectral efficiency,
but an appropriate definition measures spectral efficiency in terms of the spatial traffic density per unit bandwidth. For a
cellular system that consists of a deployment of uniform cells, the spectral efficiency with circuit-switched voice traffic can
be expressed in terms of the following parameters:

Gc D offered traffic per channel (Erlangs/channel)

Nslot D number of channels per RF carrier (channels/carrier)

Nc D number of RF carriers per cell (carriers/cell)

Wsys D bandwidth per reuse cluster (Hz/reuse cluster)
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Wc D bandwidth per channel (Hz/channel)

A D area per cell .m2=cell/

N D number of cells per reuse cluster (cells/reuse cluster):

One Erlang is the traffic intensity in a channel that is continuously occupied, so that a channel occupied for x% of the time
carriers x=100Erlangs. Adjustment of this parameter controls the system loading and it is important to compare systems at
the same traffic load level. For an N-cell reuse cluster, the spectral efficiency can be defined as follows:

�S D
NcNNslotGc

WsysA
Erlangs=m2=Hz: (1.36)

Recognizing that the bandwidth per channel, Wc, is Wsys=.NNcNslot/, the spectral efficiency can be written as the product of
three efficiencies, viz.,

�S D
1

Wc

� 1
A
� Gc (1.37)

D �M � �C � �T; (1.38)

where

�M D modulation efficiency

�C D spatial efficiency

�T D trunking efficiency

Unfortunately, these efficiencies are not mutually independent so the optimization of spectral efficiency can be quite
complicated.

For cellular systems, the cell capacity, defined as number of channels per cell, is sometimes used instead of the Erlang
capacity. The cell capacity is

NcNslot D
Wsys

Wc � N
(1.39)

where, again, Wc is the bandwidth per channel and Nslot is the number of traffic channels multiplexed on each RF carrier.
Note that cell capacity does not account for trunking efficiency.

1.7.1 Bandwidth Efficiency

Bandwidth efficiency is measured in bits per second per unit bandwidth (b/s/Hz). High bandwidth efficiency can be achieved
by using bandwidth efficient modulation and coding techniques, along with effective receiver signal processing techniques
that produce radio links that are tolerant to interference. Bandwidth efficiency (bits/s/Hz) is equal to modulation efficiency
(channels/Hz) defined above multiplied by the bit rate per channel (bits/s/channel).

1.7.2 Spatial Efficiency

High spatial efficiency can be achieved by (1) minimizing the area per cell, and (2) minimizing the co-channel reuse distance.
The first of these explains the intense interest in microcell and picocell technologies, where cell radii on the order of 50–
500 m are used. The co-channel reuse distance D=R is minimized by (1) controlling the generation of CCI, and (2) mitigating
the effect of any CCI that is present. The generated levels of CCI can be controlled by using techniques such as cell sectoring,
smart antennas, power control, scheduling, effective handoff algorithms, macroscopic BS diversity, and a whole host of other
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Fig. 1.12 Co-channel interference on the forward channel at a desired MS. There are six first-tier interfering BSs

techniques. The impact of CCI on the radio link can be mitigated by using techniques such as optimum combining, single
antenna interference cancelation, equalization, antenna diversity, and others.

Consider the situation shown in Fig. 1.12, depicting a simplified worst case forward link channel CCI condition with
isotropic BS antennas where the maximum six first-tier co-channel interfering channels are present. The MS is located at
distance d0 from the serving BS and at distances dk; k D 1; 2; : : : ;NI from the first tier of NI D 6 interfering co-channel
BSs. If d D .d0; d1; : : : ; dNI

/ denotes the vector of distances at a particular MS location, then the forward link carrier-to-
interference ratio as a function of the distance vector d is

�.dB/.d/ D ˝p .dBm/.d0/ � 10 log10

(
NIX

kD1
10˝p .dBm/.dk/=10

)

: (1.40)

At this point, the handoff gain must be accounted for. Consider, for example, the case of soft handoff. Let �k .dB/.d/; k D
0; : : : ;M denote the carrier-to-interference ratio for serving BS and M surrounding BSs. Note that the vector d is different
for each candidate BS. With soft handoff, the BS that provides the most robust link is always selected such that the resulting
carrier-to-interference ratio is

�.dB/ D maxf�0 .dB/.d/;�1 .dB/.d/; : : : ; �M .dB/.d/g: (1.41)

The area averaged probability co-channel interference outage is

OI D P
�

�.dB/ < �th .dB/

�

; (1.42)

where the calculation is performed by averaging the probability of outage over the random location of a MS within the
reference cell. Finally, the outage depends on the number of interferers, NI that are present. Due to the statistical nature of
the user traffic, the number of interferers present is random. In the case of Fig. 1.12, it ranges from 0 to 6.

Finally, Fig. 1.13 depicts the worst case co-channel interference on the reverse link at the serving BS, considering first-tier
co-channel interferers. Note that the co-channel interference conditions are not the same on the forward and reverse links,
because the worst case vector d is different in each direction. This phenomenon is known as link imbalance.



1.7 Spectral Efficiency and Capacity 27

d4

d1

d2

d3

d5

d6

d0

subscriber
mobile

interfering

mobiles

Fig. 1.13 Co-channel interference on the reverse channel at a desired BS. There are six first-tier interfering MSs

1.7.3 Trunking Efficiency

High trunking efficiency can be achieved by using channel assignment schemes that maximize channel utilization. There is
usually a trade-off between trunking efficiency (or offered traffic per channel) and grade of service in terms of new call and
handoff blocking probabilities. Various fundamental formulas were developed by Erlang almost a century ago that laid the
foundation of modern teletraffic theory. One of Erlang’s most famous results is the Erlang-B formula, first derived in 1917,
that gives the probability that a newly arriving call will not find any available channel in a trunk of m channels and is blocked.
Sometimes this policy is called the blocked calls cleared queueing discipline, meaning that blocked calls are not buffered or
queued, and if no free channels are available they are dropped. The Erlang-B formula is not entirely applicable to cellular
systems, because it does not account for handoff calls. Furthermore, the total offered traffic per cell may be time-varying due
to the spatial movement of the subscribers, whereas the offered traffic in the Erlang-B formula is assumed to be constant.
The Erlang-B formula is

B.�T ;m/ D
�m

T

mŠ
Pm

kD0
�k

T

kŠ

; (1.43)

where m is the total number of channels per cell and �T D �a�d is the total offered traffic per cell (�a is the call arrival rate
and �d is the mean call duration). The Erlang-B formula is derived under the so-called standard Markovian assumptions,
including an infinite population of users, Poisson call arrivals with rate �a calls/s, and exponentially distributed call durations
with a mean call duration �d s/call. Note that the total offered traffic �T is a dimensionless quantity, but the quantity is
expressed as Erlangs.

Figure 1.14 plots the blocking probability B.�T ;m/ as a function of the offered traffic per channel Gc D �T=m. The benefit
from trunking is obvious, since the offered traffic per channel, Gc, increases as the number of trunked channels increases,
at any blocking probability. Note that diminishing returns are obtained as the number of trunked channels becomes larger.
Finally, it is important to realize that doubling the number of channels in a cell or cell sector will double the cell or sector
capacity. However, the Erlang capacity will more than double due to trunking efficiency.
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Fig. 1.14 Erlang-B blocking probability B.�T ;m/ vs. offered traffic per channel Gc D �T=m. Trunking is shown to improve the spectral efficiency

1.7.4 Capacity

The capacity of a cellular system is often measured in terms of two quantities:

1. The cell capacity or sector capacity equal to the number of available traffic channels per cell or cell sector.
2. The cell Erlang capacity equal to the traffic carrying capacity of a cell (in Erlangs) for a specified call blocking probability.

Note that difference between spectral efficiency and cell Erlang capacity is that spectral efficiency accounts for the spatial
efficiency and bandwidth efficiency. If the area per cell is the same in two different cellular systems, then their relative
spectral efficiencies and Erlang capacities will be the same all other things being equal.

Comparing the spectral efficiency of different cellular systems can be difficult, because the various systems may be
in different evolutionary stages. However, a fair comparison between suitably optimized digital cellular systems without
deployment constraints will probably show roughly equal spectral efficiency. Indeed this is what is seen with EV-DO Rev B.,
HSPA+, LTE-A. HSPA+ achieves peak downlink speeds of 21 Mbps in 5 MHz, while LTE-A achieves 22 Mbps in the same
bandwidth. Both systems are highly optimized. Recall that LTE-A downlink uses OFDMA, while the EV-DO downlink uses
TDM/CDMA, which are two entirely different air interfaces.

1.7.4.1 GSM Cell Capacity

GSM systems may or may not use frequency hopping, where the frames are hopped over a predefined set of carrier
frequencies and in a predefined order so as to average the effect of interference. A 3/9 (3-cell/9-sector) reuse pattern
is achievable for most GSM systems that employ frequency hopping; without frequency hopping, a 4/12 reuse pattern
may be possible. A capacity gain is achieved with frequency hopping, since the co-channel interference is averaged over
the set of hop frequencies. GSM has 8 logical channels that are time division multiplexed onto a single radio frequency
carrier, and the carriers are spaced 200 kHz apart. Therefore, the bandwidth per logical channel is roughly 25 kHz, which
was common in first generation European analog mobile phone systems. In a nominal bandwidth of 1.25 MHz (uplink
or downlink) there are 1250=200 D 6:25 carriers spaced 200 kHz apart.2 Hence, there are 6:25=9 � 0:694 carriers per
sector or 6:25=3 D 2:083 carriers/cell. Each logical channel commonly carries half rate traffic, such that there are 16 traffic
channels/carrier. Hence, the 3/9 reuse system has a sector capacity of 1.11 traffic channels/sector or a cell capacity of 33.33
traffic channels/cell in 1.25 MHz.

2Fractional carriers are used for the capacity calculation but can be eliminated in practice by using a larger nominal bandwidth.



Problems 29

1.7.4.2 IS-95 Cell Capacity

The cell capacity of IS-95 was a topic of historical debate. CDMA systems were initially reported to achieve 40 times
AMPS cell capacity, which made GSM appear to have a rather meager capacity. The key attribute of CDMA systems that
gives it high capacity is universal frequency reuse, where all cells and cell sectors reuse the same carrier frequency. Universal
frequency reuse means that every transmitter interferers with every receiver within radio range. The complicated interference
environment combined with the features of soft handoff and power control make the determination of cell capacity is quite
elusive even for the basic IS-95A system.

To illustrate the difficulty in evaluating CDMA cell capacity, consider the following simplified analysis. Suppose there
are N users in a cell: one desired user and N � 1 interfering users. For the time being, ignore the interference from
surrounding cells. Consider the reverse link, and assume perfectly power controlled MS transmissions that arrive chip and
phase asynchronously at the BS receiver. Treating the N � 1 co-channel signals as uncorrelated the effective carrier-to-noise
ratio is

	 D 3

N � 1 ; (1.44)

and the effective received bit energy-to-noise ratio is

Eb

No

D 	 � Bw

Rb

D 3G

N � 1 �
3G

N
;

where G D Bw=Rb. The factor of 3 in the numerator of (1.44) arises from the assumption of randomly generated spreading
sequences and the signals arriving at the receiver antenna in a chip and phase asynchronous fashion [230]. For a required
Eb=No, .Eb=No/req, the cell capacity is

N � 3G

.Eb=No/req
:

Suppose that 1.25 MHz of spectrum is available and the source coder operates at Rb D 4 kbps. Then G D 1250=4 D 312:5.
If .Eb=No/req D 6 dB (a typical IS-95 value), then the cell capacity is roughly N D 3 � 312:5=4 � 234 channels per cell.
This is roughly 7 times the cell capacity of GSM. However, this rudimentary analysis did not include out-of-cell interference
which is typically 50–60% of the in-cell interference. This will result in a reduction of cell capacity by a factor of 1.5 and
1.6, respectively. Also, with CDMA receivers, great gains can be obtained by improving receiver sensitivity. For example, if
.Eb=No/req can be reduced by 1 dB, then the cell capacity N increases by a factor of 1.26. Finally, CDMA systems are known
to be sensitive to power control errors. An rms power control error of 2 dB will reduce the capacity by roughly a factor of 2
as discussed in Chap. 12.

Problems

1.1. Show that the area averaged outage probability due to thermal noise is given by (1.25).

1.2. By using geometric arguments, show that the co-channel reuse factor, D=R, for cellular deployments based on hexagonal
cells is given by D=R D

p
3N.

1.3. A brief measurement campaign indicates that the median propagation loss at 420 MHz in a mid-size North American
city can be modeled by the following path loss equation:

Lp D 25 dBC 10 log10fd2:8g;
where d is in units of meters, i.e., the path loss exponent is ˇ D 2:8 and there is a 25 dB fixed loss.
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(a) Assuming a cell phone receiver sensitivity of �95 dBm, what transmitter power is required to service a circular area of
radius 10 km?

(b) Suppose the measurements were optimistic and ˇ D 3:1 is more appropriate. What is the corresponding increase in
transmit power (in decibels) that would be required?

(c) If log-normal shadowing is present with �˝ D 8 dB, how much additional transmit power is required to ensure 10%
thermal noise outage at a distance of 10 km?

1.4. A receiver in an urban cellular radio system detects a 1 mW signal at do D 1m from the transmitter. In order to mitigate
co-channel interference, it is required that the co-channel interference power that is received from any co-channel base
station be no more than �100 dBm. A measurement team has determined that the average path loss exponent in the system
is ˇ D 3.

(a) Determine the radius R of each cell if a 7-cell reuse pattern is used.
(b) What is the radius R if a 4-cell reuse pattern is used?

1.5. Consider a cellular system that uses a 7-cell hexagonal reuse cluster. The base stations employ 120ı wide-beam
directional antennas and they all have the same antenna height and transmit with the same power level. Consider the forward
channel (base-to-mobile). Ignore shadowing and envelope fading and consider only the path loss. A mobile station will
experience the lowest co-channel interference ratio, �, when it is located in the corner of a cell.

(a) Considering only the first tier of co-channel base stations, what is the worst case � with a path loss exponent of 4?
(b) Considering the first and second tiers of co-channel base stations, what is the worst case� with path loss exponent of 4?
(c) From parts a) and b) what conclusions can you make about the effect of the second-tier co-channel base stations? What

happens if the path loss exponent is equal to 3?

Note: In this problem you should use exact radio path distances, expressed in terms of the cell radius R. You can obtain these

distances by laying out a 7-cell deployment on hex paper and using geometric arguments.

1.6. Consider the worst case forward channel co-channel interference situation shown in Fig. 1.15. The path loss is described
by the following model:

�˝p
D ˝t.hbhm/

2

d4

Fig. 1.15 Worst case co-channel interference on the forward channel
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where

�˝p
D average received power

˝t D transmitted power

hb D base station antenna height

hm D mobile station antenna height

d D radio path length

(a) Assume that hb D 30m, hm D 1:5m, and ˝t is the same for all BSs. What is the worst case carrier-to-interference ratio
� for a cluster size N D 4?

(b) Now suppose that the antenna height of the serving BS (in the center) is increased to 40 m while the other BS antenna
heights remain at 30 m. This has the effect of enlarging the center cell. Assuming that it is desired to maintain the same
worst case � value obtained in part a), what is the new radius of the center cell?

(c) Now suppose that the antenna height of one of the co-channel BSs is increased to 40 m while the antenna heights of the
other BSs antenna heights, including the serving BS, remain at 30 m. This has the effect of enlarging the co-channel cell
and distorting the cell boundaries. Assuming, again, it is desired to maintain the same worst case � value obtained in
part a), what are the new boundaries of the center cell?

1.7. Suppose that a cellular frequency reuse environment is characterized by path loss and log-normal shadowing, such
that the local mean at distance d is given by (1.4), where �˝p .dBm/.do/ D �80 dBm at do D 1:6 km, ˇ D 3:68, and

�.dB/ � N .0; �2˝/, where �˝ D 8 dB. Use the above model in the questions below.

(a) Suppose that a mobile station is at distances 2 and 2.2 km from two different base stations, where the link to each of
the two base stations is affected by independent log-normal shadowing. If the base station that provides the largest local
mean˝p;i .dBm/; i D 1; 2; is selected to serve the mobile station, what is the probability density function of the observed
local mean ˝o

p .dBm/ D maxf˝p;1 .dBm/; ˝p;2 .dBm/g at the mobile station.
(b) As a follow-up to part (a), suppose that an outage occurs if the observed local mean ˝o

p .dBm/ is less than �100 dBm.
What is the probability of outage?

1.8. A TDMA cellular system consists of a deployment of uniform radii hexagonal cells with a 9-cell reuse pattern. The cell
diameter (corner-to-corner) is equal to 8 km. The system has a total bandwidth of 12.5 MHz (for both uplink and downlink).
The channels have a channel spacing of 30 kHz. Calculate the following:

(a) Number of traffic channels/cell.
(b) Number of cells required to cover a total area of 3600 km2. In this problem use the exact area of the hexagon cell rather

than approximating the hexagon cell by a circle cell with the same cell radius.
(c) Co-channel reuse distance D.

1.9. Whenever a mobile station crosses a cell boundary a handoff occurs to the target cell. However, sometimes a handoff
will occur because there are no channels available in the target cell. One method to decrease the probability of handoff failure
is to queue the handoff calls. A handoff call that does not find an available channel in the target cell is allowed to remain in a
queue for tq seconds and is dropped from the queue, i.e., it will experience a handoff failure, if no channel becomes available
in that time.

Suppose the queue is serviced using a “first-come first-served” discipline. If m is the total number of channels in the trunk
and � is the total offered traffic, then the probability of queueing is given by the famous Erlang-C formula

C.�T ;m/ D
�m

T

�m
T C mŠ

�

1 � �T

m

�Pm�1
kD0

�k
T

kŠ

:

The probability that a queued call will have to wait more than tq seconds in the queue is

PŒW > tq� D exp

�

� .m � �T/tq

�

�

;
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where� is the mean call duration. Assuming that� D 120 s and tq D 5 s, plot the blocking probability against the normalized
offered traffic per channel Gc D �T=m, for m D 5; 10, and 15. Comment on your results.

1.10. A GSM cellular service provider uses base station receivers that have a carrier-to-interference ratio threshold �th D
9 dB.

(a) Find the optimal cluster size N for the following cases:

(i) omnidirectional antennas
(ii) 120ı sectoring

(iii) 60ı sectoring

Ignore shadowing and use path loss model in (1.6) with path loss exponents of ˇ D 3 and ˇ D 4.
(b) Assume that there are 200 traffic channels in the cellular system and that a blocked calls cleared queueing discipline

is used with a target blocking probability of 1%. Further, assume that each cell or sector has approximately the same
number of channels, and the cells have uniform traffic loading. Ignore any handoff traffic. The average call duration is
equal to 120 s. Determine the offered traffic load (per cell) in units of Erlangs and calls per hour for each of the cases in
part (a).

1.11. Suppose that an urban area has three competing trunked mobile networks (systems A, B, and C) to provide cellular
service. System A has 400 cells with 15 channels/cell, System B has 50 cells with 100 channels/cell, and System C has 100
cells with 60 channels/cell. Ignore handoff traffic and assume uniform cell traffic loading.

(a) Plot the (Erlang-B) blocking probability, B.�T ;m/, for each system versus �T .
(b) Find the number of users that can be accommodated by each system for a blocking probability of 2%, if the traffic

loading offered by each user is 0.1 Erlangs.

1.12. A service area is covered by a cellular radio system with 84 cells and a cluster size N. A total of 300 voice channels are
available for the system. Users are uniformly distributed over the service area, and the offered traffic per user is 0.04 Erlang.
Assume a blocked calls cleared queueing discipline, and the designated blocking probability from the Erlang-B formula is
B D 1%.

(a) Determine the carried traffic per cell if cluster size N D 4 is used. Repeat for cluster sizes N D 3; 7, and 12.
(b) Determine the number of users that can be served by the system for a blocking probability of 1% and cluster size N D 4.

Repeat for cluster sizes N D 7 and 12.

In this question, the offered traffic per user is 0.04 Erlang. However,

�T D K�u;

where

�u D offered traffic per user

K D number of users

Note that �T in this case is the total offered traffic per cell and K is the number of users per cell.



Chapter 2

Propagation Modeling

The design of spectrally efficient wireless communication systems requires a thorough understanding of the radio propagation
channel. The characteristics of the radio channel will vary greatly with the operating frequency, and the propagation
environment, e.g., line-of-sight (LoS) versus non-line-of-sight (NLoS), stationary versus mobile transmitters and receivers,
and other factors. This chapter emphasizes land mobile radio channels, including those found in cellular land mobile radio
systems and other types of vehicular radio systems. However, many of the concepts are of a fundamental nature and will
apply to other types of radio channels as well.

A typical cellular land mobile radio system consists of a collection of fixed base stations (BSs) that define radio coverage
areas known as cells. The height and placement of the BS antennas affects the proximity of local scatterers at the BSs. In
a macrocellular environment where the cell radii are large, the BS antennas are well elevated above the local terrain and
are free of local scatterers. Mobile stations (MSs), on the other hand, tend to be surrounded by local scatterers due to their
low elevation antennas. Sometimes a line-of-sight (LoS) condition will exist between a BS and a MS, for example in a rural
(or open) environment. However, in an urban environment, a non-line-of-sight (NLoS) condition typically exists between
the BSs and MSs. As a consequence, the radio waves must propagate between the BSs and MSs via reflections, diffraction,
and scattering. Due to the typically large distance between the BSs and MSs in macrocellular systems, radio propagation
is often assumed to occur in a two-dimensional (2-D) plane. As shown in Fig. 2.1, multiple plane waves will arrive at the
MS (or BS) receiver antenna(s) from different directions, with each having a distinct polarization, amplitude, phase, and
delay. This phenomenon is called multipath propagation. The multiple plane waves combine vectorially at each MS (or BS)
receiver antenna to produce a composite received signal.

Commercial cellular land mobile radio systems operate at UHF frequencies in bands located at 700/800/900 MHz and
1800/1900 MHz. At these frequencies, the carrier wavelength, �c, is approximately 15 cm and 30 cm, respectively, using the
relationship c D fc�c, where fc is the carrier frequency and c is the speed of light. Therefore, small changes in the propagation
delays of the individual multipath components due to MS mobility on the order of a few centimeters will cause a large
change in the relative phases of the plane wave components arriving at the MS (or BS) receiver antennas. Hence, when the
arriving plane waves combine vectorially at the receiver antenna(s), they will experience constructive and destructive addition
depending on the physical location of the MS. If the MS is moving or there are changes in the location of the scatterers, then
these spatial variations will manifest themselves as time variations in the amplitude and phase of the composite signal
received at each MS (or BS) antenna, a phenomenon known as envelope fading. If the propagation environment is such that
no individual multipath component is dominant, such as when NLoS conditions exist between the BS and MS, then the
composite receive envelope under narrowband propagation conditions is often modeled as being Rayleigh distributed at any
time. Such a channel is said to exhibit Rayleigh fading. However, if a dominant multipath component exists, such as when a
LoS or specular condition exists between the BS and MS, then the envelope is often modeled as being Ricean distributed at
any time. Such a channel is said to exhibit Ricean fading.

Radio channels are reciprocal in the sense that if a propagation path exists it carries energy equally well in both directions.
However, the spatial distribution of arriving plane waves may be significantly different in each direction. A MS in a typical
NLoS macrocellular environment is usually surrounded by local scatterers, so that the plane waves will arrive at the MS
antenna from many different directions, as shown in Fig. 2.1. Two-dimensional (2-D) isotropic scattering, where the plane
waves arrive from all azimuth directions with equal probability and with equal strength, is a very commonly used reference
model to describe the signals received at a MS in this case. The BSs, on the other hand, are relatively free from local
scatterers. Hence, plane waves tend to arrive at a BS with a small azimuth angle of arrival (AoA) spread as shown in Fig. 2.1.
It will be shown later in this chapter that these differences in the scattering environment for the forward and reverse links
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base station
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Fig. 2.1 Typical macrocellular radio propagation environment
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Fig. 2.2 Typical mobile-to-mobile radio propagation environment

will cause significant and important differences in the spatial correlation properties of the respective faded envelopes at the
MSs and BSs.

Some types of land mobile radio systems, such as mobile ad hoc networks, consist of vehicle-to-vehicle (or mobile-to-
mobile) and vehicle-to-infrastructure links. In this book vehicle-to-vehicle links are referred to as mobile-to-mobile links,
because the user terminals are not necessarily vehicular mounted. A typical mobile-to-mobile radio propagation environment
is depicted in Fig. 2.2. Such mobile-to-mobile communication systems differ from conventional cellular radio systems where
one end of the link (the BS) is stationary and free of scattering, and only the MS is moving. Though the received signal
envelope of mobile-to-mobile links is still Rayleigh faded under NLoS narrowband propagation conditions, the mobility
of both the transmitters and receivers, and scattering at both ends of the links, causes these links to exhibit much different
statistical properties than cellular land mobile radio channels.

If the received envelope or squared-envelope is averaged over a spatial distance of 20–30 wavelengths, an estimated of
the mean envelope or mean squared-envelope can be obtained. Sometimes, this quantity is called the local mean because
it corresponds to a particular locality. The local mean will experience slow variations over distances of several tens of
wavelengths due to the presence of large terrain features such as buildings, hills, and valleys. This phenomenon is known as
shadow fading or shadowing. Experimental observations have confirmed that the local mean signal strength follows a log-
normal distribution. This log-normal distribution applies to both macrocellular [171, 194] and microcellular environments
[149, 226, 228].

If the local mean is averaged over a sufficiently large spatial distance (to average over the shadows), the area mean is
obtained. The area mean is the average signal strength that is received to/from a MS over locations that lie at the same
distance from the BS. The area mean is inversely proportional to the path loss, which describes how the area mean decreases
with the distance between the BS and MS. Early studies by Okumura [250] and Hata [161] yielded an empirical path loss
model for macrocellular radio systems operating in urban, suburban, and rural areas. The Okumura–Hata model is accurate
to within 1 dB for distances ranging from 1 to 20 km and carrier frequencies between 150 and 1000 MHz, and was adopted in
the COST207 study [78]. The Okumura–Hata model is only valid for carrier frequencies less than 1000 MHz. Consequently,
when additional spectrum were made available in the 1990s for cellular systems operating in the 1800/1900 MHz band, new
path loss models were needed. The COST231 study [81] resulted in the COST231-Hata model that extended the Okumura–
Hata model to the 1800/1900 MHz band, and provided the Walfish–Ikegami model for path loss prediction in LoS and NLoS
urban microcells. More recent models include the 3GPP models [1] and their extension to mm-wave frequencies [158].
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The remainder of this chapter presents the fundamentals of radio propagation modeling, analysis and simulation.
Section 2.1 considers conventional narrow-band fixed-to-mobile channels, and various properties of the faded envelope
are considered. Section 2.2 considers mobile-to-mobile channels. Section 2.3 treats the statistical characterization of wide-
band multipath-fading channels. Simulation models for fading channels are covered in Sect. 2.5. Shadowing models and
simulation techniques are discussed in Sect. 2.6. Finally, Sect. 2.7 treats theoretical and empirical models for path loss in
macrocellular and microcellular systems.

2.1 Fixed-to-Mobile Channels

For land mobile radio applications, the signals from the BSs are usually transmitted with vertical polarization, meaning that
the electric field is perpendicular to the Earth’s surface. At VHF frequencies, vertical polarization produces a higher field
strength close to the ground than horizontal polarization. Likewise, the MS antennas are also vertically polarized, although
tilting of the MS antenna will result in a polarization mismatch. Even if the signals are transmitted with vertical polarization,
reflections and diffractions from objects will cause the signals to undergo depolarization. This effect can be exploited by
using polarization diverse antennas. For example, cross-polarized antennas, where two antennas having C45ı, and �45ı

polarizations from vertical are sometimes used at the BSs.
In cellular land mobile radio systems, the radio signals will propagate in three dimensions. However, if the distance

between the BS and MS is sufficiently large, the radio propagation environment is often modeled as occurring in a two-
dimensional (2-D) plane. Figure 2.3 depicts a horizontal x � y plane, where a MS is moving in the direction of the positive
x-axis with velocity v. The BS is assumed stationary. With vertical polarization, the electric field vector is aligned with the
z-axis. The nth plane wave arrives at the MS antenna with an angle of incidence �n. The MS movement introduces a Doppler
shift, or frequency shift, into the incident plane wave. The Doppler shift is given by

fD;n D fm cos.�n/ Hz (2.1)

where fm D v=�c and �c is the wavelength of the arriving plane wave, and fm is the maximum Doppler frequency occurring
when �n D 0. Plane waves arriving from the right half plane will experience a positive Doppler shift, while those arriving
from the left half plane will experience a negative Doppler shift.

Consider the transmission of the bandpass signal

s.t/ D Re
˚

Qs.t/ej2� fct



: (2.2)

where Qs.t/ is the complex envelope of the bandpass signal, fc is the carrier frequency, and Refzg denotes the real part of z. If
the channel is comprised of N propagation paths, then the noiseless received bandpass waveform is

r.t/ D Re

(
N
X

nD1
Cnej�n�j2�c�n=�cCj2�.fcCfD;n/tQs.t � �n/

)

; (2.3)

Fig. 2.3 A typical plane wave
incident on a MS receiver
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where Cn, �n, fD;n, and �n are the amplitude, phase, Doppler shift, and time delay, respectively, associated with the nth
propagation path, and c D fc�c is the speed of light. The magnitude Cn depends on the cross sectional area of the nth
reflecting surface or the length of the nth diffracting edge. The phase �n is randomly introduced by the nth scatterer and can
be assumed to be uniformly distributed on Œ��; �/. The delay �n D dn=c is the propagation delay associated with the nth
propagation path, where dn is the length of the path. The set of path lengths, fdng, will depend on the physical scattering
geometry which has not been specified at this point. The Doppler shift fD;n of the nth propagation path is as discussed
previously.

Similar to (2.2), the received bandpass signal r.t/ has the representation

r.t/ D Re
˚

Qr.t/ej2� fct



; (2.4)

where the received complex envelope is

Qr.t/ D
N
X

nD1
Cnej�n.t/Qs.t � �n/ (2.5)

and

�n.t/ D �n � 2�c�n=�c C 2� fD;nt (2.6)

is the time-variant phase associated with the nth path. The complex envelope at the input of the channel, Qs.t/, and the complex
envelope at the output of the channel, Qr.t/, are related through the convolution integral

Qr.t/ D
Z t

0

g.t; �/Qs.t � �/d� (2.7)

where g.t; �/ is the time-variant complex impulse response of the channel. From (2.5), it follows that

g.t; �/ D
N
X

nD1
Cnej�n.t/ı.� � �n/; (2.8)

where ı. � / is the Dirac delta function or unit impulse function.
From (2.5) and (2.6), several interesting observations can be made. Since the carrier wavelength �c is small (approximately

30 cm at 1 GHz), even small changes in the path delays dn D c�n will cause large changes in the phases �n.t/, due to the term
2�c�n=�c. For a straight line trajectory 2�c�n=�c D 2�dn=�c. Also, due to the Doppler frequency fD;n, the phases �n.t/ vary
with time. Hence, at any given point in space-time, the phases �n.t/ will result in the constructive or destructive addition of
the N multipath components, a phenomenon known as fading.

If the differential path delays �i � �j for all i; j are very small compared to the modulation symbol period, T , then the �n

that appear in the argument of Dirac delta function in (2.8) can be approximated by their average value N� , i.e., �n � N� . In this
case, the complex channel impulse response has the form

g.t; �/ D g.t/ı.� � O�/; (2.9)

where

g.t/ D
N
X

nD1
Cnej�n.t/: (2.10)

Note that �n.t/ remains as defined with the �n in (2.6), since the approximation fc�n � fc N� cannot be made when fc is large.
Therefore, the received complex envelope is

Qr.t/ D g.t/Qs.t � O�/ (2.11)
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which experiences fading due to the time-varying complex channel gain g.t/. In the frequency domain, the received complex
envelope is

QR.f / D G.f / �
�

QS.f /e�j2� f O�
�

: (2.12)

Since the channel changes with time, G.f / has a finite non-zero width in the frequency domain. Due to the convolution
operation, the output spectrum QR.f / will be larger than the input spectrum QS.f /. This broadening of the transmitted signal
spectrum is caused by the channel time variations and is called frequency spreading or Doppler spreading.

The time-variant channel transfer function can be obtained by taking the Fourier transform of (2.9) with respect to the �
variable, giving

T.f ; t/ D F fg.t; �/g D g.t/e�j2� f O� : (2.13)

The time-variant channel magnitude response is jT.f ; t/j D jg.t/j. Note that all frequency components in the received signal
are scaled by the same time-variant magnitude jg.t/j. In this case the received signal is said to exhibit frequency flat fading,
because the magnitude of the time-variant channel transfer function is constant (or flat) with respect to frequency variable f .

If the differential path delays �i � �j for some i; j are sufficiently large compared to the modulation symbol period T ,
then the magnitude response jT.f ; t/j is no longer flat and the channel exhibits frequency-selective fading. Sometimes
frequency-selective fading channels are called wide-band channels. A simplified concentric-ellipses model for frequency-
selective fading channels is depicted in Fig. 2.4, where the transmitter and receiver are located at the foci of the ellipses.
Considering only single bounce reflections between the transmitter and receiver, all paths that are associated with scatterers
on the nth elliptical contour will have the same propagation delay �n. Frequency-selective channels have strong scatterers
that are located on several ellipses such that the corresponding differential path delays �i � �j for some i; j, are significant
compared to the modulation symbol period T .

2.1.1 Envelope Correlation

A flat fading channel can be characterized by assuming the transmission of a continuous wave sinusoid at frequency fc,
because the channel magnitude response is flat. For convenience, the transmitted sinusoid is assumed to have complex
envelope Qs.t/ D 1 in (2.5). From (2.4) and (2.5), the corresponding received bandpass signal can be expressed in the
quadrature form

r.t/ D gI.t/ cos.2� fct/ � gQ.t/ sin.2� fct/; (2.14)

receivertransmitter

τ

τ2

1

Fig. 2.4 Concentric-ellipses model for frequency-selective fading channels
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where

gI.t/ D
N
X

nD1
Cn cos.�n.t// (2.15)

gQ.t/ D
N
X

nD1
Cn sin.�n.t// (2.16)

are the in-phase and quadrature components of the received bandpass signal. Assuming that the bandpass random process
r.t/ is wide-sense stationary, the autocorrelation function of r.t/ is

�rr.�/ D EŒr.t/r.tC �/�
D �gI gI

.�/ cos.2� fc�/ � �gIgQ
.�/ sin.2� fc�/; (2.17)

where EŒ � � is the ensemble average operator, and

�gIgI
.�/

4D EŒgI.t/gI.tC �/� (2.18)

�gIgQ
.�/

4D EŒgI.t/gQ.tC �/�: (2.19)

Problem 2.1 shows that the wide-sense stationarity of the bandpass random process r.t/ imposes the condition

�gI gI
.�/ D �gQgQ

.�/ (2.20)

�gIgQ
.�/ D ��gQgI

.�/: (2.21)

The expectations in (2.18) and (2.19) are now calculated.
It is safe to assume that the phases �n.t/ are statistically independent random variables at any time t, since the path delays

�n are all independent due to the random placement of scatterers and the phases �n are also independent. Furthermore, the
phases �n.t/ at any time t can be treated as being uniformly distributed over the interval Œ��; �/. The azimuth angles of
arrival, �n are all independent due to the random placement of scatterers. In the limit as N ! 1, the central limit theorem
can be invoked and gI.t/ and gQ.t/ can be treated as Gaussian random processes. Also, in the limit as N ! 1, the discrete
azimuth angles of arrival �n can be replaced by a continuous random variable � having the probability density function p.�/.
By using these statistical properties, the autocorrelation function �gIgI

.�/ can be obtained from (2.15), (2.6), and (2.1) as
follows:

�gI gI
.�/ D lim

N!1
E�;�;�ŒgI.t/gI.tC �/�

D ˝p

2
E� Œcos.2� fm� cos.�//� (2.22)

where

� D .�1; �2; : : : ; �N/ (2.23)

� D .�1; �2; : : : ; �N/ (2.24)

� D .�1; �2; : : : ; �N/ (2.25)

˝p D EŒjg.t/j2� D EŒg2I .t/�C EŒg2Q.t/� D
N
X

nD1
C2

n (2.26)

and ˝p can be interpreted as the received envelope power, while ˝p=2 is the power received in the corresponding bandpass
waveform in (2.14) as given by �rr.0/ in (2.17).
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Likewise, the cross-correlation function �gIgQ
.�/ can be derived as

�gIgQ
.�/ D lim

N!1
E�;�;�ŒgI.t/gQ.tC �/�

D ˝p

2
E� Œsin.2� fm� cos.�//�: (2.27)

Evaluation of the expectations in (2.22) and (2.27) requires the fraction of arriving power p.�/, and the antenna azimuth
gain pattern G.�/, as a function of the azimuth angle � . Here, the overall power angle distribution p.�/G.�/ is a probability
density function that integrates to unity over all arrival angles, such that the total received envelope power is given by

Z �

��
G.�/p.�/d� D 1: (2.28)

One simple and commonly used model assumes that the plane waves arrive at the receiver antenna from all azimuth directions
with equal probability, i.e., p.�/ D 1=.2�/; � 2 Œ��; �/, and an isotropic antenna is used such that the antenna gain is
uniform for all azimuth arrival angles, i.e., G.�/ D 1; � 2 Œ��; �/. This model was first suggested by Clarke [74], and is
commonly referred to as Clarke’s 2-D isotropic scattering model. The expectation in (2.22) becomes

�gI gI
.�/ D ˝p

2

Z �

��
cos .2� fm� cos.�// p.�/G.�/d�

D ˝p

2

1

�

Z �

0

cos .2� fm� cos.�// d�

D ˝p

2
J0.2� fm�/; (2.29)

where

J0.x/ D
1

�

Z �

0

cos .x cos.�// d� (2.30)

is the zero-order Bessel function of the first kind. The normalized autocorrelation function �gI gI
.�/=.˝p=2/ in (2.29) is

plotted against the normalized time delay fm� in Fig. 2.5.
Likewise, for 2-D isotropic scattering and an isotropic receiver antenna, the cross-correlation function in (2.27) becomes

�gI gQ
.�/ D ˝p

4�

Z �

��
sin .2� fm� cos.�// d� D 0: (2.31)

A cross-correlation of zero means that gI.t/ and gQ.t/ are uncorrelated and, since they are Gaussian, independent random
processes. The fact that gI.t/ and gQ.t/ are independent is a consequence of the symmetry of the 2-D isotropic scattering
environment and the isotropic receiver antenna. In general, gI.t/ and gQ.t/ are correlated random processes for non-isotropic
scattering environments and/or a non-isotropic receiver antenna.

2.1.2 Doppler Spectrum

The autocorrelation of the channel complex envelope g.t/ D gI.t/C jgQ.t/ is

�gg.�/ D
1

2
EŒg�.t/g.tC �/�

D �gIgI
.�/C j�gIgQ

.�/; (2.32)

as derived in greater detail at the beginning of Sect. 4.9. The Doppler spectrum and autocorrelation function of the channel
complex envelope are Fourier transform pairs, that is,
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Fig. 2.5 Normalized autocorrelation function of the quadrature components of the received complex envelope with 2-D isotropic scattering and
an isotropic receiver antenna

Sgg.f / D
Z 1

�1
�gg.�/e

�j2� f �d�

�gg.�/ D
Z 1

�1
Sgg.�/e

j2� f �d�;

where

Sgg.f / D SgI gI
.f /C jSgIgQ

.f /; (2.33)

is the Doppler spectrum. From (2.33), it may appear that the Doppler spectrum is complex valued. However, the
autocorrelation function �gIgI

.�/, as with any autocorrelation function, is an even valued function such that �gIgI
.�/ D

�gI gI
.��/. Hence, its Fourier transform SgI gI

.f / is real valued. Moreover, the cross-correlation function �gQgI
.�/ in (2.32), as

with any cross-correlation function, satisfies the property

�gIgQ
.�/ D �gQgI

.��/: (2.34)

Combining (2.34) with (2.21) yields the property

�gI gQ
.�/ D ��gIgQ

.��/: (2.35)

This means that the cross-correlation function �gIgQ
.�/ is an odd function of � and, hence, its Fourier transform SgI gQ

.f / is
purely imaginary-valued. Therefore, the Doppler spectrum in (2.33) is always real valued.

For the autocorrelation function in (2.29), the corresponding psd is [147, 6.671.7]

SgI gI
.f / D F Œ�gIgI

.�/�

D
(

˝p

2� fm

1p
1�.f=fm/

2
jf j � fm

0 otherwise
: (2.36)

For the case of 2-D isotropic scattering and an isotropic receiver antenna SgQgI
.f / D 0 so that Sgg.f / D SgI gI

.f /.
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The power spectrum of the channel complex envelope g.t/ can also be related to that of the received bandpass process
r.t/ in (2.14). From (2.17),

�rr.�/ D Re
˚

�gg.�/e
j2� fc�




: (2.37)

As shown in Sect. 4.9, by using the identity

Re fzg D zC z�

2
(2.38)

and the property �gg.�/ D ��
gg.��/, the bandpass Doppler spectrum is

Srr.f / D
1

2

�

Sgg.f � fc/C Sgg.�f � fc/
�

: (2.39)

The Doppler spectrum Sgg.f / is always a real-valued function of frequency, but not necessarily even. The corresponding
bandpass Doppler spectrum Srr.f / is always real-valued and even.

2.1.2.1 Doppler Spectrum Alternate Approach

The Doppler spectrum can be derived by using a different approach that is sometimes useful because it can avoid the need
to evaluate integrals. As mentioned earlier, the incident power on the receiver antenna is a function of the azimuth angle
� , such that the fraction of the total received power arriving between angles � and � C d� is p.�/d� . If the antenna has
an azimuth gain of G.�/, then the fraction of the total power received between angles � and � C d� is G.�/p.�/d� . From
(2.1), the Doppler frequency f D fm cos.�/ is an even function of the arrival angle � . Therefore, the Doppler spectrum can
be expressed as [171]

Sgg.f /jdf j D ˝p

2

�

G.�/p.�/ C G.��/p.��/
�

jd� j: (2.40)

From (2.1),

jdf j D fmj � sin.�/d� j D
q

f 2m � f 2 jd� j: (2.41)

Therefore,

Sgg.f / D
˝p

2
p

f 2m � f 2

�

G.�/p.�/ C G.��/p.��/
�

; (2.42)

where

� D cos�1 .f=fm/ : (2.43)

Hence, if p.�/ and G.�/ are known, the Doppler spectrum can be easily calculated. Once again, for 2-D isotropic scattering
and an isotropic antenna G.�/p.�/ D 1=.2�/, so that

Sgg.f / D
(

˝p

2� fm

1p
1�.f=fm/

2
jf j � fm

0 otherwise
: (2.44)

The same result was obtained from the autocorrelation function in (2.29), but it required the evaluation of a Fourier transform
integral.

The normalized Doppler spectrum Sgg.f /=.˝p=2� fm/ in (2.44) is plotted against the normalized Doppler frequency f=fm
in Fig. 2.6. Notice that Sgg.f / is limited to the range of frequencies 0 � jf j � fm and Sgg.f / D 1 at f D ˙fm. In reality, the
Doppler spectrum is bounded, and the singular behavior at f D ˙fm is due to the assumption of 2-D plane wave propagation.
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Fig. 2.6 Normalized psd of the quadrature components of the received complex envelope with 2-D isotropic scattering channel and an isotropic
receiver antenna

Aulin [22] modified Clarke’s 2-D model to yield a 3-D model that accounts for both azimuth and elevation angles-of-arrival.
The resulting Doppler spectrum has the general same U-shape as Fig. 2.6, but does not have singularities at frequencies
f D ˙fm.

In some cases, it is appropriate to model the received signal as consisting of a strong specular or LoS component plus a
scatter component. In this case, the azimuth distribution p.�/ might have the form

p.�/ D 1

K C 1 Op.�/C
K

K C 1ı.� � �0/; (2.45)

where Op.�/ is the continuous distribution of the scatter component, �0 is the angle-of-arrival (AoA) of the specular or LoS
component, and K is the ratio of the received specular to scattered power. Figure 2.7 shows a plot of p.�/ for one such
scattering environment, where the scatter component is characterized by 2-D isotropic scattering, i.e., Op.�/ D 1=.2�/; � 2
Œ��; �/. The correlation functions �gIgI

.�/ and �gIgQ
.�/ corresponding to (2.45) can be readily obtained from (2.22) and

(2.27) as

�gIgI
.�/ D 1

K C 1
˝p

2
J0.2� fm�/C

K

K C 1
˝p

2
cos.2� fm� cos.�0// (2.46)

�gIgQ
.�/ D K

K C 1
˝p

2
sin.2� fm� cos.�0//: (2.47)

The azimuth distribution in (2.45) yields a complex envelope having a Doppler spectrum of the form

Sgg.f / D
1

K C 1Sc
gg.f /C

K

K C 1Sd
gg.f / (2.48)

where Sd
gg.f / is the discrete portion of the Doppler spectrum due to the specular component and Sc

gg.f / is the continuous
portion of the Doppler spectrum due to the scatter component. For the case when Op.�/ D 1=.2�/; � 2 Œ��; ��, the correlation
functions in (2.46) and (2.47) are obtained and the corresponding Doppler spectrum can be obtained, by using the cross-
correlation property in (2.34) along with (2.33), as
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Fig. 2.7 Plot of p.�/ vs. � with 2-D isotropic scattering plus a LoS or specular component arriving at angle �0 D �=2

Sgg.f / D

8

<̂

:̂

1
KC1 �

˝p

2� fm

1p
1�.f=fm/2

C K
KC1

˝p

2
ı.f � fm cos.�0// 0 � jf j � fm

0 otherwise

: (2.49)

Note that the Doppler spectrum in (2.49) has the same shape as Fig. 2.6, except for the discrete spectral tone at frequency
f D fm cos.�0/.

Sometimes the azimuth distribution p.�/ may not be uniform, a condition commonly called non-isotropic scattering.
Several distributions have been suggested to model non-isotropic scattering. One possibility is the Gaussian distribution

p.�/ D 1p
2��S

exp

�

� .� � �/
2

2�2S

�

; (2.50)

where � is the mean AoA, and �S is the root mean square (rms) AoA spread. Another possibility is the von Mises distribution

p.�/ D 1

2�I0.k/
exp fk cos.� � �/g; (2.51)

where � 2 Œ��; �/, I0. � / is the zeroth-order modified Bessel function of the first kind, � 2 Œ��; �/ is the mean AoA,
and k controls the spread of scatterers around the mean. When k D 0, the von Mises distribution reduces to p.�/ D 1=.2�/,
yielding 2-D isotropic scattering. As k increases, the scatterers become more clustered around the mean AoA � and the
scattering becomes increasingly non-isotropic as shown in Fig. 2.8. Still another possibility is the cosine distribution

p.�/ D
(

�
4�max

cos
�
�
2

�
�max

�

; j� j � �max � �
2

0 ; elsewhere
: (2.52)

The parameter �max controls the AoA spread of the incoming waves. Figure 2.9 shows a plot of p.�/ for �max D 30ı, 60ı,
and 90ı. Note that the distribution is symmetric about � D 0. Therefore, this azimuth distribution is less flexible than either
the Gaussian or von Mises distributions. The density in (2.52) is sometimes used to model the elevation AoA distribution of
scatterers in 3-D propagation models, where the mean elevation AoA is zero degrees [361].
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Fig. 2.8 Plot of p.�/ vs. � for
the von Mises distribution with a
mean angle-to-arrival � D �=2
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Once the azimuth distribution is specified, the correlation functions �gIgI
.�/ and �gI gQ

.�/ can be readily obtained by
evaluating the expectations in (2.22) and (2.27), respectively, using, for example, the densities in (2.50), (2.51), or (2.52).
The Doppler spectrum, Sgg.f /, can be obtained by taking the Fourier transform of �gg.�/ in (2.33) or, alternatively, by
substituting the azimuth distribution p.�/ directly into (2.42).

2.1.3 Received Envelope and Phase Distribution

2.1.3.1 Rayleigh Fading

When the composite received signal consists of a large number of sinusoidal components, the received complex envelope
g.t/ D gI.t/C jgQ.t/ can be treated as a complex Gaussian random process. For some types of scattering environments, e.g.,
2-D isotropic scattering, gI.t/ and gQ.t/ at any time t1 are independent identically distributed Gaussian random variables with
zero mean and variance b0 D EŒg2I .t1/� D EŒg2Q.t1/�. Under these conditions the magnitude of the received complex envelope
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˛
4D jg.t1/j D

q

g2I .t1/C g2Q.t1/ (2.53)

has a Rayleigh distribution at any time t1, as shown in (A.26), i.e.,

p˛.x/ D
x

b0
exp

�

� x2

2b0

�

; x � 0; (2.54)

The received envelope power is equal to the second moment of ˛, ˝p D EŒ˛2� D 2b0, so that

p˛.x/ D
2x

˝p

exp

�

� x2

˝p

�

; x � 0: (2.55)

This type of fading is called Rayleigh fading. . The corresponding squared-envelope ˛2 D jg.t1/j2 is exponentially distributed
at any time t1 with density

p˛2.x/ D
1

˝p

exp

�

� x

˝p

�

; x � 0: (2.56)

The squared-envelope is important for the performance analysis of digital communication systems because it is proportional
to the received signal power and, hence, the received signal-to-noise ratio. The performance of digital communication links
on flat fading channels will be discussed in more detail in Chap. 5.

2.1.3.2 Ricean Fading

As mentioned earlier, some types of scattering environments have a specular or LoS component. In this case, gI.t/ and gQ.t/

are Gaussian random processes with non-zero means mI.t/ and mQ.t/, respectively. If it is again assumed that gI.t/ and gQ.t/

are uncorrelated, and the random variables gI.t1/ and gQ.t1/ have the same variance b0, then the magnitude of the received
complex envelope ˛ D jg.t1/j at any time t1 has a Ricean distribution as shown in (A.61), i.e.,

p˛.x/ D
x

b0
exp

�

�x2 C s2

2b0

�

Io

�
xs

b0

�

x � 0; (2.57)

where

s2 D m2
I .t/C m2

Q.t/ (2.58)

is called the non-centrality parameter. This type of fading is called Ricean fading and is often used to describe fading in
environments where a LoS or strong specular path exists between the transmitter and receiver.

A very simple Ricean fading model assumes that the means mI.t/ and mQ.t/ are constants, i.e., mI.t/ D mI and
mQ.t/ D mQ. Such an approach will certainly yield a Ricean distributed envelope, but it lacks any physical meaning. A better
model has been suggested by Aulin [22], such that the azimuth distribution p.�/ is defined in (2.45) and shown in Fig. 2.7. In
this case, the LoS or specular component determines the means mI.t/ and mQ.t/ of the in-phase and quadrature components,
respectively, as follows:

mI.t/ D s � cos.2� fm cos.�0/tC �0/ (2.59)

mQ.t/ D s � sin.2� fm cos.�0/tC �0/; (2.60)

where fm cos.�0/ and �0 are the Doppler shift and random phase associated with the LoS or specular component, respectively.
The Rice factor, K, is defined as the ratio of the LoS or specular power s2 to scattered power 2b0, i.e., K D s2=2b0. When

K D 0, there is no LoS or specular component and the envelope exhibits Rayleigh fading. When K D 1, there is no scatter
component and the channel does not exhibit any fading at all. The envelope distribution can be rewritten in terms of the Rice
factor and the average envelope power ˝p D EŒ˛2� D s2 C 2b0 by first noting that
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Fig. 2.10 The Rice pdf for
several values of K with ˝p D 1
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s2 D K˝p

K C 1 ; b0 D
˝p

2.K C 1/ : (2.61)

Substituting s2 and b0 into (2.57) yields

p˛.x/ D
2.K C 1/x

˝p

exp

�

�K � .K C 1/x
2

˝p

�

Io

 

2x

s

K.K C 1/
˝p

!

; x � 0: (2.62)

Figure 2.10 shows the Rice pdf for several values of K. The curve for K D 0 is the Rayleigh pdf.
The squared-envelope ˛2 D jg.t1/j2 at any time t1 has the following non-central chi-square distribution with two degrees

of freedom:

p˛2.x/ D
.K C 1/
˝p

exp

�

�K � .K C 1/x
˝p

�

Io

 

2

s

K.K C 1/x
˝p

!

; x � 0: (2.63)

2.1.3.3 Nakagami Fading

The Nakagami distribution was introduced by Nakagami in the early 1940s to characterize rapid fading in long distance HF
channels [238]. The Nakagami distribution was selected to fit empirical data, and is known to provide a closer match to some
measurement data than either the Rayleigh, Ricean, or log-normal distributions [57].

Nakagami fading describes the magnitude of the received complex envelope by the distribution

p˛.x/ D 2
�

m

˝p

�m
x2m�1

�.m/
exp

�

�mx2

˝p

�

m � 1

2
; (2.64)

where ˝p D EŒ˛2�. Figure 2.11 shows the Nakagami distribution for several values of the shape factor, m. Beyond its
empirical justification, the Nakagami distribution is often used for the following reasons. First, the Nakagami distribution can
model fading conditions that are either more or less severe than Rayleigh fading. When m D 1, the Nakagami distribution
becomes the Rayleigh distribution, when m D 1=2 it becomes a one-sided Gaussian distribution, and when m ! 1 the
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Fig. 2.11 The Nakagami pdf for
several values of m with ˝p D 1
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distribution approaches an impulse (no fading). Second, the Rice distribution can be closely approximated by using the
following relation between the Rice factor K and the Nakagami shape factor m [238];

K �
p

m2 � mC m � 1 (2.65)

m � .K C 1/2
.2K C 1/ : (2.66)

Finally, since the Rice distribution contains a Bessel function while the Nakagami distribution does not, the Nakagami
distribution often leads to convenient closed form analytical expressions that may otherwise be intractable.

With Nakagami fading, the squared-envelope has the Gamma distribution

p˛2.x/ D
�

m

˝p

�m
xm�1

�.m/
exp

�

�mx

˝p

�

: (2.67)

By using the relationship between the K factor and the shape factor m in (2.65), the cumulative distribution function (cdf),
F˛2.x/ D P.˛2 � x/ of the squared-envelope with Nakagami and Ricean fading is plotted in Fig. 2.12. It is apparent from
Fig. 2.12 that a Gamma distribution can approximate a non-central chi-square distribution to a reasonable degree of accuracy.
However, the reader is cautioned that the tails of the pdf are often the most important. The reason being that the bit errors in
a communication link tend occur during deep fades, which correspond to small values of x in the cdf. Figure 2.12 does not
show how well the tails of a non-central chi-square pdf are approximated by a Gamma pdf.

2.1.3.4 Envelope Phase

The phase of the channel complex envelope g.t/ D gI.t/C jgQ.t/ is

�.t/ D Tan�1
�

gQ.t/

gI.t/

�

: (2.68)
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Fig. 2.12 Comparison of the cdf
of the squared-envelope with
Ricean and Nakagami fading
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For Rayleigh fading, gI.t1/ and gQ.t1/ are independent identically distributed zero-mean Gaussian random variables at any
time t1. It follows (Appendix A.3.2.4) that the phase � � �.t1/ at any time t1 is uniformly distributed over the interval
Œ��; �/, i.e.,

p�.x/ D
1

2�
; �� � x � �: (2.69)

For Ricean fading channels, the phase � is not uniformly distributed and takes on a more complicated integral form, see
Problem 2.9.

2.1.4 Envelope Correlation and Spectra

The autocorrelation of the envelope ˛.t/ D jg.t/j of a complex Gaussian random process can be expressed in terms of the
hypergeometric function F.�; �I �; �/ as [89]

�˛˛.�/ D EŒ˛.t/ ˛.tC �/�

D �

2
j�gg.0/jF

�

�1
2
;�1
2
I 1; j�gg.�/j2
j�gg.0/j2

�

; (2.70)

where

j�gg.�/j2 D �2gIgI
.�/C �2gI gQ

.�/: (2.71)

The above expression is analytically cumbersome, but fortunately a useful approximation can be obtained by expanding
the hypergeometric function into the following infinite series:

F

�

�1
2
;�1
2
I 1; x

�

D 1C 1

4
xC 1

64
x2 C � � � (2.72)
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Neglecting the terms beyond second order yields the approximation

�˛˛.�/
:D �

2
j�gg.0/j

�

1C 1

4

j�gg.�/j2
j�gg.0/j2

�

: (2.73)

At � D 0, the approximation gives �˛˛.0/ D 5�˝p=8, whereas the true value is �˛˛.0/ D ˝p. Hence, the relative error in
the signal power is only 1.86%, leading us to believe that the approximation is probably very good.

The psd of the received envelope can be obtained by taking the Fourier transform of �˛˛.�/. The psd will include a
discrete spectral component at f D 0, due to the dc component of the received envelope. Since we are primarily interested in
the continuous portion of the psd, the autocovariance function �˛˛.�/ is of interest, where

�˛˛.�/ D EŒ˛.t/˛.tC �/� � EŒ˛.t/�EŒ˛.tC �/�

D �

2
j�gg.0/j

�

1C 1

4

j�gg.�/j2
j�gg.0/j2

�

� �
2
j�gg.0/j

D �

8j�gg.0/j
j�gg.�/j2: (2.74)

For 2-D isotropic scattering and an isotropic receiver antenna j�gg.�/j2 D �2gI gI
.�/ and, therefore,

�˛˛.�/ D
�˝p

16
J20.2� fm�/: (2.75)

Figure 2.13 plots the normalized envelope autocovariance �˛˛.�/=.�˝p=16/ against the normalized time delay fm� for the
case of 2-D isotropic scattering, p.�/ D 1=.2�/;�� � � � � and an isotropic receiver antenna G.�/ D 1.

The Fourier transform of �˛˛.�/ yields the continuous portion Sc
˛˛.f / of the envelope psd S˛˛.f /, and can be calculated

by using the identities j�gg.�/j2 D �gg.�/�
�
gg.�/ and �gg.�/ D ��

gg.��/ to write

Fig. 2.13 Normalized envelope
autocovariance against the
normalized time delay fm� for a
2-D isotropic scattering with an
isotropic receiver antenna
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Sc
˛˛.f / D

�

8j�gg.0/j
Sgg.f / � Sgg.f /

D �

8j�gg.0/j

Z 1

�1
Sgg.x/Sgg.x � f /dx

D �

8j�gg.0/j

Z fm�jf j

�fm

Sgg.x/Sgg.xC jf j/dx ; 0 � jf j � 2fm:

(2.76)

Note that S˛˛.f / is always real, positive, and even. It is centered about f D 0 with a spectral width of 4fm, where fm is the
maximum Doppler frequency. To proceed further, Sgg.f / needs to be specified. With 2-D isotropic scattering and an isotropic
receiver antenna Sgg.f / D SgI gI

.f /, where SgI gI
.f / is given by (2.36). The result from evaluating (2.76) is (see Problem 2.10)

Sc
˛˛.f / D

˝p

16�

1

fm
K

0

@

s

1 �
�

f

2fm

�2

1

A 0 � jf j � 2fm; (2.77)

where K. � / is the complete elliptic integral of the first kind, defined by

K.
/ D
Z 1

0

dx
p

.1 � x2/.1 � 
2x2/
: (2.78)

The continuous portion of the normalized envelope psd S˛˛.f /=.˝p=16� fm/ is plotted against the normalized frequency f=fm
in Fig. 2.14.

The psd of the received envelope ˛.t/ for a non-isotropic scattering channel can be obtained using the above procedure.
For example, consider the particular scattering environment shown in Fig. 2.7 with the associated Doppler spectrum in (2.49).
To obtain the continuous portion of the psd of the envelope ˛.t/, substitute (2.49) into (2.76) to obtain (see Problem 2.13)

Fig. 2.14 Continuous portion of
the normalized envelope psd
against the normalized frequency
f=fm for a 2-D isotropic scattering
channel with an isotropic receiver
antenna
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Fig. 2.15 Continuous portion of
the normalized envelope psd
against the normalized frequency
f=fm for the scattering
environment shown in Fig. 2.7;
K D 10 and �0 D �=3
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�
1

K C 1

�2
˝p

16� fm
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K

0
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s

1 �
�

f

2fm

�2

1

A (2.79)

C K�
p

1 � .f=fm C cos.�0//2
C K�
p

1 � .f=fm � cos.�0//2
C K2�2fmı.f /

)

:

Figure 2.15 shows a plot of the continuous portion of the normalized envelope psd S˛˛.f /=.˝p=.K C 1/216� fm/ against the
normalized frequency f=fm for K D 10 and �0 D �=3.

2.1.4.1 Squared-Envelope Correlation and Spectrum

The autocorrelation of the squared-envelope is

�˛2˛2.�/ D EŒ˛2.t/˛2.tC �/�: (2.80)

Since ˛2.t/ D g2I .t/C g2Q.t/, it follows that

�˛2˛2.�/ D EŒg2I .t/g
2
I .tC �/�C EŒg2Q.t/g

2
Q.tC �/�C EŒg2I .t/g

2
Q.tC �/�C EŒg2Q.t/g

2
I .tC �/�: (2.81)

First consider the case where the propagation environment is such that gI.t/ and gQ.t/ have zero mean. Then the squared-
envelope autocorrelation is (see Problem 2.14)

�˛2˛2.�/ D 4�2gI gI
.0/C 4�2gI gI

.�/C 4�2gI gQ
.�/

D 4�2gI gI
.0/C 4

ˇ
ˇ�gg.�/

ˇ
ˇ
2
: (2.82)

Finally, the squared-envelope autocovariance is

�˛2˛2.�/ D �˛2˛2.�/ � E2Œ˛2.t/�

D 4
ˇ
ˇ�gg.�/

ˇ
ˇ
2
: (2.83)
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With 2-D isotropic scattering and an isotropic receiver antenna, the above expression reduces to

�˛2˛2.�/ D ˝2
p J20.2� fm�/: (2.84)

By comparing (2.74) and (2.83), observe that the approximate autocorrelation function of the envelope and the exact

autocorrelation function of the squared-envelope are identical, except for a multiplicative constant. If the propagation
environment is characterized by a specular or LoS component (e.g., Ricean fading), then gI.t/ and gQ.t/ have non-zero
means and the autocovariance of the squared-envelope has a more complicated form. Let

gI.t/ D OgI.t/C mI.t/ (2.85)

gQ.t/ D OgQ.t/C mQ.t/; (2.86)

where mI.t/ and mQ.t/ are the means of gI.t/ and gQ.t/, respectively. From Problem 2.15,

�˛2˛2.�/ D 4j�OgOgj2.�/C 4�2OgI OgI
.0/C 4Re

˚

m.t/m�.tC �/�OgOg.�/



(2.87)

C2
�

jm.t/j2 C jm.tC �/j2
�

�OgI OgI
.0/C jm.t/j2jm.tC �/j2;

where

m.t/ D mI.t/C jmQ.t/ (2.88)

m.tC �/ D mI.tC �/C jmQ.tC �/: (2.89)

The squared-envelope autocovariance is

�˛2˛2.�/ D 4
ˇ
ˇ�OgOg.�/

ˇ
ˇ
2 C 4Re

˚

m.t/m�.tC �/�OgOg.�/



: (2.90)

Consider the scattering environment shown in Fig. 2.7. The corresponding correlation functions �gIgI
.�/ and �gIgQ

.�/ are
given by (2.46) and (2.47), respectively, and the means mI.t/ and mQ.t/ are defined in (2.59) and (2.60). It can be shown that

�OgI OgI
.�/ D 1

K C 1
˝p

2
J0.2� fm�/ (2.91)

�OgI OgQ
.�/ D 0 (2.92)

and

m.t/m�.tC �/ D s2
�

cos.2� fm� cos.�0// � j sin.2� fm� cos.�0//
�

D K˝p

K C 1
�

cos.2� fm� cos.�0// � j sin.2� fm� cos.�0//
�

;

(2.93)

where K is the Rice factor and �0 is the angle that the specular component makes with the MS direction of motion. Using
these results in (2.90) gives

�˛2˛2.�/ D
�

˝p

K C 1

�2

J0.2� fm�/
�

J0.2� fm�/C 2K cos.2� fm� cos.�0//
�

: (2.94)

The normalized squared-envelope autocovariance is plotted in Fig. 2.16 as a function of the normalized time delay fm� for
various values of K and �0.
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Fig. 2.16 Squared-envelope
autocovariance against the
normalized time delay fm� for the
scattering environment shown
in Fig. 2.7
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2.1.5 Level Crossing Rate and Fade Duration

Two important second order statistics associated with envelope fading are the level crossing rate (how often the envelope
crosses a specified level) and the average fade duration (how long the envelope remains on average below a specified level).
Also of interest is the zero crossing rate of the real and imaginary components of the complex faded envelope. These
quantities are affected not only by the scattering environment but also by the velocity of the MS.

2.1.5.1 Envelope Level Crossing Rate

The envelope level crossing rate at a specified envelope level R, LR, is defined as the rate (in crossings per second) at which
the envelope ˛ crosses the level R in the positive (or negative) going direction. Obtaining the level crossing rate requires the
joint pdf, p.˛; P̨ /, of the envelope level ˛ D jg.t1/j and the envelope slope P̨ D djg.t1/j=dt at any time instant t1.1 In terms
of the joint pdf p.˛; P̨ /, the expected amount of time the envelope lies in the interval .R;RC d˛/ for a given envelope slope
P̨ and time increment dt is

p.R; P̨ /d˛dd P̨dt: (2.95)

The time required for the envelope ˛ to traverse the interval .R;RC d˛/ once for a given envelope slope P̨ is

d˛= P̨ : (2.96)

The ratio of these two quantities is the expected number of crossings of the envelope ˛ within the interval .R;RC d˛/ for a
given envelope slope P̨ and time increment dt, viz.

P̨p.R; P̨ /d P̨dt: (2.97)

The expected number of crossings of the envelope level R for a given envelope slope P̨ in a time interval of duration T is

Z T

0

P̨p.R; P̨ /d P̨dt D P̨p.R; P̨ /d P̨T: (2.98)

1For simplicity of notation, the time variable is suppressed as ˛ � ˛.t1/ and P̨ � P̨.t1/.
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The expected number of crossings of the envelope level R with a positive slope in the time interval T is

NR D T

Z 1

0

P̨p.R; P̨ /d P̨ : (2.99)

Finally, the expected number of crossings per second of the envelope level R, or the level crossing rate, is

LR D
Z 1

0

P̨p.R; P̨ /d P̨ : (2.100)

This is actually a general result that applies to any random process characterized by the joint pdf p.˛; P̨ /.
Rice has derived the joint pdf p.˛; P̨ / for a sine wave in bandpass Gaussian noise [283]. A Ricean fading channel similarly

consists of LoS or specular (sine wave) component plus a scatter (Gaussian noise) component. For the case of a Ricean fading
channel,

p.˛; P̨ / D ˛.2�/�3=2p
Bb0

Z �

��
exp

�

� 1

2Bb0

h

B
�

˛2 � 2˛s cos.�/C s2
�

C .b0 P̨ C b1s sin.�//2
i�

d� (2.101)

where s is the non-centrality parameter in the Rice distribution, and B D b0b2 � b21, and where b0, b1, and b2 are constants
that are derived from the power spectrum of the scatter component. For the scattering environment described by (2.45) and
Fig. 2.7, the sine wave corresponds to the specular component arriving at angle �0, while the Gaussian noise is due to the
scatter component with azimuth distribution Op.�/ D 1=.2�/;�� � � � � . Note that the joint pdf derived by Rice in (2.101)
is general enough to apply to scattering environments described by other Op.�/ as well.

Suppose that the specular or LoS component of the complex envelope g.t/ has a Doppler frequency equal fq D fm cos.�0/,
where 0 � jfqj � fm. In this case [283]

bn D .2�/n
Z fm

�fm

Sc
gg.f /.f � fq/

ndf (2.102)

D .2�/nb0

Z 2�

0

Op.�/G.�/
�

fm cos.�/ � fq
�n

d�; (2.103)

where Op.�/ is the azimuth distribution of the scatter component, G.�/ is the antenna gain pattern, and Sc
gg.f / is the

corresponding continuous portion of the Doppler power spectrum. Equivalence between (2.102) and (2.103) can be
established by using (2.42). Note that Sc

gg.f / is given by the Fourier transform of

�c
gg.�/ D �c

gIgI
.�/ � j�c

gIgQ
.�/; (2.104)

where

�c
gIgI
.�/ D ˝p

2

Z 2�

0

cos.2� fm� cos.�//Op.�/G.�/d� (2.105)

�c
gIgQ

.�/ D ˝p

2

Z 2�

0

sin.2� fm� cos.�//Op.�/G.�/d�: (2.106)

In some special cases, the psd Sc
gg.f / is symmetrical about the frequency fq D fm cos.�0/. This condition occurs, for

example, when fq D 0 (�0 D 90ı), Op.�/ D 1=.2�/;�� � � � � , and G.�/ D 1. In this case, bn D 0 for all odd values of n

(and in particular b1 D 0) so that (2.101) reduces to the convenient product form

p.˛; P̨ / D
s

1

2�b2
exp

�

� P̨
2

2b2

�

� ˛
b0

exp

�

� .˛
2 C s2/

2b0

�

I0

�
˛s

b0

�

D p. P̨ / � p.˛/: (2.107)
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Since p.˛; P̨ / D p. P̨ / �p.˛/ in (2.107), it follows that ˛ and P̨ are statistically independent. When fq D 0 and Op.�/ D 1=.2�/,
a closed form expression can be obtained for the envelope level crossing rate. Substituting (2.44) into (2.102) gives

bn D
�

b0.2� fm/
n 1�3�5 ��� .n�1/

2�4�6 ��� n
n even

0 n odd
: (2.108)

Therefore, b1 D 0 and b2 D b0.2� fm/
2=2. By substituting the joint density in (2.107) into (2.100) and using the expression

for b0 in (2.61), the envelope level crossing rate is obtained as

LR D
p

2�.K C 1/fm�e�K�.KC1/�2I0
�

2�
p

K.K C 1/
�

; (2.109)

where

� D R
p

˝p

D R

Rrms
(2.110)

and Rrms
4D
p

EŒ˛2� is the rms envelope level. Under the further condition that K D 0 (Rayleigh fading), the above expression
simplifies to

LR D
p
2� fm�e��2: (2.111)

Notice that the level crossing rate is directly proportional to the maximum Doppler frequency fm and, hence, the MS speed
v D fm�c. The normalized level crossing rate LR=fm in (2.109) is plotted in Fig. 2.17 as a function of � and K.

2.1.5.2 Zero Crossing Rate

Recall that received complex envelope g.t/ D gI.t/ C gQ.t/ is a complex Gaussian random process. If the channel is
characterized by a specular or LoS component, then gI.t/ and gQ.t/ have mean values mI.t/ and mQ.t/, respectively. Of
interest, is the zero crossing rate of the zero-mean Gaussian random processes OgI.t/ D gI.t/�mI.t/ and OgQ.t/ D gQ.t/�mQ.t/.
Rice [283] has derived this zero crossing rate as
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Fig. 2.17 Normalized level crossing rate for the scattering environment shown in Fig. 2.7 with �0 D 90ı
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LZ D
1

�

s

b2

b0
: (2.112)

When the scatter component has the azimuth distribution Op.�/ D 1=.2�/;�� � � � � , the zero crossing rate is

LZ D
p
2fm: (2.113)

Similar to the level crossing rate, the zero crossing rate is directly proportional to the maximum Doppler frequency fm.

2.1.5.3 Average Fade Duration

Another quantity of interest is the average duration that the envelope remains below a specified level R. Although the pdf of
the envelope fade duration is unknown, the average fade duration can be calculated. Consider a very long time interval of
length T and let ti be the duration of the ith fade below the level R. The probability that the received envelope is less than R is

PŒ˛ � R� D 1

T

X

i

ti: (2.114)

The average fade duration is equal to

Nt D
P

i ti

TLR

D PŒ˛ � R�

LR

: (2.115)

If the envelope is Ricean distributed as in (2.62), then

P.˛ � R/ D
Z R

0

p.˛/d˛ D 1 � Q
�p

2K;
p

2.K C 1/�2
�

; (2.116)

where Q.a; b/ is the Marcum Q function. Moreover, if it is again assumed that fq D 0 and Op.�/ D 1=.2�/, then

Nt D
1 � Q

�p
2K;

p

2.K C 1/�2
�

p

2�.K C 1/fm�e�K�.KC1/�2I0
�

2�
p

K.K C 1/
� : (2.117)

If K D 0 (Rayleigh fading), then

PŒ˛ � R� D
Z R

0

p.˛/d˛ D 1 � e��2 (2.118)

and

Nt D e�
2 � 1

�fm
p
2�
: (2.119)

The normalized average fade duration Ntfm in (2.117) is plotted in Fig. 2.18 as a function of �.
The level crossing rate, zero crossing rate, and average fade duration all depend on the velocity of the MS, since

fm D v=�c. Very deep fades tend to occur infrequently and do not last very long. For example, at 60 mi/hr and 900 MHz,
the maximum Doppler frequency is fm D 80Hz. Therefore, with 2-D isotropic scattering and Rayleigh fading (K D 0)
there are LR D 74 fades/s at � D 0 dB with an average fade duration of 8.5 ms. However, at � D �20 dB there are only
20 fades/s with an average fade duration of 0.5 ms. Note that since � represents a normalized envelope (magnitude) level,
�.dB/ D 20 log10 �. Also observe from Fig. 2.17 that for small �.dB/, the level crossing rate decreases with an increasing Rice
factor K. Furthermore, from Fig. 2.18, for small �.dB/ the average fade duration increases with increasing K. Hence, as K

increases the fades occur less frequently, but last longer when they do occur.
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Fig. 2.18 Normalized average fade duration for the scattering environment shown in Fig. 2.7 with �0 D 90ı

2.1.6 Space-Time Correlation

Many mobile radio systems employ receiver antenna diversity, where spatially separated receiver antennas are used to
provide multiple faded replicas of the same information bearing signal. In order for such diversity systems to provide
the maximum diversity gain, it is desirable that the multiple faded replicas experience uncorrelated fading. The spatial
correlation characteristics are needed for determining the required spatial separation between antenna elements so that they
are sufficiently decorrelated. Moreover, it is sometimes desirable to simultaneously characterize both the spatial and temporal
channel correlation characteristics. For this purpose, the space-time correlation function is useful. To obtain the space-time
correlation functions, it is necessary to specify the scattering geometry. One possibility for NLoS conditions is the single-
ring model shown in Fig. 2.19, where the BS and MS are located at OB and OM , respectively, and separated by distance D,
and the scatterers are assumed to be located on a ring of radius R centered around the MS. Very often, a local scattering
assumption is made such that D � R, in order to simplify and obtain closed for expressions for the various space-time
correlation functions. For short distances between the transmitter and receiver, or large scattering radii, the local scattering
assumption is not applicable.

2.1.6.1 Space-Time Correlation at the Mobile Station

Consider two MS antennas, A
.q/
M ; q D 1; 2, separated by distance ıM . The MS antenna array is oriented with angle �M with

respect to the x-axis, and the MS moves with velocity v and angle 
M with respect to the x-axis. For the environment shown

in Fig. 2.19, the channel from OB to A
.q/
M has the complex envelope

gq.t/ D
N
X

nD1
Cnej�n�j2�.�nC�nq/=�c ej2� fmt cos.˛

.n/
M �
M/ ; q D 1; 2; (2.120)

where �n and �nq denote the distances OB � Sn and S
.n/
M � A

.q/
M , q D 1; 2, respectively. From the law of cosines, the distances

�n and �nq can be expressed as a function of the angle-of-arrival ˛.n/M as follows:

�2n D D2 C R2 C 2DR cos.˛.n/M / (2.121)

�2nq D ..1:5 � q/ıM/
2 C R2 � 2.1:5 � q/ıMR cos.˛.n/M � �M/ ; q D 1; 2: (2.122)
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Fig. 2.19 Single-ring scattering model for NLoS propagation on the forward link of a cellular system. The MS is surrounded by a scattering ring
of radius R and is at distance D from the BS, where R � D

Assuming that R=D� 1, ıM � R and using the approximation
p
1˙ x � 1˙ x=2 for small x, gives

�n � DC R cos.˛.n/M / (2.123)

�nq � R � .1:5 � q/ıM cos.˛.n/M � �M/ ; q D 1; 2: (2.124)

Substituting (2.123) and (2.124) into (2.120) gives

gq.t/ D
N
X

nD1
Cne

j�n�j2�
�

DCR cos˛
.n/
M CR�.1:5�q/ıM cos.˛

.n/
M ��M/

�

=�cCj2� fmt cos.˛
.n/
M �
M/ ; q D 1; 2: (2.125)

The space-time correlation function between the two complex faded envelopes g1.t/ and g2.t/ is

�g1;g2.ıM; �/ D
1

2
E
�

g�
1 .t/g2.tC �/

�

: (2.126)

Using (2.125) and (2.126), the space-time correlation function between g1.t/ and g2.t/ can be written as

�g1;g2.ıM; �/ D
˝p

2N

N
X

nD1
E

�

e�j2�.ıM=�c/ cos.˛
.n/
M ��M/Cj2� fm� cos.˛

.n/
M �
M/

�

: (2.127)

Since the number of scatters is infinite, the discrete angles-of-arrival ˛.n/M can be replaced with a continuous random variable
˛M with probability density function p.˛M/. Hence, the space-time correlation function becomes

�g1;g2.ıM; �/ D
˝p

2

Z 2�

0

e�jb cos.˛M��M/eja cos.˛M�
M/p.˛M/d˛M; (2.128)

where a D 2� fm� and b D 2�ıM=�c.
For the case of 2-D isotropic scattering with isotropic MS antenna, p.˛M/ D 1=.2�/;�� � ˛M � � , and the space-time

correlation function becomes

�g1;g2.ıM; �/ D
˝p

2
J0

�p

a2 C b2 � 2ab cos.�M � 
M/
�

: (2.129)

The spatial and temporal correlation functions can be obtained by setting � D 0 and and ıM D 0, respectively. This gives

�g1;g2.ıM/ D �g1;g2.ıM; 0/ D ˝p

2
J0.2�ıM=�c/ and �gg.�/ D �g1;g2.0; �/ D

˝p

2
J0.2� fm�/, which matches our earlier result
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in (2.29) as expected. For the case of 2-D isotropic scattering and an isotropic MS antenna, it follows that Fig. 2.13 also
plots the normalized envelope spatial autocovariance function �˛˛.`/=.�˝p=16/ against the normalized spatial separation
fm� D ıM=�c. The spatial autocovariance function is zero at ıM=�c D 0:38 and is less than 0.3 for ıM=�c > 0:38. The
implication is that, under conditions of 2-D isotropic scattering and isotropic MS antennas, sufficient spatial decorrelation
can be obtained by spacing the MS antenna elements roughly a half-wavelength apart.

2.1.6.2 Space-Time Correlation at the Base Station

Radio channels are reciprocal in the sense that if a propagation path exists, it will carry energy equally well in either the
uplink or downlink directions. That is, the plane waves in either direction will propagate by exactly the same set of scatterers.
Therefore, the temporal autocorrelation functions and Doppler spectra are expected to be the same for both the uplink and
downlink directions. However, for cellular land mobile radio applications, most of the scatters are in the vicinity of the MS,
while the BS antennas are elevated and free of local scatters. Consequently, the plane waves will arrive at the BS antennas
with a narrow angle-of-arrival spread, whereas they arrive with a large angle-of-arrival spread at the MS. This will cause
significant differences in the spatial correlation properties of the uplink and downlink. It will be shown that a much larger
spatial distance is required to obtain a given degree of spatial decorrelation at the BS as compared to the MS.

To obtain the space-time correlation functions, it is once again necessary to specify the scattering geometry. One
possibility for NLoS conditions is the single-ring model shown in Fig. 2.20, where the MS and BS are located at OM and OB,
respectively, and separated by distance D, and the scatterers are assumed to be located on a ring of radius R centered around
the MS. Once again, a local scattering assumption is often made such that D� R.

Consider two BS antennas, A
.q/
B ; q D 1; 2, separated by distance ıB. The BS antenna array is oriented with angle �B with

respect to the x-axis, and the MS moves with velocity v and angle 
M with respect to the x-axis. For the environment shown

in Fig. 2.20, the channel from OM to A
.q/
B has the complex envelope

gq.t/ D
N
X

mD1
Cmej�m�j2�.RC�mq/=�c ej2� fmt cos.˛

.m/
M �
M/; q D 1; 2; (2.130)

where �mq denotes the distance S
.m/
M � A

.q/
B , q D 1; 2. To proceed further, �mq needs to be expressed as a function of ˛.m/M .

Applying the cosine law to the triangle4S
.m/
M OBA

.q/
B , the distance �mq can be expressed as a function of the angle � .m/B ��B

as follows:

�2mq D ..1:5 � q/ıB/
2 C �2m � 2.1:5 � q/ıB�m cos.� .m/B � �B/ ; q D 1; 2; (2.131)

Fig. 2.20 Single-ring scattering model for NLoS propagation on the reverse link of a cellular system. The MS is surrounded by a scattering ring
of radius R and is at distance D from the BS, where R � D
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where �m is the distance S
.m/
M � OB. By applying the sine law to the triangle4OMS

.m/
M OB, the following identity is obtained

�m

sin.˛.m/M /
D R

sin
�

� � � .m/B

� D D

sin
�

� � ˛.m/M �
�

� � � .m/B

�� : (2.132)

Since the angle � � � .m/B is small, the small angle approximations sin x � x and cos x � 1 for small x can be applied to the
second equality in the above identity. This gives

R

.� � � .m/B /
� D

sin
�

� � ˛.m/M

� (2.133)

or

.� � � .m/B / � .R=D/ sin.� � ˛.m/M /: (2.134)

It follows that the cosine term in (2.131) becomes

cos.� .m/B � �B/ D cos.� � �B � .� � � .m/B //

D cos.� � �B/ cos.� � � .m/B /C sin.� � �B/ sin.� � � .m/B /

� cos.� � �B/C sin.� � �B/.R=D/ sin.� � ˛.m/M /

D � cos.�B/C .R=D/ sin.�B/ sin.˛.m/M /: (2.135)

Substituting the approximation in (2.135) into (2.131), along with ıB=�m � 1, gives

�2mq � �2m
�

1 � 2.1:5 � q/
ıB

�m

�

.R=D/ sin.�B/ sin.˛.m/M / � cos.�B/
��

: (2.136)

Applying the approximation
p
1˙ x � 1˙ x=2 for small x gives

�mq � �m � .1:5 � q/ıB

�

.R=D/ sin.�B/ sin.˛.m/M / � cos.�B/
�

: (2.137)

Applying the cosine law to the triangle4OMS
.m/
M OB gives

�2m D D2 C R2 � 2DR cos.˛.m/M /

� D2
�

1 � 2.R=D/ cos.˛.m/M /
�

; (2.138)

and again using the approximation
p
1˙ x � 1˙ x=2 for small x gives

�m � D � R cos.˛.m/M /: (2.139)

Finally, using (2.139) in (2.131) gives

�mq � D � R cos.˛.m/M / � .1:5 � q/ıB

�

.R=D/ sin.�B/ sin.˛.m/M / � cos.�B/
�

: (2.140)

Substituting (2.140) into (2.130) gives the result

gq.t/ D
N
X

mD1
Cme

j�mCj2� fmt cos.˛
.m/
M �
M/�j2�

�

RCD�R cos.˛
.m/
M /�.1:5�q/ıB

�

.R=D/ sin.�B/ sin.˛
.m/
M /�cos.�B/

��

=�c ; (2.141)

which is a function of the azimuth angle of departure ˛.m/M .
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The space-time correlation function between the two complex faded envelopes g1.t/ and g2.t/ at the BS is once again
given by (2.126). Using (2.141) and (2.126), the space-time correlation function between g1.t/ and g2.t/ can be written as

�g1;g2.ıB; �/ D
˝p

2N

N
X

mD1
E

�

e
�j2�.ıB=�c/

�

.R=D/ sin.�B/ sin.˛
.m/
M /�cos.�B/

�

Cj2� fm� cos.˛
.m/
M �
M/

�

: (2.142)

Since the number of scatters around the MS is infinite, the discrete angles-of-arrival ˛.m/M can be replaced with a continuous
random variable ˛M with probability density function p.˛M/. Hence, the space-time correlation function becomes

�g1;g2.ıB; �/ D
˝p

2

Z �

��
eja cos.˛M�
M/e�jb..R=D/ sin.�B/ sin.˛M/�cos.�B//p.˛M/d˛M; (2.143)

where a D 2� fm� and b D 2�ıB=�c.
For the case of 2-D isotropic scattering with an isotropic MS transmit antenna, p.˛M/ D 1=.2�/;�� � ˛M � � , and the

space-time correlation function becomes

�g1;g2.ıB; �/ D
˝p

2
ejb cos.�B/J0

�q

a2 C b2.R=D/2 sin2.�B/ � 2ab.R=D/ sin.�B/ sin.
M/

�

: (2.144)

The spatial and temporal correlation functions can be obtained by setting � D 0 and and ıB D 0, respectively. For the

temporal correlation function �gg.�/ D �g1;g2.0; �/ D
˝p

2
J0.2� fm�/ which matches our earlier result in (2.29) as expected.

The spatial correlation function is

�g1;g2.ıB/ D �g1;g2.ıB; 0/ D
˝p

2
ejb cos.�B/J0

�

b.R=D/ sin.�B/
�

: (2.145)

Figure 2.21 plots the magnitude of the normalized spatial envelope crosscovariance function, j�g1;g2.ıB/j=.˝p=2/, for
R D 60m and various BS array orientation angles �B. Likewise, Fig. 2.22 plots j�g1;g2.ıB/j=.˝p=2/ for �B D �=3 and
various scattering radii, R. In general, a much greater spatial separation is required to achieve a given degree of envelope
decorrelation at the BS as compared to the MS. This can be readily seen by the term R=D� 1 in the argument of the Bessel
function in (2.145). Also, the spatial correlation increases as the angle �B and scattering radii R decrease. BS antenna arrays
that are broadside with the MS direction will experience the lowest correlation, while those that are in-line with the MS
direction will experience the highest correlation. In fact, for in-line BS antennas j�g1;g2.ıB/j D 1 and, therefore, the faded
envelopes on the different BS antennas are perfectly correlated.

2.2 Mobile-to-Mobile Channels

Mobile-to-mobile (M-to-M) communication channels arise when both the transmitter and receiver are in motion and are
equipped with low elevation antennas that are surrounded by local scatterers. The statistical properties of M-to-M channels
differ significantly from those of conventional fixed-to-mobile (F-to-M) cellular land mobile radio channels, where the mobile
station is surrounded by local scatterers and the base station is stationary, elevated, and relatively free of local scattering.
Akki and Haber [13, 14] were the first to propose a mathematical reference model for M-to-M flat fading channels under
NLoS propagation conditions. The Akki and Haber model was extended by Vatalaro and Forcella [329] to account for 3-D
scattering, and by Linnartz and Fiesta [209] to include LoS propagation conditions. Channel measurements for outdoor-to-
outdoor, narrow-band outdoor-to-indoor, and wide-band mobile-to-mobile communications have been reported in [9, 182,
188, 222], and methods for simulating M-to-M channels have been proposed in [259, 345, 371].
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Fig. 2.21 Envelope cross-correlation magnitude at the base station for R D 60m and various arrival angles, �B; D D 3000m
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Fig. 2.22 Envelope cross-correlation magnitude at the base station for �B D �=3 and various scattering radii, R; D D 3000m

2.2.1 Mobile-to-Mobile Reference Model

Akki and Haber’s mathematical reference model for M-to-M flat fading channels gives the complex faded envelope as [14]

g.t/ D
r

1

N

N
X

nD1
e

j2�
�

f T
m cos.˛

.n/
T /Cf R

m cos.˛
.n/
R /

�

tCj�n ; (2.146)
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where N is the number of propagation paths; f T
m and f R

m are the maximum Doppler frequencies due to the motion of the

transmitter and receiver, respectively; ˛.n/T is the random angle of departure and ˛.n/R is the random angle of arrival of the nth
propagation path measured with respect to the transmitter and receiver velocity vectors, respectively; �n is a random phase

uniformly distributed on Œ��; �/ independent of ˛.n/T and ˛.n/R for all n.
In the above model, the Doppler frequency experienced by each propagation path is the sum of the individual Doppler

frequencies induced by the motion of the transmitter and receiver. Once again, for sufficiently large N, the central limit
theorem can be invoked with the result that gI.t/ and gQ.t/ can be treated as zero-mean Gaussian random processes.
If isotropic transmitter and receiver antennas and 2-D isotropic scattering around both the transmitter and receiver are
assumed, then the envelope jg.t/j is Rayleigh distributed at any time t. This is similar to the case of conventional F-to-M
cellular land mobile radio channels with 2-D isotropic scattering and an isotropic antenna at the MS. However, the ensemble
averaged temporal correlation function of the faded envelope of M-to-M channels is quite different from that of F-to-M
channels, and can be derived as follows [13, 14]:

�gIgI
.�/ D 1

2
J0.2� f T

m �/J0.2�af T
m �/

�gQgQ
.�/ D 1

2
J0.2� f T

m �/J0.2�af T
m �/

�gIgQ
.�/ D �gQgI

.�/ D 0

�gg.�/ D
1

2
J0.2� f T

m �/J0.2�af T
m �/; (2.147)

where a D f R
m=f T

m is the ratio of the two maximum Doppler frequencies (or speeds) of the receiver and transmitter, and
0 � a � 1 assuming f R

m � f T
m . Observe that the temporal correlation functions of M-to-M channels involve a product of

two Bessel functions in contrast to the single Bessel function found in F-to-M channels. Also, a D 0 yields the temporal
correlation functions for F-to-M channels as expected. The corresponding Doppler spectrum, obtained by taking the Fourier
transform of (2.147) is

Sgg.f / D
1

�2f T
m

p
a

K

0

@
1C a

2
p

a

s

1 �
�

f

.1C a/f T
m

�2

1

A ; (2.148)

where K. � / is the complete elliptic integral of the first kind. The Doppler spectrum of M-to-M channels in (2.148) differs
from the classical spectrum of F-to-M cellular land mobile radio channels, as illustrated in Fig. 2.23, which shows the Doppler
spectrum for different values of a.

2.3 Statistical Characterization of Multipath-Fading Channels

Multipath-fading channels can be modeled as randomly time-variant linear filters, whose inputs and outputs can be described
in both the time and frequency domains. This leads to four possible transmission functions [35]; the time-variant impulse
response g.�; t/, the output Doppler-spread function H.f ; �/, the time-variant transfer function T.f ; t/, and the delay Doppler-
spread function S.�; �/. The time-variant impulse response relates the complex low-pass input and output time waveforms,
Qs.t/ and Qr.t/, respectively, through the convolution integral

Qr.t/ D
Z t

0

g.t; �/Qs.t � �/d�: (2.149)

In physical terms, g.t; �/ can be interpreted as the channel response at time t due to an impulse applied at time t � � . Since
a physical channel is causal, g.t; �/ D 0 for � < 0 and, therefore, the lower limit of integration in (2.149) is zero. If the
convolution in (2.149) is approximated as a discrete sum, then
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Qr.t/ D
n
X

mD0
g.t;m��/Qs.t � m��/��: (2.150)

This representation allows us to visualize the channel as a transversal filter with tap spacing �� and time-varying tap gains
g.t;m��/ as shown in Fig. 2.24.

The second transmission function relates the input and output spectra, QS.f / and QR.f /, respectively, through the integral
equation

QR.f / D
Z 1

�1
H.f � �; �/QS.f � �/d�: (2.151)

Bello called the function H.f ; �/ the output Doppler-spread function [35]. This function explicitly shows the effect of Doppler
shift or spectral broadening on the output spectrum. In physical terms, the frequency-shift variable � can be interpreted as
the Doppler shift that is introduced by the channel. Once again, the integral in (2.151) can be approximated by the discrete
sum

QR.f / D
n
X

mD1
H.f � m��;m��/QS.f � m��/��: (2.152)

This allows the channel to be represented by a bank of filters with transfer functions H.f ;m��/�� followed by a dense
frequency conversion chain with tap spacing �� that produces the Doppler shifts as shown in Fig. 2.25.
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The third transmission function T.f ; t/ is the time-variant transfer function, which relates the output time waveform to the
input spectrum as follows:

Qr.t/ D
Z 1

�1
QS.f /T.f ; t/ej2� ftdf : (2.153)

The final description relates the input and output time waveforms through the double integral

Qr.t/ D
Z 1

�1

Z 1

�1
S.�; �/Qs.t � �/ej2� f �d�d�: (2.154)

The function S.�; �/ is called the delay Doppler-spread function [35], and provides a measure of the scattering amplitude of
the channel in terms of the time delay � and Doppler frequency �.

The four transmission functions are related to each other through Fourier transform pairs as shown in Fig. 2.26. In each
Fourier transform pair there is always a fixed variable, so that the transform involves the other two variables.

2.3.1 Statistical Channel Correlation Functions

Similar to flat fading channels, the channel impulse response g.t; �/ D gI.t; �/ C jgQ.t; �/ of a frequency-selective fading
channel can be modeled as a complex Gaussian random process, where the quadrature components gI.t; �/ and gQ.t; �/ are
real Gaussian random processes. Hence, all of the transmission functions defined in the last section are themselves random
processes. Since the underlying process is Gaussian, a complete statistical description of these transmission functions is
provided by their means and autocorrelation functions. In the following discussion, zero-mean Gaussian random processes
are assumed for simplicity so that only the autocorrelation functions are of interest. Since there are four transmission
functions, four autocorrelation functions can be defined as follows [255, 272]:

�g.t; sI �; �/ D EŒg�.t; �/g.s; �/� (2.155)

�T.f ;mI t; s/ D EŒT�.f ; t/T.m; s/� (2.156)

�H.f ;mI �; �/ D EŒH�.f ; �/H.m; �/� (2.157)

�S.�; �I �; �/ D EŒS�.�; �/S.�; �/�: (2.158)
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Fig. 2.27 Double Fourier
transform relations between the
channel autocorrelation functions
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These autocorrelation functions are related to each other through double Fourier transform pairs. For example,

�S.�; �I �; �/ D
Z 1

�1

Z 1

�1
�g.t; sI �; �/e�j2�.�t��s/dtds (2.159)

�g.t; sI �; �/ D
Z 1

�1

Z 1

�1
�S.�; �I �; �/ej2�.�t��s/d�d�: (2.160)

The complete set of such relationships is summarized in Fig. 2.27.

2.3.2 Classification of Channels

Wide-sense stationary (WSS) channels have fading statistics that remain constant over small periods of time or short spatial
distances. This implies that the channel correlation functions depend on the time variables t and s only through the time
difference�t D s� t. It can be demonstrated (see Problem 2.23) that WSS channels give rise to scattering with uncorrelated
Doppler shifts. This behavior suggests that the attenuations and phase shifts associated with multipath components having
different Doppler shifts are uncorrelated. This makes sense, because multipath components with different Doppler shifts
arrive from different directions and, hence, propagate via different sets of scatterers. For WSS channels the correlation
functions become

�g.t; tC�tI �; �/ D �g.�tI �; �/ (2.161)

�T.f ;mI t; tC�t/ D �T.f ;mI�t/ (2.162)

�H.f ;mI �; �/ D  H.f ;mI �/ı.� � �/ (2.163)

�S.�; �I �; �/ D  S.�; �I �/ı.� � �/; (2.164)

where

 H.f ;mI �/ D
Z 1

�1
�T.f ;mI�t/e

�j2���t d�t (2.165)

 S.�; �I �/ D
Z 1

�1
�g.�tI �; �/e�j2���t d�t (2.166)

are Fourier transform pairs.
Uncorrelated scattering (US) channels are characterized by paths of different delays having uncorrelated complex gains.

Bello showed that US channels are wide-sense stationary in the frequency variable so that the correlation functions depend
on the frequency variables f and m only through the frequency difference�f D m�f [35]. Analogous to (2.163) and (2.164),
the channel correlation functions are singular in the time-delay variable (see Problem 2.24). Again, this makes sense because
multipath components arriving with different delays propagate via different sets of scatterers. For US channels, the channel
correlation functions become
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Fig. 2.28 Fourier transform
relations between the channel
correlation functions for WSSUS
channels
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�g.t; sI �; �/ D  g.t; sI �/ı.� � �/ (2.167)

�T.f ; f C�f I t; s/ D �T.�f I t; s/ (2.168)

�H.f ; f C�f I �; �/ D �H.�f I �; �/ (2.169)

�S.�; �I �; �/ D  S.� I �; �/ı.� � �/; (2.170)

where

 g.t; sI �/ D
Z 1

�1
�T.�f I t; s/ej2��f �d�f (2.171)

 S.� I �; �/ D
Z 1

�1
�H.�f I �; �/ej2��f �d�f (2.172)

are Fourier transform pairs.
Wide-sense stationary uncorrelated scattering (WSSUS) channels exhibit uncorrelated scattering in both the time-delay

and Doppler shift domains. Fortunately, many radio channels can be effectively modeled as WSSUS channels. For WSSUS
channels, the correlation functions have singular behavior in both the time delay and Doppler shift variables, and reduce to
the following simple forms:

�g.t; tC�tI �; �/ D  g.�tI �/ı.� � �/ (2.173)

�T.f ; f C�f I t; tC�t/ D �T.�f I�t/ (2.174)

�H.f ; f C�f I �; �/ D  H.�f I �/ı.� � �/ (2.175)

�S.�; �I �; �/ D  S.�; �/ı.� � �/ı.� � �/: (2.176)

The correlation functions for WSSUS channels are related through the Fourier transform pairs shown in Fig. 2.28.

2.3.3 Power-Delay Profile and Coherence Bandwidth

The function  g.0I �/ �  g.�/ is called the power-delay profile and gives the average power at the channel output as a
function of the time delay � . A typical power-delay profile is shown in Fig. 2.29. One quantity of interest is the average
delay, defined as

�� D
R1
0
� g.�/d�

R1
0
 g.�/d�

: (2.177)

Note that the normalization
R1
0
 g.�/d� is applied because  g.�/ does not necessarily integrate to unity like a probability

density function. Another quantity of interest is the rms delay spread, defined as

�� D
sR1

0
.� � �� /2 g.�/d�
R1
0
 g.�/d�

: (2.178)
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Fig. 2.29 A typical power-delay
profile
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There are other quantities that can also be used to describe the power-delay profile. One is the width, Wx, of the middle
portion of the power-delay profile that contains a fraction x of the total power in the profile. Referring to Fig. 2.29

Wx D �3 � �1 (2.179)

where �1 and �3 are chosen so that

Z �1

0

 g.�/d� D
Z 1

�3

 g.�/d� (2.180)

and
Z �3

�1

 g.�/d� D x

Z 1

0

 g.�/d�: (2.181)

Another quantity is the difference in delays where the power-delay profile rises to a value P dB below its maximum value for
the first time and where the power-delay profile drops to a value P dB below its maximum value for the last time. This quantity
is denoted by WP and is also illustrated in Fig. 2.29, where WP D �2 � �1. In general, the average delay and delay spread of
the channel will diminish with decreasing cell size, the reason being that the radio path lengths are shorter. While the delay
spread in a typical macrocellular application may be on the order of 1–10�s, the delay spreads in a typical microcellular
applications are much less. Delay spreads for indoor channels can range anywhere from 30 to 60 ns in buildings with interior
walls and little metal, to 300 ns in buildings with open plans and a significant amount of metal.

The function �T.�tI�f / is called the spaced-time spaced-frequency correlation function. The function �T.0I�f / �
�T.�f / measures the frequency correlation of the channel. The coherence bandwidth, Bc, of the channel is defined as the
smallest value of �f for which �T.�f / D x�T.0/ for some suitably small value of x; 0 < x < 1. As a result of the Fourier
transform relation between �g.�/ and �T.�f /, the reciprocal of either the average delay or the delay spread is a measure of
the coherence bandwidth of the channel i.e.,

Bc /
1

��
or Bc /

1

��
: (2.182)

Wideband fading channels can be classified according to the relationship between the transmitted signal bandwidth Ws

and the coherence bandwidth Bc. If Bc < Ws, the channel is said to exhibit frequency-selective fading which introduces
intersymbol interference (ISI) into the received signal. If Bc � Ws, the channel is said to exhibit flat fading, and very little
ISI is introduced into the received signal.

The function  H.�I 0/ �  H.�/ is identical to the Doppler spectrum Sgg.f / in (2.30), i.e.,  H.�/ � Sgg.f /, and gives
the average power at the channel output as a function of the Doppler frequency �. The range of values over which  H.�/ is
significant is called the Doppler spread and is denoted by Bd. Since  H.�/ and �T.�t/ are a Fourier transform pair, it follows
that the inverse of the Doppler spread gives a measure of the channel coherence time, Tc, i.e.,

Tc �
1

Bd

: (2.183)
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Wideband fading channels can also be classified according to the relationship between the transmitted symbol duration, T ,
and the coherence time Tc. If Tc < T , the channel is said to exhibit fast fading which introduces severe frequency dispersion
into the received signal. If Tc � T , the channel is said to exhibit slow fading which introduces very little frequency dispersion
into the received signal.

Finally, the function  S.�; �/ is called the scattering function and gives the average power output of the channel as a
function of the time delay � and the Doppler shift �. Plots of the scattering function are often used to provide a concise
statistical description of a multipath-fading channel from measurement data.

2.3.4 System Correlation Functions

The astute reader may wonder why the factor of 1/2 does not appear in the definition of the channel correlation functions
in (2.158). The multipath-fading channel can be treated as a time-variant linear filter, such that the complex envelopes of
the channel input and output are related through the convolution integral in (2.149). By using (2.149), the autocorrelation
functions of the output waveform Qr.t/ and of the input waveform Qs.t/ can be related. Assuming that the channel is WSSUS,
the time autocorrelation function of the channel output Qr.t/ is

�QrQr.t; tC�t/ D
1

2
E
�

Qr�.t/Qr.tC�t/
�

D 1

2
E

�Z t

0

g�.t; ˛/Qs�.t � ˛/d˛ �
Z tC�t

0

g.tC�t; ˇ/Qs.tC�t � ˇ/dˇ
�

D
Z t

0

Z tC�t

0

E
�

g�.t; ˛/g.tC�t; ˇ/
� 1

2
E
�

Qs�.t � ˛/Qs.tC�t � ˇ/
�

d˛dˇ

D
Z t

0

Z tC�t

0

 g.�tI˛/ı.ˇ � ˛/
1

2
E
�

Qs�.t � ˛/Qs.tC�t � ˇ/
�

d˛dˇ

D
Z t

0

 g.�tI˛/
1

2
E
�

Qs�.t � ˛/Qs.tC�t � ˛/
�

d˛

D
Z t

0

 g.�tI˛/�QsQs.t � ˛; t � ˛ C�t/d˛

D  g.�tI t/ � �QsQs.t; tC�t/ (2.184)

where

�QsQs.t; tC�t/ D
1

2
E
�

Qs�.t/Qs.tC�t/
�

:

Thus, the output autocorrelation function is the convolution of the channel correlation function  g.�tI t/ and the correlation
function of the input waveform. Note that the factor of 1/2 in the definition of �QrQr.t; t C �t/ is absorbed into the similar
definition of �QsQs.t; tC�t/. Consequently, a factor of 1/2 does not appear in the definition of the channel (or system) correlation
functions in (2.158). For digital modulation, the input waveform Qs.t/ is a cyclostationary random process as described in
Sect. 4.9.1 and, hence, the channel output waveform will be cyclostationary as well.

2.4 Polarized Channel Modeling

Multi-polarized antennas have attracted considerable attention as a means for increasing channel capacity and reducing the
required antenna spacing through the principle of polarization diversity [19, 184, 191, 198, 245, 299, 330]. Such antennas
exploit channel depolarization and have the potential to double or even triple the channel capacity that is achievable with
single-polarized antennas [19, 110, 111, 245, 299, 306]. In practice, cellular land mobile radio systems have employed slant
polarized array antennas at the base stations to good benefit.
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Depolarization can occur as a result of two factors. One factor arises from the transmit and receive antennas themselves.
Any practical antenna gain pattern can be described in terms of two orthogonal antenna polarization functions. For a vertically
polarized antenna these polarization functions are f a

VV and f a
HV, while for a horizontally polarized antenna they are f a

HH and
f a
VH, where H and V refer to horizontal and vertical polarization, respectively. For an ideal linear vertically or horizontally

polarized antenna only f a
VV or f a

HH is non-zero, respectively. However, for practical antennas, the cross-polarization functions
f a
VH and f a

HV will be non-zero as well due to antenna depolarization.
The other factor causing depolarization is the radio channel propagation environment. Similar to antenna depolarization,

the radio channel can be characterized in terms of four orthogonal channel polarization functions identified as fVV, fHV,
fVH, and fHH, where again H and V refer to horizontal and vertical polarization, respectively. The antenna and channel
depolarization can be decoupled, and in order to isolate the effects of channel depolarization, ideal linear polarized antennas
are assumed.

The degree of depolarization is often measured in terms of the cross polarization discrimination (XPD), defined as the
ratio of the co-polarized average received power to the cross-polarized average received power. For a vertically polarized
transmit antenna the XPD can be defined as

XPD D EŒf 2VV�

EŒf 2HV�
: (2.185)

In conventional XPD modeling, it is assumed that EŒf 2VV� D EŒf 2HH� D 1 � �, and EŒf 2HV� D EŒf 2VH� D �, resulting in

XPD D 1 � �
�

; (2.186)

where � is a parameter that having the range 0 � � � 1. Such a model ensures a conservation of power or energy, where the
total received power is split between the co-polarized and cross-polarized components. When � D 0, only the co-polarized
component exists and XPD D 1, and when � D 1, only the cross-polarized component exists and XPD D 0. The polarized
channel is conventionally treated as a 2 � 2 MIMO channel, such that

G D Z˝Giid (2.187)

where Giid is a 2 � 2 matrix of zero-mean complex i.i.d. Gaussian random variables,

Z D
�p

1 � �
p

�
p

�
p

1 � �

�

; (2.188)

and˝ denotes the Hamadard product or Schur product (element-by-element matrix multiplication).
Despite its simplicity, the conventional model for XPD provides little insight into the mechanisms of channel

depolarization and how the parameter � behaves. Typically, a value or ranges of values for � are merely assumed. The
remainder of this section considers a geometrical theoretical model for channel depolarization in wireless fixed-to-mobile
channels, characterized by isotropic or non-isotropic azimuthal scattering and with either non-line-of-sight (NLoS) or line-
of-sight (LoS) conditions between the transmitter and receiver. Predictions from the model are compared with previously
reported measurement data [110, 191, 306] and shown to have close agreement. Finally, the theoretical geometry-based XPD
model is used to explain the origin of some phenomena observed in these empirical results.

2.4.1 Geometric Model for Channel Depolarization

Consider the 3-D cylindrical model shown in Fig. 2.30, where scatterers are distributed on a cylindrical surface in the vicinity
of the mobile station.2 These scatterers result in single-bounced propagation between a BS and a MS. The high-elevation BS
antenna is assumed to be free of local scattering, which is typical of cellular land mobile radio systems. A LoS component
may or may not exist between the BS and MS. The cylindrical scattering surface is characterized by its radius Rr, and the

2Here the term “scatterer” refers to a plane boundary that is typically much larger than a wavelength.
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Fig. 2.30 3-D cylindrical scattering model for fixed-to-mobile channels

ray incident on the MS antenna from each scatterer on the cylinder has an associated azimuth angle of arrival (AAoA), ˛R,
and elevation angle of arrival (EAoA), ˇR. As will be explained later, a 3-D scattering model is necessary to explain the
mechanism of channel depolarization.

The phenomenon of channel depolarization between a MS and MS can be explained by the NLoS plane waves that arrive
at the MS via scattering objects. Figure 2.30 presents a scenario where a vertically polarized plane wave emitted from the
BS can result in a horizontally polarized plane wave component being received at the MS. The vector V in Fig. 2.30 is
the vertical polarization vector of a plane wave from the BS, and V’ is the corresponding polarization vector of the plane
wave after reflection from a scatterer. By convention the vertical and horizontal polarization vectors are parallel to e� and e� ,
respectively, when describing the plane wave’s direction of propagation at the BS or MS in a spherical coordinate system. It
is clear that V’ is not entirely vertically polarized at the MS, but has a cross-polarization component as well.

Channel depolarization is affected by the scattering geometry as illustrated in Fig. 2.30. For the plane wave that is emitted
from the BS and received at the MS via a scatterer, the plane that is defined by the BS, MS, and the scatterer must be taken
into account. The left side of Fig. 2.31 depicts one such plane (corresponding to the page in this book). The circled dot
and arrow represent the vectors of the perpendicular and parallel polarization components associated with the plane, whose
directions are from the backside to the front side of the figure and the arrow’s direction, respectively [59]. If each scatterer
is modeled as a planar boundary, then the directions of the vectors of the perpendicular and parallel polarization components
as viewed from the BS and MS will be the same within the plane. Since any polarization vector can be expressed as a linear
combination of the perpendicular and parallel polarization component vectors, as shown in the right side of Fig. 2.31, the
polarization angle viewed at the BS will be same as that observed at the MS [59]. For this reason, each BS-scatterer-MS
plane in Figs. 2.30 and 2.31 is called a conservation-of-polarization plane (CoP-plane).

The polarization angle associated with a CoP-plane, denoted by �V in Fig. 2.30, is defined as the angle between V and the
line that includes the projection of V onto the CoP plane. Due to the conservation of polarization principle, the angle between
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V’ and the line that includes the projection of V’ onto the same CoP plane in Fig. 2.30 is equal to � � �V [59]. Thus, by using
the polarization angle with respect to the CoP-plane, the polarization vector, V’ or H’ on its CoP-plane can be decomposed
into vertical and horizontal polarization components with respect to the plane wave’s direction of propagation at the MS.

Consider a vertically polarized plane wave from the BS, and let AVV (AHV) be the amplitude of the received plane wave at
a vertically (horizontally) polarized MS antenna via a single scatterer. The geometry in Fig. 2.30 implies that AVV and AHV

can be expressed as a function of D, Dts, Dsr, Rr, ˛R, and ˇR as follows:

�

AVV

AHV

�

D AV

�

fVV.D;Dts;Dsr;Rr; ˛R; ˇR/

fHV.D;Dts;Dsr;Rr; ˛R; ˇR/

�

; (2.189)

where AV is the amplitude of V’ at the MS. The azimuth and elevation angles of departure (AAoDs and EAoDs) from the BS
are dependent upon and are fixed by the azimuth and elevation angles of arrival (AAoAs and EAoAs) at the MS and, thus, the
channel polarization functions fVV and fHV in (2.189) do not depend on ˛T and ˇT . Similarly, for the case of a horizontally
polarized plane wave from the BS:

�

AVH

AHH

�

D AH

�

fVH.D;Dts;Dsr;Rr; ˛R; ˇR/

fHH.D;Dts;Dsr;Rr; ˛R; ˇR/

�

; (2.190)

where AH is the amplitude of H’ at the MS. From the geometry in Fig. 2.30, the distances are

dt D
q

.DC Rr cos˛R/
2 C .Rr sin˛R/

2; (2.191)

Dts D
q

dt
2 C .�h � Rr tanˇR/

2; (2.192)

Dsr D Rr=cosˇR; d1 D Rr tanˇR; (2.193)

Dtr D
q

D2 C�h
2; d2 D

q

dt
2 C�h

2; (2.194)

where �h D .hT � hR/. Based on (2.191)–(2.194) and the law of cosines, the angles in Fig. 2.30 can be written as

cos �3 D
Dts

2 C Dtr
2 � Dsr

2

2DtsDtr

a2 � a3 C a4
p

.a12 C 2a2 � 2a3 C a4/ a4
; (2.195)

cos �4 D
Dts

2 C d2
2 � d1

2

2Dtsd2

.Rr=D/2 C 2a2 � a3 C a4
p

.a12 C 2a2 � 2a3 C a4/ .2a2 C a4 C a52/
; (2.196)
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cos �5 D
d2
2 C Dtr

2 � Rr
2

2d2Dtr

D a2 C a4
p

.2a2 C a4 C a52/ a4
; (2.197)

cos �6 D
cos �5 � cos �3 cos �4

p

.1 � cos2�3/ .1 � cos2�4/
; (2.198)

cos �7 D
Dsr

2 C Dtr
2 � Dts

2

2DsrDtr

D .�a2 C a3/ cosˇR

a5
p

a4
; (2.199)

cos �8 D
Dtr

2 C Rr
2 � d2

2

2DtrRr

D �cos˛Rp
a4
; (2.200)

cos �9 D
cos �8 � cos �7 cosˇR

p

.1 � cos2�7/ .1 � cos2ˇR/
; (2.201)

�V D � � �6 (2.202)

where

a1 D
Rr=D

cosˇR

; a2 D
Rr

D
cos˛R; a3 D

Rr�h

D2
tanˇR;

a4 D 1C
�
�h

D

�2

; a5 D
Rr

D
: (2.203)

The angles cos �6 and cos �9 in (2.198) and (2.201), respectively, can be used to derive the channel polarization functions
fVV, fHV, fHH, and fVH in (2.189) and (2.190) as is now described.

From the geometry in Fig. 2.30, the amplitudes of the vertical and horizontal polarization components that are received
from a vertically polarized transmitted plane wave are, respectively,

AVV D AV jcos .�9 C .� � �V/ � �/j (2.204)

D AV

ˇ
ˇ
ˇcos �6 cos �9 �

p

1 � cos2 �6
p

1 � cos2 �9
ˇ
ˇ
ˇ ;

AHV D AV jsin .�9 C .� � �V/ � �/j (2.205)

D AV

ˇ
ˇ
ˇcos �6

p

1 � cos2 �9 C cos �9
p

1 � cos2 �6
ˇ
ˇ
ˇ ;

where cos �6 and cos �9 in (2.204) and (2.205), respectively, are functions of D, Rr, ˛R, ˇR as is evident from (2.195)–(2.201).
Comparing (2.204) and (2.205) with (2.189), the channel polarization functions fVV and fHV can be written as:

fVV.D;Dts;Dsr;Rr; ˛R; ˇR/

� fVV.D;Rr; ˛R; ˇR/

D
ˇ
ˇ
ˇcos �6 cos �9 �

p

1 � cos2 �6
p

1 � cos2 �9
ˇ
ˇ
ˇ ; (2.206)

fHV.D;Dts;Dsr;Rr; ˛R; ˇR/

� fHV.D;Rr; ˛R; ˇR/

D
ˇ
ˇ
ˇcos �6

p

1 � cos2 �9 C cos �9
p

1 � cos2 �6
ˇ
ˇ
ˇ : (2.207)

In a similar fashion, the channel polarization functions fHH and fVH can be written as:

fVH.D;Dts;Dsr;Rr; ˛R; ˇR/

� fVH.D;Rr; ˛R; ˇR/
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D
ˇ
ˇ
ˇcos �6

p

1 � cos2 �9 C cos �9
p

1 � cos2 �6
ˇ
ˇ
ˇ ; (2.208)

fHH.D;Dts;Dsr;Rr; ˛R; ˇR/

� fHH.D;Rr; ˛R; ˇR/

D
ˇ
ˇ
ˇcos �6 cos �9 �

p

1 � cos2 �6
p

1 � cos2 �9
ˇ
ˇ
ˇ : (2.209)

Note that a symmetry exists in the co- and cross-polarization functions such that

fVV D fHH; fHV D fVH: (2.210)

This model may be enhanced so as to include reflection coefficients following the methodology in [189].

2.4.2 XPD in Polarized Multipath-Fading Channels

The polarized channels in Fig. 2.30 can be modeled by combining the channel polarization functions with the conventional
co-polarized channel impulse response functions derived for the exact same 3-D single cylinder scattering geometry shown
in Fig. 2.30. First consider the case of vertically polarized BS and MS antennas (VV-channel). The complex low-pass channel
impulse response for the VV-channel can be expressed as

gVV.t/ D gSBR
VV .t/C gLoS

VV .t/; (2.211)

where

gSBR
VV .t/ D

N
X

nD1
AV;nfVV;n ej�n.t/;

gLoS
VV .t/ D ALoS

V ej�LoS.t/; (2.212)

are the diffuse single-bounce receive-side (SBR) and LoS components, respectively, and

AV;n D AV.˛R;n; ˇR;n/; (2.213)

fVV;n D fVV.D;Rr; ˛R;n; ˇR;n/; (2.214)

�n.t/ D 2�.fc C fD;n/
�

t � .Dts;n C Dsr;n/ =c0

�

C �n; (2.215)

�LoS.t/ D 2�.fc C f LoS
D /
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�

; (2.216)
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D D D

p

D2 C�h
2

�vR

�

�

cos .
R � �/ ; (2.218)

where c0, �, vR, and 
R are the velocity of light, the carrier wavelength, the velocity of the MS, and the angle of the MS’s
moving direction with respect to the positive x-axis, respectively. Further, fc and fD;n are the carrier and Doppler frequency
associated with the nth arriving plane wave, respectively. Note that the MS is considered to be in the center of the scattering
cylinder regardless of the physical location and velocity of the MS, which is a typical assumption for geometrical channel
modeling. Of course the exact location of the scatterers on the cylinder will change with the physical location of the MS, due
to site specific propagation conditions. In this case, the channel is modeled as being locally wide-sense stationary, i.e., the
locations of the scatterers with respect to the MS will stay the same if the MS moves over small distances.
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It is assumed at this stage that the phases f�ng in (2.215) are independent and identically distributed (i.i.d.) uniform
random variables on the interval Œ��; �/, and the f�ng are independent of the AAoAs f˛R;ng, EAoAs fˇR;ng and the radius
of the scattering cylinder. For large N, the central limit theorem can be invoked and gVV.t/ can be treated as a complex
Gaussian random process. By using the complex low-pass channel impulse response and the aforementioned properties, it is
straightforward to obtain the received power through the VV-channel at the Rx as follows:

˝VV D ˝SBR
VV C˝LoS

VV D .1C K/˝SBR
VV ; (2.219)
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ˇ
2
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D E
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! 
N
X

mD1
AV;nfVV;n e�j�m.t/

!#

D E

"
N
X

nD1
A2V;nf 2VV;n

#

; (2.220)

˝LoS
VV D

ˇ
ˇALoS

V

ˇ
ˇ
2 D K˝SBR

VV ; (2.221)

where K denotes the Ricean K-factor, and the third equality in (2.220) is due to the fact that the phases f�ng in (2.215)
are independent and identically distributed (i.i.d.) uniform random variables on the interval Œ��; �/. Further, as N ! 1,
the discrete AAoAs, ˛R;n, and discrete EAoAs, ˇR;n, can be replaced with continuous random variables ˛R and ˇR having the
joint probability density function (pdf), f .˛R; ˇR/. Here, the azimuth and elevation angles of arrival are assumed independent
of each other and, thus, the joint pdf f .˛R; ˇR/ can be decomposed as f .˛R/f .ˇR/. It follows that

˝SBR
VV D A2V

�Z

��

ˇR;MaxZ

�ˇR;Max

f 2VV.D;Rr; ˛R; ˇR/pr .ˇR/ pr .˛R/ dˇRd˛R; (2.222)

where ˇR;Max is the absolute value of the maximum EAoA.
Several different distributions have been suggested in the literature to characterize the AAoA distribution, such as uniform,

Gaussian, and Laplacian. Later, the von Mises distribution in (2.51) will be used such that

pr .˛R/ D
expŒkR cos.˛R � �R/�

2�I0.kR/
; kR � 0; (2.223)

where ˛R 2 Œ��; �/, I0. � / is the zero-order modified Bessel function of the first kind, �R 2 Œ��; �/ is the mean AAoA of
the scatterers in the x - y plane with respect to the positive x axis, and kR controls the spread of the scatterers around the mean
AAoA �R. Prior work has also used several different distributions to characterize the EAoA distribution. Later, the cosine
pdf in (2.52) will be used such that

pr .ˇR/ D
�

4ˇR;Max
cos

�
�

2

ˇR

ˇR;Max

�

; jˇRj � ˇR;Max � �=2; (2.224)

where ˇR;Max typically lies in the range 20ı < ˇR;Max < 45
ı for fixed-to-mobile land mobile radio channels [185, 191, 257].

Of course, other suitable distributions for pr .˛R/ and pr .ˇR/ can be used as well at this stage.
Similar to (2.222), the SBR power at the MS with a horizontally polarized MS antenna and a vertically polarized

BS antenna (HV-channel), a vertically polarized MS antenna and a horizontally polarized BS antenna (VH-channel), and
horizontally polarized MS and BS antennas (HH-channel), denoted by PHV, PVH, and PHH, respectively, can be expressed as

˝SBR
HV D A2V

�Z

��

ˇR;MaxZ

�ˇR;Max

�

fHV.D;Rr; ˛R; ˇR/
�2

pr .ˇR/ pr .˛R/ dˇRd˛R; (2.225)
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˝SBR
VH D A2H
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��

ˇR;MaxZ

�ˇR;Max

�

fVH.D;Rr; ˛R; ˇR/
�2

pr .ˇR/ pr .˛R/ dˇRd˛R; (2.226)

˝SBR
HH D A2H

�Z

��

ˇR;MaxZ

�ˇR;Max

�

fHH.D;Rr; ˛R; ˇR/
�2

pr .ˇR/ pr .˛R/ dˇRd˛R: (2.227)

Notice that by taking into account the statistical distribution of scatterers, the total power of the vertical and horizontal
polarization components can be derived via the superposition of the CoP-plane components by averaging over the pdfs
of the AAoA and EAoA, p.˛R/ and p.ˇR/, respectively. Finally, the average XPD values are obtained from (2.222) and
(2.225)–(2.227) as

XPDVV/HV D
˝VV

˝HV
;XPDHH/VH D

˝HH

˝VH
: (2.228)

2.4.3 Polarized Channel Model Application

This section compares the analytical XPD predicted from the geometrical depolarization model developed in Sects. 2.4.1
and 2.4.2 with some previously reported XPD results obtained from empirical data [110, 306]. The empirical XPD data
reported in [110, 306] were based on narrow-band fixed-to-mobile channel measurements taken in a suburban area at
2.48 GHz, where the corresponding hT and hR in Fig. 2.30 were 20 m and 3 m, respectively.

The parameters in (2.223)–(2.224) are set as �R D 180ı and ˇR;Max D 40ı, unless otherwise stated, particularly when
comparing our analytical XPD results with the XPD measurement data in [110, 306]. It is stated in [110, 306] that the
direction of the strongest signal was the Tx–Rx bore sight path in most cases, corresponding to �R D 180ı in the model
described in Sects. 2.4.1 and 2.4.2. The spread constant of the AAoA distribution, kR, in (2.223) can exhibit substantial
variation from one location to the next due to variations in the local scattering environment around the Rx. Finally, Rr in
Fig. 2.30 is set to 30 m.

2.4.3.1 Suburban Area in San Jose

Figures 2.32 and 2.33 portray the analytical mean XPD curves of F2M fading channels as kR varies from 0 to 9 and from 10
to 700, respectively. The same antenna configuration as that in [110, 306] is utilized in the analysis to allow for comparison
with the measurement data illustrated in Fig. 2.32, which is a ˙45ı dual-polarization antenna at both the BS and MS. Note
that a directional MS antenna with the azimuthal beamwidth of 90ı and a gain of 12 dBi was used in the measurements in
[110, 306]. Figure 2.32 shows that the XPD curve tends to decrease from roughly 6.5–0 dB as kR increases from 0 to 9. On
the other hand, the XPD curve increases from 0 dB to roughly 7.5 dB as kR increases from 10 to 700 in Fig. 2.33. The XPD
curve for 0 � kR � 700 at a fixed BS–MS distance, D D 1 km, is also illustrated in the insert of Fig. 2.33 to further illustrate
the effect of kR on the XPD shown in Figs. 2.32 and 2.33. The reason for the strong dependency of the mean XPD on kR will
be explained later when discussing Fig. 2.34.

When kR is in the range 7–10, the XPD stays at around 0 dB regardless of the distance between the BS and MS, and it can
be shown that the AAoA spread in (2.223) is roughly 90ı when kR is 7–10 [3]. As the distance between the BS and MS, D,
increases it is expected that kR will tend to decrease since the plane waves at the MS for large distances and NLoS conditions
will come from many angles due to local scattering and, hence, the azimuthal scattering will become more isotropic; kR D 0
corresponds to the case of isotropic azimuthal scattering. However, in the case of isotropic scattering the observed AAoA
spread will be determined by the beam pattern of the 90ı directional Rx antenna that was used to make the measurements.
Thus, while the actual scattering environment may be near isotropic, i.e., kR � 0, the observed value of kR will lay in the
range 7–10. For this reason, the empirical XPD tends to converge toward 0 dB as D increases, and it is in close agreement
with the analytical XPD results with kR in the range 7–10, as previously stated.

The AAoA spread factor, kR, is expected to increase as the horizontal BS–MS distance, D, decreases. As the MS moves
closer to the BS most of the scatters will tend to be in the direction of the Tx so that kR will tend to increase and the
scattering will be non-isotropic. If the AAoA distribution is modeled using the von Mises pdf in (2.223) with �R D 180ı,
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curves for a variety of kR (0–9) with BS–MS distance in the range 100 m to 1 km, and the measurement data in [306]

Fig. 2.33 XPD
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curves for a variety of kR (10–700) with BS–MS distance in the range 100 m to 1 km

then the effective value of kR will be greater than 7, since a directional antenna with an azimuthal beamwidth of 90ı was
used in the measurements. Notice that as kR increases, the azimuthal angular spread becomes narrower. When the actual
AAoA spread factor, kR, is equal to 3 for example, pr.˛R D 180ı/jkRD3 ' 0:66, and the effective value of kR due to the
directional Rx antenna gain of 12 dBi (15.8 in linear scale) in the direction of BS–MS boresight (˛R D 180ı) is roughly
0:66 � 15:8 ' 10:43, which is close to pr.˛R D 180ı/jkRD700 ' 10:55. Thus, while the actual value of the AAoA spread
factor may be in the neighborhood of kR D 3, the observed value may be considerably higher and in the range of kR D 700

due to the gain of the directional MS measurement antenna.
The empirical XPD data from [110, 306] are illustrated in Fig. 2.32, where XPDr, XPDc, and XPDs represent the XPD

of the total received signal, the XPD of the time-invariant portion of the received signal, and the XPD of the time-varying
portion of the received signal. The empirical data in [110, 306] shows that the LMSE curve fit for the XPD of total received
signal is almost same as the XPD for only the time-invariant portion of the received signal. This is expected, since the
measurements in [110, 306] were made with a stationary MS. Most of the surrounding scatterers will be stationary and
contribute to XPDc, while only the moving scatterers such as nearby moving vehicles (which are not included in the model)
will contribute to XPDs. It is also shown that the LMSE curve fit of XPDr tends to decrease from 6.5 to 0 dB as D increases
from 100 m to 10 km. This phenomenon can be explained by the XPD curve for varying kR inserted in Fig. 2.33, such that a
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Fig. 2.34 XPD
F2M

curves for varying ˛R and ˇMax;R

decrease in the effective value of kR from 550 to 7 corresponds to a decrease in the XPD from 6.5 to 0, as D increases from
100 m to 10 km. Even though an LMSE curve fit can be obtained from the measurement data, the measured XPD values
show substantial variation even at the same D as portrayed in Figs. 2.32 and 2.33. The reason is that the AAoA spread factor
kR varies depending on the site specific local scattering environment, even at the same D. The XPD is not directly dependent
on D, but kR is expected to have a tendency to decrease with increasing D as mentioned earlier, which is reflected on the
LMSE curve in the illustrated empirical results. Finally, the analytical XPD curves in the range 1–10 km are omitted from
Figs. 2.32 and 2.33, since the XPD remains constant after 1 km.

The AAoA ˛R has a significant impact on the XPD as shown in Fig. 2.34, and computing the XPD as a function of the
AAoA ˛R provides insight for the mean XPD that is obtained when averaging over the AAoA and EAoA distributions.
Figure 2.34 also shows the XPD averaged over the EAoA distribution only at each AAoA, ˛R. For AAoAs equal to 180ı,
0ı and 360ı, which represent vertical CoP planes, the XPD goes infinity, meaning that there are no cross-polarization
components at those angles. This makes sense given the geometry in Fig. 2.30. Remarkably, each XPD curve has a minimum
point when the AAoA ˛R lays in the range 155–170ı. The XPD at this minimum point is below 0 dB, meaning that the
power of the cross-polarization component is stronger than that of the co-polarization component. Figure 2.34 also shows
that a larger maximum EAoA will result in a smaller mean XPD, since the XPD is below 0 dB over a larger AAoA range.
Considering the XPD averaged over AAoA distribution with �R D 180ı and kR varying from 0 to 9, it can be recognized
that as kR increases the mean XPD decreases, since the impact of the small XPDs for AAoAs around the minimum point
will dominate the high XPDs for AAoAs that are far from the minimum point. Furthermore, small changes in the AAoA
distribution near 180ı (bore sight) due to site specific local scattering will cause significant changes in the mean XPD which
explains the high variance of the empirical XPD values observed in [110, 306].

2.5 Simulation of Multipath-Fading Channels

A channel simulator is an essential component for the development and testing of wireless systems. Simulation of mobile
radio channels is commonly used as opposed to field trials, because it allows for less expensive and more reproducible
system tests and evaluations. For this purpose it is desirable to generate complex faded envelopes that match the statistical
characteristics of a reference model while at the same time having low complexity. For example, the reference model might
be a 2-D isotropic scattering channel with an isotropic receiving antenna.

Two fundamentally different approaches to channel simulation models are the filtered white Gaussian noise models and
the sum-of-sinusoids models. The basic idea of the filtered white noise approach is to shape the power spectrum of a white
Gaussian noise process by using a filter whose magnitude response is the square root of the desired Doppler spectrum.
The sum of sinusoids approach, on the other hand, approximates the complex fading envelope by the superposition of a finite
number of sinusoids with properly chosen amplitudes, frequencies, and phases to yield the desired Doppler spectrum.
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2.5.1 Filtered White Gaussian Noise Models

Recall that the faded envelope g.t/ D gI.t/C jgQ.t/ is a complex Gaussian random process. A straightforward method for
constructing a fading simulator is to low-pass filter two independent white Gaussian noise processes, as shown in Fig. 2.35.
Since the input processes to the low-pass filters are independent, the random processes gI.t/ and gQ.t/ are also independent
and have power spectral densities that are shaped by the squared magnitude response of the low-pass filters. If the white
Gaussian noise sources have power spectral densities equal to ˝p=2watts/Hz and the low-pass filters have transfer function
H.f /, then

SgI gI
.f / D SgQgQ

.f / D ˝p

2
jH.f /j2

SgI gQ
.f / D 0; (2.229)

where the normalization
R1

�1 jH.f /j2df D 1 is assumed so that the envelope power is equal to ˝p. The processes gI.t/ and
gQ.t/ are independent zero-mean Gaussian random process, such that the envelope ˛ � jg.t1/j is Rayleigh distributed at any
time t1. The problem is to construct the low-pass filter H.f / to give the desired Doppler spectrum.

2.5.1.1 IDFT Method

One approach for generating the faded envelope using the filtering method has been suggested by Young and Beaulieu [369]
and is based on an inverse discrete Fourier transform (IDFT) as shown in Fig. 2.36. The input sequences fAŒk�g and fBŒk�g are
first generated, each consisting of N i.i.d. real zero-mean Gaussian random variables with variance N˝p=2. These samples
are then applied to a filter with frequency response HŒk�; k D 0; : : : ;N � 1, followed by an N-point IDFT to generate the
time-domain samples of the complex faded envelope as
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gŒn� D IDFT fAŒk�HŒk� � jBŒk�HŒk�gN�1
nD0

D 1

N

N�1
X

kD0
.AŒk�HŒk� � jBŒk�HŒk�/ ej2�kn=N ; n D 0; : : : ;N � 1: (2.230)

Due to linearity of the IDFT operation, the discrete-time autocorrelation function of the output sample sequence fgŒn�g D
fgI Œn�g C jfgQŒn�g is [369]

�ggŒn� D �gIgI
Œn�C j�gIgQ

Œn�

D ˝p

2

�

aI Œn�C jaQŒn�
�

; (2.231)

where faŒn�g D faI Œn�g C jfaQŒn�g is given by the IDFT of the sequence f.HŒk�/2g, i.e.,

aŒn� D 1

N

N�1
X

kD0
.HŒk�/2ej2�kn=N ; n D 0; : : : ;N � 1: (2.232)

The only problem remaining is to design the filter, HŒk�. To do so, the argument by Young and Beaulieu [369] is followed.
A sequence fACSŒk�g that satisfies the property ACSŒk� D A�

CSŒN � k� is called a conjugate-symmetric sequence, while
a sequence fACASŒk�g that satisfies the property ACASŒk� D �A�

CASŒN � k� is called a conjugate-antisymmetric sequence.
The IDFT of a conjugate-symmetric sequence is real-valued, while the IDFT of a conjugate-antisymmetric sequence is
imaginary-valued. If the sequence faŒn�g has discrete Fourier transform (DFT) fAŒk�g, then

aŒn� D aI Œn�C jaQŒn� D IDFTfAŒk�g
D IDFTfACSŒk�g C IDFTfACASŒk�g: (2.233)

Also, note that

ACSŒk� D
1

2
AŒk�C 1

2
A�ŒN � k� (2.234)

and

ACASŒk� D
1

2
AŒk� � 1

2
A�ŒN � k� (2.235)

for any sequence fAŒk�g, where AŒk� D ACSŒk�C ACASŒk�. Thus, the sequence fAŒk�g can always be decomposed into the sum
of conjugate-symmetric and conjugate-antisymmetric components. To ensure that the quadrature components of the faded
envelope, fgI Œn�g and fgQŒn�g, are uncorrelated, which is the case for 2-D isotropic scattering environment and an isotropic
receive antenna, it is required that ACASŒk� D 0 for all k. Using (2.234), the filter should have the following structure:

HŒk� D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

p

HsŒ0� ; k D 0
q

HsŒk�

2
; k D 1; 2; : : : ;

�
N
2
� 1

�

p

HsŒk� ; k D N
2q

HsŒN�k�

2
; k D

�
N
2
C 1

�

; : : : ; .N � 1/

; (2.236)

where the filter HsŒk� can be obtained from the sampled Doppler spectrum.
To obtain the required filter HŒk�, assume 2-D isotropic scattering with an isotropic receiver antenna. The required

normalized autocorrelation function and normalized Doppler spectrum are, respectively,

�gg.�/ D J0.2� fm�/ (2.237)
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and

Sgg.f / D
(

1
� fm

1p
1�.f=fm/

2
jf j � fm

0 otherwise
: (2.238)

Ideally, the generated sequence gŒn� should have the normalized autocorrelation function

�ggŒn� D J0.2� Ofmjnj/; (2.239)

where Ofm D fmTs is the maximum normalized Doppler frequency and Ts is the sampling period. However, an exact realization
of this autocorrelation function is not possible, because the time-domain sequence is truncated to N samples. Looked at
another way, while the theoretical Doppler spectrum is bandlimited, the truncation to N samples in the time-domain means
that the realized Doppler spectrum is not bandlimited.

To obtain the required filter, the continuous spectrum in (2.238) is sampled at frequencies fk D k=.NTs/; k D 0; : : : ;N�1.
Special treatment is given to the frequency domain coefficients at two points. The first is at zero frequency, where HsŒ0� D 0
to ensure that the generated time-domain sequence always has zero mean regardless of the particular values assumed by the
length-N input sequences fAŒk�g and fBŒk�g. The second is at the index km that is at, or just below, the maximum Doppler
frequency, i.e.,

km D bfmNTsc D bOfmNc; (2.240)

where bxc is the largest integer contained in x. The realized maximum Doppler frequency is km=.NTs/ Hz. The area under
the Doppler spectrum curve in (2.238) from zero to frequency f is [147, 2.271.4]

C.f / D km

NTs

arcsin.fNTs=km/ ; 0 � f � km=.NTs/: (2.241)

The area under the Doppler spectrum between the frequencies represented by the samples .km � 1/ and km is equal to
C.km=.NTs// � C.Œkm � 1�=.NTs/. Approximating this area by a rectangle of height .HsŒkm�/

2 and width 1=.NTs/ gives

HsŒkm� D
s

km

�
�

2
� arctan

�
km � 1p
2km � 1

��

: (2.242)

The complete filter HŒk� can now be specified as follows:

HŒk� D
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1

2� fm

p
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(2.243)
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The IDFT method will generate a Rayleigh faded envelope with an autocorrelation function that closes matches the
reference model for large N. However, the main limitation of the IDFT approach arises from the block-oriented structure
which precludes continuous transmission in that there is a discontinuity in the time series (i.e., the faded envelope) from one
block of N samples to the next.

2.5.1.2 IIR Filtering Method

Another approach implements the filters in the time domain as finite impulse response (FIR) or infinite impulse response
(IIR) filters. There are two main challenges with this approach. The first challenge arises from the fact that the sampled
channel waveform is bandlimited to a discrete frequency Ofm D fmTs, where Ts is the sample period. Consider, for example, a
cellular system operating at a carrier frequency of fc D 1800MHz with a maximum MS speed of 300 km/h. In this case, the
maximum Doppler frequency is fm D fc.v=�c/ D 500Hz, where c is the speed of light. If the signal is sampled at rate
Rs D 1=Ts D 1MHz, then the normalized Doppler frequency is Ofm D fmTs D 0:0005. If implemented as a finite impulse
response (FIR) filter, such an extremely narrowband filter would require an impractically high filter order. Fortunately, this
can be satisfied by using a filter designed at a lower sampling frequency followed by an interpolator to increase the sampling
frequency. For example, the filter could be designed at a sampling frequency of 2 kHz, which is 2 times the Nyquist frequency.
Afterwards interpolate by a factor of I D 500 to obtain the desired sampling frequency of 1 MHz.

The second main challenge is that the square-root of the target Doppler spectrum for 2-D isotropic scattering and an
isotropic receive antenna in (2.238) is irrational and, therefore, none of the straightforward filter design methods can be
applied. However, an approach developed by Steiglitz [307] allows the design of an IIR filter with an arbitrary magnitude
response. Another possibility is to use the MATLAB function iirlpnorm [221].

Consider an IIR filter of order 2K that is synthesized as the cascade of K Direct-Form II second-order (two poles and two
zeroes) sections (biquads) having the form

H.z/ D A

K
Y

kD1

1C akz�1 C bkz�2

1C ckz�1 C dkz�2 : (2.244)

For example, for fmTs D 0:4, K D 5, and an ellipsoidal accuracy of 0.01, the filter design procedure described by Komninakis
[181] results in the coefficients tabulated in Table 2.1. Figure 2.37 plots the magnitude response of the designed filter, which
is shown to closely match that of the theoretical ideal filter.

2.5.2 Sum of Sinusoids Methods

Sum-of-sinusoids (SoS) channel models attempt to simulate the channel as a stationary complex Gaussian random process,
formed by the sum of multiple sinusoids having appropriately selected frequencies, amplitudes, and phases. The objective
is to generate a faded envelope having statistical properties that are as close as possible to a specified reference model,
while at the same time minimizing the number of sinusoids that are required to achieve a given degree of modeling
accuracy. SoS models are broadly categorized as either deterministic or statistical. Deterministic SoS models use fixed
frequencies, amplitudes, and phases for the sinusoidal components. Therefore, the statistical properties of the faded envelope
are deterministic for all simulation trials. Such models are useful for simulations that require continuous transmission over

Table 2.1 Coefficients for K D 5 biquad stage elliptical filter

Stage Filter coefficients

k ak bk ck dk

1 1.5806655278853 0.99720549234156 �0:64808639835819 0.88900798545419

2 0.19859624284546 0.99283177405702 �0:62521063559242 0.97280125737779

3 �0:60387555371625 0.9999939585621 �0:62031415619505 0.99996628706514

4 �0:56105447536557 0.9997677910713 �0:79222029531477 0.2514924845181

5 �0:39828788982331 0.99957862369507 �0:71405064745976 0.64701702807931

A 0.020939537466725
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Fig. 2.37 Magnitude response of the designed shaping filter with K D 5 biquad sections

a long time interval, such as a real-time hardware channel simulator. In contrast, the statistical SoS models require multiple
simulation trials, where one or more of the parameter sets (frequencies, amplitudes, or phases) are randomly selected for
each simulation trial. As a result, the simulated channels have statistical properties that vary for each simulation trial, but
they converge to the desired statistical properties when averaged over a sufficiently large number of simulation trials. Since
a statistical model requires multiple simulation trials, it cannot be used in cases where continuous transmission is required.
An ergodic statistical SoS model is one whose statistical properties converge to the desired properties in a single simulation
trial. For this reason an ergodic statistical model is essentially a deterministic model, but differs in the sense that one of the
parameter sets, usually the phases, is randomly generated when the simulator is initialized.

2.5.2.1 Clarke’s Model

Clarke derived a statistical SoS simulation model that begins with (2.10) and (2.6) and assumes equal strength multipath
components (Cn D

p

1=N). The received complex envelope has the form

g.t/ D
r

1

N

N
X

nD1
ej.2� fmt cos.�n/C O�n/ ; (2.245)

where N is the number of sinusoids and the phases O�n are independent identically distributed (i.i.d.) uniform random variables
on [��; �).

If a reference model having 2-D isotropic scattering and an isotropic antenna is assumed, then the �n are also i.i.d. uniform
random variables on [��; �), and are independent of the O�n. Based on the above assumptions concerning the Cn, O�n, and �n,
the ensemble averaged correlation functions of Clarke’s model in (2.245) for a finite N are3

�gIgI
.�/ D �gQgQ

.�/ D 1

2
J0.2� fm�/ (2.246)

�gIgQ
.�/ D �gQgI

.�/ D 0 (2.247)

�gg.�/ D
1

2
J0.2� fm�/ (2.248)

�˛2˛2.�/ D 1C
N � 1

N
J20.2� fm�/: (2.249)

3Note that ˝p D
PN

nD1 C2
n D 1 in this case; other values of ˝p can be obtained by straightforward scaling.
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Note that for finite N, the auto- and cross-correlation functions of gI.t/ and gQ.t/ match those of the reference model in
(2.29) and (2.31), while the squared-envelope autocorrelation function reaches the desired form 1 C J20.2� fm�/ in (2.82)
asymptotically as N !1.

2.5.2.2 Jakes’ Model

Jakes [171] derived a deterministic SoS simulation model that is perhaps the most widely cited fading model in literature.
Jakes’ model begins by choosing the N sinusoidal components to be uniformly distributed in angle, i.e.,

�n D
2�n

N
; n D 1; 2; : : : ; N: (2.250)

By choosing N=2 to be an odd integer, the sum in (2.245) can be rearranged into the form

g.t/ D
r

1

N

8

<

:

N=2�1
X

nD1

h

e�j.2� fmt cos.�n/C O��n/ C ej.2� fmt cos.�n/C O�n/
i

C e�j.2� fmtC O��N / C ej.2� fmtC O�N /

9

=

;
; (2.251)

where the phase indices have been relabeled. Note that the Doppler shifts progress from �2� fm cos.2�=N/ to
C2� fm cos.2�=N/ as n progresses from 1 to N=2 � 1 in the first sum, while they progress from C2� fm cos.2�=N/ to
�2� fm cos.2�=N/ in the second sum. Therefore, the frequencies in these terms overlap. To reduce the number of sinusoidal
components used in the model, Jakes uses non-overlapping frequencies to write g.t/ as

g.t/ D
r

1

N

(

p
2

M
X

nD1

h

e�j.2� fmt cos.�n//C O��n C ej.2� fmt cos.�n/C O�n/
i

C e�j.2� fmtC O��N / C ej.2� fmtC O�N /

)

(2.252)

where

M D 1

2

�
N

2
� 1

�

(2.253)

and the factor
p
2 is included so that the total power remains unchanged. Note that (2.251) and (2.252) are not equal. In

(2.251) all phases are independent. However, (2.252) implies that O�n D � O��N=2Cn and O��n D � O�N=2�n for n D 1; : : : ;M. If

the phases are further constrained such that O�n D � O��n; n D 1; : : : ;M and O�N D � O��N , then (2.252) can be rewritten in the
form g.t/ D gI.t/C jgQ.t/, where

gI.t/ D
r

2

N

 

2

M
X

nD1
cos.ˇn/ cos.2� fnt/C

p
2 cos.˛/ cos.2� fmt/

!

(2.254)

gQ.t/ D
r

2

N

 

2

M
X

nD1
sin.ˇn/ cos.2� fnt/C

p
2 sin.˛/ cos.2� fmt/

!

; (2.255)

with ˛ D O�N and ˇn D O�n.
Jakes chooses the phases ˛ and ˇn with the objective of making hg2I .t/i D hg2Q.t/i and hgI.t/gQ.t/i D 0, where h � i

denotes time averaging. From (2.254) and (2.255),

hg2I .t/i D
2

N

"

2

M
X

nD1
cos2.ˇn/C cos2.˛/

#

D 2

N

"

M C cos2.˛/C
M
X

nD1
cos.2ˇn/

#

; (2.256)
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Fig. 2.38 Faded envelope generated by using Jakes’ method with M D 8 oscillators; fmT D 0:1
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X
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#

; (2.257)

and

hgI.t/gQ.t/i D
2

N

"

2

M
X

nD1
sin.ˇn/ cos.ˇn/C sin.˛/ cos.˛/

#

: (2.258)

Choosing ˛ D 0 and ˇn D �n=M gives hg2Q.t/i D M=.2M C 1/, hg2I .t/i D .M C 1/=.2M C 1/ and hgI.t/gQ.t/i D 0. Note

that there is a small imbalance in the values of hg2Q.t/i and hg2I .t/i. Finally, hg2I .t/iC hg2Q.t/i D ˝p D 1. The envelope power

hg2I .t/i C hg2Q.t/i can be easily scaled to any other desired value. A typical faded envelope, obtained by using Jakes’ method
with N D 34 (M D 8) is shown in Fig. 2.38.

The accuracy of Jakes’ simulator can be evaluated by comparing the autocorrelation functions of the complex envelope
with those of the 2-D isotropic scattering reference model. Suppose Clarke’s method is modified by imposing the additional
restrictions of even N and �n D 2�n=N. The resulting simulation model is a statistical model, because the phases O�n are i.i.d.
uniform random variable on Œ��; �/. A faded envelope is obtained having the ensemble averaged autocorrelation function

�gg.�/ D
1

2N

N
X

nD1
cos

�

2� fm� cos

�
2�n

N

��

; (2.259)

where ensemble averaging is performed over the random phases O�n. Note that this autocorrelation tends to a Bessel function
as N !1. The normalized autocorrelation functions in (2.248) and (2.259) with N D 8 are plotted against the normalized
time delay fm� in Fig. 2.39. Observe that Clark’s model with �n D 2�n=N yields an autocorrelation function that deviates
from the desired values at large lags. This can be improved upon by increasing the number of oscillators that are used in the
simulator. For example, Fig. 2.40 shows the autocorrelation function when the number of oscillators is doubled from N D 8
to N D 16.
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Fig. 2.40 Autocorrelation of in-phase and quadrature components obtained by using Clarke’s method with �n D 2�n=N and N D 16 oscillators

The autocorrelation function in (2.259) was originally reported in Jakes’ book [171] and it may be confused with the
autocorrelation function of the faded envelope generated by (2.254) and (2.255). However, Jakes’ method as described in
(2.254) and (2.255) is a deterministic simulation model with no random parameters and, therefore, only the time averaged
autocorrelation function exists. This time averaged autocorrelation function has been derived by Pop and Beaulieu as [264]

O�gg.t; tC �/ D
1

2N
.cos.2� fm�/C cos.2� fm.2tC �///C 1

N

M
X

nD1
.cos.2� fn�/C cos.2� fn.2tC �/// : (2.260)

From (2.260), it is apparent that the time averaged autocorrelation function obtained with the Jakes’ method, O�gg.t; t C �/,
depends on the time variable t. Hence, Jakes’ method yields a faded envelope that is not a stationary or even a wide-sense
stationary random process. The root cause of this non-stationary behavior is the correlation that is introduced into the phases
when using Jakes’ method, i.e., the restrictions that O�n D � O��N=2Cn, O��n D � O�N=2�n, O�n D � O��n; n D 1; : : : ;M, and
O�N D � O��N . Due to the non-stationary behavior of the original Jakes simulator, and also due to the fact that the Jakes’
method yields only a single faded envelope, a number of subsequent sum-of-sinusoids models have been proposed in the
literature.
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2.5.2.3 Method of Exact Doppler Spreads

Pätzold et al. [261] proposed a deterministic simulation model, called the method of exact Doppler spreads (MEDS). The
method is derived by starting with an integral representation for the zero-order Bessel function of the first kind:

J0.x/ D
2

�

Z �=2

0

cos.x sin �/d� (2.261)

and replacing the integral by a series expansion as follows:

J0.x/ D lim
NI!1

2

�

NIX

nD1
cos.x sin˛n/�˛; (2.262)

where ˛n
4D �.2n � 1/=.4NI/ and �˛

4D �=.2NI/. Hence,

�gI gI
.�/ D 1

2
J0.2� fm�/ D lim

NI!1
1

2NI

NIX

nD1
cos.2� fn;I�/ (2.263)

where

fn;I D fm sin

�
�

2NI

�

n � 1
2

��

: (2.264)

With finite NI , the autocorrelation is

�gIgI
.�/ D 1

2NI

NIX

nD1
cos.2� fn;I�/: (2.265)

Using the above result, the complex fading envelope, g.t/ D gI.t/C jgQ.t/, is generated as

gI=Q.t/ D
s

1

NI=Q

NI=Q
X

nD1
cos.2� fI=Q;ntC �I=Q;n/: (2.266)

where the phases �I=Q;n are chosen as arbitrary realizations of uniform random variables on the interval Œ��; �/. Since the
phases only need to be generated once, the MEDS model is an ergodic statistical (deterministic) model.

With the MEDS model, the autocorrelation functions of gI.t/ and gQ.t/ for infinite NI=Q match those of the 2-D isotropic
scattering reference model. The quadrature components gI.t/ and gQ.t/will also be uncorrelated if they do not share common
frequencies. This condition can be achieved by choosing NQ D NI C 1.

2.5.2.4 Zheng & Xiao Statistical Model

Zheng and Xiao proposed a number of statistical simulation models [359, 360, 376, 377]. These models differ from one
another in terms of the model parameters and, consequently, their statistical properties. Patel et al. [259] have shown that
the model in [376] has the best overall performance, so the discussion here is limited to that model. The complex fading
envelope, g.t/ D gI.t/C jgQ.t/, is generated as

gI.t/ D
r

1

N

N
X

nD1
cosŒ2� fmt cos.�n/C �I;n� (2.267)

gQ.t/ D
r

1

N

N
X

nD1
cosŒ2� fmt sin.�n/C �Q;n�; (2.268)
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where the angles �n are

�n D
2�n � � C �

4N
; n D 1; 2; : : : ;N; (2.269)

and where � , �I;n, and �Q;n are all mutually independent uniform random variables on the interval Œ��; �/.
The statistical correlation functions of the quadrature components have been computed by Zheng and Xiao [376] and

match the desired functions in (2.246)–(2.248). The autocorrelation function of the squared-envelope is [259]

�˛2˛2.�/ D 1C
J0.4� fm�/

4N
C 1

N2

N
X

nD1

N
X

mD1
n¤m

EfcosŒ2� fm� cos �n� cosŒ2� fm� cos �m�g: (2.270)

Unfortunately, there is no closed form expressions for the squared-envelope autocorrelation function due to the presence of
the double summation in (2.270). The 2-D isotropic scattering reference model requires that

�˛2˛2.�/ D 1C J2o .2� fm�/ (2.271)

Clearly, as N increases the second term in (2.270) diminishes with 1=N, while the third term should approach J2o.2� fm�/.

2.5.2.5 Modified Hoeher Model

The modified Hoeher model is a statistical simulation model. The complex faded envelope, g.t/ D gI.t/CjgQ.t/, is generated
as [260]

gI.t/ D
r

1

N

NIX

nD1
cos.2� fI;ntC �I;n/ (2.272)

gQ.t/ D
r

1

N

NQ
X

mD1
cos.2� fQ;mtC �Q;m/; (2.273)

where

fI=Q;n=m D fm sin
��

2
uI=Q;n=m

�

: (2.274)

The Doppler frequencies fI=Q;n=m for the I and Q components are determined by the random variables uI=Q;n=m, where the
uI=Q;n=m are uniform on (0; 1] and are mutually independent for all n and m. The random phases �I=Q;n=m are uniform on
[��; �), are mutually independent for all n and m, and are also independent of the uI=Q;n=m. For convenience, the number of
sinusoids in the quadrature components are usually set equal, i.e., NI D NQ D N. This model is based on Hoeher’s model in
[165], but differs by considering only the positive Doppler frequencies. Hence, it is referred to here as the modified Hoeher
model.

Observe that the MEDS and modified Hoeher models are the same except for the arguments of the sine function in (2.264)
and (2.274), respectively. The set of numbers f.n� 1=2/=Ni; i D 1; : : : ;Nig are uniformly spaced on the interval (0; 1] in the
MEDS model, while the uI=Q;n=m are uniformly distributed on the interval (0; 1] in the modified Hoeher model.

The statistical correlation functions for the modified Hoeher model match those of the 2-D isotropic scattering reference
model. The squared-envelope autocorrelation function for the modified Hoeher model is [259]

�˛2˛2.�/ D 1C
1

4N
J0.4� fm�/C

N � 1
N

J20.2� fm�/ (2.275)

which differs from the reference model in (2.82) for finite N.



2.5 Simulation of Multipath-Fading Channels 89

The time-averaged correlation functions of the modified Hoeher model can be derived as follows [259]:

O�gIgI
.�/ D lim

T!1
1

2T

Z T

�T

gI.t/gI.tC �/dt

D 1

2N

N
X

nD1
cos.2� fI;n�/ (2.276)

O�gQgQ
.�/ D 1

2N

N
X

nD1
cos.2� fQ;n�/ (2.277)

O�gIgQ
.�/ D O�gQgI

.�/ D 0 (2.278)

O�gg.�/ D
1

2
lim

T!1
1

2T

Z T

�T

g�.t/g.tC �/dt

D 1

4N

N
X

nD1
cos.2� fI;n�/C cos.2� fQ;n�/: (2.279)

The variances of the time-averaged autocorrelation and cross-correlation of the quadrature components, and the variance of
the autocorrelation of the complex envelope g.t/ are [259]

VarŒ O�gI gI
.�/� D VarŒ O�gQgQ

.�/� D 1C J0.4� fm�/ � 2J20.2� fm�/

8N
(2.280)

VarŒ O�gI gQ
.�/� D VarŒ O�gQgI

.�/� D 0 (2.281)

Var O�gg.�/ D
1C J0.4� fm�/ � 2J20.2��/

16N
: (2.282)

2.5.3 Multiple Uncorrelated Faded Envelopes

In many cases it is necessary to generate multiple uncorrelated faded envelopes. Jakes [171] suggested a method to modify
the method in Sect. 2.5.2.2 to generate up to M fading envelopes. However, the method yields faded envelopes that exhibit
very large cross-correlations at some non-zero lags and, therefore, the method is not recommended. Dent et al. [93]
suggested a modification to Jakes’ approach that uses orthogonal Walsh-Hadamard codewords to decorrelate the multiple
faded envelopes. However, the approach generates multiple faded envelopes that still have significant cross-correlation
functions at large lags. Several simulation models to generate multiple faded envelopes are now discussed that have low
cross-correlations.

2.5.3.1 Zheng and Xiao Statistical Model

The Zheng and Xiao statistical method can be easily extended to generate multiple faded envelopes. The kth complex faded
envelope, gk.t/ D gI;k.t/C jgQ;k.t/, is generated as

gI;k.t/ D
r

1

N

N
X

nD1
cosŒ2� fmt cos.�n;k/C �I;n;k� (2.283)

gQ;k.t/ D
r

1

N

N
X

nD1
cosŒ2� fmt sin.�n;k/C �Q;n;k�; (2.284)



90 2 Propagation Modeling

where

�n;k D
2�n � � C �k

4N
; n D 1; 2; : : : ;N (2.285)

and where �k, �I;n;k, and �Q;n;k are all uniform on Œ��; �/, and all values are mutually independent. The gk.t/ are all
uncorrelated.

2.5.3.2 Li & Huang Model

Li and Huang proposed a deterministic fading model that can generate multiple uncorrelated faded envelopes. They assume
that P uncorrelated fading envelopes are required, each of which is composed of N sinusoids. The kth complex faded
envelope, gk.t/ D gI;k.t/C jgQ;k.t/, is generated as [202]

gI;k.t/ D
r

1

N

N�1
X

nD0
cos.2� fm cos �n;ktC �I;n;k/ (2.286)

gQ;k.t/ D
r

1

N

N�1
X

nD0
sin.2� fm sin �n;ktC �Q;n;k/: (2.287)

The phases �I;n;k and �Q;n;k arbitrary realizations of independent random variables uniform on [��; �), and

�n;k D
2�n

N
C 2�k

PN
C �00; n D 0; : : : ;N; k D 0; : : : ;P � 1; (2.288)

where �00 is an initial arrival angle chosen to satisfy 0 < �00 < 2�=PN and �00 ¤ �=PN. Although the Li & Huang model
generates uncorrelated faded envelopes, it fails to satisfy Eqs. (2.29) and (2.82) of the reference model [371].

2.5.3.3 Zajić & Stüber Deterministic Model

With the Zajić & Stüber deterministic model the kth faded envelope, gk.t/ D gI;k.t/C jgQ;k.t/, is generated as [372]

gI;k.t/ D
r

2

N

M
X

nD0
an cos.2� fmt cos.�n;k/C �n;k/ (2.289)

gQ;k.t/ D
r

2

N

M
X

nD0
bn sin.2� fmt cos.�n;k/C �n;k/; (2.290)

where

M D 1

2

�
N

2
� 1

�

; (2.291)

and

an D
�

2 cos.ˇn/ ; n D 1; : : : ;Mp
2 cos.ˇn/ ; n D 0 (2.292)

bn D
�

2 sin.ˇn/ ; n D 1; : : : ;Mp
2 sin.ˇn/ ; n D 0 (2.293)

ˇn D
�n

M
; n D 0; : : : ;M (2.294)
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�n;k D
2�n

N
C 2�k

PN
C �0;0 ; n D 0; : : : ;M ; k D 0; : : : ;P � 1: (2.295)

This method will generate P faded envelopes, where 1 � P � M.
The angle �n;k is chosen so that the arrival angles associated with the kth faded envelope are obtained by rotating the

arrival angles of the .k� 1/th faded envelope by 2�=PN. This ensures an asymmetrical arrangement of arrival angles, which
minimizes the correlation between the multiple faded envelopes. The initial arrival angle, �0;0, can be optimized to minimize
the correlation between the quadrature components of each faded envelope. This results in the choice �0;0 D 0:2�=PN, a
value optimized by experimentation. Finally, the phases �n;k are chosen as arbitrary realizations of uniform random variables
on the interval Œ0; 2�/.

For the Zajić & Stüber deterministic model, the auto- and cross-correlation functions of the quadrature components,
the auto- and cross-correlation functions of the multiple faded envelopes, and the squared-envelope autocorrelation are,
respectively, [372]

lim
N!1
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nD0

a2n

2
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D 1

4
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where J0 .�/ is the zero-order Bessel function of the first kind and J4 .�/ is the fourth-order Bessel function of the first kind.
Figures 2.41 and 2.42 confirm that, for M D 8, the auto- and cross-correlations of the quadrature components and the

auto- and cross-correlation of the multiple faded envelopes approach values given by (2.296)–(2.299), respectively. The
model satisfies (2.247) and (2.248) of the reference model. However, the auto-correlations of the quadrature components and
the auto-correlation of the squared-envelope are close to, but do not perfectly match, (2.246) and (2.249).
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Fig. 2.41 Theoretical and simulated auto-correlation functions and the cross-correlation function of the in-phase and quadrature components of
the Zajić and Stüber deterministic model
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Fig. 2.42 Theoretical and simulated auto-correlation functions and the cross-correlation function of the first and the second complex envelope of
the Zajić and Stüber deterministic model

2.5.3.4 Zajić & Stüber Statistical Model

The Zajić & Stüber deterministic model can be modified to better match the statistical properties of the reference model by
introducing randomness into the model. To do so, the kth faded envelope, gk.t/ D gI;k.t/C jgQ;k.t/, is generated as
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Fig. 2.43 Theoretical and simulated autocorrelation functions and the cross-correlation function of the quadrature components of the Zajić and
Stüber statistical model
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cos.ˇn;k/ cos.2� fmt cos.�n;k/C �n;k/ (2.301)
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where M D N=4,

�n;k D
2�n

N
C 2�k

PN
C ˛ � �

N
; n D 1; : : : ;M; k D 0; : : : ;P � 1; (2.303)

and �n;k, ˇn;k, and ˛ are independent uniform random variables on the interval Œ��; �/. The parameter �n;k is chosen in the
following manner: the arrival angles of the kth faded envelope are obtained by rotating the arrival angles of the .k � 1/th
faded envelope by �=2MN. Randomness in the Doppler frequencies is introduced by random variable ˛. Again, this method
will generate P faded envelopes, where 1 � P � M.

Figures 2.43 and 2.44 show that, for M D P D 8 and Nstat D 30 simulation trials, the auto- and cross-correlations
of the quadrature components, and the auto- and cross-correlations of the complex faded envelopes approach those of the
reference model in (2.246) and (2.248). Although not shown, the squared-envelope autocorrelation also approaches that of
the reference model in (2.249).

2.5.3.5 SoS Simulation Model Comparisons

This section compares the various sum-of-sinusoids simulation models for fixed-to-mobile channels. A more detailed
comparison is available in [259, 371]. In all simulations, a normalized sampling period fmTs D 0:05 and M D P D 8 is used.
However, for the MEDS model NI D 8 and NQ D 9 are used to obtain uncorrelated quadrature components in the faded
envelope. Note that in the Li & Huang, MEDS and Zajić & Stüber deterministic models, the random phases associated with
the sinusoidal components are computed before the actual simulation starts, because an ergodic statistical (“deterministic”)
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Fig. 2.44 Theoretical and simulated autocorrelation functions and the cross-correlation function of the first and the second complex envelopes of
the Zajić and Stüber statistical model

simulator needs only one simulation trial. During the simulations, all parameters are kept constant to provide simulation
results that are always the same, i.e., deterministic.

In the Zajić & Stüber deterministic model, the following set of uniformly distributed random phases (in radians) are used:
�n;0 D[4.0387, 1.7624, 2.7844, 1.5590, 0.9523, 1.2972, 5.7420, 3.6592, 4.3548] and �n;1 D[5.3798, 3.0556, 2.1528, 2.6296,
0.7457, 3.2572, 6.1027, 2.0670, 2.1304]. The same set of phases is used in MEDS model, for gQ.t/, while for gI.t/ the
following set is used �I;n;0 D[2.2107, 5.3033, 2.4634, 1.0679, 2.2818, 4.6113, 0.7513, 0.7383] and �I;n;1 D[3.2627, 4.7036,
0.5824, 2.1097, 4.6264, 5.4790, 0.9391, 0.2017]. Li & Huang’s model uses the same set of phases as the MEDS model for
gI.t/, while for gQ.t/ the following set is used: �Q;n;0 D[2.6372, 4.7339, 4.9865, 5.7784, 5.3059, 2.3099, 3.8994, 4.5933],
and �Q;n;1 D[4.1175, 2.4616, 3.9403, 4.3911, 2.4948, 2.5981, 4.115, 5.2610].

Figure 2.45 compares the cross-correlation functions of the quadrature components obtained with the various simulation
models. Since the Zheng & Xiao model is a statistical model, the plotted correlation functions have been averaged over
Nstat D 50 trials. Figure 2.45 shows that the Zajić & Stüber deterministic model yields a lower cross-correlation between
the I and Q components of the faded envelope. Figure 2.46 compares the cross-correlation functions of two faded envelopes.
Again, since the Zheng & Xiao model is a statistical model, the plotted cross-correlation function has been averaged over
Nstat D 50 trials. The Li & Huang, Zheng & Xiao, and Zajić & Stüber deterministic models all yield a low cross-correlation
between different faded envelopes.

Figures 2.47 and 2.48 compare the cross-correlation functions of the quadrature components and the cross-correlation
functions of two faded envelopes, respectively, for the various statistical models. For the Zheng & Xiao model averaging
is done over Nstat D 100 trials, while for the Zajić & Stüber statistical model averaging is done over Nstat D 30 and
Nstat D 50 trials. From Fig. 2.47, the Zajić & Stüber statistical model with Nstat D 30 performs similar when compared
to the Zheng & Xiao model with Nstat D 100. Increasing the number of trials in the Zajić & Stüber statistical model to
Nstat D 50 yields a significantly lower cross-correlation between the quadrature components of the complex faded envelope.
Furthermore, with Nstat D 50 trials, the Zajić & Stüber statistical model achieves a larger de-correlation between different
complex envelopes than the Zheng & Xiao model with Nstat D 100 trials. Figures 2.47, 2.48, and 2.49 show that with the
Zajić & Stüber statistical model, adequate statistics can be achieved with Nstat D 30 trials.
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Fig. 2.45 Normalized cross-correlation function between the quadrature components of the faded envelope for various simulation models
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Fig. 2.46 Normalized cross-correlation function between the first and second faded envelopes for various simulation models

2.5.4 Wide-Band Simulation Models

Wide-band channels can be modeled by a tapped delay line with irregularly spaced tap delays. Each channel tap is the
superposition of a large number of scattered plane waves that arrive with approximately the same delay and, therefore, the
channel taps will undergo fading. The wide-band channel has the time-variant impulse response

g.t; �/ D
X̀

iD1
gi.t/ı.� � �i/; (2.304)
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Fig. 2.47 Normalized cross-correlation function of the in-phase and quadrature components for various statistical simulation models
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Fig. 2.48 Normalized cross-correlation function of the first and the second complex envelope for various statistical simulation models

where ` is the number of channel taps, and the fgi.t/g and f�ig are the complex gains and path delays associated with the
channel taps. The corresponding time-variant transfer function is

T.f ; t/ D
X̀

iD1
gi.t/e

j2� f �i : (2.305)

Usually, the tap delays are multiples of some very small delay � , such that �i D Ki� ; i D 1; : : : ; `, which yields the sparse
tapped delay line channel model shown in Fig. 2.50, sometimes called the “� -spaced” model. Many of the tap coefficients in
the tapped delay line are zero, reflecting the fact that no energy is received at these delays. Also, the Ki should be chosen to
be relatively prime so as to prevent any periodicity in the channel. Assuming a WSSUS channel, the autocorrelation function
of the time-variant channel impulse response in (2.304) is
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Fig. 2.50 Sparse tapped delay line model for wide-band multipath-fading channels

�g.t; sI �; �/ D EŒg.t; �/g�.s; �/� (2.306)

D
X̀

iD1
�gigi

.�t/ı.� � �i/ı.� � �/ (2.307)

It follows that the channel correlation function is

 g.�tI �/ D
X̀

iD1
�gigi

.�t/ı.� � �i/ (2.308)

and the power-delay profile is

 g.�/ D  g.0I �/ D
X̀

iD1
˝iı.� � �i/; (2.309)

where ˝i D �gigi
.0/ is the envelope power of the ith channel tap, and the total envelope power is

˝p D
X̀

kD1
˝k: (2.310)
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Hence, the channel can be described by the power profile

� D .˝0; ˝1; : : : ; ˝`/: (2.311)

and the delay profile

� D .�1; �2; : : : ; �`/: (2.312)

Taking the Fourier transform of (2.308) with respect to the � variable yields the spaced-time spaced-frequency correlation
function

�T.�f I�t/ D
X̀

iD1
�gigi

.�t/e�j2��f �i (2.313)

Sometimes the channel taps are assumed to have the same time correlation function, such that

�gigi
.�t/ D ˝i�t.�t/ ; i D 1; : : : ; `: (2.314)

For example, if each tap is characterized by 2-D isotropic scattering, then �t.�t/ D 1
2
J0.2� fm�t/. In this case the spaced-

time spaced-frequency correlation function has the separable form

�T.�f I�t/ D �t.�t/�f .�f /; (2.315)

where

�f .�f / D
X̀

iD1
˝ie

�j2��f �i : (2.316)

2.5.4.1 COST 207 Models

The COST 207 models were developed for the GSM cellular system. Four different Doppler spectra, Sgg.f / are specified in
the COST 207 models [79]. First define the function

G.A; f1; f2/ D A exp

�

� .f � f1/
2

2f 22

�

(2.317)

which has the shape of a Gaussian probability density function with mean f1 and variance f 22 . COST 207 specifies the
following Doppler spectra:

a) CLASS is the classical Doppler spectrum, and is used for excess path delays not exceeding 500 ns (�i � 500 ns);

.CLASS/ Sgg.f / D
A

p

1 � .f=fm/2
; jf j � fm (2.318)

Multipath components arriving with short path delays are those that experience local scattering around the MS. In the
COST 207 models, the local scattering is modeled as 2-D isotropic scattering and the MS is assumed to have an isotropic
antenna.

b) GAUS1 is the sum of two Gaussian functions, and is used for excess path delays ranging from 500 ns to 2�s; (500 ns �
�i � 2�s)

.GAUS1/ Sgg.f / D G.A;�0:8fm; 0:05fm/C G.A1; 0:4fm; 0:1fm/; (2.319)
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Fig. 2.51 COST 207 typical urban (TU) and bad urban (BU) power-delay profiles

where A1 is 10 dB below A. The GAUS1 Doppler spectra implies two clusters of scattering objects. The larger cluster is
located behind the MS such that the mean angle-of-arrival is � D cos�1.�0:8/ D ˙143ı. A smaller cluster is located in
front of the MS such that the mean angle-of-arrival is � D cos�1.0:4/ D ˙66ı.

c) GAUS2 is the sum of two Gaussian functions, used for excess path delays exceeding 2�s; (�i > 500 ns)

.GAUS2/ Sgg.f / D G.B; 0:7fm; 0:1fm/C G.B1;�0:4fm; 0:15fm/; (2.320)

where B1 is 15 dB below B. Like GAUS1, GAUS2 implies two clusters of scattering objects such that the mean angles-
of-arrival are � D cos�1.0:7/ D ˙45ı and � D cos�1.�0:4/ D ˙113ı.

d) RICE is a combination of 2-D isotropic scattering and a line-of-sight component;

.RICE/ Sgg.f / D
0:41

2� fm
p

1 � .f=fm/2
C 0:91ı.f � 0:7fm/ ; jf j � fm (2.321)

The RICE scattering environment is depicted in Fig. 2.7, where �0 D cos�1.0:7/ D 45ı.

Several power-delay profiles have been defined in the COST 207 study for different propagation environments [79].
Typical urban (TU) (non-hilly) and bad urban (BU) (hilly) discrete power-delay profiles are shown in Fig. 2.51 and Table 2.7
of Appendix 2A. In these figures and tables, the fractional power sums to unity, i.e., the total envelope power˝p is normalized
to unity. Also notice that the discrete tap delays in Table 2.7 are chosen to avoid a regular spacing between taps so as to avoid
any periodicities in the time-variant transfer function. Sometimes it is desirable to use a smaller number of taps to reduce
the computational requirements of computer simulations. Figure 2.52 and Table 2.8 of Appendix 2A show the 6-ray reduced
typical urban and reduced bad urban channel. Also provided in Appendix 2A are discrete power-delay profiles for rural
(non-hilly) areas (RA) in Table 2.9, typical hilly terrain (HT) in Table 2.10, and reduced hilly terrain (HT) in Table 2.11.

2.5.4.2 COST 259 Models

The COST 207 models were developed for the GSM system having a channel bandwidth of 200 kHz. However, the COST 207
models are not be appropriate for wideband CDMA (WCDMA) systems having 5, 10, and 20 MHz channel bandwidths.
Similar to the COST 207 models, typical realizations have been developed by 3GPP for the COST 259 models [113]. These
are tabulated in Tables 2.12, 2.13, and 2.14 of Appendix 2B for typical urban (TU), rural area (RA), and hilly terrain (HT).
Notice that the tap delays in the 3GPP realizations of the COST 259 models have a resolution of 0.001�s as compared to
the 0.1�s resolution used in the COST 207 models. Moreover, a large number of paths (20) are included to ensure that the
frequency domain correlation properties are realistic, which is important for wide-band systems.
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Fig. 2.52 COST 207 reduced typical urban (TU) and bad urban (BU) power-delay profiles

2.5.4.3 ITU Models

Several models have been developed by the International Telecommunications Union (ITU) for indoor office, outdoor
to indoor and pedestrian, and vehicular—high antenna [276]. These models are summarized in Tables 2.15 and 2.16 of
Appendix 2C.

2.5.5 Mobile-to-Mobile Simulation Models

An important distinction between F-to-M cellular land mobile radio channels and M-to-M channels arises due to the
scattering and mobility at both ends of the link. In contrast to cellular F-to-M channels, it is natural for both the transmitter
and the receiver to have low elevation antennas in M-to-M applications. This results in local scattering around both the
transmitter and receiver antennas which led to the 2-D isotropic scattering assumption in the Akki and Haber reference
model [14].

2.5.5.1 Akki & Haber Model

An obvious M-to-M channel simulation model follows from (2.146), where N sinusoidal components are used with randomly
generated angles of departure and arrival, and random phases. This model is called the Akki & Haber (A & H) model, since
they originally proposed the model in (2.146). Although the ensemble averaged statistical correlations of this model, given in
(2.147), do not depend on N, the time averaged correlations functions [denoted by O�.�/] do depend on N [259]. For example,
the time average auto-correlation of the complex envelope is

O�gg.�/ D lim
T!1

1

2T

Z T

�T

1

2
g�.t/g.tC �/dt (2.322)

D 1

2N

N
X

nD1
ej.2� f T

m cos.˛T
n /�C2� f R

m cos.˛R
n /�/:

The time average correlations are random due to the random angles of departure and arrival and, hence, they will vary
with each simulation trial. The variance VarŒ O�.�/� D EŒj O�.�/ � limN!1 �.�/j2� provides a measure of the usefulness of the
model with finite N. A lower variance means that a smaller number of simulation trials are needed to achieve the desired
statistical properties to a given degree of accuracy and, hence, the corresponding simulation model is better. The variance of
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Fig. 2.53 Double-ring model for M-to-M radio propagation with isotropic scattering at the transmitter and receiver

the time averaged auto-correlation and the cross-correlation of the quadrature components of the complex envelope are as
follows [259]:

VarŒ O�gI gI
.�/� D VarŒ O�gQgqQ

.�/� (2.323)

D 1C J0.4� f T
m �/J0.4�af T

m �/ � 2J20.2� f T
m �/J

2
0.2�af T

m �/

8N

VarŒ O�gIgqQ
.�/� D VarŒ O�gQgiI

.�/� D 1 � J0.4� f T
m �/J0.4�af T

m �/

8N
(2.324)

VarŒ O�gg.�/� D
1 � J20.2� f T

m �/J
2
0.2�af T

m �/

4N
: (2.325)

2.5.5.2 Double Ring Simulation Models

To develop other M-to-M channel simulation models, a double-ring concept is applied that defines two rings of isotropic
scatterers, one placed around the transmitter and another placed around the receiver as shown in Fig. 2.53. Assuming
omnidirectional antennas at both ends, the waves from the transmitter antenna first arrive at the scatterers located on the
transmitter ring. Considering these fixed scatterers as “virtual base stations (VBS),” the communication link from each VBS
to the receiver is treated like an F-to-M link. The signals from each VBS arrive at the receiver antenna uniformly from all
directions in the horizontal plane due to isotropic scatterers located on the receiver end ring. It should be noted here that
the double-ring model has been often used in various forms, for example in [50] and the references therein for the study
and simulation of the spatial correlations and capacity in multiple-input multiple-output (MIMO) systems, where multiple
antennas are used at both the transmitter and receiver. Here the double-ring model is applied to M-to-M channel modeling.
The use of a double-ring model has a strong rationale. First and foremost, it is a mathematically convenient reference model.
Second, considering the lack of detailed and standardized M-to-M channel models, the model provides a generic scenario
with isotropic scattering at both ends of the communication link. Finally, empirical Doppler spectrum measurements for
vehicle-to-vehicle communication links [9, 222] more or less match those predicted by the double-ring model.

Using the double-ring model in Fig. 2.53, the complex faded envelope can be written as

g.t/ D
r

2

NM

N
X

mD1

M
X

nD1
e�j2�"mn=�c ej2� tff T

m cos.˛
.m/
T /Cf R

m cos.˛
.n/
R /gCj�n;m ; (2.326)

where the index “m” refers to the paths traveling from the transmitter to the N scatterers located on the transmitter end ring,

the index “n” refers to the paths traveling from the M scatterers on the receiver end ring to the receiver. The angle ˛.m/T is the

random angle of departure and ˛.n/R is the random angle of arrival of the fm; ngth propagation path measured with respect to
the x-axis, respectively. The phases �n;m are uniformly distributed on Œ��; �/ and are independent for all pairs fn;mg. Note
that the single summation in (2.146) is replaced with a double summation, because each plane wave on its way from the
transmitter to the receiver is double bounced. The temporal correlation characteristics remain the same as those of the model
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in (2.146), because each path will undergo a Doppler shift due to the motion of both the transmitter and receiver. Finally,
the temporal correlation properties do not depend on the distance �mn in Fig. 2.53. Although not discussed here, the spatial
correlation properties will depend on �mn and, through �mn, on the scattering radii RT and RR, and the distance D.

2.5.5.3 Patel & Stüber Deterministic (P & S Det.) Model

An ergodic statistical (deterministic) simulation model is now suggested. By choosing only the phases to be random variables,
the statistical correlation properties of this model will converge to those of the reference model in a single simulation trial.
The complex faded envelope, g.t/ D gI.t/C jgQ.t/, is generated as

gI.t/ D
s

1

NIMI

MIX

mD1

NIX

nD1
cos

�

2� f T
m cos.˛T

I;n/tC 2� f R
m cos.˛R

I;m/tC �I;n;m

�

; (2.327)

gQ.t/ D
s

1

NQMQ

MQ
X

mD1

NQ
X

nD1
cos

�

2� f T
m cos.˛T

Q;n/tC 2� f R
m cos.˛R

Q;m/tC �Q;n;m

�

; (2.328)

where �I;n;m and �Q;n;m are all independent random phases uniformly distributed on Œ��; �/. The nth angle of departure is
equal to ˛T

I=Q;n D �.n�0:5/=.2NI=Q/, for n D 1; 2; : : : ;NI=Q. The mth angle of arrival is equal to ˛R
I=Q;m D �.m�0:5/=.MI=Q/,

for m D 1; 2; : : : ;MI=Q.
There are two remarks about this model. First, the angles ˛T

I=Q;n are essentially the same as those in the MEDS (method

of exact Doppler spreads) model [260], while the angles ˛R
I=Q;m are chosen to reproduce desired statistical properties for M-

to-M channels. Second, to make the time average correlation functions deterministic and independent of the random phases
�I=Q;n;m, the frequencies f T

m cos.˛T
I;n/C f R

m cos.˛R
I;m/ in gI.t/ and f T

m cos.˛T
Q;n/C f R

m cos.˛R
Q;m/ in gQ.t/ must all be distinct and,

moreover, they must also be distinct among themselves for all pairs .n;m/ and .k; l/. Although it is difficult to establish a
general rule to meet this criterion, choosing NI D MI and NQ D MQ D NI C 1 yields distinct Doppler frequencies for
practical ranges of NI varying from 5 to 60 and for different Doppler frequency ratios, i.e., different values of a D f R

m=f T
m .

This rule is similar to the one used in the MEDS model [260]. Under these assumptions, it can be shown that the time average
correlation functions are

O�gI gI
.�/ D 1

2N2
I

NI ;NIX

n;mD1
cos

�

2� f T
m � cos.˛T

I;n/C 2� f R
m� cos.˛R

I;m/
�

(2.329)

O�gQgQ
.�/ D 1

2.NI C 1/2
.NIC1/;.NIC1/X

n;mD1
cos.2� f T

m � cos.˛T
Q;n/C 2� f R

m� cos.˛R
Q;m// (2.330)

O�gI gQ
.�/ D O�gQgI

.�/ D 0: (2.331)

The P & S Det. model has the disadvantage that the time averaged correlation functions match those of the reference model
only for a small range of normalized time delays (0 � f T

m � � 5). To improve upon the statistical properties, two alternative
statistical SoS models are suggested. By allowing all three parameter sets (amplitudes, phases, and Doppler frequencies) to
be random variables for each simulation trial, the statistical properties of these models will vary for each simulation trial, but
they will converge to those of the reference model when averaged over a sufficient number of simulation trials.

2.5.5.4 Patel & Stüber Statistical (P & S Stat.) Model

The P & S Stat. model modifies the model proposed by Zheng et al. [376] for F-to-M cellular land mobile radio channels.
The complex faded envelope, g.t/ D gI.t/C jgQ.t/, is generated as

gI.t/ D
s

1

N0M

N0X

nD1

M
X

mD1
cos

�

2� f T
m cos .˛T

n /tC 2� f R
m cos.˛R

m/tC �I;n;m

�

(2.332)
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gQ.t/ D
s

1

N0M

N0X

nD1

M
X

mD1
cos

�

2� f T
m sin .˛T

n /tC 2� f R
m cos.˛R

m/tC �Q;n;m

�

; (2.333)

where �I;n;m and �Q;n;m are all independent random phases uniformly distributed on Œ��; �/. The P & S Stat. model assumes
N0 scatterers located on the transmitter ring and M scatterers located on the receiver ring. The nth angle of departure is
˛T

n D .2�n � � C �/=.4N0/, where � is an independent uniform random variable on Œ��; �/. The mth angle of arrival is
equal to ˛R

m D .2�m � � C  /=.2M/, where  is an independent uniform random variable on Œ��; �/.
The ensemble averaged statistical properties of the P & S Stat. model match those of the reference model in (2.147) [259].

The time averaged correlation functions can be derived as:

O�gIgI
.�/ D 1

2NM

N;M
X

n;mD1
cos.2� f T

m cos.˛T
n /� C 2� f R

m cos.˛R
m/�/ (2.334)
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X
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cos.2� f T

m sin.˛T
n /� C 2� f R

m cos.˛R
m/�/ (2.335)

O�gIgQ
.�/ D O�gQgiI

.�/ D 0 (2.336)
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: (2.337)

The P & S Stat. model requires a fairly large number of simulation trials (at least 50) to obtain adequate statistical
properties. Being a statistical model, its time average correlations are random and depend on the random Doppler frequencies.
However, for the same complexity, the model performs better than the A & H Model in terms of the variance of these
correlation functions [259]. These variances are not given here, since they do not exist in closed form.

2.5.5.5 Zajić & Stüber Statistical (Z & S Stat.) Model

The P & S models have difficulty in producing time averaged auto- and cross-correlation functions that match those of
the reference model. Here another statistical model is suggested where orthogonal functions are chosen for the quadrature
components of the complex faded envelope. This model is also able to generate multiple uncorrelated complex envelopes,
something that the other models cannot do.

The following function is considered as the kth complex faded envelope:

gk.t/ D
r
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N
X

nD1

M
X

mD1
ej.2� f T

m cos.˛T
k;n/tC2� f R

m cos.˛R
k;m/tC�k;n;m/; (2.338)

where f T
m , f R

m , ˛T
k;n, ˛R

k;m, and �k;n;m are the maximum Doppler frequencies, the random angle of departure, the random angle
of arrival, and the random phase, respectively. It is assumed that P independent complex faded envelopes are required
(k D 0; : : : ;P � 1) each consisting of NM sinusoidal components.

The number of sinusoidal components needed for simulation can be reduced by choosing N0 D N=4 to be an integer, by
taking into account shifts of the angles ˛T

k;n and ˛R
k;m, and by splitting the sum in (2.338) into four terms, viz.,
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: (2.339)

Equation (2.339) simplifies as
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Based on gk.t/ in (2.340), the Z & S statistical simulation model can be defined. The kth complex faded envelope,
gk.t/ D gI;k.t/C jgQ;k.t/, is generated as
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It is assumed that P independent complex envelopes are desired (k D 0; : : : ;P� 1), each having MN0 sinusoidal terms in the
I and Q components. The angles of departures and the angles of arrivals are chosen as follows:

˛T
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C 2�k
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; (2.343)
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C  � �

M

�

; (2.344)

for n D 1; : : : ;N0, m D 1; : : : ;M k D 0; : : : ;P � 1. The angles of departure and the angles of arrival in the kth complex
faded envelope are obtained by rotating the angles of departure and the angles of arrival in the .k � 1/th complex envelope
by .2�/=.4PN0/ and .2�/=.2PM/, respectively. The parameters �k;n;m, � , and  are independent uniform random variables
on the interval Œ��; �/.

The ensemble averaged statistical correlation functions of the Z & S Stat. model match those of the reference model [371].
For brevity, only the derivation of the auto-correlation function of the in-phase component is presented. Other properties can
be derived in an analogous fashion. The auto-correlation function of the in-phase component of the kth complex faded
envelope is

�gk;I gk;I .�/ D EŒgk;I.t/gk;I.tC �/� (2.345)
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Table 2.2 Mean square error, maximum deviation and variations, for various mobile-to-mobile channel simulators

P & S Stat. P & S Stat. Z & S Stat. Z & S Stat. Z & S Stat.

Simulator P & S Det. Nstat D 1 Nstat D 50 Nstat D 1 Nstat D 30 Nstat D 50

mse(�gI gQ
/ 1:8 � 10�3 1:1 � 10�3 3:16 � 10�5 8:81 � 10�4 4:39 � 10�5 2:05 � 10�5

Max(�gI gQ
/ 9:61 � 10�2 5:91 � 10�2 1:27 � 10�2 6:84 � 10�2 1:28 � 10�2 7:0 � 10�3

Var(�gI gQ
/ 2:74 � 10�6 4:59 � 10�6 6:67 � 10�9 3:11 � 10�6 5:69 � 10�9 2:51 � 10�9

mse(�g1g2 / 5:8 � 10�3 1:1 � 10�3 1:31 � 10�5 7:02 � 10�4 3:59 � 10�5 1:26 � 10�5

Max(�g1g2 / 1:59 � 10�1 6:34 � 10�2 0:63 � 10�2 6:57 � 10�2 9:6 � 10�3 5:6 � 10�3

Var(�g1g2 / 1:24 � 10�4 1:77 � 10�6 7:38 � 10�10 1:22 � 10�6 3:0 � 10�9 4:39 � 10�10

As in [360], the derivation can be completed by replacing the variables of integration, � and  , with 
k;n D .2�n/=.4N0/C
.2�k/=.4PN0/C .� � �/=.4N0/ and ık;m D .2�m/=.2M/C .2�k/=.2PM/C . � �/=.2M/, respectively. Finally,

lim
N0;M!1

�gk;I gk;I .�/ D J0.2� f T
m �/J0.2� f R

m�/: (2.347)

The performance of the various models is now compared. All simulations use a normalized sampling rate of fmTs D :01

(fm D f T
m D f R

m are the maximum Doppler frequencies) and M D N0 D P D 8. For the P & S Det. model, NI D MI D 8 and
NQ D MQ D 9 are used to obtain a complex envelope with uncorrelated quadrature components. Using these parameters,
the mean square error (mse) and maximum deviations (Max) from the theoretical value (zero) have been calculated for the
normalized cross-correlations of the I and Q components, and for the normalized cross-correlations of the first and the second
faded envelopes. The results are shown in Table 2.2. Note that different simulation trials yield slightly different simulation
results. To estimate these differences, the variances are computed by averaging over 1000 simulation trials. The variances of
the normalized cross-correlations of the I and Q components, and the variances of the normalized cross-correlations of the
first and the second faded envelopes are also shown in Table 2.2. From Table 2.2, the Z & S Stat. model with Nstat D 1 has
cross-correlations similar to the P & S Det. model and the P & S Stat. model with Nstat D 1. The Z & S Stat. model with
Nstat D 30 performs similar to the P & S Stat. model with Nstat D 50 and significantly better than the P & S Det. model.
Increasing the number of simulation trials to Nstat D 50 yields a lower cross-correlation between the I and Q components of
the complex faded envelope.

Figure 2.54 shows that, for N0 D M D P D 8 and 30 simulation trials, the auto- and cross-correlations of the complex
faded envelopes produced by the Z & S Stat. model approach those of the reference model.

