




Modeling and Simulation in Science, Engineering and Technology

Series Editor
Nicola Bellomo
Politecnico di Torino
Italy

Advisory Editorial Board

M. Avellaneda (Modeling in Economics)

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street

New York, NY 10012, USA

avellaneda@cims.nyu.edu

K.J. Bathe (Solid Mechanics)

Department of Mechanical Engineering

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

kjb@mit.edu

P. Degond (Semiconductor

and Transport Modeling)
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Preface

Control theory has developed rapidly since the first papers by Pontryagin and
collaborators in the late 1950s, and is now established as an important area of
applied mathematics. Optimal control and optimization theory have already
found their way into many areas of modeling and control in engineering, and
nowadays are strongly utilized in many other fields of applied sciences, in
particular biology, medicine, economics, and finance. Research activity in op-
timal control is seen as a source of many useful and flexible tools, such as for
optimal therapies (in medicine) and strategies (in economics). The methods
of optimal control theory are drawn from a varied spectrum of mathematical
results, and, on the other hand, control problems provide a rich source of deep
mathematical problems. The choice of applications to either life sciences or
economics takes into account modern trends of treating economic problems in
osmosis with biological paradigms.

A balance of theory and applications, the text features concrete exam-
ples of modeling real-world problems from biology, medicine, and economics,
illustrating the power of control theory in these fields.

The aim of this book is to provide a guided tour of methods in optimal
control and related computational methods for ODE and PDE models, fol-
lowing the entire pathway from mathematical models of real systems up to
computer programs for numerical simulation. There is no pretense of being
complete; the authors have chosen to avoid as much as possible technicalities
that may hide the conceptual structure of the selected applications. A fur-
ther important feature of the book is in the approach of “learning by doing.”
The primary intention of this book has been to familiarize the reader with
basic results and methods of optimal control theory (Pontryagin’s maximum
principle and the gradient methods); it provides an elementary presentation
of advanced concepts from the mathematical theory of optimal control, which
are necessary in order to tackle significant and realistic problems. Proofs are
produced whenever they may serve as a guide to the introduction of new
concepts and methods in the framework of specific applications, otherwise ex-
plicit references to the existing literature are provided. “Working examples”

VII



VIII Preface

are conceived to help the reader bridge those introductory examples fully
developed in the text to topics of current research. They may stimulate
Master’s and even PhD theses projects.

The computer programs are developed and presented in MATLAB R©

which is a product of The MathWorks, Inc. This is a very flexible and simple
programming tool for beginners, but it can also be used as a high-level one.
The numerical routines and the GUI (Graphical Users Interface) are quite
helpful for programming. Starting with simple programs for simple models
we progress to difficult programs for complicated models. The construction
of every program is carefully presented. The numerical algorithms presented
here have a solid mathematical basis. One of the main goals is to lead the
reader from mathematical results to subsequent MATLAB programs and cor-
responding numerical tests.

The volume is intended mainly as a textbook for Master’s and graduate
courses in the areas of mathematics, physics, engineering, computer science,
biology, biotechnology, and economics. It can also aid active scientists in the
above areas whenever they need to deal with optimal control problems and
related computational methods for ODE and PDE models.

Chapter 1 is devoted to learning several MATLAB features by examples.
A simple model from economics is presented in Section 1.1.1, and models from
biology may be found in Sections 1.5 and 1.7. Chapter 2 deals with optimal
control problems governed by ordinary differential equations. By Pontryagin’s
principle more information about the structure of optimal control is obtained.
Computer programs based on mathematical results are presented. Chapter 3
is devoted to numerical approximation by the gradient method. Here we learn
to calculate the gradient of the cost functional and to write a corresponding
program. Chapter 4 concerns age-structured population dynamics and related
optimal harvesting problems. Chapter 5 deals with some optimal control prob-
lems governed by partial differential equations of reaction–diffusion type. The
last two chapters connect theory with scientific research.

Basic concepts and results from functional analysis and ordinary differen-
tial equations including Runge–Kutta methods are provided in appendices.

Matlab codes, Errata and Addenda can be found at the publisher’s website:
http://www.birkhauser-science.com/978-0-8176-8097-8.

We wish to thank Professor Nicola Bellomo, Editor of the Modeling and
Simulation in Science, Engineering, and Technology Series, and Tom Grasso
from Birkhäuser for supporting the project.

Last but not the least, we cannot forget to thank Laura-Iulia [SA], Maria
[VA], and Rossana [VC], for their patience and great tolerance during the
preparation of this book.

Iaşi and Milan Sebastian Aniţa
May, 2010 Viorel Arnăutu

Vincenzo Capasso



Symbols and Notations

IN the set of all nonnegative integers
IN∗ the set of all positive integers
Z the set of all integers
IR the real line (−∞,+∞)
IR∗ IR \ {0}
IR+ or IR+ the half-line [0,+∞)
IR∗

+ the interval (0,+∞)
IRn the n-dimensional Euclidean space
x · y the dot product of vectors x, y ∈ IRn

‖ · ‖X the norm of a linear normed space X

∇h, hx,
∂h

∂x
the gradient of the function h

hx,
∂h

∂x
the matrix of partial derivatives of h with respect

to x = (x1, x2, ..., xk)
A∗ the adjoint of the linear operator A
Ω ⊂ IRn an open subset of IRn

Lp(Ω), 1 ≤ p < +∞ the space of all p-summable functions on Ω
L∞(Ω) the space of all essentially bounded functions on Ω
Lp(0, T ;X) (X a Banach space) the space of all p-summable

functions (if 1 ≤ p < +∞), or of all essentially
bounded functions (if p = +∞), from (0, T ) to X

Lp
loc(0, T ;X) (X a Banach space) the space of all locally

p-summable functions (if 1 ≤ p < +∞), or of all
locally essentially bounded functions (if p = +∞),
from (0, T ) to X

L∞
loc([0, A)) the set of all functions from [0, A) to IR

belonging to L∞(0, Ã), for any Ã ∈ (0, A)
L∞

loc([0, A) × [0, T ]) the set of all functions from [0, A) × [0, T ] to IR
belonging to L∞((0, Ã) × (0, T )), for any
Ã ∈ (0, A)



X Symbols and Notations

C([a, b];X) the space of all continuous functions from [a, b]
to X

AC([a, b];X) the space of all absolutely continuous functions
from [a, b] to X

Ck([a, b];X) the space of all functions from [a, b] to X , k times
differentiable, with continuous kth derivative

NK(u) the normal cone to K at u
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1

An introduction to MATLAB R©. Elementary

models with applications

1.1 Why MATLAB R©?

At the first sight, MATLAB (MATrix LABoratory) is a very flexible and
simple programming tool. But it can also be used as high-level programming
language. MATLAB is our choice because it offers some important advantages
in comparison to other programming languages. This MathWorksTM prod-
uct contains a general kernel and toolboxes for specialized applications. A
beginner should start with the kernel. As already mentioned, the language is
easy to learn and to use, but it offers control flow statements, functions, data
structures, input/output statements, and other facilities. The Mathematical
Function Library provides a large set of functions for a wide range of numer-
ical algorithms. The MATLAB GUI (Graphical User Interface) is also very
good and the corresponding functions are easy to use. It is also possible to
write C programs that interact with MATLAB code.

1.1.1 Arrays and matrix algebra

The basic element of MATLAB is the matrix. Even a simple variable is
considered as a 1-by-1 matrix. The basic type is double (8 bytes).

Next we say a few words about the following.

The format command. To output the numerical values a standard fixed
point format with four digits after the decimal point is used. It is equivalent
to the command

>> format short

If we desire a longer output format we have to use other forms of the format
command, such as

format long: scaled fixed point format with 15 digits
format short e: floating point format with 5 digits

S. Aniţa et al. An Introduction to Optimal Control Problems in Life Sciences 1
and Economics, Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-0-8176-8098-5 1, c© Springer Science+Business Media, LLC 2011



2 1 An introduction to MATLAB R©

format long e: floating point format with 15 digits
format short g: best of fixed or floating point format with 5 digits
format long g: best of fixed or floating point format with 15 digits

Look for instance to the following dialogue,

>> pi

ans =

3.1416

>> format long
>> pi

ans =

3.14159265358979

Here and in the sequel >> stands for the prompter. To learn more about
the format capabilities say simply

>> help format

or

>> help sprintf

sprintf allows ANSI C formatting. Let us point out that format short is the
implicit option. Moreover, we can obtain more digits for the output by using
the Variable Precision Arithmetic (vpa). For instance,

>> vpa(pi, 100)

will give an approximation of π with 100 digits. To learn more ask

>> help vpa

Arrays. There are no statements to declare the dimensions of an array. The
simplest way to allocate a small matrix is to use an explicit list. The compo-
nents on the same row should be separated by a blank or comma. The rows
are separated by a semicolon or < enter >. The matrix itself is delimited by
square brackets, that is, [ ]. For instance,

>> A = [1 2 ; 3 4]

returns the matrix

A =

1 2

3 4

The components of an array may be real numbers, complex numbers, or any
MATLAB expression. For instance,
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>> w = [0.7 sqrt(2) (1 + 9) ∗ 4/5]

returns the vector (sqrt(c) provides a numerical approximate for
√
c):

w = [0.7000 1.4142 8.0000]

To get an array element we should use indexing. By

>> y = w(2)

we get
y = 1.4142

Let us point out that the first value in the implicit indexing is 1. This explains
the above value of y. If a component outside the current dimensions is invoked,
then the array is extended and the components not yet defined receive the
value 0. For instance

>> w(6) = −w(1) ;
>> w

returns

w = [0.7000 1.4142 8.0000 0 0 − 0.7000]

If we invoke a variable by its name, its current value is returned (see,
for instance, pi and the dialogue above). This is also true for an assignment
statement; that is, the assigned variable value is returned. If we want to avoid
returning the current value, which can mean many values if the variable is an
array, we should place a semicolon at the end of the statement.

Let us come back to arrays. Consider the matrix A defined above and say

>> A(2, 4) = 7 ;
>> A

We therefore get

A =

1 2 0 0

3 4 0 7

We can also delete rows or columns of a matrix. For example, we delete the
third column of the matrix A above by
>> A(:, 3) = [ ]
Then A is changed to

A =

1 2 0

3 4 7

We can also concatenate arrays. Consider the following statements.
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>> A1 = [1 2 ; 3 4] ;
>> A2 = [5 6 ; 7 8] ;
>> M = [A1 ; A2]

Then we get the matrix
M =

1 2

3 4

5 6

7 8

For

>> N = [A1 A2]

we get the matrix
N =

1 2 5 6

3 4 7 8

The colon is also useful. Say

>> B = M(2 : 3, :)

Then B contains the rows 2 and 3 and all the columns of M ; that is, we get

B =

3 4

5 6

A matrix can also be allocated by using the functions ones, zeros, and eye.

>> A = ones(m,n) ;

allocates A as an m-by-n matrix with all components one. Of course, the
variables m and n should already have assigned values.

>> A = ones(n) ;

allocates A as an n-by-n matrix with all components one. Similar allocations
are made by using zeros, but all components are 0. By using eye we can
allocate the identity matrix; for example,

>> I = eye(10) ;

and I is the identity matrix 10-by-10.
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To get the dimension of a matrix we use the MATLAB function size. Let us
consider the sequence of statements:

>> Q = ones(4, 7) ;
>> a = size(Q)

We get
a =

4 7
To get the dimension of a vector we can use size or length. Let us consider
the following sequence

>> p = [1 2 3 4] ;
>> q = p′ ;

Now for

>> length(p)

MATLAB returns 4 and it returns the same for

>> length(q)

For

>> size(p)

We get
ans =

1 4
and for

>> size(q)

it returns
ans =

4 1
Actually p′ is the transpose of p. The function length can be used even for ma-
trices. It gives max(size), that is, the maximum number of rows and number
of columns.
Matrix Algebra. The usual algebraic operations of matrices or of a matrix
and a vector are provided. For instance, if A and B are matrices we may set

>> X = A+B ;

and X will store the sum of the two matrices. Of course A and B should
have the same dimensions. Subtraction, −, and the usual product, *, are also
available. The transpose of a matrix is indicated by ′. For instance, Y = XT

should be written as

>> Y = X ′ ;



6 1 An introduction to MATLAB R©

Moreover, array-smart operations are also provided. Let A = [aij ] and B =
[bij ], two matrices that have the same dimensions. Therefore

>> P = A. ∗B ;

will build a matrix P = [pij ] having the same dimensions and defined by

pij = aijbij ,

whereas

>> Q = A./B ;

provides the matrix Q = [qij ] defined by

qij = aij/bij .

By

>> D = A. ∗A
we get D = [dij ] defined by

dij = a2
ij .

The Gaussian elimination algorithm is implemented to solve linear algebraic
systems. If the matrix A and the right-hand side b of the system Ax = b are
built we get the solution by use of the operator “\”; that is,

>> x = A\b;
A practical example of using Gaussian elimination is given below.

An example from economics. The problem to be solved is known as the
problem of production costs (e.g., [DC72, Chapter 4.13]). A company has n
sections (departments). For every section, the direct cost Di is known. But
the staff of the company would like to find the net (real) cost Ni of each
section. The problem arose because a number of persons from Section j work
a number of days of a given month for the benefit of another Section, k. And
this occurs for each pair (j, k) of Sections, j, k = 1, 2, . . . , n. Denote by Ti the
total cost of Section i and we get the equations:

Ti = Di +
i−1∑

j=1

PjiTj +
n∑

j=i+1

PjiTj, i = 1, 2, . . . , n.

Here Pji is the part (percent) from the cost Tj of Section j devoted to Section
i. Because the direct costs Di, i = 1, 2, . . . , n, are known, we get the linear
algebraic system

−
i−1∑

j=1

PjiTj + Ti −
n∑

j=i+1

PjiTj = Di, i = 1, 2, . . . , n. (1.1)
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The unknowns are the total costs Ti, i = 1, 2, . . . , n. We may rewrite (1.1)
as AT = D, where A is the system matrix, D is the right-hand side column
vector, and T denotes the column vector of unknowns.

The net costs Ni, i = 1, 2, . . . , n, are given by the formulae

Ni = PiiTi, i = 1, 2, . . . , n. (1.2)

Therefore the problem of production costs can be solved as follows.

STEP 0: Build the matrix A and the rhs (right-hand side) D.
STEP 1: Compute the solution T (total costs) of the system AT = D.
STEP 2: Compute the net costs (Ni) by using Formula (1.2).

Usually the matrix A from concrete examples is invertible and well condi-
tioned. To be more specific we consider an example from [DC72]. A company
has five sections (n = 5), namely

No. Section Di

1 Research 2
2 Development 3
3 Production 6
4 Countability 0.5
5 IT 0.3

The monetary unit is one million USD. The matrix [Pji] is the following one.

[Pji] =

⎡

⎢⎢⎢⎣

0.6 0.2 0 0.1 0.3
0.2 0.6 0.2 0.2 0.2
0.1 0.2 0.8 0.5 0.2
0 0 0 0.1 0.3

0.1 0 0 0.1 0

⎤

⎥⎥⎥⎦

T

Let us remark that the sum of every column is equal to 1 (or equivalently
100%). This shows the dispatch of the section effort. We therefore obtain (by
(1.1)) the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T1 − 0.2T2 − 0.1T4 − 0.3T5 = 2

−0.2T1 + T2 − 0.2T3 − 0.2T4 − 0.2T5 = 3

−0.1T1 − 0.2T2 + T3 − 0.5T4 − 0.2T5 = 6

T4 − 0.3T5 = 0.5

−0.1T1 − 0.1T4 + T5 = 0.3

As concerns Formula (1.2), the values Pii can be found on the diagonal of
matrix [Pji]. We therefore get

N1 = 0.6T1; N2 = 0.6T2; N3 = 0.8T3; N4 = 0.1T4; N5 = 0.
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The corresponding program follows.

% The production costs problem
n = 5 ;
A = eye(n) ; % load diagonal of matrix A
% load other nonzero elements
A(1,2) = −0.2; A(1,4) = −0.1; A(1,5) = −0.3;
A(2,1) = −0.2; A(2,3) = −0.2; A(2,4) = −0.2; A(2,5) = −0.2;
A(3,1) = −0.1; A(3,2) = −0.2; A(3,4) = −0.5; A(3,5) = −0.2;
A(4,5) = −0.3 ;
A(5,1) = −0.1; A(5,4) = −0.1;
A
D = [2, 3, 6, 0.5, 0.3]′

T = A\D % solve system AT = D by Gaussian elimination
P = [0.6, 0.6, 0.8, 0.1, 0]′ % load values Pii

NC = P .* T % compute Net Costs

The percent opens a comment that is closed at the end of the corresponding
line. The data of the problem are given directly in the program. Later we
learn the statements input and load for a more elegant procedure.

The following table shows the differences between the direct costs Di and
the net ones Ni computed by the program above.
i Ni Di

1 2.0372 2
2 3.3322 3
3 6.3593 6
4 0.0713 0.5
5 0 0.3
Let us remark that there are significant differences between the two kinds of
costs for some sections.

There are other numerical functions to solve the algebraic linear system.
For instance, we can replace in the above program the statement

T = A\D % solve system AT = D by Gaussian elimination
by

A1 = inv(A) ;
T = A1*D ;

The function inv computes the inverse of the given matrix. From the point
of view of roundoff errors the Gaussian elimination behaves better. Another
possibility is to use the LU-decomposition of the system matrix; that is,

[L,U] = lu(A) ; % L and U are triangular matrices such that A = LU
L1 = inv(L) ;
U1 = inv(U) ;
A1 = U1*L1 ;
T = A1*D
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First A is decomposed as A = LU , where the matrix L is lower triangular and
U is upper triangular. Next we compute L1 = L−1 and U1 = U−1. Because
A−1 = (LU)−1 = U−1 · L−1, we get A1 = U1 · L1, where A1 stands for A−1.
The numerical results are the same as above.

1.1.2 Simple 2D graphics

The plot function. If x and y are two vectors having the same length, then
>> plot(x, y)

produces a graph of y versus x. By

>> plot(y)

we get a piecewise linear graph of the components of y versus the index of
these components.

We give a simple example here, the graph of the cosine function on the
interval [−π/2, 3π/2]. We omit the prompter >> below.

% a first graph (graph1.m)
pi2 = pi/2 ;
x = −pi2:pi/1000:3*pi2 ;
y = cos(x) ;
plot(x,y,’∗’) ; grid
axis([−pi2 3*pi2 −1 1])
xlabel(’\bf -\pi/2 \leq {\it x} \leq 3\pi/2’, ’FontSize’,14)
ylabel(’\bf cos(x)’, ’FontSize’,14)
title(’\bf COS graph’)

The short program above contains new features. A statement such as

x = a : h : b ;

builds a vector x = [xi]. Its components are defined according to the rule

xi = a+ (i− 1)h, i = 1, 2, . . . .

If we denote by n the length of x, then mathematically xn ≤ b < xn+1. Of
course xn+1 is not defined for MATLAB. The last component of the vector
allocated is xn. The statement

y = cos(x);

defines the vector y = [yi], which has the same length as x, by

yi = cos(xi), i = 1, 2, . . . , n.

The statement axis allows the programmer to define the limits of the axes. The
first two values are the limits for the Ox-axis and the last two for the Oy-axis.



10 1 An introduction to MATLAB R©

If such a statement is omitted, then the limits are established by a standard
procedure. The statements xlabel and ylabel allow the programmer to write
a corresponding text along each axis, respectively, by using the Teχ/LaTeχ
statements. A title can also be inserted and written above the graph. We
have used ’∗’ inside the plot statement to obtain a wide line on the figure for
printing reasons. The figure obtained is given in Figure 1.1.
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s(
x)

COS graph

Fig. 1.1. Cosine graph on [−π/2, 3π/2]

1.1.3 Script files and function files

MATLAB programs. All MATLAB files have the extension m. Suppose
that we wish to save the above program in a file graph1.m. First we say

>> edit

and the window of the text editor opens. Then we write the program in that
window and we finish by choosing “save as” from the menu and giving the
name of the file. That file is a script file. A script file is the main routine of a
program (the driver). We can also make function files. We have already seen
calls to different MATLAB functions in the previous examples. For instance
ones, zeros, eye, and plot are such functions. Calls to different functions writ-
ten by the programmer are possible in a script file and in a function file. We
have to organize every function we write as a function file, which is quite
simple to do. We start with an example. Our program contains a script file
named grc.m and a function file named circ.m. Of course every file should be
edited as explained above. The implicit name of a function file is exactly the
name given in the function header.



1.1 Why MATLAB R©? 11

% This is the script file grc.m
% It draws a circle by calling
% the function circ(x0,y0,R)
x0 = input(’x for the center = ’) ;
y0 = input(’y for the center = ’) ;
R = input(’radius = ’) ;
circ(x0,y0,R)

The input statement above is used to introduce data to the program. The
corresponding message is written on the terminal and the program waits for
the corresponding value that is assigned to the appropriate variable. The
statement

circ(x0,y0,R)

is the call of the function circ which contains the call parameters x0, y0, R.
Here we have the file circ.m

function circ(x0,y0,R)
% This is the function file circ.m
% The function is defined by using the parametrization of the circle
% of center = (x0,y0) and radius = R
theta = 0:pi/1000:2*pi ;
x = x0 + R*cos(theta) ;
y = y0 + R*sin(theta) ;
plot(x,y,’∗’) ; grid

The first line above is the header of the function. The statement grid asks for
a grid to be inserted in the figure corresponding to the plot statement as can
be seen in Figure 1.2. Normally a function file should have the name of the
function.
Now we can launch the program grc.m in the working window by calling its
name

>> grc

and the program will ask for the input variables and call in turn the function
circ. Figure 1.2 is made by grc.m with the input values x0 = 3, y0 = 0, and
R = 10.
It is also possible to call the function circ directly by giving the call parameters.
For example,

>> circ(−3, 2, 7)

will draw a circle with center (−3, 2) and radius = 7.
A MATLAB figure can be saved as a file with the extension fig by using the
save or save as option from the menu. Such a file can be recovered by using
the statement figure or the statement open. For instance, use

>> figure
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Fig. 1.2. The circle with center (3, 0) and radius 10

and MATLAB opens a blind figure. Then use the option open from the menu
and give the name of the file to be restored. Another possibility is to say
directly

>> open file− name.fig

Here of course file-name is the name of the fig file. A MATLAB figure can also
be exported under different file forms (extensions). One can use the option
export from the menu and give the name and the extension of the file. A figure
exported as a file with the extension eps can be easily processed by Teχ or
LaTeχ to be incorporated in the corresponding text.

We get back to script files to say a few things about variables inside. The
variables used by a script file are stored in the memory zone (workspace)
application as long as MATLAB is running. This is not true for the variables
of a function file unless such a variable is declared as a global one. We give
more details about global variables later. To see the variables stored in the
workspace we give the command

>> whos

If we want to delete some variables from memory we use the command clear

>> clear list− of − variables

The variables from the list should be separated by a blank. If we want to
remove all variables we simply say

>> clear
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We return to function files and we give the general form of the header of a
function

function [output-parameters] = function-name(input-parameters)

The input parameters are formal parameters. If a function has no input pa-
rameters the brackets ( ) are skipped. If a function has no output parameters
the brackets [ ] and the = are skipped. If a function has only a variable as
output parameter the brackets [ ] may be skipped. For instance, a function
corresponding to f(x) = x2 can be written as

function y = f(x)
y = x*x ;

The above function returns the value of y (no return statement is necessary).

The help sequence: Every function can have a help sequence. We can discover
information about such a function by using the help statement; that is,

>> help function− name

We can also make a help sequence for a function we build by using the following
model,

Function Header
% first help line
% second help line
% . . .
% last help line

The next line may be a void one or a statement. By using the above help
statement, that is,

>> help function− name

all help lines from the first to the last will be displayed.
A function may also contain the return statement. The execution of such a
statement ends the execution of the function. As an example we consider two
ways to write the absolute-value function. It is a tutorial example because
MATLAB has its own function, namely abs, to calculate the absolute value.

function y = dabs(x)
if x >= 0

y = x ;
else

y = −x ;
end

Another way to write the above function, by using the return statement is the
following one.
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function y = dabs(x)
if x >= 0

y = x ;
return

end
y = −x ;

The if–else statement has the general form

if condition
block1

else
block2

end

and the if statement has the general form

if condition
block1

end

Here block1 and block2 may contain one or more statements.

I/O statements. We say a few words about input/output statements. We
have already introduced the command input which is used to give values to
some variables of a program (see the script file grc.m above). We now add
some more information. Consider the statement

R = input(’radius = ’) ;

from grc.m. If we modify it to

R = input(’radius = \n’) ;

then the program writes “radius =” and skips to a new line to wait for the
value. This is done by the special character “\n”.
To input a string of characters we do the following.

name = input(’What is your name? : ’,’s’) ;

By using ’s’ we tell MATLAB to wait for a string that is assigned to the
variable name.

To output the value of a variable we already know simply to call its iden-
tifier. For a more sophisticated output we use the statement disp. We give a
first example:

name = input(’What is your name? : ’,’s’) ;
y = [’Hello ’, name] ;
disp(y)

The program above builds the vector of characters y which is then displayed.
Suppose that we give the value John for the variable name. Then the statement
disp(y) will give the output
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Hello John

A similar program is

name = input(’What is your name? : ’,’s’) ;
y = [’Hello ’, name] ;
disp(’ ’)
disp(y)

To output a numerical value into a vector of characters we have to use the
function num2str. For instance,

R = input(’radius = ’) ;
a = pi*R*R ;
x = [’surface = ’, num2str(a)] ;
disp(x)

The for statement has an interesting form. We give a first example

for i = 1:n
block

end

The inside block is executed for all values of i from 1 to the current value of
n. We suppose of course that n >= 1. Another example is

for i = 1:2:10
block

end

Here 2 is the value of the step. Therefore the corresponding values of i are 1, 3,
5, 7, 9. A feature different from other programming languages, C or Fortran,
is that the MATLAB interpreter (compiler) builds a vector of values to be
taken by the control variable. For example,

y = [1 4 8 20] ;
for i = y

block
end

The inside block is executed for all values taken by i from the vector y, that
is, 1, 4, 8, 20. Try the following program to check that.

y = [1 4 8 20] ;
for i = y

i
end

Other flow-control statements, such as while, switch, break, continue, and
error, are presented later when included in code examples. We also recom-
mend the MATLAB documentation and the help statement.
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1.2 Roots and minimum points of 1D functions

Our first goal is to discuss the approximation of a root of the equation f(x)=0,
where f is a given real function of a real variable. The MATLAB function used
is fzero. To be concrete let us consider

f(x) = x2 − 3.

We therefore create the function file f.m as follows.

function y = f(x)
y = x*x − 3 ;

Then we approximate the positive root of the corresponding equation by

>> fzero(′f ′, 2) % or fzero(@f,2)

where 2 represents the starting point for the numerical algorithm. Another
possibility is to indicate an interval where the function has a unique root. For
example,

>> fzero(′f ′, [1, 2])

In both cases a root approximation is computed.

ans =

1.7321

for
√

3. We can also try

>> x0 = fzero(′f ′, 2)
>> f(x0)

to see the value of f for the approximate root.
We may also use an inline function. Look at the following script file and notice
the differences in syntax.

f = inline(’x*x − 3’) ;
x0 = fzero(f,2) % or fzero(’f’,2)
y = [’f(x0) = ’, num2str(f(x0))] ;
disp(y)

Let us point out that the command clear also deletes the current inline
functions.
To approximate the roots of polynomials we can also use the function roots.
It suffices to give the coefficients of the polynomial by a vector. Its first com-
ponent is the highest degree coefficient. For our example above we write

w = [1, 0, −3] ;
roots(w)

and we get both roots; that is,
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ans =

1.7321

− 1.7321

To approximate minimum points of 1D functions we can use the function
fminbnd. Suppose that f is the inline function above; that is,

f = inline(’x*x − 3’) ;

Then

>> fminbnd(f,−1, 1)

approximates the minimum point of f on the interval [−1,1]. Moreover,

>> fminbnd(f,−1, 1, 1)

also shows the sequence of search points of the algorithm (the last 1 above
makes that option active). For more information one can use the help com-
mand for fzero, roots, and fminbnd.

We continue with a simple example by using combined features of MAT-
LAB. Let us consider the following equation

xex = 1 (1.3)

on the real axis. It is of course equivalent to

x = e−x .

We therefore introduce the function

ϕ(x) = x− e−x

and Equation (1.3) becomes
ϕ(x) = 0 .

A simple analysis of the function ϕ shows that it has a unique real root located
in the interval (0,1). We write down the following script file.

