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Preface

Why This Course?

This course was designed to supplant the traditional “Calculus for Life Sciences” course generally

required for freshman and sophomore life science students.

The standard course is limited to calculus in one variable and possibly some simple linear

differential equations. It stresses the technical development of the subject.

There is an emerging consensus that a more relevant course would feature

✔ A significant use of real examples from, and applications to, biology. These examples should

come from physiology, neuroscience, ecology, evolution, psychology, and the social sciences.

✔ Much greater emphasis on concepts, and less on technical tricks.

✔ Learning the rudiments of a programming language sufficient to graph functions, plot data,

and simulate differential equations.

This view has been taken by all the leading voices in US biomedical research. For example,

the Howard Hughes Medical Institute (HHMI) and the Association of American Medical Col-

leges, in their 2009 publication “Scientific Foundations for Future Physicians,” identified key

“Undergraduate Competencies,” which include the ability to

– “Quantify and interpret changes in dynamical systems.”

– “Explain homeostasis in terms of positive or negative feedback.”

– “Explain how feedback mechanisms lead to damped oscillations in glucose levels.”

– “Use the principles of feedback control to explain how specific homeostatic and reproductive

systems maintain the internal environment and identify

· how perturbations in these systems may result in disease and

· how homeostasis may be changed by disease.”

Consider those statements. The phrase “dynamical systems”

is the key to these competencies. Positive and negative feed-

back are important types of dynamical systems. The HHMI and

AAMC want future physicians to be able to understand the

dynamics of feedback-controlled systems. This is the explicit

theme of this course. We will begin on the first day of class

with an example of a negative-feedback dynamical system, a

predator–prey ecosystem. The central concept of the course is that dynamical systems are mod-

eled by differential equations.

v
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The differential equations that model positive and negative feedback are typically nonlinear,

and so they cannot be approached by the paper-and-pencil techniques of calculus. They must

be computer-simulated to understand their behaviors.

The same point of view is expressed by the National Research Council of the National Academy

of Sciences, in their “Bio 2010” report. They called for a course in which

– “Mathematical/computational methods should be taught, but on a need-to

know basis.”

– “The emphasis should not be on the methods per se, but rather on how

the methods elucidate the biology” and which uses

– “ordinary differential equations (made tractable and understandable via Eu-

ler’s method without any formal course in differential equations required).”

This is exactly what we do in this text. The emphasis is always: how does the math help us

understand the science? Note especially the Academy’s stress on differential equations “made

tractable and understandable via Euler’s method without any formal course in differential equa-

tions required.” That is what this text does; Euler’s method is exactly the technique we will use

throughout.

The same emphasis on real examples of nonlinear systems was the theme

of the 2011 report by the US National Science Foundation (NSF), togeth-

er with the American Association for the Advancement of Science (AAAS)

called “Vision and Change in Undergraduate Biology Education.” It said,

“Studying biological dynamics requires a greater emphasis on modeling, com-

putation, and data analysis tools.” They gave examples:

– “the dynamic modeling of neural networks helps biologists

understand emergent properties in neural systems.”

– “Systems approaches to examining population dynamics in ecology also require sophisticated

modeling.”

– “Advances in understanding the nonlinear dynamics of immune system development have

aided scientists’ understanding of the transmission of communicable diseases.”

We will see each of these examples: neural dynamics, ecological population dynamics, and

immune system dynamics will each be featured as examples in this text.

The UCLA Life Sciences Experience

A course based on these principles has been offered to freshmen Life Sciences students at UCLA

since 2013. There is no prerequisite of any calculus course.

Our approach was to incorporate ALL of the above suggestions into our course and into

this text. We “study nonlinear dynamical systems, featuring positive or negative feedback.” We

“explain how feedback mechanisms lead to phenomena like switch-like oscillations.” We study

examples like “dynamic modeling of neural networks and dynamics in ecology.” Overall, our

approach is to “use ordinary differential equations, made tractable and understandable via Euler’s

method without any formal course in differential equations.” (The quoted phrases are directly

from the above publications.)

In a two-quarter sequence, we were able to cover the elements of all seven chapters. We

certainly did not cover every example in this text in two quarters, but we did get to the end of

Chapter 7, and all students learned stability of equilibria via the eigenvalue method, as well as

getting introductions to calculus and linear algebra.

http://dx.doi.org/10.1007/978-3-319-59731-7_7
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In teaching this course, we found it to be important to put aside our preconceptions about

which topics are easy, which are difficult, and the order in which they should be taught. We have

seen students who need to be reminded of the point-slope form of a line learn serious dynamics

and linear algebra. While some algebraic competence remains necessary, students do not need

to be fluent in complex symbolic manipulations to do well in a course based on this book.

Student reaction to the course has been very positive. In the fall of 2016, we registered 840

freshmen and sophomores in the course.

The course has been studied by UCLA education experts, led by Dr. Erin Sanders, who

should be contacted for many interesting results. One of them is that student interest in math

was substantially improved by this course.
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Student interest in math before and after the course. Source: UCLA Office of Instructional

Development, course evaluations from spring 2015, fall 2015, and winter 2016.

Does this course meet medical school requirements? Medical schools, as might be expected

from the publications above, have endorsed this new development. For example, the old require-

ment at Harvard Medical School was called “Mathematics,” and it called for at least “one year

of calculus.” Several years ago, the requirement was changed to “Computational Skills/Mathe-

matics.” It should be read in its entirety, but it says that a “full year of calculus focusing on the

derivation of biologically low-relevance theorems is less important,” and calls for a course that is

“more relevant to biology and medicine than the formerly required, traditional, one-year calculus

course.”

Software

In this course, we will use a software package called SageMath to help us plot graphs and

simulate dynamical systems models. SageMath is similar in some ways to the commercial package

Mathematica, but it is free and open source (http://www.sagemath.org for software download

or https://cocalc.com for interactive use).

The syntax of SageMath is very close to the popular scientific computing environment called

Python, so students are learning a syntax they will use for the rest of their scientific lives. Here

is a sample of SageMath in action: the following syntax produced the figure on the next page.

http://www.sagemath.org
https://cocalc.com


viii Preface

X
1 2 3 4 5 6 7-1

0.5

1

-0.5

-1

The power of a programming language is that if we want more tangent lines, a single change

in the parameter from “step=1” to “step=0.2” carries this out.
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Course Roadmaps

There is a variety of courses that can be taught out of this text. At UCLA, we teach a two-

quarter sequence, called Life Sciences 30AB. (Our Life Sciences division includes Ecology and

Evolutionary Biology, Microbiology, Immunology and Molecular Genetics, Molecular Cell and

Developmental Biology, Integrative Biology and Physiology, and Psychology.) The course is

intended to replace the traditional “Calculus for Life Sciences” and is offered to freshmen and

sophomores in Life Sciences, as an alternative to Calculus in fulfillment of two-thirds of the

one-year “Quantitative Reasoning” required of all LS majors.

Note that there is no calculus prerequisite; the necessary concepts of calculus are developed

de novo in Chapter 2. In our view, students truly need to understand the notion of the derivative

as sensitivity, and as a linear approximation to a function at a point. We feel that the extensive

technical development of elementary calculus: intermediate value theorem, Rolle’s theorem,

L’Hôpital’s rule, infinite sequences and series, proofs about limits and the derivation of the

derivatives of elementary functions, are less necessary than the fundamental concepts, which

are critical. A similar point holds for integration, where the analytic calculation of antiderivative

functions has little application at higher levels, while the idea of “adding up the little products”

is truly important.

In the first quarter, we cover all of Chapters 1 and 2, then the basic concepts and selected

examples from Chapters 3 and 4 (equilibrium points and oscillations). Our examples are drawn

roughly 50/50 from ecology and evolutionary biology, on the one hand, and physiology on the

other, so that courses can also be fashioned that focus on the one subject or the other.

The second quarter covers Chapters 5–7. We cover only selected examples in these chapters,

and our goal is to complete the understanding of eigenvalues and eigenvectors (Chapter 6),

and use them to determine the stability of equilibrium points in multidimensional differential

equations (Chapter 7).

We have also used the text as the basis for a one-quarter upper-division course in modeling

physiological systems for physiology majors, many of whom are pre-med. In this course, we

http://dx.doi.org/10.1007/978-3-319-59731-7_2
http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_2
http://dx.doi.org/10.1007/978-3-319-59731-7_3
http://dx.doi.org/10.1007/978-3-319-59731-7_4
http://dx.doi.org/10.1007/978-3-319-59731-7_5
http://dx.doi.org/10.1007/978-3-319-59731-7_7
http://dx.doi.org/10.1007/978-3-319-59731-7_6
http://dx.doi.org/10.1007/978-3-319-59731-7_7
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went quickly through Chapter 1, skipped Chapter 2, and focused on the theory and physiological

examples in Chapters 3, 4, and 5. We did not get to linear algebra (Chapter 6) or its applications

(Chapter 7) in that one-quarter course. A similar one-quarter course could be taught focusing

on the theory and the ecosystem/evolutionary biology examples in Chapters 3, 4, and 5.

Finally, the text can be used as a guide to a first-year graduate course in modeling for students

in the biosciences, neuroscience, etc.

The Math Behind This Text

The text follows what we consider to be a twentieth-century math approach to the subject. The

technical development of calculus in the eighteenth and nineteenth centuries saw differential

equations as pieces of language, which were then to be operated on by paper-and-pencil tech-

niques to produce other pieces of language (the “solutions”). This had worked well for Newton in

the gravitational 2-body problem (1687), and was the paradigm for applied math in the centuries

that followed. The Newtonian program came to a dramatic dead end with the 3-body problem,

an obvious and more valid extension of the 2-body problem. The 3-body problem had proved

analytically intractable for centuries, and in the late nineteenth century, results by Haretu and

Poincaré showed that the series expansions that were the standard technique actually diverged.

Then the discovery by Bruns that no quantitative methods other than series expansions could

resolve the n-body problem meant the end of the line for the Newtonian program of writing a

differential equation and solving it (Abraham and Marsden, 1978).

It was Poincaré’s genius to see that while this represented “calculus : fail,” it was also the

springboard for an entirely new approach that focused on topology and geometry and less on

analytical methods. His groundbreaking paper was called “On the curves defined by a differential

equation,” linking two very different areas: differential equations (language) and curves, which

are geometrical objects. The distinction is critical: solution curves almost always exist (Picard–

Lindelöf theorem), but their equations almost never do.

Poincaré went on to redefine the purpose of studying differential equations. With his new

invention, topology, he was able to define qualitative dynamics, which is the study of the forms

of motion that can occur in solutions to a differential equation, and the concept of bifurcation,

which is a change in the topological type of the solution.

The subsequent development of mathematics in the twentieth century saw many previously

intuitive concepts get rigorous definitions as mathematical objects. The most important devel-

opment for this text was the replacement of the vague and unhelpful concept of a differential

equation by the rigorous geometric concept of a vector field, a function from a multidimensional

state space to its tangent space, assigning “change vectors” to every point in state space. (In its

full generality, the state space is a multidimensional differentiable manifold M, and the vector

field is a smooth function from M into its tangent bundle T (M). Here, with a few exceptions,

M is Euclidean n-space Rn.) It is this concept that drives our entire presentation: a model for

a system generates a differential equation, which is used to set up a vector field on the system

state space. The resulting behavior of the system is to evolve at every point by moving tangent

to the vector field at that point.

We believe that this twentieth-century mathematical concept is not just more rigorous, but

in fact makes for superior pedagogy.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_2
http://dx.doi.org/10.1007/978-3-319-59731-7_3
http://dx.doi.org/10.1007/978-3-319-59731-7_4
http://dx.doi.org/10.1007/978-3-319-59731-7_5
http://dx.doi.org/10.1007/978-3-319-59731-7_6
http://dx.doi.org/10.1007/978-3-319-59731-7_7
http://dx.doi.org/10.1007/978-3-319-59731-7_3
http://dx.doi.org/10.1007/978-3-319-59731-7_4
http://dx.doi.org/10.1007/978-3-319-59731-7_5
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Chapter 1

Modeling, Change, and Simulation

1.1 Feedback

hares

lynx

population (×104)

year
1900 1905 1910 1915 1920

10

20

30

40

50

60

70

Figure 1.1: Oscillations in the populations of lynx and snowshoe hares over time, from pelts of

animals captured by Hudson Bay Company trappers from 1900 to 1920.

In the 1920s, ecologists began to study the populations of two Arctic species, lynx (a preda-

tor) and snowshoe hares (their prey) (Figure 1.1). Notice that the populations oscillate. These

oscillations are not random fluctuations; they have a roughly constant period of about 10 years.

Note also that the rise and fall of the predator population systematically lags a little behind that

of the prey population.

We want to understand what could be causing these oscillations. The first thing we have to

realize is that finding the explanation requires us to take a careful look at the dynamic relation-

ships between the two species. We have to make a model of their interactions. Even a very rough

verbal model of the interaction reveals an interesting fact: the prey population positively affects

the number of predators, while the predator population negatively affects the number of prey.

predatorprey

This makes the lynx–hare system our first example of a system with

negative feedback.

If we try to predict the system’s behavior based on this verbal model, we

discover a problem. Suppose we start with a certain number of predators

c© Springer International Publishing AG 2017
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2 Modeling, Change, and Simulation

and prey. What will happen? Well, the predators will eat some of the prey, and so the predator

numbers will go up, and the prey numbers will go down, but then what? With high numbers

of predators and low numbers of prey, the system cannot continue at the same pace; indeed,

predator numbers will decline. But then what?

The problem here is that there is feedback in this system: the prey population affects the

predator population and the predator population affects the prey population. It is difficult to pre-

dict the behavior of a feedback system based on this kind of verbal model. The diagram above has

to be turned into a real mathematical model if we want to predict and understand the behavior.

The purpose of this book is to learn the art of making mathematical models of natural

phenomena and learning how to predict behavior from them.

Interestingly, when we make a simple mathematical model of the predator–prey dynamics, it

makes some nonobvious predictions.

This first model will leave out weather fluctuations, disease outbreaks, plant abundance, the

effects of crowding on behavior, and innumerable other things. It will include only birth, death,

and predation. To underline the fact that this is a highly simplified model, we will call the

predators sharks and the prey tuna. You will learn more about this model in Section 1.4, but for

now, we can look at the behavior that this highly simplified model predicts, shown in Figure 1.2.

This kind of graph, which shows how quantities change over time, is called a time series.

time

populations of sharks and tuna

sharks
tuna

0 10 20 30 40 50
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40
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Figure 1.2: Behavior predicted by a model of interacting predator (shark) and prey (tuna)

populations.

As you can see, the model predicts oscillations similar to the ones observed. What is the

cause of these oscillations? The key to understanding this system is time delays. Sharks eat

tuna, so the shark population grows and the tuna population diminishes until we get to a state

where there are many sharks and very few tuna. The shark growth was caused by the previously

high tuna levels, but now the tuna levels are low. The delayed shark growth has created a high-

shark/low-tuna state, which means that the shark population will then decline, because due to

the low tuna levels, very few sharks will be born and/or survive to maturity. This shark crash then

takes the pressure off the tuna population, which then starts growing. The cycle then repeats.

Exercise 1.1.1 Copy two full cycles of the predator–prey oscillation time series in Figure 1.2

and label the point at which each of the processes described in the above paragraph is occurring.

This introductory example features oscillations of two species, hares and lynx, but it has

been noted that these data are actually not populations of animals, but rather populations of

pelts, as collected by hunters. Therefore, some ecologists have argued that a better model
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for the populations would include two predators on the hares, lynx and hunters, each with their

dynamics. This may well be true (Weinstein 1977). A model is a hypothesis about how to explain

the data, and the merits of alternative models often must be considered.

Feedback Loops

The shark–tuna system is an example of a system with feedback. The tuna population has a

positive effect on the shark population, while the shark population has a negative effect on the

tuna population (Figure 1.3).

sharktuna

Figure 1.3: Shark and tuna feedback dynamics.

More generally, in a feedback loop, the current state of a system affects the future state of

that system by changing the inflows or outflows of the system’s components. There are two

types of feedback loops: positive and negative.

Positive Feedback

In positive feedback, a positive value of a variable leads to an increase in that variable, and a

negative value of a variable leads to a decrease (more negative) in that variable.

For example, a person who has money will be able to invest it, bringing in more money. Or

think of practicing a sport or musical instrument. Practice makes you better at the activity,

which makes you enjoy it more, which makes you practice more. Positive feedback can also be

bad, which might be casually referred to as “negative.” Think of a gambler who is losing badly,

and so gambles more, ending up even further behind. In an arms race, one country can purchase

more weapons, which causes its adversary to purchase more weapons, which causes the first

country to purchase even more weapons. This is still positive feedback, just in a bad direction.

Positive feedback reinforces change, so it can be thought of as “reinforcing feedback.”

There are many important examples of positive feedback loops:

Population growth Animals have young, which increases the population. The larger the popula-

tion is, the more babies are born, which makes the population even larger. As long as resources

are available, the population will keep growing.

CO2 emissions Carbon dioxide emissions trap heat, which raises global temperatures. At higher

temperatures, soil microbes have faster metabolic rates, which means that they break down soil

organic matter faster, releasing even more CO2.

Methane release Methane is a greenhouse gas 25 times more potent than CO2. Large amounts

of methane are trapped in Arctic permafrost and at the bottom of the ocean. Rising temperatures

cause this methane to be released, contributing to further temperature increases.

Market bubbles and crashes In a market bubble, investors buy into a stock, which causes the

price to rise, which encourages more investors to buy, on the grounds that the stock is “going

up.” In a crash, investors sell the stock, which lowers the price, which convinces others to sell

because the stock is “going down.”
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Negative Feedback

The other type of feedback is called negative feedback. In negative feedback, a positive value

of a variable leads to a decrease in that variable, and a negative value of a variable leads to an

increase in that variable. For example, a person whose bank account is low might work overtime

to bring it back up and then cut back on overtime when there is sufficient money in the account.

This really is an example of negative feedback. We can often define a new variable from a

given one by choosing a reference value for the variable and then defining the new variable as

the given variable minus the reference value.

For instance, we can define B0 as your desired bank balance; let’s say B0 = $1000. Then

if your current balance in dollars is D, we define a new variable B describing the discrepancy

between D and B0,

B = D − B0

so a value of D that is less than B0 will produce a negative value of B. This negative value will

then increase (become less negative) under negative feedback.

The classic example of negative feedback is a thermostat that controls an air conditioner

(Figure 1.4). When the temperature goes up, the air conditioner comes on, which causes the

temperature to go down. To phrase this more carefully, we let T0 be the set point on the

thermostat. Then if the current air temperature is C degrees, we define the temperature T as

T = C − T0
so that values of C above T0 produce positive values of T , and values of C below T0 produce

negative values of T . The thermostat can also control a heater, in which case a decrease in

temperature causes the heater to turn on, which raises the air temperature. In both cases, the

thermostat opposes the change.
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Figure 1.4: Feedback loop of thermostat and heater.

Insulin/Glucose Another example of a negative feedback loop involves insulin and glucose in

the bloodstream. Intake of glucose (say, as a result of a meal) causes the pancreas to secrete

more insulin, which then lowers the level of glucose by helping the glucose to be metabolized in

the body. This feedback loop, which has time delays like those in the shark–tuna system, causes

oscillations like those shown in Figure 1.5, even when a person is hooked up to a constant

intravenous glucose supply with no meals.

Hormone regulation Virtually all of the hormones of the body are under negative feedback

control by the brain and pituitary gland. For example, the gonadal hormones estradiol and

progesterone (in females) and testosterone (in males) are under negative feedback regulation

by the brain/pituitary system. This results in oscillatory behavior in many hormonal systems

(Figure 1.6).

Gene regulation Many genes inhibit their own transcription, resulting in oscillating gene expres-

sion. For example, one protein that is essential in the early development of the embryo is called
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Figure 1.5: Feedback dynamics. Glucose and insulin concentrations in the blood of a person

receiving a constant IV glucose infusion (Sturis et al. 1991a, b). Redrawn from “Aspects of

oscillatory insulin secretion,” by J. Sturis, K.S. Polonsky, J.D. Blackman, C. Knudsen, E. Mosek-

ilde, and E. Van Cauter, In Complexity, Chaos, and Biological Evolution, by E. Mosekilde and

L. Mosekilde, eds. (1991), volume 270, pp. 75–93. New York: Plenum Press. Copyright 1991

by Plenum Press. With permission of Springer.
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Figure 1.6: Left: the hypothalamus, pituitary, and gonads form a negative feedback loop, regulat-

ing the secretion of the sex hormones estradiol, progesterone, and testosterone. Right: oscillatory

behavior in estradiol in a 24-year-old normal female, from Licinio et al. (1998). Redrawn with

permission from “Synchronicity of frequently sampled, 24-h concentrations of circulating leptin,

luteinizing hormone, and estradiol in healthy women,” by J. Licinio, A.B. Negrão, C. Mantzoros,

V. Kaklamani, M.-L. Wong, P.B. Bongiorno, A. Mulla, L. Cearnal, J.D. Veldhuis, and J.S. Flier

(1998), Proceedings of the National Academy of Sciences 95(5):2541–2546. Copyright 1998

by National Academy of Sciences, U.S.A.

Hes1. Hes1 protein is produced by transcription from messenger RNA (mRNA). But then the

protein inhibits its own transcription, producing a negative feedback loop. This leads to oscilla-

tions in protein levels (Figure 1.7).

Epidemiology Epidemiology is the study of diseases in populations. Many epidemiologists study

infectious diseases. Contact between susceptible and infected people increases the transmission

of the disease and causes the number of susceptible people to decrease. This decrease means

that there are fewer susceptible people to infect, so transmission declines (see, for example, the

epidemiology model on page 40).
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Figure 1.7: Left: many proteins inhibit their own genetic transcription, creating a negative feed-

back loop. Right: oscillations in mRNA levels of Hes1 (Hirata et al. 2002). Redrawn from

“Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop,” by

H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, and R. Kageyama

(2002), Science 298(5594):840–843. Reprinted with permission from AAAS.

During the Ebola epidemic in 2014, the U.S. Centers for Disease Control and Prevention

(CDC) used a mathematical model of susceptible and infected populations to predict the course

of the epidemic: how bad would it be? They also used the model to plan possible strategies for

intervention: how much would we have to reduce the transmission rates to control the epidemic

and even make the number of infected decline to zero?

Their results are shown in Figure 1.8. The left panel shows the predicted course of infection

without intervention, while the right panel shows the effect of an intervention strategy that

reduced the risk of transmission by getting 25% of patients into Ebola treatment units and 20%

of the susceptible population into low-risk settings at first, and then gradually increasing that to

80% over six months. Note that this strategy is predicted to eliminate the epidemic.
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Figure 1.8: Predictions from the CDC Ebola transmission model. Solid lines show predicted

reported cases, while the dashed lines show the predicted number of actual cases after correcting

for underreporting (Meltzer et al. 2014). Note the numbers on the vertical axes.

Exercise 1.1.2 Come up with another example of a positive feedback loop and another example

of a negative feedback loop.
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Counterintuitive Behaviors of Feedback Systems

Most real systems consist of multiple feedback loops that interact. For example, a predator–prey

system contains both a negative feedback loop, in which prey cause the predator population to

increase and predators cause the prey population to decrease, and a positive feedback loop, in

which a species causes its own population to increase through births.

For this and other reasons, systems with feedback often behave in counterintuitive ways. For

example, suppose we want to reduce the number of sharks in an ecosystem. (This might actually

be done in fisheries management.) We therefore remove sharks from the system. What happens?

The system responds by rebounding (Figure 1.9). Lowering the number of sharks takes the

pressure off the tuna population, which grows to a higher level than before. The higher tuna

population then gives rise to an even higher shark population. Thus, removing sharks dramatically

actually results in a higher peak shark population!
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Figure 1.9: Complex systems defeat naive interventions.

In fact, the response of the feedback system to an intervention can depend strongly on the

phase of the cycle in which the intervention is delivered, and can also depend on the magnitude

of the intervention. There are interventions that decrease the shark population, and others that

increase it.

In the simple model being simulated here, these high-amplitude oscillations after intervention

continue indefinitely. This feature is a drawback of this model: it “remembers” perturbation

forever. In Chapter 4, we will consider a better model that exhibits more robust oscillations

(see Stable oscillations in an ecological model on page 200). The more advanced model also

predicts the same counterintuitive response: the initial response of the system to a predator-

removal intervention can be a rebound effect whereby the number of predators is increased, but

transiently instead of permanently.

This basic principle, that feedback systems respond to intervention in counterintuitive ways,

is seen throughout the natural world, from ecosystems to the human body. Testosterone is

a hormone that enhances muscle building and is the drug that athletes most often abuse for

performance enhancement. But testosterone, like all hormones, is under negative feedback con-

trol: sensors in the brain and pituitary gland register the amount of circulating testosterone and

respond with negative feedback: they lower their output of testosterone-stimulating factors in

response to higher levels of testosterone (see The hypothalamic/pituitary/gonadal hormonal

axis on page 181). Consequently, when men use performance-enhancing drugs like testosterone

and its analogues, the main symptom that is seen is testicular atrophy, caused by the shutdown

of the native system due to the negative feedback.

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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Even simple systems with feedback can defeat naive intuition and frustrate naive intervention.

We need to make models to keep track of behavior in such systems.

These examples should convince you that we need to learn how to model biological systems

and predict their behavior. This is what we will now do. First, we need one crucial technical

concept, the idea of a function, which you will learn about in the next section.

Further Exercise 1.1

1. At the start of a math class, some students do a little better than others because

of better prior preparation, more time spent studying, etc. Students who do well feel

confident and come to enjoy the class, leading them to spend more time on it. On the

other hand, a student who does relatively poorly may decide that they’re just not a math

person and therefore put less effort into the class, thinking that it’s not going to pay

off. This, of course, leads to even lower grades, confirming the student’s opinion.

a) What kind of feedback loop is this?

b) You are friends with a student who is having difficulty and losing confidence. How

could you take advantage of the feedback loop to help your friend?

1.2 Functions

Think back to the graphs you saw when studying the shark–tuna predation model. At each

point in time, the shark population has some value, and so does the tuna population. Look at

Figure 1.10, which shows the tuna population.

time

populations 

tuna

t1 t2

T

T

1

2

Figure 1.10: Tuna population in the shark–tuna dynamical system. Such a function of time is

called a “time series.”

Since there is exactly one population value at each time value, the tuna population is a

function of time.

A function is a relationship between a set of inputs and a set of outputs, in which each input

is assigned exactly one output—never none, never more than one.
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One everyday example of a function is a menu that gives the prices of dishes at a coffee shop.

Every drink has exactly one price—ordering would be rather confusing otherwise (Figure 1.11).

A report card that gives a student’s grades in different subjects is another example of a function.

Mocha
Cappuccino
Macchiato
Latte
Americano
Espresso

Price($)

3.45
3.45
2.45
3.15
3.75
2.95

HOT BEVERAGES

Figure 1.11: Like a coffee shop menu, a function associates one value (a drink) with another (its

price).

Exercise 1.2.1 Come up with two more everyday examples of functions. Briefly explain what

makes each example a function.

Functions can be thought of as machines, like the ones shown in Figure 1.12 and Figure 1.13.

You put an input value into the function, and it returns a unique output value. The machine’s

behavior is absolutely predictable: the same input always produces the same output. This deter-

minism is the defining feature of functions.

input

output

function

Figure 1.12: A function depicted as a machine.

input

output

function f:
switch color

input

output

function f:
switch color

Figure 1.13: A function, f , that takes either a blue star or a red star as input and switches the

color.

Exercise 1.2.2 Modify the menu in Figure 1.11 so it no longer depicts a function.
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Functions can also be defined by tables, with a little help. For example, one dataset recorded

the amount of margarine consumption per person in the U.S. at various time points and also

recorded the number of lawyers in New Jersey at those same time points. They provided a table

of 10 such pairs of values (Table 1.1).

That table is defined for only 10 values. We can turn it into a function defined on the whole

interval from the lowest margarine consumption to the highest using a technique like linear inter-

polation, which consists in simply drawing straight lines between your data points. The resulting

function is shown in Figure 1.14.

Margarine consumption per

person in the U.S. (lbs)

Lawyers in New Jersey

3.7 40,060

4.0 38,104

4.2 39,384

4.5 39,019

4.6 38,466

5.2 37,172

5.3 36,860

6.5 36,785

7.0 55,687

8.2 54,581

Table 1.1: 10 pairs consisting of margarine consumption per person in the US at various time

points, together with the number of lawyers in New Jersey at the same time points. We have

rearranged the 10 pairs in the order of increasing values of margarine consumption. Source

http://tylervigen.com/view_correlation?id=29177

4 5 6 7 8

40 , 000

45 , 000

50 , 000

55 , 000

Margarine consumption 

per person in the US (lbs)

Lawyers in

New Jersey

Figure 1.14: Linear interpolation between data points turns the table into a function defined for

all numbers between 3.7 and 8.2, in which “Lawyers in New Jersey” is a function of “Margarine

consumption per person in the US”.

It’s important to note that functions are not causal; there is no reason to think there is a

causal relationship between the input and output of a function. The lawyers–margarine graph is

an example of a function without a causal relationship.

http://tylervigen.com/view_correlation?id=29177
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In addition, despite what the machine metaphor implies, a function does not change one value

into another any more than a menu changes foods into dollar values. A function is an assignment

of one value to another.

Notation for Functions

Functions can be defined by tables, as in the coffee shop menu and lawyers examples, but most

of the time they will be defined by formulas. For example, the function X2 can be thought of as

a machine that takes an input X and returns the value X2.

The output that corresponds to a particular input to a function is written as

FunctionName(input) = output

A common name for functions is f , so we might write f (X) = Y . For example, the left half

of Figure 1.15 gives two input–output pairs that define a function f . We can write this function

as f (3) = 5 and f (4) = 6. (The symbolic expression f (3) is pronounced “f of 3.”)

 3

5

 4

6

 3

2

 4

3

input

output

function f

input

output

function f

input

output

function g

input

output

function g

Figure 1.15: Two examples of very simple functions. The left half defines the function f , and

right half defines the function g. Both functions are defined on the domain consisting of the two

numbers 3 and 4.

Exercise 1.2.3 Use the two input–output pairs on the right side of Figure 1.15 to write the

function g.

Writing functions using input–output pairs or tables of values works only if the number of

values we’re working with is relatively small. The compilation and use of such lists quickly becomes

impractical as the number of values increases.Worse,manyof the functionswe frequently encounter

have an infinity of possible values. Clearly, we need a better way of representing functions.

Sometimes, we can summarize the relationship represented by a function as a formula. For

example, if f (1) = 2, f (2) = 4, f (3) = 6 and so on, we can write down the function by giving

its name, the input variable, and then the expression that lets us find the value of the output

given the input. In this case, the function is written as f (X) = 2X. Another simple example is

h(X) = X +1. The function is named h, the input variable is X, and the expression relating the

output variable to the input variable is X + 1.1

Exercise 1.2.4 Write the functions f and g in Figure 1.15 in function notation using formulas.

1It’s common to refer to input variables as independent variables and output variables as dependent variables.
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It’s important to realize that not every equation generates a function. Think about X2 = Y 2.

For the one value X = 2, we have two Y values: Y = 2 and Y = −2. So this equation does not

define a function.

Interestingly, many (in fact, most) functions cannot be written as equations. Look back at

Figure 1.10 on page 8. It’s clearly the graph of a function, and a rather simple-looking one

at that—maybe something like a sine or cosine function. Actually, though, there is no known

formula for the graph in Figure 1.10.

Let that sink in for a bit. We have a simple-looking graph produced by a model that’s not

very complicated using a method you will learn about soon. And no equation or formula is known

that gives us this graph!

This is not an exception. Actually, it’s more like the rule. For the overwhelming majority of

biological models, there is no known formula for the time series. However, an understanding of

functions will prove very useful in studying these models.

Inputs and Outputs

The set of input values that a function can accept is called its domain of the function. In

many cases, when a function is given by a formula, its domain consists of all real numbers.

Real numbers are every kind of number you can think of as representing a quantity, including

whole numbers (0, 1, 2, . . . ), fractions (73 , etc.), irrational numbers (
√
2, π, etc.), as well as

the negative values of all of these (−
√
2, etc.). Altogether, these numbers make up the real

numbers, abbreviated R and pronounced “r.” For convenience, we will define R+ (pronounced “r

plus”) to mean the nonnegative real numbers: 0 and everything larger.

The domain of a function is something we decide. While issues like division by zero restrict

our choices in some ways, we are generally free to define the domain however we want. For

example, the domain of f (x) = 1
X

cannot include 0, because division by zero is undefined,

but otherwise, the domain of f (x) = 1
X

could consist of all real numbers greater than zero,

or all integers (positive and negative) except zero, or even just the interval [3, 7]. In modeling

real-world systems, it will be important to pick domains that make physical sense.

Exercise 1.2.5 Give three possible domains for a function defined by the formula g(X) = 2
X−5 .

There is also a term for a set of values in which a function’s output lies. This is called the

codomain2 of the function. For example, the codomain of g(X) = X3 consists of all real numbers.

A function links each element in its domain to some element in its codomain. Each domain

element is linked to exactly one codomain element. This is what makes functions unambiguous.

In many situations, it is useful to specify the domain and codomain of a function even if we

don’t specify the actual rule or formula by which domain elements are associated with codomain

elements. In these cases, we often describe the function using the notation

function name : domain→ codomain

2In high school, you probably encountered the term “range” rather than “codomain.” However, “codomain”
is the accepted term in more advanced work. Technically, the range consists of the outputs a function actually
gives, so finding the range of something like f (X) = 2 sinX − 5 takes a little calculation. The codomain, on
the other hand, is just a set that includes all the values the function could return, so the codomain of f in this
example can be said to be all real numbers.
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For example, the coffee shop menu in Figure 1.11 on page 9 links drinks to prices. Therefore,

we might describe the menu as a function by writing

menu : {drinks} → {prices}
(Curly braces are standard mathematical notation for sets, so here, for example, we are using

{drinks} to denote the set of drinks served by the coffee shop—the domain of this function.)

The notation f : X → Y is pronounced “f takes X to Y .”

It’s important to distinguish between the entire domain of a function and an element of the

domain. In the menu example, the domain consists of all the drinks on the menu. A single drink

is an element of the domain.

Exercise 1.2.6 Describe the everyday function examples you came up with in Exercise 1.2.1

on page 9 in “function name : domain→ codomain” notation.

Putting Functions Together

An interesting example of functions comes from molecular biology. DNA encodes information

about the makeup of proteins in a sequence of four base pairs, A, C, G, and T. When DNA

is transcribed into RNA, T is replaced by another base, abbreviated U. Thus, transcription is a

function in which A, C, and G are associated with themselves, but T is associated with U. We

can write

transcription : {A,C,G, T} → {A,C,G, U}

Things get more interesting when we consider not single bases but base triplets called codons.

In transcription, each DNA codon is transcribed into an RNA codon. Then, each RNA codon

causes a particular amino acid to be added to a protein. (There are also codons that start

and stop the protein-building process, but we can ignore those for now.) This process is called

translation and is also a function, because a particular RNA codon unambiguously specifies an

amino acid. Thus, we have two functions:

transcription : DNA codons→ RNA codons and

translation : RNA codons→ amino acids

What about the overall process of gene expression, in which DNA codes for a protein? We

can write down another function:

gene expression : DNA codons→ amino acids

This function is made up of the previous two functions linked end to end. The output (or

codomain) of transcription becomes the input (or domain) of translation.

This kind of linking is called composition of functions and is the most natural way to combine

functions. For example, if f (X) = 2X + 1 and g(Y ) =
√
Y , then g(f (X)) =

√
2X + 1 and

f (g(Y )) = 2
√
Y + 1. Composition of functions will become important later in this course.
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Exercise 1.2.7 Suppose life is discovered on Mars. The Martians’ genetic code is remarkably

similar to ours, but the RNA codon AUC is translated to serine 60% of the time and histidine

40% of the time. Is Martian gene expression a function?

Exercise 1.2.8 As we saw earlier, a coffee shop menu is a function. Suppose that when you

buy a drink, you have to pay 10% sales tax in addition to the price of the drink, so the total

cost (price and tax) of a drink is 1.1 times the price on the menu.

a) Refer to Figure 1.11 on page 9. What is the total cost of a mocha? A latte?

b) Describe the process of finding the total cost in terms of function composition.

Further Exercises 1.2

1. Consider the restaurant menu below:

Item Price

Pizza slice $2.50

Hamburger $4.00

Cheeseburger $4.50

Fries $2.00

Kale foam on a bed of arugula $37.50

a) Is price a function of item? Justify your answer.

b) Is item a function of price? Justify your answer.

c) Create a similar menu in which price is not a function of item and explain why it is

not a function.

2. In high school, you may have learned the vertical line test for checking whether a graph

is the graph of a function. (A graph is the graph of a function if a vertical line drawn

through the graph intersects it exactly once, no matter where the line is drawn.) Explain

why the vertical line test works.

3. Some ten-year-olds are experimenting with secret codes. Aisha’s favorite code involves

replacing each letter with the one two letters later, so A is replaced with C, B with D,

Y with A, and Z with B. Meanwhile, Tim prefers to replace letters with their position

in the alphabet: 1 for A, 2 for B, and so on. Suppose Aisha encodes the word “spam”

with her code and Tim encodes the result with his code.

a) What will the outcome be?

b) Describe this scenario in terms of functions and their composition.

c) Suppose Aisha’s code is defined only for letters, not numbers. Could the kids apply

Tim’s code and then Aisha’s code to a message? Explain your answer in terms of

domains and codomains.
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d) What does this example tell you about function composition?

4. What’s wrong with the “function” f (X) = log(log(sinX))? Your answer should involve

domains and codomains. (Hint: Try plotting f (X) by hand.)

5. A DNA codon codes for exactly one amino acid, but there are amino acids that are

coded by several different codons. Is there a function that takes amino acids to DNA

codons? Justify your answer.

6. In high school, you may have learned about function composition as just another way

of putting functions together, similar to addition and multiplication. How is composing

functions different from adding or multiplying them? (Hint: Think about when we can

do one but not the other.)

7. In SageMath, let a = 5. Apply some SageMath function to a and view the result.

Then, view a. Did its value change? Do this for two more values of a, using a different

function each time and viewing a after each computation. What does this tell you about

functions?

8. SageMath has a useful command, simplify, that algebraically simplifies symbolic expres-

sions. What happens if you enter simplify( (x^2)^(1/2) ) into SageMath? Now type in

assume(x >= 0) and try again. What happens? What accounts for the difference? (Hint:

Think about domains.) When you finish this problem, execute the command forget()

to stop forcing SageMath to assume that x is nonnegative.

1.3 States and State Spaces

The State of a System

One of the key ideas we will use throughout this course is that of the state of a system. State is

just a term for the condition of the system at a given time. (Think “state of the union.”) For exam-

ple, the state of your bank account might be the amount of money in it, the state of a traffic sig-

nal may be its current light color, and the state of a population of animals or cells might be its size.

We can discuss the state of a system only after we’ve decided what variables to focus on.

For example, a color-blind person might describe the state of a traffic signal by the position of

the light rather than its color, while an electrical engineer might completely ignore which light

is on and focus instead on the internal workings of the traffic signal. Similarly, in describing an

animal population, we might be interested in its sex ratio, the numbers of animals in different

age classes, the distribution of individuals in space, or all of the above. The variables we use to

describe the state of a system are called state variables.

Our choice of state variables is determined by both the structure of the system (are animals

distributed more or less evenly over the landscape, or are there distinct subpopulations?) and

how we plan to use our model (Figure 1.16). Deciding what variables to focus on is often

one of the hardest parts of building a model.

When making mathematical models, we have to describe the state of the system using a

number or a list of numbers. In this course, state variables must be quantitative. A state variable

is therefore a quantity that describes some property of the system, such as its velocity, shark

population, or blood glucose concentration.
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Temperature = 63.1°C

Weight = 128 g

Volume = 470 ml(T, W, V, C)

Figure 1.16: Four possible state variables defining the state of a cup of coffee.

State variables have units. For example, velocity might be measured in “meters per second”

(ms ) or “miles per hour” (mih ), a shark population is measured as number of individuals, and blood

glucose concentration is commonly measured in “milligrams per deciliter” (mgdL ).

Exercise 1.3.1 Give possible units for measuring the following variables. Feel free to look up

information as necessary.

a) Population density of prairie dogs

b) Concentration of epinephrine in the bloodstream

c) Amount of energy in a battery

The state of the system at any given time is given by the values of all of its state variables,

in the appropriate units. For example, we might say that the state of a person right now is that

their core body temperature is 101 ◦F, if body temperature is all we are interested in. A fuller

description might be that the person’s temperature is 101 ◦F, their systolic blood pressure is

110 mmHg, and their heart rate is 85 beats per minute.

As a system changes over time, the values of the state variables will change. Since a state

variable can have only one value at a given time, the values of state variables are really functions

of time. For each point t in time, we have a value of X. When we refer to X (e.g., “sharks”), we

really mean X at a time t. So the state variable X is really a function of time. However, while

X is really X(t), we will usually just write it as “X” and leave the “(t)” implicit.

Since a state variable is a function of time, we can plot this function as a graph, with time on

the horizontal axis and the state value on the vertical axis. This is an extremely important kind

of plot called a time series. Tuna population in the shark–tuna dynamical system in Figure 1.10

on page 8 is an example of a time series.

State Space

When we work with dynamical models, our primary interest is not in learning what state a system

happens to be in at a particular time. Rather, we want to understand the system’s behavior—its

changes from state to state—and why it exhibits one pattern of behavior rather than another.

For example, we want to know why hare and lynx populations in Canada undergo multiyear

cycles rather than remaining at roughly the same value each year or changing in a much more

unpredictable way. In order to do this, we have to consider all possible system states and then

ask why the system moves among them in particular ways.

The set of all conceivable state values of a system is called its state space—literally, the

space in which the system’s state value can move. For example, the state space for the color of

a traffic light is {red, yellow, green}. Similarly, the state space for the behavior of a cat might
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be {eating, sleeping, playing, walking on your keyboard}. But in this course, every state will be

a number, such as temperature, number of animals, or glucose concentration.

The assumption of continuity

The state spaces we deal with in dynamics typically are spaces whose state variables are con-

tinuous. In other words, while 3457 is a valid value of X, so are 3457.1, 3457.12437, and even

a number whose decimal expansion goes on forever without repeating, such as
√
2. We make

the assumption of continuity even when our state variable is the size of a rabbit population. We

don’t worry too much about what it means to have 3457.1 rabbits. The same thing happens in

chemistry—the number of molecules of a compound in a one-liter solution must be an integer,

but it’s such a large integer that we approximate it with a real number. Usually, this works well

and allows us to use powerful mathematical tools. However, when you get down to the case that

there are only three rabbits in your population (as sometimes happens in conservation biology

and other fields), the assumption of continuity goes badly wrong, and you need to move to a

different kind of modeling. Similarly, in chemistry, when your beaker has only three sodium ions,

you also need to adopt a different kind of modeling.

One-Variable Systems

If a system has only one variable, its state is a real number (which in a given case might be

restricted to being nonnegative). Thus, we can use the fundamental idea that the real numbers

exactly correspond to points on a line to say that the state space of such a system is a line.

0
(voltage)

0
(population size)

0 1
(fraction of a wolf population

that has black fur)

+∞

+∞

∞

Figure 1.17: Three examples of one-dimensional state spaces

A system’s state is represented as a point in state space, which we will sometimes call the

state point. For a variable that can be either positive or negative, such as voltage, the state space

is just the real number line. For a population size, the line goes from zero to infinity, excluding

negative values. (Of course, we draw only the portion of interest.) For a proportion, like the

fraction of a wolf population that has black fur, the line goes from zero to one (Figure 1.17).

Exercise 1.3.2 What is the state space for the number of ants in an ant colony?
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Exercise 1.3.3 What is the state space for temperature measured in degrees Celsius? (Be

careful!)

State Spaces with Multiple Variables

So far, we’ve seen a state space with one variable. That state space is a line, which can be

thought of as a one-dimensional space. It may be a bit counterintuitive to think of a line as a

“space,” but that’s just because we are used to thinking of the 3-dimensional space that we live

in. A line really is a 1-dimensional space—a point can move on a line. But now we will go on to

use more than one state variable, and the state spaces will start to look more like spaces. Here,

the idea of state space really comes into its own.

Think of the shark–tuna system. We need two numbers to describe its state at a particular

time, namely, the size of the shark population, S, and the size of the tuna population, T . Then

the state of the shark–tuna system is given by a pair of numbers (S, T ), which we write in

parentheses with a comma between them. Note that order counts: (3, 6) is not the same as

(6, 3). A system with 3 sharks and 6 tuna is different from a system with 6 sharks and 3 tuna.

Doing Math with States

We can work with states mathematically. Starting with the one-variable case, we can define two

simple operations on states:

• If X1 and X2 are two values of the state variable X, then we can add them to produce

another value of X:

X3 = X1 +X2

We can do this because we know how to add two real numbers. We can always add apples

to apples and sharks to sharks. For example, 3 volts+ 5 volts = 8 volts.

• If X1 is any state value, we can always multiply that state value by a number. Such a number

is called a scalar . We can do this because we know how to multiply two real numbers. If

X1 is a state value, then so are 2.5X1, πX1, etc. So, for example, 3(5 volts) = 15 volts.

Of course, we should perform such operations only when they make physical sense. Multiplying

a population size by a negative scalar would give you a negative population. If we are talking

about raw population numbers, then this is physical nonsense.

The rules for operating with pairs of values are similar. We just take into account the fact

that we can add apples to apples and distances to distances, but not apples to distances.

• Pairs can be added. In the shark–tuna system, if (S1, T1) and (S2, T2) are states, then

since we know how to add S’s and how to add T ’s, we can define

(S1, T1) + (S2, T2) = (S1 + S2, T1 + T2)

If the state space is (apples, oranges), then we add apples to apples and oranges to

oranges.

• Pairs can be multiplied by a scalar. If a is a scalar and (S1, T1) is a state, then since we

know how to multiply S and T by scalars, we can define

a(S1, T1) = (aS1, aT1)
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For example,

3.5(2 apples, 3 oranges) = (7 apples, 10.5 oranges)

Exercise 1.3.4 Compute the following:

a) 5(10, 2) b) (4, 7) + (3, 9) c) 2(3, 2)− 3(5, 4)

The Geometry of States

If one number corresponds to a point on the one-dimensional line, what does a pair of numbers

correspond to? For sharks and tuna, we can draw one line for the S variable and another line for

the T variable. We can then make those lines perpendicular to each other and think of them as

the axes for a two-dimensional space, called “shark–tuna space,” as shown in Figure 1.18.

shark-tuna space

insulin

glucose

insulin-glucose space

infecteds

susceptibles

susceptible-infected space

(S 1 , T1 )

S1

T1

Figure 1.18: Examples of two-dimensional state spaces

A system’s state space is often named by its variables. For example, the state space whose

variables are insulin and glucose concentrations is called “insulin–glucose space” and that of a

model of susceptible and infected populations can be referred to as “susceptible–infected space.”

A point in insulin–glucose space represents a particular concentration of insulin combined with a

particular concentration of glucose; a point in susceptible–infected space represents a particular

susceptible population size and a particular infected population size.

Exercise 1.3.5 Suppose we are modeling a black-bear population consisting of juveniles and

adults. Draw the appropriate axes and a point representing the state of the black-bear population

if there are

a) 200 juveniles and 100 adults

b) 30 juveniles and 50 adults

c) 0 juveniles and 25 adults

Exercise 1.3.6 Pick a two-variable system of any kind and draw its state space and a point

representing a system state. Describe the state this point represents.
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The concept of “shark–tuna space” is critical in this course. Don’t confuse this with the

physical space that the sharks and tuna swim around in; this is different. This is an abstract

space whose coordinates are not physical positions but “number of sharks” and “number of tuna.”3

Generalizing, if X and Y are state variables, then the set of pairs (X, Y ) is the set of all states

of the two-variable system. Since typically, X and Y will both be real numbers drawn from R, we

call the space of all pairs of real numbers R × R (pronounced “R cross R”) or R2 (pronounced

“R two” or “R squared”).

We will now introduce some terminology. A fancy name for a pair of numbers is a 2-vector.

The numbers making up the vector are called its components. The space R2 is called a two-

dimensional vector space.4

This definition of “vector” may be slightly new to you. You may remember from high school

that we can view vectors as arrows. Here, vectors are points in a vector space. The two views of

“vector” can be reconciled by letting the vector (3, 7) represent (S = 3, T = 7) or as the arrow

from (0, 0) to (3, 7), as in Figure 1.19. We will use both representations of vectors heavily.

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

S (sharks)

T (tuna)

S (sharks)

T (tuna)

(3, 7) (3, 7)

Figure 1.19: Left: vector as point. Right: vector as arrow from (0, 0). Both representations carry

the same information.

Scalar multiplication of vectors has an important geometric interpretation, shown in Figure 1.20

on the next page. Multiplying a vector by a scalar stretches the vector if the absolute value of

the scalar is greater than 1, and it compresses it if the absolute value of the scalar is less than

1. If the scalar is positive, then the result is a vector in the same direction. What about a neg-

ative number? Numerically, multiplying a vector by a negative number changes the signs of all

of the vector’s components. Geometrically, this flips the direction of the vector, in addition to

stretching it by the absolute value of the number.

Similarly, the addition of two vectors can be represented geometrically, as shown in Figure 1.21.

If we add the vector (8, 4) to the vector (1, 3), the algebra of vectors tells us that (8, 4)+(1, 3) =

(9, 7).

The figure makes it clear that the vector (9, 7), if we think of it as an arrow, is what we

would get if we could put the base of the arrow representing (8, 4) right on the tip of the arrow

3The idea of such an abstract space was developed by the mathematician Bernhard Riemann (1826–1866),
who spoke of “multiply extended magnitudes” and said that “physical space is only a particular case of a triply
extended magnitude” (Riemann 1873).

4Technically, only state spaces in which all variables can be both positive and negative are vector spaces, but
this does not affect anything we do in this book.
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A

0.5A

2A

0.5A

A

Figure 1.20: The result of multiplying the vector A (1, 1) by 2, 0.5, −1, and −0.5.

representing (1, 3), and thereby “adding” (8, 4) to (1, 3). Notice that the reverse procedure,

adding the arrow (1, 3) to the arrow (8, 4), gives the same answer.

2 4 6 8 10

2

4

6

X

Y (9, 7)

(8, 4)

(1, 3)

0

Figure 1.21: Vector addition. The red vector is the sum of the blue and green vectors.

Exercise 1.3.7 Draw two vectors and the same vectors multiplied by −1.

Exercise 1.3.8 Draw two vectors and show their sum.

State Spaces with More than Two Dimensions

You already know that a single number gives the position of a point on a line, and an ordered pair

specifies the position of a point in a plane. Similarly, if a model tracks the concentrations of three

different chemical compounds, its state space is a three-dimensional space whose axes represent

the concentrations of the compounds in question. An ordered triple specifies the position of a

point in three-dimensional space. Generalizing this idea, a vector with n components gives the

position of a point in n-dimensional space.

Since the shark–tuna model has two variables, we need only two axes to specify its state.

For more variables, we need more axes—one axis per variable. The number of axes needed to

represent a system’s state is called the dimension of its state space. In this text, we will pay

particular attention to two- and three-dimensional models, because we can easily visualize their
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state spaces, but most models used in research are much larger. Therefore, we need to learn to

work with vectors with any number of components.

Operations on n-vectors are straightforward generalizations of those on 2-vectors. Vector

addition is done componentwise: if a = (a1, . . . , an) and b = (b1, . . . , bn), then

a+ b = (a1 + b1, . . . , an + bn)

(When we want to talk about a whole vector without listing its components, we write its name

in boldface.) Vectors can be added only if they have the same number of components.

Multiplying a vector by a scalar is also straightforward. Suppose a bear population has 100

juveniles and 200 adults. We triple our sampling area and find that the ratio of adults to juveniles

is the same in the larger area as in the smaller one. To obtain the numbers of juveniles and adults

in the larger area, we just multiply the numbers from the smaller area by 3. In vector notation,

3(100, 200) = (300, 600), and more generally,

c(a1, . . . , an) = (ca1, . . . , can)

Unfortunately, we can’t show you a picture of 4-dimensional or 50-dimensional space. We

lowly humans cannot visualize four dimensions, let alone 11 or 27. But this is no problem! We

can’t draw or visualize 27-dimensional space, but if we need 27 variables to describe the state

of a system, we just form the 27-vector (x1, x2, x3, . . . , x27) and operate on it with the rules of

vector addition and scalar multiplication as defined earlier.

Exercise 1.3.9 Carry out the following operations, or say why they’re impossible.

a) (1, 2, 3) + (−2, 0, 5)
c) (2, 4) + (1, 3, 5)

b) −3(4, 6,−9)

d) 5
(

(0, 1) + (7, 3)
)

Previously, we used the symbol R to refer to the real number line, and the symbol R2 to refer

to two-dimensional space. Extending this idea, we can think of an n-dimensional space as having

n copies of R as axes and denote it by Rn (pronounced “R n”).

R
n = R× · · · × R

︸ ︷︷ ︸

n times

= {(x1, . . . , xn)}

Exercise 1.3.10 How would you symbolize a 3-dimensional state space in this notation? an

18-dimensional state space?

Change

In this geometric picture, what is change? Change is movement through state space

(Figure 1.22).

When a system changes, its state changes. In the figure, the system has changed from x = 4

at time t1 to x = 6 at time t2. The same idea that change is movement in state space also

applies in higher-dimensional spaces. For example, if a predator–prey system goes from having,
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0
X

X = 4 X = 6

t1 t2

Figure 1.22: The state of the system at a time is given by a point in state space.

say, 3 tuna and 7 sharks to having 5 tuna and 10 sharks, its state changes from (3, 7) to (5, 10).

Geometrically, this means that the state point moves in state space, from the point (3, 7) to

the point (5, 10).

This is a powerful idea that will serve us throughout this course. We will now take up the

question of what makes a state point move, i.e., the causes of change.

Further Exercises 1.3

1. This section defined vector addition and multiplication by scalars. Use these operations

to compute

(
5

1

)

−
(
3

2

)

, justifying each step.

2. (From Bodine et al. (2014).) A state park consists of 80 acres of meadow, 400 acres of

pine forest, and 520 acres of broadleaf forest. The park has the opportunity to acquire

a parcel of land consisting of 25 acres of meadow, 130 acres of pine forest, and 300

acres of broadleaf forest. Write this as a sum of vectors and find out how many acres

of each ecosystem type the enlarged park would consist of.

1.4 Modeling Change

Change is movement through state space. Now we want to go beyond this description of change,

to talk about the causes of change. A set of hypotheses about the causes of change in a given

system is called a model .

A Simple Example

Let’s start with a simple situation: the amount of water in a bathtub.

water in
deposit

interest

Bank Statement

Jane Q. Public

Figure 1.23: Two examples of systems with a single state variable and inflows that increase the

value of that state variable. The level of water in the bathtub is increased by the flow from the

faucet, and the bank balance is increased by the flows from deposits and interest.
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Let’s describe the state of the bathtub as

X = amount of water in the tub (in gallons)

What is changing the amount of water in the bathtub in Figure 1.23? The faucet, or to be more

precise, the inflow of water through the faucet.

The units of this flow are not gallons, but gallons per minute (or some other time unit). We

write that as gal
min . It’s not “stuff”; it’s “stuff per unit time.”

The idea is that levels are changed by flows; that is, quantities are changed by rates. Your

bank account balance (a quantity of, say, dollars) is changed by your income (in, say, dollars per

month) and your expenses (also in dollars per month).

We represent this by a “change equation,” in which we take the state variable X and define

X ′ (“X prime”) as the change in X. Then we write

X ′ = [the things that change X]

For example, for the bathtub above, we would write

X ′ = faucet

Now of course we haven’t specified “faucet” yet, but we know that it has to be in gallons per

minute. Let’s make the assumption that the flow is constant over time, and that its value is

10 gal
min

. We then write

X ′ = 10

This is our first example of a change equation, or model, with no words, just mathematical

symbols representing the various causes of change.

Similarly, if X is your bank account balance and you never withdraw money, then a change

equation for the account balance would be X ′ = D+ I, where D represents your deposits and I

represents interest, both in dollars per month (or year).

Let’s go on to another example, with negative terms (Figure 1.24).

water out

withdraw
Bank Statement

Jane Q. Public

Figure 1.24: On the left, the drain in the bathtub provides an outflow that reduces the level of

water. On the right, monthly withdrawals for rent, etc. reduce the level of the bank balance.

Now our change equation is clearly going to be

X ′ = − outflow

Note the minus sign. The outflow is clearly going to subtract from X, and make its value less,

so it has to have a minus sign. But what is the “outflow”?

Now we have a situation we haven’t seen before: the flow out of the bathtub is not constant;

it depends on the amount of water in the bathtub. This is our first case of feedback. The change

of state depends on the state. Why? Because the higher the water level, the greater the water

pressure at the drain, and the faster the water will flow out. But as the water flows out, the

pressure decreases, and so the flow rate also decreases. In order to make this into a real change



1.4. Modeling Change 25

equation, we need a mathematical expression for how the flow rate depends on the water level

X. As we just said, the greater the water level X, the greater the flow. Let’s suppose that the

relation is that they are proportional. What does that mean? To say that “Y is proportional to

X” means there’s a constant k such that Y = kX (see Figure 1.25).

X

Y

Y = k X
Y

X
= k

X

Y

Figure 1.25: A proportional relationship; k = ∆Y
∆X is the slope of the red line.

Exercise 1.4.1 Write the following statements as equations.

a) A is proportional to B with a proportionality constant of 2.5.

b) X is proportional to Z with a proportionality constant of −3.7.
c) An animal’s population density, P , is proportional to body size, B, with a proportionality

constant of m.

In the case of the bathtub, the constant of proportionality is the width of the drainpipe.

The wider the drainpipe, the faster the flow for a given pressure. So if X ′ = −outflow and

outflow = kX, then we have the change equation

X ′ = −kX
In this equation, what are the units of k? Since X ′ is in gallons per minute and X is in gallons,

the units of k must be 1
min . The units must always make sense in a change equation. If the

units don’t match, we have to convert them so they do. For example, if X is in gallons and

k = 1 quartmin , then we have to convert k into gal
min by multiplying 1 quartmin × 0.25

gal
quart = 0.25

gal
min .

Of course, k is just a symbol. Let’s assume it has the value k = 0.2 for this bathtub and

drain. Then our change equation is

X ′ = −0.2X

Change Equations More Generally

We will now look at change equations more generally. The ingredients of such equations, which

we will discuss now, are stocks and flows.

The Variables

The values of the quantities being modeled collectively make up the state of the system, and

the quantities themselves are often referred to as state variables. State variables are stocks—
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loosely speaking, accumulations of stuff. The amount of water in a bathtub, the amount of

money in your bank account, the amount of energy in a battery, and the number of antelopes

in a population are all stocks. In a system of change equations, the amount of a stock is a state

variable.

Exercise 1.4.2 Give three more examples of stocks.

Change equations tell us how fast the state variables are changing and whether the change

is positive or negative.

You should keep in mind that in most cases, rates of change of state variables are not

themselves state variables. (We already saw one exception to this: in mechanics, velocities are

state variables.) When identifying the state variables in a system, look first at stocks, not rates

of change of stocks.

State variables vs. parameters in models In the bathtub model above, the state variable is X.

Variables change their values as the system changes over time. But what about k? It is constant

for a given model and doesn’t change. It is called a parameter of the model. Parameters are, for

right now, fixed numbers like 0.2. Later on, we can generalize this to parameters that change

on their own with time (like an outflow tube getting narrower with time). In this text, we will

always use capital letters for state variables, and lowercase letters for parameters, so as never

to confuse them.5

As an example, consider a hot cup of coffee in a cooler room. Let’s represent the state

variable of this system by T = temperature of the coffee (in degrees Kelvin). Then Newton’s

law of cooling says that the change in temperature of the coffee is proportional to the difference

between the temperature of the coffee and the temperature of the room. If we let the room’s

temperature be r (a parameter), then the difference between the coffee’s temperature and the

temperature of the room is T − r . So Newton’s law of cooling gives us the change equation

T ′ = const · (T − r)
where const represents some proportionality constant, which will be another parameter in this

model. Before we assign a name to this proportionality constant, we can say a little more about

it based on intuition. Since the coffee cup is hotter than the room, we know that T > r , so T −r
is positive. But from basic intuition, what will happen to a hot cup of coffee in a cool room over

time? The coffee will eventually cool off. In other words, in the language of our model, T will

decrease. And what does this mean about T ′, the change in T? It means T ′ will be negative. If

T ′ must be negative, but T − r is positive, then in order for the change equation above to work,

const must be negative. (This intuition also works the other way around: if the coffee is actually

an iced coffee in a warm room, then T would be less than r , so T − r would be negative. But in

this situation, the coffee would get warmer over time, meaning that T ′ would be positive. Once

again, this means that const must be negative.) Since const must be a negative constant, we

will replace it with −k , where k is a (positive) parameter. Thus, our final change equation is

T ′ = −k(T − r)

5This is just a convention in this textbook. Out “in the real world” (i.e., in most scientific fields), it is
common for certain parameters to be capitalized, and sometimes lowercase letters will represent state variables.
So remember that a more reliable way to distinguish state variables from parameters is this: if there is a change
equation for something, that thing is a state variable. Otherwise, it’s a parameter.
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Inflows and Outflows

The most straightforward way to write change equations for a system of stocks and flows is to

go through the system’s stocks one by one and record the inflows and outflows of each stock.

For a bathtub, the inflow is water flowing from the faucet, and the outflow is water flowing

down the drain, as diagrammed in Figure 1.26. For a bank account, the inflows are deposits and

interest, and the outflow is withdrawals. A nonrechargeable battery has no energy inflow, while

the outflow is energy used to run the flashlight, radio, or other system the battery is powering.

For an animal population, the inflows are birth and immigration (migration into the population),

while the outflows are death and emigration (migration out of the population). These stocks

and flows can be represented using the box-and-arrow diagrams in Figure 1.27.

death

emigrationimmigration

birth

flashlight

radio

...

water in

water out

deposit

interest

withdraw

+B
A

T
T

E
R

Y

Bank Statement

Jane Q. Public

Figure 1.26: Systems with both inflows (blue) and outflows (red), except the battery (lower left)

which has only outflows.

bathtub
water in water out

bank account

deposit

interest

withdraw

battery population

immigration

birth death

emigration
flashlight

radio

...

Figure 1.27: Schematic box-and-arrows diagrams of the systems in Figure 1.26.

Exercise 1.4.3 List all the inflows and outflows for each stock you came up with in the previous

problem.

Exercise 1.4.4 Draw a box-and-arrow diagram for each of your stocks.
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Once we know the inflows and outflows affecting a stock, we can write a word equation

describing how the stock will change over time. These equations always have the following

general form:

change in stock = input flows− output flows

The word equation for the bathtub example shown in Figure 1.26 is

change in amount of water (per time) = inflow rate

− outflow rate

The word equation for the population example shown in Figure 1.26 is

change in population (per year) = births per year

+ immigrants per year

− deaths per year

− emigrants per year

Stocks don’t always have both inflows and outflows. Sometimes, only one of these exists, as

in the examples below.

A landfill receives inputs of trash, but none comes out. The word equation is

change in amount of trash (per day) = trash dumped (per day)

A box of tissues is used but never refilled. The word equation is

change in number of tissues (per week) = −tissues used (per week)

Notice that these word equations include only flows. There is never a separate term for the

value of the stock, either at the current time or at the beginning of our observations. This is

because when writing these equations, we consider only how the stock is changing, not its actual

value. This seems counterintuitive at first but turns out to be a powerful way of modeling many

kinds of systems.

Exercise 1.4.5 Write word equations for the bank account and battery examples in Figure 1.26.

Exercise 1.4.6 Write word equations for your three box-and-arrow diagrams.

From Words to Math

Once we have a word equation, we must then turn it into a change equation in mathematical

form. To do this, we assign symbols to state variables and then write numbers or mathematical

expressions for each flow.
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We can denote the amount of water in a bathtub by the symbol W . Suppose the inflow is 2 galmin
and the outflow is 1 galmin . This gives the change equation W ′ = 2− 1, or W ′ = 1.

Let T be the number of tissues in a box and suppose you use 7 tissues in an average week.

This gives the change equation T ′ = −7.

Exercise 1.4.7 Why is there a minus sign in front of the 7 in the previous example?

Exercise 1.4.8 Call the amount of trash in a landfill L and suppose 1000 pounds of trash are

added to the landfill daily. Write a change equation for the amount of trash.

Exercise 1.4.9 Suppose 100 births and 95 deaths occur in a population each year. Also, 3

individuals enter the population from outside and 2 leave. Write a change equation for the

population size, P .

We will now examine several models from biology and other areas.

One-Variable Systems

A Simple Population Model

Think of an animal population, and let’s say the state variable is X, the number of animals. What

changes X? Well, one thing that changes X is animal births, and another is animal deaths. We

can write a change equation

X ′ = birth rate− death rate

But how do we represent the birth and death rates? We are going to have to make some highly

simplified assumptions. These assumptions are very strong and have huge consequences for the

model.

All models make huge assumptions, and it is critical to be able to state what they are for a

given model. The validity of a model depends strongly on its assumptions.

For example, for our first pass we are going to assume that animals don’t die. (This might

make sense if we are looking at a time frame much shorter than the typical lifetime). Then we

have

X ′ = birth rate

How do we represent the birth rate? Let’s make some huge assumptions: (1) there are no

sexes; all animals are capable of giving birth, (2) an animal’s ability to give birth is constant over

its lifetime from birth to death (3) all animals have the same likelihood of giving birth.

Then for each animal, there is a single constant rate b at which that animal gives birth, let’s

say b = 0.5 babies per year (one baby every two years).6 Then we say that the per capita birth

rate is given by

per capita birth rate = b = 0.5

6These assumptions amount to saying that we can average varying birth rates over the whole population to
produce a single number.
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A “per capita” (literally “per head”) birth rate is the rate of birth for a single animal. Its units

are (animals per animal) per year, which is equal to 1
year . This per animal rate must then be

multiplied by the number of animals (X) to get the total birth rate. So we end up with

X ′ = bX

Let’s consider another model, in which there is no birth, but animals die. So there is a death

rate, and we will again make some highly simplified assumptions: (1) every animal has the same

likelihood of dying, (2) the death rate does not depend on the number of animals, (3) the death

rate does not vary with time. Then we can define the per capita death rate d , and write

X ′ = −dX
We could also combine birth and death in another model and write

X ′ = bX − dX
or

X ′ = (b − d)X = rX

where r is the net per capita growth rate.

To summarize, a model of a process is a change equation, in which the changes in a system

depend on the current states. We write

X ′ = f (X)

Exercise 1.4.10 Write change equations for the following situations. You can useX or anything

you prefer for your state variable.

a) A population has a per capita birth rate of 0.3.

b) A population has a per capita death rate of 0.4.

c) A population has a per capita birth rate of 0.25 and a per capita death rate of 0.15.

d) A population has a per capita birth rate of 0.1 and a per capita death rate of 0.2.

Exercise 1.4.11 In each of the cases in the previous exercise, is the population growing or

shrinking?

A glimpse ahead How will we use the model to make predictions about behavior? We will start

at a given state, which then gives the change (through the change equation), and then the

change plus the present state will give us a new state, which will give us a new change of state,

. . . etc. We will explore this process in more detail later in this chapter.

A Population Model with Crowding

As we said above, the model of rabbit population growth X ′ = b · X is pretty dumb if you take

it too seriously at large values of X. You will see later that in the long run, this model predicts

the existence of a ball of fifteen quintillion rabbits expanding outward at half the speed of light,
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which is not exactly realistic. What is this model missing? Any effects of crowding, such as

competition for scarce resources, which would limit growth. In a model with no limits to growth,

growth will be unlimited. So we need a crowding term.

What would that look like? We will multiply the birth rate bX by a “crowding factor,” which

will be some number ≤ 1:
X ′ = bX · crowding factor

To derive an expression for this crowding factor, let’s suppose that the environment has a

carrying capacity of k animals. Then X
k

would represent the fraction of the carrying capacity

that is already being used by the present population X, which leaves (1− X
k
) as the fraction of

resources that are currently unused and therefore available.

So our new change equation, including crowding, is

X ′ = bX(1− X
k
)

There is another approach to same equation. Let’s think about what the effect of crowding

on X ′ is. It’s certainly negative, so it has a minus sign. It certainly will get bigger as X (the

population size) gets bigger. But we can be more specific than that. How often will an X bump

into another X out at the lettuce patch? By analogy, think of a very large deck of cards, made

up of many poker decks. In that large deck, what is the probability of drawing 2 aces? Probability

theory tells us that the chance of drawing two aces from that large deck of cards is equal to the

(probability of drawing an ace)× (probability of drawing an ace)

or

(probability of drawing an ace)2

So the chance of two rabbits landing on one small lettuce patch, like the chance of drawing

two aces, is proportional to the square of the number of rabbits (X2). What is the constant of

proportionality? Let’s call it c , giving us

X ′ = bX − cX2 (1.1)

The crowding parameter c is therefore equal to b
k
. This equation, which is called the logistic

equation, is important in mathematical biology, and you will see it many times in this book.

Note that we can simplify equation Equation 1.1 by factoring out bX from the right-hand

side:

X ′ = bX

(

1− X
k

)

Remember that positive change means increase, and negative change means decrease. It’s

interesting to consider when X ′ is positive and when it’s negative. Since b (the per capita birth

rate) is positive, and X (the population) is certainly always positive, the right-hand side of this

equation will be positive when the term (1 − X
k
) is positive and negative when it is negative.

When X is smaller than k , the fraction X
k

will be smaller than 1, so (1 − X
k
) will be positive.

This means that when the population is smaller than the carrying capacity, X ′ will be positive,

and therefore the population will increase.

Exercise 1.4.12 What happens when X is larger than k?

This basic reasoning helps to reassure us that our model behaves the way it should.
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Two-Variable Systems

Romeo & Juliet

A wonderful set of examples, initially developed by Cornell mathematician Steve Strogatz, con-

cerns the love dynamics of a couple we will call Romeo and Juliet. We will let R represent

Romeo’s feelings for Juliet, and J represent Juliet’s feelings for Romeo. Positive values repre-

sent love and negative values represent hatred.

The state space for the Romeo–Juliet system is the 2-dimensional space (R, J).

What changes J and what changes R? That obviously depends on the details of their per-

sonality types and their relationship.7 For example, let’s assume that the changes in Juliet’s love

do not depend on her own feelings, but are purely a reflection of Romeo’s love for her. If his

love is positive, hers grows, and if he hates her, her love will decrease, possibly even into hate.

Let’s say the change in Juliet’s love is proportional to Romeo’s love. Let’s assume, for this first

model, that it’s a linear proportionality, and that the proportionality constant is 1. So we have

just said that J ′ = R.

Romeo, on the other hand, has issues. He also does not care about his own feelings and only

reacts to Juliet, but in his case, the reaction is negative. If Juliet loves him, his love declines,

and if she hates him, his love will increase. So R′ = −J.
Our complete model is now given by the pair of change equations

J ′ = R

R′ = −J

Exercise 1.4.13 Suppose that in addition to being turned off by Juliet’s love, Romeo is turned

off by his own love for her. Specifically, Romeo’s love declines at a rate proportional to itself

with proportionality constant k . Write a model for the Romeo–Juliet system that adds in this

assumption.

Springs

Consider a basic example in mechanics: a simple mass–spring system (Figure 1.28). The mass

is a cart that is attached to a spring, and rolls back and forth. What are the states of this

system? Obviously, the position X of the mass (the cart) is one state variable, but are there any

others? Yes! In physics, and in mechanics in particular, velocity is also a state variable, necessary

to describe the state of the system. “The position of the mass is at X = 2” is one state, but

“the velocity is +3” is also necessary to predict the system’s future behavior. The mass being at

X = 2 and heading to the left at 3 meters per second is in a different state from that in which

the mass is at X = 2 and heading to the right at 5 meters per second. So in mechanics, state

spaces tend to have two types of state variables: positions and velocities.

In this case, the state space of the mass-spring system is made up of all pairs (X, V ) repre-

senting the position of the cart (X) and its velocity (V ).

Now let’s write the change equations

X ′ = f (X, V ) and V ′ = g(X, V )

7See Strogatz’s “Love affairs and differential equations,” Mathematics Magazine (Strogatz 1988) or his book
(Strogatz 2014) for some great examples. Generalizations to more complex psychologies and more than two
people can be found in Sprott (2004) and Gragnani et al. (1997).
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V

X

Figure 1.28: Mass–spring apparatus (adapted from Abraham & Shaw, Dynamics, the Geometry

of Behavior Abraham and Shaw 1985). At any given time, the cart has a position X, given by

the pointer, and a velocity V .

remembering that we are trying to see how each state variable changes depending on its own

value and the values of the other state variables.

First, what changes position X? By definition, velocity is change in position, so X ′ = V .

How about V ′? We have to recall a little physics here, specifically Newton’s idea that the

change in V , also called acceleration, is equal to the force applied to the object divided by the

mass of the object. This is usually written as “F = ma,” but that hides the fact that this is

really a change equation. What it is really saying is

V ′ =
F

m

(The mass m is a parameter in this model.)

But we’re not done yet, because we still need to figure out what F is; F stands for the force

acting on the object. What is this force? In this case, it is the force of the spring. And what is

that? You may remember from high-school physics something called “Hooke’s law,” which says

that the force of a spring is proportional to its extension and acts in the opposite direction:

F = −kX. The proportionality constant k is called the stiffness of the spring (or simply the

“spring constant”). Now, it turns out that Hooke’s so-called law is false for most biological

objects, such as muscles and tendons, and is true for metal springs only if they’re stretched by

small amounts. But let’s assume that Hooke’s “law” was really true and F = −kX.

Now we have a complete system of change equations

X ′ = V

V ′ = − k
m
X

If we measure mass and spring stiffness in units for which k
m
= 1, we get

X ′ = V

V ′ = −X
In other words, the simple spring has the same dynamics as our Romeo & Juliet example!

However, there is something not realistic about this spring model. Our model has not

accounted for friction. In reality, there is always some friction, which changes the situation

and changes the model.
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How do we model friction? There are many different types of friction, ranging from air

resistance to sliding friction to rolling friction to fluid viscosity, etc. We will make a very simple

model of friction: that it is proportional to the velocity of the object. This is true, for example,

for air resistance (think of riding a bicycle: the faster you go, the greater is the wind resistance)

and for a viscous fluid.

In this case, we will model friction as a dashpot, a piston pushing though a fluid (Figure 1.29).

So what is the force of friction? We will model it here as a simple negative force that is propor-

tional to velocity.

V

X Fs

X

Ff

spring

frictionV

Figure 1.29: Left: The mass-spring apparatus now has a new element, signified by the dashpot

(piston) attached to the cart. Right: The effect of the dashpot is to add a new force, friction.

There are now two forces acting on the cart, the spring force, which is a linear function of

position in this model, and the friction force, which is a linear function of velocity in this model.

Exercise 1.4.14 Write an expression for friction. You can make up parameters as necessary.

Exercise 1.4.15 Write the model for the spring with friction.

Sharks and Tuna

Let’s develop a model of the shark–tuna system we have been talking about since the beginning

of this book. We will call the number of sharks S and the number of tuna T , so a state vector for

the system has the form (S, T ). The model’s state space is R+ × R+, or the positive quadrant

of S − T space.

To start, let’s write S′ = . . . and T ′ = . . . and ask what changes S and what changes T .

What changes S? Sharks are born and sharks die. We will assume that sharks die at a constant

per capita rate d . The shark birth rate, on the other hand, we are going to assume is proportional

to the amount of food the sharks get. Let’s call the proportionality constant m. It reflects the

relative size of the tuna as food for the shark. If m is large, then one tuna makes a big difference

to the per capita shark birth rate; if it is small, then the shark needs a lot of tuna to reproduce.

So this term in the equation for S′ is m · [available food]. But what determines the amount of

available food? The tuna population! Every time a shark encounters a tuna, there is a certain

probability that the shark is going to catch and eat the tuna. We will call that probability β (the

Greek letter beta). This type of β parameter, which controls the frequency of successful (for

the shark) shark–tuna encounters, is very common in all kinds of population modeling.
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Another way to see why the shark–tuna encounter term involves the product ST is to see

that the likelihood of a shark–tuna encounter depends on the probability of a shark finding a

tuna in a given patch of ocean. Using the same reasoning as on page 30, we see that this is

equal to the product of the probability of finding a shark times the probability of finding a tuna,

or ST . So if β is the probability that a shark–tuna encounter results in the shark catching the

tuna, we can write

S′ = m βST − dS

Similar reasoning tells us that the equation for the change in the tuna population is

T ′ = bT − βST

Exercise 1.4.16 Describe this reasoning. Where does each term in the T ′ equation come from?

What assumptions do we need to make to derive it?

These are called the Lotka–Volterra predator–prey equations for their two (independent)

discoverers, Alfred Lotka and Vito Volterra. They were developed in the early twentieth century.

Clearly, a lot depends on d , b, m, and β. Soon, we will develop the tools study this. For

now, we are going to set all these parameters to 1 (with appropriate units so that addition and

subtraction make sense). We thereby lose all quantitative validity but gain a qualitative view of

the model, which is now simply
S′ = ST − S
T ′ = −ST + T

(1.2)

This model produces oscillatory behavior of the shark and tuna populations (Figure 1.2).

Chemistry

In chemistry, we learn that chemical reactions are written as

A + B
k−−→ C

meaning “A plus B yields C with rate constant k .” Since the amounts of A, B, and C are

changing, it should be possible to write change equations for them. However, the arrow (“goes

to”) is not a mathematical symbol, so how do we translate this into math?

Let’s start with a simpler example,

A
k−−→ B

The state variables in this system are [A], the concentration of A, and [B], the concentration of

B. To avoid having to write all those square brackets, we will write “A” to mean “[A].”

Let’s start by looking at chemical A. To find A′, we ask, “what makes A go up, and what

makes A go down?” In this particular reaction, nothing makes A go up; A can only go down, and

it goes down when molecules of A turn into molecules of B, which happens at a rate k . “A turns

into B at a rate k” means that in one unit of time, the fraction of A molecules that turn into B

molecules is k . In other words, the situation is exactly analogous to the “per capita death rate”

in our population models: k is a “per molecule death rate” (or rather, a per molecule rate of A

turning into B). Therefore, k must be multiplied by the number of molecules of A to determine
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the total change. But the number of molecules is just A. (We said earlier that the variable A is

the concentration of A molecules, but of course if the volumes are held constant, then changes

in [A] are just changes in the number of molecules.) Therefore, we have the change equation

A′ = −kA

Exercise 1.4.17 Use similar reasoning to write the equation for B′.

Now let’s look at the slightly more complicated reaction

2A
k−−→ B or A + A

k−−→ B
Again, the state variables will be A and B. Also, as before, nothing makes A go up, and A

goes down when A turns into B. In this reaction, however, two molecules of compound A must

collide in order to form a molecule of B. How often will that happen? The law of mass action

from chemistry tells us that chemicals participate in chemical reactions in proportion to their

concentrations. This means that the frequency with which a molecule of A will bump into another

molecule of A is proportional to the square of its concentration, or A2. Thus

A′ = −2kA2

This reasoning might sound familiar. It’s exactly the same logic as that of the logistic population

growth model, where we said that the frequency with which rabbits bump into other rabbits is

proportional to the square of the rabbit population. (The “2” on the right-hand side is there

because two molecules of A combine to form each molecule of B, so each successful collision

removes two molecules of A.) We will soon see another analogy between models in chemistry

and ecology.

Exercise 1.4.18 What is the equation for B′ in this case?

Now we can return to the reaction that began this section,

A + B
k−−→ C

The state variables in this system are A, B, and C. Let’s start by looking at chemical A. In this

reaction, nothing makes A go up. What makes A go down is A combining with B to make C. So,

how often will an A molecule bump into a B molecule? The frequency of collision is proportional

to the number of A molecules and the number of B molecules, and therefore proportional to

their product. The rate constant is the constant of proportionality, so we can write

A′ = −kAB
This is exactly the same logic as that of the shark–tuna model, where the frequency of shark–

tuna encounters is proportional to the product of S and T , where S is the shark population, and T

is the tuna population. Now, if we divided these populations by the volume of the ocean patch we

are modeling, they would become the shark and tuna concentrations (i.e., population densities).

In this example, the proportionality constant k takes the place of what we previously called β:

the probability that a shark–tuna encounter results in the death of the tuna. In the chemical

reaction case, k is called the rate constant, and it has basically the same interpretation. In fact,

the shark–tuna system can be rewritten as a set of chemical reactions (with D representing dead

sharks):

S + T
β−−→ 2S
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S
d−−→ D

T
b−−→ 2T

Exercise 1.4.19 Following this analogy, finish writing the change equations for the reaction

A + B
k−−→ C.

Let’s go back to chemical reactions and look at the reversible case, in which

A + B
kf−−→←−−
kb

C

Now something does make A go up, namely, the back-reaction of C dissociating into A and B.

By the same logic as before, we get the change equation

A′ = kbC − kf AB

Exercise 1.4.20 Write the change equations for B and C.

Note that the equation for A′ has an interesting implication. We talk about chemical “equi-

librium.” As we will see in Chapter 3, at equilibrium, by definition, there is no net change in the

concentrations. That means that A′ = B′ = C′ = 0. Chapter 3 will exploit the structure of

equilibria, but here is an immediate application. In chemistry, we are taught that at equilibrium,

the final concentrations in a chemical reaction stand in a certain ratio. This ratio can be derived

from the conditions for A′ = 0.

So if A′ = 0, then 0 = kbC − kf AB. Therefore, at equilibrium,

C

AB
=
kf
kb

A Model of HIV Infection within an Individual Person

In 1981, patients with strange infections and cancers started showing up at UCLA Medical

Center. Soon, similar cases were identified elsewhere, and the disease was given the name AIDS,

for acquired immune deficiency syndrome. In 1983, the virus that caused AIDS was identified

and, a few years later, named human immunodeficiency virus, or HIV.

HIV infects a particular type of white blood cell called a CD4+ T lymphocyte. When a cell is

infected, there are two possibilities. If the cell is actively infected, it starts budding off viruses

and dies within a few days. If it’s latently infected, viral genes are incorporated into the cell’s

genome. The cell remains healthy, but the infection can become active at some point in the

future.

When a person is first infected with HIV, the amount of virus in their blood goes up to a

very high level. This lasts for a few months, and then their virus count goes down to a fairly

low level. Initially, doctors thought this happened because of an immune response to the virus.

However, in 1996, the mathematical biologist Andrew Phillips published a paper asking whether

this spike-and-decline pattern was possible even without an immune response (Phillips 1996).

To do this, he used a model of HIV infection developed a few years earlier by Angela McLean

and her colleagues (McLean et al. 1991).

http://dx.doi.org/10.1007/978-3-319-59731-7_3
http://dx.doi.org/10.1007/978-3-319-59731-7_3
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Figure 1.30: A simplified version of the McLean–Phillips model that leaves out latently infected

cells.

We’re going to build a slightly simplified version of the McLean–Phillips mathematical model of

what happens in the bloodstream of a person infected with HIV. This model will consist of three

equations showing how the sizes of the different populations in Figure 1.30 change over time. The

model variables are the amounts of virus, uninfected cells, and infected cells. We’ll call them V ,

R, and E, respectively. We now need to write a change equation for each one of these variables.

Viruses

Viruses are produced by infected cells. Once produced, they can die (become noninfectious) or

infect new cells. However, such a small fraction of virus particles infects new cells that we’re

going to assume that this doesn’t affect the amount of virus in the bloodstream. We can write

a word equation for the change in amount of virus in an infected person’s bloodstream:

change in amount of virus (per day) = viruses produced per day

− viruses dying per day

Let’s look at each term on the right-hand side of this word equation. First, we have the

number of viruses produced each day. On average, each infected cell produces 100 virus particles

every day. Another way to put this is that the per capita production rate of viruses by infected

cells is 100.

If the per capita virus production rate is 100 per day, then the expression for how many

viruses are produced each day is 100E. (Write this expression and those derived later on the

appropriate arrows in Figure 1.30.) Next, the per capita virus death rate is 2 per day, meaning

that an average virus lives only half a day. The total number of virus deaths per day is then 2V .

Therefore, the full equation for the rate of change of the virus population is

V ′
︸︷︷︸

change in amount of virus (per day)

= 100E
︸ ︷︷ ︸

viruses produced per day

− 2V
︸︷︷︸

viruses dying per day

(1.3)

Uninfected Cells

Uninfected cells are produced by the body, die natural deaths, and can become infected by HIV.

The word equation is

change in uninfected cells (per day) = cells produced per day

− cells dying per day

− cells infected per day
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Let’s once again translate this word equation into math. First, the rate of production of unin-

fected cells is 0.272 per day. (That may seem unrealistically small, but to keep the numbers

manageable, we’re simulating what happens in 1mm3 of blood. The total rate of CD4+ T lym-

phocyte production for the whole body is correspondingly larger.) The per capita death rate for

uninfected cells is 0.00136, so the total death rate is 0.00136R.

Now we need to consider infection. For an uninfected cell to be infected, it must encounter a

virus particle in the bloodstream. As with the shark–tuna model and the chemical reaction rate

models we developed, the chances of this happening are directly proportional to the product of

the amount of virus and the number of uninfected cells in the bloodstream. Translating this into

a math expression, the infection rate is βRV , where β is the proportionality constant. It turns

out that β is about 0.00027. Thus, the full equation for the rate of change of the amount of

uninfected cells is

R′
︸︷︷︸

change in uninfected cells (per day)

= 0.272
︸ ︷︷ ︸

cells produced
per day

− 0.00136R
︸ ︷︷ ︸

cells dying
per day

− 0.00027RV
︸ ︷︷ ︸

cells infected
per day

(1.4)

Infected Cells

Finally, we’ll write the equation for infected cells. These cells arise from infection of uninfected

cells, and all of them eventually die from the infection. So the word equation is

change in infected cells (per day) = cells infected per day

− infected cells dying per day

To turn this word equation into math, the per capita mortality rate for infected cells is 0.33,

which means that about one-third of the cells die every day. Thus the total mortality rate for

these cells is 0.33E. And finally, we already know the rate at which uninfected cells become

infected. From the discussion of uninfected cells above, this rate is 0.00027RV . Therefore, the

last change equation in the model is

E′
︸︷︷︸

change in infected cells (per day)

= 0.00027RV
︸ ︷︷ ︸
cells infected per day

− 0.33E
︸ ︷︷ ︸

infected cells dying per day

(1.5)

Our model of an HIV infection is now complete. To summarize, the three equations Equa-

tions 1.3, 1.4, and 1.5 form our complete system of change equations:

V ′ = 100E − 2V
R′ = 0.272− 0.00136R − 0.00027RV
E′ = 0.00027RV − 0.33E

System Behavior

Spike and decline The reason we went to the trouble of writing these equations is that they can

tell us what the consequences of our biological assumptions are. We wanted to know whether a

decline in HIV levels could occur without an immune response. Since there’s nothing about an

immune response in the assumptions that led to our equations, if we observe a spike and decline,

we’ll know that an immune response isn’t necessary for this.

Using differential equations to look at behavior over time in this way is called simulation. The

basic idea is that if we know the initial values of all the state variables, and we know how the

system changes at every point in time (i.e., the change equations), we can figure out how it will
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behave if our assumptions are correct. You’ll learn how to set up such simulations yourself a bit

later in this chapter, but for now, you can use a prebuilt one.

Exercise 1.4.21 Run the three-compartment HIV simulation on the course website. Describe

what you see happen.

This result tells us that you don’t need an immune response to get a sharp drop in HIV levels

after infection. It is exactly analogous to the drop in shark population that is seen when the tuna

have been depleted. After a while, there just aren’t enough susceptible cells to infect, which

causes the decline. That doesn’t mean that there isn’t an immune response, but the drop in

virus levels should not be taken as evidence of one.

Long-term behavior and model limitations If a person infected with HIV isn’t treated, they

eventually go on to develop AIDS, and their T cell levels fall far below what we’re seeing in the

simulation output.

Exercise 1.4.22 Does our model reproduce the drop in T cell levels seen when an HIV patient

develops AIDS? It typically takes about ten years to develop AIDS. Run the simulation for 3650

days and describe the long-term behavior of the state variables.

We see that in this model, people infected with HIV don’t get AIDS. But in real life, they

obviously do. This tells us something very important: the progression from HIV infection to

full-blown AIDS involves biological processes that this model doesn’t describe. Just having cells

getting infected and dying isn’t enough; there needs to be more going on. What that “more” is,

is a biological question. This is where modeling can interact with clinical and laboratory research

in interesting ways.

There are models now that incorporate biology that our model doesn’t, and those models

demonstrate a progression to AIDS. But the simple model is still good for many purposes, like

explaining the spike and decline in virus levels after infection. It can also be used to test other

ideas, as you will see in the exercises.

Epidemiology

In the study of disease transmission in populations, modeling has become an important practical

tool. Early in this chapter we saw the results of the model that the CDC used to predict the course

of the Ebola epidemic (Figure 1.8 on page 6). The type of model that the CDC used is called

a “susceptible–infected” model, or sometimes an “SIR” model (where R stands for “recovered”).

One of the early models used to study the epidemiology of HIV transmission was the model

of Anderson and May (Anderson et al. 1992). We present here a slightly simplified version of

their model (Figure 1.31).

We will assume three populations:

S Susceptible individuals, that is, people who are HIV negative

I Infected-but-not-yet-symptomatic individuals, who are HIV positive, and

A People with the symptoms of AIDS.

We assume a fixed population of 10,000 people. Assuming that the average life span is 75

years, we would expect 1/75 of the population to die each year, giving a person’s probability of
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Figure 1.31: Schematic box-and-arrow diagram of a simplified version of the Anderson-May SI

model for HIV transmission in a population.

dying is 1 in 75 years, giving a per capita death rate of m = 1/(75 years). (Note that we are

assuming that a person’s probability of death is uniform across all ages, which is a limitation of

this model. More advanced “age-structured” models use age-specific death rates.)

To compensate for these deaths, we also assume that b = 133.3 people are injected into the

population each year, exactly making up for the natural death rate of 1/(75 years).

Exercise 1.4.23 Why 133.3? Where does this number come from?

The critical dynamical term is the susceptible-meets-infected term, which will have the form

S× I, just as it was with the sharks and tuna. Our underlying model here is a particularly simple

one: we assume random encounters between members of S and I indiscriminately. In other

words, we assume that neither party knows that an I is an I, that is, no one knows who is HIV+.

Therefore, the probability that we encounter an I is I/(S+ I). We also assume that each person

has, on average, c partners/year.

Of course, not every encounter between an S and an I results in the infection of the S. Just

as in the shark–tuna model, there is a certain probability, which we call β, that the encounter will

end in an infection. The parameter β is obviously extremely important: it is the parameter we

can manipulate with safe sex practices and medications that reduce viral load and make infected

people less likely to infect others. Let’s begin by assuming that the probability of transmission

of HIV with each encounter is a gloomy β = 0.5, or 50%.

Consequently, the overall per capita rate at which an S converts into an I is

L = c β
I

S + I

We also need to reflect the fact that AIDS patients die more quickly than the average death

rate. We assume an average AIDS-specific death rate of α = 1/(1 year). (This rate was more

typical of the early days of the AIDS epidemic than it is today.) There is also a rate of conversion

of I into A, that is, a rate of HIV+ people turning symptomatic, which we assume to take 8

years, giving a rate of conversion I → A of 1/(8 years) or 0.125/year.

The differential equations are therefore

S′ = b − (m + L)S
I ′ = LS − (m + v)I
A′ = vI − (m + α)A
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where

b = 133.33 m = 1/75 v = 0.125 L = c β
I

S + I
α = 1 c = 2 β = 0.5

initial conditions : S(0) = 9995 I(0) = 5 A(0) = 0

With these parameters, the model predicts that the populations will go to equilibrium values

at approximately

S = 152 I = 949 A = 117

This is a very gloomy outcome: almost 9000 out of our original 10,000 have died after 20 years,

with most of that coming in the first 10 years (Figure 1.32).
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Figure 1.32: Time series output of the Anderson-May HIV model, assuming a high value for β.

Note the outcomes.

But if we can change parameters, we can change outcomes. If we can lower β, for example by

safe sex practices, to 0.05, the epidemic will die out. With this new value of β, a new equilibrium

is reached, at approximately

S = 9994 I = 0 A = 0

indicating that we have prevented the virus from spreading (Figure 1.33).
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Figure 1.33: By lowering β, we can change the course of the epidemic.
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Differential Equations

We have been talking about “change equations.” The official, fancy, name for these is differential

equations. The shark–tuna model, the Romeo and Juliet model, the spring model, the HIV model,

etc., are all examples of differential equations.

Further Exercises 1.4

1. Translate the following verbal statements into differential equations. Use diagrams as

necessary.

a) The daily rate of change of B is 100.

b) The yearly rate of change of P is −5.
c) The monthly rate of change of H is 0.02 times H.

d) The yearly per capita rate of change of G is −0.07.
e) The weekly rate of change of L is the sum of an inflow, 0.05, and an outflow, 0.09.

f) The daily rate of change of K is the sum of births, with per capita birth rate 3,

and deaths, with per capita death rate 2.

g) The daily rate of change of P is the sum of births, with per capita birth rate 2.5,

deaths, with per capita death rate 1.3, immigration, with rate 10, and emigration,

with per capita rate 0.6.

2. Here is another way to derive the logistic model you first saw on page 31. Consider

an area of grassland that has enough resources to support a buffalo population of size

k (k is called the grassland’s carrying capacity for buffalo). The key assumption that

this model makes is the following: the per capita rate of change of the population is

proportional to the fraction of resources available.

a) The fact that the carrying capacity is k means that when there are exactly k

individuals in the population, they are utilizing 100 % of the resources. In that case,

what fraction of the resources are used by one individual?

b) If the current population size is X individuals, what fraction of the resources are

they using collectively?

c) In the same situation, what fraction of the resources are not being used?

d) The per capita rate of change of X can be written as X ′

X
. The key assumption

mentioned above says that this quantity is proportional to the expression you wrote

down in part (c). Call the proportionality constant r , and write an equation for the

per capita growth rate.

e) Convert this equation into a differential equation (change equation) for the popu-

lation’s size. (Just make X ′ stand alone on the left-hand side of the equation.)

3. On a hot day, students are lining up to buy ice cream. Let L be the number of people

in line. Write a differential equation for L using the following assumptions.
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– Students join the line at a rate proportional to the number of people already in line,

with a proportionality constant of 0.1.

– Students get ice cream and leave the line at a constant rate of 0.4 per minute.

– Students get tired of standing in line and leave at a per capita rate proportional to

the number of people in line, with a proportionality constant of 0.02.

4. Collagen is a key protein in connective tissues. One of the steps in collagen formation

involves the combination of three molecules of a collagen precursor called propeptide.

This occurs with rate constant k . The rate of formation of propeptide is a constant, f .

The propeptide also degrades with per molecule degradation rate d . Write a differential

equation for the concentration of propeptide, P .

5. Mitochondria are organelles that provide energy for human and other eukaryotic cells.

Mitochondria can divide like bacteria and fuse with each other. Use the following assump-

tions to write a differential equation for M, the number of mitochondria in a cell.

– There is an optimal mitochondrial population, m. The rate at which mitochondria

reproduce is proportional to the difference between the current population and the

optimal population, with proportionality constant r .

– When two mitochondria are close to each other, they may fuse together. This occurs

with probability f .

– Mitochondria die at a constant per capita rate d .

6. Spotted owls (W ) prey almost exclusively on red-backed voles (V ). Use the following

assumptions to write a differential equation model of this system.

– The vole population has a per capita birth rate of 0.1 and a per capita death rate of

0.025.

– The rate at which an individual owl eats voles is proportional to the vole population

with a proportionality constant of 0.01.

– The owl birth rate is proportional to the amount of food they consume, with a pro-

portionality constant of 0.05.

– Owls have a constant per capita death rate of 0.1.

7. Przewalski’s horse, a wild horse that inhabits central Asia, is the only horse species never

to have been domesticated. In the wild, these horses are preyed upon by wolves. Write

a model of the populations of Przewalski’s horses (P ) and wolves (W ) based on the

following assumptions.

– The horse per capita birth rate is 0.15.

– The horse per capita death rate is proportional to the population size, with propor-

tionality constant 0.01.

– Wolves prey on many species other than horses, so their per capita birth rate can be

modeled as a constant, 0.1.

– Wolves have a constant per capita death rate of 0.05.