Figures 2.55 and 2.56 compare the variance of the time averaged auto-correlation functions of the quadrature components
averaged over 1000 simulation trials. For the statistical models, the variance is defined as VarŒ O�.�/� D EŒj O�.�/ �
limN!1�.�/j2�, where O�.�/ denotes the time averaged correlation functions and �.�/ denotes the statistical correlation
functions. For the P & S Det. model, the relevant quantity is the squared error j O�.�/ � �.�/j2. The variance for the A & H
model is obtained using (2.323). The variance provides a measure of the usefulness of the model in simulating the desired
channel with a finite N. A lower variance means that a smaller number of simulation trials are needed to achieve the desired
statistical properties and, hence, the corresponding model is better. Since the A & H model does not exploit the symmetry of
the double-ring model, as the other models do, for fair comparison N D 4N0 � 2M D 512 sinusoids are used when using the
A & H model. From Fig. 2.55, it can be concluded that the Z & S Stat. model with one simulation trial has a variance similar
to the P & S Det. model and a lower variance than the P & S Stat. model with one simulation trial. A single simulation trial
is chosen for this comparison because the P & S Det. model is an ergodic statistical simulation model that requires only a
single simulation trial. In any case, Fig. 2.55 shows that all three models do not perform as well as the A & H model for
a single simulation trial. Figure 2.56 shows that increasing the number of simulation trials to 30 in the P & S and Z & S
Stat. models yields a significantly lower variance of the auto-correlation function of the quadrature components. Figure 2.56
shows that the Z & S Stat. model with 30 simulation trials outperforms the P & S Stat. model with 30 simulation trials, and
outperforms P & S Det. model and the A & H model each with one simulation trial.
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Fig. 2.54 Theoretical and simulated auto-correlation functions and cross-correlation function of the first and the second faded envelopes produced
by the Z & S Stat. model with 30 simulation trials
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Fig. 2.55 Variance of the auto-correlation function of the quadrature components with a single simulation trial (Nstat D 1)

2.5.6 Symbol-Spaced Models

The baseband representation of a typical digital communication system consists of the concatenation of an up-sampler, a
discrete-time transmit filter or pulse shaping filter, digital-to-analog converter (DAC), waveform channel, analog-to-digital
converter (ADC), and discrete-time receiver filter or matched filter, and down-sampler as shown in Fig. 2.57. The channel
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Fig. 2.57 Baseband model for a typical digital communication system

g.t; �/ is assumed to have the structure in (2.304) or Fig. 2.50. Data symbols are input to the up-sampler, one every T seconds,
where T is the baud period. Usually, the bandwidth of the transmitted signal W will exceed the Nyquist frequency 1=2T; for
example, when root-raised cosine pulse shaping is used. Therefore, up-sampling is required at the transmitter so that the DAC
operates with sample period T=K, where K is the up-sampling factor. At the receiver, the ADC also operates with a sampling
period T=K. The up-sampling factor K must be chosen to at least satisfy the sampling theorem at the transmit side, i.e.,
K=T � 2W, but often K is made larger to facilitate timing synchronization in the receiver and to accommodate the Doppler
spreading that is introduced by the channel. Once the correct sample timing phase is determined, the sample sequence at the
output of the receiver filter can be down-sampled for further processing. For the purpose of illustration, down-sampling by
factor of K is assumed, so that symbol-spaced samples are taken at the output of the receiver filter.4

Form the above discussion, it is apparent that the overall channel from the input to the transmitter filter to the output of
the receiver filter can be modeled as a finite impulse response (FIR) filter as shown in Fig. 2.58, where the fgT

n Œk�g are the
tap gains. While it is true that the channel taps, fgi.t/g in the underlying waveform channel in Fig. 2.50 are uncorrelated for
WSSUS channels, the same cannot be said of the taps fgT

n Œk�g in the FIR filter of Fig. 2.58. The tap correlations in the symbol-
spaced model often leads to analytical intractability when evaluating the theoretical performance of digital communication
systems that operate on these channels. This difficulty is often overcome by assuming that the taps fgT

n Œk�g are uncorrelated
[90, 107, 140, 192, 206, 301, 320], when in fact they are not. However, when the same systems are evaluated by software
simulation, such modeling simplifications are unnecessary and in fact undesirable. A method is now described for generating
the tap coefficients fgT

n Œk�g with the proper cross-correlations in the case where linear modulation schemes are used. The
procedure can be readily extended to generate the required tap coefficients when fractional sampling is used, i.e., if K > 1.

4In practice, T=2-spaced samples at the output of the receiver filter are often used for further processing, such as equalization.
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Consider the arrangement shown in Fig. 2.59, where the equivalent analog representation of the transmit filter, ha.t/, and
receiver matched filter h�

a .�t/ are assumed. Pulses that are shaped by the transmit filter ha.t/ are transmitted through the
channel g.t; �/ and the receiver matched filter h�

a .�t/. The output of the receiver matched filter is sampled at symbol-spaced
intervals. Since the filters ha.t/, g.t; �/ and h�

a .�t/ are linear, their order may be exchanged as shown in Fig. 2.59, where the
overall pulse is equal to p.t/ D ha.t/ � h�

a .�t/. The overall pulse p.t/ is usually chosen to be a Nyquist pulse. For example,
p.t/ might be a raised cosine pulse, such that ha.t/ and h�

a .�t/ are root-raised cosine pulses. To obtain the symbol-spaced
channel tap coefficients, the pulse p.t/ is passed through the channel g.t; �/ and symbol-spaced samples are extracted at
the output. Assuming that the channel has the form in (2.304), the symbol-spaced samples are now shown to be a linear
combination of the elements of the tap gain vector

g.t/ D .g1.t/; g2.t/; : : : ; g`.t//
T : (2.348)

Suppose that a vector of M, symbol-spaced, tap coefficients

gT.t/ D .gT
1 .t/; gT

2 .t/; : : : ; gT
M.t//

T (2.349)

is to be generated. Then gT.t/ D Ag.t/, where g.t/ is defined in (2.348), and A is an M � ` real matrix. As shown in
Example 2.1 below, the entries of the matrix A are determined by the overall pulse p.t/, the delay profile � in (2.312), and
the timing phase of the sampler that extracts the symbol-spaced samples. The matrix A must be generated each time the delay
profile and/or the sampler timing phase changes. For systems where timing information is derived from a training sequence
or synchronization word that is inserted into every transmitted slot or burst, the sampler timing phase is usually adjusted on
a burst-by-burst basis and, consequently, the matrix A must be computed on a burst-by-burst basis as well.
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The autocovariance matrix of the symbol-spaced tap gain vector gT.t/ is

˚gT .�/ D 1

2
E
�

gT.t/gT H.tC �/
�

D 1

2
E
�

Ag.t/gH.tC �/AT
�

D A
1

2
E
�

g.t/gH.tC �/
�

AT

D A˚g.�/A
T :

For a WSSUS channel and 2-D isotropic scattering on each of the channel taps gi.t/,

˚g.�/ D
1

2
diagŒ˝1; ˝2; : : : ; ˝`�J0.2� fm�/: (2.350)

Example 2.1. Suppose that the channel g.t; �/ consists of two taps having the spacing �s D j�1.t/ � �0.t/j. In this
example, the two main taps in the symbol-spaced channel model, gT

0 .t/ and gT
1 .t/, are generated. Let

g.t/ D .g0.t/; g1.t//T

gT.t/ D .gT
0 .t/; g

T
1 .t//

T

and

gT.t/ D Ag.t/:

The entries of matrix A depend on the timing phase of the T-spaced samples taken at the output of the pulse generator.
In a practical system, the sampler timing phase is determined by the synchronization process in the receiver. Suppose
that the taps just happen to have equal strength, jg0.t/j2 D jg1.t/j2, when the sampler timing is being determined, i.e.,
during the training sequence or synchronization word. Furthermore, for the purpose of illustration, suppose that the
result of the sampler timing phase adjustment is such that the symbol-spaced taps have equal strength as well, i.e.,
jgT
0 .t/j2 D jgT

1 .t/j2. Figure 2.60 illustrates this situation. The entries of matrix A can be obtained by writing

gT
0 .t/ D p.�s=2 � T=2/g0.t/C p.��s=2 � T=2/g1.t/

gT
1 .t/ D p.�s=2C T=2/g0.t/C p.��s=2C T=2/g1.t/:

Hence,

A D
�

p.�s=2 � T=2/ p.��s=2 � T=2/

p.�s=2C T=2/ p.��s=2C T=2/

�

:

Now suppose that the combination of the transmitter and receiver filter is a raised cosine pulse5

p.t/ D sinc.t=T/ � cos.�ˇt=T/

1 � 4ˇ2t2=T2
; (2.351)

(continued)

5See Chap. 4 for a discussion of raised cosine pulse shaping.
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Example 2.1 (continued)

with roll-off factor ˇ D 0:35, and �s D T=4. Then

A D
�

p.�3T=8/ p.�5T=8/

p.5T=8/ p.3T=8/

�

D
�

0:7717 0:4498

0:4498 0:7717

�

2.6 Shadowing

It was shown earlier in (2.26) that the received envelope power is

˝p D EŒjg.t/j2� D
N
X

nD1
C2

n; (2.352)

where Cn depends on the cross sectional area of the nth local scatterer. In practice, the local mean is calculated by computing
the time average

Ő
p D

1

T

Z

T

jg.t/j2dt; (2.353)

where the time interval T is chosen to correspond to a spatial averaging interval that is large enough to average over the
envelope fades. In practice, this corresponds to a spatial averaging distance of about 20 wavelengths. Note that the required
averaging interval T will depend on velocity. The averaging interval must be small enough so that the fCng do not change
over the averaging interval. The location area is defined as the largest volume of space where this condition will hold
true. Sometimes ˝p is called the local mean because it is computed within a location area. If the receiver moves outside
the location area, the fCng will change due to the presence of large terrain features like hills, valley, and buildings. Therefore,
the local mean ˝p (or Ő p) changes with location in a process known as shadowing. The same statements can also be made
for the mean envelope ˝v D EŒjg.t/j� and its time average

Ő
v D

1

T

Z

T

jg.t/jdt: (2.354)

Empirical studies have shown that ˝p has the log-normal distribution
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p˝p
.x/ D 1

x�˝�
p
2�

exp

(

�
�

10log10fxg � �˝p .dBm/

�2

2�2˝

)

; (2.355)

where

�˝p .dBm/ D 10EŒlog10f˝pg�; (2.356)

�˝ is the shadow standard deviation in decibel units, and � D ln.10/=10. Note that since the local mean is in units of dBm
(decibels with respect to 1 mW), the units of ˝p in (2.355) are milliwatts (mW).

The mean value �˝p .dBm/ is sometimes called the area mean because it corresponds to an extended location area defined as
the largest volume of space where the fCng can be characterized as stationary random variables and N is a constant. Within
an extended location area, the mean envelope power �˝p

D EŒ˝p� is constant. The mean envelope power depends on the
propagation path loss between the transmitter and receiver, such that the path loss is constant within the extended location
area.

By using a transformation of random variables, it can be shown that ˝p .dBm/ D 10log10f˝pg has the Gaussian density

p˝p .dBm/.x/ D
1p
2��˝

exp

(

�
.x � �˝p .dBm//

2

2�2˝

)

: (2.357)

Note that the logarithm of the log-normal random variable yields a normal random variable.
Some confusion may arise in the literature because some authors [127, 128, 232] treat the mean envelope˝v as being log-

normally distributed with shadow standard deviation �˝ , while other authors [208, 227, 267] treat the mean square-envelope
˝p as being log-normally distributed with the same value of �˝ . Clearly, the mean envelope and mean square-envelope
are not the same, and one may wonder if the same shadow standard deviation should be used in each case. It is shown in
Appendix 2D that the shadow standard deviation �˝ is indeed the same in each case. However, with Ricean fading the means
differ by

�˝p .dBm/ D �˝v .dBm/ C 10log10fC.K/g; (2.358)

where

C.K/ D 4e2K.K C 1/
�1F

2
1.3=2; 1IK/

(2.359)

and 1F1.�; �I �/ denotes the confluent hypergeometric function.
The shadow standard deviation �˝ ranges from 5 to 12 dB with 8 dB being a typical value for macrocellular applications.

The shadow standard deviation increases slightly with frequency (0.8 dB higher at 1800 MHz than at 900 MHz), but has
been observed to be nearly independent radio path length, even for distances that are very close to the transmitter [227]. The
shadow standard deviation that is observed in microcells varies between 4 and 13 dB [40, 142, 143, 216, 228, 280]. Mogensen
[228] has reported �˝ D 6:5–8:2 dB at 900 MHz in urban areas, while Mockford et al. [227] report a value of 4.5 dB for
urban areas. Berg [40] and Goldsmith and Greenstein [142] report that �˝ is around 4 dB for a spatial averaging window
of 20 wavelengths and BS antenna heights of about 10 m. Several studies suggest that �˝ decreases with an increase in the
degree of urbanization or density of scatters. For example, the results presented by Mockford et al. [227] suggest that �˝ is
1.3–1.8 dB higher in a suburban environment than in an urban environment.

2.6.1 Shadow Simulation

One of the challenges when constructing a shadow simulator is to account for the spatial correlation of the shadows. Several
studies have investigated the spatial correlation of shadows [151, 152, 161, 170, 216]. One simple model has been suggested
by Gudmundson [152], where log-normal shadowing is modeled as a Gaussian white noise process that is filtered by a
first-order low-pass filter. With this model

˝kC1 .dBm/ D �˝k .dBm/ C .1 � �/vk; (2.360)
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where ˝k .dBm/ is the mean envelope or mean squared-envelope, expressed in decibels, that is experienced at index k, �
is a parameter that controls the spatial correlation of the shadows, and vk is a zero-mean Gaussian random variable with
�vv.n/ D Q�2ı.n/. It can be shown that the spatial autocorrelation function of ˝k .dBm/ as generated by (2.360) is

�˝.dBm/˝.dBm/.k/ D
1 � �
1C � Q�

2�jkj: (2.361)

Since the shadow variance is

�2˝ D �˝.dBm/˝.dBm/.0/ D
1 � �
1C � Q�

2 (2.362)

the autocorrelation of ˝k can be expressed as

�˝.dBm/˝.dBm/.k/ D �2˝�jkj: (2.363)

This approach generates shadows that decorrelate exponentially with distance. Mandayam et al. [214] have shown through an
extreme value analysis that log-normal shadows cannot decorrelate exponentially with distance. Nevertheless, in the absence
of anything better, Gudmundson’s model in (2.360) is still useful and effective.

While shadows decorrelate spatially, simulations are usually conducted in discrete-time. Therefore, to use the simulator
in (2.360), the spatial decorrelation parameter � must be related to the simulation index k. Suppose the shadows that are
experienced by a MS that is traveling with velocity v are to be modeled. The envelope (or squared-envelope) is sampled
every T seconds. In kT seconds the MS moves a distance vkT . Let �D be the shadow correlation between two points separated
by a distance of D m. Then the time autocorrelation of shadowing is

�˝.dBm/˝.dBm/.k/ � �˝.dBm/˝.dBm/.kT/ D �2˝�
.vT=D/jkj
D : (2.364)

Comparing (2.363) and (2.364), observe that � D �
.vT=D/
D . For typical suburban propagation at 900 MHz, it has been

experimentally verified by Gudmundson [150] that �˝ � 7:5 dB and �100 D 0:82. For typical microcellular propagation
at 1700 MHz, Gudmundson has also reported �˝ D 4:3 dB and �10 D 0:3.

2.6.2 Composite Shadowing–Fading Distributions

Sometimes it is desirable to obtain the composite envelope distribution due to shadowing and multipath-fading. Such a
composite distribution is relevant in cases where the MSs are slowly moving or stationary. In this case, the fading rate may
be so slow that entire codewords are either faded completely or not at all regardless of the interleaving depth that is used,
and the code fails. In this case, the composite shadow-fading distribution is useful for evaluating system coverage, i.e., the
fraction of the service area having an acceptable quality of service.

Two different approaches have been suggested in the literature for obtaining the composite shadow-fading distribution.
The first approach is to express the squared-envelope as a conditional density, conditioned on˝p, and then integrate over the
density of ˝p to obtain the composite distribution. This results in the composite shadow-fading distribution

p˛2c .x/ D
Z 1

0

p˛2j ˝p
.xjw/p˝p

.w/dw: (2.365)

For the case of Rayleigh fading, at any time instant t1

˝p D EŒ˛2.t1/� D 2b0 (2.366)

and, hence,

p˛2j ˝p
.xjw/ D x

w
e�x=w: (2.367)
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The composite squared-envelope distribution with Rayleigh fading and log-normal shadowing is

p˛2c .x/ D
Z 1

0

1

w
e�x=w 1

w�˝�
p
2�

exp

(

�
�

10log10fwg � �˝p .dBm/

�2

2�2˝

)

dw: (2.368)

where � D ln.10/=10. Unfortunately, this distribution does not exist in closed form, but can be efficiently evaluated using
Gauss–Hermite quadrature integration.

The second approach, originally suggested by Lee and Yeh [199], expresses the composite squared-envelope as the product
of the squared-envelope due to multipath-fading and shadow fading. Using this approach,

Ǫ 2c .t/ D ˛2.t/ �˝p.t/: (2.369)

Under the assumption that the fading and shadowing are independent random processes, both approaches lead to identical
results as is now shown. The composite squared-envelope in (2.369) is the product of two random variables at any time instant
t1. Hence, the corresponding density function of the squared-envelope can be obtained by using a bivariate transformation of
random variables and then integrating to obtain the marginal density. This leads to the composite density function

p Ǫ2c .x/ D
Z 1

0

1

w
p˛2

� x

w

�

p˝p
.w/dw: (2.370)

Again, consider the case of log-normal shadowing and Rayleigh fading. Using (2.54) and (2.355) gives

p Ǫ2c .x/ D
Z 1

0

1

˝pw
exp

�

� x

˝pw

�
1

w�˝�
p
2�

exp

(

�
�

10log10fwg � �˝p .dBm/

�2

2�2˝

)

dw: (2.371)

Observe that (2.368) and (2.371) are related by

p˛c
.x/ D ˝pp Ǫc

�

˝px
�

: (2.372)

Hence, if the faded envelope ˛.t/ in the second approach is assumed to have EŒ˛.t/2� D ˝p D 1, then ˛2c and Ǫ 2c will have
the exact same composite distribution. Although the above result may not matter much for analysis, it does have implications
for software simulation. When simulating the combined effects of fading and shadowing, the composite squared-envelope
can be obtained by generating the fading and shadowing processes separately and multiplying them together as shown in
(2.369). To do so, the faded envelope should be generated such that ˝p D 1.

2.6.2.1 Composite Gamma-Log-Normal Distribution

It is sometimes very useful to model the radio propagation environment as a shadowed Nakagami fading channel, because
the Nakagami distribution is mathematically convenient and can closely approximate a Rice distribution. The composite
distribution of the squared-envelope due to Nakagami fading and log-normal shadowing has the Gamma-log-normal density
function

p˛2c .x/ D
Z 1

0

�m

w

�m xm�1

�.m/
exp

n

�mx

w

o 1p
2���˝w

exp

(

�
.10log10fwg � �˝p .dBm//

2

2�2˝

)

dw: (2.373)

where � D ln.10/=10. As shown in Appendix 2E, the composite Gamma-log-normal distribution in (2.373) can be closely
approximated by a log-normal distribution with parameters

�.dBm/ D ��1 . .m/ � ln.m//C �˝p .dBm/

�2 D ��2�.2;m/C �2˝ (2.374)
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where  .�/ is the Euler psi function and �.�; �/ is Riemann’s zeta function as defined in Appendix 2E. When m D 1 the
approximation is valid for �˝ > 6 dB; when m D 2, �˝ > 6 must be greater than or equal to 4 dB; when m � 4, the
approximation is good for all �˝ [164].

The effect of Nakagami fading in (2.374) is to decrease the mean and increase the variance of the composite squared-
envelope. However, this affect decreases as the shape factor m increases (corresponding to less severe fading). For example,
with m D 1 (Rayleigh fading), �.dBm/ D �˝p .dBm/ � 2:50675 and �2 D �2˝ C 31:0215 while, with m D 8, �.dBm/ D
�˝p .dBm/ � 0:277 and �2 D �2˝ C 2:50972.

2.7 Path Loss Models

Path loss is the largest and most variable quantity in a communication link budget. It depends on frequency, antenna heights,
and distance and topography. A variety of theoretical and empirical path loss models exist in the literature. Our discussion
starts with a discussion of theoretical models, followed by empirical models.

2.7.1 Free Space Path Loss

Free-space path loss (FSPL) is proportional to the square of the distance between the transmitter and receiver, and also
proportional to the square of the frequency fc of the radio signal. The FSPL equation is

LFS D
�
4�d

�c

�2

D
�
4�dfc

c

�2

: (2.375)

FSPL is a combination of two effects: First, the intensity of an electromagnetic wave in free space decays with the square of
the radio path length, d, such that the received power per unit area or power spatial density (in watts per meter-squared) at
distance d is

˝r.d/ D ˝t

1

4�d2
; (2.376)

where ˝t is the total transmit power in watts. Note that this term is not frequency dependent.
The second effect is due to aperture, which determines how well an antenna picks up power from an incoming

electromagnetic wave. For an isotropic antenna,

˝p.d/ D ˝r.d/
�2c
4�
; (2.377)

where ˝p.d/ is the received power. Note that this is entirely dependent on wavelength, �c, which is how the frequency-
dependent behavior arises.

Using (2.376) and (2.377) gives the free space propagation path loss as

LFS .dB/ D 10log10

�
˝t

˝p.d/

�

D 10log10

(
�
4�d

�c

�2
)

D 10log10

(
�
4�dfc

c

�2
)

D 20log10ffcg C 20log10fdg � 147:55 dB: (2.378)
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2.7.2 Flat Earth Path Loss

The signals in land mobile radio environments do not experience free space propagation. A more appropriate theoretical path
loss model is one that assumes propagation over a flat reflecting surface, the Earth, as shown in Fig. 2.61. The length of the
direct path is

d1 D
p

d2 C .hb � hm/2 (2.379)

and the length of the reflected path is

d2 D
p

d2 C .hb C hm/2 (2.380)

Given that d � hbhm, it follows that d1 � d and d2 � d. However, since the wavelength is small, the direct and reflected
paths may add constructively or destructively over small distances. The carrier phase difference between the direct and
reflected paths is

�2 � �1 D
2�

�c

.d2 � d1/ (2.381)

Taking into account the phase difference, the received envelope power is

�˝p
D ˝t

�
�c

4�d

�2
ˇ
ˇ1C ae�jbej.�2��1/ˇˇ2 ; (2.382)

where a and b are the amplitude attenuation and phase change introduced by the flat reflecting surface. If a perfect specular
reflection is assumed, then a D 1 and b D � for small � and

�˝p
D ˝t

�
�c

4�d

�2 ˇ
ˇ
ˇ1 � ej. 2��c

�d/
ˇ
ˇ
ˇ

2

D 4˝t

�
�c

4�d

�2

sin2
�
�

�c

�d

�

; (2.383)

where �d D .d2 � d1/. Given that d � hb and d � hm, and applying the approximation
p
1C x � 1C x=2 for small x to

(2.379) and (2.380),

�d �
2hbhm

d
: (2.384)

Finally, the received envelope power is

�˝p
� 4˝t

�
�c

4�d

�2

sin2
�
2�hbhm

�cd

�

; (2.385)

where hb and hm are the heights of the BS and MS antennas, respectively. Under the condition that d � hbhm, (2.385)
reduces to

�˝p
� ˝t

�
hbhm

d2

�2

; (2.386)

where the small angle approximation sin x � x for small x has been invoked. Observe that when d � hbhm, the propagation
over a flat reflecting surface differs from free space propagation in two ways. First, the path loss is not frequency dependent
and, second, the envelope power is inversely proportional to the fourth power of the distance rather than the square of the
distance. Finally, the model in (2.386) shows that the received signal power is proportional to the product of the square of
the BS and MS antenna heights.
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Fig. 2.62 Propagation path loss with distance over a flat reflecting surface; hb D 7:5m, hm D 1:5m, fc D 1800MHz

Figure 2.62 plots the flat Earth path loss (FEPL)

LFE .dB/ D 10log10

(

˝t

�˝p

)

D �10log10

(

4

�
�c

4�d

�2

sin2
�
2�hbhm

�cd

�
)

dB (2.387)

against the distance d. Notice that the path loss and, hence, the received envelope power has alternate minima and maxima
when the path length is small. This propagation property has been noted in experiments by Milstein et al. [225]. The last
local maxima in the path loss occurs when

2�hbhm

�cd
D �

2
;

giving the break-point distance

dBP D
4hbhm

�cd
: (2.388)
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2.7.3 Empirical Path Loss Models

Several highly useful empirical models for macrocellular systems have been obtained by curve fitting experimental data.
Two of the more useful models for 900 MHz cellular systems are Hata’s model [250] based on Okumura’s prediction method
[161] and Lee’s model [196].

2.7.3.1 Okumura–Hata and CCIR Models

Hata’s empirical model [161] is simple to use, and distinguishes between various degrees of urbanization. The empirical data
for this model was collected by Okumura [250] in the city of Tokyo. The Okumura–Hata model is expressed in terms of the
carrier frequency 150 � fc � 1000 (MHz), BS antenna height 30 � hb � 200 (m), the MS antenna height 1 � hm � 10 (m),
and the distance 1 � d � 20 (km) between the BS and MS. Note the units of the parameters that are used in the model. The
model is known to match the experimental data from which is formed to within 1 dB for distances ranging from 1 to 20 km.
With the Okumura–Hata model, the path loss between two isotropic BS and MS antennas is:

Lp .dB/ D

8

<

:

AC B log10fdg for urban area
AC B log10fdg � C for suburban area
AC B log10fdg � D for open area

(2.389)

where

A D 69:55C 26:16log10ffcg � 13:82log10fhbg � a.hm/ (2.390)

B D 44:9 � 6:55 log10fhbg
C D 5:4C 2 .log10ffc=28g/2

D D 40:94C 4:78 .log10ffcg/2 � 18:33 log10ffcg

and

a.hm/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

.1:1 log10ffcg � 0:7/ hm � .1:56 log10ffcg � 0:8/

for medium or small city

�

8:28 .log10f1:54hmg/2 � 1:1 for fc � 200 MHz
3:2 .log10f11:75hmg/2 � 4:97 for fc � 400 MHz

for large city

(2.391)

Typical values from the Okumura–Hata “large city” model are plotted in Fig. 2.63, for a BS height of 70 m, a MS antenna
height of 1.5 m, and a carrier frequency of 900 MHz. The reader is cautioned that, due to a lesser degree of urbanization, the
path losses for Japanese suburban areas do not match North American suburban areas very well. The latter are more like the
quasi-open areas in Japan. Also, the North American urban areas have path losses more like the Japanese suburban areas.

To account for varying degrees of urbanization, the CCIR (Comité International des Radio-Communication, now ITU-R)
developed an empirical model for the path loss as:

Lp .dB/ D AC Blog10fdg � E; (2.392)

where A and B are defined in (2.390) with a.hm/ being the medium or small city value in (2.391). The parameter E accounts
for the degree of urbanization and is given by

E D 30 � 25log10f% of area covered by buildingsg; (2.393)

where E D 0 when the area is covered by approximately 16% buildings.
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Fig. 2.63 Path loss obtained
from the Okumura–Hata model;
hb D 70m, hm D 1:5m,
fc D 900Mhz
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2.7.3.2 Lee’s Area-to-Area Model

William C. Y. Lee’s area-to-area model [196] can be used to predict a path loss over flat terrain. If the actual terrain is
not flat, e.g., hilly, there will be large prediction errors, and other prediction models can be used [196]. Two parameters
are required for Lee’s area-to-area model; the received power at a 1 mile (1.6 km) point of interception, �˝p

.do/, and the
path-loss exponent, ˇ. The received signal power at distance d can be expressed as

�˝p
.d/ D �˝p

.do/

�
d

do

��ˇ �
f

fo

��n

˛0 (2.394)

or in decibel units

�˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇlog10

�
d

do

�

� 10nlog10

�
f

fo

�

C 10log10f˛0g; (2.395)

where d is in units of kilometers and do D 1:6 km. The parameter ˛0 is a correction factor used to account for different BS
and MS antenna heights, transmit powers, and antenna gains. The following set of nominal conditions are assumed in Lee’s
area-to-area model:

• frequency fo D 900MHz
• BS antenna height D 30.48 m
• BS transmit power D 10 watts
• BS antenna gain D 6 dB above dipole gain
• MS antenna height D 3 m
• MS antenna gain D 0 dB above dipole gain

If the actual conditions are different from those listed above, then the following parameters are computed:

˛1 D
�

BS antenna height (m)

30:48 m

�2

˛2 D
�

MS antenna height (m)

3 m

��

˛3 D
transmitter power

10 watts
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Table 2.3 Parameters for Lee’s
area-to-area model in various
propagation environments,
from [196]

Terrain �˝p .dBm/ .do/ ˇ

Free space �45 2

Open area �49 4.35

North American Suburban �61.7 3.84

North American Urban (Philadelphia) �70 3.68

North American Urban (Newark) �64 4.31

Japanese Urban (Tokyo) �84 3.05

˛4 D
BS antenna gain with respect to �c=2 dipole

4

˛5 D different antenna-gain correction factor at the MS (2.396)

From these parameters, the correction factor ˛0 is

˛0 D ˛1 � ˛2 � ˛3 � ˛4 � ˛5: (2.397)

The parameters ˇ and �˝p
.do/ have been found from empirical measurements, and are listed in Table 2.3.

Experimental data suggest that n in (2.395) ranges between 2 and 3 with the exact value depending upon the carrier
frequency and the geographic area. For fc < 450MHz in a suburban or open area, n D 2 is recommended. In an urban area
with fc > 450MHz, n D 3 is recommended. The value of � in (2.396), also determined from empirical data, is

� D
�

2 for a MS antenna height > 10 m
3 for a MS antenna height < 3 m

: (2.398)

The path loss Lp .dB/ is the difference between the transmitted and received envelope power, Lp .dB/ D �˝p .dBm/.d/ �
�˝t .dBm/ . To compare directly with the Okumura–Hata model in Fig. 2.63, we assume an isotropic BS antenna with 0 dB
gain, such that ˛4 D �6 dB. Then by using the same parameters as in Fig. 2.63, hb D 70m, hm D 1:5m, fc D 900 MHz, a
nominal BS transmitter power of 40 dBm (10 watts), and the parameters in Table 2.3 for �˝p .dBm/.do/ and ˇ, the following
path losses are obtained:

Lp .dB/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

85:74C 20:0 log10fdg Free Space
84:94C 43:5 log10fdg Open Area
98:68C 38:4 log10fdg Suburban
107:31C 36:8 log10fdg Philadelphia
100:02C 43:1 log10fdg Newark
122:59C 30:5 log10fdg Tokyo

(2.399)

These typical values from Lee’s area-to-area model are plotted in Fig. 2.64.

2.7.3.3 COST231-Hata Model

The COST231-Hata model is based on the proposal by Mogensen et al. [228] to extend the Okumura–Hata model for use
in the 1500–2000 MHz frequency range, where it is known that the Okumura–Hata model underestimates the path loss.
The COST231-Hata model is expressed in terms of the carrier frequency 1500 � fc � 2000 (MHz), BS antenna height
30 � hb � 200 (m), MS antenna height 1 � hm � 10 (m), and distance 1 � d � 20 (km). Note again that the parameters
must be used in the model with their specified units. The path loss as predicted by the COST231-Hata model is [80]

Lp .dB/ D AC Blog10fdg C C; (2.400)

where

A D 46:3C 33:9log10ffcg � 13:82log10fhbg � a.hm/
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Fig. 2.64 Path loss obtained by using Lee’s method; hb D 70m, hm D 1:5m, fc D 900MHz, and an isotropic BS antenna

B D 44:9 � 6:55 log10fhbg

C D

8

<

:

0 medium city and suburban areas
with moderate tree density

3 for metropolitan centers

Although both the Okumura and Hata and the COST231-Hata models are limited to BS antenna heights greater than
30 m, they can be used for lower BS antenna heights provided that the surrounding buildings are well below the BS antennas.
They should not be used to predict path loss in urban canyons. They should not be used for smaller ranges, where path loss
becomes highly dependent upon the local topography. The COST231-Hata model is good down to a path length of 1 km.

2.7.3.4 COST231-Walfish–Ikegami Model

The COST231-Walfish–Ikegami model was developed for microcellular systems and distinguishes between LoS and NLoS
propagation. The model is accurate for carrier frequencies in the range 800 � fc � 2000 (MHz), and path distances in the
range 0:02 � d � 5 (km).

LoS Propagation:

For LoS propagation in a street canyon, the path loss is

Lp .dB/ D 42:6C 26log10fdg C 20log10ffcg ; d � 20 m; (2.401)

where the first constant is chosen so that Lp is equal to the FSPL at a distance of 20 m. The model parameters are the distance
d (km) and carrier frequency fc (MHz).

NLoS Propagation:

As defined in Fig. 2.65, the path loss for non-line-of-sight (NLoS) propagation is expressed in terms of the following
parameters:
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Fig. 2.65 Definition of parameters used in the COST231-Walfish–Ikegami model

d D distance (m)

hb D BS antenna height over street level; 4 � hb � 50 (m)

hm D MS antenna height over street level; 1 � hm � 3 (m)

hRoof D nominal roof height of buildings (m)

�hb D hb � hRoof D height of BS relative to rooftops (m)

�hm D hRoof � hm D height of MS relative to rooftops (m)

w D width of streets (m)

b D building separation (m)

� D angle of incident wave with respect to street (degrees)

If no data on the structure of the buildings and roads are available, the following default values are recommended, b D
20 : : : 50 (m), w D b=2 (m), � D 90ı, and hRoof D 3 � number of floors C roof (m), where roof D 3 (m) pitched and
0 (m) flat.

The NLoS path loss is composed of three terms, viz.,

Lp .dB/ D
�

Lo C Lrts C Lmsd ; for Lrts C Lmsd � 0
Lo ; for Lrts C Lmsd < 0

; (2.402)

where

Lo D free-space loss D 32:4C 20log10fdg C 20log10ffcg
Lrts D roof-top-to-street diffraction and scatter loss

Lmsd D multi-screen diffraction loss:

Note that the expression for free-space loss differs from (2.378) because here the units of d are in kilometers and the units of
fc are in megahertz. The roof-top-to-street diffraction and scatter loss represents the coupling of the wave propagation along
the multi-screen path into the street where the MS is located, and is given by

Lrts D �16:9 � 10log10fwg C 10log10ffcg C 20log10f�hmg C Lori; (2.403)
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where

Lori D

8

<

:

�10C 0:354.�/ ; 0 � � � 35ı

2:5C 0:075.� � 35ı/ ; 35ı � � � 55ı

4:0 � 0:114.� � 55ı/ ; 55ı � � � 90ı
: (2.404)

is a street orientation loss.
The multi-screen diffraction loss is

Lmsd D Lbsh C ka C kdlog10fdg C kf log10ffcg � 9log10fbg; (2.405)

where

Lbsh D
�

�18log10f1C�hbg ; hb > hRoof

0 ; hb � hRoof
(2.406)

is the shadowing gain (negative loss) for cases when the BS antenna is above the rooftops. The parameters ka and kd depend
on the path length, d, and base station elevation with respect to the rooftops, �hb. The term ka accounts for the increase in
path loss when the BS antennas are situated below the roof tops of adjacent buildings, and is given by

ka D

8

<

:

54 ; hb > hRoof

54 � 0:8�hb ; d � 0:5 km and hb � hRoof

54 � 0:8�hbd=0:5 ; d < 0:5 km and hb � hRoof

: (2.407)

The terms kd and kf control the dependency of the multi-screen diffraction loss on the distance and frequency, respectively,
and are given by

kd D
�

18 ; hb > hRoof

18 � 15�hb=hRoof ; hb � hRoof
(2.408)

kf D �4C
�

0:7.fc=925 � 1/ ; medium city and suburban
1:5.fc=925 � 1/ ; metropolitan area

: (2.409)

The COST231-Walfish–Ikegami model works best for hb � hRoof. Large prediction errors can be expected for hb � hRoof.
The model is poor for hb � hRoof because the terms in (2.407) do not consider wave guiding in street canyons and diffraction
at street corners.

2.7.3.5 Street Microcells

For ranges less than 500 m and antenna heights less than 20 m, some empirical measurements have shown that the received
signal strength for LoS propagation along city streets can be described by the two-slope model [149, 160, 173, 267, 338, 351]

�˝p
D k˝t

da.1C d=g/b
; (2.410)

where˝t is the transmitted power, k is a constant of proportionality, and d (m) is the distance. For small path length distances,
free space propagation will prevail so that a D 2. The parameter g is called the break-point and ranges from 150 to 300 m
[149, 160, 173, 351]. At larger distances, an inverse-fourth to -eighth power law is experienced so that b ranges from 2 to
6 [160]. The model parameters that were obtained by Harley are listed in Table 2.4. Xia [358] has demonstrated that the
break-point occurs where the Fresnel zone between the transmit and receive antennas just touches the ground assuming a flat
surface. This distance is

g D 1

�c

s

.˙2 ��2/
2 � 2 .˙2 C�2/

�
�c

2

�2

C
�
�c

2

�4

; (2.411)
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Table 2.4 Two-slope path loss
parameters obtained by Harley,
from [160]

Base antenna
height (m) a b Break-point g (m)

5 2.30 �0.28 148.6

9 1.48 0.54 151.8

15 0.40 2.10 143.9

19 �0.96 4.72 158.3

Fig. 2.66 The corner effect in a
street microcell environment

Building

base

station

station

basemobile

250 m

250 m

where ˙ D hb C hm and � D hb � hm. For high frequencies this distance can be approximated as g D 4hbhm=�c, which
is the same distance as the last local maxima in the flat reflecting surface model in Sect. 2.7.2. Notice that the break-point is
dependent on frequency, with the break-point at 1.9 GHz being about twice that for 900 MHz.

Street microcells may also exhibit NLoS propagation when a MS rounds a street corner as shown in Fig. 2.66. In this
case, the average received signal strength can drop by as much as 25–30 dB over distances as small as 10 m for low antenna
heights in an area with multi-story buildings [61, 210, 233, 286, 324], and by 25–30 dB over distances of 45–50 m for low
antenna heights in a region with only one- or two-story buildings [286]. This phenomenon is known as the corner effect.

Grimlund and Gudmundson [149] have proposed an empirical street corner path loss model. Their model assumes LoS
propagation until the MS reaches a street corner. The NLoS propagation after rounding a street corner is modeled by assuming
LoS propagation from a virtual transmitter that is located at the street corner having a transmit power equal to the received
power at the street corner from the serving BS. That is, the received is given by

�˝p
D
(

k˝t

da.1Cd=g/b
d � dc

k˝t

da
c .1Cdc=g/b

� 1
.d�dc/a.1C.d�dc/=g/b

d > dc

; (2.412)

where dc (m) is the distance between the serving BS and the corner. For the scenario depicted in Fig. 2.66, the received
signal strength with this model is shown in Fig. 2.67. The heavy curves show the average received signal strength from the
two BSs as the MS traverses the dashed path shown in Fig. 2.66. These curves were obtained by using a D 2, b D 2,
g D 150m, and dc D 250m in (2.412), and assuming that �˝p

D 1 dBm at d D 1m. The dotted curves superimposed on
the heavy lines in Fig. 2.67 show the received signal strength with the combined effects of path loss, log-normal shadowing,
and multipath-fading. The latter two were obtained by using the simulators described in Sects. 2.6.1 and 2.5.2.2.

2.7.3.6 3GPP 3-D Path Loss Models

The 3GPP path loss models as described in [1] are valid from 2 to 6 GHz for different BS and MS antenna heights. The
distance definitions are defined in Fig. 2.68 for outdoor scenarios and Fig. 2.69 for outdoor–indoor scenarios. The 3GPP path
loss models are categorized into urban macrocell (UMa) and urban microcell (UMi) cases, corresponding to BS antenna
heights of 25 m or less and 25 m or more, respectively. The UMa and UMi cases are further categorized into LoS, NLoS, and
outdoor-to-indoor scenarios.



124 2 Propagation Modeling

Fig. 2.67 Received signal
strength for the street microcell
environment in Fig. 2.66. Solid
lines show the area mean signal
strength, while the dashed lines
account for shadowing and fading
as well. For this latter case,
�˝ D 6 dB and
�˝p .dBm/˝p .dBm/ .d/ D 0:1�2˝ at
d D 30m. For each BS, the
received signal strength is shown
when the MS is connected to that
particular BS and the MS moves
along the route in Fig. 2.66
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Fig. 2.68 Definition of d2D, and d3D for outdoor mobile stations, from [1]
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Fig. 2.69 Definition of d2Dout, d2Din, d3Dout and d3Din for indoor mobile stations, from [1]

LoS Probability

The various 3GPP path loss models make use of the probability of LoS condition. For microcells and outdoor MSs, the
probability of LoS is [1]

PLoS D min.18=d2D; 1/.1 � e�d2D=36/C e�d2D=36 (2.413)

For microcells and indoor MSs, the above formula is used with d2D replaced by d2Dout. For macrocells and outdoor MSs, the
probability of LoS is [1]

PLoS D
�

min.18=d2D; 1/.1 � e�d2D=63/C e�d2D=63
�

.1C C.d2D; hm// (2.414)

where

C.d2D; hm/ D
(

0 ; hm < 13m
�

hm�13
10

�1:5
g.d2D/ ; 13m � hm � 23m

(2.415)
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and

g.d2D/ D
�

.1:25e�6/d22Ded2D=150 ; d2D > 18m
0 ; otherwise

(2.416)

For macrocells and indoor MSs, the above formulas are used with d2D replaced by d2Dout. For frequencies above 6 GHz,
including mm-wave frequencies, the study in [158] recommends to use the above 3GPP LoS models.

Using the above LoS probability models, the 3GPP 3-D path loss models are defined below for various topographic
scenarios, as described in [1].

3D-UMa LoS

For macrocells with LoS conditions

LUMaLoS .dB/ D 22:0 log10.d3D/C 28:0C 20 log10.fc/ ; 10m < d2D < dBP (2.417)

LUMaLoS .dB/ D 40 log10.d3D/C 28:0C 20 log10.fc/ � 9 log10
�

d2BP C .hb � hm/
2
�

; dBP < d2D < 5000m

hb D 25mI 1:5m � hm � 22:5m (2.418)

The break-point distance is given by dBP D 4hbhmfc=c corresponding to the last local maxima in the flat earth model (2.388).
In the 3D-UMa scenario the effective antenna heights hb and hm are computed as follows: hb D Ohb � hE, hm D Ohm � hE,
where Ohb and Ohm are the actual antenna heights, and the effective environment height hE depends on the link between a BS
and a MS. For LoS links, hE D 1m with probability 1=.1CC.d2D; hm//, where the function C.d2D; hm/ is defined in (2.415).
Otherwise, hE is chosen from a discrete uniform distribution on the set f12; 15; : : : ; .hm � 1:5/g.

The shadow standard deviation is �˝ D 4 dB.

3D-UMa NLoS

For macrocells with NLoS conditions

LUMaNLOS .dB/ D max
˚

LUMaNLoS .dB/; LUMaLoS .dB/




; (2.419)

where

LUMaNLoS .dB/ D 161:04 � 7:1 log10.W/C 7:5 log10.hbuild/ (2.420)

�
�

24:37 � 3:7.hbuild=hb/
2
�

log10.hb/

C .43:42 � 3:1 log10.hb// .log10.d3D/ � 3/
C20 log10.fc/ �

�

3:2.log10.17:625//
2 � 4:97

�

� 0:6.hm � 1:5/

and

10m < d2D < 5000m

hbuild D average building height

W D street width

hb D 25m; 1:5m � hm � 22:5m; W D 20m; hbuild D 20m

Applicable ranges:

5m < hbuild < 50m

5m < W < 50m
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10m < hb < 150m

1:5m � hm � 22:5m

The shadow standard deviation is �˝ D 6 dB.

3D-UMa O-to-I

For macrocells with outdoor-to-indoor conditions

LUMaO�to�I .dB/ D Lb .dB/ C Ltw .dB/ C Lin .dB/ (2.421)

For a hexagonal cell layout:

Lb .dB/ D LUMa .dB/.d3D�out C d3D�in/

Ltw .dB/ D 20 (loss through wall)

Lin .dB/ D 0:5d2D�in (inside loss)

where

10m < d2D�out C d2D�in < 1000m

0m < d2D�in < 25m

hb D 25m; hm D 3.nfl � 1/C 1:5 ; nfl D 1; 2; 3; 4; 5; 6; 7; 8
d2D�in is assumed uniformly distributed between 0 and 25:

The shadow standard deviation is �˝ D 7 dB.
The building penetration loss (BPL) or “loss through wall” in the 3GPP 3D-UMa O-to-I model is 20 dB. However, this

will vary greatly depending on the building. Moreover, the building penetration loss increases with frequency. An empirical
BPL model was suggested in [158] as

BPL.dB/ D 10 log10
�

AC Bf 2c
�

; (2.422)

where fc is the frequency in GHz, A D 5 and B D 0:03 for low loss buildings and A D 10 and B D 5 for high loss buildings.

3D-UMi LoS

The microcell LoS path loss is the same as the macrocell LoS path loss LUMaLOS .dB/, except that hE D 1m with probability
one and the shadow standard deviation is �˝ D 3 dB.

3D-UMi NLoS

For a hexagonal cell layout

LUMiNLoS .dB/ D max
˚

LUMiNLoS .dB/; LUMiLoS .dB/




; (2.423)

where

LUMiNLoS .dB/ D 36:7 log10.d3D/C 22:7C 26 log10.fc/ � 0:3.hm � 1:5/ (2.424)
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10m < d2D < 2000m

hb D 10m

1:5m � hm � 22:5m

The shadow standard deviation is �˝ D 4 dB.

3D-UMi O-to-I

The microcell outdoor-to-indoor path loss is the same as the macrocell outdoor-to-indoor path loss LUMaO�to�I .dB/, except
that hb D 10m instead of hb D 25m. The shadow standard deviation remains at �˝ D 7 dB.

2.7.3.7 mm-Wave Path Loss Models

Next generation or 5G wireless systems will use frequencies from 600 MHz up to 100 GHz. Existing path loss models were
developed for frequencies up to 6 GHz. For frequencies above 6 GHz, new path loss models are required for both LoS and
NLoS environments.

Several models have been proposed for mm-wave path loss including the close-in (CI) path loss with a free-space reference
distance, the close-in path loss model with a frequency dependent path loss exponent (CIF), and the Alpha-Beta-Gamma
(ABG) path loss model, as described in [158].

The CI path loss model is defined by

LCI .dB/ D LFS .dB/.fc; 1m/C 10ˇlog10

�
d

1m

�

(2.425)

where LFS .dB/.fc; 1m/ represents the FSPL at a distance of 1 m, and fc is the frequency in Hz. From (2.378), the FSPL at 1 m
at frequency fc is given by

LFS .dB/.fc; 1m/ D 10log10

(
�
4� fc

c

�2
)

(2.426)

The CI path loss model requires only the path loss exponent ˇ, and ties the path loss to the FSPL at a distance of 1 m and
frequency fc.

The CIF model is an extension of the CI LoS path loss model that captures the frequency dependency of the path loss
across a range of operating frequencies. This is particularly important for wideband mm-wave systems, where the operating
bandwidth may be tens of Gigahertz.

LCIF .dB/ D LFS .dB/.fc; 1m/C 10ˇ
�

1C b

�
fc � fo

fo

��

log10

�
d

1m

�

(2.427)

where ˇ is again the path loss exponent, while b is an optimization parameter that captures the frequency dependency of the
path loss that balances at centroid frequency fo. The path loss increases with frequency when b is a positive value. When
b D 0 or fc D fo, the CIF path loss model reduces to the CI path loss model. The centroid frequency is determined according
to a weighted average of empirical data as

fo D
PK

kD1 fkNk
PK

kD1 Nk

(2.428)

where Nk is the number of path loss measurements at frequency fk.
The ABG path loss model is similar to Lee’s Area-to-Area path loss model in Sect. 2.7.3.2. The ABG path loss is given by

LABG .dB/ D ˛.dB/ C 10ˇlog10 .d/C 10
 log10 .fc/ (2.429)
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Table 2.5 Parameters for CI and ABG mm-wave path loss models, where SC stands for street canyon and OS stands for open square, from [158]

Scenario CI model parameters ABG model parameters

UMa-LoS ˇ D 2:00, �˝ D 4:1 dB N/A

UMa-NLoS ˇ D 3:00, �˝ D 6:8 dB ˛ D 19:20, ˇ D 3:40, 
 D 2:30, �˝ D 6:5 dB

UMi-SC-LoS ˇ D 1:98, �˝ D 3:1 dB N/A

UMi-SC-NLoS ˇ D 3:19, �˝ D 8:2 dB ˛ D 21:02, ˇ D 3:48, 
 D 2:34, �˝ D 7:8 dB

UMi-OS-LoS ˇ D 1:85, �˝ D 4:2 dB N/A

UMI-OS-NLos ˇ D 2:89, �˝ D 7:1 dB ˛ D 3:66, ˇ D 4:14, 
 D 2:43, �˝ D 7:0 dB

Table 2.6 Path loss exponents
and shadow standard deviations
for several different types of
buildings, from [18]

Building Frequency (MHz) ˇ �˝ (dB)

Retail stores 914 2.2 8.7

Grocery stores 914 1.8 5.2

Office, hard partition 1500 3.0 7.0

Office, soft partition 900 2.4 9.6

Office, soft partition 1900 2.6 14.1

where ˛.dB/ is a floating offset value in dB units, and 
 captures the frequency dependency of the model.
The usage of each path loss model will depend on the particular scenario. For outdoor mm-wave systems, two 3GPP

models have been proposed [158]. The first applies to BS antenna heights of 25 m or less, and is called the urban microcell
(UMi) model. The second applies to BS antenna heights of 25 m or more, and is called the urban macrocell (UMa) model. In
each case, there are LoS and NLoS scenarios. Table 2.5 shows the parameters of the CI and ABG mm-wave path loss models
for different environments.

2.7.3.8 Path Loss in Indoor Microcells

The path loss and shadowing characteristics for indoor microcells vary greatly from one building to the next. Typical path
loss exponents and shadow standard deviations are provided in Table 2.6 for several different types of buildings.

For multistory buildings, the signal attenuation between floors is important. Measurements have shown that the greatest
floor loss occurs when the transmitter and receiver are separated by a single floor. Typically, the floor loss is 15–20 dB for
one floor and an additional 6–10 dB per floor up to a separation of 4 floors. For 5 or more floors of separation, the overall
floor loss will increase only a few decibels for each additional floor. This effect is thought to be caused by signals diffracting
up the sides of the building and signals scattering off the neighboring buildings. Also important for the deployment of indoor
wireless systems is the building penetration loss. This loss depends on the frequency and height of the building. Turkmani
et al. [323] have shown that the building penetration losses decrease with increasing frequency, in particular they are 16.4,
11.6, and 7.6 dB at 441, 896.5, and 1400 MHz, respectively. In general, the building penetration loss for signals propagating
into a building tends to decrease with height, the reason being that a LoS path is more likely to exist at increased height.
The building penetration loss decreases by about 2 dB per floor from ground level up to about 9–15 floors and then increases
again [339]. Windows also have a significant effect on penetration loss. Plate glass provides an attenuation of about 6 dB,
while lead lined glass provides an attenuation anywhere from 3 to 30 dB.

Appendix 2A: COST 207 Channel Models

The COST 207 study has specified typical realizations for the power-delay profile in the following environments; Typical
Urban (TU), Bad Urban (BA), Reduced TU, Reduced BU, Rural Area (RA), and Hilly Terrain (HT) [79]. The models below
are identical to the COST 207 models, except that fractional powers have been normalized so as to sum to unity, i.e., the
envelope power is normalized to unity.
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Table 2.7 COST 207 Typical Urban (TU) (�� D 1:0�s) and Bad Urban (BU) (�� D 2:5�s) power-delay profiles, from [79]

Typical Urban (TU) Bad Urban (BU)

Delay �s Fractional power Doppler category Delay �s Fractional power Doppler category

0.0 0.092 CLASS 0.0 0.033 CLASS

0.1 0.115 CLASS 0.1 0.089 CLASS

0.3 0.231 CLASS 0.3 0.141 CLASS

0.5 0.127 CLASS 0.7 0.194 GAUS1

0.8 0.115 GAUS1 1.6 0.114 GAUS1

1.1 0.074 GAUS1 2.2 0.052 GAUS2

1.3 0.046 GAUS1 3.1 0.035 GAUS2

1.7 0.074 GAUS1 5.0 0.140 GAUS2

2.3 0.051 GAUS2 6.0 0.136 GAUS2

3.1 0.032 GAUS2 7.2 0.041 GAUS2

3.2 0.018 GAUS2 8.1 0.019 GAUS2

5.0 0.025 GAUS2 10.0 0.006 GAUS2

Table 2.8 COST 207 Reduced Typical Urban (TU) (�� D 1:0�s) and Reduced Bad Urban (BU) (�� D 2:5�s) power-delay profiles, from [79]

Typical Urban (TU) Bad Urban (BU)

Delay �s Fractional power Doppler category Delay �s Fractional power Doppler category

0.0 0.189 CLASS 0.0 0.164 CLASS

0.2 0.379 CLASS 0.3 0.293 CLASS

0.5 0.239 CLASS 1.0 0.147 GAUS1

1.6 0.095 GAUS1 1.6 0.094 GAUS1

2.3 0.061 GAUS2 5.0 0.185 GAUS2

5.0 0.037 GAUS2 6.6 0.117 GAUS2

Table 2.9 COST 207 Typical
Rural (non-hilly) Area (RA)
power-delay profile
(�� D 0:1�s), from [79]

Delay Fractional Doppler
�s power category

0.0 0.602 RICE

0.1 0.241 CLASS

0.2 0.096 CLASS

0.3 0.036 CLASS

0.4 0.018 CLASS

0.5 0.006 CLASS

Table 2.10 COST 207 Typical
Hilly Terrain (HT) power-delay
profile (�� D 5:0�s), from [79]

Delay Fractional Doppler
�s power category

0.0 0.026 CLASS

0.1 0.042 CLASS

0.3 0.066 CLASS

0.5 0.105 CLASS

0.7 0.263 GAUS1

1.0 0.263 GAUS1

1.3 0.105 GAUS1

15.0 0.042 GAUS2

15.2 0.034 GAUS2

15.7 0.026 GAUS2

17.2 0.016 GAUS2

20.0 0.011 GAUS2
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Table 2.11 COST 207 Reduced
Hilly Terrain (HT) power-delay
profile (�� D 5:0�s), from [79]

Delay Fractional Doppler
�s power category

0.0 0.413 CLASS

0.1 0.293 CLASS

0.3 0.145 CLASS

0.5 0.074 CLASS

15.0 0.066 GAUS2

17.2 0.008 GAUS2

Appendix 2B: COST 259 Channel Models

The 3GPP standards group has defined three typical realizations for the COST 259 models; Typical Urban (TUx), Rural Area
(RAx), and Hilly Terrain (HTx), where x is the MS speed in km/h, [113]. Default speeds are 3, 50, and 120 km/h for the TUx
model, 120 and 250 km/h for the RAx model, and 120 km/h for the HTx model.

Table 2.12 COST 259 Typical
Urban (TUx) channel model,
from [113]

Delay Fractional Doppler
�s power category

0.000 0.26915 CLASS

0.217 0.17378 CLASS

0.512 0.09772 CLASS

0.514 0.09550 CLASS

0.517 0.09550 CLASS

0.674 0.07079 CLASS

0.882 0.04571 CLASS

1.230 0.02344 CLASS

1.287 0.02042 CLASS

1.311 0.01950 CLASS

1.349 0.01820 CLASS

1.533 0.01259 CLASS

1.535 0.01259 CLASS

1.622 0.01047 CLASS

1.818 0.00708 CLASS

1.836 0.00692 CLASS

1.884 0.00617 CLASS

1.943 0.00550 CLASS

2.048 0.00447 CLASS

2.140 0.00372 CLASS

Table 2.13 COST 259 Rural
Area (RAx) channel model, from
[113]

Delay Fractional Doppler
�s power category

0.000 0.30200 Direct path, f0 D 0:7fm

0.042 0.22909 CLASS

0.101 0.14454 CLASS

0.129 0.11749 CLASS

0.149 0.10000 CLASS

0.245 0.04898 CLASS

0.312 0.02951 CLASS

0.410 0.01413 CLASS

0.469 0.00912 CLASS

0.528 0.00575 CLASS
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Table 2.14 COST 259 Hilly
Terrain (HTx) channel model,
from [113]

Delay Fractional Doppler
�s power category

0.000 0.43652 CLASS

0.356 0.12882 CLASS

0.441 0.09550 CLASS

0.528 0.07079 CLASS

0.546 0.06607 CLASS

0.609 0.05370 CLASS

0.625 0.05012 CLASS

0.842 0.02399 CLASS

0.916 0.01862 CLASS

0.941 0.01698 CLASS

15.000 0.01738 CLASS

16.172 0.00537 CLASS

16.492 0.00389 CLASS

16.876 0.00263 CLASS

16.882 0.00263 CLASS

16.978 0.00240 CLASS

17.615 0.00126 CLASS

17.827 0.00102 CLASS

17.849 0.00100 CLASS

18.016 0.00085 CLASS

Appendix 2C: ITU Channel Models

ITU models have been developed indoor office, outdoor to indoor and pedestrian, and vehicular-high antenna [276]. The
models below are identical to the ITU models, except that fractional powers have been normalized so as to sum to unity, i.e.,
the envelope power is normalized to unity.

Table 2.15 ITU indoor office environment power-delay profiles, from [276]

Channel A Channel B

Delay Fractional Doppler Delay Fractional Doppler
ns power category ns power category

0 0.61722 FLAT 0 0.57833 FLAT

50 0.30934 FLAT 100 0.25245 FLAT

110 0.06172 FLAT 200 0.11020 FLAT

170 0.00978 FLAT 300 0.04811 FLAT

290 0.00155 FLAT 500 0.00917 FLAT

310 0.00039 FLAT 700 0.00175 FLAT

Table 2.16 ITU outdoor to indoor and pedestrian power-delay profiles, from [276]

Channel A Channel B

Delay Fractional Doppler Delay Fractional Doppler
ns power category ns power category

0 0.88935 CLASSIC 0 0.40569 CLASSIC

110 0.09529 CLASSIC 200 0.32976 CLASSIC

190 0.01069 CLASSIC 800 0.13128 CLASSIC

410 0.00467 CLASSIC 1200 0.06430 CLASSIC

2300 0.06733 CLASSIC

3700 0.00165 CLASSIC
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Table 2.17 ITU vehicular power-delay profiles, from [276]

Channel A Channel B

Delay Fractional Doppler Delay Fractional Doppler
ns power category ns power category

0 0.48500 CLASSIC 0 0.34020 CLASSIC

310 0.38525 CLASSIC 300 0.60498 CLASSIC

710 0.06106 CLASSIC 8900 0.03175 CLASSIC

1090 0.04850 CLASSIC 12,900 0.00605 CLASSIC

1730 0.01534 CLASSIC 17,100 0.00183 CLASSIC

2510 0.00485 CLASSIC 20,000 0.01520 CLASSIC

Appendix 2D: Derivation of Eq. (2.358)

This Appendix derives an expression for the second moment of a Ricean random variable in terms of its first moment. A
Ricean random variable X has probability density function, cf., (2.57)

pX.x/ D
x

b0
exp

�

�x2 C s2

2b0

�

I0

�
xs

b0

�

x > 0 (2D.1)

and moments [272]

EŒXn� D .2b0/
n
2 exp

�

� s2

2b0

�

�
�

.2C n/=2
�

1F1

�
nC 2
2

; 1I s2

2b0

�

(2D.2)

where �. � / is the Gamma function, and 1F1.a; bI x/ is the confluent hypergeometric function. The first moment of X is

EŒX� � ˝v D .2b0/
1
2 e�K

p
�

2
1F1.3=2; 1IK/; (2D.3)

where K D s2=2b0 is the Rice factor. The second moment of X is

EŒX2� � ˝p D 2b0e
�K

1F1.2; 1IK/
D 2b0.K C 1/: (2D.4)

Substituting 2b0 from (2D.3) into (2D.4) gives

˝p D
4e2K .K C 1/
� 1F21.3=2; 1IK/

˝2
v D C.K/ ˝2

v : (2D.5)

Note that C.0/ D 4=� , C.1/ D 1, and 4=� � C.K/ � 1 for 0 � K � 1.

Appendix 2E: Derivation of Eq. (2.374)

From (2.373), the composite distribution for the squared-envelope, ˛2c , is

p˛2c .x/ D
Z 1

0

�m

w

�m xm�1

�.m/
exp

n

�mx

w

o 1p
2���˝w

exp

(

�
.10log10fwg � �˝p .dB//

2

2�2˝

)

dw; (2E.1)
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where � D ln.10/=10. The mean of the approximate log-normal distribution is

�.dBm/ D EŒ10log10f˛2c g�

D
Z 1

0

Z 1

0
10log10fxg

�m

w

�m xm�1

�.m/
exp

n

�mx

w

o 1p
2���˝w

exp

(

�
.10log10fwg � �˝p .dB/ /

2

2�2˝

)

dwdx

D 10mm

p
2���˝�.m/

Z 1

0

1

wmC1 exp

(

�
.10log10fwg � �˝p .dB/ /

2

2�2˝

)
Z 1

0
log10fxg xm�1 exp

n

�mx

w

o

dxdw: (2E.2)

Assuming that m is an integer, the inner integral becomes [147, 4.352.2]

Z 1

0

log10fxgxm�1 exp
n

�mx

w

o

dx D �.m/wm

mm ln 10
. .m/ � ln.m=w// : (2E.3)

Then by using the change of variables x D 10log10fwg,

�.dBm/ D ��1 . .m/ � ln.m//C �˝p .dB/ ; (2E.4)

where  . � / is the Euler psi function, and

 .m/ D �CC
m�1
X

kD1

1

k
(2E.5)

and C ' 0:5772 is Euler’s constant. Likewise, the second moment of the approximate log-normal distribution is

EŒ.10log10.˛
2
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0

Z 1

0
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w
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)
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o
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(2E.6)

Assuming again that m is an integer, the inner integral is [147, 4.358.2]

Z 1

0

.10log10.x//
2

xm�1 exp
n

�mx

w

o

dx D .m � 1/Šwm

mm ln 10

�

. .m/ � ln.m=w//2 C �.2;m/
�

leading to

EŒ.10log10f˛2c g/2� D �2
�

. .m/ � ln.m//2 �2˝p .dB/
C �.2;m/

�

C 2� . .m/ � ln.m// �˝p .dB/ C �2 C �2˝p .dB/
;

(2E.7)

where

�.2;m/ D
1
X

kD0

1

.mC k/2
(2E.8)

is Reimann’s zeta function. Finally, the variance of the approximate log-normal distribution is

�2 D EŒ.10log10f˛2c g/2� � E2Œ10log10f˛2c g�
D ��2�.2;m/C �2˝ : (2E.9)
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Problems

2.1. Suppose that r.t/ is a wide-sense stationary (WSS) bandpass random process, such that

r.t/ D gI.t/ cos.2� fct/ � gQ.t/ sin.2� fct/

(a) Show that the auto- and cross-correlations of gI.t/ and gQ.t/ must satisfy the following conditions:

�gIgI
.�/ D �gQgQ

.�/

�gI gQ
.�/ D ��gQgI

.�/

(b) Under the conditions in part a) show that the autocorrelation of r.t/ is

EŒr.t/r.tC �/� D �gIgI
.�/ cos.2� fc�/ � �gIgQ

.�/ sin.2� fc�/:

2.2. What is the maximum Doppler shift for the GSM mobile cellular system on the “downlink” from the base station to
the mobile unit (935–960 MHz RF band)? What is it on the “uplink” direction, or mobile to base (890–915 MHz RF band)?
Assume a high-speed train traveling at a speed of v D 250 km/h.

2.3. This problem considers two ray channels exhibiting either frequency selective or time selective behavior.

(a) Consider the transmission of a bandpass signal having complex envelope Qs.t/ on a channel such that the received complex
envelope is

Qr.t/ D ˛Qs.t/C ˇQs.t � �1/;

where ˛ and ˇ are real valued.

i) Find the channel impulse response g.t; �/.
ii) Find the channel magnitude response jG.t; f /j.

iii) Find the channel phase response †G.t; f /.

(b) Consider the transmission of a bandpass signal having complex envelope Qs.t/ on a channel such that the received complex
envelope is

Qr.t/ D ˛Qs.t/C ˇQs.t/ej2� fd t;

where ˛ and ˇ are real valued.

i) Find the channel impulse response g.t; �/.
ii) Find the channel magnitude response jG.t; f /j.

iii) Find the channel phase response †G.t; f /.

2.4. A wireless channel is characterized by the time-variant impulse response

g.t; �/ D
�

1 � �
T

�

cos .˝tC �0/ ; 0 � � � T ;

where T D 0:05ms, ˝ D 10� , and �0 2 .��;C�� is a constant.

(a) Determine the channel time-variant transfer function.
(b) Given an input signal having the complex envelope

Qs.t/ D
�

1; 0 � t � Ts

0; otherwise
;
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Fig. 2.70 Scenario for
Problem 2.7 parts (a) and (b)

θ

vβ

v

β

θ

(a)

(b)

determine the complex envelope of the signal at the output of the channel, Qr.t/. Make sure to consider cases when
0 < Ts < T and 0 < T < Ts, separately.

(c) Consider digital modulation scheme with a modulated symbol interval Ts. If the channel fading is frequency selective,
specify the relation between Ts and T .

2.5. Suppose that an omnidirectional antenna is used and the azimuth angle-of-arrival distribution, p.�/, is given by (2.52).
Find the Doppler power spectrum Sgg.f /.

2.6. A very useful model for a non-isotropic scattering environment assumes that the azimuth angle-of-arrival distribution
is described by the von Mises pdf in (2.51).

(a) Assuming an isotropic receiver antenna, calculate the received Doppler power spectrum, Sgg.f /.
(b) Under what conditions are the quadrature components gI.t/ and gQ.t/ uncorrelated?

2.7. Determine and plot the (normalized) power spectral densities Sgg.f / for the following cases. Assume 2-D isotropic
scattering;

(a) A vertical loop antenna in the plane perpendicular to vehicle motion, G.�/ D 3
2

sin2.�/.

(b) A vertical loop antenna in the plane of vehicle motion, G.�/ D 3
2

cos2.�/.
(c) A directional antenna of beamwidth ˇ directed perpendicular to vehicle motion with (see Fig. 2.70a)

G.�/ D
�

G0 ; j�2 � � j < ˇ=2
0 ; otherwise

:

(d) A directional antenna of beamwidth ˇ directed along vehicle motion with (see Fig. 2.70b)

G.�/ D
�

G0 ; j� j < ˇ=2
0 ; otherwise

:

2.8. Consider a narrow-band channel with a 700 MHz carrier frequency. The complex channel gain at a mobile station is
g.t/ D gI.t/C jgQ.t/, such that

SgI gI
.f / D

(

rect
�

f

200

�

; jf j � 100Hz

0; elsewhere

SgI gQ
.f / D 0:
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(a) What is the speed of the mobile station?
(b) What is the cross-correlation function �gIgQ

.�/ of the I and Q components of the faded envelope?
(c) If antenna diversity is deployed at the mobile station, what are the possible spatial separations between the antenna

elements such that the corresponding faded envelopes will be uncorrelated?
(d) Write down an expression for �gQgQ

.�/.

2.9. Consider a Ricean fading channel with Rice factor K and average envelope power˝p. Assume that the means mI.t/ and
mQ.t/ of the in-phase and quadrature components are given by (2.59) and (2.60), respectively. Derive an integral expression
for the probability density function of the envelope phase in terms of K and ˝p.

2.10. Consider a 2-D isotropic scattering channel. Show that the psd of the received envelope ˛.t/ D jg.t/j is given by (2.77).

2.11. Suppose that the Doppler spectrum is given by

Sgg.f / D Arect

�
f C f1

Wd

�

C Arect

�
f � f1

Wd

�

where

rect

�
f

Wd

�

D
�

1 ; jf j � Wd=2

0 ; elsewhere

and A, f1, and Wd are constants.

(a) Sketch the Doppler spectrum.
(b) Find the envelope correlation function

�gg.�/ D �gIgI
.�/C j�gIgQ

.�/

(c) For which values of � are g.t/ and g.tC �/ uncorrelated?

2.12. Suppose that the Doppler power spectrum is given by the following function:

Sgg.f / D A cos

�
� f

2fm

�

rect

�
f

2fm

�

(a) Find the corresponding envelope autocorrelation function �gg.�/.
(b) For what values of � are gI.t/ and gQ.tC �/ uncorrelated?
(c) Given that

˝p D �gg.0/ D
Z fm

�fm

Sgg.f /df

find the value of A in terms of ˝p.

2.13. Consider the non-isotropic scattering environment shown in Fig. 2.7. Show that the continuous portion of the psd of
the received envelope ˛.t/ D jg.t/j is given by (2.79).

2.14. Consider a wide-sense stationary zero-mean complex Gaussian random process g.t/ having the autocorrelation
function �gg.�/ D �gI gI

.�/C j�gIgQ
.�/. Show that the autocorrelation and autocovariance functions of the squared-envelope

˛2.t/ D jg.t/j2 are given by (2.82) and (2.83), respectively.

2.15. Consider a wide-sense stationary non-zero-mean complex Gaussian random process g.t/ D gI.t/C jgQ.t/, where

gI.t/ D OgI.t/C mI.t/

gQ.t/ D OgQ.t/C mQ.t/
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Fig. 2.71 Mobile with
directional antenna for
Problem 2.19

mobile

v

beam of antenna

φ φ

and mI.t/ and mQ.t/ are the means of gI.t/ and gQ.t/, respectively. Show that the autocorrelation and autocovariance functions
of the squared-envelope ˛2.t/ D jg.t/j2 are given by (2.87) and (2.90), respectively.

2.16. Establish the equivalence between (2.102) and (2.103).

2.17. A flat Rayleigh fading signal at 6 GHz is received by a vehicle traveling at 80 km/hr.

(a) Determine the number of positive-slope zero crossings of the rms envelope level that occur over a 5 s interval.
(b) Determine the average duration of a fade below the rms envelope level.
(c) Determine the average duration of a fade at a level of 20 dB below the rms envelope level.

2.18. Consider a situation where the received envelope is Rayleigh faded (K D 0), but the Doppler power spectrum Sc
gg.f /

is not symmetrical about f D 0, i.e., a form of non-isotropic scattering. Show that the envelope level crossing rate is given by

LR D
s

b2

b0
� b21

b20
� �p

�
e��2 ;

where

� D R
p

˝p

D Rp
2b0

:

and the bi are defined in (2.102) with fq D 0.

2.19. Consider the situation in Fig. 2.71, where the mobile station employs a directional antenna with a beam width of �ı.
Assume a 2-D isotropic scattering environment.

(a) In receiving a radio transmission at 850 MHz, a Doppler frequency of 20–60 Hz is observed. What is the beam width of
the mobile station antenna, and how fast is the mobile station traveling?

(b) Suppose that the mobile station antenna has a beam width of 13ı. What is the level crossing rate with respect to the rms
envelope level, assuming that the mobile station is traveling at a speed of 30 km/h?

2.20. Consider a cellular radio system with fixed base stations and moving mobile stations. The channel is characterized
by flat Rayleigh fading channel with two-dimensional isotropic scattering. The mobile station employs omni-directional
antennas and the system operates at an RF carrier frequency of 900 MHz.

(a) Determine the positive going level crossing rate at the normalized envelope level � D 1, when the maximum Doppler
frequency is fm D 20Hz. Compute the velocity of the mobile station.

(b) Now suppose that the mobile station is travelling at a speed of 24 km/h. Calculate the average fade duration (AFD) and
level crossing rate (LCR) at the normalized envelope level � D 0:294.

2.21. A vehicle experiences 2-D isotropic scattering and receives a Rayleigh faded 900 MHz signal while traveling at a
constant velocity for 10 s. Assume that the local mean remains constant during travel, and the average duration of fades
10 dB below the rms envelope level is 1 ms.

(a) How far does the vehicle travel during the 10 s interval?
(b) How many fades is the envelope expected to undergo that are 10 dB below the rms envelope level during the 10 s interval?

2.22. A vehicle receives a Ricean faded signal where the specular component is at the frequency fc and scatter component
is due to 2-D isotropic scattering.

(a) Compute the average duration of fades that 10 dB below the rms envelope level for K D 0; 7; 20, and a maximum
Doppler frequency of fm D 20Hz.
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(b) Suppose that data is transmitted using binary modulation at a rate of 1 Mbps, and an envelope level that is 10 dB below
the rms envelope level represents a threshold between “error-free” and “error-prone” conditions. During error-prone
conditions, bits are in error with probability one-half. Assuming that the data is transmitted in 10,000-bit packets, how
many bits errors (on the average) will each transmitted packet contain?

2.23. Show that for wide-sense stationary (WSS) channels

�H.f ;mI �; �/ D  H.f ;mI �/ı.� � �/
�S.�; �I �; �/ D  S.�; �I �/ı.� � �/:

That is, the channel correlation functions �H.f ;mI �; �/ and �S.�; �I �; �/ have a singular behavior with respect to the
Doppler shift variable. What is the physical interpretation of this property?

2.24. Show that for uncorrelated scattering (US) channels

�g.t; sI �; �/ D  g.t; sI �/ı.� � �/
�S.�; �I �; �/ D  S.� I �; �/ı.� � �/:

That is, the channel correlation functions �g.t; sI �; �/ and �S.�; �I �; �/ have a singular behavior with respect to the time
delay variable. What is the physical interpretation of this property?

2.25. Given the channel input signal Qs.t/ and the channel delay-Doppler spread function S.�; �/, show that the channel
output signal is

Qr.t/ D
Z 1

�1

Z 1

�1
Qs.t � �/S.�; �/e�j2� f �d�d�:

How do you interpret the channel function S.�; �/?

2.26. Suppose that the spaced-time spaced-frequency correlation function of a WSSUS channel has the following form

�T.�f I�t/ D exp f�bj�tjg 1

aC j2��f
:

(a) Find the corresponding channel correlation function  g.�tI �/.
(b) Find the corresponding scattering function  S.�I �/.
(c) What is the average delay spread, �� , and rms delay spread ��?

2.27. The scattering function for a WSSUS scattering channel is given by

 S.�; �/ D ˝p �
2a

a2 C .2��/2 � be�b�u.�/:

(a) What is the spaced-time spaced-frequency correlation function?
(b) What is the average delay?
(c) What is the rms delay spread?

2.28. The scattering function for a WSSUS channel is given by

 S.�; �/ D
(

˝p

100
be�b� ; 0 � j�j � 50Hz; 0 � � � 1

0; elsewhere

(a) What is the speed of the mobile station?
(b) What is the channel correlation function  g.�tI �/?
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(c) If the faded envelope is sampled, gk D g.kTs/, what sample spacings Ts will yield uncorrelated samples, gk?
(d) What is the envelope level crossing rate, LR?

2.29. The frequency correlation function of a channel is defined as

�T.�f /
�D �T.�f ; �t D 0/

where �T.�f ; �t/ is the spaced-time, spaced-frequency correlation function. Suppose that

�T.�f / D
A

1C j2��f =fo

(a) Find the power-delay profile of the channel  g.�/.
(b) Find the average delay �� of the channel.

2.30. Consider a linear time-invariant channel consisting of two equal rays

g.t; �/ D ı.�/C ı.� � �1/:

(a) Derive an expression for magnitude response of the channel jT.f ; t/j and sketch showing all important points.
(b) Repeat for the phase response of the channel †T.f ; t/.

2.31. Consider a linear time-invariant channel having the impulse response

g.t; �/ D ı.�/C 2ı.� � �1/C ı.� � 2�1/:

(a) Derive a closed-form expression for magnitude response of the channel jT.f ; t/j and sketch showing all important points.
(b) Repeat part a) for the phase response of the channel †T.f ; t/.
(c) What is the mean delay and rms delay spread of the channel.

2.32. Consider a linear time-invariant channel having the impulse response

g.t; �/ D 1p
L

L
X

kD1
ı.� � .k � 1/�� /

(a) Find the magnitude response jT.f /j and phase response †T.f / of the channel, where T.f / is the time-invariant transfer
function of the channel. Simplify your expressions as much as possible. Plot jT.f /j and †T.f /.

(b) What is the mean delay �� and rms delay spread �� of this channel? The following may be useful:

n
X

kD1
k D n.nC 1/

2

n
X

kD1
k2 D n.nC 1/.2nC 1/

6

n
X

kD0
k3 D n2.nC 1/2

4
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Fig. 2.72 Power-delay profile for Problem 2.35

2.33. The power-delay profile of a WSSUS channel is given by

 g.�/ D e��=T ; � � 0:

Assuming that T D 10�s, determine

(a) the average delay
(b) the rms delay spread
(c) the coherence bandwidth of the channel.

2.34. The power-delay profile of a WSSUS channel is given by

 g.�/ D
�

0:5Œ1C cos.2��=T/�; 0 � � � T=2

0; otherwise
:

(a) Find the channel frequency correlation function.
(b) Calculate the mean delay, rms delay spread, and the coherence bandwidth.
(c) If T D 0:1ms, determine whether the channel exhibits frequency-selective fading to a GSM cellular system.

2.35. Consider the power-delay profile shown in Fig. 2.72. Calculate the following:

(a) mean delay
(b) rms delay spread
(c) If the modulated symbol duration is 40�s, is the channel frequency selective? Why?

2.36. The power-delay profile in Fig. 2.73 is observed for a multipath-fading channel in hilly terrain.

(a) Compute the mean delay.
(b) Compute the rms delay spread.
(c) What is the frequency correlation function of the channel?

2.37. Consider a WSSUS channel with scattering function

 S.�; �/ D  1.�/ �  2.�/

where

 1.�/ D
�

1; 0 � � � 100ms
0; otherwise
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Fig. 2.73 Power-delay profile for Problem 2.36

 2.�/ D
(

1
fm
Œ1 � .�=fm/

2�; 0 � j�j � fm

0; otherwise
:

Assume fm D 10Hz. Find

(a) the power-delay profile.
(b) the Doppler power spectrum.
(c) the mean delay and the rms delay spread.
(d) the maximum Doppler frequency, the mean Doppler frequency, and the rms Doppler frequency.
(e) the coherence bandwidth and the coherence time of the channel.

2.38. Consider the COST-207 typical urban (TU) and bad urban (BU) power-delay profiles shown in Fig. 2.51 of the text
with delays and fractional powers given in Table 2.7.

(a) Calculate the average delay, �� .
(b) Calculate the rms delay spread, �� .
(c) Calculate the approximate values of W50 and W90.
(d) If the channel is to be used with a modulation scheme that requires an equalizer whenever the symbol duration T < 10�� ,

determine the maximum symbol rate that can be supported without requiring an equalizer.

2.39. The scattering function  S.�; �/ for a multipath-fading channel is non-zero for the range of values 0 � � � 1�s and
�40 � � � 40Hz. Furthermore,  S.�; �/ is uniform in the two variables � and �.

(a) Find numerical values for the following parameters;

1. the average delay, �� , and rms delay spread, �� .
2. the rms Doppler spread, Bd

3. the approximate coherence time, Tc

4. the approximate coherence bandwidth, Bc

(b) Given the answers in part a), what does it mean when the channel is

1. frequency-nonselective
2. slowly fading
3. frequency-selective

2.40. The scattering function  S.�; �/ for a multipath-fading channel is non-zero for the range of values 0 � � � 1�s
and �40 � � � 40Hz. Assume that the scattering function is uniform in the two variables � and � with a value equal
A D 0:00125.

(a) What is the average delay and rms delay spread of the channel?
(b) Find the spaced-time spaced-frequency correlation function  T.�f ; �t/ of the channel.
(c) What is the total envelope power? Express your answer in dBm units.
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(d) If the scattering function describes a conventional fixed-to-mobile cellular land mobile radio channel, and a carrier
frequency of 900 MHz is used with an isotropic receive antenna, how fast is the mobile station moving?

2.41. Suppose that the Doppler spectrum is given by

Sgg.f / D G.A; 0:5fm; 0:1fm/

where

G.A; f1; f2/ D A exp

�

� .f � f1/
2

2f 22

�

(a) Sketch the Doppler spectrum.
(b) Find the envelope correlation function

�gg.�/ D �gIgI
.�/C j�gIgQ

.�/

(c) For which values of � are gI.t/ and gQ.tC �/ uncorrelated?

2.42. Suppose that a fading simulator is constructed by low-pass filtering white Gaussian noise as shown in Fig. 2.35.
Assume that the white Gaussian noise generators that produce gI.t/ and gQ.t/ are uncorrelated, and have power density
spectrum ˝p=2watts/Hz. The low-pass filters that are employed have the transfer function

H.f / D A

1C j2�ˇf
:

(a) What is the Doppler power spectrum Sgg.f / and autocorrelation function �gg.�/?
(b) Find A such that the envelope power is equal to ˝p.
(c) What is the joint probability density function of the output g.t/ and g.tC �/?
2.43. Suppose that a fading simulator is constructed using low-pass filtered white Gaussian noise as shown in Fig. 2.35.
Assume that the white Gaussian noise generators used to produce gI.t/ and gQ.t/ are uncorrelated. The low-pass filters that
are employed have the transfer function

H.f / D 1p
B

rect

�
f

B

�

:

(a) What is the Doppler power spectrum Sgg.f /?
(b) For the Sgg.f / in part (a), derive an expression for the envelope level crossing rate.

2.44. Consider Jakes’ method in (2.254) and (2.255).

(a) With the choice that ˛ D 0 and ˇn D �n=.M C 1/ show that

< gI.t/gQ.t/ > D 0
< g2Q.t/ > D .M C 1/=.2M C 1/

< g2I .t/ > D M=.2M C 1/

(b) Rederive the time averages in part a) for the choice ˛ D 0 and ˇn D �n=M.

2.45. (Computer exercise) You are to write a software fading simulator that uses Jakes’ method and plot typical sample
functions of the faded envelope. By scaling gI.t/ and gQ.t/ appropriately, generate a Rayleigh faded envelope having the
mean-squared-envelope ˝p D 1. Plot a sample function of your faded envelope assuming a maximum Doppler frequency of
fmT D 0:1, where T is the simulation step size.
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Note that Jakes’ simulator is non-stationary as shown in (2.260). Therefore, you may not necessary get a plot that is

identical to Fig. 2.38. In fact, it would be good if you could observe the non-stationary behavior of the simulator, i.e., the pdf

of the envelope distribution changes with time.

2.46. (Computer exercise) In this problem you are to generate a Ricean faded envelope Og.t/ D OgI.t/ C jOgQ.t/ by making
appropriate modifications to Jakes’ method such that

OgI.t/ D mI.t/C gI.t/

OgQ.t/ D mQ.t/C gQ.t/;

where gI.t/ and gQ.t/ are defined in (2.254) and (2.255), respectively. Assume that the means mI.t/ and mQ.t/ are generated
according to Aulin’s model in (2.59) and (2.60). For fmT D 0:1, ˝p D 1 and K D 0; 4; 7, and 16, plot the following:

(a) The envelope Ǫ .t/ D
q

Og2I .t/C Og2Q.t/.
(b) The wrapped phase �.t/ D Tan�1 �OgQ.t/=OgI.t/

�

, mod 2� .

2.47. (Computer exercise) This problem uses the fading simulator developed in Problem 2.46. The objective is to compute
an estimate of the mean-squared-envelope˝p D EŒ Ǫ 2.t/� from samples of OgI.kT/ and OgQ.kT/, where T is the sample spacing
in seconds. The estimate is computed by forming the empirical average

Ő
p D

1

N

N
X

iD1

�

Og2I .iT/C Og2Q.iT/
�

;

where NT is the window averaging length in seconds. Assuming a constant velocity, the distance the MS moves (in units of
wavelengths) in a time of NT seconds is

d

�c

D NfmT:

(a) For K D 0; 4; 7, and 16, generate 1000 estimates of the of ˝p by using non-overlapping averaging windows of size
N D 50; 100; 150; 200; 250; 300. Construct a graph that plots, for each K, the sample variance of the ˝p estimate on the
ordinate and the window size on the abscissa.

(b) Can you draw any qualitative conclusions from part a)?

Note that estimates of the local mean ˝p are used in resource management algorithms such as handoff algorithms.

2.48. Suppose that two complex faded envelopes gi.t/ D gI;i.t/C jgQ;i.t/, i D 1; 2 are available, such that

�g D EŒg.t/� D 0

˚g.�/ D
1

2
EŒg.t/gH.tC �/� D �Jo.2� fm�/;

where

g.t/ D .g1.t/; g2.t//

� D
�

˝1 0

0 ˝2

�

:

A third faded envelope g3.t/ is now generated that is correlated with g1.t/ and g2.t/ according to

g3.t/ D ˛g1.t/C .1 � ˛/g2.t/ ; 0 � ˛ � 1:
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(a) Compute the values of

�g1g3.�/ D
1

2
EŒg�

1 .t/g3.tC �/�

�g2g3.�/ D
1

2
EŒg�

2 .t/g3.tC �/�

�g3g3.�/ D
1

2
EŒg�

3 .t/g3.tC �/�:

(b) What is the envelope distribution of g3.t/?

2.49. Suppose that the two � D T=4 spaced taps in Example 2.1 do not have equal magnitude. In particular, suppose that
jg0.t/j2 D jg1.t/j2=2. Once again, a T-spaced channel model is to be generated such that the two T-spaced taps capture the
maximum possible total energy.

(a) Find the optimal sampler timing instant.
(b) Determine the corresponding matrix A for ˇ D 0:35.

2.50. By starting with the Gaussian density for the local mean envelope power in (2.357) derive the log-normal density
in (2.355).

2.51. One simple model for shadow simulation is to model log-normal shadowing as a Gaussian white noise process that is
filtered by a first-order low-pass filter. With this model

˝kC1 .dBm/ D �˝k .dBm/ C .1 � �/vk;

where ˝k .dBm/ is the mean envelope or mean squared-envelope, expressed in dBm units, that is experienced at spatial index
k, � is a parameter that controls the spatial correlation of the shadows, and vk is a zero-mean Gaussian random variable with
�vv.n/ D Q�2ı.n/.
(a) Show that the resulting spatial autocorrelation function of ˝k .dBm/ is

�˝.dBm/˝.dBm/.n/ D
1 � �
1C � Q�

2�jnj:

(b) What is the mean and variance of ˝k .dBm/ at any spatial index k?

2.52. (computer exercise) The purpose of this problem is to generate variations in the local mean ˝p due to shadowing.
The shadows are generated according to the state equation in (2.360).

(a) Suppose that the simulation step size is T D 0:1 s and the mobile station velocity is v D 30 km/h. It is desired to have a
shadow decorrelation of 0.1 at a distance of 30 m. Find �.

(b) Using the value of � obtained in part a) and a shadow standard deviation of �˝ D 8 dB, plot a graph of ˝p .dB/ against
the distance traveled. Scale your plot so the distance traveled goes from 0 to 100 m.

2.53. Plot and compare the path loss (dB) for the free-space and flat specular surface models at 800 MHz versus distance on
a log-scale for distances from 1 m to 40 km. Assume that the antennas are isotropic and have a height of 10 m.

2.54. The measured path loss at a distance of 10 km in the city of Tokyo is 160 dB. The test parameters used in the experiment
were the following:

• base station antenna height hb D 30m
• mobile station antenna height hm D 3m
• carrier frequency fc D 1000MHz
• isotropic base station and mobile station antennas.

Compare the measured path loss with the predicted path loss from Okumura and Hata’s model and Lee’s area-to-area model.
If any model parameters are undefined, then use the default values.
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2.55. Suppose that the received power from a transmitter at the input to a receiver is 1 mW at a distance of 1 km. Find the
predicted power at the input to the same receiver (in dBm) at distances of 2, 3, and 5 km from the transmitter for the following
path loss models:

(a) Free space.
(b) 2-ray ground reflection.
(c) Model described by

�˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇ log10.d=do/ .dBm/

where do D 1 km and ˇ D 3:5.
(d) COST231-Hata model (medium city).

In all cases assume that fc D 1800MHz, hb D 40m, hm D 3m, GT D GR D 0 dB. Tabulate your results.

2.56. Consider Fig. 2.74 and the following data

• The symbol transmission rate is 24,300 symbols/s with 2 bits/symbol
• The channel bandwidth is 30 kHz
• The propagation environment is characterized by an rms delay spread of �� D 1 ns

A mobile station is moving from base station A (BSA) to base station B (BSB). Base station C (BSC) is a co-channel base
station with BSA.

Explain how you would construct a computer simulator to model the received signal power at the mobile station from
(BSA) and (BSC), as the mobile station moves from BSA to BSB. Clearly state your assumptions and explain the relationship
between the propagation characteristics in your model.

500m

BSA BSB BSC

Streets

Buildings

Fig. 2.74 Base station and street layout for Problem 2.56



Chapter 3

Co-Channel Interference

For cellular radio systems the radio link performance is usually limited by interference rather than noise and, therefore,
the probability of link outage due to co-channel interference (CCI), OI , is of primary concern. For the remainder of this
chapter, the probability of outage refers to the probability of link outage due to CCI. The definition of the outage probability
depends on the assumptions made about the radio receiver and propagation environment. One extreme occurs with fast
moving mobile stations (MSs), i.e., high Doppler conditions, where the radio receiver can average over the fast envelope
variations by using variety of coding and interleaving techniques. In this case, the transmission quality will be acceptable
provided that the average received carrier-to-interference ratio, �, exceeds a critical receiver threshold �th. The receiver
threshold �th is determined by the performance of the radio link in the presence of envelope fading and CCI. Once �th has
been determined, the variations in � due to path loss and shadowing will determine the outage probability. Another extreme
occurs with stationary or very slowly moving MSs, i.e., low Doppler conditions, where the radio receiver cannot average
over the fast envelope variations because the required coding and interleaving depth is too large and will result in excessive
transmission delay. Such delays may be acceptable for non-real-time services, but they are unacceptable for real-time services
such as voice and streaming video. In this case, the transmission quality will be acceptable provided that the instantaneous

received carrier-to-interference ratio, �, exceeds another receiver threshold �th.1 The threshold �th is determined by the
performance of the radio link in the presence of CCI under the condition that the link does not experience fading. Once �th

has been determined, variations in � due to path loss, shadowing, and envelope fading will determine the outage probability.
Sometimes the MSs will move with moderate velocities and the performance will lie somewhere between these two extreme
cases.

The effect of CCI on the radio link performance depends on the ability of the radio receiver to reject CCI. Some of
the more advanced receivers incorporate sophisticated signal processing techniques to reject or cancel the CCI, e.g., single
antenna interference cancelation techniques, or optimum combining with multiple antennas. In this case, the radio receiver
is more tolerant to CCI and the receiver thresholds�th and �th are generally reduced. This will reduce the outage probability
or, conversely, improve the coverage probability.

Evaluating the outage probability for the log-normally shadowed signals that are typically found in land mobile radio
systems requires the probability distribution of the total interference power that is accumulated from the sum of multiple
log-normally shadowed interferers. Although there is no known exact expression for the probability distribution for the sum
of log-normally random variables, several approximations have been derived by various authors in the literature. All of
these approaches approximate the sum of log-normal random variables by another log-normal random variable. One such
method that matches the first two moments of the approximation was developed by Fenton [124]. Sometimes Wilkinson is
credited with this method, as in [296]. Here, it is called the Fenton–Wilkinson method. Schwartz and Yeh developed another
log-normal approximation that is based on the exact first two moments for the sum of two log-normal random variables
[296]. The Schwartz & Yeh method generally provides a more accurate approximation than the Fenton–Wilkinson method
but it is more difficult to use. Prasad and Arnbak [265] have corrected some errors in the equations found in Schwartz and
Yeh’s original paper, but the equations for the Schwartz & Yeh method in their paper also have errors. Another log-normal
approximation is the cumulants matching approach suggested by Schleher [294]. With this approach, different log-normal
approximations are applied over different ranges of the composite distribution. A good comparison of the methods of Fenton–
Wilkinson, Schwartz & Yeh, Farley, and Schleher has been undertaken by Beaulieu et al. [34].

1Note that �th and �th are not the same.
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The above log-normal approximations have been extensively applied to the calculation of the probability of outage in
cellular systems. For example, the Fenton–Wilkinson method has been applied by Nagata and Akaiwa [237], Cox [84],
Muammar and Gupta [232], and Daikoku and Ohdate [88]. Likewise, the Schwartz & Yeh approach has been applied by Yeh
and Schwartz [365], Prasad and Arnbak [265], and Prasad et al. [269].

Current literature also provides a thorough treatment of the probability of outage when the signals are affected by fading
only, including the work of Yao and Sheikh [362], Muammar [231], and Prasad and Kegel [268]. Section 3.3 shows that
the probability of outage is sensitive to the Rice factor of the desired signal, but it is insensitive to the number of interferers
provided that the total interfering power remains constant. Calculations of the probability of outage for signals with composite
log-normal shadowing and fading have considered the cases of Rayleigh fading by Linnartz [208], Nakagami fading by Ho
and Stüber [164], and Ricean fading by Austin and Stüber [27]. Section 3.4 shows that shadowing has a more significant
effect on the probability of outage than fading. Furthermore, the probability of outage is dominated by fading of the desired
signal rather than fading of the interfering signals, e.g., with Nakagami-m fading, the probability of outage is sensitive
to the shape factor m of the desired signal but is insensitive to the shape factor of interfering signals. Finally, all of the
above references assume a channel characterized by frequency non-selective (flat) fading. If the channel exhibits frequency
selective fading, then the same general methodology can be used but the instantaneous carrier-to-interference ratio, �, must
be appropriately defined. The proper definition depends on the type of receiver that is employed, e.g., a maximum likelihood
sequence estimation receiver or decision feedback equalizer.

Most of the literature dealing with the probability of outage assumes that the interfering co-channel signals add non-
coherently. The probability of outage has also been evaluated by Prasad and Kegel [266, 268] for the case of coherent
addition of Rayleigh faded co-channel interferers and a Ricean faded desired signal. The coherent co-channel interferers are
assumed to arrive at the receiver antenna with the same carrier phase. However, as discussed by Prasad and Kegel [266] and
Linnartz [208], it is more realistic to assume non-coherent addition of co-channel interferers in mobile radio environments.
Coherently addition of co-channel interferers generally leads to pessimistic predictions of the probability of outage.

The remainder of this chapter begins with approximations for the sum of multiple log-normally shadowed interferers
in Sect. 3.1. The various approximations are compared in terms of their accuracy. Section 3.2 derives the probability of
outage with log-normal/multiple log-normal (desired/interfering) signals. Section 3.3 considers the outage probability for
Ricean/multiple Rayleigh signals without shadowing. Section 3.4 does the same for log-normal Nakagami/multiple log-
normal Nakagami signals.

3.1 Multiple Log-Normal Interferers

Consider the sum of NI log-normal random variables

I D
NIX

kD1
˝k D

NIX

kD1
10˝k.dBm/=10; (3.1)

where the ˝k .dBm/ are Gaussian random variables with means �˝k.dBm/ and variances �2˝k
, and the ˝k D 10˝k.dBm/=10 are log-

normal random variables. Unfortunately, there is no known closed form expression for the probability density function (pdf)
of the sum of multiple (NI � 2) log-normal random variables. One may think to apply the central limit theorem, provided
that NI is large enough, and approximate I as a Gaussian random variable. However, since I represents a power sum it cannot
assume negative values so that the resulting approximation is invalid. Moreover, the value of NI will be small in the case
of a few dominant co-channel interferers so the central limit theorem will not apply anyway. There is a general consensus
that the sum of independent log-normal random variables can be approximated by another log-normal random variable with
appropriately chosen parameters. That is,

I D
NIX

kD1
10˝k.dBm/=10 � 10Z.dBm/=10 D OI; (3.2)

where Z.dBm/ is a Gaussian random variable with mean�Z .dBm/ and variance �2Z . The problem is to determine�Z .dBm/ and �2Z
in terms of the �˝k .dBm/ and �2˝k

, k D 1; : : : ;NI . Several methods have been suggested in the literature to solve this problem
including those by Fenton [124], Schwartz and Yeh [296], and Farley [296]. Each of these methods provides varying degrees
of accuracy over specified ranges of the shadow standard deviation �˝ , the sum I, and the number of interferers NI .
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3.1.1 Fenton–Wilkinson Method

With the Fenton–Wilkinson method, the mean �Z .dBm/ and variance �2Z of Z.dBm/ are obtained by matching the first two

moments of the sum I with the first two moments of the approximation OI. To derive these moments, it is convenient to use
natural logarithms. Hence,

˝k D 10˝k .dBm/=10 D e�˝k .dBm/ D e
Ő k ; (3.3)

where � D .ln 10/=10 D 0:23026 and Ő k D �˝k .dBm/. Note that � Ő k
D ��˝k .dBm/ and �2Ő k

D �2�2˝k
. The nth moment of

the log-normal random variable ˝k can be obtained from the moment generating function of the Gaussian random variable
Ő

k as

EŒ˝n
k � D EŒen Ők � D e

n� Ők
C.1=2/n2�2

Ők : (3.4)

To find the required moments for the log-normal approximation, (3.4) can be used by equating the first two moments on both
sides of the approximation

I D
NIX

kD1
e

Ő k � e
OZ D OI; (3.5)

where OZ D �Z.dBm/. For example, suppose that the Ő k; k D 1; : : : ;NI have means � Ő k
; k D 1; : : : ;NI and identical variances

�2Ő . Identical variances are often assumed for the sum of log-normal interferers because the standard deviation of log-normal
shadowing is largely independent of the radio path length [194, 196]. Equating the means on both sides of (3.5) gives

�I D EŒI� D
NIX

kD1
EŒe

Ők � D EŒe
OZ � D EŒOI� D � OI (3.6)

and substituting (3.4) with n D 1 into (3.6) gives the result

 
NIX

kD1
e� Ők

!

e.1=2/�
2
Ő D e� OZC.1=2/�2

OZ : (3.7)

Likewise, the variances on both sides of (3.5) can be equated, i.e.,

�2I D EŒI2� � �2I D EŒ OI2� � �2OI D �
2
OI : (3.8)

Under the assumption that the Ő k; k D 1; : : :NI are independent random variables when calculating the second moments in
the above equation, this gives the result

 
NIX

kD1
e2� Ők

!

e�
2
Ő .e�

2
Ő � 1/ D e2� OZ e�

2
OZ .e�

2
OZ � 1/: (3.9)

By squaring each side of the equality in (3.7) and dividing each side of resulting equation by the respective sides of the
equality in (3.9), �2OZ can be solved in terms of the known values of � Ő k

; k D 1; : : : ;NI and �2Ő . Afterwards, � OZ can be

obtained by substituting the obtained expression for �2OZ into (3.7). This procedure yields the following solution:

� OZ D
�2Ő � �

2
OZ

2
C ln

 
NIX

kD1
e� Ők

!

(3.10)
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�2OZ D ln

0

B
@.e

�2
Ő � 1/

PNI

kD1 e2� Ők

�
PNI

kD1 e� Ők

�2
C 1

1

C
A : (3.11)

Finally, conversion back to base 10 logarithms is done by scaling, such that �Z .dBm/ D ��1� OZ and �2Z D ��2�2OZ .
The accuracy of this log-normal approximation can be measured in terms of how accurately the first two moments of

I.dB/ D 10log10I are estimated, and how well the cumulative distribution function (cdf) of I.dB/ is described by a Gaussian
cdf. It has been reported in [296] that the Fenton–Wilkinson method breaks down in the accuracy of the values obtained
for �Z .dBm/ and �2Z when �˝ > 4 dB. For cellular radio applications �˝ typically ranges from 6 to 12 dB and the Fenton–
Wilkinson method has often been discredited in the literature on that basis. However, as pointed out in [34], the Fenton–
Wilkinson method breaks down only if one considers the application of the Fenton–Wilkinson method for the prediction of
the first two moments of I.dB/. Moreover, in problems relating to the probability of CCI outage in cellular radio systems, the
tails of the complementary distribution function (cdfc) Fc

I .x/ D PŒI � x� and the cdf FI.x/ D 1 � Fc
I .x/ D PŒI < x� are of

interest. In this case, the accuracy of the approximation

Fc
I .x/ � PŒe

OZ � x� D Q

�
ln x � � OZ
� OZ

�

(3.12)

is of interest, and FI.x/ D 1 � Fc
I .x/ for large and small values of x, respectively. It will be shown later that the Fenton–

Wilkinson method approximates the tails of the cdf and cdfc functions with good accuracy, a result that was reported in
[34].

3.1.2 Schwartz & Yeh Method

The Schwartz & Yeh method [296] calculates exact values for the first two moments of the sum of two independent log-
normal random variables. Nesting and recursion techniques are then used to find exact values for the first two moments for
the sum of NI independent log-normal random variables. For example, suppose that I D ˝1 C˝2 C˝3. The exact first two
moments of ln.˝1 C˝2/ are first computed. Afterwards, define Z2 D ln.˝1 C˝2/ as a new Gaussian random variable, let
I D eZ2 C˝3, and again compute the exact first two moments of ln I. Since the procedure is recursive, the Schwartz & Yeh
method only needs to be detailed for the case when NI D 2, i.e.,

I D e
Ő1 C e

Ő2 � e
OZ D OI (3.13)

or

OZ � ln
�

e
Ő1 C e

Ő2
�

; (3.14)

where the Gaussian random variables Ő 1 and Ő 2 have means � Ő1 and � Ő2 , and variances �2Ő1
and �2Ő2

, respectively.

Define the Gaussian random variable Ő d 4D Ő 2 � Ő 1 so that

� Őd
D � Ő2 � � Ő1 (3.15)

�2Őd
D �2Ő1 C �

2
Ő2
: (3.16)

Taking the expectation of both sides of (3.14) and assuming that the approximation holds with equality gives

� OZ D E
h

ln
�

e
Ő2 C e

Ő1
�i

D E
h

ln
�

e
Ő1
�

1C e
Ő2� Ő1

��i

D E
h

Ő
1

i

C E
h

ln
�

1C e
Őd

�i

: (3.17)
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The second term in (3.17) is

E
h

ln
�

1C e
Őd

�i

D
Z 1

�1
.ln .1C ex// p Őd

.x/dx: (3.18)

Now invoke the power series expansion

ln.1C x/ D
1
X

kD1
ckxk; ck D

.�1/kC1

k
; (3.19)

where jxj < 1. To ensure convergence of the power series and the resulting series of integrals, the integration in (3.18) is
broken into ranges as follows:

Z 1

�1
.ln .1C ex// p Őd

.x/dx D
Z 0

�1
.ln .1C ex// p Őd

.x/dxC
Z 1

0

.ln .1C e�x/C x/ p Őd
.x/dx: (3.20)

The second integral in the above equation was obtained by using the identity

ln.1C ex/ D ln ..e�x C 1/ex/

D ln.1C e�x/C ln.ex/

D ln.1C e�x/C x: (3.21)

After a very long derivation that is detailed in [296],

� OZ D � Ő1 C G1; (3.22)

where

G1 D � Őd
ˆ

 

� Őd

� Őd

!

C
� Ődp
2�

e
��2

Őd
=2�2

Őd C
1
X

kD1
cke

k2�2
Őd
=2

 

ek� Ődˆ

 �� Őd
� k�2Őd

� Őd

!

C T1

!

(3.23)

with

T1 D e�k� Ődˆ

 
� Őd
� k�2Őd

� Őd

!

; (3.24)

and where ˆ.x/ is the complementary distribution function (cdfc) of a standard normal random variable, defined as

ˆ.x/ D
Z x

�1

1p
2�

e�y2=2dy: (3.25)

The variance of OZ can be computed in a similar fashion, resulting in the expression [296]

�2OZ D �
2
Ő1
� G2

1 � 2�2Ő1G3 C G2; (3.26)

where

G2 D
1
X

kD1
bkT2 C

 

1 �ˆ
 

�
� Őd

� Őd

!!

.�2Őd
C �2Őd

/C
� Őd

� Ődp
2�

e
��2

Őd
=.2�2

Őd
/

C
1
X

kD1
bke

�.kC1/� Őd
C.kC1/2�2

Őd
=2
ˆ

 
� Őd
� �2Őd

.kC 1/
� Őd

!

(3.27)
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�2
1
X

kD1
cke

�k� Őd
Ck2�2

Őd
=2

 

� Ő k
ˆ

 

�
� Ő k

� Őd

!

�
� Ődp
2�

e
��2

Ők
=.2�2

Őd
/

!

G3 D
1
X

kD0
.�1/ke

k2�2
Őd
=2

T1 C
1
X

kD0
.�1/kT2 (3.28)

with

T2 D e
� Őd

.kC1/C.kC1/2�2
Őd
=2
ˆ

 �� Őd
� .kC 1/�2Őd

� Őd

!

(3.29)

and

bk D
2.�1/kC1

kC 1

k
X

nD1

1

n
(3.30)

� Ő k
D �� Őd

C k�2Őd
: (3.31)

It has been reported in [296] that approximately 40 terms are required in the infinite summations for G1, G2, and G3 to achieve
four significant digits of accuracy in the moments of OZ. On the next step of the recursion it is important to let �2Ő1

D �2OZ and

� Ő1 D � OZ ; otherwise, the recursive procedure will fail to converge.

3.1.3 Farley’s Method

Consider NI independent identically distributed (i.i.d.) normal random variables Ő k each with mean � Ő and variance �2Ő .
Farley approximated the cdfc of the sum

I D
NIX

kD1
˝k D

NIX

kD1
e

Ő k (3.32)

as [296]

PŒI > x� � 1 �
�

1 � Q

�
ln x � � Ő
� Ő

��NI

: (3.33)

As shown in [34], Farley’s approximation is actually a strict lower bound on the cdfc. To obtain this result let

Fc
I .x/ D P Œ˝1 C˝2 C � � � C˝NI

> x� (3.34)

and define the two events

A D fat least one ˝i > xg
B D Ac; the complement of event A: (3.35)

Events A and B are mutually exclusive and partition the sample space. Therefore,

PŒI > x� D PŒI > x \ A�C PŒI > x \ B�

D PŒA�C PŒI > x \ B�: (3.36)

The second term in (3.36) is positive for continuous pdfs such as the log-normal pdf. For example, the event
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C D
(

NI\

iD1
x=NI < ˝i < x

)

(3.37)

is a subset of the event B. Under the assumption that the ˝i are i.i.d., event C occurs with non-zero probability because

PŒC� D
�

Q

�
ln.x=NI/ � � Ő

� Ő

�

� Q

�
ln x � � Ő
� Ő

��NI

> 0: (3.38)

Therefore, PŒI > x� > PŒA�. Since the ˝i are i.i.d.,

PŒA� D 1 �
NIY

iD1
PŒ˝i � x�

D 1 �
�

1 � Q

�
ln x � � Ő
� Ő

��NI

: (3.39)

This finally yields the lower bound on the cdfc

PŒI > x� > 1 �
�

1 � Q

�
ln x � � Ő
� Ő

��NI

(3.40)

or, equivalently, the upper bound on the cdf

PŒI � x� >

�

1 � Q

�
ln x � � Ő
� Ő

��NI

: (3.41)

3.1.4 Numerical Comparisons

Figure 3.1 compares the cdf for the sum of NI D 2 and NI D 6 log-normal random variables, obtained with the various
approximations. Likewise, Figs. 3.2, 3.3, and 3.4 compare the cdfc, obtained with the various approximations. Exact results
are also shown that have been obtained by computer simulation. Observe that the cdfc is approximated quite well for all the
methods, but the best approximation depends on the number of interferers, shadow standard deviation, and argument of the
cdfc. The cdf is approximated less accurately, especially for NI D 6 log-normal random variables.

3.2 Log-Normal/Multiple Log-Normal Interferers

Consider the situation shown in Fig. 1.15, where a mobile station (MS) is at distance d0 from the serving base station (BS)
and at distances dk; k D 1; 2; : : : ;NI from the first tier of NI co-channel BSs. Define the vector d D .d0; d1; : : : ; dNI

/ as the
set of distances of a particular MS from the serving BS and surrounding BSs. The average received carrier-to-interference
ratio as a function of the vector d is

�.dB/.d/ D ˝.dBm/.d0/ � 10 log10

NIX

kD1
10˝.dBm/.dk/=10: (3.42)

For the case of a single interferer (NI D 1) the sum on the right side of (3.42) has only one term. In this case, �.dB/.d/ is
Gaussian distributed with mean �˝.dBm/.d0/ � �˝.dBm/.d1/ and variance 2�2˝ . For the case of multiple log-normal interferers,

the second term of (3.42) is approximated as a normal random variable Z.dBm/ with mean �Z .dBm/ and variance �2Z using the
techniques discussed in Sect. 3.1. Then
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�.dB/.d/ D ˝.dBm/.d0/ � Z.dBm/.d1; d2; : : : ; dNI
/; (3.43)

where we, again, show the dependency of the CCI on the set of distances. Note that �.dB/.d/ has mean and variance

��.dB/.d/ D �˝.dBm/.d0/ � �Z .dBm/ (3.44)

�2�.d/ D �2˝ C �2Z : (3.45)

If there were only one possible choice of serving BS, then the probability of outage at a particular MS location is

OI.d/ D Q

0

B
@

�˝.dBm/.d0/ � �Z .dBm/ ��th.dB/
q

�2˝ C �2Z

1

C
A : (3.46)
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If handoffs are allowed, then the analysis is more complicated. In this case, the probability of outage will depend on the
handoff algorithm that is employed. In the simplest case, soft handoffs can be considered where the BS that provides the best
link is always used. In this case, an outage occurs only when no BS can provide a link having a carrier-to-interference ratio
that exceeds the receiver threshold �th. In this case, the probability of outage at a particular location is

OI.d/ D
M
Y

kD0
Q

0

B
@

�˝k .dBm/.d0/ � �Zk .dBm/ ��th.dB/
q

�2˝ C .�Zk
/2

1

C
A : (3.47)

where M is the number of handoff candidates. The outage can then be calculated by averaging the probability of outage over
the random location of a MS within the reference cell.
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3.3 Rician/Multiple Rayleigh Interferers

Sometimes propagation conditions may exist such that the received signals experience envelope fading, but not shadowing.
This section calculates the outage probability for the case of envelope fading only. The case of combined shadowing and
envelope fading is deferred until the next section. In the case of envelope fading only, the received desired signal may
consist of a direct line of sight (LoS) component, or perhaps a specular component, accompanied by a diffuse component.
The envelope of the received desired signal experiences Ricean fading. The co-channel interferers are often assumed to be
Rayleigh faded, because a direct LoS condition is unlikely to exist between the co-channel interferers and target receiver due
to their large physical separation. Let the instantaneous power in the desired signal and the NI interfering signals be denoted
by s0 and sk; k D 1; : : : ; NI , respectively. Note that si D ˛2i , where ˛2i is the squared-envelope. The carrier-to-interference
ratio is defined as

�
4D s0
PNI

kD1 sk

: (3.48)

For a specified receiver threshold �th, the outage probability is

OI D P Œ� < �th� : (3.49)

The instantaneous received power of the desired signal, s0, has the non-central chi-square distribution (Ricean fading) in
(2.63), while the instantaneous power of each interferer, sk, has the exponential distribution (Rayleigh fading) in (2.56).

For the case of a single interferer, the outage probability reduces to the simple closed form expression [362]

OI D
�th

�th C A1
exp

�

� KA1

�th C A1

�

; (3.50)

where K is the Rice factor of the desired signal, A1 D ˝0=.K C 1/˝1, and ˝k D EŒsk�. Note that A1 can be interpreted as
the ratio of the average desired signal power to the total interfering power. If the desired signal is Rayleigh faded, then the
outage probability can be obtained by setting K D 0 in (3.50). For the case of multiple interferers, each with mean power
˝k, the outage probability has the closed form expression [362]

OI D 1 �
NIX

kD1

�

1 � �th

�th C Ak

exp

�

� KAk

�th C Ak

�� NIY

jD1
j¤k

Aj

Aj � Ak

; (3.51)

where Ak D ˝0=.K C 1/˝k. This expression is valid only if ˝i ¤ ˝j when i ¤ j, i.e., the different interferers are received
with distinct mean power levels. If some of the interfering signals are received with the same mean power, then an appropriate
expression for the outage probability can be derived in straightforward manner. If all the interferers are received with the
same mean power, then the total interference power sM D

PNI

kD1 sk has the Gamma pdf

psM
.x/ D xNI�1

˝
NI

1 .NI � 1/Š
exp

�

� x

˝1

�

: (3.52)

The outage probability can be derived as [362]

OI D
�th

�th C A1
exp

�

� KA1

�th C A1

� NI�1X

kD0

�
A1

.�th C A1

�k k
X

mD0

 

k

m

!

1

mŠ

�
K�th

�th C A1

�m

: (3.53)

Again, if the desired signal is Rayleigh faded, then the probability of outage with multiple Rayleigh faded interferers can be
obtained by setting K D 0 in either (3.51) or (3.53) as appropriate. In Fig. 3.5, the outage probability is plotted as a function
of the average received carrier-to-average-interference ratio

� D ˝0

NI˝1

(3.54)
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Fig. 3.5 Probability of CCI outage with a single interferer. The desired signal is Ricean faded with various Rice factors, while the interfering
signal is Rayleigh faded; �th D 10:0 dB
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signals are Rayleigh faded and of equal power; �th D 10:0 dB

for various Rice factors and a single interferer. Observe that the Rice factor of the desired signal has a significant effect on the
outage probability. Figure 3.6 plots the outage probability for K D 0 and 7 and a varying number of interferers. Meanwhile,
the number of interferers does not affect the probability of outage as much as the Rice factor of the desired signal, provided
that the total interfering power remains constant.

3.4 Log-Normal Nakagami/Multiple Log-Normal Nakagami Interferers

The probability of outage has been evaluated in the literature for a single Nakagami interferer [356] and multiple Nakagami
interferers [6, 363], in the absence of shadowing. Here, the probability of outage is analytically formulated for a log-normal
Nakagami faded desired signal with multiple log-normal Nakagami interferers. For the case when the interfering signals
have the same shadowing and fading statistics, an exact mathematical expression is derived for the probability of outage.
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Let the instantaneous power in the desired signal and the NI interfering signals be denoted by s0 and sk; k D 1; : : : ;NI ,
respectively. The instantaneous carrier-to-interference ratio is � D s0=

PNI

kD1 sk. For a specified receiver threshold �th, the
probability of outage is

OI D P Œ� < �th� � P

"

s0 < �th

NIX

kD1
sk

#

: (3.55)

The kth interfering signal, sk; k D 1; : : : ;NI , is affected by log-normal shadowing and Nakagami fading with the composite
pdf c.f. (2.373)

psk
.x/ D

Z 1

0

�mk

w

�mk xmk�1

�.mk/
exp

n

�mkx

w

o 1p
2���˝w

exp

(

�
.10log10fwg � �˝k .dBm//

2

2�2˝

)

dw: (3.56)

Let W D
PNI

kD1 sk be the total instantaneous received power from the NI interfering signals such that � D s0=W, and
define the auxiliary random variable Y D W. Then by using a bivariate transformation of random variables, the joint pdf of
� and Y is p�;Y.x; y/ D yps0;W.xy; y/ D yps0.xy/pW.y/ and

p�.x/ D
Z 1

0

yps0.xy/pW.y/dy; (3.57)

where the fact that s0 and W are statistically independent random variables has been used. It follows that the outage
probability is

OI D P Œ� < �th�

D 1 �
Z 1

�th

Z 1

0

yps0.xy/pW.y/dydx: (3.58)

Suppose for the time being that the desired signal is affected by Nakagami fading only, i.e., there is no shadowing and
˝0 D EŒs0� is fixed. Then s0 has the Gamma distribution in (2.67) and

Z 1

�th

ps0.xy/dx D
m0�1X

hD0

�
m0

˝0

�h
yh�1�h

th

hŠ
exp

�

�m0�thy

˝0

�

: (3.59)

Hence, the conditional outage probability in (3.58) becomes

P .� < �th j˝0 / D 1 �
m0�1X

hD0

�
m0�th

˝0

�h
1

hŠ

Z 1

0

exp

�

�m0�thy

˝0

�

yhpW.y/dy: (3.60)

3.4.1 Statistically Identical Interferers

Here statistically identical interferers are assumed so that mk D mI and �˝k .dBm/ D �˝I .dBm/ , i D 1; : : : ; NI . Following
Linnartz [208], the integral in (3.60) can be obtained by using Laplace transform techniques. The Laplace transform of the
pdf pW.y/ is

LW.s/ D
Z 1

0

e�sypW.y/dy: (3.61)

The integral in (3.60) is then equal to the hth derivative of LW.s/ with respect to s evaluated at the point s D .m0�th/=˝0.
That is,
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Z 1

0

e�syyhpW.y/dy D .�1/hL .h/
W .s/ (3.62)

D .�1/h dh

dsh

(
NIY

kD1

Z 1

0

e�syk psk
.yk/dyk

)

;

where the last line follows under the assumption of statistically independent interferers. By using the composite distribution
in (3.56) with mk D mI and �˝k .dBm/ D �˝I .dBm/ , i D 1; : : : ; NI , it can be shown that

Z 1

0

e�syk psk
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m
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Ip
�

Z 1

�1

e�x2

�

10
.�˝I .dBm/C

p
2�˝x/=10

sC mI

�mI
dx: (3.63)

Using this result and averaging over the log-normal shadowing distribution of the desired signal gives the final result
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exp
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)

d˝0: (3.64)

Equation (3.64) is an exact expression for log-normal Nakagami fading channels. When m0 D mI D 1, it reduces to the
simpler expression obtained by Linnartz [208] for log-normal Rayleigh fading channels. In (3.64), let

F.s/ D
Z 1

�1

e�x2

�

10
.�˝I .dBm/C

p
2�˝x/=10

sC mI

�mI
dx (3.65)

and use the identity [147]

G.s/ D dh

dsh
.F.s//NI

D NI

 

h � NI

NI

!
h
X

iD1
.�1/i

 

h

i

!

.F.s//NI�i

NI � i

dh

dsh
.F.s//i : (3.66)

Observe that G.s/ is a function of the derivatives of F.s/ only, and
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dsh
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dsh
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sC mI

�mI
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Z 1

�1
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e�x2

�
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.�˝I .dBm/C

p
2�˝x/=10

sC mI

�mICh
dx: (3.67)

G.s/ can be obtained from (3.66) and (3.67), and substituted into (3.64). Then by using the following change in the variable
of integration
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Table 3.1 Zeros and weight
factors of 16 order Hermite
polynomials [4]

Zeros xi Weight factors Hxi

˙0:27348104613815 5:079294790166 � 10�1

˙0:82295144914466 2:806474585285 � 10�1

˙1:38025853919888 8:381004139899 � 10�2

˙1:95178799091625 1:288031153551 � 10�2

˙2:54620215784748 9:322840086242 � 10�4

˙3:17699916197996 2:711860092538 � 10�5

˙3:86944790486012 2:320980844865 � 10�7

˙4:68873893930582 2:654807474011 � 10�10

x D
10log10f˝0g � �˝0 .dBm/p

2�˝
(3.68)

the outage probability in (3.64) becomes

OI D 1 �
m0�1X

hD0

�

�m0�th10
��˝0 .dBm/=10

�h m
mI NI

Ip
�

NIC1hŠ

Z 1

�1
10�

p
2�˝xh=10e�x2G

�

m0�th10
�.�˝0 .dBm/C

p
2�˝xh/=10

�

dx: (3.69)

The integrals in (3.67) and (3.69) can be efficiently computed by using Gauss–Hermite quadrature integration. Applying
the Gauss–Hermite quadrature formula to (3.67) gives

dhF.s/

dsh
D .�1/h .mI C h � 1/Š

.mI � 1/Š

Np
X

tD1
Hxt

10
.�˝I .dBm/C

p
2�˝xt/h=10

�

10
.�˝I .dBm/C

p
2�˝xt/=10sC mI

�mICh
(3.70)

where Hxt
are weight factors, xt are the zeros of the Hermite polynomial Hp.x/, and Np is the order of the Hermite polynomial.

When obtaining numerical results, a Hermite polynomial of order 16 resulted in sufficient accuracy and the corresponding
values for Hxt

and xt are listed in Table 3.1. Likewise, for (3.69),

OI D 1 �
m0�1X

hD0

�

�m0�th10
�˝0 .dBm/=10

�h m
mI NI

Ip
�

NIC1
hŠ

Np
X

`D1
Hx`10

�
p
2�˝x`h=10G

�

m0�th10
�.�˝0 .dBm/C

p
2�˝xh/=10

�

dx: (3.71)

Figure 3.7 shows the probability of outage as a function of the average-carrier-to-average-interference ratio

� D �˝0
NI�˝I

: (3.72)

Results are plotted for NI D 6 interfering signals and varying degrees of fading on the desired and interfering signals.
Observe that the outage probability is insensitive to changes in the Nakagami shape factor, m, for interfering signals. This
phenomenon demonstrates that the probability of CCI outage is dominated by the fading of the desired signal rather than
fading of the interfering signals. Figure 3.8 shows the outage probability for different values of the shadow standard deviation
�˝ . The shadow standard deviation has a significant effect on the outage probability.

3.4.2 Statistically Nonidentical Co-Channel Interferers

If the interferers are statistically nonidentical, then Eq. (3.64) still applies with mI replaced by mk. Since the product in (3.64)
does not reduce to taking the nth power, the numerical evaluation is difficult. This difficulty can be overcome by using
approximations. Section 2.6.2.1 showed that the composite distribution of the squared-envelope due to Nakagami fading
and log-normal shadowing can be approximated by a log-normal distribution with the parameters in (2.374). Moreover, the
sum of log-normal random variables can be approximated by still another log-normal random variable by using either the
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Fig. 3.7 Probability of CCI outage when the desired and interfering signals are Nakagami faded. Results are shown for various fading distribution
parameters; �˝ D 6 dB, �th D 10:0 dB
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Fig. 3.8 Probability of CCI outage when the desired and interfering signals are Nakagami faded. Results are shown for various shadow standard
deviations; m0 D 8, mI D 2, �th D 10:0 dB

Fenton–Wilkinson method in Sect. 3.1.1 or the Schwartz & Yeh method in Sect. 3.1.2. Hence, (2.374) can be used to find
individual approximated log-normal distribution for each of the interfering signals, then Schwartz & Yeh’s method or the
Fenton–Wilkinson method is applied to find a pure log-normal distribution for the total interference power sI . This results in
the density
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Fig. 3.9 Probability of CCI
outage for different dB spreads
and statistically nonidentical
interferers; m0 D 4,
�th D 10:0 dB
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.x/ D 1

x�I�
p
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exp

(

�
�

10log10fxg � �sI .dBm/

�2

2�2I

)

: (3.73)

To maintain accuracy, the desired signal is still treated as a composite Nakagami log-normal signal with the pdf in (3.56).

OI D 1 �
m0�1X

kD0

�

m0�th10
.�sI .dBm/��˝0 .dBm/ /=10

�k

kŠ�

Z 1

�1
e�y2e

p
2�I�ky

Z 1

�1
e�x2e�

p
2�˝�kx

� exp
n

�m0�the
p
2�.�Iy��˝x/C�.�sI .dBm/��˝0 .dBm/ /

o

dxdy: (3.74)

When the number of interferers increases, �I decreases, while �I increases. For a fixed �d the CIR will be reduced when the
number of interferers is increased. Once again (3.74) can be evaluated by using double Gauss–Hermite quadrature integration.
Figure 3.9 shows the probability of co-channel interference for interferers with various statistics. Observe that the number of
interferers and shadowing are the dominant factors in determining the probability of CCI outage.

Problems

3.1. A receiver is affected by 3 log-normally shadowed co-channel signals having the power sum

I D
3
X

kD1
Ik;

where

I1.dB/ � N .�10 dBm; �2˝/

I2.dB/ � N .�15 dBm; �2˝/

I3.dB/ � N .�20 dBm; �2˝/;
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and where �˝ D 8 dB, and N .�; �2˝/ refers a Gaussian random variable with mean � and variance �2˝ . The sum I is to be
approximated as another log-normal random variable, Z, by using the Fenton–Wilkinson method.

(a) Find the mean and variance of Z.dB/.
(b) Suppose that the received carrier power C.dB/ has the distribution

C.dB/ � N.0 dBm; �2˝/;

and �˝ D 8 dB. Using your result from part a), what is the distribution of the carrier-to-interference ratio �.dB/ �
.C=I/.dB/?

3.2. Consider the system shown in Fig. 3.10 below. A mobile station lies at a distance of 5, 10, and 15 km from three base
stations, BSi; i D 1; 2; 3. BS2 is the serving base station, while BS1 and BS3 are co-channel base stations (co-channel
interferers). The propagation path loss follows the model

�˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇ log10.d=do/ .dBm/

where ˇ D 3:5, and �˝p
.do/ D 1mW at do D 1 km. The radio links exhibit independent log-normal shadowing with shadow

standard deviation �˝ D 8 dB. Ignore envelope fading.

(a) Obtain the probability density function of the total interfering power observed at the mobile station in decibel units using
the Fenton–Wilkinson method.

(b) What is the probability density function of the carrier-to-interference ratio observed at the mobile station in decibel
units?

(c) If the carrier-to-interference ratio must be greater than 6 dB for adequate radio link performance, what is the probability
of outage?

3.3. The scenario in Fig. 3.11 depicts the worst case CCI situation for the first tier of co-channel interferers on the forward
channel. Assume a reuse cluster size of 7 cells, a cell radius of R D 3 km, a path loss exponent of ˇ D 3:5, and a receiver
carrier-to-interference threshold�th .dB/ D 10 dB. Ignore the effect of handoffs and assume that the mobile station must stay
connected to the base station in the center cell.

Fig. 3.10 CCI situation for
Problem 3.2

Fig. 3.11 Worst case CCI
situation on forward channel in
Problem 3.3
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2R

. . . . . .

Fig. 3.12 Highway microcell deployment for Problem 3.6

(a) Using the simple path loss model in (1.6) with �˝p .dBm/.do/ D �10 dBm at do D 1 km and a shadow standard deviation
�˝ D 8 dB, calculate the probability of outage OI.d/ in (3.46) by using the Fenton–Wilkinson method.

(b) For �˝ D 4 dB, what is required threshold �th such that the probability of outage is less than 1%?
(c) Repeat b) for �˝ D 12 dB.

3.4. Consider the Fenton–Wilkinson method for approximating the sum of N log-normal random variables

I D
N
X

kD0
e

Ő k ;

where the Ő k are independent zero-mean Gaussian random variables with � Ő D 8 dB. Plot the mean �Z .dBm/ and variance
�2Z of the approximate Gaussian random variable Z.dB/ as a function of N for N D 2; 3; 4; : : : ; 10.

3.5. This problem uses Monte Carlo simulation techniques to verify the usefulness of the Schwartz & Yeh approximation and
the Fenton–Wilkinson approximation for the sum of two log-normal random variables. Consider the sum of two log-normal
random variables

I D ˝1 C˝2;

where the corresponding Gaussian random variables˝1 .dB/ and Ő 2 .dB/ are independent and identically distributed with zero
mean and variance �2˝ . By using the Schwartz & Yeh method, plot the values of �Z .dB/ and �2Z as a function of the variance
�2˝ . Repeat for the Fenton–Wilkinson method. Now obtain the same results by using computer simulation and compare the
analytical results. What are your conclusions?

3.6. You are asked to design a highway microcell system as shown in Fig. 3.12. Each cell has length 2R.

(a) A base station with an omnidirectional antenna is placed at the center of each cell. Ignoring shadowing and envelope
fading, determine the minimum reuse factor needed so that the worst case carrier-to-interference ratio, �, is at least
17 dB. State whatever assumptions you make.

(b) Now suppose that directional antennas are used to divide each cell into two sectors with boundaries perpendicular to the
highway. Repeat part a).

(c) Consider again the sectored cell arrangement in part b). If shadowing is present with a standard deviation of �˝ dB, what
is the probability of CCI outage on a cell boundary? Assume soft handoffs between adjacent cells.

3.7. Derive Eq. (3.50).

3.8. Derive Eq. (3.51).

3.9. Derive Eq. (3.53).

3.10. Derive Eq. (3.74).

3.11. Consider a microcellular environment where a Ricean faded desired signal is affected by a single Rayleigh faded
interferer. Neglect the effect of path loss and shadowing. Suppose that the transmission quality is deemed acceptable if both
the instantaneous carrier-to-noise ratio and the instantaneous carrier-to-interference ratio exceed the thresholds, 
th and �th,
respectively. Analogous to (3.53) derive an expression for the probability of outage.



Chapter 4

Modulation and Power Spectrum

Modulation is the process whereby message information is embedded into a radio frequency carrier. Such information can
be transmitted in either the amplitude, frequency, or phase of the carrier, or a combination thereof, in either analog or
digital format. Analog modulation schemes include amplitude modulation (AM) and frequency modulation (FM). Analog
modulation schemes are still used today for legacy broadcast AM/FM radio and citizens band (CB) radio, but all other
communication and broadcast systems now use digital modulation. Digital modulation schemes transmit information using
a finite set of waveforms and have a number of advantages over their analog counterparts. Digital modulation is a natural
choice for digital sources, e.g., computer communications. Source encoding or data compression techniques can reduce the
required transmission bandwidth with a controlled amount of signal distortion. Digitally modulated waveforms are also more
robust to channel impairments such as delay and Doppler spread, and co-channel and adjacent channel interference. Finally,
encryption and multiplexing is easier with digital modulation schemes.

To achieve high spectral efficiency in wireless systems, signaling schemes are sought that provide power and bandwidth
efficient communication. In an information theoretic sense, it is desirable to operate close to the Shannon capacity limit
of a channel. This generally requires the use of error control coding along with a jointly designed encoder and modulator.
However, this chapter only considers modulation schemes, while the subject of coding and coded modulation is considered
in Chap. 8. The bandwidth efficiency of a modulation scheme indicates how much information is transmitted per channel
use and is measured in units of bits per second per Hertz of bandwidth (bits/s/Hz). The power efficiency can be measured
by the received signal-to-interference-plus-noise ratio (SINR) that is required to achieve reliable communication with a
specified bandwidth efficiency in the presence of channel impairments such as delay spread and Doppler spread. In general,
modulation techniques for spectrally efficient wireless systems should have the following properties:

• Compact Power Density Spectrum: To minimize the effect of adjacent channel interference, the power radiated into the
adjacent band is often limited to be 60–80 dB below that in the desired band. This requires modulation techniques having
a power spectrum characterized by a narrow main lobe and fast roll-off of side lobes.

• Robust Communication: Reliable communication must be achieved in the presence of delay and Doppler spread, adjacent
and co-channel interference, and thermal noise. Modulation schemes that promote good power efficiency in the presence
of channel impairments are desirable.

• Envelope Properties: Portable and mobile devices often employ power efficient nonlinear (Class-C) power amplifiers
to minimize battery drain. However, amplifier nonlinearities will degrade the performance of modulation schemes that
transmit information in the amplitude of the carrier and/or have a non-constant envelope. To obtain suitable performance,
such modulation schemes require a less power efficient linear or a linearized power amplifier. Also, spectral shaping
is usually performed prior to up-conversion and nonlinear amplification. To prevent the regrowth of spectral side lobes
during nonlinear amplification, modulation schemes having a relatively constant envelope are desirable.

This chapter considers digital modulation techniques that are commonly found in wireless communication systems.
Section 4.1 begins the chapter with a mathematical framework for bandpass modulated signals. Section 4.2 discusses
Nyquist pulse shaping for ISI-free transmission. Sections 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 provide a detailed treatment of
the various linear and nonlinear digital modulations techniques that are found in wireless systems, including QAM, PSK,
�=4-DQPSK, orthogonal modulation, OFDM, CPM, GMSK, and others. Finally, Sect. 4.9 considers the power spectrum of
digitally modulated signals.
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4.1 Representation of Bandpass Modulated Signals

Bandpass modulation schemes refer to modulation schemes that transmit information by using carrier modulation, such that
the signal bandwidth is much less than the carrier frequency. A bandpass waveform s.t/ can be expressed in terms of its
complex envelope as

s.t/ D Re
˚

Qs.t/ej2� fct



; (4.1)

where

Qs.t/ D QsI.t/C jQsQ.t/ (4.2)

is the complex envelope and fc is the carrier frequency. For any digital modulation scheme, the complex envelope can be
written in the standard form

Qs.t/ D A
X

n

b.t � nT; xn/ (4.3)

xn D .xn; xn�1; : : : ; xn�K/; (4.4)

where A is the amplitude and fxng is the sequence of complex data symbols that are chosen from a finite alphabet, and K is
the modulator memory order which may be finite or infinite. One data symbol is transmitted every T seconds, so that the baud
rate is R D 1=T symbols/s. The function b.t; xi/ is a generalized shaping function whose exact form depends on the type of
modulation that is employed. For example, binary phase shift keying (BPSK) with rectangular amplitude pulse shaping has

b.t; xn/ D xnuT.t/ (4.5)

where

xn 2 f�1;C1g is the data symbol transmitted at epoch n

uT.t/ D u.t/ � u.t � T/ is a unit amplitude rectangular pulse of length T

and u.t/ is the unit step function. Many types of modulation are considered in this chapter, where information is transmitted
in the amplitude, phase, and/or frequency of the carrier. In each case, the modulated signal will be represented in the standard
form in (4.3). This is done to streamline the task of finding their power spectra.

By expanding (4.1), the bandpass waveform can also be expressed in the quadrature form

s.t/ D QsI.t/ cos.2� fct/ � QsQ.t/ sin.2� fct/: (4.6)

The waveforms QsI.t/ and QsQ.t/ are known as the quadrature components s.t/, because they modulate the quadrature
components of the carrier, cos 2� fct and sin 2� fct, respectively.

Finally s.t/ can be expressed in the amplitude-phase form

s.t/ D a.t/ cos.2� fctC �.t//; (4.7)

where

a.t/ D jQs.t/j D
q

Qs2I .t/C Qs2Q.t/ (4.8)

�.t/ D Tan�1
� QsQ.t/

QsI.t/

�

; (4.9)

and where a.t/ is the amplitude and �.t/ is the excess phase. The three representations in (4.1), (4.6), and (4.7) are equivalent,
but sometimes one representation is more handy than the other two depending on the particular task at hand.
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4.1.1 Vector Space Representations

For digital modulation schemes, the bandpass signal that is transmitted at each baud epoch will belong to a finite set of
finite energy waveforms with a few exceptions. Let fs1.t/; s2.t/; : : : ; sM.t/g be the set of bandpass waveforms, where M

denotes the size of the signal set. The corresponding complex envelopes are denoted by fQs1.t/; Qs2.t/; : : : ; QsM.t/g. For now, the
development will proceed using the complex envelopes, and the bandpass waveforms will be treated later.

An N-dimensional complex vector space can be defined by a set of N complex orthonormal basis functions
f'1.t/; '1.t/; : : : ; 'N.t/g, where

Z 1

�1
'i.t/'

�
j .t/dt D ıij (4.10)

and

ıij D
�

1 ; i D j

0 ; i ¤ j
: (4.11)

Each waveform Qsm.t/ in the signal set can be projected onto the set of basis functions to yield a signal vector

Qsm D .Qsm1 ; Qsm2 ; : : : ; QsmN
/ ; m D 1; : : : ;M; (4.12)

where

Qsmi
D
Z 1

�1
Qsm.t/'

�
i .t/dt; i D 1; : : : ; N: (4.13)

The collection of N basis functions is said to constitute a complete set, if each waveform in the set fQs1.t/; Qs2.t/; : : : ; QsM.t/g
can be expressed exactly as a linear combination of the basis functions. That is,

Qsm.t/ D
N
X

iD1
Qsmi
'i.t/; m D 1; : : : ; M: (4.14)

A systematic procedure for constructing a complete set of basis functions from the set of signal waveforms
fQs1.t/; Qs2.t/; : : : ; QsM.t/g is now described.

4.1.2 Gram–Schmidt Orthonormalization Procedure

Define the inner product between two complex-valued waveforms u.t/ and v.t/ as

.u; v/
�D
Z 1

�1
u.t/v�.t/dt (4.15)

and define the norm of the waveform u.t/ as

kuk �D
p

.u; u/: (4.16)

Note that the squared-norm

kuk2 �D .u; u/ D
Z 1

�1
ju.t/j2dt (4.17)

is the energy contained in the complex-valued waveform u.t/.
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Given the finite set of finite energy signals fQs1.t/; Qs2.t/; : : : ; QsM.t/g, a complete set of orthonormal basis functions
f'1.t/; '2.t/; : : : ; 'N.t/g can be constructed by using the following systematic procedure, known as the Gram–Schmidt
orthonormalization procedure:

1: Using Qs1.t/, let

g1.t/ D Qs1.t/

and define

'1.t/ D
g1.t/

kg1k
: (4.18)

2: Using Qs2.t/, let

g2.t/ D Qs2.t/ � Qs21'1.t/

where

Qs21 D .Qs2; '1/

and define

'2.t/ D
g2.t/

kg2k
: (4.19)

3: Using Qsi.t/, let

gi.t/ D Qsi.t/ �
i�1
X

jD0
Qsij'j.t/

where

Qsij D .Qsi; 'j/

and define

'i.t/ D
gi.t/

kgik
: (4.20)

4: Repeat Step 3 in a recursive fashion until all elements of the waveform set fQs1.t/; Qs2.t/; : : : ; QsM.t/g have been used.

If one or more steps in the above recursion yields gi.t/ D 0, then the corresponding waveform Qsi.t/ can already be expressed
exactly in terms of the basis functions already generated. Consequently, the waveform Qsi.t/ will not yield an additional basis
function and the procedure continues to the next waveform in the set, QsiC1.t/. In the end, a complete set of N; 1 � N � M

complex orthonormal basis functions f'1.t/; '2.t/; : : : ; 'N.t/g corresponding to the non-zero gi.t/ will be obtained. The
dimensionality of the complex vector space N is equal to M if and only if the original set of waveforms fQs1.t/; Qs2.t/; : : : ; QsM.t/g
are linearly independent, i.e., none of the waveforms in the set is a linear combination of the other waveforms in the set.
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Example 4.1. Construct an orthonormal basis set for the set of waveforms shown in Fig. 4.1.

1

0 T

1

1

0 T 0 T

0 T

1

1

3

T/3 2T/3

T/3

s  (t) s  (t)

s  (t)s  (t)
~

~~

~

2

4

Fig. 4.1 Signal set fQsi.t/g4iD1 for Example 4.1

1: Let g1.t/ D Qs1.t/. Then

'1.t/ D
g1.t/

kg1k
D
� p

3=T ; 0 � t � T=3

0 ; else
:

2: Let g2.t/ D Qs2.t/ � Qs21'1.t/, where

Qs21 D .Qs2; '1/ D
Z T

0

Qs2.t/'�
1 .t/dt D

p

T=3:

Then

'2.t/ D
g2.t/

kg2k
D
� p

3=T ; T=3 � t � 2T=3

0 ; else

3: Let g3.t/ D Qs3.t/ � Qs31'1.t/ � Qs32'2.t/, where

Qs31 D .Qs3; '1/ D
Z T

0

Qs3.t/'�
1 .t/dt D 0

Qs32 D .Qs3; '2/ D
Z T

0

Qs3.t/'�
2 .t/dt D

p

T=3:

Then

'3.t/ D
g3.t/

kg3k
D
� p

3=T ; 2T=3 � t � T

0 ; else
:

4: Let g4.t/ D Qs4.t/ � Qs41'1.t/ � Qs42'2.t/ � Qs43'3.t/, where

(continued)
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Example 4.1 (continued)

3/T 3/T

3/T

1 2

T/3 2T/3

T/30 T

0 T 0 TT/3

2T/3

φ  (τ)

φ  (τ)

φ  (τ)

3

Fig. 4.2 Orthonormal basis functions f'i.t/g3iD1 for Example 4.1

Qs41 D .Qs4; '1/ D
Z T

0

Qs4.t/'�
1 .t/dt D

p

T=3

Qs42 D .Qs4; '2/ D
Z T

0

Qs4.t/'�
2 .t/dt D

p

T=3

Qs43 D .Qs4; '3/ D
Z T

0

Qs4.t/'�
3 .t/dt D

p

T=3:

But g4.t/ D 0, meaning that Qs4.t/ is linearly dependent on fQs1.t/; Qs2.t/; Qs3.t/g, and Qs4.t/ does not yield an
additional basis function.

The set of orthonormal basis functions obtained from the above procedure is shown in Fig. 4.2, and they define a
3-dimensional vector space.

Each Qsi.t/ in the signal set can be expressed as a linear combination of the basis functions, according to (4.14), and
the corresponding signal vectors in (4.12) can be constructed. For this example, the signal vectors are

Qs1 D .
p

T=3; 0; 0/

Qs2 D .
p

T=3;
p

T=3; 0/

Qs3 D .0;
p

T=3;
p

T=3/

Qs4 D .
p

T=3;
p

T=3;
p

T=3/:

The set of signal vectors fQsig can be plotted in the 3-D vector space defined by the set of orthonormal basis functions
f'i.t/g as shown in Fig. 4.3. The plotted set of signal vectors is sometimes called a signal constellation.

(continued)
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Example 4.1 (continued)
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Fig. 4.3 Signal constellation for Example 4.1

In the above development, the Gram–Schmidt orthonormalization procedure was applied to the set of complex envelopes
fQs1.t/; Qs2.t/; : : : ; QsM.t/g to produce a complete set of N � M complex basis functions f'1.t/; '2.t/; : : : ; 'N.t/g, where N is the
dimension of the complex vector space. By using the exact same Gram–Schmidt orthonormalization procedure, a complete
set of N real-valued orthonormal basis functions f'1.t/; '2.t/; : : : ; 'N.t/g can be obtained from the real-valued bandpass
waveforms fs1.t/; s2.t/; : : : ; sM.t/g, expressed in quadrature representation (4.6), and where N is the dimension of the real

vector space. In this case, the complex conjugates in (4.10) and (4.13) may be omitted since all waveforms are real-valued.
By using the real-valued basis functions, each bandpass waveform sm.t/ can be projected onto the set of real-valued basis
functions to yield the set of signal vectors

sm D .sm1 ; sm2 ; : : : ; smN
/ ; m D 1; : : : ;M; (4.21)

where

smi
D
Z 1

�1
sm.t/'i.t/dt; i D 1; : : : ; N; (4.22)

and

sm.t/ D
N
X

iD1
smi
'i.t/; m D 1; : : : ; M: (4.23)

Note that the set of orthonormal basis functions and the dimensionality of the vector space needed to represent the bandpass
waveforms and their corresponding complex envelopes are related. The complex-valued basis functions each define a 2-
dimensional complex plane. So for one-dimensional complex-valued or two-dimensional real-valued signal constellations
each complex basis function will yield two orthogonal real-valued basis functions. If the complex envelopes happen to be
real-valued, then just a single real-valued basis function, different in each case, is required to represent both the real-valued
bandpass waveforms and their complex envelopes.



172 4 Modulation and Power Spectrum

4.1.3 Signal Energy and Correlations

Define the inner (dot) product between two length-N complex vectors u and v as

u � v� �D
N
X

iD1
uiv

�
i (4.24)

and the norm (length) of the vector u as

kuk �D
p

u � u� D

v
u
u
t

N
X

iD1
juij2: (4.25)

If the vectors happen to be real, the complex conjugates and absolute values can be neglected.
Consider the set of bandpass waveforms

sm.t/ D Re
˚

Qsm.t/e
j2� fct




; m D 1; : : : ;M: (4.26)

The energy in the bandpass waveform sm.t/ is

Em D .sm; sm/ D
Z 1

�1
s2m.t/dt: (4.27)

Using the amplitude-phase representation of a bandpass waveform in (4.7), and the trig identity cos2.x/ D 1
2
.1C cos.2x//,

gives

Em D
Z 1

�1
.jQsm.t/j cos.2� fctC �m.t///

2 dt

D 1

2

Z 1

�1
jQsm.t/j2dtC 1

2

Z 1

�1
jQsm.t/j2 cos.4� fctC 2�m.t//dt

� 1

2

Z 1

�1
jQsm.t/j2dt

D 1

2
.Qsm; Qsm/: (4.28)

where �m.t/ D Tan�1 �Qsm;Q.t/=Qsm;I.t/
�

. The above approximation is valid when the bandwidth of the complex envelope is
much less than the carrier frequency so that the double frequency term can be neglected. For digital bandpass modulated
signals, this condition is equivalent to fcT � 1 so that there are many cycles of the carrier in the baud period T . This
condition is satisfied in most wireless systems.

By using the vector representation of the bandpass waveforms in (4.21)–(4.23), it follows that the energy in the bandpass
waveform sm.t/ is

Em D
Z 1

�1

 
N
X

iD1
smi
'i.t/

!2

dt D
N
X

iD1
s2mi
D ksmk2; (4.29)

where the second equality follows from the orthonormal property of the basis functions in (4.10). Notice that the energy in
sm.t/ is equal to the squared-norm (length) of the corresponding signal vector sm. Likewise, by using the vector representation
of the corresponding complex envelope, the energy in the bandpass waveform sm.t/ is also equal to

Em D
1

2

Z 1

�1

ˇ
ˇ
ˇ
ˇ
ˇ

N
X

iD1
Qsmi
'i.t/

ˇ
ˇ
ˇ
ˇ
ˇ

2

dt D 1

2

N
X

iD1
jQsmi
j2 D 1

2
kQsmk2: (4.30)

Note that the energy in the bandpass waveform is one-half the energy in its complex envelope. This is due to the carrier
modulation.
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The correlation between the bandpass waveforms sm.t/ and sk.t/ is defined as

�km D
1p

EkEm

Z 1

�1
sm.t/sk.t/dt

D sm � sk

ksmkkskk

D Re

� Qsm � Qs�
k

kQsmkkQskk

�

: (4.31)

Finally, the squared Euclidean distance between the bandpass waveforms sk.t/ and sm.t/ is

d2km D
Z 1

�1
.sm.t/ � sk.t//

2 dt

D ksm � skk2

D 1

2
kQsm � Qskk2: (4.32)

The results in (4.31) and (4.32) may be obtained using (4.14) and (4.23) along with the orthonormal property of the basis
functions.

4.2 Nyquist Pulse Shaping

Consider a modulation scheme where the transmitted complex envelope has the

Qs.t/ D A
X

n

xnha.t � nT/ (4.33)

where ha.t/ is a real-valued amplitude shaping pulse, fxng is a complex data symbol sequence, and T is the baud period. As
will be discussed in Chap. 5, the receiver usually employs a filter that is matched to the transmitted pulse, having the form
hr.t/ D ha.To � t/, where To is the duration of the amplitude shaping pulse ha.t/. An overall pulse can be defined that is the
cascade of the transmitted pulse ha.t/ and the receiver matched filter hr.t/ as p.t/ D ha.t/ � ha.To � t/, where � denotes the
operation of convolution.

For the time being, consider an ideal channel having impulse response g.t; �/ D ı.�/. In the absence of thermal noise in
the receiver, the waveform at the output of the receiver matched filter is

Qy.t/ D A
X

n

xnp.t � nT/: (4.34)

Now suppose the received complex envelope Qy.t/ is sampled once every T seconds to yield the sample sequence fQykg, where

Qyk D Qy.kT C to/ D A
X

n

xnp.kT C to � nT/ (4.35)

and to is a timing offset assumed to lie in the interval Œ0;T/. First consider the case when to D 0; the effect of having a
non-zero timing offset will be treated later. When to D 0

Qyk D A
X

n

xnpk�n D Axkp0 C A
X

n¤k

xnpk�n; (4.36)

where pm D p.mT/ is the sampled overall pulse. The first term in (4.36) is equal to the data symbol transmitted at the kth
baud epoch, scaled by the factor Ap0. The second term is the contribution of all other data symbols on the sample Qyk. This
term is called intersymbol interference (ISI). To avoid the appearance of ISI, the sampled pulse response fpkg must satisfy
the condition

pk D ık0p0; (4.37)
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where ıjk is the Dirac delta function defined in (4.11). This requirement is known as the (first) Nyquist criterion. Under this
condition,

Qyk D Axkp0: (4.38)

An equivalent frequency domain requirement is now derived by showing that the continuous-time pulse p.t/ satisfies the
condition pk D ık0p0 if and only if

P˙ .f /
4D 1

T

1
X

nD�1
P
�

f C n

T

�

D p0: (4.39)

The function P˙ .f / is called the folded spectrum, and ISI is avoided if and only if the folded spectrum is flat, i.e., it assumes
a constant value. To prove the above property, the inverse Fourier transform can be used to write

pk D
Z 1

�1
P.f /ej2� fkTdf

D
1
X

nD�1

Z .2nC1/=2T

.2n�1/=2T

P.f /ej2�kfTdf

D
1
X

nD�1

Z 1=2T

�1=2T

P
�

f 0 C n

T

�

ej2�k.f 0C n
T /Tdf 0

D
Z 1=2T

�1=2T

" 1
X

nD�1
P
�

f C n

T

�
#

ej2� fkTdf

D T

Z 1=2T

�1=2T

P˙ .f /e
j2� fkTdf : (4.40)

Since P˙ .f / is periodic with period 1=T , it follows that the last line in (4.40) represents a Fourier series analysis equation
except for the sign of the exponential term. Therefore, fp�kg and P˙ .f / are a Fourier series pair, and P˙ .f / can be constructed
from fp�kg by using the Fourier series synthesis equation, viz.,

P˙ .f / D
1
X

kD�1
p�kej2�kfT D

1
X

kD�1
pke�j2�kfT : (4.41)

To prove that (4.39) is a sufficient condition for ISI-free transmission, suppose that (4.39) holds true. Then P˙ .f / D p0T

and from the last line of (4.40)

pk D
Z 1=2T

�1=2T

ej2� fkTp0Tdf D sin�k

�k
p0 D ık0p0: (4.42)

To prove that (4.39) is a necessary condition for ISI-free transmission, suppose that pk D p0ık0 holds true. Then from (4.41)
P˙ .f / D p0, and the folded spectrum must be flat.

The requirement on the folded spectrum in (4.39) allows us to design pulses in the frequency domain that will admit
ISI-free transmission. First consider a pulse having the Fourier transform

PN.f / D Trect.fT/; (4.43)

where

rect.fT/ D
�

1 ; jf j � 1
2T

0 ; elsewhere
: (4.44)

This pulse has a flat folded spectrum. The corresponding time domain pulse

pN.t/ D sinc.t=T/ (4.45)

satisfies the first Nyquist criterion because it has equally spaced zero crossings at T second intervals. Furthermore, from the
requirement of a flat folded spectrum, it achieves zero ISI while occupying the smallest possible bandwidth. Hence, it is
called an ideal Nyquist pulse. The edge frequency f D 1=2T is called the Nyquist frequency.
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Fig. 4.4 Construction of pulses satisfying the (first) Nyquist criterion

The effect of the sampling or timing offset to is now examined with the aid of the ideal Nyquist pulse. With a timing offset

Qyk D A
X

n

xnsinc..kT C to � nT/=T/

D Axksinc.to=T/C A
X

n¤k

xnsinc..kT C to � nT/=T/ (4.46)

Observe that the ISI term is non-zero when the timing offset is non-zero. In fact, with an ideal Nyquist pulse, the ISI term is
not absolutely summable as shown in Problem 4.1. This is because the tails of the ideal Nyquist pulse in (4.45) decay in time
as 1=t. To reduce this sensitivity to symbol timing errors, pulses need to be designed that satisfy the first Nyquist criterion
while having tails that decay faster than 1=t.

The construction of other Nyquist pulses starts with the ideal Nyquist pulse, PN.f /, shown in Fig. 4.4a. To the pulse PN.f /,
a “transmittance” function Po.f / is added as shown in Fig. 4.4b. The transmittance function must have skew symmetry about
the Nyquist frequency 1=2T , and any skew symmetric function will do. The resulting Nyquist pulse P.f / is shown in Fig. 4.4c.
Clearly, the folded spectrum P˙ .f / is flat if the transmittance function is skew symmetric about the Nyquist frequency 1=2T .
The corresponding time domain pulse p.t/ can be obtained from the inverse Fourier transform of resulting P.f /. Notice that
the pulse P.f / takes up additional bandwidth, but the bandwidth expansion will result in a time domain pulse p.t/ having
tails that decay faster in time than the ideal Nyquist pulse.

4.2.1 Raised Cosine and Root Raised Cosine Pulse

The raised cosine pulse is defined in the frequency domain by

P.f / D

8

<̂

:̂

T ; 0 � jf j � .1 � ˇ/=2T
T
2

h

1 � sin
�
�jf jT
ˇ
� �

2ˇ

�i

; .1 � ˇ/=2T � jf j � .1C ˇ/=2T

0 ; jf j � .1C ˇ/=2T

: (4.47)
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The bandwidth of the raised cosine pulse is .1C ˇ/=2T , where the parameter ˇ; 0 � ˇ � 1 is called the roll-off factor and
controls the bandwidth expansion. The term “raised cosine” comes from the fact that pulse spectrum P.f / with ˇ D 1 has a
“raised cosine” shape, i.e., with ˇ D 1

P.f / D T

2
Œ1C cos.� f T/� ; 0 � jf j � 1=T: (4.48)

The inverse Fourier transform of P.f / in (4.47) gives the corresponding time domain pulse

p.t/ D sin.� t=T/

� t=T

cos.ˇ� t=T/

1 � .2ˇt=T/2
: (4.49)

For ˇ D 0, p.t/ reduces to the ideal Nyquist pulse in (4.45). Notice that the tails of the raised cosine pulse decay as 1=t3.
As mentioned before, the overall pulse produced by the cascade of the transmitter and receiver matched filters is p.t/ D

ha.t/ � ha.To � t/. It follows that the Fourier transform of p.t/ is P.f / D Ha.f /H
�
a .f /e

�j2� fTo D jHa.f /j2e�j2� fTo . Hence,
both the transmitted pulse and receiver matched filter have the same magnitude response jHa.f /j D jP.f /j1=2, where P.f / is
defined in (4.47). If the overall pulse p.t/ is a raised cosine pulse with P.f / defined in (4.47), then the pulse ha.t/ is said to be
a root raised cosine pulse. Taking the inverse Fourier transform of jHa.f /j D

p
TjP.f /j1=2 gives the root raised cosine pulse

ha.t/ D

8

<̂

:̂

1 � ˇ C 4ˇ=� ; t D 0
.ˇ=
p
2/ ..1C 2=�/ sin.�=4ˇ/C .1 � 2=�/ cos.�=4ˇ// ; t D ˙T=4ˇ

4ˇ.t=T/ cos..1Cˇ/� t=T/Csin..1�ˇ/� t=T/

�.t=T/.1�.4ˇt=T/2/
; elsewhere

(4.50)

For ˇ D 0, the root raised cosine pulse reduces to the sinc pulse

ha.t/ D sinc.t=T/: (4.51)

The raised cosine and root raised cosine pulses corresponding to ˇ D 0:5 are shown in Fig. 4.5. Strictly speaking, the
root-raised cosine pulse in (4.50) is non-causal. Therefore, in practice, a truncated and time shifted approximation of the
pulse must be used. For example, in Fig. 4.5 the pulse is truncated to length 6T and right time-shifted by 3T seconds to yield
a causal pulse. The time-shifting makes the pulse have a linear phase response, while the pulse truncation will result in a
pulse that is no longer strictly bandlimited. Finally, the raised cosine pulse is a Nyquist pulse having equally spaced zero
crossings at the baud period T , while the root-raised cosine pulse by itself is not a Nyquist pulse and does not have equally
spaced zero crossings.

4.3 Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) is a bandwidth efficient modulation scheme that is used in numerous wireless
standards. With QAM, the complex envelope of the transmitted waveform is

Qs.t/ D A
X

n

b.t � nT; xn/ (4.52)

where

b.t; xn/ D xnha.t/ (4.53)

ha.t/ is the amplitude shaping pulse (very often chosen as a root-raised cosine pulse), and xn D xI;n C jxQ;n is the complex-
valued data symbol that is transmitted at baud epoch n. It is apparent that both the amplitude and the excess phase of a
QAM waveform depend on the complex data symbols. QAM has the advantage of high bandwidth efficiency, but amplifier
nonlinearities will degrade its performance due to the non-constant envelope.
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Fig. 4.5 Raised cosine and root raised cosine pulses with roll-off factor ˇ D 0:5. The pulses are truncated to length 6T and right time shifted by
3T seconds to yield causal pulses

The set of possible QAM waveforms that are transmitted at each baud epoch have the complex envelopes

Qsm.t/ D Axmha.t/ m D 1; 2; : : : ;M: (4.54)

To obtain the vector representation of the complex envelopes Qsm.t/;m D 1; 2; : : : ;M, the basis function

'1.t/ D

s

A2

2Eh

ha.t/ (4.55)

can be used, where

Eh D
A2

2

Z 1

�1
h2a.t/dt (4.56)

is the energy in the bandpass pulse Aha.t/ cos 2� fct under the condition fcT � 1. Using this basis function

Qsm.t/ D
p

2Eh xm '1.t/; (4.57)

and the QAM complex signal vectors are the complex-valued scalars1

Qsm D
p

2Eh xm ; m D 1; 2; : : : ;M: (4.58)

4.3.1 QAM Signal Constellations

A variety of QAM signal constellations may be constructed. Square QAM constellations can be constructed when M is an
even power of 2 by choosing xI;m; xQ;m 2 f˙1; ˙3; : : : ; ˙. OM � 1/g, where OM D

p
M. The complex signal-space diagram

for the square 4-, 16, and 64-QAM constellations is shown in Fig. 4.6. Notice that the minimum Euclidean distance between
any two signal vectors is 2

p
2Eh. When M is an odd power of 2, the QAM signal constellation is not square. In this case,

1Note that the dimensionality of the complex signal-space is N D 1.
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Fig. 4.6 Complex signal-space
diagram for square QAM
constellations
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Fig. 4.7 Complex signal-space diagram for cross QAM constellations
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Fig. 4.8 Complex signal-space diagrams for 8-QAM constellations

the constellation assumes the shape of a cross in an attempt to minimize the average energy in the constellation for a given
minimum Euclidean distance between signal vectors. Examples of QAM “cross constellations” are shown in Fig. 4.7. Other
types of QAM constellations are possible as well. Figure 4.8 shows two different 8-QAM constellations.

4.3.2 PAM Signal Constellations

Pulse amplitude modulation (PAM) can be viewed as a special case of QAM, where information is transmitted only
in the cosine component of the RF carrier. This can be accomplished by using real data symbols xm D xI;m, where
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Fig. 4.9 Complex signal-space
diagram for the 4- and 8-PAM
constellations

M=4

2 hE2 M=8

(  )tφ

(  )tφ
1

1

xI;m 2 f˙1;˙3; : : : ;˙.M � 1/g. Equivalently, the set of data symbols can be generated according to xI;m 2 f2m � 1 �M W
m D 1; 2; : : : ;Mg. The PAM complex signal vectors are the real-valued scalars

Qsm D
p

2Eh.2m � 1 �M/ ; m D 1; 2; : : : ;M: (4.59)

Typical 4- and 8-PAM signal constellations are shown in Fig. 4.9.

4.4 Phase Shift Keying

The complex envelope of a phase shift keying (PSK) signal has the form

Qs.t/ D A
X

n

b.t � nT; xn/; (4.60)

where

b.t; xn/ D xnha.t/; (4.61)

ha.t/ is the amplitude shaping pulse, xn D ej�n and the phases �n take on values from the set

�n 2
�
2�

M
n ; n D 0; 1; : : : ; M � 1

�

; (4.62)

The set of possible PSK waveforms that are transmitted at each baud epoch have the complex envelopes

Qsm.t/ D Aha.t/e
j�m ; m D 1; 2; : : : ;M: (4.63)

Using the basis function in (4.55)

Qsm.t/ D
p

2Ehej�m'0.t/ ; m D 1; : : : ;M; (4.64)

and the PSK complex signal vectors are the complex-valued scalars

Qsm D
p

2Ehej�m ; m D 1; 2; : : : ;M: (4.65)

The complex signal-space diagram for 8-PSK is shown in Fig. 4.10. Recall the energy in a PSK bandpass waveform is equal
to one-half the squared length of its complex signal vector. It follows that the PSK bandpass waveforms all have equal
energy Eh.
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Fig. 4.10 Complex signal-space
diagram for the 8-PSK
constellation

2Eh

φ (  )t
1

4.4.1 Offset QPSK (OQPSK)

QPSK or 4-PSK is equivalent to 4-QAM, where xn D xI;n C jxQ;n and xI;n; xQ;n 2 f�1=
p
2;C1=

p
2g. The QPSK signal can

have either ˙90ı or 180ı shifts of the excess phase from one baud interval to the next. With offset (or staggered) QPSK
(OQPSK), the complex envelope is

Qs.t/ D A
X

n

b.t � nT; xn/ (4.66)

where

b.t; xn/ D xI;nha.t/C jxQ;nha.t � Tb/ (4.67)

and Tb D T=2 is the bit interval. With OQPSK signals, the possibility of 180ı shifts of the excess phase is eliminated. In
fact, the excess phase can only change by ˙90ı every Tb seconds. With OQPSK, the amplitude shaping pulse ha.t/ is often
chosen to be the root-raised cosine pulse in (4.50) to yield a compact power spectrum.

The signal-space diagrams for QPSK and OQPSK are shown in Fig. 4.11, where Eh is the symbol energy. The dotted lines
in Fig. 4.11 show the allowable excess phase transitions. The exact excess phase trajectories depend on the amplitude shaping
function. Note that the excess phase trajectories with OQPSK do not pass through the origin, while those with QPSK do. This
property reduces the peak-to-average power ratio (PAPR) of the OQPSK waveform as compared to the QPSK waveform,
where the PAPR is defined as

PAPR D limT!1
max0�t�T jQs.t/j2

T�1 R T

0
jQs.t/j2dt

:

A lower PAPR makes the OQPSK waveform less sensitive to power amplifier nonlinearities than the QPSK waveform. For
this reason OQPSK waveforms have been used for satellite communication links, where the satellite transponders use power
efficient nonlinear amplifiers.

4.4.2 �=4-DQPSK

The �=4 phase-shifted differential quadrature phase shift keyed (�=4-DQPSK) modulation scheme was used in some types
of now extinct second generation cellular telephone systems. Similar to QPSK and OQPSK, �=4-DQPSK transmits 2 bits
per modulated symbol. However, unlike QPSK and OQPSK where information is transmitted in the absolute excess phase,
�=4-DQPSK transmits information in the differential excess phase, and one of 8 absolute excess phases are transmitted at
each baud epoch.
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Fig. 4.11 Complex signal-space diagram QPSK and OQPSK signals

Let �n be the absolute excess phase for the nth data symbol, and let ��n D �n � �n�1 be the differential excess phase.
With �=4-DQPSK, the differential excess phase is related to the quaternary data sequence fxng; xn 2 f˙1;˙3g through the
mapping

��n D xn

�

4
: (4.68)

Notice that the excess phase differences are˙�=4 and˙3�=4. The complex envelope of the �=4-DQPSK signal is

Qs.t/ D A
X

n

b.t � nT; xn/; (4.69)

where

b.t; xn/ D ha.t/ exp
n

j
�

�n�1 C xn

�

4

�o

D ha.t/ exp

(

j
�

4

 
n�1
X

kD�1
xk C xn

!)

: (4.70)

The summation in the exponent of (4.70) represents the accumulated excess phase, while the last term is the excess phase
increment due to the nth data symbol. The absolute excess phase during the even and odd baud intervals belongs to the sets
f0; �=2; �; 3�=2g and f�=4; 3�=4; 5�=4; 7�=4g, respectively, or vice versa. With �=4-DQPSK the amplitude shaping pulse
ha.t/ is often chosen to be the root-raised cosine pulse in (4.50).

The signal-space diagrams for QPSK and �=4-DQPSK are shown in Fig. 4.12, where Eh is the symbol energy. The
dotted lines in Fig. 4.12 show the allowable phase transitions. The phaser diagram for �=4-DQPSK with root-raised cosine
amplitude pulse shaping is shown in Fig. 4.13. Note that the phase trajectories do not pass through the origin. Like OQPSK,
this property reduces the PAPR of the complex envelope, making the �=4-DQPSK waveform less sensitive to power amplifier
nonlinearities. Moreover, since the root-raised cosine pulse is not a Nyquist pulse, the phase trajectories do not go through
the signal constellation points either. Finally, observe that the excess phase of �=4-DQPSK changes by ˙�=4 or ˙3�=4
radians during every baud interval. This property makes symbol synchronization is easier with �=4-DQPSK as compared to
QPSK.
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Fig. 4.12 Complex signal-space diagram QPSK and �=4-DQPSK signals
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Fig. 4.13 Phaser diagram for �=4-DQPSK with root-raised cosine amplitude pulse shaping; ˇ D 0:5

4.5 Orthogonal Modulation and Variants

Orthogonal modulation schemes transmit information by using a set of waveforms, that may overlap in frequency but are
orthogonal in time. Many different types of orthogonal waveforms are possible and here a few methods are considered that
are commonly used in wireless systems.

4.5.1 Orthogonal FSK Modulation

Orthogonal M-ary frequency shift keying (MFSK) uses a set of M waveforms that all have different frequencies. The MFSK
complex envelope is



4.5 Orthogonal Modulation and Variants 183

Qs.t/ D A
X

n

b.t � nT; xn/; (4.71)

where

b.t; xn/ D exp

�

j
xn��f

2
t

�

uT.t/ (4.72)

and xn 2 f˙1;˙3; : : : ;˙M � 1g. The set of MFSK waveforms that are transmitted at each baud epoch have the complex
envelopes

Qsm.t/ D Aexp

�

j
xm��f

2
t

�

uT.t/ ; m D 1; : : : ;M: (4.73)

By choosing the frequency separation �f D 1=2T , all the Qsm.t/;m D 1; : : : ;M are mutually orthogonal (see Problem 4.7).
Since the Qsm.t/ are mutually orthogonal, the MFSK signal vectors have dimension N D M. The appropriate set of basis
functions is

'i.t/ D
r

1

T
exp

�

j
xm��f

2
t

�

uT.t/ ; i D 1; : : : ;M D N: (4.74)

The MFSK complex signal vectors are

Qsm D
p

2Ehem ; m D 1; : : : ;M; (4.75)

where em D .e1; e2; : : : ; eM/, ej D ıjm, is a length-M unit basis vector with a “1” in the mth coordinate.

4.5.2 Binary Orthogonal Codes

Another set of mutually orthogonal waveforms can be obtained from the rows of a Hadamard matrix. A Hadamard matrix,
HM , is generated recursively according to

HM D
�

HM=2 HM=2

HM=2 �HM=2

�

:

where H1 D Œ1�. For example, the 8 � 8 Hadamard matrix obtained from the above recursive procedure is

H8 D

2

6
6
6
6
6
6
6
6
6
6
6
4

C1 C1 C1 C1 C1 C1 C1 C1
C1 �1 C1 �1 C1 �1 C1 �1
C1 C1 �1 �1 C1 C1 �1 �1
C1 �1 �1 C1 C1 �1 �1 C1
C1 C1 C1 C1 �1 �1 �1 �1
C1 �1 C1 �1 �1 C1 �1 C1
C1 C1 �1 �1 �1 �1 C1 C1
C1 �1 �1 C1 �1 C1 C1 �1

3

7
7
7
7
7
7
7
7
7
7
7
5

: (4.76)

The rows of the Hadamard matrix are mutually orthogonal. A set of M equal energy orthogonal waveforms can be constructed
according to

Qsm.t/ D A

M
X

kD1
hmk

hc.t � kTc/ ; m D 1; : : : ;M; (4.77)
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where hmk
is the kth co-ordinate in the mth row of the Hadamard matrix, T D MTc is the symbol duration, and hc.t/ is a root

Nyquist shaping pulse with a Nyquist frequency of 1=.2Tc/. Sometimes the above waveforms are called Walsh codes, and
find application in the forward link of some cellular code division multiple access (CDMA) systems, such as IS-95A/B and
cdma2000.

The bandpass waveforms, sm.t/, all have energy

Eh D
MA2

2

Z 1

�1
h2c.t/dt: (4.78)

To construct signal vectors, the appropriate choice of basis function is

'i.t/ D
Ap
2Eh

M
X

kD1
hik hc.t � kTc/ ; i D 1; : : : ;M (4.79)

and once again the signal vectors are

Qsm D
p

2Ehem ; m D 1; : : : ;M: (4.80)

4.5.3 Biorthogonal Signals

A set of M biorthogonal waveforms can be constructed from a set of M=2 orthogonal waveforms. The M-ary biorthogonal
waveforms have complex signal vectors

Qsi D
� p

2Ehei ; i D 1; : : : ;M=2
�Qsi�M=2 ; i D M=2C 1; : : : ;M ; (4.81)

where the unit basis vectors ei have length N D M=2. By using an appropriate set of basis functions, for example in (4.74)
or (4.79), the complex envelopes of the biorthogonal waveforms can be synthesized.

4.5.4 Orthogonal Multipulse Modulation

With binary orthogonal codes only k D log2M bits are transmitted at each baud epoch. A much more bandwidth efficient
scheme can be obtained by using the rows of the Hadamard matrix HN to define N orthogonal amplitude shaping pulses

hi.t/ D
N�1
X

kD0
hikhc.t � kTc/ ; i D 1; : : : ;N (4.82)

each having duration T D NTc. With orthogonal multipulse modulation, a block of M D N data symbols are transmitted in
parallel every T seconds by using the N orthogonal amplitude shaping pulses in (4.82). The transmitted complex envelope is

Qs.t/ D A
X

n

b.t � nT; xn/; (4.83)

where

b.t; xn/ D
N�1
X

kD0
xnk

hk.t/ (4.84)

T D NTc, and xn D .xn1 ; xn2 ; : : : ; xnN
/ is the block of M D N data symbols transmitted at epoch n.
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4.6 Orthogonal Frequency Division Multiplexing

All of the modulation techniques discussed so far are single-carrier modulation techniques that employ a single RF
carrier. Another possibility is to use multi-carrier modulation techniques where information is transmitted in parallel by
using multiple subcarriers. Orthogonal frequency division multiplexing (OFDM) is perhaps the most popular multi-carrier
modulation technique. OFDM was first introduced in the 1960s [55], but it was perhaps the efficient DFT implementation of
OFDM developed by Weinstein and Ebert [348] that has led to its popularity and widespread use. OFDM was first suggested
for use cellular land mobile radio by Cimini [66] and later implemented in the Motorola IDEN (Integrated Digital Enhanced
Network) standard [44]. OFDM is now used in a large number of standards for broadcasting (DVB-T, DVB-H, MediaFLO,
and others), wireless LAN or WiFi (IEEE 802.11a/g/n/p), wireless MAN or WiMAX (IEEE 802.16), mobile broadband
wireless access (MBWA) (IEEE 802.16e mobile WiMAX), wireless regional area networks (WRAN) (IEEE 802.22), and
the cellular land mobile radio [3GPP Long Term Evolution (LTE) air interface named High Speed OFDM Packet Access
(HSOPA)], among others.

OFDM is a block modulation scheme where data symbols are transmitted in parallel on orthogonal subcarriers. A block of
N data symbols, with symbol period Ts, is converted into a block of N parallel data symbols, each of duration T D NTs. The
N parallel data symbols modulate N subcarriers that are spaced in frequency 1=T Hz apart. The OFDM complex envelope is
given by

Qs.t/ D A
X

n

b.t � nT; xn/; (4.85)

where

b.t; xn/ D uT.t/

N�1
X

kD0
xn;kej 2�kt

T (4.86)

n is the block index, k is the subcarrier index, N is the number of subcarriers, and xn D fxn;0; xn;1; : : : ; xn;N�1g is the data
symbol block at epoch n.

The data symbols xn;k are usually chosen from a QAM or PSK signal constellation, although any 2-D signal constellation
can be used. The 1=T Hz frequency separation of the subcarriers ensures that the corresponding waveforms transmitted on
the N subcarriers are mutually orthogonal regardless of the random phases that are imparted by the random data symbols xn;k

(see Problem 4.7).
A cyclic extension (or guard interval) is usually added to the OFDM waveform in (4.85) and (4.86) to combat intersymbol

interference (ISI) as explained in Sect. 10.1 of Chap. 10. The cyclic extension can be in the form of either a cyclic prefix or a
cyclic suffix. With a cyclic suffix, the OFDM complex envelope becomes

Qsg.t/ D
�

Qs.t/ ; 0 � t < T

Qs.t � T/ ; T � t < .1C ˛g/T
; (4.87)

where ˛gT is the length of the guard interval and Qs.t/ is defined in (4.85) and (4.86). The OFDM waveform with cyclic suffix
can be rewritten in the standard form

Qsg.t/ D A
X

n

b.t � nTg; xn/; (4.88)

where

b.t; xn/ D uT.t/

N�1
X

kD0
xn;kej 2�kt

T C u˛gT.t � T/

N�1
X

kD0
xn;kej

2�k.t�T/
T ; (4.89)

and Tg D .1 C ˛g/T is the OFDM symbol period with addition of the guard interval. Likewise, with a cyclic prefix, the
OFDM complex envelope becomes
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Qsg.t/ D
�

Qs.tC T/ ; �˛gT � t < 0

Qs.t/ ; 0 � t < T
; (4.90)

and

b.t; xn/ D u˛gT.tC ˛gT/

N�1
X

kD0
xn;kej

2�k.tCT/
T C uT.t/

N�1
X

kD0
xn;kej 2�kt

T : (4.91)

4.6.1 DFT-Based OFDM Baseband Modulator

A key advantage of using OFDM is that the baseband modulator can be implemented by using an inverse discrete-time
Fourier transform (IDFT). In practice, the computationally efficient inverse fast Fourier transform (IFFT) algorithm is used
to implement the IDFT. Consider the OFDM complex envelope defined by (4.85) and (4.86). During the interval nT � t <

.nC 1/T , the complex envelope has the form

Qs.t/ D AuT.t � nT/

N�1
X

kD0
xn;ke

j2�k.t�nT/
T

D AuT.t � nT/

N�1
X

kD0
xn;ke

j2�kt
NTs ; nT � t < .nC 1/T: (4.92)

Now suppose that the complex envelope in (4.92) is sampled at synchronized Ts second intervals beginning at time nT to
yield the sample sequence

Xn;m D Qs.mTs/ D A

N�1
X

kD0
xn;ke

j2�km
N ; m D 0; 1; : : : ; N � 1: (4.93)

Observe that the vector Xn D fXn;mgN�1
mD0 is the IDFT of the vector Axn D Afxn;kgN�1

kD0 . Contrary to conventional notation,
with OFDM it is customary that the lowercase vector Axn represents the frequency domain coefficients, as the vector xn is
the vector of data symbols, while the uppercase vector Xn represents the IDFT time domain coefficients.

As mentioned earlier, a cyclic extension (or guard interval) is usually added to the OFDM waveform as described in (4.88)
and (4.89) to combat ISI. When a cyclic suffix is used, the corresponding sample sequence is

Xg
n;m D Xn;.m/N (4.94)

D A

N�1
X

kD0
xn;ke

j2�km
N ; m D 0; 1; : : : ; N C G � 1; (4.95)

where G is the length of the guard interval in samples, and .m/N is the residue of m modulo N. This gives the vector
Xg

n D fXg
n;mgNCG�1

mD0 , where the values in the first and last G coordinates of the vector Xg
n are the same. Likewise, when a

cyclic prefix is used, the corresponding sample sequence is

Xg
n;m D Xn;.m/N (4.96)

D A

N�1
X

kD0
xn;ke

j2�km
N ; m D �G; : : : ;�1; 0; 1; : : : ; N � 1: (4.97)

This yields the vector Xg
n D fXg

n;mgN�1
mD�G, where again the first and last G coordinates of the vector Xg

n are the same. The
sample interval after insertion of the guard interval, Tg

s , is compressed in time such that .N C G/Tg
s D NTs.
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Fig. 4.14 Block diagram of IDFT-based baseband OFDM modulator with guard interval insertion and digital-to-analog conversion

The OFDM complex envelope can be generated by splitting the complex-valued output vector Xm into its real and
imaginary parts, Re.Xn/ and Im.Xn/, respectively. The sequences fRe.Xn;m/g and fIm.Xn;m/g are then input to a pair of
balanced digital-to-analog converters (DACs) to generate the real and imaginary components QsI.t/ and QsQ.t/, respectively,
of the complex envelope Qs.t/, during the time interval nT � t < .n C 1/T . As shown in Fig. 4.14, the OFDM baseband
modulator consists of an IDFT operation, followed by guard interval insertion and digital-to-analog conversion.

It is instructive at this stage to note that the waveform generated by using the IDFT OFDM baseband modulator is
not exactly the same as the waveform generated from the analog waveform definition of OFDM. Consider for example, the
OFDM waveform without a cyclic guard in (4.85) and (4.86). The analog waveform definition uses the rectangular amplitude
shaping pulse uT.t/ that is strictly time-limited to T seconds. As shown in Sect. 4.9.6, the corresponding power spectrum has
infinite bandwidth. Consequently, sampling the complex envelope with any finite sampling rate will lead to aliasing and
imperfect reconstruction.

With the IDFT OFDM baseband modulator, the IDFT outputs are applied to a pair of balanced DACs as explained earlier.
However, the ideal DAC is an ideal low pass filter with cutoff frequency 1=.2Ts/, with a corresponding non-causal impulse
response h.t/ D sinc.t=Ts/. Since the ideal DAC is non-realizable, a causal, finite-length reconstruction filter must be used
instead. However, such a filter will necessarily generate a waveform that is not strictly bandlimited. In conclusion, the side
lobe structure of the analog waveform definition of OFDM is inherent in the waveform due to rectangular amplitude pulse
shaping, whereas the side lobe structure with the IDFT implementation is introduced by the non-ideal (practical) DAC.

Finally, non-rectangular amplitude pulse shaping can be used with OFDM and may yield a more compact power spectrum
while still maintaining sub-channel orthogonality. However, such pulse shaping will require an extension of the OFDM
symbol beyond T , or with guard interval Tg, seconds in the time domain. This will be discussed in more detail in Chap. 10.

4.6.2 Adaptive Bit Loading and Discrete Multitone Modulation

A wireless OFDM system generally operates over a frequency-selective fading channel with transfer function T.t; f /, such
that the amplitude response jT.t; f /j varies across the channel bandwidth W. The power spectral density of the additive
noise impairment Snn.f / may vary with frequency as well due to the presence of interference. Consider a quasi-static fading
channel, such that the channel remains constant over an OFDM block of duration T seconds. For convenience, the time
variable t is suppressed with the understanding that T.t; f / � T.f / over an OFDM block, but the channel may change from
block to block. Furthermore, knowledge of the channel is assumed to be available at the transmitter. Shannon [300] proved
that the capacity of a frequency-selective channel with additive Gaussian noise is achieved when the transmitted power�t.f /

is adjusted across the bandwidth Ws according to

˝t.f / D
�

K � Snn.f /=jT.f /j2 ; f 2 Ws

0 ; f 62 Ws

�

; (4.98)

where K is a constant chosen to satisfy the constraint
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Z

Ws

˝t.f /df � ˝av; (4.99)

and ˝av is the average available power to the transmitter. One method to achieve capacity is to divide the bandwidth Ws into
N sub-bands of width Ws=�f , where �f D 1=T is chosen small enough so that jT.f /j2=Snn.f / is approximately constant
within each sub-band. The signals in each sub-band may then be transmitted with the optimum power allocation�t.f /, while
being individually coded to achieve capacity.

It is clear from (4.86) that the data symbols xn;k for fixed n modulate the nth subcarrier. From (4.98), the transmitter power
should be high when jT.f /j2=Snn.f / is large and small when T.f /=Snn.f / is small. In a practical system, a higher transmit
power admits the use of a larger size signal constellation in sub-bands where jT.f /j2=Snn.f / is large, and vice versa. The
technique whereby different sized signal constellations are used on the different OFDM subcarriers is sometimes called
adaptive bit loading or discrete multitone modulation (DMT).

4.6.3 Multiresolution Modulation

In broadcasting applications, it is sometimes desirable to transmit video or audio information in frames that will
simultaneously provide different resolutions, depending on the received signal-to-noise ratio. Low resolution information
is typically of high priority (HP) and must be received with high reliability. High resolution information, on the other hand,
is typically of low priority (LP) and may be received with a lower reliability. The solution is multi-resolution modulation
(MRM), a class of modulation techniques that transmit multiple resolutions in a simultaneous or concurrent fashion, that
differ in their bit rates and/or error probabilities. MRM can be implemented in OFDM schemes by using multiplexed,
interleaved, embedded signal constellations, and others.

Multiplexed MRM divides the OFDM band into subsets of contiguous subcarriers, for example the upper half subcarriers
may be used to transmit HP data symbols and the lower half subcarriers used to transmit an equal number of LP data symbols.
The HP low resolution information can be transmitted by using a smaller signal constellation and/or higher transmit power
for further robustness and reliability. Likewise, the LP high resolution information can be transmitted using a larger signal
constellation and/or lower transmit power. Broadcast service contours can be established for either high definition (both the
HP and LP data streams are decodable) or standard definition (only the HP data stream is decodable) reception.

Interleaved MRM interleaves the different resolutions onto the subcarriers in a cyclic fashion. If there are K different
resolutions, then subcarriers `; `C K; `C 2K; : : :, are assigned to the `th resolution. Each resolution is then transmitted by
using a different sized signal constellation and/or transmit power level.

Embedded MRM is more subtle and relies upon the use of an asymmetric signal constellation and finds application in
some broadcast video systems. Figure 4.15 shows an example of a 16-QAM embedded MRM signal constellation, that can
be used to simultaneously transmit two different resolutions. In Fig. 4.15, two HP low resolution bits are used to select the
quadrant of the transmitted signal point, while two low LP high resolution bits are used to select the signal point within
the selected quadrant. The relative error probability or reliability between the two priorities is controlled by the parameter
� D dl=dh; � � 0:5, where dl is the distance between LP symbols and dh is the distance between the centroids of the HP
symbols. The upper limit on � is due to the fact that the MRM constellation becomes a symmetric 16-QAM constellation
when � D 0:5. As � becomes smaller than 0.5, more power is allocated to the HP low resolution bits than the LP high
resolution bits. For broadcasting applications, this can be used to provide high definition reception over some adjustable
fraction of the service area where standard definition service can be received. At � D 0:5, both resolution classes are treated
equally and the coverage areas for standard and high definition service are the same.

4.7 Continuous Phase Modulation

Continuous phase modulation (CPM) refers to a broad class of frequency modulation techniques where the carrier phase
varies in a continuous manner. A comprehensive treatment of CPM is provided by Anderson et al. [17]. CPM schemes
are attractive because they have constant envelope and excellent spectral characteristics, i.e., a narrow main lobe and fast
roll-off of sidelobes. CPM waveforms find application in satellite communication systems, and cellular telephone systems
notably GSM.
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Fig. 4.15 16-QAM embedded
MRM signal constellation with
two resolutions
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The complex envelope of a CPM waveform has the general form

Qs.t/ D Aej.�.t/C�o/; (4.100)

where A is the amplitude, �o is the initial carrier phase at t D 0, and

�.t/ D 2�h

Z t

0

1
X

kD0
xkhf .� � kT/d� (4.101)

is the excess phase, where h is the modulation index, fxkg is the data symbol sequence, hf .t/ is the frequency shaping pulse,
and T is the baud period. The CPM waveform can be written in the standard form

Qs.t/ D A
X

n

b.t � nT; xn/ (4.102)

where

b.t; xn/ D ej2�h
R t
0

P1
kD0 xkhf .��kT/d�uT.t/ (4.103)

where xn D .xn; xn�1; : : : ; x0/, and an initial phase �o D 0 at t D 0 is assumed. CPM waveforms have the following
properties:

• The data symbols are chosen from the alphabet f˙1,˙3; � � � ;˙.M � 1/g, where M is the modulation alphabet size.
• h is the modulation index and is directly proportional to the peak and/or average frequency deviation from the carrier. The

instantaneous frequency deviation from the carrier is

fdev.t/ D
1

2�

d�.t/

dt
D h

1
X

kD0
xkhf .t � kT/: (4.104)

• hf .t/ is the frequency shaping function, that is zero for t < 0 and t > LT , and normalized to integrate to 1/2. Full response
CPM has L D 1, while partial response CPM has L > 1. Some possible frequency shaping pulses are shown in Table 4.1.
A more compact power density spectrum is usually obtained by using frequency shaping functions having continuous
higher-order derivatives, such as the raised cosine pulse in Table 4.1. The excess phase is continuous provided that the
frequency shaping function hf .t/ does not contain impulses, which is true for all CPM waveforms. When describing CPM
waveforms, it is useful to define the phase shaping function,
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Table 4.1 CPM frequency
shaping functions

Pulse type hf .t/

L-rectangular (LREC) 1
2LT

uLT .t/

L-raised cosine (LRC) 1
2LT

�

1� cos
�
2� t
LT

��

uLT .t/

L-half sinusoid (LHS) �
4LT

sin.� t=LT/uLT .t/

L-triangular (LTR) 1
LT

�

1� jt�LT=2j

LT=2

�

uLT .t/
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Fig. 4.16 Phase tree of binary CPFSK with an arbitrary modulation index. CPFSK is characterized by linear excess phase trajectories

ˇ.t/ D

8

<

:

0 ; t < 0
R t

0
hf .�/d� ; 0 � t � LT

1=2 ; t � LT

; (4.105)

which is the integral of the frequency shaping pulse. An infinite variety of CPM waveforms can be generated by choosing
different frequency shaping pulses, modulation indices, and modulation alphabet sizes.

4.7.1 Full Response CPM

For a full response CPM waveform with L D 1, the shaping function in (4.103) has the form

b.t; xn/ D ej.�h
Pn�1

kD0 xkC2�hxnˇ.t//uT.t/: (4.106)

The first term in the exponent of (4.106) represents the accumulated excess phase up to time nT , while the second term
represents the excess phase increment during the time interval nT � t < .nC 1/T .

Continuous phase frequency shift keying (CPFSK) is a special type of full response CPM characterized by the rectangular
frequency shaping function LREC with L D 1. For CPFSK

ˇ.t/ D

8

<

:

0 ; t < 0

t=2T ; 0 � t < T

1=2 ; t � T

: (4.107)

CPM signals can be visualized by sketching the evolution of the excess phase �.t/ for all possible data sequences. This
plot is called a phase tree, and a typical phase tree is shown in Fig. 4.16 for binary CPFSK. Since the CPFSK frequency
shaping function is rectangular, the excess phase trajectories are linear as suggested by (4.107). In each baud interval, T , the
excess phase increases by �h if the data symbol isC1 and decreases by �h if the data symbol is �1.
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Fig. 4.17 Phase-trellis for MSK

4.7.1.1 Minimum Shift Keying

Minimum shift keying (MSK) is binary CPFSK with modulation index h D 1=2. In this case,

b.t; xn/ D ej. �2
Pn�1

kD0 xkC �
2 xn

t
T /uT.t/: (4.108)

The MSK waveform can be described in terms of the phase tree as shown in Fig. 4.16 with h D 1=2. At the end of each
symbol interval the excess phase �.t/ takes on values that are integer multiples of �=2. Since excess phases that differ by
integer multiples of 2� are indistinguishable, the values taken by �.t/ at the end of each symbol interval belong to the finite
set f0; �=2; �; 3�=2g. The MSK phase tree reduced modulo 2� yields the MSK phase trellis shown in Fig. 4.17.

An interesting property of MSK can be observed from the MSK bandpass waveform. The bandpass waveform on the
interval nT � t < .nC 1/T can be obtained from (4.108) as

s.t/ D A cos

 

2� fctC �

2

n�1
X

kD0
xk C

�

2
xn

t � nT

T

!

D A cos

 

2�
�

fc C
xn

4T

�

tC �

2

n�1
X

kD0
xk �

�n

2
xn

!

: (4.109)

Observe that the MSK bandpass waveform has one of two possible frequencies in each baud interval, given by

fL D fc �
1

4T
and fU D fc C

1

4T
(4.110)

depending on the data symbol xn. The difference between these two frequencies is fU � fL D 1=.2T/. This is the minimum
frequency separation to ensure orthogonality between two co-phased sinusoids of duration T (Problem 4.7) and, hence, the
name minimum shift keying.

Another interesting representation for MSK waveforms can be obtained by using Laurent’s decomposition [193] (detailed
in Sect. 4.8.3) to express the MSK complex envelope in the quadrature form

Qs.t/ D A
X

n

b.t � 2nT; xn/; (4.111)

where

b.t; xn/ D Ox2nC1ha.t � T/C jOx2nha.t/ (4.112)

and where xn D .Ox2nC1; Ox2n/,

Ox2n D Ox2n�1x2n (4.113)
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Ox2nC1 D �Ox2nx2nC1 (4.114)

Ox�1 D 1 (4.115)

and

ha.t/ D sin
�� t

2T

�

u2T.t/: (4.116)

The sequences, fOx2ng and fOx2nC1g, are independent binary symbol sequences taking on elements from the set f�1;C1g.
The symbols Ox2n and Ox2nC1 are transmitted on the quadrature branches with a half-sinusoid (HS) amplitude shaping pulse
of duration 2T seconds and an offset of T seconds. Hence, MSK is equivalent to offset quadrature amplitude shift keying
(OQASK) with HS amplitude pulse shaping. This linear representation of MSK is useful in practice for simplified linear
detection of MSK waveforms as discussed in Sect. 5.10.1 of Chap. 5.