% file eqn1.m
% solve the equation
% x − exp(−x) = 0
x = 0:0.01:1 ;
y = x ;
z = exp(−x) ;
plot(x,y,’∗’) ; grid
hold on
plot(x,z,’r∗’)
hold off
fi = inline(’x−exp(−x)’)
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pause on
pause
root = fzero(fi,0)
pause off

The two plot statements display on the same figure the graphs of the functions
f1(x) = x and f2(x) = exp(−x) for the interval [0, 1]. First the graph of f1 is
made using plot(x,y,’∗’). The default color used is blue. The statement hold on
asks all new plot statements to be done on the same figure until a statement
hold off is encountered. Moreover plot(x,z,’r∗’) is made by using the color
red. To see other possibilities for colors and other features of plot use help
plot. The finished figure (see Figure 1.3) allows us to approximate the root of
Equation (1.3) in a graphical way.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.3. The graphs of y(x) = x and z(x) = e−x

Next the root is approximated numerically by using the function fzero. The
numerical approximation obtained is 0.5671. The statement pause on allows
one to use the statement pause which breaks the execution of the program until
a key (for instance, enter) is pressed. This facility is dismissed by pause off.
It is of course possible to declare the function fi as a function file. We then
delete the statement

fi = inline(’x − exp(−x)’)

from the file above and introduce the function file fi.m:

function y = fi(x)
y = x − exp(−x) ;
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1.3 Array-smart functions

Let us consider the following simple problem of plotting the graph of f(x) =
xe− sinx/(1 + x2) on the interval [−3, 3]. Taking into account our actual knowl-
edge we write a function file (let us call it fun.m) as follows,

function y = fun(x)
y = x*exp(−sin(x)) / (1 + x*x) ;

and the script file that solves our problem

% file fun1.m
% Plot a graph by using the function file fun.m
clear
h = 0.001 ;
x = −3:h:3 ;
n = length(x) ;
for i = 1:n

y(i) = fun(x(i)) ;
end
plot(x,y,’∗’) ; grid

The corresponding graph may be seen in Figure 1.4. In the above program we
have obtained the vector [yi]ni=1 from the vector [xi]ni=1 by using fun.m.
A faster way to make such a transform is to build an array-smart function,
that is, a function that computes an array from a given one applying the for-
mula for each of its elements. We have already noticed array-smart operations
when working with matrices. All usual MATLAB functions (sin, exp, etc.)
are array-smart, therefore we write the following function file (let us call it
funasm.m)

function y = funasm(x)
y = x.*exp(−sin(x)) ./ (1 + x.*x) ;

and the corresponding script file

% file fun2.m
% Plot a graph by using
% the function file funasm.m
clear
h = 0.01 ;
x = −3:h:3 ;
y = funasm(x) ;
plot(x,y,’∗’) ; grid

The script file below makes a detailed analysis of local minimum points and
of roots of the function on the interval [−3.3].

% file fun3.m
% test of an array-smart function
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Fig. 1.4. The graph of the function f(x) = xe− sinx/(1 + x2)

clear
h = 0.01 ;
x = −3:h:3 ;
y = funasm(x) ;
plot(x,y,’∗’) ; grid
pause on
pause
x1min = fminbnd(’funasm’,−2,−1)
pause
x2min = fminbnd(’funasm’,1,3)
pause
x0 = fzero(’funasm’,−0.5)
funx0 = funasm(x0)
pause off

Global variables. Each function file has its own local variables, that are
separate from those of other functions, and from those of the base workspace
and of script files. But if several functions, and possibly the base workspace,
all declare a particular name as global, then they all share a single copy of
that variable. Any assignment to that variable, in any file, is available to all
the other files containing the same global declaration. A simple example of a
global statement is

global a b c
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Let us point out that the variables in a global list are separated by a blank. We
now give an example to illustrate the use of a global variable. Let us consider
the function

ψ(n, x) = xne−nx

for x ∈ [0, 10] and n = 3, 4, 5, 6. The variable x is passed to the corresponding
function as a parameter, and the variable n is passed as a global variable. We
therefore write the array-smart function psi.m

function y = psi(x)
global n
y = x.∧n.*exp(−n*x) ;

and the script file

% file g6.m
% plot more curves on the same figure
global n
h = 0.001 ;
x = 0:h:10 ;
n = 3 ;
plot(x,psi(x),’∗’) ;
grid
hold on
for n = 4:6

plot(x,psi(x),’∗’) ;
end
hold off

The resulting graphs are given in Figure 1.5.
Another way to solve the problem above is to introduce a function, psi1 below,
which depends on two variables, namely x and n. This way global variables
are no longer necessary.

function y = psi1(x,n)
y = x.∧n.*exp(−n*x) ;

The corresponding script file is

% file g61.m
% plot more curves on the same figure
clear
h = 0.001 ;
x = 0:h:10 ;
n = 3 ;
plot(x,psi1(x,n),’∗’) ; grid
hold on
for n = 4:6
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plot(x,psi1(x,n),’∗’) ;
end
hold off
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Fig. 1.5. The graphs of ψ(n, ·), for n ∈ {3, 4, 5, 6}

1.4 Models with ODEs; MATLAB functions ode23
and ode45

We later introduce some simple mathematical models of ODEs (ordinary dif-
ferential equations). We therefore consider the IVP (initial-value problem) for
a first-order differential equation:

{
y′(x) = f(x, y(x)),

y(x0) = y0,
(1.4)

where y0 ∈ IR, and f : D → IR with

D = {(x, y) ∈ IR2 ; |x− x0| ≤ a, |y − y0| ≤ b} (a, b > 0).

We recall the following existence and uniqueness result (see [Har02] and
[Zwi97]).
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Theorem 1.1. Assume that

(i) f is continuous on D.
(ii) f is Lipschitz-continuous with respect to y on D; that is, there exists L > 0

such that

|f(x, y1) − f(x, y2)| ≤ L|y1 − y2| for any (x, y1), (x, y2) ∈ D.

Then there exists a unique solution of Problem (1.4), y ∈ C1([x0 − δ, x0 + δ]),
where

δ = min{a, b
M

}
and

|f(x, y)| ≤M for any (x, y) ∈ D, M > 0.

Remark 1.2. If the derivative ∂f/∂y exists and is continuous on D, then the
Lipschitz condition (ii) is fulfilled.

Remark 1.3. If condition (i) is replaced by f ∈ Cp(D), where p ∈ IN , p ≥ 1,
then solution y belongs to Cp+1([x0 − δ, x0 + δ]).

We begin with the following particular case of (1.4).
{
y′(x) = 1 − 2xy,
y(0) = 0. (1.5)

It is obvious that the right-hand side f(x, y) = 1 − 2xy of Problem (1.5)
satisfies the hypotheses of Theorem 1.1 for some compact D. By using the
well-known method of variation of arbitrary constants we obtain the solution
of Problem (1.5) as

y(x) = e−x2
∫ x

0

et2dt. (1.6)

To exploit formula (1.6) in order to compute y(A) for a given A > 0 we have
to integrate et2 on [0, A] and this can only be done numerically. Therefore, we
first create a function file for the integration; let us call it fquad:

function y = fquad(t)
% function fquad to be used by prob1.m
% to solve numerically Problem (1.5)
q = t.∧2 ; % array-smart
y = exp(q) ;

and then the script file prob1.m.

% file prob1.m
% Integrate the IVP
% y′(x) = 1 − 2xy, x in [0,A] ,
% y(0) = 0 ,
% by using the method of variation of arbitrary constants and
% the MATLAB routine quadl
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clear
A = input(’A : ’) ;
temp1 = exp(−A*A) ;
temp2 = quadl(’fquad’,0,A) ;
format long
yfinal = temp1 * temp2

The function quadl numerically computes a Riemann integral (by using Simp-
son’s formula). The call parameters are the name of the function to be in-
tegrated (a function file) and the limits of integration. An example is given
above. Let us also point out that the function used by quadl, that is, fquad in
our example, should be an array-smart one.

Another possibility is to integrate the IVP directly by use of a Runge–Kutta
method. MATLAB provides many routines to integrate IVPs for ODEs. We
start with the function file which gives the right-hand side of Problem (1.5).
Let us call it rhs2.m.

function z = rhs2(x,y)
z = 1 − 2*x*y ;

Then we may call the corresponding function to integrate Problem (1.5). For
instance

[x y] = ode23(’rhs2’, [x0 x1], y0) ;

The function called is ode23 (a Runge–Kutta method of order 2–3 with adap-
tive step), the right-hand side of the equation is found in the file indicated by
the string ’rhs2’, the interval of integration is [x0, x1], and the initial value is
y0. The numerical results obtained are stored in the two vectors x and y. The
vector x = [xi]ni=1 contains the points from [x0, x1] used by the adaptive step
method. Due to the adaptive change of the integration step the length of x
is unknown a priori but can be found after the call by length(x). The vector
y = [yi]ni=1 contains the corresponding numerical values yi = y(xi). It is also
possible to obtain solutions (values) at specific points. For instance, suppose
that x0 = 0 and x1 = 1. If we build

xspan = [0 0.2 0.4 0.6 0.8 1] ;

we may call

[x y] = ode23(’rhs2’, xspan, y0) ;

or

h = 0.01 ;
xspan = x0:h:x1 ;
[x y] = ode23(’rhs2’, xspan, y0) ;

Another MATLAB function to integrate nonstiff equations is ode45 (a Runge–
Kutta method of order 4–5 with adaptive step). Details can be obtained by the
help statements for ode23, ode45, or odeset. The script file below compares the
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numerical results obtained by ode23 versus ode45 making the corresponding
graphs on the same figure.

% file prob2.m
% Integrate the IVP
% y′(x) = 1 − 2xy, x in [x0,x1] ,
% y(0) = 0 ,
% by using the MATLAB files ode23 / ode45
% and the own function rhs2.m
clear
x0 = 0
x1 = input(’x1 : ’)
y0 =0
format long
[x y] = ode23(’rhs2’,[x0,x1],y0) ;
N = length(y)
y23 = y(N)
plot(x,y) ; grid
hold on
[z w] = ode45(’rhs2’,[x0,x1],y0) ;
M = length(w)
y45 = w(M)
plot(z,w,’r’)
hold off

The values of y23 and y45 in the program above allow us to compare the
numerical values obtained by the two functions at the final limit of the inte-
gration interval. For instance, the values obtained for the interval [0, 3] are

N = 22 ; y23 = 0.17794836747613
M = 61 ; y45 = 0.17829834037441

These values can be compared with the one obtained by prob1.m which is

yfinal = 0.17827103166817

To obtain a better graphical image in the above program we have introduced
the following sequence

h = 0.01 ;
xspan = x0:h:x1 ;

and we have replaced the calls to ode routines by

[x y] = ode23(’rhs2’,xspan,y0) ;
[z w] = ode45(’rhs2’,xspan,y0) ;

and the plot statements by

plot(x,y,’∗’) ; grid
plot(z,w,’r∗’)
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to obtain wide lines for plot (more points and ’*’). The corresponding graphs
are given in Figure 1.6. Let us remark that the two graphs are almost identical.
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Fig. 1.6. The graphs corresponding to ode23 and ode45 are almost identical

Let us consider now another example of IVP, namely
⎧
⎨

⎩
y′(x) = y − 2x

y
,

y(0) = 1.
(1.7)

We multiply the equation by y and we get

yy′ = y2 − 2x. (1.8)

We introduce the new function z = y2 and we get from (1.8) the equation

z′ = 2z − 4x.

The corresponding initial condition is z(0) = 1. Therefore we readily get
z(x) = 2x+ 1 and hence the solution of Problem (1.7),

y(x) =
√

2x+ 1. (1.9)

We are going now to compare the mathematical solution (1.9) with the nu-
merical one obtained by ode23. We first make the function file rhs3 for the
right-hand side of Problem (1.7):

function z = rhs3(x,y)
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z = y − 2*x/y ;

The script prob3.m makes the comparison by representing the two graphs on
the same figure.

% file prob3.m
% Integrates numerically the IVP (1.7)
% y′(x) = y − 2x/y , x in [0,L]
% y(0) = 1
% by using of ode23 and compares on [0,L] with
% the mathematical solution y(x) = sqrt(2x + 1)
clear
L = input(’L : ’) ;
x = 0:0.01:L ;
y = sqrt(2*x + 1) ;
plot(x,y,’∗’)
hold on
[z w] = ode23(’rhs3’,[0 L], 1) ;
plot(z,w,’r∗’)
hold off

For the interval [0, L] with L = 2 the two solutions are represented in
Figure 1.7.

Let us remark that the two graphs are almost identical, which means that
the numerical routine behaves quite well. If we take a longer interval, namely
L = 4, we can see the result given by Figure 1.8.
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Fig. 1.7. The mathematical and numerical solutions of (1.7) on [0, 2]
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Fig. 1.8. The mathematical and numerical solutions of (1.7) on [0, 4]

It is quite clear that far from 0, the starting point of the integration interval,
the numerical solution fails because the roundoff errors accumulate. A better
numerical result is obtained replacing ode23 with ode45 in prob3.m. Such an
experience is instructive and very easy to do.

Let us also point out that the function files made for the right-hand sides of
IVPs as in our examples are usual functions and not array-smart ones due to
the fact that the numerical methods build the solution point after point, that
is, not in a vectorized way.

The above-mentioned integration methods may be efficiently used even if the
right-hand side functions of the IVPs satisfy only weaker regularity proper-
ties than those in Theorem 1.1. We often apply these methods for piecewise
continuous functions with excellent results.

1.5 The spruce budworm model

As a first biological model leading to an IVP for ODEs we consider the spruce
budworm model (e.g., [Ist05, Chapter 2.3] and [All07]). The spruce budworm
is an insect that damages forests in North America; it feeds on needles of
coniferous trees. Let N(t) be the number of individuals of the spruce budworm
population at the moment t ∈ [0, T ]. Its evolution can be described by a
logistic model:

N ′(t) = rN(t)
(

1 − N(t)
K

)
,
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which means that the population evolution depends not only on the natural
fertility and mortality rates but also on a mortality rate induced by overpopu-
lation. In the above formula, r and K are dimensionless parameters involving
real field ones, namely r is the intrinsic growth rate and K is the carrying
capacity of the environment. To the additional mortality rate due to overpop-
ulation, (r/K)N(t), we add now a predation term. The predator is represented
by birds. The new equation is

N ′(t) = rN(t)
(

1 − N(t)
K

)
− p(N(t)), t ∈ [0, T ],

where

p(N) =
BN 2

A2 +N2
.

The shape of the graph of p above, for A = 2 and B = 1.5, on the interval
[0, 20], is given in Figure 1.9.
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Fig. 1.9. The graph of p(N) on [0, 20], for A = 2, B = 1.5

Exercise. Write a program that plots the graph of the function p.

We add an initial condition and we get the IVP:
⎧
⎨

⎩
N ′(t) = rN(t)

(
1 − N(t)

K

)
− BN(t)2

A2 +N(t)2
, t ∈ [0, T ]

N(0) = N0.

The right-hand side of the equation is given by the function file
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function z = sbw1(x,y)
global r K A2 B
y2 = y*y ;
z = r*y*(1 − y/K) − B*y2 / (A2 + y2) ;

The corresponding script file is

% program ist1.m for the spruce budworm model
global r K A2 B
r = input(’r = ’) ;
K = input(’K = ’) ;
A = input(’A = ’) ;
A2 = A*A ;
B = input(’B = ’) ;
T = input(’T = ’) ;
N0 = input(’N(0) = ’) ;
h = 0.01 ;
tspan = 0:h:T ;
[x y] = ode45(’sbw1’, tspan, N0) ;
plot(x,y,’r∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf N(t)’,’FontSize’,16)

The evolution of the spruce budworm population is given in Figures 1.10 and
1.11 for different choices of r,K,A,B, T and N0.
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Fig. 1.10. The graph of N(t), for r = 0.3, K = 5, A = 2, B = 1.5, T = 20, N0 = 30
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Fig. 1.11. The graph of N(t), for r = 1, K = 10, A = 3, B = 2, T = 10, N0 = 50

Exercise. Consider the following IVP, which gives the evolution of an in-
sect population (such as the spruce budworm model) subject to a harvesting
process:

⎧
⎨

⎩
N ′(t) = rN(t)

(
1 − N(t)

K

)
− u(t)N(t), t ∈ [0, T ]

N(0) = N0.

Take, as for the first test of the spruce budworm model, r = 0.3, K = 5,
T = 20, and N0 = 30. Plot the graphs of the insect population N(t) for the
following choices of the harvesting effort u(t).

(i) u(t) = 0.5 on [0, T ].
(ii) u(t) = 1 on [0, T ].
(iii) u(t) = 3 on [0, T ].

In all cases also compute the harvest given by
∫ T

0 u(t)N(t)dt.

Hint. We change the global statement from program ist1.m to

global r K u

and we also introduce the input statement

u = input(’u = ’) ;

We also have to modify the rhs-function for the ode45 call. Suppose we call it
sbw2. Thus

function z = sbw2(x,y)
global r K u
z = r*y*(1 − y/K) − u*y ;
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To compute the harvest value we add the statement

[x y] = ode45(’sbw2’, [0 T], N0) ;
. . .
harv = u * trapz(x,y)

Learn more about the numerical integration function trapz by using help trapz.
The harvest values obtained are presented in the following table.

u harvest
0.5 19.0655
1 21.2371
3 25.5577

1.6 Programming Runge–Kutta methods

For the mathematics of Runge–Kutta methods we refer to Appendix A.4. We
write a function to implement the standard Runge–Kutta method of order 4
with fixed step. The corresponding file is RK4.m.

function ret = RK4(y,x)
% RK4 standard method with fixed step h
% the rhs of the equation is given by zeta.m
global h
xm = x + h/2 ;
k1 = h * zeta(x,y) ;
k2 = h * zeta(xm,y + k1/2) ;
k3 = h * zeta(xm,y + k2/2) ;
k4 = h * zeta(x + h,y + k3) ;
ret = y + (k1 + k4 + 2.0*(k2 + k3))/6.0 ;

We consider the IVP {
y′(x) = x2 + y2,
y(0) = 0. (1.10)

We compare the numerical results obtained by RK4 and by ode45. First we
write the file zeta.m for the right-hand side of the equation

function z = zeta(x,y)
z = x*x + y*y ;

and then the script testode1.m. Problem (1.10) is integrated on the interval
[0, L].

% file testode1.m
clear
global h
L = input(’L : ’) ;
x0 = 0 ;
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y0 = 0 ;
[t,w] = ode45(’zeta’,[x0 L],y0) ;
N = input(’N : ’) ; % number of subintervals for RK4
h = (L − x0) / N
for i = 1:N + 1

x(i) = x0 + (i − 1)*h ;
end
y(1) = y0 ;
for i = 1:N

y(i + 1) = RK4(y(i),x(i)) ;
end
format long
yrk4 = y(N + 1) % y(L) approximated by RK4
M = length(w)
y45 = w(M) % y(L) approximated by ode45
plot(t,w,’∗’) ; grid
hold on
plot(x,y,’r∗’)
hold off

The numerical results are compared graphically and by the approximated
value of y(L), where L = 1. The two graphs are given in Figure 1.12 showing
no difference.
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Fig. 1.12. The graphs of numerical solutions obtained by RK4 and by ode45

The result obtained by ode45 was y(L) = 0.35023184134841 for M = 41.
Here M − 1 is the number of subintervals. For RK4 we have obtained
0.35023184453449 for N = 100 and 0.35023184431678 for N = 1000, where
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N is the number of subintervals. The results obtained by RK4 are good enough
compared to that obtained by ode45 because Problem (1.10) is nonstiff.

1.7 Systems of ODEs. Models from Life Sciences

We now treat biological models that lead to systems of ODEs with n equations
and n unknown functions, for n = 2, 3, 4.

A predator–prey model

Predator–prey models can be found, for instance, in [BC98, Section 5.4],
[Smo83, Chapter 14], [http1]. Here we consider a model with prey overcrowd-
ing. That is, the predator’s appetite is satiated as the prey population in-
creases. We denote the satiable predator population at time t by y1(t) and
the corresponding prey population by y2(t). The dynamics of this predator–
prey system is described by the following ODE system:

⎧
⎪⎨

⎪⎩

y′1 = −ay1 +
by2

c+ ky2
y1,

y′2 = (d− ey2)y2 − fy2
c+ ky2

y1,
(1.11)

for t ∈ [0, L]. Here a, b, c, d, e, f are nonnegative constants. The positive pa-
rameter k measures the predator’s satiation threshold. A small k means that
it takes a lot of prey before there is any satiation. A large k means that the
satiation quickly appears as the number of prey increases.

For our numerical tests we have considered (see the reference above) a = 0.5,
b = d = e = f = 1, c = 0.3, k = 0.7. The final time is L = 200 and the initial
conditions are

y1(0) = 0.5, y2(0) = 1. (1.12)

The program to solve the IVP (1.11) and (1.12) follows.

% Satiable Predation model – sp1.m
% http://www.math.hmc.edu/resources/odes/odearchitect/examples/
clear
global a b c d e f k
load file1.txt
disp(’get model parameters’) ;
a = file1(1) ;
b = file1(2) ;
c = file1(3) ;
d = file1(4) ;
e = file1(5) ;
f = file1(6) ;
k = file1(7) ;
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disp(’get data’) ;
L = input(’final time : ’) ;
y01 = input(’y1(0) : ’) ;
y02 = input(’y2(0) : ’) ;
lw = input(’LineWidth : ’) ; % for graphical use (plot)
tspan = 0:0.01:L ;
[t y] = ode45(’sprhs1’,tspan,[y01 ; y02]) ;
% graphs
plot(t,y(:,1),’LineWidth’,lw) ; grid
hold on
plot(t,y(:,2),’r’,’LineWidth’,lw)
legend(’predator’,’prey’,0)
hold off

Let us first point out that the values of the parameters are loaded from the file
file1.txt. In that file the values are written one by row. The file can be made
by using the MATLAB editor or any other text editor of the OS (Operating
System). The statement

load file1.txt

provides a vector called file1 which contains the corresponding values. Those
values are transferred to the corresponding variables by the statements that
follow

a = file1(1) ;
. . .

Next we see that there are some changes when solving a system of two equa-
tions in comparison to the case of one. Let us first see the parameters of ode45.
For the name of the right-hand side file function nothing changes. The interval
of integration, in our case [0, L], is also given the same way. A change appears
for the initial conditions because we have to give two values instead of one.
The syntax can be observed above, that is, [y01; y02]. The results returned by
ode45 also look different. The vector t = [ti]ni=1 contains the points from [0, L]
used by the adaptive step method, whereas y is a matrix with n rows and two
columns, where n = length(t). The first column contains the corresponding
numerical values of y1 and the other column of y2. So on the same figure our
plot statement constructs the graphs of y1(t), the predator population, and of
y2(t), the prey population.

The statement legend produces a legend for the figure. The text is written
according to the order of the plot statements executed on the same figure.
The parameter 0 is related to the location of the legend on the figure.
The choices are:

0 = Automatic “best” placement (least conflict with data)
1 = Upper right-hand corner (default)
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2 = Upper left-hand corner
3 = Lower left-hand corner
4 = Lower right-hand corner
−1 = To the right of the plot

For more information use help legend.

Let us now explain the presence of the vector tspan which contains time-grid
points. Its role is to force ode45 to use these grid points for the integration
points. Therefore the number of points (components) of the resulting vector t
increases and the graphs obtained “look better.” Moreover, the plot statements
contain the parameter ’LineWidth’ which allows us to establish the width of
the drawing line. The corresponding value may be given directly by a constant
or by a variable (as lw in our program). For Figures 1.13 and 1.15 below we
have used lw=3. Also try other values.
The function corresponding to the rhs of the system is given below.

function out1 = sprhs1(t,y)
global a b c d e f k
out1 = [ −a*y(1) + b*y(1)*y(2)/(c + k*y(2)) ; . . .
(d − e*y(2))*y(2) − f*y(1)*y(2)/(c + k*y(2)) ] ;

Let us explain how to write the value assigned to the return variable, namely
out1 above. We have to introduce the right-hand side (rhs) for both equations
of the system. They are put into [ ] and are separated by “;”. y1 is written as
y(1) and y2 as y(2).
The graphs are given in Figure 1.13. To make a more explicit graph we have
added sp1.m text statements at the end of program:

text(100,0.65,’\bf predator’,’FontSize’,14)
text(100,0.05,’\bf prey’,’FontSize’,14)

We cite from the MATLAB help:

“text(X,Y,’string’) adds the text in the quotes to location (X,Y) on the current
axes, where (X,Y) is in units from the current plot”.
For more information try help text.

Remark that both populations are stabilizing to periodic functions.

To get a graphical representation in the (y1, y2) plane we change the “graphs”
part of program sp1.m to

. . .
% graphs
plot(y(:,1),y(:,2),’∗’) ; grid
axis([0 1 0 1])
xlabel(’\bf y 1’,’FontSize’,16) ;
ylabel(’\bf y 2’,’FontSize’,16) ;
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Fig. 1.13. The distribution of predators and prey
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Fig. 1.14. Representation of predators and prey in (y1, y2) coordinates

The corresponding graph is given by Figure 1.14.

If we replace the initial conditions (1.12) by

y1(0) = 0.42, y2(0) = 0.3, (1.13)

the graphs of the components of the solution to the IVP (1.11), (1.13) are
given in Figure 1.15. The corresponding (y1, y2) graph is given in Figure 1.16.
We have changed the axis statement to get a focused picture.
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Fig. 1.15. The distribution of predators and prey for y1(0) = 0.42, y2(0) = 0.3
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Fig. 1.16. Representation of predators and prey in (y1, y2) coordinates for
y1(0) = 0.42, y2(0) = 0.3

The Fitzhugh–Nagumo Equations. A model for neural activity

The Fitzhugh–Nagumo equations represent a model for electrical activity in
a neuron (e.g., [Mur89, Section 6.5], [Smo83, Chapter 14], and [http1]). The
neuron is an excitable system that can be stimulated with an input, such as
an electric current. The state of the excitation is described by the function
y1, which represents the voltage in the neuron as a function of time. When
a neuron is excited, physiological processes will cause it to recover from the
excitation. The recovery is represented by the function y2. We start with the
Fitzhugh–Nagumo system:
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⎧
⎨

⎩
y′1 = c

(
y1 + y2 − y3

1

3

)
,

y′2 = c−1(a− y1 − by2),

for t ∈ [0, L]. Two kinds of behavior can be observed in real neurons:

– The response y1 of the neuron tends to a steady state after a large dis-
placement; the neuron has fired; it is a single action-potential;

– The response y1 is a periodic function; the neuron experiences repetitive
firing.

The parameters a, b, and c should satisfy the following constraints for mean-
ingful behavior:

1 − 2
3
b < a < 1, 0 < b < 1, b < c2.

For the numerical tests we take a = 0.75, b = 0.5, c = 1. With L = 20 and
the initial conditions

y1(0) = 3, y2(0) = 0, (1.14)

we get the graphs in Figure 1.17.
It is clear that the neuron is fired; that is, y1 tends to a steady state. The
program is similar to sp1.m. We give only the rhs-function

function out1 = fitzrhs1(t,y)
global a b c
out1 = [ c*(y(2) + y(1) − y(1)∧3/3) ; (a − b*y(2) − y(1))/c ] ;
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Fig. 1.17. The graphs of the excitation and recovery functions
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We now introduce a stimulus in the model. It is represented by the time-
dependent function z.

⎧
⎨

⎩
y′1 = c

(
y1 + y2 − y3

1

3

)
− z,

y′2 = c−1(a− y1 − by2),

for t ∈ [0, L]. For the following numerical test we take

z(t) =
{

0, for t ∈ [0, t∗]
v, for t ∈ (t∗, L] (1.15)

where 0 < t∗ < L is a switching point and 0 < v < 1 is the stimulus value.
The corresponding program follows.

% the Fitzhugh–Nagumo equation – fitz2.m
% z = the stimulus to the neuron
% http://www.math.hmc.edu/resources/odes/odearchitect/examples/
clear
global a b c
global v tsw
load file2.txt
disp(’get model parameters’) ;
a = file2(1) ;
b = file2(2) ;
c = file2(3) ;
disp(’get data’) ;
L = input(’final time : ’) ;
y01 = input(’y1(0) : ’) ;
y02 = input(’y2(0) : ’) ;
v = input(’stimulus : ’) ; % stimulus value
tsw = input(’switch time : ’) ; % switch time for the stimulus
tspan = 0:0.01:L ;
[t y] = ode45(’fitzrhs2’,tspan,[y01 ; y02]) ;
plot(t,y(:,1),’∗’,t,y(:,2),’ro’) ; grid
legend(’excitation’,’recovery’,0)
text(40,1.5,’\bf excitation’,’FontSize’,16)
text(40,−0.5,’\bf recovery’,’FontSize’,16)
n = length(tspan) ;
for i = 1:n

if tspan(i) > tsw
z(i) = v ;

else
z(i) = 0 ;

end
end
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figure(2)
plot(tspan,z,’∗’) ; grid
axis([0 L 0 v])
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf stimulus z(t)’,’FontSize’,16)

The corresponding rhs-function is

function out1 = fitzrhs2(t,y)
global a b c
global v tsw
if t > tsw

z = v ;
else

z = 0 ;
end
out1 = [ c*(y(2) + y(1) − y(1)∧3/3) − z ; (a − b*y(2) − y(1))/c ] ;

Let us point out that in fitzrhs2 we have used the variable t, which stores
the current time value, to compute the current stimulus z. For the numerical
test we have considered the parameters a, b, c as before, L = 100, v = 0.5,
and t∗ = 30 (the program variable is tsw) in formula (1.15) and the initial
conditions (1.14). Excitation y1 and recovery y2 corresponding to the stimulus
z are given in Figure 1.18.
As for the prey–predator model we also have the corresponding (y1, y2)-graph
which is given in Figure 1.19. We have managed the axis statement to get a
focused picture.
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Fig. 1.18. The graphs of the excitation and recovery functions when stimulus occurs
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Fig. 1.19. The excitation and recovery (with stimulus) in (y1, y2)-coordinates

We now consider a 3 × 3 model, that is, a model with three equations and
three unknown functions.

