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Preface

Principles of Mobile Communication, Fourth Edition, like its earlier editions, stresses mathematical modeling of physical
layer wireless communication systems. The basic pedagogic methodology is to include fully detailed derivations from the
first principles. The textbook is intended to provide enough principle material to guide the novice student, while at the same
time having plenty of detailed material to satisfy graduate students inclined to pursue research in the area. The textbook
stresses the principles of wireless communications that are applicable to a wide array of wireless systems standards. It is
intended to serve as a textbook and reference for graduate students and a useful reference for practicing engineers.

Organization of the Book

Chapter 1 begins with an overview that is intended to introduce a broad array of issues relating to wireless communications.
Included is a brief description of the evolution of various wireless standards from first-generation cellular standards through
emerging fifth-generation cellular standards. Afterwards, the basic concepts of cellular frequency reuse, the land mobile radio
propagation environment, link budget, and coverage and capacity of cellular radio systems are discussed at an introductory
level.

Chapter 2 provides an extensive treatment of radio propagation, since a good understanding of the physical wireless
channel is essential for the development and deployment of wireless systems. The chapter begins with a treatment of the
narrowband fading envelope for conventional fixed-to-mobile channels found in cellular radio systems, and mobile-to-
mobile channels found in mobile ad hoc networks. After establishing a foundation for understanding narrowband channels,
the chapter next treats the statistical characterization of wideband channels. Polarization and depolarization effects are
important in wireless systems, the text goes on to discuss the mechanisms and characteristics of channel depolarization.
The emulation of wireless channels is essential for the development and testing of wireless systems, and the chapter provides
a detailed discussion of multipath-fading channel simulation techniques. Finally, the chapter concludes with a discussion of
shadowing and path loss models for land mobile radio environments, including those for small cells, and emerging mm-wave
frequencies.

Chapter 3 provides a treatment of co-channel interference which, is the primary impairment in spectrally efficient cellular
frequency reuse systems. Very often the receivers in such systems are affected by multiple co-channel interferers. The
probability distribution of the total interfering power, and the power sum of noncoherent co-channel interferers are considered
in detail. Additionally, something of interest is a certain received signal-to-interference-plus-noise ratio outage threshold
performance under various large- and small-scale fading conditions.

Chapter 4 covers the various types of modulation schemes that are used in mobile communication systems along with their
spectral characteristics. The chapter begins with the mathematical representation of bandpass modulated signals, along with
Nyquist pulse shaping. Afterwards, a large variety of modulation schemes used in wireless systems are considered, including
both single-carrier and multi-carrier modulation, and both linear and nonlinear modulation techniques. This is followed by
a treatment of the power density spectrum of modulated signals. Although quite mathematical in nature, power spectrum
is an important topic, since wireless systems are required to operate within a specified out-of-band emission mask. For this
reason, all modulation schemes in Chap. 4 are expressed in terms of a generalized shaping function. The power spectrum is
first derived for the generalized shaping function, followed by that of particular modulation schemes.
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Chapter 5 discusses the error probability performance of various digital modulation schemes discussed in Chap. 4 on flat
fading channels. The performance is evaluated with a variety of receiver structures, including coherent detectors that assume
knowledge of the complex channel gain at the receiver and differentially coherent detectors and noncoherent detectors that
do not require carrier phase information.

Chapter 6 includes a treatment of multi-antenna techniques. The chapter begins with a discussion of various receiver
diversity techniques for coherent, differentially coherent, and noncoherent detection of signals on fading channels corrupted
by additive white Gaussian noise. Next, optimal combining is discussed, a technique that is effective when the primary
additive impairment is co-channel interference rather than noise. This is followed by a discussion of classical beam forming
with uniform linear arrays. The chapter next considers multiple-input multiple-output (MIMO) channels where multiple
antennas are used at both the transmitter and receiver to achieve high spectral efficiency. Next, the Alamouti transmit diversity
scheme is presented, followed by a brief treatment of MIMO detection. Then, the chapter explores the concept of spatial
modulation where a subset (often one) of an array of antenna elements is excited. The chapter concludes with a treatment of
massive MIMO, where many base station antennas are used with one or more mobile station antennas.

Chapter 7 considers digital signaling on intersymbol interference (ISI) channels that are typical of land mobile radio
systems. The chapter begins with the characterization of ISI channels and goes on to discuss techniques for combating ISI
based on time domain symbol-by-symbol equalization and sequence estimation. Afterwards, error probability for maximum
likelihood sequence estimation is considered. The chapter concludes with a discussion of co-channel demodulation on ISI
channels and considers a receiver for ISI channels that can reject co-channel interference.

Chapter 8 covers error control coding techniques for wireless systems. The chapter begins with a discussion of basic
block coding, including space-time block codes. Convolutional coding is considered next along with the Viterbi and BCJR
algorithms for decoding convolutional codes, followed by trellis coded modulation. The chapter then provides a detailed
discussion on the design and performance analysis of convolutional and trellis codes for AWGN channels, interleaved flat
fading channels, and fading ISI channels. Afterwards, space-time trellis codes are treated, and the chapter concludes with
Turbo coding.

Chapter 9 is devoted to spread spectrum techniques. The chapter begins with an introduction to direct sequence and
frequency hop spread spectrum. This is followed by a detailed treatment of spreading sequences. Also included is a discussion
of the effects of tone interference on direct sequence spread spectrum and the RAKE receiver performance on wideband
channels. This is followed by a discussion of the error probability of direct sequence code division multiple access (CDMA)
with a conventional correlation detector. The chapter wraps up with a discussion of CDMA multiuser detection.

Chapter 10 is devoted to multi-carrier techniques. The chapter first considers the performance of OFDM on frequency-
selective channels. The effects of residual intersymbol interference (ISI) due to an insufficient guard interval are considered,
followed by a remedy. Afterwards, the chapter examines single-carrier frequency domain equalization (SC-FDE) techniques.
This is followed by a treatment of orthogonal frequency division multiple access (OFDMA) on both forward, and reverse
links. The chapter concludes with a discussion of single-carrier frequency division multiple access (SC-FDMA).

Chapter 11 considers frequency planning techniques for cellular systems. The chapter begins with a discussion of cell
sectoring, cell splitting, and reuse partitioning. Afterwards, the chapter considers radio planning for OFDMA cellular
systems. This is followed by a detailed treatment of hierarchical overlay/underlay architectures based on cluster planning.
Finally, the chapter wraps up with macrodiversity TDMA cellular architectures.

Chapter 12 considers CDMA cellular systems, considering topics such as capacity and power control. This is followed by
a discussion of hierarchical macrodiversity CDMA architectures and their performance. Such systems allow, for example,
the signals that are received at multiple base stations to be forwarded to a central point for coherent combining, rather than
simple selection diversity.

Chapter 13 is devoted to cellular radio resource management. The chapter begins with an introduction to basic hard and
soft handoff. Afterwards, the chapter considers the important problem of link quality evaluation, including signal strength
averaging, velocity estimation, and velocity adaptive handoff algorithms. Afterwards, a detailed analysis of hard and soft
handoff is provided. Finally, the chapter wraps up with methods for estimating the received carrier-to-interference-plus-noise
ratio (CINR), which is an important quantity in many types of wireless systems.

Chapter 14 considers channel assignment techniques. This chapter first discusses basic channel assignment techniques and
then presents the details of some channel assignment techniques including centralized and decentralized dynamic channel
assignment.

Appendix A is a brief and focused tutorial discussion of probability and random processes. A good understanding of the
material in Appendix A is essential, since the concepts are widely used throughout the textbook.
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Chapter 1
Introduction

Commercial wireless systems and services have undergone rapid development and deployment, since first generation cellular
telephone systems were introduced in the early 1980s. These first generation (1G) cellular telephone systems were based on
analog frequency modulation (FM) technology and designed to carry narrow-band circuit-switched voice services. The first
generation cellular service providers seen an exponential growth rate in their subscriptions, and by the late 1980s capacity
limits were already reached in the largest markets with 1G cellular systems. In response to such heavy demand, second
generation (2G) digital cellular systems were developed and introduced in the early 1990s and their evolutions are still
in operation today. These 2G cellular systems were/are based on either time division multiple access (TDMA) or code
division multiple access (CDMA) technologies, and were initially designed to carry circuit-switched voice and data. During
the 1990s, these 2G systems were enhanced to provide packet-switched data in addition to circuit-switched voice. These
transitional 2G cellular systems with their enhanced data transmission capabilities later became known as 2.5G systems.
Third generation (3G) cellular systems were introduced after the year 2000 that allowed simultaneous use of speech and
data services and still higher data rates. These higher data rate capabilities were supplemented by geolocation information,
giving rise to location dependent services. Currently, fourth generation (4G) cellular systems are deployed that use voice
over Internet Protocol (VoIP) and multimedia applications with broadband access. These 4G systems are based on multi-
carrier modulation/multiplexing techniques such as orthogonal frequency division multiple access (OFDMA), or advanced
single-carrier modulation/multiplexing techniques such as single-carrier frequency division multiple access (SC-FDMA).
Fifth generation (5G) wireless systems are currently under research and development.

1.1 Brief History of Wireless Systems and Standards

Although this textbook is intended to address the fundamentals of wireless communications, it is nevertheless useful to have
some basic knowledge of the history and evolution of wireless systems and standards. The following gives a brief description
of the major standards that have been developed or are under development for cellular radio systems, cordless phone systems,
and wireless local and personal area networks.

1.1.1 First Generation (1G) Cellular Systems

The early 1970s saw the emergence of the radio technology that was needed for the deployment of mobile radio systems in
the 800/900 MHz band at a reasonable cost. In 1976, the World Allocation Radio Conference (WARC) approved frequency
allocations for cellular telephones in the 800/900 MHz band, thus setting the stage for the commercial deployment of cellular
systems. In the early 1980s, many countries deployed incompatible first generation (1G) cellular systems based on frequency
division multiple access (FDMA) and analog FM technology. With FDMA there is a single traffic channel per radio frequency
carrier. When a user accesses the network two carriers (channels) are actually assigned, one for the forward (base-to-mobile)
link and one for the reverse (mobile-to-base) link. Separation of the forward and reverse carrier frequencies is necessary
to allow implementation of a duplexer, an arrangement of filters that isolates the forward and reverse link channels, thus
preventing a radio transceiver from jamming itself.

© Springer International Publishing AG 2017 1
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Table 1.1 First generation (1G) cellular standards

Feature
Frequency band
RL/FL?

(MHz)

Carrier spacing
(kHz)

Number of
channels

Modulation

NTT
925-940/870-885
915-918.5/860-863.5
922-925/867-870

25/6.25
6.25

6.25
600/2400
560

280
Analog FM

ARL = reverse link, FL. = forward link
"frequency interleaving using overlapping channels, where the channel spacing is half the nominal channel bandwidth

NMT
890-915/917-950

12.5°

1999

Analog FM

Table 1.2 Second generation (2G) digital cellular standards, GSM and IS-54/136

Feature
Frequency band
RL/FL?
(MHz)

Multiple access
Carrier spacing (kHz)
Modulation

Baud rate (kb/s)
Frame size (ms)
Slots/Frame

Voice coding (kb/s)

Channel coding
Frequency hopping
Handoff

4RL = reverse link, FL = forward link

GSM/DCS1800/PCS1900
GSM: 890-915/
935-960

DCS1800: 1710-1785/
1805-1880

PCS1900: 1930-1990/
1850-1910

F/TDMA

200

GMSK

270.833

4.615

8/16

VSELP(HR 6.5)
RPE-LTP (FR 13)
ACELP (EFR 12.2)
Rate-1/2 CC

Yes

Hard

AMPS
824-849/869-894

30

832

Analog FM

IS-54/136
824-829/
869/894
1930-1990/
1850-1910

F/TDMA

30

7/4-DQPSK
48.6

40

3/6

VSELP (FR 7.95)
ACELP (EFR 7.4)
ACELP (12.2)
Rate-1/2 CC

No

Hard

1
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In 1979, the first analog cellular system, the Nippon Telephone and Telegraph (NTT) system, became operational. In
1981, Ericsson Radio Systems AB fielded the Nordic Mobile Telephone (NMT) 900 system, and in 1983 AT&T fielded
the Advanced Mobile Phone Service (AMPS) as a trial in Chicago, IL. Many other first generation analog systems were
also deployed in the early 1980s including TACS, ETACS, NMT 450, C-450, RTMS, and Radiocom 2000 in Europe, and
JTACS/NTACS in Japan. The basic parameters of NTT, NMT, and AMPS are shown in Table 1.1. All 1G cellular systems

are now extinct.

1.1.2 Second Generation (2G) Cellular Systems

Second generation (2G) digital cellular systems were developed in the 1980s and early 1990s, and widely deployed
throughout the world in the 1990s. These included the GSM/DCS1800/PCS1900 standard in Europe, the Personal Digital
Cellular (PDC) standard in Japan, and the IS-54/136 and IS-95 standards in the USA. Major parameters of the air interface
specifications of these standards are summarized in Tables 1.2 and 1.3, and a very brief description of each is provided below.
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Table 1.3 Second generation (2G) digital cellular standards, PDC and IS-95

Feature PDC 1S-95

Frequency band 810-826/ 824-829/

RL/FL? 940-956 869-894

(MHz) 1429-1453/ 1930-1990/
1477-1501 1850-1910

Multiple access F/TDMA F/CDMA

Carrier spacing (kHz) 25 1250

Modulation 7/4-DQPSK QPSK

Baud rate (kb/s) 42 1228.8 Mchips/s

Frame size (ms) 20 20

Slots/Frame 3/6 1

Voice coding (kb/s) PSI-CELP (HR 3.45) QCELP (8,4,2,1)
VSELP (FR 6.7) RCELP (EVRC)

Channel coding Rate-1/2 BCH FL: rate-1/2 CC

RL: rate-1/3 CC
Frequency hopping No N/A
Handoff Hard Soft

ARL = reverse link, FL = forward link

0.577 ms Time Slot

R TCH C SW C TCH R G
3 57 1 26 1 57 3| 825
R Guard time for burst transient response (Ramp time)
TCH  Traffic channel
C Control bit
SW Synchronization word
G Guard bits

Fig. 1.1 Time slot format for GSM. Units are in bits

1121 GSM

European countries seen the deployment of incompatible 1G cellular systems that did not admit roaming throughout Europe.
As aresult, the Conference of European Postal and Telecommunications Administrations (CEPT) established Groupe Spécial
Mobile (GSM) in 1982 with the mandate of defining standards for future Pan-European cellular radio systems. The GSM
system (now “Global System for Mobile Communications”) was developed to operate in a new frequency allocation, and
made improved quality, Pan-European roaming, and the support of data services its primary objectives. GSM was deployed
in late 1992 as the world’s first digital cellular system.

GSM can support full rate (8 slots/carrier) and half rate (16 slots/carrier) voice operation, and provide various synchronous
and asynchronous data services at 2.4, 4.8, and 9.6 kb/s. GSM uses TDMA with 200 kHz carrier spacings, eight channels per
carrier with a time slot (or burst) duration of 0.577 ms, and Gaussian minimum shift keying (GMSK) with a raw bit rate of
270.8 kb/s. The time slot format of the GSM traffic channels is shown in Fig. 1.1. Variants of GSM have also been developed
to operate in the 900 MHz and 1800 MHz bands in Europe, and the 850 MHz and 1900 MHz bands in North America.

GSM Release 97 added packet data capabilities by aggregating all time slots together for a single user. This enhancement
provides data rates up to 140kb/s and is called General Packet Radio Service (GPRS). GSM Release *99 introduced higher
speed data transmission by using a higher-level 8-PSK modulation format (up to 473.6kb/s with uncoded 8-PSK). This
enhancement is called Enhanced Data Rates for GSM Evolution (EDGE). Some parameters of the EDGE standard are shown
in Table 1.4. EDGE was deployed worldwide except for Japan and South Korea. GPRS and EDGE are generally branded as
2.5G systems.
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Table 1.4 Parameters of the

Multiple access TDMA
EDGE standard Duplexing FDD

Carrier spacing (kHz) 200

Modulation 8-PSK/GMSK

Frame length (ms) 4.615

Slots/Frame 8

Maximum bit rate (kb/s) | 473.6 (8-PSK)/140.8 (GMSK)

GSM has been a phenomenal success and is one of the most widely deployed cellular standards. By late 1993, over a
million subscribers were using GSM phone networks. By 2013, GSM had over 6.5 billion subscribers across 219 countries
and territories with roaming everywhere except for Korea and Japan. However, some cellular operators discontinued GSM
service starting in January 2017.

1.1.2.2 1S-54/136 and IS-95

In North America the primary driver for second generation systems was the capacity crunch felt by some AMPS operators
in the largest US markets by the late 1980s. One of the key objectives established by the Cellular Telephone Industry
Association (CTIA) at the time was a ten-fold increase in capacity over AMPS. Furthermore, since AMPS was already
deployed extensively throughout North America, it was desirable that any second generation cellular system be reverse
compatible with AMPS. This eventually led to the development of dual-mode cellular standards in North America.

While Europe seen a convergence to the GSM standard based on TDMA technology, North America saw a divergence to
two second generation digital cellular standards, IS-54/136 and IS-95, based on TDMA and CDMA technology, respectively.
The 1S-54 standard, adopted in 1990, was based on TDMA with 30 kHz carrier spacings (the same as AMPS) and 77 /4 phase-
shifted quadrature differential phase shift keyed (77 /4-DQPSK) modulation with a raw bit rate of 48.6 kb/s [104]. IS-54 and
IS-136 differed in the control channel; IS-54 used an analog control channel, whereas IS-136 used a digital control channel.
The IS-54/136 air interface specified 6 slots (or bursts) per frame, yielding 3 full rate channels or 6 half rate channels per
carrier. The burst format for the IS-54/136 traffic channel is shown in Fig. 1.2. IS-54/136 was once deployed widely in the
USA and Canada during the 1990s, but its use was discontinued in the 2007-2009 time frame in favor of GSM/GPRS/EDGE.

Just after the CTIA adopted IS-54 in 1990, another second generation digital cellular standard was proposed by Qualcomm
based on CDMA technology. The introduction of IS-95 proposal saw considerable debate and spirited exchanges over the
relative capacity and merits of TDMA and CDMA cellular systems at the time. Initial capacity claims for IS-95 were 40 times
AMPS. In March 1992, CDMA was adopted as the I1S-95 standard [105]. Initial commercial deployments in Korea showed
a capacity gain of 6-10 times AMPS. The introduction of IS-95 CDMA cellular was of historical significance, because 3G
cellular systems are based on CDMA technology.

With IS-95, the basic user data rate is 9.6 kb/s for Rate Set 1 (RS1) and 14.4 kb/s for Rate Set 2 (RS2), which is spread by
using a pseudo-noise (PN) sequence with a chip rate of 1.2288 Mchips/s. The forward channel supports coherent detection
by using an unmodulated pilot channel for channel estimation. Information on the forward link is encoded by using a rate-1/2
convolutional code, interleaved, spread by using one of the 64 orthogonal Walsh codes, and transmitted in 20 ms bursts. Each
mobile station (MS) in a cell is assigned a different Walsh code, thus providing complete orthogonality under ideal channel
conditions. Final spreading with a PN code of length 2!°, having a phase offset that depends on each base station (BS), is
used to mitigate the multiple access interference to and from other cells.

CDMA systems are susceptible to the near-far effect, a phenomenon where MSs close into a BS will swamp out the signals
from more distant MSs. For CDMA systems to function properly, all signals to be recovered must be received with (nearly)
the same power. To combat the near-far effect, the IS-95 reverse link uses fast closed loop power control to compensate for
fluctuations in received signal power due to the radio propagation environment. The information on the IS-95 reverse link is
encoded by using a rate-1/3 convolutional code, interleaved, and mapped onto one of the 64 Walsh codes. Unlike the IS-95
forward channel that uses Walsh codes for spreading, the reverse link uses Walsh codes for 64-ary orthogonal modulation.
The BS receiver uses non-coherent detection, since no pilot signal is transmitted on the reverse link. Both the BSs and the
MSs use RAKE receivers to provide multipath diversity. To ensure that the power control algorithm is stable, CDMA cellular
systems must use soft handoff, where the MS maintains a radio link with multiple BSs when traversing between cells and
softer handoff when traversing between sectors of the same cell.
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Fig. 1.2 Burst format for 1S-54/136 traffic channel. Units are in bits

In 1998, the IS-95B standard was approved to support packet switched data with rates up to 115.2 kbps by using multi-
code CDMA, where up to 8 Walsh codes are aggregated and assigned to a single user in a dynamic and scheduled manner.

1.1.2.3 PDC

In 1991, the Japanese Ministry of Posts and Telecommunications standardized Personal Digital Cellular (PDC). The air
interface of PDC is similar to 1S-54/136. PDC uses TDMA with 3 full rate (6 half rate) channels per carrier, 25 kHz carrier
spacings, and 7 /4-DQPSK modulation with a raw bit rate of 42 kb/s. The burst format for the PDC traffic channels is shown
in Fig. 1.3. Notice that the synchronization word is placed near the center of the PDC burst, whereas it is placed near the
beginning of the IS-54/136 burst as shown in Fig. 1.2. This feature better enables the PDC receiver to track channel variations
over the time slot. Another key feature of PDC standard is the inclusion MS antenna diversity. Like 1S-54/136, PDC suffers
from degraded performance under conditions of low delay spread due to the loss of multipath diversity. However, antenna
diversity in the PDC MS receiver provides spatial diversity under these conditions. More details on the PDC system can be
found in the complete standard [282]. PDC reached a peak of nearly 80 million subscribers, but the standard became extinct
in 2012 in favor of 3G cellular technologies.

1.1.3 Third Generation (3G) Cellular Systems

In March 1992, WARC approved a worldwide spectral allocation in support of IMT-2000 (International Mobile Telephone by
the Year 2000) in the 1885-2200 MHz band. The IMT-2000 standard was developed by the International Telecommunications
Union Radio Communications (ITU-R) and Telecommunications (ITU-T) sectors. Various standards bodies around the world
provided inputs to the IMT-2000 standard definition. IMT-2000 was envisioned as an ubiquitous wireless system that could
support voice, multimedia, and high speed data communication. The ITU provided no clear definition of the minimum or
average rates users could expect from 3G equipment or providers. However, it was generally expected at the time that 3G
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Fig. 1.3 Time slot format for Japanese PDC. Units are in bits

networks would provide a minimum downlink peak data rate of 2 Mbit/s for stationary or walking users, and 384 kbit/s in a
moving vehicle.

IMT-2000 was actually a family of standards. Two of the standards were based on TDMA approaches, namely EDGE
and Digital Enhanced Cordless Telephone (DECT). While the EDGE standard fulfilled the requirements for IMT-2000,
EDGE networks are typically branded as 2.5G networks rather than 3G networks. The most predominant forms of IMT-
2000 are cdma2000 developed by 3GPP2 and the Universal Mobile Telecommunications System (UMTS) family of
standards, which includes Wideband Code Division Multiple Access (WCDMA), developed by 3GPP. Sometimes WCDMA
is used synonymously with UMTS. Mobile WiMAX (Worldwide Interoperability for Microwave Access), developed by
the IEEE802.16 working group, is also included under the IMT-2000 umbrella as a 3.5G standard, although it is sometimes
referred to as a 4G standard for branding purposes. WiMAX is a multi-carrier scheme based on orthogonal frequency division
multiple access (OFDMA).

Table 1.5 summarizes the main parameters for WCDMA and ¢cdma2000. The common attributes of WCDMA and
c¢mda2000 include the following:

* Provision of multi-rate services

» Packet data services

e Complex spreading

* A coherent uplink using a user dedicated pilot

* Additional pilot channel in the downlink for beam forming
¢ Seamless inter-frequency handoff

» Fast forward link power control

* Optional multi-user detection.

The major differences between WCDMA and cdma2000 center around the chip rate that is used, and synchronous
(cdma2000) vs. asynchronous (WCDMA) network operation. Synchronous operation with cdma2000 is achieved by using a
global positioning system (GPS) clock reference.
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Table 1.5 Parameters for WCDMA and cdma2000

Feature WCDMA cdma2000

Multiple access DS-CDMA DS-CDMA

Chip rate (Mcps) 3.84 1.2288

Carrier spacing (MHz) 5 1.25

Frame length (ms) 10 5/20

Modulation FL: QPSK FL: BPSK/QPSK
RL: BPSK RL: BPSK

64-ary orthogonal

Coding Rate-1/2, 1/3 Rate-1/2, 1/3, 1/4,
K=9CC 1/6 K = 9CC
Rate-1/3 Rate-1/2, 1/3, 1/4,
K = 4 turbo code 1/5, K = 4 turbo code

Interleaving Inter/Intraframe Intraframe

Spreading FL: BPSK Complex
RL: QPSK

Inter BS Asynchronous Synchronous

synchronization

1.1.3.1 c¢dma2000

The cdma2000 family of standards developed by 3GPP2 evolved from IS-95A/B and included cdma2000 1x, cdma2000E V-
DO Rev. 0, cdma2000 EV-DO Rev. A, and cdma2000 EV-DO Rev. B. cdma2000 1x, also known as 1x and 1xRTT, is the
core cdma2000 wireless air interface standard, and was recognized by the ITU as an IMT-2000 standard in November 1999.
It was the first IMT-2000 technology deployed worldwide, in October 2000. The designation “1x” stands for 1 times Radio
Transmission Technology, and means that the system has the same RF bandwidth as IS-95: a duplex pair of 1.25 MHz
radio channels. cdma2000 1x almost doubles the capacity of IS-95 by adding 64 more traffic channels to the forward link,
orthogonal to (in quadrature with) the original set of 64 forward channels. The cmda2000 1x Release O standard supports
bi-directional peak data rates of up to 153 kbps and Release 1 can achieve peak data rates of up to 307 kbps in a single
1.25 MHz channel. cdma2000 1x supports a variety of applications including circuit-switched voice, short messaging service
(SMS), multimedia messaging service (MMS), games, GPS-based location services, music and video downloads.

EV-DO which now stands for “Evolution-Data Optimized” was initially developed by Qualcomm in 1999 to meet the
IMT-2000 requirements for a minimum 2-Mbit/s downlink speed for stationary or walking users, and is sometimes referred
to as IS-856. EV-DO uses a mixture of CDMA and TDMA to maximize both individual user’s throughput and the overall
system throughput. EV-DO was typically used for broadband Internet access and offered speeds of 2.4 Mbits/s downlink
and 153 kbit/s uplink. EV-DO Rev A was introduced to offer higher peak data rates of 3.1 Mbits/s downlink and 1.8 Mbit/s
uplink. EV-DO Rev A implemented multi-flow packet application (MFPA), where multiple application data flows can be
supported that are assigned different priorities according to their associated quality of service (QoS) profiles. EV-DO Rev A
has been adopted by many service providers in the USA, Canada, Mexico, Europe, Asia, Russia, Brazil, and Australia. As
of 2014, there were 175 EV-DO Rev A networks.

1.1.3.2 UMTS

UMTS was developed by 3GPP and is part of the global ITU IMT-2000 standard. The most common form of UMTS
uses WCDMA (IMT Direct Spread) as the underlying air interface. However, UMTS also includes the TD-CDMA and
TD-SCDMA (both IMT CDMA TDD) air interfaces. The first deployment of UMTS was the Release’99 architecture.
UMTS required new base stations and new frequency allocation over 2G cellular systems. However, it is closely related
to GSM/EDGE as it borrows and builds upon concepts from GSM. Further, most UMTS handsets also support GSM,
allowing seamless dual-mode operation. WCDMA uses paired 5 MHz channels and can support peak data rates of up to
384 kbit/s, both uplink and downlink, for Release’99 handsets. WCDMA systems were criticized for their large (5 MHz)
bandwidth requirement, which delayed deployment in countries (such as the USA) that acted relatively slowly in allocating
new frequencies specifically for 3G services.
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Starting in 2006, UMTS networks in many countries were upgraded to include High Speed Packet Access (HSPA),
sometimes known as 3.5G. High Speed Downlink Packet Access (HSDPA) enables peak downlink transfer speeds of
14 Mbit/s and High Speed Uplink Packet Access (HSUPA) has peak data rates of 5.8 Mbit/s in the uplink, although most
initial HSDPA network deployments had peak downlink speeds of 7.2 Mbps. As of 2014, HSPA was commercially deployed
by 550 operators in 203 countries. Evolved HSPA (also known as HSPA+) was defined in 3GPP Release 7 and 8 of the
WCDMA specification. In WCDMA Release 11, HSPA+ can theoretically reach up to 337 Mbit/s in the downlink and
34 Mbit/s in the uplink by using multiple-input multiple-output (MIMO) technologies and high-order modulation schemes.
However, these data speeds are rarely realized and most HSPA+ networks provide for 168 Mbit/s in the downlink and
22 Mbit/s in the uplink. As of 2014, there were 365 HSPA+ networks in 157 countries.

1.1.4 Fourth Generation (4G) Cellular Systems

Fourth generation cellular systems have capabilities defined by the ITU in IMT-Advanced. IMT-Advanced specifies peak
data rates of 100 Mbps in high mobility applications and 1 Gbps in stationary or low mobility applications. IMT-Advanced
has the following requirements:

* Flexible channel bandwidth, between 5 and 20 MHz, optionally up to 40 MHz.

* A nominal peak data rate of 100 Mbps in high mobility, and 1 Gbps for stationary environments.
* A datarate of at least 100 Mbps between any two points in the world.

* Bandwidth efficiency of up to 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in the uplink.

* Spectral efficiency of up to 3 bit/s/Hz/cell in the downlink.

¢ Smooth handoff across heterogeneous networks.

* Seamless connectivity and global roaming across multiple networks.

» High quality of service (QoS) for next generation multimedia support.

¢ Backward compatibility with existing wireless standards.

e All Internet Protocol (IP) packet-switched network.

Two candidate 4G systems have been standardized and deployed commercially, (1) Long Term Evolution (LTE) as
standardized by 3GPP, and (2) IEEE 802.16e (Mobile WiMAX) as standardized by the IEEE. However, it is debatable
as to whether or not these first versions should be considered 4G standards at all, since they do not meet the IMT-Advanced
requirements. Nevertheless, LTE and Mobile WiMAX are often branded as being 4G systems as they are technical precursors
to their more advanced versions Long Term Evolution Advanced (LTE-A) and Mobile WiMAX Release 2 (IEEE 802-2012).
Unlike the 3G cellular systems that use CDMA technology, the 4G cellular system proposals use multi-carrier methods,
namely orthogonal frequency division multiple access (OFDMA) and single carrier frequency division multiple access (SC-
FDMA).

Long Term Evolution (LTE) and Long Term Evolution—Advanced (LTE-A) have been commercially deployed, and
LTE-A Pro has seen initial deployment. LTE-A Pro is a new radio interface for low data rate narrow-band Internet of Things
(NB-IoT). As of 2016Q2, a total of 521 operators have commercially launched LTE, LTE-A, or LTE-A Pro networks in 170
countries. Of these, 147 mobile operators have launched LTE-Advanced or LTE-Advanced Pro networks in 69 countries with
9 LTE-Advanced Pro networks deployed. During 2016 Q2, the number of LTE subscribers worldwide doubled to 1.29 billion.
By the end of 2016, it is expected that there will be 560 LTE, LTE-A, or LTE-A Pro networks. It is also expected that 1-Gbps
LTE services could be introduced before the end of 2016. Operators in all regions are also ramping up the deployment of
voice-over-LTE (VoLTE) to support voice-over-Internet (VoIP). A total of 82 operators in 43 countries have so far launched
commercial VOLTE services. As many LTE operators have relied on circuit switch fall back to GSM to accommodate voice
calls, LTE operators will start discontinuing GSM as VoLTE is deployed.

WiMAX has also been commercially deployed. In 2014, there were 580 commercial WiMAX networks in 149 countries,
with 33.4 million subscribers worldwide. However, since 2015 the number of WiMAX subscribers has been declining
worldwide while the number of LTE subscribers is increasing rapidly. Some operators are ending their WiMAX service
and deploying LTE, LTE-A, or LTE-A Pro networks instead.
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Table 1.6 Basic parameters for LTE and LTE-A

Feature LTE LTE-A
Multiple access FL: OFDMA FL: OFDMA
RL: SC-FDMA RL: single-carrier property

not preserved for
SC-FDMA uplink

Carrier spacing (MHz) 1.4, 3,5, 10, 15,20 Additionally supports
up to 100 MHz downlink
and 40 MHz uplink
with carrier aggregation
Duplexing FDD, TDD, half-duplex FDD FDD, TDD, half-duplex FDD
Mobility (km/hr) 500 500
Frame length (ms) 1 1
Modulation FL: QPSK, 16QAM, 64QAM FL: QPSK, 16QAM, 64QAM,
256QAM
RL: QPSK, 16QAM, RL: QPSK, 16QAM,
64QAM(optional) 64QAM(optional)
Coding Turbo code Turbo code
MIMO FL:2x2,4%x2,4x4 FL:upto 8 x 8
RL:1x2,1x4 RL:upto4 x4
Peak data rate FL: 150 Mbps(2 x 2 MIMO, 20 MHz), FL: 3 Gbps (8 x 8 MIMO, 100 MHz)
300 Mbps(4 x 4 MIMO, 20 MHz)
RL: 75 Mbps(20 MHz) RL: 500 Mbps (4 x 4 MIMO, 40 MHz)
Latency (ms) ~10 <5

1.14.1 LTE, LTE-A, and LTE-A Pro

LTE is an all IP technology that uses OFDMA on the downlink and SC-FDMA on the uplink. LTE is compatible with
previous mobile technologies including GSM, GPRS, UMTS, EDGE, WCDMA, HSPA, cdmaOne, cdma2000, and EV-DO.
LTE-A builds on LTE to further increase data rate as defined in 3GPP Releases 10 and 11. There are five major features:
carrier aggregation, increased MIMO, coordinated multipoint transmission or cooperative MIMO, heterogeneous network
(HetNet) support, and relays. Carrier aggregation combines up to five 20 MHz channels into one to increase data speed.
The channels can be contiguous or non-contiguous. With a maximum 8 x 8 MIMO configuration, 64QAM, and 100 MHz
bandwidth, a peak downlink data rate of 1 Gbit/s is possible. LTE-A and LTE-A Pro are the only truly 4G technologies.
The basic parameters of LTE, LTE-A are summarized in Table 1.6. LTE-A Pro will have the following key attributes:
(1) Data speeds in excess of 3 Gbps (LTE-A: 1 Gbps), (2) 640 MHz of carrier bandwidth (LTE-A: 100 MHz), (3) Latency:
2ms (LTE-A: 10 ms).

1.14.2 WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) is a telecommunications protocol that provides fixed and fully
mobile Internet access. There are several versions of the WiMAX standard. IEEE 802.16-2004, also known as 802.16d,
is sometimes referred to as “Fixed WiMAX,” since it does not support mobility. IEEE 802.16e-2005, often abbreviated as
802.16e, includes support for mobility among other things and is commonly known as “Mobile WiMAX.” Mobile WiMAX
can deliver mobile broadband services, with peak data rates up to 40 Mbit/s, at vehicular speeds greater than 120 km/hr while
maintaining a quality of service (QoS) comparable to broadband wireline access.

Some of the key features and attributes of WiMAX include the following:

» Tolerance to delay spread and multi-user interference due to orthogonality of OFDMA sub-carriers in both the downlink
(DL) and uplink (UL) directions.

* Scalable channel bandwidths ranging from 1.25 to 20 MHz through adjustment of the Fast Fourier Transform (FFT) size
in the baseband modulator/demodulator. Supported FFT sizes are 128, 256, 512, 1024, 2048.

» Hybrid-Automatic Repeat Request (H-ARQ) to provide robustness in high mobility environments.
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* Adaptive sub-carrier allocation (in time and frequency) to optimize connection quality based on relative signal strengths
on a connection-by-connection basis.

* Advanced modulation and coding schemes that use BPSK, QPSK, 16-QAM, 64-QAM together with convolutional and
turbo coding.

* Power management to ensure power efficient operation of mobile and portable devices in sleep and idle modes.

* Network-optimized hard handoff to minimize overhead and achieve a handoff delay of less than 50 ms.

* Advanced antenna systems including MIMO, beam forming, space-time coding, and spatial multiplexing.

» Fractional frequency reuse to achieve high spectral efficiency.

1.1.5 Fifth Generation (5G) Cellular and Beyond

5G wireless networks are currently being researched and developed, and are expected to be deployed between 2020 and
2030. The objectives of 5G cellular systems are varied. With the proliferation of wireless data and the Internet of Things
(IoT), 5G wireless systems are sought that will support 100—1000-fold gains in network sum capacity, provide connections
for at least 100 billion devices, low-data-rate machine-to-machine communication, offer 10 Gbps peak data rates with sub-
millisecond latencies and response times, and provide for very high reliability. Low latency and extremely high reliability
will be essential for mobile industrial automation, vehicular connectivity and automated driving, and other IoT applications.
5G radio access will be built upon evolved existing wireless technologies, particularly LTE-A, LTE-A Pro, and evolved
WiFi, while also introducing new radio access means, particularly mm-wave cellular. The basic premises for 5G cellular are
massive connectivity and massive capacity, a growing variety of low and high data rate applications with grossly different
QoS requirements, and radio interfaces that simultaneously operate in different frequency bands. Finally, energy-per-bit
usage should be reduced by a factor of 10-100 to improve upon wireless device battery life.

The demanding requirements of 5G systems will require innovations in several key technology areas relating to future
wireless communication, including but not limited to

» Ultra dense networks using hierarchical cellular architectures, simultaneous network participation
e Ultra reliable and low latency communication

e Operation at higher frequencies, particularly at mm-wave frequencies

¢ Advanced coding, modulation, and multi-access techniques

¢ Advanced radio resource management protocols for interference management
¢ Moving networks, such as on trains, planes, and buses

e Massive MIMO

* Device-to-device communication

e Massive machine communications in IoT

* Low power communications

* Software defined networking and cloud-based systems

* Robust security.

1.1.6 Cordless Telephone Systems

Similar to cellular telephones, first generation cordless telephones were based on analog frequency modulation technology.
After their introduction, cordless telephones gained high popularity, which made them victims of their own success; the
voice quality was often unacceptable due to uncoordinated deployment and resulting mutual interference between cordless
phones operating on the same frequency. This led to the development of digital cordless telephones. The most predominant
cordless phone standard is DECT. DECT originated in Europe, where it is the universal standard, replacing earlier cordless
phone standards. It has been adopted by Australia, and most countries in Asia and South America. Adoption in the USA
was delayed due to radio licensing regulations, and earlier technologies are still competitive. In the USA, DECT operates
in the 1920-1930 MHz, or 1.9 GHz band, and is branded as DECT 6.0. DECT is recognized by the ITU as fulfilling the
IMT-2000 requirements and, thus, it actually qualifies as a 3G system. The major technical properties of DECT are described
in Table 1.7.
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Table 1.7 Cordless telephone standards

11

Feature DECT PHS
Frequency band (MHz) 1880-1900 (Europe) 1895-1918
1900-1920 (China)
1910-1930 (Latin America)
1920-1930 (United States, Canada)
Multiple access F/TDMA F/TDMA
Duplexing TDD TDD
Carrier spacing (kHz) 1728 300
Modulation GFSK 7/4-DQPSK
Number of carriers 10 (Europe) 77
Number of carriers 5 (United States)
Channels/Carrier 12 4
Bit rate (kb/s) 1152 384
Speech coding ADPCM ADPCM
32kb/s 32kb/s
Frame size (ms) 10 5
Mean TX power (mW) 10 (Europe) 10
4 (United States)
Peak TX power (mW) 250 (Europe) 80
100 (United States)

Table 1.8 2.4 and 5 GHz bands for license exempt use. B = —26 dB emission bandwidth in MHz

Frequency Maximum output
Location Range (GHz) Power (mW or dBm)
North America 2.400-2.4835 1000 mW
Europe 2.400-2.4835 100 mW EIRP
Japan 2.471-2.497 10 mW
United States 5.150-5.250 minimum of 50 mW or 4 dBm
(UNII lower band) +10log,,B
United States 5.250-5.350 minimum of 250 mW or 11 dBm
(UNII middle band) +10log,,B
United States 5.725-5.825 minimum of 1000 mW or 17 dBm
(UNII upper band) +10log,,B

The Personal Handy-phone System (PHS) is a mobile network system developed by NTT Laboratory in Japan in 1989. It

is deployed mainly in Japan, China, Taiwan, and some other Asian countries. PHS is a cordless telephone like DECT, with
the capability to handover from one cell to the next. PHS operates in the 1880-1930 MHz frequency band, and is far simpler
to implement and deploy than cellular systems like PDC or GSM. However, the PHS cells are small due to a maximum base
station transmit power of 500 mW, and cell radii are typically in the order of tens or at most hundreds of meters in non-line-
of-sight conditions. While the small cell size makes PHS suitable for dense urban areas, it is impractical for rural areas, and
the small cell size also makes it difficult if not impossible to make calls from moving vehicles. For this reason PHS has seen
declining popularity in Japan. Nevertheless, PHS has seen a resurgence in markets like China, Taiwan, Vietnam, Bangladesh,
Nigeria, Mali, Tanzania, and Honduras where its low deployment costs make it attractive to operators. The major technical
properties of PHS are described in Table 1.7.

1.1.7 Wireless LANs

A variety of wireless local area network (WLAN) standards have been developed to operate in unlicensed bands. Table 1.8
lists some of the unlicensed bands that are used in various regions of the world.
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Table 1.9 Key parameters of the Bandwidth 20 MHz
;if[zgé]] 1a OFDM standard, Data rate 6,9, 12, 18, 24, 36, 48, 54 Mb/s
Modulation BPSK, QPSK, 16-QAM, 64-QAM
Coding 1/2,2/3, 3/4 CC
Number of sub-carriers | 52
Number of pilots 4
OFDM symbol duration | 4 s
Guard interval 800 ns
Sub-carrier spacing 312.5kHz
3 dB bandwidth 16.56 MHz
Table 1.10 Key parameters of the IEEE 802.11ac OFDM standard
Bandwidth Mandatory 20, 40, and 80 MHz channel bandwidth, 160 MHz (optional)
Data Rate 86.7-6933 Mb/s depending on configuration
Modulation BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Coding Convolutional code 1/2, 2/3, 3/4, 5/6, or LDPC (optional)
MIMO up to 8 X 8 MIMO providing 8 spatial streams
single or multi-user MIMO
FFT size 64, 128, 256, and 512 (optional)
Data sub-carriers/Pilots 52/4, 108/6, 234/8, and 468/16 (optional)
OFDM symbol duration 4 s, 3.6 s (optional)
Guard interval 800 ns and 400 ns (optional)
Sub-carrier spacing 312.5kHz

In 1997, the IEEE 802.11 standards group established the first WLAN standard to provide 1 and 2 Mb/s aggregate data
rates, commonly known as WiFi. IEEE 802.11 uses direct sequence spread spectrum with a length-11 Barker sequence
for spreading, and either BPSK (1 Mbps) or QPSK (2 Mbps) peak data speeds. Barker sequences are discussed in Chap. 9.
In 1998, the IEEE 802.11b standard was defined to provide 5.5 and 11 Mbps aggregate data rates. IEEE 802.11b uses
complementary code keying (CCK), which is also described in Chap. 9. In 1998, the IEEE 802.11a standard was defined for
operation in the newly unlicensed 5 GHz UNII bands in the USA. IEEE 802.11a is based on a combination of orthogonal
frequency division (OFDM) and time division multiplexing (TDM), and can provide a range of aggregate data rates ranging
from 6 to 54 Mbps. The parameters of the IEEE 802.11a OFDM standard are summarized in Table 1.9. The same network
has been adopted as IEEE 820.11g for operation in the 2.4 GHz unlicensed band.

The IEEE802.11n standard was released in 2009 to provide up to 4 MIMO streams. Similar to IEEE802.11a/g, the
IEEE802.11n standard uses OFDM and operates in either the 2.4 GHz or 5 GHz unlicensed bands. However, IEEE802.11n
may use a bandwidths of either 20 MHz or 40 MHz. The standard allows up to 4 MIMO streams providing a data rate ranging
from 54 Mbit/s to 600 Mbit/s.

The IEEE802.11ac standard was released in 2013 and builds on IEEE802.11n. Changes include the use of wider channel
bandwidths 80 or 160 MHz versus 40 MHz, however, operating only in the 5 GHz band. IEEE802.11ac also added more
spatial MIMO streams (up to eight vs. four), higher-order modulation (up to 256-QAM vs. 64-QAM), and the addition of
multi-user MIMO (MU-MIMO). Data rates with IEEE802.11ac depend on the configuration and range from 7.2 Mbps to
6.9333 Gpbs in the maximum configuration with 160 MHz bandwidth, 8 MIMO streams, and 256QAM modulation. Key
parameters of the IEEE802.11ac standard are listed in Table 1.10.

The IEEE802.11ad standard is similar to IEEE802.11ac, except for operation in the 60 GHz mm-wave band. Radio
propagation at 60 GHz suffers from higher path loss attenuation than at 5 GHz, so the range of IEEE802.11ad is roughly
10 m as compared to 100 m for IEEE802.11ac. The IEEE802.11ad standard is branded as WiGig.

IEEE 802.11af, branded as Super WiFi, was standardized in February 2014 to allow operation in TV white space in the
VHF and UHF bands between 54 and 790 MHz. Due to the low path loss attenuation of VHF frequencies, the range of
IEEE 802.11af can extend up to 1000 m. So as to coexist with commercial TV broadcasting and wireless microphones, IEEE
802.11af access points and stations determine their position using global positioning system (GPS) and query a geolocation
database (GDB) over the Internet to discover what frequency channels are available for use at a given time and position.
The physical layer is based on 802.11ac, however, the frequency channels are 6—-8 MHz wide depending on the regulatory
domain. Up to four TV channels may be bonded in either one or two contiguous blocks. MIMO operation is possible with
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up to four streams used for either space-time block code (STBC) or multi-user (MU) operation. The achievable data rate
per spatial stream is 26.7 Mbit/s for 6 and 7 MHz channels, and 35.6 Mbit/s for 8 MHz channels. With four spatial streams
and four bonded channels, the maximum data rate is 426.7 Mbit/s for 6 and 7 MHz channels and 568.9 Mbit/s for 8 MHz
channels.

1.1.8 Wireless PANs

A variety of wireless personal area network (WPAN) standards have been developed to operate in unlicensed bands. A WPAN
is used for communication among devices such as computers and telephones that are in close proximity. The physical size
of a WPAN is typically less than 10 m. WPANSs can be used for communication among the devices themselves, or to connect
to the Internet. A key feature WPAN technology is the ability to “plug-in” devices, such that when any two WPAN-equipped
devices are in close proximity, they can communicate with each other. Another important feature is the ability of each device
to lock out other devices selectively, thus preventing unauthorized access.

In 1999, the IEEE802.15 Working Group was created to define Wireless Personal Area Network (WPAN) standards.
The Bluetooth v1.1 specification [153] was adopted as the IEEE 802.15.1-2002 standard and was later published as IEEE
802.15.1-2005 based upon the additions incorporated into Bluetooth v1.2. A Bluetooth WPAN is also called a piconet,
and consists of up to 8 active devices connected in a master-slave configuration (others maybe in idle mode). The first
Bluetooth device in the piconet is the master, and all other devices are slaves that communicate with the master. Bluetooth
uses Frequency Hop CDMA (FH-CDMA) with a set of 79 hop carriers with a spacing of 1 MHz and a hop dwell time of
625 pus. Classical Bluetooth uses Gaussian frequency shift keying (GFSK) with a modulation index of 0.3 and either a very
simple rate-1/3 3-bit repetition code or a simple rate-2/3 shortened Hamming code. Classical Bluetooth supports a data rate
of 1 Mbps. Extended data rate Bluetooth systems are available that use 7/4-DQPSK and 8-DPSK, giving 2 and 3 Mbps,
respectively.

Other than Bluetooth, two approaches have been pursued in IEEE802.15 regarding personal area networks. These include
IEEE 802.15.4: Low Rate WPAN and IEEE 802.15.3: High Rate WPAN. High rate WPAN is dormant, and only Low Rate
WPAN is available in various open standard and propriety networks.

1.2 Frequency Reuse and the Cellular Concept

A cellular land mobile radio network is a collection of individual cells that are served by cell sites or base stations (BSs).
Each BS covers a defined geographical area called a cell. By integrating the coverage of a plurality of cells, a cellular network
provides radio coverage over a large geographic area. A group of BSs is sometimes called a location area, or a routing area. A
cellular land mobile radio system has two basic functions; it must locate and track both active and idle subscribers or mobile
stations (MSs), and it must always attempt to connect the MSs to the best available BSs. The former task is the subject of
mobility management, and requires a location update procedure which allows a MS to inform the cellular network, whenever
it moves from one location area to the next. The latter task is the subject of radio resource management and requires the
continuous evaluation of the radio link quality with the serving BS(s), and the radio link qualities of alternate BSs. This
monitoring is performed by a base station controller (BSC) or mobile switching center (MSC) that uses knowledge of the
link quality evaluations on the forward and reverse channels, in addition to the system topology and traffic flow, to decide
upon the best BS(s) to serve a particular MS.

A cellular land mobile radio system uses low power radio communication between a MS and a grid of BSs. Movement
of the MS, however, leads to highly erratic radio link conditions, and careful monitoring and control are required to keep the
radio link quality acceptable. Evaluation of radio link quality is based upon a large number of criteria, but at the core is a
statistical measurement process based on prior knowledge of the expected radio channel characteristics. The time required
to measure the radio link quality and the accuracy of the measurement depends on the local propagation characteristics.
Time consuming link quality measurements will limit the ability of the cellular system to react to changes in link quality
and compensate by changing the set of serving BSs and the allocation of BS and MS power and bandwidth resources.
Conversely, if the link quality measurements can be made quickly, then the time required for the cellular system to process
the link quality measurements, make decisions, and transmit desired changes to the network entities, including the MSs,
will limit the adaptability of the cellular system. Limitations on the speed of link quality measurement and network control
essentially determine overall link quality and the size and distribution of cells in cellular systems. The cell sizes, the ability
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radio links to withstand interference, and the ability of the cellular system to react to variations in traffic are the main factors
that determine the spectral efficiency of a cellular system.

In cellular systems, the available spectrum is partitioned among the BSs, and a given frequency is reused at the closest
possible distance that the radio link will allow. Smaller cells have a shorter distance between reused frequencies, and this
results in an increased spectral efficiency and traffic carrying capacity. Dramatic improvement in spectral efficiency is the
main reason for the deployment of small cells known as microcells and picocells. However, the microcellular and picocellular
propagation environment is also highly erratic and the radio links are more difficult to control due to the combination of
small cell sizes and mobility. Distributed radio resource management algorithms are typically used to maintain acceptable
link quality and high spectral efficiency.

Cellular systems are designed to have high spectral efficiency and offer ubiquitous service coverage. These systems
require (1) effective cellular architectures, (2) fast and accurate link quality measurements, (3) rapid control in all types
of environments, (4) installation of BSs to provide radio coverage virtually everywhere, and (5) power and bandwidth
efficient air interface schemes that can mitigate the harsh effects of the propagation environment and tolerate high levels
of interference. Since the radio links in high capacity cellular systems will interfere with each other due to frequency reuse,
it is always desirable to maintain each radio link at a target QoS while using the lowest possible transmit power. This means
that radio links should not significantly exceed their target QoS since doing so will cause unnecessary interference to other
radio links.

Cellular mobile radio systems rely upon frequency reuse, where users in geographically separated cells simultaneously use
the same carrier frequency and/or time slot. The cellular layout of a conventional macrocellular system is very often described
by a grid of hexagonal cells or radio coverage zones. In reality the cells are neither hexagonal or circular, but instead are
irregular and overlapping regions. The hexagon is a common choice for representing macrocellular coverage areas, because
it closely approximates a circle and offers a wide range of tessellating frequency reuse cluster sizes. Tessellating frequency
reuse clusters are those that will fit together without leaving any gaps. A tessellating reuse cluster of size N can be constructed
if [256]

N= +i + jA (1.1)

where i and j are non-negative integers, and i > j. It follows that the allowable hexagonal cluster sizes are N =
1,3,4,7,9, 12, ... Examples of 3-, 4-, and 7-cell reuse clusters are shown in Fig. 1.4. The reuse clusters are tessellated to
form a frequency plan. A simplified 7-cell frequency reuse plan is shown in Fig. 1.5, where cells marked with the same letter
label use identical sets of carrier frequencies.

The co-channel reuse factor D/R is defined as the ratio of the co-channel reuse distance D between cells using the same
set of carrier frequencies and the cell radii R, where R is the distance from the center to the corner of a cell. For regular
hexagonal cells, the reuse cluster size N and co-channel reuse factor D/R are related by (see Problem 1.2)

D/R = v3N. 1.2)
For microcellular systems with lower BS antenna heights, regular hexagons may no longer appropriate for approximating
the radio coverage areas. Typical microcell BSs use an antenna height of about 15 m, well below the skyline of any buildings

that might be present, and acceptable link quality can be obtained anywhere within 200-500 m of the BS. For microcells, the
choice of cell shape depends greatly upon the local topography. For example, the linear cells shown in Fig. 1.6 can be used

852

3-Cell 4-Cell 7-Cell

Fig. 1.4 Commonly used cellular reuse clusters
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Fig. 1.5 Macrocellular deployment using 7-cell reuse pattern
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Fig. 1.6 Microcellular deployment along a highway with a 3-cell reuse pattern

Fig. 1.7 Microcellular
deployment in a dense urban
area, with a rectangular grid of
streets. Base stations are
deployed at every intersection
with a 2-cell reuse pattern
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to model microcells that are deployed along a highway with directional antennas. In a dense metropolitan area with urban
canyons, the buildings act as wave guides to channel the radio waves along the street corridors. Figure 1.7 shows a typical

“Manhattan” street cell deployment that can be used to model microcells that are deployed in city centers.

1.3 Mobile Radio Propagation Environment

Radio signals in cellular land mobile radio systems generally propagate according to the three mechanisms: reflection,
diffraction, and scattering. Reflections arise when radio waves are incident upon a surface with dimensions that are large
compared to the wavelength. The radio wave reflects off the surface with an angle of departure equal to the angle of incidence,
while the amplitude and phase of the reflected wave depend on the surface characteristics. Diffraction occurs according to
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the Huygens—Fresnel principle when there is an obstruction between the transmitter and receiver antennas, and secondary
waves are generated behind the obstructing body. Scattering occurs when the radio waves are incident upon an object whose
dimensions are on the order of a wavelength or less, and causes the energy to be redirected in many directions. A good
example occurs at millimeter wave frequencies, where rain drops cause scattering that manifests itself in a phenomenon
called rain attenuation. The relative importance of these three propagation mechanisms depends on the particular propagation
scenario.

As a result of the above three mechanisms, cellular land mobile radio propagation can be roughly characterized by three
nearly independent phenomenon: path loss with distance, shadowing, and multipath-fading. Each of these phenomenon
is caused by a different underlying physical principle. Multipath-fading results in rapid variations in the envelope of the
received signal and is caused when plane waves arrive from many different directions with random phases and combine
vectorially at a receiver antenna. Typically, the amplitude of a narrow-band received envelope can vary by as much as 30—
40dB over a fraction of a wavelength due to constructive and destructive addition. Multipath also causes time dispersion,
because the multiple replicas of the transmitted signal propagate over transmission paths of different lengths and, therefore,
reach the receiver antenna with different time delays. Time dispersion can be combatted and exploited by using time domain
equalization in TDMA systems, RAKE receivers in CDMA systems, and frequency domain equalization in OFDM systems.
Multipath-fading is discussed in detail in Chap. 2.

Free space propagation does not apply in a land mobile radio environment and the propagation path loss depends not only
on the distance and frequency, but also on the antenna heights and topography. The simplest empirical land mobile radio
propagation model assumes that the average received power at distance d from an emitter is

€
2,(d) = Boy e 7 (1.3)
(d/d,)
or after converting to decibel units
*Qp (dBm) (d) = K2, aBm) (do) - 1013 IOglo{d/do} + €@dB), (1.4)

where g, g (do) = E[$2) @Bm)(d,)] is the average received signal power (in dBm) at a known reference distance that
is in the far field of the transmitting antenna. Typically, d, is on the order of 1.6km for macrocells, 100 m for outdoor
microcells, and 1 m for indoor picocells. The value of j1, ., (do) Will depend on the frequency, antenna heights and gains,
and other factors. The parameter 8 is called the path loss exponent and is a key parameter that describes the slope of the
path loss characteristic (in dB) as a function of distance. The path loss is strongly dependent on the cell size and local terrain
characteristics. The path loss exponent ranges from 3 to 4 for a typical urban macrocellular environment, and from 2 to 8
for a microcellular environment. As mentioned earlier, path loss exponents are often determined by curve fitting to measured
data. The above and other path loss models are the subject of Sect.2.7.

The parameter € is modeled a log-normally distributed random variable representing the effects of large scale fading
otherwise known as shadowing. Shadowing is caused by large terrain features such as buildings, hills, and valleys. The
random variable €gg) = 10log;,(¢) in (1.4) is a zero-mean Gaussian random variable, and represents the error between the
actual and predicted path loss at a given distance. For log-normal shadowing, the probability density function of £2,, (gm)(d)
has the normal distribution

2
1 (x — 12, @bm) (d))
= — , 1.5
pr (dBm) (d) (x) \/EO'Q eXp { 20_?2 ( )
where
M2, (@Bm) (d) = K2, @Bm) (do) — 10Blogo{d/d,} (dBm), (1.6)

is the average received signal power.

The parameter o; is called the shadow standard deviation. A more accurate path loss model will result in a smaller o;.
However, there will always be some residual error between the actual and predicted path loss due to terrain irregularities.
For macrocells o, typically ranges from 5 to 12 dB, with o; = 8dB being a commonly used value. Furthermore, o, has
been observed to be nearly independent of the radio path length d. The received signal power in the absence of shadowing
as defined by (1.6) is called the area mean, while the received signal power in the presence of shadowing as defined by (1.4)
is called the local mean. Figure 1.8 illustrates the above concepts by plotting the received signal strength as a function of the
radio path length for both free space and a typical macrocellular environment. Shadowing is discussed in further detail in
Sect. 2.6.
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Fig. 1.8 Path loss in free space and typical macrocellular environments; 8 = 4, o, = 8dB. The received signal strength (in dBm units) at a
distance of 10km is Gaussian distributed with a mean of —70 dBm and a variance of 3 dB

1.4 Co-Channel Interference and Noise

Frequency reuse in cellular systems introduces co-channel interference (CCI), which is the primary factor that limits cellular
spectral efficiency. CCI arises when the same carrier frequency is used in different cells and/or cell sectors. In this case,
the power density spectra of the desired and interfering signals overlap. Frequency reuse also introduces adjacent channel
interference. This type of interference arises when neighboring cells use carrier frequencies that are spectrally adjacent to
each other. In this case the power density spectrum of the desired and interfering signals partially overlap. However, since
adjacent frequencies are used at close distances, the interference can still be significant. Consequently, the transmit power is
regulated to fit within a regulatory or standard emission mask. Modulation schemes along with their power spectra are the
subject of Chap. 4.

Radio links exhibit a link performance threshold according to a defined QoS criterion. For large cells carrying light
traffic, the links are noise limited such that QoS is acceptable if received carrier-to-noise ratio, I, exceeds a certain defined
threshold I,. Otherwise, the QoS is unacceptable and a service outage occurs. The probability of outage due to thermal
noise is defined as

Oy = P[I" < Iy (1.7)

For dense cellular deployments carrying heavy traffic, the links are typically interference limited such that the QoS is
acceptable if the received carrier-to-interference ratio, A, exceeds a certain defined threshold Ay, and a service outage
occurs otherwise. The CCI outage is defined as

O; = P[A < Ag]. (1.8)

CCI outage is the subject of Chap. 3.

The thresholds I}, and Ay, depend on many parameters of the radio link, including the modulation and coding scheme
that is employed, and the particular receiver processing algorithms that are implemented. Often the thresholds exhibit a cliff
effect in terms of QoS, especially when powerful modulation and coding techniques are used.
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1.5 Receiver Sensitivity and Link Budget

Receiver sensitivity refers to the ability of the receiver to detect signals in the presence of noise. The ratio of the desired carrier
power to noise power before detection is commonly called the carrier-to-noise ratio, I". The parameter I” is a function of
the communication link parameters, such as the transmitted power or effective isotropic radiated power (EIRP), path loss,
receiver antenna gain, and the effective input-noise temperature of the receiving system. The formula that relates I” to the
link parameters is called the link budget . A simplified link budget for cellular radio systems can be expressed in terms of the
following parameters:

§2, = transmit carrier power

G = transmit antenna gain

L, = path loss

Ggr = receiver antenna gain

£2, = receive signal power

E. = receive energy per modulated symbol

T, = receiving system noise temperature in degrees Kelvin
B,, = receiver noise equivalent bandwidth

N, = thermal noise power spectral density

R, = modulation symbol rate

k = 1.38 x 107> Ws/K = Boltzmann’s constant
F = noise figure, typically 5-6 dB
Lg, = receiver implementation losses
L; = interference margin
Mghg = shadow margin
Gho = handoff gain

2y, = receiver sensitivity

Many other parameters may be included in a detailed link budget, such as cable losses, but they are not included here.
The average received carrier power (or local mean) can be expressed as

£2,GrGr
Q=" (1.9)
Lgy LP
where £2; is the transmitted power, and Gt and Gy are the transmitter and receiver antenna gains. Receiver implementation
losses are included in the denominator of (1.9), since imperfect receiver implementation often results in a loss of effective
received signal power. Sometimes it also increases the effective noise power as well.
The total input thermal noise power to the detector is [123]

N = kT,B,,F. (1.10)

The value of kT, at a room temperature of 17 °C (290 °K) is kT, = —174 dBm/Hz. The noise figure F is a degradation caused
by elements in a radio frequency signal chain introducing noise. The noise figure of a system, for example an amplifier, is
defined by the ratio of the input signal-to-noise ratio to output signal-to-noise ratio. The noise figure is always greater than
or equal to unity, and a lower noise figure indicates better performance.

The received carrier-to-noise ratio, I", defines the link budget, where

_ 5 SWGiGr (1.11)
N  kT,B,FLpL, ’
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The carrier-to-noise ratio, I", and modulated symbol energy-to-noise ratio, E;/N,, are related as follows [123]:

E, B,
— =1 x—. 1.12)
N, R
Hence, the link budget can be written as
E; £2,G1G
Es _ ITYUR (1.13)
N,  kT,RFLgyL,
Converting to decibel units gives
E;/Nopy = $2¢ @Bm) + Gt @B) + GR (@B) — kKTo(aBm)/Hz — Rs (BHz) — F(aB) — LRy (@B) — Ly (@B)- (1.14)
The receiver sensitivity is defined as
§24 = LrykT,F(Es/N,)R; (1.15)
or converting to decibel units
2t @Bm) = Lry (@) + kTo(Bm)/m, + Fas) + Es/Nowp) + Ry (aBHz)- (1.16)

In (1.16), all parameters are usually fixed except for E;/N, 4p). To determine the receiver sensitivity, the minimum E; /N, 4g,
is first found that will yield an acceptable link QoS, and this value is then substituted into (1.16). Then by substituting the
resulting value for £2 (4gm) into (1.14) and solving for L, (4g), the maximum allowable path loss that the link can tolerate is
obtained as

Lmax @B) = $2; @Bm) + Gt @B) + GR (@B) — £2th (dBm)- (1.17)

Once the maximum allowable path loss is known, a path loss model can be applied to determine the maximum radio path
length which is equal to the cell radii. For cellular radio systems, there are three other relevant link budget parameters: (1) the
margin for system loading or interference loading, (2) the shadow margin, and (3) the handoff gain. The first two quantities
will reduce the maximum allowable path loss, while the third increases it.

1.5.1 Interference Loading

Frequency reuse results in co-channel and adjacent channel interference. As the system load increases the level of interference
will also increase. This increase in interference will cause the cell radii to shrink since the radio receivers will be subjected to
interference in addition to the thermal noise. Once the cell radii shrink, MSs that are located near the edges of the cells will
experience an unacceptably low QoS. This will result in some links being dropped. However, as the connections are dropped
the level of interference will decrease. This in turn will expand the cell radii and MSs located near the edges of the cells will
again be able to establish links. This will once again increase the system load, and the entire process will repeat itself. This
phenomenon of shrinking and expanding cell boundaries due to interference is sometimes called cell breathing.

To ensure coverage and prevent dropped links as the system load increases, an interference margin must be included in
the link budget. Note that the received carrier-to-interference-plus-noise ratio is

2,  2,/N

Iy = = ,
NTT¥N 141N

(1.18)

where [ is the total interference power. A key parameter in this equation is the interference-to-noise ratio, //N. The net
effect of such interference is to reduce the carrier-to-noise ratio §2,/N by the factor L; = (1 + I/N). To allow for system
loading, the maximum allowable path loss in (1.17) must be reduced by an amount equal to L; (4g), otherwise known as the
interference margin. The required L; 4g) depends on the particular cellular system under consideration and the traffic load.
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The interference margin can be quite difficult to derive since it depends not only on the parameters of the radio link but also
on the detailed resource management algorithms being used for power control and handoff. CDMA systems typically require
a higher interference margin than TDMA systems due to their universal frequency reuse. With universal frequency reuse,
every cell and cell sector in the network can reuse the same set of carrier frequencies, and the emitter will act as a source
of interference to a relatively large number of receivers (compared to larger reuse clusters) due to the small reuse distance.
In any case, comparisons between different systems should always be made using the same total system bandwidth and the
same level of traffic loading.

1.5.2 Shadow Margin and Handoff Gain

Suppose that an outage due to thermal noise occurs whenever the received carrier-to-noise ratio at distance d, I’ = £2,(d)/N
drops below some threshold I'y,. Once the noise power N in (1.10) is specified, an outage will occur when the local mean
drops below the receiver sensitivity, i.e., 2, @Bm)(d) < 2 @Bm)- The outage probability due to noise on the cell boundary
is defined as the probability that £2, ggm)(R) < $£2i Bm)» Where d = R for a MS located on the cell edge. The area
averaged noise outage probability is defined as the probability that £2, 4pm)(d) < $2u Bm), Where the average is taken
over the random location of a MS in the entire cell area. If the spatial distribution of MSs unknown, then the MSs may be
assumed to be uniformly distributed throughout the cell area. To ensure a specified edge or area averaged outage probability,
a shadow margin, Mp,q, must be included in the link budget. Finally, the outage probability will depend on the transmit
power. In cellular systems, the BSs and MSs are power controlled so an outage is generally calculated under the condition of
maximum allowable transmit power.
The outage probability due to noise on the cell edge is

On(R) = P[22, aBm)(R) < 2t (aBm)]

th(dBm) 1 X — R 2
exp { _( ne, (dBm)( )) } dx

—oo V2mog 20_%2
M.
_ Q( shad) . (]]9)
oQ
where
o0 1 _},2/2

and

Minad = 12, @sm (R) — £2h (dBm)- (1.21)

is the shadow margin. The outage probability, Oy(R) is plotted against Mp,q in Fig. 1.9 for various shadow standard
deviations.

Example 1.1. Suppose it is desirable to have Oy(R) = 0.1. To determine the required shadow margin, My,,q is chosen
so that the shaded area under the Gaussian density function in Fig. 1.10 is equal to 0.1. Thus

0.1=0 (MS‘“‘“‘). (1.22)

0Q

(continued)
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Hence,
M,
—had — 9710.1) = 1.28.

For 0; = 8 dB, the required shadow margin is

Mgad = 1.28 x 8 = 10.24 dB.
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(1.23)

(1.24)

To obtain a relationship between the edge and area averaged noise outage probabilities, models are needed for the
propagation path loss and spatial distribution of MSs. It is common to assume that the MSs are uniformly distributed
throughout each cell area. This assumption along with the path loss model in (1.6) yields an area averaged noise outage

probability [122]

R

Oy Oy(r)2mrdr

=R
TR 0

= 0(X) — 20X 1Y)

(1.25)
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where

¥ = Mshad’ ¥ — 200§
op ,6

(1.26)

where & = In(10)/10. The first term of this expression is equal to the noise outage probability on the cell edge, Oy (R), while
the second term is a correction factor. This obviously means that the edge outage probability is higher than the area averaged
outage probability.

The above argument applies to the case of a single isolated cell. For cellular systems where the geographical area is
covered by multiple cells, the situation is more complicated. As a MS moves from one cell to the next, handoffs or handovers
will be executed to maintain service continuity. Consider a MS that is located in the boundary area between two cells.
Although the link to the serving BS may be shadowed and be in an outage condition, the link to an alternate BS may at
the same time provide an acceptable link quality. This is due to the fact that different shadowing conditions are usually
encountered on links with different BSs. Hence, at the boundary area between two cells, a macrodiversity gain is obtained.
The word macrodiversity is used to describe the case where the multiple receiver antennas are located in different base
stations, as opposed to microdiversity where the multiple antennas are collocated in the same base station. Handoffs take
advantage of macrodiversity, and they will increase the maximum allowable path loss by an amount equal to the handoff
gain, Gyo. There are a variety of handoff algorithms that are used in cellular systems. CDMA cellular systems such as IS-
95A/B, cdma2000, and WCDMA use soft handoff, while TDMA cellular systems such as GSM/GPRS/EDGE and OFDMA
cellular systems such as LTE/LTE-A and WiMAX typically use hard handoff.

To illustrate the principle of handoff gain, consider a cluster of 7 cells; the target cell is in the center and surrounded by
6 adjacent cells. Although the MS is located in the center cell, it is possible that the MS could be connected to any one of
the 7 BSs. The area averaged noise outage probability for the target cell is to be calculated, assuming that the MS location
is uniform distributed over the target cell area. This can be done quite effectively by using Monte Carlo approaches with a
large number of trials. Our results assume that the links to the serving BS and the six neighboring BSs experience correlated
log-normal shadowing. The shadow gain at BS; is obtained as

€; @B) = al + b{;, (1.27)
where
a+ b =1,

and ¢ and ; are generated once each simulation trial, and constitute independent Gaussian random variables with zero mean
and variance aé. It follows that the shadow gains (in decibel units) have the correlation

Elei @p)€j @p)] = a’05 = pog , i #]. (1.28)

where p = a? is the correlation coefficient. Here we assume that p = 0.5.

Let £2, @Bm), kK = 0,...,6 denote the received signal strength associated with the target BS (k = 0) and each of the
six neighboring BSs (k = 1,...,6). Three cases are considered: a single isolated cell to compare with earlier results, soft
handoffs, and hard handoffs. For the case of a single isolated cell, no handoffs are used and the outage probability is identical
to that obtained in (1.19) or (1.25). With a soft handoff algorithm, the BS that provides the largest instantaneous received
signal strength is always selected as the serving BS. The instantaneous received signal strength is affected by not only the
path loss and shadowing variations, but envelope fading as well. However, for the present purpose envelope fading is not
considered.! If any BS has an associated received signal power that is above the receiver sensitivity, 2 (dBm), then the link
quality is acceptable; otherwise an outage will occur. Other more sophisticated and effective soft handoff and power control
strategies are the subject of Chaps. 12 and 13.

With a hard handoff algorithm, the received signal power at the target MS from the serving BS is denoted as £2,, o gm). If
this value exceeds the receiver sensitivity, 24 (4Bm), then the link quality is acceptable. Otherwise, the six surrounding BSs
are evaluated for handoff candidacy by using a mobile assisted handoff (MAHO) algorithm. BS & is included in the neighbor

TAs discussed in Sect. 2.6.2.1, a composite Nakagami-log-normal random variable can be approximated by a purely log-normal random variable
with an appropriate area mean and shadow variance.
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Fig. 1.11 Required shadow margin with hard and soft handoffs and 95% coverage; handoff hysteresis Hgg) = 6 dB

set if £2, x @Bm) — $2p,0 @Bm) = Hap), Where Hgp) is the handoff hysteresis. If the received signal power for any member
of the neighbor set is above the receiver sensitivity, £24 @Bm), then link quality is acceptable; otherwise an outage occurs. A
more detailed description and analysis of hard handoff is provided in Chap. 13.

Figure 1.11 compares hard and soft handoffs, for Hggy = 6 dB. Note that a 10% area noise outage probability (90%
coverage) requires a shadow margin of 5.6 dB for a single isolated cell (no handoff). With soft handoffs, the required shadow
margin is only 1.8 dB. The difference of 3.8 dB between the two is the soft handoff gain. The corresponding hard handoff
gain is about 2.8 dB. Note that the soft handoff gain is always greater than the hard handoff gain. However, the true relative
advantage of soft handoff over hard handoff depends on many factors, such as hard handoff delay, and is difficult to predict.

The maximum allowable path loss with the inclusion of the margins for shadowing, interference loading, and handoff
gain is

Lax @B) = $2/ @Bm) + Gt @B) + GR @B) — £2th @Bm) — Mihad @B) — L1 @B) + GHO (@B)- (1.29)

1.6 Coverage

Coverage refers to the number of base stations or cell sites that are required to cover or provide service to a given geographical
area with an acceptable quality of service. This is an important consideration when a new cellular network is deployed.
Clearly the choice of cellular system that requires the fewest number of cell sites to cover a given geographic area has an
infrastructure cost advantage. However, it is always important to include interference margin into the coverage calculation to
allow for system loading and this is often where the difficulty lays in comparing the different options. First, the traffic loads
must be the same to allow for a fair comparison. Second, the function relating the required interference margin, L; (gg), to the
system load can be quite complicated, especially for CDMA cellular systems with universal frequency reuse.

The number of cell sites that are required to cover a given area is determined from knowledge of the maximum allowable
path loss and the path loss characteristic with distance. To compare the coverage of different cellular systems, the maximum
allowable path loss is first determined for the different systems at the same QoS. From (1.6), it is apparent that

Lmax @By = C + 10Blog ¢{dmax} (dB) (1.30)
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where dp,y is the distance corresponding to the maximum allowable path loss and C is some constant that depends on factors
that are common to different cellular system alternatives, such as the antenna heights and operating frequency. The quantity
dmax 15 equal to the radius of the cell. To provide good coverage it is desirable that di,x be as large as possible. A variety of
theoretical and empirical path loss models will be considered in detail in Sect. 2.7.

Once Lpax has been determined for the various cellular systems to be evaluated, the relative coverage of the different
systems can be compared, all other factors being equal. For example, suppose that System 1 has L.« gy = L1 and System 2
has Ly ) = L», with corresponding radio path lengths of d; and d, respectively. The difference in the maximum
allowable path loss is related to the cell radii through the following relationship:

Ly — Ly = 108 (logy{d:} — logpi{da})

d
10ﬂlog10{£}. (1.31)

Looking at things another way

di _ | oti—L2)/(108) (1.32)

d>

Since the area of a cell is equal to A = wd? (assuming a circular cell) the ratio of the cell areas is

A & di\’
and, hence,
A
A; — 102L1—L2)/(108) (1.34)

Suppose that A is the total geographical area to be covered. Then the ratio of the required number of cell sites for Systems 1
and 2 is

N _ Aw/AL _ Ar _awi-/0p) (1.35)

Ny Ag/Ar A

As an example, suppose that § = 3.5 and L; — L, = 2dB. Then N,/N; = 1.30. Hence, System 2 requires 30% more base
stations to cover the same geographical area. In conclusion, a seemingly small difference in link budget translates into a
substantial difference in infrastructure cost. Since parameters such as the E./N, 4g) required, handoff gain and interference
margin can each vary considerably from one system to the next, careful consideration is required when comparing different
cellular system alternatives.

1.7 Spectral Efficiency and Capacity

Spectral efficiency is of primary concern to cellular system operators. There are a variety of definitions for spectral efficiency,
but an appropriate definition measures spectral efficiency in terms of the spatial traffic density per unit bandwidth. For a
cellular system that consists of a deployment of uniform cells, the spectral efficiency with circuit-switched voice traffic can
be expressed in terms of the following parameters:
G, = offered traffic per channel (Erlangs/channel)
Ngot = number of channels per RF carrier (channels/carrier)

N, = number of RF carriers per cell (carriers/cell)

Wsys = bandwidth per reuse cluster (Hz/reuse cluster)
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W, = bandwidth per channel (Hz/channel)
A = area per cell (m?/cell)
N = number of cells per reuse cluster (cells/reuse cluster).
One Erlang is the traffic intensity in a channel that is continuously occupied, so that a channel occupied for x% of the time

carriers x/100 Erlangs. Adjustment of this parameter controls the system loading and it is important to compare systems at
the same traffic load level. For an N-cell reuse cluster, the spectral efficiency can be defined as follows:

N¢NNg G,
ns = W—SIX Erlangs/m?*/Hz. (1.36)
Sys

Recognizing that the bandwidth per channel, W, is Wyys/(NN:Ny:), the spectral efficiency can be written as the product of
three efficiencies, viz.,

1 1
=—.—.G, 1.37
ns WA (1.37)
=M - Nc - Nr, (1.38)

where

nm = modulation efficiency

nc = spatial efficiency

nt = trunking efficiency
Unfortunately, these efficiencies are not mutually independent so the optimization of spectral efficiency can be quite
complicated.

For cellular systems, the cell capacity, defined as number of channels per cell, is sometimes used instead of the Erlang
capacity. The cell capacity is

Wsys
W, -N

NeNgjor = (1.39)

where, again, W, is the bandwidth per channel and Ny is the number of traffic channels multiplexed on each RF carrier.
Note that cell capacity does not account for trunking efficiency.

1.7.1 Bandwidth Efficiency

Bandwidth efficiency is measured in bits per second per unit bandwidth (b/s/Hz). High bandwidth efficiency can be achieved
by using bandwidth efficient modulation and coding techniques, along with effective receiver signal processing techniques
that produce radio links that are tolerant to interference. Bandwidth efficiency (bits/s/Hz) is equal to modulation efficiency
(channels/Hz) defined above multiplied by the bit rate per channel (bits/s/channel).

1.7.2 Spatial Efficiency

High spatial efficiency can be achieved by (1) minimizing the area per cell, and (2) minimizing the co-channel reuse distance.
The first of these explains the intense interest in microcell and picocell technologies, where cell radii on the order of 50—
500 m are used. The co-channel reuse distance D/R is minimized by (1) controlling the generation of CCI, and (2) mitigating
the effect of any CCI that is present. The generated levels of CCI can be controlled by using techniques such as cell sectoring,
smart antennas, power control, scheduling, effective handoff algorithms, macroscopic BS diversity, and a whole host of other
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Fig. 1.12 Co-channel interference on the forward channel at a desired MS. There are six first-tier interfering BSs

techniques. The impact of CCI on the radio link can be mitigated by using techniques such as optimum combining, single
antenna interference cancelation, equalization, antenna diversity, and others.

Consider the situation shown in Fig. 1.12, depicting a simplified worst case forward link channel CCI condition with
isotropic BS antennas where the maximum six first-tier co-channel interfering channels are present. The MS is located at
distance dy from the serving BS and at distances di, k = 1,2,..., N; from the first tier of N; = 6 interfering co-channel
BSs. If d = (dy, di, ..., dy,) denotes the vector of distances at a particular MS location, then the forward link carrier-to-
interference ratio as a function of the distance vector d is

Ni
Aws)(d) = 2, @Bm)(do) — 101o0g, { D 105 w0/ 10}. (1.40)
k=1

At this point, the handoft gain must be accounted for. Consider, for example, the case of soft handoff. Let Ay 4g)(d), k =
0,...,M denote the carrier-to-interference ratio for serving BS and M surrounding BSs. Note that the vector d is different
for each candidate BS. With soft handoff, the BS that provides the most robust link is always selected such that the resulting
carrier-to-interference ratio is

Apy = max{Ag @p)(d), A1 @B)(d), ..., Ay @p)(d)}. (1.41)
The area averaged probability co-channel interference outage is
O; =P[Aws) < An @) - (1.42)

where the calculation is performed by averaging the probability of outage over the random location of a MS within the
reference cell. Finally, the outage depends on the number of interferers, N; that are present. Due to the statistical nature of
the user traffic, the number of interferers present is random. In the case of Fig. 1.12, it ranges from O to 6.

Finally, Fig. 1.13 depicts the worst case co-channel interference on the reverse link at the serving BS, considering first-tier
co-channel interferers. Note that the co-channel interference conditions are not the same on the forward and reverse links,
because the worst case vector d is different in each direction. This phenomenon is known as link imbalance.
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Fig. 1.13 Co-channel interference on the reverse channel at a desired BS. There are six first-tier interfering MSs

1.7.3 Trunking Efficiency

High trunking efficiency can be achieved by using channel assignment schemes that maximize channel utilization. There is
usually a trade-off between trunking efficiency (or offered traffic per channel) and grade of service in terms of new call and
handoff blocking probabilities. Various fundamental formulas were developed by Erlang almost a century ago that laid the
foundation of modern teletraffic theory. One of Erlang’s most famous results is the Erlang-B formula, first derived in 1917,
that gives the probability that a newly arriving call will not find any available channel in a trunk of m channels and is blocked.
Sometimes this policy is called the blocked calls cleared queueing discipline, meaning that blocked calls are not buffered or
queued, and if no free channels are available they are dropped. The Erlang-B formula is not entirely applicable to cellular
systems, because it does not account for handoff calls. Furthermore, the total offered traffic per cell may be time-varying due
to the spatial movement of the subscribers, whereas the offered traffic in the Erlang-B formula is assumed to be constant.
The Erlang-B formula is

m
Pr
m Pl} ’
m! Zk:o &

where m is the total number of channels per cell and p;y = A,y is the total offered traffic per cell (A, is the call arrival rate
and 4 is the mean call duration). The Erlang-B formula is derived under the so-called standard Markovian assumptions,
including an infinite population of users, Poisson call arrivals with rate A, calls/s, and exponentially distributed call durations
with a mean call duration u, s/call. Note that the total offered traffic pr is a dimensionless quantity, but the quantity is
expressed as Erlangs.

Figure 1.14 plots the blocking probability B(pr, m) as a function of the offered traffic per channel G. = pr/m. The benefit
from trunking is obvious, since the offered traffic per channel, G., increases as the number of trunked channels increases,
at any blocking probability. Note that diminishing returns are obtained as the number of trunked channels becomes larger.
Finally, it is important to realize that doubling the number of channels in a cell or cell sector will double the cell or sector
capacity. However, the Erlang capacity will more than double due to trunking efficiency.



28 1 Introduction

100 : : ' .
101+
)
<
Q
10—2 i
10-3 ! ) .
0.0 0.2 0.4 0.6 0.8 1.0

G, (Erlangs)

Fig. 1.14 Erlang-B blocking probability B(pr, m) vs. offered traffic per channel G. = pr/m. Trunking is shown to improve the spectral efficiency

1.7.4 Capacity

The capacity of a cellular system is often measured in terms of two quantities:

1. The cell capacity or sector capacity equal to the number of available traffic channels per cell or cell sector.
2. The cell Erlang capacity equal to the traffic carrying capacity of a cell (in Erlangs) for a specified call blocking probability.

Note that difference between spectral efficiency and cell Erlang capacity is that spectral efficiency accounts for the spatial
efficiency and bandwidth efficiency. If the area per cell is the same in two different cellular systems, then their relative
spectral efficiencies and Erlang capacities will be the same all other things being equal.

Comparing the spectral efficiency of different cellular systems can be difficult, because the various systems may be
in different evolutionary stages. However, a fair comparison between suitably optimized digital cellular systems without
deployment constraints will probably show roughly equal spectral efficiency. Indeed this is what is seen with EV-DO Rev B.,
HSPA+, LTE-A. HSPA+ achieves peak downlink speeds of 21 Mbps in 5 MHz, while LTE-A achieves 22 Mbps in the same
bandwidth. Both systems are highly optimized. Recall that LTE-A downlink uses OFDMA, while the EV-DO downlink uses
TDM/CDMA, which are two entirely different air interfaces.

1.7.4.1 GSM Cell Capacity

GSM systems may or may not use frequency hopping, where the frames are hopped over a predefined set of carrier
frequencies and in a predefined order so as to average the effect of interference. A 3/9 (3-cell/9-sector) reuse pattern
is achievable for most GSM systems that employ frequency hopping; without frequency hopping, a 4/12 reuse pattern
may be possible. A capacity gain is achieved with frequency hopping, since the co-channel interference is averaged over
the set of hop frequencies. GSM has 8 logical channels that are time division multiplexed onto a single radio frequency
carrier, and the carriers are spaced 200 kHz apart. Therefore, the bandwidth per logical channel is roughly 25 kHz, which
was common in first generation European analog mobile phone systems. In a nominal bandwidth of 1.25MHz (uplink
or downlink) there are 1250/200 = 6.25 carriers spaced 200 kHz apart.> Hence, there are 6.25/9 ~ 0.694 carriers per
sector or 6.25/3 = 2.083 carriers/cell. Each logical channel commonly carries half rate traffic, such that there are 16 traffic
channels/carrier. Hence, the 3/9 reuse system has a sector capacity of 1.11 traffic channels/sector or a cell capacity of 33.33
traffic channels/cell in 1.25 MHz.

ZFractional carriers are used for the capacity calculation but can be eliminated in practice by using a larger nominal bandwidth.
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1.7.4.2 1S-95 Cell Capacity

The cell capacity of 1S-95 was a topic of historical debate. CDMA systems were initially reported to achieve 40 times
AMPS cell capacity, which made GSM appear to have a rather meager capacity. The key attribute of CDMA systems that
gives it high capacity is universal frequency reuse, where all cells and cell sectors reuse the same carrier frequency. Universal
frequency reuse means that every transmitter interferers with every receiver within radio range. The complicated interference
environment combined with the features of soft handoff and power control make the determination of cell capacity is quite
elusive even for the basic IS-95A system.

To illustrate the difficulty in evaluating CDMA cell capacity, consider the following simplified analysis. Suppose there
are N users in a cell: one desired user and N — 1 interfering users. For the time being, ignore the interference from
surrounding cells. Consider the reverse link, and assume perfectly power controlled MS transmissions that arrive chip and
phase asynchronously at the BS receiver. Treating the N — 1 co-channel signals as uncorrelated the effective carrier-to-noise
ratio is

3
r=——, 1.44
N1 (1.44)
and the effective received bit energy-to-noise ratio is
E, B,
_b =] x —
No Rb
3G 3G
T N—-1 N

where G = B,,/R;. The factor of 3 in the numerator of (1.44) arises from the assumption of randomly generated spreading
sequences and the signals arriving at the receiver antenna in a chip and phase asynchronous fashion [230]. For a required
Ey/N,, (Ep/No)req, the cell capacity is

3G

N~ ———.
(Eb/No)req

Suppose that 1.25 MHz of spectrum is available and the source coder operates at R, = 4kbps. Then G = 1250/4 = 312.5.
If (Ey/Ny)req = 6dB (a typical IS-95 value), then the cell capacity is roughly N = 3 - 312.5/4 ~ 234 channels per cell.
This is roughly 7 times the cell capacity of GSM. However, this rudimentary analysis did not include out-of-cell interference
which is typically 50-60% of the in-cell interference. This will result in a reduction of cell capacity by a factor of 1.5 and
1.6, respectively. Also, with CDMA receivers, great gains can be obtained by improving receiver sensitivity. For example, if
(Eb/No)req can be reduced by 1 dB, then the cell capacity N increases by a factor of 1.26. Finally, CDMA systems are known
to be sensitive to power control errors. An rms power control error of 2 dB will reduce the capacity by roughly a factor of 2
as discussed in Chap. 12.

Problems

1.1. Show that the area averaged outage probability due to thermal noise is given by (1.25).

1.2. By using geometric arguments, show that the co-channel reuse factor, D/R, for cellular deployments based on hexagonal
cells is given by D/R = +/3N.

1.3. A brief measurement campaign indicates that the median propagation loss at 420 MHz in a mid-size North American
city can be modeled by the following path loss equation:

L, = 25dB + 10log,,{d**},

where d is in units of meters, i.e., the path loss exponent is § = 2.8 and there is a 25 dB fixed loss.
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(a) Assuming a cell phone receiver sensitivity of —95 dBm, what transmitter power is required to service a circular area of
radius 10 km?

(b) Suppose the measurements were optimistic and f = 3.1 is more appropriate. What is the corresponding increase in
transmit power (in decibels) that would be required?

(c) If log-normal shadowing is present with o, = 8 dB, how much additional transmit power is required to ensure 10%
thermal noise outage at a distance of 10 km?

1.4. A receiver in an urban cellular radio system detects a 1 mW signal at d, = 1 m from the transmitter. In order to mitigate
co-channel interference, it is required that the co-channel interference power that is received from any co-channel base
station be no more than —100 dBm. A measurement team has determined that the average path loss exponent in the system
is B =3.

(a) Determine the radius R of each cell if a 7-cell reuse pattern is used.
(b) What is the radius R if a 4-cell reuse pattern is used?

1.5. Consider a cellular system that uses a 7-cell hexagonal reuse cluster. The base stations employ 120° wide-beam
directional antennas and they all have the same antenna height and transmit with the same power level. Consider the forward
channel (base-to-mobile). Ignore shadowing and envelope fading and consider only the path loss. A mobile station will
experience the lowest co-channel interference ratio, A, when it is located in the corner of a cell.

(a) Considering only the first tier of co-channel base stations, what is the worst case A with a path loss exponent of 4?

(b) Considering the first and second tiers of co-channel base stations, what is the worst case A with path loss exponent of 4?

(c) From parts a) and b) what conclusions can you make about the effect of the second-tier co-channel base stations? What
happens if the path loss exponent is equal to 3?

Note: In this problem you should use exact radio path distances, expressed in terms of the cell radius R. You can obtain these
distances by laying out a 7-cell deployment on hex paper and using geometric arguments.

1.6. Consider the worst case forward channel co-channel interference situation shown in Fig. 1.15. The path loss is described
by the following model:

Qt(hbhm)z
/"l’.Qp = T

Fig. 1.15 Worst case co-channel interference on the forward channel
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where

Wg, = average received power
§2, = transmitted power
h, = base station antenna height
h,, = mobile station antenna height

d = radio path length

(a) Assume that i, = 30m, h,, = 1.5m, and £2; is the same for all BSs. What is the worst case carrier-to-interference ratio
A for a cluster size N = 4?

(b) Now suppose that the antenna height of the serving BS (in the center) is increased to 40 m while the other BS antenna
heights remain at 30 m. This has the effect of enlarging the center cell. Assuming that it is desired to maintain the same
worst case A value obtained in part a), what is the new radius of the center cell?

(c) Now suppose that the antenna height of one of the co-channel BSs is increased to 40 m while the antenna heights of the
other BSs antenna heights, including the serving BS, remain at 30 m. This has the effect of enlarging the co-channel cell
and distorting the cell boundaries. Assuming, again, it is desired to maintain the same worst case A value obtained in
part a), what are the new boundaries of the center cell?

1.7. Suppose that a cellular frequency reuse environment is characterized by path loss and log-normal shadowing, such
that the local mean at distance d is given by (1.4), where wg, 4, (d) = —80dBm atd, = 1.6km, f§ = 3.68, and
€@y ~ A (0, oé), where o, = 8 dB. Use the above model in the questions below.

(a) Suppose that a mobile station is at distances 2 and 2.2km from two different base stations, where the link to each of
the two base stations is affected by independent log-normal shadowing. If the base station that provides the largest local
mean £2,; @Bm), | = 1,2, is selected to serve the mobile station, what is the probability density function of the observed
local mean ‘Q;; (@Bm) = max{$2, | aBm). §2p> @Bm)} at the mobile station.

(b) As a follow-up to part (a), suppose that an outage occurs if the observed local mean .Q;; (dBm) 18 less than —100 dBm.
What is the probability of outage?

1.8. A TDMA cellular system consists of a deployment of uniform radii hexagonal cells with a 9-cell reuse pattern. The cell
diameter (corner-to-corner) is equal to 8 km. The system has a total bandwidth of 12.5 MHz (for both uplink and downlink).
The channels have a channel spacing of 30 kHz. Calculate the following:

(a) Number of traffic channels/cell.

(b) Number of cells required to cover a total area of 3600 km?. In this problem use the exact area of the hexagon cell rather
than approximating the hexagon cell by a circle cell with the same cell radius.

(¢) Co-channel reuse distance D.

1.9. Whenever a mobile station crosses a cell boundary a handoff occurs to the target cell. However, sometimes a handoff
will occur because there are no channels available in the target cell. One method to decrease the probability of handoff failure
is to queue the handoff calls. A handoff call that does not find an available channel in the target cell is allowed to remain in a
queue for 7, seconds and is dropped from the queue, i.e., it will experience a handoff failure, if no channel becomes available
in that time.

Suppose the queue is serviced using a “first-come first-served” discipline. If m is the total number of channels in the trunk
and p is the total offered traffic, then the probability of queueing is given by the famous Erlang-C formula

m

Pr
— k
Py m! (1= 50 305, &

C(pTv m) =

The probability that a queued call will have to wait more than #, seconds in the queue is

PW > 1] = exp{—wg,

N
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where p is the mean call duration. Assuming that 4 = 120 s and 7, = 5's, plot the blocking probability against the normalized
offered traffic per channel G. = pr/m, for m = 5, 10, and 15. Comment on your results.

1.10. A GSM cellular service provider uses base station receivers that have a carrier-to-interference ratio threshold Ay =
9dB.