4.8 Partial Response CPM

Partial response CPM signals have a frequency shaping pulse hf .t/ with duration LT , where L > 1. Partial response CPM
signals typically have better spectral characteristics than full response CPM signals, i.e., a narrower main lobe and faster
roll-off of side lobes.

The partial response frequency shaping function can be written as

hf .t/ D
L�1
X

kD0
hf .t/uT.t � kT/

D
L�1
X

kD0
hf ;k.t � kT/; (4.117)

where

hf ;k.t/ D hf .tC kT/uT.t/: (4.118)

Likewise, the partial response phase shaping function can be written as

ˇ.t/ D
L�1
X

kD0
ˇk.t � kT/; (4.119)

where

ˇk.t/ D ˇ.tC kT/uT.t/: (4.120)

Note that

ˇk.t/ D

8

<

:

0 ; t < 0
R t

0
hf ;k.�/d� ; 0 � t < LT

ˇk.T/ ; t � T

(4.121)

and

L�1
X

kD0
ˇk.T/ D

1

2
: (4.122)
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An equivalent frequency shaping function of duration T can be derived by noting that the CPM baseband modulating
signal has the form

x.t/ D
X

n

xnhf .t � nT/

D
X

n

L�1
X

kD0
xnhf ;k.t � .nC k/T/

D
X

m

L�1
X

kD0
xm�khf ;k.t � mT/: (4.123)

It follows that

x.t/ D
X

m

hf .t � mT; xm/; (4.124)

where

hf .t; xm/ D
L�1
X

kD0
xm�khf ;k.t/ (4.125)

and

x.t/ D
X

m

ˇ.t � mT; xm/; (4.126)

where

ˇ.t; xm/ D
L�1
X

kD0
xm�kˇk.t/ (4.127)

and

xm D .xm; xm�1; : : : ; xm�LC1/ : (4.128)

Finally, the complex envelope of partial response CPM signal can be written in the standard form

Qs.t/ D A
X

n

b.t � nT; xn/ (4.129)

where

b.t; xn/ D ej2�h.
Pn�1

iD0 ˇ.T;xi/Cˇ.t;xn//uT.t/ (4.130)

and an initial excess phase of zero is assumed.

Example 4.2. Consider a partial response CPM waveform with an LREC frequency shaping function. In this case

hf .t/ D
1

2LT
uLT.t/:

(continued)
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Example 4.2 (continued)

Hence,

hf .t; xn/ D xnhf ;0.t/C xn�1hf ;1.t/C � � � C xn�LC1hf ;L�1.t/;

where

hf ;0.t/ D hf ;1.t/ D � � � D hf ;L�1.t/ D
1

2LT
uT.t/:

Therefore,

hf .t; xn/ D .xn C xn�1 C � � � C xn�LC1/
1

2LT
uT.t/:

Example 4.3. Consider a partial response CPM waveform with an LRC frequency shaping function. In this case

hf .t/ D
1

2LT

�

1 � cos

�
2� t

LT

��

uLT.t/:

Hence,

hf .t; xn/ D xnhf ;0.t/C xn�1hf ;1.t/C � � � C xn�Lhf ;L�1.t/;

where

hf ;k.t/ D
�

1 � cos

�
2�.tC kT/

LT

��

uT.t/:

4.8.1 Phase States

The excess phase of a partial response CPM waveform on the interval nT � t < .nC 1/T is

�.t/ D 2�h

Z t

0

n
X

kD0
xkhf .� � kT/d� (4.131)

D �h

n�L
X

kD0
xk C 2�h

n
X

kDn�LC1
xkˇ.t � kT/ (4.132)

D �n C 2�h

n
X

kDn�LC1
xkˇ.t � kT/ (4.133)
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where

�n D �h

n�L
X

kD0
xk modulo 2� (4.134)

is the accumulated phase. During the interval nT � t < .nC 1/T , the excess phase depends on the input data symbol xn, the
vector of L � 1 previous data symbols, fxn�1; xn�2; : : : ; xn�LC1g, and the accumulated phase �n. The state of the CPM signal
at time t D nT , is defined by the L-tuple

Sn D .�n; xn�1; xn�2; : : : ; xn�LC1/: (4.135)

Since the vector .xn�1; xn�2; : : : ; xn�LC1/ can take on ML�1 values, the number of states equals ML�1 times the number of
values that �n can assume.

The modulation index is often restricted to be a rational number, h D m=p, where m and p are integers that have
no common factors. This constraint ensures that the number of phase states is finite which is a useful property for the
implementation CPM receivers. If m is even, then

�n 2
�

0;
�m

p
;
2�m

p
; � � � ; .p � 1/�m

p

�

(4.136)

while if m is odd

�n 2
�

0;
�m

p
;
2�m

p
; : : : ;

.2p � 1/�m

p

�

: (4.137)

Hence, there are p phase states for even m, while there are 2p phase states for odd m. In conclusion, the number of CPM
states is

jSnj D
�

pML�1 ; m even
2pML�1 ; m odd

: (4.138)

For example, if h D 1=4, M D 4, and L D 2, then

�n 2
�

0;
�

4
;
�

2
;
3�

4
; �;

5�

4
;
3�

2
;
7�

4

�

(4.139)

and the number of CPM states is 32.
CPM waveforms cannot be described in terms of a signal-space diagram, like QAM and PSK waveforms. However, the

CPM waveform can be described in terms of the trajectories from one phase state to another. Figures 4.18 and 4.19 show
the phase state diagrams for MSK and binary CPM with h D 1=4, respectively. Since binary modulation is used, trajectories
are only allowed between adjacent phase states as shown by the dotted lines in the figures. Since the CPM waveforms have
constant envelope, the complex phaser trajectories will follow along the circle in Figs. 4.18 and 4.19.

4.8.2 Gaussian Minimum Shift Keying

Due to their non-linearity, CPM waveforms have a relatively complicated power spectrum as detailed in Sect. 4.9.7. However,
the bandwidth of a CPM waveform can be approximated using Carson’s rule developed for analog frequency modulation:

BW D .W C fpeak/; (4.140)

where W is the bandwidth of the frequency shaping pulse hf .t/ and fpeak is the peak frequency deviation from the carrier.
MSK waveforms have relatively poor spectral characteristics due to the large bandwidth W of the rectangular frequency
pulse shaping hf .t/ D 1

2T
uT .t/. A more compact power spectrum can be achieved by low-pass filtering the MSK modulating

signal
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Fig. 4.18 Phase state diagram
for MSK
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Fig. 4.19 Phase state diagram
for binary CPM with h D 1=4
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Fig. 4.20 Pre-modulation filtered MSK. The MSK modulating signal is low-pass filtered to remove the high frequency components prior to
frequency modulation

x.t/ D
1
X

nD�1
xnhf .t � nT/ D 1

2T

1
X

nD�1
xnuT.t � nT/ (4.141)

prior to frequency modulation as shown in Fig. 4.20. Such filtering suppresses the higher frequency components in x.t/ thus
yielding a more compact power spectrum. Gaussian minimum shift keying (GMSK) is a special type of partial response
CPM that uses a low-pass premodulation filter having the transfer function [234]

H.f / D exp

(

�
�

f

B

�2 ln 2

2

)

; (4.142)

where B is the 3 dB bandwidth of the filter. It is apparent that H.f / is shaped like a Gaussian probability density function
with mean f D 0 and, hence, the name “Gaussian” MSK. Convolving the rectangular pulse
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Fig. 4.21 GMSK frequency shaping pulse for various normalized premodulation filter bandwidths BT

1

2T
rect.t=T/ D 1

2T
uT.tC T=2/

with the corresponding filter impulse response h.t/ yields the frequency shaping pulse

hf .t/ D
1

2T

r

2�

ln 2
.BT/

Z t=TC1=2

t=T�1=2
exp

�

�2�
2.BT/2x2

ln 2

�

dx

D 1

2T

�

Q

�
t=T � 1=2

�

�

� Q

�
t=T C 1=2

�

��

; (4.143)

where

Q.˛/ D
Z 1

˛

1p
2�

e�x2=2dx (4.144)

�2 D ln 2

4�2.BT/2
: (4.145)

Figure 4.21 plots the GMSK frequency shaping pulse (truncated to 5T and time shifted by 2:5T to yield a causal pulse) for
various normalized premodulation filter bandwidths BT . The GSM cellular standard uses GMSK with BT D 0:3.

The phase shaping function is the integral of the frequency shaping function as defined in (4.105). Using hf .t/ in (4.143),
and integrating by parts, yields

ˇ.t/ D
Z t

�1
hf .t/dt D 1

2

�

G

�
t

T
C 1

2

�

� G

�
t

T
� 1
2

��

; (4.146)

where

G.x/ D x ˆ
� x

�

�

C �p
2�

e� x2

2�2 ; (4.147)
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Fig. 4.22 GMSK phase shaping pulse for various normalized premodulation filter bandwidths BT

and

ˆ.˛/ D
Z ˛

�1

1p
2�

e�x2=2dx: (4.148)

Figure 4.22 plots the GMSK phase shaping pulse (truncated to 4T and time shifted by 2T to yield a causal pulse) for
BT D 0:3. Observe that ˇ.1/ D 1=2 and, therefore, the total contribution to the excess phase for each data symbol remains
at˙�=2.

The change in excess phase over the length-T baud interval from �T=2 to T=2 is

�.T=2/ � �.�T=2/ D �x0ˇ0.T/C �
1
X

nD�1
n¤0

xnˇn.T/; (4.149)

where

ˇn.T/ D
Z T=2�nT

�T=2�nT

hf .�/d�: (4.150)

The first term in (4.149) is the desired term, and the second term is the intersymbol interference (ISI) introduced by the
Gaussian premodulation filter. While the premodulation filter will yield a more compact power spectrum, the induced ISI
will degrade the bit error rate performance and may necessitate an equalizer in the receiver. However, the induced ISI is
not severe and in many cases, including GSM cellular receivers, an equalizer is required anyway to combat the ISI due to
channel delay spread.

4.8.3 Linearized GMSK (LGMSK)

Like all other CPM waveforms, GMSK is a nonlinear waveform. Similar to the linearized representation of MSK in
Sect. 4.7.1.1, it is desirable to find a linearized representation for GMSK in order to simplify receiver processing. Several
linear approximations have been suggested in the literature for GMSK. Here, an approximation based on Laurent’s
decomposition [193] is considered. Laurent showed that any binary partial response CPM signal can be represented exactly
as a linear combination of 2L�1 partial-response pulse amplitude modulated (PAM) signals, viz.,
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Qs.t/ D
1
X

nD0

2L�1�1
X

pD0
ej�h˛n;p cp.t � nT/; (4.151)

where

cp.t/ D c.t/

L�1
Y

nD1
c
�

tC .nC L"n;p/T
�

(4.152)

˛n;p D
n
X

mD0
xm �

L�1
X

mD1
xn�m"m;p (4.153)

and "n;p 2 f0; 1g are the coefficients of the binary representation of the index p, i.e.,

p D "0;p C 2"1;p C � � � C 2L�2"L�2;p: (4.154)

The basic signal pulse c.t/ in (4.152) is

c.t/ D

8

<

:

sin.2�hˇ.t//

sin�h
; 0 � t < LT

sin.�h�2�hˇ.t�LT//

sin�h
; LT � t < 2LT

0 ; otherwise

; (4.155)

where ˇ.t/ is the CPM phase shaping function.
The above linear decomposition will yield an exact representation of the GMSK waveform. However, the fact that 2L�1

pulses are needed to represent the waveform means that the optimum coherent receiver will need 2L�1 filters that are
matched to the set of 2L�1 pulses fcp.t/g. Usually, the number of matched filters can be reduced to K < 2L�1 when a
good approximation to the CPM signal can be obtained with K of the set of 2L�1 pulses fcp.t/g. Often the pulse c0.t/

contains most of the signal energy, so the p D 0 term in (4.151) can provide a good approximation to the CPM signal. From
Fig. 4.21, observe that the GMSK frequency shaping pulse spans approximately L D 4 symbol periods for practical values
of BT . This means that the GMSK waveform can be constructed from the superposition of eight pulses, cp.t/; p D 0; : : : ; 7.
Numerical analysis shows that, with BT D 0:3, the pulse c0.t/ contains 99.83% of the energy and, therefore, a linearized
GMSK waveform can be derived by using only c0.t/ and neglecting the other pulses. This yields the waveform

Qs.t/ D
1
X

nD0
ej�h˛n;o c0.t � nT/; (4.156)

where, with L D 4,

c0.t/ D
3
Y

nD0
c .tC nT/ (4.157)

˛n;0 D
n
X

mD0
xm: (4.158)

Since the GMSK phase shaping pulse is non-causal, when evaluating c.t/ in (4.155) the truncated and time shifted GMSK
phase shaping pulse

Ǒ.t/ D ˇ.t � 2T/ (4.159)

is used with L D 4 as shown in Fig. 4.22, where ˇ.t/ is defined in (4.146). Figure 4.23 plots the resulting LGMSK amplitude
shaping pulse c0.t/ obtained from (4.157).
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Fig. 4.23 LGMSK amplitude shaping pulse for various normalized premodulation filter bandwidths BT

For the modulation index h D 1=2 used in GMSK,

an;0 D ej �2 ˛n;0 2 f˙1;˙jg; (4.160)

and it follows that

Qs.t/ D A
X

n

�

Ox2nC1c0.t � 2nT � T/C jOx2nc0.t � 2nT/
�

; (4.161)

where

Ox2n D Ox2n�1x2n (4.162)

Ox2nC1 D �Ox2nx2nC1 (4.163)

Ox�1 D 1: (4.164)

This is the same as the OQPSK representation for MSK in Sect. 4.7.1.1, except that the half-sinusoid amplitude pulse
shaping function in (4.116) is replaced with the LGMSK amplitude pulse shaping function defined in (4.157). Note that
the LGMSK pulse has length of approximately 4T , while the pulses on the quadrature branches are transmitted every 2T

seconds. Therefore, the LGMSK pulse will introduce ISI that must be corrected by an equalizer to avoid a performance
degradation as mentioned earlier. However, as shown in Sect. 4.9.8, GMSK has excellent spectral properties.

4.8.4 Tamed Frequency Modulation

Tamed frequency modulation (TFM) is a special type of partial response binary CPM that was introduced by de Jager and
Dekker [91]. TFM also has excellent spectral properties, similar to GMSK. To define TFM waveforms, recall that the MSK
excess phase obeys the difference equation

�.nT C T/ � �.nT/ D �

2
xn: (4.165)



4.8 Partial Response CPM 201

The TFM excess phase trajectory is “smoothed” by imposing the constraint

�.nT C T/ � �.nT/ D �

2

�xn�1
4
C xn

2
C xnC1

4

�

; (4.166)

such that the maximum change in excess phase over any bit interval is �=2. To complete the definition of the TFM signal, an
appropriate frequency shaping pulse hf .t/ must be defined. The TFM excess phase can be written as

�.t/ D �
1
X

kD0
xkˇ.t � kT/; (4.167)

where

ˇ.t/ D
Z t

0

hf .t/dt (4.168)

and where a modulation index h D 1=2 is assumed. The excess phase change over the time interval ŒnT; .nC 1/T� is

�..nC 1/T/ � �.nT/ D �
1
X

kD0
xk .ˇ.nT C T � kT/ � ˇ.nT � kT//

D �
1
X

`Dn

xn�` .ˇ.`T C T/ � ˇ.`T// : (4.169)

Expanding (4.166) in more detail gives

�.nT C T/ � �.nT/ D �

2

�

� � � C xn�2 � 0C
xn�1
4
C xn

2
C xnC1

4
C xnC2 � 0C � � �

�

: (4.170)

Comparing (4.169) and (4.170) gives the condition

ˇ..`C 1/T/ � ˇ.`T/ D

8

<

:

1=8 ; j`j D 1
1=4 ; ` D 0
0 ; otherwise

: (4.171)

From the definition of ˇ.t/ in (4.168) the above equation leads to

Z .`C1/T

`T

hf .t/dt D

8

<

:

1=8 ; j`j D 1
1=4 ; ` D 0
0 ; otherwise

: (4.172)

One way of obtaining hf .t/ is to use a pulse hN.t/ that satisfies Nyquist’s third criterion [244, 258]

Z .2`C1/T=2

.2`�1/T=2
hN.t/dt D

�

1 ; ` D 0
0 ; ` ¤ 0 (4.173)

and generate hf .t/ by using scaling and delay operations through the filter shown in Fig. 4.24. The transfer function of this
filter is

H.f / D 1

4
C 1

8
e�j2� fT C 1

8
ej2� fT

D 1

2
cos2.� fT/: (4.174)
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Fig. 4.24 Filter to generate a TFM frequency shaping pulse

The overall pulse hf .t/ has the form

Hf .f / D HN.f /H.f /

D HN.f /
1

2
cos2.� fT/: (4.175)

The filter H.f / ensures that the phase constraint in (4.166) is satisfied. However, HN.f / determines the shape of the phase
trajectories and can, therefore, influence the TFM power density spectrum. In general, HN.f / has the form

HN.f / D
� fT

sin.� fT/
N1.f /; (4.176)

where N1.f / is the Fourier transform of a pulse that satisfies Nyquist’s first criterion [244, 258]. One example of such a pulse
is the raised cosine pulse P.f / defined in (4.47). Consider, for example, the ideal Nyquist pulse (raised cosine pulse with
ˇ D 0)

N1.f / D
�

1 ; 0 � jf j � 1=2T

0 ; otherwise
: (4.177)

Using (4.175)–(4.177) gives

Hf .f / D
(
1
2

� fT

sin.� fT/
cos2.� fT/ ; 0 � jf j � 1=2T

0 ; otherwise
: (4.178)

The corresponding frequency shaping pulse hf .t/ is plotted in Fig. 4.25. Note the close similarity to the GMSK frequency
shaping pulse in Fig. 4.21.

Generalized TFM (GTFM) is an extension of TFM where the phase difference has the form

�.nT C T/ � �.nT/ D �

2
.axn�1 C bxn C axnC1/ : (4.179)

The constants a and b satisfy the condition 2aC b D 1 so that the maximum change in excess phase during one bit period is
equal to ˙�=2. A large variety of waveforms can be constructed by varying the value of b and the pulse response N1.f / in
(4.176). TFM is a special case of GTFM where b D 0:5.
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4.9 Power Spectrum

A digitally modulated bandpass waveform can be written in the generic form

s.t/ D Re
˚

Qs.t/ej2� fct



D 1

2

˚

Qs.t/ej2� fct C Qs�.t/e�j2� fct



: (4.180)

Modulated waveforms belong to the class of cyclostationary or periodic wide-sense stationary random processes. The
autocorrelation function of s.t/ is

�ss.�/ D E Œs.t/s.tC �/�

D 1

4
E
h�

Qs.t/ej2� fct C Qs�.t/e�j2� fct
� �

Qs.tC �/ej.2� fctC2� fc�/ C Qs�.tC �/e�j.2� fctC2� fc�/
�i

D 1

4

�

EŒQs.t/Qs.tC �/�ej.4� fctC2� fc�/ C EŒQs.t/Qs�.tC �/�e�j2� fc�

CEŒQs�.t/Qs.tC �/�ej2� fc� C EŒQs�.t/Qs�.tC �/�e�j.4� fctC2� fc�/
�

: (4.181)

If s.t/ is a wide-sense stationary random process, then the exponential terms that involve the time variable t must vanish,
i.e., EŒQs.t/Qs.t C �/� D 0 and EŒQs�.t/Qs�.t C �/� D 0. Substituting Qs.t/ D QsI.t/C jQsQ.t/ into these two expectations gives the
requirement

�QsIQsI
.�/ D EŒQsI.t/QsI.tC �/� D EŒQsQ.t/QsQ.tC �/� D �QsQQsQ

.�/ (4.182)

�QsIQsQ
.�/ D EŒQsI.t/QsQ.tC �/� D �EŒQsQ.t/QsI.tC �/� D ��QsQQsI

.�/: (4.183)

Using these results,

�ss.�/ D
1

2
�QsQs.�/e

j2� fc� C 1

2
��

QsQs.�/e
�j2� fc� (4.184)

D Re
˚

�QsQs.�/e
j2� fc�




; (4.185)
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where

�QsQs.�/ D
1

2
E
�

Qs�.t/Qs.tC �/
�

D �QsIQsI
.�/C j�QsIQsQ

.�/ (4.186)

Finally, the power density spectrum is the Fourier transform of �ss.�/ in (4.184), i.e.,

Sss.f / D
1

2

�

SQsQs.f � fc/C S�
QsQs.�f � fc/

�

(4.187)

where SQsQs.f / is the power density spectrum of the complex envelope Qs.t/. Note that SQsQs.f / is real though not necessarily
even, although Qs.t/ and �QsQs.�/ are complex-valued; this property follows from the fact that �QsQs.�/ D ��

QsQs.��/ as shown in
Appendix A. It follows that

Sss.f / D
1

2

�

SQsQs.f � fc/C SQsQs.�f � fc/
�

: (4.188)

From the above expression, observe that the psd of the bandpass waveform s.t/ is real and even, and is completely determined
by the psd of its complex envelope Qs.t/ and the carrier frequency fc.

4.9.1 Psd of the Complex Envelope

The complex envelope of any digitally modulated signal can be expressed in the standard form

Qs.t/ D A
X

n

b.t � nT; xn/: (4.189)

The autocorrelation of Qs.t/ is

�QsQs.t; tC �/ D
1

2
E
�

Qs�.t/Qs.tC �/
�

(4.190)

D A2

2

X

i

X

k

E
�

b�.t � iT; xi/b.tC � � kT; xk/
�

:

Observe that Qs.t/ is a cyclostationary random process, meaning that the autocorrelation function �QsQs.t; tC �/ is periodic in t

with period T . To see this property, first note that

�QsQs.tC T; tC T C �/

D A2

2

X

i

X

k

E
�

b�.tC T � iT; xi/b.tC T C � � kT; xk/
�

D A2

2

X

i0

X

k0

E
�

b�.t � i0T; xi0C1/b.tC � � k0T; xk0C1/
�

:

(4.191)

Under the assumption that the information sequence is a stationary random process it follows that

�QsQs.tC T; tC T C �/ D A2

2

X

i0

X

k0

E
�

b�.t � i0T; xi0/b.tC � � k0T; xk0/
�

D �QsQs.t; tC �/: (4.192)

Therefore Qs.t/ is cyclostationary.
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Since Qs.t/ is cyclostationary, the autocorrelation �QsQs.�/ can be obtained by taking the time average of �QsQs.tC�; t/, given by

�QsQs.�/ D h�QsQs.t; tC �/i

D A2

2

X

i

X

k

1

T

Z T

0

E
�

b�.t � iT; xi/b.tC � � kT; xk/
�

dt

D A2

2T

X

i

X

k

Z �iTCT

�iT

E
�

b�.z; xi/b.zC � � .k � i/T; xk/
�

dz

D A2

2T

X

i

X

m

Z �iTCT

�iT

E
�

b�.z; xi/b.zC � � mT; xmCi/
�

dz

D A2

2T

X

i

X

m

Z �iTCT

�iT

E
�

b�.z; x0/b.zC � � mT; xm/
�

dz

D A2

2T

X

m

Z 1

�1
E
�

b�.z; x0/b.zC � � mT; xm/
�

dz; (4.193)

where h � i denotes time averaging and the second last equality used the stationary property of the data sequence fxkg. The
psd of Qs.t/ is obtained by taking the Fourier transform of �QsQs.�/,2

SQsQs.f / D E

"

A2

2T

X

m

Z 1

�1

Z 1

�1
b�.z; x0/b.zC � � mT; xm/dze�j2� f �d�

#

D E

"

A2

2T

X

m

Z 1

�1
b�.z; x0/e

j2� fzdz

Z 1

�1
b.zC � � mT; xm/e

�j2� f .zC��mT/d�dze�j2� fmT

#

D E

"

A2

2T

X

m

Z 1

�1
b�.z; x0/e

j2� fzdz

Z 1

�1
b.� 0; xm/e

�j2� f � 0

d� 0e�j2� fmT

#

D A2

2T

X

m

E
�

B�.f ; x0/B.f ; xm/
�

e�j2� fmT ; (4.194)

where B.f ; xm/ is the Fourier transform of b.t; xm/. To express the power density spectrum in a more convenient form, let

Sb;m.f / D
1

2
E
�

B�.f ; x0/B.f ; xm/
�

: (4.195)

Then

SQsQs.f / D
A2

T

X

m

Sb;m.f /e
�j2� fmT : (4.196)

Note that the psd in (4.196) depends on the correlation properties of the information sequence xm and the form of the
generalized pulse shaping function b.t; xm/. Now suppose that the data characteristics are such that xm and x0 are independent
for jmj � K. Then

Sb;m.f / D Sb;K.f /; jmj � K; (4.197)

2Note that expectation and integration are linear operations and their order can be exchanged.
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where

Sb;K.f / D
1

2
E
�

B�.f ; x0/
�

E ŒB.f ; xm/�

D 1

2
E
�

B�.f ; x0/
�

E ŒB.f ; x0/�

D 1

2
jE ŒB.f ; x0/�j2 ; jmj � K: (4.198)

It follows that

SQsQs.f / D Sc
QsQs.f /C Sd

QsQs.f /; (4.199)

where

Sc
QsQs.f / D

A2

T

X

jmj<K

�

Sb;m.f / � Sb;K.f /
�

e�j2� fmT

Sd
QsQs.f / D

A2

T
Sb;K.f /

X

m

e�j2� fmT : (4.200)

The terms Sc
QsQs.f / and Sd

QsQs.f / represent the continuous and discrete (line) portions of the psd. The fact that Sd
QsQs.f / represents the

discrete portion can be seen more clearly by using the identity

T
X

m

e�j2� fmT D
X

n

ı
�

f � n

T

�

(4.201)

to write

Sd
QsQs.f / D

�
A

T

�2

Sb;K.f /
X

n

ı
�

f � n

T

�

: (4.202)

Finally, by using the property Sb;�m.f / D S�
b;m.f /, the continuous portion of the psd can be written as

Sc
QsQs.f / D

A2

T

�

Sb;0.f / � Sb;K.f /
�

C A2

T

K
X

mD1

�

.Sb;m.f / � Sb;K.f // e�j2� fmT C
�

S�
b;m.f / � Sb;K.f /

�

ej2� fmT
�

D A2

T

�

Sb;0.f / � Sb;K.f /
�

C A2

T
2Re

(
K
X

mD1

�

Sb;m.f / � Sb;K.f /
�

e�j2� fmT

)

: (4.203)

Note that the ensemble average and Fourier transform are interchangeable linear operators. Therefore, if the complex
envelope Qs.t/ has zero mean, i.e., EŒb.t; x0/� D 0, then EŒB.f ; x0/� D 0. Under this condition

Sb;K.f / D
1

2
jEŒB.f ; x0/�j2 D 0: (4.204)

Hence, if b.t; x0/ has zero mean, then SQsQs.f / contains no discrete components and SQsQs.f / D Sc
QsQs.f /. Conversely, if b.t; x0/

has non-zero mean, then SQsQs.f / will contain discrete (line) components. Another important case arises with uncorrelated
zero-mean data, where Sb;K.f / D 0, K D 1. In this case, only the term Sb;0.f / remains and

SQsQs.f / D
A2

T
Sb;0.f / (4.205)

where

Sb;0.f / D
1

2
E
�

jB.f ; x0/j2
�

: (4.206)
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4.9.1.1 Alternative Method

An alternative method of computing the psd is as follows. From the first line in (4.194)

SQsQs.f / D E

"

A2

2T

X

m

Z 1

�1

Z 1

�1
b.z; x0/b

�.zC � � mT; xm/dze�j2� f �d�

#

D A2

2T

X

m

Z 1

�1

Z 1

�1
E
�

b.z; x0/b
�.� 0; xm/

�

e�j2� f .� 0�z/dzd� 0e�j2� fmT : (4.207)

Therefore, Sb;m.f / is given by the double Fourier transform

Sb;m.f / D
Z 1

�1

Z 1

�1
�b;m.z; �

0/e�j2� f .� 0�z/dzd� 0: (4.208)

where

�b;m.z; �
0/ D 1

2
E
�

b.z; x0/b
�.� 0; xm/

�

: (4.209)

4.9.1.2 Linear Full Response Modulation

Consider linear full response modulation schemes where b.t; xn/ D xnha.t/ and B.f ; xn/ D xnHa.f /. In general, the data
sequence fxng will be correlated with autocorrelation function �xx.m/. From (4.195),

Sb;m.f / D �xx.m/ jHa.f /j2 ; (4.210)

where

�xx.m/ D
1

2
EŒx�

k xkCm�: (4.211)

Hence, from (4.196) the psd of the complex envelope is

SQsQs.f / D
A2

T
jHa.f /j2 Sxx.f /; (4.212)

where

Sxx.f / D
X

m

�xx.m/e
�j2� fmT : (4.213)

Note that the psd is the product of two components; one depends on the squared magnitude of the amplitude shaping function
and the other depends on the correlation of the data sequence. With uncorrelated data symbols

Sb;0.f / D �2x jHa.f /j2 (4.214)

Sb;m.f / D
1

2
j�xj2 jHa.f /j2 ; jmj � 1: (4.215)

where �x D EŒxm� and �2x D 1
2
EŒjxkj2� are the mean and variance of the data symbols, respectively. The psd SQsQs.f / is then

given by (4.199), where

Sd.f / D A2

T2
Sb;1.f /

X

n

ı
�

f � n

T

�

(4.216)
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Sc.f / D A2

T
.Sb;0.f / � Sb;1.f // : (4.217)

If �x D 0, then Sb;1.f / D 0 and the psd has the simple form

SQsQs.f / D
A2

T
�2x jHa.f /j2 : (4.218)

In this case, the psd only depends on the amplitude shaping pulse ha.t/.

4.9.1.3 Linear Partial Response Modulation

Consider linear partial response modulation schemes where ha.t/ has duration LT . Following the development in Sect. 4.8
the generalized shaping function has the form

b.t; xm/ D ha.t; xm/

D
L�1
X

kD0
xm�kha;k.t/; (4.219)

where

ha;k.t/ D ha.tC kT/uT.t/: (4.220)

Taking the Fourier transform of (4.219) gives

B.f ; xm/ D
L�1
X

kD0
xm�kHa;k.f /: (4.221)

From (4.195),

Sb;m.f / D
1

2
E

"
L�1
X

`D0
x�

�`H
�
a;`.f /

L�1
X

kD0
xm�kHa;k.f /

#

D
L�1
X

kD0

L�1
X

`D0
�xx.m � kC `/H�

a;`.f /Ha;k.f /: (4.222)

For the special case of uncorrelated zero-mean data symbols, �xx.m � kC `/ D �2x ı.m � kC `/. Hence,

Sb;m.f / D �2x
L�1
X

`D0
H�

a;`.f /Ha;mC`.f / (4.223)

where

�2x D
1

2
EŒjx0j2�

is the variance of the data symbols.
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Example 4.4 (Duobinary Signaling). For duobinary signaling, L D 2 and ha;0.t/ D ha;1.t/ D sinc.t=T/ and
Ha;0.f / D Ha;1.f / D Trect.fT/, where

rect.fT/ D
�

1 ; jf j � 1
2T

0 ; elsewhere
:

With uncorrelated zero-mean data symbols

Sb;m.f / D
1

2
E
��

x�
0H�

a;0.f /C x�
�1H

�
a;1.f /

�

.xmHa;0.f /C xm�1Ha;1.f //
�

D

8

<

:

2�2x T2rect.fT/ ; m D 0
�2x T2rect.fT/ ; jmj D 1
0 ; otherwise

and from (4.196)

SQsQs.f / D 2A2T�2x cos2.� fT/rect.fT/: (4.224)

Example 4.5 (Modified Duobinary Signaling). For modified duobinary signaling, L D 3 and ha;0.t/ D ha;2.t/ D
sinc.t=T/ and ha;1.t/ D 0. With uncorrelated zero-mean data symbols,

Sb;m.f / D

8

<

:

2�2x T2rect.fT/ ; m D 0
��2x T2rect.fT/ ; jmj D 2
0 ; otherwise

and from (4.196)

SQsQs.f / D 2A2T�2x sin2.2� fT/rect.fT/:

4.9.2 Psd of QAM

The psd of QAM with uncorrelated zero-mean data symbols is given by (4.218). If ha.t/ D uT.t/, then

SQsQs.f / D A2T�2x

�
sin.� fT/

� fT

�2

: (4.225)

With root-raised cosine pulse shaping, jHa.f /j2 D P.f / has the form defined in (4.47) with ha.t/ in (4.50). The root-raised
cosine pulse is non-causal. When the pulse is implemented as a digital FIR filter, it must be truncated to a finite length
� D LT . This truncation produces the new pulse Qha.t/ D ha.t/rect.t=LT/. The Fourier transform of the truncated pulse Qha.t/

is QHa.f / D Ha.f / � LTsinc.� fLT/, where � denotes the operation of convolution taken over the frequency variable f . The
psd of QAM with the pulse Qha.t/ can again be obtained from (4.218) by simply replacing Ha.f / with QHa.f /. As shown in
Fig. 4.26, pulse truncation can lead to significant side lobe regeneration.
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Fig. 4.26 Psd of QAM with a truncated square root-raised cosine amplitude shaping pulse with various truncation lengths; ˇ D 0:5. Truncation
of the amplitude shaping pulse leads to side lobe regeneration

4.9.3 Psd of PSK

For PSK signals with the uncorrelated data symbols and the generalized shaping function in (4.61), the psd is given by
(4.218). Hence, PSK signals have the same psd as QAM signals. As such, the psd with truncated root-raised cosine amplitude
pulse shaping is shown in Fig. 4.26.

4.9.4 Psd of OQPSK

For OQPSK, the generalized shaping function is

b.t; xn/ D b.t; xn/ D xI;nha.t/C jxQ;nha.t � T=2/ (4.226)

where xI;n; xQ;n 2 f�1=
p
2;C1=

p
2g. It follows that

B.f ; xn/ D
�

xI;n C jxQ;ne�j2� fT=2
�

Ha.f / (4.227)

With uncorrelated data symbols,

Sb;0.f / D
1

2
E
�

jB.f ; x0/j2
�

D 1

2
jHa.f /j2 (4.228)

Therefore,

SQsQs.f / D
A2

2T
jHa.f /j2 (4.229)

Hence, OQPSK has the same psd as QPSK. However, OQASK has a lower peak-to-average power ratio than QPSK.
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4.9.5 Psd of �=4-DQPSK

To find the psd of �=4-DQPSK, the autocorrelation

�b;m.z; �
0/ D 1

2
E
�

b�.z; x0/b.�
0; xm/

�

; (4.230)

is first computed, where b.t; xn/ is defined in (4.70). For m > 0,

�b;m.z; �
0/ D 1

2
E

"

ha.z/ exp

(

j
�

4

m
X

kD1
xk

)

ha.�
0/

#

D 1

2
E

"

exp

(

j
�

4

m
X

kD1
xk

)#

ha.z/ha.�
0/

D 0: (4.231)

For m D 0,

�b;0.z; �
0/ D 1

2
E
�

ha.z/ha.�
0/
�

D 1

2
ha.z/ha.�

0/: (4.232)

Taking the double Fourier transform gives

Sb;0.f / D
Z 1

�1

Z 1

�1
�b;0.z; �

0/e�j2� f .� 0�z/dzd� 0

D 1

2
jHa.f /j2 : (4.233)

Finally, the psd is

SQsQs.f / D
A2

2T
jHa.f /j2 : (4.234)

Just like OQPSK, �=4-DQPSK has the same psd as QPSK. However, as discussed earlier, �=4-DQPSK has a lower peak-
to-average power ratio than QPSK.

4.9.6 Psd of OFDM

Recall that the OFDM waveform with guard interval is given by (4.88) and (4.89). The data symbols xn;k; k D 0; : : : ;N�1 that
modulate the N subcarriers are assumed to have zero mean, variance �2x D 1

2
EŒjxn;kj2�, and they are mutually uncorrelated.

In this case, the psd of the OFDM waveform is

SQsQs.f / D
A2

Tg

Sb;0.f /; (4.235)

where

Sb;0.f / D
1

2
E
h

jB.f ; x0/j2
i

; (4.236)
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Fig. 4.27 Psd of OFDM with N D 16; ˛g D 0

and

B.f ; x0/ D
N�1
X

kD0
x0;kTsinc.fT � k/C

N�1
X

kD0
x0;k˛gTsinc.˛g.fT � k//ej2� fT : (4.237)

Substituting (4.237) into (4.236) along with T D NTs and Tg D .1C ˛g/T yields the result

SQsQs.f / D �2x A2T

 

1

1C ˛g

N�1
X

kD0
sinc2.NfTs � k/

C
˛2g

1C ˛g

N�1
X

kD0
sinc2.˛g.NfTs � k// (4.238)

C 2˛g

1C ˛g

cos.2�NfTs/

N�1
X

kD0
sinc.NfTs � k/sinc.˛g.NfTs � k//

!

:

The OFDM psd is plotted in Figs. 4.27 and 4.28 for N D 16; ˛g D 0 and N D 16; ˛g D 0:25, respectively. Observe
the effect of the OFDM guard interval on the psd. Likewise, Figs. 4.29 and 4.30 plot the psd for N D 1024; ˛g D 0 and
N D 1024; ˛g D 0:25, respectively, where the effect of increasing the block size N can be observed. When plotting the
above figures, the index k was replaced with k � .N � 1/=2 in the argument of the sinc functions in (4.239) to center the
spectrum around 0 Hz. Note that the psd is plotted against the normalized frequency fTs. To avoid a reduction in data rate,
the modulated symbol period with a cyclic extension is Tg

s D Ts=.1 C ˛g/. Hence, the Nyquist frequency in this case is
1=2Tg

s D .1C ˛g/=2Ts, which shows a bandwidth expansion due to the guard interval.

4.9.6.1 Psd of OFDM with IDFT Baseband Modulator

It is interesting to examine the OFDM power spectrum when the OFDM complex envelope is generated by using an IDFT
baseband modulator followed by a balanced pair DACs as shown in Fig. 4.14. The output of the IDFT baseband modulator
is given by fXgg D fXg

n;mg, where m is the block index and
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Fig. 4.28 Psd of OFDM with N D 16; ˛g D 0:25
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Fig. 4.29 Psd of OFDM with N D 1024; ˛g D 0

Xg
n;m D Xn;.m/N (4.239)

D A

N�1
X

kD0
xn;ke

j2�km
N ; m D 0; 1; : : : ; N C G � 1: (4.240)

The power spectrum of the sequence fXgg can be calculated by first determining the discrete-time autocorrelation function
of the time domain sequence fXgg and then taking a discrete-time Fourier transform of the discrete-time autocorrelation
function. The psd of the OFDM complex envelope with ideal DACs can be obtained by applying the resulting power spectrum
to an ideal low-pass filter with a cutoff frequency of 1=.2Tg

s /Hz.
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Fig. 4.30 Psd of OFDM with N D 1024; ˛g D 0:25

The time domain sequence fXgg is a periodic wide-sense stationary sequence having the discrete-time autocorrelation
function

�XgXg.m; `/ D 1

2
EŒ.Xg

n;m/
�X

g

n;mC`� (4.241)

D A2
N�1
X

kD0

N�1
X

iD0

1

2
EŒx�

n;kxn;i�e
j 2�

N
.�kmCimCi`/ ; (4.242)

for m D 0; : : : ;N C G � 1: (4.243)

The data symbols, xn;k, are assumed to be mutually uncorrelated with zero mean and variance �2x D 1
2EŒjxn;kj2�. Using the fact,

that Xg
n;m D Xn;.m/N , gives

�XgXg.m; `/ D

8

ˆ̂
<

ˆ̂
:

m D 0; : : : ;G � 1; ` D 0; N

A�2x m D G; : : : ;N � 1; ` D 0
m D N; : : : ;N C G � 1; ` D 0; �N

0 otherwise

: (4.244)

Averaging over all time indices m gives the time-averaged discrete-time autocorrelation function

�XgXg.`/ D

8

<

:

A�2x ` D 0
G

NCG
A�2x ` D �N; N

0 otherwise

: (4.245)

Taking the discrete-time Fourier transform of the discrete-time autocorrelation function in (4.245) gives

SXgXg.f / D
1
X

`D�1
�XgXg.`/e�j2� f `T

g
s

D A�2x

�

1C G

N C G
ej2� fNT

g
s C G

N C G
e�j2� fNT

g
s

�

D A�2x

�

1C 2G

N C G
cos.2� fNTg

s /

�

: (4.246)
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Fig. 4.31 Psd of IDFT-based OFDM with N D 16;G D 0. Note in this case that Tg
s D Ts

Finally, it is assumed here that the sequence fXgg D fXg
n;mg is passed through a pair of ideal DACs. The ideal DAC is a

low-pass filter with cutoff frequency 1=.2Tg
s /. Therefore, the OFDM complex envelope with an ideal DAC has the psd

SQsQs.f / D A�2x

�

1C 2G

N C G
cos.2� fNTg

s /

�

rect
�

fTg
s

�

: (4.247)

The OFDM psd is plotted in Fig. 4.31 for G D 0, where it has the ideal rectangular form rect.fTs/ for any block size N.
Figures 4.32 and 4.33 plot the psd for N D 16; G D 4, and N D 1024; G D 256, respectively, where the effect of the cyclic
guard interval and an increase in the block size N can be seen.

Finally, the psd plotted in Figs. 4.31, 4.32, and 4.33 assumes an ideal DAC. A practical DAC with a finite-length
reconstruction filter will introduce side lobes into the spectrum. Side lobes are inherently present in the continuous-time
OFDM waveform in (4.88) and (4.89) due to the use of rectangular amplitude pulse shaping on the subcarriers. However,
they are introduced into the IDFT implementation by the non-ideal (practical) DAC.

4.9.7 Psd of Full Response CPM

Recall that the generalized shaping function for a CPM waveform is given by (4.103). To compute the psd, first define the
auxiliary function

r.t; xn/
4D ej2�hxnˇ.t/uT.t/; (4.248)

such that

b.t; xn/ D ej�h
Pn�1

kD0 xk r.t; xn/ (4.249)

and calculate the mean and autocorrelation function of r.t; xn/. If M-ary signaling is used with the values of xk defined by

xk 2 f2m � 1 �M W m D 1; 2; � � � ; Mg (4.250)
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Fig. 4.32 Psd of IDFT-based OFDM with N D 16;G D 4
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Fig. 4.33 Psd of IDFT-based OFDM with N D 1024;G D 256

then

mr.t/
4D EŒr.t; xn/�

D 1

M

M
X

iD1
ej2�h.2i�1�M/ˇ.t/uT.t/

D DM.2�hˇ.t//uT.t/: (4.251)
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where

DM.x/
4D sin.Mx/

M sin x
(4.252)

is the Dirichlet function. Also

�r;m.t; t
0/ D 1

2
E
�

r�.t; x0/r.t
0; xm/

�

: (4.253)

Evaluating the above expression for m D 0 gives the following result which will be used later

�r;0.t; t
0/ D 1

2
E
�

r�.t; x0/r.t
0; x0/

�

D 1

2
E
h

e�j2�hx0ˇ.t/ej2�hx0ˇ.t
0/
i

uT.t/uT.t
0/

D 1

2
E
h

e�j2�hx0.ˇ.t/�ˇ.t0//
i

uT.t/uT.t
0/

D 1

2
DM

�

2�h.ˇ.t/ � ˇ.t0//
�

uT.t/uT.t
0/: (4.254)

To evaluate the psd, it is also necessary to compute the autocorrelation of b.t; xm/. This can be done as follows:

�b;m.t; t
0/ D 1

2
E
�

b�.t; x0/b.t
0; xm/

�

D 1

2
E
h

e�j�h
Pm�1

kD0 xk r�.t; x0/r.t
0; xm/

i

D 1

2
E

" 
m�1
Y

kD0
r�.T; xk/

!

r�.t; x0/r.t
0; xm/

#

D 1

2
E

" 
m�1
Y

kD1
r�.T; xk/

!

r�.t; x0/r
�.T; x0/r.t

0; xm/

#

: (4.255)

Now suppose that the data sequence is uncorrelated. Then for m > 0

�b;m.t; t
0/ D 1

2
Œmr.T/�

m�1
mr.t/�r;0.T; t

0/

D 1

2
ŒDM.�h/�m�1

DM.2�hˇ.t//DM

�

2�h.ˇ.T/ � ˇ.t0//
�

uT.t/uT.t
0/; (4.256)

where (4.254) has been used. Likewise, for m D 0

�b;0.t; t
0/ D 1

2
E
�

b�.t; x0/b.t
0; x0/

�

D 1

2
E
h

e�j2�hx0.ˇ.t/�ˇ.t0//
i

uT.t/uT.t
0/

D 1

2
DM

�

2�h.ˇ.t/ � ˇ.t0//
�

uT.t/uT.t
0/

D �r;0.t; t
0/: (4.257)

Finally, the psd is obtained by using (4.254) and (4.257) along with (4.196) and (4.208).
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4.9.7.1 Alternative Method

There is an alternate method for obtaining the full response CPM psd that provides more insight. Using (4.196) along with
the property Sb;�m.f / D S�

b;m.f / yields

SQsQs.f / D
A2

T

 

Sb;0.f /C 2Re

( 1
X

mD1
Sb;m.f /e

�j2� fmT

)!

: (4.258)

Taking the double Fourier transform of (4.257) and (4.256) gives

Sb;m.f / D
�

Sr;0.f / m D 0
mm�1

r .T/Mr.f / OM�
r .f / m > 0

; (4.259)

where

mm�1
r .T/

4D ŒDM.�h/�m�1

Mr.f /
4D F Œmr.t/� D F ŒDM.2�hˇ.t/uT.t/�

OM�
r .f /

4D 1

2
E
�

r�.T; x0/R.f ; x0/
�

D 1

2
E
�

e�j�hx0R.f ; x0/
�

F Œ � � denotes the Fourier transform and

R.f ; x0/ D F Œr.t; x0/� D F
�

ej2�hx0ˇ.t/uT.t/
�

: (4.260)

Then,

SQsQs.f /D
A2

T

 

Sr;0.f /C2Re

(

Mr.f / OM�
r .f /

1
X

mD1
mm�1

r .T/e�j2� fmT

)!

D A2

T

 

Sr;0.f /C2Re

(

Mr.f / OM�
r .f /

1
X

nD0

�

mr.T/e
�j2� fT

�n
e�j2� fT

)!

:

(4.261)

Observe that

ˇ
ˇmr.T/e

�j2� fT
ˇ
ˇ D jmr.T/j D jDM.�h/j � 1: (4.262)

The implication of equation (4.262) is that two separate cases must be considered when evaluating the psd.

Case 1: jmr.T/j < 1

In this case the sum in (4.261) converges such that

SQsQs.f / D
A2

T

 

Sr;0.f /C 2Re

(

Mr.f / OM�
r .f /

ej2� fT � mr.T/

)!

: (4.263)

and the psd has no discrete components.
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Case 2: jmr.T/j D 1

This case is possible only if

jmr.T/j D
ˇ
ˇE
�

ej�hxk
�ˇ
ˇ D 1: (4.264)

For this condition to be true,

ej�hxk D ejc ; 8 k; (4.265)

where c is the same constant for all k. Since this must be true for xk D 1, it follows that c D �h and

xk�h D �h mod .2�/ 8k: (4.266)

This means that h must be an integer, and when h is an integer

mr.T/ D EŒr.T; x0/� D ej�h (4.267)

and

OM�
r .f / D M�

r .f /e
j�h: (4.268)

Hence, the psd is

SQsQs.f / D
A2

T

 

Sr;0.f /C jMr.f /j22Re

( 1
X

mD1
ej2�.f � h

2T /mT

)!

D A2

T

 

Sr;0.f / � jMr.f /j2 C jMr.f /j2
1
X

mD�1
e�j2�.f � h

2T /mT

!

D A2

T

 

Sr;0.f / � jMr.f /j2 C
1

T
jMr.f /j2

1
X

nD�1
ı

�

f � h

2T
� n

T

�
!

D A2

T

�

Sr;0.f / � jMr.f /j2
�

C
�

A

T

�2 1
X

nD�1

ˇ
ˇ
ˇ
ˇ
Mr

�
h

2T
C n

T

�ˇ
ˇ
ˇ
ˇ

2

ı

�

f � h

2T
� n

T

�

: (4.269)

Clearly, the second term in the above expression is a discrete spectral component. Hence, integer values of h lead to discrete
spectral components. Since discrete spectral components are generally undesirable, integer values of h are typically not used.

4.9.7.2 Psd of CPFSK

With CPFSK, the phase shaping pulse is given by (4.107). Hence,

R.f ; x0/ D
Z T

0

ej�
hx0 t

T � e�j2� ftdt

D Te�j�.fT�hx0=2/sinc ..fT � hx0=2// ; (4.270)
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where x0 2 f˙1;˙3; : : : ;˙.M � 1/g. It follows that

Mr.f / D E ŒR.f ; x0/�

D T

M

M
X

mD1
e�j�.fT�hxm=2/sinc ..fT � hxm=2// (4.271)

Sr;0.f / D
1

2
E
h

jR.f ; x0/j2
i

D T2

2M

M
X

mD1
sinc2 ..fT � hxm=2// (4.272)

OM�
r .f / D

T

2M

M
X

mD1
ej�.fTCxmh=2/sinc .fT � xmh=2/ : (4.273)

These expressions are used in (4.263) to obtain the psd.
For binary M D 2 CPFSK,

Sr;0.f / D
T2

4

�

sinc2.fT � h=2/C sinc2.fT C h=2/
�

(4.274)

Mr.f / D
T

2

�

e�j�.fTCh=2/sinc.fT C h=2/C e�j�.fT�h=2/sinc.fT � h=2/
�

(4.275)

OM�
r .f / D

T

4

�

ej�.fT�h=2/sinc.fT C h=2/C ej�.fTCh=2/sinc.fT � h=2/
�

(4.276)

mr.T/ D D2.h�/: (4.277)

When h is an integer, the psd has both continuous and discrete components

SQsQs.f / D Sc
QsQs.f /C Sd

QsQs.f /; (4.278)

where

Sc
QsQs.f / D

A2T

2
sinc.fT C h=2/sinc.fT � h=2/

Sd
QsQs.f / D

A2

T

1
X

nD�1
ı

�

f � h

2T
� n

T

��

sinc2.nC h/C sinc2.n/ � 2sinc.nC h/sinc.n/
�

(4.279)

which clearly exhibits line components at frequencies
�

h
2T
C n

T

�

. Further simplification may be possible for special cases,
but otherwise the psd has an intractable form. Figures 4.34 and 4.35 plot the psd against the normalized frequency fT . MSK
corresponds to the case h D 0:5. Observe that the CPFSK power spectrum becomes more compact for smaller h, while the
converse is true for larger h. Figure 4.35 illustrates the appearance of discrete components at frequencies

�
1
2
C n

�
1
T

, n an
integer, as h! 1.

4.9.7.3 Psd of MSK

The psd of CPFSK is complicated for all but a few cases. By using Laurent’s decomposition [193], MSK was shown
equivalent to OQASK with half-sinusoid amplitude pulse shaping. From (4.112), the MSK baseband signal has the
quadrature form

Qs.t/ D A
X

n

b.t � 2nT; xn/; (4.280)
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Fig. 4.34 Psd of binary CPFSK with various modulation indices. MSK corresponds to h D 1=2
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Fig. 4.35 Psd of binary CPFSK as the modulation index h ! 1

where

b.t; xn/ D Ox2nC1ha.t � T/C jOx2nha.t/ (4.281)

ha.t/ D sin
�� t

2T

�

u2T.t/; (4.282)

xn D .Ox2nC1; Ox2n/ is a sequence of odd–even pairs assuming values from the set f˙1;˙1g, and T is the bit period. The Fourier
transform of (4.281) is

B.f ; xn/ D
�

Ox2nC1e
�j2� fT C jOx2n

�

Ha.f /: (4.283)
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Fig. 4.36 Psd of GMSK with various normalized filter bandwidths BT

Since the data sequence is zero mean and uncorrelated, the MSK psd is

Sb;0.f / D
1

2
E
h

jB.f ; x0/j2
i

D 1

2
E
�

Ox21 C Ox20
�

jHa.f /j2

D jHa.f /j2: (4.284)

The Fourier transform of the half-sinusoid pulse in (4.282) is

Ha.f / D
2T

�.1 � .4fT/2/

�

1C e�j4� fT
�

: (4.285)

Hence, the power spectrum becomes

SQsQs.f / D
A2

T
jHa.f /j2 D

16A2T

�2

�
cos2.2� fT/

1 � .4fT/2

�2

: (4.286)

The psd of MSK is plotted in Fig. 4.34.

4.9.8 Psd of GMSK and TFM

GSMK and TFM are special cases of partial response CPM. In general, the psd of partial response CPM is difficult to obtain
except for a rectangular shaping function. One solution has been suggested by Garrison [135], where the modulating pulses
are approximated by using a large number of rectangular sub-pulses with properly chosen amplitudes.

Figure 4.36 plots the psd of GMSK with various normalized filter bandwidths BT . Note that a smaller BT results in a more
compact psd. Likewise, Fig. 4.37 plots the psd of TFM and GMSK with BT D 0:25. Observe that the psd of TFM compares
well with that of GMSK. This is not surprising since their corresponding frequency shaping pulses are quite similar as seen
from Figs. 4.21 and 4.25.
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Finally, it is interesting to compare the spectral characteristics of GMSK and �=4-DQPSK. To make a fair comparison, it
must be remembered that GMSK transmits 1 bit/baud while �=4-DQPSK transmits 2 bits/baud. If �=4-DQPSK uses root-
raised cosine pulse shaping, then the spectral occupancy normalized to a bit duration is obtained by dividing the elements on
the horizontal axis of Fig. 4.26 by a factor of 2. For example, at f D 1=.2Tb/ (corresponding to fT D 1:0) the side lobes are
about 44 dB down from the main lobe (f D 0) when � D 6T . From Fig. 4.36, with f D 1=.2T/, almost the same side lobe
roll-off is obtained. However, for larger values of f , the GMSK pulse side lobes are seen to decay faster in frequency than
those of �=4-DQPSK.

Problems

4.1. Assume that a received signal is given by

Qy.t/ D A

1
X

nD�1
xnp.t � nT/;

where xk D ˙1, and p.t/ is the ideal Nyquist pulse

p.t/ D sinc.t=T/

P.f / D Trect.fT/:

Due to a slight timing error, the received signal is sampled with a timing offset to, resulting in the sample sequence fQykg
shown in (4.46). Show that

Qyk D Aaksinc.to=T/C A
sin.� to=T/

�

X

n¤k

an.�1/n
to=T � n

:

4.2. Show that 16-QAM can be represented as a superposition of two four-phase constant envelope signals where each
component is amplified separately before summing, i.e.,

s.t/ D G
�

An cos.2� fct/C Bn sin.2� fct/
�

C
�

Cn cos.2� fct/C Dn sin.2� fct/
�

;



224 4 Modulation and Power Spectrum

where G is a gain constant and fAng, fBng, fCng, and fDng are statistically independent binary sequences with elements from
the set f�1;C1g. Thus, show that the resulting signal is equivalent to

s.t/ D In cos.2� fct/C Qn sin.2� fct/

and determine In and Qn in terms of An, Bn, Cn, and Dn.

4.3. Consider the two 8-QAM signals constellations shown in Fig. 4.8. Suppose that the distance between nearest-neighbor
signal points in each constellation is equal to A.

(a) For the constellation on the left, determine the cartesian coordinates of the constellation points.
(b) For the constellation on the right, determine the radii a and b of the inner and outer circles.
(c) Find the average energy per symbol for each of the two signal constellations in terms of A assuming that each signal

point is used with equal probability. Which constellation is more power efficient?

4.4. Two data streams, fxn;1g and fxn;2g, are to be transmitted using unbalanced QPSK with rectangular amplitude pulse
shaping, such that the data rate for fxn;1g is 10 kbps and that for fxn;1g is 1 Mbps.

(a) Relate the amplitudes of the waveforms, A1 and A2, such that both bit sequences have equal energies per bit.
(b) With A1 and A2 so related, find the possible phase shifts for the carrier, where the xn;1 and xn;2 take on all possible

combinations of C1 and �1.

4.5. An important parameter for digital modulation schemes is the peak-to-average power ratio (PAPR), defined by

PAPR D limT!1
max0�t�T jQs.t/j2

T�1 R T

0
jQs.t/j2dt

:

When nonlinear power amplifiers are used it is desirable to keep the PAPR as small as possible.

(a) Plot the PAPR for �=4-DQPSK with root-raised cosine pulse shaping, as a function of the roll-off factor ˇ.
(b) Repeat part (a) for QPSK. What conclusions can you draw?

4.6. Two new modulation schemes have been proposed called Q-O-QAM and B-O-QAM. Q-O-QAM transmits
2 bits/symbol, while B-O-QAM transmits 1 bit/symbol. The mapping of Q-O-QAM data bits .a2k; a2kC1/ to symbols
bk is as follows: The symbols bk are used to generate the symbols xk which are given by

.a2k; a2kC1/ bk

0,0 C3

0,1 C1

1,0 �3

1,1 �1

xk D bkejk �2 :

For B-O-QAM the mapping of data bits ak to symbols bk is as follows: The symbols ak are also used to generate the symbols

ak bk

0 C3

1 �3

xk which are given by

xk D bkejk �2 :
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(a) Plot the signal space diagram for Q-O-QAM and B-O-QAM and show the allowable transitions between the signal points
in the signal constellation. Why would these modulation schemes be useful for radio transmitters that use nonlinear power
amplifiers.

(b) Assuming an AWGN channel and coherent detection, write down an expression for the probability of symbol error for
Q-O-QAM and B-O-QAM in terms of the bit energy to noise ratio 
b.

4.7. Consider two sinusoids waveforms

s1.t/ D A cos.2� fct/

s2.t/ D A cos.2�.fc C�f /t/:

(a) Determine the minimum value of �f such that the inner product .s1; s2/ D 0 over the interval 0 � t � T . Assume that
fcT � 1.

(b) Repeat part (a) for the two sinusoids

s1.t/ D A cos.2� fctC �1/
s2.t/ D A cos.2�.fc C�f /tC �2/;

where �1 and �2 are arbitrary phases.

4.8. A guard interval consisting of a cyclic prefix or cyclic suffix is used in OFDM systems to mitigate the effects of channel
time dispersion.

(a) Assess the cost of the cyclic prefix in terms of

(i) bandwidth and/or data rate.
(ii) transmitter power.

(b) Suppose a guard interval of 500 ns is used. The data rate with 64-QAM modulation is 54 Mb/s. The power penalty due to
the guard interval is to be kept less than 1 dB. What is the required value of G (constrained to an integer) and minimum
possible OFDM block size (constrained to 2k for some k)?

4.9. Consider the time-domain sample sequence for the nth OFDM block

Xn;m D
N�1
X

kD0
xn;kej 2�km

N :

The data symbols xn;k; k D 0; : : : ;N � 1, are independent and each is chosen with equal probability from a BPSK symbol
alphabet, such that xn;k 2 f�1;C1g. The PAPR of the sample sequence for block n can be defined as follows:

PAPR D maxm jXn;mj2

N�1PN�1
mD0 jXn;mj2

:

By using the triangle inequality, show that PAPR � N.

4.10. Consider an OFDM time-domain sequence (without cyclic guard interval)

Xn;m D
N�1
X

kD0
xn;kej 2�km

N

D
N�1
X

kD0
xn;k cos

�
2�km

N

�

C j

N�1
X

nD0
xn;k sin

�
2�km

N

�

; m D 0; 1; : : : ; N � 1;

where the xn;k are symbols are i.i.d. symbols chosen from the binary alphabet f�1;C1g.
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(a) Invoke the central limit theorem for large N and treat the Xn;m D XI
n;mC jXQ

n;m as independent complex Gaussian random
variables. What are the means, variances, and cross-correlation of the quadrature components XI

n;m and XQ
n;m?

(b) Suppose that the Xn;m can be treated as complex Gaussian random variables with the parameters in part (a). What is the
probability density function of the peak power

Pmax D jXmaxj2 D max0�m�N�1jXn;mj2‹

(c) What is the probability density function of the peak-to-average power ratio

PAPR D Pmax

Pav

in terms of the block size N?

4.11. Let fXmgN�1
mD0 be a finite duration time domain sequence of length N and let fxkgN�1

kD0 be its N-point DFT. Suppose that
fXmgN�1

mD0 is padded with L zeroes and the .N C L/-point DFT is computed, denoted by fOxkgNCL�1
kD0 .

(a) What is the relationship between x0 and Ox0?
(b) If jxkj; k D 0; : : : ;N�1 and jOxkj; k D 0; : : : ;NCL�1 are plotted on the same graph, explain the relationships between

the two graphs.

4.12. (Computer Exercise) Consider the time-domain sample sequence for the nth OFDM block fXn;mgN�1
mD0. The peak-to-

average power ratio (PAPR) for the nth data block can be defined as follows:

PAPRn D
maxm jXn;mj2

N�1PN�1
mD0 jXn;mj2

;

Note that the PAPR for the nth data block, PAPRn, depends on the random data vector fxn;0; xn;1; : : : ; xn;N�1g.
By averaging over many randomly generated data vectors, determine the mean of the PAPR and the variance of the PAPR.

Do this for 16-QAM modulation with block sizes N D 256, 512, and 1024. Assume in all cases that no guard interval is
used, i.e., G D 0.

4.13. (Computer Exercise) Consider a selective mapping scheme to reduce the PAPR of an OFDM waveform. The
technique begins by generating L different random phase vectors of length N, i.e., first generate

�` D .�`;0; �`;1; : : : ; �`;N�1/ ; ` D 1; 2; : : : ;L;

where the �`;i are independent uniformly distributed random variables on the interval .��; ��. Then for each �`; ` D
1; : : : ;L, compute the PAPR of the OFDM sample sequence

X`n;m D
N�1
X

kD0
xn;kej�`;k ej 2�km

N ; m D 0; 1; : : : ;N � 1;

and select the waveform having the smallest PAPR for transmission.
Consider N D 256 and 16-QAM symbols, and assume that no guard interval is used, i.e., G D 0. Compute the mean

PAPR and the variance of the PAPR of the transmitted OFDM waveform for L D 1; 2; 4.

4.14. An OFDM signal with a large number of subcarriers N and no guard interval (G D 0) has a complex envelope that
can be approximated as a zero-mean complex Gaussian random process. Assume an “ideal” OFDM signal spectrum, where
the modulated power spectrum is

SQsQs.f / D
�

S0 ; jf j � 1=2Ts

0 ; elsewhere

where T D NTs.
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Fig. 4.38 Frequency shaping
pulse for Problem 4.16
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(a) Using the above Gaussian approximation, what is the distribution of the magnitude of the complex envelope, jQs.t/j, at
any time t.

(b) Suppose that the RF power amplifier will clip the OFDM waveform if the magnitude of the complex envelope jQs.t/j
exceeds the level �Rrms, where Rrms is the rms envelope level

p

EŒjQs.t/j2�. What is the probability that the OFDM
waveform will be clipped at any time t?

(c) Suppose that a continuous stream of OFDM symbols is transmitted. How many times per second on average will the
OFDM waveform be clipped?

4.15. The following problem requires you to design a length N D 256 phase vector

� D .�0; �1; : : : ; �N�1/

such that the corresponding OFDM sample sequence

Xm D
N�1
X

kD0
ej�k ej 2�km

N ; m D 0; 1; : : : ;N � 1;

has a PAPR that is no bigger than 3 dB and preferably as small as possible. Using any and all techniques at your disposal,
such as analysis and/or computer search, find such a phase vector �.

4.16. Consider a CPM signal that is generated by using a triangular frequency shaping pulse shown in Fig. 4.38.

(a) If h D 1=2, find the peak frequency deviation from the carrier, where frequency deviation is

fdev D
1

2�

d�.t/

dt
:

(b) Sketch the phase tree and phase trellis for the binary source symbol sequence

x D .C1;C1;C1;�1;�1;C1;�1;�1/

4.17. A CPM signal is generated from a baseband signal with a half-sinusoid frequency shaping function hf .t/.

(a) If h D 1=2, find the peak frequency deviation from the carrier frequency, where frequency deviation is

fdev D
1

2�

d�.t/

dt
:

(b) Sketch the phase tree and phase trellis if the data symbol sequence is

x D fC3;�1;C1;C3;�3;C1;�1g:

4.18. Sketch the phase tree, the phase trellis, and phase state diagram for partial response CPM with h D 1=2 and

hf .t/ D
1

4T
u2T.t/:
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4.19. Consider a partial response CPM signal

(a) Generate a frequency shaping function of duration 3T by convolving two rectangular shaping functions of duration T

and 2T .
(b) Define and sketch the three segments of the shaping function, hf ;k.t/, k D 0; 1; 2.
(c) Sketch the baseband signal if the symbol sequence is

x D fC1;�1;C1;�1;�1g:

4.20. What are the phase states and states for the following CPM signals:

(a) Full response binary CPFSK with either h D 2=3 or h D 3=4.
(b) Partial response L D 3 binary CPFSK with either h D 2=3 or h D 3=4.

4.21. Equation 4.142 defines the transfer function H.f / of the Gaussian low pass filter that is used to generate the GMSK
waveform.

(a) Obtain the impulse response h.t/ and show that it satisfies the properties of a probability density function (pdf).
(b) Expanding on the interpretation of h.t/ as a pdf, determine the variance of the distribution. What is the significance of

this interpretation?

4.22. Design a Gaussian pulse-shaping filter with BT D 0:5 for a symbol rate of 19.2 kbps. Write expressions for and plot
(i) the impulse response and frequency response of the filter and (ii) the frequency shaping pulse hf .t/. Repeat for the case
of BT D 0:2 and BT D 0:75.

4.23. Consider TFM with the frequency shaping pulse

Hf .f / D
�

4h

� fT

sin.� fT/
cos2.� fT/:

Suppose that this pulse is obtained by exciting a filter Qh.t/ with a gate function rect.t=T/. Find and sketch the impulse
response of the filter Qh.t/.
4.24. Prove the identity

T
X

m

e�j2� fmT D
X

n

ı
�

f � n

T

�

:

4.25. Consider the case of uncorrelated data symbols.

(a) Show that if the symbols are equiprobable, then

E
h

jB.f ; x0/j2
i

�
ˇ
ˇ
ˇE ŒB.f ; x0/�

ˇ
ˇ
ˇ

2

D 1

2M2

M
X

iD1

M
X

kD1

ˇ
ˇ
ˇB.f ; xi/ � B.f ; xk/

ˇ
ˇ
ˇ

2

:

(b) Compute the value of part (a) for M D 2.

4.26. Consider the complex low-pass binary modulated signal

Qs.t/ D A
X

n

xnha.t � nT/;

where xn 2 f�1; C1g. The data sequence fxng is correlated such that

�xx.n/ D
1

2
EŒx�

k xkCn� D �jnj:

Compute the power density spectrum of Qs.t/.
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4.27. Suppose that a binary data sequence fxng, xi 2 f�1;C1g is correlated such that P.xn D xnC1/ D 3=4, i.e., adjacent
data bits are the same with probability 3/4 and different with probability 1/4.

(a) Compute the autocorrelation function �xx.m/ for this data sequence.
(b) Compute the power spectrum Sxx.f /.

4.28. Suppose that an uncorrelated binary data sequence is transmitted by using binary PAM with a root-Gaussian amplitude
shaping pulse

Ha.f / D
�

�e��.f �/2
�1=2

(a) What is the transmitted power density spectrum?
(b) Find the value of � so that the power density spectrum is 20 dB below its peak value at frequency 1=T , where T is the

baud duration.
(c) What is the corresponding time domain pulse ha.t/?

4.29. Consider the M-ary orthogonal FSK waveform defined by (4.71) and (4.72). Assuming equally likely messages,
determine the psd of the transmitted complex envelope SQsQs.f /.

4.30. Consider a system that uses a set of M D 16 bi-orthogonal signals that are derived from the Hadamard matrix H8 in
(4.76). The set of 16 signals is constructed according to

Qsi.t/ D
�

A
P7

kD0 hikhc.t � kTc/ ; k D 1; : : : ; 8
�Qsi.t/ ; k D 9; : : : ; 16 ; (4.287)

where T D 8Tc is the baud period. Note that 4 bits are transmitted per baud. Assume an uncorrelated data sequence and
assume that all 16 waveforms are used with equal probability.

(a) If hc.t/ D uTc
.t/, find the psd of the transmitted complex envelope SQsQs.f /.

(b) Plot the power spectrum SQsQs.f / against the normalized frequency fTb, where Tb D T=4 is the bit duration.



Chapter 5

Detection of Known Signals in Noise

The performance of a communication link is degraded by many transmission impairments including fading, delay spread,
Doppler spread, co-channel and adjacent channel interference, noise, and receiver implementation losses. Fading causes
a very low instantaneous received signal-to-noise ratio (SNR) or carrier-to-noise ratio (CNR) when the channel exhibits
a deep fade, delay spread causes intersymbol interference (ISI) between the transmitted symbols, and a large Doppler
spread is indicative of rapid channel variations and may necessitate a receiver with a fast convergent algorithm. Receiver
implementation losses include carrier frequency offset, sample clock frequency offset, symbol timing errors, and channel
estimation errors. Co-channel interference, adjacent channel interference, and noise are additive impairments that degrade
the bit error rate performance by reducing the SNR or CNR.

This chapter considers the bit error rate performance of digital signaling on frequency non-selective (flat) fading channels
with additive white Gaussian noise AWGN. Flat fading channels are characteristic of narrow-band land mobile radio systems
or mobile satellite systems. Flat fading channels affect all frequency components of a narrow-band signal in exactly the
same way and, therefore, do not introduce amplitude or phase distortion into the waveform that is transmitted over the
communication link. Frequency selective channels, on the other hand, distort the transmitted signal and will be the subject
of Chap. 7. Flat fading channels will be shown to significantly degrade the bit error rate performance unless appropriate
countermeasures are taken. Diversity and coding are two well-known methods for combating fading. The basic idea of
diversity systems is to provide the receiver with multiple replicas of the same information bearing signal, where the replicas
are affected by uncorrelated fading. This can be accomplished by using multiple receiver antennas with sufficient spatial
separation, for example. Multi-antenna techniques will be discussed in Chap. 6. Coding techniques introduce a form of time
diversity into the transmitted signal which, along with interleaving, can be exploited to mitigate the effects of fading. Coding
techniques are the topic of Chap. 8.

The remainder of this chapter is organized as follows. Section 5.1 introduces a vector representation for digital signaling
on flat fading channels with additive white Gaussian noise (AWGN). Section 5.3 provides a generalized analysis of the
error rate performance of digital signaling on flat fading channels. Section 5.2 derives the structure of the optimum coherent
receiver for the detection of known signals in AWGN. The error probability performance of various coherently detected
digital signaling schemes is considered, including PSK in Sect. 5.4, QAM in Sect. 5.5, orthogonal signals in Sect. 5.6, and
OFDM in Sect. 5.7. Section 5.8 considers differential detection of DPSK and �=4-DQPSK waveforms. Section 5.9 considers
non-coherent detection and, finally, Sect. 5.10 considers coherent and non-coherent detection of CPM waveforms.

5.1 Vector Space Representation of Received Signals

Consider a general digital modulation scheme having the complex envelope

Qs.t/ D A
X

n

b.t � nT; xn/; (5.1)

where the generalized shaping function b.t�nT; xn/ depends on the particular modulation scheme being employed. Suppose
the waveform Qs.t/ is transmitted over a flat fading channel having the time-variant channel impulse response
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g.t; �/ D g.t/ı.� � O�/: (5.2)

The received complex envelope is

Qr.t/ D g.t/Qs.t � O�/C Qn.t/; (5.3)

where g.t/ D ˛.t/ej�.t/ is the time-variant complex fading gain introduced by the channel, and Qn.t/ is zero-mean complex
additive white Gaussian noise (AWGN) with a power spectral density (psd) of No watts/Hz. Note that the fading channel
introduces a multiplicative distortion, while the receiver front end introduces AWGN. The flat fading channel will also
introduce a random time delay O� .

Consider a linear full response modulation scheme, such as QAM or PSK, where one of M message waveforms having
a complex envelope chosen from the set fQsi.t/gMiD1 is transmitted over a flat fading channel every T seconds. By observing
received waveform Qr.t/, the receiver must determine the time sequence of message waveforms that was transmitted over
the channel. To do so, the receiver must determine the time delay O� , such that the location of the symbol boundaries in the
received waveform are known. The process of estimating O� is commonly called symbol or baud timing recovery. For our
present purpose, it is assumed that the receiver knows O� exactly and, therefore, it can be assumed that O� D 0. Under the
above assumptions, the received complex envelope can be written as

Qr.t/ D g.t/Qs.t/C Qn.t/: (5.4)

To derive the structure of the optimum coherent receiver, suppose that a single isolated message waveform Qsn.t/ is chosen
from the set fQsi.t/gMiD1 and transmitted over the channel. If the channel changes very slowly with respect to the symbol period
T , i.e., fmT � 1, then g.t/ will remain essentially constant over the duration of the amplitude shaping pulse ha.t/. Under this
condition, the explicit time dependency of g.t/ can be removed so that the received complex envelope is

Qr.t/ D gQsn.t/C Qn.t/; (5.5)

where g D ˛ej� is the random fading gain.
Chapter 4 showed that the set of waveforms fQsi.t/gMiD1 can be represented as a set vectors fQsigMiD1 in an N-dimensional

signal space. The signal vectors and the associated basis functions, f'i.t/gNiD1 may be obtained by using a Gram–Schmidt
orthonormalization procedure. To derive the structure of the optimal coherent receiver, it is useful to obtain a vector
representation of the received waveform in (5.5). This can be accomplished by projecting the received complex envelope
Qr.t/ onto the set of basis functions f'i.t/gNiD1 giving the representation

Qr.t/ D
N
X

iD1
Qri'i.t/C Qz.t/; (5.6)

where

Qri D
Z 1

�1
Qr.t/'�

i .t/dt (5.7)

D g

Z 1

�1
Qsn.t/'

�
i .t/dtC

Z 1

�1
Qn.t/'�

i .t/dt (5.8)

D gQsni
C Qni (5.9)

and

Qz.t/ D Qn.t/ �
N
X

iD1
Qni'i.t/ (5.10)

is a “remainder” process, which is the portion of the noise process Qn.t/ that lies outside of the signal space. The above process
yields the received vector

Qr D gQsn C Qn; (5.11)
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where

Qr D .Qr1; Qr2; : : : ; QrN/

Qsn D .Qsn1 ; Qsn2 ; : : : ; QsnN
/

Qn D .Qn1; Qn2; : : : ; QnN/:

For an AWGN channel, the Qnk; k D 1; : : : ;N are complex Gaussian random variables that can be completely described by
their means and covariances. The means are

EŒQnk� D
Z 1

�1
EŒQn.t/�'k.t/dt D 0 (5.12)

and covariances are1

�QnjQnk
D 1

2
EŒQnj Qn�

k � D
Z 1

�1

Z 1

�1

1

2
EŒQn.t/Qn�.s/�'j.t/'

�
k .s/dtds

D No

Z 1

�1

Z 1

�1
ı.t � s/'j.t/'

�
k .s/dtds

D No

Z 1

�1
'j.t/'

�
k .t/dt

D Noıjk:

It follows that the Qnk are all independent identically distributed zero-mean complex Gaussian random variables with
variance No. Hence, the vector Qn has the multivariate complex Gaussian probability density function (pdf) (A.51)

p. Qn/ D
N
Y

iD1

1

2�No

exp

�

� 1

2No

jQnij2
�

D 1

.2�No/N
exp

�

� 1

2No

kQnk2
�

: (5.13)

The joint pdf p. Qn/ is said to be circularly symmetric, because it appears as a hyperspherical cloud that is centered at the
origin in the N-D vector space.

The waveform Qz.t/ is a remainder process due to the fact that Qz.t/ lies outside the vector space that is spanned by the basis
functions f'n.t/gNnD1. It is shown below that the remainder process is uncorrelated with received vector Qr, viz.,

1

2
EŒQz.t/r�

j � D
1

2
EŒQz.t/�gQs�

mj
C EŒQz.t/Qn�

j �

D 1

2
EŒQz.t/Qn�

j �

D 1

2
E

" 

Qn.t/ �
N
X

nD1
Qnn'n.t/

!

Qn�
j

#

D
Z 1

�1

1

2
EŒQn.t/Qn�.�/�'j.�/d� �

N
X

nD1

1

2
EŒQnn Qn�

j �'n.t/

D No'j.t/ � No'j.t/ D 0:

1Since the Qnk have zero mean, their covariances �QnjQnk
are equal to their autocorrelations �QnjQnk

. The factor of 1/2 in the definition of the covariance
function maintains the conventional usage of No as representing the power density spectrum of the low-pass noise process Qn.t/.
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Since 1
2EŒQz.t/Qr�

j � D 0 ; j D 1; : : : ;N, it follows that Qz.t/ is uncorrelated with the received vector Qr. This property implies
that the remainder process Qz.t/ is irrelevant when making the decision as to which signal waveform was transmitted, a result
known as Wozencraft’s irrelevance theorem [357]. In other words, the received vector Qr provides “sufficient statistics” for
determining which message waveform was transmitted, meaning that Qr provides all the necessary information for detection
and no other information is required.

5.2 Detection of Known Signals in AWGN

Based on the observation of the noisy received vector Qr in (5.11), the receiver should determine which message vector was
transmitted such that the probability of decision error is minimized. It is assumed that the receiver has perfect knowledge of
the channel gain g. With this in mind, consider the set of a posteriori probabilities

PŒsi was sent jg; Qr�; i D 1; : : : ;M; (5.14)

which is abbreviated as PŒsijg; Qr�. The maximum a posteriori probability (MAP) receiver decides in favor of the message
vector Qsm having the maximum a posteriori probability PŒQsmjg; Qr�. That is, the MAP decision rule is

choose Qsm if PŒQsmjg; Qr� � PŒQsijg; Qr� 8 i ¤ m: (5.15)

The probability of error in this decision, denoted by PeŒQsmjg; Qr�, is

PeŒQsmjg; Qr� D PŒsm was not sent jg; Qr�
D 1 � PŒsm was sent jg; Qr�
D 1 � PŒsmjg; Qr�: (5.16)

Since the MAP receiver always decides in favor of the message vector sm having the maximum a posteriori probability
PŒsmjg; Qr� for any received vector Qr, the probability of error is minimized.

By using Bayes’ theorem, the a posteriori probability PŒQsmjg; Qr� can be expressed in the form

PŒQsmjg; Qr� D
p.Qrjg; Qsm/Pm

p.Qr/ ; m D 1; � � � ; M; (5.17)

where p.Qrjg; Qsm/ is the joint conditional pdf of the received vector Qr given the transmitted message vector Qsm and channel
gain g, and Pm is the prior probability of transmitting Qsm. Since the pdf of the received vector p.Qr/ is independent of the
transmitted message vector, the MAP receiver chooses the vector Qsm to maximize p.Qrjg; Qsm/Pm. In other words, the MAP
decision rule is equivalent to

choose Qsm if p.Qrjg; Qsm/Pm � p.Qrjg; Qsi/Pi 8 i ¤ m: (5.18)

A receiver that chooses the vector Qsm to maximize p.Qrjg; Qsm/ regardless of the prior messages probabilities is called a
maximum likelihood (ML) receiver. The ML decision rule is

choose Qsm if p.Qrjg; Qsm/ � p.Qrjg; Qsi/ 8 i ¤ m: (5.19)

If the prior message probabilities are all equal, i.e., Pm D 1=M; m D 1; � � � ; M, then the signal vector that maximizes
p.Qrjg; Qsm/ also maximizes p.Qsmjg; Qr/. Under this condition the ML receiver minimizes the probability of decision error. In
practice, an ML receiver is sometimes implemented regardless of the prior message probabilities, because they may be
unknown. Also, the prior message probabilities will be all equal for a well-designed system.

To proceed further, the joint conditional pdf p.Qrjg; Qsm/ is needed. Since Qr D gQsm C Qn and Qn has the joint pdf in (5.13), it
follows that

p.Qrjg; Qsm/ D
1

.2�No/N
exp

�

� 1

2No

kQr � gQsmk2
�

: (5.20)
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By using (5.20) in (5.19), it is apparent that the signal vector Qsm that maximizes p.Qrjg; Qsm/ also minimizes the exponent
in (5.20). Hence, the ML receiver decides in favor of that message Qsm which minimizes the decision metric

�1.Qsm/ D kQr � gQsmk2; m D 1; : : : ;M: (5.21)

From (5.21), the ML receiver decides in favor of the scaled message vector gQsm that is closest in squared Euclidean distance
(or Euclidean distance) to the received vector Qr. Such a receiver is said to make minimum distance decisions.

An alternative form of the ML receiver can be derived by first expanding (5.21) as

�1.Qsm/ D kQrk2 � 2Re
˚

Qr � g�Qs�
m




C jgj2kQsmk2: (5.22)

Then notice that kQrk2 is independent of the choice of Qsm, and kQsmk2 D 2Em, where Em is the energy in the bandpass waveform
corresponding to the signal vector Qsm. Hence, the ML receiver decides in favor of that message Qsm which maximizes the
decision metric

�2.Qsm/ D Re
˚

Qr � g�Qs�
m




� jgj2Em ;m D 1; : : : ;M: (5.23)

Using the definition of the inner product, the above decision metric can be rewritten in the alternate form

�2.Qsm/ D Re

�Z 1

�1
Qr.t/g�Qs�

m.t/dt

�

� jgj2Em

� Re

�Z 1

�1
Qr.t/e�j� Qs�

m.t/dt

�

� ˛Em ;m D 1; : : : ;M: (5.24)

The last line in (5.24) follows because the �2.Qsm/ can be divided by ˛ without altering the decision process. In this form
of the ML decision metric, the received complex envelope Qr.t/ is correlated directly with the scaled and conjugated signal
vector e�j� Qs�

m.t/.
From the above development, the ML receiver can now be constructed. The receiver must first perform quadrature

demodulation as shown in Fig. 5.1 to extract the complex envelope Qr.t/ D QrI.t/C jQrQ.t/. The low-pass filter in each branch
is used to reject the double frequency term after demodulation. The received bandpass waveform is

r.t/ D Re
˚

Qr.t/ej2� fct



D QrI.t/ cos.2� fct/ � QrQ.t/ sin.2� fct/: (5.25)

It follows that

Œr.t/ � 2 cos.2� fct/�LP D QrI.t/ (5.26)

Œ�r.t/ � 2 sin.2� fct/�LP D QrQ.t/; (5.27)

where Œ � �LP indicates low-pass filtering. After quadrature demodulation, there are several receiver structures that are
functionally equivalent, but differ in their method of implementation and complexity. As shown in Fig. 5.2, one possibility is
to generate the observation vector Qr by correlating the received complex envelope with each of the N basis functions used to
define the signal space. This receiver structure is called a correlation detector.
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Fig. 5.2 Correlator detector
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A functionally equivalent structure to the correlation detector is shown in Fig. 5.3, where the complex envelope is filtered
with a bank of N filters having impulse responses '�

i .To� t/ and sampling the outputs at time To, where To is the duration of
the 'i.t/ (or Qsi.t/). The filter '�

i .To � t/ is the matched filter to 'i.t/ and, therefore, this receiver structure is called a matched
filter detector. The matched filter can be shown to be the filter that maximizes the signal-to-noise ratio at the sampling instant
when the input consists of a signal corrupted by AWGN (see Problem 5.2). Finally, the metric computer in Fig. 5.4 processes
the observation vector Qr to produce M decision metrics �2.Qsm/; m D 1; : : : ;M. The decision is made in favor of the message
Qsm having the largest decision metric.

To show equivalence of the correlation and matched filter detectors in Figs. 5.2 and 5.3, respectively, let hi.t/ D '�
i .To� t/

denote the filter that is matched to 'i.t/. Then the output of the matched filter is the convolution

y.t/ D
Z t

0

Qr.�/hi.t � �/d�

D
Z t

0

Qr.�/'�
i .To � tC �/d�: (5.28)

Sampling the filter output at time To gives

y.To/ D
Z To

0

Qr.�/'�
i .�/d�: (5.29)
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Fig. 5.4 Metric computer

This is exactly the same as the correlation in (5.7). Note that other variations of the ML receiver can be constructed in a
similar fashion by direct implementation of (5.24). This will require either a bank of M correlators or a bank of M matched
filters, where M is the number of waveforms in the signal set. Since N � M, the number of correlators or matched filters is
usually larger with this latter implementation. However, the outputs of the correlators or matched filters generate the required
decision metrics directly, and a subsequent metric computer is not required.

Some simplifications can be made for certain types of signal sets. If the message waveforms have equal energy such as
PSK signals, then Em D E for all m. Hence, the bias term ˛Em in (5.23) can be neglected, and the ML receiver decides in
favor of that message Qsm which maximizes the decision metric

�2.Qsm/ D Re
˚

Qr � e�j� Qs�
m




(5.30)

D Re

�Z 1

�1
Qr.t/e�j� Qs�

m.t/dt

�

; m D 1; : : : ;M: (5.31)

In this case, the receiver does not need to know the complete complex channel gain g D ˛ej� , but only the phase �.

5.3 Probability of Error

Consider a signal constellation having the set M signal vectors fQsmgMmD1. Assume that the messages are equally likely so that
Pm D 1=M. By observing the vector Qr, the ML receiver chooses that message vector Qsm that minimizes the squared Euclidean
distance kQr�gQsmk2. To compute the probability of ML decision error for an arbitrary set of signal vectors, first define convex
decision regions Rm around each of the scaled signal vectors gQsm in the N-D signal space. Figure 5.5 shows an example of
the decision regions. Formally, the decision regions are defined by

Rm D
˚

Qr W kQr � gQsmk2 � kQr � gQsik2 ; 8i ¤ m



: (5.32)

Observe that every Qr 2 Rm is closer to gQsm than to any other scaled signal vector gQsi; i ¤ m. The ML decision rule becomes

choose Qsm if Qr 2 Rm: (5.33)

The decision boundaries are hyperplanes in the N-dimensional signal space that are defined by the locus of signal points that
are equidistant from two neighboring scaled signal vectors.
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Fig. 5.5 Decision regions in a
2-D signal space
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The conditional error probability associated with Qsm is

PŒejQsm� D PŒQr 62 Rm�

D 1 � PŒQr 2 Rm�

D 1 � PŒcjQsm�; (5.34)

where PŒcjQsm� is the conditional probability of correct reception. By using the joint conditional pdf in (5.20), it follows that

PŒejQsm� D 1 �
Z

Rm

p.Qrjg; Qsm/dQr: (5.35)

Finally, the average probability of decision error is

PŒe� D 1

M

M
X

mD1
PŒejQsm�: (5.36)

It is often difficult if not impossible to compute the exact probability of decision error, due to the difficulty in defining
the decision regions Rm and performing the N-fold integration in (5.35) with the proper limits of integration. In this case,
various upper and lower bounds, and approximations on the probability of error are useful. First, the concept of pairwise
error probability is introduced.

5.3.1 Pairwise Error Probability

Consider two equally likely signal vectors Qsj and Qsk in a signal constellation of size M, as if these two signal vectors are
the only ones that exist. The resulting probability of decision error at the receiver is called the pairwise error probability
because it can be defined for each distinct pair of signal vectors in the signal constellation. The two signal vectors Qsj and Qsk

are separated at the receiver by the squared Euclidean distance kgQsj � gQskk2 D ˛2kQsj � Qskk2. A decision boundary can be
established at the midpoint between the two signal vectors as shown in Fig. 5.6. Suppose that vector Qsj is sent, and let PŒejQsj�

denote the probability of ML decision error. This error probability is just the probability that the noise along the vector
gQsj � gQsk forces the received vector Qr D gQsj C Qn to cross the decision boundary. Due to the circularly symmetric property
of the AWGN noise, the pdf of the noise vector Qn is invariant to its rotation about the origin in the signal space. Hence, the
noise component along the line that passes through the two signal vectors will have zero mean and variance No. It follows
that the error probability is equal to



5.3 Probability of Error 239

Fig. 5.6 Two received signal
points in an N-D signal space
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PŒejQsj� D Q

0

@

s

˛2 Qd2jk
4No

1

A ; (5.37)

where Qd2jk D kQsj � Qskk2 is the squared Euclidean distance between Qsj and Qsk. Finally, PŒejQsj� D PŒejQsk�. Hence, the pairwise
error probability between the message vectors Qsj and Qsk, denoted by PŒQsj; Qsk�, is

PŒQsj; Qsk� D Q

0

@

s

˛2 Qd2jk
4No

1

A : (5.38)

5.3.2 Upper Bounds on Error Probability

Suppose that Qsk is transmitted and let Ej denote the event that the receiver chooses Qsj instead, thereby making a symbol error.
The probability of the event Ej is the pairwise error probability PŒQsj; Qsk�. The probability of decision error is the probability
of the union of all error events

P.ejQsk/ D P

2

4
[

j¤k

Ej

3

5 : (5.39)

Quite often the error events will overlap and this greatly complicates the calculation of the error probability. However, an
upper bound on the error probability can be obtained by employing the union bound

P

2

4
[

j¤k

Ej

3

5 �
X

j¤k

PŒEj�: (5.40)

This gives the upper bound

PŒejQsk� �
X

j¤k

PŒQsj; Qsk�: (5.41)

Combining the above result with (5.38) gives

PŒejQsk� �
X

j¤k

Q

0

@

s

˛2 Qd2jk
4No

1

A (5.42)
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and using (5.36) to average error probability over all messages gives

PŒe� � 1

M

M
X

kD1

X

j¤k

Q

0

@

s

˛2 Qd2jk
4No

1

A : (5.43)

Calculation of the union bound in (5.43) requires the set of squared Euclidean distances fQd2jkg between the signal vectors.
A simpler upper bound on error probability can be obtained by finding the minimum squared Euclidean distance between
any two signal vectors

Qd2min D min
n;m
kQsn � Qsmk2: (5.44)

Then the pairwise error probability between Qsj and Qsk is bounded by

PŒQsj; Qsk� � Q

0

@

s

˛2 Qd2min

4No

1

A ; (5.45)

since Qd2min � Qd2jk and the function Q.x/ monotonically decreases with x. Hence,

PŒe� � .M � 1/Q

0

@

s

˛2 Qd2min

4No

1

A : (5.46)

Finally, some further upper bounds can be obtained by upper bounding the Gaussian Q-function. One such upper bound
is (Problem 5.1)

Q.x/ � 1

2
e�x2=2 x � 0: (5.47)

Combining with the union bound in (5.43) gives

PŒe� � 1

2M

M
X

kD1

X

j¤k

exp

(

�
˛2 Qd2jk
8No

)

; (5.48)

and combining with the upper bound in (5.46) will give the simplest but loosest upper bound of all

PŒe� � .M � 1/
2

exp

(

�˛
2 Qd2min

8No

)

: (5.49)

5.3.3 Lower Bound on Error Probability

A useful lower bound on the probability of decision error can be obtained by bounding the error probability

PŒejQsk� �

8

<

:

Q

�q
˛2Qd2min
4No

�

; if Qsk has at least one neighbor at distance Qdmin

0 ; otherwise
(5.50)
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Then

PŒe� D 1

M

M
X

mD1
PŒejQsm� (5.51)

� wmin

M
Q

0

@

s

˛2 Qd2min

4No

1

A ; (5.52)

where wmin is the number of signal vectors having at least one minimum distance neighbor. Certainly wmin � 2, so that

PŒe� � 2

M
Q

0

@

s

˛2 Qd2min

4No

1

A : (5.53)

5.3.4 Bit Versus Symbol Error Probabilities

So far, the probability of decision error PŒe� otherwise known as the symbol error probability, PM , has been considered.
However, the bit error probability, Pb, is often of interest. In general, the bit error probability will depend on the particular
mapping between the data bits and the modulated symbols. Since each data symbol corresponds to log2M data bits, the bit
error probability can be bounded as follows:

PM

log2M
� Pb � PM: (5.54)

The lower bound results from the fact that each symbol error corresponds to at least one bit error, while the upper bound
results from the fact that each symbol error corresponds to at most log2M bit errors.

5.3.4.1 Gray Mapping

For signal constellations such as PSK and QAM, it is possible to map the binary data bits onto the data symbols in such a
way that the nearest neighboring symbols (in Euclidean distance) differ in only one bit position. Such a mapping is called a
Gray mapping. When the signal-to-noise ratio is high, symbol errors tend to be made onto the nearest neighboring symbols
with high probability. In these cases, symbol errors correspond to single bit errors. Hence,

Pb �
PM

log2M
: (5.55)

It turns out that Gray mapping is the optimum mapping for uncoded systems. However, if error control coding is used, Gray
mapping is usually not the optimum mapping strategy and other types of mapping are used. This issue will be discussed in
more detail in Chap. 8.

5.3.4.2 Equally Likely Symbol Errors

Suppose that when symbol errors occur, each of the M�1 incorrect symbols is chosen with equal probability. To compute the
probability of bit error, first note that the set of M D 2k symbols has a one-to-one mapping onto the set of 2k binary k-tuples
as shown in Fig. 5.7. Now suppose that the all zeroes k-tuple, or first row, corresponds to the correct symbol. Moreover,
the receiver makes an error by choosing ith row (symbol), i ¤ 1, instead. Since there are 2k�1 zeros and 2k�1 ones in each
column, and a zero corresponds to a correct bit, the probability of a particular bit position being in error is

Pb D
2k�1

2k � 1PM D
M

2.M � 1/PM: (5.56)

It will shown later that this result applies to M-ary orthogonal signals.
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Fig. 5.7 Mapping of binary
k-tuples onto M-ary symbols
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5.3.5 Rotation and Translations

The probability of symbol error in (5.36) is invariant to any rotation of the signal constellation fQsigMiD1 about the origin of
the signal space. This is a consequence of two properties. First, the probability of symbol error depends solely on the set
of Euclidean distances fQdjkg; j ¤ k between the signal vectors in the signal constellation. Second, the AWGN is circularly
symmetric in all directions of the signal space. A signal constellation can be rotated about the origin of the signal space,
by multiplying each N-dimensional signal vector by an N � N unitary matrix Q. A unitary matrix has the property QQH D
QHQ D I, where QH is the complex conjugate transpose of Q, and I is the N � N identity matrix. The rotated signal vectors
are equal to

Osi D QsiQ; i D 1; : : : ;M: (5.57)

Correspondingly, the noise vector Qn is replaced with its rotated version

On D QnQ: (5.58)

The rotated noise vector On is a vector of complex Gaussian random variables that is completely described by its mean and
covariance matrix. The mean is

EŒ On� D EŒ Qn�Q D 0: (5.59)

The covariance matrix is2

ˆ OnOn D
1

2
EŒ OnH On�

D 1

2
EŒ. QnQ/H QnQ�

D 1

2
EŒQH QnH QnQ�

D QH
1

2
EŒ QnH Qn�Q

D NoQHQ D NoI: (5.60)

Since, the statistical properties of the noise vector are invariant to rotation, the probability of symbol error is invariant to
rotation of the signal constellation about the origin of the signal space.

Next consider a translation of the signal set such that

Osi D Qsi � a; i D 1; : : : ;M; (5.61)

where a is a constant vector. In this case, the error probability remains the same since Odjk D Qdjk; j ¤ k. However, the average
energy in the signal constellation is altered by the translation and becomes

2Since the vector On has zero mean, its covariance matrix ƒOnOn is equal to its autocorrelation matrix ˆOnOn.
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OEav D
1

2

M
X

iD1
kOsik2Pi

D 1

2

M
X

iD1
kQsi � ak2Pi

D 1

2

M
X

iD1

˚

kQsik2 � 2Re fQsi � a�g C kak2



Pi

D 1

2

M
X

iD1
kQsik2Pi � Re

(
M
X

iD1
QsiPi � a�

)

C 1

2
kak2

M
X

iD1
Pi

D Eav � Re fEŒ Qs � � a�g C 1

2
kak2 (5.62)

where Eav is the average energy of the original signal constellation and EŒ Qs � D
PM�1

iD0 QsiPi is its centroid (or center of mass).
Differentiating (5.62) with respect to a and setting the result equal to zero will yield the translation that minimizes the

average energy in the signal constellation. This gives

aopt D EŒ Qs �: (5.63)

Note that the center of mass of the translated signal constellation is at the origin, and the minimum average energy in the
translated signal constellation is

OEmin D Eav �
1

2
kaoptk2: (5.64)

5.4 Error Probability of PSK

This section considers the error probability of various forms of PSK signals. The treatment starts with binary PSK signals,
followed by the more complicated forms of PSK signals.

5.4.1 Error Probability of BPSK

The BPSK signal vectors are3

Qs1 D �Qs2 D
p

2Eh: (5.65)

Since there are only two signal vectors, the bit error probability is given by the pairwise error probability in (5.38). For
BPSK signals, Qd12 D 2

p
2Eh. Also BPSK transmits 1 bit/symbol so the symbol energy is Eh D Eb, where Eb is the bit

energy. Therefore, the probability of bit error is

Pb.
b/ D Q
�p

2
b

�

(5.66)

where 
b is defined as the received bit energy-to-noise ratio


b
4D ˛2Eb

No

: (5.67)

3When the signal vectors lie in a 1-D complex vector space, the notation is simplified by using the scalars Qsi, Qn, Qr rather than the vectors Qsi, Qn, and Qr.
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5.4.2 Error Probability of QPSK and OQPSK

The QPSK (or 4-PSK) signal vectors are

Qs1 D �Qs3 D
p

2Eh (5.68)

Qs2 D �Qs4 D j
p

2Eh; (5.69)

where the signal points are seen to lie on the real and imaginary axes. The QPSK signal constellation can be rotated by 45o

as shown in Fig. 5.8 without changing the error probability due to the rotational invariance property. In this case, the decision
boundaries correspond to the real and imaginary axes of the complex signal space. The noise vector is Qn D QnI C jQnQ, where
QnI and QnQ are independent zero-mean Gaussian random variables with variance No. With minimum distance decisions, the
probability of symbol error is

PM D PŒejQs1�
D 1 � PŒcjQs1�
D 1 � P

�

QnI > �˛ Qd=2; QnQ > �˛ Qd=2
�

D 1 � P
�

QnI > �˛ Qd=2
�

P
�

QnQ > �˛ Qd=2
�

D 1 �

0

@1 � Q

0

@

s

˛2 Qd2
4No

1

A

1

A

2

where, again, ˛ is the channel attenuation. Since Qd2 D 4Eh,

PM D 1 �
�

1 � Q
�p

s

��2
(5.70)

where 
s is defined as the received symbol energy-to-noise ratio


s
4D ˛2Eh

No

: (5.71)

Suppose the data bits are mapped onto the data symbols with the Gray code shown in Fig. 5.8. Letting Pb denote the
probability of bit error, it follows that

PŒc� D .1 � Pb/
2 (5.72)
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and

PM D 1 � .1 � Pb/
2: (5.73)

Comparing (5.73) with (5.70), observe that

Pb D Q
�p

s

�

: (5.74)

QPSK transmits 2 bits/symbol so the symbol energy is Eh D 2Eb, where Eb is the bit energy. Since 
s D 2
b, the probability
of bit error is

Pb.
b/ D Q
�p

2
b

�

: (5.75)

Notice that the bit error rate performances of QPSK and BPSK are identical. Finally, since OQPSK is identical to QPSK
with the exception that the in-phase and quadrature branches are offset by Tb D T=2 seconds, the bit error rate performance
of OQPSK is identical to that of QPSK and BPSK as well.

5.4.3 Error Probability of M-PSK

To derive the error probability of M-PSK consider, for example, the 8-PSK signal constellation and associated decision
regions shown in Fig. 5.9. Once again data bits are mapped onto data symbols by using a Gray code. Suppose that the
message vector Qs1 D

p
2Eh is transmitted. The received signal vector is

Qr D ˛ej� Qs1 C Qn: (5.76)

Since the error probability is invariant to the angle rotation �, it is possible to arbitrarily set � D 0 so that

Qr D ˛Qs1 C Qn
D ˛

p

2Eh C Qn: (5.77)
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Fig. 5.9 Complex signal-space diagram for 8-PSK along with the associated decision regions
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It follows that Qr D QrI C jQrQ is a complex Gaussian random variable with pdf

pQr.Qr/ D
1

�No

exp

�

� 1
No

ˇ
ˇ
ˇQr � ˛

p

2Eh

ˇ
ˇ
ˇ

2
�

: (5.78)

Since Qs1 was transmitted, the probability of correct symbol reception with minimum distance decisions is the probability that
the received vector Qr falls in the “pie-shaped” region containing Qs1. This is equivalent to the received angle� D Tan�1ŒQrQ=QrI �

falling in the interval Œ��=8; �=8�.
To find the pdf of the angle �, first define the random variables

R D
q

Qr2I C Qr2Q ; � D Tan�1 �QrQ=QrI

�

(5.79)

such that

QrI D R cos� ; QrQ D R sin�: (5.80)

Then by using a bivariate transformation of random variables as shown in Appendix A, the joint pdf of R and � can be
obtained as

pR;�.r; �/ D
r

�No

e� 1
No
.r2�2˛

p
2Ehr cos �C2˛2E2h/; r � 0;�� � � � �: (5.81)

Since only the phase � is of interest, the marginal pdf of � is obtained as

p�.�/ D
Z 1

0

pR;�.r; �/dr (5.82)

D 1

2�
e�
s sin2 �

Z 1

0

xe.x�p
2
s cos �/

2
=2dx; (5.83)

where 
s D ˛2Eh=No is the received symbol energy-to-noise ratio. The probability of symbol error, PM , is just the probability
that � falls outside the region Œ��=M; �=M�. Thus

PM.
s/ D 1 �
Z �=M

��=M

p.�/d�: (5.84)

Unfortunately, a closed form expression for this integral does not exist, except for the cases M D 2; 4 which were considered
earlier.

5.4.4 Error Probability with Rayleigh Fading

When the channel experiences fading, the error probability must be averaged over the fading distribution. For example, if
the channel is Rayleigh faded, then ˛ is a Rayleigh random variable and the squared-envelope ˛2 is an exponential random
variable at any given time, as discussed in Sect. 2.1.3.1. It follows that the received bit and symbol-energy-to-noise ratios 
b

and 
s in (5.67) and (5.71), respectively, have the exponential pdfs

p
b
.x/ D 1

N
b

e�x= N
b ; x � 0 (5.85)

and

p
s
.x/ D 1

N
s

e�x= N
s ; x � 0; (5.86)



5.4 Error Probability of PSK 247

0.0 5.0 10.0 15.0 20.0

γ
−

av (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
b

no fading

flat Rayleigh fading

Fig. 5.10 Bit error probability for BPSK and QPSK for a slow flat Rayleigh fading channel with AWGN

where N
b and N
s are the average received bit and symbol energy-to-noise ratios, respectively. Since there are log2M bits per
modulated symbol, it also follows that 
s D 
blog2M and N
s D N
blog2M. Corresponding expressions for the distribution of

b and 
s can be obtained in a similar fashion for other types of fading, such as Ricean and Nakagami fading.

For BPSK and QPSK, the probability of bit error averaged over the distribution of the received bit energy-to-noise ratio
in (5.85) is

Pb D
Z 1

0

Q.
p
2x/p
b

.x/dx

D 1

2

 

1 �
s

N
b

1C N
b

!

(5.87)

� 1

4 N
b

for N
b � 1:

The BPSK and QPSK bit error probability is plotted in Fig. 5.10 for an AWGN channel and a Rayleigh fading channel.
Observe that Rayleigh fading converts an exponential dependency of the bit error probability on the average received bit
energy-to-noise ratio into an inverse linear one. This behavior with flat Rayleigh fading will be observed for all types of
modulation, and it results in a huge loss in performance unless appropriate countermeasures such as diversity and coding are
used. For M-PSK, the average symbol error probability is

PM D
Z 1

0

PM.x/p
s
.x/dx (5.88)

where PM.x/ is given by (5.84) and 
s is given by (5.86). Although no closed form expression exists, numerical results will
show that the bit error probability depends inversely on the average received bit energy-to-noise ratio N
b. Recall that with
Gray coding the bit error probability is approximately Pb � PM=log2M.
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5.4.5 Differential PSK

The received carrier phase for PSK signals is

�k D
2�

M
xk C �; (5.89)

where � is the random phase due to the channel. The receiver corrects for the phase � by multiplying the received complex
envelope by e�j� as shown in (5.31). However, in practice this operation is not quite that simple, because the symmetries in
the signal constellation create phase ambiguity. In particular, any channel induced phase of the form � C 2k�=M, where k

an integer, will lead to exactly the same set of received carrier phases. While the receiver can use a phased locked loop to
recover the received carrier phase, there will remain a phase ambiguity which is a multiple of 2�=M. This phase ambiguity
must be resolved if the information is to be recovered correctly.

Differential encoding is one of the most popular methods for resolving phase ambiguity, where information is transmitted
in the carrier phase differences between successive baud intervals rather than the absolute carrier phases. Differential
encoding of PSK signals is done as follows. The information sequence fxkg; xk 2 f0; 1; : : :M � 1g is differentially encoded
into a new sequence fdkg according to

dk D xk ˚ xk�1; (5.90)

where ˚ denotes modulo-M addition. Then the sequence fdkg is transmitted in the absolute carrier phase according to

�k D
2�

M
dk: (5.91)

After carrier recovery, the received carrier phase is

Q�k D
2�

M
dk C

2�`

M
; (5.92)

where the additional term 2�`=M, ` an integer, represents the phase ambiguity. The receiver computes the differential phase

Q�k � Q�k�1 modulo 2� D 2�

M
.dk � dk�1/ modulo 2�

D 2�

M
.dk 
 dk�1/

D 2�

M
xk (5.93)

where 
 denotes modulo-M subtraction. Hence, the data sequence fxkg can be recovered regardless of the phase ambiguity.
In the presence of AWGN noise, the receiver must form estimates O�k of the received carrier phases Q�k. However, the noise

will cause errors in these estimates and occasionally O�k ¤ Q�k. Note that an incorrect phase estimate O�k causes the decisions
for both xk and xk�1 to be in error, assuming that the phase estimates O�k�1 and O�kC1 are both correct. Hence, at high signal-to-
noise ratios where errors occur infrequently, the bit error probability of Differential PSK (DPSK) is roughly two times that
of PSK.

5.5 Error Probability of PAM and QAM

5.5.1 Error Probability of M-PAM

Consider the Gray coded 8-PAM system signal constellation shown in Fig. 5.11. For the M � 2 inner points of the signal
constellation, the probability of symbol error is
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Pi D 2Q

�
2˛2Eh

No

�

: (5.94)

Likewise, for the 2 outer points of the signal constellation, the probability of symbol error is

Po D Q

0

@

s

2˛2Eh

No

1

A : (5.95)

Assuming all points in the signal constellation are used with equal probability, the overall probability of symbol error is

PM D
M � 2

M
Pi C

2

M
Po

D 2
�

1 � 1

M

�

Q

0

@

s

2˛2Eh

No

1

A : (5.96)

To proceed further, Eh must be related to the average symbol energy. Since

Qsm D
p

2Eh.2m � 1 �M/ ; m D 1; : : : ;M (5.97)

the energy in Qsm is

Em D
1

2
Qs2m D Eh.2m � 1 �M/2: (5.98)

The average energy is

Eav D Eh

1

M

M
X

mD1
.2m � 1 �M/2

D Eh

1

M

 

4

M
X

mD1
m2 � 4.M C 1/

M
X

mD1
mCM.M C 1/2

!

: (5.99)

Using the identities

n
X

kD1
k D n.nC 1/

2
;

n
X

kD1
k2 D n.nC 1/.2nC 1/

6
(5.100)

and simplifying gives the result

Eav D Eh

M2 � 1
3

: (5.101)
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Hence, from (5.96)

PM.
s/ D 2
�

1 � 1

M

�

Q

 r

6

M2 � 1
s

!

; (5.102)

where


s D
˛2Eav

No

(5.103)

is the average symbol energy-to-noise ratio. Note that in this case, the “average” is over the points in the signal constellation.
Since 
s D .log2M/
b,

PM.
b/ D 2
�

1 � 1

M

�

Q

 r

6.log2M/

M2 � 1 
b

!

: (5.104)

5.5.2 Error Probability of M-QAM

Consider an M-QAM system having a square constellation of size M D 4m for some integer m. Such an M-QAM system can
be viewed as two

p
M-PAM systems in quadrature, each allocated one-half the power of the M-QAM system. For example,

the Gray coded 16-QAM system in Fig. 5.12 can be treated as two independent Gray coded 4-PAM systems in quadrature,
each operating with half the power of the 16-QAM system. From (5.102), the symbol error probability for each

p
M-PAM

system is

Pp
M
D 2

�

1 � 1p
M

�

Q

 r

6

M � 1

s

2

!

; (5.105)

where 
s is the average symbol energy-to-noise ratio of the M-QAM system. Finally, the probability of correct symbol
reception in the M-QAM system is

PŒc� D .1 � Pp
M
/2 (5.106)
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Fig. 5.12 Complex signal-space diagram for 16-QAM constellation
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Fig. 5.13 Bit error probability for M-QAM on an AWGN channel and a Rayleigh fading channel with AWGN

and the probability of symbol error is

PM.
s/ D 1 � .1 � Pp
M
/2: (5.107)

For other types of M-QAM constellations, such as those in Figs. 4.7 and 4.8, the error probability can be obtained by defining
convex decision regions and using the approach suggested in Sect. 5.3.

5.5.2.1 Error Probability with Rayleigh Fading

If the channel is Rayleigh faded, then 
s has the exponential pdf in (5.86). It follows that the average symbol error
probability is

PM D
Z 1

0

PM.x/p
s
.x/dx: (5.108)

Figure 5.13 plots the (approximate) bit error probability Pb � PM=log2M against the average received bit energy-to-noise
ratio, N
b D N
s=log2M, for several values of M. Once again, Rayleigh fading converts an exponential dependency of the
bit error probability on the average received bit energy-to-noise ratio into an inverse linear one. Finally, notice that the N
b

required to achieve a given bit error probability increases with the alphabet size M. However, the bandwidth efficiency also
increases with M, since there are log2M bits per modulated symbol.

5.6 Error Probability of Orthogonal Signals

5.6.1 Orthogonal Signals

Consider the M-ary orthogonal signal set

Qsi D
p

2Ehem; m D 1; : : : ;M;

where em is a length-M unit basis vector with a “1” in the mth coordinate. If the signal Qs1 is transmitted, then the received
vector is
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Qr D .g
p

2Eh C Qn1; Qn2; : : : ; QnM/; (5.109)

where the Qni are independent zero-mean complex Gaussian random variables with variance No. The ML receiver computes
the M decision variables

�.Qsm/ D Re
˚

Qr � g�Qs�
m




; m D 1; : : : ;M; (5.110)

and decides in favor of the signal having the largest �.Qsm/. It follows that

�.Qs1/ D 2˛2Eh C QnI;1˛
p

2Eh

�.Qsm/ D QnI;m˛
p

2Eh; m D 2; : : : ;M; (5.111)

where the phase rotation on the noise samples has been ignored due to their circular symmetry. The �.Qsi/; i D 1; : : : ;M, are
independent Gaussian random variables with variance 2˛2ENo; the mean of �.Qs1/ is 2˛2Eh while the �.Qsm/;m ¤ 1, have
zero mean. The probability of correct symbol decision conditioned on �.Qs1/ D x is the probability that all the �.Qsm/;m ¤ 1
are less than x. This is just

PŒcj�.Qs0/ D x� D
 

ˆ

 

x
p

2˛2EhNo

!!M�1

: (5.112)

Hence,

PŒc� D
Z 1

�1

 

ˆ

 

x
p

2˛2EhNo

!!M�1
1

p

4�˛2EhNo

exp

�

� .x � 2˛
2Eh/

2

4˛2EhNo

�

dx: (5.113)

Now let y D .x � 2˛2Eh/=
p

2˛2EhNo. Then

PŒc� D
Z 1

�1

�

ˆ
�

yC
p

2
s

��M�1 1p
2�

e�y2=2dx; (5.114)

where


s D
˛2Eh

No

: (5.115)

Finally, the probability of symbol error is

PM D 1 � PŒc�: (5.116)

An alternate expression for the error probability can be derived by first conditioning on the event that one of the M � 1
decision variables �.Qsm/;m ¤ 1 is the largest. This gives

PM D .M � 1/
Z 1

�1
ˆ

 

x � 2˛2Eh
p

2˛2EhNo

! 

ˆ

 

x
p

2˛2EhNo

!!M�2
1

p

4�˛2EhNo

exp

�

� x2

4˛2EhNo

�

dx: (5.117)

Now let y D x=
p

2˛2EhNo. Then

PM D .M � 1/
Z 1

�1
ˆ
�

y �
p

2
s

�

.ˆ.y//M�2 1p
2�

e�y2=2dx: (5.118)
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For orthogonal signals 
s D 
blog2M and the bit error probability is given by (5.56). Hence,

Pb D
M

2

Z 1

�1
ˆ
�

y �
p

2
blog2M
�

.ˆ.y//M�2 1p
2�

e�y2=2dx: (5.119)

If the channel is Rayleigh faded, then 
b has the exponential pdf in (5.85), and the average bit error probability can be
calculated as

Pb D
Z 1

0

Pb.x/p
b
.x/dx: (5.120)

5.6.2 Biorthogonal Signals

Consider the biorthogonal signal set

Qsi D
� p

2Ehei ; i D 1; : : : ;M=2
�Qsi�M=2 ; i D M=2C 1; : : : ;M � 1 : (5.121)

Now suppose that s1 is transmitted. The receiver computes the M=2 decision variables

�.Qsm/ D Re
˚

Qr � g�Qs�
m




; m D 1; : : : ;M=2; (5.122)

and chooses the one having the largest magnitude. The sign of �.Qsm/ is used to decide whether Qsm or QsM=2Cm D �Qsm was
sent. As before, the �.Qsi/; i D 1; : : : ;M=2, are independent Gaussian random variables with variance 2˛2ENo; the mean of
�.Qs1/ is 2˛2Eh while the �.Qsm/;m D 2; : : : ;M=2, have zero mean. The probability of correct decision is the probability that
�.Qs1/ > 0 and j�.Qsm/j < �.Qs1/;m D 2; : : : ;M=2. Conditioned on �.Qs1/ D x, x > 0,

P Œj�.Qsm/j < x� D ˆ
 

x
p

2˛2EhNo

!

�ˆ
 

� x
p

2˛2EhNo

!

: (5.123)

Hence,

PŒc� D
Z 1

0

 

ˆ

 

x
p

2˛2EhNo

!

�ˆ
 

� x
p

2˛2EhNo

!!M=2�1
1

p

4�˛2EhNo

exp

�

� .x � 2˛
2Eh/

2

4˛2EhNo

�

dx: (5.124)

Now let y D .x � 2˛2Eh/=
p

2˛2EhNo. Then

PŒc� D
Z 1

�p
2
s

�

ˆ
�

yC
p

2
s

�

�ˆ
�

�y �
p

2
s

��M=2�1 1p
2�

e�y2=2dy: (5.125)

Finally, PM D 1 � PŒc�. For biorthogonal signals 
s D 
blog2M. However, the bit error probability is not given by (5.56),
because when symbol errors occur the incorrect symbols do not occur with equal probability.

5.7 Error Probability of OFDM

The OFDM baseband demodulator is usually implemented by using a fast Fourier transform (FFT), as discussed in Sect. 4.6.
Following the development in Sect. 4.6, suppose that the discrete-time sequence Xg

n D fXg
n;mgNCG�1

mD0 is passed through a
balanced pair of digital-to-analog converters (DACs), as shown in Fig. 4.14, and the resulting complex envelope is transmitted
over a quasi-static flat fading channel with complex gain g. The quasi-static assumption means that the channel remains static
over an OFDM symbol, but can vary from one OFDM symbol to the next. For flat fading channels, the cyclic guard interval
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Fig. 5.14 Block diagram of OFDM receiver

is not really necessary, but is included here for simplicity. The receiver uses a quadrature demodulator to extract the received
complex envelope Qr.t/ D QrI.t/C jQrQ.t/. Suppose that the quadrature components QrI.t/ and QrQ.t/ are each passed through an
ideal anti-aliasing filter (ideal low-pass filter) having a cutoff frequency 1=.2Tg

s / followed by an analog-to-digital converter
(ADC) as shown in Fig. 5.14. This produces the received complex-valued sample sequence Rg

n D fRg
n;mgNCG�1

mD0 , where

Rg
n;m D gXg

n;m C Qnn;m; (5.126)

g D ˛ej� is the complex channel gain, and the Qnn;m are the complex-valued Gaussian noise samples. For an ideal anti-
aliasing filter having a cutoff frequency 1=.2Tg

s /, the Qnn;m are independent zero-mean complex Gaussian random variables
with variance �2 D 1

2
EŒjQnn;mj2� D No=Tg

s , where Tg
s D NTs=.N C G/.

Assuming a cyclic suffix as discussed in Sect. 4.6.1, the receiver first removes the guard interval according to

Rn;m D R
g

n;GC.m�G/N
; 0 � m � N � 1; (5.127)

where .m/N is the residue of m modulo N. Demodulation is then performed by computing the FFT on the block Rn D
fRn;mgN�1

mD0 to yield the vector zn D fzn;kgN�1
kD0 of N decision variables

zn;k D
1

N

N�1
X

mD0
Rn;me� j2�km

N

D gAxn;k C �n;k ; k D 0; : : : ;N � 1; (5.128)

where A D
p

2Eh=T , T D .N C G/Tg
s , and the noise terms are given by

�n;k D
1

N

N�1
X

mD0
Qnn;me� j2�km

N ; k D 0; : : : ;N � 1: (5.129)

It can be shown that the �n;k are zero-mean complex Gaussian random variables with covariance

�j;k D
1

2
EŒ�n;j�

�
n;k� D

No

NT
g
s

ıjk: (5.130)

Hence, the zn;k are independent Gaussian random variables with mean g
p

2Eh=Txn;k and variance No=NTg
s . To be consistent

with our earlier results for PSK and QAM signals, the zn;k can be multiplied for convenience by the scalar
p

NT
g
s . Such

scaling gives

Qzn;k D g
p

2EhN=.N C G/xn;k C Q�n;k; (5.131)
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where the Q�n;k are i.i.d. zero-mean Gaussian random variables with variance No. Notice that
p

2EhN=.N C G/xn;k D Qsn;k is
equal to the complex signal vector that is transmitted on the ith sub-carrier, where the term N=.NCG/ represents the loss in
effective symbol energy due to the insertion of the cyclic guard interval. For each of the Qzn;k, the receiver decides in favor of
the signal vector Qsn;k that minimizes the squared Euclidean distance

�.Qsn;k/ D kQzn;k � gQsn;kk2 ; k D 0; : : : ;N � 1: (5.132)

Thus, for each OFDM block, N symbol decisions must be made, one for each of the N sub-carriers. This can be done in
either a serial fashion as in Fig. 5.14, or a parallel fashion. It is apparent from (5.131) that the probability of symbol error is
identical to that achieved with independent modulation on each of the sub-carriers. This is expected, because the sub-carriers
are mutually orthogonal in time.

5.7.1 Interchannel Interference

The above analysis assumes that the complex channel gain g remains constant over the OFDM symbol duration T D NTs D
.N C G/Tg

s . However, as the block size N increases and/or the maximum Doppler frequency increases for a fixed data rate
Rs D 1=Ts, this assumption becomes invalid. The effect channel time variations on the OFDM link performance are now
investigated. Although our analysis will be undertaken for flat fading channels, a similar analysis will apply to frequency
selective channels provided that G � L. It will be shown that variations in the complex channel gain fgkgN�1

kD0 over the duration
of an OFDM symbol cause interchannel interference (ICI) due to a loss of sub-channel orthogonality. The ICI will be shown
to behave like additional AWGN that results in an error floor at high signal-to-noise ratios.

To isolate the Doppler effects, AWGN is ignored. The received discrete-time sequence after removal of the guard
interval is

Rn;m D gGC.m�G/N Xn;m: (5.133)

The vector zn D fzn;igN�1
iD0 at the output of the FFT baseband demodulator is

zn;i D
p

2Eh=T

N�1
X

mD0
xn;mH.m � i/; (5.134)

where

H.m � i/ D 1

N

N�1
X

kD0
gGC.k�G/N e

j2�
N
.m�i/k ; 0 � i � N � 1: (5.135)

To highlight the effect of channel time variations, (5.134) can be rewritten as

zn;i D
p

2Eh=TH.0/xn;i C cn;i; (5.136)

where

cn;i D
p

2Eh=T

N�1
X

mD0
m¤i

xn;mH.m � i/: (5.137)

Note that H.0/ is the effective complex channel gain, while cn;i is an additive noise term due to the ICI. Note that if the
channel is time-invariant, then gk D g and zn;i D g

p

2Eh=Txn;i as before.
If N is sufficiently large in (5.137), the central limit theorem can be invoked and the cn;i; i D 0; : : : ;N � 1 can be treated

as complex Gaussian random variables that are characterized by their means, variances, and correlations. Since the xn;m and
H.m � i/ are independent random variables and EŒxn;m� D 0, it follows that EŒcl� D 0. Since 2Eh � 12EŒxn;kx�

n;m� D Eavıkm,
where Eav is the average symbol energy, the autocorrelation of the cn;i is
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�cc.r/ D
1

2
EŒcn;ic

�
n;iCr� D

Eav

T

X

m¤i;iCr

EŒH.m � i/H�.m � i � r/�: (5.138)

Proceeding further requires a model for the time correlation of the channel. If the normalization EŒjgkj2� D 1 is
assumed and Clarke’s 2-D isotropic scattering model is assumed with an isotropic receiver antenna (see Chap. 2), then
the autocorrelation becomes

�cc.r/ D
Eav

T
ır �

Eav

TN2

N�1
X

kD0

N�1
X

k0D0
J0.2� fmTg

s .k � k0//
�

ej 2�k0r
N C .1 � ır/e

j 2�kr
N

�

; (5.139)

where fm is the maximum Doppler frequency.
For symbol-by-symbol detection, it is sufficient to examine the variance of the ICI term

�cc.0/ D
Eav

T
� Eav

TN2

 

N C 2
N�1
X

iD1
.N � i/J0.2� fmTg

s i/

!

; (5.140)

where the fact that J0. � / is an even function has been used. Note that variance of the cn;i are only a function of Eav, N, Ts,
and fm, but is otherwise independent of the signal constellation. Figure 5.15 plots the signal-to-interference ratio, defined as

SIR
4D Eav=T

�cc.0/
; (5.141)

as a function of fmTg
s for several values of N. Observe that the SIR decreases as both the normalized Doppler maximum

frequency fmTg
s and the block size N increase.

Suppose that the data symbols xn;k are chosen from a 16-QAM alphabet. From Sect. 5.5, the symbol error probability for
16-QAM is

PM D 3Q

 r

1

5

s

! 

1 � 3
4

Q

 r

1

5

s

!!

; (5.142)

where 
s is the average received symbol energy-to-noise ratio. With Rayleigh fading, the symbol error probability is obtained
by averaging (5.142) over the pdf in (5.86). Assuming validity of the Gaussian approximation for the ICI, the error floor due
to ICI can be obtained by substituting the SIR in (5.141) for N
s. The results are shown in Fig. 5.16. Simulation results are also
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Fig. 5.15 Signal-to-interference ratio of OFDM due to ICI
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Fig. 5.17 Bit error probability for 16-QAM OFDM on a Rayleigh fading channel with various Doppler frequencies

shown in Fig. 5.16 corroborating the Gaussian approximation for the ICI. Figure 5.17 shows the bit error rate performance of
OFDM with N D 512 sub-carriers, a 16-QAM signal constellation, and a 20 Mbps bit rate for various Doppler frequencies.
At low N
b, additive noise dominates the performance so that the extra noise due to ICI has little effect. However, at large N
b

ICI dominates the performance and causes an error floor.
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5.8 Differential Detection

Differentially encoded PSK (DPSK) can also be detected by using differentially coherent detection, where the receiver
estimates the change in the excess phase of the received carrier between two successive baud intervals. Since DPSK transmits
data in the differential excess carrier phase from one baud interval to the next, the basic mechanism for differential detection
is obvious. For slow fading channels, the phase difference between waveforms received in two successive baud intervals will
be independent of the absolute carrier phase. However for fast fading channels, the excess carrier phase will change over two
successive baud intervals due to the channel. This leads to an error floor that increases with the fading rate.

5.8.1 Binary DPSK

Consider binary DPSK. Let �n denote the absolute transmitted excess carrier phase during the baud interval nT � t �
.nC 1/T , and let ��n D �n � �n�1 denote the differential excess carrier phase, where

��n D
�

0 ; xn D C1
� ; xn D �1

: (5.143)

The DPSK complex envelope is

Qs.t/ D A
X

n

ha.t � nT/ej�n (5.144)

and the received complex envelope is

Qr.t/ D ˛ej�A
X

n

ha.t � nT/ej�n C Qn.t/; (5.145)

where g D ˛ej� is the complex channel gain. It is assumed that g changes slowly enough to remain essentially constant over
two successive baud intervals.

A block diagram of a differentially coherent baseband demodulator for binary DPSK is shown in Fig. 5.18. During the
time interval nT � t � .nC 1/T , the values of Xn, Xnd, Yn, and Ynd in Fig. 5.18 are

Xn D 2˛Eh cos.�n C �/C QnI

Xnd D 2˛Eh cos.�n�1 C �/C QnI;d

Yn D 2˛Eh sin.�n C �/C QnQ

Ynd D 2˛Eh sin.�n�1 C �/C QnQ;d; (5.146)
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Fig. 5.18 Differentially coherent receiver for binary DPSK
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where

Eh D
A2

2

Z T

0

h2a.t/dt (5.147)

and the noise terms are

QnI D A

Z .nC1/T

nT

QnI.t/ha.t/dt

QnI;d D A

Z nT

.n�1/T
QnI.t/ha.t/dt

QnQ D A

Z .nC1/T

nT

QnQ.t/ha.t/dt

QnQ;d D A

Z nT

.n�1/T
QnQ.t/ha.t/dt: (5.148)

One can show that QnI , QnI;d, QnQ, and QnQ;d are independent identically distributed zero-mean Gaussian random variables with
variance 2EhNo.

In the absence of noise, it is easy to verify that the input to the decision device is Un D 4˛2E2hxn. Hence, the sign of Un is
equal to the sign of xn and correct decisions are made. When noise is present, Un is a random variable, and to determine the
probability of error the pdf of Un is required. To determine the pdf of the Un, it is convenient to express Un as

Un D Re
˚

ZnZ�
nd




D 1

2

�

ZnZ�
nd C Z�

n Znd

�

(5.149)

where

Zn D Xn C jYn (5.150)

Znd D Xnd C jYnd: (5.151)

It can be shown by using characteristic functions that Un has the differential form Un D Wn � Yn, where Wn and Yn are
non-central and central chi-square random variables with respective densities [308]

fWn
.w/ D 1

2EhNo

exp

�

� .wxn C 4˛2E2h/
2EhNo

�

I0

0

B
@

2

q

wxn˛2E
2
h

EhNo

1

C
A ; wxn � 0 (5.152)

fYn
.y/ D 1

2EhNo

exp

�

� yxn

2EhNo

�

; yxn � 0; (5.153)

where I0.x/ is the zero-order modified Bessel function of the first kind defined by

I0.x/ D
1

2�

Z 2�

0

e�x cos �d�: (5.154)

By defining the auxiliary random variable Vn D Wn and using a bivariate transformation of random variables, the pdf of
Un is

fUn
.u/ D

Z

RUnVn

fWn
.v/fYn

.v � u/dv

D

8

ˆ̂

<̂

ˆ̂

:̂

1
4EhNo

exp
n

xnu�2˛2E2h
2EhNo

o

; �1 < xnu < 0

1
4EhNo

exp
n

xnu�2˛2E2h
2EhNo

o

Q

�q
2˛2Eh

No
;
q

2xnu

EhNo

�

; 0 < xnu <1
;

(5.155)
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where Q.a; b/ is the Marcum Q function, defined by

Q.a; b/ D 1 �
Z b

0

ze� z2Ca2

2 I0 .za/ dz: (5.156)

From (5.155), the bit error probability of DPSK with differential detection is

Pb.
b/ D
Z 1

0

1

4EhNo

exp

�

�uC 2˛2E2h
2EhNo

�

du D 1

2
e�
b ; (5.157)

where 
b D ˛2Eh=No is the received bit energy-to-noise ratio. For a slow Rayleigh fading channel, ˛ is Rayleigh distributed
so the received bit energy-to-noise ratio, 
b, has the exponential pdf in (5.85). It follows that the average bit error probability
with slow Rayleigh fading is

Pb D
Z 1

0

Pb.x/p
b
.x/dx D 1

2.1C N
b/
� 1

2 N
b

: (5.158)

Note that the error probability has an inverse linear dependency on N
b.

5.8.2 Differential Detection of �=4-DQPSK

Differential detection can be used with �=4-DQPSK as well. Once again the complex envelopes of the transmitted and
received signals are given by (5.144) and (5.145), respectively. However, with �=4-DQPSK, ��n D �xn=4 where xn 2
f˙1;˙3g, so that one of the four possible differential phases must be detected. A block diagram of a differentially coherent
baseband demodulator for �=4-DQPSK is shown in Fig. 5.19. The values of Xn, Xnd, Yn, and Ynd are again given by (5.146).
The detector outputs are

Un D Re
˚

ZnZ�
nd




D 1

2

�

ZnZ�
nd C Z�

n Znd

�

(5.159)

Vn D Im
˚

ZnZ�
nd




D 1

j2

�

ZnZ�
nd � Z�

n Znd

�

; (5.160)

where Zn and Znd are defined in (5.150) and (5.151), respectively. In the absence of noise, it can be verified that the detector
outputs are

Un D �a; Vn D �a; for xn D �3
Un D a; Vn D �a; for xn D �1
Un D a; Vn D a; for xn D C1
Un D �a; Vn D a; for xn D C3 (5.161)
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Fig. 5.19 Differentially coherent receiver for �=4-DQPSK
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where a D 2
p
2˛2E2h. The bit error probability for �=4-DQPSK with Gray coding is somewhat complicated to derive and

omitted here, but can be expressed in terms of well-known functions [272]

Pb.
b/ D Q.a; b/ � 1
2

I0.ab/e� 1
2 .a

2Cb2/; (5.162)

where

a D
s

2
b

�

1 � 1p
2

�

(5.163)

b D
s

2
b

�

1C 1p
2

�

(5.164)

and 
b is the bit energy-to-noise ratio. Once again, if the channel is flat faded, then the bit error probability can be obtained
by averaging (numerically) over the distribution of 
b in (5.85).

5.9 Non-coherent Detection

If information is transmitted in the amplitude and/or frequency of a waveform, but not the phase, then a non-coherent
receiver can be used. Non-coherent receivers make no attempt to determine the carrier phase and are, therefore, easier to
implement than coherent receivers. Non-coherent receivers generally trade implementation complexity and robustness to
channel impairments, such as high Doppler conditions, for transmitter power and/or bandwidth.

Suppose that one of the M complex low-pass waveforms, Qsm.t/;m D 1; : : : ;M, say Qsi.t/, is transmitted on a flat fading
channel with AWGN. The received complex envelope is

Qr.t/ D gQsi.t/C Qn.t/; (5.165)

where g D ˛ej� is the channel gain that includes the random phase �, and Qn.t/ is the AWGN. By projecting Qr.t/ onto the
set of basis functions f'n.t/gNnD1 obtained through the Gram–Schimdt orthonormalization procedure, the received vector is
obtained as

Qr D gQsi C Qn; (5.166)

where the joint pdf of Qn is given in (5.13).
The maximum likelihood (ML) non-coherent detector does not require knowledge of the random excess received carrier

phase � in the decision process, and chooses the message vector Qsm that maximizes the joint conditional pdf p.Qrj˛; Qsm/:

choose Qsm if p.Qrj˛; Qsm/ � p.Qrj˛; Qs Om/ 8 Om ¤ m: (5.167)

Letting p.�/ denote the pdf of �,

p.Qrj˛; Qsm/ D E� Œp.Qrjg; Qsm/� D
Z 2�

0

p.Qrjg; Qsm/p.�/d�: (5.168)

Using the joint conditional pdf of p.Qrjg; Qsm/ in (5.20) yields

p.Qrjg; Qsm/ D
1

.2�No/N
exp

�

� 1

2No

kQr � gQsmk2
�

D 1

.2�No/N
exp

�

�kQrk
2 C 2˛2Em

2No

�

exp

�
1

No

RefQr � g�Qs�
mg
�

; (5.169)
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where, again, Em is the energy in the bandpass waveform sm.t/ corresponding to the signal vector Qsm. Next let Qr � Qs�
m D Xmej�m

so that

Qr � g�Qs�
m D g� Qr � Qs�

m D g�Xj�m
m D ˛Xmej.�m��/: (5.170)

Hence,

p.Qrjg; Qsm/ D
1

.2�No/N
exp

�

�kQrC 2˛
2Emk2

2No

�

exp

�
˛Xm

No

cos.�m � �/
�

: (5.171)

In the absence of any prior information, the random phase � is assumed to be uniformly distributed on Œ��; �/, resulting in

p.Qrj˛; Qsm/ D
1

.2�No/N
exp

�

�2˛
2Em C kQrk2
2No

�
1

2�

Z 2�

0

exp

�
˛Xm

No

cos.�m � �/
�

d�

D 1

.2�No/N
exp

�

�2˛
2Em C kQrk2
2No

�

I0

�
˛Xm

No

�

: (5.172)

Since the terms kQrk2 and .2�No/
N are independent of the choice of Qsm, the signal vector that maximizes p.Qrj˛; Qsm/ also

maximizes the decision metric

�1.sm/ D exp

�

�˛
2Em

No

�

I0

�
˛Xm

No

�

: (5.173)

If all message waveforms have equal energy, then considerable simplification will result. In this case, the ML receiver can
choose Qsm to maximize

�2.Qsm/ D I0

�
˛Xm

No

�

: (5.174)

However, I0.x/ increases monotonically with x. Therefore, the ML receiver can simply choose Qsm to maximize

�3.Qsm/ D Xm: (5.175)

From the above development, the structure of the ML non-coherent receiver is clear. The receiver first uses the quadrature
demodulator in Fig. 5.1 to extract the real and imaginary components of the complex envelope QrI.t/ and QrQ.t/. Then it
computes the received signal vector r using the correlator detector in Fig. 5.2 or matched filter detector in Fig. 5.3. For equal
energy messages, the decision variables Xm D jQr � Qs�

mj; m D 1; : : : ;M, are computed and the signal vector Qsm is chosen that
has the largest Xm. If the messages do not have equal energy, then the metric in (5.173) must be used instead. This will add
considerable complexity to the ML receiver, because the channel gain ˛ must be determined and the Bessel function I0.x/

must be calculated. Finally,

Xm D
�

Re2.Qr � Qs�
m/C Im2.Qr � Qs�

m/
�1=2

: (5.176)

This leads to the detector structure shown in Fig. 5.20, commonly known as a square-law detector. Note that the square-law
detector generates X2m; m D 1; : : : ;M rather than Xm; m D 1; : : : ;M. However, the choice of Qsm that maximizes X2m also
maximizes Xm.
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Fig. 5.20 Non-coherent
square-law detector
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5.9.1 Error Probability of M-ary Orthogonal Signals

Consider the case of M-ary orthogonal signals as discussed in Sect. 4.5. Assume without loss of generality that Qs1 is sent.
Then the received vector Qr D .Qr1; Qr2; : : : ; QrN/ has components

Qr1 D g
p
2EC Qn1

Qri D Qni ; i D 2; : : : ;M: (5.177)

Since the M-ary orthogonal signals have equal energy, the metric in (5.175) can be used. Then

X1 D jQr � Qs�
1 j

D j2EgC
p
2E Qn1j

D
ˇ
ˇ
ˇ2E˛ cos.�/C

p
2E QnI;1 C j

�

2E˛ sin.�/C
p
2E QnQ;1

�ˇ
ˇ
ˇ (5.178)

and

Xm D jQr � Qs�
mj

D j
p
2E Qnmj

D
ˇ
ˇ
ˇ

p
2E QnI;m C j

p
2E QnQ;m

ˇ
ˇ
ˇ ; m D 2; : : : ;M: (5.179)

The receiver will make a correct decision if

X1 > Xi ; 8 i ¤ 1: (5.180)

From Appendix A, X1 has the Rice distribution

pX1.x/ D
x

2ENo

exp

�

�x2 C 4˛2E2
4ENo

�

I0

�
˛x

No

�

; (5.181)
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while the Xi; i ¤ 0, are independent Rayleigh random variables with pdf

pXi
.x/ D x

2ENo

exp

�

� x2

4ENo

�

; i D 2; : : : ;M: (5.182)

The probability of correct symbol reception is

PŒc� D P ŒX2 < X1;X3 < X1; : : : ;XM < X1�

D
Z 1
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0
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2ENo
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�

� x2

4ENo

�
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�M�1
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D
Z 1

0

�

1 � exp

�

� y2

4ENo

��M�1
pX1.y/dy: (5.183)

Using the binomial expansion

.1 � x/n D
n
X

kD0

 

n

k

!

.�1/kxk

gives

PŒc� D
M�1
X

kD0
.�1/k

 

M � 1
k

!
Z 1

0

exp

�

� ky2

4ENo

�

pX1.y/dy: (5.184)

The integral in the above expression is

I D
Z 1

0

exp

�

� ky2

4ENo

�

pX1.y/dy

D
Z 1

0

exp

�

� ky2

4ENo

�
y

2ENo

exp

�

�y2 C 4˛2E2
4ENo

�

I0

�
˛y

No

�
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D
Z 1

0

y

2ENo

exp

�

� .kC 1/y
2 C 4˛2E2
4ENo

�

I0

�
˛y

No

�

dy: (5.185)

The trick is to manipulate the integrand of I into the product of a Ricean pdf and a term that does not depend on the variable
of integration y. This is accomplished by making the substitutions

N0
o D

2ENo

kC 1 E0 D E

.kC 1/ (5.186)

and solving the integral. This gives

I D 1

kC 1exp

�

�2k˛2E02

N0
o

�

D 1

kC 1exp

�

� k
s

.kC 1/

�

; (5.187)

where 
s D ˛2E=No is the symbol energy-to-noise ratio. Hence, the probability of correct symbol reception is

PŒc� D
M�1
X

kD0

.�1/k
�

M�1
k

�

kC 1 exp

�

� k
s

.kC 1/

�

(5.188)
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and the probability of symbol error is

PM D 1 � PŒc� D
M�1
X

kD1

.�1/kC1�M�1
k

�

kC 1 exp

�

� k
s

.kC 1/

�

: (5.189)

For orthogonal signals 
s D 
blog2M and the bit error probability is given by (5.56). Hence,

Pb.
b/ D
M

2.M � 1/

M�1
X

kD1

.�1/kC1�M�1
k

�

kC 1 exp

�

�k
blog2M

.kC 1/

�

: (5.190)

For Rayleigh fading channels, the error probability can be averaged over the distribution of 
b in (5.85). This gives the
following simple closed form for the average bit error probability

Pb D
M

2.M � 1/

M�1
X

kD1

.�1/kC1�M�1
k

�

1C kC k N
blog2M
: (5.191)

Once again, the error probability has an inverse linear dependency on N
b.

5.10 Detection of CPM Signals

CPM receivers can be categorized into three different types of detection schemes: coherent detection, differential detection,
and non-coherent detection. Furthermore, in each category there are two approaches: symbol-by-symbol detectors and
sequence estimators. Sequence estimators will be treated in the context of channel coding in Chap. 8. This section only
considers symbol-by-symbol CPM detectors. While there exist a large variety of coherent and non-coherent symbol-by-
symbol CPM detectors, we present two structures. Both receiver structures use multiple-symbol observation intervals to
detect partial response CPM signals, and both generate soft outputs making them well suited to systems that employ
convolutional, trellis, or Turbo coding.

Recall that the partial response CPM complex envelope during the time interval nT � t � .nC 1/T is, from (4.133),

Qs.t/ D Aej.�nC2�h
Pn

kDn�LC1 xnˇ.t�kT//; (5.192)

and the CPM state at time t D nT is defined by the L-tuple

Sn D .�n; xn�1; xn�2; � � � ; xn�LC1/: (5.193)

In the sequel, the CPM complex envelope during the time interval nT � t � .nC 1/T will also be denoted by Qs.Sn; xn; t/ to
emphasize the finite state nature of the signal. For a slow flat fading channel, the received signal is

Qr.t/ D gQs.t/C Qn.t/; (5.194)

where Qn.t/ is a zero-mean complex AWGN with psd No watts/Hz.

5.10.1 Coherent Detection and Error Probability of MSK and GMSK

MSK signals can be recovered using a variety of detection techniques. One method uses the linear representation of MSK,
where MSK is equivalent to OQASK with a half-sinusoid amplitude shaping function as described in (4.111)–(4.116). The
received complex envelope is

Qr.t/ D gQs.t/C Qn.t/; (5.195)



266 5 Detection of Known Signals in Noise

cos φ

cos φ

sinφ

sinφ

>
< 0 ?

>
< 0 ?

__πt
2T

cos ( )

π t__
2T

sin ( )

dt

-T

T

dt
0

2T

+

+

+ 

+ 

+ 
−

decisions

output

decision
device

(  )t

(  )t

r
I

r
Q

Fig. 5.21 Coherent detector for MSK signals

where g D ˛ej� . A coherent MSK receiver first removes the effect of the channel phase rotation according to

e�j� Qr.t/ D QrI.t/ cos.�/C QrQ.t/ sin.�/C j
�

QrQ.t/ cos.�/ � QrI.t/ sin.�/
�

D ˛QsI.t/C QnI.t/C j
�

˛QsQ.t/C QnQ.t/
�

; (5.196)

where the effect of the phase rotation on the noise Qn.t/ has been ignored due to its circular symmetry. Detection then proceeds
by processing the real and imaginary parts of e�j� Qr.t/ as orthogonal binary PAM streams. The resulting MSK detector is
shown in Fig. 5.21. Note that the source symbols on the in-phase and quadrature carrier components must be detected over
intervals of length 2T , the duration of the half-sinusoid amplitude shaping pulse ha.t/, and bit decisions are made every T

seconds. It follows that coherently detected MSK has the same bit error rate performance as QPSK, OQPSK, and BPSK.
By using the linearized representation of GMSK, LGMSK, in Sect. 4.8.3, replaces the half-sinusoid amplitude shaping

pulse in (4.8.3) with the LGMSK pulse in (4.157). This will create ISI that will degrade performance somewhat if a matched
filter with symbol-by-symbol decisions are used. For example, with BT D 0:25, the Eb=No degradation is roughly 0.75 dB in
AWGN [122]. The induced ISI can be mitigated by using a variety of channel equalization techniques for linear modulation
schemes as detailed in Chap. 7, such that the performance loss due to the Gaussian pulse shaping is negligible.

5.10.2 Coherent CPM Demodulator

A coherent CPM demodulator was proposed by Osborn and Luntz [252], and Schonhoff [295]. The decision metrics for
symbol xn are obtained by observing Qr.t/ over Np C 1 successive symbol intervals and generating decision metrics for all
MNpC1 possible symbol vectors xn D fxn;bng, where bn D fxnC1; � � � ; xnCNp

g. The ML metric for xn is proportional to the
conditional density p.Qr.t/jSn; xn;bn; g/ and is given by

�.Sn; xn;bn/ D �
nCNp
X

iDn

Z .iC1/T

iT

jQr.t/ � gQs.Si; xi; t/j2dt: (5.197)

The metrics for xn can be obtained by averaging (5.197) over the MNp possible values of bn and averaging over all possible
initial states Sn. This leads to the decision metric

�.xn/ D
X

Sn

X

bn

�.Sn; xn;bn/PŒbn�PŒSn� D
X

Sn

X

bn

�.Sn; xn;bn/ ; (5.198)
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where PŒbn� and PŒSn� are the probabilities of bn and Sn, respectively, and the last equality follows because all the bn are
equally likely, and all the Sn are equally likely, for equally likely data symbols. By using (5.198) a set of M metrics is
calculated for the M possible xn. The receiver makes the final decision by choosing the symbol having the largest decision
metric.

A simplified receiver that will yield almost the same performance uses the suboptimum decision metric [252, 295]

�.xn/ D max
Sn

max
bn

8

<

:
�

nCNp
X

iDn

Z .iC1/T

iT

jQr.t/ � gQs.Si; xi; t/j2dt

9

=

;
; (5.199)

which is also exactly the same as the decision metric proposed by Kerr and McLane for full response CPFSK [180]. Once
again, by using (5.199) a set of M decision metrics is calculated for the M possible xn and the receiver chooses the symbol
having the largest decision metric.

5.10.3 Non-coherent CPM Demodulator

A non-coherent receiver can be constructed by using a multiple-symbol observation interval similar to that suggested for the
coherent receiver described in the previous section [368]. After observing Qr.t/ over the N-symbol interval .n � n1/T � t �
.n C n2/T , where N D n1 C n2 C 1, the non-coherent CPM demodulator in [368] generates the following set of MNCL�2

conditional symbol metrics for each xn:

�.xn;bn/ D
ˇ
ˇ
ˇ
ˇ
ˇ

nCn2X

iDn�n1

Z .iC1/T

iT

Qr.t/Qs�.Si; xi; t/ dt

ˇ
ˇ
ˇ
ˇ
ˇ

2

; (5.200)

where bn D fxn�n1�LC1; � � � ; xn�1; xnC1; � � � ; xnCn2g is the “adjacent” symbol vector that excludes xn. Note that the phase
term �n�n1 in Sn�n1 does not affect the value of (5.200) and can, therefore, be assumed zero. A simple symbol metric can be
formed by choosing the largest among all possible �.xn;bn/, viz.,

�.xn/ D max
bn

ˇ
ˇ
ˇ
ˇ
ˇ

nCn2X

iDn�n1

Z .iC1/T

iT

Qr.t/Qs�.Si; xi; t/ dt

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (5.201)

The set of M symbol metrics so obtained is then used to make decisions on the transmitted symbols by selecting the symbol
with the largest symbol metric.

For N D 1 .n1 D n2 D 0/, the symbol metric in (5.201) is the same one used by the single-symbol receiver in [5] and, as
a result, the single-symbol receiver can be treated as a special case of the receiver presented here. In order to calculate the
metrics in an efficient recursive fashion, an approach similar to [304] can be followed to rewrite �.xn;bn/ as

�.xn;bn/ D
ˇ
ˇ
ˇ
ˇ
ˇ

nCn2X

iDn�n1

�iFi

ˇ
ˇ
ˇ
ˇ
ˇ

2

; (5.202)

where

�i D
Z .iC1/T

iT

Qr.t/Qs�.xi�LC1; � � � ; xi; t/ dt

Fi D e�j�hxi�L Fi�1I Fn�n1 D 1: (5.203)

The metric generator structure is shown in Fig. 5.22. Generally, the metric calculator requires ML matched filters
and generates MNCL�1 conditional symbol metrics �.xn;bn/. However, unlike the coherent receiver, the complexity is
independent of the modulation index h. Actually, since the term �n is not explicitly exploited in Sn, h is not even required to
be a rational number, i.e., the CPM waveform is not required to have a finite number of states. Finally, it is observed that the
complex channel gain g is not required and, therefore, the receiver complexity is greatly reduced.
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Problems

5.1. Derive the upper bound

Q.x/ � 1

2
e�x2=2 ; x � 0:

Hint: Note that 4Q2.x/ is the probability that a pair of independent zero mean, unit variance, Gaussian random variables u; v

lie within the shaded region of Fig. 5.23a. This probability is exceeded by the probability that u; v lies within the shaded
region of Fig. 5.23b.

5.2. Consider the receiver model shown in Fig. 5.24, consisting of a linear time-invariant filter hr.t/ followed by a sampler.
The input to the filter consists of a pulse ha.t/ of duration T corrupted by AWGN

Qr.t/ D ha.t/C Qn.t/ ; 0 � t � T:

The output of the filter is

Qy.t/ D p.t/C Qz.t/

where p.t/ D ha.t/ � hr.t/ and Qz.t/ D Qn.t/ � hr.t/, the filter output is sampled at time T to produce the sample y.T/ D
p.T/C Qz.T/. The signal-to-noise ratio at the output of the sampler is defined as

SNR D jp.T/j2

EŒjQz.T/j2� :

Find the filter hr.t/, and corresponding transfer function Hr.f /, that will maximize the SNR.
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Fig. 5.24 Figure for Problem 5.2 ha(t)
hr(t)+

r(t)

n(t)

y(t) y(T)

T

5.3. Consider the pulse

ha.t/ D
�

sin
�
4� t
T

�

; 0 � t � T

0 ; otherwise
:

(a) Determine the impulse response of the matched filter for this signal.
(b) Sketch the waveform y.t/ at the output of the matched filter, and determine the output value at time t D T .
(c) Sketch the waveform y.t/ at the output of a correlator that correlates ha.t/ with itself, and determine the output value at

time t D T .

5.4. Derive the expression for the symbol error probability of
p

M-PAM in (5.102).

5.5. Show that the symbol error probability for coherent M-ary PSK is bounded by p � PM � 2p, where

p D Q
�p

2
s sin
�

M

�

and 
s is the symbol energy-to-noise ratio.

5.6. Suppose that BPSK signaling is used with coherent detection. The channel is affected by flat Rayleigh fading and log-
normal shadowing with a shadow standard deviation of �˝ dB. The composite squared-envelope has the probability density
in (2.371).

(a) Obtain an expression for the probability density function of the composite envelope.
(b) Find an expression for the probability of bit error as a function of the average received bit energy-to-noise ratio.
(c) Plot your results in part (b) for different values of �˝ .

5.7 (Computer Exercise). This problem requires that you first complete the computer exercise in Problem 2.46, wherein
you will construct a Ricean fading simulator. The objective of this question is to evaluate the performance of BPSK signaling
on a Ricean fading channel through computer simulation.

Suppose that one of the two possible signal vectors Qs0 D �Qs1 D
p
2Eh are sent where Eh D Eb is the transmitted bit

energy. Assuming ideal coherent detection, the received signal vector is

Qr D ˛Qsi C Qn;

where ˛ is a Ricean distributed random variable and Qn is a zero-mean complex Gaussian random variable with variance No.
For a given ˛, the probability of bit error is

Pb.
b/ D Q
�p

2
b

�

;

where 
b D ˛2Eb=No. The probability of bit error with Ricean fading is

Pb D
Z 1

0

Q
�p

2
b

�

p.
b/d
b:

(a) Evaluate the bit error probability by using computer simulation, where ˛ is generated by the Ricean fading simulator
that you developed in Problem 2.46. Assume that the value of ˛ stays constant for a bit duration, i.e., update your fading
simulator every T seconds, where T is the bit duration. Assume fmT D 0:1.
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(b) Plot the simulated bit error probability, Pb, against the average received bit energy-to-noise ratio N
b D EŒ˛2�Eb=No.
Show your results for 0:5 < Pb < 10�3 and for Rice factors K D 0; 4; 7, and 16. Note: To adjust N
b you will need to

adjust the value of ˝p in your fading envelope generator.

5.8. Consider a non-orthogonal coherent binary FSK system with the bandpass waveforms

s1.t/ D A cos.2� fct/ ; 0 � t � T

s2.t/ D A cos.2�.fc C�f /t/ ; 0 � t � T

and assume that fcT � 1.

(a) Show that the correlation between the bandpass waveforms is given by

� D 1

E

Z T

0

s1.t/s2.t/dt D sinc.2�f T/

where E is the energy in the waveforms.
(b) What is the value of �f that minimizes the probability of symbol error?
(c) For the value of �f obtained in part (b), determine the increase in the received bit energy-to-noise ratio, 
b, required so

that this coherent FSK system has the same bit error probability as a coherent binary PSK system.

5.9. OFDM systems are known to be resilient to timing errors. Consider the following OFDM waveform with a cyclic prefix

Qsg.t/ D A
X

n

b.t � nTg; xn/;

where

b.t; xn/ D u˛gT.tC ˛gT/

N�1
X

kD0
xn;kej

2�k.tCT/
NTs C uT.t/

N�1
X

kD0
xn;kej 2�kt

NTs ;

and T D NTs and Tg D .1 C ˛g/T . Suppose the waveform Qsg.t/ is sampled every Ts seconds. For the nth OFDM symbol,
this yields the sample sequence fXn;mgN�1

mD0, where

Xn;m D Qs.�˛gT C nTg C mTs C�t/;

and �t is a timing offset. For the nth OFDM symbol an FFT is taken on the sample sequence fXn;mgN�1
mD0.

(a) Suppose that the timing offset�t lies in the interval .0; ˛gT/ such that the samples fXn;mgN�1
mD0 all belong to the nth OFDM

symbol. Determine the FFT coefficients.
(b) Now suppose that the timing offset�t lies outside the interval .0; ˛gT/, such that the samples fXn;mgN�1

mD0 do not all belong
to the nth OFDM symbol. Determine the FFT coefficients.

5.10. Consider the following OFDM waveform with a cyclic suffix and a carrier frequency offset �f :

Qsg.t/ D A
X

n

b.t � nTg; xn/;

where

b.t; xn/ D uT.t/

N�1
X

kD0
xn;kexp

�

j2�

�
k

NTs

C�f

�

t

�

Cu˛gT.t � T/

N�1
X

kD0
xn;kexp

�

j2�

�
k

NTs

C�f

�

t

�

;
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T D NTs and Tg D .1C ˛g/T . The waveform Qsg.t/ is sampled every Ts seconds. For the nth OFDM symbol, this yields the
sample sequence fXn;mgN�1

mD0, where

Xn;m D Qs.nTg C mTs/:

An FFT is taken on the sample sequence fXn;mgN�1
mD0.

Show that the FFT coefficients (in absence of noise) can be written as

Zn;i D FFTfXn;mg D �xn;i C ci;

where

� D A

(

sin
�

�N�f Ts

�

N sin
�

��f Ts

�

)

ej�.N�1/�f Ts

and

ci D A

N�1
X

mD0
m¤i

xn;mH.m; i/

is the random ICI term, where

H.m; i/ D
(

sin
�

�
�

m � iC N�f Ts

��

N sin
�

�
�

m � iC N�f Ts

�

=N
�

)

ej�. N�1
N /.m�iCN�f Ts/:

5.11. Suppose that the average bit energy-to-noise ratio, N
b, in a cell is uniformly distributed between 12 and 16 dB. Calculate
the average probability of bit error in the cell assuming that there is also Rayleigh fading, and binary DPSK signaling is used.

5.12. Consider the differentially coherent receiver shown in Fig. 5.18. Show that the pdf of Un is given by (5.155).

5.13. Consider a system that uses M-ary orthogonal modulation with non-coherent detection. The error probability on an
AWGN channel is known to be

Pb D
M

2.M � 1/

M�1
X

kD1

.�1/kC1�M�1
k

�

kC 1 exp

�

� k
s

.kC 1/

�

;

where 
s D ˛2Es=No is the received symbol-energy-to-noise ratio.

(a) Derive the corresponding expression for the probability of bit error on a slow flat Rayleigh fading channel. Express your
result in terms of the average received bit-energy-to-noise ratio, N
b, and simplify to closed form.

(b) Repeat part (a) for a slow flat Ricean fading channel. Simplify as much as possible.

5.14. Consider binary CPFSK modulation with modulation index h � 0:5. Compute the minimum squared Euclidean
distance between any pair of bandpass waveforms as given by

D2
min D lim

n!1
min

i;j

Z nT

0

�

s.tI x.i// � s.tI x.j//
�2

dt;

where s.tI x.i// and s.tI x.j// are the two bandpass signals whose phase trajectories diverge at time t D 0 and merge sometime
later. What is the pairwise error probability between two such signals?

5.15. The squared Euclidean distance between a pair of CPM bandpass waveforms, s.tI x.i// and s.tI x.j//, is

D2 D
Z 1

0

�

s.tI x.i// � s.tI x.j//
�2

dt:
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Show that

D2 D 2.log2M/Eb

1

T

Z 1

0

�

1 � cos��.t/
�

dt;

where M is the symbol alphabet size, Eb is the energy per bit, and ��.t/ is the phase difference between the two signals.

5.16. Construct a differential detector for MSK signaling. Obtain an expression for the probability of bit error for
differentially detected MSK on an AWGN channel.

5.17. Suppose that GMSK signaling is used. Unfortunately, the GMSK pulse is non-causal and, therefore, a truncated version
of the pulse is employed, i.e., the time domain pulse is

hf .t/ D
1

2T

�

Q

�
t=T � 1=2

�

�

� Q

�
t=T C 1=2

�

��

rect

�
t � LTT

2LTT

�

;

where

Q.˛/ D
Z 1

˛

1p
2�

e�x2dx (5.204)

�2 D ln 2

4�2.BT/2
: (5.205)

Compute the maximum value of the ISI term in (4.149) as a function of the normalized filter bandwidth BT when LT D 3.



Chapter 6

Multi-Antenna Techniques

Rayleigh fading converts an exponential dependency of the bit error probability on the average received bit energy-to-noise
ratio into an inverse linear one, yielding a very large performance loss. Diversity is a very effective remedy that exploits
the principle of providing the receiver with multiple independently faded replicas of the same information bearing signal.
Sometimes these replicas are called diversity branches. To illustrate the diversity mechanism, let p denote the probability
that the instantaneous bit energy-to-noise ratio for any one diversity branch falls below a critical threshold 
th. Then with
independently faded diversity branches, the probability that the instantaneous bit energy-to-noise ratio simultaneously falls
below the same critical threshold 
th for all L diversity branches is pL, and pL � p for small values of p.

The methods by which diversity can be achieved generally fall into six categories: (1) space, (2) angle, (3) polarization,
(4) frequency, (5) multipath, and (6) time. Space diversity is achieved by using multiple transmit or receiver antennas. The
spatial separation between the antenna elements at the transmitter and/or receiver is chosen so that the diversity branches
experience uncorrelated fading. Chapter 2 showed that a spatial separation of about a half-wavelength will suffice for 2-D
isotropic scattering and isotropic antenna elements. Angle (or direction) diversity requires a number of directional antennas.
Each antenna selects plane waves arriving from a different spatial direction, so that uncorrelated branches are achieved.
Polarization diversity exploits the property that a scattering environment tends to depolarize a signal. Receiver antennas
having different polarizations can be used to obtain uncorrelated branches. Frequency diversity uses multiple channels that
are separated by at least the coherence bandwidth of the channel. In general, frequency diversity is not a bandwidth efficient
solution. However, frequency hopping can be used along with coding where the elements of the codewords are transmitted
on multiple hops (or carriers) that experience uncorrelated fading. Multipath diversity is obtained by resolving multipath
components at different delays by using direct sequence spread spectrum signaling along with a RAKE receiver. Spread
spectrum concepts will be discussed in detail in Chap. 9. Time diversity is obtained by transmitting the same information at
multiple time periods that are separated by at least the coherence time of the channel. Error correction coding techniques
can be viewed as a bandwidth efficient method for implementing time diversity. Unfortunately, the coherence time of the
channel depends on the Doppler spread, and a small Doppler spread implies a large coherence time. Under this condition,
it may not be possible to obtain time diversity without introducing an unacceptably large interleaving delay. Finally, the
above techniques can be combined together. For example, spatial and temporal diversity can be combined together by using
space-time coding techniques.

Once the diversity branches are generated, they must be combined together. A large variety of diversity combining
techniques have been described in the literature. The type of diversity combining that is most effective will depend, among
other things, on the type of additive impairment that is present, i.e., additive white Gaussian noise (AWGN) or co-channel
interference (CCI). For AWGN dominant channels, maximal ratio combining is optimum in a maximum likelihood sense. For
channels that are dominated by CCI, optimum combining is more effective, where interference correlation across multiple
antenna branches is used to reject the CCI.

This chapter concentrates on antenna diversity techniques, although the mathematical concepts will readily apply to
other types of diversity as well. Section 6.1 formulates the diversity combining problem when there is a single transmit
antenna and multiple receiver antennas. Sections 6.2–6.5 consider selective combining, maximal ratio combining, equal gain
combining, and switched combining, respectively. Section 6.6 considers differential detection with equal gain combining.
Optimum combining for the purpose of combating fading and co-channel interference is considered in Sect. 6.8. Section 6.9
considers classical antenna beam-forming. Multiple-input multiple-output (MIMO) channels are introduced in Sect. 6.10.
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The Alamouti transmit diversity scheme is presented in Sect. 6.11, while spatial multiplexing and detection is considered in
Sect. 6.12. Spatial modulation is considered next in Sect. 6.13, where only one antenna in an array is activated. Finally, the
chapter wraps up with massive MIMO in Sect. 6.14.

6.1 Diversity Combining

There are many methods for combining the signals that are received on the different diversity branches, and several
ways of categorizing them. Diversity combining that takes before matched filtering or correlation detection is sometimes
called predetection combining, while diversity combining that takes place after matched filtering or correlation detection is
sometimes called postdetection combining. In many cases there is no difference in theoretical performance between the two
approaches, while in other cases there is a performance difference.

Consider the receive diversity system shown in Fig. 6.1. The signal that is received by each receiver antenna is
demodulated to baseband with a quadrature demodulator as shown in Fig. 5.1 and then processed with correlator or matched
filter detector shown in Figs. 5.2 and 5.3, respectively. Afterwards, the correlator or matched filter outputs are applied to a
diversity combiner as shown in Fig. 6.1.

Consider a communication system that uses an M-ary modulation alphabet along with a receiver having L diversity
branches. During each baud interval, one of M message waveforms is transmitted having the complex envelope Qsm.t/;

m D 1; : : : ;M. The received complex envelopes for the L diversity branches are

Qrk.t/ D gkQsm.t/C Qnk.t/; k D 1; : : : ; L; (6.1)

where gk D ˛kej�k is the complex fading gain associated with the kth branch. The AWGN processes Qnk.t/; k D 1; : : : ; L

are independent from branch to branch, since they correspond to the thermal noise that is introduced by the high gain
amplifiers that are used to amplify the signals received on each of the receiver antenna elements. After correlating or matched
filtering the received waveforms Qrk.t/ with the basis functions that are obtained from a Gram–Schmidt orthonormalization
procedure, the corresponding received signal vectors are

Qrk D gkQsm C Qnk; k D 1; : : : ; L; (6.2)

where

Qrki
D gkQsmi

C Qnki
; i D 1; : : : ; N: (6.3)

The fading gains of the various diversity branches typically have some degree of correlation, and the degree of correlation
depends on the type of diversity being used and the propagation environment. To simplify analytical derivations, the diversity
branches are often assumed to be uncorrelated in the literature. However, branch correlation will reduce the achievable
diversity gain and, therefore, the uncorrelated branch assumption gives optimistic results. Nevertheless, the performance of
the various diversity combining techniques will be evaluated under the assumption of uncorrelated branches.
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The fade distribution will affect the diversity gain as well. In general, the relative advantage of diversity is greater for
Rayleigh fading than Ricean fading, because as the Rice factor K increases there is less difference between the instantaneous
received bit energy-to-noise ratios on the various diversity branches. However, the performance will always be better with
Ricean fading than with Rayleigh fading, for a given average received bit energy-to-noise ratio and diversity order. In this
chapter, the performance with slow flat Rayleigh fading will be considered, although the methodology will apply to slow flat
Ricean fading as well.

6.2 Selective Combining

With selective combining (SC), the diversity branch yielding the highest bit energy-to-noise ratio is always selected. In this
case, the diversity combiner in Fig. 6.1 performs the operation

Qr D max
jgkj
Qrk: (6.4)

For communication links that use continuous transmission, SC is impractical because it requires continuous monitoring of
all diversity branches to estimate and track the time-varying complex gains gk. If such channel estimation is performed, then
it is better to use maximal ratio combining, as discussed in the next section, since the implementation is not that much more
complicated and the performance is optimal in AWGN. In systems that transmit information in bursts, a form of SC can
sometimes be implemented where the diversity branch is selected on a burst-by-burst basis, by using the synchronization
word or training sequence that is inserted into each burst. The selected branch is then used for the duration of the entire
burst. Obviously, such an approach is only useful if the channel does not change significantly over the burst duration. In this
section, however, selection diversity is evaluated under the idealized assumption of continuous branch selection.

With Rayleigh fading, the instantaneous received symbol energy-to-noise ratio on the kth diversity branch has the
exponential pdf

p
k
.x/ D 1

N
c

e�x= N
c ; (6.5)

where N
c is the average received branch symbol energy-to-noise ratio, assumed to be the same for all diversity branches.
With ideal SC, the branch with the largest symbol energy-to-noise ratio is always selected so that the instantaneous symbol
energy-to-noise ratio at the output of the selective combiner is


 s
s D max f
1; 
2; : : : ; 
Lg ; (6.6)

where L is the number of branches. If the branches are independently faded, then order statistics gives the cumulative
distribution function (cdf)

F
 s
s
.x/ D P Œ
1 � x; 
2 � x; : : : ; 
L � x� D

�

1 � e�x= N
c
�L
: (6.7)

Differentiating the above expression gives the pdf of the instantaneous output symbol energy-to-noise ratio as

p
 s
s
.x/ D L

N
c

�

1 � e�x= N
c
�L�1

e�x= N
c : (6.8)

The average output symbol energy-to-noise ratio with SC is

N
 s
s D

Z 1

0

xp
 s
s
.x/dx

D
Z 1

0

Lx

N
c

�

1 � e�x= N
c

�L�1
e�x= N
cdx

D N
c

L
X

kD1

1

k
: (6.9)
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Fig. 6.2 Cdf of 
 s
b for selective combining; N
c is the average branch symbol energy-to-noise ratio

Figure 6.2 plots the cdf F
 s
s
.x/ against the normalized symbol energy-to-noise ratio x= N
c in dB units. Note that the largest

diversity gain is obtained in going from L D 1 to L D 2, and diminishing returns are obtained with increasing L. This
behavior is typical for all diversity techniques.

The bit error probability with slow flat fading can be obtained by averaging the bit error probability, as a function of the
symbol energy-to-noise ratio, over the pdf of 
 s

s . For example, the bit error probability for binary DPSK with differential
detection on an AWGN channel is

Pb.

s
s / D

1

2
e�
 s

s ; (6.10)

where 
 s
s can be interpreted as the instantaneous bit energy-to-noise ratio since binary modulation is being used. Hence,

with SC

Pb D
Z 1

0

Pb.x/p
 s
s
.x/dx

D
Z 1

0

L

2 N
c

e�.1C1= N
c/x
�

1 � e�x= N
c
�L�1

dx

D L

2 N
c

L�1
X

nD0

 

L � 1
n

!

.�1/n
Z 1

0

e�.1C.nC1/= N
c/xdx

D L

2

L�1
X

nD0

�
L�1

n

�

.�1/n

1C nC N
c

; (6.11)

where the binomial expansion

.1 � x/L�1 D
L�1
X

nD0

 

L � 1
n

!

.�1/nxn (6.12)
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Fig. 6.3 Bit error probability for binary DPSK with differential detection and L-branch selective diversity combining

was used. The bit error probability is plotted in Fig. 6.3, where N
c is equal to the branch bit energy-to-noise ratio. SC is seen
to give a very large improvement in bit error rate performance. When N
c � 1, (6.11) shows that the bit error probability
is proportional to 1= N
L

c . Again, the greatest benefit of using diversity is achieved in going from L D 1 to L D 2 diversity
branches and diminishing returns are obtained with increasing L.

6.3 Maximal Ratio Combining

With maximal ratio combining (MRC), the diversity branches are weighted by their respective complex fading gains and
combined. MRC realizes a maximum likelihood receiver as is now shown. Referring to (6.2), the vector

Qr D vec .Qr1; Qr2; � � � ; QrL/ (6.13)

has the multivariate complex Gaussian distribution

p.Qrjg; Qsm/ D
L
Y

kD1

N
Y

iD1

1

2�No

exp

�

� 1

2No

jQrk;i � gkQsm;ij2
�

D 1

.2�No/LN
exp

(

� 1

2No

L
X

kD1
kQrk � gkQsmk2

)

(6.14)

where g D .g1; g2; : : : ; gL/ is the channel vector. The maximum likelihood receiver chooses the message vector Qsm that
maximizes the likelihood function p.Qrjg; Qsm/. This is equivalent to choosing the message vector Qsm that minimizes the metric

�.Qsm/ D
L
X

kD1
kQrk � gkQsmk2

D
L
X

kD1

�

kQrkk2 � 2RefQrk � g�
k Qs�

mg C jgkj2kQsmk2
�

: (6.15)
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Since
PL

kD1 kQrkk2 is independent of the hypothesis as to which Qsm was sent and kQsmk2 D 2Em, the receiver just needs to
maximize the metric

�2.Qsm/ D
L
X

kD1
RefQrk � g�

k Qs�
mg � Em

L
X

kD1
jgkj2

D
L
X

kD1
Re

�

g�
k

Z 1

�1
Qrk.t/Qs�

m.t/dt

�

� Em

L
X

kD1
jgkj2: (6.16)

If signals have equal energy, then the last term can be neglected, since it is the same for all message vectors. This results in

�3.Qsm/ D
L
X

kD1
RefQrk � g�

k Qs�
mg

D
L
X

kD1
Re

�

g�
k

Z 1

�1
Qrk.t/Qs�

m.t/dt

�

: (6.17)

An alternative form of the ML receiver can also be obtained by rewriting the metric in (6.16) as

�4.Qsm/ D Re

(
L
X

kD1
g�

k Qrk � Qs�
m

)

� Em

L
X

kD1
jgkj2

D
Z 1

�1
Re

( 
L
X

kD1
g�

k Qrk.t/

!

Qs�
m.t/

)

dt � Em

L
X

kD1
jgkj2: (6.18)

From (6.18), the ML receiver can be constructed. The diversity combiner in Fig. 6.1 generates the sum

Qr D
L
X

kD1
g�

k Qrk (6.19)

which is then applied to the metric computer shown in Fig. 6.4.
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To evaluate the performance gain with MRC, the received branch vectors in (6.2) are substituted into (6.19). This yields

Qr D
L
X

kD1
g�

k .gkQsm C Qnk/

D
 

L
X

kD1
˛2k

!

Qsm C
L
X

kD1
g�

k Qnk

� ˛2MQsm C QnM; (6.20)

where ˛2M D
PL

kD1 ˛
2
k , QnM D

PL
kD1 g�

k Qnk and ˛2k D jgkj2. The first term in (6.20) is the signal component with average
energy 1

2EŒ˛
4
MkQsmk2� D ˛4MEav, where Eav is the average symbol energy in the signal constellation. The second term is the

noise component with variance per dimension equal to

�2QnM
D 1

2N
EŒkQnMk2� D No

L
X

kD1
˛2k D No˛

2
M: (6.21)

The ratio of the two gives the combiner output symbol energy-to-noise ratio


mr
s D

1
2EŒ˛

4
MkQsmk2�
�2QnM

D ˛2MEav

No

D
L
X

kD1

˛2k Eav

No

D
L
X

kD1

k; (6.22)

where 
k D ˛2k Eav=No. Hence, 
mr
s is the sum of the individual symbol energy-to-noise ratios of the L diversity branches.

If the branches are balanced (which is a reasonable assumption with antenna diversity) and uncorrelated, then 
mr
s has a

chi-square distribution with 2L degrees of freedom as shown in Appendix A. That is,

p
mr
s
.x/ D 1

.L � 1/Š. N
c/L
xL�1e�x= N
c ; (6.23)

where

N
c D EŒ
k� k D 1; : : : ; L: (6.24)

The cdf of 
mr
s is

F
mr
s
.x/ D 1 � e�x= N
c

L�1
X

kD0

1

kŠ

�
x

N
c

�k

: (6.25)

It follows from (6.22) that the average symbol energy-to-noise ratio with MRC and balanced branches is

N
mr
s D

L
X

kD1
N
k D

L
X

kD1
N
c D L N
c: (6.26)

Figure 6.5 plots the cdf F
mr
b
.x/ against the normalized symbol energy-to-noise ratio x= N
c in dB units. Plots of the cumulative

distribution function can be used to compare the various diversity combining schemes, independent of the modulation scheme
being employed. For example, with L D 2 and SC, the cdf in Fig. 6.2 shows that F
 s

s
.x/ D 10�4 at x= N
c D 0:01 (
 s

s � N
c D
�20 dB). However, with L D 2 and MRC, Fig. 6.5 shows that F
mr

s
.x/ D 10�4 at x= N
c D 0:01585 (
mr

s � N
c D �18 dB). The
implication is that MRC is 2 dB more power efficient than SC, with all other things being equal.

When computing the probability of bit error, our attention must be limited to coherent signaling techniques since MRC is
a coherent detection technique. For example, the bit error probability with BPSK in AWGN is

Pb.

mr
s / D Q.

p

2
mr
s /; (6.27)
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Fig. 6.5 Cdf of 
mr
s for maximal ratio combining; N
c is the average branch symbol energy-to-noise ratio

where 
mr
s is the instantaneous bit energy-to-noise ratio. Hence, the bit error probability with Rayleigh fading and MRC is

Pb D
Z 1

0

Pb.x/p
mr
s
.x/dx

D
Z 1

0

Q
�p

2x
� 1

.L � 1/Š. N
c/L
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�
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�L L�1
X

kD0

 

L � 1C k

k

!
�
1C �
2

�k

(6.28)

where

� D
s

N
c

1C N
c

: (6.29)

The last step follows after some algebra. The bit error probability in (6.28) is plotted in Fig. 6.6. Once again, diversity
significantly improves the performance. The largest gain in performance is obtained in going from L D 1 to L D 2 branches,
and diminishing returns are obtained as L increases further.

6.3.1 Granlund Combiner

The Granlund combiner is an ingenious practical method for implementing predetection maximal ratio combining, achieved
by cophasing the various diversity branches, maximal ratio weighting them, and coherently combining them using analog
circuits. The Granlund combiner was first proposed and studied by Granlund in 1956 [148]. The Granlund combiner, shown
in Fig. 6.7, uses a regenerative process to cophase the signals received on the various diversity branches and coherently
combine them.

The L input signals to the Granlund combiner are bandpass signals with a carrier frequency fc and have the form

rk.t/ D Re
˚�

˛kQsm.t/e
j�k C Qnk.t/

�

ej2� fct



; (6.30)
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Fig. 6.6 Bit error probability for maximal ratio combining and coherent BPSK signaling

Fig. 6.7 Granlund combiner

In addition to the received complex envelope

Qrk.t/ D ˛kQsm.t/e
j�k C Qnk.t/ (6.31)

the analysis below requires the received complex exponential signals

Ork.t/ D
�

˛kQsm.t/e
j�k C Qnk.t/

�

ej2� fct: (6.32)

Moreover, for convenience of analysis, it is assumed that the signal constellation is normalized to have unit average energy
Eav D 1

2
EŒjQsm.t/j2� D 1 and the low-pass noise in each branch Qn.t/ has power 1

2
EŒjQn.t/j2� D No. Thus, the kth diversity

branch has symbol energy-to-noise ratio 
k D ˛2k=No. Note that the Granlund combiner requires that the noise power in each
diversity branch be equal; otherwise, a significant performance degradation will occur [47].
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The bandpass feedback filter is assumed to have a center frequency fo. The bandpass arm filters are centered at�f D fc�fo,
where �f is greater than fo. It is assumed that the magnitude of the envelope of the combiner output is kept to a constant
value by adjusting a gain G that is applied to all input diversity branches. The combined output signal is assumed to have the
form

r.t/ D Re
˚�

KQsm.t/e
j�o C Qno.t/

�

ej2� fot



: (6.33)

For this assumption to hold, the arm filters must be narrow enough such that their outputs can be assumed to be an
unmodulated tone and the feedback filter must be wide enough to pass the signal without distortion and with negligible
delay.

The complex exponential signals that are input to the arm filters are

Obk.t/ D
1

2
G
�

Ork.t/Or�.t/
�

D 1

2
G
�

˛kKQsm.t/Qs�
m.t/e

j.�k��o/ C Qnk.t/Qn�
o .t/

C ˛kQsm.t/Qn�
o .t/e

j�k C K Qnk.t/Qs�
m.t/e

j�o

�

ej2��f t (6.34)

Since the arm filters are assumed asymptotically narrow, their outputs may be approximated as a carrier with an amplitude
equal to the time average of the complex exponential input signal Obk.t/. If the complex exponential signals at the arm filter
outputs are denoted as Ock.t/, they may be written as

Ock.t/ D
1

2
G
�

˛kKhQsm.t/Qs�
m.t/iej.�k��o/ C hQnk.t/Qn�

o .t/i

C ˛khQsm.t/Qn�
o .t/iej�k C KhQnk.t/Qs�

m.t/iej�o

�

ej2��f t (6.35)

where h � i is the time average operation. The signal and noise terms are assumed to be uncorrelated, such that

hQsm.t/Qn�
o .t/i D hQnk.t/Qs�

m.t/i D 0:

If the noise cross noise term is neglected (although this is not necessary for proper operation), then the complex exponential
signals at the arm filter outputs may be written as

Ock.t/ D
1

2
G
�

˛kKej.�k��o/
�

ej2��f t: (6.36)

The complex exponential signals at the outputs of the second mixing process, denoted as Odk.t/, are

Odk.t/ D
1

2
G
�

Ork.t/Oc�
k .t/

�

D 1

4
G˛kK

�

˛kQsm.t/e
j.�o/ C ˛k Qnk.t/e

j.�k��o/
�

ej2� fot (6.37)

which is a frequency translated and phase shifted version of the input Ork.t/ scaled by the weighting factor 1
4G˛kK. Observe

that the signal term Qsm.t/ goes into the kth branch of the combiner with an arbitrary phase �k and comes out with phase �o.
Thus, the combined complex exponential output signal becomes

Or.t/ D 1

4
GKej2� fot

L
X

kD1

�

˛2k Qsm.t/e
j.�o/ C ˛k Qnk.t/e

j.�k��o/
�

: (6.38)

The corresponding complex envelope of the combiner output signal is

Qr.t/ D 1

4
GK

L
X

kD1

�

˛2k Qsm.t/e
j.�o/ C ˛k Qnk.t/e

j.�k��o/
�

: (6.39)
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As discussed earlier, the phase rotation ej.�k��o/ has no statistical effect on the additive noise term Qnk.t/. Other than the phase
rotation �o and the scalar factor 1

4GK, the complex envelope of the combiner output signal in (6.39) is statistically identical
to the sum term

L
X

kD1
g�

k Qrk.t/ D
L
X

kD1

�

˛2k Qsm.t/C Qnk.t/e
�j�k

�

in (6.18). Since the scalar factor 1
4GK affects the signal and noise term similarly, it has no affect on the combiner output

symbol energy-to-noise ratio, but in the case of unequal energy symbols it must be applied similarly to the bias term

Em

L
X

kD1
jgkj2

in (6.18) when computing the decision metrics. It also follows that the combiner output symbol energy-to-noise ratio remains
the same as (6.22), i.e., 
mr

s D
PL

kD1 
k, where 
k is the kth branch symbol energy-to-noise ratio.

6.4 Equal Gain Combining

Equal gain combining (EGC) is similar to MRC in that the branches are coherently combined, but is different from MRC
in that the branches are not weighted. In practice, such a scheme is useful for modulation techniques having equal energy
symbols, e.g., M-PSK. With signals of unequal energy, the complete channel vector g D .g1; g2; : : : ; gL/ is required anyway
and optimum maximum likelihood MRC might as well be used. With EGC, the receiver maximizes the metric

�.Qsm/ D
L
X

kD1
Refe�j�k Qrk � Qs�

mg

D
L
X

kD1
Re

�

e�j�k

Z 1

�1
Qrk.t/Qs�

m.t/dt

�

: (6.40)

This metric can be rewritten in the alternate form

�.Qsm/ D Re

(
L
X

kD1
e�j�k Qrk � Qs�

m

)

D
Z T

0

Re

( 
L
X

kD1
e�j�k Qrk.t/

!

Qs�
m.t/

)

dt: (6.41)

It is apparent that the combiner in Fig. 6.1 generates the sum

Qr D
L
X

kD1
e�j�k Qrk (6.42)

with EGC. The vector Qr is then applied to the metric computer shown in Fig. 6.4 with ˇm D 0;m D 1; : : : ;L. The reason for
setting ˇm D 0 comes from the assumption of equal energy signals.

To evaluate the performance gain with EGC, the received branch vectors in (6.2) are substituted into (6.42). This yields

Qr D
L
X

kD1
e�j�k .gkQsm C Qnk/

D
 

L
X

kD1
˛k

!

Qsm C
L
X

kD1
e�j�k Qnk

� ˛EQsm C QnE; (6.43)
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where ˛E D
PL

kD1 ˛k, QnE D
PL

kD1 e�j�k Qnk and ˛k D jgkj. The first term in (6.43) is the signal component with average
energy 1

2EŒ˛
2
EkQsmk2� D ˛2EEav, where Eav is the average symbol energy in the signal constellation. The second term is the

noise component with variance per dimension equal to

�2QnE
D 1

2N
EŒkQnEk2� D LNo: (6.44)

The ratio of the two gives the symbol energy-to-noise ratio


 eg
s D

˛2EEav

LNo

: (6.45)

The cdf and pdf for 
 eg
s does not exist in closed form for L > 2. However, for L D 2 and N
1 D N
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c, the cdf is equal to
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Differentiating the above expression yields the pdf
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The average symbol energy-to-noise ratio with EGC is

N
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Eav

LNo
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X
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E Œ˛k˛`� : (6.48)

With Rayleigh fading, EŒ˛2k � D 2b0 and EŒ˛k� D
p

�b0=2. Furthermore, if the branches experience uncorrelated fading, then
EŒ˛k˛`� D EŒ˛k�EŒ˛`� for k ¤ `. Hence,

N
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s D

Eav
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No
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1C .L � 1/�
4

�

D N
c

�

1C .L � 1/�
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: (6.49)

The bit error probability with 2-branch EGC can be obtained by using the pdf in (6.47). Once again, EGC is a coherent
detection technique so our attention must be restricted to coherent signaling techniques. For example, with BPSK the bit
error probability is (Problem 6.12)

Pb D
Z 1

0

Pb.x/p
eg
s
.x/dx

D 1

2

�

1 �
p

1 � �2
�

; (6.50)

where

� D 1

1C N
c

: (6.51)
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6.5 Switched Combining

A switched combiner scans through the diversity branches until it finds one that has a bit energy-to-noise ratio exceeding
a specified threshold. This diversity branch is selected and used until the bit energy-to-noise ratio again drops below
the threshold. When this happens another diversity branch is chosen which has a bit energy-to-noise ratio exceeding the
threshold. The advantage of switched combining is that only one RF chain is needed. There are several variations of switched
diversity. Here, two-branch switch and stay combining (SSC) is analyzed. With SSC, the receiver switches to, and stays with,
the alternate branch when the bit energy-to-noise ratio drops below a specified threshold. It does this regardless of whether
or not the bit energy-to-noise ratio with the alternate branch is above or below the threshold.

Let the bit energy-to-noise ratios associated with the two branches be denoted by 
1 and 
2, and let the switching threshold
be denoted by T . By using (6.5), the probability that 
i is less than T is

q D PŒ
i < T�

D 1 � e�T= N
c ; i D 1; 2: (6.52)

Likewise, the probability that 
i is less than S is

p D 1 � e�S= N
c ; i D 1; 2: (6.53)

Let 
 sw
s denote the symbol energy-to-noise ratio at the output of the switched combiner. Then

PŒ
 sw
s � S� D P

h


 sw
s � Sj
 sw

s D 
1
[


 sw
s � Sj
 sw

s D 
2
i

: (6.54)

Since 
1 is statistically identical to 
2, it may be assumed without loss of generality that branch 1 is currently in use. It
follows that

PŒ
 sw
s � S� D

�

P Œ
1 � T
T

2 � S� ; S < T

P ŒT � 
1 � S
S

1 � T

T

2 � S� ; S � T

: (6.55)

The region S < T corresponds to the case where 
1 has dropped below the threshold T and a switch to branch 2 is initiated,
but 
2 < T so that the switch does not result in a 
 sw

s greater than T . On the other hand, the region S � T corresponds to the
case when either 
1 is between T and S or when 
1 has dropped below the threshold T so that a switch to branch 2 occurs,
and T � 
2 � S. Since 
1 and 
2 are independent, the above probabilities are

P
h


1 � T
\


2 � S
i

D qp (6.56)

and

P
h

T � 
1 � S
[�


1 � T
\


2 � S
�i

D p � qC qp: (6.57)

Therefore,

PŒ
 sw
s � S� D

�

qp S < T

p � qC qp S � T
: (6.58)

Figure 6.8 plots the cdf F
 sw
s
.x/ against the normalized symbol energy-to-noise ratio x= N
c, for several values of the

normalized threshold R D 10 log10fT= N
cg (dB). Observe that SSC always performs worse than SC except at the switching
threshold, where the performance is the same. Since SSC offers the most improvement just above the threshold level,
the threshold level should be chosen as 
th, the minimum acceptable instantaneous bit energy-to-noise ratio that the
communication link can tolerate and still provide an acceptable quality of service. Finally, the optimum threshold, T D R N
c,
depends on N
c.
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The probability of bit error for SSC can be computed from the pdf of the bit energy-to-noise ratio at the output of the
switched combiner. The pdf of 
 sw

s is

p
 sw
s
.x/ D

(

q 1
N
c

e�x= N
c ; x < T

.1C q/ 1N
c
e�x= N
c ; x � T

(6.59)

If DPSK is used with differential detection, for example, then Pb.

sw
s / D 1

2
e�
 sw

s , and the probability of bit error is

Pb D
Z 1

0

Pb.x/p
 sw
s
.x/dx

D 1

2.1C N
c/

�

qC .1 � q/e�T
�

; (6.60)

where N
c is the average branch bit energy-to-noise ratio. The above expression is plotted in Fig. 6.9 for several values of T .
The performance with T D 0 is the same as using no diversity at all, because no switching occurs. The performance changes
little for T > 6. As T increases, the probability of switching, q, also increases as shown in Fig. 6.10. For some systems, it
may desirable to keep q as small as possible to minimize the number of switches.

6.6 Differential Detection with Equal Gain Combining

Equal gain combining has a simple implementation and very good performance when used in conjunction with differential
detection. Differential detection circumvents the need to co-phase and weight the diversity branches. The overall receiver
structure is shown in Fig. 6.11. The structure of the individual differential detectors depends on the type of modulation that
is being used. For DPSK, the detector structure is as shown in Fig. 5.18, while for �=4-QPSK the detector is as shown in
Fig. 5.19. In the latter case, the U and V branches in Fig. 5.19 are combined separately. For DPSK the decision variable at
the output of the combiner at epoch n is, from (5.149) and Fig. 6.11,

Un D
L
X

kD1
Un;k D

1

2

L
X

kD1
.Zn;kZ�

d;n;k C Z�
n;kZd;n;k/: (6.61)
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By using characteristic functions, it can be shown that the decision variable Un has the difference form Un D Wn � Yn,
where Wn and Yn are independent non-central and central chi-square random variables, respectively, each with 2L degrees of
freedom, i.e.,

fWn
.w/ D 1

2EhNo

�w

s2

� L�1
2
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�

� .s
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�
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(6.62)
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1

.L � 1/Šy
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�

� y

2EhNo

�

; (6.63)

where

s2 D 4Eh

L
X

kD1
˛2k (6.64)

is the non-centrality parameter, and In.x/ is the nth-order modified Bessel function of the first kind, defined by

In.x/ D
1

2�

Z 2�

0

ex cos.�/ cos.n�/d�: (6.65)

After some algebraic detail, the probability of error can be expressed in the closed form [272]
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and


t D
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k: (6.68)

The parameter 
t has the central chi-square distribution in (6.23), and averaging Pb.
t/ over this distribution gives the result
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This can be manipulated in the same form as (6.28) with

� D N
c

1C N
c

: (6.70)

Switched and postdetection equal gain diversity combining are compared in Fig. 6.12 for differentially detected binary
DPSK signals. It is apparent that differentially detected DPSK with postdetection equal gain combining has the best
performance, followed by SC and SSC combining. Once again, it does not make sense to use maximal ratio combining
or equal gain combining with differential detection, since maximal ratio combining and equal gain combining are coherent
combining techniques.

6.7 Non-coherent Square-Law Combining

Square-law combining is a diversity combining technique that is used with non-coherent detection. As such, square-law
combining is only useful for orthogonal modulation schemes, including M-ary FSK modulation and binary orthogonal codes
as discussed in Sect. 4.5.