– A horse’s probability of being eaten by a wolf is proportional to the number of wolves,

with a proportionality constant of 0.02.
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8. Kelp (K), sea urchins (U), and sea otters (S) form a food chain off the coast of northern

California. Use the following assumptions to write a differential equation model of the

food chain.

– Kelp grows at a per biomass (like per capita) rate of 0.02.

– Due to shading, kelp dies at a per biomass rate proportional to the amount of kelp

with a proportionality constant of 0.01.

– Sea urchins eat kelp. A single sea urchin consumes kelp at a rate of 0.05 per month.

– The sea urchin birth rate is proportional to the amount of kelp the urchins consume,

with a proportionality constant of 0.2.

– Sea urchins die of natural causes at a per capita rate of 0.01.

– The rate at which a single sea otter eats sea urchins is proportional to the sea urchin

population with a proportionality constant of 0.03.

– The sea otter birth rate is proportional to the amount of sea urchins the otters

consume, with a proportionality constant of 0.01.

– Sea otters die at a per capita rate of 0.001.

9. The pier in Santa Monica, CA, is a popular destination for both tourists and locals.

Visitors ride the Ferris wheel (F ), eat ice cream (C), or just walk around on the pier

(W ). Write a dynamical model for the numbers of people engaged in these activities

given the following assumptions. (Hint: Start by drawing a diagram of this system and

labeling the stocks and flows.)

– People entering the pier always start by just walking around.

– E people enter the pier each minute.

– Visitors leave at a constant per capita rate d . They can leave only when they are

walking around.

– Due to fear of nausea, people do not go directly from eating ice cream to riding the

Ferris wheel.

– Visitors prefer to go on the Ferris wheel with friends. Thus, the probability that any

one individual will go on the Ferris wheel is proportional to the number of people

walking around, with proportionality constant b.

– Riders leave the Ferris wheel at per capita rate n.

– When visitors leave the Ferris wheel, a fraction z of them go directly to eating ice

cream. The others walk around.

– Visitors who are walking around prefer to avoid long lines for ice cream. Thus, the per

capita rate at which they get ice cream is proportional to the inverse of the number

of people already doing so, with proportionality constant m.

– People who are eating ice cream stop doing so at a constant per capita rate k .

10. A simple model of infectious disease spread is

U ′ = vW −mU − pU
V ′ = qV −mV − rV W
W ′ = rV W −mW − vW
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where v , m, p, q, and r are positive constants. The variables U, V , and W stand for

susceptible population, infected (but not symptomatic) population, and symptomatic

population (but not in that order).

a) Which variable represents which population? Justify your answer.

b) How would you model

1. a “safe-contact” program that reduced the probability of infection per encounter?

2. a drug that slowed the progression from infection to the appearance of symp-

toms (as AZT did for HIV/AIDS)?

3. a drug that cures the disease, in the sense that it makes infected people fully

recovered but not immune?

11. In this textbook, we will use capital letters for state variables and lowercase letters for

parameters, but many models in the scientific literature don’t follow this convention.

Both state variables and parameters can be written as either uppercase or lowercase

letters. In the examples below, identify the state variables and parameters. (Hint: Think

about what state variables do that parameters don’t, or see the footnote on page 26.)

a) g′ = 0.2g

b) a′ = 0.35ab, b′ = −2b
c) X ′ = aX + RW , W ′ = RX

d) c ′ = Qcd − Rd , d ′ = Pd − Rc

12. The HIV model studied in this section ignored the fact that some cells infected with

HIV become latently, not actively, infected. If a cell is latently infected, viral genes are

incorporated into its genome. The cell remains healthy for a time, but the infection

can become active at some point in the future. (The original McLean–Phillips model

included latent infection.) In this exercise, you will extend the model developed in the

text to include latency.

production

conversion

death

uninfected cells

actively infected cells

free virus

latently infected cells

a) Write a word equation for each box in the above graph. Distinguish between latent

and active infection.

b) Assume that 90 % of infected cells become actively infected and 10 % become

latently infected. The per capita “activation rate,” the rate at which latently infected

cells become actively infected, is 0.036. Also, latently infected cells have the same
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per capita death rate as uninfected ones. Use this information and the text to label

the above graph with all state variables and flow rates.

c) Translate the word equations you wrote in part (a) into differential equations.

d) A simulation of this model is available on the course website. Run it and describe

what happens. How much difference does the inclusion of latency make to the

dynamics you observe?

13. The current treatment for HIV is a multidrug regimen that can reduce patients’ virus

levels to the point of undetectability. These drugs work by making it much harder for

viruses to infect cells. We can simulate this with our model.

a) First, we’ll make a change in notation. So far, all the parameters in the model have

been numbers, but once we want to manipulate them, it becomes easier to change

some of them to symbols. Actually, in most models in mathematical biology, all the

parameters are symbols. The parameter we want to change is the rate at which

viruses infect cells. This is the parameter that we previously called β. Rewrite your

equations and the diagram, changing 0.00027 to β.

b) What happens to a person’s long-term T cell levels and viral load when we manip-

ulate β? We’re no longer interested in the spike behavior, so change the model’s

initial conditions to the values at which the simulation settled. Try several values

of β and observe the resulting values of the state variables.

c) The drugs in current use can keep people with HIV alive for very long periods, but

they aren’t a cure. If the person goes off the drugs, their virus levels go back up.

This is mainly because of the latently infected cells, which can persist for years and

aren’t affected by current treatments. They function like time-release HIV. What

do you think would happen to a patient who received both the current drugs, which

mostly keep HIV from infecting new cells, and a new treatment that caused latently

infected cells to become actively infected more quickly? (Please answer this before

simulating the situation.)

d) In the simulation you are working with, the activation rate is represented by the

parameter α (the Greek letter alpha). Restore β to its original value and manipulate

α. Describe the effect of your manipulations on the state variables’ long-term values.

e) What happens if we raise α and lower β at the same time, simulating the effect of

combining conventional therapy with a new one that raises the activation rate? Try

several combinations of values and describe what happens. (Hint: It’s often useful

to push the boundaries of a model, trying very high or low values.)

While a cure for HIV is still a long way off, this approach to treatment, termed immune

activation therapy, is currently an active research area.
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1.5 Seeing Change Geometrically

The Notion of Tangent Space

We have now learned to describe the causes of change. The change equation X ′ = f (X) says,

“if you are in state X, then you are changing at rate f (X).” Through the function f , the model

gives us, for every possible value of the state variable X, the change X ′ at that state value. For

this reason, we will think of X ′ as giving a change instruction.

For example, the bathtub model change equation X ′ = −0.2X says that if you are at X =

20 gallons, then your change is −4. But −4 what? The answer is −4 gallons per hour. So the

change equation is to be read as saying that if you are at X = 20 gallons, then change by a rate

of −4 gallons per hour.

Just as we defined the set of all possible values of X to be the state space of the model,

we now want to think about the set of all possible values of X ′, that is, all possible change

instructions. For reasons that will become clear soon, we will call this the tangent space of the

model.

Recall (from Section 1.3) that the state space is the set of all possible values of the state

variable X. What does the set of all possible change instructions (i.e., values of X ′) look like?

Notice that it can’t be the same as the state space, because the units of X and of X ′ are

different: X is in gallons (or animals, or glucose concentration, or . . . ), whereas X ′ is in gallons

per hour (or animals per year, or glucose per hour, or . . . ). Also, their respective values may be

different. If G = glucose concentration, then G must be greater than or equal to 0; negative

glucose concentrations do not make sense. But glucose changes can be negative! Recall that a

negative change means that G decreases (and a positive change means that G increases).

Tangent Space: Geometric Version

Suppose our model is of a single animal population X. Then geometrically, we think of the state

space of X as the positive half (right half) of the real number line, called R+ (Figure 1.17 middle

row):

0
X

X = 2 X = 10

X’ = 0.4 X’ = 2X’ = 1

X = 5

Figure 1.34: Three change vectors for the vector field X ′ = 0.2X.

What’s the tangent space for this model? It’s the whole of R, positive and negative, because

changes can be positive or negative.

Here is a device we are going to use heavily throughout this book. Remember that change

is movement in state space. Therefore, it makes sense to think of the change instruction at

a point as an arrow that points in the direction of the change and whose size indicates the

magnitude of the change. And recall from Section 1.3 that arrows can be described by vectors.

We will therefore refer to the change instruction that we get from X ′ as a change vector . In one

dimension, the vector is pointing in the positive direction (to the right) if the change is positive

(X is increasing) and in the negative direction (to the left) if X is decreasing. The length of

the vector will represent the magnitude of the change. So, for example, in the population model
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X ′ = 0.2X, at the point X = 10 animals, the change vector is pointing to the right and has

length 2 animals per year (Figure 1.34).

As soon as we draw the change vectors in this way, we can grasp how the system is going

to change. No matter where we start it, the change arrows point to the right, and they keep

getting bigger and bigger. We can immediately say that the number of animals will grow without

bound, and the rate of growth will get larger and larger as the numbers get bigger and bigger.

The next step is to think of the change vector as being superimposed on the state value to

which it corresponds, as in Figure 1.35. This is a little bit of a fiction, but it is a very useful one.

It’s a fiction because the change vectors aren’t really in state space. Rather, they are assigned

to points in state space by the change equation.

X = 0
X

Figure 1.35: Writing the change arrows (green) directly on the state space (black) is a useful

fiction, very helpful to visualize how state points move through state space.

Vector Fields

We now have the key idea of this course: the model, which is a differential equation, gives us a

change vector (a value of X ′, in the tangent space) corresponding to every state point (value of

X) in the state space. In other words, the change equation is a function from the state space

to the tangent space, which assigns a change vector to each state X. This view of the change

equation as a function is so important that we give it a special name. We call it a vector field .

What we have said is that a vector field is a function

vector field: state space→ tangent space

We will use a standard color convention here: the state space is in black, and the change

vectors are in green.

A vector field like the one shown in Figure 1.36 is very suggestive of movement, and indeed,

it tells us how the state point moves through state space. Imagine the point being carried along

by the vectors. Since there is a vector at every point, you can think of a crowd of people passing

a beach ball overhead, with each person giving the ball a nudge in a particular direction.

Notice that there is a little problem with our picture of assigning the change arrows to the

points. Since there is a different change arrow at every point, it’s going to get awfully crowded

in there, with change vectors looking like they are overlapping each other. But they’re not! Keep

in mind that the change vectors don’t actually live in X space; they come from X ′ space, the

tangent space. But when we draw a graphical representation of the vector field, we can’t possibly

draw every change vector, so we just draw some of them. Also, we superimpose them on the

state space, even though they actually belong to the tangent space.

Let’s look at the vector field for the logistic population growth model in Equation (1.1) on

page 31:

X ′ = rX(1− X
k
)

As we saw, for X < k , the net change vector is positive, while if X > k , the net change vector

is negative. The vector field looks like Figure 1.36.
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X = 0 X = k
X

Figure 1.36: The vector field for the logistic equation, X ′ = rX(1 − X
k
), with r = 0.2 and

k = 100.

Exercise 1.5.1 If X ′ = 0.3X
(
1− X

500

)
, what change vector is associated with the point X =

90? With X = 600?

Exercise 1.5.2 Sketch the vector field for X ′ = 0.1X.

Change Vectors in Two Dimensional Space

In 2D, the state space is a two-dimensional vector space X × Y , which is the space of all pairs

(X, Y ). The general form for a model in two variables is that X ′ depends on the full state, that

is, on both the X and Y values; Y ′ also depends on the two values (X, Y ). We write

X ′ = f (X, Y )

Y ′ = g(X, Y )

Let’s look at our spring model

X ′ = V

V ′ = −X
The change vector at the point (X, V ) = (1, 1) is (X ′, V ′) = (1,−1). So we draw the change

vector (1,−1) at the point (1, 1). Similarly, the change vector at the point (1,−1) is the vector

(−1,−1), the change vector at the point (−1,−1) is the vector (−1, 1), the change vector at

the point (−1, 1) is the vector (1, 1); see Figure 1.37, left.

If we draw many such change vectors, the picture looks like Figure 1.37, right. We can begin

to guess what the overall motion is going to be by looking at the change arrows.

1-1

1

-1

X

V

X

V

(1, -1)

(-1, -1)

(-1, 1)

(1, 1)

Figure 1.37: Left: Four representative change vectors (green) for the simple mass-spring model,

drawn on the (X,V) state space. Right: plotting many change vectors gives us a sense of the

dynamics of the system.

Exercise 1.5.3 What would the vector field for the Romeo–Juliet model look like?
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Now let’s consider a shark–tuna model,

T ′ = 0.5T − 0.01ST
S′ = 0.005ST − 0.2S

When T = 10 and S = 10, we have T ′ = 0.5 × 10 − 0.01 × 10 × 10 = 4 and S′ = 0.005 ×
10×10−0.2×10 = −1.5, so the change vector associated with the point (10, 10) is (4,−1.5).
This means that at the point (10, 10), T is increasing at a rate of 4 tuna per unit time, and S

is decreasing by 1.5 sharks per unit time.

The change vector is a two-dimensional vector (2D) assigned to each point in the 2D space.

So for each state point (X, Y ), we can calculate the change vector (X ′, Y ′) by computing
(

f (X, Y ), g(X, Y )
)

. This change vector belongs to the 2D tangent space (X ′, Y ′) (Figure 1.38).

prey

predator

Figure 1.38: The vector field of the Lotka–Volterra predation model T ′ = 0.5T − 0.01ST ,

S′ = 0.005ST − 0.2S.

It is easy to plot vector fields on state space using SageMath. Figure 1.39 shows a Sage-

Math output for the vector field

X ′ = 0.9X − 0.5Y
Y ′ = 0.1X + 0.8Y

Figure 1.39: SageMath code to produce a vector field and output.
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Exercise 1.5.4 If X ′ = Y and Y ′ = X, what change vector is associated with the point (3, 5)?

Exercise 1.5.5 Find the change vector associated with the point (T = 75, S = 75) in the

Lotka–Volterra predation model T ′ = 0.5T − 0.01ST and S′ = 0.005ST − 0.2S.

Further Exercises 1.5

1. Pick two points on this vector field. For each one, sketch a time series plot describing

the system’s dynamics and describe them verbally.

-1.0

-0.5

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

X

Y

2. Romeo and Juliet are in a relationship. R represents Romeo’s love (or if negative, hate)

for Juliet, and J represents Juliet’s love or hate for Romeo. Suppose that both Romeo’s

and Juliet’s feelings are affected by both their own and the other person’s feelings in

exactly the same way:

R′ = aR + bJ

J ′ = aR + bJ

Let a = 0.5 and b = 1.25. Plug in numbers to sketch the vector field of this system

(include your calculations). Then, describe its behavior.

3. In SageMath, vector fields can be easily plotted with the plot_vector_field command.

For example, the vector field in Figure 1.39 on the previous page was plotted with the

command

>> var("x, y")

>> plot_vector_field([0.9*x-0.5*y, 0.1*x+0.8*y], (x, -10, 10), (y, -10, 10)

, axes_labels=["x", "y"])

Redo the shark–tuna vector field (green arrows in Figure 1.38) and the spring with

friction vector field

X ′ = V

V ′ = −X − V
using plot_vector_field. Make sure to use a reasonable state space and label the axes

correctly.
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4. Zebras and wildebeest compete for food on the Serengeti Plain. If Z and W represent

the zebra and wildebeest population sizes, the equations representing the population

dynamics might be

W ′ = W (1.05− 0.1W − 0.025Z)
Z′ = Z(1.1− 0.05Z − 0.2W )

Sketch the vector field for this system (include your calculations) and describe what

happens to each population as time passes.

5. You can use plot_vector_field in a SageMath interactive just as you would use the

regular plot command. Consider the Romeo–Juliet model in which each person responds

only to the other’s feelings: R′ = aJ and J ′ = bR. (The parameters a and b can be

either positive or negative.) Create an interactive that plots the vector field and lets

you manipulate a and b. Then, describe how the system behaves at various parameter

values. (Hint: You may find it helpful to organize your observations in a table.)

1.6 Trajectories

Trajectories in State Space

The picture we have developed so far is that the state of a system is a point in state space, and

changes in the system are represented by change vectors, with a change vector assigned to each

point in state space. In other words, state space is paved with change arrows at every point.

This is the vector field.

We also said that change is movement through state space. Suppose you start at the white

circle in Figure 1.40. This is called an initial condition. Now imagine that as the state point moves

through state space, it leaves a trail behind it. This trail tells us the history of the system—all

the points the system has visited. This is the red curve in the figure. This curve is called the

“solution curve” or “integral curve” or just “trajectory .”

Y

Z

XX

initial condition initial condition

Figure 1.40: Trajectories in two- and three-dimensional state space.

The trajectory arises by following the change arrows of the vector field at every point. Let’s

use the shark–tuna vector field as an example, and let’s start at an initial condition indicated by

the black dot at the lower right (Figure 1.41, left). Then the state point, following the change

arrows, will move up and to the left, then sharply down, and then to the right.
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tuna

sharks

tuna

sharks

Figure 1.41: Left: One trajectory for the Shark-Tuna model, starting from the initial condition

at the black dot. Right: Several different initial conditions (black dots) give rise to distinct tra-

jectories. In this system, the overall behavior depends strongly on the choice of initial condition.

Indeed, if you look at the vector field, you can basically see how the state point (black dot)

is going to move. It seems to be “following” the green change vectors everywhere. (In the next

section, we will define exactly what it means to be “following” the green vectors.) If we choose

several different initial conditions for the shark–tuna model, we see that each initial condition

gives rise to a distinct trajectory (Figure 1.41, right).

Trajectories are curves through state space that tell us everything about where the system has

been (although not how fast it traveled). They are very powerful tools, but learning to interpret

trajectories takes some time. We will approach it step by step, with lots of examples.

Drawing Trajectories

Even in one dimension, the concept of trajectory makes sense. Think of the state space of a hot

cup of coffee in a cooler room. Let’s say we care only about the temperature of the coffee, so the

state space is one-dimensional (and nonnegative if we use the absolute, or Kelvin, scale). Then,

if the coffee starts off at a hotter temperature than that of the room and subsequently cools

off, the state point will have moved from the higher temperature T1 to the lower temperature

T2 (see Figure 1.42).

0
Temperature (°K)

T2 (at t2) T1 (at t1)

Figure 1.42: The trajectory of the temperature of a cooling cup of coffee.

For a more biological example, consider a population that either increases or decreases until

it reaches a stable level. Two possible trajectories for such a system are shown in Figure 1.43.

Figure 1.44 shows the time series for these two trajectories.

X = 0 X = k
population (X)

Figure 1.43: Two trajectories of population growth (blue) and decline (red).
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time

population (X)

k

0
X = 0

X = k

population (X)

Figure 1.44: Time series corresponding to the two trajectories in Figure 1.43.

Trajectories in 2D Imagine a person who earns a high salary and has correspondingly high

expenses. This person then loses most of their income but maintains the same high level of

spending as before. Of course, this can only go on for so long, so eventually the person’s

expenses drop. However, their income then starts to increase, as do their expenses. The upper

panel in Figure 1.45 plots the person’s income and expenses over time.

time
(months)

income

1 2

2

3

3

4

4

expense

$1k

$2k

$3k

$4k

income

expense

$1k

$2k

$2k

$3k

$3k $4k

1

Figure 1.45: Time series and state space trajectories of income–expense dynamics.

We can also graphically depict this story in state space. Let’s say that the person’s income

and expense level together define their state. We can then portray the person’s states in income–

expenses space, as shown in Figure 1.45. At time 1, which corresponds to the first point on the

time series plot, income and expenses are both high. At time 2, income is low, but expenses

are still high. At time 3, income and expenses are both low. Finally, at time 4, both income and

expenses are intermediate.

For another example, consider a basketball game between the University of X and Y State,

as shown in Figure 1.46.

University X

Y State

start

points per minute in a basketball game

end of
1st half

start

end of
2nd half

University X

Y State

end of
1st half

end of
2nd half

Figure 1.46: Time series and state space of a hypothetical basketball game.
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Team Y starts off with a slight advantage but then declines while X’s scoring rate increases.

Both teams then score more and more points, until at the end of the first half, both have very

high scoring rates. X’s scoring rate then declines throughout the second half, while Y’s increases

and then declines but remains fairly high.

From time series to trajectories and back again We will use both time series and state space

trajectories heavily. We are accustomed to looking at time series, so we know how to interpret

them. But state space trajectories carry critical information about the dynamical system, and

it is useful to develop the skill of going back and forth between time series presentations and

trajectories in state space.

To go from trajectories to time series, imagine that you are tracing the trajectory with your

finger. If you want the X time series, ask yourself, “is X getting larger or smaller?” as your finger

traces the trajectory. Then sketch that as a time series.

For example, in the frictionless spring (Figure 1.47), we start at the black dot, which is a

negative value of X. As the state point traces clockwise, X declines into more negative values

until it reaches its lowest value at 9 o’clock. Thereafter, X steadily and smoothly increases until

its maximum at 3 o’clock, whereupon it starts to decline, completing the cycle.

In the spring with friction (Figure 1.48), the state point traces out a spiral: a circular motion

with ever-decreasing amplitude. This produces a time series called a damped oscillation.

Alternatively, imagine a strip chart recorder (like the one in a seismometer) with a long strip

of recording paper passing continuously through the X-V plane and recording the X value of

the state point at each moment in time (Figure 1.47, Figure 1.48, and Figure 1.49).

X

V

time

Figure 1.47: A circular trajectory, such as generated by the frictionless spring, produces a

smoothly changing periodic time series.

X

V

time

time

Figure 1.48: If we consider the spring with friction, the resulting trajectory spirals in. This pro-

duces a periodic function of time with constantly decreasing amplitude.
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tuna
sharks

time

Figure 1.49: Nonround trajectories, as seen, for example, in the shark–tuna model, produce

periodic time series with different waveforms.

In general, it is very useful to view system behavior as a trajectory through a state space.

As you will see throughout this text, this approach allows us to classify types of behavior and

relate them to each other in ways that would be much harder if all we had were time series graphs.

Exercise 1.6.1 Draw a time series graph that corresponds to this trajectory of temperature

and day length over the course of a year.

temperature

day length

Jan

Apr

June

Aug

Oct

Exercise 1.6.2 Draw a trajectory corresponding to this time series of a person’s height and

weight over the course of their life.

time (years)

height, weight

(% of maximum)

10 20 30 40 50

height

weight

100

80

60

40

Glucose and insulin Consider the dynamics of glucose (G) in the body, as it is metabolized with

the help of the hormone insulin (I). We can make (I, G) space, the space of all pairs (I, G),

where G is the blood glucose level and I is the blood insulin level. What happens after a meal

(the black dot)? First glucose goes up quickly, then insulin starts to rise, which causes glucose

to decline. We can represent this as a trajectory through (I, G) space.
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insulin
(pmol/L)

2 4 6 8

50

100

150

blood glucose  
(mmol/L)

Chemistry In chemistry, we are usually interested in the concentrations of chemicals and how

they change over time. For example, we could describe a simple chemical reaction with two state

variables, the sodium ion concentration [Na+] and the chloride ion concentration [Cl−]. Then,

as they combine to make NaCl, their concentrations would change:

 [Na  ]

 [Cl  ]

+

Romeo and Juliet Suppose that Romeo and Juliet go through some changes in their relationship,

and go from (Love,Love) to (Love,Hate) to (Hate,Hate). If we plot that as a trajectory through

R-J space, it looks like this:

(0, 0) Romeo’s love

Juliet’s love (L, L)

(L, H)

(H, H)

Mechanics of springs The trajectories of frictionless springs look like concentric circles, with

each orbit corresponding to a different initial condition:

(0, 0)
position (X)

(V)velocity

3-Dimensional Systems

Wolves, sheep, and grass As another example, in Chapter 5, we will study a system with three

species in which Z eats Y , and Y eats X. There are many examples of such chains, including

wolves, sheep, and grass.

sheep population

wolf population

grass concentration

http://dx.doi.org/10.1007/978-3-319-59731-7_5
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Epidemiology Epidemiology is the study of how diseases affect populations. Typical state vari-

ables in epidemiology are S, the number of susceptible individuals, and I, the number of infected

individuals. A third variable in epidemiology models is often R, standing for recovered individuals,

or, in the Anderson–May model of HIV transmission (see page 40), it could be A, the number

of symptomatic AIDS patients.

9990

9992

9994
S

0

2

4

I

0.0

0.2

0.4

A

Insulin, glucose, and glucagon High levels of glucose in the bloodstream (for example, after

a meal) cause the pancreas to release insulin. But low levels of glucose cause the pancreas to

release another hormone called glucagon. So the state of this system is represented as a point

in (I, G, A) space, where I is the concentration of insulin, G is the concentration of glucose, and

A is the concentration of glucagon.

insulin
concentration

glucagon concentration

glucose concentration

Systems with Four or More Dimensions

The neuron In their Nobel Prize–winning work, Alan Hodgkin and Andrew Huxley showed that

the firing of a neuron can be represented by four variables standing for voltage, a current called

INa carried by sodium ions, a current carried by potassium ions (IK), and a current called “I -leak”

that we now know is carried primarily by potassium ions (IL). Therefore, the state space for the

neuron is (V, INa, IK , IL) space, and the course of the neuron’s firing is represented as a curve

through 4-dimensional (V, INa, IK , IL) space.

Food webs We have already discussed ecological models with two or three predator and prey

species. However, real ecosystems have many more species than that. Their complex feeding

interactions create what’s called a food web. In models of food webs, the state variables are the

population sizes of different species, and there can be tens to hundreds of them.

The state of a system at a given time is a point in Rn, {(X1, X2, . . . , Xn)}. Change in a

system over time is a curve or trajectory through state space f : R+ → Rn.
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The State Space Trajectory View

Looking at trajectories in state space gives us insights into system dynamics that can’t be gotten

by looking at separate time series plots.

We said earlier that the results of intervening in a feedback system can be counterintuitive

(see Figure 1.9 on page 7), and that the system’s response to an intervention can depend on

the intervention’s magnitude and timing.

Then how can we predict what kind of intervention will produce what kind of results? The

answer is that the state space trajectory gives this insight in a “master view.” We will illustrate

this with the Lotka–Volterra predator–prey model (again with the caveat that there are better

models; see the Holling–Tanner model in Chapter 4).

Suppose the system is at state point #1 (Figure 1.50). We are considering only “predator

removal” interventions, which means that we are going to move the state point vertically down-

ward by a given amount. It is obvious from the trajectory view that if we start at point #1 and

instantaneously remove a small number of predators that takes the system to state point A, then

the system will go to the new trajectory containing point A and will orbit in a smaller trajectory,

thus decreasing both shark and tuna populations.

But if we remove a large number of predators, thereby taking the system to state point B,

then the resulting trajectory is a larger orbit, and the predator population will rebound to a higher

level than before the intervention.

And if the system is at state point #2, then any predator removal will result in a rebound to

a higher peak predator population.

prey

predator A

B

#1

#2

Figure 1.50: Response of the predator-prey (Shark-Tuna) system to perturbations depends on

the strength and timing of the perturbation. The outcome of a perturbation is to place the state

point on a new trajectory, whose amplitudes may be higher or lower than before.

Thus, the response of feedback systems to intervention, which can be difficult to understand

by looking only at the time series, can be easily grasped by looking at state space trajectories.

Vector Fields, Trajectories, and Determinism

In the discussion above, we said that in a vector field, a change vector is associated with every

point in state space. Knowing the point, we calculate the unique change vector associated with

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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it. Since this relationship is completely unambiguous, it is a function. Since the vector field links

each point in the state space to a change vector in the tangent space, we can write

vector field : state space→ tangent space

Furthermore, if our system has n variables, a change vector must have n components—one for

each variable. Therefore, change vectors live in Rn, and we can write

vector field : Rn → Rn

A vector field is a function V : Rn → Rn that assigns change vectors to state vectors.

The fact that vector fields are functions turns out to have important implications for dynamics.

Since a vector field is a function, there is exactly one change vector associated with each point

in state space. This makes it impossible for trajectories to cross! Why? Because trajectories

always follow change vectors.

Suppose two trajectories crossed and then went off in different directions. Then, as illustrated

in Figure 1.51, there would have to be two change vectors at the point of intersection—one that

the first trajectory followed and one that the second trajectory followed. But then the vector

field wouldn’t be a function. Therefore, trajectories can’t cross. As we will see, this is a powerful

constraint that tells us a lot about dynamical behavior.

Exercise 1.6.3 In this situation, why would the vector field not be a function?

Figure 1.51: What a vector field would look like if two trajectories crossed.

There’s more. We saw that trajectories cannot cross. As we will see in Section 1.7, they also

cannot touch. The uniqueness of trajectories at each point means that if we know a system’s

state at any time, we can find its trajectory for all time.

Further Exercises 1.6

1. This trajectory shows the hours a student studied per week during a quarter and that

student’s GPA for that quarter. Describe what happened and sketch the appropriate

time series plots.
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GPA

hours of study per week
3.0

4.0

3.5

20 8050

2. Sketch the time series of a two-variable system whose trajectory is a single point.

3. This trajectory was generated by a simple model of an oscillator. Sketch the time series

matching it.

X

Y

1

1

-1

-1

(0.1, 0.2)

4. This time series graph describes the spread of an infectious disease. Sketch the trajectory

corresponding to this time series.

10 20 30 40

2000

4000

6000

8000

10000
infected healthy

time

5. Consider the time series graphs for the lynx and snowshoe hare populations in Figure 1.1

on page 1, which we repeat below.

hares

lynx
animals

(×104)

years
1900 1905 1910 1915 1920

10

20

30

40

50

60

70

Sketch an approximate trajectory for this system. (Hint: Pay attention to the points at

which populations go from increasing to decreasing and vice versa.)
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6. Come up with your own example of a two-variable system that changes over time.

Describe it verbally and draw a time series graph and matching trajectory.

7. How are a trajectory and a time series graph different? In particular, what are the axes

of each? Which one can reasonably be drawn on top of a vector field?

1.7 Change and Behavior

In the previous section, we drew a number of trajectories. These are the red curves that trace

out a system’s behavior. We saw red trajectories in the shark–tuna model (Figure 1.41) and in

the spring (Figure 1.47, Figure 1.48).

How did we get these red curves? We claimed that the red curve is “following” the change

arrows, but you might ask two questions:

Q1: Does that red curve really exist? Is there really a single trajectory through a given point

that everywhere follows the change arrows?

Q2: Can we figure out the equation for the red curve from the equation for the vector field?

The answers to those questions are

A1: Yes, almost always.

A2: No, almost never.

There is a theorem that answers question Q1. It says that if our differential equations are

well behaved (and everything we will see in this course is well behaved; the basic idea is that

the functions can’t change too fast), then there is a unique curve through any given point that

“follows” the change vector at that point.8 So that red curve truly exists; it is “out there.”

How do we find that red curve? We have the model as a vector field

V : {states} → {changes in state}
We would love to go from a state to its change of state and then to a new “next” state. Now,

a change vector tells us how the system would change if it followed the change vector one whole

time unit (one year, one day, one second, etc.). It therefore seems natural to take a state, add

the change vector associated with that state, and use the result as our next state.

But we have a problem: there is no real “next” state. Recall that when we talk about the

value of a state, X, we really mean its value at some particular time t. If our initial time is t = 0

and we take t = 1 to be the “next” time, someone could point out that t = 0.5 is between 0

and 1, so t = 1 can’t be the next time. Similarly, 0.25 is between 0 and 0.5, so 0.5 can’t be the

next time either. In fact, there are infinitely many numbers between any two real numbers, so

we would have to update the state infinitely often, which is clearly impossible.

This was the problem that faced Isaac Newton in the late 1600s. He suspected that the force

of gravity acting between the Sun and the Earth was causing the movement of the Earth. He

also knew that forces change velocities, that is, produce accelerations, and so he could say

old position→ force→ acceleration→ change in velocity

→ change in position→ new position→ new force→ . . .
(and so on)

8This is called the Picard–Lindelöf theorem, or the fundamental theorem on the existence and uniqueness of
solutions to ordinary differential equations.
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But how to make that update at every time point? This is where calculus, which you will

learn about in the next chapter, comes from. Say you are at the state X0 and so follow the

change vector out of X0, which is X ′0. But for how long do you follow the change vector? If

you follow it for a second you are wrong. If you follow it for a tenth of a second, you are still

wrong. This is because long before that tenth of a second was up, you were already at an X

point different from the one you started with, and that point has its own change vector. So even

a brief moment into that tenth of a second, you were already using the wrong change arrow.

Let’s call the amount of time you follow the change vector ∆t. Newton made ∆t smaller

and smaller, and he saw that in the case of the gravity vector field, if he let ∆t approach zero,

he could actually calculate the equation for the red curve. That’s called calculus, and we will

discuss this in more detail a little later.

Calculus, meaning letting ∆t go to 0, using the concept of infinitesimal limits and then figuring

out the equation for the red curve, is great, when it can be done. But it can almost never be

done! It can’t be done for the shark–tuna model, for example. Remember those curves of S(t)

and T (t) (Figure 1.2 on page 2)? The equations for those curves are unknown. In fact,

virtually none of the models we encounter in biology have a solution curve whose equation can

be found.

So how are we able to plot these graphs? The answer is called Euler’s method .

Taking Small Steps

Euler’s method consists in making ∆t very small but not zero. Starting at our initial point, we

will follow its change vector for a very short time, specifically ∆t. We then find the change vector

associated with the new point and follow it for the same very small time interval. Doing this

over and over gives us a good approximation to the red curve, especially if we choose our ∆t to

be very small.

Euler’s Method in One Dimensional Space

Suppose we are dealing with a one-dimensional state space X and a differential equation X ′ =

f (X). Let’s start from an initial condition X0. Then the change vector at X0 is f (X0). Since

we’re following this change vector for only ∆t time units, the actual change is not f (X0) but

∆t · f (X0). (Recall that we can multiply vectors by constants.) To get the new state, we just

add this amount to the old state:

new X = old X + ∆t ·X ′

Applying this procedure over and over is called Euler’s method.

For example, suppose X is the size of an animal population and the growth rate of the

population is modeled by X ′ = 0.2X. Suppose we start with a hundred animals, so X0 = 100.

Let’s choose a nice small step size, say ∆t = 0.01. Then

new X = X0 + 0.01 · f (X0)
= 100 + 0.01 · 20
= 100.2

We will now call the new X above X1, and one step of Euler’s method is complete. To start

the second step, X1 becomes the oldX, and we have
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new new X = X1 + 0.01 · f (X1)
= 100.2 + 0.01 · 20.04
= 100.4004

= X2

Exercise 1.7.1 Compute X3.

Exercise 1.7.2 Use Euler’s method to compute two approximate trajectories for the logistic

growth vector field X ′ = 0.05X(1− X
100).

Euler’s Method in Two Dimensional Space

The geometric meaning of Euler’s method becomes especially clear when we look at the 2D case.

Now our state variables are X and Y , and our differential equations have the form X ′ = f (X, Y )

and Y ′ = g(X, Y ). These equations create a vector field on R2.

Now we write Euler’s method in two parts:

new X = old X + ∆t ·X ′(old X, old Y )

new Y = old Y + ∆t · Y ′(old X, old Y )

Let’s simulate the shark–tuna model with Euler’s method. If we set all the parameters to 1,

the equations are

S′ = ST − S
T ′ = −ST + T

Let’s take as our initial condition (S0, T0) the point (2, 3) in S-T space, and let’s take ∆t = 0.1.

We first calculate the change vector at this state: S′ = 2 · 3− 2 = 4 and T ′ = −2 · 3+ 3 = −3.
So the change vector is (S′, T ′) = (4,−3). Then the first iteration of Euler’s method is

new S = 2 + 0.1 · 4 = 2.4
new T = 3 + 0.1 · (−3) = 2.7

Exercise 1.7.3 Compute the next values of S and T .

When we do that for many iterations and we keep our ∆t small, the resulting vectors, tip to

tail, approximate the true red curve very well.

Indeed, we have been showing you a number of red trajectory curves. Where did we get those

curves? In the case of the shark–tuna vector field, for example, the equation for the red curve is

unknown. So how could we draw it? The answer is that we aren’t really drawing the red curve;

what we are doing is drawing a blue broken-line approximation with a ∆t that is so small that

the jagged approximation looks smooth to the eye (Figure 1.52).



66 Modeling, Change, and Simulation

tuna

sharks

Figure 1.52: Euler’s method approximation to the shark–tuna model. The short blue straight

lines of Euler’s method are too small to be seen here. The resulting trajectory of straight lines

looks like a smooth curve.

The geometric picture in Figure 1.53 is the clearest way of seeing what is going on. We are

approximating the smooth red curve by the jagged blue line. (There is a mathematical theorem

called the shadowing lemma, which says that as ∆t gets smaller and smaller, the blue jagged line

gets closer and closer to a true red curve, possibly from a slightly perturbed initial condition.)

Euler’s Method

1. Start from the point X0.

2. Evaluate X ′ at X0. We will call this X ′0.

3. Multiply the change vector X ′0 by the small number ∆t.

4. Add ∆t ·X ′0 to X0, and call the result X1.

5. Repeat steps 1 through 4 for the point X1 to get X2. Then repeat for X2 to get X3, etc.

X0

X1

X2

X3

X0

‘

X1

‘

t

X2

‘

t

t

Figure 1.53: Euler’s Method. The red curve is the true trajectory of the system. Beginning at

the point X0, one step of Euler’s method, with a step size ∆t, (blue arrow), takes the system

to the point X1. A second step of Euler’s method, from the point X1, takes the system to the

point X2, and a third step takes the system to the point X3, forming an approximation to the

red curve.
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Generating a time series or trajectory from a model and an initial condition is called simulating

or numerically integrating the model. There are other simulation methods that approximate

trajectories more accurately than Euler’s method. The math behind these methods is slightly

more complicated and need not concern us. However, some of these methods are built into

SageMath, and we will use them extensively later on.

You may have noticed that the repetitive nature of Euler’s method makes it ideal for com-

puters. Indeed, large-scale numerical integration is unpleasant without a computer, which is

why dynamical simulation is heavily computer-dependent. However, it is perfectly possible to do

numerical integration by hand, and there are many famous examples of this.

Numerical integration without computers

In the days before electronic computers, numerical integration was done by hand. For example,

the return of Halley’s Comet in 1758 was predicted by numerical integration of Newton’s equa-

tions by hand. Integration by hand was also used to calculate artillery trajectories in World War

I. See the excellent book When Computers Were Human, by David Alan Grier (Grier 2013).

Even in the late 1940s and 1950s, numerical integration was still frequently done by hand.

Hodgkin and Huxley used it to do their simulation of the firing of a neuron, for which they

received the Nobel Prize. In the early years of the US space program, human computers, many

of whom were African-American women with math degrees but limited employment options,

worked in aeronautical engineering at the National Advisory Committee on Aeronautics, which

later became NASA. The book Hidden Figures by Margot Lee Shetterly and the movie based

on this book tell their story (Shetterly 2016).

Further Exercises 1.7

1. The rate of change of a mouse population is given by the differential equation

N ′ = 0.5N

(

1− N

1000

)

The population at t = 0 is 400. Using Euler’s method with a step size of 0.1, find the

(approximate) population at t = 0.3.

2. The growth rate of a hunted lion population, L, is given by the differential equation

L′ = 0.1L

(

1− L

100

)

− 0.2L

The current population is 80 lions. Using Euler’s method with a step size of 0.1 years,

find the (approximate) population 0.2 years later.
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3. A disease is spreading in a population. We will model the number of susceptible individuals

(S) and infected individuals (I) using the differential equations

S′ = 0.2I − 0.05SI
I ′ = −0.2I + 0.05SI

Suppose we start with 98 susceptible individuals and 2 infected ones. Use Euler’s method

with a step size of 0.1 weeks to determine the approximate numbers of susceptible and

infected individuals at t = 0.2 weeks.

4. Briefly describe the advantages and disadvantages of using a very small step size in

Euler’s method.



Chapter 2

Derivatives and Integrals

2.1 What Is X ′?

Let’s focus on the change vector X ′. Euler’s method can give us a very deep insight into what

X ′ is. Recall that a state variable X is actually a function of t (time). If we think of t as

representing the “current” time, then the value of X “now” is written as X(t). Since each step

of Euler’s method moves us forward by ∆t time units, the time at the next step will be t +∆t.

So what we previously called “new X” is really X(t + ∆t). Using this notation, we can rewrite

the equation for Euler’s method as

X(t + ∆t) ≈ X(t) + ∆t ·X ′(t)
We have written this as an approximation, because Euler’s method does not give us the actual

value of X at a later time (the red curve) but only an approximation of it (the blue jagged line).

Since we want to gain an understanding of X ′, let’s rearrange this equation to solve for X ′(t).
First, subtracting X(t) from both sides yields

X(t + ∆t)−X(t) ≈ ∆t ·X ′(t)
We then turn the equation around and divide by ∆t to get

X ′(t) ≈ X(t + ∆t)−X(t)
∆t

In other words, the rate of change of X is approximately the difference between two values

of X at two slightly different times, divided by the difference in those times. We will now

turn to explicating precisely what this means and how we can find X ′ exactly rather than just

approximating it. This is the subject generally called “calculus.”

2.2 Derivatives: Rates of Change

Instantaneous Rates of Change

In Chapter 1, we emphasized that quantities are changed by rates, and that if X represents a

quantity, then X ′, the rate at which X is changing, must be “quantity per unit time.”

“Per” always means “divided by,” so the rate of change of a quantity should then be a change

in the quantity divided by the change in time:

rate of change =
change in quantity

change in time

c© Springer International Publishing AG 2017
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Suppose you drive from point A to point B. Here, the quantity is “distance,” and the rate of

change of distance with respect to time is called “velocity” or “speed.”1

Let’s say the total distance from A to B was 10 miles, and your trip took a half hour. Then,

following common sense, we can define your average speed over the whole trip as

average speedfromA to B =
10 miles

0.5 hours
or 20 miles per hour

But we can look at your average speed over any time interval. If we let X(t) be your progress,

the distance covered from A to B as a function of time t (Figure 2.1), then for any time interval

(t1, t2) in that half hour, we can define your average speed over that time interval as

average speed(t1,t2) =
change in distance

change in time
=
X(t2)−X(t1)
t2 − t1

A

B

distance

time
t1 t2

X(t1)

X(t2)

t

X

Figure 2.1: An example of distance X covered from A to B as a function of time t.

We will use a standard notation: the change in t, from t1 to t2, we will call ∆t, So

∆t = t2 − t1
and the corresponding change in X, X(t2)−X(t1), we will call ∆X:

∆X = X(t2)−X(t1)
So

average speed(t1,t2) =
X(t2)−X(t1)
t2 − t1

=
∆X

∆t

Exercise 2.2.1 A bowling lane is 60 feet long. If a bowling ball is released at t = 0 and reaches

the pins 2.5 seconds later, what is its average speed?

If we now choose a smaller time interval (t1, t3), we get a smaller ∆X over the smaller ∆t

(Figure 2.2), and a new estimate of average speed, over this shorter interval (shown in red). If

we then take t3, t4, etc., closer and closer to t1, then we get a succession of average speeds

over shorter and shorter intervals.

1In physics, “velocity” means “speed plus direction,” so velocities can be positive or negative. “Speed” is a
more colloquial term, and it is generally thought of as only positive. So, if your car was backing up, we would say
that your speed going backward was 5 miles/hour, and your velocity was −5 miles/hour.
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A

B

distance

time
t1 t2

X(t1)

X(t2)

t

X

t3

t

X

X(t3)

Figure 2.2: Choosing a smaller ∆t gives an average velocity over a shorter time interval.

Exercise 2.2.2 Let’s say we are given the functional form of the curve in Figure 2.2:

f (t) = (B − A) t
4

1 + t4
+ A

Here we assume A = 0 and B = 1. Calculate estimates of the average speed over several

intervals beginning at t = 1, say ∆t = 0.5, 0.2, and 0.1.

Clearly, we can compute average speed over any time interval, no matter how short. Now we

want to go further and ask what might seem like an odd question: we talked about your average

speed over any given time interval. Does it make any sense to talk about your speed at a point

in time? Can we make sense of the concept of your instantaneous speed at a time t0?

On the one hand, it makes perfect sense to say “well, at exactly 1:15 p.m., when I was partway

there, I was definitely going at some speed or other.” But on the other hand, if you tried to

apply the definition of average speed, you would get

instantaneous speedat 1:15 pm =
∆X

∆t
=
0

0

which is absurd.

This paradox was known to the ancient Greeks (look up Zeno’s paradoxes), but it wasn’t

really answered until the 1600s, with the work of Newton and Leibniz. They realized that the

way to approach the idea of instantaneous velocity at t0 is to look at the average velocity over a

small interval, from t0 to t0+∆t, and then let that interval get smaller and smaller, approaching

zero; that is, let ∆t → 0.2
If that process produced an actual number as its limiting value (not 00), then we could well

call that limiting value the instantaneous velocity at t0.

We can now define the instantaneous speed at t0 to be the value that these successive

approximations approach as ∆t gets closer and closer to 0, more formally, the limit of these

values as ∆t approaches 0:

instantaneous speedt0 = lim
∆t→0

∆X

∆t
= lim
∆t→0

X(t0 + ∆t)−X(t0)
∆t

2Actually, Newton and Leibniz tried to reason using the concept of an “infinitesimally small quantity.” It
wasn’t until the 1800s that the idea of instantaneous velocity was put on a rigorous foundation using the notion
of limits. In the 1960s, the notion of “infinitesimally small quantity” was made rigorous by UCLA mathematician
Abraham Robinson in his nonstandard analysis.
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Exercise 2.2.3 If at some instant an object’s speed is 30 mih , will it travel 30 miles in the next

hour?

We began this chapter using Euler’s method to get an approximation for X ′(t), and concluded

that

X ′(t)
︸ ︷︷ ︸

instantaneous

rate of change

≈ X(t + ∆t)−X(t)
∆t

︸ ︷︷ ︸

average rate of change

Now we can say that X ′(t), the left-hand side of this equation, is the instantaneous rate of

change of X at time t, and the right-hand side of this equation is exactly the average rate of

change of X from time t to time t + ∆t, as we just defined it. In Euler’s method, we learned

that we can make the approximation more accurate by making ∆t very close to 0.

This connection between average rates of change and instantaneous rates of change is the

foundation for the subject that is called “calculus.”

Example: A Falling Object

Legend has it that Galileo dropped balls from the Leaning Tower of Pisa and measured their

time of flight. This is not true. The time intervals involved are too short for him to measure

using then-existing technology. What he actually did was slow the process down by rolling balls

down an inclined plane and measuring the time intervals with a water clock.

He then summarized his findings in a law that is applicable to falling objects.

Let H(t) be the height of the ball above the ground t seconds after we let go of it. According

to Galileo, if we ignore air resistance slowing the ball down, its height will be

H(t) = H(0)− 16t2

where H(0) is the initial height.3
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t=0.0 s
t=0.5 s

t=1.0 s

t=1.5 s

t=2.0 s

t=2.5 s

Figure 2.3: Graph of H(t) = 100− 16t2, representing the height H of the ball, t seconds after

being dropped from an initial height of 100 feet.

3The value “16” results from the assumption that H is in feet and t is in seconds.
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Based on this, can we say how fast the ball is falling exactly 1.5 seconds after we release it

from an initial height of 100 ft (Figure 2.3)?

Since we are asking for the instantaneous velocity at a time t, which is the instantaneous rate

of change of the function H at t = 1.5, we are looking for H′(1.5).
How do we compute H′(1.5)? By considering the average rate of change of H over various

time intervals, and then letting the time intervals get smaller and smaller, that is, making ∆t

approach 0.

Let’s begin by considering a time interval of 0.1 s, from t = 1.5 to t = 1.6, so

∆t = 1.6− 1.5 = 0.1 s
The average rate of change of H over this time interval is

average rate of change =
H(1.5 + ∆t)−H(1.5)

∆t

=
H(1.6)−H(1.5)

0.1

=
(100− 16 · 1.62)− (100− 16 · 1.52)

0.1

= −49.6 ft
s

Exercise 2.2.4 Notice that our calculation results in a negative number. Why does this make

sense?

The value ∆t = 0.1 s represents a fairly short time interval, so we can consider this to be an

approximation of H′(1.5):

H′(1.5) ≈ H(1.6)−H(1.5)
0.1

= −49.6 ft
s

As in Euler’s method, we can make this approximation better by using a smaller ∆t. If we

redo the calculation with time interval ∆t = 0.01, we get

H′(1.5) ≈ H(1.51)−H(1.5)
0.01

=
(100− 16 · 1.512)− (100− 16 · 1.52)

0.01
= −48.16 ft

s

We can get sharper estimates of H′(1.5) by using even smaller values of the time interval ∆t,

for example, ∆t = 0.001.

H′(1.5) ≈ H(1.501)−H(1.5)
0.001

=
(100− 16 · 1.5012)− (100− 16 · 1.52)

0.001
= −48.016 ft

s

Exercise 2.2.5 Approximate H′(1.5) using the time interval ∆t = 0.0001.

Estimates with smaller and smaller values of ∆t have resulted in a series of estimates of

H′(1.5). The actual value of H′(1.5) is the limit of these estimates as ∆t approaches 0. But

what is that limit?
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Exercise 2.2.6 Why do we not allow ∆t to reach 0?

Exercise 2.2.7 Use successive approximations to find the object’s speed at t = 1 second.

Finding H ′(t)

In our example, the successive estimates of H′(1.5) are −49.6, −48.16, and −48.016. These

estimates look like they are getting closer and closer to 48. But how can we be sure that this is

the exact value of H′(1.5)?
We can answer this mathematically by doing a symbolic calculation. Instead of using specific

values of ∆t, as above, we will do a symbolic calculation using the symbol ∆t.

average rate of change

at t = 1.5
=
H(1.5 + ∆t)−H(1.5)

∆t
(2.1)

We know the function H, and so we can plug it into equation 2.1. Since H(t) = 100− 16t2,
we can compute

H(1.5) = 100− 16 · 1.52 = 64

The next quantity we need is H(1.5 + ∆t):

H(1.5 + ∆t) = 100− 16 · (1.5 + ∆t)2

= 100− 16 ·
(

1.52 + 3∆t + (∆t)2
)

= 100− 36− 48∆t − 16 · (∆t)2

= 64− 48∆t − 16 · (∆t)2

Substituting these two expressions into equation 2.1 gives us

average rate of change

at t = 1.5
=

(

64− 48∆t − 16 · (∆t)2
)

− 64
∆t

Notice that the 64’s in the denominator cancel each other (not a coincidence).

average rate of change

at t = 1.5
=

(

✚✚64− 48∆t − 16 · (∆t)2
)

−✚✚64

∆t

=
−48∆t − 16 · (∆t)2

∆t

=
✚✚∆t · (−48− 16∆t)

✚✚∆t

= −48− 16∆t
We have now found a general expression for the average rate of change at t = 1.5 as a

function of ∆t, and it is obvious what will happen as ∆t approaches 0:

−48− 16∆t −→ −48 as ∆t −→ 0
which gives us the exact value of H′(1.5) as

H′(1.5) = lim
∆t→0

H(1.5 + ∆t)−H(1.5)
∆t

= lim
∆t→0
(−48− 16∆t) = −48
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Exercise 2.2.8 Carry out a similar calculation for t = 2.

The procedure that we just applied to find H′(1.5) can be generalized to any t, and we have

now developed a general procedure for finding H′(t):

H′(t) = lim
∆t→0

H(t + ∆t)−H(t)
∆t

Carrying out this calculation, we get

H′(t) = lim
∆t→0

H(t + ∆t)−H(t)
∆t

= lim
∆t→0

(

H(0)− 16(t + ∆t)2
)

−H(0)− 16t2

∆t

= lim
∆t→0

(

✭✭✭✭✭✭
H(0)− 16t2 − 32t · ∆t − ∆t2

)

−✭✭✭✭✭✭
H(0)− 16t2

∆t

= lim
∆t→0

✚✚∆t · (32t − ∆t)
✚✚∆t

= lim
∆t→0
(−32t − ∆t)

= −32t
So we can now say, for the function H(t) = H(0)−16t2, that we can calculate H′(t) for any

t0.

Exercise 2.2.9 Use this result to find the object’s velocity at t = 2.

The derivative of H(t) at the point t0 is the limit as ∆t → 0 of the quantity ∆H∆t .

H′(t)
∣
∣
t0
= lim
∆t→0

∆H

∆t

∣
∣
∣
∣
t0

In fact, this procedure can be carried out for many functions X(t), including most functions

that can be expressed as a formula. (For exceptions, see “Do all functions have derivatives?”)

If X(t) is any function of t, then we can almost always define X ′(t)
∣
∣
t0
, which is the in-

stantaneous rate of change of X at time t0. This is called the derivative of X at the point

t0.

Variables Other Than Time

We’ve been talking so far about functions of time, and rates of change with respect to time,

like velocity, which is the rate of change of distance with respect to time. But we can also talk

about functions of any variable, not just time. And then we can ask about how the value of the

function changes with respect to changes in the variable.

For example, suppose you are climbing a mountain or ascending in an airplane. You observe

that as you go higher, the outside air pressure decreases. So air pressure is a function of altitude.
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If we let H = height and P = air pressure, then there is some function

P = f (H)

In fact, it looks like Figure 2.4.

Altitude H (km)

Atmospheric

Pressure P

(bars)

5 10 15 20

0.2

0.4

0.6

0.8

1.0

0

H

P

P =
- H

7e

Figure 2.4: Atmospheric pressure P as a function of altitude H.

We can now ask: how much does pressure change with respect to height? We could even ask:

“what is the rate at which P is changing with respect to H?”

There are many examples in science where we are looking at one variable as a function of

another variable. In fact, science is all about looking for relationships that show one variable as

a function of another.

In chemistry, we study the properties of gases, such as their pressures and volumes. We know

that if we put a gas under pressure, say from a piston, the volume of the gas decreases. So there

is a function that gives the volume V for a given value of pressure P , V = f (P ). (This is called

Boyle’s law.) And again, we can talk about the rate at which V is changing with respect to P .

Astrophysics studies the properties of stars, such as their distance from us and their velocities

(which can be figured out from the color of the light they emit). There is a famous law, called

Hubble’s law, that says that the velocity with which a star is receding from us is a function of

its distance from us.

In biology, the subject of allometry studies the basic physical measurements that can be made

on animals, like body length, skull size, heart rate, and metabolic rate. It studies how these

characteristics are related to other physical characteristics, such as body mass. It is interesting

to look at how these scale with each other over a very wide range of sizes, from ants to whales.

For example, let’s say we are looking at how heart rate H scales with body mass M. We look at

the data from thousands of species and find that they lie on a curved line, giving us H = f (M).

Depending on the shape of the curve, we can talk about the rate at which H is changing with

respect to M.

So any time one quantity Y can be expressed as a function of some other quantity X, we

can ask: if X changes, how much will Y change in response? Let’s define this concept of rate

precisely.

For example, let’s go back to our example of the relation between air pressure P and altitude

H (Figure 2.4). We can define the concept of the rate of change of P with respect to H exactly

as we did in defining a rate of change with respect to time. First we define an average rate of

change over some interval as ∆P∆H .
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For example, if we went from an altitude of H = 2km to H = 5km, then the change in

altitude is

∆H = 5− 2 = 3 km

We will see the atmospheric pressure drop, from 0.75 bars at H = 2km down to 0.49 bars at

H = 5km. Therefore, the change in pressure is

∆P = 0.49− 0.75 = −0.26 bars
We then define the average rate of change, over the interval from H = 2km to H = 5km, of

atmospheric pressure (P ) with respect to altitude (H), by

average rate of change ofP with respect toH =
∆P

∆H
=
−0.26 bar
3 km

= −0.09 bar
km

This is the average rate of change over an interval.

It then makes perfect sense to do exactly what we did with respect to time: pick an arbitrary

point H0, and define the instantaneous rate of change of P with respect to H at the point H0
as the limit of the average rate of change as the interval ∆H approaches to zero:

instantaneous rate of change ofP with respect toH atH0 = lim
∆H→0

∆P

∆H

∣
∣
∣
∣
H0

Exercise 2.2.10 The function describing how air pressure varies with elevation is

P (H) = 101352e−
0.28H
2396

where P is measured in pascals and H in meters. Approximate the rate of change of P with

respect to H at a height of 2000 meters.

Notation

We have now defined a concept: for any Y = f (X), at any point X0, the instantaneous rate of

change of Y with respect to X is

lim
∆X→0

∆Y

∆X

∣
∣
∣
∣
X0

= lim
X→X0

f (X)− f (X0)
X −X0

The only question is: what to call this? We have been using Y ′ to mean the derivative with

respect to time, and we can extend this to allow Y ′ to mean the derivative with respect to some

other variable, but the only problem is that we have no way of saying what that other variable

is. We don’t have a terminology yet for the instantaneous rate of change with respect to some

arbitrary variable.

We are rescued by Gottfried Leibniz, the co-inventor of calculus in the late 1600s, along with

Isaac Newton. Newton had favored a notation something like our X ′ (actually an X with a dot

over it, Ẋ), so X ′ is called the Newtonian form. Leibniz, on the other hand, wanted to stress

that this is a ratio of two quantities, ∆X and ∆t, so he adopted somewhat odd notation. He

looked at the ratio ∆X
∆t and decided to refer to lim∆t→0

∆X
∆t as a ratio he called dX

dt .
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Leibniz
dX

dt
= lim
∆t→0

∆X

∆t

∣
∣
∣
∣
t0

Newton X ′ = lim
∆t→0

∆X

∆t

∣
∣
∣
∣
t0

There is a clear drawback to the Leibniz notation. What is “dX”? What is “dt”? How can we

take their ratio if we don’t know what the individual terms mean? And why can’t we divide top

and bottom by d?

The answer to all these questions is that the Leibniz notation can’t really be read as the ratio

of two anythings, and the terms dX and dt don’t really mean anything by themselves.4

Rather, the whole expression

“
dX

dt

∣
∣
∣
∣
t0

” means “ lim
∆t→0

∆X

∆t

∣
∣
∣
∣
t0

”

The big advantage of the Leibniz notation is that we can now state explicitly both of the

variables in the limit. This makes it possible to return to our original question what to call

lim∆X→0
∆Y
∆X

∣
∣
X0

, where X is arbitrary. We will call it

d Y

dX

∣
∣
∣
∣
X0

or
df

dX

∣
∣
∣
∣
X0

So everywhere in this text, when we say X ′, we usually mean dX
dt , but we will sometimes use

the notation Y ′ for convenience when the relevant variable is obvious. And when we want to refer

to a function of some other variable, such as P = f (H), we will usually call the instantaneous

rate of change dPdH .

“Sensitivity”

The quantity we just defined as the “instantaneous rate of change of Y with respect to X” can

also be seen as the definition of the concept of “sensitivity.” When we are talking about the

“sensitivity of Y to X,” we are really talking about the quantity dYdX .

Suppose, for example, we are looking at a drug for cancer chemotherapy. We run experiments

and determine what percent of cancer cells are still alive when we give D amount of drug. If

we call the percentage of cancer cells still alive P , then our experiments give us P = f (D). A

typical graph might look like this:

D (mg)

P

0 %

100 %

105

4In fact, Leibniz was criticized by many of his fellow mathematicians for this, and for centuries his notion of
dX as an “infinitesimal” quantity was frowned upon. The philosopher Bishop Berkeley ridiculed dX

dt
as “the ratio

of the ghosts of two departed quantities.” It was not until the 1960s, nearly 300 years later, that Leibniz was
fully vindicated when UCLA math professor Abraham Robinson came up with an idea called nonstandard analysis,
which provided a mathematically rigorous foundation for infinitesimals.
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We can then talk about the sensitivity of the cancer cells to increasing drug dosages. What

we mean is
dP

dD

∣
∣
∣
∣
D0

So we can say, for example, that for dosages below 2 milligrams, the cancer cells are highly

sensitive to the drug, because dPdD
∣
∣
D0

is more negative when D0 < 2.

Further Exercises 2.2

1. The rate of change of the position of a car at some time t0 is given by dXdt = 55. What

does this mean in plain English?

2. You are studying the athletic performance of runners. You have two motion-triggered

cameras that produce time-stamped photographs.

a) The runner reaches the first camera, at the 500 m mark, at 9:03:05 a.m. and the

second camera, at the 600 m mark, at 9:03:25 a.m. What is her average speed over

that time interval?

b) When is she running at that speed?

c) How could you change your measurement setup (without getting new equipment)

to better approximate the runner’s instantaneous speed at 500 m?

3. You are an ecologist studying bottom-dwelling stream invertebrates. You need to mea-

sure the speed at which the water is flowing at a particular point you have chosen

to study. You have a stopwatch, a long measuring tape, a supply of Ping-Pong balls

(which float and are easy to see), and brightly colored flags that can be used to mark

points along the shore or in the water. How would you use this equipment to estimate

the instantaneous speed of the water? (You may want to include a diagram with your

response.)

4. Use successive approximations to approximate the derivative of the functions below at

the points specified.

a) f (X) = 6X5 at X = 2

b) f (x) = 7X3 + 2 at X = 3.5

c) f (X) = sinX at X = −3 (use radians)

d) f (X) = sin
(

ln(X3 + 1)
)

at X = 4

5. You are studying a new blood-pressure-lowering drug. You find that blood pressure is

not very sensitive to the drug at low doses, very sensitive at intermediate doses, and

not very sensitive at high doses. Rephrase this statement in terms of dPdM , where P is

blood pressure and M is the drug dosage.
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2.3 Derivatives: A Geometric Interpretation

From Secant to Tangent

Let’s now look at the concept “ dYdX ” geometrically. First, let’s make a geometric picture of the

average rate of change of a function at a point. Suppose Y is a function of X. At the point X1,

the average rate of change of Y with respect to X over the interval (X1, X2) is

∆Y

∆X

∣
∣
∣
∣
X1

=
Y2 − Y1
X2 −X1

X1 X2

X

Y

X

rise

run

Y

Y1

Y2

Figure 2.5: An example of ∆X (run) and its corresponding ∆Y (rise).

Looking at this geometrically, we see that ∆Y is the change in the vertical direction, and ∆X

is the change in the horizontal direction (Figure 2.5). (These are sometimes called “rise” and

“run.”)

What we want is the average rate of change, that is, the quantity ∆Y
∆X . We can visualize

this quantity by drawing the blue straight line directly connecting the two points (X1, Y1) and

(X2, Y2) (Figure 2.6). The slope of this line is

Y2 − Y1
X2 −X1

=
∆Y

∆X

X1 X2

X

Y

X

Y

Y1

Y2

Figure 2.6: Secant line connecting the point (X1, Y1) to the point (X2, Y2), where

(X2, Y2) = (X1 + ∆X, Y1 + ∆Y ).
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This line is called the secant5 to the curve through these two points. We can say a lot about

this blue secant line. The crucial concept here is the notion of slope. The slope of a straight line

is defined as ∆Y∆X taken over any two points on the line. This is exactly the concept we need:

∆Y

∆X

∣
∣
∣
∣
X1

= slope of the secant line connecting (X1, Y1) and (X2, Y2)

To summarize,

average rate of change = slope of secant =
∆Y

∆X

Exercise 2.3.1 Calculate the slope of the secant line to the graph of Y = X
1+X from X = 1 to

X = 3.

Now that we have defined the average rate of change ∆Y∆X , we want to let ∆X get smaller and

smaller, in order to get a geometric picture of dYdX , which is the limit of ∆Y∆X as ∆X approaches

0.

As ∆X gets smaller and smaller, the blue secant lines cut through smaller and smaller portions

of the curve near X1 (Figure 2.7).

X1 X2

X

Y

Y1

Y2

X

Y

X

Y

Y1

Y2

X1 X2

Y1

Y2

X1 X2

Figure 2.7: The slope of secant lines gradually changes as X2 approaches X1.

As we do this, the blue secant line gets closer and closer to the curve, until finally it ap-

proaches a line that “just touches” the curve at the point (X1, Y1).
6 This is the line shown in

red (Figure 2.8). This limiting red line is called the tangent line7 to the curve Y = f (X) at the

point (X1, Y1).

5From the Latin word “secare,” meaning “to cut.”
6The notion of “just touches” is being left slightly vague here. And the concept “just touches” doesn’t even

work for certain examples, like f (X) = X3 at X = 0, where the tangent line is a horizontal line cutting through
the curve. In fact, the true definition of “tangent” requires the concept of derivative. The tangent is the line
whose slope is equal to the derivative of the function at that point.

7The word “tangent” comes from the Latin tangere, meaning “to touch.”
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X1

X

Y

Y1

Figure 2.8: The limit of the secant process, as X2 approaches X1, is the red line, called the

tangent to the black curve at the point (X1, Y1).

In summary,

secant lines tangent line

slope of secant lines

average rates of change

slope of tangent line

instantaneous rate of change

as x 0

 means    “converges to”“ ”

If Y = f (X) is the graph of Y as a function of X, then

(1) the slope of the line tangent to the curve Y = f (X) at the point X0
= (2) the derivative of f at the point X0,

df
dX

∣
∣
X0

(or equivalently, the derivative of Y with respect

to X, dYdX
∣
∣
X0

.)

= (3) the instantaneous rate of change of Y with respect to X (or f with respect to X) at the

point X0.

Exercise 2.3.2 Find the slope of the secant line crossing the graph of f (t) = 200 − 16t2 at

the following values of t. What value is the slope approaching?

a) t = 2, t = 2.5 b) t = 2, t = 2.1 c) t = 2, t = 2.05

The Equation of the Tangent Line

We now know that the quantity dYdX
∣
∣
X0

is the slope of the tangent line to Y = f (X) at the point

X0 (Figure 2.8).

We can use that fact to derive the actual equation for the tangent line. The best-known form

of the equation for a line is the slope–intercept form (Figure 2.9),

Y = mX + b where m = slope, b = Y-intercept

There is, however, a different way of writing an equation for a line that will be more useful

to us. To develop it, we start with the slope–intercept form. We know the slope m. It’s dYdX
∣
∣
X0

.
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X

Y

b

X0

Y0

Y

X

Y

X
m

Figure 2.9: The line Y = mX + b has slope m and intercepts the Y -axis at b.

But what is b? We find b by realizing that (X0, Y0) is a point on this line, and therefore

Y0 = mX0 + b

which implies

b = Y0 −mX0

If we substitute that back into the equation for the line, we get

Y = mX + b = mX + (Y0 −mX0)
Rearranging yields,

Y = m(X −X0) + Y0

which yields

(Y − Y0) = m(X −X0)

This is called the “point–slope” form of the equation for a line, since it explicitly involves the

slope and a reference point on the line. Now, we can put everything together. The equation of

the tangent line to f (X) at X = X0 is

(Y − Y0) =
d Y

dX

∣
∣
∣
∣
X0

(X −X0)

It is especially significant for us, since it gives us (Y − Y0) as a linear function of (X −X0).

Exercise 2.3.3 Find the equation of the tangent line to f (t) = 200− 16t2 at t = 2.

Exercise 2.3.4 Write equations for the following lines in both slope–intercept and point–slope

form.

a) The line that has a slope of 2 and a Y -intercept of −54.
b) The line that has a slope of −3 and passes through the point (2, 6).

c) The line that passes through the points (1, 7) and (3, 5).

Further Exercises 2.3

1. If for some function f , f (2) = 5 and f ′(2) = −3, what is the tangent line to f at

X = 2?
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2. If some function f has the tangent line y − 2 = 4(t − 16) at the point implied by the

equation, what are f (16) and f ′(16)?

3. Find the tangents to the following functions at the points given. Then, graph the

function and the tangent in Sage. (Hint: You found these slopes in Further Exercise 2.2.4

on page 73.)

a) f (X) = 6X5 at X = 2

b) f (x) = 7X3 + 2 at X = 3.5

c) f (X) = sinX at X = −3 (use radians)

d) f (X) = sin
(

ln(X3 + 1)
)

at X = 4

2.4 Derivatives: Linear approximation

Linear Functions

Throughout this book, we will often use the method of approximation by a very special class of

functions, called linear functions. The equation for the tangent line is an important example of

this.

Here, we will discuss the idea of linear functions in one variable. Later, we will see that all of

Chapter 6 is devoted to the subject of linear functions in many variables.

In one variable, a function Y = f (X) is said to be linear if it meets two conditions:

(1) f (X1 +X2) = f (X1) + f (X2) for all X1 and X2 and

(2) f (aX) = af (X) for every real number a

These are extremely strong requirements, and few functions can meet them. For example,

the function f (X) = X2 can’t meet either of them.

Exercise 2.4.1 Verify that f (X) = X2 is not a linear function. (Hint: Apply the definition.)

Exercise 2.4.2 Check whether f (X) = X + 1 is a linear function.

It turns out that the only functions that can meet the requirements for linearity are those in

the family of functions

f (X) = kX where k is a real number

All linear functions of one variable have this form, and all functions having this form are linear.

Notice that the relation Y = mX + b is not a linear function, unless b = 0. It’s the equation for

a straight line, but it is not a linear function. The terminology is unfortunate, but at this point

we have no choice but to keep this slightly confusing fact in mind.

This is why we prefer to write the equation for the tangent line in the linear point–slope form

∆Y = m · ∆X or ∆Y =
d Y

dX

∣
∣
∣
∣
X0

· ∆X

http://dx.doi.org/10.1007/978-3-319-59731-7_6
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Exercise 2.4.3 What is the complete equation for the tangent line to Y = f (X) at the point
(
X0, f (X0)

)
?

Zooming In on Curves

Let’s expand on the theme of the derivative as a linear approximation to a function at a point.

Look at the graph of Y as a function of X and its tangent line at the point X0 in Figure 2.10.

As we zoom in on that point, the curve looks more and more like the tangent line.

X0

f(X0)

X

Y

Figure 2.10: A tangent line (red) to a curve (black) at a point (black dot). Zooming in at the

black dot, the curve begins to resemble the tangent line.

We can make this intuitive idea precise by realizing that near X0, the line is an approximation

to the curve.

line Y − Y0 =
df

dX

∣
∣
∣
X0
· (X −X0)

curve Y − Y0 ≈
df

dX

∣
∣
∣
X0
· (X −X0)

To put it another way, we know that the average rate of change ∆Y∆X
∣
∣
X0

is an approximation

to dY
dX

∣
∣
X0

. In symbols,

∆Y

∆X

∣
∣
∣
∣
X0

≈ d Y

dX

∣
∣
∣
∣
X0

This approximation gets better and better as ∆X approaches 0.

So as ∆X approaches 0, the line ∆Y = df
dX

∣
∣
X0
· ∆X is a better and better approximation to

the curve f at the point X0

∆f ≈ df
dX

∣
∣
∣
∣
X0

· ∆X
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Exercise 2.4.4 In SageMath, pick a function and a point on the function. Plot the function at

several magnification levels. Describe what you see.

Linear Approximation

Since the tangent line is an approximation to a function at a point, we can use it to find

approximate values of the function near the point. In particular, the ∆Y = dY
dX |X0 · ∆X form of

the equation for the tangent line makes it natural to calculate the change in Y produced by a

change in X.

Let’s look at our example of atmospheric pressure P as a function of height H above sea

level. In this case, we can say,

∆P ≈ dP
dH

∣
∣
∣
∣
H0

· ∆H when∆H is small

Suppose that at some H0, the rate of change of P with respect to H is −0.1 bars
km . Then we

can say that if the airplane goes a little bit higher, say ∆H = 0.01 km, then the atmospheric

pressure will have changed by approximately

∆P ≈
(

− 0.1bars
km

)

·
(
0.01 km

)
= −0.001 bars

Note that we are estimating the effect of a small change ∆H in the nonlinear function P (H)

at a point H0 using the linear approximation to the function H0. This will result in a small error in

the estimate of ∆P , an error that will get smaller and smaller as ∆H approaches 0 (Figure 2.11).

It is in this sense that the line

∆Y =
d Y

dX

∣
∣
∣
∣
X0

· ∆X

is a linear approximation to f at the point X0.

Altitude H (km)

Atmospheric

Pressure P

(bars)

0

H

P

H0 H0 + H

error

Figure 2.11: The tangent line (red) to the curve (black) of pressure P as a function of altitude

H is an approximation to the curve. The error gets smaller as ∆H decreases.
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Exercise 2.4.5 In the example of the falling object, we calculated its velocity H′(1.5), the

rate of change of height with respect to time, at 1.5 seconds after it was released. We got the

answer −48 fts . Now estimate how far the ball will drop in the next 0.01 seconds. In other words,

let ∆t = 0.01 seconds, and calculate an approximate value for ∆H.

Exercise 2.4.6 The equation for the height of the falling ball is

H(t) = H(0)− 16t2

Use this equation to calculate the actual change in H from t = 1.5 s to t = 1.51 s. How close

is this actual ∆H to the ∆H you calculated in Exercise 2.4.5?

Summary

We have now seen three concepts of the derivative dYdX
∣
∣
X0

.

(1) as the rate of change of Y with respect to X at the point X0
(2) as the slope of the tangent line to Y = f (X) at the point X0
(3) as the linear approximation to Y = f (X) at the point X0

Of these, the last is the most important: it is the idea of the derivative as a linear approxi-

mation that generalizes very naturally to n dimensions. This will be our focus in Chapter 6 and

Chapter 7.

All Functions Differentiable?

If a function has a derivative at a point, we say it is differentiable at that point. If a function

is differentiable at some point, it has a unique tangent at that point. What conditions does the

function have to meet to have a unique tangent at a given point?

First of all, it must be continuous at that point. A function is continuous at a point if the

curve through the point can be drawn without lifting the pen from the paper. For example, the

function

f (X) =

{

X2 0 ≤ X ≤ 2
X3 2 < X ≤ 3

is not continuous at the point X = 2 (Figure 2.12). We can’t even discuss the derivative at the

point X = 2 because there is no linear approximation to the right of X = 2 in the function X2,

and no linear approximation to the left of X = 2 in the function X3. No matter how much we

zoom in on X = 2, the function never looks like a straight line through the point.

X

f(X)

2 310

Figure 2.12: This function f (X) is discontinuous at X = 2, therefore the derivative at X = 2

does not exist.

http://dx.doi.org/10.1007/978-3-319-59731-7_6
http://dx.doi.org/10.1007/978-3-319-59731-7_7
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But even when the function is continuous, it still may not be differentiable. Consider

g(X) =

{

0 X ≤ 0
X 0 ≤ X

and look at the point X = 0. The function g cannot have a derivative at X = 0, because to the

left of X = 0 it has slope 0, and to the right of X = 0 it has slope 1 (Figure 2.13).

X

g(X)

210-1-2

Figure 2.13: This function g(X) is continuous at X = 0, but the kink means that the slope to

the left of X = 0 is 0, and the slope to the right of X = 0 is a positive number, so there is no

derivative at X = 0.

The lack of a derivative at X = 0 is also clear when we look closely at the function g(X)

near X = 0.

When we first defined the concept of derivative, we said that the derivative is the slope of

the tangent to the curve, and the tangent to the curve can be visualized by zooming in closer

and closer until the curved function resembles a straight line.

But when we zoom in on the function g(X) near X = 0, we see the problem: the function

never resembles a straight line, no matter how much we zoom in (Figure 2.14).

X

g(X)

210-1-2

0

1000 X

Figure 2.14: As we zoom in on the point X = 0, the function does not get flatter and flatter,

because there is a corner there.

So not all functions have a linear approximation that becomes better and better as we zoom

in. In particular, a cusp or corner will always look like a cusp or corner, regardless of the scale

at which we view the function. Therefore, the function does not have a linear approximation at

the cusp or corner and is not differentiable there (Figure 2.15).
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X X

X X

Figure 2.15: The functions |X| and
√

|X| have corners or cusps at X = 0 and are not differen-

tiable there.

For the sake of completeness, we will mention a way for a continuous function without cusps

or corners to have a point where it is not differentiable. This happens when the function has a

vertical tangent at some point. Since the derivative is the slope of the tangent and the slope of a

vertical line is undefined (it’s infinite, and infinity is not a number), a function is not differentiable

where it has a vertical tangent (Figure 2.16).

X

X-2

0 2

3

Figure 2.16: The function 3
√
X − 2 has infinite slope at X = 2 and so is not differentiable there.

Exercise 2.4.7 View f (X) = |X| at several zoom levels and show that the corner at X = 0

remains a sharp corner no matter how closely you zoom in. Briefly explain why this means that

it does not have a derivative at X = 0.

Exercise 2.4.8 Is the function in Figure 2.15 differentiable at all points shown other than

X = 0?

Further Exercises 2.4

1. You are studying a new blood pressure drug. At a dose of 5mg, the slope of the dose–

response curve is −2 mmHg
mg . Approximately how much would a patient’s blood pressure

change if the drug dose was increased to 5.1mg?

2. Suppose g(N) measures the size of tomatoes produced by a tomato plant as a function

of the amount N of nitrogen that is available to the plant.

a) Explain in plain English (without using the word “derivative”) what the quantity
dg
dN means.

b) If at some instant dg
dN was equal to 5, and N was then increased by 0.04, what

would you expect to happen to g? Be as specific as possible.
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3. You have developed a robotic ant to help you study insect behavior. As the ant travels,

it keeps track of its position and the slope of the surface it’s on and mathematically

models its local environment.

a) The ant has traveled 10 cm horizontally and 6 cm vertically from its starting

point on a twig with a slope of 0.5. If this is the only information the ant has,

what function best approximates the geometry of the twig at the point the ant is

on?

b) The ant can use its model of the environment to plan its movements. In particular,

it wants its next step to take it no higher than 0.1 cm above its current location.

How far can the ant travel horizontally and still accomplish this?

4. Sketch graphs of functions that match the following descriptions:

a) The function is discontinuous at X = 2 but continuous everywhere else.

b) The function is continuous at X = 5 but has no tangent line there.

c) The function is not differentiable at X = 1 but has a tangent line there.

2.5 The Derivative of a Function

Given a function Y = f (X), we now understand the concept of the derivative of f at a point

X0.
df

dX

∣
∣
∣
∣
X0

= lim
∆X→0

f (X0 + ∆X)− f (X0)
∆X

Using this definition, given any point X0, we can assign a number to that point: the value of
df
dX at X0.

This means that we have defined a new function from R to R: the function that assigns to

a point X the value of dfdX at that point X. We call this new function the derivative of f , and

we write it as df
dX . The process of finding df

dX given f is called differentiating f or “taking the

derivative of f .”

For example, consider the upper graph in Figure 2.17. It is the graph of some function f (X).

At every point, f has a tangent and that tangent has a slope. On the left-hand side, the slopes

are positive; in the middle region, they are negative; and in the right-hand region, they become

positive again. The graph that records the slope of f at every point is the blue curve shown

immediately below the graph of f . The blue curve is the graph of the function df
dX .

In general, if f is any function

f :R→ R

and f has a derivative everywhere, then there is another function

df

dX
:R −→ R

called the derivative of f . For example, we worked out earlier that if H(t) = H(0)− 16t2, then

H′(t) = −32t.
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1 2

-2

-1

1

-1 1 2

2

4

6

-1

f
X

X

df

dX

0

0

Figure 2.17: Upper: a function f (X), with tangents shown (red lines) at representative points.

Lower: the slopes of the tangents are plotted to form the function df
dX (blue curve).

Exercise 2.5.1 Match each function f in the top row to its derivative f ′ in the bottom row.

We have done the first one for you. Make sure you understand this, and then match the others.

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) (0, 0)

(0, 0)

(0, 0)

f

f’

a b c d e

1 2 3 4 5

We will now take a big step in abstraction, going meta on the whole idea of functions. You

might remember that we defined the function concept quite generally, using such examples as

coffee shop menus and Martian DNA. However, the functions we’ve actually worked with have

acted on nothing more exotic than numbers and points. So what was the purpose of all that

abstraction?

We have now come to a place where it is very helpful to think about functions that act on

other functions. Leibniz notation suggests that we can think of “ ddX ” as a function of functions,

a function that takes as its input a function f and returns another function df
dX (Figure 2.18).

Let’s work an example. Let’s take our falling ball, whose height at time t after release from

initial height H(0) is given by

function H H(t) = H(0)− 16t2
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functions

differentiable

f df

dX

functionsd

dX

Figure 2.18: Differentiation is a function from differentiable functions to their derivatives.

We already showed that for every time t,

derivative function of H
dH

dt
= H′(t) = −32t

Thus we can say that “the derivative of H(t) is −32t,” understanding that what we mean is

that at every point t,

∆H = (−32t) · ∆t

is the linear approximation to H.

Exercise 2.5.2 What does “the derivative of f (x) is 7x + 4.5” mean? Give two answers.

Given a function Y = f (X), we calculate the derivative function

d Y

dX

(

or
df

dX

)

by finding
f (X + ∆X)− f (X)

∆X

and letting ∆X approach 0.

Let’s try an example, the function

Y = f (X) = X2 +X

To calculate its derivative function, we plug the definition of f into the expression for the

average change of Y with respect to X

f (X + ∆X)− f (X)
∆X

=

(

(X + ∆X)2 + (X + ∆X)
)

− (X2 +X)
∆X

=
✚✚X2 + 2X · ∆X + (∆X)2 +��X + ∆X −✚✚X2 −��X

∆X

=
✟✟∆X · (2X + ∆X + 1)

✟✟∆X
= 2X + ∆X + 1

Letting ∆X approach 0, this expression becomes

lim
∆X→0

f (X + ∆X)− f (X)
∆X

= lim
∆X→0

(2X + ∆X + 1)

= 2X + 1
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So we can say that “the derivative of X2 + X is 2X + 1.” What we mean is that at every

point X0, the slope of the tangent line to Y = X2 +X is 2X0 + 1.

Exercise 2.5.3 Find the derivative of the function f (X) = X3 as in the above example. (Recall

from algebra that (a + b)3 = a3 + 3a2b + 3ab2 + b3.)

Exercise 2.5.4 Calculate the slope of the tangent line to the graph of Y = X3 at X = 1.

Higher Order Derivatives

Once we have the idea that the derivative is a function that takes a function f (X) and assigns to

it the function df
dX , we can ask: what if we applied this function twice? That is, if the derivative

df
dX is a function from R → R then does it have a derivative itself? The answer is yes, and the

derivative of the derivative is called the second derivative of f with respect to X, and is generally

written as

second derivative of f with respect to X =
d2f

dX2

functions

f
df
dX

functionsd
dX d  f

dX

functionsd
dX 2

2

H(t)

d
dt

height
H’(t)
velocity

d
dt

H’’(t)
acceleration

Figure 2.19: If the function df
dX is itself differentiable, then we can take its derivative to get a

third function, called the second derivative of f . For the falling body, the derivative of height is

velocity, and the derivative of velocity is acceleration.

The best-known example of a second derivative is in the motion of an object in space. If H(t)

is an object’s position at time t, then the first derivative of H with respect to time, H′(t), is

called the velocity of the object at time t. The derivative of velocity, H′(t), with respect to time

is the second derivative of H with respect to time, and is called acceleration (Figure 2.19).

Exercise 2.5.5 Find the second derivative of Y (X) = X3 + 15X2 + 3.

Exercise 2.5.6 The growth of cells in a petri dish slows down over time. Is the second derivative

of the function giving the number of cells positive or negative?

Derivatives of Famous Functions

The same method we just used, plugging “t +∆t” into f , subtracting f (t), dividing by ∆t, then

letting ∆t → 0, works generally to find the derivatives of many well-known functions, though in
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many cases, special technical tricks have to be used. However, this is a tedious process involving

much algebra, so it’s useful to know the derivatives of common functions.

Traditional calculus courses take great care in deriving these derivative functions for a large

class of functions. Here, we will simply present these rules and functions. For those who are

curious, try a quick Internet search. We list the most important here.

The Derivative of a Constant:

For any number c ,
d

dX

(
c
)
= 0

Exercise 2.5.7 Why does this make sense?

Power Functions:

For any constant n �= 0,
d

dX

(
Xn

)
= nXn−1

That is, if f (X) = Xn, then its derivative is f ′(X) = nXn−1. This holds even for values of n

that are not integers, such as fractions.

A good way to visualize the process is this: to find the derivative of something raised to a power

n, first bring the exponent down in front of the expression, and then decrease the exponent by

1.

For example, to find the derivative of X8, first bring the 8 down in front of the expression,

and then decrease the exponent to 7, to end up with 8X7. To find the derivative of X
1
3 , first

bring the 13 down in front of the expression, and then decrease the exponent to 13 − 1 = − 23 , to

end up with 1
3X
− 2
3 .

Exercise 2.5.8 Differentiate:

a) f (X) = X5 b) f (X) = X−3 c) f (X) = X17.2

Exercise 2.5.9 The maximum life-span, L, of a mammalian species increases with average

body mass B as roughly L(B) = B0.25. What is the rate of increase of life-span with body

mass?

Exponential Functions:
d

dX

(
ekX

)
= kekX

Logarithmic Functions:
d

dX

(
lnX

)
=
1

X
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Trigonometric Functions:
d

dX

(

sin(X)
)

= cos(X)

d

dX

(

cos(X)
)

= − sin(X)

Putting Functions Together

We often want to combine simple functions into more complex ones. There are several rules

for how to find the derivatives of these complex functions in terms of the derivatives of their

components.

Here we present the necessary rules.

The Constant Multiple Rule:

If c is a constant and f (X) is a function of X, and we let

h(X) = c · f (X) or simply h = c · f
then

dh

dX
=
d(c · f )
dX

= c · df
dX

In other words, a constant multiple just passes through the derivative unchanged.

For example,
d

dX
3X2 = 3

d

dX
X2 = 3 · 2X = 6X

Exercise 2.5.10 Differentiate:

a) f (X) = 4X8 b) f (X) = 3.5X−2 c) f (X) = πX4.3

The Addition Rule:

If f (X) and g(X) are two functions of X, and we let

h(X) = f (X) + g(X) or simply h = f + g

then
dh

dX
=
d(f + g)

dX
=
df

dX
+
dg

dX

In other words, the derivative of the sum of two functions is the sum of their derivatives.

Exercise 2.5.11 A similar rule holds for subtraction. Why?

Exercise 2.5.12 Apply the addition and subtraction rules to calculate the derivative of the

function f (X) = X +X2 − 2X3 + 2X4.
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Exercise 2.5.13 What is the rule for differentiating a function of the form h(X) = f (X) + c ,

where c is a constant? Justify your answer in terms of the rules we already know.

Be careful not to confuse the rule you just developed with the constant multiple rule!

• The derivative of 5 times something is 5 times the derivative of the something. In that

case, the constant 5 stays in place, unchanged.

• The derivative of something plus 5 (or minus 5) is just the derivative of the something. In

this case, the constant 5 vanishes when you take the derivative.

The Product Rule:

For two functions f (X) and g(X), if we let h(X) be their product,

h(X) = f (X) · g(X) or simply h = f · g
then

dh

dX
=
d
(
f · g

)

dX
=
df

dX
· g + f · dg

dX

The Quotient Rule:

If f (X) and g(X) are functions of X, and we let

h(X) =
f (X)

g(X)
or simply h =

f

g

then

dh

dX
=

d
( f

g

)

dX
=

df

dX
· g − dg

dX
· f

g2

Exercise 2.5.14 Differentiate the following functions:

a) f (t) = sin(t) cos(t) b) h(X) =
X2

3X + 5

c) f (X) =
4X√
X + 2

d) g(Y ) = (3Y 6) ln Y

Often, we have to deal with functions that are embedded in other functions, for example, the

function h(X) =
√
X2 + 1. This is a composite function: there is an inner function X2 + 1 and

an outer function
√

, and we first apply the inner function to X and then apply the outer

function to the result.

If we call the inner function g(X) and the outer function f (X), then h(X) can be written as

h(X) = f
(
g(X)

)
= (f ◦g)(X). (See Section 1.2 if you want to review composition of functions.)

The rule for differentiating a composite function is called the chain rule.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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The Chain Rule:

If f (X) and g(X) are functions of X, and we let

h(X) = f
(

g(X)
)

or simply h = f ◦ g

then
dh

dX
=
d(f ◦ g)
dX

=
df

dg
· dg
dX

The expression
df

dg
needs clarification. By

df

dg
, we mean the derivative of f , treating the whole

expression g(X) as if it were a variable. It’s equivalent to setting Y = g(X); then
df

dX
=
df

d Y
·d Y
dX

.

Let’s work out an example of the chain rule. We know that an object dropped from a height

H(0) will, after t seconds, be at the height

height equation H(t) = H(0)− 16t2

As the altitude of the object decreases, the atmospheric pressure on it will increase by the

relationship P (H) = e−
H
7 .

We want a function that will give us the atmospheric pressure as a function of time. To

do that, we need to make a composite of these two functions. However, we have a slight

problem, which is that the “H” in the falling object equation is in feet, and the “H” in the

pressure equation is measured in kilometers. Therefore, we need to be explicit about this. Since

1 kilometer = 3281 feet, we have

pressure equation in ft P (H) = e−
1
3281
· H
7

To find the rate of change of pressure P with respect to time, on a falling object dropped

from an initial height of H(0) km, we use the chain rule:

dP

dt
=
dP

dH
· dH
dt

=
d
(

e−
1
3281
· H
7

)

dH
·
d
(

H(0)− 16t2
)

dt

=

(

− 1

3281
· 1
7
· e− 1

3281
· H
7

)

·
(

− 32t
)

=

(
1

3281
· 1
7
· e− 1

3281
· H
7

)

·
(

32t

)

=

(
1

3281
· 1
7
· e− 1

3281
· H(0)−16t

2

7

)

·
(

32t

)

If the object is dropped from H(0) = 10,000 ft, then after t = 10 s, the rate of change of

pressure is

dP

dt

∣
∣
∣
∣
t=5 s

=

(
1

3281
· 1
7
· e− 1

3281
· 10000−16·(10)

2

7

)

·
(

32 · 10
)

≈ 0.01bars
s
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Exercise 2.5.15 Write the following expressions of h(X) as a composition of two functions,

one outer function f (Y ) and one inner function g(X), so that f
(
g(X)

)
= h(X). Then, find the

derivative of each.

a) h(X) = (X3 + 1)2 b) h(X) =
√
X5 c) h(X) = eX

2+1

Further Exercises 2.5

1. Differentiate the following functions:

a) f (X) = 2.5X

b) g(X) = 8X + 4

c) f (X) = 3X4 − 6X2 + 5X + 10

d) tanX =
sinX

cosX
e) y(X) = eX sinX

f) f (t) = 2.5 cos(t + π) + 10 (Functions like this are often used to model seasonally

varying parameters.)

g) w(t) = (t6 + 26t4 − t3 + 179)73
h) f (X) = e

√
X

i) f (t) = 3t7 + 4t5 −
√
t

j) f (X) =
1

1 +X
(You will see this function and the two that follow in more advanced

models later in this book.)

k) f (X) =
X

1 +X

l) f (X) =
X2

1 +X2

2. What is the slope of the tangent line to the graph of Y = eX
2

at X = 1?

3. Find the linear approximation to the function

f (X) = (X + 2)3 − e3X
at X0 = 0.

a) First, give your answer in the form ∆f ≈ m · ∆X.

b) Expand your answer from part (a) by rewriting ∆f as f (X) − f (X0) and ∆X as

X −X0, and solving for f (X). (Note: What is f (X0)?)

c) What is f (0.2), approximately?

d) Use your answer from part (b) to write down the equation for the tangent line to

f (X) at X0 = 0.
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4. In mammals, resting metabolic rate M is related to body mass B as approximately

M = 0.8B3/4

a) Find the linear approximation to this function for a body mass of 100 grams.

b) An animal species that currently averages 100 grams in mass evolves to have an

average mass of 110 grams. Use the linear approximation to estimate how much

its metabolic rate would change.

5. The number of species, S, living on an island or habitat fragment of area A can be

modeled as S = cAz , where z > 0. We can measure area in units that make c = 1,

simplifying the equation into S = Az . A common value for z is approximately 0.45.

Find dS
dA , and explain the meaning of this function and its significance for biodiversity

conservation.

6. The optimal cruising speed V for a bird in flight is given by the allometric equation

V = 12M1/6

whereM is the mass of the bird in kilograms, and V is in meters per second. The average

female bald eagle weighs around 5.6 kg. Find the linear approximation to the equation

above at M = 5.6. If a female American golden eagle is about 0.7 kg lighter than a

bald eagle, how much faster or slower would you expect its optimal cruising speed to

be? (Note: You can check that your answer is in the ballpark by just plugging numbers

into the equation above, but the point of this problem is to use a linear approximation

to arrive at your answer.)

7. Find the instantaneous rate of change of the function f (X) = 3 sinX + lnX at X = π.

8. Find the tangent to the function f (X) = 5X4 + 3X2 − 9 at X = 2.

9. In this section, we saw that it makes sense to think of differentiation as a function. Is

this function linear? Justify your answer.

2.6 Integration

So far we have focused on differentiation: if we know f (X), can we find f ′(X) (also called df
dX )?

As we saw in the previous section, the answer to this question is frequently yes. Most of the

famous formulas, like X2, Xn, eX , or sin(X), can be symbolically differentiated, and the product

rule, quotient rule, and chain rule give us a way to get derivatives of compound expressions made

up of these functions.

But what about the reverse process? If we are given f ′(X), can we recover f (X)? This

reverse process is called integration. Of course, when we are given a function that is obviously

the derivative of another function, this process is easy. For example, if we are given f ′(t) = 2t
then we know that any function of the form t2 + c , where c is a constant, has as its derivative

2t. We say that f (t) = t2 + c is the antiderivative of f ′(t) = 2t.
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Exercise 2.6.1 Why is the +c necessary? Find d
dt (t

2 + 5) and d
dt (t

2 − 1).

Exercise 2.6.2 Find the antiderivative of f ′(X) = 3X2.

But these are very special cases, and in most cases, given the functional form of f ′(t), it

is impossible to state the antiderivative f (t), and we have to rely on approximations. So, just

as in differential equations in Chapter 1, symbolic differentiation is usually easy, and symbolic

integration is usually hard.

f f’

(easy)

integration

 (hard !)

Before we go into how to get f back from f ′, let’s ask why: why would we want to do this?

One important class of cases involves a given function f ′(t) as a rate of something, and we want

to figure out the total amount of the something deposited by that rate.

For example, suppose we are given the speed V (t) of a car from a recording of the speedome-

ter. So we have V (t). But V (t) is just X ′(t), where X is the car’s position at time t, assuming it

starts at position 0 (which makes the constant c in the antiderivative to be 0). Can we recover

X(t) from V (t)?

V(t) 

t
t

1

A

B

0

speedometer20

40 80

100

1200

60

t
1

0

= X’(t)

For another example, we might know D′(t), the rate of drug delivery to a patient. This is the

readout of the flow meter attached to the intravenous drip. But what we want to know is not

D′(t), but rather D(t), the cumulative amount of drug that was delivered to the patient up to

time t.

D’(t)

t

I. V.
t1

initial level

0 t1

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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Euler and Riemann: Adding Up Little Rectangles

Let’s look at the case of recovering distance traveled, X(t), given the speed V (t). Suppose we

are given V (t) as a function, V (t) = 3t2. We know from the power rule that if X(t) = t3 + c ,

then X ′(t) = 3t2. So we can say immediately that in t seconds, the car has traveled a total of

t3 + c miles. Since at t = 0, it was at c miles, the distance it has covered is t3 miles. But what

about the case in which X ′ is not obviously the derivative of some function?

One way to do this is to use a version of Euler’s method. Suppose V (t) = X ′(t) is the velocity

of the car. Let’s write down the equation for Euler’s method:

new X = old X +X ′(old X) · ∆t
If we make the table to calculate Euler’s method, it looks like

t old X X
′(old X) X ′(old X) · ∆t new X = old X +X ′(old X) · ∆t

0 X0 X
′(X0) X

′(X0) · ∆t X∆t = X0 +X
′(X0) · ∆t

∆t X∆t X
′(X∆t) X

′(X∆t) · ∆t X2∆t = X0 + X
′(X0) · ∆t + X

′(X∆t) · ∆t

2∆t X2∆t X
′(X2∆t) X

′(X2∆t) · ∆t X3∆t = X0 + X
′(X0) · ∆t + X

′(X∆t) · ∆t + X
′(X2∆t) · ∆t

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exercise 2.6.3 In this table, what are the red entries in the last column? The black entries?

In the differential equation case, the critical step in Euler’s method is the calculation, at each

∆t, of the new value of X ′. Since the differential equation gives us X ′ as a function of X,

X ′ = f (X), we used that function f to calculate the new X ′.
Here we don’t have to do that, because we are given X ′(t) explicitly as a function of t, and

so we don’t have to recalculate it from the previous X value.

This makes the procedure of approximating X(t) much easier: we can input X ′(t) directly

from the formula and do not have to recalculate it using new values of X for every ∆t. Euler’s

method then takes a particularly simple form:

t V (t) V (t) · ∆t X(t)

0 V (0) V (0) · ∆t X(0) = X0
∆t V (∆t) V (∆t) · ∆t X0 + V (0) · ∆t
2∆t V (2∆t) V (2∆t) · ∆t X0 + V (0) · ∆t + V (∆t) · ∆t
3∆t V (3∆t) V (3∆t) · ∆t X0 + V (0) · ∆t + V (∆t) · ∆t + V (2∆t) · ∆t
...