(a) Find the optimal cluster size N for the following cases:

(i) omnidirectional antennas
(i1) 120° sectoring
(iii) 60° sectoring

Ignore shadowing and use path loss model in (1.6) with path loss exponents of 8 = 3 and § = 4.

(b) Assume that there are 200 traffic channels in the cellular system and that a blocked calls cleared queueing discipline
is used with a target blocking probability of 1%. Further, assume that each cell or sector has approximately the same
number of channels, and the cells have uniform traffic loading. Ignore any handoff traffic. The average call duration is
equal to 120 s. Determine the offered traffic load (per cell) in units of Erlangs and calls per hour for each of the cases in
part (a).

1.11. Suppose that an urban area has three competing trunked mobile networks (systems A, B, and C) to provide cellular
service. System A has 400 cells with 15 channels/cell, System B has 50 cells with 100 channels/cell, and System C has 100
cells with 60 channels/cell. Ignore handoff traffic and assume uniform cell traffic loading.

(a) Plot the (Erlang-B) blocking probability, B(pr, m), for each system versus pr.
(b) Find the number of users that can be accommodated by each system for a blocking probability of 2%, if the traffic
loading offered by each user is 0.1 Erlangs.

1.12. A service area is covered by a cellular radio system with 84 cells and a cluster size N. A total of 300 voice channels are
available for the system. Users are uniformly distributed over the service area, and the offered traffic per user is 0.04 Erlang.
Assume a blocked calls cleared queueing discipline, and the designated blocking probability from the Erlang-B formula is
B =1%.

(a) Determine the carried traffic per cell if cluster size N = 4 is used. Repeat for cluster sizes N = 3,7, and 12.
(b) Determine the number of users that can be served by the system for a blocking probability of 1% and cluster size N = 4.
Repeat for cluster sizes N = 7 and 12.

In this question, the offered traffic per user is 0.04 Erlang. However,
pr = Kpu,
where

pu = offered traffic per user

K = number of users

Note that pr in this case is the total offered traffic per cell and K is the number of users per cell.



Chapter 2
Propagation Modeling

The design of spectrally efficient wireless communication systems requires a thorough understanding of the radio propagation
channel. The characteristics of the radio channel will vary greatly with the operating frequency, and the propagation
environment, e.g., line-of-sight (LoS) versus non-line-of-sight (NLoS), stationary versus mobile transmitters and receivers,
and other factors. This chapter emphasizes land mobile radio channels, including those found in cellular land mobile radio
systems and other types of vehicular radio systems. However, many of the concepts are of a fundamental nature and will
apply to other types of radio channels as well.

A typical cellular land mobile radio system consists of a collection of fixed base stations (BSs) that define radio coverage
areas known as cells. The height and placement of the BS antennas affects the proximity of local scatterers at the BSs. In
a macrocellular environment where the cell radii are large, the BS antennas are well elevated above the local terrain and
are free of local scatterers. Mobile stations (MSs), on the other hand, tend to be surrounded by local scatterers due to their
low elevation antennas. Sometimes a line-of-sight (LoS) condition will exist between a BS and a MS, for example in a rural
(or open) environment. However, in an urban environment, a non-line-of-sight (NLoS) condition typically exists between
the BSs and MSs. As a consequence, the radio waves must propagate between the BSs and MSs via reflections, diffraction,
and scattering. Due to the typically large distance between the BSs and MSs in macrocellular systems, radio propagation
is often assumed to occur in a two-dimensional (2-D) plane. As shown in Fig. 2.1, multiple plane waves will arrive at the
MS (or BS) receiver antenna(s) from different directions, with each having a distinct polarization, amplitude, phase, and
delay. This phenomenon is called multipath propagation. The multiple plane waves combine vectorially at each MS (or BS)
receiver antenna to produce a composite received signal.

Commercial cellular land mobile radio systems operate at UHF frequencies in bands located at 700/800/900 MHz and
1800/1900 MHz. At these frequencies, the carrier wavelength, A., is approximately 15 cm and 30 cm, respectively, using the
relationship ¢ = f.A., where f, is the carrier frequency and c is the speed of light. Therefore, small changes in the propagation
delays of the individual multipath components due to MS mobility on the order of a few centimeters will cause a large
change in the relative phases of the plane wave components arriving at the MS (or BS) receiver antennas. Hence, when the
arriving plane waves combine vectorially at the receiver antenna(s), they will experience constructive and destructive addition
depending on the physical location of the MS. If the MS is moving or there are changes in the location of the scatterers, then
these spatial variations will manifest themselves as time variations in the amplitude and phase of the composite signal
received at each MS (or BS) antenna, a phenomenon known as envelope fading. If the propagation environment is such that
no individual multipath component is dominant, such as when NLoS conditions exist between the BS and MS, then the
composite receive envelope under narrowband propagation conditions is often modeled as being Rayleigh distributed at any
time. Such a channel is said to exhibit Rayleigh fading. However, if a dominant multipath component exists, such as when a
LoS or specular condition exists between the BS and MS, then the envelope is often modeled as being Ricean distributed at
any time. Such a channel is said to exhibit Ricean fading.

Radio channels are reciprocal in the sense that if a propagation path exists it carries energy equally well in both directions.
However, the spatial distribution of arriving plane waves may be significantly different in each direction. A MS in a typical
NLoS macrocellular environment is usually surrounded by local scatterers, so that the plane waves will arrive at the MS
antenna from many different directions, as shown in Fig.2.1. Two-dimensional (2-D) isotropic scattering, where the plane
waves arrive from all azimuth directions with equal probability and with equal strength, is a very commonly used reference
model to describe the signals received at a MS in this case. The BSs, on the other hand, are relatively free from local
scatterers. Hence, plane waves tend to arrive at a BS with a small azimuth angle of arrival (AoA) spread as shown in Fig. 2.1.
It will be shown later in this chapter that these differences in the scattering environment for the forward and reverse links
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will cause significant and important differences in the spatial correlation properties of the respective faded envelopes at the
MSs and BSs.

Some types of land mobile radio systems, such as mobile ad hoc networks, consist of vehicle-to-vehicle (or mobile-to-
mobile) and vehicle-to-infrastructure links. In this book vehicle-to-vehicle links are referred to as mobile-to-mobile links,
because the user terminals are not necessarily vehicular mounted. A typical mobile-to-mobile radio propagation environment
is depicted in Fig. 2.2. Such mobile-to-mobile communication systems differ from conventional cellular radio systems where
one end of the link (the BS) is stationary and free of scattering, and only the MS is moving. Though the received signal
envelope of mobile-to-mobile links is still Rayleigh faded under NLoS narrowband propagation conditions, the mobility
of both the transmitters and receivers, and scattering at both ends of the links, causes these links to exhibit much different
statistical properties than cellular land mobile radio channels.

If the received envelope or squared-envelope is averaged over a spatial distance of 20-30 wavelengths, an estimated of
the mean envelope or mean squared-envelope can be obtained. Sometimes, this quantity is called the local mean because
it corresponds to a particular locality. The local mean will experience slow variations over distances of several tens of
wavelengths due to the presence of large terrain features such as buildings, hills, and valleys. This phenomenon is known as
shadow fading or shadowing. Experimental observations have confirmed that the local mean signal strength follows a log-
normal distribution. This log-normal distribution applies to both macrocellular [171, 194] and microcellular environments
[149, 226, 228].

If the local mean is averaged over a sufficiently large spatial distance (to average over the shadows), the area mean is
obtained. The area mean is the average signal strength that is received to/from a MS over locations that lie at the same
distance from the BS. The area mean is inversely proportional to the path loss, which describes how the area mean decreases
with the distance between the BS and MS. Early studies by Okumura [250] and Hata [161] yielded an empirical path loss
model for macrocellular radio systems operating in urban, suburban, and rural areas. The Okumura—Hata model is accurate
to within 1 dB for distances ranging from 1 to 20 km and carrier frequencies between 150 and 1000 MHz, and was adopted in
the COST207 study [78]. The Okumura—Hata model is only valid for carrier frequencies less than 1000 MHz. Consequently,
when additional spectrum were made available in the 1990s for cellular systems operating in the 1800/1900 MHz band, new
path loss models were needed. The COST231 study [81] resulted in the COST231-Hata model that extended the Okumura—
Hata model to the 1800/1900 MHz band, and provided the Walfish-Ikegami model for path loss prediction in LoS and NLoS
urban microcells. More recent models include the 3GPP models [1] and their extension to mm-wave frequencies [158].
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The remainder of this chapter presents the fundamentals of radio propagation modeling, analysis and simulation.
Section 2.1 considers conventional narrow-band fixed-to-mobile channels, and various properties of the faded envelope
are considered. Section 2.2 considers mobile-to-mobile channels. Section 2.3 treats the statistical characterization of wide-
band multipath-fading channels. Simulation models for fading channels are covered in Sect.2.5. Shadowing models and
simulation techniques are discussed in Sect.2.6. Finally, Sect. 2.7 treats theoretical and empirical models for path loss in
macrocellular and microcellular systems.

2.1 Fixed-to-Mobile Channels

For land mobile radio applications, the signals from the BSs are usually transmitted with vertical polarization, meaning that
the electric field is perpendicular to the Earth’s surface. At VHF frequencies, vertical polarization produces a higher field
strength close to the ground than horizontal polarization. Likewise, the MS antennas are also vertically polarized, although
tilting of the MS antenna will result in a polarization mismatch. Even if the signals are transmitted with vertical polarization,
reflections and diffractions from objects will cause the signals to undergo depolarization. This effect can be exploited by
using polarization diverse antennas. For example, cross-polarized antennas, where two antennas having +45°, and —45°
polarizations from vertical are sometimes used at the BSs.

In cellular land mobile radio systems, the radio signals will propagate in three dimensions. However, if the distance
between the BS and MS is sufficiently large, the radio propagation environment is often modeled as occurring in a two-
dimensional (2-D) plane. Figure 2.3 depicts a horizontal x — y plane, where a MS is moving in the direction of the positive
x-axis with velocity v. The BS is assumed stationary. With vertical polarization, the electric field vector is aligned with the
z-axis. The nth plane wave arrives at the MS antenna with an angle of incidence 6,. The MS movement introduces a Doppler
shift, or frequency shift, into the incident plane wave. The Doppler shift is given by

fon = fmcos(6,) Hz 2.1

where f,, = v/A. and A. is the wavelength of the arriving plane wave, and f;, is the maximum Doppler frequency occurring
when 6, = 0. Plane waves arriving from the right half plane will experience a positive Doppler shift, while those arriving
from the left half plane will experience a negative Doppler shift.

Consider the transmission of the bandpass signal

s(t) = Re {5(r)e/*™'}. (2.2)

where 5(7) is the complex envelope of the bandpass signal, f. is the carrier frequency, and Re{z} denotes the real part of z. If
the channel is comprised of N propagation paths, then the noiseless received bandpass waveform is

N
r(t) = Re Z Cnd.‘ﬁn_jZ”CTn//\c'f'jzﬂ(fr'f'fD.n)tg(t _ ‘Cn) , (23)

n=1

Fig. 2.3 A typical plane wave y
incident on a MS receiver

nth incoming wave

mobile v X
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where C,, ¢,, fp.n, and 7, are the amplitude, phase, Doppler shift, and time delay, respectively, associated with the nth
propagation path, and ¢ = f.A. is the speed of light. The magnitude C, depends on the cross sectional area of the nth
reflecting surface or the length of the nth diffracting edge. The phase ¢, is randomly introduced by the nth scatterer and can
be assumed to be uniformly distributed on [—, ). The delay 7, = d,/c is the propagation delay associated with the nth
propagation path, where d,, is the length of the path. The set of path lengths, {d,}, will depend on the physical scattering
geometry which has not been specified at this point. The Doppler shift fp, of the nth propagation path is as discussed
previously.
Similar to (2.2), the received bandpass signal r(¢) has the representation

r(t) = Re {F(1)e>™'}, (2.4)
where the received complex envelope is
N
(1) = Z C, e V3(1 — 1, (2.5)
n=1
and
Gu(t) = ¢n — 27 CTn/Ac + 27 fput (2.6)

is the time-variant phase associated with the nth path. The complex envelope at the input of the channel, 5(¢), and the complex
envelope at the output of the channel, 7(¢), are related through the convolution integral

Hr) = /0 g1, D)3( — )de @7

where g(#, 7) is the time-variant complex impulse response of the channel. From (2.5), it follows that

N
g(t.1) =) G I8 — 1), (2.8)

n=1

where §( - ) is the Dirac delta function or unit impulse function.

From (2.5) and (2.6), several interesting observations can be made. Since the carrier wavelength A, is small (approximately
30cm at 1 GHz), even small changes in the path delays d, = ct, will cause large changes in the phases ¢, (¢), due to the term
2mct, /A For a straight line trajectory 2mct, /A, = 2md,/A.. Also, due to the Doppler frequency fp ,,, the phases ¢, (f) vary
with time. Hence, at any given point in space-time, the phases ¢, (¢) will result in the constructive or destructive addition of
the N multipath components, a phenomenon known as fading.

If the differential path delays 7; — 7; for all i,j are very small compared to the modulation symbol period, T, then the t,
that appear in the argument of Dirac delta function in (2.8) can be approximated by their average value 7, i.e., 7, &~ 7. In this
case, the complex channel impulse response has the form

gt ) = g)d(r — 1), (2.9)
where
N
g() =Y Cpd™®. (2.10)
n=1

Note that ¢, (f) remains as defined with the t, in (2.6), since the approximation f.t, & f.T cannot be made when f, is large.
Therefore, the received complex envelope is

1) = g(H5( —17) (2.11)
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which experiences fading due to the time-varying complex channel gain g(7). In the frequency domain, the received complex
envelope is

R(f) = G(f) * (S’(f)e_ﬂ”f%) . 2.12)

Since the channel changes with time, G(f) has a finite non-zero width in the frequency domain. Due to the convolution
operation, the output spectrum k(f) will be larger than the input spectrum S (f). This broadening of the transmitted signal
spectrum is caused by the channel time variations and is called frequency spreading or Doppler spreading.

The time-variant channel transfer function can be obtained by taking the Fourier transform of (2.9) with respect to the t
variable, giving

T(f.1) = Zig(t.7)} = g()e " (2.13)

The time-variant channel magnitude response is |T(f, )| = |g(¢)|. Note that all frequency components in the received signal
are scaled by the same time-variant magnitude |g(f)|. In this case the received signal is said to exhibit frequency flat fading,
because the magnitude of the time-variant channel transfer function is constant (or flat) with respect to frequency variable f.

If the differential path delays t; — 7; for some i, are sufficiently large compared to the modulation symbol period 7,
then the magnitude response |T(f,?)| is no longer flat and the channel exhibits frequency-selective fading. Sometimes
frequency-selective fading channels are called wide-band channels. A simplified concentric-ellipses model for frequency-
selective fading channels is depicted in Fig. 2.4, where the transmitter and receiver are located at the foci of the ellipses.
Considering only single bounce reflections between the transmitter and receiver, all paths that are associated with scatterers
on the nth elliptical contour will have the same propagation delay t,. Frequency-selective channels have strong scatterers
that are located on several ellipses such that the corresponding differential path delays t; — z; for some i, j, are significant
compared to the modulation symbol period 7.

2.1.1 Envelope Correlation

A flat fading channel can be characterized by assuming the transmission of a continuous wave sinusoid at frequency f,
because the channel magnitude response is flat. For convenience, the transmitted sinusoid is assumed to have complex
envelope 5(f) = 1 in (2.5). From (2.4) and (2.5), the corresponding received bandpass signal can be expressed in the
quadrature form

r(t) = gi(t) cosRufet) — go(t) sin(2xf 1), (2.14)

Fig. 2.4 Concentric-ellipses model for frequency-selective fading channels
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where
N
gi1(t) =Y Cycos(¢n(1)) 2.15)
n=1
N
go(H) = Y _ Cysin(gn (1)) (2.16)
n=1

are the in-phase and quadrature components of the received bandpass signal. Assuming that the bandpass random process
r(t) is wide-sense stationary, the autocorrelation function of r(z) is

¢ (t) = E[r()r(t + 7)]
= @15, (T) COS2TST) — Pgyg0(T) SIN27ST), 2.17)

where E[ - ] is the ensemble average operator, and

o (1) 2 Elgi (g1t + 7)) (2.18)

Pei0(T) 2 Elg/(0go(t + )], (2.19)

Problem 2.1 shows that the wide-sense stationarity of the bandpass random process r(¢) imposes the condition

Bere1(T) = Peg0(T) (2.20)
Po180(T) = =g (7). (2.21)

The expectations in (2.18) and (2.19) are now calculated.

It is safe to assume that the phases ¢, (¢) are statistically independent random variables at any time ¢, since the path delays
7, are all independent due to the random placement of scatterers and the phases ¢, are also independent. Furthermore, the
phases ¢,(¢) at any time ¢ can be treated as being uniformly distributed over the interval [—7, 7). The azimuth angles of
arrival, 6, are all independent due to the random placement of scatterers. In the limit as N — oo, the central limit theorem
can be invoked and g;(¢) and g, () can be treated as Gaussian random processes. Also, in the limit as N — oo, the discrete
azimuth angles of arrival 6, can be replaced by a continuous random variable 8 having the probability density function p(6).
By using these statistical properties, the autocorrelation function ¢, (7) can be obtained from (2.15), (2.6), and (2.1) as
follows:

buer(t) = lim Erogler(0g(t + )]

= %Eg [cos(2mf;nT cos(0))] (2.22)
where
T=(11,72,...,T¥) (2.23)
0 = (61,0,,...,6y) 2.24)
¢ = (¢h¢27°"7¢1\’) (225)
N
2, = E[lg(] = Elg;()] + Elgp(0] = Y _C» (2.26)

n=1

and §2, can be interpreted as the received envelope power, while £2,,/2 is the power received in the corresponding bandpass
waveform in (2.14) as given by ¢,,(0) in (2.17).
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Likewise, the cross-correlation function ¢, (7) can be derived as
Page(v) = lim Er g glg(Dg0(r + 7))
£2, )
= 7E9 [sin(27f;,T cos(H))]. 2.27)

Evaluation of the expectations in (2.22) and (2.27) requires the fraction of arriving power p(0), and the antenna azimuth
gain pattern G(6), as a function of the azimuth angle 6. Here, the overall power angle distribution p(6)G(8) is a probability
density function that integrates to unity over all arrival angles, such that the total received envelope power is given by

/ " GO0 = 1. (2.28)

-7

One simple and commonly used model assumes that the plane waves arrive at the receiver antenna from all azimuth directions
with equal probability, i.e., p(8) = 1/(2xw),60 € [—m, ), and an isotropic antenna is used such that the antenna gain is
uniform for all azimuth arrival angles, i.e., G(8) = 1,60 € [—m, ). This model was first suggested by Clarke [74], and is
commonly referred to as Clarke’s 2-D isotropic scattering model. The expectation in (2.22) becomes

T

Dore,(T) = % cos (2ntf,t cos(0)) p(6)G(0)do

-

= %% Oﬂ cos (2rf,t cos(6)) d
= %JO(anmt), (2.29)
where
Jo(x) = %/: cos (xcos(6)) do (2.30)

is the zero-order Bessel function of the first kind. The normalized autocorrelation function ¢y, (7)/(£2,/2) in (2.29) is
plotted against the normalized time delay f,,t in Fig.2.5.
Likewise, for 2-D isotropic scattering and an isotropic receiver antenna, the cross-correlation function in (2.27) becomes

Gorg0(T) = % /” sin (27tf,,T cos(8))d6 = 0. (2.31)

-

A cross-correlation of zero means that g;(¢) and go(¢) are uncorrelated and, since they are Gaussian, independent random
processes. The fact that g;(¢) and go(¢) are independent is a consequence of the symmetry of the 2-D isotropic scattering
environment and the isotropic receiver antenna. In general, g;(¢) and g, (?) are correlated random processes for non-isotropic
scattering environments and/or a non-isotropic receiver antenna.

2.1.2 Doppler Spectrum

The autocorrelation of the channel complex envelope g(f) = g;(f) + jgo(?) is

Beo(0) = SElg" g0t + ]

= ¢g5(T) + jg 0 (), (2.32)

as derived in greater detail at the beginning of Sect. 4.9. The Doppler spectrum and autocorrelation function of the channel
complex envelope are Fourier transform pairs, that is,
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Fig. 2.5 Normalized autocorrelation function of the quadrature components of the received complex envelope with 2-D isotropic scattering and
an isotropic receiver antenna

See(f) = /_ Poo(T)e T dr

$oe(T) :/_ Sgg(r)efz”frdr,

[e.]

where

Sgg(f) = Sg[gl (f) +ng1gQ (f)v (233)

is the Doppler spectrum. From (2.33), it may appear that the Doppler spectrum is complex valued. However, the
autocorrelation function ¢, (7), as with any autocorrelation function, is an even valued function such that ¢, (t) =
$g6,(—7). Hence, its Fourier transform S,,,, (f) is real valued. Moreover, the cross-correlation function ¢, (7) in (2.32), as
with any cross-correlation function, satisfies the property

Pg100(T) = Pgggi (—T). (2.34)
Combining (2.34) with (2.21) yields the property

D150 (T) = —gig0(—T). (2.35)
This means that the cross-correlation function ¢g,,,(7) is an odd function of = and, hence, its Fourier transform Sg, ., (f) is

purely imaginary-valued. Therefore, the Doppler spectrum in (2.33) is always real valued.
For the autocorrelation function in (2.29), the corresponding psd is [147, 6.671.7]

Sglgl (f) = y[‘pglgl (T)]
2p 1
2 1= [fn)? FI=n . (2.36)

0 otherwise

For the case of 2-D isotropic scattering and an isotropic receiver antenna S, (f) = 0 so that S, (f) = Sy, (f).
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The power spectrum of the channel complex envelope g(f) can also be related to that of the received bandpass process
r(t) in (2.14). From (2.17),

Grr(1) = Re {hge ()77}, (2.37)
As shown in Sect. 4.9, by using the identity
*
Re{z} = ° J;Z (2.38)

and the property ¢, () = ¢, (—7), the bandpass Doppler spectrum is

1
Si(f) = 5 (Seelf =1 + Seelf —£0)). (239)

The Doppler spectrum S, (f) is always a real-valued function of frequency, but not necessarily even. The corresponding
bandpass Doppler spectrum S,,.(f) is always real-valued and even.

2.1.2.1 Doppler Spectrum Alternate Approach

The Doppler spectrum can be derived by using a different approach that is sometimes useful because it can avoid the need
to evaluate integrals. As mentioned earlier, the incident power on the receiver antenna is a function of the azimuth angle
0, such that the fraction of the total received power arriving between angles 6 and 6 + d6 is p(0)d6. If the antenna has
an azimuth gain of G(6), then the fraction of the total power received between angles 6 and 6 + d6 is G(6)p(8)d6. From
(2.1), the Doppler frequency f = f;, cos(0) is an even function of the arrival angle 6. Therefore, the Doppler spectrum can
be expressed as [171]

S DI = 2 (GOP(E) + G-0p(-6))Id6]. (.40)
From (2.1),
471 = ful = sin(@)d6] = /73— 72 1d6). @41
Therefore,
Silf) = 32 (GOPO) + GO0 @42
where

0 =cos™  (f/fn). (2.43)

Hence, if p(6) and G(0) are known, the Doppler spectrum can be easily calculated. Once again, for 2-D isotropic scattering
and an isotropic antenna G(0)p(6) = 1/(27), so that

2p 1

I e =< m
Sl = | 2T = (.44)

otherwise

The same result was obtained from the autocorrelation function in (2.29), but it required the evaluation of a Fourier transform
integral.

The normalized Doppler spectrum Sg, (f)/(£2,/27f,,) in (2.44) is plotted against the normalized Doppler frequency f/f,,
in Fig.2.6. Notice that Se,(f) is limited to the range of frequencies 0 < |f| < f,, and S,,(f) = oo at f = £f,,. In reality, the
Doppler spectrum is bounded, and the singular behavior at f = =f;, is due to the assumption of 2-D plane wave propagation.
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Fig. 2.6 Normalized psd of the quadrature components of the received complex envelope with 2-D isotropic scattering channel and an isotropic
receiver antenna

Aulin [22] modified Clarke’s 2-D model to yield a 3-D model that accounts for both azimuth and elevation angles-of-arrival.
The resulting Doppler spectrum has the general same U-shape as Fig. 2.6, but does not have singularities at frequencies

In some cases, it is appropriate to model the received signal as consisting of a strong specular or LoS component plus a
scatter component. In this case, the azimuth distribution p(6) might have the form

1 K
0) = p(6 8(0 — 6y), 2.45
p(©) K+1p()+K+l( 0) (2.45)
where p(6) is the continuous distribution of the scatter component, 6, is the angle-of-arrival (AoA) of the specular or LoS
component, and K is the ratio of the received specular to scattered power. Figure 2.7 shows a plot of p(6) for one such
scattering environment, where the scatter component is characterized by 2-D isotropic scattering, i.e., p(f) = 1/(2x), 60 €

[~m, 7). The correlation functions ¢y, (7) and ¢,,,,(7) corresponding to (2.45) can be readily obtained from (2.22) and
(2.27) as

1 2 K £
P = 7 —-JoQfu)+ e - o827 cos(6n) (2.46)
bg0(T) = Ki—l—l% sin(27f,,t cos(6y)). (2.47)

The azimuth distribution in (2.45) yields a complex envelope having a Doppler spectrum of the form

1 X K
See(f) = K—_Hsfgg(f) + K—HS;’g(f) (2.48)

where Sgg(f) is the discrete portion of the Doppler spectrum due to the specular component and S¢, (f) is the continuous
portion of the Doppler spectrum due to the scatter component. For the case when p(6) = 1/(27), 8 € [—r, 7], the correlation
functions in (2.46) and (2.47) are obtained and the corresponding Doppler spectrum can be obtained, by using the cross-
correlation property in (2.34) along with (2.33), as
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1 2 1 K £
res il W= + 2115 80 — fm cos(6h)) 0=<If| =fu
See(f) = ) (2.49)
0 otherwise

Note that the Doppler spectrum in (2.49) has the same shape as Fig. 2.6, except for the discrete spectral tone at frequency

f = fmcos(6h).
Sometimes the azimuth distribution p(f) may not be uniform, a condition commonly called non-isotropic scattering.
Several distributions have been suggested to model non-isotropic scattering. One possibility is the Gaussian distribution

1 . % (0 —p)? }
X - < 5 b
2mos P 20}

where p is the mean AoA, and oy is the root mean square (rms) AoA spread. Another possibility is the von Mises distribution

p(O) =

(2.50)

p0) = exp {kcos(6 — u)}, (2.51)

27TIQ (k)

where 6 € [—m, ), IH( - ) is the zeroth-order modified Bessel function of the first kind, u € [—m, 1) is the mean AoA,
and k controls the spread of scatterers around the mean. When k£ = 0, the von Mises distribution reduces to p(6) = 1/(2x),
yielding 2-D isotropic scattering. As k increases, the scatterers become more clustered around the mean AoA p and the
scattering becomes increasingly non-isotropic as shown in Fig. 2.8. Still another possibility is the cosine distribution

b4 T 6 T
p(0) = weos () 101 b= F (2.52)
0 , elsewhere

The parameter 6;,,x controls the AoA spread of the incoming waves. Figure 2.9 shows a plot of p(0) for 8,,x = 30°, 60°,
and 90°. Note that the distribution is symmetric about 8 = 0. Therefore, this azimuth distribution is less flexible than either
the Gaussian or von Mises distributions. The density in (2.52) is sometimes used to model the elevation AoA distribution of
scatterers in 3-D propagation models, where the mean elevation AoA is zero degrees [361].
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Once the azimuth distribution is specified, the correlation functions ¢y, (7) and ¢y, () can be readily obtained by
evaluating the expectations in (2.22) and (2.27), respectively, using, for example, the densities in (2.50), (2.51), or (2.52).
The Doppler spectrum, Sy, (f), can be obtained by taking the Fourier transform of ¢,,(7) in (2.33) or, alternatively, by
substituting the azimuth distribution p(0) directly into (2.42).

2.1.3 Received Envelope and Phase Distribution
2.1.3.1 Rayleigh Fading

When the composite received signal consists of a large number of sinusoidal components, the received complex envelope
8(#) = g1(t) +jgo(t) can be treated as a complex Gaussian random process. For some types of scattering environments, e.g.,
2-D isotropic scattering, g;(¢) and g (#) at any time ¢, are independent identically distributed Gaussian random variables with
zero mean and variance by = E[g?(#))] = E[g2Q (1)]. Under these conditions the magnitude of the received complex envelope
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o 2 gn)] = /g3 ) + (1) 2.53)

has a Rayleigh distribution at any time #;, as shown in (A.26), i.e.,

X x2
Pa(x) = b—oexp BT >0, (2.54)

The received envelope power is equal to the second moment of «, £2, = E[o?] = 2by, so that

Po(X) = > Xp >0 (2.55)
_e —_—— . .
X 3 s X

This type of fading is called Rayleigh fading. . The corresponding squared-envelope o> = |g(#)|? is exponentially distributed
at any time #; with density

1
P (X) = 2 P %—Qip} . x>0 (2.56)

The squared-envelope is important for the performance analysis of digital communication systems because it is proportional
to the received signal power and, hence, the received signal-to-noise ratio. The performance of digital communication links
on flat fading channels will be discussed in more detail in Chap. 5.

2.1.3.2 Ricean Fading

As mentioned earlier, some types of scattering environments have a specular or LoS component. In this case, g;(¢) and go(f)
are Gaussian random processes with non-zero means m; (f) and mg(t), respectively. If it is again assumed that g;(f) and g (¢)
are uncorrelated, and the random variables g;(#;) and go(#;) have the same variance b, then the magnitude of the received
complex envelope o« = |g(#1)] at any time #; has a Ricean distribution as shown in (A.61), i.e.,

) X x>+ 52 I Xxs =0 2.57)
w(X) = —exp— o | — x>0, .
P b T\ 2k by
where
s> = mj (1) + my(D) (2.58)

is called the non-centrality parameter. This type of fading is called Ricean fading and is often used to describe fading in
environments where a LoS or strong specular path exists between the transmitter and receiver.

A very simple Ricean fading model assumes that the means m;(¢) and my(t) are constants, i.e., m;(t) = m; and
mg(t) = mg. Such an approach will certainly yield a Ricean distributed envelope, but it lacks any physical meaning. A better
model has been suggested by Aulin [22], such that the azimuth distribution p(0) is defined in (2.45) and shown in Fig.2.7. In
this case, the LoS or specular component determines the means m; (f) and mg(f) of the in-phase and quadrature components,
respectively, as follows:

my(t) = s - cos(2nf,, cos(6p)t + o) (2.59)
mg(t) = s - sin(2xf,, cos(6p)t + ¢o). (2.60)

where f,, cos(6y) and ¢y are the Doppler shift and random phase associated with the LoS or specular component, respectively.

The Rice factor, K, is defined as the ratio of the LoS or specular power s? to scattered power 2by, i.e., K = s?/2b,. When
K = 0, there is no LoS or specular component and the envelope exhibits Rayleigh fading. When K = oo, there is no scatter
component and the channel does not exhibit any fading at all. The envelope distribution can be rewritten in terms of the Rice
factor and the average envelope power £2, = E[a?] = s + 2b, by first noting that
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Fig. 2.10 The Rice pdf for 3.0 . . . .
several values of K with £2, =1

5.0
x
K$2 2

st = Ly by = —2 . (2.61)

K+1 2(K+1)

Substituting s> and b, into (2.57) yields
2(K + 1)x (K + 1)x? K(K+1)

L) = — 7 ~K—— L, 2x,[———= ], x>0. 2.62
Pel) = = exp { o) ol B 2.6

Figure 2.10 shows the Rice pdf for several values of K. The curve for K = 0 is the Rayleigh pdf.
The squared-envelope o®> = |g(#;)|* at any time ¢; has the following non-central chi-square distribution with two degrees
of freedom:

K+1 K+1 KKK +1
pa2(x) = %exp{_K_ %% I() (2 %) . xz O (263)

2.1.3.3 Nakagami Fading

The Nakagami distribution was introduced by Nakagami in the early 1940s to characterize rapid fading in long distance HF
channels [238]. The Nakagami distribution was selected to fit empirical data, and is known to provide a closer match to some
measurement data than either the Rayleigh, Ricean, or log-normal distributions [57].

Nakagami fading describes the magnitude of the received complex envelope by the distribution

(™M " xrm=l mx? >1 2 64
ro=2(g) el es 2o

p p

where 2, = E[o?]. Figure 2.11 shows the Nakagami distribution for several values of the shape factor, m. Beyond its
empirical justification, the Nakagami distribution is often used for the following reasons. First, the Nakagami distribution can
model fading conditions that are either more or less severe than Rayleigh fading. When m = 1, the Nakagami distribution
becomes the Rayleigh distribution, when m = 1/2 it becomes a one-sided Gaussian distribution, and when m — oo the
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distribution approaches an impulse (no fading). Second, the Rice distribution can be closely approximated by using the
following relation between the Rice factor K and the Nakagami shape factor m [238];

Kr~vm?—m+m-—1 (2.65)

K+ 1)

Finally, since the Rice distribution contains a Bessel function while the Nakagami distribution does not, the Nakagami
distribution often leads to convenient closed form analytical expressions that may otherwise be intractable.
With Nakagami fading, the squared-envelope has the Gamma distribution

m\" ¥ mx
Po2(x) = (5,,) o) exp %—ﬁp} (2.67)

By using the relationship between the K factor and the shape factor m in (2.65), the cumulative distribution function (cdf),
F,2(x) = P(a? < x) of the squared-envelope with Nakagami and Ricean fading is plotted in Fig.2.12. It is apparent from
Fig. 2.12 that a Gamma distribution can approximate a non-central chi-square distribution to a reasonable degree of accuracy.
However, the reader is cautioned that the tails of the pdf are often the most important. The reason being that the bit errors in
a communication link tend occur during deep fades, which correspond to small values of x in the cdf. Figure 2.12 does not

show how well the tails of a non-central chi-square pdf are approximated by a Gamma pdf.

2.1.3.4 Envelope Phase

The phase of the channel complex envelope g(t) = g;(t) + jgo(?) is

_ —1 (80(®)
¢(t) = Tan (g; (t)). (2.68)
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Fig. 2.12 Comparison of the cdf
of the squared-envelope with
Ricean and Nakagami fading
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For Rayleigh fading, g;(#;) and go(#;) are independent identically distributed zero-mean Gaussian random variables at any
time #;. It follows (Appendix A.3.2.4) that the phase ¢ = ¢ (1) at any time ¢; is uniformly distributed over the interval
[-7, ), ie.,

1
pg(x) = 2, TTEX=T (2.69)

For Ricean fading channels, the phase ¢ is not uniformly distributed and takes on a more complicated integral form, see
Problem 2.9.

2.1.4 Envelope Correlation and Spectra

The autocorrelation of the envelope () = |g(7)| of a complex Gaussian random process can be expressed in terms of the
hypergeometric function F(-, -; -, -) as [89]

Poa(t) = Ela(®) a(t + 7)]

_T _l _1, |¢gg(77)|2
= 510007 (3511 ) 70

where
g (D> = b3, (2) + 3,0, (0)- .71)

The above expression is analytically cumbersome, but fortunately a useful approximation can be obtained by expanding
the hypergeometric function into the following infinite series:

[ —1+1+12+ (2.72)
2, 2, s X = 4X 64X .
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Neglecting the terms beyond second order yields the approximation

- z l|¢gg(7:)|2
Poa(T) = 2|¢gg(0)| (1 + 4—|¢gg(0)|2). (2.73)

At T = 0, the approximation gives ¢ (0) = 572,/8, whereas the true value is ¢, (0) = §2,. Hence, the relative error in
the signal power is only 1.86%, leading us to believe that the approximation is probably very good.

The psd of the received envelope can be obtained by taking the Fourier transform of ¢y, (7). The psd will include a
discrete spectral component at f = 0, due to the dc component of the received envelope. Since we are primarily interested in
the continuous portion of the psd, the autocovariance function A, (7) is of interest, where

Aoa(7) = Ela(t)a(t + 1)] — E[a()]E[a(r + )]

_ 1 |¢gg(f)|2 T
= 5|¢gg(0)| (1 + ZW) - E|¢gg(0)|
= T |, (0P (2.74)

8l (0)

2

For 2-D isotropic scattering and an isotropic receiver antenna |dg,(7)|* = 2121

() and, therefore,

s2

Ao () = 16" JQ2rft). (2.75)

Figure 2.13 plots the normalized envelope autocovariance Aqq(7)/ (7 §2,/16) against the normalized time delay f,,t for the
case of 2-D isotropic scattering, p(f) = 1/(2x), —w < 6 < 7 and an isotropic receiver antenna G(0) = 1.
The Fourier transform of A4, (7) yields the continuous portion S5, (f) of the envelope psd Syq (f), and can be calculated

by using the identities |, (7)|* = Pog(T)pgy (T) and e (7) = ¢y, (—7) to write

Fig. 2.13 Normalized envelope 1.0
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. _ E14
Sea(f) = _8|¢gg(0)|sgg(f) * See(f)

T o0
= 8160 (0] [_oo Sea ()i (x = f)dx
n—f|

T
m i Sge(X)See(x + [f)dx, 0 < |f| < 2fin.

(2.76)

Note that S, (f) is always real, positive, and even. It is centered about f = 0 with a spectral width of 4f,,, where f,, is the
maximum Doppler frequency. To proceed further, S, (f) needs to be specified. With 2-D isotropic scattering and an isotropic
receiver antenna S, (f) = Sg,q, (), Where S, (f) is given by (2.36). The result from evaluating (2.76) is (see Problem 2.10)

c _ ‘QP 1 f ?
Sea(f) = EEK 1- (Zf_m) 0 < If] < 2f, 2.77)

where K( -) is the complete elliptic integral of the first kind, defined by

! dx
ko - | NIEra ey

(2.78)

The continuous portion of the normalized envelope psd Sy« (f)/(£2,/167f,,) is plotted against the normalized frequency f/f,,
in Fig. 2.14.

The psd of the received envelope «(¢) for a non-isotropic scattering channel can be obtained using the above procedure.
For example, consider the particular scattering environment shown in Fig. 2.7 with the associated Doppler spectrum in (2.49).
To obtain the continuous portion of the psd of the envelope «(¢), substitute (2.49) into (2.76) to obtain (see Problem 2.13)
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Figure 2.15 shows a plot of the continuous portion of the normalized envelope psd See (f)/(£2,/ (K + 1)*167f,,) against the
normalized frequency f/f;, for K = 10 and 6y = 7/3.

2.1.4.1 Squared-Envelope Correlation and Spectrum

The autocorrelation of the squared-envelope is
Puza2(7) = Elo* (e (1 + 7). (2.80)
Since o?(r) = g7 (1) + g5(1), it follows that
$ora2 (1) = Elg; (0g7(t + )] + Elgg (g5 (1 + 0)] + Elg7 (851 + 1)] + Elgp (g7 (1 + 7). (2.81)

First consider the case where the propagation environment is such that g;(f) and go(#) have zero mean. Then the squared-
envelope autocorrelation is (see Problem 2.14)

Pora2 (T) = 4¢3, (0) + 49y (1) + 45, (T)
= 40, (0) + 4[¢ (D). (2.82)

Finally, the squared-envelope autocovariance is

A012012 (T) = ¢a2a2 (T) - Ez[az(t)]
= 4|¢ye(0)|". (2.83)
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With 2-D isotropic scattering and an isotropic receiver antenna, the above expression reduces to
Ao2e2(T) = 20052 fu). (2.84)

By comparing (2.74) and (2.83), observe that the approximate autocorrelation function of the envelope and the exact
autocorrelation function of the squared-envelope are identical, except for a multiplicative constant. If the propagation
environment is characterized by a specular or LoS component (e.g., Ricean fading), then g;(¢) and gy (#) have non-zero
means and the autocovariance of the squared-envelope has a more complicated form. Let

g1(t) = &) +my (1) (2.85)
go(t) = go(1) + my(t), (2.86)

where m;(f) and mg(t) are the means of g;(f) and gy (?), respectively. From Problem 2.15,

Pore2 (T) = gz (1) + 492 . (0) + 4Re {m(t)m* (t + T)¢z3(7)} (2.87)

8181

+2 (Jm@)? + |m(t + 0)%) ¢,2,(0) + Im(@)|*|m(z + )%,

where
m(t) = my(t) + jmgo(t) (2.88)
m(t + v) = my(t + v) + jmo(t + 7). (2.89)
The squared-envelope autocovariance is
Raer (1) = 4|2 (0)|* + 4Re {m(m* (1 + 1)pza(0)} - (2.90)

Consider the scattering environment shown in Fig.2.7. The corresponding correlation functions ¢,,,,(t) and ¢g,,,(7) are
given by (2.46) and (2.47), respectively, and the means m; () and mg(¢) are defined in (2.59) and (2.60). It can be shown that

1 @
b2, (1) = K—HT’”Janﬁnr) 2.91)
Pa20(t) =0 (2.92)
and

m)m*(t + ) = 5° ( cos(2mfut cos(8y)) — jsin(2rfy,t cos(@o)))

= Iffpl ( cos(2xf,,t cos(6p)) —jsin(2xf, T cos(@o))) ,

(2.93)

where K is the Rice factor and 6 is the angle that the specular component makes with the MS direction of motion. Using
these results in (2.90) gives

2
Ay (1) = (K“(i: 1) Jo(2fnt) (JO(anmt) 4 2K cos(2ft cos(@o))). (2.94)

The normalized squared-envelope autocovariance is plotted in Fig.2.16 as a function of the normalized time delay f,,t for
various values of K and 6.
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2.1.5 Level Crossing Rate and Fade Duration

Two important second order statistics associated with envelope fading are the level crossing rate (how often the envelope
crosses a specified level) and the average fade duration (how long the envelope remains on average below a specified level).
Also of interest is the zero crossing rate of the real and imaginary components of the complex faded envelope. These
quantities are affected not only by the scattering environment but also by the velocity of the MS.

2.1.5.1 Envelope Level Crossing Rate
The envelope level crossing rate at a specified envelope level R, Lg, is defined as the rate (in crossings per second) at which
the envelope o crosses the level R in the positive (or negative) going direction. Obtaining the level crossing rate requires the
joint pdf, p(a, &), of the envelope level o = |g(#)| and the envelope slope ¢ = d|g(,)|/dt at any time instant #,." In terms
of the joint pdf p(«, &), the expected amount of time the envelope lies in the interval (R, R + da) for a given envelope slope
a and time increment dt is

P(R, &)daddadr. (2.95)
The time required for the envelope « to traverse the interval (R, R + da) once for a given envelope slope @ is

da/a. (2.96)

The ratio of these two quantities is the expected number of crossings of the envelope « within the interval (R, R 4+ d«) for a
given envelope slope ¢ and time increment d¢, viz.

ap(R, )dadr. (2.97)

The expected number of crossings of the envelope level R for a given envelope slope & in a time interval of duration 7 is

T
/ ap(R, &)dadr = ap(R, &)daT. (2.98)
0

!For simplicity of notation, the time variable is suppressed as & = a(t) and & = a(t)).
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The expected number of crossings of the envelope level R with a positive slope in the time interval T is
o
Ng = T/ ap(R, a)da. (2.99)
0
Finally, the expected number of crossings per second of the envelope level R, or the level crossing rate, is

Ly = / ap(R, &)dd. (2.100)
0

This is actually a general result that applies to any random process characterized by the joint pdf p(«, &).

Rice has derived the joint pdf p(«, ¢) for a sine wave in bandpass Gaussian noise [283]. A Ricean fading channel similarly
consists of LoS or specular (sine wave) component plus a scatter (Gaussian noise) component. For the case of a Ricean fading
channel,

2 —3/2 b4 1
pla,d) = % 8 exp %_Fbo [B (o — 2ascos(9) + 57) + (bod + blssin((?))z]} do (2.101)

where s is the non-centrality parameter in the Rice distribution, and B = byb,; — b%, and where by, by, and b, are constants
that are derived from the power spectrum of the scatter component. For the scattering environment described by (2.45) and
Fig.2.7, the sine wave corresponds to the specular component arriving at angle 6, while the Gaussian noise is due to the
scatter component with azimuth distribution p(6) = 1/(27), —w < 6 < 7. Note that the joint pdf derived by Rice in (2.101)
is general enough to apply to scattering environments described by other p(8) as well.

Suppose that the specular or LoS component of the complex envelope g(f) has a Doppler frequency equal f;, = f;, cos(6o),
where 0 < |f;| < f,. In this case [283]

b= o [ s 006 e (2.102)

2
= (27)"by /0 POYGO) (fucos(0) —f,)" db, (2.103)

where p(6) is the azimuth distribution of the scatter component, G(6) is the antenna gain pattern, and Sge(f) is the
corresponding continuous portion of the Doppler power spectrum. Equivalence between (2.102) and (2.103) can be
established by using (2.42). Note that Sy, (f) is given by the Fourier transform of

Do (T) = Dy, (1) = j g, (7). (2.104)
where
o 2
o () = 5 f cos(27fT cos(6))p(6)G(6)do (2.105)
0
o 2
B = 52 [ sinmhy cos(0)p6)6(60)05 (2.106)

In some special cases, the psd Sgg(f) is symmetrical about the frequency f, = f,, cos(6p). This condition occurs, for
example, when f, = 0 (6 = 90°), p(6) = 1/(27), —w < 6 < 7, and G(0) = 1. In this case, b, = 0 for all odd values of n
(and in particular b; = 0) so that (2.101) reduces to the convenient product form

(@.d) 1 a? o (@ + 5?) I os
o, o) = —€X —— - —€X i e— -—
p 27Tb2 P 2b2 bo P 2b0 0 bo

= p(a) - p(@). (2.107)
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Since p(«, @) = p(&)-p(a) in (2.107), it follows that o and ¢ are statistically independent. When f; = 0 and p(6) = 1/(2n),
a closed form expression can be obtained for the envelope level crossing rate. Substituting (2.44) into (2.102) gives

bo2rf)" 222D even

by =
0 nodd

(2.108)

Therefore, by = 0 and by = by (27f,,)*/2. By substituting the joint density in (2.107) into (2.100) and using the expression
for by in (2.61), the envelope level crossing rate is obtained as

Lr = V270 (K + Dfpe K-E+D 1 (2,0,/1((1( n 1)) : (2.109)

where

o= = (2.110)

and Ry 2 v/ E[?] is the rms envelope level. Under the further condition that K = 0 (Rayleigh fading), the above expression
simplifies to

Lr = vV 27fpupe™"". @2.111)

Notice that the level crossing rate is directly proportional to the maximum Doppler frequency f,, and, hence, the MS speed
v = fuAc. The normalized level crossing rate Lg/f,, in (2.109) is plotted in Fig. 2.17 as a function of p and K.

2.1.5.2 Zero Crossing Rate

Recall that received complex envelope g(f) = g;(t) + go(?) is a complex Gaussian random process. If the channel is
characterized by a specular or LoS component, then g;(¢) and go(f) have mean values m;(f) and mg(t), respectively. Of
interest, is the zero crossing rate of the zero-mean Gaussian random processes g; (1) = g;(1)—my(t) and 8o (t) = go(t)—mg(?).
Rice [283] has derived this zero crossing rate as

100

N
o
N

N
<
N

Normalized Level Crossing Rate, Lg/f,,

10738 L ’ L L Y
-30 -20 -10 0 10
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Fig. 2.17 Normalized level crossing rate for the scattering environment shown in Fig. 2.7 with 6, = 90°
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1 /b
Ly=— |2 (2.112)
b bo

When the scatter component has the azimuth distribution p(6) = 1/(2x), —w < 6 < 7, the zero crossing rate is
L; = V2. (2.113)

Similar to the level crossing rate, the zero crossing rate is directly proportional to the maximum Doppler frequency f,,,.

2.1.5.3 Average Fade Duration
Another quantity of interest is the average duration that the envelope remains below a specified level R. Although the pdf of

the envelope fade duration is unknown, the average fade duration can be calculated. Consider a very long time interval of
length 7" and let ¢; be the duration of the ith fade below the level R. The probability that the received envelope is less than R is

1
Pla <R] = - Zt,-. (2.114)

The average fade duration is equal to

d.iti Pl <R]

7= - (2.115)
TLx Lr
If the envelope is Ricean distributed as in (2.62), then
R
P(a <R) = [ p@)de = 1-0Q («/21(, V2K + 1)p2), (2.116)
0
where Q(a, b) is the Marcum Q function. Moreover, if it is again assumed that f; = 0 and p(6) = 1/(2x), then
] 1-0 («/21{, V2K + 1)p2)
i = . 2.117)
V20K + 1)fupe—K=K+De [ (2,0‘/1((1( T 1))
If K = 0 (Rayleigh fading), then
R 2
Ple < R] = / pla)de = 1—¢” (2.118)
0
and
_ e’ — 1
= o — (2.119)
pfm~N 21

The normalized average fade duration #f;, in (2.117) is plotted in Fig. 2.18 as a function of p.

The level crossing rate, zero crossing rate, and average fade duration all depend on the velocity of the MS, since
fmn = v/Ac. Very deep fades tend to occur infrequently and do not last very long. For example, at 60 mi/hr and 900 MHz,
the maximum Doppler frequency is f,, = 80Hz. Therefore, with 2-D isotropic scattering and Rayleigh fading (K = 0)
there are Ly = 74 fades/s at p = 0dB with an average fade duration of 8.5 ms. However, at p = —20dB there are only
20 fades/s with an average fade duration of 0.5 ms. Note that since p represents a normalized envelope (magnitude) level,
P@B) = 201log;, p. Also observe from Fig.2.17 that for small p(gg), the level crossing rate decreases with an increasing Rice
factor K. Furthermore, from Fig. 2.18, for small p4p) the average fade duration increases with increasing K. Hence, as K
increases the fades occur less frequently, but last longer when they do occur.
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Fig. 2.18 Normalized average fade duration for the scattering environment shown in Fig. 2.7 with 6, = 90°

2.1.6 Space-Time Correlation

Many mobile radio systems employ receiver antenna diversity, where spatially separated receiver antennas are used to
provide multiple faded replicas of the same information bearing signal. In order for such diversity systems to provide
the maximum diversity gain, it is desirable that the multiple faded replicas experience uncorrelated fading. The spatial
correlation characteristics are needed for determining the required spatial separation between antenna elements so that they
are sufficiently decorrelated. Moreover, it is sometimes desirable to simultaneously characterize both the spatial and temporal
channel correlation characteristics. For this purpose, the space-time correlation function is useful. To obtain the space-time
correlation functions, it is necessary to specify the scattering geometry. One possibility for NLoS conditions is the single-
ring model shown in Fig. 2.19, where the BS and MS are located at O and Oy, respectively, and separated by distance D,
and the scatterers are assumed to be located on a ring of radius R centered around the MS. Very often, a local scattering
assumption is made such that D >> R, in order to simplify and obtain closed for expressions for the various space-time
correlation functions. For short distances between the transmitter and receiver, or large scattering radii, the local scattering
assumption is not applicable.

2.1.6.1 Space-Time Correlation at the Mobile Station

Consider two MS antennas, AZ(\Z) ,q = 1,2, separated by distance §,;. The MS antenna array is oriented with angle 6, with
respect to the x-axis, and the MS moves with velocity v and angle y), with respect to the x-axis. For the environment shown

in Fig. 2.19, the channel from Ogp to Al(‘fl’) has the complex envelope

N
g"(t) = Z Cnej¢”_j2ﬂ(€,,+€nq)//\CejZJTfthOS(a](\;)_YM) ,qg=1.2, (2.120)

n=1
where €, and ¢,, denote the distances Og — S, and SZ(‘Z) — Aj(g), q = 1,2, respectively. From the law of cosines, the distances
€, and €,, can be expressed as a function of the angle-of-arrival oc](\:}) as follows:

€2 = D* + R* 4+ 2DRcos(a)) (2.121)
€2, = (15— q)8u)* + R* = 2(1.5 — q)8uR cos(aty, — Oy) . g = 1.2. (2.122)
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< D »>

Fig. 2.19 Single-ring scattering model for NLoS propagation on the forward link of a cellular system. The MS is surrounded by a scattering ring
of radius R and is at distance D from the BS, where R < D

Assuming that R/D < 1, §y; < R and using the approximation +/1 &+ x & 1 £ x/2 for small x, gives

€x ~ D + Reos(al)) (2.123)
€ng ~ R— (15— q)8y cos(a? —Oy) . g = 1,2. (2.124)

Substituting (2.123) and (2.124) into (2.120) gives

N
(t) _ Z C, e/¢n—j271(D+Rcma,(J,l)+R (1.5— q)SMcos(ot,(;,z)—GM))/l +]27rfmzcos(on —ym) L q= 1,2. (2.125)

n=1

The space-time correlation function between the two complex faded envelopes g; (¢) and g, (¢) is

be100(6m, T) = [g1 (g2t + 7). (2.126)

Using (2.125) and (2.126), the space-time correlation function between g; (¢) and g;(¢) can be written as

2|b

N
(n)
b1 .00 (6. 7) = Z [ —27 (Bar/ Ae) cos(otyy —Op) +j27finT cos(aM yM)] (2.127)

Since the number of scatters is infinite, the discrete angles-of-arrival az(‘;) can be replaced with a continuous random variable
oy with probability density function p(,,). Hence, the space-time correlation function becomes

0 2 ) )
o102 (Bnr, ) = - / eI conten =0 gacos@u =0 p (o) dary, (2.128)
0

where a = 2nf,,t and b = 278y / A
For the case of 2-D isotropic scattering with isotropic MS antenna, p(ay) = 1/(2w), — < opy < 7, and the space-time
correlation function becomes

Q
DuaBr1.7) = =L (\/a2 T 12— 2abcos(By — )/M)) . (2.129)

The spatial and temporal correlation functions can be obtained by setting T = 0 and and §,; = 0, respectively. This gives
Ga1.0:0p) = Pgy.0,(61,0) = %JO(ZJTSM/AC) and ¢g(7) = g, 4,(0,7) = %Jo(anmt), which matches our earlier result
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in (2.29) as expected. For the case of 2-D isotropic scattering and an isotropic MS antenna, it follows that Fig. 2.13 also
plots the normalized envelope spatial autocovariance function A« (€)/ (7 §2,/16) against the normalized spatial separation
JfmT = 8um/Ac. The spatial autocovariance function is zero at §y/A., = 0.38 and is less than 0.3 for &y;/A. > 0.38. The
implication is that, under conditions of 2-D isotropic scattering and isotropic MS antennas, sufficient spatial decorrelation
can be obtained by spacing the MS antenna elements roughly a half-wavelength apart.

2.1.6.2 Space-Time Correlation at the Base Station

Radio channels are reciprocal in the sense that if a propagation path exists, it will carry energy equally well in either the
uplink or downlink directions. That is, the plane waves in either direction will propagate by exactly the same set of scatterers.
Therefore, the temporal autocorrelation functions and Doppler spectra are expected to be the same for both the uplink and
downlink directions. However, for cellular land mobile radio applications, most of the scatters are in the vicinity of the MS,
while the BS antennas are elevated and free of local scatters. Consequently, the plane waves will arrive at the BS antennas
with a narrow angle-of-arrival spread, whereas they arrive with a large angle-of-arrival spread at the MS. This will cause
significant differences in the spatial correlation properties of the uplink and downlink. It will be shown that a much larger
spatial distance is required to obtain a given degree of spatial decorrelation at the BS as compared to the MS.

To obtain the space-time correlation functions, it is once again necessary to specify the scattering geometry. One
possibility for NLoS conditions is the single-ring model shown in Fig. 2.20, where the MS and BS are located at Oy, and Og,
respectively, and separated by distance D, and the scatterers are assumed to be located on a ring of radius R centered around
the MS. Once again, a local scattering assumption is often made such that D > R.

Consider two BS antennas, Agf), q = 1,2, separated by distance §g. The BS antenna array is oriented with angle 6 with
respect to the x-axis, and the MS moves with velocity v and angle y,; with respect to the x-axis. For the environment shown

in Fig. 2.20, the channel from Oy, to qu) has the complex envelope

N
gq(l‘) = Z Cmewm_jzn(R-l-emq)/)Lcej27rf;,,lCOS(Ot,:,';l)—)’M)’ g=1.2, (2.130)

m=1

where €,,, denotes the distance ng’) — Agl) , g = 1, 2. To proceed further, ¢,,, needs to be expressed as a function of al(&").

Applying the cosine law to the triangle ASXI") OBA(q), the distance ¢,,, can be expressed as a function of the angle 91(;") —0g
as follows:

ng = (15— )8p)* + €5 — 2(1.5 — q)Spen, cos(0y” — 0g) .q = 1,2, (2.131)
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Fig. 2.20 Single-ring scattering model for NLoS propagation on the reverse link of a cellular system. The MS is surrounded by a scattering ring
of radius R and is at distance D from the BS, where R << D
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where ¢, is the distance Sf&o — Op. By applying the sine law to the triangle AOMSj(‘;") Op, the following identity is obtained

€m R D
= (2.132)

sin(ozgl)) sin (r[ - 91(3'“)) sin (7‘[ - al(,:]") - (n - 91(3"1)))

Since the angle 7w — 91(;”) is small, the small angle approximations sinx ~ x and cosx & 1 for small x can be applied to the
second equality in the above identity. This gives

R D
(r — 60"y ~ sin (n — ot(m)) @13
B M
or
(r —6") ~ (R/D) sin(r — ™). (2.134)
It follows that the cosine term in (2.131) becomes
cos(0y"” — 0g) = cos(r — O — (r — O5™))
= cos(r — 0g) cos(m — 91(3"1)) + sin(wr — @) sin(w — 91(3"1))
~ cos(m — 0g) + sin(rr — 0)(R/D) sin(mw — otl(;,"))
= —cos(6p) + (R/D) sin(6p) sin(ozj(é")). (2.135)
Substituting the approximation in (2.135) into (2.131), along with 8z/€,, < 1, gives
2, ~ e (1 —2(1.5— q)f—B ((R/D) sin(6) sin(a\") — cos(03)>) . (2.136)
Applying the approximation /1 &+ x ~ 1 & x/2 for small x gives
€mg ~ €m — (1.5—q)8p ((R/D) sin(6g) sin(al(t;")) - cos(93)> . (2.137)
Applying the cosine law to the triangle AOMSXI") Op gives
€2 = D* + R* — 2DRcos(a")
~ D? (1 —2(R/D) cos(a™ ) : (2.138)
and again using the approximation /1 & x & 1 = x/2 for small x gives
€n~D—R cos(ozj(\';')). (2.139)
Finally, using (2.139) in (2.131) gives
€mg ~ D — Reos(@") — (1.5 — ¢)8 ((R/D) sin(6p) sin(a ") — cos(eg)) . (2.140)
Substituting (2.140) into (2.130) gives the result
o) = XN: €, P2t cos(ely” =) =72 (R D=R cos(e;”)=(1:5=0)38 ((R/D) sinp)sin(ey”)—cos(@w)) ) /2. (2.141)

m=1

which is a function of the azimuth angle of departure aﬂ”.
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The space-time correlation function between the two complex faded envelopes g;(f) and g,(¢) at the BS is once again
given by (2.126). Using (2.141) and (2.126), the space-time correlation function between g; (¢) and g,(¢) can be written as

N
¢g1,g2 (88, ‘L') T(?] Z |: JZn(SB/)LC) (R/D) sin(0p) Sln(a}‘fl")) 005(93))+J2nﬁnrcos(aM —yM)] (2.142)

Since the number of scatters around the MS is infinite, the discrete angles-of-arrival (xj(\;") can be replaced with a continuous
random variable ), with probability density function p(c). Hence, the space-time correlation function becomes

2 T . . .
¢g1 .82 (83, ‘L’) = TP [ e/? COS(“M_VM)C_./b((R/D) sin(0p) Sm(aM)_COS(QB))p(aM)daM, (2 143)
—T
where a = 2nf,,t and b = 276/ A..
For the case of 2-D isotropic scattering with an isotropic MS transmit antenna, p(ay) = 1/(27), —m < opy < 7, and the
space-time correlation function becomes

bor.0r (85, T) = %eﬂ’m(@w@ (\/a2 + b2(R/D)? sin’(63) — 2ab(R/ D) sin(6p) sin(yM)). (2.144)

The spatial and temporal correlation functions can be obtained by setting ¢ = 0 and and § = 0, respectively. For the
temporal correlation function ¢ee(7) = ¢y, .4,(0,7) = %Jo (27f,,,v) which matches our earlier result in (2.29) as expected.
The spatial correlation function is

B (60) = B 65.0) = 220 1 (5(R/D) sin(6) ). (2.145)

Figure 2.21 plots the magnitude of the normalized spatial envelope crosscovariance function, |¢,, ,(85)|/(£2,/2), for
R = 60m and various BS array orientation angles 0. Likewise, Fig.2.22 plots |¢,, 0, (85)|/(§2,/2) for 0 = m/3 and
various scattering radii, R. In general, a much greater spatial separation is required to achieve a given degree of envelope
decorrelation at the BS as compared to the MS. This can be readily seen by the term R/D < 1 in the argument of the Bessel
function in (2.145). Also, the spatial correlation increases as the angle 85 and scattering radii R decrease. BS antenna arrays
that are broadside with the MS direction will experience the lowest correlation, while those that are in-line with the MS
direction will experience the highest correlation. In fact, for in-line BS antennas |¢,, ,,(6g)| = 1 and, therefore, the faded
envelopes on the different BS antennas are perfectly correlated.

2.2 Mobile-to-Mobile Channels

Mobile-to-mobile (M-to-M) communication channels arise when both the transmitter and receiver are in motion and are
equipped with low elevation antennas that are surrounded by local scatterers. The statistical properties of M-to-M channels
differ significantly from those of conventional fixed-to-mobile (F-to-M) cellular land mobile radio channels, where the mobile
station is surrounded by local scatterers and the base station is stationary, elevated, and relatively free of local scattering.
Akki and Haber [13, 14] were the first to propose a mathematical reference model for M-to-M flat fading channels under
NLoS propagation conditions. The Akki and Haber model was extended by Vatalaro and Forcella [329] to account for 3-D
scattering, and by Linnartz and Fiesta [209] to include LoS propagation conditions. Channel measurements for outdoor-to-
outdoor, narrow-band outdoor-to-indoor, and wide-band mobile-to-mobile communications have been reported in [9, 182,
188, 222], and methods for simulating M-to-M channels have been proposed in [259, 345, 371].
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Fig. 2.21 Envelope cross-correlation magnitude at the base station for R = 60 m and various arrival angles, 6g; D = 3000 m
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Fig. 2.22 Envelope cross-correlation magnitude at the base station for 6 = /3 and various scattering radii, R; D = 3000 m

2.2.1 Mobile-to-Mobile Reference Model

Akki and Haber’s mathematical reference model for M-to-M flat fading channels gives the complex faded envelope as [14]

/1 N (T ON (n))
2 m +m ) t+jon
g = ﬁ E ¢ 7 \fom cosa”) iy cos(ap j ’
n=1

(2.146)
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where N is the number of propagation paths; f. and fX are the maximum Doppler frequencies due to the motion of the
transmitter and receiver, respectively; oz(T") is the random angle of departure and oeg” is the random angle of arrival of the nth
propagation path measured with respect to the transmitter and receiver velocity vectors, respectively; ¢, is a random phase
uniformly distributed on [—7, 7r) independent of ot(T") and ag') for all n.

In the above model, the Doppler frequency experienced by each propagation path is the sum of the individual Doppler
frequencies induced by the motion of the transmitter and receiver. Once again, for sufficiently large N, the central limit
theorem can be invoked with the result that g,(f) and go(#) can be treated as zero-mean Gaussian random processes.
If isotropic transmitter and receiver antennas and 2-D isotropic scattering around both the transmitter and receiver are
assumed, then the envelope |g(7)| is Rayleigh distributed at any time ¢. This is similar to the case of conventional F-to-M
cellular land mobile radio channels with 2-D isotropic scattering and an isotropic antenna at the MS. However, the ensemble
averaged temporal correlation function of the faded envelope of M-to-M channels is quite different from that of F-to-M
channels, and can be derived as follows [13, 14]:

1
busen(r) = I, Mo 2eafv)

1
Pops0(T) = EJO(ZHJC,ZI)JO(Znaf,;t)
G150(T) = Py (T) =0

Beo(T) = %Jo(an,l 0)Jo2raf!1), (2.147)

where a = fR/fT" is the ratio of the two maximum Doppler frequencies (or speeds) of the receiver and transmitter, and
0 < a < 1 assuming /X < fT' Observe that the temporal correlation functions of M-to-M channels involve a product of
two Bessel functions in contrast to the single Bessel function found in F-to-M channels. Also, a = 0 yields the temporal
correlation functions for F-to-M channels as expected. The corresponding Doppler spectrum, obtained by taking the Fourier
transform of (2.147) is

1 l+a f 2
Sgg(f)_ﬂf,gﬁK " Va 1—(m) : (2.148)

where K( - ) is the complete elliptic integral of the first kind. The Doppler spectrum of M-to-M channels in (2.148) differs
from the classical spectrum of F-to-M cellular land mobile radio channels, as illustrated in Fig. 2.23, which shows the Doppler
spectrum for different values of a.

2.3 Statistical Characterization of Multipath-Fading Channels

Multipath-fading channels can be modeled as randomly time-variant linear filters, whose inputs and outputs can be described
in both the time and frequency domains. This leads to four possible transmission functions [35]; the time-variant impulse
response g(t, t), the output Doppler-spread function H(f, v), the time-variant transfer function 7T'(f, t), and the delay Doppler-
spread function S(z, v). The time-variant impulse response relates the complex low-pass input and output time waveforms,
5(¢) and 7(t), respectively, through the convolution integral

(1) = fo t (1, 1)5(t — 7)dr. (2.149)

In physical terms, g(t, T) can be interpreted as the channel response at time 7 due to an impulse applied at time ¢ — 7. Since
a physical channel is causal, g(¢,7) = 0 for T < 0 and, therefore, the lower limit of integration in (2.149) is zero. If the
convolution in (2.149) is approximated as a discrete sum, then
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Fig. 2.24 Discrete-time tapped delay line model for a multipath-fading channel

(1) =) g(t.mAT)i(t — mAT) At (2.150)

m=0

This representation allows us to visualize the channel as a transversal filter with tap spacing At and time-varying tap gains
g(t,mA7) as shown in Fig. 2.24. ~ 5

The second transmission function relates the input and output spectra, S(f) and R(f), respectively, through the integral
equation

R(f) = /_Oo H(f —v,v)S(f — v)dv. (2.151)

Bello called the function H(f, v) the output Doppler-spread function [35]. This function explicitly shows the effect of Doppler
shift or spectral broadening on the output spectrum. In physical terms, the frequency-shift variable v can be interpreted as
the Doppler shift that is introduced by the channel. Once again, the integral in (2.151) can be approximated by the discrete
sum

R(f) =) H(f — mAv, mAv)S(f — mAv) Av. (2.152)
m=1

This allows the channel to be represented by a bank of filters with transfer functions H(f, mAv)Av followed by a dense
frequency conversion chain with tap spacing Av that produces the Doppler shifts as shown in Fig. 2.25.
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Fig. 2.25 Frequency conversion model for a multipath-fading channel
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The third transmission function T'(f, t) is the time-variant transfer function, which relates the output time waveform to the
input spectrum as follows:

F (1) = / - S(HT(f. /> df. (2.153)

The final description relates the input and output time waveforms through the double integral

7(t) = f = / - S(z,v)3(t — 1)/ dvdr. (2.154)

The function S(z, v) is called the delay Doppler-spread function [35], and provides a measure of the scattering amplitude of
the channel in terms of the time delay t and Doppler frequency v.

The four transmission functions are related to each other through Fourier transform pairs as shown in Fig. 2.26. In each
Fourier transform pair there is always a fixed variable, so that the transform involves the other two variables.

2.3.1 Statistical Channel Correlation Functions

Similar to flat fading channels, the channel impulse response g(z, 7) = g;(#, ) + jgo(t, T) of a frequency-selective fading
channel can be modeled as a complex Gaussian random process, where the quadrature components g; (¢, t) and gy (¢, t) are
real Gaussian random processes. Hence, all of the transmission functions defined in the last section are themselves random
processes. Since the underlying process is Gaussian, a complete statistical description of these transmission functions is
provided by their means and autocorrelation functions. In the following discussion, zero-mean Gaussian random processes
are assumed for simplicity so that only the autocorrelation functions are of interest. Since there are four transmission
functions, four autocorrelation functions can be defined as follows [255, 272]:

¢g(t.s:7.m) = E[g*(t, 1)g(s. )] (2.155)
or(f,m;t,s) = E[T*(f, )T (m,s)] (2.156)
du(f.m;v, u) = E[H*(f,v)H(m, )] (2.157)

¢s(t.n:v, u) = E[S™ (7, v)S(n, w)]. (2.158)
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These autocorrelation functions are related to each other through double Fourier transform pairs. For example,
(o) o0 .
ps(T.miv. 1) = [ f (L. 5 7. e 2T drds (2.159)
—00 J —0O0
o o0 .
Bt 57, 1) = / / ¢s(. v, e dudy, (2.160)
—00 J —00

The complete set of such relationships is summarized in Fig. 2.27.

2.3.2 Classification of Channels

Wide-sense stationary (WSS) channels have fading statistics that remain constant over small periods of time or short spatial
distances. This implies that the channel correlation functions depend on the time variables 7 and s only through the time
difference A, = s —t. It can be demonstrated (see Problem 2.23) that WSS channels give rise to scattering with uncorrelated
Doppler shifts. This behavior suggests that the attenuations and phase shifts associated with multipath components having
different Doppler shifts are uncorrelated. This makes sense, because multipath components with different Doppler shifts
arrive from different directions and, hence, propagate via different sets of scatterers. For WSS channels the correlation
functions become

bo(t. 1+ AT, ) = ¢ (AT, 1) (2.161)
dr(f.mit,t + A) = or(f,m; Ay) (2.162)
¢H(f» m;v, H’) = '(//H(fv m; U)S(U - lu‘) (2163)
ds(T, m;v, ) = Ys(T, n;v)8(v — p), (2.164)
where
Yu(f,mv) = / h pr(f.m; A)e PV A4dA, (2.165)
Ys(z,miv) = f h Go (A T, m)e P AdA, (2.166)

are Fourier transform pairs.

Uncorrelated scattering (US) channels are characterized by paths of different delays having uncorrelated complex gains.
Bello showed that US channels are wide-sense stationary in the frequency variable so that the correlation functions depend
on the frequency variables f and m only through the frequency difference Af = m—f [35]. Analogous to (2.163) and (2.164),
the channel correlation functions are singular in the time-delay variable (see Problem 2.24). Again, this makes sense because
multipath components arriving with different delays propagate via different sets of scatterers. For US channels, the channel
correlation functions become
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Fig. 2.28 Fourier transform
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Ge(t, 537, m) = Yot 557)3(n — 7) (2.167)
dr(f.f + Apit,s) = dr(4pit,s) (2.168)
du(f.f + Apsv, ) = du(Arsv, 1) (2.169)
¢s(t,m;v, 1) = Ys(z;v, w)d(n — 1), (2.170)
where
Velt,s57) = / dr(As;t, )@V A, (2.171)
Vs(tiv, p) = /oo du(Asiv, ) ¥ dA, (2.172)

are Fourier transform pairs.

Wide-sense stationary uncorrelated scattering (WSSUS) channels exhibit uncorrelated scattering in both the time-delay
and Doppler shift domains. Fortunately, many radio channels can be effectively modeled as WSSUS channels. For WSSUS
channels, the correlation functions have singular behavior in both the time delay and Doppler shift variables, and reduce to
the following simple forms:

Gt 1+ AT, ) = YA T)8(n — 7) (2.173)
$r(f.f + Apitit + A) = dr(Ar A) (2.174)
Su(f.f+ Apiv, ) = Yu(Apv)8(v — p) (2.175)
ds(z.m;v, w) = Ys(z,v)8(n — 1)8(v — ). (2.176)

The correlation functions for WSSUS channels are related through the Fourier transform pairs shown in Fig. 2.28.

2.3.3 Power-Delay Profile and Coherence Bandwidth

The function ¥, (0; ) = v,(7) is called the power-delay profile and gives the average power at the channel output as a
function of the time delay 7. A typical power-delay profile is shown in Fig.2.29. One quantity of interest is the average
delay, defined as

B fooo T, (1)dt

—Jo_ , (2.177)
Jo Ve(r)de

T

Note that the normalization fooo Y, (t)dr is applied because ¥,(7) does not necessarily integrate to unity like a probability
density function. Another quantity of interest is the rms delay spread, defined as

0, = fooo(f — 1) Y(r)dr (2.178)
‘ [Ooo Ve (r)dt ' '
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Fig. 2.29 A typical power-delay Power Density (dB)
profile
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There are other quantities that can also be used to describe the power-delay profile. One is the width, W,, of the middle
portion of the power-delay profile that contains a fraction x of the total power in the profile. Referring to Fig. 2.29

WX =1T3— 1T (2179)
where 71 and 13 are chosen so that
T1 o0
/ Yo(r)dr = / Yo (r)dr (2.180)
0 7
and
2] o0
/ Ye(r)dr = x/ Y, (r)dr. (2.181)
T] 0

Another quantity is the difference in delays where the power-delay profile rises to a value P dB below its maximum value for
the first time and where the power-delay profile drops to a value P dB below its maximum value for the last time. This quantity
is denoted by Wp and is also illustrated in Fig. 2.29, where Wp = 1, — ;. In general, the average delay and delay spread of
the channel will diminish with decreasing cell size, the reason being that the radio path lengths are shorter. While the delay
spread in a typical macrocellular application may be on the order of 1-10 s, the delay spreads in a typical microcellular
applications are much less. Delay spreads for indoor channels can range anywhere from 30 to 60 ns in buildings with interior
walls and little metal, to 300 ns in buildings with open plans and a significant amount of metal.

The function ¢7(A;; Ay) is called the spaced-time spaced-frequency correlation function. The function ¢7(0; A;) =
¢r(Ar) measures the frequency correlation of the channel. The coherence bandwidth, B, of the channel is defined as the
smallest value of A, for which ¢7(As) = x¢r(0) for some suitably small value of x,0 < x < 1. As a result of the Fourier
transform relation between ¢,(7) and ¢7(Ay), the reciprocal of either the average delay or the delay spread is a measure of
the coherence bandwidth of the channel i.e.,

B, x i or B, « i (2.182)
23 Oz
Wideband fading channels can be classified according to the relationship between the transmitted signal bandwidth W;
and the coherence bandwidth B.. If B, < Wi, the channel is said to exhibit frequency-selective fading which introduces
intersymbol interference (IS]) into the received signal. If B, > W, the channel is said to exhibit flat fading, and very little
ISI is introduced into the received signal.

The function ¥y (v;0) = ¥y(v) is identical to the Doppler spectrum Sg, (f) in (2.30), i.e., Y (V) = Sg(f), and gives
the average power at the channel output as a function of the Doppler frequency v. The range of values over which 4 (v) is
significant is called the Doppler spread and is denoted by B,. Since ¥y (v) and ¢7(A4;) are a Fourier transform pair, it follows
that the inverse of the Doppler spread gives a measure of the channel coherence time, T, i.e.,

T~ —. (2.183)
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Wideband fading channels can also be classified according to the relationship between the transmitted symbol duration, 7,
and the coherence time 7. If T, < T, the channel is said to exhibit fast fading which introduces severe frequency dispersion
into the received signal. If T, > T, the channel is said to exhibit slow fading which introduces very little frequency dispersion
into the received signal.

Finally, the function (7, v) is called the scattering function and gives the average power output of the channel as a
function of the time delay 7 and the Doppler shift v. Plots of the scattering function are often used to provide a concise
statistical description of a multipath-fading channel from measurement data.

2.3.4 System Correlation Functions

The astute reader may wonder why the factor of 1/2 does not appear in the definition of the channel correlation functions
in (2.158). The multipath-fading channel can be treated as a time-variant linear filter, such that the complex envelopes of
the channel input and output are related through the convolution integral in (2.149). By using (2.149), the autocorrelation
functions of the output waveform 7(f) and of the input waveform 5(¢) can be related. Assuming that the channel is WSSUS,
the time autocorrelation function of the channel output 7(¢) is

1
¢r(t.1+ 4A) = JE [ ()7t + A))]

1 t t+A;
= EE |:/0 g (t, )5 (t — a)do x /0 glt+ Ay, B)sit+ A, — ﬂ)dﬂi|

t t+A; 1
= f / E[g*(t.)g(t+ A, B)] E[5*(t — a)5(t + A, — B)] dedB
0 Jo 2
t t+A; 1
= / / V(A a)8(B —a)ZE[5*(t — a)3(t + A, — )] dadp
0 Jo 2
_ [t wg(A,;a)%E [5*(t — @)3(t + A — )] de
0

= [ Yo(Apsa)pss(t — o, t — o + Ap)da
0
= Yo (An D) x (1,1 + Ay) (2.184)

where
o5t t+ A) = %E [E*(t)i(t + A,)] .

Thus, the output autocorrelation function is the convolution of the channel correlation function ,(A;; f) and the correlation
function of the input waveform. Note that the factor of 1/2 in the definition of ¢ (f, + A,) is absorbed into the similar
definition of ¢5;(¢, 1+ A;). Consequently, a factor of 1/2 does not appear in the definition of the channel (or system) correlation
functions in (2.158). For digital modulation, the input waveform 5(¢) is a cyclostationary random process as described in
Sect.4.9.1 and, hence, the channel output waveform will be cyclostationary as well.

2.4 Polarized Channel Modeling

Multi-polarized antennas have attracted considerable attention as a means for increasing channel capacity and reducing the
required antenna spacing through the principle of polarization diversity [19, 184, 191, 198, 245, 299, 330]. Such antennas
exploit channel depolarization and have the potential to double or even triple the channel capacity that is achievable with
single-polarized antennas [19, 110, 111, 245, 299, 306]. In practice, cellular land mobile radio systems have employed slant
polarized array antennas at the base stations to good benefit.
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Depolarization can occur as a result of two factors. One factor arises from the transmit and receive antennas themselves.
Any practical antenna gain pattern can be described in terms of two orthogonal antenna polarization functions. For a vertically
polarized antenna these polarization functions are fy,, and fjj,;, while for a horizontally polarized antenna they are f{;; and
Sy, where H and V refer to horizontal and vertical polarization, respectively. For an ideal linear vertically or horizontally
polarized antenna only fy,, or fij,; is non-zero, respectively. However, for practical antennas, the cross-polarization functions
Sfyy and fj, will be non-zero as well due to antenna depolarization.

The other factor causing depolarization is the radio channel propagation environment. Similar to antenna depolarization,
the radio channel can be characterized in terms of four orthogonal channel polarization functions identified as fyvv, fav,
Sfvu, and fyg, where again H and V refer to horizontal and vertical polarization, respectively. The antenna and channel
depolarization can be decoupled, and in order to isolate the effects of channel depolarization, ideal linear polarized antennas
are assumed.

The degree of depolarization is often measured in terms of the cross polarization discrimination (XPD), defined as the
ratio of the co-polarized average received power to the cross-polarized average received power. For a vertically polarized
transmit antenna the XPD can be defined as

E 2
XPD = [ng] . (2.185)
Elfiv]
In conventional XPD modeling, it is assumed that E[f2,] = E[f3,;] = 1 — ¢, and E[f;3,] = E[f;;] = ¢, resulting in
1—
XPD = TE (2.186)

where ¢ is a parameter that having the range 0 < ¢ < 1. Such a model ensures a conservation of power or energy, where the
total received power is split between the co-polarized and cross-polarized components. When ¢ = 0, only the co-polarized
component exists and XPD = oo, and when { = 1, only the cross-polarized component exists and XPD = 0. The polarized
channel is conventionally treated as a 2 x 2 MIMO channel, such that

G=7ZQGy (2.187)

where Gijq is a 2 x 2 matrix of zero-mean complex i.i.d. Gaussian random variables,

zz[\/? i/i] (2.188)

and ® denotes the Hamadard product or Schur product (element-by-element matrix multiplication).

Despite its simplicity, the conventional model for XPD provides little insight into the mechanisms of channel
depolarization and how the parameter { behaves. Typically, a value or ranges of values for ¢ are merely assumed. The
remainder of this section considers a geometrical theoretical model for channel depolarization in wireless fixed-to-mobile
channels, characterized by isotropic or non-isotropic azimuthal scattering and with either non-line-of-sight (NLoS) or line-
of-sight (LoS) conditions between the transmitter and receiver. Predictions from the model are compared with previously
reported measurement data [110, 191, 306] and shown to have close agreement. Finally, the theoretical geometry-based XPD
model is used to explain the origin of some phenomena observed in these empirical results.

2.4.1 Geometric Model for Channel Depolarization

Consider the 3-D cylindrical model shown in Fig. 2.30, where scatterers are distributed on a cylindrical surface in the vicinity
of the mobile station.” These scatterers result in single-bounced propagation between a BS and a MS. The high-elevation BS
antenna is assumed to be free of local scattering, which is typical of cellular land mobile radio systems. A LoS component
may or may not exist between the BS and MS. The cylindrical scattering surface is characterized by its radius R,, and the

“Here the term “scatterer” refers to a plane boundary that is typically much larger than a wavelength.
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Fig. 2.30 3-D cylindrical scattering model for fixed-to-mobile channels

ray incident on the MS antenna from each scatterer on the cylinder has an associated azimuth angle of arrival (AA0A), ag,
and elevation angle of arrival (EAoA), Bg. As will be explained later, a 3-D scattering model is necessary to explain the
mechanism of channel depolarization.

The phenomenon of channel depolarization between a MS and MS can be explained by the NLoS plane waves that arrive
at the MS via scattering objects. Figure 2.30 presents a scenario where a vertically polarized plane wave emitted from the
BS can result in a horizontally polarized plane wave component being received at the MS. The vector V in Fig.2.30 is
the vertical polarization vector of a plane wave from the BS, and V’ is the corresponding polarization vector of the plane
wave after reflection from a scatterer. By convention the vertical and horizontal polarization vectors are parallel to e, and e,
respectively, when describing the plane wave’s direction of propagation at the BS or MS in a spherical coordinate system. It
is clear that V’ is not entirely vertically polarized at the MS, but has a cross-polarization component as well.

Channel depolarization is affected by the scattering geometry as illustrated in Fig. 2.30. For the plane wave that is emitted
from the BS and received at the MS via a scatterer, the plane that is defined by the BS, MS, and the scatterer must be taken
into account. The left side of Fig.2.31 depicts one such plane (corresponding to the page in this book). The circled dot
and arrow represent the vectors of the perpendicular and parallel polarization components associated with the plane, whose
directions are from the backside to the front side of the figure and the arrow’s direction, respectively [59]. If each scatterer
is modeled as a planar boundary, then the directions of the vectors of the perpendicular and parallel polarization components
as viewed from the BS and MS will be the same within the plane. Since any polarization vector can be expressed as a linear
combination of the perpendicular and parallel polarization component vectors, as shown in the right side of Fig.2.31, the
polarization angle viewed at the BS will be same as that observed at the MS [59]. For this reason, each BS-scatterer-MS
plane in Figs. 2.30 and 2.31 is called a conservation-of-polarization plane (CoP-plane).

The polarization angle associated with a CoP-plane, denoted by 6y in Fig. 2.30, is defined as the angle between V and the
line that includes the projection of V onto the CoP plane. Due to the conservation of polarization principle, the angle between



72 2 Propagation Modeling

""" perpendicular

/ - polarization vector

polarization _|
vector

polarization angle

direction of

ropaoation
) /QP g
) parallel
X polarization vector

Fig. 2.31 Conservation of polarization (CoP) plane and polarization angle

V’ and the line that includes the projection of V” onto the same CoP plane in Fig. 2.30 is equal to = — 0y [59]. Thus, by using
the polarization angle with respect to the CoP-plane, the polarization vector, V’ or H’ on its CoP-plane can be decomposed
into vertical and horizontal polarization components with respect to the plane wave’s direction of propagation at the MS.

Consider a vertically polarized plane wave from the BS, and let Ayy (Agy) be the amplitude of the received plane wave at
a vertically (horizontally) polarized MS antenna via a single scatterer. The geometry in Fig. 2.30 implies that Ayy and Agy
can be expressed as a function of D, Dy, Dy, R,, g, and Bg as follows:

|:AVV:| — A, |:fvv(D, Dtxstr»Rr»aR»,BR)j|, (2.189)
Apv fuv(D, Dy, Dgr, Ry, 0tr, BR)

where Ay is the amplitude of V’ at the MS. The azimuth and elevation angles of departure (AAoDs and EAoDs) from the BS
are dependent upon and are fixed by the azimuth and elevation angles of arrival (AAoAs and EAoAs) at the MS and, thus, the
channel polarization functions fyv and fiy in (2.189) do not depend on o7 and f7. Similarly, for the case of a horizontally
polarized plane wave from the BS:

|:AVHi| :AH |:fVH(DaDl.ﬁDsr,Rr’ R, ﬂR)i| , (2190)
AHH fHH(DthsvDsrervaRv ﬂR)

where Ay is the amplitude of H’ at the MS. From the geometry in Fig. 2.30, the distances are

d, = \/(D + R, cosag)’ + (R, sinag)?, (2.191)
D, = \/d,z + (Aj — R, tan Bg)?, (2.192)
Dy, = R,/cos Bg,d, = R, tan B, (2.193)

D, = D>+ AP dy = +\d*+ A2 (2.194)

where A, = (hy — hg). Based on (2.191)—(2.194) and the law of cosines, the angles in Fig. 2.30 can be written as

sz Dr2 _Dvrz -
cos by = 2 P Z D T B — (2.195)
2D Dy, \/(alz + 2a; — 2a; + a4) a4
D> + dy? — dy? R,/D)? + 2a, —
cosfy = ou T~ R/D) +2a, — a5 + a4 (2.196)

2Dyd, V(a2 + 2a; — 2a3 + ag) (2a; + a4 + as2)
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d,* + D> —R?
cos s = 210 = @t , (2.197)
2d,D,, V(Qax + as + as?) ay
05 — cos 0
oS0 = ——n 5 _COBTIEH (2.198)
V(1 —cos263) (1 — cos26,)
Dy?> 4+ D,> —D,> (-
cos B, = =3 + D s _ (—ay + a3) cos B (2.199)
2Der1r as./a4
D,> +R>? —dy*
cosfs = 2+ 2 _ _SOS%R (2.200)
2DtrRr A/ aa
fg — cos O
c0s fy = cos B — cos 07 cos Br 7 (2.201)
V(1 = cos267) (1 — cos?fr)
Oy = 7 — b (2.202)
where
Rr/D Rr RrAh t ﬂ
= ,ay = — COS R, a3 = an fBg,
U Cos Br “2=D ko3 D? K
=1+ 4Y R (2.203)
ag = D ,ads = D . .

The angles cos 8¢ and cos 0y in (2.198) and (2.201), respectively, can be used to derive the channel polarization functions
Jvv, fuv, fun, and fyp in (2.189) and (2.190) as is now described.

From the geometry in Fig. 2.30, the amplitudes of the vertical and horizontal polarization components that are received
from a vertically polarized transmitted plane wave are, respectively,

Ayy = Ay |cos (89 + (m — by) — )| (2.204)

= Ay ’cos g cos By — /1 — cos? B4/ 1 — cos? 99‘ ,
AHV = AV |sin (99 + (7'[ - ev) - 7T)| (2205)

=Ay ’cos Osv/1 — cos? By + cos B9/ 1 — cos? 96) ,

where cos 65 and cos 6y in (2.204) and (2.205), respectively, are functions of D, R,, ag, Br as is evident from (2.195)-(2.201).
Comparing (2.204) and (2.205) with (2.189), the channel polarization functions fyy and fiyy can be written as:

fVV(Dv Dtsv Dsrv Rrv R, ﬂR)
= fwv(D, R;, ag, Br)

= ’cos 06 cos By — /1 — cos? B4/ 1 — cos? 99‘ , (2.206)

fHV(D, Dts, Dsrv Rr» R, ,BR)
= fuv(D, R, ag, Br)

= ‘cos O+ 1 — cos? B9 + cos B9/ 1 — cos? 96‘ . (2.207)

In a similar fashion, the channel polarization functions fiy and fyy can be written as:

fVH(Dv D[SaDSrer»aRy ,BR)
= fyvu(D, R, ag, Br)
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= ‘cos Osv'1 — cos2 Oy + cos g/ 1 — cos? B , (2.208)
fHH(Dv DtSv DSV? Rrv R, ﬁR)
= fuu(D, R, ag, Br)
= ‘cos 06 cos By — /1 — cos? B4/ 1 — cos? 99) . (2.209)
Note that a symmetry exists in the co- and cross-polarization functions such that
S = fun, fav = fvn. (2.210)

This model may be enhanced so as to include reflection coefficients following the methodology in [189].

2.4.2 XPD in Polarized Multipath-Fading Channels

The polarized channels in Fig. 2.30 can be modeled by combining the channel polarization functions with the conventional
co-polarized channel impulse response functions derived for the exact same 3-D single cylinder scattering geometry shown
in Fig. 2.30. First consider the case of vertically polarized BS and MS antennas (VV-channel). The complex low-pass channel
impulse response for the VV-channel can be expressed as

guv (1) = gR¥ () + g (1), 2.211)

where

N
g () = ZAV,anV,n S

n=1

g (1) = A 0, (2.212)

are the diffuse single-bounce receive-side (SBR) and LoS components, respectively, and

Ay = Ay(oRn, Bra), (2.213)
v = v (D, Ry, ag . Bra). (2.214)
9u(0) = 27(fc + o) (1 = i + Dyrn) /€0 ) + b, (2.215)
5 (0) = 27 (f. + £5°°) (t —Dy/co ) : (2.216)
fo= 2 fon = (5) €03 Bracos (v — ara). (2217)
LoS __ L U_R —
D - m <A. )COS()/R 7{)’ (2218)

where ¢y, A, vg, and yg are the velocity of light, the carrier wavelength, the velocity of the MS, and the angle of the MS’s
moving direction with respect to the positive x-axis, respectively. Further, f. and fp, are the carrier and Doppler frequency
associated with the nth arriving plane wave, respectively. Note that the MS is considered to be in the center of the scattering
cylinder regardless of the physical location and velocity of the MS, which is a typical assumption for geometrical channel
modeling. Of course the exact location of the scatterers on the cylinder will change with the physical location of the MS, due
to site specific propagation conditions. In this case, the channel is modeled as being locally wide-sense stationary, i.e., the
locations of the scatterers with respect to the MS will stay the same if the MS moves over small distances.
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It is assumed at this stage that the phases {¢,} in (2.215) are independent and identically distributed (i.i.d.) uniform
random variables on the interval [, ), and the {¢,} are independent of the AAoAs {ag,}, EA0As {Br.,} and the radius
of the scattering cylinder. For large N, the central limit theorem can be invoked and gyy(7) can be treated as a complex
Gaussian random process. By using the complex low-pass channel impulse response and the aforementioned properties, it is
straightforward to obtain the received power through the VV-channel at the Rx as follows:

Quy = QPR+ Q4% = (1 + K) 288, (2.219)
2% = E[ |68 0[]

N N
=E <Z AV,rLfVV.n ej%(t)) (Z AV.anV,n e_j¢rn(t)):|

n=1 m=1
r N
=E A2 f2 } (2.220)
- Vi VVn | .
1

Ln=

,Q{;%S — iAI‘;OS|2 — K.Q\S/%R, (2221)

where K denotes the Ricean K-factor, and the third equality in (2.220) is due to the fact that the phases {¢,} in (2.215)
are independent and identically distributed (i.i.d.) uniform random variables on the interval [—s, ). Further, as N — oo,
the discrete AAOAs, g, and discrete EAoAs, Br.,, can be replaced with continuous random variables ok and B having the
joint probability density function (pdf), f (ag, Br). Here, the azimuth and elevation angles of arrival are assumed independent
of each other and, thus, the joint pdf f(ag, Br) can be decomposed as f(ag)f (Br). It follows that

b4 ﬂR.Max

QW = A%// [ Fov(D. R, ag, Br)pr (Br) pr (ar) dBrda. (2.222)

—7 —BR Max

where SgMax 18 the absolute value of the maximum EAoA.
Several different distributions have been suggested in the literature to characterize the AAoA distribution, such as uniform,
Gaussian, and Laplacian. Later, the von Mises distribution in (2.51) will be used such that

explkg cos(ag — pr)]
(oR) = ke >0, 2.223
pr(ar) 2l (ke) R = ( )

where ag € [—m, ), Iy( - ) is the zero-order modified Bessel function of the first kind, ug € [—m, 7) is the mean AAoA of
the scatterers in the x - y plane with respect to the positive x axis, and kg controls the spread of the scatterers around the mean
AAOA pug. Prior work has also used several different distributions to characterize the EAoA distribution. Later, the cosine
pdf in (2.52) will be used such that

pr(Br) = 1 ,BZMax cos (% ﬁf;ax) . 1Brl < Brmax < /2, (2.224)

where Bgrmax typically lies in the range 20° < Brmax < 45° for fixed-to-mobile land mobile radio channels [185, 191, 257].
Of course, other suitable distributions for p, (ag) and p, (Bg) can be used as well at this stage.