Section 5.9 showed that the non-coherent detector calculates the M decision variables X2m; m D 1; : : : ;M and chooses
the message waveform corresponding to the largest decision variable (assuming equal energy messages). When diversity is
employed a separate square-law detector, as shown in Fig. 5.20, is used on each diversity branch. This will yield the set of
outputs Xm;k; m D 1; : : : ;M; k D 1; : : : ;L. The square-law combiner then computes the following set of decision variables

Um D
L
X

kD1
X2m;k ; m D 1; : : : ;M; (6.71)

and a decision is made in favor of the message waveform corresponding to the largest Um.
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If waveform Qs1.t/ was transmitted, then
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From Appendix A, the random variables Ui; i D 1; : : : ;M have a central chi-square distribution with 2L degrees of freedom.
It follows that
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Likewise,

pUm
.um/ D
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L.L � 1/Š
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m exp
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� u2m

2�22

�

; um � 0: (6.74)

where

�22 D 2ENo ; m D 2; : : : ;M: (6.75)

To evaluate the probability of error with square-law combining, proceed along the lines of Sect. 5.9.1. First assume without
loss of generality that waveform Qs1.t/ is sent. The receiver will make a correct decision if

Ui < U1 ; 8 i ¤ 1: (6.76)

Hence, the probability of correct symbol decision is

PŒc� D P ŒU2 < U1;U3 < U1; : : : ;UM < U1�

D
Z 1

0

.P ŒU2 < u1�/
M�1

pU1.u1/du1: (6.77)
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where the second line follows from the fact that the Um ; m D 2; : : : ;M are independent and identically distributed. From
the cdf of the central chi-square distribution in (A.65),
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; u1 � 0: (6.78)

The .M � 1/th power of this probability is then used in (6.77) to obtain the probability of correct decision, and subtracting
this result from unity gives the probability of symbol error. This gives
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The above expression can be expressed in closed form by using a multinomial expansion. However, this is mathematically
cumbersome for all but small values of M and L, and it may just be easier to evaluate (6.79) numerically. When L D 1

(no diversity), (6.79) reduces to the simple form

PM D
M�1
X

mD1

.�1/mC1�M�1
m

�

1C mC m N
c

: (6.80)

Finally, from Sect. 5.3.4, the probability of bit error is

Pb D
2k�1

2k � 1PM D
M

2.M � 1/PM; (6.81)

and the average received bit energy-to-noise ratio is

N
b D L N
c=log2M: (6.82)

Using these, (6.80) agrees with the result in (5.191).
For the case of binary non-coherent orthogonal FSK (M D 2), it can be shown that (6.79) reduces to the form in (6.28)

where the parameter � is defined as

� D N
c

2C N
c

: (6.83)

When N
c � 1, the probability of bit error for binary orthogonal FSK with Lth order non-coherent square-law combining can
be approximated by

Pb �
�
1

N
c

�L
 

2L � 1
L

!

: (6.84)

Figure 6.13 plots the probability of bit error against the bit energy-to-noise ratio for various values of M and L. Note that
the performance improves with increasing M and increasing L. A significant improvement is realized by increasing L, and
the performance gain realized by increasing M is relatively small when L is small. Since an increase in M implies a decrease
in bandwidth efficiency for M-ary orthogonal signals, it is more efficient in terms of bandwidth efficiency to increase L.

6.8 Optimum Combining

Maximal ratio combining (MRC) is the optimal combining method in a maximum likelihood sense when the additive
impairment is AWGN. However, when the additive channel impairment is dominated by co-channel interference, it is better
to use optimum combining (OC) which is designed to maximize the signal-to-interference-plus-noise ratio at the output of
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Fig. 6.13 Performance of M-ary orthogonal signals with square-law combining

the combiner. OC uses spatial diversity not only to combat fading of the desired signal, as is the case with MRC, but also
to reduce the relative power of the interfering signals at the receiver. This is achieved by exploiting the correlation of the
interference across the multiple receiver antenna elements. By combining the signals that are received by multiple antennas,
OC can suppress the interference and improve the output signal-to-interference-plus-noise ratio by several decibels. OC was
first introduced by Baird and Zahm [32] for the case of a single interferer and later extended to the case of multiple interferers
and applied to cellular frequency reuse systems by Winters [352, 353]. In this section, the optimal combiner is described,
the distribution of the output signal-to-interference-plus-noise ratio is derived, and the bit error rate of PSK signals when the
desired and interfering signals are subject to slow flat Rayleigh fading is evaluated.

Consider a situation where a desired signal is received in the presence of K co-channel interferers. In the following
treatment, the signal space dimensionality is assumed to be unity, i.e., N D 1, so that the signal vectors are complex-valued
scalars chosen from an appropriate constellation such as M-QAM.

The received signal scalars at the L receiver antennas are equal to

Qrk D gk;0Qs0 C
K
X

iD1
gk;iQsi C Qnk; k D 1; : : : ; L; (6.85)

where Qs0, Qsi, and Qnk are the desired signal vector, ith interfering signal vector, and noise vector, respectively, and K is the
number of interferers.

The L received signal scalars can be stacked in a column to yield the L � 1 received vector

Qrt D g0Qs0 C
K
X

iD1
giQsi C Qn; (6.86)

where

Qrt D .Qr1; Qr2; : : : ; QrL/
T

gi D .gi;1; gi;2; : : : ; gi;L/
T

Qn D .Qn1; Qn2; : : : ; QnL/
T :
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The L � L received desired-signal-plus-interference-plus noise correlation matrix is given by

ˆQrtQrt
D 1

2
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g0Qs0 C
K
X

iD1
giQsi C Qn

! 

g0Qs0 C
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iD1
giQsi C Qn

!H
3

5 ; (6.87)

where . � /H denotes complex conjugate transpose. Likewise, the received interference-plus-noise correlation matrix is
given by
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X
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giQsi C Qn

!H
3

5 : (6.88)

Note that the expectations in (6.87) and (6.88) are taken over a period that is much less than the channel coherence time, i.e.,
several modulated symbol durations. If the desired signal, interfering signal, and noise vectors are mutually uncorrelated,
then (6.87) and (6.88) reduce to

ˆQrtQrt
D g0g

H

0Eav C
K
X

iD1
gig

H

i Ei
av C NoI; (6.89)

and

ˆQriQri
D

K
X

iD1
gig

H

i Ei
av C NoI; (6.90)

respectively, where I is the L � L identity matrix and Ei
av is the average energy in the ith interfering signal. It is important to

note that the matrices ˆQrtQrt
and ˆQriQri

will vary at the channel fading rate.
To mitigate the interference, the received signals scalars Qrk; k D 1; 2; : : : ;L are multiplied by controllable weights wk and

summed together, i.e., the combiner output is

Qr D
L
X

kD1
wk Qrk D wT Qrt; (6.91)

where w D .w1;w2; : : : ;wL/
T is the weight vector. Several approaches can be taken to find the optimal weight vector w. One

approach is to minimize the mean square error
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0 : (6.92)

The weight vector that minimizes the mean square error can be obtained by setting the gradient rwJ to zero. This gives the
minimum mean square error (MMSE) solution

rwJ D
�
@J

@w1
; � � � ; @J
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�
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� 2ˆQs0Qrt

D 0: (6.93)

The solution is

wopt D ˆ�1
QrtQrt

ˆT

Qs0Qrt
D 2Eavˆ�1

QrtQrt
g�
0 ; (6.94)
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where the fact that ˆT

Qs0Qrt
D 2g�

0Eav was used. Since ˆQrtQrt
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, it follows that
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Next, a variation of the matrix inversion lemma is applied
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to (6.95) resulting in
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where C D 2Eav=.1C EavgT

0ˆ
�1
QriQri

g�
0 / is a scalar.

Another criterion for optimizing the weight vector is to maximize the instantaneous signal-to-interference-plus-noise ratio
(SINR) at the output of the combiner

! D wTg0g
H

0Eavw�

wTˆ�1
QriQri

w� : (6.98)

Solving for the optimum weight vector gives

wopt D B �ˆ�1
QriQri

g�
0 ; (6.99)

where B is an arbitrary constant. Hence, the maximum instantaneous output SINR is

! D EavgH

0ˆ
�1
QriQri

g0: (6.100)

Note that the maximum instantaneous output SINR does not depend on the choice of the scalar B. Therefore, the MMSE
weight vector in (6.97) also maximizes the instantaneous output SINR. Finally, when no interference is present, ˆQriQri

D NoI

and the optimal weight vector becomes

wopt D
g�
0

No

; (6.101)

so that the combiner output is

Qr D
L
X

kD1

g�
0;k

No

Qrk: (6.102)

From (6.101) and (6.102), OC reduces to MRC when no co-channel interference is present.
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6.8.1 Optimum Combining Performance

In typical land mobile radio environments, there can be several interfering signals whose power level is close to that of the
desired signal and numerous lower power interfering signals. The number of interfering signals can be much greater than
the number of receiver antenna elements. In this case, the array output SINR may not be changed significantly. However,
even a small (few dB) increase in output SINR can result in a large capacity gain. Thus, the array only needs to suppress the
dominant interferers so that there power level is below the sum power level of the other interferers.

In a non-fading environment, the array cannot resolve two closely spaced transmitters because the phase differences of the
desired and interfering signals across the antenna elements are almost the same. However, for land mobile radio applications,
the receiver antenna elements can be separated enough so that the phases at each antenna element are independent. For
2-D isotropic scattering around the receiver antennas, a half-wavelength separation between the receiver antenna elements is
sufficient. Likewise, if there is 2-D isotropic scattering around the transmit antennas, then a half-wavelength spatial separation
is sufficient to ensure independent phases at the receiver antenna elements, e.g, at a base station. Thus the resolution of the
signals from two different transmitters in a land mobile radio environment does not depend on the spatial separation of
the transmitters. Instead for all locations there is a small probability that the receiver array cannot resolve the two signals.
This occurs when the phase differences across all the receiver antenna elements is nearly the same for both the desired and
interfering signals. However, since the phase differences between antenna elements is independent, the probability that the
phase difference is nearly the same across all antenna elements decreases significantly as the number of receiver antenna
elements increases, and becomes negligible for only a few antennas.

The performance of OC is now considered in terms of the output SINR distribution and the bit error rate for coherent BPSK
modulation. Comparisons are made with MRC. It is assumed that all signals are subject to slow flat Rayleigh fading. The
performance with optimum combining is quite complicated, since each interferer impacts the performance of the optimum
combiner. In this section, the performance with a single dominant interferer is evaluated under the assumption that the
remaining co-channel interferers can be combined together and treated as additional lumped interference that is uncorrelated
between the receiver antenna elements. Such lumped interference can be treated as additional AWGN. Under the assumption
that the combiner cannot suppress the lumped interference (since it is uncorrelated across the antenna elements), a worst case
analysis is obtained since the actual combiner performance will always be better.

To evaluate the performance of OC, several definitions are required as follows:

� D average received desired signal power per antenna

average received noise plus interference power per antenna

N
c D
average received desired signal power per antenna

average received noise power per antenna
D EŒjg0;kj2�Eav

No

N
i D
average received ith interferer power per antenna

average received noise power per antenna
D EŒjgi;kj2�Ei

av

No

!R D
instantaneous desired signal power at the array output

average noise plus interference power at the array output

! D instantaneous desired signal power at the array output

instantaneous noise plus interference power at the array output
:

In the above definitions, “average” refers to the average over the Rayleigh fading, while “instantaneous” refers to an average
over a period that is much less than the channel coherence time, i.e., several modulated symbol durations. Finally, note that

� D C

IC N
D N
c

1C
PK

kD1 N
i

: (6.103)

In general, two approaches have been taken in the literature to evaluate the performance of OC. The first approach assumes
fading of the desired signal only (non-faded interferer), while the second approach assumes fading of both the desired and
interfering signals. The second approach is actually more realistic, since the interfering signals are usually subject to the
same fading rate as the desired signals. Closed form expressions have been derived for either approach in the case of a single
interferer, while bounds and approximations have been used for multiple interferers. For our purpose, attention is restricted
to a single interferer.
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6.8.1.1 Fading of the Desired Signal Only

From (6.100), !R is equal to

!R D EavgH

0ˆ
�1
QRi QRi

g0; (6.104)

where, with a single interferer,

ˆ QRi QRi
D E1avEŒg1g

H

1 �C NoI: (6.105)

Note that the expectation in (6.105) is over the Rayleigh fading. The pdf of !R is [45]

p!R
.x/ D e�x= N
c.x= N
c/

L�1.1C L N
1/
N
c.L � 2/Š

Z 1

0

e�..x= N
c/L N
1/t.1 � t/L�2dt (6.106)

and the cdf of !R is

F!R
.x/ D

Z x= N
c

0

e�yyL�1.1C L N
1/
.L � 2/Š

Z 1

0

e�.yL N
1/t.1 � t/L�2dtdy: (6.107)

which are valid for L � 2. Note that !R in (6.106) and (6.107) is normalized by N
c. Since N
c D .1 C N
1/� for the
case of a single interferer, it is apparent that !R can be normalized by � as well. The normalization by � allows for a
straightforward comparison of OC and MRC. The cdf F!R

.x/ is plotted against x=� in Fig. 6.14 for various values of N
1.
The curve corresponding to N
1 D 0 corresponds to the performance with MRC. Note that as N
1 increases the cdf for a
fixed value of � decreases. This means that OC performs better when the interference becomes a larger fraction of the
interference-plus-noise power. Also, the performance improves as the number of antenna elements increases.

The probability of bit error for coherently detected BPSK is given by

Pb D
Z 1

0

Q
�p

2x
�

p!R
.x/dx: (6.108)
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Several approaches have been taken to evaluate the above integral. By using (6.108) and (6.106), and the results in [45],
Winters derived the bit error probability as [352]

Pb D
.�1/L�1.1C L N
1/

2.L N
1/L�1

 

� L N
1
1C L N
1

C
s

N
c

1C N
c

� 1

1C L N
1

s

N
c

1C L N
1 C N
c

�
L�2
X

kD1
.�L N
1/k

 

1 �
s

N
c

1C N
c

 

1C
k
X

iD1

.2i � 1/ŠŠ
iŠ.2C 2 N
c/i

!!!

; (6.109)

where

.2i � 1/ŠŠ D 1 � 3 � 5 � � � � � .2i � 1/:

As observed by Simon and Alouini [303], this expression is only valid for L � 2. The lack of validity for L D 1 can be
observed by noting that Pb D 0 for N
1 D 0 (no interference) which is clearly incorrect. By using an alternative form for the
Gaussian Q-function, Simon and Alouini have derived the following alternate expression which is valid for L � 1:

Pb D
1

2

 

1 �
s

N
c

1C N
c

L�2
X

kD0

 

2k

k

!

1

.4.1C N
c//k

 

1 �
�

� 1

L N
1

�L�1�k
!

�
s

N
c

1C L N
1 C N
c

�

� 1

L N
1

�L�1!

: (6.110)

Figure 6.15 shows the probability of bit error with OC and one interferer against � for several values of L and N
1. The
performance with N
1 D 0 is identical to that of MRC, and it was already shown that the bit error probability of coherently
detected BPSK with MRC is given by (6.28), where

� D
r

�

1C�

and � D N
c.
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6.8.1.2 Fading of the Desired and Interfering Signals

From (6.100), the maximum instantaneous output SINR is equal to

! D EavgH

0ˆ
�1
QriQri

g0; (6.111)

where, with a single interferer,

ˆQriQri
D E1avg1g

H

1 C NoI: (6.112)

In this case, the matrix ˆQriQri
varies at the fading rate. The matrix ˆQriQri

is Hermitian, meaning that ˆH

QriQri
D ˆQriQri

. Consequently,
there exists a diagonalization ˆQriQri

D UƒUH such that U is a unitary matrix and ƒ D diagf�1; �2; : : : ; �Lg is a diagonal
matrix consisting of the eigenvalues of ˆQriQri

. It follows that ˆ�1
QriQri
D UHƒ�1U. Hence,

! D EavgH

0UHƒ�1Ug0: (6.113)

Since the matrix U is unitary, the vector Og0 D Ug0 D .Og0;1; Og0;2; : : : ; Og0;L/T retains the statistical properties of g0. Therefore,

! D Eav OgH

0ƒ
�1 Og0

D Eav

L
X

iD1

jOg0;ij2
�i

: (6.114)

Conditioned on the set of eigenvalues �i; i D 1; 2; : : : ;L (which are now assumed to be random variables), ! is a sum of
independent exponentially distributed random variables with mean values EavEŒjOg0;ij2�=�i; i D 1; 2; : : : ;L. It follows that the
characteristic function of !, conditioned on the set of eigenvalues �i; i D 1; 2; : : : ;L, is

�!jƒ.jv/ D
L
Y

iD1

�
�i

�i � jvEavEŒjOg0;ij2�

�

: (6.115)

The main difficulty in proceeding further is that, except for some special cases, it is difficult to find the eigenvalues �i;

i D 1; 2; : : : ;L, and their associated pdfs. For the case of a single interferer, the eigenvalues are given by [87]

�1 D E1avgH

1g1 C No (6.116)

�i D No; i D 2; 3; : : : ;L: (6.117)

The interference-to-noise ratio at the combiner output, 
1 D E1avgH

1g1=No, is a central chi-square random variable with 2L

degrees of freedom, and has the pdf

p
1.x/ D
1

.L � 1/Š. N
1/L
xL�1e�x= N
1 ; x � 0; (6.118)

where N
1 D E1avEŒjg1;kj2�=No. Also, the desired signal-to-noise ratio at the output of the combiner, 
s D EavgH

0g0=No, is a
central chi-square random variable with 2L degrees of freedom, and has the pdf

p
s
.x/ D 1

.L � 1/Š. N
c/L
xL�1e�x= N
c ; x � 0; (6.119)

where, once again, N
c D EavEŒjg0;kj2�=No. Using (6.115), the characteristic function of !, conditioned on 
1, is [2]

 !j
1.jv/ D
 
1C1

N
c


1C1
N
c
� jv

! 
1
N
c

1
N
c
� jv

!L�1

: (6.120)
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For coherent BPSK, it can be shown that the probability of bit error for a given ! is [147, 3.363]

Pb.!/ D Q
�p

2!
�

D 1

2�

Z 1

1

1

z
p

z � 1
e�!zdz: (6.121)

The bit error probability is then obtained by averaging over the pdf of !. This gives [2]

Pb D
Z 1

0

1

2�

Z 1

1

1

z
p

z � 1
e�xzp!.x/dzdx

D 1

2�

Z 1

1

1

z
p

z � 1

Z 1

0

e�xzp!.x/dxdz

D 1

2�

Z 1

1

1

z
p

z � 1
 !.�z/dz (6.122)

It follows that the bit error probability conditioned on 
1 can be obtained by substituting (6.120) into (6.122). The result has
the closed form [2]

Pbj
1 D
1

2

 

1 �
s

N
c

N
c C 1

L�2
X

kD0

 

2k

k

!
�

1

4. N
c C 1/

�k

(6.123)

�
 s

N
c

N
c C 
1 C 1
�
s

N
c

N
c C 1

L�2
X

kD0

 

2k

k

!
� �
1
4. N
c C 1/

�k
!

.�
1/�.L�1/
!

:

The performance with a non-faded interferer can be obtained by replacing 
1 with its mean value L N
1. The result agrees
with (6.109) and (6.110), where it is assumed that a single interferer with constant power is present. Moreover, as mentioned
earlier, OC reduces to MRC when no interfering signals are present. It can be verified that (6.123) with 
1 D 0 reduces to

Pb D
1

2

 

1 �
s

N
c

N
c C 1

L�1
X

kD0

 

2k

k

!
�

1

4. N
c C 1/

�k
!

: (6.124)

which is also equivalent to (6.28) as expected. In the present case, however, the interference-to-noise ratio, 
1 is a central
chi-square random variable with 2L degrees of freedom having the pdf in (6.118). Averaging over the pdf of 
1 gives the
probability of bit error

Pb D
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0

Pbj
1.x/p
1.x/dx

D 1
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kD0

.2k/Š

kŠ

� � N
1
4. N
c C 1/

�k
!

: (6.125)

Figure 6.16 plots the bit error probability against

� D N
c

1C N
1
: (6.126)
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Fig. 6.16 Bit error probability for coherent BPSK and optimal combining for various values of N
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Fig. 6.17 Comparison of the bit error probability for coherent BPSK and optimal combining for a non-faded interferer and a faded interferer; the
performance is almost identical

for N
1 D 0; 1; 2. Figure 6.17 compares the bit error probability for a non-faded interferer in (6.109) or (6.110) with that
of a faded interferer in (6.125), where it is seen that the performance is almost identical. The assumption of a non-faded
interferer gives a very slightly pessimistic prediction of system performance as compared to the case of a faded interferer.
The performance is so close because the array with L D 2 or 4 has enough degrees of freedom to reject the co-channel
interferer regardless of whether or not it is affected by fading.
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Fig. 6.18 Distributed antenna system using a radio over fiber front haul

6.8.2 Distributed Antenna Systems

The development of MRC in Sect. 6.3 assumed that each diversity branch had equal noise spectral density No. It was shown
in (6.101) and (6.102) that MRC weighs each signal image Qrk in a manner that is directly proportional to the magnitude of its
signal component regardless of phase, the term g�

k , and inversely proportional to the noise power in the diversity branch, the
term 1

2
EŒjnkj2� D No. Optimum performance of the Granlund combiner in Sect. 6.3.1 depends on matched receiver gain and

noise figure, meaning that the noise power in each diversity branch is assumed identical and, therefore, it is not necessary
to consider the noise explicitly in the combiner weighting process. Sometimes in the literature this is referred to as “ratio
squarer diversity.” While such matched receiver gain and noise figure conditions may be possible when the antennas are
closely spaced and the preamplifiers are integrated into a single chip as in a cellular handset, these matched conditions
generally do not apply to distributed antenna systems where the antennas corresponding to the various diversity branches are
widely spaced. Such distributed antenna systems are common for ships, aircraft, and other applications to combat blockage
by the ship or aircraft superstructure. Distributed antenna systems are also used for indoor and other types of microcellular
systems. For distributed antenna systems, there are typically variations in the noise power in each of the diversity branches
contributed by the antennas, cables, and preamplifiers. As such, the noise variances differ from one diversity branch to the
other. The low-pass noise in each branch Qn.t/ has power spectral density 1

2
EŒjQn.t/j2� D No;k. Thus, the kth diversity branch

has symbol energy-to-noise ratio 
k D ˛2k=No;k. The distributed antenna model is shown in Fig. 6.18.
When the No;k are distinct, it is important that the MRC combiner account for the different noise power and, according

to (6.101) and (6.102) the MRC combining weights become

wopt D
g�
0

No;k

; (6.127)

and the combiner output is

Qr D
L
X

kD1

g�
0;k

No;k

Qrk: (6.128)

The symbol energy-to-noise ratio at the output of the MRC is


mr
s D

L
X

kD1

˛2k Eav

No;k

D
L
X

kD1

k; (6.129)

where 
k D ˛2k Eav=No;k. Hence, 
mr
s remains as the sum of the individual symbol energy-to-noise ratios of the L diversity

branches, where the 
k are independent and nonidentically distributed.
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Fig. 6.19 SNR combiner

With only typical variations in the gains and noise figures of distributed antenna systems, a severe degradation in
performance will occur if the Granlund combiner described in Sect. 6.3.1 is used [47]. To overcome this problem, Bortnyk
and Franke proposed the JTT/SNR combiner [47], where SNR combining yields a combiner performance that is independent
of the matching receiver gain or cable loss in each diversity branch. A combining algorithm based on signal-to-noise ratio
weighting, due to Bortnyk [46] is elaborated upon below.

Figure 6.19 depicts the SNR combiner, and comparison with Fig. 6.7 highlights the differences between the SNR and
Granlund combiners. While the Granlund combiner employs a single automatic gain control (AGC) circuit, the SNR
combiner employs independent AGC circuits in each diversity branch. The independent AGC loops maintain the rms signal
plus noise envelope level at an input level threshold Rlevel, i.e.,

p
CC N D Rlevel; (6.130)

where C represents a desired signal power N represents a noise power and Rlevel is the AGC leveling constant. Thus, the rms
signal plus noise envelope level of each diversity branch input, Qrk.t/, to the combiner is adjusted to be equal to Rlevel. The
combined output signal is given by

y.t/ D 1
P

i WiMi

X

k

fWkj˛kjQsm.t/CWkRk Qnk.t/g : (6.131)

where Wi is the weighting coefficient for the kth branch and Ri D e�j O�k represents an estimate of e�j�k obtained from a phase
locked loop.

The combined output y.t/ is correlated with each of the received signal images

Qrk.t/ D ˛kQsm.t/e
j�k C Qnk.t/ (6.132)

to yield the set of phasors Qvk.t/; k D 1; : : : ;L, where

Qvk.t/ D
�

˛kQsm.t/e
j�k C Qnk.t/

�

y�.t/

D
�

˛kQsm.t/e
j�k C Qnk.t/

�

� 1
P

i WiMi

X

k

˚

Wkj˛kjQs�
m.t/CWkR�

k Qn�
k .t/




(6.133)

The above expression expands into four terms

Qvk.t/ D ˛kQsm.t/Qs�
m.t/e

j�k
1

P

i WiMi

X

i

fWij˛ijg C ˛kQsm.t/e
j�k

1
P

i WiMi

X

i

˚

WiR
�
i Qn�

i .t/



CQnk.t/
1

P

i WiMi

X

i

˚

Wij˛ijQs�
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C Qnk.t/
1

P

i WiMi

X

i

˚

WiR
�
i Qn�

i .t/



(6.134)
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The uncorrelated terms due to random noise, data, and channel gains average to zero. It follows that

Mk D EŒj Qvk.t/j� � j˛kjEŒjQsm.t/j2�C
Wk

P

i WiMi

kQnk.t/k2: (6.135)

In practice the expectation is replaced with time averaging. In the event that the signal-to-noise ratio is high, the noise
component nk.t/ is small. If the signal-to-noise ratio is small, the weight Wk is small. Hence, the second term is typically
small. For simplicity, it can be assumed that EŒjQsm.t/j2� D 1 so that Mk � j˛kj, and Mk is an estimate of the signal
magnitude j˛kj. It follows that M2

k is a measure of the signal power C. The ACG circuit on each branch keeps EŒjrk.t/j� D
Rlevel, where Rlevel is the AGC leveling constant. For maximal ratio combining, the weight Wk should be in proportion to the
ratio
p

C=N2 D Mk=N2. Accordingly, N2 D EŒjnk.t/j2� D R2level �M2
k , and

Wk D
Mk

R2level �M2
k

: (6.136)

The sum-weight module in Fig. 6.19 sums the L signal images to produce

˙ r.t/ D
L
X

kD1
WkRkrk.t/ (6.137)

The magnitude of the signal component of ˙ r.t/ is

ˇ
ˇ
ˇ
ˇ
ˇ

L
X

kD1
WkRk˛kQsm.t/

ˇ
ˇ
ˇ
ˇ
ˇ
�

L
X

kD1
WkMkQsm.t/ (6.138)

The output of the combiner ˙ r.t/ may be normalized to unity by dividing by
PL

kD1 WkMk. Hence, this gives the combiner
output

y.t/ D 1
P

i WiMi

X

k

WkRkrk.t/

D 1
P

i WiMi

X

k

fWkj˛kjQsm.t/CWkRk Qnk.t/g (6.139)

6.9 Classical Beam-Forming

This section considers line-of-sight reception of a signal by a uniform linear array (ULA) of antenna elements as shown in
Fig. 6.20. The distance between the transmitter and receiver is assumed to be large enough so that plane wave propagation
can be assumed. The ULA is positioned with an angle � with respect to the x-axis and the elements are uniformly spaced
ım apart as shown in Fig. 6.20. The transmitted bandpass waveform has the form

s.t/ D Re
˚

Qs.t/ej2� fct



: (6.140)

Fig. 6.20 Plane wave incident
on a uniform linear array (ULA)
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Then the received bandpass waveform at a distance ` from the transmitter is

r.t/ D Re
˚

˛.`/Qs.t � `=c/ej2� fc.t�`=c/



; (6.141)

where ˛.`/ is the attenuation at distance ` and c is the speed of light. It follows that the received complex envelope is

Qr.t/ D ˛.`/Qs.t � `=c/ej�.t/; (6.142)

where

�.t/ D �j2� fc`=c (6.143)

is the excess carrier phase. It is assumed that (1) the antenna elements are spaced close enough together so that ˛.`/ D
˛.`0/ � ˛0 for all antenna elements, (2) the antenna elements are far enough apart so that there is no mutual coupling
between antenna elements, and (3) the transmitted signal is a bandpass waveform such that Qs.t� `=c/ D Qs.t� `0=c/ � Qs0.t/.

Assume that the ULA has L elements, where L is odd, that are spaced ım apart. Antenna k is located at distance `k from
the transmit antenna and the corresponding excess carrier phase is

�k.t/ D �2� fc`k=c

D �2� fc`0=c � 2� fc.`k � `0/=c

� �0.t/ � 2� fc�`k=c

� �0.t/ ���k: (6.144)

From the geometry in Fig. 6.20, the relative distance �`k is

�`k D kı cos.�/; (6.145)

under the assumption that the distance OB � OM is large compared to the antenna spacing ı, and where the antenna index k

is assumed to run from �L=2 to L=2. The phase offset ��k is

��k D .2� fc=c/kı cos.�/

D 2�
�

kı

�c

�

cos.�/; (6.146)

where �c is the carrier wavelength. Hence, the received complex envelope at antenna element k is

Qrk.t/ D ˛0Qs0.t/ej�0.t/e
j2�

�
kı
�c

�

cos.�/

D ˛0Qs0.t/ej�0.t/ak.�/; (6.147)

where

ak.�/ D e
j2�

�
kı
�c

�

cos.�/
: (6.148)

A phased array computes the weighted sum

Qrc.t/ D
L=2
X

kD�L=2

w�
k ak.�/˛0Qs0.t/ej�0.t/

D wHa.�/˛0Qs0.t/ej�0.t/; (6.149)
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where

a.�/ D .a�L=2.�/; : : : ; a0; : : : ; aL=2.�//
T ; (6.150)

and

w D .w�L=2; : : : ;w0; : : : ;wL=2/
T (6.151)

is the weighting vector. The weighting vector can be chosen to optimize a variety of criteria. One possibility is to maximize
the gain of the antenna array G.�/ D wHa.�/ when the desired signal arrives such that the antenna array orientation is equal
to �o. By using the Cauchy–Schwartz inequality, it can be shown that this is accomplished with the weighting vector

wopt D a.�o/; (6.152)

which yields the antenna gain

G.�/ D aH.�o/a.�/: (6.153)

Example 6.1. Suppose that �o D 90o so that the plane waves arrive broadside to the antenna array. Then

wopt D a.�o/ D .1; 1; : : : ; 1/T : (6.154)

In this case, the antenna gain can be written as

G.�/ D wH

opta.�/

D
L=2
X

kD�L=2

e
j2�

�
kı
�c

�

cos.�/
:

By letting

z D e
j2�

�
ı
�c

�

cos.�/
(6.155)

it follows that

G.�/ D
L=2
X

kD�L=2

zk

D z�.LC1/=2 � z.LC1/=2

z�1=2 � z1=2
: (6.156)

Substituting (6.155) into (6.156) and simplifying by using the inverse Euler identity yields

G.�/ D sin .�.LC 1/.ı=�c/ cos.�//

sin .�.ı=�c/ cos.�//
: (6.157)

(continued)
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Example 6.1 (continued)
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Fig. 6.21 Antenna gain jG.�/j dB for a uniform linear array (ULA) optimized for �o D 90o; L D 8 (9 element array), ı=�c D 0:25

Figure 6.21 plots the magnitude of the antenna gain

G.�/.dB/ D 20log10fjG.�/j=jG.0/jg (6.158)

against the angle-of-arrival � for ı=�c D 0:25 and L D 8 (9 element array). Clearly, the antenna exhibits significant
gain in the direction �o D 90o (�=2 radians).

For a ULA the quality of the beam-forming depends on the angle-of-arrival. The best result is obtained for the broadside
case when �o D 90o and the worst case is obtained for the in-line case when �o D 0o. However, other types of antenna arrays,
such as uniform circular arrays, can be used to provide a more uniform performance in all azimuthal directions.

6.10 MIMO Channels

A MIMO system is one that consists, for example, of multiple transmit and receive antennas as shown in Fig. 6.22. For a
system consisting of LT transmit and LR receive antennas, the channel can be described by the LR � LT matrix

G.t; �/ D

2

6
6
6
4

g1;1.t; �/ g1;2.t; �/ � � � g1;LT
.t; �/

g2;1.t; �/ g2;2.t; �/ � � � g2;LT
.t; �/

:::
:::

:::

gLR;1.t; �/ gLR;2.t; �/ � � � gLR;LT
.t; �/

3

7
7
7
5
; (6.159)

where gqp.t; �/ denotes the time-varying sub-channel impulse response between the pth transmit antenna and qth receive
antenna.

Suppose that the complex envelopes of the signals transmitted from the LT transmit antennas are described by the vector

Qs.t/ D .Qs1.t/; Qs2.t/; : : : ; QsLT
.t//T ; (6.160)
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Fig. 6.22 MIMO system with
multiple transmit and multiple
receive antennas

Tx Rx

LT

1 1

LR

where Qsp.t/ is the signal transmitted from the pth transmit antenna. Likewise, let

Qr.t/ D .Qr1.t/; Qr2.t/; : : : ; QrLR
.t//T ; (6.161)

denote the vector of received complex envelopes, where Qrq.t/ is the signal received at the qth receiver antenna. Then

Qr.t/ D
Z t

0

G.t; �/Qs.t � �/d� (6.162)

Under conditions of flat fading

G.t; �/ D G.t/ı.� � O�/; (6.163)

where O� is the delay through the channel and

Qr.t/ D G.t/Qs.t � O�/: (6.164)

If the MIMO channel is characterized by slow fading, then

Qr.t/ D
Z t

0

G.�/Qs.t � �/d�: (6.165)

In this case, the channel matrix G.�/ remains constant over the duration of the transmitted waveform Qs.t/, but can vary
randomly from one channel use to the next, where a channel use may be defined as the transmission of either a single
modulated symbol or a vector of modulated symbols from each antenna. In the case of a vector of modulated symbols, this
type of channel is sometimes called a quasi-static fading channel or a block fading channel. Finally, if the MIMO channel is
characterized by slow flat fading, then

Qr.t/ D GQs.t/; (6.166)

where once again the matrix G is assumed to vary randomly from one channel use to the next. MIMO channel models
can be classified as either physical or analytical models. Physical MIMO models characterize the channel on the basis
of electromagnetic wave propagation between the transmitter and receiver antennas. Such physical channel models can
be further classified as deterministic models, geometry-based stochastic models, and non-geometric stochastic models.
Deterministic models construct the MIMO channel in a completely deterministic manner, such as ray tracing and stored
measurement data. With geometry-based stochastic models, the time-variant MIMO channel impulse response is generated
by applying the laws of wave propagation to specific transmitter, receiver, and scattering geometries, which are generated
in a stochastic or random fashion. The non-geometric stochastic models determine physical parameters such as the angles
of departure and angles of arrival in a completely stochastic fashion by prescribing underlying probability density functions,
but not using an underlying geometry. These models include the extended Saleh–Valenzuela models [63, 340].

The analytical MIMO models characterize the MIMO sub-channel impulse responses in a mathematical manner without
explicitly considering the underlying electromagnetic wave propagation. Analytic models can be further classified as
propagation motivated models or correlation-based models. Propagation motivated models include the finite scattering
models [49], maximum entropy models [92], and virtual channel representation [293]. Correlation-based models generate



308 6 Multi-Antenna Techniques

random realizations of the channel matrix with specified correlations between the matrix elements [179, 350]. These models
are easy to implement, which has made them very popular for MIMO channel simulations. Moreover, the analytical models
are relatively easy to construct and use, so they are treated here.

6.10.1 Analytical MIMO Channel Models

Analytical MIMO channel models are most often used under quasi-static flat fading conditions. It was shown earlier that
the time-variant channel impulses for flat fading channels can be treated as complex Gaussian random processes under
conditions of Rayleigh and Ricean fading. The various analytical models generate the MIMO matrices as realizations of
complex Gaussian random variables having specified means and correlations. To model Ricean fading, the channel matrix
can be divided into a deterministic part and a random part, i.e.,

G D
r

K

K C 1
NGC

r

1

K C 1Gs (6.167)

where EŒG� D
q

K
KC1
NG is the LoS or specular component and

q
K

KC1Gs is the scatter component assumed to have zero mean.

The elements of the matrices NG and Gs are normalized to have power ˝p, so that the elements of matrix G have power
˝p, i.e., EŒjgpqj2� D ˝p. In this case, K represents the Rice factor, defined as the ratio of the power in the LoS or specular
component to the power in the scatter component.

To simplify our further treatment of the MIMO channel, assume for the time being that K D 0, so that G D Gs. The
simplest MIMO model assumes that the entries of the matrix G are independent and identically distributed (i.i.d) complex
Gaussian random variables. This model corresponds to the so-called rich scattering or spatially white environment. Such
an independence assumption simplifies the performance analysis of various digital signaling schemes operating on MIMO
channels. However, in reality the sub-channels will be correlated and, therefore, the i.i.d. model will lead to optimistic results.

A variety of more sophisticated models have been introduced to account for spatial correlation of the sub-channels.
Consider the vector g D vecfGg, where G D Œg1; g2; : : : ; gLT

� and vecfGg D ŒgT

1; g
T

2; : : : ; g
T

LT
�T . The vector g is a column

vector of length n D LTLR. The vector g is zero-mean complex Gaussian random vector and its statistics are fully specified
by the n � n channel covariance matrix RG D EŒggH�. Hence, g � C N .0;RG/ and, if RG is invertible, the probability
density function of g is

p.g/ D 1

.2�/ndet.RG/
exp

�

�1
2

gHR�1
G g

�

; g 2 C
n: (6.168)

Realizations of the MIMO channel with the distribution in (6.168) can be generated by

G D unvecfgg with g D R
1=2
G w: (6.169)

Here, R
1=2
G is any matrix square root of RG, i.e., RG D R

1=2
G .R

1=2
G /H, and w is a length n vector where w � C N .0; I/.

6.10.1.1 Kronecker Model

The Kronecker model [179] constructs the MIMO channel matrix G under the assumption that the spatial correlation at the
transmitter and receiver is separable. This is equivalent to restricting the correlation matrix RG to have the Kronecker product
form

RG D RT

T ˝ RR; (6.170)

where

RT D EŒGHG� RR D EŒGGH�: (6.171)

are the LT � LT and LR � LR transmit and receive correlation matrices respectively, and ˝ is the Kronecker product. For
example, the Kronecker product of an n � n matrix A and an m � m matrix B is
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A˝ B D
�

a11B � � � a1nB

an1B � � � annB

�

: (6.172)

Under the above Kronecker assumption, (6.169) simplifies to the Kronecker model

g D
�

RT

T ˝ RR

�1=2
w (6.173)

or

G D R
1=2
R WR

1=2
T ; (6.174)

where W is an LR � LT matrix having elements that are i.i.d. zero-mean complex Gaussian random variables having unit
variance.

The elements of the matrix G represent correlations between the faded envelopes of the MIMO sub-channels. If the
elements of G could be arbitrarily selected, then the correlation functions would be a function of four sub-channel index
parameters, i.e.,

EŒg�
qpgQqQp� D �.q; p; Qq; Qp/; (6.175)

where gqp is the channel between the pth transmit and qth receive antenna. However, due to the Kronecker property in (6.170),
the elements of G are structured. One implication of the Kronecker property is spatial stationarity

EŒg�
qpgQqQp� D �.q � Qq; p � Qp/: (6.176)

This implies that the sub-channel correlations are determined not by their position in the matrix G, but by their positional
difference. In addition, to the stationary property, manipulation of the Kronecker product form in (6.170) implies that

EŒg�
qpgQqQp� D �T.p � Qp/ � �R.q � Qq/: (6.177)

This means that the correlation can be separated into two parts: a transmitter part and a receiver part, and both parts are
stationary. Finally, the Kronecker property in (6.170) holds if and only if the separable property in (6.177) holds. The
separable property is satisfied by double-bounced channels such as the double ring mobile-to-mobile channel model in
Fig. 2.53, where the angles-of-arrival for each ray at the receiver are independent of the angles-of-departure of each ray at
the transmitter.

6.10.1.2 Weichselberger Model

The Weichselberger model [350] overcomes the separable requirement of the channel correlation functions in (6.177) of the
Kronecker model so as to include a broader range of MIMO channels. Its definition is based on an eigenvalue decomposition
of the transmitter and receiver correlation matrices,

RT D UTƒTUH

T (6.178)

RR D URƒRUH

R (6.179)

Here the matrices ƒT and ƒR are diagonal matrices containing the eigenvalues of RT and RR, respectively, while UT and
UR are unity matrices whose columns are the corresponding eigenvectors of RT and RR, respectively. Sometimes UT and UR

are called the transmit and receive eigenmodes, respectively. The Weichselberger model describes the power coupling of the
transmit and receive eigenmodes by the LR � LT coupling matrix

� D EG

�

.UH

RGU�
T/ˇ .UT

RG�UT/
�

; (6.180)

where ˇ denotes the Schur–Hadamard product (element-wise matrix multiplication). The nonnegative real values of
the coupling matrix � determine the average power coupling between the transmitter and receiver eigenvectors. The
corresponding channel correlation matrix is
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RG D
LTX

iD1

LRX

jD1
!ji

�

uT;i ˝ uR;j

� �

uT;i ˝ uR;j

�H
(6.181)

where !ji D Œ��ji, and uT;i and uR;j are the ith and jth columns of UT and UR, respectively.
Realizations of the channel matrix G are generated as

G D UR

�

Q�ˇW
�

UT

T ; (6.182)

where W is an LR � LT matrix consisting of i.i.d. zero-mean complex Gaussian random variables having unit variance, and
the matrix Q� is the element-wise square root of �.

Finally, the Kronecker model is a special case of the Weichselberger model obtained with the coupling matrix � D �R�T

T ,
where �R and �T are column vectors containing the eigenvalues of ƒR and ƒT , respectively.

6.11 Transmitter Diversity

Transmitter diversity uses multiple transmit antennas to provide the receiver with multiple uncorrelated replicas of the same
signal. The obvious advantage is that the complexity of having multiple antennas is placed on the transmitter which may be
shared among many receivers, for example, the forward (base-to-mobile) link in many wireless systems. The user terminals
can use just a single antenna and still benefit from a diversity gain.

Transmitter diversity can take on many forms, distinguished by the method of using the multiple transmit antennas.
Transmit diversity is straightforward for systems that use time division duplexing (TDD), where different time slots on
the same carrier are used for the forward and reverse link transmissions. For TDD systems, the channel impulse response
satisfies the reciprocity principle. At the base station the signals received on all antennas can be processed during every
received burst, and used to estimate the corresponding channel impulse responses. The antenna that provides the largest
received bit or symbol energy-to-noise ratio on the reverse link is selected and used for the next forward burst transmission.
This is a form of selective transmit diversity (STD). Obviously, this scheme requires that the channel coherence time be
larger than the burst duration.

For frequency division duplexed (FDD) systems, transmit diversity is more complicated to implement, because the
forward and reverse links are not reciprocal. Time division transmit diversity (TDTD) can be used for FDD by switching
the transmitted signal between two or more transmit antennas. Alternate bursts are transmitted through two or more separate
antennas, a technique known as time switched transmit diversity (TSTD). Delay transmit diversity is another method, where
copies of the same symbol are transmitted through multiple antennas at different times. This has the effect of creating artificial
delay spread so that the resulting channel looks like a fading ISI channel. An equalizer can then be used to recover the signal
and provide a diversity gain.

More elaborate forms of transmit diversity use space-time, space-frequency, or space-time-frequency encoding of the
transmitted information. In general, these schemes require three functions: (1) a method for encoding and transmitting the
information sequence at the transmitter, (2) a combining scheme at the receiver, (3) a rule for making decisions. Alamouti
[15] introduced a simple repetition transmit diversity scheme with maximum likelihood combining at the receiver. By using
two transmit antennas and one receiver antenna, the scheme provides the same diversity order as maximal ratio receiver
combining with one transmit antenna and two receiver antennas. This scheme requires no feedback from the receiver to the
transmitter, and requires no bandwidth expansion. However, to estimate the channel, the scheme requires that separate pilot
sequences be inserted into the waveforms that are transmitted from each of the transmit antennas.

6.11.1 Alamouti’s Transmit Diversity Scheme

Alamouti’s transmit diversity scheme [15] uses two transmit antennas and one receiver antenna, referred to as 2�1 diversity.
With the Alamouti scheme, two complex data symbols are transmitted over two successive baud intervals by using two
transmit antennas. During the first baud interval, the complex symbol vectors transmitted from Antennas 1 and 2 are denoted
by Qs.1/ and Qs.2/, respectively. During the next baud interval, the complex symbol vectors transmitted from Antennas 1 and
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Fig. 6.23 Space-time diversity receiver for 2� 1 diversity

2 are �Qs�
.2/ and Qs�

.1/, respectively. Assuming a slow flat fading channel, the complex channel gains associated with transmit
Antennas 1 and 2 are g1 and g2, respectively, The complex received vectors are

Qr.1/ D g1Qs.1/ C g2Qs.2/ C Qn.1/
Qr.2/ D �g1Qs�

.2/ C g2Qs�
.1/ C Qn.2/; (6.183)

where Qr.1/ and Qr.2/ represent the received vectors during the first and second baud intervals, respectively, and Qn.1/ and Qn.2/
are the corresponding complex Gaussian noise vectors.

The diversity combiner for this scheme is shown in Fig. 6.23. The combiner constructs the following two signal vectors:

Qv.1/ D g�
1 Qr.1/ C g2 Qr�

.2/

Qv.2/ D g�
2 Qr.1/ � g1 Qr�

.2/: (6.184)

Afterwards, the receiver applies the vectors Qv.1/ and Qv.2/ in a sequential or parallel fashion to the metric computer in Fig. 6.4,
to make decisions by maximizing the decision metric

�.Qs.1/;m/ D Re
�

Qv.1/; Qs.1/;m
�

� Em.jg1j2 C jg2j2/

�.Qs.2/;m/ D Re
�

Qv.2/; Qs.2/;m
�

� Em.jg1j2 C jg2j2/: (6.185)

Using (6.183) in (6.184) gives

Qv.1/ D .˛21 C ˛22/Qs.1/ C g�
1 Qn.1/ C g2 Qn�

.2/

Qv.2/ D .˛21 C ˛22/Qs.2/ � g1 Qn�
.2/ C g�

2 Qn.1/: (6.186)

This is to be compared with the output of the MRC metric computer in Fig. 6.4. With L D 2,

Qr D g�
1 Qr1 C g�

2 Qr2
D .˛21 C ˛22/Qsm C g�

1 Qn1 C g�
2 Qn2: (6.187)
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Comparison of (6.186) and (6.187) shows that the combined signals in each case are the same. The only difference is the
phase rotations of the Gaussian noise vectors which will not matter due to their circular symmetry.

6.11.1.1 2 � L Diversity

The case of 2 � L diversity is now considered, and it is shown that the performance is equivalent to 1 � 2L diversity with
MRC. The approach is illustrated for the case of 2 � 2 diversity, and the extension to 2 � L diversity will be obvious. To
describe the scheme, the following notation is introduced:

gi;j D channel gain between transmit antenna i and receiver antenna j:

Qr.1/;j D received signal at antenna j during the first baud interval.

Qr.2/;j D received signal at antenna j during the second baud interval.

The encoding scheme remains the same as before: the complex symbol vectors Qs.1/ and Qs.2/ are transmitted from Antennas 1
and 2 during the first baud interval, and complex symbol vectors �Qs�

.2/ and Qs�
.1/ are transmitted from Antennas 1 and 2 during

the second baud interval. The complex received signal vectors are

Qr.1/;1 D g1;1Qs.1/ C g2;1Qs.2/ C Qn.1/;1
Qr.2/;1 D �g1;1Qs�

.2/ C g2;1Qs�
.1/ C Qn.2/;1

Qr.1/;2 D g1;2Qs.1/ C g2;2Qs.2/ C Qn.1/;2
Qr.2/;2 D �g1;2Qs�

.2/ C g2;2Qs�
.1/ C Qn.2/;2:

The combiner shown in Fig. 6.24 constructs the following two signal vectors

Qv.1/ D g�
1;1 Qr.1/;1 C g2;1 Qr�

.2/;1 C g�
1;2 Qr.1/;2 C g2;2 Qr�

.2/;2 (6.188)

Qv.2/ D g�
2;1 Qr.1/;1 � g1;1 Qr�

.2/;1 C g�
2;2 Qr.1/;2 � g1;2 Qr�

.2/;2: (6.189)

Again, the receiver applies the vectors Qv.1/ and Qv.2/ in a sequential or parallel fashion to the metric computer in Fig. 6.4 and
decisions are made by maximizing the metric in (6.185).
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To compare the 2�2 transmit diversity scheme to 1�4 receive diversity with MRC, appropriate equations are substituted
to obtain

Qv.1/ D .˛21;1 C ˛21;2 C ˛22;1 C ˛22;2/Qs.1/ C g�
1;1 Qn.1/;1 C g2;1 Qn�

.2/;1 C g�
1;2 Qn.1/;2 C g2;2 Qn�

.2/;2 (6.190)

Qv.2/ D .˛21;1 C ˛21;2 C ˛22;1 C ˛22;2/Qs.2/ C g�
2;1 Qn.1/;1 � g1;1 Qn�

.2/;1 C g�
2;2 Qn.1/;2 � g1;2 Qn�

.2/;2: (6.191)

This is to be compared with the output of the MRC in Fig. 6.4. With L D 4,

Qr D g�
1 Qr1 C g�

2 Qr2 C g�
3 Qr3 C g�

4 Qr4
D .˛21 C ˛22 C ˛23 C ˛24/Qsm C g�

1 Qn1 C g�
2 Qn2 C g�

3 Qn3 C g�
4 Qn4: (6.192)

Again, Alamouti’s 2�2 transmit diversity scheme is equivalent to a 1�4 receive diversity scheme with MRC. The extension
to show that Alamouti’s 2 � L transmit diversity scheme is equivalent to 1 � 2L diversity with MRC is left as an exercise.

6.11.1.2 Implementation Issues

There are several key implementation issues with Alamouti’s transmit diversity scheme, including the following:

• Since there are two transmit antennas, the power per antenna must be halved to maintain a constant transmit power. Hence,
the 2� L transmit diversity scheme has a 3 dB performance loss when compared to a 1� 2L diversity scheme with MRC.

• With two transmit antennas, twice as many pilot symbols are needed compared to the case of one transmit antenna. The
pilots must alternate between the antennas. Alternatively, orthogonal pilot sequences can be transmitted simultaneously
from the two transmit antennas.

• The transmit antennas must be spaced sufficiently far apart in order to achieve sufficient spatial decorrelation between the
sub-channels g1;i and g2;i, i D 1; : : : ;L. Chapter 2 showed that the required antenna separation can be on the order of a
half-wavelength with 2-D isotropic scattering, but as much as several tens of wavelengths at a cellular base station.

6.12 MIMO Detection

Consider the MIMO arrangement shown in Fig. 6.22 consisting of LT transmitter antennas and LR receiver antennas. As
described in Sect. 6.10, consider the case where the MIMO channel exhibits slow flat fading. The complex envelopes of the
signals transmitted from the LT transmit antennas are described by the vector

Qs.t/ D .Qs1.t/; Qs2.t/; : : : ; QsLT
.t//T ; (6.193)

where Qsp.t/ is the signal transmitted from the pth transmit antenna. Likewise, the complex envelopes of the signals received
at the LR receiver antennas are described by the vector

Qr.t/ D .Qr1.t/; Qr2.t/; : : : ; QrLR
.t//T ; (6.194)

where Qrq.t/ is the complex envelope received at the qth receiver antenna. It follows that

Qr.t/ D GQs.t/; (6.195)

where G is the LR � LT channel matrix.
Similar to the development in Sect. 5.1, a correlator matched filter detector may be assumed on each receiver antenna

branch. Once again, a complex signal space representation is assumed with dimension N D 1, e.g., M-QAM or M-PSK. Let

Qs D .Qs1; Qs2; : : : ; QsLT
/T

Qr D .Qr1; Qr2; : : : ; QrLR
/T

Qn D .Qn1; Qn2; : : : ; QnLR
/T (6.196)



314 6 Multi-Antenna Techniques

denote the length-LT transmitted signal vector, the length-LR received signal vector, and the length-LR received noise vector,
respectively. It follows that

Qr D GQsC Qn: (6.197)

By processing the received signal vector Qr, several different detectors are possible.

6.12.1 Maximum Likelihood Detection

The noise vector Qn consists of independent identically distributed complex Gaussian random variables, each with variance
No. From Sect. 5.2, the maximum likelihood receiver decides on the signal vector Qs that maximizes the joint conditional
density function p.QrjQs/ which has a multivariate complex Gaussian distribution. It follows that the maximum likelihood
receiver maximizes the decision metric

�.Qs;G/ D kQr �GQsk2

D
LRX

jD1

ˇ
ˇ
ˇ
ˇ
ˇ
Qrj �

LTX

iD1
gj;iQsi

ˇ
ˇ
ˇ
ˇ
ˇ

2

(6.198)

The maximum likelihood metric in (6.198) has high complexity even when LT and LR are relatively small, so many
suboptimal detectors have been suggested in the literature. The simplest include the MMSE detector, and inverse channel
detector (ICD).

6.12.2 Minimum Mean-Square-Error Detector

The MMSE detector performs linear combining on the received signal vector Qr to determine the transmitted signal vector Qs.
The linear combiner forms an estimate of Qs, denoted as Os, and represented in matrix form as

Os DWH Qr (6.199)

where W is an LR � LT weighting matrix. Each element of the vector Os is quantized to the nearest signal vector.
The weighting matrix W is chosen to minimize the mean square error

J D 1

2
EŒks �WH Qrk2 (6.200)

As with the optimal combiner in Sect. 6.8, the optimal weighting matrix, Wopt, can be obtained by setting the gradient rWJ

to zero. This gives the MMSE solution

rWJ D

2

6
6
4

@J
@w1;1

; � � � ; @J
@wLR ;1

:::; � � � ;
:::

@J
@w1;LT

; � � � ; @J
@wLR ;LT

3

7
7
5
DWˆQrQr �ˆQsQr D 0: (6.201)

where

ˆQrQr D
1

2
EŒQrQrH�

D GˆQsQsG
H C NoI (6.202)
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is the LR � LR autocorrelation matrix of the received signal vector Qr, and

ˆQsQs D
1

2
EŒQsQsH� (6.203)

is the LT � LT signal correlation matrix, and

ˆQsQr D
1

2
EŒQsH Qr� (6.204)

is the LT � LR cross-correlation matrix between Qs and Qr.
In the second line of (6.202), the signal and noise vectors are assumed zero mean and uncorrelated, and the noise vector

Qn has covariance matrix

1

2
EŒ Qn QnH� D NoILR�LR

(6.205)

The solution to (6.201) is

Wopt D ˆ�1
QrQr ˆQsQr (6.206)

Usually the signal vector Qs has uncorrelated, zero-mean, elements, so that ˆQsQs in (6.202) reduces to a diagonal matrix.

6.12.3 Inverse Channel Detector

The inverse channel detector (ICD) also forms an estimate of Qs by linear combining. If LT D LR, then the weighting matrix
is selected as W D G�1 so that

Os DWQr D G�1 Qr D QsCG�1 Qn (6.207)

As with the MMSE detector, each row of the matrix Os is quantized to the nearest signal vector. When LR ¤ LT , the matrix G

is not square so its inverse does not exist. However, the pseudo-inverse can be used instead. If LR > LT and the LT columns
of G are linearly independent, then

W D .GHG/�1GH: (6.208)

Likewise, if LR < LT and the LR rows of G are linearly independent, then

W D GH.GGH/�1: (6.209)

Note that the ICD detector removes all interchannel interference. However, this also implies that the ICD detector does
not exploit any inherent diversity present in the received signal across the diversity branches. Moreover, there may be noise
enhancement due to the multiplication of the noise vector Qn by the matrix inverse G�1 in cases where the matrix G is
ill-conditioned or, likewise, by multiplication of the noise vector by the pseudo-inverses in (6.208) and (6.209).

6.12.4 Known Channel at the Transmitter and Receiver

In certain types of wireless systems, particularly those using time division duplexing (TDD), knowledge of the channel is
available at both the transmitter and receiver. In this case, a singular value decomposition (SVD) of the channel matrix G

may be performed. Suppose that the channel matrix G has rank r which is at most minfLT ;LRg. Then

G D UƒVH (6.210)
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where U is an LR � r matrix, V is an LT � r matrix, and ƒ is an r � r diagonal matrix, such that the diagonal elements
�1; �2; : : : ; �r are the singular values of the channel matrix G. The matrices U and V are unitary matrices, meaning that
UUH D Ir�r and VVH D Ir�r where Ir�r is the r � r identity matrix.

Given knowledge that the channel matrix G has rank r at the transmitter, r symbols are sent over the channel. The r � 1
transmitted signal vector Qs is precoded at the transmitter by using the linear transformation

Qsp D VQs: (6.211)

The corresponding received signal vector is

Qr D GQsp C Qn D GVQsC Qn: (6.212)

At the receiver, the received signal vector Qr is processed by the linear transformation UH as follows:

Os D UH Qr
D UHGVQsC UH Qn
D UHUƒVHVQsC UH Qn
D ƒQsC UH Qn: (6.213)

From (6.213), it follows that there is no interchannel interference and the r data streams may be detected individually.
Similar to the ICD detector, the SVD method does not exploit the inherent diversity provided by the channel. Rather the
SVD method creates parallel streams of data, which increases the overall data rate. Multiplication of the noise vector Qn by
the unitary matrix UH does not alter the statistics of the noise vector. Due to the multiplication of each transmitted symbol Qsk

by the corresponding singular value �k, the r data streams will have different received bit energy-to-noise ratios.

6.13 Spatial Modulation

Conventional MIMO communication systems transmit multiple data streams simultaneously from all transmit antennas.
Both multiplexing and transmit-diversity gains can be obtained using MIMO approaches that lead to high spectral efficiency.
Unfortunately, the simultaneous activation all transmit antennas and their associated RF circuitry and power amplifiers will
not lead to good energy efficiency if power consumption at the transmitter is accounted for. Under realistic BS power
consumption models, MIMO systems equipped with more than two active transmit antennas are unlikely provide any gains
in energy efficiency (EE) [163]. In this context, spatial modulation (SM) has recently appeared to improve overall EE,
by reducing the radiated power at the transmitter and required signal processing at the receiver. SM is a multi-antenna
MIMO concept where the transmitter possesses a larger set of antenna elements than the number of RF chains. The main
distinguishing feature of SM is that additional information bits are mapped onto an “SM constellation,” such that each
constellation point is comprised of either one or a small subset of the antenna elements.

Figure 6.25 illustrates the difference between spatial multiplexing, transmit diversity, and spatial modulation for the case
of LT D 2 transmit antennas and a modulation alphabet size M D 2. With spatial multiplexing, the two modulation symbols s1
and s2 are transmitted simultaneously from the two different transmit antennas. For an arbitrary number of transmit antennas
LT and modulation alphabet size M, the modulation efficiency is LT log2M bits/channel use. With transmit diversity, the two
modulation symbols are transmitted in two channel uses. In Fig. 6.25, the symbols are transmitted using an Alamouti space-
time block code. In general, for LT transmit antennas and modulation alphabet size M, the space-time block code transmits
NM modulation symbols in Nc channel uses. Hence, the overall modulation efficiency is .NM=Nc/log2M bits/channel use.
Finally, with spatial modulation, one of the two modulation symbols s1 is explicitly transmitted, while the other modulation
symbol s2 is implicitly transmitted by the transmit antenna selection. For LT transmit antennas and a modulation alphabet
size M, the modulation efficiency is log2LT C log2M bits/channel use. For the special case when M D 1, information is
only transmitted in the activated antenna index. This scheme is called space-shift keying (SSK) and was the first spatial
modulation scheme to appear in 2001 [58].

The modulation efficiency of spatial modulation increases as log2LT , whereas the modulation efficiency of spatial
multiplexing increases linearly with LT . This means that more antennas are needed with spatial modulation schemes to
achieve the same modulation efficiency. As such, spatial modulation schemes may be more suitable for mm-wave wireless
applications, where large arrays of antennas can be implemented in a small volume due to the short wavelength. However,
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Fig. 6.25 Spatial multiplexing, spatial diversity, and spatial modulation

Fig. 6.26 Spatial modulation using 4 transmit antennas with QPSK or 4-QAM modulation

mm-wave cellular links require beam-forming and, therefore, the antenna array would have to provide both a beam-forming
gain and a spatial multiplexing gain. As a result, a subset of the antenna elements would be activated for each channel use.

Figure 6.26 shows an example of a spatial modulation system with LT D 4 transmit antennas (Tx1,Tx2,Tx3,Tx4) and an
M D 4 point signal constellation for each possible transmit antenna. The scheme transmits 4 bits/channel use. The “spatial-
constellation diagram” in Fig. 6.26 depicts that the first two bits of each binary data 4-tuple are used to select the antenna
for transmission, while the last two bits are used to select the transmitted 4-QAM or QPSK symbol. Note that the activated
transmit antenna may change with every channel use.

Spatial modulation works on the principle that the sub-channel impulse responses between each transmit antenna and the
array of receiver antennas (possibly a single antenna) are uncorrelated to a certain degree, and can be distinguished. Suppose
that the LT � N signal matrix eT

i Qsm is transmitted, where ei is a length LT row vector of all-zeroes except for a one in the ith
coordinate, indicating that antenna i is selected, and Qsm is the length-N signal vector. Note that the signal matrix eT

i Qsm contains
all-zeroes except for the ith row. It is possible to implement spatial multiplexing schemes where more than one element in
the antenna array is activated during each channel use. The number of RF chains required in the transmitter is equal to the
number of activated antenna elements during each channel use.

For flat faded sub-channels, the LR � N received signal matrix is

QR D GeT

i Qsm (6.214)
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where G is the LR � LT MIMO channel matrix. By using knowledge of the set of possible transmitted waveforms and
knowledge of the sub-channel impulse/frequency responses between each transmit antenna and each receiver antenna, the
maximum likelihood or minimum distance receiver can search over the LT transmit antennas and M modulation symbols to
find the solution closest in squared Euclidean distance to the received vector of LR waveforms. That is, using knowledge of
G, the receiver chooses eT

i Qsm to minimize the squared Euclidean distance metric

�.eT

i Qsm/ D k QR �GeT

i Qsmk2 (6.215)
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(6.216)

Spatial modulation has a number of advantages and disadvantages compared to spatial multiplexed MIMO systems. The
receiver is simpler with spatial modulation, since only a single transmitter antenna is active at any time. As a result, there is no
interchannel interference to mitigate. The transmitter is simpler as well, since only a small number of RF chains are needed
along with an RF switching mechanism. Fortunately, such RF switching mechanisms exist that can operate at nanosecond or
even at subnanosecond speeds. However, since the RF switching occurs with each modulated symbol, there are limitations
on the allowable length of the amplitude shaping pulse ha.t/. Section 4.9.2 showed that the truncation of a root-raised cosine
pulse to a short length, for example, will result in significant side lobe generation in the transmitted power spectrum. Spatial
modulation, like other MIMO schemes, relies on favorable channel conditions such that the columns in the LR � LT MIMO
channel matrix are distinguishable. As with other modulation schemes, the bit error rate performance will depend on the
minimum Euclidean distance between points in the spatial-constellation. Finally, the reduced number of RF chains used in
the spatial modulation transmitter poses problems for channel estimation, since only a subset of the MIMO sub-channels are
active and can be observed at the same time.

6.14 Massive MIMO

Very large MIMO or massive MIMO systems use base station antenna arrays with an order of magnitude more elements than
conventional MIMO systems, perhaps a hundred antenna elements or more, while the mobile stations use single antennas.
The concept of massive MIMO was eloquently described in the seminal work of Marzetta [218]. A large number of antennas
allow the antenna beam pattern at the base station to be adjusted so as to sharply focus the radiated energy in a small region
of space at the intended receiver antenna by adding together the signals transmitted from the multiple antennas constructively
at the desired receiver, but destructively elsewhere at the other unintended receivers.

Massive MIMO works on the principle of favorable propagation, which occurs when the channel vectors between the
BS and each MS are nearly orthogonal as the number of BS antennas becomes very large. Favorable propagation allows for
simple linear precoding processing schemes, such as matched filtering, to be used that give almost the same performance
as more complex precoding schemes such as zero-forcing precoding or dirty paper coding. With a large number of BS
antennas, L, the power that is transmitted by each BS antenna element is reduced by the factor 1=L. Hence, as L becomes
large the expensive high-power RF components used in traditional MIMO systems can be replaced by a larger number of
low-power inexpensive RF components. Therefore, the constraints on the accuracy and linearity of each RF chain are reduced
and, moreover, the system is robust to the failure of any one antenna element. Finally, the large number of antennas tends
to reduce the depths of envelope fades through spatial averaging and makes the overall channel less time and frequency
selective. This is important for multi-carrier schemes such as OFDM, since the effects of frequency-selectivity are removed
and the computationally complex algorithms for power and bit allocation on the OFDM subcarriers to maximize the overall
bit rate are no longer needed.

Massive MIMO has its challenges. To estimate the channels with massive MIMO, time-division duplex (TDD) operation
is used with reverse link pilot sequences to enable the BS to estimate the reciprocal forward and reverse link channels. For
the purpose of channel estimation a distinct pilot sequence is assigned to each MS in a cell, such that the pilots transmitted
by the MSs in the same cell are orthogonal in time and frequency. The conjugate-transpose of the channel estimates are
then used for linear precoding and combining, respectively, on the forward and reverse links. Neither the BS nor the MSs
have any prior knowledge of the channels. Therefore, all channel state information (CSI) is acquired from reverse-link pilots
which must be scheduled, along with forward- and reverse-link data transmissions, in a time interval (called a slot) over
which the channel can be assumed to be constant. The slot duration can be set equal to the channel coherence time, which is
inversely proportional to the mobility or speed of the MSs. Thus, the number of users that can be served in a particular cell
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Fig. 6.27 Pilot contamination in massive MIMO. During the pilot phase (left) the BS overhears the pilot transmissions from MSs in other cells.
During the data phase (right) the BS partially beamforms to the MSs it has overhead in other cells [285]

is determined by the number of time orthogonal pilot sequences that can be assigned. Since the number of MSs that can be
served is proportional to the time spent sending pilots, and the sum-rate is proportional to the number of MSs served, the net
sum-rate is maximized by spending one half of the slot sending pilots and the other half of the slot sending data [217]. When
the channel exhibits delay spread, the number of MSs that can be served is equal to one-half of the channel coherence time
divided by the channel delay spread.

With massive MIMO, there is no sharing of channel information between BSs and no power control is used. Since the
number of orthogonal pilot sequences is limited, the pilot sequences are reused in the different cells of a multi-cell system
according to some pilot re-use factor. When estimating the channels to the MS it serves in the pilot period, a BS inadvertently
learns the channel to MSs in other cells that reuse the same pilot sequence. This phenomenon is called pilot contamination.
Thus, on the forward link channels, part of the energy sent to a particular MS will also be directed to an unintended MS
in another co-channel cell during the data period. This concept is illustrated in Fig. 6.27. Likewise, when the BS combines
its reverse-link signals to receive the individual data transmissions of the MSs it serves, it is also coherently combining
the signals from MSs in other co-channel cells. This out-of-cell interference on the forward and reverse links persists even
when the number of BS antennas becomes very large and presents a fundamental performance limitation in massive MIMO
systems. Millimeter wave frequencies admit themselves well to massive MIMO in regards to antenna technology since the
antenna spacing is small. However, the interference models for UHF frequencies and mm-wave frequencies are different.
With classical massive MIMO, the MS typically have a single antenna. However, at mm-wave frequencies both the BS and
MS employ MIMO arrays to achieve sufficient transmit and receive antenna gain in the link budget. The means the antenna
aperature is small such that the probability of interference is small and the mm-wave link budget is typically noise limited
rather than interference limited.

6.14.1 Massive MIMO System Model

Consider a massive MIMO cellular multi-access system consisting of a collection of cells, where the BSs at the center of each
cell have L omnidirectional antennas and each BS serves KMS MSs per cell, and where the MSs have a single omnidirectional
antenna. The L � KMS matrix of channel gains between the jth BS and the KMS MSs in cell ` is denoted as Hj;` which is
assumed to have the form

Hj;` D Gj;`�
1=2

j;` : (6.217)

The elements of the matrix Gj;` D Œgj;`�m;k D gj;`;m;k are assumed to be zero-mean complex Gaussian random variables with
an envelope power of unity, i.e., EŒjgj;`;m;kj2� D 1, which is characteristic of Rayleigh fading. The matrix �j;` is a KMS�KMS

diagonal matrix accounting for the effects of shadowing and path loss, where the k diagonal element of the matrix, denoted
as ˝j;`;k represents the received local mean envelope power, ˝j;`;k D EŒjhj;`;m;kj2�, between the jth BS and MS k in cell
`, assumed to be the same for all L antenna elements for the `th BS. The signal model is shown in Fig. 6.28, showing the
propagation coefficient hj;`;m;k between the kth MS in Cell ` and the mth antenna element in Cell j.
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Fig. 6.28 Propagation coefficient between kth MS in Cell ` and the mth antenna element in Cell j

Pilots Processing Downlink Uplink

Fig. 6.29 Time domain aligned pilots for massive MIMO. In this example, the slot consists of 5 sub-slots for pilots, one sub-slot for pilot
processing, 3 sub-slots for downlink transmissions, and 2 slots for uplink transmissionsfrom [125]

Using the simple path loss model in (1.4), the ˝j;`;k are log-normally distributed and distance dependent according to

˝j;`;k.d/ D
�˝p

.do/�

.d=do/ˇ
; (6.218)

where �˝p
.do/ D EŒ˝p.do/� is the average received signal power at the reference distance do, ˇ is the propagation path loss

exponent, and � is a log-normal random variable, such that �.dB/ is a zero-mean Gaussian random variable with standard
deviation equal to �˝ .

6.14.2 Reverse Link Pilots

Reverse-link pilots are required to estimate the channel for both forward and reverse data transmission. The same band of
frequencies is reused in a multiplicity of cells according to a frequency reuse plan. Consequently, the reverse link pilots
that are received at a particular base station will be contaminated by the reverse link pilots that are transmitted by MSs in
other cells sharing the same time-frequency resource. It is assumed that a total of N base stations in the deployment share
the same band of frequencies, and the same set of KMS pilot signals, one for each MS in their cells. Moreover, the forward
and reverse link transmissions are assumed to be perfectly synchronized, which constitutes the worst case condition for pilot
contamination. The cells use the time-domain aligned pilot (TDAP) structure shown in Fig. 6.29. First, pilots are transmitted
by the MSs. The BSs then process the received pilots to extract channel estimates. The channel estimates are used by the BSs
to precode the data transmitted on the downlink and to perform matched filtering on the uplink transmissions from the MSs.

Let OHj;j denote the estimate of the L � KMS channel matrix between the KMS MSs in the jth cell and the L antennas at the
jth BS. Accordingly,

OHj;j D
p

p

N
X

`D1
Hj;` C vj; (6.219)
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Pilots Processing Downlink Uplink

Fig. 6.30 Time domain shifted pilots for massive MIMO. In this example, the slot consists of 11 sub-slots, such that 2 sub-slots are used for pilots
in each cell group, 1 sub-slot is used for processing, 6 sub-slots are used for downlink data, and 2 sub-slots are used for uplink data, from [125]

where, again, Hj;` is the L � KMS propagation matrix between the KMS MSs in the `th cell and the L antennas at the base
station in the jth cell, and vj is an L � KMS receiver noise matrix, whose components are zero-mean unit-variance complex
Gaussian random variables that are mutually uncorrelated under the assumption of orthogonal pilots and uncorrelated with
the propagation matrices Hj;`. The quantity 
p is the pilot signal-to-noise ratio (SNR), which will be shown later to be
irrelevant as the effects of noise vanish when the number of uncorrelated BS antennas, L, becomes unbounded.

Pilot contamination is the key bottleneck in massive MIMO systems. Fortunately, pilot contamination can be mitigated by
using a number of approaches that will work better than the simple TDAP design discussed above. One possibility is the time
domain shifted pilot (TDSP) design that mitigates pilot contamination through asynchronous transmission among adjacent
cells as shown in Fig. 6.30 [125]. The TDAP scheme partitions the cellular deployment into groups of cell groups labelled
A1;A2; : : : ;ANp

. In Fig. 6.30, there are Np D 4 cell groups. Communication during each coherence interval is divided into
stages. During the first stage, the MSs from cells belonging to cell group A1 transmit their pilot sequences simultaneously,
while MSs from all other groups receive their downlink data. Once MSs in A1 finish their pilot sequence, they start receiving
downlink data while MSs belonging to a different cell group start sending their pilots. This procedure is repeated until MSs
in all cell groups have transmitted their pilots. Afterwards, all MSs switch to transmitting uplink data to their BTSs. With
unbounded BS antennas, TDSP can remove the pilot contamination from cells adopting non-overlapping pilot phase in uplink
transmission, but it still has mutual interference between data and pilot in downlink transmission [125].

6.14.3 Reverse Link Data

The KMS MSs in each cell transmit their data over the reverse channel to their respective base stations. The BSs use estimates
of the channel matrices, OHj;j to perform maximal ratio combining. Again, assuming perfect synchronization of the signals
received from the N MSs sharing the same time-frequency resource, the L� 1 received signal vector at the L antennas of the
jth BS is

Qrj D
p

r

N
X

`D1
Hj;`Qs` C Qnj; (6.220)

where Qs` is the KMS � 1 vector of KMS modulation symbols transmitted from the KMS MSs in the `th cell, Qnj is the L � 1

received noise vector whose components are zero-mean, mutually uncorrelated, and uncorrelated with the propagation
matrices. Note that in (6.220) it is assumed that the complex signal constellation has a dimensionality of unity, such that
all signal vectors are complex-valued scalars. The parameter 
r in (6.220) is the symbol-energy-to-noise ratio which, like the
pilot SNR, will be shown later to be irrelevant as the number of uncorrelated BS antennas, L, becomes unbounded.
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The jth BS processes the received vector Qrj by multiplying it by the conjugate-transpose of the channel estimate to perform
maximal ratio combining. From (6.219) and (6.220),

Nrj D OHH
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The components of the vector Nrj consist of the sum of inner products between random vectors of length L. As the number
of BS antennas becomes very large, the squared-length or L2 norm of these vectors grows with L, while the inner products
of uncorrelated vectors, by assumption of favorable propagation conditions, grow at a lesser rate. For very large L, only the
products of identical terms in the bracketed expressions in (6.221) are significant. From (6.217) and (6.218),
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where, once again, �j;`1 and �j;`2 are KMS �KMS diagonal matrices. As the number of BS antennas L grows without bound,
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due to the assumption of favorable propagation conditions. Substituting (6.223) and (6.222) into (6.221) gives
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The kth element of the vector Nrj normalized by 1=L
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where ˝j;k;` is the kth diagonal element of the KMS � KMS diagonal matrix �j;`. The noise terms due to vj and Qnj in (6.224)
vanish as L goes to infinity, due to the multiplicative 1=L factor. Moreover, the effects of fast envelope fading are completely
eliminated, due to spatial (antenna) averaging, and the transmissions from the KMS MSs in each cell do not interfere with each
other. The second term in the R.H.S. of (6.225) represents co-channel interference received from MSs in other cells sharing
the same pilot. Thus, with idealized (synchronized) massive MIMO, the interference-to-noise ratio is infinite and the signal-
to-interference-plus noise ratio (SINR) becomes equal to the signal-to-interference ratio (SIR). In the R.H.S. of (6.225), both
the desired symbol Qsk and interfering symbols in the summation are multiplied by their respective local mean powers ˝j;k

that are received at the jth BS. Consequently, due to the vanishing effects of noise, the SIR at the jth BS involves the squares
of the ˝j;k;j and ˝j;k;`, and is given by

SIRr;k D
˝2

j;k;j
PN

`D1
`¤j

˝2
j;k;`

; k D 1; : : : ;KMS; (6.226)

where the assumption is made that the co-channel interferers sharing the same time-frequency resource block are
uncorrelated, which is easily satisfied if their associated information symbol sequences are uncorrelated.
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6.14.4 Forward Link Data

The forward channel uses precoding such that each BS transmits a length-L vector from its L transmit antennas, which
is proportional to the complex conjugate transpose of its propagation matrix as estimated from reverse link pilots. The
transmission from the jth BS to its kth MS suffers from co-channel interference from the forward link BS transmissions in
co-channels cells to their respective MSs that are reusing the same time-frequency resource.

The `th BS transmits the L� 1 vector, OHH

`;`
Qs`, where Qs` is a length-KMS column vector of information symbols transmitted

to the KMS MS served by BS `. In practice, there is a normalizing factor corresponding to the transmit power constraints
of the BSs. Under the assumption that the normalizing factor is the same for all BSs, the value of the normalizing factor
becomes irrelevant as the number of BS antennas, L, becomes unbounded.

The KMS MSs served by the jth BS each receive their respective component of a length KMS vector that is comprised of
the signals transmitted from each of the BS in the N surrounding co-channel cells. That is,
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where wj is a KMS � 1 vector of uncorrelated noise components, and 
f is a measure of the forward channel SNR which will
be shown to be irrelevant as the number of BS antennas L grows without bound. As with the reverse channel, as the number
of BS antennas L goes to infinity, (6.222) and (6.223) are once again used to yield
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The kth MS in the jth cell receives
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As with the reverse link, the effective signal-to-interference ratio for the kth MS in the jth cell is

SIRf ;k D
˝2

j;k;j
PN

`D1
`¤j

˝2
`;k;j

; k D 1; : : : ;KMS (6.230)

Although the forward and reverse SIRs in (6.230) and (6.226), respectively, look similar, they are in fact different meaning
that the forward and reverse channels exhibit link imbalance. The numerator term of (6.230) and (6.226) in each case is the
same. However, the denominators are different. In the case of the reverse channel, the denominator is the sum of squares of
the local means˝`;k;j from the kth MS in the N�1 other cells than the jth cell. These local means are statistically uncorrelated.
In the case of the forward channel, the denominator is the sum of squares of the local means ˝`;k;j from the N � 1 BSs other
than the jth BS that are transmitting to their respective kth MSs and received at the kth MS in the jth cell. These local means
are statistically uncorrelated as well. However, the set of propagation distances to the co-channel interferers are not the same
for the forward and reverse links, meaning their respective area mean powers are different. Therefore, in the absence of power
control, forward and reverse link imbalance exists as in Chap. 1, Sect. 1.7.
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6.14.5 Favorable Propagation Conditions

Massive MIMO systems rely upon favorable propagation conditions in (6.223). This section explores the concept further to
define the circumstances under which favorable propagation conditions occur. To simplify the treatment, consider a single
isolated cell. Let hk be the length-L row vector representing the propagation vector between the kth MS and the L BS
antennas. Favorable propagation implies that as L becomes very large

hH

k hj

L
�! ˝kıkj: (6.231)

This means that the propagation vectors become mutually orthogonal. Another way of writing (6.231) is to observe that

HHH

L
�! � (6.232)

where � is a KMS � KMS diagonal matrix whose kth diagonal element is ˝k. One method for ascertaining favorable
propagation is the condition number of the matrix H, defined as the ratio of the maximum and minimum singular values
of the associated KMS � KMS Gram matrix HHH. The singular values of H are equal to the square root of the eigenvalues of
the Gram matrix HHH. If the condition number is unity, then favorable propagation is achieved. From the R.H.S. of (6.232),
it is apparent that if the local mean ˝k happens to be the same for all KMS MSs, then the condition number is equal to 1.
However, the˝k are typically different, so that condition number is not always meaningful. Moreover, the condition number
as a measure of favorable propagation only considers the largest and smallest eigenvalues, and disregards all the other
eigenvalues.

The sum capacity of the massive MIMO channel in bits per channel use or bits per symbol is

C D log2

ˇ
ˇ
ˇIC




L
HHH

ˇ
ˇ
ˇ ; (6.233)

where 
 is the symbol energy-to-noise ratio. Using the Hadamard inequality, it follows that

C D log2

ˇ
ˇ
ˇIC
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ˇ

� log2
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kD1
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�
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L
khkk2

�

: (6.234)

This motivates the distance from favorable propagation as a metric for favorable propagation, defined as [243]

�C D
PKMS

kD1 log2
�

1C 


L
khkk2

�

� log2
ˇ
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L
HHH

ˇ
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ˇ
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L
HHH

ˇ
ˇ

: (6.235)

Observe that �C � 0 and ideal propagation occurs when �C D 0.
Yet another possibility is the factor of favorable propagation, defined as the ratio of the capacity to the Hadamard upper

bound on capacity, viz.,

RC D
log2

ˇ
ˇIC 


L
HHH

ˇ
ˇ

PKMS
kD1 log2

�

1C 


L
khkk2

� ; 0 � RC � 1: (6.236)

where RC D 1 means that favorable propagation occurs.
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For the remainder of this section, shadowing is ignored and only envelope fading is considered. ˝k D 1 for all k MSs, so
that hk D gk and H D G in what follows.

6.14.5.1 Independent Rayleigh Fading

For practical applications L is finite, so that the L.H.S. of (6.231) is a random variable. The gk are statistically independent.
Therefore, gH

k gj=L has a mean of zero and variance equal to

Var

�
gH

k g

L

�

D 1

L

If matched filtering is used, then the desired signal power at the massive MIMO combiner output is proportional to kgkk4,
while the power of each co-channel interferer is proportional to kgH

k gjk2. The interfering power due to the jth interferer
kgH

k gjk2=L2 has a mean of zero and a variance of

Var

�kgH

k gk2
L2

�

D LC 2
L3
� 1

L2

The cdf function of the singular values of G can be used to predict whether or not a given channel realization G exhibits
favorable propagation. The cdf of the sorted singular values resulting from 10,000 random realizations of the L�KMS matrix
G with L D 100 and KMS D 10 is plotted in Fig. 6.31. Observe that with i.i.d. Rayleigh fading, the singular values tend to be
uniformly spread between the minimum and maximum singular values.

6.14.5.2 Uniform Random Line-of-Sight

Uniform Random Line-of-Sight (UR-LoS) conditions represent the other extreme of scattering environments where free
space line-of-sight propagation exists between the BS and MSs. Consider a uniform linear array of antennas at the BS with
antenna element spacing ım as described in Sect. 6.9. From (6.148), the propagation vector gk can be written as
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Fig. 6.31 Cdfs of sorted singular values of G for i.i.d. Rayleigh fading with L D 100, KMS D 10. For KMS D 10MSs, there are 10 sorted singular
values and 10 corresponding cdf curves
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gk D
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j2�

�
ı
�c

�

cos.�k/; : : : ; e
j2�

�
kı
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cos.�k/; : : : ; e
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(6.237)

where �k is the array orientation angle with respect to the kth MS, assumed to be independently and uniformly distributed on
the interval Œ��; �/ for each MS. If ı D �=2, then gH

k gj=L has a mean of zero and variance

Var

�
gH

k g

L

�

D 1

L
� 1

L2
:

Compared to the case of independent Rayleigh fading, the variance is almost the same for large values of L. The squared
magnitude of the inner product, kgH

k gjk2=L2, has a mean of zero and variance

Var

�kgH

k gjk2
L2

�

D .L � 1/L.2L � 1/
3L4

� 2

3L

Hence, the variance of the interfering power decays more slowly with UR-LoS conditions than independent Rayleigh fading.
The cdf of the sorted singular values resulting from 10,000 random realizations of the L � KMS matrix G with L D 100 and
KMS D 10 is plotted in Fig. 6.32. Notice from Fig. 6.32 that a few singular values are small with high probability, while the
remainder are concentrated around their median value. The small singular values occur when two MSs have array orientation
angles �k and �j that are very close, such that j�k��jj � 1=L. Under this condition the normalized inner product gH

k gj=L does
not converge to 0 as L becomes large as shown by

gH

k gj

L
D 1

L

1 � ej�.sin.�k/�sin.�j//L

1 � ej�.sin.�k/�sin.�j//
D 1

L

1 � ej�

1 � ej�=L
�! j2

�
¤ 0: (6.238)

In order to recover favorable propagation conditions it is necessary to drop a typically small number, often one or two, MSs
that cause unfavorable propagation conditions. Essentially, to guarantee that the propagation conditions are favorable, each
BS antenna beam must contain at most one MS. For UR-LoS conditions, Ngo, Larsson, and Marzetta derived the probability
of dropping n MSs as [243]

P.Ndrop D n/ D
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N C L � KMS

!
KMS�n
X

kD1
.�1/k

 

KMS � n

k

!
�

1 � nC L � KMS C k

L

�K

MS

(6.239)
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Fig. 6.32 Cdfs of singular sorted values of G for uniform random line-of-sight conditions with L D 100, KMS D 10. For KMS D 10 MSs, there
are 10 sorted singular values and 10 corresponding cdf curves
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The mean number of MSs dropped is

NNdrop D
KMS�1
X

nD1
P.Ndrop D n/: (6.240)

6.14.5.3 Rician Fading Conditions

To model Ricean fading, the channel matrix G can be divided into a deterministic part and a random part, i.e.,

G D
r

K

K C 1
NGC

r

1

K C 1Gs (6.241)

where EŒG� D
q

K
KC1
NG is the LoS or specular component and

q
1

KC1Gs is the scatter component assumed to have zero mean.
With Rician fading conditions, the inner product of the propagation vectors has variance
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The variance of the square of the inner product is
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Figure 6.33 shows the cdf of the sorted singular values for a Rician channel with a Rice factor K D 10 dB. The results
are obtained by combining the UR-LoS propagation vector in (6.237) with independent Rayleigh fading. As with UR-LoS
conditions, a few singular values are small with high probability, while the remainder are concentrated around their median
values.

6.14.5.4 Sufficiently Favorable Channels

Suppose that the propagation channel G is considered to be sufficiently favorable when the condition number is below
8 dB 90% of the time. Figure 6.34 depicts the 90% maximum condition number as a function of the Rice factor K when
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Fig. 6.33 Cdfs of singular sorted values of G for Rician fading conditions with L D 100, K D 10. For KMS D 10 MSs, there are 10 sorted
singular values and 10 corresponding cdf curves
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Fig. 6.34 Plot of condition number against Rice factor K when Ndrop D 0; 1, and 2 with L D 100 and KMS D 10. With 10,000 realizations of the
channel matrix G, the condition number plotted is the 1000th highest, such that the value plotted is only exceeded 10% of the time

Fig. 6.35 Plot of factor of favorable propagation, defined in (6.236) as the capacity divided by the Hadamard upper bound on capacity for each
random channel realization. The curves plot different symbol SNR, 
s, progressing from 10 to 20 dB

Ndrop D 0; 1, and 2. In Fig. 6.34, the condition number is below the various traces that are plotted 90% of the time. The
outage is sufficiently small with no MSs dropped for K < 2 dB. For 2 � K � 5, it is recommended that one MS be dropped.
For K � 5, it is recommended that 2 MSs be dropped. There is no Rice factor K where more than 2 out of 10 MSs would
need to be dropped to keep the condition number less than 8 dB for 90% of the time.

Another possibility is to consider the factor of favorable propagation, RC, in (6.236). Figure 6.35 plots the cumulative
distribution function of RC against the symbol SNR, 
s for L D 100 antennas. Observe that the median of RC shifts to
the right as 
s increases, and the cdf of RC is steep around a median value that ranges from 0.5 at 
s D 10 dB to 0.65 at

s D 20 dB.
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Problems

6.1. Let fX1;X2; : : : ;XNg be a set of independent Rayleigh random variables each with an rms value of 1=
p

N.

(a) Derive the pdf of

Y D max
�

X21 ;X
2
2 ; : : : ;X

2
N

�

:

This result is useful for the study of selective combining diversity systems.
(b) Again, using the set fX1;X2; : : : ;XNg, derive the pdf of

Z D X21 C X22 C � � � C X2N :

This result is useful for the study of maximal ratio combining diversity systems.

6.2. Suppose that two-branch selective combining is used. However, the branches are mismatched such that N
1 ¤ N
2 where
the N
i; i D 1; 2, are the average received symbol energy-to-noise ratios for the two branches. Plot the cdf of 
 s

s against
the average normalized symbol energy-to-noise ratio 10 log10f
 s

s= N
tg, where N
t D . N
1 C N
2/=2. Show several curves while
varying the ratio � D N
1= N
2.
6.3. Consider using selective combining with coherent BPSK. For coherent BPSK, the probability of bit error is Pb.


s
b/ D

Q.
p

2
 s
b/ The instantaneous bit energy-to-noise ratio is given by (6.8).

(a) Derive an expression for the average bit error probability

Pb D
Z 1

0

Pb.x/p
 s
s
.x/dx:

6.4. Suppose that binary DPSK signaling (xk 2 f�1;C1g) is used on a flat Rayleigh fading channel with 3-branch diversity.
The diversity branches are assumed to experience uncorrelated fading. The signal that is received over each diversity branch
is corrupted with AWGN having a one-sided psd of No W/Hz. The noise processes that are associated with the diversity
branches are mutually uncorrelated.

(a) Suppose that a separate differential detector is used on each diversity branch, yielding three independent estimates of each
transmitted bit, i.e., for xk the receiver generates the three independent estimates .Ox1k ; Ox2k ; Ox3k/. Majority logic combining
is then used to combine the three estimates together to yield the final decision Oxk, i.e.,

Oxk D
�

�1 if two or more Oxi
k D �1

C1 if two or more Oxi
k D C1

Find an expression for the probability of bit error, Pb. Evaluate Pb for N
c D 20 dB, where N
c is the average received
branch bit energy-to-noise ratio.

(b) Evaluate the probability of bit error for N
c D 20 dB if the receiver uses 3-branch diversity with postdetection equal gain
combining. Compare with the result in part (a).

(c) Generalize the expression for the probability of bit error in part (a) to L-branch diversity.

6.5. Derive (6.28) for BPSK and maximal ratio combining.

6.6. Derive (6.66) for DPSK with differential detection followed by equal gain combining.

6.7. Consider an AWGN channel where the channel gain, ˛, has the following probability density function

p˛.x/ D 0:2ı.x/C 0:5ı.x � 1/C 0:3ı.x � 2/:

(a) Determine the average probability of bit error for binary DPSK signaling over a channel with gain ˛ in terms over the
average received bit energy-to-noise ratio N
b. What value does the probability of bit error approach as N
b gets large?
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(b) Now suppose that two-branch antenna diversity is used with predetection selective combining. Assume that the diversity
branches are perfectly uncorrelated. Determine the average probability of error in terms of the average bit energy-to-noise
ratio per diversity branch N
c. What value does the probability of error approach as N
c gets large?

(c) Plot the probability of error for parts (a) and (b) on the same graph.

6.8. Consider a BPSK modulated system with simple repetition code and time interleaving, such that each data bit is
transmitted L times and each transmission experiences independent identically distributed (i.i.d.) Rayleigh fading. If symbol
Qs is transmitted, the corresponding L correlator or matched filter outputs at the receiver are

Qrk D ˛kQsC Qnk ; k D 1; : : : ;L

where Qs is the transmitted BPSK symbol chosen from the alphabet f˙
p
2Eg, the ˛k are i.i.d. Rayleigh random variables, and

the Qnk are i.i.d. zero-mean complex Gaussian random variables with variance 1
2EŒjQnkj2�DNo.

(a) One decoding strategy is to combine the Qrk; k D 1; : : : ;L using maximal ratio combining and then make a bit decision.
What is the probability of decision error in terms of the average received bit energy-to-noise ratio, N
b?

(b) Another decoding strategy is to make a hard decision as to which symbol was transmitted for each of the Qrk; k D 1; : : : ;L,
and then make a majority logic decision (assuming L is odd) as to which data bit was transmitted, i.e., if more of the L

symbols comprising each bit are decided to be C
p
2E than �

p
2E, then choose the data bit corresponding to symbol

C
p
2E. What is the probability of decision error in terms of the average received bit energy-to-noise ratio, N
b?

(c) Evaluate the probability of bit error in parts (a) and (b) when L D 3 and N
b D 20 dB.

6.9. Consider digital transmission using BPSK modulation and L D 2 receiver diversity. The channel gain for Antenna
i; i D 1; 2, and symbol epoch n, ˛i;n, has the following probability density function

p˛i;n.x/ D 0:9ı.x � 1:0/C 0:1ı.x � 0:05/;

and the ˛i;n are independent for i D 1; 2 and all n. Each receiver branch is affected by independent complex AWGN with
noise power spectral density No W/Hz. Derive an expression for the bit error rate probability with maximal ratio combining.

6.10. The bit error probability of MSK signaling on a Rayleigh fading channel with additive white Gaussian noise is

Pb D
1

2

 

1 �
s

N
b

1C N
b

!

:

(a) Derive a Chernoff bound (see Appendix A) on the probability of bit error and compare the Chernoff bound with the
exact error probability.

(b) Repeat part (a) if the receiver employs L-branch diversity. Assume uncorrelated diversity branches with N
1 D N
2 D � � � D
N
L D N
c.

6.11. The bit error probability of binary orthogonal FSK signaling with non-coherent square-law combining on a Rayleigh
fading channel with additive white Gaussian noise is given by (6.28) where the parameter � is defined in (6.83).

(a) Derive a Chernoff bound (see Appendix A) on the probability of bit error and compare the Chernoff bound with the
exact probability of error.

(b) Derive a union-Chernoff bound on the probability of bit error with M-ary orthogonal FSK signaling and non-coherent
square-law combining.

(c) By using the union-Chernoff bound obtained in part (b) determine the diversity order L that will minimize the error
probability.

6.12. Suppose that BPSK modulation is used with two-branch diversity and coherent equal gain combining. Assume
uncorrelated diversity branches with N
1 D N
2 D N
c. Show that the probability of bit error for a Rayleigh fading channel
is given by (6.50).

6.13. Consider a system that employs 2-branch selection diversity, where each diversity branch consists of L antennas with
maximal ratio combining as shown in Fig. 6.36. Assume that all input MRC diversity branches are equal, i.e., N
ij D N
c,
i D 1; 2, j D 1; : : : ;L.
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Fig. 6.36 Combiner for Problem 6.13

(a) Derive an expression for the cumulative distribution function of the symbol energy-to-noise ratio, �, at the output of the
selective combiner.

(b) Derive an expression for the probability density function of the symbol energy-to-noise ratio, �, at the output of the
selective combiner.

(c) Write down an integral expression for the probability of bit error with BPSK modulation. You do not have to solve the
integral!

6.14. Consider a system that uses L-branch selection diversity. The instantaneous received signal power on each diversity
branch, s0;i; i D 1; : : : ;L, has the non-central chi-square (Ricean fading) distribution in (2.63). The instantaneous received
signal power from each interferer on each diversity branch, sk;i; i D 1; : : : ; L has the exponential (Rayleigh fading)
distribution in (2.56). Note that all the s0;i and sk;i are all independent. Let �i D s0;i=

PNI

kD1 sk;i; i D 1; : : : ; L be
the instantaneous carrier-to-interference ratio for each diversity branch and �s D maxi �i. Derive an expression for the
probability of co-channel interference outage

OI D PŒ�s < �th�:

Plot OI against �th for various L.

6.15. Consider the reception of a desired signal in the presence of a single co-channel interferer and neglect the effect of
AWGN. The received signal power, s0, and interference power, s1, due to Rayleigh fading have the exponential distributions

ps0.x/ D
1

˝0

e�x=˝0

ps1.y/ D
1

˝1

e�x=˝1 ;

where ˝0 and ˝1 are the average received signal power and interference power, respectively.

(a) Assuming that s0 and s1 are independent random variables, find the probability density function for the carrier-to-
interference ratio

� D s0

s1
:

Hint: If X and Y are independent random variables, then the probability density function of U D X=Y is

pU.u/ D
Z

pXY.v; v=u/jv=u2jdv:
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(b) What is the mean value of �?
(c) Now suppose that the system uses L-branch selection diversity. The branches are independent and balanced (i.e., the

distribution of �i; i D 1 : : : ;L, is the same for each branch. What is the probability density function of

�s D max.�1; �2; : : : ; �L/;

the carrier-to-interference ratio at the output of the selective combiner?

6.16. Suppose that two-branch antenna diversity is used with selective combining. However, the branches have correlated
fading so that the maximum diversity gain is not achieved. Let 
1 and 
2 be the joint pdf for the instantaneous bit energy-to-
noise ratio for each diversity branch, and let N
c D EŒ
i�. It is known that joint pdf of 
1 and 
2 is

p
1;
2.x1; x2/ D
1

N
2c .1 � j�j2/
I0

�
2j�jpx1x2

N
c.1 � j�j2/

�

exp

�

� x1 C x2

N
c.1 � j�j2/

�

;

where j�j is the magnitude of the correlation coefficient of the two complex Gaussian random variables that are associated
with the two diversity branches. Derive an expression for the cdf of the bit energy-to-noise ratio at the output of the selective
combiner


s D maxf
1; 
2g:

Plot the cdf for various �. What conclusions can you make?

6.17. Show that with optimal combining rwJ in (6.93) is given by

rwJ D
�
@J

@w1
; � � � ; @J

@wL

�

D 2wTˆ QRt QRt
� 2ˆQs0 QRt

D 0:

6.18. Suppose that the received signal consists of two strong multipath components arriving from different directions.
Explain how you would design a phased array to capture the energy in both rays.

6.19. Consider Alamouti’s transmit diversity scheme. Section 6.11.1 shows how to construct the combiner for the case of
2 � 1 and 2 � 2 diversity. Construct the combiner for the case of 2 � L diversity.

6.20. Describe how you would combine Alamouti’s transmit diversity scheme with OFDM. Show a block diagram of the
transmitter and receiver.



Chapter 7

Time Domain Equalization and Interference Cancelation

Chapters 5 and 6 have considered digital signaling on frequency non-selective or flat fading channels. Such channels are
typical for low data rate systems that occupy a bandwidth that is smaller than the channel coherence bandwidth. However,
as the data rate increases, the bandwidth of the transmitted waveform will typically be larger than the channel coherence
bandwidth. Under this condition the channel is non-ideal and will exhibit frequency selectivity or time delay spread. Such
time delay spread causes interference between modulated symbols, a phenomenon known as inter-symbol interference (ISI).
This chapter concentrates on the modeling of ISI channels and the various signal processing methods for recovering digital
information transmitted over such channels.

This chapter begins with a treatment of ISI channel modeling in Sect. 7.1 that includes a vector representation of
digital signaling on ISI channels. Section 7.2 then develops the maximum likelihood receiver for ISI channels, leading
to an equivalent model of the ISI channel known as the discrete-time white noise channel model. The effects of using
fractional sampling or over-sampling at the receiver are also considered, where the sampling rate is an integer multiple of the
modulated symbol rate. Section 7.3 provides a treatment of symbol-by-symbol equalizers, including the linear zero-forcing
and minimum mean-square-error (MMSE) equalizers, and the nonlinear decision feedback equalizer (DFE). Section 7.4
provides a treatment of sequence estimators beginning with maximum likelihood sequence estimation (MLSE) and the
Viterbi algorithm. Since the MLSE receiver can have high complexity for channels that have a long impulse response, some
reduced complexity sequence estimation techniques are considered such as reduced state sequence estimation (RSSE) and
delayed decision feedback sequence estimation (DDFSE). Section 7.5 provides an analysis of the bit error rate performance
of MLSE on static ISI channels and multipath-fading ISI channels. Finally, Sect. 7.6 considers fractionally spaced MLSE
receivers for ISI channels.

Finally, Sect. 7.7 concludes the chapter with a discussion of co-channel demodulation for digital signals on ISI channels.
The basic idea is to simultaneously recover the data from multiple users that transmit in the same bandwidth. The problem is
formulated as a multiple-input multiple-output (MIMO) channel, where the inputs are the waveforms transmitted by multiple
users in the same bandwidth and the outputs are the signals received at multiple antenna elements. A vector representation
of the received signals is first developed, along with the optimum receiver that uses joint maximum likelihood sequence
estimation (J-MLSE). Similar to the single-user case, the effects of using fractional sampling will be considered as well.
Finally, the chapter ends with a receiver structure that incorporates a combination of optimal combining as discussed in
Chap. 6 and sequence estimation as implemented with the Viterbi algorithm.

7.1 Modeling of ISI Channels

Chapter 4 showed that the complex envelope of any modulated signal can be expressed in the general form

Qs.t/ D A
X

n

b.t � nT; xn/: (7.1)

This chapter restricts attention to linear full-response modulation schemes where

b.t; xn/ D xnha.t/; (7.2)

ha.t/ is the amplitude shaping pulse, and fxng is the complex data symbol sequence.
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Suppose that the signal in (7.2) is transmitted over a channel having a time-invariant complex low-pass impulse
response g.t/. The received complex envelope is

Qr.t/ D
X

n

xnh.t � nT/C Qn.t/; (7.3)

where

h.t/ D
Z 1

�1
ha.�/g.t � �/d� (7.4)

is the received pulse, given by the convolution of the transmitted pulse ha.t/ and the channel impulse response g.t/, and Qn.t/ is
complex-valued additive white Gaussian noise (AWGN) with a power spectral density of No watts/Hz. Since the transmitted
pulse ha.t/ is causal (ha.t/ D 0; t < 0) the lower limit of integration can be replaced by zero, and since the physical channel
is causal (g.t/ D 0; t < 0) the upper limit of integration in (7.4) can be replaced by t, so that

h.t/ D
Z t

0

ha.�/g.t � �/d� ; t � 0: (7.5)

Finally, the received pulse h.t/ is assumed to have a finite duration so that h.t/ D 0 for t < 0 and t � .LC 1/T , where L is
some positive integer.

7.1.1 Vector Representation of Received Signals

Using a Gram–Schmidt orthonormalization procedure, the received signal Qr.t/ in (7.3) can be expressed in the form

Qr.t/ D lim
N!1

N
X

kD1
Qrk'k.t/; (7.6)

where the f'n.t/g are a complete set of complex orthonormal basis functions. Note that the basis functions span over the
entire length of the waveform Qr.t/, and for the present purpose it is not necessary to actually generate the basis functions.
Also, this set of basis functions should not be confused with the set of basis functions that is used to represent the signal set
as in Sect. 5.1. It can be readily shown that

Qrk D
X

n

xnhnk
C Qnk; (7.7)

where

hnk
D
Z 1

�1
h.t � nT/'�

k .t/dt

Qnk D
Z 1

�1
Qn.t/'�

k .t/dt: (7.8)

The noise samples Qnk are zero-mean complex Gaussian random variables with covariance �Qnk Qnm
D 1

2
EŒQn�

k Qnm� D Noıkm.
Hence, it follows that the observation vector Qr D .Qr1; Qr2; : : : ; QrN/ has the conditional multivariate complex Gaussian
distribution

p.Qrjx;h/ D
N
Y

kD1

1

2�No

exp

8

<

:
� 1

2No

ˇ
ˇ
ˇ
ˇ
ˇ
Qrk �

X

n

xnhnk

ˇ
ˇ
ˇ
ˇ
ˇ

2
9

=

;
; (7.9)

where h D fhnk
g.



7.2 Maximum Likelihood Receiver for ISI Channels with AWGN 335

7.2 Maximum Likelihood Receiver for ISI Channels with AWGN

The maximum likelihood receiver decides in favor of the symbol sequence x that maximizes the likelihood function p.Qrjx;h/
or the log-likelihood function logfp.Qrjx;h/g, i.e.,

choose x if logfp.Qrjx;h/g > logfp.QrjOx;h/g 8 Ox ¤ x: (7.10)

For an AWGN channel, p.Qrjx;h/ has the form in (7.9) and the decision rule in (7.10) is equivalent choosing x to maximize
the quantity

�.x/ D �
N
X

kD1

ˇ
ˇ
ˇ
ˇ
ˇ
Qrk �

X

n

xnhnk

ˇ
ˇ
ˇ
ˇ
ˇ

2

D �
N
X

kD1
jQrkj2 C

N
X

kD1

 

Qr�
k

X

n

xnhnk
C Qrk

X

n

x�
n h�

nk

!

�
N
X

kD1

 
X

n

xnhnk

! 
X

m

x�
mh�

mk

!

: (7.11)

Since the term
PN

kD1 jQrkj2 is independent of x, it may be omitted so that the maximum likelihood receiver chooses x to
maximize

�.x/ D 2Re

(
X

n

x�
n

N
X

kD1
Qrkh�

nk

)

�
X

n

X

m

xnx�
m

N
X

kD1
hnk

h�
mk
; (7.12)

where Refzg denotes the real part of z. In the limit as the number of observable random variables N approaches infinity,
define the following

yn
4D lim

N!1

N
X

kD1
Qrkh�

nk
D
Z 1

�1
Qr.t/h�.t � nT/dt (7.13)

fm�n
4D lim

N!1

N
X

kD1
hnk

h�
mk
D
Z 1

�1
h.t � nT/h�.t � mT/dt: (7.14)

Using (7.13) and (7.14) in (7.12) gives the final form

�.x/ D 2Re

(
X

n

x�
n yn

)

�
X

n

X

m

xnx�
mfm�n: (7.15)

The variables fyng are obtained by passing the received complex low-pass waveform Qr.t/ through the matched filter
h�.�t/ and sampling the output. Note that the T-spaced samples at the output of the matched filter must be obtained with the
correct timing phase, and in the above development perfect symbol synchronization is implied. Hence, the optimum front-
end processing is as shown in Fig. 7.1. Finally by changing the variable of integration, the ffm�ng in (7.14) can be rewritten
in the form

f` D
Z 1

�1
h.tC `T/h�.t/dt; (7.16)

where ` D m � n. From (7.16), it is seen that the ff`g represent the sampled autocorrelation function of the received pulse
h.t/ with sample spacing T , and have the property that f �

n D f�n. Sometimes the ff`g are called the ISI coefficients.
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h (- t )*
y t( )

T1/

( )δ
k

x t-nTn yn

rate

h (t)

h ( t )= *h (t)

a

a ( t )

(t)
( t )

s
g

g

(  )

( )r t

n t

~

~

~

Fig. 7.1 Digital signaling on an ISI channel. The optimum front-end processor implements a filter that is matched to the received pulse h.t/

followed by a symbol rate sampler
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Fig. 7.2 Discrete-time model for digital signaling on an ISI channel

7.2.1 Discrete-Time White Noise Channel Model

Sampling the output of the matched filter h�.�t/ in Fig. 7.1 every T seconds yields the sample sequence fykg, where

yk D
X

n

xnfk�n C �k

D
L
X

`D�L

xk�`f` C �k (7.17)

and

�k D
Z 1

�1
Qn.�/h�.� � kT/d� (7.18)

is the noise sample at the output of the matched filter. It follows that the overall discrete-time system in Fig. 7.1 can be
represented by a discrete-time transversal filter with coefficients

f D .f�L; f�LC1; : : : ; f�1; f0; f1; : : : ; fL�1; fL/: (7.19)

This representation is depicted in Fig. 7.2.
As shown in (7.15), the maximum likelihood receiver uses the observation vector y D fykg and knowledge of the

ISI coefficients ff`g to determine the most likely transmitted sequence x. Equivalently, the maximum likelihood receiver
decides in favor of the symbol sequence x that maximizes the likelihood function p.yjx; f/ or the log-likelihood function
logfp.yjx; f/g, i.e.,

choose x if logfp.yjx; f/g > logfp.yjOx; f/g 8 Ox ¤ x: (7.20)

The noise samples at the matched filter output in (7.18) have the discrete autocorrelation function

���.n/ D
1

2
EŒ�kCn�

�
k � D Nofn: (7.21)
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Hence, the noise sequence f�kg will be correlated unless fn D 0; n ¤ 0, meaning that the overall pulse

f .t/ D
Z 1

�1
h.tC �/h�.�/d� (7.22)

satisfies the first Nyquist criterion. Such a condition will not be true for ISI channels due to the non-ideal channel g.t/, and the
resulting correlation between the noise samples f�kg results a log-likelihood function logfp.yjx; f/g that has a complicated
form. This difficulty can be overcome by passing the sample sequence at the output of the matched filter, fykg, through a
noise whitening filter as described below, to whiten the noise samples.

The z-transform of the vector f is

F.z/ D
L
X

nD�L

fnz�n: (7.23)

Using the property f �
n D f�n yields

F�.1=z�/ D F.z/: (7.24)

This means that if z is a root of F.z/ then 1=z� is a root of F.z/, i.e., the roots of F.z/ occur in conjugate reciprocal pairs. It
follows that F.z/ has 2L roots with the factorization

F.z/ D G.z/G�.1=z�/; (7.25)

where G.z/ and G�.1=z�/ are polynomials each of degree L. The roots of G.z/ are z1; z2; : : : ; zL, while the roots of G�.1=z�/
are 1=z�

1 ; 1=z�
2 ; : : : ; 1=z�

L . Hence, there are 2L possible choices for the roots of G�.1=z�/ and any one will suffice for a noise
whitening filter 1=G�.1=z�/. However, some reduced state equalization techniques such as RSSE and DDFSE require that
the polynomial of the overall system G.z/ D F.z/ �1=G�.1=z�/ be minimum-phase, meaning all the poles and zeroes of G.z/

lie inside the unit circle. For such cases, the noise whitening filter 1=G�.1=z�/ will be a stable filter, but it is noncausal since
all its poles are outside the unit circle. In practice, such a noncausal noise whitening filter can be approximated to sufficient
accuracy by using a long enough filter delay. If the overall response G.z/ need not have minimum phase, then G�.1=z�/ can
be chosen to have minimum phase, i.e., all the poles and zeros of the noise whitening filter 1=G�.1=z�/ are inside the unit
circle. This choice will ensure that the noise whitening filter is both causal and stable.

If the noise whitening filter is chosen such that G.z/ has minimum phase, then the resulting discrete-time white
noise channel satisfies the minimum energy-delay property. To explain this further, let Gmin.ej2� f / be the frequency
response function corresponding to the G.z/ having minimum phase, and let gk min be the corresponding time-domain impulse
response. All 2L choices for G.z/ will have the same magnitude response, i.e., jG.ej2� f /j D jGmin.ej2� f /j. Consequently, all
impulse responses gk whose magnitude response jG.ej2� f /j is equal to jGmin.ej2� f /j will have the same total energy by
Parseval’s theorem, i.e.,

1
X

nD0
jgkj2 D

Z 1=2

�1=2
jG.ej2� f /j2df D

Z 1=2

�1=2
jGmin.e

j2� f /j2df D
1
X

nD0
jgk minj2: (7.26)

If the partial energy of the impulse response is defined as

E.k/
4D

k
X

nD0
jgkj2; (7.27)

then it can be shown that [251]

E.k/ D
k
X

nD0
jgkj2 �

k
X

nD0
jgk minj2 D Emin.k/; (7.28)
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for all impulse responses gk that have the same magnitude response. Accordingly, the energy of the system having minimum
phase is most concentrated around k D 0. This means that the energy of the minimum phase system has the least delay
among all systems that have the same magnitude response function. For this reason the minimum phase system is said to
satisfy the minimum energy-delay property.

Example 7.1. Consider a simple T-spaced two-ray channel where the received pulse is

h.t/ D ha.t/C aha.t � T/

and the transmitted pulse ha.t/ is normalized to have unit energy, i.e., 1
2

R1
�1 h2a.t/dt D 1. The corresponding ISI

coefficients are

f` D
Z 1

�1
h�.t/h.tC `T/dt

D

8

<

:

1C jaj2 ` D 0
a ` D 1
a� ` D �1

and, hence,

F.z/ D a�zC .1C jaj2/C az�1

D .az�1 C 1/.a�zC 1/:

There are two possible choices for the noise whitening filter.

Case 1: Under the assumption that jaj < 1, suppose that the zero of G�.1=z�/ is chosen to be outside the unit circle.
That is,

G.z/ D 1C az�1

G�.1=z�/ D 1C a�z:

In this case, the noise whitening filter 1=G�.1=z�/ is noncausal yet stable, and the overall system is characterized
by the minimum phase polynomial

G.z/ D 1C az�1:

Note that the zero of G.z/ is inside the unit circle, with a pole at the origin.
Case 2: Under the assumption that jaj < 1, suppose that the zero of G�.1=z�/ is instead chosen to be inside the unit

circle. That is,

G.z/ D 1C a�z

G�.1=z�/ D 1C az�1:

In this case, the noise whitening filter 1=G�.1=z�/ is a minimum phase filter that is both stable and causal. However,
the overall system G.z/ is characterized by the non-minimum phase polynomial

G.z/ D 1C a�z:

Note that the zero of G.z/ is outside the unit circle with a pole at infinity.
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The sequence of noise samples at the output of the noise whitening filter is now shown to be uncorrelated. From (7.17),
the z-transform of the sample sequence at the output of the noise whitening filter is

V.z/ D .X.z/F.z/C �.z// 1

G�.1=z�/

D X.z/G.z/C �.z/ 1

G�.1=z�/

D X.z/G.z/CW.z/: (7.29)

From (7.21), the power spectral density of the noise samples f�kg at the input to the noise whitening filter is

S��.e
j2� fT/ D NoF.ej2� fT/ ; jf j � 1

2T
: (7.30)

Therefore, the power spectral density of the noise samples fwkg at the output of noise whitening filter 1=G�.1=z�/ is

Sww.e
j2� fT/ D No

F.ej2� fT/

jG�.ej2� fT/j2

D No

G.ej2� fT/G�.ej2� fT/

G.ej2� fT/G�.ej2� fT/

D No ; jf j � 1

2T
(7.31)

which is clearly white.
The above development leads to the system shown in Fig. 7.3, and the discrete-time white noise channel model shown in

Fig. 7.4. Sometimes the concatenation of the matched filter and noise whitening filter in Fig. 7.3 is called a whitened matched
filter. The overall system function G.z/ can be viewed as a finite impulse response (FIR) filter with tap coefficients fgng. The
discrete-time samples at the output of the noise whitening filter are

vk D
L
X

nD0
gnxk�n C wk: (7.32)
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Fig. 7.3 Block diagram of system that implements a filter matched to h.t/ followed by a discrete-time noise whitening filter
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Fig. 7.4 Discrete-time white noise channel model
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The maximum likelihood receiver uses the observation vector v D fvkgLkD0 to decide in favor of the symbol sequence x that
maximizes the likelihood function p.vjx; g/ or the log-likelihood function logfp.vjx; g/g, i.e.,

choose x if logfp.vjx; g/g > logfp.vjOx; g/g 8 Ox ¤ x; (7.33)

where

g D .g0; g1; : : : ; gL/
T (7.34)

is the overall channel impulse response. Since the noise samples fwkg are white, the likelihood function has the simple
product form

p.vjx; g/ D
Y

k

1

2�No

exp

8

<

:
� 1

2No

ˇ
ˇ
ˇ
ˇ
ˇ
vk �

L
X

nD0
gnxk�n

ˇ
ˇ
ˇ
ˇ
ˇ

2
9

=

;
: (7.35)

The log-likelihood function logfp.vjx; g/g results in the decision rule

choose x if �.x/ > �.Ox/ 8 Ox ¤ x; (7.36)

where

�.x/ D �
X

k

ˇ
ˇ
ˇ
ˇ
ˇ
vk �

L
X

nD0
gnxk�n

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (7.37)

An efficient method for finding the sequence x is the Viterbi algorithm as discussed in Sect. 7.4.1.
Finally, for an ISI channel, the received symbol energy-to-noise ratio is defined as


s D
EŒjxkj2�

PL
iD0 jgij2

2No

D EŒjxkj2�f0
2No

D 2�2x Ehr

No

D E

No

(7.38)

where

Ehr
D 1

2

Z 1

�1
jh.t/j2dt (7.39)

is the energy in the received pulse h.t/. The bit energy-to-noise ratio is 
b D 
s= log2 M where M is the modulation
alphabet size.

7.2.1.1 Slowly Fading ISI Channels with Diversity

Consider a fading channel with D-branch receiver diversity. The received pulse on each diversity branch is equal to the
convolution

hd.t/ D
Z 1

�1
gd.t; �/ha.t � �/d� ; d D 1; : : : ;D; (7.40)

where gd.t; �/ is the time-variant channel impulse response for branch d. For slow fading, the channel impulse responses
gd.t; �/ can be assumed to change slowly with respect to the duration of the received pulses. When data is transmitted in
short frames, e.g., 10–20 ms long, the channel may remain constant over the duration of the frame. This is sometimes called
a block fading channel or quasi-static fading channel. In any case, at the kth epoch the received pulses can be accurately
approximated as

hd;k.t/ D
Z 1

�1
gd.kT; �/ha.t � �/d� ; d D 1; : : : ;D: (7.41)
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Fig. 7.5 Discrete-time white noise channel model with D-branch diversity

The receiver then implements a matched filter on each diversity branch having the impulse response h�
d;k.�t/, and samples

are taken at the output of the matched filter every T seconds. The samples at the output of each matched filter are passed
through a corresponding noise whitening filter 1=G�

d;k.1=z�/. This results in the discrete-time white noise channel model
shown in Fig. 7.5. At epoch k, the tap gains associated with diversity branch d are described by the vector

gd.k/ D .g0;d.k/; g1;d.k/; : : : gL;d.k//
T : (7.42)

The fgi;d.k/g are discrete-time complex Gaussian random processes that are generally correlated with the correlation matrix

ˆgd
.m/ D 1

2
EŒgd.k/g

H

d .kC m/� (7.43)

where .x/H is the complex conjugate transpose of the vector x. The received sample on branch d at epoch k is

vk;d D
L
X

iD0
gi;d.k/xk�i C wk;d; (7.44)

where the wk;d are independent complex zero-mean white Gaussian noise samples with variance 1
2
EŒjwk;dj2� D No.

For a fading ISI channel, the average received symbol energy-to-noise ratio for branch d is

N
d
s D

EŒjxkj2�
PL

iD0 EŒjgi;dj2�
2No

D EŒjxkj2�EŒf0;d�
No

D 2�2x EŒEh;d�

No

D
NE

No

: (7.45)

In many cases, the branches are balanced so that N
d
s D N
s; d D 1; : : : ;D. The averaged received branch bit energy-to-noise

ratio is N
s= log2 M.
Note that the matched filter and noise whitening filter impulse responses change slowly with time due to variations in

the underlying channels. This presents a practical difficulty because implementation and adjustment of the matched filter
and noise whitening filter requires knowledge of the underlying channel. It will be shown later that this difficulty can be
overcome by implementing a filter that is matched to the transmitted pulse ha.t/, over-sampling the output, and processing
the output samples with a fractionally spaced noise whitening filter. First, however, the effect of over-sampling the matched
filter output is considered.

7.2.1.2 T=2-Spaced Receiver

In practice the matched filter outputs are often over-sampled for the purpose of symbol timing synchronization and to mitigate
the effects of timing errors. One important example that will be considered at various points in this chapter is when the
output of the matched filter is sampled with rate 2=T . In this case, the overall channel impulse response and sampler can be
represented by a discrete-time transversal filter with coefficients
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f.2/ D . f
.2/
�2L; f

.2/
�2LC1; : : : ; f

.2/
�1 ; f

.2/
0 ; f

.2/
1 ; : : : ; f

.2/
2L�1; f

.2/
2L /: (7.46)

where . � /.2/ indicates rate 2=T sampling. If the samples in (7.46) are obtained with the correct timing phase, i.e., f
.2/
n D

f .nT=2/, then

f D . f�L; f�LC1; : : : ; f�1; f0; f1; : : : ; fL�1; fL / (7.47)

D . f
.2/
�2L; f

.2/
�2LC2; : : : ; f

.2/
�2 ; f

.2/
0 ; f

.2/
2 ; : : : ; f

.2/
2L�2; f

.2/
2L /;

where f
.2/
n D

�

f
.2/
�n

��
and fn D f

.2/
2n . More details on timing phase sensitivity will be provided in Sect. 7.6.3.

The T=2-spaced noise samples at the matched filter output have the discrete-time autocorrelation function

���.n/ D Nof .2/n : (7.48)

The z-transform of f.2/, denoted as F.2/.z/, has 4L roots with the factorization

F.2/.z/ D G.2/.z/G.2/�.1=z�/ (7.49)

where G.2/.z/ and G.2/�.1=z�/ are polynomials of degree 2L having conjugate reciprocal roots. The correlated noise samples
can be whitened by using a filter with transfer function 1=G.2/�.1=z�/. Once again, G.2/�.1=z�/ can be chosen as a noncausal
stable filter such that the overall system function G.2/.z/ has minimum phase with all its roots inside the unit circle. The
output of the noise whitening filter is

v.2/n D
2L
X

kD0
g
.2/
k x

.2/
n�k C w.2/n ; (7.50)

where fw.2/n g is a white Gaussian noise sequence with variance 1
2
EŒjw.2/n j2� D No and the fg.2/n g are the coefficients of a

discrete-time transversal filter having a transfer function G.2/.z/. The sequence fx.2/n g is the corresponding T=2-spaced input
symbol sequence and is given by

x.2/n D
�

xn=2 ; n D 0; 2; 4; : : :
0 ; n D 1; 3; 5; : : : (7.51)

Notice that each transmitted symbol is padded with a zero. In general, if rate K=T sampling is used, then each input symbol is
padded with K � 1 zeros. The overall system and equivalent discrete-time white noise channel models are shown in Figs. 7.6
and 7.7, respectively.

Comparing (7.25) and (7.49) gives

2L
X

kD0
jg.2/k j2 D

L
X

kD0
jgkj2 D f

.2/
0 D f0: (7.52)
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Fig. 7.6 Block diagram of system that implements a filter matched to h.t/ followed by a T=2-spaced sampler and a discrete-time noise whitening
filter
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Fig. 7.7 Discrete-time white noise channel model with rate-2=T sampling

Note that the samples v.2/2n and v.2/2nC1 correspond to the nth received baud, where

v
.2/
2n D

L
X

kD0
g
.2/
2k xn�k C w

.2/
2n (7.53)

v
.2/
2nC1 D

L�1
X

iD0
g
.2/
2kC1xn�k C w

.2/
2nC1: (7.54)

Finally, by comparing (7.32) and (7.54), v.2/2n is not necessarily equal to vn because a different noise whitening filter is used
to whiten the T=2-spaced noise samples than is used to whiten T-spaced noise samples.

7.3 Symbol-by-Symbol Equalizers

As shown in Fig. 7.8, a linear forward equalizer consists of a transversal filter with adjustable tap coefficients. The tap
coefficients of the equalizer are denoted by the column vector

c D .c0; c1; : : : ; cN�1/
T ; (7.55)

where N is the number of equalizer taps. Assuming that the equalizer is preceded by a whitened matched filter that outputs
the sequence fvng, the output of the equalizer is

Qxn D
N�1
X

jD0
cjvn�j; (7.56)

where the vn are given by (7.32). The equalizer output Qxk is quantized to the nearest (in Euclidean distance) information
symbol to form the decision Oxk.

Observe that the overall discrete-time white noise channel and equalizer can be represented by a single filter having the
sampled impulse response

q D .q0; q1; : : : ; qNCL�1/
T ; (7.57)

where

qn D
N�1
X

jD0
cjgn�j

D cTg.n/ (7.58)
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Fig. 7.8 Linear transversal equalizer with adjustable T-spaced taps

with

g.n/ D .gn; gn�1; gn�2; : : : ; gn�NC1/
T (7.59)

and gi D 0; i < 0; i > L. That is, q is the discrete convolution of g and c.
If the equalizer is preceded by a noise whitening filter, then the discrete-time white noise channel has a system function

G.z/ with minimum phase. Although the minimum phase system function G.z/ satisfies the minimum energy-delay property
as discussed previously, it is not necessarily true that jg0j2 � jgkj2;8k � 1, i.e., the first tap g0 does not necessarily have the
largest magnitude. Let the component of g of greatest magnitude be denoted by gd1 . Also, let the number of equalizer taps
be equal to N D 2d2 C 1 where d2 is an integer. Perfect equalization means that

q D ed D .0; 0; : : : ; 0
„ ƒ‚ …

d�1 zeroes

; 1; 0; : : : ; 0; 0/T (7.60)

where d � 1 zeroes precede the “1” and d is an integer representing the overall delay. Unfortunately, perfect equalization is
difficult to achieve and does not always yield the best performance.

7.3.1 Linear Equalizer

7.3.1.1 Zero-Forcing (ZF) Solution

Lucky [211, 212] was the first to develop an adaptive (linear) equalizer for digital communication systems in the mid-1960s.
This equalizer was based on the peak distortion criterion, where the equalizer forces the ISI to zero, and it is called a zero-
forcing (ZF) equalizer. With a ZF equalizer, the tap coefficients c are chosen to minimize the peak distortion of the equalized
channel, defined as

Dp D
1

jqdj

NCL�1
X

nD0
n¤d

jqn � Oqnj; (7.61)

where Oq D .Oq0; : : : ; OqNCL�1/T is the desired equalized channel and the delay d is a positive integer optimized to have the
value d D d1 C d2 [71]. Lucky showed that if the initial distortion before equalization is less than unity, i.e.,

D D 1

jgd1 j

L
X

nD0
n¤d1

jgnj < 1 ; (7.62)

then Dp is minimized by those N tap values which simultaneously cause qj D Oqj for d � d2 � j � d C d2. However, if the
initial distortion before equalization is greater than unity, the ZF criterion is not guaranteed to minimize the peak distortion.
For the case when Oq D ed the equalized channel is given by
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q D .q0; : : : ; qd1�1; 0; : : : ; 0; 1; 0; : : : ; 0; qd1CN ; : : : ; qNCL�1/
T : (7.63)

In this case the equalizer forces zeroes into the equalized channel and, hence, the name “zero-forcing equalizer.”

Equalizer Tap Solution

For a known channel impulse response, the tap gains of the ZF equalizer can be found by the direct solution of a simple set
of linear equations [71]. To do so, the matrix

G D Œg.d1/; : : : ; g.d/; : : : ; g.N C d1 � 1/� (7.64)

is formed along with the vector

Qq D .Oqd1 ; : : : ; Oqd; : : : ; OqNCd1�1/
T : (7.65)

Then the vector of optimal tap gains, cop, is

cT

opG D QqT �! cop D .G�1/T Qq: (7.66)

Example 7.2. Suppose that a system has the channel vector

g D .0:90;�0:15; 0:20; 0:10;�0:05/T ;

where gi D 0; i < 0; i > 4. The initial distortion before equalization is

D D 1

jg0j

4
X

nD1
jgnj D 0:5555

and, therefore, the minimum distortion is achieved with the ZF solution. Suppose that a 3-tap ZF equalizer is to be
designed. Since g0 is the component of g having the largest magnitude, d1 D 0 and the equalizer delay is chosen as
d D d1 C d2 D 1. Suppose that the desired response is Oq0 D eT

1 so that Qq D .0; 1; 0/. The matrix

G D Œg.0/; g.1/; g.2/�

D

2

4

0:90 �0:15 0:20

0:00 0:90 �0:15
0:00 0:00 0:90

3

5

is then constructed to obtain the optimal tap solution

cop D .G�1/T Qq D .0; 1:1111; �0:185185/T :

The overall response of the channel and equalizer is

q D .0:0; 1:0; 0; 0:194; 0:148; �0:037; �0:009; 0; : : :/T :

Finally, the distortion after equalization is

Dp D
1

jq1j

6
X

nD0
n¤1

jqn � Oqnj D 0:388:
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Adaptive Solution

In practice, the channel impulse response is unknown to the receiver and a known finite length sequence x is used to train
the equalizer. During this training mode, the equalizer taps can be obtained by using the following steepest-descent recursive
algorithm:

cnC1
j D cn

j C ˛�nx�
n�j�d1

; j D 0; : : : ;N � 1; (7.67)

where

�n D xn�d � Qxn

D xn�d �
N�1
X

iD0
civn�i (7.68)

is the error sequence, fcn
j g is the set of equalizer tap gains at epoch n, and ˛ is an adaptation step size that can be optimized to

trade off convergence rate and steady state bit error rate performance. Notice that adaptation rule in (7.67) attempts to force
the cross-correlations �nx�

n�j�d1
; j D 0; : : : ; N � 1, to zero. To see that (7.67) leads to the desired solution, (7.32) and (7.68)

are used along with the fact that the symbol sequence fxng is uncorrelated with the noise sequence fwng to obtain

1

2
EŒ�nx�

n�j�d1
� D 1

2
EŒxn�dx�

n�j�d1
� � 1

2

N�1
X

iD0

L
X

`D0
cig`EŒxn�i�`x

�
n�j�d1

�

D �2x

 

ıd2�j �
N�1
X

iD0
cigjCd1�i

!

D �2x .ıd2�j � qjCd1/ ; j D 0; 1; : : : ; N � 1; (7.69)

where �2x D 1
2EŒjxkj2�. Note that the conditions 1

2EŒ�nx�
n�j�d1

� D 0 are satisfied when qd D 1 and qi D 0 for d � d2 � i < d

and d < i � dC d2, which is the zero-forcing solution.
After training the equalizer, a decision-feedback mechanism is typically employed where the sequence of symbol

decisions Ox is used to update the tap coefficients. This mode is called the data mode and allows the equalizer to track
variations in the channel vector g. In the data mode,

cnC1
j D cn

j C ˛�n Ox�
n�j�d1

; j D 0; : : : ;N � 1; (7.70)

where the error term �n in (7.68) becomes

�n D Oxn�d �
N�1
X

iD0
civn�i (7.71)

and, again, Oxn�d is the decision on the equalizer output Qxn delayed by d samples.

Performance of the ZF Equalizer

If the ZF equalizer has an infinite number of taps, it is possible to select the tap weights so that Dp D 0, i.e., q D Oq. Assuming
that Oqn D ın0 this condition means that

Q.z/ D 1 D C.z/G.z/: (7.72)



7.3 Symbol-by-Symbol Equalizers 347

Therefore,

C.z/ D 1

G.z/
(7.73)

and the ideal ZF equalizer has a discrete transfer function that is simply the inverse of overall channel G.z/. The cascade of
the noise whitening filter with transfer function

W.z/ D
p

2Ehr
=G�.1=z�/ (7.74)

and the ZF equalizer with transfer function 1=G.z/ results in an equivalent equalizer with transfer function1

C0.z/ D
p

2Ehr

G�.1=z�/G.z/
D
p

2Ehr

F.z/
: (7.75)

Recall from (7.30) that the noise sequence at the input to the equivalent equalizer C0.z/ has the discrete autocorrelation
function ���.n/ D No

2Ehr
fn and power spectral density (psd)

SQnQn.f / D
No

2Ehr

F.ej2� fT/ ; jf j � 1

2T
: (7.76)

Therefore, the psd of the noise sequence f�ng at the output of the equalizer is

S��.f / D
No

F.ej2� fT/
; jf j � 1

2T
; (7.77)

and the noise samples have variance

�2� D T

Z 1=2T

�1=2T

S��.f /df

D T

Z 1=2T

�1=2T

No

F.ej2� fT/
df : (7.78)

If �2x D 1
2EŒjxkj2� and Oqn D ın0, then the signal-to-noise ratio at the output of the infinite-tap equalizer is


1 D
�2x

�2�
: (7.79)

Finally, it can be shown that (Problem 7.1)

F.ej2� fT/ D F˙ .f / ; jf j � 1

2T
; (7.80)

where F˙ .f / is the folded spectrum of F.f / defined by

F˙ .f /
4D 1

T

1
X

nD�1
F
�

f C n

T

�

: (7.81)

1The scaling of the noise whitening filter gain by
p
2Ehr

is not necessary in practice and is done here for mathematical convenience.
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and F.f / is the Fourier transform of the pulse f .t/ D h.t/ � h�.�t/. Hence, the signal-to-noise ratio at the equalizer output
can be written in the final form


1 D �2x

0

@TNo

Z 1=2T

�1=2T

 

1

T

1
X

nD�1
F
�

f C n

T

�
!�1

df

1

A

�1

: (7.82)

It is clear from (7.82) that ZF equalizers are unsuitable for channels that have severe ISI, where the folded spectrum F˙ .f /

has spectral nulls or very small values. Under these conditions, the equalizer tries to compensate for the nulls in the folded
spectrum by introducing infinite gain at their frequencies. Unfortunately, this results in severe noise enhancement at the
output of the equalizer at these same frequencies. Land mobile radio channels often exhibit spectral nulls and, therefore,
linear ZF equalizers are not used for land mobile radio applications.

On the other hand, when the overall channel f .t/ satisfies the conditions for ISI-free transmissions as discussed in Sect. 4.2,
then the ISI coefficients satisfy the property fn D f0ın0 and the matched filter output is

Qrk D
p

2Ehr
xk C Qnk: (7.83)

The noise samples fQnkg in the case are white due to the fact that the overall pulse f .t/ satisfies the first Nyquist criterion.
From Sect. 4.2, an equivalent condition in the frequency domain is that the folded spectrum F˙ .f / is flat, i.e.,

F˙ .f / D
1

T

1
X

nD�1
F
�

f C n

T

�

D f0 D 2Ehr
: (7.84)

Under this condition the signal-to-noise ratio in (7.82) reaches its maximum value 
1 D 2�2x Ehr
=No.

7.3.1.2 MMSE Solution

Soon after Lucky introduced the ZF equalizer, Proakis and Miller [271], Lucky et. al. [213], and Gersho [138] developed the
linear MMSE equalizer based on the least mean square (LMS) criterion. The MMSE equalizer is more robust and superior
to the ZF equalizer in its performance and convergence properties [271, 272, 275]. By defining the vector

vn D .vn; vn�1; : : : ; vn�NC1/; (7.85)

where vk is the output of the whitened matched filter in (7.32), the output of the equalizer in (7.56) can be expressed in the
form

Qxn D cTvn D vT

nc: (7.86)

An MMSE equalizer adjusts the tap coefficients to minimize the mean square error (MSE)

J
4D 1

2
EŒjxn�d � Qxnj2�

D 1

2
E
�

cTvnvH

n c� � 2RefvH

n c�xn�dg C jxn�dj2
�

: (7.87)

where, again, d is the equalizer delay assumed here to be chosen as d D d1 C d2.
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Equalizer Tap Solution

If the channel impulse response is known, the optimum equalizer taps can be obtained by direct solution. Define

Mv
4D 1

2
EŒvnvH

n �

vH

x

4D 1

2
EŒvH

n xn�d� (7.88)

where Mv is an N�N Hermitian matrix (meaning that Mv DMH

v ) and vx is a length N column vector. Using these definitions
and assuming that 1

2EŒjxn�dj2� D �2x , the mean-square-error is

J D cTMvc
� � 2RefvH

x c�g C �2x : (7.89)

The tap vector c that minimizes the mean square error can be obtained by equating the gradient rcJ to zero. It can be shown
that (Problem 7.15)

rcJ D
�
@J

@c0
; : : : ;

@J

@cN�1

�

D 2cTMv � 2vH

x : (7.90)

Setting rcJ D 0 gives the MMSE tap solution

cop D .MT

v/
�1v�

x : (7.91)

By substituting (7.91) into (7.89), using the identity .A�1/T D .AT/�1 and the fact that Mv is Hermitian, the MMSE can be
expressed as

Jmin D cT

opMvc
�
op � 2RefvH

x c�
opg C �2x

D �2x � vH

x M�1
v vx: (7.92)

To proceed further, the ith component of the vector vH

x is

1

2
EŒxn�dv

�
n�i� D �2x

L
X

`D0
g�
` ıd�i�` D �2x g�

d�i ; i D 0; : : : ;N � 1; (7.93)

so that

vH

x D �2x .g�
d ; g

�
d�1; : : : ; g

�
0 ; 0; : : : ; 0/

T : (7.94)

Also,

1

2
EŒvk�iv

�
k�j� D

�

�2x fj�i C Noıij ; ji � jj � L

0 ; otherwise
; (7.95)

where the property

fn D
L�n
X

kD0
g�

k gkCn ; n D 0; : : : ;L (7.96)

have been used. Hence, the N � N matrix Mv has the form

Mv D �2x

2

6
6
6
6
6
4

f0 C No=�
2
x f1 f2 � � � fN�1

f �
1 f0 C No=�

2
x f1 � � � fN�2

f �
2 f �

1 f0 C No=�
2
x � � � fN�3

:::
:::

::: � � �
:::

f �
N�1 � � � f �

2 f �
1 f0 C No=�

2
x

3

7
7
7
7
7
5

: (7.97)



350 7 Time Domain Equalization and Interference Cancelation

Example 7.3. Consider a system having the same channel vector g as in Example 7.2. Suppose that a 3-tap MMSE
equalizer is to be designed. In this case, gd1 D 0 and N D 2d2 C 1 D 3, so that d D d1 C d2 D 1. Hence,

vH

x D �2x .g�
1 ; g

�
0 ; 0/ D �2x .�0:15; 0:90; 0:00/

and

Mv D �2x

2

4

ˇ �0:1500 0:1550

�0:1500 ˇ �0:1500
0:1550 �0:1500 ˇ

3

5

where ˇ D 0:8850C No=�
2
x . The inverse of Mv is

M�1
v D

adj.Mv/

det.Mv/

where det.Mv/ D .�2x /3.ˇ.ˇ2 � 0:069025/C 0:006975/ and

adj.Mv/ D .�2x /2
2

4

ˇ2 � 0:0225 0:15ˇ � 0:02325 0:0225 � 0:155ˇ
0:15ˇ � 0:02325 ˇ2 � 0:024025 0:15ˇ � 0:02325
0:0225 � 0:155ˇ 0:15ˇ � 0:02325 ˇ2 � 0:0225

3

5

Hence,

cop D
.�2x /

3

det.Mv/

0

@

�0:15ˇ2 C 0:135ˇ � 0:1755
0:90ˇ2 � 0:0225ˇ � 0:018135

0:15825ˇ � 0:0243

1

A :

With this tap solution,

Jmin D �2x
�

1 � 0:8325ˇ2 � 0:013689
ˇ.ˇ2 � 0:069025/C 0:006975

�

and as No ! 0, Jmin D 0:001089424�2x .

Adaptive Solution

In practice, the channel impulse response is unknown beforehand so that the MMSE solution cannot be obtained by the
matrix inversion in (7.91). However, the equalizer taps can be obtained by using the stochastic gradient algorithm

cnC1
j D cn

j C ˛�nv
�
n�j ; j D 0; : : : ;N � 1; (7.98)

where �n is given by (7.68). To show that (7.98) leads to the desired solution, from (7.90)

rcJ D EŒcTvnvH

n � xn�dvH

n �

D EŒ.cTvn � xn�d/v
H

n �

D EŒ�nvH

n � D 0: (7.99)
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It follows that

1

2
EŒ�nv

�
n�j� D 0; j D 0; : : : ; N � 1; (7.100)

and, therefore, the adaptive solution tends to force the cross-correlations �nv
�
n�j; j D 0; : : : ; N � 1 to zero.

Performance of the MMSE Equalizer

The performance of an MMSE equalizer having an infinite number of taps provides some useful insight. In this case

c D .c�1; : : : ; c0; : : : ; c1/

vn D .vnC1; : : : ; vn; : : : ; vn�1/:

Since the decision delay d with an infinite-tap equalizer is irrelevant, d D 0 can be chosen so that

1

2
EŒxnv

�
n�j� D

(

�2x g�
�j ; �L � j � 0

0 ; otherwise
: (7.101)

The equation for the optimal tap gain vector cTMv D vH

x can be written in the form

1
X

iD�1
ci

�

fj�i C Noıij

�

D g�
�j ; �1 < j <1: (7.102)

Taking the z-transform of both sides of (7.102) gives

C.z/
�

G.z/G�.1=z�/C No

�

D G�.1=z�/ (7.103)

and, therefore,

C.z/ D G�.1=z�/

G.z/G�.1=z�/C No

: (7.104)

The equivalent MMSE equalizer C0.z/ D C.z/W.z/ that includes the noise whitening filter in (7.74) is

C0.z/ D
p

2Ehr

G.z/G�.1=z�/C No

D
p

2Ehr

F.z/C No

: (7.105)

Notice that C0.z/ has the same form as the ZF equalizer in (7.75), except for the noise term No in the denominator. Clearly,
the ZF and MMSE criterion lead to the same solution in the absence of noise.

The most meaningful measure of performance is the bit error probability. However, for many equalization techniques, the
bit error probability is a highly nonlinear function of the equalizer coefficients. Another measure of performance is the mean
square error. The MMSE of an infinite-length MMSE equalizer is given by [272]

Jmin D �2x T

Z 1=2T

�1=2T

No

F˙ .f /C No

df ; (7.106)

where �2x D 1
2EŒjxkj2�. Note that 0 � Jmin � �2x , and that Jmin D 0 when there is no noise and Jmin D �2x when the folded

spectrum F˙ .f / exhibits a spectral null. Furthermore, the relationship between the signal-to-noise ratio at the equalizer output
and Jmin is


1 D �2x �
�2x � Jmin

Jmin
: (7.107)
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When there is no ISI, F˙ .f / D f0 D 2Ehr
giving

Jmin D
�2x No

2Ehr
C No

; (7.108)

and the equalizer reaches its maximum output signal-to-noise ratio 
1 D 2�2x Ehr
=No. Finally, another useful measure for

the effectiveness of linear equalization techniques is the signal-to-interference-plus-noise ratio (SINR) defined as

SINR D 2�2x jqdj2

2�2x
PNCL�1

jD0
j¤d

jqjj2 C No

PN�1
jD0 jcjj2

: (7.109)

Although the MMSE equalizer accounts for the effects of noise, satisfactory performance still cannot be achieved for
channels with severe ISI or spectral nulls, because of the noise enhancement at the output of the equalizer [118, 272].
Another problem with a linear equalizer is the adaptation of the equalizer during data mode. This problem is especially acute
when bandwidth efficient trellis-coded modulation schemes are used with non-iterative receivers. In this case, equalizer-
based decisions are unreliable and inferior to those in uncoded systems due to the reduced separation between the points in
the enlarged signal constellation. This problem can be partially alleviated by using periodic training, where the equalizer taps
are allowed to converge in periodic training modes [99].

7.3.2 Decision Feedback Equalizer

Linear equalizers have the drawback of enhancing channel noise while trying to eliminate ISI, a characteristic known as
noise enhancement. As a result, satisfactory performance is unattainable with linear equalizers for channels having severe
amplitude distortion. In 1967, Austin [23] proposed the nonlinear DFE to mitigate noise enhancement. The DFE consists
of two sections; a feedforward section and a feedback section as illustrated in Fig. 7.9. The DFE is nonlinear because the
feedback path includes a decision device. The feedforward section has an identical structure to the linear forward equalizer
discussed earlier, and its purpose is to reduce the precursor ISI. It has been shown that the optimum tap setting of a zero-
forcing DFE having infinite length feedforward and feedback filters is such that the feedforward filter is identical to a noise
whitening filter with system function 1=G�.1=z�/, such that the system function G.z/ has minimum phase [275]. Such a filter
suppresses the postcursor of the channel response and whitens the noise. The combination of the matched filter, sampler, and
feedforward filter yields an equivalent discrete-time white noise channel having the system function G.z/.

To eliminate the postcursor ISI, decisions made on the equalizer outputs are propagated through the feedback filter. The
optimal coefficients of the feedback filter are the sampled impulse response of the tail of the overall system impulse response
that includes the forward part of the DFE. This feedback mechanism introduces error propagation which can degrade the
performance of the DFE and complicate its performance analysis.

The output of the DFE shown in Fig. 7.9 is

Qxn D
N�1
X

iD0
ciQrn�i �

M
X

iD1
Fi Oxn�i; (7.110)

where fcng and fFng are the tap coefficients of the feedforward and feedback filters, respectively, fyng is the sample sequence
at the output of the matched filter, and fOxng is the sequence of previously detected data symbols. Recall that the overall
channel and feedforward portion of the equalizer can be represented by the sampled impulse response q in (7.57). Hence,
the DFE output can be written as

Qxn D
NCL�1
X

iD0
qixn�i �

M
X

iD1
Fi Oxn�i C Q�n; (7.111)

where

Q�n D
N�1
X

iD0
ci Qnn�i (7.112)
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Fig. 7.9 Decision feedback equalizer

is the nth noise sample at the output of the feedforward filter. By adding and subtracting terms, the output of the DFE can be
rewritten as

Qxn D xnq0 C
M
X

iD1
qi.xn�i � Qxn�i/C

M
X

iD1
.qi � Fi/Oxn�i

C
NCL�1
X

iDMC1
qixn�i C Q�n: (7.113)

Choosing

Fi D qi D cTg.i/; i D 1; 2; : : : ;M (7.114)

so that the second summation is zero, and if correct decisions are made so that the first summation is zero, then

Qxn D xnq0 C
NCL�1
X

iDMC1
qixn�i C Q�n: (7.115)

The summation in (7.115) represents the residual ISI that remains from the feedforward filter, which is zero if M D NCL�1.

Equalizer Tap Solution

The coefficients fcig and fFig can be adjusted simultaneously to minimize the mean square error, resulting in an equalizer
that is sometimes called an MMSE-DFE. Define

c D .c0; c1; : : : ; cN�1/
T (7.116)

Qrn D .Qrn; Qrn�1; : : : ; Qrn�N/
T (7.117)

Oxn D .Oxn�1; Oxn�2; : : : ; Oxn�M/
T (7.118)

F D .F1; F2; : : : ; FM/
T ; (7.119)
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and define the error at the nth epoch, �n, as

�n D Qxn � xn

D cT Qrn � FT Oxn � xn: (7.120)

Now define

Qt 4D vec.cT ;FT/T (7.121)

Qyn
4D vec.QrT

n;�OxT

n/
T (7.122)

so that �n D QtT Qyn � xn. Then the MSE can be expressed as

J D 1

2
EŒj�nj2�

D 1

2
E
�QtT Qyn QyH

n
Qt� � 2RefQyH

n
Qt�xng C jxnj2

�

: (7.123)

Notice that (7.123) and (7.87) have the exact same form. Therefore, the MMSE tap solution can be obtained by defining

QMy
4D 1

2
EŒQyn QyH

n � (7.124)

QyH

x

4D 1

2
EŒQyH

n xn�: (7.125)

Using the same argument that leads to (7.91) gives the MMSE-DFE tap solution

Qtop D . QMT

y/
�1 Qy�

x : (7.126)

Adaptive Solution

The feedforward taps of the DFE can be adjusted by using

cnC1
j D cn

j C ˛�nv
�
nCj ; j D 0; : : : ;N � 1; (7.127)

while the feedback coefficients can be adjusted according to

FnC1
j D Fn

j C ˛�n Ox�
n�j ; j D 1; : : : ;M; (7.128)

where ˛ is the step size. To see that this leads to the desired solution, the same argument that leads to (7.99) can be used.
Then observe that rcJ D EŒ�n QyH

n � D 0 implies that

1

2
EŒ�nv

�
nCj� D 0 ; j D 0; : : : ; N � 1 (7.129)

1

2
EŒ�n Ox�

n�j� D 0 ; j D 1; : : : ; M; (7.130)

where the second expectation is zero under the assumption that the DFE makes correct decision so that Ox�
n�j D x�

n�j.

Performance of the DFE

The performance of a DFE is complicated by the fact that incorrect decisions in the feedback portion of the equalizer result in
error propagation. Since the feedback section of the DFE eliminates the postcursor residual ISI at the output of the forward
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filter, it is apparent that the optimum setting for an infinite-length forward filter is identical to a stable, non-causal, noise
whitening filter that results in an overall system response G.z/ having minimum phase [275]. The MMSE for the infinite
length DFE is [287]

Jmin D �2x exp

(

T

Z 1=2T

�1=2T

ln

�
No

F˙ .f /C No

�

df

)

; (7.131)

where 0 � Jmin � �2x . The corresponding signal-to-noise ratio at the output of the DFE is


1 D �2x �
�2x � Jmin

Jmin
: (7.132)

Once again, when there is no ISI F˙ .f / D f0 D 2Ehr
and

Jmin D
�2x No

2Ehr
C No

; (7.133)

and the equalizer reaches its maximum output signal-to-noise ratio 
1 D 2�2x Ehr
=No.

7.4 Sequence Estimation

7.4.1 Maximum Likelihood Sequence Estimation

The Viterbi algorithm was originally devised by Viterbi for maximum likelihood decoding of convolutional codes [334, 335].
Forney recognized the analogy between an ISI channel and a convolutional encoder, and applied the Viterbi algorithm for the
detection of digital signals corrupted by ISI and additive white Gaussian noise [131]. Because of the efficiency of the Viterbi
algorithm, the implementation of optimum maximum likelihood sequence estimation (MLSE) for detecting ISI-corrupted
signals is feasible.

Recall that the overall discrete-time white noise channel with D-branch diversity reception can be modeled by collection
of D transversal filters that are T-spaced and have .L C 1/-taps, as shown in Fig. 7.5. From Fig. 7.5, it can be seen that the
channel has a finite number of states defined by contents of the L memory elements in the tapped delay lines. If the size of
the signal constellation is 2n, there are total of NS D .2n/L states. The state at epoch k is

%k D .xk�1; xk�2; � � � ; xk�L/: (7.134)

Example 7.4. Suppose that the binary sequence x, xn 2 f�1;C1g, is transmitted over a three-tap static ISI channel
with channel vector g D .1; 1; 1/. In this case there are four states (NS D 4) and the system can be described the state
diagram shown in Fig. 7.10. Note that there are two branches entering and leaving each state since binary modulation
is used. In general there are M D 2n such branches for an M-ary modulation alphabet. The dashed lines correspond to
an input symbol equal to “�1” while the solid lines correspond to an input symbol equal to “1.”

The system state diagram can be used to construct the trellis diagram shown in Fig. 7.11, where the initial zero state

is assumed to be %.0/0 D .�1;�1/. Again, state transitions with a solid line correspond to an input symbol C1, while
those with a dashed line correspond to an input symbol �1.

Suppose that the data sequence x D .�1; 1; 1; �1; 1; 1; �1; �1; : : :/ is transmitted over the channel g. Then the
state sequence follows the shaded path in Fig. 7.11. The noiseless received sequence is v D .v0; v1; v2; v3; v4; : : :/,
where

(continued)
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Example 7.4 (continued)
Fig. 7.10 State diagram for
binary signaling on a three-tap
ISI channel

1 -1

-1-1
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1  1

input ‘‘1’’

input ‘‘-1’’

state

-1  1

1 -1

-1 -1

1  1

1 2 3 4 5 6 70 8

input ‘‘1’’

input ‘‘-1’’

epoch

Fig. 7.11 Trellis diagram for binary signaling on a three-tap ISI channel

vn D g0xn C g1xn�1 C g2xn�2

D xn C xn�1 C xn�2:

Hence, for the data sequence x D .�1; 1; 1; �1; 1; 1; �1; �1; : : :/ the noiseless received sequence is v D
.�3; �1; 1; 1; 1; 1; 1; �1; : : :/.

Assume that k symbols have been transmitted over the channel. Let Vn D .vn;1; vn;2; : : : ; vn;D/ denote the vector of
signals received on all D diversity branches at epoch n. After receiving the sequence fVngknD1, the ML receiver decides in
favor of the sequence fxngknD1 that maximizes the likelihood function

p.Vk; : : : ; V1j xk; : : : ; x1/ (7.135)

or, equivalently, the log-likelihood function

logfp.Vk; : : : ; V1j xk; : : : ; x1/g: (7.136)
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Since the noise samples fwn;dg in (7.32) are mutually independent with respect to the indices n and d, and Vn depends only
on the L most recent transmitted symbols, the log-likelihood function (7.136) can be rewritten as

logfp.Vk; : : : ;V1jxk; : : : ; x1/g
D logfp.Vkjxk; : : : ; xk�L/g C logfp.Vk�1; : : : ;V1jxk�1; : : : ; x1/g; (7.137)

where xk�L D 0 for k � L � 0. If the second term on the right side of (7.137) has been calculated previously at epoch k � 1
and stored in memory, then only the first term, called the branch metric, has to be computed for the incoming signal vector
Vk at epoch k.

The model in Fig. 7.5 gives the conditional pdf

p.Vkjxk; : : : ; xk�L/ D
1

.2�No/D
exp

8

<

:
� 1

2No

D
X

dD1

ˇ
ˇ
ˇ
ˇ
ˇ
vk;d �

L
X

iD0
gi;dxk�i

ˇ
ˇ
ˇ
ˇ
ˇ

2
9

=

;
(7.138)

so that log p.Vkjxk; : : : ; xk�L/ yields the branch metric

�k D �
D
X

dD1

ˇ
ˇ
ˇ
ˇ
ˇ
vk;d �

L
X

iD0
gi;dxk�i

ˇ
ˇ
ˇ
ˇ
ˇ

2

; (7.139)

using the same argument that was used to arrive at (7.37). Note that the receiver requires knowledge of the set of channel
vectors fgd; d D 1; : : : ;Dg to compute the branch metric. As discussed later, this can be obtained by using a separate channel
estimator.

Based on the recursion in (7.137) and the branch metric in (7.139), the well-known Viterbi algorithm [335] can be used
to implement the ML receiver by searching through the NS-state trellis for the most likely transmitted sequence x D fxkg
given the sequence of observation vectors V D fVkg. This search process is called maximum likelihood sequence estimation

(MLSE). At epoch k, the Viterbi algorithm stores NS surviving sequences known as survivors Lx.%.i/k / (paths through the

trellis) along with their associated path metrics �.%
.i/
k / (distances from the received sequence) that terminate at state %.i/k ; i D

0; : : : ;NS � 1. The path metric is defined as

�.%
.i/
k / D

k
X

nD1
�.i/n ; i D 0; : : : ;NS � 1; (7.140)

where f�.i/n g is the sequence of branch metrics along the surviving path Lx.%.i/k /. MLSE as implemented by the Viterbi
algorithm is now outlined followed by an example.

The Viterbi algorithm is initialized at time index k D 0, by setting all path metrics to zero, i.e., �.%.i/0 /; i D 1; : : : ;NS�1.

1. After the vector VkC1 has been received, compute the set of path metrics �.%.i/k ! %
.j/
kC1/ D �.%

.i/
k / C �.%

.i/
k ! %

.j/
kC1/

for all possible paths through the trellis that terminate in each state %.j/kC1; j D 0; : : : ; NS � 1, where �.%.i/k ! %
.j/
kC1/ is

the branch metric defined below. For a modulation alphabet of size M, there will be M such paths that terminate in each

state %.j/kC1.

2. Find �.%.j/kC1/ D max
i
�.%

.i/
k ! %

.j/
kC1/; j D 0; : : : ; NS � 1 where, again, the maximization is over all M possible paths

through the trellis that terminate in state %.j/kC1.

3. Store �.%.j/kC1/ and its associated surviving sequence Lx.%.j/kC1/. Drop all other paths that terminate in state %.j/kC1.
4. Increment the time index k, go to Step 1, and repeat the entire algorithm.

In Step 1 above, �.%.i/k ! %
.j/
kC1/ is the branch metric associated with the state transition %.i/k ! %

.j/
kC1 and is computed

according to the following variation of (7.139)

�.%
.i/
k ! %

.j/
kC1/ D �

D
X

dD1

ˇ
ˇ
ˇ
ˇ
ˇ
vk;d � g0;dxk.%

.i/
k ! %

.j/
kC1/ �

L
X

mD1
gm;dxk�m.%

.i/
k /

ˇ
ˇ
ˇ
ˇ
ˇ

2

; (7.141)
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where xk.%
.i/
k ! %

.j/
kC1/ is a symbol that is uniquely determined by the state transition %.i/k ! %

.j/
kC1, and the L most recent

symbols fxk�m.%
.i/
k /gLmD1 are uniquely specified by the state %.i/k .

Example 7.5. Consider again binary 4-state system in Example 7.4. In the presence of noise, the noise received
sequence is

vn D g0xn C g1xn�1 C g2xn�2 C wk

D xn C xn�1 C xn�2 C wk;

where the wk are i.i.d. zero-mean Gaussian random variables with variance No. Suppose that due to additive white
Gaussian noise, the noisy received sequence is

v D .v0; v1; v2; v3; v4; : : :/
D .�3:2; �1:1; 0:9; 0:1; 1:2; 1:5; 0:7; �1:3; : : :/:

The Viterbi algorithm is initialized with �.%.i/0 / D 0 for i D 0; : : : ; 3. The initial state is assumed to be %.0/0 D
.�1; �1/. Executing the Viterbi algorithm yields the result shown in Fig. 7.12, where the X’s on the branches in
the trellis denote dropped paths (the other path at each state is the survivor), and the numbers in the trellis are the

path metrics corresponding to the surviving sequences at each state. The path metrics at each state %.j/k ; j D 0; : : : ; 3,

are equal to the squared Euclidean distance between the corresponding surviving sequence Lx.%.j/k / and the received
sequence v at the output of the noise whitening filter.
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Fig. 7.12 Cumulative path metrics and surviving sequences with the Viterbi algorithm

As implied in (7.137), the ML receiver theoretically waits until the entire sequence fVng1nD1 has been received before
making a decision. In practice, such a long delay (maybe infinite) is intolerable. One method for solving this problem is

to modify the Viterbi algorithm to introduce a fixed decoding delay. Typically, the NS surviving sequences Lx.%.i/k /; i D
1; : : : ;NS � 1 at time index k will be identical for bit (or symbol) indices k � Q or less where Q is some sufficiently large
number. That is, all the surviving sequences will share a common parent sequence for bit (or symbol) indices k � Q or less.
With this in mind, one possibility is to modify the Viterbi algorithm to implement a finite fixed decoding delay, by storing
only the Q most recent bits or symbols for each surviving sequence. When the channel vector Vk is received and the path

metrics �.%.j/kC1/; j D 1; : : : ;NS� 1 are being calculated, the final decision is made on the bit (or symbol) Q branches back in

the trellis by deciding in favor of the bit (or symbol) at index k � Q in the surviving sequence Lx.%.i/k / having the largest path

metric �.%.i/k /. It is well known that if Q > 5L, the performance degradation caused by the resulting path metric truncation
is negligible [335].
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Another possibility is to transmit the data in blocks x D .x1; x2; : : : ; xN/ of length N, and use tail symbols to terminate
the trellis in a known state. Recall that the state at epoch k is %k D .xk�1; xk�2; : : : ; xk�L/. Therefore, if each block of N

data symbols is appended with a known L-symbol tail sequence, the trellis will terminate in a known state that is uniquely
determined by the L-symbol tail sequence. After the received vector VNCL has been processed there will be only one surviving
sequence left, and this surviving sequence is then used to make a decision on the entire packet of bits (or symbols). This
approach suffers a loss in power and data rate by the factor N=.N C L/ due to the insertion of tail symbols.

7.4.1.1 Adaptive MLSE Receiver

The Viterbi algorithm requires knowledge of the channel vectors gd; d D 1; : : : ;D to compute the branch metrics in (7.139) so
that an adaptive channel estimator is needed. Various channel estimators have been proposed in the literature [72, 106, 215].
Often the LMS algorithm is used for this purpose, because of its good performance, numerical stability, and simplicity of
implementation [162, 215]. Another possible adaptation algorithm is the Recursive Least Squares (RLS) or the Kalman
algorithm [162]. The RLS algorithm has a very fast convergence rate as compared to the LMS algorithm. However, it is
very complicated to implement and it is sensitive to roundoff noise that accumulates due to recursive computations which
may cause numerical instabilities in the algorithm [272]. It has also been reported that the tracking properties of the LMS
algorithm for the purpose of channel estimation in a fast varying environment are quite similar to those of the RLS algorithm
[106, 205, 302]. For these reasons the LMS algorithm is commonly used during the tracking mode in adaptive MLSE
receivers. During the training mode, it is possible that the RLS algorithm could offer better performance than the LMS
algorithm.

A straightforward method for adaptive channel estimation with an MLSE receiver is to use the final decisions at the output
of the Viterbi algorithm to update the channel estimator during the tracking mode. As mentioned previously a decision on
the data symbol xk�Q, denoted by Oxk�Q, is made when the vector Vk is received and processed. With the LMS algorithm, the
tap coefficients are updated according to

Ogi;d.kC 1/ D Ogi;d.k/C ˛�k�Q;d Ox�
k�i�Q ; i D 0; : : : ;L

d D 1; : : : ;D; (7.142)

where ˛ is the adaptation step size, and

�k�Q;d D vk�Q;d �
L
X

iD0
Ogi;d.k/Oxk�i�Q (7.143)

is the error associated with branch d at epoch k. A major problem with this channel estimator is that it lags behind the true
channel vector by the decision delay Q that is used in the Viterbi algorithm. To see this, write

vk�Q;d D
L
X

iD0
gi;d.k � Q/xk�i�Q C �k�Q;d (7.144)

so that

�k�Q;d D
L
X

iD0

�

gi;d.k � Q/ � Ogi;d.k/
�

xk�i�Q C �k�Q;d: (7.145)

Hence, channel time variations over the decision delay Q will cause the terms fgi;d.k � Q/ � Ogi;d.k/gLkD1 to be non-zero, and
this will degrade the tracking performance. The decision delay Q could be reduced but this will unfortunately reduce the
reliability of the data decisions Oxk�i�Q. Since decision errors will also degrade the performance of the channel estimator, the
overall performance improvement obtained by reducing Q is minimal at best.

One effective solution to this problem is to use per-survivor processing [204, 277, 297, 298], where each state maintains a

separate channel estimator to track the channel. After storing the path metrics �.%.j/kC1/ and the associated surviving sequences

Lx.%.j/kC1/ for each state j D 0; : : : ;NS � 1, the channel tap estimates are updated according to
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Og.j/i;d.kC 1/ D Og
.j/
i;d.k/C ˛�

.j/
k;d Lx�

kC1�i.%
.j/
kC1/ ; i D 0; : : : ;L

d D 1; : : : ;D
j D 0; : : : ;NS � 1; (7.146)

where

�
.j/
k;d D vk;d �

L
X

iD0
Og.j/i;d.k/Lx�

kC1�i.%
.j/
kC1/ (7.147)

and LxkC1�i.%
.j/
kC1/ is element kC1� i of the surviving sequence Lx.%.j/kC1/ associated with state %.j/kC1. Notice that the individual

channel estimators for each state use zero-delay symbols in their adaptation algorithm and, therefore, good channel tracking

performance is expected. The zero-delay symbols that are used to update the channel tap estimates associated with state %.j/kC1
are uniquely defined by surviving sequence Lx.%.j/kC1/ that is associated with %.j/kC1.

7.4.1.2 Fractionally Spaced MLSE Receiver

As mentioned previously, the matched filter outputs are often over-sampled to aid symbol timing synchronization and to
mitigate the effects of sample timing errors. Suppose that the matched filter output is sampled at rate 2=T and the T=2-
spaced samples are processed with a T=2-spaced noise whitening filter as shown in Fig. 7.6. Once again, the channel can
be modeled as a finite-state machine with the states defined in (7.134). However, the Viterbi decoder searches for the most
likely path in the trellis based on 2 samples per branch. For each state transition %.j/k ! %

.i/
kC1 at epoch k, the samples v.2/2k and

v
.2/
2kC1 are used by the Viterbi algorithm to evaluate the branch metric2

�.%
.i/
k !%

.j/
kC1/ D

ˇ
ˇ
ˇ
ˇ
ˇ
v
.2/
2k � g

.2/
0 xk.%

.i/
k ! %

.j/
kC1/ �

L
X

mD1
g
.2/
2mxk�m.%

.i/
k /

ˇ
ˇ
ˇ
ˇ
ˇ

2

C
ˇ
ˇ
ˇ
ˇ
ˇ
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.2/
2kC1 � g

.2/
1 xk.%

.i/
k ! %

.j/
kC1/ �

L�1
X

mD1
g
.2/
2mC1xk�m.%

.i/
k /

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (7.148)

Other than the change in the branch metric, the Viterbi algorithm proceeds as before. Note also that the adaptive channel

estimator must estimate and track two different channel vectors; g
.2/
e D fg.2/0 ; g

.2/
2 ; : : : ; g

.2/
2L g and g

.2/
o D fg.2/1 ; g

.2/
3 ; : : : ; g

.2/
2L�1g.

7.4.2 Delayed Decision-Feedback Sequence Estimation

The complexity of the MLSE receiver grows exponentially with the channel memory length. When the channel memory
length becomes large, the MLSE receiver quickly becomes impractical. Considerable research has been undertaken to reduce
the complexity of MLSE while retaining most of its performance. Duel-Hallen and Heegard [100, 101] proposed delayed
decision-feedback sequence estimation DDFSE, a technique that reduces the receiver complexity by truncating the effective
channel memory to � terms, where � is an integer that can be varied from 0 to L. Thus, a suboptimum receiver is obtained
with a complexity that is controlled by the parameter �.

The system function G.z/ of the overall discrete-time white noise channel can be written as

G.z/ D G�.z/C z�.�C1/GC.z/; (7.149)

2For notational simplicity, it is assumed that D D 1.
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where

G�.z/ D
�
X

iD0
giz

�i (7.150)

GC.z/ D
L���1
X

iD0
giC�C1z

�i: (7.151)

Let U.z/ D GC.z/X.z/ , where X.z/ is the z-transform of the input sequence. Then

uk D
L���1
X

iD0
giC�C1xk�i (7.152)

and

vk D
�
X

iD0
gixk�i C uk���1 C wk: (7.153)

From (7.152) and (7.153), the system state at epoch k can be decomposed into the state

%
�
k D .xk�1; : : : ; xk��/ (7.154)

and a partial state

�k D .xk���1; : : : ; xk�L/: (7.155)

There are N� D 2n� states in (7.154).
The DDFSE receiver can be viewed as a Viterbi algorithm with a decision feedback mechanism. For each state transition

%
�.i/
k ! %

�.j/
kC1, the DDFSE receiver uses the branch metric

�k.%
�.i/
k ! %

�.j/
kC1/ D �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

vk � g0xk.%
�.i/
k ! %

�.j/
kC1/ �

�
X

`D1
g`xk�`.%

�.i/
k / �

L
X

`D�C1
g` Lxk�`.%

�.i/
k /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

; (7.156)

where Lxk�`.%
�.i/
k / is element k�` of the surviving sequence Lx.%�.i/k /. Since each path uses decision-feedback based on its own

history, the DDFSE receiver avoids using a single unreliable decision for feedback. Hence, error propagation with a DDFSE
receiver is not as severe as with a DFE receiver. When � D 0 the DDFSE receiver is equivalent to Driscoll’s decoder [99]
and when � D L the DDFSE receiver is equivalent to the MLSE receiver.

Finally, since only the � most recent symbols are represented by the state in (7.154), it is important to have most of the
signal energy contained in these terms. Hence, it is very important that the noise whitening filter be selected so that the
overall channel G.z/ has minimum phase. If G.z/ does not have minimum phase, DDFSE does not work as well.

Example 7.6. Consider again the system in Example 7.4, where the received sequence is

v D .v0; v1; v2; v3; v4; : : :/
D .�3:2; �1:1; 0:9; 0:1; 1:2; 1:5; 0:7; �1:3; : : :/

Recall that %.i/k D .xk�1; xk�2/ so there are 4 system states. However, DDFSE is to be used with the state %�.i/k D
xk�1; i D 0; 1. The initial state is assumed to be %�.0/0 D �1. Since the channel has finite length, (7.156) gives the

(continued)
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Example 7.6 (continued)
branch metric

�k.%
�.i/
k ! %

�.j/
kC1/ D

ˇ
ˇ
ˇyk � xk.%

�.i/
k ! %

�.j/
kC1/ � xk�1.%

�.i/
k / � Lxk�2.%

�.i/
k /

ˇ
ˇ
ˇ

2

:

Applying DDFSE with the Viterbi algorithm gives the result shown in Fig. 7.13. Once again, the X0s on the branches
in the trellis denote the dropped paths and the numbers on the trellis nodes denote the path metrics.
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Fig. 7.13 Cumulative path metrics and surviving sequences with DDFSE

7.4.3 Reduced-State Sequence Estimation

For large signal constellations the number of states with DDFSE, 2n�, is substantial even for small �. Eyuboǧlu and
Qureshi [119] proposed a reduced complexity method called reduced-state sequence estimation (RSSE), a technique that
is especially useful for systems with large signal constellations. RSSE reduces the number of states by using Ungerboeck-
like set partitioning principles that were developed for trellis-coded modulation [325]. As described in [119], for each element
xk�n in %�k D .xk�1; : : : ; xk��/, a set partitioning �.n/; 1 � n � � � L is defined where the signal set is partitioned into Ji

subsets in a way of increasing intrasubset minimum Euclidean distance.3

The subset in the partitioning �.i/ to which xk�i belongs is denoted by ci.xk�i/. The subset partitioning is constrained
such that �.i/ is a finer partition of �.iC 1/; 1 � i � � � 1 and J1 � J2 � � � � J�. In this case this following subset-state
can be defined

t
�
k D .c1.xk�1/; c2.xk�2/; : : : ; c�.xk��//: (7.157)

Note that the RSSE subset-state does not completely specify the � most recent symbols fxk�ig�iD1. Rather, the subset-state
only specifies the subsets to which these symbols belong.

The constraints on the subset partitioning ensure a properly defined subset-trellis. Given the current subset-state t
�
k and

the subset c0.xk/ to which the current symbol xk belongs, the next subset-state t
�
kC1 is uniquely determined. Since ci.xk�i/ can

only assume Ji possible values, there are
Q�

iD1 Ji subset-states which could be much less than 2n�. Note that if J1 < 2
n, there

are parallel transitions associated with each subset-transition. The number of the parallel transitions is equal to the number
of symbols in the corresponding subset.

3If J1 D J2 D � � � D J� D M and � < L, then RSSE becomes DDFSE.
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The Viterbi algorithm used to search the subset-trellis is the same one used for MLSE except for a different branch metric
and the possibility of parallel transitions associated with the subset-transitions.4 When there are parallel transitions, the
Viterbi algorithm chooses the parallel transition with the maximum branch metric first5 and then the steps are executed as
defined in Sect. 7.4.1.

With RSSE, the branch metric in (7.139) is not uniquely determined by the associated pair of subset-states. This is solved
by introducing a decision feedback mechanism for the branch metric calculation [101, 119]. The RSSE branch metric for a

particular parallel transition associated with the subset-transition t
�.i/
k ! t

�.j/
kC1 is

�.t
�.i/
k ! t

�.j/
kC1/ D �

ˇ
ˇ
ˇ
ˇ
ˇ
vk � g0xk.t

�.i/
k ! t

�.j/
kC1/ �

L
X

`D1
g` Lxk�`.t

�.i/
k /

ˇ
ˇ
ˇ
ˇ
ˇ

2

(7.158)

where xk.t
�.i/
k ! t

�.j/
kC1/ is the data symbol corresponding to the particular parallel transition, and Lxk�`.t

�.i/
k / is element k � `

of the surviving sequence Lx.t�.i/k / associated with the subset-state t
�.i/
k .

7.5 Error Probability for MLSE on ISI Channels

The error probability performance of MLSE on ISI channels is now considered. It is impossible to derive the exact error
probabilities so that bounding techniques, such as the union bound, must be used. Let x and Ox be the transmitted and estimated
symbol sequences, respectively. For every pair x and Ox, an error sequence � D f�ig can be formed by defining �i D xi � Oxi.
It is arbitrarily assumed that the bit error probability at epoch j1 is of interest, so that �j1 ¤ 0 for all error sequences that are
considered. For each error sequence �, define the following useful error events:

E 0.�/: The sequence x � � is the maximum likelihood sequence.
E .�/: The sequence x � � has a larger path metric than sequence x.

It is also convenient to define the events

E
0

G D
[

� 2 G

E
0.�/ (7.159)

and

EF D
[

� 2 F

E .�/; (7.160)

where G is the set of all possible error sequences having �j1 ¤ 0 and F � G is the set of error sequences containing no more
than L � 1 consecutive zeroes amid non-zero elements.

Let % D f%kg and O% D f O%kg be the system state sequences corresponding to the symbol sequences x and Ox, respectively.
An error event occurs between k1 and k2, of length k2 � k1, if

%k1 D O%k1 ; %k2 D O%k2 ; and %j ¤ O%j for k1 < j < k2; (7.161)

where k1 � j1 � k2. The symbol error probability at epoch j1 is

Ps.j1/ D PŒxj1 ¤ Oxj1 �

D PŒE 0
G�

D
X

�2G

X

x2X .�/

PŒE 0.�/jx�PŒx�; (7.162)

4With DDFSE there are no parallel transitions.
5If the signal constellation has some symmetries, this step can be done by using a slicing operation [119].
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Fig. 7.14 A typical error state trellis diagram

where X .�/ is the set of symbol sequences that can have � as the error sequence. For different �, the set X .�/ might
be different. The third equation in (7.162) is obtained by using the property that the events E 0.�/ are disjoint for � 2 G.
Unfortunately, (7.162) does not admit an explicit expression and, hence, upper bounding techniques are needed for the
performance evaluation. A union bound on the error probability will be employed in our analysis.

To obtain a tighter union bound, it is now proven that the symbol error probability at epoch j1 is

Ps.j1/ D PŒEF�: (7.163)

Consider the typical trellis diagram as shown in Fig. 7.14, where x denotes the transmitted symbol sequence, and Qx.1/ and Qx.2/
denote two different symbol sequences. It can be seen that the error sequence �.1/ associated with Qx.1/ and the error sequence
�.2/ associated with Qx.2/ belong to sets F and G n F, respectively. For every �.2/ 2 G n F there always exists an �.1/ 2 F. If
the sequence x� �.2/ is the ML sequence, i.e., the event E 0

G has occurred, then the sequence x� �.1/ has a larger path metric
than the sequence x, i.e., the event EF has occurred. This means that E 0

G implies EF. On the other hand, if �.1/ 2 F and the
sequence x � �.1/ has a larger path metric than sequence x, then there exists a sequence � 2 G such that the sequence x � �

is the ML sequence. Therefore, EF implies E 0
G, and (7.163) is proven.

The union bound on (7.163) yields

Ps.j1/ �
X

�2F

P�E .�/�

D
X

�2F

X

x2X .�/

PŒE .�/jx�PŒx� (7.164)

or, equivalently,

Ps.j1/ �
X

�2E

ws.�/
X

x2X .�/

PŒE .�/jx�PŒx�; (7.165)

where E 2 F is the set of error sequences that have the first non-zero element starting at time j1, and ws.�/ is the number of
symbol errors associated with the error sequence �. To obtain (7.165), the following observations were used; i) there are ws.�/

places for the error sequence � to start such that �j1 ¤ 0, and ii) the error probability PŒE .�/jx� is independent of the place
where the error sequence � starts. If the transmitted symbol sequence is long enough, then the symbol error probability Ps.j1/

is independent of the time index j1 and, therefore, the time index will be omitted hereafter. Finally, for a given transmitted
symbol sequence x, the events fE .�/g for � 2 F in (7.164) might overlap. The reason is that there may be multiple symbol
sequences that simultaneously have a larger path metric than the path metric of the transmitted symbol sequence. When the
system is operating at a low SNR, there are more overlapping events E .�/ and, hence, the union bound (7.164) becomes
looser.
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From the definition of event E .�/, the union bound (7.165) becomes

Ps �
X

�2E

ws.�/
X

x2X .�/

PŒ�.x � �/ � �.x/jx�PŒx�; (7.166)

where �.x/ is the path metric associated with the input sequence x. To obtain the bit error probability, (7.166) can be easily
modified as

Pb �
1

n

X

�2E

wb.�/
X

x2X .�/

PŒ�.x � �/ � �.x/jx�PŒx�; (7.167)

where n is the number bits transmitted per unit time, and wb.�/ is the number of bit errors associated with the error sequence �.
The probability

PŒ�.x � �/ � �.x/jx� (7.168)

is called the pairwise error probability. It will be shown in the following two sections that the pairwise error probability is
independent of the transmitted symbol sequence x. Therefore, the union bounds (7.166) and (7.167) simplify to

Ps �
X

�2E

ws.�/P Œ�.x � �/ � �.x/jX .�/� P ŒX .�/� (7.169)

and

Pb �
1

n

X

�2E

wb.�/P Œ�.x � �/ � �.x/jX .�/�P ŒX .�/� ; (7.170)

respectively. The expressions in (7.169) and (7.170) are easier to calculate than those in (7.166) and (7.167), because not all
of the symbol sequences need to be considered in the calculation.

7.5.1 Static ISI Channels

The pairwise error probability associated with the error event of length ` D k2 � k1 in (7.161) is (Problem 7.16)

PŒ�.x � �/ � �.x/jx� D Q

0

@

s

�2

4No

1

A ; (7.171)

where

�2 D
k1C`�1X

kDk1

ˇ
ˇ
ˇ
ˇ
ˇ

L
X

iD0
gi�k�i

ˇ
ˇ
ˇ
ˇ
ˇ

2

(7.172)

and �2 is the squared Euclidean path distance. At high signal-to-noise ratios the error event probability is approximately

Pe � NminQ

0

@

s

d2min

4No

1

A (7.173)

where d2min is the minimum value of �2 and Nmin denotes the average number of error events at distance dmin.
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The squared Euclidean path distance in (7.172) can be rewritten as

�2 D
k1C`�1X

kDk1

�2
k ; (7.174)

where

�2
k D gHEkg (7.175)

is the squared branch distance and

Ek D Œ.emn/k� (7.176)

is the .LC 1/ � .LC 1/ branch distance matrix with elements .emn/k D ��
k�mC1�k�nC1. Define the error vector

ek D .�k; �k�1; : : : ; �k�L/
H: (7.177)

It follows that Ek D ekeH

k and, hence, Ek has rank one. Note that Ekek D .eHek/ek and, therefore, ek is an eigenvector of

Ek and the only eigenvalue of Ek is �.k/ D
PL

iD0 j�k�ij2. The path distance matrix of the length ` error event in (7.161) is
defined as

E
4D

k1C`�1X

kDk1

Ek: (7.178)

Using (7.134) and (7.161), the elements of E are

emn D r`.n � m/ (7.179)

where

r`.i/ D
(
Pk1C`�.LC1/�i

kDk1
�k�

�
kCi i � 0

r�
` .�i/ i < 0

: (7.180)

It follows that (7.174) has the Hermitian form �2 D gHEg. Since �2 > 0, E is a positive definite matrix with all eigenvalues
being real and positive. The matrix E depends on the signal constellation and the length of the channel LC 1.

By noting that gHg D f0 D 2Ehr
, the squared Euclidean path distance can be expressed in the form

�2 D 2Ehr

gHE g

gHg
D 2Ehr

R.g/; (7.181)

where the ratio of the Hermitian form gHE g to the inner product gHg is called the Rayleigh quotient of the vector g and is
denoted R.g/ [162]. The eigenvalues of E are equal to the Rayleigh quotient of the corresponding eigenvectors. The Rayleigh
quotient of E satisfies �min � R.g/ � �max. The minimum value of R.g/ corresponds to the smallest possible �2 (or largest
pairwise error probability) for a given error sequence �, and occurs when g D vmin. Likewise, the maximum value of R.g/

corresponds to the largest possible �2 (or smallest pairwise error probability) for a given error sequence �, and occurs when
g D vmax. Note that the eigenvalues of E are only a function of the error sequence � and do not depend on the channel
vector g. While the eigenvalues of E can be calculated exactly for a given error sequence �, the eigenvalues of E are bounded
by [162]

�max �
L
X

iD0
jr`.i/j and �min � r`.0/ �

L
X

iD1
jr`.i/j: (7.182)
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The upper and lower bounds on the eigenvalues are easier to calculate than the eigenvalues themselves. Finally, the condition

number of E is defined as c.E/
4D �max=�min, and c.E/ � 1. If the condition number of a particular error sequence � is large

(small), then the corresponding pairwise error probability will have a large (small) variation with the channel vector g.

7.5.2 Fading ISI Channels

Consider the case of a fading ISI channel with D-branch diversity reception and maximal ratio combining. The pairwise error
probability is still given by (7.171) but the squared Euclidean path distance associated with an error event of length ` is [301]

�2 D
D
X

dD1
�2

d; (7.183)

where

�2
d D

k1C`�1X

kDk1

ˇ
ˇ
ˇ
ˇ
ˇ

L
X

iD0
gi;d.k/�k�i

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (7.184)

The above expression can be written in the form

�2
d D

k1C`�1X

kDk1

gH
d .k/Ekgd.k/: (7.185)

In general, the correlation matrix ˆgd
.0/, where ˆgd

.m/ is defined in (7.43) is not diagonal. Although a non-diagonal
ˆgd

.0/ matrix is more realistic, it leads to considerable analytical difficulty and loss of insight. Therefore, our attention is
restricted to the case where ˆgd

.0/ is a diagonal matrix, meaning that the channel tap gains are all mutually uncorrelated
(assuming they have zero mean). In such a case, a normalized channel vector Ogd.k/ can be defined such that ˆOgd

.0/ D ILC1.
As a result, (7.185) can be rewritten as

�2
d D

k1C`�1X

kDk1

OgH

d .k/Ak;d Ogd.k/; (7.186)

where

Ak;d D ˙ dEk˙ d (7.187)

and

˙ d D diagŒ�0;d; �1;d; : : : ; �L;d� (7.188)

with �2i;d D 1
2
EŒjgi;dj2�. It follows that Ak;d D uk;duH

k;d where uk;d D ˙ dek and, hence, Ak;d is a rank one matrix and uk;d is an

eigenvector of Ak;d. The only non-zero eigenvalue of Ak;d is �d D
PL

iD0 �
2
i;dj�k�ij2.

For slowly time-variant channels it is reasonable to assume that gd.k/ remains constant over the length of the dominant
error events, i.e., gd.k/ � gd. This assumption holds even for relatively large Doppler frequencies and error event lengths.
For example, if the channel exhibits 2-D isotropic scattering and fmT D 0:0025, then error events up to length 20 have
J0.2� fmjkjT/ � J0.2� fm20T/ D 0:9755 � 1. By using the above assumption, (7.186) can be written as

�2
d D OgH

d Ad Ogd; (7.189)
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where

Ad D
k1C`�1X

kDk1

Ak;d

D ˙ dE˙ d: (7.190)

The matrix Ad is also positive definite with all its eigenvalues real and positive. The elements of Ad are given by Œ.amn/�d D
�m�1;d �n�1;d r`.n � m/ where r`.i/ is given by (7.180). The trace of the matrix Ad is

tr.Ad/ D
L
X

iD0
�i;d D . NE=�2x /r`.0/; (7.191)

where the �i;d; i D 0; : : : ;L are the eigenvalues of Ad. The last equality in (7.191) is obtained by using (7.45). Since Ad

is Hermitian, there exists a diagonalization Ad D UdƒdUH
d such that Ud is a unitary matrix and ƒd is a diagonal matrix

consisting of the eigenvalues of Ad. Let !d D UH
d Ogd be the corresponding diagonal transformation. Hence,

�2
d D !H

d ƒd!d D
L
X

iD0
�i;dj!i;dj2; (7.192)

where 1
2
EŒ!d!H

d � D ILC1 so that the f!i;dg are independent zero-mean unit-variance Gaussian random variables.
Using (7.183) and (7.192) gives

�2 D
D
X

dD1

L
X

iD0
˛i;d; (7.193)

where ˛i;d D �i;dj!i;dj2. The ˛i;d are chi-square distributed with 2 degrees of freedom and, therefore, the characteristic
function of �2 is

 �2.z/ D
D
Y

dD1

L
Y

iD0

1

1 � ˛i;dz
; (7.194)

where ˛i;d D 2�i;d. Finally, the pairwise error probability is

PŒ�.x � �/ � �.x/jx� D
Z 1

0

Q
�p

2x
�

f�2.x/dx; (7.195)

where f�2.x/ is the probability density function of �2. Note that if some of the eigenvalues �i;d are the same, then there will
be repeated poles in the characteristic function in (7.194). This will be the case for balanced diversity branches, and will also
be the case if the channel vectors gd have some equal strength taps. Consider the case where balanced D-branch diversity is
used, but where the channel taps in each diversity branch are not of equal strength. In this case, �i;d � �i; d D 1; : : : ;D and
the characteristic function in (7.194) has the form

 �2.z/ D
L
Y

iD0

1

.1 � z N̨ i/D

D
L
X

iD0

D
X

dD1

Aid

.1 � z N̨ i/d
; (7.196)

where

Aid D
1

.D � d/Š.� N̨ i/D�d

�
dD�d

dzD�d
.1 � z N̨ i/D  �2.z/

�

z D 1= N̨ i
(7.197)
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and N̨ i D 2�i. The pdf of �2 is

f�2.x/ D
L
X

iD0

D
X

dD1
Aid

1

.d � 1/Š. N̨ i/d
xd�1 e�x= N̨i ; x � 0: (7.198)

From (7.195) and (7.198), the exact pairwise error probability is

PŒ�.x � �/ � �.x/jx� D
L
X

iD0

D
X

dD1
Aid

�
1 � �i

2

�d d�1
X

mD0

 

d � 1C m

m

!
�
1C �i

2

�m

; (7.199)

where

�i D
s

N̨ i
1C N̨ i

: (7.200)

From (7.191), the ˛i;d have the sum value constraint

L
X

iD0
˛i;d D 2

L
X

iD0
�i;d D .2 NE=�2x /r`.0/: (7.201)

Define S � RLC1 as the set of all .LC 1/-component vectors f N̨ d W
PL

iD0 N̨ i;d D .2 NE=�2x /r`.0/g. The set S is convex, since
for any pair of vectors N̨ d;k and N̨ d;j the convex combination � N̨ d;k C .1 � �/ N̨ d;j is contained in S for any 0 � � � 1. If the
pairwise error probability is treated as a mapping from S to R, then it is a convex function of N̨ d and, hence, has a unique
minimum. For example, Fig. 7.15 shows the pairwise error probability for a three-tap channel (L D 2, D D 1) with equal
strength taps ( N̨0 D N̨1 D N̨2). Note that the value of N̨2 is determined uniquely by the values of N̨0 and N̨1, and that is
why a three dimensional graph is used. By using variational calculus, it can be shown (Appendix 7A) that the pairwise error
probability is minimized when the N̨ i;d are all equal, i.e., �i;d D � D . NE=�2x /r`.0/=.LC1/, resulting in the minimum pairwise
error probability
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Fig. 7.15 Pairwise error probability for a three-tap fading ISI channel
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Pmin D
�
1 � �
2

�D.LC1/ D.LC1/�1
X

mD0

 

D.LC 1/ � 1C m

m

!
�
1C �
2

�m

; (7.202)

where

� D
s

�=4No

1C �=4No

: (7.203)

For a given error event, the pairwise error probability is minimized when Ad is perfectly conditioned, i.e., c.Ad/ D 1.
Recall c.Ad/ D c .˙ dE˙ d/ � .c.˙ d//

2
c.E/, where .c.˙ d//

2 represents the ratio of the maximum and minimum channel
tap variances .�2d /max=.�

2
d /min for diversity branch d. It has been shown previously that E depends only on the signal

constellation being used and the channel vector length LC1. However, Ad has information about the signal constellation and
power distribution of the fading ISI channel. It follows that c.Ad/ � c.E/ with equality if and only if the channel has equal
strength taps. This means that any system has the best performance when the fading ISI channel has equal strength taps.

7.6 Error Probability for T=2-Spaced MLSE Receiver

Referring to Fig. 7.6, let X.z/, V.z/, and V.2/.z/ be the z-transforms of the input sequence x, the T-spaced received sequence
v, and the T=2-spaced received sequence v.2/, respectively. The mappings from X.z/ to V.z/ and from X.z/ to V.2/.z/ are one-
to-one and both the T-spaced and T=2-spaced MLSE receivers operate on received sequences that are corrupted by noise
samples with variance No. Therefore, it is only necessary to compare the Euclidean distances between allowed sequences of
channel outputs to determine the relative performance of the T- and T=2-spaced receivers.

7.6.1 T-Spaced MLSE Receiver

From the definition of the error event in (7.161), the z-transform of the length-` error sequence � D f�k1 ; �k1C1; : : : ; �k1C`�1g is

E .z/ D �k1 C �k1C1z
�1 C � � � C �k1C`�1z

�`C1 (7.204)

where �k D xk � Oxk. The z-transform of the received signal error sequence associated with the length-` error sequence � is

Ev.z/ D .vk1 � Ovk1/C .vk1C1 � Ovk1C1/z
�1 C : : :

� � � C .vk1C`CL�1 � Ovk1C`CL�1/z
�.`CL�1/ (7.205)

and

Ev.z/ D E .z/G.z/: (7.206)

From (7.172), the squared Euclidean distance �2 of the error event in (7.161) is [131]

�2 D
k1C`�1X

kDk1

ˇ
ˇ
ˇ
ˇ
ˇ

L
X

iD0
gi�k�i

ˇ
ˇ
ˇ
ˇ
ˇ

2

D Œ Ev.z/E �
v .1=z�/ �0

D Œ E .z/F.z/E �.1=z�/ �0 (7.207)

where Œ � �0 is the coefficient of z0.
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7.6.2 T=2-Spaced MLSE Receiver

For the same error event described in (7.161), the corresponding T=2-spaced error sequence is �.2/ D f�.2/k1
; �
.2/
k1C1; : : : ; �k1C2`g

�1.2/, where

�
.2/
k1Ci D

�

�k1Ci=2 ; i even
0 ; i odd

: (7.208)

The z-transform of �.2/ is

E
.2/.z/ D �k1 C �k1C1z

�2 C � � � C �k1C`CL�1z
�2.`CL�1/; (7.209)

and because �.2/ is zero in the odd coordinates E .2/.z/ D E .z2/. The corresponding z-transform of the T=2-spaced received
signal error sequence associated with the error sequence �.2/ is

E
.2/
v .z/ D E

.2/.z/G.2/.z/: (7.210)

From (7.172), the squared Euclidean distance of the error event in (7.161) is

.�.2//
2 D

k1C2`�1X

kDk1

ˇ
ˇ
ˇ
ˇ
ˇ

2L
X

iD0
g
.2/
i �

.2/
k�i

ˇ
ˇ
ˇ
ˇ
ˇ

2

D Œ E .2/
v .z/E .2/

v

�
.1=z�/ �0

D Œ E .2/.z/F.2/.z/E .2/�.1=z�/ �0

D Œ E .z2/F.2/.z/E �.1=z�2/ �0; (7.211)

where F.2/.z/ D G.2/.z/.G.2/.1=z�//�. Note that the polynomial E .z2/ E �.1=z�2/ has the property that the odd powers
of z have zero coefficients. Therefore, the contributions to the coefficient Œ E .z2/F.2/.z/E �.1=z�2/ �0 arise only from the

coefficients of F.2/.z/ associated with even powers of z. Note also from (7.46) and (7.47) that the coefficients f
.2/
2k of F.2/.z/

associated with even powers of z are equal to the coefficients fk of F.z/, i.e., f
.2/
2k D fk. Therefore,

.�.2//
2 D Œ E .z2/F.2/.z/E �.1=z�2/ �0 D Œ E .z/F.z/E �.1=z�/ �0 D �2: (7.212)

Consequently, the T- and T=2-spaced MLSE receivers have identical error probability performance.