Lead in the Body

Lead is a toxic element that is present in different products. The model is a
compartmental one for the transport of lead through the body (e.g., [BC98,
Section 7.1] and [http1]). We consider three compartments: blood (compart-
ment 1), tissues (compartment 2), and bones (compartment 3). Denote by
I1 the lead input rate into blood and by yi(t), i = 1, 2, 3, the amount of lead
in compartment i at time t. There are exchanges of lead between blood and
tissues and between blood and bones. The corresponding exchange rates are
k21 and k12 for blood and tissues and k31 and k13 for blood and bones, respec-
tively. The lead also passes from blood to urine (exchange rate k01) and from
tissues to hair, nails, and sweat (exchange rate k02). Therefore the differential
system is

⎧
⎨

⎩

y′1 = −(k01 + k21 + k31)y1 + k12y2 + k13y3 + I1,
y′2 = k21y1 − (k02 + k12)y2,
y′3 = k31y1 − k13y3,

(1.16)

for t ∈ [0, L]. We add the initial conditions

y1(0) = y2(0) = y3(0) = 0, (1.17)

which mean that there is no lead in the body at time t = 0. The program to
integrate and to make a subsequent graphical representation follows.
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% Lead in the Body – lead1.m
% y(1) = lead in Blood
% y(2) = lead in Tissues
% y(3) = lead in Bones
% http://www.math.hmc.edu/resources/odes/odearchitect/examples/
clear
global k01 k21 k31
global k02 k12 k13
global I1
load file3.txt
disp(’get model parameters’) ;
k01 = file3(1) ;
k21 = file3(2) ;
k31 = file3(3) ;
k02 = file3(4) ;
k12 = file3(5) ;
k13 = file3(6) ;
I1 = file3(7) ;
disp(’get data’) ;
L = input(’final time : ’) ;
y01 = input(’y1(0) = ’) ;
y02 = input(’y2(0) = ’) ;
y03 = input(’y3(0) = ’) ;
tspan = 0:0.01:L ;
[t y] = ode45(’lrhs1’,tspan,[y01 ; y02 ; y03]) ;
plot(t,y(:,1),’ro’,t,y(:,2),’∗’,t,y(:,3),’gs’) ; grid
% legend(’blood’,’tissues’,’bone’,0)
text(400,400,’tissues’)
text(400,1400,’blood’)
text(400,2000,’bones’)

Because the system is 3×3 there are changes in comparison to a 2×2 system.
In the call to ode45 we give three initial values. The plot contains three curves
corresponding to yi(t), i = 1, 2, 3. To get more readable graphs we have used
the statement text.
The rhs-function lrhs1.m follows.

function out1 = lrhs1(t,y)
global k01 k21 k31
global k02 k12 k13
global I1
out1 = [−(k01 + k21 + k31)*y(1) + k12*y(2) + k13*y(3) + I1 ; . . .
k21*y(1) − (k02 + k12)*y(2) ; k31*y(1)-k13*y(3)] ;
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The assign statement for the output variable out1 contains the three rhs from
System (1.16) ordered and separated by “;”.
For the first numerical experiment we have considered the initial conditions
(1.17), L = 600 (days), I1 = 49.3 μg/day and the following coefficients,

k01 = 0.0211, k21 = 0.0111, k31 = 0.0039,

k02 = 0.0162, k12 = 0.0124, k13 = 0.000035.

The graphs are given in Figure 1.20.
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Fig. 1.20. The graphs of y1, y2, and y3

For another experiment we replace the constant lead input rate I1 by a time
step function

I(t) =
{
I1, for t ∈ [0, t∗]
I2, for t ∈ (t∗, L], (1.18)

where I1 and I2 are positive constants and 0 < t∗ < L. We introduce as global
variables in the corresponding script file I1, I2, and tsw (for the switch time
t∗). The rhs-function is

function out1 = lrhs2(t,y)
global k01 k21 k31
global k02 k12 k13
global I1 I2 tsw
if t > tsw

a = I2 ;
else
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a = I1 ;
end
out1 = [−(k01 + k21 + k31)*y(1) + k12*y(2) + k13*y(3) + a ; . . .
k21*y(1) − (k02 + k12)*y(2) ; k31*y(1) − k13*y(3)] ;

We take L = 800, t∗ = 400, I1 = 49.3, and I2 = 2. The other input values are
as before and we get the graphs in Figure 1.21.

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

 tissues

 blood

 bones

Fig. 1.21. The graphs of y1, y2, and y3 for lead input given by (1.18)

We consider next a 4×4 model, that is, a model with four equations and four
unknown functions.

An autocatalytic reaction

Such a model can be found, for instance, in [BC98, Section 5.1] and also in
[http1]. Let us consider the species Yi, i = 1, 2, 3, 4, and the autocatalytic
reaction

Y1 −→ k1 Y2 ,

Y2 −→ k2 Y3 ,

Y2 + 2Y3 −→ k3 3Y3 ,

Y3 −→ k4 Y4 ,

with rate constants ki > 0, i = 1, 2, 3, 4. Let yi(t) denote the concentration of
Yi at time t ∈ [0, L]. Then the model is given by the IVP:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y′1 = −k1y1,
y′2 = k1y1 − k2y2 − k3y2y

2
3,

y′3 = k2y2 − k4y3 + k3y2y
2
3,

y′4 = k4y3,
y1(0) = α, y2(0) = y3(0) = y4(0) = 0,

(1.19)

for t ∈ [0, L]. Time and concentrations have been scaled to dimensionless form.
The program is the following one.

% Autocatalytic reaction – auto1.m
% http://www.math.hmc.edu/resources/odes/odearchitect/examples/
clear
global k1 k2 k3 k4
load file4.txt
disp(’get model parameters’) ;
k1 = file4(1) ;
k2 = file4(2) ;
k3 = file4(3) ;
k4 = file4(4) ;
disp(’get data’) ;
L = input(’final time : ’) ;
alpha = input(’y1(0) = ’) ;
lw = input(’LineWidth : ’) ; % for graphical use (plot)
tspan = 0:0.01:L ;
[t y] = ode45(’arerhs1’,tspan,[alpha ; 0 ; 0 ; 0]) ;
z1 = y(:,1) / 200 ;
z4 = y(:,4) / 200 ;
plot(t,z1,’∗’,t,y(:,2),’r’,t,y(:,3),’g’,t,z4,’co’) % plot 1
grid
xlabel(’\bf t’,’FontSize’,16)
text(50,2,’\bf y1/200’)
text(100,0.25,’\bf y4/200’)
text(250,2.5,’\bf y2’)
text(200,0.2,’\bf y3’)
figure(2) % plot 2
plot(t,y(:,2),’r’,’LineWidth’,lw) ; grid
xlabel(’\bf t’,’FontSize’,16)
hold on
plot(t,y(:,3),’g’,’LineWidth’,lw)
text(250,2.5,’\bf y2’,’FontSize’,16)
text(200,0.2,’\bf y3’,’FontSize’,16)
figure(3)
plot(y(:,2),y(:,3),’∗’) ; grid % plot 3
xlabel(’\bf y2’,’FontSize’,16)
ylabel(’\bf y3’,’FontSize’,16)
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To get equivalent magnitudes for the graphical representation we have divided
y1 and y4 by 200. We have also obtained the representations for y2(t) and y3(t)
together and in the plane y2Oy3.
The rhs-function is

function out1 = arerhs1(t,y)
global k1 k2 k3 k4
out1 = [−k1*y(1) ; k1*y(1) − y(2)*(k2 + k3*y(3)∧2) ; . . .
y(2)*(k2 + k3*y(3)∧2) − k4*y(3) ; k4*y(3)] ;

For the numerical tests we have considered L = 400, α = 500, and rate con-
stants to be k1 = 0.002, k2 = 0.08, and k3 = k4 = 1. The graphs are given as
follows: all yi(t) with some scaling (plot 1 from the program) in Figure 1.22;
y2(t) and y3(t) (plot 2 from the program) in Figure 1.23 (with lw = 2); the
y2Oy3 graph (plot 3 from the program) in Figure 1.24.
We now consider a model from mechanics. It is quite interesting from the
point of view of numerical tests, more exactly in which concerns the adequacy
of the model depending on the range of parameters.

A loaded beam model

We consider a beam that occupies the segment [0, L] and is fixed at x = 0.
At x = L the beam is free and it is loaded by a weight P . We denote by y(x)
the displacement of the loaded beam for x ∈ [0, L]. The mathematical model
is (see [DC72, Section 8.14]):

⎧
⎨

⎩

y′′

[1 + (y′)2]3/2
=

P

EI
(L− x), x ∈ [0, L]

y(0) = y′(0) = 0.
(1.20)

Fig. 1.22. The graphs of y1/200, y2, y3, and y4/200
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Fig. 1.23. The graphs of yi, i ∈ {2, 3}
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Fig. 1.24. Representation of yi, i ∈ {2, 3} in (y2, y3) coordinates

Let us point out that y(x) represents the absolute value of the displacement
and therefore we have to consider −y(x) for the plot statement because the
displacement is made in the negative sense of the Oy axis. In (1.20) E denotes
the Young’s modulus and I the moment of inertia of the cross-section of the
beam. Because we consider these physical values to be constant (independent
of x), we simply denote C = P/(EI) in the sequel.
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We now consider two cases.

(1) The weight P is “small” and therefore the velocity of the displacement is
“small.” Hence 1 + (y′)2 ≈ 1 and (1.20) is replaced by

{
y′′ = C(L − x), x ∈ [0, L]
y(0) = y′(0) = 0. (1.21)

Integrating we get the solution

y(x) =
C

6
x2(3L− x), x ∈ [0, L]. (1.22)

(2) The weight P is not “small” and therefore (y′)2 cannot be neglected. We
have to integrate Problem (1.20) numerically. We introduce as usual the
functions y1 = y, y2 = y′, and we get the system

⎧
⎨

⎩

y′1 = y2, x ∈ [0, L]
y′2 = C(1 + y2

2)3/2 · (L− x), x ∈ [0, L]
y1(0) = y2(0) = 0.

(1.23)

The script file graphically compares the solution (1.22) for the simplified model
(1.21) to the numerical solution obtained with ode45 for Problem (1.23). Let
us remark that the polynomial in Formula (1.22) may always be computed
for an interval [0, L].

% file beam1.m
% the loaded beam fixed at one end
% the numerical integration is made by ode45
% a comparison is made to the simplified model
clear
global L C
L = input(’L : ’)
C = input(’C : ’)
L3 = 3.0 * L ;
C6 = C/6.0 ;
z = 0:0.001:L ;
[x y] = ode45(’b’, z, [0 ; 0]) ;
plot(x,−y(:,1),’s’) ; grid
xlabel(’\bf x’,’FontSize’,16)
ylabel(’\bf −y(x)’,’FontSize’,16)
hold on
w = C6*(z.∧2).*(L3 − z) ;
plot(z,−w,’r∗’)
legend(’numerical’,’polynomial’,0)
hold off

Here [x y] is the pair of vectors returned by ode45 and [z w] is the pair of
vectors corresponding to the simplified model (Formula (1.22)). Remark that
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w is computed from z by array-smart operations because z is a vector. The rhs
for ode45 is given by the function file b.m taking into account the right-hand
side for the equations of system (1.23).

function ret = b(x,y)
% the rhs for beam1.m
global L C
ret = [y(2) ; C*(L − x)*(1.0 + y(2)∧2)∧1.5] ;

To compare the values obtained at x = L we add the following sequence to
the script file beam1.m.

format long
N = length(x) ;
ynum = y(N,1) % numerical value at x = L
M = length(w) ;
ypol = w(M) % polynomial value at x = L

We have made numerical tests for L = 1 and for different values of the constant
C. Let us recall that C = P/(EI) and therefore in our numerical experiments
C has the same meaning as the weight P . For C = 1 we get Figure 1.25. There
is a difference between the two solutions when approaching the right limit of
the interval. We have used the statement text to insert alphanumerical strings
inside the figure. Here “numer” stands for “numerical solution” and “polyn”
stands for “polynomial solution”.
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Fig. 1.25. Numerical and polynomial solutions for C = 1

For C = 1.75 we get Figure 1.26. The difference between the two solutions
is more important. The graph of the numerical solution obtained by ode45 is
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Fig. 1.26. Numerical and polynomial solutions for C = 1.75
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Fig. 1.27. Numerical and polynomial solutions for C = 2.6

below the graph of the polynomial solution. As expected the simplified model
does not work properly for C large.
The last experiment was made for C = 2.6 and the result may be seen in
Figure 1.27. The numerical solution failed for some time value which means
from a physical point of view that the beam was broken due to the heavy
load. The polynomial solution was obtained because the polynomial (1.22) is
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defined for any x, but it is meaningless. It is quite clear that the polynomial
model is not adequate for large values of the parameter C (force).

1.8 3D Graphics

The 3D equivalent of plot is plot3. It is useful for functions defined by a
parametric formula. The statement

plot3(x,y,z)

is valid if x, y, z are vectors of equal length; denote it by N . The state-
ment plot3 produces the 3D curve passing through the points (xi, yi, zi),
i = 1, 2, . . . , N . We cite here a nice simple example that can be found in
the MATLAB documentation, namely the helix defined by the parametric
equations ⎧

⎨

⎩

x = sin t
y = cos t
z = t

(1.24)

for t ∈ [0, 6π]. The script file is helix.m

% file helix.m
% parametric representation with plot3
h = pi/1000 ;
t = 0:h:6*pi ;
plot3(sin(t),cos(t),t,’∗’) ; grid
xlabel(’\bf sin(t)’,’FontSize’,16)
ylabel(’\bf cos(t)’,’FontSize’,16)
zlabel(’\bf t’,’FontSize’,16)

and the result is shown in Figure 1.28.
If we now turn back to the autocatalytic reaction from Section 1.7 (program
auto1.m) and we add the sequence

figure(4)
plot3(y(:,2),y(:,3),t)

we get the Figure 1.29 (the model we have considered deals with oscillations
in a wineglass).
To plot the graph of a function z = f(x, y) the corresponding statement is
mesh or surf. Suppose that f is defined on [a, b]× [c, d]. We first have to build
the vectors x and y that contain the grid points corresponding, respectively,
to Ox and Oy axes.

x = a:hx:b ;
y = c:hy:d ;

Then we make the matrices X and Y by
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Fig. 1.28. The parametric curve given by (1.24)
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Fig. 1.29. Oscillations in a wineglass

[X,Y] = meshgrid(x,y) ;

Assume that length(x) is n and length(y) is m. Then both matrices arem×n.
All m rows of X are equal to vector x and all columns of Y are equal to vector
y. Then we make the matrix Z by

Z = f(X,Y) ;

where f.m is the corresponding array-smart function. Therefore a 3D “wire
mesh surface” is generated by the statement

mesh(X,Y,Z)

and a 3D “faceted surface” is generated by the statement
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Fig. 1.30. The plane of equation z = x+ y

surf(X,Y,Z)

It is also possible to write directly

mesh(X,Y,f(X,Y))

and the same for surf.
As a first example we generate a plane (Figure 1.30). Here is the script file

% file graf1.m ; 3D representation of a plan
clear
x = −1:0.01:1 ;
y = x ;
[X,Y] = meshgrid(x,y) ;
mesh(X,Y,X + Y)
xlabel(’\bf x’,’FontSize’,16)
ylabel(’\bf y’,’FontSize’,16)
zlabel(’\bf z=x+y’,’FontSize’,16)

Let us now consider the function f(x, y) = x2 + y2, (x, y) ∈ [−3, 3] × [−3, 3].
The script file is graf4.m.

% file graf4.m ; graph of the function z = x*x + y*y
clear
h = 0.1
x = −3:h:3 ;
y = x ;
[X,Y] = meshgrid(x,y) ;
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Z = X.∧2 + Y.∧2 ;
mesh(X,Y,Z) ; title(’\bf MESH’,’FontSize’,16)
xlabel(’\bf x’,’FontSize’,16)
ylabel(’\bf y’,’FontSize’,16)
zlabel(’\bf z(x,y)’,’FontSize’,16)
figure(2)
surf(X,Y,Z) ; title(’\bf SURF’,’FontSize’,16)
xlabel(’\bf x’,’FontSize’,16)
ylabel(’\bf y’,’FontSize’,16)
zlabel(’\bf z(x,y)’,’FontSize’,16)

The program above produces two figures: figure (1) is implicit and contains
the result of the mesh statement, and figure (2) is declared and contains the
result of the surf statement (see Figures 1.31 and 1.32).

Bibliographical Notes and Remarks

Several mathematical models described by ODEs have been investigated in the
literature. We refer for instance to [CLW69], [DC72], [GW84], [PFT90], and
[Ist05]. For biological models see Section 1.7 and references therein ([BC98],
[Mur89], [Smo83], and [http1]). For applications together with MATLAB pro-
gramming we cite [Coo98] and [QS03]. Many very nice examples of such pro-
grams can also be found in the MathWorks documentation.

For numerical linear algebra we recommend [You71] and [Cia94]. Numer-
ical methods for ODEs may be found, for instance, in [CM89]. Existence and
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uniqueness results for IVPs governed by ODEs (Theorem 1.1) can be found
in any classical book on differential equations (e.g., [Har02] or [Zwi97]).

For examples of 3D graphics and other examples we refer to [Coo98].

Exercises

1.1. Consider the IVP: {
y′(x) = x+ y(x),
y(0) = 1,

which has the mathematical solution

y(x) = 2ex − (x+ 1).

Solve it numerically on some given interval [0, L] and make a figure that
contains the graphs of the mathematical solution and of the numerical one.
Compare, with format long, y(L) with the numerical value obtained for x = L.
Do it for different increasing values of L.

1.2. The same problem as above for the IVP:
{
y′(x) = −y(x),
y(0) = 1,

which has the mathematical solution

y(x) = e−x.
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1.3. Consider the IVP:
{
y′(x) = x2 + y(x)2,
y(0) = −1.

For some interval [0, L], compare the numerical solutions obtained with ode23
and ode45. Plot the corresponding graphs on the same figure and compare
the numerical values obtained for x = L. Do it for different increasing values
of L.

1.4. Consider the following IVP, which gives the evolution of an insect popu-
lation (such as the spruce budworm model) subject to a harvesting process:

⎧
⎨

⎩
N ′(t) = rN(t)

(
1 − N(t)

K

)
− u(t)N(t), t ∈ [0, T ]

N(0) = N0.

Take, as for the first test of the spruce budworm model, r = 0.3, K = 5,
T = 20, and N0 = 30. Make the graph of the insect population N(t) for
u(t) = t on [0, T ]. Also compute the harvest given by

∫ T

0
u(t)N(t)dt.

Hint. Let the rhs-function be sbw3. Hence

function z = sbw3(x,y)
global r K
z = r*y*(1 − y/K) − x*y ;

To compute the harvest value we use the statement

[x y] = ode45(’sbw3’, [0 T], N0) ;
. . .
harv = trapz(x,x.*y)

1.5. Plot the surface of equation z = sin(x− y), x ∈ [0, 4], y ∈ [0, 6].

Hint. Use the script file graf2.m.

% file graf2.m
% 3D graph for z = sin(x − y)
clear
h = 0.01
x = 0:h:4 ;
y = 0:h:6 ;
[X,Y] = meshgrid(x,y) ;
Z = sin(X − Y) ;
mesh(X,Y,Z)
xlabel(’\bf x’,’FontSize’,16)
ylabel(’\bf y’,’FontSize’,16)
zlabel(’\bf z = sin(x − y)’,’FontSize’,16)
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1.6. Plot the graph of the function f defined by

f(x, y) = e−((x−3)2+(y−2)2), x ∈ [0, 4], y ∈ [0, 6].

Hint. Use the script file graf3.m.

% file graf3.m
% uses the function f2D
% 3D graphic for z = f2D(x,y)
clear
h = 0.01
x = 0:h:4 ;
y = 0:h:6 ;
[X,Y] = meshgrid(x,y) ;
Z = f2D (X,Y) ;
mesh(X,Y,Z)
xlabel(’\bf x’,’FontSize’,16)
ylabel(’\bf y’,’FontSize’,16)
zlabel(’\bf z = f2D(x,y)’,’FontSize’,16)

and the array-smart function f2D.m which follows.

function z = f2D(x,y)
q = (x − 3).∧2 + (y − 2).∧2 ;
z = exp(−q) ;
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Optimal control of ordinary differential

systems. Optimality conditions

This chapter and the next one are devoted to some basic ideas and techniques
in optimal control theory of ordinary differential systems. We do not treat
the optimal control problem or Pontryagin’s principle in their most general
form; instead we prefer a direct approach for some significant optimal control
problems in life sciences and economics governed by ordinary differential sys-
tems. We point out the main steps in the study of an optimal control problem
for each investigated example. These steps are similar for all examples. There
are, however, specific technical difficulties for each investigated problem.

The main goal of this chapter is to prove the existence of an optimal con-
trol and to obtain first-order necessary conditions of optimality (Pontryagin’s
principle) for some significant optimal control problems. The necessary opti-
mality conditions give valuable information about the structure of the optimal
control. Numerical algorithms to approximate the optimal control and corre-
sponding MATLAB R© programs are indicated.

A general formulation of Pontryagin’s principle for optimal control prob-
lems related to ordinary differential systems can be found in [Bar93] and
[Bar94].

2.1 Basic problem. Pontryagin’s principle

A quite general optimal control problem governed by an ordinary differential
system can be formulated in the following form,

Maximize L(u, xu) =
∫ T

0

G(t, u(t), xu(t))dt+ ϕ(xu(T )), (P1)

subject to u ∈ K ⊂ L2(0, T ; IRm) (T > 0), where xu is the Carathéodory
solution to {

x′(t) = f(t, u(t), x(t)), t ∈ (0, T )
x(0) = x0.

(2.1)

S. Aniţa et al. An Introduction to Optimal Control Problems in Life Sciences 59
and Economics, Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-0-8176-8098-5 2, c© Springer Science+Business Media, LLC 2011
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Here

G : [0, T ]× IRm × IRN → IR,

ϕ : IRN → IR,

f : [0, T ]× IRm × IRN → IRN ,

x0 ∈ IRN , m,N ∈ IN∗, and K ⊂ L2(0, T ; IRm) is a closed convex subset. From
now all elements of an IRn, n ∈ IN∗, are considered as column vectors.
Recall that a Carathéodory solution (we call it simply a solution) to (2.1) is a
function xu that belongs to AC([0, T ]; IRN ) (see Appendix A.3), and satisfies

{
(xu)′(t) = f(t, u(t), xu(t)) a.e. t ∈ (0, T )
xu(0) = x0.

L2(0, T ; IRm) is the set of the controllers.

This optimal control problem can be reformulated as the following mini-
mization problem,

Minimize {−L(u, xu)},
subject to u ∈ K ⊂ L2(0, T ; IRm).

We assume here that for any u ∈ L2(0, T ; IRm), Problem (2.1) admits a unique
solution, denoted by xu. Equation (2.1) is called the state problem (equation).

• u (∈ K) is called the control (or controller). This is a constrained control
because u ∈ K, and K is a subset of L2(0, T ; IRm).

• xu is the state corresponding to the control u, and the mapping.
• u �→ L(u, xu) = Φ(u) is the cost functional.

We say that u∗ ∈ K is an optimal control for Problem (P1) if

L(u∗, xu∗
) ≥ L(u, xu),

for any u ∈ K. The pair (u∗, xu∗
) is called an optimal pair and L(u∗, xu∗

)
is the optimal value of the cost functional. We also say that (u∗, x∗) is an
optimal pair if u∗ is an optimal control and x∗ = xu∗

.

Let u∗ ∈ K be an optimal control for (P1); that is,

∫ T

0

G(t, u∗(t), xu∗
(t))dt + ϕ(xu∗

(T )) ≥
∫ T

0

G(t, u(t), xu(t))dt+ ϕ(xu(T )),

for any u ∈ K.

We assume that the following succession of operations and arguments is
allowed (under certain hypotheses – including Gâteaux differentiability (see
Appendix A.1.5) – on G, ϕ, and f). We use the notations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fu =
∂f

∂u
, fx =

∂f

∂x

Gu =
∂G

∂u
, Gx =

∂G

∂x

ϕx =
∂ϕ

∂x

(see also Appendix A.1.5). Here Gu, Gx, and ϕx are considered as column
vectors.

Assume that the function defined on L2(0, T ; IRm), u �→ xu is everywhere
Gâteaux differentiable. We denote this differential by dxu.

Consider

V = {v ∈ L2(0, T ; IRm); u∗ + εv ∈ K for any ε > 0 sufficiently small}.
For any v ∈ V , we define z = dxu∗

(v); z is the solution to
{
z′(t) = fu(t, u∗(t), xu∗

(t))v(t) + fx(t, u∗(t), xu∗
(t))z(t), t ∈ (0, T )

z(0) = 0.
(2.2)

For an arbitrary but fixed v ∈ V we have that
∫ T

0

G(t, u∗(t), xu∗
(t))dt + ϕ(xu∗

(T )) ≥
∫ T

0

G(t, u∗(t) + εv(t), xu∗+εv(t))dt

+ ϕ(xu∗+εv(T )),

and consequently
∫ T

0

1
ε

[
G(t, u∗(t) + εv(t), xu∗+εv(t)) −G(t, u∗(t), xu∗

(t))
]
dt

+
1
ε

[
ϕ(xu∗+εv(T )) − ϕ(xu∗

(T ))
]
≤ 0,

for any v ∈ V, and for any ε > 0 sufficiently small.
We pass to the limit in the last inequality (ε→ 0+) and we get that

∫ T

0

[v(t) ·Gu(t, u∗(t), xu∗
(t)) + z(t) ·Gx(t, u∗(t), xu∗

(t))]dt

+ z(T ) · ϕx(xu∗
(T )) ≤ 0

(2.3)

(here · denotes the usual scalar product on IRm as well as on IRN ), for any
v ∈ V .

Let p be the Carathéodory solution (we assume that this solution exists and is
unique), that we simply call the solution, to the adjoint problem (equation):
{
p′(t) = −f∗

x(t, u∗(t), xu∗
(t))p(t) −Gx(t, u∗(t), xu∗

(t)), t ∈ (0, T )
p(T ) = ϕx(xu∗

(T ))
(2.4)



62 2 Optimality conditions

(p is called the adjoint state; the equation in (2.4) is linear).
Recall that if A : IRk −→ IRs is a linear (and bounded) operator (A may be
identified with a matrix, also denoted by A), then its adjoint operator A∗ :
IRs −→ IRk (also linear and bounded) may be identified with the transpose
of matrix A, and denoted also by A∗ (or AT ).

By multiplying (2.2) by p and integrating by parts on [0, T ] we get that

z(T ) · p(T )−
∫ T

0

z(t) · p′(t)dt

=
∫ T

0

[fu(t, u∗(t), xu∗
(t))v(t) + fx(t, u∗(t), xu∗

(t))z(t)] · p(t)dt,

for any v ∈ V . By (2.4) we obtain that

z(T ) · ϕx(xu∗
(T ))

+
∫ T

0

z(t) · [f∗x(t, u∗(t), xu∗
(t))p(t) +Gx(t, u∗(t), xu∗

(t))]dt

=
∫ T

0

[v(t) · f∗u(t, u∗(t), xu∗
(t))p(t) + z(t) · f∗x(t, u∗(t), xu∗

(t))p(t)]dt,

and consequently
∫ T

0

z(t) ·Gx(t, u∗(t), xu∗
(t))dt + z(T ) · ϕx(xu∗

(T ))

=
∫ T

0

v(t) · f∗u(t, u∗(t), xu∗
(t))p(t)dt,

for any v ∈ V . By (2.3) we finally get that
∫ T

0

v(t) · [Gu(t, u∗(t), xu∗
(t)) + f∗u(t, u∗(t), xu∗

(t))p(t)]dt ≤ 0,

for any v ∈ V , which means

Gu(·, u∗, xu∗
) + f∗

u(·, u∗, xu∗
)p ∈ NK(u∗), (2.5)

where NK(u∗) is the normal cone at K in u∗ (see Appendix A.1.4).
We get the same conclusion if we multiply (2.4) by z (after a similar
argumentation).
Equations (2.1), (2.4), and (2.5) represent Pontryagin’s (or maximum) prin-
ciple and (2.4) and (2.5) are the first-order necessary conditions of optimality
(optimality conditions) for the given optimal control problem.

The main goal now is to use the maximum principle in order to calculate an
optimal control u∗ or to approximate it by using an appropriate numerical
scheme. In order to use Condition (2.5) we need to determine the set NK(u∗).
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If we take, for example, K = L2(0, T ; IRm), then for any u ∈ K =
L2(0, T ; IRm), NK(u) = {0} ⊂ L2(0, T ; IRm).

If we take m = 1, and

K = {w ∈ L2(0, T ); L1 ≤ w(t) ≤ L2 a.e. t ∈ (0, T )},

where L1, L2 ∈ IR, L1 < L2, then for any u ∈ K we have

NK(u) = {w ∈ L2(0, T ); w(t) ≥ 0 if u(t) = L2, w(t) ≤ 0 if u(t) = L1,

w(t) = 0 if L1 < u(t) < L2 a.e. t ∈ (0, T )}

(see Appendix A.1.4).

A general scheme to prove the existence of an optimal control u∗ is the
following one.
Let

d = sup
u∈K

L(u, xu) ∈ IR.

For any n ∈ IN∗, there exists un ∈ K, such that

d− 1
n
< L(un, x

un) ≤ d.

Step 1: Prove that there exists a subsequence {unk
} such that

unk
−→ u∗ weakly in L2(0, T ; IRm).

If for example, K is bounded, then the last conclusion follows immediately.
Inasmuch as K is a closed convex subset of L2(0, T ; IRm), K is also weakly
closed, and consequently u∗ ∈ K.

Step 2: Prove that there exists a subsequence of {xunk }, denoted by
{xunr }, convergent to xu∗

in C([0, T ]; IRN ) (sometimes the convergence in
L2(0, T ; IRN ) is enough).

Step 3: From

d− 1
nr

< L(unr , x
unr ) ≤ d,

we get (by passing to the limit) that

L(u∗, xu∗
) = d,

and consequently u∗ is an optimal control for problem (P1).
Notice that we can derive (2.4) and (2.5) by using the Hamiltonian H ,
defined by

H(t, u, x, p) = G(t, u, x) + f(t, u, x) · p.
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If we take
x′ = Hp

we get the state equation. By

p′ = −Hx

we get the adjoint equation and by

Hu ∈ NK(u∗),

we get (2.5).

Let us mention that some authors consider the following problem as the
adjoint problem:

{
p′(t) = −f∗

x(t, u∗(t), xu∗
(t))p(t) +Gx(t, u∗(t), xu∗

(t)), t ∈ (0, T )
p(T ) = −ϕx(xu∗

(T ))

The solution to this problem is p = −p̃, where p̃ is the solution to (2.4).

Condition (2.5) becomes

Gu(·, u∗, xu∗
) − f∗

u(·, u∗, xu∗
)p ∈ NK(u∗),

and the Hamiltonian H is:

H(t, u, x, p) = −G(t, u, x) + f(t, u, x) · p.

We, however, use both conventions (for the adjoint problem) in the next
chapters.