Similar to (2.222), the SBR power at the MS with a horizontally polarized MS antenna and a vertically polarized
BS antenna (HV-channel), a vertically polarized MS antenna and a horizontally polarized BS antenna (VH-channel), and
horizontally polarized MS and BS antennas (HH-channel), denoted by Pyy, Pyy, and Pyy, respectively, can be expressed as

b1 ﬂR.Max
2
QSR — A2 / / (fie(D. R, Br)) v (Br) pr (@) B, (2.225)

—7 —BR Max
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7 BRMax
B = AZ/ / (fVH(Ds Rr,Ole,BR))zpr (Br) pr (ar) dPrdog, (2.226)
—7 —BRMax
7 BRMax 5
2B =4 [ [ (bR p0) b1 (B s (o) dBden. (2227)

- _,BRMax

Notice that by taking into account the statistical distribution of scatterers, the total power of the vertical and horizontal
polarization components can be derived via the superposition of the CoP-plane components by averaging over the pdfs
of the AAoA and EAoA, p(ag) and p(Br), respectively. Finally, the average XPD values are obtained from (2.222) and
(2.225)—(2.227) as

Q
W XPDyvh = Q““. (2.228)

HV VH

2
XPDyymv = 7

2.4.3 Polarized Channel Model Application

This section compares the analytical XPD predicted from the geometrical depolarization model developed in Sects.2.4.1
and 2.4.2 with some previously reported XPD results obtained from empirical data [110, 306]. The empirical XPD data
reported in [110, 306] were based on narrow-band fixed-to-mobile channel measurements taken in a suburban area at
2.48 GHz, where the corresponding h7 and hg in Fig. 2.30 were 20 m and 3 m, respectively.

The parameters in (2.223)—(2.224) are set as g = 180° and Brmax = 40°, unless otherwise stated, particularly when
comparing our analytical XPD results with the XPD measurement data in [110, 306]. It is stated in [110, 306] that the
direction of the strongest signal was the Tx—Rx bore sight path in most cases, corresponding to g = 180° in the model
described in Sects.2.4.1 and 2.4.2. The spread constant of the AAoA distribution, kg, in (2.223) can exhibit substantial
variation from one location to the next due to variations in the local scattering environment around the Rx. Finally, R, in
Fig.2.30 is set to 30 m.

2.4.3.1 Suburban Area in San Jose

Figures 2.32 and 2.33 portray the analytical mean XPD curves of F2M fading channels as kg varies from 0 to 9 and from 10
to 700, respectively. The same antenna configuration as that in [110, 306] is utilized in the analysis to allow for comparison
with the measurement data illustrated in Fig. 2.32, which is a £45° dual-polarization antenna at both the BS and MS. Note
that a directional MS antenna with the azimuthal beamwidth of 90° and a gain of 12 dBi was used in the measurements in
[110, 306]. Figure 2.32 shows that the XPD curve tends to decrease from roughly 6.5-0dB as kg increases from 0 to 9. On
the other hand, the XPD curve increases from 0 dB to roughly 7.5 dB as kg increases from 10 to 700 in Fig. 2.33. The XPD
curve for 0 < kg < 700 at a fixed BS-MS distance, D = 1 km, is also illustrated in the insert of Fig. 2.33 to further illustrate
the effect of kg on the XPD shown in Figs. 2.32 and 2.33. The reason for the strong dependency of the mean XPD on kg will
be explained later when discussing Fig. 2.34.

When kg is in the range 7-10, the XPD stays at around 0 dB regardless of the distance between the BS and MS, and it can
be shown that the AAoA spread in (2.223) is roughly 90° when kg is 7-10 [3]. As the distance between the BS and MS, D,
increases it is expected that kg will tend to decrease since the plane waves at the MS for large distances and NLoS conditions
will come from many angles due to local scattering and, hence, the azimuthal scattering will become more isotropic; kg = 0
corresponds to the case of isotropic azimuthal scattering. However, in the case of isotropic scattering the observed AAoA
spread will be determined by the beam pattern of the 90° directional Rx antenna that was used to make the measurements.
Thus, while the actual scattering environment may be near isotropic, i.e., kg & 0, the observed value of kg will lay in the
range 7-10. For this reason, the empirical XPD tends to converge toward 0 dB as D increases, and it is in close agreement
with the analytical XPD results with kg in the range 7-10, as previously stated.

The AAoA spread factor, kg, is expected to increase as the horizontal BS-MS distance, D, decreases. As the MS moves
closer to the BS most of the scatters will tend to be in the direction of the Tx so that kg will tend to increase and the
scattering will be non-isotropic. If the AAoA distribution is modeled using the von Mises pdf in (2.223) with ug = 180°,
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Fig. 2.33 XPD' " curves for a variety of kg (10~700) with BS-MS distance in the range 100m to 1 km

then the effective value of kg will be greater than 7, since a directional antenna with an azimuthal beamwidth of 90° was
used in the measurements. Notice that as kg increases, the azimuthal angular spread becomes narrower. When the actual
AAOA spread factor, kg, is equal to 3 for example, p,(ag = 180°)[r,=3 =~ 0.66, and the effective value of kg due to the
directional Rx antenna gain of 12dBi (15.8 in linear scale) in the direction of BS-MS boresight (eg = 180°) is roughly
0.66 x 15.8 ~ 10.43, which is close to p,(ag = 180°)|g,=700 =~ 10.55. Thus, while the actual value of the AAoA spread
factor may be in the neighborhood of kx = 3, the observed value may be considerably higher and in the range of kg = 700
due to the gain of the directional MS measurement antenna.

The empirical XPD data from [110, 306] are illustrated in Fig.2.32, where XPD;,, XPD,, and XPDy represent the XPD
of the total received signal, the XPD of the time-invariant portion of the received signal, and the XPD of the time-varying
portion of the received signal. The empirical data in [110, 306] shows that the LMSE curve fit for the XPD of total received
signal is almost same as the XPD for only the time-invariant portion of the received signal. This is expected, since the
measurements in [110, 306] were made with a stationary MS. Most of the surrounding scatterers will be stationary and
contribute to XPD., while only the moving scatterers such as nearby moving vehicles (which are not included in the model)
will contribute to XPDy. It is also shown that the LMSE curve fit of XPD; tends to decrease from 6.5 to 0 dB as D increases
from 100 m to 10 km. This phenomenon can be explained by the XPD curve for varying kg inserted in Fig. 2.33, such that a
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decrease in the effective value of kg from 550 to 7 corresponds to a decrease in the XPD from 6.5 to 0, as D increases from
100 m to 10 km. Even though an LMSE curve fit can be obtained from the measurement data, the measured XPD values
show substantial variation even at the same D as portrayed in Figs. 2.32 and 2.33. The reason is that the AAoA spread factor
kg varies depending on the site specific local scattering environment, even at the same D. The XPD is not directly dependent
on D, but kg is expected to have a tendency to decrease with increasing D as mentioned earlier, which is reflected on the
LMSE curve in the illustrated empirical results. Finally, the analytical XPD curves in the range 1-10km are omitted from
Figs. 2.32 and 2.33, since the XPD remains constant after 1 km.

The AAOA oy has a significant impact on the XPD as shown in Fig. 2.34, and computing the XPD as a function of the
AAOA «ap provides insight for the mean XPD that is obtained when averaging over the AAoA and EAoA distributions.
Figure 2.34 also shows the XPD averaged over the EAoA distribution only at each AAoA, ag. For AAoAs equal to 180°,
0° and 360°, which represent vertical CoP planes, the XPD goes infinity, meaning that there are no cross-polarization
components at those angles. This makes sense given the geometry in Fig. 2.30. Remarkably, each XPD curve has a minimum
point when the AAoA g lays in the range 155-170°. The XPD at this minimum point is below 0dB, meaning that the
power of the cross-polarization component is stronger than that of the co-polarization component. Figure 2.34 also shows
that a larger maximum EAoA will result in a smaller mean XPD, since the XPD is below 0 dB over a larger AA0A range.
Considering the XPD averaged over AAoA distribution with g = 180° and kg varying from O to 9, it can be recognized
that as kg increases the mean XPD decreases, since the impact of the small XPDs for AAoAs around the minimum point
will dominate the high XPDs for AAoAs that are far from the minimum point. Furthermore, small changes in the AAoA
distribution near 180° (bore sight) due to site specific local scattering will cause significant changes in the mean XPD which
explains the high variance of the empirical XPD values observed in [110, 306].

2.5 Simulation of Multipath-Fading Channels

A channel simulator is an essential component for the development and testing of wireless systems. Simulation of mobile
radio channels is commonly used as opposed to field trials, because it allows for less expensive and more reproducible
system tests and evaluations. For this purpose it is desirable to generate complex faded envelopes that match the statistical
characteristics of a reference model while at the same time having low complexity. For example, the reference model might
be a 2-D isotropic scattering channel with an isotropic receiving antenna.

Two fundamentally different approaches to channel simulation models are the filtered white Gaussian noise models and
the sum-of-sinusoids models. The basic idea of the filtered white noise approach is to shape the power spectrum of a white
Gaussian noise process by using a filter whose magnitude response is the square root of the desired Doppler spectrum.
The sum of sinusoids approach, on the other hand, approximates the complex fading envelope by the superposition of a finite
number of sinusoids with properly chosen amplitudes, frequencies, and phases to yield the desired Doppler spectrum.
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2.5.1 Filtered White Gaussian Noise Models

Recall that the faded envelope g(f) = g/(t) + jgo(?) is a complex Gaussian random process. A straightforward method for
constructing a fading simulator is to low-pass filter two independent white Gaussian noise processes, as shown in Fig. 2.35.
Since the input processes to the low-pass filters are independent, the random processes g;(¢) and go(¢) are also independent
and have power spectral densities that are shaped by the squared magnitude response of the low-pass filters. If the white
Gaussian noise sources have power spectral densities equal to §2,/2 watts/Hz and the low-pass filters have transfer function
H(f), then

Q
Sg1g1 (f) = gQgQ(f) = 7p|H(f)|2
Serg0(f) =0, (2.229)

where the normalization ffooo |H(f)|*df = 1 is assumed so that the envelope power is equal to §2,. The processes g;(f) and
go(t) are independent zero-mean Gaussian random process, such that the envelope o = |g(#;)| is Rayleigh distributed at any
time #,. The problem is to construct the low-pass filter H(f) to give the desired Doppler spectrum.

2.5.1.1 IDFT Method

One approach for generating the faded envelope using the filtering method has been suggested by Young and Beaulieu [369]
and is based on an inverse discrete Fourier transform (IDFT) as shown in Fig. 2.36. The input sequences {A[k]} and {B[k]} are
first generated, each consisting of N i.i.d. real zero-mean Gaussian random variables with variance N£2,/2. These samples
are then applied to a filter with frequency response H[k].k = 0,...,N — 1, followed by an N-point IDFT to generate the
time-domain samples of the complex faded envelope as

t
white Gaussian LPF gQ( )
noise H(f)

N

g(1t) =g1( t)+ng( 1)

white Gaussian LPF
noise H(f)

gl( 1)

Fig. 2.35 Fading simulator that uses low-pass filtered white Gaussian noise

{A[k]} | Multiply by the

14.d. Gaussian ™ filter coefficients

random variables

{HIk]}
(G| Nepoint |10
IDFT
N i.i.d. Gaussian Multiply by. the
random variables filter coefficients
{BLk]} {H[K]}

J

Fig. 2.36 IDFT-based fading simulator
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gln] = IDFT {A[k]H[k] — jBKJH[K]})Z)
N—1
= ziv > (AlKH[K] — jBIKIH[K]) >N n =0,....N - 1. (2.230)
k=0

Due to linearity of the IDFT operation, the discrete-time autocorrelation function of the output sample sequence {g[n]} =
{g1lnl} + jigolnl} is [369]

fop [n] = Dergr [n] +j¢g1gQ [n]

2
= = (aln] + jag[n) (2.231)

where {a[n]} = {a;[n]} + j{ag[n]} is given by the IDFT of the sequence {(H[k])?}, i.e.,

N—1

aln] = Il\, > (HK)*P N p=0.... N—1. (2.232)
k=0

The only problem remaining is to design the filter, H[k]. To do so, the argument by Young and Beaulieu [369] is followed.

A sequence {Acs[k]} that satisfies the property Acs[k] = A&G[N — k] is called a conjugate-symmetric sequence, while
a sequence {Acas[k]} that satisfies the property Acas[k] = —A& [N — £] is called a conjugate-antisymmetric sequence.
The IDFT of a conjugate-symmetric sequence is real-valued, while the IDFT of a conjugate-antisymmetric sequence is
imaginary-valued. If the sequence {a[n]} has discrete Fourier transform (DFT) {A[k]}, then

aln] = ai[n] + jag[n] = IDFT{A[K]}

= IDFT{Acs[k]} + IDFT{Acas[k]}. (2.233)
Also, note that
Acslk] = %A[k] + %A*[N — k] (2.234)
and
1 1,
Acaslk] = EA[k] —5A [N — k] (2.235)

for any sequence {A[k]}, where A[k] = Acs[k] + Acas[k]. Thus, the sequence {A[k]} can always be decomposed into the sum
of conjugate-symmetric and conjugate-antisymmetric components. To ensure that the quadrature components of the faded
envelope, {g;[n]} and {gy[n]}, are uncorrelated, which is the case for 2-D isotropic scattering environment and an isotropic
receive antenna, it is required that Acas[k] = O for all k. Using (2.234), the filter should have the following structure:

Hi[0] . k=0
JEEp=12, (Y1)
) T 2, (Y
. e ’ (2.236)
\/W7k:(§+l),...,(N—1)

where the filter H [k] can be obtained from the sampled Doppler spectrum.
To obtain the required filter H[k], assume 2-D isotropic scattering with an isotropic receiver antenna. The required
normalized autocorrelation function and normalized Doppler spectrum are, respectively,

¢ee(t) = Jo(27fnT) (2.237)
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and

1' —I = m
See(f) = ™I 1=/t =5 (2.238)
88 0

otherwise

Ideally, the generated sequence g[n] should have the normalized autocorrelation function
esln] = JoQ@rfln]), (2.239)

where f‘m = f,n T is the maximum normalized Doppler frequency and T is the sampling period. However, an exact realization
of this autocorrelation function is not possible, because the time-domain sequence is truncated to N samples. Looked at
another way, while the theoretical Doppler spectrum is bandlimited, the truncation to N samples in the time-domain means
that the realized Doppler spectrum is not bandlimited.

To obtain the required filter, the continuous spectrum in (2.238) is sampled at frequencies f; = k/(NTy),k =0,...,N—1.
Special treatment is given to the frequency domain coefficients at two points. The first is at zero frequency, where H;[0] = 0
to ensure that the generated time-domain sequence always has zero mean regardless of the particular values assumed by the
length-N input sequences {A[k]} and {B[k]}. The second is at the index k,, that is at, or just below, the maximum Doppler
frequency, i.e.,

kn = fuNTs] = [fuN], (2.240)

where | x| is the largest integer contained in x. The realized maximum Doppler frequency is k,,/(NTy) Hz. The area under
the Doppler spectrum curve in (2.238) from zero to frequency f is [147, 2.271.4]

CP) = ~aresingIVT, k) . 0 = f < ky/(NT,) (2.241)

The area under the Doppler spectrum between the frequencies represented by the samples (k, — 1) and k,, is equal to
C(k,,/(NT,)) — C([k,, — 1]/ (NTy). Approximating this area by a rectangle of height (H[k,,])> and width 1/(NT) gives

H,[kn] = \/ ko [f — arctan (ﬂ)] (2.242)
2 Vo =1

The complete filter H[k] can now be specified as follows:

0 , k=0

1
_— k=12, ky—1
27 A/ 1= (k) (NFon))? "

T kiy—1 _
\/km [7 — arctan («/kai—l)] , k=k,

0 s k=k,+1,....N—k,—1

HIk] =

km_l j—
\/km[%—arctan(m)] , k=N—k,

1
N—ky+1,....N-1
\/ 27 N 1= (N )2 Tt

(2.243)
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The IDFT method will generate a Rayleigh faded envelope with an autocorrelation function that closes matches the
reference model for large N. However, the main limitation of the IDFT approach arises from the block-oriented structure
which precludes continuous transmission in that there is a discontinuity in the time series (i.e., the faded envelope) from one
block of N samples to the next.

2.5.1.2 IIR Filtering Method

Another approach implements the filters in the time domain as finite impulse response (FIR) or infinite impulse response
(IIR) filters. There are two main challenges with this approach. The first challenge arises from the fact that the sampled
channel waveform is bandlimited to a discrete frequency fm = fuT,, where T is the sample period. Consider, for example, a
cellular system operating at a carrier frequency of f, = 1800 MHz with a maximum MS speed of 300 km/h. In this case, the
maximum Doppler frequency is f,, = f.(v/A.) = 500Hz, where c is the speed of light. If the signal is sampled at rate
R, = 1/T, = 1MHz, then the normalized Doppler frequency is f,,, = fuT; = 0.0005. If implemented as a finite impulse
response (FIR) filter, such an extremely narrowband filter would require an impractically high filter order. Fortunately, this
can be satisfied by using a filter designed at a lower sampling frequency followed by an interpolator to increase the sampling
frequency. For example, the filter could be designed at a sampling frequency of 2 kHz, which is 2 times the Nyquist frequency.
Afterwards interpolate by a factor of / = 500 to obtain the desired sampling frequency of 1 MHz.

The second main challenge is that the square-root of the target Doppler spectrum for 2-D isotropic scattering and an
isotropic receive antenna in (2.238) is irrational and, therefore, none of the straightforward filter design methods can be
applied. However, an approach developed by Steiglitz [307] allows the design of an IIR filter with an arbitrary magnitude
response. Another possibility is to use the MATLAB function iirlpnorm [221].

Consider an IIR filter of order 2K that is synthesized as the cascade of K Direct-Form II second-order (two poles and two
zeroes) sections (biquads) having the form

K
14+ az™" + bz 2
Hiz)=A . 2.244
@ Dl 1+ iz + diz2 ( )

For example, for f,,T; = 0.4, K = 5, and an ellipsoidal accuracy of 0.01, the filter design procedure described by Komninakis
[181] results in the coefficients tabulated in Table 2.1. Figure 2.37 plots the magnitude response of the designed filter, which
is shown to closely match that of the theoretical ideal filter.

2.5.2 Sum of Sinusoids Methods

Sum-of-sinusoids (SoS) channel models attempt to simulate the channel as a stationary complex Gaussian random process,
formed by the sum of multiple sinusoids having appropriately selected frequencies, amplitudes, and phases. The objective
is to generate a faded envelope having statistical properties that are as close as possible to a specified reference model,
while at the same time minimizing the number of sinusoids that are required to achieve a given degree of modeling
accuracy. SoS models are broadly categorized as either deterministic or statistical. Deterministic SoS models use fixed
frequencies, amplitudes, and phases for the sinusoidal components. Therefore, the statistical properties of the faded envelope
are deterministic for all simulation trials. Such models are useful for simulations that require continuous transmission over

Table 2.1 Coefficients for K = 5 biquad stage elliptical filter

Stage Filter coefficients

k ay by Ck dy

1 1.5806655278853 0.99720549234156 —0.64808639835819 0.88900798545419
2 0.19859624284546 0.99283177405702 —0.62521063559242 0.97280125737779
3 —0.60387555371625 0.9999939585621 —0.62031415619505 0.99996628706514
4 —0.56105447536557 0.9997677910713 —0.79222029531477 0.2514924845181
5 —0.39828788982331 0.99957862369507 —0.71405064745976 0.64701702807931
A 0.020939537466725
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Fig. 2.37 Magnitude response of the designed shaping filter with K = 5 biquad sections

a long time interval, such as a real-time hardware channel simulator. In contrast, the statistical SoS models require multiple
simulation trials, where one or more of the parameter sets (frequencies, amplitudes, or phases) are randomly selected for
each simulation trial. As a result, the simulated channels have statistical properties that vary for each simulation trial, but
they converge to the desired statistical properties when averaged over a sufficiently large number of simulation trials. Since
a statistical model requires multiple simulation trials, it cannot be used in cases where continuous transmission is required.
An ergodic statistical SoS model is one whose statistical properties converge to the desired properties in a single simulation
trial. For this reason an ergodic statistical model is essentially a deterministic model, but differs in the sense that one of the
parameter sets, usually the phases, is randomly generated when the simulator is initialized.

2.5.2.1 Clarke’s Model

Clarke derived a statistical SoS simulation model that begins with (2.10) and (2.6) and assumes equal strength multipath
components (C, = 4/1/N). The received complex envelope has the form

N
1 : 5
) = _ e](znﬁntcos(gn)'f"ﬁn) , 2.245
HOE Nﬂ; (2.245)

where N is the number of sinusoids and the phases ¢3n are independent identically distributed (i.i.d.) uniform random variables
on [—m, ).

If a reference model having 2-D isotropic scattering and an isotropic antenna is assumed, then the 8, are also i.i.d. uniform
random variables on [—, 1), and are independent of the (Z),,. Based on the above assumptions concerning the C,,, q,'A),,, and 0,,
the ensemble averaged correlation functions of Clarke’s model in (2.245) for a finite N are?

1
Pere(7) = Pe020 (v) = §J0(27Tfmf) (2.246)
Be190(T) = Pgpe(T) =0 (2.247)
1
Pee(T) = EJO(znf;n":) (2.248)
Pore2(t) = 1+ V- 1J§(2nfmr). (2.249)

N

3Note that £2, = ZQI:, C? = 1 in this case; other values of £2, can be obtained by straightforward scaling.
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Note that for finite N, the auto- and cross-correlation functions of g;(¢) and g, (#) match those of the reference model in
(2.29) and (2.31), while the squared-envelope autocorrelation function reaches the desired form 1 + Jg (2xf,T) in (2.82)
asymptotically as N — oo.

2.5.2.2 Jakes’ Model

Jakes [171] derived a deterministic SoS simulation model that is perhaps the most widely cited fading model in literature.
Jakes’ model begins by choosing the N sinusoidal components to be uniformly distributed in angle, i.e.,

p=——, n=12,...,N. (2.250)

By choosing N/2 to be an odd integer, the sum in (2.245) can be rearranged into the form

N/2—1 R R R R
2() = /N Z I:e—j(anmrcos(Gn)+¢—n) +ej(2nfmtcos(9n)+¢n)] + e iCnitdN) 4 giCnpuitdw) L (2.251)

n=1

where the phase indices have been relabeled. Note that the Doppler shifts progress from —2nf,, cos(2z/N) to
+27nf,, cos(2w/N) as n progresses from 1 to N/2 — 1 in the first sum, while they progress from +27xf,, cos(27/N) to
—27f;, cos(2r/N) in the second sum. Therefore, the frequencies in these terms overlap. To reduce the number of sinusoidal
components used in the model, Jakes uses non-overlapping frequencies to write g(#) as

M
2(t) = / le { 2y I:e—j(2rrf},,tcos(9n))+q§—n + ei(2ﬂf}n1005(9n)+¢3n)] + e @t é-N) | i @rfnttdn) (2.252)
n=1
where
1 (N
M= (E - 1) (2.253)

and the factor +/2 is included so that the total power remains unchanged Note that (2 251) and (2.252) are not equal In
(2.251) all phases are independent. However, (2. 252) implies that ¢>n = —¢_N/2+,1 and ¢_ = —¢N/2 pforn=1,... M. If
the phases are further constrained such that qb,, = ¢_n, n=1,...,M and ¢N = —¢_N, then (2.252) can be rewritten in the
form g(¢) = g/(¢) +jgo(t), where

M
g1 = \/% (2 Zcos(ﬁn) cos(2nfut) + \/Ecos(a) cos(anmt)) (2.254)
n=1
3 M
go(t) = \/; (ZZSin(,Bn) cos(2nf,t) + /2 sin(a) cos(2nfmt)> , (2.255)
n=1

with o = (ﬁN and B, = qsn.
Jakes chooses the phases o and f, with the objective of making (g7(f)) = (gZQ(t)) and (g;(¢)go(t)) = 0, where ( - )
denotes time averaging. From (2.254) and (2.255),

ZIN

(gl (1) =

[2 Z cos®(Bn) + cosz(a):|

n=1

2

=Z|

n=1

M
[M +cos*(@) + Y cos(2,3,,):| , (2.256)
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Fig. 2.38 Faded envelope generated by using Jakes’ method with M = 8 oscillators; f,,7 = 0.1

(g5(1) = {2 > sin?(Ba) + st(oo}

|:M + sin’(ar) — Zcos(2ﬁn :| , (2.257)

n=1

ZIN

and

(81(Dg0(0) = ]% [2 3" sin(B,) cos(B,) + sin(@) cos(a)} (2258)

n=1

Choosing « = 0 and 8, = 7n/M gives (g2Q(t)) =M/(2M + 1), (g2(t)) = (M + 1)/(2M + 1) and (g;(1)go(?)) = 0. Note
that there is a small imbalance in the values of (g2Q (1)) and (g7 (1)). Finally, (g7(1)) + (g2Q (1)) = 82, = 1. The envelope power
(g2(1) + (ng (1)) can be easily scaled to any other desired value. A typical faded envelope, obtained by using Jakes’ method
with N = 34 (M = 8) is shown in Fig. 2.38.

The accuracy of Jakes’ simulator can be evaluated by comparing the autocorrelation functions of the complex envelope
with those of the 2-D isotropic scattering reference model. Suppose Clarke’s method is modified by imposing the additional
restrictions of even N and 6, = 2zrn/N. The resulting simulation model is a statistical model, because the phases q?),, arei.i.d.
uniform random variable on [—, ). A faded envelope is obtained having the ensemble averaged autocorrelation function

N
Pge(1) = %\7 ;cos (271fmr cos (ZHT”)) , (2.259)

where ensemble averaging is performed over the random phases (]3,1. Note that this autocorrelation tends to a Bessel function
as N — oo. The normalized autocorrelation functions in (2.248) and (2.259) with N = 8 are plotted against the normalized
time delay f,,t in Fig. 2.39. Observe that Clark’s model with 8, = 2wn/N yields an autocorrelation function that deviates
from the desired values at large lags. This can be improved upon by increasing the number of oscillators that are used in the
simulator. For example, Fig. 2.40 shows the autocorrelation function when the number of oscillators is doubled from N = 8
to N = 16.
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Fig. 2.39 Autocorrelation of in-phase and quadrature components obtained by using Clarke’s method with 6, = 27n/N and N = 8 oscillators
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Fig. 2.40 Autocorrelation of in-phase and quadrature components obtained by using Clarke’s method with 6, = 27n/N and N = 16 oscillators

The autocorrelation function in (2.259) was originally reported in Jakes’ book [171] and it may be confused with the
autocorrelation function of the faded envelope generated by (2.254) and (2.255). However, Jakes’ method as described in
(2.254) and (2.255) is a deterministic simulation model with no random parameters and, therefore, only the time averaged
autocorrelation function exists. This time averaged autocorrelation function has been derived by Pop and Beaulieu as [264]

M

qAﬁgg(t, t+1) = % (cos2nft) + cos(2mf (2t + 1)) + IlV Z (cos2nfy1) + cosnf,(2t + 1)) .  (2.260)
n=1

From (2.260), it is apparent that the time averaged autocorrelation function obtained with the Jakes’ method, <;§gg (tt+ 1),
depends on the time variable 7. Hence, Jakes” method yields a faded envelope that is not a stationary or even a wide-sense
stationary random process. The root cause of this non-stationary behavior is the correlation that is introduced 1nt0 the phases
when usmg Jakes’ method, i.e., the restrictions that ¢,, = —¢_N/2+n, ¢_ = —¢N/2 . ¢,, = —¢_n, = ,M, and
¢1v = —d) _n. Due to the non-stationary behavior of the original Jakes simulator, and also due to the fact that the Jakes’
method yields only a single faded envelope, a number of subsequent sum-of-sinusoids models have been proposed in the
literature.
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2.5.2.3 Method of Exact Doppler Spreads

Pitzold et al. [261] proposed a deterministic simulation model, called the method of exact Doppler spreads (MEDS). The
method is derived by starting with an integral representation for the zero-order Bessel function of the first kind:

2 /2
Jo(x) = —/ cos(xsin #)dé (2.261)
T Jo

and replacing the integral by a series expansion as follows:

Ny
Jo(x) = hm — Zcos(xsmotn)Aa, (2.262)
A A
where o, = 7(2n — 1)/(4N;) and A, = 7/(2Ny). Hence,
burss(0) = ~o(2tfyt) = i Z @rfuro) (2263)
= - Tfm im — cos(2nf, .
2181 (T 570 T N IN 1T
where
Jut = fusin | 2 : (2.264)
1 = fin Sin ——=11. .
! 2N; 2
With finite Ny, the autocorrelation is
1 &
b1 (1) = N, ’; co8(27fy,i7). (2.265)

Using the above result, the complex fading envelope, g(¢) = g;(¢) + jgo(¢), is generated as

Nijo
/ 1
8g0(t) = " E cos(27tfi/ont + P1/0.n)- (2.266)
I

n=1

where the phases ¢;/¢,, are chosen as arbitrary realizations of uniform random variables on the interval [—r, 7). Since the
phases only need to be generated once, the MEDS model is an ergodic statistical (deterministic) model.

With the MEDS model, the autocorrelation functions of g;(¢) and go(#) for infinite Ny/p match those of the 2-D isotropic
scattering reference model. The quadrature components g;(¢) and g¢(¢) will also be uncorrelated if they do not share common
frequencies. This condition can be achieved by choosing Ng = N; + 1.

2.5.2.4 Zheng & Xiao Statistical Model
Zheng and Xiao proposed a number of statistical simulation models [359, 360, 376, 377]. These models differ from one
another in terms of the model parameters and, consequently, their statistical properties. Patel et al. [259] have shown that

the model in [376] has the best overall performance, so the discussion here is limited to that model. The complex fading
envelope, g(t) = g/(t) + jgo(t), is generated as

N
gi(t) = \/;Z cos[27fiut cos(6,) + ¢rn) (2.267)
n=1

N
go(t) = \/g > cos[2mfut sin(6,) + po.l. (2.268)
n=1
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where the angles 6, are

2nn — 0
g, =T THY 12 N, (2.269)
4N
and where 6, ¢; ,, and ¢¢ , are all mutually independent uniform random variables on the interval [—m, 7).
The statistical correlation functions of the quadrature components have been computed by Zheng and Xiao [376] and
match the desired functions in (2.246)—(2.248). The autocorrelation function of the squared-envelope is [259]

Jonfut) 1 L&
borer(T) = 1 + 0—’" + Z > E{cos[2mft cos f,] cos[2fyu T cos O]} (2.270)

=] m=1
n#m

Unfortunately, there is no closed form expressions for the squared-envelope autocorrelation function due to the presence of
the double summation in (2.270). The 2-D isotropic scattering reference model requires that

Bo202 (1) = 1+ J2 2rfiu7) (2.271)

Clearly, as N increases the second term in (2.270) diminishes with 1/N, while the third term should approach J2(27f,,7).

2.5.2.5 Modified Hoeher Model

The modified Hoeher model is a statistical simulation model. The complex faded envelope, g(f) = g;(t) +jgo(?), is generated
as [260]

Ny
1
gt = \/; ; coS(27fynt + Grn) (2.272)
1 Yo
go(n) = \/; > cosrfomt + pom), (2273)
m=1
where
. 4
f1/on/m = fnsin (Eu,/Q,n/m) . (2.274)

The Doppler frequencies f;/g ./m for the I and Q components are determined by the random variables u;/g ,,/m, Where the
ur/0.n/m are uniform on (0, 1] and are mutually independent for all n and m. The random phases ¢;/¢ ./ are uniform on
[—m, ), are mutually independent for all #» and m, and are also independent of the u;/¢ /. For convenience, the number of
sinusoids in the quadrature components are usually set equal, i.e., Ny = Np = N. This model is based on Hoeher’s model in
[165], but differs by considering only the positive Doppler frequencies. Hence, it is referred to here as the modified Hoeher
model.

Observe that the MEDS and modified Hoeher models are the same except for the arguments of the sine function in (2.264)
and (2.274), respectively. The set of numbers {(n — 1/2)/N;,i = 1, ..., N;} are uniformly spaced on the interval (0, 1] in the
MEDS model, while the u;/p »/m are uniformly distributed on the interval (0, 1] in the modified Hoeher model.

The statistical correlation functions for the modified Hoeher model match those of the 2-D isotropic scattering reference
model. The squared-envelope autocorrelation function for the modified Hoeher model is [259]

bore2(t) = 1 + LJo(4nf,,1r)+ v JO(anmr) (2.275)

which differs from the reference model in (2.82) for finite N.
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The time-averaged correlation functions of the modified Hoeher model can be derived as follows [259]:

T

. o
bee (1) = Tlgfolo 7, gir(Hgr(t + T)de

1 N
= — ) cos(2nf;,7) (2.276)
w2
. 1 &Y
Peos0(7) = 515 D c0s(2fg ) (2.277)
n=1
Pers0(T) = e (1) =0 (2.278)
B ( L /T *(1)g(r + 7)dt
Pl =3 Mor | 8 sl e
1 N
T uN ZCOS(Z”fI.nT) + cos(2mfpat). (2.279)
n=1

The variances of the time-averaged autocorrelation and cross-correlation of the quadrature components, and the variance of
the autocorrelation of the complex envelope g(¢) are [259]

1+ Jo(dnft) — 2J§(2nfmr)

Var[qgglgl(r)] = VaI[qggQgQ(T)] = SN (2.280)
Var[Bg, g0 (1)] = Var[gge, (7)] = 0 2.281)

. 1+ Jo(dft) — 20202
Vargy () = o( nflzv o( nr). (2.282)

2.5.3 Multiple Uncorrelated Faded Envelopes

In many cases it is necessary to generate multiple uncorrelated faded envelopes. Jakes [171] suggested a method to modify
the method in Sect. 2.5.2.2 to generate up to M fading envelopes. However, the method yields faded envelopes that exhibit
very large cross-correlations at some non-zero lags and, therefore, the method is not recommended. Dent et al. [93]
suggested a modification to Jakes’ approach that uses orthogonal Walsh-Hadamard codewords to decorrelate the multiple
faded envelopes. However, the approach generates multiple faded envelopes that still have significant cross-correlation
functions at large lags. Several simulation models to generate multiple faded envelopes are now discussed that have low
cross-correlations.

2.5.3.1 Zheng and Xiao Statistical Model

The Zheng and Xiao statistical method can be easily extended to generate multiple faded envelopes. The kth complex faded
envelope, gx(f) = grx(f) + jgo(t), is generated as

1 N
g1(t) = \[V 3 cos[2fut cos(Ba) + Prns] (2.283)
n=1

1 N
gox() = \/; > cos[2mft sin(6,4) + ol (2.284)
n=1
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where

2an—m + 6

, n=12,...,N (2.285)
4N

Qn,k =

and where 0Ok, ¢y, and ¢g, are all uniform on [—r, ), and all values are mutually independent. The gi(¢) are all
uncorrelated.

2.5.3.2 Li & Huang Model

Li and Huang proposed a deterministic fading model that can generate multiple uncorrelated faded envelopes. They assume
that P uncorrelated fading envelopes are required, each of which is composed of N sinusoids. The kth complex faded
envelope, g(f) = grx(t) + jgox(?), is generated as [202]

81, k(t) = \/> Z COS(ZT[ﬁn Cos 9}1 K+ ¢1 n k) (2286)

—1
gox(t) = \/7 Zsm(anm sin 6, it + Ponr)- (2.287)

The phases ¢y, x and ¢, x arbitrary realizations of independent random variables uniform on [—, 7), and

b= 20 K e n=0.  Nk=0.. . . . P—1 (2.288)
nk = N PN 00, " =VU,...,.N,K=U,..., , .

where 6y is an initial arrival angle chosen to satisfy 0 < 8y < 27 /PN and 6y 7# 7/PN. Although the Li & Huang model
generates uncorrelated faded envelopes, it fails to satisfy Eqs. (2.29) and (2.82) of the reference model [371].

2.5.3.3 Zaji¢ & Stiiber Deterministic Model

With the Zaji¢ & Stiiber deterministic model the kth faded envelope, gi(t) = grx(f) + jgo.x(?), is generated as [372]

P M
g1ult) = fﬁ D OS2 fut 080 x) + brx) (2.289)
n=0
7 M
gox(t) = \/; > by sinaft cos(Bur) + Pui)- (2.290)
n=0
where
m=1 (]X — 1) , (2.291)
2\ 2
and
[ 2cos(Bn) . n=1,....M
n = { J2cos(B,) . n=0 (2.292)
_{2sin(B,), n=1,....M
b, = { Jasin(B) . n=0 (2.293)
mn
Bn=—, n=0,....M (2.294)

M
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Opp=—+ —+60, n=0,....M, k=0,...,P—1. (2.295)

This method will generate P faded envelopes, where | < P < M.

The angle 6, is chosen so that the arrival angles associated with the kth faded envelope are obtained by rotating the
arrival angles of the (k — 1)th faded envelope by 27r/PN. This ensures an asymmetrical arrangement of arrival angles, which
minimizes the correlation between the multiple faded envelopes. The initial arrival angle, 6, 9, can be optimized to minimize
the correlation between the quadrature components of each faded envelope. This results in the choice 6yp = 0.2z /PN, a
value optimized by experimentation. Finally, the phases ¢, x are chosen as arbitrary realizations of uniform random variables
on the interval [0, 27r).

For the Zaji¢ & Stiiber deterministic model, the auto- and cross-correlation functions of the quadrature components,
the auto- and cross-correlation functions of the multiple faded envelopes, and the squared-envelope autocorrelation are,
respectively, [372]

M
2 2
lim ¢g e, (r) = lim N E %”cos(anmt cos(6,4))

N—o00 N—o0
n=0

= %Jo(anmr) + %J4(2nfmt), (2.296)

M o

. .2 b; i
lim g 00,(7) = lim N Z 5 cos(2nf, T sin(6,.x))

N—o0 N—o00
n=0

= %Jo(anmt) - %J4(27rfmt), (2.297)

Doris0x (1) = D101 (T) = Pige, (1) = 0, (2.298)
2 & &2
Nli_)rr;o Do () = lim N ; 5" cos(27f,t cos(B,))
2 b2
+ Nli_)rréo N ; 5” cos(27fy, T sin(f,,.x))
1

= EJO Q2rfut), (2.299)

2 U 2 X 1
_ 4 4 2
¢°‘1%0‘1§ () = ﬁ Zan—i_ﬁ Zbﬂ + Ed)gl.kgl,k (v)
n=0 n=0

1, 2
+ E¢A’Q.k8Q.k (0 + ¢gl,kgg,k ()
1,
= ZJO (wnT), (2.300)

where Jj (+) is the zero-order Bessel function of the first kind and J, (-) is the fourth-order Bessel function of the first kind.

Figures 2.41 and 2.42 confirm that, for M = 8, the auto- and cross-correlations of the quadrature components and the
auto- and cross-correlation of the multiple faded envelopes approach values given by (2.296)—(2.299), respectively. The
model satisfies (2.247) and (2.248) of the reference model. However, the auto-correlations of the quadrature components and
the auto-correlation of the squared-envelope are close to, but do not perfectly match, (2.246) and (2.249).
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Fig. 2.41 Theoretical and simulated auto-correlation functions and the cross-correlation function of the in-phase and quadrature components of
the Zaji¢ and Stiiber deterministic model
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Fig. 2.42 Theoretical and simulated auto-correlation functions and the cross-correlation function of the first and the second complex envelope of
the Zaji¢ and Stiiber deterministic model

2.5.3.4 Zaji¢ & Stiiber Statistical Model

The Zaji¢ & Stiiber deterministic model can be modified to better match the statistical properties of the reference model by
introducing randomness into the model. To do so, the kth faded envelope, g () = g1 (f) + jgo(?), is generated as
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Fig. 2.43 Theoretical and simulated autocorrelation functions and the cross-correlation function of the quadrature components of the Zaji¢ and
Stiiber statistical model

M

gri(t) = \/%g cos(Bn.x) cos(2rfint cos(Gn k) + Puk) (2.301)
) M

gQ.k(t) = \/;; Sin(ﬁn.k) Sin(ZNﬁntCOS(emk) + ¢n,k)v (2.302)

where M = N /4,

0 _27Tn+27rk+oz—71 -1 M k=0 P_1 (2.303)
n,k— N PN N 5 n= g e e ey N —_— ) > .

and ¢k, Bni, and « are independent uniform random variables on the interval [—, 7). The parameter 6, is chosen in the
following manner: the arrival angles of the kth faded envelope are obtained by rotating the arrival angles of the (k — 1)th
faded envelope by 7 /2MN. Randomness in the Doppler frequencies is introduced by random variable . Again, this method
will generate P faded envelopes, where 1 < P < M.

Figures 2.43 and 2.44 show that, for M = P = 8 and Ny, = 30 simulation trials, the auto- and cross-correlations
of the quadrature components, and the auto- and cross-correlations of the complex faded envelopes approach those of the
reference model in (2.246) and (2.248). Although not shown, the squared-envelope autocorrelation also approaches that of
the reference model in (2.249).

2.5.3.5 SoS Simulation Model Comparisons

This section compares the various sum-of-sinusoids simulation models for fixed-to-mobile channels. A more detailed
comparison is available in [259, 371]. In all simulations, a normalized sampling period f;,, 7y = 0.05 and M = P = 8 is used.
However, for the MEDS model N; = 8 and Ny = 9 are used to obtain uncorrelated quadrature components in the faded
envelope. Note that in the Li & Huang, MEDS and Zaji¢ & Stiiber deterministic models, the random phases associated with
the sinusoidal components are computed before the actual simulation starts, because an ergodic statistical (“deterministic’)
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Fig. 2.44 Theoretical and simulated autocorrelation functions and the cross-correlation function of the first and the second complex envelopes of
the Zaji¢ and Stiiber statistical model

simulator needs only one simulation trial. During the simulations, all parameters are kept constant to provide simulation
results that are always the same, i.e., deterministic.

In the Zaji¢ & Stiiber deterministic model, the following set of uniformly distributed random phases (in radians) are used:
¢dno =[4.0387, 1.7624, 2.7844, 1.5590, 0.9523, 1.2972, 5.7420, 3.6592, 4.3548] and ¢,,; =[5.3798, 3.0556, 2.1528, 2.6296,
0.7457, 3.2572, 6.1027, 2.0670, 2.1304]. The same set of phases is used in MEDS model, for go(#), while for g;(¢) the
following set is used ¢y, 0 =[2.2107, 5.3033, 2.4634, 1.0679, 2.2818, 4.6113, 0.7513, 0.7383] and ¢, ,.; =[3.2627, 4.7036,
0.5824, 2.1097, 4.6264, 5.4790, 0.9391, 0.2017]. Li & Huang’s model uses the same set of phases as the MEDS model for
g1(t), while for go(¢) the following set is used: ¢g 0 =[2.6372, 4.7339, 4.9865, 5.7784, 5.3059, 2.3099, 3.8994, 4.5933],
and ¢g .1 =[4.1175, 2.4616, 3.9403, 4.3911, 2.4948, 2.5981, 4.115, 5.2610].

Figure 2.45 compares the cross-correlation functions of the quadrature components obtained with the various simulation
models. Since the Zheng & Xiao model is a statistical model, the plotted correlation functions have been averaged over
Nge = 50 trials. Figure 2.45 shows that the Zaji¢ & Stiiber deterministic model yields a lower cross-correlation between
the I and Q components of the faded envelope. Figure 2.46 compares the cross-correlation functions of two faded envelopes.
Again, since the Zheng & Xiao model is a statistical model, the plotted cross-correlation function has been averaged over
Ny = 50 trials. The Li & Huang, Zheng & Xiao, and Zaji¢ & Stiiber deterministic models all yield a low cross-correlation
between different faded envelopes.

Figures 2.47 and 2.48 compare the cross-correlation functions of the quadrature components and the cross-correlation
functions of two faded envelopes, respectively, for the various statistical models. For the Zheng & Xiao model averaging
is done over Ny, = 100 trials, while for the Zaji¢ & Stiiber statistical model averaging is done over Ny, = 30 and
Nge = 50 trials. From Fig.2.47, the Zaji¢ & Stiiber statistical model with Ny, = 30 performs similar when compared
to the Zheng & Xiao model with Ny, = 100. Increasing the number of trials in the Zaji¢ & Stiiber statistical model to
Nyoe = 50 yields a significantly lower cross-correlation between the quadrature components of the complex faded envelope.
Furthermore, with Ny, = 50 trials, the Zaji¢ & Stiiber statistical model achieves a larger de-correlation between different
complex envelopes than the Zheng & Xiao model with Ny, = 100 trials. Figures 2.47, 2.48, and 2.49 show that with the
Zaji¢ & Stiiber statistical model, adequate statistics can be achieved with Ny, = 30 trials.
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Fig. 2.45 Normalized cross-correlation function between the quadrature components of the faded envelope for various simulation models
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Fig. 2.46 Normalized cross-correlation function between the first and second faded envelopes for various simulation models

2.5.4 Wide-Band Simulation Models

Wide-band channels can be modeled by a tapped delay line with irregularly spaced tap delays. Each channel tap is the
superposition of a large number of scattered plane waves that arrive with approximately the same delay and, therefore, the
channel taps will undergo fading. The wide-band channel has the time-variant impulse response

l
gt.t) = git)8(r — 7). (2.304)

i=1
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Fig. 2.47 Normalized cross-correlation function of the in-phase and quadrature components for various statistical simulation models
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Fig. 2.48 Normalized cross-correlation function of the first and the second complex envelope for various statistical simulation models

where £ is the number of channel taps, and the {g;(r)} and {;} are the complex gains and path delays associated with the
channel taps. The corresponding time-variant transfer function is

i=1

4
T(f.0) = i

(2.305)

Usually, the tap delays are multiples of some very small delay 7, such that t; = K;t, i = 1,..., £, which yields the sparse
tapped delay line channel model shown in Fig. 2.50, sometimes called the “z-spaced” model. Many of the tap coefficients in
the tapped delay line are zero, reflecting the fact that no energy is received at these delays. Also, the K; should be chosen to

be relatively prime so as to prevent any periodicity in the channel. Assuming a WSSUS channel, the autocorrelation function
of the time-variant channel impulse response in (2.304) is
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Fig. 2.49 Theoretical and simulated normalized auto-correlation functions for the various statistical simulation models

Fig. 2.50 Sparse tapped delay line model for wide-band multipath-fading channels

b, (2,557, 1) = Elg(t, 1)g" (s, )] (2.306)

14
= e, (ADS(x — 1)8(n — 7) (2.307)

i=1

It follows that the channel correlation function is

4
V(AL T) =) o, (ADS(T — 7)) (2.308)

i=1

and the power-delay profile is

L
Yo(0) = Y (0:7) = ) Qi8(x — 1), (2.309)

i=1

where £2; = ¢g,,,(0) is the envelope power of the ith channel tap, and the total envelope power is

y4
2,= ng. (2.310)
k=1
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Hence, the channel can be described by the power profile
Q = (20, £21,...,582). (2.311)
and the delay profile
T = (11, 72,...,7T0). (2.312)

Taking the Fourier transform of (2.308) with respect to the t variable yields the spaced-time spaced-frequency correlation
function

¢
Pr(Af; Al) =) g, (An)e 74" (2.313)
i=1
Sometimes the channel taps are assumed to have the same time correlation function, such that
Goi0i (A1) = 2:9:(A1), i=1,... L (2.314)

For example, if each tap is characterized by 2-D isotropic scattering, then ¢,(Ar) = %Jo (27fm At). In this case the spaced-
time spaced-frequency correlation function has the separable form

o1 (Af; A1) = ¢(At)gr(ASf), (2.315)
where
14
Gr(Af) =Y Qe A, (2.316)
i=1

2.54.1 COST 207 Models

The COST 207 models were developed for the GSM cellular system. Four different Doppler spectra, Sg, (f) are specified in
the COST 207 models [79]. First define the function

v _fl)2} (2.317)

G(A,fi,12) :Aexp%—

23
which has the shape of a Gaussian probability density function with mean f; and variance fzz. COST 207 specifies the
following Doppler spectra:

a) CLASS is the classical Doppler spectrum, and is used for excess path delays not exceeding 500 ns (z; < 500 ns);

A
VI=F /)

Multipath components arriving with short path delays are those that experience local scattering around the MS. In the
COST 207 models, the local scattering is modeled as 2-D isotropic scattering and the MS is assumed to have an isotropic
antenna.

b) GAUSI is the sum of two Gaussian functions, and is used for excess path delays ranging from 500 ns to 2 ws; (500 ns <
T < 2s)

(CLASS) Sgg(f) = A (2.318)

(GAUSI)  See(f) = G(A,—0.8f,.0.05f,) + G(Ay, 0.4f,. 0.1f,,). (2.319)
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Fig. 2.51 COST 207 typical urban (TU) and bad urban (BU) power-delay profiles

where A is 10dB below A. The GAUS1 Doppler spectra implies two clusters of scattering objects. The larger cluster is
located behind the MS such that the mean angle-of-arrival is = cos™'(—0.8) = 4143°. A smaller cluster is located in
front of the MS such that the mean angle-of-arrival is = cos™'(0.4) = +66°.

¢) GAUS2 is the sum of two Gaussian functions, used for excess path delays exceeding 2 ws; (z; > 500 ns)

(GAUS2)  Sge(f) = G(B.0.7f;. 0.1f,,) + G(By. —0.4f,, 0.15f,,). (2.320)

where B; is 15dB below B. Like GAUS1, GAUS2 implies two clusters of scattering objects such that the mean angles-
of-arrival are = cos™!(0.7) = +45° and § = cos~'(—0.4) = £113°,
d) RICE is a combination of 2-D isotropic scattering and a line-of-sight component;

0.41

2T[fm\/ 1 - (f/fm)z

The RICE scattering environment is depicted in Fig. 2.7, where 6y = cos™!(0.7) = 45°.

(RICE) S (f) = +0.918(F = 0.76) . Uf] <fm (2.321)

Several power-delay profiles have been defined in the COST 207 study for different propagation environments [79].
Typical urban (TU) (non-hilly) and bad urban (BU) (hilly) discrete power-delay profiles are shown in Fig. 2.51 and Table 2.7
of Appendix 2A. In these figures and tables, the fractional power sums to unity, i.e., the total envelope power §2,, is normalized
to unity. Also notice that the discrete tap delays in Table 2.7 are chosen to avoid a regular spacing between taps so as to avoid
any periodicities in the time-variant transfer function. Sometimes it is desirable to use a smaller number of taps to reduce
the computational requirements of computer simulations. Figure 2.52 and Table 2.8 of Appendix 2A show the 6-ray reduced
typical urban and reduced bad urban channel. Also provided in Appendix 2A are discrete power-delay profiles for rural
(non-hilly) areas (RA) in Table 2.9, typical hilly terrain (HT) in Table 2.10, and reduced hilly terrain (HT) in Table 2.11.

2.5.4.2 COST 259 Models

The COST 207 models were developed for the GSM system having a channel bandwidth of 200 kHz. However, the COST 207
models are not be appropriate for wideband CDMA (WCDMA) systems having 5, 10, and 20 MHz channel bandwidths.
Similar to the COST 207 models, typical realizations have been developed by 3GPP for the COST 259 models [113]. These
are tabulated in Tables 2.12, 2.13, and 2.14 of Appendix 2B for typical urban (TU), rural area (RA), and hilly terrain (HT).
Notice that the tap delays in the 3GPP realizations of the COST 259 models have a resolution of 0.001 ps as compared to
the 0.1 s resolution used in the COST 207 models. Moreover, a large number of paths (20) are included to ensure that the
frequency domain correlation properties are realistic, which is important for wide-band systems.
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Fig. 2.52 COST 207 reduced typical urban (TU) and bad urban (BU) power-delay profiles

2.54.3 ITU Models

Several models have been developed by the International Telecommunications Union (ITU) for indoor office, outdoor
to indoor and pedestrian, and vehicular—high antenna [276]. These models are summarized in Tables 2.15 and 2.16 of
Appendix 2C.

2.5.5 Mobile-to-Mobile Simulation Models

An important distinction between F-to-M cellular land mobile radio channels and M-to-M channels arises due to the
scattering and mobility at both ends of the link. In contrast to cellular F-to-M channels, it is natural for both the transmitter
and the receiver to have low elevation antennas in M-to-M applications. This results in local scattering around both the
transmitter and receiver antennas which led to the 2-D isotropic scattering assumption in the Akki and Haber reference
model [14].

2.5.5.1 AKkki & Haber Model

An obvious M-to-M channel simulation model follows from (2.146), where N sinusoidal components are used with randomly
generated angles of departure and arrival, and random phases. This model is called the Akki & Haber (A & H) model, since
they originally proposed the model in (2.146). Although the ensemble averaged statistical correlations of this model, given in
(2.147), do not depend on N, the time averaged correlations functions [denoted by $(-)] do depend on N [259]. For example,
the time average auto-correlation of the complex envelope is

T

. o1 1,
b0 = Jim o | 58" g0+ 0k (2.322)

N
1 : T T "R R
3 et costeyetam cosalho)
2N &

The time average correlations are random due to the random angles of departure and arrival and, hence, they will vary
with each simulation trial. The variance Var[¢(-)] = E[|¢(-) — limy—oo ¢(-)|*] provides a measure of the usefulness of the
model with finite N. A lower variance means that a smaller number of simulation trials are needed to achieve the desired
statistical properties to a given degree of accuracy and, hence, the corresponding simulation model is better. The variance of
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Fig. 2.53 Double-ring model for M-to-M radio propagation with isotropic scattering at the transmitter and receiver

the time averaged auto-correlation and the cross-correlation of the quadrature components of the complex envelope are as
follows [259]:

Var[gg,e, (1)] = Var[ggpe,, (7)] (2.323)
1+ Jo(rflo)o(4maflv) — 205 2nfE0)I 2maf)l 1)
N SN
2 A 1 = Jo(4nflo)Jo(4mafl
Var{By,0 (1)] = Var[pgpe, ()] = Jo(4rf, mgf]\)lj‘)( 74fnT) (2.324)
_ 72 2
Var[qsgg(r)] _ 1 JO(anWTlr)JOQnaf,Zr)' 2.325)

4N

2.5.5.2 Double Ring Simulation Models

To develop other M-to-M channel simulation models, a double-ring concept is applied that defines two rings of isotropic
scatterers, one placed around the transmitter and another placed around the receiver as shown in Fig.2.53. Assuming
omnidirectional antennas at both ends, the waves from the transmitter antenna first arrive at the scatterers located on the
transmitter ring. Considering these fixed scatterers as “virtual base stations (VBS),” the communication link from each VBS
to the receiver is treated like an F-to-M link. The signals from each VBS arrive at the receiver antenna uniformly from all
directions in the horizontal plane due to isotropic scatterers located on the receiver end ring. It should be noted here that
the double-ring model has been often used in various forms, for example in [50] and the references therein for the study
and simulation of the spatial correlations and capacity in multiple-input multiple-output (MIMO) systems, where multiple
antennas are used at both the transmitter and receiver. Here the double-ring model is applied to M-to-M channel modeling.
The use of a double-ring model has a strong rationale. First and foremost, it is a mathematically convenient reference model.
Second, considering the lack of detailed and standardized M-to-M channel models, the model provides a generic scenario
with isotropic scattering at both ends of the communication link. Finally, empirical Doppler spectrum measurements for
vehicle-to-vehicle communication links [9, 222] more or less match those predicted by the double-ring model.
Using the double-ring model in Fig. 2.53, the complex faded envelope can be written as

N M
g(t) _ /N%W Z Z e—jZnsmn/AcejZTrz{fZ cos(a;f"))-i-f;l,f 005(0121))}+j¢n.m’ (2.326)

m=1 n=1

9

where the index “m” refers to the paths traveling from the transmitter to the N scatterers located on the transmitter end ring,
the index “n” refers to the paths traveling from the M scatterers on the receiver end ring to the receiver. The angle oe(Tm) is the
random angle of departure and otl(;') is the random angle of arrival of the {m, n}th propagation path measured with respect to
the x-axis, respectively. The phases ¢, ,, are uniformly distributed on [—, ) and are independent for all pairs {n, m}. Note
that the single summation in (2.146) is replaced with a double summation, because each plane wave on its way from the
transmitter to the receiver is double bounced. The temporal correlation characteristics remain the same as those of the model
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in (2.146), because each path will undergo a Doppler shift due to the motion of both the transmitter and receiver. Finally,
the temporal correlation properties do not depend on the distance €,,, in Fig. 2.53. Although not discussed here, the spatial
correlation properties will depend on €, and, through ¢,,,, on the scattering radii Ry and Rg, and the distance D.

2.5.5.3 Patel & Stiiber Deterministic (P & S Det.) Model

An ergodic statistical (deterministic) simulation model is now suggested. By choosing only the phases to be random variables,
the statistical correlation properties of this model will converge to those of the reference model in a single simulation trial.
The complex faded envelope, g(¢) = g;(¢) + jgo(t), is generated as

M; Np

Z Z cos (ann{ cos(a{,l)t + 2nf,§ cos(afm)t + ¢1,,Lm) , (2.327)

m=1n=1

1) =
g1(?) N,

Mg Ng
D> cos (2mfy cos(e, )t + 2fn cos(etgy )t + Gonm) - (2.328)

1) = -
gQ( ) NQMQ m=1 n=1
where ¢, and ¢g . are all independent random phases uniformly distributed on [—7, 7). The nth angle of departure is
equal to Ot,T/Q’n = w(n—0.5)/(2Ny/p), forn = 1,2, ..., Njjo. The mth angle of arrival is equal to aZQ’m = w(m—0.5)/(Mj,0),
form = 1,2, .. .,M]/Q.

There are two remarks about this model. First, the angles ot,T/Q’n are essentially the same as those in the MEDS (method
of exact Doppler spreads) model [260], while the angles oef/ o.m Are chosen to reproduce desired statistical properties for M-
to-M channels. Second, to make the time average correlation functions deterministic and independent of the random phases
b1/0.n.m» the frequencies f, cos(a/,) + f cos(af’,,) in g;(2) and f,} cos(a), ) +fix cos(ag ) in go(r) must all be distinct and,
moreover, they must also be distinct among themselves for all pairs (n,m) and (k, /). Although it is difficult to establish a
general rule to meet this criterion, choosing Ny = M; and Np = My = N; + 1 yields distinct Doppler frequencies for
practical ranges of N; varying from 5 to 60 and for different Doppler frequency ratios, i.e., different values of a = fX/fT.
This rule is similar to the one used in the MEDS model [260]. Under these assumptions, it can be shown that the time average
correlation functions are

Ni,Ni
~ 1
Goe,(T) = N Z cos (2nflt cos(a],) + 2nfRT cos(afm)) (2.329)
1 nm=1
(Nr+1),(Nr+1)
Pypg0(T) = 2(N1—+1)2 n;I cos(27rf,£7: cos(agin) + Zﬁfrf‘f cos(oleeym)) (2.330)
Ber0(T) = By, (1) = 0. (2.331)

The P & S Det. model has the disadvantage that the time averaged correlation functions match those of the reference model
only for a small range of normalized time delays (0 < fI't < 5). To improve upon the statistical properties, two alternative
statistical SoS models are suggested. By allowing all three parameter sets (amplitudes, phases, and Doppler frequencies) to
be random variables for each simulation trial, the statistical properties of these models will vary for each simulation trial, but
they will converge to those of the reference model when averaged over a sufficient number of simulation trials.

2.5.5.4 Patel & Stiiber Statistical (P & S Stat.) Model

The P & S Stat. model modifies the model proposed by Zheng et al. [376] for F-to-M cellular land mobile radio channels.
The complex faded envelope, g(¢) = g/(¢) + jgo(t), is generated as

No M
1

gi(t) = NO_M Z Z cos (2anTl cos (ozf)t + 27rf,f cos(a,’fl)t + qﬁ;,,,,m) (2.332)

n=1 m=1
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No M

Z Z cos (2rf} sin (a] )t + 27fX cos(af)t + Ponm) » (2.333)

n=1 m=1

go(t) = NoM

where ¢; ., and @g , , are all independent random phases uniformly distributed on [—7, 7). The P & S Stat. model assumes
Ny scatterers located on the transmitter ring and M scatterers located on the receiver ring. The nth angle of departure is
al = 27nn — 7 + 0)/(4N,), where 0 is an independent uniform random variable on [—, 7r). The mth angle of arrival is
equal to af = (27m — 7 + )/ (2M), where ¥ is an independent uniform random variable on [, 7).

The ensemble averaged statistical properties of the P & S Stat. model match those of the reference model in (2.147) [259].
The time averaged correlation functions can be derived as:

NM

¢g,g, (r) = TNM nnXIZ:I cos(2nfn€ cos(och)t + 2nf,§ cos(affl)t) (2.334)
N.M

Peoeo (T) = NI 2 1c0s(2nfm sin(a])t + 27X cos(a®)1) (2.335)

B0 (1) = Bogeu (1) = 0 (2.336)
N.M

e (T) = NV [cos(27f) cos(a, )T + 27fi cos(ap)T) + cos(2nfy sin(e,) )T + 27fk cos(ef)T)]. (2.337)

nm=1

The P & S Stat. model requires a fairly large number of simulation trials (at least 50) to obtain adequate statistical
properties. Being a statistical model, its time average correlations are random and depend on the random Doppler frequencies.
However, for the same complexity, the model performs better than the A & H Model in terms of the variance of these
correlation functions [259]. These variances are not given here, since they do not exist in closed form.

2.5.5.5 Zaji¢ & Stiiber Statistical (Z & S Stat.) Model

The P & S models have difficulty in producing time averaged auto- and cross-correlation functions that match those of
the reference model. Here another statistical model is suggested where orthogonal functions are chosen for the quadrature
components of the complex faded envelope. This model is also able to generate multiple uncorrelated complex envelopes,
something that the other models cannot do.

The following function is considered as the kth complex faded envelope:

g (t) = / Z Z e](2nfm cos(e] r+2mfR cos(akm)t+¢k,,m (2.338)

nlml

where frz , ,f , O‘kT,n» oz,ﬁm, and ¢y .., are the maximum Doppler frequencies, the random angle of departure, the random angle
of arrival, and the random phase, respectively. It is assumed that P independent complex faded envelopes are required
(k=0,...,P—1)each consisting of NM sinusoidal components.

The number of sinusoidal components needed for simulation can be reduced by choosing Ny = N/4 to be an integer, by
taking into account shifts of the angles a{n and a,’im, and by splitting the sum in (2.338) into four terms, viz.,

M No
1 i ‘R R . T T . T T
_ /v frcos(af,) jOnfLtcos@ )+ bram) o oJCrfLIcoS@]\+7/D+ Bonmt7/2)
al) = /5 §le’ ‘ [E {e i +e ‘ }]
s

n=1

No
l Z e]27rf,ffzcoﬁ(otkm) |:Z {e](Z:rrfmzcos(ak"+n)+¢k,,m+:rr) + e}(Zﬂfmtcos(akn+37r/2)+¢k,,m+3ﬂ/2)}:| ) (2 339)

n=1

Equation (2.339) simplifies as
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1 No M
gu(t) = N Z Z cos (2 fRtcos(ay,,)) cos (27ft cos(ay ) + Prnm)

n=1 m=1
No M

Z Z sin (27ft cos(o m)) sin (2rf)t sm(ak )+ Penm) - (2.340)

n=1 m=1

1
A,

Based on gi(¢) in (2.340), the Z & S statistical simulation model can be defined. The kth complex faded envelope,
8k(1) = grx(1) + jgo(1), is generated as

gri(?) = \/_ Z Z cos 2nfR cos (o, m)t) cos (27th cos(ak Dt + D, ,,,) (2.341)

n=1m=1

No M
Z Z sin (27fX cos(a,)1) sin (27f,) sin(atf )t + Bnm) - (2.342)

n=1 m=1

1
gox(t) = N

It is assumed that P independent complex envelopes are desired (k = O, ..., P — 1), each having MNj sinusoidal terms in the
Tand Q components. The angles of departures and the angles of arrivals are chosen as follows:

r 2nn n 2wk N 0—m (2.343)
o, = — s .
kn ™ 4N, = 4PN, = 4N,

2rm  2mk Y —nw
=0.5 — , 2.344
( M + PM + M ) ( )

forn=1,...,No,m=1,..., Mk = 0,...,P — 1. The angles of departure and the angles of arrival in the kth complex
faded envelope are obtained by rotating the angles of departure and the angles of arrival in the (kK — 1)th complex envelope
by (2)/(4PNy) and (27r)/(2PM), respectively. The parameters ¢y ., 6, and ¥ are independent uniform random variables
on the interval [—r, 7).

The ensemble averaged statistical correlation functions of the Z & S Stat. model match those of the reference model [371].
For brevity, only the derivation of the auto-correlation function of the in-phase component is presented. Other properties can
be derived in an analogous fashion. The auto-correlation function of the in-phase component of the kth complex faded
envelope is

G150, (1) = Elgis () grs(t + 7)] (2.345)
No.M No.M

= Z Z [cos@nff(t + ) cos(ay,,))
0

nm=1p,r=1
X cos(27rfnlft cos(a,ﬁp)) cos(2nf$(t + 1) cos(a,{n) + Prnm)

x cos(2mf !t cos (OIkTr) + depr)]

No
1
= N_MZZE cos(2rfRT cos(af,)) cos(2mf;h T cos(er,))]
0 n=1m=1
1%1/’r 5 2um | ok Y- o
=—% — | cos(2nfRzcos
M=), oM T 2PM T oM

Il <1 [~ 2nrn 2nk O —m
— — 27fT —_—+ — do 2.346
X T /_n cos( 7f,, T Cos (4N0 + PN, + INg )) ( )
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Table 2.2 Mean square error, maximum deviation and variations, for various mobile-to-mobile channel simulators

P & S Stat. P & S Stat. Z & S Stat. Z & S Stat. Z & S Stat.
Simulator P & S Det. Nyat = 1 Nytar = 50 Nyat = 1 Nytar = 30 Nytar = 50
mse(Pg,g,) 1.8-1073 1.1-1073 3.16-1073 8.81-10~* 4.39-107° 2.05-1073
Max(¢g¢0) 9.61-1072 5.91-1072 1.27-1072 6.84-1072 1.28- 1072 7.0-1073
Var(dg,) 2.74-107° 4.59-107° 6.67-107° 3.11-107° 5.69-107° 2.51-107°
mse(Pg,g,) 5.8-1073 1.1-1073 1.31-1073 7.02-10~* 3.59-107 1.26-107°
Max(¢,¢,) 1.59-107! 6.34-1072 0.63-1072 6.57-1072 9.6-1073 5.6-1073
Var(¢g,g,) 1.24-1074 1.77-107¢ 7.38- 10710 1.22-107¢ 3.0-107° 43910710

As in [360], the derivation can be completed by replacing the variables of integration, € and v, with y;,, = (2wn)/(4No) +
(27k)/(4PNy) + (0 — ) /(4Ny) and &y, = 2em)/(2M) + 27k)/(2PM) + (¢ — ) /(2M), respectively. Finally,

Noy%‘ilrg . Borrees (1) = JoQrfL0)Jo(2nfR7). (2.347)

The performance of the various models is now compared. All simulations use a normalized sampling rate of f,,T; = .01l
(fn = fF = fR are the maximum Doppler frequencies) and M = Ny = P = 8. For the P & S Det. model, N; = M; = 8 and
Ng = My = 9 are used to obtain a complex envelope with uncorrelated quadrature components. Using these parameters,
the mean square error (mse) and maximum deviations (Max) from the theoretical value (zero) have been calculated for the
normalized cross-correlations of the I and Q components, and for the normalized cross-correlations of the first and the second
faded envelopes. The results are shown in Table 2.2. Note that different simulation trials yield slightly different simulation
results. To estimate these differences, the variances are computed by averaging over 1000 simulation trials. The variances of
the normalized cross-correlations of the I and Q components, and the variances of the normalized cross-correlations of the
first and the second faded envelopes are also shown in Table 2.2. From Table 2.2, the Z & S Stat. model with N, = 1 has
cross-correlations similar to the P & S Det. model and the P & S Stat. model with Ny, = 1. The Z & S Stat. model with
Ngat = 30 performs similar to the P & S Stat. model with Ny, = 50 and significantly better than the P & S Det. model.
Increasing the number of simulation trials to Ny, = 50 yields a lower cross-correlation between the I and Q components of
the complex faded envelope.

Figure 2.54 shows that, for Ny = M = P = 8 and 30 simulation trials, the auto- and cross-correlations of the complex
faded envelopes produced by the Z & S Stat. model approach those of the reference model.

Figures 2.55 and 2.56 compare the variance of the time averaged auto-correlation functions of the quadrature components
averaged over 1000 simulation trials. For the statistical models, the variance is defined as Var[dA)(-)] = E [|¢A>(-) -
limy— oo (-)|2], where @(-) denotes the time averaged correlation functions and ¢(-) denotes the statistical correlation
functions. For the P & S Det. model, the relevant quantity is the squared error |¢(-) — ¢ (-)|2. The variance for the A & H
model is obtained using (2.323). The variance provides a measure of the usefulness of the model in simulating the desired
channel with a finite N. A lower variance means that a smaller number of simulation trials are needed to achieve the desired
statistical properties and, hence, the corresponding model is better. Since the A & H model does not exploit the symmetry of
the double-ring model, as the other models do, for fair comparison N = 4Ny x 2M = 512 sinusoids are used when using the
A & H model. From Fig. 2.55, it can be concluded that the Z & S Stat. model with one simulation trial has a variance similar
to the P & S Det. model and a lower variance than the P & S Stat. model with one simulation trial. A single simulation trial
is chosen for this comparison because the P & S Det. model is an ergodic statistical simulation model that requires only a
single simulation trial. In any case, Fig.2.55 shows that all three models do not perform as well as the A & H model for
a single simulation trial. Figure 2.56 shows that increasing the number of simulation trials to 30 inthe P & Sand Z & S
Stat. models yields a significantly lower variance of the auto-correlation function of the quadrature components. Figure 2.56
shows that the Z & S Stat. model with 30 simulation trials outperforms the P & S Stat. model with 30 simulation trials, and
outperforms P & S Det. model and the A & H model each with one simulation trial.



106 2 Propagation Modeling

1.0
. —— J(07)
2 bg,6,(7)
o0y (1

Normalized Correlation Functions

Normalized Time Delay, f_t

Fig. 2.54 Theoretical and simulated auto-correlation functions and cross-correlation function of the first and the second faded envelopes produced
by the Z & S Stat. model with 30 simulation trials
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Fig. 2.55 Variance of the auto-correlation function of the quadrature components with a single simulation trial (Ngy = 1)

2.5.6 Symbol-Spaced Models

The baseband representation of a typical digital communication system consists of the concatenation of an up-sampler, a
discrete-time transmit filter or pulse shaping filter, digital-to-analog converter (DAC), waveform channel, analog-to-digital
converter (ADC), and discrete-time receiver filter or matched filter, and down-sampler as shown in Fig. 2.57. The channel
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Fig. 2.56 Variance of the auto-correlation function of the quadrature components with 30 simulation trials (Ng, = 30)
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Fig. 2.57 Baseband model for a typical digital communication system

g(t, 7) is assumed to have the structure in (2.304) or Fig. 2.50. Data symbols are input to the up-sampler, one every T seconds,
where T is the baud period. Usually, the bandwidth of the transmitted signal W will exceed the Nyquist frequency 1/2T; for
example, when root-raised cosine pulse shaping is used. Therefore, up-sampling is required at the transmitter so that the DAC
operates with sample period 7/K, where K is the up-sampling factor. At the receiver, the ADC also operates with a sampling
period T/K. The up-sampling factor K must be chosen to at least satisfy the sampling theorem at the transmit side, i.e.,
K/T = 2W, but often K is made larger to facilitate timing synchronization in the receiver and to accommodate the Doppler
spreading that is introduced by the channel. Once the correct sample timing phase is determined, the sample sequence at the
output of the receiver filter can be down-sampled for further processing. For the purpose of illustration, down-sampling by
factor of K is assumed, so that symbol-spaced samples are taken at the output of the receiver filter.*

Form the above discussion, it is apparent that the overall channel from the input to the transmitter filter to the output of
the receiver filter can be modeled as a finite impulse response (FIR) filter as shown in Fig.2.58, where the {g [k]} are the
tap gains. While it is true that the channel taps, {g;(#)} in the underlying waveform channel in Fig.2.50 are uncorrelated for
WSSUS channels, the same cannot be said of the taps {g [k]} in the FIR filter of Fig. 2.58. The tap correlations in the symbol-
spaced model often leads to analytical intractability when evaluating the theoretical performance of digital communication
systems that operate on these channels. This difficulty is often overcome by assuming that the taps {g’ [k]} are uncorrelated
[90, 107, 140, 192, 206, 301, 320], when in fact they are not. However, when the same systems are evaluated by software
simulation, such modeling simplifications are unnecessary and in fact undesirable. A method is now described for generating
the tap coefficients {g’ [k]} with the proper cross-correlations in the case where linear modulation schemes are used. The
procedure can be readily extended to generate the required tap coefficients when fractional sampling is used, i.e., if K > 1.

“In practice, T/2-spaced samples at the output of the receiver filter are often used for further processing, such as equalization.
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Fig. 2.58 Symbol-spaced tapped delay line model for wide-band multipath-fading channels
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Fig. 2.59 Method for generating correlated tap coefficients in a 7-spaced channel model

Consider the arrangement shown in Fig. 2.59, where the equivalent analog representation of the transmit filter, 4,(¢), and
receiver matched filter /) (—7) are assumed. Pulses that are shaped by the transmit filter /,(¢) are transmitted through the
channel g(z, 7) and the receiver matched filter 4} (—¢). The output of the receiver matched filter is sampled at symbol-spaced
intervals. Since the filters A,(7), g(¢, v) and i} (—¢) are linear, their order may be exchanged as shown in Fig. 2.59, where the
overall pulse is equal to p(f) = h,(r) * i (—1). The overall pulse p(7) is usually chosen to be a Nyquist pulse. For example,
p(t) might be a raised cosine pulse, such that £,(f) and &) (—f) are root-raised cosine pulses. To obtain the symbol-spaced
channel tap coefficients, the pulse p(#) is passed through the channel g(¢, 7) and symbol-spaced samples are extracted at
the output. Assuming that the channel has the form in (2.304), the symbol-spaced samples are now shown to be a linear
combination of the elements of the tap gain vector

g(t) = (gl(t)’ gZ(t)7 cees g((t))r' (2348)

Suppose that a vector of M, symbol-spaced, tap coefficients

g’ ()= (1. &2, ... gy(®)' (2.349)

is to be generated. Then g7 (f) = Ag(¢), where g(7) is defined in (2.348), and A is an M x £ real matrix. As shown in
Example 2.1 below, the entries of the matrix A are determined by the overall pulse p(¢), the delay profile = in (2.312), and
the timing phase of the sampler that extracts the symbol-spaced samples. The matrix A must be generated each time the delay
profile and/or the sampler timing phase changes. For systems where timing information is derived from a training sequence
or synchronization word that is inserted into every transmitted slot or burst, the sampler timing phase is usually adjusted on
a burst-by-burst basis and, consequently, the matrix A must be computed on a burst-by-burst basis as well.
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The autocovariance matrix of the symbol-spaced tap gain vector g’ (¢) is

1
Py (r) = SE[g (0" "1+ )]

%E [Ag(ng" (t + 1)AT]

= A%E [g(g" (1 + )] AT
= Ad,()A”.

For a WSSUS channel and 2-D isotropic scattering on each of the channel taps g;(¢),

1
By(x) = S diaglR1. 2. 2}Io@rf). (2.350)

Example 2.1. Suppose that the channel g(¢, t) consists of two taps having the spacing 7, = |t1(¢) — 70(¢)|. In this
example, the two main taps in the symbol-spaced channel model, g (r) and g] (), are generated. Let
g(t) = (801, &1())"
g' (1) = (g(1). 81 (®)"

and

g’ (1) = Ag().

The entries of matrix A depend on the timing phase of the 7-spaced samples taken at the output of the pulse generator.
In a practical system, the sampler timing phase is determined by the synchronization process in the receiver. Suppose
that the taps just happen to have equal strength, |go(¢)|*> = |g1(¢)|?, when the sampler timing is being determined, i.e.,
during the training sequence or synchronization word. Furthermore, for the purpose of illustration, suppose that the
result of the sampler timing phase adjustment is such that the symbol-spaced taps have equal strength as well, i.e.,
lgb ()| = |gT (1)|*. Figure 2.60 illustrates this situation. The entries of matrix A can be obtained by writing

800 = p(z/2 = T/2)go(®) + p(=7/2 — T/2)g1(?)
81 () = p(t/2 + T/2)g0(1) + p(—7/2 + T/2)81(1).

Hence,

A= |:P(T3/2— T/2) p(—75/2 — T/z)j|
p(rs/2+T/2) p(—=75/2 + T/2) .

Now suppose that the combination of the transmitter and receiver filter is a raised cosine pulse’

cos(Bt/T)

AR 2351
1—4B22]T? ety

p(t) = sinc(t/T) -

(continued)

3See Chap. 4 for a discussion of raised cosine pulse shaping.
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Fig. 2.60 Generation symbol-spaced channel taps

Example 2.1 (continued)
with roll-off factor = 0.35, and 7, = T//4. Then

A |:p(—3T/8) p(—ST/S)} _ [0.7717 0.4498}
~ | p(5T/8) p(3T/8) 0.4498 0.7717

2.6 Shadowing

It was shown earlier in (2.26) that the received envelope power is

N
2, =Ellg0)l’] =)_C, (2.352)

n=1

where C, depends on the cross sectional area of the nth local scatterer. In practice, the local mean is calculated by computing
the time average

A 1
Q=7 /T lg(0)dr, (2.353)

where the time interval T is chosen to correspond to a spatial averaging interval that is large enough to average over the
envelope fades. In practice, this corresponds to a spatial averaging distance of about 20 wavelengths. Note that the required
averaging interval T will depend on velocity. The averaging interval must be small enough so that the {C,} do not change
over the averaging interval. The location area is defined as the largest volume of space where this condition will hold
true. Sometimes 2, is called the local mean because it is computed within a location area. If the receiver moves outside
the location area, the {C,} will change due to the presence of large terrain features like hills, valley, and buildings. Therefore,
the local mean £2,, (or fzp) changes with location in a process known as shadowing. The same statements can also be made
for the mean envelope §2, = E[|g(¢)|] and its time average

2, = 1 / lg(1)]dr. (2.354)
T Jr

Empirical studies have shown that §2, has the log-normal distribution
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2
1 (1010g,{x} — 12, g
X) = ————=—=¢€xp)— . 2.355
pgp( ) x0oEN 21 P 20}2 ( )
where
K2, wsm = 10E[log{$2,}]. (2.356)

oy, is the shadow standard deviation in decibel units, and & = In(10)/10. Note that since the local mean is in units of dBm
(decibels with respect to 1 mW), the units of £2,, in (2.355) are milliwatts (mW).

The mean value (o, 4, 1 sometimes called the area mean because it corresponds to an extended location area defined as
the largest volume of space where the {C,} can be characterized as stationary random variables and N is a constant. Within
an extended location area, the mean envelope power e, = E[£2,] is constant. The mean envelope power depends on the
propagation path loss between the transmitter and receiver, such that the path loss is constant within the extended location
area.

By using a transformation of random variables, it can be shown that £2, 4gm) = 10log;,{£2,} has the Gaussian density

= 1 (x - MQP (dBm))2
P2, (@Bm) (x) = m exp —T .

Note that the logarithm of the log-normal random variable yields a normal random variable.

Some confusion may arise in the literature because some authors [127, 128, 232] treat the mean envelope 2, as being log-
normally distributed with shadow standard deviation o, while other authors [208, 227, 267] treat the mean square-envelope
£2, as being log-normally distributed with the same value of 0. Clearly, the mean envelope and mean square-envelope
are not the same, and one may wonder if the same shadow standard deviation should be used in each case. It is shown in
Appendix 2D that the shadow standard deviation o, is indeed the same in each case. However, with Ricean fading the means
differ by

(2.357)

K2y @omy = M2, @sm T 1010g10{C(K)}, (2.358)
where

4 (K + 1)

R = L Pe2LK

(2.359)
and | F (-, -; -) denotes the confluent hypergeometric function.

The shadow standard deviation o, ranges from 5 to 12 dB with 8 dB being a typical value for macrocellular applications.
The shadow standard deviation increases slightly with frequency (0.8 dB higher at 1800 MHz than at 900 MHz), but has
been observed to be nearly independent radio path length, even for distances that are very close to the transmitter [227]. The
shadow standard deviation that is observed in microcells varies between 4 and 13 dB [40, 142, 143,216, 228, 280]. Mogensen
[228] has reported o, = 6.5-8.2dB at 900 MHz in urban areas, while Mockford et al. [227] report a value of 4.5 dB for
urban areas. Berg [40] and Goldsmith and Greenstein [142] report that o, is around 4 dB for a spatial averaging window
of 20 wavelengths and BS antenna heights of about 10 m. Several studies suggest that o decreases with an increase in the
degree of urbanization or density of scatters. For example, the results presented by Mockford et al. [227] suggest that o; is
1.3-1.8 dB higher in a suburban environment than in an urban environment.

2.6.1 Shadow Simulation

One of the challenges when constructing a shadow simulator is to account for the spatial correlation of the shadows. Several
studies have investigated the spatial correlation of shadows [151, 152, 161, 170, 216]. One simple model has been suggested
by Gudmundson [152], where log-normal shadowing is modeled as a Gaussian white noise process that is filtered by a
first-order low-pass filter. With this model

k41 @Bm) = {82k @Bm) + (1 — g, (2.360)
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where §2; @Bm) is the mean envelope or mean squared-envelope, expressed in decibels, that is experienced at index k, {
is a parameter that controls the spatial correlation of the shadows, and vy is a zero-mean Gaussian random variable with
dw(n) =o 28(n). It can be shown that the spatial autocorrelation function of £2 4sm) as generated by (2.360) is

P2(aam 2 (K) = %524“'“- 2.361)
Since the shadow variance is
0% = $am 2aam (0) = ; —C5 (2.362)
+¢
the autocorrelation of £2; can be expressed as
D2t 2anm () = 0B TH. (2.363)

This approach generates shadows that decorrelate exponentially with distance. Mandayam et al. [214] have shown through an
extreme value analysis that log-normal shadows cannot decorrelate exponentially with distance. Nevertheless, in the absence
of anything better, Gudmundson’s model in (2.360) is still useful and effective.

While shadows decorrelate spatially, simulations are usually conducted in discrete-time. Therefore, to use the simulator
in (2.360), the spatial decorrelation parameter ¢ must be related to the simulation index k. Suppose the shadows that are
experienced by a MS that is traveling with velocity v are to be modeled. The envelope (or squared-envelope) is sampled
every T seconds. In kT seconds the MS moves a distance vkT. Let {p be the shadow correlation between two points separated
by a distance of D m. Then the time autocorrelation of shadowing is

v k
¢9(dBm)9(dBm) (k) = ¢9(dBm)9(dBm) (kT) = Ué C[() T/ “ (2.364)

Comparing (2.363) and (2.364), observe that { = EI()UT/ R typical suburban propagation at 900 MHz, it has been
experimentally verified by Gudmundson [150] that o; &~ 7.5dB and {90 = 0.82. For typical microcellular propagation
at 1700 MHz, Gudmundson has also reported o; = 4.3dB and {;p = 0.3.

2.6.2 Composite Shadowing—Fading Distributions

Sometimes it is desirable to obtain the composite envelope distribution due to shadowing and multipath-fading. Such a
composite distribution is relevant in cases where the MSs are slowly moving or stationary. In this case, the fading rate may
be so slow that entire codewords are either faded completely or not at all regardless of the interleaving depth that is used,
and the code fails. In this case, the composite shadow-fading distribution is useful for evaluating system coverage, i.e., the
fraction of the service area having an acceptable quality of service.

Two different approaches have been suggested in the literature for obtaining the composite shadow-fading distribution.
The first approach is to express the squared-envelope as a conditional density, conditioned on §2,,, and then integrate over the
density of §2, to obtain the composite distribution. This results in the composite shadow-fading distribution

p2) = [ b o, Glwipa, (o) 2365)
For the case of Rayleigh fading, at any time instant ¢,
2, = E[e*(1))] = 2by (2.366)
and, hence,

X —X/wW
Pa2| g, (lw) = e . (2.367)
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The composite squared-envelope distribution with Rayleigh fading and log-normal shadowing is

2
| 1 10l0gotw} —
Po(x) = / Ze _ (100021000} ~ gy o) { (2.368)
0

——exp
w woE~/2m 20

where £ = In(10)/10. Unfortunately, this distribution does not exist in closed form, but can be efficiently evaluated using
Gauss—Hermite quadrature integration.

The second approach, originally suggested by Lee and Yeh [199], expresses the composite squared-envelope as the product
of the squared-envelope due to multipath-fading and shadow fading. Using this approach,

QZ(1) = a*(1) - 2,(1). (2.369)
Under the assumption that the fading and shadowing are independent random processes, both approaches lead to identical
results as is now shown. The composite squared-envelope in (2.369) is the product of two random variables at any time instant

t1. Hence, the corresponding density function of the squared-envelope can be obtained by using a bivariate transformation of
random variables and then integrating to obtain the marginal density. This leads to the composite density function

> 1 X
piet) = [ pe (%) e, 0o, 2.370)
0 w w
Again, consider the case of log-normal shadowing and Rayleigh fading. Using (2.54) and (2.355) gives

2
% x 1 (lOlOglO{W} - /‘Lﬂp (dBm))
o ool exp d — dw. (2.371)
Pa(®) /o 2,w p% pr} woo€ 21 ’ { 20

Observe that (2.368) and (2.371) are related by

Pa.(X) = 2pps. (.Q,,x) . (2.372)

Hence, if the faded envelope «(7) in the second approach is assumed to have E[a(1)?] = £2, = 1, then &? and &2 will have
the exact same composite distribution. Although the above result may not matter much for analysis, it does have implications
for software simulation. When simulating the combined effects of fading and shadowing, the composite squared-envelope
can be obtained by generating the fading and shadowing processes separately and multiplying them together as shown in
(2.369). To do so, the faded envelope should be generated such that £2, = 1.

2.6.2.1 Composite Gamma-Log-Normal Distribution

It is sometimes very useful to model the radio propagation environment as a shadowed Nakagami fading channel, because
the Nakagami distribution is mathematically convenient and can closely approximate a Rice distribution. The composite
distribution of the squared-envelope due to Nakagami fading and log-normal shadowing has the Gamma-log-normal density
function

®© mym X" mx 1 (10logpiw} — K, (dBm))2
2 (x) = — —eX —_—— ——— X — dW. 2373

where £ = In(10)/10. As shown in Appendix 2E, the composite Gamma-log-normal distribution in (2.373) can be closely
approximated by a log-normal distribution with parameters

M(@Bm) = E_] (¥ (m) — In(m)) + K2, @Bm)
o? = £7%(2,m) + o) (2.374)
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where ¥ (-) is the Euler psi function and {(-,-) is Riemann’s zeta function as defined in Appendix 2E. When m = 1 the
approximation is valid for o; > 6dB; when m = 2, 0 > 6 must be greater than or equal to 4dB; when m > 4, the
approximation is good for all o, [164].

The effect of Nakagami fading in (2.374) is to decrease the mean and increase the variance of the composite squared-
envelope. However, this affect decreases as the shape factor m increases (corresponding to less severe fading). For example,
with m = 1 (Rayleigh fading), ((gm) = K2, apm) — 2.50675 and 02 = (ré + 31.0215 while, with m = 8, ((Bm) =
M2, @pm — 0-277 and o2 = o} +2.50972.

2.7 Path Loss Models

Path loss is the largest and most variable quantity in a communication link budget. It depends on frequency, antenna heights,
and distance and topography. A variety of theoretical and empirical path loss models exist in the literature. Our discussion
starts with a discussion of theoretical models, followed by empirical models.

2.7.1 Free Space Path Loss

Free-space path loss (FSPL) is proportional to the square of the distance between the transmitter and receiver, and also
proportional to the square of the frequency f, of the radio signal. The FSPL equation is

2 2
Lis = (4”‘1) = (%) . (2.375)
Ac c

FSPL is a combination of two effects: First, the intensity of an electromagnetic wave in free space decays with the square of
the radio path length, d, such that the received power per unit area or power spatial density (in watts per meter-squared) at
distance d is

2,(d) = 2 (2.376)

"Ard?’

where £2; is the total transmit power in watts. Note that this term is not frequency dependent.
The second effect is due to aperture, which determines how well an antenna picks up power from an incoming
electromagnetic wave. For an isotropic antenna,

/\2
2,(d) = Qr(d)ﬁ, (2.377)

where £2,(d) is the received power. Note that this is entirely dependent on wavelength, A., which is how the frequency-
dependent behavior arises.
Using (2.376) and (2.377) gives the free space propagation path loss as

% 4rrd \?
1010g10 (T)

2
Olog,, { (4ncdﬁ) }

= 20log,o{f.} + 20log,,{d} — 147.55 dB. (2.378)

LFS (dB) = 1010g10 { .Q—(;')%
p
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2.7.2 Flat Earth Path Loss

The signals in land mobile radio environments do not experience free space propagation. A more appropriate theoretical path
loss model is one that assumes propagation over a flat reflecting surface, the Earth, as shown in Fig. 2.61. The length of the
direct path is

di = d + (hy — hy)? (2.379)
and the length of the reflected path is

dy = & + (hy + hy)? (2.380)
Given that d > hyh,,, it follows that d; &~ d and d, ~ d. However, since the wavelength is small, the direct and reflected

paths may add constructively or destructively over small distances. The carrier phase difference between the direct and
reflected paths is

2
$r— 1 = T(dz_dl) (2.381)
Taking into account the phase difference, the received envelope power is

Ae \ .
ne, = S ( 4nd) |1+ ae @907 (2.382)

where a and b are the amplitude attenuation and phase change introduced by the flat reflecting surface. If a perfect specular
reflection is assumed, then a = 1 and b = 7 for small 6 and

e \' |y _ iGEan
/'L-Qp:‘Ql ‘1_61)“'

2

4nd

e \° . b1
= 49, (m) SlIl2 (A_CAd) s (2383)

where Ay = (d, — dy). Given that d > hy, and d > h,,, and applying the approximation /1 + x &~ 1 + x/2 for small x to
(2.379) and (2.380),

2hphy,
Ay~ Z200m (2.384)
d
Finally, the received envelope power is
e N . (27hyhy,
Ha, ~ 482, (m) sin ( hod ) (2.385)

where h;, and h,, are the heights of the BS and MS antennas, respectively. Under the condition that d > hh,,, (2.385)
reduces to
ol \?

/,Lgp = .Qz (7) s (2386)
where the small angle approximation sinx = x for small x has been invoked. Observe that when d > hh,,, the propagation
over a flat reflecting surface differs from free space propagation in two ways. First, the path loss is not frequency dependent
and, second, the envelope power is inversely proportional to the fourth power of the distance rather than the square of the

distance. Finally, the model in (2.386) shows that the received signal power is proportional to the product of the square of
the BS and MS antenna heights.
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Fig. 2.61 Radio propagation over a flat reflecting surface
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Fig. 2.62 Propagation path loss with distance over a flat reflecting surface; h, = 7.5m, h,, = 1.5m, f, = 1800 MHz

Figure 2.62 plots the flat Earth path loss (FEPL)

§2,
LFE (dB) = 1010g10 ,u_
2,

P

Ae ) 27 hyhyy
=—10]og10§4(m) sinz( ”A‘; )§ dB (2.387)

against the distance d. Notice that the path loss and, hence, the received envelope power has alternate minima and maxima
when the path length is small. This propagation property has been noted in experiments by Milstein et al. [225]. The last
local maxima in the path loss occurs when

2mhyh, .
Aed 27
giving the break-point distance
4hyph,,
dgp = —2 (2.388)

Aed
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2.7.3 Empirical Path Loss Models

Several highly useful empirical models for macrocellular systems have been obtained by curve fitting experimental data.
Two of the more useful models for 900 MHz cellular systems are Hata’s model [250] based on Okumura’s prediction method
[161] and Lee’s model [196].

2.7.3.1 Okumura-Hata and CCIR Models

Hata’s empirical model [161] is simple to use, and distinguishes between various degrees of urbanization. The empirical data
for this model was collected by Okumura [250] in the city of Tokyo. The Okumura—Hata model is expressed in terms of the
carrier frequency 150 < f, < 1000 (MHz), BS antenna height 30 < /;, < 200 (m), the MS antenna height 1 < A4,, < 10 (m),
and the distance 1 < d < 20 (km) between the BS and MS. Note the units of the parameters that are used in the model. The
model is known to match the experimental data from which is formed to within 1 dB for distances ranging from 1 to 20 km.
With the Okumura—Hata model, the path loss between two isotropic BS and MS antennas is:

A + Blog,o{d} for urban area
L, @) = { A+ Blog,y{d} — C for suburban area (2.389)
A+ Blogy{d} — D for open area
where
A = 69.55 4 26.16log,{f.} — 13.82log,o{hs} — a(hy) (2.390)
C = 5.4+ 2 (log,{f./28})°
D = 40.94 + 4.78 (logo{f.})* — 18.3310g,{f:}
and

(1.1logoife} — 0.7) hyy — (1.56 log o {fc} — 0.8)

for medium or small city
a(hy) = (2.391)
8.28 (10g10{1.54hm})2 —-1.1 for f. < 200 MHz
3.2 (log,o{11.75h,,})* — 4.97  for f. > 400 MHz
for large city

Typical values from the Okumura—Hata “large city” model are plotted in Fig. 2.63, for a BS height of 70 m, a MS antenna
height of 1.5 m, and a carrier frequency of 900 MHz. The reader is cautioned that, due to a lesser degree of urbanization, the
path losses for Japanese suburban areas do not match North American suburban areas very well. The latter are more like the
quasi-open areas in Japan. Also, the North American urban areas have path losses more like the Japanese suburban areas.