...
...

...

If we summarize this simplified table, we see that

X(t) = X(0)
︸ ︷︷ ︸

location at

time 0

+ V (0 · ∆t) · ∆t
︸ ︷︷ ︸

distance covered in first

∆t

+ V (1 · ∆t) · ∆t
︸ ︷︷ ︸

distance covered in second

∆t

+ V (2 · ∆t) · ∆t
︸ ︷︷ ︸

distance covered in third

∆t

+ · · ·

Notice what this is saying: for each time interval, we are adding a little increment. If we

represent time as t = 0,∆t, 2∆t, 3∆t, · · · , k∆t, · · · , then the little increments are each

V (k · ∆t) · ∆t
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as k ranges from 0 to n, where n · ∆t is the stopping time. (In other words, n is the number

of ∆t’s necessary to get to the stopping time.) This has a geometric interpretation that we will

discuss a little later.

Each little increment V (k ·∆t) ·∆t represents the distance the car travels in that ∆t. We get

this by assuming that the velocity V is constant over the short interval ∆t, which enables us to

use the formula

distance = velocity× time

to calculate the distance traveled.

This sum of little increments is called a Riemann sum.

We can summarize the Riemann sum as

X(t) ≈ X(0) +
k=n

Sum
k=0

V (k · ∆t) · ∆t

where the expression
k=n

Sum
k=0

f (k)

means “the sum of all terms f (k), where k takes on every integer value from 0 to n.”

Finally, we use the Greek uppercase sigma (Σ) to stand for “sum,” and we have

X(t) ≈ X(0) +
k=n∑

k=0

V (k · ∆t) · ∆t

Exercise 2.6.4 Compute:

a)
k=3∑

k=0

2k b)
k=4∑

k=0

k3 c)
k=3∑

k=0

6k + 2

Procedure for the Riemann Sum

(1) Break down the total elapsed time into many small ∆t’s.

(2) Assume that V (t) is constant over each small interval ∆t.

(3) Use the equation “distance = velocity× time” to calculate the distance traveled in that ∆t.

(4) Add up the little distances.

Exercise 2.6.5 Find the Riemann sum for f (X) = X2 + 5 between X = 0 and X = 2 using a

step size of 0.5.

In this way, we can approximate the function X(t) by a finite sum of little increments that

depend on ∆t. This approximation gets better and better as ∆t gets smaller. So we take the final

step of letting ∆t approach 0. We can then replace the “approximately equals” sign by “exactly

equals”:

X(t) = X(0) + lim
∆t→0

k=n∑

k=0

V (k · ∆t) · ∆t
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We need a new symbol for this infinite limit of the sum Σ as ∆t approaches 0. The standard

symbol for this is a big script S shape called the “integral sign”

X(t) = X(0) +

∫ t

0

X ′ · dt (2.2)

The expression
∫ t

0 X
′ · dt is called the definite integral of X ′(t) from 0 to t. Equation (2.2)

is called the f undamental theorem of calculus.

To get some intuition for the fundamental theorem of calculus, let’s rewrite equation (2.2)

as

X(t)−X(0) =
∫ t

0

X ′ · dt (2.3)

Now, let’s think about the IV drip example. To find out how much fluid the patient has

received, you could follow the procedure described here: add up the little rectangles. Or you

could record how much fluid is in the IV bag at the start of treatment, how much is left at

the end, and subtract. The fundamental theorem of calculus tells us that the results will be the

same.

An Example: A Speeding Car

Let’s use a Riemann sum approximation to find an integral that is not explicitly known. Suppose

the speed of a car, in feet per second, is

V (t) = 2
√

1000− t3

This corresponds to a car starting at around 45 miles per hour (≈ 65 feet per second) and

slowing down to a complete stop over an interval of 10 seconds.

t 

V(t)
V(t) = 2√1000-t3

100

ft
sec(

(

65

(sec)

If we want to figure out how far the car has traveled at a particular time t, we need to find

X(t).

We mentioned earlier that most of the time, it is impossible to find an actual equation for the

solution to an integration problem. This is one of those cases. There is no closed-form expression

for the antiderivative of 2
√
1000− t3.8

So how do we find the distance we’ve traveled in the car at some time t? We can use the

Riemann sum method to approximate it. So let’s suppose X(0) = 0, and let’s use a step size of

∆t = 0.1 to approximate X at time t = 10 seconds, the moment at which the speed is 0 (i.e.,

when the car comes to a complete stop). We’ll be able to use this to find the distance required

to stop the car, which can be an important safety consideration.

8To state this precisely, the antiderivative of 2
√
1000− t3 is not an elementary function. Elementary functions

are those made up of a finite number of power functions, trig functions, exponential functions, and their inverses,
combined using addition, subtraction, multiplication, division, and composition—in short, anything for which you
can write down a simple formula
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The Riemann sum is

t V (t) V (t) · ∆t X(t) =
∑
V (t) · ∆t

0. 63.25 6.325 6.325

0.1 63.25 6.325 12.65

0.2 63.25 6.325 18.97

0.3 63.24 6.324 25.30

0.4 63.24 6.324 31.62
...

...
...

...

9.9 10.90 1.090 535.0

Therefore, the total distance traveled in 10 seconds is 535.0 feet.

Exercise 2.6.6 Find the distance traveled by the car in 8 seconds if V (t) = 4
√
500− t3. Use

a step size of 0.5. You may want to use SageMath or a spreadsheet to help with the calculation.

The Geometry of the Riemann Sum

There is a geometric visualization of the Riemann sum that gives a lot of significant insight into

the concept. When we calculated the Riemann sum, we followed the process below:

(1) We broke down the total elapsed time into many ∆t’s.

(2) We assumed that V (t) was constant over each interval ∆t.

(3) Then we used the equation “distance = velocity× time” to calculate the distance traveled

in that ∆t.

(4) Then we added up the little distances.

This process can be viewed geometrically (Figure 2.20).

t1 t1 t+
t

V(t) V(t1)

t

V(t) = 2√1000-t3

V(t1)

true area

error

Figure 2.20: The blue rectangle is an approximation to the area under V (t) in a small region of

width ∆t. The inset illustrates the error in this approximation.

During the brief interval from t = t1 to t = t1 +∆t, how far did the car move? We approxi-

mated its speed over that short interval using the speed at the beginning of the interval, which

is V (t1), and assumed that the car was constant in velocity over that interval. Based on this

assumption, we then used

distance = velocity× time

to calculate the distance that the car covered during the time interval t1 to t1+∆t as V (t1) ·∆t.
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Now consider the blue rectangle. It has a base that is ∆t wide, and its height is V (t1). So

the area of the blue rectangle is given by

area = height× width

or in this case, area = V (t1) ·∆t. But this is the same calculation that we just did for the distance

traveled:
distance = velocity × time

� � �
V (t1) · ∆t = V (t1) × ∆t

� � �
area = height × width

In other words, the area of the little blue rectangle is the distance traveled during that ∆t.

Then what is the total distance traveled by the car? It must be approximately the sum of the

little distances. But then the total distance that the car taveled from 0 to t is approximately

equal to the sum of these little rectangles, or
∑
V (t) · ∆t (Figure 2.21).

t

V(t)

V(t) = 2√1000-t3

t

Figure 2.21: We can estimate the area under the curve V (t) by adding up the areas of all the

blue rectangles of height V (t) and width ∆t.

The sum of the little rectangles is approximately the area under the curve, and the sum of

the little rectangles is approximately equal to the total distance the car has driven. In the limit

as ∆t approaches 0, the two are the same: distance is the area under the curve of velocity as a

function of time.

Thus, the distance the car traveled from point A at t = 0 to t = t1 is the area under the

velocity curve between t = 0 and t = t1 (Figure 2.22).

V(t) 

t
t

1

A
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Figure 2.22: Left: The car’s speedometer tells us the car’s velocity V at any time t. Right: We

can graph this Velocity data as V (t). The shaded blue area is equal to the distance the car has

traveled from t = 0 to t = t1.
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And similarly, in the drug drip problem, the cumulative amount of drug delivered from t = 0

to t = t1 is equal to the area under the flow rate curve D′(t) (Figure 2.23).

D’(t)

t

I. V.
t1

initial level

0 t1

Figure 2.23: Left: The intravenous drug delivery system has a flow meter that tells us, at any

time, how fast the drug is flowing into the patient, that is, D′(t), where D(t) is the total

amount of drug delivered. Right: The shaded area shows the total amount of drug that has been

delivered by time t1, while the pink region shows the amount of drug left in the bag.

In fact, we can generalize the car velocity V (t) to be any function f (t). In general, let f be

any reasonably well behaved function of t.

Let’s define a new function of t, called F (t),

F (t) = the area under f (t) from 0 to t

So, for example, the hatched area is the value of F (t + ∆t), and the pink area is the value

of F (t) (Figure 2.24). Now consider the green rectangle. It has height f (t) and width ∆t, so

its area is f (t) · ∆t. But now let’s look at the green rectangle from the point of view of the

area-under-f function F . It is clear that the green rectangle is approximately equal to the area

under f from 0 to t+∆t (the hatched area) minus the area under f from 0 to t (the pink area).

This approximation gets better and better as ∆t → 0.

F (t + ∆t)
︸ ︷︷ ︸

hatched area

− F (t)
︸︷︷︸

pink area

≈ f (t) · ∆t
︸ ︷︷ ︸

green rectangle

t t t
t

f(t)
f(t)

t

+

Figure 2.24: The green rectangle is approximately equal to the area under f (t) from t to t+∆t,

which is the shaded area, minus the area under f (t) from 0 to t, which is the pink area.
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If we divide both sides by ∆t,
F (t + ∆t)− F (t)

∆t
≈ f (t)

then as ∆t → 0, the left-hand side is just the definition of F ′, so

F ′ = f

We can now say that the area under f from a to b is just the area under f from 0 to b minus

the area under f from 0 to a.

F (b)− F (a) =
∫ b

a

f (t) · dt

This is another version of the fundamental theorem of calculus.

Exercise 2.6.7 According to CDC data, the average American six-year-old girl weighs 42.5

pounds, and the average ten-year-old girl weighs 75 pounds. What is the area under the growth

(rate of change of weight) function between t = 6 and t = 10?

Example: A Drug Drip

We can illustrate the general principle of integration by Riemann sums using the example of an

IV drip delivering drug to a patient.

D’(t)

t

I. V.
t1

initial level

t2

0 t2t1

Figure 2.25: The cross-hatched area is the amount of drug that was delivered from t1 to t2. It

is equal to the total amount delivered from t = 0 to t = t2 minus the amount delivered from

t = 0 to t = t1 (white shaded area).

The flow meter on the drip gives us D′(t), the flow rate as a function of time. But what we

need to know is how much drug was delivered to the patient between t1 and t2 (Figure 2.25).

Consulting the figure, we see that this is the cross-hatched part of the area under the curve

D′(t).
Then the cross-hatched area can be found by realizing that
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cross-hatched area =
area under D′(t) from

0 to t2
− area under D′(t) from

0 to t1

� � �
∫ t2
t1
D′(t) · dt =

∫ t2
0 D

′(t) · dt −
∫ t1
0 D

′(t) · dt
� � �

∫ t2
t1
D′(t) · dt = D(t2) − D(t1)

This is an application of the fundamental theorem of calculus.

But it is important to remember that in the typical case, we will be given D′(t) as data,

the readout of the flow meter, that has been stored as a digital record. We have no idea what

mathematical function of time that is, and we can be pretty sure that it isn’t some simple

mathematical function that happens to have a handy antiderivative function.

Therefore, the expression
∫ t2
t1
D′(t) · dt is not going to be very helpful in these real-world

cases, and the only technique open to us is to add up the little rectangles.

Further Exercises 2.6

1. What is the area under the graph of the function f (x) = cosX−X between X = 0 and

X = π?

2. a) Approximate the area under the graph of f (X) = X2 between X = 2 and X = 4

using a ∆X of 0.5.

b) Find the exact area under f (X) = X2 between X = 2 and X = 4.

3. a) Approximate the area under the graph of f (X) = x4 + 1 between X = 1 and

X = 3 using ∆t = 0.5.

b) Find the exact area under the graph of f (X) = X4 + 1 between X = 1 and X = 3.

c) How could you make the answer to part (a) closer to the exact value you found

in part (b)?

4. You are studying a plant population whose age distribution is given by X(a) = 10
9
1
a2 ,

where a is age in years. The smallest individuals you can reliably identify are one year

old, so the age distribution starts at 1, and the plant can live no longer than ten years.

What fraction of the population is between 3 and 6 years old?

5. A building has solar panels on the roof. The graph below shows the amount of

power generated by the solar panels. Assume you have the data used to generate the

graph, sampled so frequently that it may be regarded as continuous. Describe how you

would compute the total amount of electricity generated between 9 a.m. and 11 a.m.
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2.7 Explicit Solutions to Differential Equations

In the very rare case in which an antiderivative function can be found, we can use the antideriva-

tive function to create explicit solutions to some simple differential equations.

In Chapter 1, we said that for every well-behaved vector field, the integral curve exists. This

is the red curve, and its existence is guaranteed by the fundamental theorem on the existence

and uniqueness of solutions to ordinary differential equations.

But we also said that while the red curve is known to exist, the equation for the red curve

is generally unknown and unknowable, in the sense that most differential equations do not have

solutions in terms of elementary functions. We will now deal with one of the few cases in which

the equation for the red curve is known.

This is called an explicit solution to the differential equation X ′ = f (X), and we can actually

write out the function X(t), and then show that

d

dt
X(t) = f

(

X(t)
)

We will study two of the simplest differential equations, X ′ = kX and X ′ = −kX. These

equations have explicit solutions.

Suppose an individual in a population of size X gives birth, on average, to b offspring per unit

time (i.e., the population has per capita birth rate b). The population has per capita death rate

d , per capita immigration rate i , and per capita emigration rate e, all assumed to be constants.

In this case, the per capita population growth rate r = b+ i − d − e is constant, and we can

write the differential equation

X ′ = rX (2.4)

What behavior follows from this differential equation? Of course, we can integrate it numerically,

using SageMath. But in this case, there is an explicit solution to the differential equation. We

saw earlier that
d

dt
ekt = kekt

so if X(t) = ekt , then

X ′(t) =
d

dt
X(t) =

d

dt
ekt = kekt = kX

Therefore, the function X(t) = ekt solves the differential equation X ′ = kX.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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If we plot both the numerical integration of X ′ = kX and the explicit solution X(t) = ekt , we

see that they agree (Figure 2.26). Indeed, ekt is the equation for the true red curve that solves

the differential equation. The discrete points are the numerical approximation (blue line) to the

red curve.

t

X(t)

10 20 30

2

3

0

1

X

4

Figure 2.26: Left: state space and vector field for X ′ = 0.05X. Right: time series plots showing

e0.05t (red) and Euler integration of X ′ = 0.05X (blue). Initial condition X(0) = 1.

Exercise 2.7.1 Use SageMath to plot ekt for three different values of k , say k = 0.1, k = 1,

and k = 5.

The type of growth that corresponds to these equations is called exponential growth. How

fast is it?

The Rate of Exponential Growth

In the year 1256, the Arab scholar ibn Khallikan wrote down the story of the inventor of chess

and the Indian king who wished to reward him for his invention. The inventor asked that the

king place one grain of wheat (or in other versions of the legend, rice) on the first square of the

chessboard, two on the second, four on the third, and so on, doubling the number of grains with

each succeeding square, until the 64 squares were filled. The king thought this a very meager

reward, but the inventor insisted. To the king’s shock, it turned out that there was no way he

could give the inventor that much grain, even if he bankrupted the kingdom.

Let’s plot X(t) = # of grains of rice at time t. If we plot the number of grains, starting at

t = 0 with 1 grain on the first square, then the resulting first few iterations look like Figure 2.27.

The red points lie exactly on an exponential curve (black), namely

1 2 3 4

5

10

15

X(1) = 2
X(2) = 4

X(3) = 8

X(4) = 16

time

# of grains

0

X(0) = 1

Figure 2.27: The red dots are calculations of X(t) = 2t for t = 0, 1, 2, 3 and 4. The black curve

is the continuous function X(t) = 2t , which exhibits exponential growth.
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X(t) = e(ln2)·t

because e(ln2)·t = 2t .
You can think of the smooth curve e(ln2)·t as representing a process in which growth occurs

smoothly all the time, whereas the points represent a process in which growth happens and/or

is measured only at the time points t = 0, 1, 2, 3, . . . This latter process is called a discrete-time

process and it will be studied in Chapters 5 and 6.

Exercise 2.7.2 How many grains of wheat would there be on the last square of the chessboard?

Exercise 2.7.3 Your employer offers you a choice: be paid $1 million for thirty days of work or

receive $0.01 on the first day and double your earnings each day. Which do you pick and why?

Exercise 2.7.4 Use SageMath’s built-in differential equation solver or your own implementation

of Euler’s method to simulate equation (2.4) on page 109 for at least three different values of r .

Mind-Blowing Fact of the Day

A sheet of paper is about 0.1mm thick. If you folded such a sheet of paper in half 50 times, the

resulting stack would reach 3/4 of the way to the sun! It would take light 6.3 minutes to travel

this distance.

The differential equation X ′ = rX has the solution X = X0 · er t .

Exponential Decay

The differential equation X ′ = −kX models a process in which a constant fraction k of X is

removed or dies at any given time, for example, a liquid that evaporates at a constant rate k ,

or a chemical species that decays into another at a constant rate

X
k−→ A

In population dynamics, in a population whose the per capita death rate d exceeded the per

capita birth rate b, growth would be governed by X ′ = −kX where k = d − b.
What is the behavior predicted by this model? The vector field is always negative, and the

arrows get smaller and smaller as we get closer to zero (Figure 2.28 left).

The differential equation X ′ = −kX has an explicit solution:

X(t) = X0 · e−kt

Exercise 2.7.5 Verify that X(t) = X0 · e−kt solves the differential equation X ′ = −kX.

http://dx.doi.org/10.1007/978-3-319-59731-7_5
http://dx.doi.org/10.1007/978-3-319-59731-7_6
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X(4) = 0.0625

X(1) = 0.5

X(2) = 0.25

X(3) = 0.125

X(0) = 1

1 2 3 4 5

0.2

0.4

0.6

0.8

1

X(5) = 0.03125

time

XX

Figure 2.28: Vector field and time series for X ′ = (ln 0.5) ·X

The graph of X(t) depits what is called exponential decay (Figure 2.28 right). In this case,

the differential equation is X ′ = (ln 0.5) · X, and the explicit solution is X(t) = e(ln 0.5)·t . Just

as in exponential growth, we can imagine exponential decay it as a continuous process governed

by a differential equation, or as a discrete process in which, say, half of what is left is removed

every night at midnight.

When Models Break Down

Over short periods of time, populations can be modeled as growing or decaying exponentially.

However, if a population truly underwent exponential growth, it would never stop growing. An

exponentially growing population of aardvarks, elephants, or naked mole rats would reach the

mass of the Earth, then the solar system and, eventually, the universe. Clearly, something must

prevent real populations from growing exponentially, and if we want a population growth model

to be useful over more than just the short term, the exponential model must be modified to

incorporate processes that stop the population from growing.

Similarly, exponential decay can’t be pushed too far. If every night, your roommate removes

half of the chocolate left in the fridge, then after a month of this, the fraction of chocolate left

would be 1
230 ≈ 1

1010 , which is smaller than a molecule of chocolate.

The point here is not to bash exponential growth or decay as a model. It fails in a particularly

spectacular way, but all models fail at some point. A perfect model would be as complex as the

system being modeled and therefore useless. Rather, the lesson is to always do a sanity check

when working with models. When using mathematical models in biology, keep an open mind—

some strange phenomena first discovered in models have been found in the real world—but use

your biological knowledge to judge when a model’s predictions are sufficiently wrong to require

the model to be modified in order to be useful for the task at hand. There is no universal recipe

for doing this, which is why modeling is often called an art.

Exercise 2.7.6 Name two biological factors or processes that might stop a population from

growing.

Exercise 2.7.7 A population of 20 million bacteria is growing continuously at a rate of 5% an

hour. How many bacteria will there be in 24 hours?



2.7. Explicit Solutions to Differential Equations 113

Exercise 2.7.8 A pollutant breaks down at the rate of 2% a year. What fraction of the current

amount will be present in 20 years? Let X(0) = 1.

Further Exercises 2.7

1. The population of an endangered species is declining at a rate of 2.5% a year. If there

are currently 4000 individuals of this species, how many will there be in 20 years?

2. If money in a bank account earns an interest rate of 1.5%, compounded continuously,

and the initial balance is $1000, how much money will be in the account in ten years?

3. Radioactive iodine, used to treat thyroid cancer, has a half-life of eight days. Find its

decay constant, r . (Hint: You’ll need to use natural logarithms.)

4. Mary is going to have an outdoor party in 10 days. She wants to have her backyard

pond covered in water lilies before the party, so she goes to the nursery to buy some

water lilies. Mary gives the clerk the dimensions of her pond, and the clerk, knowing the

growth rate of the water lilies that he stocks, calculates that if she purchases a single

water lily, it will produce a population of ten thousand lilies that will completely cover

the surface of the pond in 20 days. Mary reasons that if she buys two water lilies instead

of one, she can meet her goal of having the pond surface covered in 10 days. Is there

anything wrong with Mary’s reasoning? How many water lilies will Mary need to buy to

meet her goal?

5. You have $10,000 and can put it either in an account bearing 3.9% interest compounded

monthly or one bearing 4% interest compounded annually. If the money will be in the

account for five years, which one should you choose?

6. The economic activity of a country is often quantified as the gross domestic product

(GDP), which is the sum of private and government consumption, investments, and

net exports (the value of exports minus the value of imports). For a developed country

such as the United States, economists might see a GDP growth rate of 3% a year as

reasonable. However, production and consumption create some pollution. By how much

would pollution per dollar of GDP have to decline for pollution levels 50 years from now

to be the same as current levels, assuming a 3% annual growth rate of GDP? In 75

years? In 100 years? (Hint: Let the current pollution level be 1 and find out what the

future pollution level would be).

7. If you want to approximate the time it takes an exponentially growing quantity to double,

you can divide 70 by the percentage growth rate. For example, a population growing at

2% a year has a doubling time of about 35 years. Find an exact equation for doubling

time and explain why the rule of 70 works as an approximation. (Hint: Start by trying

a few concrete examples.)



Chapter 3

Equilibrium Behavior

3.1 When X ′ Is Zero

A major clue to the behavior of dynamical systems is given by the existence and location of

equilibrium points. These are points in state space at which the system does not change. More

formally, an equilibrium point of a differential equation X ′ = f (X) is a point X0 at which

f (X0) = 0. Since a differential equation specifies a vector field, we can also say that such a

point is an equilibrium point of the vector field X ′ = f (X).

So far, we have studied differential equation models almost entirely by simulating them.

Simulation is a powerful tool. Indeed, it is sometimes the only available one. But it can also lead

us astray.

To see one example of how, consider the following modification of the logistic equation:

X ′ = rX(1−
X

k
)(
X

a
− 1) (3.1)

We will delay discussion of the biological meaning of this equation until page 123.

One way to study this equation is to pick some values for r , a, and k and an initial condition

X(0) and numerically integrate the resulting equation. Figure 3.1 does this for three values of

X(0).

4 8 12

50

100

150

200

time
0

X

Figure 3.1: Simulations of equation (3.1) with r = 0.1, k = 100, a = 5 and initial conditions

X(0) = 10 (red), X(0) = 20 (black), X(0) = 200 (blue).

Looking at Figure 3.1, we might think we understand how the model behaves. If the population

starts below k , it grows slowly, speeds up, and then gradually reaches k . If it starts above k , it

gradually declines to that level. The new equation appears to behave just like the logistic.

c© Springer International Publishing AG 2017
A. Garfinkel et al., Modeling Life,
DOI 10.1007/978-3-319-59731-7_3
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But what happens if we try one more value for X(0)? Suppose we start with an initial condition

X(0) = 4 and all parameters as before.Now the population declines instead of growing (Figure3.2).

10 20 300

50

100

time

X

Figure 3.2: An additional simulation of equation (3.1) with initial condition X(0) = 4 (green,

arrow). Note that the population declines.

The trick here, of course, is that the value we chose for a was 5. All initial values in Figure 3.1

were above a, while the one in Figure 3.2 is below a. Equation (3.1) models a situation in which

populations fail to grow below a certain threshold size, namely a. We will return to this model

later in this section.

It would be very useful to be able to figure out that that other behavior was possible, since

we can’t run simulations from every initial condition. There is such a method. In one dimension,

it tells us the whole behavior of the system, and even in higher dimensions, it gives us very

important landmarks that determine system behavior.

The first thing we need to do is to find the points where the system is not changing, that is,

the equilibrium points.

3.2 Equilibrium Points in One Dimension

As we learned in calculus, the derivative of a constant is zero. This is true because a derivative

is a rate of change, and the value of a constant function doesn’t change. Looking at the same

issue geometrically, we note that the graph of a constant function is a horizontal line, and the

slope of a horizontal line is zero.

The converse is also true. If the derivative of a function at some point is zero, the value of

the function is not changing at that point. In the context of differential equations, such points

are called equilibrium points (or fixed points or constant steady states).

Equilibria are very important to the dynamics of all models, and they are especially important

in single-variable models. The dynamics of such models are very limited—the state value can

either grow without limit or go to an equilibrium point.

There are also special cases, in which the state variable is something like the position of a

runner on a closed track, or the position of the hand on a clock, where moving in the same

direction can bring you back to your starting point. In those cases, oscillations are possible.

(See, for example, the angular variable for the pendulum in Chapter 6.)

Finding Equilibria

How do we find the equilibria of a differential equation? We know that at an equilibrium point,

the derivative is zero. Since what a differential equation gives us is the derivative, all we have

to do is set the equation equal to zero and solve for the state variable.

http://dx.doi.org/10.1007/978-3-319-59731-7_6
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For example, the logistic equation,

dX

dt
= rX(1−

X

k
)

is a common model for population growth that we’ve already encountered. To find its equilibria,

we need to find the values of X for which

0 = rX(1−
X

k
)

These can be found either by multiplying the expression out and then solving the resulting

algebraic equation, or by looking thoughtfully at the right-hand side and seeing that it is the

product of two terms. The only way the product of several quantities can be zero is for at least

one of those quantities itself to be zero. Looking at the logistic equation shows that it is equal

to zero if

X = 0

so X = 0 is one equilibrium point.

If X isn’t zero, the population could still be at equilibrium if

1−
X

k
= 0

This occurs when X

k
= 1, implying that X = k is another equilibrium point.

Have we found all the equilibria of the logistic equation? Multiplying it out would give a term

with X2, and since a quadratic equation has at most two distinct solutions, we are done.

To find the equilibrium points of a differential equation X ′ = f (X), set X ′ = 0 and solve the

resulting equation to find the values of X that make X ′ = 0.

Exercise 3.2.1 Consider a population of organisms that reproduce by cloning and have geno-

types A and a with per capita growth rates rA and ra. If we denote the fraction of the population

having genotype a by Y , the equation describing how the prevalence of genotype a changes is

d Y

dt
= (ra − rA)Y (1− Y )

a) What does the quantity 1− Y represent?

b) Using reasoning similar to what we used for the logistic equation, find the equation’s equi-

libria. Explain how you know you have found all of them.

Stability of Equilibrium Points

Having found a model’s equilibrium points, we next want to know whether the system will stay

at these equilibria if perturbed. We might also be interested in knowing whether the system can

spontaneously reach a particular equilibrium if it did not start there. These are questions about

the stability of equilibria. A simple way of thinking about stability is illustrated in Figure 3.3.

The picture on the left illustrates a stable equilibrium—if the ball in the cup is given a slight

push, it will return to the bottom of the cup. In the picture on the right, the ball is on a hilltop

and will roll away, never to return, with even a tiny push.
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Figure 3.3: Stable (left) and unstable (right) equilibria.

Returning to the language of dynamical systems, if an equilibrium is stable, the system returns

to it after a small perturbation. If it is unstable, even a tiny perturbation will send the system

to a different equilibrium or a trajectory of infinite growth.

Stability Analysis 1: Sketching the Vector Field

In one dimension, a model’s vector field can be used to completely figure out whether equilibria

are stable. We start by drawing a line to represent the system’s state space.

Then we need to find the equilibrium points and mark them on this line. Let’s use the logistic

equation as an example:

X ′ = rX(1−
X

k
)

As we saw above, the equilibrium points of this equation are X = 0 and X = k (Figure 3.4).

X
X=0 X=k

Figure 3.4: Equilibrium points of the logistic equation.

Note that the points divide the line into intervals.

The next task is to determine whether the equilibrium points are stable or unstable. In other

words, we need to find out how the state point would move if nudged off an equilibrium point:

toward it or away from it. In one dimension this is easy; all we have to do is figure out whether

the point moves to the left or to the right, which means that we need to find out whether

the sign of the vector field is positive or negative. Since the point moves to the left when the

state variable is decreasing, leftward movement corresponds to a negative value of X ′; similarly,

rightward movement corresponds to a positive value of X ′. Thus, we need to figure out whether

X ′ is positive or negative on each interval and draw change vectors accordingly, as in Figure 3.5.

In this case, only the direction of the vectors matters; we don’t have to worry about their length.

A drawing of a model’s state space showing equilibrium points, a few representative change

vectors, and key trajectories is called a phase portrait of the model. Figure 3.5 is a phase portrait

of the logistic equation. (Often, in one dimension, we omit drawing the trajectories and show

only the change vectors. The trajectories are obvious.)

X
X=0 X=k

Figure 3.5: A phase portrait of the logistic equation showing unstable (left) and stable (right)

equilibria.
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To create Figure 3.5, it was necessary to find the sign of the logistic equation on various

intervals of the state space. Luckily, this can be done without any algebraic calculations. Instead,

we take advantage of the following observations:

1) The parameter r , the population’s per capita growth rate in the absence of intraspecific

competition, is positive.

2) X is a population size, so it must be nonnegative (positive or zero).

3) The carrying capacity k is also a population size and must be positive.

X ′ = rX
︸︷︷︸

non negative

(1−
X

k
)

To find the sign of X ′, we first note that rX is always nonnegative, so the sign of 1 − X

k

determines the sign of X ′. When X < k , 1− X
k

is positive, and when X > k , 1− X
k

is negative.

Therefore, X ′ is positive on the interval 0 < X < k and negative on the interval X > k . This

gives the phase portrait in Figure 3.5.

Once the phase portrait is drawn, stability becomes obvious. An equilibrium point is stable if

the vector field would move the system back to the equilibrium if it was nudged off; if the vector

field would carry the system away from the equilibrium point, that equilibrium point is unstable.

If vectors on one side of the equilibrium point toward it and those on the other side point away

from it, we say the equilibrium is semistable. Semistability is an unusual situation that we will

not devote much attention to.

Exercise 3.2.2 Draw phase portraits to confirm each of the above statements.

Stability Analysis 1 (Continued): The Method of Test Points

In the logistic equation example, it was easy to sketch a phase portrait of the system simply by

looking at the sign of each term in the equation and multiplying the signs. However, there are

many models for which this won’t work, or at least won’t be as simple. For example, consider a

population that undergoes logistic growth but also has 10% of individuals removed every year,

say by fishing. If r = 0.2 and k = 1000, the change equation for this system is

X ′ = 0.2X(1−
X

1000
)− 0.1X

This system’s equilibria are X = 0 and X = 500.

Exercise 3.2.3 Confirm that the equilibria given above are correct.

As before, we can draw the state space and mark the equilibria atX = 0 and X = 500, dividing

the line into intervals. However, it’s no longer obvious how to find the sign of X ′ in each interval.

For reasons that we will soon explain, it is enough to pick one point in each interval and find

the sign of X ′ at that point. In the region between 0 and 500, we might choose X = 100. Then

X ′ = 0.2×100×(1−100/1000)−0.1×100 = 8, so the change vectors point to the right. Above

500, we can use X = 1000. Then, X ′ = 0.2× 1000× (1− 1000/1000)− 0.1× 1000 = −100,

so the change vectors point to the left. This means that the equilibrium at X = 0 is unstable

and the one at X = 500 is stable (Figure 3.6).
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X
0 500

Figure 3.6: Phase portrait for the logistic growth with harvesting example.

Exercise 3.2.4 Find the equilibria of X ′ = 0.1X(1 − X

800) − 0.05X and use test points to

determine their stability.

You may wonder what allows us to use only one point in each interval. How do we know that

the sign of X ′ won’t change between adjacent equilibrium points?

The differential equations that we deal with are nearly always continuous functions. Informally,

saying that a function is continuous just means that you can draw its graph without lifting your

pen from the paper. If a function is continuous, it can’t jump from one value to another—it has

to pass through all the values in between. (This is called the intermediate value theorem.)

This matters for our purposes, because when a continuous function goes from positive to

negative or vice versa, it has to pass through zero. Since the function in question is X ′, every

value at which it is zero is an equilibrium point. But we’ve already found and plotted all the

equilibria! Thus, X ′ can’t change sign between equilibria, and we can use test points to perform

graphical stability analysis.

Exercise 3.2.5 Draw several functions (by hand or using SageMath) to convince yourself that

a continuous function can’t change sign without passing through zero.

Stability Analysis 2: Linear Stability Analysis

Drawing vector fields to determine stability works wonderfully in 1D, somewhat in 2D, badly

in 3D, and not at all in higher dimensions. The more general way to find the stability of an

equilibrium point is to use linear approximation. Here we will illustrate this method for a one-

dimensional vector field, but in Chapter 6, we will see it in its full glory in n dimensions.

We begin by making a new kind of plot. Since X ′ is a function of X, we can plot this function

in a graph. We will put on the X axis the state space X, and on the Y axis we put the vector

field X ′, which is f (X).

Note the places where the graph of X ′ intersects the X axis, that is, the line X ′ = 0. The

intersection points are equilibrium points.

Exercise 3.2.6 Why is this true?

If we make this plot for the logistic vector field,

X ′ = X(1−
X

k
)

we get Figure 3.7.

As we already know, there are two equilibria, at X = 0 and X = k . The one at X = 0 is

unstable, while the one at X = k is stable.

http://dx.doi.org/10.1007/978-3-319-59731-7_6
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Now we can connect the vector field X ′ = f (X) to the graph of f (X). When the graph is

above the X axis, X ′ is positive, which means that X is increasing, and when the graph is below

the X axis, X ′ is negative, which means that X is decreasing.

Look at Figure 3.7. The equilibrium point at X = 0 occurs when f (X) goes from negative to

positive. If f (X) goes from negative to positive, it is increasing. This means that the tangent

to f (X) at X = 0 has a positive slope, as shown in Figure 3.8.

X

X’ = f(X)

0 k

Figure 3.7: Vector field plot for logistic vector field. The black curve shows X ′ at each point X

in state space. The points in X at which the curve intersects the horizontal axis (X ′ = 0) are

equilibrium points of the vector field. Here they are at X = 0 and X = k.

X

X’ = f(X)

0 k

Figure 3.8: Graphical linear stability analysis. The slope of the tangent lines at the equilibrium

points determines the stability of the equilibrium point: positive slopes imply unstable equilibrium

points, and negative slopes imply stable equilibrium points.

Let’s put this another way. This is the most important way, and it generalizes to n dimensions.

Since f (X) is a function of X, we can differentiate it like any other function of X. This gives us

the derivative of f (X) with respect to X,

df (X)

dX
=
dX ′

dX
=
d( dX
dt
)

dX

We know that the derivative of a function at a point gives us the slope of the tangent to

the graph of the function at that point. Clearly, if the slope of the tangent is positive, then the

function is going from negative to positive. Consider the equilibrium point at X = 0. The slope

of the tangent to f (X) at X = 0 (the red line passing through X = 0) is positive, so X ′ is going

from negative to positive. But that means that the change vectors to the left of the equilibrium

point to the left, and the change vectors to the right of the equilibrium point to the right. In

other words, X = 0 must be an unstable equilibrium point!
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Now let’s look at the equilibrium point X = k . Here the slope of the tangent (the red line

passing through X = k) is negative, which means that X ′ is going from positive to negative.

Therefore, the change vectors to the left of the equilibrium point to the right, while the change

vectors to the right of the equilibrium point to the left. In other words, X = k must be a stable

equilibrium point.1

We have discovered a deep truth: the stability of an equilibrium point of a vector field is

determined by the linear approximation to the vector field at the equilibrium point. This principle,

called the Hartman–Grobman theorem, enables us to use linearization to determine the stability

of equilibria.

The 1D version of the Hartman–Grobman theorem, also called the principle of linearization,

says that if the slope of the linear approximation to a vector field at an equilibrium point is

positive, then the equilibrium point is unstable, and if the slope is negative, the equilibrium point

is stable.

Exercise 3.2.7 Sketch graphs of two functions, as in Figure 3.7. (No equations are needed.)

For each function, which we’ll refer to as f (X), sketch the vector field of X ′ = f (X). Mark the

equilibrium points and indicate their stability.

Calculating the Linear Approximation

Since the derivative of a function is the slope of the linear approximation to the function, this

method of using derivatives to learn about stability is called linear stability analysis. It works

whenever df (X)
dX

is not equal to zero. If df (X)
dX
= 0, graphical methods are required.

We can actually calculate these linear approximations by calculating the derivative.

In the example above (with r = 1 for simplicity),

f (X) = X(1−
X

k
)

we can calculate the derivative of f (X) at the point X as

df (X)

dX
= 1−

2X

k

At X = 0, that yields
df (X)

dX

∣
∣
∣
∣
X=0

= +1

and at X = k ,
df (X)

dX

∣
∣
∣
∣
X=k

= −1

So the equilibrium point at X = 0 is unstable, and the equilibrium point at X = k is stable.

1A semistable equilibrium can also occur when the function touches zero without changing sign, but this is
rare.
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At an equilibrium point X∗ (pronounced “X-star,” a common notation for equilibria):

(1) If df (X)
dX

∣
∣
X=X∗

is positive, then X∗ is an unstable equilibrium.

(2) If df (X)
dX
|X=X∗ is negative, then X∗ is a stable equilibrium.

Exercise 3.2.8 Find the equilibria of the differential equation

N ′ = 0.1N(1−
N

1000
)(
N

50
− 1)

and use linear stability analysis to find their stability. Then, use the graphical method to check

your results.

Exercise 3.2.9 Do the same thing for the model Y ′ = (1− 32Y )Y (1− Y ).

Exercise 3.2.10 Suppose we try to evaluate the stability of the X = 0 equilibrium point of the

vector field

X ′ = 2X2 −X

a) Perform a linear stability analysis at the pointX = 0. What is the character of this equilibrium

point according to this analysis?

b) Suppose we did a test point analysis for confirmation and chose two test points, X = −1

and X = +1. When we calculate the change vectors X ′ at these two points, we see that

the change vector at X = −1 is positive,

X ′
∣
∣
X=−1

= 2(−1)2 − (−1) = 3

and the change vector at X = +1 is also positive,

X ′
∣
∣
X=+1

= 2(+1)2 − (+1) = 1

Explain why this test point method conflicts with the linear stability analysis. What have we

done wrong? (Hint: Plot the X ′ function.)

Example: The Allee Effect

In some species, a minimal number of animals is necessary to ensure the survival of the group.

For example, some animals, such as African hunting dogs, require the help of others to bring

up their young. As a result, their reproductive success declines at low population levels, and a

population that’s too small may go extinct. This decline in per capita population growth rates

at low population sizes is called the Allee effect.

As an example of the Allee effect, consider the strategy employed by Elon Musk, the developer

of the Tesla electric car. Musk announced that he would give away, free of charge, all the

patents that his company held on electric cars. These patents are valuable. Why would he

give them away? Because he realized that for electric cars to succeed, they require substantial

infrastructure: tax benefits, dedicated highway lanes, and public recharging networks. None of

these would happen if there was only one electric car company. In other words, if there were

only one electric car company, there would soon be no electric car companies. A critical mass is

necessary.
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We can model the Allee effect by adding another term to the logistic equation. The modified

equation becomes

X ′ = rX(1−
X

k
)(
X

a
− 1)

We already saw this model in equation (3.1). Let’s carry out the full analysis of this equation.

Equilibrium Points

We start by finding the equilibrium points. Setting X ′ = 0, we solve

0 = rX(1−
X

k
)(
X

a
− 1)

by realizing that the product of three terms can be 0 only when at least one of them is 0. So

we have three choices: X = 0, X = k , and X = a (Figure 3.9).

ka
X

0

Figure 3.9: State space for the Allee effect model, with its three equilibrium points (black dots).

Stability 1: Method of Test Points

We can determine the stability of each of the three by choosing appropriate test points. If we

choose values of X in the three intervals 0 < X < a, a < X < k , and k < X, and calculate the

change vectors X ′, we see the direction of flow (Figure 3.10).

ka

X
0

Figure 3.10: By drawing representative change vectors on state space, we can easily see the

stability of the system’s equilibrium points.

Clearly, X = 0 and X = k are stable equilibrium points and X = a is unstable. (To see the

time series of these flow simulations, see Figure 3.2 on page 116).

Exercise 3.2.11 Judging by the phase portrait, what is the biological meaning of a?

Exercise 3.2.12 Choose values for r , a, and k . Find the model’s equilibria and use test points

to determine their stability.

Stability 2: Linear Stability Analysis

Finally, let’s confirm this with linear stability analysis. First, we graph X ′ as a function of X (the

black curve in Figure 3.11). We see that the linear approximation to X ′ at the equilibrium point

X = 0 has a negative slope, the linear approximation at X = a has a positive slope, and the

linear approximation at X = k has a negative slope. Therefore, by the principle of linearization,
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the equilibrium point at X = 0 is stable, the equilibrium point at X = a is unstable, and the

equilibrium point at point X = k is stable.

a k
X

X’

X

0

Figure 3.11: Graphical linear stability analysis for the Allee effect model.

We can confirm this by a calculation. In order to calculate dX ′

dX
, the easiest method is to

multiply out the terms in

X ′ = rX(1−
X

k
)(
X

a
− 1) = −

r

ak
X3 +

r

a
X2 +

r

k
X2 − rX

and then use the power rule to differentiate X ′, giving

dX ′

dX
= −

3r

ak
X2 +

2r

a
X +

2r

k
X − r

If we then plug the three values X = 0, X = a, and X = k into this expression, we get

dX ′

dX

∣
∣
∣
X=0
= −r

dX ′

dX

∣
∣
∣
X=a
= r(1−

a

k
)

dX ′

dX

∣
∣
∣
X=k
= r(1−

k

a
)

Since we are assuming that a is less than k , these values are negative, positive, and negative.

Therefore, we have confirmed the results obtained by looking at the vector field.

Exercise 3.2.13 Carry out the same analysis for the example you chose in Exercise 3.2.12.

Example: Game Theory Models in Evolution and Social Theory

Much significant modeling has been done using models of the dynamics of games, with applica-

tions to evolution and also to social theory.

Game theory was introduced into evolution as a way of talking about how different genes

might succeed or fail in various environments. For example, suppose you are a bird that can have

a gene for oily feathers or a gene for dry feathers.

Which is better? It depends! If it is going to rain, then you would definitely prefer oily feathers

that can shed the rain, but if it is going to be dry, then you would prefer dry feathers. So we can
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view the choice as a game: you, as the bird, are the gambler. You can bet on “oily feathers” or

“dry feathers.” Every individual in the population makes such a bet. The croupier spins the wheel,

and it comes up “rain,” with probability X, or “dry,” with probability 1 − X. When it comes up

“rain,” she pays the bet on “oily feathers” and rakes in the chips from the bet on “dry feathers,”

and when the wheel comes up “dry,” she does the opposite.

In social theory, game theory models are used to explain how various patterns of behaviors

can evolve in society, such as how cooperation develops among self-interested individuals (for

example, in the game called “prisoners’ dilemma”).

These games are all described by differential equations. We will study a simple model here.

The basic idea is really already familiar to you. We will imagine two strategies, call them A

and B; we will use the letters A and B as state variables to represent the numbers of people

(or animals) currently playing each strategy. Which strategy you play is determined by whether

you have the A or B genotype.2 Thus, these are basically population dynamics models like the

shark–tuna model of Chapter 1.

The basic idea is to write

A′ = rA · A

B′ = rB · B

where rA and rB are the reproductive rates of individuals carrying the two genotypes. Only now

rA and rB are not going to be constant, but will vary: the reproductive rate will be a direct

outcome of success in previous encounters. More specifically, rA is proportional to A’s success

in recent encounters, and rB is proportional to B’s success in recent encounters:

rA ∝ A’s success in recent encounters

rB ∝ B’s success in recent encounters

(The sign “∝” is read “proportional to.”)

The Replicator Equation

Instead of looking at the raw numbers of individuals playing A or B, we will look at the fraction

of the population that each group represents. These are

X =
A

A+ B
and Y =

B

A+ B

Let’s form a differential equation for X by differentiating this expression.

X ′ =

(
A

A+ B

)′

Now we need the quotient rule, which gives us
(
A

A+ B

)′

=
(A+ B)A′ − A(A+ B)′

(A+ B)2

=
✟

✟AA′ + BA′ −✟
✟AA′ − AB′

(A+ B)2

But A′ = rAA and B′ = rBB, so

X ′ =
rAAB − rBBA

(A+ B)2

2For simplicity, we assume that all individuals are haploid.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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Recall that X =
A

A+ B
and Y =

B

A+ B
= 1−X, so this gives us

X ′ = (rA − rB)X(1−X)

This is called the replicator equation.

Payoffs

Now we need to find a model for the reproductive rates rA and rB. We said that

reproductive rate ∝ previous success

But what is previous success? It consists in the success of encounters with individuals of the

same genotype and encounters with individuals of the other genotype. So the payoff to rA is
(

the payoff for

X–X encounters

)

·X +

(

the payoff for

X–Y encounters

)

· Y

What is the payoff for these encounters? It varies from game to game! A number of different

games have been proposed as evolutionary models. Here we will study one of them.

Hawks and Doves

We will now apply stability analysis to a classic problem in the evolution of behavior. This example

will illuminate why different genotypes can persist in a population.

Suppose that an animal population consists of individuals of two genotypes, “hawks” (A)

and “doves” (B). These individuals compete for access to a resource, such as mates or food.

Hawks always fight when they encounter a competitor, while doves share the resource equally

on encountering another dove and bow out on encountering a hawk.

Fighting carries a substantial cost for the loser. In this example, the cost of losing a fight is

3, so its payoff value is −3, while the value of the resource gained is +2. All hawks have the

same fighting ability, so the probability of a hawk winning a fight with another hawk is 50%.

Therefore, the expected payoff to a hawk when it encounters another hawk is a 50% chance of

+2 and a 50% chance of −3, giving a total expected value of 0.5 · (+2) + 0.5 · (−3) = −0.5.

Doves never fight. When a dove encounters another dove, they split the resource, whose

value is still +2, so the outcome for a dove encountering another dove is +1.

When a hawk encounters a dove, the hawk takes the resource, but the dove doesn’t risk

fighting. Therefore, the benefit to the hawk is +2, while the dove incurs neither a cost nor a

benefit.

The costs and benefits of various encounters are summarized in the payoff table (or payoff

matrix) in Table 3.1.

Hawk(A) Dove(B)

Hawk(A) (−0.5,−0.5) (+2, 0)

Dove(B) (0,+2) (+1,+1)

Table 3.1: Payoff table describing the costs and benefits to participants in hawk–dove interac-

tions.
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We want to know what will happen to the prevalence of hawk and dove genotypes over time.

We will denote the fraction of the population consisting of hawks as X. Since all individuals are

either hawks or doves, the fraction of the population that consists of doves is 1−X.

Next, we define the per capita growth rate of each genotype as the sum of the outcomes of

its interactions with members of the same and the other genotype. For example, if rA is the per

capita growth rate of hawks, then

rA = −0.5
︸ ︷︷ ︸

payoff when a hawk
encounters another hawk

· X
︸︷︷︸

frequency of encountering
another hawk

+ 2
︸︷︷︸

payoff when a hawk
encounters a dove

· (1−X)
︸ ︷︷ ︸

frequency of encountering
a dove

= 2− 2.5 ·X

Similarly, the per capita growth rate of doves is

rB = 0
︸︷︷︸

payoff when a dove
encounters a hawk

· X
︸︷︷︸

frequency of encountering
a hawk

+ 1
︸︷︷︸

payoff when a dove
encounters another dove

· (1−X)
︸ ︷︷ ︸

frequency of encountering
another dove

= 1−X

Substituting for rA and rB in the replicator equation, which we derived earlier, gives

X ′ =
dX

dt
= (rA − rB)X(1−X)

=
(

2− 2.5X − (1−X)

)

X(1−X)

= (1− 1.5X)X(1−X)

So the hawk–dove differential equation is

X ′ = (1− 1.5X)X(1−X) (3.2)

where X is the fraction of the population who are hawks.

Exercise 3.2.14 Explain the values in the payoff table of Table 3.1.

Exercise 3.2.15 Derive a similar equation for the payoff table.

Hawk(A) Dove(B)

Hawk(A) (−1,−1) (+3, 0)

Dove(B) (0,+3) (+0.5,+0.5)

Equilibrium Points

How will this system behave? Let’s begin by finding equilibrium points. If we set X ′ = 0, two of

the equilibria of this equation, X = 0 and X = 1, can be immediately found by inspection of the

equation. We find the third one by solving the equation

1− 1.5X = 0
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which gives the third equilibrium point (Figure 3.12),

X =
2

3

X

X=0
2
3

X= X=1

Figure 3.12: Equilibrium points of the hawk–dove differential equation.

Stability 1: Method of Test Points

To find the stability of these equilibria, we need to know the sign ofX ′ on the intervals 0 < X < 2
3

and 2
3 < X < 1. One easy way to do this it to pick a value in each interval and plug it into the

hawk–dove differential equation (equation (3.2)).

For the interval 0 < X < 2
3 , we can useX = 0.5. Then X > 0, 1−X > 0, and 1−1.5×0.5 > 0,

so X ′ > 0 in the left-hand interval.

For the interval 23 < X < 1, we can use the point X = 0.8. For this value of X, X and 1−X

remain positive, but 1− 1.5× 0.8 < 0, so X ′ < 0.

Thus, the method of test points tells us that X = 0 and X = 1 are unstable equilibrium

points, while X = 2
3 is stable (Figure 3.13).

X
X=0

2
3

X= X=1

Figure 3.13: Stability of equilibria for the hawk-dove model, by the method of test points.

Stability 2: Linear Stability Analysis

To use linear stability analysis, we first plot X ′ = f (X), giving us the black curve in Figure 3.14.

Note the three places the curve intersects the X ′ = 0 axis, representing the three equilibrium

points. The tangents to the curve at the three points are shown in red. Their slopes are obviously

positive, negative, and positive, indicating that the equilibrium points are unstable, stable, and

unstable.

X

1
X

2
3

0

X’

Figure 3.14: Linear stability analysis of the hawk–dove differential equation.
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Finally, we confirm the linear stability analysis by calculating the sign of the derivatives at the

three equilibrium points. First, we multiply out the X ′ equation,

X ′ = (1− 1.5X)X(1−X)

to give

X ′ = 1.5X3 − 2.5X2 +X

Then we use the polynomial rule to differentiate this expression,

dX ′

dX
=
d

dX
(1.5X3 − 2.5X2 +X)

= 4.5X2 − 5X + 1

evaluated at X0 = 0,
dX ′

dX

∣
∣
∣
X0=0

= +1

evaluated at X0 =
2
3 ,

dX ′

dX

∣
∣
∣
X0=

2
3

= −
1

3

and evaluated at X0 = 1,
dX ′

dX

∣
∣
∣
X0=1

= +0.5

Therefore, we have confirmed that the three equilibrium points are unstable, stable, and

unstable.

Exercise 3.2.16 Redo this stability analysis for the model you obtained in Exercise 3.2.15. Use

both methods.

So the overall conclusion of our analysis of the hawk–dove game is that the two populations,

hawks and doves, will evolve to a stable equilibrium at X = 2
3 . In other words, the population

will evolve to a stable state in which there are two hawks for every dove.

Notice that this conclusion is far from obvious. This is why we model. It would be very easy

to wave our hands, consult our personal intuition, and say “Oh, the hawks will prevail; it will

be all hawks,” or “Oh, the hawks will kill each other and the doves will prevail.” It turns out

that neither scenario is true. The model predicts the coexistence of the two genotypes, in the

ratio 2: 1.

Other evolutionary games include “stag hunt,” which is a model of group collective behavior,

“prisoners’ dilemma,” which is a model of cooperation and competition, and “rock/paper/scissors,”

which is a model of cyclic population dynamics.
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Further Exercises 3.2

1. A kayaker is paddling directly into the wind but the kayak keeps veering either left or

right.

a) Use your physical intuition to explain why the kayaker is having difficulty going

straight.

b) Describe this situation in terms of equilibria and stability. (Hint: Sketch a vector

field. No equations are necessary.)

2. The spread of a genetic mutation in a population of mice can be modeled by the differ-

ential equation

P ′ = 2P · (1− P ) · (1− 3P )

where P is the fraction of the mice that have the new gene. (This means that 0 ≤ P ≤

1.)

a) Find the equilibrium points of this model and determine the stability of each one.

b) If 10% of the mice have the new gene (so P = 0.1) initially, what fraction of the

population will have the new gene in the long run?

c) What if the initial fraction is 90% of the mice?

3. The von Bertalanffy growth model, which can be used to model the growth of individual

organisms, is given by

L′ = r · (k − L)

where L is the length of the organism, and r and k are positive constants. Find the equi-

librium point(s) for this model and determine their stability. How large will the organism

eventually grow?

4. The Gompertz growth model, which is sometimes used to model the growth of tumors,

is given by

X ′ = X ·

(

k − α ln

(
X

X(0)

))

where X is the mass of the tumor, and k and α are positive constants. Find the equi-

librium points for this model and determine the stability of each one. How large will the

tumor eventually grow?

5. (Modified from Strogatz) Consider a system of two chemical compounds, A and X. One

molecule of A and one of X react to produce two molecules of X, with rate constant

0.1. Also, two molecules of X can react to form one molecule of X and one molecule of

A, with rate constant 0.05.

A + X −−→←−− 2X
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The amount of A is much larger than that of X, so its concentration can be thought of

as a constant, 2.

a) Write a differential equation for the concentration of X. (Hint: Look back at the

predator–prey and disease models studied in earlier sections.)

b) Find the equilibria of this system and describe their stability.

6. This problem will look at equilibria in chemistry more generally. You may find it helpful

to review Section 1.4 on page 34.

a) In the chemical equation A
kf−−→←−−
kb

B, what do kf and kb mean in dynamical terms?

b) Write models for the following chemical reactions:

1. A
k
−−→ B

2. A + B
k
−−→ C

3. A
kf−−→←−−
kb

B

c) Look back at all the models you just wrote. Do you notice anything unusual about

the equations?

d) Use the observation you just made to help you find an expression for the equilib-

rium of the reaction A
kf−−→←−−
kb

B. (Solve for kf
kb

.) The expression you get is called an

equilibrium constant.

e) Do the same thing for A + B
kf−−→←−−
kb

C + D.

f) Write a model for the reaction 2A
k
−−→ B. (Hint: Keep the coefficients in mind.)

g) Write a model for 2A + B
kf−−→←−−
kb

C + 3D and find the equilibrium constant. (Hint:

How many molecules of each substance are coming together in each reaction?)

h) Write a model for aA + bB
kf−−→←−−
kb

cC + dD and find the equilibrium constant. If the

result doesn’t look familiar, it should after you take more chemistry.

7. Is it possible for a one-dimensional system to have two stable equilibria without an

unstable one between them? Explain. (Hint: Try drawing the situation.)

8. How could you use simulation (numerical integration) to determine whether an equilib-

rium point of a differential equation is stable or unstable?

9. In the text, we said that linear stability analysis fails if df
dX
|X0 = 0. Here, we will see why.

a) All of the following differential equations have an equilibrium point at X = 0. By

looking at the vector field, determine the stability of this equilibrium point for each

equation.

a) X ′ = X3 b) X ′ = −X3 c) X ′ = X2 d) X ′ = −X2

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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b) Now find df

dX

∣
∣
X=0

for each function. What do you notice?

10 The text said that semistable equilibrium points are rare. Here, we will see why.

a) X ′ = X2 has an equilibrium point at X = 0. Determine the stability of this equilib-

rium point.

b) Use graphical methods to find the equilibria of X ′ = X2+a for at least one positive

and two negative values of a. For each value of a, determine the stability of the

equilibria.

c) Use your findings to explain why semistable equilibria rarely occur in real life.

3.3 Equilibrium Points in Higher Dimensions

In one dimension, the only possible types of long-term behavior are perpetual growth and move-

ment toward an equilibrium point.

In multivariable systems, much more complex behaviors are possible, but equilibria are still

important, both as forms of behavior and as landmarks that help determine system behavior.

Finding Equilibrium Points

The definition of an equilibrium point in a multivariable system is a point at which all changes

vanish.

In order to find the equilibrium points of a system of differential equations in several variables,

we solve for values of the state variables at which all the equations are equal to zero.

An equilibrium point of the differential equation,

X ′ = f1(X, Y, . . . , Z)

Y ′ = f2(X, Y, . . . , Z)

...

Z′ = fn(X, Y, . . . , Z)

is a point (X∗, Y ∗, . . . , Z∗) for which

f1(X
∗, Y ∗, . . . , Z∗) = 0

f2(X
∗, Y ∗, . . . , Z∗) = 0

...

fn(X
∗, Y ∗, . . . , Z∗) = 0

Exercise 3.3.1 Find the equilibrium point of the system of equations X ′ = −0.5X, Y ′ = −Y .
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Types of Equilibrium Points in Two Dimensions

Equilibrium Points Without Rotation

One way to make equilibrium points in 2D is to take two 1D equilibria and put them together.

Recall from Chapter 1 that if we have two 1D spaces X and Y , then we can make the 2D space

X × Y , called the Cartesian product of X and Y , which is the set of all pairs (x, y) with x in X

and y in Y . Geometrically, this corresponds to to using X and Y as the two perpendicular axes

in our new 2D space.

We will now use a similar technique, mixing and matching pairs of state points and change

vectors to generate a series of 2D phase portraits. Look at Figure 3.15. For every point in the

state space X, there is a change vector in the tangent space X ′, and for every point in the state

space Y , there is a change vector in the tangent space Y ′. Since both spaces are one-dimensional,

both the state and the change vectors can be thought of simply as real numbers.

Now let’s say that X ′ = X and Y ′ = Y . Suppose X = 1 and Y = 2. Then, in this particularly

simple example, at the point (1,2), we have (X ′, Y ′) = (1, 2). We obtain the whole vector field

in the same way, mixing and matching.

Exercise 3.3.2 What is the change vector at the point (3,−4)?

We can also look at the whole vector field at once. For example, let’s take the 1D phase

portrait for X ′ = X. This has an unstable equilibrium point at X = 0. Then we take a second

1D phase portrait, for Y ′ = Y . This has a second unstable equilibrium point at Y = 0. If we take

these two 1D phase portraits and join them together, we get a 2D unstable equilibrium point at

(X, Y ) = (0, 0) (Figure 3.15).

X’=X,  Y’=YX’=X Y’=Y

X

Y

X

Y

Figure 3.15: Unstable node.

This type of unstable equilibrium is called an unstable node (Figure 3.16).

X

Y

X’=X,  Y’=Y

X

Y

X’=X,  Y’=2Y

Figure 3.16: Unstable nodes.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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Similarly, we can take a stable equilibrium point in X and combine it with a stable equilibrium

point in Y to get a stable equilibrium in 2D, called a stable node (Figure 3.17).

X

Y

X’=   X,  Y’=   Y

X

Y

X’=   X,  Y’=   2Y

Figure 3.17: Stable nodes.

Stable and unstable nodes are essentially similar to stable and unstable equilibrium points in

one dimension, not exhibiting any really new features.

Another type of equilibrium point can be created by taking a stable equilibrium point in X

and an unstable equilibrium point in Y (or vice versa) and joining them to make a new kind of

equilibrium point.

This new type of equilibrium point, called a saddle point, is more interesting (Figure 3.18).

X

Y

X

Y

X’=   X,  Y’= YX’= X,  Y’=   Y

Figure 3.18: Saddle points. Left: X-axis is unstable, Y -axis is stable. Right: X-axis is stable,

Y -axis is unstable.

A saddle point has a stable direction and an unstable direction. The typical state point will

move under the influence of both, that is, it will move in the stable direction (toward the unstable

axis), as well as in the unstable direction (away from the stable axis). The only way to approach

the equilibrium point in the long run is to start exactly on the stable axis. Since the typical

trajectory does not lie exactly on the stable axis, a saddle point is considered unstable.

Exercise 3.3.3 Sketch time series (for both X and Y ) corresponding to two trajectories in

Figure 3.18.

Nodes and saddle points are important examples of 2D equilibrium points. We should mention

that sometimes it is possible to get nonisolated equilibria. For example, there may be a line

completely made up of equilibrium points. Such situations are mathematically pathological and

require special handling.
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Equilibrium Points with Rotation

So far, we have been taking two 1D equilibrium points and joining them together to make a

2D equilibrium point. Now we will consider a new kind of equilibrium point that is irreducibly

two-dimensional, not made up of two one-dimensional systems. These equilibrium points all

involve rotation, which is impossible in one dimension because there is no room for it.

Recall the spring with friction:

X ′ = V

V ′ = −X − V

It has an equilibrium point at (X, V ) = (0, 0). What kind of equilibrium point is this? If we

plot a trajectory, it looks like Figure 3.19, left.

Notice that the point (0, 0) meets the definition of a stable equilibrium point: if we perturb

the system a little bit from the equilibrium point, it returns to it. So (0, 0) is a stable equilibrium

point of this system. It is called a stable spiral .

Similarly, if we consider the spring with “negative friction,”

X ′ = V

V ′ = −X + V

we get the equilibrium point in Figure 3.19, middle, which is called an unstable spiral .

X

Y

X X

YY

X’= Y,  Y’=   X   Y X’= Y,  Y’=   X   Y X’= Y,  Y’=   X

Figure 3.19: Equilibrium points in 2D with rotation. Left: stable spiral. Middle: unstable spirals.

Right: center.

Finally, there is one more kind of 2D equilibrium point. We saw it in the predator–prey model

and the frictionless spring:

X ′ = V

V ′ = −X

Here, the equilibrium point (Figure 3.19, right) is clearly not stable, but neither is it clearly

unstable. A small perturbation from the equilibrium point does not go far away, and neither does

it return to the equilibrium point. Instead, it hangs around the neighborhood of the equilibrium

point and oscillates in a new trajectory nearby. This type of equilibrium point is called a neutral

equilibrium point or a center .

We have now classified all the equilibrium points that can occur robustly in a 2D system.
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Equilibrium Points in n Dimensions

The generalization to n dimensions is straightforward: to make an n-dimensional equilibrium

point, we simply take as many 1D equilibrium points as we like (stable or unstable nodes),

and as many 2D equilibrium points as we like (stable or unstable spirals or centers), and mix

and match them to make an n-dimensional equilibrium point (of course, the total number of

dimensions has to add up to n).

These equilibrium points will be studied systemically in Chapter 6. They are all the equilibrium

points of linear vector fields in n dimensions.

Here let’s look at an example in three dimensions. Let’s take an unstable spiral in X and Y ,

and a stable node in Z, giving us a 3D unstable equilibrium point.

A trajectory near this equilibrium point will spiral out in the X–Y plane, while it heads toward

Z = 0 (Figure 3.20).

Y

X

Z
Y

Z

X

Figure 3.20: Left: unstable equilibrium point in 3D, composed of one stable dimension (Z) and

a 2D unstable spiral in X and Y . Right: a trajectory near this equilibrium point.

Further Exercises 3.3

1. Consider the following Romeo and Juliet model, in which (as usual) R represents

Romeo’s love for Juliet, and J represents Juliet’s love for Romeo (recall that these

variables can be positive or negative):

R′ = J − 0.1R

J ′ = −R

a) Verify that this system has one equilibrium point and it is at the origin.

b) Sketch the vector field for this system, using eight to ten change vectors.

c) What can you say about the equilibrium point at the origin?

d) Plot the vector field in SageMath. Can you determine the type of equilibrium point

at the origin now?

http://dx.doi.org/10.1007/978-3-319-59731-7_6
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e) Choose some initial conditions and use SageMath to simulate this system and plot

(at least) one trajectory. Can you determine the type of equilibrium point at the

origin now?

2. Repeat the same analysis as in the previous problem, but with the following differential

equations:

R′ = J

J ′ = −R + 0.1J

3. Create a SageMath interactive that allows you to explore the effects of parameters on

the vector field of the Romeo–Juliet system R′ = aR+bJ, J ′ = cR+dJ. Use parameter

values ranging between −2 and 2 in steps of 0.5, using the syntax a = (−2, 2, 0.5) in

your function definition. (This will allow you to control parameter values more precisely.)

Then, do the following exercises, supplementing the vector field with simulations when

necessary.

a) Set b and c to zero and d to −1. Classify the equilibrium point at (0, 0) for a < −1,

a = −1, −1 < a < 0, a = 0, and a > 0. Do you get the same results if you switch

the roles of a and d?

b) Set a and d to zero and manipulate b and c . What happens to the equilibrium when

both a and d are negative? When both are positive? When they are of opposite

signs?

c) How is each type of equilibrium point you found in the previous part affected by

manipulating b and c?

3.4 Multiple Equilibria in Two Dimensions

We have now seen all the types of simple equilibrium points that can occur in two dimensions.

(Later, we will see that these are exactly the linear equilibrium points.) A typical nonlinear vector

field will have multiple equilibrium points.

Example: Competition Between Deer and Moose

Consider two populations of deer and moose, which compete with each other for food. The

deer population is denoted by D, and the moose population is denoted by M. If there were no

environmental limitations, the deer population would grow at a per capita rate 3, and the moose

population would grow at a per capita rate 2. Each animal competes for resources within its own

species, giving rise to the −D2 and −M2 intraspecies crowding terms. In addition, deer compete

with moose and vice versa, although the impact of the deer on the moose is only 0.5, giving rise

to the cross species term −0.5MD in the M ′ equation, while the impact of the moose on the

deer is harsher, and has value 1, giving rise to the −MD term in the D′ equation.

These assumptions make up the Lotka–Volterra competition model .

D′ = 3D −MD −D2

M ′ = 2M − 0.5MD −M2
(3.3)
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What are the equilibria of this system? Clearly, one is (D∗,M∗) = (0, 0), often called the

trivial equilibrium.

Also, notice that if the population of one species is equal to zero, the other can be nonzero.

If D = 0 and M is nonzero, we can divide the M ′ = 0 equation by M to get

2− 0.5D −M = 0

Since we specified that D = 0, we have 2✘✘✘✘✿ 0
−0.5D − M = 0 and thus M = 2. Therefore,

(D∗,M∗) = (0, 2) is also an equilibrium point.

Similarly, if M = 0 and D is nonzero, we can divide the D′ = 0 equation by D to get

3−M −D = 0

Since M = 0, we have 3✟
✟✟✯
0

−M − D = 0 and thus D = 3. Therefore, (D∗,M∗) = (3, 0) is a

third equilibrium point.

So far, we have calculated three equilibrium points of the deer–moose dynamical system.

They are

(D∗,M∗) = (0, 0)

(D∗,M∗) = (0, 2)

(D∗,M∗) = (3, 0)

At all three of these equilibrium points, at least one population has the value zero, which means

that that species went extinct. Is there an equilibrium at which the deer and moose coexist? In

this case,

3D −DM −D2 = 0

2M − 0.5DM −M2 = 0

}

It’s an equilibrium point

D �= 0

M �= 0

}

neither species is extinct

Since neither M nor D is 0, we can divide the first equation by D and the second by M,

getting

3−M −D = 0

2− 0.5D −M = 0

We will solve one of these equations and substitute the result into the other one. Let’s start

with 3−M−D = 0. Solving for D gives D = 3−M. Substituting this result into 2−0.5D−M = 0

gives 2 − 0.5(3 −M) −M = 2 − 1.5 + 0.5M −M = 0, so −0.5M + 0.5 = 0 and M = 1. We

can now substitute M = 1 into D = 3−M, which gives D = 2.

Therefore, the equilibrium point we are seeking at which the deer and moose can coexist is

(D∗,M∗) = (2, 1)

Exercise 3.4.1 Find the equilibria for the shark–tuna model

{

S′ = 0.01ST − 0.2S

T ′ = 0.05T − 0.01ST
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Stability

We have found the four equilibria for the deer–moose model (equation (3.3) on the preceding

page). But how are we to determine their stability? In Chapter 7, we will study this model

using higher-dimensional linearization techniques. Right now, all we have is simulation. So let’s

simulate the deer–moose equation. If we plot the vector field at many points, the stability

becomes obvious (Figure 3.21). The only stable equilibrium point is the one at (D,M) = (2, 1).

Nullclines

An important technique for finding equilibrium points and determining their stability in two

dimensions is called the method of nullclines.

D

M

0

1

2

3

1 2 3 4

Figure 3.21: Vector field and equilibrium points for the deer–moose competition model.

Consider the vector field for the deer–moose competition model, Figure 3.21. A close look at

this vector field reveals that some change vectors look almost completely horizontal or vertical.

When a change vector is purely horizontal, it means that at that point in state space, only the

population of the X axis species is changing, while that of Y axis species remains constant.

Similarly, if a change vector attached to some point is purely vertical, only the population of the

Y axis species is changing at that point; that of the X axis species is not changing.

We can plot the curve along which the X axis species is not changing and the curve along

which the Y axis species is not changing and use them to study stability. The line along which

X ′ = 0 is called the X-nullcline, and the line along which Y ′ = 0 is called the Y -nullcline.

So now let’s consider the case of the deer–moose vector field. Since nullclines are curves

on which D′ = 0 or M ′ = 0, they are found by setting one differential equation equal to zero

and rearranging to obtain one variable in terms of the other. For example, in order to find the

D-nullcline (the curve on which D′ = 0) for the deer–moose competition model, we set the D′

differential equation to zero:

D′ = 3D −MD −D2 = D(3−M −D) = 0

This equation has two solutions. One immediately evident one is D = 0, the vertical axis. To

find the other one, we solve 3−M −D = 0 for M, which gives

M = 3−D

Note that this is a straight line. It is the blue slanted line in Figure 3.22.

http://dx.doi.org/10.1007/978-3-319-59731-7_7
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Exercise 3.4.2 Find the M-nullcline for the first deer-moose competition model, D′ = D(3−

M −D), M ′ = M(2−M − 0.5D).

If we plot the nullclines D′ = 0 and M ′ = 0, we see the result in Figure 3.22.

You can see that vectors crossing the D-nullclines (blue) are vertical and those crossing the

M-nullclines (red) are horizontal. Equilibrium points are the points at which nullclines cross. For

example, an equilibrium at which the two species coexist exists only if the nullclines cross at a

point away from the axes.

Exercise 3.4.3 Why do equilibria occur where nullclines cross? Can they occur anywhere else?

D

M

0

1

2

3

1 2 3 4

Figure 3.22: Nullclines for the first deer–moose model (equation (3.3)).

By studying the nullclines, we can actually determine the stability of the four equilibrium

points. Note that the nullclines divide the state space into four sectors. Within each sector,

the change vectors point in a consistent direction. For example, all change vectors in the lower

left-hand sector are pointing up and to the right. If we summarize these changes sector by sector

(black arrows in Figure 3.23), we see that the equilibrium point at the center, for example, must

be stable.

Similarly, the other three equilibrium points all have net change vectors pointing away from

the point; therefore, they must be unstable.
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0

1

2
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1 2 3 4

Figure 3.23: Nullclines determine the stability of equilibrium points in the first deer–moose model

(equation (3.3)).
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A Detailed Example

Now let’s consider a new version of the deer–moose competition model with different parameters:

D′ = 3D − 2MD −D2

M ′ = 2M −DM −M2
(3.4)

As before, we find the D-nullcline by setting the equation for D′ equal to zero and solving

0 = 3D − 2MD −D2

Factoring out D gives

0 = D(3− 2M −D)

This has two solutions: D = 0 and 3− 2M −D = 0. Solving the latter equation for M gives

M = −
1

2
D +

3

2

(It doesn’t matter which variable you solve for. You can pick the one that’s easier, or if both are

about the same, the one you plan to plot on the vertical axis.) Therefore,

D-nullclines

⎧

⎨

⎩

D = 0

M = −
1

2
D +

3

2

Exercise 3.4.4 Find the M-nullclines for this model.

Exercise 3.4.5 Find the model’s equilibria.

Plotting the nullclines gives Figure 3.24.

1 2 30

1

2

D

M

Figure 3.24: Nullclines for the second deer–moose model (equation (3.4)).

We now want to use the nullclines to sketch the vector field. First, we recall that on the

D-nullcline, D′ = 0, so D is not changing. Since we put D on the horizontal axis, this means

that the change vectors on the D-nullclines will be vertical. We don’t yet know whether they’re

going up or down, but they have to be vertical. Similarly, the change vectors on the M-nullcline

must be horizontal. We can now draw dashes on the nullclines to represent this (Figure 3.25).
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1 2 30

1

2

D

M

Figure 3.25: Nullclines for the second deer–moose model with horizontal and vertical dashes

drawn in.

Now we need to figure out which way the change vectors are actually pointing. In order to

do this, we’ll need one piece of information about change vectors on nullclines. These change

vectors can flip their direction (left/right or up/down) only when the nullcline passes through

an equilibrium point. (The reason for this is similar to the reason that change vectors in one-

dimensional systems can change direction only on either side of an equilibrium point; you can’t

go from negative to positive, or vice versa, without passing through zero.) Thus, equilibrium

points break up nullclines into pieces on which all change vectors point in the same direction.

The result is that the nullclines divide the state space quiltlike, into regions within which the

vector field has the same up/down and left/right directions (Figure 3.26). We just need to find

out which region is which, and for that we use the nullclines with the horizontal and vertical

lines.

1 2 30

1

2

D

M

3

test point 4

test point 1

test point 2

test point 3

Figure 3.26: Nullclines for the second deer–moose model separate state space into four regions

within which the behavior is consistent. Change vectors are not drawn to scale.

We now have to do some calculations. We have to pick test points on the nullclines and find

the corresponding change vectors. Let’s start with the first part of the D-nullcline, D = 0, the

vertical axis. The change vector on it is purely vertical. The question is: pointing up or down?

Since we know that the vertical change vectors can flip only at an equilibrium point, we can go

to the nonzero equilibrium point on this branch of the D-nullcline, which is (0, 2), and pick test

points on either side of it, say (D,M) = (0, 1) and (D,M) = (0, 3). The change vectors at
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those two test points are

test point 1 (D′,M ′)
∣
∣
(0,1)
= (0, 1) change vector points up

test point 2 (D′,M ′)
∣
∣
(0,3)
= (0,−3) change vector points down

Now let’s look at the other part of the D-nullcline, which is the line M = − 12D +
3
2 . Since

this nullcline passes through an equilibrium point at (1, 1), we will choose two points on either

side of this equilibrium point, say D = 0.5 and D = 1.5. We now need to find the corresponding

values of M by plugging these values of D into the nullcline equation M = − 12D+
3
2 . We get the

two test points as (D,M) = (0.5, 1.25) and (D,M) = (1.5, 0.75). Now we need to determine

whether the change vectors at those test points are pointing up or down:

test point 3 (D′,M ′)
∣
∣
(0.5,1.25)

= (0, 0.3125) change vector points up

test point 4 (D′,M ′)
∣
∣
(1.5,0.75)

= (0,−0.1875) change vector points down

Exercise 3.4.6 Use this procedure to sketch the change vectors on the M-nullclines.

The nullclines with change vectors are shown in Figure 3.27.
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Figure 3.27: Nullclines with change vectors for the second deer–moose model.

We can use the change vectors on the nullclines to sketch the rest of the vector field. The

key fact that will allow us to do this is that vector fields change gradually. Look at the pink

region in Figure 3.27. Notice that the change vectors in that region are pointing up and to the

right. (The ones closer to the nullclines on which change vectors point up will be nearly vertical,

while the ones close to the horizontal change vectors will be nearly horizontal.) Using the same

reasoning, we can sketch the general direction of the change vectors in each of the four regions.

pink region up and to the right

blue region down and to the right

yellow region down and to the left

green region up and to the left

The equilibrium point in the middle is clearly a saddle point. If we want to, we can sketch the

vector field in more detail, as in Figure 3.28.
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Figure 3.28: Nullclines with change vectors for the second deer–moose model.

Exercise 3.4.7 What is the biological significance of the fact that this equilibrium is a saddle

point?

Exercise 3.4.8 Find the nullclines and equilibrium points of the Lotka–Volterra predation

model, N ′ = 0.05N − 0.01NP , P ′ = 0.005NP − 0.1P . Then, sketch the vector field.

Why Bother with Nullclines?

When we have a vector field, plotting nullclines may seem redundant. However, a computer can

plot a vector field only when numbers are available for all parameter values. On the other hand, it

is often possible to work with nullclines without specifying exact parameter values. For example,

we can rewrite the deer–moose competition model in the symbolic general form

D′ = D(rD − kDM − cDD)

M ′ = M(rM − kMD − cMM)

Then the D-nullcline is

D′ = D(rD − kDM − cDD) = 0

which gives us

D = 0 or M = −
cD
kD
D +

rD
kD

which is, of course, a vertical line (D = 0) and a straight line going from (0, rD
kD
) to ( rD

cD
, 0) that

has slope − cD
kD

.

In this way, plotting nullclines can allow us to sketch an approximate vector field and get a

sense of the system’s dynamics without having numerical parameter values.

Exercise 3.4.9 Calculate the M-nullcline symbolically.
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Equilibria of Nonlinear Systems

If we calculate trajectories for the second deer–moose model, we see clearly that there are four

equilibrium points (Figure 3.29). It is especially important to note that each one of them is

of one of the simple types described above: there are two purely stable equilibria, one purely

unstable equilibrium, and one unstable saddle point.

31 20

1

2

deer

moose

Figure 3.29: Phase portrait and nullclines of the second deer–moose model.

As we will see in Chapter 7, this is always the case: complex systems can have many equilibrium

points, but each one is one of the simple types above. (These simple types are the equilibrium

points of linear vector fields. We will pursue this in Chapter 6.) This is a consequence of the

Hartman–Grobman theorem, or the principle of linearization.

The Hartman–Grobman theorem guarantees that while a nonlinear vector field may have

many equilibrium points, each robust equilibrium point is of one of the simple types.

Two-dimensional nonlinear systems can also give us examples of biological switches.

Further Exercises 3.4

1. Consider the Lotka–Volterra predation model, N ′ = rN − aNP , P ′ = caNP − δP , with

N the number of prey and P the number of predators.

a) Without doing any algebra, explain why there are no equilibria at which one species

has a nonzero population and the other does not.

b) Find the equilibria.

2. The growth of a population in the absence of predators is described by the logistic equa-

tion with r = 0.1 and K = 5000. To model the predation, we add a term representing

the consumption of prey by the predators. We assume that a single predator consumes

prey at a per prey individual rate of 0.01. We also assume that the contribution of

the prey to the predator birth rate is small, and has coefficient 0.001, and that the

http://dx.doi.org/10.1007/978-3-319-59731-7_7
http://dx.doi.org/10.1007/978-3-319-59731-7_6
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predator per capita death rate is 0.001. If the prey population size is N and the predator

population size is P , we have the differential equations N ′ = rN(1 − N

5000) − 0.01NP ,

P ′ = 0.001NP − 0.001P . Find the equilibria of this system.

3. Using SageMath, plot the vector field of the predator–prey system described in Further

Exercise 3.4.2 and classify the equilibria. How do they differ from those in the Lotka–

Volterra model?

4. Consider the following Romeo and Juliet model:

R′ = J − 0.25R2

J ′ = R + J

a) Plot the nullclines of this system. (Recall that both R and J can be negative!)

b) Use the nullclines and/or algebra to find the equilibrium points of the system.

c) Sketch the direction of the change vectors along each nullcline. Then, fill in the

change vectors in the rest of the vector field.

d) Use your sketch of the vector field to determine the type of each equilibrium point.

5. Let R be the size of a population of rabbits, and S the population of sheep in the

same area. The Lotka–Volterra competition model for these species might look like the

following:

R′ = 24R − 2R2 − 3RS

S′ = 15S − S2 − 3RS

(Refresh your memory about what each of the six terms in the equations above repre-

sents.)

a) Plot the nullclines of this system.

b) Use the nullclines and/or algebra to find the equilibrium points of the system.

c) Sketch the direction of the change vectors along each nullcline. Then, fill in the

change vectors in the rest of the vector field.

d) Use your sketch of the vector field to determine the type of each equilibrium point.

e) How many stable equilibrium points are there? Draw a rough estimate of the basin

of attraction of each one. Based on this, what one-word description could you give

to this system?

6. Let D be the size of a population of deer, and M the population of moose in the

same area. The Lotka–Volterra competition model for these species might look like the

following:

D′ = 0.3D − 0.02D2 − 0.05DM

M ′ = 0.2M − 0.04M2 − 0.02DM

a) Plot the nullclines of this system.
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b) Use the nullclines and/or algebra to find the equilibrium points of the system.

c) Sketch the direction of the change vectors along each nullcline. Then fill in the

change vectors in the rest of the vector field.

d) Use your sketch of the vector field to determine the type of each equilibrium point.

e) What will happen to these two populations in the long run? Can they coexist?

7. Repeat the same analysis as in the previous problem, but with the following differential

equations:

D′ = 0.3D − 0.05D2 − 0.03DM

M ′ = 0.2M − 0.04M2 − 0.02DM

a) Plot the nullclines of this system.

b) Use the nullclines and/or algebra to find the equilibrium points of the system.

c) Sketch the direction of the change vectors along each nullcline. Then, fill in the

change vectors in the rest of the vector field.

d) Use your sketch of the vector field to determine the type of each equilibrium point.

e) What will happen to these two populations in the long run? Can they coexist?

3.5 Basins of Attraction

Let’s consider a system with multiple stable equilibrium points. Consider one of those points.

There is a region around this equilibrium point in which every initial condition approaches the

equilibrium point. The set of all such points that approach a given equilibrium point is called the

basin of attraction, or simply basin of that equilibrium point.

For example, in the Allee effect, the basin of attraction of the equilibrium point X = 0 consists

of all population sizes less than a, while the basin of attraction of the equilibrium point X = k

consists of all populations sizes greater than a (Figure 3.30).

X
0 a k

Figure 3.30: Schematic illustrating the basins of attraction in the Allee effect equation.

Exercise 3.5.1 What is the basin of attraction for X = 0?
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Exercise 3.5.2 Does X = a belong to either basin of attraction? (Hint: Where does a system

starting exactly at X = a go?)

The terminology “basin” comes from geography. Think about the two principal river systems

of the United States (Figure 3.31). In the west, water flows into the Colorado River system and

into the Gulf of California. In the east, water flows into the Mississippi River system and into

the Gulf of Mexico. Separating the two is the crest line of the Rocky Mountains, which is known

as the Continental Divide. The Continental Divide therefore separates North America into the

two great basins of the Colorado and Mississippi Rivers. Theoretically, a drop of water to the

west of the Continental Divide flows down the Colorado to the Gulf of California, and a drop of

water to the east of the Continental Divide flows down the Mississippi down to New Orleans,

and then into the Gulf of Mexico.

Gulf of California Gulf of Mexico

Continental Divide

Figure 3.31: The two principal river systems of the United States divide it into two great basins.

Biological Switches: The lac Operon

The concept of a “switch” plays an important role in many biological processes, often together

with the related concept of a “threshold.”

• Hormone or enzyme production is “switched on” by regulatory mechanisms when certain

signals pass “threshold” values.

• Cells in development pass the switch point, after which they are irreversibly committed to

developing into a particular type of cell (say, a neuron or a muscle cell). This is of critical

importance in both embryonic development and in the day-to-day replacement of cells.

• In neurons and cardiac cells, the voltage V is stable unless a stimulus causes V to pass a

“threshold,” which switches on the action potential.

A famous example of a biological switch can be found in the bacterium E. coli. E. coli can

use the sugar lactose for energy, but in order to import extracellular lactose into the cell, the

cell needs a transport protein, called lactose permease, to transport the extracellular lactose

across the cell boundary (Figure 3.32). Making lactose permease costs a lot of resources. Thus,

it would be advantageous to the cell to make this protein in large amounts only when lactose

concentrations are high. In that case, it wants to “switch on” lactose permease production.
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Figure 3.32: Schematic of the lac operon. Lactose permease is the enzyme that carries lactose

into the cell, where it activates messenger RNA to produce more lactose permease.

This is what the cell, in fact, does. Let X equal the intracellular lactose level. We will model

the cellular use of lactose by a differential equation,

X ′ = lactose import− lactose metabolism

The rate of lactose import is proportional to the amount of lactose permease. When lactose

levels X are low, so is the production of lactose permease. We will assume there is a constant

background low-level production of lactose permease, at a rate a.

As lactose levels rise, the production of lactose permease increases rapidly, but then levels

off at high lactose concentrations. The blue curve in Figure 3.33 shows a function that roughly

describes the rate of lactose permease production as a function of lactose concentration. A

curve having this shape is called a sigmoid . Since the rate at which the cell imports lactose is

proportional to the amount of lactose permease the cell makes, we can model it with the simple

sigmoidal function

lactose import rate = amount of lactose permease = f (X) =
a +X2

1 +X2

For simplicity, we are making the constant of proportionality 1.

lactose permease 
production

intracelluar lactose

Figure 3.33: A sigmoidal curve relating lactose permease production to intracellular lactose levels.

In this particular case, we use a classical linear degradation term g(X) = kX, where k is the

degradation rate of lactose. Here we choose k = 0.4. The expression for the lactose metabolism

can be written as

lactose metabolism = g(X) = k(amount of intracellular lactose) = 0.4X

Therefore, the overall equation for the rate of change of lactose concentration is

X ′
︸︷︷︸

change in lactose

=
a +X2

1 +X2
︸ ︷︷ ︸
lactose import

− 0.4X
︸ ︷︷ ︸

lactose metabolic degradation
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System Behavior

How will this system behave? Let’s begin by finding equilibrium points. We could multiply out

the terms in the X ′ equation to give us a cubic equation and then find the roots of the cubic

equation. However, in this case, there is a much more intuitive approach. Note that the X ′

equation says that X ′ is equal to a positive term f (X) minus another positive term g(X).

Therefore, the equilibrium points are those points where the two terms are equal, that is,

where f (X) = g(X). We can easily find those points by plotting f (X) and g(X) separately and

seeing where they cross (Figure 3.34). There are clearly three equilibrium points, one at a very

low X value, one at a medium X value, and one at a high X value.

Next, we find the stability of these equilibrium points. In order to read off stability from the

vector field, we simply need to know whether X is increasing or decreasing, in other words,

whether X ′ > 0 or X ′ < 0.

X

X’

X

0

Figure 3.34: Rates of lactose importation (blue) and metabolic degradation (red) as functions

of lactose concentration.

But X ′, the rate of change of lactose concentration, is just the import rate f (X) minus the

degradation rate g(X). If the import rate is higher than the degradation rate, X ′ is positive, and

if the import rate is lower than the degradation rate, X ′ is negative.

Consider Figure 3.34, where f (X) is shown in blue and g(X) is shown in red. Therefore, when

the blue curve is above the red curve, X ′ > 0, and when the blue curve is below the red curve,

X ′ < 0.

Exercise 3.5.3 How is the lactose concentration changing when the red and blue curves cross?

Thus, the left-hand equilibrium point X = low and the right-hand equilibrium point X =

high are stable, while the middle equilibrium point X = medium is unstable. (This method of

determining vector direction, and thus equilibrium stability, is sometimes called the over–under

method .)

We now see how this system can function as a “switch.” As long as lactose concentrations

are low, enzyme production stays low. However, if the amount of lactose in the environment

rises past the critical middle value (the threshold), the cell snaps to the stable equilibrium at

X = high, manufacturing large amounts of lactose permease.
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Dynamics of Gene Expression: The Phage Lambda Decision Switch

In the 1940s and 1950s, scientists confirmed earlier speculation that the compound DNA con-

tained in the cell nucleus carries genetic information, and they worked out its 3D structure.

They also learned that genes code for proteins. (When a cell uses a gene to make a protein, we

say that the gene is expressed.) Soon after that, other scientists realized that it was of great

importance to understand how gene expression is regulated. For example, how is a gene “turned

on”? How can we get long-lasting changes in gene expression from single stimuli? In 1961, the

biologists Monod and Jacob published an influential paper arguing that in order to understand

gene regulation, we needed to understand feedback loops (Monod and Jacob 1961).

Monod and Jacob identified feedback loops, both positive and negative, that regulate gene

expression. They won the Nobel Prize in 1965 for identifying the positive feedback loop that

underlies the “turning on” of the lac operon (see 147).

Here we will talk about another example of the dynamics of gene regulation, the phage lambda

decision switch. We will follow the excellent account in Mathematical Modeling in Systems

Biology: An Introduction, by Brian P. Ingalls. A phage (short for bacteriophage) is a virus that

preys on bacteria, which are much larger.

When the phage lambda infects the bacterium E. coli, it faces an uncertain environment.

Ordinarily, in a healthy cell, the virus would incorporate itself into the genome of the bacterium

and get passed along to all the new progeny of the host cell. This is called lysogenic growth, and

is the default mode of the virus. But if the cell is sick or damaged, the virus turns on another

program, and the virus goes instead into a mode called lytic growth, where it hijacks the host

cell machinery to produce hundreds of copies of the virus, which then burst the cell.

The question is then, how does the viral cell sense the health of the host, and then, how does

sensing the unhealthy state turn on the lytic growth program?

The key is that there are two genes in the phage DNA, called repressor and control of

repressor. These two genes produce proteins, called R and C, respectively, that form feedback

loops that inhibit their own production as well as that of the other.

We won’t go into the molecular biology details here (see Ingalls (2013)), but the bottom line

from the dynamics point of view is that drawing on the biology, we can form a model for the

concentrations of R and C:

R′ = FR − dR · R (3.5a)

C′ = FC − dC · C (3.5b)

where

FR =
a + 10 · a · k1 · (

R

2 )
2

1 + k1 · (
R

2 )
2 + k1 · k2 · (

R

2 )
3 + k3 ·

C

2 + k4 · k3 · (
C

2 )
2

FC =
b + b · k3 ·

C

2

1 + k1 · (
R

2 )
2 + k2 · k1 · (

R

2 )
3 + k3 ·

C

2 + k4 · k3 · (
C

2 )
2

In each equation, the negative term represents classic degradation −dR ·R and −dC ·C. The

two positive terms have complex forms, but we can see what they are saying qualitatively. Each

term has the concentration of the protein itself in the numerator, which means that the protein

spurs its own production. But each one also has its own concentration in the denominator, which

means that each can inhibit its own production. And then each protein has the other protein’s
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concentration in the denominator of its own production term, meaning that the other protein

decreases, that is, inhibits, its production.

First let’s look at the nullclines for this system; see Figure 3.35, left. Note that they intersect

in three places, shown by the large dots. Those are the equilibrium points. The leftmost is stable,

the middle one is unstable, and the right-hand one is stable, as can be confirmed by running a

number of simulations from different initial conditions (see Figure 3.35, right). Thus, we can

see a perfect example of a saddle point (middle) flanked by two stable equilibria.

50 100 150 2000
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100

150

200

C

50 100 150 2000

50

100
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200

R

C

R

Figure 3.35: Nullclines and phase portrait for Ingalls’s model (equation (3.5)). Parameters are

a = 5, b = 50, k1 = 1, k2 = 0.1, k3 = 5, k4 = 0.5, dR = 0.02, and dC = 0.02.

What does this saddle point mean biologically? Note that the left equilibrium point is a low

R/high C state. This is the lytic state, the disruptive state that kills the host cell. The right

equilibrium point is the opposite, a high R/low C state. This is the lysogenic state. Thus, the

saddle point is a switch between the two behaviors. With normal parameters (see Ingalls (2013)),

the nullclines of the system look like Figure 3.35, left, and the behavior like Figure 3.35, right.

Note that the basin of the high R/low C (lysogenic) state is very large compared to the basin of

the high C/low R lytic state. Almost all initial conditions flow to it. Thus, we can conclude that

the cell is typically going to be at the high R/low C equilibrium point, that is, in the lysogenic

mode.
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Figure 3.36: When dR is increased to 0.2, the nullclines intersect only once, and all initial con-

ditions flow to the stable equilibrium point at R = 0, C = 100 (black dot).

But now if circumstances change, the basins can change also. Suppose now that the host

cell is damaged. When the cell’s DNA is damaged, cell repair proteins are released. These repair

proteins greatly increase the degradation rate of the R protein. We can see the effect of this
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(Figure 3.36) by increasing dR from 0.02 to 0.2. The effect is dramatic: now the system becomes

monostable, with just a single equilibrium point at the low R/high C state. This is the lytic mode.

Thus, increased degradation of R flips the system from one mode to the other.

The Collins Genetic Toggle Switch

Building on this work, in 2000, a group at Boston University led by James Collins used nonlinear

dynamics to devise a version of the genetic switch that was reversible and fully bistable. Then,

using genetic engineering techniques in the bacterium E. coli, they actually constructed two

genes that neatly repressed each other. They showed that the inhibition took a very simple form

of a downward-going sigmoid:
k

1 + xn
where n = 4

This inhibition gives rise to an elegant differential equation,

R′ =
k

1 + C4
− R

C′ =
k

1 + R4
− C where k = 5

The resulting nullclines look like Figure 3.37, left, and the resulting predicted behavior is perfectly

bistable (Figure 3.37, right). Note the two stable equilibrium points flanking the unstable one.
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Figure 3.37: Left: Nullclines for the Collins genetic switch. Right: Every initial condition flows to

one of the two stable equilibrium points.

Exercise 3.5.4 In Figure 3.37, what kind of equilibrium point is the middle one?

The paper by Collins et al. goes on to demonstrate experimentally that the system they

engineered does indeed have the bistable switch property. They used two types of “signals.” One,

the chemical IPTG, is a molecular mimic of allolactose, a lactose metabolite, the same kind that

triggers the lac operon. The other signal is heat: the system is briefly subjected to a temperature

of 42◦C.

The upper panel of Figure 3.38 shows the result of applying each of the two signals. On the

left, a dose of IPTG, after a few hours, takes the population of cells from 0% in the high state

to 100%, while on the right, a pulse of higher temperature takes the population from 100%
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Figure 3.38: Results from Gardner et al. (2000). Experimental results demonstrating switchlike

behavior in a genetically engineered circuit. Reprinted by permission from Macmillan Publishers

Ltd: Nature “Construction of a genetic toggle switch in Escherichia coli,” by T.S. Gardner, C.R.

Cantor, and J.J. Collins, 2000, Nature 403(6767):339–342, copyright 2000.

high state to 0%. The lower panel shows the populations changing over time after the IPTG

administration. The authors distinguished the two cell populations by the fact that they had

different levels of green fluorescent protein (GFP).

The authors point out that this represents a very general archetype: a system with clear

“on/off” behavior, serving as a kind of biological “memory unit.” The two stable states, which

can be thought of as “0” and “1,” are tolerant to noise: small fluctuations will not cause switching.

They also observe that their work “represents a significant departure from traditional genetic

engineering in that we rely primarily on the manipulation of network architecture, rather than

the engineering of proteins and other regulatory elements, to obtain desired behaviour.” It is

extremely important for molecular biology to recognize that the emphasis on the structure and

engineering of protein molecules needs to be extended to a recognition of the importance of

biological circuits and their resulting dynamical properties.

Further Exercises 3.5

1. What do basins of attraction have to do with black holes? Specifically, what famous

concept associated with black holes describes a basin of attraction?

2. How could you use simulation to (approximately) map the basin of attraction of a stable

equilibrium?

3. The over–under method can be applied whenever we have one curve representing an

inflow and one representing an outflow. Sketch three sets of such curves. For each

set, mark the equilibria on the horizontal axis and find their stability. No equations are

necessary.
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4. Sketch a pair of input and output functions that would create a switch with three or

more positions.

5. Determine the stability of equilibrium points to the lac operon equation using the method

of linearization:

X ′ =
0.01 +X2

1 +X2
− 0.4X

Plot the equation and calculate the derivatives dX
′

dX
at each equilibrium point.

6. Use the over–under method to find equilibria and assess their stability if the importation

rate is a hump-shaped function of the lactose concentration and the breakdown rate

is proportional to concentration, as above. (Assume that the line representing lactose

breakdown crosses the importation curve.)