In most situations (2.1) appears as a semilinear problem; that is, f has
the following form,

f(t, u, x) = Ax+ f̃(t, u, x),

where A : IRN −→ IRN is a (particular) linear operator. Then

fu = f̃u, fx = A+ f̃x.

Several optimal control problems related to age-structured models, semilinear
parabolic equations or to integroparabolic equations may be written in the
abstract form (P1)–(2.1), where

G : [0, T ]× U ×X → IR,

ϕ : X → IR
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(U,X are appropriate real Hilbert spaces), x0 ∈ X , and K ⊂ L2(0, T ;U) is a
closed convex subset. Here f has the above mentioned form, and A is a linear
(possibly unbounded) operator, A : D(A) ⊂ X → X (see Chapters 4 and 5).

Here we have presented only a general scheme and not a rigorous proof of the
maximum principle.

In the next sections we illustrate how this scheme works for significant ex-
amples of optimal control problems in life sciences and economics governed
by ordinary differential systems. We deduce the maximum principle again for
all these examples in a rigorous manner. We use the maximum principle to
calculate or to approximate optimal control. Chapters 4 and 5 are devoted to
control problems governed by partial differential equations. As announced the
scheme is the same, but there are, of course, more technical difficulties.

2.2 Maximizing total consumption

We consider a mathematical model of a simplified economy. Let x(t) be the
rate of production at the moment t ≥ 0 (the economical output). We have

x(t) = I(t) + C(t), t ≥ 0,

where

• I(t) is the rate of investment at the moment t.
• C(t) is the rate of consumption at the moment t.

Denote by u(t) ∈ [0, 1] the part of production x(t) that is allocated to invest-
ment at moment t; that is,

I(t) = u(t)x(t).

We obtain that
C(t) = (1 − u(t))x(t), t ≥ 0.

We deal with the simple case when the production growth rate is proportional
to the rate of investment. This means

x′(t) = γu(t)x(t),

where γ ∈ (0,+∞).

We introduce a “utility” function F (C), and we wish to find out the control
that maximizes the welfare integral

∫ T

0

e−δtF (C(t))dt.
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Here T > 0, and δ ≥ 0 is a discount rate (a measure of preference for earlier
rather than later consumption).

We simplify our model by taking F (C) = C and δ = 0. The total con-
sumption on the time interval [0, T ] is

∫ T

0

C(t)dt =
∫ T

0

(1 − u(t))x(t)dt.

We therefore obtain the following optimal control problem (see [Bar94]),

Maximize
∫ T

0

(1 − u(t))xu(t)dt, (P2)

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where xu is the solution
of {

x′(t) = γu(t)x(t), t ∈ (0, T )
x(0) = x0 > 0. (2.6)

The problem seeks to find the control u that maximizes total consumption on
the time interval [0, T ].

The solution xu to (2.6) is given by

xu(t) = x0exp(
∫ t

0

γu(s)ds), t ∈ [0, T ].

Problem (P2) is a particular case of (P1), for m = 1, N = 1,

G(t, u, x) = (1 − u)x,

ϕ(x) = 0,

f(t, u, x) = γux

and
K = {w ∈ L2(0, T ); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, T )}.

Existence of an optimal pair for (P2)

Define

Φ(u) =
∫ T

0

(1 − u(t))xu(t)dt, u ∈ K

and let
d = sup

u∈K
Φ(u).
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Because for any u ∈ K we have that

0 < xu(t) ≤ x0e
γt, t ∈ [0, T ],

then we get that

0 ≤ Φ(u) =
∫ T

0

(1 − u(t))xu(t)dt ≤ x0Te
γT .

In conclusion d ∈ [0,+∞).
So, for any n ∈ IN∗, there exists un ∈ K such that

d− 1
n
< Φ(un) ≤ d. (2.7)

K is a bounded subset of L2(0, T ), therefore it follows that there exists a
subsequence {unk

}k∈IN∗ such that

unk
−→ u∗ weakly in L2(0, T ). (2.8)

The limit u∗ belongs to K because K is a closed convex subset of L2(0, T ),
and so it is weakly closed. The last convergence and the explicit formula for
xu imply that

xunk −→ xu∗
in L2(0, T ). (2.9)

By (2.7) we get that

d− 1
nk

<

∫ T

0

(1 − unk
(t))xunk (t)dt ≤ d for any k ∈ IN∗. (2.10)

By (2.8) and (2.9) we obtain (we pass to the limit in (2.10)) that

d =
∫ T

0

(1 − u∗(t))xu∗
(t)dt,

that is, (u∗, xu∗
) is an optimal pair (and u∗ is an optimal control) for (P2).

In order to simplify the notations we denote x∗ := xu∗
.

The maximum principle

For an arbitrary but fixed v ∈ V = {w ∈ L2(0, T ); u∗ + εw ∈
K for any ε> 0 sufficiently small} we denote by z the solution to

{
z′(t) = γu∗(t)z(t) + γv(t)x∗(t), t ∈ (0, T )

z(0) = 0.
(2.11)
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z is given by

z(t) =
∫ t

0

exp{
∫ t

s

γu∗(τ)dτ}γv(s)x∗(s)ds, t ∈ [0, T ]. (2.12)

Inasmuch as
∫ T

0

(1 − u∗(t))x∗(t)dt ≥
∫ T

0

(1 − u∗(t) − εv(t))xu∗+εv(t)dt,

for any ε > 0 sufficiently small, we get that
∫ T

0

[(1 − u∗(t))
xu∗+εv(t) − x∗(t)

ε
− v(t)xu∗+εv(t)]dt ≤ 0. (2.13)

Let us prove that
xu∗+εv −→ x∗ in C([0, T ])

and
xu∗+εv − x∗

ε
−→ z in C([0, T ]),

as ε→ 0+.

Indeed, for any ε > 0 sufficiently small we have

xu∗+εv(t) = x0 exp{γ
∫ t

0

(u∗(s) + εv(s))ds}

= xu∗
(t) exp{εγ

∫ t

0

v(s)ds}, t ∈ [0, T ],

which implies that

|xu∗+εv(t) − xu∗
(t)| = |xu∗

(t)| · | exp{εγ
∫ t

0

v(s)ds} − 1|, t ∈ [0, T ].

Because

| exp{εγ
∫ t

0

v(s)ds} − 1| −→ 0,

uniformly on [0, T ], we may infer that

xu∗+εv −→ x∗ in C([0, T ]).

For any ε > 0 sufficiently small we consider

wε(t) =
xu∗+εv − x∗

ε
− z(t), t ∈ [0, T ].
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wε is the solution to
{
w′(t) = γu∗(t)w(t) + γv(t)[xu∗+εv(t) − xu∗

(t)], t ∈ (0, T )
w(0) = 0,

and is given by

wε(t) = γ

∫ t

0

exp{γ
∫ t

s

u∗(τ)dτ}v(s)[xu∗+εv(s) − xu∗
(s)]ds, t ∈ [0, T ].

By taking into account the first convergence we deduce that

wε −→ 0 in C([0, T ]),

and consequently
xu∗+εv − x∗

ε
−→ z in C([0, T ]).

By (2.13) we obtain now that
∫ T

0

[(1 − u∗(t))z(t) − v(t)x∗(t)]dt ≤ 0. (2.14)

Let us denote by p the solution to
{
p′(t) = −γu∗(t)p(t) + u∗(t) − 1, t ∈ (0, T )
p(T ) = 0. (2.15)

p is given by

p(t) = −
∫ T

t

exp{
∫ s

t

γu∗(τ)dτ}(u∗(s) − 1)ds, t ∈ [0, T ].

If we multiply the differential equation in (2.15) by z and integrate over [0, T ]
we get that

∫ T

0

p′(t)z(t)dt = −
∫ T

0

γu∗(t)p(t)z(t)dt+
∫ T

0

(u∗(t) − 1)z(t)dt.

If we integrate by parts it follows by ((2.11) and (2.15)) that

−
∫ T

0

p(t)z′(t)dt = −
∫ T

0

γu∗(t)p(t)z(t)dt+
∫ T

0

(u∗(t) − 1)z(t)dt.

We again use (2.11) to obtain

−
∫ T

0

γu∗(t)z(t)p(t)dt−
∫ T

0

γv(t)x∗(t)p(t)dt

= −
∫ T

0

γu∗(t)p(t)z(t)dt+
∫ T

0

(u∗(t) − 1)z(t)dt,
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which implies
∫ T

0

(1 − u∗(t))z(t)dt =
∫ T

0

γv(t)x∗(t)p(t)dt.

This last relation and (2.14) imply that

∫ T

0

x∗(t)(γp(t) − 1)v(t)dt ≤ 0, (2.16)

for any v ∈ V . This is equivalent to

(γp− 1)x∗ ∈ NK(u∗).

If we take into account the structure of NK(u∗) we may conclude that

u∗(t) =

⎧
⎨

⎩

0 if γp(t) − 1 < 0

1 if γp(t) − 1 > 0,
(2.17)

a.e. t ∈ (0, T ).

Let us give a direct proof of (2.17) starting from (2.16).

Denote by
A = {t ∈ (0, T ); γp(t) − 1 < 0}.

We prove that u∗(t) = 0 a.e. on A.

Assume by contradiction that there exists Ã ⊂ A, with meas(Ã) > 0 (meas
denotes the Lebesgue measure; see Appendix A.1.1) such that u∗(t) > 0 a.e.
in Ã. We can choose v ∈ L2(0, T ) such that v(t) < 0 a.e. in Ã, v(t) = 0 a.e.
in (0, T ) \ Ã and 0 ≤ u∗(t) + εv(t) ≤ 1 a.e. in (0, T ). It follows that

∫ T

0

x∗(t)(γp(t) − 1)v(t)dt =
∫

Ã

x∗(t)(γp(t) − 1)v(t)dt > 0,

because v(t) < 0, γp(t)− 1 < 0, x∗(t) > 0 on Ã, and meas(Ã) > 0. This is, of
course, in contradiction to (2.16).

In the same manner it follows that

u∗(t) = 1 a.e. t ∈ {s ∈ (0, T ); γp(s) − 1 > 0}.

The conclusion follows.

Remark 2.1. Equations (2.6), (2.15), and (2.17) represent the maximum prin-
ciple and (2.15) and (2.17) are the first-order necessary optimality conditions
for (P2).
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Calculation of the optimal control u∗

Our next goal is to use Pontryagin’s principle in order to get more information
on the optimal control u∗. We show that for our particular problem we are
able to calculate it exactly.

Let (T − η, T ] (η > 0) be a maximal interval where the continuous function p
satisfies γp(t) < 1. By (2.17) and (2.15) we see that

p′(t) = −1, t ∈ [T − η, T ],

which implies that
p(t) = T − t t ∈ [T − η, T ].

Therefore, if γT > 1 we have

p(t) = T − t t ∈ [T − 1
γ
, T ]

and
u∗(t) = 0 a.e. t ∈ (T − 1

γ
, T ).

Because p(T − ( 1
γ
)) = 1

γ
, we see that p′(t) ≤ 0 on a maximal interval

(T − (1/γ) − δ, T − (1/γ)] (δ > 0), and therefore γp(t) > 1 on this inter-
val. It also follows that

⎧
⎨

⎩

p′(t) = −γp(t)

u∗(t) = 1
on (T − 1

γ
− δ, T − 1

γ
).

Consequently

p(t) =
1
γ

exp{γ(T − 1
γ
− t)} t ∈ [T − 1

γ
− δ, T − 1

γ
].

This implies that δ = T − (1/γ) and that u∗(t) = 1 a.e. t ∈ [0, T − (1/γ)).

The conclusion is that

• If γT > 1, then

u∗(t) =

⎧
⎨

⎩

1 if t ∈ [0, T − 1
γ
)

0 if t ∈ [T − 1
γ
, T ];

(2.18)

• If γT ≤ 1, then
u∗(t) = 0, t ∈ [0, T ]. (2.19)

This means that if the time interval is sufficiently long, then for a certain
interval of time the rate of investment should be maximal. After that we do
not invest any more (we just put everything for consumption).
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A control u∗ that takes values in a finite set {α1, α2, . . . , αk}, and
(u∗)−1(αi) is a measurable set for any i ∈ {1, 2, . . . , k} is called a
bang-bang control.
If there exist t0 < t1 < · · · < tk such that u∗ is constant on any
interval (ti−1, ti) (i = 1, k), then u∗ is a bang-bang control on (t0, tk)
and t1, t2, . . . , tk−1 are called switching points.

Remark 2.2. (i) The optimal control in our example is a bang-bang control
and has at most one switching point, namely T − (1/γ).

(ii) For our example we were able to calculate the optimal control. The form
of the optimal control is given by (2.18) and (2.19). This is, of course, a
fortunate situation.

(iii) After identifying L, G, ϕ, f, and K we were able to write Pontryagin’s
principle formally. What we have done in this section was to prove it and
use it in order to calculate the optimal control.

2.3 Maximizing the total population in a predator–prey
system

The following Lotka–Volterra system,
{
x′(t) = r1x(t) − μ1x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2x(t)y(t), t ∈ (0, T )

(T > 0) describes the dynamics of a predator–prey system on the time interval
(0, T ). Here x(t) represents the density of the prey population at moment t,
and y(t) the density of predators at moment t.

• r1 > 0 is the intrinsic growth rate of prey in the absence of predators.
• r2 > 0 is the decay rate of the predator population in the absence of prey.
• μ1 and μ2 are positive constants; μ1y(t) is the additional mortality rate

of prey at moment t, due to predation (it is proportional to the predator
population density); and μ2x(t) is the additional growth rate of prey at
moment t, due to the presence of prey (it is proportional to the prey
population density).

A more general model for the predator–prey system has been presented in
Section 1.7.

If the prey are partially separated from predators then the functional response
to predation changes and the system becomes

{
x′(t) = r1x(t) − μ1u(t)x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2u(t)x(t)y(t), t ∈ (0, T ), (2.20)

where 1 − u(t) represents the segregation rate at moment t (0 ≤ u(t) ≤ 1).



2.3 Maximizing the total population in a predator–prey system 73

Let the initial conditions be
{
x(0) = x0 > 0
y(0) = y0 > 0. (2.21)

We are interested in maximizing the total number of individuals of both pop-
ulations at moment T > 0. The problem may be reformulated (see [Y82] and
[Bar94]):

Maximize{xu(T ) + yu(T )}, (P3)

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where (xu, yu) is the
solution to (2.20) and (2.21).

Problem (P3) is a particular case of (P1), for m = 1, N = 2,

G(t, u, (x, y)) = 0,

ϕ(x, y) = x+ y,

f(t, u, (x, y)) =

(
r1x− μ1uxy

−r2y + μ2uxy

)
,

and
K = {w ∈ L2(0, T ); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, T )}.

Existence of an optimal pair for (P3)

Define
Φ(u) = xu(T ) + yu(T ), u ∈ K,

and let
d = sup

u∈K
Φ(u).

It is obvious that d ∈ [0,+∞). For any n ∈ IN∗, there exists un ∈ K such
that

d− 1
n
< Φ(un) ≤ d.

Because

xun(t) = x0 exp{
∫ t

0

(r1 − μ1u(s)yun(s))ds} > 0,

yun(t) = y0 exp{
∫ t

0

(−r2 + μ2u(s)xun(s))ds} > 0,

for t ∈ [0, T ], we get that xun(t), yun(t) > 0 for any t ∈ [0, T ], and so

0 ≤ (xun)′(t) ≤ r1x
un(t) a.e. t ∈ (0, T ).
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This implies that
0 ≤ xun(t) ≤ x0e

r1T , t ∈ [0, T ],

and that {(xun)′}n is bounded in L∞(0, T ).

On the other hand we get that

0 ≤ yun(t) ≤ y0 exp{(−r2 + μ2x0e
r1T )T }, t ∈ [0, T ],

and as a consequence {(yun)′}n is bounded in L∞(0, T ). It follows that
{xun}n and {yun}n are bounded in C([0, T ]), and uniformly equicontinuous.
By Arzelà’s theorem, and by taking into account that {un}n is bounded in
L2(0, T ) we get that on a subsequence we have

unk
−→ u∗ weakly in L2(0, T )

xunk −→ x∗ in C([0, T ])

yunk −→ y∗ in C([0, T ])

(2.22)

(u∗ ∈ K because K is a closed convex subset of L2(0, T ), and consequently
weakly closed).

Inasmuch as

xunk (t) = x0 +
∫ t

0

[r1xunk (s) − μ1unk
(s)xunk (s)yunk (s)]ds,

yunk (t) = y0 +
∫ t

0

[−r2yunk (s) + μ2unk
(s)xunk (s)yunk (s)]ds,

for any t ∈ [0, T ], and by taking into account (2.22) we get that

x∗(t) = x0 +
∫ t

0

[r1x∗(s) − μ1u
∗(s)x∗(s)y∗(s)]ds,

y∗(t) = y0 +
∫ t

0

[−r2y∗(s) + μ2u
∗(s)x∗(s)y∗(s)]ds,

for any t ∈ [0, T ], which means that (x∗, y∗) is the solution to (2.20) and (2.21)
corresponding to u∗ (i.e., x∗ = xu∗

and y∗ = yu∗
). On the other hand by

d− 1
nk

< xunk (T ) + yunk (T ) ≤ d for any k ∈ IN∗,

and by using the convergences in (2.22) we may pass to the limit and obtain
that

d = xu∗
(T ) + yu∗

(T );

that is, u∗ is an optimal control for (P3); ((u∗, (x∗, y∗)) is an optimal pair for
(P3); i.e., u∗ is an optimal control and x∗ = xu∗

, y∗ = yu∗
).
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The maximum principle for (P3)

For an arbitrary but fixed v ∈ V = {w ∈ L2(0, T ); u∗ + εw ∈ K for any ε >
0 sufficiently small} we consider (z1, z2) the solution to

⎧
⎪⎪⎨

⎪⎪⎩

z′1 = r1z1 − μ1u
∗z1y∗ − μ1u

∗x∗z2 − μ1vx
∗y∗, t ∈ (0, T )

z′2 = −r2z2 + μ2u
∗z1y∗ + μ2u

∗x∗z2 + μ2vx
∗y∗, t ∈ (0, T )

z1(0) = z2(0) = 0.

(2.23)

Because
x∗(T ) + y∗(T ) ≥ xu∗+εv(T ) + yu∗+εv(T ),

we get that

xu∗+εv(T ) − x∗(T )
ε

+
yu∗+εv(T ) − y∗(T )

ε
≤ 0, (2.24)

for any ε > 0 sufficiently small.
For ε > 0 sufficiently small we have that xu∗+εv satisfies

(xu∗+εv)′(t) ≤ r1x
u∗+εv(t) a.e. t ∈ (0, T ),

and consequently it follows that there exists M ∈ (0,+∞) such that

0 ≤ xu∗+εv(t) ≤M for any t ∈ [0, T ],

for any ε > 0 sufficiently small. On the other hand

(yu∗+εv)′(t) ≤ (−r2 +Mμ2)yu∗+εv(t) a.e. t ∈ (0, T ),

and this implies that {yu∗+εv} is bounded in C([0, T ]) (for ε > 0 sufficiently
small). It follows that both sequences {xu∗+εv} and {yu∗+εv} are uniformly
bounded and uniformly equicontinuous on [0, T ]. By Arzelà’s theorem it fol-
lows that on a sequence εn ↘ 0 we have that

xu∗+εnv −→ x̃ in C([0, T ]),

yu∗+εnv −→ ỹ in C([0, T ]).
(2.25)

Because

xu∗+εnv = x0 +
∫ t

0

[r1xu∗+εnv(s)−μ1(u∗(s)+ εnv(s))xu∗+εnv(s)yu∗+εnv(s)]ds

and

yu∗+εnv = y0+
∫ t

0

[−r2yu∗+εnv(s)+μ2(u∗(s)+εnv(s))xu∗+εnv(s)yu∗+εnv(s)]ds,
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for any t ∈ [0, T ], we pass to the limit (and use (2.25)), and we get

x̃(t) = x0 +
∫ t

0

[r1x̃(s) − μ1u
∗(s)x̃(s)ỹ(s)]ds,

and

ỹ(t) = y0 +
∫ t

0

[−r2ỹ(s) + μ2u
∗(s)x̃(s)ỹ(s)]ds,

for any t ∈ [0, T ], which means that (x̃, ỹ) is the solution to (2.20) correspond-
ing to u∗; that is, x̃ = xu∗

, ỹ = yu∗
.

Define now

αn(t) =
1
εn

[
xu∗+εnv(t) − x∗(t)

]
− z1(t), t ∈ [0, T ],

βn(t) =
1
εn

[
yu∗+εnv(t) − y∗(t)

]
− z2(t), t ∈ [0, T ].

(αn, βn) is the solution to
⎧
⎨

⎩

α′
n = r1αn − μ1u

∗αny
∗ − μ1u

∗x∗βn + f1n(t), t ∈ (0, T )
β′

n = −r2βn + μ2u
∗αny

∗ + μ2u
∗x∗βn + f2n(t), t ∈ (0, T )

αn(0) = βn(0) = 0

and f1n −→ 0, f2n −→ 0 in L∞(0, T ).

This yields

αn(t)2 + βn(t)2 ≤ c

∫ t

0

[αn(s)2 + βn(s)2]ds

+2
∫ t

0

[f1n(s)αn(s) + f2n(s)βn(s)]ds

≤ (c+ 1)
∫ t

0

[αn(s)2 + βn(s)2]ds

+
∫ T

0

[f1n(t)2 + f1n(t)2]dt,

t ∈ [0, T ], where c > 0 is a constant independent of n. By Bellman’s lemma
(see Appendix A.2) we conclude that

0 ≤ αn(t)2 + βn(t)2 ≤ e(c+1)t

∫ T

0

[f1n(t)2 + f1n(t)2]dt,

for any t ∈ [0, T ]. We pass to the limit and conclude that

αn −→ 0, βn −→ 0 in C([0, T ]).
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This implies that

1
εn

[xu∗+εnv − x∗] −→ z1 in C([0, T ]),

and
1
εn

[yu∗+εnv − y∗] −→ z2 in C([0, T ]).

If we again use (2.24) we may infer that

z1(T ) + z2(T ) ≤ 0. (2.26)

Let (p1, p2) be the solution to
⎧
⎨

⎩

p′1 = −r1p1 + μ1u
∗y∗p1 − μ2u

∗y∗p2, t ∈ (0, T )
p′2 = r2p2 + μ1u

∗x∗p1 − μ2u
∗x∗p2, t ∈ (0, T )

p1(T ) = p2(T ) = 1.
(2.27)

By multiplying the first equation in (2.27) by z1 and the second one by z2
and integrating over [0, T ] we get that

∫ T

0

[p′1(t)z1(t) + p′2(t)z2(t)]dt

=
∫ T

0

[−r1p1(t)z1(t) + μ1u
∗(t)y∗(t)p1(t)z1(t) − μ2u

∗(t)y∗(t)p2(t)z1(t)

+ μ1u
∗(t)x∗(t)p1(t)z2(t) − μ2u

∗(t)x∗(t)p2(t)z2(t) + r2p2(t)z2(t)]dt.

If we integrate by parts and use (2.23) we get after some calculation that

p1(T )z1(T ) + p2(T )z2(T ) − p1(0)z1(0) − p2(0)z2(0)

=
∫ T

0

x∗(t)y∗(t)v(t)[μ2p2(t) − μ1p1(t)]dt,

and consequently by (2.23) and (2.26) we get that

z1(T ) + z2(T ) =
∫ T

0

x∗(t)y∗(t)v(t)[μ2p2(t) − μ1p1(t)]dt ≤ 0,

for any v ∈ V . This implies (as in the previous section) that

u∗(t) =
{

0 if x∗(t)y∗(t)[μ2p2(t) − μ1p1(t)] < 0
1 if x∗(t)y∗(t)[μ2p2(t) − μ1p1(t)] > 0

a.e. on (0, T ). Because x0, y0 > 0, and x∗ and y∗ are positive functions, we
may conclude that

u∗(t) =
{

0 if μ2p2(t) − μ1p1(t) < 0
1 if μ2p2(t) − μ1p1(t) > 0 (2.28)

a.e. on (0, T ).

Equations (2.27) and (2.28) are the first-order necessary optimality conditions,
and (2.20)–(2.21), (2.27)–(2.28) represent the maximum principle for (P3).
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The structure of the optimal control u∗ for (P3)

Our next goal is to obtain more information about the structure of the optimal
control u∗.

• If μ2 < μ1, then μ2p2(T ) − μ1p1(T ) = μ2 − μ1 < 0, and then we may
choose a maximal interval (T − η, T ] (η > 0) where μ2p2(t)− μ1p1(t) < 0.
By (2.28) we have u∗(t) = 0 on (T − η, T ] and consequently

p′1(t) = −r1p1(t), p′2(t) = r2p2(t) a.e. t ∈ (T − η, T ).

This yields

p1(t) = exp{−r1(t− T )}, p2(t) = exp{r2(t− T )}, t ∈ [T − η, T ].

The function t �→ μ2 exp{r2(t− T )}− μ1 exp{−r1(t− T )} is increasing on
[T − η, T ], and this implies that T − η = 0 and

μ2p2(t) − μ1p1(t) < 0, t ∈ (0, T ),

and so u∗(t) = 0 a.e. on (0, T ).
• If μ2 = μ1, then (p1, p2) is the solution to

⎧
⎨

⎩

p′1 = −r1p1 − μ1u
∗y∗(p2 − p1), t ∈ (0, T )

p′2 = r2p2 − μ1u
∗x∗(p2 − p1), t ∈ (0, T )

p1(T ) = p2(T ) = 1.

In conclusion

p2(t)−p1(t)=−
∫ T

t

[r2p2(s)+r1p1(s)]exp{μ1

∫ t

s

u∗(τ)[y∗(τ)−x∗(τ)]dτ}ds,

t ∈ [0, T ]. So, p2(t) − p1(t) < 0 on a maximal interval (T − η, T ] (η > 0)
and, in the same manner as in the previous case, it follows that u∗(t) = 0
a.e. on (0, T ).

• If μ2 > μ1, then there exists a maximal interval (T − η, T ] (η > 0) such
that

μ2p2(t) − μ1p1(t) > 0, t ∈ (T − η, T ].

By (2.28) we have u∗(t) = 1 on (T − η, T ]. We intend to prove that T − η
is a switching point for the optimal control u∗. Indeed, by (2.27) we get
that

μ2p2(t) − μ1p1(t) = −
∫ T−η

t

[r2μ2p2(s) + r1μ1p1(s)]

· exp{
∫ t

s

u∗(τ)[μ2x
∗(τ) − μ1y

∗(τ)]dτ} ds,
(2.29)

t ∈ [0, T − η]. On the other hand (p1, p2) is a solution to
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⎧
⎨

⎩

p′1 = −p1(r1 − μ1y
∗) − μ2y

∗p2, t ∈ (T − η, T )
p′2 = −p2(μ2x

∗ − r2) + μ1x
∗p1, t ∈ (T − η, T )

p1(T ) = p2(T ) = 1.
(2.30)

Because μ2p2(t) − μ1p1(t) > 0, for any t ∈ (T − η, T ], then we get that

p1(t) ≥ exp{r1(T − t)} ≥ 1, t ∈ [T − η, T ].

Using the fact that μ2p2(T−η)−μ1p1(T−η) = 0 and (2.29) we obtain that
p2(T−η) > 0 and consequently μ2p2(t)−μ1p1(t) < 0 in a maximal interval
(T − η− ε, T − η] (ε > 0). This implies that u∗(t) = 0 on (T − η− ε, T − η].
On this interval we have

p1(t) = p1(T − η)exp{r1(T − η − t)},
p2(t) = p2(T − η)exp{r2(t− T + η)},

and in conclusion μ2p2 − μ1p1 is increasing on (T − η − ε, T − η). Hence

μ2p2(t) − μ1p1(t) < 0, t ∈ (T − η − ε, T − η),

and consequently T − η − ε = 0. The conclusion is that

u∗(t) =
{

0, t ∈ [0, T − η]
1, t ∈ (T − η, T ] (2.31)

a.e. on (0, T ).

So, we have a bang-bang optimal control with at most one switching point.
We can determine the switching point T − η, either by taking into account
(2.30) and μ2p2(T − η)− μ1p1(T − η) = 0, or by finding T − η ∈ [0, T ], which
maximizes Φ(u∗), where u∗ is given by (2.31).

Approximating the optimal control for (P3)

In order to approximate the optimal control u∗ we have to find η from formula
(2.31). A simple idea is to try τ (T − η in (2.31)) as switching point for the
control of the elements of a grid defined on [0, L] (we put L instead of T ) and
to get the one that provides the maximum value for Φ(u). Here

u(t) =
{

0, t ∈ [0, τ ]
1, t ∈ (τ, L].

Here is the algorithm.

Algorithm 2.1

/* Build the grid */
tspan = 0:h1:L ;
/* Try the grid points */
m = length(tspan) ;
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for i = 1 to m
τ = tspan(i) ;
/* S1 : Build the corresponding control uτ */

uτ (t) =
{

0, t ∈ [0, τ ]
1, t ∈ (τ, L].

/* S2 : Compute the state [x, y], the corresponding solution of system
(2.20) corresponding to u := uτ , with the initial conditions */

x(0) = x0, y(0) = y0.

/* S3 : Compute the corresponding value of the cost functional Φ */
fiu(i) = x(L) + y(L) ;

end–for
/* S4 : Find the maximal value of vector fiu */

Here is the corresponding program.