To account for varying degrees of urbanization, the CCIR (Comité International des Radio-Communication, now ITU-R)
developed an empirical model for the path loss as:

L, @) = A + Blog{d} — E, (2.392)

where A and B are defined in (2.390) with a(h,,) being the medium or small city value in (2.391). The parameter E accounts
for the degree of urbanization and is given by

E = 30 — 25log,({% of area covered by buildings}, (2.393)

where E = 0 when the area is covered by approximately 16% buildings.
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Fig. 2.63 Path loss obtained
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2.7.3.2 Lee’s Area-to-Area Model

William C. Y. Lee’s area-to-area model [196] can be used to predict a path loss over flat terrain. If the actual terrain is
not flat, e.g., hilly, there will be large prediction errors, and other prediction models can be used [196]. Two parameters
are required for Lee’s area-to-area model; the received power at a 1 mile (1.6km) point of interception, ug,(d,), and the
path-loss exponent, . The received signal power at distance d can be expressed as

A\ ("
pe,(d) = pe,(d,) = ) (2.394)
o fe
or in decibel units
d f
K, @Bm)(d) = e, @Bm)(do) — 10Blog,o T 10nlog 7 + 10log, {0}, (2.395)

where d is in units of kilometers and d, = 1.6 km. The parameter « is a correction factor used to account for different BS
and MS antenna heights, transmit powers, and antenna gains. The following set of nominal conditions are assumed in Lee’s
area-to-area model:

» frequency f, = 900 MHz

* BS antenna height = 30.48 m

e BS transmit power = 10 watts

* BS antenna gain = 6 dB above dipole gain
e MS antenna height = 3m

e MS antenna gain = 0dB above dipole gain

If the actual conditions are different from those listed above, then the following parameters are computed:

BS antenna height (m) 2
oy =
: 30.48m

(MS antenna height (m) ) «
Oy =

3m

transmitter power

o3 =
10 watts
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Table 2.3 Parameters for Lee’s

. . Terrain M2, @Bm) (do) | B
area-to-area model in various .
. . Free space —45 2
propagation environments,
from [196] Open area —49 4.35
North American Suburban —61.7 3.84
North American Urban (Philadelphia) | —70 3.68
North American Urban (Newark) —64 431
Japanese Urban (Tokyo) —84 3.05

_ BS antenna gain with respect to A./2 dipole

oy =
‘ 4
o5 = different antenna-gain correction factor at the MS (2.396)
From these parameters, the correction factor « is
Ogp = 01 0y - 03 -0y - U5. (2397)

The parameters f and jiq,(d,) have been found from empirical measurements, and are listed in Table 2.3.

Experimental data suggest that n in (2.395) ranges between 2 and 3 with the exact value depending upon the carrier
frequency and the geographic area. For f, < 450 MHz in a suburban or open area, n = 2 is recommended. In an urban area
with f, > 450 MHz, n = 3 is recommended. The value of « in (2.396), also determined from empirical data, is

__ | 2 for a MS antenna height > 10 m

= 2.398
3 for a MS antenna height < 3 m ( )

The path loss L, 4p) is the difference between the transmitted and received envelope power, L, @p) = /g, sm (d) —
M@, @pmy- TO compare directly with the Okumura-Hata model in Fig.2.63, we assume an isotropic BS antenna with 0 dB
gain, such that o4 = —6dB. Then by using the same parameters as in Fig.2.63, h, = 70m, k,, = 1.5m, f. = 900 MHz, a
nominal BS transmitter power of 40 dBm (10 watts), and the parameters in Table 2.3 for 1@, (., (d,) and B, the following
path losses are obtained:

85.74 + 20.0log,,{d}  Free Space
84.94 + 43.51og,,{d}  Open Area
98.68 + 38.410og,,{d}  Suburban
107.31 4 36.81log,,{d} Philadelphia
100.02 + 43.11log;o{d} Newark
122.59 4 30.5log,y{d} Tokyo

L, @) = (2.399)

These typical values from Lee’s area-to-area model are plotted in Fig. 2.64.

2.7.3.3 COST231-Hata Model

The COST231-Hata model is based on the proposal by Mogensen et al. [228] to extend the Okumura—Hata model for use
in the 1500-2000 MHz frequency range, where it is known that the Okumura—Hata model underestimates the path loss.
The COST231-Hata model is expressed in terms of the carrier frequency 1500 < f. < 2000 (MHz), BS antenna height
30 < hp < 200 (m), MS antenna height 1 < h, < 10(m), and distance 1 < d < 20 (km). Note again that the parameters
must be used in the model with their specified units. The path loss as predicted by the COST231-Hata model is [80]

L, @) = A + Blogo{d} + C, (2.400)
where

A = 463 + 33.9l0g,{f.} — 13.82log, {1} — a(i)
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Fig. 2.64 Path loss obtained by using Lee’s method; #, = 70 m, h,, = 1.5m, f, = 900 MHz, and an isotropic BS antenna

B = 44.9— 6.551og,{hs}

0 medium city and suburban areas
C= with moderate tree density
3 for metropolitan centers

Although both the Okumura and Hata and the COST231-Hata models are limited to BS antenna heights greater than
30 m, they can be used for lower BS antenna heights provided that the surrounding buildings are well below the BS antennas.
They should not be used to predict path loss in urban canyons. They should not be used for smaller ranges, where path loss
becomes highly dependent upon the local topography. The COST231-Hata model is good down to a path length of 1 km.
2.7.3.4 COST231-Walfish-Ikegami Model
The COST231-Walfish-Ikegami model was developed for microcellular systems and distinguishes between LoS and NLoS
propagation. The model is accurate for carrier frequencies in the range 800 < f, < 2000 (MHz), and path distances in the
range 0.02 < d < 5 (km).

LoS Propagation:
For LoS propagation in a street canyon, the path loss is

L, @B) = 42.6 + 26log,,{d} + 20logyif.} , d > 20m, (2.401)
where the first constant is chosen so that L, is equal to the FSPL at a distance of 20 m. The model parameters are the distance
d (km) and carrier frequency f. (MHz).

NLoS Propagation:

As defined in Fig.2.65, the path loss for non-line-of-sight (NLoS) propagation is expressed in terms of the following
parameters:
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Fig. 2.65 Definition of parameters used in the COST231-Walfish-Ikegami model

d = distance (m)
h, = BS antenna height over street level, 4 < h;, < 50 (m)
h,, = MS antenna height over street level, 1 < h,, < 3 (m)
hroot = nominal roof height of buildings (m)
Ahy, = hp — hreot = height of BS relative to rooftops (m)
Ahy, = hreot — hyy = height of MS relative to rooftops (m)
w = width of streets (m)
b = building separation (m)

¢ = angle of incident wave with respect to street (degrees)

If no data on the structure of the buildings and roads are available, the following default values are recommended, b =
0...50(m), w = b/2(m), ¢ = 90°, and hreof = 3 x number of floors + roof (m), where roof = 3 (m) pitched and
0 (m) flat.
The NLoS path loss is composed of three terms, viz.,

Lo + Lrts + Lmsd P for Lrts + Lmsd = 0

) 2.402
L, , for Lygg + Lipga < 0 ( )

L, @) =

where

L, = free-space loss = 32.4 4 20log,,{d} + 20log,{f.}
Lys = roof-top-to-street diffraction and scatter loss
Lysg = multi-screen diffraction loss.
Note that the expression for free-space loss differs from (2.378) because here the units of d are in kilometers and the units of

f- are in megahertz. The roof-top-to-street diffraction and scatter loss represents the coupling of the wave propagation along
the multi-screen path into the street where the MS is located, and is given by

Ly = —16.9 — 10log,o{w} + 10log,{f.} + 2010g,o{ Ahp} + Lo, (2.403)
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where

—10 + 0.354(¢p) , 0<¢ <35
Loi = {4 2.5+ 0.075(¢p —35°) , 35° < ¢ <55°. (2.404)
4.0—0.114(¢p —55°) , 55° < ¢ <90°

is a street orientation loss.
The multi-screen diffraction loss is

Linsa = Losh + ka + kalogoid} + kflogoifc} — 9log,o1b}, (2.405)
where

—18log o{1 + Ahp} , hy > hreot

2.406
0 iy < hoor (2.406)

Lysh =

is the shadowing gain (negative loss) for cases when the BS antenna is above the rooftops. The parameters &, and k; depend
on the path length, d, and base station elevation with respect to the rooftops, Ah,. The term k, accounts for the increase in
path loss when the BS antennas are situated below the roof tops of adjacent buildings, and is given by

54, hy, > hroot
ke = 4 54—0.8Ah, , d > 0.5km and &y, < hgeof - (2.407)
54 — 08Ahbd/05 , d <0.5km and hy, < hgeot

The terms kg and kf control the dependency of the multi-screen diffraction loss on the distance and frequency, respectively,
and are given by

18 R hb > hRoof
kq = 2.408
‘ % 18 = 15Ahy /oot » 1y < Iiroor (2409
0.7(f./925 — 1) , medium city and suburban
ke = —4 . 2.409
/ + % 1.5(f,/925 — 1) , metropolitan area ( )

The COST231-Walfish—-Tkegami model works best for /;, > hroot. Large prediction errors can be expected for /i, ~ hroof-
The model is poor for i, << hgreot because the terms in (2.407) do not consider wave guiding in street canyons and diffraction
at street corners.

2.7.3.5 Street Microcells

For ranges less than 500 m and antenna heights less than 20 m, some empirical measurements have shown that the received
signal strength for LoS propagation along city streets can be described by the two-slope model [149, 160, 173, 267, 338, 351]

kS$2,;

0t T (2.410)

MQI7 =

where £2; is the transmitted power, & is a constant of proportionality, and d (m) is the distance. For small path length distances,
free space propagation will prevail so that @ = 2. The parameter g is called the break-point and ranges from 150 to 300 m
[149, 160, 173, 351]. At larger distances, an inverse-fourth to -eighth power law is experienced so that b ranges from 2 to
6 [160]. The model parameters that were obtained by Harley are listed in Table 2.4. Xia [358] has demonstrated that the
break-point occurs where the Fresnel zone between the transmit and receive antennas just touches the ground assuming a flat
surface. This distance is

1 2 Ac ? Ac !
§ = (Z7 =477 =2(22 + A2 (3) + (—) : (2411)
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Table 2.4 Two-slope path loss
parameters obtained by Harley,

Base antenna

height (m) a b Break-point g (m)
from [160]

5 2.30 | —0.28 | 148.6

9 1.48 0.54 |151.8

15 0.40 2.10 | 1439

19 —0.96 472 | 158.3
Fig. 2.66 The corner effectin a base
street microcell environment station

e
250 m\/ Building

° base

| station
, 250 m ,

where ¥ = h, + h, and A = hj, — h,,. For high frequencies this distance can be approximated as g = 4h,h,,/A., which
is the same distance as the last local maxima in the flat reflecting surface model in Sect. 2.7.2. Notice that the break-point is
dependent on frequency, with the break-point at 1.9 GHz being about twice that for 900 MHz.

Street microcells may also exhibit NLoS propagation when a MS rounds a street corner as shown in Fig.2.66. In this
case, the average received signal strength can drop by as much as 25-30 dB over distances as small as 10 m for low antenna
heights in an area with multi-story buildings [61, 210, 233, 286, 324], and by 25-30 dB over distances of 45-50 m for low
antenna heights in a region with only one- or two-story buildings [286]. This phenomenon is known as the corner effect.

Grimlund and Gudmundson [149] have proposed an empirical street corner path loss model. Their model assumes LoS
propagation until the MS reaches a street corner. The NLoS propagation after rounding a street corner is modeled by assuming
LoS propagation from a virtual transmitter that is located at the street corner having a transmit power equal to the received
power at the street corner from the serving BS. That is, the received is given by

k$2
JR L] S— d<d
a b — C
ne, = "G | Jd. (2.412)
dé(1+dc/g)P  (d—dc)*(1+(d—dc)/g)" ¢

where d. (m) is the distance between the serving BS and the corner. For the scenario depicted in Fig.2.66, the received
signal strength with this model is shown in Fig. 2.67. The heavy curves show the average received signal strength from the
two BSs as the MS traverses the dashed path shown in Fig.2.66. These curves were obtained by using a = 2, b = 2,
g = 150m, and d. = 250 m in (2.412), and assuming that uo, = 1dBm at d = 1 m. The dotted curves superimposed on
the heavy lines in Fig. 2.67 show the received signal strength with the combined effects of path loss, log-normal shadowing,
and multipath-fading. The latter two were obtained by using the simulators described in Sects. 2.6.1 and 2.5.2.2.

2.7.3.6 3GPP 3-D Path Loss Models

The 3GPP path loss models as described in [1] are valid from 2 to 6 GHz for different BS and MS antenna heights. The
distance definitions are defined in Fig. 2.68 for outdoor scenarios and Fig. 2.69 for outdoor—indoor scenarios. The 3GPP path
loss models are categorized into urban macrocell (UMa) and urban microcell (UMi) cases, corresponding to BS antenna
heights of 25 m or less and 25 m or more, respectively. The UMa and UMi cases are further categorized into LoS, NLoS, and
outdoor-to-indoor scenarios.
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Fig. 2.67 Received signal 50 . . . .
strength for the street microcell
environment in Fig. 2.66. Solid
lines show the area mean signal
strength, while the dashed lines
account for shadowing and fading
as well. For this latter case,

oo = 6dB and

¢Qp (@Bm)$2p (dBm) (d) = 0-10522 at

d = 30 m. For each BS, the
received signal strength is shown
when the MS is connected to that
particular BS and the MS moves
along the route in Fig. 2.66
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Fig. 2.68 Definition of d>p, and d3p for outdoor mobile stations, from [1]
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Fig. 2.69 Definition of dapoyt, @2pin> d3pour and dspin for indoor mobile stations, from [1]

LoS Probability

The various 3GPP path loss models make use of the probability of LoS condition. For microcells and outdoor MSs, the
probability of LoS is [1]

Pros = min(18/dap, 1)(1 — e™40/3¢) 4 g=dn/36 (2.413)

For microcells and indoor MSs, the above formula is used with d,p replaced by dapoy. For macrocells and outdoor MSs, the
probability of LoS is [1]

Pros = (min(18/dap, 1)(1 — e™0/83) 4 e740/83) (1 + C(dap, hyn)) (2.414)
where

, h, <13m

Cldop ) =) 1
() (%)lsg(a’m) , 13m<h, <23m

(2.415)
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and

(1.25e%)d3,e®/1° | dyp, > 18 m

2.416
0 , otherwise ( )

g(dop) =

For macrocells and indoor MSs, the above formulas are used with d,p replaced by dopoy. For frequencies above 6 GHz,
including mm-wave frequencies, the study in [158] recommends to use the above 3GPP LoS models.

Using the above LoS probability models, the 3GPP 3-D path loss models are defined below for various topographic
scenarios, as described in [1].

3D-UMa LoS

For macrocells with LoS conditions

LuMalLos (dB) = 22.0 loglo(ng) + 28.0 4+ 20 IOgIO(fC) , 10m < dyp < dpp (2.417)

LumaLos @) = 4010g,(d3p) + 28.0 + 201og,(f:) — 9logyq (d5p + (hy — h)?) . dpp < dap < 5000m
hy =25m; 1.5m < h, <22.5m (2.418)
The break-point distance is given by dgp = 4hyhyf/c corresponding to the last local maxima in the flat earth model (2.388).
In the 3D UMa scenario the effective antenna heights A, and h,, are computed as follows: h, = hb — hg, hy, h — hg,
where /1, and h,, are the actual antenna heights, and the effective environment height /g depends on the link between a BS
and a MS. For LoS links, g = 1 m with probability 1/(1 + C(dap, hy)), where the function C(dap, h,,) is defined in (2.415).

Otherwise, hg is chosen from a discrete uniform distribution on the set {12, 15, ..., (h, — 1.5)}.
The shadow standard deviation is o, = 4 dB.

3D-UMa NLoS

For macrocells with NLoS conditions

LymanLos (@B) = max {LUMaNLos (@B)s LuMaLos (dB)}» (2.419)
where
Luymantos @) = 161.04 —7.11og;o(W) + 7.510g¢ (euila) (2.420)
— (24.37 = 3.7(hvwita/ hp)*) log, o (hp)
+(43.42 — 3.11log o (hy)) (log,o(d3p) — 3)
+2010g,0(£) — (3.2(1ogy(17.625))> — 4.97) — 0.6(h,, — 1.5)
and

10m < dyp < 5000 m

hpuila = average building height

W = street width

hy =25m, 1.5m < h,, <22.5m, W =20m, hpyjg = 20m
Applicable ranges:

S5m < Mg < 50m

S5Sm<W<50m
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10m < Ay < 150m
1.5m<h, <22.5m

The shadow standard deviation is 0, = 6dB.

3D-UMa O-to-1
For macrocells with outdoor-to-indoor conditions

LuyMa0—to—1 (@B) = L (@B) + Liw (aB) + Lin (B) (2.421)
For a hexagonal cell layout:

Ly @) = Luma @B)(d3p—out + d3p—in)
Liw @) = 20 (loss through wall)

Lin dB) = O.SdzD_in (inside ]OSS)
where

10m < dap—out + dap—in < 1000 m

Om < dZD—in <25m

hy =25m,h,, =3(ng—1)+ 15, ng=1,2,3,4,56,7,8

drp—in 1s assumed uniformly distributed between 0 and 25.
The shadow standard deviation is o, = 7 dB.

The building penetration loss (BPL) or “loss through wall” in the 3GPP 3D-UMa O-to-I model is 20 dB. However, this
will vary greatly depending on the building. Moreover, the building penetration loss increases with frequency. An empirical
BPL model was suggested in [158] as

BPLgs) = 10log,, (A + Bf?), (2.422)

where f, is the frequency in GHz, A = 5 and B = 0.03 for low loss buildings and A = 10 and B = 5 for high loss buildings.

3D-UMi LoS

The microcell LoS path loss is the same as the macrocell LoS path loss Lumaros (aB), €xcept that iz = 1 m with probability
one and the shadow standard deviation is 0, = 3dB.

3D-UMi NLoS
For a hexagonal cell layout

LumiNLos @B) = Max {LumiNLos (dB): LUMiLoS (dB)} » (2.423)
where

LumiNLos @) = 36.7 log,o(dsp) + 22.7 + 26log,,(fc) — 0.3(hy — 1.5) (2.424)
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10m < dZD < 2000 m
hy = 10m
1.5m <h, <22.5m

The shadow standard deviation is 0, = 4 dB.

3D-UMi O-to-1

The microcell outdoor-to-indoor path loss is the same as the macrocell outdoor-to-indoor path loss Lymao—to—1 (dB), €XCEPt
that &, = 10m instead of 4, = 25 m. The shadow standard deviation remains at oo, = 7 dB.

2.7.3.7 mm-Wave Path Loss Models

Next generation or 5G wireless systems will use frequencies from 600 MHz up to 100 GHz. Existing path loss models were
developed for frequencies up to 6 GHz. For frequencies above 6 GHz, new path loss models are required for both LoS and
NLoS environments.

Several models have been proposed for mm-wave path loss including the close-in (CI) path loss with a free-space reference
distance, the close-in path loss model with a frequency dependent path loss exponent (CIF), and the Alpha-Beta-Gamma
(ABG) path loss model, as described in [158].

The CI path loss model is defined by

d
Ler @B) = Lrs @By (fe, 1 m) + 108logy, (m) (2.425)

where Lgs 4g) (fz, 1 m) represents the FSPL at a distance of 1 m, and f; is the frequency in Hz. From (2.378), the FSPL at 1 m
at frequency f is given by

47 \?
Les (@) (fe, 1 m) = 1010g]0§( c“) } (2.426)

The CI path loss model requires only the path loss exponent 8, and ties the path loss to the FSPL at a distance of 1 m and
frequency f,.

The CIF model is an extension of the CI LoS path loss model that captures the frequency dependency of the path loss
across a range of operating frequencies. This is particularly important for wideband mm-wave systems, where the operating
bandwidth may be tens of Gigahertz.

o

c Jo d
Lcir @B) = Lrs @) (fe, 1 m) 4+ 108 (1 +b ( 7 f )) log,, (m) (2.427)

where f is again the path loss exponent, while b is an optimization parameter that captures the frequency dependency of the
path loss that balances at centroid frequency f,. The path loss increases with frequency when b is a positive value. When
b = 0orf, = f,, the CIF path loss model reduces to the CI path loss model. The centroid frequency is determined according
to a weighted average of empirical data as

_ > ket fiVi
Y ket Ne

where N is the number of path loss measurements at frequency f;.
The ABG path loss model is similar to Lee’s Area-to-Area path loss model in Sect. 2.7.3.2. The ABG path loss is given by

Jo (2.428)

LagG @B) = ®(B) + 10Blog;, (d) + 10ylog, () (2.429)
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Table 2.5 Parameters for CI and ABG mm-wave path loss models, where SC stands for street canyon and OS stands for open square, from [158]

Scenario CI model parameters ABG model parameters

UMa-LoS B =2.00,0, =4.1dB N/A

UMa-NLoS B =3.00,0, = 6.8dB a=19.20,8 =340,y =2.30,0p = 6.5dB

UMi-SC-LoS B =1098,00 =3.1dB N/A

UMi-SC-NLoS B =3.19,00 =8.2dB a=21.02,8=348,y =2.34,0p = 7.8dB

UMi-OS-LoS B =1850,=42dB N/A

UMI-OS-NLos B =289,0, =7.1dB a=3.66,0=4.14,y =2.43,0, =7.0dB

Table 2.6 Path loss exp(‘)nc.nts Building Frequency (MHz) | |00 (dB)

and shadow standard deviations -

for several different types of Retail stores ol4 22 | 87

buildings, from [18] Grocery stores 914 1.8 | 5.2
Office, hard partition | 1500 3.0 7.0
Office, soft partition 900 2.4 9.6
Office, soft partition | 1900 2.6 |14.1

where o (gp) is a floating offset value in dB units, and y captures the frequency dependency of the model.

The usage of each path loss model will depend on the particular scenario. For outdoor mm-wave systems, two 3GPP
models have been proposed [158]. The first applies to BS antenna heights of 25 m or less, and is called the urban microcell
(UMi) model. The second applies to BS antenna heights of 25 m or more, and is called the urban macrocell (UMa) model. In
each case, there are LoS and NLoS scenarios. Table 2.5 shows the parameters of the CI and ABG mm-wave path loss models
for different environments.

2.7.3.8 Path Loss in Indoor Microcells

The path loss and shadowing characteristics for indoor microcells vary greatly from one building to the next. Typical path
loss exponents and shadow standard deviations are provided in Table 2.6 for several different types of buildings.

For multistory buildings, the signal attenuation between floors is important. Measurements have shown that the greatest
floor loss occurs when the transmitter and receiver are separated by a single floor. Typically, the floor loss is 15-20dB for
one floor and an additional 6-10dB per floor up to a separation of 4 floors. For 5 or more floors of separation, the overall
floor loss will increase only a few decibels for each additional floor. This effect is thought to be caused by signals diffracting
up the sides of the building and signals scattering off the neighboring buildings. Also important for the deployment of indoor
wireless systems is the building penetration loss. This loss depends on the frequency and height of the building. Turkmani
et al. [323] have shown that the building penetration losses decrease with increasing frequency, in particular they are 16.4,
11.6, and 7.6 dB at 441, 896.5, and 1400 MHz, respectively. In general, the building penetration loss for signals propagating
into a building tends to decrease with height, the reason being that a LoS path is more likely to exist at increased height.
The building penetration loss decreases by about 2 dB per floor from ground level up to about 9-15 floors and then increases
again [339]. Windows also have a significant effect on penetration loss. Plate glass provides an attenuation of about 6 dB,
while lead lined glass provides an attenuation anywhere from 3 to 30 dB.

Appendix 2A: COST 207 Channel Models

The COST 207 study has specified typical realizations for the power-delay profile in the following environments; Typical
Urban (TU), Bad Urban (BA), Reduced TU, Reduced BU, Rural Area (RA), and Hilly Terrain (HT) [79]. The models below
are identical to the COST 207 models, except that fractional powers have been normalized so as to sum to unity, i.e., the
envelope power is normalized to unity.
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Table 2.7 COST 207 Typical Urban (TU) (o; = 1.0 ps) and Bad Urban (BU) (0, = 2.5 ps) power-delay profiles, from [79]

Typical Urban (TU) Bad Urban (BU)

Delay s Fractional power Doppler category Delay ps Fractional power Doppler category
0.0 0.092 CLASS 0.0 0.033 CLASS
0.1 0.115 CLASS 0.1 0.089 CLASS
0.3 0.231 CLASS 0.3 0.141 CLASS
0.5 0.127 CLASS 0.7 0.194 GAUS1
0.8 0.115 GAUSI1 1.6 0.114 GAUSI1
1.1 0.074 GAUSI1 22 0.052 GAUS2
1.3 0.046 GAUSI 3.1 0.035 GAUS2
1.7 0.074 GAUSI1 5.0 0.140 GAUS2
2.3 0.051 GAUS2 6.0 0.136 GAUS2
3.1 0.032 GAUS2 72 0.041 GAUS2
3.2 0.018 GAUS2 8.1 0.019 GAUS2
5.0 0.025 GAUS2 10.0 0.006 GAUS2

Table 2.8 COST 207 Reduced Typical Urban (TU) (0, = 1.0 us) and Reduced Bad Urban (BU) (o, = 2.5 us) power-delay profiles, from [79]

Typical Urban (TU) Bad Urban (BU)

Delay ps Fractional power Doppler category Delay s Fractional power Doppler category
0.0 0.189 CLASS 0.0 0.164 CLASS

0.2 0.379 CLASS 0.3 0.293 CLASS

0.5 0.239 CLASS 1.0 0.147 GAUSI1

1.6 0.095 GAUSI1 1.6 0.094 GAUSI1

23 0.061 GAUS2 5.0 0.185 GAUS2

5.0 0.037 GAUS2 6.6 0.117 GAUS2

Table 2.9 CQST 207 Typical Delay | Fractional | Doppler

Rural (non-hilly) Area (RA) s power category

power-delay profile

(o; = 0.1 ps), from [79] 0.0 0.602 RICE
0.1 0.241 CLASS
0.2 0.096 CLASS
0.3 0.036 CLASS
0.4 0.018 CLASS
0.5 0.006 CLASS

Table 2.10 COST 207 Typical Delay | Fractional | Doppler
Hilly Terrain (HT del Y ol
illy Terrain (HT) power-delay s power category
profile (o, = 5.0 ws), from [79]
0.0 0.026 CLASS
0.1 0.042 CLASS
0.3 0.066 CLASS
0.5 0.105 CLASS
0.7 0.263 GAUSI
1.0 0.263 GAUS1
1.3 0.105 GAUS1
15.0 0.042 GAUS2
152 ]0.034 GAUS2
15.7 10.026 GAUS2
17.2  0.016 GAUS2
20.0 |0.011 GAUS2
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Table 2.11 COST 207 Reduced

° . Delay | Fractional | Doppler
Hilly Terrain (HT) power-delay

s power category
profile (o; = 5.0 ws), from [79]
0.0 0.413 CLASS
0.1 0.293 CLASS
0.3 0.145 CLASS
0.5 0.074 CLASS
15.0 0.066 GAUS2
17.2 0.008 GAUS2

Appendix 2B: COST 259 Channel Models

The 3GPP standards group has defined three typical realizations for the COST 259 models; Typical Urban (TUx), Rural Area
(RAX), and Hilly Terrain (HTx), where x is the MS speed in km/h, [113]. Default speeds are 3, 50, and 120 km/h for the TUx
model, 120 and 250 km/h for the RAx model, and 120 km/h for the HTx model.

Table 2.12 COST 259 Typical
Urban (TUx) channel model,
from [113]

Delay | Fractional | Doppler
us power category

0.000 |0.26915 CLASS
0.217 |0.17378 CLASS
0.512 |0.09772 CLASS
0.514 |0.09550 CLASS
0.517 |0.09550 CLASS
0.674 |0.07079 CLASS
0.882 |0.04571 CLASS
1.230 |0.02344 CLASS
1.287 |0.02042 CLASS
1.311 |0.01950 CLASS
1.349 10.01820 CLASS
1.533 10.01259 CLASS
1.535 | 0.01259 CLASS
1.622 | 0.01047 CLASS
1.818 |0.00708 CLASS
1.836 | 0.00692 CLASS
1.884 |0.00617 CLASS
1.943 | 0.00550 CLASS
2.048 |0.00447 CLASS
2.140 |0.00372 CLASS

Table 2.13 COST 259 Rural
Area (RAx) channel model, from
[113]

Delay | Fractional | Doppler
us power category
0.000 |0.30200 Direct path, fy = 0.7f
0.042 |0.22909 CLASS
0.101 |0.14454 CLASS
0.129 |0.11749 CLASS
0.149 | 0.10000 CLASS
0.245 |0.04898 CLASS
0.312 |0.02951 CLASS
0.410 |0.01413 CLASS
0.469 |0.00912 CLASS
0.528 |0.00575 CLASS
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Table 2.14 COST 259 Hilly
Terrain (HTx) channel model,
from [113]

Delay | Fractional | Doppler
ws power category
0.000 | 0.43652 CLASS
0.356 | 0.12882 CLASS
0.441 | 0.09550 CLASS
0.528 | 0.07079 CLASS
0.546 | 0.06607 CLASS
0.609 | 0.05370 CLASS
0.625 0.05012 CLASS
0.842 1 0.02399 CLASS
0916 | 0.01862 CLASS
0.941 | 0.01698 CLASS
15.000 |0.01738 CLASS
16.172 | 0.00537 CLASS
16.492 | 0.00389 CLASS
16.876 | 0.00263 CLASS
16.882 | 0.00263 CLASS
16.978 |0.00240 CLASS
17.615 | 0.00126 CLASS
17.827 | 0.00102 CLASS
17.849 | 0.00100 CLASS
18.016 | 0.00085 CLASS

Appendix 2C: ITU Channel Models

ITU models have been developed indoor office, outdoor to indoor and pedestrian, and vehicular-high antenna [276]. The
models below are identical to the ITU models, except that fractional powers have been normalized so as to sum to unity, i.e.,
the envelope power is normalized to unity.

Table 2.15 ITU indoor office environment power-delay profiles, from [276]

Channel A Channel B

Delay Fractional Doppler Delay Fractional Doppler
ns power category ns power category
0 0.61722 FLAT 0 0.57833 FLAT
50 0.30934 FLAT 100 0.25245 FLAT
110 0.06172 FLAT 200 0.11020 FLAT
170 0.00978 FLAT 300 0.04811 FLAT
290 0.00155 FLAT 500 0.00917 FLAT
310 0.00039 FLAT 700 0.00175 FLAT

Table 2.16 ITU outdoor to indoor and pedestrian power-delay profiles, from [276]

Channel A Channel B

Delay Fractional Doppler Delay Fractional Doppler

ns power category ns power category

0 0.88935 CLASSIC 0 0.40569 CLASSIC

110 0.09529 CLASSIC 200 0.32976 CLASSIC

190 0.01069 CLASSIC 800 0.13128 CLASSIC

410 0.00467 CLASSIC 1200 0.06430 CLASSIC
2300 0.06733 CLASSIC

3700 0.00165 CLASSIC
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Table 2.17 ITU vehicular power-delay profiles, from [276]

Channel A Channel B

Delay Fractional Doppler Delay Fractional Doppler
ns power category ns power category

0 0.48500 CLASSIC 0 0.34020 CLASSIC
310 0.38525 CLASSIC 300 0.60498 CLASSIC
710 0.06106 CLASSIC 8900 0.03175 CLASSIC
1090 0.04850 CLASSIC 12,900 0.00605 CLASSIC
1730 0.01534 CLASSIC 17,100 0.00183 CLASSIC
2510 0.00485 CLASSIC 20,000 0.01520 CLASSIC

Appendix 2D: Derivation of Eq. (2.358)

This Appendix derives an expression for the second moment of a Ricean random variable in terms of its first moment. A
Ricean random variable X has probability density function, cf., (2.57)

() = ~ il B E0 SR 2D.1)
X) = —¢€X — —_— X .
px bo P " 2me |\ By
and moments [272]
E[X"] = (2bo)? 1 ( 2+ )/2) o L (2D.2)
= expl—— n — 1, )
0% EXP) T, T 2p,

where I'( -) is the Gamma function, and {F;(a, b; x) is the confluent hypergeometric function. The first moment of X is
EX] =, = (2bo)%e"“/TE 1F1(3/2, 1;K), (2D.3)

where K = 52/2b is the Rice factor. The second moment of X is

E[X’] = 2, = 2boe™ |F1(2, I;K)
= 2by(K + 1). (2D.4)

Substituting 2by from (2D.3) into (2D.4) gives

462 (K + 1
2, = % 2?2 = C(K) 22 (2D.5)
7 (32, 1K)

Note that C(0) = 4/7, C(oo) = 1,and 4/7 < C(K) < 1 for 0 < K < o¢.

Appendix 2E: Derivation of Eq. (2.374)

From (2.373), the composite distribution for the squared-envelope, af, is

o pym xm1 { mX} 1 (10log o {w} — 12, )’
2(x) = —) ——expi—— exp s — dw, (2E.1)
Poz2(x) /0 (W) o) PV P— P 202




Appendix 2E: Derivation of Eq. (2.374) 133

where £ = In(10)/10. The mean of the approximate log-normal distribution is

[(@Bm) = E[10log o{a2}]

00 oo m—1 1 10logg{w} — 2
= / / 10log o{x} (ﬂ)m r exp {—@} exp —( g0t} 5 1y an) dwdx
o Jo w/  T'(m) w ) 2nkoow 205

10m™ ® 1 10logo{w} — 2 00
_ m / _exp _( 210w} ~ Mg, (dB)) / log ot} w1 exp {_@} dxdw. (2E.2)
2rgooT(m) Jo wint 205 0 w

Assuming that m is an integer, the inner integral becomes [147, 4.352.2]

/0 ™ Jogy xhe™ exp {—%} dr = DO ) — InGm/w). (2E.3)

m™1n 10

Then by using the change of variables x = 10log,,{w},

fasm) = &' (Y (m) —In(m)) + 1a, - (2E.4)
where ¥ ( - ) is the Euler psi function, and
m—1 1
Y(m)=-C+ ) - (2E.5)

k=1 k

and C ~ 0.5772 is Euler’s constant. Likewise, the second moment of the approximate log-normal distribution is

00 00 m—1 2
IO 2 (MM X _mx 1 _(IOIOglo{W}_I’LQp(dB))
E[(10log,(e))’] = fo L (101010t ()" g P 1=} Tz 0 { 207 dwdx
. m" o 1 (1010g10{W} - N‘-Qp (dB))2 o 2 m—1 mx
= \/ﬁél’(m)/o o exp{— 202 /0 (10log;o{x})" X" exp {—W}dxdw.
(2E.6)
Assuming again that m is an integer, the inner integral is [147, 4.358.2]
o0 —DHlw"
[ 010007 v~ exp {20} ax = P (g 0n) — ) + £2.0)
leading to
E[(101ogo{a2)?] = & (¥ (m) = In(m)” i, + E@.m)) + 28 (Y (m) = In(m)) g, oy + 0% + iy,
(2E.7)
where
=1
¢@2,m) = ; e (2E.8)

is Reimann’s zeta function. Finally, the variance of the approximate log-normal distribution is

0’ = E[(lOlogm{aCz})z] - E2[1010gm{a3}]
=£702.m) + 05, (2E.9)
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Problems
2.1. Suppose that r(¢) is a wide-sense stationary (WSS) bandpass random process, such that
r(t) = gi(t) cos(2xf.t) — go(t) sin(2xf.1)
(a) Show that the auto- and cross-correlations of g;(¢) and g¢ () must satisfy the following conditions:

¢8181(7:) = ¢8Q8Q(7")
¢g1gQ (r) = _¢gQg1 ()

(b) Under the conditions in part a) show that the autocorrelation of r(¢) is

E[r())r(t + )] = g, (T) cOSQ7feT) — Py, (7) SIN27fe T).

2.2. What is the maximum Doppler shift for the GSM mobile cellular system on the “downlink” from the base station to
the mobile unit (935-960 MHz RF band)? What is it on the “uplink” direction, or mobile to base (890-915 MHz RF band)?
Assume a high-speed train traveling at a speed of v = 250 km/h.

2.3. This problem considers two ray channels exhibiting either frequency selective or time selective behavior.

(a) Consider the transmission of a bandpass signal having complex envelope 5(7) on a channel such that the received complex
envelope is

(1) = as(t) + Bs(t — 1y),

where o and § are real valued.

i) Find the channel impulse response g(z, 7).
ii) Find the channel magnitude response |G(z, f)|.
iii) Find the channel phase response ZG(t, f).

(b) Consider the transmission of a bandpass signal having complex envelope 5(¢) on a channel such that the received complex
envelope is

H(1) = a3(0) + B3 (1),

where « and B are real valued.

i) Find the channel impulse response g(z, 7).
ii) Find the channel magnitude response |G(z, f)|.
iii) Find the channel phase response ZG(t,f).

2.4. A wireless channel is characterized by the time-variant impulse response
T
gt 1) = (1 —?)cos(ﬂt-l-d)o), 0<t<T,

where T = 0.05ms, 2 = 107, and ¢y € (—m, +] is a constant.

(a) Determine the channel time-variant transfer function.
(b) Given an input signal having the complex envelope

1, 0<t<T;
0, otherwise

§(r) = {
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Fig. 2.70 Scenario for
Problem 2.7 parts (a) and (b)

(@)

(b)

determine the complex envelope of the signal at the output of the channel, 7(f). Make sure to consider cases when
0<Ty;, <Tand 0 < T < Ty, separately.

(c) Consider digital modulation scheme with a modulated symbol interval 7. If the channel fading is frequency selective,
specify the relation between T and 7.

2.5. Suppose that an omnidirectional antenna is used and the azimuth angle-of-arrival distribution, p(6), is given by (2.52).
Find the Doppler power spectrum Sg, (f).

2.6. A very useful model for a non-isotropic scattering environment assumes that the azimuth angle-of-arrival distribution
is described by the von Mises pdf in (2.51).

(a) Assuming an isotropic receiver antenna, calculate the received Doppler power spectrum, S, (f).
(b) Under what conditions are the quadrature components g;(¢) and go(f) uncorrelated?

2.7. Determine and plot the (normalized) power spectral densities Sg,(f) for the following cases. Assume 2-D isotropic
scattering;

a vertical loop antenna 1n the plane perpendicular to vehicle motion, = s sIn .
(a) A vertical loop in the plane perpendicul hicl ion, G(6) = 3 sin’(0

(b) A vertical loop antenna in the plane of vehicle motion, G(6) = % cos?(6).
(c) A directional antenna of beamwidth § directed perpendicular to vehicle motion with (see Fig. 2.70a)

Gy , |%—9| < B/2
0, otherwise

G(6) = {

(d) A directional antenna of beamwidth 8 directed along vehicle motion with (see Fig. 2.70b)

Gy, |0 < B/2
0, otherwise

G() = %

2.8. Consider a narrow-band channel with a 700 MHz carrier frequency. The complex channel gain at a mobile station is
g(t) = gi(t) +jgo(t), such that

;
rect (T) . If| < 100Hz

0, elsewhere

Sglgl (f) = {

Sgng (f) =0.
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(a) What is the speed of the mobile station?

(b) What is the cross-correlation function ¢, (7) of the I and Q components of the faded envelope?

(c) If antenna diversity is deployed at the mobile station, what are the possible spatial separations between the antenna
elements such that the corresponding faded envelopes will be uncorrelated?

(d) Write down an expression for ¢, (7).

2.9. Consider a Ricean fading channel with Rice factor K and average envelope power £2,,. Assume that the means m;(f) and
mg(t) of the in-phase and quadrature components are given by (2.59) and (2.60), respectively. Derive an integral expression
for the probability density function of the envelope phase in terms of K and £2,.

2.10. Consider a 2-D isotropic scattering channel. Show that the psd of the received envelope a(r) = |g(¢)| is given by (2.77).
2.11. Suppose that the Doppler spectrum is given by
f+h —/
S = Arect + Arect
2o (f) rec ( W rec W

d d

where

rect(%) - { L, fl <= Wa/2

f 0 , elsewhere

and A, fi, and W, are constants.

(a) Sketch the Doppler spectrum.
(b) Find the envelope correlation function

Pee(T) = gy, (7) +j¢g1gQ (v)

(¢) For which values of 7 are g(¢) and g(¢ + t) uncorrelated?

2.12. Suppose that the Doppler power spectrum is given by the following function:

See(f) = Acos (;;—];) rect (2;71)

(a) Find the corresponding envelope autocorrelation function ¢, (7).
(b) For what values of t are g;() and go(t 4 7) uncorrelated?
(c) Given that

fm
Q) = 55 (0) = / SeeF)df

—Jm

find the value of A in terms of £2,,.

2.13. Consider the non-isotropic scattering environment shown in Fig. 2.7. Show that the continuous portion of the psd of
the received envelope () = |g(?)] is given by (2.79).

2.14. Consider a wide-sense stationary zero-mean complex Gaussian random process g(¢) having the autocorrelation
function g (T) = Pgg,(T) + jg,, (). Show that the autocorrelation and autocovariance functions of the squared-envelope
a?(1) = |g(?)|? are given by (2.82) and (2.83), respectively.

2.15. Consider a wide-sense stationary non-zero-mean complex Gaussian random process g(¢) = g;(¢) + jgo(t), where

g1(t) = g1(t) + my()
go(t) = go(t) + mo(t)
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Fig. 2.71 Mobile with
directional antenna for
Problem 2.19

beam of antenna

mobile

and my; (¢) and mg(t) are the means of g;(¢) and gy (¢), respectively. Show that the autocorrelation and autocovariance functions
of the squared-envelope a?(f) = |g(¢)|? are given by (2.87) and (2.90), respectively.

2.16. Establish the equivalence between (2.102) and (2.103).
2.17. A flat Rayleigh fading signal at 6 GHz is received by a vehicle traveling at 80 km/hr.

(a) Determine the number of positive-slope zero crossings of the rms envelope level that occur over a 5 s interval.
(b) Determine the average duration of a fade below the rms envelope level.
(c) Determine the average duration of a fade at a level of 20 dB below the rms envelope level.

2.18. Consider a situation where the received envelope is Rayleigh faded (K = 0), but the Doppler power spectrum S, )
is not symmetrical about f = 0, i.e., a form of non-isotropic scattering. Show that the envelope level crossing rate is given by

b, b% p _2
Lp= | — 2 ‘=e",
T \b B Jm

R _ R
b=/ " Vb

where

and the b; are defined in (2.102) with f; = 0.

2.19. Consider the situation in Fig.2.71, where the mobile station employs a directional antenna with a beam width of ¢°.
Assume a 2-D isotropic scattering environment.

(a) In receiving a radio transmission at 850 MHz, a Doppler frequency of 20-60 Hz is observed. What is the beam width of
the mobile station antenna, and how fast is the mobile station traveling?

(b) Suppose that the mobile station antenna has a beam width of 13°. What is the level crossing rate with respect to the rms
envelope level, assuming that the mobile station is traveling at a speed of 30 km/h?

2.20. Consider a cellular radio system with fixed base stations and moving mobile stations. The channel is characterized
by flat Rayleigh fading channel with two-dimensional isotropic scattering. The mobile station employs omni-directional
antennas and the system operates at an RF carrier frequency of 900 MHz.

(a) Determine the positive going level crossing rate at the normalized envelope level p = 1, when the maximum Doppler
frequency is f,, = 20 Hz. Compute the velocity of the mobile station.

(b) Now suppose that the mobile station is travelling at a speed of 24 km/h. Calculate the average fade duration (AFD) and
level crossing rate (LCR) at the normalized envelope level p = 0.294.

2.21. A vehicle experiences 2-D isotropic scattering and receives a Rayleigh faded 900 MHz signal while traveling at a
constant velocity for 10s. Assume that the local mean remains constant during travel, and the average duration of fades
10 dB below the rms envelope level is 1 ms.

(a) How far does the vehicle travel during the 10s interval?
(b) How many fades is the envelope expected to undergo that are 10 dB below the rms envelope level during the 10 s interval?

2.22. A vehicle receives a Ricean faded signal where the specular component is at the frequency f, and scatter component
is due to 2-D isotropic scattering.

(a) Compute the average duration of fades that 10 dB below the rms envelope level for K = 0, 7,20, and a maximum
Doppler frequency of f,, = 20 Hz.
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(b) Suppose that data is transmitted using binary modulation at a rate of 1 Mbps, and an envelope level that is 10 dB below
the rms envelope level represents a threshold between “error-free” and “error-prone” conditions. During error-prone
conditions, bits are in error with probability one-half. Assuming that the data is transmitted in 10,000-bit packets, how
many bits errors (on the average) will each transmitted packet contain?

2.23. Show that for wide-sense stationary (WSS) channels

Gu(f.miv, p) = Yu(f,m;v)s(v — p)

ds(r. v, ) = Ys(z, ;)8 — ).
That is, the channel correlation functions ¢y (f, m; v, u) and ¢s(z, n; v, ) have a singular behavior with respect to the
Doppler shift variable. What is the physical interpretation of this property?

2.24. Show that for uncorrelated scattering (US) channels

Pe(t,5:7,m) = Ye(t, 5, 7)8(n — 1)
ds(T. miv, ) = Ys(Tiv, w)8(n — 7).
That is, the channel correlation functions ¢,(t, s; 7, ) and ¢s(z, n; v, u) have a singular behavior with respect to the time
delay variable. What is the physical interpretation of this property?

2.25. Given the channel input signal 5(r) and the channel delay-Doppler spread function S(z, v), show that the channel
output signal is

() = [_ ” /_ - 5(t — 1)S(z, v)e 7 dvdr.

How do you interpret the channel function S(z, v)?

2.26. Suppose that the spaced-time spaced-frequency correlation function of a WSSUS channel has the following form

1 (Af; At) = exp {—b|At|} P Ve

(a) Find the corresponding channel correlation function v, (Af; 7).
(b) Find the corresponding scattering function ¥s(v; 7).
(c) What is the average delay spread, i., and rms delay spread o, ?

2.27. The scattering function for a WSSUS scattering channel is given by

2a

— b —bt .
a? + 2mv)? e u(®)

wS(T’ l)) = Qp

(a) What is the spaced-time spaced-frequency correlation function?
(b) What is the average delay?
(c) What is the rms delay spread?

2.28. The scattering function for a WSSUS channel is given by

Vs(t,v) = l((z)—‘(’)be_b’, 0<|v|<50Hz,0 <7 <00
s(z,v) =

0, elsewhere

(a) What is the speed of the mobile station?
(b) What is the channel correlation function v, (At; 7)?
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(c) If the faded envelope is sampled, g, = g(kTy), what sample spacings T, will yield uncorrelated samples, g;?
(d) What is the envelope level crossing rate, Lg?

2.29. The frequency correlation function of a channel is defined as

A
¢r(4y) = ¢r(4r, A, = 0)
where ¢r(Ay, A,) is the spaced-time, spaced-frequency correlation function. Suppose that

A

P = I,

(a) Find the power-delay profile of the channel ¥, (7).
(b) Find the average delay p, of the channel.

2.30. Consider a linear time-invariant channel consisting of two equal rays

g(t. 1) =8(r) + 8(r — ).

(a) Derive an expression for magnitude response of the channel |T'(f, 7)| and sketch showing all important points.
(b) Repeat for the phase response of the channel ZT(f, t).

2.31. Consider a linear time-invariant channel having the impulse response

g(t,7) =8(7) + 28(r — 11) + 8(7 — 211).

(a) Derive a closed-form expression for magnitude response of the channel |T(f, ¢)| and sketch showing all important points.
(b) Repeat part a) for the phase response of the channel ZT'(f, 7).
(c) What is the mean delay and rms delay spread of the channel.

2.32. Consider a linear time-invariant channel having the impulse response

1
gt.t) =

L
> 8t —(k—1A,)
L k=1

Sl

(a) Find the magnitude response |T(f)| and phase response ZT(f) of the channel, where T (f) is the time-invariant transfer
function of the channel. Simplify your expressions as much as possible. Plot |T(f)| and ZT(f).
(b) What is the mean delay p. and rms delay spread o, of this channel? The following may be useful:

ik _ nin+1)
2
k=1

ikz _nn+1)2n+1)
B 6
k=1

ik3 _ n’(n+1)?
=0 4
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Fig. 2.72 Power-delay profile for Problem 2.35

2.33. The power-delay profile of a WSSUS channel is given by
Yol(r) = T >0.

Assuming that 7 = 10 s, determine

(a) the average delay
(b) the rms delay spread
(c) the coherence bandwidth of the channel.

2.34. The power-delay profile of a WSSUS channel is given by

Ve(r) =

0, otherwise

(a) Find the channel frequency correlation function.
(b) Calculate the mean delay, rms delay spread, and the coherence bandwidth.

0.5[1 4+ cos(2nz/T)], 0 <t <T/2

(c) If T = 0.1 ms, determine whether the channel exhibits frequency-selective fading to a GSM cellular system.

2.35. Consider the power-delay profile shown in Fig. 2.72. Calculate the following:

(a) mean delay
(b) rms delay spread

(c) If the modulated symbol duration is 40 s, is the channel frequency selective? Why?

2.36. The power-delay profile in Fig. 2.73 is observed for a multipath-fading channel in hilly terrain.

(a) Compute the mean delay.
(b) Compute the rms delay spread.
(c) What is the frequency correlation function of the channel?

2.37. Consider a WSSUS channel with scattering function
Us(T,v) = ¥1(z) - Y2 (v)
where

1, 0<7<100ms
0, otherwise

Vi(r) =
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Fig. 2.73 Power-delay profile for Problem 2.36

Pl =/ 0= <fn
, otherwise '

Ya(v) =

Assume f,, = 10 Hz. Find

(a) the power-delay profile.

(b) the Doppler power spectrum.

(c) the mean delay and the rms delay spread.

(d) the maximum Doppler frequency, the mean Doppler frequency, and the rms Doppler frequency.
(e) the coherence bandwidth and the coherence time of the channel.

2.38. Consider the COST-207 typical urban (TU) and bad urban (BU) power-delay profiles shown in Fig.2.51 of the text
with delays and fractional powers given in Table 2.7.

(a) Calculate the average delay, ..

(b) Calculate the rms delay spread, o;.

(c) Calculate the approximate values of W5y and Wo.

(d) If the channel is to be used with a modulation scheme that requires an equalizer whenever the symbol duration 7 < 1007,
determine the maximum symbol rate that can be supported without requiring an equalizer.

2.39. The scattering function s(z, v) for a multipath-fading channel is non-zero for the range of values 0 < 7 < 1 us and
—40 < v < 40 Hz. Furthermore, ¥s(z, v) is uniform in the two variables t and v.

(a) Find numerical values for the following parameters;

1. the average delay, 1., and rms delay spread, o;.
2. the rms Doppler spread, B,

3. the approximate coherence time, 7,

4. the approximate coherence bandwidth, B,

(b) Given the answers in part a), what does it mean when the channel is

1. frequency-nonselective
2. slowly fading
3. frequency-selective

2.40. The scattering function ¥¢(z, v) for a multipath-fading channel is non-zero for the range of values 0 < 7 < 1pus
and —40 < v < 40Hz. Assume that the scattering function is uniform in the two variables r and v with a value equal
A = 0.00125.

(a) What is the average delay and rms delay spread of the channel?
(b) Find the spaced-time spaced-frequency correlation function yr7(Af, At) of the channel.
(c) What is the total envelope power? Express your answer in dBm units.
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(d) If the scattering function describes a conventional fixed-to-mobile cellular land mobile radio channel, and a carrier
frequency of 900 MHz is used with an isotropic receive antenna, how fast is the mobile station moving?

2.41. Suppose that the Doppler spectrum is given by

See(f) = G(A, 0.5f,,,0.1f,)
where

_ 2
G(A7f17f2) = ACXp {_%%
2

(a) Sketch the Doppler spectrum.
(b) Find the envelope correlation function

¢gg(T) = ¢g181 (v) +j¢g1gQ ()

(c) For which values of t are g;(f) and go(f + ) uncorrelated?

2.42. Suppose that a fading simulator is constructed by low-pass filtering white Gaussian noise as shown in Fig.2.35.
Assume that the white Gaussian noise generators that produce g;(f) and go(f) are uncorrelated, and have power density
spectrum £2,,/2 watts/Hz. The low-pass filters that are employed have the transfer function

A

1O = T anpr

(a) What is the Doppler power spectrum S, (f) and autocorrelation function ¢, (7)?
(b) Find A such that the envelope power is equal to §2,,.
(c) What is the joint probability density function of the output g(7) and g(¢ + 7)?

2.43. Suppose that a fading simulator is constructed using low-pass filtered white Gaussian noise as shown in Fig.2.35.
Assume that the white Gaussian noise generators used to produce g;(f) and go(#) are uncorrelated. The low-pass filters that
are employed have the transfer function
1 f
H(f) = —=rect| — | .
o) rec (B)

VB

(a) What is the Doppler power spectrum S, (f)?
(b) For the Sy, (f) in part (a), derive an expression for the envelope level crossing rate.

2.44. Consider Jakes’ method in (2.254) and (2.255).
(a) With the choice that « = 0 and 8, = 7n/(M + 1) show that

< gi(t)go() > =0
<gp)>=M+1)/2M + 1)
<g(t>=M/2M+ 1)

(b) Rederive the time averages in part a) for the choice « = 0 and 8, = wn/M.

2.45. (Computer exercise) You are to write a software fading simulator that uses Jakes’ method and plot typical sample
functions of the faded envelope. By scaling g;(f) and go(t) appropriately, generate a Rayleigh faded envelope having the
mean-squared-envelope §2, = 1. Plot a sample function of your faded envelope assuming a maximum Doppler frequency of
fmT = 0.1, where T is the simulation step size.
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Note that Jakes’ simulator is non-stationary as shown in (2.260). Therefore, you may not necessary get a plot that is
identical to Fig. 2.38. In fact, it would be good if you could observe the non-stationary behavior of the simulator, i.e., the pdf
of the envelope distribution changes with time.

2.46. (Computer exercise) In this problem you are to generate a Ricean faded envelope g(t) = &,(¢) + jgo(¢) by making
appropriate modifications to Jakes’ method such that

&i(t) = my(t) + gi(r)
go(t) = mo(t) + go(1),

where g;(¢) and g¢(?) are defined in (2.254) and (2.255), respectively. Assume that the means m;(¢) and m(t) are generated
according to Aulin’s model in (2.59) and (2.60). For f,,7 = 0.1, £2, = 1 and K = 0,4, 7, and 16, plot the following:

(a) The envelope &(t) = ,/&(1) + gé(z)
(b) The wrapped phase ¢ (1) = Tan™"' (20(#)/2(#)), mod 2.
2.47. (Computer exercise) This problem uses the fading simulator developed in Problem 2.46. The objective is to compute

an estimate of the mean-squared-envelope §2, = E[@*(f)] from samples of g;(kT) and o (kT), where T is the sample spacing
in seconds. The estimate is computed by forming the empirical average

1

@y =5 2 (@1 + &0T)).

N
=1

L

where NT is the window averaging length in seconds. Assuming a constant velocity, the distance the MS moves (in units of
wavelengths) in a time of NT seconds is

d
= Nf,,T.

2|

(a) For K = 0,4,7, and 16, generate 1000 estimates of the of £2, by using non-overlapping averaging windows of size
N = 50,100, 150, 200, 250, 300. Construct a graph that plots, for each K, the sample variance of the £2, estimate on the
ordinate and the window size on the abscissa.

(b) Can you draw any qualitative conclusions from part a)?

Note that estimates of the local mean 2, are used in resource management algorithms such as handoff algorithms.

2.48. Suppose that two complex faded envelopes g;(f) = g;,,(f) + jgp.i(t), i = 1,2 are available, such that
ng = Elg()] =0
@4(0) = JBlg(Ng" (¢ + ©)) = 4,00
where

g() = (g1(1). g2(1)
(20
2= [ 0 Qz]'

A third faded envelope g3(¢) is now generated that is correlated with g;(7) and g, () according to

g() =agi(®) + (1 —a)g(b) . 0<a=<l.
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(a) Compute the values of

1
Pg153(1) = EE[gT(I)gs(l + 7)]
s (1) = SEIgE (08501 + )

1
Peses(T) = EE[8§ Hgs3(t+ 7))

(b) What is the envelope distribution of g3(r)?

2.49. Suppose that the two © = T/4 spaced taps in Example 2.1 do not have equal magnitude. In particular, suppose that
|go(t)|? = |g1(¢)|?/2. Once again, a T-spaced channel model is to be generated such that the two T-spaced taps capture the
maximum possible total energy.

(a) Find the optimal sampler timing instant.
(b) Determine the corresponding matrix A for 8 = 0.35.

2.50. By starting with the Gaussian density for the local mean envelope power in (2.357) derive the log-normal density
in (2.355).

2.51. One simple model for shadow simulation is to model log-normal shadowing as a Gaussian white noise process that is
filtered by a first-order low-pass filter. With this model

2141 @Bm) = {2 @Bm) + (1 — vy,

where §2; Bm) is the mean envelope or mean squared-envelope, expressed in dBm units, that is experienced at spatial index
k, ¢ is a parameter that controls the spatial correlation of the shadows, and vy is a zero-mean Gaussian random variable with

Py (n) = &28(71)

(a) Show that the resulting spatial autocorrelation function of §2 ggm) is

1__§52§\n|.

¢9(dBm)9(dBm) (n) = 1+¢

(b) What is the mean and variance of £2; 4gm) at any spatial index k?

2.52. (computer exercise) The purpose of this problem is to generate variations in the local mean £2, due to shadowing.
The shadows are generated according to the state equation in (2.360).

(a) Suppose that the simulation step size is T = 0.1 s and the mobile station velocity is v = 30 km/h. It is desired to have a
shadow decorrelation of 0.1 at a distance of 30 m. Find ¢.

(b) Using the value of { obtained in part a) and a shadow standard deviation of o, = 8dB, plot a graph of 2, 4g) against
the distance traveled. Scale your plot so the distance traveled goes from 0 to 100 m.

2.53. Plot and compare the path loss (dB) for the free-space and flat specular surface models at 800 MHz versus distance on
a log-scale for distances from 1 m to 40 km. Assume that the antennas are isotropic and have a height of 10 m.

2.54. The measured path loss at a distance of 10 km in the city of Tokyo is 160 dB. The test parameters used in the experiment
were the following:

* base station antenna height 4, = 30 m

* mobile station antenna height /,, = 3m

* carrier frequency f, = 1000 MHz

* isotropic base station and mobile station antennas.

Compare the measured path loss with the predicted path loss from Okumura and Hata’s model and Lee’s area-to-area model.
If any model parameters are undefined, then use the default values.
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2.55. Suppose that the received power from a transmitter at the input to a receiver is 1 mW at a distance of 1 km. Find the
predicted power at the input to the same receiver (in dBm) at distances of 2, 3, and 5 km from the transmitter for the following
path loss models:

(a) Free space.
(b) 2-ray ground reflection.
(c) Model described by

M2, aBm) (d) = M2, (aBm) (d,) — 10 log,((d/d,) (dBm)

where d, = 1 km and 8 = 3.5.
(d) COST231-Hata model (medium city).

In all cases assume that f, = 1800 MHz, h;, = 40 m, h,, = 3m, Gy = Gy = 0dB. Tabulate your results.
2.56. Consider Fig. 2.74 and the following data

* The symbol transmission rate is 24,300 symbols/s with 2 bits/symbol
* The channel bandwidth is 30 kHz
» The propagation environment is characterized by an rms delay spread of 0, = 1 ns

A mobile station is moving from base station A (BSA) to base station B (BSB). Base station C (BSC) is a co-channel base
station with BSA.

Explain how you would construct a computer simulator to model the received signal power at the mobile station from
(BSA) and (BSC), as the mobile station moves from BSA to BSB. Clearly state your assumptions and explain the relationship
between the propagation characteristics in your model.

500m

BSA BSB BSC
[ J [ ]

Streets

Buildings

Fig. 2.74 Base station and street layout for Problem 2.56



Chapter 3
Co-Channel Interference

For cellular radio systems the radio link performance is usually limited by interference rather than noise and, therefore,
the probability of link outage due to co-channel interference (CCI), Oy, is of primary concern. For the remainder of this
chapter, the probability of outage refers to the probability of link outage due to CCI. The definition of the outage probability
depends on the assumptions made about the radio receiver and propagation environment. One extreme occurs with fast
moving mobile stations (MSs), i.e., high Doppler conditions, where the radio receiver can average over the fast envelope
variations by using variety of coding and interleaving techniques. In this case, the transmission quality will be acceptable
provided that the average received carrier-to-interference ratio, A, exceeds a critical receiver threshold Ag. The receiver
threshold Ay, is determined by the performance of the radio link in the presence of envelope fading and CCI. Once Ay, has
been determined, the variations in A due to path loss and shadowing will determine the outage probability. Another extreme
occurs with stationary or very slowly moving MSs, i.e., low Doppler conditions, where the radio receiver cannot average
over the fast envelope variations because the required coding and interleaving depth is too large and will result in excessive
transmission delay. Such delays may be acceptable for non-real-time services, but they are unacceptable for real-time services
such as voice and streaming video. In this case, the transmission quality will be acceptable provided that the instantaneous
received carrier-to-interference ratio, A, exceeds another receiver threshold Ay.! The threshold Ay, is determined by the
performance of the radio link in the presence of CCI under the condition that the link does not experience fading. Once Ay
has been determined, variations in A due to path loss, shadowing, and envelope fading will determine the outage probability.
Sometimes the MSs will move with moderate velocities and the performance will lie somewhere between these two extreme
cases.

The effect of CCI on the radio link performance depends on the ability of the radio receiver to reject CCI. Some of
the more advanced receivers incorporate sophisticated signal processing techniques to reject or cancel the CCI, e.g., single
antenna interference cancelation techniques, or optimum combining with multiple antennas. In this case, the radio receiver
is more tolerant to CCI and the receiver thresholds Ay, and Ay, are generally reduced. This will reduce the outage probability
or, conversely, improve the coverage probability.

Evaluating the outage probability for the log-normally shadowed signals that are typically found in land mobile radio
systems requires the probability distribution of the total interference power that is accumulated from the sum of multiple
log-normally shadowed interferers. Although there is no known exact expression for the probability distribution for the sum
of log-normally random variables, several approximations have been derived by various authors in the literature. All of
these approaches approximate the sum of log-normal random variables by another log-normal random variable. One such
method that matches the first two moments of the approximation was developed by Fenton [124]. Sometimes Wilkinson is
credited with this method, as in [296]. Here, it is called the Fenton—Wilkinson method. Schwartz and Yeh developed another
log-normal approximation that is based on the exact first two moments for the sum of two log-normal random variables
[296]. The Schwartz & Yeh method generally provides a more accurate approximation than the Fenton—Wilkinson method
but it is more difficult to use. Prasad and Arnbak [265] have corrected some errors in the equations found in Schwartz and
Yeh’s original paper, but the equations for the Schwartz & Yeh method in their paper also have errors. Another log-normal
approximation is the cumulants matching approach suggested by Schleher [294]. With this approach, different log-normal
approximations are applied over different ranges of the composite distribution. A good comparison of the methods of Fenton—
Wilkinson, Schwartz & Yeh, Farley, and Schleher has been undertaken by Beaulieu et al. [34].

Note that Ay, and Ay, are not the same.
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The above log-normal approximations have been extensively applied to the calculation of the probability of outage in
cellular systems. For example, the Fenton—Wilkinson method has been applied by Nagata and Akaiwa [237], Cox [84],
Muammar and Gupta [232], and Daikoku and Ohdate [88]. Likewise, the Schwartz & Yeh approach has been applied by Yeh
and Schwartz [365], Prasad and Arnbak [265], and Prasad et al. [269].

Current literature also provides a thorough treatment of the probability of outage when the signals are affected by fading
only, including the work of Yao and Sheikh [362], Muammar [231], and Prasad and Kegel [268]. Section 3.3 shows that
the probability of outage is sensitive to the Rice factor of the desired signal, but it is insensitive to the number of interferers
provided that the total interfering power remains constant. Calculations of the probability of outage for signals with composite
log-normal shadowing and fading have considered the cases of Rayleigh fading by Linnartz [208], Nakagami fading by Ho
and Stiiber [164], and Ricean fading by Austin and Stiiber [27]. Section 3.4 shows that shadowing has a more significant
effect on the probability of outage than fading. Furthermore, the probability of outage is dominated by fading of the desired
signal rather than fading of the interfering signals, e.g., with Nakagami-m fading, the probability of outage is sensitive
to the shape factor m of the desired signal but is insensitive to the shape factor of interfering signals. Finally, all of the
above references assume a channel characterized by frequency non-selective (flat) fading. If the channel exhibits frequency
selective fading, then the same general methodology can be used but the instantaneous carrier-to-interference ratio, A, must
be appropriately defined. The proper definition depends on the type of receiver that is employed, e.g., a maximum likelihood
sequence estimation receiver or decision feedback equalizer.

Most of the literature dealing with the probability of outage assumes that the interfering co-channel signals add non-
coherently. The probability of outage has also been evaluated by Prasad and Kegel [266, 268] for the case of coherent
addition of Rayleigh faded co-channel interferers and a Ricean faded desired signal. The coherent co-channel interferers are
assumed to arrive at the receiver antenna with the same carrier phase. However, as discussed by Prasad and Kegel [266] and
Linnartz [208], it is more realistic to assume non-coherent addition of co-channel interferers in mobile radio environments.
Coherently addition of co-channel interferers generally leads to pessimistic predictions of the probability of outage.

The remainder of this chapter begins with approximations for the sum of multiple log-normally shadowed interferers
in Sect.3.1. The various approximations are compared in terms of their accuracy. Section 3.2 derives the probability of
outage with log-normal/multiple log-normal (desired/interfering) signals. Section 3.3 considers the outage probability for
Ricean/multiple Rayleigh signals without shadowing. Section 3.4 does the same for log-normal Nakagami/multiple log-
normal Nakagami signals.

3.1 Multiple Log-Normal Interferers

Consider the sum of N; log-normal random variables

N[ N[
I= ng = Z 10*%@sm) /10 (3.1
k=1 k=1

where the £2; 4pm) are Gaussian random variables with means Quasm) and variances aék, and the 2, = 10%kaBm/10 gre log-
normal random variables. Unfortunately, there is no known closed form expression for the probability density function (pdf)
of the sum of multiple (N; > 2) log-normal random variables. One may think to apply the central limit theorem, provided
that N; is large enough, and approximate / as a Gaussian random variable. However, since / represents a power sum it cannot
assume negative values so that the resulting approximation is invalid. Moreover, the value of N; will be small in the case
of a few dominant co-channel interferers so the central limit theorem will not apply anyway. There is a general consensus
that the sum of independent log-normal random variables can be approximated by another log-normal random variable with
appropriately chosen parameters. That is,

Ny
[=" " 10%am/10 ~ oAuwm/10 = ] (3.2)
k=1

where Z4pm) is a Gaussian random variable with mean 17 (4gm) and variance cr%. The problem is to determine jt7 (4pm) and Ué
in terms of the g, @Bm) and o_ék, k =1,...,Nj. Several methods have been suggested in the literature to solve this problem
including those by Fenton [124], Schwartz and Yeh [296], and Farley [296]. Each of these methods provides varying degrees
of accuracy over specified ranges of the shadow standard deviation o, the sum /, and the number of interferers N;.
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3.1.1 Fenton-Wilkinson Method

With the Fenton—Wilkinson method, the mean (17 4gm) and variance o% of Zgsm) are obtained by matching the first two

moments of the sum / with the first two moments of the approximation I. To derive these moments, it is convenient to use
natural logarithms. Hence,

2 = 109k @m)/10 _ eEQk (@Bm) — e-Qk, (3.3)

where £ = (In10)/10 = 0.23026 and 2 = §$2k @Bm). Note that Ly = §Lg, 4, and Uék = Ezoék. The nth moment of

the log-normal random variable §2; can be obtained from the moment generating function of the Gaussian random variable
24 as

A 2.2
n;t_Qk—i-(l/Z)n (szk '

E[2!] = B["%] = ¢ (3.4)

To find the required moments for the log-normal approximation, (3.4) can be used by equating the first two moments on both
sides of the approximation

Nl " N R
I= Ze‘?k ~e =1, (3.5)
k=1

where Z = §Z(agm). For example, suppose that the Qk, k=1,...,N;have means Ko, k =1,...,N; and identical variances

0% . Identical variances are often assumed for the sum of log-normal interferers because the standard deviation of log-normal
shadowing is largely independent of the radio path length [194, 196]. Equating the means on both sides of (3.5) gives

Ny . . R
pr = E[l] = ) E[e™] = E[e’] = Ell] = ; (3.6)
k=1

and substituting (3.4) with n = 1 into (3.6) gives the result

Np
(Z e/Lﬁk) e(l/z)oé — e#2+(1/2)6§. (3.7)
k=1

Likewise, the variances on both sides of (3.5) can be equated, i.e.,

0? =E[I] —u? = E[[%] - ;ng = oiz. (3.8)

Under the assumption that the (}k, k = 1,...N; are independent random variables when calculating the second moments in
the above equation, this gives the result

Ny
(Z ezﬂm) %% (e% — 1) = e*h2e% (€% — 1). (3.9)

k=1

By squaring each side of the equality in (3.7) and dividing each side of resulting equation by the respective sides of the
equality in (3.9), GZ% can be solved in terms of the known values of Ko, s k=1,...,N; and Ué. Afterwards, i, can be

obtained by substituting the obtained expression for GZ% into (3.7). This procedure yields the following solution:

0% — g2
2

2 N
py = QT +In (; e”ﬂk) (3.10)



150 3 Co-Channel Interference

Ny 2/szk
o2 =1In (e”g‘z—l)E‘L—i—l . G.11)

7 2
NI Mg
(Zk=1 € ")

Finally, conversion back to base 10 logarithms is done by scaling, such that iz @pm) = &' i, and o = £ 202

The accuracy of this log-normal approximation can be measured in terms of how accurately the first two moments of
Iy = 10log,,I are estimated, and how well the cumulative distribution function (cdf) of /(4g) is described by a Gaussian
cdf. It has been reported in [296] that the Fenton—Wilkinson method breaks down in the accuracy of the values obtained
for f1z Bm) and 0 when o > 4 dB. For cellular radio applications oy, typically ranges from 6 to 12dB and the Fenton—
Wilkinson method has often been discredited in the literature on that basis. However, as pointed out in [34], the Fenton—
Wilkinson method breaks down only if one considers the application of the Fenton—Wilkinson method for the prediction of
the first two moments of /(¢g). Moreover, in problems relating to the probability of CCI outage in cellular radio systems, the
tails of the complementary distribution function (cdfc) Fy(x) = P[I > x] and the cdf F;(x) = 1 — Fj(x) = P[I < x] are of
interest. In this case, the accuracy of the approximation

Fi) ~ Pl > 2 = 0 (M) (3.12)
03

is of interest, and F;(x) = 1 — Fj(x) for large and small values of x, respectively. It will be shown later that the Fenton—
Wilkinson method approximates the tails of the cdf and cdfc functions with good accuracy, a result that was reported in
[34].

3.1.2 Schwartz & Yeh Method

The Schwartz & Yeh method [296] calculates exact values for the first two moments of the sum of two independent log-
normal random variables. Nesting and recursion techniques are then used to find exact values for the first two moments for
the sum of N; independent log-normal random variables. For example, suppose that I = 2| + £2, + £23. The exact first two
moments of In(£2; 4 £2;) are first computed. Afterwards, define Z, = In(£2; + £2;) as a new Gaussian random variable, let
I = e?2 + 23, and again compute the exact first two moments of In /. Since the procedure is recursive, the Schwartz & Yeh
method only needs to be detailed for the case when N; = 2, i.e.,

I=e te2nel =] (3.13)
or
Z~In (ef}‘ + eéz) , (3.14)

where the Gaussian random variables £2; and §2, have means 1 and g, , and variances oé

~ and Ué , respectively.
1 2

. . A A A A
Define the Gaussian random variable 2, = §2, — §21 so that

Koy = Ko, — 1o, (3.15)
2 2 2
05, = 0p + 0, (3.16)

Taking the expectation of both sides of (3.14) and assuming that the approximation holds with equality gives
u; =E [ln (e'(}2 + e'(}‘)]

=E[In (e® (14%7%))]

E[.Ql] +E[1n(1 —|—e‘é">]. (3.17)
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The second term in (3.17) is
R 0o
E [ln (1 + le1>] - / (In (1 + &) pg, (x)dx. (3.18)
—00
Now invoke the power series expansion
(_ 1 )k+1

— (3.19)

(e e)
In(1 +x) = chxk, Ci
k=1

where |x| < 1. To ensure convergence of the power series and the resulting series of integrals, the integration in (3.18) is
broken into ranges as follows:

o} 0 o0
/ (In(1 +€%)) pg, (¥)dx = / (In (1 + €9) pg (X)dx + / (In(1+e™) +x)pg, (x)dx. (3.20)
—00 —00 0
The second integral in the above equation was obtained by using the identity
In(1 +¢*) =1In((e™™ + 1)e¥)
= In(1 +¢™) + In(e)

=1In(l +e) +x. 3.21)
After a very long derivation that is detailed in [296],
Kz = o, + G, (3.22)
where
2
W 05 —u2 /252 e 2,2 i gy — ko
Gl _ M(}dq) 24 4 ie /L_Qd/z Q4 chek Qd/z ek“f?dcb d—gd + T1 (323)
Oé‘l 2 k=1 af}d
with
. wo — ko
Ty = e Mo 2 (3.24)
Uf}d

and where ®(x) is the complementary distribution function (cdfc) of a standard normal random variable, defined as

d(x) = /_ ' \/%e_"z/zdy. (3.25)

The variance of Z can be computed in a similar fashion, resulting in the expression [296]
03 = oél -G - 2o§}1 G3 + G, (3.26)

where

o
_ o 2 2 H3,090, —u% /@0%)
L (R P

24 V2
o A Uo —ox (k+1)
+ 3 e KT 0R g, ( o (3.27)
O' A
k=1 L4
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23 e a2 (SA o (_ fék) 9%, e—sgk/eagd))
Q2
k=1 ' V2n

O-S}d
> k Kol /2 > k
Gy =) (—Dfe 21 + Y (=)D, (3.28)
k=0 k=0
with
X 22 —M(} —(k—i—l)o%
T, = o, kEDHE+D oG /2 0 d $24 (3.29)
05,
and
2(_1)k+1 k 1
b= ) - 3.30
k k+1 ; n G0
2
§a, = —Ha, Thog,. 33D

It has been reported in [296] that approximately 40 terms are required in the infinite summations for G, G,, and G to achieve
four significant digits of accuracy in the moments of Z. On the next step of the recursion it is important to let O'é = oZ% and
1

Mg, = Wz otherwise, the recursive procedure will fail to converge.

3.1.3 Farley’s Method

Consider N; independent identically distributed (i.i.d.) normal random variables Qk each with mean 5 and variance oé.
Farley approximated the cdfc of the sum

N Neoo
I= Zszk = Zeﬂk (3.32)
k=1 k=1
as [296]
— A N
Pl >~ 1— (1 —Q(lnx—“‘?)) . (3.33)
05

As shown in [34], Farley’s approximation is actually a strict lower bound on the cdfc. To obtain this result let
Fi(x) =P[2) + 5 + -+ 2y, > 4] (3.34)
and define the two events

A = {at least one £2; > x}

B = A°, the complement of event A. (3.35)
Events A and B are mutually exclusive and partition the sample space. Therefore,

P[l > x] = P[I > xNA] +P[[ > xN B
= P[A] + P[I > xN B]. (3.36)

The second term in (3.36) is positive for continuous pdfs such as the log-normal pdf. For example, the event
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Ny
C= %ﬂx/N, <2< x} (3.37)

i=1
is a subset of the event B. Under the assumption that the £2; are i.i.d., event C occurs with non-zero probability because
In(x/Np) — g Inx— s\ \V
P[C] = (Q (M) -0 (x—,ug)) > 0. (3.38)
9% 9%
Therefore, P[I > x| > P[A]. Since the £2; are i.i.d.,

Np
P[A] = 1 - [ [ P2 < o

i=1

A N
=1_(1—Q(—lnxm“9)) . (3.39)
2

This finally yields the lower bound on the cdfc

Inx— s\ \V
P> >1— (1 —Q(M)) (3.40)
0%
or, equivalently, the upper bound on the cdf
Inx— g5 \\"
Pl <] > (I—Q(—nx “9)) . (3.41)
0%

3.1.4 Numerical Comparisons

Figure 3.1 compares the cdf for the sum of N; = 2 and N; = 6 log-normal random variables, obtained with the various
approximations. Likewise, Figs. 3.2, 3.3, and 3.4 compare the cdfc, obtained with the various approximations. Exact results
are also shown that have been obtained by computer simulation. Observe that the cdfc is approximated quite well for all the
methods, but the best approximation depends on the number of interferers, shadow standard deviation, and argument of the
cdfc. The cdf is approximated less accurately, especially for N; = 6 log-normal random variables.

3.2 Log-Normal/Multiple Log-Normal Interferers

Consider the situation shown in Fig. 1.15, where a mobile station (MS) is at distance d, from the serving base station (BS)
and at distances di, k = 1,2, ..., N; from the first tier of N; co-channel BSs. Define the vector d = (dy, di, ..., dy,) as the
set of distances of a particular MS from the serving BS and surrounding BSs. The average received carrier-to-interference
ratio as a function of the vector d is

Ny
A (d) = 2(pm)(do) — 101og; Y~ 102 @10, (3.42)
k=1

For the case of a single interferer (N; = 1) the sum on the right side of (3.42) has only one term. In this case, Aqg)(d) is
Gaussian distributed with mean 1o .. (d) — H2pm (@) and variance 20%. For the case of multiple log-normal interferers,
the second term of (3.42) is approximated as a normal random variable Z4gm) with mean (7 (4m) and variance 0% using the

techniques discussed in Sect. 3.1. Then
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Fig. 3.2 Comparison of the cdfc for the sum of two log-normal random variables with various approximations; jg, 4 = 0dB, 0o = 6dB

Ay (d) = 2Bm)(do) — Z@m)(d1, da, ..., dy,), (3.43)

where we, again, show the dependency of the CCI on the set of distances. Note that A4g)(d) has mean and variance

MA(dB)(d) = MQ(dBm) (do) — 1274 (dBm) (344)

Oh@ = 0o + 0. (3.45)

If there were only one possible choice of serving BS, then the probability of outage at a particular MS location is

M Q(gmy(do) — HZ (@Bm) — Ath(dB)

/2 2
og +0;

O;(d) =0

(3.46)
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If handoffs are allowed, then the analysis is more complicated. In this case, the probability of outage will depend on the
handoff algorithm that is employed. In the simplest case, soft handoffs can be considered where the BS that provides the best
link is always used. In this case, an outage occurs only when no BS can provide a link having a carrier-to-interference ratio

that exceeds the receiver threshold Ag,. In this case, the probability of outage at a particular location is

M
0,(d) = 1—[ 0 2y (@Bm)(

k=0 Vob + (07)?

do) — Mz, (@Bm) — Aw(dB)

(3.47)

where M is the number of handoff candidates. The outage can then be calculated by averaging the probability of outage over
the random location of a MS within the reference cell.
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3.3 Rician/Multiple Rayleigh Interferers

Sometimes propagation conditions may exist such that the received signals experience envelope fading, but not shadowing.
This section calculates the outage probability for the case of envelope fading only. The case of combined shadowing and
envelope fading is deferred until the next section. In the case of envelope fading only, the received desired signal may
consist of a direct line of sight (LoS) component, or perhaps a specular component, accompanied by a diffuse component.
The envelope of the received desired signal experiences Ricean fading. The co-channel interferers are often assumed to be
Rayleigh faded, because a direct LoS condition is unlikely to exist between the co-channel interferers and target receiver due
to their large physical separation. Let the instantaneous power in the desired signal and the N; interfering signals be denoted
by so and s¢, k = 1, ..., Nj, respectively. Note that s; = Oll-z, where otl.2 is the squared-envelope. The carrier-to-interference
ratio is defined as

22 ;O . (3.48)
1
k=15k
For a specified receiver threshold Ay, the outage probability is
O, =P [)t < /\th] . (3.49)

The instantaneous received power of the desired signal, sg, has the non-central chi-square distribution (Ricean fading) in
(2.63), while the instantaneous power of each interferer, s;, has the exponential distribution (Rayleigh fading) in (2.56).
For the case of a single interferer, the outage probability reduces to the simple closed form expression [362]

o= o { __KA } , (3.50)
Ath +A1 Ath +A1

where K is the Rice factor of the desired signal, A} = £2y/(K + 1)£21, and £2; = E[si]. Note that A; can be interpreted as
the ratio of the average desired signal power to the total interfering power. If the desired signal is Rayleigh faded, then the
outage probability can be obtained by setting K = 0 in (3.50). For the case of multiple interferers, each with mean power
£2;, the outage probability has the closed form expression [362]

Ny N
Ath % KA }) A
Or=1=2 =274 % Tt A - 3.51
' k:Zl( A + Ag P Am + Ag Jl]Aj_Ak ( )
JFk

where Ay = $29/(K + 1)§2;. This expression is valid only if £2; # £2; when i # j, i.e., the different interferers are received
with distinct mean power levels. If some of the interfering signals are received with the same mean power, then an appropriate
expression for the outage probability can be derived in straightforward manner. If all the interferers are received with the
same mean power, then the total interference power sy = Ziv’zl s has the Gamma pdf

KNl x
oy (X)) = ————expy—— - (3.52)
Psy (%) 2V, — 1)1 p{ 91}
The outage probability can be derived as [362]
) KA, |27 A V& (k)1 [ Kia \"
O = —thexp{——1$ Z (—1) Z — (—th) . (3.53)
At + Al Aw+AL) i \N(Aa+A1) = \m]m! \An + A

Again, if the desired signal is Rayleigh faded, then the probability of outage with multiple Rayleigh faded interferers can be
obtained by setting K = 0 in either (3.51) or (3.53) as appropriate. In Fig. 3.5, the outage probability is plotted as a function
of the average received carrier-to-average-interference ratio

N2,

(3.54)
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Probability of Outage, O,

A (dB)

Fig. 3.5 Probability of CCI outage with a single interferer. The desired signal is Ricean faded with various Rice factors, while the interfering
signal is Rayleigh faded; Ay, = 10.0dB

Probability of Outage, O,

A (dB)

Fig. 3.6 Probability of CCI outage with multiple interferers. The desired signal is Ricean faded with various Rice factors, while the interfering
signals are Rayleigh faded and of equal power; Ay, = 10.0dB

for various Rice factors and a single interferer. Observe that the Rice factor of the desired signal has a significant effect on the
outage probability. Figure 3.6 plots the outage probability for K = 0 and 7 and a varying number of interferers. Meanwhile,
the number of interferers does not affect the probability of outage as much as the Rice factor of the desired signal, provided

that the total interfering power remains constant.

3.4 Log-Normal Nakagami/Multiple Log-Normal Nakagami Interferers

The probability of outage has been evaluated in the literature for a single Nakagami interferer [356] and multiple Nakagami
interferers [6, 363], in the absence of shadowing. Here, the probability of outage is analytically formulated for a log-normal
Nakagami faded desired signal with multiple log-normal Nakagami interferers. For the case when the interfering signals
have the same shadowing and fading statistics, an exact mathematical expression is derived for the probability of outage.
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Let the instantaneous power in the desired signal and the N; interfering signals be denoted by sp and sz, k = 1,..., Ny,
respectively. The instantaneous carrier-to-interference ratio is A = so/ Zg’zl si. For a specified receiver threshold Ay, the
probability of outage is

Ny
Oy =P[A <Ayl =P [so < A Zsk:| . (3.55)

k=1

The kth interfering signal, sz, k = 1,..., Ny, is affected by log-normal shadowing and Nakagami fading with the composite
pdf c.f. (2.373)

_ (10l0g W} — 1, o)’
203

dw. (3.56)

pato= [ Ty Loy
o \w T (my) w ) rEogw

Let W = ZkM:l s be the total instantaneous received power from the N; interfering signals such that A = so/W, and
define the auxiliary random variable Y = W. Then by using a bivariate transformation of random variables, the joint pdf of

Aand Y is py y(x,y) = yps,.w(xy,y) = yps, (xy)pw(y) and

pa(x) = /0 YPso 5y)pw (y)dy, (3.57)

where the fact that so and W are statistically independent random variables has been used. It follows that the outage
probability is

0] = P[)L < Ath]

—1- A A Vs, ()P () dydc (3.58)

Suppose for the time being that the desired signal is affected by Nakagami fading only, i.e., there is no shadowing and
£20 = E[so] is fixed. Then sy has the Gamma distribution in (2.67) and

oo mo—1 h h—1%h
_ mo \" Y A, _ moAny
/ D5 (xy)dx = E (_-Qo) il exp{ 2 } (3.59)
M h=0

Hence, the conditional outage probability in (3.58) becomes

" modn 1 [ moAwy|
PA<Anl|$20)=1- — —— ) dy. 3.60
o<t =1- 3 ("5 ) g [T ew |G o (3.60)
3.4.1 Statistically Identical Interferers
Here statistically identical interferers are assumed so that my = m; and 1, 45, = K2 @sm> ¢ = 1, -, Ni. Following

Linnartz [208], the integral in (3.60) can be obtained by using Laplace transform techniques. The Laplace transform of the
pdf pw (y) is

Lls) = /0 e py ()dy. (3.61)

The integral in (3.60) is then equal to the Ath derivative of %y (s) with respect to s evaluated at the point s = (mgAy)/ 2.
That is,
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> »
—sy.,h h
[ oo = 'zl (.62
0

= (_l)hdsh {l_[/ W‘Psk@k)dyk} :

where the last line follows under the assumption of statistically independent interferers. By using the composite distribution
in (3.56) with my = my and Lo, g5y = K2 @pm» | = 1, -, Ni, it can be shown that

my o0 e_XZ

o0
m
—SVk
Ps )y = —dx. (3.63)
/0 k \/_ (10(#91 (dBm)-I-ﬁ(Tgx)/IOS I ml) 1

Using this result and averaging over the log-normal shadowing distribution of the desired signal gives the final result

oo [mo—1 h
mo/\m 1
=1- E - —
O /o ( ( 2 ) !

h=0
Ny
X d* / ) mi"e™ dx
ds" | | Jooo sz (10““% o Y 20@)5/10 mr)ml o
1 10log,,{£20} — 2
y ex _( 8101820} i 120 @sm) 2. (3.64)
A/ 2]1’%‘0’990 20.(2

Equation (3.64) is an exact expression for log-normal Nakagami fading channels. When my = m; = 1, it reduces to the
simpler expression obtained by Linnartz [208] for log-normal Rayleigh fading channels. In (3.64), let

42

(o) e X
F(s) = / o dx (3.65)
—o0 (10(/m, (@b tV/2002)/10 +m,) !

and use the identity [147]

dh
Gs) = 75 (F&)"

Nr—i 3h
_ (h N') 3 (- 1)( )(F(i)ii ;sh (F(s))' . (3.66)

Observe that G(s) is a function of the derivatives of F(s) only, and

d'F(s)  d" | [ e
dsh dst (ne ++/200x)/10 iy dx
(10 7 (dBm) s+ ml)
h
10(}1(21 (dBm)+ﬁGQX)/10) e_xz
h—1)!
_ (b th= D ( (3.67)

(my —1)! /—°° (10(“91 (anmy +V2020/10 m’)mIM

G(s) can be obtained from (3.66) and (3.67), and substituted into (3.64). Then by using the following change in the variable
of integration
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Table 3.1 Zeros and weight
factors of 16 order Hermite
polynomials [4]

Zeros x; Weight factors H,,
40.27348104613815 | 5.079294790166 x 10!
40.82295144914466 | 2.806474585285 x 10!
+1.38025853919888 | 8.381004139899 x 102
+1.95178799091625 | 1.288031153551 x 1072
+2.54620215784748 | 9.322840086242 x 10~*
+3.17699916197996 | 2.711860092538 X 10>
+3.86944790486012 | 2.320980844865 x 107
+4.68873893930582 | 2.654807474011 x 10~10

_ 1010g10{[20} — K (dBm)

(3.68)
V200
the outage probability in (3.64) becomes
" - oyh ) 0 2 - +/2003h) /10
o=1-% (_mo,\thm 20 @B/ ) «F{’ﬁ / 10~V 2003h/10,—x G(mo)tlhlo (K2 @nm) TV2002h)/ )dx. (3.69)
=0 b1 h! J—

The integrals in (3.67) and (3.69) can be efficiently computed by using Gauss—Hermite quadrature integration. Applying
the Gauss—Hermite quadrature formula to (3.67) gives

d"F(s) L (mp+h—1)! N 1021 @sm +20250h/10

= (ph T N
dsh (my — 1! Z !

=1
=1 (10(//-!21 (dBm)-i-ﬁU_Qx,)/lOs T ml)mri-h

(3.70)

where H,, are weight factors, x; are the zeros of the Hermite polynomial H,,(x), and N,, is the order of the Hermite polynomial.
When obtaining numerical results, a Hermite polynomial of order 16 resulted in sufficient accuracy and the corresponding
values for H,, and x; are listed in Table 3.1. Likewise, for (3.69),

mo—1 m/Nl
01 =1=3" (—mory 10" am/ 10) Nl - § Hy 10720250106 (g 107490 om +200010) . (3.71)
- h! ¢
h=0

Figure 3.7 shows the probability of outage as a function of the average-carrier-to-average-interference ratio

M2

A= .
Nl/’L.Q[

(3.72)

Results are plotted for N; = 6 interfering signals and varying degrees of fading on the desired and interfering signals.
Observe that the outage probability is insensitive to changes in the Nakagami shape factor, m, for interfering signals. This
phenomenon demonstrates that the probability of CCI outage is dominated by the fading of the desired signal rather than
fading of the interfering signals. Figure 3.8 shows the outage probability for different values of the shadow standard deviation
0. The shadow standard deviation has a significant effect on the outage probability.

3.4.2 Statistically Nonidentical Co-Channel Interferers

If the interferers are statistically nonidentical, then Eq. (3.64) still applies with m; replaced by m;. Since the product in (3.64)
does not reduce to taking the nth power, the numerical evaluation is difficult. This difficulty can be overcome by using
approximations. Section 2.6.2.1 showed that the composite distribution of the squared-envelope due to Nakagami fading
and log-normal shadowing can be approximated by a log-normal distribution with the parameters in (2.374). Moreover, the
sum of log-normal random variables can be approximated by still another log-normal random variable by using either the
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Fig. 3.7 Probability of CCI outage when the desired and interfering signals are Nakagami faded. Results are shown for various fading distribution

parameters; o = 6dB, Ay, = 10.0dB
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Fig. 3.8 Probability of CCI outage when the desired and interfering signals are Nakagami faded. Results are shown for various shadow standard

deviations; mg = 8, m; = 2, A, = 10.0dB

Fenton—Wilkinson method in Sect.3.1.1 or the Schwartz & Yeh method in Sect. 3.1.2. Hence, (2.374) can be used to find
individual approximated log-normal distribution for each of the interfering signals, then Schwartz & Yeh’s method or the
Fenton—Wilkinson method is applied to find a pure log-normal distribution for the total interference power s;. This results in

the density
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Fig. 3.9 Probability of CCI 10°
outage for different dB spreads ¢
and statistically nonidentical
interferers; mo = 4,

Am = 10.0dB

10"
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CIR (1 - u,) dB

2
1 (1010g10{x} — s, (dBm))
() = ——exp ) — . (3.73)
Py (%) o p% 207

To maintain accuracy, the desired signal is still treated as a composite Nakagami log-normal signal with the pdf in (3.56).

Oy=1-

mo—1 (mol th(““l (@Bm) ~H2 (dBm>)/10)k 00 00
Z ‘ / e—yZeﬁméky/ o o~V 200k
= k\m oo oo

X exp {_mo/\the«/ig(oly—cmx)+$(Ms, (@Bm) ~H2 (dBm))} dxdy. (3.74)

When the number of interferers increases, o; decreases, while p; increases. For a fixed 4 the CIR will be reduced when the
number of interferers is increased. Once again (3.74) can be evaluated by using double Gauss—Hermite quadrature integration.

Figure 3.9 shows the probability of co-channel interference for interferers with various statistics. Observe that the number of
interferers and shadowing are the dominant factors in determining the probability of CCI outage.

Problems

3.1. A receiver is affected by 3 log-normally shadowed co-channel signals having the power sum

3
=Y
k=1
where

Iis) ~ A (=10 dBm, 03)
Lap) ~ A (=15 dBm, o)
Lya) ~ A (=20 dBm, 03),
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and where o = 8dB, and A (u, 0?2) refers a Gaussian random variable with mean p and variance G_é. The sum 7 is to be
approximated as another log-normal random variable, Z, by using the Fenton—Wilkinson method.