Example 7.9. Let

E .z/ D �0 C �1z�1 C �2z�2

F.2/.z/ D f
.2/
�2 z2 C f

.2/
�1 zC f

.2/
0 C f

.2/
1 z�1 C f

.2/
2 z�2:

Then

F.z/ D f�1zC f0 C f1z
�1 D f

.2/
�2 zC f

.2/
0 C f

.2/
2 z�1

E
.2/.z/ D �0 C �1z�2 C �2z�4:

(continued)



372 7 Time Domain Equalization and Interference Cancelation

Example 7.9 (continued)

Therefore,

Œ E .z/F.z/E �.1=z�/ �0 D
�

j�0j2 C j�1j2 C j�2j2
�2

f0

C�0��
1 f1 C �1��

0 f�1

and

Œ E .2/.z/F.2/.z/E .2/�.1=z�/ �0 D
�

j�0j2 C j�1j2 C j�2j2
�2

f
.2/
0

C�0��
1 f
.2/
2 C �1��

0 f
.2/
�2 :

Hence, �2 D .�.2//2.

7.6.3 Timing Phase Sensitivity

The conventional MLSE receiver based on T-spaced sampling at the output of the matched filter suffers from sensitivity
to the sampler timing phase [275]. A T=2-spaced MLSE receiver is insensitive to the sampler timing phase. This can be
readily seen by examining the sampled spectrum at the output of the matched filter. Suppose that the received pulse has less
than 100% excess bandwidth, i.e., H.f / D 0 for jf j > 1=T . With T-spaced sampling and a timing offset of to, the sampled
spectrum is equal to

F†.f / D
1

T

X

n

F
�

f C n

T

�

ej2�.f Cn=T/to : (7.213)

This spectrum exhibits aliasing for any received pulse having a bandwidth greater than the Nyquist frequency of 1=.2T/ Hz.
Consider, for example, the sampled spectrum at the Nyquist frequency f D 1=.2T/Hz. If there is no timing offset, then

F†.1=.2T// D 1

T
.F.1=.2T//C F.�1=.2T/// :

In this case, the sampled spectrum at frequency f D 1=.2T/Hz adds constructively. Now suppose there is a timing offset
to D T=2. Then,

F†.1=.2T// D 1

T

�

F.1=.2T//ej�=2 C F.�1=.2T//e�j�=2
�

D 0:

In this case, the sampled spectrum at frequency f D 1=.2T/Hz adds destructively and there is a null. Hence, the folded
spectrum is sensitive to the timing offset with T-spaced sampling. With T=2-spaced sampling, on the other hand,

F†.f / D
2

T

X

n

F

�

f C 2n

T

�

ej2�.f C2n=T/to : (7.214)

Notice that the sampled spectrum is a function of the timing offset to, but does not exhibit aliasing since H.f / has no more
than 100% excess bandwidth.

For a given a timing offset t0, the sampled impulse response at the output of the matched filter is represented by the vector

f
.2/
t0 , where f

.2/
t0;k
D f .kT 0 ˙ t0/ and T 0 D T=2. Note that f

.2/
t0;n ¤

�

f
.2/
t0;�n

��
when a timing offset is present. The discrete-time

Fourier transform (DTFT) of f
.2/
t0 is

F
.2/
t0 .e

j!/ D F.2/.ej!/e˙j!�0 ; (7.215)
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where �0 D t0=T 0. If the sampler phase is known, then a discrete-time filter with a frequency response function e�j!�0 after
the sampler will give the sampled response f.2/ at its output. However, there is no need to correct this phase offset prior to
performing MLSE equalization when T=2-spaced sampling is used, as is now shown.

The power spectrum of the noise at the output of the matched filter is independent of the timing offset t0 and is given by

S��.f / D NoF.2/.ej!/: (7.216)

Since the DTFT of the noise whitening filter is

1=.G.2/.1=z�//�jzDej! D 1=.G.2/.ej!//� (7.217)

and

F.2/.ej!/ D G.2/.ej!/ .G.2/.ej!//� D jG.2/.ej!/j2 (7.218)

it follows that the noise samples are white at the output of the noise whitening filter with variance No. The DTFT of the
message signal at the output of the noise whitening filter is

X.2/.ej!/G
.2/
t0 .e

j!/ D X.2/.ej!/G.2/.ej!/e˙j!�0 (7.219)

and

X

i

jg.2/i j2 D
X

i

jg.2/t0;i
j2 D 1

2�

Z �

��
jG.2/.ej!/j2d! (7.220)

according to Parseval’s theorem. Also

G
.2/
t0 .z/.G

.2/
t0 .1=z�//� D F.2/.z/: (7.221)

Hence, the distances between allowed sequences of channel outputs with the T=2-spaced MLSE receiver in (7.211) remain
the same and the performance is insensitive to the sampler phase e˙j!�0 . The MLSE receiver just needs to estimate the set of

tap coefficients fg.2/t0;i
g instead of fg.2/i g for use in the branch metric calculations.

7.6.4 Practical T=2-Spaced MLSE Receiver

The receivers in Figs. 7.3 and 7.6 use a filter that is matched to the received pulse h�.�t/. Since this filter requires knowledge
of the unknown channel impulse response, it is impractical. One solution is to implement an “ideal” low-pass filter with a
cutoff frequency of 1=T and sample the output at rate 2=T . The noise samples at the output of this filter will be uncorrelated
and, therefore, the T=2-spaced MLSE receiver can be implemented. Vachula and Hill [327] showed that this receiver is
optimum; however, it has some drawbacks. First, it is not suitable for bandwidth efficient systems that use frequency division
multiplexing, because the cutoff frequency of the low-pass filter will extend significantly into the adjacent band and pass
large amounts of adjacent channel interference. Second, the ideal low-pass filter is non-causal and difficult to approximate.
Another solution is to use a receiver filter that is matched to the transmitted pulse ha.t/ followed by a T=2-spaced sampler
and a noise whitening filter [65, 156]. If the transmitted signals are strictly bandlimited, e.g., ha.t/ is a root-raised cosine
pulse, such that the received pulse h.t/ has at most 100% excess bandwidth,6 then rate-2=T sampling satisfies the Shannon
sampling theorem and the T=2-spaced samples will provide sufficient statistics as is now shown.

For simplicity, consider a time-invariant channel with impulse response g.t/. Let H
.2/
a .z/, G.2/.z/, and H.2/.z/ be the z-

transforms of the T=2-spaced discrete-time signals corresponding to ha.t/, g.t/, and h.t/, respectively. The z-transform of

the autocorrelation function of the noise samples at the output of the receive filter h�
a .�t/ is NoF

.2/
h .z/ where F

.2/
h .z/ D

H
.2/
a .z/

�

H
.2/
a .1=z�/

��
. Using the factorization

6The received pulse will have a larger bandwidth due to Doppler spreading.
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Fig. 7.16 Block diagram of system that implements a filter matched to ha.t/ followed by a T=2-spaced noise whitening filter. The structure of the
noise whitening filter depends only on the pulse ha.t/

F
.2/
h .z/ D G

.2/
h .z/

�

G
.2/
h .1=z�/

��
(7.222)

the T=2-spaced noise sequence can be whitened by using a filter with transfer function 1=
�

G
.2/
h .1=z�/

��
such that G

.2/
h .z/

has minimum phase. The resulting system is shown in Fig. 7.16. The receivers in Figs. 7.6 and 7.16 are now shown to yield
identical performance.

The z-transform of the T=2-spaced discrete-time white noise channel in Fig. 7.16 is

G.2/
eq .z/ D H.2/

a .z/G.2/.z/
�

H.2/
a .1=z�/

��
=
�

G
.2/
h .1=z�/

��

D G
.2/
h .z/G

.2/.z/: (7.223)

On the other hand, referring to the conventional system shown in Fig. 7.6,

H.2/.z/ D H.2/
a .z/ G.2/.z/ (7.224)

and

F.2/.z/ D H.2/
a .z/

�

H.2/
a .1=z�/

��
G.2/.z/

�

G.2/.1=z�/
��
: (7.225)

Let

G.2/.z/
�

G.2/.1=z�/
�� D G.2/

c .z/
�

G.2/
c .1=z�/

��
(7.226)

be a factorization of G.2/.z/
�

G.2/.1=z�/
��

such that G
.2/
c .z/ has minimum phase. Using (7.222), (7.225), and (7.226) yields

F.2/.z/ D G
.2/
h .z/

�

G
.2/
h .1=z�/

��
G.2/

c .z/
�

G.2/
c .1=z�/

��
: (7.227)

If the system function of the noise whitening filter is chosen as

1=
� �

G
.2/
h .1=z�/

�� �
G.2/

c .1=z�/
�� �

; (7.228)

then the system function in Fig. 7.6 is

G.2/.z/ D G
.2/
h .z/G

.2/
c .z/: (7.229)

The system responses G
.2/
eq .ej!/ and G.2/.ej!/ have the same amplitude response but a different phase response. Also

G.2/
eq .z/

�

G.2/
eq .1=z�/

��
D F.2/.z/: (7.230)

Therefore, the Euclidean distance between sequences of noise whitening filter outputs for the T-spaced and T=2-spaced
systems are the same. It follows that the systems shown in Figs. 7.6 and 7.16 yield identical performance. The main advantage
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of the system in Fig. 7.16 is that the noise whitening filter does not depend on the unknown channel and has a fixed structure.
Moreover, channel estimation can be performed after the noise whitening filter and the Viterbi algorithm can be implemented
using the metric in (7.148). Although the number of computations needed in the T=2-spaced MLSE receiver is twice that of
a T-spaced receiver, the latter cannot be implemented for unknown channels. Moreover, a T-spaced MLSE receiver has poor
performance when it is implemented with a matched filter that is derived from an inaccurate channel estimate [249].

7.7 Co-channel Demodulation

By extending Forney’s maximum likelihood receiver [131], Van Etten [114] proposed MLSE for joint maximum likelihood
sequence estimation of co-channel signals. This section derives the optimum and suboptimum MLSE receivers for co-channel
demodulation of digital signals corrupted by ISI. By modeling the overall system as a discrete-time multiple-input multiple-
output (MIMO) channel, the optimum MIMO joint MLSE (J-MLSE) receiver is derived. By following a parallel argument
used for single-input single-output (SISO) channels, a T=2-spaced MIMO J-MLSE receiver is shown to have the same
performance as the T-spaced receiver, but with insensitivity to timing phase errors. The optimality of a practical T=2-spaced
receiver is shown, that consists of a filter that is matched to the transmitted pulse, followed by a rate-2=T sampler, a T=2-
spaced noise whitening filter, and a Viterbi algorithm. The optimum MIMO J-MLSE receiver requires complete knowledge
of the complex channel gains associated with all co-channel signals. In many cases, such complete knowledge is impractical
or even infeasible to obtain. For such cases, an interference rejection combining MLSE (IRC-MLSE) receiver is proposed
that only requires knowledge of the complex channel gain for the desired signal but not the co-channel interferers.

7.7.1 System and Channel Model

Consider a system where the signals from K co-channel signals are received by J antenna elements. This system can be
modeled by a K � J multiple-input multiple-output (MIMO) channel, where the MIMO channel inputs are the symbol
sequences from the K co-channel users and the MIMO channel outputs are the combination of the signals that are received
from the co-channel users at each of the J receiver antenna elements. The co-channel detection problem is mathematically
very similar to CDMA multiuser detection problem. However, while the users in a CDMA system are distinguished by
different spreading sequences as discussed in Chap. 9, the K co-channel users will all use the same transmitter pulse shaping
filter ha.t/. The impulse response of the channel between the kth user and the jth antenna element is denoted by g.k;j/.t; �/,
where the channels are modeled as time-variant linear filters. While the channel introduces frequency and time selectivity
into the received signals, it also allows the co-channel signals to be distinguished at the receiver, since the received pulses
h.k;j/.t/ D g.k;j/.t; �/� ha.t/ are all distinct due to the different channel impulse responses. The received pulses h.k;j/.t/ are all
assumed to have a length of at most L.k;j/T , i.e., h.k;j/.t/ D 0 for t � 0 and t � .L.k;j/ C 1/T . The received complex envelope
at the jth antenna element is

Qr.j/.t/ D
K
X

kD1

X

`

x
.k/

` h.k;j/.t � `T � �k/C Qn.j/.t/; (7.231)

where �k; 0 � �k � T is the random transmission delay due to symbol asynchronous users and Qn.j/.t/ is additive white
Gaussian noise (AWGN) assumed to be independent on the different antenna branches.

7.7.2 Joint Maximum Likelihood Co-channel Receiver

The joint maximum likelihood sequence estimation (J-MLSE) receiver processes the total received vector

Qr.t/ D .Qr.1/.t/; Qr.2/.t/; : : : ; Qr.J/.t// (7.232)
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to generate an ML estimate of the information sequence

x D .x.1/; x.2/; : : : ; x.K//; (7.233)

where x.k/ D fx.k/n g. To derive the structure of the joint ML receiver, the same approach used in Sect. 7.1.1 is followed.
Let f'n.t/g denote a complete set of complex orthonormal basis functions that span the entire duration of the observation
vector Qr.t/. Then

Qr.j/.t/ D
N
X

nD1
Qr.j/n 'n.t/; (7.234)

where

Qr.j/n D
K
X

kD1

X

`

x
.k/

` h
.k;j/

`n
C Qn.j/n (7.235)

and

h
.k;j/

`n
D
Z 1

�1
h.k;j/.t � `T � �k/'

�
n .t/dt (7.236)

Qn.j/n D
Z 1

�1
Qn.j/.t/'�

n .t/dt: (7.237)

Define the received vector

Qr D vec.Qr.1/; Qr.2/; : : : ; r.J//; (7.238)

where Qr.j/ D fQr.j/n g. Since the noise components Qn.j/n associated with the J antenna elements are uncorrelated zero-mean

complex Gaussian random variables with variance 1
2
EŒjQn.j/n j2� D No, the received vector Qr has the multivariate Gaussian

density

p.Qrjx;h/ D
N
Y

nD1

1

2�No

exp

8

<

:
� 1

2No

J
X

jD1

ˇ
ˇ
ˇ
ˇ
ˇ
Qr.j/n �

K
X

kD1

X

`

x
.k/

` h
.k;j/

`n

ˇ
ˇ
ˇ
ˇ
ˇ

2
9

=

;
; (7.239)

where h D fh.k;j/`n
g.

The optimum receiver chooses x to maximize p.Qrjx;h/ or, equivalently, the metric

�.x/ D �
N
X

nD1

J
X

jD1

ˇ
ˇ
ˇ
ˇ
ˇ
Qr.j/n �

K
X

kD1

X

`

x
.k/

` h
.k;j/

`n

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (7.240)

Since
PN

nD1
PJ

jD1 jQr
.j/
n j2 is independent of x, maximizing (7.240) is equivalent to maximizing

�.x/ D
J
X

jD1

 

2Re

(
K
X

kD1

X

`

x
.k/�

`

N
X

nD1
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kD1

K
X

k0D1

X

`

X

`0

x
.k/

` x
.k0/�

`0

N
X

nD1
h
.k;j/

`n
h
.k0;j/�

`0
n

!

: (7.241)
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In the limit as the number of observable random variables N approaches infinity, define

y
.k;j/

`

4D lim
N!1

N
X

nD1
Qr.j/n h

.k;j/�

`n

D
Z 1

�1
Qr.j/.t/h.k;j/�.t � `T � �k/dt (7.242)

f
.k;k0;j/

`0�`
4D lim

N!1

N
X

nD1
h
.k;j/

`n
h
.k0;j/�

`0
n

D
Z 1

�1
h.k;j/.t � `T � �k/h

.k0;j/�.t � `0T � �k0/dt: (7.243)

Using (7.242) and (7.243) in (7.241) yields the final form

�.x/ D
J
X

jD1

(

2Re
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X

kD1

X

`

x
.k/�

` y
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`

!

�
K
X

kD1
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k0D1

X

`

X

`0

x
.k/

` x
.k0/�

`0 f
.k;k0;j/

`0�`

)

: (7.244)

The variables fy.k;j/` g in (7.242) are obtained by passing the received complex envelope Qr.j/n .t/ through the matched filter

h.k;j/
�
.�t � �k/ and sampling the output.7 Note that there are K such matched filters on each of the J receiver antenna

elements, and the samples must be taken with the timing delay �k; k D 1; : : : ;K. The above development leads to the overall

system model shown in Fig. 7.17. Finally, by changing the variable of integration, the ff .k;k
0;j/

`0�` g in (7.243) can be rewritten in
the form

f .k;k
0;j/

n D
Z 1

�1
h.k;j/.t � nT � �k/h

.k0;j/�.t � �k0/dt: (7.245)

where n D `0 � `. By using (7.245), it can be shown that the ISI coefficients have the symmetric property

f .k;k
0;j/

n D f .k
0;k;j/�

�n : (7.246)
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Fig. 7.17 Overall MIMO system model for co-channel demodulation

7It is assumed that the differential delay across the multiple receiver antenna elements is negligible.
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7.7.3 Discrete-Time MIMO Channel Model

Sampling the outputs of the matched filter h.k;j/
�
.�t � �k/ in Fig. 7.17 every T seconds yields the sample sequence fy.k;j/` g,

where

y
.k;j/

` D
K
X

k0D1

X

n

x.k
0/

n f
.k0;k;j/

`�n
C �.k;j/`

D
K
X

k0D1

LjC1
X

mD�Lj�1
x
.k0/

`�m
f .k

0;k;j/
m C �.k;j/` (7.247)

and

�
.k;j/

` D
Z 1

�1
Qn.j/.t/h.k;j/�.t � `T � �k/dt; (7.248)

and where Lj D maxk L.k;j/ is the maximum discrete-time channel length. This is an extension of the result in (7.17) for SISO
ISI channels. However, for MIMO ISI channels, the range of summation must be expanded from .�Lj;Lj/ to .�Lj�1;LjC1/
to account for the random user delays in the case of symbol asynchronous users. By defining

y
.j/

`

4D .y.1;j/` ; : : : ; y
.K;j/

` /T (7.249)

x`
4D .x.1/` ; : : : ; x

.K/

` /T (7.250)

�
.j/

`

4D .�.1;j/` ; : : : ; �
.K;j/

` /T (7.251)

F.j/m

4D
h

f .k
0;k;j/

m

i

K�K
(7.252)

(7.247) leads to the convenient matrix representation

y
.j/

` D
LjC1
X

mD�Lj�1
F.j/m x`�m C �

.j/

` : (7.253)

From (7.244) and (7.253), it follows that the joint maximum likelihood receiver uses the entire set of J observation vectors

y D fy.j/` ; j D 1; : : : ; Jg along with knowledge of the entire set of ISI coefficient matrices F D fF.j/m ;m D �Lj � 1; : : : ;Lj C
1; j D 1; : : : ; Jg to determine the most likely transmitted sequence x D fx`g. Hence, the joint maximum likelihood receiver
decides in favor of the symbol sequence x that maximizes the joint likelihood function p.yjx;F/ or the log-likelihood function
logfp.yjx;F/g.

The noise samples in (7.248) are zero-mean complex Gaussian variables that are correlated by the matched filters

h.k;j/
�
.�t � �k/; k D 1; : : : ;K. The vector of zero-mean noise samples �

.j/

` has the covariance matrix

ˆ�.j/�.j/.n/ D
1

2
E
h

�
.j/

` �
.j/H

`Cn

i

D NoF.j/n : (7.254)

As is the case with SISO ISI channels, the correlation of the noise samples complicates the implementation of various

equalization schemes. However, a matrix noise whitening filter can be used to whiten the vector of noise samples �
.j/

` . The
z-transform of the noise covariance matrix for the jth antenna element can be defined as ˆ�.j/�.j/.z/ D NoF.j/.z/, where [102]

F.j/.z/ D
LjC1
X

nD�Lj�1
F.j/n z�n (7.255)
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and, once again, Lj D maxk L.k;j/ is the maximum discrete-time channel length. This is a straightforward extension of the

SISO ISI channels where F.z/ D
PL

nD�L fnz�n. However, a MIMO channel is described by a covariance matrix and the
range of summation in (7.255) must be expanded from .�Lj;Lj/ to .�Lj � 1;Lj C 1/ to account for the random user delays
in the case of symbol asynchronous users.

By using the symmetric property f
.k;m;j/
n D f

.m;k;j/�

�n of the ISI coefficients, it follows that F
.j/
n D F

.j/H

�n . Therefore, F.j/.z/

has the symmetric form

F.j/.z/ D F.j/
H

.1=z�/: (7.256)

It follows that the matrix F.j/.z/ can be factored as

F.j/.z/ D G.j/.z/G.j/H .1=z�/ (7.257)

and the filter ŒG.j/H .1=z�/��1 will serve as a noise whitening matrix filter.

Example 7.10. Consider a two user system with a single receiver antenna. Since J D 1, the index .j/ can be omitted.
Let L D 1 and F.z/ be

F.z/ D FH

1 zC F0 C F1z
�1

D
�

1 0:48C 0:48z�1

0:48C 0:48z 1

�

D
�

0 0

0:48 0

�

zC
�

1 0:48

0:48 1

�

C
�

0 0:48

0 0

�

z�1:

The matrix spectral factorization of F.z/ has the form

F.z/ D GH.1=z�/G.z/

D
�

G0 CG1z
��H �

G0 CG1z
�1� :

F0 and F1 can be represented by

F0 D GH

0G0 CGH

1G1

F1 D GH

0G1;

where G0 is lower triangular and F1 is upper triangular with zero diagonal. In turn, G1 must be upper triangular with
zero diagonal. This results in the spectral factorization

F.z/D
��

0:8 0

0:6 0:8

�

C
�

0 0:6

0 0

�

z�
�H ��

0:8 0

0:6 0:8

�

C
�

0 0:6

0 0

�

z�1
�

:

The matrix noise whitening filter ŒGH.1=z�/��1 is non-causal and stable with an infinite length.

�

GH.1=z�/
��1 D

�

0:8 0:6

0:6z 0:8

��1

D 1

0:64 � 0:36z

�

0:8 �0:6
�0:6z 0:8

�

:

(continued)
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Example 7.10 (continued)
In practice the filter ŒGH.1=z�/��1 can be approximated with a finite length filter by using a sufficient filter delay.
Finally, the overall discrete-time white noise matrix channel has transfer function

G.z/ D
�

0:8 0

0:6 0:8

�

C
�

0 0:6

0 0

�

z�1:

Let x.z/ D .x.1/.z/; x.2/.z/; : : : ; x.K/.z//T be the z-transform of the input sequence fxng to the channel, where xn D
.x
.1/
n ; x

.2/
n ; : : : ; x

.K/
n /T , and let v.j/.z/ D .v.1;j/.z/; v.2;j/.z/; : : : ; v.K;j/.z//T be the z-transform of the output sequence fv.j/n g from

the noise whitening filter on antenna j, where v
.j/
n D .v.1;j/n ; v

.2;j/
n ; : : : ; v

.K;j/
n /T . Then

v.j/.z/ D G.j/.z/x.z/C w.j/.z/; (7.258)

where w.j/.z/ D .w.1;j/.z/;w.2;j/.z/; : : : ;w.K;j/.z//T is the z-transform of the sequence of white Gaussian noise vectors w
.j/
n D

.w
.1;j/
n ;w

.2;j/
n ; : : : ;w

.K;j/
n /T . In the time domain

v.j/n D
Lj
X

kD0
G
.j/
k xn�k C w.j/

n ; (7.259)

where the zero-mean noise vector w
.j/
n has covariance matrix

ˆ
w
.j/
n w

.j/
n
.n/ D 1

2
E
h

Qw.j/

`
Qw.j/H

`Cn

i

D NoınI: (7.260)

The optimum receiver consists of a bank of K matched filters at the output of each antenna element, followed by a
baud-rate sampler and a K � K matrix noise whitening filter. With J-branch diversity reception, the overall matrix channel
consisting of the transmit filters, channels, matched filters, samplers, and matrix noise whitening filters can be modeled as a
parallel collection of J T-spaced matrix filters with independent white noise sequences as shown in Fig. 7.18. To determine
the number of states in the overall channel model, first define Lk D maxj L.k;j/ as the length of the channel for the kth input.

Then there are 2n
PK

kD1 Lk states, where 2n is the size of the signal constellation.

7.7.4 The Viterbi Algorithm

Suppose that m symbols from each of the K transmitters have been transmitted over the channel. Let

Vn D vec.v.1/
T

n ; v.2/
T

n ; : : : ; v.J/
T

n /T ;

+ + ++

jL  +1G
( j)

G 2
(j)

G1
(j)

G 0
(j)

jL  -1l-1 l-2

l
( j)v

T T T
l -lx x x x

( j)
lη

Fig. 7.18 Discrete-time white noise MIMO channel model
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where v
.j/
n D .v.1;j/n ; : : : ; v

.K;j/
n /T denotes the collection of vectors at the outputs of the matrix noise whitening filters for the J

antenna branches at epoch n. After receiving the output sequence fVngmnD1, the ML receiver decides in favor of the sequence
of input vectors fxngmnD1 that maximizes the log-likelihood function

logfp.Vm; : : : ;V1jxm; : : : ; x1/g

D logfp.Vmjx.1/m ; : : : ; x
.1/
m�L1
I x.2/m ; : : : ; x

.2/
m�L2
I : : : I x.K/m ; : : : ; x

.K/
m�LK

/g C logfp.Vm�1; : : : ;V1jxm�1; : : : ; x1/g: (7.261)

The first term on the right-hand side of (7.261) is the branch metric used in the Viterbi algorithm. The discrete-time white
noise matrix channel model leads to the conditional density function

logfp.Vmjx.1/m ; : : : ; x
.1/
m�L1
I x.2/m ; : : : ; x

.2/
m�L2
I : : : I x.K/m ; : : : ; x

.K/
m�LK

/g

D 1

.2�No/KJ
exp

8

<

:
� 1

2No

J
X

jD1
kv.j/m �

L
X

nD0
G.j/

n xm�nk2
9

=

;
; (7.262)

where L D maxk Lk. Note that some elements in the matrix G
.j/
n may be zero if Lk ¤ L; k D 1; : : : ;K in which case the

branch metric computation can be somewhat simplified. The density in (7.262) leads to the branch metric

�m D �
J
X

jD1
kv.j/m �

L
X

nD0
G.j/

n xm�nk2: (7.263)

7.7.5 Pairwise Error Probability

Let x and Ox be the transmitted and estimated symbol sequences, respectively, and define the error sequence � D x � Ox. The
pairwise error probability is the probability that the receiver decides in favor of sequence Ox when sequence x was transmitted,
equal to

PŒ�.x � �/ � �.x/jx� D P Œ�.Ox/ > �.x/� (7.264)

where �.x/ D
P

m �m is the path metric associated with the input sequence x with the branch metric �m defined in (7.263).
From (7.263),

PŒ�.x � �/ � �.x/jx� D P

2

4
X

m

J
X

jD1
k

L
X

nD0
G.j/

n �m�n C w.j/
m k2 <

X

m

J
X

jD1
kw.j/

m k2
3

5

D P

2

4
X

m

J
X

jD1
2Re

(
L
X

nD0
w.j/H

m G.j/
n �m�n

)

< �
X

m

J
X

jD1
k

L
X

nD0
G.j/

n �m�nk2
3

5 : (7.265)

Define

�2 4D
X

m

J
X

jD1
k

L
X

nD0
G.j/

n �n�mk2 (7.266)

�
4D
X

m

J
X

jD1
2Re

(
L
X

nD0
w.j/H

m G.j/
n �m�n

)

(7.267)
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It can be shown that � is a zero-mean Gaussian random variable with variance 4No�
2. Therefore, the pairwise error

probability becomes

PŒ�.x � �/ � �.x/jx� D Q

0

@

s

�2

4No

1

A : (7.268)

7.7.6 T=2-Spaced MIMO J-MLSE Receiver

Suppose that the matched filter outputs h.k;j/
�
.�t � �k/; k D 1; : : : ;K are sampled every T=2 seconds at the correct timing

phase. Again, the zero-mean noise samples at the output of the matched filters are correlated due to the matched filtering and
their covariance matrix is

Q̂
Q�.j/ Q�.j/.n/ D

1

2
E
h

Q�.j/` Q�
.j/H

`Cn

i

D No
QF.j/n ; (7.269)

where the elements of the matrix QF.j/n are Qf .k;k
0;j/

n D Qf .k;k0;j/.nT=2/, the function f .k;k
0;j/.t/ is defined in (7.245), and where the

tilde denotes rate 2=T sampling. It follows that the z-transform of the noise covariance matrix for the jth antenna element
can be defined as Q̂ Q�.j/ Q�.j/.z/ D No

QF.j/.z/, where

QF.j/.z/ D
2LjC1
X

nD�2Lj�1

QF.j/n z�n: (7.270)

Since Qf .k;k
0;j/

` D Qf .k
0;k;j/�

�` , it follows that QF.j/.z/ has the factorization

QF.j/.z/ D QG.j/.z/ QG.j/H .1=z�/: (7.271)

As with baud-rate sampling, the T=2-spaced noise samples can be whitened by using a stable noncausal matrix noise

whitening filter with the transfer function
h

QG.j/H .1=z�/
i�1

. Analogous to (7.258), the z-transform of the output of the matrix

noise whitening filter is

Qv.j/.z/ D QG.j/.z/Qx.z/C Qw.j/.z/; (7.272)

or in the time domain

Qv.j/` D
2Lj
X

nD0

QG.j/
n Qx`�n C Qw.j/

` ; (7.273)

where f Qw.j/

` g is a T=2-spaced white noise sequence with power spectrum S Qw Qw.f / D NoI. The sequence fQxng is the
corresponding T=2-spaced input symbol sequence and is given by

Qxn D
�

xn=2 ; n D 0; 2; 4; : : :
0 ; n D 1; 3; 5; : : : (7.274)

The overall system and equivalent discrete-time white noise models are shown in Figs. 7.19 and 7.20, respectively.

Note that the vector samples Qv.j/2` and Qv.j/2`C1 correspond to the `th received baud, such that

Qv.j/2` D
Lj
X

nD0

QG.j/
2nx`�n C Qw.j/

2` (7.275)
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Fig. 7.19 Overall MIMO system model with T=2-spaced sampling
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Fig. 7.20 Overall discrete-time white noise MIMO channel model with T=2-spaced sampling

Qv.j/2`C1 D
Lj�1
X

nD0

QG.j/
2nC1x`�n C Qw.j/

2`C1: (7.276)

With T=2-spaced fractional sampling there are two samples per baud, and the branch metric becomes

�m D �
J
X

jD1

 

kQv.j/2m �
L
X

nD0

QG.j/
2nxm�nk2 C kQv.j/2mC1 �

L�1
X

nD0

QG.j/
2nC1xm�nk2

!

: (7.277)

Once again, if Lk ¤ L; k D 1; : : : ;K, then some of the QG.j/
2n and QG.j/

2nC1 may be zero. Notice that T=2-spaced fractional
sampling doubles the number of computations in forming the branch metrics as compared to T-spaced sampling.

7.7.6.1 Error Probability

The result for SISO channels is now generalized to show that the T-spaced and T=2-spaced MIMO J-MLSE receivers for
co-channel demodulation have identical performance. For T-spaced sampling, define

E.z/
4D
X

n

�nz�n (7.278)

E.j/v .z/
4D
X

n

v.j/n z�n: (7.279)

Then

E.j/v .z/ D E.z/G.j/.z/ (7.280)
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and

�2 D
X

m

J
X

jD1
k

L
X

nD0
G.j/

n �n�mk2 (7.281)

D
J
X

jD1

�

E.j/v .z/E
.j/H
v .1=z�/

�

0

D
J
X

jD1

h

E.z/G.j/.z/G.j/H .1=z�/E�.1=z�/
i

0

D
J
X

jD1

�

E.z/F.j/.z/E�.1=z�/
�

0
: (7.282)

For T=2-spaced sampling, define

QE.z/ 4D
X

n

Q�nz�2n: (7.283)

Since Q�n D xn � Oxn is zero for even k, it follows that QE.z/ D E.z2/. Also,

QE.j/v .z/ D QE.z/ QG.j/.z/: (7.284)

Therefore,

Q�2 D
X

m

J
X

jD1
k

L
X

nD0

QG.j/
n Q�n�mk2 (7.285)

D
J
X

jD1

h

QE.j/v .z/ QE.j/Hv .1=z�/
i

0

D
J
X

jD1

h

QE.z/G.j/.z/G.j/H .1=z�/ QE�.1=z�/
i

0

D
J
X

jD1

h

QE.z/F.j/.z/ QE�.1=z�/
i

0

D
J
X

jD1

h

E.z2/F.j/.z/E�.1=z�2/
i

0
; (7.286)

where Œ � �0 is the coefficient of z0. Since the odd powers of E.z2/E�.1=z�2/ are zero and F` D QF2` it follows that Q�2 D �2.
Therefore, the T-spaced and T=2-spaced receivers have identical bit error probability performance.

7.7.6.2 Timing Phase Sensitivity

The T-spaced MIMO J-MLSE receiver is sensitive to sampler timing phase due to aliasing, similar to the SISO MLSE
receiver. As a result the T-spaced receiver must accurately estimate the delays �k; k D 1; : : : ;K. A T=2-spaced MIMO
J-MLSE receiver will avoid aliasing (assuming that the received pulse exhibits less than 100% excess bandwidth) and is
insensitive to sampler timing phase as is now shown. Suppose that the timing phase offset for the kth sampler and the jth
antenna branch is t.k;j/ seconds. The T=2-spaced sampled pulse f .k;k

0;j/.t/ at the output of the matched filter h.k;j/
�
.�t � �k/
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is denoted as Qf .k;k
0;j/

`;t D Qf .k;k0;j/.`T 0 ˙ t.k;j//, where T 0 D T=2. Due to the timing phase offset, the ISI coefficients are not

symmetric, i.e., Qf .k;k
0;j/

`;t ¤ Qf .k;k
0;j/�

�`;t . Define the matrices

QF.j/n

4D
h

Qf .k;k0;j/
n

i

K�K
(7.287)

QF.j/n;t

4D
h

Qf .k;k
0;j/

n;t

i

K�K
: (7.288)

The discrete-time Fourier transform (DTFT) of QF.j/n;t is

QF.j/t .e
j!/ D

2LjC1
X

nD�2Lj�1

QF.j/n;t.e
j!/�n

D e˙j!�.j/ QF.j/.ej!/; (7.289)

where e˙j!�.j/ D .e˙j!� .1;j/ ; : : : ; e˙j!� .K;j// and � .k;j/ D t.k;j/=T 0.
Since the noise is circularly symmetric, the psd of the noise at the output of the jth matched filter is independent of the

timing offset vector t.j/ D .t.1;j/; : : : ; t.K;j// and is given by

S Qw.j/ Qw.j/.f / D No
QF.j/.ej!/ (7.290)

The DTFT of the noise whitening matrix filter is

h

QG.j/H .1=z�/
i�1

zDej!
D
h

QG.j/H .ej!/
i�1

(7.291)

and

QF.j/.ej!/ D QG.j/.ej!/ QG.j/H .ej!/ D j QG.j/H .ej!/j2: (7.292)

Hence, the noise at the output of the matrix noise whitening filter is white. The DTFT of the message vector at the output of
the noise whitening filter is

Qx.ej!/ QG.j/
t .e

j!/ D Qx.ej!/e˙j!�.j/ QG.j/.ej!/ (7.293)

and

X

n

QG.j/
n
QG.j/H

n D
X

n

QG.j/
n;t
QG.j/H

n;t D
1

2�

Z �

��
j QG.j/.ej!/j2d!: (7.294)

by Parseval’s theorem. Also

QG.j/
t .z/

QG.j/H

t .1=z�/ D QF.j/.z/: (7.295)

It follows that the distances between allowed sequences of channel outputs in (7.286) remain the same and the T=2-spaced

J-MLSE receiver is not sensitive to the sampler phase e˙j!�.j/ . The J-MLSE receiver just needs to estimate the f QG.j/
n;tg rather

than the f QG.j/
n g to calculate the branch metrics in the Viterbi algorithm. Finally, (7.294) does not hold for the T-spaced receiver

due to aliasing of the signal spectrum.
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Fig. 7.21 Practical MIMO system with T=2-spaced sampling

7.7.6.3 Practical Receiver

Section 7.6 showed that the optimal front-end processing for a SISO ISI channel can be realized by a receiver filter that
is matched to the transmitted pulse ha.t/ followed by a rate-2=T sampler and a noise whitening filter. Here this concept is
generalized to MIMO ISI channels. For a MIMO system where all co-channel waveforms are transmitted with the same
pulse shape ha.t/, a significant complexity reduction is realized by using this receiver since a matched filter bank is no
longer required at each antenna element. As shown in Fig. 7.21, the receiver simply consists of a single matched filter for
each antenna element followed by a rate-2=T sampler and a noise whitening filter. Although the T-spaced samples at the
output of the filter h�

a .�t/ are white since the pulse p.t/ D ha.t/ � ha.�t/ satisfies the first Nyquist criterion, the T=2-spaced
samples are not and, therefore, the noise whitening filter is necessary. However, the structure of the noise whitening filter is
completely known because it only depends on the known filter h�

a .�t/.
The systems in Figs. 7.19 and 7.21 are now shown to yield identical performance. Assuming that rate-2=T sampling

satisfies the sampling theorem, the two systems can be completely represented by their T=2-spaced discrete-time signals.
This is achieved, for example, by using root-raised cosine pulse shaping with less than 100% excess bandwidth. Once again,
assume that the channels are time-invariant and have impulse responses g.k;j/.t/; k D 1; : : :K. Define

g.j/.t/
4D .g.1;j/.t/; : : : ; g.K;j/.t//T (7.296)

h.j/.t/
4D .h.1;j/.t/; : : : ; h.K;j/.t//T (7.297)

where h.k;j/.t/ D ha.t/ � g.k;j/.t/. Let QHa.z/, QG.j/.z/, and QH.j/.z/ be the z-transforms of the T=2-spaced samples of the
waveforms ha.t/, and waveform vectors g.j/.t/ and h.j/.t/, respectively, where the tilde indicates T=2-spaced sampling. The
z-transform of the autocorrelation function of the noise samples at the output of the receive filter h�

a .�t/ is No
QFh.z/ where

QFh.z/ D QHa.z/ QH�
a .1=z�/. By using the factorization

QFh.z/ D QGh.z/ QG�
h .1=z�/ (7.298)

the T=2-spaced noise sequence at the output of the matched filter h�
a .�t/ can be whitened by using a filter having the transfer

function 1= QG�
h .1=z�/ as shown in Fig. 7.21. Note that the noise whitening filter is not a matrix filter, but just a scalar filter.

The z-transform of the overall T=2-spaced discrete-time channel in Fig. 7.21 that includes the noise whitening filter is

QG.j/
eq.z/ D QHa.z/ QG.j/.z/ QH�

a .1=z�/= QG�
h .1=z�/

D QG.j/.z/ QGh.z/: (7.299)

On the other hand, referring to the conventional system shown in Fig. 7.19,

QH.j/.z/ D QHa.z/ QG.j/.z/ (7.300)
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and

QF.j/.z/ D QHa.z/ QG.j/.z/. QHa.1=z�/G.j/.1=z�//H

D QHa.z/ QG.j/.z/ QG.j/H .1=z�/ QH�
a .1=z�/: (7.301)

Let

QG.j/
c .z/G

.j/H

c .1=z�/ D QG.j/.z/ QG.j/H .1=z�/ (7.302)

be a factorization of the matrix QG.j/.z/ QG.j/H .1=z�/ such that QG.j/
c .z/ has minimum phase. Combining (7.298), (7.301),

and (7.302) gives

QF.j/.z/ D QGh.z/ QG.j/H

c .z/ QG.j/H

c .1=z�/ QG�
h .1=z�/: (7.303)

The transfer function of the matrix noise whitening filter is chosen as

h

QG.j/H

c .1=z�/ QG�
h .1=z�/

i�1
: (7.304)

Therefore, the overall transfer function at the output of the matrix noise whitening filter is

QG.j/.z/ D QGh.z/ QG.j/
c .z/: (7.305)

Finally,

QG.j/
eq.z/

QG.j/H

eq .1=z�/ D QF.j/.z/ D QG.j/.z/ QG.j/H .1=z�/: (7.306)

Therefore, the Euclidean distance between sequences of noise whitening filter outputs for the MIMO receiver in Fig. 7.21
is the same as those for the T=2-spaced MIMO J-MLSE receiver in Fig. 7.19. Consequently, the system shown in Fig. 7.21
achieves ML performance. The main advantage of the system in Fig. 7.21 is that the noise whitening filter does not depend
on the unknown channel and has a fixed structure.

The receiver shown in Fig. 7.21 has a scalar output, while the receiver in Fig. 7.19 has a vector output and, furthermore,
QG.j/

eq;n is a vector while QG.j/
n is a matrix. As a result, the branch metric used in the Viterbi algorithm needs to be modified

accordingly. From (7.277)

�m D �
J
X

jD1

0

B
@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Qv.j/2m �
Lj
X

nD0

QG.j/T

eq;2nxm�n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Qv.j/2mC1 �
Lj�1
X

nD0

QG.j/T

eq;2nC1xm�n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2
1

C
A : (7.307)

Although the T=2-spaced receiver is optimum, there are several key issues that must be resolved before it can be

implemented. First, the receiver must be trained to derive an initial estimate of the channel vectors f QG.j/
eq;ng. This

synchronization and training problem is particularly challenging for an asynchronous co-channel waveforms where the

training sequences are not coincident. Second, the receiver must be able to track the channel vectors f QG.j/
eqng during data

demodulation if necessary. Perhaps a per-survivor processing approach such as the one suggested in Sect. 7.4.1.1 could be
used for such cases.

7.7.7 Interference Rejection Combining MLSE Receiver

In many cases, the structure of the co-channel interferers are often unknown. In other cases, it is only necessary to recover the
data from a single desired co-channel user. Bottomley and Jamal [48] developed a scheme called the interference rejection
combining MLSE (IRC-MLSE) that combines adaptive antenna arrays and MLSE equalization. Co-channel interference
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cancelation is performed in the Viterbi metric and the receiver is equivalent to Winter’s optimum linear combiner [352, 354]
under flat fading channel conditions.

Once again, the receiver filter on each antenna element is assumed to be matched to the transmitted pulse and followed
by a rate 2=T sampler. Since the co-channel waveforms are assumed to have an unknown structure, a matched filter is only
required for the desired signal. The overall pulse response consisting of the transmit filter, channel, and receiver filter is
f .j/.t/ D ha.t/ � g.1;j/.t/ � h�

a .�t/. The vector of matched filter outputs from the J receiver antenna elements is

Qy.t/ D
L
X

`D0
x`f.t � `T/C Qz.t/; (7.308)

where

Qy.t/ D .y.1/.t/; : : : ; y.J/.t//T

f.t/ D .f .1/.t/; : : : ; f .J/.t//T

Qz.t/ D .z.1/.t/; : : : ; z.J/.t//T (7.309)

and where LT is the length of the pulse f .j/.t/. The impairment vector Qz.t/ at the output of the matched filter is due to the
K � 1 interfering co-channel signals plus AWGN, and has the form

Qz.t/ D
K�1
X

kD1

QIk.t/C Q�.t/; (7.310)

where

QIk.t/ D .I.1/k .t/; : : : ; I
.J/
k .t//T

Q�.t/ D .�.1/.t/; : : : ; �.J/.t//T : (7.311)

The matched filter outputs are sampled at rate 2=T and passed to a noise whitening filter. The noise whitening filter is sub-
optimum in the presence of co-channel interference, since the co-channel interference at the input to the receiver filter can
be viewed as colored noise. However, the noise whitening filter ensures maximum likelihood performance in the absence
of co-channel interference. The noise whitening filter is obtained by using the same procedure leading to the overall T=2-
spaced discrete-time channel with the transfer function defined in (7.299). It follows that the overall channel consisting of the
transmit filter, channel, and receiver filter, T=2-spaced sampler, and noise whitening filter, can be modeled as a T=2-spaced
tapped delay line with tap coefficients

Qg.j/ D .Qg.j/0 ; : : : ; Qg
.j/
2L/

T :

Define

Qg` 4D .Qg.1/` ; : : : Qg
.J/

` /
T : (7.312)

Then the vectors Qv2k D . Qv.1/2k ; : : : ; Qv
.J/
2k /

T and Qv2kC1 D . Qv.1/2kC1; : : : ; Qv
.J/
2kC1/

T at the output of the noise whitening filter
corresponding to the kth received baud are

Qv2k D
LhX

`D0
x.k � `/Qg2` C Qn2k (7.313)

Qv2kC1 D
Lh�1
X

`D0
x.k � `/Qg2`C1 C Qn2kC1; (7.314)
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where Qn2k D .Qn.1/2k ; : : : ; Qn
.J/
2k /

T and Qn2kC1 D .Qn.1/2k ; : : : ; Qn
.J/
2k /

T . Once again, the noise vectors Qn2k and Qn2kC1 are not white due to
the presence of the co-channel signals.

To derive a feasible receiver structure, it is now assumed that the sampled impairment vector Qn` at the output of the noise
whitening filter at epoch ` is a vector of J correlated zero-mean complex Gaussian random variables having the joint pdf

p. Qn`/ D
1

.2�/J jR`j
exp

�

�1
2
QnH
` R�1

` Qn`
�

; (7.315)

where jR`j is the determinant of R` and

R` D
1

2
E
�

Qn` QnH

`

�

(7.316)

is the impairment correlation matrix. Assuming an MLSE-like algorithm, the branch metric should be related to the likelihood

of the impairment vector. For each state transition %.j/k ! %
.i/
kC1 at epoch k, the samples Qv2k and Qv2kC1 are used by the Viterbi

algorithm to evaluate the branch metric

�k D .Qv2k � Ou12k/
HR�1

2k .Qv2k � Ou12k/

C.Qv2kC1 � Ou22kC1/
HR�1

2kC1.Qv2kC1 � Ou22kC1/; (7.317)

where

Ou12k D
LhX

`D0
Ox.k � `/Qg2` (7.318)

Ou22kC1 D
Lh�1
X

`D0
Ox.k � `/Qg2`C1: (7.319)

Notice that the metric calculation requires the impairment correlation matrix Rk and its inverse, and the channel impulse
vectors

Qg1 D .Qg0; Qg2; : : : ; Qg2Lh
/T (7.320)

Qg2 D .Qg1; Qg3; : : : ; Qg2Lh�1/
T : (7.321)

Computing the inverse of the J � J matrix Rk can be computationally intensive for large J, the number of computations
required being proportional to J3. However, when J D 2 (two receiver antenna elements) the inverse can be obtained by
using direct matrix inversion (DMI), i.e., the inverse of the matrix Rk is

R�1
k D

adj.Rk/

jRkj
D 1

rk11rk22 � rk12rk21

�

rk22 �rk12

�rk21 rk11

�

: (7.322)

Division by the determinant jRkj is unnecessary provided that Rk remains constant over the decision delay in the Viterbi
algorithm, since the determinant will just scale all the path metrics. For such cases, the Viterbi algorithm can use the
simplified branch metric

�k D .Qv2k � Ou12k/
Hadj.R2k/.Qv2k � Ou12k/

C.Qv2kC1 � Ou22kC1/
HadjR2kC1/.v2kC1 � Ou22kC1/; (7.323)

which only requires multiplications and additions.
Finally, a metric combining MLSE (MC-MLSE) receiver is one that zeroes the off diagonal elements of the matrix Rk.

The metric combining receiver is equivalent to maximal ratio combining when the additive impairment is white Gaussian
noise.
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Fig. 7.22 Relative Eb=No performance of the J-MLSE, MC-MLSE, and IRC-MLSE receivers; C=I D 30 dB

7.7.8 Examples

The performances of the J-MLSE, IRC-MLSE, and MC-MLSE receivers discussed in the previous sections are now
compared and contrasted. For this purpose, an EDGE burst format is assumed. The EGDE burst format is the same as
the GSM burst format described in Fig. 1.2. However, instead of the GMSK modulation used in GSM, EDGE uses 8-PSK
modulation with square-root-raised cosine pulse shaping with a roll-off factor of ˇ D 0:5. For illustrative purposes, a
T-spaced, two equal ray, model is assumed for the desired signal. The interference impairment consists of a single flat faded
EDGE interferer. In all cases, the receiver front-end consists of a receiver filter that is matched to the transmitted pulse
followed by a rate-2=T sampler and a noise whitening filter. The J-MLSE receiver has 512 states, as defined by 2 symbols
for the desired signal and 1 symbol for the co-channel interferer. The MC/IRC-MLSE receivers have 64 states, as defined by
2 symbols for the desired signal. Each simulation run consists of 3000 frames of 142 8-PSK symbols.

Figure 7.22 shows the Eb=No performance of the three receivers for a fixed carrier-to-interference ratio C=I D 30 dB.
Under this condition the interference is very light. Perfect channel knowledge is assumed. The J-MLSE receiver is the
optimum receiver in the maximum likelihood sense and achieves the best possible performance in AWGN. The MC-
MLSE receiver is also optimum for AWGN channels, but exhibits some degradation at higher Eb=No due to the co-channel
interference that is present. The IRC-MLSE receiver gives the worst Eb=No performance, although with coding the
degradation is a relatively small 1 dB.

Figure 7.23 shows the C/I performance of the three receivers for Eb=No D 30 dB. Observe that the MC-MLSE receiver
gives the worst performance, while the J-MLSE receiver and IRC-MLSE receivers offer huge C/I performance gains. The
best performance is realized with the IRC-MLSE receiver. Hence, the IRC-MLSE receiver sacrifices a small amount of
Eb=No performance for a large gain in C/I performance.

It is curious that the IRC-MLSE receiver outperforms the J-MLSE receiver. First, the J-MLSE receiver that has been
implemented does not have a sufficient number of receiver states due to pulse truncation effects. Hence, there is some
residual ISI that is significant at low C/I. Second, the overall signal constellation produced by the combination of the desired
signal and the co-channel signal may degenerate when the signal constellation points overlap. In this case, errors can occur
even for large Eb=No values.
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Appendix 7A: Derivation of Eq. (7.202)

Consider the case where D D 1 and suppose that the characteristic function in (7.194) has L C 1 different poles N̨ D
. N̨0; N̨1; : : : ; N̨L/. Then the pairwise error probability is equal to

P. N̨ / D
L
X

iD0

0

@
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s

N̨ i
1C N̨ i

!
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��1
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A : (7A.1)

Define the function �. N̨ / D
PL

iD0 N̨ i � C D 0, where C is a constant. The method of Lagrange multipliers suggests that

@P. N̨ /
@ N̨ i

C � @�
@ N̨ i
D 0 i D 1; : : : ; L (7A.2)

for any real number �. It can be shown by induction that
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: (7A.3)

By solving (7A.2) and observing the symmetry of P. N̨ / and the derivative (7A.3) with respect to the permutations of N̨ , it is
apparent that the minimum of P. N̨ / is achieved when N̨0 D N̨1 D � � � D N̨L.
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Problems

7.1. Starting with

fk D
Z 1

�1
h�.�/h.� C kT/d�

show that

F.ej2� fT/ D F˙ .f /:

7.2. Suppose that the impulse response of an overall channel consisting of the transmit filter, channel, and receive filter is

F.f / D
(

1 ; jf j � f`
fu�jf j
fu�f`

; f` � jf j � fu
:

(a) Find the overall impulse response f .t/.
(b) Is it possible to transmit data without ISI?
(c) How do the magnitudes of the tails of the overall impulse response decay with large values of t?
(d) Suppose that binary signaling is used with this pulse shape so that the noiseless signal at the output of the receive filter is

y.t/ D
X

n

xnf .t � nT/

where xn 2 f�1;C1g. What is the maximum possible magnitude that y.t/ can achieve?

7.3. Suppose a digital communication system operates over an “ideal channel” and employs an overall pulse p.t/ that has
the Gaussian-shaped form

p.t/ D e��a2t2 :

(a) Explain why p.t/ does not admit intersymbol interference (ISI) free transmission.
(b) To reduce the level of ISI to a relatively small amount, the condition that p.T/ D 0:01 is imposed, where T is the symbol

interval. The bandwidth W of the pulse p.t/ is defined as that value of W for which P.W/=P.0/ D 0:01, where P.f / is
the Fourier transform of p.t/. Determine the value W and compare this value to that of a raised cosine spectrum with
100% roll-off.

7.4. Show that the ISI coefficients ffng may be expressed in terms of the channel vector coefficients fgng as

fn D
L�n
X

kD0
g�

k gkCn n D 0; 1; 2; : : : ;L:

7.5. Suppose that BPSK is used on a static ISI channel. The complex envelope has the form

Qs.t/ D A

1
X

kD�1
xkha.t � kT/;

where xk 2 f�1;C1g and ha.t/ is the amplitude shaping pulse. The full response rectangular pulse ha.t/ D uT.t/ is used and
the impulse response of the channel is

g.t/ D g0ı.t/ � g1ı.t � �/;

where g0 and g1 are complex numbers and 0 < � < T .
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Fig. 7.24 Digital filter for
Problem 7.8

y
k
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T
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(a) Find the received pulse h.t/.
(b) What is the filter matched to h.t/?
(c) What are the ISI coefficients ffig?
7.6. Suppose that BPSK signaling is used on a static ISI channel having impulse response

g.t/ D ı.t/C 0:1ı.t � T/:

The receiver employs a filter that is matched to the transmitted pulse ha.t/, and the sampled outputs of the matched filter are

yn D xnq0 C
X

k¤n

xkqn�k C �n;

where xn 2 f�1;C1g. Decisions are made on the fyng without any equalization.

(a) What is the variance of noise term �n?
(b) What are the values of the fqng?
(c) What is the probability of error in terms of the average received bit-energy-to-noise ratio?

7.7. A typical receiver for digital signaling on an ISI channel consists of a matched filter followed by an equalizer. The
matched filter is designed to minimize the effect of random noise, while the equalizer is designed to minimize the effect
of ISI. By using mathematical arguments, show that (1) the matched filter tends to accentuate the effect of ISI, and (2) the
equalizer tends to accentuate the effect of random noise.

7.8. Consider an ISI channel, where fn D 0 for jnj > 1. Suppose that the receiver uses a filter matched to the received pulse
h.t/ D ha.t/ � g.t/, and the T-spaced samples at the output of the matched filter, fykg, are filtered as shown in Fig. 7.24. The
values of g0 and g1 are chosen to satisfy

jg0j2 C jg1j2 D f0

g0g
�
1 D f1:

Find an expression for the filter output vk in terms of g0, g1, xk, xk�1, and the noise component at the output of the digital
filter, �k.

7.9. The z-transform of the channel vector g of a communication system is equal to

G.z/ D 0:1C 1:0z�1 � 0:1z�2:

A binary sequence x is transmitted, where xk D2 f�1;C1g. The received samples at the output of the noise whitening
filter are

vn D
2
X

kD0
gkxn�k C �n;

where f�ng is a white Gaussian noise sequence with variance �2� D No.
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(a) Evaluate the probability of error if the demodulator ignores ISI.
(b) Design a 3-tap zero-forcing equalizer for this system.
(c) What is the response fvkg for the input sequence

fxkg D .�1/k; k D 0; 1; 2; 3 ‹

What is the response at the output of the equalizer?
(d) Evaluate the probability of error for the equalized channel.

7.10. Suppose that a system is characterized by the received pulse

h.t/ D
p
2ae�at; 0 � t � 1:

A receiver implements a filter matched to h.t/ and generates T-spaced samples at the output of the filter. Note that the
matched filter is actually noncausal.

(a) Find the ISI coefficients fi.
(b) What is the transfer function of the noise whitening filter that yields a system having an overall minimum phase response?
(c) Find the transfer function of the equivalent zero-forcing equalizer C0.z/.
(d) Find the noise power at the output of the zero-forcing equalizer, and find the condition when the noise power becomes

infinite.

7.11. Consider M-PAM on a static ISI channel, where the receiver employs a filter that is matched to the received pulse. The
sampled outputs of the matched filter are

yn D xnf0 C
X

k¤n

xkfn�k C �n;

where the source symbols are from the set f˙1; ˙3; : : : ; ˙.M � 1/g. Decisions are made on the fyng without any
equalization by using a threshold detector. The `th ISI pattern can be written as

D.`/ D
X

k¤n

x`;kfn�k

and D.`/ is maximum when sgn.x`;k/ D sgn.fn�k/ and each of the x`;k takes on the maximum signaling level, i.e., x`;k D
.M � 1/d for M even. The maximum distortion is defined as

Dmax D
1

f0

X

n¤0
jfnj:

(a) Discuss and compare error performance M-ary signaling (M > 2) with binary signaling (M D 2), using Dmax as a
parameter.

(b) Suppose that the channel has ISI coefficients

fi D 0:0 ; jij � 3
f2 D f�2 D 0:1
f1 D f�1 D �0:2
f0 D 1:0:

Plot the probability of error against the signal-to-noise ratio and compare with the ideal channel case, i.e., f0 D ın0. Show
your results for M D 2 and 4.

7.12. Consider a linear MSE equalizer and suppose that the tap gain vector c satisfies

c D cop C ce
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where ce is the tap gain error vector. Show that the mean square error that is achieved with the tap gain vector c is

J D Jmin C cT

eMvc
�
e :

7.13. The matrix Mv has an eigenvalue �k and eigenvector xk if

xkMv D �kxk ; k D 1; : : : ;N:

Prove that the eigenvectors are orthogonal, i.e., xix
T
j D ıij.

7.14. Show that the relationship between the output SNR and Jmin for an infinite-tap mean-square error linear equalizer is


1 D
1 � Jmin

Jmin
;

where 
1 indicates that the equalizer has an infinite number of taps. Note that this relationship between 
1 and Jmin holds
when there is residual ISI in addition to the noise.

7.15. In this question, it will be shown in steps that

rcJ D 2cTMv � 2vH
x :

Define

Mv
4D MvR

C jMvI

c
4D cR C jcI

vx
4D vxR

C jvxI
:

(a) By using the Hermitian property Mv DMH
v show that

MvR
DMT

vR
and MvI

D �MT
vI
:

(b) Show that

rcR
RefvH

x c�g D vT
xR

rcI
RefvH

x c�g D �vT
xI

rcR
cTMvc

� D 2cT
RMvR

� 2cT
I MvI

rcI
cTMvc

� D 2cT
I MvR

C 2cT
RMvI

where rx is the gradient with respect to vector x.
(c) By defining the gradient of a real-valued function with respect to a complex vector c as

rc D rcR
C jrcI

show that

rcRefvH
x c�g D vH

x

rccHMvc
� D 2cTMv:

7.16. Show that the pairwise error probability for digital signaling on an ISI channel is given by (7.171).
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Fig. 7.25 Discrete-time white
noise channel model for
Problem 7.17
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7.17. Consider the transmission of the binary sequence x, xn 2 f�1;C1g over the equivalent discrete-time white noise
channel model shown in Fig. 7.25. The received sequence is

v0 D 0:70x0 C �1
v1 D 0:70x1 � 0:60x0 C �2
v2 D 0:70x2 � 0:60x1 C �3
:::

vk D 0:70xk � 0:60xk�1 C �k:

(a) Draw the state diagram for this system.
(b) Draw the trellis diagram.
(c) Suppose that the received sequence is

fvig6iD0 D f1:0; �1:5; 0:0; 1:5; 0:0; �1:5; 1:0g:

Show the surviving paths and their associated path metrics after v6 have been received.

7.18. Suppose that BPSK signaling is used on a frequency-selective fading channel. The discrete-time system consisting of
the transmit filter, channel, receiver filter, and baud-rate sampler can be described by the polynomial

F.z/ D 5

16
� 1
8

z�1 � 1
8

z:

The samples at the output of the receiver filter are processed by a noise whitening filter such that the overall discrete-time
white noise channel model G.z/ has minimum phase.

(a) Find G.z/.
(b) Draw the state diagram and the trellis diagram for the discrete-time white noise channel model.
(c) A block of 10 symbols x D fxig9iD0 is transmitted over the channel and it is known that x9 D �1. Assume that xi D 0; i <

0 and suppose that the sampled sequence at the output of the noise whitening filter is

v D fv0; v1; v2; v3; : : : v9g
D f1=2; 1=4;�3=4; 3=4;�3=4;�1=4; 3=4;�3=4;�1=4;�1=4g:

What sequence x was most likely transmitted?



Chapter 8

Error Control Coding

Channel coding and interleaving techniques have long been used for combating noise, interference, jamming, fading, and
other channel impairments. The basic idea of channel coding is to introduce controlled redundancy into the transmitted
signals that is subsequently exploited at the receiver for error correction. Channel coding can also be used for error detection
in schemes that employ automatic repeat request (ARQ) strategies. ARQ strategies must have a feedback channel to relay the
retransmission requests from the receiver back to the transmitter when errors are detected. ARQ schemes require buffering
at the transmitter and/or receiver and, therefore, are suitable for data applications but are not suitable for delay sensitive
applications such as voice or real-time video. Hybrid ARQ schemes use both error correction and error detection; the code
is used to correct the most likely error patterns and to detect the more infrequently occurring error patterns. Upon detection
of errors a retransmission is requested.

There are many different types of error correcting codes, but historically they have been classified into block codes and
convolutional codes. Both block codes and convolutional codes find potential applications in wireless systems. To generate
a codeword of an .n; k/ block code, a block of k data bits is appended by n � k redundant parity bits that are algebraically
related to the k data bits, thereby producing a codeword consisting of n code bits. The ratio Rc D k=n is called the code rate,
where 0 < Rc � 1. Convolutional codes, on the other hand, are generated by the discrete-time convolution of the input data
sequence with the impulse response of the encoder. The memory of the encoder is measured by the duration of the impulse
response. While block encoder operates on k-bit blocks of data bits, a convolutional encoder accepts a continuous sequence
of input data bits.

In the early application of coding to digital communications, the modulator and coder were treated as separate entities.
Hence, a block code or a convolutional code was employed to obtain a coding gain at the cost of bandwidth expansion or
data rate. Although this approach may be feasible for power-limited channels where bandwidth resources are plentiful, it
is undesirable and sometimes not even possible for bandwidth-limited applications such as cellular radio. If no sacrifices
of data rate or bandwidth can be made, then schemes that separate the operations of coding and modulation require a very
powerful code just to break even with an uncoded system. In 1974, Massey [220] suggested that the performance of a coded
digital communication system could be improved by treating coding and modulation as a single entity. Ungerboeck, later
developed the basic principles of trellis-coded modulation (TCM) [325] and identified classes of trellis codes that provide
substantial coding gains on bandwidth-limited additive white Gaussian noise (AWGN) channels.

TCM schemes combine the operations of coding and modulation and can be viewed as a generalization of convolutional
codes. While convolutional codes attempt to maximize the minimum Hamming distance between allowed code symbol
sequences, trellis codes attempt to maximize the Euclidean distance between allowed code symbol sequences. By jointly
designing the encoder and modulator Ungerboeck showed that, for an AWGN channel, coding gains of 3–6 dB could be
obtained relative to an uncoded system by using trellis codes with 4–128 encoder states, without sacrificing bandwidth or
data rate. This property makes TCM very attractive for wireless applications where high spectral efficiency is needed due to
limited bandwidth resources and good power efficiency is needed to extend battery life in portable devices. TCM experienced
an almost immediate and widespread application into high-speed power-efficient and bandwidth efficient digital modems.
In 1984, a variant of the Ungerboeck 8-state 2-D trellis code was adopted by CCITT for both 14.4 kb/s leased-line modems
and the 9.6 kb/s switched-network modems [43]. In 1985, a TCM-based modem operating at 19.2 kb/s was introduced by
Codex [326].

Ungerboeck’s work [325] captured the attention of the coding community and laid the foundation for intensified research.
Calderbank and Mazo introduced an analytic description of trellis codes [51]. They showed how to realize the two operations
(coding and mapping) in Ungerboeck’s codes by using a single-step procedure. Calderbank and Sloane [52] and Wei [346]
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G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-3-319-55615-4_8

397



398 8 Error Control Coding

proposed multi-dimensional trellis codes. Spaces with larger dimensionality are attractive, because the signals are spaced
at larger Euclidean distances [43]. Calderbank and Sloan [52] and Forney [132] made the observation that the signal
constellation should be regarded as a finite set of points taken from an infinite lattice, and the partitioning of the constellation
into subsets corresponds to the partitioning of the lattice into a sub-lattice and its cosets. They then developed a new class of
codes, called coset codes, based on this principle.

Many studies have examined the performance of TCM on interleaved flat fading channels [53, 94, 95, 103]. Divsalar
and Simon [95, 96] constructed trellis codes that are effective for interleaved flat Ricean and Rayleigh fading channels.
Interleaving randomizes the channel with respect to the transmitted symbol sequence and has the effect of reducing the
channel memory. Consequently, interleaving improves the performance of codes that have been designed for memoryless
channels. Moreover, trellis codes that are designed for flat fading channels exhibit time diversity when combined with
interleaving of sufficient depth. It was reported in [53] that interleaving with reasonably long interleaving depths is almost
as good as ideal infinite interleaving. The design of trellis codes for interleaved flat fading channels is not guided by the
minimum Euclidean distance used for AWGN channels, but rather by the minimum product squared Euclidean distance and
the minimum built-in time diversity between any two allowed code symbol sequences. Wei [347] introduced an additional
design parameter called the minimum decoding depth, and proposed a set of efficient codes for interleaved flat Rayleigh
fading channels.

Many studies have also considered the performance of trellis codes on intersymbol interference (ISI) channels [99, 118,
318, 355]. The coded performance on static ISI channels may be significantly degraded compared to that on ISI-free channels.
Receivers for trellis-coded modulation on static ISI channels typically use a linear forward equalizer followed by a soft
decision Viterbi decoder. For channels with severe ISI, a more appropriate approach is to use a decision feedback equalizer
(DFE) in front of the TCM decoder to avoid the problems of noise enhancement. However, the feedback section of the
DFE requires that decisions be available with zero delay. Since the zero-delay decisions are unreliable, the performance
improvement by using the DFE is marginal [60]. It is possible that the performance can be improved if equalization and
decoding is performed in a joint manner by using maximum likelihood sequence estimation (MLSE) or some other form of
sequence estimator. However, the complexity of an MLSE receiver grows exponentially with the number of encoder states
and the length of the channel vector.

In 1993, Berrou et al. introduced parallel concatenated convolutional codes (PCCCs), called turbo coding [42]. When
used in conjunction with an iterative decoding scheme, PCCCs achieve near Shannon capacity limit performance on both
the AWGN channel and the interleaved flat fading channel. Simulations of a rate-1/2 turbo code in [42] showed a bit error
probability of 10�5 at an Eb=No D 0:5 dB, which is only 0.5 dB from the Shannon capacity limit! Although the performance
of turbo codes is remarkable at low Eb=No, their performance at high Eb=No is unimpressive. There is a perceivable change
in the slope of the bit error rate curves, which has been loosely termed an “error floor.” In 1997, Benedetto et al. showed that
iterative decoding of serially concatenated interleaved convolutional codes (SCCCs) can provide large coding gains without
the problem of an error floor [39]. In general, SCCCs outperform PCCCs at high Eb=No, whereas the opposite is true for
low Eb=No.

In the late 1990s, the study of MIMO channels led to the development of space-time coding schemes. These include both
space-time block codes and space-time trellis codes. The first space-time trellis codes were introduced by Tarokh et al. [314].
Alamouti introduced the first space-time block code [15], while other orthogonal space-time block codes were developed by
Tarokh et al. [315, 316].

The remainder of this chapter is organized as follows. Section 8.1 gives an introduction to block codes and space-
time block codes. Section 8.2 introduces convolutional codes, and decoding algorithms for convolutional codes, including
the Viterbi algorithm and BCJR algorithm. Section 8.3 introduces trellis-coded modulation. This is followed by the
performance analysis of convolutional and trellis codes on AWGN channels in Sect. 8.4. Section 8.5 considers block and
convolutional interleavers that are useful for coding on fading channels. This is followed by a consideration of the design
and performance analysis of trellis codes on interleaved flat fading channels in Sect. 8.6. The performance of space-time
codes and the decoding of space-time codes is considered in Sect. 8.7. Finally, Sect. 8.8 provides a treatment of parallel and
serial turbo codes.
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8.1 Block Codes

8.1.1 Binary Block Codes

A binary block encoder accepts a length-k input vector a D .a1; a2; : : : ; ak/, ai 2 f0; 1g, and generates a length-n codeword
c D .c1; c2; : : : ; cn/, ci 2 f0; 1g, through the linear mapping c D aG, where G D Œgij�k�n is a k � n generator matrix. The
matrix G has full row rank k, and the code C is generated by taking all linear combinations of the rows of the matrix G,
where field operations are performed by using modulo-2 arithmetic. The code rate is Rc D k=n and there are 2k codewords.
The task of designing block codes reduces to one of finding generator matrices that produce codes that are both powerful
and easy to decode.

For any block code with generator matrix G, there exists an .n � k/ � n parity check matrix H D Œhij�.n�k/�n such that
GHT D 0k�.n�k/. The matrix H has full row rank n � k and is orthogonal to all codewords, i.e., cHT D 0n�k. The matrix H

is the generator matrix of a dual code C T , consisting of 2n�k codewords. The parity check matrix of C T is the matrix G.
A systematic block code is one having a generator matrix of the form

G D ŒIk�kjP�; (8.1)

where P is a k � .n � k/ matrix. For a systematic block code, the first k coordinates of each codeword are equal to the k-bit
input vector a, while the last n � k coordinates are the parity check bits. By using elementary row operations, the generator
matrix of any linear block code can be put into systematic form. A systematic block code has the parity check matrix

H D Œ�PT jI.n�k/�.n�k/�: (8.2)

The parity check matrix in (8.2) is a general form that applies to both binary and non-binary systematic block codes. For
binary codes the negative sign in front of the PT matrix is not necessary. For a binary systematic block code, GHT D
Ik�kP˚ PI.n�k/�.n�k/ D P˚ P D 0k�.n�k/, where˚ indicates modulo-2 addition.

Example 8.1. The .n� k/� n parity check matrix of an .n; k/ Hamming code is constructed by listing as columns all
non-zero binary .n � k/-tuples. There are n D 2n�k � 1 such non-zero .n � k/-tuples. For example, a systematic (7,4)
Hamming code has the parity check matrix

H D

2

6
6
6
4

1 0 1 1
::: 1 0 0

1 1 1 0
::: 0 1 0

0 1 1 1
::: 0 0 1

3

7
7
7
5
; (8.3)

where the columns of H consists of all non-zero binary 3-tuples. Note that the last three columns form a 3� 3 identity
matrix since the code is in systematic form, while the first four columns that constitute the PT matrix may be placed in
any random order with no effect on the performance of the code. Such codes are said to be equivalent.

The generator matrix of this particular (7,4) systematic Hamming code is

G D

2

6
6
6
6
6
6
4

1 0 0 0
::: 1 1 0

0 1 0 0
::: 0 1 1

0 0 1 0
::: 1 1 1

0 0 0 1
::: 1 0 1

3

7
7
7
7
7
7
5

(8.4)

and it can be verified that GHT D 0k�.n�k/. The 16 codewords of the .7; 4/ Hamming code are generated by taking all
linear combinations of the rows of G using modulo-2 arithmetic.
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8.1.1.1 Minimum Distance

Let d.c1; c2/ denote the Hamming distance between the codewords c1 and c2, equal to the number of coordinates in which
they differ. For linear block codes d.c1; c2/ D w.c1 ˚ c2/, where w.c1 ˚ c2/ is the weight of c1 ˚ c2, equal to the number
of non-zero coordinates of c1 ˚ c2. The free Hamming distance, dfree, of a linear block code is the minimum number of
coordinates in which any two codewords differ. For a linear code, the sum of any two codewords c1˚ c2 is another codeword
c and the all zeroes vector is a codeword. Hence, the free Hamming distance is

dfree D min
c1;c2

d.c1; c2/ D min
c¤0

d.c; 0/ D min
c¤0

w.c/: (8.5)

Therefore, dfree is equal to the weight of the minimum weight non-zero codeword.
To derive an upper bound on dfree, recall that the generator matrix of any linear block code can be put into systematic

form G D ŒIk�kjP�, where P is a k � .n � k/ matrix. It is certainly the case the number of non-zero elements in any row of P

cannot exceed n � k. Hence, the number of non-zero elements in any row of G cannot exceed n � k C 1. Since the rows of
the generator matrix G are themselves valid codewords, it must be true that

dfree � n � kC 1 (8.6)

a result known as the Singleton bound. A code that has dfree D n � k C 1 is called a maximum distance separable (MDS)
code. Intuitively, this means that all codewords are as far apart from each other as possible in Hamming distance, and such
codes should perform well.

An example of a simple block code that meets the Singleton bound is the binary repetition code

0 �! c0 D .0; 0; : : : ; 0/n
1 �! c1 D .1; 1; : : : ; 1/n

In this case, dfree D d.c0; c1/ D n� kC 1. The repetition code happens to be the only binary MDS code, and no other binary
MDS codes exist. The well-known Reed–Solomon codes are good examples for non-binary MDS codes.

8.1.1.2 Syndromes

Suppose that the codeword c is transmitted and the vector y D c˚ e is received, where e is defined as the error vector. The
syndrome of the received vector y is defined as the length n � k vector

s D yHT : (8.7)

If s D 0, then y is a codeword; conversely if s ¤ 0, then an error must have occurred. Note that if y is a codeword, then
s D 0. Hence, s D 0 does not mean that no errors have occurred. They are just undetectable. Since the sum of any two
codewords is another codeword for a linear code, it follows that the number of undetectable error vectors is equal to 2k � 1,
the number of non-zero codewords. The syndrome only depends upon the error vector because

s D yHT D cHT ˚ eHT D 0˚ eHT D eHT : (8.8)

In general, s D eHT is a system of n � k equations in n variables. Hence, for any given syndrome s, there are 2k possible
solutions having the same error vector e. However, the most likely error pattern e is the one that has minimum Hamming
weight.
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8.1.1.3 Error Detection

A linear block code can detect all error patterns of dfree � 1 or fewer errors. If e ¤ 0 is a codeword, then no errors are
detected. There are 2k � 1 undetectable error patterns, but there are 2n � 1 possible non-zero error patterns. Hence, the
number of detectable error patterns is

2n � 1 � .2k � 1/ D 2n � 2k:

Usually, 2k � 1 is a small fraction of 2n � 2k. For the (7,4) Hamming code considered in Example 8.8, there are 24 � 1 D 15
undetectable error patterns and 27 � 24 D 112 detectable error patterns.

8.1.1.4 Weight Distribution

Consider a block code C and let Ai be the number of codewords of weight i. The set fA0;A1; : : : ;Ang is called the weight
distribution of C . The weight distribution can be expressed as a weight enumerator polynomial

A.z/ D A0z
0 C A1z

1 C � � � C Anzn: (8.9)

For the (7,4) Hamming code in Example 8.8,

A0 D 1;A2 D 0;A3 D 7;A4 D 7;A5 D 0;A6 D 0;A7 D 1:

Hence,

A.z/ D 1C 7z3 C 7z4 C z7:

The weight enumerator polynomial can be used to evaluate the exact performance of a code. Unfortunately, weight
enumerator polynomials are generally difficult to find and are known only for a few classes of codes such as the Hamming
codes.

8.1.1.5 Probability of Undetected Error

The probability of undetected error is

PeŒu� D PŒe is a non-zero codeword�

D
n
X

iD1
AiPŒw.e/ D i�: (8.10)

The error probability PŒw.e/ D i� depends on the coding channel, defined as that portion of the communication system that
is seen by the coding system. The simplest coding channel is the binary symmetric channel (BSC), where

PŒyi ¤ ci� D p D 1 � PŒyi D ci�: (8.11)

For a BSC, PŒw.e/ D i� D pi.1 � p/n�i and, hence,

PeŒu� D
n
X

iD1
Aip

i.1 � p/n�i: (8.12)

The (7,4) Hamming code in Example 8.1 has an undetected error probability of

PeŒu� D 7p3.1 � p/4 C 7p4.1 � p/3 C p7: (8.13)
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For a raw channel error rate of p D 10�2, it follows PeŒu� D 7 � 10�6. Hence, the undetected error rate can be very small
even for a fairly simple block code.

8.1.1.6 Error Correction

A linear block code can correct all error patterns of t or fewer errors, where

t �
�

dfree � 1
2

�

(8.14)

and bxc is the largest integer contained in x. A code is usually capable of correcting many error patterns of t C 1 or more
errors. In fact, up to 2n�k error patterns may be corrected, which is equal to the number of syndromes.

For a BSC, the probability of codeword error is

PŒe� � 1 � PŒt or fewer errors�

D 1 �
t
X

iD0

 

n

i

!

pi.1 � p/n�i: (8.15)

8.1.1.7 Standard Array Decoding

One conceptually simple method for decoding linear block codes is standard array decoding. The standard array of an .n; k/
linear block code is constructed as follows:

1. Write out all 2k codewords in a row starting with c0 D 0.
2. From the remaining 2n � 2k n-tuples, select an error vector e2 of weight 1 and place it under c0. Under each codeword put

ci ˚ e2; i D 1; : : : ; 2k � 1.
3. Select a minimum weight error vector e3 from the remaining unused n-tuples and place it under c0 D 0. Under each

codeword put ci ˚ e3; i D 1; : : : ; 2k � 1.
4. Repeat Step 3 until all n-tuples have been used.

Note that every n-tuple appears once and only once in the standard array.

Example 8.2. Consider the .4; 2/ code with generator matrix

G D
�

1 1 0 0

0 1 0 1

�

:

The standard array is

2

6
6
4

e1 0000 1100 0101 1001

e2 0001 1101 0100 1000

e3 0010 1110 0111 1011

e4 0011 1111 0110 1010

3

7
7
5
:

The standard array consists of 2n�k disjoint rows of 2k elements. These rows are called cosets and the ith row has the
elements

Fi D fei; ei ˚ c1; : : : ; ei ˚ c2k�1g:
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The first element, ei, is called the coset leader. The standard array also consists of 2k disjoint columns. The jth column has
the elements

Dj D fcj; cj ˚ e2; : : : ; cj ˚ e2n�kg:

To correct errors, the following procedure is used. When y is received, find y in the standard array. If y is in row i and
column j, then the coset leader from row i, ei, is the most likely error pattern to have occurred and y is decoded into y˚ei D cj.
A code is capable of correcting all error patterns that are coset leaders. If the error pattern is not a coset leader, then erroneous
decoding will result. Obviously, standard array decoding is only useful for simple codes, since 2n vectors must be stored in
memory. A somewhat simpler decoding strategy is syndrome decoding.

8.1.1.8 Syndrome Decoding

Syndrome decoding relies on the fact that all 2k n-tuples in the same coset of the standard array have the same syndrome.
This is because the syndrome only depends on the coset leader as shown in (8.8). To perform syndrome decoding

1. Compute the syndrome s D yHT .
2. Locate the coset leader e` where e`H

T D s.
3. Decode y into y˚ e` D Oc.

This technique can be used for any linear block code. The calculation in Step 2 can be done by using a simple look-up table.
However, for large n � k it becomes impractical because 2n�k syndromes and 2n�k error patterns must be stored.

8.1.2 Space-Time Block Codes

Space-time block coding is a technique for coding across multiple antennas. In Sect. 6.11, a simple transmit diversity scheme
by Alamouti [15] was introduced that used two transmit antennas in a 2 � LR arrangement, where LR is the number of
receiver antennas. The Alamouti scheme achieves a diversity order of 2LR and has a very simple maximum likelihood
decoding algorithm. It can be thought of as a very simple 2 � 2 space-time block code having the code matrix

S D
"

Qs.1/ Qs.2/
�Qs�

.2/ Qs�
.1/

#

; (8.16)

where the rows represent time slots and the columns represent the transmissions from the antennas over time. For the
Alamouti code two symbols are transmitted from two antennas over two time slots. Note that the transmitted symbols in
the code matrix are modulation symbols, rather than binary information bits. The basic idea of the Alamouti code was
later generalized by Tarokh, Jafarkhani, and Calderbank to an arbitrary number, LT , of transmit antennas by applying
orthogonal designs [315]. While a variety of space-time block codes exist, orthogonal space-time block codes are considered
here. Orthogonal space-time block codes achieve a diversity order LTLR, while allowing for maximum likelihood based on
computationally simple linear processing [316].

Let LT be the number of transmit antennas and p represent the number of time slots that are used to transmit one space-
time codeword. This gives rise to a p � LT space-time code matrix. Each group of k information symbols, chosen from an
M D 2m-ary alphabet, is encoded according to the space-time code matrix to generate a p � LT space-time codeword. Since
the codewords are transmitted simultaneously from LT transmit antennas in p time slots, the space-time code rate is equal to
R D k=p. Similar to the Alamouti code, the entries of the p � LT code matrix are chosen to be a combination of the block
of k modulating symbols fQs.1/; : : : ; Qs.k/g and their complex conjugates fQs�

.1/; : : : ; Qs�
.k/g. For orthogonal space-time codes, the

p � LT code matrix S satisfies the following orthogonal property [315]:
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SHS D ILT �LT

k
X

iD1
jQs.i/j2: (8.17)

Depending on the type of signal constellation from which the symbols Qs.i/ are drawn, either real-or complex-valued
orthogonal space-time block codes can be constructed.

8.1.2.1 Real Orthogonal Space-Time Block Codes

A real orthogonal design is a p � LT orthogonal matrix containing real-valued elements satisfying the orthogonal property
in (8.17). First consider the case where S is an LT � LT square matrix. It is known that real orthogonal designs having square
code matrices only exist for LT D 2; 4 or 8 transmit antennas. Examples of real orthogonal space-time block codes are the
2 � 2 design

S2 D
�

Qs.1/ Qs.2/
�Qs.2/ Qs.1/

�

; (8.18)

the 4 � 4 design

S4 D

2

6
6
4

Qs.1/ Qs.2/ Qs.3/ Qs.4/
�Qs.2/ Qs.1/ �Qs.4/ Qs.3/
�Qs.3/ Qs.4/ Qs.1/ �Qs.2/
�Qs.4/ �Qs.3/ Qs.2/ Qs.1/

3

7
7
5
; (8.19)

and the 8 � 8 design

S8 D

2

6
6
6
6
6
6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/ Qs.4/ Qs.5/ Qs.6/ Qs.7/ Qs.8/
�Qs.2/ Qs.1/ Qs.4/ �Qs.3/ Qs.6/ �Qs.5/ �Qs.8/ Qs.7/
�Qs.3/ �Qs.4/ Qs.1/ Qs.2/ Qs.7/ Qs.8/ �Qs.5/ �Qs.6/
�Qs.4/ Qs.3/ �Qs.2/ Qs.1/ Qs.8/ �Qs.7/ Qs.6/ �Qs.5/
�Qs.5/ �Qs.6/ �Qs.7/ �Qs.8/ Qs.1/ Qs.2/ Qs.3/ Qs.4/
�Qs.6/ Qs.5/ �Qs.8/ Qs.7/ �Qs.2/ Qs.1/ �Qs.4/ Qs.3/
�Qs.7/ Qs.8/ Qs.5/ �Qs.6/ �Qs.3/ Qs.4/ Qs.1/ �Qs.2/
�Qs.8/ �Qs.7/ Qs.6/ Qs.5/ �Qs.4/ �Qs.3/ Qs.2/ Qs.1/

3

7
7
7
7
7
7
7
7
7
7
7
5

: (8.20)

The reader can verify that the columns of these matrices are mutually orthogonal, i.e., their dot product is zero. Hence, the
orthogonal property in (8.17) is satisfied. Also, the rate achieved with these code matrices is R D 1. For example, with
the 8 � 8 code matrix, k D 8 symbols are transmitted in p D 8 time slots so that R D k=p D 1. Finally, these codes all
achieve full transmit diversity of order LT .

The above orthogonal space-time code designs are based on LT � LT square matrices. Tarokh et al. [315] have developed
generalized real orthogonal designs for any number of transmit antennas that achieve rate R D 1. They have shown that the
minimum number of transmission periods p to achieve full rate is given by [315]

p D min
˚

24cCd



; (8.21)

where the minimization is taken over the set

˚

c; d j 0 � c; 0 � d < 4 and 8cC 2d � LT




: (8.22)
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Based on (8.21) and (8.22), real orthogonal designs for LT D 3; 5; 6, and 7 transmit antennas can be constructed that have
full transmit diversity of order LT and rate R D 1 as follows:

S3 D

2

6
6
4

Qs.1/ Qs.2/ Qs.3/
�Qs.2/ Qs.1/ �Qs.4/
�Qs.3/ Qs.4/ Qs.1/
�Qs.4/ �Qs.3/ Qs.2/

3

7
7
5
; (8.23)

S5 D

2

6
6
6
6
6
6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/ Qs.4/ Qs.5/
�Qs.2/ Qs.1/ Qs.4/ �Qs.3/ Qs.6/
�Qs.3/ �Qs.4/ Qs.1/ Qs.2/ Qs.7/
�Qs.4/ Qs.3/ �Qs.2/ Qs.1/ Qs.8/
�Qs.5/ �Qs.6/ �Qs.7/ �Qs.8/ Qs.1/
�Qs.6/ Qs.5/ �Qs.8/ Qs.7/ �Qs.2/
�Qs.7/ Qs.8/ Qs.5/ �Qs.6/ �Qs.3/
�Qs.8/ �Qs.7/ Qs.6/ Qs.5/ �Qs.4/

3

7
7
7
7
7
7
7
7
7
7
7
5

: (8.24)

S6 D

2

6
6
6
6
6
6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/ Qs.4/ Qs.5/ Qs.6/
�Qs.2/ Qs.1/ Qs.4/ �Qs.3/ Qs.6/ �Qs.5/
�Qs.3/ �Qs.4/ Qs.1/ Qs.2/ Qs.7/ Qs.8/
�Qs.4/ Qs.3/ �Qs.2/ Qs.1/ Qs.8/ �Qs.7/
�Qs.5/ �Qs.6/ �Qs.7/ �Qs.8/ Qs.1/ Qs.2/
�Qs.6/ Qs.5/ �Qs.8/ Qs.7/ �Qs.2/ Qs.1/
�Qs.7/ Qs.8/ Qs.5/ �Qs.6/ �Qs.3/ Qs.4/
�Qs.8/ �Qs.7/ Qs.6/ Qs.5/ �Qs.4/ �Qs.3/

3

7
7
7
7
7
7
7
7
7
7
7
5

: (8.25)

and

S7 D

2

6
6
6
6
6
6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/ Qs.4/ Qs.5/ Qs.6/ Qs.7/
�Qs.2/ Qs.1/ Qs.4/ �Qs.3/ Qs.6/ �Qs.5/ �Qs.8/
�Qs.3/ �Qs.4/ Qs.1/ Qs.2/ Qs.7/ Qs.8/ �Qs.5/
�Qs.4/ Qs.3/ �Qs.2/ Qs.1/ Qs.8/ �Qs.7/ Qs.6/
�Qs.5/ �Qs.6/ �Qs.7/ �Qs.8/ Qs.1/ Qs.2/ Qs.3/
�Qs.6/ Qs.5/ �Qs.8/ Qs.7/ �Qs.2/ Qs.1/ �Qs.4/
�Qs.7/ Qs.8/ Qs.5/ �Qs.6/ �Qs.3/ Qs.4/ Qs.1/
�Qs.8/ �Qs.7/ Qs.6/ Qs.5/ �Qs.4/ �Qs.3/ Qs.2/

3

7
7
7
7
7
7
7
7
7
7
7
5

: (8.26)

Taking S7 as an example, observe that k D 8 symbols are transmitted from LT D 7 antennas in p D 8 time slots. Hence, S7
has rate R D k=p D 1. Since the columns are mutually orthogonal the code achieves full transmit diversity of order LT D 7.

8.1.2.2 Complex Orthogonal Space-Time Block Codes

Complex orthogonal space-time codes have p � LT code matrices containing the elements fQs.1/; : : : ; Qs.k/g and their complex
conjugates fQs�

.1/; : : : ; Qs�
.k/g, and they satisfy the orthogonal property in (8.17). Such codes provide full transmit diversity of

order LT and have rate R D k=p. The Alamouti space-time code matrix in (8.16) is one such 2 � 2 scheme, that achieves
a transmit diversity of order 2 with a full code rate R D 1. The Alamouti scheme is unique in that it is the only complex
orthogonal space-time block code having full transmit diversity and rate R D 1. Tarkoh et al. [315] have constructed complex
orthogonal space-time block codes with rate R D 1=2 for LT D 3 and 4 transmit antennas as follows:
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C3 D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/
�Qs.2/ Qs.1/ �Qs.4/
�Qs.3/ Qs.4/ Qs.1/
�Qs.4/ �Qs.3/ Qs.2/
Qs�
.1/ Qs�

.2/ Qs�
.3/

�Qs�
.2/ Qs�

.1/ �Qs�
.4/

�Qs�
.3/ Qs�

.4/ Qs�
.1/

�Qs�
.4/ �Qs�

.3/ Qs�
.2/

3

7
7
7
7
7
7
7
7
7
7
7
7
5

; (8.27)

and

C4 D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/ Qs.4/
�Qs.2/ Qs.1/ �Qs.4/ Qs.3/
�Qs.3/ Qs.4/ Qs.1/ �Qs.2/
�Qs.4/ �Qs.3/ Qs.2/ Qs.1/
Qs�
.1/ Qs�

.2/ Qs�
.3/ Qs�

.4/

�Qs�
.2/ Qs�

.1/ �Qs�
.4/ Qs�

.3/

�Qs�
.3/ Qs�

.4/ Qs�
.1/ �Qs�

.2/

�Qs�
.4/ �Qs�

.3/ Qs�
.2/ Qs�

.1/

3

7
7
7
7
7
7
7
7
7
7
7
7
5

: (8.28)

The reader can verify that the columns of these code matrices are all mutually orthogonal. Thus, these schemes achieve full
transmit diversity of order LT , but lose half of the theoretical bandwidth efficiency since they are only R D 1=2 codes.

By allowing linear processing at the transmitter, it is possible to construct higher rate complex space-time block codes.
Tarokh et al. [315] have identified the following complex orthogonal designs: the LT D 3 rate R D 3=4 code

H3 D

2

6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/p
2

�Qs�
.2/ Qs�

.1/
Qs.3/p
2

Qs�
.3/p
2

Qs�
.3/p
2

.�Qs.1/�Qs�
.1/CQs.2/�Qs�

.2//

2

Qs�
.3/p
2
� Qs�

.3/p
2

.Qs.2/�Qs�
.2/CQs.1/�Qs�

.1//

2

3

7
7
7
7
7
7
5

: (8.29)

and the LT D 4 rate R D 3=4 code

H4 D

2

6
6
6
6
6
6
4

Qs.1/ Qs.2/ Qs.3/p
2

Qs.3/p
2

�Qs.2/ Qs.1/ Qs.3/p
2

� Qs.3/p
2

Qs.3/p
2

Qs.3/p
2

.�Qs.1/�Qs�
.1/CQs.2/�Qs�

.2//

2

.�Qs.2/CQs�
.2/CQs.1/�Qs�

.1//

2

Qs�
.3/p
2
� Qs�

.3/p
2

.Qs.2/CQs�
.2/CQs.1/�Qs�

.1//

2

.�Qs.1/�Qs�
.1/�Qs.2/CQs�

.2//

2

3

7
7
7
7
7
7
5

: (8.30)

8.1.2.3 Decoding Orthogonal Space-Time Block Codes

The Alamouti space-time block code was shown to have an efficient and simple maximum likelihood decoding method in
Sect. 6.11. We now discuss the decoding of orthogonal p � LT space-time block codes. Following the notation in Sect. 6.11,
the received signal vector at antenna j and time t is given by

Qr.t/;j D
LTX

iD1
gi;jQs.t/;i C Qn.t/;j; (8.31)

where gi;j is the complex channel gain from transmit antenna i to receiver antenna j, Qs.t/;i is the symbol vector transmitted
from antenna i in time slot t, and the Qn.t/;j are independent zero-mean complex Gaussian random vectors with variance No in
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each dimension of the signal space. Assuming perfect channel state information, the maximum likelihood receiver computes
the decision metric

�.C/ D
p
X

tD1

LRX

jD1











Qr.t/;j �

LTX

iD1
gi;jQs.t/;i












2

(8.32)

over all codewords C D ŒQs.t/;i�p�LT
and chooses the codeword with the minimum metric.

First consider the real orthogonal space-time block codes with square matrices S2, S4, and S8. Note that the rows of
code matrices S2, S4, and S8 are all permutations of the first row, possibly with different signs. Let �1; : : : ; �Lt

denote the

permutations corresponding to these rows, and let ı.i/t denote the sign of the entry in row t and column i of the code matrix.

Then �.i/t D q means that Qs.t/;i is up to a sign change equal to the element in row t and column q of the code matrix. Since the
columns of the space-time orthogonal code matrices S2, S4, and S8 are mutually orthogonal, minimizing the metric in (8.32)
is equivalent to minimizing [315]

�.C/ D
LTX

iD1
Pi; (8.33)

where

Pi D

0

B
@














2

4

LTX

tD1

LRX

jD1
Qr.t/;jg�

�
.i/
t ;j
ı
.i/
t

3

5 � Qsi














2

C

0

@�1C
X

i;j

jgi;jj2
1

A kQsik2

1

C
A : (8.34)

Note that Pi; i D 1; : : : ;LT only depends on the choice of code symbol Qsi, the set of received vectors fQr.t/;j; j D 1; : : : ;LRg,
the channel fading coefficients fgi;jg, and the structure of the code matrix. It follows that minimizing the sum in (8.33) is
equivalent to minimizing Pi in (8.34) for each i; 1 � i � LT . This separable property results in a very simple decoding strategy
that provides spatial diversity of order LTLR. The maximum likelihood receiver simply forms the LT decision variables

Ri D
LTX

tD1

LRX

jD1
Qr.t/;jg�

�
.i/
t ;j
ı
.i/
t ; i D 1; : : : ;LT (8.35)

and decides in favor of symbol Osi if

Osi D arg min
s
kRi � sk2 C

0

@�1C
X

i;j

jgi;jj2
1

A kQsk2; i D 1; : : : ;LT : (8.36)

Similar low complexity decoding strategies for the other space-time block codes C3, C4, H3, and H4 in (8.27), (8.28), (8.29)
and (8.30), respectively, are not presented here but are available in [316].

8.2 Convolutional Codes

8.2.1 Encoder Description

The encoder for a rate-1=n binary convolutional code can be viewed as a finite-state machine (FSM) that consists of a
�-stage binary shift register with connections to n modulo-2 adders, and a multiplexer that converts the adder outputs to serial
codewords. The constraint length of a convolutional code is defined as the number of shifts through the FSM over which a
single input data bit can affect the encoder output. For an encoder having a single �-stage shift register, the constraint length
is equal to K D � C 1. A very simple rate-1/2, constraint length K D 3, binary convolutional encoder is shown in Fig. 8.1.
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Fig. 8.1 Binary convolutional encoder; Rc D 1=2, K D 3
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Fig. 8.2 Binary convolutional encoder; Rc D 2=3, K D 2

The above concept can be generalized to rate-k=n binary convolutional code by using k shift registers, n modulo-2 adders,

along with input and output multiplexers. For a rate-k=n code, the k-bit information vector a` D .a.1/` ; : : : ; a
.k/

` / is input to the

encoder at epoch ` to generate the n-bit code vector b` D .b
.1/

` ; : : : ; b
.n/

` /. If Ki denotes the constraint length of the ith shift
register, then the overall constraint length is defined as K D maxi Ki. Figure 8.2 shows a simple rate-2/3, constraint length-2
convolutional encoder.

A convolutional encoder can be described by the set of impulse responses, fg.j/i g, where g
.j/
i is the jth output sequence b.j/

that results from the ith input sequence a.i/ D .1; 0; 0; 0; : : :/. The impulse responses can have a duration of at most K and

have the form g
.j/
i D .g

.j/
i;0; g

.j/
i;1; : : : ; g

.j/
i;K�1/. Sometimes the fg.j/i g are called generator sequences. For the encoder in Fig. 8.1

g.1/ D .1; 1; 1/ g.2/ D .1; 0; 1/ (8.37)

and for the encoder in Fig. 8.2

g
.1/
1 D .1; 1/; g

.2/
1 D .0; 1/; g

.3/
1 D .1; 1/

g
.1/
2 D .0; 1/; g

.2/
2 D .1; 0/; g

.3/
2 D .1; 0/: (8.38)

It follows that the jth output b
.j/
i corresponding to the ith input sequence a.i/ is the discrete convolution b

.j/
i D a.i/ �̌ g

.j/
i ,

where �̌ denotes modulo-2 convolution. The time domain convolutions can be conveniently replaced by polynomial
multiplications in a D-transform domain according to

b
.j/
i .D/ D a.i/.D/g

.j/
i .D/; (8.39)



8.2 Convolutional Codes 409

where

a.i/.D/ D
1
X

kD0
ai;kDk (8.40)

is the ith input data polynomial,

b
.j/
i .D/ D

1
X

kD0
b
.j/
i;kDk (8.41)

is the jth output polynomial corresponding to the ith input, and

g
.j/
i .D/ D

K�1
X

kD0
g
.j/
i;kDk (8.42)

is the associated generator polynomial. It follows that the jth output sequence is

b.j/.D/ D
k
X

iD1
b
.j/
i .D/ D

k
X

iD1
a.i/.D/g

.j/
i .D/: (8.43)

The above expression leads to the matrix form

�

b.i/.D/; : : : ;b.n/.D/
�

D
�

a.1/.D/; : : : ; a.k/.D/
�

G.D/; (8.44)

where

G.D/ D

2

6
4

g
.1/
1 .D/; � � � ; g

.n/
1 .D/

:::
:::

g
.1/
k .D/; � � � ; g

.n/
k .D/

3

7
5 (8.45)

is the generator matrix of the code. For the encoder in Fig. 8.1

G.D/ D
�

1C DC D2 1C D2
�

(8.46)

while for the encoder in Fig. 8.2

G.D/ D
�

1C D D 1C D

D 1 1

�

: (8.47)

After multiplexing the outputs, the final codeword has the polynomial representation

b.D/ D
n
X

jD1
Dj�1b.j/.Dn/: (8.48)

Systematic convolutional codes are those where first k of the n encoder output sequences, b.1/; : : : ;b.k/ are equal to the k

encoder input sequences a.1/; : : : ; a.k/.

8.2.2 State and Trellis Diagrams, and Weight Distribution

Since the convolutional encoder is an FSM, its operation can be described by a state diagram and trellis diagram in a manner
very similar to the state- and trellis-diagram descriptions of the discrete-time white noise channel model in Chap. 7. The
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Fig. 8.3 State diagram for the
binary convolutional encoder
in Fig. 8.1
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Fig. 8.4 State diagram for the binary convolutional encoder in Fig. 8.2

state of the encoder is defined by the shift register contents. For a rate-k=n code, the ith shift register contains �i previous
information bits. The state of the encoder at epoch ` is defined as

� ` D
�

a
.1/

`�1; � � � ; a
.1/

`��1 I � � � I a
.k/

`�1; � � � ; a
.k/

`��m

�

: (8.49)

There are a total of NS D 2�T encoder states, where �T
4D
Pk

iD1 �i is defined as the total encoder memory. For a rate-1=n

code, the encoder state at epoch ` is simply � ` D .a`�1; � � � ; a`��/.
Figures 8.3 and 8.4 show the state diagrams for codes in Figs. 8.1 and 8.2, respectively. The states are labeled using

the convention � .i/; i D 0; : : : ; �T � 1, where � .i/ represents the encoder state .c0; : : : ; c�T �1/ corresponding to the integer
i D

P�T �1
jD0 cj2

j. In general, for a rate-k=n code there are 2k branches entering and leaving each state. The branches in

the state diagram are labeled with the convention a=b D .a.1/; a.2/; : : : ; a.k//=.b.1/; b.2/; : : : ; b.n//. For example, the state
transition � .1/ ! � .3/ in Fig. 8.3 has the label 1/01. This means if the encoder in Fig. 8.1 is in state state � .1/ D .01/ and the
input bit is a 1, the encoder will output the code bits 01 and transition to state � .3/ D .11/.

Convolutional codes are linear codes, meaning that the sum of any two codewords is another codeword and the all-zeroes
sequence is a codeword. It follows that the weight distribution and other distance properties of a convolutional code can
be obtained from the state diagram. Consider, for example, the encoder in Fig. 8.1 along with its state diagram in Fig. 8.3.
Since the self-loop at the zero state � .0/ corresponds to the all-zeroes codeword, the zero state � .0/ can be split into two
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Fig. 8.5 Modified state diagram for the binary convolutional encoder in Fig. 8.1

nodes, representing the input and output of the state diagram. This leads to the modified state diagram shown in Fig. 8.5. The
branches in the modified state diagram have labels of the form DiN jL, where i is the number of 1’s in the encoder output
sequence corresponding to a particular state transition, and j is the number of input 1’s into the encoder for that transition.
Every branch is labeled with the letter L, and the exponent of L is unity because each branch has length one. Each possible
path through the modified state diagram corresponds to a non-all-zeroes codeword.

The weight distribution of a convolutional code can be obtained by computing the transfer function T.D;N;L/ of the
modified state diagram. Any appropriate technique can be used to obtain the transfer function, including flow-graph reduction
techniques and Mason’s formula [219]. For the example shown in Fig. 8.5, the transfer function is

T.D;N;L/ D D5NL3

1 � DNL.LC 1/
D D5L3N C D6N2L4.LC 1/C D7N3L5.LC 1/2

C � � � C DkC5NkC1LkC3.LC 1/k C � � � (8.50)

where the second line was obtained using polynomial division. The terms in the second line of (8.50) enumerate the weight
distribution and distance properties of the code. For example, consider the term DkC5NkC1LkC3.L C 1/k appearing in the
transfer function. Using the binomial expansion, this term can be rewritten as

DkC5NkC1
k
X

nD0

 

k

n

!

LnCkC3:

Hence, there are 2k paths through the modified state diagram that are at Hamming distance k C 5 from the all-zeroes path,
i.e., have kC 5 output 1’s, that are caused by kC 1 input 1’s. Of these 2k paths,

�
k

n

�

have length kC nC 3 branches.
Sometimes the transfer function can be simplified if only certain distance properties of the convolutional code are to be

extracted. For example, the output weight distribution of the code can be obtained by setting N D 1 and L D 1 in the transfer
function. For the particular transfer function in (8.50) this leads to

T.D/ D D5

1 � 2D

D D5 C 2D6 C 4D7 C � � � C 2kD5Ck C � � � (8.51)

meaning that there are 2k codewords at Hamming distance 5 C k from the all-zeroes codeword. Notice that no non-zero
codeword exists with a Hamming distance less than 5 from the all-zeroes codeword. This means that the free Hamming
distance of the code is dfree D 5. The free Hamming distance for this simple example can also be seen by inspecting the
trellis diagram in Fig. 8.6, where the branches in the trellis diagram are labeled with the encoder output bits that correspond
to the various state transitions.

Convolutional codes are designed to have the largest possible dfree for a given code rate and total encoder memory.
Tabulation of convolutional codes that are optimal in this sense can be found in many references, e.g., Proakis [272], Lin and
Costello [203], and Clark and Cain [73].
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Fig. 8.6 Trellis diagram for the binary convolutional encoder in Fig. 8.1

8.2.3 Recursive Systematic Convolutional Codes

Forney [129] and Costello [82] showed that it is possible to construct a recursive systematic convolutional (RSC) encoder
from every rate Rc D 1=n feedforward non-systematic convolutional encoder, such that the output weight distributions of
the codes are identical. Consider a rate-1=n code with generator polynomials g1.D/; : : : ; gn.D/. The output sequences are
described by the polynomials

b.j/.D/ D a.D/g.j/.D/; j D 1; : : : ; n: (8.52)

To obtain a systematic code, it is required that b.1/.D/ D a.D/. To obtain this, suppose that both sides of (8.52) are divided
by g.1/.D/, so that

Qb.1/.D/ D b.1/.D/

g.1/.D/
D a.D/ (8.53)

Qb.j/.D/ D b.j/.D/

g.1/.D/
D a.D/

g.j/.D/

g.1/.D/
; j D 2; : : : ; n: (8.54)

Sometimes the g.j/.D/ are called the feedforward polynomials, while g.1/.D/ is called the feed-back polynomial. Define a
new input sequence Qa.D/ as

Qa.D/ 4D a.D/

g.1/.D/
(8.55)

so that

Qb.1/.D/ D Qa.D/g.1/.D/ (8.56)

Qb.j/.D/ D Qa.D/g.j/.D/ ; j D 2; : : : ; n: (8.57)

Observe that the transformation between a.D/ and Qa.D/ in (8.55) is that of a recursive digital filter with modulo-2 operations.
This transformation simply reorders the input sequence a.D/. Since the input sequences consist of all possible binary
sequences, the filtered sequences Qa.D/ also consist of all possible binary sequences. Hence, the set of coded sequences
Qb.D/ is the same as the set of coded sequences b.D/ and thus the non-systematic and systematic codes have the same output
weight distribution functions. However, the input weight distributions for the two codes are completely different as will be
shown.



8.2 Convolutional Codes 413

Example 8.3. Consider, for example, the rate-1/2 encoder in Fig. 8.1 with generators

g.1/.D/ D 1C DC D2 (8.58)

g.2/.D/ D 1C D2: (8.59)

By following the above described procedure a RSC code is obtained with generators

Og.1/.D/ D 1

Og.2/.D/ D g.2/.D/

g.1/.D/
D 1C D2

1C DC D2
:

The RSC is shown in Fig. 8.7.

Fig. 8.7 Recursive systematic
convolutional (RSC) encoder
derived from the feedforward
non-systematic encoder
in Fig. 8.1
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2 k
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Similar to their feedforward counterparts, the weight distribution and other distance properties of RSC codes can be
obtained by constructing their corresponding modified state diagram and computing the transfer function T.D;N;L/. The
RSC encoder in Fig. 8.7 has transfer function

T.D;N;L/ D D5N3L3 � D6N4L4 C D6N2L4

1 � DNL � DNL2 � D2L3 C D2N2L3
(8.60)

D D5N3L3 C D6N2L4 C D6N4L5 C � � � (8.61)

Setting N D 1 and L D 1 in the transfer function T.D;N;L/ gives the output weight distribution of the code, T.D/, which
is identical to the output weight distribution of the corresponding feedforward non-systematic encoder in (8.51). However,
by comparing the first few terms in their respective transfer functions in (8.50) and (8.61) it can be observed that the input
weight distributions are completely different. In particular, codewords can be generated by weight-1 input sequences for the
feedforward non-systematic encoder, while the RSC requires input sequences having at least weight-2 to generate codewords.
In fact, any finite weight codeword for the RSC code in Fig. 8.7 is generated by an input polynomial a.D/ that is divisible by
1C DC D2. It will be shown later that these properties are crucial for turbo codes.

Finally, both the feedforward non-systematic and RSC codes are time-invariant. This means that if the input sequence
a.D/ produces codeword b.D/, then the input sequence Dia.D/ produces the codeword Dib.D/. Note that the codewords
b.D/ and Dib.D/ have the same weight.
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8.2.4 Maximum Likelihood Decoding

The Viterbi algorithm was devised by Viterbi for maximum likelihood decoding of convolutional codes [334, 335]. To
develop the decoder, first note that the convolutional encoder outputs n bits per branch, that are subsequently mapped onto
an M D 2k-point signal constellation. Here, it is assumed that there are ` D n=k modulated symbols per branch where `
is an integer. For example, a rate-1/2 having 2 code bits per branch may have the 2 code bits mapped onto either 2 binary
symbols or just one quaternary symbol. To derive the Viterbi algorithm, suppose that a sequence of modulated symbols
Qs D fQsngknD1, Qsn D .Qsn;1; : : : ; Qsn;`/, corresponding to k branches in the code trellis are transmitted over an interleaved flat
fading channel with AWGN.1 After receiving the sequence Qr D fQrngknD1, Qrn D .Qrn;1; : : : ; Qrn;`/, the maximum likelihood
receiver uses knowledge of the sequence of complex channel gains g D fgngknD1, gn D .gn;1; : : : ; gn;`/ (obtained from a
separate channel estimator) to decide in favor of the sequence Qs that maximizes the likelihood function

p.Qrk; � � � ; Qr1j gk;`Qsk;`; � � � ; g1;1Qs1;1/ (8.62)

or, equivalently, the log-likelihood function

logfp.Qrk; � � � ; Qr1j gk;`Qsk;`; � � � ; g1;1Qs1;1/g: (8.63)

The log-likelihood function in (8.63) can be rewritten as

logfp.Qrk; � � � ; Qr1jgk;`Qsk;`; � � � ; g1;1Qs1;1/g (8.64)

D logfp.Qrkjgk;1Qsk;1; : : : ; gk;`Qsk;`/g C logfp.Qrk�1; � � � ; Qr1jgk�1;`Qsk�1;`; � � � ; g1;1Qs1;1/g:

If the second term on the right side of (8.64) has been calculated previously at epoch k � 1 and stored in memory, then only
the first term, called the branch metric, has to be computed for the incoming signal vector rk at epoch k. From our treatment
in Chap. 5

p.Qrkjgk;1Qsk;1; : : : ; gk;`Qsk;`/ D
1

.2�No/N
exp

(

� 1

2No

X̀

mD1
kQrk;m � gk;mQsk;mk2

)

(8.65)

so that logfp.Qrkjgk;1Qsk;1; : : : ; gk;`Qsk;`/g yields the Euclidean branch metric

�k D �
X̀

mD1
kQrk;m � gk;mQsk;mk2: (8.66)

Based on the recursion in (8.64) and the branch metric in (8.66), the Viterbi algorithm searches through the NS-state code
trellis for the most likely transmitted sequence Qs given the sequence of received vectors Qr and knowledge of the sequence

of complex channel gains g. At epoch k, the Viterbi algorithm stores NS survivors Ls.� .i/k / along with their associated path

metrics �.� .i/k / that terminate at state � .i/k ; i D 0; � � � ;NS � 1. The path metric is defined as

�.�
.i/
k / D

k
X

nD1
�.i/n ; i D 0; : : : ;NS � 1; (8.67)

where f�.i/n g is the sequence of branch metrics along the surviving path Ls.� .i/k /.

1Here, complex low-pass vector notation is used.
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8.2.4.1 Viterbi Algorithm

The Viterbi algorithm is initialized at time k D 0, by setting all path metrics to zero, i.e., �.� .i/0 / D 0; i D 1; : : : ;NS � 1.

1. After the vector QrkC1 has been received, compute the set of path metrics �.� .i/k ! �
.j/
kC1/ D �.�

.i/
k /C�.�

.i/
k ! �

.j/
kC1/ for

all possible paths through the trellis that terminate in each state � .j/kC1; j D 0; � � � ; NS � 1, where �.� .i/k ! �
.j/
kC1/ is the

branch metric defined below. For a modulation alphabet of size M, there will be M such paths that terminate in each state

�
.j/
kC1.

2. Find �.� .j/kC1/ D max
i
�.�

.i/
k ! �

.j/
kC1/; j D 0; � � � ; NS � 1 where the maximization is over all M possible paths through

the trellis that terminate in state � .j/kC1.

3. Store �.� .j/kC1/ and its associated surviving sequence Ls.� .j/kC1/; j D 0; � � � ; NS � 1. Drop all other paths.
4. Increment the time index k, go to Step 1 and repeat the entire algorithm.

In Step 1 above, �.� .i/k ! �
.j/
kC1/ is the branch metric associated with the state transition � .i/k ! �

.j/
kC1 and is computed

according to the following variation of (8.66)

�.�
.i/
k ! �

.j/
kC1/ D �

X̀

mD1
kQrk;m � gk;mQsk;m.�

.i/
k ! �

.j/
kC1/k2; (8.68)

where Qsk;m.�
.i/
k ! �

.j/
kC1/ is a symbol that is uniquely determined by the state transition � .i/k ! �

.j/
kC1 and the symbol mapping

being used.

The calculation of the path metric �.� .0/kC1/ for state � .0/ at epoch kC 1 is illustrated in Fig. 8.8 for the code trellis shown
in Fig. 8.6. In this case, there are two paths merging into state � .0/ at epoch kC 1. The Viterbi algorithm determines the path

metric �.� .0/kC1/ in this particular example as

�.�
.j/
0 / D max

n

�.�
.0/
k /C �.� .0/k ! �

.0/
kC1/; �.�

.2/
k /C �.� .2/k ! �

.0/
kC1/

o

D �.� .0/k /C �.� .0/k ! �
.0/
kC1/:

Hence, the path that includes the state transition � .0/k ! �
.0/
kC1 is the survivor and the path that includes the state transition

�
.2/
k ! �

.0/
kC1 is “dropped” as indicated by the “X” on the path.

Fig. 8.8 Path metric update for the code trellis in Fig. 8.6
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8.2.5 BCJR Algorithm

The Viterbi algorithm uses maximum likelihood sequence estimation (MLSE) to find the most likely input sequence. The
BCJR algorithm, named after Bahl et al. [31], is a symbol-by-symbol maximum a posteriori probability (MAP) algorithm
for decoding convolutional codes. Here, the BCJR algorithm is described for rate-1=n convolutional codes with binary
modulation.

Having observed the received sequence Qr, the decoder calculates the a posteriori probabilities (APPs) PŒak D C1jQr� and
PŒak D �1jQr�, and decides ak D C1 if PŒak D C1jQr� > PŒak D �1jQr� and ak D �1 otherwise. Alternatively, the decoder can
calculate the a posteriori log-likelihood ratio (LLR)

L.akjQr/ 4D log

�
PŒak D C1jQr�
PŒak D �1jQr�

�

; (8.69)

and make the decision Oak D sign.L.akjQr//. First note that code bit ak is output for the state transition �k�1 ! �k, and there
may be several such state transitions that will output the same code bit. It follows that the APP is

PŒak D ujQr� D p.Qr; ak D u/

p.Qr/
/ p.Qr; ak D u/

D
X

�k!�kC1WakDu

p.Qr; �k; �kC1/ (8.70)

Hence, the a posteriori LLR can be written as

L.akjQr/ D log

( P

�k!�kC1WakDC1 p.Qr; �k; �kC1/
P

�k!�kC1WakD�1 p.Qr; �k; �kC1/

)

: (8.71)

One elegant form of the APPs can be obtained by first defining the sequences

Qrj<k D fQrj;1; : : : ; Qrj;ngk�1
jD1 (8.72)

Qrj>k D fQrj;1; : : : ; Qrj;ngNjDkC1 (8.73)

Qrk D fQrk;1; : : : ; Qrk;ng (8.74)

such that Qr D .Qrj<k; Qrk; Qrj>k/, where N is the block length (equal to the number of input bits). Then the joint probability
p.Qr; �k; �kC1/ can be split as follows [154]:

p.Qr; �k; �kC1/ D p.�k; �kC1; Qrj<k; Qrk; Qrj>k/

D p.�k; �kC1; Qrj<k; Qrk/p.Qrj>kj�k; �kC1; Qrj<k; Qrk/

D p.�k; Qrj<k/p.Qrk; �kC1j�k; Qrj<k/p.Qrj>kj�k; �kC1; Qrj<k; Qrk/

D p.�k; Qrj<k/ � p.Qrk; �kC1j�k/ � p.Qrj>kj�kC1/

D ˛k.�k/ � 
k.�k ! �kC1/ � ˇkC1.�kC1/; (8.75)

leading to three terms; the branch metric 
k.�k ! �kC1/, and the terms ˛k.�k/ and ˇkC1.�kC1/. The second last equality
in (8.75) comes from the properties of the code trellis, which causes Qrj>k to depend on �k; �kC1; Qrj<k; Qrk only through the state
�kC1, and the pair Qrk; �kC1 depends on �k; Qrj<k only through the state �k.

The terms ˛k.�k/ and ˇkC1.�kC1/ can be calculated according to a forward recursion and a backward recursion,
respectively. The forward recursion is given by

˛kC1.�kC1/ D p.�kC1; Qrj<kC1/

D p.�kC1; Qrk; Qrj<k/
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D
X

�k

p.�kC1; �k; Qrk; Qrj<k/

D
X

�k

p.Qrj<k; �k/p.Qrk; �kC1j�k/

D
X

�k

˛k.�k/ � 
k.�k ! �kC1/ (8.76)

with the initial condition ˛0.�0/ D 1, i.e., the all-zeroes state �0 is the initial state in the code trellis.
Similarly, the backward recursion is given by

ˇk.�k/ D p.Qrj>k�1j�k/

D
X

�kC1

p.�kC1; Qrk; Qrj>kj�k/

D
X

�kC1

p.Qrk; �kC1j�k/p.Qrj>kj�kC1/

D
X

�kC1


k.�k ! �kC1/ � ˇkC1.�kC1/ (8.77)

with the initial condition ˇN.�0/ D 1, i.e., the all-zeroes state �0 is the ending state of the code trellis. Note that tail bits are
required to terminate the trellis in state �0.

The branch metric 
k.�k ! �kC1/ has the form


k.�k ! �kC1/ D p.�k; Qri; �kC1/

�p.�kC1j�k/p.Qrij�kC1; �k/

D PŒak D u�p.Qrkjak D u/

D PŒak D u�p.Qrkjgk;1Qsk;1; : : : ; gk;nQsk;n/; (8.78)

where Qsk D fQsk;1; : : : ; Qsk;ng is the sequence of binary modulated symbols transmitted at epoch k, and gk D fgk;1; : : : ; gk;ng
is the corresponding sequence of complex channel gains at epoch k. The third line in (8.78) used the fact that there is a
one-to-one correspondence between the state transition �k ! �kC1 in the code trellis and the input bit ak D u, and where it
has been assumed that the state transition �k ! �kC1 is possible in the code trellis. Note that the branch metric depends on
the prior probability PŒak D u� of the information bit at epoch k, and on the conditional probability p.Qrkjgk;1Qsk;1; : : : ; gk;nQsk;n/

which is given by (8.65).
Finally, by using (8.75) and (8.71) along with (8.76)–(8.78) the a posteriori LLR is obtained as

L.akjQr/ D log

( P

�k!�kC1WakDC1 ˛k.�k/ � 
k.�k ! �kC1/ � ˇkC1.�kC1/
P

�k!�kC1WakD�1 ˛k.�k/ � 
k.�k ! �kC1/ � ˇkC1.�kC1/

)

; (8.79)

and decisions are made according to Oak D sign.L.akjQr//. Note that the L.akjQr/ provide a level of certainty of the decoder
about the value of ak and are called soft outputs. These soft outputs are essential for the decoding of turbo codes that will be
discussed later in this chapter.

8.2.5.1 Log-MAP Algorithm

The BCJR algorithm as described above exhibits numerical instability in the form of underflows and overflows. An alternative
to this algorithm is its log-domain version known as the log-APP or log-MAP algorithm. Instead of using ˛k.�k/, ˇkC1.�kC1/
and 
k.�k ! �kC1/, their logarithms are defined as follows:



418 8 Error Control Coding

Q̨k.�k/ D logf˛k.�k/g (8.80)

Q̌
kC1.�kC1/ D logfˇkC1.�kC1/g (8.81)

Q
k.�k ! �kC1/ D logf
k.�k ! �kC1/g (8.82)

By examining (8.76) and (8.77), it can be seen that

Q̨kC1.�kC1/ D log

(
X

�k

e Q̨k.�k/CQ
k.�k!�kC1/

)

(8.83)

Q̌
k.�k/ D log

8

<

:

X

�kC1

eQ
k.�k!�kC1/C Q̌
kC1.�kC1/

9

=

;
(8.84)

with the initial conditions Q̨0.�0/ D 0 and Q̌N.�0/ D 0, assuming that the code trellis begins and ends in state �0. The a
posteriori LLR values are calculated according to

L.akjQr/ D log

8

<

:

P

�k!�kC1WakDC1 e Q̨k.�k/CQ
k.�k!�kC1/C Q̌
kC1.�kC1/

P

�k!�kC1WakD�1 e Q̨k.�k/CQ
k.�k!�kC1/C Q̌
kC1.�kC1/

9

=

;
: (8.85)

To proceed further, define the Jacobian logarithm

max�fx; yg 4D logfex C eyg (8.86)

max�fx; y; zg 4D logfex C ey C ezg: (8.87)

Note that

max�fx; yg D maxfx; yg C logf1C e�jx�yjg: (8.88)

The second term logf1C e�jx�yjg is small when x and y are not close, and its maximum value is equal to logf2g when x D y.
Hence, when x and y are not close, the approximation

max�fx; yg � maxfx; yg (8.89)

can be used. Using the above approximation in place of the Jacobian logarithm yields a suboptimal (but simpler)
implementation the log-MAP algorithm called the max-log-MAP algorithm.

Using the Jacobian logarithm, it follows that

Q̨kC1.�kC1/ D max
�k

� . Q̨k.�k/C Q
k.�k ! �kC1/ (8.90)

Q̌
k.�k/ D max

�kC1

�
�

Q
k.�k ! �kC1/C Q̌kC1.�kC1/
�

: (8.91)

and the a posteriori LLR values are

L.akjQr/ D max
�k!�kC1

akDC1

�
�

Q̨k.�k/C Q
k.�k ! �kC1/C Q̌kC1.�kC1/
�

(8.92)

� max
�k!�kC1

akD�1

�
�

Q̨k.�k/C Q
k.�k ! �kC1/C Q̌kC1.�kC1/
�

:
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Example 8.4. Consider the case of a rate-1/2 recursive systematic convolutional code, for example, the encoder shown
in Fig. 8.7. In this case, the transmitted sequence of code symbols is Qs D fQsngknD1, where Qsn D .Qsn;s; Qsn;p/ and the terms
with subscripts s and p correspond to the systematic (information bit) and parity check bit, respectively. For binary
modulation, Qsn;s; Qsn;p 2 f�

p
2Eh;
p
2Ehg, where Eh D Ec is the energy per code bit. Likewise, the sequence of received

vectors is Qr D fQrngknD1, where Qrn D .Qrn;s; Qrn;p/.
Returning to the branch metric in (8.78),


k.�k ! �kC1/ D PŒak D u�p.Qrk;s; Qrk;pjgk;sQsk;s; gk;pQsk;p/

D PŒak D u�

.2�No/N
exp

�

� 1

2No

�

jQrk;s � gk;sQsk;sj2 C jQrk;p � gk;pQsk;pj2
�
�

D 1

.2�No/N
exp

�

� 1

2No

�

jQrk;sj2 C jQrk;pj2 C 4Ec

�
�

�PŒak D u�exp

�
1

No

�

Refg�
k;sQrk;sQsk;sg C Refg�

k;pQrk;pQsk;pg
�
�

(8.93)

Note that the term

1

.2�No/N
exp

�

� 1

2No

�

jQrk;sj2 C jQrk;pj2 C 4Ec

�
�

is independent of ak and will cancel in the numerator and denominator of the a posteriori LLR in (8.85) and, therefore,
can be ignored. Also, the numerator in (8.85) has Qsk;s D

p
2Ec corresponding to ak D C1, while the denominator has

Qsk;s D �
p
2Ec corresponding to ak D �1. It follows that the a posteriori LLR in (8.79) becomes

L.akjQr/ D
2
p
2Ecg�

k;sQrk;s

No

C log

�
PŒak D C1�
PŒak D �1�

�

Clog

8

<̂

:̂

P

�k!�kC1WakDC1 ˛k.�k/ � exp
n

Refg�
k;pQrk;pQsk;pg

No

o

� ˇkC1.�kC1/

P

�k!�kC1WakD�1 ˛k.�k/ � exp
n

Refg�
k;pQrk;pQsk;pg

No

o

� ˇkC1.�kC1/

9

>=

>;

: (8.94)

Note that the symbols Qsk;p are not conjugated in the above expression since they are real-valued in this example. If the
Log-MAP algorithm is employed, then the a posteriori LLR becomes

L.akjQr/ D Lsys.akjQrs/C La.ak/C Le.akjQrp/; (8.95)

where Lsys.akjQrs/, La.ak/, and Le.akjQrp/ are, respectively, defined as

Lsys.akjQrs/ D
2
p
2Ecg�

k;sQrk;s

No

(8.96)

La.ak/ D log

�
PŒak D C1�
PŒak D �1�

�

(8.97)

Le.akjQrp/ D max
�k!�kC1

akDC1

�
�

Q̨k.�k/C
Refg�

k;pQrk;pQsk;pg
No

C Q̌kC1.�kC1/

�

� max
�k!�kC1

akD�1

�
�

Q̨k.�k/C
Refg�

k;pQrk;pQsk;pg
No

C Q̌kC1.�kC1/

�

: (8.98)

(continued)
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Example 8.4 (continued)

The a posteriori LLR consists of three terms; the first depends on the channel output due to the systematic component,
the second depends on the a priori probabilities of the information bits, and the third depends on the channel outputs
due to the parity bits. Usually PŒak D C1� D PŒak D �1� D 1=2 for convolutional decoders, so that the a priori term
La.ak/ is zero. However, for the iterative decoders that are used with the turbo codes discussed later in this chapter, the
decoder will receive extrinsic of soft information for each ak which serves as a priori information. Once the a posteriori
LLR has been calculated, the extrinsic information can be calculated as

Le.akjQrp/ D L.akjQr/ � Lsys.akjQrs/ � La.ak/: (8.99)

8.3 Trellis Coded Modulation

8.3.1 Encoder Description

Conventional convolutional codes realize a coding gain at the expense of the coded modulation efficiency or bits/s/Hz.
Although convolutional codes may be attractive for power-limited applications, they are less suitable for bandwidth-limited
applications. One approach for overcoming the loss of coded modulation efficiency is to map the encoder output bits onto
a higher-order signal constellation, such as M-PSK or M-QAM. However, the symbol mapping that is used in this case
is very critical. Employing a straightforward mapping, such as Gray mapping or natural mapping, will give disappointing
results because the decreased Euclidean distance between the signals points in the higher-order constellation will tend to
offset the benefits gained from using the convolutional code. Ungerboeck showed that a coding gain can be achieved without
sacrificing data rate or bandwidth by using a rate-m=.mC r/ convolutional encoder, and mapping the coded bits onto signal
points fxkg through a technique called mapping by set partitioning [325]. This combination of coding and modulation, called
trellis coded modulation (TCM), has three basic features:

1. An expanded signal constellation is used that is larger than the one necessary for uncoded modulation at the same data
rate. The additional signal points allow redundancy to be inserted without sacrificing data rate or bandwidth.

2. The expanded signal constellation is partitioned such that the intra-subset minimum squared Euclidean distance is
maximized at each step in the partition chain.

3. Convolutional encoding and signal mapping is used so that only certain sequences of signal points are allowed.

Figure 8.9 shows the basic encoder structure for Ungerboeck’s trellis codes. The n-bit information vector ak D
.a
.1/
k ; � � � ; a

.n/
k / is transmitted at epoch k. At each epoch k, m � n data bits are encoded into m C r code bits by using

a rate-m=.m C r/ linear convolutional encoder. The m C r code bits select one of 2mCr subsets of a 2nCr-point signal

m/ m+r( ) subset

selector

signal

point

selector

convolutional

encoder

x
k
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b
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b
k
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Fig. 8.9 Ungerboeck trellis encoder
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Fig. 8.10 Encoder and signal mapping for the 4-state 8-PSK Ungerboeck trellis code

+

+

a

a
k

1

k
2

k

1
b

b

b

k
2

k

3

x
k

2

1

0

3

4

5

6

7

00001111

00110011

01010101

01234567

Fig. 8.11 Encoder and signal mapping for the 8-state 8-PSK Ungerboeck trellis code

constellation. The remaining n � m data bits are used to select one of the 2n�m signal points within the selected subset.
This principle is best explained by example, and Fig. 8.10 shows a 4-state 8-PSK Ungerboeck trellis code. The equivalent
uncoded system is 4-PSK which has a rate of 2 bits/symbol. The 4-state 8-PSK code uses a rate-1/2 convolutional code
along with one uncoded bit to select signal points in an expanded 8-PSK signal constellation. Note that the overall rate is
still 2 bits/symbol. Figure 8.11 shows another example of an 8-state 8-PSK Ungerboeck trellis code. The equivalent uncoded
system is again 4-PSK with 2 bits/symbol. The 8-state 8-PSK code uses a rate-2/3 convolutional code to select one of the
points in an expanded 8-PSK signal constellation so that the overall rate is again 2 bits/symbol.

8.3.2 Mapping by Set Partitioning

The critical step in the design of Ungerboeck’s codes is the method of mapping by set partitioning. Figure 8.12 shows how
the 8-PSK signal constellation is partitioned into subsets such that the intra-subset minimum squared Euclidean distance is
maximized for each step in the partition chain. Here a normalized 8-PSK signal constellation is assumed having eight signal
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Fig. 8.13 Trellis diagram for uncoded 4-PSK

points uniformly spaced around a circle of unit radius. Notice that the minimum Euclidean distance between signal points
in the normalized 8-PSK signal constellation is �0 D 0:765, while the minimum Euclidean distances between signal points
in the first and second level partitions are �1 D

p
2 and �2 D 2, respectively. Notice that the minimum Euclidean distance

increases at each level of partitioning.
The advantages of using TCM can most easily be seen by considering the trellis diagram. For both the 4-state and 8-state

8-PSK trellis codes the equivalent uncoded system is 4-PSK. The trellis diagram for uncoded 4-PSK is shown in Fig. 8.13.
The trellis only has one state and there are four parallel transitions between the states. The subsets D0, D2, D4, and D6

are used as the signal points. The label D0;D2;D4;D6 means that the branches in the trellis diagram are labeled from top
to bottom with signal points taken from the sets D0;D2;D4;D6. The minimum Euclidean distance between any two paths
through the trellis is dmin D

p
2.

The trellis diagram for the 4-state 8-PSK code is shown in Fig. 8.14. Each branch in the 4-state trellis is labeled with one
of the four subsets C0, C1, C2, and C3. Again, the label CiCj associated with a state means that the branches in the trellis
diagram originating from that state are labeled from top to bottom with the subsets Ci and Cj. As shown in Fig. 8.12, each
subset Ci contains two signal points. Thus, each branch in the trellis diagram actually contains two parallel transitions. For
example, branches with the label C0 have two parallel transitions that are labeled with the signal points 0 and 4. For the
4-state 8-PSK code, it is possible that two coded sequences could differ by just a single parallel transition with a Euclidean
distance of d D 2. Also, any two signal paths that diverge from a state and merge with the same state after more that one

transition have a minimum Euclidean distance of d D
q

�2
1 C�2

0 C�2
1 D 2:141. For example, the closest non-parallel

code sequence to the all-zeroes sequence x D .0; 0; 0/ is the sequence x D .2; 1; 2/ at Euclidean distance d D 2:141. Hence,
the minimum Euclidean distance of the code over all parallel and non-parallel pairs of sequences for the 4-state 8-PSK code
is dmin D 2.
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Fig. 8.15 Trellis diagram for 8-state 8-PSK Ungerboeck trellis code. The dashed lines show two minimum distance paths

The concept of mapping by set partitioning was developed by Ungerboeck as a method for maximizing the minimum
Euclidean distance of a code and consequently to optimize its performance on an AWGN channel. Ungerboeck’s construction
of the optimum 4-state 8-PSK code was based on the following heuristic rules [326];

1. Parallel transitions (when they occur) are assigned signal points having the maximum Euclidean distance between them.
2. The transition starting or ending in any state is assigned the subsets .C0;C2/ or .C1;C3/ which have a maximum distance

between them.
3. All signal points are used in the trellis diagram with equal frequency.

It is clear that the performance of the 4-state 8-PSK code is limited by the parallel transitions. Larger asymptotic coding
gains can be obtained by introducing more code states so that the parallel transitions are eliminated. For example, the above
design rules can be applied to the 8-state 8-PSK code to obtain the code trellis shown in Fig. 8.15. In this case, the minimum

Euclidean distance is dmin D
q

�2
1 C�2

0 C�2
1 D 2:141.

8.4 Code Performance on AWGN Channels

Viterbi originally exploited the trellis structure of convolutional codes and developed the Viterbi algorithm for ML decoding
of convolutional codes [334, 335]. Forney recognized the analogy between an ISI channel and a convolutional encoder,
and applied the Viterbi algorithm for the detection of digital signals corrupted by ISI and additive white Gaussian noise as
discussed in Sect. 7.4.1 [131]. Given the similarity between the trellis structures of ISI channels, convolutional codes, and
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trellis codes (e.g., compare Figs. 7.11, 8.6 and 8.14), it is not surprising that the union bounding techniques used to evaluate
the error probability of digital signaling on ISI channels with an MLSE receiver in Sect. 7.5 can be applied, with appropriate
modification, to evaluate the error probability of convolutional and trellis codes with an MLSE receiver.

To develop the union bound on decoded bit error probability, let a D fakg denote the transmitted information sequence.
For any other sequence Oa ¤ a, define the corresponding error sequence as e D fekg D a ˚ Oa, where ˚ denotes modulo-2
addition. Since the bit error probability at epoch j1 is of interest, ej1 ¤ 0 for all error sequences. An error event occurs
between k1 and k2 of length k2 � k1, if � k1 D O� k1 and � k2 D O� k2 , but � j ¤ O� j for k1 < j < k2, where k1 � j1 < k2,
and � D f�kg and O� D f O� kg are the system state sequences associated with a and Oa, respectively. Let E be the set of error
sequences that have the first non-zero element starting at time j1. Then, the average bit error probability is bounded by

Pb �
1

n

X

e2E

wb.e/
X

a

P Œa� P
h

�.a˚ e / � �.a/
ˇ
ˇ
ˇa
i

; (8.100)

where �.a/ is the path metric of a, and wb.e/ is the number of bit errors associated with e. The factor 1=n appears in front of
the first summation, because n information bits are transmitted per epoch (or per branch in the trellis diagram). The second
summation is over all possible information sequences, because each sequence a can have e as the error sequence. This is
necessary for trellis-coded modulation because the signal mapping and, hence, the codes are nonlinear.

Another way of writing the bound on the bit error probability in (8.100) is

Pb �
X

Qs2C

X

Os2C

wb.Qs; Os/PŒQs�PŒQs! Os�; (8.101)

where C is the set of all coded symbol sequences, wb.Qs; Os/ is the number of bit errors that occur when the complex symbol
sequence Qs D fQsig is transmitted and the complex symbol sequence Os ¤ Qs is chosen by the decoder, PŒQs� is the a priori
probability of transmitting Qs, and PŒQs! Os� is the pairwise error probability.

At high signal-to-noise ratio (SNR), the bit error rate performance on an AWGN channel is dominated by the minimum
Euclidean distance error events. The pairwise error probability between two coded symbol sequences Qs and Os separated by
Euclidean distance dmin is

PŒQs! Os� D Q

0

@

s

d2min

4No

1

A : (8.102)

The asymptotic coding gain (at high signal-to-noise ratio) is defined by [43]

Ga D 10 log10
.d2min;coded=Eav;coded/

.d2min;uncoded=Eav;uncoded/
dB (8.103)

where Eav is the average energy per symbol in the signal constellation. For the 4-state 8-PSK code shown in Fig. 8.10, the
asymptotic coding gain is Ga D 3 dB over uncoded 4-PSK. Likewise, the 8-state 8-PSK code in Fig. 8.11 has an asymptotic
coding gain of 3.6 dB over uncoded 4-PSK.

8.4.1 Union Bound for Convolutional Codes

For convolutional codes the upper bound in (8.100) simplifies because the codes are linear, meaning that the sum of any two
codewords is another codeword and that all-zeroes sequence is a codeword [203]. Because of this property, the all-zeroes
sequence can be assumed to be transmitted, i.e., a D 0, so that the union bound becomes

Pb �
1

k

X

e2E

wb.e/ P
h

�.e / � �.0/
i

: (8.104)

Note that division is by k rather than n in front of the summation, because a convolutional code transmits k bits per epoch
whereas a trellis code transmits n bits per epoch.
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For convolutional codes the set E in (8.104) consists of all sequences that begin and end at the zero-state in the state
diagram. The enumeration of these sequences (or codewords) along with their associated Hamming distances, information
weights, and lengths was obtained earlier by computing the transfer function, T.D;N;L/, of the augmented state diagram.
When a particular incorrect path through the trellis is selected over the all-zeroes path at a given node in the trellis, the
corresponding number of bits errors, wb.e/, is given by the exponent of N in the transfer function. Multiplying wb.e/ by the
pairwise error probability P

�

�.e / � �.0/
�

for that path and dividing by the number of input bits per branch, k, gives the bit
error probability associated with that path. Summing over the set of all possible incorrect sequences E yields a union bound
on the bit error probability.

The pairwise error probability in (8.104) depends on the type of modulation, detection, and decoding that is employed.
The code bits are mapped onto symbols taken from a signal constellation, and transmitted over the channel. Assuming an
AWGN channel and a coherent receiver, the received vector (see Sect. 5.1) at epoch n is

Qrn D Qsn C Qnn; (8.105)

where Qsn is the transmitted symbol vector and Qnn is the Gaussian noise vector at epoch n. For convolutional codes, two types
of decoding are commonly used, hard decision decoding and soft decision decoding. Soft decision decoders use the sequence
of received signal vectors r D frng to make sequence decisions. For an AWGN channel, the MLSE receiver searches for the
sequence of symbol vectors Qs D fQsng that is closest in Euclidean distance to the received sequence of signal vectors r. To do
so, the MLSE receiver chooses the sequence Os that minimizes the metric

�.Os/ D kr � Osk2: (8.106)

The decided sequence Os maps one-to-one onto the data bit sequence Oa that is the final estimate of the transmitted information
sequence.

In general, the pairwise error probability for an AWGN channel that is associated with an error event of length ` beginning
at epoch k1 is

P2.`/ D Q

0

@

s

�2

4No

1

A ; (8.107)

where

�2 D
k1C`C1X

kDk1

ı2k (8.108)

ı2k D kQsk � Oskk2 (8.109)

and Qs D fQskg and Os D fOskg are the symbol sequences corresponding to the data bit sequences Qa and Oa, respectively. The
parameter ı2k is the squared branch Euclidean distance associated with branch k, and �2 is the squared path Euclidean
distance associated with the error event. Clearly, the pairwise error probability depends on the particular mapping between
the encoder output bits and the points in the signal constellation. Suppose, for example, that code bits are mapped onto a
BPSK signal constellation. Then the pairwise error probability between the two codewords Qb and Ob that differ in d positions is

P2.d/ D Q.
p

2Rcd
b/ (8.110)

where 
b is the received bit energy-to-noise ratio.2 Note that the pairwise error probability has been explicitly shown to be
a function of the Hamming distance between the codewords in (8.110). However, it is important to realize that this property
does not always apply. For example, if the outputs of the rate-2/3 convolutional encoder in Fig. 8.2 are mapped onto symbols
from an 8-PSK signal constellation, then the pairwise error probability depends not only on the Hamming distance between
codewords, but also upon the particular mapping between the 8-PSK symbols and the encoder outputs.

2The received symbol energy-to-noise ratio is 
s D Rc
b.
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In general, the transfer function T.D;N/ for a convolutional code has the form

T.D;N/ D
1
X

dDdfree

adDdN f .d/; (8.111)

where f .d/ is the exponent of N as a function of d. For the example in (8.50), ad D 2d�5 and f .d/ D d � 4. Differentiating
T.D;N/ with respect to N and setting N D 1 gives

dT.D;N/

dN

ˇ
ˇ
ˇND1 D

1
X

dDdfree

adf .d/Dd: (8.112)

Once again, for the example in (8.50) this leads to

dT.D;N/

dN

ˇ
ˇ
ˇND1 D

1
X

dDdfree

2d�5.d � 4/Dd: (8.113)

Using this notation, the union bound on bit error probability for convolutional coding with BPSK modulation is

Pb �
1

k

1
X

dDdfree

adf .d/P2.d/; (8.114)

where P2.d/ is given by (8.110).
In contrast to soft decision decoders, hard decision decoders first make symbol-by-symbol decisions on the sequence of

received vectors r D frkg to yield the sequence of symbol decisions Qs D fQskg. The decoder then operates on the sequence Qs to
estimate the most likely transmitted data sequence. A minimum distance decoder is one that decides in favor of the symbol
sequence Os that is closest in Hamming distance to the received symbol sequence Qs. Again, the pairwise error probability
depends on the particular mapping between the encoder outputs and the points in the signal constellation. If BPSK signaling
is used, for example, then the pairwise error probability between two codewords Qb and Ob at Hamming distance d is

P2.d/ D
( Pd

kD.dC1/=2
�

d

k

�

pk.1 � p/d�k ; d odd
Pd

kDd=2C1
�

d

k

�

pk.1 � p/d�k C 1
2

�
d

d=2

�

pd=2.1 � p/d=2 ; d even
(8.115)

where

p D Q.
p

2Rc
b/ (8.116)

is the probability of symbol error. Once again, the pairwise error probability for BPSK is a function of the Hamming distance
between the codewords.

8.4.1.1 Union-Chernoff Bound for Convolutional Codes

The union bound in (8.114) can be simplified by imposing a Chernoff bound (see Appendix A) on the pairwise error
probability. First consider the case of soft decision decoding. Suppose that sequence Qs is transmitted and r is the received
sequence. Then the pairwise error probability between sequences Qs and Os with a maximum likelihood receiver can be Chernoff
bounded by

PŒQs! Os� D P
�

kr � Osk2 < kr � Qsk2
�

� E
h

e�.kr�Qsk2�kr�Osk2/ jQs
i

: (8.117)

Substituting r D QsC n, taking the expectation over the complex Gaussian random vector n, and simplifying gives

PŒQs! Os� � e��kQs�Osk2.1��2No/: (8.118)
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The tightest upper bound is obtained with �� D 1=.4No/ yielding

PŒQs! Os� � e�kQs�Osk2=8No : (8.119)

For the case of BPSK signaling on an AWGN channel, the Chernoff bound on the pairwise error probability becomes

P2.d/ � e�d
s D e�Rcd
b ; (8.120)

where d is the number of coordinates in which the sequences Qs and Os differ, 
s D Eh=No is the received symbol energy-to-
noise ratio, Rc is the code rate, and 
b is the received bit energy-to-noise ratio. Likewise, if BPSK signaling is used with hard
decision decoding, it can be shown that the pairwise error probability has the Chernoff bound

P2.d/ � Œ4p.1 � p/�d=2; (8.121)

where the code bit error probability p is given by (8.116).
Notice how the Hamming distance d appears in the exponent of the Chernoff bound on pairwise error probability with

either hard or soft decision decoding. From (8.112) and (8.114), it is apparent that the decoded bit error probability has the
following union-Chernoff bound:

Pb �
1

k

dT.D;N/

dN

ˇ
ˇ
ˇND1;DDZ ; (8.122)

where

Z D
� p

4p.1 � p/ ; hard decision decoding
e�Rc
b ; soft decision decoding

: (8.123)

At high SNR, the performance is dominated by the error events with minimum Hamming distance. Since the minimum
distance error events are not necessarily mutually exclusive, the decoded bit error probability with BPSK at high SNR is
approximately

Pb �
1

k
adfree f .dfree/P2.dfree/ �

1

k
adfree f .dfree/Z

dfree : (8.124)

The above procedure for upper bounding the decoded bit error probability is sometimes called the transfer function
approach, because it uses the transfer function of the augmented state diagram. However, the transfer function approach has
its limitations. First, as the number of encoder states becomes large, it becomes difficult to compute the transfer function
T.D;N/. Second, for non-binary signal constellations, the pairwise error probability will depend on the particular pair of
modulated symbol sequences, and not just on the Hamming distance between them. In this case, the branch labeling in the
augmented state diagram must be done differently and the Chernoff bound cannot be employed. These problems can be
overcome by using a different approach to compute the upper bound, such as a stack algorithm [301].

8.5 Interleaving

Most error control codes are designed for memoryless channels, where successively transmitted code symbols experience
independent channel conditions. Although this memoryless property holds for AWGN channels, it is not usually the case for
wireless channels due to the temporal correlation of the channel, as discussed in Chap. 2. An effective method for dealing
with such channels is to use interleaving. There are two basic approaches to interleaving, namely symbol interleaving and
bit interleaving. A symbol interleaver performs symbol-by-symbol interleaving of the code symbols after they have been
mapped onto a signal constellation. A bit interleaver, on the other hand, performs bit-by-bit interleaving of the encoder
outputs before they are mapped onto a signal constellation.

The interleaving/deinterleaving operation serves to reduce the correlation between the fades experienced by successive
code bits at the output of the encoder. Since, most error control codes are designed for memoryless channels, this will
generally improve the decoded bit error rate performance. Indeed if the interleaver/deinterleaver were eliminated and the
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channel fades slowly, it is possible that entire codewords could be received with either a low or high signal-to-noise ratio.
Under a low instantaneous signal-to-noise ratio condition even a very low-rate code will fail, while under a high instantaneous
signal-to-noise ratio condition even very high-rate codes will succeed. Under such conditions, the error control code is
ineffective.

8.5.1 Block Interleaving

A block interleaver can be regarded as a buffer with J rows and M columns, where J represents the interleaving depth and
M represents the interleaving span. Such an interleaver is called a .J;M/ block interleaver, and the length of the interleaver
is JM. The block interleaver can be used to perform either symbol interleaving or bit interleaving. In the case of symbol (bit)
interleaving, the code symbols (bits) are input to the buffer row-wise from top to bottom and output from the buffer column-
wise from left to right. The deinterleaver simply performs the reverse operation. The block interleaver has the following
characteristics:

1. Any burst of symbol (bit) errors of length j � J results in single symbol (bit) errors at the deinterleaver output that are
each separated by at least M symbols (bits).

2. Any burst of symbol (bit) errors of length j D kJ; k > 1 results in bursts of no more than dke symbol (bit) errors that are
separated by no less than M � dke symbols (bits).

3. A periodic sequence of single symbol (bit) errors that are spaced J code symbols (bits) apart results in a single burst of
symbol (bit) errors of length M at the deinterleaver output.

4. The end-to-end interleaving delay is equal to 2JM code symbols (bits), and the memory requirements for the interleaver
and deinterleaver is equal to JM code symbols (bits).

In practice, the interleaver depth J should be chosen so that successive code symbols (bits), which are transmitted J

code symbol (bit) durations apart, are independently faded. Chapter 2 showed that the temporal autocorrelation function
of a cellular land mobile radio channel observed at either the mobile station or base station with 2-D isotropic scattering
around the mobile station is �gg.�/ D˝p

2 J0.2� fm�/, where fm D v=�c with v being the mobile station velocity and �c the carrier
wavelength. From Fig. 2.5, observe that the temporal autocorrelation is small provided that fm� > 0:5. Hence, effective
interleaving should have J > 0:5�c=vT , where T is the code symbol (bit) duration. The choice of the parameter M depends
on the type of coding used. For block codes M should be larger than the block length. For convolutional and trellis codes,
the interleaver should separate any LD C 1 successive code symbols (bits) as far apart as possible, where LD is the decoding
depth. Hence, the interleaver should have M � LDC1. For convolutional and trellis codes, it is well known that the decoding
depth LD � 5K, where K is the constraint length.

Observe that the required interleaving depth is inversely proportional to the speed of the mobile station and, therefore,
slower moving mobile stations require larger interleaving depths. Unfortunately, interleaving introduces delay into the link,
since the J � M interleaver array must be filled before the symbols (bits) can be transmitted, and afterwards the J � M

deinterleaver array must be filled before the symbols (bits) can be decoded. However, delay critical traffic such as real-time
voice will impose a limit on the interleaving delay defined as td D JMT and, therefore, the interleaving will be insufficient
at low speeds. For example, if fc D 900MHz, R D 1=T D 24 � 103, and v D 30 km/h, then J > 478 is required. For a
constraint length K D 3 convolutional code with a decoding depth LD D 5K D 15, the minimum required interleaving delay
satisfies

td D JMT > 0:5�c.LD C 1/=v D 319 ms:

Such a delay is quite large, especially for real-time voice applications, and the problem is exasperated by lower mobile station
speeds. One possible solution is to use a code with a smaller decoding depth LD. The other solution is to use improved
interleaving techniques to reduce the interleaving delay. Once such interleaver is the convolutional interleaver discussed
below. However, at low speeds the required interleaving delay may be excessive with any type of interleaver. Under such
conditions, adaptive closed-loop power control techniques are effective for combatting fading.
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Fig. 8.16 Convolutional interleaver implemented with shift registers

8.5.2 Convolutional Interleaving

Convolutional interleavers have been proposed by Ramsey [279] and Forney [130], and the structure proposed by Forney is
discussed below. Defining the parameter M D LJ, the interleaver is referred to as a .J;M/ interleaver and has properties that
are similar to a .J;M/ block interleaver.

As shown in Fig. 8.16, the code symbols (bits) are input sequentially into the bank of J registers of increasing lengths. With
each new code symbol (bit), the commutator switches to the next register, the code symbol (bit) is input to the register and
the oldest code symbol (bit) in that register is shifted out to the channel. The input and output commutators of the interleaver
operate in a synchronous fashion. The deinterleaver performs the reverse operation, and the deinterleaving commutators must
be synchronized with the interleaving commutators. The most important properties of the convolutional interleaver are as
follows:

1. The minimum separation at the interleaver output is J symbols (bits) for any two symbols that are separated by less than
M symbols (bits) at the interleaver output.

2. Any burst of symbol (bit) errors of length j � J results in single symbol (bit) errors at the deinterleaver output that are
each separated by at least M symbols (bits).

3. A periodic sequence of single symbol (bit) errors that are spaced MC 1 code symbols (bits) apart results in a single burst
of symbol (bit) errors of length J at the deinterleaver output.

4. The end-to-end interleaving delay is equal to M.J � 1/ code symbols (bits), and the memory requirements for both the
interleaver and deinterleaver are equal to M.J� 1/=2 code symbols (bits). This is half the delay and memory requirement
of a .J;M/ block interleaver.

The parameters J and M are chosen in the same manner as for a block interleaver, and the performance is very similar.

8.6 Code Performance on Interleaved Flat Fading Channels

8.6.1 TCM with Symbol Interleaving

Figure 8.17 is a block diagram of a coded communication system operating on a flat fading channel with symbol interleaving.
The information sequence a is encoded and mapped onto a signal set to generate the modulated symbol sequence s by using
either a convolutional code or trellis code. The modulated symbol sequence is then time interleaved (or scrambled) and the
resulting sequence Ls is transmitted over the channel. If a coherent detection is used, the receiver uses a correlator or matched
filter detector as discussed in Sect. 5.2 to generate the sequence of received vectors r D frkg. With hard decision decoding,
the received vector rk at each epoch k is applied to a decision device to yield an estimate of the transmitted symbol sequence Os.
The estimated symbol sequence Os is then deinterleaved and input to the decoder. With soft decision decoding on the other
hand, the received vector r is deinterleaved and applied directly to the decoder.

For analytical purposes, an infinite interleaving depth is often assumed so that the deinterleaved sequence of complex
channel gains g D fgkg constitutes a sequence of independent random variables. In this case the conditional density of r has
the product from
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Fig. 8.17 TCM with symbol interleaving on a flat fading channel

p.rjg � Qs/ D
Y

k

p.rkjgkQsk/; (8.125)

where g � Qs is the vector dot product of g and Qs. Suppose that sequence Qs is transmitted and the sequence r D g � Qs C n

is received. An ML receiver having perfect knowledge of g chooses the sequence Os that minimizes the squared Euclidean
distance metric

�.Os/ D kr � g � Osk2: (8.126)

The pairwise error probability between the sequences Qs and Os has the Chernoff bound (see Appendix A)

PŒQs! Os� � exp

�

�kg � .Qs � Os/k
2

8No

�

: (8.127)

If the normalization EŒjxkj2� D 1 is assumed so that Es D 1
2EŒkskk2� D EsEŒjxkj2�, i.e., sk D

p
2Esxk, then the Chernoff

bound becomes

PŒQs! Os� � exp

�

� Es

4No

kg � .Qx � Ox/k2
�

; (8.128)

where Es is the symbol energy.
The channel is assumed to be characterized by flat Ricean fading, so that the pdf of ˛k is

p L̨ .x/ D
2x.1C K/

�p

exp

�

�K � .K C 1/x
2

�p

�

I0

 

2x

s

K.K C 1/
�p

!

(8.129)

where �p D EŒ L̨ 2k � is the average envelope power. Averaging (8.128) over the probability density function in (8.129)
gives [94]

PŒs! Os� �
Y

i2A

1C K

1C K C N
s

4
jxi � Oxij2

exp

(

�
K

N
s

4
jxi � Oxij2

1C K C N
s

4
jxi � Oxij2

)

(8.130)

where N
s D EŒ˛2�Es=No is the average received symbol energy-to-noise ratio, and A D fijxi ¤ Oxig. At sufficiently high
N
s, (8.130) simplifies to

PŒs! Os� �
Y

i2A

4.1C K/

N
sjxi � Oxij2
e�K : (8.131)

It follows that the bound in (8.100) will be dominated by the error event path having the smallest number of elements in set
A. Divsalar and Simon [94, 95] called this path the shortest error event path and defined its length as Lmin. Based on previous
arguments, the bit error probability can be approximated as
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Pb ' C

�
.1C K/e�K

N
s

�Lmin

; N
s � K (8.132)

where C is a constant that depends on the distance structure of the code. Observe that Pb varies inversely with . N
s/
Lmin ,

yielding a diversity effect of order Lmin. Wei [347] called Lmin the minimum built-in time diversity (MTD). The MTD
dominates the performance of TCM on an interleaved flat fading channel, and the maximization of the MTD is the major
design criterion for TCM on interleaved flat fading channels.

The pairwise error probability in (8.130) can be written in the form

PŒs! Os� ; � e� N
s
4 d2 ; (8.133)

where

d2 D
X

i2A

jxi � Oxij2K
1C K C N
s

4
jxi � Oxij2

C
� N
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4

��1
ln

 

1C K C N
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4
jxi � Oxij2

1C K

!

D
X

i2A

d21i C d22i (8.134)

Two special cases are associated with (8.134), K D1 and K D 0. For K D1 (no fading),

d21i D jxi � Oxij2; d22i D 0 (8.135)

and, therefore, d2 becomes the sum of the squared Euclidean distances over the error event path. Maximizing d2 under this
condition is the TCM design criterion for AWGN channels.

For K D 0 (Rayleigh fading),

d21i D 0; d22i D
� N
s

4

��1
ln

�

1C N
s

4
jxi � Oxij2

�

: (8.136)

For reasonably large SNR, d2 is the sum of the logarithms of the squared Euclidean distances, each weighted by N
s. In this
case, the pairwise error probability is given by

PŒs! Os� �
 
Y

i2A

N
s

4
jxi � Oxij2

!�1

(8.137)

which is inversely proportional to the product of the squared Euclidean distances along the error event path. The minimum
product squared Euclidean distance (MPSD) between any two valid sequences,

min
x;Ox

Y

i2A

jxi � Oxij2 (8.138)

is another design parameter for Rayleigh fading channels. For values of K between 0 and1, the equivalent squared Euclidean
distance in (8.134) becomes a mixture of the two limiting cases given above.

If interleaving is not used, then the assumption that the fading is independent from symbol to symbol is no longer valid.
If the fading is slow enough to be considered constant over the duration of the minimum distance error event path then, for
coherent detection with the metric in (8.126), the bit error probability at high SNR is approximately,

Pb ' C1E
h

e�
sd2min=4
i

; (8.139)

where C1 is a constant, 
s D ˛2Es=No is the received symbol energy-to-noise ratio, d2min is the minimum Euclidean distance
of the code, and the expectation is with respect to the density in (8.129). Taking this average gives
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1C K C d2min
N
s

4
jxi � Oxij2

)

(8.140)

which can be approximated at large N
s by

Pb ' 4C1
1C K

d2min N
s

e�K : (8.141)

Observe that without interleaving, Pb is asymptotically inverse linear with N
s, independent of the trellis code. If follows that
interleaving is required to achieve diversity with TCM on a flat fading channel.

8.6.1.1 Design Rules for Symbol Interleaved TCM on Flat Fading Channels

According to the previous section, when symbol interleaved TCM is used on Ricean fading channel, the design of the code
for optimum performance is guided by the minimum built-in time diversity (MTD) of the code. For Rayleigh fading channels,
the design of the code is also guided by the minimum product squared distance (MPSD) of the code. The minimum Euclidean
distance, which is the principal design criterion for trellis-coded modulation AWGN channels, plays a less significant role
on Ricean fading channels as the K factor decreases, and no role for Rayleigh fading channels (K D 0). A third design
criterion is to minimize the decoding depth of the code.

The design of trellis codes for interleaved flat fading channels can be based on Ungerboeck’s principle of mapping by set
partitioning, but now the partitioning is done to maximize the MTD and MPSD of the code. This can be accomplished by
maximizing the intra-subset MTD and MPSD, but it should be pointed out that large MTD and MPSD can be sometimes
achieved even if the partitioning is done to maximize the minimum Euclidean distance.

In general, the following guidelines are followed when designing trellis codes for symbol interleaved flat fading
channels:

1. All signals occur with equal frequency and with regularity and symmetry.
2. Transitions originating from the even and odd numbered states are assigned signals from the first and second subsets,

respectively, of the first partitioning level.
3. Whenever possible, the transitions joining in the same state receive signals from either the first or second subset of the

first partitioning level.
4. Parallel transitions receive signals from the same subset of the finest partitioning level.
5. The state transitions originating from each current state and going to even-numbered next states are assigned signals from

subsets whose inter-subset MTD and MPSD are maximized. The same applies for the transition originating from each
current state and going to odd-numbered next states.

The first four rules are similar to those suggested by Ungerboeck [325], but now the subsets used may be different. The
fifth rule is used to reduce the decoding depth of the code. Wei [347] developed several codes based on minimizing the
decoding depth of a code. He defined two minimum decoding depths (MDD1, MDD2) to characterize a code. MDD1+1 is
defined as the length (in symbols) of the longest valid sequence of signal points, say Qx D fQxkg, which originates from the
same state as another valid sequence x D fxkg and merges into the same last state as x and whose Hamming distance from x

is the same as the MTD of the code. Note that the performance of a code is mainly governed by the pairs of sequences which
determine the MTD of the code. Each such pair of sequences differs in at most MDD1+1 successive symbols. The farther
these symbols are separated, the better the performance of the code. Hence, to benefit from the MTD of the code, the symbol
interleaver should separate the output symbols corresponding to each sequence of MDD1+1 consecutive input symbols as
far apart as possible.

MDD2 is defined as the length of the longest unmerged valid sequence of signal points, say Mx, which originates from
the same state as another valid sequence, say x, and whose Hamming distance from x is not greater than the MTD of the
code. In case the Hamming distance between the two sequences is equal to the MTD of the code, the squared product distance
between the two sequences must be less than the MPSD of the code. Since MDD2 is greater than MDD1, the decoding depth
should be at least equal to MDD2 to realize the MTD and MPSD of a code. It suffices if the decoding depth is few symbols
longer than MDD2. Finally, to benefit from both the MTD and MPSD of a code, the symbol interleaver should separate the
output symbols corresponding to each sequence of MDD2+1 consecutive input symbols as far apart as possible.
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Fig. 8.18 Bit interleaved coded modulation (BICM) on a flat fading channel

8.6.2 Bit Interleaved Coded Modulation

Bit interleaved coded modulation (BICM) interleaves the code bits at the output of a convolutional encoder prior to symbol
mapping, along with an appropriately defined soft-decision metric as an input to the Viterbi decoder. The fundament idea of
BICM is to separate the encoder and modulator to make the code diversity equal to the number of distinct bits rather than
the number of distinct modulated symbols along any error event. Such an approach cannot achieve optimum Euclidean
distance. However, it will yield better performance on fading channels than TCM with symbol interleaving due to the
increased code diversity. The idea is to transform the channel that is generated by a multilevel constellation of size M D 2k

into a parallel collection of k channels that each carries one binary symbol from the signal mapping. To make the k channels
independent, they are interleaved prior to the signal mapping. The decoder in a BICM system must reflect the fact that the
bits are interleaved prior to signal mapping. The basic structure of a BICM system is shown in Fig. 8.18.

Suppose that the length-n codeword

s D .s1; s2; : : : ; sn/ (8.142)

is transmitted and the sequence

r D .r1; r2; : : : ; rn/ (8.143)

is received at the output of the bank of receiver matched filters or correlators. With TCM on a memoryless channel, decoding
is performed by using the log-likelihood metric

�.Os/ D logfp.rjg � Os/g D log

(
n
Y

kD1
p.rkjgkOsk/

)

D
n
X

kD1
logfp.rkjgkOsk/g: (8.144)

When BICM is used, on the other hand, instead of the symbol metric p.rkjgkOsk/, the bit metric �.b/ is used, where

�.b/ D log

8

<

:

X

si2X .b;j/

p.rijgisi/

9

=

;
; b D 0; 1; j D 1; 2; : : : ; k D log2M; (8.145)

and where X .b; j/ denotes the subset of the size M D 2k point signal constellation X that has bit b in position j of its signal
mapping label. The computation of this metric may be complicated due to calculation of the logarithm. A sub-optimum
metric can be defined based on

log

8

<

:

X

j

zj

9

=

;
� maxjlogfzjg; (8.146)

which yields

�.b/ D maxsi2X .b;j/logfp.rijgisi/g: (8.147)
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Except for the maximization operation, this metric is the same as the TCM symbol metric. Finally, the performance of
BICM strongly depends on the signal mapping that is used. Gray mapping is known to perform better than mapping by set
partitioning without iterative decoding. Optimized mapping schemes for iteratively decoded BICM are described in [312].

8.7 Performance of Space-Time Codes

The orthogonal space-time block codes described in Sect. 8.1.2 are just one possible construction for the space-time code
matrix. We now discuss some useful criteria for designing more general p � LT space-time codes for quasi-static fading
channels, where the channel remains static over p time slots; the rank and determinant criteria. These criteria are derived
under the condition of independent fades, where the complex channel gains gi;j are all independent.

To obtain the rank and determinant criteria for space-time codes, the pairwise error probability is needed between any two
space-time codewords. Suppose that a space-time codeword C D ŒQs.t/;i�p�LT

is transmitted over an LT �LR MIMO channel in
p time slots, where the modulated symbol vectors are chosen from the symbol alphabet of a linear modulation scheme, such
as QAM and PSK. By observing the noisy received signal vectors in (8.31), the receiver decides which space-time codeword
was transmitted using the maximum likelihood metric in (8.32). Suppose that the receiver erroneously decides in favor of
another space-time codeword OC D ŒOs.t/;i�p�LT

. This is the pairwise error probability PŒC! OC�. Assuming ideal channel state
information, the pairwise error probability can be written as

PŒC! OC� D P
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where

�2 D 1

Es
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tD1
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: (8.149)

Applying a Chernoff bound on the Gaussian Q function (see Appendix A) gives

PŒC! OC� � 1

2
exp

�

��
2Es

4No

�

: (8.150)

We can rewrite (8.149) as

�2 D 1

Es

LRX

jD1

LTX

iD1

LTX

i0D1
gi;jg

�
i0;j

p
X

tD1
.Qs.t/;i � Os.t/;i/.Qs.t/;i0 � Os.t/;i0/H: (8.151)

Now let gj D .g1;j : : : ; gLT ;j/. After some manipulations, (8.151) can be rewritten as

�2 D
LRX

jD1
gjA.C; OC/gH

j ; (8.152)
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where A.C; OC/ D ŒAp;q�LT �LR
D 1

Es
spsT

q, and where

sp D .Qs.p/;1 � Os.p/;1; : : : ; Qs.p/;LT
� Os.p/;LT

/ (8.153)

sq D .Qs.q/;1 � Os.q/;1; : : : ; Qs.q/;LT
� Os.q/;LT

/: (8.154)

Hence, the Chernoff bound in (8.150) becomes

PŒC! OC� � 1

2

LRY

jD1
exp

(

�
gjA.C; OC/gH

j Es

4No

)

: (8.155)

Since A.C; OC/ D AH.C; OC/, there exists a unitary matrix V, such that VVH D ILT �LT
, and a real diagonal matrix D such that

VA.C; OC/VH D D. The rows v1; v2; : : : ; vLT
of V are a complete complex orthonormal basis for an LT -dimensional complex

vector space. Also, the diagonal elements of D are the eigenvalues, �i; i D 1; : : : ;LT of A.C; OC/ that may include repeated
eigenvalues. By construction, the matrix

B.C; OC/ D 1p
Es

2

6
6
6
4

Qs.1/;1 � Os.1/;1 Qs.2/;1 � Os.2/;1 � � � Qs.p/;1 � Os.p/;1
Qs.1/;2 � Os.1/;2 Qs.2/;2 � Os.2/;2 � � � Qs.p/;2 � Os.p/;2

:::
:::

:::
:::

Qs.1/;LT
� Os.1/;LT

Qs.2/;LT
� Os.2/;LT

� � � Qs.p/;LT
� Os.p/;LT

3

7
7
7
5

(8.156)

is the matrix square root of A.C; OC/ i.e., A.C; OC/ D B.C; OC/B.C; OC/H. Therefore, the eigenvalues of A.C; OC/ are
all nonnegative real numbers. Next, �2 is expressed as a function of the eigenvalues of the matrix A.C; OC/. Let
.ˇ1;j; ˇ2;j; : : : ; ˇLT ;j/ D gjV

H. Then

gjA.C; OC/gH

j D gjV
HDVgH

j D
LTX

iD1
�ijˇi;jj2: (8.157)

Next recall that gi;j are all complex Gaussian random variables. Since V is unitary, the ˇi;j are independent complex Gaussian
random variables with a normalized variance 1=2 per dimension. Assuming that the gi;j have zero mean, the jˇi;jj are
independent Rayleigh random variables with the density function

pˇi;j.x/ D 2xex2 ; x � 0: (8.158)

Thus to obtain Chernoff bound on the pairwise error probability,

LRY

jD1
exp

(

� Es

4No

LTX

iD1
�ijˇi;jj2

)

(8.159)

is averaged over the distribution of the jˇi; jj in (8.158). This leads to the bound on the pairwise error probability

PŒC! OC� � 1

2

 

1
QLT

iD1.1C �iEs=4No/

!LR

: (8.160)

Let r denote the rank of the matrix A.C; OC/, where 1 � r � LT . Then for sufficiently high Es=No such that 1C�iEs=4No �
�iEs=4No, it follows that the pairwise error probability has the upper bound

PŒC! OC� � 1

2

2

4
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: (8.161)
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Therefore, this space-time codeword pair provides diversity of order rLR and a coding gain of .�1 � �2 � � ��r/
1=r which is

equal to the geometric mean of the non-zero eigenvalues. The coding gain is measured with respect to an uncoded system
with maximal ratio combining that is operating with the same diversity order. Finally, the ranks of A.C; OC/ and B.C; OC/ are
equal.

The above development leads to the following two simple design criteria for space-time codes on quasi-static Rayleigh
fading channels:

Rank Criterion: To achieve the maximum diversity order LTLR, the matrix B.C; OC/ must have full rank LT for all pairs
of distinct codewords. If the minimum rank of B.C; OC/ is equal to r, then a diversity order of rLR is achieved.

Determinant Criterion: If a diversity order of LTLR is achieved, then the coding gain is optimized by maximizing the
minimum determinant of A.C; OC/ over all pairs of distinct codewords. If a diversity order of rLR is achieved, then the
minimum value of .�1 � �2 � � ��r/

1=r should be maximized over all pairs of distinct codewords.

8.7.1 Space-Time Trellis Codes

8.7.1.1 Encoder Description

A space-time trellis code (STTC) maps the information bit stream into LT streams of modulated symbols that are transmitted
simultaneously from LT transmit antennas. The total transmission power is divided equally among the LT transmit antennas.
STTCs can be designed according to the rank and determinant criteria as discussed in Sect. 8.7, although other criteria exist
as well.

SSTCs are an extension of trellis-coded modulation to multi-antenna systems. The encoder for a STTC is similar to that
for a trellis code, except that the encoder must begin and end each frame in the all-zeroes state. The STTC encoder can be
described in terms of its generator sequences or generator polynomials. For a system with LT transmit antennas, the ith input
sequence a.i/; i D 1; : : : ;LT has the polynomial representation

a.i/.D/ D
1
X

kD0
ai;kDk ; i D 1; : : : ;LT ; (8.162)

where the ai;k 2 f0; 1g are binary input data bits. The generator polynomial corresponding to the ith input sequence, where
i D 1; : : : ;LT , and the jth transmit antenna, where j D 1; : : : ;LT , can be written as

g
.j/
i .D/ D

K�1
X

kD0
g
.j/
i;kDk; (8.163)

where the g
.j/
i;k are non-binary coefficients chosen from the set f0; 1; : : : ;M�1g, where M is the size of the signal constellation,

and K is the overall constraint length of the encoder (similar to convolutional codes). Very often the generator sequences for
STTCs are tabulated in the following format:

gi D Œ.g.1/i;0 ; g
.2/
i;0 ; : : : ; g

.LT /
i;0 /; .g

.1/
i;1 ; g

.2/
i;1 ; : : : ; g

.LT /
i;1 /; : : :

: : : ; .g
.1/
i;K�1; g

.2/
i;K�1; : : : ; g

.LT /
i;K�1/� ; i D 1; : : : ;LT : (8.164)

A simple 2-transmit antenna, 16-state, STTC encoder is shown in Fig. 8.19. The constraint length K D 3 encoder shown
in Fig. 8.19 may have

g1 D Œ.0; 1/; .1; 2/; .2; 0/�; g2 D Œ.0; 2/; .2; 0/; .0; 2/�; (8.165)

which just happens to satisfy the rank and determinant criteria in Sect. 8.7.
The multiplier outputs, as illustrated in Fig. 8.19, are summed with modulo-M addition. Hence, the encoded sequence that

is transmitted from antenna j is given by

b.j/.D/ D
LTX

iD1
a.i/.D/g

.j/
i .D/ modulo M ; i D 1; : : : ;LT : (8.166)
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Fig. 8.19 Encoder for a 2-transmit antenna, 16-state, STTC

The above expression can be expressed in the matrix form

�

b.i/.D/; : : : ;b.LT /.D/
�

D
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�
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6
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3

7
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where

G.D/ D

2

6
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g
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.LT /
1 .D/

:::
:::

g
.1/
LT
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.LT /
LT
.D/

3

7
5 (8.168)

is the generator matrix of the STTC. The elements of the code symbol sequences bi D fbi;kg; i D 1; : : : ;LT at the output of
the encoder are mapped onto symbols chosen from an M-ary signal constellation, such as M-PSK or M-QAM according to a
one-to-one mapping. This yields the sequence of modulated symbols si D fsi;kg; i D 1; : : : ;LT that are transmitted from the
LT transmit antennas.

8.7.1.2 STTC Code Trellis and the Viterbi Algorithm

Similar to convolutional and trellis codes, the STTC encoder can be described by a state diagram and trellis diagram. As an
example, consider the 2-transmit antenna, 4-state, 4-PSK STTC shown in Fig. 8.20, where the generators are

g1 D Œ.0; 1/; .1; 0/�; g2 D Œ.0; 2/; .2; 0/�: (8.169)

The corresponding trellis diagram for this code is shown in Fig. 8.21. The branch label b1b2 means that symbol b1 is
transmitted from the first antenna, while the symbol b2 from the second antenna. The symbol pairs in each row label the
branch transitions out of a given state, in order, from top to bottom. The symbols b1; b2 2 f0; 1; 2; 3g are mapped onto a
4-PSK signal constellation using the mapping shown in Fig. 8.21, which can be expressed mathematically as si D

p
2Eh.j/

bi .
The encoder is required to begin and end each frame in the zero-state. Beginning at State 0, if the two input bits are 11, then
the encoder outputs symbol 0 on Antenna 1 and symbol 3 on Antenna 2, and transitions to State 3.
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Fig. 8.20 Encoder for a
2-transmit antenna, 4-state,
4-PSK STTC

Fig. 8.21 STTC trellis for the 2-transmit antenna, 4-state, 4-PSK STTC in Fig. 8.20

Given their trellis structure, it is apparent that STTCs can be efficiently decoded by using the Viterbi algorithm with an
appropriately defined branch metric. For quasi-static flat fading channels, the branch metric is

�.%
.i/
k ! %

.j/
kC1/ D �

LRX

dD1











Qr.t/;j �

LTX

iD1
gi;jOs.t/;i.%.i/k ! %
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2

; (8.170)

where Os.t/;i.%.i/k ! %
.j/
kC1/ is a symbol that is uniquely determined by the state transition %.i/k ! %

.j/
kC1.

8.8 Turbo Codes

The principle of turbo coding or concatenated coding is to construct long random-like codes that have a structure that
permits practical decoding [33]. Turbo codes are interleaved concatenated codes that are constructed from simple component
codes and pseudo-random interleavers. The interleaver makes the code appear random. Since the component codes are easy
to decode, the overall code can be decoded by iteratively decoding the component codes. There are two basic types of
turbo codes depending on the type of concatenation, namely parallel concatenated codes and serial concatenated codes.
The component codes can be either convolutional codes or block codes that are realized in systematic form. Here, only
convolutional component codes are considered. Parallel concatenated convolutional codes (PCCCs) use recursive systematic
convolutional (RSC) component codes. Serial concatenated convolutional codes (SCCCs) use a recursive or non-recursive
convolutional outer code along with a recursive convolutional inner code.
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Fig. 8.22 PCCC encoder

8.8.1 PCCC Encoder

Figure 8.22 shows a PCCC encoder structure which is a parallel concatenation of two RSC component codes.3 The
component codes must be recursive for reasons that will be apparent later. Notice that both the systematic and parity bits
of the first encoder are used, while only the parity bits of the second encoder are used. If the component codes have rates

R
.1/
c D k=n1 and R

.2/
c D k=n2, then the PCCC has code rate

RT D
R
.1/
c R

.2/
c

R
.1/
c C R

.2/
c � R

.1/
c R

.2/
c

D k

n1 C n2 � k
: (8.171)

The input data sequence a is first encoded by RSC1. Suppose, for example, that RSC1 and RSC2 happen to be identical

rate-1/2 codes. Then feedforward and feedback generator polynomials of RSC1 and RSC2 are g.2/.D/ D g
.2/
0 Cg

.2/
1 DC� � �C

g
.2/
� D� and g.1/.D/ D g

.1/
0 C g

.1/
1 DC � � �C g

.1/
� D� , respectively, where � is the encoder memory. The outputs of RSC1 are the

systematic component bs D fbsk
g and the parity component b

.1/
p D fb.1/pk g defined by

bsk
D ak

b.1/pk
D

�
X

iD0
g
.1/
i dk�i;

where

dk D ak ˚
�
X

iD1
g
.2/
i dk�i: (8.172)

The data sequence a is interleaved by a turbo interleaver � of size N D kN0 into the sequence Qa and encoded using RSC2 to

produce the parity sequence b
.2/
p . The interleaving operation can be defined by a mapping i! �.i/ of the input bit position

i to output bit position �.i/. For example, the interleaver might perform the mapping

f0; 1; 2; 3; : : : ;N � 1gN ! f23; 12; 6; 7; : : : ; 1gN

For turbo codes the choice of interleaver is crucial. Interleavers that have a structure, such as block interleavers, are not
suitable. Usually, random interleavers are employed, where the interleaving mapping is randomly generated. In other cases,
an S-random interleaver is used, where interleaver inputs that are separated by less than S positions, ji�jj < S, are interleaved
into interleaver outputs that are separated by at least S positions, j�.i/ � �.j/j � S.

A PCCC code word b D .bs;b
.1/
p ;b

.2/
p / is formed by the parallel concatenation (or multiplexing) of the systematic

component and the parity sequences. If higher code rates are desired, then the parity outputs of the RSC component encoders

3The parallel concatenation of more than two component codes is possible, but only two component codes are considered for simplicity.
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Fig. 8.23 PCCC decoder

can be punctured according to a puncturing pattern. For example, if RSC1 and RSC2 in Fig. 8.22 are rate-1/2 codes and no
puncturing is used, then the code rate will be RT D 1=3. However, suppose that puncturing is used with the pattern

P D
�

1 0

0 1

�

(8.173)

where a “1” in the puncturing pattern means that the code bit is transmitted, while a “0” means that the code bit is not
transmitted. This particular puncturing pattern means that the parity bits from RSC1 and RSC2 are transmitted in an alternate
fashion, and overall code rate is increased to RT D 1=2. Finally, tail bits are typically added to the data sequence to terminate
RSC1 in the all-zeroes state while the trellis of RSC2 is left “open.”

8.8.2 PCCC Decoder

The turbo decoder is an iterative structure consisting of several identical stages, each consisting of two soft-input soft-output

(SISO) decoding units for the case of two constituent codes. Suppose that the codeword b D .bs;b
.1/
p ;b

.2/
p / is transmitted

and the received vector is Qr D .Qrs; Qr.1/p ; Qr.2/p /. The decoder structure for PCCCs is shown in Fig. 8.23. The (SISO) modules
generate aposteriori probabilities (APPs)

P.akjQrs; Qr.1/p ; Qr.2/p / (8.174)

or, for binary codes, aposteriori log-likelihood ratios (LLRs)

L.akjQrs; Qr.1/p ; Qr.2/p / D log

(

P.ak D C1jQrs; Qr.1/p ; Qr.2/p /

P.ak D �1jQrs; Qr.1/p ; Qr.2/p /

)

(8.175)

of each information bit ak based on the received vector Qr D .Qrs; Qr.1/p ; Qr.2/p / and the extrinsic information passed between the
two SISO modules.

The iterative decoding operation of parallel turbo codes can be explained as follows, using LLRs as an example. At the
mth iteration, m � 1, the LLRs generated by the SISO decoders for data bit ak are

L
.m/
1 .akjQr.1/p / D Lsys.akjQrs/C L

.m�1/
ext2 .akjQr.2/p /C L

.m/
ext1.akjQr.1/p / (8.176)

L
.m/
2 .akjQr.2/p / D Lsys.akjQrs/C L

.m/
ext1.akjQr.1/p /C L

.m/
ext2.akjQr.2/p /; (8.177)

where Lsys.akjQrs/ is the aposteriori LLR due to the systematic component, and L
.m/
ext1.akjQr.1/p / and L

.m/
ext2.akjQr.2/p / are the extrinsic

information for each bit generated at the mth decoding stage by SISO1 and SISO2, respectively, and can be expressed as



8.8 Turbo Codes 441

0.0 1.0 2.0 3.0

Eb /No(dB)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

Uncoded BPSK
2

14
−state CC

16−state Turbo N=1024
16−state Turbo N=65536

Fig. 8.24 Typical PCCC performance on an AWGN channel

Outer

Code

Input

data
π

To ModulatorRecursive

Code
Inner

Fig. 8.25 SCCC encoder

L
.m/
ext1.akjQr.1/p / D f .Lsys.akjQrs/;L

.m�1/
ext2 .akjQr.2/p // (8.178)

L
.m/
ext2.akjQr.2/p / D f .Lsys.akjQrs/;L

.m/
ext1.akjQr.1/p //; (8.179)

where f . � / denotes the SISO decoding unit. The extrinsic information can be calculated by using the BCJR algorithm
as discussed in Sect. 8.2.5. For binary turbo codes Lsys.akjQrs/ is given by (8.96). Note that the extrinsic information that
is generated by one SISO decoding unit serves at the a priori information for the other SISO decoding unit. The iterative

procedure is started with initial condition L
.0/
ext2.akjQr.2/p / D 0, since the data symbols are assumed random and equally likely.

The final bit decision for ak is determined as Oak D sign.L.m/2 .ak//.
As mentioned previously, turbo codes can provide near Shannon limit performance. Figure 8.24 shows the typical

performance of a rate-1/2, 16-state, PCCC on an AWGN channel for different random interleaver sizes. The capacity limit
for a rate-1/2 binary turbo code is �0.817 dB. Also included, is a 216-state convolutional code for comparison. Observe that a
simple 16-state PCCC can easily outperform a very complex 216-state convolutional code, at low Eb=No. At high Eb=No, the
bit error rate (BER) slope of PCCCs is shallow, loosely termed an error floor. The error floor is not actually an error floor,
but rather a change in the slope of the error rate curve due to the relatively small free Hamming distance of turbo codes.

8.8.3 SCCC Encoder and Decoder

Figure 8.25 shows a SCCC encoder which is a serial concatenation of two component codes separated by an interleaver. In a
SCCC scheme, the input data sequence of length N0 is first encoded by an outer convolutional code Co with rate Ro D k=p.
The output of Co is interleaved using a pseudo-random interleaver of length N D N0=Ro, and then encoded using an inner
convolutional code Ci with rate Ri D p=n. The SCCC has code rate

RT D R.1/c R.2/c D .k=p/.p=n/ D k=n: (8.180)
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Fig. 8.26 SCCC decoder

The codewords of the outer and inner codes are referred to as outer and inner codewords, respectively. Consequently, the
inner codewords are also the codewords of the SCCC. With SCCCs, the inner encoder must be recursive for reasons to be
seen later. The outer code does not have to be recursive.

The structure of the SCCC decoder is shown in Fig. 8.26. It operates in an iterative fashion similar to the PCCC decoder.
However, the SISO modules now produce APPs or LLRs for the information bits, ak, and the code bits ck from the outer
coder.

8.8.4 Weight Distribution

It is sometimes useful to view PCCCs and SCCCs as equivalent block codes with input sequences of length N0 D N=k

and N0 D Nk=p, respectively, where N is the interleaver size. Like block codes, turbo codes can be described by a distance
spectrum .d;Ad/, where Ad is the number of codewords of weight Hamming weight d. The conditional weight enumerating
function (CWEF) of a block code is defined as [37]

Aw.z/
4D
X

d

Aw;dzd; (8.181)

where Aw;d is the number of weight-d codewords having information-weight w. Note that Ad D
P

w Aw;d. The smallest
non-zero value of d is the free Hamming distance of the code, denoted by dfree. The union bound on the probability of bit
error is

Pb.e/ �
1

N0
X

w

X

dDdfree

wAw;dP2.d/; (8.182)

where P2.d/ is the pairwise error probability between two coded sequences separated by Hamming distance d.
To obtain a low Pb.e/ there are generally two approaches; either decrease Aw;d or increase dfree. With convolutional codes,

Ad increases rapidly with d and, as a result, convolutional codes are said to have a dense distance spectrum.4 Also, Ad / N0

with convolutional codes, due to their time-invariant property. Hence, for convolutional codes a decrease in Pb.e/ is obtained
by increasing dfree, which is ultimately obtained by increasing the total encoder memory. Turbo codes take other approach
by drastically decreasing Ad. This property is called spectral thinning.

The spectral thinning property of turbo codes can be explained intuitively as follows. Considering PCCCs, the total weight
of a PCCC codeword is equal to the weight of the systematic and parity components

w.b/ D w.bs/C w.b.1/p /C w.b.2/p /: (8.183)

4It is important to realize that Ad is not equal to ad (in our earlier discussion of convolutional codes), since the turbo codewords can consist of
multiple error events.
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Fig. 8.27 Random turbo interleaver

Consider, for example, a RSC with generator matrix
h

1; 1CD2

1CDCD2

i

and the random interleaver shown in Fig. 8.27. Certain input

sequences a will lead to low output weights w.b
.1/
p / from the first encoder RSC1. For example, the input sequence a.D/ D

1C D3 produces the output b
.1/
p .D/ D 1C DC D2 C D3 from the first encoder RSC1. However, the interleaved sequence

Qa.D/ will usually lead to a high output weight w.b
.2/
p / from the second encoder RSC2. Consequently, most codewords have

large weight. However, some input sequences that produce low weight codewords in one encoder, after interleaving will
also produce low weight codewords in the other encoder. Therefore, there are a few codewords with small weight. For most
random interleavers, this event occurs with high probability [98]. At high Eb=No the error events corresponding to these
low-weight codewords dominate the BER performance with the result that the BER curves of PCCCs flatten at high Eb=No.
This has been loosely termed as an error floor [37, 83].

In the sequel, convolutional codes, PCCC and SCCC are discussed simultaneously and, to avoid confusion, the quantities
associated with them are distinguished by the superscripts c, T , and S, respectively.

For convolutional codes, every non-zero codeword corresponds to an error event or a concatenation of error events. The
weight of a codeword equals the sum of the weights of the error events. Let Ac

w;d;i denote the number of weight d codewords
having information weight w and formed by the concatenation of i error events. Then, the number of weight d codewords
with information weight w is Ac

w;d D
Pnmax

iD1 Ac
w;d;i, where nmax is the maximum number of possible error events for a length-N0

input sequence.
The distance spectrum of turbo codes is difficult to determine for a particular turbo interleaver. Fortunately, Benedetto

and Montorsi [37] solved this problem by introducing a hypothetical interleaver called a uniform interleaver that permutes
a given weight-w sequence onto any of the

�
N

w

�

possible interleaved sequences with equal probability. The distance spectrum
of a turbo code with a uniform interleaver can be obtained by averaging the distance spectrum over all possible interleaver
mappings. At least half the random interleavers are guaranteed to yield a weight distribution that is as good as the average
weight distribution. Furthermore, most of the randomly generated interleavers have a weight distribution that is close to
the average weight distribution. Hence, the typical performance of a turbo code with a randomly chosen interleaver can be
obtained from the average weight distribution with a uniform interleaver.

8.8.4.1 Weight Distribution of PCCCs

With a uniform interleaver the number of weight-d turbo codewords with weight-w input sequences is, for large N, [36]

AT
w;d �

d
X

lD0

nmaxX

n1D1

nmaxX

n2D1

�
N

n1

��
N

n2

�

�
N

w

� Ac
w;l;n1

Ac
w;d�l;n2

: (8.184)

Using the approximation
�

N

n

�

� Nn

nŠ
gives

AT
w;d �

d
X

lD0

nmaxX

n1D1

nmaxX

n2D1

wŠ

n1Š � n2Š
Nn1Cn2�wAc

w;l;n1
Ac

w;d�l;n2
: (8.185)

Observe that the multiplicity, AT
w;d, of the PCCC codewords is inversely proportional to the interleaver length N.

Consequently, increasing N results in very small multiplicity, a phenomenon called spectral thinning, and is the reason for the
remarkable performance of turbo codes. In contrast, the time-invariant property of convolutional codes implies that Ac

d / N.
The uniform interleaver is hypothetical and impractical. For reasonably large interleaver sizes N, random interleavers

perform very well [98]. To see why, consider a rate-1/3, 8-state, PCCC code where the RSC component encoders have
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generator matrices
h

1; 1CD2

1CDCD2

i

. Since the component codes are recursive, all weight-1 input sequences produce infinite-

weight output sequences. The minimum distance error event at the output of each RSC encoder corresponds to an input error
sequence of the form Di.1 C D C D2/. However, the random interleaver permutes such sequences very effectively so that
the output of the other encoder has high weight [98]. Weight-2 input error sequences to RSC1 of the form Di.1C D3/ will
produce a finite-weight output sequence having the form Di.1C DC D2 C D3/. However, the random interleaver permutes
these sequences into sequences which are not of the form Dj.1CD3/ with high probability [98]. However, an occasional bad

mapping occurs, where input sequences of the form Di.1CD3/ are permuted into input sequences of the form Dj.1CD3/ for
some i; j. This is illustrated in Fig. 8.28. Such input sequences produce low-weight outputs from both encoders and define the
minimum Hamming distance of the PCCC code. The probability that an input sequence Dia of weight-w is interleaved into a
sequence Qa of the form Dja for at least one pair i; j is proportional to Nw�2 [98]. Hence, bad mappings are very likely to occur
for weight-2 input sequences and very unlikely to occur for weight w > 2 input sequences. So the minimum distance error
event corresponds to a weight-2 input sequence with very high probability. If the smallest weight RSC output corresponding
to all weight-2 input sequences is dceff, then the free Hamming distance of the PCCC code is dT

free D 2 C 2dceff. For our
example PCCC code, the free distance is dfree D 2C 4C 4 D 10, which is rather small. This small free Hamming distance is
typical of PCCCs precisely the reason for the so-called BER and frame error rate (FER) floor of PCCCs. Finally, other types
of interleavers, such as the S-random interleaver, are generally very difficult to analyze, but most of the above arguments are
valid.