% file ppp1.m
% predator–prey model with bang-bang optimal control
clear
global r1 r2 mu1 mu2
global tsw
disp(’get model parameters’) ;
r1 = input(’r1 : ’) ;
mu1 = input(’mu1 : ’) ;
r2 = input(’r2 : ’) ;
mu2 = input(’mu2 : ’) ;
disp(’get data’) ;
L = input(’final time : ’) ;
h = input(’grid step : ’) ;
h1 = input(’switch step : ’) ;
x0 = input(’x(0) : ’) ;
y0 = input(’y(0) : ’) ;
lw = input(’LineWidth : ’) ; % for graphs ( plot )
tt = 0:h:L ; % ODE integration grid
n = length(tt) ;
tspan = 0:h1:L ; % switching points grid
m = length(tspan) ;
for i = 1:m

i
tsw = tspan(i) ; % tsw stands for switching point τ
[t q] = ode45(’bp2’,tt,[x0 ; y0]) ;
k = length(t) ;
fiu(i) = q(k,1) + q(k,2) ; % store cost functional value
clear t q % clear memory to avoid garbage for the next iteration
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end
w = fiu’ ;
save cont.txt w -ascii
disp(’FILE MADE’) ;
[vmax,j] = max(fiu) ; % maximal value and corresponding index
j
a1 = [’max = ’, num2str(vmax)] ;
disp(a1) ;
a2 = [’switch = ’, num2str(tspan(j))] ;
disp(a2) ;
plot(tspan,fiu,’LineWidth’,lw) ; grid
xlabel(’\bf u switch’,’FontSize’,16)
ylabel(’\bf \Phi(u {\tau})’,’FontSize’,16)
figure(2)
bar(fiu)
title(’\bf \Phi(u {\tau})’,’FontSize’,16)

We have used a vector, namely tt, for ode45 and another one, namely tspan,
for the switching points grid to get a faster program.

Here is the function file bp2.m for the right-hand side of the differential system.

function out1 = bp2(t,q)
global r1 r2 mu1 mu2
global tsw
if t > tsw

u = 1 ;
else

u = 0 ;
end
out1 = [ r1*q(1) − mu1*u*q(1)*q(2) ; mu2*u*q(1)*q(2) − r2*q(2) ] ;

For a numerical test we have used r1 = 0.07, μ1 = 1, r2 = 0.6, μ2 = 2,
L = 50, h = 0.1, h1 = 1, x(0) = 0.04, y(0) = 0.02, and lw = 5. The graph of
the corresponding function τ �→ Φ(uτ ), where τ is the switching point of uτ ,
can be seen in Figures 2.1 and 2.2.
We have obtained a global maximum on [0, L] for τ∗ = 15, and the maximal
value of the cost functional is 1.5006. The program that uses the switch point
of the optimal control in order to plot the graphs for the corresponding state
components is ppp2.m:

% file ppp2.m
% predator–prey model with bang-bang optimal control
% makes graphs by using the switching point obtained by ppp1.m
clear
global r1 r2 mu1 mu2
global tsw
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Fig. 2.1. The dependence of the cost function with respect to the switching point
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Fig. 2.2. Another representation of the dependence of the cost function with respect
to the switching point τ
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. . . read parameters and data as in ppp1.m (except h) . . .
tspan = 0:h1:L ;
% graph of the control
m = length(tspan) ;
for i = 1:m

if tspan(i) > tsw
z(i) = 1 ;

else
z(i) = 0 ;

end
end
plot(tspan,z,’rs’) ; grid
axis([0 L −0.2 1.2])
xlabel(’\bf t’,’Fontsize’,16)
ylabel(’\bf u(t)’,’Fontsize’,16)
[t q] = ode45(’bp2’,[0 L],[x0 ; y0]) ;
% predator–prey populations graph
figure(2)
plot(t,q(:,1),’∗’,t,q(:,2),’ro’) ; grid
xlabel(’\bf t’,’FontSize’,16)
legend(’prey’,’predator’,0)
% xOy graph
figure(3)
plot(q(:,1),q(:,2),’LineWidth’,lw) ; grid
xlabel(’\bf x’,’Fontsize’,16)
ylabel(’\bf y’,’Fontsize’,16)

2.4 Insulin treatment model

We consider a model for insulin treatment for patients with diabetes. The main
problem for such a patient is to keep the blood glucose level close to a con-
venient value and to avoid large variations of it. In practice insulin injections
are used. An optimal control problem with impulsive controls is considered to
maintain a steady state of the blood glucose level. This problem does not fit
in the framework of Problem (P1) from Section 2.1 mainly because the con-
trol considered here is of impulsive type. We do, however, obtain first-order
necessary optimality conditions which are used to write a program.

In the case of diabetes the pancreas (the beta cells) is not able to provide
enough insulin to metabolize glucose. Blood glucose concentration increases
when glucose is administrated in mammals whereas insulin accelerates the
removal of glucose from the plasma. Therefore blood sugar decays to a normal
value of 0.8–1.2 g/l. Let us denote by I(t) the insulin concentration, and by
G(t) the glucose concentration at moment t ∈ [0, L] (L > 0).
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We now consider diabetic patients who are not able to produce enough insulin.
The insulin is supplied by injections. The glucose concentration can be easily
determined (measured). A corresponding simplified model for dynamics of the
insulin–glucose system is the following one (see [Che86, Chapter 6]):

⎧
⎪⎨

⎪⎩

I ′(t) = dI(t), t ∈ (0, L)

G′(t) = bI(t) + aG(t), t ∈ (0, L)

I(0) = I0, G(0) = G0,

(2.32)

where d < 0 (|d| is the decay rate of insulin), a is the growth rate of glucose
(a �= d), b is a negative constant that can be measured, I0 is the initial con-
centration of insulin (injected), and G0 is the initial concentration of glucose.
The numerical tests show that model (2.32) works well only for I(t) and G(t)
between appropriate limits. For I0 and G0 outside the usual medical limits it
is possible to obtain negative values for I(t) and G(t) and therefore the model
fails. A more accurate model is, however, indicated at the end of this subsec-
tion. The reaction between I(t) and G(t) in (2.32) is a local linearization of
the full model presented later (see (2.41)).

The first program plots the graphs of insulin concentration and of glucose
concentration.

% file dbt1.m
% blood insulin–glucose system
% y(1) = insulin concentration
% y(2) = glucose concentration
clear
global a b d
L = input(’final time : ’) ;
h = input(’h : ’) ;
I0 = input(’I(0) : ’) ;
G0 = input(’G(0) : ’) ;
a = 0.0343 ;
b = −0.05 ;
d = −0.5 ;
tspan = 0:h:L ;
[t y] = ode45(’hum1’,tspan,[I0 ; G0]) ;
plot(t,y(:,1),’∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf I(t)’,’FontSize’,16)
figure(2)
plot(t,y(:,2),’r∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf G(t)’,’FontSize’,16)
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We also have

function out1 = hum1(t,y)
global a b d
out1 = [d*y(1) ; b*y(1) + a*y(2)] ;

The numerical test is done for L = 10, h = 0.01, I0 = 15, and G0 = 2. The
evolution of insulin and glucose concentration are presented in Figures 2.3 and
2.4, respectively. Notice that I(t) decays to zero (the effect of the decay rate)
and G(t) reaches a convenient level. The insulin has a good effect because the
glucose level at the beginning was G0 = 2, and reaches approximatively, the
value 0.8 at the moment t = 6. After t = 7 the insulin effect almost vanishes
and the glucose level increases slowly.

0 1 2 3 4 5 6 7 8 9 10
0
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10

15

t

 I(
t)

Fig. 2.3. Insulin dynamics

System (2.32) can also be integrated mathematically. We first consider the
problem of insulin dynamics:

{
I ′(t) = dI(t), t ∈ (0, L)
I(0) = I0

which has a unique solution given by

I(t) = I0e
dt, t ∈ [0, L]. (2.33)

If we use the form of I(t) given by (2.33), we obtain from (2.32) the following
linear model for the glucose dynamics,

{
G′(t) = bI0e

dt + aG(t), t ∈ (0, L)
G(0) = G0,
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Fig. 2.4. Glucose dynamics

which gives the following formula for the glucose concentration,

G(t) = G0e
at +

bI0
d− a

(edt − eat), t ∈ [0, L]. (2.34)

Hence the solution of system (2.32) is given by formulae (2.33) and (2.34).
The corresponding program is

% file dbt2.m
% blood insulin–glucose system
% y1(t) = insulin concentration
% y2(t) = glucose concentration
% mathematical integration
clear
L = input(’final time : ’) ;
h = input(’h : ’) ;
I0 = input(’insulin(0) : ’) ;
G0 = input(’glucose(0) : ’) ;
a = 0.0343 ;
b = −0.05 ;
d = −0.5 ;
temp = b*I0/(d − a) ;
t = 0:h:L ;
v = exp(d*t) ;
w = exp(a*t) ;
y1 = I0*v ;
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y2 = G0*w + temp*(v − w) ;
% make figures as in previous program
% .....

The figures obtained are similar to the previous two figures.

We now consider an optimal control problem with impulsive control to obtain
a scheme of insulin treatment providing good control of glycemia over some
time interval. We denote by A the desired level of glucose. Assume that the
patient gets m injections of insulin at moments

0 = t1 < t2 < · · · < tm = L,

with corresponding amounts cj = c(tj), j = 1, 2, . . . ,m and that the initial
concentration of insulin is I0 = 0. Usually the moments for injections are
fixed and we have tj+1 − tj = h for j = 1, . . . ,m − 1. The dynamics of the
insulin–glucose system is then described by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I ′(t) = dI(t) +
m∑

j=1

cjδtj ,

G′(t) = bI(t) + aG(t),
I(0) = 0, G(0) = G0,

(2.35)

where δtj is the Dirac mass at tj . System (2.35) is equivalent to the following
one

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I ′(t) = dI(t), t ∈ (tj , tj+1), j ∈ {1, . . . ,m− 1}
I(0) = 0
I(tj+) = I(tj−) + cj , j ∈ {1, . . . ,m− 1}
G′(t) = bI(t) + aG(t), t ∈ (0, L)
G(0) = G0.

(2.36)

The solution of (2.35) in the sense of the theory of distributions (which is also
the solution to (2.36)) is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I(t) =
m∑

j=1

cjH(t− tj)ed(t−tj),

G(t) = G0e
at +

b

d− a
S(t),

(2.37)

t ∈ [0, L], where

S(t) =
m∑

j=1

cjH(t− tj)
[
ed(t−tj) − ea(t−tj)

]
, (2.38)
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and H is the step (Heaviside) function (i.e., H : IR → IR),

H(t) =
{

1 if t ≥ 0
0 if t < 0.

Therefore, function t �→ H(t − tj) in formulae (2.37) and (2.38), defined for
t ∈ [0, L], reads

H(t− tj) =
{

1 if t ∈ [tj , L]
0 if t ∈ [0, tj).

The formula for G says that the effect of the insulin injection received at the
moment t = tj is valid only for t ≥ tj . The effect vanishes after some time
due to the exponential function with negative exponent.

Here is the optimal control problem (the insulin treatment) related to (2.35):

Minimize Ψ(c) =
1
2

∫ L

0

[G(t) −A]2dt, (I)

subject to c = (c1, . . . , cm) ∈ IRm, where (I,G) is the solution to (2.35). Here
the vector c is the control (which is in fact an impulsive control, a control that
acts only at some discrete moments of time).

The functional Ψ is quadratic with respect to every cj , thus it means that
there exists at least an optimal control c = (c1, . . . , cm) ∈ IRm. The optimal
control satisfies

∂Ψ

∂cj
(c) = 0, j = 1, . . . ,m, (2.39)

a linear algebraic system with the unknowns cj , j = 1, . . . ,m. We calculate
the partial derivatives and use formula (2.39) to get the following algebraic
linear system,

m∑

i=1

qijci = Bj , j ∈ {1, . . . ,m},

where

qij = α

∫ L

0

H(t− ti)H(t− tj)ei(t)ej(t)dt, (2.40)

Bj =
∫ L

0

H(t− tj)ej(t)(A−G0e
at)dt =

∫ L

tj

ej(t)(A −G0e
at)dt,

i, j ∈ {1, . . . ,m}. We have denoted

α =
b

d− a
,

and
ej(t) = ed(t−tj) − ea(t−tj), t ∈ [0, L], j ∈ {1, . . . ,m}.
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If i > j, then ti > tj and Formula (2.40) reads

qij = α

∫ L

ti

ei(t)ej(t)dt.

Our goal is to solve system (2.39). However if a certain component cj is neg-
ative, this is meaningless from the medical point of view. If we introduce the
restrictions cj ≥ 0, j ∈ {1, . . . ,m}, we get a mathematical programming prob-
lem which is more complicated. Another possibility is to introduce restrictions
of the form 0 ≤ cj ≤ c̄, j ∈ {1, . . . ,m}, and to use a projected gradient method
(see Chapter 3). But this is more complicated also. To establish a treatment
policy we can simply take cj := 0 if cj < 0. Then we have to add glucose,
usually from food, or to replace the negative dose of the injection by cj = 0,
and consequently to obtain suboptimal control. For our numerical test made
for medically appropriate values of G(0) the solution was positive.

We return to the linear system. The algorithm to compute the transpose of
matrix Q, that is, QT = [qij ], is:

for j = 1 to m
for i = 1 to j

compute qij = α
∫ L

tj
ei(t)ej(t)dt

end–for
for i = j+1 to m

compute qij = α
∫ L

ti
ei(t)ej(t)dt

end–for
end–for

Then we transpose the matrix [qij ] obtained above and we get Q. We leave
it to the reader to write the corresponding program. The values of the system
parameters are a = 0.1, b = −0.05, and d = −0.5. Below we give only the
sequence to compute the matrix Q and the right-hand side B of the system
Qc = B.

. . .
Q = zeros(m − 1) ;
for j = 1:m − 1

tj = t(j) ;
for i = 1:j

ti = t(i) ;
Q(i,j) = alf*quadl(’fi1’,tj,L) ;

end
for i = j+1:m − 1

ti = t(i) ;
Q(i,j) = alf*quadl(’fi2’,ti,L) ;

end
end
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Q = Q′ ;
for j = 1:m − 1

tj = t(j) ;
B(j) = quadl(’psi’,t(j),L) ;

end
B = B′ ;
% solve system Qc = B
c = Q\B ;
. . .

The function file fi1.m computes the matrix components qij for i ≤ j.

function y = fi1(t)
global ti tj
global a d
y = 0 ;
if t >= tj

temp1 = exp(d*(t − tj)) − exp(a*(t − tj)) ;
temp2 = exp(d*(t − ti)) − exp(a*(t − ti)) ;
y = temp1 .* temp2 ;

end

The function file fi2.m computes the matrix components qij for i > j. It is
similar to fi1.m. There is only one difference. The statement

if t >= tj

is replaced by
if t >= ti

The function file psi.m computes the right-hand side components Bj .

function y = psi(t)
global tj
global a d
global a1
global G0
y = 0 ;
if t >= tj

temp1 = exp(d*(t − tj)) − exp(a*(t − tj)) ;
temp2 = a1 − G0*exp(a*t) ;
y = temp1 .* temp2 ;

end

We pass now to numerical examples.

Example 1. We take L = 48 (hours), G(0) = 2, A = 1, and m = 9 (number of
injections). It follows that the interval between successive injections is h = 6
(hours). The insulin “shots” are represented in Figure 2.5.
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Fig. 2.5. The insulin doses for 48 h
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Fig. 2.6. The insulin doses for 60 h

Example 2. Another experiment was done with L = 60, G(0) = 2, A = 0.8,
and m = 11 (h = 6). The results are given in Figure 2.6.
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Fig. 2.7. The blood glucose concentration for the second numerical experiment

To complete our investigation we have also computed the glucose level given
by formulae (2.37) and (2.38). The shape of the blood glucose concentration
for the second numerical experiment is given in Figure 2.7. Let us remark that
the glucose level decays from G(0) = 2 under the desired level A = 0.8 and
then remains quite close to it. For the first numerical experiment the behavior
of G(t) is similar.

Remark 2.3. Equation (2.39) are the first-order optimality conditions for
Problem (I).

We propose that the reader investigate in a similar manner the following
optimal control problem.

Minimize Ψ(c) =
1
2

∫ L

0

[G(t) −A]2dt, (I1)

subject to c = (c1, c2, . . . , cm) ∈ IRm, where (I,G) is the solution to the
following more accurate model,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I ′(t) = dI(t) +
m∑

j=1

cjδtj ,

G′(t) = bI(t)G(t) + aG(t),
I(0) = 0, G(0) = G0.

(2.41)

It is also important to investigate both optimal control problems under the
control constraints
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cj ≥ 0, j ∈ {1, 2, . . . ,m}.
A better way to control the glucose level is, however, to act on insulin concen-
tration (by injections) as well as on glucose concentration (by the food from
usual meals).

2.5 Working examples

2.5.1 HIV treatment

We consider here a mathematical model that describes the interaction of the
immune system with the HIV (human immunodeficiency virus) proposed in
[KLS97]. Next we propose two optimal control problems based on chemother-
apy which affects either the viral infectivity or the viral productivity.

The immune system is modeled in terms of the population of CD4+ T cells
(see [PKD93], [HNP95], and [PN02]). Let

T (t) denote the concentration of uninfected CD4+ T cells.
Ti(t) denote the concentration of infected CD4+ T cells.
V (t) denote the concentration of free infectious virus particles

at moment t. The dynamics of the system is modeled by the following initial-
value problem.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′(t) =
s

1+V (t)
− μ1T (t)+rT (t)

(
1−T (t)+Ti(t)

Tmax

)
−k1V (t)T (t),

T ′
i (t) = k1V (t)T (t) − μ2Ti(t),

V ′(t) = −k1V (t)T (t) − μ3V (t) +Nμ2Ti(t),

T (0) = T0, Ti(0) = Ti0, V (0) = V0,

(2.42)

t ∈ (0, L) (L > 0), where s, k1, r,N, μ1, μ2, μ3, Tmax are positive constants and
T0, Ti0, V0 ≥ 0 are the initial concentrations of CD4+ T cells, infected CD4+

T cells, and free infectious virus particles, respectively.

The term s/(1 + V ) represents a source term; the dependence upon the viral
concentration V models the fact that infection of precursors of T cells may
occur, thus reducing the production of the uninfected T cells.

The term −k1V T in the first equation in (2.42) together with +k1V T in the
second equation in (2.42) models is the infection of T cells due to the viral
concentration V ; the term −k1V T in the third equation in (2.42) models the
binding of viruses to uninfected T cells, thus leading to infection.

μ1, μ2, μ3 denote natural decay rates.
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The term Nμ2Ti in the third equation in (2.42) models the production of
viruses during the decay of infected T cells.

The term

r

(
1 − T (t) + Ti(t)

Tmax

)

represents the production rate of T cells.

Chemotherapy by a drug may either:

• Affect the virus infectivity, so that the second equation in (2.42) is modified
into the following (see [BKL97]),

T ′
i (t) = u(t)k1V (t)T (t) − μ2Ti(t), t ∈ (0, L),

u(t) being the control variable, that is, the strength of the chemotherapy.
The first and third equations should be modified accordingly.

• Or reduce the viral production, which is most applicable to drugs such
as protease inhibitors (see [KLS97]), thus modifying the third equation in
(2.42) into

V ′(t) = −k1V (t)T (t) − μ3V (t) + u(t)Nμ2Ti(t), t ∈ (0, L).

The second equation should be modified accordingly.
In either case the cost functional to maximize is

∫ L

0

[aT (t) − 1
2
(1 − u(t))2]dt,

(a > 0) subject to u ∈ L2(0, L), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, L), which means
maximizing the number of uninfected T cells, while simultaneously minimizing
the “cost” of the chemotherapy to the human body.
A greater or lower value for a corresponds to a lower or greater importance
given to minimizing the “cost” of the chemotherapy to the human body.

We propose that the reader derive the first-order necessary conditions of op-
timality for both optimal control problems.

Hint. The first optimal control problem proposed here is a particular case of
(P1) (Section 2.1), for

G(t, u, T, Ti, V ) = aT − 1
2
(1 − u)2, ϕ(T, Ti, V ) = 0,

f(t, u, T, Ti, V ) =

⎛

⎜⎝

s

1 + V
− μ1T + rT (1 − T + Ti

Tmax
) − k1uV T

k1uV T − μ2Ti

−k1uV T − μ3V +Nμ2Ti

⎞

⎟⎠

and
K = {w ∈ L2(0, L); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, L)}.
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The second optimal control problem proposed here is a particular case of (P1),
for the same G, ϕ, K (as for the previous proposed problem), and

f(t, u, T, Ti, V ) =

⎛

⎜⎜⎜⎜⎜⎝

s

1 + V
− μ1T + rT (1 − T + Ti

Tmax
) − k1V T

k1V T − μ2uTi

−k1V T − μ3V + uNμ2Ti

⎞

⎟⎟⎟⎟⎟⎠
.

2.5.2 The control of a SIR model

We describe here the dynamics of a disease (transmitted only by contact
between infectious and susceptible individuals) in a biological population using
the following standard SIR model with vital dynamics (see [Cap93]).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′(t) = mN −mS(t) − cS(t)I(t) − u(t)S(t),

I ′(t) = −mI(t) + cS(t)I(t) − dI(t),

R′(t) = −mR(t) + u(t)S(t) + dI(t),

(2.43)

for t ∈ (0, L), L > 0, together with the initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0. (2.44)

Here

S(t) represents the density of susceptible individuals,
I(t) represents the density of infectious individuals, and
R(t) represents the density of recovered (and immune) individuals

at moment t. N = S(t) + I(t) + R(t) = S0 + I0 + R0 > 0 is a constant that
represents the density of total population which is assumed to be constant.

Herem, c, d are positive constants. The incidence of the disease is described by
the term cS(t)I(t). The constant d represents the rate at which the infectious
individuals recover.

The control u represents the part of the susceptible population being vacci-
nated. The vaccinated individuals recover.

We propose that the reader investigate the following optimal control problem
for the above-mentioned SIR model:

Minimize
∫ L

0

[I(t) + au(t)2]dt,

(a > 0) subject to u ∈ L2(0, L), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, L), where
(S, I,R) is the solution to (2.43) and (2.44).
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This means we are interested in minimizing the infectious population while
simultaneously minimizing the “cost” of vaccination. A greater or lower value
for a means a greater or lower importance given to minimizing the cost of
vaccination.
Derive the maximum principle.

Hint. This problem is a particular case of (P1) (Section 2.1), for m = 1,
N = 3, T := L,

G(t, u, S, I, R) = I + au2, ϕ(S, I,R) = 0,

f(t, u, S, I, R) =

⎛

⎝
mN −mS − cSI − uS

−mI + cSI − dI
−mR+ uS + dI

⎞

⎠ ,

and
K = {w ∈ L2(0, L); 0 ≤ w(t) ≤M a.e. t ∈ (0, L)}.

Another important optimal control problem related to the SIR model pro-
posed to the reader is the following identification problem,

Minimize
∫ L

0

[I(t) − Ĩ(t)]2dt,

subject to c ∈ [0,M ] (M > 0), where Ĩ ∈ C([0, L]), Ĩ(t) ≥ 0 for any t ∈ [0, L]
is a known function and (S, I,R) is the solution to

⎧
⎪⎪⎨

⎪⎪⎩

S′(t) = mN −mS(t) − cS(t)I(t), t ∈ (0, L)
I ′(t) = −mI(t) + cS(t)I(t) − dI(t), t ∈ (0, L)
R′(t) = −mR(t) + dI(t), t ∈ (0, L)
S(0) = S0, I(0) = I0, R(0) = R0.

Here m, d, S0, I0, R0 are given constants. The meaning of this problem is the
following one. Knowing the number of infectious individuals at any moment
we wish to determine the infectivity rate c.

Bibliographical Notes and Remarks

There is an extensive mathematical literature devoted to optimal control the-
ory. This domain developed enormously after the pioneering work of Pon-
tryagin and his collaborators. One of the main purposes when investigating
an optimal control problem is to derive first-order necessary conditions of
optimality (Pontryagin’s principle). Here is a list of important monographs
devoted to this subject: [LM67], [Kno81], [Bar93], [Bar94], and [Son98]. More
applied optimal control problems can be found only in a few monographs; see
[Kno81], [Che86], [Bar94], [Ani00], and [Tre05]. For applications in biology,
with a few MATLAB programs we cite [LW07].
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Exercises

2.1. Derive the maximum principle for the following problem:

Maximize{xu(T ) + γyu(T )},

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where (xu, yu) is the
solution to the predator–prey system:

⎧
⎨

⎩

x′(t) = r1x(t) − μ1u(t)x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2u(t)x(t)y(t), t ∈ (0, T )
x(0) = x0, y(0) = y0.

Hint. Proceed as in Section 2.3. This problem is a particular case of (P1)
(Section 2.1), for m = 1, N = 2,

G(t, u, x, y) = 0, ϕ(x, y) = x+ γy,

f(t, u, x, y) =

⎛

⎝
r1x− μ1uxy

−r2y + μ2uxy

⎞

⎠ ,

and
K = {w ∈ L2(0, T ); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, T )}.

2.2. Derive the maximum principle for the following problem,

Maximize{xu(T ) + yu(T )},

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where (xu, yu) is the
solution to the predator–prey system

⎧
⎨

⎩

x′(t) = r1x(t) − kx(t)2 − μ1u(t)x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2u(t)x(t)y(t), t ∈ (0, T )
x(0) = x0, y(0) = y0.

Here r1, r2, k, μ1, μ2 are positive constants, and kx represents an additional
mortality rate and is due to the overpopulation; kx2 is a logistic term for the
prey population.

Hint. Proceed as in Section 2.1. This problem is a particular case of (P1)
(Section 2.1).

2.3. Obtain the maximum principle for the following optimal harvesting
problem:

Maximize
∫ T

0

u(t)xu(t)dt,
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subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, T ), where xu is
the solution to the following Malthusian model of population dynamics,

{
x′(t) = r(t)x(t) − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here xu(t) represents the density of individuals of a population species at
time t, r ∈ C([0, T ]) gives the growth rate, and u(t) is the harvesting effort
(a control) and plays the role of an additional mortality rate.

∫ T

0
u(t)xu(t)dt

represents the total harvested population on the time interval [0, T ].

Hint. Let u∗ be an optimal control. Here are the first-order necessary opti-
mality conditions:

{
p′(t) = −r(t)p(t) + u∗(t)(1 + p(t)), t ∈ (0, T )
p(T ) = 0,

u∗(t) =
{

0 if 1 + p(t) < 0
M if 1 + p(t) > 0.

2.4. Obtain the maximum principle for the following optimal harvesting prob-
lem:

Maximize
∫ T

0

u(t)xu(t)dt,

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, T ), where xu is
the solution to the following logistic model of population dynamics,

{
x′(t) = rx(t) − kx(t)2 − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here r, k, x0 are positive constants.

2.5. Derive the optimality conditions for the following problem,

Maximize
∫ T

0

u(t)xu(t)dt− c

∫ T

0

u(t)2dt,

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, T ), where xu is
the solution to the following logistic model of population dynamics,

{
x′(t) = rx(t) − kx(t)2 − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here c, r, k, x0 are positive constants. This problem seeks to maximize the
harvest while minimizing effort.
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Optimal control of ordinary differential

systems. Gradient methods

This chapter is devoted to approximation methods, mainly of gradient type,
for optimal control problems governed by ordinary differential equations. The
main goal is to build corresponding MATLAB R© programs. The calculation
of the gradient of the cost functional allows us to develop gradient-type algo-
rithms. We deal with minimization/maximization problems. As we show, the
general principle of a gradient method is the same for both types of problems.

3.1 A gradient method

This section represents an introduction to the numerical approximation of
control problems by gradient methods. To develop the algorithm we take as
our example the abstract optimal control problem from Section 2.1. A gradient
method can be used for minimization/maximization problems, the principle
being the same in both situations. Such a method is an iterative one which
makes a local search at each iteration to improve the value of the cost func-
tional (to increase it for maximization and to decrease it for minimization).
If the current control is uk = u(k), then we successively compute xuk (the
solution of the state equation with input uk), puk (the solution of the ad-
joint equation with inputs uk, xuk), and the gradient Φu(uk), also denoted by
∇uΦ(uk). A formula that also contains puk (but not xuk) is obtained for the
gradient. This approach, called the elimination of the state, was introduced
by J. Céa in [Cea78]. As an example we consider the control problem from
Section 2.1 in the case ϕ = 0.

Maximize Φ(u) = L(u, xu) =
∫ T

0

G(t, u(t), xu(t))dt, (P1′)

subject to u ∈ K ⊂ U = L2(0, T ; IRm) (T > 0), where xu is the solution to
{
x′(t) = f(t, u(t), x(t)), t ∈ (0, T )
x(0) = x0.

(3.1)

S. Aniţa et al. An Introduction to Optimal Control Problems in Life Sciences 99
and Economics, Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-0-8176-8098-5 3, c© Springer Science+Business Media, LLC 2011
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Here

G : [0, T ]× IRm × IRN → IR,

f : [0, T ]× IRm × IRN → IRN ,

x0 ∈ IRN , and K ⊂ U is a closed convex subset.

Because the cost functionals of the models in this chapter do not involve the
final value x(T ) we have removed the term ϕ(xu(T )) present in Section 2.1.
However, the approach is similar even if ϕ(xu(T )) occurs in the cost functional.
Problem (P1′) may also be reformulated as a minimization problem

Minimize Ψ(u) = −L(u, xu),

subject to u ∈ K ⊂ U , where Ψ(u) = −Φ(u).

Assume that (u∗, xu∗
) is an optimal pair for Problem (P1′). For the time being

we assume that G and f are sufficiently smooth and that all the following
operations are allowed.

We assume that the function u �→ xu is everywhere Gâteaux differentiable.
We denote by dxu this differential. Consider the arbitrary but fixed elements
u, v ∈ U and

V = {v ∈ U ; u+ εv ∈ K for any ε > 0 sufficiently small}.