3.6 Bifurcations of Equilibria

In the two deer–moose models, we saw an interesting contrast: for two different sets of param-

eters, the model gives two qualitatively different scenarios. In the first model, coexistence is a

stable equilibrium, while in the second model, coexistence is unstable. So we see that a change in

parameters can result in a qualitative change in the equilibrium points of a system. This general

phenomenon is called bifurcation.3

Bifurcations are extremely important clues for the explanation and control of a system’s

behavior. For example, in the two deer–moose cases, we can say that the coexistence equilibrium

became stable because certain parameters changed their values. In particular, a decrease in the

interspecies competition terms caused a change from competition to coexistence. And if we

wished to intervene in this ecosystem, the bifurcation structure would show us what parameters

had to be changed to bring about a desired conclusion.

A bifurcation of an equilibrium point is a change in the number or stability of equilibrium

points in a differential equation as a parameter changes its value.

Changes in Parameters: Transcritical Bifurcation

Suppose a population exhibits logistic growth with an Allee effect,

X ′ = 0.1X(1−
X

k
)(
X

a
− 1)

where a is the minimum population size necessary for the population to be able to grow. Now

suppose that due to changes in the environment, this threshold gradually increases over time.

How will this affect the population?

We begin to answer this question by finding the model’s equilibrium points. These are 0, a,

and k . When a < k , k is a stable equilibrium point and a is an unstable one. However, when

a > k , k becomes an unstable equilibrium point and a becomes stable.

3Bifurcations of equilibrium points are called local bifurcations.
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Exercise 3.6.1 Draw phase portraits to confirm what was said about the stabilities of a and

k , both when a < k and when a > k .

In order to represent this change, we are going to use a new kind of diagram, called a

bifurcation diagram. A bifurcation diagram shows how the existence and stability of equilibrium

points depend on the value of a given parameter. Here, we will construct a bifurcation diagram

for the Allee equation. First, we will plot different phase portraits at different values of the

parameter a, say 300, 500, and 1500. Then we will stack these phase portraits vertically, each

corresponding to its a value (Figure 3.39).

a
1000(=k)3000

X

500 1500

k

0

Figure 3.39: At selected values of the parameter a (the horizontal axis), we construct a one-

dimensional state space shown vertically with its equilibrium points and their stability indicated.

Now if we imagine many many of these state spaces stacked side by side, we can draw

lines connecting the equilibrium points at adjacent a values. This is the bifurcation diagram

(Figure 3.40).

a
1000(=k)300

0

X
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k

0

k

a
1000(=k)3000

X

500 1500

unstable

stable

Figure 3.40: A bifurcation diagram of the equationX ′ = 0.1X(X
a
−1)(1−X

k
). Solid lines represent

stable equilibria, while dashed lines represent unstable ones.

The horizontal axis of this figure shows values of a, and the vertical axis shows values of X.

For each value of a, the diagram shows the corresponding equilibrium points. (It is common to

show stable equilibria as solid lines and unstable ones as dashed lines.)

Exercise 3.6.2 Use the bifurcation diagram in Figure 3.40 to find the equilibrium population

levels at a = 600, a = 900, and a = 1200. Describe the stability of each equilibrium point.
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One way to summarize what happens in Figure 3.40 is to say that the two equilibria collide and

exchange stabilities. This particular bifurcation, in which a pair of equilibrium points approach

each other, collide, and exchange stability as a parameter smoothly varies, is called a transcritical

bifurcation.

Changes in Parameters: Saddle Node Bifurcations

The lac Operon

In an earlier section, we introduced a model of a biological switch in the lac operon. If X is the

intracellular lactose level, then

X ′ =
a +X2

1 +X2
− rX

Note that we have left the degradation rate as r instead of stating a numerical value. We now

want to study what happens as r varies. We will plot the lactose importation term and lactose

metabolism term on the vertical axis as before.

If we plot the degradation term rX for several values of r , we see that as r increases, the

red line representing degradation gets steeper, and the locations at which it intersects the black

curve representing importation gradually change (Figure 3.41). Recall that points where the red

line intersects the black curve are the equilibrium points of the system.

X

r

r

components of X’

0

Figure 3.41: The effect of increasing r in the biological switch model. The black curve is a

schematic: we have compressed the actual function for graphic effect.

When r is large, the slope of the red line is steep, and the line crosses the curve only once,

at a low value of X. As r decreases, there is one mathematical point at which the straight line

is tangent to the curve, and then as r decreases further, a pair of equilibrium points are born,

one stable and the other unstable, giving us three equilibria. As r declines even further, the new

unstable equilibrium gets closer and closer to the old stable equilibrium, until finally, for very

small values of r , a reverse bifurcation occurs as the two equilibrium points coalesce and destroy

each other, leaving only one stable equilibrium at a high value of X.

In order to construct a bifurcation diagram for this system, we will use the same technique of

stacking up phase portraits. For each value of r , we will place a vertical copy of the state space,

with filled dots representing the stable equilibrium points and hollow dots representing unstable

ones (Figure 3.42).
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r

unstable

stable

X

r

X

Figure 3.42: Constructing the bifurcation diagram for biological switch model. Left: Represen-

tative examples of one-dimensional state spaces and vector fields, erected vertically over the

corresponding parameter value r . Right: If we could do this for infinitely many values of r , the

equilibrium points would form the blue and red lines.

Then we remove the state space construction lines, and the result is the bifurcation diagram

for the lac operon (Figure 3.43).

r

unstable

stable

X

Figure 3.43: Eliminating the construction lines gives us the bifurcation diagram for the lac

operon, showing the location of the equilibrium points and their stability for any value of the

parameter r .

Plotting this system’s equilibria against r gives the bifurcation diagram in Figure 3.43. Reading

the diagram from right to left, we see that at first, for large values of r , there is only one

equilibrium point, with X at a very small value. When r reaches a critical value, however, a new

equilibrium point is born and immediately splits into two, one stable and one unstable.

This type of bifurcation, in which a gradual change in a parameter results in the sudden

appearance of a pair of equilibria, is called a saddle-node bifurcation.

Exercise 3.6.3 Does the pair of equilibria produced by a saddle-node bifurcation have to consist

of one that is stable and one that is unstable?

The sequence of changes as the degradation rate r increases can be visualized using our

analogy of
stable equilibrium point = ball in a bowl

unstable equilibrium point = ball on a hill
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We can combine this into a picture of the existence and stability of the equilibrium points at

various values of r (Figure 3.44).

X

r

Figure 3.44: Existence and stability of equilibrium points as degradation rate r increases. In the

bistable region, a significant push is required to move from one basin to the other. (Adapted

from Scheffer et al. (2001).)

Outbreak: The Spruce Budworm

Another important example of a saddle-node bifurcation comes up in ecology. The spruce bud-

worm is a caterpillar that inhabits the forests of the northeastern United States. Typically, the

spruce budworm is present in low numbers, but sometimes its populations increase dramatically,

to the point of defoliating large tracts of forest. Why do these outbreaks happen?

To answer this question, we start by setting up a model. (We follow the treatment in Strogatz

(2014).) Let’s let X equal the budworm population. We assume that in the absence of predators,

the budworm population undergoes logistic growth with carrying capacity k ,

growth of budworm = rX(1−
X

k
)

However, they are preyed upon by birds. When there are very few budworms around, the birds

don’t hunt them much because they are focusing on other prey. As budworm abundance rises,

so does predation, unless there are so many budworms that all the birds have eaten their fill, and

an increase in budworm abundance does not bring about an increase in predation. This describes

a sigmoidal curve, as in the previous example. Here,

predation of budworm by birds =
X2

1 +X2

Thus, we have the overall equation

X ′ = rX(1−
X

k
)

︸ ︷︷ ︸
growth of budworm

−
X2

1 +X2
︸ ︷︷ ︸

predation of budworm by birds

We now turn to the equilibria of this system. One obvious one is X = 0. What about others?

To make finding them easier, we assume X �= 0, and divide the equation for X ′ by X and then
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set the two terms equal to each other:

X ′ = 0

=⇒ rX(1−
X

k
) =

X2

1 +X2

dividing byX gives r(1−
X

k
) =

X

1 +X2

So now we want to know where the curves described by r(1−
X

k
) and

X

1 +X2
intersect. Let’s

study this graphically.

0 X

r

k

components of X’

Figure 3.45: Graphical solution of the equilibrium point problem for the low-k Spruce Budworm

model. Non-zero equilibrium points exist wherever the red curve and the blue line meet (the red

dot).

When k is low, the curves intersect only at one low (but nonzero) value of X (Figure 3.45).

The biological interpretation of this fact is that for a low carrying capacity (k), the system can

support only one stable equilibrium, at a low value of X.

But for larger values of k , we can have multiple equilibria (Figure 3.46). Note first that if r is

low, there is only one equilibrium point, at a low value of X. In this situation, the spruce budworm

population is tightly controlled by predators. However, as the forest matures, it becomes a better

budworm habitat, and r increases, approaching the situation shown in Figure 3.46. Now there are

three equilibria: a stable one at low population density, called “refuge,” an unstable one at interme-

diate density, and another stable one at high density, called “outbreak.” Thus, the spruce budworm

model exhibits the birth of a pair of equilibria, which is the signature of a saddle-node bifurcation.

X
k0

r

a b c

r

r

components of X’

Figure 3.46: Equilibrium points for the high-k Spruce Budworm model as parameter r is varied.

For intermediate values of r , for example, the blue line crosses the red curve three times, resulting

in three equilibrium points, at X = a, b, and c .
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Exercise 3.6.4 Using the over–under method, confirm the above statements about the stability

of the model’s equilibria.

Exercise 3.6.5 You can also get these results without dividing by X. Pick a value for k and

plot rX(1− X
k
) and X2

1+X2 in SageMath. Describe how varying r affects the system’s equilibria.

There are two parameters in this model, r and k . Therefore, we can make a 2-parameter

bifurcation diagram, showing us, for each pair of values (k, r), what the equilibrium point struc-

ture is (Figure 3.47 on the following page). This diagram can be thought of as summarizing

the results of millions of simulations, one for each pair (k, r), and that is indeed one way of

generating Figure 3.47. However, using some math, we can actually calculate the curves that

define the bifurcation regions. We have done that here, following Strogatz (2014). See that

excellent treatment for more details.

Exercise 3.6.6 For each of the (k, r) pairs below, describe how many equilibria the system

has, whether they’re high or low, and what their stability is.

a) k = 10, r = 0.1 b) k = 25, r = 0.6 c) k = 20, r = 0.4

This two-parameter bifurcation diagram gives us a powerful roadmap that shows us how

to change parameters to convert the system from one type of behavior to another. We could

imagine three different kinds of interventions that could be made in the spruce budworm system.

20 40

0

0.1

0.2

0.3
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10 300
k

r

outbreak only

bistable

refuge only

Figure 3.47: Two-parameter bifurcation diagram for the Spruce Budworm model. The diagram

shows, for any pair (k, r), the type of equilibria that the model displays for that pair of parameter

values.

• We could lower r , the reproductive rate of the insect, by preventing them from mating

successfully.

• We could lower k by spraying defoliants, because the carrying capacity k depends on the

amount of total leaf space available.

• We could directly lower X by spraying insecticide.



3.6. Bifurcations of Equilibria 163

Obviously, each strategy has social and environmental costs associated with it. The optimal

strategy is the one that moves us from “outbreak” to “refuge” at the lowest cost.

Which strategy is best? The bifurcation diagram shows us that the best strategy is a combi-

nation one. For example, suppose we are in an “outbreak” state, with, say, k = 35 and r = 0.6

(the red dot). We would like to get back to the low-X “refuge” state. The bifurcation diagram

shows us that a pure-r strategy, moving straight downward in the diagram (vertical gray arrow),

would be very difficult. Lowering r alone would require a drastic change down to r < 0.1. Simi-

larly, a pure-k strategy, spraying defoliant (horizontal gray arrow), also wouldn’t work well, since

we would be moving to the left, and would have to lower k drastically to see any effect.

However, a combined r -and-k strategy would work better than either alone. Moving along

the red arrow, say to k = 15 and r = 0.2, would successfully bring us back to the refuge state.

There is another, even more interesting, intervention strategy. In order to best visualize it,

let’s expand the bifurcation diagram to make it into a 3D figure. We will keep (k, r) space as

the base of our 3D space, and now, instead of just saying how many equilibrium points there

are, we will actually plot where they are in the third dimension, which is X-space.

Now we will make another bifurcation diagram. Only now we have two parameters, not one.

We will make our two-parameter space (k, r) the base plane, and at every point (k0, r0) in this

plane, we will erect a copy of the phase portrait for the differential equation with parameter

values k = k0, r = r0, using green balls to denote stable equilibrium points and red balls to

denote unstable ones (Figure 3.48).

r

k

x

Figure 3.48: Construction of the bifurcation diagram for the spruce budworm model.
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Then we remove the state space construction lines, and the resulting figure is a pleated

surface over (r, k) space (Figure 3.49).

This amounts to solving the equilibrium point condition

X ′ = rX(1−
X

k
)−

X2

1 +X2
= 0

and plotting these results for many values of k and r . The resulting plot is intriguing.

r

k

x

Figure 3.49: Equilibrium points (X ′ = 0) for the spruce budworm model, for many values of r

and k . Stable equilibria are in green; unstable equilibria are in red.

We can clearly see that there is another strategy available. First, suppose we are at the red

dot, in outbreak. Someone proposes massive insecticide use to lower X. It is obvious from the

diagram that if we simply lower X, that moves us down in the 3D space to a low X state. But

there is no stable equilibrium there, so the system will not stay there. The only stable equilibrium

is the high-X outbreak state, and therefore the system will immediately bounce back to it after

our intervention.

Instead, if we lower k and r together just a little to get us into the bistable region (black

star), and then lower X just a little, to just below the unstable equilibrium (white star), then

the system will go by itself to the low-X equilibrium (red star). This equilibrium is stable, so the

system will stay there with no further intervention.

In this way, the bifurcation diagram gives us a kind of “master view” of the possibilities of

intervention in a system. There are many interesting applications of this bifurcation diagram.

Search online for “cusp bifurcation” for more examples.

Changes in Parameters: Pitchfork Bifurcations

There is another type of bifurcation that is less common in biology than saddle-node bifurcations,

but is still worth knowing about. In this kind of bifurcation, termed a pitchfork bifurcation, a

stable equilibrium becomes unstable, and two new stable equilibria appear on either side of it.
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Let’s consider an example from social behavior. Our account follows the very interesting paper

called Herd Behaviour, Bubbles and Crashes by Lux (1995).

Consider a large group of people who may hold one of two opinions, which we will call N

(for “negative”) and P (for “positive”). For example, the individuals might be investors deciding

whether the price of a particular stock will go up (P ) or down (N). Individuals change their

minds by following the opinions of others.

Let N be number of people who hold the negative opinion (at time t), and let P be the number

of people who hold the positive opinion (at time t). We assume that the total population is fixed

at a constant number 2m (the reason for this somewhat unusual choice will soon become clear):

N + P = 2m (3.6)

We then write our basic model as a compartmental model (Figure 3.50). (You can also think of

this as being similar to a chemical reaction.)

N P
kNP

kPN

Figure 3.50: Compartmental model of the opinion-flipping game. N denotes the number of people

who hold the Negative opinion and P denotes the number of people who hold the Positive opinion.

From this reaction scheme, we can write the differential equation

P ′ = kNP · N − kPN · P

N ′ = −kNP · N + kPN · P

Now although there are apparently two variables in this differential equation, in fact there is

really only one, since the sum of N and P is constant at 2m. Therefore, we can define a new

single variable X by

X =
P − N

2m
(3.7)

Thus X measures the imbalance toward positive; when X = 0, then the positive and negative

people exactly balance. When X = 1, everyone holds the P opinion, while when X = −1,

everyone holds the N opinion.

Now let’s write the differential equation in terms of the single variable X. Recalling that X,

N, and P are all functions of t and differentiating equation (3.7) with respect to t, we get

X ′ = (
1

2m
) · (P ′ − N ′)

= (
1

2m
) · (2kNP · N − 2kPN · P )

= (
1

m
) · (kNP · N − kPN · P )

Now we use equation (3.6) and equation (3.7) to get

X =
P − (2m − P )

2m
so

P = m(1 +X)
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Similarly,

N = m(1−X)

so now we can write the differential equation as

X ′ = kNP · (1−X)− kPN · (1 +X)

Now we have to propose expressions for the rate constants kNP and kPN . For example, kNP
is the rate of change to positive. Let’s look at the quantity

d(kNP )

dX

which measures how sensitive kNP is to the degree of positive tilt. One plausible answer for this

is that there is a bandwagon effect:

d(kNP )

dX
is proportional to kNP

This says that the larger the per capita conversion rate, the more sensitive it is to the degree

of positive tilt. We will let that constant of proportionality be a. So a measures the strength of

the bandwagon effect:
d(kNP )

dx
= a · kNP

As we saw in Chapter 2, this differential equation has an explicit solution, whose formula is

kNP = v · e
ax

Similarly, we also assume that
d(kPN)

dx
= −a · kPN

yielding

kPN = v · e
−ax

Here v is a constant representing the speed of opinion changing. (Note that at X = 0,

v = kPN = kNP ), and a is the parameter representing the strength of the contagion factor. It

measures how strongly individuals’ opinions are influenced by the opinions of those around them.

We then get

X ′ = (1−X) · v · eax
︸ ︷︷ ︸

increases X

− (1 +X) · v · e−ax
︸ ︷︷ ︸

decreases X

(3.8)

The stability analysis of this equation is shown in Figure 3.51. Note that for values of a < 1

(black), there is only one equilibrium point, at X = 0. It is stable. But for a > 1 (red and

blue), the formerly stable equilibrium point at 0 becomes unstable, and two new stable equilibria

appear, at positive and negative values of X.

This is called a pitchfork bifurcation (Figure 3.52). When a ≤ 1, the system has a single

stable equilibrium at X = 0. However, when a > 1, the equilibrium at X = 0 becomes unstable,

and two new stable equilibria emerge.

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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X
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a=0.8

Figure 3.51: Graphs of X ′ for the opinion-flipping model with three different values of the

parameter a.

a

0 1

X

Figure 3.52: Bifurcation diagram for the pitchfork bifurcation in equation (3.8).

Exercise 3.6.7 Use SageMath to plot the two parts of equation (3.8) (increases and decreases)

for three values of a. Find the resulting equilibria and determine their stability.

The interpretation of this bifurcation gives us insight into the dynamics. Recall what the key

terms mean: X is the “tilt toward P ,” and the bifurcation parameter is a, which measures how

strongly individuals are influenced by the opinions of others (the bandwagon effect). We saw

that if a is low, there is only one stable equilibrium point, at X = 0. But X = 0 is the “no tilt”

state, so a stable equilibrium at X = 0 means that the population will achieve a stable balance

of N and P views. But if a > 1, then the bandwagon effect becomes so strong that the “evenly

balanced” equilibrium is no longer stable, and the system instead has two new stable equilibria,

which are “all N” and “all P .” The middle is unstable.

The interesting thing to note is that once the X = 0 equilibrium loses its stability, which new

equilibrium the system ends up at can be determined by the tiniest of fluctuations. Thus, we

can observe big differences arising for trivial reasons.

Bifurcation: Qualitative Change

Perhaps the most important lesson to take from these discussions of bifurcations is the idea

of explaining qualitative changes in the behavior of systems. People often think of math as

“quantitative.” With that mindset, it can seem strange to talk about “qualitative mathematics.”

Yet in a way, that’s exactly what bifurcation theory is.

It’s important to realize that very often in science, we really are asking why a system has the

qualitative behavior it does:

• Why does the deer–moose system have a stable coexistence equilibrium (or not)?

• Why does the lac operon have a bistable switch? What causes it to flip from mode A to

mode B?
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• In the model of public opinion, why did the middle “balanced opinions” equilibrium become

unstable and the two extremes become stable?

• Why does the spruce budworm have outbreaks?

This concept of bifurcation theory as providing a qualitative dynamics originates with Poincaré,

who studied qualitative changes in the orbits of the planets in models of the solar system. It was

further developed in the twentieth century by pioneers like René Thom and Ralph Abraham.

Further Exercises 3.6

1. We saw that in the model of logistic growth with an Allee effect,

X ′ = rX(1−
X

K
)(
X

A
− 1)

A, the growth threshold, becomes a stable equilibrium point, and K, the carrying capac-

ity, becomes an unstable one when A > K. Does this make biological sense? For what

ranges of parameter values does the model behave reasonably?

2. The figure below shows a possible relationship between nutrient levels and water turbidity

in a lake.

nutrient level

water cloudiness

0 0.5 1

1

2

3

4

5

6

7

stable

unstable

a) If the nutrient level is 0.2, approximately what will the water turbidity level be?

b) If the nutrient level then increases to 0.8, approximately what will the water turbidity

level be?

c) Suppose the nutrient level increases further, to 1.0. What will the water turbidity be?

d) You are in charge of water quality for this lake. Your predecessor on the job decided

that lowering nutrient levels to 0.8 would be sufficient to restore clear water. What

happened to the water turbidity when this was done? Why?

e) How low do nutrient levels need to be for the water to become clear again?

f) The main source of nutrients in the lake is fertilizer washed off from local lawns and

gardens. Although people want clear water, significantly reducing fertilizer use is not

initially a popular proposal. Explain your nutrient reduction goal in a way community

members can understand.

Note: The phenomenon illustrated here, in which a change in state caused by a parameter

change cannot be reversed by undoing the parameter change, is known as hysteresis.

Scheffer et al. (2001) provides excellent explanations and examples.
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3. You are studying the effects of psychological stress on movement. Suppose you gener-

ated the following bifurcation diagram, where r is the stress level felt by the subject,

and X is the subject’s muscle tone.

r

X

stable unstable

0 105 15 20 25 30 35

0.2

0.4

0.6

0.8

1

a) List the bifurcations that occur in this diagram. For each one, state what type of

bifurcation it is and at what value of r it occurs.

b) How many stable equilibrium points are there when r = 25?

c) Suppose that initially, r = 8 and X = 0.1. What happens if r is increased to 18?

d) What could happen if f was increased to 22?

4. Suppose that the bass population in a lake is affected by terrestrial carbon input (falling

leaves, etc.) in a way portrayed in the bifurcation diagram below, with r the carbon input

and X the bass population density.

r

X

stable unstable

10 40 50 60 80 9020 30 70 100

1

0.2

0.4

0.6

0.8

0

a) List the bifurcations that occur in this diagram. For each one, state what type of

bifurcation it is and at what value of r it occurs.

b) How many equilibria are there when r = 60? Say which are stable and which are

unstable.

c) Explain the meaning of the loop in the middle of the diagram. (Hint: Suppose r is

increasing.)

d) Suppose you can manipulate the carbon inputs to this system. If initially, r = 70

and X = 0.05, how could you manipulate r to raise X to approximately 1? Describe

how X will change during the manipulations.

5. Let X be the concentration of a certain protein in the bloodstream. The protein is

produced at a rate f (X), and it degrades at a rate rX (see graphs below). In other
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words, X satisfies the differential equation

X ′ = f (X)− rX

where f (X) is the function shown in black in the graphs below.

a) Use the “over–under” method to find the equilibrium points of this system, and

determine their stability, for the following values of r :

X
1 2 3 4 5

1

2

3

4

r=0.4

X’

X
1 2 3 4 5

1

2

3

4

r=0.8

X’

X
1 2 3 4 5

1

2

3

4

r=1.1
X’

X
1 2 3 4 5

1

2

3

4

r=2
X’

b) Draw a bifurcation diagram for this system as r varies from 0 to 3. How many

bifurcations occur, and what type is each one? You may want to trace or copy

the graph of f (X).

6. Suppose that in the absence of predators, a population grows logistically with r = 0.75

and k = 1. Also, a fraction h of the population is hunted each year.

a) Write the differential equation for this system.

b) Construct a bifurcation diagram for this system with h as the parameter. What

kind(s) of bifurcation(s) do you observe?

c) Change r to 0.5. At what value of h does the bifurcation now occur?

7. Create a SageMath animation similar to Figure 3.46. Your animation should vary r and

show how this affects where and whether the line and curve cross.

8. Create a SageMath interactive of the spruce budworm system. Manipulate r to approx-

imate the value at which the bifurcation takes place.

9. Using SageMath and the over–under method, create plots that show how the number

and stability of equilibria of the model x ′ = (1− x)eax − (1 + x)e−ax vary with a.



Chapter 4

Nonequilibrium Dynamics: Oscillation

4.1 Oscillations in Nature

We now have to make a detour out of mathematics into science. We have to ask: what are the

fundamental kinds of behaviors that can be seen in a scientific system, and what do they look

like mathematically?

We have all seen scientific concepts of equilibrium playing a fundamental role in many scientific

theories.

Chemistry. We are told that chemical substances placed in a box will quickly go to equilib-

rium, called “chemical equilibrium.”

Thermody- A hot cup of coffee in a cooler room will quickly go to an equilibrium temperature

with the environment, a condition called “thermodynamic equilibrium.”namics.

Economics. We are told that a free market with many small traders will reach an equilibrium

price where supply meets demand, called “economic equilibrium.”

Physiology. We are taught the doctrine of homeostasis, which says that the body regulates

all physiological variables, such as temperature and hormone levels, to remain

in “physiological equilibrium.”

Ecology. Older theories were often phrased in terms of equilibrium concepts such as

“carrying capacity” and “climatic climax.” The population rises or falls until

it reaches the ecosystem’s carrying capacity, or the community composition

changes until it reaches a state determined by climate and soil, at which point

the system is in “ecological equilibrium.”

Oscillation in Chemistry and Biology

If “equilibrium” truly described scientific phenomena, we could stop the investigation right here

and begin to look for point attractors in all of our models of natural phenomena.

But are systems in nature really governed by equilibrium dynamics? No! The problem is that

in every one of the above examples, in every one of these sciences, the doctrine of equilibrium

behavior is factually wrong or at least incomplete as a description of the behavior of those

systems.

We already saw, in Chapter 1, many types of systems in which the fundamental behavior is

oscillation, not equilibrium. Hormones oscillate, and ecosystem populations oscillate. There are

c© Springer International Publishing AG 2017
A. Garfinkel et al., Modeling Life,
DOI 10.1007/978-3-319-59731-7_4
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also thermodynamic oscillations, and oscillations in economic markets. In fact, in each science

there has been a battle over the existence of oscillatory phenomena, eventually resulting in the

grudging acceptance of oscillation as a fundamental mode of behavior (Garfinkel 1983).

Oscillations in Biochemistry

A typical conflict over the existence of oscillation took place in biochemistry. In 1958, while

working in the Soviet Union, chemist B.P. Belousov studied the reduction of bromate by malonic

acid, a well-known laboratory model for the Krebs cycle. He saw something remarkable. The

colorless liquid turned yellow, then, a minute or so later, turned colorless again, and then a

minute or so after that, turned yellow again. It kept up this oscillating behavior for hours. The

first reliable oscillatory chemical reaction had been observed (Figure 4.1).
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Figure 4.1: Oscillations in reaction products in the Belousov reaction. Redrawn with permission

from “Oscillations in chemical systems II: Thorough analysis of temporal oscillation in the bro-

mate–cerium–malonic acid system,” by R.J. Field, E. Koros, and R.M. Noyes, (1972), Journal of

the American Chemical Society 94(25):8649–8664. Copyright 1972 American Chemical Society.

When he tried to publish his results, he met a stone wall of rejection: such a thing as an

oscillatory chemical reaction is not even possible, he was told, because it violated the Second

Law of thermodynamics, which says that entropy increases with time in every chemical reaction,

and therefore perpetual oscillation is impossible. What the critics failed to grasp was that no one

was claiming to have found a perpetual oscillator, only one that oscillates for a long time. This

violates the ideology of “equilibrium,” but there is nothing physically wrong with the concept of

a process that oscillates for a long time, by importing energy and exporting waste (for example,

you). Indeed, the 1977 Nobel Prize in Chemistry was awarded for “contributions to nonequilibrium

thermodynamics”, including a thermodynamic theory of oscillatory chemical reactions.

Oscillations in Physiology

Body temperature. In all mammals, body temperature shows a clear 24-hour rhythm, whose

amplitude can be as much as 1◦. This daily rhythm is not the result of simple external cues such

as the light–dark cycle, because it persists even in continuous darkness (Figure 4.2).

Hormones. Virtually all mammalian hormones show oscillatory behavior at a number of time

scales. This is true of men as well as women. The dynamics of estradiol, the principal estro-
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gen, displays oscillations at the 1-to-2-hour scale as well as the 12-hour scale. Note that the

oscillations have a much larger amplitude during the daytime (Figure 4.3).

Gene expression. Genes are often under regulation that causes them to express in an oscillatory

pattern, with cycles ranging from hours to days (Figure 4.4). Oscillatory gene expression has been

detected in many genes, including Hes1, which is critical in neural development, and p53, the

“guardian angel gene,” which is critical in cancer regulation. These oscillations include circadian

(24-hour) rhythms, and other higher-frequency rhythms.

36.4

36.8

37.2

C

12 24 12 24 12 24 12 24 12

time of day 
(hours)

Figure 4.2: Four days of core body temperature (measured rectally) in human subjects. Re-

searchers plotted the average of six human volunteers over four days. Closed circles represent

the condition of an artificial light–dark cycle, while the open circles represent the same indi-

viduals in continuous darkness. Shaded areas are sleep times. Redrawn from “Human circadian

rhythms in continuous darkness: entrainment by social cues,” by J. Aschoff, M. Fatranska, H.

Giedke, P. Doerr, D. Stamm, and H. Wisser, (1971), Science 171(3967):213–15. Reprinted with

permission from AAAS.
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Figure 4.3: Multifrequency oscillations in estradiol in a 25-year-old normal female, mid-to-late

follicular phase. Redrawn with permission from “Synchronicity of frequently sampled, 24-h con-

centrations of circulating leptin, luteinizing hormone, and estradiol in healthy women,” by J.

Licinio, A.B. Negrão, C. Mantzoros, V. Kaklamani, M.-L. Wong, P.B. Bongiorno, A. Mulla, L.

Cearnal, J.D. Veldhuis, and J.S. Flier, (1998), Proceedings of the National Academy of Sciences

95(5):2541–2546. Copyright 1998 by National Academy of Sciences, U.S.A.
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Figure 4.4: Two-hour oscillations in the expression of the gene Hes1. Redrawn from “Oscillatory

expression of the bHLH factor Hes1 regulated by a negative feedback loop,” by H. Hirata, S.

Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, and R. Kageyama, (2002), Science

298(5594):840–843. Reprinted with permission from AAAS.

Transient Versus Long-Term Behavior

The existence of oscillation must be accepted as a fact. But how are we to understand it and

model it mathematically?

We want to say that these systems are in a kind of “dynamic equilibrium,” but we don’t

yet have a way to say this mathematically. We will now develop the mathematical concept

corresponding to this oscillatory type of “dynamic equilibrium.”

In order to model this concept of equilibrium, we have to make a distinction between transient

behavior and long-term behavior.

When we look at the dynamics of a system, there are two different questions we might be

interested in. We can think of them roughly as short-term versus long-term behavior.

Short-term behavior (transients). When we start a system with a given initial condition, the

system immediately begins to react. This initial short-term response is called transient, which

can be either an adjective or a noun. For example, if we look at an epidemic population model

of susceptible–infected type, we might set S0 and I0, the initial numbers of the two populations,

and then want to know how the system immediately responds: does the infection get larger or

smaller?

Long-term behavior (asymptotics). More often, we are interested in the system’s long-term

behavior pattern, because that is usually what we observe. If we are studying neurons, the heart,

metabolic systems, or ecosystems, we are typically looking at a system that has settled into

a definite long-term behavior. This behavior “as t approaches infinity” is called the asymptotic

behavior of the system.

We are therefore led to make a definition, to try to capture the idea of “long-term behavior.”

If X is the state space of a dynamical system, then we define an attractor of the dynamical

system as

(1) a set A contained in X such that

(2) there is a neighborhood of initial conditions that all approach A as t approaches infinity.

Let’s unpack that. “A set A contained in X,” refers to a collection of points in state space.

This could be one point, or a curve, or a more complex shape. And “there is a neighborhood of

initial conditions that all approach A” just means that if you start close enough to A, you will

eventually approach it. We are deliberately not stating just how close “close enough” is, because

this can be very different for different attractors.
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Exercise 4.1.1 What concept have you previously encountered that describes the neighborhood

(to be precise, the largest such neighborhood) in this definition?

An attractor of a dynamical system on the state space X is a set A contained in X such that

for a neighborhood of initial conditions X0, the trajectories going forward from X0 all approach

A, that is,

the distance d
(

X(t), A
)

→ 0 as t →∞

We have already seen examples of attractors, namely, the stable equilibrium points of Chapter

3. Think about the model of a population with crowding,

X ′ = bX −
b

k
X2

and recall the behavior at and near X = k :

X = k

In other words, the point X = k satisfies the definition of an attractor:

(1) it is a set (consisting of one point) in X,

(2) and for all points in a neighborhood of X = k , the flow is toward X = k .

Exercise 4.1.2 What is the largest neighborhood of X = k for which this is true?

As t → ∞, every initial condition around X = k approaches the point X = k . Therefore,

X = k is called a point attractor . Note that the state point gets closer and closer to X = k

without actually ever reaching or touching it. This is called approaching X = k asymptotically.

Exercise 4.1.3 Draw a vector field for a one-dimensional system with three attractors.

Another example is the spring with friction (Figure 4.5). Look at the equilibrium point (0, 0).

Note that in a neighborhood around (0, 0), all initial conditions flow to (0, 0) as t →∞. Thus,

in this system, the point (0, 0) is a point attractor.

velocity (V)

position (X)

Figure 4.5: Point attractor in the model of a spring with friction.

http://dx.doi.org/10.1007/978-3-319-59731-7_3
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The simplest attractor is a point. “Point attractor” is another name for “stable equilibrium

point,” and it is a model for equilibrium control of systems.

Stable Oscillations

We’ve already seen some models that produce oscillation, including the frictionless spring and

the shark–tuna model.

However, these models are not good models for biological oscillations. The biggest problem

with them is that they are not robust. In both of these models, the behavior depends forever on

the initial condition. If you are on a trajectory and are perturbed even slightly, there is no return

to the original trajectory. The system “remembers” the perturbation forever.

This is generally undesirable in a biological system. For instance, the body temperature rhythm

should be stable to perturbations: if you have a fever one day, you want to be able to return to

the normal oscillation.

In order to understand how to model these kinds of “robust” oscillations, we have to think

a little bit about dynamical systems. It turns out that dynamics gives us a perfect language to

talk about this concept.

First of all, we need to mathematically define the concept of oscillation. There are two ways

to look at it: 1) in the time series of a variable, and 2) in the state space trajectory.

1) If X is a state variable, the function X(t) is an oscillation if and only if it is periodic; that

is, if there is a constant P (called the period of the oscillation) such that for all times t,

X(t + P ) = X(t). In other words, the function X(t) repeats itself after P time units.

2) In state space, a trajectory represents an oscillation if and only if it is a closed loop, which

is often referred to as a closed orbit.

Exercise 4.1.4 Why does the first condition being true mean that the second must be true?

Why does the second being true mean that the first must be true?

But is this sufficient to capture the notion of “dynamic equilibrium”? No, there is one more very

important piece to the definition. In the shark–tuna system and the frictionless spring, behaviors

were indeed represented by closed orbits in state space. However, when perturbed slightly, the

behavior goes to a different oscillation from the one that existed before the perturbation. The

new oscillation neither approaches the original oscillation nor moves away from it. We say that

these oscillations are neutrally stable.

What we need are models for oscillations that are stable. Stable oscillations are better models

for biological oscillations than the neutrally stable oscillations in the shark–tuna and frictionless

spring models.

The concept of an attractor gives us a perfect definition of a stable oscillation. We can now

define a periodic attractor.
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A periodic attractor is an attractor that is a closed orbit, also called a stable limit cycle, or

limit cycle attractor.

Rayleigh’s Clarinet: A Stable Oscillation

A beautiful set of examples of stable limit cycles can be found in the pioneering work by Lord

Rayleigh (1842–1919) on the physics behind musical instruments. Here we present his analysis of

the clarinet reed. Our account closely follows the excellent presentation in Abraham and Shaw’s

Dynamics: The Geometry of Behavior (Abraham and Shaw 1985).

V

X

0

Rayleigh modeled the reed of the clarinet as a thin, flexible wand attached to a solid object,

with a mass on its end. The clarinetist supplies energy to the system by blowing along the long

axis of the wand.

Without the clarinetist, the system is simply a spring with friction (from air resistance), and

it produces a spiraling in trajectory (Figure 4.6, left). If we bend the reed up or down, it will

oscillate in a damped manner and eventually return to the equilibrium position. This behavior can

be modeled using Hooke’s law (Fs = −k1X, with k1 = 1) with simple linear friction (Ff = k2V ,

with k2 = 1). Assuming the mass m = 1, we get

X ′ = V

V ′ = Fs − Ff = −X − V

This gives us exactly the behavior of a spring with friction, namely, a spiraling in to a stable

equilibrium point.

When the clarinetist blows on the reed, the situation is changed. Rayleigh reasoned that

blowing supplies energy to the system and therefore acts like the opposite of friction, or in

other words, like “negative friction.” Thus, for this system, the function that relates “friction”

to velocity has a negative slope, which results in a spiraling out of the trajectory (Figure 4.6,

right).

Exercise 4.1.5 Write the equations for a spring with “negative friction.”
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Figure 4.6: Left: When the friction force is positive, the system has a point attractor of spiral

type at (0, 0). Right: When the friction is negative, the origin becomes a spiral type unstable

equilibrium.

Of course, a trajectory that spirals out forever isn’t realistic. What actually happens is that if

the wand is moving slowly (V is small), then blowing on it will actually accelerate it, so the force

of the breath is in the same direction as the motion and adds energy to the system. But if the

velocity of the wand is high, the blowing produces conventional friction (due to air resistance),

which retards the motion. So how do we model this? Rayleigh needed a function of V that had

a negative slope (negative friction) for small values of V and a positive slope (positive friction)

for large values of V . The simplest way to do this is with a cubic function like

Ff = (V
3
− V )

(Figure 4.7).

V

friction

Figure 4.7: A hypothetical nonlinear friction force.

What behavior results from this nonlinear friction? Rayleigh reasoned in state space. He argued

that since the small-V behavior produces a spiraling out, and the large-V behavior produces a

spiraling in, between these two there must be a single closed orbit trapped between the other

two kinds of trajectories. (This was not proved until 50 years later, by Poincaré, using his new

invention, topology.)
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This new kind of friction then gives us a new differential equation:

X ′ = V

V ′ = −X − (V 3 − V )

A simulation of this equation results in the trajectories shown in Figure 4.8, right.

V

V

X

X

X

V

spring friction

Figure 4.8: Upper: spring force and friction force for the Rayleigh clarinet model. Lower Left:

Two representative trajectories for this model. Lower Right: All trajectories, from any initial

condition except (0, 0), approach the red loop asymptotically.

Consider the closed orbit shown in red. Note an interesting fact about it, which we have

not seen before: if you choose an initial condition that is not on the red loop, the ensuing

trajectory will get closer and closer to the red loop, and will approach it as t →∞. This

is true whether you are inside the red loop or outside it; all trajectories, with the exception of

the one point at (0, 0), approach the red loop arbitrarily closely.

In other words, the red loop fits the definition of an attractor. It is our first example of a

closed orbit attractor, or periodic attractor. A third name for these is based on the idea that just

as an equilibrium point is a limit point, the red loop is a limit cycle, and so these are called limit

cycle attractors.1 Note that another name for the red loop is a stable limit cycle. It is stable in

exactly the same sense as a stable equilibrium point: if you perturb the system off the cycle, the

behavior returns to the cycle. So it really is an attractor.

Exercise 4.1.6 Sketch a phase portrait that shows an unstable limit cycle.

We said that closed orbit attractors are better models for biological oscillations. They are also

better models for musical instruments: we want the character of the musical note to be stable

1Some sources refer to all closed trajectories as “limit cycles.” On the other hand, a few reserve the term for
stable closed trajectories.
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under small changes. For example, when we blow harder, we want the quality of the note and

its frequency to be stable, and only its amplitude to change. Now, the quality of the note, what

musicians call the timbre, is what makes a trumpet playing a note sound different from a guitar

playing the same note. What gives a note its quality is the overtones, or higher harmonics of

the fundamental frequency. These harmonics show up in the trajectory by giving the oscillation

a noncircular shape.

Let’s model “blowing harder.” Rayleigh suggested that it can be modeled by changing the

“friction” term, so that the negative friction region is broader. For example, if we take Ff =

0.5V 3 − V , then we get the solid limit cycle shown in Figure 4.9.

X

V

X

V

spring

friction

Figure 4.9: Blowing harder. Left: The solid lines show the forces in the Rayleigh clarinet model,

under the “blowing harder” condition. The dotted line represents the model without blowing

harder. Right: Limit cycle attractors for the two models. Note similarity of shape.

Note that it has the same shape as the smaller one. This is important, because it is the shape

of the trajectory that gives the instrument its characteristic sound. Additionally, the fundamental

frequency is unchanged, which is also critical in a musical instrument.

Exercise 4.1.7 Simulate the model

X ′ = V

V ′ = −X − (a V 3 − V )

for three different positive values of a and compare the trajectories and time series.

A little research will turn up fascinating mathematical models of other musical instruments.

Abraham and Shaw’s beautiful book has several of them (Abraham and Shaw 1985). Models of

the clarinet reed have been improved since Rayleigh’s time, and many other musical instruments

have been mathematically modeled.
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Further Exercises 4.1

1. Is a saddle point an attractor? Justify your answer.

2. Does a trajectory that approaches a limit cycle attractor ever reach the attractor?

Explain.

3. Give an example of an equilibrium concept from science or everyday life (other than

those described in the text) and describe what aspects of system behavior it captures

and what it fails to capture.

4. Describe jet lag and recovery from it in dynamical terms.

5. Sketch an unstable limit cycle. If the limit cycle has a single equilibrium point (and no

other limit cycles) inside it, what kind of equilibrium must the point be?

6. Suppose a 2D system has a stable equilibrium point that is located somewhere outside a

limit cycle. Can a trajectory starting inside the limit cycle reach this point? Justify your

answer. (Hint: It may help to draw the situation.)

7. Suppose you are studying a system of differential equations, and you find an unstable

spiral equilibrium point. You also find a trajectory that makes a complete loop around

that equilibrium point. In a 2D state space, these conditions usually cause that “loop

trajectory” to be a limit cycle attractor.

a) If the state space is three-dimensional, does the loop have to be a limit cycle

attractor? Explain.

b) Can you think of a way that these conditions could occur in a 2D state space so

that the loop is not a limit cycle attractor? Explain. A picture is a good idea. (Hint:

It can happen, but it’s extremely unlikely.)

4.2 Mechanisms of Oscillation

As we begin to model oscillatory phenomena in nature, we will see some common themes across

all of our models. In particular, there are typical causes or mechanisms for stable oscillatory

behavior. The two most important are steep negative feedback and time delays.

The Hypothalamic/Pituitary/Gonadal Hormonal Axis

Let’s start by examining hormone oscillations (Figure 4.3). An elementary model of an endocrine

control system was first proposed by W. Smith (Smith 1983).

The gonads (ovaries in females, testes in males) secrete hormones, called estradiol and pro-

gesterone in females and testosterone in males. For simplicity here, we will assume that it is

one hormone, which we will call G (for gonad). What makes the gonads secrete their output?

They are under the control of two hormones made by the pituitary, luteinizing hormone (LH)

and follicle-stimulating hormone (FSH). These hormones stimulate the gonads: the more LH

and FSH the pituitary makes, the more G the gonads make. As another simplifying assumption,

we’ll model a single generic pituitary hormone, which we’ll call P .
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If the pituitary gland controls the gonads, what controls the pituitary gland? In the 1970s, it

was discovered that the pituitary (which is in the head but not technically in the brain) is actually

under the control of the brain. The hypothalamus, a part of the brain located a millimeter away

from the pituitary, secretes releasing factors that cause the pituitary to secrete its hormones. The

hypothalamic factor relevant to the system we are studying is gonadatropin-releasing hormone,

which we’ll call H (for “hypothalamus”). The more H is secreted by the hypothalamus, the more

P is secreted by the pituitary.

Where is this chain of glands driving glands going to end? It ends by closing the loop. The

hypothalamus senses the circulating levels of G and responds to high levels of G by down-

regulating its output of H. Figure 4.10 summarizes the situation.

hypothalamus

gonad

pituitary

Figure 4.10: In mammals, the Hypothalamic-Pituitary-Gonad system forms a negative feedback

loop.

We can now specify a few dynamical assumptions and start writing the differential equations

for this system. Earlier, we said that H stimulates the production of P , and P stimulates the

production of G. We will assume that this stimulation is directly proportional to the concentration

of the stimulating hormone, with proportionality constant 1. Furthermore, we’ll assume that the

decrease in hormone concentration caused by that hormone is proportional to the concentration

of that hormone. The equations we now have are

The cloud symbol in the equation for H′ represents an unknown function of G that decreases

as G increases but never goes negative. One possibility for such a function is the family of

decreasing sigmoids

shown in Figure 4.11.

Notice that for our negative feedback function, we have chosen a function that is never

negative! The term “negative feedback” actually encompasses two somewhat different types of

behavior. In the more straightforward case, an increase in some quantity leads to an actual

decrease in that quantity. The examples we have seen so far fall into this class. The second

kind of negative feedback is a bit more subtle. It occurs when the feedback loop cannot actually

take away from the quantity in question but can decrease its growth rate. An example of this



4.2. Mechanisms of Oscillation 183

is seeing your bank account balance get low and curtailing your spending in response. Even if

you reduced spending all the way to zero, this could not actually increase the amount of money

in your account. Spending reductions do, however, slow down the decline of your bank balance.

Here, we see a biological example of this kind of negative feedback. It is a biological fact that

the hypothalamus can secrete only H. It can’t suck H back up! So the form of the negative

feedback has to be the second kind; it has to be modeled by a function that is declining but

never negative.

The shape of this function depends on n, as shown in Figure 4.11. Notice that the middle

portion gets steeper; that is, it is more sensitive to changes in G as n increases. Here we will

choose a relatively steep value, let’s say n = 9. Thus, the overall equations are

H′ =
1

1 + Gn
− k1H

P ′ = H − k2P

G′ = P − k3G

1 2

0.5

1

0

0

n=3
n=5

n=9

G

1

1 + G
n

Figure 4.11: Negative feedback functions, with varying steepness.

A simulation of this model, using k1 = k2 = k3 = 0.2, and n = 9, shows clear oscillations;

Figure 4.12.
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G

P

Figure 4.12: Limit cycle attractor in the H/P/G model.
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Notice that all three hormones oscillate. The trajectory approaches a closed loop attractor,

which is the steady state for the system. If we performed the experiment of starting at a variety

of initial conditions, we would see a remarkable fact: all trajectories approach the same closed

loop attractor. And if we perturbed the system off the closed loop attractor, it would quickly

return to it. Thus, this is a stable oscillation in the endocrine system.

Exercise 4.2.1 Verify that for values of n less than 8, the system goes to a stable equilibrium,

but as n passes 8, the equilibrium point becomes unstable, and a stable oscillation is created.

Exercise 4.2.2 Verify that a variety of initial conditions all approach the same limit cycle

attractor in the H/P/G system.

Highly sensitive negative feedback loops are one of the major causes of oscillations in biological

systems. To see why steep negative feedback results in oscillatory behavior, imagine a parent

teaching a teenager to drive. The teen is trying to keep the car in the center of the lane, and the

parent tells them to correct right or correct left, as appropriate. This is an example of a negative

feedback loop. If the parent’s sensitivity to the car’s position is reasonable, the car will travel in

a fairly straight line down the center of the lane. But what happens if the parent yells, “go right”

when the car drifts a little bit to the left? The startled teenager will overcorrect, taking the car

too far to the right. The parent will then start yelling, “go left,” the teen will overcorrect again,

and the car will oscillate back and forth, as illustrated in Figure 4.13.

Figure 4.13: Schematic of the behavior of a car whose driver is under very steep feedback control.

The driver overcorrects in each direction.

While it is clear that steep negative feedback is a cause of these oscillations, it is important

to understand that it is not sufficient by itself to produce these oscillations. To see why, consider

an even simpler negative feedback model. Let’s eliminate the middleman between H and G,

and assume that the hypothalamic feedback could somehow be applied instantaneously to the

gonad. In other words, let H control G directly, resulting in a new model:

H′ =
1

1 + Gn
− k1H

G′ = H − k3G

This negative feedback model will not oscillate, no matter how steep the feedback.
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Exercise 4.2.3 Verify this assertion.

The reason is that eliminating the middleman eliminated a key time delay in the process that

was necessary to generate oscillation. In this case, the time delay is created by the fact that the

hypothalamus must change the pituitary, and then the pituitary changes the gonad.

While steep negative feedback is an important cause of oscillation in this system, it is also

important to remember that time delays also play a role.

Respiratory Control of CO2

This endocrine time delay is modeled by having intermediate steps in the process. There is

another way to model time delays—explicitly.

The explicit approach involves writing differential equations in which the rate of change of the

state variable is a function of the value of that variable some time ago. For example, we might

have X ′(t) = 2X(t − 5), where X(t − 5) is the value of X at a time 5 time units before the

present time. Such equations, which explicitly include time delays, are called delay differential

equations. The value of the delay is commonly written τ (the Greek letter tau), so it’s common

to see expressions such as X(t − τ).

Exercise 4.2.4 In the delay differential equation Y ′(t) = 16Y (t − 2) + 8Y (t), what does

Y (t − 2) refer to? What does Y (t) refer to?

One important delay differential equation in biology is the Mackey–Glass model of respira-

tory control of CO2 (Mackey and Glass 1977). One function of breathing is to control the

concentration of carbon dioxide in the blood, a quantity we will represent with the variable X.

This is carried out by increasing the breathing rate when CO2 is high, thereby shoveling out

more CO2. The control of the breathing rate (also called the ventilation rate) is carried out by

chemoreceptors in the brain, which send instructions to the nerves controlling the lung.

Now let’s make a model of this process, which is essentially going to be

X ′ = things that increase CO2 − things that decrease CO2

= body metabolism− ventilation

Let’s assume that the body’s rate of metabolic production of CO2 is a constant, which we’ll

call L.

Now we need to model the effect of ventilation. Carbon dioxide is excreted by the lungs; each

breath has a volume of CO2 that depends on the current CO2 concentration in the blood in the

lung, which is the variable X. So then the rate of excretion of CO2 is equal to

CO2/breath × breaths/minute

The term “breaths/minute” in the excretion of CO2 from the lungs is the ventilation rate V ,

which is controlled by CO2 concentration in the blood. When the CO2 concentration is low, the

ventilation rate is low, but when CO2 is high, the ventilation rate is close to the maximum. We

need a function that summarizes this. A.V. Hill, the physiologist who first studied this, used a

function that has become so popular that in physiology it is now called a “Hill function.”2 It is

2In ecology, the same function is sometimes called the “Holling Type III function” and is used to model the
feeding behavior of vertebrates.
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the family of increasing sigmoid functions

Y =
Xn

1 +Xn

For increasing values of n, the function gets steeper and steeper, as shown in Figure 4.14.

We would therefore like to write the model as

X ′ = L− V ·X

= L−
Vmax ·X

n

1 +Xn
·X

1 2

V

0.5
n = 2

n = 5
n = 9

0

ventilation

rate

X=[CO2]

max

Vmax

Figure 4.14: Three examples of the Hill function for ventilation, Vmax ·X
n

1+Xn
.

We use Vmax to scale the sigmoid function so that its maximum value is the maximum

ventilatory rate, called Vmax .

Exercise 4.2.5 What aspect of the function does Vmax control?

There is one problem with this, however. There is an X in the ventilation rate Hill function,

and there is an X that it is multiplying, but they are not the same X! There is a delay between

gas exchange in the lungs and the effect on CO2-monitoring neurons in the brain. In simple terms,

it takes time for blood to get from the lungs to the brain. Therefore, the brain is responding not

to the current CO2 concentration in the lung but to the concentration some time ago. (In the

body, this delay is on the order of 0.2 minutes.) Thus, the ventilation rate function really needs

to be

V = Vmax ·
Xτ
n

1 +Xτ
n

where Xτ is the time-delayed value X(t− τ), the value of X at time τ time units ago. With this

addition, the Mackey–Glass equation becomes

X ′ = L−
Vmax ·Xτ

n

1 +Xτ
n ·X

The state variable is X, but we are most interested in the quantity V , the ventilation rate.

For low values of n and τ , the system goes to a stable equilibrium. When X is in equilibrium,

so is V , and the result is a steady breathing rate. But if we increase n or τ (or both), the
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model starts to oscillate (Figure 4.15), with the breathing rate waxing and waning over 30

seconds. These oscillations in breathing rate, called Cheyne–Stokes breathing, are observed in

heart failure patients as well as those with stroke or other neurologic conditions (Figure 4.16).

Heart failure patients have longer circulation times, due to low pumping efficiency, and so have

higher values of τ , while stroke patients often suffer from “hyperreflexia,” in which reflex reactions

are exaggerated, and therefore can be modeled as having an increased n.

Exercise 4.2.6 Let

X ′ = 6−
16 ·X(t − 0.2)5

1 +X(t − 0.5)5
·X

Assume that for all t ≤ 0, X(t) = 0.5. Use Euler’s method with a step size of 0.1 to approximate

X(0.3).

0.5 1 1.5 2 2.5 3

5

10

15

time (mins)

V (breaths per min)

Figure 4.15: A simulation of the Mackey–Glass respiration model developed in the text, with

L = 6, Vmax = 16, n = 5, and τ = 0.2.

volume per breath (mL)
1000

0

0.5 1 1.5 2 2.50
time (mins)

Figure 4.16: Cheyne–Stokes breathing in a spinal cord injury patient. Redrawn with permission

from “Sleep disordered breathing in chronic spinal cord injury,” by A. Sankari, A. Bascom, S.

Oomman, and M.S. Badr, (2014), Journal of Clinical Sleep Medicine 10(1):65–72. Copyright

2014 American Academy of Sleep Medicine.
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You should be surprised to see oscillations coming from a single-variable model. (Why?) The

reason this is possible is that the state of a delay differential equation is not just the current

value of the variable. Proceeding from one integration step to the next in a delay differential

equation requires information about the value of the variable τ time units ago. Consequently,

delay differential equations are actually infinite-dimensional, since we need to know the whole

history of values, information about an infinite number of points, to simulate them. This allows

delay differential equations to display behaviors that are otherwise possible only in two or three

dimensions.

The kinds of delays modeled by delay differential equations are what we might call “transfer

delays.” For example, the Mackey–Glass model contains a delay because it takes time for blood to

get from the lungs to the brain. However, delays in negative feedback loops can cause oscillations

even without an explicit delay in the equations. The HPG model contains such a “process delay.”

Exercise 4.2.7 Verify that both n and τ must be sufficiently large for oscillation to happen in

this system.

Muscle Tremor

The same dynamics are at work in many cases in which oscillation is a pathology. Consider the

simplest type of control system in skeletal muscle: the monosynaptic stretch reflex. Muscles

contract because they are given an electrical signal from the controlling neurons, called motor

neurons. There is a negative feedback loop that regulates muscle position and helps the muscle

maintain a constant position in space: when a skeletal muscle is stretched by external forces, Ia
sensory neurons register this stretch and increase their signaling to the primary α-motor neuron

(in the spinal cord) governing that muscle. This results in the motor neuron increasing its firing,

which results in the muscle contracting. Thus there is a negative feedback loop (Figure 4.17).

increase in L −→
increased stretch

reflex firing
−→

increased motor

neuron firing
−→ decreased L

L motor neuron

spinal cord

muscle length L

α-MN

a
muscle

Figure 4.17: Left: There is a simple stretch reflex arc that runs from a muscle to the motor

neurons that control it. Right: Schematic of the arc shows that it is a negative feedback loop.

Under normal conditions, this negative feedback loop maintains a fairly steady muscle position.

But in many pathological conditions, the steady state of the limb is lost, and pathological

oscillations result, called tremor (Figure 4.18, Figure 4.19).
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Figure 4.18: Stretch reflex-induced oscillation in the force at the elbow joint of a normal human

subject. The reflex has been enhanced by a spring load. Redrawn from “Alpha band cortico-mus-

cular coherence occurs in healthy individuals during mechanically-induced tremor,” by F. Budini,

L.M. McManus, M. Berchicci, F. Menotti, A. Macaluso, F. Di Russo, M.M. Lowery, and G. De

Vito, (2014), PloS one 9(12):e115012. Copyright 2014 Budini et al.
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Figure 4.19: Parkinsonian tremor in the index finger of a patient (subject v4) off medication.

Drawn from data provided in supplement to Beuter et al. (2001) https://www.physionet.org/

physiobank/database/tremordb/.

Dynamical systems theory can give us an insight into the mechanisms behind tremors. As we

have seen, there are two kinds of factors that can cause a negative feedback system to go into

oscillation: steep slopes and increased time delays.

Both of these occur in various pathologies that exhibit tremor. For example, multiple sclerosis

(MS) is a disease in which the insulation of the neuron becomes damaged, leading to slower

conduction and hence increased time delay in the system. MS patients suffer from muscle tremor,

and it is very tempting to speculate that this might be the mechanism.

Another group of patients that exhibit muscle tremor are stroke patients. Here, the mechanism

is different: one of the roles the brain plays when healthy is to suppress the sensitivity of peripheral

reflexes. But in stroke, which is caused by a burst or clogged artery in the brain, that suppression

is lost, and there is a resulting “hyperreflexia” (similar to that in respiration) in the stretch reflex,

resulting in stroke-related tremor.

Oscillations in Insulin and Glucose

Insulin is a hormone that is released by the pancreas in response to a rise in blood glucose, for

example after a meal. The insulin then facilitates the entry of glucose into muscle cells, where it

is metabolized. The dynamics of “glucose makes insulin go up, insulin makes glucose go down”

is then a classic negative feedback loop.

The dynamics of glucose and insulin were first studied in a mathematical model by Sturis

et al. Their paper, called “Computer model for mechanisms underlying ultradian oscillations of

https://www.physionet.org/physiobank/database/tremordb/
https://www.physionet.org/physiobank/database/tremordb/
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glucose and insulin,” was the first to explain insulin–glucose oscillations as emerging from the

feedback dynamics of the insulin–glucose system itself (Sturis et al. 1991b). Following the logic

of their analysis, insulin (I) is increased by glucose in a saturating manner, and is decreased by

the usual degradation, giving us

I ′ =
k1 · G

4

1 + G4
︸ ︷︷ ︸

glucose spurs insulin production by the
pancreas

− k2 · I
︸︷︷︸

degradation of insulin

Glucose (G) is changed by four factors:

• G is increased by external sources (such as meals).

• G is also increased by glucose production by the liver. This production is inhibited by insulin

(I).

• G is degraded at a rate k4.

• G combines with I in the muscle to metabolize G.

This gives us the G′ equation as

G′ =
k3
1 + I2
︸ ︷︷ ︸

Insulin inhibits glucose production
in the liver

+ Ext
︸︷︷︸

external glucose (meals)

− k4 · G
︸ ︷︷ ︸

degradation of glucose

− G · I
︸︷︷︸

insulin facilitates glucose utilization
by muscle

Parameters : k1 = 1, k2 = 0.1, k3 = 1, k4 = 0.1, Ext =

{

5, if 1 < t < 2

0, otherwise
.

In this model, the transient intake of glucose results in a spike of insulin and then a return of

both quantities to equilibrium values (Figure 4.20).

However, as Sturis et al. observe, this model is not physiologically realistic, because it assumes

that the response of the insulin system to the rise in glucose is instantaneous. In fact, it takes

time for the pancreas to respond to the rise in glucose. When we amend the model to include

this time delay, we get a new I ′ expression:

I ′ =
k1 · Gτ

4

1 + Gτ
4
− k2 · I

5 10 15

1

3

mins

Figure 4.20: Glucose (red) and insulin (black) in response to an external dose of glucose (blue

rectangle).

where τ is the time delay in the response. If we let τ = 15 minutes, then the system goes into

oscillation, even with a constant glucose infusion (Ext = 1), Figure 4.21.

And of course, insulin and glucose in the body actually do oscillate, as seen in a figure we saw

in Chapter 1 (Figure 1.5 on page 5) and reprint here (Figure 4.22).

http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_1
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Figure 4.21: Glucose (red) and insulin (black) in response to a constant dose of glucose.
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Figure 4.22: Insulin and glucose oscillations in a human volunteer under constant glucose infusion,

(Sturis et al., 1991a). Redrawn from “Aspects of oscillatory insulin secretion,” by J. Sturis,

K.S. Polonsky, J.D. Blackman, C. Knudsen, E. Mosekilde, and E. Van Cauter, In Complexity,

Chaos, and Biological Evolution? by E. Mosekilde and L. Mosekilde, eds., (1991), volume 270,

pp. 75–93. New York: Plenum Press. Copyright 1991 by Plenum Press. With permission of

Springer.

In these systems, the principal cause of oscillation is the introduction of time delays into the

negative feedback system. We already spoke of steep negative feedback as a cause of oscillation

(in the presence of some time delay). Our cartoon example of steep negative feedback was the

hyperactive parent teaching a child to drive and causing constant overreaction that resulted in os-

cillation. We can make another cartoon example to illustrate the role of time delays (Figure 4.23).

Figure 4.23: Schematic of the behavior of a car whose driver is under negative feedback control

with a time delay.

Imagine another parent teaching a child to drive, only now the parent is inattentive; maybe the

parent is texting. There is therefore a short delay before the parent responds to the car’s drift.
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Now, the car will also oscillate, because the driver will have drifted well to the left by the time

the parent’s corrective is issued. (Indeed, police officers look for drivers who are “weaving” down

the road, because oscillations in the vehicle’s path could well be a sign of the slower reflexes

caused by alcohol consumption.)

Oscillatory Gene Expression

With so much physiology operating in an oscillatory manner, it should not be surprising to learn

that in many critical physiological systems, gene expression operates in an oscillatory manner,

because rhythmic gene expression has to be coordinated to, and in some cases actually drive,

these rhythmic processes.

Therefore, cells have evolved mechanisms to produce oscillatory gene expression. Most of

these mechanisms depend on some kind of negative feedback, where the gene produces a product

that inhibits that very gene.

A good example is the tumor suppressor gene called p53. It has been called “the guardian

of the genome,” “the guardian angel gene,” and the “master watchman,” referring to its role in

conserving stability by preventing genome mutation. It is known, for example, that after damage

to DNA (by radiation, in this case), p53 levels rise.

Scientists knew that p53 induces the production of another protein called Mdm2, and that

Mdm2 actually inhibits p53 and increases p53 degradation (Figure 4.24) (Lahav et al. 2004).

p53

Mdm2

DNA
damage

Figure 4.24: Negative feedback in the p53-mdm2 system.

This is obviously a negative feedback loop. However, the function of this negative feedback

loop was not immediately clear. Some speculated that its function was to ensure “stability” of

this critical protein, by providing a kind of thermostat-like control of its level.

Then, one group actually followed the expression of the two genes over time. They found

that “p53 was expressed in a series of discrete pulses after DNA damage.” The two genes

were expressed in an oscillatory manner, with p53 expression always leading that of Mdm2

(Figure 4.25).

1000200
time (minutes)

004 006 008

Mdm2

p53

Fluorescence (AU)

Figure 4.25: Redrawn by permission from Macmillan Publishers Ltd: Nature Genetics (“Dy-

namics of the p53-mdm2 feedback loop in individual cells,” by G. Lahav, N. Rosenfeld, A.

Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, and U. Alon (2004), Nature Genetics

36(2):147–150), copyright 2004.



4.2. Mechanisms of Oscillation 193

The group developed a series of models reflecting various hypotheses about the mechanism

producing the oscillatory gene expression. The models all produce oscillations, but each has a

characteristic frequency, amplitude, and waveform, which can be used to choose one model over

another.

For example, one model postulates an upstream activator of p53, which they call S, and could

therefore be a protein that is produced by damaged DNA.

• S then activates p53 (= X), which then activates Mdm2 (= Y ) after a time delay τ .

• Mdm2 then combines with p53 to degrade it, resulting in a −XY term in the X ′ equation.

• The S protein is assumed to be produced at a constant rate βS, and then Mdm2 combines

with S to degrade it, producing the −SY term in the S′ equation.

• S then activates p53 (= X) in a sigmoidal manner, after a time delay τ . This is the primary

event post-DNA damage.

• p53 is inhibited by Mdm2 by a mechanism in which Mdm2 binds to p53 and inactivates it

(the −XY term in the X ′ equation).

This results in a set of differential equations

p53 X ′ = βX
Sn

1 + Sn
− αXY XY

Mdm2 Y ′ = βYX(t − τ)− αY Y

DNA damage molecule S′ = βS − αSY S

A simulation of these equations confirms the existence of oscillations in gene expression. Note

that the period is ≈ 6 hours, which agrees with the data (Figure 4.26).

Other models are based on alternative mechanisms, and the outputs of the models can be

compared to data in order to rule out one mechanism or another.

The authors present a very interesting interpretation of the oscillations. After noting that the

response of the cell to DNA damage is an oscillatory series of pulses, they call this a “digital”

response, because the cell’s response to larger DNA damage is to emit a larger number of

identical pulses, as opposed to just producing a higher constant output, which they call an

“analogue” response. They suggest that the digital response is more effective, since higher-

amplitude pulses or higher constant levels of p53 can easily be toxic. This same reasoning has

been used to explain oscillations in hormone levels.

5 10 15 20 25 30 time (hours)

expression level Mdm2

p53

Figure 4.26: Simulation of Model VI of (Lahav et al. 2004). Green (lower) tracing

is p53, red (upper) is Mdm2. Parameter values are βX = 0.9, αXY = 1.4, βY = 1.2, αY = 0.8,

βS = 0.9, αS = 2.7, τ = 0.9, X0 = 0, Y0 = 0.9, S0 = 0.

A second example of oscillation in gene expression is in the Hes1 system, which we have

already seen (Figure 4.4 on page 174). Hirata et al. developed a model to explain these Hes1

oscillations. In their model, the messenger RNA (mRNA) for Hes1 (= Y ) is converted into

Hes1 protein (= X) at a rate B. They postulate an “interaction factor” (= Z), which would

combine with Hes1 protein to degrade it. Thus, there are −XZ terms in both the X ′ and Z′
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equations. The Hes1 protein is assumed to inhibit its own transcription, that is, Hes1 mRNA.

This inhibition is modeled by the decreasing sigmoid function E
1+X2

. Note that there is another

decreasing sigmoid term in the Z′ equation, F
1+X2

, implying that Hes1 protein also inhibits the

production of the Hes1 interaction factor (Figure 4.27).

The overall model is

Hes1 protein X ′ = −AXZ + BY − CX

Hes1 mRNA Y ′ =
E

1 +X2
−DY

Hes1 Interaction factor Z′ = −AXZ +
F

1 +X2
− GZ

0 100 200 300 400 500 time (minutes)

Hes1 mRNA

Hes1 protein

Figure 4.27: Simulation of the Hirata et al. model of Hes1 oscillations. Parameter values are

A = 0.022, B = 0.3, C = 0.031, D = 0.028, E = 0.5, F = 20, G = 0.3.

Finally, a third kind of model for oscillatory gene expression has been developed by a group

of researchers at the University of Texas Medical School in Houston. They focused on the role

of transcription factors, which are all-important regulators of gene expression.

Genes have subsections that are called response elements. These are parts of the gene that

easily bind to different kinds of signaling molecules, called transcription factors, and respond

by increasing or decreasing transcription, which is the process by which DNA is converted into

mRNA.

In many cases, the gene for a transcription factor can be inhibited by the transcription factor

protein, generating a powerful negative feedback mechanism that can generate oscillations in

gene expression.

Smolen et al. propose a model in which the transcription factor A induces its own transcription

as well as the transcription of a second transcription factor R, which then inhibits both A’s

transcription and its own. The structure of their model is shown in Figure 4.28.

A R

Figure 4.28: Positive and negative feedback loops in the model of an inhibitory transcription

factor R, which is activated by transcription factor A.
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The differential equations are

A′ =
k1A

2

A2 + k2

(

1 +
R

k3

) − k4A+ rbas

R′ =
k5A

2

A2 + k6

(

1 +
R

k7

) − k8R

Note the general form of the model. The large terms in the A′ and R′ equations have the

same form. They are both increasing sigmoids in A, which means that A spurs the production

of both itself and R. The presence of R in the denominator of the increasing sigmoids means

that greater amounts of R will decrease the production of A and itself.

Simulating their model confirms the existence of oscillations, with a period of one to two

hours (Figure 4.29).

50 150 2000

transcription factor A

transcription factor R

time (minutes)

Figure 4.29: Simulation of the Smolen et al. model of gene transcription factor oscillations.

Parameter values are k1 = 10.5, k2 = 10, k3 = 0.2, k4 = 1, k5,= 0.3, k6 = 10, k7 = 0.2,

k8 = 0.2, rbas = 0.4.

Further Exercises 4.2

1. Some people have difficulty maintaining a stable weight. Instead, they gain a lot of

weight, go on a diet, lose the weight, but then gain it back. This pattern is sometimes

referred to as yo-yo dieting.

a) What kind of feedback loop is involved in this situation?

b) Use your understanding of feedback loops and oscillations to suggest what might

help such a person to stabilize their weight.

2. While traveling, you find yourself in a hotel room in which using the thermostat leads

to large oscillations in the room’s temperature. The thermostat responds to the room’s

air temperature by turning on an air conditioner on the other side of the room if the

temperature near the thermostat gets too warm. Similarly, when the temperature near

the thermostat gets cold, the air conditioner switches off. What could the builder of the

hotel have done to prevent the oscillations you are experiencing?

3. Give an example (other than those in the text) of an oscillation caused primarily by a

highly sensitive negative feedback loop and another one caused by time delays.
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4. Meerkats are highly social small carnivores that live in southern Africa. They rely on

each other to raise their young. Use the following assumptions to model the number of

adult meerkats, M, in a population. You can invent parameters as necessary.

– The per capita rate at which meerkats give birth to babies who survive to adulthood

is a steep sigmoid function of the adult population, with higher reproductive success

at higher populations.

– Meerkats die of natural causes at a constant per capita rate d .

– Meerkats are preyed upon by eagles and jackals. These predators have many other

prey, so their population does not depend on the meerkat population.

– The rate at which jackals prey on meerkats is a nonsigmoid saturating function of the

meerkat population.

– The rate at which eagles prey on meerkats is a sigmoid function of the meerkat

population. The sigmoid is not very steep.

5. The garibaldi is a large orange fish that lives off the coast of California and Baja Califor-

nia. Use the assumptions below to write a differential equation for the size of an adult

garibaldi population.

– The number of adults joining a population is the number of eggs laid times the fraction

that hatch times the fraction that survive to adulthood.

– Garibaldis lay eggs at a constant per capita rate, b.

– Because garibaldis sometimes eat their own eggs, the fraction of eggs that hatch is

a declining sigmoid function of the adult population.

– Larval garibaldis float as plankton before becoming adults and joining a population.

Thus, the number of individuals joining a population is proportional to the number

that hatched six years earlier, with proportionality constant r .

– Adult garibaldis die at a constant per capita rate d .

6. At a picnic, you drop a cookie, which promptly attracts the attention of a nearby ant

colony. Let A be the number of ants on the cookie.

a) When ants find food, they secrete a pheromone as they return to the anthill that

causes other ants to follow their path. The greater the number of ants that do

this, the more pheromone there is, and the greater the number of ants that go

to the cookie. However, when there are many ants on the cookie, some go home

empty-mandibled. Seeing these unsuccessful ants discourages new ants from going

to the cookie. Sketch the graph of a function that fits this description (the number

of ants going to the cookie as a function of the number of ants on the cookie) and

write an equation for it. Briefly explain why you chose the shape that you did.

b) Write a differential equation for A based on your answer to the previous part and

the following assumptions. Feel free to create parameters as necessary.

– Ants decide whether or not to go to the cookie as soon as they leave the anthill

and do not change their minds once the decision has been made.

– It takes ten minutes for an ant to travel between the anthill and the cookie.

– Ants on the cookie leave at a constant per capita rate k .
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7. The logistic equation predicts that when a small population is introduced to a new

habitat, it will smoothly grow until reaching carrying capacity and then level off. However,

what we often observe in such cases is an overshoot and collapse pattern, in which the

population grows to a high density and then crashes.

a) Let N be the adult population. Use the following assumptions to model this system.

– The total birth rate is a logistic function of the adult population.

– After being born, individuals take τ time units to mature into adults.

– Adults have a constant per capita death rate d .

b) Simulate the model for r = 1.2, K = 50, d = 0.1, and τ = 2.8. Describe your

observations.

c) What happens if you change r? What about τ?

8. Recall the hypothalamus-pituitary-gonad (H/P/G) model:

H′ =
1

1 + Gn
− k1H

P ′ = H − k2P

G′ = P − k3G

a) Find the equilibrium points of this system when n = 1. How many are there that are

biologically meaningful?

b) For values of n other than 1, it is difficult/impossible to find the equilibrium points

by hand. Use a graphing calculator or the find_root command in Sage to find a

biologically meaningful equilibrium point of this system for n = 2, and for n = 7, n = 8,

and n = 9. (Hint: There is a clever way to find/approximate this equilibrium point

graphically.) See whether you can find it.

4.3 Bifurcation and the Onset of Oscillation

Glycolysis

Earlier in this chapter, we discussed oscillatory chemical reactions. You might think that such

reactions are merely laboratory curiosities, useful for amusing students but not very important

practically. You would be badly mistaken, because glycolysis, one of the fundamental sources of

energy in living systems, typically operates in an oscillatory manner.

Glycolysis is one of the body’s fundamental metabolic processes, producing the energy

molecules that cells can consume. It is perhaps the most ancient metabolic pathway, and it

can proceed without oxygen. High-intensity/short-duration activities like sprinting are fueled by

glycolysis.

Glycolysis also fuels the yeast cells that are used to brew alcohol. When these yeast cells are

grown in a high sugar medium, their outputs become oscillatory.
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The earliest observations of glycolytic oscillations were in these yeast cells. They do not

require the structure of the cell, and can even be seen in cell-free suspensions (Ghosh and

Chance 1964). When cells are suspended in a medium containing glucose, the individual cells

synchronize to produce macroscopic oscillations. (Figure 4.30).
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Figure 4.30: Glycolytic oscillations in a suspension of yeast cells. The vertical axis is the

metabolic intermediate NADH. Redrawn by permission from Macmillan Publishers Ltd: Nature

“Sustained oscillations in living cells,” by S. Danø, P.G. Sørensen, and F. Hynne, (1999), Nature

402(6759):320–322, copyright 1999.

Research (Chou et al. 1992; Luciani et al. 2006) has suggested that these glycolytic oscilla-

tions may be physiologically functional, since they are coupled to oscillations in insulin-producing

pancreatic β cells (Figure 4.31, top).

Interventions that disrupt intracellular Ca2+ oscillations also abolish glycolytic oscillations,

which are essential for insulin secretion and are impaired in diabetes (Figure 4.31, bottom).

The simplest mechanism for glycolysis focuses on the reaction governed by the enzyme phos-

phofructokinase (PFK), the so-called Higgins–Selkov model. When glucose is processed by the

metabolic system, the first part is the two-step conversion of glucose to fructose-6-phosphate

(F6P). Then the enzyme PFK governs the key step in glycolysis, which is the conversion of

F6P into fructose 1,6-biphosphate (FBP). FBP then is an energy molecule that fuels cellular

metabolism and produces large quantities of ATP (adenosine triphosphate) molecules down-

stream; ATP is the form of energy actually used by the cell.

The PFK reaction itself requires one molecule of ATP, which is converted to the less-useful

ADP (adenosine diphosphate).

ADPATP

PFK

F6P FBP

PFK is an enzyme, and it requires for its activation to be bound with two molecules of ADP.

As is typical for a catalyst, the molecules are not consumed by the catalytic reaction, so the
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Figure 4.31: Top: synchronization of glycolysis and intracellular Ca2+ oscillations in mouse pan-

creatic islet β cells. The black tracing is the glycolytic intermediate NAD(P)H. The red tracing

is a fluorescent indicator of intracellular Ca2+. Bottom: intracellular Ca2+ oscillations (Fura Red)

and glycolytic oscillations in mouse pancreatic islet β cells. When the intracellular Ca2+ oscil-

lations are disrupted by nifedipine, a calcium-channel blocker, both oscillations are inhibited.

Redrawn from “Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pan-

creatic islets,” by D.S. Luciani, S. Misler, and K.S. Polonsky, (2006), Journal of Physiology

572(2):379–392. Copyright 2006 John Wiley & Sons. Reprinted with permission from John

Wiley & Sons.

overall reaction scheme is

where the clouds mean “the environment.”

So, from these reaction schemes, we follow the approach of Chapter 1 on how to write

differential equations from chemical laws (page 34), and write the differential equation, letting

S = [F6P], and P = [ADP]:

S′ = V0 − cSP
2

P ′ = cSP 2 − kP

Exercise 4.3.1 Explain what each term in this model means and why it has the algebraic form

(for example, SP 2) that it does.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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A simulation of this model shows that with a small change in k1, the system changes from

equilibrium behavior (Figure 4.32, left), to a stable limit cycle oscillation (Figure 4.32, right).
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Figure 4.32: V0 = 1, k = 1, c = 1.1 (left), and c = 0.9 (right).

Since this early model, there have been several more-sophisticated models of oscillation in

glycolysis. See, for example, the paper of Boiteux et al. (1975).

Stable Oscillations in an Ecological Model

We will now consider an ecological model that is more realistic than the Lotka–Volterra (shark–

tuna) model in Chapter 1. It’s called the Holling–Tanner model (Tanner 1975).

Let us call our prey population N and our predator population P . The Lotka–Volterra model

assumed that in the absence of predators, the prey population would grow exponentially. This

is clearly unrealistic, since prey population growth must be constrained by resources. (If nothing

else, the population will eventually run out of space!) Thus, we will assume that in the absence

of herbivores, the prey would grow logistically. The expression for this is the familiar rN(1− N
K
).

Another problem with the Lotka–Volterra model is more subtle. The predation term in that

model has the form aNP , where N is the prey population and P is the predator population.

This means that at every value of P , the amount of prey consumed by the predators is simply

proportional to the amount of prey available. No matter what, the predators never get full. This

might be an acceptable model if the prey population is small compared to what the predators

are capable of consuming, but we can’t guarantee that this will always be the case.

This problem can be resolved by making each individual predator’s rate of consuming prey level

off as prey density increases. The expression for predation becomes f (N)P , where f (N) is the

function describing how an individual predator’s consumption rate changes with prey abundance.

(In the Lotka–Volterra model, f (N) = aN.) If f (N) plateaus as N increases, there is a limit to

how much predators can eat, which makes biological sense. One common choice for f (N) is

f (N) =
Cmax · N

N + h

where Cmax is a predator’s maximum consumption rate and h is the half-saturation density, the

prey density at which consumption is half the maximum rate (Figure 4.33).3 We will use this

function in our model.

3Mathematically, this function is called a rectangular hyperbola, but it goes by several other names in biology,
including the “Holling Type II functional response” in ecology and “Michaelis–Menten kinetics” in biochemistry.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
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Exercise 4.3.2 Why can h act as a half-saturation density? In other words, what is the con-

sumption rate when N = h, and what does this mean biologically?

2 6 10
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0.6

1

N

f(N)

Figure 4.33: The function f (N) = Cmax ·N
N+h

, when Cmax = 1 and h = 0.4.

Putting these assumptions together gives us the following differential equation for the prey

population:

N ′ = r1N(1−
N

k
)−

wN

d + N
P

In this equation, w is the maximum consumption rate, and d is the half-saturation density.

We will assume that the predator population also grows logistically. However, its carrying

capacity is set not by an unmodeled environment but by the prey population. More specifically, if

j is the number of prey needed to support one predator, then jP is the number of prey necessary

to support a population of P predators. If jP is less than the actual prey population, N, the

predator population can grow. However, if jP is greater than N, the predator population has

exceeded its carrying capacity and must decline. These assumptions translate into the equation

P ′ = r2P (1−
jP

N
)

This model undergoes a dramatic change in behavior as w , the maximum consumption rate,

increases. When w is low, the system has a stable equilibrium, as shown in Figure 4.34.
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Figure 4.34: A simulation of the Holling–Tanner model, with r1 = 1, r2 = 0.1, k = 7, d = 1,

j = 1, and w = 0.3.
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As w increases, the equilibrium point moves but remains stable. However, as w passes a

critical value, the equilibrium becomes unstable, as shown in Figure 4.35. When this happens, a

limit cycle attractor appears.
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Figure 4.35: Two simulations of the Holling–Tanner model with w = 1 starting from different

initial conditions and all other parameters as in Figure 4.34.

Exercise 4.3.3 Find the equilibria for this model using the parameter values in Figure 4.34.

(Hint: Work with the second equation first.)

Exercise 4.3.4 Try intervening in the Holling–Tanner system by introducing predator-removal

policies at various phases of the cycle with varying magnitudes. In Chapter 1, we performed

shark-removal interventions in the shark–tuna model Figure (1.9 on page 7). How do the results

of your interventions compare to those in the shark–tuna (Lotka–Volterra) system?

Hopf Bifurcations

Consider what has happened in each of these models: there is a parameter in the system that

creates a change from “stable equilibrium point” to “unstable equilibrium point plus stable limit

cycle.”

• In Rayleigh’s clarinet reed model, it was the slope of the friction term at V = 0. When it

was positive, the equilibrium point was stable, but when it became negative, the equilibrium

point became unstable, and a stable limit cycle was born.

• In the hypothalamic/pituitary/gonadal axis, the critical parameter was n, which reflected

the steepness of the negative feedback. When n passed a critical value, the equilibrium

point became unstable, and a stable limit cycle was born.

• In the respiratory control model, there were two parameters that produced oscillation: n,

which measured the steepness of the negative feedback, and τ , which reflected the time

delay in the system.

• In the Selkov glycolysis model, the critical parameter was c , the reaction rate of the

catalytic step.

http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_1
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• In the Holling–Tanner model, there are several critical parameters: w , the maximum con-

sumption rate of the predators, as well as r , d , and k , for each of which there are similar

critical values.

We have now seen a new example of a “change in the attractors of a differential equation as

a parameter passes a critical point,” which extends the notion of bifurcation from Chapter 3. So

this change is a bifurcation.

This combination of an equilibrium point losing stability and a limit cycle appearing is called

a Hopf bifurcation. (Its full name is “Poincaré–Andronov–Hopf bifurcation,” but it is usually just

called a Hopf bifurcation.) It is the first bifurcation we’ve seen that involves oscillations and

therefore cannot occur in one dimension.

The destruction of a stable equilibrium point and its replacement by an unstable equilibrium

point and a stable limit cycle attractor is called Hopf bifurcation.

Hopf Bifurcations and the Causes of Oscillation

The theory of Hopf bifurcation gives us unique insights into the mechanisms responsible for

oscillatory behavior. It is also a great example of the program of Poincaré, which we mentioned

at the end of Chapter 3: explain forms of motion, and changes of forms of motion, by finding

bifurcations.

The respiratory control model is an especially good example, because it explicitly depends on

two parameters:

(1) n, which controls the steepness of the feedback,

(2) τ , which controls the time delay.

We can then make a two-parameter bifurcation diagram, which is generic for systems with

time delay and negative feedback; see Figure 4.36:

τ oscillation

no

oscillation

n

Figure 4.36: A typical bifurcation diagram for a negative feedback system, where n represents

steepness of feedback and τ represents time delay.

From this diagram, we can see that:

(1) Oscillation requires at least some steepness of feedback and some time delay.

(2) It also requires that at least one of these factors be significantly large.

The Hopf bifurcation diagram enables us to make statements like the following: “the cause of

these oscillations is . . . ” where the “. . . ” will be factors involved in the slope of feedback and/or

http://dx.doi.org/10.1007/978-3-319-59731-7_3
http://dx.doi.org/10.1007/978-3-319-59731-7_3
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time delay in the system. It also enables us to intervene in these systems to enhance or prevent

these oscillations.

The chief causes of oscillation in feedback systems are steep negative feedback and time delays.

Further Exercises 4.3

1. Briefly explain the statement due to W. Smith, “Puberty is a Hopf bifurcation.” What

does this mean?

2. Create a slider-based interactive that allows you to alter Cmax and h in CmaxN
N+h

. Describe

how changing these variables affects the shape of the plot and the biological meaning

of these changes.

3. Recall the Holling–Tanner predator-prey model:

N ′ = r1N(1−
N

k
)−

wN

d + N
P

P ′ = r2P (1−
jP

N
)

a) This system is difficult to work with because it has six different parameters, all of

which affect the behavior of the system. However, each of them has a biological

meaning. Write a brief explanation of what each parameter (r1, r2, d, j, w, h, k)

means and specify the appropriate units for each one. (Assume that time is measured

in years, so that for example, the units of N ′ are “prey per year” and the units of P

are “predators per year.”)

b) What is the state space for which these differential equations are defined? (Hint:

Be careful! There is something here that is slightly different from the usual.)

c) Use a graphical analysis (nullclines) to determine how many equilibrium points this

system has and say as much as you can about where they occur in the state space.

What can you say about the stability of each equilibrium point? (Hint: It is possible

to do this without having to plug in any numbers for the parameters, assuming only

that the parameters are all positive numbers. However, you may plug in reasonable

numbers for them if you wish. The nullclines should look roughly the same regardless

of what numbers you use.) Also, all but one of the equilibrium points are easy

to compute algebraically by hand, but unfortunately this “hard” one is the most

interesting.

d) Suppose r1 = 0.4, r2 = 0.03, d = 1, j = 150, w = 300, h = 1000, and k = 3000.

Find the equilibrium points of this system. You may do this with just algebra, or use

a graphical method (nullclines), or use SageMath or a graphing calculator. Note:

There is one “interesting” equilibrium point, which is not on either axis, i.e., for

which N and P are both nonzero.
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e) With the parameters as in part (c), the trajectories approach a limit cycle attractor.

Based on this, what can you say about the equilibrium point at which both N and

P are nonzero?

f) Now using the same parameters as in part (c), but with r1 = 0.2, find the equilibrium

points of the system again. By plotting a trajectory or some time series in SageMath,

what can you say this time about the equilibrium point at which both N and P are

nonzero? What phenomenon has occurred between r1 = 0.2 and r1 = 0.4?

4. We can also study the Holling–Tanner model using vector fields and simulation. In this

problem, we will use the parameter values r1 = 1, r2 = 0.1 k = 7, d = 1, j = 1, and

w = 0.3.

a) Plot the vector field for this system. Allow both N and P to range between 0 and

10.

b) Simulate and plot the time series for this system for at least two initial conditions,

running each simulation for 100 time units. Be sure to keep your simulation results

for future use.

c) Plot trajectories for the simulations from the previous exercise and overlay them on

the vector field. (All the trajectories should be on one plot.) If necessary, change

the plotting range for the vector field so it is big enough for the whole trajectory.

d) Set w to 1 and simulate the model for three different initial conditions, plotting the

time series for each. Describe what happens.

e) Plot the vector field for the model with w = 1. Then, overlay trajectories from your

simulations on the vector field.

f) What is the term for a change in behavior resulting from a change in a parameter,

like what you observe here?

5. You also observed oscillations in the Lotka–Volterra predation model, but that model’s

behavior was different in an important way.

a) Repeat the first three parts of Further Exercise 4.3.4 for the Lotka–Volterra model

N ′ = 0.5N − 0.01NP

P ′ = (0.5)(0.01)NP − 0.2P

b) How is the behavior of the Holling–Tanner model similar to that of the Lotka–

Volterra model? How is it different?

6. Recall the Higgins–Selkov model of glycolysis,

S′ = V0 − cSP
2

P ′ = cSP 2 − kP

a) Simulate this model with V0 = 0.5, c = 0.23, and k = 0.4 for three different initial

conditions. How does the system behave?
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b) In real life, for these parameter values, V0 can range from 0.48 to 0.6. Using any method

you choose, approximate the value of V0 at which the system begins to have persistent

oscillations. (You may want to use more than one method.)

4.4 The Neuron: Excitable and Oscillatory Systems

Virtually all the cells in our body have some electrical activity that is essential for their regulation

and function. Understanding how this electrical activity is generated and spreads is the subject

called “electrophysiology.” To grasp it, we need first to understand something about electricity,

and second, something about physiology.

A Trip to the Electronics Store

First we will review the necessary facts about electrical circuits. We will pay a visit to the

electronics store, but we will be taking home just the differential equations (see, for example,

Hirsch et al. (2012)).

In electrical circuit theory, differential equations take a special form. We saw that in mechanics,

the fundamental variables are of two kinds: positions and velocities. In electrical circuit theory,

the fundamental variables are voltages and currents, generally denoted by V and I. Current is

the flow of electric charge, or more concretely, of charged particles (electrons, protons, or ions).

Voltage is simply a difference in charge between two places. Both voltage and current can be

either positive or negative, depending on the direction of the flow (for current) or which location

has more charge (for voltage).

In the world of electricity, the form of the differential equations is given by the fact that

voltages change currents, and currents change voltages.

voltage

V
current

I

changes

changes

The first item we pick up is a capacitor. A capacitor is a device that stores electric charge

inside an outer shell and releases it when connected to another electric device. The physics

behind this storage can vary: the charge can be stored as an electrical field, or it can be stored

chemically. When it is stored chemically, this constitutes a battery. What matters to us is the

charging and discharging of the capacitor/battery, which is described by a simple differential

equation:
dVC
dt
=
1

C
· IC

where VC and IC are the voltage and current across the capacitor, and C is a constant called

the capacitance (here C = 1).

C
capacitor

dVC

dt
IC
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This differential equation governs the charging and discharging of the capacitor/battery. It

says, for example, that when the capacitor is discharging, the current depletes the stored voltage.

And when the capacitor is being charged, the larger the applied current, the faster it will charge.

Exercise 4.4.1 What kind of behavior does this differential equation describe?

Exercise 4.4.2 If the capacitor is charging, what is the sign of IC? If it’s discharging?

The second item we find is a little more mysterious: an inductor L. The physics behind an

inductor is complicated, but it doesn’t really concern us here. All that matters to us is that an

inductor satisfies a differential equation called Faraday’s law ,

dIL
dt
=
1

L
· VL

where L is a constant called the inductance (here L = 1). For us, as mathematical modelers,

an inductor is anything that satisfies this differential equation. (In the neuron and cardiac cell,

this differential equation describes the opening and closing of ion channels embedded in the cell

membrane.)
L

Inductor
dIL
dt

VL

Exercise 4.4.3 How does a change in the sign of voltage across an inductor affect current?

(Hint: Be careful!)

The third element is a resistor R. Resistors don’t have differential equations; instead, there

is an algebraic equation that governs their current–voltage relation. It’s called Ohm’s law . You

may have learned something by that name in high school or an introductory physics course that

was stated as

IR =
1

R
· VR (or “V = RI ′′)

where R is a constant called the “resistance.” However, it is not true in general that the voltage

across a resistor is equal to some constant R times the current. That’s what we would call a

linear resistor, and not all resistors are linear. Instead, we will talk about a generalized Ohm’s

law

IR = f (VR)

where f , called the resistor characteristic, can take a number of different shapes.

R
Resistor VRIR f ( )

These are the three major types of electric components.

Now let’s hook them up into an electrical circuit. The simplest way is to hook up the resistor

R, the inductor L, and the capacitor C in parallel, with a voltage source (Figure 4.37):
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R CL

IR IL IC

V

Figure 4.37: An RLC electric circuit.

In order to form the differential equation for this circuit, we need to account for six state

variables: the inductor has a voltage VL and a current IL, the capacitor has a voltage VC and a

current IC , and the resistor has a voltage VR and a current IR.

At first, it looks like we have six state variables and only two differential equations, plus one

algebraic equation (Ohm’s law) to account for the six. But once they are hooked up into a

circuit, they are no longer independent. Two powerful circuit laws come into play.

Kirchhoff’s voltage law (KVL) says that the sum of the voltages around a closed loop must

equal 0. Therefore, for the closed loop of the battery and the resistor, we have VR − V0 = 0, so

VR = V0. Similarly, considering the loops containing the inductor and the capacitor, we can say

that VL = VC = V0, so all three voltages must be equal.

Kirchhoff’s voltage law VR = VL = VC

Kirchhoff’s current law (KCL) says that the sum of the currents in and out of a node (circuit

component) must equal 0.

Kirchhoff’s current law IR + IL + IC = 0

so IC = −IR − IL.

Now we can write
I ′L = VL (Faraday’s law)

= VC (by KVL)

V ′C = IC (capacitor law)

= −IR − IL (by KCL)

IR = f (VR) (generalized Ohm’s law)

= f (VC) (by KVL)

Collecting these terms and letting I = IL and V = VC , we get

I ′ = V

V ′ = −I − f (V )

Now we have a two-variable differential equation. In order to study its behavior, of course, we

have to specify the resistor characteristic f (V ): as we mentioned, it can take on many different

shapes.



4.4. The Neuron: Excitable and Oscillatory Systems 209

We have certainly seen this equation before: it is the equation for a linear spring with friction,

with a change of variable names:

electrical mechanical

I ′ = V X ′ = V

V ′ = −I − f (V ) V ′ = −X − f (V )

keeping in mind, of course, that the V on the left means “voltage” and the V on the right means

“velocity.”

Comparing these two equations, we see that the resistor characteristic f (V ) in the electrical

equation plays the same role as the friction term f (V ) in the mechanical equation. This analogy

suggests that resistance is electrical “friction.”

By varying the resistor characteristic f (V ), we can produce a variety of behaviors in the

electrical circuit.

Case 0: zero resistance. If we could somehow take the resistor out of the circuit, the

remaining LC circuit would have zero resistance. Since no current would flow through the resistor,

we would have IR = f (VR) = f (V ) = 0. This makes our equation become

I ′ = V

V ′ = −I

We have seen this equation before: it’s just the frictionless spring! In our analogy, we then

have

electrical mechanical

I ′ = V X ′ = V

V ′ = −I V ′ = −X
I

V

How will this electrical system behave? Just as the frictionless spring oscillates forever, so

does the zero-resistance electrical circuit. This continues the analogy of resistance as electrical

friction: when it is removed, the system will oscillate in a closed loop forever.

Case 1: linear resistance. Now let’s assume a classic linear resistor, in which the resistance

is a constant R, and the current is therefore a linear function of voltage:

I =
1

R
· V

The constant 1
R

is often written as g, called the conductance.

V

I

I = g · V

This gives us the differential equation

I ′ = V

V ′ = −I − gV
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Pursuing our analogy, we see that this is identical to the spring with simple linear friction. We

can therefore say that its behavior will be to spiral inward to the stable (0, 0) equilibrium point.

In a time series plot, both variables would exhibit damped oscillations:

electrical mechanical

I ′ = V X ′ = V

V ′ = −I − gV V ′ = −X − kV
I

V

Case 2: “negative resistance.” In our discussion of the mechanical system in Rayleigh’s

clarinet model, we considered the concept of “negative friction.” Whatever that might be, we

saw that it would be modeled by a friction function that had a negative slope, f (V ) = −kV .

In the electrical case, the analogy would be to a system with “negative resistance.”

VI = −g · V
I

The effect of this function, in both the mechanical and the electrical cases, would then be to

produce an unstable equilibrium point, spiraling outward from the origin and producing a time

series whose amplitude grows with time:

electrical mechanical

I ′ = V X ′ = V

V ′ = −I + gV V ′ = −X + kV

I

V

Just as friction robs energy from a mechanical system, so negative friction would have to

supply energy to the system. In the case of Rayleigh’s clarinet, the energy was being supplied

by the clarinetist blowing.

In the case of electrical systems, a similar “negative resistance” would also have to supply

energy to the system. This could be a plug in the wall for an electrical circuit. Later, in the case

of biological electricity, we will see that the energy supplied is from metabolism.

Case 3: “N”-shaped resistance. In our discussion of Rayleigh’s clarinet model, we ended up

combining the negative friction produced by the clarinetist with the positive friction inherent in

the system to produce an “N”-shaped function, for example, the cubic V 3 − V .

If we were to imagine an electrical resistor that had this cubic resistor characteristic,

V

I

I = V 3 − V

then our analogy would be complete:

electrical mechanical

I ′ = V X ′ = V

V ′ = −I − (V 3 − V ) V ′ = −X − (V 3 − V )

I

V
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This would result in an electrical system with a limit cycle attractor. The system would go

to this attractor and maintain it. At the electronics store, we can buy such devices for 50 cents;

they are called tunnel diodes.