(a) Find the mean and variance of Zg.
(b) Suppose that the received carrier power C(gp) has the distribution

C(dB) ~ N(O dBm, U_é),

and oo = 8dB. Using your result from part a), what is the distribution of the carrier-to-interference ratio Aggy, =
(C/Daw)?

3.2. Consider the system shown in Fig. 3.10 below. A mobile station lies at a distance of 5, 10, and 15 km from three base
stations, BS;, i = 1,2,3. BS; is the serving base station, while BS; and BS3 are co-channel base stations (co-channel
interferers). The propagation path loss follows the model

K2, (@Bm) (d) = K2, aBm) (d(,) - 10:3 IOglo(d/do) (dBm)

where 8 = 3.5, and pug,(d,) = 1 mW atd, = 1km. The radio links exhibit independent log-normal shadowing with shadow
standard deviation o, = 8 dB. Ignore envelope fading.

(a) Obtain the probability density function of the total interfering power observed at the mobile station in decibel units using
the Fenton—Wilkinson method.

(b) What is the probability density function of the carrier-to-interference ratio observed at the mobile station in decibel
units?

(c) If the carrier-to-interference ratio must be greater than 6 dB for adequate radio link performance, what is the probability
of outage?

3.3. The scenario in Fig. 3.11 depicts the worst case CCI situation for the first tier of co-channel interferers on the forward
channel. Assume a reuse cluster size of 7 cells, a cell radius of R = 3 km, a path loss exponent of § = 3.5, and a receiver
carrier-to-interference threshold Ay, gy = 10 dB. Ignore the effect of handoffs and assume that the mobile station must stay
connected to the base station in the center cell.

Fig. 3.10 CCI situation for BS,
Problem 3.2 (]
é 5 km
10 km v 15 km
@ > @ memmeeeeeeo (]
BS; BS;
MS

Fig. 3.11 Worst case CCI
situation on forward channel in
Problem 3.3
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o

Fig. 3.12 Highway microcell deployment for Problem 3.6

(a) Using the simple path loss model in (1.6) with M2, (asm) (d,) = —10dBm at d, = 1 km and a shadow standard deviation
ogp = 8dB, calculate the probability of outage O;(d) in (3.46) by using the Fenton—Wilkinson method.

(b) For o, = 4dB, what is required threshold Ay, such that the probability of outage is less than 1%?

(c) Repeatb) for o; = 12dB.

3.4. Consider the Fenton—Wilkinson method for approximating the sum of N log-normal random variables
N ~
I = Z eg",
k=0

where the S:?k are independent zero-mean Gaussian random variables with o5 = 8 dB. Plot the mean ptz (4m) and variance
0% of the approximate Gaussian random variable Zgg) as a function of N for N = 2,3,4, ..., 10.

3.5. This problem uses Monte Carlo simulation techniques to verify the usefulness of the Schwartz & Yeh approximation and
the Fenton—Wilkinson approximation for the sum of two log-normal random variables. Consider the sum of two log-normal
random variables

I = §1 + §2,,

where the corresponding Gaussian random variables £21 gg) and Qz (p) are independent and identically distributed with zero
mean and variance 0. By using the Schwartz & Yeh method, plot the values of 7 4g) and o as a function of the variance
Gé. Repeat for the Fenton—Wilkinson method. Now obtain the same results by using computer simulation and compare the
analytical results. What are your conclusions?

3.6. You are asked to design a highway microcell system as shown in Fig. 3.12. Each cell has length 2R.

(a) A base station with an omnidirectional antenna is placed at the center of each cell. Ignoring shadowing and envelope
fading, determine the minimum reuse factor needed so that the worst case carrier-to-interference ratio, A, is at least
17 dB. State whatever assumptions you make.

(b) Now suppose that directional antennas are used to divide each cell into two sectors with boundaries perpendicular to the
highway. Repeat part a).

(c) Consider again the sectored cell arrangement in part b). If shadowing is present with a standard deviation of o, dB, what
is the probability of CCI outage on a cell boundary? Assume soft handoffs between adjacent cells.

3.7. Derive Eq. (3.50).
3.8. Derive Eq. (3.51).
3.9. Derive Eq. (3.53).
3.10. Derive Eq. (3.74).

3.11. Consider a microcellular environment where a Ricean faded desired signal is affected by a single Rayleigh faded
interferer. Neglect the effect of path loss and shadowing. Suppose that the transmission quality is deemed acceptable if both
the instantaneous carrier-to-noise ratio and the instantaneous carrier-to-interference ratio exceed the thresholds, yy, and Ay,
respectively. Analogous to (3.53) derive an expression for the probability of outage.



Chapter 4
Modulation and Power Spectrum

Modulation is the process whereby message information is embedded into a radio frequency carrier. Such information can
be transmitted in either the amplitude, frequency, or phase of the carrier, or a combination thereof, in either analog or
digital format. Analog modulation schemes include amplitude modulation (AM) and frequency modulation (FM). Analog
modulation schemes are still used today for legacy broadcast AM/FM radio and citizens band (CB) radio, but all other
communication and broadcast systems now use digital modulation. Digital modulation schemes transmit information using
a finite set of waveforms and have a number of advantages over their analog counterparts. Digital modulation is a natural
choice for digital sources, e.g., computer communications. Source encoding or data compression techniques can reduce the
required transmission bandwidth with a controlled amount of signal distortion. Digitally modulated waveforms are also more
robust to channel impairments such as delay and Doppler spread, and co-channel and adjacent channel interference. Finally,
encryption and multiplexing is easier with digital modulation schemes.

To achieve high spectral efficiency in wireless systems, signaling schemes are sought that provide power and bandwidth
efficient communication. In an information theoretic sense, it is desirable to operate close to the Shannon capacity limit
of a channel. This generally requires the use of error control coding along with a jointly designed encoder and modulator.
However, this chapter only considers modulation schemes, while the subject of coding and coded modulation is considered
in Chap. 8. The bandwidth efficiency of a modulation scheme indicates how much information is transmitted per channel
use and is measured in units of bits per second per Hertz of bandwidth (bits/s/Hz). The power efficiency can be measured
by the received signal-to-interference-plus-noise ratio (SINR) that is required to achieve reliable communication with a
specified bandwidth efficiency in the presence of channel impairments such as delay spread and Doppler spread. In general,
modulation techniques for spectrally efficient wireless systems should have the following properties:

e Compact Power Density Spectrum: To minimize the effect of adjacent channel interference, the power radiated into the
adjacent band is often limited to be 60-80 dB below that in the desired band. This requires modulation techniques having
a power spectrum characterized by a narrow main lobe and fast roll-off of side lobes.

* Robust Communication: Reliable communication must be achieved in the presence of delay and Doppler spread, adjacent
and co-channel interference, and thermal noise. Modulation schemes that promote good power efficiency in the presence
of channel impairments are desirable.

* Envelope Properties: Portable and mobile devices often employ power efficient nonlinear (Class-C) power amplifiers
to minimize battery drain. However, amplifier nonlinearities will degrade the performance of modulation schemes that
transmit information in the amplitude of the carrier and/or have a non-constant envelope. To obtain suitable performance,
such modulation schemes require a less power efficient linear or a linearized power amplifier. Also, spectral shaping
is usually performed prior to up-conversion and nonlinear amplification. To prevent the regrowth of spectral side lobes
during nonlinear amplification, modulation schemes having a relatively constant envelope are desirable.

This chapter considers digital modulation techniques that are commonly found in wireless communication systems.
Section 4.1 begins the chapter with a mathematical framework for bandpass modulated signals. Section 4.2 discusses
Nyquist pulse shaping for ISI-free transmission. Sections 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 provide a detailed treatment of
the various linear and nonlinear digital modulations techniques that are found in wireless systems, including QAM, PSK,
7 /4-DQPSK, orthogonal modulation, OFDM, CPM, GMSK, and others. Finally, Sect. 4.9 considers the power spectrum of
digitally modulated signals.
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4.1 Representation of Bandpass Modulated Signals

Bandpass modulation schemes refer to modulation schemes that transmit information by using carrier modulation, such that
the signal bandwidth is much less than the carrier frequency. A bandpass waveform s(f) can be expressed in terms of its
complex envelope as

s(t) = Re {5(1)e/*™'} | .1
where
5(2) = 51(2) + jso(1) 4.2)

is the complex envelope and f, is the carrier frequency. For any digital modulation scheme, the complex envelope can be
written in the standard form

5(=A Z b(t — nT,x,) 4.3)
X, = (X0, Xu—1s - vvy Xu—k)» “4.4)

where A is the amplitude and {x,} is the sequence of complex data symbols that are chosen from a finite alphabet, and K is
the modulator memory order which may be finite or infinite. One data symbol is transmitted every T seconds, so that the baud
rate is R = 1/T symbols/s. The function b(t, x;) is a generalized shaping function whose exact form depends on the type of
modulation that is employed. For example, binary phase shift keying (BPSK) with rectangular amplitude pulse shaping has

b(t,x,) = x,ur(t) “4.5)
where

x, € {—1,+1} is the data symbol transmitted at epoch n

ur(t) = u(t) — u(t — T) is a unit amplitude rectangular pulse of length T

and u(t) is the unit step function. Many types of modulation are considered in this chapter, where information is transmitted
in the amplitude, phase, and/or frequency of the carrier. In each case, the modulated signal will be represented in the standard
form in (4.3). This is done to streamline the task of finding their power spectra.

By expanding (4.1), the bandpass waveform can also be expressed in the quadrature form

s(1) = 51(¢) cos(2mfet) — 5o(t) sin(2mfe.t). (4.6)

The waveforms 5,(f) and 5o(f) are known as the quadrature components s(f), because they modulate the quadrature
components of the carrier, cos 2nf.t and sin 27f.t, respectively.
Finally s(¢) can be expressed in the amplitude-phase form

s(t) = a(t) cos2rf.t + ¢ (1)), .7
where
a(r) = [3()] = \/57(1) +55(1) (4.8)
_ Tan—! | 2@
¢(1) = Tan |:§1 0 ] . (4.9)

and where a(¢) is the amplitude and ¢ () is the excess phase. The three representations in (4.1), (4.6), and (4.7) are equivalent,
but sometimes one representation is more handy than the other two depending on the particular task at hand.
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4.1.1 Vector Space Representations

For digital modulation schemes, the bandpass signal that is transmitted at each baud epoch will belong to a finite set of
finite energy waveforms with a few exceptions. Let {s;(), s,(?), ..., sy (f)} be the set of bandpass waveforms, where M
denotes the size of the signal set. The corresponding complex envelopes are denoted by {51 (¢), 52(¢), . . ., Sp(¢) }. For now, the
development will proceed using the complex envelopes, and the bandpass waveforms will be treated later.

An N-dimensional complex vector space can be defined by a set of N complex orthonormal basis functions

{o1(®), 01(2), ..., oNn(t)}, where

o0
/ g/ (t)dt = & (4.10)
and
T (4.11)
TTl0Li £ :

Each waveform 5,,(¢) in the signal set can be projected onto the set of basis functions to yield a signal vector

Sm = Gmys Smgs -ovs Smy)» m=1,..., M, (4.12)
where
o
S :/ Sm(e(t)de, i=1, ..., N. (4.13)
—0o0
The collection of N basis functions is said to constitute a complete set, if each waveform in the set {5;(¢), 5,(?), ..., Sy (?)}

can be expressed exactly as a linear combination of the basis functions. That is,
N
() = Fmpi(0), m=1,.... M. (4.14)
i=1

A systematic procedure for constructing a complete set of basis functions from the set of signal waveforms
{51(2),52(¢), ..., Sp(2)} is now described.

4.1.2 Gram-Schmidt Orthonormalization Procedure

Define the inner product between two complex-valued waveforms u(f) and v(¢) as

(u,v) 2 / ” u(r)v*(r)dr (4.15)

—0o0

and define the norm of the waveform u(r) as

lull £ /(. w). (4.16)

Note that the squared-norm

wwémm=/wmww @17

—0o0

is the energy contained in the complex-valued waveform u(r).
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Given the finite set of finite energy signals {5(¢),5,(¢),...,54(?)}, a complete set of orthonormal basis functions
{1(1), 92(1), ..., on(t)} can be constructed by using the following systematic procedure, known as the Gram-Schmidt
orthonormalization procedure:

1: Using 5,(¢), let

g1(1) = 51(7)
and define
t
o) = £ 4.18)
g1l
2: Using 5,(¢), let
82(1) = 52(1) — 521901 (1)
where
521 = (52, 1)
and define
t
o) = 829 (4.19)
g2
3: Using 5;(1), let
i—1
gi() = 5i() — Y _Fe;(0)
j=0
where
5ij = (i, ¢)
and define
gi(1)
pi(t) = =—. (4.20)
Il
4: Repeat Step 3 in a recursive fashion until all elements of the waveform set {5, (¢), 5,(), . . ., S5 (f)} have been used.

If one or more steps in the above recursion yields g;(t) = 0, then the corresponding waveform 5;(¢) can already be expressed
exactly in terms of the basis functions already generated. Consequently, the waveform 5;(¢) will not yield an additional basis
function and the procedure continues to the next waveform in the set, 5;+1(¢). In the end, a complete set of N, 1| < N < M
complex orthonormal basis functions {¢;(¢), 92(¢), ..., @n(t)} corresponding to the non-zero g;(r) will be obtained. The
dimensionality of the complex vector space N is equal to M if and only if the original set of waveforms {5 (¢), 52(7), ..., Sy (1)}
are linearly independent, i.e., none of the waveforms in the set is a linear combination of the other waveforms in the set.
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(continued)
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Example 4.1 (continued)

o, (¥) 6,(0)
3T 3T
IR a o T3 23
0, ()
J3IT +
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Fig. 4.2 Orthonormal basis functions {@;(r)}>_, for Example 4.1

T

B = (6o ) = / 50l (0dt = VT3
0
T

oo = (oo 2) = /0 54093 (0t = VT3

T
S43 = (3‘4,(/)3) = / 3‘4(1‘)(/);(1)(12‘ = v/ T/3
0
But g4(f) = 0, meaning that 54(¢) is linearly dependent on {5(z), 5,(¢),53(¢)}, and 54(r) does not yield an
additional basis function.

The set of orthonormal basis functions obtained from the above procedure is shown in Fig. 4.2, and they define a
3-dimensional vector space.

Each 5;(7) in the signal set can be expressed as a linear combination of the basis functions, according to (4.14), and
the corresponding signal vectors in (4.12) can be constructed. For this example, the signal vectors are

§ = (V/T/3.0,0)

S = (\/T/3.4/T/3.0)

53 = (0,/T/3,V/T/3)

S = (VT/3.T/3.JT/3).

The set of signal vectors {§;} can be plotted in the 3-D vector space defined by the set of orthonormal basis functions
{@i(¢)} as shown in Fig. 4.3. The plotted set of signal vectors is sometimes called a signal constellation.

(continued)
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Example 4.1 (continued)
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Fig. 4.3 Signal constellation for Example 4.1

In the above development, the Gram—Schmidt orthonormalization procedure was applied to the set of complex envelopes
{51(2),52(¢), ..., Sp(2)} to produce a complete set of N < M complex basis functions {¢; (¢), ¢2(?), . .., ¢n(f)}, where N is the
dimension of the complex vector space. By using the exact same Gram—Schmidt orthonormalization procedure, a complete
set of N real-valued orthonormal basis functions {¢;(¢), ¢2(?), ..., @n(f)} can be obtained from the real-valued bandpass
waveforms {s; (), s2(¢), ..., sp(t)}, expressed in quadrature representation (4.6), and where N is the dimension of the real
vector space. In this case, the complex conjugates in (4.10) and (4.13) may be omitted since all waveforms are real-valued.
By using the real-valued basis functions, each bandpass waveform s,,(#) can be projected onto the set of real-valued basis
functions to yield the set of signal vectors

Sm = (Spys Smgs -ovs Smy) » m=1,..., M, 4.21)
where
o0
sw=/ sD@idt, i=1, ..., N, (4.22)
—00
and
N
sm(®) = smpi(t), m=1, ..., M. (4.23)

i=1

Note that the set of orthonormal basis functions and the dimensionality of the vector space needed to represent the bandpass
waveforms and their corresponding complex envelopes are related. The complex-valued basis functions each define a 2-
dimensional complex plane. So for one-dimensional complex-valued or two-dimensional real-valued signal constellations
each complex basis function will yield two orthogonal real-valued basis functions. If the complex envelopes happen to be
real-valued, then just a single real-valued basis function, different in each case, is required to represent both the real-valued
bandpass waveforms and their complex envelopes.
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4.1.3 Signal Energy and Correlations
Define the inner (dot) product between two length-N complex vectors u and v as
N
u-v E Y ) (4.24)
i=1

and the norm (length) of the vector u as

N
lull £ Vuut = | (4.25)
i=1

If the vectors happen to be real, the complex conjugates and absolute values can be neglected.
Consider the set of bandpass waveforms

sm(f) = Re {5, (D™}, m=1,....M. (4.26)

The energy in the bandpass waveform s,,(f) is

o]

Ep = (Sp,Sm) = / s2 (r)dt. 4.27)

Using the amplitude-phase representation of a bandpass waveform in (4.7), and the trig identity cos?(x) = %(1 + cos(2x)),
gives

3
I

/ T ) cos@rfot + dm(0)))? dr

3 [ n0Pas 5 [ a0 costint 2000

1 [° 2
— S (2)|~dt
5[50
1. .
= E(va sm)- (428)

%

where ¢,,(1) = Tan™! [Em,Q(t) / Em,l(t)]. The above approximation is valid when the bandwidth of the complex envelope is
much less than the carrier frequency so that the double frequency term can be neglected. For digital bandpass modulated
signals, this condition is equivalent to .7 >> 1 so that there are many cycles of the carrier in the baud period 7. This
condition is satisfied in most wireless systems.

By using the vector representation of the bandpass waveforms in (4.21)—(4.23), it follows that the energy in the bandpass
waveform s,,(t) is

o [/ N 2 N
Em = f (Z Smi(/)i(t)) dr = Zsii = ”Sm”2’ (429)
0 \i=1] i=1

where the second equality follows from the orthonormal property of the basis functions in (4.10). Notice that the energy in
sm(t) is equal to the squared-norm (length) of the corresponding signal vector s,,. Likewise, by using the vector representation
of the corresponding complex envelope, the energy in the bandpass waveform s,,(¢) is also equal to

1 e |
En=3 / S Si(0)
o li=1

oY 1
de= 3 [ l* = 5l (430)
i=1

Note that the energy in the bandpass waveform is one-half the energy in its complex envelope. This is due to the carrier
modulation.
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The correlation between the bandpass waveforms s,,(¢) and s;(7) is defined as

1 /‘oo
Pkm = —F—— S (0)si(t)dt

\/EkEm —00
_ Sm * Sk

”Sm” ”Sk”

Sm - S,
=Re{#}. (4.31)
”Sm” ”Sk“

Finally, the squared Euclidean distance between the bandpass waveforms s;(¢) and s,,(¢) is

o0
G= [ = sia
—00
— s —sill?
Lo
= EHSm_Sk” : (4.32)

The results in (4.31) and (4.32) may be obtained using (4.14) and (4.23) along with the orthonormal property of the basis
functions.

4.2 Nyquist Pulse Shaping

Consider a modulation scheme where the transmitted complex envelope has the

5(t) =AY xhy(t—nT) (4.33)

where h,(¢) is a real-valued amplitude shaping pulse, {x,} is a complex data symbol sequence, and T is the baud period. As
will be discussed in Chap. 5, the receiver usually employs a filter that is matched to the transmitted pulse, having the form
h.(t) = h,(T, — t), where T, is the duration of the amplitude shaping pulse /,(7). An overall pulse can be defined that is the
cascade of the transmitted pulse /,(¢) and the receiver matched filter k,(¢) as p(t) = h,(t) * h,(T, — t), where * denotes the
operation of convolution.

For the time being, consider an ideal channel having impulse response g(¢, 7) = §(t). In the absence of thermal noise in
the receiver, the waveform at the output of the receiver matched filter is

$() =AY xup(t —nT). (4.34)

Now suppose the received complex envelope y(z) is sampled once every T seconds to yield the sample sequence {y;}, where

e =JUT +1,) =AY x,p(kT + 1, — nT) (4.35)

and 7, is a timing offset assumed to lie in the interval [0, 7). First consider the case when ¢z, = 0; the effect of having a
non-zero timing offset will be treated later. When 7, = 0

Ve =AY Xapion = Axpo +A Y Xupion. (4.36)
n n#k

where p,, = p(mT) is the sampled overall pulse. The first term in (4.36) is equal to the data symbol transmitted at the kth
baud epoch, scaled by the factor Apy. The second term is the contribution of all other data symbols on the sample ;. This
term is called intersymbol interference (ISI). To avoid the appearance of ISI, the sampled pulse response {p;} must satisfy
the condition

Pr = Sropo, (4.37)
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where 8 is the Dirac delta function defined in (4.11). This requirement is known as the (first) Nyquist criterion. Under this
condition,

Yk = Axpo. (4.38)

An equivalent frequency domain requirement is now derived by showing that the continuous-time pulse p(f) satisfies the
condition p; = 8iopo if and only if

P2 S PR =p (4.39)

n=—0o0

The function Py (f) is called the folded spectrum, and ISI is avoided if and only if the folded spectrum is flat, i.e., it assumes
a constant value. To prove the above property, the inverse Fourier transform can be used to write

[ ppernas

—00

Pk

oo

(2n+1)/2T )
[ ety
ne—eo J @n—=1)/2T

o

1/27 "
r jan(f’-‘rﬂ)T /
/_ P(f + T)e LT

oo J —1/2T

[ Zreep)ema

127 | 2o

1/2T ]
=T / Ps () df. (4.40)
—1/2T

Since Py (f) is periodic with period 1/T, it follows that the last line in (4.40) represents a Fourier series analysis equation
except for the sign of the exponential term. Therefore, {p_;} and Py (f) are a Fourier series pair, and Py (f) can be constructed
from {p_;} by using the Fourier series synthesis equation, viz.,

o0 o0
Ps(f)= > pae™ = 3" pe T, (4.41)

k=—00 k=—00

To prove that (4.39) is a sufficient condition for ISI-free transmission, suppose that (4.39) holds true. Then Py (f) = poT
and from the last line of (4.40)

1/2r sintk
Pk = f M by Tdf = —P0 = Supo. (4.42)
—1/2T

To prove that (4.39) is a necessary condition for ISI-free transmission, suppose that p; = pydxo holds true. Then from (4.41)
Px(f) = po, and the folded spectrum must be flat.

The requirement on the folded spectrum in (4.39) allows us to design pulses in the frequency domain that will admit
ISI-free transmission. First consider a pulse having the Fourier transform

Pn(f) = Trect(fT), (4.43)

where

I, |fl < 1
t = ’ — 2T 4.44
rect(fT) 0, elsewhere ( )

This pulse has a flat folded spectrum. The corresponding time domain pulse
pn(t) = sinc(t/T) (4.45)

satisfies the first Nyquist criterion because it has equally spaced zero crossings at 7' second intervals. Furthermore, from the
requirement of a flat folded spectrum, it achieves zero ISI while occupying the smallest possible bandwidth. Hence, it is
called an ideal Nyquist pulse. The edge frequency f = 1/2T is called the Nyquist frequency.
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Fig. 4.4 Construction of pulses satisfying the (first) Nyquist criterion

The effect of the sampling or timing offset 7, is now examined with the aid of the ideal Nyquist pulse. With a timing offset
$e =AY xysinc((kT + t, —nT)/T)

= Axisinc(t,/T) + A Y xysinc((kT + t, — nT)/T) (4.46)
n#k

Observe that the ISI term is non-zero when the timing offset is non-zero. In fact, with an ideal Nyquist pulse, the ISI term is
not absolutely summable as shown in Problem 4.1. This is because the tails of the ideal Nyquist pulse in (4.45) decay in time
as 1/t. To reduce this sensitivity to symbol timing errors, pulses need to be designed that satisfy the first Nyquist criterion
while having tails that decay faster than 1/z.

The construction of other Nyquist pulses starts with the ideal Nyquist pulse, Py(f), shown in Fig. 4.4a. To the pulse Py(f),
a “transmittance” function P, (f) is added as shown in Fig. 4.4b. The transmittance function must have skew symmetry about
the Nyquist frequency 1/27, and any skew symmetric function will do. The resulting Nyquist pulse P(f) is shown in Fig. 4.4c.
Clearly, the folded spectrum Py (f) is flat if the transmittance function is skew symmetric about the Nyquist frequency 1/2T.
The corresponding time domain pulse p(¢) can be obtained from the inverse Fourier transform of resulting P(f). Notice that
the pulse P(f) takes up additional bandwidth, but the bandwidth expansion will result in a time domain pulse p(¢) having
tails that decay faster in time than the ideal Nyquist pulse.

4.2.1 Raised Cosine and Root Raised Cosine Pulse

The raised cosine pulse is defined in the frequency domain by

, 0<|fl=(-B)/2T
[1 _sin (”U;‘T _ ﬁ)] . (1—B)/2T < |f| < (1 + B)/2T . (4.47)
,fl =0+ p)/2r

P(f) =

S NN
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The bandwidth of the raised cosine pulse is (1 4+ 8)/2T, where the parameter 8,0 < < 1 is called the roll-off factor and
controls the bandwidth expansion. The term “raised cosine” comes from the fact that pulse spectrum P(f) with § = 1 has a
“raised cosine” shape, i.e., with § = 1

P() = L 11 +cos(/T)], 0= If] < 1T, (4.48)

The inverse Fourier transform of P(f) in (4.47) gives the corresponding time domain pulse

sin(wt/T) cos(Bnt/T)
xt)T 1 —QBt/T)*

p() = (4.49)

For B = 0, p(t) reduces to the ideal Nyquist pulse in (4.45). Notice that the tails of the raised cosine pulse decay as 1/7°.
As mentioned before, the overall pulse produced by the cascade of the transmitter and receiver matched filters is p(r) =
ha(t) * ha(T, — 1). It follows that the Fourier transform of p(t) is P(f) = H,(f)H*(f)e 7> Te = |H,(f)|>e>"To. Hence,
both the transmitted pulse and receiver matched filter have the same magnitude response |H,(f)| = |P(f)|'/?, where P(f) is
defined in (4.47). If the overall pulse p(7) is a raised cosine pulse with P(f) defined in (4.47), then the pulse A,(7) is said to be
a root raised cosine pulse. Taking the inverse Fourier transform of |[H,(f)| = ~/T|P(f)|"/? gives the root raised cosine pulse

1-B+48/n , t=0
ha(t) = 1 (B/~2) (1 +2/m0) sin(x/4B) + (1 =2/m) cos(n/4B)) . 1= +T/4p (4.50)
4B(t/T) cos((14B)rt/T)+sin((1—B)nt/T)
RGBT , elsewhere
For 8 = 0, the root raised cosine pulse reduces to the sinc pulse
hy(t) = sinc(t/T). 4.51)

The raised cosine and root raised cosine pulses corresponding to 8 = 0.5 are shown in Fig. 4.5. Strictly speaking, the
root-raised cosine pulse in (4.50) is non-causal. Therefore, in practice, a truncated and time shifted approximation of the
pulse must be used. For example, in Fig. 4.5 the pulse is truncated to length 67 and right time-shifted by 37 seconds to yield
a causal pulse. The time-shifting makes the pulse have a linear phase response, while the pulse truncation will result in a
pulse that is no longer strictly bandlimited. Finally, the raised cosine pulse is a Nyquist pulse having equally spaced zero
crossings at the baud period T, while the root-raised cosine pulse by itself is not a Nyquist pulse and does not have equally
spaced zero crossings.

4.3 Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) is a bandwidth efficient modulation scheme that is used in numerous wireless
standards. With QAM, the complex envelope of the transmitted waveform is

§(t) =AY b(t—nT.x,) (4.52)

where
b(t, %) = Xuhy(1) (4.53)

hq(t) is the amplitude shaping pulse (very often chosen as a root-raised cosine pulse), and x, = x;,, + jxg,, is the complex-
valued data symbol that is transmitted at baud epoch n. It is apparent that both the amplitude and the excess phase of a
QAM waveform depend on the complex data symbols. QAM has the advantage of high bandwidth efficiency, but amplifier
nonlinearities will degrade its performance due to the non-constant envelope.
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Fig. 4.5 Raised cosine and root raised cosine pulses with roll-off factor § = 0.5. The pulses are truncated to length 67 and right time shifted by
3T seconds to yield causal pulses

The set of possible QAM waveforms that are transmitted at each baud epoch have the complex envelopes

Su(t) = Axuh,(t) m=1,2,..., M. (4.54)
To obtain the vector representation of the complex envelopes 5,,(f),m = 1,2, ..., M, the basis function
A2
1) = —h,(t 4.55
010) = \[ 5 ha0) (455)
can be used, where
A2 e’}
E,=— / R (0)dt (4.56)
2 )

is the energy in the bandpass pulse Ak, () cos 27 f.t under the condition f.7 > 1. Using this basis function

Em(t) =V 2Eh Xm @1 (t)v (457)

and the QAM complex signal vectors are the complex-valued scalars'

Sm=V2Exy,, m=12,...,M. (4.58)

4.3.1 QAM Signal Constellations

A variety of QAM signal constellations may be constructed. Square QAM constellations can be constructed when M is an
even power of 2 by choosing x;,,, xg.m € {£1, £3, ..., :I:(M — 1)}, where M = /M. The complex signal-space diagram
for the square 4-, 16, and 64-QAM constellations is shown in Fig. 4.6. Notice that the minimum Euclidean distance between
any two signal vectors is 2+4/2E;,. When M is an odd power of 2, the QAM signal constellation is not square. In this case,

Note that the dimensionality of the complex signal-space is N = 1.
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Fig. 4.6 Complex signal-space Y 7 .
diagram for square QAM ‘e © © o0 o o o
constellations H ,
| @ [ ] [ ] [ ] .M 1.6 [ ] @
R N LA ' 2\/2E
‘e © '@ 0|0 o @ , g
: I 7 :
e o .0 0|0 0 0 o
. — — : ¢, (1)
(e ® e e 0 0 0 o
i‘ [ ] EQ [ I J Qg [ J Qg
‘e © © e|® o o o
EC [ ] [ ] [ ] [ ] [ ] [ ] Qé

‘e © © o0 o o o 1B

‘e © o o|0o o o o
e @ o © © 0/0 o o o o o
! D IRk 1 M=32 '
‘e © © o.0 o|0 o:. 0 o o ;
: ey 1 2\/2E
e © .06 © o0 o 0.0 o 0~—r g
‘e © o @6 © e|0 o 0.0 o o
; ; ; — 4. (1)
' e o0 0 0|0 o 0.0 o o !
‘e © o © © e|® o o0 o o
‘e © o o0 0|0 o0 o o o
‘e o o6 o 0 0|0 0 o 0o o o
e e o e|le e e o

‘e © © oo o o o

Fig. 4.7 Complex signal-space diagram for cross QAM constellations
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Fig. 4.8 Complex signal-space diagrams for 8-QAM constellations

the constellation assumes the shape of a cross in an attempt to minimize the average energy in the constellation for a given
minimum Euclidean distance between signal vectors. Examples of QAM *“cross constellations” are shown in Fig. 4.7. Other
types of QAM constellations are possible as well. Figure 4.8 shows two different 8-QAM constellations.

4.3.2 PAM Signal Constellations

Pulse amplitude modulation (PAM) can be viewed as a special case of QAM, where information is transmitted only
in the cosine component of the RF carrier. This can be accomplished by using real data symbols x,, = x;,,, where
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Fig. 4.9 Complex signal-space
diagram for the 4- and 8-PAM M=4
constellations

—e—eo0o—o— ¢(1)

2\/2E, M=8

—o—o—o—o—— ()

xrm € {£1,£3,...,£(M — 1)}. Equivalently, the set of data symbols can be generated according to x;,, € {2m—1—M :

m=1,2,...,M}. The PAM complex signal vectors are the real-valued scalars
Sm=V2E,.Cm—1—-M), m=1,2,...,M. 4.59)

Typical 4- and 8-PAM signal constellations are shown in Fig. 4.9.

4.4 Phase Shift Keying
The complex envelope of a phase shift keying (PSK) signal has the form

5(0) =AY b(t—nT.x,), (4.60)
where

b(t,Xn) = x,ha(1), 4.61)

h,(?) is the amplitude shaping pulse, x, = ¢/ and the phases 6, take on values from the set

,e{—n, n=0,1, ..., M—1;, (4.62)
M

The set of possible PSK waveforms that are transmitted at each baud epoch have the complex envelopes

Su(1) = Ahg ()P . m=1,2,..., M. (4.63)
Using the basis function in (4.55)
Su(t) = V2E@o(t), m=1,.... M, (4.64)

and the PSK complex signal vectors are the complex-valued scalars
S = V2E" . m=1,2,....M. (4.65)
The complex signal-space diagram for 8-PSK is shown in Fig. 4.10. Recall the energy in a PSK bandpass waveform is equal

to one-half the squared length of its complex signal vector. It follows that the PSK bandpass waveforms all have equal
energy Ej.



180 4  Modulation and Power Spectrum

Fig. 4.10 Complex signal-space
diagram for the 8-PSK \ 2E},
constellation

6,00

4.4.1 Offset QPSK (OQPSK)

QPSK or 4-PSK is equivalent to 4-QAM, where x,, = x;,, + jxg., and x; ., xg,, € {—1/ V2, +1 / «/i} The QPSK signal can
have either +£90° or 180° shifts of the excess phase from one baud interval to the next. With offset (or staggered) QPSK
(OQPSK), the complex envelope is

§(t) =AY b(t—nT.x,) (4.66)

where
b([, Xn) = x],nha(t) +ij,nha(t - Tb) (4.67)

and T, = T/2 is the bit interval. With OQPSK signals, the possibility of 180° shifts of the excess phase is eliminated. In
fact, the excess phase can only change by +90° every T}, seconds. With OQPSK, the amplitude shaping pulse 4, () is often
chosen to be the root-raised cosine pulse in (4.50) to yield a compact power spectrum.

The signal-space diagrams for QPSK and OQPSK are shown in Fig. 4.11, where Ej, is the symbol energy. The dotted lines
in Fig. 4.11 show the allowable excess phase transitions. The exact excess phase trajectories depend on the amplitude shaping
function. Note that the excess phase trajectories with OQPSK do not pass through the origin, while those with QPSK do. This
property reduces the peak-to-average power ratio (PAPR) of the OQPSK waveform as compared to the QPSK waveform,
where the PAPR is defined as

max 5(0)?

PAPR = limy— 00— e L SO

=1 [, 15()|?dt

A lower PAPR makes the OQPSK waveform less sensitive to power amplifier nonlinearities than the QPSK waveform. For
this reason OQPSK waveforms have been used for satellite communication links, where the satellite transponders use power
efficient nonlinear amplifiers.

442 7n/4-DOPSK

The /4 phase-shifted differential quadrature phase shift keyed (;r/4-DQPSK) modulation scheme was used in some types
of now extinct second generation cellular telephone systems. Similar to QPSK and OQPSK, 7/4-DQPSK transmits 2 bits
per modulated symbol. However, unlike QPSK and OQPSK where information is transmitted in the absolute excess phase,
7 /4-DQPSK transmits information in the differential excess phase, and one of 8 absolute excess phases are transmitted at
each baud epoch.
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Fig. 4.11 Complex signal-space diagram QPSK and OQPSK signals

Let 6, be the absolute excess phase for the nth data symbol, and let A6, = 6, — 6, be the differential excess phase.
With 7/4-DQPSK, the differential excess phase is related to the quaternary data sequence {x,}, x, € {1, £3} through the

mapping
7B, = x, > (4.68)
4
Notice that the excess phase differences are £/4 and £35/4. The complex envelope of the 7/4-DQPSK signal is

5() =AY b(t—nT.x,), (4.69)

where

b(t, %) = ha(1) exp {/ (On—l + x%)}

n—1
= h,(t) exp §]% ( Z X¢ + xn)

k=—00

(4.70)

The summation in the exponent of (4.70) represents the accumulated excess phase, while the last term is the excess phase
increment due to the nth data symbol. The absolute excess phase during the even and odd baud intervals belongs to the sets
{0, 7/2,7,37/2} and {7 /4,37 /4,57 /4, T[4}, respectively, or vice versa. With 77 /4-DQPSK the amplitude shaping pulse
h,(1) is often chosen to be the root-raised cosine pulse in (4.50).

The signal-space diagrams for QPSK and 7/4-DQPSK are shown in Fig.4.12, where Ej, is the symbol energy. The
dotted lines in Fig. 4.12 show the allowable phase transitions. The phaser diagram for 7 /4-DQPSK with root-raised cosine
amplitude pulse shaping is shown in Fig. 4.13. Note that the phase trajectories do not pass through the origin. Like OQPSK,
this property reduces the PAPR of the complex envelope, making the 77 /4-DQPSK waveform less sensitive to power amplifier
nonlinearities. Moreover, since the root-raised cosine pulse is not a Nyquist pulse, the phase trajectories do not go through
the signal constellation points either. Finally, observe that the excess phase of 7/4-DQPSK changes by +7/4 or +37/4
radians during every baud interval. This property makes symbol synchronization is easier with 7 /4-DQPSK as compared to
QPSK.
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Fig. 4.12 Complex signal-space diagram QPSK and 7/4-DQPSK signals
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Fig. 4.13 Phaser diagram for 7/4-DQPSK with root-raised cosine amplitude pulse shaping; 8 = 0.5

4.5 Orthogonal Modulation and Variants

Orthogonal modulation schemes transmit information by using a set of waveforms, that may overlap in frequency but are
orthogonal in time. Many different types of orthogonal waveforms are possible and here a few methods are considered that
are commonly used in wireless systems.

4.5.1 Orthogonal FSK Modulation

Orthogonal M-ary frequency shift keying (MFSK) uses a set of M waveforms that all have different frequencies. The MFSK
complex envelope is
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() =AY b(t—nT.x,), 4.71)
n

where

XAy

b(t,x,) = exp {j t} ur (1) 4.72)

and x, € {£1,4£3,...,£M — 1}. The set of MFSK waveforms that are transmitted at each baud epoch have the complex
envelopes

A
Bl Z fz} wr(t), m=1,....M. (4.73)

Sm(t) = Aexp % j

By choosing the frequency separation Ay = 1/27, all the §,,(t), m = 1,..., M are mutually orthogonal (see Problem 4.7).
Since the 5,,(7) are mutually orthogonal, the MFSK signal vectors have dimension N = M. The appropriate set of basis
functions is

1 mIT A
o) = \/;exp {jx ’; ft% wr(), i=1,...,M=N. (4.74)
The MFSK complex signal vectors are
Sm = V2Epe,, m=1,....M, (4.75)

where e,, = (e1, €2, ..., eum), € = 8, is a length-M unit basis vector with a “1” in the mth coordinate.

4.5.2 Binary Orthogonal Codes

Another set of mutually orthogonal waveforms can be obtained from the rows of a Hadamard matrix. A Hadamard matrix,
H,,, is generated recursively according to

Hy o Hypo :|
Hy = .
M |:HM/2 —Hu/2

where H; = [1]. For example, the 8 x 8 Hadamard matrix obtained from the above recursive procedure is

[+1 4141 +1 4141 +1 +17]
+1 -1 +1—1+1—-141 -1
+1 41 -1 —-1+1+1-1 -1
+1 =1 —=1+41+1 -1 -1 +1

B = b 41 2121 =121 | (4.76)

+1 =1 +1 =1 =1 +1 =1 +1

+1 41 =1 =1 =1 =1 41 +1
+1 -1 =141 -1 +1 41 —1 |

The rows of the Hadamard matrix are mutually orthogonal. A set of M equal energy orthogonal waveforms can be constructed
according to

M
Sn() =AY hyhe(t—KT) . m=1.....M, 4.77)
k=1
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where £, is the kth co-ordinate in the mth row of the Hadamard matrix, T = MT, is the symbol duration, and /.(¢) is a root
Nyquist shaping pulse with a Nyquist frequency of 1/(27,). Sometimes the above waveforms are called Walsh codes, and
find application in the forward link of some cellular code division multiple access (CDMA) systems, such as IS-95A/B and
cdma2000.

The bandpass waveforms, s,,(f), all have energy

MAZ o0
Ep= — / R (t)dt. (4.78)
2 Jw

To construct signal vectors, the appropriate choice of basis function is
M

A
(1) = hjh.t—kT.), i=1,....M 4.79
(1) m; e( ), (4.79)

and once again the signal vectors are

Sn = V2Eren, m=1,....M. (4.80)

4.5.3 Biorthogonal Signals

A set of M biorthogonal waveforms can be constructed from a set of M /2 orthogonal waveforms. The M-ary biorthogonal
waveforms have complex signal vectors

5 — V2Eje; . i=1,....M/2 ’ 48D)
—Si—Mm/2 » l=M/2+1,...,M

where the unit basis vectors e; have length N = M /2. By using an appropriate set of basis functions, for example in (4.74)
or (4.79), the complex envelopes of the biorthogonal waveforms can be synthesized.

4.5.4 Orthogonal Multipulse Modulation

With binary orthogonal codes only k& = log,M bits are transmitted at each baud epoch. A much more bandwidth efficient
scheme can be obtained by using the rows of the Hadamard matrix Hy to define N orthogonal amplitude shaping pulses

N—1
hi(t) =Y hyho(t—kT.) . i=1.....N (4.82)
k=0

each having duration 7 = NT,. With orthogonal multipulse modulation, a block of M = N data symbols are transmitted in
parallel every T seconds by using the N orthogonal amplitude shaping pulses in (4.82). The transmitted complex envelope is

5(=A Z b(t — nT,xy), (4.83)
where
N—1
b(t.X,) = Y X (1) (4.84)
k=0

T = NT,, and X,, = (X, Xn,, - - - , Xny) 1S the block of M = N data symbols transmitted at epoch n.
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4.6 Orthogonal Frequency Division Multiplexing

All of the modulation techniques discussed so far are single-carrier modulation techniques that employ a single RF
carrier. Another possibility is to use multi-carrier modulation techniques where information is transmitted in parallel by
using multiple subcarriers. Orthogonal frequency division multiplexing (OFDM) is perhaps the most popular multi-carrier
modulation technique. OFDM was first introduced in the 1960s [55], but it was perhaps the efficient DFT implementation of
OFDM developed by Weinstein and Ebert [348] that has led to its popularity and widespread use. OFDM was first suggested
for use cellular land mobile radio by Cimini [66] and later implemented in the Motorola IDEN (Integrated Digital Enhanced
Network) standard [44]. OFDM is now used in a large number of standards for broadcasting (DVB-T, DVB-H, MediaFLO,
and others), wireless LAN or WiFi (IEEE 802.11a/g/n/p), wireless MAN or WiMAX (IEEE 802.16), mobile broadband
wireless access (MBWA) (IEEE 802.16e mobile WiMAX), wireless regional area networks (WRAN) (IEEE 802.22), and
the cellular land mobile radio [3GPP Long Term Evolution (LTE) air interface named High Speed OFDM Packet Access
(HSOPA)], among others.

OFDM is a block modulation scheme where data symbols are transmitted in parallel on orthogonal subcarriers. A block of
N data symbols, with symbol period Ty, is converted into a block of N parallel data symbols, each of duration T = NTj. The
N parallel data symbols modulate N subcarriers that are spaced in frequency 1/7 Hz apart. The OFDM complex envelope is
given by

5(0) =AY b(t—nT.x,), (4.85)
where
N—1 -
b(t.%,) = ur(t) ) xuse T (4.86)
k=0
n is the block index, k is the subcarrier index, N is the number of subcarriers, and x,, = {x,0, Xn.1, ..., Xs.n—1} is the data

symbol block at epoch n.

The data symbols x,, ; are usually chosen from a QAM or PSK signal constellation, although any 2-D signal constellation
can be used. The 1/T Hz frequency separation of the subcarriers ensures that the corresponding waveforms transmitted on
the N subcarriers are mutually orthogonal regardless of the random phases that are imparted by the random data symbols x;, x
(see Problem 4.7).

A cyclic extension (or guard interval) is usually added to the OFDM waveform in (4.85) and (4.86) to combat intersymbol
interference (ISI) as explained in Sect. 10.1 of Chap. 10. The cyclic extension can be in the form of either a cyclic prefix or a
cyclic suffix. With a cyclic suffix, the OFDM complex envelope becomes

Eg(t)z%i(t) ,0<t<T 457

5¢—=T) . T<t<(+4oa)T "’

where «,T is the length of the guard interval and 5(¢) is defined in (4.85) and (4.86). The OFDM waveform with cyclic suffix
can be rewritten in the standard form

5o(H) =AY b(t—nTy.x,), (4.88)
where
N—1 ok N—1 2k—T)
b(t. %) = ur(t) Y xns® T g r(t—T) Y xppe” T, (4.89)
k=0 k=0

and T, = (1 + a,)T is the OFDM symbol period with addition of the guard interval. Likewise, with a cyclic prefix, the
OFDM complex envelope becomes
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- 5+T) , —a,T<t<0
1= 4.90
50 {E(z) L 0<t<T (4.90)
and
Nl 27k(t+T) N7l 2kt
bt %) = ot + )Y xusd T +ur() D xus T 4.91)

k=0 k=0

4.6.1 DFT-Based OFDM Baseband Modulator

A key advantage of using OFDM is that the baseband modulator can be implemented by using an inverse discrete-time
Fourier transform (IDFT). In practice, the computationally efficient inverse fast Fourier transform (IFFT) algorithm is used
to implement the IDFT. Consider the OFDM complex envelope defined by (4.85) and (4.86). During the interval nT < t <
(n + 1)T, the complex envelope has the form

N—1
J2rk(t—nT)

5() = Aur(t—nT) Y xpe T
k=0

N—1 ok
= Aur(t—nT) Y _xue . nT <t < (n+ T. (4.92)
k=0

Now suppose that the complex envelope in (4.92) is sampled at synchronized T second intervals beginning at time nT to
yield the sample sequence

N—1
J2mkm

Xy =3(mT) =AY xpue v . m=0.1,... N—L (4.93)
k=0

Observe that the vector X, = {X,,»}¥_{ is the IDFT of the vector Ax, = A{x,s}}—,. Contrary to conventional notation,
with OFDM it is customary that the lowercase vector Ax,, represents the frequency domain coefficients, as the vector x,, is
the vector of data symbols, while the uppercase vector X,, represents the IDFT time domain coefficients.

As mentioned earlier, a cyclic extension (or guard interval) is usually added to the OFDM waveform as described in (4.88)

and (4.89) to combat ISI. When a cyclic suffix is used, the corresponding sample sequence is

X5 = Xnmw (4.94)
N—1 .
=AY X, m=0,1, .., N+G-1, (4.95)
k=0

where G is the length of the guard interval in samples, and (m)y is the residue of m modulo N. This gives the vector
X5 = {X5, f:::g_l, where the values in the first and last G coordinates of the vector X¢ are the same. Likewise, when a
cyclic prefix is used, the corresponding sample sequence is

X5 m = Xuomy (4.96)
N—1 ok
=AY xue ¥ . m=-G, ....—=1,0, 1, ... N—1L (4.97)
k=0

This yields the vector X§ = {X% V! .. where again the first and last G coordinates of the vector X$ are the same. The

sample interval after insertion of the guard interval, T¢, is compressed in time such that (N + G)T¢ = NT.
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Fig. 4.14 Block diagram of IDFT-based baseband OFDM modulator with guard interval insertion and digital-to-analog conversion

The OFDM complex envelope can be generated by splitting the complex-valued output vector X,, into its real and
imaginary parts, Re(X,) and Im(X,), respectively. The sequences {Re(X, )} and {Im(X, )} are then input to a pair of
balanced digital-to-analog converters (DACs) to generate the real and imaginary components 5;(f) and 5¢(%), respectively,
of the complex envelope 5(¢), during the time interval nT < t < (n + 1)T. As shown in Fig.4.14, the OFDM baseband
modulator consists of an IDFT operation, followed by guard interval insertion and digital-to-analog conversion.

It is instructive at this stage to note that the waveform generated by using the IDFT OFDM baseband modulator is
not exactly the same as the waveform generated from the analog waveform definition of OFDM. Consider for example, the
OFDM waveform without a cyclic guard in (4.85) and (4.86). The analog waveform definition uses the rectangular amplitude
shaping pulse uz () that is strictly time-limited to 7" seconds. As shown in Sect. 4.9.6, the corresponding power spectrum has
infinite bandwidth. Consequently, sampling the complex envelope with any finite sampling rate will lead to aliasing and
imperfect reconstruction.

With the IDFT OFDM baseband modulator, the IDFT outputs are applied to a pair of balanced DACs as explained earlier.
However, the ideal DAC is an ideal low pass filter with cutoff frequency 1/(27;), with a corresponding non-causal impulse
response h(f) = sinc(z/Ty). Since the ideal DAC is non-realizable, a causal, finite-length reconstruction filter must be used
instead. However, such a filter will necessarily generate a waveform that is not strictly bandlimited. In conclusion, the side
lobe structure of the analog waveform definition of OFDM is inherent in the waveform due to rectangular amplitude pulse
shaping, whereas the side lobe structure with the IDFT implementation is introduced by the non-ideal (practical) DAC.

Finally, non-rectangular amplitude pulse shaping can be used with OFDM and may yield a more compact power spectrum
while still maintaining sub-channel orthogonality. However, such pulse shaping will require an extension of the OFDM
symbol beyond T, or with guard interval T, seconds in the time domain. This will be discussed in more detail in Chap. 10.

4.6.2 Adaptive Bit Loading and Discrete Multitone Modulation

A wireless OFDM system generally operates over a frequency-selective fading channel with transfer function 7'(¢, f), such
that the amplitude response |T(¢,f)| varies across the channel bandwidth W. The power spectral density of the additive
noise impairment S, (f) may vary with frequency as well due to the presence of interference. Consider a quasi-static fading
channel, such that the channel remains constant over an OFDM block of duration 7 seconds. For convenience, the time
variable ¢ is suppressed with the understanding that 7(¢, f) = T(f) over an OFDM block, but the channel may change from
block to block. Furthermore, knowledge of the channel is assumed to be available at the transmitter. Shannon [300] proved
that the capacity of a frequency-selective channel with additive Gaussian noise is achieved when the transmitted power 2, (f)
is adjusted across the bandwidth W according to

K_Snn(f)/|T(f)|2 ’ f € WS

Qt(f)z 0. f¢Ws s

(4.98)

where K is a constant chosen to satisfy the constraint
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/ Q) < u. 4.99)
Wy

and £2,, is the average available power to the transmitter. One method to achieve capacity is to divide the bandwidth W; into
N sub-bands of width W,/ Ay, where Ay = 1/T is chosen small enough so that |7(f)|*/S,.(f) is approximately constant
within each sub-band. The signals in each sub-band may then be transmitted with the optimum power allocation £2,(f), while
being individually coded to achieve capacity.

It is clear from (4.86) that the data symbols x,, x for fixed n modulate the nth subcarrier. From (4.98), the transmitter power
should be high when |T(f)|?/S,..(f) is large and small when T(f)/S,,(f) is small. In a practical system, a higher transmit
power admits the use of a larger size signal constellation in sub-bands where |T(f)|*/S..(f) is large, and vice versa. The
technique whereby different sized signal constellations are used on the different OFDM subcarriers is sometimes called
adaptive bit loading or discrete multitone modulation (DMT).

4.6.3 Multiresolution Modulation

In broadcasting applications, it is sometimes desirable to transmit video or audio information in frames that will
simultaneously provide different resolutions, depending on the received signal-to-noise ratio. Low resolution information
is typically of high priority (HP) and must be received with high reliability. High resolution information, on the other hand,
is typically of low priority (LP) and may be received with a lower reliability. The solution is multi-resolution modulation
(MRM), a class of modulation techniques that transmit multiple resolutions in a simultaneous or concurrent fashion, that
differ in their bit rates and/or error probabilities. MRM can be implemented in OFDM schemes by using multiplexed,
interleaved, embedded signal constellations, and others.

Multiplexed MRM divides the OFDM band into subsets of contiguous subcarriers, for example the upper half subcarriers
may be used to transmit HP data symbols and the lower half subcarriers used to transmit an equal number of LP data symbols.
The HP low resolution information can be transmitted by using a smaller signal constellation and/or higher transmit power
for further robustness and reliability. Likewise, the LP high resolution information can be transmitted using a larger signal
constellation and/or lower transmit power. Broadcast service contours can be established for either high definition (both the
HP and LP data streams are decodable) or standard definition (only the HP data stream is decodable) reception.

Interleaved MRM interleaves the different resolutions onto the subcarriers in a cyclic fashion. If there are K different
resolutions, then subcarriers £, £ + K, ¢ + 2K, .. ., are assigned to the £th resolution. Each resolution is then transmitted by
using a different sized signal constellation and/or transmit power level.

Embedded MRM is more subtle and relies upon the use of an asymmetric signal constellation and finds application in
some broadcast video systems. Figure 4.15 shows an example of a 16-QAM embedded MRM signal constellation, that can
be used to simultaneously transmit two different resolutions. In Fig. 4.15, two HP low resolution bits are used to select the
quadrant of the transmitted signal point, while two low LP high resolution bits are used to select the signal point within
the selected quadrant. The relative error probability or reliability between the two priorities is controlled by the parameter
A =d'/d" A < 0.5, where d' is the distance between LP symbols and d" is the distance between the centroids of the HP
symbols. The upper limit on A is due to the fact that the MRM constellation becomes a symmetric 16-QAM constellation
when A = 0.5. As A becomes smaller than 0.5, more power is allocated to the HP low resolution bits than the LP high
resolution bits. For broadcasting applications, this can be used to provide high definition reception over some adjustable
fraction of the service area where standard definition service can be received. At A = 0.5, both resolution classes are treated
equally and the coverage areas for standard and high definition service are the same.

4.7 Continuous Phase Modulation

Continuous phase modulation (CPM) refers to a broad class of frequency modulation techniques where the carrier phase
varies in a continuous manner. A comprehensive treatment of CPM is provided by Anderson et al. [17]. CPM schemes
are attractive because they have constant envelope and excellent spectral characteristics, i.e., a narrow main lobe and fast
roll-off of sidelobes. CPM waveforms find application in satellite communication systems, and cellular telephone systems
notably GSM.
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Fig. 4.15 16-QAM embedded
MRM signal constellation with
two resolutions
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The complex envelope of a CPM waveform has the general form
5(1) = A/ PO T (4.100)
where A is the amplitude, 6, is the initial carrier phase at t = 0, and
t o0
o) = Znh/ Xihe(t — kT)dt (4.101)
(N

k=0

is the excess phase, where £ is the modulation index, {x;} is the data symbol sequence, h¢(¢) is the frequency shaping pulse,
and T is the baud period. The CPM waveform can be written in the standard form

§(t) =AY b(t—nT.x,) (4.102)
where
bt x,) = &2 BiZonly (ke () (4.103)
where x, = (X,,X,—1,...,%0), and an initial phase 6, = 0 at ¢+ = 0 is assumed. CPM waveforms have the following
properties:
* The data symbols are chosen from the alphabet {1, +3, ---, =(M — 1)}, where M is the modulation alphabet size.

* his the modulation index and is directly proportional to the peak and/or average frequency deviation from the carrier. The
instantaneous frequency deviation from the carrier is

o Ldp(n) B
Jaev(t) = . h;xkhf(t kT). (4.104)

* hg(t) is the frequency shaping function, that is zero for t < 0 and ¢ > LT, and normalized to integrate to 1/2. Full response
CPM has L = 1, while partial response CPM has L > 1. Some possible frequency shaping pulses are shown in Table 4.1.
A more compact power density spectrum is usually obtained by using frequency shaping functions having continuous
higher-order derivatives, such as the raised cosine pulse in Table 4.1. The excess phase is continuous provided that the
frequency shaping function /,(¢) does not contain impulses, which is true for all CPM waveforms. When describing CPM
waveforms, it is useful to define the phase shaping function,
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Table 4.1 CPM frequency

! ' Pulse type hy (1)
shaping functions

L-rectangular (LREC) ﬁ urr(t)

L-raised cosine (LRC) ﬁ [l — cos (%)] urr (1)

L-half sinusoid (LHS) | 7 sin(t/LT)urr(t)

L-triangular (LTR) flT (1 - “%;2/2') urr (t)

Fig. 4.16 Phase tree of binary CPFSK with an arbitrary modulation index. CPFSK is characterized by linear excess phase trajectories

0 , <0
B(t) =1 [y h(r)dr , 0<t<LT, (4.105)
1/2 ,t>LT

which is the integral of the frequency shaping pulse. An infinite variety of CPM waveforms can be generated by choosing
different frequency shaping pulses, modulation indices, and modulation alphabet sizes.

4.7.1 Full Response CPM

For a full response CPM waveform with L = 1, the shaping function in (4.103) has the form
b(t, x,) = & (ThEizoxH2mhinp®) () (4.106)

The first term in the exponent of (4.106) represents the accumulated excess phase up to time n7, while the second term
represents the excess phase increment during the time interval nT <t < (n + 1)T.

Continuous phase frequency shift keying (CPFSK) is a special type of full response CPM characterized by the rectangular
frequency shaping function LREC with L = 1. For CPFSK

0 ,1<0
B)=131t/2T ,0<t<T. (4.107)
1/2 ,t>T

CPM signals can be visualized by sketching the evolution of the excess phase ¢ (¢) for all possible data sequences. This
plot is called a phase tree, and a typical phase tree is shown in Fig.4.16 for binary CPFSK. Since the CPFSK frequency
shaping function is rectangular, the excess phase trajectories are linear as suggested by (4.107). In each baud interval, T, the
excess phase increases by mh if the data symbol is 41 and decreases by m# if the data symbol is —1.
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Fig. 4.17 Phase-trellis for MSK

4.7.1.1 Minimum Shift Keying

Minimum shift keying (MSK) is binary CPFSK with modulation index & = 1/2. In this case,
b(t,x,) = /(3 Dimont 50 t) (). (4.108)

The MSK waveform can be described in terms of the phase tree as shown in Fig.4.16 with 2~ = 1/2. At the end of each
symbol interval the excess phase ¢ (¢) takes on values that are integer multiples of 7/2. Since excess phases that differ by
integer multiples of 27 are indistinguishable, the values taken by ¢ (¢) at the end of each symbol interval belong to the finite
set {0, /2, m, 37 /2}. The MSK phase tree reduced modulo 27 yields the MSK phase trellis shown in Fig. 4.17.

An interesting property of MSK can be observed from the MSK bandpass waveform. The bandpass waveform on the
interval nT <t < (n + 1)T can be obtained from (4.108) as

n—1
b4 n t—nT
s(f) = Acos (2nfct + 7 kE:O Xr + Ex,, T )

n—1
Xn s n
—Acos 27 (f+ )i+ Z I, 4.109
COS(JT(f+4T>+2;Xk 2x) ( )

Observe that the MSK bandpass waveform has one of two possible frequencies in each baud interval, given by

1 1
=f - — d =f 4+ — 4.110
fo=fi= 47 an fo =i+ o7 (4.110)
depending on the data symbol x,. The difference between these two frequencies is fy — fp = 1/(2T). This is the minimum
frequency separation to ensure orthogonality between two co-phased sinusoids of duration 7 (Problem 4.7) and, hence, the
name minimum shift keying.

Another interesting representation for MSK waveforms can be obtained by using Laurent’s decomposition [193] (detailed
in Sect. 4.8.3) to express the MSK complex envelope in the quadrature form

§(6) =AY b(t—2nT.x,). 4.111)

where
b(t, Xn) = £2n+1hu(t - T) +j552nha(t) (4112)
and where X, = (2,41, X2.),

Xon = Xon—1X2n (4.113)
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Xont+1 = —XopXon+1 4.114)
g =1 (4.115)
and
. Tt
ha(f) = sin (ﬁ) 1y (7). (4.116)

The sequences, {X,} and {X,,+1}, are independent binary symbol sequences taking on elements from the set {—1, +1}.
The symbols Xy, and Xy, are transmitted on the quadrature branches with a half-sinusoid (HS) amplitude shaping pulse
of duration 27 seconds and an offset of T seconds. Hence, MSK is equivalent to offset quadrature amplitude shift keying
(OQASK) with HS amplitude pulse shaping. This linear representation of MSK is useful in practice for simplified linear
detection of MSK waveforms as discussed in Sect. 5.10.1 of Chap. 5.

4.8 Partial Response CPM

Partial response CPM signals have a frequency shaping pulse /() with duration LT, where L > 1. Partial response CPM
signals typically have better spectral characteristics than full response CPM signals, i.e., a narrower main lobe and faster
roll-off of side lobes.

The partial response frequency shaping function can be written as

-1
hy(t) =Y hy(tyur(t — KT)

k=0

-1
= hyale — kD), 4.117)

k=0

where

hf’k(l) = ]’lf(l + kT)ur(t). (4.118)

Likewise, the partial response phase shaping function can be written as

L—1

B(t) =Y Bult—KT), (4.119)
k=0
where
Bi() = B(t + kT)ur(2). (4.120)
Note that
0 ,t<0
Bi(t) = 3 [o hpa(r)dT , 0 <t <LT (4.121)
B(T) ,t=>T
and

L—1 1
PAGESS (4.122)
k=0
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An equivalent frequency shaping function of duration 7 can be derived by noting that the CPM baseband modulating

signal has the form

x(t) = Y xuhy(t —nT)

It follows that

where

and

where

and

Xm = (.Xm, Xm—1s « -

Finally, the complex envelope of partial response CPM signal can be written in the standard form

where

b(t, x,) = ei2ﬂh( " ﬂ(T,Xi)Jrﬁ(t.x"))uT(t)

and an initial excess phase of zero is assumed.

L—1
=3 xahyst— (1 +0T)

n k=0

L—1
= Z Z xm_khﬂk(t — mT)

m k=0
x(t) = Z he(t — mT, Xp,),

L—1

hy (2, %) = me—khf,k(f)

k=0

x(t) =Y Bt —mT.x,),

L—1
Bt Xm) =D xmiPilt)

k=0

§(t) =AY b(t—nT.x,)

s xm—L-H) .

(4.123)

(4.124)

(4.125)

(4.126)

4.127)

(4.128)

(4.129)

(4.130)

Example 4.2. Consider a partial response CPM waveform with an LREC frequency shaping function. In this case

hy (1) = ﬁuLT(t)-

(continued)
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4.8.1 Phase States

The excess phase of a partial response CPM waveform on the interval nT <t < (n + 1)T is

(1) = 27h / > xihy(z — kT)dr (4.131)
0 =0
n—L n
=mhY x+2rh Y xp(t—kI) (4.132)
k=0 k=n—L+1
=6, +27h Z xeB(t — kT) (4.133)

k=n—L+1
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where
n—L
6, =mhy x  modulo 2 (4.134)
k=0

is the accumulated phase. During the interval nT <t < (n 4 1)T, the excess phase depends on the input data symbol x,,, the
vector of L — 1 previous data symbols, {x,—1,X,—2, ..., X,—r+1}, and the accumulated phase 6,. The state of the CPM signal
at time ¢ = nT, is defined by the L-tuple

S, = (enaxn—laxn—z,u-»xn—L+1)~ (4.135)

Since the vector (X,—1,Xu—2, - .., Xn—r+1) can take on M=~ values, the number of states equals ME1 times the number of
values that 8, can assume.

The modulation index is often restricted to be a rational number, 4 = m/p, where m and p are integers that have

no common factors. This constraint ensures that the number of phase states is finite which is a useful property for the
implementation CPM receivers. If m is even, then

2 1
6, € {o, mm Zxm b )”m} (4.136)
p’ P p
while if m is odd
2 »—1
0, {0, mm 2xm (2P )”m}. (4.137)
p’ P p

Hence, there are p phase states for even m, while there are 2p phase states for odd m. In conclusion, the number of CPM
states is

pMY' | meven
Sul = 4.138
15:] { 2pM*E' | moodd ( )
For example, if h = 1/4, M = 4, and L = 2, then
3 57 3w 7
0}’1 € Oa za £5 - T, _T[» _T[» _T[ (4.139)
4 2 4 4 2 4

and the number of CPM states is 32.

CPM waveforms cannot be described in terms of a signal-space diagram, like QAM and PSK waveforms. However, the
CPM waveform can be described in terms of the trajectories from one phase state to another. Figures 4.18 and 4.19 show
the phase state diagrams for MSK and binary CPM with & = 1/4, respectively. Since binary modulation is used, trajectories
are only allowed between adjacent phase states as shown by the dotted lines in the figures. Since the CPM waveforms have
constant envelope, the complex phaser trajectories will follow along the circle in Figs. 4.18 and 4.19.

4.8.2 Gaussian Minimum Shift Keying

Due to their non-linearity, CPM waveforms have a relatively complicated power spectrum as detailed in Sect. 4.9.7. However,
the bandwidth of a CPM waveform can be approximated using Carson’s rule developed for analog frequency modulation:

BW = (W + foeat)- (4.140)

where W is the bandwidth of the frequency shaping pulse /(¢) and fax is the peak frequency deviation from the carrier.
MSK waveforms have relatively poor spectral characteristics due to the large bandwidth W of the rectangular frequency
pulse shaping h(f) =ur(n. A more compact power spectrum can be achieved by low-pass filtering the MSK modulating
signal



196 4  Modulation and Power Spectrum

Fig. 4.18 Phase state diagram
for MSK

Fig. 4.19 Phase state diagram
for binary CPM with h = 1/4

-1

x(1) gt FM 501

7 h(1) A

Modulator

Fig. 4.20 Pre-modulation filtered MSK. The MSK modulating signal is low-pass filtered to remove the high frequency components prior to
frequency modulation

o0

x() = Y xahy(t—nT) = % > xuur(t—nT) (4.141)

n=—0o0 n=—00

prior to frequency modulation as shown in Fig. 4.20. Such filtering suppresses the higher frequency components in x(z) thus
yielding a more compact power spectrum. Gaussian minimum shift keying (GMSK) is a special type of partial response
CPM that uses a low-pass premodulation filter having the transfer function [234]

2
H(f) = exp {— (%) ¥§ , (4.142)

where B is the 3 dB bandwidth of the filter. It is apparent that H(f) is shaped like a Gaussian probability density function
with mean f = 0 and, hence, the name “Gaussian” MSK. Convolving the rectangular pulse
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Fig. 4.21 GMSK frequency shaping pulse for various normalized premodulation filter bandwidths BT
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—Tec = —u
2T o’
with the corresponding filter impulse response /() yields the frequency shaping pulse
1 27 t/T+1/2 27.[2 BT 2X2
hy(t) = 5| = (BT) / exp | -2 ED
2 In2 t/T—1/2 In2
1 t/T—1/2
= — Q _—
2T
where

) e()

© ] )
— o amx7)2
0(@) f e

2 In2

= 4x2(BT)?

Figure 4.21 plots the GMSK frequency shaping pulse (truncated to 57 and time shifted by 2.57 to yield a causal pulse) for
various normalized premodulation filter bandwidths BT. The GSM cellular standard uses GMSK with BT = 0.3.
and integrating by parts, yields

o [ =33 2) ;)
where

The phase shaping function is the integral of the frequency shaping function as defined in (4.105). Using h¢(¢) in (4.143),

G(x) =x<I>(§) +

(4.143)

(4.144)

(4.145)

(4.146)

(4.147)
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Fig. 4.22 GMSK phase shaping pulse for various normalized premodulation filter bandwidths BT'

and

() = /_ " \/Lz_ne—xz/zdx. (4.148)

Figure 4.22 plots the GMSK phase shaping pulse (truncated to 47 and time shifted by 27 to yield a causal pulse) for
BT = 0.3. Observe that f(c0) = 1/2 and, therefore, the total contribution to the excess phase for each data symbol remains
at £7/2.

The change in excess phase over the length-T baud interval from —7/2 to T/2 is

[e.]

¢(T/2) = $(=T/2) = wxoBo(T) + 7 Y xuPu(T), (4.149)
g
where
T/2—nT
Bu(T) = / hy (). (4.150)
—T/2—nT

The first term in (4.149) is the desired term, and the second term is the intersymbol interference (ISI) introduced by the
Gaussian premodulation filter. While the premodulation filter will yield a more compact power spectrum, the induced ISI
will degrade the bit error rate performance and may necessitate an equalizer in the receiver. However, the induced ISI is
not severe and in many cases, including GSM cellular receivers, an equalizer is required anyway to combat the ISI due to
channel delay spread.

4.8.3 Linearized GMSK (LGMSK)

Like all other CPM waveforms, GMSK is a nonlinear waveform. Similar to the linearized representation of MSK in
Sect.4.7.1.1, it is desirable to find a linearized representation for GMSK in order to simplify receiver processing. Several
linear approximations have been suggested in the literature for GMSK. Here, an approximation based on Laurent’s
decomposition [193] is considered. Laurent showed that any binary partial response CPM signal can be represented exactly
as a linear combination of 2-~! partial-response pulse amplitude modulated (PAM) signals, viz.,
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oo 271

§0 =) Y &M, (t—nT), (4.151)

n=0 p=0

where

L—1
op(t) = c) [Jc(t+ (n+ Leny)T) (4.152)

n=1

L—1
Uy = Xn:xm = XumEmp (4.153)
m=0

m=1

and g, , € {0, 1} are the coefficients of the binary representation of the index p, i.e.,

p=cop+261,+-+2 e, (4.154)
The basic signal pulse c(7) in (4.152) is
sin(?nl1i(l)) 0<t<lLT
. osinmw ’ —
ol) = { SnlmimBuLr) pp oy copy (4.155)
0 , otherwise

where §(¢) is the CPM phase shaping function.

The above linear decomposition will yield an exact representation of the GMSK waveform. However, the fact that 217!
pulses are needed to represent the waveform means that the optimum coherent receiver will need 2! filters that are
matched to the set of 27! pulses {c,(f)}. Usually, the number of matched filters can be reduced to K < 257! when a
good approximation to the CPM signal can be obtained with K of the set of 257! pulses {c,(r)}. Often the pulse co(t)
contains most of the signal energy, so the p = 0 term in (4.151) can provide a good approximation to the CPM signal. From
Fig.4.21, observe that the GMSK frequency shaping pulse spans approximately L = 4 symbol periods for practical values
of BT. This means that the GMSK waveform can be constructed from the superposition of eight pulses, c,(¢),p = 0,...,7.
Numerical analysis shows that, with BT = 0.3, the pulse c(¢) contains 99.83% of the energy and, therefore, a linearized
GMSK waveform can be derived by using only c¢y(¢) and neglecting the other pulses. This yields the waveform

o0
(1) = Z ¢/ heno o (1 — nT), (4.156)
n=0
where, with L = 4,
3
co(t) = [ et +nD) (4.157)
n=0
n
Wno = Y X (4.158)
m=0

Since the GMSK phase shaping pulse is non-causal, when evaluating c¢() in (4.155) the truncated and time shifted GMSK
phase shaping pulse

~

B(1) = B(t—2T) (4.159)

is used with L = 4 as shown in Fig. 4.22, where §(¢) is defined in (4.146). Figure 4.23 plots the resulting LGMSK amplitude
shaping pulse c((¢) obtained from (4.157).
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Fig. 4.23 LGMSK amplitude shaping pulse for various normalized premodulation filter bandwidths BT

For the modulation index & = 1/2 used in GMSK,

and it follows that

where

ano = €290 € {£1, +j},

=AY (@nﬂco(t — 20T —T) + janco(t — 2nT)) :

n

Xon = Xon—1X2n
Xon+1 = —X2nX2n+1

A

X—1 = 1.
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(4.160)

4.161)

(4.162)
(4.163)
(4.164)

This is the same as the OQPSK representation for MSK in Sect.4.7.1.1, except that the half-sinusoid amplitude pulse
shaping function in (4.116) is replaced with the LGMSK amplitude pulse shaping function defined in (4.157). Note that
the LGMSK pulse has length of approximately 47, while the pulses on the quadrature branches are transmitted every 27
seconds. Therefore, the LGMSK pulse will introduce ISI that must be corrected by an equalizer to avoid a performance
degradation as mentioned earlier. However, as shown in Sect. 4.9.8, GMSK has excellent spectral properties.

4.8.4 Tamed Frequency Modulation

Tamed frequency modulation (TFM) is a special type of partial response binary CPM that was introduced by de Jager and
Dekker [91]. TFM also has excellent spectral properties, similar to GMSK. To define TFM waveforms, recall that the MSK
excess phase obeys the difference equation

&(T +T) — (nT) = %xn.

(4.165)
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The TFM excess phase trajectory is “smoothed” by imposing the constraint

4 2" 4

¢(nT +T)—¢(nT) = % ( (4.166)

Xn—1 Xn Xn+1 )
s

such that the maximum change in excess phase over any bit interval is 7 /2. To complete the definition of the TFM signal, an
appropriate frequency shaping pulse /¢ (f) must be defined. The TFM excess phase can be written as

$(0) =7 Y xp(t—KT), (4.167)
k=0
where
B(t) = / by (4.168)
0

and where a modulation index & = 1/2 is assumed. The excess phase change over the time interval [nT, (n + 1)T] is

$((n+ DT)—p(nT) = 1 »_x (BT + T — kT) — B(nT — kT))

k=0
o0
=7 Xt (BUT +T) — BUT)) . (4.169)
{=n
Expanding (4.166) in more detail gives
(... 04 2zt Xn ) e 04
(T +T) = $(uT) = 7 ( im0 T 2 T 0 4 ) (4.170)
Comparing (4.169) and (4.170) gives the condition
1/8, £ =1
BMU+DT)—-BUT)=41/4, £=0 . 4.171)
0 , otherwise
From the definition of B(z) in (4.168) the above equation leads to
+nr 1/8 > |€| =1
/ he(t)dt = 1/4, £=0 . 4.172)
o 0 , otherwise

One way of obtaining /¢(¢) is to use a pulse Ay () that satisfies Nyquist’s third criterion [244, 258]

hy(H)dt =

/(24+1)T/2 1, £=0 (4.173)
Qe—1y7/2 0, £#0 .

and generate /,(f) by using scaling and delay operations through the filter shown in Fig. 4.24. The transfer function of this
filter is

H(f)

11 1
Z 4 Ze 2T 4 _op2nfT
178 Ty

3 cos’(efT). (4.174)
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Fig. 4.24 Filter to generate a TFM frequency shaping pulse

The overall pulse A¢(¢) has the form
Hy(f) = Hy(NH(f)
1
= HN(f)5 cos*(mfT). (4.175)

The filter H(f) ensures that the phase constraint in (4.166) is satisfied. However, Hy (f) determines the shape of the phase
trajectories and can, therefore, influence the TFM power density spectrum. In general, Hy(f) has the form

7T

Hy(f) = WM

), (4.176)

where N, (f) is the Fourier transform of a pulse that satisfies Nyquist’s first criterion [244, 258]. One example of such a pulse
is the raised cosine pulse P(f) defined in (4.47). Consider, for example, the ideal Nyquist pulse (raised cosine pulse with

p =0

Ni(f) = b 0= V'.f 12r (4.177)
0, otherwise
Using (4.175)—(4.177) gives
1T cos? 0<|f| <1/2T
Hy() = | 2em <D 0= V] = 12T (4.178)
0, otherwise

The corresponding frequency shaping pulse A/(f) is plotted in Fig. 4.25. Note the close similarity to the GMSK frequency
shaping pulse in Fig. 4.21.

Generalized TFM (GTFM) is an extension of TEM where the phase difference has the form
b4
¢(mT +T)—p(nT) = 3 (axp,—1 + bx, + ax,+1) . (4.179)

The constants a and b satisfy the condition 2a + b = 1 so that the maximum change in excess phase during one bit period is
equal to £/2. A large variety of waveforms can be constructed by varying the value of b and the pulse response N, (f) in
(4.176). TFM is a special case of GTFM where b = 0.5.
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Fig. 4.25 TFM frequency shaping pulse

4.9 Power Spectrum

A digitally modulated bandpass waveform can be written in the generic form
s(t) = Re {5(r)e’*™"}

{30! + 5 (e !y (4.180)

1
S 2
Modulated waveforms belong to the class of cyclostationary or periodic wide-sense stationary random processes. The
autocorrelation function of s(z) is

bss(v) = E[s()s(t + 7)]

1 . . . .
— ZE [(g(t)eﬂnfct 45 (t)e—]anct> (g(l + _()e/(angt-i-Zﬂfcr) 45 ([ + _[)e—](2nfct+2nfrr))]
1 4 , o
= 7 [EBO3( + 0]/ + E[S(05" (0 4 1)) ™7
+E[F* (D)5t + 7)™ + E[§* (0)5* (¢ + 1)]e /Wt 2] (4.181)
If 5(¢) is a wide-sense stationary random process, then the exponential terms that involve the time variable f must vanish,

i.e., E[s(1)s(t + t)] = 0 and E[5*(1)5* (¢ + 7)] = 0. Substituting 5(t) = 5;(f) + j5o(?) into these two expectations gives the
requirement

55, (1) = Els1(0)5:(t + 1)] = E[s0(0)50(1 4 )] = 543, (7) (4.182)
P35 (T) = ES1(050(t + )] = —E[So(031(t + 1)] = =55, (7). (4.183)

Using these results,
bss(7) = %%(z)éz”ﬂ‘f + %qs;g(r)e‘ﬂ”ﬁ‘f (4.184)

= Re {¢5(1)e*™7} (4.185)
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where

| B
du(t) = EE [5* (05t + 1)]
= sy, (T) + s, (T) (4.186)
Finally, the power density spectrum is the Fourier transform of ¢ (7) in (4.184), i.e.,

1
Suf) = 5 (S5 =1 + S5 1)) (4.187)

where Si(f) is the power density spectrum of the complex envelope 5(7). Note that Si(f) is real though not necessarily
even, although 5(¢) and ¢5(7) are complex-valued; this property follows from the fact that ¢(t) = ¢%(—7) as shown in
Appendix A. It follows that

1
Sss(f) = E(Sa(f —fo) + Ss(=f —ﬂ)). (4.188)

From the above expression, observe that the psd of the bandpass waveform s(¢) is real and even, and is completely determined
by the psd of its complex envelope 5(¢) and the carrier frequency f..

4.9.1 Psd of the Complex Envelope
The complex envelope of any digitally modulated signal can be expressed in the standard form
() =AY b(t—nT.x,). (4.189)
The autocorrelation of 5(¢) is
bt t+1) = %E [5*(05(t + 1)] (4.190)

= A; Z ZE [6*(t = iT.x))b(t + T — kT, x)] .
i k

Observe that 5(¢) is a cyclostationary random process, meaning that the autocorrelation function ¢z (¢, t 4+ 7) is periodic in ¢
with period T'. To see this property, first note that

5t +T.t+ T+ 1)
A? .
= EZZE[”*(HT—ZT,xi)b(tJr T+ v — kT, xp)]
i k

2
= A? DSOS E[* e —iT.xp41)b(t + T = KT.xp011)].
['/ k/

(4.191)
Under the assumption that the information sequence is a stationary random process it follows that
bt + Tt +T+1) = A YOS E[p*—iT.xp)b(t + T — KT.x0)]
2 7K
= ¢t t+ 7). (4.192)

Therefore 5(¢) is cyclostationary.
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Since 5(7) is cyclostationary, the autocorrelation ¢ (7) can be obtained by taking the time average of ¢5;(¢ + 7, 1), given by

¢5(1) = (st 1+ 7))
A2

=5 ZZ % /OTE[b*(t— iT,x)b(t + 7 — kT, x;)] dt
—1T+T

- Z / E[b"x)b(z + = (k= DT.x0)]dz

= Z / E[b*(z,x)b(z + T — mT,X4) | dz

_ Z / E[b* (. x0)b(c + T —mT.x,)] de

= Z/ [6*(z.x0)b(z + T — mT, x,) ] dz, (4.193)

where ( - ) denotes time averaging and the second last equality used the stationary property of the data sequence {x;}. The
psd of 5(¢) is obtained by taking the Fourier transform of ¢(),

_AZ (e%e] [ele] o
S=(f) =E o7 Z /_ N /_ _ b*(z.X0)b(z + T — mT, X,,)dze 7" dr

[ A2 00 . o0 4 .
=E ﬁ Z [m b*(z, Xo)e*™dz /;oo b(z + T — mT, x,,)e 7> @HT=mD) ¢ dze 27T

=E Z/ b*(Z, Xo)eﬂnfde/ b(‘L’ Xm)e—ﬂnfr dfle_jznﬁ"Tj|

AZ

= ﬁ E [B*(f.x0)B(f. X,n) | e 7", (4.194)

where B(f, x,,) is the Fourier transform of b(t, x,,). To express the power density spectrum in a more convenient form, let

Spm(f) = [B (f+ X0)B(f, Xm) ] - (4.195)

Then
A? .
S5() = - > Spm(f)e . (4.196)

Note that the psd in (4.196) depends on the correlation properties of the information sequence x,, and the form of the
generalized pulse shaping function b(¢, X,,,). Now suppose that the data characteristics are such that x,,, and x, are independent
for |m| > K. Then

Spm(f) = Spx(f), |Im| > K, (4.197)

Note that expectation and integration are linear operations and their order can be exchanged.
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where
1
Spx(f) = iE [B*(f.x0)| E[B(f. Xu)]
1
= QE [B*(f.x0) | E[B(f. X0)]
1
=5 BBEx)I, Iml = K. (4.198)
It follows that
S=(f) = S(f) + S4(P), (4.199)

where
2

S50 = A7 Z (Sb,m(f) - Sh,K(f))e_jzﬂfmT

|m|<K

A2 .
S5 = = Spk() Y e (4.200)

The terms S5.(f) and sté(f ) represent the continuous and discrete (line) portions of the psd. The fact that S%(f ) represents the
discrete portion can be seen more clearly by using the identity

Ty e =3 (f _ ;) (4.201)

to write

2
SL(f) = (i;) S 38 (F - %) (4.202)

Finally, by using the property Sy —,(f) = Sj;,,(f), the continuous portion of the psd can be written as

A2 A2

K
S2() = = (8000 = S0k + T D7 (o) = Sux () €7 + (S}, (1) = So () )

m=1

AZ
2Re

K
- > (Sb,m(f) - Sb.K(f))e‘ﬂ"”'“T (4.203)

m=1

= L (S0 =50k +

Note that the ensemble average and Fourier transform are interchangeable linear operators. Therefore, if the complex
envelope 5(¢) has zero mean, i.e., E[b(¢, X()] = 0, then E[B(f, xo)] = 0. Under this condition

1
Srk(f) = 5 [EIB(, x0)]|> = 0. (4.204)

Hence, if b(#,Xo) has zero mean, then Si(f) contains no discrete components and Si(f) = S (f). Conversely, if b(z, Xo)
has non-zero mean, then S;(f) will contain discrete (line) components. Another important case arises with uncorrelated
zero-mean data, where S, x(f) = 0, K = 1. In this case, only the term S, o(f) remains and

A2
Ss(f) = 751;,0()”) (4.205)

where

Spo(f) = %E[IB(f, x0)|*] - (4.206)



4.9 Power Spectrum 207

4.9.1.1 Alternative Method

An alternative method of computing the psd is as follows. From the first line in (4.194)

A2 m w . .
S5(f) =E 3T Zm: /_oo /_oo b(z,X0)b* (z + T — mT, X,,)dze 72" dr
AZ [es) o0 ‘ , '
o Z /—oo /_oo E[b(z. x0)b™ (z' %) | 727" dedr e, (4.207)
Therefore, S, ,(f) is given by the double Fourier transform

o0 o0 . ,
Spm(f) = / / Gpm(z, T)e 7T dzdr (4.208)
—00 J —00
where

1
$om(z, ) = JB [b(z. %0)b™ (/. X)] . (4.209)

4.9.1.2 Linear Full Response Modulation

Consider linear full response modulation schemes where b(t,x,) = x,h,(t) and B(f,x,) = x,H,(f). In general, the data
sequence {x,} will be correlated with autocorrelation function ¢,,(m). From (4.195),

Spm(F) = pum) [Ha (), (4.210)
where
1
Pu(m) = EE[xZ‘me]- 4.211)

Hence, from (4.196) the psd of the complex envelope is

A 2
%mz;me%m, (4.212)
where

Se(f) =Y puc(m)e 7. (4.213)

Note that the psd is the product of two components; one depends on the squared magnitude of the amplitude shaping function
and the other depends on the correlation of the data sequence. With uncorrelated data symbols

Spo(f) = o |H, (I (4.214)

1
Smm=5mﬁmmFJMzL (4.215)

where i, = E[x,] and 02 = %E[|xk|2] are the mean and variance of the data symbols, respectively. The psd S (f) is then
given by (4.199), where

A

d ’ n
S0 = 72561 () D8 (f— ;) (4.216)
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A2
S(f) = T (Sp.0(f) — Sp.1(F)) -

If . = 0, then S, 1 (f) = 0 and the psd has the simple form

A2 2 2
Sx(f) = ol (P

In this case, the psd only depends on the amplitude shaping pulse 4, ().

4.9.1.3 Linear Partial Response Modulation

4  Modulation and Power Spectrum

4.217)

4.218)

Consider linear partial response modulation schemes where /,(f) has duration LT. Following the development in Sect. 4.8

the generalized shaping function has the form

b(ts Xm) = ha(tv Xm)
L—1
= me—khu.k(t)7
k=0

where
ha,k(t) = ha(l + kT)uT(t)

Taking the Fourier transform of (4.219) gives

L—1

B(f, Xm) = Z Xim—kH i (f)

k=0

From (4.195),

1 L—1 L—1
Sb.m(f) = EE [Z xi[H:j(f) me—kHa.k(f):|
=0 k=0
L—-1 L—1
= Gue(m —k + OHZ  (HHax(f).
k=0 £=0

(4.219)

(4.220)

4.221)

(4.222)

For the special case of uncorrelated zero-mean data symbols, ¢, (m — k + £) = 028(m — k + £). Hence,

L—1
Som(f) = 07 Y Hr o (D Ham+o(f)
{=0

where
oy = lE[|)Co|2]
. 2

is the variance of the data symbols.

(4.223)
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Example 4.4 (Duobinary Signaling). For duobinary signaling, L = 2 and h,(f) = h,,(t) = sinc(z/T) and
H,o(f) = H,1(f) = Trect(fT), where

< L
rect(]‘T) — 1 ’ lf' — 2T

0, elsewhere

With uncorrelated zero-mean data symbols

%E (5 H o () + X2 Hy 1 () (nHao(F) + Xm—1Ha ()]

2027 rect(fT) , m=0
= { o2T?rect(fT) , |m| =1
0 , otherwise

Sb,m (f)

and from (4.196)

S5 (f) = 2A*To? cos*(mfT)rect(fT). (4.224)

Example 4.5 (Modified Duobinary Signaling). For modified duobinary signaling, L = 3 and A, o(¢) = h,2(t) =
sinc(¢/T) and h, 1 (#) = 0. With uncorrelated zero-mean data symbols,

202T*rect(fT) , m =0
Spm(f) = § —02T*rect(fT) , |m| =2
0 , otherwise

and from (4.196)

Sx() = 2A2T(fx2 sin? (27 fT)rect(fT).

4.9.2 Psd of QAM

The psd of QAM with uncorrelated zero-mean data symbols is given by (4.218). If h,(t) = ur(t), then

i a2 2 sin(fT) 2
Ss(f) = ATo; (—nfT ) . (4.225)

With root-raised cosine pulse shaping, |H,(f)|> = P(f) has the form defined in (4.47) with h,(¢) in (4.50). The root-raised
cosine pulse is non-causal. When the pulse is implemented as a digital FIR filter, it must be truncated to a finite length
T = LT. This truncation produces the new pulse /1,(f) = hy(f)rect(t/LT). The Fourier transform of the truncated pulse /,(7)
is H, () = H,(f) * LTsmc(nfLT) where * denotes the operation of convolution taken over the frequency variable f. The
psd of QAM with the pulse ,(f) can again be obtained from (4.218) by simply replacing H,(f) with H,(f). As shown in
Fig. 4.26, pulse truncation can lead to significant side lobe regeneration.
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Fig. 4.26 Psd of QAM with a truncated square root-raised cosine amplitude shaping pulse with various truncation lengths; f = 0.5. Truncation
of the amplitude shaping pulse leads to side lobe regeneration

4.9.3 Psdof PSK

For PSK signals with the uncorrelated data symbols and the generalized shaping function in (4.61), the psd is given by
(4.218). Hence, PSK signals have the same psd as QAM signals. As such, the psd with truncated root-raised cosine amplitude
pulse shaping is shown in Fig. 4.26.

4.9.4 Psd of OQPSK

For OQPSK, the generalized shaping function is
b(t,Xy) = b(t, xn) = X1nha(t) + jxonha(t —T/2) (4.226)
where x;,, X0, € {—1/+/2, +1/+/2}. It follows that
B(f. %) = (x10 + jigne™™""/?) Ho(f) (4.227)

With uncorrelated data symbols,

$10() = SE (I8¢ %0/’

1
= EIHa(f)I2 (4.228)
Therefore,
A2
Ss(f) = ﬁlHa(f)l2 (4.229)

Hence, OQPSK has the same psd as QPSK. However, OQASK has a lower peak-to-average power ratio than QPSK.
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4.9.5 Psdof n/4-DOPSK

To find the psd of 7 /4-DQPSK, the autocorrelation

1
Bz, 7)) = EE[b*(z, X0)b(t', xu)] . (4.230)

is first computed, where b(t, x,,) is defined in (4.70). For m > 0,

1 T m
¢b,m(z’ T/) = EE |:ha(z) €Xp {]Z ;xk} ha(‘c/)i|
1 ]T m ,
= EE |:eXp {]Z ;xk§ j| ha(2)ha(T")
=0. (4.231)
Form =0,
1A l A l 1A
$0(2.7) = SE[ha(Dha()] = Sha(@ha(@). (4.232)
Taking the double Fourier transform gives
[e%e) o) o,
S0 = [ [ note. e zae
—o0 J—00
1 2
=3 |H,(f)|” . (4.233)
Finally, the psd is
Ss(f) = A RG] (4.234)
AN - 2T a . .

Just like OQPSK, 7/4-DQPSK has the same psd as QPSK. However, as discussed earlier, 7/4-DQPSK has a lower peak-
to-average power ratio than QPSK.

4.9.6 Psdof OFDM

Recall that the OFDM waveform with guard interval is given by (4.88) and (4.89). The data symbols x,,x, kK = 0, ..., N—1 that
modulate the N subcarriers are assumed to have zero mean, variance 6> = %E[lxn_k|2], and they are mutually uncorrelated.
In this case, the psd of the OFDM waveform is

A2
Ss(f) = —Spo(f), (4.235)
T,
where

1
Spo(f) = EE [|B(f, X0)|2], (4.236)
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Fig. 4.27 Psd of OFDM with N = 16,a, = 0
and
N—1 N—1
B(f,xq) = Zxo,kTsinc(fT —k) + Zxo’kothsinc(ag(fT — k)T, (4.237)
k=0 k=0

Substituting (4.237) into (4.236) along with T = NT and T, = (1 + «,)T yields the result

N—1

Z sinc?(NfT; — k)

8 k=0

1
14+«

Sx(f) = CIXZAZT(

=

az —1
+—= sinc? (g (NfTs — k) (4.238)
I+ o .

~
I

N—1
++ zfg cosQuNfT,) Y sinc(NfT, — k)sine(ery (NFT, — k) )) '

o
8 k=0

The OFDM psd is plotted in Figs.4.27 and 4.28 for N = 16,0, = O and N = 16,0, = 0.25, respectively. Observe
the effect of the OFDM guard interval on the psd. Likewise, Figs.4.29 and 4.30 plot the psd for N = 1024, o, = 0 and
N = 1024, a, = 0.25, respectively, where the effect of increasing the block size N can be observed. When plotting the
above figures, the index k was replaced with k — (N — 1)/2 in the argument of the sinc functions in (4.239) to center the
spectrum around 0 Hz. Note that the psd is plotted against the normalized frequency fT. To avoid a reduction in data rate,
the modulated symbol period with a cyclic extension is 7% = T,/(1 + o). Hence, the Nyquist frequency in this case is
1/2T8 = (1 + o) /2T, which shows a bandwidth expansion due to the guard interval.

4.9.6.1 Psd of OFDM with IDFT Baseband Modulator

It is interesting to examine the OFDM power spectrum when the OFDM complex envelope is generated by using an IDFT
baseband modulator followed by a balanced pair DACs as shown in Fig. 4.14. The output of the IDFT baseband modulator
is given by {X#} = {X3§  }, where m is the block index and
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Fig. 4.28 Psd of OFDM with N = 16, a, = 0.25
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Fig. 4.29 Psd of OFDM with N = 1024,a, = 0

X’im = Xn,(m)N (4.239)

N—1 _
=AY xgeV, m=0,1,.., N+G—1. (4.240)
k=0

The power spectrum of the sequence {X$} can be calculated by first determining the discrete-time autocorrelation function
of the time domain sequence {X$¢} and then taking a discrete-time Fourier transform of the discrete-time autocorrelation

function. The psd of the OFDM complex envelope with ideal DACs can be obtained by applying the resulting power spectrum
to an ideal low-pass filter with a cutoff frequency of 1/(27¢) Hz.