For any v ∈ V , we define z = dxu(v); z is the solution to
{
z′(t) = fu(t, u(t), xu(t))v(t) + fx(t, u(t), xu(t))z(t), t ∈ (0, T )
z(0) = 0. (3.2)

For an arbitrary but fixed v ∈ V we have

(v, Φu(u)) = lim
ε→0+

1
ε
[Φ(u+ εv) − Φ(u)],

where (·, ·) is the inner product on U , and consequently

(v, Φu(u)) =
∫ T

0

[v(t) ·Gu(t, u(t), xu(t)) + z(t) ·Gx(t, u(t), xu(t))]dt. (3.3)

Let pu be the solution to the adjoint problem:
{
p′(t) = −f∗

x(t, u(t), xu(t))p(t) −Gx(t, u(t), xu(t)), t ∈ (0, T )
p(T ) = 0. (3.4)

We multiply the equation in (3.2) by pu and we integrate by parts on [0, T ].
If we take into account (3.4) we get as in Section 2.1 that
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∫ T

0

z(t) ·Gx(t, u(t), xu(t))dt =
∫ T

0

v(t) · f∗u(t, u(t), xu(t))pu(t)dt. (3.5)

By (3.5) and (3.3) we finally obtain

Φu(u) = Gu(., u, xu) + f∗u(., u, xu)pu. (3.6)

By using (3.1), (3.4), and (3.6) we derive an iterative method to improve
the value of the cost functional at each step (or to approximate the optimal
control u∗). We use the gradient of the cost functional Φ to get an increase
of the cost functional Φ(u) at each iteration. We have to apply a projected
gradient method in order to handle the control constraint u ∈ K. We write the
corresponding version of Uzawa’s algorithm for Problem (P1′) (e.g., [AN03,
Section 2.5]):

S0: Choose u(0) ∈ K;
Set k := 0.

S1: Compute x(k) the solution to (3.1) corresponding to u := u(k):
{
x′(t) = f(t, u(k)(t), x(t)), t ∈ (0, T )
x(0) = x0.

S2: Compute p(k) the solution to (3.4) for u := u(k) and x := x(k):
{
p′(t) = −f∗

x(t, u(k)(t), x(k)(t))p(t) −Gx(t, u(k)(t), x(k)(t)), t ∈ (0, T )
p(T ) = 0.

S3: Compute the gradient w(k) using formula (3.6):

w(k) := Φu(u(k)) = Gu(·, u(k), x(k)) + f∗
u(·, u(k), x(k))p(k).

S4: Compute the steplength ρk ≥ 0 such that

Φ(PK(u(k) + ρkw
(k))) = max

ρ≥0
Φ(PK(u(k) + ρw(k))).

S5: u(k+1) := PK(u(k) + ρkw
(k)).

S6: (The stopping criterion)
If ‖u(k+1) − u(k)‖ < ε

then STOP (u(k+1) is the approximating control)
else k := k + 1; go to S1.

We point out that for a minimization gradient method the general form of the
algorithm is the same with only two “small” changes:

– In Step S3 we take w(k) := −Φu(u(k)) to obtain a descent direction.
– In Step S4 we take minρ≥0 instead of maxρ≥0.
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In the current literature such an algorithm is known as the steepest descent
method. Moreover “direction” means a vector, the sense being defined by
ρ > 0. It is also possible to use in practice some other stopping criterion as
we discuss for concrete examples.

Let us mention that PK above is the projection operator on the convex set
K; that is, PK : U → K is defined by

‖PK(u) − u‖ ≤ ‖w − u‖ for any w ∈ K,

where ‖ · ‖ denotes the norm of U . ε > 0 in step S6 is a prescribed precision.

If the control is not restricted (i.e., K = U), then PK = PU = IU and S4
becomes the following.

Compute the steplength ρk ≥ 0 such that

Φ(u(k) + ρkw
(k)) = max

ρ≥0
{Φ(u(k) + ρw(k))}.

A tedious practical problem in the above algorithm is to compute the
steplength ρk from S4. We need a robust and efficient procedure to do it.
The problem to be solved many times in S4 is the following one: given some
value ρ > 0, compute Φ(PK(u(k) + ρw(k))). Such trials are necessary to find a
proper steplength ρk. To do this we have to consider the following substeps.

• Compute u := u(k) + ρw(k).
• Compute ū := PK(u).
• Compute x̄, the solution to (3.1) corresponding to u := ū.
• Compute the corresponding value of the cost functional Φ(ū).

Clearly this subproblem requires a large amount of computation. For details
about descent methods and efficient algorithms to compute the steplength ρk

we refer to [AN03, Section 2.3], and to [GS81, Chapter 2].

For the particular case when K = U the following simplified algorithm can
be used.

The forward–backward sweep method

NS′0: Choose u(0) ∈ U .
Set k := 0.

NS′1: Compute x(k) the solution to (3.1) corresponding to u := u(k):
{
x′(t) = f(t, u(k)(t), x(t)), t ∈ (0, T )
x(0) = x0.

NS′2: Compute p(k) the solution to (3.4) corresponding to u := u(k):
{
p′(t) = −f∗

x(t, u(k)(t), x(k)(t))p(t) −Gx(t, u(k)(t), x(k)(t)), t ∈ (0, T )
p(T ) = 0.
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NS′3: Compute u(k+1) the solution to the equation:

Gu(t, u(t), x(k)(t)) + f∗u(t, u(t), x(k)(t))p(k) = 0;

NS′4: (The stopping criterion)
If ‖u(k+1) − u(k)‖ < ε

then STOP (u(k+1) is the approximating control)
else k := k + 1; go to NS′1.

If constraints on the control occur then a descent forward–backward sweep
method can be used.

We now present a short outline of the theory of the steepest descent method
for minimization problems and the relationship with maximization problems.
We consider the problem of minimizing Ψ : U �→ IR over the real Hilbert
space U . We assume that U is identified with its own dual. Here we use
the traditional notation ∇Ψ for Ψu because Ψ depends only on u. A class of
iterative minimization methods is defined by

u(k+1) = u(k) + ρkw
(k), (3.7)

where w(k) ∈ U is a search direction and ρk ∈ IR+ is the steplength. We say
that w ∈ U is a descent direction for Ψ at u ∈ U if there exists ρ0 > 0 such
that

Ψ(u+ ρw) < Ψ(u) for any ρ ∈ (0, ρ0]. (3.8)

Assume now that Ψ has a continuous gradient on U . Then a descent direction
w at u ∈ U occurs when

(w,∇Ψ(u)) < 0 (3.9)

where (·, ·) is the inner product of U , and ‖ · ‖ is the corresponding norm.
Moreover the steepest descent direction is obtained as follows. If ∇Ψ(u) 
=

0, then we apply Taylor’s formula and we get

Ψ(u+ ρw) = Ψ(u) + ρ(w,∇Ψ(u)) + o(ρ).

If w is a descent direction at u then (3.9) is satisfied and therefore the steepest
descent is obtained for (w,∇Ψ(u)) minimal. Hence we search for

min {(w,∇Ψ(u)) ; ‖w‖ = 1}. (3.10)

By Schwarz’s inequality we readily get

|(w,∇Ψ (u))| ≤ ‖∇Ψ(u)‖

and therefore
−‖∇Ψ(u)‖ ≤ (w,∇Ψ(u)) if ‖w‖ = 1.
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It is clear now that w = −∇Ψ(u)/‖∇Ψ(u)‖ gives the minimum value for
(3.10). The steepest descent direction at u is −∇Ψ(u).

Assume now we want to maximize Ψ(u) for u ∈ U . A direction w that ensures
the local increase of Ψ at u is defined similarly to a descent direction and is
characterized by

(w,∇Ψ(u)) > 0. (3.11)

Also using Taylor’s formula it follows that we should search for

max{(w,∇Ψ(u)) ; ‖w‖ = 1} (3.12)

in order to obtain a maximum increase of Ψ at u. By Schwarz’s inequality we
readily get

(w,∇Ψ(u)) ≤ ‖∇Ψ(u)‖ if ‖w‖ = 1.

It is clear now that w = ∇Ψ(u)/‖∇Ψ(u)‖ gives the maximum value for (3.12).
Therefore the local maximum increase of Ψ at u is obtained for the direction
∇Ψ(u).

Therefore the main difference between minimization and maximization prob-
lems consists in the sign considered for the gradient. But the theory of descent
directions and of the convergence of such methods is more complicated, a very
important role being played by the sequence {ρk} of steplengths (e.g., [AN03,
Chapter 2], [GS81, Chapters 7 and 8]). There one can also find more about
constrained controls and projected gradient methods. Such problems are dis-
cussed for concrete examples in the next sections.

We pass now to the control problems. Consider

Minimize Ψ(u),

subject to u ∈ K ⊂ U , where K is a closed convex subset. If the functional
Ψ is strictly convex and smooth enough (has continuous gradient) and if K
is bounded or Ψ is coercive on K (lim‖u‖→∞ Ψ(u) = +∞) the convergence of
the projected gradient method to the unique optimal control has been proved.
If the control is not constrained (u ∈ U), u ∈ U , then the convergence is valid
for the gradient method (e.g., [AN03, Section 2.1]). Otherwise the conver-
gence theory is more complicated (e.g., [Pol71], [Cea78], [GS81], and [AN03]).
Generally speaking we have an algorithm that obtains a decrease/increase by
iteration for the cost functional.

The forward–backward sweep method is a direct consequence of Pontryagin’s
principle. If we denote u(k+1) = Γu(k), where Γ is the operator corresponding
to this algorithm, then the iterative method from Banach’s fixed point theorem
can be used to obtain the convergence of the method (if Γ is a contraction).
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3.2 A tutorial example for the gradient method

We now present the application of a gradient method, the mathematical cal-
culation of the gradient, and the corresponding program. We consider a simple
tutorial example that allows us, however, to illustrate an efficient method to
approximate optimal control and to compare the approximated control with
the calculated one.

In a (bio)chemical reaction a component is added at a constant rate over a
time interval [0, L] (L > 0) ([Kno81, Chapter III, Section 1]). Let x(t) be the
deviation of the pH value from the desired one at time t. We have to control
the pH value because the quality of the product depends on it. The control is
made by the strength u(t) of the controlling ingredient. The dynamics of x is
described by the following initial-value problem:

{
x′(t) = αx(t) + βu(t), t ∈ (0, L)
x(0) = x0,

(3.13)

where α and β are known positive constants and x0 is the initial deviation of
the value of the pH. We suppose that the decrease in yield of the deviation
of the pH due to changes in the pH is

∫ L

0
x(t)2dt. We also suppose that the

rate of cost of keeping the strength u is proportional to u2. Therefore this
(bio)chemical model leads to the following optimal control problem,

Minimize
1
2

∫ L

0

[axu(t)2 + u(t)2]dt, (TP)

subject to u ∈ U = L2(0, L), where xu is the solution to (3.13), and a is a
positive constant. There are no constraints on controls.

Problem (TP) is of course a particular case of (P1) (in Section 2.1), for m = 1,
N = 1, T = L,

G(t, u, x) = −1
2
(ax2 + u2),

ϕ(x) = 0,
f(t, u, x) = αx+ βu.

Here

L(u, x) = −1
2

∫ L

0

[ax(t)2 + u(t)2]dt,

Φ(u) = −1
2

∫ L

0

[axu(t)2 + u(t)2]dt,

and problem (TP) may be reformulated as

Minimize{−Φ(u)}, subject to u ∈ U.
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To make the explanation of the method easier we denote by Ψ(u) the cost
functional of the original problem, that is,

Ψ(u) =
1
2

∫ L

0

[axu(t)2 + u(t)2]dt,

and our problem becomes
Minimize Ψ(u),

subject to u ∈ U . First of all we calculate the gradient of the cost functional.
As already noticed this leads to the necessary conditions of optimality. From
a computational point of view this means to calculate the gradient of the cost
functional via the adjoint state (by elimination of the state).

Consider two arbitrary but fixed elements u, v ∈ U = L2(0, L). Let z be the
solution to the following IVP (initial-value problem),

{
z′(t) = αz(t) + βv(t), t ∈ (0, L)
z(0) = 0. (3.14)

We now introduce the adjoint problem (the adjoint state is pu):
{
p′(t) = −αp(t) + axu(t), t ∈ (0, L)
p(L) = 0. (3.15)

For any ε ∈ IR∗ we have

Ψ(u+ εv) − Ψ(u) =
1
2

∫ L

0

[axu+εv(t)2 + (u(t) + εv(t))2 − axu(t)2 − u(t)2]dt.

Because problem (3.13) is linear, it follows immediately that

xu+εv = xu + εz,

and consequently

1
ε

[Ψ(u + εv) − Ψ(u)] =
1
2

∫ L

0

[2axu(t)z(t) + εaz(t)2 + 2u(t)v(t) + εv(t)2]dt.

We let ε→ 0 and we get

(v, Ψu(u)) =
∫ L

0

[axu(t)z(t) + u(t)v(t)]dt, (3.16)

where (·, ·) is the usual inner product on L2(0, L), defined by

(g1, g2) =
∫ L

0

g1(t)g2(t)dt, g1, g2 ∈ L2(0, L).
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Next we wish to eliminate xu from (3.16). By multiplying the differential
equation in (3.14) by pu, and by integrating on [0, L] we get

∫ L

0

z′(t)pu(t)dt =
∫ L

0

[αz(t) + βv(t)]pu(t)dt,

and consequently, because z(0) = p(L) = 0,

−
∫ L

0

z(t)(pu)′(t)dt =
∫ L

0

[αz(t) + βv(t)]pu(t)dt.

By (3.14) and (3.15) we obtain that

−
∫ L

0

z(t)[−αpu(t) + axu(t)]dt =
∫ L

0

[αz(t) + βv(t)]pu(t)dt,

and then ∫ L

0

axu(t)z(t)dt = −
∫ L

0

βv(t)pu(t)dt. (3.17)

By (3.17) and (3.16) we infer that

(v, Ψu(u)) =
∫ L

0

v(t)[u(t) − βpu(t)]dt.

This is true for any v ∈ L2(0, L), therefore we may conclude that

Ψu(u) = u− βpu. (3.18)

If u∗ is the optimal control for (TP), then

Ψu(u∗) = u∗ − βpu∗
,

where p is the solution to (3.15) corresponding to u := u∗.

We are able now to write a gradient algorithm using −Ψu(u) as the descent
direction for the current control u.

A gradient algorithm for problem (TP)

S0: Choose u(0) ∈ U ;
Set k:=0.

S1: Compute x(k), the solution to (3.13) with the input u(k):
{
x′(t) = αx(t) + βu(k)(t), t ∈ (0, L)
x(0) = x0.

S2: Compute p(k), the solution to (3.15) with the input x(k):
{
p′(t) = −αp(t) + ax(k)(t), t ∈ (0, L)
p(L) = 0.
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S3: Compute the gradient w(k) using formula (3.18):

w(k) := Ψu(u(k)) = u(k) − βp(k).

S4: Compute the steplength ρk such that

Ψ(u(k) − ρkw
(k)) = min

ρ≥0
{Ψ(u(k) − ρw(k))}.

S5: Compute the new control

u(k+1) := u(k) − ρkw
(k).

S6: (The stopping criterion)
If ‖u(k+1) − u(k)‖ < ε

then STOP (u(k+1) is the approximating control)
else k := k + 1; go to S1.

The norm used in Step S6 is a discrete one and ε > 0 is a prescribed precision.
Moreover we show later that other stopping criteria can be used in practice.

Now we make an important comment for practical purposes. In many problems
there are control restrictions; that is, we have u ∈ K ⊂ U with K a closed
convex subset. In such a case a projected gradient algorithm should be used
(e.g., [AN03, Section 2.5]). For instance, for Uzawa’s algorithm, the formula
in Step S4 above becomes

Ψ(PK(u(k) − ρkw
(k))) = min

ρ≥0
{Ψ(PK(u(k) − ρw(k)))},

where PK : U → K is the corresponding projection operator (e.g., [AN03,
Section 2.4]). Of course the formula in Step S5 becomes

u(k+1) := PK(u(k) − ρkw
(k)).

To apply such an algorithm we need to get a computable formula for PK that
can be implemented in a computer program. For instance, a usual restriction
for the control is

|u(t)| ≤M a.e. t ∈ (0, L)

(K = {w ∈ L2(0, L); |w(t)| ≤ M a.e. t ∈ (0, L)}). In such a case we have
PK : L2(0, L) → K,

PK(u)(t) = Proj(u(t)) a.e. t ∈ (0, L),

where

Proj(w) =

⎧
⎨

⎩

w if −M ≤ w ≤M
−M if w < −M
M if w > M.
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A function used later follows from the above formula.

function y = Proj(u)
global M
y = u ;
if u < −M

y = −M ;
end
if u > M

y = M ;
end

We are now going to build the program for the gradient algorithm described
above. For ease of understanding we give successive parts of the program
explaining the implementation of every step of the algorithm. The entire pro-
gram can be obtained by simple concatenation of all parts.

We point out first that we use a time grid with equidistant knots as follows,

ti = (i− 1)h, i = 1, . . . , n,

where
h =

L

n− 1
,

and the vectors
uold for u(k), unew for u(k+1).

We start with Part 1 which contains the usual beginning statements, input of
data, and step S0 of the algorithm. Let us point out that the starting control
u(0)(t) is constant, and that the meaning of some input variables is explained
later.

% file CONT0.m
% Optimal control for the pH in a (bio)chemical reaction
% gradient algorithm with Armijo method for the steplength ρ
% ===========
% PART 1
% ===========
clear
global alf bet ind
global a
global h
global uold
global u
global x
L = input(’final time : ’) ;
alf = input(’alpha : ’) ; % α
bet = input(’beta : ’) ; % β
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a = input(’a : ’) ;
x0 = input(’x(0) : ’) ;
h = input(’h : ’) ; % time grid step
t = 0:h:L ; % time grid
t = t′ ; % change to column vector
n = length(t) ;
x = zeros(n,1) ; % state vector
x1 = zeros(n,1) ; % state vector to be used for ρ loop (Armijo method)
p = zeros(n,1) ; % adjoint state vector
uold = zeros(n,1) ; % control vector corresponding to u(k)

unew = zeros(n,1) ; % control vector corresponding to u(k+1)

u = zeros(n,1) ; % control vector to be used for ρ loop (Armijo method)
% S0 : control initialization
u0 = input(’u0 : ’) ;
for i = 1:n

uold(i) = u0 ;
end
disp(’enter control data’) ;
eps = input(’precision : ’) ; % precision ε for the gradient algorithm
maxit = input(’maxiter : ’) ; % max. no. iterations – gradient algorithm
disp(’RO data’) ;
roin = input(’RO : ’) ; % initial value for gradient steplength ρ
bro = input(’b for RO : ’) ; % b parameter for ρ loop
eps1 = input(’precision for RO : ’) ; % precision ε1 for steplength ρ
maxro = input(’max for RO : ’) ; % max. no. of iterations – ρ loop
ro = roin ; % initialization of steplength ρ
flag1 = 0 ; % convergence indicator for gradient algorithm
ii = 0 ; % index for gradient values

The values of flag1 are:

0 – No convergence obtained for the gradient algorithm.
1 – Convergence obtained for the gradient algorithm.

The variable ii keeps the index of vector grad which stores the values of the
gradient Ψu(u(k)) for successive iterations. This vector is created component
after component at each iteration. We continue the program by

% ===========
% PART 2
% ===========
% gradient loop starts
for iter = 1:maxit

iter
% S1 : solve the state equation (3.13) by Runge–Kutta method
x(1) = x0 ; % the initial condition
for i = 1:n − 1
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ind = i ; % ind is a global index variable used by the rhs of (3.13)
x(i + 1) = RK41(x(i),t(i)) ;

end
disp(’SE solved’) ;
if iter == 1

Q = a*x.∧2 + uold.∧2 ;
temp = trapz(t,Q) ;
cvold = temp/2
cost(1) = cvold ; % store the value of the cost functional
jj = 1 ;

end

Problem (3.13) is solved by the standard Runge–Kutta method of order 4
(see Appendix A.4). We do not use an ode function because it is more com-
plicated to provide the control u. MATLAB asks for a function, but we have
a vector and for every given time moment t we need only one value of the
vector. We therefore decided to provide it using the global variable ind and
the corresponding value uold(ind). The function RK41.m is exactly RK4.m
from Chapter 1. For the sake of clarity we give it once again.

function yout = RK41(x,t)
global h
tm = t + h/2 ;
k1 = h * F1(t,x) ;
k2 = h * F1(tm,x + k1/2) ;
k3 = h * F1(tm,x + k2/2) ;
k4 = h * F1(t + h,x + k3) ;
yout = x + (k1 + k4 + 2.0*(k2 + k3))/6.0 ;

The corresponding function F1.m is

function yout = F1(t,x)
global alf bet ind
global uold
yout = alf*x + bet*uold(ind) ;

For iter = 1 we compute the value of the cost functional, using the function
trapz, and we store it in cvold and cost(1). Here jj is the index of vector cost
which stores the values of the cost functional Ψ(u(k)) for successive iterations.
This vector is built component after component at each iteration.

We now handle Step S2 from the algorithm. For the adjoint state equation
(3.15) we still use the Runge–Kutta standard method of order 4. The only
difference is we have to proceed from L descending to 0. Then the gradient is
computed.
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% ===========
% PART 3
% ===========

% S2 : solve adjoint equation (3.15)
p(n) = 0 ;
for j = 1:n − 1

i = n − j ;
ip1 = i + 1 ;
ind = ip1 ;
p(i) = RK43(p(ip1),t(ip1)) ;

end
disp(’AE solved’) ;
% S3 : compute the gradient
w = uold − bet*p ;
disp(’GRADIENT COMPUTED’) ;

The file function RK43.m for the descending Runge–Kutta method is the
following.

function yout = RK43(q,t)
global h
h1 = −h ;
tm = t + h1/2 ;
k1 = h1 * F3(t,q) ;
k2 = h1 * F3(tm,q + k1/2) ;
k3 = h1 * F3(tm,q + k2/2) ;
k4 = h1 * F3(t + h1,q + k3) ;
yout = q + (k1 + k4 + 2.0*(k2 + k3))/6.0 ;

The function file F3.m follows.

function yout = F3(t,p)
global alf bet ind
global a
global x
yout = a*x(ind) − alf*p ;

Before going to S4 we discuss the stopping criteria of the algorithm. One can
be found in Step S6, but as already asserted we use more such criteria; that is,

• SC1 : ‖Ψu(u(k))‖ < ε.
• SC2 : |Ψ(u(k+1)) − Ψ(u(k))| < ε.
• SC3 : ‖u(k+1) − u(k)‖ < ε.
• SC4 : ρk < ε1.

Let us remark that SC1 and SC3 are equivalent because

‖u(k+1) − u(k)‖ = ρk‖Ψu(u(k))‖.
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The test SC4 says that the gradient steplength ρ is very small which means
that numerically no descent can be obtained along the direction −w(k), where
w(k) = Ψu(u(k)). We can therefore assert that SC4 is numerically equivalent
to SC2. The policy for our program is to stop when one convergence criterion
is satisfied. Inasmuch as the gradient Ψu(u(k)) was just computed we apply
SC1 and we continue the program by

% ===========
% PART 4
% ===========

normg = sqrt(sum(w.∧2)) % compute the gradient norm
ii = ii + 1 ;
grad(ii) = normg ;
% verify SC1
if normg < eps

disp(’CONVERGENCE by GRADIENT’)
flag1 = 1 ;
break

end

If the stopping criterion is satisfied (i.e., normg < eps), we give to the conver-
gence indicator flag1 the corresponding value 1 and we use the break statement
which moves out the gradient loop started in PART 2 by the statement for
iter = 1:maxit. We proceed now to Step S5 of the gradient algorithm, a more
difficult one, which requires the computation of the gradient steplength ρk.
The formula in Step S5 is useless in practice because usually the minimum
there cannot be calculated. We approximate it by a robust and efficient algo-
rithm, namely the Armijo method (for more details see [A66], [AN03, Section
2.3] and [Pol71, Appendix C.2]). We have already computed Ψ(u(k)). The last
known value for the steplength ρ is ρk−1. We also know b ∈ (0.5, 0.8) the
parameter to fit ρ (by the input of the variable bro). Let us denote for what
follows Ψ(u) = ψ(u, xu) in order to emphasize the current state x also. Here

ψ(u, x) =
1
2

∫ L

0

[ax(t)2 + u(t)2]dt.

Armijo method for the gradient steplength

A0: Set ρ := ρk−1.
A1: u := u(k) − ρw(k).
A2: Compute x1 the solution of the state problem with input u:

{
x′1(t) = αx(t) + βu(t), t ∈ (0, L)
x1(0) = x0.

A3: Compute ψ(u, x1).
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A4: (The stopping criterion)
If ψ(u, x1) ≥ ψ(u(k), x(k))

then ρ := bρ; go to A1
else ρk := ρ ; STOP algorithm.

The value ρk is used next in Step S5 of the descent algorithm and in the next
gradient iteration as the starting value for ρ.

The program variables corresponding to the mathematical ones in the above
algorithm are:

• ρk−1 = ro ;
• ρ = robar ;
• u = u ;
• x1 = x1 ;
• ψ(u(k), x(k)) = cvold ;
• ψ(u, x1) = cv ;
• b = bro ;
• ρk = ro (actualized later) .

The Armijo method loop is a for statement controlled by the variable count
and by the convergence indicator flag2. The values of flag2 are:

0 – No convergence obtained for Armijo algorithm.
1 – Convergence obtained for Armijo algorithm.

Therefore the next part of the program is as follows.

% ===========
% PART 5
% ===========

% S4 : FIT RO
robar = ro ;
flag2 = 0 ;
flag3 = 0 ;
% start loop to fit ro
for count = 1:maxro

count
u = uold − robar*w ;
% solve state equation for input u and get state x1
x1(1) = x0 ;
for j = 1:n − 1

ind = j ;
x1(j + 1) = RK42(x1(j),t(j)) ;

end
% test for SC4
if robar < eps1

flag3 = 1 ;
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break % leave loop for count . . .
end
% compute current cost value and test ρ
Q1 = a*x1.∧2 + u.∧2 ;
temp = trapz(t,Q1) ;
cv = temp/2 ;
if cv >= cvold % no decrease of cost for minimization

robar = bro * robar
else

flag2 = 1 ;
break % leave loop for count . . .

end
end % for count

The state equation (3.13) is solved for control u to get state x1, the same
way as before. The only difference is a little programming problem. We use
as control u instead of uold. We therefore call RK42 instead of RK41. The
function RK42 is a copy of RK41 where the call of F1 is replaced by the call
of F2. The function F2 follows.

function yout = F2(t,x)
global alf bet ind
global u
yout = alf*x + bet*u(ind) ;

Next we take the conclusion for the above loop (with variable count). If
flag2 = 1 then the Armijo algorithm is convergent and we get a new value for
the cost functional (stored by cvnew). The loop can also end by criterion SC4;
that is, ρ < ε1 with flag3 = 1. In such a case the current u(k) is numerically
optimal and in the outer loop for iter . . . the value of flag3 determines the
program to stop. In the next sequence we also verify the stopping criteria SC2
and SC3. Otherwise the whole gradient algorithm fails because the Armijo
procedure was not able to fit the steplength ρk. The corresponding part of the
program follows.

% ===========
% PART 6
% ===========

if flag3 == 1
disp(’CONVERGENCE BY RO’)
break % leave loop for iter . . . (SC4 satisfied)

end
if flag2 == 1

cvnew = cv
jj = jj + 1 ;
cost(jj) = cvnew ;
unew = u ;
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ro = robar ;
% verify SC2
if abs(cvnew − cvold) < eps

disp(’CONVERGENCE by COST’)
flag1 = 1 ;
break % leave the loop for iter . . . (SC2 satisfied)

end
% verify SC3
d = uold − unew ;
dif = sqrt(sum(d.∧2)) ;
if dif < eps

disp(’CONVERGENCE by CONTROL’)
flag1 = 1 ;
break % leave the loop for iter . . . (SC3 satisfied)

end
else

error(’NO CONVERGENCE FOR RO’) % STOP PROGRAM
end

Next we close the loop of the gradient algorithm and we display results and
print figures if convergence is obtained.

% ===========
% PART 7
% ===========

% prepare a new iteration
uold = unew ;
cvold = cvnew ;
% x = x1 ; to be introduced in the final version below

end % for iter
if (flag1 == 1) | (flag3 == 1) % | means logical or

plot(t,unew,’∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf u(t)’,’FontSize’,16)
figure(2)
plot(t,x1,’r∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf x(t)’,’FontSize’,16)

else
error(’NO CONVERGENCE FOR DESCENT METHOD’)

end
grad = grad′ ;
cost = cost′ ;
save grad.txt grad -ascii % save vector grad into file grad.txt
save cost.txt cost -ascii % save vector cost into file cost.txt
disp(’END OF JOB’)
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The program is now complete. We can now improve it, making a slightly faster
version. We notice that in the loop for the Armijo method (for count . . . ) we
compute the pair [u, x1] and the corresponding cost functional value cv. If
the convergence is obtained then flag2 gets the value 1 and next we have the
sequence

if flag2 == 1
cvnew = cv ;
. . .
unew = u ;
. . .

end

If the outer loop of the gradient algorithm (for iter . . . ) continues, because
no convergence criterion was satisfied yet, then we prepare the next iteration
by

uold = unew ;
cvold = cvnew ;

The new iteration begins by solving (3.13) for uold (Step S1). But it is clear
now that we have already computed the corresponding state for u and it is
exactly x1. Hence it is no longer necessary to solve (3.13) once again. We
therefore modify the program as follows.

for iter = 1:maxit
iter
if iter == 1

% S1 : solve (3.13) by Runge–Kutta method
. . .
jj = 1 ;

end
. . .
uold = unew ;
cvold = cvnew ;
x = x1 ;

end % for iter

We have made two modifications to CONT 0.m, namely

– The domain of the statement if iter == 1 was extended upward to include
also the sequence for solving the state equation (3.13).

– We have included the statement
x = x1 ;

as the last statement in the domain of for iter . . . .
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Let us also point out that the above program has four stopping criteria (SC1
to SC4). For a numerical test we can first run the program with all of them. If
convergence is obtained we can run the program again with stopping criteria
removed or (re)introduced to understand the behavior of the algorithm better.