In biological systems, as we shall see in the following sections, neurons have regions of negative

resistance. When a neuron’s resistance characteristic looks like V 3 − V , the neuron will exhibit

limit cycle behavior and continue oscillating. These neurons are called pacemaker neurons.

This concludes our visit to the electronics store. Let’s now go on to talk about the physiology

behind electrophysiology.

Exercise 4.4.4 Sketch time series for each of the four cases discussed. For each, briefly explain

why it makes sense that the time series displays the behavior that it does.

The Electrical Cell

Biological cells create an internal environment that is very different from their external envi-

ronment (Figure 4.38). In the external environment, which was originally seawater, sodium ions

(Na+) are present in high concentration, around 115 mM, and potassium ions (K+) are present

in relatively low concentration, around 15 mM.

But inside the cell, the situation is reversed: Na+ concentration is low, while K+ concentration

is relatively high.

This state of ionic disequilibrium is actively maintained by molecular pumps that continually

pump Na+ out of the cell and K+ in. The pumps require energy to work, and that energy comes

from the basic metabolic processes of the body, which convert the food we eat into the molecules

that fuel the pumps.

The biochemist Oscar Hechter once began a lecture to a large audience by asking, “What is

life?” He paused, and then said, “Ladies and gentlemen, life is the battle against sodium.” People

laughed, but he was making an excellent point: a large fraction of your lunch goes to generating

the energy that fuels the pumps that keep sodium out of our cells.
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Figure 4.38: The neuron, like many cells, has a high K+ concentration and a low Na+ concen-

tration inside the cell. Outside the cell, on the contrary, K+ concentrations are low, while Na+

concentrations are high.
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The overall effect of this ionic imbalance is that there is a net voltage difference between the

inside and outside of a cell, which is typically around −70 mV. That is, there are more + charges

outside the cell than there are inside, and this produces the voltage difference across the cell

membrane. In the late 1940s, with the development of microelectrode technology, physiologists,

including Hodgkin and Huxley, were able to actually measure this voltage difference.

When left undisturbed, a cell remains stable at −70 mV. But the experimenters could ad-

minister small stimulating currents, again through microelectrodes. What Hodgkin and Huxley

saw surprised them (Figure 4.39): when they give the cell a small electric stimulus, it responded

with a much larger action and then a return to the resting state.

They realized that this rise and fall of voltage, called the action potential , was the key signaling

act of the neuron (Hodgkin and Huxley 1939). The small stimulus modeled the receipt of a pulse

from another neuron, and the large response was the outgoing signal. They reasoned that this

was the basis of neuronal communication.

0

+ 04

70

Figure 4.39: First recording of intracellular voltage in a neuron, by Hodgkin and Huxley in 1939.

Oscillations at the bottom are time markers that occur every two milliseconds. Note the tiny

blip of the stimulus immediately before the onset of the action potential. Redrawn by permission

from Macmillan Publishers Ltd: Nature “Action potentials recorded from inside a nerve fibre,”

by A.L. Hodgkin and A.F. Huxley, (1939), Nature 144(3651):710–711, copyright 1939.

The Mechanism of the Action Potential

Hodgkin and Huxley developed a set of hypotheses about how the action potential is generated.

They understood that the rapid increase in voltage had to be produced by a current flowing

into the cell, and that the subsequent decrease had to be produced by a current flowing out

of the cell. They suspected that these currents were in fact the flow of ions like Na+ and K+.

After all, ions are charged particles, and the flow of charged particles is a current. But how

can this happen? How can sodium ions suddenly start rushing into the cell? How can potassium

ions suddenly start flowing out? Hodgkin and Huxley hypothesized that there must be special

“particles” that conduct the sodium and potassium ions through the cell membrane. The activity

of these carrier particles would then be dependent on the voltages and currents in the system

at a given time.

Nowadays, with the advent of molecular biology in the 1970s and 1980s, we know what the

“carrier particles” actually are. They are ion channels, and their structure and voltage-dependence
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are well known. It is remarkable that Hodgkin and Huxley knew none of this but were able to

infer the existence of ion channels from macroscopic data and their differential equations.

They went on to develop a four-variable differential equation that described these processes in

detail (Hodgkin and Huxley 1952). They were able to produce a simulation of this four-variable

equation by hand calculation using a mechanical calculator, since electronic computers were new

and extremely rare in 1952. Their numerical integration produced a voltage output that closely

resembled the actual voltage tracing, and their differential equation was given the Nobel Prize in

Physiology in 1963. Good discussions of the Hodgkin–Huxley equations can be found in Keener

and Sneyd (2009) and Izhikevich (2007).

Here, we will develop a two-variable simplification of the Hodgkin–Huxley model that captures

the essential dynamics, called the FitzHugh–Nagumo (FHN) model.

Hodgkin and Huxley stylized the action potential into three stages:

(1) Voltage is elevated by the inrush of Na+ ions.

(2) Voltage returns to the resting state by the outflow of K+ ions.

(3) Pumps restore the ion imbalances.

Fast inward process. Hodgkin and Huxley had shown by experiment that the fast inward

process was sodium-dependent: removing sodium from the bath water abolished the action

potential. So they hypothesized that the voltage elevation was created by the inrush of Na+

ions. Therefore, the f (V ) term in the V ′ equation must be describing a feature of the sodium

conductance.

They also knew that it has a very important feature: if they gave a very tiny stimulus current

to the cell, they did not get an action potential. Only a stimulus that was sufficiently strong

would elicit the much larger response of the action potential. Therefore, the equilibrium point

of this system must be stable.

Exercise 4.4.5 How would the cell respond if the equilibrium were unstable?

But then, once the action potential gets underway, there is a positive feedback mechanism at

work whereby Na+ entry into the cell elevates V , which further increases Na+ entry, etc. This

dynamic, in which increases in V cause further increases in V , is a clear example of negative

resistance.

So they reasoned that the current–voltage curve for the Na+ resistance had to have a region

of negative resistance to account for the explosive increase in voltage. But resistance is the slope

of the I/V curve, so this meant that the I/V curve had to have a region with negative slope.

However, unlike the examples in the previous section, the negative resistance region must not

include the equilibrium voltage, or else the equilibrium point would be unstable. So the negative

resistance region must lie a small but finite distance away from the equilibrium voltage.

Since

V ′ = −I − f (V )

I ′ = V

is the master model for the electrical cell, we can model stage 1, the fast inward process, as

V ′ = −I − f (V )

Then f (V ) has to have certain properties: it has to have a region of negative slope near but

not at the equilibrium point and positive slope elsewhere.



214 Nonequilibrium Dynamics: Oscillation

A simple function that has those properties is (Figure 4.40)

f (V ) = V (V − 1)(V − a) with 0 < a < 1

Exercise 4.4.6 Make an interactive that explores the effect of changing parameter a on the

shape of the f (V ) curve.

If we plot f (V ), it is exactly like the friction in the Rayleigh oscillator, except that it is

shifted to the right (Figure 4.40). The effect of this shift is to change the stability of the (0, 0)

equilibrium point. It used to be in the negative friction region in the Rayleigh oscillator model,

but now it is in the positively sloped region. Thus, the equilibrium point (0, 0) becomes stable.

I

a 10
V

Figure 4.40: Shifted “N”-shaped resistor characteristic function f (V ). Here a = 0.1.

I/V Curve of the Neuron

Hodgkin and Huxley experimentally recorded the I/V curve of the squid neuron, and found that

it had exactly such a negatively sloped region.

V

I

V

I

On the left is the I/V curve of the squid axon, recorded by Hodgkin and Huxley. On the right

is the function f (V ) we use to model this process. Here we have plotted f (−V ), since in their

day, what was meant by V is now what we call −V .

It is conventional in the literature to use the function −f (V ) and then write the equation for

the fast inward process as

V ′ = −I + f (V )

where

f (V ) = V (1− V )(V − a)
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To reflect the speed of the fast inward process, we will multiply the whole right-hand side of

the fast inward equation by 1/ǫ, where ǫ is a small number such as ǫ = 0.01. Thus the equation

for the fast inward process is now

fast inward V ′ =
1

ǫ

(

− I + f (V )
)

Note the very interesting dynamics that are already contained in this equation. If we consider

it a one-variable differential equation V ′ = f (V ), it is exactly the system studied in Chapter 3,

called the logistic equation with an Allee effect. It has three equilibrium points, V = 0, V = a,

and V = 1. The two equilibrium points at 0 and 1 are stable, and V = a is the unstable threshold.

If V is less than a, then V ′ is negative, and the system goes to the stable equilibrium point at

V = 0, but if V is greater than a, V increases to the stable equilibrium at V = 1. The fast

inward dynamics inherits this threshold behavior from the Allee-like character of the resistance

curve.

Exercise 4.4.7 Simulate V ′ =
1

ǫ

(

−I+f (V )
)

with ǫ = 0.01 for each form of f (V ) discussed in

this section. Describe how the system behaves in each case. (Hint: Try several initial conditions.)

Recovery process The recovery process is dominated by the flow of K+ ions. Following

Hodgkin and Huxley, we model this as a resistor in series with an inductor. (Why an inductor?

Because the current flow through an ion channel changes as a function of voltage, whence

I ′ = f (V ), which is the equation for an inductor.)

The recovery phase is therefore represented by the equation for the [K+] current,

recovery I ′ = V − γI

Combining these insights, we get a model of the electrical cell (Figure 4.41).

R
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+

K
+
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membrane

Figure 4.41: Electrical circuit model of a neuron.

Combining the two processes. However, instead of writing I ′ = V −gI, most writers on the

subject prefer to create a new variable w for the current, called “recovery,” which is identical to

our I. The overall equations are then

V ′ =
1

ǫ

(

− w + f (V ) + Iext

)

http://dx.doi.org/10.1007/978-3-319-59731-7_3
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w ′ = V − γw

where Iext is an external stimulus.

These are called the FitzHugh–Nagumo equations, and they are a simple model of the neu-

ronal action potential. Let’s study them, both numerically and analytically. We will use as our

external stimulus Iext , a square current pulse of duration 0.1 and varying amplitude.

Experiments with the FitzHugh–Nagumo Model

First let’s do some experiments with the FitzHugh–Nagumo (FHN) model. We will begin by

replicating the experiment of Hodgkin and Huxley. We deliver an extremely small stimulus current

Iext to the cell, and the result is a very small deflection of the voltage followed by a quick return

to equilibrium (Figure 4.42, left).

1 2 3

1

0

time
1 2 3

1

0

time
0

VV

0

Iext Iext

0.50.5

Figure 4.42: Response of the FHN model to a current stimulus pulse delivered at t = 1 with

duration 0.1. Left: stimulus pulse amplitude = 0.01. Right: stimulus pulse amplitude = 0.03.

But when we increase the amplitude of the stimulus by just a little bit, we get a large action

in response, a substantial deflection in voltage, followed by a return to the same equilibrium.

This is the action potential (Figure 4.42, right).

For another experiment, let’s use as our stimulus not the brief pulse we have been using so

far, but a constant input of current. Here, we observe another interesting phenomenon: if the

constant current is at a low amplitude, the neuron is quiescent (Figure 4.43, left). But when

the constant stimulus has a slightly larger value, the system goes into a permanent oscillation,

with a repetitive train of spikes issuing from the neuron (Figure 4.43, right).

And as a final experiment, let’s hook up two neurons. The coupling between them will be

a flow of current between neuron #1 and neuron #2, as actually happens when the neurons

are coupled by what are called gap junctions. In this case, the coupling is a simple resistor (so

I = V
R

), and the current flow to neuron #1 from neuron #2 is equal to

Icoupl ing 2→1 =
(V2 − V1)

R

And the flow to neuron #2 from neuron #1 is equal to

Icoupl ing 1→2 =
(V1 − V2)

R
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Figure 4.43: Left: response of the FHN system to a small constant current stimulus. Right:

response to a slightly larger constant current stimulus.

The overall equation for the two-neuron coupling is

V ′1 =
1

ǫ

(

− w1 + f (V1) + Icoupl ing 2→1 + Iext

)

w ′1 = V1 − γw1

V ′2 =
1

ǫ

(

− w2 + f (V2) + Icoupl ing 1→2

)

w ′2 = V2 − γw2

In this case, we see that neuron #1 passes its excitation to neuron #2, which responds with

an action potential after a short delay (Figure 4.44).

1 2 3

0.5

V

Iext

0 time

Figure 4.44: Stimulus pulse Iext amplitude = 0.025, R = 45, ǫ = 0.008, γ = 0.5, a = 0.1.

Hodgkin and Huxley performed the same experiment with their model and realized that this

was the key to neuronal communication. They were able to show that if they coupled many of

these models in series and used a realistic value for the coupling resistance, the resulting wave

of excitation passed down the chain at a speed very close to the measured value of neuronal

conduction velocity!
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The wave that passes from neuron to neuron, or from heart cell to heart cell, is very similar

to the “wave” that is spontaneously formed by crowds at sports stadiums. In both cases, the

elements are what are called excitable elements. An excitable element is one that has

(1) a stable equilibrium point as its only attractor,

(2) a region of stored energy a small but finite distance away from the equilibrium point.

Such elements will respond to a sufficient stimulus by releasing an excitation of their own,

followed by a return to the stable equilibrium point.

Is the Neuron like a Toilet?

There is a good example of an excitable element in the home. It’s the flush toilet. The ordinary

household toilet satisfies the axioms of an excitable element: very small pushes on the flush

handle will produce only a very small response, and a rapid return to the resting state. But if

the handle is pushed far enough, the system will spontaneously release a large amount of stored

energy. This is the water reservoir in the tank; emptying it produces the large action phase.

Then, of course, pumps must go to work, consuming energy, that will pump water back into

the tank, to return it to equilibrium.

When excitable elements are hooked up by simple resistive coupling, the result is called an

excitable medium. One example of a phenomenon that has been modeled as an excitable medium

is the occurrence of stadium waves.4 Similar models have been used to model the spread of forest

fires, cardiac electrical conduction, and neural systems.

Dynamics of the FitzHugh–Nagumo Model

All of these phenomena that the neuron displays in reality and in our computer simulations can

be explained by careful reference to the phase plane of the model.

Let’s first draw the nullclines. To find the V -nullcline, we set V ′ = 0,

V ′ = 0 =
1

ǫ

(

− w + f (V )
)

and get

w = V (1− V )(V − a)

When we plot this in (V, w) state space, we get the blue curve in Figure 4.45. To find the

w -nullcline, we set w ′ = 0 to get

w =
1

γ
V

which is the red line in Figure 4.45.

4Farkas et al. (2002) refers to a stadium wave as “La Ola,” Spanish for “wave.” They report that the first
recorded stadium wave was at Azteca stadium in Mexico City during the 1986 World Cup. Their paper uses an
excitable medium model of the stadium wave.
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V

w w’= 0
V’= 0

Figure 4.45: Nullclines for the FHN model.

First we find the equilibrium points. Here there is obviously only one, at (0, 0). It is stable,

because the slope of the resistor characteristic is negative at this point. (This may sound like

the opposite of what we said in the discussion of the Rayleigh and electrical circuit oscillators,

where the “negative resistance” region was negatively sloped. But there is no conflict, and both

are saying the same thing, because in the FHN model, the resistance term is +f (V ), whereas

in the Rayleigh model the friction term is −f (V ).)

We can then use the nullclines to determine the system’s behavior, just as we did in Chapter

3. On the V -nullcline, the change vector (V ′, w ′) is (0, w ′), so there is no horizontal compo-

nent, and the change vector is purely vertical. On the w -nullcline, the change vector (V ′, w ′)

becomes (V ′, 0), so there is no vertical component, and the change vector is purely horizontal

(Figure 4.46).

V

w

Figure 4.46: The direction of change vectors along the nullclines in the FHN model.

First, let’s look at the V -nullcline. The V -nullcline divides state space into a region in which

V is growing and a region in which V is decreasing. The only question is which is which, and

that is easily answered by looking at the V ′ equation and realizing that above the blue curve,

w > f (V ), so V ′ must be negative; below the blue curve, w < f (V ), and therefore V ′ must be

positive.

Similarly, the w -nullcline separates state space into two regions. Since the w ′ equation is

w ′ = V − γw , above the red line γw > V , so w ′ must be negative above the red line, and

positive below it.

Together, the two nullclines divide state space into four regions (Figure 4.47).

Exercise 4.4.8 Sketch the nullclines in Figure 4.47 and use test points to confirm that the

change vectors are drawn correctly.

The nullcline analysis already gives us a sense of the movement, which can be further con-

firmed by plotting the vector field superimposed on the nullclines (Figure 4.48).

http://dx.doi.org/10.1007/978-3-319-59731-7_3
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w-nullcline

V
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Figure 4.47: The nullclines for the FHN model divide state space into four regimes with distinct

behaviors.

We can now plot our first experiment, with the subthreshold and suprathreshold stimuli, on

this state space picture. If we plot a trajectory resulting from a low-amplitude stimulus pulse,

we see a small counterclockwise orbit, which returns quickly to the stable equilibrium point at

(0, 0) (Figure 4.49).

Exercise 4.4.9 In the experiment with the small-amplitude stimulus pulse in Figure 4.49, the

stimulus pushed the state point across the blue V -nullcline into “increasing V ” territory. Never-

theless, the system returns quickly to the equilibrium point. Why is this so?

V

w

Figure 4.48: Vector field and nullclines for the FHN model. Note the sense of movement.

V

w

1 2

0.5

time

Iext

0

V

0

Figure 4.49: Left: One trajectory in state space (black curve) resulting from a low-amplitude

stimulus pulse. Right: corresponding time series.
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If we increase the amplitude of the stimulus pulse by a little, we get a completely different

kind of trajectory, corresponding to an action potential (Figure 4.50). Now the stimulus pulse

has pushed the state point well over the blue V -nullcline (phase 1), and now V begins to increase

(phase 2). It continues to increase in both V and w , until it crosses the V -nullcline again, and V

begins to decline, while w is still increasing (phase 3). In phase 4, the state point has crossed the

w -nullcline, and w begins to decrease, while V is still decreasing. And finally, in phase 5, the state

point has passed the V -nullcline again, and V decreases along with w until the system relaxes

back to the equilibrium point. Note that in this phase, the state point hugs the V -nullcline,

meaning that V ′ is nearly 0 during this phase.
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w
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Figure 4.50: Left: State space trajectory (black curve) of the response to a slightly larger stim-

ulus. Right: corresponding time series.

Finally, let’s consider the effect of adding a constant stimulus current Iext . Note that the

addition of the constant term to the V ′ equation has the effect of shifting the V -nullcline

upward. Now the equilibrium point is no longer at (0, 0).

If the amplitude of the stimulus is small, the new equilibrium point is moved closer to the

positively sloped region, but it does not quite reach it (Figure 4.51). As a consequence, the

equilibrium point is still stable, although it is so close to the unstable region that even a small

perturbation will elicit an action potential.

V

w

0.5 1.0

0.2

0.4

0

1

Iext

V

time

0.08

0

0.5

1 2 3 40

Figure 4.51: Left: Adding a small constant external stimulus, rather than a pulse, moves the blue

nullcline upward, but does not essentially change the dynamics of the system. Right: time series

of the system’s response to a small perturbation.
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However, when we increase the amplitude of the stimulus current, we see a different phe-

nomenon: now the equilibrium point has been shifted into the positive-slope region of the V -

nullcline, and the system now has an unstable equilibrium point and a stable limit cycle attractor

(Figure 4.52). This neuron will fire repetitively. Such neurons are called “pacemaker neurons,”

and our analysis suggests that there is a deep analogy between these neurons and Rayleigh’s

model of the clarinet!
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1 2 3 4

Figure 4.52: Left: Adding a larger constant external current changes the dynamics of the model.

Now the red line crosses the blue line in a positively-sloped region, and the equilibrium point

becomes unstable. Any small perturbation off the unstable equilibrium point will result in a

permanent oscillation (black curve). Right: time series of the behavior.

Further Exercises 4.4

1. A common differential equation, used, for example, to represent ion channel kinetics, is

X ′ =
a0 −X

t0

where a0 and t0 are constants.

a) What dynamics follow from this equation?

b) How do a0 and t0 affect these dynamics?

2. For the following system,

V ′ =
1

ǫ

(

− w + f (V ) + Iext

)

w ′ = V − γw

where Iext = 0.08, ǫ = 0.01, f (V ) = V (1− V )(V − a), a = 0.1, g = 0.5:

a) Calculate the equilibrium points by setting V ′ = w ′ = 0.

b) Write down the V -nullcline function.

c) Calculate the slope of the V -nullcline at the equilibrium point.



Chapter 5

Chaos

5.1 Chaotic Behavior in Continuous and Discrete Time

We began our study of dynamics by looking at equilibrium behavior, modeled by stable equilibrium
points, or as we learned to call them, point attractors. We then argued that these concepts are
inadequate to describe an important scientific phenomenon: robust and stable oscillations in
systems. Therefore, we extended our thinking to embrace the concept of oscillation, as modeled
mathematically by limit cycle attractors.

It is reasonable to ask, is this all there is? Are equilibrium behavior and oscillatory behavior the
only forms of behavior that a system can display? To put it mathematically, are point attractors
and limit cycle attractors the only kinds of attractors that can occur in dynamical systems?

Interestingly, the answer is no.
Think about fluid turbulence. Picture yourself in a boat on a river that’s in white-water

turbulent flow. What is this? It certainly isn’t exhibiting static equilibrium behavior, but neither
is it periodic. Is it random? Not really: there are large-scale structures such as vortices. Then
what is it?

It is now clear that a large number of phenomena, ranging from fluid turbulence to the flapping
of a flag in the breeze to cardiac arrhythmias, are examples of a third kind of behavior, which
has come to be called chaos. Chaotic behavior is represented mathematically by attractors of a
third kind, called chaotic attractors.

We will now study this behavior in various kinds of dynamical systems.

Continuous Chaos

We have been studying predator–prey models since the start of this course, but those models
typically had only two species. Real ecosystems have many more species than that, which allows
for behavior that is more complex than what is seen in two-variable models. In this section, we
will develop a three-species model and study the surprising dynamics that emerge.

Imagine a food chain consisting of three species or groupings of species—say plants, rabbits,
and foxes, or algae, microscopic invertebrates, and fish (Hastings et al. 1993; Hastings and Powell
1991). We will call the plant mass X, the number of herbivores Y , and the number of carnivores
Z. As in the Holling–Tanner two-species model, we assume that in the absence of herbivores,
plants would exhibit logistic growth. Also, we assume that the per herbivore consumption of

c© Springer International Publishing AG 2017
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plants saturates with increasing plant density, following the function

F1(X) =
a1X

1 + b1X

The overall equation is then

plants X ′ = rX(1−
X

K
)−

a1X

1 + b1X
Y

For the herbivore and predator, we assume that the per capita birth rate is proportional to
the amount of food consumed and that the per capita death rate is a constant (d1 for herbivores
and d2 for predators). The rate at which the predator consumes the herbivore is a saturating
function of herbivore density, as in the Holling–Tanner model. The overall equations are

herbivores Y ′ = c1
a1X

1 + b1X
Y − d1Y −

a2Y

1 + b2Y
Z

carnivores Z′ = c2
a2Y

1 + b2Y
Z − d2Z

To simplify our analysis of these equations, we can get rid of the parameters r , K, c1, and c2
by setting them equal to 1. The resulting system of equations is

X ′ = X(1−X)−
a1X

1 + b1X
Y

Y ′ =
a1X

1 + b1X
Y − d1Y −

a2Y

1 + b2Y
Z (5.1)

Z′ =
a2Y

1 + b2Y
Z − d2Z

If we simulate this model, we see something unusual (Figure 5.1).

100 200 300 400
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carnivore

time

population

x

z
y

1

Figure 5.1: Left: a simulation of the three-species food chain model described in the text with
a1 = 5, b1 = 3, a2 = 0.1, b2 = 2, d1 = 0.4, and d2 = 0.01. Right: a typical trajectory of the
three-species model.

At first glance, the output appears to oscillate. However, a closer look reveals that each cycle
is slightly different from the previous one. The number of small ups and downs in each large cycle
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is different from one cycle to the next, as is the exact shape of each cycle. So the output is not
really periodic. It appears to be somewhat periodic, but also to have some kind of randomness.

If we consider a 3D trajectory generated by the model, we see a complex shape that does
not resemble the simple points and loops we’ve seen before. It looks like an upside-down jug.
The path of a typical state point begins in the jug part and then spirals inward mostly in the
X-Y plane, while slowly rising along the Z axis. Finally, the state point gets thrown into the
handle of the jug, where it plummets down to begin another cycle. The nonrepeating time series
and associated complex trajectories are hallmarks of the dynamical behavior known as chaos
(Figure 5.1).

Exercise 5.1.1 Simulate the food chain model in SageMath for at least two sets of initial
conditions. Plot the results as both time series and trajectories. (For the latter, you can use zip
to combine three lists of values before plotting them with list_plot .) Use the parameter values
given in the caption of Figure 5.1.

In order to understand chaotic behavior, we will first introduce a different kind of dynamical
model, one in which time advances in discrete steps. After learning what we need to there, we
will come back to differential equations and continuous time.

Discrete-Time Dynamical Systems

In a discrete-time model , time advances in discrete steps. In differential equations, time is the
continuous variable t. But in a discrete-time system, time comes in discrete intervals 0, 1, 2, 3,
. . . , with no values between them. Therefore, we represent “time” by the integer-valued variable
N, so N = 0, 1, 2, 3, . . . .

Such models work well for organisms with well-defined breeding seasons or in other situations
in which the data come at discrete times. For example, heartbeats are discrete; there are the
Nth heartbeat and the (N + 1)st heartbeat, but nothing in between.

Consider a deer population growing at 5% a year. If population size is denoted by the variable
X, its value at time N is written X(N) or XN (pronounced “X of N”). Then, we can write an
equation that gives us XN+1 as a function of XN ,

XN+1 = XN + 0.05XN = 1.05XN (5.2)

This kind of equation, which gives the population size at time N +1 in terms of that at time
N, is called a difference equation. The value 1.05 in equation (5.2) is typically represented by
the parameter r , so the general difference equation is

XN+1 = rXN (5.3)

When r > 1, the population is growing, and when r < 1, it is shrinking. If r is exactly 1, the
population stays the same size, but this is essentially impossible in nature (Figure 5.2).
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Figure 5.2: Exponential growth in discrete time for three different values of r = 1.05, 1.0, and
0.95, with initial condition X(0) = 2. Left: short time. Right: long time.

Exercise 5.1.2 Choose an initial value for X and use values of r that are less than, greater
than, and equal to one to test the above statements by computing two values of X for each
value of r .

As you’ve probably noticed, exponential growth starts off slowly and then gets faster and
faster, with each increment of growth being larger than the previous one. How much larger? To
find out, we subtract XN+1 from XN+2:

XN+2 −XN+1 = rXN+1 − rXN = r(XN+1 −XN)

If we use the symbol ∆N+1 to represent the growth increment (XN+2 −XN+1), then

∆N+1 = r∆N

In other words, the growth increment increases at the same rate r as the population itself,
although the per capita growth rate remains constant. When the population is small, it grows
slowly, but as the population increases, so does its growth rate. This allows exponential growth
to sneak up on you, as the following exercise illustrates.

Exercise 5.1.3 An inedible alga is growing on a pond in a city park. Only a small part of the
pond is now covered by the algae, but the area covered is doubling each day. The city decides
to remove the algae once it covers half the pond. If the pond will be completely overgrown in
thirty days, on what day will it be half covered? (Hint: Try working backward.)

If we start with an initial condition X0, then

X1 = rX0
X2 = rX1 = r2X0
...

...
...

XN = rXN−1 = r
2XN−2 = · · · = r

NX0
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Exponential growth in discrete time is represented by the difference equation

XN+1 = r ·XN

It has a solution, namely,
XN = r

N ·X0

Exercise 5.1.4 A rabbit population is growing at 10% a year. If there are 10 rabbits this year
and time is discrete, how many will there be in 10 years? Use a loop in SageMath to check your
answer.

Exercise 5.1.5 While we have been working with r > 1, representing growth, r can be less
than 1, representing a quantity that decreases over time. The half-life of a radioactive element
is the amount of time needed for half the element to decay. What fraction of the initial amount
of such an element will remain after ten half-lives?

Exercise 5.1.6 When money in a bank account accrues compound interest, the interest earned
in one time period is added to the principal, and then the sum is used as the base for the next
time period.
a) If you start off with $1000 and earn 2% interest that is compounded annually, how much

money will you have in 5 years? In 10 years? In 20 years?
b) How long will it take you to accumulate $10,000?

The Discrete-Time Logistic Model

We will now develop and examine an important discrete-time model, the discrete logistic equation
(May 1976).

Consider a population of insects that live one year, lay eggs, and then die. The insect popu-
lation in year N + 1 is a function of the population in year N. If we call the population X, then
XN+1 = f (XN).

Suppose there are enough resources to support a maximum of K insects. If the current
population is XN , then the current population is using only XNK of the total resources available.
But that means that the fraction of total resources that are unused is 1− XNK . It is these unused
resources that are available to support new births. Therefore, just as in the continuous-time
logistic equation model, we will assume that the per capita insect birth rate is proportional to
the available resources, with proportionality constant r . This gives us

per capita birth rateN = r(1−
XN
K
)

As always, the per capita birth rate must be multiplied by the population size XN to get the
total birth rate. Then the population as a whole lays rXN(1 −

XN
K ) eggs in year N, and since

no adults survive from one year to the next, and assuming that each egg laid leads to a mature
adult that reproduces,

XN+1 = rXN(1−
XN
K
)

This equation has two parameters, r and K. To simplify our analysis of its behavior, we can set
K = 1, so the numbers XN can be interpreted as fractions of the carrying capacity. We then
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have the equation

XN+1 = rXN(1−XN) (5.4)

Exercise 5.1.7 If r = 1.2 and X0 = 0.42, what is X1? X2?

Equation (5.4) is called the discrete logistic equation or the discrete logistic model . As usual,
“discrete” refers to time (Figure 5.3). The state of the system can be any number between 0
and 1. The discrete logistic model is just as deterministic as all the other models we’ve studied.
There is no randomness in equation (5.4). Also, we specified that the maximum possible insect
population is 1, and as long as r ≤ 4, the population will indeed stay between 0 and 1. Thus,
the dynamics of this system are bounded. Simulating this model (using iteration) gives us a
surprisingly irregular time series (Figure 5.4).
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Figure 5.3: Graph of the function XN+1 = rXN(1−XN) for r = 4.

While this time series is irregular, there are also some predictable aspects to the behavior.
Note, for example, that when the state variable takes values close to zero, the subsequent
changes are small. Similarly, when the state variable takes values near 0.75, the subsequent
changes are also small (look around N = 10 and N = 27). We will see why shortly.
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Figure 5.4: A simulation of the discrete logistic model with r = 4 and X0 = 0.01.
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Exercise 5.1.8 Recreate Figure 5.4 in SageMath. (Hint: You may need to review iteration.)

Exercise 5.1.9 Run another simulation of the discrete logistic model with a different initial
value and value of r . (Recall that r has to be between 0 and 4.)

Dynamics from a Discrete-Time Model: Cobwebbing

Consider a discrete-time model
Xn+1 = f (Xn)

We get dynamics from this model by realizing that if we start at X = X0, then

X1 = f (X0)

X2 = f (X1) = f (f (X0)) = f 2(X0)
...

...
...

Xn = f (Xn−1) = f (f (. . . f (X0))) = f
n(X0)

So the successive values X1, X2, X3, . . . , Xn are produced by applying f over and over. This
is called iterating the function, and this subject is sometimes called iterated function dynamics.

X f(X)

Of course, we can generate these values by pressing the “f ” button over and over, and indeed
that’s how we generated Figure 5.4. But there is another, geometric, way to look at this process.

As our example, let’s use the discrete-time logistic function. Suppose we start with an X0.
Then the graph tells us the value of X1 = f (X0): simply shoot up from X0 to the function f
and look to the left to see its value (Figure 5.5).

X0

X1

XN

XN+1

f

Figure 5.5: The first step of the iteration of f from the initial condition X0, finding X1 = f (X0).

Now we would like to find X2 = f (X1). But we have a problem: we have X1 on the vertical
axis, but we need it on the horizontal axis in order to shoot it up to the function. The problem
is solved with a simple piece of geometry. Let’s draw a construction line of slope 1 (the gray
line in Figure 5.6). Then, to find the value on the horizontal axis corresponding to any value
on the vertical axis, just draw a horizontal line from the value on the vertical axis to the line of
slope 1, and then drop a vertical line down to the horizontal axis. Because the construction line
has slope 1, the resulting object is a square, and we have now found X1 on the horizontal axis
(Figure 5.6).
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slope = 1

X0

X1
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Figure 5.6: Using the slope = 1 projection line, X1 is located on the horizontal axis.

Now we simply shoot up from X1 to the function to read off X2 = f (X1) (Figure 5.7).
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X1

X2

XN

XN+1

slope = 1

Figure 5.7: The second step of the iteration finds X2 = f (X1).

Staring at the diagram, we realize that part of this process involves unnecessary back-and-
forth motions. After we have found the point on the graph of the function corresponding to X1,
it is not necessary to go left to the vertical axis and then back again to X1 on the function.
We could just have gone directly from X1 on the function and headed to the right to find the
intersection with the line of slope 1. Similarly, once we have found the point on the 1-1 line,
it is not necessary to go down to the horizontal axis and then go back up again to the same
point: we could just go up from the point on the 1-1 line to the function to get the next value
(Figure 5.8). Repeating this process of reflecting alternately between the function and the 1-1
line, we generate a process called cobwebbing. Cobwebbing is a general procedure for obtaining
time dynamics from a discrete-time function.

XN

XN+1

X0 X2X1 X3

Figure 5.8: Repeated iterations result in the cobwebbing process.

Cobwebbing, the process of reflecting alternately between the function f and the 1-1 reference
line, is the geometric realization of the process of iterating the function f over and over.
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If we carry out this cobwebbing for the discrete logistic function, we see that the process
never closes (Figure 5.9).
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Figure 5.9: Left: 10 steps of the cobwebbing process starting from initial condition X0 = 0.1.
Right: 50 steps.

Exercise 5.1.10 Use cobwebbing to determine the dynamics for the linear discrete-time sys-
tems XN+1 = rXN for values of r in the following ranges:

a) 0 < r < 1 b) r > 1 c) −1 < r < 0 d) r < −1

Further Exercises 5.1

1. The Beverton–Holt model

XN+1 =
rXn

1 +Xn/m

is a discrete-time population model sometimes used in fisheries research.

a) With m = 20 and r = 3, use cobwebbing to iterate the model for four steps.

b) Numerically simulate the model with the same parameter values for 20 time
steps and plot your results. Describe the model’s behavior.

c) Experiment with different values of r and m. What kinds of behavior can you
generate?

2. The Ricker model
XN+1 = XNe

r(1− Xn
k
)

is another discrete-time model used in ecology and fisheries.
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a) With k = 20 and r = 3, use cobwebbing to iterate the model for four steps.

b) Numerically simulate the model with the same parameter values for 100 time
steps and plot your results. Describe the model’s behavior.

c) Experiment with different values of r and m. What kinds of behavior can you
generate?

5.2 Characteristics of Chaos

Chaos is dynamical behavior that is deterministic, bounded in state space, irregular, and, most
intriguingly, extremely sensitive to initial conditions. We will discuss each of the defining char-
acteristics of chaos in turn.

Linguistic Caveats

“Chaos” is one of the rare mathematical terms to have penetrated popular culture. However, the
term is a misleading one, although we are stuck with it for historical reasons. Chaotic behavior
can look erratic, but it embodies a complex order that we will study in this section. Also, we will
sometimes speak of “chaotic systems,” but chaos is a type of behavior, not a type of system.
A chaotic system is one that is behaving chaotically, just as an oscillating system is one that is
behaving in an oscillatory manner. Unfortunately, “chaosing” is not a word.

Determinism

To say that a system is deterministic means that each state is completely determined by the
previous state.

In the food chain model, just as in all the other models we have studied, there are no unmodeled
outside influences or chance events.

If we allow outside chance events, it is easy to produce an irregular time series by, say, flipping
a coin, but there’s nothing like this in the food chain model or the discrete logistic model. The
system is deterministically producing its own irregular behavior without any randomness.

Boundedness

Another characteristic of chaotic behavior is boundedness. Boundedness means that the system
does not go off to infinity. Rather, as Figure 5.1 illustrates, it stays within a certain region of
state space. In other words, we could draw a box in state space and the system would stay within
that box. And in the discrete logistic model, as long as our initial condition is within the interval
(0, 1), the result will always be in that interval; the state point will not escape to higher values.

Exercise 5.2.1 Give an example of a system whose dynamics are not bounded.
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Irregularity

We are now ready to start discussing the characteristics of chaos that make it different from
the types of dynamical behavior we’ve encountered before. The first of these is that chaotic
behavior is irregular, or aperiodic. Aperiodic behavior never exactly repeats. If a trajectory ever
exactly repeated, that is, returned to the very same mathematical state point, it would have to
be periodic, because determinism would require that it return again and again. All closed orbits
are periodic trajectories, hence limit cycle attractors are closed periodic orbits.1

Systems with point or limit cycle attractors have initial transients but then settle down into
repetitive behavior. Chaotic behavior, on the other hand, starts out irregular and remains irregu-
lar. In some systems, it may look like the behavior repeats and it can come very close to previous
state values, but it never exactly repeats.
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Figure 5.10: Time series of the carnivore population from a typical simulation of the three species
food chain model.

Let’s take a closer look at the carnivore populations in a simulation of the food chain model
(Figure 5.10). At first glance, it seems that the populations oscillate, albeit in a somewhat
complex way. However, a closer look reveals differences. The second large oscillation contains
one bump before the peak, while the third oscillation has at least two. Moreover, each peak
has a somewhat different shape. This is aperiodicity. Despite a general qualitative similarity, the
behavior of the system never repeats and never approaches repetition. A similar statement is
true about the output of the discrete-time logistic model. It may look as though some shapes
repeat themselves, but if we look closely, we see that the sequence in fact never repeats.

Exercise 5.2.2 In Figure 5.4 on page 228, the last eight or so points look about the same as
the first eight. Run this simulation in SageMath for 100 time steps.
a) Are the points actually the same? (Hint: Look at the numerical output of your simulation.)

b) After N = 50, does the simulation continue to act as it did at the beginning?

Sensitive Dependence on Initial Conditions

The most intriguing and famous characteristic of chaos is sensitive dependence on initial condi-

tions. This term refers to the fact that in a chaotic system, two time series that start very close
together will eventually diverge to the point where their behavior is completely uncorrelated.

1It also never approaches repetitive (periodic) behavior. The last part is critical. Strictly speaking, trajectories
approaching a stable equilibrium point or limit cycle don’t repeat, either, because trajectories cannot cross.
However, as time goes on, they get closer and closer to completely repetitive behavior, so it makes sense to call
them periodic. Technically, they are asymptotically periodic.
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Let’s consider two simulations of the food chain model, with two closely spaced initial con-
ditions. The two simulations are at first indistinguishable; they then diverge slowly from each
other (first and second panels). But then toward the end (third panel), they become completely
uncorrelated (Figure 5.11).
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Figure 5.11: Time series of the carnivore population from two simulations of the Hastings food
chain model for two different initial conditions, 8.0 and 8.01.

Sensitive dependence on initial conditions is also a property of discrete-time chaotic systems
such as the logistic system. Two simulations of the discrete logistic model with r = 4, one for
X0 = 0.01 and one for X0 = 0.011, show initial agreement but quickly diverge (Figure 5.12).
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Figure 5.12: Two simulations of the discrete logistic model with r = 4.

The concept of “sensitive dependence” can be given a precise definition. Suppose N0 and
M0 are two different initial conditions for the food chain model. Let’s define d(M0, N0) as the
distance between M0 and N0. Since M0 and N0 are points in 3-dimensional (X, Y, Z) space, the
distance between them is the Euclidean distance

d(M,N) =
√

(XM −XN)2 + (YM − YN)2 + (ZM − ZN)2
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After a time t, the two points M0 and N0 have evolved to Mt and Nt . Sensitive dependence
says that the distance d(Mt , Nt) grows exponentially with time for some λ (Figure 5.13):

d(Mt − Nt) = eλ·t · d(M0 − N0)

d0 d(t) = d0 eλt
d(0)=

M0

N0

Mt

Nt

Figure 5.13: Exponential divergence over time of nearby trajectories. This is characteristic of
chaotic systems.

In general, for multivariable systems, in both discrete and continuous time, sensitive dependence
means exponential divergence of nearby trajectories: there is a number λ (greek letter lambda),
called the Lyapunov characteristic exponent, such that

d(Mt − Nt) = eλ·t · d(M0 − N0)

Exercise 5.2.3 Derive the expression for exponential divergence in the case of the discrete-
time logistic system. (Hint: Here, because the logistic system has a single state variable, the

distance between two points X and Y is just the absolute value of their difference, |X − Y |.)

But of course, this exponentially fast divergence cannot continue forever, because the whole
behavior is contained in a box. Therefore, two nearby trajectories will start by diverging from
each other exponentially fast, but then they will ultimately be folded back into the box by the
dynamics. This tension between “wanting to diverge” and “staying in the box” creates many of
the key properties of chaos.

Unpredictability

Edward Lorenz, the meteorologist and mathematician who helped discover chaos, gave a talk
at the annual meeting of the American Association for the Advancement of Science in 1972,
called “Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”
He posed a question: Consider two planets that are absolutely identical, down to the clothes you
are wearing today, every tree, every detail, except that in world A there is one more butterfly
in Brazil. What will happen to the weather systems of the two planets? Common sense says
there will be no difference from such an infinitesimal change, but common sense is wrong. In
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fact, after not much time, the weather systems will diverge completely, so that there is, say, a
tornado in Texas in world A but not in world B!

Sensitive dependence on initial conditions helps explain a fundamental property of chaotic
behavior, its unpredictability. Look at Figure 5.12. We took two initial conditions, X0 = 0.01
and X0 = 0.011, that differ by 1 part in 1000, or a tenth of a percent. But the X50 corresponding
to these two initial conditions is completely different: look at N = 49 and N = 50 and note that
the pink tracing is very high, while the blue tracing is very low.

Let’s see how accurate your initial condition would have to be to correctly predict X50. Note
that there is a squaring inside the function: in order to calculate the next X you have to, among
other things, square the previous X. But the square of 0.01 (which has two decimal places) is
0.0001, which has four. And the square of that has eight decimal places. So by the time you
are calculating X50, you need a number whose length has doubled 50 times. But as we saw in
Chapter 2, 250 is around 1015, so you would need an initial condition that has a thousand trillion
decimal places. Good luck getting your computer to handle that!

This same property has another surprising consequence.

Exercise 5.2.4 In this model, let r = 4, and assume that the initial value is X0 = 0.6. Simulate
the model in two different ways:

a) Use SageMath to print the values of X0, X1, X2, . . . , up to at least X20.

b) With the help of a simple pocket calculator (or a calculator app on your phone), create the
same list on paper. In this case, continue until the numbers that you are calculating on paper
look completely different from the numbers that SageMath gave you.

The result of the above exercise should be surprising. We simulated exactly the same de-
terministic system with exactly the same initial condition and got completely different results.
What’s going on?

As we saw, the true length, the number of significant digits of the number XN , doubles with
each N = 1, 2, 3, . . . , and X50 has a staggering length. But computers have a finite amount
of memory, and it would quickly run out. Therefore, computers and calculators are designed
to round off decimals to a certain number of places. Exactly when and how this rounding is
done depends on the particular combination of hardware and software. It’s very unlikely that the
SageMath system you are using rounds numbers in exactly the same way as your calculator. Most
of the time, the rounding error described here (say in the 16th decimal place) has undetectably
tiny effects. However, chaotic systems’ sensitivity to exact state values amplifies these tiny errors
beyond all expectation. After a certain period of time (how long depends on the system), this
magnified error overwhelms our knowledge of the system, and quantitative prediction becomes
impossible.

The lesson here is very profound. It actually makes us rethink the question, “what is the
purpose of science?” If the answer was “to make detailed numerical predictions of the exact
future state of systems,” then chaos means that this is often impossible. So we have to redefine
the purpose so that predicting and understanding the qualitative behaviors of systems is a
legitimate (and important) goal of science.

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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Chaotic Attractors

In the previous chapter, we defined an attractor A of a dynamical system

V : X −→ T (X)

as a subset A of X that has the property that for a large set of initial conditions, every trajectory
tends to A as t →∞.

We have already seen two major kinds of attractor:

1) Point attractors, or stable equilibrium points, represent behavior that is either static or
approaching it.

2) Limit cycle attractors, or stable closed orbits, represent behavior that is periodic (or ap-
proaching it).

For a long time, scientists and mathematicians thought that those were the only two kinds
of attractor that could exist, either mathematically or physically. It turns out they were wrong,
both mathematically and in real systems (Hilborn 2000).

Look at the chaotic trajectory of the three-species food chain model (Figure 5.1 on page 224).
The simulation you are looking at has been run for a long enough time that you are looking at
the long-term behavior. This system has gone to an attractor. But what can that attractor be?

The answer is: it’s certainly not a point, and it’s not a closed orbit either. It’s a third kind
of attractor, called a “strange attractor” or chaotic attractor. It’s a very complicated geometry,
but it exists, and it satisfies the definition of attractor.

Chaotic attractors represent a third kind of motion, other than equilibrium behavior and
oscillatory behavior. Motion on a chaotic attractor is irregular and unpredictable. Nevertheless,
there is an overall form to the behavior.

Behavior Mathematical model

equilibrium stable equilibrium point (“point attractor”)
oscillation limit cycle attractor
chaos chaotic attractor

To get a better sense of what the attractor is, consider two simulations allowed to run for
a long time. Two simulations of a chaotic system that start a tiny distance apart will even-
tually become completely uncorrelated, but they can still retain a certain qualitative similarity
(Figure 5.11).

This situation becomes even clearer when we consider continuous-time systems. Consider the
trajectories of the two food chain simulations whose time series are shown in Figure 5.11. The
two initial conditions lead to very similarly shaped trajectories (Figure 5.14).

However, look at the superposition of the two trajectories, shown in the right-hand figure.
Note that the red trajectory and the blue trajectory have zero points in common. This would
be true even if the two trajectories were extended to infinity. As we have seen before, the two
trajectories have identical well-defined shapes. This shape is an example of a chaotic attractor

or strange attractor .
Notice that although the red and blue trajectories always remain distinct, they have the same

shape. The behavior of a chaotic system is governed by an attractor, just as equilibrium and
oscillating systems are. The attractor has a more complex shape, but it is still an attractor. If
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we plot the two state space trajectories corresponding to these two initial conditions, we see an
important fact (Figure 5.11): the behaviors of the two simulations are qualitatively similar, but
carrying out one simulation does not allow you to predict the behavior of the other in quantitative
detail.

Figure 5.14: Left and middle: two simulations of the food chain model with different initial
conditions. Right: superposition of these two simulations shows the same form, yet completely
different details.

Exercise 5.2.5 Although the two trajectories in Figure 5.14 look very similar, they do not share
any points. Why does this have to be true?

Further Exercises 5.2

1. Make a table showing which of the four defining characteristics of chaotic behavior are
shared by exponential growth, equilibrium behavior, and oscillation.

2. As in our previous Romeo–Julet models, letR and J be Romeo’s and Juliet’s love for each
other. Tybalt is a sworn foe of Romeo’s family, so let T be Tybalt’s hatred for Romeo.
(This model is normally called the Rössler model and is a well-known mathematical
example of chaos.)

– Juliet’s love is fueled by Romeo’s love for her, and to a small extent (0.1) by her own
love for him. Therefore, J ′ = R + 0.1J.

– Romeo has a fear of commitment, so the more Juliet loves him, the faster his love
decreases. Also, since Tybalt is Juliet’s cousin, Tybalt’s hatred of Romeo drives Romeo
away from Juliet. Thus, R′ = −J − T .

– Finally, Tybalt’s hatred of Romeo grows naturally at a constant rate (0.1), minus
some multiple (c) of itself, to prevent it from growing without bound. But when
Tybalt finds out that Romeo is in love with his cousin, his hatred of Romeo fuels itself
at a rate equal to Romeo’s love. Therefore, T ′ = 0.1− cT + RT .
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a)Simulate the Romeo, Juliet, and Tybalt model for c = 14 and the initial conditions
R(0) = 5, J(0) = 5, and T (0) = 1. Plot the results as both a time series and a 3D
trajectory. (Hint: You’ll probably want to use plotjoined=True.)

b)Pick an initial condition close to the original one and create both trajectories and
time series for it. Overlay the plots with those from part (a). What do you observe?

c)It can also be useful to look at the variables two at a time. Plot the trajectories of
Romeo and Juliet, Romeo and Tybalt, and Juliet and Tybalt.

d)In part (c), it sometimes looked as if the trajectory was crossing itself. Why is this
impossible? What’s really going on?

3. The characters are Romeo, Juliet, and Juliet’s nurse. Since the nurse is involved, it
makes sense to model the characters’ happiness rather than their attraction to each
other. With that, we have the following assumptions.

– Juliet loves her nurse and wants to be exactly as happy as the nurse herself is. So
J ′ = s(N − J).

– The nurse is similarly attached to Juliet and her happiness grows in proportion to
Juliet’s. However, she’s a bit of a worrywart, and her happiness causes itself to decline.
She’s also worried about Juliet’s developing relationship with Romeo, so whenever
their emotions are in sync, her happiness drops precipitously. Thus, N ′ = rJ−N−RJ.

– Finally, Romeo just wants his life to be simple. When Juliet and the nurse have different
emotions, he finds it hard to deal with them, but he doesn’t actually care whether
they’re happy or not. Also, his happiness causes itself to decline, just as in the case
of the nurse. So R′ = JN − bR.

This model, which usually has a meteorological rather than a literary motivation, is called
the Lorenz model; it played a key role in the discovery of chaos.

a) Simulate this model using the parameter values s = 10, b = 8
3 , and r = 28, with

the initial conditions J(0) = 0.1, N(0) = −6, and R(0) = 0.01. Use a step size of
0.01 to get better plotting. Plot a time series and 3D trajectory using the plotting
option plotjoined=True. (The masklike trajectory you are seeing is called the Lorenz
attractor or, more descriptively, the Lorenz butterfly or Lorenz mask.) Interpret these
plots in terms of the system being modeled. You can focus on just Romeo and Juliet.

b) Pick an initial point close to the original one and plot a trajectory and time series
as in the previous part. Overlay the plots for the two initial conditions. What do you
observe?

5.3 Routes to Chaos

We mentioned that chaos is not a kind of system; it’s a kind of behavior, which a system may
or may not exhibit. Whether a system displays chaos generally depends on the value of some
critical parameter. For some values, the system’s behavior will be chaotic, but other values can
result in equilibrium or oscillatory behavior.

Let’s look at the logistic equation

XN+1 = rXN(1−XN)
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and consider the parameter r . We saw chaotic behavior for r = 4, and it exists for almost all
values of r greater than 3.57, but what about lower values of r? It turns out that there are many
parameter regimes for which the behavior is not chaotic.

For example, if r = 2.9, the behavior is a point attractor or stable equilibrium point (Fig-
ure 5.15). The cobweb converges to a stable equilibrium point, and the time series also confirms
this convergence.
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Figure 5.15: Discrete logistic model with r = 2.9. Each time the cobweb process touches the
graph of the function (left figure), it creates a new data point (black dots in the right-hand
figure).

But if we increase r to values above 3.0, the equilibrium point becomes unstable. It is easy
to show why this happens.

First, let’s calculate the value of the equilibrium point for arbitrary r . Since the definition of
an equilibrium point in a discrete-time system is

XN+1 = XN

we can say that an equilibrium point of the discrete logistic system is a point where

XN+1 = f (XN) = rXN(1−XN) = XN

Dividing both sides by XN gives
r(1−XN) = 1

The equilibrium point is therefore

Xeq =
r − 1

r

This holds for all values of r ; for example, when r = 3, the equilibrium point is X = 3−1
3 , or

X = 2
3 .

Exercise 5.3.1 Find the equilibrium point for discrete-time exponential growth, XN+1 = rXN .
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Exercise 5.3.2 The Ricker model,

XN+1 = XNe
r(1−

XN
k
)

is another discrete-time population model in which population growth is limited by crowding.
Find this model’s equilibria.

Next, we need to determine the stability of this equilibrium point. When we were studying
single-variable differential equations, we developed the principle of linearization (the Hartman–
Grobman theorem), which says that near an equilibrium point, a differential equation has the
same behavior as its linear approximation. A similar principle holds for discrete-time dynamical
systems: near an equilibrium point, the system has the same behavior as its linear approximation.
But what is this linearization? In Chapter 2, we wrote this linear approximation as

∆Y =
df

dX

∣

∣

∣

Xeq
∆X

Here, “Y ” = XN+1 and “X” = XN , so the linear approximation in discrete time translates to

XN+1 −Xeq =
df

dX

∣

∣

∣

Xeq
· (XN −Xeq)

Note what this implies: if the absolute value of the slope
∣

∣

df
dX

∣

∣

Xeq
is less than 1, thenXN+1−Xeq

is less than XN − Xeq, which is another way of saying that XN+1 is closer than XN to the
equilibrium point. In other words, perturbations die out. This, in turn, implies that the equilibrium
point is stable (Figure 5.16).

slope =   0.8

Figure 5.16: When the slope of the tangent line (red) at the equilibrium point has absolute
value less than 1, the cobweb process near the equilibrium point converges, producing a stable
equilibrium.

Another way to look at this is to see that the linearization is just the linear discrete-time
equation XN+1 = rXN . This equation has only one equilibrium point, at X = 0, and this is
stable if and only if r < 1.

Exercise 5.3.3 Why is this true?

http://dx.doi.org/10.1007/978-3-319-59731-7_2


242 Chaos

Similarly, the equilibrium point is unstable exactly when the slope of f at that equilibrium
point has absolute value greater than 1 (Figure 5.17):

∣

∣

∣

df

dX

∣

∣

∣

Xeq
> 1

Now let’s calculate the stability of the equilibrium point of the discrete logistic equation. In
this case, the slope of f is

df

dX
=
d

dX
(rX − rX2)

= r − 2rX

Plugging in the equilibrium point value Xeq gives

df

dX

∣

∣

∣

Xeq
= r − 2r(

r − 1

r
)

= r − 2(r − 1)

= 2− r

slope =   1.2

Figure 5.17: When the slope of the tangent line (red) at the equilibrium point has absolute value
greater than 1, the cobweb process diverges, and the equilibrium point is unstable.

So our criterion for instability becomes
∣

∣

∣

df

dX

∣

∣

∣

Xeq
= |2− r | > 1

Let’s deal separately with the two cases that are included in the notion of absolute value.
First of all, if r < 2, then |2− r | = 2− r , which makes our instability criterion

2− r > 1 or r < 1

but if r < 1, then we know that the equilibrium point has to be stable, so this is absurd.
In the other case, if r ≥ 2, then |2− r | = r − 2, which makes our instability criterion

r − 2 > 1 or r > 3

and so we have answered our question: the equilibrium point becomes unstable when r > 3.
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Exercise 5.3.4 In Exercise 5.3.2, you found the equilibria of the Ricker model. At what value
of r does the equilibrium point at X = k become unstable?

Let’s look at what happens when we increase r in the discrete logistic model. When, for exam-
ple, r = 3.35, a simple 2-point periodic attractor arises. The system’s attractor consists of two
points, and the final behavior is an oscillation between these two points: it goes A,B,A,B, . . .
(Figure 5.18).
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Figure 5.18: Discrete logistic model with r = 3.35.

If we raise r further, for example, r = 3.53, the 2-point oscillation is lost and is replaced by
a 4-point oscillation A,B, C,D,A,B, C,D, . . . (Figure 5.19).
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Figure 5.19: Discrete logistic model with r = 3.53.

As r increases, the 4-point oscillation gives way to an 8-point oscillation, and these kinds of
bifurcations, called period-doubling bifurcations, occur faster and faster, until a limit point is
reached and the system behavior becomes truly chaotic (Figure 5.20). Consider the time series.
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For most values of r between 3.57 and 4, it is typical. The graph certainly looks irregular. For
these values of r , the dynamics of the discrete logistic model are aperiodic.

Nevertheless, as we already observed, there is some structure to this time series; it isn’t
completely random. For example, note the point where the graph of the function intersects the
graph of XN+1 = XN , which is the (unstable) equilibrium point. We noted earlier that when X
goes near 0.75 the changes are small. Now we can explain why: X = 0.75 is the equilibrium
point of this system. Changes at the equilibrium point are 0, by definition, and the derivative is
continuous, and therefore, changes near the equilibrium point will be near 0.

This sequence of bifurcations is called the period-doubling route to chaos. We can make a
bifurcation diagram representing the period-doubling route. We will use a technique similar to
the one we used in Chapter 3 to construct bifurcation diagrams. In that situation, we stacked
up 1D state spaces, one for each parameter value r , and showed the location of the equilibrium
points (Figure 5.21). Now we will do the same thing, but plot all the state values the system
visits after an initial transient.

This diagram is read as follows: each value of r on the X axis represents one model. On the
vertical line corresponding to that r -value, we plot all the points of the behavior for large N.
Thus, for values of r less than 3, there is only one point per r value, indicating that the system
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Figure 5.20: Discrete logistic model with r = 4.
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Figure 5.21: Bifurcation diagram for the discrete logistic model.

http://dx.doi.org/10.1007/978-3-319-59731-7_3
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has a stable equilibrium point at that value of N (so the location of the stable equilibrium point
increases slightly with r). But at r = 3.0, a bifurcation happens, and the presence of two points
per r value indicates that the system now has a period-2 attractor, and that it cycles between
the two points. Then for r greater than 3.4 another period-doubling occurs, and we now have
four points for each r value. Finally, the presence of many (actually infinitely many) values for
most r > 3.6 indicates the presence of chaos.

If we mark the four examples above on this bifurcation diagram, we see that it correctly
predicts the behavior of the logistic model (Figure 5.22).

Exercise 5.3.5 Use Figure 5.21 to describe how the discrete logistic model will behave for
r = 3.1, r = 3.5, and r = 3.7.

r=2.9 r=3.35 r=3.53 r=4

Figure 5.22: Different r values in the bifurcation diagram for the discrete logistic model.

Other routes to chaos, other sequences of bifurcations leading to a chaotic attractor, have
been identified both mathematically and in physical systems. In most of them, complex oscilla-
tions are way stations on the route to chaos. That is,

equilibrium −→ oscillation −→ complex oscillation −→ chaos

is a frequent scenario.

A Period-Doubling Route to Chaos in the Three-Species Food Chain Model

The three-species food chain model offers an excellent example of an important route to chaos.
Consider the parameter b1 in the model (equation (5.1) on page 224). It controls the level of
plants that the herbivores can consume. If b1 is low, the herbivores can consume a large fraction
of the plants, and the consumption therefore saturates quickly.

But if b1 is increased, the herbivores can consume more and more of the plant mass. If we
increase b1 from 2 to 3, we see a sequence of changes. For b1 = 2, the model has a stable
equilibrium point (Figure 5.23). As we raise b1, we see first a Hopf bifurcation (Figure 5.24).
Now the equilibrium point is unstable, and a stable limit cycle attractor is born. Then, as b1
is increased, another bifurcation occurs, from the simple oscillation to a more complex one
with twice the period. Now the oscillations have an alternating A,B,A,B, . . . pattern. This is
therefore a period-doubling bifurcation (Figure 5.25).
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As b1 increases further, there is another period-doubling bifurcation to a period-4 rhythm
(Figure 5.26), and finally, further increases in b1 produce chaos (Figure 5.27).
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Figure 5.23: For low values of b1, the system has a stable equilibrium point of spiral type.
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Figure 5.24: For slightly higher values of b1, the system exhibits a stable oscillation.
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Figure 5.25: As b1 further increases, a period-doubling bifurcation occurs, and the rhythm
becomes more complex.
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Figure 5.26: Still further increases in b1 cause a second period-doubling bifurcation, to an even
more complex periodic rhythm.
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Figure 5.27: Increasing b1 even more produces a bifurcation to a chaotic attractor.

Further Exercise 5.3

1. In Exercise 5.2.3 on page 235, you learned about the Romeo, Juliet, and Juliet’s nurse
model (Lorenz model),

J ′ = s(N − J)

N ′ = rJ − N − RJ

R′ = JN − bR

a) Simulate this model with the parameter values s = 10, b = 8/3, and r = 1, and
the initial conditions J(0) = 0.1, N(0) = −6, and R(0) = 0.01. Use a step size of
0.01. Plot trajectories and time series of your simulation and describe the system’s
behavior.

b) Find out what kinds of behavior you can generate by manipulating r . (Hint: Try

making an interactive.)

5.4 Stretching and Folding: The Mechanism of Chaos

Chaos has typical kinds of causes. Let’s use the discrete logistic equation as an example. The
inverted parabola shape of the function suggests that there are two main processes in this model
(Figure 5.28):

1) a growth process represented by the left-hand part of the curve, above the 1-1 reference
line. In this region, XN+1 is greater than XN , and

2) a crowding or shrinking process represented by the right-hand part of the curve, below the
1-1 reference line. In this region, XN+1 is less than XN .

Suppose the system begins with an initial condition on the left-hand side (small X0). Then
it is in growth mode, and the population will begin by growing exponentially. As the value nears
the center (X = 0.5), we see the crowding term beginning to flatten out the curve and turn it
downward. As long as the point is to the left of the equilibrium point, XN+1 is larger than XN ,
but as the population grows, it eventually reaches the right side. Then XN+1 is less than XN , so
the population is shrinking. This takes the state point back to the left-hand side, and another
growth–decline cycle begins. The state point is like a tennis ball being batted back and forth
between the growth mode and the shrinking mode.
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Figure 5.28: Schematic illustration of the dynamics of the parabola function. The part of the
curve above the 1-1 reference line causes population growth, while the part below the 1-1
reference line causes the population to shrink.

XY

Z

Figure 5.29: Two stages of a typical trajectory in the three species food chain model. Starting
from an initial condition at the bottom right, at first the state point spirals inward in the X-Y
plane while heading upward in the direction of increasing Z (blue segment). Then, at high Z,
the Z population crashes (red segment), which releases the predation pressure on Y and X,
allowing them to return to high values.

It is typical of chaotic systems that a careful look at their attractors will reveal an interesting
causal mechanism: the picture tells a story. For example, let’s look at the three-species food
chain model (Figure 5.29). If we follow the state point around the attractor, we see that there
are basically two modes:

1) If we start anywhere in the jug itself, the dynamics of X (= plant) and Y (= herbivore)
oscillate like a shark–tuna model in the X-Y plane, but with slowly diminishing amplitude
(like the spring with friction), while Z (= carnivore) grows slowly.

2) Finally, Z grows so large that the state point is sent into the handle, where it plummets
downward rapidly. The crash in the Z population (which is caused by the decrease in Y , its
food) then takes the pressure off Y , and the cycle begins again.

Thus, the ecosystem can be seen as two interacting oscillatory systems. The X-Y oscillator
is the plant/herbivore oscillator; it is similar to the Holling–Tanner model we developed earlier,
which displayed stable limit cycle attractors.

But now this X-Y oscillation is coupled to another oscillatory process, the Z-Y oscillation, in
which the carnivore preys on the herbivore in a second cyclic process. Chaos as a result of the
interaction of two coupled cyclic processes is a frequent scenario.

Regardless of the shape of the attractor and whether it is a discrete-time or a continuous
system, there is a universal mechanism at work in all chaotic attractors that accounts for most
of their interesting behaviors: stretching and folding.
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The purest example illustrating the stretching and folding process is called the baker’s trans-
formation (Figure 5.30). Imagine a piece of dough that is repeatedly rolled flat and folded over.
First, the rolling pin spreads out the dough twice as wide (steps 1 and 2), then the spread-out
dough is folded over to recreate a two-layered structure that has exactly the same dimensions
as the original (steps 3 and 4). If we repeat this process a second time (steps 5 through 8), we
get a four-layered structure of the same dimensions as the original. If this stretching and folding
process is repeated N times, the result is to create a layered structure with 2N layers exactly
occupying the original volume.

Consider the fate of two points that are initially extremely close, say in the left eyebrow.
Note that in steps 6 and 7, the left eyebrow was divided into two pieces that were assigned to
different layers in step 8. As this process continues over many iterations, the left eyebrow will
become completely fragmented, and the fate of the two closely spaced points will diverge, so
that knowing the location of one does not help us find the other.

Mathematically, the baker’s transformation can be written as a two-variable discrete-time
system. Assume that the dimensions of the square are 1 × 1. If (XN , YN) is the location of a
point at time N, that point is transformed to

(XN+1, YN+1) =

{

(2XN , 0.5YN) if XN < 0.5

(2− 2XN , 1− 0.5YN) if XN ≥ 0.5

Exercise 5.4.1 Pick two neighboring points and follow them through the baker’s transformation
for five steps. Where does each point end up? What happens to the distance between them?

A Recipe for Chaos

“. . . start pulling with your fingertips, allowing a spread of about 18 inches between your hands.
Then fold it back on itself. Repeat the motion rhythmically.”

— The Joy of Cooking

I.S. Rombauer and M.R. Becker
(citation from Ian Stewart, Does God Play Dice? (Stewart 1997))

The stretching and folding process is at work in every chaotic attractor. For example, let’s look
at the discrete logistic model. Let’s begin with a small section between 0.1 and 0.2, represented
by the horizontal red bar on the X axis (Figure 5.31, top left). (Figure 5.31, top right).

This piece of the interval, when it is shot up to the graph of the function, produces a larger
interval as its output. This is the red bar on the Y axis.

Thus, the original bar of initial conditions has been stretched by the function, because the
slope of the function in this region is greater than 1.

Then we take the stretched bar and reflect it back down onto the X axis.
When now we shoot this bar up to the function and project it onto the Y axis, we see that

the projection is not 1-to-1: two points in the bar on the X axis are sent to the same output
value on the Y axis. This is the folding process.
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Figure 5.30: The baker’s transformation. From a simple initial condition, repeated stretching and
folding produces an intricate layering. Note that parts of the eyebrows can now be seen in all of
the layers.
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Then, to begin the next cycle, the red bar at the bottom right is shot up to the function
again and becomes stretched again.

Thus, there is a “Joy of Cooking” stretching and folding process within the discrete logistic
function.

stretching

folding

stretching

Figure 5.31: Stretching and folding in the discrete logistic function. Upper left: a small interval
of initial conditions on the horizontal axis (red bar) is stretched by applying the function f to
all the points (larger red interval on the vertical axis). Upper right: we reflect the larger interval
back onto the horizontal axis using the 1-1 reference line. Middle left: Applying the function
f to the new stretched interval results in a folded interval, because two different values of XN
are assigned the same value of XN+1. Middle right: the newly folded interval is projected back
onto the horizontal axis. Lower left: applying the function f to the folded interval produces a
stretched version of the folded interval. Lower right: the new interval is projected back onto the
horizontal axis.

The same thing is true of the three-species food chain model. We began with a point cloud
of 10,000 initial conditions in a very small region (top left, black arrow in Figure 5.32).

As the point cloud went around the attractor, it was stretched. By the third time around the
attractor, it had elongated into a stringlike structure. Then, the fourth time around, t = 400, the
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Figure 5.32: Chaos by stretching and folding on the food chain attractor. At t = 0, 10,000
initial conditions, packed very closely (black arrow, top left), were evolved forward in time by the
three-species Hastings model. At t = 300, three times around the attractor, the initial dot has
stretched into a long filament. By t = 400, the filament has stretched further and folded over.
Further evolution shows repeated stretching and folding, with a resulting fragmentation of the
filament. Sensitive dependence on initial conditions ends up spreading the initial 10,000 points
across the whole attractor.
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string was further elongated and was folded in half. Further trips around the attractor continue
the stretching and folding process.

At t = 2500, the resulting fragmentation has distributed points from the original initial
conditions broadly across the attractor, so that points that were initially very close together are
now far-flung across the attractor.

Prediction of the detailed fate of a point has obviously become impossible.
The fact that the original tiny ball of initial conditions is now spread out across the attractor

by the repeated stretching and folding is called the “mixing property” of chaotic systems. The
mixing property can also be seen in the baker’s transformation: after many iterations, pieces of
the left eyebrow are found in every layer.

It is interesting that this mixing process is actually used to mix things! A thousand years ago,
Japanese swordsmiths needed to mix two metals to make their best sword.

But the metals could not be simply melted and stirred, because melting and cooling would
destroy their desirable properties. So they needed a way to cold mix two metals. They hit on
the idea of placing sheets of the two metals on top of each other, hammering them down into
a thinner sheet, and folding the result over. This process would be repeated, and in a manner
identical to the baker’s transformation, they were able to mix the two metals effectively at room
temperature.

Further Exercise 5.4

1. In Further Exercise 5.1.1 and Further Exercise 5.1.2, you learned about the Beverton–
Holt (XN+1 =

rXn
1+Xn/m

) and Ricker (XN+1 = XNe
r(1− Xn

k
)) population models. The Ricker

model can generate chaos, while the Beverton–Holt model cannot. Use what you learned
in this section to generate a hypothesis about why this is the case. (Hint: Plot the

functions.)

5.5 Chaos in Nature: Dripping Faucets, Cardiac Arrhythmias,

and the Beer Game

It’s easy to diagnose chaos in a differential equation or a discrete-time dynamical system.

(1) Is it behaving irregularly? Yes.
(2) Is there any random input into the system? No.
(3) Then it is chaotic.

But what about real systems? Can we observe erratic behavior in nature and determine
whether it is random or chaotic? Frequently, the answer is yes. We will illustrate this with a
discrete-time example, but there are similar methods available for continuous-time differential
equations.

The idea is this: deterministic chaos means that the future is determined by the past. In order
to tell whether a system is deterministic (hence chaotic and not random), let’s make a picture
from the data of how XN+1 relates to XN by plotting that relationship graphically.

For example, suppose we gathered some data from a natural system (Figure 5.33). We have
no idea what the dynamics that produced it were. But if we took the data points X1, X2, X3, . . . ,
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and plotted them as XN+1 against XN , in what is called a Poincaré plot, we would get Figure 5.34.
The dots would lie exactly on the curve XN+1 = 4XN(1 − XN), but they fill in that curve in
what looks like a random manner, though of course it isn’t.
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Figure 5.33: Time series of a typical output from the discrete logistic function in its chaotic
regime.

Exercise 5.5.1 Why isn’t it random?
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Figure 5.34: Poincaré plot of data from the previous figure.

If the Poincaré plot has some simple shape, with internal structure, then the behavior is not
random, but chaotic.

If it is an oval blob-shaped cloud of points, we cannot rule out randomness.

Exercise 5.5.2 By hand, make a Poincaré plot of the values 4, 3, 10, 5, 12.
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Dripping Faucet

Scientists have done such data analysis for some basic examples in natural systems and gotten
surprising results.

One beautiful example is the study, led by Rob Shaw at UC Santa Cruz, of the behavior of
a dripping faucet (Martien et al. 1985). We all know that faucets can sometimes drip regularly,
with a periodic drip-drip-drip. And we also know that if we turn the handle all the way, and open
the faucet sufficiently, we can get full-on continuous flow. But what about intermediate values of
the handle position, between regular dripping and continuous flow? It is easy to produce irregular
dripping. You can try this with a sink at home.2
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Figure 5.35: Apparatus of the dripping faucet experiment. The falling drops land on a micro-
phone, and recording of the sound is used to calculate the interdrip intervals I1, I2, I3, . . . . Then
a Poincaré plot is made, plotting IN+1 against IN (adapted from (Crutchfield et al., 1986)).

Is this irregular dripping random or chaotic? The Santa Cruz group set up a faucet in a lab
and began making measurements (Figure 5.35). The group took precise measurements of the
time intervals between drips. Calling the Nth interdrip interval IN , they made Poincaré plots of
IN+1 against IN (Figure 5.36).

Note the clear indication of shapes (not blobs) in the Poincaré plot. Several features of these
plots are worth noting. The specific shapes that these data form suggest functions that are
known to produce chaos as dynamical systems XN+1 = f (XN). For example, all “functions”
have apparent equilibrium points, points where the data cross the imaginary diagonal 1-1 line.
Also, if we draw that line and look at the intersection point, the slope of the “function” at the
intersection is steeper than −1, which is the requirement for an unstable equilibrium point.

We can conclude that the behavior of the dripping faucet is chaotic, not random.
The process underlying the dripping faucet chaos is worth examining in detail, because it

reveals a simple and general mechanism for generating chaos. When a drop forms at the mouth of
the faucet, it begins to balloon outward and downward due to its growing mass. The descending
droplet pinches in, and then the neck separates and the detached drop falls downward. But the
process isn’t over. There is a final step that most people don’t notice: when the drop separates,

2Faucets without aerators work better than those so equipped.
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Figure 5.36: Three examples of Poincaré plots of interdrip intervals in the dripping faucet.
Reprinted from Physics Letters A, 110(7), P. Martien, S. Pope, P. Scott, and R. Shaw, “The
chaotic behavior of the leaky faucet,” pp. 399–404, copyright 1985, with permission from
Elsevier.

there is a small undropped part that snaps back (due to surface tension) and gives a small elastic
oscillation as it retracts (Figure 5.37).

We therefore have a process that has two characteristic time intervals in it:

(1) the drop formation process has a characteristic time interval that is set by the flow rate,
controlled by the handle. For slow dripping, this is ≈ 1 sec.

(2) the snap-back of the unseparated part of the drop is faster, at ≈ 0.1 sec.

For low flow rates, which produce slow dripping, the two processes do not interact due to
the wide separation in their characteristic times; by the time the next drop forms, the snapback
from the previous drop is completed, and the system has fully recovered from the previous drop.

But at higher flow rates and hence faster dripping, when the (N+1)st drop begins to separate,
the system has not fully recovered from the Nth drop.

Now the exact state of the recovery from the Nth drop affects the timing of the (N + 1)st
drop.

In particular, if the little oscillation in the undropped recoiling part is in its downward phase
when the next drop is near separation, that slightly retards the separation, whereas if it is in its
upward movement, separation comes faster.

Thus, for high rates of dripping, the timing of the (N + 1)st drop depends on the precise
state of the recovery from the previous drop. This is a recipe for chaos: if a process consists

Figure 5.37: The process of drop formation and separation in a dripping faucet.
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of an action phase followed by a recovery phase, and the process is pushed to high rates, then
the formation of the next action phase depends on the state of the recovery from the previous
action.

This is the mechanism that produces irregular dripping.

Cardiac Arrhythmia

The same mechanism of chaos can be identified in a very different subject: cardiac arrhythmia.
Cardiac researchers at UCLA studied a cardiac arrhythmia induced by drugs in a piece of heart

tissue (Garfinkel et al. 1992). At lower doses of the drug, the tissue beat periodically, but as the
drug dose was increased, irregular beating set in. The researchers made Poincaré plots of the
interbeat intervals, which revealed several properties that are diagnostic for chaos.
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Figure 5.38: Times series and Poincaré plots of interbeat intervals from a drug-induced cardiac
arrhythmia. From top to bottom, the drug dose is increasing. Left: time series of voltage record-
ings from the tissue. Right: Poincaré plots of interbeat intervals. Top row: low doses of the drug
produce periodic beating. Second row: higher drug levels induce a period-2 rhythm. Third row:
still higher drug levels produce a period-4 rhythm. Bottom row: at very high levels, the drug
produces irregular beating, a cardiac arrhythmia. Redrawn from “ Controlling cardiac chaos,” by
A. Garfinkel, M. Spano, W. Ditto, and J.N. Weiss, 1992, Science 257:1230–1235. Reprinted
with permission from AAAS.
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First of all, a clear route to chaos was seen as the drug dose was increased. As the drug dose
was increased, the first changed after the periodic rhythm was a period-2 rhythm, consisting of
an A-shape and a B-shape, alternating with each other. A further increase in drug produced a
change to a period-4 rhythm, and then a still further increase produced a transition to irregular
beating (Figure 5.38).

Notice also that the shape of the Poincaré plot suggests a function. In fact, it resembles the
parabolic form of the discrete logistic function. If you drew a function that had that shape and
iterated it, the result would be chaotic. Note that it has an unstable equilibrium point, at which
its slope is steeper than −1.

The mechanism of this arrhythmia is, surprisingly, similar to the mechanism of chaos in the
dripping faucet. In order to see this, let’s briefly review cardiac physiology.

The heart is a muscle, and as in any muscle, muscular contraction is created by an electrical
activation exactly like the action potential of the neuron.

In the cardiac cell, ions such as sodium (Na+), potassium (K+), and calcium (Ca2+) are
maintained at steady-state levels by the cell machinery. When a contraction is called for by
an electrical stimulus (from the heart’s natural pacemaker or experimentally by an external
stimulus), Na+ ions rush into the cell and elevate its voltage, and then K+ ions rush out of the
cell to restore the cell’s voltage to the steady state. But the process isn’t over: pumps now go
to work, pumping the sodium out of the cell and the potassium back into it. This is the recovery
phase.

The electrical activation and return to baseline voltage is called the cardiac action potential.
The cardiac action potential and the following ionic restoration phase make up the cardiac cycle
(Figure 5.39).
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constant length constant length

action
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Figure 5.39: Phases of the cardiac cell. At slow periodic pacing (green triangles), the next stim-
ulus occurs after the end of the recovery phase from the previous action potential.

If the heart is paced (stimulated) slowly, the recovery from the Nth action potential is fully
completed by the time the (N + 1)st action potential forms.

But for faster pacing, the formation of the (N+1)st action potential is affected by the precise
state of the recovery from the Nth action potential, and chaos ensues, a process identical to
that of the dripping faucet.

We can reproduce this phenomenon in a simulation experiment. The cardiac action potential
has been intensely modeled using differential equations. One of the early cell models was the
Luo–Rudy model (Luo and Rudy 1991). We will use this as our experimental cell model and
pace it at varying rates.

When the periodic pacing stimulus is at a slow rate, such as every 400 milliseconds, the result
is perfectly periodic beating (Figure 5.40).



5.5 Chaos in Nature: Dripping Faucets, Cardiac Arrhythmias, and the Beer Game 259

voltage (mV)

80
60
40
20

20
40
60

0

1000 20000 500 1500 2500
time (ms)

Figure 5.40: Slow pacing (every 400 ms) produces a periodic train of action potentials.

But if we pace the cell much faster, such as every 100 milliseconds, the next stimulus occurs
during the recovery phase of the previous action potential, resulting in chaos (Figure 5.41).

Of course, we can conclude that this irregular beating is chaos, because this irregularity
is being produced by a differential equation with no random input. However, we can further
demonstrate that this is mathematical chaos by first turning it into a discrete time system, and
then making a Poincaré plot.
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Figure 5.41: Fast pacing (every 100 ms) produces a chaotic response.

We will use the device of plotting the duration of the (N + 1)st action potential against the
duration of the Nth. We will draw a horizontal line at V = −60mV and count as the action
potential duration the time spent above this line. If we do this for a long train of stimulated
action potentials, we get a striking picture: a two-piece function with steep negative slopes. This
is another example of a known chaos-generating function when considered as a discrete-time
dynamical system (Figure 5.42 and Exercise 5.5.3).
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Figure 5.42: Top: pacing the cardiac cell model at a rapid rate (every 100 milliseconds) produces
an irregular train of action potentials. Lower left: if we measure the action potential duration
as the time spent above V = −60 mV (blue line), we can record the sequence I1, I2, I3, . . .
of action potential durations (red segments). Lower right: plotting IN+1 against IN produces a
known chaos-generating function.

Exercise 5.5.3 The Poincaré plot in Figure 5.42 is drawn from simulation data. The IN/IN+1
plot looks like a function. Stylize that function as

XN+1 =

{

1− 2X if 0 ≤ X < 0.5

2− 1.99999X if 0.5 ≤ X ≤ 1

a) Plot this function. Does it resemble the Poincaré plot?
b) Use the function as a discrete-time dynamical system and iterate it for 100 steps. What

behavior do you see?

Neural Chaos

The idea that rapid periodic pacing of an excitable system can result in a chaotic output is very
general, and such results can be observed in many systems. We just saw it using a seven-variable
cardiac cell model. But it is easy to produce the same phenomenon even in a very simple model
of an excitable system.

In Chapter 4, we developed the FitzHugh–Nagumo (FHN) model of the neuron. It consisted
of a fast inward phase and a slow recovery phase, summarized in a two-variable differential
equation:

V ′ =
1

ǫ

(

− w + f (V ) + Iext

)

w ′ = V − gw

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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Here we will use as our Iext a periodic train of square-wave pulses. The pulses all have the
same duration and amplitude, and we will vary the period of the stimulation. We see that for
slow pacing (long period), the neuron responds in a one-to-one fashion with a periodic train of
action potentials (Figure 5.43).
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Figure 5.43: Period = 0.7.

If we increase the pacing rate, we see a sequence of bifurcations. First, we see a period-2
rhythm (Figure 5.44), then a period-4 rhythm (Figure 5.45).
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Figure 5.44: Period = 0.5.

Finally, when the pacing is rapid, we get a chaotic response (Figure 5.46).
These experiments with mathematical models can be confirmed by experiments in real

neurons.
Hayashi, Aihara, and their colleagues did a number of studies in which they paced real neurons

taken from animals from mollusks to mammals (Aihara et al. 1985; Hayashi et al. 1982). They
found that under rapid pacing (they used sinusoidal stimuli instead of our square-wave pacing),
the response of the neuron was chaotic (Figure 5.47). They confirmed that the response was
chaos by constructing Poincaré plots of voltage, using a technique that is slightly different from
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Figure 5.45: Period = 0.3.
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Figure 5.46: Period = 0.2.

the one we used, but equivalent. It is another way of constructing a discrete-time series from
a continuous one. They took the continuous voltage record and made a “stroboscopic plot,” in
which a snapshot is taken of the voltage once each pacing cycle, at the same point in the cycle.
This gives us a sequence of voltage snapshots V1, V2, . . . . Then they plotted VN+1 against VN
for these values.

I ext

V

time

Figure 5.47: Chaotic response of a neuron to sinusoidal stimulation. Redrawn from Physics

Letters A 111(5), K. Aihara, G. Matsumoto, and M. Ichikawa, 1985, “An alternating
periodic-chaotic sequence observed in neural oscillators,” pp. 251–255, Copyright 1985, with
permission from Elsevier.

Their results are quite striking: unexpectedly simple figures, including plots that are functions,
VN+1 = f (VN), that look like a cusp (Figure 5.48 right). The cusp-shaped function is akin to
the parabola we studied earlier and is a function known to generate chaos when iterated.
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Figure 5.48: Poincaré plots of stroboscopic data from a neuron experiment. Here V is in
millivolts. Reprinted from Physics Letters A 88(8), Hatsuo Hayashi, Satoru Ishizuka, Masahiro
Ohta, and Kazuyoshi Hirakawa, “Chaotic behavior in the Onchidium giant neuron under sinusoidal
stimulation,” pp. 435–438, Copyright 1982, with permission from Elsevier.
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Figure 5.49: Upper: Time series of a periodically stimulated neural (FHN) model in a chaotic
regime. Stimulus is shown below. Lower left: inset showing successive local maxima (red dots).
The amplitude of each peak is recorded as V1, V2, V3, . . . Lower right: Poincaré plot of VN+1
against VN for this time series.
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Figure 5.50: Alternative method for Poincaré Plot. Here, the time series is turned into a discrete
time series by drawing a line at V = 0, and recording the time intervals (red segments) spent
above that line. These peak durations are recorded as I1, I2, I3, . . . Lower right: Plotting IN+1
against IN gives another version of the Poincaré plot for the same time series.
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It is particularly interesting to compare this to Poincaré plots from our experiments with the
FHN model (Figure 5.49 and Figure 5.50). The similarity in the Poincaré plots suggests that
there is a common mechanism underlying neural chaos in these kinds of preparations.

We have now seen three different ways to diagnose chaos in a continuous-time series, by
extracting a discrete-time series X1, X2, X3, . . . from the continuous data and then plotting
XN+1 against XN in a Poincaré plot.

They are as follows:

(1) plotting the duration of the (N+1)st active phase against the duration of the Nth active
phase (Figure 5.50).

(2) plotting the maximum amplitude of the (N + 1)st phase against the amplitude of the
Nth phase (Figure 5.49).

(3) stroboscopic plot in which we take the value of the variable at times t = 1, 2, 3, . . . and
then plot the value at time t + 1 against the value at time t (Figure 5.48).

The Beer Game: Chaos in a Supply Chain

The role of steep slopes and time delays in destabilizing systems is beautifully illustrated by a
supply chain model developed at MIT’s Sloan School of Management. It’s called the beer game,
and it is a model of a beer distribution chain, including consumers, retailers, wholesalers, distrib-
utors, and a brewery (Laugesen and Mosekilde 2006; Mosekilde and Laugesen 2007; Sterman
1989).

The basic idea is that orders for beer go one level up the supply line from the consumer to
the retailer, from the retailer to the wholesaler, from the wholesaler to the distributor, and then
to the brewery. Then cases of beer come one level down the supply line, from the brewery to
the distributor, from the distributor to the wholesaler, from the wholesaler to the retailer, and
finally to the consumer. Naturally, there are time delays associated with each of these steps
(Figure 5.51).

brewery

distributor

wholesaler

retailer

consumer

beer orders

Figure 5.51: Structure of the beer game.

At each level of the game, there is a model of the manager at that level (Figure 5.52).
Managers keep track of their inventory, ship beer according to demand from the level below,
and generate orders for beer that ultimately result in beer being shipped to them from the level
above. The manager makes choices: how much inventory to keep on hand, how far ahead to
plan, and especially, how sensitive his or her order placement policy will be to changes in incoming
demand. At one extreme, a manager can say “When my demand increases by X, I will increase
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I
(beer)

O
inventory

orders placed

outgoing
shipments

incoming
shipments

SL
supply line

(beer)

incoming 
orders

Figure 5.52: Schematic illustrating the managerial decision-making at each level. Solid lines
denote the flow of beer, and dashed lines denote the flow of information.

my orders by, say, 2X.” This is a highly sensitive reaction. At the other extreme, the manager
can have zero flexibility, and say, “No matter how the demand on me changes, I will not change
my order placement policy.”

At each level, the managers make their decisions based on the data available to them. The
overall problem faced by the manager is modeled by two kinds of variables, representing beer
and orders for beer.

The basic form of the equations is

beer IN+1 = IN +
incoming

beer
− outgoing

beer

and
orders ON+1 = ON + f

(

expected
demand

,
desired

inventory
, supply

line

)

At each level, managers decide how to respond to demand from below and how to respond to
potential shortages of inventory. In making their ordering decisions, managers need to estimate
expected demand. This week’s expected demand will be last week’s expected demand updated
with the new demand from below. This can be represented by a weighted sum of last week’s
expected demand and the new demand from below with a weighting factor θ (theta), which
denotes the sensitivity of the update process to the new demand. When θ = 0, demand never
changes. When θ = 1, this week’s expected demand depends only on the new orders:

expected demand EDN+1 = θ ·
demand
from
below

+ (1− θ) · EDN

Note that θ is playing the role of a sensitivity parameter. It is really the slope of a function,
namely,

θ =
∆(outgoing orders)

∆(incoming orders)

The other managerial decision is how much to care about inventory shortages. The manager
has a desired inventory Q, which here we assume to be constant. The manager looks at the
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quantity Q−I−βSL, where I is the current inventory and SL is the quantity of beer in the supply
line;3 Q−I is the discrepancy between desired inventory and current inventory, a discrepancy that
is lessened by the incoming supply line SL. So the quantity Q− I − βSL is the total estimated
inventory shortage. The parameter β measures how much weight the manager wants to give to
the supply line.

The key equation for the manager is the equation for outgoing orders, or orders placed (OP ):

orders placed OPN+1 = max{0, EDN+1 + α(Q− IN+1 − βSLN+1)}

Note the parameter α. It represents the decision regarding how much to care about inventory
shortages. If α is large, then the estimated inventory shortage plays a big role in the decision of
how many orders to place.

In the full beer game model, there are four sectors in the supply chain. We keep track of the
following seven state variables for each sector.

I inventory
B backlog orders of beer
IS incoming shipments
OS outgoing shipments
IO incoming orders
ED expected demand
OP orders placed

In general, I is the current inventory of beer on hand, B is the backlog of orders from the level
below that you have not yet filled, IS is the amount of beer that is incoming to you from the
level above, and OS is the amount of beer you are shipping to the level below. IO is the amount
of orders that have come in from the level below, and ED is expected demand. Managers then
combine these into an equation to determine their key output, orders placed (OP ) (Figure 5.53).

inventory

backlog

outgoing shipments

incoming shipments

incoming orders

orders placed

expected demand

higher sector

lower sector

sector

Figure 5.53: Schematic of the decision process of the manager at each level in the beer game.
The manager of each sector must control ordering based on various factors.

3In describing this model, we will adopt a practice more common in programming than in math and use
multiletter variable names; SL is a single variable, not a product.
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A One-Sector Beer Game Model

First we will study a simple one-sector model, consisting of just the consumer and a factory.
The consumer demand, called the consumer order rate (COR), is assumed to be constant. The
factory manager’s state variables are

I inventory F I factory’s inventory

B backlog orders of beer FB factory’s backlog orders

FPD2 factory’s production delay
IS incoming shipments FPD1 factory’s production delay

FPR factory’s production request

OS outgoing shipments N/A N/A

IO incoming orders F IO(= COR) factory’s incoming orders

ED expected demand FED factory’s expected demand

OP orders placed N/A N/A

The factory’s inventory F I is straightforward. It is the amount of beer on hand. The quantity
FB is the amount of beer that has been ordered by the consumer but not yet shipped. While IS
would ordinarily be the incoming shipment from the level above, the factory has no level above:
it fills its own orders by a production schedule. When the factory makes a production request
(FPR), it is delayed by one week (FPD1) and then there is again a one-week delay to produce
FPD2, which is the amount of beer actually produced.

We do not keep track of outgoing shipments (FOS), because in this model, consumer demand
does not change, so the outgoing shipments do not affect anything. The factory’s incoming
orders (F IO) is just the consumer order rate (COR).

From these quantities, the manager calculates the factory’s expected demand (FED). The
variable “orders placed” (FOP ) does not apply in this one-sector model.

The overall equations for the factory’s manager are

F IN+1 = max{0, F IN + FPD2N − FBN − COR}

FPD2N+1 = FPD1N
FPD1N+1 = FPRN
FPRN+1 = max{0, FEDN+1 + α(Q− F IN+1 + FBN+1 − β · FSLN+1)}

FBN+1 = max{0, FBN + COR − F IN − FPD2N}

FEDN+1 = θ · COR + (1− θ) · FEDN

where the factory’s supply line at time N + 1 is given by

FSLN+1 = FPD1N+1 + FPD2N+1

Researchers at MIT ran many sessions in which managers actually tried playing the game by
hand. The researchers were therefore able to see where real-life managers set their parameters
(Sterman 1989).

The most interesting parameters are

θ = sensitivity of the manager to changing demand

α = sensitivity of the manager to inventory maintenance

β = degree of manager’s awareness of his or her future production

Q = desired inventory



268 Chaos

In the real-life games, these parameters are chosen by the players, who are trying to maximize
revenue, not stability. For example, it would be possible to achieve total stability by maintaining
a large desired inventory Q, but that would involve high storage costs. It turns out that the
real-life choices that the managers make are often in the realm of instability (Laugesen and
Mosekilde 2006; Mosekilde and Laugesen 2007; Sterman 1989).

For example, the parameter β plays an important role in the stability of the system. The
values chosen here are all fairly low, indicating a fairly dim awareness by the manager of his or
her outstanding production requests. But Sterman reports that real-life players often choose low
values of β.

Laugesen and Mosekilde provide an excellent analysis of this one-sector model. They show
that the model undergoes a Hopf bifurcation when α is sufficiently high and β is sufficiently low.
We can illustrate this by choosing appropriate parameter values. In each case, we will simulate
the system’s response to a step change in consumer demand (COR). For the first four weeks,
COR = 4, and then starting at week five, it changes to COR = 8 and maintains that level from
then on.

When we choose a fairly low α = 0.7 and a β value of 0.2, the system goes to a stable
equilibrium point (Figure 5.54). Even after the step change (red arrow), the system is able to
return to equilibrium, although only after many weeks. Note, however, that the stable equilibrium
that was achieved was not the desired inventory Q = 17. In this case, stability has been achieved
only at the cost of suboptimal performance.

20 40 60 80 100

5

10

15

Q=17FI

N0

Figure 5.54: A stable equilibrium point in the one-sector beer game model. The factory inventory
achieves a stable equilibrium even after a change in COR (red arrow). The value of N is in weeks,
α = 0.7, and β = 0.2.

Now if we increase the manager’s sensitivity to inventory shortages to α = 0.9 and decrease
the manager’s awareness of the supply line to β = 0.05, then the system goes to sustained
oscillation (Figure 5.55). The presence of oscillation does not depend on the step change in the
consumer demand COR, and it is seen even when consumer demand is constant throughout the
simulation.

The one-sector beer game model illustrates the fundamental lesson of Chapter 4: in a system
with built-in time delays, an increase in the sensitivity of negative feedbacks causes a Hopf
bifurcation and a consequent change from stable equilibrium to oscillation.

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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Figure 5.55: Sustained oscillations in the one-sector beer game model for α = 0.9 and β = 0.05.

Chaos in the Two-Sector Beer Game Model

Many of the classic papers on the subject treat the full four-sector model described above. They
report a variety of chaotic phenomena. Here we will study a simpler two-sector model that is
capable of displaying chaotic dynamics (Laugesen and Mosekilde 2006; Mosekilde and Laugesen
2007).

In this model, the consumer orders beer from a retailer, who then orders from the factory.
The state variables for the factory are

I inventory F I factory’s inventory
B backlog orders of beer FB factory’s backlog orders

FPD2 factory’s production delay
IS incoming shipments FPD1 factory’s production delay

FPR factory’s production request

OS outgoing shipments FOS factory’s outgoing shipping

IO incoming orders F IO factory’s incoming orders

ED expected demand FED factory’s expected demand

OP order placed N/A N/A

The major changes from the one-sector model are that now the factory has outgoing ship-
ments that go to the retailer, and the factory’s incoming orders now come from the retailer, not
the consumer.

The state variables for the retailer are

I inventory RI retailer’s inventory

B backlog orders of beer RB retailer’s backlog orders

IS incoming shipments RIS retailer’s incoming shipments from the factory

OS outgoing shipments N/A N/A

IO incoming order RIO(= COR) retailer’s incoming order from consumer

ED expected demand RED retailer’s expected demand

OP orders placed ROP orders placed by retailer’s to the factory

The retailer has its own inventory (RI) and its backlog of consumer orders (RB); the quantity
of the retailer’s incoming shipments from the factory is RIS. The retailer’s incoming orders come
from the consumer (RIO = COR), and the retailer must calculate an expected demand (RED)
and make a decision to arrive at an outgoing order (ROP ).
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The factory’s equations are

F IN+1 = max{0, F IN + FPD2N − FBN − F ION}

FBN+1 = max{0, FBN + F ION − F IN − FPD2N}

FPD2N+1 = FPD1N
FPD1N+1 = FPRN
FPRN+1 = max{0, FEDN+1 + α(Q− F IN+1 + FBN+1 − β · FSLN+1)}

FOSN+1 = min{F IN + FPD2N , FBN + F ION}

F ION+1 = ROPN
FEDN+1 = θ · F ION + (1− θ) · FEDN

where the factory’s supply line is

FSLN+1 = FPD1N+1 + FPD2N+1

The retailer’s equations are

RIN+1 = max{0, RIN + RISN − RBN − COR}

RBN+1 = max{0, RBN + COR − RIN − RISN}

RISN+1 = FOSN
REDN+1 = θ · CORN + (1− θ) · REDN
ROPN+1 = max{0, REDN+1 + α(Q− RIN+1 + RBN+1 − β(RSLN+1))}

where the retailer’s supply line is

RSLN+1 = RISN+1 + F ION+1 + FBN+1 + FOSN+1

In this model, choosing a high α value and a low β value leads to chaos in the supply chain,
for example, if we choose α = 0.9 and β = 0.25 (Figure 5.56).

Q=17

FI
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Figure 5.56: Chaotic behavior in the two-sector beer game model for α = 0.9 and β = 0.25.

Is Chaos Necessarily Bad?

The term “chaos” certainly suggests something that is undesirable, something to avoid or prevent.
But this may not be necessarily true. We already saw a functional role for chaos: early Japanese
swordsmiths used the stretching and folding process to mix two metals together effectively.