213
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Fig. 4.30 Psd of OFDM with N = 1024, a, = 0.25

The time domain sequence {X$} is a periodic wide-sense stationary sequence having the discrete-time autocorrelation
function

Pxexe(m, L) = %E[(Xﬁm)*xf’m | (4.241)
N—1N—1 1 . ‘ '
=A? Z Z EE[x;kxn,i]e/W‘*’f"’“’"“@ , (4.242)
k=0 i=0
form=0,....N+G—1. (4.243)

The data symbols, x, x, are assumed to be mutually uncorrelated with zero mean and variance axz =1E[x,?]. Using the fact,
that Xﬁym = Xy, (m)y» 1ves

m=0,....,G—1,£{ =0, N

Ac? m=G,....N—1,£{=0
) = x U ’ . 4.244
Pxexs (m. ) m=N,...N+G—1,0=0, N (4.244)
0 otherwise
Averaging over all time indices m gives the time-averaged discrete-time autocorrelation function
Ao? =0
Pxexe () = | yogAo? {=—-N,N. (4.245)
0 otherwise

Taking the discrete-time Fourier transform of the discrete-time autocorrelation function in (4.245) gives

o0
Sxexz (f) = Z Dxexe (£)e 72T

{=—00

— a0 (14 Gt G s
* N+G N+G

2G
= Ao? (1 + e cos(2anT§)) . (4.246)
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Fig. 4.31 Psd of IDFT-based OFDM with N = 16, G = 0. Note in this case that 7¢ = T

Finally, it is assumed here that the sequence {X¢} = {X7  } is passed through a pair of ideal DACs. The ideal DAC is a
low-pass filter with cutoff frequency 1/(27¢¥). Therefore, the OFDM complex envelope with an ideal DAC has the psd

S5(f) = Ao? (1 + cos(anNTf)) rect (fT%) . (4.247)

N+G
The OFDM psd is plotted in Fig.4.31 for G = 0, where it has the ideal rectangular form rect(fTy) for any block size N.
Figures 4.32 and 4.33 plot the psd for N = 16, G = 4, and N = 1024, G = 256, respectively, where the effect of the cyclic
guard interval and an increase in the block size N can be seen.
Finally, the psd plotted in Figs.4.31, 4.32, and 4.33 assumes an ideal DAC. A practical DAC with a finite-length
reconstruction filter will introduce side lobes into the spectrum. Side lobes are inherently present in the continuous-time

OFDM waveform in (4.88) and (4.89) due to the use of rectangular amplitude pulse shaping on the subcarriers. However,
they are introduced into the IDFT implementation by the non-ideal (practical) DAC.

4.9.7 Psd of Full Response CPM

Recall that the generalized shaping function for a CPM waveform is given by (4.103). To compute the psd, first define the
auxiliary function

Pt x,) 2 PO (p), (4.248)
such that
b(r.x,) = ™ Ti=0% (1 x,,) (4.249)
and calculate the mean and autocorrelation function of r(z, x,,). If M-ary signaling is used with the values of x; defined by

xef2m—1-M:m=1,2, ---, M} (4.250)
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Fig. 4.32 Psd of IDFT-based OFDM with N = 16,G = 4
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Fig. 4.33 Psd of IDFT-based OFDM with N = 1024, G = 256

then

m, (1) 2 E[r(t.x,)]
T
— M Z e/27th(21—I—M)/S(t)uT(t)

i=1

= Dy (2rhB(t))ur(?). 4.251)
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where
in(M.
Du(x) £ Sm(. %) (4.252)
M sinx
is the Dirichlet function. Also
1
Grm(t. 1) = EE[r*(t, x0)r(t', )] . (4.253)
Evaluating the above expression for m = 0 gives the following result which will be used later
/ 1 * /
Gro(t, 1) = EE [ (2. x0)r (7', x0) ]
— lE [e*j2ﬂhX0ﬂ(t)ei2ﬂhXOﬂ(t/)] ur (H)ur(t)
2
_ g [e—ﬂﬂhm(ﬂ(t)—ﬁ(l/))] wr(ur(f)
2
1
= 3w (27h(B(@) = B urur(r). (4.254)
To evaluate the psd, it is also necessary to compute the autocorrelation of (¢, x,,). This can be done as follows:
/ 1 * /
d)b,m(tv t) = EE [b (f, XO)b(Z vxm):l
1 B . m—
= EE e TS0 (t,xo)r(t/,xm)]
1 [ /m—1
=3E (l_[ (T, xk)) (@, xo)r(t’,xm)}
L \k=0
[ /m—1
1 " * * /
= 5E [ @ x0) | r* e xo)r* (T.xo)r(@ . xa) | - (4.255)
L \k=1
Now suppose that the data sequence is uncorrelated. Then for m > 0
1 _
Gom(t, ) = B [m,(T)]" 1mr'(t)¢r,0(Tv 7)
1 _
= 5 Du(eh)"™" Dy (2hB @)Dy ( 27h(B(T) = BW) ) ur (ur (), (4.256)
where (4.254) has been used. Likewise, for m = 0
1
Ppo(t, 1) = EE [b* (1. x0)b(1, X0) |
= lE [e—jZNhXO(ﬂ(t)—ﬂ(l/))] uT(t)uT(t/)
2
1 / /
= 5Du ((27h(B(®) = BN ur (ur (¥
= ¢.0(t,1). (4.257)

Finally, the psd is obtained by using (4.254) and (4.257) along with (4.196) and (4.208).
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4.9.7.1 Alternative Method

There is an alternate method for obtaining the full response CPM psd that provides more insight. Using (4.196) along with
the property S, —(f) = S}, (f) yields

A2 ad -
- — —j2nfmT
Sm(f) = ? (Sb,O(f) + 2Re EZI Sb,m(f)e J2T, }) . (4.258)
Taking the double Fourier transform of (4.257) and (4.256) gives
Sro(f) m=0
Spm(f) = . ~ , 4.259
banlf) % T (DOMPOME) m> 0 (4259

where
m" N (T) £ [Dy (i)™

M,(f) & Z[m, ()] = F[DyQ@rhB()ur()]

—

W3 () 2 SB[ (TR (. x0)] = SE [ 7R (T x0)]

\S]

Z | - ] denotes the Fourier transform and

R(f.x0) = F[r(t, x0)] = F [*"FOur(r)]. (4.260)
Then,
A? N ad ‘
Ss(f) == (Sr.o(f) +2Re § M, ()M (f) Zl m:?"l(T)e‘fz”ﬁ"T} )
A? . > . .
== (s,,o(f) +2Re M, (M (f) Y _ [m(T)e /T]" e2m/T } ) .
n=0
(4.261)
Observe that
|m(T)e ™| = |m(T)| = [Dy(xh)| < 1. (4.262)
The implication of equation (4.262) is that two separate cases must be considered when evaluating the psd.
Case 1: |m,(T)| < 1
In this case the sum in (4.261) converges such that
S=(f) = A; (S,,O(f) +2Re e%%%) . (4.263)

and the psd has no discrete components.
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Case 2: |m,(T)| =1
This case is possible only if
Im,(T)| = [E[e""]| = 1. (4.264)
For this condition to be true,
T = ¢ |V k, (4.265)
where c is the same constant for all k. Since this must be true for x; = 1, it follows that ¢ = 7/ and
xxth=mh  mod 27) Vk. (4.266)

This means that 4 must be an integer, and when / is an integer

m(T) = E[r(T, x0)] = &™" (4.267)
and
M*(f) = M*(f)e™. (4.268)
Hence, the psd is
A? >, . i
S"ﬁ(f) = ? (SrO(f) + |Mr(f)|22Re Z e}2ﬂ(f27.)mT§ )
m=1
A2 ad o (D
=7 (Sr,o(f) — M. (O)I> + M, (f)? Z e—ﬂ”(f—zr)'”>
A2 , 1 ) - h n
=7 (Sr.o(f) — M. (HI” + ?|Mr(f)| n;oofs (f— o ;))
A A\ & h n\|? h n
= (50 -m0R)+ (3) X e (r+7) 5(r-55-3): (4.269)

n=—0o0

Clearly, the second term in the above expression is a discrete spectral component. Hence, integer values of £ lead to discrete
spectral components. Since discrete spectral components are generally undesirable, integer values of & are typically not used.

4.9.7.2 Psd of CPFSK
With CPFSK, the phase shaping pulse is given by (4.107). Hence,
T oo
R(f,x0) = / T ey
0

= Te/mIT=m0/Dginc ((fT — hxo/2)) (4.270)
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where xg € {1, +3,...,£(M — 1)}. It follows that
M, (f) = E[R(f. x0)]

M
T .
= > e T Dsing ((fT — hx,/2)) (4.271)

m=1

.0 = 5E[IRG 200 ]

-
= o > sine® ((fT — hx/2)) (4.272)
m=1

M
~ T .
M*(f) = I § T Dsine (T — x,uh/2) . (4.273)
m=1

These expressions are used in (4.263) to obtain the psd.
For binary M = 2 CPFSK,

2

S,0(f) = TT (sinc®(fT — h/2) + sinc®(fT + h/2)) (4.274)
M,(f) = g (e T+ Dsine (fT + h/2) + e~ Dsinc(fT — h/2)) (4.275)
M*(f) = g (™MD sine (fT + h/2) + ™M Dsine(fT — h/2)) (4.276)
m,(T) = Dy(hr). (4.277)

When £ is an integer, the psd has both continuous and discrete components

Ss(f) = S&(f) + S4(f). (4.278)

where

2

Se(f) = gsinc(ﬂ" + h/2)sinc(fT — h/2)

d A2 N h n .2 ) . .
S&(f) = T Z 8 (f 57~ ?) (smc (n + h) + sinc”(n) — 2sinc(n + h)smc(n)) (4.279)

n=—

which clearly exhibits line components at frequencies (% + %) Further simplification may be possible for special cases,
but otherwise the psd has an intractable form. Figures 4.34 and 4.35 plot the psd against the normalized frequency fT. MSK
corresponds to the case 7 = 0.5. Observe that the CPFSK power spectrum becomes more compact for smaller %, while the
converse is true for larger h. Figure 4.35 illustrates the appearance of discrete components at frequencies (% + n) %, n an

integer, as h — 1.

4.9.7.3 Psd of MSK
The psd of CPFSK is complicated for all but a few cases. By using Laurent’s decomposition [193], MSK was shown

equivalent to OQASK with half-sinusoid amplitude pulse shaping. From (4.112), the MSK baseband signal has the
quadrature form

§(6) =AY b(t—2nT.x,). (4.280)
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Fig. 4.35 Psd of binary CPFSK as the modulation index 7 — 1
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(4.281)

(4.282)

X, = (X241, X2,) is a sequence of odd—even pairs assuming values from the set {41, £1}, and T is the bit period. The Fourier

transform of (4.281) is

B(f, Xn) = (J%Zn—i—l e_ﬂﬂﬂ +]552n) Ha (f)

(4.283)
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Fig. 4.36 Psd of GMSK with various normalized filter bandwidths BT

Since the data sequence is zero mean and uncorrelated, the MSK psd is

$n0() = SB[ 186 %0

The Fourier transform of the half-sinusoid pulse in (4.282) is

Hu(f)

Hence, the power spectrum becomes

A2
Ss() = ML) =

The psd of MSK is plotted in Fig. 4.34.

4.9.8 Psdof GMSK and TFM

Frequency, fT

oo | o
=3E [37 + %] 1H ()P

- - —j4rfT
_n(l—(4fT)2) (l+el )

4  Modulation and Power Spectrum

(4.284)

(4.285)

(4.286)

GSMK and TFM are special cases of partial response CPM. In general, the psd of partial response CPM is difficult to obtain
except for a rectangular shaping function. One solution has been suggested by Garrison [135], where the modulating pulses
are approximated by using a large number of rectangular sub-pulses with properly chosen amplitudes.

Figure 4.36 plots the psd of GMSK with various normalized filter bandwidths BT. Note that a smaller BT results in a more
compact psd. Likewise, Fig. 4.37 plots the psd of TFM and GMSK with BT = 0.25. Observe that the psd of TFM compares
well with that of GMSK. This is not surprising since their corresponding frequency shaping pulses are quite similar as seen

from Figs.4.21 and 4.25.
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Fig. 4.37 Psd of TFM and GMSK with BT = 0.25

Finally, it is interesting to compare the spectral characteristics of GMSK and 7 /4-DQPSK. To make a fair comparison, it
must be remembered that GMSK transmits 1 bit/baud while 77/4-DQPSK transmits 2 bits/baud. If 77/4-DQPSK uses root-
raised cosine pulse shaping, then the spectral occupancy normalized to a bit duration is obtained by dividing the elements on
the horizontal axis of Fig. 4.26 by a factor of 2. For example, at f = 1/(2T},) (corresponding to fT = 1.0) the side lobes are
about 44 dB down from the main lobe (f = 0) when t = 67. From Fig. 4.36, with f = 1/(2T), almost the same side lobe
roll-off is obtained. However, for larger values of f, the GMSK pulse side lobes are seen to decay faster in frequency than
those of 7/4-DQPSK.

Problems

4.1. Assume that a received signal is given by

) =4 Y xup(t—nT).

n=—0oo

where x; = %1, and p(¢) is the ideal Nyquist pulse

p(t) = sinc(¢/T)
P(f) = Trect(fT).

Due to a slight timing error, the received signal is sampled with a timing offset 7, resulting in the sample sequence {y;}
shown in (4.46). Show that

Vi = Aaqysine(t,/T) + A

sin(zt,/T) Z a,(—=1)"

i t,/T —n

4.2. Show that 16-QAM can be represented as a superposition of two four-phase constant envelope signals where each
component is amplified separately before summing, i.e.,

s(t) = G(An cos(2rf.t) + B, sin(27rfct)> + (Cn cos(2xrf.t) + D, sin(2nfct)>,
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where G is a gain constant and {A,}, {B,}, {C,}, and {D,,} are statistically independent binary sequences with elements from
the set {—1, 4+1}. Thus, show that the resulting signal is equivalent to

s(t) = I, cos(2nf.t) + Q, sin(2nf.1)

and determine /,, and Q,, in terms of A,, B,,, C,, and D,,.

4.3. Consider the two 8-QAM signals constellations shown in Fig. 4.8. Suppose that the distance between nearest-neighbor
signal points in each constellation is equal to A.

(a) For the constellation on the left, determine the cartesian coordinates of the constellation points.

(b) For the constellation on the right, determine the radii @ and b of the inner and outer circles.

(c) Find the average energy per symbol for each of the two signal constellations in terms of A assuming that each signal
point is used with equal probability. Which constellation is more power efficient?

4.4. Two data streams, {x,;} and {x,,}, are to be transmitted using unbalanced QPSK with rectangular amplitude pulse
shaping, such that the data rate for {x,;} is 10 kbps and that for {x, ;} is 1 Mbps.

(a) Relate the amplitudes of the waveforms, A; and A,, such that both bit sequences have equal energies per bit.
(b) With A; and A, so related, find the possible phase shifts for the carrier, where the x,; and x,, take on all possible
combinations of +1 and —1.

4.5. An important parameter for digital modulation schemes is the peak-to-average power ratio (PAPR), defined by

maxo<,<r |5(1)|*

PAPR = limy .
T [T ()

When nonlinear power amplifiers are used it is desirable to keep the PAPR as small as possible.

(a) Plot the PAPR for 7r/4-DQPSK with root-raised cosine pulse shaping, as a function of the roll-off factor .
(b) Repeat part (a) for QPSK. What conclusions can you draw?

4.6. Two new modulation schemes have been proposed called Q-O-QAM and B-O-QAM. Q-O-QAM transmits
2 bits/symbol, while B-O-QAM transmits 1 bit/symbol. The mapping of Q-O-QAM data bits (ay, dx+1) to symbols
by is as follows: The symbols b are used to generate the symbols x; which are given by

(as, ax+1) b

0,0 +3
0,1 +1
1,0 -3
1,1 —1

Xk = bke/k%.

For B-O-QAM the mapping of data bits a; to symbols by is as follows: The symbols gy are also used to generate the symbols

ay bk
0 +3
1 -3

xx which are given by

KX
Xy = bke’k2.
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(a) Plot the signal space diagram for Q-O-QAM and B-O-QAM and show the allowable transitions between the signal points
in the signal constellation. Why would these modulation schemes be useful for radio transmitters that use nonlinear power
amplifiers.

(b) Assuming an AWGN channel and coherent detection, write down an expression for the probability of symbol error for
Q-0-QAM and B-O-QAM in terms of the bit energy to noise ratio y,.

4.7. Consider two sinusoids waveforms
s1(t) = A cos(2rnf.t)
s52(t) = Acos2r(fe + Ap)1).

(a) Determine the minimum value of Af such that the inner product (s;,s,) = 0 over the interval 0 < ¢ < T. Assume that
LT > 1.
(b) Repeat part (a) for the two sinusoids

s1(t) = AcosQ2nf.t + ¢1)
52(t) = Acos2r(fe + Ap)t + ¢2),

where ¢| and ¢, are arbitrary phases.

4.8. A guard interval consisting of a cyclic prefix or cyclic suffix is used in OFDM systems to mitigate the effects of channel
time dispersion.

(a) Assess the cost of the cyclic prefix in terms of

(i) bandwidth and/or data rate.
(ii) transmitter power.

(b) Suppose a guard interval of 500 ns is used. The data rate with 64-QAM modulation is 54 Mb/s. The power penalty due to
the guard interval is to be kept less than 1 dB. What is the required value of G (constrained to an integer) and minimum
possible OFDM block size (constrained to 2* for some k)?

4.9. Consider the time-domain sample sequence for the nth OFDM block

N—1

;2mkm

Xn.mz E x,,,ke’ N,
k=0

The data symbols x, 4, k = 0,...,N — 1, are independent and each is chosen with equal probability from a BPSK symbol
alphabet, such that x,; € {—1, +1}. The PAPR of the sample sequence for block n can be defined as follows:

max,, | X,.m|?

PAPR = o :
N_l Zm:() |X'L,m|2

By using the triangle inequality, show that PAPR < N.

4.10. Consider an OFDM time-domain sequence (without cyclic guard interval)

N—1

: 2w km

Xom = E xn.ke/ N
k=0

N—1 N—1

—Zx cos 27 km + 'Zx sin 27 kan m=20, 1 N-—1
—kzo n,k N ]nzo n,k N s — Y, L, ..., B

where the x,,; are symbols are i.i.d. symbols chosen from the binary alphabet {—1, 4-1}.
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(a) Invoke the central limit theorem for large N and treat the X, ,,, = X;,m +jX ”Qm as independent complex Gaussian random
variables. What are the means, variances, and cross-correlation of the quadrature components X!, and X, ?
(b) Suppose that the X,,,, can be treated as complex Gaussian random variables with the parameters in part (a). What is the

probability density function of the peak power
P = |X 2 = max; _1|X, 29
max | maxl 0<m<N-—1 | n,m| .

(c) What is the probability density function of the peak-to-average power ratio

Pmax
PAPR = —

av

in terms of the block size N?

4.11. Let {X,,}"Z! be a finite duration time domain sequence of length N and let {xk}ﬁl;ol be its N-point DFT. Suppose that

m=0

{X,, )N is padded with L zeroes and the (N + L)-point DFT is computed, denoted by {)Ack}g:(f_l.

m=0

(a) What is the relationship between xq and X(?

(b) If x|, k=0,...,N—1and |x|, k=0,...,N+ L—1 are plotted on the same graph, explain the relationships between
the two graphs.

4.12. (Computer Exercise) Consider the time-domain sample sequence for the nth OFDM block {X,, ,,}_{. The peak-to-
average power ratio (PAPR) for the nth data block can be defined as follows:

max, |Xn,m|2

PAPR, = - :
N7ED =0 [Xnml?

Note that the PAPR for the nth data block, PAPR,,, depends on the random data vector {x, 0, Xn.1, - - - , Xn.n—1}-

By averaging over many randomly generated data vectors, determine the mean of the PAPR and the variance of the PAPR.
Do this for 16-QAM modulation with block sizes N = 256, 512, and 1024. Assume in all cases that no guard interval is
used, i.e., G = 0.

4.13. (Computer Exercise) Consider a selective mapping scheme to reduce the PAPR of an OFDM waveform. The
technique begins by generating L different random phase vectors of length N, i.e., first generate

&= (Dro ey ben—1), £L=12,... L,

where the ¢, ; are independent uniformly distributed random variables on the interval (—s, 7r]. Then for each ¢,,{ =
1,..., L, compute the PAPR of the OFDM sample sequence

N—1
Xﬁ,m = an,kejm'kejzwm , m= 0, 1, e ,N— 1,
k=0

and select the waveform having the smallest PAPR for transmission.
Consider N = 256 and 16-QAM symbols, and assume that no guard interval is used, i.e., G = 0. Compute the mean
PAPR and the variance of the PAPR of the transmitted OFDM waveform for L = 1,2, 4.

4.14. An OFDM signal with a large number of subcarriers N and no guard interval (G = 0) has a complex envelope that
can be approximated as a zero-mean complex Gaussian random process. Assume an “ideal” OFDM signal spectrum, where
the modulated power spectrum is

So , |f| < 1/2T;
0 , elsewhere

Ss(f) =

where T = NT;.
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Fig. 4.38 Frequency shaping h(t)
pulse for Problem 4.16 4

0 ]'" T t
2

(a) Using the above Gaussian approximation, what is the distribution of the magnitude of the complex envelope, |5(7)[, at
any time f.

(b) Suppose that the RF power amplifier will clip the OFDM waveform if the magnitude of the complex envelope |5(7)]
exceeds the level @Ry, where Ry is the rms envelope level /E[|5(¢)|?]. What is the probability that the OFDM
waveform will be clipped at any time #?

(c) Suppose that a continuous stream of OFDM symbols is transmitted. How many times per second on average will the
OFDM waveform be clipped?

4.15. The following problem requires you to design a length N = 256 phase vector

¢ = (g0, b1,....98-1)

such that the corresponding OFDM sample sequence

N—1
. 2 2mwkm
Xm=Ze’¢"e’ v om=0,1,...,N—1,
k=0

has a PAPR that is no bigger than 3 dB and preferably as small as possible. Using any and all techniques at your disposal,
such as analysis and/or computer search, find such a phase vector ¢.

4.16. Consider a CPM signal that is generated by using a triangular frequency shaping pulse shown in Fig. 4.38.

(a) If h = 1/2, find the peak frequency deviation from the carrier, where frequency deviation is

1 ds()

fdev = E dr

(b) Sketch the phase tree and phase trellis for the binary source symbol sequence
X = (+1L+1, 41, -1, =1, +1,—1,-1)

4.17. A CPM signal is generated from a baseband signal with a half-sinusoid frequency shaping function A (f).

(a) If h = 1/2, find the peak frequency deviation from the carrier frequency, where frequency deviation is

I d¢()

fdevzﬂ dr

(b) Sketch the phase tree and phase trellis if the data symbol sequence is
x={+3,—-1,+1,+3,-3,+1,—1}.

4.18. Sketch the phase tree, the phase trellis, and phase state diagram for partial response CPM with 7 = 1/2 and

1
hy(t) = H,MzT(f)



228 4  Modulation and Power Spectrum

4.19. Consider a partial response CPM signal

(a) Generate a frequency shaping function of duration 37 by convolving two rectangular shaping functions of duration 7
and 27.

(b) Define and sketch the three segments of the shaping function, i (1), k = 0, 1, 2.

(c) Sketch the baseband signal if the symbol sequence is

x={+1,-1,4+1,—1,—1}.

4.20. What are the phase states and states for the following CPM signals:

(a) Full response binary CPFSK with either h = 2/3 or h = 3/4.
(b) Partial response L = 3 binary CPFSK with either = 2/3 or h = 3/4.

4.21. Equation 4.142 defines the transfer function H(f) of the Gaussian low pass filter that is used to generate the GMSK
waveform.

(a) Obtain the impulse response /(f) and show that it satisfies the properties of a probability density function (pdf).
(b) Expanding on the interpretation of A(¢) as a pdf, determine the variance of the distribution. What is the significance of
this interpretation?

4.22. Design a Gaussian pulse-shaping filter with BT = 0.5 for a symbol rate of 19.2 kbps. Write expressions for and plot
(i) the impulse response and frequency response of the filter and (ii) the frequency shaping pulse A¢(7). Repeat for the case
of BT = 0.2 and BT = 0.75.

4.23. Consider TFM with the frequency shaping pulse

T

_ nfT 2
B = 4h sin(wfT) cos” (/1.

Suppose that this pulse is obtained by exciting a filter h(f) with a gate function rect(z/T). Find and sketch the impulse
response of the filter Aa(z).

4.24. Prove the identity
T —j2rfmT _ S ( _ ﬁ) .
L

4.25. Consider the case of uncorrelated data symbols.

(a) Show that if the symbols are equiprobable, then

E[1B¢.50F | - [E B¢ 01|

1 M M 2
= 537 2o 2|0 =]

i=1 k=1
(b) Compute the value of part (a) for M = 2.

4.26. Consider the complex low-pass binary modulated signal
5(0) = A xyha(t —nT),
where x,, € {—1, +1}. The data sequence {x,} is correlated such that

1 * n
() = EE[xkxk+n] = pl"l.

Compute the power density spectrum of 5(¢).
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4.27. Suppose that a binary data sequence {x,}, x; € {—1, +1} is correlated such that P(x, = x,+1) = 3/4, i.e., adjacent
data bits are the same with probability 3/4 and different with probability 1/4.

(a) Compute the autocorrelation function ¢, (m) for this data sequence.
(b) Compute the power spectrum Sy, (f).

4.28. Suppose that an uncorrelated binary data sequence is transmitted by using binary PAM with a root-Gaussian amplitude
shaping pulse

1/2
Ho(f) = (ze™07")

(a) What is the transmitted power density spectrum?

(b) Find the value of 7 so that the power density spectrum is 20 dB below its peak value at frequency 1/7T, where T is the
baud duration.

(c) What is the corresponding time domain pulse A,(7)?

4.29. Consider the M-ary orthogonal FSK waveform defined by (4.71) and (4.72). Assuming equally likely messages,
determine the psd of the transmitted complex envelope Si;(f).

4.30. Consider a system that uses a set of M = 16 bi-orthogonal signals that are derived from the Hadamard matrix Hg in
(4.76). The set of 16 signals is constructed according to

AN hicho(t — kT.) k=1,...,8

5i(t) = z
SO =150, k=9,...,16

, (4.287)

where T = 8T, is the baud period. Note that 4 bits are transmitted per baud. Assume an uncorrelated data sequence and
assume that all 16 waveforms are used with equal probability.

(a) If he(t) = ur (1), find the psd of the transmitted complex envelope Sz (f).
(b) Plot the power spectrum S;(f) against the normalized frequency fT},, where T, = T /4 is the bit duration.



Chapter 5
Detection of Known Signals in Noise

The performance of a communication link is degraded by many transmission impairments including fading, delay spread,
Doppler spread, co-channel and adjacent channel interference, noise, and receiver implementation losses. Fading causes
a very low instantaneous received signal-to-noise ratio (SNR) or carrier-to-noise ratio (CNR) when the channel exhibits
a deep fade, delay spread causes intersymbol interference (ISI) between the transmitted symbols, and a large Doppler
spread is indicative of rapid channel variations and may necessitate a receiver with a fast convergent algorithm. Receiver
implementation losses include carrier frequency offset, sample clock frequency offset, symbol timing errors, and channel
estimation errors. Co-channel interference, adjacent channel interference, and noise are additive impairments that degrade
the bit error rate performance by reducing the SNR or CNR.

This chapter considers the bit error rate performance of digital signaling on frequency non-selective (flat) fading channels
with additive white Gaussian noise AWGN. Flat fading channels are characteristic of narrow-band land mobile radio systems
or mobile satellite systems. Flat fading channels affect all frequency components of a narrow-band signal in exactly the
same way and, therefore, do not introduce amplitude or phase distortion into the waveform that is transmitted over the
communication link. Frequency selective channels, on the other hand, distort the transmitted signal and will be the subject
of Chap. 7. Flat fading channels will be shown to significantly degrade the bit error rate performance unless appropriate
countermeasures are taken. Diversity and coding are two well-known methods for combating fading. The basic idea of
diversity systems is to provide the receiver with multiple replicas of the same information bearing signal, where the replicas
are affected by uncorrelated fading. This can be accomplished by using multiple receiver antennas with sufficient spatial
separation, for example. Multi-antenna techniques will be discussed in Chap. 6. Coding techniques introduce a form of time
diversity into the transmitted signal which, along with interleaving, can be exploited to mitigate the effects of fading. Coding
techniques are the topic of Chap. 8.

The remainder of this chapter is organized as follows. Section 5.1 introduces a vector representation for digital signaling
on flat fading channels with additive white Gaussian noise (AWGN). Section 5.3 provides a generalized analysis of the
error rate performance of digital signaling on flat fading channels. Section 5.2 derives the structure of the optimum coherent
receiver for the detection of known signals in AWGN. The error probability performance of various coherently detected
digital signaling schemes is considered, including PSK in Sect. 5.4, QAM in Sect. 5.5, orthogonal signals in Sect. 5.6, and
OFDM in Sect. 5.7. Section 5.8 considers differential detection of DPSK and 7 /4-DQPSK waveforms. Section 5.9 considers
non-coherent detection and, finally, Sect. 5.10 considers coherent and non-coherent detection of CPM waveforms.

5.1 Vector Space Representation of Received Signals
Consider a general digital modulation scheme having the complex envelope

5(1) =AY b(t—nT.x,), (5.1)

where the generalized shaping function b(t —nT, x,,) depends on the particular modulation scheme being employed. Suppose
the waveform 5(¢) is transmitted over a flat fading channel having the time-variant channel impulse response
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8(t. 1) = g(0)d(r — 7). (5.2)
The received complex envelope is

() = g5 — 1) + 1), (5.3)

where g(f) = a(f)e/®® is the time-variant complex fading gain introduced by the channel, and 7(¢) is zero-mean complex
additive white Gaussian noise (AWGN) with a power spectral density (psd) of N, watts/Hz. Note that the fading channel
introduces a multiplicative distortion, while the receiver front end introduces AWGN. The flat fading channel will also
introduce a random time delay 7.

Consider a linear full response modulation scheme, such as QAM or PSK, where one of M message waveforms having
a complex envelope chosen from the set {5;(r)}), is transmitted over a flat fading channel every T seconds. By observing
received waveform 7(¢), the receiver must determine the time sequence of message waveforms that was transmitted over
the channel. To do so, the receiver must determine the time delay 7, such that the location of the symbol boundaries in the
received waveform are known. The process of estimating 7 is commonly called symbol or baud timing recovery. For our
present purpose, it is assumed that the receiver knows 7 exactly and, therefore, it can be assumed that ¢ = 0. Under the
above assumptions, the received complex envelope can be written as

r(t) = g(®)s(t) + n(t). 5.4

To derive the structure of the optimum coherent receiver, suppose that a single isolated message waveform 5, (¢) is chosen
from the set {5;(r)}* | and transmitted over the channel. If the channel changes very slowly with respect to the symbol period
T,ie., f,T < 1, then g() will remain essentially constant over the duration of the amplitude shaping pulse 4,(f). Under this
condition, the explicit time dependency of g(¢) can be removed so that the received complex envelope is

(1) = gsa(1) + n(), (5.5

where g = ae/? is the random fading gain.

Chapter 4 showed that the set of waveforms {5;(r)}*., can be represented as a set vectors {§;}}2, in an N-dimensional
signal space. The signal vectors and the associated basis functions, {go,v(t)}f’=l may be obtained by using a Gram—Schmidt
orthonormalization procedure. To derive the structure of the optimal coherent receiver, it is useful to obtain a vector
representation of the received waveform in (5.5). This can be accomplished by projecting the received complex envelope
7(1) onto the set of basis functions {¢;(r)}\_, giving the representation

N
F() = ) Fapi(t) + 2(1), (5.6)
i=1
where
7= /Oo F(t) ! ()dt 5.7
—¢ / 5, (09 (0dr + / A0 ()t (5.8)
= g:S:n,- + ﬁi (59)
and
N
21) = i) — Y ugi(1) (5.10)

i=1

is a “remainder” process, which is the portion of the noise process 7(¢) that lies outside of the signal space. The above process
yields the received vector

F=g5, +0, (5.11)
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where
F=(F1,72,....7N)
Sn = (SnysSuys e v Sny)
n= (n,ny,...,ny).
For an AWGN channel, the 73, k = 1,..., N are complex Gaussian random variables that can be completely described by
their means and covariances. The means are
o0
Efil = [ Elln0dr =0 (5.12)
—00

and covariances arel

1 ® 1
b = 5P = [ [ SEROT Ol s
=N, /_oo /_oo 8(t — s)g;(1) @y (s)drds

o0
= N, [ ¢/} (e
= N,8;.

It follows that the n; are all independent identically distributed zero-mean complex Gaussian random variables with
variance N,. Hence, the vector n has the multivariate complex Gaussian probability density function (pdf) (A.51)

_ AN L
p() = l_[ WGXP _Wlni|

i=1 0

1 L 5.13)
= ——¢&X — . .
xN,)V P 2w,

The joint pdf p(n) is said to be circularly symmetric, because it appears as a hyperspherical cloud that is centered at the
origin in the N-D vector space.

The waveform z(¢) is a remainder process due to the fact that z(¢) lies outside the vector space that is spanned by the basis
functions {g,(1)}"_,. It is shown below that the remainder process is uncorrelated with received vector F, viz.,

%E[Z(t)rf] = %E[E(t)]gii’;, +ER0]

%E[Z(t)ﬁ;‘]

1 N
EE |:(ﬁ(t) - Zﬁn(pn(t)) ~;‘k:|

n=1

N

/_ %E[ﬁ(l)ﬁ*(r)](pj(r)dr -y %E[ﬁnﬁ}‘]wn(t)

n=1

= N,@j(t) — N,gj(t) = 0.

ISince the 72 have zero mean, their covariances Ay, are equal to their autocorrelations ¢y 7, . The factor of 1/2 in the definition of the covariance
function maintains the conventional usage of N,, as representing the power density spectrum of the low-pass noise process 7(z).
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Since JE[z(1)7] = 0, j =1, ..., N, it follows that Z(#) is uncorrelated with the received vector F. This property implies
that the remainder process z(#) is irrelevant when making the decision as to which signal waveform was transmitted, a result
known as Wozencraft’s irrelevance theorem [357]. In other words, the received vector ¥ provides “sufficient statistics” for
determining which message waveform was transmitted, meaning that r provides all the necessary information for detection
and no other information is required.

5.2 Detection of Known Signals in AWGN

Based on the observation of the noisy received vector r in (5.11), the receiver should determine which message vector was
transmitted such that the probability of decision error is minimized. It is assumed that the receiver has perfect knowledge of
the channel gain g. With this in mind, consider the set of a posteriori probabilities

P[s; was sent |g,¥], i=1,...,M, (5.14)

which is abbreviated as P[s;|g, F]. The maximum a posteriori probability (MAP) receiver decides in favor of the message
vector §,, having the maximum a posteriori probability P[S,,|g, F]. That is, the MAP decision rule is

choose §,, if P[s,,|g, F] > P[S;|g,¥] Vi # m. (5.15)
The probability of error in this decision, denoted by P,[S,,|g, I], is

P.[Su|g. ] = P[s,, was not sent |g, T
= 1 — P[s,, was sent |g, T

= 1 —P[snlg . (5.16)

Since the MAP receiver always decides in favor of the message vector s,, having the maximum a posteriori probability
P[s;,|g, F] for any received vector F, the probability of error is minimized.
By using Bayes’ theorem, the a posteriori probability P[S,,|g, F| can be expressed in the form

r 9~um
H%mﬂ=ﬂﬁﬁl—,m=L~uM, (5.17)

p(F)

where p(T|g,S,,) is the joint conditional pdf of the received vector I given the transmitted message vector §,, and channel
gain g, and P,, is the prior probability of transmitting §,,. Since the pdf of the received vector p(r) is independent of the
transmitted message vector, the MAP receiver chooses the vector §,, to maximize p(r|g, S,,)P,,. In other words, the MAP
decision rule is equivalent to

choose §,, if  p(F|g,8,) P, > p(F|lg.8)P; Y i# m. (5.18)

A receiver that chooses the vector §,, to maximize p(F|g, S,,) regardless of the prior messages probabilities is called a
maximum likelihood (ML) receiver. The ML decision rule is

choose §,, if p(T|g,Sn) > p(Flg.s;) Vi#m. (5.19)

If the prior message probabilities are all equal, i.e., P,, = 1/M, m = 1, ---, M, then the signal vector that maximizes
p(r|g,S,) also maximizes p(S,|g, ). Under this condition the ML receiver minimizes the probability of decision error. In
practice, an ML receiver is sometimes implemented regardless of the prior message probabilities, because they may be
unknown. Also, the prior message probabilities will be all equal for a well-designed system.

To proceed further, the joint conditional pdf p(r|g, S,,) is needed. Since ¥ = gs,, + n and n has the joint pdf in (5.13), it
follows that

1 . N
——|IF — g8u % - (5.20)

. 1
p(r|g5 Sm) - (27TN0)N eXp 2N0
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By using (5.20) in (5.19), it is apparent that the signal vector §,, that maximizes p(r|g,S,) also minimizes the exponent
in (5.20). Hence, the ML receiver decides in favor of that message §,, which minimizes the decision metric

w1 Gy) = |F—g8ull>, m=1,....M. (5.21)

From (5.21), the ML receiver decides in favor of the scaled message vector gs,, that is closest in squared Euclidean distance
(or Euclidean distance) to the received vector r. Such a receiver is said to make minimum distance decisions.
An alternative form of the ML receiver can be derived by first expanding (5.21) as

11 Gm) = [IF|> — 2Re {F- g*53} + |gI*lI5n . (5.22)

Then notice that ||F|| is independent of the choice of §,,, and ||§,,||> = 2E,,, where E,, is the energy in the bandpass waveform
corresponding to the signal vector §,,. Hence, the ML receiver decides in favor of that message S,, which maximizes the
decision metric

p2Bn) = Re{F-g*si} — g’E, .m=1,....M. (5.23)

Using the definition of the inner product, the above decision metric can be rewritten in the alternate form

oo

12Go) = Re { / h ?(r)g*s,z(r)dt} _ lel’E,

o0
= Re { / ?(t)e_j‘i’E;(t)dt% —aE, .m=1,...,M. (5.24)

oo

The last line in (5.24) follows because the 1, (S,;) can be divided by o without altering the decision process. In this form
of the ML decision metric, the received complex envelope 7(¢) is correlated directly with the scaled and conjugated signal
vector e 95* (7).

From the above development, the ML receiver can now be constructed. The receiver must first perform quadrature
demodulation as shown in Fig. 5.1 to extract the complex envelope 7(f) = 7;(t) + j7o(t). The low-pass filter in each branch
is used to reject the double frequency term after demodulation. The received bandpass waveform is

r(t) = Re {F(1)e/”™"} = F1(1) cos(2nf.t) — Fo(t) sin(27f.t). (5.25)

It follows that
[r(?) - 2cos2nf.t)] p = 71(2) (5.26)
[=r(®) - 2sinQ2rfet)] p = Fo(1), (5.27)

where [ - |Lp indicates low-pass filtering. After quadrature demodulation, there are several receiver structures that are
functionally equivalent, but differ in their method of implementation and complexity. As shown in Fig. 5.2, one possibility is
to generate the observation vector r by correlating the received complex envelope with each of the N basis functions used to
define the signal space. This receiver structure is called a correlation detector.

Fig. 5.1 Quadrature _
demodulator ‘@ LPF [ 7 [(t)

r(t)| 2cos2mf.t

- 2sin2nft

LPF — 75(1)
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Fig. 5.2 Correlator detector ~
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A functionally equivalent structure to the correlation detector is shown in Fig. 5.3, where the complex envelope is filtered
with a bank of N filters having impulse responses ¢;* (T, —t) and sampling the outputs at time 7,, where 7, is the duration of
the ¢;(¢) (or 5;(2)). The filter ¢ (T, — 1) is the matched filter to ¢;(t) and, therefore, this receiver structure is called a matched
filter detector. The matched filter can be shown to be the filter that maximizes the signal-to-noise ratio at the sampling instant
when the input consists of a signal corrupted by AWGN (see Problem 5.2). Finally, the metric computer in Fig. 5.4 processes
the observation vector T to produce M decision metrics 5 (S,,), m = 1,..., M. The decision is made in favor of the message
S, having the largest decision metric.

To show equivalence of the correlation and matched filter detectors in Figs. 5.2 and 5.3, respectively, let &;(t) = ¢ (T, —1)
denote the filter that is matched to ¢;(¢). Then the output of the matched filter is the convolution

() = /0 F()hi(t — t)dt
= / t ()@ (T, — t + 7)dr. (5.28)
0

Sampling the filter output at time T, gives

To
W(T,) = /0 Ho)p? (1), (5.29)
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Fig. 5.4 Metric computer

This is exactly the same as the correlation in (5.7). Note that other variations of the ML receiver can be constructed in a
similar fashion by direct implementation of (5.24). This will require either a bank of M correlators or a bank of M matched
filters, where M is the number of waveforms in the signal set. Since N < M, the number of correlators or matched filters is
usually larger with this latter implementation. However, the outputs of the correlators or matched filters generate the required
decision metrics directly, and a subsequent metric computer is not required.

Some simplifications can be made for certain types of signal sets. If the message waveforms have equal energy such as
PSK signals, then E,, = E for all m. Hence, the bias term «E,, in (5.23) can be neglected, and the ML receiver decides in
favor of that message S,, which maximizes the decision metric

t2(8n) = Re {F-e 5%} (5.30)
= Re %/oo e 55 (ndty , m=1,...,M. (5.31)

In this case, the receiver does not need to know the complete complex channel gain g = ae/®, but only the phase ¢.

5.3 Probability of Error

Consider a signal constellation having the set M signal vectors {§,,}*_, . Assume that the messages are equally likely so that
P,, = 1/M. By observing the vector F, the ML receiver chooses that message vector §,, that minimizes the squared Euclidean
distance || — g§,,||*>. To compute the probability of ML decision error for an arbitrary set of signal vectors, first define convex
decision regions R,, around each of the scaled signal vectors gs,, in the N-D signal space. Figure 5.5 shows an example of
the decision regions. Formally, the decision regions are defined by

Ry = {F:||[F—g8ul® < IIF— g8, Vi#mj. (5.32)
Observe that every r € R, is closer to g§,, than to any other scaled signal vector g§;, i # m. The ML decision rule becomes
choose §,, if ¥ € R,,,. (5.33)

The decision boundaries are hyperplanes in the N-dimensional signal space that are defined by the locus of signal points that
are equidistant from two neighboring scaled signal vectors.
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Fig. 5.5 Decision regions in a
2-D signal space ¢2(t)
decision
boundaries —
R 5 ]
*\// \ -
The conditional error probability associated with §,,, is
Ple[s,] = P[F & R
=1—-P[r € R,]
= 1—P[c|su], (5.34)

where P|[c|S,,] is the conditional probability of correct reception. By using the joint conditional pdf in (5.20), it follows that
Plels,] = 1— / p(F|g.§,,)dr. (5.35)
Ry

Finally, the average probability of decision error is

1 M
Ple] = - > Plefsal. (5.36)
m=1

It is often difficult if not impossible to compute the exact probability of decision error, due to the difficulty in defining
the decision regions R,, and performing the N-fold integration in (5.35) with the proper limits of integration. In this case,
various upper and lower bounds, and approximations on the probability of error are useful. First, the concept of pairwise
error probability is introduced.

5.3.1 Pairwise Error Probability

Consider two equally likely signal vectors §; and ¢ in a signal constellation of size M, as if these two signal vectors are
the only ones that exist. The resulting probability of decision error at the receiver is called the pairwise error probability
because it can be defined for each distinct pair of signal vectors in the signal constellation. The two signal vectors S; and §¢
are separated af the receiver by the squared Euclidean distance ||g§; — g8[|> = o?||S; — S||*>. A decision boundary can be
established at the midpoint between the two signal vectors as shown in Fig. 5.6. Suppose that vector §; is sent, and let P[e|S;]
denote the probability of ML decision error. This error probability is just the probability that the noise along the vector
8S; — g5 forces the received vector r = gs; + n to cross the decision boundary. Due to the circularly symmetric property
of the AWGN noise, the pdf of the noise vector n is invariant to its rotation about the origin in the signal space. Hence, the
noise component along the line that passes through the two signal vectors will have zero mean and variance N,,. It follows
that the error probability is equal to
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Flg 5.§ Two rece.ived signal decision
points in an N-D signal space choose S; /' boundary

choose §;

Plels)] = 0 : (5.37)
where 21]2,( = |IS; — S||* is the squared Euclidean distance between §; and §;. Finally, Ple[S;] = P[e|8;]. Hence, the pairwise
error probability between the message vectors §; and Sy, denoted by P[s;, §;], is

a?d2
P[§;. 5] = ! 5.38
[ j k] Q 4No ( )

5.3.2 Upper Bounds on Error Probability

Suppose that §; is transmitted and let &; denote the event that the receiver chooses §; instead, thereby making a symbol error.
The probability of the event &; is the pairwise error probability P[S;, §;]. The probability of decision error is the probability
of the union of all error events

Pels) =P || & | (5.39)
Jj#k

Quite often the error events will overlap and this greatly complicates the calculation of the error probability. However, an
upper bound on the error probability can be obtained by employing the union bound

PlJg| =D PlEl (5.40)
J#k J#k
This gives the upper bound
Plelsd < ) P[§;. 8. (5.41)
J#k

Combining the above result with (5.38) gives

Plefs] <) 0
J#k

(5.42)
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and using (5.36) to average error probability over all messages gives

1 X a221,2k
Pl <+ Y > o 4N-’ . (5.43)

k=1 j#k

Calculation of the union bound in (5.43) requires the set of squared Euclidean distances {Zlfk} between the signal vectors.
A simpler upper bound on error probability can be obtained by finding the minimum squared Euclidean distance between
any two signal vectors

min

d*. = min ||§, — §,|*. (5.44)

Then the pairwise error probability between §; and §; is bounded by

242
PE.8l < 0| /e | (5.45)
since d2,, < Zz’fk and the function Q(x) monotonically decreases with x. Hence,

272
Ple] < M —1)Q %. (5.46)

Finally, some further upper bounds can be obtained by upper bounding the Gaussian Q-function. One such upper bound
is (Problem 5.1)

1
o) < 5e—xz/2 x> 0. (5.47)
Combining with the union bound in (5.43) gives
M 2772
1 ad;
Ple] < — —— 5.48
[e]_szZ;;eXP{ 8Na} 549
=17

and combining with the upper bound in (5.46) will give the simplest but loosest upper bound of all

M—1 202
Ple] < : )exp{—ag—]\;:‘"}. (5.49)

5.3.3 Lower Bound on Error Probability

A useful lower bound on the probability of decision error can be obtained by bounding the error probability

242 o~ . . ~
= "“") , if §; has at least one neighbor at distance dpjy

Plefsd] = Q( w,

0 , otherwise

(5.50)
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Then
| XM
Ple] = -~ m; Plel$,] (5.51)
min zaz‘
> i 2 Cmin ) (5.52)
M 4N,

where wp, is the number of signal vectors having at least one minimum distance neighbor. Certainly wy,;, > 2, so that

2 202
Ple] = -0 “4—]\;‘“1 . (5.53)

5.3.4 Bit Versus Symbol Error Probabilities

So far, the probability of decision error P[e] otherwise known as the symbol error probability, Py, has been considered.
However, the bit error probability, Pj, is often of interest. In general, the bit error probability will depend on the particular
mapping between the data bits and the modulated symbols. Since each data symbol corresponds to log,M data bits, the bit
error probability can be bounded as follows:

P
Y <P, <Py (5.54)
log,M

The lower bound results from the fact that each symbol error corresponds to at least one bit error, while the upper bound
results from the fact that each symbol error corresponds to at most log, M bit errors.

5.34.1 Gray Mapping

For signal constellations such as PSK and QAM, it is possible to map the binary data bits onto the data symbols in such a
way that the nearest neighboring symbols (in Euclidean distance) differ in only one bit position. Such a mapping is called a
Gray mapping. When the signal-to-noise ratio is high, symbol errors tend to be made onto the nearest neighboring symbols
with high probability. In these cases, symbol errors correspond to single bit errors. Hence,

Py
log,M"

b~ (5.55)
It turns out that Gray mapping is the optimum mapping for uncoded systems. However, if error control coding is used, Gray
mapping is usually not the optimum mapping strategy and other types of mapping are used. This issue will be discussed in
more detail in Chap. 8.

5.3.4.2 Equally Likely Symbol Errors

Suppose that when symbol errors occur, each of the M — 1 incorrect symbols is chosen with equal probability. To compute the
probability of bit error, first note that the set of M = 2¥ symbols has a one-to-one mapping onto the set of 2* binary k-tuples
as shown in Fig.5.7. Now suppose that the all zeroes k-tuple, or first row, corresponds to the correct symbol. Moreover,
the receiver makes an error by choosing ith row (symbol), i # 1, instead. Since there are 2! zeros and 2¥~! ones in each
column, and a zero corresponds to a correct bit, the probability of a particular bit position being in error is

k=1 M

P, = Py = Pu.
P M T am—n M

(5.56)

It will shown later that this result applies to M-ary orthogonal signals.
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Fig. 5.7 Mapping of binary

k-tuples onto M-ary symbols 000..... 00— S1
000..... 0l=—= s,
000..... 10=— 7%,
choose 000..... 11— s
ithrow 111..... 10=—7%, ,
I11..... 1= 7%

5.3.5 Rotation and Translations

The probability of symbol error in (5.36) is invariant to any rotation of the signal constellation {§,~}f‘il about the origin of
the signal space. This is a consequence of two properties. First, the probability of symbol error depends solely on the set
of Euclidean distances {Zijk}, Jj # k between the signal vectors in the signal constellation. Second, the AWGN is circularly
symmetric in all directions of the signal space. A signal constellation can be rotated about the origin of the signal space,
by multiplying each N-dimensional signal vector by an N x N unitary matrix Q. A unitary matrix has the property QQ” =
Q7Q = I, where Q" is the complex conjugate transpose of Q, and I is the N x N identity matrix. The rotated signal vectors
are equal to

$s=8Q, i=1,....M. (5.57)
Correspondingly, the noise vector n is replaced with its rotated version
n = nQ. (5.58)

The rotated noise vector 1 is a vector of complex Gaussian random variables that is completely described by its mean and
covariance matrix. The mean is

E[f] = E[i]Q = 0. (5.59)

The covariance matrix is

1
®.- — —E[A"h
i = 5 Eli"A]

JEI(Q)"#Q)

JEIQ"i"5Q)

Q'3EI'IQ
= N,Q"Q =N,L (5.60)

Since, the statistical properties of the noise vector are invariant to rotation, the probability of symbol error is invariant to
rotation of the signal constellation about the origin of the signal space.
Next consider a translation of the signal set such that

A

Si=s;—a, i=1,....,M, (5.61)

where a is a constant vector. In this case, the error probability remains the same since cAijk = gljk, J # k. However, the average
energy in the signal constellation is altered by the translation and becomes

2Since the vector i has zero mean, its covariance matrix Aaj is equal to its autocorrelation matrix ®45.
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where E,, is the average energy of the original signal constellation and E[§ | = Z?i_ol §;P; is its centroid (or center of mass).
Differentiating (5.62) with respect to a and setting the result equal to zero will yield the translation that minimizes the
average energy in the signal constellation. This gives

a0 = E[5]. (5.63)

Note that the center of mass of the translated signal constellation is at the origin, and the minimum average energy in the
translated signal constellation is

) L
Enin = Eay — EHaopl” . (5.64)

5.4 Error Probability of PSK

This section considers the error probability of various forms of PSK signals. The treatment starts with binary PSK signals,
followed by the more complicated forms of PSK signals.

5.4.1 Error Probability of BPSK

The BPSK signal vectors are’

51 = —5 = /2E). (5.65)

Since there are only two signal vectors, the bit error probability is given by the pairwise error probability in (5.38). For
BPSK signals, dj, = 24/2Ej. Also BPSK transmits 1 bit/symbol so the symbol energy is E;, = Ej, where E} is the bit
energy. Therefore, the probability of bit error is

Por) = 0 (V21) (5.66)
where y}, is defined as the received bit energy-to-noise ratio
2
A 0 E
= . 5.67
Yo N, (5.67)

3When the signal vectors lie in a 1-D complex vector space, the notation is simplified by using the scalars 5;, 72, 7 rather than the vectors §;, 11, and T.
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Fig. 5.8 Complex signal-space decision
diagram for QPSK " boundaries

5.4.2 Error Probability of QPSK and OQPSK
The QPSK (or 4-PSK) signal vectors are

51 = —53 = 2E, (5.68)
Sy = —54 =] 2Eh, (569)
where the signal points are seen to lie on the real and imaginary axes. The QPSK signal constellation can be rotated by 45°
as shown in Fig. 5.8 without changing the error probability due to the rotational invariance property. In this case, the decision
boundaries correspond to the real and imaginary axes of the complex signal space. The noise vector is 1 = 7y + jiig, where
n; and ng are independent zero-mean Gaussian random variables with variance N,. With minimum distance decisions, the
probability of symbol error is
Py = Plels]

= 1 —P[c|51]

= 1—P[ii; > —ad/2,iip > —ad/2]

= 1-P[f; > —ad/2]|P[iig > —ad/2]

2

a2d?
=1—-11-
0 4N,
where, again, « is the channel attenuation. Since &2 = 4FE},
2
Pyu=1-(1-0(v%)) (5.70)

where y; is defined as the received symbol energy-to-noise ratio

2
A O Eh
s = . 5.71
12 N, (5.71)

Suppose the data bits are mapped onto the data symbols with the Gray code shown in Fig.5.8. Letting P, denote the
probability of bit error, it follows that

Plc] = (1 - Py)’ (5.72)
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and
Py =1—(1-Py)% (5.73)
Comparing (5.73) with (5.70), observe that
Py =0 (J/7s) - (5.74)

QPSK transmits 2 bits/symbol so the symbol energy is Ej;, = 2E;, where E}, is the bit energy. Since y; = 2y}, the probability
of bit error is

Py(yp) = Q (\/E) : (5.75)

Notice that the bit error rate performances of QPSK and BPSK are identical. Finally, since OQPSK is identical to QPSK
with the exception that the in-phase and quadrature branches are offset by T, = T/2 seconds, the bit error rate performance
of OQPSK is identical to that of QPSK and BPSK as well.

5.4.3 Error Probability of M-PSK

To derive the error probability of M-PSK consider, for example, the 8-PSK signal constellation and associated decision
regions shown in Fig.5.9. Once again data bits are mapped onto data symbols by using a Gray code. Suppose that the
message vector 51 = +/2E), is transmitted. The received signal vector is

7= e + 7. (5.76)

Since the error probability is invariant to the angle rotation ¢, it is possible to arbitrarily set ¢ = 0 so that

F=ous +n

= a2E) + ii. (5.77)

010 “\ I'l 00 S2 »
S5/ 110 000 5, decision
2N boundaries
¢1(7
100,
11
S
8
S, 101

Fig. 5.9 Complex signal-space diagram for 8-PSK along with the associated decision regions
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It follows that 7 = 7; + j7p is a complex Gaussian random variable with pdf

pi(F) = F— av/2E,

1 2
exp { A } . (5.78)

N,

Since 5; was transmitted, the probability of correct symbol reception with minimum distance decisions is the probability that
the received vector 7 falls in the “pie-shaped” region containing 5;. This is equivalent to the received angle @ = Tan™" [Fo/71]
falling in the interval [—m/8, 7/8].

To find the pdf of the angle O, first define the random variables

R = ,/;'12 + 72, ® = Tan™! [;Q/;I] (5.79)

such that
71 = Rcos O , 7o = Rsin ©. (5.80)

Then by using a bivariate transformation of random variables as shown in Appendix A, the joint pdf of R and @ can be
obtained as

r _1 (2 . 252
e Mo (r 20 +/2Er cos 042 Eh)7 F>0,—7 < 0 < (581)

o

pR,@(rv 9) =

Since only the phase @ is of interest, the marginal pdf of @ is obtained as

oo
pe® = [ pro(ro)ar (582)
0
1 . oo 2
— e Vssin 9/ xe(x—ﬁcosG) /2dx, (583)
2 0

where y, = «?E},/N, is the received symbol energy-to-noise ratio. The probability of symbol error, Py, is just the probability
that @ falls outside the region [—m/M, 7 /M]. Thus

/M
Puly) = 1 - / p(6)d6. (5.84)
—n/M

Unfortunately, a closed form expression for this integral does not exist, except for the cases M = 2, 4 which were considered
earlier.

5.4.4 Error Probability with Rayleigh Fading

When the channel experiences fading, the error probability must be averaged over the fading distribution. For example, if
the channel is Rayleigh faded, then « is a Rayleigh random variable and the squared-envelope o is an exponential random
variable at any given time, as discussed in Sect. 2.1.3.1. It follows that the received bit and symbol-energy-to-noise ratios y,
and y, in (5.67) and (5.71), respectively, have the exponential pdfs

1 _
Py, (x) = y—e‘*/w’ . x>0 (5.85)
b

and

1 _
Py, () = —e 7 x>0, (5.86)
y.

s
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Fig. 5.10 Bit error probability for BPSK and QPSK for a slow flat Rayleigh fading channel with AWGN

where y;, and y; are the average received bit and symbol energy-to-noise ratios, respectively. Since there are log,M bits per
modulated symbol, it also follows that y; = y,log,M and y; = y,log,M. Corresponding expressions for the distribution of
¥, and Y, can be obtained in a similar fashion for other types of fading, such as Ricean and Nakagami fading.

For BPSK and QPSK, the probability of bit error averaged over the distribution of the received bit energy-to-noise ratio
in (5.85) is

Py = [0 O(V20)py, (x)dx

| -
— (1= [ (5.87)
2 14+

1
~x — for )7b >> 1
49

The BPSK and QPSK bit error probability is plotted in Fig.5.10 for an AWGN channel and a Rayleigh fading channel.
Observe that Rayleigh fading converts an exponential dependency of the bit error probability on the average received bit
energy-to-noise ratio into an inverse linear one. This behavior with flat Rayleigh fading will be observed for all types of
modulation, and it results in a huge loss in performance unless appropriate countermeasures such as diversity and coding are
used. For M-PSK, the average symbol error probability is

m:/ Py (0)py, (x)dx (5.88)
0

where Pjy(x) is given by (5.84) and y; is given by (5.86). Although no closed form expression exists, numerical results will
show that the bit error probability depends inversely on the average received bit energy-to-noise ratio y,. Recall that with
Gray coding the bit error probability is approximately P, &~ Py /log,M.
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5.4.5 Differential PSK

The received carrier phase for PSK signals is

0 2

k= + ¢, (5.89)
where ¢ is the random phase due to the channel. The receiver corrects for the phase ¢ by multiplying the received complex
envelope by e 7 as shown in (5.31). However, in practice this operation is not quite that simple, because the symmetries in
the signal constellation create phase ambiguity. In particular, any channel induced phase of the form ¢ + 2kz /M, where k
an integer, will lead to exactly the same set of received carrier phases. While the receiver can use a phased locked loop to
recover the received carrier phase, there will remain a phase ambiguity which is a multiple of 277 /M. This phase ambiguity
must be resolved if the information is to be recovered correctly.

Differential encoding is one of the most popular methods for resolving phase ambiguity, where information is transmitted
in the carrier phase differences between successive baud intervals rather than the absolute carrier phases. Differential
encoding of PSK signals is done as follows. The information sequence {x;},x; € {0, 1,...M — 1} is differentially encoded
into a new sequence {d;} according to

di = X @ X1, (5.90)

where @ denotes modulo-M addition. Then the sequence {d} is transmitted in the absolute carrier phase according to

o = 4 (5.91)
k= ke .
After carrier recovery, the received carrier phase is
~ 27 27l
Or = —dp + —. 5.92
e = + i (5.92)

where the additional term 27w € /M, £ an integer, represents the phase ambiguity. The receiver computes the differential phase
ék — ék—l modulo 2 = ﬁn(dk — dk—l) modulo 2

2
= —( dr_
M(ke 1)

2
= 37 (5.93)
where © denotes modulo-M subtraction. Hence, the data sequence {xk} can be recovered regardless of the phase ambiguity.
In the presence of AWGN noise, the receiver must form estimates Gk of the received carrier phases Gk However, the noise
will cause errors in these estimates and occasionally Qk #* 6. Note that an incorrect phase estimate Qk causes the decisions
for both x;, and x;—; to be in error, assuming that the phase estimates 9k—1 and 9/<+1 are both correct. Hence, at high signal-to-

noise ratios where errors occur infrequently, the bit error probability of Differential PSK (DPSK) is roughly two times that
of PSK.

5.5 Error Probability of PAM and QAM

5.5.1 Error Probability of M-PAM

Consider the Gray coded 8-PAM system signal constellation shown in Fig.5.11. For the M — 2 inner points of the signal
constellation, the probability of symbol error is
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/ boundaries
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Fig. 5.11 Complex signal-space diagram for 8-PAM

Likewise, for the 2 outer points of the signal constellation, the probability of symbol error is

2062Eh
N,

P()ZQ

249

(5.94)

(5.95)

Assuming all points in the signal constellation are used with equal probability, the overall probability of symbol error is

To proceed further, E;, must be related to the average symbol energy. Since
Sw= V2E,Qm—1-M), m=1,....M
the energy in 5, is
E, = és; = E,2m—1—M)>~.

The average energy is

M
1 2
Ew = Epo’ > @m—1-M)

m=1

M M
=Ehﬁi/1 <4Zm2—4(M+1)Zm+M(M+1)2).

m=1 m=1

Using the identities

ank:n(n—i—l), ikzzn(n—}—l)@n—i—l)
k=1 2 k=1 6

and simplifying gives the result

Eyw = Efy———

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)
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Hence, from (5.96)

1 6
Pyuly) =2(1-—= — ], 5.102
w (¥s) ( M)Q( M2—1y) (5.102)
where
o?E,,
Vs = N: (5.103)

is the average symbol energy-to-noise ratio. Note that in this case, the “average” is over the points in the signal constellation.

Since y; = (log,M)ys,
1 [6(log,M
Py(yp) =2 (1 - A—4) 0 ( %)’b) : (5.104)

5.5.2 Error Probability of M-QAM

Consider an M-QAM system having a square constellation of size M = 4™ for some integer m. Such an M-QAM system can
be viewed as two +/M-PAM systems in quadrature, each allocated one-half the power of the M-QAM system. For example,
the Gray coded 16-QAM system in Fig. 5.12 can be treated as two independent Gray coded 4-PAM systems in quadrature,
each operating with half the power of the 16-QAM system. From (5.102), the symbol error probability for each v/M-PAM
system 18

1 6 7
Pm=2(1—ﬁ)Q( ﬁ%) (5.105)

where Y, is the average symbol energy-to-noise ratio of the M-QAM system. Finally, the probability of correct symbol
reception in the M-QAM system is

Plc] = (1-P s)° (5.106)
0000 0001 0011 0010
° e | e °

0100 0101 0111 0110

° ° ° 2V2E,
-------------------------------------------------------- poo0

1100 1101 1111 1110

° °

1000 1001 1011 1010 \ o

L4 o L ° decision

boundaries

Fig. 5.12 Complex signal-space diagram for 16-QAM constellation
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Fig. 5.13 Bit error probability for M-QAM on an AWGN channel and a Rayleigh fading channel with AWGN

and the probability of symbol error is

Pu(ys) =1—=(1 =P ). (5.107)
For other types of M-QAM constellations, such as those in Figs. 4.7 and 4.8, the error probability can be obtained by defining
convex decision regions and using the approach suggested in Sect. 5.3.
5.5.2.1 Error Probability with Rayleigh Fading

If the channel is Rayleigh faded, then y, has the exponential pdf in (5.86). It follows that the average symbol error
probability is

PM:/O Py (x)py, (x)dx. (5.108)

Figure 5.13 plots the (approximate) bit error probability P, ~ P /log,M against the average received bit energy-to-noise
ratio, ¥, = ¥s/log,M, for several values of M. Once again, Rayleigh fading converts an exponential dependency of the
bit error probability on the average received bit energy-to-noise ratio into an inverse linear one. Finally, notice that the ¥,
required to achieve a given bit error probability increases with the alphabet size M. However, the bandwidth efficiency also
increases with M, since there are log, M bits per modulated symbol.

5.6 Error Probability of Orthogonal Signals

5.6.1 Orthogonal Signals

Consider the M-ary orthogonal signal set
§i= 2E;,em, m:l,...,M,

where e, is a length-M unit basis vector with a “1” in the mth coordinate. If the signal §; is transmitted, then the received
vector is
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F = (gv2E, + iy, na, ..., 0y), (5.109)

where the 7; are independent zero-mean complex Gaussian random variables with variance N,. The ML receiver computes
the M decision variables

pwGEn) =Ref{f-g*srt, m=1,....M, (5.110)
and decides in favor of the signal having the largest 1i(s,,). It follows that

1(81) = 20°Ey, + fig, 1o v/2E,

W(Sm) = Hppmot/2Ey, m=2,...,M, (5.111)
where the phase rotation on the noise samples has been ignored due to their circular symmetry. The p(§;),i = 1,...,M, are

independent Gaussian random variables with variance 2a>EN,; the mean of 1 (8;) is 202E), while the i (5,),m # 1, have
zero mean. The probability of correct symbol decision conditioned on j(S;) = x is the probability that all the 1 (8,,), m # 1
are less than x. This is just

M—1
Plelie(o) = x] = (@ (ﬁ)) . (5.112)

Hence,

(5.113)

M—1
°° X 1 (x — 202E))?
Pld] = o — exp | — dx.
- Vv 20(2E/1N0 vV 4]TathN,, da EhNo
Now lety = (x — 20%E},)/ /202E,N,. Then

Pl = f_ T (@ van)" J% e, (5.114)

o
where
(Xth
s = 5.115
Y. N, ( )
Finally, the probability of symbol error is
Py =1—Plc]. (5.116)

An alternate expression for the error probability can be derived by first conditioning on the event that one of the M — 1
decision variables i (S,,), m # 1 is the largest. This gives

M=2
*© x — 202E, x 1 X2
PM=(M—1)/ ol ——) (o exp%——}dx. (5.117)
—o  \ V2a2E;N, V202E,N, VAna2E,N, 4a’E,N,
Now let y = x/+/202E,N,. Then

00 1
Py=M—1) L» @ (y - 2%) (D(y)M2 Ee—y 24x. (5.118)
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For orthogonal signals y, = y,log,M and the bit error probability is given by (5.56). Hence,

1

_M / 2yb10g2M> V2yslog,M ) (®(y)M 2 o e 2dx. (5.119)

If the channel is Rayleigh faded, then y;, has the exponential pdf in (5.85), and the average bit error probability can be
calculated as

o0
P, = / Py (x)py, (x)dx. (5.120)
0
5.6.2 Biorthogonal Signals
Consider the biorthogonal signal set
gi: «/2Ehe,-, l:1,...,M/2 (5121)

—Si—mp. I=M/2+1,... . M—1"

Now suppose that s; is transmitted. The receiver computes the M /2 decision variables

pwGEn) =Re{F-g*sy} ., m=1,....M/2, (5.122)
and chooses the one having the largest magnitude. The sign of ((S,,) is used to decide whether §,, or Sy7/24m = —S, Was
sent. As before, the u(8;), i = 1,...,M/2, are independent Gaussian random variables with variance 202EN,; the mean of

W(8y) is 2a%E), while the u(8,,), m = 2, ..., M/2, have zero mean. The probability of correct decision is the probability that
w(S1) > 0and |u(Sm)| < u(S1),m =2,...,M/2. Conditioned on p(S;) = x, x > 0,

X X
) . Y R S Y N S 5.123
[nBm)| < x] ( zathNo) ( 2052EhN0) ( )

Hence,

M/2—1
e X X 1 (x — 20%E;)?
P[c]:/ o —— |- |-——F ex {— }dx. (5.124)
0 ( (\/20(2EhNo> ( \/2a2EhNo)) \/47{0(2EhN0 P 4a2EhN0

Now let y = (x — 2a?E},)/ /202E,N,. Then

P = [ jﬁ (@ (r+ var) - (- van))"" J%_ne‘yz/zdy. (5.125)

Finally, Pyy = 1 — P|c]. For biorthogonal signals y; = y,log,M. However, the bit error probability is not given by (5.56),
because when symbol errors occur the incorrect symbols do not occur with equal probability.

5.7 Error Probability of OFDM

The OFDM baseband demodulator is usually implemented by using a fast Fourier transform (FFT), as discussed in Sect. 4.6.
Following the development in Sect. 4.6, suppose that the discrete-time sequence X8 = {X§ N :G ! is passed through a
balanced pair of digital-to-analog converters (DACs), as shown in Fig. 4.14, and the resulting cdmplex envelope is transmitted
over a quasi-static flat fading channel with complex gain g. The quasi-static assumption means that the channel remains static

over an OFDM symbol, but can vary from one OFDM symbol to the next. For flat fading channels, the cyclic guard interval
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Fig. 5.14 Block diagram of OFDM receiver

is not really necessary, but is included here for simplicity. The receiver uses a quadrature demodulator to extract the received
complex envelope 7(¢) = 7;(t) + jio(?). Suppose that the quadrature components 7;() and 7 (f) are each passed through an
ideal anti-aliasing filter (ideal low-pass filter) having a cutoff frequency 1/(27¥) followed by an analog-to-digital converter

(ADC) as shown in Fig. 5.14. This produces the received complex-valued sample sequence R§ = {R¢ Z:g_l, where

RS, = gX§, + ipm, (5.126)

g = ae/® is the complex channel gain, and the 7, are the complex-valued Gaussian noise samples. For an ideal anti-
aliasing filter having a cutoff frequency 1/(27%), the 7, ,, are independent zero-mean complex Gaussian random variables
with variance 0% = %E[|fznm|z] = N,/T%, where T¢ = NT,;/(N + G).
Assuming a cyclic suffix as discussed in Sect. 4.6.1, the receiver first removes the guard interval according to
Rum =R, G mcyys 0Sm=<N—1, (5.127)

where (m)y is the residue of m modulo N. Demodulation is then performed by computing the FFT on the block R, =
{Rm}V_l to yield the vector z, = {z,,}Y =} of N decision variables

e N
Zn.k N n,me
m=0
= gAxpp + Vux, k=0,....,N—1, (5.128)
where A = \/2E,/T, T = (N + G)T%, and the noise terms are given by
N
un,kzﬁznn,me v, k=0,...,N—1. (5.129)

m=0

It can be shown that the v, are zero-mean complex Gaussian random variables with covariance

! No
ik = SEWnjvid = Lredie (5.130)
z

Hence, the z,x are independent Gaussian random variables with mean g+/2E},/Tx,  and variance N, /NT¢. To be consistent

with our earlier results for PSK and QAM signals, the z,; can be multiplied for convenience by the scalar /NT5. Such
scaling gives

Znk = &V 2EWN/(N + G)xpx + Vi, (5.131)
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where the v, ; are i.i.d. zero-mean Gaussian random variables with variance N,. Notice that \/2E;N/(N 4+ G)x,x = Spy is
equal to the complex signal vector that is transmitted on the ith sub-carrier, where the term N/(N + G) represents the loss in
effective symbol energy due to the insertion of the cyclic guard interval. For each of the z, «, the receiver decides in favor of
the signal vector 5, that minimizes the squared Euclidean distance

BGnk) = Zuk — &5ukl®, k=0,....N—1. (5.132)

Thus, for each OFDM block, N symbol decisions must be made, one for each of the N sub-carriers. This can be done in
either a serial fashion as in Fig. 5.14, or a parallel fashion. It is apparent from (5.131) that the probability of symbol error is
identical to that achieved with independent modulation on each of the sub-carriers. This is expected, because the sub-carriers
are mutually orthogonal in time.

5.7.1 Interchannel Interference

The above analysis assumes that the complex channel gain g remains constant over the OFDM symbol duration 7 = NT; =
(N + G)T%. However, as the block size N increases and/or the maximum Doppler frequency increases for a fixed data rate
R; = 1/Ty, this assumption becomes invalid. The effect channel time variations on the OFDM link performance are now
investigated. Although our analysis will be undertaken for flat fading channels, a similar analysis will apply to frequency
selective channels provided that G > L. It will be shown that variations in the complex channel gain { gk}lkvz_(} over the duration
of an OFDM symbol cause interchannel interference (ICI) due to a loss of sub-channel orthogonality. The ICI will be shown
to behave like additional AWGN that results in an error floor at high signal-to-noise ratios.

To isolate the Doppler effects, AWGN is ignored. The received discrete-time sequence after removal of the guard
interval is

Ruym = gG+(m—G)NXn,m~ (5.133)

The vector z,, = {z,,,,-}g";ol at the output of the FFT baseband demodulator is

N—1
2ni = V2EW/T Y XymH(m — i), (5.134)

m=0
where
| M= _
Jj2n .
Hm—i) == goruocne” " ™. 0<i<N-1. (5.135)
N k=0

To highlight the effect of channel time variations, (5.134) can be rewritten as

Zni = v 2En/TH(0)xp; + i, (5.136)

where

N—1
Cni = V2Ep/T Y XymH(m —i). (5.137)

m=0

m&i

Note that H(0) is the effective complex channel gain, while c,; is an additive noise term due to the ICI. Note that if the
channel is time-invariant, then g, = g and z,; = g+/2En/Tx,,; as before.

If N is sufficiently large in (5.137), the central limit theorem can be invoked and the ¢,,;,i = 0,...,N — 1 can be treated
as complex Gaussian random variables that are characterized by their means, variances, and correlations. Since the x,, ,, and
H(m — i) are independent random variables and E[x,,,] = 0, it follows that E[¢;] = 0. Since 2E}, - %E[xn,kx;‘_m] = E.6im,
where E,, is the average symbol energy, the autocorrelation of the ¢, ; is



256 5 Detection of Known Signals in Noise

Eq

bee(r) = E[c,,,cnl o= 7 > E[H(m—)H*(m—i—r)). (5.138)
m#ii+r
Proceeding further requires a model for the time correlation of the channel. If the normalization E[|gi|?] = 1 is

assumed and Clarke’s 2-D isotropic scattering model is assumed with an isotropic receiver antenna (see Chap.?2), then
the autocorrelation becomes

N—

1 N—
ZZ o (fuTE (k — k’))( - ,)ef”“) (5.139)

k=0

¢C'L'(r) = E_

where f,, is the maximum Doppler frequency.
For symbol-by-symbol detection, it is sufficient to examine the variance of the ICI term

E E N—1
$ec(0) = — B (N +2 ;(N - z)]0(27rfngz)) (5.140)

where the fact that Jo( - ) is an even function has been used. Note that variance of the ¢, ; are only a function of E,,, N, Ty,
and f,,, but is otherwise independent of the signal constellation. Figure 5.15 plots the signal-to-interference ratio, defined as

En/T
SR & Ea/ ,
@cc(0)

as a function of f,,T¢ for several values of N. Observe that the SIR decreases as both the normalized Doppler maximum
frequency f,, 78 and the block size N increase.
Suppose that the data symbols x,,; are chosen from a 16-QAM alphabet. From Sect. 5.5, the symbol error probability for

16-QAM is
1 1
Py = 3Q< gys) ( - —Q (\/ —yv)) : (5.142)

where y; is the average received symbol energy-to-noise ratio. With Rayleigh fading, the symbol error probability is obtained
by averaging (5.142) over the pdf in (5.86). Assuming validity of the Gaussian approximation for the ICI, the error floor due
to ICI can be obtained by substituting the SIR in (5.141) for y;. The results are shown in Fig. 5.16. Simulation results are also

(5.141)

65.0
55.0

45.0

SIR (dB)

35.0

25.0

15.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

£, T8 (x107)

Fig. 5.15 Signal-to-interference ratio of OFDM due to ICI
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Fig. 5.17 Bit error probability for 16-QAM OFDM on a Rayleigh fading channel with various Doppler frequencies

shown in Fig. 5.16 corroborating the Gaussian approximation for the ICI. Figure 5.17 shows the bit error rate performance of
OFDM with N = 512 sub-carriers, a 16-QAM signal constellation, and a 20 Mbps bit rate for various Doppler frequencies.
At low y,, additive noise dominates the performance so that the extra noise due to ICI has little effect. However, at large ¥,
ICI dominates the performance and causes an error floor.
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5.8 Differential Detection

Differentially encoded PSK (DPSK) can also be detected by using differentially coherent detection, where the receiver
estimates the change in the excess phase of the received carrier between two successive baud intervals. Since DPSK transmits
data in the differential excess carrier phase from one baud interval to the next, the basic mechanism for differential detection
is obvious. For slow fading channels, the phase difference between waveforms received in two successive baud intervals will
be independent of the absolute carrier phase. However for fast fading channels, the excess carrier phase will change over two
successive baud intervals due to the channel. This leads to an error floor that increases with the fading rate.

5.8.1 Binary DPSK

Consider binary DPSK. Let 6, denote the absolute transmitted excess carrier phase during the baud interval n”T < t <
(n+ 1T, and let A6, = 6, — 6, denote the differential excess carrier phase, where

Af, = {0 A=A (5.143)
T, x, = —1
The DPSK complex envelope is
5(=A Z ha(t — nT)e/ (5.144)
and the received complex envelope is
(1) = ae?A Y ha(t —nT)e™ + (). (5.145)

where g = ae® is the complex channel gain. It is assumed that g changes slowly enough to remain essentially constant over
two successive baud intervals.
A block diagram of a differentially coherent baseband demodulator for binary DPSK is shown in Fig. 5.18. During the
time interval nT < t < (n 4 1)T, the values of X,,, X,,4, Yy, and Y,,; in Fig.5.18 are
X, = 2aE, cos(6, + ¢) + iy
Xnd = 20{Eh COS(en—l + ¢) + ﬁl,d
Y, = 20Ey sin(6, + ¢) + nig

Yoa = 20Ey sin(6,—1 + @) + fga, (5.146)
m+1)T
r (1) ‘@‘ ()ar - X
nT
decision
Ah, (1) delay T ¥ device
nd

§< >

DY zo2

Ah, (1) Y

delay T
n+1)T
ro(1) @_ ()i -
nT

Fig. 5.18 Differentially coherent receiver for binary DPSK
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where
A2 T
E, = — / R (t)dt (5.147)
2 Jo
and the noise terms are

(n+1)T
n = A/ ny(t)h,(t)de
nT

nT
g =A / n;(t)h, (t)dt
(n—1)T

(n+1)T
ng =A / . ng(Hh,(t)dt

nT
nog = A / ng(H)ha(1)dr. (5.148)
(n—1)T

One can show that 7y, 717 4, 11, and 7g 4 are independent identically distributed zero-mean Gaussian random variables with
variance 2E,N,.

In the absence of noise, it is easy to verify that the input to the decision device is U,, = 40{2Eﬁx,,. Hence, the sign of U, is
equal to the sign of x, and correct decisions are made. When noise is present, U, is a random variable, and to determine the
probability of error the pdf of U, is required. To determine the pdf of the U, it is convenient to express U, as

—_—

U, =Rel{Z,Z},} = 3 (2,23, + Z Za) (5.149)

where
Zy =X +jY, (5.150)
Zng = Xna + j¥na- (5.151)

It can be shown by using characteristic functions that U, has the differential form U, = W, — Y,,, where W,, and Y, are
non-central and central chi-square random variables with respective densities [308]

22
(wx, + 40’E}) 2\ Wy E},
_ _W T AR D T s 0 5.152
S W) = Spexp % 2EN, 0 EN, i (5.152)
fr. ) al >0 (5.153)
= exp{ — , >0, .
i 2EN, P\ TN, | T

where Iy(x) is the zero-order modified Bessel function of the first kind defined by

1 2
Ih(x) = 7 f e *eosfyp, (5.154)
0

By defining the auxiliary random variable V,, = W, and using a bivariate transformation of random variables, the pdf of

U, is

fu, (W) = Sw, (Wfy, (v —u)dv

Ry vy

252
1 Xpu—20°E)
, —00 < xu <0

3EN, “XP { 2EN,

212
1 Xpu—20"Ej 202E), 2xput
3E,N, SXP { smn, [ © N, o\ B, | 0 0 < Xau <00

’

(5.155)
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where Q(a, b) is the Marcum Q function, defined by

b 2.2
O(a,b) =1— / 2" 5L (za) dz. (5.156)
0

From (5.155), the bit error probability of DPSK with differential detection is

I _
— _e W

5 (5.157)

© 1 u+ 20°E;
Py(ys) = - d
= [ e |-

where y, = «?E},/N, is the received bit energy-to-noise ratio. For a slow Rayleigh fading channel, « is Rayleigh distributed
so the received bit energy-to-noise ratio, ), has the exponential pdf in (5.85). It follows that the average bit error probability
with slow Rayleigh fading is

1 1

—_  ~—. (5.158)
20 +v) 2w

m=£ Py, (x)dx =

Note that the error probability has an inverse linear dependency on .

5.8.2 Differential Detection of & [4-DQPSK

Differential detection can be used with 77/4-DQPSK as well. Once again the complex envelopes of the transmitted and
received signals are given by (5.144) and (5.145), respectively. However, with 7/4-DQPSK, A6, = mx,/4 where x, €
{£1, £3}, so that one of the four possible differential phases must be detected. A block diagram of a differentially coherent
baseband demodulator for 77 /4-DQPSK is shown in Fig. 5.19. The values of X,,, X,.4, Y,, and Y,,; are again given by (5.146).
The detector outputs are

U = Re (2,20 =+ (223 + Z32,) (5.159)

—_— N =

V, =Im{Z,Zy,} = 7 (2.2 - Z Za) (5.160)

where Z,, and Z,,; are defined in (5.150) and (5.151), respectively. In the absence of noise, it can be verified that the detector
outputs are

U,=—a, V,=—a, forx, =-3
U,=a, V,=—a, forx, =-—1
U,=a, V,=a, forx, =+1
U,=—a, V,=a, forx, =+3 (5.161)
n+1)T ..

0 [ NSy deaision
nT device

Ah,(t) 20? |=
%,

)T

(1) [()a
n

Fig. 5.19 Differentially coherent receiver for r/4-DQPSK
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where a = 2«/§a2E£. The bit error probability for 77 /4-DQPSK with Gray coding is somewhat complicated to derive and
omitted here, but can be expressed in terms of well-known functions [272]

Py(yy) = Qla,b) — %Io(ab)e‘%(“”bz), (5.162)
where
2 (1 ! ) (5.163)
a = —_—— .
Y \/E

b= 2y (1 + —) (5.164)

and v, is the bit energy-to-noise ratio. Once again, if the channel is flat faded, then the bit error probability can be obtained
by averaging (numerically) over the distribution of y,, in (5.85).

5.9 Non-coherent Detection

If information is transmitted in the amplitude and/or frequency of a waveform, but not the phase, then a non-coherent
receiver can be used. Non-coherent receivers make no attempt to determine the carrier phase and are, therefore, easier to
implement than coherent receivers. Non-coherent receivers generally trade implementation complexity and robustness to
channel impairments, such as high Doppler conditions, for transmitter power and/or bandwidth.

Suppose that one of the M complex low-pass waveforms, 5,,(f),m = 1,..., M, say 5;(f), is transmitted on a flat fading
channel with AWGN. The received complex envelope is

7(t) = gsi(1) + n(), (5.165)

where g = ae/? is the channel gain that includes the random phase ¢, and 7(¢) is the AWGN. By projecting 7(¢) onto the
set of basis functions {¢@,(t) }2]=1 obtained through the Gram—Schimdt orthonormalization procedure, the received vector is
obtained as

I = gs§; +n, (5.166)
where the joint pdf of n is given in (5.13).
The maximum likelihood (ML) non-coherent detector does not require knowledge of the random excess received carrier
phase ¢ in the decision process, and chooses the message vector §,, that maximizes the joint conditional pdf p(¥|e, §,,):

choose §,, if p(F|a,S,) > p(F|le, ;) Vin # m. (5.167)

Letting p(¢p) denote the pdf of ¢,

2
p(Fla.8,) = Eg[p(F[g.5m)] =/0 p(Flg.Sn)p(@)dg. (5.168)

Using the joint conditional pdf of p(r|g, §,,) in (5.20) yields

o 1 T
rg.Sm) = v — = IIr—&Sm
PEle 52) = mysrexe |~y 7 - )

1 { IF]2 + 202E,,

1
_ 1 Reti. gl 5.169
o - }p{ RelE g sm}} (5.169)
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where, again, E,, is the energy in the bandpass waveform s,,(¢) corresponding to the signal vector §,,. Nextlet ¥ -§; = X, e/

so that

Fg*st = g"F -8 = "X = aX, &), (5.170)
Hence,
o~ ¥ + 222E,|? aX,
p(¥lg.Sy) = Wexp { _2—1\70 exp - cos(O, — @)y - (5.171)

In the absence of any prior information, the random phase ¢ is assumed to be uniformly distributed on [—s, 1), resulting in

I 1 20°E, + IF)?) 1 [P (aX,
p(Fla,s,) = WGXP{_Z—NO} E/(; CXP{ N, COS(Qm_¢)} d¢

1 20°E,, + |F? aX,
L S P L s 5.172
(2nN0)NeXP{ N, } °( N, ) (5-172)

Since the terms ||F||> and (27 N,)" are independent of the choice of §,,, the signal vector that maximizes p(F|a, §,,) also
maximizes the decision metric

( ) = . ( )
M1(Sm) = €eXp 1 . 5.173
! N, 0 N,

If all message waveforms have equal energy, then considerable simplification will result. In this case, the ML receiver can
choose §,, to maximize

5,) = 1, [ %X 5.174
MZ(Sm)_O(N,,)' (5.174)

However, ly(x) increases monotonically with x. Therefore, the ML receiver can simply choose §,, to maximize

From the above development, the structure of the ML non-coherent receiver is clear. The receiver first uses the quadrature
demodulator in Fig.5.1 to extract the real and imaginary components of the complex envelope 7;(f) and 7(f). Then it
computes the received signal vector r using the correlator detector in Fig. 5.2 or matched filter detector in Fig. 5.3. For equal
energy messages, the decision variables X, = |r -8} |, m = 1,..., M, are computed and the signal vector §,, is chosen that
has the largest X,,,. If the messages do not have equal energy, then the metric in (5.173) must be used instead. This will add
considerable complexity to the ML receiver, because the channel gain & must be determined and the Bessel function Iy (x)
must be calculated. Finally,

20~ ok 205 =ky71/2
Xy = [Re*(F-§)) + Im*(F-§))] . (5.176)
This leads to the detector structure shown in Fig. 5.20, commonly known as a square-law detector. Note that the square-law
detector generates X,zn, m = 1,...,M rather than X,,, m = 1,..., M. However, the choice of §,, that maximizes X,%l also
maximizes X,,.
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Fig. 5.20 Non-coherent
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5.9.1 Error Probability of M-ary Orthogonal Signals

Consider the case of M-ary orthogonal signals as discussed in Sect.4.5. Assume without loss of generality that s; is sent.

Then the received vector ¥ = (71, 72, ..., Fy) has components
1 =gv2E+m
r=n, i=2,....,M. (5.177)

Since the M-ary orthogonal signals have equal energy, the metric in (5.175) can be used. Then

X = [F-§]]
= |2Eg + v2En|
= 2B cos(p) + 2Eiiy, +j (2Ea sin(@) + \/ﬁﬁg,l)‘ (5.178)
and
X, = |F-§¥|
= |V2Eii,|
= |V2Efiw + jN2Efgm| . m=2.....M. (5.179)

The receiver will make a correct decision if
X\ >X;, Vi#1l. (5.180)

From Appendix A, X; has the Rice distribution

X2+ 4o2E? ax
rx, (x) = exp %——} I (—) . (5.181)

X
2EN, 4EN, N,
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while the X;, i # 0, are independent Rayleigh random variables with pdf

)C2

" 4EN,

X .
px,(x) = 2ENoexp% % ,i=2,...,M. (5.182)
The probability of correct symbol reception is

Plc] = P[X, < X1, X3 < Xi1,..., Xy < Xi]
1

[e}e] y x X2 dx M— d
_/0 (/0 ZENoeXp%_4EN(,% ) px, (v)dy

0 y2 M—1
= /0 (1 —exp%—4EN }) px, (v)dy. (5.183)

Using the binomial expansion

k=0

-2y = (Z) (—D

gives

M—1 _ 1 00 5
Plc] = Z(—l)"(M X ) /0 exp{— 4]3]\] } px, (v)dy. (5.184)
k=0 4

The integral in the above expression is

o0 2
y:/ eXP{— a2 %pxl(y)dy
0

4EN,
[e'e} kyZ y y2+40l2E2 ay
= exp i — expi———— | — | dy
0 4EN, ) 2EN, 4EN, N,
00 k 1 2 4 2E2
=/ )l KDy HARTET] e (5.185)
o 2EN, 4EN, N,

The trick is to manipulate the integrand of . into the product of a Ricean pdf and a term that does not depend on the variable
of integration y. This is accomplished by making the substitutions

2EN, E
= 2 E = 5.186
k41 (k+1) ( )
and solving the integral. This gives
1 2ka’E"™? 1 ky;
I = — = — , 5.187
k—i—lexP{ N } k+1eXp{ (k—}—l)} C-187)
where y, = a?E/N, is the symbol energy-to-noise ratio. Hence, the probability of correct symbol reception is
M—1 k(M—1
(_1) ( k ) kys
Plc] = —_— - 5.188
[el= 2~y eXp{ (k+1)} (5.188)

k=0
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and the probability of symbol error is

M—1 M—1

D) kys

Py = 1—P[] — 2k exp %— } . (5.189)
— okt (k+1)

For orthogonal signals y; = y,log,M and the bit error probability is given by (5.56). Hence,

(5.190)

M—1 -1 k+1(M—1
i) = 5y 3 e [ o

2(M — k+1 (k+ 1)

For Rayleigh fading channels, the error probability can be averaged over the distribution of y; in (5.85). This gives the
following simple closed form for the average bit error probability

S

J— ~ ) (5.191)
"T2M—1) & Ttk + kpplog,M '

Once again, the error probability has an inverse linear dependency on ;.

5.10 Detection of CPM Signals

CPM receivers can be categorized into three different types of detection schemes: coherent detection, differential detection,
and non-coherent detection. Furthermore, in each category there are two approaches: symbol-by-symbol detectors and
sequence estimators. Sequence estimators will be treated in the context of channel coding in Chap. 8. This section only
considers symbol-by-symbol CPM detectors. While there exist a large variety of coherent and non-coherent symbol-by-
symbol CPM detectors, we present two structures. Both receiver structures use multiple-symbol observation intervals to
detect partial response CPM signals, and both generate soft outputs making them well suited to systems that employ
convolutional, trellis, or Turbo coding.
Recall that the partial response CPM complex envelope during the time interval nT < t < (n 4+ 1)T is, from (4.133),

5(1) = Aej(9,1+2nhzz=”,L+lxnﬂ(t—kT)), (5.192)
and the CPM state at time ¢ = nT is defined by the L-tuple
Sn = (On, Xn—1,Xn—2, "+, Xn—L+1)- (5.193)

In the sequel, the CPM complex envelope during the time interval n7 < t < (n + 1)T will also be denoted by 5(S,,, X, f) to
emphasize the finite state nature of the signal. For a slow flat fading channel, the received signal is

(1) = gs(t) + n(2), (5.194)

where 7(7) is a zero-mean complex AWGN with psd N, watts/Hz.

5.10.1 Coherent Detection and Error Probability of MSK and GMSK

MSK signals can be recovered using a variety of detection techniques. One method uses the linear representation of MSK,
where MSK is equivalent to OQASK with a half-sinusoid amplitude shaping function as described in (4.111)-(4.116). The
received complex envelope is

(1) = gs(t) + n(?), (5.195)
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Fig. 5.21 Coherent detector for MSK signals

where ¢ = ae/. A coherent MSK receiver first removes the effect of the channel phase rotation according to

e 7?7 (1) = 71(r) cos(¢p) + 7o(t) sin(¢) +j<?Q (1) cos(¢p) — F(t) sin(¢>))

o5, (t) + 7y (1) + j(aEQ(t) + ﬁQ(I)), (5.196)

where the effect of the phase rotation on the noise 72(7) has been ignored due to its circular symmetry. Detection then proceeds
by processing the real and imaginary parts of e 77() as orthogonal binary PAM streams. The resulting MSK detector is
shown in Fig. 5.21. Note that the source symbols on the in-phase and quadrature carrier components must be detected over
intervals of length 27, the duration of the half-sinusoid amplitude shaping pulse /,(¢), and bit decisions are made every T
seconds. It follows that coherently detected MSK has the same bit error rate performance as QPSK, OQPSK, and BPSK.

By using the linearized representation of GMSK, LGMSK, in Sect. 4.8.3, replaces the half-sinusoid amplitude shaping
pulse in (4.8.3) with the LGMSK pulse in (4.157). This will create ISI that will degrade performance somewhat if a matched
filter with symbol-by-symbol decisions are used. For example, with BT = 0.25, the E;,/N, degradation is roughly 0.75 dB in
AWGN [122]. The induced ISI can be mitigated by using a variety of channel equalization techniques for linear modulation
schemes as detailed in Chap. 7, such that the performance loss due to the Gaussian pulse shaping is negligible.