A first numerical test was made taking L = 1, α = 2, β = 0.7, and a = 3.
As numerical parameters we have considered h = 0.001, the initial value
for ρ (roinit) equal to 1, the maximum number of iterations for the Armijo
method (maxro) to be 20, and the coefficient b to change ρ (bro) equal to
0.55. The precision for the stopping criteria was ε = ε1 = 0.001. Taking
x0 = 0 in (3.13) the optimal pair is (u∗, x∗) with u∗(t) = 0 and x∗(t) =
0 for t ∈ [0, L]. Moreover the optimal value is 0. As already mentioned in
Section 3.1 the algorithm is convergent to the optimal control (pair) because
the cost functional is strictly convex. Even in such a case the behavior of the
program can be quite interesting. Taking u0 = 10 (as the starting value for
the control), at the first iteration [u(0), x(0)] we are far away from the optimal
pair. The program converged numerically to the mathematical optimal pair.
The convergence was obtained as follows.

– SC2 (cost criterion), after 15 iterations
– SC3 (control criterion), after 31 iterations
– SC1 (gradient criterion), after 34 iterations

The value of the cost functional after 34 iterations was 2.984× 10−10.

Another numerical test was made with the same values as above changing only
the starting value for the control to u0 = 25. The convergence was obtained
as follows.

– SC2 (cost criterion), after 17 iterations
– SC3 (control criterion), after 34 iterations
– SC1 (gradient criterion), after 37 iterations

The value of the cost functional after 37 iterations was 1.92 × 10−10. What
can we notice after these tests?

– The program needs a large number of iterations to approach the optimal
pair.

– The convergence criteria are satisfied after different numbers of iterations.
– For u0 = 25 the program needs more iterations for convergence.
– Take a look at Figure 3.1. Here we have the optimal control obtained for
u0 = 25. It looks “interesting” but notice that the GUI (Graphical User
Interface) has multiplied all values by 105 for graphical purposes. Otherwise
all values are “close” to zero.

To take a look at the “speed” of convergence to zero of the algorithm, we
give the cost functional values for some iterations corresponding to the initial
values u0 = 10 and x0 = 0.
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iteration cost
1 197.1929
2 82.1698
3 34.2942
4 14.3325
5 6.0014
6 2.5172
7 1.0583
8 0.4458
9 0.1883
10 0.0798
11 0.0339
12 0.0144
13 0.0062
14 0.0027
15 0.0011
16 0.0005
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Fig. 3.1. The optimal control for x0 := 0

Another experiment was made changing only x(0) = 2 and u0 = 5. The con-
vergence was obtained by SC4 after 21 iterations. The corresponding control
u(t) is given in Figure 3.2.
In fact it is possible to calculate the optimal control by using the maximum
principle. Let (u∗, x∗) be the optimal pair, and the corresponding adjoint state
p∗. Hence x∗ and p∗ are solutions to
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Fig. 3.2. The optimal control for x0 := 2

{
(x∗)′(t) = αx∗(t) + βu∗(t), t ∈ (0, L)
x∗(0) = x0,

(3.19)

{
(p∗)′(t) = −αp∗(t) + ax∗(t), t ∈ (0, L)
p∗(L) = 0.

In addition we have that

βp∗(t) = u∗(t) a.e. t ∈ (0, L).

It means that u∗ may be identified (in L2(0, L)) with an absolutely continuous
function βp∗. So, we put βp∗ instead of u∗ and obtain

{
(u∗)′(t) = −αu∗(t) + aβx∗(t), t ∈ (0, L)

u∗(L) = 0,
(3.20)

which implies that

x∗ =
1
aβ

((u∗)′ + αu∗).

We can eliminate x∗ and obtain (by (3.19) and (3.20)) that u∗ is the solution
to

⎧
⎪⎨

⎪⎩

(u∗)′′(t) − (α2 + aβ2)u∗(t) = 0, t ∈ (0, L)

(u∗)′(0) + αu∗(0) = aβx0

u∗(L) = 0.
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The solution to this problem is given by

u∗(t) = c1e
rt + c2e

−rt a.e. t ∈ (0, L), (3.21)

where r =
√
α2 + aβ2 and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1 =
aβx0

(r + α) + (r − α)e2rL
,

c2 = − aβx0e
2rL

(r + α) + (r − α)e2rL
.

We take the data from the last numerical experiment. If we plot the graph
of optimal control given by (3.21) we see that it overlaps to the graph of the
approximated optimal control.

3.3 Stock management

We consider here a stock management problem and search for an optimal
policy. Let us consider a company that has a delivery contract for a product
for the time interval [0, T ] (T > 0). According to the contract, the delivery
plan is given by a known function g : [0, T ] → IR+, piecewise continuous.
Therefore g(t) is the amount of product to be delivered at moment t. Denote
by u(t) the production amount of the company at moment t and by x(t) the
stock. The evolution of the stock is described by

{
x′(t) = u(t) − g(t), t ∈ (0, T )
x(0) = x0 ∈ IR.

(3.22)

The stock is given by

x(t) = x0 +
∫ t

0

[u(s) − g(s)]ds.

• If x(t) ≥ 0 there is no delivery delay at moment t.
• If x(t) > 0 the company has an active stock.
• If x(t) < 0 there is a delivery delay at moment t. The company should

provide a quantity |x(t)| of product.

We introduce a function ψ(x) which represents the cost of stock conservation
or the penalties for the delivery delay. More exactly, ψ(x) = stock conservation
price for x ≥ 0 and ψ(x) = penalties for delivery delays for x < 0. We consider
that

ψ(x) =
{
c1x

2, x ≥ 0
c2x

2, x < 0,
(3.23)



122 3 Gradient methods

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

ψ
 (

x)

Fig. 3.3. Stock conservation cost/delay penalties

where c1 > 0 and c2 > 0. For example, if we take c1 = 0.001 and c2 = 0.003
the graph of ψ(x) for x ∈ [−10, 10] is given in Figure 3.3. The values of the
parameters mean that the delay is more expensive than an equivalent stock.
If a > 0 is the unit production price, then the total expenses of the company
are given by

Φ(u) =
∫ T

0

[au(t) + ψ(xu(t))] dt,

where xu is the solution to (3.22). Therefore a natural optimal control problem
is the following.

Minimize Φ(u), (PS)

subject to u ∈ K = {w ∈ L2(0, T ); u1 ≤ u(t) ≤ u2 a.e. t ∈ (0, T )}, where
u1, u2 ∈ IR, 0 ≤ u1 < u2. The control constraints show that the production is
bounded. Moreover, for obvious reasons we suppose that

u1 ≤ g(t) ≤ u2, t ∈ [0, T ].

Problem (PS) is equivalent to the following one

Maximize{−Φ(u)}, (PS′)

subject to u ∈ K.

For any arbitrary u ∈ U = L2(0, T ), consider pu (the adjoint state) the
solution to the following problem,
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{
p′(t) = −ψ′(xu(t)), t ∈ (0, T )
p(T ) = 0. (3.24)

Let us evaluate the gradient of the cost functional.

For any u, V ∈ U and ε ∈ IR∗ we have

1
ε

[Φ(u + εv) − Φ(u)] =
∫ T

0

1
ε

[
ψ(xu+εv(t)) − ψ(xu(t))

]
dt+ a

∫ T

0

v(t)dt.

(3.25)
Consider z the solution of

{
z′(t) = v(t), t ∈ (0, T )
z(0) = 0. (3.26)

It follows as in Sections 2.2 and 2.3 that

xu+εv −→ xu in C([0, T ]),

and that
1
ε
(xu+εv − xu) −→ z in C([0, T ]),

as ε→ 0. We pass to the limit in (3.25) and we obtain

(v, Φu(u))L2(0,T ) = a

∫ T

0

v(t)dt +
∫ T

0

ψ′(xu(t))z(t)dt. (3.27)

We multiply the differential equation in (3.24) by z and we integrate on [0, T ].
We obtain ∫ T

0

(pu)′(t)z(t)dt = −
∫ T

0

ψ′(xu(t))z(t)dt.

We integrate by parts and use (3.24) and (3.26). We get

∫ T

0

ψ′(xu(t))z(t)dt =
∫ T

0

pu(t)v(t)dt.

By (3.27) we get

(v, Φu(u))L2(0,T ) =
∫ T

0

v(t)[pu(t) + a]dt.

Because v ∈ L2(0, T ) is arbitrary, we may conclude that

Φu(u) = pu + a. (3.28)

We are able now to write a descent algorithm for (PS) using −Φu(u) as the
descent direction for the current control u. We have to use a projected gradient
method (Uzawa’s algorithm) because of the control constraints.
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A projected gradient algorithm for problem (PS)

S0: Choose u(0) ∈ K.
Set j:=0.

S1: Compute x(j) the solution to Problem (3.22) with the input u(j):
{
x′(t) = u(j)(t) − g(t), t ∈ (0, T )
x(0) = x0.

S2: Compute p(j), the solution to Problem (3.24) with the input x(j):
{
p′(t) = −ψ′(x(j)(t)), t ∈ (0, T )
p(T ) = 0.

S3: Compute the gradient direction w(j) using formula (3.28):

w(j) := Φu(u(j)) = p(j) + a.

S4: (The stopping criterion)
If ‖Φu(u(j))‖ < ε

then STOP (u(j) is the approximating control)
else go to S5;

S5: Compute the steplength ρj such that

Φ(PK(u(j) − ρjw
(j))) = min

ρ≥0
{Φ(PK(u(j) − ρw(j)))}.

S6: Compute the new control

u(j+1) := PK(u(j) − ρjw
(j));

j := j + 1; go to S1.

The projection operator PK : L2(0, T ) → K may be defined pointwise with
respect to t; that is,

PK(u)(t) = Proj(u(t)) a.e. t ∈ (0, T ),

where

Proj(w) =

⎧
⎨

⎩

w if u1 ≤ w ≤ u2

u1 if w < u1

u2 if w > u2.

As asserted before in Section 3.2 such an algorithm can be provided with
different stopping criteria (SC1 to SC4). There we wrote the conceptual al-
gorithm with SC2. Here we use SC1 just because it takes a different position
inside the algorithm. For the program SC2 and SC3 were used. The design
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of the program is quite similar to the one in Section 3.2. This is why we give
there only the sequences that are different. We start by PART1. We declare
as global variables: ind, L2, c1, c2, u1, u2, g1, g2, g3, g4, h, uold, u, and x.

Here L is the final time (T) and
L2 = L/2 ; % the midinterval for function g

We then read the corresponding data and make the initializations. For our
numerical tests we have chosen

g(t) =
{
g1t+ g2, t ∈ [0, T/2]
g3 − g4t, t ∈ (T/2, T ].

By taking

g1 = g4 =
2
T

(u2 − u1), g2 = u1, g3 = 2u2 − u1,

the function g(t) satisfies the constraints u1 ≤ g(t) ≤ u2. Moreover, it is
continuous on [0, T ] and g(0) = g(T ) = u1, g(T/2) = u2. This is a normal
delivery plan for a company. In our program the variable L stands for T and
this is why we have introduced the statement L2 = L/2.

We continue the program also including the “shortcut” from Section 3.2.

% ===========
% PART 2
% ===========
% gradient loop starts
for iter = 1:maxit

iter
if iter == 1

% S1 : solve (3.22) by RK4 method
x(1) = x0 ;
for i = 1:n − 1

ind = i ;
x(i + 1) = RK41(x(i),t(i)) ;

end
disp(’State Problem solved’) ;
for i = 1:n

z(i) = f(x(i)) ; % function f stands for ψ
end
Q = a*uold + z ;
temp = trapz(t,Q) ;
cvold = temp
cost(1) = cvold ;
jj = 1 ;

end % end if
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The file function RK41.m remains unchanged, but the inside function F1.m
has changed because the state equation is now different from the one in Sec-
tion 3.2. We therefore have

function yout = F1(t,x)
global ind
global uold
yout = uold(ind) − g(t) ;

According to the form of function g, the function file g.m is

function y = g(t)
global L2
global g1 g2 g3 g4
if t <= L2

y = g1*t + g2 ;
else

y = g3 − g4*t ;
end

The function file f.m that computes the function ψ is

function y = f(x)
global c1 c2
temp = x*x ;
if x >= 0

y = c1*temp ;
else

y = c2*temp ;
end

PART 3 of the program remains unchanged with the exception of the gradient
formula which is different. We therefore have

% S3 : compute the gradient
w = p + a ;
disp(’GRADIENT COMPUTED’) ;

The adjoint equation is different from the one in Section 3.2 therefore we
should also change the inside function file F3.m from RK43.m. We have

function yout = F3(t,p)
global ind
global x
yout = −fder(x(ind)) ;

We have to write the file fder.m corresponding to the derivative of function
ψ given by formula (3.23). PART 4 of the program (test of SC1) remains
unchanged. A modification appears in PART 5 inasmuch as we deal with the
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projected gradient method. The computation of the intermediate control u
becomes

for count = 1:maxro
count
for i = 1:n

temp = uold(i) − robar*w(i) ;
u(i) = Proj(temp) ;

end

The function file Proj.m, which applies the formula of the projection operator
PK , follows.

function y = Proj(u)
global u1 u2
y = u ;
if u < u1

y = u1 ;
end
if u > u2

y = u2 ;
end

The function file RK42.m remains unchanged (the Runge–Kutta formula is
the same) but the inside function F2.m becomes

function yout = F2(t,x)
global ind
global u
yout = u(ind) − g(t) ;

Another modification in PART 5 corresponds to the computation of state
vector x1 for the control vector u and of the corresponding cost value.

for j = 1:n
z1(j) = f(x1(j)) ;

end
Q1 = a*u + z1 ;
temp = trapz(t,Q1) ;
cv = temp ;

We now pass to a first numerical example.

Example 1. We take L = 12 (months), a = 0.1, x(0) = 5, u1 = 10, u2 = 16,
and u(0) = 14. The coefficients of function ψ(x) are c1 = 0.001 and c2 =
0.003, which means that delivery delay is more expensive than positive stock.
The coefficients of function g(t) are g1 = g4 = 1, g2 = 10, and g3 = 22.
The numerical parameters for the gradient algorithm are h = 0.001 and ε =
0.001. For the Armijo method we take roinit = 1, b = 0.6, ε1 = 0.001, and
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maxro = 20. The approximating optimal control is represented in Figure 3.4.
The corresponding value of the cost functional is 14.7832.
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Fig. 3.4. The control for x(0) = 5, c1 = 1e − 3, c2 = 3e − 3

Example 2. We take all values as in Example 1 modifying only the coefficients
of the pay function ψ(x) to be c1 = 0.004 and c2 = 0.001. This means that a
positive stock is more expensive than the delivery delay. The control is given
in Figure 3.5. The corresponding value of the cost functional is 14.4741.

It is quite obvious that the preference for delivery delay (given by the coef-
ficients c1 and c2) is exploited in Example 2 in comparison to Example 1.

Example 3. We take once again all values as in Example 1 except the ini-
tial stock value which is x(0) = −5. The result is given in Figure 3.6. The
corresponding value of the cost functional is 15.762.

Let us notice that the negative stock at time t = 0 (x(0) = −5) implies higher
values for the production u(t) (see the values on the Oy-axis), at least in the
first part of the time interval, in comparison to Example 1 where x(0) = 5.

3.4 An optimal harvesting problem

We consider a simple harvesting problem ([BG80, Sections 8.2.3 and 12.4]).
More exactly, let x(t), with t ∈ [0, L], be a renewable population (e.g., fish
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Fig. 3.5. The control for x(0) = 5, c1 = 4e − 3, c2 = 1e − 3
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Fig. 3.6. The control for x(0) = −5, c1 = 1e − 3, c2 = 3e − 3

population, grazing land, forest). We are interested in its optimal manage-
ment. We consider the equation

x′(t) = F (x(t)) − h(t), t ∈ (0, L), (3.29)

where F is the growth law and h(t), is the harvesting rate. We take the
Verhulst version of the growth function F ; that is,

F (x) = rx
(
1 − x

k

)
. (3.30)
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Here r > 0 is the intrinsic growth rate and k > 0 is the carrying capacity of
the environment (see Section 1.5 for a similar model). Moreover,

h(t) = u(t)x(t),

where u, the fishing effort, is proportional to the population level. We want
to maximize the economic rent which is defined as the difference between
revenue and cost. We have revenue = ah, where a > 0 is the unit price, and
cost = cu, where c > 0 is a constant: the cost is proportional to the fishing
effort. Therefore the control problem is

Maximize Φ(u) =
∫ L

0

e−δt(auxu − cu)dt (PH)

subject to

u ∈ K = {w ∈ L2(0, L); 0 ≤ w(t) ≤ ū a.e. t ∈ (0, L)}, ū > 0,

where xu is the solution to the state problem:
{
x′(t) = F (x(t)) − u(t)x(t), t ∈ (0, L)
x(0) = x0 > 0. (3.31)

The control restriction means that the fishing effort is bounded. Moreover,
δ > 0 is the discount factor. The solution to (3.31) is of course positive. Let
(u∗, x∗) be the optimal pair (the existence and the uniqueness follow as in
Sections 2.2 and 2.3). Consider an arbitrary but fixed u ∈ K and v ∈ V =
{w ∈ L2(0, L); u+εw ∈ K for any ε > 0 small enough}. We start to compute
the gradient Φu(u). Let z = zu, the solution to

{
z′(t) = F ′(xu(t))z(t) − u(t)z(t) − v(t)xu(t), t ∈ (0, L)
z(0) = 0. (3.32)

We calculate ε−1[Φ(u + εv) − Φ(u)], we pass to the limit for ε→ 0+, and we
obtain

(v, Φu(u)) =
∫ L

0

e−δt(au(t)z(t) + axu(t)v(t) − cv(t))dt. (3.33)

We introduce the adjoint state p = pu which satisfies the adjoint equation
{
p′(t) = −e−δtau(t) − [F ′(x(t)) − u(t)]p(t), t ∈ (0, L)
p(L) = 0. (3.34)

We multiply the differential equations in (3.32) by pu and we integrate by
parts on [0, L]. Next we multiply the differential equations in (3.34) by z and
we integrate on [0, L], and comparing the two formulae we obtain that

∫ L

0

e−δtauzdt = −
∫ L

0

xupuvdt.
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Replacing into (3.33) we find that

Φu(u) = e−δt(axu − c) − xupu. (3.35)

The optimal control u∗ satisfies in addition

Φu(u∗) = e−δt(axu∗ − c) − xu∗
pu∗ ∈ NK(u∗). (3.36)

Therefore (we denote x∗ = xu∗
and p∗ = pu∗

):

• If e−δt(ax∗ − c) − x∗p∗ > 0, then u∗(t) = ū.
• If e−δt(ax∗ − c) − x∗p∗ < 0, then u∗(t) = 0.

We analyze what happens with u∗(t) when t belongs to the set B =
{t ; e−δt(ax∗ − c) − x∗p∗ = 0 a.e.}. From the definition of B we get p∗

and by derivation, and combining with (3.34) we obtain the equation satisfied
by x∗:

F ′(x) +
cF (x)

x(ax− c)
= δ. (3.37)

Replacing (3.30) into (3.37) yields a quadratic equation for x∗, namely

αx2 + βx+ γ = 0 ,

where
α =

2ar
k

> 0, β = a(δ − r) − cr

k
, γ = −cδ < 0.

A simple analysis shows that the above equation has two real roots, one of
them being positive and the other negative. We denote by x̃ the positive one. In
conclusion x∗(t) = x̃ onB and from (3.31) we obtain the corresponding control
ũ = F (x̃)/x̃. Therefore the optimal control takes only the values {0, ũ, ū}.
Moreover, natural conditions on the coefficients ensure that 0 < ũ < ū. A
simple calculation shows that 0 < x̃ < k. Hence F (x̃) > 0 and this implies
ũ > 0. On the other hand ũ < ū means F (x̃)/x̃ < ū and we readily get as
sufficient condition ū > r.

In [BG80] the following control is recommended as an “optimal” one.

u(t) =

⎧
⎨

⎩

ū, x∗(t) > x̃
ũ, x∗(t) = x̃
0, x∗(t) < x̃.

(3.38)

The control defined by formula (3.38) is not optimal, in fact, as can be
emphasized by the numerical tests. This control has the property to “bring”
the population x(t) to the level x̃. We write a program for it to show this inter-
esting feature and to calculate the corresponding value of the cost functional
used later.

% file harv1.m
% a harvesting problem
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clear
global r k
global util ubar xtil eps1
% Introduce below input statements for
% L, y0 (for x(0)), r, k, a, c, d (for δ), ubar (for ū), eps1 (for ε1), h.
% compute xtil=x̃ and util=ũ
alf = 2*a*r/k ; % this is α
b = a*(d − r) − c*r/k ; % this is β
cd = −c*d ; % this is γ
w = [alf,b,cd] % this is the polynomial
x = roots(w)
if x(1) > 0

xtil = x(1) ;
else

xtil = x(2) ;
end
xtil
util = F(xtil) / xtil
% end of sequence for util and xtil
tspan = 0:h:L ;
[t y] = ode45(’rhs’,tspan,y0) ;
plot(t,y,’r∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf x(t)’,’FontSize’,16)
n = length(t) ;
u = zeros(n,1) ;
w = zeros(n,1) ;
% compute the control ũ
for i = 1:n

if y(i) >= xtil + eps1
u(i) = ubar ;

end
if abs(y(i)-xtil) < eps1

u(i) = util ;
end

end
figure(2)
plot(t,u,’∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf u(t)’,’FontSize’,16)
for i = 1:n

w(i) = exp(−d*t(i))*(a*y(i) − c)*u(i) ;
end
cost = trapz(t,w)
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We now give the function file rhs.m.

function out1 = rhs(t,y)
global util ubar xtil eps1
temp = 0 ;
if abs(y − xtil) < eps1

temp = util ;
end
if y >= xtil + eps1

temp = ubar ;
end
out1 = F(y) − temp*y ;

Here and in the script file we have to handle a current problem in scientific cal-
culus. The problem is to apply formula (3.38). To translate the mathematical
test x(t) = x̃ by y == xtil in the program is meaningless because of computer
arithmetic and roundoff errors. A correct numerical test is |x(t) − x̃| < ε1,
where ε1 > 0 is a prescribed precision (variable eps1 in the program). This
means that formula (3.38) is replaced by

u(t) =

⎧
⎨

⎩

ū, x(t) ≥ x̃+ ε1
ũ, x(t) ∈ (x̃− ε1, x̃+ ε1)
0, x(t) ≤ x̃− ε1.

(3.39)

The function file F.m contains the corresponding function from formula (3.30).
It looks like

function y = F(x)
global r k
y = r*x*(1−x/k) ;

We give a numerical test here. We take L = 1, r = 0.3, k = 5, a = 1, c = 1,
δ = 0.5, and ε = 0.001. We obtain x̃ = 1.5396 and ũ = F (x̃)/x̃ = 0.2076. We
therefore take ū = 0.5. The states (populations) corresponding to x(0) = 1.4
and to x(0) = 1.6 are given in Figure 3.7. Notice that both trajectories are
“convergent” to the value x̃.

We should also assert that the parameter ε1 (eps1) is “slippery”. We mean
that its value should be chosen very carefully. For instance, for tiny values the
computation is no longer stable. Of course ε1 also should not be too large. Here
ε1 = 0.001 is a suitable value. Later we discuss this problem for a numerical
example.

We now pass to the numerical approximation of the optimal value of the
cost functional. Because our control problem is a maximizing one we use
the gradient direction Φu(u(j)) for the current control u(j). The algorithm
follows. As in the previous section we write only the stopping criterion SC1.
We also show later that the behavior of the gradient method is a little more
complicated for this example.
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Fig. 3.7. Population evolution for harv1.m

A projected gradient algorithm for problem (PH)

S0: Choose u(0) ∈ K.
Set j:=0.

S1: Compute x(j) the solution to Problem (3.31) with the input u(j):
{
x′(t) = F (x(t)) − u(j)(t)x(t), t ∈ (0, L)
x(0) = x0.

S2: Compute p(j), the solution to Problem (3.34) with the input x(j):
{
p′(t) = −e−δtau(j)(t) − (F ′(x(j)(t)) − u(j)(t)

)
p(t), t ∈ (0, L)

p(L) = 0.

S3: Compute the gradient direction w(j) using formula (3.36):

w(j) := Φu(u(j)) = e−δt(ax(j) − c) − x(j)p(j).

S4: (The stopping criterion)
If ‖w(j)‖ < ε

then STOP (u(j) is the approximating control)
else go to S5;

S5: Compute the steplength ρj such that

Φ(PK(u(j) + ρjw
(j))) = max

ρ≥0
{Φ(PK(u(j) + ρw(j)))}.
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S6: Compute the new control

u(j+1) := PK(u(j) + ρjw
(j));

j := j + 1; go to S1.

The projection operator Proj, may be defined pointwise with respect to t as
discussed in previous sections; that is,

(Proj(u))(t) = Proj(u(t)) a.e. t ∈ [0, L].

Moreover the pointwise projection operator should be defined Proj : IR →
{0, ũ, ū} because, as demonstrated earlier, optimal control takes only the val-
ues 0, ũ, and ū. Therefore we use the minimum distance to one of the three
points. To simplify the explanation we give the corresponding file function
Proj2.m directly (notice that in this function file util stands for ũ and ubar
for ū).

function y = Proj2(u)
global ubar util
if u <= 0

y = 0 ;
return

end
if u >= ubar

y = ubar ;
return

end
z(1) = u ;
z(2) = abs(u − util) ;
z(3) = abs(u − ubar) ;
[zm,j] = min(z) ;
if j == 1

y = 0 ;
return

end
if j == 2

y = util ;
return

end
y = ubar ;

As we explain later we have also used the classical projection from IR to [0, ū]
in order to improve the behavior of the algorithm (program). We also give the
corresponding function file Proj.m.
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function y = Proj(u)
global ubar
y = u ;
if u < 0

y = 0 ;
end
if u > ubar

y = ubar ;
end

The numerical tests are tedious for this problem. We have used more than a
program:

• harv1.m to compute the cost value corresponding to the control defined
by formula (3.39).

• harv2.m to compute the optimal pair (with Proj.m and stopping criteria
SC1, SC2, and SC3).

• harv35.b to compute the optimal pair (with Proj2.m and stopping criteria
SC1 and SC4).

• harv35a.m to compute the optimal pair using as starting control the op-
timal one furnished by harv2.m (with Proj2.m and stopping criteria SC1
and SC4).

Except for harv1.m, the other three programs are quite similar, the differences
being mentioned above. We now give the differences between harv2.m and
the tutorial program CONT0.m from Section 3.2. Because we take δ = 0 for
the numerical tests, the program contains the formulae from the projected
gradient algorithm above written for δ = 0.
We start with by PART1 which contains statements for global variables (r, k,
a, ubar, ind, h, uold, u, x), input statements for data, and also the sequence

t = 0:h:L ;
t = t′ ;
n = length(t) ;

For harv35b.m and harv35a.m, which use Proj2.m, we introduce the sequence
from harv1.m to compute xtil and util.

% compute xtil=x̃ and util=ũ
.....

% end of sequence for util and xtil

The only thing changed in PART 2 is the computation of the cost functional
value which reads

disp(’SE solved’) ;
for i = 1:n

q(i) = uold(i)*(a*x(i) − c) ;
end
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temp = trapz(t,q) ;
cvold = temp

The function file F1.m called by RK41.m is

function yout = F1(t,x)
global ind
global uold
yout = F(x) − uold(ind)*x ;

The function file F.m containing the function from formula (3.30) was already
given above. We now pass to PART 3. To solve the adjoint system, the function
file F3.m called by RK43.m becomes

function yout = F3(t,p)
global a
global ind
global uold
global x
yout = (p − a)*uold(ind) − Fder(x(ind))*p ;

The function file Fder.m gives the derivative of the function F (x) from formula
(3.30). It looks like

function y = Fder(x)
global r k
y = r*(1 − 2*x/k) ;

Another change in PART 3 concerns the computation of the gradient.

% S3 : compute the gradient
for i = 1:n

w(i) = (a − p(i))*x(i) − c ;
end
disp(’GRADIENT COMPUTED’) ;

Other changes are made in PART 5. We start with the computation of the
steplength.

for count = 1:maxro
count
for i = 1:n

temp = uold(i) + robar*w(i) ;
u(i) = Proj(temp) ; % use Proj2 for harv35a,b.m

end

The function file F2.m called by RK42.m is now

function yout = F2(t,x)
global ind
global u
yout = F(x) − u(ind)*x ;
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The new cost value is computed by

for i = 1:n
q1(i) = u(i)*(a*x1(i) − c) ;

end
temp = trapz(t,q1) ;
cv = temp ;

Finally the test for the cost value changes because we are dealing with a
maximization problem. For clarity we give the whole program sequence until
the end of the count loop. Compare it with the corresponding sequence from
the program CONT0.m from Section 3.2 which is made for a minimization
problem.

if cv <= cvold % no increase of cost for maximization
robar = bro * robar

else
flag2 = 1 ;
break

end
end % for count

The program is complete for each version. We pass to numerical experiments.

Example 1. We take L = 10, r = 0.3, k = 5, a = 1, c = 1, δ = 0. We therefore
obtain x̃ = 3 and ũ = 0.12. Hence we choose x(0) = 2, ū = 1.5, and u(0) = 1.4.
We run programs as follows.

• harv1.m which uses formula (3.39). We have also tested the parameter ε1
and we have obtained the following cost values for h = 0.001:

ε1 cost
10−1 1.7646
10−2 1.7537
10−3 1.7665
10−4 0.7232

Notice the poor result for ε1 = 10−4. This means that ε1 is too tiny.
• harv35b.m (with b = 0.6, h = 0.001, ε1 = 10−3, maxro = 20) has obtained

after 22 iterations (including ρ modifications) the cost value 1.9724 and
the control u(t) from Figure 3.8. The program was not able to improve
the cost value for the precision ε = 10−4. This is why next we have used
harv2.m with Proj.m.

• harv2.m with the classical projection has obtained after 70 iterations the
cost value 2.5767 with convergence by SC2. The corresponding control u(t)
is given in Figure 3.9.