It may well be that chaos has other virtues. The electroencephalogram (EEG) is a record
of the electrical activity of the brain, as recorded by electrodes on the scalp. Consider the
following two human EEGs: the first is regular and periodic (Figure 5.57, top), while the second
is random-looking and irregular (Figure 5.57, bottom). Which one would you rather have?
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500 µV

time

time
100 µV

1 sec

Figure 5.57: Top: EEG during during a seizure in childhood absence epilepsy. Redrawn from
F. Marten, S. Rodrigues, O. Benjamin, M.P. Richardson, and J.R. Terry, 2009, “Onset of
polyspike complexes in a mean-field model of human electroencephalography and its applica-
tion to absence epilepsy,” Philosophical Transactions of the Royal Society of London A: Math-

ematical, Physical and Engineering Sciences 367(1891):1145–1161, by permission of the Royal
Society. Bottom: Normal, eyes-open human EEG.

Be careful, because the irregular and ragged-looking one is a normal human, eyes-open EEG,
and the beautiful periodic one is an epileptic seizure!

Although it is controversial whether the irregularity of normal brain waves is an instance of
true chaos, it is certainly true that order, or periodicity, is pathological in the brain.

This is especially clear if we view the onset of a seizure out of normal background EEG activity
(Figure 5.58). It is very tempting to speculate that a bifurcation has occurred in the sharp onset
of the seizure activity, which is the periodic signal in the middle of the record.

1 sec

200 µV
time

Figure 5.58: Onset of a seizure. Two seconds of normal EEG are followed by the abrupt onset
of a spike-wave complex seizure.

Further Exercise 5.5

1. a) Simulate the discrete logistic equation for r = 4 for 20 time units and make a
Poincaré plot of the results.

b) Run the simulation with a slightly different initial value and make a Poincaré plot
of the results. Overlay the two plots. In what ways are they similar and different?



Chapter 6

Linear Algebra

6.1 Linear Functions and Dynamical Systems

In this chapter, we will be studying linear functions in n dimensions:

f : Rn −→ Rn

As we develop this subject, called linear algebra, we are always going to keep two applications

in mind.

(1) discrete-time dynamical systems, where f : Rn → Rn is the function giving the next state

as a function of the previous state:

(X1, X2, . . . , Xn)N+1 = f (X1, X2, . . . , Xn)N

(2) continuous-time differential equations, where f is the vector field giving the change vector

as a function of the state vectors:

(X ′1, X
′
2, . . . , X

′
n) = f (X1, X2, . . . , Xn)

Notation

When we want to refer to a point in Rn, that is, a vector, we will denote it by a single boldface

letter, such as X and Y:

X =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠

Y =

⎛

⎜
⎜
⎜
⎝

Y1
Y2
...

Yn

⎞

⎟
⎟
⎟
⎠

Note that we have started to write the vector (X1, X2, . . . , Xn) vertically, using round parenthe-

ses.Thevertical expressionmeansexactly the samethingas thehorizontal expression; thehorizontal

one is common in dynamical systems theory, and the vertical one is common in linear algebra.

6.2 Linear Functions and Matrices

Points and Vectors

We know that the state space of a dynamical system is Rn, the space of all n-tuples

(X1, X2, . . . , Xn), with each Xi belonging to R. This is the view of state space we developed in

c© Springer International Publishing AG 2017
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DOI 10.1007/978-3-319-59731-7_6
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Chapter 1: state space is the space of all possible values of the state vector. This is true for

both state space and tangent space, both of which are Rn. For example, in the Romeo–Juliet

models, the state space R2 consists of all possible pairs (R, J), where both R and J belong to

R, and the tangent space is also R2, the space of all possible pairs (R′, J ′), where both R′ and

J ′ belong to R.

We also learned in Chapter 1 some elementary rules for manipulating vectors. We needed

these rules, for example, in Euler’s method, where we needed to multiply the change vector X ′

by the scalar ∆t to get a small change vector, and then we needed to add the small change vector

to the current state vector to get the next state vector. These rules for scalar multiplication and

vector addition are the rules we will need for operating in Rn.

The space of all n-vectors Rn, together with the rules for scalar multiplication and vector

addition, is called n-dimensional vector space. Note that the sum of n-vectors is also an n-

vector, and the scalar multiple of an n-vector is also an n-vector. So the operations of scalar

multiplication and vector addition keep us in the same space.

In this chapter, we will learn about the property of vector spaces and the linear functions that

take Rn → Rk , that is, take vectors in n-dimensional space (the domain) and assign to each of

them a vector in k-dimensional space (the codomain). Most of the time, we will focus on the

case n = k . To begin, let’s recall the rules for operating with vectors from Chapter 1.

(1) If X and Y are two vectors in Rn, then their sum is defined by

X+ Y =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎝

Y1
Y2
...

Yn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

X1 + Y1
X2 + Y2

...

Xn + Yn

⎞

⎟
⎟
⎟
⎠

(2) If X is a vector in Rn and a is a scalar in R, we define the multiplication of a vector by

a scalar as

aX = a

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

aX1
aX2

...

aXn

⎞

⎟
⎟
⎟
⎠

Exercise 6.2.1 Carry out the following operations, or say why they’re impossible.

a)

⎛

⎝

1

2

3

⎞

⎠+

⎛

⎝

−2
0

5

⎞

⎠ b) −3

⎛

⎝

4

6

−9

⎞

⎠ c)

(
2

4

)

+

⎛

⎝

1

3

5

⎞

⎠

d) 5(

(
0

1

)

+

(
7

3

)

) e) −4
(
1

0

)

+ 2

(
0

1

)

f) 5

⎛

⎝

1

0

0

⎞

⎠− 3

⎛

⎝

0

1

0

⎞

⎠+ 8

⎛

⎝

0

0

1

⎞

⎠

Bases and Linear Combinations

In Rn there is a certain set of vectors that play a special role. It is the set

e1 =

⎛

⎜
⎜
⎜
⎝

1

0
...

0

⎞

⎟
⎟
⎟
⎠
e2 =

⎛

⎜
⎜
⎜
⎝

0

1
...

0

⎞

⎟
⎟
⎟
⎠

· · · en =

⎛

⎜
⎜
⎜
⎝

0

0
...

1

⎞

⎟
⎟
⎟
⎠

http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_1
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These n vectors are a basis for Rn, by which we mean that every vector X can be written

uniquely as

X =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
= X1e1 +X2e2 + · · ·+Xnen

To see why an arbitrary vector X can be represented uniquely in the {e1, e2, . . . , en} basis,

recall that

X =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

X1
0
...

0

⎞

⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎝

0

X2
...

0

⎞

⎟
⎟
⎟
⎠
+ · · ·+

⎛

⎜
⎜
⎜
⎝

0

0
...

Xn

⎞

⎟
⎟
⎟
⎠

by the rule of vector addition. This, in turn, means that

X = X1

⎛

⎜
⎜
⎜
⎝

1

0
...

0

⎞

⎟
⎟
⎟
⎠
+X2

⎛

⎜
⎜
⎜
⎝

0

1
...

0

⎞

⎟
⎟
⎟
⎠
+ · · ·+Xn

⎛

⎜
⎜
⎜
⎝

0

0
...

1

⎞

⎟
⎟
⎟
⎠

by the rule of multiplication of a vector by a scalar.

There are many such sets of vectors, giving us many bases for Rn. This particular basis

{e1, e2, . . . , en} is called the standard basis, but later in this chapter we will see other bases for

R
n.

For example, let’s consider the 2D vector space R2 representing the juvenile (J) and adult (A)

populations of some animal species. Then a point in (J, A) space represents a certain number of

juveniles and a certain number of adults. So the point

(
5

10

)

represents the state in which there

are 5 juveniles and 10 adults. The standard basis for R2 is

eJ =

(
1

0

)

eA =

(
0

1

)

So we can write
(
5

10

)

=

(
5

0

)

+

(
0

10

)

= 5

(
1

0

)

+ 10

(
0

1

)

= 5eJ + 10eA

When we say that every vector X in Rn can be written uniquely as X1e1+X2e2+ · · ·+Xnen,
note that the only operations we have used are scalar multiplication and vector addition. When

we use only scalar multiplication and vector addition to combine a set of vectors, the result is

called a linear combination of those vectors.

Exercise 6.2.2 What are the standard basis vectors for R4?

Exercise 6.2.3 In e notation, what is the standard basis vector of R6 that has a 1 in position 5?
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Exercise 6.2.4 Write the following vectors as the sum of scalar multiples of the standard basis

vectors in R2.

a)

(
45

12

)

b)

(
387

509

)

c)

(
a

b

)

Exercise 6.2.5 Are the following expressions linear combinations? If so, of what variables?

a) 2a + 5b b) eX + 3Y

c) 7Z + 6H − 3t2 d) −6X + 4W + 5

Exercise 6.2.6 Why does it make sense to describe a smoothie as a linear combination of

ingredients?

Linear Functions: Definitions and Examples

In Chapter 2, we learned that a function f is called linear if and only if two conditions are met:

1) f (X + Y ) = f (X) + f (Y ) and 2) f (cX) = cf (X) for every scalar c . The same definition

applies to functions that act on vectors.

A function f : Rn → Rm is linear if it has the properties

f (X+ Y) = f (X) + f (Y) for all X,Y in Rn

f (cX) = cf (X) for all c in R

Note that n and m don’t have to be equal. In other words, the domain and codomain of f

can have different dimensions, although in our applications, they usually won’t.

Exercise 6.2.7 According to the definition of linearity, are the following functions linear?

a) f (

(
X

Y

)

) =

(
X2

2Y

)

b) f (X) =
√
X

c) f (

⎛

⎝

X

Y

Z

⎞

⎠) =

⎛

⎝

2X

XY

3Z

⎞

⎠ d) f (

⎛

⎝

X

Y

Z

⎞

⎠) =

⎛

⎝

2X

4Y

3Z

⎞

⎠

What Do Linear Functions Look Like?

The definition of linearity tells us what it means for a function to be linear but doesn’t give us

an easy way to tell whether a particular function is linear without doing some work. We will now

develop a way to do that. This will lead to a very useful notation for linear functions, one that

we will use extensively for the next two chapters.

Linear functions R1 → R1. We’ll start with the simplest example, f : R1 → R1. In this context,

we think of numbers as one-dimensional vectors and write R1 instead of R. Thinking of R1 as

a one-dimensional vector space, we see that it has the standard basis {e} = {
(
1
)
}.

If f is a linear function and X is any vector in R1, what is f (X)?

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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To start answering this question, we’ll take the odd-seeming but useful step of writing X as

X · e. Then, according to the definition of linearity, we have

f (X) = f (X · e) = Xf (e)

Exercise 6.2.8 Which property of linear functions gives us this result?

But what is f (e)? We don’t know what it is, but we do know that it belongs to R1. Let’s

just call it k. Then

Xf (e) = Xk

As before, we can rewrite k as ke. Then, multiplying, we get

Xk = Xke = kX

Putting it all together yields

f (X) = Xf (e) = Xk = Xke = kX

Since X is in R1, it is the same as the scalar X, and we can drop the boldface notation and

write f (X) = kX.

To summarize, if f : R1 → R1 is linear, it must have the form f (X) = kX for some scalar k

in R.

Linear functions R2 → R1. Suppose f : R2 → R1 is a linear function. In R2, the standard basis

is

{e1, e2} = {
(
1

0

)

,

(
0

1

)

}

A vector in R2 has the form

(
X

Y

)

and can be written as

(
X

Y

)

= X

(
1

0

)

+ Y

(
0

1

)

= Xe1 + Y e2

Then from the definition of linear function,

f (

(
X

Y

)

) = f (Xe1 + Y e2) = f (Xe1) + f (Y e2) = Xf (e1) + Y f (e2)

Exercise 6.2.9 Which property of linear functions gives us this result?

Now f (e1) is some vector in R1; call it a. Similarly, f (e2) is some vector in R1; call it b:

f (

(
X

Y

)

) = Xf (e1) + Y f (e2) = Xa+ Y b = Xa e+ Y b e = aX + bY

To summarize, if f : R2 → R1 is linear, it must have the form f (

(
X

Y

)

) = aX + bY for two

scalars a and b.
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Exercise 6.2.10 Work through this procedure to find the form that a linear function f : R3 →
R
1 must have.

Linear functions: Rn → R1. In general, if f is a linear function in Rn → R1, then

f (X) = Y where X =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
,Y =

(
Y
)

In Rn, the standard basis is {e1, e2, . . . , en}. In R1, the standard basis is {e}. Then there is

a unique set of scalars c1, c2, . . . , cn such that

f (X) = f (X1e1 +X2e2 + · · ·+Xnen)
= X1f (e1) +X2f (e2) + · · ·+Xnf (en)
= X1c1e+X2c2e+ · · ·+Xncne
= c1X1e+ c2X2e+ · · ·+ cnXne
= c1X1 + c2X2 + · · ·+ cnXn (e is the same as the scalar 1)

Exercise 6.2.11 Explain what we are doing in each step in the series of equations above, paying

special attention to places where we use vector operations and the properties of linear functions.

The representation of f as f (X) = f (X1e1+X2e2+ · · ·+Xnen) is useful, because it explicitly

shows the dependence on the basis vectors e1, e2, . . . , en. If we change the basis to a nonstandard

one {v1, v2, . . . , vn}, then there will be a different unique set of scalars a1, a2, . . . , an and another

unique set of scalars b1, b2, . . . , bn such that

f (X) = f (a1X1v1 + a2X2v2 + · · ·+ anXnvn)
= a1X1f (v1) + a2X2f (v2) + · · ·+ anXnf (vn)
= a1X1b1e+ a2X2b2e+ · · ·+ anXnbne
= a1b1X1e+ a2b2X2e+ · · ·+ anbnXne
= a1b1X1 + a2b2X2 + · · ·+ anbnXn (e is the same as the scalar 1)

In summary, every linear function of Rn into R1 can be written as a linear combination of

X1, X2, . . . , Xn. The coefficients of the linear combination depend on the choice of basis, so we

will absolutely have to keep track of the basis vectors that we are using.

The Matrix Representation of a Linear Function

Now that we understand linear functions from Rn to R1, we can extend this to a complete

representation of all functions Rn to Rn (or even Rn to Rm, although we will not often need

that).
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The case f : R2 → R2. Suppose f is a linear function R2 → R2. In the standard basis {e1, e2}
of R2, we use the properties of linearity to get

f (

(
X

Y

)

) = f (Xe1 + Y e2) = Xf (e1) + Y f (e2)

Since both f (e1) and f (e2) are vectors in R2, there are scalars a, b, c , and d such that

f (e1) =

(
a

c

)

and f (e2) =

(
b

d

)

We can then say that

f (

(
X

Y

)

) = X

(
a

c

)

+ Y

(
b

d

)

Applying scalar multiplication and vector addition, we get

f (

(
X

Y

)

) =

(
aX

cX

)

+

(
bY

d Y

)

=

(
aX + bY

cX + d Y

)

Thus, the four numbers a, b, c , and d characterize f relative to the basis {e1, e2}. Since X

and Y are placeholders, in order to characterize the function f , we really need only the four

numbers a, b, c , and d . We will write the four numbers as a 2× 2 array in square brackets:
[
a b

c d

]

When an array of numbers is used to characterize a linear function, the array is called a

matrix . We say that the 2 × 2 matrix

[
a b

c d

]

is the matrix representation of f relative

to the basis {e1, e2}.
The operation of a linear function f on a vector is then calculated by applying the matrix

representing f (relative to a given basis) to the representation of the vector. We can write

f (

(
X

Y

)

) =

[
a b

c d

](
X

Y

)

=

(
aX + bY

cX + d Y

)

Exercise 6.2.12 Work through the reasoning of this section using numerical vectors of your

choosing for f (

(
1

0

)

) and f (

(
0

1

)

).

When we want to talk about applying a matrix to a vector, we just write them next to each

other, putting the matrix in square brackets on the left and the vector in round brackets on the

right:

[
a b

c d

](
X

Y

)

. The action of f on a vector in the domain is found by applying the matrix

representation of f to the vector, according to the rule shown in Figure 6.1.

a b

c d

X

Y

aX + bY a b

c d

X

Y

aX + bY

cX + dY

Figure 6.1: Applying a matrix to a vector in R2.



280 Linear Algebra

Notice that the first column of the matrix is f (e1), and the second column is f (e2). This is

a general principle of how matrices work.

Exercise 6.2.13 If f (e1) =

(
3

6

)

and f (e2) =

(
−2
5

)

, what is the matrix representation of f ?

Exercise 6.2.14 If the matrix representing f is

[
6 8

5 1

]

, what are f (e1) and f (e2)?

The case f : R3 → R3. Suppose f is a linear function that takes vectors in R3 (the domain) to

R
3 (the codomain). And suppose X is a vector in R3. In the standard basis {e1, e2, e3}, X can

be written as

X =

⎛

⎝

X1
X2
X3

⎞

⎠ = X1

⎛

⎝

1

0

0

⎞

⎠+X2

⎛

⎝

0

1

0

⎞

⎠+X3

⎛

⎝

0

0

1

⎞

⎠ = X1e1 +X2e2 +X3e3

To evaluate the action of f on X, we know that

f (X) = f (X1e1 +X2e2 +X3e3)

By the rules of linearity, we can decompose f (X) as

f (X) = f (X1e1 +X2e2 +X3e3)

= f (X1e1) + f (X2e2) + f (X3e3)

= X1f (e1) +X2f (e2) +X3f (e3)

We can say that f (e1) is some vector in R3. Therefore, there are scalars a11, a21, and a31
such that

f (e1) =

⎛

⎝

a11
a21
a31

⎞

⎠

The vector f (e2) is also some vector in R3. So there are scalars a12, a22, and a32 such that

f (e2) =

⎛

⎝

a12
a22
a32

⎞

⎠

Similarly, for f (e3), there are scalars a13, a23, and a33 such that

f (e3) =

⎛

⎝

a13
a23
a33

⎞

⎠

Consequently, plugging the expressions for f (e1), f (e2), and f (e3) into f (X), we get

f (X) = X1f (e1) +X2f (e2) +X3f (e3)

= X1

⎛

⎝

a11
a21
a31

⎞

⎠+X2

⎛

⎝

a12
a22
a32

⎞

⎠+X3

⎛

⎝

a13
a23
a33

⎞

⎠
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=

⎛

⎝

a11X1
a21X1
a31X1

⎞

⎠+

⎛

⎝

a12X2
a22X2
a32X2

⎞

⎠+

⎛

⎝

a13X3
a23X3
a33X3

⎞

⎠

=

⎛

⎝

a11X1 + a12X2 + a13X3
a21X1 + a22X2 + a23X3
a31X1 + a32X2 + a32X2

⎞

⎠

=

⎡

⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

⎛

⎝

X1
X2
X3

⎞

⎠

Therefore, the 3× 3 matrix [ai j ] is the matrix1 representation of f : R3 → R3 relative to the

standard basis {e1, e2, e3}.

Exercise 6.2.15 For a function f : R3 → R2, choose vectors for f (e1), f (e2), f (e3) and work

through the reasoning above to find the matrix representation of f . What are the dimensions

of this matrix?

Exercise 6.2.16 Similarly, for another function g : R3 → R2, choose vectors for g(e1), g(e2)

and work through the reasoning above to find the matrix representation of g. What are the

dimensions of this matrix?

Generalizing to f : Rn → Rn. We can generalize these ideas to f : Rn → Rn. Suppose f is a

linear function Rn → Rn. If X is any vector in Rn, then it can be written in the standard basis

{e1, e2, . . . , en} as

X =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
= X1e1 +X2e2 + · · ·+Xnen

To find f (X), we use the fact that we know that there are always scalars ai j(i , j = 1, 2, . . . , n)

such that

f (e1) =

⎛

⎜
⎜
⎜
⎝

a11
a21
...

an1

⎞

⎟
⎟
⎟
⎠
f (e2) =

⎛

⎜
⎜
⎜
⎝

a12
a22
...

an2

⎞

⎟
⎟
⎟
⎠

· · · f (en) =

⎛

⎜
⎜
⎜
⎝

a1n
a2n
...

ann

⎞

⎟
⎟
⎟
⎠

Then

f (

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
) = f (X1e1 +X2e2 + · · ·+Xnen) linear combination

= X1f (e1) +X2f (e2) + · · ·+Xnf (en) properties of linearity

1We will often write the matrix whose components are ai j as the matrix [ai j ].
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= X1

⎛

⎜
⎜
⎜
⎝

a11
a21
...

an1

⎞

⎟
⎟
⎟
⎠
+X2

⎛

⎜
⎜
⎜
⎝

a12
a22
...

an2

⎞

⎟
⎟
⎟
⎠
+ · · ·+Xn

⎛

⎜
⎜
⎜
⎝

a1n
a2n
...

ann

⎞

⎟
⎟
⎟
⎠

representation of

f (e1), f (e2), . . . , f (en)

=

⎛

⎜
⎜
⎝

a11X1 + a12X2 + · · ·+ a1nXn
a21X1 + a22X2 + · · ·+ a2nXn

. . .

an1X1 + an2X2 + · · ·+ annXn

⎞

⎟
⎟
⎠

scalar multiplication

vector addition

=

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠

We say that the n × n matrix [ai j ] is the matrix representation of f : Rn → Rn relative

to the basis {e1, e2, . . . , en}.
Similar to the R2 → R2 and the R3 → R3 cases, the action of f : Rn → Rn on a vector in Rn

is found by applying the matrix representation of f to the vector, according to the rule shown

in Figure 6.2.

a11 a12

a21 a22

an1 an2

a1n

a2n

ann

X1

X2

Xn

a11 a12 a1nX1 + X2 Xn

a11 a12

a21 a22

an1 an2

a1n

a2n

ann

X1

X2

Xn

a11 a12 a1nX1 + X2 Xn

a21 a22 a2nX1 + X2 Xn

a11 a12

a21 a22

an1 an2

a1n

a2n

ann

X1

X2

Xn

a11 a12 a1nX1 + X2 Xn

a21 a22 a2nX1 + X2 Xn

an1 an2 annX1 +

+

+

+

+

+

+

+

+

+

+

+

+X2 Xn

Figure 6.2: Applying a matrix to a vector in Rn.

If f is a linear function from Rn to Rn, the columns of the matrix representing f are f (e1),

f (e2), . . . , f (en).
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What all this abstract work buys us is the ability to say what a function does to any vector

by knowing what it does to the standard basis vectors. For example, in the f : R2 → R2 case, it

means that we can say what the function does to an infinity of possible vectors by knowing what

it does to just two vectors,

(
1

0

)

and

(
0

1

)

. This is powerful, and it will enable us to understand

techniques for working with matrices instead of just memorizing them.

We will now develop an example of the use of matrices in biology that we will refer to

throughout this chapter.

A Matrix Population Model: Black Bears

As an example of a linear function R2 → R2, we will consider a state space (J, A), where J is

the number of juveniles, and A is the number of adults of a species of black bear.

Black bears are a common and highly adaptable species found throughout North America,

from the Appalachian Mountains to suburban Los Angeles. Females become sexually mature at

three or four years of age and live 15 to 20 years in the wild. Approximately every two years,

a female will give birth, most commonly to two cubs. We are interested in developing a simple

mathematical model of a black bear population.

To model a black bear population, we divide it up into juveniles J (cubs and subadults who

are not yet sexually mature) and adults A. Then the state of the system is given by a point in

juvenile–adult (J, A) space, that is, as a vector

(
J

A

)

.

Suppose that on average, a female black bear gives birth to two cubs every two years. This

averages out to one cub per year. However, it would simplify our work to focus only on females,

as many population models do. Therefore, we will say that a female bear gives birth to 0.5

female cubs each year, on average. Each year, about 10% of juveniles die and 25% mature into

adults, leaving 65% as juveniles.

Representing the juvenile population in the Nth year as JN and that of adults as AN , we have

the juvenile population in the (N + 1)st year as

JN+1 = 0.65JN + 0.5AN

If an adult bear’s life expectancy is around 14 years and bears become adults at age 4, they

average 10 years as adults. This makes the per capita death rate 1/10 = 0.1 adults per year, so

each year, 1− 0.1 = 90% of adults remain adults. In addition, as we mentioned before, 25% of

juveniles mature into adults each year. This gives the adult population in the (N + 1)st year as

AN+1 = 0.25JN + 0.9AN

Therefore, the black bear population model is given by a linear function f :
(
JN+1
AN+1

)

= f (

(
JN
AN

)

) =

(
0.65JN + 0.5AN
0.25JN + 0.9AN

)

which can be written in matrix form
(
JN+1
AN+1

)

=

[
0.65 0.5

0.25 0.9

](
JN
AN

)

=M

(
JN
AN

)
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Exercise 6.2.17 What are the matrices representing the following systems of equations?

a) XN+1 = 2XN + 6YN and YN+1 = 3XN + 8YN

b) XN+1 = −1.5XN and YN+1 = 6XN + YN

c) ZN+1 = 18ZN + 5WN and WN+1 = −7ZN + 2.2WN
d) aN+1 = −3aN and bN+1 = bN

e) aN+1 = −2bN and bN+1 = 4aN

Exercise 6.2.18 What systems of equations are represented by the following matrices? (You

can use X and Y as your variables.)

a)

[
3 5

7 9

]

b)

[
−2 3

1 2

]

c)

[
0 4

−5 0

]

d)

[
−1 0

0 2.5

]

e)

⎡

⎣

0 4 0

−7 0 2

1 0 3

⎤

⎦

Applying Matrices to Vectors

Suppose during one year, we have a population of 100 juvenile bears and 50 adult bears and

want to know what the population will be next year. The current state of the population can be

written in the standard basis {e1, e2} as
(
J0
A0

)

=

(
100

50

)

= 100

(
1

0

)

+ 50

(
0

1

)

= 100e1 + 50e2

We now need to apply the function f to this vector to find the next year’s population.

From the matrix representation of this function, we can immediately say that f (e1) and f (e2)

are the first and second columns of M, respectively.

M =

(
0.65 0.5

0.25 0.9

)

f (e1) =

(
0.65

0.25

)

f (e2) =

(
0.5

0.9

)

Then the next year’s population is

f (

(
J0
A0

)

) = f (100e1 + 50e2)

= 100f (e1) + 50f (e2)

= 100

(
0.65

0.25

)

+ 50

(
0.5

0.9

)

=

(
100× 0.65 + 50× 0.5
100× 0.25 + 50× 0.9

)

=

(
90

70

)

Therefore, next year’s population will be 90 juveniles and 70 adults.
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Exercise 6.2.19 Use the method we used here to find the next year’s population if this year’s

population consists of 15 juveniles and 8 adults.

We can also use the rule for applying a matrix to a vector (Figure 6.1) to calculate the

populations of the two age groups in the following year:
(
J1
A1

)

=

[
0.65 0.5

0.25 0.9

](
100

50

)

=

(
0.65× 100 + 0.5× 50
0.25× 100 + 0.9× 50

)

=

(
90

70

)

Exercise 6.2.20 Evaluate:

a)

[
3 2

4 1

](
10

10

)

b)

[
2 6

1 4

](
5

3

)

c)

⎡

⎣

4 0 1

3 2 1

1 4 2

⎤

⎦

⎛

⎝

X

Y

Z

⎞

⎠

Composition of Linear Functions, Multiplication of Matrices

It is a crucial property of functions that we can “chain” them; that is, we can apply functions

repeatedly. In Chapters 1 and 2, we saw that if f and g are functions R→ R, then we can define

f (g(X)), the result of applying f to g(X), which is written as “f ◦ g” and called “f composed

with g.”

In higher dimensions, the idea of chaining functions and applying them successively also makes

perfect sense. If f takes Rn to Rk and g takes Rk to Rp, we can define f ◦ g(X) = f (g(X)).

n k pfg

f g

This is the general case, but in this text, we are mostly interested in the case Rn → Rn → Rn.
If f and g are linear functions, represented (in the standard basis {e1, e2, . . . , en}) by matrices

A and B, then their composition f ◦ g is also a linear function, which is therefore represented

by a matrix we will call C. As always, the columns of this matrix show what the function does

to the standard basis vectors. The first column is (f ◦ g)(e1), the second is (f ◦ g)(e2), and the

nth column is (f ◦ g)(en).
How do we find the matrix of f ◦ g? We already know g(e1); it’s just the first column of B.

Now all we need to do is apply f to this vector, which we can do using the shortcut of applying

the matrix A to g(e1). Similarly, to find the second column of the matrix of f ◦ g, we apply the

matrix A to g(e2), which is the second column of B. Repeating this process, we generate the n

columns of the matrix that represents f ◦ g.
We can also develop this idea algebraically to calculate the matrix C = [ci j ] from A and B.

Suppose A = [ai j ] and B = [bi j ]. If we take an arbitrary vector X in Rn, apply B to it, and then

apply A to the result, we get

http://dx.doi.org/10.1007/978-3-319-59731-7_1
http://dx.doi.org/10.1007/978-3-319-59731-7_2
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ABX =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...

bn1 bn2 . . . bnn

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

b11X1 + b12X2 + · · ·+ b1nXn
b21X1 + b22X2 + · · ·+ b2nXn

...

bn1X1 + bn2X2 + · · ·+ bnnXn

⎞

⎟
⎟
⎟
⎠

apply B to X

=

⎛

⎜
⎜
⎜
⎝

c11X1 + c12X2 + · · ·+ c1nXn
c21X1 + c22X2 + · · ·+ c2nXn

...

cn1X1 + cn2X2 + · · ·+ cnnXn

⎞

⎟
⎟
⎟
⎠

apply A to BX

=

⎡

⎢
⎢
⎢
⎣

c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...

cn1 cn2 . . . cnn

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
= CX

where ci j = ai1b1j + · · ·+ ai ibi j + · · ·+ ai jbj j + · · ·+ ainbnj =
∑k=n
k=1 aikbkj

We can think of this matrix multiplication graphically (Figure 6.3). To find ci j , take row i of

matrix A and column j of matrix B, line the two up, and then multiply them componentwise,

adding up the results.

a11 a1i

ai1 aii

an1 ani

a1n

ain

ann

a1j

aij

anj

aj1 aji ajnajj

b11 b1i

bi1 bii

bn1 bni

b1n

bin

bnn

b1j

bij

bnj

bj1 bji bjnbjj

c11 c1i

ci1 cii

cn1 cni

c1n

cin

cnn

c1j

cij

cnj

cj1 cji cjncjj

Figure 6.3: Multiplication of two n × n matrices.

Matrix Multiplication

If a linear function f is represented by the matrix A and another linear function g is represented

by the matrix B, then the composition f ◦ g(X) is represented by the matrix product ABX.
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Exercise 6.2.21 For the following functions, can f (g(x)) exist?

a) f : R2 → R5 and g : R3 → R2

b) f : R4 → R3 and g : R2 → R3

c) f : R7 → R138 and g : R26 → R7

Exercise 6.2.22 If the matrices A and B have the following dimensions, does AB exist?

a) A is a 5× 2 matrix and B is a 2× 3 matrix.

b) A is a 3× 4 matrix and B is a 3× 2 matrix.

c) A is a 138× 7 matrix and B is a 7× 26 matrix.

Exercise 6.2.23 Multiply:

a)

[
1 5

3 2

][
2 −1
4 5

]

b)

[
2 3

3 −1

][
−2 4

1 −3

]

c)

[
1 2 3

3 2 −1

]
⎡

⎣

2 0

−2 5

1 −3

⎤

⎦

An Application of Matrix Multiplication

We can illustrate the principle of multiplication of matrices by considering an alternative scenario

for the black bear, in a bad year. We will model “bad year” by lowering the birth rate from 0.5

to 0.4 and increasing the death rate for juveniles to 40%, with 50% of them remaining juvenile

and only 10% maturing to adults. The juvenile population model is

JN+1 = 0.5JN + 0.4AN

We also increase the adult death rate to 20%, so the survival rate will be 100%−20% = 80%.

The adult population model is therefore

AN+1 = 0.1JN + 0.8AN

Putting these together, we get
(
JN+1
AN+1

)

=

(
0.5JN + 0.4AN
0.1JN + 0.8AN

)

The matrix that describes the “bad year” dynamics is therefore

Mbad =

[
0.5 0.4

0.1 0.8

]

We can then calculate the populations after a good year followed by a bad year. The two-year

forecast for an initial population of 100 juveniles and 50 adults is

Mbad M

(
J0
A0

)

=

[
0.5 0.4

0.1 0.8

][
0.65 0.5

0.25 0.9

](
100

50

)

=

[
0.425 0.61

0.265 0.77

](
100

50

)

=

(
73

65

)
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Exercise 6.2.24 Verify that this calculation is correct by applying the good-year matrix M to

the initial condition, and then applying the bad-year matrix Mbad to the result. How does your

result compare to the above calculation?

Exercise 6.2.25 What does the matrix M Mbad represent?

Exercise 6.2.26 What matrix product represents a sequence of two good years, followed by

two bad years, followed by a good year? Be careful about the order of multiplication.

Notation

matrix symbol matrix vector symbol vector matrix operating on vector

M

[
a11 a12
a21 a22

]

X

(
X1
X2

)

MX =

[
a11 a12
a21 a22

](
X1
X2

)

Once we have the matrix representation of a function, we can then talk about what would

happen if we applied the function repeatedly to get the long-term behavior of the system. This

is our next topic.

Further Exercises 6.2

1. If f is linear, what is f (

⎛

⎜
⎜
⎜
⎝

0

0
...

0

⎞

⎟
⎟
⎟
⎠
)?

2. Give two everyday or scientific examples of linear combinations not mentioned in the

text and briefly explain why each is a linear combination.

3. You are making smoothies. (Be sure to justify your answers to the questions that follow.)

a) A smoothie recipe can be seen as a linear combination of ingredients. Explain why

this is true.

b) Is the cost to make a smoothie a linear function of the costs of the ingredients?

c) Is the caloric content of the smoothie a linear function of the caloric content of the

ingredients?

d) Iron is absorbed better in the presence of vitamin C. Is the amount of available iron

in your smoothie a linear function of the amount of available iron in the ingredients?

e) You get your friends to taste your creations. Is the number of friends who like a

smoothie likely to be a linear function of the number who like each ingredient?
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f) Your smoothies are a hit and you decide to go into business. If you want to keep

prices simple, so that all smoothies of a given size cost the same, will your prices

be a linear function of the prices of the ingredients?

4. While going to a teaching assistant’s office hours, you get lost in the bowels of the School

of Engineering. You are walking through the Materials Science Department when you find

a strip of a material that looks like nothing you have ever seen before. You pocket it for

later examination. Back in your room, you decide to study how the material responds to

stretching and compression. Design an experiment to see whether its response to these

forces is linear.

5. You are studying how temperature affects the growth of your state flower in order to

predict the species’s response to climate change. You have a greenhouse and can grow

the plants at any temperature you want.

a) Suppose you call the average temperature at which the plants grow 0, so below-

average temperatures are negative and above-average ones are positive. Similarly,

below-average growth rates are negative and above-average ones are positive.

Design an experiment to test whether the response of change in growth rate to

change in temperature is linear.

b) What result do you expect this experiment to produce? Justify your answer.

6. The function g : R2 → R2 is linear.

g(

(
−1
4

)

) =

⎛

⎝

5

−2
3

⎞

⎠ and g(

(
3

2

)

) =

⎛

⎝

3

−3
0

⎞

⎠

Since

(
−2
22

)

= 5

(
−1
4

)

+

(
3

2

)

, what is g(

(
−2
22

)

)?

7. Assume that f is a linear function. Without using matrices, do the following:

a) If f (

(
1

0

)

) =

(
2

3

)

and f (

(
0

1

)

) =

(
−4
7

)

, find f (

(
5

6

)

).

b) If f (

(
1

0

)

) =

⎛

⎝

7

5

9

⎞

⎠ and f (

(
0

1

)

) =

⎛

⎝

2

4

6

⎞

⎠, find f (

(
3

4

)

).

c) If f (

⎛

⎝

1

0

0

⎞

⎠) =

(
1

2

)

, f (

⎛

⎝

0

1

0

⎞

⎠) =

(
3

5

)

, and f (

⎛

⎝

0

0

1

⎞

⎠) =

(
−9
−2

)

, find f (

⎛

⎝

8

−5
7

⎞

⎠).

8. Could the functions described below be linear? Justify your answers.

a) f (

(
12

3

)

) =

(
6

−5

)

and f (

(
−4
−1

)

) =

(
−2
3

)

b) f (

⎛

⎝

2

−5
3

⎞

⎠) =

(
−1
2

)

, f (

⎛

⎝

4

1

3

⎞

⎠) =

(
5

2

)

and f (

⎛

⎝

6

−4
0

⎞

⎠) =

(
3

4

)
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9. Multiply:

a)

[
2 3

1 2

](
3

2

)

b)

[
5 8

0 4

](
1

5

)

c)

[
6 −2 7

1 0 2

]
⎛

⎝

1

3

4

⎞

⎠ d)

⎡

⎣

0 1 3

−4 2 1

3 6 −2

⎤

⎦

⎛

⎝

2

−4
3

⎞

⎠

10. Carry out the following matrix multiplications. For each problem, say what the function

represented by each matrix does to the standard basis vectors and what the product of

the two matrices would do to these vectors.

a)

[
7 9

3 1

][
0 2

4 6

]

b)

[
5 −4
2 0.5

][
3 4

2 −1

]

c)

[
−1 −2
5 9

][
3 0

0 1

]

11. Multiply:

a)

[
7 8

4 5

][
3 2

−2 −3

]

b)

[
3 2

1 5

][
5 2 −1
4 2 1

]

c)

⎡

⎣

−2 1

0 3

4 6

⎤

⎦

[
−6 3 7

9 −4 −5

]

d)

⎡

⎣

1 2 0

3 5 0

0 1 −2

⎤

⎦

⎡

⎣

4 6 −7
−2 0 1

−4 4 3

⎤

⎦

12. What is the difference between multiplying a matrix times a vector and multiplying two

matrices?

13. We have two linear functions, f : R2 → R4 and g : R3 → R2. The matrix representing

f is ⎡

⎢
⎢
⎣

−2 3

5 4

2 1

0 3

⎤

⎥
⎥
⎦

a) Suppose

g(

⎛

⎝

1

0

0

⎞

⎠) =

(
5

7

)

, g(

⎛

⎝

0

0

1

⎞

⎠) =

(
2

1

)

and g(

⎛

⎝

1

1

1

⎞

⎠) =

(
3

4

)

Find the matrix of g.

b) Find the matrix of f ◦ g or explain in terms of functions why it does not exist.

c) Find the matrix of g ◦ f or explain in terms of functions why it does not exist.

14. The function f : R2 → R2 is linear.

a) If f (

(
2

0

)

) =

(
4

2

)

and f (

(
0

5

)

) =

(
−15
5

)

, find the matrix representing f .
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b) What is f (

(
3

4

)

)?

c) g : R2 → R2 is also a linear function. If g(

(
1

0

)

) =

(
2

3

)

and g(

(
0

1

)

) =

(
7

−1

)

,

what is the matrix of g ◦ f ?

6.3 Long-Term Behaviors of Matrix Models

With an understanding of vectors and matrices, we can now use them to model biological

processes and explore the long-term dynamics of these systems.

The long-term behavior of a matrix model is revealed by applying the matrix many times over.

This is called an iterated matrix or iterated function. If we begin with an initial condition X,

then the long-term behavior is

M · · ·M
︸ ︷︷ ︸

N

X =MNX

for large values of N.

Matrix models can exhibit three basic types of long-term dynamics: stable and unstable equi-

librium behavior, neutral equilibria, and neutral oscillations. We will study examples of each of

these in turn.

Stable and Unstable Equilibria

The black bear population model developed in the previous section is an example of a Leslie

matrix. A Leslie matrix model of a population gives the rates at which individuals go from one

life stage to another. In this case, we have two life stages, juvenile and adult. The diagonal entries

give the fraction of the population that stays within the same life stage, while the off-diagonal

entry in the top row gives the birth rate of juveniles. The off-diagonal entry in the bottom row

is the transition rate from the juvenile stage to the adult stage. Therefore, in the model

M =

[
0.65 0.5

0.25 0.9

]

65% of juveniles remain juveniles and 90% of adults remain adults in any given year. Furthermore,

25% of juveniles in a given year mature into adults, and the average adult has 0.5 (female)

offspring.

Exercise 6.3.1 Come up with a Leslie matrix model for a fictional species with two life stages

and describe the meaning of its entries, as above.

Let’s look at the long-term behavior of this model. If we iterate M from an initial condition

of 10 juveniles and 50 adults for 15 times, we see that both juvenile and adult populations grow

with time (Figure 6.4, left). Notice that the trajectory consists of isolated points. This is because

a Leslie matrix is a discrete-time model. If we plot these points in J-A state space, we see that

after the first few values, all the points fall on a straight line passing through the origin, implying

that the ratio of juveniles to adults remains constant as the population grows (Figure 6.4, right).
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Moreover, the distance between successive state points increases with time, meaning that the

population growth rate increases with population size.

5 10 15

100

200

300

N

adults (A)

juveniles (J)

100 200 300

100

200

300

J

A

(J0, A0) = (10, 50)

00

good years

Figure 6.4: Time series (left) and corresponding trajectory (right) produced by iterating the

matrix M, modeling the black bear population in a good year. Notice that both consist of

discrete points.

Now let’s consider a bad year, which, as we saw, is modeled by the matrix

Mbad =

[
0.5 0.4

0.1 0.8

]

Iterating this matrix, we see that both juvenile and adult populations go to zero with time

(Figure 6.5, left). However, this decline doesn’t initially affect both age groups in the same way.

The juvenile population grows for a time, while the adult population just shrinks. Of course,

this can’t go on forever, so after a few years, both populations enter long-term decline. (The

system’s behavior before it enters this long-term pattern is called a transient.)

5 10 15

10

20

30

40

50

adults (A)

juveniles (J)

N J

A (J0 , A0) = (10, 50)

50

50

25

2500

bad years

Figure 6.5: Time series (left) and corresponding trajectory (right) produced by iterating the

matrix Mbad, modeling the black bear population in a bad year.

Let’s consider another Leslie matrix for a two-stage population. Here we will consider a

situation in which 10% of juveniles remain juvenile, 40% become adults, and the rest die. The

birth rate is 1.4 offspring per adult, and only 20% of adults survive each year. This gives us a
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matrix

Mosc =

[
0.1 1.4

0.4 0.2

]

If we iterate Mosc , we see that both juvenile and adult populations approach the stable

equilibrium at (0, 0) in an oscillatory manner (Figure 6.6).

5 10 15

10

20

30

40

50

60

70

10 20 30 40 50 60 70

10

20

30

40

50

adults (A)

juveniles (J)

J

A

N

Figure 6.6: Time series (left) and corresponding trajectory (right) produced by iterating the

matrix Mosc .

Neutral Equilibria

We will now consider an important class of models whose equilibria are not the isolated equilib-

rium points we have been seeing all along. In these models, called Markov processes, the final

equilibrium value depends on the initial condition, so there is an infinity of equilibrium points.

All of the models we have seen so far can be thought of as compartmental models. In a com-

partmental model, a large number of objects are transferred from one compartment to another,

according to rules. In the discrete-time version of compartmental modeling, these transfers take

place at discrete time points, 1, 2, 3, . . . , N.

In epidemiology, the study of infectious diseases, many models use compartments called

susceptibles (those who can become infected), and infecteds. We will represent these two pop-

ulations by S and I.

In epidemiology, linear models of disease transmission are used to predict whether a disease

will initially spread. Epidemiologists will make an estimate of the rate of “new cases per old case,”

the quantity called R0 (read “R-zero” or “R-nought”) and then model the epidemic as

IN+1 = R0 IN

where IN is the number of infected people at the Nth time point. If R0 > 1, the epidemic

spreads, while if R0 < 1, the epidemic will tend to die out.

In the more general case, we can write a simple compartmental model representing the trans-

fers from the susceptibles compartment S to the infecteds compartment I and vice versa.

I
S becoming I

I remaining I

S remaining S

S
I becoming S

We will make the extremely strong assumption that at each time point, a constant fraction a

of the susceptibles become infected and a constant fraction b of the infecteds recover to become
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susceptibles again. If a is the fraction of S that become I, then the fraction of S that remain

S must be 1 − a. If b is the fraction of I that become S, then the fraction of I that remain I

must be 1− b. This gives us the following figure.

I
b

a
1-b

1-a

S

The discrete-time dynamics for this S-I compartmental model are

SN+1 = (1− a)SN + bIN
IN+1 = aSN + (1− b)IN

This can be written in matrix form:
(
SN+1
IN+1

)

=

[
1− a b

a 1− b

](
SN
IN

)

Let’s choose a = 0.1 and b = 0.2, which means that at each time point, 10% of susceptible

individuals become infected, and 90% remain susceptible. Similarly, 20% of infected individuals

recover, with 80% remaining infected. Notice that the disease is nonlethal, because there are no

death terms in this model. And there is no immunity, since infecteds return to the susceptible

compartment.

This gives us the matrix

MSI =

[
0.9 0.2

0.1 0.8

]

(6.1)

If we iterate MSI , we see a new kind of behavior. If we begin with an initial condition of 10

susceptibles and 50 infecteds, the system stabilizes at an equilibrium point. And if we begin with

a different initial condition, at 30 susceptibles and 80 infecteds, the system also stabilizes at an

equilibrium point, but a different one.

Exercise 6.3.2 Explain why the entries in each column of a transition matrix such as equa-

tion (6.1) must add up to one. (Hint: Label the rows and columns, writing “from” and “to” where

appropriate.)

Exercise 6.3.3 Starting with 20 susceptible and 40 infected individuals, iterate MSI 15 times

in SageMath. What steady state does the system reach? Do the same for 50 susceptible and

60 infected individuals. How do your results compare to the simulations in Figure 6.7?

5 10 15

20

40

60

80

5 10 15

20

40

60

80

infecteds (I)

susceptibles (S)

N N

Figure 6.7: Time series from two simulations of the susceptible-infected model. Starting from

different initial conditions, the system converges to different equilibrium points.
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Exercise 6.3.4 What is the behavior of the total population (S + I) over time?

Why does this susceptible–infected system behave so differently from the black bear Leslie

matrices we studied at the beginning of this section? One key difference is that Leslie matrices

involve births and deaths. A population modeled by a Leslie matrix model must grow or decline

unless the birth and death rates exactly balance. In this particular disease model, on the other

hand, individuals are just shuffled from one compartment to another, without any overall increase

or decrease in population size.

Neutral Oscillations

Our final example of a matrix model is one that gives neutral oscillations (Bodine et al. 2014). By

“neutral,” we mean that here, as in the previous example of neutral equilibria, the final outcome

depends on the initial condition, only here the final outcome is an oscillation. These “neutral

oscillations” are therefore a discrete-time analogue to the neutral oscillations we saw in the

frictionless spring and the shark–tuna models.

Locusts, which are important agricultural pests, have three stages in their life cycle: eggs (E),

hoppers (juveniles) (H), and adults (A). In a certain locust species, the egg and hopper stages

each last one year, with 2% of eggs surviving to become hoppers and 5% of hoppers surviving

to become adults. Adults lay 1000 eggs (as before, we are modeling only females) and then die.

From these principles, we can write a 3-variable linear equation

EN+1 = 0 · EN + 0 ·HN + 1000AN
HN+1 = 0.02EN + 0 ·HN + 0 · AN
AN+1 = 0 · EN + 0.05HN + 0 · AN

which gives rise to a 3× 3 Leslie matrix:

L =

⎡

⎣

0 0 1000

0.02 0 0

0 0.05 0

⎤

⎦

Simulating the model, iterating L with an initial population of 50 eggs, 100 hoppers, and 50

adults results in oscillatory dynamics of the populations over time. Consider, for example, the

adult population (Figure 6.8, black dots). As you can see, the adult population oscillates with

no overall growth or decline.

10 15

10

20

30

40

50

5
N

adults(A)

Figure 6.8: Time series of adult populations from two simulations (black and green) of the locust

population model from two different initial conditions.
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If we try a different initial condition, say 50 eggs, 20 hoppers, and 30 adults, we get a

different oscillation, also with no overall growth or decay, but with different values (Figure 6.8,

green dots).

Exercise 6.3.5 Simulate the discrete-time dynamical system described by the matrix L, and

plot all three populations.

Exercise 6.3.6 Calculate the total population E + H + A at each time point. How does it

change?

We have now seen the repertoire of long-term behaviors that linear models can exhibit: stable

and unstable equilibria, neutral equilibria, and neutral oscillations.

Matrix Models in Ecology and Conservation Biology

One interesting example of the use of matrix models in real scientific research involves the

extinction of moas, giant birds that inhabited New Zealand until shortly after it was colonized by

humans in the late 1200s AD. Archaeological data suggested that moas went extinct less than

200 years after human colonization. But could a small population really hunt moas to extinction

so rapidly?

Researchers used data from present-day moa relatives and analysis of fossil remains to build

a Leslie matrix model of moa population dynamics (Holdaway and Jacomb 2000). The goal of

the model was to study the relative importance of two different factors in the extinction of the

moa, namely, human hunting and habitat loss. This is a type of question that is ideally suited to

modeling: we can try different combinations of the two factors and see what happens.

The study used model parameters that changed over time to represent the effects of a growing

human population on moa survivorship. The results indicated that even low hunting pressure by

a population of a few hundred people was enough to drive moas to extinction in 160 years or

less (Figure 6.9).

200 people + habitat loss

0

60000

40000

20000

80000

1280 1320 1360 1400 1440 1480

100 people + habitat loss

100 people + no habitat loss

stable

years (AD)

Figure 6.9: Simulated effects of different human colonization scenarios on moa populations.

Redrawn from “Rapid extinction of the moas (Aves: Dinornithiformes): model, test, and implica-

tions,” by R.N. Holdaway and C. Jacomb, 2000, Science 287(5461):2250–2254. Reprinted with

permission from AAAS.
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Note from their simulations that even without habitat loss, the hunting pressure of even 100

humans, growing at 2.2% per year, with no habitat loss, was enough to drive the moa to extinc-

tion, albeit in a slightly longer time. Habitat loss made it worse, and if they considered an initial

population of 200 humans and included habitat loss, the decline was even more catastrophic.

The authors conclude that “Long-lived birds are very vulnerable to human predation of adults.”

Exercise 6.3.7 If a species is going extinct, what equilibrium is the population size approaching?

Is this equilibrium stable or unstable?

Matrix models are also helping to prevent sea turtles from going the way of the moa. Log-

gerhead sea turtles are an endangered species. Adult females build nests on beaches, lay eggs,

and leave. Hatchlings then go out to sea, where they grow into juveniles and then adults.

In the 1980s, sea turtle conservation efforts focused on protecting nests and hatchlings. Then

a group of ecologists decided to test whether such efforts, even if extremely successful, could

actually save the species from extinction (Crouse et al. 1987). They used field data to build a

matrix model consisting of seven life stages (eggs and hatchlings, small juveniles, large juveniles,

subadults, novice breeders, first-year remigrants, and mature breeders), and for each stage in

turn, they reduced mortality to zero. This is obviously impossible, but it’s the most basic test a

conservation strategy must pass. If eliminating all mortality in a life stage can’t save the species,

neither can merely reducing the mortality.

Simulations showed that if nothing was done, the population would decline. However, elimi-

nating all mortality in the eggs and hatchlings stage didn’t reverse the decline. To do so, it was

necessary to protect large juveniles and subadults. Since most preventable mortality at this stage

came from turtles getting caught in fishing and shrimping nets, mandating the installation of

turtle excluder devices that allow sea turtles to escape from nets is a much better strategy for

protecting the species. The United States currently requires the use of these devices, but some

countries in loggerhead habitat do not.

Further Exercises 6.3

1. Giant pandas are a vulnerable species famous for their consumption of large amounts

of bamboo. Write a discrete-time matrix model of a giant panda population using the

following assumptions. We are modeling only the female population.

– Pandas have three life stages: cubs, subadults, and reproductively mature adults.

– Cubs remain cubs for only one year. They have a mortality rate of 17%.

– Pandas remain subadults for three years. Thus, about 33% of subadults mature into

adults each year.

– 28% of subadults die each year.

– On average, adults give birth to 0.5 female cubs each year.

– 97.7% of adults survive from one year to the next.
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2. Nitrogen is a key element in all organisms. Use the following assumptions to set up a

matrix model of nitrogen flow in an ecosystem consisting of producers (P ), consumers

(C) and decomposers (D).

– 25% of the nitrogen in plants goes to consumers and 50% goes to decomposers.

– 75% of the nitrogen in consumers goes to decomposers.

– 5% of the nitrogen in decomposers goes to consumers, and 15% is lost from the

ecosystem. The rest goes to plants.

3. In epidemiology, a common way to model the spread of an infectious disease is to track

the number of susceptible individuals (S), the number of currently infected individuals

(I), and the number of individuals who have recovered from the disease with immunity

(R). Assume the following:

– Each day, 2% of susceptible individuals get infected.

– On average, a person remains infected for five days, so each day roughly 20% of

infected individuals recover. Most (say 18%) will have developed immunity to the

disease, but a few (2%) will not be immune, and thus will immediately be susceptible

again.

– A person’s immunity does not last forever. Each day 1% of recovered individuals

become susceptible again.

a) Draw a compartment diagram for this model and label each of the arrows appro-

priately.

b) What is the matrix of this model?

4. Black-lip oysters (Pinctada margaritifera) are born male, but may become female later

in life (a phenomenon known as protandrous hermaphroditism). We can therefore divide

their population into three life stages: juveniles (which are all male), adult males, and

adult females. Assume the following:

– Each year, about 9% of juveniles remain juveniles, 0.9% grow to become adult males,

and 0.1% grow into adult females. The rest die.

– Each year, about 4% of adult males become female, and about 10% of them die.

– About 10% of adult females die each year. Females never change back into males.

– Each female lays enough eggs to yield about 200 juveniles per year.

Write a discrete-time matrix model based on these assumptions.

6.4 Eigenvalues and Eigenvectors

We have now seen a variety of matrix models, with a variety of long-term behaviors, such as

equilibrium point behaviors and oscillatory behaviors. We simulated these long-term behaviors

by simply iterating the matrix over and over again from an initial condition. Our goal now is to

understand these long-term behaviors and to be able to predict them, by studying the structure

of the model itself. In order to do this, we need to develop one more critical piece of linear

algebra: the concepts of eigenvalues and eigenvectors.



6.4. Eigenvalues and Eigenvectors 299

Linear Functions in One Dimension

Recall from Chapter 2 that the linear functions in one dimension are exactly the functions

f (X) = rX, where r is in R. Those are the only functions that can pass the stringent test for

linearity:
f (X + Y ) = f (X) + f (Y ) for all X, Y

f (kX) = kf (X) for all k in R

Linear Functions in Two Dimensions

Let’s consider an arbitrary linear function f : R2 → R2:
(
U

V

)

= f (

(
X

Y

)

) =

(
aX + bY

cX + d Y

)

As we saw, this function can also be represented in matrix form:
(
U

V

)

=M

(
X

Y

)

where

M =

[
a b

c d

]

The easiest way to make a 2D function is to take two 1D functions and join them together.

So if U = aX and V = d Y , then we can make the function
(
U

V

)

=

(
aX

dY

)

This represents a very special case in which U depends only on X, and V depends only on Y .

In this special case, the function is represented by a diagonal matrix , which is a matrix whose

entries are all 0 except those on the descending diagonal:
(
U

V

)

=

(
aX

dY

)

=

[
a 0

0 d

](
X

Y

)

In this case, it is easy to determine the action of function f : it acts like multiplication by a

along the X axis and like multiplication by d along the Y axis.

X

Y

0

f

aX X

d

Y

Y

For example, consider a linear discrete-time dynamical system consisting of two species that

don’t interact with each other, such as sharks and rabbits. Let SN be the number of sharks

in the Nth year, and let RN be the number of rabbits in the Nth year. Because there is no

interaction, SN+1 is purely a function of SN , and RN+1 is purely a function of RN . If the shark

population grows at a rate a and the rabbit population grows at a rate d , then SN+1 = aSN and

RN+1 = dRN .

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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The matrix representation of this system of two noninteracting species is then
(
SN+1
RN+1

)

=

(
aSN
dRN

)

=

[
a 0

0 d

](
SN
RN

)

A diagonal matrix represents a function that can be decomposed into two 1-dimensional

functions along the axes X and Y. Diagonal matrices represent systems in which the variables

are noninteracting.

Exercise 6.4.1 Consider the matrix M =

[
2 0

0 3

]

.

a) Compute Me1, Me2, and M

(
1

1

)

.

b) Draw e1, e1,

(
1

1

)

, and the vectors you obtained in the first part of this problem.

c) Describe what M does to e1, e2, and

(
1

1

)

.

d) What will M do to other vectors that lie along the X axis? The Y axis?

e) What will M do to vectors that do not lie along the axes?

Exercise 6.4.2 Repeat the previous exercise for M =

[
0.5 0

0 −2

]

.

Eigenvalues

Understanding the action of a diagonal matrix is easy. But what about the general case? The

typical matrix is not a diagonal matrix, so it is hard to guess what the action of the matrix looks

like. Since U is a function of both X and Y , and so is V , we cannot simply decompose f into

two 1D systems acting along the X and Y axes. We can’t just look at the X and Y axes and

stretch or compress the standard basis vectors.

But what if we could find two new axes? Specifically, what if we could find two vectors U

and V such that f is decomposable into two 1D systems acting along the U and V axes?

If two such axes did exist, then by definition, they would have to have the property that

MU = λ1U and MV = λ2V

for some real numbers λ1 and λ2, which means that M would be acting along the vector U as

multiplication by λ1, and acting along the vector V as multiplication by λ2.

When this can be done, we call U and V the eigenvectors of M, and λ1 and λ2 are the

corresponding eigenvalues.

Exercise 6.4.3 One of the eigenvalues of the matrix M is 3, and a corresponding eigenvector

is V =

(
2

1

)

. Find MV.
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In other words, we are looking for solutions to the linear equation

ME = λE (6.2)

where E is the axis we are looking for (Figure 6.10). We will solve this equation for λ and E. Let

M =

[
a b

c d

]

and E =

(
X

Y

)

We can write

ME =

[
a b

c d

](
X

Y

)

=

(
aX + bY

cX + d Y

)

X

Y

0 λ

λ

X

Y

ME=λEE

Y

X

Figure 6.10: The effect of applying the matrix M to the vector E (black arrow) is a new vector

that is E multiplied by a scalar λ.

and

λE = λ

(
X

Y

)

=

(
λX

λY

)

Since ME = λE, (
aX + bY

cX + d Y

)

=

(
λX

λY

)

From this vector equation, we get the following two equations:

aX + bY = λX

cX + d Y = λY

We want to manipulate these equations to give us an expression in terms of λ. The first

expression is
aX + bY = λX

=⇒ λX − aX = bY
=⇒ (λ− a)X = bY
=⇒ X =

bY

λ− a

which gives us X in terms of Y . We will now use that to substitute for X in the second expression,

cX + d Y = λY
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which gives us

c
bY

λ− a + d Y = λY

=⇒ cb�Y

λ− a = (λ− d)�Y

=⇒ cb

λ− a = (λ− d)
=⇒ cb = (λ− a)(λ− d)
=⇒ cb = λ2 − aλ− dλ+ ad

which finally gives us

λ2 − (a + d)λ+ (ad − cb) = 0

This is a quadratic equation in λ, called the characteristic equation, which must be satisfied if

λ is a solution to equation (6.2).

We know how to solve quadratic equations. Using the quadratic formula, we get

λ =
(a + d)±

√

(a + d)2 − 4(1)(ad − cb)
2(1)

which can be simplified to

λ =
(a + d)±

√

(a + d)2 − 4(ad − cb)
2

= (λ1, λ2) (6.3)

We have found a very fundamental relationship. For every matrixM =

[
a b

c d

]

there is a set

of axes2 U, V such that MU = λ1U and MV = λ2V, and we have found λ1 and λ2 in terms of

the coefficients a, b, c , and d . The quadratic formula gives us two values of λ (note the ± sign

in the expression). These two values, which we call λ1 and λ2, are called the two eigenvalues of

the matrix M.

For the matrix M =

[
a b

c d

]

, the characteristic equation (or characteristic polynomial) for

an eigenvalue λ in 2D is

λ2 − (a + d)λ+ (ad − cb) = 0

Eigenvalues are solutions to this equation.

Let’s try an example. Consider the matrix

M =

[
1 2

4 3

]

This is obviously an undecomposable function of X1 and X2. Can we find two new axes along

which it is decomposable? Plugging the coefficient values into equation (6.3), we get

λ =
4±

√

42 − 4(3− 8)
2

=
4± 6
2
= (λ1, λ2) = (5,−1)

2We will later see that these may not be axes in the usual sense, since they could involve complex numbers,
but we can still write them down symbolically.
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We have now found that there are two axes U, V such that the matrix acts like multiplication

by λ1 = 5 along U, and acts like multiplication by λ2 = −1 along V.

But we do not know what U and V are yet.

Exercise 6.4.4 Compute the eigenvalues of the following matrices:

[
3 5

2 4

]

and

[
4 1

3 2

]

.

Eigenvectors

We now need to find U and V. Let’s say U =

(
X

Y

)

. Since we said thatM acts like multiplication

by 5 along U, this means that

MU =

[
1 2

4 3

](
X

Y

)

=

(
X + 2Y

4X + 3Y

)

= λ1U = 5

(
X

Y

)

=

(
5X

5Y

)

So
X + 2Y = 5X =⇒ Y = 2X

4X + 3Y = 5Y =⇒ Y = 2X

Now Y = 2X is the equation for the line in (X, Y ) space that has slope 2 and passes through

the origin. This line is the axis U. We can choose any nonzero vector on the U axis to represent

it, for example, the vector

(
1

2

)

. This vector is then called an eigenvector of the matrix M

corresponding to the eigenvalue λ1 = 5.

An eigenvector corresponding to the second eigenvalue λ2 = −1 can be found in a similar

manner. Let’s assume V =

(
X

Y

)

. Then

MV =

[
1 2

4 3

](
X

Y

)

=

(
X + 2Y

4X + 3Y

)

= λ2V = −1
(
X

Y

)

=

(
−X
−Y

)

So
X + 2Y = −X =⇒ Y = −X
4X + 3Y = −Y =⇒ Y = −X

Y = −X is the equation for the line in (X, Y ) space that has slope −1 and passes through

the origin. This line is the axis V. As before, we can choose any nonzero vector on the U axis to

represent it, for example, the vector

(
1

−1

)

, which is then called an eigenvector of the matrix

M corresponding the eigenvalue λ2 = −1.

1

-1

1

-1

V

1

-1

1

-1
X

Y
U λ1=  5( )

X

Yλ2=  1( )
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We have now accomplished a basic task: given an indecomposable nondiagonal matrix, we

have found two new axes, U and V, along which the matrix is diagonal. Let’s call this diagonal

matrix D. This new set of axes can be seen as a new coordinate system for R2; call it {U,V}.
In the {U,V} coordinate system, the matrix D is diagonal:

D =

[
λ1 0

0 λ2

]

matrix in {X,Y} eigenvalues eigenvectors diagonalized matrix in {U,V}

M =

[
1 2

4 3

]

λ1 = 5 U =

(
1

2

)

D =

[
λ1 0

0 λ2

]

λ2 = −1 V =

(
1

−1

)

If a matrix M has two real eigenvalues λ1 and λ2, this implies that M can be decomposed

using two new axes, U and V, such that M acts like multiplication by λ1 along U and like

multiplication by λ2 along V.

New coordinate systems. We can navigate in R2 using these two new axes. The standard basis

{e1, e2} is the most familiar coordinate system for R2: to get to any point, go a certain distance

horizontally (parallel to e1) and a certain distance vertically (parallel to e2). The eigenvectors U

and V also form a coordinate system, and we can get to any point in R2 by moving a certain

distance in the U-direction and a certain distance in the V-direction.

We will now illustrate the process of navigating in R2 using two different coordinate sys-

tems. As our {X,Y} coordinate system, we will use the standard basis {e1, e2}. For the {U,V}
coordinate system, we will use the eigenvectors we just calculated:

{X,Y} = {e1, e2} = {
(
1

0

)

,

(
0

1

)

} {U,V} = {
(
1

2

)

,

(
1

−1

)

}

Consider the point p represented in the standard {X,Y} coordinate system as p{X,Y } =

(
3

0

)

.

To navigate from the origin to p, go three units in the X direction, and zero units in the Y

direction (Figure 6.11, left).

1 2 3 1 2 3

V U

1

2

1

2

X

Y

X

Y

p p

Figure 6.11: Finding the coordinates of the point p in a new coordinate system {U,V}.
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In order to navigate to p in the {U,V} coordinate system, suppose that the coordinates of p

are c1 and c2. We have

p{U,V } = c1U+ c2V = c1

(
1

2

)

+ c2

(
1

−1

)

=

(
c1 × 1 + c2 × 1
c1 × 2 + c2 × (−1)

)

=

(
3

0

)

Solving this algebraically, we get

c1 × 1 + c2 × 1 = 3
c1 × 2 + c2 × (−1) = 0

}

=⇒ c1 = 1, c2 = 2

Therefore, to navigate from the origin to p in the {U,V} coordinate system, go one unit in

the U direction and two units in the V direction (Figure 6.11, right).

Exercise 6.4.5 Find the eigenvectors of the matrices whose eigenvalues you found in Exercise

6.4.4 on page 303.

We will now use the ability to change coordinate systems to map the action of M.

Using eigenvalues and eigenvectors to calculate the action of a matrix

We will now show how to use the eigenvectors and corresponding eigenvalues of a matrix to

calculate the action of the matrix on a test point.

The following discussion is somewhat technical; the details can be skimmed over, and the

reader can skip to “Are All Matrices Diagonalizable?” on page 312. However, the high-level

summary of what we will do here is important. What we are going to do, for an arbitrary matrix

M and a test point p, is find q =Mp. We will do this by the following procedure:

(1) Pick a test point p. Let {X,Y} be an arbitrary coordinate system (it could be the standard

basis {e1, e2} or any other). Suppose we have the coordinates of p in the {X,Y} coordinate

system as p{X,Y } =

(
pX
pY

)

.

(2) Calculate the eigenvectors U,V of the matrix M and their corresponding eigenvalues λ1
and λ2.

(3) Find the representation of the test point p in the {U,V} coordinate system to obtain

p{U,V } =

(
pU
pV

)

.

(4) Evaluate the action ofM by multiplying the U-component pU by λ1, and the V-component

pV by λ2. This gives us the location of the point q in the {U,V} coordinate system,

q{U,V } =

(
λ1pU
λ2pV

)

.

(5) Transform the {U,V} coordinate representation of q, q{U,V } back into the {X,Y} coor-

dinate system to obtain q{X,Y }.

An example. Let’s compute what the matrix M =

[
1 2

4 3

]

does to the test point p. For the

{X,Y} coordinate system, we will use {e1, e2}. In this standard coordinate system, we pick the

test point p{X,Y } =

(
pX
pY

)

=

(
1

0.5

)

.
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In order to calculate the action of M, we need to locate this point on the U and V axes

(Figure 6.12). To do this, we need a way of transforming from the {X,Y} coordinate system

to the new {U,V} coordinate system to get p{U,V } =

(
pU
pV

)

.

U

V

X

Y U

V
p

p
X

p
Y

p
V

p
U

p

Figure 6.12: The coordinates of the point p in the {X,Y} and {U,V} coordinate systems.

Once we have the test point p represented in the {U,V} coordinate system, we then just

multiply its components by the corresponding eigenvalues λ1 and λ2 (Figure 6.13). Here, the

U-component is multiplied by λ1 = 5, and the V-component is multiplied by λ2 = −1. Thus,

the image underM of the test point p{U,V} =

(
pU
pV

)

is the point q{U,V } =

(
qU
qV

)

=

(
λ1 · pU
λ2 · pV

)

=
(
5pU
−pV

)

.

U

V λ2=  1( )

X

Y λ1=  5( )q

p

Figure 6.13: Using eigenvalues and corresponding eigenvectors to find the action of M on the

point p in the {U,V} coordinate system.
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We now have the point q represented in the {U,V} coordinate system, that is, q{U,V}. The

final step is to transform the point q back into the original {X,Y} coordinate system to get

q{X,Y } =

(
qX
qY

)

(Figure 6.14).

q
X q

V

q
U

U

V

V

X

Y q

p

q
Y

Figure 6.14: Transforming the point q back into the original {X,Y} coordinate system.

These figures graphically illustrate the process of finding the new point using the {U,V}
coordinate system. Now, in order to actually calculate that point, we have to do it algebraically,

using the linear algebra of coordinate transforms.

Changing bases: coordinate transforms. In R2, we have been using as our basis vectors the

standard basis

{X,Y} = {
(
1

0

)

,

(
0

1

)

}

The key to calling this set of vectors a basis is that every vector p can be written in the

{X,Y} coordinate system as

p{X,Y} =

(
pX
pY

)

= pX

(
1

0

)

+ pY

(
0

1

)

= pXX+ pY Y

But the standard basis isn’t the only possible one. In fact, any two vectors that aren’t multiples

of each other can serve as a basis for R2.

If we pick U and V as two such vectors, then every vector p that had coordinates

(
pX
pY

)

in

the {X,Y} basis now has a new set of coordinates

(
pU
pV

)

in the {U,V} basis. We want to find

those new coordinates.

In general, there is always a matrix transform that will take the representation of a point

expressed in any basis in Rn to any other basis. Here we will illustrate this for the case in R2 in

which the two coordinate systems are {Z,W} and {U,V}.
Suppose we have a vector p and we know its coordinates in {Z,W} space as p{Z,W}. We

would like to know the vector p expressed in the {U,V} coordinate system, that is, p{U,V }. In

other words, we want to find the transformation matrix T such that p{U,V } = Tp{Z,W}.
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In order to find the transformation matrix T , the key is to express the “old” coordinates

{Z,W} in terms of the “new” {U,V} coordinates. Assuming that there are a, b, c, d such that

Z = aU+ bV

W = cU+ dV

we can substitute for Z and W the corresponding expressions in U and V to get an expression

for p in the {U,V} coordinates as

p{Z,W} = pZZ+ pWW

= pZ
(
aU+ bV

)
+ pW

(
cU+ dV

)

=
(
a · pZ + c · pW

)
U+

(
b · pZ + d · pW

)
V

= pUU+ pV V

So

p{U,V} =

(
pU
pV

)

=

(
a · pZ + c · pW
b · pZ + d · pW

)

=

[
a c

b d

](
pZ
pW

)

Therefore, the transformation matrix T that gives us p{U,V} in terms of p{Z,W} is

T =

[
a c

b d

]

and the required transformation is

p{U,V} = Tp{Z,W} =

[
a c

b d

]

p{Z,W}

Now we need to find a, c, b, and d . First, let’s recall the definition of each of the coordinates

in terms of their components:

Z =

(
ZX
ZY

)

, W =

(
WX
WY

)

, U =

(
UX
UY

)

, V =

(
VX
VY

)

Notice that in each case, we are expressing the coordinate vector in terms of its representation

in the standard {X,Y} basis. So, while we are transforming from one arbitrary {Z,W} basis

to another arbitrary {U,V} basis, we are keeping track of both of them in terms of their

representation in the standard {X,Y} basis.

Substituting the component definitions of each coordinate into the definition of a, b, c , and

d , we get

Z = aU+ bV

W = cU+ dV
⇐⇒

(
ZX
ZY

)

= a

(
UX
UY

)

+ b

(
VX
VY

)

(
WX
WY

)

= c

(
UX
UY

)

+ b

(
VX
VY

)

If we multiply this out, we get
ZX = aUX + bVX

ZY = aUY + bVY

WX = cUX + dVX

WY = cUY + dVY

These are four linear equations in four unknowns. We can solve this problem by hand, or we

can use the computer algebra function of SageMath to do all the messy work. The result of this
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algebra is that we now have a, b, c , and d in terms of the components of U,V,Z and W:

a =
−VXZY + VY ZX
UXVY − UY VX

, b =
VYWX − VXWY
UXVY − UY VX

, c =
VYWX − VXWY
UXVY − UY VX

, d =
UXWY − UYWX
UXVY − UY VX

If we assemble these into the transformation matrix T , we get

T =

[
a c

b d

]

=
1

UXVY − UY VX

[
−VXZY + VY ZX VYWX − VXWY
UXZY − UY ZX UXWY − UYWX

]

This is a complete expression for the transformation matrix. It cannot fail to give us the trans-

formation matrix, unless, of course, the expression in the denominator UXVY − UY VX equals 0.

What does it mean for UXVY − UY VX to be equal to zero?

UXVY − UY VX = 0 ⇐⇒ UXVY = UY VX

If we assume that neither U nor V is the Y axis, which would otherwise make UX = 0 or

VX = 0, then we can divide by each of them and get

UY
UX
=
VY
VX

Notice that UY
UX

is the slope of the U vector, and VY
VX

is the slope of the V vector.

U

V
U
Y

U
X

V
Y

V
X

X

Y

If the slope of U is equal to the slope of V, then U and V are multiples of each other, and

therefore they are not a basis for R2.

Exercise 6.4.6 Show that under the condition UXVY −UY VX = 0, if U is the Y axis (UX = 0),

then V has to be the Y axis as well (VX = 0), and vice versa, which contradicts our assumption

that U and V serves as a basis in R2.

The action of M. We can now return to our problem of evaluating the action of M on the test

point p = (1, 0.5) in the {X,Y} coordinate system, that is,

p{X,Y } =

(
pX
pY

)

=

(
1

0.5

)

using the eigenvalues and eigenvectors of M. Our first task is to find the test point p expressed

in the coordinate system of the eigenvectors U and V of the matrix M. This is a straightforward

application of the transformation matrix T we just developed.

Here the “old” coordinate system {Z,W} is

{Z,W} = {X,Y} = {
(
1

0

)

,

(
0

1

)

}
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and the “new” coordinate system is the system of eigenvectors U and V of the matrix M:

{U,V} = {
(
1

2

)

,

(
1

−1

)

}

The coordinate components we need to calculate T are

Z =

(
ZX
ZY

)

=

(
1

0

)

W =

(
WX
WY

)

=

(
0

1

)

U =

(
UX
UY

)

=

(
1

2

)

V =

(
VX
VY

)

=

(
1

−1

)

⇐⇒

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ZX = 1

ZY = 0

WX = 0

WY = 1

UX = 1

UY = 2

VX = 1

VY = −1
So the transformation matrix T from the “old” {X,Y} coordinate system to the “new” {U,V}

coordinate system is

T =

[
a c

b d

]

=

⎡

⎢
⎣

1

3

1

3
2

3
−1
3

⎤

⎥
⎦

Then we can use this transformation matrix T to give us the test point p expressed in the {U,V}
coordinate system, p{U,V }, in terms of p{X,Y }:

p{U,V } = T p{X,Y } =

⎡

⎢
⎣

1

3

1

3
2

3
−1
3

⎤

⎥
⎦

(
1

0.5

)

=

(
0.5

0.5

)

Therefore, our test point is

p{U,V } =

(
pU
pV

)

=

(
0.5

0.5

)

= pUU+ pV V

Now that we have the point expressed in the eigenvector {U,V} coordinate system, we can

use the eigenvalues to calculate the action of the matrix. We said that the action of that

matrix M is that it acts like multiplication by λ1 along its corresponding U eigenvector, and

multiplication by λ2 along its corresponding V eigenvector.

Therefore, in order to find the point, which we will call q, that results from the action of

the matrix M on the test point p, we simply multiply the U-component of p by λ1 and the

V-component of p by λ2 to find q{U,V }:

q{U,V } =

(
qU
qV

)

= D p{U,V} =

[
λ1 0

0 λ2

](
qU
qV

)

=

(
λ1 · pU
λ2 · pV

)

=

(
5× 0.5
−1× 0.5

)

=

(
2.5

−0.5

)

To confirm this and check our work, let’s calculate the action of M in the {X,Y} coordinate

system and then transform the result into the {U,V} coordinate system and see whether the

two calculations agree.
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First, we find q{X,Y } by applying M to the test point p{X,Y }:

q{X,Y } =M p{X,Y } =

[
1 2

4 3

](
1

0.5

)

=

(
2

5.5

)

Then we use the transformation matrix T to transform q{X,Y } into q{U,V },

q{U,V } = T q{X,Y } =

⎡

⎢
⎣

1

3

1

3
2

3
−1
3

⎤

⎥
⎦

(
2

5.5

)

=

(
2.5

−0.5

)

which agrees exactly with our calculation of q{U,V } using the eigenvalues. The two methods of

calculating q{U,V } are equivalent:

q{X,Y }
T

−−−−−−−−−−→ q{U,V }

M

�
⏐
⏐
⏐
⏐

�
⏐
⏐
⏐
⏐
D =

[
λ1 0

0 λ2

]

p{X,Y }
T

−−−−−−−−−−→ p{U,V }
However, q{U,V } is not what we originally wanted; we wanted q{X,Y }. We need to take one

step further and somehow get back to the {X,Y} coordinate system from q{U,V }. To do this,

we need the inverse of the matrix T , that is, the matrix that “undoes" the action of T . To find

this matrix, called T−1, realize that

T
−1
T =

[
1 0

0 1

]

If we let

T
−1 =

[
c1 c2
c3 c4

]

then we have
[
c1 c2
c3 c4

]

⎡

⎢
⎣

1

3

1

3
2

3
−1
3

⎤

⎥
⎦ =

[
1 0

0 1

]

which implies

⎡

⎢
⎣

c1
1

3
+ c2

2

3
c1
1

3
− c2

1

3

c3
1

3
+ c4

2

3
c3
1

3
− c4

1

3

⎤

⎥
⎦ =

[
1 0

0 1

]

=⇒

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
1

3
+ c2

2

3
= 1

c1
1

3
− c2

2

3
= 0

c3
1

3
+ c4

2

3
= 0

c3
1

3
− c4

1

3
= 1

=⇒

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1 = 1

c2 = 1

c3 = 2

c4 = −1

So

T
−1 =

[
1 1

2 −1

]
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Consequently, we can go from p{X,Y} to q{X,Y} by transforming into the {U,V} system by T ,

applying D, and then transforming back into the {X,Y} coordinate system using T−1:

q{X,Y } =Mp{X,Y } = T
−1
DTp{X,Y }

In summary, we can evaluate the action of the matrix M on a point by applying the diagonal

matrix D:

q{X,Y }
T−1

←−−−−−−−−−− q{U,V }

M

�
⏐
⏐
⏐
⏐

�
⏐
⏐
⏐
⏐
D =

[
λ1 0

0 λ2

]

p{X,Y }
T

−−−−−−−−−−→ p{U,V }

This may seem as though we are not saving much effort, because we also have to figure

out T and T−1. However, if M is a matrix representing a dynamical system, then we need to

iterate M many times to simulate the dynamics. In this case, the advantage is clear: we need to

calculate and apply T and T−1 only once, and the rest of the iteration process is simply applying

the diagonal matrix D many times, which is easy:

M · · ·M
︸ ︷︷ ︸

N

p{X,Y } = T
−1
D · · ·D
︸ ︷︷ ︸

N

Tp{X,Y }

Are all matrices diagonalizable?

We have successfully diagonalized the matrix

[
1 2

4 3

]

, and it makes sense to ask, are all matrices

diagonalizable in this way?

The answer is no. Consider the matrix

M =

[
0 1

−1 −1

]

Let’s calculate its eigenvalues. Plugging the matrix coefficients into the characteristic equation

(equation (6.3) on page 302),

λ =
(a + d)±

√

(a + d)2 − 4(ad − cb)
2

we get

λ =
(−1)±

√

(−1)2 − 4(0− (−1))
2

=
−1±

√
−3

2

and here we have a problem. Notice the “
√
−3” term. As you know, there is no such real number.

There is a concept of imaginary numbers, like i =
√
−1, and in that notation, we can write our

eigenvalue as

λ =
−1±

√
3
√
−1

2
= −1
2
±
√
3

2
i

But what can this mean? It certainly does not look good for our goal of decomposing the

matrix into two 1D multiplications.

In fact, the appearance of imaginary numbers is an infallible sign that we are dealing with a

type of motion that is indecomposable, namely, rotation.
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The reason why complex numbers are associated with rotations can be made intuitive. Think

of a function f that has an eigenvalue λ = −1 along the eigenvector X. The action of f is to

flip the direction of any vector along this axis, for example, it would flip (1, 0) to (−1, 0); see

Figure 6.15.

X

Y

01
X

Y

0 -1 1

λ=  1

f

λ=  1

Figure 6.15: The function f , whose eigenvalue is −1 along its eigenvector (which is the X axis)

flips a positive vector (left) to a negative one (right).

Now think about this function not as a flip, but as a rotation through 180◦, say counter-

clockwise. And now let’s consider a rotation of 90◦, say counterclockwise. What would be the

eigenvalue of this 90◦ rotation? It has the property that applying it twice has the effect of a flip,

that is, λ = −1. But as we saw earlier, if f (X) = λX, then the effect of applying f twice is

f
(

f (X)
)

= λ
(

f (X)
)

= λ
(

λX
)

= λ2X

The 90-degree rotation applied twice is the 180◦ rotation. So if λ90◦ were the eigenvalue of

the 90◦ rotation, it would have to have the property that

(λ90◦)
2 = −1

That, of course, implies that λ90◦ is imaginary. The equation has two solutions,

λ90◦ = ±i

The two solutions +i and −i correspond to the counterclockwise and clockwise rotations

(Figure 6.16).

00

λ = +i

λ = i

λ = +i

λ = i λ = i

λ = +i

Figure 6.16: Left: the imaginary eigenvalues λ = ±i represent a 90 degree rotation, either

clockwise (λ = −i) or counterclockwise (λ = +i). Right: applying either rotation twice has the

effect of flipping the horizontal vector, that is, multiplying it by −1.



314 Linear Algebra

It makes sense that rotation could not have real eigenvalues, because two real eigenvalues

would mean that the function could be split into two 1D expansions and contractions. But

rotation is an action that is essentially two-dimensional, and therefore indecomposable.

Think about the rotation matrices that we discussed earlier. For example, the matrix

M =

[
cos θ − sin θ
sin θ cos θ

]

represents counterclockwise rotation through the angle θ (Figure 6.17).

M

Figure 6.17: The effect of the rotation matrix M is to rotate the black vector counterclockwise

by θ, producing the red vector.

What are its eigenvalues? Plugging the matrix coefficients into the characteristic equation

(equation (6.3) on page 302),

λ =
(a + d)±

√

(a + d)2 − 4(ad − cb)
2

we get

λ =
(2 cos θ)±

√
(

2 cos θ
)2

− 4
(

(cos θ)2 − (−(sin θ)2)
)

2

But recall that

(cos θ)2 + (sin θ)2 = 1

so

λ =
(✁✁✕
1

2 cos θ)±
√

✁✁✕
1

4
(

cos θ
)2

− ✁✁✕
1

4

✁✁✕
1

2

= (cos θ)±
√

(cos θ)2 − 1

= cos θ ±
√

−(sin θ)2

= cos θ ± sin θ
√
−1

Therefore, the eigenvalues for this rotation matrix consist of a pair of complex conjugate

values:

λ = cos θ ± sin θ i

And when the rotation angle is θ = 90◦, the eigenvalues are

λ90◦ = cos 90
◦ ± sin 90◦ i = ±i

This confirms our earlier remark that the λ for a 90◦ rotation would have to be λ = ±i.
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We can now return to our original example:

M =

[
0 1

−1 −1

]

We calculated its eigenvalues as

λ = −1
2
±
√
3

2
i

which implies that the action of M must be a rotation. We can confirm this by applying M to

some random test points.

Note that successive applications of the matrixM bring the point back to its original position

after three iterations (Figure 6.18).

30 20 10 10 20 30

30

20

10

10

20

30

P

MP

M2P

=

X

Y

M3P

Figure 6.18: Applying the matrix M to the point p three times brings it back to p.

Exercise 6.4.7 Show that M3 =

[
1 0

0 1

]

Exercise 6.4.8 Using the point p =

(
5

0

)

as the test point, apply M three times to calculate

Mp, M2p, and M3p.

Thus, we confirm that complex eigenvalues imply the existence of rotation. To put it another

way, what is an eigenvector? It’s a vector whose direction is unchanged by the action of M,

which merely stretches, contracts, and/or flips it. But obviously, in the action of a rotation, no

direction stays the same! So a rotation cannot have real eigenvalues or real eigenvectors.

So we can now give a definite answer to our question, are all matrices diagonalizable? The

answer is no. Instead there is a weaker condition that is true: every 2D matrix is either

(1) diagonalizable, which means that it has two real eigenvalues, or

(2) a rotation (possibly together with expansion and/or contraction), which means that it has

a pair of complex conjugate eigenvalues.
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Eigenvalues in n Dimensions

We have focused so far on 2D linear functions f : R2 → R2 and used the variables X and Y to

describe the domain and U and V to describe the codomain.

Now we want to study the n-dimensional case, and we will need a new terminology for the

variables. We want to consider an n-dimensional linear function

f : Rn −→ Rn

We will call the domain variables X = (X1, X2, . . . , Xn) and the codomain variables Y =

(Y1, Y2, . . . , Yn), so

f (X) = Y

f (X1, X2, . . . , Xn) = (Y1, Y2, . . . , Yn)

From the definition of linear function, we know that there are constants

a11, a12, . . . , a1n, a21, a22, . . . , a2n, an1, an2, . . . , ann

such that

Y1 = a11X1 + a12X2 + · · ·+ a1nXn
Y2 = a21X1 + a22X2 + · · ·+ a2nXn
...

...

Yn = an1X1 + an2X2 + · · ·+ annXn
so that f is represented by the matrix

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

The application of f to the vector X is then represented by
⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

Y1
Y2
...

Yn

⎞

⎟
⎟
⎟
⎠

Do n-dimensional linear functions have eigenvalues and eigenvectors? The answer is that the

n-dimensional case is remarkably like the 2-dimensional case. We will need some theorems and

principles from a linear algebra course or text. We will state them here as we need them; the

interested reader is encouraged to look them up for fuller treatment.

The first question is, can we find eigenvalues? Recall that in 2D, we wrote down the equation

ME = λE

where M is the matrix in question and λ and E are the desired eigenvalue and corresponding

eigenvector. In 2D, we wrote this matrix as

M =

[
a b

c d

]
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We then brute-force solved the linear equations and got the characteristic polynomial

λ2 + (a + d)λ+ (ad − cb) = 0
In order to generalize this process to n dimensions, we have to go back and restate our

argument in more general language. We were looking for eigenvectors and eigenvalues by trying

to solve

ME = λE

This is equivalent to saying

ME = (λI)E

where I is the identity matrix

I =

[
1 0

0 1

]

but that implies

ME− (λI)E = 0
=⇒ (M − λI)E = 0

For every matrix, linear algebra defines a quantity, called the determinant. The determinant of

a matrix is a number that provides certain information about the matrix. Linear algebra defines

this number, called det(M) or |M|, for an arbitrary n-dimensional matrix M.

The details of the definition need not concern us here. What is important is two facts about

the determinant:

(1) The equation (M − λI)E = 0 has a nontrivial solution if and only if

det(M − λI) = 0

(2) the determinant of a 2D matrix M =

[
a11 a12
a21 a22

]

is

det(M) = a11a22 − a21a12
We can now redescribe our brute-force derivation of the characteristic polynomial in 2D by

realizing that we are looking for solutions to

(M − λI)E = 0

Since M is the matrix

[
a b

c d

]

, the requirement

det

([
a − λ b

c d − λ

])

=

∣
∣
∣
∣

a − λ b

c d − λ

∣
∣
∣
∣
= 0

implies

(a − λ)(d − λ)− cb = 0
=⇒ λ2 + (a + d)λ+ (ad − cb) = 0

which is exactly the characteristic polynomial!
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The format det(M−λI) = 0 generalizes to n dimensions: the eigenvalues of the n-dimensional

matrix

M =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

are exactly the solutions to this equation.

The actual calculation of the determinant in higher dimensions is messy and is best left

to computer algebra programs, such as SageMath. This is especially true because just as the

2D characteristic polynomial contains a λ2 term, the n-dimensional characteristic polynomial

contains a λn term. Solving higher-order polynomial equations is extremely tedious and difficult

by hand.

We do know one very important fact, so important that it is sometimes called the fundamental

theorem of algebra: An nth-order polynomial equation

a1X
n + a2X

n−1 + · · ·+ an = 0 (where the a1, a2, . . . , an are real numbers)

has exactly n solutions. Moreover, these solutions are either real or pairs of complex conjugates.

These n solutions are exactly the eigenvalues λ1, λ2, . . . , λn of the n × n matrix M.

Therefore, an n-dimensional matrix has exactly n eigenvalues, and each of them is either a

real number or half of a pair of complex conjugate numbers.

Further Exercises 6.4

1. IfM is a 3×3 matrix and

⎛

⎝

3

−2
3

⎞

⎠ is an eigenvector ofM with corresponding eigenvalue

5, what is M

⎛

⎝

4

−2
3

⎞

⎠?

2. If f : R4 → R4 is a linear function and −2 is an eigenvalue of f with corresponding

eigenvector v =

⎛

⎜
⎜
⎝

3

1

−3
−7

⎞

⎟
⎟
⎠

, what is f (v)?

3. The matrix A =

[
−7 3

−18 8

]

has an eigenvector

(
1

3

)

. What is its corresponding eigen-

value?

4. The matrix A =

⎡

⎣

2 −5 −4
0 3 2

0 −4 −3

⎤

⎦ has an eigenvector

⎛

⎝

2

−2
4

⎞

⎠. What is its corresponding

eigenvalue?
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5. Which of the following are eigenvectors of

[
7 −5
10 −8

]

? What are their corresponding

eigenvalues?

a)

(
2

3

)

b)

(
2

4

)

c)

(
−1
2

)

d)

(
−2
−2

)

6. Compute the eigenvalues and, if they exist, eigenvectors of the following matrices:

a)

[
7 9

3 1

]

b)

[
0 2

4 6

]

c)

[
5 −4
2 0.5

]

d)

[
3 4

2 −1

]

e)

[
−1 −2
5 9

]

f)

[
3 0

0 1

]

7. Compute the eigenvalues of the linear function

f (

(
X

Y

)

) =

(
4X − 5Y
2X − 2Y

)

8. One of the eigenvalues of the matrix

[
−9 −8
12 11

]

is 3. What is a corresponding eigen-

vector for it?

9. One of the eigenvalues of the matrix

⎡

⎣

4 5 −3
4 6 −4
8 11 −7

⎤

⎦ is 2. What is a corresponding

eigenvector for it?

10. a) Solve for a and b in the equation

a

(
2

5

)

+ b

(
−3
1

)

=

(
9

14

)

b) Use your answer to part (a) to give the coordinates of

(
9

14

)

with respect to the

basis

(
2

5

)

,

(
−3
1

)

.

11. Give the coordinates of

(
−7
5

)

with respect to the basis

(
1

1

)

,
(
−1, 2

)
.

12. The point of this problem is to demonstrate that if you know all the eigenvalues and

eigenvectors of a linear function f (or a matrix M), you can compute f (W) (which

is MW) for every vector W. In short, knowing all the eigenvalues and eigenvectors is

equivalent to knowing the function.

a) Solve for u and v in the equation

u

(
2

5

)

+ v

(
−3
1

)

=

(
9

14

)
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(Hint: You will probably want to rewrite this as a system of equations and “solve

simultaneously.”)

b) Explain what your answer to part (a) means about the coordinates of

(
9

14

)

in some

nonstandard coordinate system. (Hint: Which one?)

c) Suppose that f : R2 → R2 is a linear function and its eigenvectors are as follows:
(
2

5

)

with eigenvalue 2, and

(
−3
1

)

with eigenvalue −3

What is f (

(
2

5

)

)? What is f (

(
−3
1

)

)?

d) Continuing from part (c), what is f (

(
9

14

)

)? (Hint: Use your answers to parts (a)

and (c) and the two defining properties of a linear function.)

13. Diagonalize the following matrices:

a)

[
8 −3
10 −3

]

b)

[
2 −2
0 −1

]

c)

[
2 3

4 1

]

6.5 Linear Discrete-Time Dynamics

We will now develop an application of linear algebra to linear discrete-time dynamical systems.

Here f : Rn → Rn is the function that tells us that

XN+1 = f (XN)

In 1D, we saw that the only functions that can pass the stringent test for linearity are the

functions f (X) = kX, where k is some constant in R. If k �= 0, these functions can equal 0

only once, and that is when X = 0. The definition of an equilibrium point for a discrete-time

dynamical system is

XN+1 = XN

But if XN+1 = kXN , then this would imply kXN = XN . If XN �= 0, then k must equal 1.

And k = 1 is a very special value that is atypical and to be avoided; note that if k = 1, every

point is an equilibrium point. As we saw in our discussion of discrete-time dynamical systems

(“Discrete-Time Dynamical Systems” in Chapter 5 on page 225), the fact that f (X) = kX can

be zero only when X = 0 means that the discrete-time system XN+1 = kXN has exactly one

equilibrium point, at X = 0. As we saw, this equilibrium point is stable if |k | < 1, and unstable

if |k | > 1.

Linear Uncoupled Two-Dimensional Systems

Let’s consider the two-dimensional case. To create our first example, we will take two 1D

discrete-time systems and join them together into an uncoupled (or decoupled) 2D system.

“Uncoupled” means that the growth of X depends only on X, and the growth of Y depends only

http://dx.doi.org/10.1007/978-3-319-59731-7_5
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on Y :
XN+1 = αXN

YN+1 = β YN
=⇒

(
XN+1
YN+1

)

=

(
αXN
β YN

)

This can also be written in matrix form:
(
Xn+1
Yn+1

)

=

[
α 0

0 β

](
Xn
Yn

)

Notice that all the nonzero entries of this matrix are located on the diagonal going from the

top left corner to the bottom right (the main diagonal). It’s a diagonal matrix. If the matrix

representing a system of equations is diagonal, the variables in the equations are uncoupled.

So for example, if there are two noninteracting populations, one of which is growing at 40%

a year and the other at 20% a year, the system is described by the 2× 2 matrix
[
α 0

0 β

]

=

[
1.4 0

0 1.2

]

If we begin with an initial condition
(
X0
Y0

)

=

(
50

50

)

then the population of the two species in the following year is
(
X1
Y1

)

=

[
1.4 0

0 1.2

](
50

50

)

=

(
1.4× 50 + 0× 50
0× 50 + 1.2× 50

)

=

(
70

60

)

If we iterate this matrix repeatedly, we see that if we start at an initial condition of (X0, Y0) =

(50, 50), the trajectory quickly flattens out, and the growth becomes mostly in the X direction

(Figure 6.19). The lesson here is that if a diagonal matrix has unequal growth rates, then the

dynamics will be eventually dominated by the larger growth rate. Here the growth rate along the

X axis is 40% and the growth rate along the Y axis is 20%, so the dynamics will eventually be

dominated by the growth in X.

2000 3000 40000

1000

X

Y

(X0 , Y0) = (50, 50)

(X13 , Y13) ≈ (3968, 535)

1000

Figure 6.19: Repeated applications of a matrix will result in a trajectory that lies along the

direction of the dominant eigenvector. Here both populations are growing.

We can also have declining populations. If one population is growing at 40% a year and the

other is declining at 20% a year, the matrix describing the system is
[
α 0

0 β

]

=

[
1.4 0

0 0.8

]

If we iterate this matrix repeatedly, we see that there is growth in the X direction and

shrinking in the Y direction, and once again, the growth dynamics are eventually dominated by

the dimension with the larger growth (Figure 6.20).
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0 200 400 600 800

200

(X0 , Y0) = (50, 50)
(X8 , Y8) ≈ (738, 8)

X

Y

Figure 6.20: When one population is declining, the long-term trajectory still lies along the direc-

tion of the dominant eigenvector.

Uncoupled systems are therefore easy to analyze, because the behavior of each variable can

be studied separately and the system then reassembled. Each variable is growing or shrinking

exponentially, and the overall system behavior is just a combination of the behaviors of the

variables making it up. (For simplicity, we use the word “grow” from now on to mean either

positive or negative growth.)

Exercise 6.5.1 If there are two noninteracting populations, one of which is growing at 20% a

year and the other at 25% a year, derive the matrix that describes the dynamics of the system

and simulate a trajectory of this system.

Exercise 6.5.2 If one population is growing at 20% a year and the other is declining at 10%

a year. What would be the matrix that describes this system? Draw a trajectory of this system.

Exercise 6.5.3 For the exercise above, plot time series graphs for each population separately

to show that it is undergoing exponential growth or decline.

To understand this long-term behavior better, we can examine geometrically how a system’s

state vector is transformed by a matrix. Let’s use the matrix
[
1.4 0

0 0.8

]

and apply it to three test vectors

(
50

0

)

,

(
50

50

)

, and

(
0

50

)

. We get

[
1.4 0

0 0.8

](
50

0

)

=

(
70

0

) [
1.4 0

0 0.8

](
50

50

)

=

(
70

40

) [
1.4 0

0 0.8

](
0

50

)

=

(
0

40

)

If we plot these (Figure 6.21), we see that if a vector is along the X or Y axis, it just grows

or shrinks when multiplied by the matrix. However, a vector in general position is rotated in

addition to growing.