PCCCs inherently provide unequal error protection, because the bad interleaver mappings define certain bit positions are
affected by the dominant error events. Such bad mappings affect only a very few bit positions, but they nevertheless result in
a BER floor. In contrast, for convolutional codes all bit positions in the input sequence are affected by the same error events.
Consequently, all bit positions are equally likely to be in error. So PCCCs are inherently unequal error protecting codes.

It is instructive to understand how the expected number of bad mappings changes with the interleaver size, N. The total
number of possible interleaver mappings for a block of N bits is NŠ The number of bad mappings, where a sequence of the
form Di.1C D3/ is mapped into a sequence of the form Dj.1C D3/ is approximately N � 2 � .N � 2/Š The approximation
is due to the fact that edge effects have been ignored which is a valid assumption for large N. Therefore, the probability that
a sequence of the form Di.1C D3/ is mapped onto a sequence of the form Dj.1C D3/ is

PŒDi.1C D3/! Dj.1C D3/� D 2N.N � 2/Š
NŠ

D 2

N � 1 : (8.186)

Assuming that the mappings for the different bit positions are independent and ignoring the edge effects, the distribution
of the total number of such bad mappings k, in a block of length N, can be approximated by a binomial distribution for small
k, i.e.,5

PŒtotal number of bad mappings D k� D
 

N

k

!
�

2

N � 1

�k �

1 � 2

N � 1

�N�k

:

The mean number of bad mappings is N 2
N�1 , which converges to 2 for large N. Therefore, the mean number of data bits

affected by bad mappings converges to 4 for large N, since the bad mappings correspond to weight-2 input error sequences.

5The case of large k is not of interest because the probability of many bad mappings is extremely small and, therefore, does not contribute
significantly to the mean of the distribution.
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8.8.4.2 Weight Distribution of SCCCs

Consider the serial concatenation system in Fig. 8.25. Let the input block length is N0 bits. The length of the outer codeword
and, therefore, the interleaver size and length of the input to the inner encoder is N D N0=Ro D N0p=k bits. Under the
assumption of a uniform interleaver, the number of weight h code words that are generated by weight w input sequences
is [38]

AS
w;d D

N
X

lDdo
f

no
MX

noD1

ni
MX

niD1

�
N0=p

no

��
N=p

ni

�

�
N

l

� A
Co

w;l;no A
Ci

l;d;ni ; (8.187)

where do
f is the minimum free distance of the outer code, and no

M and ni
M refer to the maximum number of error events

possible for the outer and inner codes, respectively. By using the approximation
�

N

n

�

� Nn

nŠ
[38]

AS
w;d �

N
X

lDdo
f

no
MX

noD1

ni
MX

niD1
NnoCni�l�1 lŠ

pnoCni
noŠniŠ

1

n
Ao

w;l;no Ai
l;h;ni ; (8.188)

where wo
m is the minimum-weight of all input sequences that will produce an error event for the outer code.

Observe from (8.188) that the contribution of each codeword to the BER is multiplied by the term NnoCni�l�1. Therefore,
when no C ni � l� 1 < 0, increasing N decreases the BER exponentially. This effect is called the interleaver gain. Consider
a weight-l outer codeword which is a result of no error events of the outer code. If the inner encoder is non-recursive, then a
weight-l outer codeword can result in a maximum of l error events (each “1” in the outer codeword can cause an error event).
Therefore, ni can be equal to l. In this case, the exponent of N will be no � 1 and, when no > 1, the exponent of N will be
positive. Consequently, increasing N increases the contribution of such codewords to the final BER [38]. When no D 1, the
exponent of N will be zero, implying that the interleaver does not impact the multiplicity of such codewords or, equivalently,
no interleaving gain is possible.

When the inner encoder is recursive, only input sequences having weight-2 or greater can cause error events. Therefore,
a weight-l outer codeword can cause at most bl=2c error events for the inner code. Consequently, the exponent of N is
no � dl=2e � 1. If all outer codewords corresponding to one error event of the outer code (no D 1) have weight l > 2 or,
equivalently, the free distance of the outer code is greater than 2, the exponent of N is always negative. This implies that
increasing N will always decrease the BER.

Problems

8.1. Consider a simple repetition code that generates codewords by simply repeating each information symbol L times.

(a) What is the rate of the code?
(b) How many codewords are there in the code?
(c) What is the minimum distance of the code?
(d) How many channel errors would have to occur to confuse one codeword with another?

8.2. The generator matrix for a (6,3) linear binary block code is

G D

2

4

0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

3

5

(a) What is the parity check matrix for this code?
(b) Generate the standard array for this code.
(c) Calculate the syndrome vector for all of the correctable error patterns.
(d) Decode the received sequence y D 101101.
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8.3. The parity check matrix H for a linear block code is given as follows:

H D

2

4

1 0 0 1 1

0 1 0 1 1

0 0 1 0 1

3

5

(a) Construct a standard array decoding table for this code.
(b) How many error patterns can this code correct.
(c) If this code is used for error detection on a binary symmetric channel with crossover probability p, what is the probability

of undetected error?

8.4. Consider a systematic (15,11) Hamming code.

(a) Construct a parity check matrix for a systematic (15,11) Hamming code.
(b) Construct a syndrome table for the code defined by the parity check matrix.
(c) If the (15,11) Hamming code is used for error detection on a binary symmetric channel with crossover probability p,

what is the probability of undetected error?

8.5. Determine the decision variables for the separate maximum likelihood decoding of the symbols in the following rate-3/4
space-time block code

C D

2

6
6
6
4

s.1/ s.2/ s.3/

�s�
.2/ s�

.1/ 0

s�
.3/ 0 �s�

.1/

0 s�
.3/ �s�

.2/

3

7
7
7
5
:

8.6. Determine the decision variables for the separate maximum likelihood decoding of the symbols in the following rate-1/2
orthogonal space-time block code in (8.28).

8.7. The generator matrix for a rate-1 space-time block code is given as

C D

2

6
6
6
4

s.1/ s.2/ s.3/ s.4/

�s�
.2/ s�

.1/ �s�
.4/ s�

.3/

�s�
.3/ �s�

.4/ s�
.1/ s�

.2/

s.4/ �s.3/ �s.2/ s.1/

3

7
7
7
5
:

(a) Determine the matrix CHC and, thus, show that the code is not orthogonal.
(b) Show that the maximum likelihood decoder can perform pairwise maximum likelihood detection.
(c) What is the diversity order achieved by the code.

8.8. Consider a rate-1/3 convolutional code with generators g.1/ D .111/, g.2/ D .111/, and g.3/ D .101/.
(a) Draw a block diagram of the encoder structure.
(b) Draw the state diagram and trellis diagram.
(c) Determine the output sequence corresponding to the input sequence 1110101.

8.9. The output of a rate-1/3 convolutional encoder with constraint length 3 to the input a D .1; 1; 0; : : :/ is b D
.111; 110; 010; : : :/

(a) Determine the transfer function T.D;N;L/.
(b) Determine the number of paths through the state diagram or trellis that diverge from the all-zeroes state and merge with

the all-zeroes state 7 branches later.
(c) Determine the number of paths of Hamming distance 20 from the all-zeroes sequence.

8.10. Consider the rate-1/3 code in Problem 8.8.

(a) Determine the transfer function T.D;N;L/ of the code. What is the free Hamming distance dfree?
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Fig. 8.29 Signal constellations
for Problem 8.11. (a) 8-PAM.
(b) 32-CROSS

2

a)

b)

2

Fig. 8.30 Trellis encoder for
Problem 8.12

a

b

b

(1)

(2)

(b) Assuming the use of BPSK signaling and an AWGN channel, derive a union-Chernoff bound on the decoded bit error
probability with (1) hard decision decoding and (2) soft decision decoding.

(c) Repeat part (b) assuming an interleaved flat Rayleigh fading channel, where the receiver has perfect knowledge of the
channel.

8.11. Consider the 8-PAM and 32-CROSS signal constellations in Fig. 8.29.

(a) Construct the partition chain as in Fig. 8.12 and compute the minimum Euclidean distance between signal points at each
step in the partition chain.

(b) What is the average symbol energy for each of the signal constellations.

8.12. Consider the 2-state, rate-1/2, trellis encoder shown in Fig. 8.30. By using this encoder with a 4-PAM and 8-PAM signal
constellation TCM systems can be constructed having bandwidth efficiencies of 1 bit/s/Hz and 2 bits/s/Hz, respectively.

(a) Determine the appropriate partitions for the signal constellation for the 2-state, 4-PAM, and 8-PAM trellis codes.
(b) Construct and label the trellis diagrams for the 2-state 4-PAM and 8-PAM trellis codes.
(c) Determine the minimum Euclidean distance for each trellis code, and the asymptotic coding gain on an AWGN channel

relative to the equivalent uncoded systems.

8.13. To simplify the calculation of performance bounds a Chernoff bound is often imposed on the pairwise error
probability.

(a) Derive the Chernoff bound on the pairwise error probability for an AWGN channel with soft decision decoding, given
by (8.120).

(b) Derive the Chernoff bound on the pairwise error probability for an AWGN channel with hard decision decoding, given
by (8.121).

(c) Derive the Chernoff bound on the pairwise error probability for an interleaved flat fading channel with soft decision
decoding, given by (8.130).



Chapter 9

Spread Spectrum Techniques

Spread spectrum systems were originally developed for military applications, to provide anti-jam and low probability of
intercept communications by spreading a signal over a large frequency band and transmitting it with a low power per unit
bandwidth [97, 263, 305]. However, there are important commercial applications as well. Code division multiple access
(CDMA) based on spread spectrum technology is used in 3G cellular systems, including WCDMA and cdma2000. It is also
used in wireless local area network standards such as IEEE 801.11 (commonly known as WiFi), and wireless personal area
networks such as Bluetooth.

Spread spectrum signals have the distinguishing characteristic that the bandwidth used to transmit a message is much
greater than the message bandwidth. This band spread is achieved by using a spreading code or pseudo-noise (PN) sequence
that is independent of the message and is known to the receiver. This independence property means that modulation schemes
such as continuous phase modulation with a large modulation index do not qualify as spread spectrum techniques. The
receiver uses a synchronized replica of the PN sequence to despread the received signal allowing recovery of the message.
The bandwidth expansion does not combat additive white Gaussian noise (AWGN), but the wide-band character of spread
spectrum signals can be utilized to mitigate the effects of intentional and non-intentional sources of additive interference and
to exploit the inherent diversity that is present in frequency-selective fading channels.

While there are many different types of spread spectrum systems, the two predominant types are direct sequence (DS)
spread spectrum and frequency hopped (FH) spread spectrum. DS spread spectrum achieves the band spread by using the
PN sequence to introduce rapid phase transitions into the carrier containing the data, while FH spread spectrum achieves the
band spread by using the PN sequence to pseudo-randomly hop the carrier frequency throughout a large band. An excellent
tutorial treatment of spread spectrum concepts can be found in the books by Simon et al. [305] and Ziemer and Peterson
[378]. Some of the early proposals that applied spread spectrum to cellular radio, such as the system proposed by Cooper
and Nettleton [76], were based on FH spread spectrum. However, modern 3G cellular systems use DS spread spectrum. As
a result, the focus of this chapter is on DS spread spectrum and DS-CDMA.

While it appears that any cellular system can be suitably optimized to yield a competitive spectral efficiency regardless
of the multiple-access technique being used, CDMA offers a number of advantages along with some disadvantages. The
advantages of CDMA for cellular applications include (1) universal frequency reuse, (2) narrow band interference rejection,
(3) inherent multipath diversity in DS spread spectrum, (4) ability to exploit variable rate speech coding, (5) soft hand-off
capability, (6) soft capacity limit, and (7) inherent message privacy. The disadvantages of CDMA for cellular applications
include (1) stringent power control requirements with DS CDMA, (2) difficulties in determining the base station (BS) power
levels for deployments that have cells of differing sizes.

This chapter begins with an introduction to DS and FH spread spectrum in Sect. 9.1. PN sequences are fundamental to
all spread spectrum systems and are the subject of Sect. 9.2. A variety of sequences are considered including m-sequences,
Gold sequences, Kasami sequences, Barker sequences, Walsh-Hadamard sequences, variable length orthogonal codes, and
complementary code keying (CCK). The remainder of the chapter concentrates on DS spread spectrum. The power spectral
density of DS spread spectrum signals is considered in Sect. 9.3. Section 9.4 considers the bit error rate performance
of DS spread spectrum signals in the presence of tone interference. Section 9.5 discusses the performance of point-to-
point DS spread spectrum on frequency-selective fading channels and shows how a RAKE receiver can be used to gain
multipath diversity. Section 9.6 considers the performance of a CDMA correlator detector in the presence of multiple-
access interference. The chapter concludes with a discussion of CDMA multiuser detection techniques in Sect. 9.7, including
optimum CDMA multiuser detection, decorrelation detection, and minimum mean square error (MMSE) detection.
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9.1 Basic Principles of Spread Spectrum

9.1.1 Direct Sequence Spread Spectrum

A simplified direct sequence (DS) spread spectrum system with QPSK modulation, termed DS/QPSK, is shown in Fig. 9.1.
The pseudo-random (PN) sequence generator produces a spreading sequence a D fakgNkD1, which is actually a deterministic
sequence with period N. This spreading sequence is used to generate the spreading waveform

a.t/ D A
X

k

akhc.t � kTc/; (9.1)

where a D fakgNkD1 is in general a complex-valued spreading sequence such that ak 2 f˙1˙ jgg, Tc is the PN symbol or chip
period, and hc.t/ is a real-valued chip amplitude shaping pulse. The energy per chip is

Ec D A2�2a

Z 1

�1
h2c.t/dt D A2

Z 1

�1
h2c.t/dt (9.2)

since �2a D 1
2
EŒjakj2� D 1. Notice that spectral control is achieved in the DS spread spectrum waveform by shaping the PN

chips rather than the data symbols.
The data symbol sequence fxng is used to generate the waveform

x.t/ D
X

n

xnuT.t � nT/; (9.3)

where A is the amplitude, x D fxng, xn 2 f˙1=
p
2 ˙ j=

p
2g is the complex QPSK data symbol sequence, and T is the

data symbol duration. It is necessary that T be an integer multiple of Tc, and the ratio G D T=Tc is called the processing
gain, defined as the number of PN chips per data symbol. Two categories of spreading codes can be defined according to the
relative values of N and G. A short code has G D N, so that each data symbol is spread by a full period of the spreading
sequence. A long code has G� N, so that each data symbol is spread by a subsequence of the spreading sequence.

The DS/QPSK complex envelope, obtained by multiplying a.t/ and x.t/, is

Qs.t/ D A
X

n

xnhn.t � nT/; (9.4)

where

hn.t/ D
G�1
X

kD0
anGCkhc.t � kTc/: (9.5)

The complex spreading operation is illustrated in Fig. 9.2. Notice that the DS/QPSK signal can be thought of as a QPSK
signal where the nth data symbol is shaped with the amplitude shaping pulse hn.t/ in (9.5). For short codes hn.t/ is the
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Fig. 9.1 Simplified DS/QPSK system
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Fig. 9.2 Complex spreading

same for all data symbols. The advantage of complex spreading is a reduction in the peak-to-average ratio of the magnitude
of the complex envelope. Offset QPSK (OQPSK) should not be used with complex spreading, since it will increase the
peak-to-average ratio. The complex envelope Qs.t/ is applied to a quadrature modulator to produce the bandpass waveform

s.t/ D A
X

n

� �

xI;nhI;n.t � nT/ � xQ;nhQ;n.t � nT/
�

cos.2� fct/

�
�

xQ;nhI;n.t � nT/C xI;nhQ;n.t � nT/
�

sin.2� fct/
�

; (9.6)

where

hn.t/ D hI;n.t/C jhQ;n.t/ (9.7)

xn D xI;n C jxQ;n: (9.8)

During the time interval ŒnT; .nC 1/T/, the DS/QPSK complex envelope can assume one of the four possible values

Qsi.t/ D Ahn.t/xi ; i D 1; : : : ; 4: (9.9)

Using the basis function

�n.t/ D
r

A2

2E
hn.t/; (9.10)

where E D GEc is the symbol energy, gives

Qsi.t/ D
p
2Exi�n.t/; i D 1; : : : ; 4 (9.11)

and it follows that the complex DS/QPSK signal vectors are

Qsi D
p
2Exi; i D 1; : : : ; 4: (9.12)

Notice that the basis function �n.t/ is indexed with the baud epoch n in the case of long spreading codes.
Besides complex spreading, other types of PN spreading can be used. One possibility is dual-channel quaternary spreading

as shown in Fig. 9.3. Usually this scheme is used with OQPSK modulation to reduce the peak-to-average ratio of the
magnitude of the complex envelope. If only one data sequence is to be transmitted, then either simple binary spreading
or balanced quaternary spreading could be used as shown in Fig. 9.4. Balanced quaternary spreading is known to be less
sensitive to interference than simple binary spreading.
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Fig. 9.3 Dual-channel
quaternary spreading

(   )t

(   )t

(   )t

(   )taQ

(   )t

(   )t

a I

xI

xQ

s
I

~

s
Q

~

(   )taQ

(   )t

(   )txI

(   )txI

(   )t

(   )t

(   )t

(   )t

s
Q

~

(b)(a)

a I

s
I

~

a I

s
I

~

Fig. 9.4 Spreading binary data using (a) simple binary spreading, and (b) balanced quaternary spreading

Figure 9.1 also shows a simplified DS/QPSK receiver. In general, the DS spread spectrum receiver must perform three
functions; synchronize with the incoming spreading sequence, despread the signal, and detect the data. Consider the received
complex envelope in the time interval ŒnT; .n C 1/T/. This signal can be despread and detected by using the correlator
detector in Fig. 5.2 or the matched filter detector in Fig. 5.3, where �n.t/ is defined in (9.10). The output of the correlator or
matched filter despreader/detector is

Qr D gQsi C Qn; (9.13)

where Qn is a zero-mean Gaussian random variable with variance 1
2
EŒjQnj2� D No.

The ML receiver observes Qr and decides in favor of the signal vector Qsm that minimizes the squared Euclidean distance

�.Qsm/ D kQr � gQsmk2: (9.14)

It follows that the bit error probability of DS/QPSK with Gray coding is identical to that of QPSK, and is given by

Pb D Q.
p

2
b/; (9.15)

where 
b D ˛2Eb=No is the received bit energy-to-noise ratio. Note that spread spectrum signaling does nothing to improve
the error probability performance on an AWGN channel. However, in the sequel spread spectrum signaling will be shown to
offer significant error probability performance gains in the presence of additive intentional and non-intentional interference,
multipath-fading, and other channel impairments.
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Fig. 9.5 Simplified FH system operating on an AWGN channel

9.1.2 Frequency Hop Spread Spectrum

Frequency hop (FH) spread spectrum systems hop the carrier frequency pseudo-randomly throughout a finite set of hop
frequencies. The most common type of modulation with frequency hopping is orthogonal M-ary frequency shift keying
(MFSK). The MFSK complex envelope is

Qs.t/ D A
X

n

ejxn��f tuT.t � nT/; (9.16)

where �f is the frequency separation, and xn 2 f˙1; ˙3; : : : ; ˙M � 1g. A FH/MFSK waveform can be generated by
using a digital frequency synthesizer whose inputs consist of the complex envelope of the modulating waveform Qs.t/ and the
contents of a pseudo-noise sequence generator. A conceptual FH/MFSK spread spectrum system is shown in Fig. 9.5.

There are two basic types of FH spread spectrum modulation, fast frequency hopping (FFH) and slow frequency hopping
(SFH). SFH systems transmit one or more (in general L) data symbols per hop. The SFH/MFSK complex envelope is

Qs.t/ D A
X

n

L
X

iD1
ejxnLCi��f tC2� fntuT.t � .nLC i/T/; (9.17)

where the first sum indexes the sequence of hopped carrier frequencies ffng, and the second sum indexes the vector of L data
symbols xn D .xnLC1; xnLC2; : : : ; x.nC1/L/ that are transmitted at the nth hop.

FFH systems transmit the same data symbol on multiple (in general L) hopped carrier frequencies. If independent channel
conditions are experienced on each of the hop frequencies, then a diversity gain can be achieved by using diversity combining.
The FFH/MFSK complex envelope is

Qs.t/ D A
X

n

L
X

iD1
ejxn��f tC2� fnLCituT=L.t � .nLC i/T=L/; (9.18)

where the first sum indexes the sequence of data symbols, fxng, and the second sum indexes the vector of hop frequencies
fn D .fnLC1; fnLC2; : : : ; f.nC1/L/ that are used when transmitting the nth data symbol.

With orthogonal MFSK the required frequency separation �f depends on the type of detection that is used. Coherent
detection requires a frequency separation �f D 1=2T , while non-coherent detection requires �f D 1=T (Problem 4.7).
If coherent detection can be used, then the error probability of SFH/MFSK or FFH/MFSK on an AWGN channel is
given by (5.119). However, FH/MFSK is often detected non-coherently because of the difficulty in achieving rapid carrier
synchronization when the carrier frequency is hopped. The error probability of SFH/MFSK on an AWGN channel with non-
coherent square-law detection is given by (5.191). If FFH/MFSK is used on an AWGN channel, then the error probability
assumes a more complicated form due to a square-law combining loss [272].
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9.2 Spreading Sequences

CDMA systems achieve their multiple-access capability by using sets spreading sequences that are chosen to have three
desirable attributes: (1) the sequences are balanced so that each element of the sequence alphabet occurs with equal frequency,
(2) the autocorrelations have small off-peak values, to allow for rapid sequence acquisition at the receiver and to minimize
self-interference due to multipath, (3) the cross-correlations are small at all delays, to minimize multiple-access interference.

Spreading sequences are often characterized in terms of their discrete-time correlation properties. Let a.k/ D fa.k/n g denote
the kth complex spreading sequence.1 For spread spectrum systems that employ short codes, each data symbol is spread
by a full period of the spreading sequence. In this case the full period correlation properties are of interest. The full period
autocorrelation of the sequence a.k/ is2

�k;k.n/ D
1

2N

N�1
X

iD0
a
.k/�

i a
.k/
iCn (9.19)

and the full period cross-correlation between the sequences a.k/ and a.m/ is

�k;m.n/ D
1

2N

N�1
X

iD0
a
.k/�

i a
.m/
iCn; (9.20)

where N is the length or period of the spreading sequence(s).
The aperiodic autocorrelation of a.k/ is defined as

�a
k;k.n/ D

8

<̂

:̂

1
2N

PN�n
iD1 a

.k/�

i a
.k/
iCn ; 0 � n � N � 1

1
2N

PNCn
iD1 a

.k/
i a

.k/�

i�n ; �N C 1 � n � 0
0 ; jnj � N

: (9.21)

For spread spectrum systems that employ long codes, each data symbol is spread by only a length-G subsequence of the
spreading code. In this case, the partial period correlations are of interest. The partial period auto- and cross-correlations are

�
p

k;k.n/ D
1

2G

G�1
X

iD0
a
.k/�

i a
.k/
iCn (9.22)

�
p

k;m.n/ D
1

2G

G�1
X

iD0
a
.k/�

i a
.m/
iCn: (9.23)

The partial period correlations are not only a function of the delay n, but also depend upon the point in the sequence(s) where
the summation actually starts. The partial period correlations are difficult to derive analytically, except for certain types of
sequences. Therefore, a statistical treatment is often used under the assumption that the sequences are randomly generated,
i.e., the sequence elements are chosen randomly from the set f˙1;˙jg independently and with equal probability. For random
sequences

1

2
EŒa.k/n � D 0

1

2
EŒja.k/n j2� D 1

1

2
EŒa.k/

�

n a.m/n � D 0: (9.24)

Hence, the mean value of the partial period autocorrelation is

��p
k;k.n/
D EŒ�p

k;k.n/� D
1

2G

G�1
X

iD0
EŒa.k/

�

i a
.k/
iCn� D ın;`N ; (9.25)

1The following development also applies to real spreading sequences.
2Throughout this section complex spreading sequences are assumed. For real spreading sequences, the correlation functions are similar but are
normalized by N rather than 2N.
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where

ın;`N D
�

1 ; n D `N
0 ; n ¤ `N (9.26)

and ` is an integer. The variance of the partial period autocorrelation is

�2
�

p
k;k.n/
D EŒj�p

k;k.n/j2� � �2�p
k;k.n/

D 1

.2G/2

G�1
X

iD0

G�1
X

jD0
EŒa.k/

�

i a
.k/
iCna

.k/�

j a
.k/
jCn� � �2�p

k;k.n/

D .1 � ın;`N/.1=G/: (9.27)

Likewise, the mean and variance of the partial period cross-correlation are

��p
k;m.n/
D EŒ�p

k;m.n/� D 0 ; 8n (9.28)

�2
�

p
k;m.n/
D EŒj�p

k;m.n/j2� � �2�p
k;m.n/
D 1=G ; 8n: (9.29)

9.2.1 Spreading Waveforms

The full period cross-correlation between two spreading waveforms a.k/.t/ and a.m/.t/, each of period T , is3

Rk;m.�/ D
1

2T

Z T

0

a.k/
�

.t/ a.m/.tC �/dt (9.30)

D 1

2T

1
X

iD�1

1
X

jD�1
a
.k/�

i a
.m/
j

Z T

0

hc.t � iTc/hc.tC � � jTc/dt:

The integral in (9.30) is non-zero only where the chip pulses hc.t � iTc/ and hc.t C � � jTc/ overlap. Since the delay � can
assume any value let � D `Tc C ı, where ` D b�=Tcc is an integer and 0 � ı < Tc. If the chip pulses are chosen to have
duration Tc and � D `Tc C ı, then the chip pulses overlap only for i D `C j and i D `C jC 1, so that

Rk;m.�/ D
1

2N

N�1
X

iD0
a
.k/�

i a
.m/

`Ci

1

Tc

Z Tc�ı

0

hc.t
0/hc.t

0 C ı/dt0

C 1

2N

N�1
X

iD0
a
.k/�

i a
.m/

`CiC1
1

Tc

Z Tc

Tc�ı
hc.t

0/hc.t
0 � Tc C ı/dt0: (9.31)

The continuous-time partial autocorrelation functions of the chip waveform hc.t/ (of duration Tc) are defined as [273]

Rh.ı/ D
1

Tc

Z Tc�ı

0

hc.t
0/hc.t

0 C ı/dt0 (9.32)

ORh.ı/ D
1

Tc

Z Tc

Tc�ı
hc.t

0/hc.t
0 � Tc C ı/dt0 (9.33)

allowing us to write

Rk;m.�/ D �k;m.`/Rh.ı/C �k;m.`C 1/ ORh.ı/; (9.34)

3For real-value spreading waveforms, the full period cross-correlation function is similar except for the factor of 1/2 in front of the integral.
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where �k;m.`/ is the full period cross-correlation defined in (9.20). For example, if hc.t/ D uTc
.t/, then

Rk;m.�/ D �k;m.`/

�

1 � ı

Tc

�

C �k;m.`C 1/
ı

Tc

: (9.35)

When G < N, the partial correlations in (9.22) and (9.23) must be used. In this case the cross-correlation in (9.34)
becomes a random variable that (for random spreading sequences) has mean and variance

�Rk;m.�/ D ��k;m.`/Rh.ı/C ��k;m.`C1/ ORh.ı/ D 0 (9.36)

�2Rk;m.�/
D �2�k;m.`/

R2h.ı/C �2�k;m.`C1/
OR2h.ı/ D

1

G

�

R2h.ı/C OR2h.ı/
�

: (9.37)

Likewise, the autocorrelation is also a random variable that (for random spreading sequences) has mean and variance

�Rk;k.�/ D ��k;k.`/Rh.ı/C ��k;k.`C1/ ORh.ı/

D

8

<

:

Rh.ı/ ; ` D iG
ORh.ı/ ; `C 1 D iG

0 ; elsewhere

(9.38)

�2Rk;k.�/
D �2�k;k.`/

R2h.ı/C �2�k;k.`C1/
OR2h.ı/

D

8

<

:

R2h.ı/ ; ` D iG
OR2h.ı/ ; `C 1 D iG

1=G ; elsewhere

(9.39)

where i is an integer.

9.2.2 m-sequences

One very well-known and important class of spreading sequences are the maximal-length sequences or m-sequences. As
shown in Fig. 9.6, an m-sequence Qa D fQakg, Qak 2 f0; 1g, is generated by using a linear feedback shift register (LFSR) of
length m. The sequence a D fakg is obtained by using the level shift ak D 2Qak � 1. The feedback or connection polynomial
in the LFSR is a primitive polynomial of degree m over GF.2/, having the form

p.x/ D 1C p1xC p2x
2 C p3x

3 C � � � C pm�1x
m�1 C xm; (9.40)

where pi 2 f0; 1g. Tables of primitive polynomials, p.x/, are tabulated in many texts, e.g., [203]. Notice that p0 D 1, since
this represents the feedback connection tap. Also, pm D 1; otherwise, if pm D 0, the effective length of the shift register is
less than m.

Maximal length sequences are by definition the longest sequences that can be generated by an LFSR of a given length.
For a shift register of length m, a sequence of length N D 2m � 1 is generated. As an m-sequence generator cycles through

0 -> +1
1 -> -1

a i-1 a i-2 a i-3 - ( m 1- )a i - ma i

p
m-1

p1 p
2

p3

a i aa
~

Fig. 9.6 m-sequence generator
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one full period of length N D 2m � 1, the contents of the m-stage shift register go through all possible 2m � 1 non-binary
m-tuples values or states. The all-zeroes state is the only forbidden m-tuple, since the LFSR would lock in this state.

The m-sequences have many remarkable properties, and every full period of an m-sequence satisfies some important
randomness properties. First, the sequence is nearly balanced with 2m�1 ones and 2m�1� 1 zeros. A run is defined as a string
of consecutive zeros or ones, and a sequence can be characterized in terms of its run length distribution. For m-sequences the
number of runs of length P, nP, is

nP D
�

2m�P�1 ; P D 1; 2; : : : ;m � 1
1 ; P D m

: (9.41)

The full period autocorrelation of an m-sequence is

�.n/ D
�

1 ; n D `N
�1=N ; n ¤ `N : (9.42)

For large values of N, �.n/ � ı.n/ so that m-sequences are almost ideal in terms of their full period autocorrelation. For a
rectangular chip shaping function hc.t/ D uTc

.t/, the corresponding spreading waveform a.t/ has autocorrelation function

R.�/ D �.`/
�

1 � ı

Tc

�

C �.`C 1/ ı
Tc

: (9.43)

This function is plotted in Fig. 9.7.
The mean and variance of the partial period autocorrelation of an m-sequence can be obtained in a straightforward fashion

by replacing the expectations in (9.25) and (9.27) with averages over all possible starting positions. This gives

��.n/ D
�

1 ; n D `N
�1=G ; n ¤ `N (9.44)

�2�.n/ D
�

0 ; n D `N
1
G

�

1C 1
N

� �

1 � G
N

�

; n ¤ `N : (9.45)

Unfortunately, m-sequences also have a number of undesirable properties. First, the number of m-sequences that can be
generated by an LFSR of length m is equal to the number of primitive polynomials of degree m over GF(2), and is given by
ˆ.2m � 1/=m, where ˆ. � / is the Euler Totient function

ˆ.n/ D n

n
Y

pjn

�

1 � 1
p

�

; (9.46)
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Fig. 9.7 Typical full period autocorrelation function of an m-sequence spreading waveform
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Table 9.1 Best and worst case
average cross-correlations for
m-sequences

m N Number of m-sequences � worst � best

5 31 6 0.35 0.29

6 63 6 0.36 0.24

7 127 18 0.32 0.13

8 255 16 0.37 0.12

9 511 48 0.22 0.06

10 1023 60 0.37 0.06

11 2047 176 0.14 0.03

12 4095 144 0.34 0.03

where the product is over all primes p that divide n. Hence, there are relatively few m-sequences for a given shift register
length m. Second, only for certain values of m, do there exist a few pairs of m-sequences with low full period cross-
correlations. In general, m-sequences do not have good cross-correlation properties. Consider the full period cross-correlation
�k;m.n/ between two m-sequences a.k/ and a.m/. Let us define the average full period cross-correlation

� D 1

N

N�1
X

nD0
�k;m.n/: (9.47)

The value of � depends on the particular pair of m-sequences that are selected. The best and worst case values of � are shown
in Table 9.1. Notice that the worst case full period cross-correlations are very large even for long sequence lengths.

9.2.3 Gold Sequences

A set of Gold sequences [141] consists of 2m C 1 sequences each with a period of N D 2m � 1 that are generated by using a
preferred pair of m-sequences obtained as follows. Let GF.2m/ be an extension field of GF(2). Let ˛ be a primitive Nth root
of unity in the extension field GF(2m), where N D 2m � 1. Let p1.x/ and p2.x/ be a pair of primitive polynomials over GF(2)
each having degree m such that p1.˛/ D 0 and p2.˛

d/ D 0 for some integer d. Consider the case when m ¤ 0 mod 4. If
d D 2hC1 or d D 22h�2hC1 and if e D GCD.m; h/ is such that m=e is odd, then p1.x/ and p2.x/ constitute a preferred pair
of polynomials. Note that p2.x/may not be unique. For example, with m D 5, both h D 1 and h D 2 will work, so that either
p2.x

3/ D 0 or p2.x
5/ D 0 may be chosen. To find the corresponding polynomials, the reader is referred to Peterson’s table of

irreducible polynomials [262]. The two m-sequences a.1/ and a.2/ that are generated by using p1.x/ and p2.x/ are known as a
preferred pair of m-sequences. Their cross-correlation function is three-valued with the values f�1;�t.m/; t.m/� 2g, where

t.m/ D
�

2.mC1/=2 C 1 ; m odd
2.mC2/=2 C 1 ; m even

: (9.48)

By using the preferred pair of sequences a.1/ and a.2/, a set of Gold sequences can be constructed by taking the sum of a.1/

with all cyclically shifted versions of a.2/ or vice versa. A typical Gold sequence generator is shown in Fig. 9.8, where the
preferred pair of polynomials are p1.x/ D 1C x2 C x5 and p2.x/ D 1C x C x2 C x4 C x5. This above procedure yields N

new sequences each with period N D 2m � 1. These sequences along with the original two sequences give a set of 2m C 1
Gold sequences.

It is important to note that not all the 2mC1Gold sequences are balanced with 2m�1 ones and 2m�1�1 zeros. In fact, it can
be shown that only 2m�2m�e�1 of the Gold sequences are so balanced. The balanced Gold sequences are the most desirable.
With the exception of the preferred pair of sequences a.1/ and a.2/, the Gold sequences are not m-sequences and, therefore,
their autocorrelation functions are not two-valued. However, Gold sequences have three-valued off-peak autocorrelations
and cross-correlations, with possible values f�1;�t.m/; t.m/ � 2g, where t.m/ is defined in (9.48). The cross-correlation
properties of m-sequences and Gold sequences are summarized in Table 9.2. Notice that Gold sequences have much smaller
peak cross-correlations than m sequences.
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Fig. 9.8 A Gold sequence generator with p1.x/ D 1C x2 C x5 and p2.x/ D 1C x C x2 C x4 C x5. This sequence generator can produce 32 Gold
sequences of length 31

Table 9.2 Peak cross-correlation of m-sequences and Gold sequences

Number m Peak m-sequence Gold sequence

m N sequences cross-correlation �max=�.0/ t.m/ t.m/=�.0/

3 7 2 5 0.71 5 0.71

4 15 2 9 0.60 9 0.60

5 31 6 11 0.35 9 0.29

6 63 6 23 0.36 17 0.27

7 127 18 41 0.32 17 0.13

8 255 16 95 0.37 33 0.13

9 511 48 113 0.22 33 0.06

10 1023 60 383 0.37 65 0.06

11 2047 176 287 0.14 65 0.03

12 4095 144 1407 0.34 129 0.03

9.2.4 Kasami Sequences

The construction of Kasami sequences proceeds as follows [175, 176]. Let m be even. Let p1.x/ be a primitive polynomial
over the binary field GF(2) with degree m and ˛ as a root, and let p2.x/ be the irreducible minimal polynomial of ˛d where
d D 2m=2 C 1. Once again, these polynomials can be identified using Peterson’s table of irreducible polynomials [262]. Let
a.1/ and a.2/ represent the two m-sequences of periods 2m�1 and 2m=2�1 that are generated by p1.x/ and p2.x/, respectively.
The set of Kasami sequences is generated by using the two m-sequences in a fashion similar to the generation of Gold
sequences, i.e., the set of Kasami sequences consists of the long sequence a.1/ and the sum of a.1/ with all 2m=2 � 1 cyclic
shifts of the short sequence a.2/. The number of Kasami sequences in the set is 2m=2, each having period N D 2m � 1. In
fact, this set is known as the small set of Kasami sequences. A typical Kasami sequence generator is shown in Fig. 9.9 with
generator polynomials p1.x/ D 1CxCx6 and p2.x/ D 1CxCx3. Like Gold sequences, the off-peak autocorrelation and cross-
correlation functions of Kasami sequences are also three-valued, however, the possible values are f�1;�s.m/; s.m/ � 2g,
where s.m/ D 2m=2 C 1.

9.2.5 Barker Sequences

Barker sequences only exist for lengths 2, 3, 4, 5, 7, 11, and 13, given as follows:

a D .C1 � 1/
a D .C1C 1 � 1/
a D .C1C 1 � 1C 1/
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0 -> +1

1 -> -1 a
1 x

1 x

6

6x

x

Fig. 9.9 A Kasami sequence generator with p1.x/ D 1CxCx6 and p2.x/ D 1CxCx3. This sequence generator can produce 8 Kasami sequences
of length 63

a D .C1C 1C 1 � 1C 1/
a D .C1C 1C 1 � 1 � 1C 1 � 1/
a D .C1C 1C 1 � 1 � 1 � 1C 1 � 1 � 1C 1 � 1/
a D .C1C 1C 1C 1C 1 � 1 � 1C 1C 1 � 1C 1 � 1C 1/

The mirror images (or time reversed) sequences are also Barker sequences. Barker sequences of other lengths do not exist.
Barker sequences are specially designed sequences that have almost ideal aperiodic autocorrelation functions, as defined
in (9.21). For the Barker sequences

�a
k;k.n/ D

�

1 ; n D 0
0; 1=N; or � 1=N ; 1 � jnj � N � 1 : (9.49)

9.2.6 Walsh-Hadamard Sequences

Walsh-Hadamard sequences are obtained by selecting as sequences the rows of a Hadamard matrix HM . For M D 2 the
Hadamard matrix is

H2 D
�

C1 C1
C1 �1

�

: (9.50)

Larger Hadamard matrices are obtained by using the recursion

H2M D
�

HM HM

HM �HM

�

: (9.51)

For example,

H8 D

2

6
6
6
6
6
6
6
6
6
6
6
4

C1 C1 C1 C1 C1 C1 C1 C1
C1 �1 C1 �1 C1 �1 C1 �1
C1 C1 �1 �1 C1 C1 �1 �1
C1 �1 �1 C1 C1 �1 �1 C1
C1 C1 C1 C1 �1 �1 �1 �1
C1 �1 C1 �1 �1 C1 �1 C1
C1 C1 �1 �1 �1 �1 C1 C1
C1 �1 �1 C1 �1 C1 C1 �1

3

7
7
7
7
7
7
7
7
7
7
7
5

: (9.52)

The rows in the Hadamard matrix define the Walsh-Hadamard sequences, and have the property that they are mutually
orthogonal.
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The Walsh-Hadamard sequences can be used for orthogonal spreading, also called orthogonal CDMA, where the users
are distinguished by assigning them different Walsh-Hadamard sequences, and the data symbols are sent by using simple
binary spreading as shown in Fig. 9.4. With orthogonal CDMA, the data symbols of the different users must be synchronized
to within a small fraction of a chip period. This is because the Walsh-Hadamard sequences have very poor cross-correlations
at non-zero lags. In fact, some of the Walsh-Hadamard sequences are just cyclic shifts of each other. Finally, multipath
will also destroy the orthogonality of the received waveforms, because the Walsh Hadamard sequences have large off-peak
autocorrelation values even at small lags. This will lead to multiple-access interference in orthogonal CDMA systems.

9.2.6.1 Orthogonal and Bi-orthogonal Modulation

The Walsh Hadamard sequences can be used for modulation rather than spreading. There are several possibilities. One is
M-ary orthogonal modulation, where k D log2M bits are used to select one of the M orthogonal waveforms for transmission.
The signals can be detected coherently or non-coherently as discussed in Chap. 5. Another possibility is a variant of
biorthogonal modulation, where each row of the Hadamard matrix is used to send one bit of information. In this case M

bits are sent at one time. This type of modulation requires coherent detection.

9.2.7 Variable Length Orthogonal Codes

For multimedia applications, it is necessary to support a variety of data streams ranging from low to very high bit rates.
Quite often these streams are used concurrently and they all use the same spread bandwidth. Consider a system where each
data symbol in the highest bit rate stream R D Rmax is spread by an orthogonal sequence of length N D 2m. Then the data
symbols in a stream with bit rate R D Rmax=2

k are spread by a sequence of length 2mCk. One way to achieve orthogonality
between spreading sequences with different spreading factors is to use tree-structured orthogonal codes. The construction of
these codes is illustrated in Fig. 9.10. Tree-structured orthogonal codes are generated recursively according to the following:

c2n D

2

6
6
6
4

c2n;1

c2n;2

:::

c2n;2n

3

7
7
7
5
D

2

6
6
6
6
6
4

�

cn;1 cn;1

cn;1 �cn;1

�

:::
�

cn;n cn;n

cn;n �cn;n

�

3

7
7
7
7
7
5

(9.53)
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4,1
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4,4
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=(1)

=(1,-1)

=(1,1)

=(1,1,1,1)

=(1,1,-1,-1)

=(1,-1,1,-1)

=(1,-1,-1,1)

Rmax=R Rmax=R

2

Rmax=R
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(data rate)

)rotcafgnidaerps(2=FSSF=1 SF=4

Fig. 9.10 Construction of orthogonal spreading codes with different spreading factors
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where c2n is an orthogonal code set of size 2n. The orthogonality properties are similar to Walsh-Hadamard sequences. In
fact the set of sequences is identical, and only their order is different.

A code can be assigned for use if and only if no other code either on the path from the specific code to the root of the
tree, or on the subtree produced by the specific code, is already being used. Hence, the total number of available codes is not
fixed, but depends on the rate or spreading factor of each physical channel.

9.2.8 Complementary Code Keying

Complementary codes have the property that the sum of their aperiodic autocorrelation functions is zero for all delays except
zero delay. That is,

1

M

M
X

kD1
�a

k;k.n/ D ı.n/: (9.54)

A variety of constructions exist for complementary codes and two examples are given here. The IEEE 802.11b standard uses
length-8 CCK sequences for 11 Mb/s transmission. The eight complex chip values for CCK code words are

C D
˚

ej.�1C�2C�3C�4/; ej.�1C�3C�4/; ej.�1C�2C�4/;

�ej.�1C�4/; ej.�1C�2C�3/; ej.�1C�3/;�ej.�1C�2/; ej.�1/



; (9.55)

where the phases f�1; �2; �3; �4g are QPSK phases. The phases �2; �3, and �4 each take on four different values, leading to a
code alphabet of size 64. The phase �1 is differentially encoded across successive codewords. Since each of the four phases
�1 to �4 represents 2 bits of information, 8 bits are transmitted per codeword. The chip rate for IEEE 802.11 is 11 Mchips/s,
so that the resulting bit rate is 11 Mb/s.

The IEEE 802.11b standard for 5.5 Mb/s transmission is similar but uses CCK with length-4 sequences. The complex
chip values for the CCK code words are

C D
˚

ej.�1C�2C�3/; ej.�1C�3/; ej.�1C�2/;�ej.�1/



; (9.56)

where, again, the phases f�1; �2; �3g are QPSK phases.

9.2.9 Zadoff–Chu Sequences

A Zadoff–Chu sequence, sometimes called a Chu sequence [64], is a complex-valued sequence defined in the time domain
by the following:

a.m/n D
(

e�j �mn2

N ; when N is even

e�j
�mn.nC1/

N ; when N is odd
0 � n � N � 1 (9.57)

where m is called the sequence index or family, such that m is relatively prime to the sequence length N (meaning that the
only integer that divides m and N is 1). The number of Zadoff–Chu sequences for a given length N is the number of integers
that are relatively prime to N. Thus, to maximize the number of available Zadoff–Chu sequences for a given sequence length
N, N may be chosen to be a prime number.

The DFT of the Zadoff–Chu sequence in (9.57) for N even can be obtained from the table of DFT pairs in [75] as

A
.m/
k D e

j�

�

.N�k/2

mN
� 1
4

�

1p
m

m�1
X

`D0
�`.n�k/�`2N=2 (9.58)
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where m > 0, mN is even, and � D e�j2�=m. When m D 1 this reduces to

A
.1/
k D e�j�=4ej�k2 : (9.59)

An important property of Zadoff–Chu sequences is their orthogonality to their cyclic shifts. Lemma 9.1 below provides a
general theorem for circular auto-orthogonality.

Lemma 9.1. If and only if a sequence fAkg, k D 0; � � � ;N � 1, is circular auto-orthogonal, i.e.,

1

N

N�1
X

kD0
AkA�

.k�l/N
D ıl D

�

1 ; l D 0
0 ; l ¤ 0 ; (9.60)

meaning that Ak is orthogonal to any of its cyclic shifts, then the time domain sequence fakg, k D 0; � � � ;N � 1, has constant

envelope.

Proof. The proof can be carried out by manipulating properties of the DFT. Since janj2 D ana�
n , an

DFT�! Ak, and a�
n

DFT�!
A�
.�k/N

,

janj2 D ana�
n

DFT�!Ak ~ A�
.�k/N

D 1p
N

N�1
X

lD0
AlA

�
.l�k/N

; (9.61)

where ~ is circular convolution. If fAkg is circular auto-orthogonal, then the right side of (9.61) is equal to
p

Nık. This
leads to ana�

n D 1 and, therefore, janj D 1. Conversely, if janj D 1, then ana�
n D 1, and its DFT is

p
Nık. From (9.61),

Ak ~ A�
.�k/N

D
p

Nık. Therefore, fAkg is circular auto-orthogonal. From the fact an

DFT�! Ak and janj D jAkj D 1 both
sequences an and Ak are circular auto-orthogonal, based on Lemma 9.1.

Zadoff–Chu sequences have the following useful properties:

• Constant Envelope: The Zadoff–Chu sequences have constant envelope in the time domain.
• Auto-orthogonal: The Zadoff–Chu sequences have a perfect periodic autocorrelation in the time domain

�m;m.n/ D
1

NZC

NZC�1
X

iD0
a
.m/�

i a
.m/
iCn D ı.n/ ; n D 0; : : : ;NZC � 1: (9.62)

• Low Cross-correlations: The cross-correlation of two different prime length Zadoff–Chu sequences of family m1 and m2

is a constant 1=
p

NZC regardless of time shift, provided that m1 � m2 is relatively prime to NZC.

Example 9.1. Consider the special DFT pair [75]

an D e�j �8 ej �n2

N ; n D 0; � � � ;N � 1

Ak D ej �8 e�j �k2

N ; k D 0; � � � ;N � 1; (9.63)

This particular DFT pair satisfies all the properties of Zadoff–Chu sequences and, moreover, Ak D a�
k so the DFT

sequence of the an is simply its conjugate. In the time domain, the sequence an serves as a perfect synchronization
sequence, having unity peak-to-average power ratio (PAPR). Meanwhile, the sequence Ak has constant envelope in the
frequency domain. This property simplifies the process of channel estimation in the frequency domain since the sub-
carriers are excited with known training symbols of equal power, such that the power spectrum of the pilot waveform
is flat over the bandwidth of interest.
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9.3 Power Spectral Density of DS Spread Spectrum Signals

The DS/QPSK waveform can be thought of as a QPSK waveform where the nth data symbol is transmitted with the amplitude
shaping pulse in (9.5). For uncorrelated zero-mean data symbols, the results in Sect. 4.9.1.2 show that the power spectral
density (psd) of the DS/QPSK complex envelope is c.f. (4.218)

SQsQs.f / D
A2

T
�2x jHa.f /j2 ; (9.64)

where ha.t/ is the amplitude shaping pulse. In the case of a short code, the amplitude shaping pulse is

ha.t/ D
N�1
X

kD0
akhc.t � kTc/: (9.65)

Taking the Fourier transform of ha.t/ gives

Ha.f / D Hc.f /

N�1
X

kD0
ake�j2� fkTc (9.66)

and

jHa.f /j2 D jHc.f /j2
N�1
X

kD0

N�1
X

`D0
aka�

` e�j2� f .k�`/Tc : (9.67)

The above expression can be put in a more convenient form by using the aperiodic autocorrelation defined in (9.21). It can
be shown that

jHa.f /j2 D jHc.f /j2 2Nˆa.f /; (9.68)

where ˆa.f / is the discrete-time Fourier transform (DTFT) of the aperiodic autocorrelation function, defined by

ˆa.f / D
N�1
X

nD�NC1
�a.n/e�j2� fnTc : (9.69)

Using T D NTc and �2x D 1
2
EŒjxij2� D 1=2 gives

SQsQs.f / D
A2

Tc

jHc.f /j2ˆa.f /: (9.70)

Observe that the psd depends on both jHc.f /j andˆa.f /. Suppose the spreading sequence has an ideal “thumbtack” aperiodic
autocorrelation function

�a.n/ D
�

1 ; n D 0
0 ; n ¤ 0 : (9.71)

Then ˆa.f / D 1 and

SQsQs.f / D
A2

Tc

jHc.f /j2 : (9.72)

In this case, the psd depends only on the chip shaping response jHc.f /j. For example, if hc.t/ D uTc
.t/, then Hc.f / D

Tcsinc.fTc/ and SQsQs.f / D A2Tcsinc2.fTc/. Unfortunately, spreading sequences having the ideal aperiodic autocorrelation
function in (9.71) do not exist for any non-trivial length. Consider the two sequences:
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Fig. 9.11 Aperiodic autocorrelation function for the length-11 Barker sequence
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Fig. 9.12 Aperiodic autocorrelation function for the length-15 m-sequence

a.1/ D .�1C 1 � 1 � 1C 1 � 1 � 1 � 1C 1C 1C 1/ (9.73)

a.2/ D .C1 � 1 � 1C 1 � 1 � 1 � 1C 1C 1C 1C 1 � 1C 1 � 1C 1/:

The first is a length-11 Barker sequence and the second is a length-15 m-sequence. The scaled aperiodic autocorrelation
functions N�a.n/ for these sequences are shown in Figs. 9.11 and 9.12, respectively.

The corresponding power spectral densities with the rectangular chip shaping function hc.t/ D uTc
.t/ are plotted in

Figs. 9.13 and 9.14, respectively. Notice that the aperiodic autocorrelation of the m-sequence deviates significantly from the
ideal function in (9.71). This leads to peaks and nulls in the spectrum shown in Fig. 9.14. Such spectral peaks are undesirable.
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Fig. 9.13 Psd with the length-11 Barker sequence
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Fig. 9.14 Psd with the length-15 m-sequence

The length-11 Barker sequence is seen to provide a much smoother psd without any large peaks. For this reason, and the fact
that a minimum length-10 sequence is required by the IEEE 802.11 WLAN standard, the length-11 Barker sequence was
chosen.

It is interesting to note that if CCK is used, then the psd depends on the DTFT of the average aperiodic autocorrelation
function in (9.54). In this case,

1

M

M
X

kD1
ˆa

k;k.f / D 1; (9.74)
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and the psd has the ideal form in (9.72). Finally, if a long code is used, then the power spectrum must be obtained by
averaging over all possible spreading code subsequences of length G. Usually, this will result in a “smoother” power density
spectrum.

9.4 Performance of DS/QPSK in CW Tone Interference

Spread spectrum systems must often operate in the presence of narrowband interference. This section examines the effect of
continuous wave (CW) tone interference on the performance of DS/QPSK. Consider a DS/QPSK system with dual-channel
quaternary spreading as shown in Fig. 9.3. The bandpass DS/QPSK waveform is

s.t/ D A
X

n

�

xI;nhI;n.t � nT/ cos.2� fct/ � xQ;nhQ;n.t � nT/ sin.2� fct/
�

; (9.75)

where A is the amplitude. During time interval ŒnT; .n C 1/T/ the transmitted quaternary data symbol is xn D .xI;n; xQ;n/,
xI;n; xQ;n 2 fC1=

p
2;�1=

p
2g and the spreading waveforms are

hI;n.t/ D
G�1
X

kD0
aI;nGCkhc.t � nTc/ ; hQ;n.t/ D

G�1
X

kD0
aQ;nGCkhc.t � nTc/: (9.76)

With dual-channel quaternary spreading, the energy per modulated symbol is

E D
Z T

0

s2.t/dt

D A2
Z T

0

�

x2I;nh2I;n.t/ cos2.2� fct/C x2Q;nh2Q;n.t/ sin2.2� fct/
�

D A2

4

Z T

0

�

h2I;n.t/C h2Q;n.t/
�

D A2

4

G�1
X

kD0

�

a2I;nGCk C a2Q;nGCk

�
Z Tc

0

h2c.t/dt

D G
A2

2

Z Tc

0

h2c.t/dt

D GEc; (9.77)

where

Ec D
A2

2

Z Tc

0

h2c.t/dt (9.78)

is the energy per PN chip. Note that (9.78) and (9.2) differ by a factor of 2, because (9.2) assumes complex spreading
while (9.78) assumes quadrature spreading. This can be seen by comparing the energy of the bandpass waveforms in (9.6)
and (9.75) over the interval ŒnT; .nC 1/T/.

The received bandpass signal in the presence of continuous wave (CW) tone interference and additive white Gaussian
noise (AWGN) is

r.t/ D s.t/C n.t/C J.t/; (9.79)

where n.t/ is AWGN with two-sided power spectral density No=2 and J.t/ is the CW tone interference of the form

J.t/ D AJ cos.2� fJtC �/; (9.80)
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Fig. 9.15 Quadrature demodulator for DS/QPSK

where AJ is the tone amplitude, fJ is its frequency, and � is a random phase uniformly distribution on the interval Œ��; �/.
The tone energy in a time interval of duration T is

EJ D
A2JT

2
: (9.81)

The received signal is despread and processed with the quadrature demodulator shown in Fig. 9.15 to generate the decision
variables ZI and ZQ. To derive the values of ZI and ZQ the signal, noise, and interference terms are considered separately.
During the time interval ŒnT; .nC 1/T/ the contribution of the signal term to ZI and ZQ is

ZI.s/ D
Z T

0

QsI.t/

r

A2

4E
hI;n.t/dt

D
Z T

0

AxI;nhI;n.t/

r

A2

4E
hI;n.t/dt

D xI;nA

r

A2

4E

Z T

0

h2I;n.t/dt

D xI;n

p
E; (9.82)

where (9.77) was used. Likewise,

ZQ.s/ D xQ;n

p
E: (9.83)

The contribution of the AWGN term to ZI and ZQ is

ZI.n/ D
Z T

0

QnI.t/

r

A2

4E
hI;n.t/dt (9.84)

ZQ.n/ D
Z T

0

QnQ.t/

r

A2

4E
hQ;n.t/dt: (9.85)

It can be shown that ZI.n/ and ZQ.n/ are independent zero-mean Gaussian random variables with variance No=2.
Finally, the contribution of the CW tone interference term to ZI and ZQ can be calculated as follows:

ZI.J/ D
Z T

0

J.t/2 cos.2� fct/

r

A2

4E
hI;n.t/dt

D
Z T

0

AJ cos.2� fJt/2 cos.2� fct/

r

A2

4E
hI;n.t/dt
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D AJ

r

A2

4E

Z T

0

2hI;n.t/ cos.2� fct/ cos.2� fJtC �/dt

D AJ

r

A2

4E

Z T

0

hI;n.t/
˚

cos.2�˙f tC �/C cos.2��f tC �/



dt;

(9.86)

where

˙f D fc C fJ (9.87)

�f D fJ � fc: (9.88)

Using AJ D
p

2EJ=T gives

ZI.J/ D
p

EJ

r

A2T

2E

1

T

Z T

0

hI;n.t/
�

cos.2�˙f tC �/C cos.2��f tC �/
�

dt (9.89)

Finally, using

E D G
A2

2

Z Tc

0

h2c.t/dt (9.90)

gives

ZI.J/ D
q

EJ= Nhc

1

T

Z T

0

hI;n.t/
�

cos.2�˙f tC �/C cos.2��f tC �/
�

dt; (9.91)

where

Nhc D
1

Tc

Z Tc

0

hc.t/dt: (9.92)

Using further trigonometric identities gives

ZI.J/ D
q

EJ= Nhc

�

cos.�/
1

T

Z T

0

hI;n.t/
�

cos.2�˙f t/C cos.2��f t/
�

dt

� sin.�/
1

T

Z T

0

hI;n.t/
�

sin.2�˙f t/C sin.2��f t/
�

dt

�

: (9.93)

In a similar fashion

ZI.J/ D
Z T

0

J.t/2 sin.2� fct/

r

A2

4E
hQ;n.t/dt

D
q

EJ= Nhc

�

cos.�/
1

T

Z T

0

hQ;n.t/
�

sin.2��f t/ � sin.2�˙f t/
�

dt

C sin.�/
1

T

Z T

0

hQ;n.t/
�

cos.2��f t/ � sin.2�˙f t/
�

dt

�

: (9.94)

Combining the signal, noise, and CW tone interference terms gives

ZI D ZI.s/C ZI.n/C ZI.J/

ZQ D ZQ.s/C ZQ.n/C ZQ.J/: (9.95)
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Hence, ZI and ZQ are independent Gaussian random variables with means

EŒZI � D xI;n

p
EC II

q

EJ= Nhc

EŒZQ� D xQ;n

p
EC IQ

q

EJ= Nhc; (9.96)

and variance No=2, where

II D cos.�/
1

T

Z T

0

hI;n.t/
�

cos.2�˙f t/C cos.2��f t/
�

dt

� sin.�/
1

T

Z T

0

hI;n.t/
�

sin.2�˙f t/C sin.2��f t/
�

dt (9.97)

IQ D cos.�/
1

T

Z T

0

hQ;n.t/
�

sin.2��f t/ � sin.2�˙f t/
�

dt

C sin.�/
1

T

Z T

0

hQ;n.t/
�

cos.2��f t/ � sin.2�˙f t/
�

dt: (9.98)

9.4.1 Short Code

For the purpose of illustration assume a rectangular chip shaping pulse hc.t/ D uTc
.t/ so that Nhc D 1 in (9.96), and assume a

short code (G D N) so that each data symbol is spread by the same sequence. Furthermore, assume that the same spreading
sequence is used on the in-phase and quadrature components of the modulated carrier such that

h.t/ D hI;n.t/ D hQ;n.t/ D
G�1
X

kD0
akuTc

.t � kTc/: (9.99)

It follows that

II D cos.�/
1
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Z NTc

0

N�1
X

kD0
akuTc

.t � kTc/
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cos.2�˙f t/C cos.2��f t/
�

dt

� sin.�/
1

NTc

Z NTc

0

N�1
X

kD0
akuTc

.t � kTc/
�

sin.2�˙f t/C sin.2��f t/
�

dt

D 1

N

N�1
X

kD0
ak

�

cos.�/

Z kC1

k

�

cos.2�˙f Tct/C cos.2��f Tct/
�

dt

� sin.�/

Z kC1

k

�

sin.2�˙f Tct/C sin.2��f Tct/
�

dt

�

: (9.100)

Likewise,

IQ D
1

N

N�1
X

kD0
ak

�

cos.�/

Z kC1

k

�

sin.2��f Tct/ � sin.2�˙f Tct/
�

dt

C sin.�/

Z kC1

k

�

cos.2��f Tct/ � sin.2�˙f Tct/
�

dt

�

: (9.101)

Fortunately, the above integrals exist in closed form. Defining

˛
4D 2�˙f Tc (9.102)

ˇ
4D 2��f Tc (9.103)
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yields

II D
1

N

N�1
X

kD0
ak

�

cos.�/

�
sin..kC 1/˛/ � sin.k˛/

˛
C sin..kC 1/ˇ/ � sin.kˇ/

ˇ

�

� sin.�/

�
cos.k˛/ � cos..kC 1/˛/

˛
C cos.kˇ/ � cos..kC 1/ˇ/

ˇ

��

(9.104)

and

IQ D
1

N

N�1
X

kD0
ak

�

cos.�/

�
cos.kˇ/ � cos..kC 1/ˇ/

ˇ
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�

C sin.�/

�
sin..kC 1/ˇ/ � sin.kˇ/

ˇ
� cos.k˛/ � cos..kC 1/˛/

˛

��

:

(9.105)

Due to the random phase of the CW tone interferer, the CW tone interference is circularly symmetric similar to
AWGN. This allows us to rotate the signal constellation for the purpose of calculating the bit error probability. The rotated
constellation is shown in Fig. 9.16. In the absence of CW tone interference, the probability of correct symbol reception is

PŒc� D .1 � Pb/
2; (9.106)

where

Pb D Q
�p

2
b

�

(9.107)

is the bit error probability, and 
b D Eb=No is the received bit energy-to-noise ratio.
When CW tone interference is present, the probability of correct reception is

PCjb0b1 D .1 � Pb1/.1 � Pb2/: (9.108)
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Fig. 9.16 QPSK signal constellation with tone interference
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Observe that the error probability depends on the transmitted symbol and the interference impairment II and IQ. Referring to
Fig. 9.16

PCj00 D .1 � Pb1/.1 � Pb2/ (9.109)

where

Pb1 D Pb2 D Q

 s

2Eb

No

�

1C 2
p

EJ=EII C .EJ=E/2I2I

�
!

: (9.110)

Hence,

Pbj00 D Q

 s

2Eb

No

�

1C 2
p

EJ=EII C .EJ=E/2I2I

�
!

: (9.111)

In a similar fashion,

Pbj01 D Q

 s

2Eb

No

�

1C 2
p

EJ=EIQ C .EJ=E/2I2Q

�
!

(9.112)

Pbj11 D Q

 s

2Eb

No

�

1 � 2
p

EJ=EII C .EJ=E/2I2I

�
!

(9.113)

Pbj10 D Q

 s

2Eb

No

�

1 � 2
p

EJ=EIQ C .EJ=E/2I2Q

�
!

: (9.114)

Since all symbols are equally likely, the bit error probability is

Pb D
1

4
.Pbj00 C Pbj11 C Pbj10 C Pbj01/: (9.115)

Observe that the bit error probability depends on II and IQ. However II and IQ are random variables due to the random phase
� . Therefore, the bit error probability must be calculated by averaging (9.115) over random phase of the CW tone interferer.

Figure 9.17 shows the bit error probability when the length-15 m-sequence a.2/ in (9.73) is used as a short code (G D 15/.
Figure 9.17 arbitrarily assumes that fc D 280MHz, and Tc D 191 � 10�9 s. Observe that the bit error probability varies
greatly with the frequency of the CW tone interferer. It is interesting to note that an interfering tone placed at the carrier
frequency fc does not give the worst case performance. Also, the bit error probability is seen to exhibit an error floor due to
the AWGN.

Figure 9.18 shows the bit error probability when the length-11 Barker sequence a.1/ in (9.73) is used as a short code
(G D 11/. Observe that the length-11 Barker sequence generally has worse performance for the same E=EJ than the length-
15 m-sequence, except at frequencies where the length-15 m-sequence is highly sensitive to tone interference. This is because
the length-11 Barker sequence has a lower processing gain compared to the length-15 m-sequence.

Figure 9.19 inverts Fig. 9.17 and plots the E=EJ required to achieve a bit error rate of 10�6 with the length-15 m-sequence
in the presence of a CW tone interferer and AWGN. Likewise, Fig. 9.20 inverts Fig. 9.18 for the length-11 Barker sequence.
Observe that the sensitivity to CW tone interference is much less with the Barker sequence.

The sensitivity of the error probability to the frequency of the tone interferer can be explained as follows. The data symbols
on the in-phase and quadrature channels are spread by using the amplitude shaping pulse

h.t/ D
N�1
X

kD0
akhc.t � kTc/; (9.116)
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−1.0 −0.5 0.0 0.5 1.0

Normalized Tone Offset, ( f
c
−f

J
)T

c

−30

−26

−22

−18

−14

−10

−6

−2

2

6

10

C
/I

  
R

eq
u
ir

ed
 (

d
B

)

Eb /No = 11.76 (dB)

Eb /No = 13.01 (dB)
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where fakgN�1
kD0 is the periodic spreading sequence of length N. After quadrature demodulation, the receiver employs a

correlator or matched filter detector having the impulse response4

hr.t/ D h�.NTc � t/

D
N�1
X

kD0
aN�khc.t � kTc/: (9.117)

The filter hr.t/ has transfer function

Hr.f / D
Z 1

�1
hr.t/e

�j2� ftdt

D
Z 1

�1

N�1
X

kD0
aN�khc.t � kTc/e

�j2� ftdt

D
N�1
X

kD0
aN�k

Z 1

�1
hc.t � kTc/e

�j2� ftdt

D Hc.f /

N�1
X

kD0
aN�ke�j2� fkTc

D Hc.f /A.f /; (9.118)

where

A.f / D
N�1
X

kD0
aN�ke�j2� fkTc : (9.119)

For a rectangular chip shaping function hc.t/ D uTc
.t/,

Hc.f / D sinc.fTc/e
�j� fTc : (9.120)

The corresponding amplitude response jHr.f /j for the length-15 m-sequence and the length-11 Barker sequence is identical
in form to the corresponding transmitted psds shown in Figs. 9.14 and 9.13, respectively. The frequencies where jHr.f /j
has the highest relative gain are the exact same frequencies where the CW tone interferer causes a large error probability.
If the length of the short code is increased, the sensitivity to CW tone interference will not necessarily diminish. To make
the receiver less sensitive to CW tone interference, the aperiodic autocorrelation function in (9.21) should be as close to
ideal as possible. In other words, the power spectrum ˆk;k.f / defined in (9.69) is as flat as possible. Although some types of
sequences, such as Gold and Kasami sequences, have excellent cross-correlation properties, their aperiodic autocorrelation
functions are usually far from ideal resulting in a power spectrum ˆk;k.f / is typically full of peaks and nulls. The Barker
sequences have the best aperiodic autocorrelation properties for a given sequence length N when they exist, and will result
in the least sensitivity to tone interference.

9.4.2 Short Code Design

Sometimes it is desirable to construct short sequences of a given sequence length N that have good aperiodic autocorrelation
properties with a corresponding power spectrum that is a flat as possible. One possibility is to design such sequences based
on a MMSE criterion baaed on their aperiodic autocorrelation function in (9.21). The ideal aperiodic autocorrelation function

4The usual case is assumed, where hc.�t/ D hc.t/.
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is the perfect “thumb-tack” function �a .ideal/
k;k .n/ D ı.n/. In this case, the discrete-time Fourier transform of �a .ideal/

k;k .n/ gives
the flat power spectrum ˆa.f / D 1. However, spreading codes having ideal aperiodic autocorrelation functions do not exist
for any length. Here, short spreading sequences are designed to minimize the mean square error

" D 1

N

N�1
X

nD0

�

�a
k;k.n/ � �

a .ideal/
k;k .n/

�2

(9.121)

D 1

N

N�1
X

nD1

�

�a
k;k.n/

�2
; (9.122)

where the summation may be started at n D 1 since �a
k;k.0/ D 1 for any sequence. Unfortunately, there is no easy analytical

method to find such sequences. However, for relatively small N the sequences can be found by an exhaustive search. For
sequence lengths N D 2; 3; 4; 5; 7; 11 and 13, the above process will generate the Barker sequences in Sect. 9.2.5, along with
their mirror images (time reversed sequences). So the Barker sequences are optimal in a minimum mean square sense.

Example 9.2. Suppose our objective is to find MMSE binary spreading sequences of length N D 15. In this case, the
following four sequences will minimize the mean square error in (9.122):

x1 D f�1 � 1 � 1 � 1 � 1C 1C 1 � 1 � 1C 1C 1 � 1C 1 � 1C 1g
x2 D fC1 � 1C 1 � 1C 1C 1 � 1 � 1C 1C 1 � 1 � 1 � 1 � 1 � 1g
x3 D f�1 � 1 � 1C 1C 1C 1 � 1C 1C 1C 1 � 1C 1C 1 � 1C 1g
x4 D fC1 � 1C 1C 1 � 1C 1C 1C 1 � 1C 1C 1C 1 � 1 � 1 � 1g

Observe that x1 and x3 are the mirror images (time reversals) of x2 and x4, respectively. The aperiodic
autocorrelation function for all four sequences is identical and the scaled version N�a.n/ is plotted in Fig. 9.21. Each
sequence has " D 1 with a maximum “off-peak” aperiodic autocorrelation value equal to maxnN�a.n/ D 3.
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Fig. 9.21 Aperiodic autocorrelation for optimized length-15 sequences

(continued)
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Example 9.2 (continued)
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Fig. 9.22 Power spectrum with optimized length-15 sequences

The corresponding power spectral density achieved with these sequences is shown in Fig. 9.22 for the case of
rectangular chip shaping, hc.t/ D uTc

.t/. Note that the power spectrum exhibits considerably less variation than that
corresponding to the length-15 m-sequence in Fig. 9.14, but is not as good as that corresponding to the length-11 Barker
sequence in Fig. 9.13.

9.4.3 Long Code

With a long code each data symbol is spread with a subsequence of a long PN sequence. In this case, the error probability
must be averaged over the starting phase of the PN subsequence that is used to spread each data symbol.

Figure 9.23 shows the effect of using a long PN sequence. Three cases are considered; a length-31 m sequence with
generator polynomial 1 C x2 C x5, a length-127 m-sequence with generator polynomial 1 C x C x7, and a length-2047 m-
sequence with generator polynomial 1 C x C x11. Figure 9.24 shows the length-63 m-sequence with generator polynomial
1 C x C x6. The processing gain in each case is G D 15 chips/symbol. For the length-63 m-sequence, 15 and 63 have a
common factor of 3 and, therefore, there are three different sets of subsequences to consider.

Observe that the bit error probability with a long code is less sensitive to the CW tone frequency as compared to a
short code. For sequence lengths of 127 and 2047, the bit error probability is maximized when fJ D fc. For all three sequence
lengths, there are still some spectral irregularities, because the length of the shift register (5, 7, and 11) that is used to generate
the PN sequence is less than the processing gain (15). Hence, the data symbols are not spread with all possible binary
N-tuples, thus leading to the irregularities observed in Fig. 9.23. It is interesting to note that the length-2047 m-sequence
seems to be more sensitive to an interfering tone at the carrier frequency than the length-127 m-sequence. The reason is that
the length-15 subsequences of the length-127 m-sequence tend to be more balanced (equal number of �1’s and 1’s) than the
length-15 subsequences of the length-2047 m-sequence.

Finally, comparison of Figs. 9.17 and 9.23 leads to the observation that the bit error probability with the short length-15
PN sequence is worse than that realized with a long PN sequence (e.g., the length-127 m-sequence) with a processing gain
of 15 only over 4 narrow ranges of interfering tone frequencies.
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Fig. 9.24 Bit error probability with length-63 m-sequence

9.5 DS Spread Spectrum on Frequency-Selective Fading Channels

Suppose that the DS complex envelope Qs.t/ is strictly bandlimited to a bandwidth of W=2Hz by using, for example, root-
raised cosine pulse shaping. Since the low-pass signal Qs.t/ is band-limited to jf j � W=2, the sampling theorem can be
invoked and Qs.t/ can be completely described by the set of complex samples fQs.n=W/g1nD�1. The sampled version of Qs.t/ is



9.5 DS Spread Spectrum on Frequency-Selective Fading Channels 479

Qsı.t/ D
1
X

nD�1
Qs
� n

W

�

ı
�

t � n

W

�

(9.123)

D Qs.t/
1
X

nD�1
ı
�

t � n

W

�

: (9.124)

Taking the Fourier transform of both sides of (9.124) gives

QSı.f / D QS.f / �W

1
X

nD�1
ı.f � nW/

D W

1
X

nD�1
QS.f / � ı.f � nW/

D W

1
X

nD�1
QS.f � nW/: (9.125)

From (9.125),

QS.f / D 1

W
QSı.f / ; 0 � jf j � W=2: (9.126)

Another useful expression can be obtained by taking the Fourier transform of both sides of (9.123) giving

QSı.f / D
1
X

nD�1
Qs
� n

W

�

e�j2�nf=W : (9.127)

Combining (9.126) and (9.127) gives

QS.f / D 1

W

1
X

nD�1
Qs
� n

W

�

e�j�nf=W ; 0 � jf j � W=2: (9.128)

If the low-pass signal Qs.t/ is transmitted over a multipath-fading channel with time-variant transfer function T.f ; t/, the
received (noiseless) complex envelope is

Qr.t/ D
Z 1

�1
QS.f /T.f ; t/ej2� ftdf : (9.129)

Substituting QS.f / from (9.128) gives
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; (9.130)

where g.�; t/ is the time-variant impulse response of the channel. By defining

gn.t/ D
1

W
g
� n

W
; t
�

(9.131)
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the noiseless received complex envelope can be written as

Qr.t/ D
1
X

nD�1
gn.t/Qs

�

t � n

W

�

(9.132)

and it follows that the complex low-pass impulse response of the channel is

g.t; �/ D
1
X

nD�1
gn.t/ı

�

� � n

W

�

: (9.133)

For WWSUS channels, the fgn.t/g in (9.131) are independent complex Gaussian random processes. For all practical
purposes, the channel will be causal with an impulse response that is non-zero over a time interval of duration Tmax. In
this case, gn.t/ D 0; n � 0; n > L, where L D bTmax=Wc C 1 and bxc is the smallest integer greater than x. It follows that
the channel impulse response is

g.t; �/ D
L
X

nD1
gn.t/ı

�

� � n

W

�

: (9.134)

In conclusion, the frequency-selective fading channel can be modeled as an L-tap, 1=W-spaced, tapped delay line with tap
gain vector

g.t/ D .g1.t/; g2.t/; : : : ; gL.t//

as shown in Fig. 9.25. It should be emphasized that the channel vector g.t/ is not the same as the channel vector gT.t/

associated with the T-spaced discrete-time white noise channel model in Sect. 2.5.6.
If ideal Nyquist chip amplitude pulse shaping is used such that hc.t/ D sinc.t=Tc/, then W D 1=Tc and the channel

can be represented as a Tc-spaced or chip-spaced tapped delay line. Such a model is very convenient because it leads to a
simplified analysis. However, if any other pulse shape is used, such as a root-raised cosine pulse, then the tapped delay line
channel model in Fig. 9.25 is not Tc-spaced, e.g., a root-raised cosine pulse with ˇ D 1 (or 100% excess bandwidth) results
a Tc=2-spaced tapped delay line. Moreover, the 1=W-spaced tapped delay line model was derived under the assumption of a
strictly band-limited (non-causal) chip shaping pulse hc.t/. Any time-limited (causal) chip shaping pulse leads to a spectrum
QS.f / that is not band-limited and, therefore, the underlying assumptions in deriving the 1=W-spaced tapped delay line model
are violated. Very often, the channel is approximated as consisting of uncorrelated Tc-spaced rays, i.e.,

g.t; �/ D
1
X

nD�1
gn.t/ı .� � nTc/ : (9.135)
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Fig. 9.25 Tapped delay line model of a frequency-selective fading channel, from [272]
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9.5.1 RAKE Receiver

A variety of receiver structures can be used to detect DS spread spectrum signals. For DS CDMA where multiple users
share the same band, there are two broad types of detectors. The first is a conventional correlator or matched filter detector.
With a conventional detector the other user interference, or multiple-access interference, is treated as additional unwanted
noise. The second is a multiuser detector, that uses co-channel demodulation to simultaneously detect all the signals that are
present. This section concentrates on conventional detectors for DS spread spectrum signaling on multipath-fading channels.

A simple type of conventional detector uses the autocorrelation properties of the spreading sequences to reject the
multipath interference [136, 137]. Sometimes this is called a multipath rejection receiver. Another approach is to exploit
the autocorrelation properties of the spreading sequences to resolve the multipath components and combine them together
to obtain a diversity advantage. Since the diversity is obtained from the multipath channel it is sometimes called multipath
diversity.

To develop the multipath diversity receiver, suppose that one of M possible waveforms having complex envelopes
Qsm.t/;m D 0; : : : ;M� 1 are transmitted at each baud epoch. With the frequency-selective fading channel shown in Fig. 9.25,
the corresponding received complex envelope is

Qr.t/ D
L
X

`D1
g`.t/Qsm

�

t � `

W

�

C Qn.t/ D Osm.t/C Qn.t/ (9.136)

where

Osm.t/ D
L
X

`D1
g`.t/Qsm

�

t � `

W

�

: (9.137)

As discussed in Sect. 5.2, the maximum likelihood coherent receiver employs a correlator or matched filter to the possible
received pulses Osm.t/ to compute the metrics

�.m/ D Re

�Z T

0

Qr.t/Os�
m.t/dt

�

� E Om

D Re

(
Z T

0

Qr.t/
L
X

`D1
g�
` .t/Qs�

m.t � `=W/dt

)

� E Om; (9.138)

where E Om is energy in the received pulse Osm.t/. The receiver chooses the index m that maximizes �.m/.
The receiver described by (9.138) correlates the received complex envelope Qr.t/ with delayed versions of the possible

waveforms Qsm.t/, followed by maximal ratio combining. This leads to the receiver structure shown in Fig. 9.26. By changing
the variable of integration in (9.138) an alternate form of the RAKE receiver can be obtained as shown in Fig. 9.27. In this
case the waveform Qsm.t/ is correlated with delayed versions of the received complex envelope Qr.t/. The receivers in Figs. 9.26
and 9.27 were first derived by Price and Green [270], and are commonly called RAKE receivers due to their function and
resemblance to an ordinary garden rake.

9.5.2 Error Probability of DS/BPSK with a RAKE Receiver

Consider DS/BPSK signaling with a short PN code .G D N/. The two possible DS/BPSK waveforms that are transmitted at
each baud epoch have the complex envelopes

Qs0.t/ D �Qs1.t/ D Ah.t/; (9.139)

where

h.t/ D
N�1
X

kD0
akhc.t � nTc/: (9.140)
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Fig. 9.27 Alternate form of RAKE receiver for DS/QPSK signals

With DS/BPSK the received waveforms Osm.t/ have equal energy so the bias term E Om in (9.138) is not needed. Assume that
Qs0.t/ is transmitted. Then using (9.138)

� D
L
X

mD1

L
X

`D1
Re

�

gmg�
`

Z T

0

Qs0.t � m=W/Qs�
0 .t � `=W/dt

�

C Qn; (9.141)

where

Qn D
L
X

mD1
Re

�

g�
m

Z T

0

Qn.t/Qs�
0 .t � m=W/dt

�

(9.142)

and gm D ˛mej�m . The random variable Qn is Gaussian with zero mean and variance

�2Qn D 2ENo

L
X

mD1
˛2m: (9.143)
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In general, the integral in (9.141) is a complicated function of the spreading sequence and chip amplitude shaping pulse
that is used. However, certain cases lead to useful insight. For example, suppose the ideal Nyquist pulse hc.t/ D sinc.t=Tc/

with bandwidth W D 1=Tc is used. Strictly speaking this pulse is non-causal so the limits of integration in (9.141) must be
from �1 to1. This leads to5

I �
Z 1

�1
Qs0.t � m=W/Qs�

0 .t � `=W/dt

D A2
N�1
X

kD0

N�1
X

jD0
akaj

Z 1

�1
hc.t � .mC k/Tc/hc.t � .`C j/Tc/dt

D A2
N�1
X

kD0
akamCk�`

Z 1

�1
h2c.t/dt

D 2EcN�aa.m � `/ D 2E�aa.m � `/ (9.144)

where the second last step follows under the assumption of a short code. Therefore, (9.141) becomes

� D 2E

L
X

mD1
˛2m C 2E

L
X

mD1

L
X

`D1
`¤m

Re fgmg�
` g�aa.m � `/C Qn: (9.145)

The second term in the above expression is a self-interference that arises from the non-ideal autocorrelation properties of the
spreading sequence.

To demonstrate the effect of the self-interference, assume a WSSUS Rayleigh fading channel and consider the random
variable

Ym;` D Re fgmg�
` g

D ˛m cos.�m/˛` cos.�`/C ˛m sin.�m/˛` sin.�`/: (9.146)

Define the new random variables

XI;k D ˛k cos.�k/ XQ;k D ˛k sin.�k/: (9.147)

Then

˛k D
q

X2I;k C X2Q;k �k D Tan�1 XI;k

XQ;k

: (9.148)

Therefore,

Ym;` D XI;mXI;` C XI;mXI;`: (9.149)

Since the XI;k and XI;k are independent zero-mean Gaussian random variables with variance �2k , Ym;` has the Laplacian density

pYm;`
.y/ D 1

2�m�`
exp

�

� jyj
�m�`

�

: (9.150)

Making the substitution for Ym;` and rearranging the sum in the second term in (9.145) gives

� D 2E

L
X

mD1
˛2m C 4E

L�1
X

kD1

L�1�k
X

iD1
Yi;iCk�aa.k/C Qn: (9.151)

5Since DS/BPSK signaling is used the spreading sequence a is real with autocorrelation function �aa.n/ D EŒaiaiCn�.
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It is difficult to evaluate the effect of the self-interference exactly, because the Ym;` are non-Gaussian and correlated. However,
the self-interference due to multipath can be minimized by using spreading codes that have small autocorrelation sidelobes
in the time intervals during which delayed signals with significant power are expected. For large delays, the stringent
requirements on the autocorrelation function can be relaxed. For asynchronous CDMA applications, the spreading codes
still must have small cross-correlation sidelobes over all delays. It is easy to find reasonably large sets of sequences that
satisfy these properties. For example, a set of 2m C 1 Gold sequences can be generated of length 2m � 1. Of these 2m C 1
sequences, 2m�nC1 C 1 will have their first autocorrelation off-peak (tm � 2 or tm) at least n chip durations from the main
autocorrelation peak. Consequently, these 2m�nC1 C 1 sequences will introduce negligible self-interference if they are used
on channels having impulse responses up to nTc seconds long.

If the spreading sequences have an ideal autocorrelation function, i.e., �aa.n�m/ D ınm, then there is no self-interference
and (9.151) becomes

� D 2E

L
X

mD1
˛2m C Qn: (9.152)

Under this condition, the probability of bit error is

Pb.
b/ D Q
�p

2
b

�

; (9.153)

where 
b is the received bit energy-to-noise ratio given by


b D
1

�2Qn

 

2E

L
X

mD1
˛2m

!2

D
L
X

mD1

m (9.154)

where


m D
˛2mE

No

: (9.155)

With Rayleigh fading, each of the 
m is exponentially distributed with density function

p.
m/ D
1

N
m

exp

�

�
m

N
m

�

; (9.156)

where N
m is the average received bit energy-to-noise ratio for the kth channel tap. To compute the density of 
b, first note that
the characteristic function of 
m is

 
m
.jv/ D 1

1 � jv N
m

(9.157)

so that the characteristic function of 
b is

 
b
.jv/ D

L
Y

mD1

1

1 � jv N
m

: (9.158)

By using a partial fraction expansion and taking the inverse characteristic function, the density of 
b is

p
b
.x/ D

L
X

mD1

Am

N
m

exp

�

� x

N
k

�

; (9.159)

where

Am D
L
Y

iD1
i¤m

N
m

N
m � N
i

: (9.160)
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Fig. 9.28 Bit error probability with a RAKE receiver for DS/BPSK signaling on a multipath-fading channel. The channel has L D 4 taps and a
4-tap RAKE receiver is used

Therefore, with Rayleigh fading the average probability of bit error is
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mD1
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: (9.161)

In order to proceed further the N
m must be specified. One plausible model assumes an exponentially decaying power-delay
profile, e.g.,

N
m D Ce�k="; (9.162)

where " controls the delay spread and C is chosen to satisfy the constraint
PL

mD1 N
m D N
b. Solving for C yields

N
m D
.1 � e�1="/e�k="

e�1=" � e�.LC1/=" N
b: (9.163)

The probability of bit error is plotted in Fig. 9.28 for L D 4 and various values of ". For small ", the channel is not
dispersive and very little multipath diversity is obtained. However, as " becomes large the channel becomes more dispersive
and a greater diversity gain is achieved.

Finally, the number of taps actually used in the RAKE receiver can be less than the channel length L. However, such a
RAKE receiver will not capture all the received signal energy and will suffer from some loss in performance.

9.6 Error Probability for DS CDMA on AWGN Channels

DS CDMA systems achieve multiple-access capability by assigning each user a unique PN spreading sequence. In general,
however, the transmissions from the different users are not synchronized and arrive at the intended receiver with different
amplitudes, delays, and phases. The exact error probability with a conventional correlation detector will depend on the
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particular spreading sequences that are employed and will also be a function of the random amplitudes, delays, and phases of
the signals that arrive at the intended receiver. Unfortunately, the exact error probability is difficult to derive and evaluate and,
therefore, a variety of upper and lower bounds, and Gaussian approximations to the probability of error have been suggested
in the literature.

Suppose that K users simultaneously access the channel using DS/BPSK signaling with short spreading codes of length N.
The transmitted complex envelope for the ith user is

Qs.i/.t/ D A
X

n

x.i/n h.i/.t � nT/ (9.164)

where

h.i/.t/ D
N�1
X

kD0
a
.i/
k hc.t � kTc/ (9.165)

and a.i/ D fa.i/k g and x.i/ D fx.i/n g are the ith user’s spreading and data sequences, respectively. A real-valued spreading

sequence assumed with chips a
.i/
k chosen from the set f�1;C1g, corresponding to simple binary spreading or dual channel

quaternary spreading. The data symbols x
.i/
n are independent, random variables chosen from the set f�1;C1g with equal

probability. In practice, the spreading sequences a.i/ are carefully chosen to have good correlation properties, e.g., Gold
sequences or Kasami sequences.

With CDMA, the signals from the various MSs in a cell will arrive at the corresponding BS with different power levels.
DS CDMA systems must be power controlled such that all signals arrive at the intended receiver with the same power
level; otherwise, a large performance loss will result. Power control is needed to combat the near-far effect, where strong
signals will capture the receiver and prevent detection of the weaker signals. The power control loop must be fast enough
to compensate not only for path loss and shadowing, but envelope fading as well. Under the assumption of perfect power
control and a frequency non-selective channel, the received complex envelope will be6

Qr.t/ D
K
X

iD1
ej�i Qs.i/.t � �i/C Qn.t/ (9.166)

where the f�ig and f�ig are the random delays and carrier phases of the received signals. This leads to the model shown in
Fig. 9.29.

This section considers the performance of an ideal correlation detector, where the composite received signal at a BS is
multiplied by a synchronized and conjugated replica of the spreading sequence corresponding to a particular target MS whose
data sequence is to be detected. Multiplication of a spreading sequence by a synchronized version of itself will despread
the received signal corresponding to the particular target MS, while further spreading the received signals corresponding
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Fig. 9.29 DS CDMA signaling on a perfectly power controlled flat fading channel

6Here the normalization ˛ D 1 is assumed.
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to other MSs in the composite received signal. As a result, the data sequence of the target MS can be obtained from
the output of the correlator. Due to symmetry, only the decorrelator that recovers the data sequence from the first MS is
considered. Furthermore, since only the relative delays and phases of the K signals comprising the composite received signal
are important, it can be assumed that �1 D 0 and �1 D 0, while the remaining �i are uniformly distributed on Œ0; 2�/ and the
remaining �i are uniformly distributed on Œ0;T/. Hence, it is assumed that the composite received signal at the BS is despread
by multiplying by the spreading sequence a.1/.t/.

The decision variable at the output of the correlator in Fig. 9.1 has been derived by Lehnert and Pursley [200] as

�n D
p
2E

"

x.1/n C
K
X

kD2
Bk;1.x

.k/
n ; x

.k/
n�1; �k/ cos�k

#

C QnI (9.167)

where QnI is a zero-mean complex Gaussian random variable with variance No

Bk;1.x
.k/
n ; x

.k/
n�1; �k/ D x

.k/
n�1R

p

k;1.�k/C x.k/n
ORp

k;1.�k/ (9.168)

and R
p

k;m.�/ and ORp

k;m.�/ are the continuous-time partial cross-correlation functions of a.k/.t/ and a.m/.t/, defined by

R
p

k;m.�/ D
1

T

Z �

0

a.k/.t � �/a.m/.t/dt (9.169)

ORp

k;m.�/ D
1

T

Z T

�

a.k/.t � �/a.m/.t/dt: (9.170)

The functions R
p

k;m.�/ and ORp

k;m.�/ can be expressed in terms of the discrete aperiodic cross-correlation function �a
k;m.n/ and

the continuous-time partial chip autocorrelation functions Rh.ı/ and ORh.ı/ in (9.33) as

R
p

k;m.�/ D �a
k;m.` � N/ ORh.ı/C �a

k;m.`C 1 � N/Rh.ı/ (9.171)

ORp

k;m.�/ D �a
k;m.`/

ORh.ı/C �a
k;m.`C 1/Rh.ı/ (9.172)

where ` D b�=Tcc and ı D � � `Tc. Note that ı is uniform on Œ0;Tc/ and ` is uniform on the set f0; 1; : : : ;N � 1g.
Combining (9.168), (9.171), and (9.172) gives
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x
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a
k;1.`k C 1 � N/C x.k/n �

a
k;1.`k C 1/

i

Rh.ık/ (9.173)

To proceed any further requires information about the aperiodic cross-correlation functions of the spreading sequences
being used, as well as the chip amplitude shaping function. One possibility is to assume random spreading sequences, where

the length-N spreading sequences a.i/ D fa.i/k gNkD1 are generated randomly such that the a
.i/
k are randomly chosen from the set

f�1;C1g with equal probability. For random spreading sequences and a rectangular chip shaping function hc.t/ D uTc
.t/,

Morrow and Lehnert [230] have shown that

Bk;1.x
.k/
n ; x

.k/
n�1; �k/ D x

.k/
n�1

ık

N
C x.k/n

.1 � ık/

N
C Xk

N
C Yk

N
.1 � 2ık/; (9.174)

where ık is uniform on Œ0; 1/, x
.k/
n�1 and x

.k/
n are uniform on f�1;C1g, and Xk and Yk are discrete random variables having the

probability distribution functions

pXk
.i/ D 1

2�A

 

A
iCA
2

!

; i 2 f�A;�AC 2; : : : ;A � 2;Ag (9.175)

pYk
.i/ D 1

2�B

 

B
jCB

2

!

; i 2 f�B;�BC 2; : : : ;B � 2;Bg: (9.176)
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The quantities A and B are related to

C
4D N�a

1;1.1/ D
N�2
X

jD0
a
.1/
j a

.1/
jC1 (9.177)

by

A D N � 1C C

2
(9.178)

B D N � 1 � C

2
(9.179)

where �a
1;1.1/ is the aperiodic cross-correlation of the spreading sequence of the first user. The parameter B is the number of

chip boundaries in one period of the sequence a.1/ at which a transition to a different value occurs. For random spreading
sequences, C has the probability distribution

pC.i/ D
1

2N�1

 

N � 1
iCN�1
2

!

; i 2 f�N C 1;�N C 3; : : : ;N � 3;N � 1g: (9.180)

9.6.1 Standard Gaussian Approximation

The standard Gaussian approximation assumes that the multiple-access interference

I D
K
X

kD2
Bk;1.x

.k/
n ; x

.k/
n�1; �k/ cos�k (9.181)

for sufficiently large K can be modeled as a Gaussian random variable with a distribution that is completely specified by
its mean and variance. The approximation is obtained by conditioning the multiple-access interference on the random set
of parameters fık; �k;B or Cg followed by ensemble averaging. Starting with the result in (9.174), it is straightforward to
show that

EŒBk;1.x
.k/
n ; x

.k/
n�1; �k/jC� D 0 (9.182)

since the conditional density functions for x
.k/
n , x

.k/
n�1, Xk, and Yk are symmetrical about zero. Hence, EŒWk� D 0 and EŒI� D 0.

To compute the variance of the multiple-access interference, it is convenient to define the vectors ı D .ı1; ı2; : : : ; ıK/ and
� D .�1; �2; : : : ; �K/. The variance of the multiple-access interference is
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(9.183)

Since all the Zk are independent it follows that

E
h

B2k;1.x
.k/
n ; x

.k/
n�1; �k/ jık;B

i

D 2.2BC 1/.ı2k � ık/C N

N2
(9.184)
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so that

�2I D
1

2

K
X

kD2
.1C cos.2�k//

2.2BC 1/.ı2k � ık/C N

N2
: (9.185)

If the intended sequence is known, then B is known. For random sequences EŒB� D .N � 1/=2, and using this value for B

�2I D
1

N

K
X

kD2
.1C cos.2�k//.ı

2
k � ık C 1=2/: (9.186)

Several possibilities can be examined from here, including the following two important cases.

9.6.1.1 Chip and Phase Asynchronous Signals

The interfering signals are characterized by ı uniform on Œ0; 1/ and � uniform on Œ0; 2�/ so that EŒı2k � ık� D �1=6 and
EŒcos.2�/� D 0. In this case, �2I D .K � 1/=3N. Hence, the decision variable in (9.167) can be interpreted as Gaussian

random variable with mean x
.1/
n 2 f�1;C1g and variance .K � 1/=3N leading to the probability of bit error

Pb D Q

 r

3N

K � 1

!

: (9.187)

The carrier to interference ratio C=I can be defined as the carrier power divided by the total noise power

C

I
D 1

K � 1 : (9.188)

By comparing (9.187) with the probability of bit error for binary signaling on an AWGN channel, i.e., Pb D Q.
p
2
b/

observe that the C/I and the effective bit energy-to-noise ratio, 
b, are related by


b D
2N

3

C

I
: (9.189)

9.6.1.2 Chip and Phase Synchronous Signals

The interfering signals have ık D 0 and �k D 0 so that �2I D .K � 1/=N and

Pb D Q

 r

N

K � 1

!

: (9.190)

For chip and phase synchronous signals C/I and the effective 
b are related by


b D 2N
C

I
: (9.191)

Coherent addition of interfering signals yields worst case interference with random spreading sequences. The orthogonal
Walsh-Hadamard sequences are less random (secure) but yield zero correlation (better performance) under this condition.
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9.6.2 Improved Gaussian Approximation

The standard Gaussian approximation can be quite inaccurate when the number of simultaneous users K is small or the
processing gain N is large. To circumvent this deficiency a number of improved approximations have been developed.

A simple and more accurate Gaussian approximation has been derived by Holtzman [166]. To describe this method, let
P.�/ be any function of a random variable � having mean � and variance �2. Then using a Taylor series expansion about the
mean � gives

P.�/ D P.�/C .� � �/P0.�/C 1

2
.� � �/2P00.�/C � � � (9.192)

Taking expectations

EŒP.�/� � P.�/C 1

2
P00.�/�2: (9.193)

Instead of using the Taylor series expansion, start instead with differences (Stirling’s formula) and write

P.�/ D P.�/C .� � �/P.�C h/ � P.� � h/

2h

C1
2
.� � �/2P.�C h/ � 2P.�/C P.� � h/

h2
C � � � (9.194)

Taking expectations

EŒP.�/� � P.�/C 1

2

P.�C h/ � 2P.�/C P.� � h/

h2
�2: (9.195)

Holtzman [166] has shown that h D
p
3� yields good results so that

EŒP.�/� � 2

3
P.�/C 1

6
P.�C

p
3�/C 1

6
P.� �

p
3�/: (9.196)

To apply the above result, let � and �2 be the mean and variance of �2I in (9.185). It follows that

� D .K � 1/
N2

EŒLk�: (9.197)

where

Lk D
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2
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Then
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2
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�

D .K � 1/=3N (9.199)

where the last line assumes ensemble averaging with random spreading sequences. The variance is

�2 D K � 1
N4

�

EŒL2k � � E2ŒLk�C .K � 2/cov.Lj;Lk/
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Fig. 9.30 Bit error probability against the number of users and various processing gains. The standard Gaussian approximation is shown to
underestimate the error probability for small numbers of users
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The above calculations are very simple and lead to quite accurate results for all values of K and N. Figure 9.30 compares
the standard and improved Gaussian approximations for various processing gains and number of simultaneous users. Note
that the standard Gaussian approximation underestimates the error probability for small numbers of users. In this case, the
improved Gaussian approximation should be used. However, the accuracy of the standard Gaussian approximation improves
when the number of simultaneous users increases.

9.7 CDMA Multiuser Detection

The previous sections have considered the performance of DS CDMA with conventional correlation detection where
the multiple-access interference was treated as an unwanted impairment that can have a detrimental affect on system
performance. This section considers the use of CDMA multi-user detection to combat multiple-access interference. The
concept of DS CDMA multi-user detection is very similar to the concept of co-channel demodulation discussed in Sect. 7.7.
However, instead of distinguishing users by their different received pulses due to their signals propagation through different
frequency-selective fading channels, DS CDMA multi-user detection distinguishes the different users by assigning them
different spreading sequences. In any case, the mathematical development is very similar and results from Sect. 7.7 will be
used in our treatment of CDMA multi-user detection.
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Once again, consider a CDMA system consisting of K users that use short spreading codes. The transmitted complex
envelope for the ith user is given by

Qs.i/.t/ D A

L
X

nD1
x.i/n a.i/.t � nT/; (9.202)

where

a.i/.t/ D
N�1
X

kD0
a
.i/
k hc.t � kTc/; (9.203)

and a.i/ D fa.i/0 ; : : : ; a
.i/
N�1g and x.i/ D fx.i/1 ; : : : ; x

.i/
L g are the ith user’s length-N spreading sequence and length-L data

sequence, respectively. The data symbols x
.i/
n are be independently chosen from the set f�1;C1g with equal probability. The

received complex envelope is given by

Qr.t/ D A

K
X

iD1
giQs.i/.t � �i/C Qn.t/; (9.204)

where the fgig; gi D ˛iej�i and f�ig are the sets of random complex gains and delays that are introduced by the channel. The
delays are assumed to assumed to satisfy the condition 0 � �i � T for 1 � i � K, where T is the data symbol duration. In the
case of synchronous CDMA transmission, �i D 0 for 1 � i � K. Unlike the case of conventional correlation detection, the
CDMA signals are not power controlled and may be received with different power levels due to the different channel gains
˛i for 1 � i � K. The fact that power control is not needed is a benefit of CDMA multi-user detection.

9.7.1 Optimum CDMA Multiuser Detection

The optimum CDMA multiuser detector determines the most likely sequence of transmitted bits x.i/ D fx.i/1 ; : : : ; x
.i/
L g for

all users 1 � i � K, given the observation of the received waveform Qr.t/. There are generally two cases to consider:
synchronous CDMA and asynchronous CDMA. However, for our purpose only synchronous CDMA is considered where
the received complex envelope is given by

Qr.t/ D A

K
X

iD1
giQs.i/.t/C Qn.t/: (9.205)

In this case, it is sufficient to consider the received pulse corresponding to the kth baud interval, given by

Qr.t/ D A

K
X

iD1
gix

.i/a.i/.t/C Qn.t/; (9.206)

and to detect the corresponding data vector x D fx.1/; : : : ; x.K/g. Similar to the development in Sect. 7.7, a complete set of
complex orthonormal basis functions can be used to represent the received waveform Qr.t/ as a vector Qr D fQrng, such that

Qrn D A

K
X

iD1
gix

.i/a.i/n C Qnn; (9.207)

where

a.i/n D
Z 1

�1
a.i/.t/'�

n .t/dt (9.208)

Qnn D
Z 1

�1
Qn.t/'�

n .t/dt: (9.209)
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The Qnn are uncorrelated zero-mean complex Gaussian random variables with variance 1
2
EŒjQnnj2� D No, so that the received

vector Qr has the joint conditional multivariate Gaussian density

p.Qrjx/ D
N
Y

nD1

1

2�No

exp

8

<

:
� 1

2No

ˇ
ˇ
ˇ
ˇ
ˇ
Qrn � A

K
X

iD1
gix

.i/a.i/n

ˇ
ˇ
ˇ
ˇ
ˇ

2
9

=

;
: (9.210)

The optimum receiver chooses vector of symbols x D fx.1/; : : : ; x.K/g to maximize p.Qrjx/ or, equivalently, to minimize the
metric

�.x/ D
N
X

nD1

ˇ
ˇ
ˇ
ˇ
ˇ
Qrn � A

K
X

iD1
gix

.i/a.i/n

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (9.211)

Since
PN

nD1 jQrnj2 is independent of x, maximizing (9.211) is equivalent to maximizing

�.x/ D 2Re

(

A

K
X

iD1
g�

i x.i/
�

N
X

nD1
Qrna.i/

�

n

)

� A2
K
X

iD1

K
X

i0D1
gix

.i/g�
i x.i

0/�
N
X

nD1
a.i/n a.i

0/�

n : (9.212)

In the limit as the number of observable random variables N approaches infinity, define

y.i/
4D lim

N!1

N
X

nD1
Qrna.i/

�

n D
Z 1

�1
Qr.t/a.i/�.t/dt (9.213)

Ri;i0
4D lim

N!1

N
X

nD1
a.i/n a.i

0/�

n D
Z 1

�1
a.i/.t/a.i

0/�.t/dt: (9.214)

Using (9.213) and (9.214) in (9.212) yields the final form

�.x/ D 2Re

(

A

K
X

iD1
g�

i x.i/
�

y.i/

)

� A2
K
X

iD1

K
X

i0D1
gix

.i/g�
i x.i

0/�Ri;i0 : (9.215)

The variables fy.i/g; 1 � i � K in (9.213) are obtained by passing the received complex envelope Qr.t/ through a bank of
K correlators or matched filters and sampling the outputs. This essentially despreads and detects the received signal. The
parameter Ri;i0 in (9.214) is equal to the full period cross-correlation between the spreading waveforms a.i/.t/ and a.i

0/.t/.
The decision metric in (9.215) can be put into a convenient vector product form as follows:

�.x/ D 2Re
˚

xHG�y



� xHG�RGx; (9.216)

where

y D .y.1/; y.2/; : : : ; y.K//T (9.217)

x D .x.1/; x.2/; : : : ; x.K//T (9.218)

G D diagŒAg1;Ag2; : : : ;AgK � (9.219)

R D ŒRi;i0 �K�K ; (9.220)

and xH is the complex conjugate transpose of x. Note that the optimum detector must know or estimate the complex channel
gains gi; 1 � i � K to compute the decision metrics. The matrix R may be assumed known, since the spreading sequences
are known. It is apparent that the complexity of the optimal detector grows exponentially with the number of users K and
becomes impractical for large K. For this reason, a number of sub-optimum CDMA multi-user detectors have been suggested
in the literature.
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9.7.2 Decorrelating Detector

The vector of samples at the output of the K correlators or matched filters is

y D GRxC �; (9.221)

where the zero-mean Gaussian noise vector

� D .�.1/; �.2/; : : : ; �.K//T (9.222)

has covariance matrix

ˆ�� D
1

2
E
�

��H
�

D NoR: (9.223)

It follows that the vector y has a joint conditional complex Gaussian distribution with mean GRx and covariance matrix NoR.
That is,

p.yjx/ D 1

.2�No/K jRj1=2
exp

�

� 1

2No

.y �GRx/HR�1.y �GRx/

�

: (9.224)

The best linear estimate of x is the one that minimizes the metric

�.x/ D .y �GRx/HR�1.y �GRx/ (9.225)

which results in the solution

Qx D R�1G�1y: (9.226)

To see how the decorrelator works, substitute (9.221) into (9.226) to obtain

Qx D xC R�1G�1� (9.227)

Finally, the binary symbol decisions are obtained by

Ox D sign.Qx/: (9.228)

Note that the decorrelator detector removes the multi-user interference in the signal terms, and this makes the detector near-
far resistance so that power control is not necessary. Also, the decorrelator detector inverts the channel G. This will result in
noise enhancement for users that have small channel gains, gi. Finally, if one or more pairs of spreading sequences are highly
correlated, the matrix R is ill-conditioned and will also cause noise enhancement.

9.7.3 Minimum Mean Square Error Detector

The MMSE detector is one that chooses the linear solution Qx D Ay to minimize the mean square error (MSE)

J.x/ D 1

2
Ex;�Œkx � Qxk2� D

1

2
EŒkx � Ayk2�; (9.229)

where the expectation is over both the random data and noise vectors. The MMSE solution occurs when the error vector
x � Ay is orthogonal to the observation vector y, i.e.,

1

2
Ex;�Œ.x � Ay/yH� D 0

1

2
Ex;�ŒxyH� � A

1

2
Ex;�ŒyyH� D 0: (9.230)
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For the case of synchronous CDMA,

1

2
Ex;�ŒxyH� D 1

2
ExŒxxHRHG��C 1

2
E�Œx�H� D 1

2
RHG� D 1

2
RG�; (9.231)

since ExŒxxH� D I with uncorrelated data, the noise vector � has zero mean, and R is a Hermitian matrix, i.e., RH D R. Also,

1

2
AEx;�ŒyyH� D 1

2
AEx;�Œ.GRxC �/.GRxC �/H�

D A

�
1

2
ExŒGRxxHRHG��C 1

2
E�Œ��H�

�

D A

�
1

2
GRRHG� C NoR

�

D A

�
1

2
GRRG� C NoR

�

: (9.232)

Substituting (9.231) and (9.232) into (9.230) and solving for A gives the equation

1

2
RG� � A

�
1

2
GRRG� C NoR

�

D 0 (9.233)

which leads to the solution

Aopt D
�

GRC 2No.G
�/�1

��1
: (9.234)

Using Aopt, the MMSE receiver computes the vector

Qx D Aopty (9.235)

and makes the decisions

Ox D sign.Qx/: (9.236)

Like the decorrelator detector, the MMSE detector is near-far resistant. Also, from (9.234), if the noise is negligible compared
to the multi-user interference, i.e., No D 0, then Aopt D R�1G�1 and the MMSE detector reduces to the decorrelator detector.
On the other hand, if the noise is dominant compared to the multi-user interference, i.e., No is large, then from (9.234),
Aopt D G�=2No. In this case, the MMSE detector reduces to the conventional correlation detector.

Problems

9.1. Suppose that a DS/BPSK spread spectrum signal is corrupted by a single, phase-asynchronous, CW interfering tone at
the carrier frequency. The received low-pass waveform is

Qr.t/ D Qs.t/C Q{.t/;

where Qs.t/ is defined in (9.4) and

Q{.t/ D Aie
j� ;

where � is an arbitrary phase offset. Assume the use of a short Gold code (of arbitrary length). Compute the probability of
bit error with a simple correlation detector.
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9.2. Consider a DS/BPSK waveform that is subjected to broadband pulse jamming. In particular, a jammer with total power
J jams the DS/BPSK waveform a fraction � of the time with additive white Gaussian noise having a two-sided power spectral
density

NJ

2�
D J

2Wss�
;

where Wss is the spread spectrum bandwidth, and NJ D J=Wss is the one-sided spectral density achieved by spreading the
total jammer power J over the spread spectrum bandwidth Wss. During the remaining fraction of time 1 � �, the jammer is
off and the received DS/BPSK waveform is assumed to be noise-free. It is assumed that each modulated and spread BPSK
symbol is either completely jammed or not at all. The average received bit energy-to-jammer-noise ratio is defined as


b D
Eb

NJ

D WssS

RbJ
;

where S is the received desired signal power and Rb is the bit rate.

(a) Obtain an expression for the probability of bit error as a function of the jamming fraction �.
(b) Derive an expression for the jamming fraction � that will maximize the probability of bit error. Note that jamming

fraction must satisfy the constraint 0 < � � 1.
(c) What is the maximum bit error probability corresponding to the worst case jamming fraction found in part (b)?

9.3. Consider a non-coherently detected FH/BFSK waveform that is subjected to partial band noise jamming. In particular,
a jammer with total power J jams a fraction � of the spread spectrum bandwidth Wss with additive white Gaussian noise
having a two-sided power spectral density

NJ

2�
D J

2Wss�
;

where NJ D J=Wss is the one-sided spectral density achieved by spreading the total jammer power J over the spread spectrum
bandwidth Wss. The remaining fraction 1 � � of bandwidth is free of jamming and is also assumed to be noise-free. It is
assumed that each modulated and frequency hopped BFSK symbol is either completely jammed or not at all. The average
received bit energy-to-jammer-noise ratio is defined as


b D
Eb

NJ

D WssS

RbJ
;

where S is the received desired signal power and Rb is the bit rate.

(a) Obtain an expression for the probability of bit error as a function of the jamming fraction �.
(b) Derive an expression for the jamming fraction � that will maximize the probability of bit error. Note that jamming

fraction must satisfy the constraint 0 < � � 1.
(c) What is the maximum bit error probability corresponding to the worst case jamming fraction found in part (b)?

9.4. The generator polynomials for constructing “Gold-like” code sequences of length N D 7 are

p1.x/ D 1C xC x3

p2.x/ D 1C x2 C x3:

The sequences are said to be “Gold-like” because p1.x/ and p2.x/ are not a preferred pair and, therefore, will not actually
generate a set of Gold sequences. However, the procedure used to construct the set sequences is similar to that used to
construct Gold sequences. Generate all the “Gold-like” codes of length 7 and determine the cross-correlation functions of
one sequence with each of the others.

9.5. Consider the length-7 m-sequences that are generated by the polynomials

p1.x/ D 1C xC x3

p2.x/ D 1C x2 C x3:
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(a) Find and sketch the full period autocorrelation functions of the sequences.
(b) Find and sketch the aperiodic autocorrelation function of the sequences.
(c) Find and sketch the full period cross-correlation function of the two sequences.
(d) Find the discrete-time Fourier transform of the aperiodic autocorrelation function, ˆa.f /, for each sequence.

9.6. Consider the length-7 Barker sequence

a D .C1;C1;C1;�1;�1;C1;�1/

and its mirror image sequence

a D .�1;C1;�1;�1;C1;C1;C1/:

(a) Find and sketch the full period autocorrelation functions of the sequences.
(b) Find and sketch the aperiodic autocorrelation function of the sequences.
(c) Find and sketch the full period cross-correlation function of the two sequences.
(d) Sketch the discrete-time Fourier transform of the aperiodic autocorrelation function, ˆa.f /, and find the frequencies

where it attains its maximum and minimum values.

9.7. Suppose that the following length-7 time-domain sequences are being proposed for the synchronization word in an
OFDM system having block size N D 7.

x1 D .C1;C1;C1;�1;�1;C1;�1/
x2 D .C1;C1;C1;�1;C1;�1;�1/

(a) Compute and plot the periodic autocorrelation function and aperiodic autocorrelation function of these two sequences.
(b) Which sequence has better periodic autocorrelation characteristics for the purpose of synchronization.
(c) By taking the discrete-time Fourier transform of the aperiodic autocorrelation functions compute the power spectrum

ˆa.f / in each case. Plot your results.

9.8 (Computer Exercise). Write a computer program to generate a set of Gold sequences of length 127.

(a) Plot the mean and variance of the partial period autocorrelation as a function of the processing gain 10 � G � 20 for
this set of Gold codes.

(b) Repeat part (a) for the partial period cross-correlation.

9.9 (Computer Exercise). Consider a DS/BPSK CDMA system that uses length-31 Gold codes. The kth user spreads their
binary data by using the Gold code

a.k/ D .a.k/1 ; a
.k/
2 ; : : : ; a

.k/
31 /:

The complex envelope of the modulated waveform for the kth user is

Qsk.t/ D A
X

n

x.k/n h.k/.t � nT/;

where

h.k/.t/ D
31
X

jD1
a
.k/
j uTc

.t � jTc/;

fx.k/n g is uncorrelated zero-mean binary data sequence, Tc is the chip duration, and T D 31Tc is the data bit duration.

(a) Pick one of the length-31 Gold codes at random for the kth user and write down the sequence. Plot the aperiodic
autocorrelation function of sequence.

(b) Plot the power spectrum of the kth user S
.k/

QsQs .f / against the normalized frequency fTb.
(c) Repeat parts (a) and (b) for a randomly chosen length-63 Gold code for the kth user.
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9.10. Plot the continuous-time partial autocorrelation functions of the chip waveform, Rh.ı/ and ORh.ı/ in (9.32) and (9.33),
respectively, as a function of the fractional chip delay ı for the following chip shaping pulses:

ha.t/ D

8

<

:

uTc
.t/ non-return-to-zero

sin.� t=Tc/uTc
.t/ half-sinusoid

1 � 2jt � Tc=2j=TcuTc
.t/ triangular

9.11. Consider the set of Walsh-Hadamard sequences of length 16. Determine full period autocorrelation �k;k.n/ for this set
of sequences. Tabulate your results in the k � n matrix

� D Œ�k;n�k�n;

where �k;n D �k;k.n/.

9.12. A WLAN system uses biorthogonal modulation based on the use of length-8 Walsh-Hadamard codewords. Following
the discussion leading to (4.81), a set of 16 biorthogonal signals is constructed according to

Qsm.t/ D A

8
X

kD1
hmk

hc.t � kTc/ ; m D 1; : : : ; 8

D �Qsm.t/ ; m D 9; : : : ; 16;

where Tc is the “chip duration” and T D 8Tc is the symbol duration. Assume an uncorrelated data sequence and assume that
all 16 signals are used with equal probability.

(a) Assuming that hc.t/ D uTc
.t/, find the power density spectrum of the complex envelope SQsQs.f /.

(b) Plot the power spectrum SQsQs.f / against the normalized frequency fTb, where Tb is the bit duration.

9.13. A spread spectrum system transmits a binary data sequence x D fxkg, xi 2 f�1;C1g, by using the following length-3
short code spreading sequence

a D .�1;C1;C1/:

(a) Compute and plot the full period autocorrelation of the sequence a.
(b) Compute and plot the aperiodic autocorrelation of the sequence a.
(c) Suppose the chip shaping function is

ha.t/ D sin

�
� t

Tc

�

uTc
.t/:

What is the transmitted power density spectrum SQsQs.f /?
(d) At which frequencies is the receiver most sensitive to tone interference?

9.14 (Computer exercise). Consider the four length-15 spreading sequences identified in Example 9.1.

(a) Write a computer program to exhaustively search for and find the 4 sequences.
b) The periodic autocorrelation and cross-correlation of these sequences are also important to ensure rapid acquisition and

to minimize multiuser interference. Define the 4 � 4 matrix ˆ D Œ�k;k�, where �k;k is defined as the maximum off-peak
periodic autocorrelation of sequence x.k/ and �j;k is the maximum cross-correlation between x.j/ and x.k/. These quantities
are defined by

�j;k D max
n

ˇ
ˇ
ˇ
ˇ
ˇ

1

N

N
X

iD1
x
.k/
i x

.j/
iCn

ˇ
ˇ
ˇ
ˇ
ˇ

Find the 4 � 4 matrix ˆ.
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9.15 (Computer Exercise). Suppose that a DS/BPSK spread spectrum system uses an m-sequence of length 127 as a long
spreading code. The generator polynomial for the m-sequence is

p.x/ D 1C x3 C x7:

The processing gain G is equal to 10, i.e., there are 10 chips per modulated symbol.

(a) Assuming that hc.t/ D uTc
.t/, find the power density spectrum of the complex envelope SQsQs.f /. You must average over

all possible subsequences of length 10.
(b) Plot the power spectrum SQsQs.f / against the normalized frequency fTb, where Tb is the bit duration. Comment on the effect

of using a long code on the power spectrum.

9.16. Suppose that the multipath intensity profile of a channel is given by

�g.�/ D
P

��
e��=�� :

(a) What is the average delay and delay spread of the channel?
(b) Suppose DS/BPSK spread spectrum is used on the channel. The receiver employs a two-tap RAKE receiver (assume

ideal Nyquist pulses and maximal ratio combining). The tap spacing of the RAKE tapped delay line is equal to the chip
duration Tc. Neglecting self-interference, write down an expression for the probability of bit error in terms of the average
delay of the channel and the average received bit energy-to-noise ratio.

(c) If the bit error probability for a non-dispersive channel (�� D 0) is 10�3, what is the value of delay spread �� that will
reduce the bit error probability from 10�3 to 10�4?

9.17. A multipath-fading channel has the multipath intensity profile

�g.�/ D
P

��
e��=�� :

Suppose that DS/BPSK spread spectrum is used on this channel. The receiver employs a 3-tap, Tc-spaced, RAKE receiver
with selective diversity combining. Assume ideal Nyquist pulses and the use of spreading sequences having an ideal
autocorrelation function. Find the probability of error in terms of the average received bit energy-to-noise ratio.

9.18. Suppose that a 4-user synchronous CDMA system uses the following four length-15 spreading sequences:

x1 D f�1 � 1 � 1 � 1 � 1C 1C 1 � 1 � 1C 1C 1 � 1C 1 � 1C 1g
x2 D fC1 � 1C 1 � 1C 1C 1 � 1 � 1C 1C 1 � 1 � 1 � 1 � 1 � 1g
x3 D f�1 � 1 � 1C 1C 1C 1 � 1C 1C 1C 1 � 1C 1C 1 � 1C 1g
x4 D fC1 � 1C 1C 1 � 1C 1C 1C 1 � 1C 1C 1C 1 � 1 � 1 � 1g

Design a decorrelating detector, assuming an AWGN channel.



Chapter 10

Multi-Carrier Techniques

Multi-carrier techniques are widely used in wireless LANs and fourth generation cellular systems. Orthogonal frequency
division multiplexing (OFDM) is widely used modulation technique in high-rate wireless systems such as IEEE 802.11a/g
wireless local area network (WLAN) standard due to its robustness to frequency-selective fading. Multiple access with
OFDM can be achieved by using TDMA or random access approaches. Orthogonal frequency division multiple access
(OFDMA) is an extension of OFDM to accommodate multiple simultaneous users. OFDMA was originally proposed by
Sari and Karam for cable television networks [289]. Since then OFDMA has been adopted for the forward channel in 3GPP
Long Term Evolution (LTE) and in both the forward and reverse channels for IEEE 802.16e Worldwide Interoperability for
Microwave Access (WiMAX) standard.

OFDMA achieves multiple access by dividing the available sub-carriers into mutually exclusive sets that are assigned to
distinct users for simultaneous transmission. The orthogonality of the sub-carriers ensures protection against multiple-access
interference. There are three basic forms of OFDMA depending on how the sub-carriers are allocated to the users. The first
is clustered-carrier OFDMA (CC-OFDMA) where each user is allocated a contiguous group of sub-carriers. The second is
spaced-carrier OFDMA (SC-OFDMA) where each user is assigned a group of sub-carriers that is regularly spaced across
the channel bandwidth. The last is random interleaving OFDMA (RI-OFDMA) where sub-carriers are assigned in a random
fashion to each user.

OFDMA has essentially the same advantages and disadvantages as OFDM when compared to single-carrier modulation
schemes. It achieves robustness to frequency-selective fading by using closely spaced orthogonal sub-carriers, such that
frequency domain equalization (FDE) can be employed. However, it also suffers from a high peak-to-average power ratio
(PAPR) that requires the use of either PAPR reduction techniques or a highly linear power amplifier. OFDMA is attractive
for use on the forward link of a cellular system, since all forward link transmissions can all use the same RF local oscillator
and sample clock reference in their digital-to-analog converters (DACs). However, the use of OFDMA on the cellular reverse
link is complicated considerably by the fact that waveform received at the BS from each MS will have a different carrier
frequency offset, timing offset, and sampling clock offset

To overcome the difficulties of using OFDMA on the cellular reverse link, a modified form of OFDMA, called single-
carrier frequency division multiple access (SC-FDMA) was introduced by Myung et al. [236]. SC-FDMA can be viewed as
DFT-spread OFDMA, where a block of time-domain data symbols are first transformed to the frequency domain by using
a discrete Fourier transform (DFT) before being applied to an OFDMA modulator. Similar to OFDMA, multiple access is
achieved by assigning the users disjoint sets of sub-carriers. This can be done using localized FDMA (L-FDMA) where
contiguous sub-carriers are assigned to a particular user, or Interleaved FDMA (I-FDMA) where users are assigned regularly
spaced sub-carriers that are distributed over the entire bandwidth. The resulting SC-FDMA waveform is a single-carrier
modulated waveform having a characteristically much lower PAPR than the corresponding multi-carrier OFDMA waveform.
This lower PAPR benefits the MS in terms of transmit power efficiency, thereby making SC-FDMA very attractive for the
cellular reverse link. For this reason SC-FDMA has been adopted as the reverse channel multiple-access scheme for 3GPP
Long Term Evolution (LTE).

Section 10.1 begins the chapter with a discussion of OFDM on frequency-selective channels, and describes how a cyclic
guard interval can be used to completely remove any intersymbol interference (ISI) in a very efficient fashion provided that
the length of the cyclic guard interval is at least as long as the length of the overall discrete-time channel impulse response.
The performance of OFDM on static ISI channels and fading ISI channels is then considered, in cases where the length of the
guard interval is less than the length of the overall discrete-time channel impulse response. In this case, residual ISI is present
which is shown to be devastating to the performance of OFDM. Section 10.1.2 then presents an effective technique to mitigate
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residual ISI, called residual ISI cancellation (RISIC) that uses a combination of tail cancellation and cyclic reconstruction.
Section 10.2 then considers the combination of single-carrier modulation with frequency domain equalization (FDE), a
technique known as single-carrier frequency domain equalization (SC-FDE). FDE is especially attractive on channels having
long impulse responses where the complexity of time-domain equalizers can become prohibitive. Afterwards, Sect. 10.3
treats a variety of issued related to OFDMA. The use of OFDMA on both the forward and reverse link is covered, and issues
such as sub-carrier allocation and time-domain windowing are considered. Section 10.4 concludes the chapter with single-
carrier frequency division multiple access (SC-FDMA), including multiplexing methods and analysis of peak-to-average
power ratio.

10.1 Orthogonal Frequency Division Multiplexing

Consider an orthogonal frequency division multiplexing (OFDM) system where the number of sub-carriers N is chosen to
be large enough so that the channel transfer function T.t; f / is essentially constant across sub-bands of width 1=T . Then

T.t; k/
:D T.t; k�f /; k�f � 1=.2T/ � f � k�f C 1=.2T/; (10.1)

and no equalization is necessary because the ISI is negligible. Viewing the problem another way, if the block length N is
chosen so that N � L, where L is the length of the discrete-time channel impulse response, then the ISI will only affect a
small fraction of the symbol transmitted on each sub-carrier. Weinstein and Ebert [348] came up with an ingenious solution,
whereby they inserted a guard interval in the form of a length-G cyclic prefix or cyclic suffix to each IDFT output vector
Xn D fXn;mg. In fact, if the discrete-time channel impulse response has duration L � G, their method can completely remove
the ISI in a very efficient fashion as is now described.

Suppose that the IDFT output vector Xn D fXn;mgN�1
mD0 is appended with a cyclic suffix to yield the vector Xg

n D
fXg

n;mgNCG�1
mD0 , where

Xg
n;m D Xn;.m/N (10.2)

D A

N�1
X

kD0
xn;ke

j2�km
N ; m D 0; 1; : : : ; N C G � 1; (10.3)

G is the length of the guard interval in samples, and .m/N is the residue of m modulo N. To maintain the data rate Rs D 1=Ts,
the DAC in the transmitter is clocked with rate Rg

s D NCG
N

Rs, due to the insertion of the cyclic guard interval.
Consider a time-invariant ISI channel with impulse response g.t/. The combination of the DAC, waveform channel g.t/,

anti-aliasing filter, and DAC yields an overall discrete-time channel with sampled impulse response g D fgmgLmD0, where L

is the length of the discrete-time channel impulse response. The discrete-time linear convolution of the transmitted sequence
fXg

ng with the discrete-time channel produces the discrete-time received sequence fRg
n;mg, where

Rg
n;m D

(
Pm

iD0 giX
g

n;m�i C
PL

iDmC1 giX
g

n�1;NCGCm�i C Qnn;m ; 0 � m < L
PL

iD0 giX
g

n;m�i C Qnn;m ; L � m � N C G � 1 : (10.4)

To remove the ISI introduced by the channel, the first G received samples fRg
n;mgG�1

mD0 are discarded and replaced with the

last G received samples fRg
n;mgNCG�1

mDN , as shown in Fig. 10.1. If the length of the guard interval satisfies G � L, this gives the
received sequence

Rn;m D R
g

n;GC.m�G/N

D
L
X

iD0
giXn;.m�i/N C Qnn;.m�i/N ; 0 � m � N � 1: (10.5)

Note that the first term in (10.5) represents a circular convolution of the transmitted sequence Xn D fXn;mg with the discrete-
time channel g D fgmgLmD0.
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Fig. 10.2 Block diagram of OFDM receiver

As shown in Fig. 10.2, the OFDM baseband demodulator computes the DFT of the vector Rn. This yields the output
vector

zn;i D
1

N

N�1
X

mD0
Rn;me�j 2�mi

N

D TiAxn;i C �n;i ; 0 � i � N � 1; (10.6)

where

Ti D
L
X

mD0
gme�j 2�mi

N (10.7)

and the noise samples f�n;ig are i.i.d with zero mean and variance No=.NTg
s /. Note that T D fTigN�1

iD0 is the DFT of the zero
padded sequence g D fgmgN�1

mD0 and is equal to the sampled frequency response of the channel. To be consistent with our

earlier results in Chap. 5, the zn;i can be multiplied by the scalar
p

NT
g
s . Following the same argument used in Sect. 5.7, such

scaling gives

Qzn;i D Ti
OAxn;i C Q�n;i i D 0; : : : ;N � 1; (10.8)

where OA D
p

2EhN=.N C G/ and the Q�n;i are i.i.d. zero-mean Gaussian random variables with variance No. Note that in this
case, Eh is defined in (4.56). Observe that each Qzn;i depends only on the corresponding data symbol xn;i and, therefore, the
ISI has been completely removed. Once again, for each of the Qzn;i, the receiver decides in favor of the data symbol xn;i that
minimizes the squared Euclidean distance

�.xn;i/ D kQzn;i � Ti
OAxn;ik2: (10.9)

Thus, for each OFDM block, N data symbol decisions must be made, one for each of the N sub-carriers.
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10.1.1 Performance of OFDM on ISI Channels

For channels having long delay spreads or with deployment of single frequency simulcast networks (SFNs), the possibility
exists that duration of the ISI will exceed the length of the guard interval. Such ISI is called residual ISI, and is devastating
even in small amounts. Increasing the length of guard interval to reduce residual ISI has its limitations, because it introduces
a bandwidth and power penalty. An attempt to equalize residual ISI has been suggested in [337], but the technique has high
complexity and provides only a limited improvement. This section presents an effective technique to mitigate residual ISI,
called residual ISI cancellation (RISIC). The RISIC technique is based on a very efficient method for echo cancellation [70].
The RISIC technique can be thought of as an iterative version of the echo cancellation method in [70]. The RISIC technique
will be shown to be highly effective for combating residual ISI with reasonable complexity.

10.1.1.1 Static ISI Channels

Once again, in an attempt to remove the ISI introduced by the channel, the first G received samples fRg
n;mgG�1

mD0 in (10.4) are

discarded and replaced with the last G received samples fRg
n;mgNCG�1

mDN . If the length of the channel exceeds the length of the
guard interval such that G < L, then the received samples after removal of the guard interval can be rewritten as the sum of
two components, viz.,

Rn;m D Rnjn�1;m C Rnjn;m; (10.10)

where Rnjn�1;m is the received sample component with contributions only from block n� 1 and Rnjn;m is the received sample
component with contributions only from block n. Then, in the absence of noise1

Rnjn�1;m D
L
X

iDGC1
giXn�1;.m�i/N .1 � u.m � iC G// (10.11)

Rnjn;m D
L
X

iD0
giXn;.m�i/N u.m � iC G/; (10.12)

where u.n/ is the unit step function. The received sample sequence fRn;mgN�1
mD0 is demodulated by taking the N-point DFT

DFTfRn;mg D DFTfRnjn�1;mg C DFTfRnjn;mg: (10.13)

DFTfRnjn�1;mg can be expressed as

DFTfRnjn�1;mg D
1

N

L
X

iDGC1
gi

N�1
X

`D0
xn�1;` exp

�

�j
2�`i

N

� N�1
X

mD0
u.i � m � G � 1/ exp

�

j
2�.` � k/m

N

�

(10.14)

and DFTfRnjn;mg by

DFTfRnjn;mg D xn;k

(
G
X

iD0
gi exp

�

�j
2�ki

N

�

C
L
X

iDGC1
gi exp

�

�j
2�ki

N

� �

1C G

N
� i

N

�
)

� 1
N

L
X

iDGC1
gi

N�1
X

lD0
`¤k

xn;` exp

�

�j
2�`i

N

� N�1
X

mD0
u.i � m � G � 1/ exp

�

j
2�.` � k/m

N

�

:

(10.15)

1Here we ignore noise to highlight the effect of ISI.
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For symbol k of block n, (10.14) is the ISI contribution from block n�1, the top half of (10.15) is the useful signal term, and
the bottom half of (10.15) is the ICI term. Equation (10.13) can be expressed as

zn;k D DFTfRn;mg (10.16)

D �kxn;k C Ik (10.17)

where

�k D
G
X

iD0
gi exp

�

�j
2�ki

N

�

C
L
X

iDGC1
gi exp

�

�j
2�ki

N

� �

1C G

N
� i

N

�

(10.18)

Ik D In;k C In�1;k (10.19)

and where In;k the ICI term and In�1;k the ISI term.
Next, the signal-to-interference ratio (SIR) for symbol k defined by

SIR.k/ D Eu.k/=EI.k/ (10.20)

is found where the useful signal energy is

Eu.k/ D
1

2
Ej�kxn;kj2: (10.21)

Since the input symbols fxn;kg are assumed independent, xn;k and Ik are also independent. Furthermore, In;k and In�1;k are
independent, too. Then, interference energy is

EI.k/ D
1

2
EjIkj2

D 1

2
EjIn�1;kj2 C

1

2
EjIn;kj2

D EISI.k/C EICI.k/: (10.22)

The signal energy in (10.21) can be expressed as

Eu.k/ D Es

ˇ
ˇ
ˇ
ˇ
ˇ

G
X

iD0
gi exp

�

�j
2�ki

N

�

C
L
X

iDGC1
gi exp

�

�j
2�ki

N

� �

1C G

N
� i

N

�
ˇ
ˇ
ˇ
ˇ
ˇ

2

� Es

ˇ
ˇ
ˇ
ˇ
ˇ

L
X

iD0
gi exp

�

�j
2�ki

N

�
ˇ
ˇ
ˇ
ˇ
ˇ

2

; if L � G << N: (10.23)

From (10.22),

EISI.k/ D
Es

N

(
L
X

iDGC1

L
X

i0Di

2.i � G/Re

�

gig
�
i exp

�

�j
2�k.i � i0/

N

��

�
L
X

iDGC1
jgij2.i � G/

)

(10.24)

EICI.k/ D EISI.k/ �
Es

N2

ˇ
ˇ
ˇ
ˇ
ˇ

L
X

iDGC1
gi exp

�

�j
2�ki

N
.i � G/

�
ˇ
ˇ
ˇ
ˇ
ˇ

2

: (10.25)

Note that the second term in (10.25) is relatively small when L � G << N, in which case EI.k/ � 2EISI.k/.
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Table 10.1 4-Tap static ISI
channel models

Delay Fractional power Fractional power

Tap # (�s) Channel 1 Channel 2

0 0.0 0.15 0.39

1 0.2 0.65 0.16

2 0.4 0.15 0.26

3 0.6 0.05 0.19

0.0 0.2 0.4 0.6 0.8 1.0

k/N
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Fig. 10.3 Amplitude spectrum of static ISI channel with OFDM for N D 128

QAM Performance

The symbol error rate (SER) for 16-QAM is

SER D 3Q

 r

1

5

s

! 

1 � 3
4

Q

 r

1

5

s

!!

; (10.26)

where 
s is the received symbol energy-to-noise ratio. With OFDM, the SER on a static ISI channel is

SER D 1

N

N�1
X

kD0
SER.k/ (10.27)

where SER.k/ is obtained from (10.26) with 
s replaced by SIR.k/ from (10.20).
Two static ISI channels are considered as shown in Table 10.1. Channel 1 has sub-channels with a moderate null, whereas

Channel 2 has several sub-channels with a severe null, as shown in Fig. 10.3.
Figure 10.4 shows the SER floors due to ISI without noise for different block sizes when a guard interval is not used

.G D 0/. As expected the error floor due to the ISI decreases with increasing block size. However, when there exists deep
null sub-channels as in Channel 2, the improvement from increasing block size is quite small. Therefore, increasing the
OFDM block size is not always a very efficient countermeasure against ISI.

10.1.1.2 Fading ISI Channel

On fading ISI channels, channel time variations during a block cause ICI. For large block sizes, the central limit theorem can
be invoked and the ICI can be treated like AWGN as shown in Sect. 5.7.1. If 2-D isotropic scattering and Rayleigh fading is
assumed, then for large N the SIR is
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Fig. 10.4 Performance of OFDM signaling on static ISI channels with different block sizes; G D 0

SIR D Eu

Es � Eu

; (10.28)

where Eu is

Eu D
Es

N2

(
G
X

iD0
Ejgij2

 

N C 2
N�1
X

mD1
.N � m/J0.2� fmTsm/

!

(10.29)

C
L
X

iDGC1
Ejgij2

 

N � iC GC 2
N�i�1CG
X

mD1
.N � i � mC G/J0.2� fmTsm/

!)

:

The SER for a Rayleigh fading channel is obtained by averaging (10.26) over the probability density function

p
s
.x/ D 1

N
s

e�
s= N
s ; x � 0; (10.30)

where N
s is replaced by the SIR. The SER obtained by using the SIR in (10.28) is actually an upper bound when the
interference caused by ISI is a dominant factor. This is due to the correlation between the useful signal and interference term.
An intuitive explanation is as follows. If the channel varies slowly, the channel impulse response can be assumed constant
over a duration of an OFDM symbol. Hence, from (10.20), the conditional SIR for the sub-channel k given the channel
impulse response g D fgmgLmD0, SIR.kjg/, is

SIR.kjg/ D EŒj�kxn;kj2jg�
EŒjIkj2jg�

: (10.31)

For L � G << N SIR.kjg/ is well approximated by

SIR.kjg/ D Es

2

( PG
iD0
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i0D0 gig

�
i0
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˚

�j 2�k
N
.i � i0/




EISI.kjg/
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iD0
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i0DGC1 gig
�
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�j 2�k
N
.i � i0/




EISI.kjg/

C
PL

iDGC1
PL

i0DGC1 gig
�
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˚

�j 2�k
N
.i � i0/




EISI.kjg/

)

(10.32)
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Fig. 10.5 Performance of OFDM signaling on fading ISI channels with different block sizes

where EISI.kjg/ is from (10.24) but expressed differently as

EISI.kjg/ D
Es

N

L
X

iDGC1

L
X

i0DGC1
gig

�
i0 minŒi � G; i0 � G� exp

�

�j
2�k.i � i0/

N

�

(10.33)

In (10.32), the first and second fractions represent the portion of SIR for which the Rayleigh assumption is valid in
computing the SER, because the useful signal term and the interference term are uncorrelated. However, the last fraction
shows that the useful signal term and the interference term are correlated. Hence, when the useful signal term is faded so is
the interference. Consequently, the Rayleigh assumption leads to pessimistic performance estimates, i.e., the use of (10.28)
to compute the SER gives an upper bound. On the other hand, if the portion of the energy contained within the guard interval
is relatively large, then the last fraction becomes insignificant relative to the first two fractions in (10.32) and, hence, the SER
found by using the SIR from (10.28) is accurate.

Figure 10.5 shows the performance on a fading ISI channel that is based on the COST207 6-tap reduced typical urban
channel model (see Sect. 2.5.4.1). Similar to the case of static ISI channels, the performance improves as the block size is
increased if the normalized Doppler frequency, fmNTs, is small. Unlike the static ISI channels, however, the block size cannot
be made too large since this increases the ICI caused by channel time variations over block (Fig. 10.5). Therefore, the block
size must be small enough to keep the ICI small, while it must be large enough to keep the ISI small for channels with a long
impulse response. Also, as explained above, the SER from the analysis when GTs D 2�s agrees very well with simulation
result but gives an upper bound when G D 0.

10.1.2 Residual ISI Cancellation

If the channel changes little over an OFDM symbol period and the guard interval is sufficiently large, i.e., G � L, then the
channel output is

QRn;m D
L
X

iD0
giXn;.m�i/N ; 0 � m � N � 1 (10.34)

where QRn;m represents the desired channel output that is free of ISI. However, when G < L there will be residual ISI. To
achieve the desired channel output QRn;m in the presence of residual ISI, two steps must be taken. The first is to remove the
residual ISI from the received signal, and the second is to use reconstruction to restore cyclicity and avoid ICI. These two
procedures are called tail cancellation and cyclic reconstruction, respectively [70]. The procedure can be described by
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QRn;m D Rn;m � Rnjn�1;m C
L
X

iDGC1
giXn;.m�i/N .1 � u.m � iC G//: (10.35)

The residual ISI is removed from the received signal by subtracting the second term in (10.35). Cyclicity is restored by the
last term in (10.35).

The feasibility of implementing the tail cancellation and cyclic reconstruction procedures depends on the availability of
the transmitted sample sequence fXng at the receiver. Echo cancellers have exact knowledge of the transmitted symbols and,
therefore, the above procedures have been successfully implemented [70]. However, the vast majority of communication
applications that require mitigation of ISI do not enjoy this luxury. A method is now described for reducing the effect of ISI
using the aforementioned procedures when the transmitted symbols are not available to the receiver a priori.

10.1.2.1 Residual ISI Cancellation Algorithm

Assume that the channel impulse response is constant over an OFDM symbol period, i.e., gn;k D gn; 0 � k � N C G � 1.
The RISIC algorithm proceeds as follows:

1. An estimate of the channel impulse response, Ogn, is obtained from a training sequence and updated in a decision-directed
mode. Channel estimation will be treated in more detail in Sect. 10.1.3.3.

2. Decisions on the transmitted data symbols fOxn�1;kg from block n � 1 are obtained for use in tail cancellation. Since the
decisions are affected by residual ISI, some may be erroneous. These symbols are converted back to time domain using
an IDFT giving f OXn�1;mg.

3. For the block of index n, tail cancellation is performed by calculating the residual ISI and subtracting it from Rn;m, i.e.,

QR.0/n;m D Rn;m �
OL
X

iDGC1
Ogi
OXn�1;.m�i/N .1 � u.m � iC G// 0 � m � N � 1 (10.36)

where OL is the estimate of the maximum channel impulse response length.

4. The f QR.0/n;mg obtained in Step 3 are converted to the frequency domain and decisions are made. Afterwards, the decisions

are converted back to time domain to give f OX.0/n;mg.
5. Next cyclic reconstruction is performed by forming

QR.I/n;m D QR.0/n;m C
OL
X

iDGC1
Ogi
OX.I�1/

n;.m�i/N
.1 � u.m � iC G//; 0 � m � N � 1 (10.37)

where I represents an iteration number with an initial value of I D 1.

6. The f QR.I/n;mg are converted to the frequency domain and decisions are made yielding fOx.I/n;kg. This completes the Ith iteration
in the RISIC algorithm.

7. To continue iterations, convert the fOx.I/n;kg to f OX.I/n;mg and repeat Steps 5–7 with I  I C 1 .
8. End of the RISIC algorithm for block n.

10.1.3 Performance of the RISIC Algorithm

The performance of the RISIC algorithm is now evaluated on both static and fading ISI channels. The stability of the RISIC
algorithm and the effect of using imperfect estimates of the channel impulse response is also investigated. Here, it is assumed
that OL D L, and choosing OL > L, e.g., OL D 2L, will cause only a small degradation in performance.
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Fig. 10.6 Performance of the RISIC technique on Channel 1; G D 0, N D 128
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Fig. 10.7 Performance of the RISIC technique on Channel 2; G D 0, N D 128

10.1.3.1 Static ISI Channel

Suppose that the receiver has perfect channel information. The two static ISI channels in Table 10.1 are considered.
Figures 10.6 and 10.7 illustrate the performance of the RISIC for Channels 1 and 2, respectively. RISIC offers a huge
improvement in SER even after the first iteration, especially at high SNR. Several orders of magnitude improvement in SER
are achievable for both channels after 2 or 3 iterations. The lower bounds shown in these figures are obtained by computing
the SER using (10.27) without ISI and with noise only. On Channel 1, two iterations are required to effectively achieve the
lower bound, while three iterations are required on Channel 2.

A periodic pilot sequence is needed even if perfect channel information is available, to prevent instability when feeding
back a highly erroneous signal in the tail cancellation procedure. Table 10.2 shows the performance of RISIC on Channel 1
in Table 10.1 with N D 64 for Es=No D 35 dB and various training sequence overheads. Even with small overhead (2%),
the SER improves dramatically, whereas the algorithm diverges when a pilot sequence is not used. Furthermore, only small
degradation is observed with 2% overhead as compared to 5% overhead. If the block size is increased to N D 128, the RISIC
algorithm converges for Channel 1 even when a pilot sequence is not used. Since many communications systems do utilize
periodic training sequences for the purpose of synchronization or channel estimation, the need for additional overhead to
maintain stability when applying RISIC may be unnecessary.
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Table 10.2 Effect of using pilot sequence with RISIC technique

Overhead Without RISIC SER (I D 1) SER (I D 2) SER(I D 3)

0 % 0.17 0.84 0.84 0.85

2 % 0.17 7:5� 10�3 2:9� 10�4 5:8� 10�5

5 % 0.17 7:5� 10�3 2:6� 10�4 3:1� 10�5
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Fig. 10.8 Performance of the RISIC technique on a fading ISI channel; G D 0, N D 1024, fmNTs D 0:001

10.1.3.2 Fading ISI Channel

For fading ISI channels, the channel impulse response varies with time. However, if the channel changes little over an OFDM
symbol duration and L � G << N, then

fgmg �
1p
N

IDFTf�kg (10.38)

When the channel variations are rapid, Fig. 10.5 shows that the performance is dominated by ICI rather than residual ISI.
Assume �k is known at the receiver and the channel impulse response is found by (10.38). Figures 10.8 and 10.9 show the
performance of RISIC on a typical urban channel with fmNTs D 0:001 and fmNTs D 0:005, respectively, and 5% training
overhead.

10.1.3.3 Channel Estimation

All the remarkable improvements that RISIC has shown so far are achieved under the premise of perfect channel information.
For a strictly static ISI channel, the channel estimation process needs to be carried out only once. In fact, almost perfect
channel estimates can be obtained using a training sequence [70]. Time-varying channels present the real challenge for
channel estimation.

For fading ISI channels, a channel estimation technique is proposed that can provide accurate estimates even in the
presence of residual ISI. An OFDM training block can be used consisting of N=2 symbols chosen from a chirp sequence [70]

ck D exp

�

j
2�

N
k2
�

; 0 � k � N

2
� 1: (10.39)

The chirp sequence provides an optimal peak-to-average power ratio of 1 and weighs each sub-channel equally in estimating
the channel since the DFT of a chirp sequence is also chirp sequence. Unlike [70], however, the training sequence is modified
to increase resilience to residual ISI, by inserting zeros in every odd sub-channel. The training block symbols are
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Fig. 10.9 Performance of the RISIC technique on a fading ISI channel; G D 0, N D 1024, fmNTs D 0:005

dk D
� p

2ck=2 ; k D 0; 2; : : : ;N � 2
0 ; k D 1; 3; : : : ;N � 1; (10.40)

where
p
2 is a normalization factor. The N-point IDFT of fdkg is2

Dm D C.m/N=2 ; 0 � m � N � 1: (10.41)

From (10.41), the first half of the time-domain training sequence fDmg is identical to the second half. This is a valuable
property for long channel impulse responses, because the first half of fDmg can be used just like a guard interval while fDmg
still possesses a peak-to-average power ratio of 1. The channel estimation procedure using the proposed training block is as
follows:

1. After removal of the guard interval, the received samples are rearranged as

NRts;m D Rts;mCN=2 ; 0 � m � N=2 � 1; (10.42)

where the subscript ts indicates that the received samples are for a training block.
2. N=2 channel estimates, Q�k, are calculated by

Q�k D
zts;k

ck

; 0 � k � N=2 � 1; (10.43)

where fzts;kg is the N=2-point DFT of f NRts;mg.
3. The estimates Q�k are converted to Qgm by

fQgmg D
1

p

N=2
IDFTf Q�kg; (10.44)

where an N=2-point IDFT is used. Then, fQgmg is passed through a rectangular window to zero Qgm; m > OL, and the result
is fOgmg which is used for RISIC.

2The Cn can also be obtained by the N=2-point IDFT of fckg.
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Fig. 10.10 Effect of imperfect channel estimation with the RISIC technique for static and slowly fading ISI channels with N D 128 and N D 1024,
respectively; G D 0, I D 3

4. fOgmg is converted to f O�kg by

O�k D
p

N DFTfOgmg (10.45)

where this time an N-point DFT is used. The channel estimates for all N sub-channels are now available for data
demodulation.

When L is not known, the window size must be large enough to include the entire channel impulse response yet as small as
possible to minimize the effect of noise.

On static ISI channels, the channel estimation is performed only once at the beginning of each simulation run and the
channel estimates are averaged over four blocks. On fading ISI channels, the channel estimation is performed by periodically
sending one training block out of every 20 blocks transmitted, while updating the channel estimate in the remaining blocks
in a decision-directed mode [224]. In the decision-directed mode, the decisions made after the final iteration of the RISIC
algorithm are used to update the channel estimates. Decision errors do not degrade the accuracy of the estimates excessively,
because the rectangular window can smooth out the aberrations caused by the decision errors.

Figure 10.10 shows the performance of RISIC technique with channel estimation on static and very slowly fading ISI
channels. For a static ISI channel, the SER obtained is virtually identical to that obtained with perfect channel estimation.
For a slowly varying fading ISI channel (fmNTs D 0:001), the RISIC technique works well with the channel estimator,
especially at high SNR. However, for faster fading (fmNTs D 0:005), the degradation is severe as shown in Fig. 10.11. This
suggests that the proposed RISIC technique with channel estimation is well suited for static and slowly time-varying ISI
channels.

10.2 Single-Carrier Frequency Domain Equalization

As discussed in Sect. 10.1, OFDM can easily mitigate ISI by using a cyclic guard interval. However, one of the major
drawbacks of OFDM is its high peak-to-average power ratio (PAPR) and high sensitivity to oscillator frequency offsets. An
attractive alternative to OFDM is the use of single-carrier (SC) modulation combined with frequency domain equalization
(FDE), a technique known as single-carrier frequency domain equalization (SC-FDE) [121, 290–292]. Such a system has
the benefit of having the PAPR of single-carrier modulation while at the same time the ease of equalization of OFDM.
For channels that span 10–20 data symbols, single-carrier systems with conventional time-domain equalization will have a
significantly higher processing complexity than comparable OFDM approaches. However, the complexity of single-carrier
approaches becomes similar to OFDM if FDE is employed in the single-carrier receiver.
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Fig. 10.11 Effect of imperfect channel estimation with the RISIC technique for a fading ISI channel; N D 1024, G D 0, I D 3

Fig. 10.12 SC-FDE transmitter
with guard interval insertion insert cyclic

prefix

Fig. 10.13 SC-FDE receiver

A typical SC-FDE transmitter is shown in Fig. 10.12, while the receiver is shown in Fig 10.13. In contrast to OFDM that
uses an IDFT at the transmitter and an DFT at the receiver, a SC-FDE system has both the DFT and IDFT at the receiver
side. SC-FDE can be used advantageously in wireless systems, by using OFDM on the downlink and SC modulation on the
uplink. With this arrangement, the mobile terminal transmits SC modulation and, thus, it is simple to implement and can use
a more efficient power amplifier. Also, the signal processing complexity is concentrated in the access point. For full duplex
operation, the access point has two IDFT and one DFT operations, while the mobile terminal has just one DFT operation.

One important difference between OFDM and SC-FDE is the exploitation of frequency diversity. OFDM can achieve
maximum likelihood (ML) performance on a frequency-selective channel through maximal ratio combining of the symbols
that are transmitted on the various sub-carriers. SC-FDE approaches are sub-optimal in this regard and do not achieve ML
performance. Nevertheless, OFDM only reaps the full benefits of frequency diversity by coding across the sub-carriers or by
using receiver antenna diversity. Uncoded OFDM will lose the inherent frequency diversity in the channel, since information
data on the sub-carriers affected by the frequency-selective fading cannot be recovered from the other sub-carriers. On
the other hand, the energy of each SC symbol is spread over the entire frequency band, providing inherent frequency diversity.
Consequently, uncoded SC-FDE outperforms uncoded OFDM. However, for a single-user, multi-antenna system (receive
diversity) the advantage of SC-FDE over OFDM decreases as the number of receiver antennas increases.

Similar to the guard interval used in OFDM and SC-FDE for linear modulation schemes, a length-G cyclic guard interval
is appended to each block of N data symbols, such that G equals or exceeds the maximum expected discrete-time channel
length L. Here a cyclic prefix is assumed. The cyclic prefix is added to the sequence xn D fxn;k; k D 0; : : :N � 1g by simply
copying the last G symbols of fxn;kg and appending them to the beginning of fxn;kg. The symbol sequence with guard interval,
denoted as fxg

n;kg, is

xg
n D fxn;.k/N ; k D �G;�GC 1; � � � ;�1; 0; 1; � � � ;N � 1g; (10.46)
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where .k/N is the residue of k modulo-N. The sequence of N C G symbols is then transmitted using SC modulation. Here, a
linear modulation scheme is assumed such as PSK or QAM, although SC-FDE can be applied with appropriate modification
to non-linear CPM as well [313]. With this assumption, the transmitted SC waveform has the form

Qs.t/ D A
X

n

b.t � nT; xg
n/; (10.47)

where

b.t; xg
n/ D

N�1
X

kD�G

x
g

n;kha.t � kTg
s / (10.48)

and T D .N C G/Tg
s is the duration of each data block consisting of N data symbols and G guard symbols.

10.2.1 ZF and MMSE SC-FDE

Suppose that the waveform Qs.t/ is transmitted over a time-invariant ISI channel with impulse response g.t/. Section 7.6.4
established that the optimal front-end processing may be implemented as a filter that is matched to the transmitted pulse

ha.t/ followed by rate-2=T sampling and a T=2-spaced noise whitening filter 1=
�

G
.2/
h .1=z�/

��
. Similar to the development

leading to (10.4), the received sample sequence at the output of the T=2-spaced whitened matched filter is

v
g.2/
n;k D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

kC2G
X

iD0
g
.2/
eq;ix

g.2/
n;k�i C

2L
X

iDkC2GC1
g
.2/
eq;ix

g.2/
n�1;2NC2GCk�i C Qw

.2/
n;k ; �2G � k < 2.�GC L/

2L
X

iD0
g
.2/
eq;ix

g.2/
n;k�i C Qw

.2/
n;k ; 2.�GC L/ � k � 2N � 1

; (10.49)

where the sequence x
g.2/
n D fxg.2/

n;k g is the corresponding T=2-spaced input symbol sequence given by

x
g.2/
n;k D

(

x
g

k=2 ; k D �2G; : : : ; 0; 2; 4; : : : ; 2N � 2
0 ; k D �2GC 1 : : : ; 1; 3; 5; : : : ; 2N � 1

(10.50)

and fg.2/eq;ig is the T=2-spaced discrete-time channel impulse response with system function G
.2/
eq .z/ D G

.2/
h .z/G

.2/.z/.
The SC-FDE first removes the guard interval by simply deleting the first 2G samples in each block, i.e., samples in the

range �2G � k � �1. Under the assumption that G � L, this yields the length-2N sequence

v
.2/
n;k D

2L
X

iD0
g
.2/
eq;ix

g.2/
n;k�i C Qw

.2/
n;k (10.51)

D
2L
X

iD0
g
.2/
eq;ix

.2/

n;.k�i/N
C Qw.2/n;k ; 0 � k � 2N � 1; (10.52)

where

x
.2/
n;k D

�

xk=2 ; k D 0; 2; 4; : : : ; 2N � 2
0 ; k D 1; 3; 5; : : : ; 2N � 1 : (10.53)

Note that the length-2N vector v
.2/
n D fv.2/n;kg in (10.52) is the circular convolution of the length-2N data sequence x

.2/
n D fx.2/n;kg

with the length-2L channel vector g
.2/
eq D fg.2/eq;ig.
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To perform FDE, the length-2N vector v
.2/
m is applied to a 2N-point discrete Fourier transform (DFT) or fast Fourier

transform (FFT) to yield the output vector

V.2/
n;m D

1

2N

2N�1
X

kD0
v
.2/
n;ke�j 2�km

2N

D T.2/eq;mX.2/n;m CW.2/
n;m ; 0 � m � 2N � 1; (10.54)

where

X.2/n;m D
1

2N

2N�1
X

kD0
x
.2/
n;ke�j 2�km

2N ; m D 0; : : : ; 2N � 1 (10.55)

is the 2N-point DFT of the data symbol vector x
.2/
n ,

T.2/eq;m D
L
X

kD0
g.2/eq;me�j 2�km

N ; m D 0; : : : ; 2N � 1 (10.56)

is the channel frequency response, and the noise samples fW.2/
n;mg are i.i.d with zero mean and variance No=.2NTg

s /. Note

that T
.2/
eq D fT.2/eq;mg2N�1

mD0 is the DFT of the zero padded sequence g
.2/
eq D fg.2/eq;kgN�1

kD0 and is equal to the sampled frequency

response of the channel. Also, every other coordinate of the vector x
.2/
n being zero leads to the property X

.2/
n;m D X

.2/
n;mCN for

m D 0; : : : ;N � 1, i.e., the first half of the length-2N vector X
.2/
n D fX.2/n;mg2N�1

mD0 is identical to the last half.

FDE may now be carried out by processing the vector V
.2/
n D fV.2/

n;mg. One option is to estimate T
.2/
eq;m and calculate

OV.2/
n;m D

V
.2/
n;m

T
.2/
eq;m

D X.2/n;m C
W
.2/
n;m

T
.2/
eq;m

; m D 0; : : : ; 2N � 1: (10.57)

This is sometimes called zero-forcing frequency domain equalization (ZF-FDE), because the equalizer tries to invert the

channel in the frequency domain. Afterwards, the 2N-point IDFT of the vector OV.2/
n D f OV.2/

n;mg2N�1
mD0 is calculated to yield the

length-2N vector Qx.2/n D fQx.2/n;kg, where

Qx.2/n;k D x
.2/
n;k C Qw

.2/
n;k ; k D 0; : : : ; 2N � 1 (10.58)

and

Qw.2/n;k D
N�1
X

mD0

 

W
.2/
n;m

T
.2/
eq;m

!

e
j2�mk
2N ; k D 0; 1; : : : ; 2N � 1: (10.59)

The length-2N vector Qx.2/n is then decimated by taking every other sample, i.e., Qxn;k D Qx.2/n;2k; k D 0; : : : ;N � 1, and decisions
are made from the resulting vector Qxn D fQxn;kg. For each of the Qxn;k, the receiver decides in favor of the data symbol xn;k that
minimizes the squared Euclidean distance

�.xn;k/ D kQxn;k � xn;kk2 ; k D 0; : : : ;N � 1: (10.60)

Observe that the noise samples W
.2/
n;m=T

.2/
eq;m in (10.57) are independent zero-mean Gaussian random variables with variance

No=.2NTg
s jT

.2/
eq;mj2/. Hence, the noise is amplified in sub-bands where jT.2/eq;mj is small, and if jT.2/eq;mj is very small OV.2/

n;m will be
corrupted by heavy noise. This effect is similar to noise enhancement in time-domain ZF linear equalizers and can severely
degrade the bit error probability.
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Another possibility is to account for the effects of noise enhancement by performing minimum mean square error
frequency domain equalization (MMSE-FDE). Assume that the MMSE-FDE has tap gains Cm;m D 0; : : : ;N � 1. Then
the output of the MMSE-FDE is

OV.2/
n;m D V.2/

n;mCm

D T.2/eq;mX.2/n;mCm CW.2/
n;mCm ; 0 � m � 2N � 1: (10.61)

The mean square error is defined as

J D 1

2
E
h

j OV.2/
n;m � X.2/n;mj2

i

D jT.2/eq;mCm � 1j2�2x =.2N/C jCmj2No=.2N/

D
�

T.2/eq;m�
2
x C No

�

jCmj2=.2N/ � 2 OA�2x Re
n

T.2/eq;mCm

o

=.2N/C �2x =.2N/;

(10.62)

where the second line uses 1
2EŒjX

.2/
n;mj2� D �2x =.2N/ as seen from Parseval’s theorem

1

2N

2N�1
X

kD0
jQx.2/n;kj2 D

2N�1
X

mD0
jX.2/n;mj2: (10.63)

The MMSE solution can be obtained by solving

dJ

dCm

D dJ

C. R;m

C j
dJ

dCI;m

D 0 ; m D 0; : : : ;N � 1; (10.64)

where Cm D CR;m C jCI;m. This gives the solution

Cm D
�2x T

.2/ �
eq;m

�2x jT
.2/
eq;mj2 C No

; m D 0; : : : ; 2N � 1: (10.65)

Note that under high signal-to-noise ratio conditions where No ! 0, the tap solution for the MMSE-FDE in (10.65) reduces

to the ZF-FDE tap solution Cm D 1=T
.2/
eq;m used in (10.57). The output of the MMSE-FDE is

OV.2/
n;m D V.2/

n;mCm

D �2x jT
.2/
eq;mj

�2x jT
.2/
eq;mj2 C No

X.2/n;m C
�2x T

.2/ �
eq;m

�2x jT
.2/
eq;mj2 C No

W.2/
n;m ; m D 0; : : : ; 2N � 1: (10.66)

Once again, the IDFT of the vector OV.2/
n D f OV.2/

n;mg2N�1
iD0 is obtained to yield the vector Qx.2/n , which is decimated to yield

the vector Qxn D fQxn;k D Qx.2/n;2k; k D 0; : : : ;N � 1g, and the vector Qxn is applied to a minimum distance decision device as
in (10.60).

Finally, while decisions variables QZn;m in (10.8) can be used to implement maximum likelihood decisions in an OFDM
receiver, the corresponding decision variables Qxn;k in a SC-FDE receiver will not yield maximum likelihood decisions. In this
sense, the SC-FDE approach is sub-optimal.

10.3 Orthogonal Frequency Division Multiple Access

Orthogonal frequency division multiple access (OFDMA) achieves multiple access by assigning different users disjoint sets
of sub-carriers. Assume that there are a total of M sub-carriers that are evenly distributed among Q users, such that each
user is allocated N D M=Q sub-carriers. The overall sub-carriers are labeled with indices from 0 to M � 1, while the N
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Fig. 10.14 Baseband OFDMA forward link BS transmitter. There are M sub-carriers of which N are occupied by the input data for each of Q

users

sub-carriers allocated to the jth MS have indices that belong to the set Tj. Clearly, the sets Tj must be disjoint such that each
sub-carrier is assigned to at most one MS. The sub-carrier allocation can be performed by extending the nth data vector for
the jth MS, denoted by aj;n with the insertion of M�N zeros in the sub-carriers belonging the set NTj which is the complement
of Tj, i.e.,

xj;n;i D
�

aj;n;i ; if i 2 Tj

0 ; otherwise
; (10.67)

where aj;n;i is the data symbol transmitted to the jth MS in block n on the ith sub-carrier.

10.3.1 OFDMA Forward Link

10.3.1.1 Transmitter

A block diagram of an OFDMA baseband forward link transmitter is shown in Fig. 10.14. On the forward link, the vectors
xj;n D fxj;n;igM�1

iD0 are summed up to produce the nth data block

xn D
Q
X

jD1
xj;n (10.68)

that is subsequently applied to an M-point IDFT to produce the length-M time-domain sequence Xn. After the IDFT, a length-
G guard interval is appended to each block in the form of a cyclic prefix or cyclic suffix, in the same manner as conventional
OFDM as described in Sect. 4.6.1, to yield the transmitted time-domain sequence Xg

n. In the case of a cyclic prefix, the last G

symbols of the sequence Xn D fXn;m; m D 0; : : : ;M � 1g are copied and appended to the beginning of Xn. The transmitted
time-domain sequence for the nth block with guard interval, denoted as Xg

n, is

Xg
n D fXn;.m/M ; m D �G;�GC 1; � � � ;�1; 0; 1; � � � ;M � 1g; (10.69)

where .m/M is the residue of m modulo-M.

10.3.1.2 Time-Domain Windowing

The elements of the vector Xg
n are converted into the continuous-time complex-valued waveform by using pair of balanced

DACs, as discussed in Sect. 4.6.1. The resulting continuous-time complex envelope corresponding to the nth block is

Qsn.t/ D
M�1
X

kD�G

Qxn;khDAC.t � k QTg
s /; (10.70)
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where hDAC.t/ is the impulse response of the DAC (reconstruction filter) and QTg
s is the sample period. For OFDMA, the

sample period is equal to QTg
s D .M=.M C G// QTs D .N=.M C G//Ts seconds.

For greater spectral control and to reduce out-of-band emissions, the vector of samples Xg
n can be windowed prior to

digital-to-analog conversion, such that

Qsn.t/ D
M�1
X

kD�G

Qxn;kwkhDAC.t � k QTg
s /; (10.71)

where the vector w D .w�G; : : : ;w�1; w0; w1; : : : ; wM�1/ is the window function. The corresponding continuous-time
window function w.t/ can be obtained by passing the weighted impulse train

ıQTg
s
.t/ D

M�1
X

kD�G

wkı.t � k QTg
s / (10.72)

through the reconstruction filter hDAC.t/. Here, an ideal DAC is assumed with impulse response

hDAC.t/ D sinc.t= QTg
s /: (10.73)

For a rectangular window, wn D 1; �G � n � M � 1. This yields the continuous-time window function

w.t/ D
M�1
X

kD�G

sinc.t= QTg
s � k/; (10.74)

which is plotted in Fig. 10.15 for the case M D 32;G D 4. Notice that the continuous-time window function w.t/ is non-
causal, since the ideal DAC is itself a non-causal ideal low-pass filter.

With an ideal DAC, the power spectrum of the baseband OFDMA waveform is confined to �1=2 QTg
s to C1=2 QTg

s Hz.
However, a practical DAC will produce side lobes outside of this range of frequencies and, in some cases, the rectangular
window may result in large side lobes. Such out-of-band emissions can be reduced by using a time-domain window that
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Fig. 10.15 Continuous-time rectangular window function w.t/, M D 32, G D 8
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Fig. 10.16 OFDMA symbols with time-domain windowing. Note that B D Gs C 1, where Gs is the length of the cyclic suffix and B is the length
of the transition region

smooths the ends of the OFDMA symbols. Such windowing can be implemented by extending the OFDMA symbol with
both a cyclic prefix and cyclic suffix as shown in Fig. 10.16. That is,

Xg
n D fXn;.m/M ; m D �Gp; � � � ;�1; 0; 1; � � � ;M � 1; ; : : : ;M C Gs � 1g;

(10.75)

where Gp and Gs are the length of the cyclic prefix and cyclic suffix, respectively, and G D Gp C Gs is the total length of
the guard interval. In this way, the required extension to implement the time-domain window can be absorbed into the guard
interval. This will save bandwidth and power efficiency but will also reduce the delay spread tolerance by 2Gs samples.

One commonly used time-domain window function with OFDM/OFDMA is the raised cosine window

wrc
k D

8

ˆ̂
<

ˆ̂
:

1
2
C 1

2
sin
�
�
B

�

k � B�1
2

��

; 0 � k < B

1; B � k < MCG�B
1
2
� 1

2
sin
�
�
B

�

k �M � GC BC1
2

��

; MCG�B � k � MCG �1
0; elsewhere

; (10.76)

defined here on the interval 0 � k � M C G � 1. For the sequence Xg
n in (10.75), the required window is the raised cosine

window in (10.76) left shifted by Gp samples, such that

wk D wrc
kCGp

: (10.77)

After passing through an ideal D/A converter, this will yield the continuous-time pulse

w.t/ D
M�1
X

kD�G

wksinc.t= QTg
s � k/ (10.78)

which is plotted in Fig. 10.17 for the case M D 32;Gp D 4;Gs D 4. Notice that the raised cosine windowing has also
significantly reduced the peaks on the amplitude shaping pulse. Hence, the time-domain windowing not only produces a
more compact power spectral density, but it also reduces the PAPR of the transmitted waveform.

10.3.1.3 Sub-carrier Allocation

Several different methods for sub-carrier allocation are used with OFDMA. The choice of sub-carrier allocation will affect
the sensitivity of the OFDMA waveform to frequency-selective fading.
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Fig. 10.17 Continuous-time raised cosine window function w.t/, M D 32, Gp D 4, Gs D 4

Clustered Carrier (CC-OFDMA)

With CC-OFDMA, the M sub-carriers are divided into Q groups where each group consists of N contiguous sub-carriers
called clusters. The set of sub-carrier indices allocated to the kth user is fkN; kN C 1; : : : ; kN C N � 1g, where 0 � k < Q.
CC-OFDMA is sensitive to frequency-selective fading, because all sub-carriers assigned to a particular user may fade
simultaneously.

Spaced Carrier (SC-OFDMA)

With SC-OFDMA, the M sub-carriers are partitioned into N groups, where each group has Q contiguous sub-carriers. Then
the kth sub-carrier of each group is assigned to the kth user. That is, the kth user is assigned the set of sub-carrier indices
fk;Q C k; : : : ; .N � 1/Q C kg, where 0 � k < Q. SC-OFDMA is less sensitive to frequency-selective fading, since the
sub-carriers assigned to each user span the entire bandwidth.

Random Interleaving (RI-OFDMA)

RI-OFDMA has been adopted by IEEE802.16a. While the sub-carriers are partitioned into N groups as in SC-OFDMA, the
sub-carrier index in each of the N groups that is assigned to a particular user is a random variable. The sub-carrier indices
allocated to the kth user are f�k;1;QC �k;2; : : : ; .M�1/QC �k;M�1g, where the �k;i are independent and identically distributed
uniform random variables on the set f0; 1; : : : ;Q � 1g.

10.3.1.4 Receiver

Similar to the case of OFDM in Sect. 10.1, consider the transmission of the OFDMA waveform over a frequency-selective
quasi-static fading channel. Assuming a length-G cyclic prefix, the discrete-time linear convolution of the transmitted
sequence fXg

ng D fXn;mgM�1
mD�G with the discrete-time channel impulse response g D fgmgLmD0 produces the discrete-time

received sequence Rg
n D fRg

n;mg, where
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Fig. 10.18 Baseband OFDMA forward link receiver

Rg
n;m D

(
PmCG

iD0 giX
g

n;m�i C
PL

iDmCGC1 giX
g

n�1;MCGCm�i C Qnn;m ; �G � m < �GC L
PL

iD0 giX
g

n;m�i C Qnn;m ; �GC L � m � M � 1 (10.79)

and the Qnn;m are complex-valued Gaussian noise samples having zero mean and variance �2 D 1
2
EŒjQnn;mj2� D No=Tg

s , where
Tg

s D NTs=.M C G/, and Ts is the modulation symbol rate for each user.
The OFDMA baseband receiver is shown in Fig. 10.18. To remove the ISI introduced by the channel, the first G received

samples fRg
n;mg�1mD�G of each block are simply discarded. If the length of the cyclic prefix is at least as long as the discrete-time

channel length, i.e., G � L, then the received sequence is

Rn;m D Rg
n;m

D
L
X

iD0
giXn;.m�i/M C Qnn;m ; 0 � m � M � 1; (10.80)

which is just the circular convolution of the transmitted sequence Xn D fXn;mg with the channel g D fgmgLmD0. Afterwards,
an M-point IDFT is taken to transform to the frequency domain. This yields the output vector

zn;i D
1

M

M�1
X

mD0
Rn;me�j 2�mi

M

D TiAxn;i C �n;i ; 0 � i � M � 1; (10.81)

where

Ti D
L
X

mD0
gme�j 2�mi

M (10.82)

and the noise samples f�n;ig are i.i.d with zero mean and variance No=.MTg
s /. On the forward link each MS will only be

interested in the N data symbols that are transmitted by the BS on its allocated sub-carriers. Hence, only the DFT outputs with
indices in the set Tj are used by the jth MS for data detection. The resulting time-domain sequence is further processed, using,
for example, maximum likelihood sequence estimation (MLSE) along with the estimates of the channel gains fTig; i 2 Tj.

10.3.2 OFDMA Reverse Link

On the OFDMA reverse link, Q users transmit their signals to a central BS. The reverse link MS transmitter is shown in
Fig. 10.19, and is similar to the forward link BS transmitter in Fig. 10.14. The main difference is that the MS transmitter
only transmits its own data stream, whereas the BS transmitter sends data streams simultaneously for all the MSs. Similar
to the OFDMA forward link, the jth MS performs sub-carrier allocation according to (10.67), and the resulting vector xj;n is
applied to an M-point IDFT, and appended with a length-G cyclic guard interval.
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Fig. 10.19 Baseband OFDMA reverse link MS transmitter. There are M sub-carriers of which N are occupied by the input data

Fig. 10.20 Baseband SC-FDMA transmitter. There are M sub-carriers of which N are occupied by the input data

Fig. 10.21 Baseband SC-FDMA receiver with SC-FDE

10.3.3 Peak-to-Average Power Ratio

One of the biggest drawbacks of OFDMA is its high PAPR. A high PAPR may be acceptable on the forward link, since the
BS can use a less power efficient linear amplifier. However, for the reverse link, a high PAPR is undesirable since the MS is
often battery powered. For this reason, OFDMA is not used on the reverse link of LTE and LTE-A.

10.4 Single-Carrier Frequency Division Multiple Access

A block diagram of a single-carrier frequency division multiple access (SC-FDMA) transmitter is shown in Fig. 10.20. The
SC-FDMA transmitter groups the modulation symbols into blocks of N symbols. Let

xn D .xn;1; xn;2; : : : ; xn;N/ (10.83)

denote the nth block of modulation symbols. An N-point DFT (N-DFT) is taken on each block xn, to yield length-N vectors

Xn D .Xn;1;Xn;2; : : : ;Xn;N/ (10.84)

that are the frequency domain representation of the blocks of input symbols. The sub-carrier mapper then maps the N

components of the vector Xn onto a larger set of M sub-carriers such that M D NQ, where Q is an integer. There are several
different types of sub-carrier mappings, including the interleaved (I-FDMA) and localized (L-FDMA) mappings that are
considered below. The sub-carrier mapping generates the sequence QXn. An M-point IDFT is then taken of the sequence QXn to
produce the output sequence Qxn. The time domain input symbols xn;k have duration Ts seconds. However, after going through
the SC-FDMA modulator the time-domain output symbols Qxn;k are compressed and have duration QTs D .N=M/Ts seconds.

The SC-FDMA baseband receiver is shown in Fig. 10.21. First the cyclic guard interval is removed. Afterwards, an
M-point DFT is taken to transform to the frequency domain. Sub-carrier demapping and equalization is then performed in
the frequency domain. Finally, an N-point IDFT is used to convert the samples back to the time domain for detection and
further processing.

Interleaved (I-FDMA)

The I-FDMA sub-carrier mapping is illustrated in Fig. 10.22 and can be described as follows:

QXn;` D
�

Xn;`=Q ; ` D kQ ; 0 � k � N � 1
0 ; otherwise

: (10.85)
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Fig. 10.22 Interleaved FDMA (I-FDMA) sub-carrier mapping

Fig. 10.23 Localized FDMA (L-FDMA) sub-carrier mapping

The time-domain vector Qxn is obtained by taking the M-point inverse DFT of the vector QXn. Let k D Nq C m, where
0 � q � Q � 1 and 0 � m � N � 1. Then

Qxn;k � Qxn;NqCm D
1

M

M�1
X

`D0

QXn;`e
j 2�`k

M

D 1

QN

N�1
X

`D0
Xn;`e

j 2�`k
N

D 1

QN

N�1
X

`D0
Xn;`e

j
2�`.NqCm/

N

D 1

Q

 

1

N

N�1
X

`D0
Xn;`e

j 2�`m
N

!

D 1

Q
xn;m: (10.86)

It follows that the time-domain vector Qxn is equal to

Qxn D
1

Q
vec.xn; xn; : : : ; xn/ (10.87)

which is just the Q-fold repetition of the time-domain vector xn. It also follows that the PAPR of the time-domain sequence
Qxn is exactly the same as that of the time-domain sequence xn.

Localized (L-FDMA)

The L-FDMA, the sub-carrier mapping is illustrated in Fig. 10.23 and can be described as follows:

QXn;` D
�

Xn;` ; 0 � ` � N � 1
0 ; N � ` � M � 1 : (10.88)

The time-domain vector Qxn is obtained by taking the M-point inverse DFT of the vector QXn. Let k D Qm C q, where
0 � m � N � 1 and 0 � q � Q � 1. Then



10.4 Single-Carrier Frequency Division Multiple Access 525

Qxn;k � Qxn;QmCq D
1

M

M�1
X

`D0

QXn;`e
j 2�`k

M

D 1

QN

N�1
X

`D0
Xn;`e

j
2�`.QmCq/

QN : (10.89)

If q D 0, then

Qxn;k � Qxn;Qm D
1

Q

 

1

N

N�1
X

`D0
Xn;`e

j
2�`Qm

QN

!

D 1

Q

 

1

N

N�1
X

`D0
Xn;`e

j 2�`m
N

!

D 1

Q
xn;m: (10.90)

If q ¤ 0, then using

Xn;` D
N�1
X

iD0
xn;ie

j 2� i`
N (10.91)

in (10.89) gives [235]

Qxn;k � Qxn;QmCq D
1

Q

�

1 � ej2�
q
Q

� 1

N

N�1
X

iD0

xn;i

1 � e
j2�

�
m�p

N
C q

QN

� : (10.92)

It follows that the time-domain vector Qxn has an exact copy of the time-domain vector xn in N coordinates defined by
k D Qm; 0 � m � N � 1. In between these positions, the vector Qxn has values that depend on a complex weighted sum of
all the time-domain symbols in the time-domain vector xn. This will increase the PAPR significantly.

L-FDMA is the scheme adopted in 3GPP Long Term Evolution (LTE). While it may seem that L-FDMA is less desirable
due to the high PAPR, the waveform is less sensitive to frequency offsets and phase noise, as compared to I-FDMA. While
it may seem that L-FDMA also looses the diversity advantages of I-FDMA, it may be possible that all sub-carriers fade
together and only one channel estimator is needed.

Cyclic Guard Interval and SC-FDE

After performing sub-carrier mapping, the transmitter inserts a cyclic guard interval of length-G, such that G equals or
exceeds the maximum expected discrete-time channel length L. The purpose of the cyclic guard interval is to isolate the
transmitted blocks and to permit single-carrier frequency domain equalization (SC-FDE) at the receiver as discussed in
Sect. 10.2. Here a length-G cyclic prefix is assumed. The cyclic prefix is added to the sequence Qxn D fQxn;m;m D 0; : : : ;M�1g
by simply copying the last G symbols of Qxn and appending them to the beginning of Qxn. The symbol sequence with guard
interval, denoted as Qxg

n D fQxg
n;mg, is

Qxg
n D fQxn;.m/M ; m D �G;�GC 1; � � � ;�1; 0; 1; � � � ;M � 1g; (10.93)

where .m/M is the residue of m modulo-M. When a cyclic guard is appended, the time-domain output symbols Qxg
n;m have

duration QTg
s D .M=.M C G// QTs D .N=.M C G//Ts seconds.

Once the cyclic guard is removed and a DFT taken on the received block, SC-FDE can be applied. Typically, either a zero-
forcing (ZF) or minimum mean square error (MMSE) SC-FDE is employed. The required algorithms are described in detail
in Sect. 10.2 and are not repeated here. ZF-FDE and MMSE-FDE can be applied to SC-FDMA as well, but there are better
solutions. These include maximal ratio combining (MRC) for flat fading AWGN channels, and optimum combining (OC)
with receiver antenna diversity. With OC, the signal-to-interference-plus-noise ratio is maximized for a flat faded desired
signal in the presence of one or more flat faded and dominant co-channel interferers.
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10.4.1 Peak-to-Average Power Ratio

One of the biggest advantages of SC-FDMA is its low PAPR. The PAPR for block n can be defined in terms of the discrete-
time SC-FDMA samples as

PAPRn D
maxmfjQxg

n;mj2

.M C G/�1
PM�1

nD�G jQx
g
n;mj2

: (10.94)

The PAPR in this case depends only on the modulation signal constellation and sub-carrier mapping. With SC-FDMA pulse
shaping can be used to reduce the PAPR and to reduce out-of-band emissions. Since each user in the SC-FDMA uplink
uses only a subset of the sub-carriers, different approaches for implementing the pulse shaping have been suggested. With
the conventional approach, the sample sequence Qxg

n is transmitted by using an amplitude shaping pulse ha.t/ such that the
continuous-time complex envelope corresponding to the nth block is

Qsn.t/ D
MCG�1
X

mD0
Qxg

n;mha.t � m QTg
s /: (10.95)

For the continuous-time complex envelope Qsn.t/, the PAPR for block n is defined as

PAPRn D
max0�t�.MCG/QTg

s
jQsn.t/j2

1

.MCG/QTg
s

R .MCG/QTg
s

0
jQsn.t/j2dt

: (10.96)

In this case, the PAPR depends not only on the modulation signal constellation and sub-carrier mapping, but also on the pulse
shaping waveform ha.t/. For SC-FDMA, the shaping pulse ha.t/ can be chosen to be a frequency domain root-raised cosine
pulse, since receiver matched filtering will yield an overall raised cosine pulse that satisfies the first Nyquist criterion for

intersymbol interference (ISI) free transmission. The required magnitude response is given by jHa.f /j D
p

QTg
s jP.f /j1=2,

where P.f / is the spectral raised cosine pulse defined in (4.47) with T D QTg
s . The root-raised cosine filtering can

be implemented either in the time domain or the frequency domain. With time-domain filtering, the sequence Qxn;m is
passed through a digital filter ha;n having the corresponding analog filter impulse response ha.t/ in (4.50) with T D QTg

s .
Implementation of the root-raised cosine time-domain filter requires that the sequence Qxg

n D fQxn;mgM�1
mD�G be upsampled

prior to filtering, since the bandwidth of the root-raised cosine pulse exceeds the Nyquist frequency 1=2 QTg
s . Assuming an

upsampling factor of F, the upsampled sequence is

Qxu
n;` D

�

Qxn;`=F; ` D k � F; k an integer
0 ; otherwise

: (10.97)

If the roll-off factor ˇ lies in the range 0 � ˇ � 1, then an upsampling factor F D 2 will suffice. The upsampled digital filter
impulse response in this case is given by hu

a;n D ha.n QTg
s =F/, where ha.t/ is defined in (4.50) with T D QTg

s .
An entirely different approach is to implement the root-raised cosine filtering in the frequency domain. This approach is

feasible with SC-FDMA because of the DFT/IDFT processing that is used in the transmitter. Figure 10.24 shows a transmitter
block diagram for SC-FDMA with a spectrum shaping filter in the frequency domain. As before, a block of data symbols
xn D .xn;1; xn;2; : : : ; xn;N/ is input to an N-point DFT to yield the length-N vector Xn D .Xn;1;Xn;2; : : : ;Xn;N/. Once again,
implementation of the root-raised cosine filtering requires that the input sequence xn be upsampled by a factor of F to yield
the sequence xu

n D fxu
n;`g, where

Fig. 10.24 SC-FDMA with frequency-domain root-raised cosine filtering
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Fig. 10.25 Frequency-domain root-raised cosine filtering

xu
n;` D

�

xn;`=F; ` D k � F; k an integer
0 ; otherwise

: (10.98)

Rather than implementing the upsampling process in the time domain, the upsampling process can be emulated in the discrete
frequency-domain by generating periodic replicas of the vector Xn, i.e.,

Xu
n;`NCm D Xn;m; ` D 0; : : : ;F � 1 ; 0 � m � N � 1: (10.99)

Once again, if the roll-off factor ˇ lies in the range 0 � ˇ � 1, then an upsampling factor F D 2 will suffice, and this value
is assumed here. A cyclic shift of N=2 positions is then applied to the vector Xu

n and, afterwards, apply frequency-domain
raised cosine filtering to generate the vector Xsh

n as shown in Fig. 10.25. After filtering, the sub-carrier mapping is applied.
The required frequency-domain pulse description can be obtained by modifying the pulse description in (10.76), where

the subscript k now refers to the sub-carrier frequency. The pulse defined in (10.76) begins at index k D 0 and ends at
k D M C G � 1. However, the block size should be set to N rather than M, and the guard interval in this case serves only to
contain the required bandwidth expansion, which is equal to B. Hence, setting M D N and G D B in (10.76) gives

W rc
k D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

q

1
2
C 1

2
sin
�
�
B

�

k � B�1
2

��

; 0 � k < B

1; B � k < N
q

1
2
� 1

2
sin
�
�
B

�

k � N C BC1
2

��

; N � k � N C B � 1
0; elsewhere

: (10.100)

The pulse in (10.100) has a flat top of length N�B, and two roll-off sections of length B. A relationship is needed between the
parameters B and N, and the roll-off factor ˇ used in the continuous-time root-raised cosine pulse description. The required
values can be obtained by noting that B D ˇ= QTg

s and that the flat top portion has width N � B D .1 � ˇ/= QTg
s and, hence,

B is chosen according to ˇ D B=N. The required frequency domain description can be obtained by right-shifting the pulse
in (10.100) by N � .N C B/=2 positions.

Note that the overall length of the frequency-domain root-raised cosine pulse is N C B. Hence, with root-raised cosine
filtering there are NCB samples that are applied to the sub-carrier mapping, as opposed to just N samples without frequency
domain filtering. The extra B frequency-domain samples per user is the bandwidth cost that is required to implement the
root-raised cosine filtering.
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Problems

10.1. Consider an OFDM system having N D 1024 sub-carriers that are spaced 4 kHz apart. Suppose that the waveform
channel is a linear time-invariant channel consisting of two non-faded equal rays spaced �d seconds apart, i.e.,

g.t; �/ D gı.�/C gı.�d/;

where g D ˛ej� is the gain associated with each of the two channel taps.
Find the value of the delay �d in the above channel model that will yield the worst possible bit error rate performance for

this OFDM system.

10.2. Suppose that an OFDM system is implemented with a guard interval that is a cyclic extension of the IDFT coefficients
as shown in (4.95).

(a) Show that the output of the OFDM demodulator is given by (10.6).
(b) Now suppose that the guard interval simply consists of a blank interval where nothing at all is transmitted. Assuming

that G � L > 0 can the data block xn be recovered by taking a DFT of the received block Rn D fRn;mgN�1
mD0?

10.3. Assume the transmission of a known OFDM symbol, cn D .cn;0; : : : ; cn;N�1/, given by the chirp sequence

cn;k D exp

�

j
2�

N
k2
�

; 0 � k � N � 1:

Coarse channel estimates can be obtained by computing

QTn;i D
zn;i

cn;i

D Tn;i C Qnn;i ; i D 0; : : : ;N � 1;

where Qnn D fQnn;igN�1
iD0 is a vector of independent and identically distributed complex Gaussian random variables with

zero mean and variance �2n . This yields the channel estimate QTn D f QTn;igN�1
iD0 . The receiver then computes the vector

vn D .vn;1; : : : ; vn;N/, where vn D IDFT ŒTn�. Afterwards, the fvn;mgN�1
mD0 are passed through a rectangular window to zero

vn;m; m � GC 1, and a DFT is taken of the resulting sequence to yield the refined channel estimate NTn D
˚ NTn;i


N�1
iD0 , such

that

NTn;i D Tn;i C nn;i ; i D 0; : : : ;N � 1:

Show that the noise components nn;i are zero mean and have a variance equal to �2n
GC1

N
.

10.4. Derive the MMSE-FDE solution in (10.65).

10.5. Derive (10.92) for localized FDMA.



Chapter 11

Frequency Planning Techniques

This chapter considers cellular frequency planning techniques for TDMA and OFDMA/SC-FDMA based cellular systems.
System concepts for CDMA cellular systems will be covered in Chap. 12. However, some schemes for high capacity, such as
cell sectoring, are flexible enough to be applied to any standard. Regardless of the chosen access method, the ultimate goal is
to achieve high capacity while satisfying quality of Service (QoS) requirements. An architecture must also be implemented
that will easily accommodate system growth.

Microcells are a straightforward solution for achieving high capacity. However, as microcells are introduced, a mixed
cell architectures naturally evolves, consisting of overlaid macrocells and underlaid microcells. Such an arrangement is
called a hierarchical architecture. Hierarchical architectures can be implemented for TDMA, CDMA, and OFDMA/SC-
FDMA cellular systems. When microcells are introduced a key issue is the partitioning of the frequency resources among
the hierarchical layers. The most attractive hierarchical systems are those that do not partition the system bandwidth among
the hierarchical layers. If the entire bandwidth is used in each hierarchical layer, then both high capacity and high flexibility
will be achieved. CDMA systems employ universal frequency reuse, but require sophisticated power control algorithms if
the bandwidth is not partitioned between the hierarchical layers.

Macrodiversity architectures are another method for achieving high capacity, where the signal transmitted by a mobile
station (MS) is received by multiple base stations (BSs). Likewise, the signal that is received by a MS may be transmitted
by multiple BSs. Macrodiversity is an effective method for combatting shadow and envelope fading. In fact, cellular handoff
algorithms implement a form of macrodiversity. The soft handoff techniques used in CDMA systems are a well-known
method for realizing macrodiversity. TDMA systems that use hard handoff algorithms will not yield as much macrodiversity
gain due to latencies in the hard handoff algorithms. The requirement for hard handoff in TDMA systems arises a result
of frequency planning with fixed channel assignment (FCA). However, if dynamic channel assignment (DCA) techniques
are used, then TDMA systems can realize benefits from soft handoff similar to those obtained in CDMA systems. DCA
techniques do not permanently assign channels to cells.

The remainder of this chapter begins with a discussion of basic cellular frequency planning techniques, including cell
sectoring in Sect. 11.1 and cell splitting and reuse partitioning in Sect. 11.2. Afterwards, Sect. 11.3 considers issues related
to frequency planning in OFDMA/SC-FDMA cellular networks. Section 11.4 considers a novel TDMA hierarchical cellular
architecture based on the concept of cluster planning, where macrocells and microcells can share the same frequencies.
Finally, Sect. 11.5 considers macrodiversity TDMA architectures, where a mobile station is simultaneously served by
multiple base stations.

11.1 Cell Sectoring

11.1.1 Cell Sectoring with Wide-Beam Directional Antennas

One of the simplest and most practical methods for controlling co-channel interference (CCI) is to use wide-beam directional
antennas at the BSs. On the forward channel, wide-beam directional antennas reduce the generation of CCI by transmitting
the signals to the MSs with a narrower angle-of-departure (AoD) spread than omnidirectional antennas. On the reverse
channel, wide-beam directional antennas reduce the effect of the CCI because they respond to CCI that is received within a
narrower angle-of-arrival (AoA) spread about the target MS than would be the case with omnidirectional antennas.

© Springer International Publishing AG 2017
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Fig. 11.1 Worst case CCI situation on the forward channel

Consider a uniform deployment of hexagonal cells, where the BSs employ omnidirectional antennas. Suppose the effects
of shadowing and multipath-fading are ignored, and assume the following simple path loss model adapted from (2.386), such
that the received area mean power at distance d is

�˝p
D ˝tGTGR

.hbhm/
2

dˇ
; (11.1)

where ˝t is the transmit power GT and GR are the transmit and receiver antenna gains, respectively, and hb and hm are the
heights of the BS and MS antennas, respectively. As illustrated in Fig. 11.1, the worst case forward channel CCI situation
occurs when the MS is located at the corner of a cell, furthest from its serving BS. For N D 7, there are six first-tier co-
channel BSs, located at distances f

p
13R; 4R;

p
19R; 5R;

p
28R;
p
31Rg from the MS. If the values of ˝t, GT , and hb are

assumed to be the same for all BS antennas, then it follows that the worst case carrier-to-interference ratio, �, is

� D R�ˇ

.
p
13R/�ˇ C .4R/�ˇ C .

p
19R/�ˇ C .5R/�ˇ C .

p
28R/�ˇ C .

p
31R/�ˇ

D 1

.
p
13/�ˇ C .4/�ˇ C .

p
19/�ˇ C .5/�ˇ C .

p
28/�ˇ C .

p
31/�ˇ

: (11.2)

A similar expression can be derived for the case of N D 3 with co-channel distances f2R;
p
7R;
p
7R;
p
13R;
p
13R; 4Rg,

and N D 4 with co-channel distances f
p
7R;
p
7R;
p
13R;
p
13R;
p
19R;
p
19Rg. With a path loss exponent ˇ D 3:5, the

worst case � is

�.dB/ D

8

<

:

14:56 dB for N D 7
9:98 dB for N D 4
7:33 dB for N D 3

:

The minimum allowable cluster size is determined by the threshold carrier-to-interference ratio requirement,�th, of the radio
receiver. Unfortunately, the above worst case � values may be too small to yield acceptable performance, especially when
shadowing and multipath-fading are accounted for.