5.10.2 Coherent CPM Demodulator

A coherent CPM demodulator was proposed by Osborn and Luntz [252], and Schonhoff [295]. The decision metrics for
symbol x, are obtained by observing 7(f) over N, + 1 successive symbol intervals and generating decision metrics for all
MM+ possible symbol vectors X, = {x,, b,}, where b, = {X,41.--+ ., Xy4n,}. The ML metric for x, is proportional to the
conditional density p(7(¢)|S,, X, b,, g) and is given by

"Ny )T

1S Xn D) = — > f |7(r) — 85(Si, x;, 1) |dt. (5.197)

T

The metrics for x, can be obtained by averaging (5.197) over the M™» possible values of b, and averaging over all possible
initial states S,,. This leads to the decision metric

1G) =Y > (S %w b)PLIPS] =D > (S . by) (5.198)

SVI bn S n bn
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where P[b,] and P[S,] are the probabilities of b, and S,, respectively, and the last equality follows because all the b, are
equally likely, and all the S, are equally likely, for equally likely data symbols. By using (5.198) a set of M metrics is
calculated for the M possible x,. The receiver makes the final decision by choosing the symbol having the largest decision
metric.

A simplified receiver that will yield almost the same performance uses the suboptimum decision metric [252, 295]

Ny L i+D)T ,
n) = — r(t) — g5(Si, x;, H)|~dt ¢, 5.199
() = max max ;/T (1) — g5(Si. x:.1)] (5.199)
which is also exactly the same as the decision metric proposed by Kerr and McLane for full response CPFSK [180]. Once
again, by using (5.199) a set of M decision metrics is calculated for the M possible x, and the receiver chooses the symbol
having the largest decision metric.

5.10.3 Non-coherent CPM Demodulator

A non-coherent receiver can be constructed by using a multiple-symbol observation interval similar to that suggested for the
coherent receiver described in the previous section [368]. After observing 7(f) over the N-symbol interval (n — n)T <t <
(n + ny)T, where N = n; + n, + 1, the non-coherent CPM demodulator in [368] generates the following set of MNTL=2
conditional symbol metrics for each x;,:

n+ny (i+1)T
P b)) = | Y / FOF*(Six 0 dr | (5.200)
i=n—n iT
where b, = {Xy—n—L+1."* s Xu—1,Xn+1,** s Xntn, ) 1 the “adjacent” symbol vector that excludes x,. Note that the phase

term 6,—,, in S,—,, does not affect the value of (5.200) and can, therefore, be assumed zero. A simple symbol metric can be
formed by choosing the largest among all possible w(x,, b,), viz.,

n+ny (+DT 2
) = ()5 (S;, x;, 1) dt 5.201
pos) =max | 3 - HOF(Six) (5.201)
i=n—ny

The set of M symbol metrics so obtained is then used to make decisions on the transmitted symbols by selecting the symbol
with the largest symbol metric.

For N =1 (ny = np = 0), the symbol metric in (5.201) is the same one used by the single-symbol receiver in [5] and, as
a result, the single-symbol receiver can be treated as a special case of the receiver presented here. In order to calculate the
metrics in an efficient recursive fashion, an approach similar to [304] can be followed to rewrite w(x,, b,) as

2
n—+ny
1o by) = | > TiF;| . (5.202)
i=n—ny
where
(i+D)T
Fi = / ;(l‘)g* (xi_L+1 yor L X, l) dr
iT
Fi=e ™ LF_|; Fpyp =L (5.203)

The metric generator structure is shown in Fig.5.22. Generally, the metric calculator requires M* matched filters
and generates MVTL~! conditional symbol metrics p(x,,b,). However, unlike the coherent receiver, the complexity is
independent of the modulation index /. Actually, since the term 6, is not explicitly exploited in S, / is not even required to
be a rational number, i.e., the CPM waveform is not required to have a finite number of states. Finally, it is observed that the
complex channel gain g is not required and, therefore, the receiver complexity is greatly reduced.
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Fig. 5.22 The symbol metric calculator. Note that the signal 5* (¢) is labeled to account for P = M" possible matched filters
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Fig. 5.23 Figure for Problem 5.1

Problems

5.1. Derive the upper bound
1 2
O(x) < ¢ , x> 0.

Hint: Note that 4Q?(x) is the probability that a pair of independent zero mean, unit variance, Gaussian random variables u, v
lie within the shaded region of Fig.5.23a. This probability is exceeded by the probability that u, v lies within the shaded
region of Fig. 5.23b.

5.2. Consider the receiver model shown in Fig. 5.24, consisting of a linear time-invariant filter /,(¢) followed by a sampler.
The input to the filter consists of a pulse #,(¢) of duration T corrupted by AWGN

Ht) = hy(t) +0(t), 0<t=<T.
The output of the filter is

y(@) = p(0) +2(1)

where p(f) = hy(f) * h,(¢) and Z(t) = a(t) * h.(¢), the filter output is sampled at time 7 to produce the sample y(T) =
p(T) + Z(T). The signal-to-noise ratio at the output of the sampler is defined as

_ P
SR = ElEnp

Find the filter /,(¢), and corresponding transfer function H,(f), that will maximize the SNR.
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Fig. 5.24 Figure for Problem 5.2

h(t 7 i 7
(t) N\ (t) o ﬂ /7<J(T)

5.3. Consider the pulse

sin(%), 0<t<T

h,(t) = .
a?) 0, otherwise

(a) Determine the impulse response of the matched filter for this signal.

(b) Sketch the waveform y(r) at the output of the matched filter, and determine the output value at time t = 7.

(c) Sketch the waveform y(¢) at the output of a correlator that correlates /,(¢) with itself, and determine the output value at
timet =T.

5.4. Derive the expression for the symbol error probability of v/M-PAM in (5.102).
5.5. Show that the symbol error probability for coherent M-ary PSK is bounded by p < Py, < 2p, where

T
= 2 s 1 _)
p Q( Yssin o

and y; is the symbol energy-to-noise ratio.

5.6. Suppose that BPSK signaling is used with coherent detection. The channel is affected by flat Rayleigh fading and log-
normal shadowing with a shadow standard deviation of o dB. The composite squared-envelope has the probability density
in (2.371).

(a) Obtain an expression for the probability density function of the composite envelope.
(b) Find an expression for the probability of bit error as a function of the average received bit energy-to-noise ratio.
(c) Plot your results in part (b) for different values of 0.

5.7 (Computer Exercise). This problem requires that you first complete the computer exercise in Problem 2.46, wherein
you will construct a Ricean fading simulator. The objective of this question is to evaluate the performance of BPSK signaling
on a Ricean fading channel through computer simulation.

Suppose that one of the two possible signal vectors 5p = —5; = +/2E}, are sent where E;, = E}, is the transmitted bit
energy. Assuming ideal coherent detection, the received signal vector is

;:Olgi—i-ﬁ,

where « is a Ricean distributed random variable and 7 is a zero-mean complex Gaussian random variable with variance N,,.
For a given «, the probability of bit error is

Po) = 0 (V1)

where y, = a?E},/N,. The probability of bit error with Ricean fading is

Py, = /000 o (\/Z_J%)P(J/b)dl/b-

(a) Evaluate the bit error probability by using computer simulation, where « is generated by the Ricean fading simulator
that you developed in Problem 2.46. Assume that the value of « stays constant for a bit duration, i.e., update your fading
simulator every T seconds, where T is the bit duration. Assume f;,7 = 0.1.
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(b) Plot the simulated bit error probability, P,, against the average received bit energy-to-noise ratio y, = E[a?]E,/N,.
Show your results for 0.5 < P, < 1073 and for Rice factors K = 0,4, 7, and 16. Note: To adjust y, you will need to
adjust the value of §2, in your fading envelope generator.

5.8. Consider a non-orthogonal coherent binary FSK system with the bandpass waveforms

s1(t) = AcosQ2nft), 0<t<T
55(f) = AcosQn(fe + Ap)t), 0<t<T

and assume that f.7 > 1.
(a) Show that the correlation between the bandpass waveforms is given by

1 (7
o= E/ s1()s2(H)dt = sinc(2A[T)
0

where E is the energy in the waveforms.

(b) What is the value of A, that minimizes the probability of symbol error?

(c) For the value of Ay obtained in part (b), determine the increase in the received bit energy-to-noise ratio, y;, required so
that this coherent FSK system has the same bit error probability as a coherent binary PSK system.

5.9. OFDM systems are known to be resilient to timing errors. Consider the following OFDM waveform with a cyclic prefix

5,() =AY b(t—nT,.x,).

where
Nt 27k(t+T) Nt 27k
2wk =27kt
b(t,X,) = Ug,r(t + ogT) an,ke’ M5+ ur(f) an,ke’ Ny |
k=0 k=0

and T = NT; and T, = (1 + a,)T. Suppose the waveform 5,(¢) is sampled every T, seconds. For the nth OFDM symbol,
this yields the sample sequence {Xn,m}%;}), where

Xy = S(—agT +nT, +mT; + A,),

N—1
m=0"

and 4 is a timing offset. For the nth OFDM symbol an FFT is taken on the sample sequence {X,, ,}

(a) Suppose that the timing offset A, lies in the interval (0, &, T') such that the samples {Xn,m}ﬁ;}J all belong to the nth OFDM
symbol. Determine the FFT coefficients.

(b) Now suppose that the timing offset A, lies outside the interval (0, &, T), such that the samples {X;, . }
to the nth OFDM symbol. Determine the FFT coefficients.

N—1
m=0

do not all belong

5.10. Consider the following OFDM waveform with a cyclic suffix and a carrier frequency offset A;:
5,(1)=A Zb(r — 1Ty, Xy),

where

N—1

b(t,x,) = ur(t) an.kexp %]27[ (IVLTY + Af) t}

k=0

N—1
k
+tg,r(t = T) an.kexp {jZn (NTS + Af) t} ,

k=0
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T = NT; and T, = (1 + a,)T. The waveform 5,(¢) is sampled every 7 seconds. For the nth OFDM symbol, this yields the

sample sequence {X,,}N_{, where

Xom = 5(nTy + mTy).
An FFT is taken on the sample sequence {X, fX;B~
Show that the FFT coefficients (in absence of noise) can be written as

Zn,i = FFT{Xnm} = NXn,i + ¢,
where

sin (TN A/T)

T N=D AT,
N sin (nAfTS)

n=A

and

N—1

¢ =A Z Xn.mH(m, 7)

m=0

m¥i
is the random ICI term, where

sin (zr (m —i+ NAfTs))

o (OFH) (m—i+NAT,)
Nsin (7 (m— i + NA;T,) /N)

H(m,i) =

5.11. Suppose that the average bit energy-to-noise ratio, y,, in a cell is uniformly distributed between 12 and 16 dB. Calculate
the average probability of bit error in the cell assuming that there is also Rayleigh fading, and binary DPSK signaling is used.

5.12. Consider the differentially coherent receiver shown in Fig. 5.18. Show that the pdf of U, is given by (5.155).

5.13. Consider a system that uses M-ary orthogonal modulation with non-coherent detection. The error probability on an
AWGN channel is known to be

S

Py,

=1 \k+1M-1
M ( 1) ( k )exp{ k‘}/“ },

TaM-) &=kt Ck+1)

where y, = a’E,/N, is the received symbol-energy-to-noise ratio.

(a) Derive the corresponding expression for the probability of bit error on a slow flat Rayleigh fading channel. Express your
result in terms of the average received bit-energy-to-noise ratio, y;,, and simplify to closed form.
(b) Repeat part (a) for a slow flat Ricean fading channel. Simplify as much as possible.

5.14. Consider binary CPFSK modulation with modulation index 2 < 0.5. Compute the minimum squared Euclidean
distance between any pair of bandpass waveforms as given by

nT
. . ; N\ 2
D>, = lim min / (s(t; xD) — s(z; x(’))) dr,
n 0
where s(¢;x") and s(t; x?) are the two bandpass signals whose phase trajectories diverge at time = 0 and merge sometime

later. What is the pairwise error probability between two such signals?

5.15. The squared Euclidean distance between a pair of CPM bandpass waveforms, s(z; x(i)) and s(z; x(f)), is

D = /oo (s(t;xD) — s(t; x(")))2 dr.
0



272 5 Detection of Known Signals in Noise

Show that
1 o0
D? = 2(log2M)Ebf/ (1 —cos Ay(1)) dr,
0

where M is the symbol alphabet size, E}, is the energy per bit, and A, (¢) is the phase difference between the two signals.

5.16. Construct a differential detector for MSK signaling. Obtain an expression for the probability of bit error for
differentially detected MSK on an AWGN channel.

5.17. Suppose that GMSK signaling is used. Unfortunately, the GMSK pulse is non-causal and, therefore, a truncated version
of the pulse is employed, i.e., the time domain pulse is

0 = o (0 (LE1L2) — o (T2 ) (15121,

where
O(a) / LI (5.204)
) = —_— .
o \/27‘[
2 102 (5.205)
~ 4n%(BT)?’ '

Compute the maximum value of the ISI term in (4.149) as a function of the normalized filter bandwidth BT when Ly = 3.



Chapter 6
Multi-Antenna Techniques

Rayleigh fading converts an exponential dependency of the bit error probability on the average received bit energy-to-noise
ratio into an inverse linear one, yielding a very large performance loss. Diversity is a very effective remedy that exploits
the principle of providing the receiver with multiple independently faded replicas of the same information bearing signal.
Sometimes these replicas are called diversity branches. To illustrate the diversity mechanism, let p denote the probability
that the instantaneous bit energy-to-noise ratio for any one diversity branch falls below a critical threshold yy,. Then with
independently faded diversity branches, the probability that the instantaneous bit energy-to-noise ratio simultaneously falls
below the same critical threshold yy, for all L diversity branches is p”, and p* < p for small values of p.

The methods by which diversity can be achieved generally fall into six categories: (1) space, (2) angle, (3) polarization,
(4) frequency, (5) multipath, and (6) time. Space diversity is achieved by using multiple transmit or receiver antennas. The
spatial separation between the antenna elements at the transmitter and/or receiver is chosen so that the diversity branches
experience uncorrelated fading. Chapter 2 showed that a spatial separation of about a half-wavelength will suffice for 2-D
isotropic scattering and isotropic antenna elements. Angle (or direction) diversity requires a number of directional antennas.
Each antenna selects plane waves arriving from a different spatial direction, so that uncorrelated branches are achieved.
Polarization diversity exploits the property that a scattering environment tends to depolarize a signal. Receiver antennas
having different polarizations can be used to obtain uncorrelated branches. Frequency diversity uses multiple channels that
are separated by at least the coherence bandwidth of the channel. In general, frequency diversity is not a bandwidth efficient
solution. However, frequency hopping can be used along with coding where the elements of the codewords are transmitted
on multiple hops (or carriers) that experience uncorrelated fading. Multipath diversity is obtained by resolving multipath
components at different delays by using direct sequence spread spectrum signaling along with a RAKE receiver. Spread
spectrum concepts will be discussed in detail in Chap. 9. Time diversity is obtained by transmitting the same information at
multiple time periods that are separated by at least the coherence time of the channel. Error correction coding techniques
can be viewed as a bandwidth efficient method for implementing time diversity. Unfortunately, the coherence time of the
channel depends on the Doppler spread, and a small Doppler spread implies a large coherence time. Under this condition,
it may not be possible to obtain time diversity without introducing an unacceptably large interleaving delay. Finally, the
above techniques can be combined together. For example, spatial and temporal diversity can be combined together by using
space-time coding techniques.

Once the diversity branches are generated, they must be combined together. A large variety of diversity combining
techniques have been described in the literature. The type of diversity combining that is most effective will depend, among
other things, on the type of additive impairment that is present, i.e., additive white Gaussian noise (AWGN) or co-channel
interference (CCI). For AWGN dominant channels, maximal ratio combining is optimum in a maximum likelihood sense. For
channels that are dominated by CCI, optimum combining is more effective, where interference correlation across multiple
antenna branches is used to reject the CCI.

This chapter concentrates on antenna diversity techniques, although the mathematical concepts will readily apply to
other types of diversity as well. Section 6.1 formulates the diversity combining problem when there is a single transmit
antenna and multiple receiver antennas. Sections 6.2—6.5 consider selective combining, maximal ratio combining, equal gain
combining, and switched combining, respectively. Section 6.6 considers differential detection with equal gain combining.
Optimum combining for the purpose of combating fading and co-channel interference is considered in Sect. 6.8. Section 6.9
considers classical antenna beam-forming. Multiple-input multiple-output (MIMO) channels are introduced in Sect. 6.10.
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The Alamouti transmit diversity scheme is presented in Sect. 6.11, while spatial multiplexing and detection is considered in
Sect. 6.12. Spatial modulation is considered next in Sect. 6.13, where only one antenna in an array is activated. Finally, the
chapter wraps up with massive MIMO in Sect. 6.14.

6.1 Diversity Combining

There are many methods for combining the signals that are received on the different diversity branches, and several
ways of categorizing them. Diversity combining that takes before matched filtering or correlation detection is sometimes
called predetection combining, while diversity combining that takes place after matched filtering or correlation detection is
sometimes called postdetection combining. In many cases there is no difference in theoretical performance between the two
approaches, while in other cases there is a performance difference.

Consider the receive diversity system shown in Fig.6.1. The signal that is received by each receiver antenna is
demodulated to baseband with a quadrature demodulator as shown in Fig. 5.1 and then processed with correlator or matched
filter detector shown in Figs. 5.2 and 5.3, respectively. Afterwards, the correlator or matched filter outputs are applied to a
diversity combiner as shown in Fig. 6.1.

Consider a communication system that uses an M-ary modulation alphabet along with a receiver having L diversity
branches. During each baud interval, one of M message waveforms is transmitted having the complex envelope 5,,(¢),

m=1,...,M. The received complex envelopes for the L diversity branches are
re(0) = gism(1) +e(r),  k=1,..., L, (6.1
where g, = a;e/® is the complex fading gain associated with the kth branch. The AWGN processes i (f), k = 1, ..., L

are independent from branch to branch, since they correspond to the thermal noise that is introduced by the high gain
amplifiers that are used to amplify the signals received on each of the receiver antenna elements. After correlating or matched
filtering the received waveforms 7, (f) with the basis functions that are obtained from a Gram—Schmidt orthonormalization
procedure, the corresponding received signal vectors are

O =gSn+ 0,  k=1,..., L, (6.2)
where

7’1(1. :gk§n1;+ﬁki’ i=1,..., N. (6.3)
The fading gains of the various diversity branches typically have some degree of correlation, and the degree of correlation
depends on the type of diversity being used and the propagation environment. To simplify analytical derivations, the diversity
branches are often assumed to be uncorrelated in the literature. However, branch correlation will reduce the achievable

diversity gain and, therefore, the uncorrelated branch assumption gives optimistic results. Nevertheless, the performance of
the various diversity combining techniques will be evaluated under the assumption of uncorrelated branches.

Fig. 6.1 Postdetection diversity

receiver rl (t ) F1
— detector
K1) B
detector diversity | F
combiner
A r,
— detector
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The fade distribution will affect the diversity gain as well. In general, the relative advantage of diversity is greater for
Rayleigh fading than Ricean fading, because as the Rice factor K increases there is less difference between the instantaneous
received bit energy-to-noise ratios on the various diversity branches. However, the performance will always be better with
Ricean fading than with Rayleigh fading, for a given average received bit energy-to-noise ratio and diversity order. In this
chapter, the performance with slow flat Rayleigh fading will be considered, although the methodology will apply to slow flat
Ricean fading as well.

6.2 Selective Combining

With selective combining (SC), the diversity branch yielding the highest bit energy-to-noise ratio is always selected. In this
case, the diversity combiner in Fig. 6.1 performs the operation

I = maxry. (6.4)
lgk|
For communication links that use continuous transmission, SC is impractical because it requires continuous monitoring of
all diversity branches to estimate and track the time-varying complex gains g. If such channel estimation is performed, then
it is better to use maximal ratio combining, as discussed in the next section, since the implementation is not that much more
complicated and the performance is optimal in AWGN. In systems that transmit information in bursts, a form of SC can
sometimes be implemented where the diversity branch is selected on a burst-by-burst basis, by using the synchronization
word or training sequence that is inserted into each burst. The selected branch is then used for the duration of the entire
burst. Obviously, such an approach is only useful if the channel does not change significantly over the burst duration. In this
section, however, selection diversity is evaluated under the idealized assumption of continuous branch selection.
With Rayleigh fading, the instantaneous received symbol energy-to-noise ratio on the kth diversity branch has the
exponential pdf

1 _
Pp(x) = —e 7, (6.5)
J/‘

C

where y, is the average received branch symbol energy-to-noise ratio, assumed to be the same for all diversity branches.
With ideal SC, the branch with the largest symbol energy-to-noise ratio is always selected so that the instantaneous symbol
energy-to-noise ratio at the output of the selective combiner is

ys =max{y1, Y2, ---, YL}, (6.6)

where L is the number of branches. If the branches are independently faded, then order statistics gives the cumulative
distribution function (cdf)

/L
Fps@) =Py sx,yp<x ....yp<x=(1-e¢ /y‘) . 6.7)

Differentiating the above expression gives the pdf of the instantaneous output symbol energy-to-noise ratio as

L Sl -
Pys(x) = W (1- e_"/”"‘)L e/, (6.8)

c

The average output symbol energy-to-noise ratio with SC is

o0
7 = /0 3y ()

_ / ¥ Ly (1- e—X/)?c)L_' o=/ Tedy
0

L
=%y - 6.9)
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Fig. 6.2 Cdf of y; for selective combining; y. is the average branch symbol energy-to-noise ratio
Figure 6.2 plots the cdf F,s(x) against the normalized symbol energy-to-noise ratio x/y, in dB units. Note that the largest
diversity gain is obtained in going from L = 1 to L = 2, and diminishing returns are obtained with increasing L. This

s i
The bit error probability with slow flat fading can be obtained by averaging the bit error probability, as a function of the
(6.10)

behavior is typical for all diversity techniques

symbol energy-to-noise ratio, over the pdf of y}. For example, the bit error probability for binary DPSK with differential
Py(y;) = ¢ ",

detection on an AWGN channel is
where y; can be interpreted as the instantaneous bit energy-to-noise ratio since binary modulation is being used. Hence

oo
Py = / Pp(x)pys (x)dx
0
L _ -
e~ (/70 (1 — e=/7) 7 gy

_/0 2y,
L-1 (_1)11 /OO e—(l+(n+l)/yc)xdx
0
(6.11)

with SC

L—1

L
_2%;
L—1 L—)( 1)

L
- Ezl—kn—kn
(6.12)

n=0
L—1
=2 (L; 1)(—1)%”

where the binomial expansion
(1—x
n=0
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Fig. 6.3 Bit error probability for binary DPSK with differential detection and L-branch selective diversity combining

was used. The bit error probability is plotted in Fig. 6.3, where y, is equal to the branch bit energy-to-noise ratio. SC is seen
to give a very large improvement in bit error rate performance. When y. > 1, (6.11) shows that the bit error probability
is proportional to 1/y%. Again, the greatest benefit of using diversity is achieved in going from L = 1 to L = 2 diversity
branches and diminishing returns are obtained with increasing L.

6.3 Maximal Ratio Combining

With maximal ratio combining (MRC), the diversity branches are weighted by their respective complex fading gains and
combined. MRC realizes a maximum likelihood receiver as is now shown. Referring to (6.2), the vector

I = vec (f’l, f'z, e, f'L) (613)

has the multivariate complex Gaussian distribution

L N
1 1
P50 = [[[ [ exp {——m.,« —gksm,,-v}
(127N, 2N,

L
1 = <12
= ————exp{—=— Iy — giS 6.14
TN P ) "o ; IFx — geS § (6.14)
where g = (g1,2,-..,8) is the channel vector. The maximum likelihood receiver chooses the message vector s, that

maximizes the likelihood function p(¥|g, §,,). This is equivalent to choosing the message vector §,, that minimizes the metric

L

/‘(’(gm) = Z ||fk - gkgmn2

k=1

(IFel® — 2Reff - 7573 + lgxl*181%) - (6.15)

|
M~

k=1
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Since Z,le l¥|? is independent of the hypothesis as to which §,, was sent and ||§,,]|> = 2E,,, the receiver just needs to
maximize the metric

L L
uaBn) = D Reffe-gisnt —En Yy lacl
k=1 k=1

L oo L
= orelsi [ nomoa] -5, Y Il (6.16)
k=1 - k=1

If signals have equal energy, then the last term can be neglected, since it is the same for all message vectors. This results in

L
13Gn) = D Reffi- grsn)

oo

F(0)5) (t)dt} ) 6.17)

k=1
L

= orefsr |

k=1 o

An alternative form of the ML receiver can also be obtained by rewriting the metric in (6.16) as

L

*= <k
§ 8k Tk * Sy,

k=1
) L L

=/ Re (Zg;:;k(t))s;g(t)} dt—E, gl (6.18)
e k=1 k=1

From (6.18), the ML receiver can be constructed. The diversity combiner in Fig. 6.1 generates the sum

pa(Sm) = Re

L
- Em Z |gk|2
k=1

P=) gt (6.19)

k=1

which is then applied to the metric computer shown in Fig. 6.4.
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Fig. 6.4 Metric computer for maximal ratio combining
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To evaluate the performance gain with MRC, the received branch vectors in (6.2) are substituted into (6.19). This yields
L
F= g (adn+ 1)
k=1

L L
-(Z ) S
k=1 k=1
= 025 + fim, (6.20)
where o2, = Y ¥_ a2, iy = Y 4, g and o = |g|?. The first term in (6.20) is the signal component with average

energy LE[ay[Sn]?] = ay;Ea, Where E,y is the average symbol energy in the signal constellation. The second term is the
noise component with variance per dimension equal to

nm

L
1 -
Oy = o Bl = Ny D e = Noary. (6.21)
k=1

The ratio of the two gives the combiner output symbol energy-to-noise ratio

1E[ad |ISmll?]  a%E: " o’E, L

mr 2 M M™av J~av

= = = E = E , 6.22
" O?%M No = No k=1 " €2

where y, = oz,fEav /N,. Hence, y;™" is the sum of the individual symbol energy-to-noise ratios of the L diversity branches.
If the branches are balanced (which is a reasonable assumption with antenna diversity) and uncorrelated, then y;"" has a
chi-square distribution with 2L degrees of freedom as shown in Appendix A. That is,

1

Py (x) = WXL_IC_X/ e, (6.23)
where
7e = E[y] k=1, ..., L. (6.24)
The cdf of y™ is
L1 k
Fym() = 1—e™% 3" % (yﬁ) . (6.25)
k=0 ¢

It follows from (6.22) that the average symbol energy-to-noise ratio with MRC and balanced branches is
L L
g = Z Ve = Z Ve = Lye.. (6.26)
k=1 k=1

Figure 6.5 plots the cdf F,p(x) against the normalized symbol energy-to-noise ratio x/y, in dB units. Plots of the cumulative
distribution function can be used to compare the various diversity combining schemes, independent of the modulation scheme
being employed. For example, with L = 2 and SC, the cdf in Fig. 6.2 shows that Fs(x) = 107* atx/y. = 0.01 (y$ — y. =
—20dB). However, with L = 2 and MRC, Fig. 6.5 shows that Fm (x) = 10~* at x/y. = 0.01585 (y™ — y. = —18dB). The
implication is that MRC is 2 dB more power efficient than SC, with all other things being equal.

When computing the probability of bit error, our attention must be limited to coherent signaling techniques since MRC is
a coherent detection technique. For example, the bit error probability with BPSK in AWGN is

Py(yy™) = O(y/2ym), (6.27)
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Fig. 6.5 Cdf of y™ for maximal ratio combining; y. is the average branch symbol energy-to-noise ratio
where y™" is the instantaneous bit energy-to-noise ratio. Hence, the bit error probability with Rayleigh fading and MRC is

Py = f Py (0)pyae (1)
— = —1 —1 _x/J;c
_/0 0 (V2r) Gy e
- \PE (L=14k)\ [1+p)
(YRl
k=0
(6.29)

n= o
L+7e

where
The last step follows after some algebra. The bit error probability in (6.28) is plotted in Fig.6.6. Once again, diversity
significantly improves the performance. The largest gain in performance is obtained in going from L = 1 to L = 2 branches,

and diminishing returns are obtained as L increases further.

6.3.1 Granlund Combiner
by cophasing the various diversity branches, maximal ratio weighting them, and coherently combining them using analog

circuits. The Granlund combiner was first proposed and studied by Granlund in 1956 [148]. The Granlund combiner, shown

The Granlund combiner is an ingenious practical method for implementing predetection maximal ratio combining, achieved
in Fig. 6.7, uses a regenerative process to cophase the signals received on the various diversity branches and coherently
(6.30)

ri(r) = Re { (oS ()&/® + (1)) €271}

combine them.
The L input signals to the Granlund combiner are bandpass signals with a carrier frequency f, and have the form
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Fig. 6.6 Bit error probability for maximal ratio combining and coherent BPSK signaling
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In addition to the received complex envelope

AGC

() = S ()€ + (1)

feedback filter

35.0

the analysis below requires the received complex exponential signals

m(t) = (OtkEm(t)ej¢k + ﬁk(t)) o2nfet

281

6.31)

(6.32)

Moreover, for convenience of analysis, it is assumed that the signal constellation is normalized to have unit average energy
Ey = %E[|S“m(t)|2] = 1 and the low-pass noise in each branch 7(f) has power %E[|ﬁ(l)|2] = N,. Thus, the kth diversity
branch has symbol energy-to-noise ratio yx = a7 /N,. Note that the Granlund combiner requires that the noise power in each
diversity branch be equal; otherwise, a significant performance degradation will occur [47].
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The bandpass feedback filter is assumed to have a center frequency f,. The bandpass arm filters are centered at Af = f.—f,,
where Af is greater than f,. It is assumed that the magnitude of the envelope of the combiner output is kept to a constant
value by adjusting a gain G that is applied to all input diversity branches. The combined output signal is assumed to have the
form

(1) = Re { (K5 ()€ + i, (1)) €'} . (6.33)

For this assumption to hold, the arm filters must be narrow enough such that their outputs can be assumed to be an
unmodulated tone and the feedback filter must be wide enough to pass the signal without distortion and with negligible
delay.

The complex exponential signals that are input to the arm filters are

bi) = 3G (7" 0)

%G (akmm(r)g;;(t)e/@k*%) + T ()it (t)
+ (O (D + Kitg (1) (t)e’¢") o2t (6.34)

Since the arm filters are assumed asymptotically narrow, their outputs may be approximated as a carrier with an amplitude
equal to the time average of the complex exponential input signal b, (¢). If the complex exponential signals at the arm filter
outputs are denoted as ¢ (f), they may be written as

&) = %G (et (5 (055, (0)€/ 4= + (e (05 (1))
+ @5 (75 (D) + K (i ()5 (1) ) P74 (6:35)

where ( - ) is the time average operation. The signal and noise terms are assumed to be uncorrelated, such that

Bm(Di5 (1)) = (1 (05,,(1)) = 0.

If the noise cross noise term is neglected (although this is not necessary for proper operation), then the complex exponential
signals at the arm filter outputs may be written as

1 . ,
&) = EG(akKe’(m_q’”)) A (6.36)

The complex exponential signals at the outputs of the second mixing process, denoted as di (1), are

di (1)

1
56 (R0E (1)

1 . . .
ZGakK (S (1)) + oty (£)e/ Pe92)) g2t (6.37)

which is a frequency translated and phase shifted version of the input 74(¢) scaled by the weighting factor 1Go K. Observe
that the signal term 5,,(¢) goes into the kth branch of the combiner with an arbitrary phase ¢ and comes out with phase ¢,.
Thus, the combined complex exponential output signal becomes

L
1 4 . .
Hr) = ZGKefz”f"’ § :(aggm(t)ed@n) + it (1) P9 (6.38)
k=1

The corresponding complex envelope of the combiner output signal is

L
() = GK Y (a5 (€' + ayfig () P) (6.39)
k=1

FN-
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As discussed earlier, the phase rotation ¢/(*~%) has no statistical effect on the additive noise term iz (). Other than the phase
rotation ¢, and the scalar factor ! GK, the complex envelope of the combiner output signal in (6.39) is statistically identical
to the sum term

L L
Y g m(t) =Y (efSn(0) + fin(r)e )
k=1

k=1

in (6.18). Since the scalar factor }GK affects the signal and noise term similarly, it has no affect on the combiner output
symbol energy-to-noise ratio, but in the case of unequal energy symbols it must be applied similarly to the bias term

L
Em Z |g klz
k=1
in (6.18) when computing the decision metrics. It also follows that the combiner output symbol energy-to-noise ratio remains
the same as (6.22), i.e., y)™ = Zlk“:l Yk, Where y; is the kth branch symbol energy-to-noise ratio.
6.4 Equal Gain Combining

Equal gain combining (EGC) is similar to MRC in that the branches are coherently combined, but is different from MRC
in that the branches are not weighted. In practice, such a scheme is useful for modulation techniques having equal energy
symbols, e.g., M-PSK. With signals of unequal energy, the complete channel vector g = (g1, g2, - . ., g2) is required anyway
and optimum maximum likelihood MRC might as well be used. With EGC, the receiver maximizes the metric

L
pGu) = D ReleF, -5}
k=1

L 00
= Z Re {e—f¢k / (5" (t)dt} ) (6.40)
k=1 o0
This metric can be rewritten in the alternate form

p(Sm) = Re

L
2 e_.l¢k‘12k . 5::

k=1

L
- [ TRe (Z e—fd’k;k(t)) E;"n(t)} dr. (6.41)
0 k=1

It is apparent that the combiner in Fig. 6.1 generates the sum

L
F= Z e g, (6.42)
k=1

with EGC. The vector F is then applied to the metric computer shown in Fig. 6.4 with 8,, = 0,m = 1,..., L. The reason for
setting §,, = 0 comes from the assumption of equal energy signals.
To evaluate the performance gain with EGC, the received branch vectors in (6.2) are substituted into (6.42). This yields

L
r= Z e_j¢k (gk§m + ﬁk)
k=1

L L
Zak §m + Ze_j¢kﬁk
k=1 k=1

OESy + Ng, (6.43)
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where o = Zle o, N = Zle e%ny and o = |gx|. The first term in (6.43) is the signal component with average
energy 1E[02[|S,]|?] = aiE.y, where E,, is the average symbol energy in the signal constellation. The second term is the
noise component with variance per dimension equal to

1
2 _ = 1121 —
0, = S EllE]’] = LN,. (6.44)

The ratio of the two gives the symbol energy-to-noise ratio

2
0pEyy

. 6.45
IN, (6.45)

Vit =
The cdf and pdf for y;® does not exist in closed form for L > 2. However, for L = 2 and y; = y, = j., the cdf is equal to

Fe(x) =1—e 277 — /n%e_xﬁ” ( 1 —ZQ( /2)71)). (6.46)

Differentiating the above expression yields the pdf

ol = L2 _ e (;_l 1)( _ ( 1))
pyxg(x)— )706 e NGAREA 1-20 2)76 . (6.47)

Ihe a\/erage S ymbOl enel‘gy-tO-HOISe ratio w lth EGC 1S
2
k=1

L

L
= B S S gyl (6.48)

o j=1 (=1

1

Seg _

Vs

=

1

2

With Rayleigh fading, E[o?] = 2bo and E[o] = /by /2. Furthermore, if the branches experience uncorrelated fading, then
Elaxoty] = E[o]E[o] for k # £. Hence,

E,, b
yeE = (ZLbo +LL-DE ")

LN, 2
- %(1 +(L—1)%)
=7, (1 F(L— 1)%). (6.49)

The bit error probability with 2-branch EGC can be obtained by using the pdf in (6.47). Once again, EGC is a coherent
detection technique so our attention must be restricted to coherent signaling techniques. For example, with BPSK the bit
error probability is (Problem 6.12)

Py,

/0 Py()p, s ()dx
1
5 (1 ~J1i- MZ) , (6.50)

where

(6.51)
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6.5 Switched Combining

A switched combiner scans through the diversity branches until it finds one that has a bit energy-to-noise ratio exceeding
a specified threshold. This diversity branch is selected and used until the bit energy-to-noise ratio again drops below
the threshold. When this happens another diversity branch is chosen which has a bit energy-to-noise ratio exceeding the
threshold. The advantage of switched combining is that only one RF chain is needed. There are several variations of switched
diversity. Here, two-branch switch and stay combining (SSC) is analyzed. With SSC, the receiver switches to, and stays with,
the alternate branch when the bit energy-to-noise ratio drops below a specified threshold. It does this regardless of whether
or not the bit energy-to-noise ratio with the alternate branch is above or below the threshold.

Let the bit energy-to-noise ratios associated with the two branches be denoted by y; and y,, and let the switching threshold
be denoted by T'. By using (6.5), the probability that y; is less than T is

q =Ply; <T]
=1—e T/ j=1,2. (6.52)
Likewise, the probability that y; is less than S is
p=1—e3"% i=1.2. (6.53)

Let yJ% denote the symbol energy-to-noise ratio at the output of the switched combiner. Then

P =S| =Py = s = U™ = sin = . (6.54)

Since y; is statistically identical to y,, it may be assumed without loss of generality that branch 1 is currently in use. It
follows that

Plyi <TNy2 <9, S<T

. 6.55
PT<y <SUn<TNy.<S]. S>T (6.55)

Pl < 8] = {

The region S < T corresponds to the case where y; has dropped below the threshold 7' and a switch to branch 2 is initiated,
but y, < T so that the switch does not result in a y;" greater than 7. On the other hand, the region S > T corresponds to the
case when either y; is between T and S or when y; has dropped below the threshold 7 so that a switch to branch 2 occurs,
and T < y, < S. Since y; and y, are independent, the above probabilities are

P [m < Tﬂ Y2 < S] =gqp (6.56)
and
Plr=p=sU(m=rn=s)|=r-a+aw 6.57)
Therefore,
S<T
P SW < — qp . 658
e =9 %p—q+qp S>T (6:58)

Figure 6.8 plots the cdf F)s (x) against the normalized symbol energy-to-noise ratio x/y., for several values of the
normalized threshold R = 101log,({7/y.} (dB). Observe that SSC always performs worse than SC except at the switching
threshold, where the performance is the same. Since SSC offers the most improvement just above the threshold level,
the threshold level should be chosen as yy, the minimum acceptable instantaneous bit energy-to-noise ratio that the
communication link can tolerate and still provide an acceptable quality of service. Finally, the optimum threshold, T = Ry,
depends on y,.
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Fig. 6.8 Cdf of y, for 2-branch switched diversity for several values of the normalized threshold R = 101log,,(T/y.); y. is the average branch

bit energy-to-noise ratio

The probability of bit error for SSC can be computed from the pdf of the bit energy-to-noise ratio at the output of the
switched combiner. The pdf of y{V is

q%e_x/ Ve x<T
A

SW = : - ’ 659
) =1 [/ Dl axT (6.59)
If DPSK is used with differential detection, for example, then P,(y;") = %e"’égw, and the probability of bit error is
o0
P, = / Py()pyen (6)dx
0
-l (g+ A —gqe") (6.60)
21 + ye) ’

where . is the average branch bit energy-to-noise ratio. The above expression is plotted in Fig. 6.9 for several values of 7.
The performance with 7' = 0 is the same as using no diversity at all, because no switching occurs. The performance changes
little for T > 6. As T increases, the probability of switching, ¢, also increases as shown in Fig. 6.10. For some systems, it
may desirable to keep ¢ as small as possible to minimize the number of switches.

6.6 Differential Detection with Equal Gain Combining

Equal gain combining has a simple implementation and very good performance when used in conjunction with differential
detection. Differential detection circumvents the need to co-phase and weight the diversity branches. The overall receiver
structure is shown in Fig. 6.11. The structure of the individual differential detectors depends on the type of modulation that
is being used. For DPSK, the detector structure is as shown in Fig. 5.18, while for 7/4-QPSK the detector is as shown in
Fig.5.19. In the latter case, the U and V branches in Fig. 5.19 are combined separately. For DPSK the decision variable at

the output of the combiner at epoch n is, from (5.149) and Fig. 6.11,

L
U, = Z Un,k =
k=1

[

L
> ZaiZy i+ ZiiZani)- (6.61)
k=1
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Fig. 6.11 Differential detection with postdetection equal gain combining

By using characteristic functions, it can be shown that the decision variable U, has the difference form U, = W, — Y,,,
where W, and Y,, are independent non-central and central chi-square random variables, respectively, each with 2L degrees of
freedom, i.e.,

1 wh 5 (s> +w) s
- (= 2 TP 6.62
fin () = 5 () exp% N } - (Nﬂilhpﬂj) (6.62)
| D y
= - - , 6.63
1) (2EhNn) c-n¥ exp% 2Ehzv0% (069
where
L
2 =46, a? (6.64)
k=1

is the non-centrality parameter, and 7,,(x) is the nth-order modified Bessel function of the first kind, defined by
1 2
L(x) = — / "< cos(nd)do. (6.65)
2 0

After some algebraic detail, the probability of error can be expressed in the closed form [272]

L—1
I
Po(y) = =€ Y biyy (6.66)
k=0
where
L—1—k
1 2L —1
by = — 6.67
S ;) ( n ) (6.67)
and

L
V= Ve (6.68)
k=1

The parameter y; has the central chi-square distribution in (6.23), and averaging P, (y;) over this distribution gives the result

! S 7.\
P, = bi(L—14k)! . 6.69
b= i g TR (1+?) 69

=1 ¢
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Fig. 6.12 Comparison of 2-branch diversity combining techniques for differentially detected binary DPSK

This can be manipulated in the same form as (6.28) with

__Ye
1+

" (6.70)

Switched and postdetection equal gain diversity combining are compared in Fig. 6.12 for differentially detected binary
DPSK signals. It is apparent that differentially detected DPSK with postdetection equal gain combining has the best
performance, followed by SC and SSC combining. Once again, it does not make sense to use maximal ratio combining
or equal gain combining with differential detection, since maximal ratio combining and equal gain combining are coherent
combining techniques.

6.7 Non-coherent Square-Law Combining

Square-law combining is a diversity combining technique that is used with non-coherent detection. As such, square-law
combining is only useful for orthogonal modulation schemes, including M-ary FSK modulation and binary orthogonal codes
as discussed in Sect. 4.5.

Section 5.9 showed that the non-coherent detector calculates the M decision variables X,i m = 1,...,M and chooses
the message waveform corresponding to the largest decision variable (assuming equal energy messages). When diversity is
employed a separate square-law detector, as shown in Fig. 5.20, is used on each diversity branch. This will yield the set of
outputs X, m=1,...,M, k=1,..., L. The square-law combiner then computes the following set of decision variables

L
Un=) Xp,. m=1.._..M, 6.71)
k=1

and a decision is made in favor of the message waveform corresponding to the largest U,,.
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If waveform 5, (¢) was transmitted, then
L
Uy =) [f-§F1°
k=1
L
Z 12Egi + v2En1 |
k=1

2
’2E0lk cos(¢r) + V2En ;) +J (2Eozk sin(¢y) + v 2Eng, 1)’

Mn

k=1
and
L
Un =Y [F-5
k=1
L
=Y |V2Eii |
k=1
L
Z )«/ 2En; km + jV Eanm‘ , m=2,...,M.
From Appendix A, the random variables U;, i = 1, ..., M have a central chi-square distribution with 2L degrees of freedom.
It follows that
(1) 1 e i >0 (6.72)
U) = ———— Xpi—=—>¢, u1 > 0. .
pu, Uy 20D)HL—1)! uy P 207 1
where
21 s |
o] = EE ‘ZEgk + 2Enk,1)
_ Elo]E
=2EN, |1+ ——
N,
=2EN,(1+y.). (6.73)
Likewise,
() S i } >0 6.74)
Up) = ——— expy—="5¢, Uy =>0. .
Pontt) = o - P 202
where
07 =2EN,, m=2,...,M. (6.75)

To evaluate the probability of error with square-law combining, proceed along the lines of Sect. 5.9.1. First assume without
loss of generality that waveform 5, (¢) is sent. The receiver will make a correct decision if

U <U, Vi#1. (6.76)
Hence, the probability of correct symbol decision is

P[C]:P[U2<U1,U3<U1,...,UM<U1]

- /0 (P[Us < )"~ pu, (ur)dus. ©6.77)
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where the second line follows from the fact that the U,, , m = 2, ..., M are independent and identically distributed. From
the cdf of the central chi-square distribution in (A.65),

L—1

k
uj 1 u

PlU, < =1—exp{——— ——, > 0. 6.78

[Us < u] P{ 2022} k§=0 I (2022) up > (6.78)

The (M — 1)th power of this probability is then used in (6.77) to obtain the probability of correct decision, and subtracting
this result from unity gives the probability of symbol error. This gives

M—1
A R Do o ) = T =
— — X — — U €x —_— u
; P17 202 L\ 202 T T Bl e

oo I—1 v M—1 | ,
1— (e A . S— S %— _ }d . 6.79
/o ( = k!) A+7rc-n’ P T+7. ¢ (6.79)

The above expression can be expressed in closed form by using a multinomial expansion. However, this is mathematically
cumbersome for all but small values of M and L, and it may just be easier to evaluate (6.79) numerically. When L = 1
(no diversity), (6.79) reduces to the simple form

Py

M- 1( )m+1(M 1)

(6.80)
=1 1L+m+mj.
Finally, from Sect. 5.3.4, the probability of bit error is
2k1 M
Py = Py = Py, 6.81
b=t = st (6.81)
and the average received bit energy-to-noise ratio is

Yo = Lyc/log,M. (6.82)

Using these, (6.80) agrees with the result in (5.191).
For the case of binary non-coherent orthogonal FSK (M = 2), it can be shown that (6.79) reduces to the form in (6.28)
where the parameter p is defined as

Ve
247

= (6.83)

When y,. > 1, the probability of bit error for binary orthogonal FSK with Lth order non-coherent square-law combining can

be approximated by
1\"(2L-1 6.5%)
Ye L) '

Figure 6.13 plots the probability of bit error against the bit energy-to-noise ratio for various values of M and L. Note that
the performance improves with increasing M and increasing L. A significant improvement is realized by increasing L, and
the performance gain realized by increasing M is relatively small when L is small. Since an increase in M implies a decrease
in bandwidth efficiency for M-ary orthogonal signals, it is more efficient in terms of bandwidth efficiency to increase L.

Py

%

6.8 Optimum Combining

Maximal ratio combining (MRC) is the optimal combining method in a maximum likelihood sense when the additive
impairment is AWGN. However, when the additive channel impairment is dominated by co-channel interference, it is better
to use optimum combining (OC) which is designed to maximize the signal-to-interference-plus-noise ratio at the output of
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Fig. 6.13 Performance of M-ary orthogonal signals with square-law combining

the combiner. OC uses spatial diversity not only to combat fading of the desired signal, as is the case with MRC, but also
to reduce the relative power of the interfering signals at the receiver. This is achieved by exploiting the correlation of the
interference across the multiple receiver antenna elements. By combining the signals that are received by multiple antennas,
OC can suppress the interference and improve the output signal-to-interference-plus-noise ratio by several decibels. OC was
first introduced by Baird and Zahm [32] for the case of a single interferer and later extended to the case of multiple interferers
and applied to cellular frequency reuse systems by Winters [352, 353]. In this section, the optimal combiner is described,
the distribution of the output signal-to-interference-plus-noise ratio is derived, and the bit error rate of PSK signals when the
desired and interfering signals are subject to slow flat Rayleigh fading is evaluated.

Consider a situation where a desired signal is received in the presence of K co-channel interferers. In the following
treatment, the signal space dimensionality is assumed to be unity, i.e., N = 1, so that the signal vectors are complex-valued
scalars chosen from an appropriate constellation such as M-QAM.

The received signal scalars at the L receiver antennas are equal to

K
P = grodo + »_ ki + i, k=1..... L, (6.85)

i=1

where 5y, 5;, and n; are the desired signal vector, ith interfering signal vector, and noise vector, respectively, and K is the
number of interferers.
The L received signal scalars can be stacked in a column to yield the L x 1 received vector

K
B o= gofo + )& + 1, (6.86)

i=1
where
Fo= (.7, )"

g = (gi.lygm, e ,gi,L)T

fi = (g, o, ... 7).
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The L x L received desired-signal-plus-interference-plus noise correlation matrix is given by
1 K K "
Qv = EEEO,E,-,ﬁ (g0§0 + ; gisi + fl) <g0§0 + ; gisi + fl) . (6.87)

where (- )" denotes complex conjugate transpose. Likewise, the received interference-plus-noise correlation matrix is
given by

K K H
1 N - - -
@5, = Ei (; g5 + n) (; g5 + n) . (6.88)

Note that the expectations in (6.87) and (6.88) are taken over a period that is much less than the channel coherence time, i.e.,
several modulated symbol durations. If the desired signal, interfering signal, and noise vectors are mutually uncorrelated,
then (6.87) and (6.88) reduce to

K
Dir, = 800 Eay + Y &ig/EL, + N1 (6.89)
i=1
and
K
@i, = ) gg'EL + NI, (6.90)
i=1

respectively, where I is the L x L identity matrix and E! is the average energy in the ith interfering signal. It is important to
note that the matrices @5z and ®zz will vary at the channel fading rate.

To mitigate the interference, the received signals scalars 74, k = 1,2, ..., L are multiplied by controllable weights wy and
summed together, i.e., the combiner output is

L
F=Y wii=w, (6.91)

k=1
where w = (wy,wy, ..., wp)" is the weight vector. Several approaches can be taken to find the optimal weight vector w. One

approach is to minimize the mean square error
J = E[[lF = 5]
= E[|W'F — 5]
= ZWTCD;Z;IW* —2Re {‘I’EonW*} —2E,,,
where ®; 3, is defined in (6.89) and
@55, = E[50f) | = 2E. 8. (6.92)

The weight vector that minimizes the mean square error can be obtained by setting the gradient V,J to zero. This gives the
minimum mean square error (MMSE) solution

e (L 2

aWL

, ) = 2w Bsz, — 2®57, = 0. (6.93)
Bwl

The solution is

Wopt = (I)N_J . = 2EaV<I>~_J

*
Ty 50Ty Irr; o>

(6.94)
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where the fact that ‘I’§0a = 2g} E,, was used. Since @55 = gogf Eay + Piy;, it follows that

-1
Wopt = 2Eav (q’F;fi + gOggEav) gg
- —1
= 2E, ((pf,'f'i + g;)kg(I)Edv) gg (6.95)

Next, a variation of the matrix inversion lemma is applied

A luv?A™!
A =t A — 6.96
A +uv) 1+ viA~lu (656)

to (6.95) resulting in

1
w = 2F (¢—1 E Qrtrlggggq)rtr/) g*
opt — av T 1, - Ta—1 0
1 + EﬂVqu)r T g:;

1
=2Ey | —————— | ®:igs
(1+Eavg6<l>”go> ik S0

=C. (I)r_,i,g;’ (6.97)

where C = 2E,, /(1 + Eang<I>r 7.80) is a scalar.
Another criterion for optimizing the weight vector is to maximize the instantaneous signal-to-interference-plus-noise ratio
(SINR) at the output of the combiner

wlgo?E, w*
w = gog+la. (6.98)
wids s w*
Solving for the optimum weight vector gives
Wopr = B 71 g5, (6.99)

where B is an arbitrary constant. Hence, the maximum instantaneous output SINR is
® = En g 57 g0. (6.100)
Note that the maximum instantaneous output SINR does not depend on the choice of the scalar B. Therefore, the MMSE

weight vector in (6.97) also maximizes the instantaneous output SINR. Finally, when no interference is present, ®z5 = N,I
and the optimal weight vector becomes

_%
Wopt = ]7, (6101)
so that the combiner output is
L g*
- 0k ~
r= ~Iy. 6.102
; T (6.102)

From (6.101) and (6.102), OC reduces to MRC when no co-channel interference is present.
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6.8.1 Optimum Combining Performance

In typical land mobile radio environments, there can be several interfering signals whose power level is close to that of the
desired signal and numerous lower power interfering signals. The number of interfering signals can be much greater than
the number of receiver antenna elements. In this case, the array output SINR may not be changed significantly. However,
even a small (few dB) increase in output SINR can result in a large capacity gain. Thus, the array only needs to suppress the
dominant interferers so that there power level is below the sum power level of the other interferers.

In a non-fading environment, the array cannot resolve two closely spaced transmitters because the phase differences of the
desired and interfering signals across the antenna elements are almost the same. However, for land mobile radio applications,
the receiver antenna elements can be separated enough so that the phases at each antenna element are independent. For
2-D isotropic scattering around the receiver antennas, a half-wavelength separation between the receiver antenna elements is
sufficient. Likewise, if there is 2-D isotropic scattering around the transmit antennas, then a half-wavelength spatial separation
is sufficient to ensure independent phases at the receiver antenna elements, e.g, at a base station. Thus the resolution of the
signals from two different transmitters in a land mobile radio environment does not depend on the spatial separation of
the transmitters. Instead for all locations there is a small probability that the receiver array cannot resolve the two signals.
This occurs when the phase differences across all the receiver antenna elements is nearly the same for both the desired and
interfering signals. However, since the phase differences between antenna elements is independent, the probability that the
phase difference is nearly the same across all antenna elements decreases significantly as the number of receiver antenna
elements increases, and becomes negligible for only a few antennas.

The performance of OC is now considered in terms of the output SINR distribution and the bit error rate for coherent BPSK
modulation. Comparisons are made with MRC. It is assumed that all signals are subject to slow flat Rayleigh fading. The
performance with optimum combining is quite complicated, since each interferer impacts the performance of the optimum
combiner. In this section, the performance with a single dominant interferer is evaluated under the assumption that the
remaining co-channel interferers can be combined together and treated as additional lumped interference that is uncorrelated
between the receiver antenna elements. Such lumped interference can be treated as additional AWGN. Under the assumption
that the combiner cannot suppress the lumped interference (since it is uncorrelated across the antenna elements), a worst case
analysis is obtained since the actual combiner performance will always be better.

To evaluate the performance of OC, several definitions are required as follows:

average received desired signal power per antenna

I= average received noise plus interference power per antenna
__ average received desired signal power per antenna _ E]| 20421 Ea
Ve = average received noise power per antenna N N,
__ average received ith interferer power per antenna _ E[|g;«|*]E},
vi= average received noise power per antenna N N,
o — instantaneous desired signal power at the array output
R =

average noise plus interference power at the array output

instantaneous desired signal power at the array output

instantaneous noise plus interference power at the array output

In the above definitions, “average” refers to the average over the Rayleigh fading, while “instantaneous” refers to an average
over a period that is much less than the channel coherence time, i.e., several modulated symbol durations. Finally, note that

. Cc Ve
I+N 1+ 38 7

r (6.103)

In general, two approaches have been taken in the literature to evaluate the performance of OC. The first approach assumes
fading of the desired signal only (non-faded interferer), while the second approach assumes fading of both the desired and
interfering signals. The second approach is actually more realistic, since the interfering signals are usually subject to the
same fading rate as the desired signals. Closed form expressions have been derived for either approach in the case of a single
interferer, while bounds and approximations have been used for multiple interferers. For our purpose, attention is restricted
to a single interferer.
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6.8.1.1 Fading of the Desired Signal Only
From (6.100), wg is equal to
wr = Engy g ¢ 0.
where, with a single interferer,
@y, = EaElzigl] + NI

Note that the expectation in (6.105) is over the Rayleigh fading. The pdf of wg is [45]

e /y) T (A + L) [ (/LT (] _

L—2
t dr
776 (L - 2) ! 0 )

Pog(X) =

and the cdf of wg is

x/Ve e L—1 1 = 1 _
y(1+Ly) —(L L2
F,.(x) = — 2~ | e O — 2 dedy.
wr (%) /0 -2 | (1-1 y
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(6.104)

(6.105)

(6.106)

(6.107)

which are valid for L > 2. Note that wg in (6.106) and (6.107) is normalized by y.. Since y. = (1 + y;)2 for the
case of a single interferer, it is apparent that wg can be normalized by €2 as well. The normalization by €2 allows for a
straightforward comparison of OC and MRC. The cdf F,,,(x) is plotted against x/ <2 in Fig. 6.14 for various values of ;.
The curve corresponding to y; = O corresponds to the performance with MRC. Note that as y; increases the cdf for a
fixed value of 2 decreases. This means that OC performs better when the interference becomes a larger fraction of the
interference-plus-noise power. Also, the performance improves as the number of antenna elements increases.

The probability of bit error for coherently detected BPSK is given by

Po= [0 (VE) pugtira.

Fw (x)

X/ (dB)

(6.108)

Fig. 6.14 Cdf of wg with optimal combining for various values of y; and various number of receiver antenna elements, L
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Several approaches have been taken to evaluate the above integral. By using (6.108) and (6.106), and the results in [45],
Winters derived the bit error probability as [352]

p o CDTANLY) (L [ v ] 7
T2 A 1Ly V147 1 +Lp VT+L7+ 7
_ k N (21—1)”
Z( L) (1 ,/H% ( Zl‘(2+2y) ))) (6.109)

Qi—N=1-3-5--(2i—1).

where

As observed by Simon and Alouini [303], this expression is only valid for L > 2. The lack of validity for L = 1 can be
observed by noting that P, = 0 for y; = 0 (no interference) which is clearly incorrect. By using an alternative form for the
Gaussian Q-function, Simon and Alouini have derived the following alternate expression which is valid for L > 1:

- L—-2 L—1—k - L—1
1 2k 1 1 2 1
Py=-1- [ > ——[1- (——) S (R — (——) . (6.110)
2 + Ve iz \ k) (40 +70) Ly L+Lyi+7.\ Ln

Figure 6.15 shows the probability of bit error with OC and one interferer against €2 for several values of L and y;. The
performance with y; = 0 is identical to that of MRC, and it was already shown that the bit error probability of coherently
detected BPSK with MRC is given by (6.28), where

and Q = y,.

Q(dB)

Fig. 6.15 Bit error probability for coherent BPSK and optimal combining for various values of y; and various number of receiver antenna
elements, L
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6.8.1.2 Fading of the Desired and Interfering Signals

From (6.100), the maximum instantaneous output SINR is equal to

® = E\ g @7 2. (6.111)

where, with a single interferer,
®;: = E.gigl +N,L (6.112)
In this case, the matrix @35 varies at the fading rate. The matrix @35, is Hermitian, meaning that ®{ 7 = Piy. Consequently,
there exists a diagonalization @35 = UAU" such that U is a umtary matrix and A = diag{A,, Az, ..., AL} is a diagonal

matrix consisting of the eigenvalues of ®zg,. It follows that q’f,i- = U”A'U. Hence,
w = EngiU"A™'Ug. (6.113)
Since the matrix U is unitary, the vector g = Ugo = (0.1, 80,2, - - - » §0..)" retains the statistical properties of go. Therefore,

w = EavggA_lg0

= (2o,
0.i
:Eavi; o (6.114)
Conditioned on the set of eigenvalues A;,i = 1,2,...,L (which are now assumed to be random variables), @ is a sum of
independent exponentially distributed random variables with mean values E, E[|20.|*]/Ai,i = 1,2,..., L. It follows that the
characteristic function of w, conditioned on the set of eigenvalues A;,i = 1,2,...,L, is
L Iy
Pwla (V) = ( — ) (6.115)
! 11 Xi = JVEwE[|20,]
The main difficulty in proceeding further is that, except for some special cases, it is difficult to find the eigenvalues A,
i=1,2,...,L, and their associated pdfs. For the case of a single interferer, the eigenvalues are given by [87]
A1 = ElL glg; + N, (6.116)
Ai=N,, i=2,3,...,L. (6.117)

The interference-to-noise ratio at the combiner output, y; = E. g7g,/N,, is a central chi-square random variable with 2L
degrees of freedom, and has the pdf

1

S — e A X)) 6.118
AT (119

Py (x) =
where 71 = E} E[|g1|*]/N,. Also, the desired signal-to-noise ratio at the output of the combiner, y;, = E,,gigo/N,, is a
central chi-square random variable with 2L degrees of freedom, and has the pdf

1

— _Tlere x>0, 6.119
T ACAE (119

Py, (x) =

where, once again, 7. = E.E[|g0|?]/N,. Using (6.115), the characteristic function of w, conditioned on y;, is [2]

y1+1 _i L—1
Ye
Voln (V) = (y1y+1 _jv> (,,L = _U> : (6.120)
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For coherent BPSK, it can be shown that the probability of bit error for a given w is [147, 3.363]

0(v20)
L ! e “dz. (6.121)

T o 1 zv/z—1

The bit error probability is then obtained by averaging over the pdf of w. This gives [2]

© 1 *© 1
P, = — ———e p, (x)dzdx
b /0 27Tj; wWz—1 Po(®)

Py(w) =

1 o0 1 o0
=— %, (x)dxd
2 Ji z/z—1Jo ¢ " Pu()ddz
1 o0 1
(—2)dz (6.122)

T 1 Z«/z—ll//w

It follows that the bit error probability conditioned on y; can be obtained by substituting (6.120) into (6.122). The result has

the closed form [2]
(6.123)

1 L2 2 1 k
Ph'ylzz( kz( )( )7+1))
5 - L2 .
- e _n =1
(\/Vc+)/1+1 \/)/c—klk:()( )(4(Vc+l)) )( Y1) )

The performance with a non-faded interferer can be obtained by replacing y; with its mean value Ly;. The result agrees
with (6.109) and (6.110), where it is assumed that a single interferer with constant power is present. Moreover, as mentioned

earlier, OC reduces to MRC when no interfering signals are present. It can be verified that (6.123) with y; = 0 reduces to
(6.124)

1 (1 V7 + Fet 1 Z (Zk) (4(yc1+ 1))k)

P, = -
2 k=0
which is also equivalent to (6.28) as expected. In the present case, however, the interference-to-noise ratio, y; is a central
chi-square random variable with 2L degrees of freedom having the pdf in (6.118). Averaging over the pdf of y; gives the

probability of bit error

Py = / Pyjyy (9P, (x)dx

0
L, 7. 22 ( 1 )"
2 7er 12\ k) \aG D
1 ( 77e (ﬂ-+1) ( ﬁ-+1>
——exp — erfc —
Y1 Y1

2T (=)=t \ Y 7
_ L—2
_ Ye (Zk)' -1
T2 H (4<ﬂ-+1>))' (©12
(6.126)
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-5 0 5 10 15 20
Q(dB)

Fig. 6.16 Bit error probability for coherent BPSK and optimal combining for various values of y; and various number of receiver antenna
elements, L

10 T T T -
—y7=0
) + faded interferer 1
3 o non-faded interferer -o- y1=1 (0dB)| A
o y;=2 (3dB)

20

Q(dB)

Fig. 6.17 Comparison of the bit error probability for coherent BPSK and optimal combining for a non-faded interferer and a faded interferer; the
performance is almost identical

for y; = 0,1,2. Figure 6.17 compares the bit error probability for a non-faded interferer in (6.109) or (6.110) with that
of a faded interferer in (6.125), where it is seen that the performance is almost identical. The assumption of a non-faded
interferer gives a very slightly pessimistic prediction of system performance as compared to the case of a faded interferer.
The performance is so close because the array with L = 2 or 4 has enough degrees of freedom to reject the co-channel
interferer regardless of whether or not it is affected by fading.
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Radio over fiber g

front haul

Base Station

Fig. 6.18 Distributed antenna system using a radio over fiber front haul

6.8.2 Distributed Antenna Systems

The development of MRC in Sect. 6.3 assumed that each diversity branch had equal noise spectral density N,. It was shown
in (6.101) and (6.102) that MRC weighs each signal image ¥y in a manner that is directly proportional to the magnitude of its
signal component regardless of phase, the term g7, and inversely proportional to the noise power in the diversity branch, the
term %E[|nk|2] = N,. Optimum performance of the Granlund combiner in Sect. 6.3.1 depends on matched receiver gain and
noise figure, meaning that the noise power in each diversity branch is assumed identical and, therefore, it is not necessary
to consider the noise explicitly in the combiner weighting process. Sometimes in the literature this is referred to as “ratio
squarer diversity.” While such matched receiver gain and noise figure conditions may be possible when the antennas are
closely spaced and the preamplifiers are integrated into a single chip as in a cellular handset, these matched conditions
generally do not apply to distributed antenna systems where the antennas corresponding to the various diversity branches are
widely spaced. Such distributed antenna systems are common for ships, aircraft, and other applications to combat blockage
by the ship or aircraft superstructure. Distributed antenna systems are also used for indoor and other types of microcellular
systems. For distributed antenna systems, there are typically variations in the noise power in each of the diversity branches
contributed by the antennas, cables, and preamplifiers. As such, the noise variances differ from one diversity branch to the
other. The low-pass noise in each branch 7(f) has power spectral density %E[|ﬁ(t) |?] = N,x. Thus, the kth diversity branch
has symbol energy-to-noise ratio yx = /N, . The distributed antenna model is shown in Fig. 6.18.

When the N, are distinct, it is important that the MRC combiner account for the different noise power and, according
to (6.101) and (6.102) the MRC combining weights become

Won = 2 6.127)
Na.k
and the combiner output is
L g*
- 0k ~
r= —Ty. 6.128
> T (6.128)
k=1""
The symbol energy-to-noise ratio at the output of the MRC is
L 2 L
o Eyy
k=1 ok =

where y, = ofE, /N, . Hence, ™ remains as the sum of the individual symbol energy-to-noise ratios of the L diversity
branches, where the y; are independent and nonidentically distributed.
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Fig. 6.19 SNR combiner

With only typical variations in the gains and noise figures of distributed antenna systems, a severe degradation in
performance will occur if the Granlund combiner described in Sect. 6.3.1 is used [47]. To overcome this problem, Bortnyk
and Franke proposed the JTT/SNR combiner [47], where SNR combining yields a combiner performance that is independent
of the matching receiver gain or cable loss in each diversity branch. A combining algorithm based on signal-to-noise ratio
weighting, due to Bortnyk [46] is elaborated upon below.

Figure 6.19 depicts the SNR combiner, and comparison with Fig. 6.7 highlights the differences between the SNR and
Granlund combiners. While the Granlund combiner employs a single automatic gain control (AGC) circuit, the SNR
combiner employs independent AGC circuits in each diversity branch. The independent AGC loops maintain the rms signal
plus noise envelope level at an input level threshold Ryeyel, i.€.,

VC + N = Rieyel, (6.130)

where C represents a desired signal power N represents a noise power and Ry is the AGC leveling constant. Thus, the rms
signal plus noise envelope level of each diversity branch input, 7(¢), to the combiner is adjusted to be equal to Rjeye. The
combined output signal is given by

»(1) D AWelew[in(0) + WiRiii (1)} (6.131)
k

1
Y WM,

where W, is the weighting coefficient for the kth branch and R; = e i represents an estimate of e /% obtained from a phase
locked loop.
The combined output y(¢) is correlated with each of the received signal images

Fe(t) = S (e + Ty (1) (6.132)
to yield the set of phasors vx(¢),k = 1,..., L, where

(1) = (oS (D™ + (1) y* (1)

= (akEm(t)ef¢k + ﬁk(t)) X ﬁ Xk: {Wk|ak|§,";(t) + WiRI i} (t)} (6.133)
The above expression expands into four terms
() = a5 050 3 ) + 0 > (wikrat o)
+ﬁk(t)ﬁ > {Wilels5 0} + ﬁk(t)ﬁ > {WiRyir (1)) (6.134)

i i
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The uncorrelated terms due to random noise, data, and channel gains average to zero. It follows that

= E[|5:()]] ~ ||E[5n (0" + =7 (®)]*. (6.135)

ZWM

In practice the expectation is replaced with time averaging. In the event that the signal-to-noise ratio is high, the noise
component 7, (f) is small. If the signal-to-noise ratio is small, the weight W; is small. Hence, the second term is typically
small. For simplicity, it can be assumed that E[|5,,(r)]?] = 1 so that M; ~ |a|, and M, is an estimate of the signal
magnitude |oy|. It follows that M7 is a measure of the signal power C. The ACG circuit on each branch keeps E[|r(f)|] =
Rievel, where Ryeye) is the AGC leveling constant. For maximal ratio combining, the weight W should be in proportion to the

ratio +/C/N? = M /N?. Accordingly, N> = E[|m(1|?] = R2,., — MZ, and
W il (6.136)
£ Rlzevel M/% ' .
The sum-weight module in Fig. 6.19 sums the L signal images to produce
L
(0= WiRr(t) (6.137)
k=1
The magnitude of the signal component of X' ,.(f) is
L L
D WiRiaidn(1)| & Y WMy (1) (6.138)
k=1 k=1

The output of the combiner X' ,(f) may be normalized to unity by dividing by Z£=1 WM. Hence, this gives the combiner
output

y() = Z WiRkri(1)

ZWM

1
~ S WM D Wil (1) + WiRiin (1)} (6.139)
i Vit

6.9 Classical Beam-Forming

This section considers line-of-sight reception of a signal by a uniform linear array (ULA) of antenna elements as shown in
Fig. 6.20. The distance between the transmitter and receiver is assumed to be large enough so that plane wave propagation
can be assumed. The ULA is positioned with an angle 6 with respect to the x-axis and the elements are uniformly spaced
8 m apart as shown in Fig. 6.20. The transmitted bandpass waveform has the form

s(t) = Re {5(r)e™'} . (6.140)

Fig. 6.20 Plane wave incident
on a uniform linear array (ULA)
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Then the received bandpass waveform at a distance £ from the transmitter is
r(t) = Re {a(0)5(t — £ /c)e>™ =t} (6.141)
where «({) is the attenuation at distance £ and c is the speed of light. It follows that the received complex envelope is
F(1) = a(0)3( — £/c)e??, (6.142)
where
¢ () = —j2nfl/c (6.143)

is the excess carrier phase. It is assumed that (1) the antenna elements are spaced close enough together so that «(f) =
a(fy) = ap for all antenna elements, (2) the antenna elements are far enough apart so that there is no mutual coupling
between antenna elements, and (3) the transmitted signal is a bandpass waveform such that 5(t — £/c) = 5(t—£o/c) = 5o(¢).

Assume that the ULA has L elements, where L is odd, that are spaced § m apart. Antenna k is located at distance £; from
the transmit antenna and the corresponding excess carrier phase is

or(t) = 2nfly/c
= =2nflo/c —2nf.(br — Lo)/c
= ¢o(t) — 21f. AL/ c
= ¢o(t) — Ady. (6.144)

From the geometry in Fig. 6.20, the relative distance Ay is
Aly = kb cos(0), (6.145)

under the assumption that the distance Op — Oy, is large compared to the antenna spacing §, and where the antenna index k
is assumed to run from —L/2 to L/2. The phase offset A¢y is

A = 2xf./c)kd cos(0)

=2n (I;—S) cos(6), (6.146)

&

where A is the carrier wavelength. Hence, the received complex envelope at antenna element k is

(1) = Otofvo(t)ei%(t)eizﬂ(%)cos(e)
= aoSo(n)e* Var(6). (6.147)
where
an(9) = 2 (£) cos®) .

A phased array computes the weighted sum

L)2

Fe(t) = Z wiar(0)aoSo (e

k=—L/2

= w"a(0)ao3o (1), (6.149)
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where
a(f) = (a—r/2(0).....ao.....ar(0))", (6.150)
and
W = (W_L/z,...,W(),...,WL/z)T (6.151)
is the weighting vector. The weighting vector can be chosen to optimize a variety of criteria. One possibility is to maximize
the gain of the antenna array G(6) = w”a(6) when the desired signal arrives such that the antenna array orientation is equal
to 6,. By using the Cauchy—Schwartz inequality, it can be shown that this is accomplished with the weighting vector
Wope = a(6,), (6.152)

which yields the antenna gain

G(9) = a"(6,)a(9). (6.153)

Example 6.1. Suppose that 6, = 90° so that the plane waves arrive broadside to the antenna array. Then
Wopr = a(,) = (1, 1,..., 1" (6.154)
In this case, the antenna gain can be written as

G() = w' a(b)

opt
L/2
_ Z e/Zn(%) cos(@).
k=—L/2
By letting
. 5 q
¢ = () eos®) (6.155)
it follows that
L/2
GO = Y 2
k=—L/2
B 7~ @HD/2 _ L+D)/2 6156
— 7 1/2 _ /2 : (6. )
Substituting (6.155) into (6.156) and simplifying by using the inverse Euler identity yields
i L+ 1)(/Ac 0
G(o) — SL+ DG/ cos(0)) 6157

sin (77 (§/A.) cos(6))

(continued)
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Example 6.1 (continued)
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Fig. 6.21 Antenna gain |G(6)| dB for a uniform linear array (ULA) optimized for 6, = 90°; L = 8 (9 element array), §/A, = 0.25

Figure 6.21 plots the magnitude of the antenna gain

G(0)@s) = 20log,{|G(0)]/1G(0)[} (6.158)

against the angle-of-arrival 6 for §/A. = 0.25 and L = 8 (9 element array). Clearly, the antenna exhibits significant
gain in the direction 8, = 90° (/2 radians).

For a ULA the quality of the beam-forming depends on the angle-of-arrival. The best result is obtained for the broadside
case when 6, = 90° and the worst case is obtained for the in-line case when 6, = 0°. However, other types of antenna arrays,
such as uniform circular arrays, can be used to provide a more uniform performance in all azimuthal directions.

6.10 MIMO Channels

A MIMO system is one that consists, for example, of multiple transmit and receive antennas as shown in Fig. 6.22. For a
system consisting of Ly transmit and Ly receive antennas, the channel can be described by the Lg x Ly matrix

g1t t) giat,T) -+ g1yt 7)

G(l, ‘L') _ g2.1(.l‘7 T) g2.2(.[, ‘[) gquT'(L _[)

, (6.159)
8rp1 (8, T) 8Lp2(t,T) -+ gLpr, (1. T)

where g,,(, T) denotes the time-varying sub-channel impulse response between the pth transmit antenna and gth receive
antenna.

Suppose that the complex envelopes of the signals transmitted from the Ly transmit antennas are described by the vector

§( = (51(0),52(0), ..., 5, ()", (6.160)
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Fig. 6.22 MIMO system with
multiple transmit and multiple
receive antennas

where 5, (¢) is the signal transmitted from the pth transmit antenna. Likewise, let

£(1) = (7). 72(0). ... . T, (D) (6.161)

denote the vector of received complex envelopes, where 7,(f) is the signal received at the gth receiver antenna. Then

r() = /OIG(t, 7)8(t — r)dt (6.162)
Under conditions of flat fading
G(t,7) = G()é(r — 1), (6.163)
where 7 is the delay through the channel and
r(t) = G()s(r — 7). (6.164)

If the MIMO channel is characterized by slow fading, then

r(r) = /(;tG(‘L')g(l‘— T)dr. (6.165)

In this case, the channel matrix G(t) remains constant over the duration of the transmitted waveform §(z), but can vary
randomly from one channel use to the next, where a channel use may be defined as the transmission of either a single
modulated symbol or a vector of modulated symbols from each antenna. In the case of a vector of modulated symbols, this
type of channel is sometimes called a quasi-static fading channel or a block fading channel. Finally, if the MIMO channel is
characterized by slow flat fading, then

() = G5(t). (6.166)

where once again the matrix G is assumed to vary randomly from one channel use to the next. MIMO channel models
can be classified as either physical or analytical models. Physical MIMO models characterize the channel on the basis
of electromagnetic wave propagation between the transmitter and receiver antennas. Such physical channel models can
be further classified as deterministic models, geometry-based stochastic models, and non-geometric stochastic models.
Deterministic models construct the MIMO channel in a completely deterministic manner, such as ray tracing and stored
measurement data. With geometry-based stochastic models, the time-variant MIMO channel impulse response is generated
by applying the laws of wave propagation to specific transmitter, receiver, and scattering geometries, which are generated
in a stochastic or random fashion. The non-geometric stochastic models determine physical parameters such as the angles
of departure and angles of arrival in a completely stochastic fashion by prescribing underlying probability density functions,
but not using an underlying geometry. These models include the extended Saleh—Valenzuela models [63, 340].

The analytical MIMO models characterize the MIMO sub-channel impulse responses in a mathematical manner without
explicitly considering the underlying electromagnetic wave propagation. Analytic models can be further classified as
propagation motivated models or correlation-based models. Propagation motivated models include the finite scattering
models [49], maximum entropy models [92], and virtual channel representation [293]. Correlation-based models generate
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random realizations of the channel matrix with specified correlations between the matrix elements [179, 350]. These models
are easy to implement, which has made them very popular for MIMO channel simulations. Moreover, the analytical models
are relatively easy to construct and use, so they are treated here.

6.10.1 Analytical MIMO Channel Models

Analytical MIMO channel models are most often used under quasi-static flat fading conditions. It was shown earlier that
the time-variant channel impulses for flat fading channels can be treated as complex Gaussian random processes under
conditions of Rayleigh and Ricean fading. The various analytical models generate the MIMO matrices as realizations of
complex Gaussian random variables having specified means and correlations. To model Ricean fading, the channel matrix
can be divided into a deterministic part and a random part, i.e.,

K 1
G=,—-G —G; 6.167
K+1 + K+1 ( )

where E[G] = \/KIH G is the LoS or specular component and \/% G; is the scatter component assumed to have zero mean.
The elements of the matrices G and G, are normalized to have power £2,, so that the elements of matrix G have power
2,,1.e., E[|gy4*] = £2,. In this case, K represents the Rice factor, defined as the ratio of the power in the LoS or specular
component to the power in the scatter component.

To simplify our further treatment of the MIMO channel, assume for the time being that K = 0, so that G = G;. The
simplest MIMO model assumes that the entries of the matrix G are independent and identically distributed (i.i.d) complex
Gaussian random variables. This model corresponds to the so-called rich scattering or spatially white environment. Such
an independence assumption simplifies the performance analysis of various digital signaling schemes operating on MIMO
channels. However, in reality the sub-channels will be correlated and, therefore, the i.i.d. model will lead to optimistic results.

A variety of more sophisticated models have been introduced to account for spatial correlation of the sub-channels.
Consider the vector g = vec{G}, where G = [gi,8>,...,8.,] and vec{G} = [g]. g}, ..., g{T]T. The vector g is a column
vector of length n = LyLg. The vector g is zero-mean complex Gaussian random vector and its statistics are fully specified
by the n x n channel covariance matrix R = E[gg”]. Hence, g ~ ¥ .4 (0,Rg) and, if R is invertible, the probability
density function of g is

1 - n
p(g = {—Eg”RGlg} , ge b (6.168)

1
27 ydet(Rg) P
Realizations of the MIMO channel with the distribution in (6.168) can be generated by
G = unvec{g} with g= Rgzw. (6.169)

Here, RIG/2 is any matrix square root of Rg, i.e., Rg = Rgz(R]G/z)”, and w is a length n vector where w ~ € .4(0,1).

6.10.1.1 Kronecker Model

The Kronecker model [179] constructs the MIMO channel matrix G under the assumption that the spatial correlation at the
transmitter and receiver is separable. This is equivalent to restricting the correlation matrix R to have the Kronecker product
form

R; = R; ® Rp, (6.170)
where
Rr = E[G"G] R; = E[GG"]. (6.171)

are the Ly x Ly and Lg X Ly transmit and receive correlation matrices respectively, and ® is the Kronecker product. For
example, the Kronecker product of an n x n matrix A and an m x m matrix B is
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Under the above Kronecker assumption, (6.169) simplifies to the Kronecker model
g= (R} ®Rg)' > w 6.173)
or
G = R}/’WR}/?, (6.174)

where W is an Lz x Ly matrix having elements that are i.i.d. zero-mean complex Gaussian random variables having unit
variance.

The elements of the matrix G represent correlations between the faded envelopes of the MIMO sub-channels. If the
elements of G could be arbitrarily selected, then the correlation functions would be a function of four sub-channel index
parameters, i.e.,

where g, is the channel between the pth transmit and gth receive antenna. However, due to the Kronecker property in (6.170),
the elements of G are structured. One implication of the Kronecker property is spatial stationarity

Ele,,g55] = ¢(q—q.p — D). (6.176)

This implies that the sub-channel correlations are determined not by their position in the matrix G, but by their positional
difference. In addition, to the stationary property, manipulation of the Kronecker product form in (6.170) implies that

Elg;,85] = ¢r(0 — D) - ¢r(g — 3). (6.177)

This means that the correlation can be separated into two parts: a transmitter part and a receiver part, and both parts are
stationary. Finally, the Kronecker property in (6.170) holds if and only if the separable property in (6.177) holds. The
separable property is satisfied by double-bounced channels such as the double ring mobile-to-mobile channel model in
Fig.2.53, where the angles-of-arrival for each ray at the receiver are independent of the angles-of-departure of each ray at
the transmitter.

6.10.1.2 Weichselberger Model

The Weichselberger model [350] overcomes the separable requirement of the channel correlation functions in (6.177) of the
Kronecker model so as to include a broader range of MIMO channels. Its definition is based on an eigenvalue decomposition
of the transmitter and receiver correlation matrices,

Ry = Ur AU} (6.178)
Rr = UpARUj (6.179)

Here the matrices A7 and A are diagonal matrices containing the eigenvalues of Ry and Rg, respectively, while Uy and
Uy, are unity matrices whose columns are the corresponding eigenvectors of Ry and Rg, respectively. Sometimes Uy and Ug
are called the transmit and receive eigenmodes, respectively. The Weichselberger model describes the power coupling of the
transmit and receive eigenmodes by the Lg x Ly coupling matrix

Q = Eg [(UpGU}) © (UxG*Up)], (6.180)

where © denotes the Schur—-Hadamard product (element-wise matrix multiplication). The nonnegative real values of
the coupling matrix £ determine the average power coupling between the transmitter and receiver eigenvectors. The
corresponding channel correlation matrix is
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Lt Lg

Rg = Z Z ;i (ur; ® ug;) (ur; ® ug;)" (6.181)

i=1 j=1I

where w;; = [];;, and ur; and ug; are the ith and jth columns of U7 and U, respectively.
Realizations of the channel matrix G are generated as

G=U (sz © W) ) (6.182)

where W is an Ly x Ly matrix consisting of i.i.d. zero-mean complex Gaussian random variables having unit variance, and
the matrix € is the element-wise square root of 2.

Finally, the Kronecker model is a special case of the Weichselberger model obtained with the coupling matrix & = AgA 7,
where Ag and A7 are column vectors containing the eigenvalues of Ag and A r, respectively.

6.11 Transmitter Diversity

Transmitter diversity uses multiple transmit antennas to provide the receiver with multiple uncorrelated replicas of the same
signal. The obvious advantage is that the complexity of having multiple antennas is placed on the transmitter which may be
shared among many receivers, for example, the forward (base-to-mobile) link in many wireless systems. The user terminals
can use just a single antenna and still benefit from a diversity gain.

Transmitter diversity can take on many forms, distinguished by the method of using the multiple transmit antennas.
Transmit diversity is straightforward for systems that use time division duplexing (TDD), where different time slots on
the same carrier are used for the forward and reverse link transmissions. For TDD systems, the channel impulse response
satisfies the reciprocity principle. At the base station the signals received on all antennas can be processed during every
received burst, and used to estimate the corresponding channel impulse responses. The antenna that provides the largest
received bit or symbol energy-to-noise ratio on the reverse link is selected and used for the next forward burst transmission.
This is a form of selective transmit diversity (STD). Obviously, this scheme requires that the channel coherence time be
larger than the burst duration.

For frequency division duplexed (FDD) systems, transmit diversity is more complicated to implement, because the
forward and reverse links are not reciprocal. Time division transmit diversity (TDTD) can be used for FDD by switching
the transmitted signal between two or more transmit antennas. Alternate bursts are transmitted through two or more separate
antennas, a technique known as time switched transmit diversity (TSTD). Delay transmit diversity is another method, where
copies of the same symbol are transmitted through multiple antennas at different times. This has the effect of creating artificial
delay spread so that the resulting channel looks like a fading ISI channel. An equalizer can then be used to recover the signal
and provide a diversity gain.

More elaborate forms of transmit diversity use space-time, space-frequency, or space-time-frequency encoding of the
transmitted information. In general, these schemes require three functions: (1) a method for encoding and transmitting the
information sequence at the transmitter, (2) a combining scheme at the receiver, (3) a rule for making decisions. Alamouti
[15] introduced a simple repetition transmit diversity scheme with maximum likelihood combining at the receiver. By using
two transmit antennas and one receiver antenna, the scheme provides the same diversity order as maximal ratio receiver
combining with one transmit antenna and two receiver antennas. This scheme requires no feedback from the receiver to the
transmitter, and requires no bandwidth expansion. However, to estimate the channel, the scheme requires that separate pilot
sequences be inserted into the waveforms that are transmitted from each of the transmit antennas.

6.11.1 Alamouti’s Transmit Diversity Scheme

Alamouti’s transmit diversity scheme [15] uses two transmit antennas and one receiver antenna, referred to as 2 x 1 diversity.
With the Alamouti scheme, two complex data symbols are transmitted over two successive baud intervals by using two
transmit antennas. During the first baud interval, the complex symbol vectors transmitted from Antennas 1 and 2 are denoted
by S(1) and S(y), respectively. During the next baud interval, the complex symbol vectors transmitted from Antennas 1 and
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Fig. 6.23 Space-time diversity receiver for 2 X 1 diversity

2 are —§E“2) and 52"1), respectively. Assuming a slow flat fading channel, the complex channel gains associated with transmit
Antennas 1 and 2 are g; and g», respectively, The complex received vectors are

Iy = g151) + &8¢ + nq
fo) = —gi18() + £87) + N, (6.183)
where Iy and () represent the received vectors during the first and second baud intervals, respectively, and ng;y and n,

are the corresponding complex Gaussian noise vectors.
The diversity combiner for this scheme is shown in Fig. 6.23. The combiner constructs the following two signal vectors:

Vo) = &) + &I,
Vo) = gty — 81D, (6.184)

Afterwards, the receiver applies the vectors V(;y and ¥(») in a sequential or parallel fashion to the metric computer in Fig. 6.4,
to make decisions by maximizing the decision metric

1(S1ym) = Re (Vay.8(1y.m) — En(Ig11* + |g2/*)
1B2ym) = Re (V). 80)m) — En(lg1* + 2217 (6.185)

Using (6.183) in (6.184) gives
Vay = (af + 03)8a) + gy + gl
Vo) = (@] + 03)8e) — g1l + & 0a). (6.186)
This is to be compared with the output of the MRC metric computer in Fig. 6.4. With L = 2,
P =gt +gh

= (a} + &3)3,, + gy + g (6.187)
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Comparison of (6.186) and (6.187) shows that the combined signals in each case are the same. The only difference is the
phase rotations of the Gaussian noise vectors which will not matter due to their circular symmetry.

6.11.1.1 2 x L Diversity

The case of 2 x L diversity is now considered, and it is shown that the performance is equivalent to 1 x 2L diversity with
MRC. The approach is illustrated for the case of 2 x 2 diversity, and the extension to 2 x L diversity will be obvious. To
describe the scheme, the following notation is introduced:

gij = channel gain between transmit antenna i and receiver antenna j.
I(1); = received signal at antenna j during the first baud interval.
I(2); = received signal at antenna j during the second baud interval.

The encoding scheme remains the same as before: the complex symbol vectors §(i) and §() are transmitted from Antennas 1
and 2 during the first baud interval, and complex symbol vectors —52‘2) and 52“1) are transmitted from Antennas 1 and 2 during
the second baud interval. The complex received signal vectors are

Fay1 = g118a) + £2.18¢2) + iy

Fo)1 = —81180) + 82180 + 2y

Fy2 = g1251) + £225@2) + )2

Fo)2 = —81280) + 8228 + )2
The combiner shown in Fig. 6.24 constructs the following two signal vectors

Vi) = gT,lf'(l).l + g2,1f'2k2),1 + gT,zf'(l)l + 82,2f':2),2 (6.188)
€'(2) = g;,lf'(l%l - gl,lf'?Z),l + g;,zf'(l)l - gl,zf?z),z‘ (6.189)

Again, the receiver applies the vectors V() and V(2 in a sequential or parallel fashion to the metric computer in Fig. 6.4 and
decisions are made by maximizing the metric in (6.185).

S@)
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TAntenna 2

V=g F +g¥ +g % +g T v -
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computer
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Fig. 6.24 Space-time diversity receiver for 2 X 2 diversity
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To compare the 2 x 2 transmit diversity scheme to 1 x 4 receive diversity with MRC, appropriate equations are substituted
to obtain
Vay = (F + i, + 05 + 03580 + &f By + g0 | + g7 o0) 2 + 82200 (6.190)

Vo) = (0512,1 + 0‘12_2 + O‘%,l + 0‘%,2)5(2) + g;lﬁ(l).l - gl,lﬁzkz),l + g;,zﬁ(l),Z - gl,zﬁ?z),r (6.191)
This is to be compared with the output of the MRC in Fig. 6.4. With L = 4,
t =gt +gT+ g3t + g
= (af + 03 + @3 + 3)8w + gIRy + g My + gihs + giMy. (6.192)

Again, Alamouti’s 2 x 2 transmit diversity scheme is equivalent to a 1 x 4 receive diversity scheme with MRC. The extension
to show that Alamouti’s 2 x L transmit diversity scheme is equivalent to 1 x 2L diversity with MRC is left as an exercise.

6.11.1.2 Implementation Issues

There are several key implementation issues with Alamouti’s transmit diversity scheme, including the following:

* Since there are two transmit antennas, the power per antenna must be halved to maintain a constant transmit power. Hence,
the 2 x L transmit diversity scheme has a 3 dB performance loss when compared to a 1 x 2L diversity scheme with MRC.

* With two transmit antennas, twice as many pilot symbols are needed compared to the case of one transmit antenna. The
pilots must alternate between the antennas. Alternatively, orthogonal pilot sequences can be transmitted simultaneously
from the two transmit antennas.

* The transmit antennas must be spaced sufficiently far apart in order to achieve sufficient spatial decorrelation between the
sub-channels g;; and g,;,i = 1,..., L. Chapter 2 showed that the required antenna separation can be on the order of a
half-wavelength with 2-D isotropic scattering, but as much as several tens of wavelengths at a cellular base station.

6.12 MIMO Detection

Consider the MIMO arrangement shown in Fig. 6.22 consisting of Ly transmitter antennas and Lg receiver antennas. As
described in Sect. 6.10, consider the case where the MIMO channel exhibits slow flat fading. The complex envelopes of the
signals transmitted from the Ly transmit antennas are described by the vector

$() = G1(0).52(0). ..., 51, ()", (6.193)

where 5, (¢) is the signal transmitted from the pth transmit antenna. Likewise, the complex envelopes of the signals received
at the Ly receiver antennas are described by the vector

() = (1(0), 1(0), ..., Fr, (D)), (6.194)
where 7,(¢) is the complex envelope received at the gth receiver antenna. It follows that
r(r) = Gs(1), (6.195)

where G is the Lg X Ly channel matrix.
Similar to the development in Sect. 5.1, a correlator matched filter detector may be assumed on each receiver antenna
branch. Once again, a complex signal space representation is assumed with dimension N = 1, e.g., M-QAM or M-PSK. Let

§=G.5.....50)"
F= (... T

= iy 7o, ... 7o) (6.196)
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denote the length-Ly transmitted signal vector, the length-Ly received signal vector, and the length-Ly received noise vector,
respectively. It follows that

F = GS +i. (6.197)

By processing the received signal vector T, several different detectors are possible.

6.12.1 Maximum Likelihood Detection

The noise vector n consists of independent identically distributed complex Gaussian random variables, each with variance
N,. From Sect. 5.2, the maximum likelihood receiver decides on the signal vector § that maximizes the joint conditional
density function p(¥|S) which has a multivariate complex Gaussian distribution. It follows that the maximum likelihood
receiver maximizes the decision metric

1B, G) = [F—Gs|°

Lg Lt
= E rj— E 8j.iSi
j=1 i=1

2
(6.198)

The maximum likelihood metric in (6.198) has high complexity even when Ly and Ly are relatively small, so many
suboptimal detectors have been suggested in the literature. The simplest include the MMSE detector, and inverse channel
detector (ICD).

6.12.2 Minimum Mean-Square-Error Detector

The MMSE detector performs linear combining on the received signal vector r to determine the transmitted signal vector S.
The linear combiner forms an estimate of §, denoted as 8, and represented in matrix form as

s =Wt (6.199)

where W is an Lg x Ly weighting matrix. Each element of the vector § is quantized to the nearest signal vector.
The weighting matrix W is chosen to minimize the mean square error

1
J= 5E[||s — W2 (6.200)

As with the optimal combiner in Sect. 6.8, the optimal weighting matrix, Wy, can be obtained by setting the gradient VwJ
to zero. This gives the MMSE solution

oL 3/
owyp’ ’ SWLRVI
Vwi=| : ... |=wes_os=0 (6.201)
. s .
aJ . aJ
3WI.LT ’ ’ BWLR.LT

where
1
(I);; = EE[I'I' ]

= G®5G" + N,I (6.202)
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is the Lg x Ly autocorrelation matrix of the received signal vector ¥, and

1
o = 5E[§§H] (6.203)
is the Ly x Ly signal correlation matrix, and
| S
o, = EE[s”r] (6.204)

is the Ly x Lp cross-correlation matrix between § and r.
In the second line of (6.202), the signal and noise vectors are assumed zero mean and uncorrelated, and the noise vector
n has covariance matrix

1
SERR"] = Nolp, (6.205)

The solution to (6.201) is
Wop = ' &5 (6.206)

Usually the signal vector § has uncorrelated, zero-mean, elements, so that @ in (6.202) reduces to a diagonal matrix.