There is one more case we have to deal with. So far, all the entries in our matrices have

been positive real numbers. We have been thinking of examples in population dynamics, and the

only multipliers that make sense in population dynamics are positive real numbers. Suppose, for

example, that one of the matrix entries was negative. Then when we applied the matrix to a

vector of populations, one of the populations would become negative, which makes no sense in

the real world. But in general, state variables can take on any values, positive or negative, and

in these cases, negative multipliers make sense.
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0 50

50

X

Y

Figure 6.21: Black colors denote the three test vectors. Red colors denote the vectors that result

after applying the matrix to these test vectors.

Consider, for example, the matrix
[
−1.4 0

0 0.8

]

If we begin with an initial condition
(
X0
Y0

)

=

(
50

50

)

then the next value is
(
X1
Y1

)

=

[
−1.4 0

0 0.8

](
50

50

)

=

(
−1.4× 50 + 0× 50
0× 50 + 0.8× 50

)

=

(
−70
40

)

If we apply the matrix repeatedly, we get a trajectory that flips back and forth between

positive and negative X values, since multiplying twice by a negative number gives a positive

number. This results in an oscillation. This particular oscillation has a growing amplitude, since

| − 1.4| > 1. At the same time, the dynamics along the Y axis are shrinking, since 0.8 < 1

(Figure 6.22).

(X0 , Y0) = (50, 50)

-600 -400 -200 200 400 600

50

(X1 , Y1) = (-70, 40)

X

Y

0

Figure 6.22: When the dominant eigenvalue is negative, repeated applications of the matrix still

result in a trajectory that lies along the dominant eigenvector (here the X axis), while flipping

back and forth between positive and negative X values.
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Note that as the number of iterations grows, the trajectory grows flatter and flatter, and it

clings more and more to the X axis. Thus the long-term behavior of this system will be dominated

by the changes in X, because | − 1.4| > |0.8| and −1.4 is the eigenvalue in the X direction.

For every matrix, let’s define its principal eigenvector as the eigenvector whose eigenvalue

has the largest absolute value. (Since these matrices are diagonal, their eigenvalues are simply

the matrix entries on the main diagonal, and the corresponding eigenvectors are the X and Y

axes.)

We can now make a general statement, which is illustrated by all three examples: the long-

term behavior of an iterated matrix dynamical system is dominated by the principal eigenvalue,

and the state point will evolve until its motion lies along the principal eigenvector.

We can now summarize the behavior of 2D decoupled linear discrete-time systems. These are

the systems represented by the matrix
[
α 0

0 β

]

They have a unique equilibrium point at (0, 0), and the stability of that equilibrium point is

determined by the absolute value of α and β:

• If |α| > 1 and |β| > 1, then the equilibrium point is purely unstable.

• If |α| < 1 and |β| < 1, then the equilibrium point is purely stable.

• If |α| < 1 and |β| > 1 (or the reverse, |α| > 1 and |β| < 1), then the equilibrium point is

an unstable saddle point.

Moreover, the signs of α and β determine whether the state point oscillates on its way toward

or away from the equilibrium point.

• If α < 0, there is oscillation along the X axis.

• If β < 0, there is oscillation along the Y axis.

• If α > 0, there is no oscillation along the X axis.

• If β > 0, there is no oscillation along the Y axis.

Exercise 6.5.4 By determining the absolute value and the signs of α and β, predict the long-

term behavior of the four discrete dynamical systems described by the following matrices:

a)

[
−2 0

0 0.5

]

b)

[
1.3 0

0 0.6

]

c)

[
−0.2 0

0 0.8

]

d)

[
0.5 0

0 0.8

]

and then verify this prediction by iterating the matrix to simulate the dynamical systems.

Linear Coupled Two-Dimensional Systems

In the more general case, of course, X and Y are coupled: the next X value depends on both

the previous X value and the previous Y value, and so does the next Y value. This gives us a

matrix
XN+1 = aXN + bYN

YN+1 = cXN + d YN
=⇒

(
XN+1
YN+1

)

=

(
aXN + bYN
cXN + d YN

)
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which can then be written in the matrix form
(
XN+1
YN+1

)

=

[
a b

c d

](
XN
YN

)

where the off-diagonal entries are not zero.

We have already seen that such a matrix has eigenvalues λ1 and λ2. Generically, these com-

pletely determine the action of the matrix.

• If λ1 and λ2 are real numbers, then there exist eigenvectors U and V corresponding to

those eigenvalues.

• If an eigenvalue has absolute value less than 1, the matrix shrinks vectors lying along that

eigenvector.

• If an eigenvalue has absolute value greater than 1, the matrix expands vectors lying along

that eigenvector.

• If an eigenvalue is negative, the action of the matrix is to flip back and forth between

negative and positive values along that eigenvector.

• The other case was that λ1 and λ2 are a pair of complex conjugate eigenvalues, and then

the action of the matrix was a rotation.

We will now use exactly these insights to draw conclusions about matrices as discret-time

dynamical systems: to determine the stability of the equilibrium point at (0, 0), find the eigen-

values of the matrix and infer stability.

Let’s look at some examples.

A Saddle Point: The Black Bear Model

We previously saw a model of black bear populations in which the juvenile and adult populations

in the (N + 1)st year were given as a linear function of the populations in the Nth year:

JN+1 = 0.65JN + 0.5AN

AN+1 = 0.25JN + 0.9AN
=⇒

(
JN+1
AN+1

)

=

(
0.65JN + 0.5AN
0.25JN + 0.9AN

)

where 0.65 is the fraction of juveniles who remain alive as juveniles in the next year, and 0.25

is the fraction of juveniles who mature into adults that year. Furthermore, 0.5 is the birth rate

with which adults give birth to juveniles, and 0.9 is the fraction of adults who survive into the

next year.

The matrix form is (
JN+1
AN+1

)

=

[
0.65 0.5

0.25 0.9

](
JN
AN

)

We saw that if we iterated M repeatedly, the juvenile and adult populations went to infinity

(Figure 6.4 on page 292). We will now explain why that is the case by looking at the eigenvalues

and corresponding eigenvectors of M.

First, let’s find the eigenvalues for the matrix

M =

[
0.65 0.5

0.25 0.9

]

by plugging the matrix coefficients into the characteristic equation (equation (6.3) on page 302):

λ =
(0.65 + 0.9)±

√

(0.65 + 0.9)2 − 4(0.65× 0.9− 0.25× 0.5)
2
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=
1.6±

√

(0.75)2

2
=
1.55± 0.75

2

= (1.15, 0.4)

Therefore, the two eigenvalues are

λ1 = 1.15 and λ2 = 0.4

Note that these are real numbers and that |λ1| > 1 and |λ2| < 1. Therefore, the behavior

must have one stable direction and one unstable direction. In other words, it must be a saddle

point.

To find the axes of the saddle point, we will calculate the eigenvectors U and V corresponding

to each eigenvalue. Let’s say that U =

(
J

A

)

. The matrix M acts like multiplication by λ1 along

U, which means that

MU = λ1U

So we can say

MU =

[
0.65 0.5

0.25 0.9

](
J

A

)

=

(
0.65J + 0.5A

0.25J + 0.9A

)

= λ1U = 1.15

(
J

A

)

=

(
1.15J

1.15A

)

So
0.65J + 0.5A = 1.15J =⇒ A = J

0.25J + 0.9A = 1.15A =⇒ A = J

Now A = J is the equation for a line in (J, A) space that has slope = +1. This line is the axis

U. We can choose any vector on the U axis to represent it, for example the vector

(
1

1

)

, which

is then an eigenvector of the matrix M corresponding to the eigenvalue λ1 = 1.15.

The eigenvector corresponding to the second eigenvalue λ2 = 0.4 can be found in a similar

manner. It satisfies

MV = λ2V

Let’s assume V =

(
J

A

)

. Then

MV =

[
0.65 0.5

0.25 0.9

](
J

A

)

=

(
0.65J + 0.5A

0.25J + 0.9A

)

= λ2V = 0.4

(
J

A

)

=

(
0.4J

0.4A

)

So
0.65J + 0.5A = 0.4J =⇒ A = −0.5J
0.25J + 0.9A = 0.4A =⇒ A = −0.5J

The equation A = −0.5J is the equation for a line in (J, A) space that has slope = −0.5.
This line is the axis V. We can choose any vector on the V axis to represent it, for example the

vector

(
−2
1

)

, which is then an eigenvector of the matrix M corresponding to the eigenvalue

λ2 = 0.4.

If we plot these eigenvectors and choose a point, let’s say
(
J0
A0

)

=

(
10

50

)
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as our initial condition and apply the matrix on this vector once, we get
(
J1
A1

)

=

[
0.65 0.5

0.25 0.9

](
10

50

)

=

(
0.65× 10 + 0.5× 50
0.25× 10 + 0.9× 50

)

=

(
31.5

47.5

)

We see that the action of this matrix is to push the state point closer to the U axis while

moving away from the V axis. Thus, for this initial condition, the action of the matrix is to

increase the number of juveniles and decrease the number of adults in the first year (Figure 6.23).

50

50 U

V

50
J

A

λ2=  0.4( )

λ1=  1.15( )

(J0 , A0) (J1 , A1) 

Figure 6.23: One application of the matrix M to the point (J0, A0) takes it to (J1, A1) which is

closer to the dominant eigenvector U axis and further from the V axis.

If we iterate the matrix many times from two different initial conditions, we see that successive

points march toward the U axis and out along it. Since the U axis is the line A = J, we can say

that the populations of the two age groups approach a 1 : 1 ratio, while the whole population

grows larger and larger (Figure 6.24).
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200
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V

(J0, A0) = (10, 50)

J

A

(J0, A0) = (100, 20)

U

V

Figure 6.24: After repeated iterations of the matrix M, the long-term trajectory lies along the

direction of the dominant eigenvector U axis, regardless of the initial conditions. Eventually, the

ratio of adults to juveniles approaches a constant value.

Finally, our theoretical prediction of “saddle point” can be confirmed by applying the matrix

repeatedly to a set of initial conditions lying on a circle. In this way, we can construct a graphical

picture of the action of M. We see that the action is to squeeze along the V axis and expand

along the U axis (Figure 6.25).

Notice an interesting feature of Figure 6.25. We started with a circle of initial conditions, but

by the fifth iteration, the original circle had flattened nearly into a line, and that line was lying

along the principal eigenvector.
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J

A U

V

Figure 6.25: One application of the J-A matrix to a circle of initial conditions (black dots)

transforms them into an oval (dark gray dots). Applying the matrix for the second time, it

flattens the oval even further and expands it along the U axis (light gray dots). By the fifth

iteration (red dots), the initial circle has been transformed into a line lying along the principal

eigenvector and expanding in that direction.

A Stable Equilibrium Point: Black Bear in a Bad Year

Let’s consider the alternative scenario for the black bear, in a bad year.

We modeled “bad year” by lowering the birth rate from 0.5 to 0.4, and increasing the death

rate for juveniles to 40%, with 50% of them remaining juvenile and only 10% maturing to adults.

The juvenile population dynamics are

JN+1 = 0.5JN + 0.4AN

We also increased the adult death rate to 20%, and therefore, the survival rate will be

1− 20% = 80%. The adult population dynamics are therefore

AN+1 = 0.1JN + 0.8AN

Putting these together, we get
(
JN+1
AN+1

)

=

(
0.5JN + 0.4AN
0.1JN + 0.8AN

)

The matrix that describes the “bad year” dynamics is

Mbad =

[
0.5 0.4

0.1 0.8

]

Recall that when we iterated Mbad repeatedly, both juvenile and adult populations appeared

to go to extinction (Figure 6.5 on page 292). We can explain this long-term behavior by studying

the eigenvalues and corresponding eigenvectors of Mbad .
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What are the dynamics of this system? First, let’s find the eigenvalues for the matrix by

plugging the matrix coefficients into the characteristic equation

λ =
(a + d)±

√

(a + d)2 − 4(ad − cb)
2

We get

λ =
(0.5 + 0.8)±

√

(0.5 + 0.8)2 − 4(0.5× 0.8− 0.1× 0.4)
2

=
1.3±

√

(0.25)

2
=
1.3± 0.5
2

= (0.9, 0.4)

Therefore, the two eigenvalues are

λ1 = 0.9 and λ2 = 0.4

Note that these are real numbers and that both |λ1| < 1 and |λ2| < 1. Therefore, the

behavior must have two stable directions. In other words, it must be a purely stable node.

To find the axes of the node, we will calculate the eigenvectors U and V corresponding to

each eigenvalue. Let’s say U =

(
J

A

)

. The matrix Mbad acts like multiplication by λ1 along U,

which means that

Mbad U = λ1U

So we can say

MbadU =

[
0.5 0.4

0.1 0.8

](
J

A

)

=

(
0.5J + 0.4A

0.1J + 0.8A

)

= λ1U = 0.9

[
J

A

]

=

(
0.9J

0.9A

)

So
0.5J + 0.4A = 0.9J =⇒ A = J

0.1J + 0.8A = 0.9A =⇒ A = J

Now “A = J” is the equation for the line in (J, A) space that has slope = +1. This line is the

axis U. We can choose any vector on the U axis to represent it, for example the vector

(
1

1

)

,

which is then an eigenvector of the matrix Mbad corresponding to the eigenvalue λ1 = 0.9.

The eigenvector corresponding to the second eigenvalue λ2 = 0.4 can be found in a similar

manner. It satisfies

Mbad V = λ2V

Let’s assume V =

(
J

A

)

. Then

MbadV =

[
0.5 0.4

0.1 0.8

](
J

A

)

=

(
0.5J + 0.4A

0.1J + 0.8A

)

= λ2V = 0.4

(
J

A

)

=

(
0.4J

0.4A

)

So
0.5J + 0.4A = 0.4J =⇒ A = −0.25J
0.1J + 0.8A = 0.4A =⇒ A = −0.25J

The equation A = −0.25J is the equation for the line in (J, A) space that has slope = −0.25.
This line is the axis V. We can choose any vector on the V axis to represent it, for example the
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vector

(
−4
1

)

, which is then an eigenvector of the matrix Mbad corresponding to the eigenvalue

λ2 = 0.4.

If we plot these eigenvectors and choose a point
(
J0
A0

)

=

(
10

50

)

as our initial condition and apply the matrix to this vector once, we get the population of the

two age groups in the next year:
(
J1
A1

)

=

[
0.5 0.4

0.1 0.8

](
10

50

)

=

(
0.5× 10 + 0.4× 50
0.1× 10 + 0.8× 50

)

=

(
25

41

)

We see that the action of this matrix is to push the state point closer to the U axis while

moving away from the V axis. So the action of Mbad is to move the state point toward the

U axis, but in contrast to the good year case, Mbad moves the state point to a lower V-value

(Figure 6.26).

J

A

U

V

(J0, A0) = (10, 50)

50

50

25

25

(J1, A1) = (25, 41)

Figure 6.26: One application of the matrix Mbad to the point (J0, A0) takes it to (J1, A1) which

is closer to both the U and V axes.

If we iterateMbad repeatedly, the state point always walks toward theU axis while approaching

(0, 0), which means extinction (Figure 6.27).
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V
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(J0 , A0) = (50, 20)

50
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25
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Figure 6.27: After repeated iterations of the matrix Mbad , the ratio of adults to juveniles is

approaching a constant value, regardless of the initial conditions. Notice that the both popula-

tions are decreasing.
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Finally, we confirm our theoretical prediction of “stable node” by applying the Mbad matrix

repeatedly to a set of initial conditions that lie on a circle. The effect is to collapse the circle

onto the U axis along the direction of the V axis while shrinking along the U axis. The overall

effect is to shrink the circle to the point (0, 0) (Figure 6.28).

J

A
U

V

Figure 6.28: One application of the Mbad matrix to a circle of initial conditions (black dots)

transforms them into an oval (dark gray dots). Applying the matrix for the second time, it

flattens the oval even further and shrinks it along the U axis (light gray dots). By the fifth

iteration (red dots), the initial circle has been transformed into a line lying along the principal

eigenvector and continually shrinking along that direction.

Stable Equilibrium Point with Oscillatory Approach

We also simulated another Leslie matrix for a two-stage population. In this case, 10% of juveniles

remain juvenile, 40% become adults, and the rest die. The birth rate is 1.4 offspring per adult,

and only 20% of adults survive each year. This gives us the matrix

Mosc =

[
0.1 1.4

0.4 0.2

]

Repeated iteration ofMosc resulted in an oscillatory approach to a stable equilibrium point at

(0, 0) (Figure 6.6 on page 293). We can understand this behavior by considering the eigenvalues

and corresponding eigenvectors of Mosc .

First, let’s find the eigenvalues for the matrix by plugging the matrix coefficients into the

characteristic equation

λ =
(a + d)±

√

(a + d)2 − 4(ad − cb)
2

We get

λ =
(0.1 + 0.2)±

√

(0.1 + 0.2)2 − 4(0.1× 0.2− 0.4× 1.4)
2

=
0.3±

√

(2.25)

2
=
0.3± 1.5
2

= (0.9,−0.6)
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Therefore, the two eigenvalues are

λ1 = 0.9 and λ2 = −0.6
These two eigenvalues are both real, and both have absolute value less than 1, so we know

that the equilibrium point is stable. To find the axes of the equilibrium point, we need to find

the corresponding eigenvectors.

First

MoscU = λ1U

We can say that

MoscU =

[
0.1 1.4

0.4 0.2

](
J

A

)

=

(
0.1J + 1.4A

0.4J + 0.2A

)

= λ1U = 0.9

(
J

A

)

=

(
0.9J

0.9A

)

This gives us
0.1J + 1.4A = 0.9J =⇒ A = 1.75J

0.4J + 0.2A = 0.9A =⇒ A = 1.75J

which implies that the eigenvector U lies on the line A = 1.75J, which has slope 1.75. The

vector (J, A) = (4, 7) will serve nicely as an eigenvector on this line.

For the second eigenvector, we solve

MoscV = λ2V

We can say that

MoscV =

[
0.1 1.4

0.4 0.2

](
J

A

)

=

(
0.1J + 1.4A

0.4J + 0.2A

)

= λ2U = −0.6
(
J

A

)

=

(
−0.6J
−0.6A

)

yielding
0.1J + 1.4A = −0.6J =⇒ A = −0.5J
0.4J + 0.2A = −0.6A =⇒ A = −0.5J

The second eigenvector is therefore any vector on the line A = −0.5J, which is the line of

slope −0.5. For example, we can take (J, A) = (2,−1) as our eigenvector V.

Having calculated the eigenvalues and the eigenvectors, we can now make the theoretical

prediction that this matrix will shrink slowly along U and collapse more quickly toward the U

axis in an oscillating manner. The presence of a negative eigenvalue means that the matrix will

flip the state point back and forth on either side of the U axis. This flipping will occur with

ever-decreasing amplitudes, since |λ2| < 1.
Let’s verify these predictions by applying the matrix to a test point (Figure 6.29). We see,

exactly as predicted, that the state point oscillates around the U axis with diminishing amplitude

as it approaches the origin.

Finally, if we apply the matrix repeatedly to a circle of initial conditions, we see that the first

iteration has flattened the circle into an oval, which is pointing below the U axis. The second

iteration flattens and shrinks the oval further and tilts it upward, so that it is pointing above
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100 200

100

V

J

λ2=  -0.6( )

U λ1=  0.9( )

A

Figure 6.29: Iteration of the matrix Mosc causes the state point to diminish continually along

the U axis, while also diminishing along the V axis, but in an oscillatory manner.

the U axis, while the third iteration further shrinks and flattens the oval and tilts it back to

point below the U axis. The oscillatory tilt above and below the U axis is caused by the negative

eigenvalue along the V direction (Figure 6.30).

0

1

0

1

2

0

1

2

3J

A

J

A

J

A

Figure 6.30: Starting with a circle of initial conditions (0), repeated action of the matrix Mosc
flattens the circle into an ellipse (1), and flips the ever-flattening ellipse back and forth across

the U axis, in a diminishing manner (2, 3).

Thus the overall behavior is an oscillatory approach to the stable equilibrium point at (0, 0),

so both populations shrink to zero.

Unstable Equilibrium Point with Oscillatory Departure

In the previous example ofMosc , the black bear population collapse is due partly to the low birth

rate of 1.4 offspring per adult. If we raise this birth rate to 2 offspring per adult, we get the

matrix

Mosc2 =

[
0.1 2

0.4 0.2

]

and this new system has a distinctly different behavior. Now we have an unstable oscillatory

equilibrium point (Figure 6.31).
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100

initial condition

100 200
J

A

0 300

Figure 6.31: Iteration of the matrix Mosc2 results in a trajectory that is oscillatory/stable in one

direction, and expanding (unstable) in the other.

Exercise 6.5.5 Calculate the eigenvalues and eigenvectors of this matrix with increased birth

rate, and use them to explain the behavior in Figure 6.31.

Neutral Equilibria: Markov Processes, and an Example in Epidemiology

We modeled the susceptible and infected populations in an epidemic, using a Markov process

model (“Neutral Equilibria” on page 293). We saw that when we iterated the matrixMSI repeat-

edly, we observed that the system would go to a stable equilibrium, but the equilibrium depended

on the initial condition (Figure 6.7 on page 294). We can explain why this occurs by studying

the eigenvalues and corresponding eigenvectors of MSI . We will see that in Markov process

models, there is always an eigenvalue λ = 1 that gives us a line of equilibrium points along its

corresponding eigenvector.

As before, the discrete-time dynamics for this S-I compartmental model is written in matrix

form as
(
SN+1
IN+1

)

=

[
1− a b

a 1− b

](
SN
IN

)

We made the assumption that at each time point (such as day, week, or month), a constant

fraction a of the susceptibles become infected and a constant fraction b of the infecteds recover

to become susceptible again. If a is the fraction of S that become I, then the fraction of S that

remain S must be 1 − a. If b is the fraction of I that become S, then the fraction of I that

remain I must be 1− b.
We chose a = 0.1 and b = 0.2, giving us the matrix

MSI =

[
0.9 0.2

0.1 0.8

]

What are the dynamics of this system? Let’s find the eigenvalues for this matrix by plugging

the matrix coefficients into the characteristic equation (equation (6.3) on page 302); we get

λ =
(0.9 + 0.8)±

√

(0.9 + 0.8)2 − 4(0.9× 0.8− 0.1× 0.2)
2

=
1.7±

√
0.09

2
=
1.7± 0.3
2

= (1, 0.7)
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Therefore, the two eigenvalues are

λ1 = 1 and λ2 = 0.7

To find their corresponding eigenvectors U and V, let’s say U =

(
S

I

)

. The matrix MSI acts

like multiplication by λ1 along U. This means that

MSIU = λ1U

MSIU =

[
0.9 0.2

0.1 0.8

](
S

I

)

=

(
0.9S + 0.2I

0.1S + 0.8I

)

= λ1U = 1

(
S

I

)

=

(
S

I

)

So
0.9S + 0.2I = S =⇒ I = 0.5S

0.1S + 0.8I = I =⇒ I = 0.5S

Now I = 0.5S is the equation of a line in (S, I) space that has slope 0.5. This line is the axis

U. We can choose any vector on the U axis to represent it, for example the vector

(
2

1

)

, which

is then called an eigenvector of the matrix MSI corresponding the eigenvalue λ1 = 1.

The eigenvector corresponding to the second eigenvalue λ2 = 0.7 can be found in a similar

manner. It satisfies

MSIV = λ2V

Let’s assume V =

(
S

I

)

. Then

MSIV =

[
0.9 0.2

0.1 0.8

](
S

I

)

=

(
0.9S + 0.2I

0.1S + 0.8I

)

= λ2V = 0.7

(
S

I

)

=

(
0.7S

0.7I

)

So
0.9S + 0.2I = 0.7S =⇒ I = −S
0.1S + 0.8I = 0.7I =⇒ I = −S

Since I = −S is the equation of a line in (S, I) space that has slope = −1, this line is the

axis V. We can choose any vector on the U axis to represent it, for example the vector

(
1

−1

)

,

which is then called an eigenvector of the matrix MSI corresponding the eigenvalue λ2 = 0.7.

The action of MSI . The matrix acts as multiplication by λ1 = 1 along U, and it acts as

multiplication by λ2 = 0.7 along V. The problem comes when we try to say whether the point

(0, 0) is stable or unstable. Along the V eigenvector, it has |λ2| = 0.7 < 1, so it is clearly stable

in the V direction. But in the U direction, it is neither expanding nor shrinking! The eigenvalue

λ1 = 1 along the U direction means that every point on U is an equilibrium point.

According to this analysis, the action of the matrix MSI on a point should be to compress it

along V axis and leave it unchanged (that is, multiplied by λ1 = 1) along the U axis.

This prediction is confirmed by some experiments with the matrix MSI .

If we start with an initial condition
(
S0
I0

)

=

(
50

50

)
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and apply the matrix to this vector once, we get
(
S1
I1

)

=

[
0.9 0.2

0.1 0.8

](
50

50

)

=

(
0.9× 50 + 0.2× 50
0.2× 50 + 0.8× 50

)

=

(
55

45

)

If we decompose this initial condition along the directions of the two eigenvectors, we get

the U-component and the V-component. The action of the matrix has no effect on the U-

component, and it shrinks the V-component to 70% of its previous value (Figure 6.32, left). If

we now apply MSI repeatedly, we see that the overall effect is to walk the point down along the

V direction toward the U axis (Figure 6.32, right).

50

50

S

I

V λ2=  0.7( )

U λ2=  1( )

(S1 , I1) = (55, 45)(S0 , I0) = (50, 50)

50

50

S

I

U

V

(S0 , I0) = (50, 50)

Figure 6.32: Left: Application of the S-I matrix MSI to the initial condition (S0, I0) results in

the state point (S1, I1), closer to the U axis but at a constant distance from the V axis. Right:

Repeated applications of MSI approach the U axis while remaining a constant distance from V.

Indeed, if we start with any initial condition on the line parallel to the V axis passing through

(50, 50), the dynamical system will converge to the same equilibrium point. For example, if we

take an initial condition on the other side of the U axis, say (90, 10), we see that the action of

the matrix is to walk the point up along the V direction toward the U axis (Figure 6.33).

-50 50 100

50

100

S

I

UV

(S0 , I0) = (10, 90)

-50 50 100

50

100

S

I

U
V

(S0 , I0) = (90, 10)

Figure 6.33: The U axis is a line of stable equilibrium points for the matrix MSI . Any initial

condition on a given line parallel to the V axis will approach the same equilibrium point on the

U axis.

Thus it is clear from both theoretical prediction and experiments that it is only the U com-

ponent of the initial condition that determines the final equilibrium point.
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Therefore, if we start from an initial condition along a different line, say (10, 60), we see that

the action of MSI is to walk the state point toward a different equilibrium point on the U axis

(Figure 6.34).

-50 50 100

50

100

S

I

U
V

(S0 , I0) = (10, 90)

(S0 , I0) = (10, 60)

Figure 6.34: Two trajectories (red and black) starting from different initial conditions that do

not lie on the same line parallel to the V axis, will both approach the U axis but toward different

equilibrium points.

An effective way to visualize the action of any matrix M is to take a large number of initial

conditions in a circle and look at what repeated iterations of M do to the circle.

When we make this plot for the S-I matrix, we see that the action of MSI is to flatten the

circle into an oval. If we applyMSI repeatedly, the oval gets thinner and thinner and shifts its axis

slightly until it begins to resemble a thick flat line lying exactly along the U axis (Figure 6.35).

S

I

U

V

S

I

Figure 6.35: Left: one application of the S-I matrix to a circle of initial conditions (dark gray)

transforms them into a oval. Right: repeated applications flatten and rotate the oval. By the

tenth iteration (red dots), the initial circle has been transformed into a line lying along the

principal eigenvector.
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Thus, we see here again the fact that repeated iteration of a matrix from any set of initial

conditions results in a thin oval whose principal axis moves closer and closer to the principal

eigenvector. Finally, for a large number of iterations, the resulting structure resembles a line,

a thin finger pointing along the principal eigenvector. And so once again, when you iterate a

matrix many times, you are looking at its principal eigenvector.

Markov processes Note that in this case, there are no births or deaths; the number of people

remains constant. Therefore, the sum of the entries in each column of the matrix must be equal

to 1, because each person in the compartment must go somewhere.

fraction of

 I who become S
fraction of

 S who remain S

fraction of

 I who remain I

fraction of

 S who become I

1-a b

a b-1

Σ =1 Σ =1 Σ =1 Σ =1

A matrix whose columns all add up to 1 is called a stochastic matrix. It’s called “stochastic”

(which means involving chance or probability) because we can interpret the matrix entries as

transition probabilities from one compartment to another.

We can imagine a large number of particles, in this case people, hopping from one compart-

ment to another, with hopping probabilities given by the elements of the matrix. Every matrix of

transition probabilities like this one will have the property that the columns all add to 1, because

probabilities must add to 1. When we interpret the matrix as a matrix of transition probabilities,

the process is called a Markov process.

In all such processes, λ = 1 will always be an eigenvalue, and hence all equilibria are neutral

equilibria. In a neutral equilibrium system, the behavior will always be to go to a stable final

state, but the stable final state depends on the initial condition.

Neutral Oscillations from the Locust Model

We saw that the three-variable locust model consists of three stages: eggs (E), hoppers (juve-

niles) (H), and adults (A) (Bodine et al. 2014). The egg and hopper stages each last one year,

with 2% of eggs surviving to become hoppers and 5% of hoppers surviving to become adults.

Adults lay 1000 eggs (as before, we are modeling only females) and then die. The model was

EN+1 = 0 · EN + 0 ·HN + 1000AN
HN+1 = 0.02EN + 0 ·HN + 0 · AN
AN+1 = 0 · EN + 0.05HN + 0 · AN

=⇒ L =

⎡

⎣

0 0 1000

0.02 0 0

0 0.05 0

⎤

⎦

We saw that the model gave us neutral oscillations, which depended on the initial conditions

(Figure 6.8 on page 295). We can confirm this by plotting the trajectory of repeated applications

of L to two different initial conditions in 3-dimensional (E,H,A) state space (Figure 6.36).
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Figure 6.36: Two trajectories resulting from simulations of the locust population model with two

different initial conditions.

To explain this neutral oscillatory behavior, we need to study the eigenvalues of the matrix

L; see Exercise 6.5.6 below.

Exercise 6.5.6 Use SageMath to calculate the eigenvalues of L. Verify that they are

λ1 = 1, λ2 = −
1

2
+

√
3

2
i, λ3 = −

1

2
−
√
3

2
i

What do the eigenvalues tell you about the behavior you have just seen? Relate each of the

phenomena you saw above to specific properties of the eigenvalues.

Lessons

We have seen that the equilibrium point behavior of a linear discrete-time dynamical system is

entirely determined by the eigenvalue and eigenvector decomposition of its matrix representation.

There is also an important lesson about the long-term behavior of linear (or matrix) discrete-

time systems that we remarked on in each of our examples: if you take a blob of points and

apply a matrix M to them many times, you will be looking at the principal eigenvector of M.

Put another way, the long-term behavior of a linear discrete-time system is dominated by its

largest eigenvalue and the corresponding eigenvector.

There is a nice algebraic way to see why this is true. Suppose our n-dimensional dynamical

system is

XN+1 = f (XN) =MXN

If we start with an initial condition X0, then

XN =M
NX0

Now suppose that the eigenvalues of M, in descending order of magnitude (absolute

value), are λ1, λ2, . . . , λn, and the corresponding eigenvectors are E1,E2, . . . ,En. In the basis
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{E1,E2, . . . ,En} formed by the n eigenvectors, there are constants c1, c2, . . . , cn such that we

can decompose the initial condition X0 into

X0 = c1E1 + c2E2 + · · ·+ cnEn
Then applying M to X0 once, we get

X1 =M(X0) =M
(

c1E1 + c2E2 + · · ·+ cnEn
)

=M
(

c1E1

)

+M
(

c2E2

)

+ · · ·+M
(

cnEn

)

= c1ME1 + c2ME2 + · · ·+ cnMEn
= c1λ1E1 + c2λ2E2 + · · ·+ cnλnEn

And similarly,

X2 =M(X1) =M
(

c1λ1E1 + c2λ2E2 + · · ·+ cnλnEn
)

=M
(

c1λ1E1

)

+M
(

c2λ2E2

)

+ · · ·+M
(

cnλnEn

)

= c1λ
2
1E1 + c2λ

2
2E2 + · · ·+ cnλ2nEn

If we iterate M 100 times, we get

X100 =M(X99) =M
(

c1λ
99
1 E1 + c2λ

99
2 E2 + · · ·+ c99n λnEn

)

=M
(

c1λ
99
1 E1

)

+M
(

c2λ
99
2 E2

)

+ · · ·+M
(

cnλ
99
n En

)

= c1λ
100
1 E1 + c2λ

100
2 E2 + · · ·+ cnλ100n En

If λ1 is even slightly larger than λ2, then λ1001 will be much larger then λ1002 . Therefore, the

dynamics along the principal eigenvector will dominate the long-term behavior of the matrix.

This principle is beautifully illustrated in the following example.

Further Exercises 6.5

1. A swan population can be subdivided into young swans (Y ) and mature swans (M). We

can then set up a discrete-time model of these populations as follows:
(
YN+1
MN+1

)

=

[
0.57 1.5

0.25 0.88

](
YN
MN

)

a) Explain the biological meaning of each of the four numbers in the matrix of this

model.

b) It turns out that the eigenvectors of this matrix are approximately as follows (you can

check this using SageMath if you wish):

(
1.9

−0.6

)

with eigenvalue 0.09 and

(
1.9

1.0

)

with eigenvalue 1.36. What will happen to the swan population in the long run?

c) Many years in the future, if there are 2000 mature swans, approximately how many

young swans would you expect there to be?
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2. A blobfish population consists of juveniles and adults. Each year, 50% of juveniles become

adults and 10% die. Adults have a 75% chance of surviving from one year to the next

and have, on average, four offspring a year.

a) Write a discrete-time matrix model describing this population.

b) If the population this year consists of 50 juveniles and 35 adults, what will next year’s

population be?

c) What will happen to the population in the long run?

6.6 Google PageRank

Shortly after the invention of the World Wide Web, programs began to appear that would enable

you to search over the web to find websites, or “pages,” that mentioned a specified key word or

phrase.

The early versions of these “web browsers” or “search engines” were not very good. If you

typed in “Paris, France” you were as likely to be directed to the personal web page of a couple

from Seattle who had recently visited Paris and posted photos as to, say, the French government

website or the official site of the city of Paris.

Something had to be done to enable the search engine to rank websites according to how

“important” they are. But what does “important” mean? One answer to this was provided by two

graduate students in computer science, Sergey Brin and Larry Page, who published an article in

the journal Computer Networks in 1998, called “The Anatomy of a Large-Scale Hypertextual Web

Search Engine” (Brin and Page 1998). They began their paper thus: “In this paper, we present

Google, a prototype of a large-scale search engine which makes heavy use of the structure present

in hypertext. Google is designed to crawl and index the Web efficiently and produce much more

satisfying search results than existing systems.”

Their key idea is that we want not just websites, but websites that are themselves pointed to

or voted for by other important websites, that is, by websites that are themselves pointed to or

“voted for” by other important websites, which then “pass on” their importance to the sites that

they point to. This regress suggests a dynamical system or iterated matrix system, iterating the

“points to” function over and over.

As we saw in the discussion of discrete-time dynamical systems, the result of iterating a

matrix M over and over is the principal eigenvector of M. Indeed, Page and Brin describe their

new concept, called PageRank, which assigns an importance PR(A) to every page A, as follows:

“PageRank or PR(A) can be calculated using a simple iterative algorithm, and corresponds to

the principal eigenvector of the normalized link matrix of the web.”

The key idea is that we can represent networks with matrices. So let’s consider a net that is

composed of pages p1, p2, . . . , pn. First, we will create the “points to” matrix, which is
⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

where ai j = 1 if page pj points to page pi , and ai j = 0 if not.
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page page

ji
aij = 1
points to

Note that the sum of the elements in each row i is the total number of pages that point to

page i , and the sum of the elements in each column j is the total number of pages that page j

points to:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 . . . a1j . . . a1n
...

...
...

ai1 . . . ai j . . . ain
...

...
...

an1 . . . anj . . . ann

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

sum of the ith row

ai1 + · · ·+ ai j + · · ·+ ain =

total number of

pages that

point to page i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 . . . a1j . . . a1n
...

...
...

ai1 . . . ai j . . . ain
...

...
...

an1 . . . anj . . . ann

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

sum of the jth column

a1j + · · ·+ ai j + · · ·+ anj =
total number of

pages that

page j points to

Then we have to account for the fact that a webpage might point to many other pages. A

“vote” from a selective page counts more than a “vote” from a page that points to lots of other

pages, so if one page points to many others, the importance score that it passes on to the other

pages must be diluted by the total number of outbound links. For example, if page j points to

page i , then ai j = 1. But this will need to be diluted by the total number of pages that page j

points to, which is a1j + a2j + · · ·+ anj .
So we define Li ,j as the normalized weight of page j ’s vote on page i :

Li ,j =
page j ’s vote on page i (0 or 1)

total number of pages that page j pointed to
=

ai j
a1j + a2j + · · ·+ anj

We now define the “links to” matrix

L = [Li j ] =

⎡

⎢
⎢
⎢
⎣

L11 L12 . . . L1n
L21 L22 . . . L2n
...

...
. . .

...

Ln1 Ln2 . . . Lnn

⎤

⎥
⎥
⎥
⎦

Then let’s define the PageRank vector as the vector made up of the “importance” of each

page p1, p2, . . . , pn. This is the vector that the search engine needs to calculate to assign an

importance to each page in the network. Its components PR1, PR2, . . . , PRn are the importance

scores of each page. The higher the score, the more important the page. The more important

the page, the higher it appears in the search engine results:

PR =

⎛

⎜
⎜
⎜
⎝

importance of p1
importance of p2

...

importance of pn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

PR1
PR2

...

PRn

⎞

⎟
⎟
⎟
⎠
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To start with, we will assume an initial condition, which we will call “old PR,” in which all n

pages have equal importance. We will normalize the total importance to 1, so

old PR =

⎛

⎜
⎜
⎜
⎝

old PR1
old PR2

...

old PRn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

n
1

n
...

1

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Then we update the oldPR vector. The new value of PRi is the sum of the normalized

incoming links to page i . In this way, each page that points to page i “passes on” a fraction of

its own importance to page i .

That is, we update the page rank PRi by assigning the new value

new PRi = Li1 ·
(

old PR1

)

+ Li2 ·
(

old PR2

)

+ · · ·+ Lin ·
(

old PRn

)

which is the sum of the normalized weight of each page j ’s vote on page i × page j ’s page rank.

If we do this update for each of the old page ranks, we get a “new” page rank vector

new PR =

⎛

⎜
⎜
⎜
⎝

new PR1
new PR2

...

new PRn

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

L11 · (old PR1) + L12 · (old PR2) + · · ·+ L1n · (old PRn)

L21 · (old PR1) + L22 · (old PR2) + · · ·+ L2n · (old PRn)
...

Ln1 · (old PR1) + Ln2 · (old PR2) + · · ·+ Lnn · (old PRn)

⎞

⎟
⎟
⎟
⎠

This can be rewritten as

new PR =

⎛

⎜
⎜
⎜
⎝

new PR1
new PR2

...

new PRn

⎞

⎟
⎟
⎟
⎠
=

⎡

⎢
⎢
⎢
⎣

L11 L12 . . . L1n
L21 L22 . . . L2n
...

...
. . .

...

Ln1 Ln2 . . . Lnn

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

old PR1
old PR2

...

old PRn

⎞

⎟
⎟
⎟
⎠

or in vector form

new PR = L
(

old PR
)

But as Page and Brin saw, this is only a first estimate. The next question is, how important

are the sites that pointed to the sites that pointed to site i? To take that factor into account,

we replace the “new” page rank vector by a “new new” page rank vector

new new PR =











new new PR1
new new PR2

...
new new PRn











=











L11 L12 . . . L1n
L21 L22 . . . L2n
...

...
. . .

...
Ln1 Ln2 . . . Lnn





















new PR1
new PR2

...
new PRn











=











L11 L12 . . . L1n
L21 L22 . . . L2n
...

...
. . .

...
Ln1 Ln2 . . . Lnn





















L11 L12 . . . L1n
L21 L22 . . . L2n
...

...
. . .

...
Ln1 Ln2 . . . Lnn





















old PR1
old PR2

...
old PRn











or in vector form

new new PR = L
(

new PR
)

= L2
(

old PR
)
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In other words, the infinite regress that is contained in the idea of “sites that are linked to by

sites that are linked to by . . . ” is actually a model for a discrete-time dynamical system that is

an iteration of the “link to” matrix.

What happens when we iterate this link matrix L many times? Suppose the eigenvectors of

L are E1,E2, . . . ,En, in descending order of their corresponding eigenvalues, λ1, λ2, . . . , λn. So

λ1 is the largest eigenvalue.

The action of applying L to the initial condition “old PR” many times is then dominated by

the principal eigenvector of L, which is E1. Indeed, there are constants c1, c2, . . . , cn that enable

us to express the initial condition

old PR = c1E1 + c2E2 + · · ·+ cnEn
in the eigenvector basis {E1,E2, . . . ,En}. After iterating the matrix many times, say 100, we

get

L
100
(

old PR
)

= L100
(

c1E1

)

+ L100
(

c2E2

)

+ · · ·+ L100
(

cnEn

)

= c1λ
100
1 E1 + c2λ

100
2 E2 + · · ·+ cnλ100n En

So the long-term behavior of repeatedly iterating L is dominated by the principal eigenvector

E1.

We call the principal eigenvector of the matrix L the page rank vector. Thus the vector

E1,

E1 =

⎛

⎜
⎜
⎜
⎝

PR1
PR2

...

PRn

⎞

⎟
⎟
⎟
⎠

and its components PR1, PR2, . . . , PRn are the page ranks, the final importance scores assigned

to each page. When you search a term, Google presents pages to you in the order of their page

rank eigenvector.

Surfer Model

In our discussion of Markov processes, we saw that a Markov process can be represented by a

matrix (M) each element mi j of which is the probability of a person “hopping” from compartment

j to compartment i in the next time interval.

The long-term behavior of the system is given by the iteration of the matrix, which will tend

to some outcome. As we saw, the results of that iteration are determined by the eigenvector

and eigenvalue decomposition of the matrix.

Brin and Page realized that their “links to” matrix could also be seen as a model of a Markov

process, in which a random web surfer “hops” from one page j to another page i with a probability

equal to the normalized weight of page j ’s vote on page i , which is Li j .

Notice that the “links to” matrix satisfies the key condition that defines a “stochastic” matrix:

each column adds up to 1. For example, the elements of the jth column of the “links to” matrix

are L1j , . . . Li j , . . . Lnj . Recall that the definition of Li j is

Li ,j =
page j ’s vote on page i (0 or 1)

total number of pages that page j pointed to
=

ai j
a1j + · · ·+ anj
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So the sum of the jth column of the “links to” matrix is

L1j + · · ·+ Li j + · · ·+ Lnj =
a1j

a1j + · · ·+ anj
+ · · ·+ ai j

a1j + · · ·+ anj
+ · · ·+ anj

a1j + · · ·+ anj
=
a1j + · · ·+ anj
a1j + · · ·+ anj

= 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11 . . . L1j . . . L1n
...

...
...

Li1 . . . Li j . . . Lin
...

...
...

Ln1 . . . Lnj . . . Lnn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

sum of the jth column

L1j + · · ·+ Li j + · · ·+ Lnj = 1

So the page rank vector can be interpreted in this surfer model as the probability that the

surfer, clicking randomly on each page, will end up on a given page.

An Example of the PageRank Algorithm

Suppose we have a network of four web pages, A,B, C, and D, with links to the other pages as

shown below.

Page B
Page C
Page D

Page A

Page B

Page D

Page B
Page A

Page C
Page A

Page D

Page B

In this network, the “points to” relationship is summarized as

D

A

B C

where the arrow means “points to.” We can then derive the “points to” matrix, more commonly

called a directed adjacency matrix because it shows which pages are linked and the direction of

the link. For example, from the diagram, we know that page A points to page C; therefore, in

the “points to” matrix, we have aC←A = 1:

“points to” matrix =

⎡

⎢
⎢
⎣

aA←A aA←B aA←C aA←D
aB←A aB←B aB←C aB←D
aC←A aC←B aC←C aC←D
aD←A aD←B aD←C aD←D

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

0 1 0 1

1 0 1 1

1 0 0 0

1 0 1 0

⎤

⎥
⎥
⎦

From the “points to” matrix, we can derive the “links to” matrix L by normalizing each “vote”

from page j to page i by the total number of “votes” cast by page j . So for example, the sum
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of the first column of the “points to” matrix is the total number of pages that page A points to,

which is 3. So each vote that A casts has to be divided by 3.

0 1 0 1

1 0 1 1

1 0 0 0

1 0 1 0

∑=3 ∑=1 ∑=2 ∑=2

In this manner, we derive the normalized weights as

D

1
3

1

1
3

1
2

1
3

1
2

1
2

1
2

A

B C

which gives rise to the “links to” matrix

L =

⎡

⎢
⎢
⎣

LA←A LA←B LA←C LA←D
LB←A LB←B LB←C LB←D
LC←A aC←B LC←C LC←D
LD←A LD←B LD←C LD←D

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
1

2
1

3
0

1

2

1

2
1

3
0 0 0

1

3
0

1

2
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If we begin with an initial condition that is the vector of equal weights to each page (0.25),

then the results of repeatedly iterating the matrix L are

PR =

⎛

⎜
⎜
⎝

0.25

0.25

0.25

0.25

⎞

⎟
⎟
⎠

L PR =

⎛

⎜
⎜
⎝

0.38

0.33

0.08

0.21

⎞

⎟
⎟
⎠

L
2 PR =

⎛

⎜
⎜
⎝

0.44

0.27

0.13

0.17

⎞

⎟
⎟
⎠

L
3 PR =

⎛

⎜
⎜
⎝

0.35

0.29

0.15

0.21

⎞

⎟
⎟
⎠

L
4 PR =

⎛

⎜
⎜
⎝

0.40

0.30

0.12

0.19

⎞

⎟
⎟
⎠

L
5 PR =

⎛

⎜
⎜
⎝

0.39

0.29

0.13

0.19

⎞

⎟
⎟
⎠

L
6 PR =

⎛

⎜
⎜
⎝

0.38

0.29

0.13

0.20

⎞

⎟
⎟
⎠

L
7 PR =

⎛

⎜
⎜
⎝

0.39

0.29

0.13

0.19

⎞

⎟
⎟
⎠

L
8 PR =

⎛

⎜
⎜
⎝

0.39

0.29

0.13

0.19

⎞

⎟
⎟
⎠

L
9 PR =

⎛

⎜
⎜
⎝

0.39

0.29

0.13

0.19

⎞

⎟
⎟
⎠

L
10 PR =

⎛

⎜
⎜
⎝

0.39

0.29

0.13

0.19

⎞

⎟
⎟
⎠

Note that the iteration process stabilizes after only a few iterations and reaches a “stationary

distribution” that is the principal eigenvector, which gives us the final page ranks.
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Food Webs

Another example of a Google-style eigenvector-based ranking system can be found in the analysis

of food webs in ecology.

In a food web, nutrients move from one species to another. In an application of the Google

eigenvector concept, Allesina and Pascual wanted to find out whether a given species was

“important for co-extinctions” (Allesina and Pascual 2009). That is, they wanted to know which

species had the biggest impact on the food web and whose loss would therefore be the most

catastrophic.

If the food web has species 1, 2, . . . , k that interact with each other, we will let [ai j ] be the

k×k matrix that represents the “preys on” hierarchy, in other words, the ith row and jth column

entry of the “preys on” matrix is given by ai j = 1 if species j preys on species i .

species species

ji
aij = 1
preys on

Just as Google wants the web pages that are pointed to by web pages that are pointed to

. . . , so in food webs we are interested in species that are preyed on by species that are preyed

on . . . .

We find these “important” species by the same method: start with the “preys on” matrix of 0’s

and 1’s, normalize it to a stochastic matrix (all columns add to 1), and then find the principal

eigenvector. Each species’ importance in this food web is then its corresponding component in

this principal eigenvector.

The ranking that is produced by the principal eigenvector is then interpretable as “the sequence

of the losses that results in the fastest collapse of the network.” Allesina and Pascual argue that

this dominant eigenvector analysis is superior to other approaches to food webs, for example,

those that focus on “hub” or “keystone” species, which are defined as those species that have

the largest number of links to other species.

Input/Output Matrices and Complex Networks

Economics

The history of matrix analysis of networks begins in economics. The economist Wassily Leontieff

produced an input/output matrix analysis of the Unites States economy in 1941. In a matrix

representation of an economy, we have a list of “sectors” s1, s2, . . . , sk , such as steel, water,

rubber, oil. Then we form the k × k matrix [ai j ] in which each entry ai j represents the quantity

of resources that sector j orders from sector i .

sector sector

ji
aij 

orders from

The first practical application came two years later, during World War II. The US government

asked Leontieff to create an input/output matrix representing the Nazi war economy in order to

identify which sectors were the most critical. This was done, and the eigenvector calculation of

this large-dimensional matrix was one of the very early uses of automated computing.

Leontieff used “the first commercial electro-mechanical computer, the IBM Automatic

Sequence Controlled Calculator (called the Mark I), originally designed under the direction of
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Harvard mathematician Howard Aiken in 1939, built and operated by IBM engineers in Endicott,

New York for the US Navy” (Miller and Blair 2009).

The results of his eigenvector analysis would not have been immediately obvious: the critical

sectors were oil and ball bearings. Ball bearings were critical components of machinery and

vehicles, and no substitutes for them existed. In accord with this analysis, the US Army Air

Forces designated ball bearing factories and oil refineries as the major targets for their bombing

campaign in Europe.

Ecological Networks

In the 1970s, ecologists studying the flow of energy and nutrients (substances like carbon,

nitrogen, and phosphorus) in ecosystems discovered Leontief’s work and began using it to study

ecosystems as input/output systems (Hannon 1973), creating the field of ecological network

analysis. (See Fath and Patten (1999) for a readable introduction.) The first step in doing so is

to decide what substance to study (this substance is called the currency of the model), and if we

are studying a whole ecosystem, decide how to partition it into compartments. Compartments

can be species, collections of species, or nonliving ecosystem components such as dissolved

nitrate in water.

We then measure or estimate how much of our currency flows between each pair of compart-

ments. This gives what is called the flow matrix F . Entry fi j of this matrix tells us how much

currency flows from compartment j to compartment i . For example, the ecological interactions

that make up an oyster–mussel community in a reef have been modeled as consisting of six

compartments. The currency in this case is energy, and the flows from one compartment to

another are shown in Figure 6.37.

1

X1

6 predators

X6

2 deposited detrius

X2

3 microbiota

X3

5 deposit feeders

X5

4 meiofauna

X4

Z1

1Y

2Y

3Y

f21

f32

f43

f24

f42

f25

f52

f53

f26

f61 6Y

5Y

4Y

Figure 6.37: Six compartment model of reef community (redrawn from Patten (1985)).

Based on the graph of the network, we can make an input–output matrix for the compartments

in the system. We can then iterate this matrix to find the long-term behavior predicted by the

model.

Suppose we iterate the matrix many times and the system stabilizes at some equilibrium point.

When the system is at equilibrium, the sum of all the outflows (or inflows) from a compartment

is called the compartment’s throughflow .

We can make a vector, T, of these throughflows. Dividing each entry in the F matrix by the

throughflow of the donor compartment gives a matrix called the G matrix, where Gi j =
fi j
Tj

. This

matrix gives us the probability that a unit of currency leaving compartment j enters compartment

i , or the fraction of the currency that does so.
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The G matrix tells us about the currency going from compartment j to compartment i in

one direct step. However, ecologists are interested in more than just the question of how much

flows from j to i . They also want to know about second-order flows, in which currency transfer

happens in two steps: j → k → i ; the currency first has to get from j to k and then from k to i .

The probability of going from j to k is Gkj , and the probability of going from k to i is Gik . And

the probability of going from j → i through k is the product of Gkj and Gik . Adding up these

products for all the compartments that could play the role of k gives the fraction of currency

leaving j that gets to i in two steps. We can do this for every compartment in the model simply

by multiplying the G matrix by itself. The resulting matrix is written as G2. More generally, the

amount of currency going from j to i in n steps is entry i , j of the matrix Gn.

Why is this interesting? Well, all powers of G tell us about indirect flows between j and i . We

may sum all these matrices to obtain the sum of all indirect flows as G2 + G3 + · · · . Because

real ecosystems leak energy and nutrients, the entries in Gn+1 are generally smaller than those

in Gn, and the sum G2 + G3 + · · · converges to some limiting matrix. Comparing the entries

of this matrix to those of G itself lets us compare the relative importance of direct and indirect

flows. It turns out that in many ecosystem models, indirect flows are significant and can even

carry more energy or nutrients than direct flows!

Why does this happen, despite the fact that currency is lost at every step? It’s true that

a longer path will typically carry less currency than a shorter one. But how many long paths

are there? We can find out by taking powers of the adjacency matrix A. The i , jth entry of An

tells us the number of paths of length n between j and i . For most ecosystem and food web

models, these numbers rapidly become astronomical. For example, in the 29-species food web in

Figure 6.38, there are at least 28 million paths between seals and the fish hake (Yodzis 1998).

Figure 6.38: A food web for an ecosystem off the coast of southern Africa. Reprinted from

“Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela

ecosystem,” by P. Yodzis, 1998, Journal of Animal Ecology 67(4):635–658. Copyright 1998

John Wiley & Sons. Reprinted with permission from John Wiley & Sons.
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This proliferation of paths allows indirect paths taken together to carry a large amount of

energy or nutrients, even though no individual path may be very significant. This is one of the

reasons why predicting how an ecosystem or other complex system will respond to an intervention

is difficult.

6.7 Linear Differential Equations

Our second major application of linear algebra is the subject of linear differential equations. Here,

the function

f : Rn −→ Rn

is the vector field that assigns the n-dimensional change vector

X′ = (X ′1, X
′
2, . . . , X

′
n)

to the n-dimensional state vector

X = (X1, X2, . . . , Xn)

Since both X′ and X are vectors in Rn, the vector field f truly is a function from Rn to Rn.

We can decompose the function f : Rn → Rn into n component functions f1, f2, . . . , fn, each

of which is a function Rn → R. This amounts to writing the vector differential equation

X′ = f (X)

as the n-component differential equations

X ′1 = f1(X1, X2, . . . , Xn)

X ′2 = f2(X1, X2, . . . , Xn)

...
...

X ′n = fn(X1, X2, . . . , Xn)

Linear dynamical systems have particularly simple behaviors and can be completely classified.

Equilibrium Points

First of all, let’s discuss equilibrium points. If we think about one-dimensional linear vector fields,

then we are talking about either

X ′ = rX or X ′ = −rX (assuming r > 0)

It is clear that the only equilibrium points these systems can have are X = 0.

But what about two-dimensional or even n-dimensional cases? In the n-dimensional case, if

we are looking for equilibrium points, we are looking for solutions to

X′ = 0 = f (X)

which implies
X ′1 = 0 = f1(X1, X2, . . . , Xn)

X ′2 = 0 = f2(X1, X2, . . . , Xn)

...
...

...

X ′n = 0 = fn(X1, X2, . . . , Xn)



6.7. Linear Differential Equations 351

where f1, f2, . . . , fn are all linear functions Rn → R.

How many solutions can this set of equations have? Here, a theorem from elementary algebra

comes to the rescue:3 setting n linear functions of n unknowns equal to zero can have only one

solution, and that is

X1 = X2 = · · · = Xn = 0

(We can find this by using the first equation to eliminate X1 in terms of the other variables, then

using the second equation to eliminate X2, and finally we get an equation of the form aXn = 0,

which can have only the solution X1 = X2 = · · · = Xn = 0.)

A linear system of differential equations has a unique equilibrium point, at

X1 = X2 = · · · = Xn = 0

Stability

Having found the equilibrium point, we now need to determine its stability.

In the one-dimensional case, we have already seen that X ′ = rX has a stable equilibrium

point at X = 0 if and only if r < 0.

If we now pass to the decoupled 2D case,

X ′ = aX

Y ′ = d Y

we can say that since the system decouples into two 1D subsystems along the X and Y axes,

the behavior of the equilibrium point is given by the behaviors along the two axes. The two 1D

subsystems are X ′ = aX and Y ′ = d Y . And if we join them, we get

X ′ = aX

Y ′ = d Y

}

=⇒
(
X ′

Y ′

)

=

[
a 0

0 d

](
X

Y

)

As we saw in Chapter 3, these equilibrium points can be purely stable nodes (a < 0 and

d < 0), purely unstable nodes (a > 0 and d > 0), and saddle points (a < 0 and d > 0 or a > 0

and d < 0).

Exercise 6.7.1 Why does it makes sense that these signs of a and d give rise to the equilibrium

types listed above? (Hint: Draw some phase portraits.)

Exercise 6.7.2 Classify the equilibria of the following systems:

a)

{

X ′ = 2X

Y ′ = −3Y
b)

{

X ′ = 0.5X

Y ′ = 1.8Y
c)

{

X ′ = −1.2X
Y ′ = −0.3Y

3Almost all the time. The exceptions are cases in which two equations are multiples of each other, such as
0 = X + Y and 0 = 2X + 2Y . Try solving these for X and Y ; you don’t get a definite answer.

http://dx.doi.org/10.1007/978-3-319-59731-7_3
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The Flow Associated with a Linear Differential Equation

1D Recall a very important fact about the differential equation

X ′ = rX

As we saw in Chapter 2, this differential equation has an explicit solution. In other words, it’s

possible to actually write out a function X(t) such that

X ′(t) = rX(t)

In this case, the explicit solution to the differential equations is the function

X(t) = X(0)er t

where X(0) is the initial condition.

We call X(0)er t the flow corresponding to the differential equation X ′ = rX.

Exercise 6.7.3 Find the flow of the differential equation X ′ = 0.25X.

2D Let’s go on to discuss the two-dimensional case. The simplest case is two uncoupled systems

X ′ = aX

Y ′ = d Y

This can be represented as the matrix differential equation
(
X ′

Y ′

)

=

[
a 0

0 d

](
X

Y

)

The flow corresponding to the diagonal matrix differential equation is then just the combina-

tion of the flows in the two components:
(
X(t)

Y (t)

)

=

(
X(0)eat

Y (0)edt

)

where X(0), Y (0) are the initial conditions.

Exercise 6.7.4 Find the flow of the differential equation

{

X ′ = 0.3X

Y ′ = −0.5Y

Exercise 6.7.5 What differential equation has the flow

{

X(t) = X(0)e2t

Y (t) = Y (0)e−0.7t

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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Eigenbehavior

We can look at the equation

X ′ = rX

represented by the linear function

f (X) = rX

and ask something that may seem redundant and pointless. We will ask whether this 1D linear

function has an eigenvalue and an eigenvector. The answer is that of course it does. An eigen-

vector is a subspace along which f acts like multiplication by λ, and X obviously satisfies this,

with λ = r .

Therefore, for the differential equation X ′ = rX, we can rewrite the equation for the flow as

X(t) = X(0)eλt (where λ = r)

Similarly, in the 2D uncoupled case, for the matrix differential equation
(
X ′

Y ′

)

=

[
a 0

0 d

](
X

Y

)

we can ask whether the matrix has eigenvalues and eigenvectors. And again, the answer is that

of course it does: the vectors

{X,Y} = {
(
1

0

)

,

(
0

1

)

}

are eigenvectors, and the corresponding eigenvalues are

λX = a λY = d

Then we can rewrite the equation for the flow for this uncoupled 2D system as
(
X(t)

Y (t)

)

=

(
X(0)eλXt

Y (0)eλY t

)

Exercise 6.7.6 Construct the flow for the matrix differential equation
(
X ′

Y ′

)

=

[
−2 0

0 1

](
X

Y

)

This form is the key to understanding the general 2D case. By mixing and matching var-

ious values of λX and λY , we get a gallery of equilibrium points in diagonal linear systems

(Figure 6.39).
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X

Y

X

Y
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X(0)

Y(0)
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t
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Figure 6.39: Equilibrium points and flows in 2D uncoupled systems.

We can now go on to the general case:

X ′ = aX + bY

Y ′ = cX + d Y

}

=⇒
(
X ′

Y ′

)

=

[
a b

c d

](
X

Y

)

The key to understanding behavior in this general case is to decompose the system into its

eigenvalues and eigenvectors, and then infer the flow from the “eigenbehavior” just as we have

been doing. So, for example, if λ1 and λ2 are both real numbers, we find their corresponding
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eigenvectors U and V, and conclude that the flow is U(0)eλ1t on the U axis and V (0)eλ2t on

the V axis. This completely determines the behavior in the 2D state space.

An example in two dimensions. Consider the linear differential equation

X ′ =
9

7
X − 4

7
Y

Y ′ =
8

7
X − 9

7
Y

represented by the matrix differential equation

X ′ =
9

7
X − 4

7
Y

Y ′ =
8

7
X − 9

7
Y

⎫

⎪⎪⎬

⎪⎪⎭

=⇒

⎛

⎝

X ′

Y ′

⎞

⎠ =

⎡

⎢
⎣

9

7
−4
7

8

7
−9
7

⎤

⎥
⎦

⎛

⎝

X

Y

⎞

⎠

How will this system behave? We need to study the eigenvalues and corresponding eigenvec-

tors of the matrix

M =

⎡

⎢
⎣

9

7
−4
7

8

7
−9
7

⎤

⎥
⎦

The eigenvalues of this matrix are obtained by plugging the matrix entries into the charac-

teristic equation (equation (6.2) on page 299). We get

λ1 = 1 and λ2 = −1

Exercise 6.7.7 Confirm this.

Next, we calculate the eigenvectors. The eigenvector U corresponding to λ1 satisfies

MU = λ1U

We can say that

MU =

⎡

⎢
⎣

9

7
−4
7

8

7
−9
7

⎤

⎥
⎦

⎛

⎝

X

Y

⎞

⎠ =

⎛

⎜
⎝

9

7
X − 4

7
Y

8

7
X − 9

7
Y

⎞

⎟
⎠ = λ1U = 1

⎛

⎝

X

Y

⎞

⎠ =

⎛

⎝

X

Y

⎞

⎠

This gives us
9

7
X − 4

7
Y = X =⇒ Y = 0.5X

8

7
X − 9

7
Y = Y =⇒ Y = 0.5X

which implies that the eigenvector U lies on the line Y = 0.5X, which has slope 0.5. The vector

(X, Y ) = (2, 1) will serve nicely as an eigenvector on this line.

The eigenvector V corresponding to λ2 must satisfy

M V = λ2V
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We can say that

MV =

⎡

⎢
⎣

9

7
−4
7

8

7
−9
7

⎤

⎥
⎦

⎛

⎝

X

Y

⎞

⎠ =

⎛

⎜
⎝

9

7
X − 4

7
Y

8

7
X − 9

7
Y

⎞

⎟
⎠ = λ2V = −1

⎛

⎝

X

Y

⎞

⎠ =

⎛

⎝

X

Y

⎞

⎠

This gives us
9

7
X − 4

7
Y = −X =⇒ Y = 4X

8

7
X − 9

7
Y = −Y =⇒ Y = 4X

which implies that the eigenvector V lies on the line Y = 4X, which has slope 4. The vector

(X, Y ) = (1, 4) will serve nicely as an eigenvector on this line.

The resulting equilibrium point structure therefore has a stable direction along the V axis

(λV = λ2 = −1) and an unstable direction along the U axis (λU = λ1 = 1). Therefore, the

equilibrium point is a saddle point whose axes are U and V.

The flow corresponding to this saddle point is then exactly as in the uncoupled 2D system
(
U(t)

V(t)

)

=

(
U(0)eλUt

V(0)eλV t

)

where U(0) and V (0) are initial conditions expressed in the {U,V} coordinate system (Figure 6.40).

X

Y

U

V

Figure 6.40: The flow around a saddle point. U and V are the unstable and stable eigenvectors.

Suppose we are given a matrix differential equation
(
X ′

Y ′

)

=M

(
X

Y

)

and we want to know the behavior from an initial condition (X(0), Y (0)). In order to find it:

(1) Use the coordinate transformation matrix T (see Changing bases: coordinate transforms

in section 6.4) to transform the initial conditions from the {X,Y} coordinate system to
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the {U,V} coordinate system:

(
X(0)

Y(0)

)
T

−−−−−−−−−−→
(
U(0)

V(0)

)

(2) Evolve the differential equation along the U, V axes by the exponential flows
(
U(t)

V(t)

)

=

(
U(0)eλUt

V(0)eλV t

)

(3) Use the inverse coordinate transformation matrix T−1 to transform the result from the

{U,V} coordinate system back into the {X,Y} coordinate system:

(
X(t)

Y(t)

)
T−1

←−−−−−−−−−−
(
U(0)eλUt

V(0)eλV t

)

Exercise 6.7.8 Classify the equilibria of the following linear differential equations:

a)

{

X ′ = Y

Y ′ = −2X − 3Y
b)

{

X ′ = 4X + 3Y

Y ′ = X − 2Y

Complex eigenvalues Finally, let’s consider the nondiagonalizable cases. Consider, for example,

the spring with friction:

X ′ = V

V ′ = −X − V

}

=⇒
(
X ′

V ′

)

=

[
0 1

−1 −1

](
X

V

)

M =

[
0 1

−1 −1

]

The eigenvalues of M are

λ = −1
2
±
√
3

2
i ≈ −0.5± 0.866 i

So the eigenvalues are a pair of complex conjugate numbers with negative real parts.

How are we to understand the flow in the case of complex conjugate eigenvalues? The key is

that it is really the same as in the case of real eigenvalues. There, we saw that the flow has the

general form

eλt

along the corresponding eigenvectors. The same is true for imaginary eigenvalues: if λ = a+b i,

then the flow is

eλt = e(a+b i)t = eateb i t

The key to the dynamics is in the expression eatebit . Notice that it is the product of two

terms.

The first term eat is an exponential in time, and its exponent is the real part of the eigen-

value. Therefore, if the real part of the eigenvalue is positive, the solution has a term that

is exponentially growing with time, whereas if the real part of the eigenvalue is negative, the
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term becomes a negative exponential, decaying in time. So the sign of a, the real part of the

eigenvalue, determines whether the dynamics are growing or shrinking.

The second term, eb i t , which contains the imaginary part of the eigenvalue, b i, contributes

rotation to the flow. We can see this by recalling Euler’s formula eix = cos(x) + i sin(x). So

eb i t = cos(bt) + i sin(bt)

The presence of cosine and sine functions of time guarantees that the solution is a periodic

function of time, which gives the solution its oscillatory component.

So, to return to our example of the spring with friction, we can say that the equilibrium point

at (0, 0) is

(1) oscillatory, because the eigenvalues are complex conjugates;

(2) shrinking, because the real part of the eigenvalues is less than 0.

Therefore, the equilibrium point is a stable spiral, which we confirm with simulation (Figure 6.41).

X

V

λ =
1
2 2

3
i

Figure 6.41: Simulation of the spring with friction verifies the prediction of a stable spiral equi-

librium point.

As another example, in the spring with negative friction,

X ′ = V

V ′ = −X + V

}

=⇒
(
X ′

V ′

)

=

[
0 1

−1 1

](
X

V

)

the dynamics are given by the eigenvalues of the matrix

M =

[
0 1

−1 1

]

which are

λ =
1

2
±
√
3

2
i ≈ 0.5± 0.866 i

We conclude that the equilibrium point at (0, 0) is

(1) oscillatory, because the eigenvalues are complex conjugates;

(2) expanding, because the real part of the eigenvalues is greater than 0.

Therefore, the equilibrium point is an unstable spiral (Figure 6.42).
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X

V

λ =
1
2 2

3
i

Figure 6.42: Simulation of the spring with negative friction verifies the prediction of an unstable

spiral equilibrium point.

Finally, for the frictionless spring,

X ′ = V

V ′ = −X

}

=⇒
(
X ′

V ′

)

=

[
0 1

−1 0

](
X

V

)

the dynamics are given by the eigenvalues of the matrix

M =

[
0 1

−1 0

]

which are

λ = ±i

We conclude that the equilibrium point at (0, 0) is

(1) oscillatory, because the eigenvalues are complex conjugates;

(2) neither expanding nor shrinking, because the real part of the eigenvalues is equal to 0.

Therefore, the equilibrium point is a center (Figure 6.43).

X

V

Figure 6.43: Simulation of the frictionless spring verifies the prediction of a neutral equilibrium

point.

Exercise 6.7.9 Classify the equilibria of the linear differential equations whose eigenvalues are

given below:

a) 2±−3i b) 0.5± 2.6i c) −3±−0.75i d) −0.25±−0.1i
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A Compartmental Model in Pharmacokinetics

A simple test for liver function is to inject a dye into the bloodstream and see how fast the liver

clears it from the blood and excretes it into the bile. If it clears the dye quickly, liver function is

normal. In the case of the liver, this test is possible because there is a dye (bromsulphthalein,

BSP) that is absorbed only by the liver (Watt and Young 1962).

In order to understand the dynamics of this process, we make a simple linear model. The

model is compartmental, with a blood compartment X and a liver compartment Y . (We don’t

need a bile compartment, since nothing depends on it; we can view it as excretion.)

We’ve seen compartmental models before, in the discrete-time setting. In the epidemiology

model, for example, we had an S (susceptible) compartment and an I (infected) compartment,

and we imagined particles (that is, people) “hopping” from one compartment to another at differ-

ent rates. Here we imagine not particles but a continuous fluid, “flowing” from one compartment

to another at different rates.

The compartmental model is shown in Figure 6.44, where a is the transfer rate of the dye

from the blood (X) to the liver (Y ), b is the transfer rate from the liver (Y ) to the blood (X),

and h is the clearance rate from the liver into the bile. To measure liver function, h is the quantity

we really want to know.

a

b

h

liverblood

X Y

Figure 6.44: Compartmental model of the movement of a tracer dye between the liver and the

bloodstream.

The problem is that we can’t observe h. All we can observe is X(t), the concentration of

the dye in the blood. We can estimate X(t) by making a number of blood draws over time,

measuring the dye level at each time point and then using curve-fitting software to estimate the

smooth curve that best fits the data points.

In order to get from an observation of X(t) to an estimation of h, we need to solve this

model. The differential equations are

X ′ = − aX
︸︷︷︸

blood→liver

+ bY
︸︷︷︸

liver→blood

Y ′ = aX
︸︷︷︸

blood→liver

− bY
︸︷︷︸

liver→blood

− hY
︸︷︷︸

liver→bile

which we can write as a matrix differential equation
(
X ′

Y ′

)

=

[
−a b

a −(b + h)

](
X

Y

)

To model a single injection of the dye (BSP), we set the initial condition of the dye concen-

tration in the blood compartment to a nonzero value X(0) = c , and the initial condition of the

dye concentration in the liver compartment Y (0) = 0.
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We will solve for the long-term dynamics by finding the eigenvalues of the matrix

M =

[
−a b

a −(b + h)

]

(a > 0, b > 0, h > 0)

Plugging the four entries of M into the characteristic polynomial (equation (6.3) on page

302), we get the two eigenvalues as

λ1, λ2 =
1

2

(

− (a + b + h)±
√

(a + b + h)2 − 4ah
)

First of all, let’s note that both eigenvalues are real. In order for this to be true, the expression

under the
√

sign has to be nonnegative. This is easily checked:

(a + b + h)2 − 4ah = a2 + b2 + h2 + 2ab + 2ah + 2bh− 4ah
= a2 + b2 + h2 + 2ab− 2ah + 2bh
= a2 − 2ah + h2 + b2 + 2ab + 2bh
= (a − h)2 + 2ab + 2bh + b2

> 0

The next question is whether the eigenvalues are negative or positive. That depends upon

whether
√

(a + b + h)2 − 4ah is less than (a + b + h). It is certainly true that

(a + b + h)2 − 4ah < (a + b + h)2

since 4ah is a positive number. This implies
√

(a + b + h)2 − 4ah < a + b + h
which implies

−(a + b + h)±
√

(a + b + h)2 − 4ah < 0

So both eigenvalues λ1, λ2 are negative real numbers, which means that (0, 0), the state in

which all dye is cleared, is a stable equilibrium point. Therefore, the behavior in approach to the

stable equilibrium point is the sum of two exponentially decaying terms. The question is how

fast the state point goes to the stable equilibrium point, for which we need the explicit solution.

Suppose that the eigenvectors corresponding to λ1 and λ2 are U and V. Then we can write

the explicit solution to the differential equation as
(
U(t)

V(t)

)

=

(
U(0)eλ1t

V(0)eλ2t

)

But what we need, to compare it to the experimentally measured data, is X(t). So we need

X(t) and Y(t), not U(t) and V(t).

We go from one coordinate system to the other just as we did before by means of the

coordinate transformation matrix T that takes the {X,Y} basis into the {U,V} basis:
(
X(0)

Y(0)

)
T

−−−−−−−−−−→
(
U(0)

V(0)

)

⏐
⏐
⏐
⏐
*
λ1, λ2

(
X(t)

Y(t)

)
T
−1

←−−−−−−−−−−
(
U(t)

V(t)

)
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When we carry this out, we get explicit solutions

X(t) = Aeλ1t + Beλ2t

Y (t) =
1

b

(

A(a − λ1)eλ1t + B(a − λ2)eλ2t
)

where A =
(a − λ2)X(0)− bY (0)

λ1 − λ2
B =

(a − λ1)X(0)− bY (0)
λ2 − λ1

In order to compareX(t) to the experimental data, we face a problem. There are four unknown

parameters in the X(t) equation, and it is very difficult to infer four unknown parameters from

a single curve.

The key step in doing this is to think about the graph of a process that is represented by the

sum of two negative exponentials.

Choosing typical numbers for the parameters, and assuming that |λ1| is significantly greater

than |λ2|, so that λ1 is a rapidly decaying process and λ2 is a slowly decaying process (which is

the case in the liver), we obtain the following graph:

5 10 15 20

20

40

60

80

100

t (mins)

μg/L

A eλ1t

B eλ2t

X(t) = A eλ1t B eλ2t+

The trick is to notice that in the early part of the curve, say the first five minutes, the curve

X(t) is very close to the fast negative exponential, while for t > 10 minutes, the curve X(t) is

very close to the slowly decaying process.

We then use the first segment of the X(t) curve to estimate Aeλ1t , and the second segment

of the X(t) curve to estimate Beλ2t . A simple calculation then gives us h, which is the liver’s

clearance rate.
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A eλ1t

B eλ2t

X(t) = A eλ1t B eλ2t+
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Linear Differential Equations in n Dimensions

The extension to n-dimensional linear differential equations is straightforward: the situation in n

dimensions is very similar to that in two dimensions, and no really new phenomena occur.

We already saw that if f : Rn → Rn is linear, then the matrix M that represents f has

eigenvalues λ1, λ2, . . . , λn. We saw that each eigenvalue is either a real number or one of a pair

of complex conjugate eigenvalues.

We can then say that the equilibrium point at (0, 0, . . . , 0) can be decomposed into

(1) stable 1D directions (eigenvectors whose eigenvalues λ < 0);

(2) unstable 1D directions (eigenvectors whose eigenvalues λ > 0);

(3) 2D spiraling behaviors corresponding to pairs of complex conjugate eigenvalues, which are

stable (spiraling in) if the real part of the eigenvalues is negative, and unstable (spiraling

out) if the real part of the eigenvalues is positive.

In this way, we can completely classify every equilibrium point of a linear differential equation.

Further Exercises 6.7

1. Suppose Romeo and Juliet’s love obeys the differential equation
(
R′

J ′

)

= A

(
R

J

)

where A is a 2× 2 matrix with the following eigenvectors:
(
−2
3

)

with eigenvalue −1, and

(
3

1

)

with eigenvalue −4

a) Give a rough sketch of the vector field for this differential equation.

b) What will happen in the long run?

2. Romeo and Juliet’s relationship is modeled by the equations

R′ = 0.5R + J

J ′ = 2R − 0.1J
a) Find and classify all the equilibria for this system.

b) Use the system’s eigenvectors to sketch its vector field.

3. Suppose Romeo and Juliet’s love obeys the following differential equations:

R′ = −R + 3J
J ′ = 3R − J

The matrix of this system is

[
−1 3

3 −1

]

, which has the following eigenvectors:

(
1

1

)

with eigenvalue 2, and

(
−1
1

)

with eigenvalue −4
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We will use these two eigenvectors to define a new coordinate system, and we will use

u and v to represent these coordinates. However, in this problem, we will treat u and v

as new variables. Your goal is to rewrite this system of differential equations in terms of

these new variables.

a) Starting with the definition of the coordinates u and v ,
(
R

J

)

= u

(
1

1

)

+ v

(
−1
1

)

solve for u and v in terms of R and J to get

u =
1

2
R +

1

2
J

v = −1
2
R +

1

2
J

b) Since R and J are just functions of time, u and v are as well, and taking the derivative

of both sides of the two equations above gives u′ = 1
2R
′+ 12J

′ and v ′ = − 12R′+ 12J ′.
Substitute the original differential equations into this to get u′ and v ′ in terms of R

and J.

c) Now substitute the expressions for R and J (in terms of u and v) from part (a) into

your answer from part (b) and simplify. This should give you u′ and v ′ in terms of u

and v .

d) What is the matrix of the new system of differential equations that you ended up

with in part (c)? What do you notice about its form? What do you notice about the

specific numbers that appear in it?



Chapter 7

Multivariable Systems

7.1 Stability in Nonlinear Differential Equations

In the previous chapter, we used our knowledge of linear algebra to give us insights into linear

differential equations. The key to this approach is that the differential equation is viewed as a

vector field, that is, as a function

V : Rn −→ Rn

Therefore, since a linear differential equation is a linear vector field, which is a linear function,

we used the eigenvalues and eigenvectors of the linear function to completely classify the stability

of the equilibrium point of the corresponding vector field.

Now we can go on to nonlinear systems. What can we find out about them? First of all, we

know that we can find the equilibrium points. As we saw in Chapter 3, we find the equilibrium

points of the vector field

X ′ = f (X, Y )

Y ′ = g(X, Y )

by setting f = g = 0 and solving for the resulting pairs (X∗, Y ∗).

And in n dimensions, the vector field

X ′1 = f1(X1, X2, . . . , Xn)

X ′2 = f2(X1, X2, . . . , Xn)

...
...

X ′n = fn(X1, X2, . . . , Xn)

or in vector notation
X′ = V (X)

has equilibrium points (X∗1 , X
∗
2 , . . . , X

∗
n) whenever X ′1 = X

′
2 = · · · = X ′n = 0.

Now we want to find their stability. The purpose of this chapter is to develop a general method

for determining the stability of an equilibrium point of an n-dimensional vector field. Previously,

the only technique we had was simulation: pick a large number of initial conditions around the

equilibrium point, simulate the system, and see where the points go as time evolves.

In order to grasp the general strategy, we will first revisit a section from Chapter 3 in which

we introduced a technique for determining the stability of equilibrium points in one dimension.
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Since a vector field in one dimension is a function from R into R, we could graph it in two

dimensions (Figure 7.1). As can be seen, there are two equilibrium points in this system, X = 0

and X = k .

X

X’ = f(X)

0 k
X

X’ = f(X)

0 k

Figure 7.1: The linear approximations (red) to X ′ = f (X) at the two equilibrium points X = 0

and X = k give the stability of those equilibrium points.

We then argued that the stability of the equilibrium points at X = 0 and X = k can be

determined by the slope of the tangent to f (X) at the two points, that is, by the derivative:

if the derivative was positive, the equilibrium point was unstable, and if it was negative, the

equilibrium point was stable. As can be seen, the slope of the tangent at X = 0 is positive, and

so the equilibrium point at X = 0 is unstable. On the other hand, the slope of the tangent at

X = k is negative, and therefore, the equilibrium point at X = k is stable.

Exercise 7.1.1 What happens when the slope is zero?

Exercise 7.1.2 Find the equilibria of X ′ = X3 − X and use this method to determine their

stability.

As we mentioned, this was an application in one dimension of the Hartman–Grobman theorem:

the stability of an equilibrium point of a nonlinear vector field is determined by the slope of the

linear approximation to the nonlinear function at the equilibrium point.

The key to this theorem is the fact that the derivative is the linear approximation to a function

at a point, as we saw in Chapter 2.

We will now use the same Hartman–Grobman principle in higher dimensions: the stability of

an equilibrium point in a nonlinear vector field is given by the slope (except in this case, it is

slopes) of its linear approximation at that point, that is, by the n-dimensional derivative at that

point. So now we need to develop the n-dimensional concept of derivative.

We now need to know the following:

(1) What does a linear function look like in n dimensions?

(2) How do we find the linear function that is the linear approximation to a nonlinear function

in n dimensions? In other words, what is the derivative in n dimensions?

7.2 Graphing Functions of Two Variables

We will now be looking at functions of several variables, and it is important to understand what

these functions look like geometrically. As usual, we will consider the case of two variables as

our example.

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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First, let’s take a linear case. Let’s begin by considering the linear function

f : R2 −→ R
given by

Z = f (X, Y ) = −0.5X + Y

If we choose a pair (X, Y ) at random (Figure 7.2, gray dot), we can plot its corresponding

Z value calculated by Z = f (X, Y ) (black point). If we plot many points in this way, we get a

point cloud of Z-values (black dots) corresponding to the (X, Y ) points (gray). The black dots

are the thousand Z values, and they all lie exactly on the green plane, which is the set of all Z

values for all (X, Y ) pairs in the XY plane.

X

Y
Z

Figure 7.2: Points satisfying Z = −0.5X + Y . Shown are 1, 10, 100, and finally, 1000 points

superimposed on the plane Z = −0.5X + Y .

A linear function f : R2 → R is represented by a plane over the (X, Y ) plane.

For a nonlinear example

Z = f (X, Y )
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let’s use

Z = f (X, Y ) = 5− X
2

2
− Y

2

4

If we choose a random pair (X, Y ) (Figure 7.3, gray dot) and plot the respective Z value

(black dot), we get a point in 3D space. If we plot many such points, the resulting point cloud

begins to suggest a surface. Indeed, the points lie exactly on the curved surface, which is the

graph of all Z values corresponding to all (X, Y ) points in the square.

X

Y
Z

Figure 7.3: Top row: 1, 10, and 100 random (X, Y ) pairs (gray dots) give rise to corresponding

Z values (black dots) according to the equation Z = 5 − X2

2 − Y2
4 . Bottom left: a thousand

random (X, Y ) pairs (gray dots) with their corresponding Z values (black dots). Bottom right:

the corresponding surface is the set of all Z values for every (X, Y ) in the square.

This is true in general: the graph of a function R2 → R is a surface over the R2 plane. These

functions are sometimes called height functions, because you can look at them as a terrain map,

with Z representing the height of the terrain at the point (X, Y ).

A nonlinear function f : R2 → R is represented by a surface over the (X, Y ) plane.

Exercise 7.2.1 Why is the graph of a function f : R2 → R a surface rather than, say, two

surfaces? In other words, why can’t we have a point that lies directly above another point?

Exercise 7.2.2 Compute f (X, Y ) = 5 − X2

2 − Y 2

4 for four points in the (X, Y ) plane. Then,

use the list_plot3d command in SageMath to plot these points.



7.3. Linear Functions in Higher Dimensions 369

Exercise 7.2.3 Do the same thing for another function of your choice. Then, use the plot3d

command to plot the function on the same graph as the points. (The command plot3d works

just like plot, except that you have to specify plotting ranges for two variables, not just one.)

7.3 Linear Functions in Higher Dimensions

We know from Chapter 6 what linear functions in n dimensions look like algebraically. Now we

want to look at them geometrically.

Let’s start with an example in two dimensions.

A linear function V : R2 → R2,
V : (X, Y ) −→ (Z,W )

can be represented as

Z = f (X, Y ) = aX + bY

W = g(X, Y ) = cX + d Y
(7.1)

The first problem we face is visualization: the graph of a function R2 → R2 that takes (X, Y )

to (Z,W ) would have to have four dimensions. So we use the technique of looking at the two

R
2 → R component functions one by one, decomposing V into the component functions f and

g. Recalling that (X, Y ) is the vector

(

X

Y

)

, we can write

(

Z

W

)

= V (

(

X

Y

)

) =

(

f (X, Y )

g(X, Y )

)

For simplicity, in the rest of the chapter we will drop the vector notation and write

f : (X, Y ) −→ (Z) and

g : (X, Y ) −→ (W )
both of which are R2 → R. So f gives us the first coordinate, Z, and g gives us the second

coordinate, W .

These component functions are graphable (Figure 7.4).

1

2

2

2 f

12 g
decomposition

V

Figure 7.4: Decomposition of a 2D linear function R2 → R2 into two linear functions R2 → R.

http://dx.doi.org/10.1007/978-3-319-59731-7_6
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Let’s begin by considering the first linear function

f : R2 −→ R
given by

Z = f (X, Y ) = −0.5X + Y

which, as we just saw, is a plane over X-Y space (Figure 7.5).

In general, a plane is tilted with respect to both the XZ and Y Z axes. If the plane passes

through the origin, as the graph of a linear function must, knowing what the slopes are tells us

exactly what the plane is.

X

Y
Z

Figure 7.5: Z = −0.5X + Y . The green plane is the set of all such Z values for (X, Y ) lying in

the square.

Exercise 7.3.1 Why does the graph of a linear function have to pass through the origin?

In order to calculate the tilt, we will visualize it using the cutting planes X = 0, which is the

Y Z plane, and Y = 0, which is the XZ plane (Figure 7.6).

X

Y
Z

X 4=

Z -2=

Figure 7.6: The plane Z = −0.5X + Y has two slopes, revealed by the two gray cutting planes.
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First, let’s look at the gray cutting plane X = 0. The intersection of the green plane with the

X = 0 cutting plane is the red line. The slope of the red line is

∆Z

∆Y
=
4

4
= 1

Exercise 7.3.2 In the right panel of Figure 7.6:

a) Where are the cutting planes?

b) What is the significance of the red triangle?

c) How do we know that the two red lines have the same slope?

d) How do we know the values of ∆Y and ∆Z (other than reading the labels)?

Now let’s look at the other gray cutting plane, Y = 0. The intersection of the green plane

with the Y = 0 cutting plane is the blue line.

Exercise 7.3.3 Compute the slope of the blue line.

These two slopes determine the plane. Notice that the original plane was

Z = −0.5X + Y
What we have just seen is that the two slopes are ∆Z∆X = −0.5 and ∆Z

∆Y = 1. In other words,

the slope of the green plane along the Y Z axis is ∆Z∆X , which is the coefficient of the X term.

Similarly, the slope of the green plane along the XZ axis is ∆Z∆Y , which is the coefficient of the

Y term.

In general, if Z = aX + bY is a plane, then its slopes are given by

∆Z

∆X
= a and

∆Z

∆Y
= b

This completes our analysis of the first component function f . By exactly similar reasoning,

we can consider the second component function

W = g(X, Y ) = cX + d Y

whose slopes are
∆W

∆X
= c and

∆W

∆Y
= d

When we put the two component functions f and g back together, we get the linear function

R
2 −→ R

2

(X, Y ) −→ (Z,W )
which is given by the matrix

[

a b

c d

]
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And the original linear equation (7.1) is represented by
[

a b

c d

] (

X

Y

)

=

(

Z

W

)

n Dimensions

In n dimensions, a linear function

f : Rn −→ Rn

is decomposable into n component functions, f1, f2, . . . , fn, where each component function

fi : R
n −→ R

has the form

fi(X1, X2, . . . , Xn) = a1iX1 + a2iX2 + . . . aniXn

so that the overall function is represented by the matrix
⎡

⎢

⎢

⎢

⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎤

⎥

⎥

⎥

⎦

By analogy with the plane defined by a linear function R2 −→ R, we say that each function

fi : R
n −→ R defines a hyperplane

Z = fi(X1, X2, . . . , Xn) = a1iX1 + a2iX2 + . . .+ aniXn

The hyperplane has n slopes given by a1i , a2i , · · · , ani , so that the plane can also be written

Z =
∆Z

∆X1
X1 +

∆Z

∆X2
X2 + . . .+

∆Z

∆Xn
Xn

Further Exercises 7.3

1. Write the equation for the plane passing through the origin that has the slopes below:

a) ∆Z∆Y = 3 and ∆Z
∆X = 5

b) ∆Z∆X = 4 and ∆Z
∆Y = 1.5

c) ∆Z∆X = −3 and ∆Z
∆Y = −1

2. Find ∆Z
∆X and ∆Z

∆Y for the planes specified by the equations below:

a) Z = 7X + 25Y

b) Z = 3Y − 2X

c) Z = πY + 16X
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7.4 Nonlinear Functions in Two Dimensions

Recall that our goal is to find the linear vector field that is an approximation to a nonlinear one

at an equilibrium point.

As usual, we will look at the vector field as a function

V : R2 −→ R
2

(X, Y ) −→ (Z,W )
We’ll use the same technique as above and split V into the two component functions (Figure

7.7)
f : R2 −→ R and g : R2 −→ R

(X, Y ) −→ (Z) (X, Y ) −→ (W )

1

2

2

2 f

12 g
decomposition

V

Figure 7.7: Decomposition of a nonlinear function V : R2 → R2 into two component functions

f and g, R2 → R.

First Component Function f

Let’s consider the first component function: Z = f (X, Y ). We will start with the example

Z = f (X, Y ) = 5− X
2

2
− Y

2

4

(Figure 7.8).

X

Y
Z

Figure 7.8: Z = f (X, Y ) = 5− X22 − Y
2

4 . The corresponding surface is the set of all Z values for

every (X, Y ) in the square.
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The Tangent Plane

Our next task is to find the linear function R2 → R that approximates the surface f at the point

(X0, Y0). What is this linear function? As we saw above, a linear function R2 → R defines a

plane.

To visualize this plane, remember that in one dimension, we zoomed in on a 1D curve to

visualize the 1D tangent line. Here we are going to zoom in on a 2D surface (Figure 7.9). We

see that as we zoom in on the 2D surface, it begins to resemble a 2D plane. This plane is called

the tangent plane to f at the point (X0, Y0).

The linear approximation to the 2D surface Z = f (X, Y ) at the point (X0, Y0) is called the

tangent plane to f at the point (X0, Y0).

X0

f(X0)

1D

2D

Y0

Z0=f(X0, 

X0

Y0)

Figure 7.9: Just as zooming in on a 1D curve gives a 1D straight line, zooming in on a 2D

surface gives a plane.

15 X5 X 30 X1 X

Figure 7.10: Zooming in on a smooth 2D surface makes the surface look flatter and flatter.
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It makes sense that the linear approximation in 2D should be a plane, because the linear

approximation must be a linear function, and we just saw that the linear functions R2 → R are

defined by planes.

Exercise 7.4.1 In SageMath, plot a function of two variables. Pick a point on the function

and zoom in on it. What do you observe?

Calculating the Tangent Plane

The tangent plane is a plane, and we saw earlier that a plane is defined by two slopes. We now

need to calculate the two slopes that determine the tangent plane.

To do this, we will make another critical decomposition: at each point on the 2D surface, we

will split a small patch of surface around that point into two 1D functions using a new method:

we will use 2D cutting planes.

The cutting plane construction allows us, in any given patch of surface, to turn the R2 → R
function into two R→ R functions.

The XZ cutting planes are exactly the planes Y = constant. And Y Z cutting planes are

exactly the planes X = constant. If we look at the XY and XZ cutting planes, we see that the

2-dimensional surface f always intersects the cutting plane in a 1-dimensional curve.

For example, the Y Z cutting plane at X = 1 intersects the green surface Z = 5 − X2

2 − Y 2

4

in the black curve, shown in Figure 7.11. The equation for this black curve can be found easily

by plugging X = 1 into the Z equation

Z = 5− X
2

2
− Y

2

4

which gives us

Z = 5− 1
2

2
− Y

2

4

=⇒ Z = 4.5− Y
2

4

which is a curve in the Y Z plane (Figure 7.11, right).

-2 -1 0 1 2

3

4

5

Y

Z

X

Y
Z

X=1

Z = 4.5
Y
4

2

Figure 7.11: The Y Z cutting plane at X = 1 intersects the surface in the black curve.

Exercise 7.4.2 Give an example of an XZ cutting plane.
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Exercise 7.4.3 Find the equation of the curve that results from intersecting the surface

Z = 5− X22 − Y
2

4 with the cutting plane Y = 2. Plot this curve in SageMath.

Method of Cutting Planes

To calculate the intersection of a 2D surface with a cutting plane X = constant, just plug the

value of the cutting plane into the equation for the 2D surface. This gives a 1D function giving

Z as a function of Y , obtained by “holding X constant.”

Similarly, to calculate the intersection of a 2D surface with a cutting plane Y = constant,

just plug the value of the cutting plane into the equation for the 2D surface. This gives a 1D

function giving Z as a function of X, obtained by “holding Y constant.”

Since the function Z = f (X, Y )|X=1 = 4.5− Y 2

4 , which gives Z as a function of Y , is just a

function of one variable, it has a derivative

dZ

dY

∣

∣

∣

Y=Y0
at any point Y0

This derivative dZ
dY

can be thought of and calculated as the derivative of a 1-dimensional

function R→ R, which is of course the subject of classical calculus as developed in Chapter 2.

In this case, using classical calculus techniques, the curve

Z = 4.5− Y
2

4

is seen to have as its derivative function

dZ

dY
= −2
4
Y

So for example,
dZ

dY

∣

∣

∣

Y=−1
= −2
4
× (−1) = 0.5

which means that the linear approximation to the curve is the function (Figure 7.12)

∆Z = 0.5 ∆Y

-2 -1 0 1 2

3

4

5

Y

Z

X

Y
Z

Z = 5.0
Y

X=1

Figure 7.12: The tangent to the 1D curve produced by the intersection of the cutting plane and

the original surface is shown at the point Y = −1.

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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Notation

We just defined “ dZ
dY

.” But when we are dealing with functions of several variables, like f (X, Y ) =

Z, the derivative of f with respect to one of the variables is written using a new symbol. Instead

of writing dZ
dY

or df
d Y

, we use the symbol ∂ and write

∂Z

∂Y
or
∂f

∂Y

to indicate that Y is one of several variables that determine Z. This is called the partial deriva-

tive of Z with respect to Y.

Exercise 7.4.4 Find the linear approximation to Z = 4.5− Y
2

4
at Y = 3.

Note that we calculated the partial derivative dZ
dY

by looking at the function Z = f (X, Y ) and

taking the derivative of this function while holding everything other than Y constant. This is the

algebraic equivalent of the method of cutting planes: the cutting plane is the geometric picture

of holding the other variable constant. For example, using the Y Z cutting plane amounts to

taking X = constant. Similarly, using the XZ cutting plane amounts to taking Y = constant.

If Z = f (X, Y ), then the partial derivative of Z with respect to Y is calculated by holding all

variables other than Y constant and then calculating the 1-dimensional derivative of the resulting

function.

So the linear approximation to Z = f (X, Y )
∣

∣

∣

X=constant
is

∆Z =
∂f

∂Y
· ∆Y or ∆Z =

∂Z

∂Y
· ∆Y

We have now answered half of our original question: what is the linear approximation to the

2-dimensional surface Z = f (X, Y ) at the point (X0, Y0)? We have found that one of the two

slopes is
∂f

∂Y

∣

∣

∣

Y=Y0

What about the other slope?

By similar reasoning, we use a Y = constant cutting plane to find Z as a function of X

(Figure 7.13). Here we use Y = −1.
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-2 -1 0 1 2

3

4

5

X

Z

X

Y
Z

Y= -1

Z = 4.75
X 2

2

Figure 7.13: The XZ cutting plane at Y = −1 intersects the surface in the black curve.

To find the equation for the black curve, we plug Y = −1 into the Z equation

Z = 5− X
2

2
− Y

2

4

to get

Z = 5− X
2

2
− (−1)

2

4

=⇒ Z = 4.75− X
2

2

and as with Y , the linear approximation to Z as a function of X is

∂Z

∂X
= −X

At the point X = 1,
∂Z

∂X

∣

∣

∣

X=1
= −1

which means that the linear approximation to the curve at the point X = 1 is the linear function

(Figure 7.14)

∆Z =
∂Z

∂X

∣

∣

∣

X=1
· ∆X = −1 · ∆X

-2 -1 0 1 2

3

4

5

X

Z

X

Y
Z

Z =
X

Y= -1

Figure 7.14: The tangent to the 1D curve produced by the intersection of the cutting plane and

the original surface is shown at the point X = 1.
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Exercise 7.4.5 Find the linear approximation to the curve you computed in Exercise 7.4.3 on

page 376 at X = 1.