Sectoring is a very common method that is employed in cellular systems to improve the worst case �, whereby the
cells are divided into radial sectors with wide-beam directional BS antennas. Cellular systems are quite often deployed with
120ı and sometimes 60ı cell sectors. An N-cell reuse cluster with 120ı sectors yields an N=3N reuse plan (N cells and
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Fig. 11.2 Worst case CCI situation on the forward channel with 120ı cell sectoring

3N sectors). As shown in Fig. 11.2, 120ı cell sectoring reduces the number of first-tier co-channel interferers from six to
two. For N D 7, the two first tier interferers are located at distances

p
19R;
p
28R from the MS. The resulting worst case

carrier-to-interference ratio, �, is

� D R�ˇ

.
p
19R/�ˇ C .

p
28R/�ˇ

D 1

.
p
19/�ˇ C .

p
28/�ˇ

: (11.3)

A similar expression can be derived for the case of N D 3 with co-channel distances f
p
7R;
p
13Rg, and N D 4 with

co-channel distances f
p
13R;
p
19Rg. Hence,

�.dB/ D

8

<

:

20:60 dB for N D 7
17:69 dB for N D 4
13:52 dB for N D 3

:

For N D 7, 120ı sectoring yields a 6.04 dB gain in the worst case � over the case when omnidirectional antennas are used.
To derive a benefit from sectoring, the channel set that is assigned to each cell must be further partitioned into disjoint sets,

such that each sector uses a disjoint set of channels. This finer partitioning of the channel sets results in a loss in trunking
efficiency, as discussed in Sect. 1.7.3. Hence, cell sectoring improves the worst case carrier-to-interference ratio performance
at the cost of reduced trunking efficiency.

11.2 Conventional Cell Splitting

Conventional cell splitting is a straight-forward process of introducing new, smaller, cells into an existing cellular
deployment. By doing so, the cellular system can be tailored to meet traffic growth. To illustrate conventional cell splitting,
consider the uniform grid of hexagonal cells shown in Fig. 11.3. If heavy traffic loading is experienced at the midpoint
between two the cells labeled 1, then a split cell labeled 1’ is introduced at that location. The area of the split cell is 1/4 of the
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Fig. 11.3 Conventional cell
splitting is used to accommodate
an increased traffic load by
introducing smaller cells
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area of the parent cells. Additional split cells can be introduced to accommodate traffic loading in other locations throughout
the system area. For example, the split cell labeled 2’ can be located at the midpoint between the two cells labeled 2.

Because the split cells are smaller, the transmit power can be reduced. To estimate the transmit power requirements in the
split cells, assume the simple path loss model in (1.6). Then the received power for a MS located at the corner of a parent
cell is

˝.Ro/ D k˝oR�ˇ
o ; (11.4)

while the received power at the boundary of a split cell is

˝.Rs/ D k˝sR
�ˇ
s : (11.5)

where ˝o and ˝s and Ro and Rs, are the transmit power and cell radius associated with the parent cells and split cells,
respectively, and k is a constant. To keep the received signal power that is associated with a MS located on the cell boundary
at a constant value, the transmit power requirements of the split cell and parent cell are related as follows:

˝s D ˝o

�
Rs

Ro

��ˇ
: (11.6)

If ˇ D 4, then ˝s D ˝o=16, since Rs D Ro=2. Hence, the split cells can reduce their transmit power levels by 12 dB.
After introducing the split cells, changes in the frequency plan are required to avoid violations of the reuse constraint.

A very straightforward approach is channel segmenting, where the channel sets in the co-channel cells are divided into two
groups; the split cells are assigned one group of channels, while the parent co-channel cells are assigned the other group
of channels. Unfortunately, this arrangement sacrifices trunking efficiency because the parent cells cannot use the channels
assigned to the split cells. Furthermore, if the parent cells are already near capacity, then segmentation of the channels in
these cells will require the introduction of more split cells. Hence, a propagation of cell splitting occurs throughout the system
area, requiring the installation of a large number of additional cell sites. Therefore, channel segmenting may not always be a
good option.

Another solution is shown in Fig. 11.4, where overlaid inner cells are introduced into the parent cells. Once again, the
channels sets are divided into two groups. MSs located within the overlaid inner cells and the split cells use one group of
channels, while MSs located within the outer cells use the other group of channels. Whenever a MS moves between the inner
and outer areas of a cell a hand-off must be executed, to avoid violations of the co-channel reuse constraint.
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Fig. 11.4 Overlaid inner cells
can be used to maintain the
frequency reuse constraint when
cell splitting is used
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Fig. 11.5 Reuse partitioning can
be used to increase the channel
reuse efficiency, from [155]
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11.2.1 Reuse Partitioning

Halpern [155] suggested an overlay/underlay scheme based on the concept of reuse partitioning, where multiple co-channel
reuse factors are used in the same deployment. Sometimes this is called fractional reuse. An inner cell is created within each
of the existing cells as shown in Fig. 11.5. For the example in Fig. 11.5, channels are assigned to the inner and outer cells
according to a 3-cell and 7-cell reuse plan, respectively, although other reuse plans could be used. Channels that are assigned
to the inner and outer cells can only be used by MSs located within the inner and outer cells, respectively. Handoffs are
required when a MS crosses the boundary between an inner and outer cell. The reduced radii of the inner cells lead to an
increase in cell capacity. To quantify this increase let

Ri D radius of the inner cells.

Ro D radius of the outer cells.

Di D reuse distance for the inner cells.

Do D reuse distance for the outer cells.



534 11 Frequency Planning Techniques

Fig. 11.6 Cell splitting can be
used in combination with reuse
partitioning
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Suppose that an acceptable link quality requires a co-channel reuse factor Di=Ri D Do=Ro D 4:6. If a 7-cell and 3-cell reuse
cluster is used for the outer and inner cells, respectively, then Di=Ro D 3 and

Di=Ri

Di=Ro

D 4:6

3
: (11.7)

Hence, the inner and outer cell radii are related by Ri D 0:65Ro and, therefore, the inner and outer cell areas are related by
Ai D .0:65/2Ao D 0:43Ao. If a total of NT channels are available, then 0:43NT channels should be assigned to the inner cells
and 0:57NT channels assigned to the outer cell area (assuming a homogenous traffic distribution throughout the system area).
The resulting cell capacity is

N� D 0:57NT=7C 0:43NT=3 D 0:225NT channels/cell: (11.8)

On the other hand, with a conventional 7-cell reuse plan

N� D NT=7 channels/cell: (11.9)

Hence, an improvement of 1.575 in cell capacity is realized.

11.2.1.1 Cell Splitting with Reuse Partitioning

Cell splitting can also be used with reuse partitioning. An example is shown in Fig. 11.6 where a split cell is added between
the parent cells labeled B2. The split cell also uses reuse partitioning. To maintain the C/I at an acceptable level, some of
the channels in the B2 cells are moved to the inner cells and are denoted by B2’. Furthermore, the closest co-channel inner
cells A1 must have their channels partitioned in a similar fashion. Thus, there is a drawback when cell splitting is used with
the reuse partitioning, in that the cells must be divided into many concentric rings that use disjoint channel sets and handoffs
must occur when a MS crosses the boundary between such rings.

11.3 OFDMA/SC-FDMA Radio Planning

Radio planning for OFDMA/SC-FDMA networks is more akin to radio planning in TDMA cellular networks, such as GSM,
than radio planning in CDMA networks, such as WCDMA and cdma2000. The reason is that the intra-cell interference is
essentially eliminated due to the orthogonal property of the OFDMA sub-carriers. However, to achieve high capacity with
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Fig. 11.7 Deployment with a
sector reuse factor of 1

Fig. 11.8 Deployment with a
sector reuse factor of 3

OFDMA/SC-FDMA networks, aggressive frequency planning is necessary, and this will tend to increase the level of inter-
cell interference. For OFDMA/SC-FDMA networks adjacent channel interference is controlled by the orthogonal nature of
the sub-carriers. However, co-channel interference will be present. The reuse partitioning schemes discussed in Sect. 11.2.1
can be used for deployment, along with the cell spitting techniques in Sect. 11.2.1.1. The frequency reuse configurations that
are of most interest for OFDMA/SC-FDMA networks are BSs with 120ı sectoring, and a sector reuse of 1 or 3.

With a sector reuse of 1, also known as universal frequency reuse, all sectors can use the same sub-carrier frequencies, as
shown in Fig. 11.7. With universal frequency reuse, two different schemes can be used to mitigate the co-channel interference
between the cells and along the sector boundaries, namely interference avoidance and interference randomization.
Interference avoidance assigns sets of sub-carriers dynamically so as to avoid interference. Randomization can be achieved
by scrambling the set of sub-carriers that are used within the same band, or by frequency hopping over a larger band. In
either case, the interference experienced by the users is randomized and a strong interferer is shared by all the users.

With a sector reuse of 3, the three reuse sectors in each cell are assigned a disjoint set of sub-carrier frequencies, as shown
in Fig. 11.8. Reuse 3 will eliminate the co-channel interference that occurs along the sector boundaries in the same cell.
Furthermore, it also increases the co-channel reuse distance. This will permit greater usage of the sub-carrier frequencies in
each sector which will improve spectral efficiency. However, a sector reuse of 3 does require that the set of frequencies be
partitioned into three groups which will tend to decrease spectral efficiency.

A third alternative is to employ the concept of reuse partitioning as detailed in Sect. 11.2.1. With reuse partitioning a cell
is divided into multiple regions, for example, an inner cell and three outer cell sectors as shown in Fig. 11.9. Users that are
located in the inner cells can reuse all the available sub-carrier frequencies. Users that are located in the outer cell areas use
a fraction of the available sub-carriers according to a 3 sector reuse. This arrangement will yield high spectral efficiency by
using all the available sub-carrier frequencies in the inner cells, while at the same time provide robustness against interference
by using a 3 sector reuse of sub-carrier frequencies in the outer cell areas. The spectral efficiency will be somewhere between
that of universal frequency reuse and 3 sector reuse. The scheme also requires that the locations of the users be tracked and
the set of sub-carriers allocated to the users be dynamically updated according to a policy that promotes uniform sub-carrier-
to-interference-plus-noise ratio (sub-carrier CIR) while maximizing a metric such as the sum capacity. For cellular downlink
applications, power and sub-carrier allocation schemes can be used under the assumption that the BS has complete channel
state information for all forward channels it serves, and the total BS transmit power is constrained. The uplink is similar, but
more complicated in the sense that each MS may have a different transmit power constraint.



536 11 Frequency Planning Techniques

Fig. 11.9 Deployment with
reuse partitioning

A variety of techniques described previously for single-carrier systems can be applied with simple modification to
multi-user multi-carrier systems. On the forward channel beam-forming can be used to promote good spatial efficiency
by minimizing BS emissions. For line-of-sight (LoS) channels, classical beam-forming is described in Sect. 6.9. In this
case, it is possible that the same antenna weighting vector could be used for all sub-carriers. On the reverse channel, multi-
antenna interference cancelation techniques can be performed, such as optimum combining as described in Sect. 6.8. Since
the channel varies with each uplink user and each sub-carrier, optimum combining would have to be employed on a per user
per sub-carrier basis.

11.4 Cluster-Planned Hierarchical Architecture

One drawback of conventional cell splitting and reuse partitioning is that the split cells and overlaid cells can only be
introduced at specific locations in the cellular deployment. Unfortunately, these locations may not necessarily correspond to
the locations that are experiencing the highest traffic growth. A TDMA hierarchical architecture is now described based on
the concept of cluster planning, where macrocells and microcells reuse the same frequencies. Moreover, the microcells can
be gradually and extensively deployed at any location to increase the capacity throughout the entire service area. With these
flexibilities, the cluster planning approach allows the smooth evolution of existing macrocellular systems into a hierarchical
mixed cell architecture.

11.4.1 System Architecture

A traditional 7/21 frequency reuse system is shown in Fig. 11.10. The channels are partitioned into 21 sets and each set is
reused in a diamond-shaped sector with an adequate distance of separation. Unfortunately, the interfering regions for each
channel cover the whole service area. This widely distributed CCI from the macrocells makes it impossible to reuse the same
channel frequencies in the microcells.

Cluster planning can be used to change the conventional sectored arrangement into one having some areas of very low-
interference for a specified set of carriers. The basic cluster planning procedure is as follows:

1. Assign the same channels to each cell site as in the traditional 7/21 frequency reuse plan shown in Fig. 11.10.
2. Divide the macrocell reuse clusters into three groups as shown in Fig. 11.11.
3. Let the first group be the reference group.
4. Rotate the channel sets of each cell in the second group 120ı clockwise with respect to the first group.
5. Rotate the channel sets of each cell in the third group 120ı counter-clockwise with respect to the first group.
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Fig. 11.10 Traditional 7/21 frequency reuse plan
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Fig. 11.12 Microcells can reuse low-interference macrocell channels in the proposed hierarchical architecture. The macrocell channel set 4ˇ can
be reused in the micro-area A � F

The cluster planning procedure creates low-interference regions outside the areas of the designated macrocell sectors for
each channel set. These low-interference regions are called micro-areas. Figure 11.12 shows the result of rotating the sectors.
Zones A � F show a very low-interference for channel set 4ˇ , since they are located in the back-lobe areas of the macrocell
sectors using channel set 4ˇ . Thus microcells can be introduced in these areas by using channel set 4ˇ .

11.4.2 Underlaid Microcell Planning Algorithm

In the cluster-planned hierarchical architecture, microcells are located in micro-areas where certain macrocell channel sets
can be reused. To have the greatest flexibility in selecting the microcell BS locations, it is important to identify all possible
micro-areas and the associated channels sets that can be used by microcells that are deployed in these areas. In the cluster-
planned architecture, the front-lobe areas of the directional antennas are used by the macrocells, while the back-lobe areas of
the directional antennas are used by the microcells. In a conventional frequency reuse system (see for example Fig. 11.10),
the back-lobe area of each channel set will still encounter some first-tier interferers. To protect the back-lobe areas from the
first tier interferers, the sectors are rotated through the cluster planning procedure. Cluster planning creates low-interference
micro-areas as shown in Fig. 11.12, that lie in the back-lobe areas of the first-tier interferers. For ease of indexing, a micro-
area denotes a region of three adjacent macrocell sectors, each of which belongs to different BS. Figure 11.13 shows an
example of a micro-area. Each micro-area has an interference neighborhood, M, defined as the 18 neighboring macrocell
sectors that surround the micro-area.
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Fig. 11.13 Interference
neighborhood for micro-area A in
Fig. 11.12
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The following algorithm systematically determines the channels that can be used in each micro-area. To describe the
algorithm, let c

j

i represent the channel set in sector i D ˛; ˇ; 
 , of the cell site c, where c D 1; : : : ; 7. The superscript
j D 1; 2; 3 indexes the three groups of rotated clusters.

• Given a desired micro-area and a corresponding interference neighborhood, M, let

� D
n

c
j

i 2 M
o

denote the union of channel sets c
j

i in the interference neighborhood M.
• From �, construct a 3 � 3 “indicator matrix” Bc D

�

bij

�

for BSs c D 1; : : : ; 7, where

bij D
�

1 if the channel set c
j

i 2 MI
0 otherwise

• If the indicator matrix Bc for some cell site c has a row of ones and two rows of zeroes, then the zero-rows of Bc indicate
the low-interference macrocell channel sets for the micro-area.

Example 11.1: According to Fig. 11.13, the interference neighborhood for micro-area A is

� D
n
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Then the indicating matrices are

(continued)
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Example 11.1 (continued)
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Examining the indicator matrices Bc; c D 1; : : : ; 7, observe that B4 is the only matrix having a row of ones and
two rows of zeroes; the second and the third rows of B4 are the zero rows. Based on the above algorithm, the low-
interference macrocell channel sets for micro-area A are 4ˇ and 4
 .

To see if other micro-areas can be defined in the proposed system architecture, consider the system in Fig. 11.14 having
100 micro-areas defined over the service area. By applying the above algorithm, the available macrocell channel sets for
each micro-area are listed in Table 11.1. Note that the micro-areas are capable of reusing two macrocell channel sets and
microcells can be deployed throughout the whole service area.

Since a micro-area consists of three macrocell sectors, each macrocell area has five available channel sets; three are
assigned to macrocells and two are assigned to microcells. Within each micro-area the microcells are deployed according
to a conventional frequency reuse plan. The microcells could use omnidirectional antennas or sectored antennas. Let C�
represent the number of the microcell clusters that are deployed in a micro-area. Since each microcell cluster can reuse two
sets of low-interference macrocell channels as shown in the above example, the cell capacity can be increased by factor of
1C 2 � C�=3 times. Later, it will be shown that C� D 6 is possible and, hence, giving a capacity increase of seven times.

11.4.3 Performance Analysis of Cluster-Planned Architecture

11.4.3.1 Propagation Model and System Assumptions

Our analysis uses the following path loss model from (2.386):

�˝p
D ˝t.hbhm/

2

dˇ
; (11.10)

where �˝p
and ˝t are the received and transmitted powers, hb and hm are the BS and MS antenna heights, respectively, d

is the radio path length, and ˇ is the path loss exponent. Although (11.10) is more suitable for a macrocell environment
than a microcell environment, it is still characteristic of the path loss experienced by the microcell links at locations that are
well outside of the microcells. In other words, the model is applicable when considering the CCI that is generated by distant
microcells.

CCI: In our two-tiered hierarchical architecture, four types of CCI must be considered; macrocell-to-macrocell,
microcell-to-microcell, macrocell-to-microcell, and microcell-to-macrocell CCI. Adjacent channel interference should also
be considered.

Antennas: The macrocell BSs are assumed to use 120ı wide-beam directional antennas, while microcell BSs use omni-
directional antennas. It is possible to improve the C/I performance by sectoring the microcells as well, but this is not
considered here. The MSs use omnidirectional antennas.

Uplink power control: An uplink power control scheme is adopted such that the transmitted power is adjusted in
six levels from �22 to �2 dBW in steps of 4 dB. Downlink power control is not required in the proposed architecture.
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Fig. 11.14 Channel reuse in the proposed 3-sector cellular system, where each micro-area consists of three sectors that belong to three different
macrocells
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Table 11.1 The macrocell channel sets that can be used in the underlaid microcells

Channel Channel Channel Channel
Zone set Zone set Zone set Zone set

1 7˛ ; 7ˇ 26 6˛ ; 6
 51 6˛ ; 6ˇ 76 3˛ ; 3ˇ

2 5ˇ ; 5
 27 7˛ ; 7
 52 7˛ ; 7ˇ 77 6˛ ; 6


3 1ˇ ; 1
 28 5˛ ; 5ˇ 53 5ˇ ; 5
 78 7˛ ; 7


4 2ˇ ; 2
 29 1˛ ; 1ˇ 54 1ˇ ; 1
 79 5˛ ; 5ˇ

5 4˛ ; 4
 30 2˛ ; 2ˇ 55 2ˇ ; 2
 80 1˛ ; 1ˇ

6 3˛ ; 3
 31 3˛ ; 3ˇ 56 4˛ ; 4
 81 4˛ ; 4ˇ

7 6ˇ ; 6
 32 6˛ ; 6
 57 3˛ ; 3
 82 3˛ ; 3ˇ

8 7ˇ ; 7
 33 7˛ ; 7
 58 6ˇ ; 6
 83 6˛ ; 6


9 5˛ ; 5
 34 5˛ ; 5ˇ 59 7ˇ ; 7
 84 7˛ ; 7


10 1˛ ; 1
 35 1˛ ; 1ˇ 60 5˛ ; 5
 85 5˛ ; 5ˇ

11 4˛ ; 4
 36 2˛ ; 2ˇ 61 2ˇ ; 2
 86 1˛ ; 1ˇ

12 3˛ ; 3
 37 4ˇ ; 4
 62 4˛ ; 4
 87 2˛ ; 2ˇ

13 6ˇ ; 6
 38 3ˇ ; 3
 63 3˛ ; 3
 88 4ˇ ; 4


14 7ˇ ; 7
 39 6˛ ; 6ˇ 64 6ˇ ; 6
 89 3ˇ ; 3


15 5˛ ; 5
 40 7˛ ; 7ˇ 65 7ˇ ; 7
 90 6˛ ; 6ˇ

16 1˛ ; 1
 41 1˛ ; 1ˇ 66 5˛ ; 5
 91 5˛ ; 5ˇ

17 2˛ ; 2
 42 2˛ ; 2ˇ 67 1˛ ; 1
 92 1˛ ; 1ˇ

18 4˛ ; 4ˇ 43 4ˇ ; 4
 68 2˛ ; 2
 93 2˛ ; 2ˇ

19 3˛ ; 3ˇ 44 3ˇ ; 3
 69 4˛ ; 4ˇ 94 4ˇ ; 4


20 6˛ ; 6
 45 6˛ ; 6ˇ 70 3˛ ; 3ˇ 95 3ˇ ; 3


21 5˛ ; 5
 46 7˛ ; 7ˇ 71 7ˇ ; 7
 96 6˛ ; 6ˇ

22 1˛ ; 1
 47 5ˇ ; 5
 72 5˛ ; 5ˇ 97 7˛ ; 7ˇ

23 2˛ ; 2
 48 1ˇ ; 1
 73 1˛ ; 1
 98 5ˇ ; 5


24 4˛ ; 4ˇ 49 2ˇ ; 2
 74 2˛ ; 2
 99 1ˇ ; 1


25 3˛ ; 3ˇ 50 4˛ ; 4
 75 4˛ ; 4ˇ 100 2ˇ ; 2


Before proceeding, the notation is first clarified. When the subscripts M and � are used, they refer to macrocells and
microcells, respectively; when m and b are used, they denote the MS and BS, respectively; when d and u are used, they
indicate the downlink and uplink, respectively.

11.4.3.2 Macrocell Performance

Section 11.4.2 showed that the cluster planning technique creates low-interference regions, thereby allowing the microcells
to reuse macrocell frequencies. However, some macrocells will experience higher interference after rotating the sectors. This
is the cost of cluster planning. To evaluate the influence of the sector rotations on the macrocell performance, consider both
the conventional macrocellular system in Fig. 11.10 and the proposed hierarchical cellular system in Fig. 11.12 without the
underlaid microcells. Figure 11.15 shows the simulation results of the uplink C/I performance for both systems, assuming that
the MSs are uniformly distributed in each sector and they transmit with the maximum power. The uplink case is considered
because the downlink performance is usually better than the uplink performance. With respect to a 90% coverage probability,
one can observe that the sector rotation technique creates low-interference regions at the cost of about 3.1 dB, 3.3 dB, and
3.5 dB of C/I degradation for path loss exponent ˇ D 3:6, 3.8, and 4.0, respectively. Even after sector rotations, the macrocells
can maintain a C/I greater than 20 dB over 90% of the coverage area. In the following, the effect of underlaid microcells will
be further included when analyzing the performance of the proposed hierarchical cellular system. For ease of analysis, the
worst case scenario is hereafter adopted, where a MS is situated on a cell boundary.
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Fig. 11.15 Comparison of the uplink C/I performance of conventional macrocells and the proposed hierarchical cellular system without the
underlaid microcells for different path loss exponent ˇ

Downlink C/I Analysis

By applying (11.10) with ˇ D 4, the C/I received by the MS at the macrocell boundary can be expressed as

Cd
M
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M C Jd

�M

D
˝M

t;b

.hM
b hm/

2

R4M
NMX

iD1
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M
b hm/

2

D4
i

C
Z�
X

jD1

C�
X

kD1

˝
�
t;b.h

�
b hm/

2

djk
4

(11.11)

where

Cd
M D MS received power from the desired macrocell BS

Id
M D downlink macrocell-to-macrocell CCI

Jd
�M D downlink microcell-to-macrocell CCI

˝M
t;b D macrocell BS transmitted power

˝
�
t;b D microcell BS transmitted power

NM D the number of macrocell co-channel interferers

Zu D the number of interfering micro-areas

C� D the number of microcell clusters in a micro-area
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Di D MS distance to the ith interfering macrocell BS

dj;k D MS distance to the kth interfering microcell BS in the jth micro-area

hM
b D macrocell BS antenna height

h
�
b D microcell BS antenna height

hm D MS antenna height

RM D macrocell radius

Referring to Fig. 11.14 and Table 11.1, the downlink interference is examined when a macrocell MS using channel set 1ˇ is
located at the macrocell boundary near micro-area 56. One can find that the macrocell-to-macrocell downlink interference Id

M

mainly comes from two first-tier macrocell BSs located near micro-areas 77 and 68 with distances ŒD1;D2� D Œ4; 3:61�RM ,
respectively. However, because the objective of cluster planning is to carefully manage the C/I, the performance may be
sensitive to the C/I. Consequently, the three second-tier interfering BSs are also considered, located near micro-areas 11, 17,
and 62, located at distances ŒD3;D4;D5� D Œ8:89; 8:89; 8:72�RM , respectively. For the micro-cell-to-macrocell downlink
interference Jd

�M , one can find six interfering micro-areas 35, 48, 54, 80, 86, and 99 in the first tier with distances of

Œd1; d2; d3; d4; d5; d6� D Œ3; 4:58; 3:46; 6; 5:2; 6:25�RM , respectively. The second-tier interfering micro-areas 3, 29, 41, and 92
have distances Œd7; d8; d9; d10� D Œ7:55; 9; 7:94; 12�RM , respectively. Each micro-area is assumed to have C� microcell reuse
clusters, and each of these clusters has K� microcells. Through the channel selection algorithm in Sect. 11.4.2, each micro-
area is assigned two macrocell channel sets. These two sets of channels are further partitioned into K� groups and each group
is then assigned to the K� microcells in each cluster. In this manner, a macrocell channel set is used C� times in a micro-area.
For ease of analysis, it is assumed that the distance dj approximates dj;k, where dj is the distance from a macrocell MS to the
center of the jth interfering micro-area and dj;k is defined following (11.11). In our example, the microcell BS antenna height
is one third of macrocell BS antenna height, i.e., h

�
b =hM

b D 1=3, although this ratio can be easily varied. With the above
assumptions in (11.11)

Cd
M

Id
M C Jd

�M

D 1

1:02875 � 10�2 C C�

 

˝
�
t;b

˝M
t;b

!

� 2:79449 � 10�3
: (11.12)

The downlink C/I performance is shown in terms of C� and ˝�
t;b=˝

M
t;b in Fig. 11.16 with consideration of only first-tier

interfering BSs and in Table 11.2 with both first- and second-tier interfering BSs. Observe that C=I � 18 dB for C� D 6 and
˝
�
t;b=˝

M
t;b � 0:3. In other words, the channel set 4ˇ can be reused six times in the micro-area while still keeping the worst

case macrocell downlink C/I greater than 18 dB. The reuse increases even further if the required C/I is smaller than 18 dB.
Furthermore, by comparing the results in Table 11.2 with Fig. 11.16, one can find that the second-tier interfering BSs only
degrade the C/I by an additional 0.5 dB over the first-tier interfering BSs.

Uplink CCI Analysis

By modifying (11.11) slightly, the uplink C/I can be formulated as
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(11.13)

where

Cu
M D macrocell BS received power from the desired MS

Iu
M D uplink macrocell-to-macrocell interference
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Fig. 11.16 Macrocell downlink C/I performance against ˝
�
t;b=˝

M
t;b for different values of C�, where ˝

�
t;b=˝

M
t;b is the microcell to microcell BS

transmit power, and C� is the number of microcell clusters in a micro-area

Table 11.2 Downlink C/I
performance for overlaying
macrocells, where h

�
b =hM

b D 1=3

Cd
M=.I

d
M C Jd

�M/ (dB)

˝
�
t;b=˝

M
t;b C� D 1 C� D 2 C� D 4 C� D 6

0 19.88 19.88 19.88 19.84

0.1 19.76 19.64 19.42 19.22

0.2 19.65 19.42 19.02 18.65

0.3 19.53 19.22 18.65 18.15

0.4 19.43 19.02 18.31 17.70

0.5 19.32 18.83 17.99 17.29

0.6 19.22 18.65 17.69 16.91

0.7 19.12 18.48 17.42 16.57

0.8 19.02 18.30 17.16 16.25

0.9 18.93 18.14 16.91 15.96

1.0 18.83 17.99 16.68 15.68

Ju
�M D uplink microcell-to-macrocell interference

˝M
t;m D macrocell MS transmitted power

˝
�
t;m D microcell MS transmitted power

and where the remaining parameters have already been defined following (11.11). With directional antennas, the macrocell
BSs experience fewer interfering micro-areas in the uplink direction as compared with the downlink direction. Consider the
macrocell sector that is assigned with channel set 2
 and located near micro-area 37. This macrocell sector encounters two
first-tier and four second-tier macrocell interfering MSs at distances

ŒD1;D2;D3;D4;D5;D6� D Œ3:61; 3:61; 8:54; 8:19; 8:19; 7:81�Rm;
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and interfering micro-areas 23, 55, 61, 68, 74, 100, (i.e. Z� D 6) at distances

Œd1; d2; d3; d4; d5; d6� D Œ7:0; 7:0; 14:7; 5:3; 11:5; 9:53�Rm:

The effect of the three other interfering micro-areas 4, 17, 49 can be ignored because they are located in the back-lobe area
of the sector using channel set 2
 . By substituting the above values into (11.13), the uplink C/I performance for this example
becomes

Cu
M

Iu
M C Ju

�M

D 1

1:2677 � 10�2 C C�

 

˝
�
t;m

˝M
t;m

!

� 2:11 � 10�3
: (11.14)

Figure 11.17 shows the results. Suppose that a worst case target C/I of 18 dB is chosen. Then it is observed that the C/I is
greater than 18 dB for C� D 1 � 6 if

˝
�
t;m

˝M
t;m

� 0:2: (11.15)

Note that (11.15) was obtained under the assumption that the interfering macrocell MSs are on the cell boundary and are
transmitting with the maximum power. Thus (11.15) can be used to determine the maximum microcell MS’s transmitted
power. For example, consider a MS that can adjust its transmitted power in six levels from �22 to �2 dBW. Then (11.15)
implies that the maximum microcell MS transmitted power is �9 dBW, which is still in the operational range of the MS.
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Fig. 11.17 Macrocell uplink C/I performance against ˝
�
t;m=˝

M
t;m for different values of C�, where ˝

�
t;m=˝

M
t;m is the ratio of the transmitted power

of the microcell MS to that of the macrocell MS, and C� is the number of microcell clusters in a micro-area
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11.4.3.3 Microcell Performance

It is now shown how the microcell size should be chosen to achieve the required C/I performance.

Downlink Microcell Size

A feasible microcell size should satisfy two conditions: (1) C-criterion: a MS will receive stronger power, C, at the microcell
boundary than at the macrocell boundary; (2) C/I-criterion: the C/I at the microcell boundary equals or exceeds that at the
macrocell boundary.
C-criterion: From the path loss model in (11.10), the microcell radius R� can be calculated as

R� �
  

˝
�
t;b

˝M
t;b

!
�

h
�
b

hM
b

�2
!1=4

RM; (11.16)

where RM , h
�
b , hM

b , ˝�
t;b, and ˝M

t;b are defined in (11.11).
C/I-criterion: The C/I received by the MS at the microcell boundary can be written as
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where the parameters ˝�
t;b, ˝M

t;b, hM
b , h

�
b , C�, and hm have already been defined in (11.11) and

Cd
� D MS received power from its desired microcell BS

Id
� D downlink microcell-to-microcell interference

Jd
M� D downlink macrocell-to-microcell interference

NMf D the number of main-lobe macrocell interferers

NMb D the number of back-lobe macrocell interferers

DMf ;i D MS distance to the ith main-lobe interfering BS

DMb;j D MS distance to the jth back-lobe interfering BS

D�;i D MS distance to the ith microcell interfering BS

RM D macrocell radius

R� D microcell radius

� D the front-to-back ratio of the directional antenna in macrocells

Let .C=I/req denote the required C/I. Then (11.17) becomes
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where bDMf ;i D DMf ;i=RM , bDMb;j D DMb;j=RM , and bD�i
D D�i

=RM are the normalized distances of interferers with respect to
macrocell radius RM . Here the microcells and macrocells are assumed to have similar shapes, and that the microcell clusters
are adjacent to each other in a given micro-area. Suppose the distances from a microcell MS to its interfering microcell BSs
are equal and close to the microcell co-channel reuse distance D� (i.e., D�;i D D�, for i D 1; : : : ;C�). Then

D�

R�
D
p

3K�; (11.19)

where K� denotes the microcell cluster size. With C� microcell clusters and K� microcells inside each cluster, a micro-area
has in total C�K� microcells. Suppose that taken together they are smaller than the area of a macrocell. Then

RM

R�
�
p

C�K�: (11.20)

Substituting (11.19), (11.20) into (11.18) gives
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Notice that NMb
back-lobe macrocell interferers are considered in (11.21). The back-lobe interference from the macrocell BSs

can be ignored for the macrocell MS, but for the microcell MS, this kind of interference may be relatively strong compared
to the received signal strength from the “low-powered” microcell BS. For the same reason, the macrocell interferers in the
second ring are considered here.

Example 11.2: Referring to Fig. 11.14 and Table 11.1, micro-area 56 can be assigned channel sets [4˛ , 4
 ]. Take
channel set 4
 as an example. Micro-area 56 will experience three first-tier back-lobe interferers (NMb

=3), each of
which has the following distance

Œ1DMb;1 ;1DMb;2 ;1DMb;3 � D Œ2:65; 2:65; 2:65� (11.22)

to the center of micro-area 56. Three main-lobe interfering macrocells in the second tier are located near micro-areas
25, 79, 64 with the distances of

h

bDMf ;1 ; bDMf ;2 ; bDMf ;3

i

D Œ5:29; 5:29; 5:29� : (11.23)

Furthermore, three main-lobe interfering macrocell BSs in the third tier are located near micro-areas 13, 70, and 85
with distances of

h

bDMf ;4 ; bDMf ;5 ; bDMf ;6

i

D Œ7:0; 7:0; 7:0� : (11.24)

It is also important to determine if there exist interfering microcell BSs from neighboring micro-areas. Figure 11.14
and Table 11.1 show one feature of the proposed system architecture; the adjacent micro-areas are assigned different
macrocell channel sets. For instance, micro-area 56 in Fig. 11.14 is assigned channel sets [4˛ , 4
 ], while the

(continued)
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Example 11.2 (continued)
neighboring micro-areas 45, 46, 55, 57, 66, and 67 use channel sets [6˛ , 6ˇ], [7˛ , 7ˇ], [2ˇ , 2
 ], [3˛ , 3
 ], [5˛ , 5
 ],
[1˛ , 1
 ]. Obviously, when considering the interfering microcell BSs, a microcell MS will only be affected by the
interfering microcell BSs in the same micro-area. Assume that each micro-area consists of C� microcell clusters.
Then a MS will experience the interference from the remaining C� � 1 microcell BSs, excluding the desired one.
Substituting (11.22), (11.23), and (11.24) into (11.21), one can obtain
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Fig. 11.18 Effect of front-to-back ratio � on the microcell radius based on downlink microcell C/I performance analysis, where R�=RM

and ˝
�
t;b=˝

M
t;b are the cell radius ratio and transmitted power ratio of microcells over macrocells, respectively. With .C=I/req D 18 dB

and h
�
b =hM

b D 1=3, curves (a) � (e) are obtained by C/I-criterion for � D 0; 5; 10; 15; 20 dB, respectively, while curve (f) is obtained by
C-criterion

(a) C� D 1: First consider the special case where only one microcell is installed in each micro-area. This situation may
occur with initial microcell deployment. Figure 11.18 shows the effect of the front-to-back ratio � on the microcell
radius, in the case .C=I/req D 18 dB and h

�
b =hM

b D 1=3. If the C/I- and C-criterion result in different microcell radii,
then the smallest one must be chosen. From Fig. 11.18, one can observe that if front-to-back ratio � � 10 dB, the

(continued)
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Example 11.2 (continued)
microcell radius is determined by the C-criterion, but when � � 5 dB, the C/I-criterion dominates the C-criterion.
For instance, in the case of � D 10 dB and ˝�

t;b=˝
M
t;b D 0:4, one can obtain R� � 0:5RM by the C/I-criterion and

R� � 0:46RM by the C-criterion, respectively. The more stringent requirement must be satisfied and, therefore, the
microcell radius is 0:46RM . In this example, one can see that a larger front-to-back ratio � does not imply a larger
microcell size, since the C-criterion, which is independent of �, will dominate the C/I-criterion when � is large.
(b) C� � 2: Next, consider the case where many microcells are deployed in each microarea. Figure 11.19 shows the
downlink microcell size against ˝�

t;b=˝
M
t;b for different values of C�, where ˝�

t;b=˝
M
t;b is the ratio of the transmitted

power of the microcell BS to that of the macrocell BS, and C� is the number of microcell clusters in a micro-area. It is
observed that if C� � 3,˝�

t;b=˝
M
t;b has little effect on the downlink microcell size. This is because the interference from

the microcells, Id
�, will dominate the macrocell interference, Jd

�, when the number of co-channel microcells (C� � 1)
becomes large in a given micro-area. In other words, if a large number of microcells are installed, the C/I-criterion will
become a dominating factor in determining the microcell size. In the case of C� D 6, for example, one should follow
the C/I-criterion to get R� � 0:165RM from Fig. 11.19.
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Fig. 11.19 Downlink microcell radius R� against ˝
�
t;b=˝

M
t;b for different values of C� in the case � D 10 dB, .C=I/req D 18 dB,

and h
�
b =hM

b D 1=3, whereby the microcell radius is normalized with respect to the macrocell radius RM ; ˝
�
t;b=˝

M
t;b represents the ratio

of the transmitted power of microcell BS to that of macrocell BS; C� is the number of clusters in a micro-area; � is the front-to-back ratio
of the directional antenna; h

�
b =hM

t;b is the ratio of the microcell BS antenna to the macrocell BS antenna. Curves (a) � (e) are obtained by
C/I-criterion for C� D 1; 2; 4; 6; 8, while curve (f) is obtained by C-criterion
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Uplink Microcell Size

Similar to the previous analysis for the downlink microcell size, the uplink microcell size is derived from the C/I analysis.
More specifically,
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; (11.26)

where the parameters ˝�
t;b, ˝M

t;b, C� hM
b , D�;i, RM , h

�
b , and hm have been defined in (11.11) and (11.17) and

Cu
� D microcell BS received power from the desired microcell MS

Iu
�M D uplink microcell-to-macrocell interference

Ju
M� D uplink macrocell-to-microcell interference

NM;f D the number of macrocell interfering MSs

DM;i D BS distance to the ith interfering macrocell MS

R�;up D uplink microcell radius

Let DM;i D bDM;iRM and .C=I/req denote the required C/I for a microcell BS. Using the same assumptions for getting (11.18),
one can simplify (11.26) as
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: (11.27)

It has been shown that when the number of microcell clusters C� becomes large, the downlink microcell size is insensitive
to the interference from the macrocells. This is also true for determining the uplink microcell size. This will be shown by a
later example. When microcell interference dominates the performance, (11.27) can be approximated as
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: (11.28)

By combining (11.19), (11.20) and (11.28), upper and lower bounds are obtained on K� as

1

3

q

.C=I/req.C� � 1/ � K� �
1

C�

�
RM

R�

�2

: (11.29)

The relation between K� and C� with R�=RM as a parameter is shown in Fig. 11.20.
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Fig. 11.20 K� against C� with R�=RM as a parameter, whereby K� is the microcell cluster size, C� is the number of clusters in a micro-area, and
R�=RM is the ratio of the microcell radius to the macrocell radius. Curve (a) represents the lower bound of K�, while curves (b) � (g) represent
the upper bound of K� for R�=RM D 0:13, 0.15, 0.20, 0.25, 0.30, 0.35, respectively

Example 11.3: Consider again micro-area 56 in Fig. 11.14. Referring to Table 11.1, micro-area 56 can be assigned
channel sets Œ4˛; 4
 �. Take channel set 4˛ for example. The worst case interference occurs when interfering macrocell
MSs transmit maximum power, i.e., at the macrocell boundary. For the example considered, the three first-tier
interfering macrocell MSs near micro-areas 45, 47, 77 are located at distances of ŒbDM;1; bDM;2; bDM;3� D Œ2:0; 2:0; 2:0�,
respectively; the three second-tier interfering macrocell MSs near micro-areas 26, 53, 89 are located at distances
ŒbDM;4; bDM;5; bDM;6� D Œ4:36; 4:36; 4:36�, respectively; the three third-tier interfering macrocell MSs near micro-areas

32, 38, and 98 are located at distances ŒbDM;7; bDM;8; bDM;9� D Œ6:0; 6:0; 6:0�, respectively. Substituting these values
into (11.27) and then letting .C=I/req D 18 dB, Fig. 11.21 shows the ratio of microcell radius to macrocell radius
R�=RM against ˝�

t;m=˝
M
t;m for different values of C�, where ˝�

t;m=˝
M
t;m is the ratio of the transmitted power of the

microcell MS to that of the macrocell MS, and C� is the number of the microcell clusters in a micro-area. It is shown
that as C� increases, microcell size becomes insensitive to ˝�

t;m=˝
M
t;m.

Suppose our objective is to implement six microcell clusters in each macro-area (i.e. C� D 6) and still maintain
.C=I/req D 18 dB. The feasible cluster size K� and the microcell radius are first determined. From Fig. 11.20, K� D 7
and R� D 0:15 � RM . Then from Fig. 11.21, the transmitted power for a microcell MS should be at least 0.017 times
that for a macrocell MS. Consider an interfering macrocell MS which is transmitting at �2 dBW. The microcell MS
transmitted power should be larger than �20 dBW in this case. If the MS transmitted power ranges from �22 to
�2 dBW as was assumed earlier, then the MS can be used in both the macrocells and microcells of the cluster-planned
architecture without changing the MS transmit power specification.

(continued)
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Example 11.3 (continued)
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Fig. 11.21 Uplink microcell radius R� against ˝
�
t;m=˝

M
t;m for different values of C�, where the microcell radius is normalized by the

macrocell radius RM , ˝
�
t;m=˝

M
t;m is the ratio of the transmitted power of the microcell MS to that of the macrocell MS, C� is the number of

microcell clusters in a micro-area, and .C=I/req D 18 dB

11.4.3.4 Adjacent Channel Interference Analysis

To avoid excessive adjacent channel interference, it is desirable not to use the same channel sets in adjacent sectors.
A frequency plan designed to avoid adjacent channel interference in the conventional macrocellular system is first reviewed.
Then it will be shown that the same plan works for the cluster-planned hierarchical architecture. As shown in Fig. 11.10,
a traditional 7/21 macrocellular system has 21 sectors. If the forward and reverse links each have 10 MHz of available
spectrum, and the channel bandwidth is 30 KHz, then a total of 333 carriers can be assigned to the 21 sectors. A frequency
plan that avoids adjacent channel interference is shown in Table 11.3 [196]. Each row in the table represents a frequency set
that is designated to a sector. This scheme separates any two carriers assigned to adjacent sectors by seven carriers.

If the frequency plan in Table 11.3 is applied to the cluster-planned architecture in Fig. 11.14, there is no adjacent channel
interference between macrocell sectors. Even with the addition of underlaid microcells, a 2-carrier separation is maintained
between the carriers assigned to the microcells and the co-site macrocells within a micro-area. For example, referring to
Fig. 11.14 and Table 11.1, the channel set Œ4˛; 4
� is assigned to micro-area 56. The co-site macrocell sectors that use
channel set 1ˇ; 2˛; and 7
 have at least a 2-carrier separation. This feature is valid for all the micro-areas with channel
assignment of Table 11.1.
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Table 11.3 Frequency management plan for avoiding adjacent channel interference

1˛ 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

2˛ 2 23 44 65 86 107 128 149 170 191 212 233 254 275 296 317

3˛ 3 24 45 66 87 108 129 150 171 192 213 234 255 276 297 318

4˛ 4 25 46 67 88 109 130 151 172 193 214 235 256 277 298 319

5˛ 5 26 47 68 89 110 131 152 173 194 215 236 257 278 299 320

6˛ 6 27 48 69 90 111 132 153 174 195 216 237 258 279 300 321

7˛ 7 28 49 70 91 112 133 154 175 196 217 238 259 280 301 322

1ˇ 8 29 50 71 92 113 134 155 176 197 218 239 260 281 302 323

2ˇ 9 30 51 72 93 114 135 156 177 198 219 249 261 282 303 324

3ˇ 10 31 52 73 94 115 136 157 178 199 220 250 262 283 304 325

4ˇ 11 32 53 74 95 116 137 158 179 200 221 251 263 284 305 326

5ˇ 12 33 54 75 96 117 138 159 180 201 222 252 264 285 306 327

6ˇ 13 34 55 76 97 118 139 160 181 202 223 253 265 286 307 328

7ˇ 14 35 56 77 98 119 140 161 182 203 224 254 266 287 308 329

1
 15 36 57 78 99 120 141 162 183 204 225 255 267 288 309 330

2
 16 37 58 79 100 121 142 163 184 205 226 256 268 289 310 331

3
 17 38 59 80 101 122 143 164 185 206 227 257 269 290 311 332

4
 18 39 60 81 102 123 144 165 186 207 228 258 270 291 312 333

5
 19 40 61 82 103 124 145 166 187 208 221 251 271 292 313

6
 20 41 62 83 104 125 146 167 188 209 222 252 272 293 314

7
 21 42 63 84 105 126 147 168 189 210 223 253 273 294 315

11.5 Macrodiversity Architectures

Microscopic diversity techniques are used to combat the effects of envelope fading. Macrodiversity, or a large-scaled space
diversity, has long been recognized as an effective tool to combat shadowing [171, 196], although it is effective against
envelope fading as well. A TDMA macrodiversity system serves a mobile station (MS) simultaneously by L different BSs.
At any time, the BS with the best quality measure is chosen to serve the MS. The criterion for branch (or BS) selection is
a key issue when designing a macrodiversity system. Usually, the branch selection is based on the local mean power rather
than the instantaneous power [7, 8, 171, 322, 343, 370], because the branch selection algorithm cannot react to the rapidly
varying instantaneous signal power. Here, the focus is on local-mean-based branch selection schemes.

Previous studies on macrodiversity systems have evaluated the co-channel interference performance with shadowing only
[41, 341, 366] and shadowed Rayleigh fading channels [342]. The co-channel interference performance was also discussed in
[207], but it was assumed that the branch selection was based on the instantaneous signal power. The error rate performance
of macrodiversity systems has been analyzed in Gaussian noise with both shadowing and Rayleigh (or Nakagami) fading
[7, 8, 322, 323, 370]. However, these studies did not consider co-channel interference. The analysis in [344] carries this
further by considering the effect of Ricean fading on a local-mean-based macrodiversity system and by considering the
correlation effect of the wanted signal at different branches of a macrodiversity system.

11.5.1 Co-channel Interference Outage

An analytical model is now considered for calculating the probability of co-channel interference outage, OI , for an L-branch
local-mean-based macrodiversity system with log-normal shadowing. The model assumes that the local mean envelope power
of the desired signal, ˝d;k, is available for each branch k, where k D 1; : : : ;L. In practice, the desired signal power is mixed
with the total interference power for each branch ˝I;k, so that ˝d;k C˝I;k is actually measured. However, the difference is
small for large˝d;k=˝I;k. If the branch having the largest˝d;k is selected, then the local-mean envelope power of the selected
branch is

˝d D max .˝d;1; ˝d;2; : : : ; ˝d;L/ : (11.30)
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Let Fk.x/ and pk.x/ denote the cumulative distribution function (cdf) and the pdf of ˝d;k, respectively. If the ˝d;k are treated
as independent random variables with the pdf in (2.355), then ˝d has the pdf p˝d

.x/ D L ŒFk.x/�
L�1

pk.x/. The probability
of co-channel interference outage is

OI D P Œ˝d=˝I < ƒth�

D 1 �
Z 1

0

 
Z x=ƒth

�1
p˝I
.x/.y/dy

!

p˝d
.x/dx; (11.31)

where ˝d and ˝I are the total powers of the desired and interfering signals for the selected branch with pdfs p˝d
.x/ and

p˝I
.y/, respectively, and ƒth is the threshold C/I.
The interfering signals add non-coherently so that the total interference power on the kth branch is ˝I;k D

PNI

iD1˝I;k;i,
where NI is the number of interferers and ˝I;k;i is the power of the ith interferer on the kth branch. It is widely accepted
that ˝I;k can be approximated by a log-normal random variable with area mean power �˝I;k and standard deviation �˝I;k .
As discussed in Sect. 3.1, the parameters �˝I;k and �˝I;k can be calculated by using a variety of methods, including the
Fenton-Wilkinson and Schwartz & Yeh methods.

If the f˝I;kgnkD1 are independent and identically distributed (i.i.d.), and the f˝d;kgLkD1 are also i.i.d. and independent of the
f˝I;kgnkD1, then [341, 366]
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where �˝d
and �˝d .dB/ are the shadowing standard deviation and area mean power of the desired signal on the kth diversity

branch, respectively.
For ease of evaluation, let w D .10log10fxg � ln�˝d .dB//=

p
2�˝d

and transform (11.32) into a Hermite integration form.
That is,

OI D 1 �
Z 1

�1
g.w/e�w2dw ' 1 �

n
X

iD1
g.wi/hi; (11.33)
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and wi and hi are the roots and weight factors of the nth-order Hermite polynomial, respectively [4].

11.5.2 Shadow Correlation

Until now, independent shadowing has been assumed on the macrodiversity branches. However, in many cases the
macrodiversity branches will be correlated. Define

�d D .˝d;1; ˝d;2; : : : ; ˝d;L/ : (11.35)

For a correlated L-branch macrodiversity system, the joint pdf of �d is [89]

p�d
.z/ D 1

p

.2�/Ldet.M/�Lz1 � � � zL

exp

�
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YTM�1Y

�

; (11.36)
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where z D .z1; : : : ; zL/, YT D Œy1; : : : ; yL� denotes the transpose of column vector
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and �˝d;1 .dB/; : : : ; �˝d;L .dB/ are the area means of each diversity branch. The covariance matrix M is expressed as
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where �˝ is the shadowing standard deviation and �ij is the covariance of ˝d;i .dB/ and ˝d;j .dB/
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It is convenient to define N DM�1 and express the matrix multiplication in (11.36) in the form

YTNY D
L
X

iD1
Niiy

2
i C 2

L�1
X

iD1

L
X

jDiC1
Nijyiyj (11.40)

where Nij is the element in the ith row and jth column.
According to (11.30), (11.36), and (11.40), the probability that ˝d < y is
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(11.41)

where Nij and yi are defined in (11.40) and (11.37), respectively.
The key for obtaining the probability of co-channel interference outage of the local-mean-based macrodiversity system

is to find the pdf of the combiner output power, p˝d
.y/. Unlike the uncorrelated case where there exists a closed-form

expression for p˝d
.y/, one cannot easily get a simple closed formula for the joint distribution of more than two mutually

correlated log-normal random variables. However, for L D 2 and �˝d;j .dB/ D �˝d .dB/
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where z D .10log10y � �˝d .dB/). Consider the following covariance matrix M

M D
�

�2 �
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; (11.43)

and

N DM�1 D 1
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�

: (11.44)
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By substituting (11.44) into (11.42), the pdf of the output local-mean power of the dual macrodiversity system can be
expressed as
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; (11.45)

where the correlation coefficient r is defined as r D �=�2. Combining (11.31) and (11.45) gives
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11.5.3 Numerical Examples

Consider a cellular system with nine cells per cluster. In this case, two co-channel interferers are at 5.2R, where R is the cell
radius. Assume the mobile unit is on the boundary of the cell at a distance of R to the BS. Consider a dual slope path loss
model with a D b D 2 and g D 0:15R in (2.248).
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Fig. 11.22 Probability of co-channel interference outage, OI , against the required threshold, �th, at the receiver for the local-mean-based
macrodiversity system, where the solid lines denote the case for shadowing standard deviation � D 10 dB and the dashed lines for � D 6 dB;
a D b D 2, g D 0:15R; two interferers are located at a distance of 5:2R



558 11 Frequency Planning Techniques

Table 11.4 Macrodiversity gain
(D. G.) and the threshold �th of
C/I set at the receiver in terms of
5 and 10% probability of
co-channel interference outage,
OI , over a pure shadowing
channel; � D 6 dB

OI D 5% OI D 10%

L �th D. G. �th D. G.

1 10.96 � 13.69 �
2 15.78 4.82 18.12 4.43

3 17.97 7.01 20.46 11.78

4 19.41 8.45 21.80 13.13

Table 11.5 Effects of branch
correlation on a 2-branch
macrodiversity

� D 6 dB � D 10 dB

r �th D. G. �th D. G.

0 13.54 3.99 9.24 6.96

0.1 13.39 3.84 8.93 6.65

0.3 12.78 3.23 7.94 5.66

0.5 12.23 2.68 7.00 4.72

0.7 11.46 1.91 5.67 3.39

0.9 10.51 1.02 4.12 1.84

1.0 9.55 � 2.28 �

Figure 11.22 shows the probability of co-channel interference outage performance, while Table 11.4 lists the threshold
�th and diversity gain (D.G.) in terms of 5% and 10% co-channel interference outage probabilities. Diversity gain here
is defined as the additional C/I (in dB) that is required by a system without diversity to produce the same probability of
co-channel interference outage. Some general observations can be made: (1) a higher shadowing spread leads to a higher
diversity gain and a lower required threshold �th; (2) the diversity gain per branch is decreased as the number of diversity
branches is increased; (3) the diversity gain increases with the requirement of the system, e.g., the diversity gain for a 5%
outage probability is higher than that for a 10% outage probability.

The effects of correlation coefficient r on a 2-branch macrodiversity system are evaluated with various � ; � D 6 dB in
Fig. 11.23 and � D 10 dB in Fig. 11.24. With respect to a 10% outage, Table 11.5 lists �th with different r. Observe that as r

approaches unity, the diversity gain becomes zero. Furthermore, for r D 0:7, the diversity gain will be reduced to about 50%
of the gain when r D 0.

Problems

11.1. Consider a regular hexagonal cell deployment, where the MSs and BSs use omnidirectional antennas. Consider the
forward channel performance and consider only the first tier of co-channel interferers as shown in Fig. 1.12. Ignore the effects
of shadowing and multipath-fading, and assume that the propagation path loss is described by the inverse ˇ law in (1.6).

(a) Determine the worst case carrier-to-interference ratio, �, as a function of the reuse cluster size N, for ˇ D 3; 3:5, and 4.
(b) What is the minimum cluster size that is needed if the radio receivers have �th D 9 dB?
(c) Referring to Fig. 1.13, repeat parts (a) and (b) for the reverse channel.

Note: In this problem you must use exact radio path distances.

11.2. Consider a cellular system that uses a 7-cell hexagonal reuse cluster. The base stations employ 120ı wide-beam
directional antennas and they all have the same antenna height and transmit with the same power level. Consider the forward
channel (base-to-mobile). Ignore shadowing and envelope fading and consider only the path loss. A mobile station will
experience the lowest co-channel interference ratio, �, when it is located in the corner of a cell.

(a) Considering only the first tier of co-channel base stations, what is the worst case � with a path loss exponent of 4?
(b) Considering the first two tiers of co-channel base stations, what is the worst case � with path loss exponent of 4?
(c) From parts a) and b) what conclusions can you make about the effect of the second-tier co-channel base stations?
(d) What happens if the path loss exponent is equal to 3?

Note: In this problem you must use exact radio path distances.
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Fig. 11.23 Effect of branch correlation coefficient r on the local-mean-based macrodiversity system with � D 6 dB; a D b D 2, g D 0:15R; two
interferers are located at a distance of 5:2R
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Fig. 11.24 Effect of branch correlation coefficient r on the local-mean-based macrodiversity system with � D 10 dB; a D b D 2, g D 0:15R;
two interferers are located at a distance of 5:2R

11.3. Consider the reverse link of a cellular system that uses a 7-cell reuse cluster with omnidirectional base station antennas.
Ignore envelope fading and shadowing, and assume the simple path loss model

�˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇ log10.d=do/ .dBm/;

where ˇ D 3:5. Also assume that all mobile stations are transmitting at the same power level.
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Fig. 11.25 Split cells for
Problem 11.4

1A’
1C’

1B’

2A’
2C’

2B’

1A

1B

1C

1B

1A

1C

2A

2C

2C

2B

2A

2B

(a) Show graphically the worst case co-channel interference geometry for the reverse channel.
(b) Calculate the worst case carrier-to-interference ratio, � in terms of the co-channel reuse factor D=R.
(c) Repeat parts (a) and (b) if 120ı cell sectoring is used.

Note: In this problem you must use exact radio path distances.

11.4. Cell splitting is a process whereby smaller cells are introduced into an existing cellular deployment. If heavy traffic
loading is experienced at the midpoint between the two cells labeled 1 in Fig. 11.25 above, then a split cell labeled 1’ can
be introduced at that location. Likewise, the split cell labeled 2’ can be introduced at the midpoint between the two cells
labeled 2.

Assume propagation path loss according to the following model:

�˝p
.d/ D �˝p

.do; hbo
; hmo

/
Œ.hb=hbo

/.hm=hmo
/�2

.d=do/ˇ

where �˝p .dBm/ D �70 dBm at do D 1 km, ˇ D 3:5, hbo
D 70m, hmo

D 1:5m. Assume that hb D hbo
D 70m and

hm D hmo
D 1:5m unless otherwise specified.

(a) Convert the path loss model to dB units, with power levels referenced to 1 mW.
(b) If the receiver sensitivity is �115 dBm, and the transmit and receive antenna gains are unity (0 dB), what is the radius of

the original cells?
(c) What is the radius of the split cells?
(d) If the MS is to receive a signal level of �115 dBm on the corner of the split cell, by how much should �˝p

.do; hbo
; hmo

/

or, equivalently, the BS transmit power be reduced or increased?
(e) Repeat part c) if the split cell uses an antenna height of only 30 m.

11.5. A cellular network provider uses a TDMA scheme that can tolerate a C=I of 9 dB in the worst case. The propagation
environment is characterized by a path loss exponent ˇ D 4.

(a) Find the best value of N for (1) omnidirectional antennas, (2) 120ı sectoring, and (3) 60ı sectoring.
(b) Suppose that the system bandwidth supports a total of Ntot voice channels. The objective is to maximize the “cell

capacity” defined as the number of voice channels per cell. Should sectoring be used?
(c) If sectoring is used, should you use 120ı or 60ı sectoring? Explain.

11.6. One method for improving the capacity of a cellular system is to employ a two-channel bandwidth scheme, where
a hexagonal cell is divided into two concentric hexagons as shown in Fig. 11.26 below. The inner hexagon is serviced by
half-rate channels, while the outer hexagon is serviced by full-rate channels. When a mobile station crosses the boundary
between the inner and outer portions of a cell a handoff occurs.
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Fig. 11.26 Cell division with
two channel bandwidth scheme
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. . . . . .

Fig. 11.27 Highway cell reuse pattern for Problem 11.7

Suppose that the full-rate channels require C=I D 7 dB to maintain an acceptable radio link quality, while the half-rate
channels require C=I D 10 dB.

Assume a fourth-law path loss model and ignore envelope fading and shadowing. Consider the reverse link and assume
that there are six co-channel interferers at distance D from the serving base station. It follows that the worst case C=I when
a mobile station is located at distance d from the base station is C=I D .D=d/4=6.

Hence, a C=I D 7 dB requires a 7-cell reuse cluster with D=Ro D 4:6, where Ro is the radius of the outer cell.

(a) Find the required value of D=Ro so that C=I D 7 dB in the outer cell, where Ri is the radii of the outer cell.
(b) Find the required value of D=Ri so that C=I D 10 dB in the inner cell, where Ri is the radii of the inner cell.
(c) Use the values of D=Ri and D=Ro to determine the ratio of the inner and outer cell areas, Ai=Ao. Use the exact area of a

hexagon in terms of its radius.
(d) Let Ni and No be the number of channels that are allocated to the inner and outer areas of each cell, and assume that the

channels are assigned such that Ni=No D Ai=Ao. Determine the increase in cell capacity (as measured in channels per
cell) over a conventional one-channel bandwidth system that uses only full-rate channels.

11.7. You are asked to design a highway cell reuse pattern as shown in Fig. 11.27. Each cell has length 2R.

(a) A base station with an omnidirectional antenna is placed at the center of each cell. Shadowing is ignored under assumed
line-of-sight conditions. Derive an expression for C=I in terms of the linear reuse cluster size N. Afterwards, determine
the minimum reuse factor needed to yield a worst case carrier-to-interference ratio .C=I/ of 9 dB or more. Consider only
the nearest neighboring co-channel interferers and assume a propagation path loss exponent ˇ D 4.

(b) Now suppose that directional antennas are used to divide each cell into two semicircular sectors with boundaries
perpendicular to the highway. Repeat part (a).

(c) Consider again the sectored cell arrangement in part (b). However, log-normal shadowing (due to heavy vehicle traffic)
is now present with shadow standard deviation of �˝ dB. Derive an expression for the C=I outage on a cell boundary,
again considering only the nearest neighbouring co-channel interferers.

11.8. Microcells are characterized by very erratic propagation environments. This problem is intended to illustrate the
imbalance in the forward and reverse channel carrier-to-interference ratio that could occur in a street microcell deployment.
Consider the scenario shown in Fig. 11.28 that consists of two co-channel BSs, BS1 and BS2, communicating with two co-
channel MSs, MS1 and MS2. Neglect the effects of shadowing and multipath, and assume that the non-line-of-sight corner
path loss model in (2.412). Suppose that a D 2, b D 4, and g D 150m. Plot � at BS1, BS2, MS1, and MS2 as MS2 moves
from A to C. When plotting your results, assume a received power level of 1 dBm at a distance of 1 m.
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Fig. 11.28 Microcellular
propagation environment for
Problem 11.8
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Chapter 12

CDMA Cellular Systems

CDMA has been adopted in third generation (3G) cellular systems, notably in the cdma2000 and WCDMA standards, due
to its many benefits such as universal frequency reuse, soft handoff capability, and the ability to exploit multipath-fading
with RAKE receivers. CDMA waveforms are broadband and noise-like, so that the multiple-access interference behaves in
a manner that is approximately equivalent to AWGN. CDMA cellular systems are interference limited and, therefore, their
capacities are closely related to the amount of multiple-access interference that is generated by the transmitters on one hand
and tolerated by the receivers on the other. Because of the universal frequency reuse, multiple-access interference in CDMA
cellular systems is due to both intra-cell interference from transmissions in the same cell and inter-cell interference from
transmissions in neighboring cells. To alleviate the level of multiple-access interference, and thus increase the capacity and
quality, CDMA systems must employ power control in conjunction with soft handoff. The fundamental idea behind power
control is to limit the generation of multiple-access interference by restraining mobile stations (MSs) and base stations (BSs)
from transmitting any more power than is necessary. With power control, each MS and BS transmits just enough power to
meet the required carrier-to-interference ratio (CIR) at the intended receiver.

This chapter considers capacity and performance of CDMA cellular systems. Section 12.1 begins the chapter with a
discussion of the power control mechanism in the CDMA reverse and forward links. Afterwards, the reverse and forward link
capacity of CDMA cellular systems is considered, and the impact of imperfect power control is demonstrated in Sect. 12.2.
Section 12.3 considers hierarchical CDMA cellular architectures consisting of macrocells and underlaid macrocells, where
both hierarchical layers use the entire system bandwidth. On the reverse link, this is accomplished by using macrodiversity
maximal ratio combining where the signals received at multiple base stations (BSs) are coherently combined. On the forward
link, only one BS can transmit to a given mobile station (MS) at any given time. The forward link transmit power is
determined according to a neighbor-ing cell pilot power scheme, where the forward transmit power to each MS is determined
according to link conditions between the MS and surrounding BSs. Additional improvement can be gained by using selective
transmit diversity at the BSs on the forward link.

12.1 CDMA Power Control

CDMA cellular systems must use reverse channel power control to combat the near-far effect, a phenomenon where
the signals received from distant MSs will experience excessive multiple-access interference from close-in MSs due to
differences in the propagation path loss. Shadowing and envelope fading will also contribute significantly to the near-far
effect, although these propagation factors are not distance dependent. To combat variations in the received CIR due to
path loss, shadowing, and envelope fading, the reverse link in CDMA cellular systems employs a fast closed-loop power
control algorithm. For cdma2000 cellular systems, the transmit power from each MS is adjusted every 1.25 ms to equalize
the corresponding received CIR at the serving BS. Such adjustments are based on measurements of the received Eb=Nt (bit
energy to interference-plus-noise spectral density ratio). The reverse closed-loop power control algorithm consists of outer
and inner power control loops. The outer power control loop occurs between the base station controller and the BSs, and
adjusts a “set point” or target received Eb=Nt according to measurements of the frame error rate that is required to maintain
a desired quality of service. The outer loop adjustments are performed at the frame interval, for example, every 20 ms in
cdma2000. The inner power control loop occurs between the BSs and MSs. The serving BS compares measurements of the
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received Eb=Nt from each MS to the corresponding target Eb=Nt. Based on the results of these comparisons the BS instructs
each MS to either increase or decrease its transmit power by a power increment at short periodic intervals, for example,
˙1 dB every 1.25 ms in cdma2000.

CDMA cellular systems also use forward link power control to combat the corner effect, a condition where a MS
experiences a decrease in received CIR near the corner of a cell. While the IS-95A/B cellular system uses open loop power
control on the forward link, 3G CDMA cellular systems such as cdma2000 and WCDMA also use fast closed-loop power
control on the forward link based on measurements of the received Ec=Io (chip energy to interference-plus-noise spectral
density ratio) that are obtained from the forward pilot channel. Once again, the forward closed-loop power control algorithm
consists of outer and inner power control loops. The outer power control loop is carried out entirely within the MS, where
the MS adjusts a “set point” or target received Ec=Io according to measurements of the frame error rate that is required to
maintain a desired quality of service. The outer loop adjustments can be performed at the frame interval, for example, every
20 ms in cdma2000. The inner power control loop occurs between the MSs and BSs. The MS compares measurements of the
received Ec=Io from the BS to the corresponding target Ec=Io. Based on the results of these comparisons, the MS instructs
the BS to either increase or decrease its transmit power by a predetermined power increment at short periodic intervals, for
example, ˙1 dB every 1.25 ms in cdma2000.

The basic idea of CDMA power control can be described as follows [197, 321]. Consider the CDMA reverse link where
a BS serves K MSs (although the same argument can be applied to forward link power control). The reverse link CIR
experienced by MS i, .C=I/i, is

.C=I/i D
GiPi

PK
jD1
j¤i

GjPj C Io C No

; (12.1)

where Gi is the link gain (due to path loss, shadowing, and fading) between MSi and the BS, and Pi is the reverse transmit
power MSi. The term Io represents the out-of-cell interference generated by the surrounding cells and No is the additive white
Gaussian noise (AWGN). The goal is to develop a recursive algorithm to adjust the transmit power of MSi to drive .C=I/i to
meet or exceed a desired target value, .C=I/target;i, i.e.,

.C=I/i � .C=I/target;i ; i � i � K: (12.2)

Rearranging (12.1) gives

Pi D
K
X

jD1
j¤i

.C=I/i
Gj

Gi

Pj C .C=I/i
Io C No

Gi

: (12.3)

Based on the above derivation, define the K � K matrix W D ŒWij� and vector U D .Ui/ having elements

Wij D
(

1 ; i D j

�.C=I/target;i
Gj

Gi
; i ¤ j

(12.4)

Ui D .C=I/target;i
Io C No

Gi

; 1 � i � K: (12.5)

The existence of a power vector, P D .P1;P2; : : : ;PK/
T , such that WP D U implies that .C=I/i � .C=I/target;i; 1 � i � K.

When such a matrix P exists, W has only strictly positive eigenvalues and, therefore, P is given by

P DW�1U: (12.6)

It is proven in [321] that whenever a unique power vector P that satisfies .C=I/target;i, 1 � i � K, exists, P.n/ converges to
P DW�1U for any initial power vector P.0/ according to the following recursion:

P.nC 1/ D .I �W/P.n/C U: (12.7)
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The above recursion can be rewritten as

Pi.nC 1/ D Pi.n/
.C=I/target;i

.C=I/i.n/
; (12.8)

where Pi.n/ and .C=I/i.n/ are the transmit power of MSi and .C=I/i at step n, respectively.

12.2 Capacity of Cellular CDMA

Numerous studies have investigated the capacity and performance of CDMA cellular systems for radio propagation
environments characterized by path loss and shadowing, including Gilhousen et al. [139], Kudoh and Matsumoto [186],
and Newson and Heath [242]. Mokhtar and Gupta [229] considered reverse channel capacity on shadowed Nakagami fading
channels, where the desired and interfering signals have the same statistical fading characteristics.

CDMA cellular systems employ universal frequency reuse, where the bandwidth is shared by all the cells and users are
distinguished through the assignment of unique spreading sequences. For such systems, multiple-access interference from
both in-cell and out-of-cell sources must be carefully accounted for. The propagation path loss associated with out-of-cell
interferers is relatively small due to the short reuse distance and, hence, the associated interference is significant. With cellular
CDMA systems, any technique that reduces or mitigates multiple-access interference translates directly into a capacity gain.
For this reason CDMA systems use voice activity detection along with variable rate speech coding, where the rate of the
speech coder is reduced when silent periods are detected in the speech waveform.

Our analysis of cellular CDMA capacity assumes a uniform plane of hexagonal cells of radius R. Each cell contains
a centrally located BS with 120ı cell sectors. It is further assumed that the MSs are uniformly distributed throughout the
system area with a density of K MSs per cell sector. For hexagonal cells of radius R, this yields a subscriber density of

� D 2K

3
p
3R2

per unit area: (12.9)

The effects of variable rate speech coding can be modeled by assuming that each transmitter is independently active at any
time with probability p, so that the number of active transmitters in each cell has a .K; p/ binomial distribution. The average
number of active transmitters in a cell sector is Kp.

12.2.1 Reverse Link Capacity

Our analysis assumes a simple closed-loop reverse channel power control scheme that equalizes the received power C at a
BS from all MSs being served by that BS. Let MSi;j denote the jth MS located in cell i. The power transmitted by MSi;j,
located at distance di;j from its serving BS, BSi, is Pi;j. The received power at BSi is

C D Pi;j10
&i;j
10 ; (12.10)

where &i;j is a random gain due to path loss, shadowing, and fading. MSi;j is also located at distance di;0 to the reference BS,
BS0, and will produce an out-of-cell interference equal to

Io.i; j/

C
D 10&i;0=10 �

�
1

10&i;j=10

�

D 10.&i;0�&i;j/=10 � 1: (12.11)

The first term is due to path loss, shadowing, and fading to BS0, while the second term is the effect of the power control to
compensate for the random attenuation between MSi;j and BSj. Note that Io.i; j/=C is always less than unity; otherwise, the
MS will execute a handoff to another BS that will make it less than unity.

For our purpose, log-normal shadowing with Nakagami fading is assumed, where the received squared-envelope has
the composite Gamma-log-normal pdf in (2.373). The composite Gamma-log-normal pdf can be approximated by a purely
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log-normal pdf with mean and standard deviation given by (2.374). Hence, the random variables &i;j and &i;0 are treated as
Gaussian random variables with means and variances, respectively,

�i;j .dBm/ D ��1. .mi;j/ � ln.mi;j//C �˝p .dBm/.i; j/ (12.12)

�i;0 .dBm/ D ��1. .mi;0/ � ln.mi;0//C �˝p .dBm/.i; 0/

�2i;j D ��2�.2;mi;j/C �2˝
�2i;0 D ��2�.2;mi;0/C �2˝ ;

where � D .ln 10/=10, mi;j and mi;0 are the Nakagami shape factors, and �˝ is the shadow standard deviation. The parameters
�˝p .dBm/.i; j/ and �˝p .dBm/.i; 0/ are determined by the path loss. Using the simple path loss model in (1.6), their difference is

�˝p .dBm/.i; j/ � �˝p .dBm/.i; 0/ D 10ˇ log10
˚

di;j=di;0




: (12.13)

The total out-of-cell interference-to-signal ratio is equal to

Io

C
D
Z Z

�Io.i; j/ˆ0;j�dA; (12.14)

where

ˆ0;j D
�

1; if 10.&i;0�&i;j/=10 < 1

0; otherwise
; (12.15)

� is the user density over the area A, and � is the voice activity variable

� D
�

1 ; with probability p

0 ; with probability 1 � p
: (12.16)

The total out-of-cell interference Io can be modeled as a Gaussian random variable by invoking the central limit theorem.
The mean of the total out-of-cell interference-to-carrier ratio is

EŒIo=C� D
Z Z

EŒ�10.&i;0�&i;j/=10ˆ0;j��dA

D
Z Z

pEŒ10.&i;0�&i;j/=10ˆ0;j��dA: (12.17)

Let x D &i;0 � &i;j and define

�x .dB/ D �i;0 .dBm/ � �i;j .dBm/

�2x D �2i;0 C �2i;j: (12.18)

The expectation in the integrand of (12.17) is

EŒ10.&i;0�&i;j/=10ˆ0;j� D
Z 0

�1
e�x 1p

2��x

exp

�

� .x � �x .dB//
2

2�2x

�

dx

D exp

�
�2�2x
2
C ��x .dB/

�
1p
2��x

Z 0

�1
exp

(

�
�

xp
2�x

� ��xp
2
� �x .dB/p

2�x

�2
)

dx

D exp

�
�2�2x
2
C ��x .dB/

� �

1 � Q

�

���x �
�x .dB/

�x

��

:

(12.19)
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Therefore,

EŒIo=C� D p

Z Z

exp

�
�2�2x
2
C ��x .dB/

� �

1 � Q

�

���x �
�x .dB/

�x

��

�dA:

(12.20)

In a similar fashion,

EŒ.Io=C/2� D
Z Z

EŒ�210.&i0�&ij/=5˚2
0j��dA

D p

Z Z Z 0

�1
e2�x 1p

2��x

exp

�

� .x � �x .dB//
2

2�2x

�

dx�dA

D p

Z Z

exp
˚

2�2�2x C 2��x .dB/



�

1 � Q

�

�2��x �
�x .dB/

�x

��

�dA:

(12.21)

Finally, the variance of Io=C is

VarŒIo=C� D p

Z Z

exp
˚

2�2�2x C 2��x .dB/



�

1 � Q

�

�2��x �
�x .dB/

�x

��

�dA

�E2ŒIo=C�: (12.22)

The integrals in (12.20) and (12.22) must be evaluated numerically over the random location of mobile locations in the area
A, as defined by the set of shaded sectors shown in Fig. 12.1 (minus the sector where the reference MS is located) where only
the adjacent cells are shown.

With perfect power control, the in-cell interference Iin is

Iin D C

K�1
X

iD1
�i; (12.23)

where �i is a Bernoulli random variable equal to 1 with probability p and 0 with probability 1 � p. Let I D Io C Iin be the
total interference. The carrier-to-interference ratio C=I and baseband Eb=No are related by

C=I D Eb=No

Wss=W
; (12.24)

Fig. 12.1 Reverse channel
transmissions from MSs located
in the shaded area will cause
out-of-cell interference with the
reverse channel transmission
from the reference MS

x  reference MS
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where Eb is bit energy, No is the one-sided noise power spectral density, Wss is the spread spectrum bandwidth, and W is the
data signal bandwidth. Many factors must be considered to establish the required 
b D Eb=No, 
b req, such as the channel
characteristics, type of modulation, diversity, receiver structure, and coding/interleaving techniques. In the cdma2000 cellular
system with radio configuration (RC1), 
b req D 7 dB on the reverse link and 
b req D 5 dB on the forward link [139]. The
difference in 
b req for the forward and reverse links arises, because the reverse link of cdma2000 RC1 uses non-coherent
detection while the forward link uses coherent detection.

From (12.24),

.I=C/
b
D Wss=W


b

: (12.25)

It follows that the probability that the received 
b at a BS is below a required value, 
b req, is

Pout D PŒ
b < 
b req�

D PŒ.I=C/
b
> .I=C/
b req �

D P

"
K�1
X

iD1
�i C Io=C > .I=C/
b req

#

D P

"

Io=C > .I=C/
b req �
K�1
X

iD1
�i

#

D
K�1
X

kD0
P

"

Io=C > .I=C/
b req � k

ˇ
ˇ
ˇ
ˇ
ˇ

K�1
X

iD1
�i D k

#

P

"
K�1
X

iD1
�i D k

#

D
K�1
X

kD0

 

K � 1
k

!

pk.1 � p/K�1�kQ

 

.I=C/
b req � k � EŒIo=C�
p

VarŒIo=C�

!

: (12.26)

Assume a chip rate of Wss D 1:25MHz, W D 8 kHz, p D 3=8, and a required outage probability of Pout D 10�2.
Figure 12.2 shows the reverse channel capacity for different 
b req and shadow standard deviations. The reverse channel
capacity is greatly increased by a reduction in 
b req and slightly reduced when the shadow standard deviation is increased.
Figure 12.3 shows the reverse channel capacity with different Nakagami shape factors for the desired and interfering signals.
Observe that a change in the Nakagami shape factor mI of interfering signals has very little effect on the reverse channel
capacity. Figure 12.4 further illustrates the effect of fading and shadowing on the reverse channel capacity. As expected,
shadowing and fading have relatively little impact on the reverse channel capacity, since these components of the received
signal are power controlled. Therefore, fading and shadowing variations mostly affect the out-of-cell interference.

The ratio of the mean out-of-cell interference to the mean in-cell interference is

� D EŒIo�

EŒIin�
D EŒIo=C�

EŒIin=C�
D EŒIo=C�

pK
: (12.27)

With a 4th-order path loss exponent, Newson and Heath [242] showed that � D 0:5 when no fading and shadowing are
considered and � � 0:66 when shadowing is considered with �˝ D 8 dB. This translates into a frequency reuse efficiency
f , defined as the ratio of mean in-cell interference to the total mean interference, of 0:66 and 0:38, respectively. Table 12.1
tabulates the corresponding values of � and f D 1=.1 C �/ for different propagation conditions. The calculations only
consider the first tier of interfering cells. Observe that the frequency reuse efficiency decreases with the shadow standard
deviation, �˝ , and slightly increases when md increases or mI decreases.
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Fig. 12.2 Reverse channel capacity with Pout D 10�2 for different 
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Fig. 12.3 Reverse channel capacity for different propagation environments with 
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�˝ D 4 dB, and dot-dashed lines denote �˝ D 8 dB

To show that the values of � and f in Table 12.1 do not depend on the number of users per cell, K, the cdf of the out-of-cell
interference to the in-cell interference Io=Iin for the reverse channel is derived as
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Fig. 12.4 Reverse channel capacity for different Nakagami shape factors with 
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Table 12.1 Ratio of the mean of out-of-cell interference to the mean in-cell interference, � , and frequency reuse efficiency, f , under different
propagation conditions

md mI �˝ (dB) � (%) f D 1=.1C �/ (%)

8 8 8 60.14 62.45

8 4 8 58.83 62.96

8 2 8 56.20 64.02

8 1 8 51.11 66.18

4 1 8 52.36 65.63

2 1 8 54.90 64.56

1 1 8 59.73 62.61

1 1 10 57.34 63.56

1 1 6 60.16 62.44

1 1 4 57.82 63.36

1 1 No shadowing 51.76 65.89

No fading No fading No shadowing 21.81 82.10

No fading No fading 4 39.42 71.73

No fading No fading 8 60.02 62.49

No fading No fading 10 61.65 61.86

PŒIo=Iin < z� D P

�
Io=C

Iin=C
< z

�

D 1:0 � PŒIo=C > z Iin=C�

D 1:0 �
K�1
X

kD0

 

K � 1
k

!

�k.1 � �/K�1�kQ

 

kz � EŒIo=C�
p

VarŒIo=C�

!

: (12.28)
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Figure 12.5 plots the distribution of Io=Iin (in dB) with different shadow standard deviations. Although the distribution varies
with K, the mean value EŒIo=Iin� remains almost the same, i.e., all the curves cross at the 50% point. This implies that the
values of � and f in Table 12.1 do not depend on K.

12.2.2 Forward Link Capacity

For the forward channel, a pilot signal is transmitted from each BS. The pilot signal causes interference in every cell, thereby
reducing the capacity. However, this is offset by a decrease in 
b req due to coherent demodulation. With forward channel
balancing power control, the mobile measures the received signal and periodically transmits the measurement to its serving
BS [139]. When the total power requested by mobiles is below the maximum allowable transmit power, the BS will reduce
its transmit power, thereby reducing interference; otherwise, the BS will redistribute the power from the forward links with
good quality to those with poor quality.

In the worst case situation, each BS always transmits with the maximum allowable power Pmax. From (12.24), the 
b at
the ith mobile under this condition is


b;i D
Wss=W

.I=C/i
D Wss=W

.
PM

jD0 CTj
� ı�iCT0/=ı�iCT0

(12.29)

CTj
D Pmax10

&j
10 ; (12.30)

where M is the number of surrounding BSs that are included in the calculation, CTj
is the received power from BSj, 1�ı is the

fraction of the total power allocated to the pilot, and the weighting factor �i is the fraction of the remaining power allocated
to the ith mobile. Forward channel transmissions to MSs located in the shaded sectors of Fig. 12.6 will cause multiple-access
interference with the forward channel transmission to the reference MS. As in [139] our results assume that 20% of the total
BS transmit power is allocated to the pilot signal. Once again, the &i are Gaussian random variables due to shadow and fading
variations, with means and variances obtained from (2.374).
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Fig. 12.6 Forward channel
transmissions to MSs located in
the shaded areas will cause
multiple-access interference with
the forward channel transmission
to the reference MS

x  reference MS

The BS distributes its transmit power proportionally according to the needs of each mobile within its cell. This is
accomplished by first obtaining the required �i for each mobile, .�i/req, by setting 
b D 
b req in (12.29). To account for
the random voice activity, a modified weighting factor is then calculated as [186]

�i D
.�i/req

PK
jD1
j¤i

�j.�j/req C .�i/req

: (12.31)

The power balancing scheme in [56] does the same thing, except that the voice activity factors, �j, are not considered. The
outage probability then becomes

Pout D P
�


b < 
b req

�

D P
�

�i < .�i/req

�

: (12.32)

Numerical results can be obtained from the last equation in (12.32) by using Monte Carlo simulation techniques to account
for the random user locations, and shadow and fading variations. For each set of MS locations and propagation conditions,
the required fraction of power, .�i/req, needed to meet the 
b req requirement is first determined. Afterwards, it is determined
if the actual power allocation for each MS, �i, is sufficient.

Figure 12.7 shows how the forward channel capacity depends on 
b req and the shadow standard deviation. Shadowing
has a slightly stronger effect on forward channel capacity compared to the reverse channel. Figure 12.8 shows the forward
channel capacity for various Nakagami shape factors. The Nakagami shape factor also plays a significant role in forward
channel capacity, and overly optimistic capacity estimates will be obtained if fading is neglected.

12.2.3 Imperfect Power Control

Any power control algorithm will inevitably be subject to some degree of error. It has been experimentally verified that the
power control error (in dB) can be modeled as a zero-mean Gaussian random variable with variance �2E [186, 242]. For the
reverse channel, (12.10) has the modified form

C10
&Ej=10 D Pi;j10

&d=10; (12.33)

where &Ej
is the power control error. The mean and variance of x D &i;0 � &i;j with imperfect power control are similar

to (12.18), but have the form

�x .dB/ D �i;0 .dBm/ � �i;j .dBm/ (12.34)

�2x D �2i;0 C �2i;j C �2E: (12.35)
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With imperfect power control, the in-cell interference experienced by MS0;i at the reference BS, BS0, is Iin D C�, where

� D
K
X

jD1

j¤i

10
&Ej=10�j: (12.36)
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Then

Pout D PŒ
b < 
b req�

D PŒIo=CC Iin=C > .I=C/
b req �

D PŒIo=C > .I=C/
b req � ��

D
K�1
X

kD0

 

K � 1
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pk.1 � p/K�1�k

Z 1
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P
�

Io=C > .Io=C/
b req � �j�
�

p.�jk/d�: (12.37)

Note that the conditional pdf of � given k, p.�jk/, is approximately log-normal. The log-normal approximation can be
calculated using the Fenton-Wilkinson or Schwartz & Yeh methods discussed in Sect. 3.1. Observe from Fig. 12.9 that the
reverse channel capacity is dramatically decreased as the power control error increases. For Pout D 0:01 and power control
errors of �E D 1 dB, 2 dB, and 3 dB, the reverse channel capacity is decreased by 24%, 50%, and 68%, respectively.

To consider the effect of power control error on the forward channel, (12.31) becomes

�i D
�i10

&Ei=10

PK
jD1
j¤i

�j�j10
&Ej=10 C �i10

&Ei=10
: (12.38)

Figure 12.9 shows that the forward channel capacity is reduced by 31%, 64%, and 83% for �E D 1:0 dB, 2.0 dB, and 3.0 dB,
respectively. Note that imperfect power control has a more severe effect on the forward channel than the reverse channel for
the same propagation conditions.

12.3 Hierarchical Macrodiversity CDMA Cellular Architectures

CDMA cellular systems often employ hierarchical architectures consisting of macrocells with underlaid microcells. In such
architectures, macrocells cover large areas with sparse traffic densities, whereas microcells serve small areas with high traffic
densities. However, due to their effective frequency reuse factor of one, hierarchical CDMA systems must deal with cross
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interference between the hierarchical layers. This cross-layer interference can be subdued by assigning distinct spectrum to
each layer, but this will make inefficient use of the available spectrum. A better approach allows the hierarchical layers to
share the same spectrum.

For the reverse link, one possibility is hierarchical maximum ratio combining (HMRC), where the signal from each mobile
station (MS) is received by several base stations (BSs) in both hierarchical layers and coherently combined. If independent
interference is assumed at the different BS locations, the combined CIR is the algebraic sum of the CIRs at each BS,

.C=I/HMRC D
N
X

iD1
.C=I/�;i C

M
X

jD1
.C=I/M;j; (12.39)

where N and M are the number of BSs involved in the combining, and the subscripts � and M designate “microcell” and
“macrocell,” respectively.

Macrodiversity maximal ratio combining (MMRC) has been proven to be an effective way of improving the capacity in
cellular CDMA systems [146, 159]. In [159], Hanly proved the existence of a power control solution using MMRC, and
showed that the capacity is unaffected by outside interference. In [146], by assuming equal reverse interference level at
each BS in non-hierarchical settings, Gorricho and Paradells constructed a simple proof showing that MMRC reverse link
capacity is close to an isolated cell capacity. Here, the results in [146] are generalized and applied to hierarchical CDMA
systems. An analytical solution will be derived for HMRC reverse performance without assuming an equal level of reverse
link interference among cells, and show that both microcell and macrocell performances are nearly unaffected by each other’s
presence.

The reverse link is commonly considered to limit the CDMA system capacity. However, with the emergence of asymmetric
wireless data services, the forward link performance has become increasingly important. For the forward link, HMRC-like
combining schemes are not suitable because such schemes will increase the forward link interference [168]. One possible
solution is Selective Transmit Diversity (STD) where each BS provides multiple transmit paths by means of spatially
separated antennas, and the system allows each MS to connect to the most robust path among the multiple paths [278, 284].

12.3.1 System Model

Consider a hierarchical CDMA deployment consisting of a group of omnidirectional macrocells and a cluster of
omnidirectional microcells embedded within the macrocells. The MSs are assumed to be uniformly distributed in both
macrocells and microcells, yet the load condition of each cell might differ. Although no particular load conditions are
assumed, microcells are generally more densely populated by MSs than macrocells. With macrodiversity, there are no longer
distinct boundaries between cells and hierarchical layers. Therefore, MSs are referenced to their respective locations. For
example, a microcell MS means that the MS is physically located in the designated microcell area, but not necessarily served
by it.

The radio links are assumed to be affected by Rayleigh fading and log-normal shadowing. The composite distribution of
the link gain, G, is given by the Gamma-log-normal density in (2.373) with m D 1, i.e.,

fG.x/ D
Z 1

0

1

˝p

e�x=˝p
1p

2���˝˝p

exp

(

�
�

10log10f˝pg � �˝p .dBm/

�2

2�2˝

)

d˝p; (12.40)

where �� is the shadow standard deviation, � D .ln 10/=10 and ��p .dBm/ is the area mean that depends on the path loss
model. Here, the simple path loss model

�˝p .dBm/.d/ D �˝p .dBm/.do/ � 10ˇ log10fd=dog .dBm/ (12.41)

is used, where ��p .dBm/.do/ is the area mean at a reference distance do, d is the distance between the MS and BS, ˇ is the
path loss exponent. As shown in (2.374), the composite Gamma-log-normal distribution in (12.40) can be approximated by
a log-normal distribution with parameters

�.dBm/ D �˝p .dBm/ � 2:50675

�2 D �2˝ C 31:0215: (12.42)
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Fig. 12.10 Single cell model

Macrocell

Microcell

In other words, the link gain G in decibels, denoted by & D 10log10fGg is normally distributed with the mean �.dBm/ and
variance �2 in (12.42).

12.3.2 Reverse Link Analysis

First consider a simple single macrocell and microcell system to introduce the method of HMRC analysis. Afterwards, the
approach will be extended to a multi-cell system.

12.3.2.1 Single Cell Model

Consider a single microcell embedded within a macrocell as shown in Fig. 12.10. Using HMRC, the reverse link CIR of
MSi is

.C=I/i D .C=I/�;i C .C=I/M;i

D C�;i

I�;i
C CM;i

IM;i
; (12.43)

where C�;i and CM;i are the received signal power at the Microcell BS and Macrocell BS, respectively. Let �i D I�;i=IM;i be
the ratio of the microcell interference to macrocell interference. Then .C=I/i becomes

.C=I/i D
C�;i C �iCM;i

I�;i

D .G�;i C �iGM;i/Pi

I�;i

D Creverse;i

I�;i
; (12.44)

where G�;i and GM;i are the reverse link gains associated with the Microcell BS and Macrocell BS.
The HMRC reverse power control algorithm controls each MS transmit power, Pi, so that all MS experience a uniform

CIR level. The convergence of such power control policy has been proven in [364]. Let us assume that the Microcell BS and
Macrocell BS both serve a large number of MSs such that the microcell and macrocell interference levels experienced by
each MS are nearly the same, i.e.,

I�;i � I�; IM;i � IM ; 8 i: (12.45)

Since the interference power is the difference between the total received power and the desired signal power, the differences
in the desired signal components have minimal effect on interference values when the system load is relatively large. This
also suggests that the variation in �i is minimal. The above assumption is justified in the numerical results section that follows
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below. Based on the assumption in (12.45), HMRC power control now results in all MSs having the same uniform combined
signal power, Creverse.

Let N and M be the numbers of MSs located in the Microcell and Macrocell, respectively, and express I�;i and IM;i as
follows:

I�;i D
N
X

j¤i

C�;jj� C
M
X

kD1
C�;kjM

IM;i D
N
X

j¤i

CM;jj� C
M
X

kD1
CM;kjM ; i 2 Microcell (12.46)

and

I�;i D
N
X

jD1
C�;jj� C

M
X

k¤i

C�;kjM

IM;i D
N
X

jD1
CM;jj� C

M
X

k¤i

CM;kjM ; i 2 Macrocell; (12.47)

where CBSj;ijBSk is the received signal power at BSj from MSi given that MSi is located in the cell served by BSk, and
BSj; BSk 2 f�;Mg. First consider the case for the Microcell MS. From (12.44), it can be deduced that CM;i D .Creverse �
C�;i/=�i. Therefore,

�i D
I�;i

IM;i

D I�;i
PN

j¤i CM;jj� C
PM

kD1 CM;kjM

D I�;i
PN

j¤i.Creverse � C�;jj�/=�j C
PM

kD1.Creverse � C�;kjM/=�k

� �iI�;i
PN

j¤i.Creverse � C�;jj�/C
PM

kD1.Creverse � C�;kjM/
;

D �iI�;i

.N CM � 1/Creverse � I�;i
: (12.48)

where the approximation in the second last line uses the fact that �j � �k 8 j; k. Solving the above equation for I�;i gives

I�;i �
.N CM � 1/Creverse

2
: (12.49)

By using the similar approach, one can see that the macrocell MS yields the same result. Then, the reverse link CIR can be
approximated as follows:

.C=I/i D
Creverse

I�;i
� 2

N CM � 1 : (12.50)

Some important observations about HMRC can be made from (12.50). First, the CIR performance is independent of the
microcell location. Without HMRC, the overall performance suffers from increased level of inter-layer cross interference
in cases where the microcell is closer to the macrocell BS. For HMRC, however, the combining effect is directly related
to the proximity of the two BSs. Therefore, the increase in combining effect compensates for the increase in interference
due to the microcell. Another noteworthy observation is that the HMRC performance is only limited by the overall system
load, N C M, and not by individual cell loads. An overloaded microcell does not affect the system performance as long as
the overall system load is kept under check, whereas it can dictate the system performance for non-HMRC systems. This
suggests that HMRC is an effective way to share available resources between hierarchical layers.
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Fig. 12.11 Multiple cell model

12.3.2.2 Multiple Cell Model

The above analysis is now extended to multiple cell environments. Our multi-cell model consists of three macrocells and a
cluster of K microcells embedded within the macrocells as shown in Fig. 12.11. Then,

.C=I/i D .C=I/�1;i C � � � C .C=I/�K;i C .C=I/M1;i C � � � C .C=I/M3;i

D C�1;i C � � � C ��K;iC�K;i C �M1;iCM1;i C � � � C �M3;iCM3;i

I�1;i

D Creverse;i

I�1;i
; (12.51)

where �BSj;i D I�1;i=IBSj;i. Let Ni and Mj be the numbers of MSs in Microcell i and Macrocell j, respectively. Then, for the
Microcell 1 MSs,

IM1;i D
N1X

j¤i

CM1;jj�1 C � � � C
NKX

lD1
CM1;lj�K C

M1X

pD1
CM1;pjM1 C � � � C

M3X

rD1
CM1;rjM3

� .N1 C � � � C NK CM1 CM2 CM3 � 1/
Creverse

�M1;i
� .2C K/

I�1;i

�M1;i
: (12.52)

Therefore,

I�1;i �
.N1 C � � � C NK CM1 CM2 CM3 � 1/Creverse

3C K

.C=I/i �
3C K

N1 C � � � C NK CM1 CM2 CM3 � 1
: (12.53)

Using MSs in other cells with their corresponding �s yields the same result. The same important observations can be made
as in the single cell case for multi-cell case. Note also that if both microcells and macrocells are loaded with an equal number
of MSs, the result in (12.53) is the same as the result obtained in [146]. This tells us that the macrocell capacity is nearly
unaffected by the introduction of microcells when inter-layer HMRC is allowed.
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Table 12.2 Single cell model
result

N M CIRanal: (dB) CIRsim: (dB)

10 10 �9.60 �9.78

15 10 �10.66 �10.79

20 15 �12.21 �12.30

20 20 �12.82 �12.90
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Fig. 12.12 Reverse link CIR performance comparison

12.3.2.3 Numerical Results

Consider the deployment in Fig. 12.10 where the radii of the macrocell and microcell regions are 1500 m and 200 m,
respectively. The propagation environment is characterized by a path loss exponent of 4 and a shadow standard deviation
of 8 dB. Table 12.2 shows the average performance comparison between analytical and simulation results obtained by using
the single cell model. Small deviations between the analytical and simulation results are most likely caused by the equal
interference assumption in (12.45) while deriving the analytical solution. The fact is that MSs located close to a BS will
experience less interference, while MSs further away from the BS will face higher interference. However, the difference is
marginal and it becomes smaller as the system load increases.

Figure 12.12 shows the multi-cell reverse link CIR performance comparison between HMRC and non-HMRC diversity
power control schemes at various microcell cluster locations (dc). A three-macrocell and three-microcell model is used to
obtain the simulation results. Both macrocells and microcells are loaded with the same number of MSs. Two non-HMRC
diversity schemes are compared; intra-layer selection diversity (Intra-SD) and inter-layer selection diversity (Inter-SD). With
Intra-SD the most robust link within each layer is selected, while Inter-SD allows each MS to connect the best BS in any layer.
Clearly, HMRC performance is superior to that of non-HMRC schemes. It is observed that both macrocell and microcell
capacities are nearly unaffected by each other’s presence (i.e., both macrocells and microcells retain a near isolated cell
capacity). The performances of both SD schemes are dependent on the microcell cluster location, dc. For intra-SD, the cross
interference between the layers increases as the microcell cluster gets closer to a macrocell BS, andcauses overall system
performance degradation. For inter-SD, the diversity gain decreases as dc increases, which also causes the performance
to suffer. However, employing HMRC eliminates the effect of the cluster location on the CIR performance. From (12.51)
one can see that the reverse CIR performance of HMRC is proportional to the �i and macrocell gains. These two factors
balance the performance as the microcell cluster location changes. When dc is small, the cross interference causes the �i

to decrease, but the loss is compensated for by the increase in macrocell gains. Conversely, when dc is large, the macrocell
gains decrease while the �i increase.
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Fig. 12.14 Inter-SD CIR performance against microcell load

The analytical results indicate that the HMRC performance is a function of the overall system load, and does not depend
on either the load distribution between the layers or the cell sizes. Figures 12.13 and 12.14 show the effect of microcell load
and size on the reverse link CIR performance. The same three-three multi-cell model is used in this simulation also. The
overall system load is kept at 156 MSs while the microcell load percentage to the overall load is varied. It is observed that
in nearly all instances both non-HMRC schemes suffer performance losses with an increase in the microcell load percentage
and microcell radius, Rmicro. It can be understood that the increase in the overall interference due to an increased microcell
load cannot be relieved entirely by a decreased macrocell load. Larger microcell sizes also increase interference, since MSs
that belong to microcells need to transmit at higher power levels. The performance of HMRC is not affected by the microcell
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load and size changes, as predicted. The increase in microcell interference also increases the �i, which offsets the negative
effect of the microcell interference. Therefore, HMRC allows flexible resource sharing between hierarchical layers.

Our observations suggest that implementing HMRC gives system planners and administrators almost unlimited freedom
and flexibility when contemplating microcell placements. With HMRC, microcell(s) can be placed anywhere within the
existing macrocell layer, significant performance and capacity gains can be obtained while guaranteeing robust resource
sharing between the layers.

12.3.3 Forward Link Analysis

The forward power control consider here is based on the neighboring-cell pilot power (NPP) scheme proposed in [168],
where the forward transmit power to each MS is determined according to link conditions between the MS and surrounding
BSs. To see how the NPP scheme can be applied to a hierarchical CDMA architecture, consider a deployment of K microcells
surrounded by three macrocells as in Fig. 12.11. Let Pt

Mj and Pt
�k be the total powers transmitted by the BSs serving

Macrocell j and Microcell k, respectively. Then, the interference experienced by MSi can be estimated as

Ii � GM1;iP
t
M1 C � � � C GM3;iP

t
M3 C G�1;iP

t
�1 C � � � C G�K;iP

t
�K : (12.54)

Define the power ratio 
BSj D Pt
�1=Pt

BSj. Only one BS can transmit to MSi at any given time and the transmit power is
determined by

PBSj;i D
1

M1

GM1;i C � � � C 1

M3

GM3;i C G�1;i C � � � C 1

�K

G�K;i

GBSj;i

PT (12.55)

when MSi is connected to BSj and PT is the predetermined forward transmit power constant. The resulting forward CIR for
MSi is then

.C=I/i D
Ci

Ii

�

�

1

M1

GM1;i C � � � C 1


M3GM3;iCG�1;iC���C 1
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�
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M3

GM3;i C G�1;i C � � � C 1

�K

G�K;i

�

Pt
�1

� PT

Pt
�1

: (12.56)

Notice that with NPP, every MS experiences the same forward CIR regardless of its location. While NPP does not offer any
significant performance gain over conventional power control schemes, it does guarantee that every MS experiences the same
forward link CIR.

The forward analysis consists of two parts; non-STD and STD cases. For non-STD case, there is no transmit diversity;
each BS has only one antenna and provides single forward transmit path. Each MS connects to the BS which provides the
most robust path. A single-cell hierarchical model as in Fig. 12.10 is used for the forward analysis, since the concept can be
readily extended to multi-cell environments. For the single macrocell/microcell model,

PBSj;i D
G�;i C .1=
/GM;i

GBSj;i

PT; (12.57)

where 
 D Pt
�1=Pt

M is the ratio between the microcell and macrocell total forward transmit powers, and BSj 2 f�;Mg.
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12.3.3.1 Non-selective Transmit Diversity

From the model in Sect. 12.3.1, the gain GBSj;i has a composite Gamma-log-normal distribution that can be approximated by
a purely log-normal distributed with the parameters given in (12.42). The mean �.dBm/ in (12.42) depends on the distance
between base station BSj and MSi according to the path loss model in (12.41). This distance can be expressed as a function
of the polar coordinates .r; �/ of the MS location referenced to BSj, i.e., dBSj.r; �/. Hence, GBSj;i D 10&BSj.r;�/=10, where
&BSj.r; �/ is a normal random variable with mean �.dBm/ and �2 in (12.42).

Suppose that the location of MSi, .r; �/, is referenced with respect to the BS it is connected to. Then, the forward transmit
power according to NPP is

P�;i.r; �/ D
.1=
/GM;i C G�;i

G�;i

PT

D
�

GM;i


G�;i

C 1
�

PT

D
�
1



10.&M.r;�/�&�.r;�//=10 C 1

�

PT

D
�
1



10x.r;�/=10 C 1

�

PT ; if G�;i > GM;i

PM;j.r; �/ D
.1=
/GM;j C G�;j

GM;j
PT

D
�
1



C G�;j

GM;j

�

PT

D
�
1



C 10.&�.r;�/�&M.r;�//=10

�

PT

D
�
1



C 10y.r;�/=10

�

PT ; if G�;j < GM;j; (12.58)

where x.r; �/ D &M.r; �/�&�.r; �/, y.r; �/ D &�.r; �/�&M.r; �/, and PT is the forward transmit power constant. Let us now
compute the conditional cumulative distribution functions (cdfs) of Z D 10x.r;�/=10 and W D 10y.r;�/=10 for the deployment
shown in Fig. 12.10. First note that a Microcell MS is physically located in the Microcell area but may be served by either
the Microcell or Macrocell BS. Also, a Macrocell MS can be physically located anywhere in the Macrocell area including
the Microcell area, and may be served by either the Microcell or Macrocell BS. It follows that

FZ.zjr; �/ D
PŒ10x.r;�/=10 < zjr; � �
PŒ10x.r;�/=10 < 1jr; � � D

PŒx.r; �/ < 10log10.z/jr; � �
PŒx.r; �/ < 0jr; � �

D ˆ
�
10log10fzg � �x.r; �/

�x

��

ˆ

���x.r; �/

�x

���1
; 0 < z < 1 (12.59)

FW.wjr; �/ D ˆ
�
10log10fwg � �y.r; �/

�y

��

ˆ

���y.r; �/

�y

���1
; 0 < w < 1; (12.60)

where

�x.r; �/ D �&M.r; �/ � �&�.r; �/
D �ˇ10log10fdM.r; �/g C ˇ10log10fd�.r; �/g

�y.r; �/ D �&�.r; �/ � �&M.r; �/

D �ˇ10log10fd�.r; �/g C ˇ10log10fdM.r; �/g
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�2x D �2y D 2.�2� C 31:0254/: (12.61)

Then the cdfs of Z and W are

FZ.z/ D

8

<

:

R 2�

0

R R�
0

r

�R2�
FZ.zjr; �/drd� ; if MS 2 Microcell

R 2�

0

R RM

0
r

�R2M
FZ.zjr; �/drd� ; if MS 2 Macrocell

(12.62)

FW.w/ D

8

<

:

R 2�

0

R RM

0
r

�R2M
FW.wjr; �/drd� ; if MS 2 Macrocell

R 2�

0

R R�
0

r

�R2�
FW.wjr; �/drd� ; if MS 2 Microcell

: (12.63)

Since both Z and W are nonnegative random variables, their expected values are as follows:

EŒZ� D
Z 1

0

.1 � FZ.z//dz D
Z 1

0

.1 � FZ.z//dz

EŒW� D
Z 1

0

.1 � FW.w//dw: (12.64)

Let N and M be the number of MSs physically located in Microcell and Macrocell, respectively. Assuming there are N0

Microcell MS connected to Microcell and M0 Macrocell MSs connected to Macrocell, the expected value of the total forward
transmit power by each BS is

EŒP�jN0;M0� D N0PT

�
EŒZjMS 2 Microcell�



C 1

�

C .M �M0/PT

�
EŒZjMS 2 Macrocell�



C 1

�

(12.65)

EŒPMjN0;M0� D .N � N0/PT

�
1



C EŒWjMS 2 Microcell�

�

CM0PT

�
1



C EŒWjMS 2 Macrocell�

�

: (12.66)

Note that N0 and M0 are .N;Pr�/ and .M;PrM/ binomial random variables, respectively, where Pr� and PrM are the
probabilities that a MS located in Microcell and Macrocell will connect to Microcell and Macrocell, respectively. Then,

EŒP�� D
N
X

N0D0

 

N

N0

!

PrN0

� .1 � Pr�/
N�N0

M
X

M0D0

 

M

M0

!

PrM0

M .1 � PrM/
M�M0

EŒP�jN0;M0� (12.67)

EŒPM� D
N
X

N0D0

 

N

N0

!

PrN0

� .1 � Pr�/
N�N0

M
X

M0D0

 

M

M0

!

PrM0

M .1 � PrM/
M�M0

EŒPMjN0;M0�; (12.68)

where

Pr� D P ŒG—;i > GM;iji 2 Microcell�

D 1 �
Z 2�

0

Z R�

0

r

�R2�
ˆ

0

B
@

�M.r; �/ � ��.r; �/
q

2.�2� C 31:0254/

1

C
A drd� (12.69)

PrM D P
�

GM;j > G—;jjj 2 Macrocell
�

D
Z 2�

0

Z RM

0

r

�R2M
ˆ

0

B
@

�M.r; �/ � ��.r; �/
q

2.�2� C 31:0254/

1

C
A drd�: (12.70)
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Each BS has L antennas

Fig. 12.15 Selective transmit diversity

Let 
 D EŒP��=EŒPM� and iterate until 
 converges. Then the forward CIR is

CIRnon-STD D
PT

P�
� PT

EŒP��
: (12.71)

12.3.3.2 Selective Transmit Diversity

In STD, each BS has a number of spatially separated antennas and an orthogonal pilot signal is transmitted from each antenna
as shown in Fig. 12.15. In order for the fading conditions associated with different antennas to be sufficiently decorrelated
(less than 0.7 correlation), the BS antenna separation needs to be on the order of ten wavelengths as shown in Sect. 2.1.6.2.
By way of monitoring the pilot signals, a MS can select (mobile-assisted) the BS antenna that provides the most robust
forward link until a better BS antenna is found. Therefore, only one BS antenna is selected to transmit at a time with STD,
but the selected BS antenna will provide the best link among the multiple BS antennas. The main difference between STD
and non-STD schemes is that STD provides multiple potential forward links per BS each with uncorrelated fading, while
non-STD provides one forward link per BS. However, both STD and non-STD use only one BS antenna to transmit at a time.
Diversity gain through antenna separation is viable at BS sites where the space and system complexity are less of limiting
factors. The antennas are assumed separated sufficiently far apart that all potential forward links from the same BS have
uncorrelated fading, but correlated shadowing.

Let us now assume that the Microcell BS and Macrocell BS each have L antennas, which means that the MS selects the
best antenna out of a total of 2L antennas. Let P

.l/
BSj be the total forward transmit power by the lth transmit branch of BSj,

where BSj 2 f�;Mg. Since the MSs are uniformly distributed, each transmit branch within a cell has an equal probability of
being selected by the MSs and, therefore, it may be assumed that

P.i/� � P.j/� � PSTD
�

P
.i/
M � P

.j/
M � PSTD

M ; i ¤ j: (12.72)

Then, the forward transmit power for MSi located at .r; �/ is

PSTD
�;i .r; �/ D

.1=
STD/.G
.1/
M;i C � � � C G

.L/
M;i/C G

.1/
�;i C � � � C G

.L/
�;i

maxŒG.1/
�;i; : : : ;G

.L/
�;i�

PT ; if maxŒG.1/
�;i; : : : ;G

.L/
�;i� > maxŒG.1/

M;i; : : : ;G
.L/
M;i�

(12.73)

PSTD
M;i .r; �/ D

.1=
STD/.G
.1/
M;i C � � � C G

.L/
M;i/C G

.1/
�;i C � � � C G

.L/
�;i

maxŒG.1/
M;i; : : : ;G

.L/
M;i�

PT ; if maxŒG.1/
�;i; : : : ;G

.L/
�;i� < maxŒG.1/

M;i; : : : ;G
.L/
M;i�;

(12.74)
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where 
STD D PSTD
� =PSTD

M and G
.l/
BSj;i is the gain associated with lth transmit branch of BSj to MSi. Let GBSj;i D

maxŒG.1/
BSj;i; : : : ;G

.L/
BSj;i�, then the cdf of G

.l/
BSj;i=GBSj;i is

PŒG.l/
BSj;i=GBSj;i < x� D

PŒG.l/
BSj;i=GBSj;i < x�

PŒG.l/
BSj;i=GBSj;i < 1�

� 2x

xC 1 ; 0 < x < 1; (12.75)

where PŒG.l/
BSj;i=GBSj;i < x� D x=.x C 1/. The above result is accurate for L D 2 and adequate for L D 3 since the greatest

diversity gain occurs between L D 1 and L D 2 as shown in Chap. 6. For two different cell locations, it can be assumed that

G
.l/
BSk;i and GBSj;i are independent. Because the transmit paths from the same BS experience independent Rayleigh fading and

the same shadowing, the conditional pdf and pdf of GBSj;i are, respectively,

fGBSj;i.xj˝p/ D
L

˝p

e�x=˝p.1 � e�x=˝p/L�1 (12.76)

and

fGBSj;i.x/ D
Z 1

0

fGBSj;i.xj˝p/
1p

2���˝˝p

exp

(

�
�

10log10f˝pg � �˝p .dBm/

�2

2�2˝

)

d˝p: (12.77)

It is shown in Appendix 12A in this chapter that fGBSj;i.x/ can be approximated by a purely log-normal distribution for L D 2
with mean and variance given by

�G D ��1.ln2 � C/C �˝ D 0:503552 � ˇlog10fdg
�2G D ��2.�.2; 1/ � 2.ln2/2/C �2˝ D 12:9016C �2˝ ; (12.78)

where C ' 0:5772 is Euler’s constant and �.2; 1/ D
P1

kD0 1=.1 C k/2 is Reimann’s zeta function. Appendix 12B in this
chapter derives a similar approximation for L D 3, yielding the following mean and variance:

�G D ��1.3ln2 � ln3 � C/C �˝ D 1:75294 � ˇlog10fdg
�2G D ��2.�.2; 1/ � 12.ln2/2 C 6.ln2/.ln3//C �2˝ D 8:4592C �2˝ : (12.79)

Then the conditional cdf and cdf of G
.l/
BSk;i=GBSj;i are

PŒG.l/
BSk;i=GBSj;i < xjr; � � D

PŒG.l/
BSk;i=GBSj;i < xjr; � �

PŒG.l/
BSk;i=GBSj;i < 1jr; � �

D ˆ
�
10log10.x/ � �kj.r; �/

�kj

��

ˆ

���kj.r; �/

�kj

���1
(12.80)

PŒG.l/
BSk;i=GBSj;i < x� D

Z 2�

0

Z RBSj

0

r

�R2BSj

PŒG.l/
BSk;i=GBSj;i < xjr; � �drd�; 0 < x < 1; (12.81)

where

�kj.r; �/ D �&BSk
.r; �/ � �GBSj

.r; �/

D �ˇ10log10fdBSk.r; �/g � 2:50675C �GBSj
.r; �/

�2kj D �2BSk C �2G
D �2� C 31:0254C �2G: (12.82)
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The expected values of PSTD
�;i and PSTD

M;i can be derived using the same approach used in the previous section to get

EŒPSTD
�;i � D

�
L


STD
EŒZ�C .L � 1/EŒX�C 1

�

PT

EŒPSTD
M;i � D

�
L � 1

STD

EŒY�C LEŒW�C 1


STD

�

PT; (12.83)

where

Z D G
.l/
M;i=G�;i

X D G
.l/
�;i=G�;i

Y D G
.l/
M;i=GM;i

W D G
.l/
�;i=GM;i ; 0 < Z;X;Y;W < 1: (12.84)

Since each transmit branch has equal chance of being selected, the expected value of the total forward transmit power by
each BS branch, given N0 and M0, is

EŒPSTD
� jN0;M0� D N0

L
PTEŒPSTD

�;i jMSi 2 Microcell�C M �M0

L
PTEŒPSTD

�;i jMSi 2 Macrocell� (12.85)

EŒPSTD
M jN0;M0� D N � N0

L
PTEŒPSTD

M;i jMSi 2 Microcell�C M0

L
PTEŒPSTD

M;i jMSi 2 Macrocell�: (12.86)

The expectations EŒPSTD
� � and EŒPSTD

M � can now be computed as in (12.67) with the following Pr� and PrM:

Pr� D PŒmaxŒG.1/
�;i; : : : ;G

.L/
�;i� > maxŒG.1/

M;i; : : : ;G
.L/
M;i�jMSi 2 Microcell�

D PŒG�;i > GM;ijMSi 2 Microcell� (12.87)

PrM D PŒGM;i > G�;ijMSi 2 Macrocell�: (12.88)

12.3.3.3 Numerical Results

Table 12.3 compares the analytical and simulation results of the single cell model. These results are obtained with
dc D 692m. The analytical results require less than 15 iteration loops for the 
 ’s to converge. The analytical and simulation
results are in good agreement, although the analytical results exhibit lower values than the simulation results. This is due to
the analytical interference assumption in (12.54) which results in a pessimistic interference level. However, the differences
become marginal as the number of MSs increases. Table 12.3 also shows the results obtained with STD. Again, the analytical
results closely follow the simulation results. One can immediately see the benefit of employing STD on forward link
performance. With 2-branch transmit diversity the forward link CIR performance improves by 1.5 dB, and it improves by
2.5 dB with 3-branch transmit diversity.

Table 12.3 Single cell model forward performance results

Non-STD STD, L D 2 STD, L D 3

N M CIRanal: (dB) CIRsim: (dB) CIRanal: (dB) CIRsim: (dB) CIRanal: (dB) CIRsim: (dB)

10 10 �11.54 �11.21 �9.99 �9.65 �9.31 �8.86

15 10 �12.80 �12.56 �11.25 �11.02 �10.57 �10.20

20 15 �14.19 �14.02 �12.64 �12.46 �11.96 �11.67

20 20 �14.56 �14.40 �13.01 �12.84 �12.34 �12.04
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Fig. 12.16 Forward link performance for different microcell locations
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Fig. 12.17 Forward performance for the multi-cell model in Fig. 12.11

Figure 12.16 compares the analytical and simulation results as a function of the microcell location, dc, while the system
load is fixed at 24 MSs per cell. Again, they are in good agreement. The differences between the analytical and simulation
results in the figure are larger for L D 3 than L D 2 due to the assumption in (12.75). But, the differences are still small
considering they are within 0.3 dB. Figure 12.17 shows the average forward link performance results obtained from the multi-
cell model in Fig. 12.11 consisting of three macrocells and a cluster of three microcells. The benefit of STD is more evident
from these results where the system benefits from the added diversity effect due to multiple cell locations. Although the
performance varies slightly, STD effectively neutralizes the effect of the microcell cluster location on forward performance.
Without STD, the performance suffers if the cluster is located too close to a macrocell BS. Figure 12.17 shows about 1.5 dB
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Fig. 12.18 Forward performance for different microcell cluster sizes

performance difference between the cluster locations, dc D 346 m and 1385 m without STD. One interesting observation is
that performance improves slightly as dc decreases with STD, which is opposite of that observed in non-STD case. Although
the cross interference between the hierarchical layers increases with smaller dc, STD takes advantage of increased inter-layer
diversity effect which ultimately results in improved performance.

Figure 12.18 shows the effect of the microcell cluster size on the forward link performance. The plot shows the
performance comparison between a single-cell cluster and a three-cell cluster. The previous section has shown that HMRC
allows microcell(s) to be added without impacting the existing reverse link capacity. With STD, however, the forward link
performance does depend on the microcell cluster size, and an increase in the number of microcells in the cluster causes the
performance to suffer. The added diversity effect is apparently not enough to fully compensate for increase in interference
resulting from the microcell increase. However, the performance degradation is negligible considering the capacity gain
obtained by adding microcell(s). For example, assuming the target CIR is set to �14 dB, a three macrocell system with a
single-cell cluster has capacity of 26 MSs per cell at dc D 1385m with L D 3. With the same exact setting, the same system
with a three-cell cluster achieves 24 MSs per cell, yet its overall system capacity is far greater due to the added microcells.

From Figs. 12.12 and 12.17, observe that a forward link performance comparable to the reverse link HMRC performance
can be achieved by implementing STD with L D 3. Not only does STD improve the forward performance, but it can also
benefit the reverse link performance by providing additional BS antenna elements for stronger combining.

Appendix 12A: Derivation of Eq. (12.78)

The conditional pdf of the link gain, G, is

pGj˝p
.x/ D 2

˝p

e�x=˝p.1 � e�x=˝p/: (12A.1)

Averaging over distribution of log-normal shadowing yields the composite pdf for squared-envelope

pG.g/ D
Z 1

0

2

˝p

e�g=˝p.1 � e�g=˝p/
1p

2���˝˝p

exp

(

�
�

10log10f˝pg � �˝p .dBm/

�2

2�2˝

)

d˝p:
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The mean of the approximate log-normal distribution is

�G .dBm/ D EŒ10log10fgg�

D
Z 1

0

Z 1

0

.10log10fgg/
2

˝p
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)
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0
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�

1 � e�g=˝p
�

dgd˝p: (12A.2)

From [147, 4.352.1], the inner integral becomes

Z 1

0

2 ln.g/e�g=˝p.1 � e�g=w˝p/dg D ˝p.ln.2/C ln.˝p/ � C/; (12A.3)

where C ' 0:5772 is Euler’s constant. Hence,

�G .dBm/ D ��1.ln.2/ � C/C �˝p .dBm/ : (12A.4)

In a similar fashion, the mean square value is
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From [147, 4.358.2], the inner integrals become
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where

�.2;m/ D
1
X

kD0

1

.mC k/2
(12A.7)

is Reimann’s zeta function. Finally, the variance is

�2G .dBm/ D EŒ.10log10fgg/2� � E2Œ10log10fgg�

D ��2
�

�.2; 1/ � 2.ln 2/2
�

C �2˝ : (12A.8)
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Appendix 12B: Derivation of Eq. (12.79)

For L D 3, the mean of log-normal approximation is
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Using [147, 4.352.1]
Z 1

0

3ln.g/.e�g=˝p � 2e�2g=˝p C e�3=˝p/dg D ˝p.3ln.2/ � ln.3/ � CC ln.˝p// (12B.2)

and, therefore,

�G .dBm/ D EŒ10log10fgg� D ��1.3ln.2/ � ln.3/ � C/C �˝p .dBm/ : (12B.3)

Similarly, the second moment of the approximation is

EŒ.10log10fgg/2� D
Z 1

0

Z 1

0

.10log10fgg/2
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˝p

e�g=˝p.1 � e�g=˝p/2

� 1p
2��˝�˝p
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(

�
�

10log10f˝pg � �˝p .dBm/

�2

2�2˝

)

dgd˝p

D
Z 1

0

1p
2��˝�3˝2

p

exp

(

�
�

10log10f˝pg � �˝p .dBm/

�2

2�2˝

)

�
Z 1

0

3.ln.g//2.e�g=˝p � 2e�2g=˝p C e�3=˝p/dgd˝p: (12B.4)

Using [147, 4.358.2]

Z 1

0

3.ln.g//2.e�g=˝p � 2e�2g=˝p C e�3=˝p/dg D ˝p

�

� 6Cln.2/C 6.2/ln.˝p/ � 3.ln.2//2 C C2 � 2Cln.˝p/

C.ln.˝p//
2 C 2Cln.3/ � 2ln.3/ln.˝p/C .ln.3//2 C �.2; 1/

�

(12B.5)

and, therefore,

EŒ.10log10fgg/2� D ��2
�

� 6Cln.2/ � 3.ln.2//2 C C2 C 2Cln.3/C .ln.3//2 C �.2; 1/
�

C6ln.2/�˝p .dBm/ � 2C�˝p .dBm/ � 2ln.3/�˝p .dBm/ C �2˝ C �2˝p .dBm/
: (12B.6)

Therefore, the variance of the log-normal approximation is

�2G .dBm/ D EŒ.10log10fgg/2� � �2G .dBm/

D ��2
�

�.2; 1/ � 12.ln.2//2 C 6ln.2/ln.3/
�

C �2�: (12B.7)



Problems 591

Problems

12.1. Consider a CDMA cellular system where there are 5 in-cell interferers. Each interferer is independently active with
probability p, and is characterized by a power control error &Ej

. The power control errors, &Ej
(in dB) are independent zero-

mean Gaussian random variables with variance �2E. Hence, the in-cell interference is

Iin D C

5
X

jD1
10

&Ej=10�j;

where

�j D
�

1 with probability p

0 with probability 1 � p

(a) The in-cell interference can be approximated as a log-normal random variable conditioned on the number of active
interferers

k D
5
X

jD1
�j:

Determine the mean and variance of the log-normal approximation as a function of k for �E D 1, 2, and 3 dB. Use the
Fenton-Wilkinson approach.

(b) Assuming that the value of .Iin/dB is Gaussian when conditioned on the number of active interferers, write down and
expression for the pdf of .Iin/dB.

12.2 (Computer Exercise). The purpose of this problem is to determine the relative contribution of the first-, second- and
third-tier cells to the out-of-cell interference in a CDMA cellular system. Also, to determine the impact of the path loss
exponent on the out-of-cell interference.

Consider a CDMA cellular system characterized by log-normal shadowing with a shadow standard deviation �˝ dB and
inverse ˇ power path loss. Neglect envelope fading. All other factors such as base station antenna heights, cell sizes, etc. are
uniform. The ratio of the mean out-of-cell interference to mean in-cell interference is

� D EŒIo=C�

pK
;

where

EŒIo=C� D p

Z Z

exp

�
�2�2x
2
C ��x

� �

1 � Q

�

���x �
�x

�x

��

�dA

and

�x D �i0 � �ij

�2x D 2�2˝ :

For regular hexagonal cells, the subscriber density is

� D 2K

3
p
3R2

:

Hence,

� D 2

3
p
3R2

Z Z
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�
�2�2x
2
C ��x

� �

1 � Q

�

���x �
�x
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where the double integral is over the two-dimensional out-of-cell area.

(a) Consider the first tier of interfering cells. For the case of �˝ D 8 dB, calculate � when ˇ D 3 and ˇ D 4.
(b) Repeat part (a), but this time consider only the second tier of interfering cells.
(c) Finally, repeat part (a), for the third tier of interfering cells.
(d) What conclusions can you draw?

12.3. CDMA systems use soft handoff, where the transmissions to/from multiple base stations are combined to give a
macro-diversity advantage. Suppose that the receive bit energy-to-noise ratio for branch i, denoted by 
i, has the probability
density

p
i
.x/ D 1

N
i

e�x= N
i ;

where N
i D EŒ
i�.

(a) The reverse link uses selection macro-diversity such that


 s
b D max f
1; 
2; : : : ; 
Lg :

An outage occurs if 
 s
b < 
th. What is the probability of outage?

(b) The forward link uses maximal ratio combining such that


mr
b D 
1 C 
2 C � � � C 
L:

Again, an outage occurs if 
mr
b < 
th. What is the probability of outage if N
1 D N
2 D � � � D N
L?.

(c) For L D 2 and an outage probability of 10�4 what is the difference in the required 
th (in units of decibels) with selection
and maximal ratio combining, again assuming that N
1 D N
2?



Chapter 13

Radio Resource Management

When a new call arrives, mobile station (MS) must be connected to a suitable base station (BS) or perhaps a set of BSs.
Also, as a MS traverses from one cell to the next handoffs are required so that an acceptable link quality can be maintained;
otherwise the required increase in transmit power to compensate for path loss will result in excessive co-channel and adjacent
channel interference. The failure to handoff a MS as it moves from one cell to the next will also tend to increase the call
blocking probability, because some cells may carry more traffic than planned. For TDMA cellular systems that do not
employ frequency hopping, an intra-cell handoff is sometimes desirable when the link with the serving BS is affected by
excessive interference, while another link with the same BS can provide better quality. The handoff mechanism consists of
two processes: (1) link quality evaluation and handoff initiation, (2) allocation of radio and network resources.

In general, cellular systems with smaller cell sizes require faster and more reliable link quality evaluation and handoff
algorithms. Labedz [190] has shown that the number of cell boundary crossings is inversely proportional to the cell size.
Furthermore, Nanda [239] has shown that the handoff rate increases with only the square root of the call density in macrocells,
but it increases linearly with the call density in microcells. Since the MS has a certain probability of handoff failure each time
a handoff is attempted, it is clear that handoff algorithms must become more robust and reliable as the cell sizes decrease.

One of the major tasks in a cellular system is to monitor the link quality and determine when handoff is required. If a
handoff algorithm does not detect poor signal quality fast enough, or makes too many handoffs, then capacity is diminished
due to increased co-channel interference and/or excessive control traffic. A variety of parameters such as bit error rate (BER)
[77], carrier-to-interference ratio, C=I [126], distance [112, 223], traffic load, signal strength [62, 149, 150, 223, 233, 331],
and various combinations of these fundamental schemes have been suggested for evaluating the link quality and deciding
when a handoff should be performed. One possibility is to measure the received carrier plus interference power, C C I.
However, a large CC I does not necessary imply a large C=I. Since the radio link quality depends more on the C=I than the
CC I, it is apparent that C=I based handoff algorithms are necessary for high capacity cellular systems. A discussion of C=I

measurement techniques is included in this chapter.
Based on the roles that the BSs and MSs perform in the process of link quality evaluation and handoff initiation, there

are three categories of handoff algorithms. The first is a network-controlled handoff (NCHO) algorithm, which was used in
first generation cellular systems. With a NCHO algorithm, the reverse link quality is monitored by the serving BS and the
surrounding BSs, typically using measurements of the received CCI. The reverse link CCI measurements are forwarded to a
mobile switching center (MSC), which ultimately makes the handoff decision. Typically, these centralized NCHO algorithms
only supported inter-cell handoffs, had handoff delays on the order of several seconds, and relied on relatively infrequent
measurements and reports of the reverse link CC I values.

The second type of handoff algorithm is the mobile-assisted handoff (MAHO) algorithm which is widely used in modern
cellular systems. MAHO algorithms use both the serving BS and the MS to measure the reverse and forward link quality,
respectively, usually based on the received C=I. However, link quality measurements of the alternate BSs are only obtained
by the MS. The MS periodically relays the link quality measurements of the serving and alternate BSs back to the serving
BS, and the handoff decision is still made by the serving BS along with the MSC. MAHO algorithms typically support both
intra-cell and inter-cell handoffs. MAHO algorithms typically use frequent updates of the link quality measurements, and
have much lower handoff delays than a NCHO algorithm.

The third type of handoff algorithm is the decentralized mobile-controlled handoff (MCHO) algorithm. With MCHO
algorithms, the link quality with the serving BS is measured by both the serving BS and the MS. Like a MAHO algorithm, the
measurements of link quality for alternate BSs are done at the MS, and both intra-cell and inter-cell handoffs are supported.
However, unlike the MAHO algorithms, the link measurements at the serving BS are relayed to the MS, and the handoff
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decision is made by the MS. MCHO algorithms typically have the lowest handoff network delays and are the most reliable.
However, since the handoff decisions are made by the MS, network-wide radio resource optimization is more difficult.
MCHO algorithms are typically used with cordless telephone systems.

Handoff algorithms can be categorized into forward and backward types depending on how the handoff process is initiated.
Backward handoff algorithms initiate the handoff process through the serving BS, and no access to the “new” channel is made
until the control entity of the new channel has confirmed the allocation of resources. The advantage of backward algorithms
is that the signaling information is transmitted through an existing radio link and, therefore, the establishment of a new
signaling channel is not required during the initial stages of the handoff process. The disadvantage is that the algorithm may
fail in conditions where the link quality with the serving BS is rapidly deteriorating. This type of handoff is widely used in
TDMA cellular systems such as GSM. Forward handoff algorithms initiate the handoff process via a channel with the target
BS without relying on the “old” channel during the initial phase of the handoff process. The advantage is a faster handoff
process, but the disadvantage is a reduction in handoff reliability. Finally, handoffs can also be categorized as hard handoffs
and soft handoffs.

With hard handoffs, a MS can connect to only one BS at a time. An absolute (binary) decision is made to initiate
and execute a handoff without making a number of simultaneous connections among candidate BSs. The handoff is initiated
based on a hysteresis imposed on the current link. The target BS is already selected prior to executing the handoff based
on link measurements and the active connection is transferred to the target BS instantly. The connection experiences a brief
interruption during the actual transfer because the MS can only connect to one BS at a time. Hard handoffs do not take
advantage of the diversity gain opportunity during handoff, where the signals from two or more BSs arrive at comparable
strengths. Yet, it is a simple and inexpensive way to implement handoff. This type of handoff is used in TDMA cellular
systems such as GSM.

Hard handoff algorithms have been optimized by minimizing two conflicting design criteria: the handoff delay and the
mean number of handoffs between BSs. It is important to keep the handoff delay small to prevent dropped calls and to prevent
an increase in co-channel interference due to distortion of the cell boundaries. Likewise, it is important to keep the mean
number of handoffs between BSs along a handoff route at a reasonably low value to prevent excessive control signaling and
resource consumption on the network. Several authors [150, 223, 233, 331] have applied these (or similar) design criteria
while adjusting two important design parameters: the required average signal strength difference, or hysteresis H, between
the BSs before a hard handoff is initiated, and the temporal window length T over which the signal strength measurements
are averaged. The handoff hysteresis prevents excessive handoffs due to “ping-ponging” between BSs. The best choice of
T and H depends on the propagation environment. Usually, the averaging interval T is chosen to correspond to a spatial
distance of 20–40 carrier wavelengths, and the hysteresis H is chosen on the order of the shadow standard deviation.

Murase [233] studied the tradeoff between the hysteresis and window length for line-of-sight (LoS) and non-line-of-
sight (NLoS) hard handoffs. For LoS handoffs, the MS always maintains a LoS with both the serving and target BS. NLoS
handoffs, on the other hand, arise when the MS suddenly loses the LoS component with the serving BS while gaining a
LoS component with the target BS. This phenomenon is sometimes called the “corner effect” [62, 233] since it occurs while
turning corners in urban microcellular settings like the one shown in Fig. 13.1, where the MS traverses along a route from
BS0 to BS1. In this case, the average received signal strength with the serving BS can drop by 25–30 dB over distance as
small as 10 m [233].

Corner effects may also cause link quality imbalances on the forward and reverse channels due to the following
mechanism. Quite often the co-channel interference will arrive via a NLoS propagation path. Hence, as a MS rounds a corner,
the received signal strength at the serving BS suffers a large decrease while the NLoS co-channel interference remains the
same, i.e., the corner effect severely degrades the C=I on the reverse channel. Meanwhile, the corner will cause the same

Fig. 13.1 Typical NLoS handoff
scenario. The MS rounds the
corner, losing the LoS from BS0,
and gaining the LoS from BS1

BS1

BS0

250m

2
5

0
m
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attenuation to both the desired and interfering signals that are received at the MS. Therefore, unless there are other sources of
co-channel interference that become predominant as the MS rounds the corner, the C=I on the forward channel will remain
about the same.

If the handoff requests from rapidly moving MSs in microcellular networks are not processed quickly, then excessive
dropped calls will occur. Fast temporal based hard handoff algorithms can partially solve this problem, where short temporal
averaging windows are used to detect large, sudden, drops in signal strength [233]. However, the shortness of a temporal
window is relative to the MS velocity and, furthermore, a fixed time averaging interval makes the hard handoff performance
sensitive to velocity with the best performance being achieved at only a particular velocity. Velocity adaptive handoff
algorithms can overcome this problem, and are known to be robust to the severe propagation environments that are typical
of urban microcellular networks [28].

With soft handoffs, a MS can connect to a number of candidate BSs during a handoff process. Eventually, the handoff
is completed when the MS selects the best candidate BS as the target. Soft handoff is more careful in selecting the target
BS, because the target BS needs to be the best candidate from among the available BSs. During the handoff process, soft
handoff further enhances the system performance through diversity reception. Unlike hard handoff, the necessary link quality
measurements for handoff are done by the MS, where it constantly monitors the signals from surrounding BSs. Soft handoff
is a type of MAHO. However, all these advantages do not imply that soft handoff is without its weaknesses. Soft handoff is
complex and expensive to implement. Also, forward link interference actually increases with soft handoff since several BSs,
instead of one, can connect to the same MS. This increase in forward link interference can become a problem if the handoff
region is large, such that there are many MSs in soft handoff mode.

Soft handoff has a special importance in CDMA based systems, due to its close relationship with power control. CDMA
systems are interference-limited meaning their capacities are closely related to the amount of interference the systems can
tolerate. Due to universal frequency reuse, a CDMA system cell is affected by not only interference within its own cell, but
also interference from its neighboring cells. To alleviate the level of interference, and thus increase the capacity and quality,
CDMA systems employ power control. Power control attempts to solve the near/far problem by adjusting transmit power so
that the target C=I is evenly satisfied. The fundamental idea behind power control is to restrain mobile stations (MSs) and
base stations (BSs) from transmitting more power than is necessary in order to limit excess interference. With power control,
each MS (or BS) is disciplined to transmit just enough power to meet the target C=I level. However, in order for power
control to work properly, the system must ensure that each MS is connected to the BS having the least path attenuation at all
times; otherwise, a positive feedback problem can destabilize the entire system. Soft handoff ensures that each MS is served
by the best BS a majority of the time, by allowing connections to multiple BSs with macroscopic selection diversity.

To illustrate the necessity for soft handoff in CDMA cellular systems, consider a simple system consisting of two BSs
and two MSs as shown in Fig. 13.2. Let us assume that each MS must satisfy a target C=I D 1. Let C11, C12, C21, and
C22 be equal to 5, 6, 7, and 4, respectively. With soft handoff, each MS connects to the best available BS; MS1 connects
to BS2 and MS2 connects to BS1. Then .C=I/1 D C12=C22 D 6=4 and .C=I/2 D C21=C11 D 7=5, and .C=I/1 and .C=I/2
both satisfy the target C=I. However without soft handoff, the system can no longer guarantee that the MSs are connected
to the best BSs. Assume that MS1 is connected to BS1 and MS2 is connected to BS2. Then, .C=I/1 D C11=C21 D 5=7 and
.C=I/2 D C22=C12 D 4=6. Since both .C=I/1 and .C=I/2 fail to meet the target C=I, power control will attempt to increase
the C=I’s by increasing the MS transmit powers. But for the given setting, increasing the MS transmit powers also increases

BS1 BS2MS1 MS 2

C11

C12

C21

C22

Fig. 13.2 Soft handoff example, from [274]
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the respective interference levels and the C=I’s continue to stay below the target C=I, causing a positive power feedback
effect. Soft handoff does indeed ensure that each MS is served by the best BS a majority of the time. For this reason it is a
required feature in CDMA cellular systems.

Although the best handoff algorithm is the one that maximizes the capacity of the network, there are many criterion to
judge the performance of a handoff algorithm. These include the probability of handoff initiation, probability of dropped
call, the mean number of handoff requests as a MS traverses over a handoff route, and the delay before a handoff is initiated
after a MS crosses an established cell boundary. These quantities depend on the measure of link quality and the propagation
environment. Finally, network parameters such as the probabilities of new call blocking, the probability of forced termination,
and handoff queuing time are important. Moreover, it may be desirable to distinguish between dropped calls that are due to
a failed handoff mechanism, and forced terminations that are due to the lack of an unavailable channel in the target cell after
successful initiation of the handoff process.

The remainder of this chapter is organized as follows. Section 13.1 presents several different types of signal strength
based handoff algorithms and Sect. 13.2 introduces pilot-to-interference ratio based soft handoff algorithms. This is followed
by a detailed treatment of spatial signal strength averaging in Sect. 13.3. Guidelines are developed on the window averaging
length that is needed so that Ricean fading can be neglected in analog and sampled averaging. These guidelines are necessary
for local mean and velocity estimation. Section 13.4 motivates the need for velocity adaptive handoff algorithms and presents
three velocity estimators. The velocity estimators are compared in terms of their sensitivity to Rice factor, directivity, and
additive Gaussian noise. In Sect. 13.5, the velocity estimators are incorporated into a velocity adaptive handoff algorithm.
Section 13.6 provides an analytical treatment of conventional signal strength based hard handoff algorithms while Sect. 13.7
does the same for soft handoff algorithms. Finally, Sect. 13.8 discusses methods for C=I measurements in TDMA cellular
systems.

13.1 Signal Strength Based Hard Handoff Algorithms

Traditional MAHO algorithms use signal strength estimates that are obtained by calculating time averages of the received
squared-envelope, hjQri.t/j2i, from N neighboring BSs, BSi; i D 0; : : : ;N � 1. A MS is reconnected to an alternate BS
whenever the signal strength estimate of the target BS exceeds that of the serving BS by at least a factor of H. For example,
a handoff is performed between two BSs, BS0 and BS1, when

N̋
p;1.n/ > N̋ p;0.n/H if the serving BS is BS0

N̋
p;0.n/ > N̋ p;1.n/H if the serving BS is BS1; (13.1)

where H denotes the hysteresis, and N̋ p;0.n/ and N̋ p;1.n/ are the estimated local mean signal strengths of BS0 and BS1,
given by

N̋
p;0.n/ D

1

N

n
X

kDn�NC1
jr0.k/j2 (13.2)

N̋
p;1.n/ D

1

N

n
X

kDn�NC1
jr1.k/j2; (13.3)

respectively, where jQri.kTs/j2 is the kth sample of the received squared-envelope, Ts is the sampling period, and N is the
window length.

Many other variations of signal strength based handoff algorithms have been suggested in the literature. In one variation,
handoffs are also triggered when the measured signal strength of the serving BS drops below a threshold. For example, a
handoff could be performed between BS0 and BS1 when

N̋
p;1.n/ > N̋ p;0.n/H and N̋ p;0.n/ > ˝L; if the serving BS is BS0

N̋
p;1.n/ > N̋ p;0.n/ and N̋ p;0.n/ < ˝L; if the serving BS is BS0
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N̋
p;0.n/ > N̋ p;1.n/H and N̋ p;1.n/ > ˝L; if the serving BS is BS1

N̋
p;0.n/ > N̋ p;1.n/ and N̋ p;1.n/ < ˝L; if the serving BS is BS1: (13.4)

This scheme encourages a handoff whenever the received signal strength from the serving BS drops below the threshold˝L,
thereby reducing the probability of a dropped call.

Another variation discourages handoffs when the received signal strength from the serving BS exceeds another
threshold ˝U. For example, a handoff is performed between BS0 and BS1 when

N̋
p;1.n/ > N̋ p;0.n/H and ˝L < N̋ p;0.n/ < ˝U; if the serving BS is BS0

N̋
p;1.n/ > N̋ p;0.n/ and N̋ p;0.n/ < ˝L; if the serving BS is BS0

N̋
p;0.n/ > N̋ p;1.n/H and ˝L < N̋ p;1.n/ < ˝U; if the serving BS is BS1

N̋
p;0.n/ > N̋ p;1.n/ and N̋ p;1.n/ < ˝L; if the serving BS is BS1: (13.5)

This scheme avoids unnecessary handoffs, thereby reducing the network signaling load and network delay.
Direction biased handoff algorithms have also been suggested for improving the handoff performance in urban

microcells [26]. These algorithms incorporate moving direction information into the handoff algorithm to encourage handoffs
to BSs that the MS is approaching, and to discourage handoffs to BSs that the MS is moving away from. Let BSs denote
the serving BS. A direction biased handoff algorithm can be defined by grouping all the BSs being considered as handoff
candidates, including the serving base station BSs, into two sets based on their direction information. Define the following
sets:

A WD the set of BSs the MS is approaching (13.6)

R WD the set of BSs the MS is moving away from: (13.7)

By introducing an encouraging hysteresis He, and a discouraging hysteresis Hd, a direction biased handoff algorithm requests
a handoff to BSj if BSj 2 R and

N̋
p;j.n/ > N̋ p;s.n/H; if BSs 2 R

N̋
p;j.n/ > N̋ p;s.n/Hd; if BSs 2 A (13.8)

or if BSj 2 A and

N̋
p;j.n/ > N̋ p;s.n/He; if BSs 2 R

N̋
p;j.n/ > N̋ p;s.n/H; if BSs 2 A : (13.9)

To encourage handoffs to BSs in A and discourage handoffs to BSs in R, the hysteresis values should satisfy He � H � Hd.
When equality holds, the algorithm reduces to the conventional method described in (13.1). Good values for He, H, and Hd

depend on the propagation environment and BS layout. In general, a direction biased handoff algorithm can maintain a lower
mean number of handoffs and handoff delay, and provide better cell membership properties.

13.2 Pilot-to-Interference Ratio Based Soft Handoff Algorithms

In CDMA based systems each BS transmits a pilot signal to assist soft handoff [105]. In synchronous CDMA systems such
as cdma2000, all BSs use the same pilot sequence and the BSs are distinguished by using different phase shifts of the same
sequence. In asynchronous CDMA systems such as WCDMA, each cell is allocated a distinct pilot sequence. In any case, the
MSs use the pilot signals to initiate and complete handoffs. Each pilot signal is used to measure the pilot-to-interference ratio
(PIR), which is the ratio of received pilot energy per chip to total interference spectral density:
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Fig. 13.3 Soft handoff boundaries and region
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: (13.10)

An active set refers to the set of BSs to which a MS is connected at any given time. The active set contains a single BS most
of time, but additional BSs are added to the active set during soft handoff.

Soft handoffs are initiated based on a hysteresis imposed on the PIRs. An upper threshold, Tadd, determines the pilot signal
level for which qualifying BSs are added to the active set, whereas a lower threshold, Tdrop, determines when the weak pilot
BSs are dropped from the active set. The handoff margin, the difference between Tadd and Tdrop, is an indicator of how long
a soft handoff will take on average. A wider margin results in a longer average soft handoff duration. Figure 13.3 shows how
changes in the handoff parameters affect the handoff region. Reducing Tdrop and Tadd expands the cell boundaries and thus
increases the soft handoff region.

The soft handoff margin and thresholds are very important parameters in determining system performance, and need to
be carefully optimized for a given situation. Allowing more MSs to be in soft handoff mode will decrease the reverse link
interference, by allowing more MSs to benefit from macrodiversity. That is, the MSs in handoff are connected to the best
available link and, therefore, do not transmit excessive power. However, the increase in the number of MSs in soft handoff
and the increase in the average handoff duration can increase system complexity and tie up already scarce system resources.
Also, as mentioned previously, soft handoff increases the forward link interference by allowing multiple BSs to transmit to
one MS. The challenge is to optimized the handoff parameters so that the capacity and quality of service requirements are
satisfied, while keeping the operational cost and system complexity down. Other important soft handoff parameters include
the Tdrop timer and the ratio between the handoff region and total cell area. The Tdrop timer is the length of time that a signal
level must remain below Tdrop to drop a BS from the active set.

13.3 Signal Strength Averaging

The received squared-envelopes jQr.t/j2 are affected by Ricean fading, log-normal shadowing, and path loss attenuation.
Here, the two Ricean fading models discussed in Sect. 2.1.3.2 are considered. The first model assumes that the quadrature
components of the complex fading envelope g.t/ D gI.t/C jgQ.t/ are independent Gaussian random processes with variance
b0 and means mI.t/ D mI and mQ.t/ D mQ, respectively. In this case, the envelope ˛.t/ D jg.t/j is Ricean distributed with
Rice factor K D s2=.2b0/, where s2 D m2

I C m2
Q. The second model is more realistic and uses the time-varying means

mI.t/ and mQ.t/ in (2.59) and (2.60), respectively. Once again, the envelope ˛.t/ is Ricean distributed with Rice factor
K D s2=.2b0/. Both models are equivalent for Rayleigh fading (K D 0). As suggested in Sect. 2.6.1, shadow correlation can
be described by the model in (2.6.1). Finally, for LoS propagation, the two-slope path loss model in (2.410) is assumed. For
NLoS propagation, the model in (2.412) is assumed yielding, for example, the received signal strength profile in Fig. 2.67.



13.3 Signal Strength Averaging 599

13.3.1 Choosing the Proper Window Length

When a time average of the received complex squared-envelope hjQri.t/j2i is calculated, an averaging interval or temporal
window length must be chosen. One method for determining the proper window length is to use analog averaging. The
following development extends the original work of Lee [199] by incorporating Aulin’s Ricean fading model. With Lee’s
multiplicative model, the squared-envelope of the composite signal at position y is

Ǫ 2c .y/2 D ˛2.y/ �˝p.y/ (13.11)

where ˛2.y/ is a non-central chi-square random variable with 2 degrees of freedom (Ricean fading), and˝p.y/ is a log-normal
random variable (log-normal shadowing). Since the local mean remains constant over short spatial distances, it is assumed
that ˝p.y/ D ˝p over the spatial averaging interval. However, if the spatial averaging interval is too large, this assumption
will no longer be valid since the time-average hjQri.t/j2i will average over the shadowing process as well. Assuming that the
envelope fading is an ergodic random process, an integral spatial average of Ǫ 2c .y/ can be used to estimate the local mean
˝p, i.e.,

N̋
p D

1

2L

Z xCL

x�L

Ǫ 2c .y/dy D ˝p

2L

Z xCL

x�L

˛2.y/dy; (13.12)

where the second equality holds since ˝p.y/ is constant over the spatial interval .x� L; xC L/. The accuracy of the estimate
can be determined from the variance of (13.12), calculated as [195]

�2N̋p
D 1

L

Z 2L

0

�

1 � `

2L

�

�˛2˛2.`/d`; (13.13)

where �˛2˛2.`/ D EŒ˛2.y/˛2.y C `/� � EŒ˛2.y/�EŒ˛2.y C `/� is the spatial autocovariance of the squared-envelope, and
EŒ x � denotes the ensemble average of x. The spatial autocovariance of the received squared-envelope at a MS with 2-D
isotropic scattering can be obtained from (2.94) along with the time-distance transformation fm� D `=�c. Substituting (2.94)
into (13.13) and using fm� D `=�c yields

�2N̋p
D
�

˝p

K C 1

�2
1

L

Z 2L

0

�

1 � `

2L

�

J0.2�`=�c/
�

J0.2�`=�c/C 2K cos .2�` cos.�0/=�c/
�

d`: (13.14)

As desired, �2N̋p
! 0 as L ! 1. When L is large, N̋ p can be considered Gaussian since it is the summation of many

independent random variables. However, if �2N̋p
is relatively large compared to ˝p (due to small L or small ˝p), then it

is more appropriate to treat N̋ p as a non-central chi-square random variable. In this case, it may be more appropriate to
approximate N̋ p as a log-normal random variable which has the same general shape as a non-central chi-square distribution
(i.e., zero at the origin with an infinitely long tail) [143, 144].

Proceeding under the assumption that N̋ p is approximately Gaussian, the 1� spread can be calculated to measure the
accuracy of the estimator, where

1� spread D 10log10

(

�p C � N�p

�p � � N�p

)

(13.15)

with the interpretation that PŒj N̋ p .dB/ �˝p .dB/j � 1 � spread� D 0:68.1 Observe from (13.14) and (13.15) that the accuracy
of the local mean estimate depends on K, L, and �0. Figure 13.4 shows the 1� spread when �0 D 60ı for various values
of K. In general, N̋ p approaches˝p with increasing K. However, the angle �0 also affects the accuracy as shown in Fig. 13.5.
When �0 D 90ı the 1 � spread is minimized, resulting in the best estimate of the local mean. Conversely, the worst estimates

1The probability of lying within one standard deviation of the mean of a Gaussian random variable is 0.68.
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Fig. 13.5 Dependency of the 1� spread on the specular angle �0 mod 90ı, from [28]

occur for small �0 (in the neighborhood of 10ı in Fig. 13.5). The actual angle that the maximum occurs is a function of L,
and it can easily be shown that the 1 � spread has a local minimum at �0 D 0ı and global minimum at �0 D 90ı for all L. In
any case, the required spatial averaging distance for local mean estimation depends on K and �0.

13.3.2 Choosing the Proper Number of Samples to Average

Most practical signal strength estimators use samples of the signal strength rather than analog averaging. The number and
spacing of samples to provide a good estimate of the local mean must be determined. Consider the sampled composite
squared-envelope
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˛2c Œi�
4D ˛2c .iS/ (13.16)

where S is the spatial sampling period, and i is an integer. Then the spatial average

N�p D
1

N

N�1
X

iD0
˛2c Œi� (13.17)

can be used to determine an unbiased estimate of the local mean ˝p. As with analog averaging, the variance of this estimate
can be used to measure its accuracy, where

�2N̋p
D 1

N2

N�1
X

iD0

N�1
X

jD0
E
�

˛2c Œi�˛
2
c Œj�
�

�
�

E
� N̋

p

��2
: (13.18)

By using (2.94), the transformation fm� D `=�c, and the symmetric properties of the autocovariance function, (13.18)
becomes

�2N̋p
D �˛2˛2.0/

N
C 2

N�1
X

jD1

�
N � j

N2

�

�˛2˛2.Sj/

D
�

˝p

K C 1

�2

0

@
1C 2K

N
C 2

N�1
X

jD1

�
N � j

N2

�

J0.2�Sj=�c/
�

J0.2�Sj=�c/C 2K cos .2�Sj cos.�0/=�c/
� �

; (13.19)

where S is measured in wavelengths (�c). Note that � N̋p
depends on N, K, S, and �0. Fortunately, the effect of each parameter

is nearly independent of the others. Figure 13.6 illustrates the relationship between S and K for �0 D 0ı, where N D d20�c=Se
so that the averages are over 20�c (and dxe denotes the smallest integer greater than or equal to x). Increasing N for a fixed
S will increase the spatial averaging distance, thereby lowering the 1 � spread in a manner similar to analog averaging in
Fig. 13.4. The discontinuities in Fig. 13.6 are due to the dxe function. Observe that if S < 0:5�c, then the discrete local mean
estimate is approximately equivalent to the estimate from analog averaging (�0 D 0ı in Fig. 13.5) over the same spatial
distance. Similar to Fig. 13.5, it is also observe that small Rice factors, e.g., K D 0:1 and K D 1, at �0 D 0ı increase the 1 �
spread. The spikes at 0:5�c and 1�c correspond to the location of the first lobe of the autocovariance function given by (2.94)
and plotted in Fig. 2.16.

Although it is often assumed that �0 D 0ı in our treatment, Fig. 13.7 shows the relationship between the 1 � spread and
S, for K D 1, N D d20�c=Se, and several values of �0. Increasing �0 generally lowers the 1 � spread except for some small
angles as shown in Fig. 13.5; it also shifts the spike at 0:5�c to the right, because the first side lobe of (2.94) shifts as �0
increases.

To summarize, the spatial averaging distance that is needed to obtain the local mean depends on K and �0. If sample
averaging is used, then the sample spacing should be less than 0:5�c. As a rule of thumb, a spatial averaging distance of 20�c

should be sufficient for most applications.

13.4 Velocity Estimation

Temporal based hard handoff algorithms can yield poor handoff performance in microcells due to the diverse propagation
environment and the wide range of MS velocities. Consider the NLoS handoff scenario shown in Fig. 13.1, where a MS
traveling from BS0 has a log-normal shadowed Ricean faded LoS signal from BS0 and a log-normal shadowed Rayleigh
faded NLoS signal from BS1, until it rounds the corner where the situation is suddenly reversed. The loss (gain) of the
LoS component causes a rapid decrease (increase) in the signal strength. Effective hard handoff algorithms for this scenario
should use short temporal averaging window and a large hysteresis, so that rapid changes in the mean signal strength are
detected and unnecessary handoffs are prevented [233]. Unfortunately, temporal averaging with a short fixed window length
gives optimal handoff performance for only a single velocity. For example, consider again the handoff scenario in Fig. 13.1
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along with the received signal strength profile in Fig. 2.67. Assume log-normal shadowing with �˝ D 6 dB and choose D so
that �˝.dB/˝.dB/.d/ D 0:1�2˝ at d D 30m in (2.6.1). The simulation of a temporal power averaging hard handoff algorithm
with a hysteresis H D 8 dB, averaging window duration of 2.27 s, and a window overlap of 2:27=2 D 1:135 s gives the
handoff performance shown by the lines in Fig. 13.13.2 The hard handoff performance is evaluated by the mean number of

2A 2.27 s window corresponds to a 20�c spatial window at a velocity of 5 km/h, assuming a carrier frequency of 1.9 GHz. Section 13.5 further
details the simulation.
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handoffs, averaged over 1000 runs, versus the distance from BS0 where 50% (and 90%) of the MSs have made a handoff to
BS1, i.e., Pr.BS1/ D 0:5 and Pr.BS1/ D 0:9 at the abscissa. This distance gives a measure of the handoff delay, assuming
that handoffs will occur between BS0 and BS1 only.

Figure 13.13 only shows the handoff request delay, while in a real system the network delay should also be included.
However, the performance of a velocity adaptive handoff algorithm can still be evaluated without knowledge of the network
delay. For example, suppose that the receiver threshold is �90 dBm. Also, assume that a good hard handoff algorithm
should have at least 90% of the MSs handed off before a distance dcutoff, where dcutoff is chosen as the distance where the
mean signal strength is 2�� above �90 dBm. If �˝ D 6 dB and the data from Fig. 2.67 is used, then a signal strength of
�90C12 D �78 dBm occurs at 283 m for BS0. Hence, if the velocity adaptive hard handoff algorithm can adapt to the point
at 5 km/h in Fig. 13.13, corresponding to handoff requests at a distance 262 m, and the maximum speed of a MS turning the
corner is 40 km/h (40/3.6 m/s), then a maximum network delay of

Max Network Delay D 3:6 s

40m
.283 � 262/m D 1:89 s

can be tolerated. For macrocellular systems this network delay is acceptable, implying the usefulness of velocity adaptive
hard handoff algorithms discussed here. In the above example the 5 km/h point on the curve in Fig. 13.13 was chosen as
the desired operating point, because the best hard handoff performance occurs near the knee of the curve where the mean
number of handoffs and handoff delay are jointly minimized. Other hysteresis and window lengths could possibly result in
better performance. However, the settings used here (H D 8 dB and a 20�c spatial window) are adequate to illustrate the
usefulness of velocity adaptive hard handoff algorithms.

Hierarchical cellular architectures use microcells to serve high density low mobility MSs and macrocells to serve low
density high mobility MSs. Velocity estimation is necessary so that MSs can be assigned to the proper hierarchical layer
depending on their mobility. If high mobility MSs are connected to microcells, then excessive handoffs may occur. On
the other hand, if low mobility MSs are connected to macrocells, then the overall system capacity will suffer. Finally,
for hierarchical TDMA cellular architectures the micro-to-macrocell and micro-to-microcell handoffs must be performed
quickly to prevent dropped calls, especially for MSs that are connected to microcells and subsequently transition from low
to high mobility. For these cases, velocity adaptive handoff algorithms are necessary to achieve the required low network
handoff delay.

13.4.1 Level Crossing Rate Estimators

It is well known that the zero crossing rates of the quadrature components gI.t/ and gQ.t/ and the level crossing of the
envelope ˛.t/ D jg.t/j D jgI.t/ C jgQ.t/j are functions of the MS velocity as discussed in Sect. 2.1.5. The envelope level
crossing rate (LCR) is defined as the average number of positive going crossings per second, that the fading envelope ˛.t/
makes at a predetermined envelope level R. Likewise, the zero crossing rate (ZCR) is defined as the average number of
positive going zero crossings of the quadrature components OgI.t/ D gI.t/ � mI.t/ and OgQ.t/ D gQ.t/ � mQ.t/. Rice has
derived the ZCR of OgI.t/ or OgQ.t/ as (2.112)

LZCR1 D
1

�

s

b2

b0
(13.20)

and the envelope LCR with respect to the level R as, (2.100) and (2.101),

LR D
Z 1

0

P̨p.R; P̨ /d P̨ D R.2�/�3=2p
Bb0

Z 1

0
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��
P̨ (13.21)
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C .b0 P̨ C b1s sin.�//2
��

d�d P̨ ;
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where B D b0b2 � b21. The bn can be obtained from (2.103) with appropriate modification to account for the presence
of additive white Gaussian noise in the received complex envelope. That is, the LCR is computed from the quadrature
components of the received complex envelope QrI.t/ D gI.t/ C QnI.t/ and QrQ.t/ D gQ.t/ C QnQ.t/ instead of the
quadrature components of the received fading envelope gI.t/ and gQ.t/. If an isotropic antenna is assumed such that
G.�/ D 1, then

bn D .2�/nb0

Z 2�

0

Op.�/.fm cos.˛/ � fq/
nd� C .2�/n

Z Bw=2

�Bw=2

No

2
f ndf ; (13.22)

where 2b0 is the scatter power, v is the velocity, �c is the carrier wavelength, fm D v=�c is the maximum Doppler frequency,
fs D fc C fq is the frequency of the specular or LoS component, and Op.�/ is the continuous AoA distribution of the scatter

component of the arriving plane waves [171]. The second term in (13.22) is due to additive white Gaussian noise (AWGN),
centered at fc, with a two-sided power spectral density of No=2watts/Hz and a noise bandwidth of Bw Hz, resulting in a total
power of NoBw watts. Note that Bw is determined by the receiver bandwidth and must be at least equal to the maximum
Doppler frequency fm in order to accurately estimate the LCR. However, if Bw is larger than fm, then the LCR estimates
will be corrupted by unnecessary noise. For the special case when �0 D 0ı and there is 2-D isotropic scattering, then
Op.�/ D 1=.2�/; �� � � � � and (13.22) can be written as

bn D .2�/n
b0

�

Z fm

�fm

f n

p

f 2m � f 2
df C .2�/n

Z Bw=2

�Bw=2

N0

2
f ndf : (13.23)

With Aulin’s Ricean fading model with the means of gI.t/ and gQ.t/ defined in (2.59) and (2.60), respectively, the ZCR of
gI.t/ or gQ.t/ is [283]

LZCR2 D LZCR1

�

e�
 I0.ˇ/C
b2

2

Ie

�
ˇ



; 


��

; (13.24)

where I0.x/ is the zero-order modified Bessel function of the first kind, and


 D a2 C b2

4
; ˇ D a2 � b2

4
; a D

p
2K

Ie.k; x/ D
Z x

0

e�uI0.ku/du; b D 2� fm cos.�0/

s

2Kb0

b2
; (13.25)

and LZCR1 was defined in (13.20).
For macrocells, 2-D isotropic scattering is a reasonable assumption. However, for microcells the scattering is often non-

isotropic. Nevertheless, one approach is to derive velocity estimators under the assumption of 2-D isotropic scattering with
no AWGN, and afterwards study the effects of the mismatch caused by non-isotropic scattering and noise. Using (13.20)
along with the definition for the bn in (13.23) and No D 0 gives

LZCR1 D
p
2v=�c (13.26)

and (2.109)

LR D .v=�c/
p

2�.K C 1/�e�K�.KC1/�2I0
�

2�
p

K.K C 1/
�

; (13.27)

where � D R=Rrms, where Rrms D
p

˝p is the rms envelope level. Likewise, for Aulin’s Ricean fading model with the means
in (2.59) and (2.60), and �0 D 0ı,


 D 3K

2
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2
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2K; b D 2

p
K; (13.28)
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and LZCR2 reduces to

LZCR2 D .v=�c/
p
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e�3K=2I0
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�K
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�
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Ie

�

�1
3
;
3K

2

��

: (13.29)

Clearly, the LCR and ZCR are proportional to the velocity v and, hence, can be used to derive a velocity estimate. However,
it remains to be seen if they are robust to the Rice factor K, non-isotropic scattering, additive noise, and other factors. The
robustness with respect to K is first considered, and the other factors are treated afterwards.

LZCR1 is not affected by K. Figure 2.17 in Sect. 2.1.5 compared the level crossing rate LR for different K with the conclusion
that the LCR around � D 0 dB is roughly independent of K. This attractive property suggests that the LCR can be used to
provide a velocity estimate that is robust to K. Consequently, the steps for using the LCR (or ZCR) of ˛.t/ (or gI.t/ or gQ.t/)
for velocity estimation are; determine Rrms (or mI.t/ or mQ.t/), estimate the number of crossings per second OLRrms (or OLZCR1 ),
and use (13.27) to solve for v, with � D 1 and K D 0 (or (13.26) for ZCR1). Thus, the following velocity estimators are
robust with respect to Rice factor K:

OvZCR1 �
�c
OLZCRp
2
; OvLCR �

�c
OLRrmsp
2�e�1

: (13.30)

Figure 13.8 shows the effect of K and �0 on LZCR2 . Notice that if the angle of the specular component is �0 D 0ı or 180ı,
then LZCR2 can have up to 40% relative error. Consequently, a non-zero value of K should be chosen as a default value to
minimize the effect of K. Choosing K � 0:61 yields a maximum error of at most 20%. In this case, the velocity estimate
from (13.29) becomes

OvZCR2 �
�c
OLZCR2

1:2
p
2
: (13.31)
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Fig. 13.8 Normalized zero crossing rate versus K and �0, from [28]
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13.4.2 Covariance Approximation Methods

A velocity estimator has been proposed by Holtzman and Sampath [167, 288] that relies upon an estimate of the
autocovariance between faded samples rŒi�, where the rŒi� can be samples of the envelope, squared-envelope, or log-envelope.
With this method, referred to here as the covariance (COV) method, the statistic

V D 1

N

N
X

kD1
.rŒkC �� � rŒk�/2 (13.32)

is calculated. If N is large and ergodicity applies, then V can be replaced by the ensemble average

EŒV� D 2�rr.0/ � 2�rr.�/; (13.33)

where �rr.�/ denotes the autocovariance of rŒk�. The general form for �rr.�/, assuming squared-envelope samples, can be
derived from [22] and [288] as

�rr.�/ D 4a.�/
�

a.�/C s2 � cos.2� fm� cos.�0//
�

C 4c2.�/C 2Noa.�/ sin.Bw��/

��

C4KNob0 cos.2� fm� cos.�0// sin.Bw��/

��
C No

2sin.Bw��/
2

�2�2
; (13.34)

where [22]

a.�/ D b0

Z 2�

0

Op.�/ cos .2� fm� cos.�// d� (13.35)

c.�/ D b0

Z 2�

0

Op.�/ sin .2� fm� cos.�// d�: (13.36)

This estimator depends on Op.�/ and, hence, is also a function of the scattering environment. Like the LCR estimator,
isotropic scattering is first assumed without additive noise to derive a velocity estimator and afterwards the effect of
non-isotropic scattering and noise is considered.3 Consider the scattering environment shown in Fig. 2.7, characterized by
2-D isotropic scattering plus a LoS or specular component arriving at angle �0 D �=2. If squared-envelope samples are used,
then using (2.94) gives

V D EŒV� D 2
�

�p

K C 1

�2 �

.1C 2K/ � J0.2� fm�/
�

J0.2� fm�/C 2K cos.2� fm� cos.�0//
� �

; (13.37)

which is dependent on K and �0. If �rr.0/ is known exactly, then the bias with respect to K can be eliminated for small � by
the normalization [288]

V

�rr.0/
� .2�v�t=�c/

2 1C 2K C K cos.2�0/

.1C 2K/
(13.38)

so that [288]

OvCOV �
�c

2��t

s

V

�rr.0/
; (13.39)

where �t is the sample spacing in seconds/sample.

3Only isotropic scattering was considered in [167, 288].
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In large co-channel interference situations it may be preferable to modify the above scheme since the empirical average
in (13.32), and in particular �rr.0/, is sensitive to co-channel interference as shown in [183]. Consequently, defining

U.�/ D 1

N

N
X

kD1
rŒkC ��rŒk� �

 

1

N

N
X

kD1
rŒk�

!2

(13.40)

and V2 D 2U.�1/ � 2U.�2/, yields

EŒV2� D 2�rr.�1/ � 2�rr.�2/ (13.41)

so that EŒV2�=�rr.0/ is equal to (13.38) with �t D �22 � �21 , and a result similar to (13.39) follows.
Whether V or V2 is used, �rr.0/ is never known exactly and must be estimated by the MS in the same way that mI.t/,

mQ.t/, and Rrms must be estimated in the ZCR and LCR methods, respectively. Consequently, to actually use (13.39) it must
be shown or verified that

v / E

2

4

s

V

�rr.0/

3

5 : (13.42)

This is analytically difficult, but simulation results in Sect. 13.5 suggest that (13.39) is a useful approximation to (13.42).
It is also shown in Appendix 13A that

lim
�!0
OvCOV D lim

�!0

�c

2��

s

V

�rr.0/
D v

s

1C 2K C K cos.2�0/

1C 2K
: (13.43)

It follows from (13.39) and (13.43) that K and �0 cause at most 20% error in v [288], thus providing a velocity estimator that
is reasonably robust with respect to K.

13.4.3 Velocity Estimator Sensitivity

To illustrate the sensitivity of the velocity estimators, the ratio of the corrupted velocity estimate to the ideal velocity estimate
is used. For the LCR and ZCR velocity estimators,

Qv
v
D
QLRrms.Qb0; Qb1; Qb2/
LRrms.b0; b1; b2/

(13.44)

and

Qv
v
D
QLZCR1

LZCR1

D

s

Qb2
Qb0
� b0

b2
; (13.45)

respectively, where Qv denotes the corrupted velocity estimate, and the level crossing rates QLRrms.Qb0; Qb1; Qb2/ and LRrms.b0; b1; b2/

are given by (13.21) with the appropriate values of Qbn and bn, respectively. Little simplification results for the LCR method
in general. However, when K D 0 (13.45) simplifies to [171]
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v
D
s
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: (13.46)

For Aulin’s fading model with the means in (2.59) and (2.60), the sensitivity of the ZCR is
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where Q̌, Q
 , and Qb are given by (13.25) using (13.22) where appropriate. Likewise, for the covariance method using squared-
envelope samples,

Qv
v
D

r

2Q�rr.0/�2Q�rr.�/

Q�rr.0/
q

2�rr.0/�2�rr.�/

�rr.0/

: (13.48)

13.4.3.1 Effect of the Scattering Distribution

Here the sensitivity of the velocity estimators to the scattering distribution is studied by using four different non-isotropic
scattering models. With the first model S1, plane waves arrive from one direction only with a varying degree of directivity
as might happen when signals are channelized along a city street. The probability density of the scatter component of the
arriving plane waves as a function of angle of arrival has the form in (2.52), where the vehicle motion is in the direction
of � D 0ı, and �m determines the directivity of the incoming plane waves. Figure 2.9 shows a polar plot of Op.�/ for
�m D 30ı; 60ı, and 90ı. The second model S2 assumes that the plane waves can arrive from either the front (� D 0ı) or
back (� D 180ı), which may be typical for city streets that dead end at another street. In this case Op.�/=2 and Op.� � �/=2
are combined to form the overall angle-of-arrival distribution. The resulting density is similar to Fig. 2.9 but with lobes
extending in both the 0ı and 180ı directions. The third and fourth models S3 and S4, respectively, are similar to S1 and S2
except that the distributions are rotated by 90ı, so that the plane waves tend to arrive perpendicular to the direction of travel.
This may occur when a MS passes through a street intersection. The effect of the scattering distribution is determined for the
cases when the velocity estimator has been designed for (1) isotropic scattering and, (2) scattering model S1 with �m D 90ı.
The scattering model that the velocity estimator has been designed for will determine the values of b0, b1, and b2 in the
denominators of (13.44)–(13.47), while the values of Qb0, Qb1, and Qb2 depend on the scattering environment that is actually
present. The effect of non-isotropic scattering on the COV estimate (13.48) can be found from the results in Appendix 13A
with No D 0, or by using small values of � in (13.48). Here, the latter is chosen with � D 1=50.

Figure 13.9 shows the effect of the scattering distribution on each of the velocity estimators. Due to the very large number
of possible scenarios, only the most significant results are plotted in Fig. 13.9 and curves similar (but not equal) to the plotted
curves are simply asterisked in the accompanying table. Velocity estimators with the subscript “d” in Fig. 13.9 correspond
to those that are designed for scattering model S1 with �m D 90ı. By using Fig. 13.9 the relative robustness of the various
velocity estimators to the scattering distribution has been summarized by the ranking in Table 13.1.

For urban microcell deployments, robustness with respect to scattering models S1 and S2 is important. The LCR and
COV methods are very sensitive to the directivity in scattering model S1 when K D 0 as shown by curve “h.” This sensitivity
can be partially mitigated by using the velocity estimators LCRd and COVd that have been designed for scattering model S1
with �m D 90ı as shown by curve “g.” However, the price for increased robustness to scattering model S1 is the increased
sensitivity of LCRd to scattering models S2, S3, and S4 when K D 0. Fortunately, the presence of even a small specular
component (K D 1) reduces the sensitivity as seen in COV (K D 1) and LCRd. In contrast a specular component does not
reduce the sensitivity of the LCR estimator in scattering models S2, S3, and S4, because b1 D 0, and therefore the ratio of
the crossing rates in (13.46) depends on Qb2 and b2 and is independent of K. Results are not shown for LCR or LCRd with
K D 1 scattering model S1, due to numerical difficulties in calculating (13.21) for small �m. For large �m > 80ı the results
obtained were very close to curve “d.”

The ZCR velocity estimator is generally more robust than the LCR and COV methods. The presence of a small specular
component improves robustness to the scattering distribution as seen in ZCR2, ZCR2;d (ZCR1 and ZCR1d

are independent
of K). Also, velocity estimators that have been designed for scattering model S1 with �m D 90ı perform slightly better
than those designed for isotropic scattering. However, the improvement obtained by using these velocity estimators must
be weighed against the relative error that will be introduced if the scattering is actually isotropic. For LCRd and COVd,
Qv=v D 0:316 and for ZCRd Qv=v D 1:15. Since all the velocity estimators seem to have some sensitivity to the scattering
distribution, and sensitivity is greatly reduced when K > 0, we conclude that those designed for isotropic scattering should
be adequate.

In summary, for very directive situations where the plane waves arrive from either the front or back but not both, the ZCR,
COVd, or LCRd methods are the most robust. If the plane waves arrive from both the front and back, then all the velocity
estimators with the exception of LCRd are reasonably robust. The sensitivity to directivity is reduced when a specular
component is present. In the unlikely event that K D 0 and plane waves arrive from the perpendicular direction with high
directivity, all methods will have a significant bias. Finally, another method for overcoming the sensitivity to the scattering
distribution is to obtain velocity estimates from the signals that arrive at a MS from a distant cell or an umbrella cell, since
they will tend to experience 2-D isotropic scattering.
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Fig. 13.9 Non-isotropic scattering effects.—corresponds to a curve that had insufficient precision to be reported. Superscript x� denotes that the
curve is approximately equal the curve labeled x, from [28]

Table 13.1 Robustness to the
scattering distribution

Curve Rank Qv=v at �m D 10ı Qv=v at �m D 90ı

d Excellent 1.06 1.0

e, c Very good 0.66, 1.52 0.85, 1.24

b, f Good 0.34, 0.107 2.6, 0.82

a, g, h Poor 4.5, 0.014, 0.004 3.6, 1.0, 0.32

13.4.3.2 Effects of Additive Gaussian Noise

Since the effect of the scattering distribution has already been established, the sensitivity to additive white Gaussian noise
(AWGN) is determined by using Eqs. (13.44) to (13.48) under the assumption of 2-D isotropic scattering. With AWGN the
rms value of the received complex envelope is QR D

p

s2 C 2b0 C NoBw, and the values of Qbn and bn in (13.44) are

Qb0 D b0 C
NoBw

2
(13.49)

Qb2 D 2b0 .� fm/
2 C NoB3w�

2

6
(13.50)

b2 D 2b0 .� fm/
2 : (13.51)
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For the LCR velocity estimator, (13.44) and (13.21) yield, after considerable algebra,
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where


S
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D �p
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(13.53)

is defined as the signal-to-noise ratio. Likewise, for the ZCR velocity estimator ZCR1, (13.45) becomes
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For Aulin’s fading model with the means in (2.59) and (2.60), the effect of AWGN on ZCR2 can be obtained from (13.47)
with QLZCR1=LZCR1 in (13.54),

Q̌ D K

2

0

B
@1 � 2 cos2.�0/

0

B
@


S C K C 1


S C KC1
6

�
Bw

fm

�2

1

C
A

1

C
A (13.55)

Q
 D K

2

0

B
@1C 2 cos2.�0/

0

B
@


S C K C 1


S C KC1
6

�
Bw

fm

�2

1

C
A

1

C
A (13.56)
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and a, b, 
 , and ˇ given by (13.28).
In [288], the effect of AWGN on the COV velocity estimator has been derived as a function of � > 0. Here a closed form

analytic result is provided for the effect of AWGN on the COV velocity estimate for the limiting case when � ! 0. The
limiting case is important when analyzing the effects of AWGN, since (13.38) is only valid for small � . Consequently, the
lim�!0 Qv=v in (13.48) is found, and afterwards, the effect of � > 0 in (13.48) is compared. It is shown in Appendix 13A that

lim
�!0
Qv=v D

p

�
q

.1C2KCK cos.2 �0//
.1C2K/

; (13.58)

where � is given by (13A.4), with a.0/ D b0; a
0.0/ D c.0/ D c0.0/ D c00.0/ D 0 and a00.0/ D 2b0.� fm/

2 for 2-D isotropic
scattering.

It is apparent from (13.52), and (13.54)–(13.58) that the effect of AWGN depends on K, Bw, 
S, v, and �0. For a practical
system, the bandwidth Bw can be chosen as the maximum expected Doppler frequency over the range of velocities. However,
a smaller Bw in reference to the actual maximum Doppler frequency fm will result in velocity estimates that are less sensitive to
noise. Therefore, a better approach is to use the velocity estimate Ov to continuously adjust Bw to be just greater than the current

maximum Doppler frequency, i.e., Bw
>� Ov=�c. Figure 13.10 shows the effect of AWGN on each of the velocity estimators

with respect to K, 
S, and v, assuming �0 D 0ı (head-on LoS specular component). A value of Bw D 357Hz is chosen which
allows speeds up to 100 km/h at fc D 1:9GHz. For K D 0, AWGN has the same effect on all the velocity estimators. For
larger velocities, e.g., 20 km/h, the bias becomes insignificant because Bw=fm is small. However, for small velocities, e.g.,
1 km/h, a very large Bw=fm results in a significant bias. As mentioned above, this slow speed bias can be reduced by adapting
the filter bandwidth Bw. It must also be remembered that Fig. 13.10 shows the worst case performance of the COV method as
� ! 0. Any � > 0 will reduce the bias of the COV method due to AWGN. For example, if 2�v�=�c D 0:5 in (13.48), then
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Fig. 13.10 The effect of AWGN on the velocity estimates. COV(0.5)) 2�v�=�c D 0:5, from [28]

a large reduction in the effect of AWGN is realized, as shown by the curves labeled COV(0.5) in Fig. 13.10. However, the
accuracy of the COV velocity estimate itself improves with smaller � , so that increasing � for reduced noise sensitivity must
be weighed against the reduced accuracy of the velocity estimate itself. This will be discussed further in the next section.

13.5 Velocity Adaptive Hard Handoff Algorithms

To study velocity adaptive handoff algorithms Rayleigh fading (K D 0) is assumed, 2-D isotropic scattering, and no AWGN.
A velocity adaptive handoff algorithm must adapt the temporal window over which the mean signal strength estimates are
taken by either keeping the sampling period constant and adjusting the number of samples per window, or vice versa. Here,
the latter is assumed. To reduce the variance in the velocity estimate, a sum of weighted past velocity estimates is performed
using an exponential window average of past estimates, i.e.,

Lv.n/ D a Lv.n � 1/C .1 � a/ Ov.n/; (13.59)

where a controls the weighting of past estimates used in the average, and Ov.n/ is the current velocity estimate. The accuracy
of the velocity estimates will be affected by the window length Wl used to obtain the velocity estimates (not to be confused
with the window length over which the signal strengths are averaged), and the number of samples per wavelength N�.

To show the effect of parameters a, N�, and Wl, simulation of the NLoS handoff scenario shown in Fig. 13.1 along with the
corresponding signal strength profile in Fig. 2.67 was performed. The path loss was assumed to follow the model in (2.412)
with a D 2, b D 2, g D 150m, and dc D 255m. Spatially correlated log-normal shadows were simulated having a standard
deviation of �˝ D 6 dB and �30 D 0:1 using the approach in Sect. 2.6.1. Envelope fading was simulated using Jakes’ method
in Sect. 2.5.2.2. Two-branch receiver antenna diversity was assumed, so that the Ov.n/ in (13.59) represent the average estimate
out of the diversity branches at position n, and a D 0:1 in (13.59) unless otherwise specified.

As mentioned previously, Fig. 13.13 shows the performance of a temporal handoff algorithm with H D 8 dB, signal
strength averaging over 2:27 s, and overlapping windows by 2:27=2 D 1:135 s. Slightly better temporal handoff performance
can probably be obtained by fine tuning these values. However, for purposes of studying the velocity adaptive algorithms it is
sufficient to maintain H D 8 dB and adapt to some point near the knee of the performance curve. Consequently, the velocity
estimators were designed to adapt to the 5 km/h operating point which corresponds to signal strength window averages over
approximately 20 �c with a window overlap of approximately 10 �c.



612 13 Radio Resource Management

10 20 30 40 50 60 70 80 90

Distance (m)

0

10

20

30

40

E
st

im
at

ed
 V

el
o
ci

ty
 (

k
m

/h
r)

LCR, N
λ
=10

LCR, N
λ
=30

ZCR, N
λ
=10

ZCR, N
λ
=30

COV, N
λ
=10

COV, N
λ
=30
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A total of 1000 runs were made from BS0 to BS1, and the 95% confidence intervals were calculated for (1) the velocity at
100 m, (2) the corner at 255 m, and (3) the probability of being assigned to BS0 at 255 m. This resulted in a 95% confidence
interval spread of Ov ˙ 0:5 km/h and Pr(BS0) ˙0:025. Likewise, the mean number of handoff values had a 95% confidence
interval spread of approximately 0.05 (mean number of handoffs ˙0:025).

13.5.1 Effect of N�

To examine the effect of N�, assume that a D 0:1 and Wl D 10 �c for the LCR, ZCR, and COV velocity estimators,
and assume that the MS traverses the NLoS handoff route in Fig. 13.1 at 30 km/h. Furthermore, assume that the velocity
estimators are initialized to 5 km/h, and that the MS is measuring signals from BS0 and BS1 only. Figure 13.11 shows the
effect of N� on the velocity estimate, in the first 90 m of the trajectory as the MS moves from BS0 to BS1, in terms of the
response time and final velocity estimate. The LCR velocity estimator requires a higher sampling density than the COV
or ZCR methods and its final velocity and response time to an incorrect startup value (5 km/h) improve dramatically when
N� is increased from 10 to 30 samples/wavelength. For N� D 30 the COV method shows a slight overshoot in the initial
convergence, a characteristic seen with all the velocity estimators as the sampling density is increased. It is interesting to
note that for N� D 10 samples/wavelength 2�.v�/=�c D 2�0:1�c=�c D :628 and the final COV velocity estimate is close to
the actual 30 km/h with a reasonable response time. This fact, along with the results of Sect. 13.4.3.2 where 2�v�=�c D 0:5
confirm that the effects of AWGN can be mitigated by using a larger sample spacing without drastically affecting the velocity
estimate. The simulations used an estimate of the rms value Rrms in the LCR method and an estimate of the variance �rr.0/

in the COV method. Thus, the practicality of the velocity estimators that have been derived assuming perfect knowledge of
these values is confirmed. Although not shown here, the Rice factor K has little effect, confirming the claimed robustness of
the estimators. Over the 1000 runs, the ZCR had the smallest velocity estimate error variance followed by the COV and LCR
methods, respectively.



13.5 Velocity Adaptive Hard Handoff Algorithms 613

0 100 200 300

Distance (m)

0

10

20

30

40

E
st

im
at

ed
 V

el
o
ci

ty
 (

k
m

/h
r)

LCR, W l=10, a=.1

LCR, W l=10, a=.5

LCR, W l=20, a=.1

ZCR, W l=20, a=.1

Fig. 13.12 The effect of a and Wl on the mean response and corner effects, from [28]

13.5.2 Corner Effects and Sensitivity to a and Wl

The sharp downward spike at the corner (255 m) for the LCR velocity estimate in Fig. 13.12 is typical of the corner effects
on the velocity estimators. The effect is caused by a sudden change in path loss which lowers the local mean estimate in the
LCR method thus yielding fewer level crossings per second. This corner effect is apparent, although less acute in the ZCR
and COV methods due to their quick adaptability. The LCR and ZCR methods may exhibit a drop in estimated velocity when
the average signal strength changes abruptly. Although not shown here, the COV method has an upward bias with an abrupt
increase in the average signal strength, and a downward bias when the opposite occurs. These corner effect properties could
possibly be exploited to provide a combined corner detecting velocity adaptive handoff algorithm [24].

Larger values of a reduce the variance of the velocity estimate while sacrificing response time. Smaller values of a provide
faster startup convergence and more sensitivity to corner effects.

Although a velocity window length Wl less than 20 �c will increase the variance of the velocity estimates, it is beneficial
for reducing the corner effect on the velocity estimator, as shown for the LCR method. Although not shown, the same is true
for the ZCR and COV methods. The ZCR curve with Wl D 20 �c and a D 0:5 shows an overshoot in the initial convergence.
This arises because the Wl D 20 �c windows that are used to obtain the velocity estimates overlap by 10 �c. Hence, part of
the velocity estimate is derived from the previous window which may have a different sampling period due to adaptation.
Note that overlapped windows are used because they result in less handoff delay. Thus, it is probably better for initial startup
to derive velocity estimates from the non-overlapped portions of the signal strength windows.

13.5.3 Velocity Adaptive Handoff Performance

Now that the effect of each parameter has been determined, the performance of the velocity adapted handoff algorithm is
shown by the various symbols in Fig. 13.13 for a MS traveling at 30 km/h. The estimators were selected to adapt to the 5 km/h
operating point, the algorithm parameters were chosen as a D 0:1, Wl D 10 �c with an initial startup velocity of 5 km/h.
The mean number of handoffs was found to have a 95% confidence interval with a span of about 0.05 (mean number of
handoffs˙0:025/ about the mean that is plotted. The velocity adaptive handoff algorithm performs very well by maintaining
the desired operating point near the 5 km/h point.
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13.6 Hard Handoff Analysis

The classical signal strength based hard handoff algorithm compares signal strength averages measured over a time interval
T (seconds), and executes a handoff if the average signal strength of the target BS is at least H dB larger than that of the
serving BS [28, 150, 332, 333]. The analytical computation of the handoff characteristics for this classical signal strength
based handoff algorithm is generally intractable. However, for the case when the average signal strength decays smoothly
along a handoff route and the handoff hysteresis H is not too small compared to the shadow standard deviation, Vijayan and
Holtzman [332, 333] have developed an analytical method to characterize the performance of the classical signal strength
based handoff algorithm. They have also extended their results to include handoff algorithms that use absolute measurements
[373], similar to the one in (13.4).

Consider the case of a MS moving at a constant velocity along a straight line between two BSs, BS0 and BS1, that are
separated by a distance of D meters. Envelope fading is neglected under the assumption that the received signal strength
estimates are averaged by using a window with an appropriate spatial length as explained in Sect. 13.3 and using velocity
adaptive averaging as discussed in Sect. 13.5. In any case, however, the signal strength estimates will respond to path loss
and shadowing variations. Considering the effects of path loss and shadowing, the signal levels ˝0 .dB/.d/ and ˝1 .dB/.d/

that are received from BS0 and BS1, respectively, are (1.4)

˝0 .dB/.d/ D ˝.dB/.d0/ � 10ˇlog10fd=d0g C �0 .dB/ (13.60)

˝1 .dB/.d/ D ˝.dB/.d0/ � 10ˇlog10f.D � d/=d0g C �1 .dB/; (13.61)

where d is the distance between BS0 and the MS. The parameters �0 .dB/ and �1 .dB/ are independent zero-mean Gaussian
random processes with variance �2˝ , reflecting a log-normal shadowing model. The signal strength measurements are
assumed to be averaged by using an exponential averaging window with parameter dav so that the averaged signal levels
from the two BSs are, respectively,

˝0 .dB/.d/ D
1

dav

Z d

0

˝0 .dB/.d � x/e�x=dav dx (13.62)

˝1 .dB/.d/ D
1

dav

Z d

0

˝1 .dB/.d � x/e�x=dav dx: (13.63)
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To describe the signal strength based handoff algorithm, let

x.d/ D ˝0 .dB/.d/ �˝1 .dB/.d/ (13.64)

denote the difference between the averaged signal strength estimates for BS0 and BS1. Consider the crossings of x.d/ with
respect to the hysteresis levels ˙H dB as illustrated in Fig. 13.14. A handoff is triggered if x.d/ has a down-crossing at
�H dB given that the last level crossing was an up-crossing at H dB, or if x.d/ has an up-crossing at H dB given that the
last level crossing was a down-crossing at �H dB. Vijayan and Holtzman verified that the two point processes, up-crossings
of H dB and down-crossings of �H dB, can be modeled as independent Poisson processes under the assumption that x.d/

is a stationary zero-mean Gaussian random process, i.e., changes in the mean are ignored and the MS is moving along the
boundary between two cells [333]. This result also applies when x.d/ has non-zero mean, but in this case the up-crossing and
down-crossing rates are not equal. The Poisson assumption is asymptotically true for large H, but has been shown to hold
true for H values of practical interest, i.e., those on the order of the shadow standard deviation �˝ [333].

The handoff analysis proceeds by dividing up a handoff route into small spatial intervals of length ds, such that only one
level crossing is likely to occur within each interval. The probability of handoff at distance d D nds is [333]

pho.n/ D pd.n/plu.n/C pu.n/.1 � plu.n//; (13.65)

where pu.n/ and pd.n/ are the probability of an up-crossing or down-crossing in the nth interval, and plu.n/ is the probability
that the last event was an up-crossing. In other words, the MS was assigned to BS0 at the beginning of the nth interval. This
can happen in one of the two mutually exclusive ways: (1) there is an up-crossing but no down-crossing in the .n � 1/th
interval, and (2) there are no crossings in the .n � 1/th interval, and the last event before the .n � 1/th interval was an
up-crossing. By assuming plu.1/ D 1, the following recursive equation for plu.n/ can be derived as a function of pu.n � 1/,
pd.n � 1/ and plu.n � 1/ [333]:

plu.n/ D pu.n � 1/.1 � pd.n � 1//C .1 � pu.n � 1//.1 � pd.n � 1//plu.n � 1/: (13.66)

As detailed in [333], the probabilities pd.n/ and pu.n/ are functions of the mean �x.d/, variance �2x .d/, and variance of the
derivative �2Px .d/ of x.d/. These in turn are functions of the statistics of ˝0 .dB/.d/ and ˝1 .dB/.d/, which depend on the path
loss and shadowing. The statistics of˝0 .dB/.d/ and˝1 .dB/.d/ are first evaluated, and afterwards the appropriate expressions
for pd.n/ and pu.n/ are derived.

As discussed in Chap. 3, co-channel interference can be assumed to add on a power basis [265, 296]. Hence, in the
presence of NI co-channel interferers the signals received from BS0 and BS1 are, respectively,

˝0 .dB/.d/ D 10 log10

(
NIX

kD0
˝0;k.dB/.d/

)

(13.67)
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˝1 .dB/.d/ D 10 log10

(
NIX

kD0
˝1;k.dB/.d/

)

; (13.68)

where ˝0;0.dB/.d/ and ˝1;0.dB/.d/ are the power of the desired signals from BS0 and BS1, respectively, and ˝0;k.dB/.d/ and
˝1;k.dB/.d/; k D 1; : : : ; NI are the powers of the interfering co-channel signals received at the same BSs. Once again, the
˝0;k.dB/.d/ and ˝1;k.dB/.d/ are log-normally distributed. As discussed in Sect. 3.1, the sum of log-normal random variables
can be approximated by another log-normal random variable and, hence, ˝0 .dB/.d/ and ˝1 .dB/.d/ remain Gaussian. Here,
the approximations suggested by Fenton–Wilkinson [265, 296], and Schwartz & Yeh [296] are considered. As a further
benefit, this will allow us to compare the usefulness of these two log-normal approximations for this application.