6.12.3 Inverse Channel Detector

The inverse channel detector (ICD) also forms an estimate of § by linear combining. If Ly = Lg, then the weighting matrix
is selected as W = G~! so that

§=Wr=G'¥+=5+G'a (6.207)

As with the MMSE detector, each row of the matrix § is quantized to the nearest signal vector. When Lg # L7, the matrix G
is not square so its inverse does not exist. However, the pseudo-inverse can be used instead. If Lz > L7 and the Ly columns
of G are linearly independent, then

W = (G"G)"'G". (6.208)
Likewise, if Lg < Ly and the Lg rows of G are linearly independent, then
W = G"(GG™")™". (6.209)

Note that the ICD detector removes all interchannel interference. However, this also implies that the ICD detector does
not exploit any inherent diversity present in the received signal across the diversity branches. Moreover, there may be noise
enhancement due to the multiplication of the noise vector i by the matrix inverse G™! in cases where the matrix G is
ill-conditioned or, likewise, by multiplication of the noise vector by the pseudo-inverses in (6.208) and (6.209).

6.12.4 Known Channel at the Transmitter and Receiver

In certain types of wireless systems, particularly those using time division duplexing (TDD), knowledge of the channel is
available at both the transmitter and receiver. In this case, a singular value decomposition (SVD) of the channel matrix G
may be performed. Suppose that the channel matrix G has rank r which is at most min{Lr, Lg}. Then

G =UAV” (6.210)
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where U is an Lg X r matrix, V is an Ly X r matrix, and A is an r x r diagonal matrix, such that the diagonal elements
A1, A2, ..., A, are the singular values of the channel matrix G. The matrices U and V are unitary matrices, meaning that
UU” = 1,4, and VV” = I, where I, is the r X r identity matrix.

Given knowledge that the channel matrix G has rank r at the transmitter, » symbols are sent over the channel. The r x 1
transmitted signal vector § is precoded at the transmitter by using the linear transformation

S, = Vs. (6.211)
The corresponding received signal vector is
r=Gs,+n=GVs+n (6.212)
At the receiver, the received signal vector T is processed by the linear transformation U” as follows:
s = UF
=U'GVs + U"n
= U"UAV"Vs + U"n
= A+ U"n. (6.213)

From (6.213), it follows that there is no interchannel interference and the r data streams may be detected individually.
Similar to the ICD detector, the SVD method does not exploit the inherent diversity provided by the channel. Rather the
SVD method creates parallel streams of data, which increases the overall data rate. Multiplication of the noise vector n by
the unitary matrix U does not alter the statistics of the noise vector. Due to the multiplication of each transmitted symbol 5y
by the corresponding singular value A, the r data streams will have different received bit energy-to-noise ratios.

6.13 Spatial Modulation

Conventional MIMO communication systems transmit multiple data streams simultaneously from all transmit antennas.
Both multiplexing and transmit-diversity gains can be obtained using MIMO approaches that lead to high spectral efficiency.
Unfortunately, the simultaneous activation all transmit antennas and their associated RF circuitry and power amplifiers will
not lead to good energy efficiency if power consumption at the transmitter is accounted for. Under realistic BS power
consumption models, MIMO systems equipped with more than two active transmit antennas are unlikely provide any gains
in energy efficiency (EE) [163]. In this context, spatial modulation (SM) has recently appeared to improve overall EE,
by reducing the radiated power at the transmitter and required signal processing at the receiver. SM is a multi-antenna
MIMO concept where the transmitter possesses a larger set of antenna elements than the number of RF chains. The main
distinguishing feature of SM is that additional information bits are mapped onto an “SM constellation,” such that each
constellation point is comprised of either one or a small subset of the antenna elements.

Figure 6.25 illustrates the difference between spatial multiplexing, transmit diversity, and spatial modulation for the case
of Ly = 2 transmit antennas and a modulation alphabet size M = 2. With spatial multiplexing, the two modulation symbols s;
and s; are transmitted simultaneously from the two different transmit antennas. For an arbitrary number of transmit antennas
Ly and modulation alphabet size M, the modulation efficiency is Lrlog,M bits/channel use. With transmit diversity, the two
modulation symbols are transmitted in two channel uses. In Fig. 6.25, the symbols are transmitted using an Alamouti space-
time block code. In general, for Ly transmit antennas and modulation alphabet size M, the space-time block code transmits
Ny modulation symbols in N, channel uses. Hence, the overall modulation efficiency is (Ny/N.)log,M bits/channel use.
Finally, with spatial modulation, one of the two modulation symbols s; is explicitly transmitted, while the other modulation
symbol s; is implicitly transmitted by the transmit antenna selection. For Ly transmit antennas and a modulation alphabet
size M, the modulation efficiency is log,Ly + log,M bits/channel use. For the special case when M = 1, information is
only transmitted in the activated antenna index. This scheme is called space-shift keying (SSK) and was the first spatial
modulation scheme to appear in 2001 [58].

The modulation efficiency of spatial modulation increases as log,Lr, whereas the modulation efficiency of spatial
multiplexing increases linearly with Ly. This means that more antennas are needed with spatial modulation schemes to
achieve the same modulation efficiency. As such, spatial modulation schemes may be more suitable for mm-wave wireless
applications, where large arrays of antennas can be implemented in a small volume due to the short wavelength. However,
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Fig. 6.26 Spatial modulation using 4 transmit antennas with QPSK or 4-QAM modulation

mm-wave cellular links require beam-forming and, therefore, the antenna array would have to provide both a beam-forming
gain and a spatial multiplexing gain. As a result, a subset of the antenna elements would be activated for each channel use.

Figure 6.26 shows an example of a spatial modulation system with Ly = 4 transmit antennas (Tx1,Tx2,Tx3,Tx4) and an
M = 4 point signal constellation for each possible transmit antenna. The scheme transmits 4 bits/channel use. The “spatial-
constellation diagram” in Fig. 6.26 depicts that the first two bits of each binary data 4-tuple are used to select the antenna
for transmission, while the last two bits are used to select the transmitted 4-QAM or QPSK symbol. Note that the activated
transmit antenna may change with every channel use.

Spatial modulation works on the principle that the sub-channel impulse responses between each transmit antenna and the
array of receiver antennas (possibly a single antenna) are uncorrelated to a certain degree, and can be distinguished. Suppose
that the Ly x N signal matrix e]§,, is transmitted, where e; is a length Ly row vector of all-zeroes except for a one in the ith
coordinate, indicating that antenna i is selected, and §,,, is the length-N signal vector. Note that the signal matrix e]§,, contains
all-zeroes except for the ith row. It is possible to implement spatial multiplexing schemes where more than one element in
the antenna array is activated during each channel use. The number of RF chains required in the transmitter is equal to the
number of activated antenna elements during each channel use.

For flat faded sub-channels, the Lg x N received signal matrix is

R = Ge'§,, (6.214)
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where G is the Lg x Ly MIMO channel matrix. By using knowledge of the set of possible transmitted waveforms and
knowledge of the sub-channel impulse/frequency responses between each transmit antenna and each receiver antenna, the
maximum likelihood or minimum distance receiver can search over the Ly transmit antennas and M modulation symbols to
find the solution closest in squared Euclidean distance to the received vector of Lz waveforms. That is, using knowledge of
G, the receiver chooses e]s,, to minimize the squared Euclidean distance metric

11(€/5,) = [R — Ge[s, | (6.215)

L N

=22

j=1 n=1

(6.216)

~ ~ 2
rjn - gj,ismn

Spatial modulation has a number of advantages and disadvantages compared to spatial multiplexed MIMO systems. The
receiver is simpler with spatial modulation, since only a single transmitter antenna is active at any time. As a result, there is no
interchannel interference to mitigate. The transmitter is simpler as well, since only a small number of RF chains are needed
along with an RF switching mechanism. Fortunately, such RF switching mechanisms exist that can operate at nanosecond or
even at subnanosecond speeds. However, since the RF switching occurs with each modulated symbol, there are limitations
on the allowable length of the amplitude shaping pulse /(7). Section 4.9.2 showed that the truncation of a root-raised cosine
pulse to a short length, for example, will result in significant side lobe generation in the transmitted power spectrum. Spatial
modulation, like other MIMO schemes, relies on favorable channel conditions such that the columns in the Lz x Ly MIMO
channel matrix are distinguishable. As with other modulation schemes, the bit error rate performance will depend on the
minimum Euclidean distance between points in the spatial-constellation. Finally, the reduced number of RF chains used in
the spatial modulation transmitter poses problems for channel estimation, since only a subset of the MIMO sub-channels are
active and can be observed at the same time.

6.14 Massive MIMO

Very large MIMO or massive MIMO systems use base station antenna arrays with an order of magnitude more elements than
conventional MIMO systems, perhaps a hundred antenna elements or more, while the mobile stations use single antennas.
The concept of massive MIMO was eloquently described in the seminal work of Marzetta [218]. A large number of antennas
allow the antenna beam pattern at the base station to be adjusted so as to sharply focus the radiated energy in a small region
of space at the intended receiver antenna by adding together the signals transmitted from the multiple antennas constructively
at the desired receiver, but destructively elsewhere at the other unintended receivers.

Massive MIMO works on the principle of favorable propagation, which occurs when the channel vectors between the
BS and each MS are nearly orthogonal as the number of BS antennas becomes very large. Favorable propagation allows for
simple linear precoding processing schemes, such as matched filtering, to be used that give almost the same performance
as more complex precoding schemes such as zero-forcing precoding or dirty paper coding. With a large number of BS
antennas, L, the power that is transmitted by each BS antenna element is reduced by the factor 1/L. Hence, as L becomes
large the expensive high-power RF components used in traditional MIMO systems can be replaced by a larger number of
low-power inexpensive RF components. Therefore, the constraints on the accuracy and linearity of each RF chain are reduced
and, moreover, the system is robust to the failure of any one antenna element. Finally, the large number of antennas tends
to reduce the depths of envelope fades through spatial averaging and makes the overall channel less time and frequency
selective. This is important for multi-carrier schemes such as OFDM, since the effects of frequency-selectivity are removed
and the computationally complex algorithms for power and bit allocation on the OFDM subcarriers to maximize the overall
bit rate are no longer needed.

Massive MIMO has its challenges. To estimate the channels with massive MIMO, time-division duplex (TDD) operation
is used with reverse link pilot sequences to enable the BS to estimate the reciprocal forward and reverse link channels. For
the purpose of channel estimation a distinct pilot sequence is assigned to each MS in a cell, such that the pilots transmitted
by the MSs in the same cell are orthogonal in time and frequency. The conjugate-transpose of the channel estimates are
then used for linear precoding and combining, respectively, on the forward and reverse links. Neither the BS nor the MSs
have any prior knowledge of the channels. Therefore, all channel state information (CSI) is acquired from reverse-link pilots
which must be scheduled, along with forward- and reverse-link data transmissions, in a time interval (called a slot) over
which the channel can be assumed to be constant. The slot duration can be set equal to the channel coherence time, which is
inversely proportional to the mobility or speed of the MSs. Thus, the number of users that can be served in a particular cell
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Fig. 6.27 Pilot contamination in massive MIMO. During the pilot phase (leff) the BS overhears the pilot transmissions from MSs in other cells.
During the data phase (right) the BS partially beamforms to the MSs it has overhead in other cells [285]

is determined by the number of time orthogonal pilot sequences that can be assigned. Since the number of MSs that can be
served is proportional to the time spent sending pilots, and the sum-rate is proportional to the number of MSs served, the net
sum-rate is maximized by spending one half of the slot sending pilots and the other half of the slot sending data [217]. When
the channel exhibits delay spread, the number of MSs that can be served is equal to one-half of the channel coherence time
divided by the channel delay spread.

With massive MIMO, there is no sharing of channel information between BSs and no power control is used. Since the
number of orthogonal pilot sequences is limited, the pilot sequences are reused in the different cells of a multi-cell system
according to some pilot re-use factor. When estimating the channels to the MS it serves in the pilot period, a BS inadvertently
learns the channel to MSs in other cells that reuse the same pilot sequence. This phenomenon is called pilot contamination.
Thus, on the forward link channels, part of the energy sent to a particular MS will also be directed to an unintended MS
in another co-channel cell during the data period. This concept is illustrated in Fig. 6.27. Likewise, when the BS combines
its reverse-link signals to receive the individual data transmissions of the MSs it serves, it is also coherently combining
the signals from MSs in other co-channel cells. This out-of-cell interference on the forward and reverse links persists even
when the number of BS antennas becomes very large and presents a fundamental performance limitation in massive MIMO
systems. Millimeter wave frequencies admit themselves well to massive MIMO in regards to antenna technology since the
antenna spacing is small. However, the interference models for UHF frequencies and mm-wave frequencies are different.
With classical massive MIMO, the MS typically have a single antenna. However, at mm-wave frequencies both the BS and
MS employ MIMO arrays to achieve sufficient transmit and receive antenna gain in the link budget. The means the antenna
aperature is small such that the probability of interference is small and the mm-wave link budget is typically noise limited
rather than interference limited.

6.14.1 Massive MIMO System Model

Consider a massive MIMO cellular multi-access system consisting of a collection of cells, where the BSs at the center of each
cell have L omnidirectional antennas and each BS serves Kyis MSs per cell, and where the MSs have a single omnidirectional
antenna. The L x Kys matrix of channel gains between the jth BS and the Kys MSs in cell £ is denoted as H;, which is
assumed to have the form

H =G, (6.217)

The elements of the matrix Gj¢ = [gj¢]mr = &j.¢.m are assumed to be zero-mean complex Gaussian random variables with
an envelope power of unity, i.e., E[|gj¢mk|*] = 1, which is characteristic of Rayleigh fading. The matrix € is a Kys X Kus
diagonal matrix accounting for the effects of shadowing and path loss, where the k diagonal element of the matrix, denoted
as £2;¢x represents the received local mean envelope power, 2 = E[|hj¢mk|*], between the jth BS and MS k in cell
£, assumed to be the same for all L antenna elements for the £th BS. The signal model is shown in Fig. 6.28, showing the
propagation coefficient ;¢ ,  between the kth MS in Cell £ and the mth antenna element in Cell ;.
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Fig. 6.28 Propagation coefficient between kth MS in Cell £ and the mth antenna element in Cell j
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Fig. 6.29 Time domain aligned pilots for massive MIMO. In this example, the slot consists of 5 sub-slots for pilots, one sub-slot for pilot
processing, 3 sub-slots for downlink transmissions, and 2 slots for uplink transmissionsfrom [125]

Using the simple path loss model in (1.4), the §2; ¢ x are log-normally distributed and distance dependent according to

He, (do)6

-Qj,z.k(d) = W

(6.218)

where pg, (d,) = E[£2,(d,)] is the average received signal power at the reference distance d,, B is the propagation path loss
exponent, and € is a log-normal random variable, such that €gg) is a zero-mean Gaussian random variable with standard
deviation equal to o,.

6.14.2 Reverse Link Pilots

Reverse-link pilots are required to estimate the channel for both forward and reverse data transmission. The same band of
frequencies is reused in a multiplicity of cells according to a frequency reuse plan. Consequently, the reverse link pilots
that are received at a particular base station will be contaminated by the reverse link pilots that are transmitted by MSs in
other cells sharing the same time-frequency resource. It is assumed that a total of N base stations in the deployment share
the same band of frequencies, and the same set of Kyg pilot signals, one for each MS in their cells. Moreover, the forward
and reverse link transmissions are assumed to be perfectly synchronized, which constitutes the worst case condition for pilot
contamination. The cells use the time-domain aligned pilot (TDAP) structure shown in Fig. 6.29. First, pilots are transmitted
by the MSs. The BSs then process the received pilots to extract channel estimates. The channel estimates are used by the BSs
to precode the data transmitted on the downlink and to perform matched filtering on the uplink transmissions from the MSs.

Let H;; denote the estimate of the L x Kyis channel matrix between the Kys MSs in the jth cell and the L antennas at the
jth BS. Accordingly,

N
H= 7, Y Hy+v, (6.219)
(=1
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Fig. 6.30 Time domain shifted pilots for massive MIMO. In this example, the slot consists of 11 sub-slots, such that 2 sub-slots are used for pilots
in each cell group, 1 sub-slot is used for processing, 6 sub-slots are used for downlink data, and 2 sub-slots are used for uplink data, from [125]

where, again, H;, is the L x Kys propagation matrix between the Kys MSs in the £th cell and the L antennas at the base
station in the jth cell, and v; is an L x Kys receiver noise matrix, whose components are zero-mean unit-variance complex
Gaussian random variables that are mutually uncorrelated under the assumption of orthogonal pilots and uncorrelated with
the propagation matrices H;,. The quantity y, is the pilot signal-to-noise ratio (SNR), which will be shown later to be
irrelevant as the effects of noise vanish when the number of uncorrelated BS antennas, L, becomes unbounded.

Pilot contamination is the key bottleneck in massive MIMO systems. Fortunately, pilot contamination can be mitigated by
using a number of approaches that will work better than the simple TDAP design discussed above. One possibility is the time
domain shifted pilot (TDSP) design that mitigates pilot contamination through asynchronous transmission among adjacent
cells as shown in Fig. 6.30 [125]. The TDAP scheme partitions the cellular deployment into groups of cell groups labelled
A1, Az, ... Ay, In Fig. 6.30, there are N, = 4 cell groups. Communication during each coherence interval is divided into
stages. During the first stage, the MSs from cells belonging to cell group A; transmit their pilot sequences simultaneously,
while MSs from all other groups receive their downlink data. Once MSs in A; finish their pilot sequence, they start receiving
downlink data while MSs belonging to a different cell group start sending their pilots. This procedure is repeated until MSs
in all cell groups have transmitted their pilots. Afterwards, all MSs switch to transmitting uplink data to their BTSs. With
unbounded BS antennas, TDSP can remove the pilot contamination from cells adopting non-overlapping pilot phase in uplink
transmission, but it still has mutual interference between data and pilot in downlink transmission [125].

6.14.3 Reverse Link Data

The Kys MSs in each cell transmit their data over the reverse channel to their respective base stations. The BSs use estimates
of the channel matrices, H;; to perform maximal ratio combining. Again, assuming perfect synchronization of the signals
received from the N MSs sharing the same time-frequency resource, the L x 1 received signal vector at the L antennas of the
jth BS is

N
=7 ) Hf + iy, (6.220)
=1

where §; is the Kys x 1 vector of Kys modulation symbols transmitted from the Kys MSs in the £th cell, n; is the L x 1
received noise vector whose components are zero-mean, mutually uncorrelated, and uncorrelated with the propagation
matrices. Note that in (6.220) it is assumed that the complex signal constellation has a dimensionality of unity, such that
all signal vectors are complex-valued scalars. The parameter y, in (6.220) is the symbol-energy-to-noise ratio which, like the
pilot SNR, will be shown later to be irrelevant as the number of uncorrelated BS antennas, L, becomes unbounded.
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The jth BS processes the received vector I; by multiplying it by the conjugate-transpose of the channel estimate to perform
maximal ratio combining. From (6.219) and (6.220),

- _ AH,..'
rj—HjJrj
H

N N
= (v X B +v| (v D Hese +i . (6.221)

4=1 lr=1

The components of the vector r; consist of the sum of inner products between random vectors of length L. As the number
of BS antennas becomes very large, the squared-length or L, norm of these vectors grows with L, while the inner products
of uncorrelated vectors, by assumption of favorable propagation conditions, grow at a lesser rate. For very large L, only the
products of identical terms in the bracketed expressions in (6.221) are significant. From (6.217) and (6.218),

1 12 (Gl Gt \ 12
TH Hy = @ (A el (6.222)

where, once again, £;,, and €;, are Kys X Kys diagonal matrices. As the number of BS antennas L grows without bound,

G, Gj;

Jb

T Tkusxkus 86,60 (6.223)

due to the assumption of favorable propagation conditions. Substituting (6.223) and (6.222) into (6.221) gives

S, j=1,...,N. (6.224)
L»\/ prr ;

The kth element of the vector I; normalized by 1/L, /v,7; is

Fik —> 2 kjsjk+Z S k=1, Kus (6.225)

49&/

1
L./vpvr

where £2; ¢ is the kth diagonal element of the Kys X Kyis diagonal matrix ;.. The noise terms due to v; and n; in (6.224)
vanish as L goes to infinity, due to the multiplicative 1/L factor. Moreover, the effects of fast envelope fading are completely
eliminated, due to spatial (antenna) averaging, and the transmissions from the Kys MSs in each cell do not interfere with each
other. The second term in the R.H.S. of (6.225) represents co-channel interference received from MSs in other cells sharing
the same pilot. Thus, with idealized (synchronized) massive MIMO, the interference-to-noise ratio is infinite and the signal-
to-interference-plus noise ratio (SINR) becomes equal to the signal-to-interference ratio (SIR). In the R.H.S. of (6.225), both
the desired symbol §; and interfering symbols in the summation are multiplied by their respective local mean powers £2;«
that are received at the jth BS. Consequently, due to the vanishing effects of noise, the SIR at the jth BS involves the squares
of the £2;; and §2; ¢, and is given by

Q2
SIR,.;, = ’—k’ k=1,...,Kus, (6.226)
Zl 1 jk(

where the assumption is made that the co-channel interferers sharing the same time-frequency resource block are
uncorrelated, which is easily satisfied if their associated information symbol sequences are uncorrelated.
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6.14.4 Forward Link Data

The forward channel uses precoding such that each BS transmits a length-L vector from its L transmit antennas, which
is proportional to the complex conjugate transpose of its propagation matrix as estimated from reverse link pilots. The
transmission from the jth BS to its kth MS suffers from co-channel interference from the forward link BS transmissions in
co-channels cells to their respective MSs that are reusing the same time-frequency resource.

The ¢th BS transmits the L x 1 vector, I:I’g (St, where §y is a length-Kyis column vector of information symbols transmitted
to the Kys MS served by BS £. In practice, there is a normalizing factor corresponding to the transmit power constraints
of the BSs. Under the assumption that the normalizing factor is the same for all BSs, the value of the normalizing factor
becomes irrelevant as the number of BS antennas, L, becomes unbounded.

The Kys MSs served by the jth BS each receive their respective component of a length Kyis vector that is comprised of
the signals transmitted from each of the BS in the N surrounding co-channel cells. That is,

N
B =y ) HiH{ 5 +w
(=1
H

N N
= Y M | v D Hu +ve | S +w (6.227)

=1 =1

where w; is a Kyis X 1 vector of uncorrelated noise components, and yy is a measure of the forward channel SNR which will
be shown to be irrelevant as the number of BS antennas L grows without bound. As with the reverse channel, as the number
of BS antennas L goes to infinity, (6.222) and (6.223) are once again used to yield

N
1
—— ) Q. j=L...N (6.228)
LY7o =

The kth MS in the jth cell receives

N
1
Frj—> 2ikiSki+ ) exiSke, j=1,...,N. (6.229)
Lo Ny ; J
i

As with the reverse link, the effective signal-to-interference ratio for the kth MS in the jth cell is

22, .
SIRfp = ——5— j’k‘lz ., k=1,...,Kys (6.230)
2421 -Q[ k.j
o

Although the forward and reverse SIRs in (6.230) and (6.226), respectively, look similar, they are in fact different meaning
that the forward and reverse channels exhibit link imbalance. The numerator term of (6.230) and (6.226) in each case is the
same. However, the denominators are different. In the case of the reverse channel, the denominator is the sum of squares of
the local means £2¢ x j from the kth MS in the N—1 other cells than the jth cell. These local means are statistically uncorrelated.
In the case of the forward channel, the denominator is the sum of squares of the local means §2 ; ; from the N — 1 BSs other
than the jth BS that are transmitting to their respective kth MSs and received at the kth MS in the jth cell. These local means
are statistically uncorrelated as well. However, the set of propagation distances to the co-channel interferers are not the same
for the forward and reverse links, meaning their respective area mean powers are different. Therefore, in the absence of power
control, forward and reverse link imbalance exists as in Chap. 1, Sect. 1.7.
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6.14.5 Favorable Propagation Conditions

Massive MIMO systems rely upon favorable propagation conditions in (6.223). This section explores the concept further to
define the circumstances under which favorable propagation conditions occur. To simplify the treatment, consider a single
isolated cell. Let h; be the length-L row vector representing the propagation vector between the kth MS and the L BS
antennas. Favorable propagation implies that as L becomes very large

h’h;
% — 28y (6.231)

This means that the propagation vectors become mutually orthogonal. Another way of writing (6.231) is to observe that

H"H
L

.9 (6.232)

where 2 is a Kys x Kys diagonal matrix whose kth diagonal element is £2;. One method for ascertaining favorable
propagation is the condition number of the matrix H, defined as the ratio of the maximum and minimum singular values
of the associated Kys X Kys Gram matrix H”H. The singular values of H are equal to the square root of the eigenvalues of
the Gram matrix H”H. If the condition number is unity, then favorable propagation is achieved. From the R.H.S. of (6.232),
it is apparent that if the local mean §2; happens to be the same for all Ky;s MSs, then the condition number is equal to 1.
However, the £2; are typically different, so that condition number is not always meaningful. Moreover, the condition number
as a measure of favorable propagation only considers the largest and smallest eigenvalues, and disregards all the other
eigenvalues.
The sum capacity of the massive MIMO channel in bits per channel use or bits per symbol is

C = log, (1 + %H”H) , (6.233)
where y is the symbol energy-to-noise ratio. Using the Hadamard inequality, it follows that

C = log, (1 + %HHH)

Kms y
< log, (H[I + ZHHH]k.k>

k=1

Kwms

= log, ([I + %HHH]M)
k=1

Kwms

= log, (1 + %Hhk”z) : (6.234)
k=1

This motivates the distance from favorable propagation as a metric for favorable propagation, defined as [243]

_ Y log, (1 + Flih|”) —log, [T+ fH"H

Ae log, [T+ YH/H|

(6.235)

Observe that A¢ > 0 and ideal propagation occurs when A¢c = 0.
Yet another possibility is the factor of favorable propagation, defined as the ratio of the capacity to the Hadamard upper
bound on capacity, viz.,

_ log, ]I + %H”H|
S log, (14 Lhge]?)

where Rc = 1 means that favorable propagation occurs.
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For the remainder of this section, shadowing is ignored and only envelope fading is considered. §2; = 1 for all kK MSs, so
that i, = g and H = G in what follows.

6.14.5.1 Independent Rayleigh Fading

For practical applications L is finite, so that the L.H.S. of (6.231) is a random variable. The g are statistically independent.
Therefore, g/'g;/L has a mean of zero and variance equal to

Var @ =l
L L

If matched filtering is used, then the desired signal power at the massive MIMO combiner output is proportional to | g||*,
while the power of each co-channel interferer is proportional to ||gf'g;||*. The interfering power due to the jth interferer
lgi’g;||>/L? has a mean of zero and a variance of

Var(ng'ggw) _L+2 1

L? L3 L?

The cdf function of the singular values of G can be used to predict whether or not a given channel realization G exhibits
favorable propagation. The cdf of the sorted singular values resulting from 10,000 random realizations of the L X Kys matrix
G with L = 100 and Kyis = 10 is plotted in Fig. 6.31. Observe that with i.i.d. Rayleigh fading, the singular values tend to be
uniformly spread between the minimum and maximum singular values.

6.14.5.2 Uniform Random Line-of-Sight
Uniform Random Line-of-Sight (UR-LoS) conditions represent the other extreme of scattering environments where free

space line-of-sight propagation exists between the BS and MSs. Consider a uniform linear array of antennas at the BS with
antenna element spacing é m as described in Sect. 6.9. From (6.148), the propagation vector g; can be written as
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Fig. 6.31 Cdfs of sorted singular values of G for i.i.d. Rayleigh fading with L = 100, Kyms = 10. For Kys = 10 MSs, there are 10 sorted singular
values and 10 corresponding cdf curves



326 6 Multi-Antenna Techniques
o (8 (K (=18
g = (1’ 61271(2) cos(@k)’ L e]2ﬂ(ﬂ)cos(9k)’ L e]er( T )cos(ek)) (6237)

where 6y is the array orientation angle with respect to the kth MS, assumed to be independently and uniformly distributed on
the interval [—7, ) for each MS. If § = A/2, then g}'g;/L has a mean of zero and variance

" 1 1
Var (88) =~ _
L L I?
Compared to the case of independent Rayleigh fading, the variance is almost the same for large values of L. The squared
magnitude of the inner product, ||g/'g;||>/L?, has a mean of zero and variance

V. ( ngz'g,»uZ) _@-nrer-n 2
ar = ~—

[? 3Lt 3L
Hence, the variance of the interfering power decays more slowly with UR-LoS conditions than independent Rayleigh fading.
The cdf of the sorted singular values resulting from 10,000 random realizations of the L x Kys matrix G with L = 100 and
Kyms = 10 is plotted in Fig. 6.32. Notice from Fig. 6.32 that a few singular values are small with high probability, while the
remainder are concentrated around their median value. The small singular values occur when two MSs have array orientation
angles 6 and 6; that are very close, such that |6; —6;| ~ 1/L. Under this condition the normalized inner product g} g;/L does
not converge to 0 as L becomes large as shown by

gggj . 1 1 — e/mGin(@)—sin(6))L B | 1—er P
L  L1_orem@G—sn®)  L1—omL 1 # 0. (6.238)

In order to recover favorable propagation conditions it is necessary to drop a typically small number, often one or two, MSs
that cause unfavorable propagation conditions. Essentially, to guarantee that the propagation conditions are favorable, each
BS antenna beam must contain at most one MS. For UR-LoS conditions, Ngo, Larsson, and Marzetta derived the probability
of dropping n MSs as [243]

Kvs—n K
L Kys —n n+L—Kys+k
Plawp = 1) = (N+L_KMS) 2 (‘“k( y )(“%)m (6239
k=1

Empirical CDF

09F SRIEIRITTENE SERIIERPEENE o
0.8 e R PR SRR
0.7F ST SRR e

06 SIRIEIRITTENE SARIIERPEENE ]

0.5 P SRTTTTSRRRRRREEE e
0 f ST TTTTIRRRY )

Cumulative Distribution

0.3F e R TR ]
0.2 F e R SRR .

O f SRR e

0 i
-150 -100 -50 0 50
Singular Values (Sorted) (dB)

Fig. 6.32 Cdfs of singular sorted values of G for uniform random line-of-sight conditions with L = 100, Kys = 10. For Kyys = 10 MSs, there
are 10 sorted singular values and 10 corresponding cdf curves
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The mean number of MSs dropped is

Kvs—1

Ndrop = Z P(Ndrop = n) (6240)

n=1

6.14.5.3 Rician Fading Conditions

To model Ricean fading, the channel matrix G can be divided into a deterministic part and a random part, i.e.,

| K - [ 1
G=,——G —G; 6.241
K+1 + K+1 ( )

where E[G] = /KL_H(_} is the LoS or specular component and /=Gy is the scatter component assumed to have zero mean.
With Rician fading conditions, the inner product of the propagation vectors has variance

Mg 1 1 | K
Var % —_— -
L L I’VK+1

The variance of the square of the inner product is

g l* 1 1 1 2
V _— = — _ — — K
ar( 2 Verilzt3vk

Figure 6.33 shows the cdf of the sorted singular values for a Rician channel with a Rice factor K = 10dB. The results
are obtained by combining the UR-LoS propagation vector in (6.237) with independent Rayleigh fading. As with UR-LoS
conditions, a few singular values are small with high probability, while the remainder are concentrated around their median
values.

6.14.5.4 Sufficiently Favorable Channels

Suppose that the propagation channel G is considered to be sufficiently favorable when the condition number is below
8dB 90% of the time. Figure 6.34 depicts the 90% maximum condition number as a function of the Rice factor K when

Empirical CDF
1 :

R N 1111, S
1 e
o S
1 e

] RN i o [ 1 30 B SR A

oaf S

Cumulative Distribution

0af

A N s on 111 HME SR A

oap ST

10 12 14 16 18 20 22 24 26 28

0

Singular Values (Sorted) (dB)

Fig. 6.33 Cdfs of singular sorted values of G for Rician fading conditions with L = 100, K = 10. For Kyys = 10 MSs, there are 10 sorted
singular values and 10 corresponding cdf curves
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Fig. 6.34 Plot of condition number against Rice factor K when Ngrop = 0, 1, and 2 with L = 100 and Ky;s = 10. With 10,000 realizations of the
channel matrix G, the condition number plotted is the 1000th highest, such that the value plotted is only exceeded 10% of the time
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Fig. 6.35 Plot of factor of favorable propagation, defined in (6.236) as the capacity divided by the Hadamard upper bound on capacity for each

random channel realization. The curves plot different symbol SNR, y;,, progressing from 10 to 20dB

Naop = 0,1, and 2. In Fig. 6.34, the condition number is below the various traces that are plotted 90% of the time. The
outage is sufficiently small with no MSs dropped for K < 2dB. For 2 < K < 5, it is recommended that one MS be dropped.
For K > 5, it is recommended that 2 MSs be dropped. There is no Rice factor K where more than 2 out of 10 MSs would
need to be dropped to keep the condition number less than 8 dB for 90% of the time.

Another possibility is to consider the factor of favorable propagation, Rc, in (6.236). Figure 6.35 plots the cumulative
distribution function of R¢ against the symbol SNR, y; for L = 100 antennas. Observe that the median of R¢ shifts to
the right as y, increases, and the cdf of R¢ is steep around a median value that ranges from 0.5 at y; = 10dB to 0.65 at

¥s = 20dB.
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Problems

6.1. Let {X;,X,..., Xy} be a set of independent Rayleigh random variables each with an rms value of 1/+/N.
(a) Derive the pdf of

Y = max (Xlng, o ,X,%,) .
This result is useful for the study of selective combining diversity systems.
(b) Again, using the set {X}, X5, ..., Xy}, derive the pdf of
Z=X{+X5+ -+ X3

This result is useful for the study of maximal ratio combining diversity systems.

6.2. Suppose that two-branch selective combining is used. However, the branches are mismatched such that y; # y, where
the y;, i = 1,2, are the average received symbol energy-to-noise ratios for the two branches. Plot the cdf of y; against
the average normalized symbol energy-to-noise ratio 101og,{ys/:}, where ¥, = (y1 + ¥2)/2. Show several curves while
varying the ratio £ = /7.

6.3. Consider using selective combining with coherent BPSK. For coherent BPSK, the probability of bit error is Py(y;) =
Q(\/2_y,§) The instantaneous bit energy-to-noise ratio is given by (6.8).

(a) Derive an expression for the average bit error probability

Py =/0 Pp(x)pys (x)dx.

6.4. Suppose that binary DPSK signaling (x; € {—1, +1}) is used on a flat Rayleigh fading channel with 3-branch diversity.
The diversity branches are assumed to experience uncorrelated fading. The signal that is received over each diversity branch
is corrupted with AWGN having a one-sided psd of N, W/Hz. The noise processes that are associated with the diversity
branches are mutually uncorrelated.

(a) Suppose that a separate differential detector is used on each diversity branch, yielding three independent estimates of each
transmitted bit, i.e., for x; the receiver generates the three independent estimates (%}, X7, X7). Majority logic combining
is then used to combine the three estimates together to yield the final decision Xy, i.e.,

R —1  if two or more &} = —1
Xk = . N
+1  if two or more X;, = +1

Find an expression for the probability of bit error, P,. Evaluate P, for y. = 20dB, where p, is the average received
branch bit energy-to-noise ratio.

(b) Evaluate the probability of bit error for y. = 20 dB if the receiver uses 3-branch diversity with postdetection equal gain
combining. Compare with the result in part (a).

(c) Generalize the expression for the probability of bit error in part (a) to L-branch diversity.

6.5. Derive (6.28) for BPSK and maximal ratio combining.
6.6. Derive (6.66) for DPSK with differential detection followed by equal gain combining.

6.7. Consider an AWGN channel where the channel gain, o, has the following probability density function
Pa(x) = 0.28(x) + 0.55(x — 1) + 0.35(x — 2).

(a) Determine the average probability of bit error for binary DPSK signaling over a channel with gain « in terms over the
average received bit energy-to-noise ratio y,. What value does the probability of bit error approach as y,, gets large?
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(b) Now suppose that two-branch antenna diversity is used with predetection selective combining. Assume that the diversity
branches are perfectly uncorrelated. Determine the average probability of error in terms of the average bit energy-to-noise
ratio per diversity branch y.. What value does the probability of error approach as y, gets large?

(c) Plot the probability of error for parts (a) and (b) on the same graph.

6.8. Consider a BPSK modulated system with simple repetition code and time interleaving, such that each data bit is
transmitted L times and each transmission experiences independent identically distributed (i.i.d.) Rayleigh fading. If symbol
s is transmitted, the corresponding L correlator or matched filter outputs at the receiver are

nn=as+n, k=1,...,L

where 5 is the transmitted BPSK symbol chosen from the alphabet {++/2E}, the ¢ are i.i.d. Rayleigh random variables, and
the 7 are i.i.d. zero-mean complex Gaussian random variables with variance LE[[72]=N,.

(a) One decoding strategy is to combine the 7z, kK = 1,..., L using maximal ratio combining and then make a bit decision.
What is the probability of decision error in terms of the average received bit energy-to-noise ratio, y;?
(b) Another decoding strategy is to make a hard decision as to which symbol was transmitted for each of the 7, k = 1, ..., L,

and then make a majority logic decision (assuming L is odd) as to which data bit was transmitted, i.e., if more of the L
symbols comprising each bit are decided to be ++/2E than —+/2E, then choose the data bit corresponding to symbol
++/2E. What is the probability of decision error in terms of the average received bit energy-to-noise ratio, j,?

(c) Evaluate the probability of bit error in parts (a) and (b) when L = 3 and y, = 20dB.

6.9. Consider digital transmission using BPSK modulation and L = 2 receiver diversity. The channel gain for Antenna
i,i = 1,2, and symbol epoch n, «; ,,, has the following probability density function

Pa;, () = 0.98(x — 1.0) 4 0.18(x — 0.05),
and the o;, are independent for i = 1,2 and all n. Each receiver branch is affected by independent complex AWGN with
noise power spectral density N, W/Hz. Derive an expression for the bit error rate probability with maximal ratio combining.

6.10. The bit error probability of MSK signaling on a Rayleigh fading channel with additive white Gaussian noise is

| =
P=-(1-, /2],
2 1+

(a) Derive a Chernoff bound (see Appendix A) on the probability of bit error and compare the Chernoff bound with the
exact error probability.
(b) Repeat part (a) if the receiver employs L-branch diversity. Assume uncorrelated diversity branches with y; = y, = -+ =

YL = Ve-

6.11. The bit error probability of binary orthogonal FSK signaling with non-coherent square-law combining on a Rayleigh
fading channel with additive white Gaussian noise is given by (6.28) where the parameter y is defined in (6.83).

(a) Derive a Chernoff bound (see Appendix A) on the probability of bit error and compare the Chernoff bound with the
exact probability of error.

(b) Derive a union-Chernoff bound on the probability of bit error with M-ary orthogonal FSK signaling and non-coherent
square-law combining.

(c) By using the union-Chernoff bound obtained in part (b) determine the diversity order L that will minimize the error
probability.

6.12. Suppose that BPSK modulation is used with two-branch diversity and coherent equal gain combining. Assume
uncorrelated diversity branches with y; = Y, = .. Show that the probability of bit error for a Rayleigh fading channel
is given by (6.50).

6.13. Consider a system that employs 2-branch selection diversity, where each diversity branch consists of L antennas with
maximal ratio combining as shown in Fig. 6.36. Assume that all input MRC diversity branches are equal, i.e., y; = ¥,
i=12,j=1,...,L.
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1
L A\
4 MRC
L
Choose
Largest [—> A=max{A, A}
1 A,
MRC
L A,

Fig. 6.36 Combiner for Problem 6.13

(a) Derive an expression for the cumulative distribution function of the symbol energy-to-noise ratio, A, at the output of the
selective combiner.

(b) Derive an expression for the probability density function of the symbol energy-to-noise ratio, A, at the output of the
selective combiner.

(c) Write down an integral expression for the probability of bit error with BPSK modulation. You do not have to solve the
integral!

6.14. Consider a system that uses L-branch selection diversity. The instantaneous received signal power on each diversity
branch, so;, i = 1,...,L, has the non-central chi-square (Ricean fading) distribution in (2.63). The instantaneous received
signal power from each interferer on each diversity branch, s;;, i = 1,..., L has the exponential (Rayleigh fading)
distribution in (2.56). Note that all the so; and si; are all independent. Let A; = s¢;/ ZQLI sei» 1 = 1, ..., L be
the instantaneous carrier-to-interference ratio for each diversity branch and A; = max; A;. Derive an expression for the
probability of co-channel interference outage

0; = P[A; < Aul.

Plot Oy against Ay, for various L.

6.15. Consider the reception of a desired signal in the presence of a single co-channel interferer and neglect the effect of
AWGN. The received signal power, s, and interference power, s, due to Rayleigh fading have the exponential distributions

1 —X,
p‘vo(x) = Eoe /20

1 —x/$21
ps () = ﬁlé’ )

where §2¢ and 2| are the average received signal power and interference power, respectively.

(a) Assuming that sy and s; are independent random variables, find the probability density function for the carrier-to-
interference ratio

S0
A=—.
S1

Hint: If X and Y are independent random variables, then the probability density function of U = X/Y is

pu(u) = /pxy(v,v/u)lv/u2|dv.
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(b) What is the mean value of A?
(c) Now suppose that the system uses L-branch selection diversity. The branches are independent and balanced (i.e., the
distribution of A;, i = 1..., L, is the same for each branch. What is the probability density function of

Ay = max(A1, Az, .. AL,

the carrier-to-interference ratio at the output of the selective combiner?

6.16. Suppose that two-branch antenna diversity is used with selective combining. However, the branches have correlated
fading so that the maximum diversity gain is not achieved. Let y; and y, be the joint pdf for the instantaneous bit energy-to-
noise ratio for each diversity branch, and let . = E[y;]. It is known that joint pdf of y; and y; is

1 (2|p|m)ex %_ X1 + X }
72— 1o\ 7(1 = [pP) 7(1=1p) "

p)/].yz(xleZ) =

where |p| is the magnitude of the correlation coefficient of the two complex Gaussian random variables that are associated
with the two diversity branches. Derive an expression for the cdf of the bit energy-to-noise ratio at the output of the selective
combiner

Ys = max{y1, y2}.

Plot the cdf for various p. What conclusions can you make?
6.17. Show that with optimal combining VyJ in (6.93) is given by
aJ aJ r
VWJ = (8_wl’ Tty a_WL) = 2w q’ﬁtﬁ, - Zq)goﬁ, =0.
6.18. Suppose that the received signal consists of two strong multipath components arriving from different directions.
Explain how you would design a phased array to capture the energy in both rays.

6.19. Consider Alamouti’s transmit diversity scheme. Section 6.11.1 shows how to construct the combiner for the case of
2 x 1 and 2 x 2 diversity. Construct the combiner for the case of 2 x L diversity.

6.20. Describe how you would combine Alamouti’s transmit diversity scheme with OFDM. Show a block diagram of the
transmitter and receiver.



Chapter 7
Time Domain Equalization and Interference Cancelation

Chapters 5 and 6 have considered digital signaling on frequency non-selective or flat fading channels. Such channels are
typical for low data rate systems that occupy a bandwidth that is smaller than the channel coherence bandwidth. However,
as the data rate increases, the bandwidth of the transmitted waveform will typically be larger than the channel coherence
bandwidth. Under this condition the channel is non-ideal and will exhibit frequency selectivity or time delay spread. Such
time delay spread causes interference between modulated symbols, a phenomenon known as inter-symbol interference (ISI).
This chapter concentrates on the modeling of ISI channels and the various signal processing methods for recovering digital
information transmitted over such channels.

This chapter begins with a treatment of ISI channel modeling in Sect.7.1 that includes a vector representation of
digital signaling on ISI channels. Section 7.2 then develops the maximum likelihood receiver for ISI channels, leading
to an equivalent model of the ISI channel known as the discrete-time white noise channel model. The effects of using
fractional sampling or over-sampling at the receiver are also considered, where the sampling rate is an integer multiple of the
modulated symbol rate. Section 7.3 provides a treatment of symbol-by-symbol equalizers, including the linear zero-forcing
and minimum mean-square-error (MMSE) equalizers, and the nonlinear decision feedback equalizer (DFE). Section 7.4
provides a treatment of sequence estimators beginning with maximum likelihood sequence estimation (MLSE) and the
Viterbi algorithm. Since the MLSE receiver can have high complexity for channels that have a long impulse response, some
reduced complexity sequence estimation techniques are considered such as reduced state sequence estimation (RSSE) and
delayed decision feedback sequence estimation (DDFSE). Section 7.5 provides an analysis of the bit error rate performance
of MLSE on static ISI channels and multipath-fading ISI channels. Finally, Sect. 7.6 considers fractionally spaced MLSE
receivers for ISI channels.

Finally, Sect. 7.7 concludes the chapter with a discussion of co-channel demodulation for digital signals on ISI channels.
The basic idea is to simultaneously recover the data from multiple users that transmit in the same bandwidth. The problem is
formulated as a multiple-input multiple-output (MIMO) channel, where the inputs are the waveforms transmitted by multiple
users in the same bandwidth and the outputs are the signals received at multiple antenna elements. A vector representation
of the received signals is first developed, along with the optimum receiver that uses joint maximum likelihood sequence
estimation (J-MLSE). Similar to the single-user case, the effects of using fractional sampling will be considered as well.
Finally, the chapter ends with a receiver structure that incorporates a combination of optimal combining as discussed in
Chap. 6 and sequence estimation as implemented with the Viterbi algorithm.

7.1 Modeling of ISI Channels

Chapter 4 showed that the complex envelope of any modulated signal can be expressed in the general form
5(1) =AY b(t—nT.x,). (7.1)

This chapter restricts attention to linear full-response modulation schemes where
b(t, Xn) = xnhy(1), (7.2)

h,(t) is the amplitude shaping pulse, and {x,} is the complex data symbol sequence.
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Suppose that the signal in (7.2) is transmitted over a channel having a time-invariant complex low-pass impulse
response g(#). The received complex envelope is

F() = Y xh(t = nT) + (o), (7.3)
where
h(t) = /OO ha(7)g(t — t)dt (7.4)

is the received pulse, given by the convolution of the transmitted pulse /,(¢) and the channel impulse response g(¢), and 7(t) is
complex-valued additive white Gaussian noise (AWGN) with a power spectral density of N, watts/Hz. Since the transmitted
pulse A, (¢) is causal (h,(f) = 0, t < 0) the lower limit of integration can be replaced by zero, and since the physical channel
is causal (g(f) = 0, t < 0) the upper limit of integration in (7.4) can be replaced by ¢, so that

t
ho = [ hu(0gte- e 10 7.5)
0
Finally, the received pulse A(f) is assumed to have a finite duration so that 4(z) = 0 for# < 0 and ¢t > (L 4 1)T, where L is
some positive integer.
7.1.1 Vector Representation of Received Signals

Using a Gram—Schmidt orthonormalization procedure, the received signal 7(¢) in (7.3) can be expressed in the form

N
Fr) = lim > 7). (7.6)
k=1

where the {¢,(f)} are a complete set of complex orthonormal basis functions. Note that the basis functions span over the
entire length of the waveform 7(¢), and for the present purpose it is not necessary to actually generate the basis functions.
Also, this set of basis functions should not be confused with the set of basis functions that is used to represent the signal set
as in Sect. 5.1. It can be readily shown that

o= Xl + ik, (7.7)
n
where
o0
= [ = nmyet @y
—00
o0
e = / i(t)eg (t)de. (7.8)
—0oQ
The noise samples 7; are zero-mean complex Gaussian random variables with covariance ¢5,;, = %E[fz}ffzm] = N,8im-
Hence, it follows that the observation vector ¥ = (7, 7,,...,Fy) has the conditional multivariate complex Gaussian
distribution
N 2

p(r[x,h) = , (7.9)

Tk — E -xnhnk
n

1
i 2N, 2N,

where h = {#,,}.



7.2 Maximum Likelihood Receiver for ISI Channels with AWGN 335
7.2 Maximum Likelihood Receiver for ISI Channels with AWGN

The maximum likelihood receiver decides in favor of the symbol sequence x that maximizes the likelihood function p(¥|x, h)
or the log-likelihood function log{p(¥|x, h)}, i.e.,

choose x if log{p(¥|x,h)} > log{p(F|Xx,h)} VX # X. (7.10)

For an AWGN channel, p(r|x, h) has the form in (7.9) and the decision rule in (7.10) is equivalent choosing x to maximize
the quantity

2

N
MOEESS
k=1

Tk — E xnhnk
n

N N
=— Z 7] + Z (;7/’(k anh,,k + i Zx:h:k)
k=1 k=1 n n
N
_ Z (anhnk) (Zx;h:u) . (7.11)
k=1 n m

Since the term Zszl |7|? is independent of x, it may be omitted so that the maximum likelihood receiver chooses x to
maximize

nw(x) = 2Re

N N
DY 7/«}’;} =YD x> (7.12)
k=1 m k=1

n n

where Re{z} denotes the real part of z. In the limit as the number of observable random variables N approaches infinity,
define the following

N o)

v 2 dim Y RAE = / F(0)h* (t — nT)dt (7.13)
N—>o00 — —00
N o0

fun 2 Tim Y hy kYt = / h(t — nT)h* (t — mT)dt. (7.14)
N—>o0 —00

k=1

Using (7.13) and (7.14) in (7.12) gives the final form

u(x) = 2Re % Zx:y,,} — Z anx;fm,n. (7.15)

The variables {y,} are obtained by passing the received complex low-pass waveform 7(f) through the matched filter
h* (—t) and sampling the output. Note that the T-spaced samples at the output of the matched filter must be obtained with the
correct timing phase, and in the above development perfect symbol synchronization is implied. Hence, the optimum front-
end processing is as shown in Fig. 7.1. Finally by changing the variable of integration, the {f,,—,} in (7.14) can be rewritten
in the form

fi = /Oo h(t + £T)h*(r)dt, (7.16)

where { = m — n. From (7.16), it is seen that the {f;} represent the sampled autocorrelation function of the received pulse
h(r) with sample spacing T, and have the property that £ = f_,. Sometimes the {f;} are called the ISI coefficients.
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h(1)=h,(1) %g(1) (1)

Fig. 7.1 Digital signaling on an ISI channel. The optimum front-end processor implements a filter that is matched to the received pulse A(r)
followed by a symbol rate sampler
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&y & & By, G & ;
Vi
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Fig. 7.2 Discrete-time model for digital signaling on an ISI channel

7.2.1 Discrete-Time White Noise Channel Model

Sampling the output of the matched filter 2*(—¢) in Fig. 7.1 every T seconds yields the sample sequence {y;}, where

Ve = ufien + Vi

L
= Y xdfi + (7.17)

{=—L

and
vy = /00 n(t)h* (r — kT)dr (7.18)

is the noise sample at the output of the matched filter. It follows that the overall discrete-time system in Fig.7.1 can be
represented by a discrete-time transversal filter with coefficients

f= (. f~r+1, - =1, foo fis oo fo-10 L) (7.19)
This representation is depicted in Fig. 7.2.
As shown in (7.15), the maximum likelihood receiver uses the observation vector y = {y;} and knowledge of the

IST coefficients {f;} to determine the most likely transmitted sequence x. Equivalently, the maximum likelihood receiver
decides in favor of the symbol sequence x that maximizes the likelihood function p(y|x, f) or the log-likelihood function

log{p(y|x, )}, i.e.,
choose x if log{p(y|x,f)} > log{p(y|x,f)} VX #x. (7.20)

The noise samples at the matched filter output in (7.18) have the discrete autocorrelation function

1
Guo(n) = EE[Vk+nV: 1 = Nofy. (7.21)
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Hence, the noise sequence {v;} will be correlated unless f;, = 0,n # 0, meaning that the overall pulse

f = /;00 h(t + T)h* (r)dt (7.22)

(o]

satisfies the first Nyquist criterion. Such a condition will not be true for ISI channels due to the non-ideal channel g(#), and the
resulting correlation between the noise samples {v;} results a log-likelihood function log{p(y|x, f)} that has a complicated
form. This difficulty can be overcome by passing the sample sequence at the output of the matched filter, {y;}, through a
noise whitening filter as described below, to whiten the noise samples.

The z-transform of the vector f is

L
F@)= ) fuiz " (7.23)

n=—L
Using the property f* = f_, yields
F*(1/7") = F(2). (7.24)

This means that if z is a root of F(z) then 1/z* is a root of F(z), i.e., the roots of F(z) occur in conjugate reciprocal pairs. It
follows that F(z) has 2L roots with the factorization

F(z) = G(2)G*(1/z"), (7.25)

where G(z) and G*(1/z*) are polynomials each of degree L. The roots of G(z) are z;, 22, . . . , 7z, while the roots of G*(1/z*)
are 1/zF,1/25,...,1/z;. Hence, there are 2" possible choices for the roots of G*(1/z*) and any one will suffice for a noise
whitening filter 1/G*(1/z*). However, some reduced state equalization techniques such as RSSE and DDFSE require that
the polynomial of the overall system G(z) = F(z)-1/G*(1/z*) be minimum-phase, meaning all the poles and zeroes of G(z)
lie inside the unit circle. For such cases, the noise whitening filter 1/G*(1/z*) will be a stable filter, but it is noncausal since
all its poles are outside the unit circle. In practice, such a noncausal noise whitening filter can be approximated to sufficient
accuracy by using a long enough filter delay. If the overall response G(z) need not have minimum phase, then G*(1/z*) can
be chosen to have minimum phase, i.e., all the poles and zeros of the noise whitening filter 1/G*(1/z*) are inside the unit
circle. This choice will ensure that the noise whitening filter is both causal and stable.

If the noise whitening filter is chosen such that G(z) has minimum phase, then the resulting discrete-time white
noise channel satisfies the minimum energy-delay property. To explain this further, let Gpi,(e¢/*™) be the frequency
response function corresponding to the G(z) having minimum phase, and let g; min be the corresponding time-domain impulse
response. All 2% choices for G(z) will have the same magnitude response, i.e., |G(e/>™)| = |Guin(¢/>™)|. Consequently, all
impulse responses g, whose magnitude response |G(e/*™)] is equal to |Gin(¢/>™)| will have the same total energy by
Parseval’s theorem, i.e.,

o0 1
>lal= [

n=0 -

/2 ' 1/2 ' 00
GNP = [ [Guin e = 3 gt il (7.26)
/2 —=1/2 n=0

If the partial energy of the impulse response is defined as

k
ER 2 Y el (7.27)
n=0

then it can be shown that [251]

k k
E(R) =" |a” <Y I8k minl* = Emin(k). (7.28)
n=0 n=0
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for all impulse responses g that have the same magnitude response. Accordingly, the energy of the system having minimum
phase is most concentrated around £k = 0. This means that the energy of the minimum phase system has the least delay
among all systems that have the same magnitude response function. For this reason the minimum phase system is said to
satisfy the minimum energy-delay property.

Example 7.1. Consider a simple 7-spaced two-ray channel where the received pulse is
h(t) = h,(t) + ah,(t —T)

and the transmitted pulse /,(f) is normalized to have unit energy, i.e., 1 ffzo h2(t)dt = 1. The corresponding ISI
coefficients are

Je= /oo h*(O)h(t + LT)dt

1+ |a|? £=0
=3Ja =1
a* lL=-1

and, hence,
F@ =a*z+ (1 +la®) +az”"
= (az7' 4+ D(a*z + 1).

There are two possible choices for the noise whitening filter.

Case 1: Under the assumption that || < 1, suppose that the zero of G*(1/z*) is chosen to be outside the unit circle.
That is,

Gi) =1+az"
G*(1/7") =1+a"z.

In this case, the noise whitening filter 1/G*(1/z*) is noncausal yet stable, and the overall system is characterized
by the minimum phase polynomial

Gi)=1+az".
Note that the zero of G(z) is inside the unit circle, with a pole at the origin.

Case 2: Under the assumption that |a| < 1, suppose that the zero of G*(1/z*) is instead chosen to be inside the unit
circle. That is,

G(z) =1+a*z
G*(1/z*) =1+az L.

In this case, the noise whitening filter 1/G*(1/z*) is a minimum phase filter that is both stable and causal. However,
the overall system G(z) is characterized by the non-minimum phase polynomial

Giz)=1+a"z

Note that the zero of G(z) is outside the unit circle with a pole at infinity.
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The sequence of noise samples at the output of the noise whitening filter is now shown to be uncorrelated. From (7.17),
the z-transform of the sample sequence at the output of the noise whitening filter is

VO = KOFO + 1) g7

=X@@)G([) + v(z)m
=X(2)G() + W(2). (7.29)

From (7.21), the power spectral density of the noise samples {v;} at the input to the noise whitening filter is

) , 1
Sw (&) = N,F () | |f] < TR (7.30)

Therefore, the power spectral density of the noise samples {w;} at the output of noise whitening filter 1/G*(1/z*) is

F(e>T)
G(ej2nfT)G* (ejznfr)
 G(e2T)G* (e27T)
1

—N,, 1< 57 (731)

S () = N,

which is clearly white.

The above development leads to the system shown in Fig. 7.3, and the discrete-time white noise channel model shown in
Fig.7.4. Sometimes the concatenation of the matched filter and noise whitening filter in Fig. 7.3 is called a whitened matched
filter. The overall system function G(z) can be viewed as a finite impulse response (FIR) filter with tap coefficients {g,}. The
discrete-time samples at the output of the noise whitening filter are

L
Ve =) ke + W (7.32)
n=0
;(z‘) rate
/7T
I X B(tT ) h(t) J: N QRN e (e
7 (1)

Fig. 7.3 Block diagram of system that implements a filter matched to A(¢) followed by a discrete-time noise whitening filter

Fig. 7.4 Discrete-time white noise channel model
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The maximum likelihood receiver uses the observation vector v = {v;}-_, to decide in favor of the symbol sequence x that
maximizes the likelihood function p(v|x, g) or the log-likelihood function log{p(v|x, g)}, i.e.,

choose x if log{p(v|x,g)} > log{p(v|x,g)} VX #Xx, (7.33)
where

g=1(g0. &1.--.. g1)" (7.34)

is the overall channel impulse response. Since the noise samples {w;} are white, the likelihood function has the simple
product form

1 - ’
X, g) = ——expy ——— |vx — - 7.35
poixe) = | [ e =3y, | ;gnxk (7.35)
The log-likelihood function log{p(v|x, g)} results in the decision rule
choose xif  w(x) > w(X) VX # X, (7.36)
where
L 2
PO == = ) gk (7.37)
k n=0
An efficient method for finding the sequence x is the Viterbi algorithm as discussed in Sect. 7.4.1.
Finally, for an ISI channel, the received symbol energy-to-noise ratio is defined as
_ ElnPIY o lsil® _ Elullo _ 200E, _ E 7.38)
‘ 2N, 2N, Ny N, '
where
1 [e )
E, =~ / |h(r)|*dt (7.39)
2 J-oo
is the energy in the received pulse Ai(f). The bit energy-to-noise ratio is y, = y,/log, M where M is the modulation

alphabet size.

7.2.1.1 Slowly Fading ISI Channels with Diversity

Consider a fading channel with D-branch receiver diversity. The received pulse on each diversity branch is equal to the
convolution

hy(t) = / gat,Dhy(t—7)dt, d=1,...,D, (7.40)

where g,(¢, T) is the time-variant channel impulse response for branch d. For slow fading, the channel impulse responses
g4(t, 7) can be assumed to change slowly with respect to the duration of the received pulses. When data is transmitted in
short frames, e.g., 10-20 ms long, the channel may remain constant over the duration of the frame. This is sometimes called
a block fading channel or quasi-static fading channel. In any case, at the kth epoch the received pulses can be accurately
approximated as

hax(t) = /Oo gakT, D)ho(t —7)dr, d=1,...,D. (7.41)

—0o0
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Xk

Fig. 7.5 Discrete-time white noise channel model with D-branch diversity

The receiver then implements a matched filter on each diversity branch having the impulse response &}, (—t), and samples
are taken at the output of the matched filter every T seconds. The samples at the output of each matched filter are passed
through a corresponding noise whitening filter 1/Gy,(1/z*). This results in the discrete-time white noise channel model
shown in Fig.7.5. At epoch k, the tap gains associated with diversity branch d are described by the vector

ga(k) = (0a(k), gr.a(k). ... gLa(k))". (7.42)

The {g; 4(k)} are discrete-time complex Gaussian random processes that are generally correlated with the correlation matrix
1 H

Dg,(m) = SElga(k)g, (k + m)] (7.43)

where (x)¥ is the complex conjugate transpose of the vector x. The received sample on branch d at epoch k is
L
Vid = Y 8ia(k)Xe—i + Wia, (7.44)
i=0

where the wy 4 are independent complex zero-mean white Gaussian noise samples with variance %E[|wk,d|2] = N,.
For a fading ISI channel, the average received symbol energy-to-noise ratio for branch d is

gt — EPI o Bllgwal) _ EllsllElfod] _ 202B[End) _ E 7.45)
$ 2N0 N() N() NO ' )
In many cases, the branches are balanced so that y¢ = y,, d = 1,..., D. The averaged received branch bit energy-to-noise

ratio is y;/ log, M.

Note that the matched filter and noise whitening filter impulse responses change slowly with time due to variations in
the underlying channels. This presents a practical difficulty because implementation and adjustment of the matched filter
and noise whitening filter requires knowledge of the underlying channel. It will be shown later that this difficulty can be
overcome by implementing a filter that is matched to the transmitted pulse 4,(), over-sampling the output, and processing
the output samples with a fractionally spaced noise whitening filter. First, however, the effect of over-sampling the matched
filter output is considered.

7.2.1.2 T/2-Spaced Receiver

In practice the matched filter outputs are often over-sampled for the purpose of symbol timing synchronization and to mitigate
the effects of timing errors. One important example that will be considered at various points in this chapter is when the
output of the matched filter is sampled with rate 2 /7. In this case, the overall channel impulse response and sampler can be
represented by a discrete-time transversal filter with coefficients
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2 (2 2 2 2
1 = s SRR BB, (7.46)

where ( - )® indicates rate 2/T sampling. If the samples in (7.46) are obtained with the correct timing phase, i.e., fn(z) =
f(nT/2), then

f= (f—Ls f—L+ls "'»f—lv va flv ~--st—17 fL) (747)

@ 40 @ @) L) @
_(f2L’f2L+2’ ""f—2’ 0o ~»J2 » -0 J2L-2°J2L )’

*
where f, @ = (fizn)) and f,, = (2) . More details on timing phase sensitivity will be provided in Sect. 7.6.3.
The T/2-spaced noise samples at the matched filter output have the discrete-time autocorrelation function

P (n) = Nof 2. (7.48)
The z-transform of £, denoted as F® (z), has 4L roots with the factorization
FO@) = 6?6 (1)) (7.49)

where G@ (z) and G@" (1/z*) are polynomials of degree 2L having conjugate reciprocal roots. The correlated noise samples
can be whitened by using a filter with transfer function 1/G®" (1/z*). Once again, G®" (1/z*) can be chosen as a noncausal
stable filter such that the overall system function G'?(z) has minimum phase with all its roots inside the unit circle. The
output of the noise whitening filter is

v® = Z g W, (7.50)

where {wn )} is a white Gaussian noise sequence with variance —E[|w,12)|2] = N, and the {gﬁf)} are the coefficients of a

discrete-time transversal filter having a transfer function G'? (z). The sequence {x,(f)} is the corresponding 7'/2-spaced input
symbol sequence and is given by

Xpp, n=02,4,...
’(12)= 0/2 W—135 (7.51)

Notice that each transmitted symbol is padded with a zero. In general, if rate K/T sampling is used, then each input symbol is
padded with K — 1 zeros. The overall system and equivalent discrete-time white noise channel models are shown in Figs. 7.6
and 7.7, respectively.

Comparing (7.25) and (7.49) gives

ZIg(Z) Zlg P=£ = (1.52)

;(t) rate
2/T o
S8(#-kT ) t * Vv
P h(r) ‘é‘ e PPN 6@z i
P (1) T/2-spaced

noise-whitening
filter

Fig. 7.6 Block diagram of system that implements a filter matched to /(r) followed by a T/2-spaced sampler and a discrete-time noise whitening
filter
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x®

T2 T/2

)

Nk
Fig. 7.7 Discrete-time white noise channel model with rate-2 /7 sampling
Note that the samples v£’21) and vg,)ﬂ correspond to the nth received baud, where
L
2 ) 2
vén) = Z 82k Xn—k + Wén) (753)
k=0
-1
2  _ (2 (2)
Vo1 = Zg2k+1x"—k + Wapr- (7.54)
i=0

Finally, by comparing (7.32) and (7.54), vé,zl) is not necessarily equal to v, because a different noise whitening filter is used
to whiten the T /2-spaced noise samples than is used to whiten T-spaced noise samples.

7.3 Symbol-by-Symbol Equalizers

As shown in Fig. 7.8, a linear forward equalizer consists of a transversal filter with adjustable tap coefficients. The tap
coefficients of the equalizer are denoted by the column vector

c= (C()a Cly «vvy cN—l)Tv (755)

where N is the number of equalizer taps. Assuming that the equalizer is preceded by a whitened matched filter that outputs
the sequence {v,}, the output of the equalizer is

N—1

By= ) CUnys (7.56)

J=0

where the v, are given by (7.32). The equalizer output x; is quantized to the nearest (in Euclidean distance) information
symbol to form the decision X.

Observe that the overall discrete-time white noise channel and equalizer can be represented by a single filter having the
sampled impulse response

q=1(q0.91, ... qv+-1)". (7.57)

where

N—1
dn = § :ngn—j
J=0

= c'g(n) (7.58)
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Vi

Fig. 7.8 Linear transversal equalizer with adjustable 7-spaced taps

with
g8(n) = (8ns &n—1-8n—2. - - -+ &n—N+1)" (7.59)

and g; = 0,i < 0,i > L. That is, q is the discrete convolution of g and c.

If the equalizer is preceded by a noise whitening filter, then the discrete-time white noise channel has a system function
G(z) with minimum phase. Although the minimum phase system function G(z) satisfies the minimum energy-delay property
as discussed previously, it is not necessarily true that |go|> > |gi|?. Yk > 1, i.e., the first tap g, does not necessarily have the
largest magnitude. Let the component of g of greatest magnitude be denoted by g,,. Also, let the number of equalizer taps
be equal to N = 2d, + 1 where d, is an integer. Perfect equalization means that

g=¢€,=(0,0,....,0 1,0, ...,0 07 (7.60)
N e’
d—1 zeroes

where d — 1 zeroes precede the “1” and d is an integer representing the overall delay. Unfortunately, perfect equalization is
difficult to achieve and does not always yield the best performance.

7.3.1 Linear Equalizer
7.3.1.1 Zero-Forcing (ZF) Solution

Lucky [211, 212] was the first to develop an adaptive (linear) equalizer for digital communication systems in the mid-1960s.
This equalizer was based on the peak distortion criterion, where the equalizer forces the ISI to zero, and it is called a zero-
forcing (ZF) equalizer. With a ZF equalizer, the tap coefficients ¢ are chosen to minimize the peak distortion of the equalized
channel, defined as

N+L~1
Dy=—r 3 lai—ail (7.6
=l 2l
n##d
where ¢ = (o, ..., gn+1—1)" is the desired equalized channel and the delay d is a positive integer optimized to have the

value d = d + d, [71]. Lucky showed that if the initial distortion before equalization is less than unity, i.e.,

L
1
D=— Y lgl <1, (7.62)
|g 1 | —0
n#d]
then D, is minimized by those N tap values which simultaneously cause g; = c}j ford —d, <j < d + d,. However, if the

initial distortion before equalization is greater than unity, the ZF criterion is not guaranteed to minimize the peak distortion.
For the case when § = e, the equalized channel is given by



7.3 Symbol-by-Symbol Equalizers 345

q = (q07'~~7qd1—1705~~'50» 1707~~-,O,Qd1+N,---,‘IN+L—l)T- (763)

In this case the equalizer forces zeroes into the equalized channel and, hence, the name “zero-forcing equalizer.”

Equalizer Tap Solution

For a known channel impulse response, the tap gains of the ZF equalizer can be found by the direct solution of a simple set
of linear equations [71]. To do so, the matrix

is formed along with the vector

q=(Qas-qas - qn+a—1)" - (7.65)
Then the vector of optimal tap gains, ¢op, is

G =7 — cyp = (GT)'g. (7.66)

Example 7.2. Suppose that a system has the channel vector
g = (0.90,-0.15, 0.20,0.10, —0.05)",

where g; = 0,i < 0,7 > 4. The initial distortion before equalization is

=Tl 2 Z |gul = 0.5555

and, therefore, the minimum distortion is achieved with the ZF solution. Suppose that a 3-tap ZF equalizer is to be
designed. Since gy is the component of g having the largest magnitude, d; = 0 and the equalizer delay is chosen as
d = d; + d, = 1. Suppose that the desired response is ¢y = e] so that @ = (0, 1, 0). The matrix

= [g(0),g(1),g(2)]

0.90 —0.15 0.20
= 0.00 0.90 —0.15
0.00 0.00 0.90

is then constructed to obtain the optimal tap solution
Cop = (G71)'q = (0, 1.1111, —0.185185)".
The overall response of the channel and equalizer is

q = (0.0, 1.0, 0, 0.194, 0.148, —0.037, —0.009, 0, ...)".

Finally, the distortion after equalization is

6
Z — il = 0.388.
=
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Adaptive Solution

In practice, the channel impulse response is unknown to the receiver and a known finite length sequence x is used to train
the equalizer. During this training mode, the equalizer taps can be obtained by using the following steepest-descent recursive
algorithm:

C7+1 = cj’.’ + aenx:_j_dl , j=0,...,.N—1, (7.67)
where
€n = Xp—d — -%n
N—1
= Xp—d — Z CiUn—i (7.68)
i=0

is the error sequence, {c]’.’} is the set of equalizer tap gains at epoch n, and « is an adaptation step size that can be optimized to
trade off convergence rate and steady state bit error rate performance. Notice that adaptation rule in (7.67) attempts to force
the cross-correlations enxz_j_ 4 J =0, ..., N—1,tozero. To see that (7.67) leads to the desired solution, (7.32) and (7.68)
are used along with the fact that the symbol sequence {x,} is uncorrelated with the noise sequence {w,} to obtain

N—1 L

1 1 1
EE[an:_j_dl] = EE[xn—der—j—dl] - 5 Z Z CigKE[xn—i—lx:_j_dl]
i=0 (=0

N—1
= ‘7x2 <5dz—j - Z Cigj+d1—i>
=0
= 02(8ay—j — Gj+a) » =0, 1, ..., N—1, (7.69)

where 02 = 1E[|x;|?]. Note that the conditions %E[enx:_j_ d

and d < i < d + d,, which is the zero-forcing solution.
After training the equalizer, a decision-feedback mechanism is typically employed where the sequence of symbol

decisions X is used to update the tap coefficients. This mode is called the data mode and allows the equalizer to track

variations in the channel vector g. In the data mode,

] = 0 are satisfied when g; = land¢; = 0ford —d, <i<d

*

n+1
G n—j—di °

—— 2
f =¢; + weyx

j=0,....N—1, (7.70)

where the error term ¢, in (7.68) becomes
N—1
€n = Jumd = ) Cin=i (7.71)
i=0
and, again, X, is the decision on the equalizer output X, delayed by d samples.

Performance of the ZF Equalizer

If the ZF equalizer has an infinite number of taps, it is possible to select the tap weights so that D, = 0, i.e., ¢ = §. Assuming
that g, = 8, this condition means that

0k) =1=C>RG>H). (7.72)
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Therefore,

C(z) = % (7.73)

and the ideal ZF equalizer has a discrete transfer function that is simply the inverse of overall channel G(z). The cascade of
the noise whitening filter with transfer function

W(z) = 2E;, /G*(1/7%) (7.74)

and the ZF equalizer with transfer function 1/G(z) results in an equivalent equalizer with transfer function'

V2E,  \J2E,

G*(1/z)G(z)  F(2)

C) = (1.75)

Recall from (7.30) that the noise sequence at the input to the equivalent equalizer C’(z) has the discrete autocorrelation
function ¢,, (n) = % f» and power spectral density (psd)

N, ; 1
Sw(f) = ﬁF(eﬂ”fT ). Il = 57 (7.76)

Therefore, the psd of the noise sequence {¢,} at the output of the equalizer is

N,

: 1
FlerfT) ° Ifl < = (7.77)

See(f) = < 57

and the noise samples have variance
1/21
=1 [ ssiow
—1/2T

1/2T N
_7 / Moy, (7.78)
_1)or F(e”277T)

If 02 = 1E[|x|?] and §, = 8,0, then the signal-to-noise ratio at the output of the infinite-tap equalizer is

o2
Yoo = —5. (7.79)
o
¢
Finally, it can be shown that (Problem 7.1)
. 1
F(") = Fx(f) . Il = 5= (7.80)
2T
where Fx (f) is the folded spectrum of F(f) defined by
Al ad n
Fs(Hh2- Y F ( 2). 7.81
RS DY) f+7) (7.81)

IThe scaling of the noise whitening filter gain by +/2Ej, is not necessary in practice and is done here for mathematical convenience.
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and F(f) is the Fourier transform of the pulse f(t) = h(f) * h*(—t). Hence, the signal-to-noise ratio at the equalizer output
can be written in the final form

—1
e8]

1/21 -1
Voo = 02 TNO/_ (% 3 F(f+;)) ar| (7.82)

/21 n=-—00

It is clear from (7.82) that ZF equalizers are unsuitable for channels that have severe ISI, where the folded spectrum Fx (f)
has spectral nulls or very small values. Under these conditions, the equalizer tries to compensate for the nulls in the folded
spectrum by introducing infinite gain at their frequencies. Unfortunately, this results in severe noise enhancement at the
output of the equalizer at these same frequencies. Land mobile radio channels often exhibit spectral nulls and, therefore,
linear ZF equalizers are not used for land mobile radio applications.

On the other hand, when the overall channel f(¢) satisfies the conditions for ISI-free transmissions as discussed in Sect. 4.2,
then the ISI coefficients satisfy the property f, = fod,0 and the matched filter output is

P = 2Ep xi + i (7.83)

The noise samples {#;} in the case are white due to the fact that the overall pulse f(r) satisfies the first Nyquist criterion.
From Sect. 4.2, an equivalent condition in the frequency domain is that the folded spectrum F'x (f) is flat, i.e.,

Fs() =2 Y F(r+ 1) =fo =25, (7.84)

n=—0o0

Under this condition the signal-to-noise ratio in (7.82) reaches its maximum value Yo, = 20sz;1, /N,.

7.3.1.2 MMSE Solution

Soon after Lucky introduced the ZF equalizer, Proakis and Miller [271], Lucky et. al. [213], and Gersho [138] developed the
linear MMSE equalizer based on the least mean square (LMS) criterion. The MMSE equalizer is more robust and superior
to the ZF equalizer in its performance and convergence properties [271, 272, 275]. By defining the vector

Vo = (Vs Up—ts -o vy Un—N+1), (7.85)

where vy, is the output of the whitened matched filter in (7.32), the output of the equalizer in (7.56) can be expressed in the
form

X =cv, =ve (7.86)
An MMSE equalizer adjusts the tap coefficients to minimize the mean square error (MSE)

Al ~ 12
= -E n—d — Xn
Ellee g [

1
= EE [V, vie* — 2Re{V! e x,—q} + |xu—al’] - (7.87)

where, again, d is the equalizer delay assumed here to be chosen as d = d| + d,.
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Equalizer Tap Solution

If the channel impulse response is known, the optimum equalizer taps can be obtained by direct solution. Define

A

1
M, = EE[VnVZ]

1
v EE[Vgxn—d] (7.88)

[I>

where M, is an N x N Hermitian matrix (meaning that M,, = MY) and v, is a length N column vector. Using these definitions
and assuming that 1E[|x,—4|?] = 02, the mean-square-error is

J = c'M,c* — 2Re{v’c*} + o2 (7.89)

The tap vector ¢ that minimizes the mean square error can be obtained by equating the gradient V.J to zero. It can be shown
that (Problem 7.15)

aJ aJ
VoJ=|—..... — | =2c'M, —2v]. (7.90)
360 36‘1\1_1
Setting V.J = 0 gives the MMSE tap solution
Cop = M) 7IvE, (7.91)

By substituting (7.91) into (7.89), using the identity (A~')" = (A”)~! and the fact that M, is Hermitian, the MMSE can be
expressed as

— o7 * H 2
Jmin = €My, — 2Re{veel} + o,

=02 —v'M;v,. (7.92)

.

To proceed further, the ith component of the vector v is

L
1
S Elavy] = 02 gibait=0%¢5 . i=0.....N—1, (7.93)
£=0
so that
vi=02(gh, g5\, ....80,0,...,0)". (7.94)
Also,
1 02fii+ NS, |li—jl<L
SEevi ] = 7, 7.95
2 (e vk_f] % 0 , otherwise ( )
where the property
L—n
= 8 8ktn, n=0.... L (7.96)
k=0
have been used. Hence, the N x N matrix M, has the form
fo+ No/o} fi i3 R A
i fo+NoJo} h o fv=2
M, = o> 5 [ foNofol oo fues . (7.97)

T 5 Kot No/og
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Example 7.3. Consider a system having the same channel vector g as in Example 7.2. Suppose that a 3-tap MMSE
equalizer is to be designed. In this case, g5, = 0and N = 2d, + 1 = 3, so thatd = d; + d» = 1. Hence,

v = o2(g}. g5, 0) = 02(—0.15, 0.90, 0.00)
and

g —0.1500 0.1550
M, =02 | —0.1500 B  —0.1500
0.1550 —0.1500 B

where f = 0.8850 + N, /o2. The inverse of M, is

— _ adj(M,)

U det(M,)

where det(M,)) = (62)*(B(B% — 0.069025) + 0.006975) and

B2 —0.0225 0.158 —0.02325 0.0225 — 0.1558
adj(M,) = (62)? | 0.158 —0.02325 B2 —0.024025 0.158 —0.02325
0.0225 — 0.1558 0.158 — 0.02325 B2 —0.0225

Hence,

23 —0.158% + 0.1358 — 0.1755
0.9082 — 0.02258 — 0.018135
0.158258 — 0.0243

(Ox

“r = Get(M,)

With this tap solution,

J 5 0.83256% — 0.013689
n=0,(1-
e B(B% — 0.069025) + 0.006975

and as N, — 0, Jynin = 0.00108942402.

Adaptive Solution

In practice, the channel impulse response is unknown beforehand so that the MMSE solution cannot be obtained by the
matrix inversion in (7.91). However, the equalizer taps can be obtained by using the stochastic gradient algorithm

=+ aevy j=0,....N—1, (7.98)

J n—j>
where €, is given by (7.68). To show that (7.98) leads to the desired solution, from (7.90)
VoJ = Ele/ v,V — xp— gVl
= E[(¢"V, — xp—g)V]]

= El¢,v] = 0. (7.99)
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It follows that
n—j

1
Elevi ] =0 j=0... N-1. (7.100)

and, therefore, the adaptive solution tends to force the cross-correlations €, v, i j=0, ..., N—1to zero.

Performance of the MMSE Equalizer

The performance of an MMSE equalizer having an infinite number of taps provides some useful insight. In this case

€= (C_oos ++vs CO» -++» Coo)

Vi = (Vntoor +++» Uny +++y Upn—oo)-

Since the decision delay d with an infinite-tap equalizer is irrelevant, d = 0 can be chosen so that

1 2o [ <ij<
v = 085 TL=/=0 (7.101)
2 J 0 ., otherwise
The equation for the optimal tap gain vector ¢’M, = v¥ can be written in the form
o0
D7 cilfimi + Noby) = g7 —00 < j < 0. (7.102)
I=—00
Taking the z-transform of both sides of (7.102) gives
C(2) ( G()G*(1/2) + N(,) = G*(1/7) (7.103)
and, therefore,
G* 1 *
CQ) = a4z (7.104)
G(x)G*(1/z*) + N,
The equivalent MMSE equalizer C’'(z) = C(z) W(z) that includes the noise whitening filter in (7.74) is
2E), 2F
C'(z) = I e (7.105)

GQG*(1/7) +N, FQ@) +N,

Notice that C’(z) has the same form as the ZF equalizer in (7.75), except for the noise term N, in the denominator. Clearly,
the ZF and MMSE criterion lead to the same solution in the absence of noise.

The most meaningful measure of performance is the bit error probability. However, for many equalization techniques, the
bit error probability is a highly nonlinear function of the equalizer coefficients. Another measure of performance is the mean
square error. The MMSE of an infinite-length MMSE equalizer is given by [272]

) /]/ZT Ng
Join = 02T Yo g (7.106)
—1/2T FE(f) + N,

where 0X2 = LE[|x;|%]. Note that 0 < Jpn < UXZ, and that J,;; = 0 when there is no noise and Jp,;, = ox2 when the folded
spectrum F'x (f) exhibits a spectral null. Furthermore, the relationship between the signal-to-noise ratio at the equalizer output

and Jo;, 1S

2
Yoo = 02 - 1 (7.107)
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When there is no IS, Fx (f) = fo = 2E,, giving

Joo = 0N (7.108)
min — 2Eh, + NO’ .

and the equalizer reaches its maximum output signal-to-noise ratio yo, = 202Ej, /N,. Finally, another useful measure for
the effectiveness of linear equalization techniques is the signal-to-interference-plus-noise ratio (SINR) defined as

207|qal?
N+L—1 N—1 .
20)?2'=3 |Qj|2 +No Zj:O |Cj|2

J#*

SINR =

(7.109)

Although the MMSE equalizer accounts for the effects of noise, satisfactory performance still cannot be achieved for
channels with severe ISI or spectral nulls, because of the noise enhancement at the output of the equalizer [118, 272].
Another problem with a linear equalizer is the adaptation of the equalizer during data mode. This problem is especially acute
when bandwidth efficient trellis-coded modulation schemes are used with non-iterative receivers. In this case, equalizer-
based decisions are unreliable and inferior to those in uncoded systems due to the reduced separation between the points in
the enlarged signal constellation. This problem can be partially alleviated by using periodic training, where the equalizer taps
are allowed to converge in periodic training modes [99].

7.3.2 Decision Feedback Equalizer

Linear equalizers have the drawback of enhancing channel noise while trying to eliminate ISI, a characteristic known as
noise enhancement. As a result, satisfactory performance is unattainable with linear equalizers for channels having severe
amplitude distortion. In 1967, Austin [23] proposed the nonlinear DFE to mitigate noise enhancement. The DFE consists
of two sections; a feedforward section and a feedback section as illustrated in Fig. 7.9. The DFE is nonlinear because the
feedback path includes a decision device. The feedforward section has an identical structure to the linear forward equalizer
discussed earlier, and its purpose is to reduce the precursor ISI. It has been shown that the optimum tap setting of a zero-
forcing DFE having infinite length feedforward and feedback filters is such that the feedforward filter is identical to a noise
whitening filter with system function 1/G*(1/z*), such that the system function G(z) has minimum phase [275]. Such a filter
suppresses the postcursor of the channel response and whitens the noise. The combination of the matched filter, sampler, and
feedforward filter yields an equivalent discrete-time white noise channel having the system function G(z).

To eliminate the postcursor ISI, decisions made on the equalizer outputs are propagated through the feedback filter. The
optimal coefficients of the feedback filter are the sampled impulse response of the tail of the overall system impulse response
that includes the forward part of the DFE. This feedback mechanism introduces error propagation which can degrade the
performance of the DFE and complicate its performance analysis.

The output of the DFE shown in Fig. 7.9 is

N—1 M
Xy = Z Cifp—i — ZFiJACn—ia (7.110)
i=0 i=1

where {c,} and {F,} are the tap coefficients of the feedforward and feedback filters, respectively, {y,} is the sample sequence
at the output of the matched filter, and {%,} is the sequence of previously detected data symbols. Recall that the overall
channel and feedforward portion of the equalizer can be represented by the sampled impulse response q in (7.57). Hence,
the DFE output can be written as

N+L—1 M

X, = Z qiXn—i — ZFi)%n—i + ﬁna (7.111)
i=0 i=1

where

N—1
in =) Ciftni (7.112)
o
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T k- T T
B, 5 F

Fig. 7.9 Decision feedback equalizer

is the nth noise sample at the output of the feedforward filter. By adding and subtracting terms, the output of the DFE can be
rewritten as

M M
X0 = XG0 + D qiCni — Xumi) + (i — F)Rumi
i=1 i=1

N+L—1
+ ) i+ i (7.113)
i=M+1
Choosing
Fi=q=cg@), i=12,....M (7.114)

so that the second summation is zero, and if correct decisions are made so that the first summation is zero, then

N+L—-1

By =0+ Y Qi+ Tin- (7.115)
i=M+1

The summation in (7.115) represents the residual ISI that remains from the feedforward filter, which is zero if M = N+L—1.

Equalizer Tap Solution

The coefficients {c;} and {F;} can be adjusted simultaneously to minimize the mean square error, resulting in an equalizer
that is sometimes called an MMSE-DFE. Define

c=(co. c1s ooy =)' (7.116)
f'n = (;m ;‘n_], ey ;n_N)T (7117)
X = (Rn—t1, Xn—2s -0 Xman)” (7.118)

F = (Fi, F2, ..., Fy)", (7.119)
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and define the error at the nth epoch, €,, as

=c'r, —F'X, — x,. (7.120)
Now define
7 A T T\T
t = vec(c',F") (7.121)
$u 2 veo(¥, —&7)" (7.122)

so that ¢, = ETin — X,. Then the MSE can be expressed as

1
J = —E[le,|?
SEllenl’]

1 .- - _
= EE [958 — 2Re{§/t*x,} + |x.|*] . (7.123)

Notice that (7.123) and (7.87) have the exact same form. Therefore, the MMSE tap solution can be obtained by defining

- 1
M, & EE[iniZ] (7.124)
SH 1 SH

Y. = §E[ynxn]. (7.125)

Using the same argument that leads to (7.91) gives the MMSE-DFE tap solution

to, = (M)7'§7. (7.126)

Adaptive Solution

The feedforward taps of the DFE can be adjusted by using

P

/ =c}‘+aenv;‘+j, j=0,...,N—1, (7.127)

while the feedback coefficients can be adjusted according to
n+1 _ rn ~k P
F™ =F toaex,_, j=1,....M, (7.128)

where « is the step size. To see that this leads to the desired solution, the same argument that leads to (7.99) can be used.
Then observe that V.J = E[e,y”] = 0 implies that

1 .

EE[env:ﬂ] =0,j=0,...,N—1 (7.129)

1 o )

EE[enxn_j] =0, j=1,..., M, (7.130)
where the second expectation is zero under the assumption that the DFE makes correct decision so that X;_; = x,_;.

Performance of the DFE

The performance of a DFE is complicated by the fact that incorrect decisions in the feedback portion of the equalizer result in
error propagation. Since the feedback section of the DFE eliminates the postcursor residual ISI at the output of the forward
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filter, it is apparent that the optimum setting for an infinite-length forward filter is identical to a stable, non-causal, noise
whitening filter that results in an overall system response G(z) having minimum phase [275]. The MMSE for the infinite
length DFE is [287]

) 1)o7 N,
Jmin = T In{ —— | df; , 7.131
T P f—l/ZT ! (Fz(f) + Nu) / ( )

where 0 < Jiin < 02. The corresponding signal-to-noise ratio at the output of the DFE is

2
, O _Jmin

Once again, when there is no ISI Fx (f) = fy = 2E), and
2
N()
Jin = 7l (7.133)
2E, + N,

and the equalizer reaches its maximum output signal-to-noise ratio yoo = 202Ej, /N,.

7.4 Sequence Estimation

7.4.1 Maximum Likelihood Sequence Estimation

The Viterbi algorithm was originally devised by Viterbi for maximum likelihood decoding of convolutional codes [334, 335].
Forney recognized the analogy between an ISI channel and a convolutional encoder, and applied the Viterbi algorithm for the
detection of digital signals corrupted by ISI and additive white Gaussian noise [131]. Because of the efficiency of the Viterbi
algorithm, the implementation of optimum maximum likelihood sequence estimation (MLSE) for detecting ISI-corrupted
signals is feasible.

Recall that the overall discrete-time white noise channel with D-branch diversity reception can be modeled by collection
of D transversal filters that are T-spaced and have (L + 1)-taps, as shown in Fig. 7.5. From Fig. 7.5, it can be seen that the
channel has a finite number of states defined by contents of the L memory elements in the tapped delay lines. If the size of
the signal constellation is 2", there are total of Ny = (2")" states. The state at epoch k is

Ok = (Xk—1,Xk—2,*** » Xk—L)- (7.134)

Example 7.4. Suppose that the binary sequence X, x, € {—1, 41}, is transmitted over a three-tap static ISI channel
with channel vector g = (1, 1, 1). In this case there are four states (Ng = 4) and the system can be described the state
diagram shown in Fig. 7.10. Note that there are two branches entering and leaving each state since binary modulation
is used. In general there are M = 2" such branches for an M-ary modulation alphabet. The dashed lines correspond to
an input symbol equal to “—1 while the solid lines correspond to an input symbol equal to “1.”

The system state diagram can be used to construct the trellis diagram shown in Fig. 7.11, where the initial zero state
is assumed to be Q(()O) = (—1,—1). Again, state transitions with a solid line correspond to an input symbol +1, while
those with a dashed line correspond to an input symbol —1.

Suppose that the data sequence x = (—1, 1, 1, —1, 1, 1, —1, —1,...) is transmitted over the channel g. Then the
state sequence follows the shaded path in Fig. 7.11. The noiseless received sequence is v = (vo, vy, V2, V3, U4,...),
where

(continued)
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Example 7.4 (continued)
Fig. 7.10 State diagram for
binary signaling on a three-tap
ISI channel

--------- input “-1”
input “1”

--------- input “-1”
input “1”
epoch

state
-1-1
1-1
-1 1
11

Fig. 7.11 Trellis diagram for binary signaling on a three-tap ISI channel

Uy = 80Xn + &1Xn—1 + &2Xn—2

= Xy + Xp—1 + Xp—2.

Hence, for the data sequence x = (-1, 1, 1, —1, 1, 1, —1, —1,...) the noiseless received sequence is v =
(-3, —-1,1,1, 1, 1, 1, —1,...).

Assume that k symbols have been transmitted over the channel. Let V,, = (v,1, V2, ..., U,p) denote the vector of
signals received on all D diversity branches at epoch n. After receiving the sequence {Vn}’;l=l , the ML receiver decides in
favor of the sequence {x, }];:1 that maximizes the likelihood function

pP(Vis oo Vil Xps oo, x1) (7.135)

or, equivalently, the log-likelihood function

log{p(Vk, ey V1|xk, ey xl)}. (7136)
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Since the noise samples {w, 4} in (7.32) are mutually independent with respect to the indices n and d, and V,, depends only
on the L most recent transmitted symbols, the log-likelihood function (7.136) can be rewritten as

lOg{p(Vk, ., V] |xk, ce ,xl)}
= log{p(Vk|xk, . ,xk_L)} + IOg{P(Vk_l, A |xk_1 S ,X1)}, (7.137)

where x;—;, = 0 for k — L < 0. If the second term on the right side of (7.137) has been calculated previously at epoch k — 1
and stored in memory, then only the first term, called the branch metric, has to be computed for the incoming signal vector
V. at epoch k.

The model in Fig. 7.5 gives the conditional pdf

2
D L
1 1
Vilxe, o0 X)) = ——— — — i dXk—i 7.138
P(Vielxi Xk—L) A AT ; Vkd ;g Xk (7.138)
so that log p(Vi|xk, ... ,xx—r) yields the branch metric
D L 2
==Y |vka— Y gia¥ii| - (7.139)
d=1 i=0

using the same argument that was used to arrive at (7.37). Note that the receiver requires knowledge of the set of channel
vectors {g;,d = 1,..., D} to compute the branch metric. As discussed later, this can be obtained by using a separate channel
estimator.

Based on the recursion in (7.137) and the branch metric in (7.139), the well-known Viterbi algorithm [335] can be used
to implement the ML receiver by searching through the Ng-state trellis for the most likely transmitted sequence x = {x;}
given the sequence of observation vectors V = {V,}. This search process is called maximum likelihood sequence estimation
(MLSE). At epoch k, the Viterbi algorithm stores Ng surviving sequences known as survivors )v{(le)) (paths through the
trellis) along with their associated path metrics T' (o k)) (distances from the received sequence) that terminate at state Q(l) | =
0,...,Ns — 1. The path metric is defined as

F(Q(’))—Zufj), i=0.... Ns—1, (7.140)

where {,un) } is the sequence of branch metrics along the surviving path x(g(’)) MLSE as implemented by the Viterbi
algorithm is now outlined followed by an example.

The Viterbi algorithm is initialized at time index k = 0, by setting all path metrics to zero, i.e., I" (QO)) i=1,...,Ng—1.

1. After the vector V4 has been received, compute the set of path metrics F(Qk — o Jrl) = F(Q(l)) + M(Q(Z) — Qk+1)

for all possible paths through the trellis that terminate in each state Q,@H =0, ..., Ngs— 1, where [L(Qk o +1) is
the branch metric defined below. For a modulation alphabet of size M, there will be M such paths that terminate in each

state gk;rl
2. Find TI'(go; +1) = maxF (Q(') o; +1) j=0, , Ng 