We have now found the second slope, and we can now write the equation for the tangent

plane. Since the tangent plane to Z = f (X, Y ) at the point (X0, Y0, f (X0, Y0)) has two slopes,
∂Z
∂X

∣

∣

(X0,Y0)
and ∂Z

∂Y

∣

∣

(X0,Y0)
. It follows that the equation for the tangent plane is

∆Z =
∂Z

∂X

∣

∣

∣

(X0,Y0)
· ∆X + ∂Z

∂Y

∣

∣

∣

(X0,Y0)
· ∆Y

This is also the linear approximation to the curve f at the point (X0, Y0) (Figure 7.15).

If Z = f (X, Y ) is a surface over the 2D plane XY , then the linear approximation to f at the

point (X0, Y0) is the linear function

∆Z =
∂Z

∂X

∣

∣

∣

(X0,Y0)
· ∆X + ∂Z

∂Y

∣

∣

∣

(X0,Y0)
· ∆Y

This function defines the tangent plane to f at the point (X0, Y0, f (X0, Y0)).

Note that the tangent plane is a plane and is therefore not part of the curved surface. The

plane and the surface have only one point in common.

X

Y
Z

Figure 7.15: Tangent plane to the surface Z = f (X, Y ) at the point (X0, Y0, f (X0, Y0)), when

(X0, Y0) = (1,−1).

Every point on the surface has its own tangent plane (Figure 7.16). At this degree of magni-

fication, it may look as though the blue tangent planes are lying in the green surface, but they

aren’t.
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X

Y
Z

Figure 7.16: Representative tangent planes to the surface Z = f (X, Y ).

Second Component Function g

Recall that we considered the function

V : R2 −→ R
2

(X, Y ) −→ (Z,W )
and split V into the two component functions f and g:

f : R2 −→ R and g : R2 −→ R

(X, Y ) −→ (Z) (X, Y ) −→ (W )
We have completed the analysis of the first component function f . We now need to consider

the second R2 → R component function

W = g(X, Y )

By methods exactly similar to those of the previous section, we use the method of cutting

planes to extract the partial derivatives ∂g
∂X

and ∂g
∂Y

, or in other words, ∂W
∂X

and ∂W
∂Y

. We can then

say that the linear approximation to W = g(X, Y ) at the point (X0, Y0, g(X0, Y0)) is

∆W =
∂W

∂X

∣

∣

∣

(X0,Y0)
· ∆X + ∂W

∂Y

∣

∣

∣

(X0,Y0)
· ∆Y

or

∆g =
∂g

∂X

∣

∣

∣

(X0,Y0)
· ∆X + ∂g

∂Y

∣

∣

∣

(X0,Y0)
· ∆Y

Here we will use the example (Figure 7.17)

W = g(X, Y ) = 0.5(X2 − Y 2)
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X

Y
W

Figure 7.17: The surface W = g(X, Y ) = 0.5(X2 − Y 2).

Since we have already found the approximation to the first component function f at the point

(X0, Y0) = (1,−1), we will now study the second component function g at the same point.

If we first consider the Y W cutting plane at X = 1, we get the black curve shown in

Figure 7.18. We can easily calculate the equation for the black curve by plugging X = 1 into

the equation for the surface:

W = 0.5(12 − Y 2)
=⇒ W = 0.5− 0.5Y 2

At any point Y0, this black curve has a 1-dimensional linear approximation. This is, of course,

the derivative. The function w = g(X, Y )
∣

∣

X=1
giving W as a function of Y “holding X constant”

has a derivative
dW

dY

∣

∣

∣

X=X0

at every point X0.

-2 -1 1 2

-1.5

-1.0

-0.5

0.5
W

Y

W= 0.5 Y20.5X=1

X

Y
W

Figure 7.18: The Y W cutting plane at the point X = 1 intersects the original surface in the

black curve.

This derivative dW
dY

can be calculated as before using classical calculus techniques.

The function

W = 0.5− 0.5Y 2

has as its derivative function (Figure 7.19)

dW

dY
= −0.5× 2Y = −Y
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which at the point Y = −1 is given by

dW

dY

∣

∣

∣

Y=−1
= −0.5× 2(−1) = 1

-2 -1 1 2

-1.5

-1.0

-0.5

0.5
W

Y

W Y=X=1

X

Y
W

Figure 7.19: The linear approximation to the black curve is shown at the point Y = −1.

So the linear approximation to W = g(X, Y )
∣

∣

X=constant
is

∆W =
∂g

∂Y
· ∆Y or ∆W =

∂W

∂Y
· ∆Y

At the point (X0, Y0) = (1,−1), the linear approximation is

∆W = 1× ∆Y
We have now answered half of our original question: what is the linear approximation to the

2-dimensional surface W = g(X, Y ) at the point (X0, Y0) = (1,−1)? We have found that one

of the two slopes is
∂g

∂Y

∣

∣

∣

X=X0
= 1

What about the other slope?

By similar reasoning, we use a Y = constant cutting plane to find W as a function of X

(Figure 7.20). Again we use Y = −1.
Plugging Y = −1 into the W surface equation

W = 0.5(X2 − Y 2)
we get the equation for the black curve (Figure 7.20),

W = 0.5(X2 − (−1)2)
=⇒ W = 0.5X2 − 0.5

and as before, the function giving W as a function of X has a linear approximation at every

point X0. This linear approximation is given by
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W

X
-2 -1 1 2

0.5

0.5

1.0

1.5Y=-1 W= 0.5X 2 0.5

X

Y
W

Figure 7.20: The XW cutting plane Y = −1 intersects the original surface, yielding the black

curve.

∆W =
∂g

∂X
· ∆X or ∆W =

∂W

∂X
· ∆X

Using classical calculus techniques, we obtain

∂W

∂X
= 0.5× 2X = X

At the point (X0, Y0) = (1,−1), this gives us the approximation (Figure 7.21)

∆W = 1× ∆X
We have now found the second slope; it is

∂g

∂X

∣

∣

∣

Y=Y0
= 1

W

X
-2 -1 1 2

0.5

0.5

1.0

1.5
Y=-1

W = X
X

Y
W

Figure 7.21: The linear approximation to the black curve at the point X = 1.

We now have found the equation for the tangent plane (Figure 7.22 left) to

W = g(X, Y )

at a point (X0, Y0). It is

∆W =
∂g

∂X

∣

∣

∣

(X0,Y0)
∆X +

∂g

∂Y

∣

∣

∣

(X0,Y0)
∆Y
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This is the linear approximation to g at the point (X0, Y0). In the example ofW = 0.5(X2−Y 2)
at (1,-1), it is

∆W = ∆X + ∆Y

X

Y
W

Figure 7.22: Left: Tangent plane to the original W = g(X, Y ) surface at the point

(X0, Y0, g(X0, Y0)) where (X0, Y0) = (1,−1). Right: Each point on the surface has its own

tangent plane.

As we saw previously with the first component function f , there is a unique tangent plane to

g at every point (X0, Y0) (Figure 7.22, right).

Exercise 7.4.6 Find the tangent plane to W = 0.5(X2 − Y 2) at the point
(

1, 3, g(1, 3)
)

.

Putting the Two Component Functions f and g Together

We can now put the linear approximation to f and the linear approximation to g back together

again to produce a linear approximation to the original function V : R2 → R2.
Since

V (X, Y ) =
(

f (X, Y ) , g(X, Y )
)

= ( Z , W )

is a function R2 → R2, the linear approximation to V at the point (X0, Y0) must be a linear

function R2 → R2. This is the function

(∆X,∆Y ) −→ (∆Z,∆W )
whose first component is

∆Z =
∂Z

∂X

∣

∣

∣

(X0,Y0)
· ∆X + ∂Z

∂Y

∣

∣

∣

(X0,Y0)
· ∆Y

and whose second component is

∆W =
∂W

∂X

∣

∣

∣

(X0,Y0)
· ∆X + ∂W

∂Y

∣

∣

∣

(X0,Y0)
· ∆Y

Therefore, the composite linear function

(∆X,∆Y ) −→ (∆Z,∆W )
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is
(

∆X,∆Y
)

−→
(

∂Z

∂X
∆X +

∂Z

∂Y
∆Y ,

∂W

∂X
∆X +

∂W

∂Y
∆Y

)

(X0,Y0)

Notice that we have stopped writing |(X0,Y0) next to each of the partial derivatives; instead,

we write it just once to indicate that it applies to the whole expression.

This 2D linear function is therefore represented by the matrix
⎡

⎢

⎣

∂Z

∂X

∂Z

∂Y
∂W

∂X

∂W

∂Y

⎤

⎥

⎦

(X0,Y0)

(7.2)

which is called the Jacobian matrix or just the Jacobian. It acts on (∆X,∆Y ) to produce

(∆Z,∆W ). The matrix equation is therefore
⎡

⎢

⎣

∂Z

∂X

∂Z

∂Y
∂W

∂X

∂W

∂Y

⎤

⎥

⎦

(X0,Y0)

(

∆X

∆Y

)

=

(

∆Z

∆W

)

If V = (f , g), then the matrix
⎡

⎢

⎣

∂f

∂X

∂f

∂Y
∂g

∂X

∂g

∂Y

⎤

⎥

⎦

(X0,Y0)

represents the linear approximation to V at the point (X0, Y0). It is called the Jacobian matrix

of V at the point (X0, Y0).

Exercise 7.4.7 Find the Jacobian of the function developed in this section at X = 1, Y = 1.

n Dimensions

In n dimensions, if

V : Rn −→ Rn

is an arbitrary function,

V (X1, X2, . . . , Xn) = (Y1, Y2, . . . , Yn)

where

Yi = fi(X1, X2, . . . , Xn) = a1iX1 + a2iX2 + · · ·+ aniXn

then the linear approximation to V at the point (X1, X2, . . . , Xn)0 is given by the Jacobian matrix
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂f1
∂X1

∂f1
∂X2

. . .
∂f1
∂Xn

∂f2
∂X1

∂f2
∂X2

. . .
∂f2
∂Xn

...
...

. . .
...

∂fn
∂X1

∂fn
∂X2
, . . . ,

∂fn
∂Xn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(X1,X2,...,Xn)0

Further Exercises 7.4

1. The Earth is round, but in everyday life, we get along fine acting as though it were flat.

Why is this possible?

2. Compute the following partial derivatives:

1. f (X, Y ) = X3 − Y 3 + 2XY . Compute
∂f

∂Y
.

2. u(s, t) = 5s2 − 3st + 6t3 + 8. Compute
∂u

∂s
.

3. r(N, P ) = 3P (1 + NP ) + log(3N) + e2P . Compute
∂r

∂P
.

3. Compute both partial derivatives of f (X, Y ) = 5X2 + 2Y 3 − 4X3Y 5.

4. Compute all three partial derivatives of g(X, Y, Z) = (X2 − Y 2)(4X + 2Z)− Y Z3

X + Z3
.

5. Compute the Jacobian matrix of the function

g(u, v) =
(

u2 + v3 − 2, u
v

)

6. Let f (X, Y ) = 5XY − 3X2 − Y 2.
1. Compute both partial derivatives of f .

2. Compute
∂f

∂X

∣

∣

∣

∣

(1,2)

and
∂f

∂Y

∣

∣

∣

∣

(1,2)

. That is, plug (X, Y ) = (1, 2) into your answer

from part (a).

3. Write down the linear approximation to f (X, Y ) at (X, Y ) = (1, 2) in the form

∆f ≈ m · ∆X + n · ∆Y

4. Expand your answer from part (c) by rewriting ∆f as f (X, Y )−f (1, 2) and replacing

∆X and ∆Y as in problem 1 above, then solving for f (X, Y ).

5. What is f (0.97, 2.06), approximately?

6. Use your answer from part (d) to write down the equation for the tangent plane to

the graph of f (X, Y ) at (X, Y ) = (1, 2).
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7. From chemistry, you may recall that the ideal gas law states that for n moles of an ideal

gas,

PV = nRT

where R = 0.082, and P , V , and T are the pressure (in atmospheres), volume (in liters),

and temperature (in kelvins), respectively. Suppose you have one mole of an ideal gas,

so that its volume is

V =
0.082T

P

Suppose the current pressure is 1 atm, and the current temperature is 300 K. Use a

linear approximation to estimate how much the volume of the gas will change if the

pressure increases by 0.1 atm and the temperature increases by 3 K.

8. The force of gravity exerted on Earth by the Moon is responsible for many phenomena

that have a significant impact on biological systems, such as the level and frequency of

high and low tides. This force is

f (M,R) = 398600
M

R2

where M is the mass of the Moon and R is its distance from Earth. Currently, M =

73480× 1018 kg and R = 384400 km (on average), and these haven’t changed much in

several million years. But suppose an asteroid of mass 250 × 1018 kg collides with the

Moon, causing its mass to increase by that amount and shifting the Moon’s orbit so

that it is 400 km closer to Earth! Using a linear approximation to estimate how much

the Moon’s gravitational pull on Earth will change.

7.5 Linear Approximations to Multivariable Vector Fields

We can now return to our actual goal: using linearization to learn about the stability of equilibria

of nonlinear differential equations. We did this for one-variable systems earlier and will now

develop a way to do it for multivariable systems. First, however, we need some assurance that

this can, in fact, be done. This assurance comes in the form of the Hartman–Grobman theorem:

near an equilibrium point, a vector field behaves like its linear approximation. We already used

this principle, the principle of linearization, in one dimension, but it holds in any number of

dimensions.

As a technical note, we have to keep in mind that here, as in all applications of the Hartman–

Grobman theorem, we have to assume that the real part of the eigenvalue is not zero. Cases in

which λ = 0 or λ = ± i are atypical and fragile: their behavior is qualitatively altered by even

the tiniest perturbation. So in general, cases in which the real part of the eigenvalue is zero

have to be dealt with by special handling; we can’t directly infer the quality of the nonlinear

equilibrium point from the linearization. There are some exceptions to this, which we will use in

our discussions of the shark–tuna model and the pendulum.

Please note that the condition of this theorem is that we are near an equilibrium point. The

condition that linearization works only near an equilibrium point is critical. Far from an equilibrium

point, all bets are off, and we have only simulation as a tool to study the system’s behavior.
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So how do we go about finding a linear approximation to a vector field at a point? We have

already seen that the linear approximation to an n-dimensional function

V : Rn −→ Rn

at a point (X1, X2, . . . , Xn)0 is given by the Jacobian
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂f1
∂X1

∂f1
∂X2

. . .
∂f1
∂Xn

∂f2
∂X1

∂f2
∂X2

. . .
∂f2
∂Xn

...
...

. . .
...

∂fn
∂X1

∂fn
∂X2
, . . . ,

∂fn
∂Xn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(X1,X2,...,Xn)0

where f1, f2, . . . , fn are the n component functions of the vector field V , each of which is a

function Rn → R.

This Jacobian defines a linear function Rn → Rn, which gives us a linear vector field. We call

this vector field

DV (X1,X1,...,Xn)0

which we read as “the Derivative of V at the point (X1, X1, . . . , Xn)0.”

Let’s call this linear vector field D for short.

As we saw in Chapter 6, we determine the stability of the equilibrium point by finding the

eigenvalues of D, which are the solutions to
∣

∣D − λI
∣

∣ = 0

Recall that the eigenvalues decompose D into subspaces along which D acts like a

• stable equilibrium point (λ < 0) (1D subspace) or

• unstable equilibrium point (λ > 0) (1D subspace) or

• stable spiral (λ = −a ± bi) (2D subspace) or

• unstable spiral (λ = +a ± bi) (2D subspace).

Therefore, we know how to find the linear approximation to V , and we know how to find the

stability of a linear vector field. Now we can put the two together:

To determine the stability of an equilibrium point of a vector field V : Rn → Rn:
(1) Find the linearization of V at the equilibrium point, which is the Jacobian.

(2) Determine the stability of this linear function, using the method of eigenvalues.

(3) Provided no eigenvalue is zero or has zero real part, conclude that the equilibrium point of

the nonlinear system is qualitatively similar to that of its linearization.

This is the Hartman–Grobman theorem in n dimensions.

Exercise 7.5.1 Why didn’t we need to compute the Jacobian when we were working with linear

systems?

http://dx.doi.org/10.1007/978-3-319-59731-7_6
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Example: The Rayleigh Oscillator

Recall the Rayleigh vector field from Chapter 4:

X ′ = V

V ′ = −X − (V 3 − V )
It has a single equilibrium point, at (X, V ) = (0, 0). Let’s determine the stability of that

equilibrium point.

First, we calculate the Jacobian matrix and evaluate it at the point (0, 0):
⎡

⎢

⎣

∂X ′

∂X

∂X ′

∂V
∂V ′

∂X

∂V ′

∂V

⎤

⎥

⎦

(0,0)

=

[

0 1

−1 −3V 2 + 1

]

(0,0)

=

[

0 1

−1 1

]

Then we determine the stability of this linear function by calculating the eigenvalues,

det

([

0 1

−1 1

]

− λI
)

=

∣

∣

∣

∣

0− λ 1

−1 1− λ

∣

∣

∣

∣

= 0

This implies

λ2 − λ+ 1 = 0

which gives us

λ =
+1±

√
1− 4
2

= +
1

2
±
√
3 i

So the linear approximation is an unstable spiral! This confirms

the results of our simulations of the Rayleigh oscillator in Chapter 4.

Exercise 7.5.2 Repeat this analysis for a situation in which the clarinet player is blowing harder,

modeled by the equation

X ′ = V

V ′ = −X − (0.4V 3 − V )

Example: Can Two Species Coexist?

As another example of this procedure, let’s look at the second deer–moose competition model

from Chapter 3, where D = deer population and M = moose population. We want to know

whether the two species can coexist, or in other words, whether the equilibrium point at which

both species have nonzero populations is stable.

The model describing the system is

D′ = 3D − 2MD −D2

M ′ = 2M −DM −M2

Recall from Chapter 3 that the nontrivial equilibrium point of this system is

(D,M) = (1, 1)

http://dx.doi.org/10.1007/978-3-319-59731-7_4
http://dx.doi.org/10.1007/978-3-319-59731-7_4
http://dx.doi.org/10.1007/978-3-319-59731-7_3
http://dx.doi.org/10.1007/978-3-319-59731-7_3


390 Multivariable Systems

The Jacobian of this system evaluated at the point (1, 1) is
⎡

⎢

⎣

∂D′

∂D

∂D′

∂M
∂M ′

∂D

∂M ′

∂M

⎤

⎥

⎦

(1,1)

=

[

3− 2D − 2M −2D
−M 2−D − 2M

]

(1,1)

=

[

−1 −2
−1 −1

]

The eigenvalues are the solutions to

det

([

−1 −2
−1 −1

]

− λI
)

=

∣

∣

∣

∣

−1− λ −2
−1 −1− λ

∣

∣

∣

∣

= λ2 + 2λ− 1 = 0

which gives

λ = −1±
√
2 =⇒ λ = +0.41, λ = −2.41

indicating that the equilibrium point is an unstable saddle point. Therefore, with these parameter

values, the two species cannot coexist.

Exercise 7.5.3 Find and classify the other equilibrium points of this system.

Exercise 7.5.4 Another deer–moose competition model we studied in Chapter 3 was

D′ = 3D −MD −D2

M ′ = 2M − 0.5MD −M2
(7.3)

Determine whether the deer and moose can coexist with these parameter values.

When Linearization Fails: The Zero Eigenvalue

We’ve been using the very powerful tool that is the Hartman–Grobman theorem. It gives us the

right to take a nonlinear system at an equilibrium point, find its linearization, study it, and then

determine the stability of the original nonlinear equilibrium point.

However, there are two technical conditions that must be met before we can apply the

theorem.

The first is that none of the eigenvalues of the linearized system is zero. Suppose this were not

so, that is, suppose we had a system with two eigenvalues λ1 and λ2. Let’s say λ1 is −a (a > 0)
and λ2 is 0. This means that the 2D system can be split into two 1D axes, U and V, with the

system acting like U′ = −aU along U and V′ = 0V = 0 along V.

This means that there is an axis along which the state point is not changing (V′ = 0) and

another one along which it is shrinking (U′ = −aU).

Exercise 7.5.5 Sketch a diagram of this situation.

A typical case is

X ′ = X − 2Y
Y ′ = 3X − 6Y

http://dx.doi.org/10.1007/978-3-319-59731-7_3
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represented by the matrix

M =

[

1 −2
3 −6

]

The eigenvalues of this matrix are solutions to the characteristic equation

λ2 + 5λ = 0

which gives us

λ1 = 0, λ2 = −5

The first eigenvector is found by solving

MU = λ1U

MU =

[

1 −2
3 −6

] (

X

Y

)

=

(

X − 2Y
3X − 6Y

)

= λ1U = 0

(

X

Y

)

=

(

0

0

)

{

X − 2Y = 0 =⇒ Y = 0.5X

3X − 6Y = 0 =⇒ Y = 0.5X

So the first eigenvector is any vector on the line Y = 0.5X, for example, (X, Y ) = (2, 1).

The second eigenvector is found by solving

MV = λ2V

MV =

[

1 −2
3 −6

] (

X

Y

)

=

(

X − 2Y
3X − 6Y

)

= λ2V = −5
(

X

Y

)

=

(

−5X
−5Y

)

{

X − 2Y = −5X =⇒ Y = 3X

3X − 6Y = −5Y =⇒ Y = 3X

So the second eigenvector is any vector on the line Y = 3X, for example, the vector (X, Y ) =

(1, 3). The resulting phase portrait is as follows (Figure 7.23):

U

V

(0, 0)
X

Y

Figure 7.23: A dynamical system that has a zero eigenvalue and a negative eigenvalue will con-

verge toward the eigenvector corresponding to the zero eigenvalue (U axis). In this system, every

point on the U axis is an equilibrium point.

We see that the system does not have an isolated equilibrium point; instead, it has a line of

equilibrium points: every point on the line Y = 0.5X (the blue U eigenvector) is an equilibrium

point.
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This is a situation we have not seen before. There is what some writers call an “absorbing final

state”: every initial condition will approach some definite final state, but the final state depends

on the initial condition.

Exercise 7.5.6 Simulate this system for at least three different initial conditions and plot the

trajectories. (You may want to overlay them.) Describe what happens.

The problem with systems like this is that they are not robust: adding even the tiniest,

vanishingly small additional forces will yield qualitatively different systems. For example, let’s

add a tiny additional factor ǫ (epsilon) to the vector field to make it

X ′ = X − 2Y
Y ′ = (3− ǫ)X − 6Y

represented by the matrix

M =

[

1 −2
3− ǫ −6

]

Note that the addition of the factor ǫ changed the nature of the point to either an unstable

saddle or a stable node, depending on the sign of ǫ (Figure 7.24).

UV

X

Y

U

V

X

Y

Є = 0Є < 0 Є > 0

U

V

X

Y

Figure 7.24: In the system X ′ = X−2Y, Y ′ = (3−ǫ)X−6Y , the equilibrium point changes from

a stable spiral to a saddle point when the parameter ǫ goes from slightly negative to slightly

positive.

Robust systems are called “structurally stable,” and some writers suggest that every mathe-

matical model of a natural system must be structurally stable (Abraham and Marsden 1978).1

Note that this is a new concept of stability: structural stability means that the vector field is

stable, not that points are stable.

The important thing to remember is that when a system is qualitatively susceptible to tiny

changes in the dynamics, all bets are off when it comes to determining the stability of the

nonlinear system. When the linearization is not even locally robust, a locally tiny difference

between the system near its equilibrium point and the linearized version can result in qualitatively

different dynamics. When you are faced with such a system in real life, consult a specialist for the

technical math, and realize that we can always rely on simulation of the full nonlinear system,

taking care to use very small time steps ∆t, because the system is very sensitive to slight changes.

1Philosophers of science have also argued for the idea that a good explanation must be stable under small
perturbations of its assumptions. It appears explicitly in the writings of the early twentieth-century philosopher
Pierre Duhem (see the discussion in Garfinkel (1981)) and was used by philosophers in the later twentieth century
to argue against certain kinds of reductionist explanations (see Putnam (1975) and Garfinkel (1981)).
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When Linearization Fails: Purely Imaginary Eigenvalues

The second type of case in which linearization fails occurs when the eigenvalues of the linear

approximation are purely imaginary, λ = ±k i (we will let k = 1 for convenience).

We know what this linearization looks like: it is a center.

The problem with a center is similar to the problem of the zero eigenvalue above: neither of

these vector fields is structurally stable, and the tiniest additional force will turn the center into

a spiral.

Just as in the case of the zero eigenvalue, the fact that the linearized system is not robust

means that all bets are off when it comes to deciding the character of the equilibrium point of

the nonlinear system.

Exercise 7.5.7 Hartman–Grobman fail. Here’s a pathological example in which linearization

fails to give the right answer, because the eigenvalues are purely imaginary. Let

f (X, Y ) =
X2 + Y 2

1 +X2 + Y 2

and consider the differential equation

X ′ = −Y + f (X, Y ) ·X
Y ′ = X + f (X, Y ) · Y

a) Plot some trajectories for this vector field and show that (0, 0) is an unstable spiral equilib-

rium point.

b) Then calculate the linear approximation to this vector field, that is, the Jacobian

M(0,0) =

⎡

⎢

⎢

⎣

∂X ′

∂X

∂X ′

∂Y

∂Y ′

∂X

∂Y ′

∂Y

⎤

⎥

⎥

⎦

(0,0)

and show that it predicts that (0, 0) is a center.

However, there is one special class of nonlinear systems in which we can conclude that the

equilibrium point is a center. It will help us solve both the pendulum and shark–tuna models.

The special class is the case of conservative systems. A system is said to be conservative if

there is some continuous quantity H that is constant on every trajectory, so that H does not

change over time ( dH
dt
= 0).

If there is such a conserved quantity in a given system, the consequences for the dynamics

of the system are very strong. As Strogatz points out (Strogatz 2014), conservative systems

cannot have stable equilibrium points or limit cycle attractors. They can have only centers and

saddle points.
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We said back in Chapter 4 that what we wanted in a model of a biological oscillation was

that the oscillation be robust, that is, that it have a limit cycle attractor. Conservative systems

cannot have limit cycle attractors, and therefore they are not good models for biological systems.

Yet even though conservative systems violate the axiom of stability that we mentioned in

the previous section, they can be useful models for some purposes. But we have to be careful

with them.

The major fact about conservative systems is that for such systems, we can sometimes prove

that a nonlinear equation has a center, in spite of the inapplicability of the Hartman–Grobman

theorem.

There’s a helpful theorem.2 Let V (X, Y ) be a two-dimensional vector field, and let (X0, Y0)

be an isolated equilibrium point of V . Suppose V is a conservative system, that is, that there

is some function H(X, Y ) that is constant on trajectories. If (X0, Y0) is a local minimum (or

maximum) of H (see Section 7.7 for the notion of local maxima and minima), then (X0, Y0) is

a center equilibrium, and all orbits in a neighborhood around (X0, Y0) are closed.

Exercise 7.5.8 When could an equilibrium point not be isolated?

We will now apply this principle to two fundamental examples: the shark–tuna model and the

frictionless pendulum.

Example: Shark–Tuna

The shark–tuna vector field

S′ = ST − S
T ′ = −ST + T

has two equilibrium points, (S, T ) = (0, 0) and (S, T ) = (1, 1). The linearization of the shark–

tuna vector field is
⎡

⎢

⎢

⎣

∂S′

∂S

∂S′

∂T

∂T ′

∂S

∂T ′

∂T

⎤

⎥

⎥

⎦

=

[

T − 1 S

−T −S + 1

]

Evaluated at the point (0, 0), this gives us the matrix
[

T − 1 S

−T −S + 1

]

(0,0)

=

[

−1 0

0 1

]

The eigenvalues are the solutions to

det

([

−1 0

0 1

]

− λI
)

=

∣

∣

∣

∣

−1− λ 0

0 1− λ

∣

∣

∣

∣

= λ2 − 1 = 0

which gives us
λ = ±1

This is an unstable saddle point at (0, 0). Calculating the eigenvectors corresponding to these

eigenvalues, we see that the eigenvector corresponding to the positive eigenvalue is the T -axis,

which is S = 0, and the eigenvector corresponding to the negative eigenvalue is the S-axis. The

equilibrium point (0, 0) is stable in the S-axis and unstable in the T -axis.

2Theorem 6.5.1 in Strogatz (2014).

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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Exercise 7.5.9 Why does this make biological sense?

At the second equilibrium point (S, T ) = (1, 1), the Jacobian is
[

T − 1 S

−T −S + 1

]

(1,1)

=

[

0 1

−1 0

]

The eigenvalues are the solutions to

λ2 + 1 = 0 =⇒ λ = ± i
Here, the equilibrium point (1, 1) has eigenvalues that are purely imaginary. We recall that the

condition of the Hartman–Grobman theorem is that for the theorem to apply, eigenvalues must

not be purely imaginary. Therefore, we have to resort to other methods to show that (1, 1) is a

center.

Our theorem about conserved quantities comes to the rescue. The shark–tuna equations

(whose formal name is the Lotka–Volterra equations) have a conserved quantity.

If we write the model as

S′ = aST − dS
T ′ = cT − dST

then we can show that

H = c lnS(t)− dS(t)− aT (t) + b lnT (t)
is a conserved quantity and that H has a maximum at the equilibrium point, which is (S, T ) =

(
c

d
,
b

a
) (Figure 7.25).

S

T

H
H0

H1

H2

H3

H c lnS b lnTd S a T

Figure 7.25: In the shark-tuna dynamical system, the quantity H remains constant along all

trajectories, meaning it is a conserved quantity. Since the graph has a local maximum H0, the

trajectories around it are closed.
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Exercise 7.5.10 Verify that
dH

dt
= 0. (Hint: d

dx
ln x = 1

x
. You may also want to review the

chain rule.)

Therefore, the nonzero equilibrium point is a center surrounded

by closed orbits.

Of course, this can be verified by simulations from initial condi-

tions close to the equilibrium point.

We said that systems with conserved quantities are poor mod-

els for biological systems, and the Lotka–Volterra equations are no

exception. Indeed, we already saw, in the discussion of the Holling–

Tanner model in Chapter 4, that the Lotka–Volterra equations de-

pended on unrealistic assumptions and that more realistic ones

resulted in a system with a limit cycle attractor.

Example: The Pendulum

The simple pendulum (Figure 7.26) gives us a great example of the power of nonlinear dynamics.

0
ω

Figure 7.26: The pendulum. Its state variables are angular position θ and angular velocity ω.

First of all, let’s think about the essential dynamics. Since we are in the world of “mechanics,”

we can immediately write

X ′ = V

V ′ = −F
where, as usual in mechanics, X is a physical space (position) variable and V is a velocity variable.

This is the form of “F = ma” stated in the language of differential equations.

But what are the correct X and V for the pendulum? The physical position of the pendulum

is actually given not by a distance X, but by an angle, which is typically called by the Greek

letter θ (theta).

Angle variables are very different from distance variables. Distances live on the real line R.

You can be one foot to the left or right of 0 (that is, −1 ft or +1 ft, or 50,000 miles to the left

or right (−50,000 mi or +50,000 mi). The scale on R goes from −∞ to +∞, with each point,

each value, representing a distinct position or state.

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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Not so for angles. The angle 360◦ is the angle 0◦; the angle 370◦ is the angle 10◦. So angles

don’t go on and on forever; they repeat after 360◦.3

0

90270

180

Figure 7.27: How the circle represents angles. The circle is referred to as S1.

Therefore, the state space of angles has a different shape from that of the line that represents

R: it’s a closed circle, not a line. Angles live on a circle, called S1. This is our first example of

a state space that is not Rn (Figure 7.27).

Exercise 7.5.11 Come up with another example of a variable whose state space is a circle.

Then we need to find the state space for the velocity variable. This really is R, since any

positive value of velocity is possible, as is any negative value, and no two values are equivalent.

Of course, the velocity here is angular velocity (speed and direction of rotation), typically called

by the Greek letter ω (omega), so ω-space is R.

So now what is the joint state space for (θ, ω)? The angular position θ lives in S1, and the

angular velocity ω lives in R, so the joint state space is S1×R, the set of all pairs (θ, ω), where

θ is in S1 and ω is in R. This is the same kind of construction that we used to make the state

space for the spring, which is the set of all pairs (X, V ), where X is the position and V is the

velocity. S1 × R is called the Cartesian product of S1 and R.

Exercise 7.5.12 Give two examples of points in S1 × R.

Exercise 7.5.13 Give an example of two points in S1 × R that are actually the same point.

The space S1 × R looks like a cylinder (Figure 7.28). Notice that on the cylinder, specifying

a point ω0 on the green ω axis and specifying an angle θ0 uniquely determines a point on the

cylinder.

3Or if you prefer, 2π radians.
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0

90270

180
ω

0

S1S1

Figure 7.28: If one variable has a state space that is a circle and another variable has a state

space that is a line, their joint state space is a cylinder.

That’s our state space for the pendulum. Now let’s go on to describe the dynamics by

completing the differential equation. First, what is F here? It’s the force of gravity acting on

the pendulum weight, which is of course equal to mg, where m is the mass of the pendulum and

g is the acceleration due to gravity (its value is around 32 ft/sec2).

However, the force of gravity is always acting straight down. Only part of that force is going

to make the pendulum swing, and that is the part that is along the curve of movement, tangent

to it, and perpendicular to the shaft of the pendulum. The other component, at right angles,

is the part of the force that is acting along the line of the shaft, which is assumed to have no

effect (Figure 7.29).

Exercise 7.5.14 Briefly explain why this makes physical sense.

Therefore, the true force acting to change the angle is not mg but rather mg sin θ.

0

F=mg
cosF

sinF

Figure 7.29: We can decompose the gravitational force F = mg into a component acting along

the pendulum shaft (F · cos θ) and a component acting perpendicular to the shaft (F · sin θ).

Exercise 7.5.15 Why sin θ? (Hint: Think about vector addition and recall (or look up) basic

trigonometry.)

We now have our differential equation

θ′ = ω
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ω′ = −mg sin θ
By choosing a unit system in which mg = 1, the differential equation reduces to

θ′ = ω

ω′ = − sin θ
Notice that this is highly nonlinear: it is certainly not the case that the sine function is linear;

sin (X + Y ) is definitely not sinX + sin Y , and sin(6× 30◦) is not equal to 6× sin 30◦.

Exercise 7.5.16 Confirm these statements numerically.

So we have a nonlinear equation here, and paper and pencil methods are not going to solve

it. Let’s use the methods of this chapter to analyze this system.

Finding equilibrium points. The first step, as always, is to find the equilibrium points and

determine their stability. If we set the right-hand side of the differential equation to 0, we get

0 = ω

0 = − sin θ
Looking at the first equation, we see that every equilibrium point must have ω = 0. This is

intuitively clear, since it says that the pendulum must be at rest (angular velocity = ω = 0).

Turning to the second equation, − sin θ = 0, what values of θ satisfy this? Looking at the graph

of sin θ, we see two equilibrium points, θ = 0◦ and θ = 180◦. They have a physical meaning:

θ = 0 is rest at bottom dead center, and θ = 180◦ means rest at top dead center. The two

equilibrium points are therefore (θ, ω) = (0, 0) and (θ, ω) = (180◦, 0) (Figure 7.30).

π 2π

-1

1

0

sin

Figure 7.30: The function sin θ.

Stability. The next step is, as always, to determine the stability of these equilibrium points.

Previously, we could only use simulation methods to determine stability in 2D or higher. Now we

can use the methods of local linear approximation around the equilibrium point to analyze the

stability of the equilibrium points.

In order to find the stability of the equilibrium point at (θ, ω) = (0, 0), we begin by finding

the Jacobian, the matrix of partial derivatives, that represents the linearization of the system

at the point (θ, ω) = (0, 0). From the definition of the Jacobian matrix (Equation 7.2 on page

385), the linear approximation is given by the matrix
⎡

⎢

⎣

∂θ′

∂θ

∂θ′

∂ω
∂ω′

∂θ

∂ω′

∂ω

⎤

⎥

⎦
=

[

0 1

− cos θ 0

]

If we evaluate this matrix at (θ, ω) = (0, 0), we get
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⎡

⎢

⎣

∂θ′

∂θ

∂θ′

∂ω
∂ω′

∂θ

∂ω′

∂ω

⎤

⎥

⎦

(0,0)

=

[

0 1

− cos θ 0

]

(0,0)

=

[

0 1

−1 0

]

We find the eigenvalues of this matrix by solving

det

([

0 1

−1 0

]

− λI
)

=

∣

∣

∣

∣

0− λ 1

−1 0− λ

∣

∣

∣

∣

= 0

The eigenvalues of this matrix are the solutions to λ2 + 1 = 0, so the eigenvalues are purely

imaginary: λ = ± i . Therefore, we can’t directly apply the Hartman–Grobman theorem. However,

we mentioned that there are certain cases in which we can say that the nonlinear system has a

center when the linear system does.

Recall our discussion of the shark–tuna system at the equilibrium point (1, 1): we said that the

equilibrium point must be a center, because there is a conserved quantity, and the equilibrium

point is a local maximum of that conserved quantity. The same thing is true of the frictionless

pendulum at (0, 0), only now the equilibrium point is a local minimum.

In the pendulum, which is a frictionless mechanical system, there is also a conserved quantity,

called “energy.” The physical principle of conservation of energy says that the sum of potential

and kinetic energy must be a constant. But the kinetic energy is just 12ω
2, and the potential

energy is − cos θ (recall m = 1 here), so the quantity

H =
1

2
ω2 − cos θ = E

is a constant; hence the equilibrium point of the pendulum at the point (0, 0) is a center.

Exercise 7.5.17 Verify that
dH

dt
= 0.

E0

E

ω

E1

E2

E4

E3

E 1
2

ω
2

cos

Figure 7.31: In the pendulum dynamical system, the quantity E remains constant along all tra-

jectories, meaning it is a conserved quantity. Since the graph has a local minimum E0, the

trajectories around it are closed.
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It is easy to confirm that the point (0, 0) is a local minimum of E, either using the minimization

techniques of Section 7.7 or by plotting E(θ, ω) as a surface over (θ, ω) space (Figure 7.31).

We can confirm this by simulation using a few initial conditions in a small neighborhood of

(θ, ω) = (0, 0) (Figure 7.32).

ω

(0,0) ( ,0)( ,0)
2

Figure 7.32: Pendulum behavior near the equilibrium point (0, 0).

Clearly, the simulations confirm our calculation: (θ, ω) = (0, 0) is a neutral equilibrium. Small

perturbations do not go far away, nor do they return to the equilibrium point.

Let’s go on to look at the equilibrium point (θ, ω) = (180, 0), corresponding to the pendulum

at rest at top dead center. You can guess physically what kind of equilibrium this is, but let’s do

it mathematically. Here the Jacobian is again

⎡

⎢

⎣

∂θ′

∂θ

∂θ′

∂ω
∂ω′

∂θ

∂ω′

∂ω

⎤

⎥

⎦
=

[

0 1

− cos θ 0

]

which, when evaluated at (180, 0), gives us the matrix
⎡

⎢

⎣

∂θ′

∂θ

∂θ′

∂ω
∂ω′

∂θ

∂ω′

∂ω

⎤

⎥

⎦

(180,0)

=

[

0 1

− cos θ 0

]

(180,0)

=

[

0 1

1 0

]

The eigenvalues of this matrix are given by

det

([

0 1

1 0

]

− λI
)

=

∣

∣

∣

∣

0− λ 1

1 0− λ

∣

∣

∣

∣

= 0

and the eigenvalues are therefore the solutions to λ2 − 1 = 0, or λ = ±1. Two purely real

eigenvalues, one positive and one negative. That’s a saddle point.

Using a large number of simulations to assemble a phase portrait, we get the following picture

(Figure 7.33):

ω

(0,0) ( ,0)( ,0)
2

Figure 7.33: Pendulum behavior near the equilibrium points (0, 0) and (π, 0).
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We have now figured out the behavior near the two equilibrium points. Far from equilibrium,

linear approximation methods fail, and our only tool is numerical simulation. If we run a series of

simulations to fill in the blank regions, we assemble the complete phase portrait of the pendulum

(Figure 7.34). Here we are showing the phase portrait in a plane, using the technique of repeating

θ over and over.

ω

(0, 0) ,0)( 2( ,0) 3 ,0)(( ,0)

Figure 7.34: Phase portrait of the pendulum.

But really, as we said, the state space is a cylinder, and the true phase portrait looks like

Figure 7.35. Figure 7.34 can be seen as the unrolled version of the cylinder in Figure 7.35.

Studying Figure 7.34, we see that there are two qualitatively different shapes of trajectories:

the special trajectories that run from saddle point to saddle point form a shape like an eye. Inside

the eye, trajectories are closed loops, which are round near the origin (0, 0) and become more

oval as they get nearer to the special trajectories that outline the eye. Outside the eye, they

have a very different shape: they do not close, indeed, none ever cross the ω = 0 axis.

Figure 7.35: The cylindrical state space of the pendulum is best viewed unrolled.
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The two types of trajectories represent two different forms of motion:

(1) Inside the eye, the closed loops represent back-and-forth motion of the pendulum around

its bottom dead center. For half the cycle, the trajectory is in the positive ω half-plane:

the pendulum is moving to the right. For the other half, the trajectory is below the θ axis,

in negative ω territory, meaning that the pendulum is now moving back to the left. This

motion repeats.

(2) But outside the eye, the trajectories don’t cross the axis ω = 0, meaning that the pendulum

does not change its direction of motion. These trajectories correspond to motion that is

always clockwise (positive ω) or always counterclockwise (negative ω). The pendulum in

these cases is whirling around and around in one direction or the other. Not surprisingly,

these correspond to higher angular velocities.

So the pendulum gives us an interesting example of a system having two very different forms

of motion, depending on initial conditions. The phenomenon of multiple qualitatively different

modes of behavior can be seen only in nonlinear systems.

Exercise 7.5.18 It may seem strange that trajectories that don’t seem to form closed loops

represent periodic behavior. To understand what’s actually happening, sketch Figure 7.34 on a

piece of paper (standard-sized printer paper is fine) and wrap it around a cylinder. Describe what

happens to the trajectories outside the eye and what this means in physical terms.

Adding Friction

As we’ve said, the frictionless pendulum is an idealization. No real system can have zero energy

loss. It is therefore interesting to ask what happens if we add a little friction. The model now

becomes

θ′ = ω

ω′ = −sin θ − kω
where k is the friction coefficient. As we might expect, the system is no longer conservative,

because energy is not conserved, and so the closed orbits disappear. The equilibrium point at

(0, 0) now becomes a stable spiral, and all trajectories approach it as t →∞ (Figure 7.36).

( ,0) 2( ,0) 3 ,0)(

ω

(0, 0)

ω

Figure 7.36: Adding friction to the pendulum model converts (0, 0) into a stable equilibrium

point.
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Exercise 7.5.19 Pick a few points at random on the phase portrait (Figure 7.36) and follow

the trajectory through that point. What is happening to the pendulum as this trajectory is traced

out?

Here we are using the technique of the unrolled cylinder representation of state space. The

true state space is still the cylinder, and the trajectories now resemble the following figure

(Figure 7.37):

Figure 7.37: The cylindrical state space of the pendulum with friction, unrolled.

The Linearized “Small-Angle” Pendulum

In some elementary physics and differential equations courses, this nonlinear behavior is con-

sidered “too advanced,” and so a major simplifying assumption is made to make the system

amenable to paper-and-pencil methods.

If we make the drastic assumption that the pendulum is restricted to very small motions, that

is, that θ is close to 0, then we can replace the nonlinear sin(θ) term in the ω′ equation. For

small angles, sin θ is approximately equal to θ (Figure 7.38).

1

-1

4 22 4

sin  

Figure 7.38: θ ≈ sin θ for small angles θ.
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If we make the substitution of θ for sinθ, we get a linear differential equation:

θ′ = ω

ω′ = −θ

Exercise 7.5.20 Where have we seen this equation (with different variable names) before?

For this simplified system, it is possible to find an explicit solution. In Chapter 2, when we

learned about derivatives, we saw that the derivative of sin(x) is cos(x) and the derivative of

cos(x) is −sin(x). Therefore, the equations

θ = sin(t)

ω = cos(t)

satisfy the requirement

θ′ =
d

dt
sin(t) = cos(t) = ω

ω′ =
d

dt
cos(t) = −sin(t) = −θ

So the functions

θ = sin(t) and ω = cos(t)

explicitly solve the linear differential equation above. The simplified small-angle pendulum is a

linear system, and has an explicit solution, which simple calculus is able to provide.

But at what cost was this obtained? The simplified equations are incapable of showing the

full behavior of the system. The entire equilibrium point at (θ, ω) = (180, 0) has been lost, and

with it, the possibility of multiple behaviors.

Many elementary calculus and physics courses make this move of drastic simplifications to

make paper-and-pencil solutions possible, but we lose most of the interesting behaviors in this

way. Using nonlinear dynamics and computer simulation, we have access to the full range of

behaviors of systems in nature.

Exercise 7.5.21 Sketch the phase portrait for the linear pendulum and compare it to the

nonlinear one in Figure 7.34.

Further Exercises 7.5

1. You and a friend are on a giant swing carnival ride. While you try to keep your lunch

down, your friend asks, “Why does it feel like we’re stopping as we go over the top?”

a) Briefly explain what’s happening.

b) How would you explain this to your friend, who knows nothing about dynamics?

http://dx.doi.org/10.1007/978-3-319-59731-7_2
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2. You have already seen a type of 1D vector field that wasn’t structurally stable. What

was it and why was it sensitive to changes in parameters? You’ll probably want to use

diagrams in your explanation.

3. Compute the Jacobian of the system of differential equations

X ′ = X(2− Y ) +XY 2

Y ′ =
X + Y

X − Y
4. Consider the system of differential equations

N ′ = N2 − 2NP

P ′ = P

(

1− 2P
N

)

a) Verify that N = 2, P = 1 is an equilibrium point of the system of differential

equations.

b) Find the Jacobian of this system at this point.

c) Find the eigenvalues of this Jacobian.

d) What kind of equilibrium point is this?

5. Let D be the size of a population of deer, and M the size of the population of moose

in the same area. The Lotka–Volterra competition model for these species might look

like the following:

D′ = 0.3D − 0.05D2 − 0.03DM
M ′ = 0.2M − 0.04M2 − 0.02DM

a) This system has four equilibrium points. Find them. (It might help to use a graphical

method here, i.e., nullclines.)

b) Classify each equilibrium point, using the eigenvalues of the Jacobian.

c) What will happen to these two populations in the long run? Can they coexist?

6. In the Sonoran desert, kangaroo rats (K) compete with ants (A) for food, since both

eat seeds. Suppose the competition is modeled by the equations

A′ = 3A− 2A2 − 2AK
K′ = 2K − AK − 3K2

a) Find and classify all the equilibria for this system.

b) What will happen to these species in the long run?
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7. Consider the following model of Romeo, Juliet, and Juliet’s nurse:
⎧

⎪

⎨

⎪

⎩

R′ = JN − 83R
J ′ = 10(N − J)
N ′ = 28J − N − RJ

This system has three equilibrium points, at (27, 6
√
2, 6
√
2), (27,−6

√
2,−6

√
2), and

(0, 0, 0).

a) Compute the Jacobian of this system.

b) For each equilibrium point, plug the equilibrium point into the Jacobian and use

Sage to find its eigenvalues. What type of equilibrium point is each one?

8. Recall the Holling–Tanner model,

N ′ = r1N(1−
N

k
)− wN

d + N
P

P ′ = r2P (1−
jP

N
)

Find and classify the biologically meaningful equilibria for this model, using the parameter

values r1 = 1, r2 = 0.1, k = 7, d = 1, j = 1, and w = 1. Feel free to use SageMath to

help with the algebra.

7.6 Hopf Bifurcation

Hopf bifurcation is the key to understanding oscillatory behavior. In Chapter 4, we said that a

Hopf bifurcation occurs when a stable equilibrium point becomes unstable, and it gives way to

a stable limit cycle attractor.

We can now study Hopf bifurcation analytically. Previously, we could use only experimental

(simulation) methods: choose some parameter values and run multiple simulations. Now we can

study Hopf bifurcation using the principle of linearization and the method of eigenvalues.

The Rayleigh Model

Let’s use the Rayleigh clarinet model as our example:

X ′ = V

V ′ = −X − c(V 3 − V )
We have inserted a parameter c to be our control parameter.

By setting X ′ = 0 and V ′ = 0, we see that the only equilibrium point of this model is

(X, V ) = (0, 0). Now let’s determine its stability. We can leave the parameter c in the model

and work with it symbolically in the Jacobian.

The Jacobian of this vector field is
⎡

⎢

⎢

⎣

∂X ′

∂X

∂X ′

∂V

∂V ′

∂X

∂V ′

∂V

⎤

⎥

⎥

⎦

=

[

0 1

−1 −c(3V 2 − 1)

]

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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which evaluated at the equilibrium point (0, 0) gives us
[

0 1

−1 −c(3V 2 − 1)

]

(0,0)

=

[

0 1

−1 c

]

The eigenvalues are therefore given by

det

( [

0 1

−1 c

]

− λI
)

=

∣

∣

∣

∣

−λ 1

−1 c − λ

∣

∣

∣

∣

= λ2 − cλ+ 1 = 0

which gives

λ =
c ±
√
−4 + c2
2

Note that we have found λ as a function of c , so it is easy to calculate the effect of c on

the eigenvalues.

First let’s look at the case c < 0. Here we use c = −0.5. The eigenvalues are

λ|c=−0.5 = −0.25± 0.97 i
These are complex conjugate eigenvalues with negative real part. Therefore, they represent

a stable spiral. The phase portrait looks like Figure 7.39, left.

X

V

XX

V

c<0 c=0 c>0

Figure 7.39: In the Rayleigh model, a Hopf bifurcation occurs when parameter c passes from

negative to positive.

Now let’s look at the case c > 0. Here we choose c = 0.5. The eigenvalues are

λ|c=0.5 = 0.25± 0.97 i
These are complex conjugate eigenvalues with positive real part. Therefore, they represent an

unstable spiral. The phase portrait looks like Figure 7.39, right.

The special case c = 0 has a special set of trajectories. The eigenvalues are

λ|c=0 = ±i
which are purely imaginary, indicating a neutral center. The phase portrait looks like Figure 7.39,

middle.

If we assemble a set of 2D phase portraits for varying values of c and arrange them in order

of their c values, we get the bifurcation diagram for a Hopf bifurcation (Figure 7.40).
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Exercise 7.6.1 At what value of c does the Hopf bifurcation occur?

c

X
V

0.51 0.5 10

Figure 7.40: A 3D Hopf bifurcation diagram for the Rayleigh clarinet model.

Hopf bifurcation theorem (approximately). Consider an equilibrium point of a vector field

that depends on a parameter. Let J be the Jacobian matrix representing the linear approximation

to the vector field at that equilibrium point. Suppose that a pair of conjugate eigenvalues of

J, a ± bi passes from a < 0 to a > 0 as a parameter passes a critical value. In this case, the

behavior changes from a stable equilibrium to an unstable equilibrium surrounded by a stable

limit cycle attractor.

Example: Glycolysis

In Chapter 4, we saw oscillations in metabolism in the energy-producing reactions of glycolysis.

We studied the Selkov model

S′ = v0 − cSP 2

P ′ = cSP 2 − kP
Let’s study the dynamics of this model analytically. We will set V0 = 1 and k = 1. Our control

parameter will be c .

Setting S′ = P ′ = 0, we see that the model has an equilibrium point at

(S, P ) = (
1

c
, 1)

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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To study the stability of this equilibrium point, we calculate the Jacobian
⎡

⎢

⎢

⎣

∂S′

∂S

∂S′

∂P

∂P ′

∂S

∂P ′

∂P

⎤

⎥

⎥

⎦

=

[

−cP 2 −2cPS
cP 2 2cPS − 1

]

evaluated at ( 1
c
, 1),

[

−cP 2 −2cPS
cP 2 2cPS − 1

]

( 1
c
,1)

=

[

−c −2
c 1

]

The eigenvalues are therefore given by

det

([

−c −2
c 1

]

− λI
)

=

∣

∣

∣

∣

−c − λ −2
c 1− λ

∣

∣

∣

∣

= λ2 + (c − 1)λ+ c = 0

λ =
1− c ±

√
c2 − 6c + 1
2

If c = 1.1, the equilibrium point is (S, P ) = (0.91, 1), and the eigenvalues are

λ = −0.05± 1.05 i
Therefore, the equilibrium point is a stable spiral.

If c = 0.9, the equilibrium point is (S, P ) = (1.11, 1), and the eigenvalues are

λ = 0.05± 0.95 i
Therefore, the equilibrium point is an unstable spiral.

If c = 1, the equilibrium point is (S, P ) = (1, 1), and the eigenvalues at the mathematical

bifurcation point are

λ = ± i

Therefore, at the bifurcation point, the equilibrium point is a center (Figure 7.41).

In summary, we can now say that the cause of oscillations in this model is a decrease in the

reaction rate governed by the controller PFK, which is the c parameter in the cSP 2 term.

0.95 1 1.05

0.95

1

1.05

1 2

1

2

1 2

1

2

λ = 0.05 1.05 i

P

S

P

S

λ = 0.05 0.95iλ= i

S

P

c=0.9c=1c=1.1

Figure 7.41: In the glycolysis model, decreasing the parameter c past c = 1 creates a Hopf

bifurcation.
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Exercise 7.6.2 Let c = 1 and calculate the value of v0 at which the bifurcation occurs. You

can use Sage to help with the algebra. (Hint: What is λ at the bifurcation point?)

Example: Oscillatory Gene Expression

As a final example of a Hopf bifurcation, let’s consider the gene control oscillator we saw in Chap-

ter 4. The genetic oscillator model consisted of a transcriptional factor A and a transcriptional

repressor R. The model by Smolen et al. was

A′ =
kA2

A2 + 10(1 + R
0.2)
− A+ 0.4

R′ =
0.3A2

A2 + 10(1 + R
0.2)
− 0.2R

We will use k as our control parameter. The Jacobian matrix can be expressed in terms of

A, R, and k :

M =

[

−2kA3b2 + 2kAb − 1 −50A2kb2
0.6Ab − 0.6A3b2 −15A2b2 − 0.2

]

where b =
1

A2 + 10(1 + R
0.5)

Because of the complexity of this model, the only way to study the system is by plugging

different k values into the system and calculating the corresponding equilibrium points and the

Jacobian matrix around that equilibrium point to determine its stability.

First of all, let’s find the equilibrium points when k = 9.5. Solving A′ = R′ = 0, we get

(A,R)
∣

∣

k=9.5
= (1, 0.1)

Plugging in the k value as well as the equilibrium point, we get the Jacobian matrix

M
∣

∣

k=9.5
=

[

0.14 −1.9
0.036 −0.26

]

The corresponding eigenvalues are solutions to

det

(

M
∣

∣

k=9.5
− λI

)

= 0 =⇒ λ = −0.6± 0.17 i

These are complex conjugate eigenvalues with negative real part. Therefore, this equilibrium

point is a stable spiral (Figure 7.42).

Now let’s consider the case k = 10.5. The equilibrium points can be found by setting A′ =

R′ = 0. We get

(A,R)
∣

∣

k=10.5
= (2.5, 0.3)

Similarly, plugging in the k value as well as the equilibrium point, we get the Jacobian matrix

M
∣

∣

k=10.5
=

[

0.34 −3.4
0.038 −0.3

]

And the corresponding eigenvalues are

det

(

M
∣

∣

k=10.5
− λI

)

= 0 =⇒ λ = +0.024± 0.16 i

http://dx.doi.org/10.1007/978-3-319-59731-7_4
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Figure 7.42: A 3D Hopf bifurcation diagram for the gene expression model.

which are complex conjugate eigenvalues with positive real part. Therefore, this equilibrium point

when k = 10.5 is an unstable spiral. And by the Hopf bifurcation theorem, there is a stable limit

cycle attractor surrounding the equilibrium point (Figure 7.42).

Lastly, we are going to consider the case k = 11.5. The equilibrium points are

(A,R)
∣

∣

k=11.5
= (4.5, 0.53)

As before, by plugging in the k value as well as the equilibrium point, we get the Jacobian

matrix

M
∣

∣

k=11.5
=

[

0.18 −3.6
0.03 −0.3

]

And the corresponding eigenvalues are

det

(

M
∣

∣

k=11.5
− λI

)

= 0 =⇒ λ = −0.06± 0.23 i

which are complex conjugate eigenvalues with negative real part. Therefore, this equilibrium

point when k = 11.5 is a stable spiral (Figure 7.42).

By plugging in many k values, making the same calculations of equilibrium points and stability

analysis, and assembling them in order of k value, we can get a bifurcation diagram for this model,

as shown in Figure 7.42, lower panel.

Exercise 7.6.3 Even if we can’t compute the parameter value at which a Hopf bifurcation

takes place, we can use SageMath to approximate it as closely as we want. Outline a procedure

for doing so. (You don’t have to code anything; just explain what the code would have to do.)
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A Technical Note on Hopf Bifurcation

We have characterized the Hopf bifurcation in two ways:

(1) A Hopf bifurcation is the birth of a stable oscillation from a stable equilibrium point as a

parameter passes a critical point.

(2) A Hopf bifurcation occurs when a pair of complex conjugate eigenvalues has its real part

pass from negative to positive.

These are, of course, deeply related. However, note that the premise of the theorem is that a

pair of complex conjugate eigenvalues has its real part go from negative to positive. Based on

our knowledge of eigenvalues, we can then easily say that the motion before the bifurcation will

be a stable spiral (negative real part) changing into an unstable spiral (positive real part), while

the critical value is a center (zero real part).

However, the conclusion of the Hopf bifurcation theorem tells us much more than that. It

guarantees that there is a closed orbit that persists when the parameter is past the critical point,

and it also guarantees that under minimal conditions, that closed orbit is an attractor. The math

here is deep, and the courageous reader is pointed to technical treatments of Hopf bifurcation

theory (Marsden and McCracken is the classic source).

Further Exercises 7.6

1. Let’s look at a different parameterization of the Higgins–Selkov model,

S′ = v0 − 0.23SP 2

P ′ = 0.23SP 2 − 0.4P
a) Regardless of the value of V0, this system has one equilibrium point. Find its coor-

dinates in terms of v0.

b) Find the Jacobian matrix of this system at the equilibrium point. Again, this will

have to be in terms of v0.

c) In reality, the value of v0 can vary from around 0.48 to 0.60. For some of these

values of v0, the system will exhibit oscillations (there will be a limit cycle attractor).

At what exact value of v0 does the Hopf bifurcation occur?

2. Recall the Holling–Tanner predator–prey model:

N ′ = r1N

(

1− N

3000

)

− 300N

1000 + N
P

P ′ = 0.03P

(

1− 150P
N

)

a) Suppose first that r1 (the natural growth rate of the prey species in the absence

of predators) is 0.4. This system has an equilibrium point at about (226.8, 1.512).

(This is the only equilibrium point at which both populations are positive.) What

type of equilibrium point is it?
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b) Now suppose that due to some external factor, r1 drops to 0.2. With these parame-

ters, the equilibrium point is at about (106.7, 0.712). Now what kind of equilibrium

point is it?

c) Find the exact value of r1 where the Hopf bifurcation occurred. (Hint: For a 2× 2
matrix

[

a b

c d

]

, if the eigenvalues are complex, then their real part is just
a + d

2
.

(Why is this true?))

7.7 Optimization

There are many occasions in biology in which we are looking for a maximum or a minimum value

of some quantity. The process of finding maxima or minima is called optimization.

What kinds of quantities might we want to optimize? Here are a few examples.

• A foraging animal is interested in maximizing caloric intake and minimizing energy costs

and exposure to predators. It must also optimize the time spent foraging versus time spent

in the nest.

• We would expect organisms to evolve to maximize the number of surviving offspring they

have. We will study this example, optimal clutch size, a little later. (Of course, animals

don’t consciously perform calculations, but we expect their behavior to evolve so as to

optimize their overall fitness.)

• In ecology, a species might be trying to maximize its use of available resources or to find

an optimal strategy against various competitors, predators, and prey.

• In evolutionary biology, theorists have proposed that different combinations of gene ex-

pression lead to different traits with varying amounts of “fitness.” Evolution is seen as

optimizing “fitness” for a given set of genes.

• In physiology, many of the body’s processes are optimal solutions. For example, we can

breathe very slowly and use little energy, but then we take in little oxygen, or we can

breathe very fast and take in a lot of oxygen, but then we have to work very hard to

breathe and spend a lot of energy. Physiological breathing rate is the optimum value.

Building mathematical models of reproduction or behavior and then analyzing what an organism

should do if it is attempting to optimize a particular quantity can give us insight into the

organism’s biology. A mismatch between model predictions and the organism’s observed behavior

can be particularly revealing, since it indicates that something is wrong with our model.

In each of these cases, we are seeking the maximum or minimum values of some function.

Let’s now discuss how to find these maxima and minima.

Maxima and Minima in One Dimension

Let’s say that our variable is X, and the function to be maximized or minimized is Y = f (X).

The maximum value of f (X) is the value that is greater than or equal to all other values f (X)

in the domain of X. This is what is called a global maximum. (There may be several X values

at which this maximum is reached.)

Exercise 7.7.1 By the same logic, what is the minimum value of f (X)?
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That’s easy to say, but how do we find those points? The key step in finding the maxima or

minima of f , and the values of X at which it is reached, is to first find what are called local

maxima (or local minima). A local maximum is an f value that is greater than any other value

in its immediate neighborhood.

Exercise 7.7.2 What is a local minimum?

We can find these values using derivatives. To say that a value f (X0) is greater than any

other value in its neighborhood is to say that to the left of X0, the function is increasing, and

to the right of X0, the function is decreasing. But that just means that to the left of X0, the

derivative of f with respect to X is positive, and to the right of X0, the derivative of f with

respect to X is negative.4 It follows that if the derivative is a continuous function, then its value

at X0 must be 0, because a continuous function can pass from positive to negative only by

passing through zero (Figure 7.43).

X

(X)
= 0

X0

fd
Xd

< 0
fd
Xd> 0

fd
Xd

f 

fmax

Figure 7.43: If X0 is a local maximum of f , then df /dX is positive to the left of X0 and negative

to the right.

Similarly, at a local minimum of f , the function must be decreasing to the left of X0 and

increasing to the right of X0. Again, this implies that if the derivative of f is a continuous

function, it must have the value zero at X0 (Figure 7.44).

X

(X)

= 0

X0

fd
Xd

< 0
fd
Xd

> 0
fd
Xd

f 

fmin

Figure 7.44: If X0 is a local minimum of f , then df /dX is negative to the left of X0 and positive

to the right.

4Technically, we should add the words “on average” after “the function is increasing (decreasing)” and “the
derivative of f is positive (negative).” This is to rule out some pathological examples, including functions that
oscillate infinitely often in the neighborhood of the critical point.
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Exercise 7.7.3 Restate the conclusions of the previous two paragraphs in geometric terms.

Exercise 7.7.4 Find the local maxima and minima of the following functions and determine

whether they are maxima or minima. (Hint: Use the definitions.)

a) f (X) = X4 − 2X2

b) f (X) =
X3

3
− 2X2 + 3X + 2

c) f (X) = 2X3 − 9X2 − 24X − 12

There is a mathematical theorem that sums up all the possible ways for a local maximum or

minimum to occur at X0. First, we have to rule out the possibility that X0 is an endpoint of

the domain. If X0 is an endpoint, f (X0) can be a local maximum or minimum even when the

derivative of f at that point does not equal zero (Figure 7.45).

X

(X)f 

a b

fmin

fmax

Figure 7.45: A function can have local minima and maxima at the endpoints of its domain even

if df /dX is not zero there.

The theorem, which is due to the seventeenth-century French mathematician Fermat, says

that if X0 is not an endpoint of the domain and f (X0) is a local maximum or minimum, then

either
df

dX

∣

∣

∣

X0
= 0

or f is not differentiable at X0.

The second clause has to be there because of functions like the absolute value function

f (X) = |X|
which has an obvious minimum at X = 0, although the derivative there is not equal to zero.

Indeed, it’s undefined (Figure 7.46).

X

(X)f 

Figure 7.46: A function, such as f (X) = |X|, can have a local minimum or maximum at a point

where it is not differentiable.



7.7. Optimization 417

We can now make a definition. We will say that f has a critical point at X0 if df
dX
|X0 = 0 or

is undefined. Now suppose f has a critical point at X0. How can we tell whether this is a local

maximum, a local minimum, or neither?

Of course, we could just graph the function and look at the graph. This is easy with one

variable, more difficult with two, and impossible with three or more variables. So we want to

develop a method for classifying critical points that carries over to higher dimensions.

At a local maximum, the function changes from increasing to decreasing. The derivative of

the function was positive and is now negative, and therefore the derivative has been decreasing.

In other words, the derivative of the derivative, that is, the second derivative, must be negative

(Figure 7.47). We write this as

localmaximum
d

dX

( df

dX

)

=
d2f

dX2
< 0

X

(X)f 

fmin

< 0
fd

Xd

2

2

sl
ope 

is
 d

ec
re

asi
ng

slope is still decreasing

X0

Figure 7.47: To the left of a local maximum of f , the slope of f is decreasing. The slope continues

to decrease (becomes more negative) to the right of the local maximum.

Similarly, let’s look at a local minimum (Figure 7.48). To the left of the local minimum, the

slope (first derivative) of f is becoming less and less negative, that is, it is increasing. And to

the right of the local minimum, the slope continues to increase, now into positive values. So the

second derivative is positive everywhere at and around this minimum. We write this as

localminimum
d

dX

( df

dX

)

=
d2f

dX2
> 0

X

(X)f 

fmin

> 0
fd

Xd

2

2

slope is increasing

sl
ope is

 st
ill

 in
cr

easi
ng

X0

Figure 7.48: To the left of a local minimum of f , the slope of f is increasing (becoming less

negative). The slope continues to increase to the right of the local maximum.
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If the function f has a critical point at X0 and the second derivative of f is less than zero,

then the critical point is a maximum.

Similarly, if the function f has a critical point at X0 and the second derivative of f is greater

than zero, then the critical point is a minimum.

df

dX

∣

∣

∣

X0
= 0

d2f

dX2

∣

∣

∣

X0
< 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=⇒ local maximum

df

dX

∣

∣

∣

X0
= 0

d2f

dX2

∣

∣

∣

X0
> 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=⇒ local minimum

In the very special case in which the second derivative is equal to zero, the test is inconclusive.

The critical point may be a maximum or a minimum, or it may be neither, such as an inflection

point (Figure 7.49).

Exercise 7.7.5 Consider the function f (X) = X4. What is the character of the critical point

at X = 0?

X

(X)f 

> 0
fd
Xd

> 0
fd
Xd

= 0
fd
Xd

Figure 7.49: The function f (X) = X3. There is an inflection point at X = 0.

As an example, let’s look at the growth of the population in the logistic modelX ′ = rX(1−X
K
).

The growth rate starts out slow, then increases, then decreases again as the population

approaches the carrying capacity K. At what point is the growth rate X ′ at its maximum?

This question is asking for the maximum value of the function

f (X) = rX(1− X
K
)

Let’s find it by differentiating
df

dX
=
df (X)

dX
= r − 2r

K
X

This is the equation for a straight line with slope − 2r
K

and Y -intercept r . Thus it is a perfectly

well defined function, and there are no undefined points for df
dX

.

Next, let’s ask when df
dX
= 0, and the answer is exactly once, when X = K

2 . Therefore the

function has either a unique maximum or a unique minimum at X = K
2 . We find out which by

looking at the second derivative, which is − 2r
K

and is therefore always negative. Therefore, the

point X = K
2 defines a maximum of the growth rate. If we plug X = K

2 into the function f (X),

we get the value rK4 , which is the maximum of the growth rate.
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This calculation reveals an interesting feature of the logistic model: the maximum growth

rate depends on the carrying capacity, a fact that is not obvious.

Exercise 7.7.6 Consider the function whose graph is shown below:

a) Visually identify all critical points in this graph, identifying each as a maximum, a minimum,

or neither. For each critical point, say why this point is a maximum, a minimum, or neither.

b) The function that has this graph is

f (X) =

⎧

⎪

⎨

⎪

⎩

1

4
X4 +

1

3
X3 −X2 if − 3 ≤ X ≤ 2

1

4
(X − 3)4 − 2

3
(X − 3)3 + 1.75 if 2 < X ≤ 5.5

Find the critical points of this function. Then use the second derivative
d2f

dX2
to determine

whether they are local maxima, minima, or neither.

Exercise 7.7.7 Use second derivatives to find the local minima and maxima of the following

functions:

a) f (X) = X3 − 3X2 − 9X − 2
b) f (X) = 4X4 − 5X3 − 36X2 − 60
c) f (X) = (X + 2)2(X − 1)2

Optimal Clutch Size

We expect organisms to evolve to maximize their number of surviving offspring. However,

different species have vastly different numbers of young. Why does this happen? In birds, the

question of optimal clutch size—the number of eggs a bird lays in its nest—has been studied

particularly intensively. The contributors to a bird’s annual breeding success can be expressed in

the following word equation:

surviving

offspring

per year

=
nests

per year
× offspring

per nest
× probability of each

offspring surviving

If a bird lays only one nest of eggs per year, we can focus on the other two terms in the equation.

It makes sense that the probability of a baby bird surviving decreases with the number of young

in its clutch. More young means more mouths to feed. This not only raises the possibility of
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starvation but forces parents to spend more time away from the nest, increasing the chances that

either the nest or a parent will be attacked by a predator. The optimal clutch size predicted by

life history theory, however, depends on the precise relationship between clutch size and offspring

survival.

For example, suppose that offspring survivorship, S, for a particular bird species decreases

with clutch size, C, as

S = 1− 0.1C

What is the optimal clutch size for this species?

If the bird lays only one clutch of eggs per year, we can express breeding success as the

product of clutch size (number of eggs laid) and survivorship (probability of an egg hatching and

maturing into an adult bird). Calling this quantity y(C), we write

y(C) = CS = C(1− 0.1C)
To find the maximum of this function, we first expand it to obtain

y(C) = C − 0.1C2

and then differentiate with respect to C. This gives

dy

dC
= 1− 0.2C

To maximize this function, we set dy
dC

equal to zero and solve for C:

dy

dC
= 0 = 1− 0.2C

Therefore,

C = 5

The optimal clutch size for this species is five offspring.

Exercise 7.7.8 (From Case.) Offspring survivorship, S, for another bird species decreases with

clutch size, C, as S = 0.5 − 0.1C. What is the optimal clutch size for this species? Again,

assume that the bird lays one clutch per year, regardless of how many eggs are in the clutch.

Exercise 7.7.9 Find a symbolic expression for optimal clutch size in a species that has a

survivorship–clutch size relationship of the form S = a − bC.

The Lifeguard Problem

A lifeguard at point A sees a swimmer struggling at point B (Figure 7.50). The lifeguard knows

not to run straight toward the swimmer and then continue swimming in the same straight line;

running on sand is much faster than swimming in water. Therefore, in order to save time, it’s

better to spend more time on the sand and less time in the water. What path would get the

lifeguard to the swimmer in the shortest possible time?
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sand

water

A

B

path of least time
sand

water

A

B

a

b

c

X c-X

ds

dw

Figure 7.50: The lifeguard problem. The lifeguard runs a distance ds and then swims a distance

dw . We want to know what combination of ds and dw gets the lifeguard at A to a struggling

swimmer B the fastest.

The lifeguard can run on sand at a speed vs and can swim in water at a speed vw . Assume

that we know how far the lifeguard is from the water (= a), how far the swimmer is from the

shore (= b), and how far down the shore the swimmer is from the lifeguard (= c). We will let

X be the distance down the shoreline at which the lifeguard enters the water, while ds and dw
are the distances covered by the lifeguard on the sand and in the water, respectively. We want

to find the value of X that minimizes the total time.

The total time is then the sum of the running time plus the swimming time, which in each

case is the distance divided by the corresponding running speed:

total time =
distance covered on sand

running speed on sand
+

distance covered in water

swimming speed in water
=
ds
vs
+
dw
vw

We can express ds and dw in terms of X using the Pythagorean theorem:

ds =
√

a2 +X2 dw =
√

b2 + (c −X)2

So the expression for the total time as a function of X is

ttotal =
ds
vs
+
dw
vw
=

√
a2 +X2

vs
+

√

b2 + (c −X)2
vw

To find the entry point X that gives the minimum value of ttotal, we need to differentiate

ttotal with respect to X, set the resulting expression equal to zero, and solve for X. But “first

derivative = 0” guarantees only a critical point, not necessarily a minimum. To guarantee that a

critical point is a minimum, we would need to evaluate the second derivative (see page 418).

If we try to solve this symbolically by hand, or even using SageMath or another computer alge-

bra program, the result is a large, unpleasant fourth-order polynomial with many subterms. Much

better is to assume particular values for a, b, c , vs , and vw ; then the process is straightforward

and can be solved numerically.

Let’s say a = 20m, b = 50m, c = 100m, vs = 6
m
sec , and vw = 3

m
sec . Then let’s plot ttotal as

a function of X (Figure 7.51):



422 Multivariable Systems

ttotal =

√
X2 + 400

6
+

√

(100−X)2 + 2500
3
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Figure 7.51: Total time needed to reach the swimmer as a function of the entry point X.

We see that the function has a unique minimum between 60m and 80m. So we don’t need

to calculate the second derivative; we can see from the graph that the critical point is indeed

a minimum. We can find the exact value of the optimal entry point by setting the derivative to

zero and solving in SageMath. The SageMath code finds the answer to be X = 75.38m down

the shore.

>>> a=20 # distance from A to water

>>> b=50 # distance from B to shore

>>> c=100 # distance along the shore between A and B

>>> vs=6 # running speed on sand

>>> vw=3 # swimming speed in water

>>> t_total=1/va*(a^2+x^2)^0.5+1/vw *((c-x)^2+b^2)^0.5 # total time consumed

>>> t_dev=t_total.derivative(x) # calculate the first derivative of t_total

>>> find_root(t_dev, 0, c) # find the solution x that satisfied t_dev = 0

SageMath output:

75.38

Optimization in n Dimensions

We have taken care of the case that f is a function of a single variable X.

The much more interesting case occurs when f is a function of several variables, and we want

to optimize f over all the variables.

Let’s consider the 2D case in which f is a function of two variables,

Z = f (X, Y )

Now we can use our new toolbox of partial derivatives to optimize these functions.5

5In n dimensions, just as in 1D, optima can occur at domain boundaries and at points where the derivative is
undefined. We are not considering those cases here, focusing on the third category of optima, which are places
where the derivative equals zero. The value-neutral mathematical term for “optima” is “extrema”.
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As we saw, a function f (X, Y ) can be interpreted as a surface over X-Y space whose height

at every point (X0, Y0) is Z0 = f (X0, Y0). For example,

Z = f (X, Y ) = e−X
2−Y 2

is graphed here (Figure 7.52).

X

Y
Z

0

-2

2

2

0

-2

Figure 7.52: A function Z = f (X, Y ) gives rise to a 2D surface of Z over the X-Y plane.

How do we find optima in 2D? We said that in 1D, an optimum occurs when the tangent

line to the graph is flat, that is,

1Doptimum ⇐⇒ df

dX
= 0

The generalization of Fermat’s theorem to 2D is then as follows: a function Z = f (X, Y ) has

an optimum if and only if the tangent plane to the function is flat, that is,

2Doptimum ⇐⇒ ∂f

∂X
=
∂f

∂Y
= 0

This function has an obvious maximum at (0, 0). And note that the tangent plane to the

surface is indeed flat at that point (Figure 7.53).

The slopes of the tangent plane are the two partial derivatives ∂f
dX

and ∂f
d Y

(Figure 7.54).

It now remains only to calculate these points. The function generating the surface is

Z = f (X, Y ) = e−X
2−Y 2

so the derivative of f with respect to X is

∂f

∂X
= −2Xe−X2−Y 2

X

Y
Z

0

-2

2

2

0

-2

Figure 7.53: At a local maximum of f , the tangent plane (blue) to f (X, Y ) is horizontal.
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X

Y
Z

X=0 Y=0

Figure 7.54: At a local maximum of f , both partial derivatives of f (the slope of the red lines)

are zero.

Setting it to zero gives

−2Xe−X2−Y 2 = 0

But e−X
2−Y 2 can never equal zero, so the only way that this expression can be zero is that

X = 0

Similarly, the derivative of f with respect to Y is

∂f

∂Y
= −2Y e−X2−Y 2

Setting it to zero gives

−2Y e−X2−Y 2 = 0 =⇒ Y = 0

Exercise 7.7.10 Find the critical points of the following functions:

a) f (X, Y ) = X2 + Y 3 − 6Y
b) f (X, Y ) = 2X3 − 3Y 2 +XY
c) f (X, Y ) = X2 + 3X − 2Y 2 + 4Y

So we have verified that (X, Y ) = (0, 0) is a critical point. But what kind of critical point is

it? We might think that it is a maximum or minimum. But in 2D and higher dimensions, there

is a third possibility.

Look at the surface generated by the function (Figure 7.55)

Z = f (X, Y ) = 0.5(X2 − Y 2)
It resembles a saddle, and indeed, the point in the center is called a saddle point. Note that

at that point, both derivatives are zero, df
dX
= 0 and df

dX
= 0, but the point is a maximum in Y

and a minimum in X. So this point is not an optimum in the two variables.
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X

Y
Z

Figure 7.55: At a saddle point of f , both partial derivatives of f (the slope of the red lines) are

zero, but the point is not a local optimum (maximum or minimum).

Exercise 7.7.11 By calculating partial derivatives, verify that (X, Y ) = (0, 0) is a critical point

of the function Z = f (X, Y ) = 0.5(X2 − Y 2).

So how do we classify critical points as maxima, minima, or saddle points? We will use the deep

relationship between critical points of functions and equilibrium points of differential equations.

Given a function Z = f (X, Y ), we can define a new vector field on (X, Y ) space by

X ′ =
dX

dt
=
∂f

∂X
and Y ′ =

d Y

dt
=
∂f

∂Y

(Recall that X ′ is the change of X with respect to time, dX
dt

.) This new vector field, derived

from the function Z = f (X, Y ), is called the gradient vector field of f , called “grad f ” and often

written as ∇f .

Exercise 7.7.12 Compute ∇f for the functions in Exercise 7.7.10.

What are the equilibrium points of this vector field? By definition, they are points where

X ′ = 0 and Y ′ = 0, that is, ∂f
∂X
= 0 and ∂f

∂Y
= 0.

But we just said that a critical point of the function f is a point where ∂f
∂X
= 0 and ∂f

∂Y
= 0.

Therefore, the critical points of f are exactly the equilibrium points of the vector field ∇f .

Exercise 7.7.13 Verify that at the critical points you found in Exercise 7.7.10, ∇f = 0.

If Z = f (X, Y ) is a height function, we can define the gradient vector field ∇f as

X ′ =
∂f

∂X

Y ′ =
∂f

∂Y
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Critical points of f (maxima, minima, saddles) exactly correspond to equilibrium points (sta-

ble, purely unstable, saddle) of the gradient vector field ∇f .

We will now make the key connection that will enable us to identify critical points as maxima,

minima, or saddles.

First, let’s consider three simple height functions. We will plot the function f and project it

down onto the X and Y axes, where we have calculated and plotted the vector field ∇f . The

first example is a hill (Figure 7.56, left). The function is

Z = f (X, Y ) = 5− X
2

2
− Y

2

4

The vector field ∇f is then

X ′ =
∂f

∂X
Y ′ =

∂f

∂Y

So

X ′ = −X
Y ′ = −0.5Y

This is obviously a linear vector field that has a stable equilibrium point at (0, 0).

X

Y
Z  f

f

Figure 7.56: At a local maximum of f , its gradient vector field ∇f has a stable node. At a local

minimum of f ,∇f has an unstable node. At a saddle point of f ,∇f has a saddle point.

The second example is a bowl (Figure 7.56, middle):

Z = f (X, Y ) =
X2

2
+
Y 2

4

The vector field ∇f is then

X ′ =
∂f

∂X
= X

Y ′ =
∂f

∂Y
= 0.5Y

which again is a linear differential equation, with an unstable equilibrium point at (0, 0).

The third example is a saddle (Figure 7.56, right):

Z = f (X, Y ) = 0.5(X2 − Y 2)
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The vector field ∇f is then

X ′ =
∂f

∂X
= X

Y ′ =
∂f

∂Y
= −Y

which again is a linear differential equation, this time with a saddle point at (0, 0).

So in this example:

• Maxima of f correspond to stable equilibrium points (stable nodes) of ∇f .
• Minima of f correspond to purely unstable equilibrium points (unstable nodes) of ∇f .
• Saddle points of f correspond to saddle points of ∇f .
This is true in general, due to the definition of the gradient vector field. Since Z = f (X, Y ),

we know that the change in Z is given by

∆Z =
∂f

∂X
· ∆X + ∂f

∂Y
· ∆Y

But from the definition of ∇f , we know that
⎧

⎪

⎨

⎪

⎩

X ′ =
∂f

∂X
=⇒ ∆X

∆t
=
∂f

∂X
=⇒ ∆X =

∂f

∂X
· ∆t

Y ′ =
∂f

∂Y
=⇒ ∆Y

∆t
=
∂f

∂Y
=⇒ ∆Y =

∂f

∂Y
· ∆t

If we substitute these expressions for ∆X and ∆Y in the ∆Z equation, we get

∆Z =
∂f

∂X
· ∆X + ∂f

∂Y
· ∆Y

=
∂f

∂X
· ∂f
∂X
· ∆t + ∂f

∂Y
· ∂f
∂Y
· ∆t

=

(

∂f

∂X

)2

· ∆t +
(

∂f

∂Y

)2

· ∆t

Since

∆t > 0,

(

df

dX

)2

> 0, and

(

df

d Y

)2

> 0

the whole ∆Z expression is positive. Therefore, Z will always increase following the gradient

function ∇f .

Exercise 7.7.14 Work through this reasoning for f (X, Y ) = X2 + Y 3 − 6Y .

We can see this in an even simpler way, by realizing that the gradient vector field is

X ′ =
dX

dt
=
df

dX
, Y ′ =

d Y

dt
=
df

d Y

So if df
dX

is positive, this means that f is increasing with respect to X. But then the vector

field X ′ = dX
dt
= df
dX

is positive, which means that X is increasing with respect to time. Since

∆Z = ∂f
∂X
· ∆X + ∂f

∂Y
· ∆Y , this increase of X in time will increase Z, precisely because df

dX
is

positive.

And if df
dX

is negative, then the vector field X ′ = df
dX

is negative, which means that X will

decrease with respect to time. This decrease of X, which is reflected in a negative value of ∆X,
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will also cause an increase in Z, since df
dX

and ∆X are both negative! So Z will always increase.

A similar argument for Y shows that when moving under the gradient vector field, the quantity

Z will always increase.

The fact that Z = f (X, Y ) is always increasing when it follows the gradient vector field

∇f explains why maxima of f correspond to stable equilibrium points of ∇f . If Z0 is a local

maximum, then Z cannot increase any further, so the process of increasing Z must have come

to a stable equilibrium point.

Exercise 7.7.15 Using SageMath, plot the vector fields∇f for the functions in Exercise 7.7.10.

What do the equilibria look like?

In our earlier examples, we made our task easy: when we looked at the vector field ∇f , it

was obviously a very simple linear vector field, and so the stability of the equilibrium point was

obvious by inspection.

In the general case, we will have to use our theory of the stability of nonlinear vector fields.

Let’s consider a different example:

f (X, Y ) = X2 + 2Y 2 −X2Y
Now when we calculate the gradient vector field ∇f , it is

∂f

∂X
= 2X − 2XY

∂f

∂Y
= 4Y −X2

giving us the vector field

X ′ = 2X − 2XY
Y ′ = 4Y −X2

It is far from obvious what the equilibrium points even are, let alone what their stability is.

But we can use the method of this chapter to answer these questions.

First, let’s find the equilibrium points of the vector field.

Setting X ′ = 0, we get

X ′ = 2X − 2XY = 0

which implies

X = 0 or Y = 1

Plugging X = 0 into the Y ′ = 0 equation, we get

Y = 0

Plugging Y = 1 into the Y ′ = 0 equation, we get

X = ±2
Therefore, there are exactly three equilibrium points in this vector field. They are

(X, Y ) = (0, 0)

(X, Y ) = (2, 1)
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(X, Y ) = (−2, 1)
Next, we will determine the stability of the vector field at these equilibrium points by the

method of linearization. First, we find the Jacobian matrix

M =

⎡

⎢

⎢

⎣

∂X ′

∂X

∂X ′

∂Y

∂Y ′

∂X

∂Y ′

∂Y

⎤

⎥

⎥

⎦

=

[

2− 2Y −2X
−2X 4

]

Then we evaluate the Jacobian matrix at each equilibrium point to give us the linearization

at that point, and then we use the method of eigenvalues to determine the stability of the

linearization.

Let’s do this for the three equilibrium points.

(X, Y) = (0, 0). The Jacobian matrix at this point is
[

2− 2Y −2X
−2X 4

]

(0,0)

=

[

2 0

0 4

]

This is a diagonal matrix with positive eigenvalues, indicating a purely unstable equilibrium

point. Therefore, we conclude that the height function f has a minimum at the point (0, 0).

(X, Y) = (2, 1). The Jacobian matrix at this point is

M
∣

∣

(2,1)
=

[

2− 2Y −2X
−2X 4

]

(2,1)

=

[

0 −4
−4 4

]

To calculate its eigenvalues, we solve

det

(

M
∣

∣

(2,1)
− λI

)

=

∣

∣

∣

∣

0− λ −4
−4 4− λ

∣

∣

∣

∣

= 0

λ2 − 4λ− 16 = 0

λ =
1±
√
5

2

Since there is one positive eigenvalue and one negative one, we conclude that (2, 1) is a

saddle point, and the function f has a saddle at this point.

(X, Y) = (-2, 1). The Jacobian matrix at this point is

M
∣

∣

(−2,1)
=

[

2− 2Y −2X
−2X 4

]

(−2,1)

=

[

0 4

4 4

]

and a similar calculation gives us

λ =
1±
√
5

2

So (−2, 1) is also a saddle point equilibrium of the gradient vector field ∇f , and it is a saddle

point of the function f .

The general idea is that given a height function f (X, Y ), we can always define a dynamical

system ∇f on the state space (X, Y ). The dynamical system ∇f defines a process of always

increasing the value of f , and doing so by finding the steepest path on the hill and following it.

If f defines a field of hills and valleys, then ∇f is the command to climb as rapidly as possible.

We can see this by plotting the contours of f in the (X, Y ) plane (Figure 7.57). This is similar

to the technique of a contour map, in which lines of constant altitude are drawn on the 2D map

surface.
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X

Y
Z

 f

f

Figure 7.57: Plotting curves along which f (X, Y ) has a constant Z-value, and projecting these

curves down onto the X-Y plane, gives the equivalent of a contour map of the gradient vector

field ∇f .

Let’s plot a trajectory of the gradient vector field ∇f in the (X, Y ) plane and project this

trajectory up onto the surface (Figure 7.58).

There are two features of this vector field:

(1) It is everywhere perpendicular to the contour lines.

(2) The trajectory is the path of steepest ascent, that is, it is the path that maximizes the

change in f .6

(These last two principles are quickly shown using techniques of linear algebra that are outside

the scope of this text and are easily found on the Internet.)

X

Y
Z

 f

f

Figure 7.58: When f has a local maximum, trajectories (shown in blue) that follow the gradient

vector field ∇f will climb the hill defined by f (X, Y ) as rapidly as possible (the steepest ascent).

6For this reason, one of the authors thinks of ∇f as the rock climber’s vector field.
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Exercise 7.7.16 Use this method to classify the critical points of the functions in Exercise

7.7.10 as local maxima, local minima, or saddle points.

To classify the critical points of a height function Z = f (X, Y ):

(1) Find the critical points by setting ∂f
∂X

and ∂f
∂Y

equal to zero, and find the points (X0, Y0) that

satisfy that equation.

(2) Form the gradient vector field ∇f :

X ′ =
∂f

∂X
and Y ′ =

∂f

∂Y

(3) Take the Jacobian of ∇f .
(4) Use the method of eigenvalues to determine the stability of each equilibrium point. If the

equilibrium point is

• stable, the function has a maximum.

• purely unstable, the function has a minimum.

• a saddle point, the function has a saddle point.

If we write out the Jacobian of ∇f , we see that it takes a particularly simple form. In general,

the Jacobian is

M =

⎡

⎢

⎢

⎣

∂X ′

∂X

∂X ′

∂Y

∂Y ′

∂X

∂Y ′

∂Y

⎤

⎥

⎥

⎦

and here

X ′ =
∂f

∂X
and Y ′ =

∂f

∂Y

so

M =

⎡

⎢

⎢

⎣

∂X ′

∂X

∂X ′

∂Y

∂Y ′

∂X

∂Y ′

∂Y

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

∂( ∂f
∂X
)

∂X

∂( ∂f
∂X
)

∂Y

∂( ∂f
∂Y
)

∂X

∂( ∂f
∂Y
)

∂Y

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

∂2f

∂X2
∂2f

∂X∂Y

∂2f

∂Y ∂X

∂2f

∂Y 2

⎤

⎥

⎥

⎦

The Jacobian of a gradient vector field ∇f is called the Hessian of f . It is the matrix of

second partial derivatives.

Note the two nondiagonal terms in the Hessian. It is a theorem from multivariable calculus that

if the two partial derivatives ∂f
∂X

and ∂f
∂Y

are both continuous, then the mixed partial derivatives

are equal to each other:
∂2f

∂X∂Y
=
∂2f

∂Y ∂X

Therefore, the Hessian matrix is always symmetric. We can therefore apply a theorem from

linear algebra that says that a symmetric matrix can have only real eigenvalues. This has the

consequence that there can be no spiraling in a gradient vector field: the state point must head

straight upward by the steepest path.
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Consequently, we can restate the main conclusion by saying that a critical point of f is a

maximum if the Hessian has all negative eigenvalues, is a minimum if the Hessian has all positive

eigenvalues, and is a saddle point if eigenvalues are positive and negative.

Evolution and the “Fitness Landscape”

The metaphor of the hills and valleys of a height function is a powerful one. We think of the

gradient vector field ∇f as ascending to the heights of the hills; we can think of the motion of

a helium-filled balloon lying under the surface of Z = f (X, Y ) and rising to the local maximum.

Similarly, we can visualize the negative gradient, −∇f , as a solid ball, rolling downhill into the

local valley.

This metaphor was very attractive to the evolutionary theorist and genetics pioneer Sewall

Wright. In a famous paper of 1932, he proposed that we can imagine a “fitness landscape” (or

“evolutionary landscape”), in which all possible combinations of expression levels of gene X and

expression levels of gene Y are considered, and the height function f (X, Y ) then gives the level

of “fitness" or “adaptability” of that combination (Wright 1932).

His image was then that evolution is a process of moving uphill on this evolutionary landscape,

up the gradient of fitness (Figure 7.59).

Figure 7.59: Contour lines of hypothetical evolutionary landscape (Wright 1932).

Subsequent work, including work by Wright himself, has raised several criticisms of the con-

cept: the word “landscape” denotes a fixed topography. But the real environment is changing

in time, leading to the concept of a “seascape” rather than a “landscape.” For example, climate

change is certainly a factor that is reshaping the evolutionary landscape.

Mathematical biologists have continued to work on the concept of the evolutionary land-

scape. (See, for example, the paper “Multiple Fitness Peaks on the Adaptive Landscape Drive

Adaptive Radiation in the Wild,” by Christopher H. Martin and Peter C. Wainwright (Martin and

Wainwright 2013).

From Local to Global Maxima and Minima

So far, we have restricted our attention to finding local maxima and minima. These are the types

of points that can be found using derivative-based techniques, which is not surprising, since the

derivative is a local concept.
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You might object that what we are really interested in are global maxima and minima, not

local ones. The point is well taken, but the problem is that there are no elegant techniques for

finding a global optimum. All you can do is find all the local maxima or minima, including those

at the boundaries and cusp points, and then choose the one with the largest (smallest) value

(Figure 7.60).

X

Y
Z

Figure 7.60: Contour lines and local maxima for a hypothetical fitness landscape.

If all we can do is follow the gradient vector field ∇f , we will go to the local maximum. But

what if the local maximum is not a global maximum? Then we are “stuck in a local maximum

(or minimum).”

There are advanced mathematical techniques for getting out of local maxima and minima.

The most popular technique is to add some noise to the system, to shake it up a little. Imagine

a ball stuck in a local minimum of a topographic 3D surface lying on a table. If we shake the

table a little, the ball will become dislodged from the local minimum and be free to seek other

minima. (This technique is called “simulated annealing.”)

In evolution, it is not so easy to back out of a local maximum or minimum; it may cause a

catastrophic loss of fitness.

Consider the fact that mammalian eyes have a “blind spot,” while those of cephalopods do

not. Why is this? Because sight evolved a number of times. Both vertebrates and cephalopods

have camera-type eyes, but they evolved independently. The cephalopod eye is built like you’d

expect—the photoreceptors are in front of the optic nerve. But our eyes are backward—the

optic nerve passes in front of the retina, causing a blind spot that the brain has to compensate
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for. More seriously, it makes us vulnerable to retinal detachment, which cephalopods don’t get.

But we’re stuck with this backward design because it would be too hard to undo and would have

to pass through stages that are worse. Evolution can’t go downhill in order to get to a higher

peak later.

Further Exercises 7.7

1. Find and classify the critical points of the following functions:

a) f (X) = X2 + 10

b) f (X) =
6X

X2 + 36

c) f (X) = X2 + 16
X

d) f (X) = 3X4 − 4X3 − 36X2 + 60

2. Bonnacons grow at a rate g(t) = 8t3 − 3t2 − t + 4, where t is the time since the

bonnacon’s birth. At what value of t is the bonnacon’s growth rate minimized, and

what is its value at that minimum?

3. For infants younger than nine months, the relationship between weight W (in pounds)

and the rate of growth (in pounds/month) is approximately

dW

dt
= cW (21−W )

for some constant c . At what weight is the infant growing fastest?

4. When a person coughs, their trachea narrows, speeding up air flow and increasing the

force on the object that the cough is meant to expel. X-ray studies show that the radius

of the trachea, which is circular, contracts to about 23 of normal during a cough. The

velocity, v , of the airstream is related to the radius, r , of the trachea by

v(r) = k(r0 − r)r2
1

2
r0 ≤ r ≤ r0

where r0 is the normal radius of the trachea and k is a proportionality constant. The

restriction on r is due to the stiffening of the trachea as it narrows, which prevents the

person from suffocating.

a) The average radius of a human trachea is about 12.7mm. Pick a value for k and plot

v(r) on the interval [0, r0]. What aspects of the graph remain the same regardless

of the value of k?

b) Find the value of r on the interval [ 12 r0, r0] at which v(r) is maximized. Give an

expression for the value of v at this point.

5. Termites live in a colony in which each individual (ignoring the king and queen) develops

into one of two highly specialized castes: workers who forage for food and maintain

the colony’s nest, and soldiers who defend the colony from ants and other predators.

Assume that X represents the fraction of termites in a colony that are workers, and

the rest (1 − X) are soldiers. While studying a termite colony, you develop a function
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describing the growth rate of the colony as a function of X:

f (X) =
√

X2 − 2X − 5
4
X

When the growth rate is maximized, what fraction of the termites will be workers? (Note:

Don’t just find the critical point(s). Be sure to test whether each one is a maximum or

minimum.)

6. Find and classify all the critical points of the following functions:

a) f (X, Y ) = 10−X2 − Y 2

b) f (X, Y ) = 12X2 + Y 3 − 12XY

c) f (X, Y ) = X3 + Y 3 − 3XY + 4

d) f (X, Y ) = 3X2Y + Y 3 − 3X2 − 3Y 2 + 2

7. You are studying the effect of two traits on the evolution of sparrows. Let X represent

the value of one trait, such as bill width, and let Y represent the level value of the other

trait, such as wingspan. You have found that the following function models the fitness

of individuals born with any given level of X and Y :

f (X, Y ) = 9X2 + 6Y 2 − 4X3 − 2Y 3 − 3X2Y 2

This function has critical points at (0, 0), (0, 2), (1, 1), and (1.5, 0).

a) Classify each critical point as a local maximum, local minimum, or saddle point.

b) At what values of X and Y might you expect distinct species of sparrows to form?

8. Plants need nitrogen (N) and phosphorus (P ) to grow, but both of these nutrients can

become toxic at high concentrations. Suppose that the growth rate of a plant is given

by

g(N, P ) = 5− (N − 3)2 − (P − 2)2

Find the optimal nitrogen and phosphorus levels for this plant. Make sure to check that

your critical point really is the maximum.
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