Following the notation established in Sect. 3.1, define Ő D �˝.dB/, where � D ln.10/=10 D 0:23026. If the NI interferers

for BS0 have means� Ő0;k.d/ and variance �2Ő , then the mean and variance of Ő 0.d/ using the Fenton–Wilkinson approach are

� Ő0.d/ D
�2Ő � �
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Ő0
.d/

2
C ln
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kD0
e
� Ő0;k

.d/

!

(13.69)

�2Ő0
.d/ D ln

0

B
@.e

�2
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C 1
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C
A ; (13.70)

where the conversion of � Ő0.d/ and �2Ő0
.d/ to units of decibels is �˝0.d/ D ��1� Ő0.d/, and �2˝0.d/ D ��2�2Ő0

.d/,

respectively. Schwartz & Yeh’s approach is a recursive technique that combines only two log-normal variates at a time.
For example, combining Ő 0;0.d/ and Ő 0;1.d/ gives the intermediate result

� Ő0.d/ D � Ő0;0.d/C G1 (13.71)

�2Ő0
.d/ D �2Ő � G2

1 � 2�2Ő G3 C G2; (13.72)

where G1, G2, and G3 are defined by (3.20), (3.23), and (3.24), respectively. The final values of � Ő0.d/ and �2Ő0
.d/ are

obtained by recursion.
By using either of the two log-normal approximations, the mean �x.d/ can be determined. Since x.d/ is modeled as a

Gaussian random process, the probabilities pd.n/ and pu.n/ can be computed by using the same procedure used to determine
the envelope level crossing rates in Sect. 2.1.5. In particular,

pu.n/ D ds

Z 1

0

Pxp.H; Px/dPx

pd.n/ D ds

Z 0

�1
jPxjp.H; Px/dPx; (13.73)

where p.H; Px/ is the joint density function of x.kds/ and its derivative Px.kds/. Since x.kds/ and Px.kds/ are independent
Gaussian random variables,
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��Px.kds/p
b2

�

C
r

b2

2�
exp

(

�
��2Px.kds/
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)!

; (13.74)

where, from (2.102) with fq D 0,

b0 D �2x .d/ D 2
Z 1

0

OSxx.f /df (13.75)

b2 D �2Px .d/ D 2.2�/2
Z 1

0

f 2 OSxx.f /df ; (13.76)
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and OSxx.f / in this case represents the power spectrum of x.d/ that includes the effect of co-channel interference. Likewise,

pd.kds/ D
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exp
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2
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�
��2Px.kds/
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)!

: (13.77)

The autocorrelation of ˝0 .dB/.d/ or ˝1 .dB/.d/ (equal to the shadow autocorrelation) without co-channel interference is
modeled by

�˝.dB/˝.dB/.d/ D �2˝exp.�jd1 � d2j=d0/; (13.78)

where d D d1�d2, and d0 controls the decorrelation with distance. Let Q�˝.dB/˝.dB/.d/ denote the same autocorrelation function

when co-channel interference is present. The value Q�˝.dB/˝.dB/.0/ can be accurately approximated by using either (13.70)

or (13.72). An approximation of Q�˝.dB/˝.dB/.d/ for d > 0 can be obtained by substituting �2˝ in (13.78) with the value obtained
in (13.70) or (13.72). The accuracy of this approximation was tested through the simulation of mutually uncorrelated log-
normal interferers, each having the shadow autocorrelation in (13.78) with �˝ D 6 dB and d0 D 20m. Figure 13.15 shows
the results and verifies that the proposed approximation of Q�˝.dB/˝.dB/.d/ is fairly accurate. Also, very accurate modeling of
Q�˝.dB/˝.dB/.d/ is not essential in handoff analysis [332].

Using the above approximation gives

OSxx.f / D
2.�2˝0.d/C �

2
˝1
.d//d0

.1C d20.2� f /2/.1C d2av.2� f /2/
; (13.79)

where �2˝0.d/ and �2˝1.d/ are obtained using either (13.70) or (13.72). This leads to

�2x .d/ D
.�2˝0.d/C �

2
˝1
.d//d0

d0 C dav
(13.80)

�2Px .d/ D
�2x .d/

dav d0
: (13.81)
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Fig. 13.15 Shadow autocorrelation with and without co-channel interference, from [25]
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Fig. 13.17 Simulation vs. analytical model performance. a) Simulation of LoS handoff with co-channel interference, b) handoff analysis model in
the absence of co-channel interference, c) handoff analysis model including co-channel interference and using the Fenton–Wilkinson log-normal
approximation, d) handoff analysis model including co-channel interference and using the Schwartz & Yeh log-normal approximation, from [25]

13.6.1 Simulation Results

Consider a MS traversing from BS0 to BS1 separated by 1000 m with two co-channel interferers as shown in Fig. 13.16.
Assume a square-law path loss with distance (used here to accentuate the co-channel interference effects), dav D 10m,
d0 D 20m, and choose �� D 4 dB so that both the Fenton–Wilkinson and Schwartz & Yeh log-normal approximations are
accurate. Figure 13.17 compares analytical and simulation results for the handoff probabilities in the presence and absence
of co-channel interference. Note that the presence of co-channel interference actually lowers the probability of handoff.
Schwartz & Yeh’s method leads to an accurate prediction of the handoff probabilities while the Fenton–Wilkinson method
leads to less accuracy. Finally, the accuracy of the prediction of handoff probabilities leads us to conclude that the assumptions
made for Q�˝.dB/˝.dB/.d/ were reasonable.

13.7 CDMA Soft Handoff Analysis

In order to successfully deploy CDMA cellular systems it is essential to understand soft handoff behavior. As mentioned
earlier, soft handoff has great impact on CDMA cellular system performance/capacity and studying its performance can
provide crucial information on how the CDMA system performance can be optimized. Here, soft handoff in hierarchical
CDMA architectures is considered. The treatment is divided into two main parts: interference analysis and handoff analysis.
The first part of this section introduces an interference analysis, where the emphasis is on reverse link C/I performance
and interference imbalance in hierarchical CDMA systems. When microcells are introduced to an existing macrocell layer
the resulting interference imbalance between the layers can greatly impact the overall system performance. Therefore, it is
important to characterize the interference in hierarchical CDMA architectures, and the interference analysis presented here
provides a tool for studying the performance under soft handoff.
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The second part of this section considers a soft handoff analysis method similar to that proposed in [10, 374], where
a moving MS is tracked to determine its soft handoff active set membership. Such analysis is useful for determining cell
boundaries and overall handoff efficiencies for a given set of handoff parameters. The studies in [10, 374] are limited to
single MS and are not accurate when interference is taken into account. Here, soft handoff performance is considered in the
presence of interference. This is accomplished by augmenting a user tracking soft handoff model with the results obtained
from the interference analysis. The resulting model is useful for studying the impact of soft handoff parameters on soft
handoff performance measures, such as handoff error probability and average active set membership. Finally, the effect of
dynamic soft handoff parameter assignment is considered, where the soft handoff parameters are dynamically adjusted based
on the given interference conditions. Dynamic parameter assignment offers a more efficient soft handoff mechanism than
fixed assignment by reducing unnecessary soft handoff overhead.

13.7.1 System Model and Analysis

The channel model used here accounts for log-normal shadowing and path loss attenuation with distance.4 The link gain
between a MS located at .r; �/ and BSi is

Gi.r; �/ D di.r; �/
�ˇ10�i=10

Gi.r; �/.dB/ D �ˇ10log10fdi.r; �/g C �i; (13.82)

where di.r; �/ is the distance between the MS and BSi, ˇ is the path loss exponent, and 10�i=10 is the shadowing component
such that �i has the normal distribution

�i � N .0; �2˝/; (13.83)

where �˝ is the shadow standard deviation. Therefore, Gi.r; �/ also has log-normal distribution

Gi.r; �/.dB/ � N .�i.r; �/; �
2
˝/; (13.84)

where

�i.r; �/ D �ˇ10log10fdi.r; �/g: (13.85)

Since our analysis involves a multi-cell system, the propagation model also accommodates shadow correlation between the
multiple BS links:

EŒ�i�j� D ��2˝ ; i ¤ j: (13.86)

13.7.1.1 Interference Analysis

The system model used here for illustration consists of three macrocells and single microcell embedded within the macrocell
layer as shown in Fig. 13.18, with the understanding that the methodology can readily be extended to larger deployments.
The macrocells and microcell both use omnidirectional BS antennas. The microcell location is specified by the distance,
d�, and angle, ��, with respect to BS1. Each macrocell area contains N MSs and the microcell area contains M MSs. The
MSs are assumed to be uniformly distributed within each cell area. It is important to realize that the MSs located within a
macro- or microcell area are not necessarily served by the BS located at the center of that macro- or micro-cell. Moreover,
the model is not restricted to uniform macrocells either. Different MS densities within the macrocells can be realized by
assigning different values of N to the macrocells and, likewise, by assigning different values of M to the microcells should
there be more than one microcell. The introduction of the microcell in Fig. 13.18 will introduce interference imbalance into

4One can incorporate Rayleigh/Nakagami fading into our analysis by using a log-normal approximation for the composite log-normal
Rayleigh/Nakagami distribution.
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Fig. 13.18 Hierarchical CDMA system model

the overall system. Additional interference imbalance can be introduced by assigning different values of N to the macrocells
as well. However, for exemplary purposes it is assumed that each macrocell area contains N uniformly distributed MSs.

Suppose that each MS connects to the BS that provides the least attenuation link. Given the location of a reference MS, r

and � in Cell 1, the probability that the MS is connected to BSi is

PH1i.r; �/ D PŒGi.r; �/ � Gj.r; �/ ; j D 1; 2; 3; ��

D
Z 1

�1

Y

j¤i

ˆ

 

�i � �j.r; �/ � �Œ�i � �i.r; �/�
p

.1 � �2/�˝

!

1p
2��˝

exp

�

� .�i � �i.r; �//
2

2�2˝

�

d�i: (13.87)

Therefore, the probability of the reference MS in Cell 1 being connected to BSi is

PH1i D
Z 2�

0

Z RM

0

r

�R2M
PH1i.r; �/drd�: (13.88)

where RM is the macrocell radius. Similarly, PH2, PH3, and PHmicro can be calculated for the MSs located in different cells.
It may be argued that (13.87) is not representative of CDMA systems that employ power control and soft handoff. For these

systems, a MS will connect to the BS that minimizes the transmit power required to achieve a target carrier-to-interference
ratio (CIR). Looking at this another way, if a MS were to transmit with a given power PT , it would connect to the BS that
provides the largest carrier-to-interference ratio (CIR). Hence, under the assumption of ideal soft handoff, (13.87) becomes:

PH1i.r; �/ D PŒCIRi.r; �/ � CIRj.r; �/ ; j D 1; 2; 3; ��

D P

�
Gi.r; �/PT

Ii

� Gj.r; �/PT

Ij

; j D 1; 2; 3; �
�

: (13.89)

Later Sect. 13.7.2 shows that there is barely any difference between the two approaches in terms of handoff analysis.
Moreover, handoff errors will be shown to sometimes occur where the MSs fail to connect to their ideal BSs. So an analysis
based on ideal soft handoff is really an approximation as well. For these reasons, the analysis proceeds with the interference
analysis based on (13.87). Later, this approach by extending the analysis to ideal soft handoff will be justified, using (13.89)
instead of (13.87).
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The total reverse link desired plus interfering signal power that is received by BSi is equal to the sum of received power
contributions from MSs located in different cells, i.e.,

Si D Si.1/C Si.2/C Si.3/C Si.�/; (13.90)

where Si.j/ is the signal contribution to BSi from all MSs located in Cell j. With the introduction of a microcell, the level
of interference that each BS experiences, Ii, will be uneven. Define 
i as the interference power ratio between BSi and the
microcell:


i
4D Ii

I�
: (13.91)

Assuming a uniform CIR requirement and perfect power control, the signal power that is received from a MS connected to
BSi must satisfy

Ci D 
iC�; (13.92)

where C� is the power controlled received power level of a MS connected to the microcell, which is used as a reference.
Therefore,

Ii D Si � Ci: (13.93)

The power that is received at BSi from MSs that are located in the Cell i cell, but are connected to BSs other than BSi is
now investigated. Let Nij .M�j/ be the number of MSs in Cell i (Microcell) connected to BSj:

N D Ni1 C Ni2 C Ni3 C Ni�

M D M�1 CM�2 CM�3 CM��: (13.94)

Define Ni as a vector containing the Nij:

Ni D .Ni1;Ni2;Ni3;Ni�/: (13.95)

Let us consider S1.1/ as an example. Given N1,

S1.1/ D N11C1 C
N12X

kD1
S12.1; k/C

N13X

kD1
S13.1; k/C

N1�
X

kD1
S1�.1; k/; (13.96)

where Sij.q; k/ is the interference contribution to BSi from the kth MS located in Cell q and connected to BSj. Under the
assumption of perfect power control,

Sij.q; k/ D
Gi.r; �/

Gj.r; �/
Cj; 0 < Sij.q; k/ < Cj: (13.97)

The cumulative distribution function of Sij.q; k/ for any MS, Sij.q/, is then,
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Using the Gaussian distribution in (13.84) gives

FSij.q/.z/ D
1

PHqj

Z 2�

0

Z RM

0

Z 1

�1

r

�R2M

1p
2���

exp

�

� ."j � �j.r; �//
2

2�2
�

�



622 13 Radio Resource Management

�ˆ
 

"j � 10log10ŒCj=z� � �i.r; �/ � �Œ"j � �j.r; �/�
p

.1 � �2/�s

!

�
Y

l¤i;j

ˆ

 

"j � �l.r; �/ � �Œ"j � �j.r; �/�
p

.1 � �2/�s

!

drd�d"j: (13.99)

Since Sij.q/ is a nonnegative random variable, its expected value and the second moment are given as follows:

EŒSij.q/� D
Z 1
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.1 � FSij.q/.z//dz
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2z.1 � FSij.q/.z//dz; (13.100)

and

VarŒSij.q/� D EŒS2ij.q/� � EŒSij.q/�
2: (13.101)

Then, given N1, the mean and second moment of S1.1/ are
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The N1j are binomial random variables with parameters PH1j. Applying the chain rule of probability gives
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where

NPH12 D
PH12

PH12 C PH13 C PH1�
(13.105)

NPH13 D
PH13

PH13 C PH1�
: (13.106)

Finally, the variance of S1.1/ is

VarŒS1.1/� D EŒS21.1/� � EŒS1.1/�
2: (13.107)

Similarly, the means and variances of S1.2/, S1.3/, and S1.�/ can be obtained. Finally,

EŒS1� D EŒS1.1/�C EŒS1.2/�C EŒS1.3/�C EŒS1.�/�

VarŒS1� D VarŒS1.1/�C VarŒS1.2/�C VarŒS1.3/�C VarŒS1.�/�

EŒI1� D EŒS1� � C1

VarŒI1� D VarŒS1�: (13.108)

Since I1 represents a power sum, I1 can be modeled as a log-normal random variable with the probability density function

pI1.x/ D
1

x�
p
2�

exp

(

� .ln.x/ � �/
2

2�2

)

; (13.109)

where

EŒI1� D e�C�2=2 (13.110)

VarŒI1� D .e�
2 � 1/e2�C�2 : (13.111)

In a likewise fashion, the means and variances of I2, I3, and I� can be computed. The interference analysis can be run using
the following iterative steps:

1. Set C1 D C2 D C3 D C�.
2. Compute means and variances of I1, I2, I3, and I�.
3. Compute EŒ
i� D EŒIi=I��.
4. Set Ci D EŒ
i�C�.
5. Goto Step 2.

Usually, 15 iteration loops are sufficient for the 
i to converge. Then the reverse link CIR becomes

.C=I/i D Ci=Ii D C�=I�: (13.112)

13.7.1.2 Soft Handoff Analysis

In CDMA cellular systems such as cdma2000 and WCDMA, each BS transmits a pilot signal, consisting of an unmodulated
spreading sequence, to assist soft handoff. The MSs use the pilot signals to initiate and complete handoffs among other
things. An active set refers to a set of BSs to which a MS is connected to at any given time. The active set contains multiple
BSs when the MS is in soft handoff mode.
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Suppose that the active set membership is based on the received pilot signal power.5 The upper threshold, Tadd, is the
pilot signal level where qualifying BSs are added to the active set, whereas the lower threshold, Tdrop, determines when the
BSs are removed from the active set. The difference between Tadd and Tdrop is an indicator of how long a soft handoff will
take on average. This is illustrated graphically in Fig. 13.19. Considering a MS that is traveling from BSi to BSj, the soft
handoff region is determined by Tdrop imposed on BSi and Tadd imposed on BSj. The values of Tadd and Tdrop are determined
by defining the reference boundary, Bref, and adding a fade margin to combat the effect of shadow fading [336].

This section introduces a hierarchical soft handoff analysis similar to the analysis presented in [10, 374], which tracks
a moving MS to observe its active set membership while incorporating the spatial correlation property of shadow fading.
As mentioned previously, the introduction of microcell(s) into a macrocell layer results in interference imbalance which
can impact the soft handoff decisions and performance. A handoff analysis based on received pilot signal strength and a
single MS will not accurately depict the actual system behavior. On the other hand, a comprehensive analysis that includes
multiple MSs while incorporating interference effects is prohibitively complicated and computationally exhaustive. Here, a
soft handoff analysis model is presented that allows the study of soft handoff performance in conjunction with interference
performance, by integrating the results obtained in interference analysis in Sect. 13.7.1.1. The approach accurately depicts the
handoff performance of hierarchical systems, while being computationally efficient. Some detailed derivations are omitted
in the following section, and refer the reader to [10, 374].

A MS traveling along a specific path is now considered to study its active set membership. Let A.n/ be the active set
membership at epoch n for the MS under consideration. Let Pi.n/ be the probability that BSi is in the active set at epoch n:

Pi.n/ D PŒBSi 2 A.n/�: (13.113)

When A.n/ contains more than two BSs, the MS connects to the BS in the set that will minimize its transmit power, thereby
limiting interference. This means that the BS selection within the set depends not only on the forward link received pilot
strengths, but also the reverse link interference conditions. Let B.n/ be the BS in the active set that minimizes the MS transmit
power. Since A.n/ is constantly being updated, the selection of B.n/ is based on the active set membership at epoch n � 1:

5CDMA cellular systems actually use the forward link Ec=Io, the ratio of the received pilot chip energy to total interference spectral density, to
determine active set memberships. For the present purpose, the received pilot signal power is used instead and later in Sect. 13.7.2 the difference
between these two methods for determining active set membership in terms of their soft handoff performance will be illustrated.
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�

: (13.114)

As mentioned before CDMA systems measure the forward link Ec=Io to determine the active set memberships. However,
for now just use the received pilot signal strength is used. It is also assumed that the BSs transmit their pilot signals with equal
power. A BS is added to a MS’s active set when its path gain exceeds its add threshold, Tadd.i/. Therefore, the probability
that it will be added to the active set at epoch n is:

PN!i.n/ D PŒGi.n/ > Tadd.i/jBSi 62 A.n � 1/�: (13.115)

A BS is dropped from the active set by using both absolute and relative thresholds. First, the associated path gain must fall
below the absolute drop threshold, Tdrop.i/. When it does, its gain is compared to the largest path gain in the active set, B.n/.
When the difference between the two exceeds the relative drop threshold, Trel.i/, the BS is dropped from the active set. The
relative threshold causes a BS to be dropped from the active set only when its link has deteriorated far below the best link.
This also ensures that the active set contains at least one candidate BS at all times. The probability that BSi is dropped from
the active set at epoch n is:

Pi!N.n/ D PŒB.n/ � Gi.n/ > Trel.i/; Gi.n/ < Tdrop.i/jBSi 2 A.n � 1/�: (13.116)

Finally,

Pi.n/ D Pi.n � 1/Œ1 � Pi!N.n/�C Œ1 � Pi.n � 1/�PN!i.n/: (13.117)

The main purpose of soft handoff is to ensure that the MS is connected to the BS which minimizes its transmit power.
Therefore, a handoff error occurs when B.n/ is not the best available choice:

Herror.n/ D P

�

B.n/ ¤ max

�
G1.n/

I1.n/
;

G2.n/

I2.n/
;

G3.n/

I3.n/
;

G�.n/

I�.n/

��

D P

�

B.n/ ¤ max

�
G1.n/


1.n/
;

G2.n/


2.n/
;

G3.n/


3.n/
;G�.n/

��

: (13.118)

Another measure of soft handoff efficiency is the average number of BSs in active set at epoch n, NA.n/:

NA.n/ D P1.n/C P2.n/C P3.n/C P�.n/: (13.119)

A smaller value of NA.n/ implies a lower infrastructure overhead to support soft handoff.

13.7.2 Numerical Results

A path loss exponent ˇ D 4 and shadow standard deviation �˝ D 8 dB are used in the simulation. Log-normal shadows are
generated using the approach suggested in Sect. 2.6.1, where the parameter �D is the spatial shadow correlation between two
points separated by distance D m. The radii of the macrocell and microcell regions are set to 1500 and 100 m, respectively.
Other important simulation parameters include:

• �100 D 0:82
• � D 0 (uncorrelated shadowing)
• MS velocity D 60 km/h
• sampling period D 1 s
• Trel = 3 dB.
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Table 13.2 Comparison of analytical and numerical results. Microcell load (M) is fixed at 12 while macrocell load (N) is varied

Simulation Analysis

N M E[CIR] (dB) E[
1] E[
2] E[
3] E[CIR] (dB) E[
1] E[
2] E[
3]

12 12 �12.70 0.135 0.096 0.093 �12.70 0.136 0.096 0.090

13 12 �12.86 0.148 0.110 0.107 �12.86 0.148 0.108 0.102

14 12 �13.03 0.162 0.128 0.125 �13.01 0.160 0.120 0.115

15 12 �13.19 0.176 0.145 0.142 �13.16 0.171 0.134 0.129

16 12 �13.34 0.188 0.163 0.162 �13.30 0.183 0.149 0.143

17 12 �13.50 0.203 0.181 0.182 �13.44 0.195 0.164 0.159

18 12 �13.64 0.219 0.204 0.208 �13.58 0.207 0.180 0.177

19 12 �13.79 0.232 0.225 0.229 �13.72 0.219 0.198 0.195

Table 13.3 Comparison of analytical and numerical results. Macrocell load (N) is fixed at 12 while microcell load (M) is varied

Simulation Analysis

N M E[CIR] (dB) E[
1] E[
2] E[
3] E[CIR] (dB) E[
1] E[
2] E[
3]

12 10 �12.25 dB 0.164 0.141 0.138 �12.23 dB 0.164 0.126 0.120

12 11 �12.48 dB 0.146 0.113 0.111 �12.47 dB 0.146 0.109 0.103

12 12 �12.70 dB 0.135 0.096 0.093 �12.70 dB 0.136 0.096 0.090

12 13 �12.92 dB 0.122 0.084 0.080 �12.92 dB 0.126 0.085 0.079

12 14 �13.13 dB 0.117 0.074 0.070 �13.13 dB 0.117 0.077 0.071

12 15 �13.34 dB 0.105 0.067 0.063 �13.33 dB 0.109 0.070 0.065

12 16 �13.53 dB 0.100 0.062 0.058 �13.52 dB 0.102 0.064 0.059

12 17 �13.72 dB 0.093 0.057 0.053 �13.71 dB 0.096 0.059 0.054

13.7.2.1 Interference Results

Tables 13.2 and 13.3 show the average CIR and interference performance comparisons between the analytical and simulation
results. The microcell is placed at d� D 600m and �� D �=3. Table 13.2 contains the results for varying macrocell load,
N, while Table 13.3 shows the results when the microcell load, M, is varied. It is observed that the analytical and simulation
results are in very close agreement, for both E[CIR] and E[
i]. It is also seen that the accuracy of the analytical results
improves as the interference discrepancy between the layers increases (smaller 
i). As expected, increasing the system load
(N and M) results in a decrease in system CIR performance, since it causes the overall interference to increase. Since the
density of MSs in the microcell is higher than the density of MSs in the macrocell by nature, the microcell experiences a
higher level of interference than the macrocells. The 
i indicate the degree of interference imbalance between the hierarchical
layers, and the obtained results agree with our basic intuition; a larger microcell load increases the interference imbalance
(smaller 
i) while a smaller macrocell load decreases the interference imbalance (larger 
i).

Figures 13.20 and 13.21 show the effect of microcell location on the average CIR and interference performance. The
results are obtained by varying d� while �� is fixed at �=3. Again, the analytical results are in close agreement with the
simulation results. Figure 13.20 shows that the average CIR performance varies insignificantly with changes in microcell
location, although it seems to benefit somewhat from diversity gain when the microcell is located very close to a macrocell
BS. Figure 13.21 shows how the 
i are affected by different microcell locations. It is observed that the corresponding 
i

increases as the microcell moves closer to a macrocell BS. This is expected since the level of inter-layer interference between
the microcell and macrocell increases as the microcell gets closer to a macrocell BS, which in turn causes the macrocell
interference to increase. Observe from Fig. 13.21 that as d� increases 
1 decreases while 
2 and 
3 increase.

13.7.2.2 Soft Handoff Results

The previous section has shown how various system loads and microcell locations can affect the interference levels in
hierarchical CDMA cellular systems. The interference imbalance factors (
i) are important parameters for determining
the soft handoff performance since, along with the received pilot signal strengths, they can be used to portray the system
behavior during soft handoff and provide information on how to improve the handoff performance. A fixed parameter handoff
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Fig. 13.21 E[
i] as a function of microcell location

algorithm is first considered, where the values of Tadd and Tdrop are fixed regardless of the changing interference conditions,
and determined by defining Bref at an equal distance location and assigning a fade margin of 8 dB,6 viz.,:

Tadd.i/ D Bref.i; j/C 8 dB

Tdrop.j/ D Bref.i; j/ � 8 dB: (13.120)

6Other fade margins can be chosen.
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Fig. 13.22 Error performance of fixed handoff parameter assignment; N D 13 and M D 12

Figure 13.22 shows the handoff error probability for fixed handoff parameter assignment. The microcell is located at
d� D 600m and �� D �=3. The analytical results are obtained using EŒ
i�analytical while the simulation results are obtained
using actual 
i. The figure shows the handoff error probability for three traveling paths, all starting from BS1 as shown
in Fig. 13.18. It is observed that the analytical and simulation results are in good agreement. Figure 13.22 also shows the
handoff error probability for pilot-strength based handoff model [10, 374] and shows how it grossly underestimates the actual
handoff error probability when interference levels are not uniform. By incorporating the interference analysis results, a far
more accurate handoff performance analysis is obtained. The handoff error probability is observed to increase around the
vicinity of physical cell boundaries. It is also observed that the handoff error probability is significantly higher between 1000
and 2000 m. This phenomenon is largely due to the value of �˝ and the selection of Tdrop for BS1 (Tdrop.1/). Tdrop.1/ has been
set so that BS1 is dropped from the active set once the MS enters the microcell. However, with �˝ D 8 dB and with the effect
of 
1, BS1 provides the best connection in the 1000–2000 m region a significant number of times, and that is why high values
of Herror.n/ are observed. The handoff error probability can be improved by relaxing Tdrop.1/ to cover the region, but this will
definitely increase NA.n/, thereby leading to additional system resource requirements. However, the handoff error probability
depends on the microcell location as shown in Fig. 13.23. The figure contains the handoff error probability plots for path A at
three different microcell locations. It is seen that the handoff error probability decreases if d� is increased without changing
Tdrop.1/.

Next, the performance of dynamic handoff parameter assignment is examined. In dynamic parameter assignment Bref is
not fixed, but is dynamically updated as a function of the 
i to improve the handoff performance. The concept is similar to
the phenomenon of “cell breathing” [54, 319] where a heavily loaded cell shrinks in size and forces handoffs that will reduce
interference. Our objective is to control the microcell handoff region according to given interference imbalance condition
(as defined by the 
i) to limit unnecessary overhead. This is accomplished by defining Bref.i; �/ at the equilibrium point, de,
where

d
�ˇ
e .�/


i

D d�ˇ
e .i/; (13.121)

where de.i/ is the distance between de and BSi. It is easily observed that Bref.i; �/ moves toward the microcell BS as 
i

decreases which reduces the microcell soft handoff region accordingly. Figure 13.24 compares the performance between
fixed and dynamic parameter assignment for path A with the microcell location at d� D 600m and �� D �=3. While
dynamic handoff parameter assignment does not offer any significant gain in handoff error probability, it provides a more
efficient handoff mechanism over fixed handoff parameter assignment by reducing NA.n/. Fixed handoff parameter assignment
requires a larger system overhead since it does not incorporate the system interference information into its handoff decisions.
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Table 13.4 Comparison of fixed
and dynamic soft handoff
parameter assignment
performances; N D 13 and
M D 12

Fixed Dynamic

Path E[Herror.n/] E[ NA.n/] E[Herror.n/] E[ NA.n/]
A 0.1043 1.8618 0.1033 1.7135

B 0.1598 1.7573 0.1584 1.6013

C 0.1406 1.8366 0.1314 1.6510

Dynamic handoff parameter assignment dynamically adjusts the microcell handoff region so that the system can prevent MSs
from being prematurely subjected to soft handoff. Table 13.4 shows the average error probability and active set membership
for three specified MS paths. For all three paths, dynamic handoff parameter assignment provides superior performance in
EŒ NA.n/� while slightly improving EŒHerror.n/�.
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Fig. 13.25 Effect of interference imbalance on soft handoff performance. Microcell load (M) is fixed at 12 while macrocell load (N) is varied
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Fig. 13.26 Effect of interference imbalance on soft handoff performance. Macrocell load (N) is fixed at 12 while microcell load (M) is varied

Figures 13.25 and 13.26 compare the performance of fixed and dynamic handoff parameter assignment as the system load
is varied. As was observed in Figs. 13.20 and 13.21, increasing the macrocell load, N, increases the 
i while increasing the
microcell load, M, reduces the 
i. It is seen that EŒ NA.n/� stays nearly uniform with various system loads for fixed handoff
parameter assignment while it changes according to the 
i for dynamic handoff parameter assignment. As expected, a larger
interference imbalance (lower 
i) causes the microcell handoff region to shrink and thereby reducing EŒ NA.n/� for dynamic
handoff parameter assignment. The average handoff error probabilities for both fixed and dynamic handoff parameter
assignments do not change significantly with varying system load.
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Fig. 13.27 Error performance comparison between our soft handoff assumption and ideal soft handoff; N D 13 and M D 12

13.7.2.3 Ideal Handoff and Ec=Io-Based Active Set Membership

The soft analysis to this point has used some simplifying assumptions regarding soft handoff and its active set membership.
The validity of these assumptions is now examined. In Sect. 13.7.1.1, it was assumed that a MS connects to the BS that
provides the most robust path gain according to (13.87). However, during ideal soft handoff, a MS connects to the BS
that minimizes its transmit power according to (13.89). Figures 13.27 and 13.28 compare the handoff error and the active set
membership performance between the soft handoff analysis based on (13.87) and ideal soft handoff analysis based on (13.89).
There is no significant performance difference between the two approaches. Also, dynamic handoff parameter assignment
yields a more efficient handoff mechanism than fixed handoff parameter assignment in either case.

The analysis in Sect. 13.7.1.2 used the forward link received pilot signal power to determine active set membership, while
practical CDMA systems use forward link Ec=Io measurements instead. The difference between these two approaches is now
examined. Let PT.i/ be the total forward transmit power from BS i, including its pilot power. Then, for a MS located at .r; �/,

Ec.i/

Io.i/
� Gi.r; �/Ppilot
P2;3;�

jD1 Gj.r; �/PT.j/
Gspread; (13.122)

where Gspread is the processing gain. There are two main difficulties when incorporating Ec=Io into the soft handoff analysis.
First, it is difficult to model the Ec=Io behavior mathematically. A power controlled forward link is harder to model than its
reverse link counterpart, especially with open loop power control. Second, the total forward transmit power from each BS,
PT.i/, depends on the number of MSs served by that BS including the MSs in soft handoff.

Once again the deployment in Fig. 13.18 introduces interference imbalance on the forward link due to the presence of
the microcell. This interference imbalance will impact the received Ec=Io from each BS. Figures 13.29 and 13.30 compare
the pilot signal power and Ec=Io methods for determining active set membership, in terms of the handoff error probability
and average number of BSs in active set. These Ec=Io based results are obtained by assuming that PT.i/ is same for all
BSs in the system, although this may not be true. There are some significant differences in performance between received
pilot power and Ec=Io based active set memberships. In particular, the Ec=Io method requires much less overhead for a
comparable handoff error performance. The observation may be attributed to the fact that Ec=Io follows a slope up to d�2ˇ

and it has angular dependency. In either case, however, dynamic handoff parameter assignment yields a more efficient handoff
mechanism than fixed handoff parameter assignment.
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Fig. 13.29 Error performance comparison between pilot-strength and Ec=Io based active set membership; N D 13 and M D 12

13.8 CINR Based Link Quality Measurements

Cellular radio resource allocation algorithms have been developed for handoffs [126], dynamic channel assignment [145,
241], and power control [20, 21], under the assumption that the MSs and/or BSs have access to real-time measurements of
the received carrier-to-interference plus noise ratio C=.I C N/ or CINR. This section presents a technique for estimating
CC I C N and C=.I C N/ that could be used in resource management algorithms [29, 30].
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13.8.1 Discrete-Time Model for Signal Quality Estimation

As shown in Sect. 7.2.1, the overall channel consisting of the transmit filter, waveform channel, matched filter, sampler,
and noise whitening filter can be modeled as a T-spaced, L C 1-tap, transversal filter.7 The overall discrete-time channel
is described by the channel vector g D .g0; g1; : : : ; gL/

T , where . /T denotes transpose. Let v D .v0; : : : ; vM/
T denote the

received signal vector consisting of M samples, where vk D
PL

iD0 gixk�i C wk. Assuming that the channel does not change
significantly over a block of LCM C 1 symbols, the received vector v can be written as

v D XgC w; (13.123)

where X is an .M C 1/ � .LC 1/ Toeplitz matrix consisting of the transmitted symbols of the form

X D Œxi;j� D

2

6
6
6
4

x0 x�1 � � � x�L

x1 x0 � � � x1�L

:::
::: � � �

:::

xM xM�1 � � � xM�L

3

7
7
7
5

(13.124)

and w D .w0; : : : ;wM/
T is an impairment vector consisting of the samples of the received interference plus AWGN.

13.8.1.1 Estimation of I C N

An ICN or C=.ICN/ estimator requires a method for separating g and w from the observation of v. Consider the situation
where M > L, so that X has more rows than columns. Then, there exists a vector c D .c0; : : : ; cM/

T in the null space of X

such that cTX D 0. If X is known, then c can be easily determined. Then

cTv D 0C cTw; (13.125)

7If rate 2=T sampling is used, then the overall channel is a T=2-spaced, 2L C 1-tap, transversal filter.
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and, therefore, g and w are completely separated from the observation v. However, with the exception of training and pilot
sequences, X is not known exactly because the data symbols comprising X must be obtained from symbol decisions. In such
cases, a matrix of symbol decisions OX must be used instead, where OX D XC� and � D Œıi;j� is the symbol error matrix.

Nevertheless, a vector Oc can still be found in the null space of OX so that

OcTv D OcTXgC OcTw: (13.126)

Hence, an (I+N) estimate can be obtained from
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A ; (13.127)

where . /H denotes complex conjugate transpose, and where the second equality is obtained by using OX D XC� along with
the reasonable assumption that the impairment vector w has zero mean and is uncorrelated with X and g. It is also reasonable
to assume that the symbol errors are independent with a constant variance, i.e.,

1

2
EŒjıj;ij2� D �2�: (13.128)

It follows that

O�2ICN D ˝p�
2
� C

1

2

M
X

iD0

M
X

jD0
E

� Oci Oc�
j

kOck2
�

EŒwiw
�
j �; (13.129)

where ˝p D
PL

iD0˝i is the fading envelope power and ˝i D EŒjgij2� is the mean square value of the ith channel tap. To
determine EŒwiw

�
j �, rewrite the impairment vector w as

w D
NIX

kD1
Bkgk C �; (13.130)

where Bk is an .MC 1/� .LC 1/ matrix consisting of the symbols from the kth interferer with associated channel tap vector
gk, NI is the number of interferers, and � is the vector of additive white Gaussian noise samples. The elements of w are

wi D
NIX

kD1

L
X

`D0
bk;i;` gk;` C �i; i D 0 ; : : : ; M; (13.131)

where Bk D Œbk;i;`� and gk D .gk;0; : : : ; gk;`/. It is now assumed that the data symbols have zero mean, the data sequences
comprising the Bk matrices for the interferers are both uncorrelated and mutually uncorrelated, and the �i are independent
zero-mean Gaussian random variables with variance �2� . Then 1

2EŒwiw
�
j � D 0 for i ¤ j and
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D �2I C �2�
D �2ICN ; (13.132)

where �2b D 1
2EŒjbk;i;`j2� is the interferer symbol variance,˝k;` D EŒjgk;`j2� denotes the mean square value of the `th channel

tap gain associated with the kth interferer, and �2I denotes the total interference power. Using this result, (13.129) becomes

O�2ICN D ˝p�
2
� C �2w D ˝p�

2
� C �2ICN : (13.133)

In practice, the ensemble averaging in the first line of (13.127) is replaced by an empirical average over P observation vectors
vi to provide the unbiased estimate

O�2ICN D
1

2P

P
X

iD1

vH
i Oc�

i OcT
i vi

kOcik2
: (13.134)

13.8.1.2 Estimation of C=.I C N/

A C=.I C N/ estimator can be formed by using O�2ICN as follows. The total received signal power from the desired signal,
interfering signals, and noise is

�2CCICN D
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A ; (13.135)

where the second equality follows from the assumption that w has zero mean, and the third equality requires that either the
elements of the data sequence comprising the X matrix or the channel tap gains be uncorrelated. Now let �2X D 1

2EŒjxi;jj2�.
Then

�2CCICN D �2X˝p C �2w D �2C C �2ICN : (13.136)

Using (13.133) and assuming that �2� is sufficiently small such that˝p�
2
� � 0, the following C=.ICN/ estimate is obtained
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: (13.137)

The above approximation becomes exact when X is known exactly. This would be the case if X is formed by using elements
from a known training sequence. Finally, by replacing ensemble averages with empirical averages, the following empirical
C=.I C N/ estimate is obtained
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13.8.2 Training Sequence Based C=.I C N/ Estimation

The bursts in TDMA cellular systems contain known training and/or color code sequences. The color code sequences are
used for BS and sector identification, while the training sequences are used for synchronization and channel estimation. As
can be seen from the previous section, the ICN and C=.ICN/ estimators will only work well when �2� is small. Fortunately,
if the I C N and C=.I C N/ estimators are constructed from the training and color code sequences,8 then �2� D 0.

The I C N and C=.I C N/ estimators of the previous section were evaluated through the software simulation for an IS-
54/136 cellular system [104]. Although the IS-54/136 standard is now extinct, it is still serves as a useful example on how
the ICN and C=.ICN/ estimators can be applied. The IS-54 baud rate is 24,300 symbols/s and each frame is composed of
6 bursts of 162 symbols so that the frame rate is 25 frames/s. The MS is assumed to have correctly determined the serving
BS, i.e., the color code is known, and is monitoring its half rate channel (one burst per frame). Therefore, the known symbols
within a burst consist of the 14 symbol training sequence at the beginning of the burst, and a six symbol color code sequence
in the middle of the burst as shown in Fig. 1.2. For simulation purposes, a two-equal-ray, T-spaced, Rayleigh fading channel
was chosen with uncorrelated taps. If tap correlation is present, no changes are required to the proposed ICN and C=.ICN/

estimators because the estimates depend only on the fading envelope power ˝p. Shadowing is assumed to remain constant
over the estimates and is neglected. Finally, it is assumed that the receiver has correctly synchronize onto each of the received
bursts, i.e., perfect timing recovery is assumed.

Four consecutive symbols were used to form a 3 � 2 Toeplitz non-symmetric matrix X. Let fv1.i/; : : : ; v14.i/g denote
the 14 received samples corresponding to the training sequence and fv15.i/; : : : ; v21.i/g denote the six received samples
corresponding to the color code of the ith frame. From the training sequence 4 estimates of I C N and C=.I C N/ were
formed by using the following four sets:

ffv1.i/; : : : ; v4.i/g; fv5.i/; : : : ; v8.i/g; fv9.i/; : : : ; v12.i/g; fv11.i/; : : : ; v14.i/gg;

where the fourth set shares two samples with the third set. Likewise, 2 estimates of I C N and C=.I C N/ were formed from
the six symbol color code sequence by using the two sets

ffv15.i/; : : : ; v18.i/g; fv17.i/; : : : ; v21.i/gg (13.139)

which share two common samples. Although the ICN and C=.ICN/ estimators in (13.134) and (13.138) assume independent
received sample vectors the additional estimates of I C N and C=.I C N/ which use overlapped symbols at the ends of the
training and color code sequences were found to improve the ICN and C=.ICN/ estimates. The channel tap gains associated
with the interferers were assumed to be constant during known symbol sequences. AWGN at 20 dB below the interference
power was also included.

To evaluate the performance of the ICN estimator, the average absolute percentage error between the ICN estimate and
the true interference plus noise power is defined as

ˇ
ˇ O�2ICN � �2ICN

ˇ
ˇ

�2ICN

� 100: (13.140)

Figure 13.31 depicts the average absolute percentage error over 500 independent averages for a specified averaging time (s),
MS velocity (v), and number of interferers (NI). Since the interference plus noise estimator is compared against �2ICN under
the assumption that the fading has been averaged out, it is natural to expect the estimator to perform worse for lower MS
velocities when the averaging length is short, as Fig. 13.31 illustrates. Nevertheless, the presence of multiple interferers can
improve the estimate, since with multiple interferers it is less likely that the total interference power will be small due to
fading.

Figure 13.32 depicts the average absolute percentage error between the C C I C N estimate, O�2CCICN , and the true total
received power, �2CCICN . As before, the MS velocity has a large effect on the estimator performance. Also, the C=I has a
minor effect. However, in contrast to the I C N estimator, the number of interferers has little effect for C=I between 5 and
20 dB and, hence, variations in the number of interferers are not shown in Fig. 13.32.

8In the IS-54 and PDC cellular systems, the color code sequence is known provided that the MS has correctly determined its serving BS.
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Fig. 13.31 Average absolute percent error of the I CN estimator against the averaging time, from [30], [29]. The frame duration is 40 ms. Legend:
a) NI D 1, v D 5 km/h, b) NI D 1, v D 100 km/h, c) NI D 2, v D 5 km/h, d) NI D 2, v D 100 km/h, e) NI D 6, v D 5 km/h, f) NI D 6,
v D 100 km/h
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Fig. 13.32 Average absolute percent error of the C C I C N estimator against the averaging time, from [29], [30]. The frame duration is 40 ms.
Legend: a) NI D 1, v D 5 km/h, C=I D 5 dB, b) NI D 1, v D 5 km/h, C=I D 20 dB, c) NI D 1, v D 100 km/h, C=I D 5 dB, d) NI D 1,
v D 100 km/h, C=I D 20 dB

Finally, Fig. 13.33 depicts performance of the C=.I C N/ estimator for an actual C=I of 5 dB. Only the performance with
C=I D 5 dB is shown, since the estimator was found insensitive to C=I variations when the actual C=I was between 5 and
20 dB. For a high speed MS, the C=.I C N/ can be estimated to within 2 dB in less than a second. A slight improvement is
also obtained when the MS uses two slots per frame (a full rate channel) as shown in Fig. 13.34.
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Fig. 13.33 Average error of the C=.I C N/ estimator against the averaging time, from [29], [30]. The frame duration is 40 ms. Legend: a) NI D 1,
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Fig. 13.34 Average error of the C=.I C N/ estimator for half rate and full rate channels against the averaging time, from [29], [30]. The frame
duration is 40 ms. Legend: a) NI D 1, v D 100 km/h, C=I D 5 dB, half rate channel, b) NI D 6, v D 100 km/h, C=I D 5 dB, half rate channel, c)
NI D 1, v D 100 km/h, C=I D 5 dB, full rate channel, d) NI D 6, v D 100 km/h, C=I D 5 dB, full rate channel
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Appendix 13A: Derivation of Equations (13.43) and (13.58)

The limit in (13.58) can be written as

lim
�!0

�c

2��

r

2Q�rr.0/�2Q�rr.�/

Q�rr.0/

�c

2��

q
2�rr.0/�2�rr.�/

�rr.0/

D
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2Q�rr.0/�2Q�rr.�/

Q�rr.0/

lim�!0
�c

2��

q
2�rr.0/�2�rr.�/

�rr.0/

: (13A.1)

Note that the limit of the denominator gives (13.43) and is a special case of the numerator limit with No D 0. To find the
numerator limit, the following property can be used [309]:

If a function f .�/ has a limit as � approaches a, then

lim
�!a

n
p

f .t/ D n

q

lim
�!a

f .t/ (13A.2)

provided that either � is an odd positive integer or n is an even positive integer and lim�!a f .�/ > 0.
Therefore, if the limit

� D lim
�!0

f 2.�/ D lim
�!0

�2c
.2��/2

2 Q�rr.0/ � 2 Q�rr.�/

Q�rr.0/
(13A.3)

exists and is positive, the solution to (13A.1) can be determined. It is apparent that L’Hôpital’s Rule should be applied to
determine the limit in (13A.3). After substituting Q�rr.�/ from (13.34) and applying L’Hôpital’s Rule four times, the limit is

� D
�c
2
�

B4w No
2 �2 C 3Bw K No .2� fm/

2 b0 C 2B3w K No �
2 b0 C 2B3w No �

2 a.0/
�

6�2 .Bw No C 2 a.0// .Bw No C 4K b0 C 2 a.0//

C
�c
2
�

6K .2� fm/
2 b0 a.0/C 3Bw K No .2� fm/

2 b0 cos.2 �0/
�

6�2 .Bw No C 2 a.0// .Bw No C 4K b0 C 2 a.0//

C
�c
2
�

6K .2� fm/
2 b0 a.0/ cos.2 �0/

�

6�2 .Bw No C 2 a.0// .Bw No C 4K b0 C 2 a.0//

C
�c
2
�

�12 a0.0/2 � 12 c0.0/2 � 6Bw No a00.0/ � 12K b0 a00.0/
�
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2 .�12 a.0/ a00.0/ � 12 c.0/ c00.0//

6 �2 .Bw No C 2 a.0// .Bw No C 4K b0 C 2 a.0//
; (13A.4)

where a.�/ and c.�/ are given by (13.35) and (13.36), respectively, and x0.0/ denotes the derivative of x.t/ evaluated at t D 0.
Consequently, a.0/ D b0, a0.0/ D c.0/ D 0, and

a00.0/ D b0.2� fm/
2

Z 2�

0

Op.�/ cos2.�/d�

c0.0/ D b02� fm

Z 2�

0

Op.�/ cos.�/d�: (13A.5)

Using these, and the identity cos2.�/ D .1C cos.2�//=2, it can be shown that (13A.4) is positive for all � for the scattering
distributions considered in Sect. 13.4.3.1. Consequently, applying the theorem in (13A.2), the limit of the numerator
of (13A.1) is the square root of (13A.4), which if desired can be expressed in terms of the signal-to-noise ratio 
S using

b0 D

SNoBw

2.K C 1/ (13A.6)
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Fig. 13.35 MS traversing from
BS0 to BS1 along a handoff route

D-rr

x

SBSB MS1 2

from (13.53) with K D s2=2b0. The denominator of (13A.1), which is also (13.43), is obtained by assuming isotropic
scattering and no noise, so that a.0/ D b0, a0.0/ D c.0/ D c0.0/ D c00.0/ D 0, a00.0/ D 2b0.� fm/

2, and No D 0 in (13A.4).
After taking the square root, the result is
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�rr.0/
D v

s

.1C 2K C K cos.2 �0//
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: (13A.7)

Problems

13.1. Suppose that a MS is traveling along a straight line from BS1 to BS2, as shown in Fig. 13.35. The BSs are separated
by distance D, and the MS is at distance r from BS1 and distance D � r from BS2. Ignore the effects of fading and assume
that the signals from the two BSs experience independent log-normal shadowing. The received signal power (in decibels) at
the MS from each BS is given by (1.4).

• A handoff from BS1 to BS2, or vice versa, can never occur if j˝1 .dB/�˝2 .dB/j < H but may or may not occur otherwise.
• A handoff from BS1 to BS2 will occur if the MS is currently assigned to BS1 and ˝2 .dB/ � ˝1 .dB/ C H.

(a) Find an expression for the probability that a handoff can never occur from BS1 to BS2, or vice versa.
(b) Given that the MS is currently assigned to BS1 what is the probability that a handoff will occur from BS1 to BS2.

13.2. A freeway with a speed limit of 120 km/h passes through a metropolitan area. If the average call duration is 120 s:

(a) What will be the average number of handoffs in a cellular system that uses omnidirectional cells having a 10 km radius.
(b) Repeat part (a) for a cellular system that uses 120ı sectored cells having a 1 km radius.

13.3. A MS is moving with speed 100 km/h along a straight line between two base stations, BS1 and BS2. For simplicity
ignore envelope fading and shadowing, and consider only the path loss. The received power (in dBm) follows the
characteristic

�˝p .dBm/.di/ D �˝p .dBm/.do/ � 10ˇ log10.di=do/ .dBm/;

where di is distance from BSi in meters. Assume �o D 0 dBm at do D 1m, and let the path loss exponent be ˇ D 3:0.
Assume that the minimum usable signal quality at the receiver (at either link end) is �min D �88 dBm. The mobile station

is connected to BS1 and signal level at/from BS1 is measured. The measured signal level is compared to a threshold �HO; if
it drops below the threshold a handoff is initiated. Once the handoff is initiated it takes 0.5 s to complete.

(a) Determine the minimum margin � D �HO ��min so that calls are not lost due to weak signal strength during a handoff.
(b) What is the maximum allowable distance between BS1 and BS2?
(c) Describe the effects of the margin on the link quality performance and capacity of a cellular system.

13.4. Derive Eq. (13.19).

13.5. Derive Eq. (13.21).

13.6. Derive Eq. (13.34).

13.7. Derive Eq. (13.52).

13.8. Consider a communication link operating over a channel with propagation path loss exponent ˇ D 3:5 and a shadow
standard deviation �˝ D 8 dB.
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(a) Consider the case of two adjacent cells. A mobile station is transmitting at its maximum power and is located exactly on
the cell boundary between the two base stations. In the absence of shadowing, the received power level would be equal
to the receiver sensitivity, SRX, i.e., the mobile station is located at distance dmax from each base station.

Now assume that shadowing is present and a soft handoff algorithm is used, such that the least attenuation link is
always selected. The shadows experienced on the two possible links are independent. If an outage probability of 10% is
desired for the given mobile station location (averaged over a large ensemble of realizations), what is the required margin
.Mshad � GHO/, where Mshad is the required shadow margin for a single isolated cell and GHO is the soft handoff gain?

(b) What is the value of GHO?
(c) Repeat parts (a) and (b) assuming that the mobile is located on the boundaries of and equidistant from three base stations,

i.e., the mobile station is located at distance dmax from three base stations.



Chapter 14

Channel Assignment Techniques

There are many methods of allocating a channel upon a new call arrival or handoff attempt. A good channel allocation
algorithm is the one that yields high spectral efficiency for a specified grade of service (including link quality, probability
of new call blocking, and the probability of forced termination) and given degree of computational complexity. It also keeps
the planned cell boundaries intact, allocates a channel to a MS quickly, maintains the best service quality for the MS at any
instant, and relieves undesired network congestion. As shown in Fig. 14.1, there are three basic types of channel assignment
algorithms, fixed, flexible, and dynamic [317].

Fixed channel assignment (FCA) was used by first generation macrocellular systems where disjoint subsets of the available
channels are permanently allocated to the cells in advance according to their estimated traffic loads. The cells are arranged
in tessellating reuse clusters whose size is determined by the co-channel reuse constraint.

FCA provides adequate capacity performance in macrocellular systems that are characterized by stationary and
homogeneous traffic, and a predictable propagation environment. In this case the channel resources can be allocated statically,
since the call blocking probabilities can be predicted with reasonable certainty. Under conditions of non-stationary and
nonhomogeneous traffic, however, FCA is spectrally inefficient because the channels are literally fixed to the cells. A new
call or handoff arrival that finds all channels busy in a cell will be blocked even though there may be several idle channels
in the adjacent cells that could service the call. These blocking probabilities can be reduced by using various schemes that
borrow channels from neighboring cells. The most basic scheme is simple borrowing, where a MS can be allocated a channel
from a neighboring cell, provided that it does not degrade the link quality of other calls by introducing excessive co-channel
interference. Once a channel is borrowed, all other cells that are within the co-channel reuse distance are prohibited from
using the channel. The efficiency of this borrowing strategy tends to degrade in heavy traffic and the channel utilization is
worse than FCA. This problem can be partially solved by using a hybrid channel assignment scheme, where the channels
assigned to a cell are divided into two groups: the channels in one group are owned by the cell, while the channels in the
other group may be borrowed. There are several variations of this theme. The ratio of the number of owned-to-borrowable
channels can be dynamically varied to compensate for traffic changes.

In microcellular systems the propagation environment is highly erratic, and the traffic is characterized by spatial and
temporal variations. Furthermore, the decreased cell sizes imply an increase in handoff traffic, since a call may be handed
off several times before its natural completion. Because of these properties, the channel assignment problem in microcellular
and macrocellular networks is fundamentally different. The uneven nature of the traffic and the larger volume of handoff
attempts in microcellular networks demand careful attention. Furthermore, a microcellular channel assignment strategy has
to be fast, because the handoffs must be serviced quickly due to the small cell sizes and propagation anomalies such as the
street corner effect.

Dynamic channel assignment (DCA) is one well-known solution to the microcellular channel assignment problem, where
the dynamic nature of the strategy permits adaptation to spatial and temporal traffic variations while the distribution of
control reduces the required computation and communication among base stations (BSs), thereby reducing system latencies.
DCA schemes have no exclusive relationship between cells and channels, and in their most general form they allow any
cell to use any channel that does not violate the co-channel reuse constraint. DCA schemes are known to outperform
FCA under conditions of light non-stationary traffic. However, under conditions of heavy traffic FCA usually provides
better performance, because the DCA schemes often yield an inefficient arrangement of channels. Although DCA has clear
benefits, the cost can be quite high because it not only requires increased computation and communication among BSs but
also an increased number of radio ports at the BSs; in the extreme case each BS must have the ability to use all channels
simultaneously.

© Springer International Publishing AG 2017
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Fig. 14.1 Basic classifications of channel assignment schemes, from [317]

Practical DCA schemes differ in degree of network planning and the required communication among BSs. Centralized
DCA schemes require centralized control with system-wide channel information. The extreme example is maximum packing
(MP) [117], where a new call or handoff arrival is blocked only if there is no global rearrangement of calls to channels
that will accommodate the service need. Unfortunately, the enormous computation and communication among cells render
centralized DCA schemes impractical. In fact, the number of channel rearrangements required between two subsequent
arrivals in a two-dimensional network with MP can increase without bound with the number of cells in the network [281].

Fully decentralized DCA schemes are the other extreme and require no network planning or communication among BSs
[11, 120, 253]. These schemes are ideal for cordless telephone systems that use MCHO, such as DECT. They often rely upon
the passive monitoring of idle channels at each BS, allowing the cells to acquire any idle channel that is deemed to provide
a sufficient carrier-to-interference ratio (C/I).

Decentralized DCA schemes require limited communication among local clusters of BSs. One DCA scheme is dynamic
resource acquisition (DRA) [240]. With DRA, the channel (or carrier) that is acquired due to a new call arrival or handoff is
chosen to minimize a cost function, and the channel (or carrier) that is released due a call completion or handoff is chosen to
maximize a reward function. The cost and reward functions can be selected to maximize the spectral efficiency of the cellular
network for a specified grade of service. The computation of the cost and reward functions for a given cell depends on the
usages of the channels (or carriers) in the set of surrounding cells called the DRA neighborhood [240]. Another distributed
DCA scheme is simple dynamic channel assignment (SDCA) [349]. SDCA performs slightly worse than DRA, but requires
communication among a smaller set of cells called the interference neighborhood [349].

Decentralized and fully decentralized schemes are not without their problems. These include service interruption,
deadlock, and instability. A service interruption occurs when a channel allocation causes an existing link to fall below the
threshold C/I. The interrupted mobile station (MS) then tries to find an alternate link and if unsuccessful a service termination
occurs. This is known as deadlock. A sequence of successive interrupts, or rippling effect, caused by channel allocations is
called an instability.

DCA schemes also have the advantage of assigning the same channel to a MS moving from one cell to another provided
that the level of co-channel interference is tolerable, while FCA must conduct a handoff with a channel change because the
same channel is not available in adjacent cells. Handoffs without channel changes are attractive because they can eliminate
the need for channel searching and ultimately relieve the BSs from extra computation. More important, this mechanism is
essential for supporting macrodiversity TDMA cellular architectures where the signal from a MS can be simultaneously
received by two or more BS yielding a diversity improvement against shadow (and fading) variations. Such architectures
provide the same benefit as soft handoff in CDMA systems.

Flexible channel assignment algorithms combine aspects of fixed and dynamic channel assignment schemes. Each cell is
assigned a fixed set of channels, but a pool of channels is reserved for flexible assignment. The assignment of flexible channels
can be either scheduled or predictive [310]. Scheduled assignment schemes rely on known changes in traffic patterns. The
flexible channels are assigned to the cells on a scheduled basis to account for these foreseeable changes in traffic patterns.
With predictive assignment, the traffic load is continuously or periodically measured at every BS, and the flexible channels
are assigned to the cells according to these measurements.
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Forced terminations are generally perceived to severely degrade the quality of service. For this reason, handoff priority
schemes are usually employed to allocate channels to handoff requests more readily than to new call arrivals. Handoff
priority reduces the probability of forced termination at the expense of a (slight) increase in the probability of new call
blocking. Practical cellular systems are designed to have a probability of new call blocking less that 5%, with a probability
of forced termination perhaps an order of magnitude smaller.

The use of guard channels is one method of achieving handoff priority, where the channels are divided into two groups:
one group is for new calls and handoff requests, and the other group is reserved for handoff requests only [169]. Another
method is to queue the handoff requests (but not the new call arrivals) [134, 169]. This method can be combined with guard
channels.

This chapter is intended to introduce the various approaches to cellular channel assignment. Unfortunately, most channel
assignment schemes are quite detailed and founded largely on ad hoc principles. Furthermore, the channel assignment
schemes are almost always evaluated by using detailed simulations with a variety of assumptions concerning the mobile radio
environment, e.g., cellular topology and reuse factors, traffic patterns, propagation factors, mobility, etc. The combination
of these factors makes a systematic comparison of the various DCA schemes largely infeasible and a true consensus of the
best scheme cannot be attained. Therefore, some of the many different DCA schemes will be briefly outlined, followed by a
detailed evaluation of a few specific schemes that serve to illustrate the basic concepts.

Throughout the chapter various performance measures will be used to evaluate the channel assignment schemes, including
the following:

• Probability of new call blocking, Pb, defined as

Pb D
number of new calls blocked

number of new call arrivals
:

• Probability of forced termination, Pf , defined as

Pf D
number of handoff calls blocked

number of handoff attempts
:

• Grade of service, GOS, defined as

GOS D PbRN

.RN C RH/
C Pf RH

.RN C RH/

where RN and RH are the new call and handoff arrival rates, respectively.
• Channel changing rate, RC, defined as

RC D
number of channel changes

number of handoffs
:

The remainder of this chapter begins with an overview of some important DCA schemes. These include the fully
centralized maximum packing (MP) and MAXMIN DCA strategies in Sect. 14.1. Decentralized DCA strategies such as
First Available (FA), Nearest Neighbor (NN), and dynamic resource acquisition (DRA) are discussed in Sect. 14.2. Fully
decentralized DCA schemes are the topic of Sect. 14.3, including Channel Segregation (CS) and Minimum Interference
(MI), along with aggressive and timid strategies. Hybrid FCA/DCA schemes are the subject of Sect. 14.4. The important
class of borrowing schemes are the topic of Sect. 14.5, including Borrowing with Channel Ordering (BCO), Borrowing with
DireCtional Locking (BDCL), and Compact Pattern based DCA (CPDCA). Finally, our overview of DCA schemes wraps
up with a treatment of directed retry (DR) and directed handoff (DH), moving direction (MD) strategies, reduced transceiver
coverage and reuse partitioning, and handoff priority schemes in Sects. 14.6, 14.7, 14.8 and 14.9 respectively.

Following our results in [349], Sect. 14.10 provides some detailed and instructive examples of distributed DCA schemes
for TDMA microcellular systems. In particular, two DCA strategies are presented that accommodate handoff queueing. An
aggressive DCA policy with handoff queueing is also considered where a cell may be forced to terminate calls in progress in
order to accommodate handoff requests in neighboring cells. The conditions for forced termination are carefully determined
to ensure a performance improvement over a timid policy.
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14.1 Centralized DCA

Centralized DCA schemes require system-wide information and control for making channel assignments. As expected,
centralized DCA schemes can theoretically provide the best performance. However, the enormous amount of computation
and communication among BSs leads to excessive system latencies and renders centralized DCA schemes impractical.
Nevertheless, centralized DCA schemes often provide a useful benchmark to compare the more practical decentralized DCA
schemes.

14.1.1 Maximum Packing

The maximum packing (MP) algorithm was originally presented by Everitt and Macfadyen in 1983 [116]. With the MP policy
a call is blocked only if there is no global rearrangement of calls to channels that will accommodate the call. Accomplishing
this task requires a controller with system-wide information along with the ability to perform call rearrangements. The MP
policy has the ability to serve all calls in a network with the minimum number of channels. Equipped with the capability, MP
can yield the lowest new call blocking and forced termination probabilities of any DCA scheme under any traffic conditions.

Kelly [178] presented an interesting and enlightening analytical approach to MP DCA, by modeling the MP policy as
a circuit-switched network. This allows some very powerful and well-known network analysis tools to be applied to the
analysis of MP DCA. The analysis ignores situations where the MS is moving from one cell to another or out of the service
area, i.e., the handoff and roaming problem. Upon a call arrival in a particular cell, the MP policy checks to see if all
reuse clusters that contain that cell have at least one channel available. If so, then the call can be accommodated through
channel rearrangements; otherwise, the call is blocked. For example, consider the simple system consisting of five cells
shown in Fig. 14.2. In this example, co-channel cells must be separated by at least two cells so there are three reuse clusters:
CL1 D .1; 2; 3/, CL2 D .2; 3; 4/, and CL3 D .3; 4; 5/. When a call arrives in cell 2, it can be accommodated if there is at
least one channel available in clusters CL1 and CL2.

The stochastic model for MP uses the following definitions:

R D set of cells in the system:

K D jRj D number of cells in the system:

NT D total number of channels available:

ni D number of calls in progress in cell i:

n D .ni; i 2 R/ D state vector:

S D set of admissible states:

�i D traffic load in cell i:

The set of admissible states depends on the particular cell layout. Let J be the number of complete or partial reuse
clusters CLi; i D 1; : : : ; J that can be defined such that (1) each reuse cluster differs by at least one cell, i.e., they are not
totally overlapping, and (2) all cells are contained in at least one such cluster. For the example in Fig. 14.2, J D 3. Now let
A D Œaij�J�K be the demand matrix, where aij D 1, if i D j and if cell j is in the same cluster as cell i; otherwise, aij D 0. For
the example in Fig. 14.2

A D

2

4

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

3

5 : (14.1)

Fig. 14.2 Five cell deployment
with maximum packing (MP) 21 3 4 5
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Matrix A tabulates the channel requirements for servicing calls that arrive in each of the cells. For example, a call arrival
in cell 2 requires that a channel be available in CL1 and CL2 but not in CL3 and, therefore, a1;2 D a2;2 D 1 and a3;2 D 0.
Finally, let Ni; i D 1; : : : ; J be the number of channels that are available in CLi, Ni � NT , and N D .N1; : : : ;NJ/. Then the
set of admissible states is then given by

S D fn W AnT � Ng: (14.2)

It is well known (e.g., [177]) that n has the steady-state distribution

�.n/ D G.N/
Y

i2R

�
ni

i

niŠ
; n 2 S (14.3)

where G.N/ is the normalizing constant

G.N/ D
 
X

n2S

Y

i2R

�
ni

i

niŠ

!�1

: (14.4)

Then the steady-state probability that a call arrival in cell i is blocked is

Bi D 1 �
G.N/

G.N � AeT

i /
(14.5)

where ei is a length K vector with a “1” at position i and “0” elsewhere. Even though Bi appears to have a compact closed
form expression, the computation of G.N/ is prohibitive except for very simple cases. Therefore, approximate methods are
usually employed. One approximation assumes that the availability of channels in the clusters CLi are independent events.
This independence assumption leads to

Bi � 1 �
Y

j2CLi

.1 � Ej/ (14.6)

where the Ej; j D 1; : : : ; J solve the nonlinear equations

Ej D E

0

@
X

r2R

ajr�r

Y

i2r�fjg
.1 � Ei/; Nj

1

A ; j D 1; : : : ; J (14.7)

with

E.�;N/ D �N

NŠ

 
N
X

nD0

�n

nŠ

!�1

(14.8)

being the Erlang-B formula. Kelly [178] showed that there is an unique solution to the above nonlinear equations. The
intuitive notion behind this approximation is that when ajr D 1 the call arrivals of rate �r in cell r are thinned by a factor of
1 � Ei by each cluster CLi; i 2 r � fjg before being offered to CLj.

14.1.2 MAXMIN Scheme

The MAXMIN scheme was introduced by Goodman et al. [145]. With the MAXMIN scheme, a MS is assigned a channel
that maximizes the minimum C/I that any MS will experience in the system at the time of assignment. Assuming that the
link quality depends on the average received C/I, the C/I of MSi at its serving BS is

�.d/.dB/ D ˝.di/.dB/ � 10 log10
X

k2I

10˝.dk/.dB/=10: (14.9)
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where the ˝.dj/.dB/ are independent Gaussian random variables with the density in (1.5) and (1.6), and dj is the distance
between MSj and the BS for MSi. The set I consists of all MSs other than MSi that are using the same channel. A MS that
requires service is assigned the channel j that gives

max
j2C

min
i2S
f�ig (14.10)

where i and j index the set of MSs and channels, respectively, C is the set of channels that are available at the BS
corresponding to the MS that requires service, �i is the C/I of MSi at its BS, and S is the set of all MS in service including
the MS that requires service. Methods for C/I monitoring have been presented in Sect. 13.8.

14.2 Decentralized DCA

14.2.1 First Available and Nearest Neighbor

In 1972, Cox and Reudnik [85] proposed four basic decentralized DCA algorithms and compared them to FCA for the case of
linear highway macrocells: First Available (FA), Nearest Neighbor (NN), Nearest NeighborC1 (NNC1), and Mean Square
(MSQ). All four schemes allow a BS to acquire any idle channel that is not being used in its interference neighborhood,
defined as the set of surrounding cells that can interfere with the BS. The schemes differ in the way that the channel selected
should more than one channel be available for acquisition. The FA scheme acquires the first available channel found in
the search. Assuming that a channel can be reused DN cells away without causing excessive co-channel interference, the
NN policy acquires the channel that is being used by the nearest BS at distance DN or greater. The NNC1 policy acquires
the channel that is in use at the nearest BS at distance DN C 1 or greater with the goal of allowing more MSs to retain
the same channel as they cross cell boundaries. The MSQ policy seeks to assign the available channel that minimizes the
mean square of the distances among all BSs using the same channel. The DCA schemes were shown to outperform the FCA
schemes in terms of probabilities of new call blocking and forced termination, except under conditions of heavy traffic. Of
these four DCA schemes, the NN policy performs the best.

14.2.2 Dynamic Resource Acquisition

Nanda and Goodman [240] have proposed a distributed DCA strategy called dynamic resource acquisition (DRA). When
a channel must be selected for acquisition or release by a BS, DRA calculates a reward/cost function for each channel.
The reward associated with a channel release is the number of cells in the interference neighborhood of the BS that could
acquire the channel after it is released. When a channel is released, the busy channel giving the largest reward is selected.
Channel rearrangements may be required to do this. The cost associated with a channel acquisition is the number of cells
in the interference neighborhood of the BS that would be deprived from using the acquired channel. When a channel is
acquired, the available channel having the smallest cost is selected. In the event of a tie in the reward/cost function, the
released/acquired channel is chosen randomly.

As described in [240], the calculation of the reward/cost function requires channel usage information from all the cells
within the DRA neighborhood of a BS. The DRA neighborhood of a BS is the set of cells whose interference neighborhoods
overlap with the interference neighborhood of that BS. Any cell outside the DRA neighborhood of a BS will not affect the
calculation of the reward/cost function associated with that BS. Figure 14.3 illustrates the reward/cost functions associated
with three carriers for a 2-D grid of square cells. The cell under consideration is shaded black. In case of a carrier acquisition,
Channel 2 would be selected by the given BS since it has the smallest cost. Channel 3 could not be selected, because it would
violate the co-channel reuse constraint. If Channels 1 and 2 are active in the given cell and a carrier is to be released, then
Channel 1 would be selected since it gives the largest reward.
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Fig. 14.3 The DRA (light shaded) and interference (dark shaded) neighborhoods of a cell under consideration (shaded black). The numbers
within each cell indicate active channels

14.3 Fully Decentralized DCA

14.3.1 Channel Segregation

Akaiwa and Andoh [12] proposed a distributed adaptive self-organizing DCA strategy whereby the BSs use Channel
Segregation (CS) to develop favorite channels through an evolutionary process that is based on the criteria of eliminating
unnecessary interference. Their scheme has been developed for TDMA systems with the assumption that each BS can access
any channel by tuning a carrier frequency and selecting a time slot. CS also accounts for the effect of unaccessible channels
where a call can be blocked in a cell even when there are idle channels because of the restriction placed on the number of
different carrier frequencies that may be simultaneously used, i.e., the BS has a finite number of radio ports each of which
can be tuned to only one frequency.

A flowchart of the CS algorithm is shown in Fig. 14.4. Each BS ranks the channels according to a priority function P.i/,
where a large P.i/ corresponds to a high priority, e.g., in [12] P.i/ D Ns=Nt, where Ns is the number of successful uses of
the channel plus the number of accesses to the channel when it is idle but unaccessible, and Nt is the total number of trials
for the channel. When a call arrives, the BS senses the highest priority channel from the list of channels it is not currently
using. If the channel is sensed idle, then the channel is checked for accessibility. If accessible, it is acquired and its priority
is increased; otherwise, its priority is increased and the BS recursively senses the next highest priority channel that it is not
currently using. If all channels are sensed busy, then the call is blocked. Akaiwa and Andoh [12] demonstrated by simulation
that the CS policy outperforms FCA and the FA DCA algorithm.

The steps within the dashed box in Fig. 14.4 are a modification so that the original CS algorithm developed by Akaiwa
[11] for FDMA systems can be applied to TDMA systems. Simulation results show that this modification achieves the goal of
gathering channels with the highest priorities onto the same carrier frequency, thus reducing the probability of call blocking
due to the unavailability of a BS transceiver.

14.3.2 Channel Segregation with Variable Threshold

Another Channel Segregation scheme has been proposed by Hanabe et al. [157] that uses prioritized orderings with a variable
interference threshold. The channels are ranked from highest to lowest according to their priority values. Each BS measures
the interference levels of its currently unused channels. For each channel, the priority value is decreased if the interference
level is higher than a predefined threshold and the threshold for that channel is decreased. Likewise, the priority value is
increased if the interference level is lower than a predefined threshold and the threshold for that channel is increased. Hanabe
et al. do not clearly define their priority function. However, it is likely that the priority function is defined as the ratio of
number of times that the interference level of a channel is less than the threshold to the total number of times the channel
is sensed. The interference threshold is varied depending on the ranking of the channel in the priority list. For example, the
particular threshold that Hanabe et al. proposed is as follows:
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Fig. 14.4 Channel segregation (CS) algorithm

T.k/ D

8

<

:

To C 15C S; k D 1; 2; : : :N1
To C 10C S; k D 9; 10; : : :N2
To C 5C S; k D 17; 18; : : :N3

: (14.11)

For the example in [157], N1 D 8, N2 D 16, and N3 D 72, where N3 is the total number of channels in the system, T.k/ is
the threshold, To is the minimum required C/I, and S is a constant margin. Upon call arrival, the highest priority idle channel
that meets the C/I threshold is chosen. If no suitable channels are available, the call is blocked. If the C/I drops below the
required level during a call, a handoff procedure is initiated. In Hanabe et al.’s scheme, handoffs are not prioritized and are
treated the same as new call arrivals.

The rationale for using a variable threshold T.k/ for each channel in (14.11) can be answered by examining the case where
the thresholds are fixed. Allocation of a high priority channel with a fixed threshold is more likely to cause interference since
the C/I thresholds for all channels are the same. The reason is that a higher priority channel will be acquired over a lower
priority channel if both channels exceed the C/I threshold, regardless of whether or not a lower priority channel would cause
less interference to neighboring cells. Thus the allocation of the higher priority channel may cause service interruptions,
deadlocks, and instability. For the case of a variable threshold, a higher threshold is assigned to higher priority channels to
reduce the probability of co-channel interference, and a lower threshold is assigned to lower priority channels to decrease
the probability of blocking.

14.3.3 Minimum Interference Schemes

Schemes based on Minimum Interference (MI) have been presented by Goodman et al. [145]. The basic MI scheme has been
incorporated into the CT-2 and DECT systems. With these schemes, the MS signals the BS with the strongest paging signal
for a channel. The BS measures the interference level on all channels that it is not already using. The MS is then assigned
the channel with the Minimum Interference. This policy coupled with mobile controlled handoff (MCHO) guarantees
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good performance. Variations of the MI scheme have been proposed that differ in the order in which MSs are assigned
channels. These include Random Minimum Interference (RMI), RMI with Reassignment (RMIR), and Sequential Minimum
Interference (SMI). The RMI scheme serves calls in the order that they arrive. The RMIR scheme serves the call requests
according to the RMI scheme, but afterwards each MS is reassigned according to the MI policy. The order of reassignments
is random. Those MSs initially denied service try again to acquire a channel. The procedure is repeated a fixed number of
times. The SMI algorithm assigns channels according to the MI scheme but in a sequential order. In [145] linear microcells
are considered and the sequence that is followed is to serve a MS only after all MS to its left have had a chance to be served.
This, however, requires some co-ordination between BSs and the extension to 2-D schemes is not obvious. Goodman et al.
[145] showed that the probability of blocking decreases with FCA, RMI, RMIR, SMI, in that order.

14.3.4 Aggressive and Timid DCA Strategies

Distributed self-organizing DCA algorithms that use aggressive and timid strategies were first introduced by Cimini and
Foshini [67]. These simple autonomous DCA algorithms can self-organize with little loss in capacity compared to the best
globally coordinated channel selection algorithm. In their paper, two classes of algorithms were studied: timid where a MS
acquires a channel only if the channel is free of interference, and aggressive where a MS can acquire a channel even if it is
not free of interference. The studies in [67] showed that a linear array of cells could self-organize its placement of a single
channel to saturate the array from random starting arrangements. An array is saturated when no additional cells can use a
channel without violating the co-channel reuse constraint. Channel usage in the array organizes itself according to the DCA
policy. The performance of the algorithm is measured in terms of the saturation density, defined as the ratio of the number
of cells using a particular channel to the number of cells in the array. Timid algorithms which require no call rearrangements
have been shown to have saturation densities that compare favorably with FCA, while the aggressive algorithms have higher
saturation densities at the expense of some instability. This is due to a simulated annealing mechanism where an instability
perturbs a system so as to escape a local optimum in an attempt to reach the global optimum.

The saturation densities can be derived for the case of linear and hexagonal planar cells with R-cell buffering.1 For linear
cells, the maximum and minimum saturation densities are Cmax D 1=.RC 1/ and Cmin D 1=.2RC 1/. The saturation density
can also be obtained for the random placement of a channel in a linear array. In this case, cells sequentially acquire the
channel; the next cell to acquire the channel is chosen uniformly from those cells not already using the channel that could
use the channel without violating the co-channel reuse constraint. The derivation of the saturation density in this case is quite
lengthy but leads to the result [69]

Cran D
Z 1

0

exp

(

2

R�1
X

iD0

.viC1 � 1/
iC 1

)

dv: (14.12)

The saturation density can also be obtained as a function of the traffic load � as [69]

C.�/ .1 � C.�/R/R D � .1 � .RC 1/C.�//RC1 (14.13)

which has a unique solution in the interval 0 < C.�/ < 1=.RC 1/. For hexagonal planar cells the minimum and maximum
saturation densities are

Cmin D
1

1C 3R.RC 1/ (14.14)

Cmax D
(

4
3.RC1/2 ; R even

4
1C3.RC1/2 ; R odd

: (14.15)

However, expressions for Cran and C.�/ for the hexagonal planar array are unknown.

1The reuse factor N is related to the number of buffer rings R as follows. For linear cells N D R C 1. For hexagonal planar cells, N D i2 C ij C j2,
where for R odd i D j D .R C 1/=2, and for R even i D R=2 and j D R=2C 1.
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Table 14.1 Normalized channel
utilizations ı D Cran=Cmax for the
timid DCA algorithm, from [68]

R Linear Planar hexagonal

1 0.864 0.693

2 0.825 0.658

3 0.804 0.627

For the case of a single channel the blocking probability has the exact form [69]

Pb D 1 � C.�/=�: (14.16)

For the case of multiple channels, Cimini et al. have derived a very accurate approximation for the call blocking performance
of timid algorithms. They also derived lower bounds on the call blocking performance of aggressive algorithms [68]. If a
total of NT channels are available, the effective number of channels available for use in a reuse cluster of size N is ıN, where
ı is called the normalized channel utilization defined as the saturation density that is achieved with a particular algorithm C

to the maximum possible saturation density Cmax. Values for ı are tabulated in Table 14.1. For FCA, each cell has m D NT=N

available channels and the blocking probability can be obtained from the Erlang-B formula Pb D E.�;m/ in (14.8), where
� is the traffic load per cell. For the case of the timed algorithm a call is blocked if all channels are use in the interference
neighborhood. To approximate the blocking probability for the timid algorithm, � is replaced by N� and m by ıNT , i.e.,
Pb D E.N�; ıNT/. To lower bound the blocking probability with an aggressive algorithm, � is replaced by N� as before, and
m by NT (ı D 1), so that Pb > E.N�;NT/. The performance of a practical aggressive algorithm will lie somewhere between
the timid algorithm and the aggressive bound. Finally, the blocking probability with an aggressive algorithm includes the
calls that are blocked and the calls that are dropped because the aggressive algorithm has taken the channel and another
suitable channel cannot be found.

14.4 Hybrid FCA/DCA Schemes

DCA schemes perform very well for light non-stationary nonhomogeneous traffic. However, under conditions of uniformly
heavy traffic FCA outperforms most of the DCA schemes, except perhaps MP. As a result of this behavior efforts have been
directed toward hybrid FCA/DCA schemes that are intended to provide a compromise between FCA and DCA. Cox and
Reudink [86] introduced a hybrid scheme, called Dynamic Channel Reassignment (DCR) where each cell is assigned number
of fixed channels, while the remaining channels are available for DCA. Fixed channels are used first to accommodate call
requests. Calls that cannot be serviced by the fixed channels are offered to the dynamically assigned channels. The dynamic
channel that is selected can be obtained by using any of the elementary schemes such as FA, NN, and NNC1. Upon a call
completion on a fixed channel, DCR executes a search to determine if a call nominally assigned to a dynamic channel can
be reassigned to the newly released fixed channel.

14.5 Borrowing Schemes

Engel and Peritsky [109] introduced a FCA scheme with borrowing. The channels that are assigned to each BS are divided
into two sets, fixed and borrowable. The fixed channels can only be used by the BS they are assigned to, while the remaining
channels can be borrowed by a neighboring BS if necessary. Calls are serviced by using the fixed channels whenever possible.
If necessary a channel is borrowed from a neighboring cell to service the call provided that the use of the borrowed channel
does not violate the co-channel reuse constraint. The channel is borrowed from the neighboring BS having the largest number
of available channels for borrowing. Improvements on this scheme were also proposed by Engel and Peritsky, where a call
being serviced by a borrowed channel is transferred to a fixed channel whenever a fixed channel becomes available. The
same idea was proposed by Anderson [16]. Scheduled and predictive channel assignment schemes have also been proposed,
where the ratio owned to borrowable channels is dynamically varied according to the traffic conditions.
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Fig. 14.5 Call arrival policy for the BCO algorithm

14.5.1 Borrowing with Channel Ordering

Elnoubi et al. [108] proposed a channel borrowing strategy that makes use of channel orderings, called Borrowing with
Channel Ordering (BCO). A group of channels is initially assigned to each cell according to a fixed channel assignment;
these channels are called nominal channels and are arranged in an ordered list. The call arrival policy for BCO is illustrated
by the flowchart in Fig. 14.5. Upon a call arrival in a cell, the BS searches for an available nominal channel nearest to the
beginning of the channel ordering. If a nominal channel is available it is assigned to the call; otherwise, the BS attempts to
borrow a channel from the adjacent cell having the largest number of channels available for borrowing. A channel is available
for borrowing if it is unused in the adjacent cell and the other two co-channel cells. To illustrate this point, refer to Fig. 14.7.
If cell B1 borrows a channel c from cell A1, then cells A1, A2, and A3 are locked from using channel c since their use of
channel c will violate the co-channel reuse constraint. Being blocked, channel c can neither be used to service a call in these
three cells nor borrowed from these three cells. Finally, when a channel is borrowed from an adjacent cell, the available
channel appearing nearest to the end of the channel ordering of the adjacent cell is selected. If no channels are available for
borrowing, the call is blocked.

The call departure policy for BCO is illustrated in Fig. 14.6. When a call terminates on a borrowed channel, the borrowed
channel is released in the three cells where it is locked. When a call terminates on a nominal channel and there are calls in
progress with the same BS on borrowed channels, then the channel that is borrowed from the adjacent cell with the largest
number of lent channels is released in the three cells where it is locked and its associated call is reassigned to the newly idle
nominal channel. Finally, if a call completes on a nominal channel and there are no calls in progress with the same BS on
borrowed channels, the call occupying the nominal channel nearest to the end of the channel ordering is reassigned to the
newly idle nominal channel.

Kuek and Wong [187] introduced a DCA scheme called Ordered Dynamic Channel Assignment/Reassignment (ODCAR)
that also combines channel ordering with channel rearrangements. The differences between the BCO and ODCAR schemes
are very minor and quite subtle. BCO borrows a channel from the adjacent cell having the largest number of available
channels for borrowing, while ODCAR borrows a channel from the adjacent cell having the largest number of available
nominal channels that it could use to service its own calls. When a call completes on a nominal channel and there are calls
in progress with the same BS on borrowed channels, then BCO releases the channel that is borrowed from the adjacent cell
with the largest number of lent channels while ODCAR releases the channel that is borrowed from the adjacent cell with the
fewest number of nominal channels. Finally, when a call completes on a borrowed channel BCO simply releases the channel
in the three cells where it is locked, while ODCAR again releases the borrowed channel from the adjacent cell with the
fewest number of nominal channels.
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14.5.2 Borrowing with Directional Locking

Zhang and Yum [375] introduced a new scheme called Borrowing with DireCtional Locking (BDCL) and compared it with
Borrowing with Channel Ordering (BCO). Referring to the N D 7 cell reuse pattern in Fig. 14.7, the BCO scheme operates
as follows. If cell B1 borrows a channel c from cell A1, then cells A1, A2, and A3 are locked from using channel c since
their use of channel c would violate the co-channel reuse constraint. In the BDCL scheme, instead of locking channel c in
cell A3 in all directions, channel c only needs to be locked in directions 1, 2, and 3. Cells that lie in the other three directions
from A3, say B2, can freely borrow channel c from cell A3 without violating the co-channel reuse constraint. Whether or
not channel c may be borrowed from A3 depends, however, on its locking conditions in A4, A5, and A6. Should the channel
happen to be locked in A4, A5, or A6 but the cell locking is beyond B2’s interference neighborhood, then B2 could still
borrow channel c. This scheme increases the number of channels available for borrowing over the straight BCO scheme.
Furthermore, the BDCL scheme uses channel rearrangements similar to the channel ordering scheme proposed by Elnoubi
et al. [108], except that the directional locking mechanism is accounted for. Zhang and Yum [375] concluded that the BDCL
scheme outperforms the BCO and FCA schemes in terms of blocking probabilities when the cells have nonuniform but
stationary traffic loads.

14.5.3 Borrowing Without Locking

A borrowing scheme, Channel Borrowing Without Locking (CBWL), has been proposed by Jiang and Rappaport [172]
that does not require channel locking by using borrowed channels with a reduced power level to limit interference with
co-channel cells. This allows the channel to be reused in all cells except the cell from which it has been borrowed. However,
it also implies that channels can only be accessed in part of the borrowing cell. To determine if a channel can be borrowed
with enough signal strength, the BS broadcast a borrowed channel sensing signal with the same reduced power of a borrowed
channel.

The CBWL scheme divides the channels into six groups that can be lent to the neighboring cells, such that channels in
the ith group can only be lent to the ith adjacent cell. This principle of directional lending is illustrated in Fig. 14.8, where
channels in the group A1 can be borrowed by MSs in all of the B cells. Because of the reduced power level of borrowed
channels, the MSs in the B cells that borrow the group A1 channels will be concentrated along the A-B cell boundaries.
The CBWL scheme reduces the BS complexity because each BS does not need to have the capability of transmitting and
receiving on all the channels assigned to its neighboring cells, but only a fraction of them in each cell. Furthermore, the
division of borrowable channels into six groups limits co-channel interference so that locking is not required.
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Various forms of channel rearrangements can be used to enhance the scheme. For example, if cell B wishes to borrow a
channel from cell A, the call is blocked if all the channels in group A1 of cell A are busy. However, it may be possible for
cell A to transfer one of the calls to another group, say A2, to accommodate the borrow request. If this is not possible, cell A
could itself borrow a channel from an adjacent cell to free up a channel to lend to cell B. Many other types of rearrangement
policies are also possible.

14.5.4 Compact Pattern Based DCA

Yeung and Yum [367] introduced Compact Pattern based DCA (CPDCA), that attempts to dynamically keep the co-channel
cells of any channel to a compact pattern, where a compact pattern of a network is the channel allocation pattern with the
minimum average distance between co-channel cells. In other words, CPDCA attempts to increase spectral efficiency by
keeping all channels at their minimum co-channel reuse distance. CPDCA accomplishes this task in two stages: (1) channel
acquisitions where an optimal idle channel is assigned to the MS, and (2) channel packing for the restoration of the compact
patterns upon the release of a compact channel. Channel packing is achieved by reassigning at most one call per channel
release.
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Channels are assigned by using system-wide call arrival rate information to assign a channel that has a compact pattern
that will yield the largest reduction in the overall system blocking probability. If a compact pattern is not available, the most
optimal noncompact pattern is selected. If a call completes on a compact channel, CPDCA attempts to reassign a call on a
noncompact channel to the newly idle compact channel. If no such call exists, CPDCA reassigns a call on the compact pattern
that is least utilized to the newly idle channel. The first step minimizes the number of noncompact channels being used, while
the second step packs the ongoing calls onto complete compact patterns. Yeung and Yun have shown their CPDCA scheme
to outperform BDCL.

14.6 Directed Retry and Directed Handoff

Everitt [115] introduced the directed retry (DR) and directed handoff (DH) channel assignment algorithms. If a BS does not
have an idle channel available to service a call with the DR policy, the MS tries to acquire an idle channel in any other cell
that can provide a satisfactory signal quality. DR exploits the overlapping nature of cells in a practical cellular system, where
some percentage of MSs can establish a suitable link with more than one BS. DH also exploits the overlapping nature of
cells to direct some of the ongoing calls in a heavily loaded cell to an adjacent cell that is carrying a relatively light load.
Both the DR and DH schemes can be used in conjunction with either FCA or DCA, and Everitt concluded that FCA and
maximum packing DCA in conjunction with the combination of DR and DH offer about the same performance. Therefore,
FCA in conjunction with DR and DH is the preferred scheme, since an improvement over FCA can be gained without the
added complexity of DCA.

14.7 Moving Direction Strategies

The moving direction (MD) strategy, proposed by Okada and Kubota, exploits information about the MS movement to reduce
forced terminations and channel changes [247, 248]. The strategy attempts to assign an available channel from among those
channels already assigned to MSs elsewhere in the service area that are moving in the same direction as the MS under
consideration. Sets of MSs moving in the same direction are formed. When a MS enters a cell, a MS from the same set is
probably leaving a cell. This allows both MSs to retain the same channel, thus reducing both the number of changes and
probability of forced termination. This method is particularly useful for highway microcell deployment, where the traffic
direction is highly predictable. Okada and Kubota compared the MD strategy with Cox and Reudnick’s FA, NN, and NNC1
strategies [248]. The MD strategy was shown to offer the lowest channel changing rate and the lowest probability of forced
termination. However, the NN strategy provided a slightly lower probability of new call blocking.

A variation of the MD scheme considers both Speed and Moving Direction (SMD) [246]. MS are divided into two classes:
high speed MS (HSMS) who are traveling at 50–60 km/h and low speed MS (LSMS) who are traveling at 0–4 km/h. To reduce
the probability of forced termination and channel changing rate, SMD uses the MD policy for its HSMS call requests. For the
LSMS, the NN strategy is employed since LSMSs do not experience forced terminations or channel changes as frequently as
HSMSs. Again, the SMD scheme was shown to outperform the FA, NN, and NNC1 policies in terms of channel changing
rates and the probability of forced termination. Finally, a variety of velocity estimation techniques are available as discussed
in Sect. 13.4. Moving direction information can be obtained by using the past signal strength history in LOS environments
[26] or the sign of the Doppler.

14.8 Reduced Transceiver Coverage

Takeo et al. [311] proposed a scheme where nonuniform traffic is handled by adjusting the BS transmit power level of the
control channel according to the traffic variance for every control period. Since the MS uses the control channel to determine
which BS to connect to, the effective cell size is dynamically varied. Highly loaded cells decrease the transmit power to
shrink the cell sizes, while lightly loaded cells increase the transmit power to enlarge the cell sizes. This scheme may cause
some unwanted side effects, for example, handoffs can occur even for stationary MSs. The experimental results in [311]
suggest that the call blocking probability increases in proportion to a decrease in the control period and, therefore, frequent
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updating of the control channel power should be avoided. Takeo et al. [311] did not address the problem that arises when
many adjacent cells are heavily loaded, a potentially deleterious situation since it may result in coverage gaps within a
particular reuse cluster.

14.8.1 Reuse Partitioning

Reuse partitioning employs a two-level cell plan where clusters of size M are overlaid on clusters of size N, N > M.
Figure 9.20 shows a FCA scheme using reuse partitioning with M D 3 and N D 9. As discussed in Sect. 9.5.1, reuse
partitioning divides the available channels into two sets: one set can be used by the inner cells only, while the other set can
be used by both the inner and outer cells. Reuse partitioning uses rearrangements so that whenever possible MSs in the inner
cells are assigned channels allocated for use in the inner cells only.

An autonomous reuse partitioning (ARP) scheme has been suggested by Kanai [174]. With this scheme an identical

ordering of channels is given to all BSs. Upon call arrival, the channels are checked in order and the first one exceeding
a C/I threshold for both the forward and reverse links is acquired. If no channels are available the call is blocked. The
advantage of using a fixed ordering is that the channels higher in the ordering are used more frequently and, hence, have
higher interference levels. This enables each BS to acquire channels with minimum C/I margins without the need for sorting
channels according to their interference levels. The algorithm is self-organizing in the sense that channels high in the ordering
(with high interference levels) are allocated to MS that are close to a BS (with strong received signal levels). Channels low
in the ordering tend to be allocated to MSs that are far from a BS with weak received signal levels.

Another scheme, self-organized reuse partitioning (SORP) has been proposed by Furukawa and Yoshihiko [133]. The BSs
allocate channels by measuring the power levels transmitted from the MSs. This method relies upon a table at each BS that
contains, for each channel, the average transmit power for MSs using the channel in its cell and all the surrounding cells.
The table is updated with each call arrival and the update information is shared among the BSs. When a call arrives, the BS
obtains the output power of the calling MS and assigns that channel with the corresponding average transmit power that is
closest to that of the calling MS. The channel is acquired if available; otherwise the second closest candidate is examined,
and so on. As a result of this procedure in each BS, channels that correspond to the same power are grouped autonomously
for self-organizing reuse partitioning. The SORP scheme was shown to offer about the same blocking probability as the ARP
scheme, but SORP requires less time to search for a channel and generally provides a higher C/I.

14.9 Handoff Priority

Since the forced termination of a call in progress is worse than the blocking of a new call, it is important to consider
handoff priority in the design of a channel assignment strategy. This is especially important in microcellular systems with
their increased number of handoffs. Two possible methods of achieving handoff priority are to use guard channels where a
fraction of the channels are reserved for handoff requests only [169], and handoff queueing where a handoff request from a
MS is placed in a queue with the target BS while the MS maintains a radio link with its serving BS [134, 169]. Both methods
are known to decrease the probability of dropped calls. However, queueing does this with a smaller increase in the probability
of new call blocking.

Handoff queueing exploits the time interval that the MS spends in the handoff region, i.e., between the time when the
handoff request is generated and the time when the call will be dropped due to a degradation in link quality. The simplest
queueing scheme uses a first in first out (FIFO) policy. More elaborate queueing schemes use measurement based priority,
where the queue is ranked according to the measured link quality of the MSs in the queue [317]. MSs with the lowest link
quality are placed in the highest priority class, and the handoff queue is sorted continuously according to the priority classes.

14.10 Example DCA Schemes for TDMA Systems

A TDMA system is assumed with carrier groupings, where the calls are packed into TDMA carriers such that each cell
acquires the minimum number of carriers required to carry the calls. This packing may require channel rearrangements
when the channels are released. A benefit of carrier groups is a reduction in the computation required to make decisions
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Fig. 14.9 ACQUIRE CARRIER policy that is executed upon a new call or handoff arrival

regarding acquisitions and releases. This reduction in complexity reduces the time required to select a channel, thus lowering
the probability of dropped call.

Whenever a channel is needed a TDMA DCA scheme follows a strategy which, if necessary, selects a carrier for
acquisition according to a carrier acquisition criterion. Likewise, when a channel is released another strategy is followed
which, if necessary, selects a carrier to be released according to a carrier release criterion. The flowcharts in Figs. 14.9
and 14.10 illustrate the general procedure for acquiring and releasing channels and carriers. The shaded blocks are steps that
support handoff queueing and will be discussed later in the chapter.

ACQUIRE CARRIER Policy (Non-queueing Case)

As Fig. 14.9 shows, the following policy is executed upon a new call or handoff arrival:

1. If at least one idle channel is available among the already acquired carriers, then assign an idle channel to the call;
otherwise attempt to acquire a new carrier according to the carrier acquisition criterion.

(a) If the carrier acquisition is successful, then assign one channel of the newly acquired carrier to the call; otherwise
block the call.

RELEASE CARRIER Policy (Non-queueing Case)

As Fig. 14.10 shows, the following policy is executed upon a call completion or a handoff departure:
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1. If the channel release will not yield an idle carrier, then no carrier is released; otherwise a carrier is selected for release
according to the carrier release criterion.

(a) The call that occupies the carrier selected for release is reassigned to the newly idle channel, and the selected carrier
is released.

14.10.1 The Simple DCA (SDCA) Strategy

Elnoubi et al. [108] proposed the BCO strategy that makes use of different channel orderings in each cell. Here, a channel
assignment strategy is considered that uses carrier orderings rather than channel orderings [349]. However, unlike the BCO
strategy, the carriers are not explicitly divided into nominal and borrowed sets with a specified rule for borrowing carriers.
In our scheme, each cell has its own carrier ordering, and no two cells separated less than the frequency reuse distance have
the same carrier ordering. The orderings are designed so that carriers occurring near the beginning of a cell’s carrier ordering
occur near the end of the carrier orderings of the cells in its interference neighborhood. For example, suppose there are 9
available carriers with a 3-cell reuse cluster. Three different carrier orderings are necessary to ensure that cells within the
frequency reuse distance have distinct carrier orderings. For example, the following carrier orderings will do.



660 14 Channel Assignment Techniques

A W f1; 4; 7; 8; 9; 5; 6; 2; 3g
B W f2; 5; 8; 9; 7; 6; 4; 3; 1g (14.17)

C W f3; 6; 9; 7; 8; 4; 5; 1; 2g

These carrier orderings are obtained by first listing the 9 available carriers column-wise until they are all assigned. Then
columns 4 and 5 are permutations of the third column, columns 6 and 7 are permutations of the second column, and columns
8 and 9 are permutations of the first column. Notice that Carriers 1, 2, and 3 each appear first in one of the orderings and
appear near the end of the other two orderings.

The carrier selection criterion is as follows. When a carrier is needed in a cell, the available carrier occurring nearest to the
beginning of the cell’s carrier ordering is selected. If there are no available carriers, then the carrier acquisition fails. When
a carrier is released in a cell, the busy carrier occurring nearest to the end of the cell’s carrier ordering is selected. This may
require a rearrangement of calls within a cell to carriers that are closer to the beginning of the cell’s carrier ordering. The
above strategy is hereafter referred to as the simple dynamic channel assignment (SDCA) strategy, because of the simplicity
of the carrier selection criterion.

Note that the SDCA scheme does not need an exchange of information within the interference neighborhoods.
The busy/idle status of carriers can be determined by passive non-intrusive monitoring at each BS.

14.10.2 A Queueing DCA Strategy

Forced terminations of calls in progress are worse than blocking of new calls. Forced terminations or handoff blocking
occurs when an active call crosses a cell boundary, and the target cell cannot accommodate the additional call. As described
in [134, 169], one way to establish handoff priority is to queue the handoff attempts. If the target cell is momentarily unable
to accommodate the additional call, the MS maintains its link with the source cell and enters a queue in the target cell.
A queue failure occurs when either the signal level drops below some threshold before the call can be serviced by the target
cell, the time spent in the queue exceeds a time-out interval, or the queue overflows. A queue success occurs when a channel
becomes available and the queue is non-empty. The newly available channel is then assigned to the call at the head of the
queue, and a channel within the source cell is released. Here handoff queueing is combined with DCA.

In a DCA strategy, there are two ways for a channel to become available in a cell. Either a call terminates (due to a handoff
or completion) or a carrier is released somewhere in the interference neighborhood thus allowing the carrier to be acquired
by the cell. When a cell releases a carrier, there may be multiple cells in its interference neighborhood that could acquire
the released carrier to service their queued calls. However, the frequency reuse constraint will be violated if all these cells
acquire the carrier. To determine which cells may acquire the carrier, it may assumed that each cell has a subset of carriers
designated as owned carriers. The owned carriers are a subset at the beginning of the carrier orderings. Owned carriers are
distributed so that no two cells separated less than the frequency reuse distance share any owned carriers. The remaining
carriers are designated as borrowed carriers. Considering the previous example in (14.17) where 9 carriers were distributed
among three carrier orderings, the owned and borrowed carrier orderings are

Owned Borrowed

A W f1; 4; 7g f8; 9; 5; 6; 2; 3g
B W f2; 5; 8g f9; 7; 6; 4; 3; 1g (14.18)

C W f3; 6; 9g f7; 8; 4; 5; 1; 2g

Cells tend to use their owned carriers before borrowing carriers from other cells. When a cell releases a borrowed carrier,
the cells in the interference neighborhood that own the released carrier are given the first opportunity to service their handoff
queues. If any of these cells have queued calls, then they can acquire the carrier without violating the frequency reuse
constraint. If none of the owner cells in the interference neighborhood acquire the released carrier, then some of the remaining
cells in the interference neighborhood may acquire the carrier to service their handoff queues.

A strategy combines DCA and handoff queueing is described below along with the flowcharts in Figs. 14.9, 14.10, 14.11,
and 14.12.
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ACQUIRE CARRIER Policy (Queueing Case)

Referring to Fig. 14.9, the following policy is executed upon a new call arrival or handoff attempt:

1. If the handoff queue is not empty, then either queue the handoff call or drop the new call; otherwise

(a) If there is at least one idle channel, then assign an idle channel to the call; otherwise try to acquire according to the
carrier acquisition criterion.

(i) If the carrier acquisition is successful, then assign one channel of the newly acquired carrier to the call; otherwise
either queue the handoff call or drop the new call.

RELEASE CARRIER Policy (Queueing Case)

Referring to Fig. 14.10, the following policy is executed upon a call completion, a handoff, or a failure from the handoff
queue of an adjacent cell:

1. If the handoff queue is not empty, then assign the newly available channel to the call at the head of the handoff queue.
The channel currently serving the call is released according to the RELEASE CARRIER policy.

2. If the channel release will yield an idle carrier, then a carrier is selected for release according to the carrier release
criterion. The call that occupies the carrier selected for release is reassigned to the newly idle channel, the selected carrier
is released, and the SERVICE INTERFERENCE CELLS policy is executed.

SERVICE INTERFERENCE CELLS Policy

Referring to Fig. 14.11, the following policy is executed whenever a carrier is released:



662 14 Channel Assignment Techniques

Assign an Empty Slot to

Call at Head of Queue.

STARTSTART

Yes

No

Available?

Empty Slot
Queue Empty?

No

END

in Source Cell.

Yes

RELEASE
CARRIER

Fig. 14.12 SERVICE HANDOFF QUEUE Policy

1. If a borrowed carrier is released, then any owner cell in the interference neighborhood that has a non-empty handoff queue
and can acquire the released carrier without violating the reuse constraint will acquire the carrier and service its handoff
queue according to the SERVICE HANDOFF QUEUE policy.

2. After the owner cells are given the opportunity to service their queues, the remaining cells in the interference neighborhood
are given the opportunity to service their handoff queues by using the SERVICE HANDOFF QUEUE policy.

SERVICE HANDOFF QUEUE Policy

Referring to Fig. 14.12, whenever a carrier is acquired in a cell having a non-empty handoff queue, the following policy is
executed:

1. An empty slot is assigned to the call at the head of the handoff queue, and the channel currently serving the call is released
by using the RELEASE CARRIER policy.

(a) Step 1. is executed until either all of the available slots are filled or the handoff queue is empty.

14.10.3 An Aggressive DCA Strategy

DCA strategies increase trunking efficiency by assigning channels to cells as they are needed. Care must be taken to avoid
a poor allocation of channels; otherwise capacity will suffer. With SDCA, the carriers are acquired and released according
to a carrier acquisition and release criteria that attempts to maximize capacity by favoring tightly packed arrangements of
co-carrier cells. This strategy is similar to the 2-D RING strategy in [171] and suffers from the same problem; when a carrier
is selected for acquisition, multiple carriers must be available for the carrier acquisition criteria to yield any advantage. The
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more carriers available for each selection process the better. At high traffic loads, very few carriers may be available for
acquisition. In fact there may be only one or none, in which case there is no choice. Under such conditions, carriers tend to
be assigned where they can be assigned, rather than where they should be assigned, and capacity suffers [117]. Under such
conditions DCA strategies usually perform worse than FCA strategies.

As discussed in Sect. 14.3.4 the performance at high traffic loads can be improved by using an aggressive policy where,
under certain conditions, a cell that cannot acquire a carrier may force a surrounding cell to give up a carrier so that it may
service one or more calls. Thus, a cell can actually take a carrier from its neighbors if none are otherwise available, according
to the following TAKE CARRIER policy.

TAKE CARRIER Policy

Referring to Fig. 14.13, the following policy is executed when a call is in jeopardy due to a handoff failure (in the no queueing
case), a queue failure, or the execution of the TAKE CARRIER policy in another cell:

1. The entire set of carriers is examined. If all carriers are being used, then the TAKE CARRIER policy fails; otherwise,
all unused carriers are examined, and the number of calls within the interference neighborhood that will be placed in
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jeopardy by taking each carrier is calculated. Note that the number of jeopardized calls must be determined at each cell in
the interference neighborhood. The carrier that will place the fewest number of calls in jeopardy is selected. In event of
a tie, the carrier appearing earliest in the carrier ordering is selected. Let Cj be the number of calls that will be placed in
jeopardy by taking the selected carrier.

2. The number of calls that will be serviced by taking the selected carrier, Cs is calculated. For a handoff attempt and no
queueing, Cs D 1; for a queue failure, Cs is the minimum of the number of queued calls Cq and the number of slots per
carrier Ns; for a carrier that is lost to another cell executing the TAKE CARRIER policy, Cs ranges from 1 to Ns.

3. If the selected carrier is owned and Cj > Cs or if the selected carrier is not owned and Cj � Cs, then the TAKE CARRIER
policy fails; otherwise all cells in the interference neighborhood that are currently using the selected carrier are told to
release it.2

4. Each cell in the interference neighborhood releases the selected channel.
5. The selected channel is taken. For a handoff attempt (no queueing), the handoff is completed. For a queue failure, the

SERVICE HANDOFF QUEUE policy is executed. For a carrier that is lost to another cell executing the TAKE CARRIER
policy, the slots of the taken carrier are assigned to the calls in jeopardy.

6. Each cell that was forced to release the selected carrier executes the SERVICE INTERFERENCE CELLS policy.
7. Each cell that was forced to release the selected channel and still has calls in jeopardy after the cell taking the carrier

services its queue executes the ACQUIRE CHANNEL policy.

(a) If the carrier acquisition is successful, then the cell executes the SERVICE HANDOFF QUEUE policy; otherwise it
executes the TAKE CARRIER policy.

(b) If a cell from which a carrier was taken cannot obtain a new carrier, it must drop some of its calls. Queued calls are
dropped first because they are in greater danger of being dropped than active calls. If more calls must be dropped after
dropping the queued calls, then active calls are dropped until there are no excess calls.

Note that the TAKE CARRIER policy is only executed if the SCDA carrier acquisition criteria fails to acquire a carrier.
Unlike SCDA, the TAKE CARRIER policy acquires carriers that place the fewest number of calls in jeopardy. From a
practical standpoint, the aggressive SCDA strategy requires communication among BSs in the interference neighborhood to
execute the TAKE CARRIER policy.

14.10.4 Simulation Model, Results, and Discussion

Consider a microcellular environment consisting of a rectangular grid of intersecting streets, as shown in Fig. 14.14. It is
assumed that MS traffic flowing off an edge of the grid wraps around to the opposite edge. However, the interference
neighborhoods of each cell do not wrap around. If two cells are on opposite edges of the grid, such that MSs leaving one cell
enter the other, they may simultaneously use the same carrier since they are not spatially adjacent.

Cell Boundary

Base Station

Fig. 14.14 Cells and BSs in an urban microcellular environment

2When there is no queueing Cs D 1 and, therefore, only an owned carrier can be taken that will not place more than one call in jeopardy.
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Line-of-sight co-channel cells must be separated by at least 3 cells. There are no reuse constraints on non-line-of-sight
co-channel cells, due to the corner effect. The frequency reuse factor is 4, meaning that the set of carriers must be divided
into 4 subsets for FCA, and for SDCA there must be 4 different carrier orderings. The interference neighborhood and cell
reuse pattern are shown in Fig. 14.15.

To account for the uneven distribution of teletraffic in the microcellular environment the identical active-dormant Markov
model from [240] is used, but modified to account for handoff queueing. The model is Markovian so that all events occur
with exponentially distributed interarrival times. However, the parameters of the distributions change with time to reflect the
time-varying nature of the model. The state of cell i at any time can be described by the following parameters:

New call arrival rate: �i

Number of active calls: Nactive;i

Number of queued calls: Nqueued;i

New Call Arrivals

Call arrivals in cell i are Poisson with rate �i. This parameter is binary valued, where � 2 f�ACT; �DORg. These two new
call arrival rates correspond to two different cell modes, active and dormant. The arrivals of new calls in different cells are
assumed to be independent, so the global call arrival rate is

� D
X

i

�i: (14.19)

Call Completions

The duration of each call is exponentially distributed with mean �. In cell i there are Nactive;i active calls and Nqueued;i queued
calls, any of which could be completed at any time. These calls are assumed to be independent, so the call completion rate
in cell i is

rc;i D
Nactive;i C Nqueued;i

�
: (14.20)

The completion of calls in different cells are assumed to be independent. Therefore, the global call completion rate is:

rc D
X

i

rc;i: (14.21)
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Handoff Attempts

A handoff is attempted whenever an active call crosses a cell boundary and needs to be serviced by the target cell.
To determine the handoff rate, it is assumed that each call is handed off an average of h times over its duration. Since
the traffic flows wrap around the grid edges, the handoff calls are uniformly distributed to one of the four neighboring cells.
Queued calls can be safely assumed to never cross a cell boundary, because the time required to traverse a cell will be much
longer than the maximum time allowed in the handoff queue. Therefore, queued calls do not contribute to the handoff rate.
The handoff rate in cell i is

rh;i D
hNactive;i

�
: (14.22)

Call handoffs in different cells are assumed to be independent, so the global handoff attempt rate is

rh D
X

i

rh;i: (14.23)

Mode Transitions

Each cell remains in its current mode for duration D, where D is exponentially distributed with mean 1=D. If the cell is in
active mode, then D D DACT, and if the cell is in dormant mode, then D D DDOR. If there are NACT active cells and NDOR

dormant cells, then the global active-to-dormant and dormant-to-active transition rates are, respectively,

rACT!DOR D
NACT

DACT

(14.24)

rDOR!ACT D
NDOR

DDOR

(14.25)

The probability of a cell being in the active mode is

PACT D
DACT

DACT C DDOR

: (14.26)

As the simulation progresses, five types of events are generated: new call arrivals, call completions, handoff attempts,
active-to-dormant mode transitions, and dormant-to-active mode transitions. All events occur independently. Therefore, five
random times are generated and the next event corresponds to the one with the minimum time. Once an event is selected, the
event must be randomly assigned to a cell. The probability of cell i being selected for each type of event is

New call arrival: �i=�

Call completion: rc;i=rc

Handoff Attempt: rh;i=rh

ACT ! DOR transition:

�

1=NACT ; if cell i is active
0 ; if cell i is dormant

DOR ! ACT transition:

�

1=NDOR ; if cell i is dormant
0 ; if cell i is active

The active to dormant traffic ratio RACT/DOR D �ACT=�DOR specifies the ratio of the new call arrival rates in the active and
dormant cells. To complete the model, the offered traffic per cell, �, is specified. Then the active and dormant call arrival
rates are:

�ACT D
�RACT/DOR

�.1C PACT.RACT/DOR � 1//
(14.27)
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�DOR D
�

�.1C PACT.RACT/DOR � 1//
(14.28)

where PACT is as defined in (14.26). The parameters used in the simulations are as follows:

Number of cells: 144 (12 � 12 square)

Total number of carriers: 40

Number of slots per carrier: 3

Number of channels per cell (FCA): 30

Number of owned carriers per cell (DCA): 10

Average call duration: 120 s

Average number of handoffs per call: 3

Average duration of the ACTIVE mode: 60 s

Average duration of the DORMANT mode: 600 s

ACTIVE to DORMANT traffic ratio: 5

Offered traffic: 0–50 Erlangs

Queue size: 10

Figures 14.16 through 14.17 compare the probability of new call blocking and the probability of forced termination for the
FCA, SDCA, and aggressive SDCA strategies. Results are shown without handoff queueing and with a 5-second handoff
queue. Observe from Fig. 14.16 that a substantial reduction in the probability of new call blocking is achieved by using SDCA
as compared to FCA. Handoff queueing causes a slight increase in the probability of new call blocking because handoff calls
are given priority over new calls when a channel has been released and is available for acquisition. Aggressive SDCA also
causes a very slight increase in the probability of new call blocking over non-aggressive SDCA. Figure 14.17 shows that
both handoff queueing and SDCA significantly lower the probability of forced termination. Aggressive SDCA tends to be
more effective than the non-aggressive SCDA when these schemes are combined with handoff queueing.
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Fig. 14.16 Probability of new call blocking versus offered traffic without queueing (solid) and 5-second handoff queue (dashed). Legend:
A D FCA, B D SDCA, C D Aggressive SDCA, from [349]
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Fig. 14.17 Probability of forced termination versus offered traffic without queueing (solid) and a 5-second handoff queue (dashed). Legend:
A D FCA, B D SDCA, C D Aggressive SDCA,from [349]
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Fig. 14.18 Carrier acquisitions per second (per cell) versus offered traffic without queueing (solid) and a 5-second handoff queue (dashed).
Legend: A D SDCA, B D Aggressive SDCA, from [349]

Carrier Acquisitions

It is useful to determine the increase in the rate of carrier acquisitions that results from using aggressive SDCA. Figure 14.18
plots the cell carrier acquisition rate for aggressive and non-aggressive SDCA. Notice that the carrier acquisition rates at
lower traffic loadings are almost the same. At higher traffic loadings handoff queueing has the largest effect on the carrier
acquisition rate. However, aggressive SDCA causes only a very slight increase in the carrier acquisition rate over non-
aggressive SDCA.
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The results presented here have been obtained under the assumption that the interference (and DRA) neighborhoods are
symmetrical (cell A interferes biconditionally with cell B) and the average traffic loading is identical for all cells. This is not
true of a practical system and, therefore, preassigned carrier orderings should not be used. In an actual microcellular system
an adaptive, self-organizing algorithm for ordering of carriers and the selection of owned carriers is preferable. Also, an
adaptive aggressive strategy may be employed that uses current performance (e.g., the current new call blocking and forced
termination probabilities) and perhaps forward-looking strategies [117] to make a more informed decision when to take a
carrier. It is expected that some performance deterioration will result over the ideal symmetrized case presented here, because
of the aforementioned network asymmetries and the finite convergence rate of the adaptive algorithms.

Finally, the channel assignment strategies as described do not take into consideration the arrangement of calls on the
carriers. In reality, the C/I is not the same for each channel. A more effective strategy also arranges the calls in order
to combat the unpredictable signal and interference variations present in microcells. Finally, the use of handoff queueing
will exaggerate the cell boundaries thereby causing increased co-channel interference. Unlike the purely statistical model
that is used here, the study of these issues will require explicit models for the mobility of MSs and the radio propagation
environment.

14.11 Concluding Remarks

Although it is very difficult to arrive at a consensus as to what the best channel assignment algorithm is, an effective
DCA algorithm should possess distributed control mechanisms, handoff prioritization, high channel utilization, and stability.
Unfortunately, there is no single DCA algorithm that combines all these features and the best solution is sure to depend on
the service area characteristics. For example, cordless phones require a fully decentralized algorithm while urban microcells
should allow some limited communication among BSs. Although some very interesting DCA schemes have been proposed
in the literature, not all the issues have been sufficiently addressed to make them practical. Many of the current systems
either require too much computation and communication among BSs yield low channel utilization, or exhibit instability. As
a result, DCA will be an active area of research for some time.

In general, the analytical treatment of DCA algorithms is quite difficult and few results have appeared in the literature.
Most of DCA algorithms are derived on an ad hoc basis and evaluated by computer simulation. The development of new
analytical tools is important for systematic development and will yield valuable insight into the performance of new DCA
algorithms.

Much of the existing literature has separated the handoff problem from the channel assignment problem. However, these
two problems linked and it is desirable that they receive unified treatment. For example, one performance measure for a
handoff algorithm is the mean number of handoffs against the handoff delay. However, such an analysis usually proceeds
under the assumption that a channel will always be available for a handoff. Clearly, this is not the case in practice. Moreover,
channel assignment schemes have to support a variety of multimedia applications that have different quality of service
requirements and require different types and amounts of network resources including channel resources, delay, etc.

Problems

14.1. Suppose that the maximum packing (MP) policy is used with the system shown in Fig. 14.2. Suppose that ten channels
are available for use within each of the three reuse clusters CLi; i D 1; 2; 3.

a) Compute the number of admissible states jS j.
b) By using the approximation in (14.6) compute the approximate blocking probabilities for each cell assuming a traffic

load of � D 2 Erlangs in each cell.
c) Compare the blocking probabilities in part (b) with FCA for the same traffic load.

14.2. Show that the maximum and minimum saturation densities for a linear array of cells are Cmax D .R C 1/�1 and
Cmin D .2RC 1/�1.
14.3. Show that the maximum and minimum saturation densities for a planar array of cells are

Cmin D
1

1C 3R.RC 1/
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Cmax D
(

4
3.RC1/2 ; R even

4
1C3.RC1/2 ; R odd

:

14.4. Consider a linear array of cells with R D 1 and a total of NT D 24 channels. Plot the blocking probability, Pb, against
the offered traffic per cell, �, with FCA, timid DCA, and aggressive DCA. What conclusions can you make?

14.5. Derive Eq. (14.12).



Appendix A

Probability and Random Processes

The theory of probability and random processes is essential in the design and performance analysis of wireless communica-
tion systems. This appendix presents a brief review of the basic concepts of probability theory and random processes, with
emphasis on the concept needed to understand this book. It is intended that most readers have already had some exposure to
probability and random processes, so that this appendix is intended to provide a brief overview. A very thorough treatment
of this subject is available in a large number of textbooks, including [201, 254].

This appendix begins in Sect. A.1 with the basic axioms of probability, conditional probability, and Bayes’ theorem. It
then goes onto means, moments, and generating functions in Sect. A.2. Afterwards, Sect. A.3 presents a variety of discrete
probability distributions and continuous probability density functions. Particular emphasis is placed on Gaussian, complex
Gaussian, multi-variate Gaussian, multivariate complex Gaussian density functions, and functions of Gaussian random
variables. After a brief treatment of upper bounds on probability in Sect. A.4, the appendix then goes onto a treatment of
random processes, including means and correlation functions in Sect. A.5.1, cross-correlation and crosscovariance for joint
random processes in Sect. A.5.2, complex random processes in Sect. A.5.3, power spectral density in Sect. A.5.4, and filtering
of random processes in Sect. A.5.5. The important class of cyclostationary random processes is considered in Sect. A.5.6 and
the appendix wraps up with a brief treatment of discrete-time random processes in Sect. A.5.7.

A.1 Conditional Probability and Bayes’ Theorem

Let A and B be two events in a sample space S. The conditional probability of A given B is

PŒAjB� D PŒA
T

B�

PŒB�
(A.1)

provided that PŒB� ¤ 0. If PŒB� D 0, then PŒAjB� is undefined.
There are several special cases.

• If A
T

B D ;, then events A and B are mutually exclusive, i.e., if B occurs then A could not have occurred and PŒAjB� D 0.
• If B � A, then knowledge that event B has occurred implies that event A has occurred and so PŒAjB� D 1.
• If A and B are statistically independent, then PŒA

T
B� D PŒA�PŒB� and so PŒAjB� D PŒA�.

There is a strong connection between mutually exclusive and independent events. It may seem that mutually exclusive
events are independent, but just the exact opposite is true. Consider two events A and B with PŒA� > 0 and PŒB� > 0. If A

and B are mutually exclusive, then A
T

B D 0 and PŒA
T

B� D 0 ¤ PŒA�PŒB�. Therefore, mutually exclusive events with
non-zero probability cannot be independent. Thus, the disjointness of events is a property of the events themselves, while
independence is a property of their probabilities.
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In general, the events Ai; i D 1; : : : ; n, are independent if and only if for all collections of k distinct integers .i1; i2; : : : ; ik/
chosen from the set .1; 2; : : : ; n/,

P
h

Ai1

\

Ai2

\

� � �
\

Aik

i

D PŒAi1 �PŒAi2 � � � � PŒAik �

for 2 � k � n.
In summary

• If Ai; i D 1; : : : ; n is a sequence of mutually exclusive events, then

P

"
n
[

iD1

#

D
n
X

iD1
PŒAi�: (A.2)

• If Ai; i D 1; : : : ; n is a sequence of independent events, then

P

"
n
\

iD1

#

D
n
Y

iD1
PŒAi�: (A.3)

A.1.1 Total Probability

The collection of sets fBig; i D 1; : : : ; n forms a partition of the sample space S if Bi

T
Bj D ;; i ¤ j and

Sn
iD1 Bi D S. For

any event A � S

A D
n
[

iD1
.A
\

Bi/: (A.4)

That is, every element of A is contained in one and only one Bi. Since .A
T

Bi/
T
.A
T

Bj/ D ;; i ¤ j, the sets A
T

Bi are
mutually exclusive. Therefore,

PŒA� D
n
X

iD1
PŒA

\

Bi�

D
n
X

iD1
PŒAjBi�PŒBi�: (A.5)

This last equation is often referred to as the theorem of total probability.

A.1.2 Bayes’ Theorem

Let the events Bi; i D 1; : : : ; n be mutually exclusive such that
Sn

iD1 Bi D S, where S is the sample space. Let A be an event
with non-zero probability. Then as a result of conditional probability and total probability:

PŒBijA� D
PŒBi

T
A�

PŒA�

D PŒAjBi�PŒBi�
Pn

iD1 PŒAjBi�PŒBi�
:

a result known as Bayes’ theorem.
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A.2 Means, Moments, and Moment Generating Functions

The kth moment of a random variable, EŒXk�, is defined as

EŒXk�
4D

8

<̂

:̂

P

xi2RX
xk

i pX.xi/ if X is discrete

R

RX
xkpX.x/dx if X is continuous

; (A.6)

where pX.xi/
4D PŒX D xi� is the probability distribution function of X, and pX.x/ is the probability density function (pdf)

of X. The kth central moment of the random variable X is EŒ.X � EŒX�/k�. The mean is the first moment

�X D EŒX� (A.7)

and the variance is the second central moment

�2X D EŒ.X � �X/
2� D EŒX2� � �2X: (A.8)

The moment generating function or characteristic function of a random variable X is

 X.jv/
4D EŒejvX� D

8

<̂

:̂

P

xi2RX
ejvxi pX.xi/ if X is discrete

R

RX
ejvxpX.x/dx if X is continuous

; (A.9)

where j D
p
�1. Note that the continuous version is a Fourier transform, except for the sign in the exponent. Likewise, the

discrete version is a z-transform, except for the sign in the exponent.
The probability distribution and probability density functions of discrete and continuous random variables, respectively,

can be obtained by taking the inverse transforms of the characteristic functions, i.e.,

pX.x/ D
1

2�

Z 1

�1
 X.jv/e

�jvxdv (A.10)

and

pX.xk/ D
1

2�

I

C

 X.jv/e
�jvxk dv: (A.11)

The cumulative distribution function (cdf) of a random variable X is defined as

FX.x/
4D PŒX � x� D

8

<

:

P

xi�x pX.xi/ if X is discrete

R x

�1 pX.x/dx if X is continuous

; (A.12)

and 0 � FX.x/ � 1. The complementary distribution function (cdfc) is defined as

Fc
X.x/

4D 1 � FX.x/: (A.13)

The probability density function of a continuous random variable X is related to the cdf by

pX.x/ D
dFX.x/

dx
: (A.14)
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A.2.1 Bivariate Random Variables

Consider a pair of random variables X and Y . The joint cdf of X and Y is

FXY.x; y/ D PŒX � x;Y � y� ; 0 � FXY.x; y/ � 1; (A.15)

and the joint (cdfc) of X and Y is

Fc
XY.x; y/ D PŒX > x;Y > y� D 1 � FXY.x; y/ ; 0 � Fc

XY.x; y/ � 1: (A.16)

The joint pdf of X and Y is

pXY.x; y/ D
@2FXY.x; y/

@x@y
; FXY.x/ D

Z x

�1

Z y

�1
pXY.x; y/dxdy: (A.17)

The marginal pdfs of X and Y are

pX.x/ D
Z 1

�1
pXY.x; y/dy pY.x/ D

Z 1

�1
pXY.x; y/dx: (A.18)

If X and Y are independent random variables, then the joint pdf has the product form

pXY.x; y/ D pX.x/pY.x/: (A.19)

The conditional pdfs of X and Y are

pXjY.xjy/ D
pXY.x; y/

pY.y/
pYjX.yjx/ D

pXY.x; y/

pX.x/
: (A.20)

The joint moments of X and Y are

EŒXiY j� D
Z 1

�1
xiyjpXY.x; y/dxdy: (A.21)

The covariance of X and Y is

�XY D EŒ.X � �X/.Y � �Y/�

D EŒXY � X�Y � Y�X C �X�Y �

D EŒXY� � �X�Y (A.22)

The correlation coefficient of X and Y is

�XY D
�XY

�X�Y

: (A.23)

Two random variables X and Y are uncorrelated if and only if �X;Y D 0. Two random variables X and Y are orthogonal if
and only if EŒXY� D 0.

The joint characteristic function is

˚XY.v1; v2/ D EŒejv1XCjv2Y � D
Z 1

�1

Z 1

�1
pXY.x; y/e

jv1xCjv2ydxdy: (A.24)
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If X and Y are independent, then

˚XY.v1; v2/ D EŒejv1XCjv2Y �

D
Z 1

�1
pX.x/e

jv1xdx

Z 1

�1
pY.y/e

jv2ydy

D ˚X.v1/˚Y.v2/: (A.25)

Moments can be generated according to

EŒXY� D �@
2˚XY.v1; v2/

@v1@v2
jv1Dv2D0 : (A.26)

with higher order moments generated in a straightforward extension.

A.3 Some Useful Probability Distributions

A.3.1 Discrete Distributions

A.3.1.1 Binomial Distribution

Let X be a Bernoulli random variable such that X D 0 with probability 1 � p and X D 1 with probability p. Although X is a
discrete random random variable with an associated probability distribution function, it is possible to treat X as a continuous
random variable with a pdf by using dirac delta functions. In this case, the pdf of X has the form

pX.x/ D .1 � p/ı.x/C pı.x � 1/: (A.27)

Let Y D
Pn

iD1 Xi, where the Xi are independent and identically distributed with density pX.x/. Then the random variable Y

is an integer from the set f0; 1; : : : ; ng and the probability distribution of Y is the binomial distribution

pY.k/ � PŒY D k� D
 

n

k

!

pk.1 � p/n�k ; k D 0; 1; : : : ; n: (A.28)

The random variable Y also has the pdf

pY.y/ D
n
X

kD0

 

n

k

!

pk.1 � p/n�kı.y � k/: (A.29)

A.3.1.2 Poisson Distribution

The random variable X has a Poisson distribution if

pX.k/ D
�ke��

kŠ
; k D 0; 1; : : : ; 1 (A.30)

A.3.1.3 Geometric Distribution

The random variable X has a geometric distribution if

pX.k/ D .1 � p/k�1p ; k D 1; 2; : : : ;1: (A.31)
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A.3.2 Continuous Distributions

Many communication systems are affected by Gaussian random processes. Therefore, Gaussian random variables and various
functions of Gaussian random variables play a central role in the characterization and analysis of communication systems.

A.3.2.1 Gaussian Distribution

A real-valued Gaussian or normal random variable X has the pdf

pX.x/ D
1p
2��

exp

�

� .x � �/
2

2�2

�

; (A.32)

where � D EŒX� is the mean of X and �2 D EŒ.X � �/2� is the variance of X. Sometimes the shorthand notation X �
N .�; �2/ is used meaning that X is a Gaussian random variable with mean � and variance �2. The random variable X is
said to have a standard normal distribution if X � N .0; 1/.

The cumulative distribution function (cdf) of a Gaussian random variable X is

FX.x/ D
Z x

�1

1p
2��

exp

�

� .y � �/
2

2�2

�

dy: (A.33)

The cdf of a standard normal distribution defines the Gaussian Q function

Q.x/
4D
Z 1

x

1p
2�

e�y2=2dy (A.34)

and the cdfc defines the Gaussian ˆ function

ˆ.x/
4D 1 � Q.x/: (A.35)

If X is a non-standard normal random variable, X � N .�; �2/, then

FX.x/ D ˆ
�x � �

�

�

(A.36)

Fc
X.x/ D Q

�x � �
�

�

: (A.37)

Sometimes the cumulative distribution function of a Gaussian random variable is described in terms of the complementary
error function erfc.x/, defined as

erfc.x/
4D 2p

�

Z 1

x

e�y2dy: (A.38)

The complementary error function and the Gaussian Q function are related as follows:

erfc.x/ D 2Q.
p
2x/ (A.39)

Q.x/ D 1

2
erfc

�
xp
2

�

: (A.40)

These identities can be established by using the Gaussian Q function in (A.34). The error function of a Gaussian random
variable is defined as

erf.x/
4D 2p

�

Z x

0

e�y2dy: (A.41)
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Note that erfc.x/C erf.x/ ¤ 1. Also,

Q.x/ D 1

2
� 1
2

erf

�
xp
2

�

; x � 0: (A.42)

A.3.2.2 Multivariate Gaussian Distribution

Let Xi � N .�i; �
2
i /; i D 1; : : : ; n, be a collection of n real-valued Gaussian random variables having means �i D EŒXi� and

covariances

�XiXj
D E

�

.Xi � �i/.Xj � �j/
�

D E
�

XiXj

�

� �i�j; 1 � i; j � n:

Let

X D .X1;X2; : : : ;Xn/
T

x D .x1; x2; : : : ; xn/
T

�X D .�1; �2; : : : ; �n/
T

ƒ D

2

6
4

�X1X1 � � � � �X1Xn

:::
:::

�XnX1 � � � � �XnXn

3

7
5 ;

where XT is the transpose of X. The random vector X has the multivariate Gaussian distribution

pX.x/ D
1

.2�/n=2jƒj1=2 exp

�

�1
2
.x � �X/

Tƒ�1.x � �X/

�

; (A.43)

where jƒj is the determinant of ƒ.

A.3.2.3 Multivariate Complex Gaussian Distribution

Complex Gaussian distributions often arise in the treatment of fading channels and narrow-band Gaussian noise. Let

X D .X1;X2; : : : ;Xn/
T

Y D .Y1;Y2; : : : ;Yn/
T

be length-n vectors of real-valued Gaussian random variables, such that Xi � N .�Xi
; �2Xi

/, and Yi � N .�Yi
; �2Yi

/; i D
1; : : : ; n. The complex random vector Z D X C jY has a complex Gaussian distribution that can be described with the
following three parameters:

�Z D EŒZ� D �X C j�Y

� D 1

2
EŒ.Z � �Z/.Z � �Z/

H�

C D 1

2
EŒ.Z � �Z/.Z � �Z/

T �;

where XT and XH are the transpose and complex conjugate transpose of X, respectively. The covariance matrix � must be
Hermitian (� D �H/ and the relation matrix C should be symmetric (C D CT/. Matrices � and C can be related to the
covariance matrices of X and Y as follows:
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ƒXX D EŒ.X � �X/.X � �X/
T � D Ref� C Cg (A.44)

ƒXY D EŒ.X � �X/.Y � �Y/
T � D Imf�� C Cg (A.45)

ƒYX D EŒ.Y � �Y/.X � �X/
T � D Imf� C Cg (A.46)

ƒYY D EŒ.Y � �Y/.Y � �Y/
T � D Ref� � Cg (A.47)

and, conversely,

� D 1

2

�

ƒXX CƒYY C j.ƒYX �ƒXY/
�

C D 1

2

�

ƒXX �ƒYY C j.ƒYX CƒXY/
�

: (A.48)

The complex random vector Z has the complex multivariate Gaussian distribution

pZ.z/ D
1

.2�/n
p

det.�/det.P/
exp

(

�1
4

�

.z � �Z/
H; .z � �Z/

T
�
�

� C

CH ��

��1 �
.z � �Z/

.z� � ��
Z/

�
)

; (A.49)

where

P D �� � CH��1C: (A.50)

For a circular-symmetric complex Gaussian distribution C D 0, and the complex multivariate Gaussian distribution simplifies
considerably as

pZ.z/ D
1

.2�/ndet.�/
exp

�

�1
2
.z � �Z/

H��1.z � �Z/

�

: (A.51)

The circular-symmetric scalar complex Gaussian random variable Z D X C jY has the density

pZ.z/ D
1

2��2Z
exp

�

�jz � �Zj2
2�2Z

�

; (A.52)

where �Z D EŒZ� and �2Z D 1
2
EŒjz � �Zj2�. Sometimes this is denoted with the shorthand notation Zi � C N .�Z ; �

2
Z/. The

standard complex Gaussian distribution Zi � C N .0; 1/ has the density

pZ.z/ D
1

2�
exp

�

�jzj
2

2

�

: (A.53)

A.3.2.4 Rayleigh Distribution

Let X � N .0; �2/ and Y � N .0; �2/ be independent real-valued normal random variables. The random variable R Dp
X2 C Y2 is said to be Rayleigh distributed. To find the pdf and cdf of R first define the auxiliary variable

V D Tan�1.Y=X/:

Then

X D R cos V

Y D R sin V:
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By using a bivariate transformation of random variables

pRV.r; v/ D pXY.r cos v; r sin v/ jJ.r; v/j

where

J.r; v/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

@x
@r

@x
@v

@y

@r

@y

@v

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

cos v r sin v
sin v r cos v

ˇ
ˇ
ˇ
ˇ
D r.cos2 v C sin2 v/ D r

Since

pXY.x; y/ D
1

2��2
exp

�

�x2 C y2

2�2

�

it follows that

pRV.r; v/ D
r

2��2
exp

�

� r2

2�2

�

: (A.54)

The marginal pdf of R has the Rayleigh distribution

pR.r/ D
Z 2�

0

pRV.r; v/dv

D r

�2
exp

�

� r2

2�2

�

; r � 0: (A.55)

The cdf of R is

FR.r/ D 1 � exp

�

� r2

2�2

�

; r � 0: (A.56)

The marginal pdf of V is

pV.v/ D
Z 1

0

pRV.r; v/dr

D 1

2�
; � � v � �: (A.57)

which is a uniform distribution on the interval Œ��; �/.

A.3.2.5 Rice Distribution

Let X � N .�1; �
2/ and Y � N .�2; �

2/ be independent normal random variables with non-zero means. The random
variable R D

p
X2 C Y2 has a Rice distribution or is said to be Ricean distributed. To find the pdf and cdf of R again define

the auxiliary variable V D Tan�1.Y=X/. Then by using a bivariate transformation J.r; v/ D r and

pRV.r; v/ D r � pXY.r cos v; r sin v/: (A.58)

However,

pXY.x; y/ D
1

2��2
exp

�

� .x � �1/
2 C .y � �2/2
2�2

�

D 1

2��2
exp

�

�x2 C y2 C �21 C �22 � 2.x�1 C y�2/

2�2

�

:
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Hence,

pRV.r; v/ D
r

2��2
exp

�

� r2 C �21 C �22 � 2r.�1 cos v C �2 sin v/

2�2

�

:

Now define s
4D
q

�21 C �22 and t
4D Tan�1�2=�1; �� � t � � , so that �1 D s cos t and �2 D s sin t. Then

pRV.r; v/ D
r

2��2
exp

�

� r2 C s2 � 2rs.cos t cos v C sin t sin v/

2�2

�

D r

2��2
exp

�

� r2 C s2 � 2rs cos.v � t/

2�2

�

:

The marginal pdf of R is

PR.r/ D
r

�2
exp

�

� r2 C s2

2�2

�
1

2�

Z 2�

0

exp
n rs

�2
cos.v � t/

o

dv: (A.59)

The zero order modified Bessel function of the first kind is defined as

I0.x/
4D 1

2�

Z 2�

0

ex cos �d�: (A.60)

This gives the Rice distribution

PR.r/ D
r

�2
exp

�

� r2 C s2

2�2

�

I0

� rs

�2

�

; r � 0: (A.61)

The cdf of R is

FR.r/ D
Z r

0

pR.r/dr

D 1 � Q
� s

�
;

r

�

�

;

where Q.a; b/ is called the Marcum Q-function.

A.3.2.6 Central Chi-Square Distribution

Let X � N .0; �2/ and Y D X2. Then it can be shown that

pY.y/ D
pX.
p

y/C pX.�
p

y/

2
p

y

D 1p
2�y�

exp
n

� y

2�2

o

; y � 0:

The characteristic function of Y is

 Y.jv/ D
Z 1

�1
ejvypY.y/dy

D 1
p

1 � j2v�2
: (A.62)
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Now define the random variable Y D
Pn

iD1 X2i , where the Xi are independent and Xi � N .0; �2/. Then

 Y.jv/ D
1

.1 � j2v�2/n=2
: (A.63)

Taking the inverse transform gives

pY.y/ D
1

2�

Z 1

�1
 Y.jv/e

�jvydv

D 1

.2�2/n=2�.n=2/
yn=2�1exp

n

� y

2�2

o

; y � 0:

where �.k/ is the Gamma function and

�.k/ D
Z 1

0

uk�1e�udu D .k � 1/Š

if k is a positive integer. If n is even (which is usually the case in practice) and m D n=2, then the pdf of Y defines the central
chi-square distribution with 2m degrees of freedom

pY.y/ D
1

.2�2/m.m � 1/Šy
m�1exp

n

� y

2�2

o

; y � 0: (A.64)

The cdf of Y is

FY.y/ D 1 � exp
n

� y

2�2

o m�1
X

kD0

1

kŠ

� y

2�2

�k

; y � 0: (A.65)

The exponential distribution is a special case of the central chi-square distribution with m D 1 (2 degrees of freedom). In
this case

pY.y/ D
1

2�2
exp

n

� y

2�2

o

; y � 0

FY.y/ D 1 � exp
n

� y

2�2

o

; y � 0: (A.66)

A.3.2.7 Non-central Chi-Square Distribution

Let X � N .�; �2/ and Y D X2. Then

pY.y/ D
pX.
p

y/C pX.�
p

y/

2
p

y

D 1p
2�y�

exp

�

� .yC �
2/

2�2

�

cosh

�p
y�

�2

�

; y � 0:

The characteristic function of Y is

 Y.jv/ D
Z 1

�1
ejvypY.y/dy

D 1
p

1 � j2v�2
exp

�
jv�2

1 � j2v�2

�

:
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Now define the random variable Y D
Pn

iD1 X2i , where the Xi are independent normal random variables and Xi � N .�i; �
2/.

Then

 Y.jv/ D
1

.1 � j2v�2/n=2
exp

�
jv
Pn

iD1 �
2
i

1 � j2v�2

�

:

Taking the inverse transform gives

pY.y/ D
1

2�2

� y

s2

� n�2
4

exp

�

� .s
2 C y/

2�2

�

In=2�1
�p

y
s

�2

�

; y � 0;

where

s2 D
n
X

iD1
�2i

and Ik.x/ is the modified Bessel function of the first kind and order k, defined by

Ik.x/
4D 1

2�

Z 2�

0

ex cos � cos.k�/d�:

If n is even (which is usually the case in practice) and m D n=2, then the pdf of Y defines the non-central chi-square
distribution with 2m degrees of freedom

pY.y/ D
1

2�2

� y

s2

� m�1
2

exp

�

� .s
2 C y/

2�2

�

Im�1
�p

y
s

�2

�

; y � 0 (A.67)

and the cdf of Y is

FY.y/ D 1 � Qm

�
s

�
;

p
y

�

�

; y � 0; (A.68)

where Qm.a; b/ is called the generalized Q-function.

A.4 Upper Bounds on the cdfc

Several different approaches can be used to upper bound the tail area under a probability density function including the
Chebyshev and Chernoff bounds.

A.4.1 Chebyshev Bound

The Chebyshev bound is derived as follows. Let X be a random variable with mean �X , variance �2X , and pdf pX.x/. Then the
variance of X is

�2X D
Z 1

�1
.x � �X/

2pX.x/dx

�
Z

jx��X j�ı
.x � �X/

2pX.x/dx

� ı2
Z

jx��X j�ı
pX.x/dx

D ı2PŒjX � �Xj � ı�:
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Hence,

PŒjX � �Xj � ı� �
�2X
ı2
: (A.69)

The Chebyshev bound is straightforward to apply but it tends to be quite loose.

A.4.2 Chernoff Bound

The Chernoff bound is more difficult to compute but is much tighter than the Chebyshev bound. To derive the Chernoff
bound the following inequality is used

u.x/ � e�x; 8 x and 8 � � 0;

where u.x/ is the unit step function. Then,

PŒX � 0� D
Z 1

0

pX.x/dx

D
Z 1

�1
u.x/pX.x/dx

�
Z 1

�1
e�xpX.x/dx

D EŒe�x�:

The Chernoff bound parameter, �; � > 0, can be optimized to give the tightest upper bound. This can be accomplished by
setting the derivative to zero

d

d�
EŒe�x� D E

�
d

d�
e�x

�

D EŒxe�x� D 0:

Let �� D arg min��0 EŒe�x� be the solution to the above equation. Then

PŒX � 0� � EŒe�
�x�: (A.70)

Example A.1: Let Xi; i D 1; : : : ; n be independent and identically distributed random variables with density

pX.x/ D pı.x � 1/C .1 � p/ı.xC 1/:

Let

Y D
n
X

iD1
Xi:

Consider the quantity PŒY � 0�. To compute this probability exactly,

PŒY � 0� D P Œdn=2e or more of the Xi are ones �

D
n
X

kDdn=2e

 

n

k

!

pk.1 � p/n�k:

(continued)
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Example A.1 (continued)

For n D 10 and p D 0:1

PŒY � 0� D 0:0016349: (A.71)

Chebyshev Bound

To compute the Chebyshev bound, first determine the mean and variance of Y .

�Y D nEŒXi�

D nŒp � 1C p�

D n.2p � 1/:

�2Y D n�2X

D n
�

EŒX2i � � E2ŒXi�
�

D n
�

1 � .2p � 1/2
�

D n
�

1 � 4p2 C 4p � 1
�

D 4np.1 � p/:

Hence,

PŒjY � �Y j � �Y � �
�2Y
�2Y
D 4np.1 � p/

n2.2p � 1/2 :

Then by symmetry

PŒY � 0� D 1

2
PŒjY � �Y j � �Y �

� 2p.1 � p/

n.2p � 1/2 :

For n D 10 and p D 0:1

PŒY � 0� � 0:028125: (A.72)

Chernoff Bound

The Chernoff bound is given by

PŒY � 0� � EŒe�y�

D
�

EŒe�x�
�n
:

However,

EŒe�x� D pe� C .1 � p/e��:

(continued)
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Example A.1 (continued)

To find the optimal Chernoff bound parameter, solve

d

d�
EŒe�x� D pe� � .1 � p/e�� D 0

giving

�� D ln

 s

1 � p

p

!

:

Hence,

PŒY � 0� �
�

EŒe�
�x�
�n

D .4p.1 � p//n=2 :

For n D 10 and p D 0:1

PŒY � 0/� � 0:0060466:

Notice that the Chernoff bound is much tighter that the Chebyshev bound in this case.

A.5 Random Processes

A random process, or stochastic process, X.t/, is an ensemble of sample functions fX1.t/;X2.t/; : : : ;X�.t/g together with
a probability rule which assigns a probability to any meaningful event associated with the observation of these sample
functions. Consider the set of sample functions shown in Fig. A.1. The sample function xi corresponds to the sample point
s1 in the sample space and occurs with probability PŒs1�. The number of sample functions, � , in the ensemble may be finite
or infinite. The function Xi.t/ is deterministic once the index i is known. Sample functions may be defined at discrete or

s

s

s
ξ

t

t

t

2

1

X1
(  )t

ξ

X

(  )t

2
t(  )

X

sample
space S

Fig. A.1 Ensemble of sample functions for a random process
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continuous instants in time, which define discrete- or continuous-time random processes, respectively. Furthermore, their
values (or parameters) at these time instants may be either discrete or continuous valued as well, which defines a discrete-
or continuous-parameter random process, respectively. Hence, random processes may be discrete-time discrete-parameter,
discrete-time continuous-parameter, continuous-time discrete-parameter, or continuous-time continuous-parameter.

Suppose that all sample functions of a random process are observed at some time instant t1. Their values form the set
of numbers fXi.t1/g; i D 1; 2; : : : ; � . Since Xi.t1/ occurs with probability PŒsi�, the collection of numbers fXi.t1/g; i D
1; 2; : : : ; � , forms a random variable, denoted by X.t1/. By observing the set of waveforms at another time instant t2 a
different random variable X.t2/ is obtained. The collection of n such random variables, X.t1/; X.t2/; : : : ; X.tn/, has the joint
cdf

FX.t1/;:::; X.tn/.x1; : : : ; xn/ D PŒX.t1/ < x1; : : : ;X.tn/ < xn�:

A more compact notation can be obtained by defining the vectors

x
4D .x1; x2; : : : ; xn/

T

X.t/
4D .X.t1/;X.t2/; : : : ;X.tn//T :

Then the joint cdf and joint pdf of the random vector X.t/ are, respectively,

FX.t/.x/ D P.X.t/ � x/ (A.73)

pX.t/.x/ D
@nFX.t/.x/

@x1@x2 � � � @xn

: (A.74)

A random process is strictly stationary if and only if the joint density function pX.t/.x/ is invariant under shifts of the time
origin. In this case, the equality

pX.t/.x/ D pX.tC�/.x/ (A.75)

holds for all sets of time instants ft1; t2; : : : ; tng and all time shifts � . Some important random processes that are encountered
in practice are strictly stationary, while many are not.

A.5.1 Moments and Correlation Functions

To describe the moments and correlation functions of a random process, it is useful to define the following two operators:

EŒ � � 4D ensemble average

h � i 4D time average:

The ensemble average of a random process at time t is

�X.t/ D EŒX.t/� D
Z 1

�1
xpX.t/.x/dx: (A.76)

Note that the ensemble average is generally a function of time. However, if the ensemble average changes with time, then
the process is not strictly stationary. The time average of a random process is

hX.t/i D lim
T!1

1

2T

Z T

�T

X.t/dt: (A.77)

In general, the time average hX.t/i is also a random variable, because it depends on the particular sample function that is
selected for time averaging.
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The autocorrelation of a random process X.t/ is defined as

�XX.t1; t2/ D E ŒX.t1/X.t2/� : (A.78)

The autocovariance of a random process X.t/ is defined as

�XX.t1; t2/ D E Œ.X.t1/ � �X.t1// .X.t2/ � �X.t2//�

D �XX.t1; t2/ � �X.t1/�X.t2/: (A.79)

A random process that is strictly stationary must have

EŒXn.t/� D EŒXn� 8 t; n:

Hence, strictly stationary random process must have

�X.t/ D �
�2X.t/ D �2X

�XX.t1; t2/ D �XX.t2 � t1/ � �XX.�/

�XX.t1; t2/ D �XX.t2 � t1/ � �XX.�/;

where � D t2 � t1.
If a random process satisfies the following two conditions

�X.t/ D �X

�XX.t1; t2/ D �XX.�/ ; � D t2 � t1 ;

then it is said to be wide-sense stationary. Note that if a random process is strictly stationary, then it is wide-sense stationary;
however, the converse may not be true. A notable exception is the Gaussian random process which is strictly stationary if and
only if it is wide-sense stationary. The reason is that a joint Gaussian density of the vector X.t/ D .X.t1/;X.t2/; : : : ;X.tn//

is completely described by the means and covariances of the X.ti/.

A.5.1.1 Properties of �XX.�/

The autocorrelation function, �XX.�/, of a stationary random process satisfies the following properties.

• �XX.0/ D EŒX2.t/�. This is the total power in the random process.
• �XX.�/ D �XX.��/. The autocorrelation function must be an even function.
• j�XX.�/j � �XX.0/. This is a variant of the Cauchy-Schwartz inequality.
• �XX.1/ D E2ŒX.t/� D �2X . This holds if X.t/ contains no periodic components and is equal to the d.c. power.

Example A.2: This example shows that j�XX.�/j � �XX.0/. This inequality can be established through the following
steps.

0 � EŒX.t/˙ .X.tC �//2�
D EŒX2.t/C X2.tC �/˙ 2X.t/X.tC �/�
D EŒX2.t/�C EŒX2.tC �/�˙ 2EŒX.t/X.tC �/�
D 2EŒX2.t/�˙ 2EŒX.t/X.tC �/�
D 2�XX.0/˙ 2�XX.�/:

(continued)
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Example A.2 (continued)

Therefore,

˙�XX.�/ � �XX.0/

j�XX.�/j � �XX.0/:

A.5.1.2 Ergodic Random Processes

A random process is ergodic if for all g.X/ and X

EŒg.X/� D
Z 1

�1
g.X/pX.t/.x/dx

D lim
T!1

1

2T

Z T

�T

gŒX.t/�dt

D hgŒX.t/�i: (A.80)

For a random process to be ergodic, it must be strictly stationary. However, not all strictly stationary random processes are
ergodic. A random process is ergodic in the mean if hX.t/i D �X and ergodic in the autocorrelation if hX.t/X.t C �/i D
�XX.�/.

Example A.3: Consider the random process

X.t/ D A cos.2� fctC‚/

where A and fc are constants, and

p‚.�/ D
�

1=.2�/ ; 0 � � � 2�
0 ; elsewhere

:

The mean of X.t/ is

�X.t/ D E‚ŒA cos.2� fctC �/� D 0 D �X

and autocorrelation of X.t/ is

�XX.t1; t2/ D E‚ŒX.t1/X.t2/�

D E‚ŒA
2 cos.2� fct1 C �/ cos.2� fct2 C �/�

D A2

2
E‚Œcos.2� fct1 C 2� fct2 C 2�/�C

A2

2
E‚Œcos.2� fc.t2 � t1//�

D A2

2
cos.2� fc.t2 � t1//

D A2

2
cos.2� fc�/; � D t2 � t1:

It is clear that this random process is wide-sense stationary.

(continued)
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Example A.3 (continued)

The time average mean of X.t/ is

hX.t/i D lim
T!1

1

2T

Z T

�T

A cos.2� fctC �/dt D 0

and the time average autocorrelation of X.t/ is

hX.tC �/X.t/i

D lim
T!1

1

2T

Z T

�T

A2 cos.2� fctC �/ cos.2� fctC 2� fc� C �/dt

D lim
T!1

A2

4T

Z T

�T

A2 Œcos.2� fc�/C cos.4� fctC 2� fc� C 2�/� dt

D A2

2
cos.2� fc�/:

By comparing the ensemble and time average mean and autocorrelation, it can be concluded that this random process
is ergodic in the mean and ergodic in the autocorrelation.

Example A.4: Consider the random process

Y.t/ D X cos t; X � N .0; 1/:

Find the probability density function of Y.0/, the joint probability density function of Y.0/ and Y.�/, and determine
whether or not Y.t/ is strictly stationary.

1. To find the probability density function of Y.0/,

Y.0/ D X cos 0 D X:

Therefore,

pY.0/.y0/ D
1p
2�

e�y20=2:

2. To find the joint density of Y.0/ and Y.�/,

Y.0/ D X D �Y.�/:

Therefore,

pY.0/jY.�/.y0jy�/ D ı.y0 C y�/

and

pY.0/Y.�/.y0; y�/ D pY.0/jY.�/.y0jy�/pY.�/.y�/

D 1p
2�

e�y2�=2ı.y0 C y�/:

(continued)
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Example A.4 (continued)

3. To determine whether or not Y.t/ is strictly stationary, note that

EŒY.t/� D EŒX� cos t D 0
EŒY2.t/� D EŒX2� cos2 t:

Since the second moment and, hence, the pdf of this random process varies with time, the random process is not
strictly stationary.

A.5.2 Cross-correlation and Crosscovariance

Consider two random processes X.t/ and Y.t/. The cross-correlation of X.t/ and Y.t/ is

�XY.t1; t2/ D EŒX.t1/Y.t2/� (A.81)

�YX.t1; t2/ D EŒY.t1/X.t2/�: (A.82)

The correlation matrix of X.t/ and Y.t/ is

ˆ.t1; t2/ D
�

�XX.t1; t2/ �XY.t1; t2/

�YX.t1; t2/ �YY.t1; t2/

�

: (A.83)

The crosscovariance of X.t/ and Y.t/ is

�XY.t1; t2/ D E Œ.X.t1/ � �X.t1// .X.t2/ � �X.t2//�

D �XY.t1; t2/ � �X.t1/�X.t2/: (A.84)

The covariance matrix of X.t/ and Y.t/ is

ƒ.t1; t2/ D
�

�XX.t1; t2/ �XY.t1; t2/

�YX.t1; t2/ �YY.t1; t2/

�

: (A.85)

If X.t/ and Y.t/ are each wide-sense stationary and jointly wide-sense stationary, then

ˆ.t1; t2/ D ˆ.t2 � t1/ D ˆ.�/ (A.86)

ƒ.t1; t2/ D ƒ.t2 � t1/ D ƒ.�/; (A.87)

where � D t2 � t1.

A.5.2.1 Properties of �XY.�/

Consider two random processes X.t/ and Y.t/ are each wide-sense stationary and jointly wide-sense stationary. The cross-
correlation function �XY.�/ has the following properties.

• �XY.�/ D �YX.��/
• j�XY.�/j � 1

2
Œ�XX.0/C �YY.0/�

• j�XY.�/j2 � �XX.0/�YY.0/ if X.t/ and Y.t/ have zero mean.
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A.5.2.2 Classifications of Random Processes

Two random processes X.t/ and Y.t/ are said to be

• uncorrelated if and only if �XY.�/ D 0.
• orthogonal if and only if �XY.�/ D 0.
• statistically independent if and only if

pX.t/Y.tC�/.x; y/ D pX.t/.x/pY.tC�/.y/:

Furthermore, if �X D 0 or �Y D 0, then the random processes are also orthogonal if they are uncorrelated. Statistically
independent random processes are always uncorrelated, however, not all uncorrelated random processes are statistically
independent. In the special case of Gaussian random processes, if the processes are uncorrelated, then they are also
statistically independent.

Example A.5: Find the autocorrelation function of the random process

Z.t/ D X.t/C Y.t/

where X.t/ and Y.t/ are wide-sense stationary random processes.
The autocorrelation function of Z.t/ is

�ZZ.�/ D EŒZ.t/Z.tC �/�
D E Œ.X.t/C Y.t// .X.tC �/C Y.tC �//�
D �XX.�/C �YX.�/C �XY.�/C �YY.�/:

If X.t/ and Y.t/ are uncorrelated, then

�YX.�/ D �XY.�/ D �X�Y

and

�ZZ.�/ D �XX.�/C �YY.�/C 2�X�Y :

If X.t/ and Y.t/ are uncorrelated and at least one has zero-mean, then

�ZZ.�/ D �XX.�/C �YY.�/:

Example A.6: Can the following be a correlation matrix for two jointly wide-sense stationary zero-mean random
processes?

ˆ.�/ D
�

�XX.�/ �XY.�/

�YX.�/ �YY.�/

�

D
�

A2 cos.�/ 2A2 cos.3�=2/
2A2 cos.3�=2/ A2 sin.2�/

�

:

(continued)
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Example A.6 (continued)

The answer is no, because the following two conditions are violated:

1. j�XY.�/j � 1
2
Œ�XX.0/C �YY.0/�

2. j�XY.�/j2 � �XX.0/�YY.0/ if X.t/ and Y.t/ have zero mean.

A.5.3 Complex-Valued Random Processes

A complex-valued random process is given by

Z.t/ D X.t/ C jY.t/

where X.t/ and Y.t/ are real-valued random processes.

A.5.3.1 Autocorrelation Function

The autocorrelation function of a complex-valued random process is

�ZZ.t1; t2/ D
1

2
EŒZ�.t1/Z.t2/�

D 1

2
E Œ.X.t1/ � jY.t1// .X.t2/C jY.t2//�

D 1

2

�

�XX.t1; t2/C �YY.t1; t2/C j.�XY.t1; t2/ � �YX.t1; t2//
�

: (A.88)

The factor of 1=2 in included for convenience, when Z.t/ is a complex-valued Gaussian random process. If Z.t/ is wide-sense
stationary, then

�ZZ.t1; t2/ D �ZZ.t2 � t1/ D �ZZ.�/ ; � D t2 � t1:

A.5.3.2 Cross-correlation Function

Consider two complex-valued random processes

Z.t/ D X.t/C jY.t/

W.t/ D U.t/C jV.t/:

The cross-correlation function of Z.t/ and W.t/ is

�ZW.t1; t2/ D
1

2
EŒZ�.t1/W.t2/�

D 1

2

�

�XU.t1; t2/C �YV.t1; t2/C j.�XV.t1; t2/ � �YU.t1; t2//
�

: (A.89)

If X.t/, Y.t/, U.t/ and V.t/ are pairwise wide-sense stationary random processes, then

�ZW.t1; t2/ D �ZW.t2 � t1/ D �ZW.�/: (A.90)
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The cross-correlation of a complex wide-sense stationary random process satisfies the following property

��
ZW.�/ D

1

2
EŒZ.t/W�.tC �/�

D 1

2
EŒZ.Ot � �/W�.Ot/�

D 1

2
EŒW�.Ot/Z.Ot � �/�

D �WZ.��/; (A.91)

where the second line uses the change of variable Ot D tC � . For a complex-valued random process Z.t/, it also follows that

��
ZZ.�/ D �ZZ.��/: (A.92)

A.5.4 Power Spectral Density

The power spectral density (psd) of a wide-sense stationary random process X.t/ is the Fourier transform of the
autocorrelation function, i.e.,

SXX.f / D D
Z 1

�1
�XX.�/e

�j2� f �d� (A.93)

�XX.�/ D
Z 1

�1
SXX.f /e

j2� f �df : (A.94)

If X.t/ is a real-valued wide-sense stationary random process, then its autocorrelation function �XX.�/ is real and even.
Therefore, SXX.�f / D SXX.f / meaning that the power spectrum SXX.f / is also real and even. If Z.t/ is a complex-valued
wide-sense stationary random process, then �ZZ.�/ D ��

ZZ.��/, and S�
ZZ.f / D SZZ.f / meaning that the power spectrum

SZZ.f / is real but not necessarily even.
The power, P, in a wide-sense stationary random process X.t/ is

P D EŒX2.t/�

D �XX.0/

D
Z 1

�1
SXX.f /df

a result known as Parseval’s theorem.
The cross power spectral density between two random processes X.t/ and Y.t/ is

SXY.f / D
Z 1

�1
�XY.�/e

�j2� f �d�: (A.95)

If X.t/ and Y.t/ are both real-valued random processes, then

�XY.�/ D �YX.��/

and

SXY.f / D SYX.�f /:

If X.t/ and Y.t/ are complex-valued random processes, then

��
XY.�/ D �YX.��/



694 A Probability and Random Processes

Fig. A.2 Random process
through a linear system

and

S�
XY.f / D SYX.f /:

A.5.5 Random Processes Filtered by Linear Systems

Consider the linear system with impulse response h.t/, shown in Fig. A.2. Suppose that the input to the linear system is a
real-valued wide-sense stationary random process X.t/, with mean �X and autocorrelation �XX.�/. The input and output are
related by the convolution integral

Y.t/ D
Z 1

�1
h.�/X.t � �/d�:

Hence,

Y.f / D H.f /X.f /:

The output mean is

�Y D
Z 1

�1
h.�/EŒX.t � �/�d� D �X

Z 1

�1
h.�/d� D �XH.0/;

which is equal to the input mean multiplied by the d.c. gain of the filter.
The output autocorrelation function is

�YY.�/ D EŒY.t/Y.tC �/�

D E

�Z 1

�1
h.ˇ/X.t � ˇ/dˇ

Z 1

�1
h.˛/X.tC � � ˛/d˛

�

D
Z 1

�1

Z 1

�1
h.ˇ/h.˛/�XX.� � ˛ C ˇ/dˇd˛

D
Z 1

�1
h.˛/

Z 1

�1
h.ˇ/�XX.� C ˇ � ˛/dˇd˛

D
�Z 1

�1
h.ˇ/�XX.� C ˇ/dˇ

�

� h.�/

D h.��/ � �XX.�/ � h.�/:

Taking the Fourier transform of both sides, the power density spectrum of the output process Y.t/ is

SYY.f / D H.f /H�.f /SXX.f /

D jH.f /j2 SXX.f /:



A Probability and Random Processes 695

Example A.7: Consider the linear system shown in Fig. A.2. In this example we will find the cross-correlation
between the input process X.t/ and the output Y.t/. The cross-correlation �XY.�/ is given by

�XY.�/ D EŒX.t/Y.tC �/�

D E

�

X.t/

Z 1

�1
h.˛/X.tC � � ˛/d˛

�

D
Z 1

�1
h.˛/EŒX.t/X.tC � � ˛/�d˛

D
Z 1

�1
h.˛/�XX.� � ˛/d˛

D h.�/ � �XX.�/:

Also,

SXY.f / D H.f /SXX.f /:

Example A.8: Suppose that a real-valued Gaussian random process X.t/ with mean �X and covariance function
�XX.�/ is passed through the linear filter shown in Fig. A.2. In this example, the joint density of the random variables
X1 D X.t1/ and X2 D Y.t2/ is of interest. If a Gaussian random process is passed through a linear filter, then the output
process will also be a Gaussian random process. This is due to the fact that a sum of Gaussian random variables will
yield another Gaussian random variable. Hence, X1 and X2 have a joint Gaussian density function as defined in (A.43)
that is completely described in terms of their means and covariances.
Step 1: Obtain the mean and covariance matrix of X1 and X2.

The crosscovariance of X1 and X2 is

�X1X2.�/ D E Œ.X.t/ � �X/ .Y.tC �/ � �Y/�

D E ŒX.t/Y.tC �/� � �Y�X:

Now �Y D H.0/�X . Also, from the previous example

EŒX.t/Y.tC �/� D
Z 1

�1
h.˛/�XX.� � ˛/d˛

D
Z 1

�1
h.˛/Œ�XX.� � ˛/C �2X�d˛

D
Z 1

�1
h.˛/�XX.� � ˛/d˛ C H.0/�2X:

Therefore,

�X1X2.�/ D
Z 1

�1
h.˛/�XX.� � ˛/d˛ D h.�/ � �XX.�/:

Also

�X2X1.�/ D �X1X2.��/ D �X1X2.�/

�X1X1.�/ D �XX.�/

(continued)
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Example A.8 (continued)
�X2X2.�/ D h.�/ � h.��/ � �XX.�/;

where the first line follows from the even property of the autocovariance function. Hence, the covariance matrix is

ƒ D
�

�X1X1.0/ �X1X2.�/

�X2X1.�/ �X2X2.0/

�

D
�

�XX.0/ h.�/ � �XX.�/

h.�/ � �XX.�/ h.�/ � h.��/ � �XX.�/ j�D0

�

Step 2: Write the joint density function of X1 and X2.
Let

X D .X1;X2/T

x D .x1; x2/T

�X D .�X; �Y/
T D .�X;H.0/�X/

T :

Then

PX.x/ D
1

2�jƒj1=2 exp

�

�1
2
.z � �X/

Tƒ�1.z � �X/

�

:

A.5.6 Cyclostationary Random Processes

Consider the random process

X.t/ D
1
X

nD�1
an .t � nT/;

where fang is a sequence of complex random variables with mean �a and autocorrelation �aa.n/ D 1
2EŒa

�
k akCn�, and  .t/ is

a real-valued pulse having finite energy. Note that the mean of X.t/

�X.t/ D �a

1
X

nD�1
 .t � nT/

is periodic in t with period T . The autocorrelation function of X.t/ is

�XX.t; tC �/ D
1

2
EŒX�.t/X.tC �/�

D 1

2
E

" 1
X

nD�1
a�

n .t � nT/

1
X

mD�1
am .tC � � mT/

#

D
1
X

nD�1

1
X

mD�1
�aa.m � n/ .t � nT/ .tC � � mT/:

It is relatively straightforward to show that

�XX.tC kT; tC � C kT/ D �XX.t; tC �/:
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Therefore, the autocorrelation function �XX.t; tC �/ is periodic in t with period T . Such a process with a periodic mean and
autocorrelation function is said to be cyclostationary or periodic wide-sense stationary.

The power spectrum of a cyclostationary random process X.t/ can be computed by first determining the time-average
autocorrelation

�XX.�/ D h�XX.t; tC �/i D
1

T

Z

T

�XX.t; tC �/dt

and then taking the Fourier transform in (A.93).

A.5.7 Discrete-Time Random Processes

Let Xn � X.n/, where n is an integer time variable, be a complex-valued discrete-time random process. Then the mth moment
of Xn is

EŒXm
n � D

Z 1

�1
xm

n pX.xn/dxn: (A.96)

The autocorrelation function of Xn is

�XX.n; k/ D
1

2
EŒX�

n Xk� D
1

2

Z 1

�1

Z 1

�1
x�

n xkpXn;Xk
.xn; xk/dxndxk (A.97)

and the autocovariance function is

�XX.n; k/ D �.n; k/ �
1

2
EŒX�

n �EŒXk�: (A.98)

If Xn is a wide-sense stationary discrete-time random process, then

�XX.n; k/ D �XX.k � n/ (A.99)

�XX.n; k/ D �XX.k � n/ D �XX.k � n/ � 1
2
j�Xj2: (A.100)

From Parseval’s theorem, the total power in the process Xn is

P D 1

2
EŒjXnj2� D �XX.0/: (A.101)

The power spectrum of a discrete-time random process Xn is the discrete-time Fourier transform of the autocorrelation
function

SXX.f / D
1
X

nD�1
�XX.n/e

�j2� fn (A.102)

and

�XX.n/ D
Z 1=2

�1=2
SXX.f /e

j2� fndf : (A.103)

Note that SXX.f / is periodic in f with a period of unity, i.e., SXX.f / D SXX.f C k/ for any integer k. This is a characteristic of
any discrete-time random process. For example, one obtained by sampling a continuous time random process Xn D x.nT/,
where T is the sample period.
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Suppose that a wide-sense stationary complex-valued discrete-time random process Xn is input to a discrete-time linear
time-invariant system with impulse response hn. The process is assumed to have mean �X and autocorrelation function
�XX.n/ The transfer function of the filter is

H.f / D
1
X

nD�1
hne�j2� fn: (A.104)

The input, Xn, and output, Yn, are related by the convolution sum

Yn D
1
X

kD�1
hkXn�k: (A.105)

The output mean is

�Y D EŒYn� D
1
X

kD�1
hkEŒXn�k� D �X

1
X

kD�1
hk D �XH.0/: (A.106)

The output autocorrelation is

�YY.k/ D
1

2
EŒY�

n YnCk�

D 1

2
E

" 1
X

`D�1
h�
`X�

n�`

1
X

mD�1
hmXnCk�m

#

D
1
X

`D�1

1
X

mD�1
h�
` hm

1

2
EŒX�

n�`XnCk�m�

D
1
X

`D�1

1
X

mD�1
h�
` hm�XX.kC ` � m/

D
1
X

mD�1
hm

1
X

`D�1
h�
`�XX.kC ` � m/

D hk �
( 1
X

`D�1
h�
`�XX.kC `/

)

D hk � �XX.k/ � h�
�k: (A.107)

where the convolution operation is understood to be a discrete-time convolution. The output psd can be obtained by taking
the discrete-time Fourier transform of the autocorrelation function, resulting in

SYY.f / D H.f /SXX.f /H
�.f /

D jH.f /j2 SXX.f /: (A.108)

Once again, SYY.f / is periodic in f with a period of unity, i.e., SYY.f / D SYY.f C k/ for any integer k.
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cdma2000, 6, 7
Cell breathing, 19
Cell capacity, 28
Cell sectoring, directional antennas, 529
Cell splitting, 531

channel segmenting, 532
overlaid cells, 532
power reduction, 532

Cellular architectures
CDMA, 563

hierarchical, 574
selective transmit diversity, 584

cell sectoring, 529
cell splitting, 531
cluster planning, 536
fractional reuse, 533
hierarchical maximum ratio combining, 575
macrodiversity, 554
multi-carrier, 501
OFDMA, 517, 529
reuse partitioning, 533
TDMA, 529

Channel assignment, 643
autonomous reuse partitioning, (ARP), 657
carrier groups, 657
channel borrowing, 652
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Channel borrowing without locking (CBWL), 654
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signal and system correlation functions, 69
uncorrelated scattering channel, 66
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adjacent channel interference, 553
performance analysis, 540
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microcell performance, 547
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procedure, 536
system architecture, 536
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channel model, 375
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pairwise error probability, 381
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error probability, 383
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simplified approximation, 490
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multiuser detection, 491
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MMSE detector, 494
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power control, 4, 564

forward link, 581
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Code performance, flat fading, 429
Coherence bandwidth, 68
Coherence time, 68
Coherent detection, 234
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matched filter detector, 236
maximum likelihood receiver, 234
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Continuous phase frequency shift keying (CPFSK), 190
power spectrum, 219

Continuous phase modulation (CPM), 188
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detection, 265
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non-coherent detector, 267

excess phase, 189
frequency shaping function, 189

full response, 189, 190
partial response, 189

GMSK, 195
Laurent’s decomposition, 198
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partial response, 192
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power spectrum, 215
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Convolutional codes, 407

BCJR algorithm, 416
encoder, 407
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recursive systematic codes, 412
state diagram, 409
systematic, 409
total encoder memory, 410
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union bound, 424
union-Chernoff bound, 426
Viterbi algorithm, 414

Convolutional interleaver, 429
Correlation functions, 65
COST 207 models, 98, 128
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CPM. See Continuous phase modulation (CPM)
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Cyclostationary random process, 204

D

DCA. See Dynamic channel assignment (DCA)
Decision feedback equalizer, 352
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tap solution, 353

Delayed decision feedback sequence estimation (DDFSE), 360
Depolarization, 70
Differential detection, 258

binary DPSK, 258
nD4-DQPSK, 260

Differential encoding, 248
Digital Enhanced Cordless Telephone (DECT), 10
Digital modulation

CPFSK, 190
CPM, 188
GMSK, 195
linearized GMSK, 198
MSK, 191
multiresolution modulation, 188
nD4-DQPSK, 180
Nyquist pulse shaping, 173
OFDM, 185

ICI, 255
OQPSK, 180
orthogonal modulation, 182
power spectrum, 203
PSK, 179
QAM, 176
signal representation, 166

quadrature form, 166
signal correlation, 172
standard form, 166
complex envelope, 166
correlation, 173
envelope-phase form, 166
Euclidean distance, 173
generalized shaping function,166
signal energy, 172
vector space representation, 167

TFM, 200
vector-space representation, 231

Gram–Schmidt orthonormalization, 167
Directional antennas, 529
Direct sequence (DS) spread spectrum, 450

basic receiver, 452
frequency-selective fading, 478

RAKE receiver, 481
tapped delay line model, 480

long code, 450
PN chip, 450
power spectrum, 464
processing gain, 450
short code, 450

design, 475
spreading waveform, 450
tone interference, 467

long code, 477
short code, 470

Distributed antenna systems, 301
Diversity

macrodiversity, 22
multipath diversity, 481

Diversity techniques, 273
distributed antenna systems, 301
diversity combining, 274

equal gain, 283
Granlund combiner, 280
maximal ratio, 277

optimum combining, 291
postdetection equal gain, 286
selective, 275
square-law combining, 289
switched, 285

optimum combining, performance, 295
transmit diversity, 310
types, 273

Doppler shift, 35
Doppler spectrum, 39

bandpass, 41
Doppler spreading, 37
Duplexer, 1
Dynamic channel assignment (DCA), 643

aggressive and timid, 651, 662
TAKE carrier, 663

carrier acquisition criterion, 658
carrier orderings, 659
carrier release criterion, 658
centralized, 644, 646
channel segregation (CS), 649
compact pattern based DCA (CPDCA), 655
CS with variable threshold, 649
decentralized, 644, 648
dynamic resource acquisition (DRA), 648
first available (FA), 648
fully decentralized, 644, 649
maximum packing (MP), 646
MAXMIN, 647
mean square (MSQ), 648
minimum interference (MI), 650
nearest neighbor (NN), 648
nearest neighborC1 (NNC1), 648
random MI (RMI), 651
sequential MI, 651
simple DCA (SDCA), 659

E

Envelope correlation, 37, 48
Envelope distribution, 44
Envelope fading, 33
Envelope phase, multipath-fading, 47
Envelope spectrum, 48
Equal gain combining (EGC), 283
Equalizers

sequence estimation, 355
symbol-by-symbol, 343

decision feedback equalizer, 352
minimum mean-square-error, 348
linear, 344
zero-forcing, 344

Erlang, 25
Erlang-B formula, 27
Erlang capacity, 28
Erlang-C formula, 31
Error probability, 237

biorthogonal signals, 253
bit vs. symbol error, 241

equally likely symbol errors, 241
gray coding, 241

differential PSK, 248
lower bounds, 240
MSK, 265
OFDM, 253
orthogonal signals, coherent detection, 251
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Error probability, 237 (cont.)
pairwise error probability, 238
PAM, 248
PSK, 243

Rayleigh fading, 246
QAM, 250

Rayleigh fading, 251
rotational invariance, 242
rotations and translations, 242
translational invariance, 242
union bound, 239
upper bounds, 239

EV-DO, 7
Events

mutually exclusive, 671
statistically independent, 671

F

Fading, 33
Fading simulators, 78

Clarke’s model, 83
filtered Gaussian noise, 79
IDFT method, 79
IIR filtering method, 82
Jakes’ model, 84
method of exact Doppler spreads, 87
mobile-to-mobile channels, 100

Akki & Haber model, 100
Patel & Stüber deterministic model, 102
Patel & Stüber statistical model, 102
Zajić & Stüber statistical model, 103

modified Hoeher model, 88
multiple envelopes

Li & Huang Model, 90
Zajić & Stüber deterministic Model, 90
Zajić & Stüber statistical Model, 92
Zheng & Xiao model, 89

multiple faded envelopes, 89
sum of sinusoids method, 82
wide-band channels, 95

COST 207 models, 98
COST 259 models, 99
ITU models, 100
symbol-spaced model, 106

Zheng & Xiao model, 87
Fixed channel assignment (FCA), 643
Flat fading, 37
Folded spectrum, 174
Fractional reuse, 533
Frequency hopped (FH) spread spectrum

slow frequency hopped, 453
fast frequency hopped, 453

Frequency reuse, 13, 14
co-channel reuse distance, 14
co-channel reuse factor, 14
frequency plan, 14
interference neighborhood, 538, 648
microcells, 14
outage, 17
reuse cluster, 14
universal, 565

Frequency selective fading, 37
correlation functions, 65
transmission functions, 63
coherence bandwidth, 68

coherence time, 68
scattering function, 69

Frequency shift keying (FSK), 182
Frequency spreading, 37

G

Gaussian minimum shift keying (GMSK), 195
frequency shaping pulse, 197
Gaussian filter, 196
power spectrum, 222

Generalized tamed frequency modulation, 202
Global System for Mobile Communication (GSM), 3
Gold sequences, 458
Grade of service

definition, 645
forced termination, 645
new call blocking, 645

Granlund combiner, 280
Gray coding, 241

H

Hadamard matrix, 183, 460
Handoff algorithms, 593

velocity adaptive, performance, 613
backward, 594
direction biased, 597
forward, 594
hard, signal strength, 596
mobile assisted, 593, 596
mobile controlled, 593
network-controlled, 593
soft, C/I-based, 597
velocity adaptive, 611

Handoffs, 22
analysis, co-channel interference, 615
gain, 22
handoff priority, 645, 657, 660

guard channels, 645, 657
handoff queueing, 657, 660

hard, 594
analysis, 614
Corner effect, 594
hysteresis, 594

intercell handoff, 593
intracell handoff, 593
signal strength averaging, 598
soft, 595

active set, 623
analysis, 618, 623
interference analysis, 619
power control, 595

velocity estimation, 601
Handovers, 22
Hard decision decoding, 425
Hard handoff, 22
High-speed packet access (HSPA), 8

I

IEEE802.11, 11
IEEE802.15, 13
Interference loading, 19
Interleaving, 427

bit interleaver, 427
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block Interleaver, 428
convolutional Interleaver, 429
random, 439
S-random, 439
symbol interleaver, 427

International Telecommunications Union (ITU) models, 131
Intersymbol interference (ISI) channels, 173

discrete-time channel model, 336
channel impulse response, 340
diversity reception, 340
minimum energy property, 337
minimum phase, 337
noise whitening filter, 337

discrete-time, white noise channel model, 339
fractionally-spaced receiver, 341
ISI channel modeling, 333
ISI coefficients, 335
optimum receiver, 335
quasi-static fading, 340
vector-space representation, 334

IS-54/136, 4
IS-95, 4
Isotropic scattering, 39

K

Kasami sequences, 459
Kronecker product, 308

L

Laurent’s decomposition, 198
Level crossing rate, 53
Linearized GMSK, 198
Link budget, 18

cell breathing, 19
handoff gain, 20
interference loading, 19
interference margin, 19
maximum path loss, 19
receiver sensitivity, 19
shadow margin, 20

Link imbalance, 26
Log-normal approximations

Farley’s method, 152
Fenton–Wilkonson method, 149
Schwartz & Yeh method, 150

M

Macrodiversity, 554
probability of outage, 554
shadow correlation, 555
massive MIMO, 318
favorable propagation, 318, 324
forward link data, 323
system model, 319
pilot contamination, 319
reverse link data, 321
reverse link pilots, 320

Maximal ratio combining, 277
Maximum likelihood sequence estimation (MLSE), 355

adaptive receiver, 359
branch metric, 357
error event, 363
error probability, 363

fading ISI channels, 367
pairwise error probability, 365
static ISI channels, 365
T D 2-spaced receiver, 370
union bound, 364

fractionally-spaced receiver, 360, 373
likelihood function, 356
LMS algorithm, 359
log-likelihood function, 356
MIMO receivers, IRC receiver, 387
per survivor processing, 359
RLS algorithm, 359
state diagram, 355
states, 355
TD2-spaced receiver

Practical receiver, 373
Timing phase sensitivity, 372

Trellis diagram, 355
Viterbi algorithm, 357

Microcells, 14
highway microcells, 15
Manhattan microcells, 15

Microcellular systems, overlay/underlay, micro area, 538
MIMO. See Multiple-input multiple-output (MIMO) channels
Minimum mean-square error (MMSE) equalizer, 348

adaptive solution, 350
performance, 351
tap solution, 349

Minimum shift keying (MSK), 191
error probability, 265
OQASK equivalent, 191
power spectrum, 220

Mobile-to-mobile channels, reference model, 62
Modulation

bandwidth efficiency, 165
desirable properties, 165

Moments
central moment, 673
characteristic function, 673
generating function, 673
variance, 673

Multi-carrier, 501
Multipath, 33
Multipath-fading, 16

average fade duration, 56
Doppler spectrum, 39
flat, Rayleigh, 45
statistical characterization, 63
envelope correlation, 37, 48
envelope distribution, 44
flat fading, 37
frequency selective fading, 37
level crossing rate, 53
Nakagami fading, 46
phase distribution, 44
Ricean fading, 45
space-time correlation, 57
squared-envelope correlation, 51
zero crossing rate, 55

Multipath propagation, 33
Multiple-input multiple-output (MIMO) channels, 306

analytical models, 307, 308
co-channel demodulation, 375
detection, 313
inverse channel detector (ICD), 315
Kronecker model, 308
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Multiple-input multiple-output (MIMO) channels, 306 (cont.)
massive, 318
maximum likelihood detection, 314
minimum mean-square-error (MMSE) detector, 314
physical models, 307
procoding, 315
Weichselberger model, 309

Multiresolution modulation, 188
Multiuser detection, 491

decorrelator detector, 494
MMSE detector, 494
optimum detector, 492

N

Nakagami fading, 46
shape factor, 47

Non-coherent detection, 261
error probability, 263
square-law detector, 262

Nyquist frequency, 174
Nyquist pulse shaping, 173

folded spectrum, 174
ideal Nyquist pulse, 174
Nyquist first criterion, 174
raised cosine, 175

roll-off factor, 176
root-raised cosine, 176

O

Offset (OQPSK), 180
power spectrum, 210

Optimum combining, 291
Orthogonal frequency division multiple access (OFDMA), 517

forward link, 518
receiver, 521
transmitter, 518

frequency planning, 534
reuse partitioning, 535

PAPR, 523
raised cosine windowing, 520
reverse link, 522
sub-carrier allocation, 520

clustered carrier, 521
random interleaving, 521
spaced carrier, 521

time domain windowing, 518
Orthogonal frequency division multiplexing (OFDM), 185

adaptive bit loading, 187
channel estimation, 511
complex envelope, 185
cyclic suffix, 186
error probability, 253

interchannel interference, 255
FFT implementation, 186
guard interval, 502
ISI channels, 502
power spectrum, 211

IDFT implementation, 212
residual ISI, 504

cancellation, 508
Orthogonal modulation

binary orthogonal codes, 183
bi-orthogonal signals, 184
FSK, 182
orthogonal multipulse modulation, 184

Walsh-Hadamard sequences, 461
Orthogonal multipulse modulation, 184
Orthogonal signals, error probability

coherent detection, 251
non-coherent detection, 263

Outage, 17
co-channel interference, 17
thermal noise, 17

P

Pairwise error probability, 238
Parseval’s theorem, 693
Path loss models, 16, 114

CCIR model, 117
COST231-Hata model, 119
COST231-Walfish–Ikegami model, 120
empirical models, 117
flat Earth path loss, 115
free space path loss, 114
indoor microcells, 128
Lee’s area-to-area model, 118
line-of-sight probability, 124
mm-wave models, 127
Okumura–Hata model, 117
path loss exponent, 16
street microcells, 122

Corner effect, 123
3GPP 3-D path loss models, 123
two-slope model, 122

Personal Digital Cellular (PDC), 5
Personal Handy-phone System (PHS), 10
Phase distribution, 44
Phase shift keying (PSK), 179

error probability, 243
power spectrum, 210

Polarization, 69
conservation of polariation, 71
depolarization, 70
geometric modelin, 70
cross polarization discrimination, 70

Power control, 595
Power delay profile, 67

average delay, 67
rms delay spread, 67

Power spectral densities, 693
Power spectrum, 203

CPFSK, 219
complex envelope, 204

linear full response modulation, 207
linear partial response modulation, 208

DS spread spectrum, 464
full response CPM, 215
GMSK, 222
MSK, 220
nD4-DQPSK, 211
OFDM, 211

IDFT implementation, 212
OQPSK, 210
PSK, 210
QAM, 209
TFM, 222

Probability
Bayes’ theorem, 672
cdf, 673
cdfc, 673
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complementary error function, 676
conditional, 671
error function, 676
pdf, 673
total probability, 672

Probability distributions
binomial, 675
central chi-square, 680
complex multivariate Gaussian, 677
exponential, 681
Gaussian, 676
geometric, 675
multivariate Gaussian, 677
non-central chi-square, 681
Poisson, 675
Rayleigh, 678
Rice, 679

Pulse amplitude modulation (PAM), 178
constellations, 178
error probability, 248

Pulse shaping, partial response, 209

Q

Quadrature amplitude modulation (QAM), 176
error probability, 250
power spectrum, 209
signal constellations, 177

R

Radio propagation
diffraction, 15
fixed-to-mobile channels, 35
MIMO channels, 306
mobile-to-mobile channels, 61
multipath fading, 16
path loss, 16
reflections, 15
scattering, 16

Raised cosine pulse, 175
RAKE receiver, 481
Random processes, 685

autocorrelation, 687
autocovariance, 687
complex-valued, 692
covariance matrix, 690
crosscorrelation, 690
crosscovariance, 690
cyclostationary, 203, 696
discrete-time, 697
ergodic, 688

autocorrelation, 688
mean, 688

linear systems, 694
orthogonal, 691
statistically independent, 691
strictly stationary, 686
uncorrelated, 691
wide sense stationary, 687

Rayleigh fading, 44
Rayleigh quotient, 366
Receiver sensitivity, 19
Recursive systematic convolutional codes, 412
Reduced state sequence estimation (RSSE)

subset-state, 362
subset transition, 362

subset trellis, 362
Reuse partitioning, 533

cell splitting, 534
Ricean fading, 45

Aulin’s model, 45
Rice factor, 45

Rice factor, 45
Root-raised cosine pulse, 176
RSSE. See Reduced state sequence estimation (RSSE)

S

Scattering function, 69
SC-FDE. See Single-carrier frequency domain equalization (SC-FDE)
SC-FDMA. See Single-carrier frequency division multiple access

(SC-FDMA)
Selective combining, 275
Sequence estimation

DDFSE, 360
MLSE, 355
RSSE, 362

Shadowing, 16, 34, 110
area mean, 111
composite shadow-fading distributions, 112

gamma-log-normal, 113
local mean, 110
location area, 110
shadow standard deviation, 16
simulation, 111

Signal and system correlation functions, 69
Signal strength averaging, 598

sample averaging, 600
window length, 599

Single-carrier frequency division multiple access (SC-FDMA), 523
frequency domain equalization, 525
PAPR, root-raised cosine filtering, 526
receiver, 523
sub-carrier allocation

interleaved, 523
localized, 524

transmitter, 523
Single-carrier frequency domain equalization (SC-FDE),

513
MMSE, 517
zero forcing, 516

Singleton bound, 400
Soft decision decoding, 425
Soft handoff, 4, 22
Space-time block codes, 403

Alamouti code, 403
code rate, 403
complex orthogonal codes, 405
decoding orthogonal codes, 406
orthogonal codes, 403
real orthogonal codes, 404

Space-time codes
design, 434
determinant criterion, 436
rank criterion, 436
Trellis codes, 436

Space-time correlation, 57
base station, 59
mobile station, 57

Space-time trellis codes, 436
decoder, 437
encoder description, 436
Viterbi algorithm, 438
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Spatial efficiency, 25
Spatial modulation, 316
Spectral efficiency, 24

bandwidth efficiency, 25
spatial efficiency, 25
trunking efficiency, 27

Spreading
dual-channel quaternary, 451
balanced quaternary, 451
complex, 450
simple binary, 451

Spreading sequences, 454
full period autocorrelation, 454
aperiodic autocorrelation, 454
full period cross-correlation, 454
partial period correlation, 454
Zadoff–Chu sequences, 462

Spreading waveforms, 455
autocorrelation, 455
Barker sequences, 459
complementary codes, 462
Gold sequences, 458
Kasami sequences, 459
m-sequences, 456
variable length orthogonal codes, 461
Walsh-Hadamard sequences, 460

Spread spectrum, 449
Squared-envelope correlation, 51
Squared-envelope spectrum, 51
Square-law combining, 289
Standard array decoding, 402
Syndrome decoding, 403

T

Tamed frequency modulation, 200
Tone interference, 467
Transmission functions, 63

delay Doppler-spread function, 65
impulse response, 63
output Doppler-spread function, 64
transfer function, 65

Transmit diversity, 310
Trellis-coded modulation (TCM), 420

asymptotic coding gain, 424
design rules, 432
encoder, 420
mapping by set partitioning, 421
pairwise error probability, 424
partition chain, 421
performance AWGN channel, 423
power spectrum, 222
symbol interleaving, 429
union bound, 424

Trellis coding
minimum built-in time diversity, 431
minimum product squared Euclidean distance, 431

Trunking efficiency, 27
Erlang-B formula, 27
grade of service, 643

Turbo codes, 438
error floor, 443
parallel decoder, 440
parallel encoder, 439
serial encoder, 441
uniform interleaver, 443

weight distribution, 442
parallel codes, 443
serial codes, 445
spectral thinning, 442

U

Uncorrelated scattering channel, 66
Universal Mobile Telecommunications System (UMTS), 6, 7
Upper bounds

Chebyshev bound, 682
Chernoff bound, 426, 683
union-Chernoff bound, 427

V

Variable length orthogonal codes, 461
Vector-space representation, 231

remainder process, 232
sufficient statistics, 234

Velocity estimation, 601
level crossing rate, 603

covariance method, 606
envelope, 603
zero crossing rate, 603

sensitivity, 607
Gaussian noise, 609
sampling density, 612
scattering distribution, 608

Viterbi algorithm, 357, 414
branch metric, 415
path metrics, 357, 414
surviving sequences, 357
survivors, 414

W

Walsh-Hadamard sequences, 460
orthogonal CDMA, 461
orthogonal modulation, 461

Wideband Code Division Multiple Access (WCDMA), 6
Wide sense stationary channel, 66
Wide sense stationary uncorrelated scattering channel, 67
Wireless systems and standards, 1

analog cellular systems, 1
cordless telephones

DECT, 10
PHS, 10

fifth generation cellular systems, 10
fourth generation cellular systems, 8

LTE, 9
WiMAX, 9

second generation cellular systems
GSM, 3
IS-54/136, 4
IS-95, 4
Personal Digital Cellular, 5
systems and standards, 2

third generation cellular systems, 5
cdma2000, 6, 7
EV-DO, 7
HSPA, 8
UMTS, 6, 7
W-CDMA, 6

wireless LANS, 11
IEEE802.11, 11
and PANs, Bluetooth, 13
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and PANs, IEEE802.15, 13
wireless PANs, IEEE802.15, 13

Worldwide Interoperability for Microwave Access (WiMAX), 9

Z

Zadoff-Chu sequences, 462

Zero crossing rate, 55
Zero-forcing equalizer, 344

adaptive solution, 346
data mode, 346
performance, 346
tap solution, 345
training mode, 346
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