Notice that the control u(t) uses in many points the values 0, ũ = 0.12, and
ū. At the end we save the optimal control into file u2.txt by the statement
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Fig. 3.8. Control by harv35b.m and Proj2.m
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Fig. 3.9. Control by harv2.m and Proj.m

save u2.txt unew -ascii

• harv35a.m was started using the control saved by harv2.m. This was done
by the sequence

load u2.txt
for i = 1:n

uold(i) = u2(i) ;
end
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After 18 other iterations (including the ones for ρ) we have obtained a better
value for the cost functional, namely 2.5791. The corresponding control u(t)
is presented in Figure 3.10.
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Fig. 3.10. Control by harv35a.m and Proj2.m

Finally we write the numerical results for the cost functional into a centralized
table. The increase of the cost values is quite interesting. We have obtained

program cost
harv1.m 1.7665
harv35b.m 1.9724
harv2.m 2.5767
harv35a.m 2.5791

Example 2. The data are as in Example 1, except for the following changes.
We modify the initial values and we take u(0) = 0.12 and x(0) = 3. With the
same program policy, we have obtained the following numerical results.

program cost
harv1.m 2.4
harv35b.m 2.8989
harv2.m 3.2252
harv35a.m 3.2276

Example 3. The data are as in Example 1, except for the following changes. We
now take L = 5, ε = 10−3, and the initial values u(0) = 0.12 and x(0) = 2.
With the same program policy, we have obtained the following numerical
results.
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program cost
harv1.m 0.5489
harv35b.m 1.3534
harv2.m 1.3726
harv35a.m 1.3789
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Exercises

3.1. We consider the following optimal control problem.

Minimize
1
2

∫ 1

0

(u2(t) + x2(t))dt,

subject to u ∈ L2(0, 1), where x = xu is the solution to
{
x′(t) = u(t), t ∈ (0, 1)

x(0) = 1.

Find the optimality conditions (and the gradient Φu(u)) and obtain the opti-
mal control.
Hint. This is a particular case of the problem in Section 3.2. Let pu be the
adjoint state. The adjoint problem is

{
p′(t) = −xu(t), t ∈ (0, 1)

p(1) = 0.
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The gradient is
Φu(u) = u+ pu.

The optimal control is

u∗(t) = − sinh(1 − t)
cosh(1)

.

The corresponding optimal state x∗ = xu∗
is

x∗(t) =
cosh(1 − t)

cosh(1)
,

where
sinh(t) =

1
2
(et − e−t),

cosh(t) =
1
2
(et + e−t).

Write a program to approximate the optimal pair by a gradient method and
compare the numerical results with the mathematical ones.

3.2. Add the term ϕ(xu(T )) to the cost functional of Problem (P1′) from
Section 3.1. Calculate what is necessary and write an algorithm similar to the
gradient-type one in Section 3.1.

3.3. Consider the following optimal control problem,

Maximize
∫ T

0

u(t)xu(t)dt− c

∫ T

0

u(t)2dt,

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤M a.e. t ∈ (0, T ), where xu is the solution
of the following logistic model of population dynamics:

{
x′(t) = rx(t) − kx(t)2 − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here c, r, k, x0 are positive constants. Calculate the gradient of the cost func-
tional and write a program using a gradient-type algorithm.

Hint. See Exercise 2.5 in the previous chapter and take into account the control
constraints (a projected gradient method is necessary).

3.4. Problem (PS) is a minimization one, whereas (PS′) is a maximization
one. Transform the program stock1.m from Section 3.3, written for (PS), into
a program to solve Problem (PS′) numerically. Make the same numerical tests
and notice if you obtain opposite values for the cost functional.

Hint. For the actualization of the cost value (Armijo method) also take a look
at program harv2.m from Section 3.4 which is written for a maximization
problem.
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3.5. Consider the optimal control problems from Working Example 1 in Chap-
ter 2. For each of them calculate the gradient of the cost functional and write
a program using a gradient-type algorithm.

3.6. Consider the optimal control problems from Working Example 2 in Chap-
ter 2. For each of them calculate the gradient of the cost functional and write
a program using a gradient-type algorithm.





4

Optimal harvesting for age-structured

population

This chapter is intended to be a bridge towards scientific research on optimal
control theory. The problems investigated here are much more complex than
those presented in the previous chapters. We focus on optimal harvesting
problems for age-structured population dynamics, which are extremely im-
portant from a biological as well as from an economical point of view. Even if
the degree of complexity of the optimal control problems investigated in this
chapter is much higher than before we can see that the steps we have to follow
are the same as for the optimal control problems investigated in Chapter 2.

Age is a parameter of great importance in population dynamics. This chap-
ter is devoted to the study of one of the most important age-dependent models
describing the dynamics of a single population species. The basic properties
of the solutions are investigated. Numerical solutions with MATLAB R© are
obtained. We also treat an optimal harvesting problem related to the linear
age-dependent population dynamics. The optimal harvesting effort is approx-
imated using MATLAB. An optimal control for age-dependent population
dynamics with periodic vital rates and logistic term is also investigated.

4.1 The linear age-structured population dynamics

This section is devoted to some basic properties of the solutions to a linear
model of population dynamics with an age-structure. The results presented
here are extremely important in view of the investigation of optimal harvesting
problems.

Throughout this chapter A, T ∈ (0,+∞), QT = (0, A)× (0, T ) and Dy is
the directional derivative of y with respect to direction (1, 1); that is,

Dy(a, t) = lim
h→0

y(a+ h, t+ h) − y(a, t)
h

.
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DOI 10.1007/978-0-8176-8098-5 4, c© Springer Science+Business Media, LLC 2011
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Consider a single biological population species and denote by y(a, t) the
number (density) of individuals of age a ∈ [0, A] at time t ∈ [0, T ]. Assume
that y is smooth enough.

Let μ(a, t) be the mortality rate of individuals of age a ∈ [0, A] at time t ∈
[0, T ]. This gives the proportion of dying individuals and depends on age a
and time t. The balance law shows that the number of individuals of age a at
the moment t that die in the time interval [t, t+ dt] is

y(a, t) − y(a+ dt, t+ dt) = μ(a, t)y(a, t)dt.

Dividing now by dt we obtain

Dy(a, t) + μ(a, t)y(a, t) = 0.

If a certain infusion of population (inflow) occurs then the population dynam-
ics is described by the equation:

Dy(a, t) + μ(a, t)y(a, t) = f(a, t), (a, t) ∈ QT , (4.1)

where A is the maximal age for the population species and f(a, t) is the density
of the inflow of population of age a at time t.

Equation (4.1) has been proposed by F. R. Sharpe, A. Lotka, and by
A. G. McKendrick (see, e.g., [Ani00], [Ian95], [Thi03], and [Web85]). If y
is sufficiently smooth, then

Dy(a, t) =
∂y

∂a
+
∂y

∂t
;

that is why in many papers Sharpe–Lotka–McKendrick’s equation appears as

∂y

∂a
(a, t) +

∂y

∂t
(a, t) + μ(a, t)y(a, t) = f(a, t),

which is a first-order partial differential equation.

The birth process is described by the renewal law:

y(0, t) =
∫ A

0

β(a, t)y(a, t)da, t ∈ (0, T ), (4.2)

where y(0, t) is the number of newborns at time t and β(a, t) is the fertility
rate and gives the proportion of newborn population at moment t with parents
of age a. Moreover, (4.2) is a nonlocal boundary condition.

The initial distribution of the population is given by

y(a, 0) = y0(a), a ∈ (0, A), (4.3)

where y0 is a known function.
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In real situations it has been observed that for any fixed t ≥ 0, the graphs of
β(·, t) and μ(·, t) are as in Figure 4.1 (at the end of this section). The graphs
correspond to β(a) = 10a2(A−a)(1 + sin(π/Aa)) and μ(a) = exp(−a)/(A−a),
with A = 1; note that A has been rescaled to 1.

The following hypotheses on β, μ, and y0 are in accordance with practical
observations on biological populations.

(H1) β ∈ L∞(QT ), β(a, t) ≥ 0 a.e. (a, t) ∈ QT .

(H2) μ ∈ L1
loc([0, A) × [0, T ]), μ(a, t) ≥ 0 a.e. (a, t) ∈ QT .

(H3) y0 ∈ L1(0, A), y0(a) ≥ 0 a.e. a ∈ (0, A).
f ∈ L1(QT ), f(a, t) ≥ 0 a.e. (a, t) ∈ QT .

By a solution to (4.1)–(4.3) we mean a function y ∈ L∞(0, T ;L1(0, A)), abso-
lutely continuous along almost every characteristic line (of equation a− t = k,
(a, t) ∈ QT , k ∈ IR), that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

Dy(a, t) + μ(a, t)y(a, t) = f(a, t) a.e. in QT

y(0, t) =
∫ A

0

β(a, t)y(a, t)da a.e. t ∈ (0, T )

y(a, 0) = y0(a) a.e. a ∈ (0, A).

(4.4)

Because a solution y to (4.1)–(4.3) is absolutely continuous along almost every
characteristic line, relations (4.4)2,3 are meaningful; by y(0, t) and y(a, 0) we
mean:

y(0, t) = lim
ε→0+

y(ε, t+ ε) a.e. t ∈ (0, T ),

y(a, 0) = lim
ε→0+

y(a+ ε, ε) a.e. a ∈ (0, A).

Theorem 4.1. Problem (4.1)–(4.3) admits a unique solution. The solution is
nonnegative.

Proof. Assume that y is a solution to (4.1)–(4.3). The definition of a solution
allows us to conclude (by integrating along the characteristic lines) that

y(a, t) = exp
{−

∫ a

0

μ(s, t− a+ s)ds
}
b(t− a)

+
∫ a

0

exp
{−

∫ a

s

μ(τ, t− a+ τ)dτ
}
f(s, t− a+ s)ds

(4.5)

a.e. on {(a, t) ∈ QT ; a < t}, and

y(a, t) = exp
{−

∫ t

0

μ(a− t+ s, s)ds
}
y0(a− t)

+
∫ t

0

exp
{−

∫ t

s

μ(a− t+ τ, τ)dτ
}
f(a− t+ s, s)ds

(4.6)

a.e. on {(a, t) ∈ QT ; a > t}.
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Here we have denoted

b(t) =
∫ A

0

β(a, t)y(a, t)da a.e. t ∈ (0, T ). (4.7)

The properties of β and y allow us to conclude (via (4.7)) that b ∈ L∞(0, T ).
If we now assume that b ∈ L∞(0, T ), then y given by (4.5) and (4.6) is the
unique solution to

⎧
⎨

⎩

Dz(a, t) + μ(a, t)z(a, t) = f(a, t), (a, t) ∈ QT

z(0, t) = b(t), t ∈ (0, T )
z(a, 0) = y0(a), a ∈ (0, A).

(4.8)

Here, by a solution to (4.8) we mean a function z ∈ L∞(0, T ;L1(0, A)) abso-
lutely continuous along almost every characteristic line, that satisfies

⎧
⎪⎨

⎪⎩

Dz(a, t) + μ(a, t)z(a, t) = f(a, t) a.e. in QT

lim
ε→0+

z(ε, t+ ε) = b(t) a.e. t ∈ (0, T )

lim
ε→0+

z(a+ ε, ε) = y0(a) a.e. a ∈ (0, A).

The solution y of (4.1)–(4.3) satisfies (4.5) and (4.6), where b is given by (4.7).
So, we may infer that

b(t) =
∫ A

0

β(a, t)y(a, t)da

=
∫ t

0

β(a, t) exp
{−

∫ a

0

μ(s, t− a+ s)ds
}
b(t− a)da

+
∫ t

0

β(a, t)
∫ a

0

exp
{−

∫ a

s

μ(τ, t− a+ τ)dτ
}
f(s, t− a+ s)ds da

+
∫ A

t

β(a, t) exp
{−

∫ t

0

μ(a− t+ s, s)ds
}
y0(a− t)da

+
∫ A

t

β(a, t)
∫ t

0

exp
{−

∫ t

s

μ(a− t+ τ, τ)dτ
}
f(a− t+ s, s)ds da,

for almost all 0 < t < min{T,A}, and

b(t) =
∫ A

0

β(a, t)y(a, t)da

=
∫ A

0

β(a, t) exp
{−

∫ a

0

μ(s, t− a+ s)ds
}
b(t− a)da

+
∫ A

0

β(a, t)
∫ a

0

exp
{−

∫ a

s

μ(τ, t− a+ τ)dτ
}
f(s, t− a+ s)ds da,

for almost all min{T,A} = A < t < T (if A < T ).
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In conclusion, b satisfies the following Volterra integral equation

b(t) = F (t) +
∫ t

0

K(t, t− s)b(s)ds a.e. t ∈ (0, T ) (4.9)

(which is known as the renewal equation, or Lotka equation). Here

F (t) :=
∫ t

0

β(a, t)
∫ a

0

exp
{−

∫ a

s

μ(τ, t− a+ τ)dτ
}
f(s, t− a+ s)ds da

+
∫ A

t

β(a, t)
∫ t

0

exp
{−

∫ t

s

μ(a− t+ τ, τ)dτ
}
f(a− t+ s, s)ds da

+
∫ A

t

β(a, t) exp
{−

∫ t

0

μ(a− t+ s, s)ds
}
y0(a− t)da

for almost all 0 < t < min{T,A}, and

F (t) :=
∫ A

0

β(a, t)
∫ a

0

exp
{−

∫ a

s

μ(τ, t− a+ τ)dτ
}
f(s, t− a+ s)ds da

for almost all min{T,A} = A < t < T (if A < T ), and

K(t, a) :=
{
β(a, t)e−

∫ a
0 μ(s,t−a+s)ds a.e. (a, t) ∈ QT , a < t,

0 elsewhere .

Our hypotheses allow us to conclude that
{
K ∈ L∞(QT ), K(t, a) ≥ 0 a.e. (a, t) ∈ QT

F ∈ L∞(0, T ), F (t) ≥ 0 a.e. t ∈ (0, T ) . (4.10)

We prove via Banach’s fixed point theorem that the renewal equation has a
unique solution b ∈ L∞(0, T ). For this we consider the following norm on
L∞(0, T ).

‖w‖ = Ess supt∈(0,T )(e
−γt|w(t)|), w ∈ L∞(0, T ),

where γ > 0 is a constant indicated later; this norm is equivalent to the usual
norm on L∞(0, T ).

Consider the operator

F : L∞(0, T ) → L∞(0, T ),

such that

(Fw)(t) = F (t) +
∫ t

0

K(t, t− s)w(s)ds a.e. t ∈ (0, T ) .

For any b1, b2 ∈ L∞(0, T ):
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‖(Fb1)(t) − (Fb2)(t)‖
= Ess supt∈(0,T )

(
e−γt

∣∣
∫ t

0

K(t, t− s)(b1 − b2)(s)ds
∣∣
)

≤ Ess supt∈(0,T )

(
e−γt‖K‖L∞(QT )

∫ t

0

eγse−γs|(b1 − b2)(s)|ds
)

≤ Ess supt∈(0,T )

(
e−γt‖β‖L∞(QT ) · ‖b1 − b2‖ · 1

γ
eγt

)
.

Hence for any γ > ‖β‖L∞(QT ), F is a contraction on (L∞(0, T ), ‖ · ‖). By
Banach’s fixed point theorem we conclude the existence of a unique solution
b ∈ L∞(0, T ) to (4.9) and b is the limit in (L∞(0, T ), ‖ · ‖) of the sequence
{bn}, defined by

b0(t)= F (t) a.e. t ∈ (0, T ),

bn+1(t)= F (t) +
∫ t

0

K(t, t− s)bn(s)ds a.e. t ∈ (0, T ), n ∈ IN.
(4.11)

By (4.10) we deduce that bn(t) ≥ 0 a.e. t ∈ (0, T ), for all n ∈ IN , and, in
conclusion, b, the unique solution to (4.9), is nonnegative on (0, T ).

Consider now y given by (4.5) and (4.6), where b is the unique solution of
(4.9). The hypotheses (H1)–(H3), (4.5) and (4.6) allow us to conclude that
y(a, t) ≥ 0 a.e. in QT and that μy ∈ L1(QT ).

By again using (4.5) and (4.6), it follows that y is a solution to (4.1)–(4.3). The
solution is unique because b, the solution of (4.9), is unique and is nonnegative
because b, y0, f are nonnegative.

Theorem 4.2. If the mortality rate satisfies in addition

(H4)
∫ A

0

μ(a, t−A+ a)da = +∞ a.e. t ∈ (0, T ),

where μ is extended by zero on (0, A)× (−∞, 0), then the solution y to (4.1)–
(4.3) satisfies

lim
ε→0+

y(A− ε, t− ε) = 0 a.e. t ∈ (0, T ),

that is, y(A, t) = 0 a.e. t ∈ (0, T ).

Proof. By (4.6) we have that, for almost any t ∈ (0,min{T,A}), and for any
ε > 0 sufficiently small,

y(A− ε, t− ε) = exp
{−

∫ t−ε

0

μ(A− t+ s, s)ds
}
y0(A− t)

+
∫ t−ε

0

exp
{−

∫ t−ε

s

μ(A− t+ τ, τ)dτ
}
f(A− t+ s, s)ds

−→ exp
{−

∫ t

0

μ(A− t+ s, s)ds
}
y0(A− t)

+
∫ t

0

exp
{−

∫ t

s

μ(A− t+ τ, τ)dτ
}
f(A− t+ s, s)ds = 0,
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as ε→ 0+ (we have used Lebesgue’s theorem) because of (H4).

By (4.5) and (H4) we deduce that, for almost all t ∈ (A, T ) (if A < T ) and
for any ε > 0 sufficiently small,

y(A− ε, t− ε) = exp
{−

∫ A−ε

0

μ(s, t−A+ s)ds
}
b(t−A)

+
∫ A−ε

0

exp
{−

∫ A−ε

s

μ(τ, t− ε+ τ)dτ
}
f(s, t−A+ s)ds

−→ exp
{−

∫ A

0

μ(s, t−A+ s)ds
}
b(t−A)

+
∫ A

0

exp
{−

∫ A

s

μ(τ, t−A+ τ)dτ
}
f(s, t−A+ s)ds = 0,

as ε→ 0+.

Remark 4.3. If y0, β, μ, and f satisfy the more restrictive assumptions (as hap-
pens in real situations): y0 ∈ C([0, A]), β ∈ C(QT ), μ ∈ C([0, A)× [0, T ]), and
f ∈ C(QT ), then it follows, in the same manner as in the proof of Theorem 4.1,
that y, the solution to (4.1)–(4.3) is continuous on D1 = {(a, t) ∈ QT ; a> t}
and on D2 = {(a, t) ∈ QT ; a < t}.
Another extremely useful result is the following one.

Theorem 4.4. Let y be the solution of (4.1)–(4.3).

(i) If f(a, t) > 0 a.e. in QT , then y(a, t) > 0 a.e. in QT .
(ii) If βi, μi, y0i, fi satisfy (H 1)–(H 3) (i ∈ {1, 2}) and

β1(a, t) ≥ β2(a, t), μ1(a, t) ≤ μ2(a, t) a.e. in QT ,
y01(a) ≥ y02(a) a.e. in (0, A),
f1(a, t) ≥ f2(a, t) a.e. in QT ,

then y1(a, t) ≥ y2(a, t) a.e. in QT , where yi is the solution to (4.1)–(4.3),
corresponding to β := βi, μ := μi, y0 := y0i, f := fi, i ∈ {1, 2}.

Moreover, if fn → f in L1(QT ), and fn satisfy (H 3), then

yn → y

in L∞(0, T ;L1(0, A)), where yn are the solutions of (4.1)–(4.3) corresponding
to f := fn, respectively.

Proof. Theorem 4.1 allows us to conclude that the solution of (4.1)–(4.3) is
given by (4.5) and (4.6), where b, the solution of (4.5), is nonnegative.
If f(a, t) > 0 a.e. in QT , then (4.5) and (4.6) imply that y(a, t) > 0 a.e. in QT .

By (4.11) we have that the solution b of (4.5) can be obtained as the limit in
L∞(0, T ) of the following iterative sequence,
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⎧
⎨

⎩

bβ,μ,y0,f
0 (t) = F β,μ,y0,f (t),

bβ,μ,y0,f
n+1 (t) = F β,μ,y0,f (t) +

∫ t

0

Kβ,μ,y0,f (t, t− s)bβ,μ,y0,f
n (s)ds

(4.12)

a.e. t ∈ (0, T ), n ∈ IN∗, where F β,μ,y0,f and Kβ,μ,y0,f are f and K defined
earlier (they both depend on β, μ, y0, f and, we emphasize this).

If
β1(a, t) ≥ β2(a, t), μ1(a, t) ≤ μ2(a, t) a.e. in QT ,

y01(a) ≥ y02(a) a.e. in (0, A),

f1(a, t) ≥ f2(a, t) a.e. in QT ,

then

Kβ1,μ1,y01,f1(t, a) ≥ Kβ2,μ2,y02,f2(t, a) a.e. in QT ,

F β1,μ1,y01,f1(t) ≥ Fβ2,μ2,y02,f2(t) a.e. in (0, T ),

and by (4.12) we deduce bβ2,μ2,y02,f2(t) ≤ bβ1,μ1,y01,f1(t) a.e. in (0, T ). By (4.5)
and (4.6) we may conclude that y1(a, t) ≥ y2(a, t) a.e. in QT .

Finally, if fn → f in L1(QT ), then we infer that Fn → F in L∞(0, T ) (where
Fn is F corresponding to f := fn). Indeed,

Fn(t) − F (t)

=
∫ t

0

β(a, t)
∫ a

0

e−
∫ a

s
μ(τ,t−a+τ)dτ(fn − f)(s, t− a+ s)ds da

+
∫ A

t

β(a, t)
∫ t

0

e−
∫

t
s

μ(a−t+τ,τ)dτ(fn − f)(a− t+ s, s)ds da

for almost all t ∈ (0,min{T,A}), and

Fn(t) − F (t) =
∫ A

0

β(a, t)
∫ a

0

e−
∫ a

s
μ(τ,t−a+τ)dτ(fn − f)(s, t− a+ s)ds da

for almost all A = min{T,A} < t < T (if A < T ). Consequently, we get

‖Fn − F‖L∞(0,T ) ≤ ‖β‖L∞(QT ) · ‖fn − f‖L1(QT ),

and this implies Fn → F in L∞(0, T ) as n→ +∞.

By (4.9) and using Bellman’s lemma (e.g., Appendix A.2 and [Ani00]) we get
that bfn → b in L∞(0, T ), where bfn is the solution of (4.9) corresponding to
F := Fn (and consequently to f := fn).

From (4.5) and (4.6) it follows that yn → y in L∞(0, T ;L1(0, A)), and thus
we get the final conclusion.
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Remark 4.5. For any f ∈ L1(QT ), f(a, t) > 0 a.e. in QT , the solution y of
(4.1)–(4.3) satisfies

y(a, t) > 0 a.e. (a, t) ∈ QT .

This shows that indeed the biological meaning of A is that of the maximal
age of the population species.

Let us say a few words about the large time behavior of the solution of
a linear age-dependent population dynamics in the case of time-independent
vital rates and zero inflow. We deal with the following model,

⎧
⎪⎪⎨

⎪⎪⎩

Dy(a, t) + μ(a)y(a, t) = 0, (a, t) ∈ Q

y(0, t) =
∫ A

0

β(a)y(a, t)da, t ∈ (0,+∞)

y(a, 0) = y0(a), a ∈ (0, A),

(4.13)

where Q = (0, A) × (0,+∞).

Assume that β, μ and y0 satisfy

(A1) β ∈ L∞(0, A), β(a) ≥ 0 a.e. a ∈ (0, A) , β �= 0L∞(0,A);
(A2) μ ∈ L1

loc([0, A)), μ(a) ≥ 0 a.e. a ∈ (0, A) ,

∫ A

0

μ(a)da = +∞,

(A3) y0 ∈ L1(0, A), y0(a) > 0 a.e. a ∈ (0, A).

We denote

R =
∫ A

0

β (a) e−
∫ a
0 μ(s)dsda,

which is called the net reproduction rate.

Theorem 4.6. If (A 1)–(A3) hold, then

lim
t→∞ ‖y (t)‖L∞(0,A) = 0, if R < 1;

lim
t→∞ ‖y (t)‖L1(0,A) = +∞, if R > 1;

lim
t→∞ ‖y (t) − ỹ‖L∞(0,A) = 0, if R = 1,

where y is the solution to (4.13) and ỹ is a nontrivial steady-state of (4.13)1,2.

For the proof we recommend [Ani00] and [Ian95]. This result is emphasized
by numerical tests.

Remark 4.7. Assume that (A1)–(A3) hold, and that y0 ∈ C([0, A]). If the
following compatibility condition is satisfied

(Ac) y0(0) =
∫ A

0

β(a)y0(a)da,
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then it is possible to prove that b, the solution of (4.9), is continuous, b(0) =
y0(0), and consequently by (4.5) and (4.6) we deduce that y ∈ C([0, A] ×
[0,+∞)) (see [Ani00]).

If the compatibility condition (Ac) is not satisfied, then {(a, a); a ∈ [0, A)}
is a discontinuity line for y, the solution to (4.13). This fact is also easily
observed from the graph of y obtained with MATLAB.

The numerical solution

We now build a Euler-type approximation for system (4.1)–(4.3), with f ≡ 0.
The approximation takes into account the fact that the approach in Theorem
4.1 is based on integration over the characteristic lines. We first introduce the
grids

ai = (i− 1)h, i = 1, 2, . . . ,M

and
tj = (j − 1)h, j = 1, 2, . . . , N,

where h > 0 is the grid step, and the right-hand side limits correspond to A
and T , respectively, according to the formulae

M = 1 +A/h, N = 1 + T/h.

For the approximates of functions we use the general notation

ϕ(ai, tj) ≈ ϕ
(j)
i .

We discretize Equation (4.1) at (ai, tj), and get

y
(j)
i − y

(j−1)
i−1

h
+ μ

(j)
i y

(j)
i = 0. (4.14)

We have used here the backward finite-difference approximation for the first
derivative. Let ϕ be a function of C2-class. By Taylor’s formula we have

ϕ(x − h) = ϕ(x) − hϕ′(x) +
h2

2
ϕ′′(ξ),

for some ξ ∈ (x− h, x) . This yields

ϕ′(x) =
ϕ(x) − ϕ(x− h)

h
+O(h). (4.15)

Note that, in order to obtain (4.14), formula (4.15) is applied along the diag-
onal of the combined grids over [0, A] × [0, T ]. From (4.14) we readily get

y
(j)
i = (1 + hμ

(j)
i )−1y

(j−1)
i−1 .

Because we take μ to be independent of t for our numerical tests, the above
formula becomes

y
(j)
i = (1 + hμi)−1y

(j−1)
i−1 . (4.16)
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To approximate the integral in Equation (4.2), we use the iterated trapezoidal
formula, according to which

∫ d

c

ϕ(x)dx =
h

2
[ϕ(c) + ϕ(d)] + h

n−1∑

i=2

ϕ(xi) +O(h2),

where h > 0 is the step of the grid

c = x1 < x2 < · · · < xn = d,

and we have assumed that ϕ ∈ C2([c, d]).

We now reassemble the approximation methods to build a numerical algorithm
for system (4.1)–(4.3). We put z(i, j) here instead of z(ai, tj).

Algorithm 4.1

/* Compute the solution on the first time level (j = 1) from the initial
condition (4.3) */

for i = 1 to M
y(i, 1) = y0(a(i))

end–for
/* Compute the solution ascending with respect to time levels, using for-

mula (4.16), and the trapezoidal rule */
for j = 2 to N

for i = 2 to M
y(i, j) = y(i− 1, j − 1)/(1 + h ∗ μ(i))

end–for
for i = 1 to M

w(i) = β(i) ∗ y(i, j)
end–for
y(1, j) = trapz(a,w)

end–for

Here trapz is a function for numerical integration. Let us point out that y(1, j)
is unknown (not yet computed) in the loop

for i = 1 to M
w(i) = β(i) ∗ y(i, j)

end–for

Therefore w(1) is also unknown at the moment of the call trapz(a,w). This is
a logical inference, but recall that for our numerical tests we take β(1) = 0 and
hence w(1) = 0. Hence the statement y(1, j) = trapz(a,w) works properly.

We now give the program corresponding to β(a, t) = B · a2(A − a)(1 +
sin(π/Aa)), with B > 0, μ(a, t) = exp(−a)/(A− a), y0(a) = exp(−a2/2):
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% file pop1.m
% Program to compute the density of population
% using the backward Euler method ( step is h )
clear
A = input(’The maximal age is A : ’) ;
T = input(’The final time is T : ’) ;
h = input(’The discretization parameter is h : ’) ;
ct = input(’constant for beta : ’) ; % constant B>0 for β
lw = input(’LineWidth : ’) ;
M = 1 + A/h
N = 1 + T/h
for i = 1:M

a(i) = (i − 1)*h;
end
for j = 1:N

t(j) = (j − 1)*h;
end
beta = ct*a.∧2.*(A − a).*(1 + sin(pi/A*a)) ;
miu = exp(−a)./(A − a) ;
R = trapz(a,beta.*exp(−miu))
y = zeros(M,N);
for i = 1:M

y(i,1) = exp(−0.5*a(i)∧2);
end
for j = 2:N

j
for i = 2:M

y(i,j) = y(i − 1,j − 1)/(1 + h*miu(i)) ;
end
for i = 1:M

w(i) = y(i,j) ;
end
y(1,j) = trapz(a,beta.*w) ;

end
for i = 1:M

for j = 1:N
age(i,j) = a(i) ;
time(i,j) = t(j) ;

end
end
% make figures
K = max(max(y)) ;
meshz(age,time,y) ; % or mesh
axis([0 A 0 T 0 K])
xlabel(’\bf Age a’,’FontSize’,16)
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ylabel(’\bf Time t’,’FontSize’,16)
zlabel(’\bf y(a,t)’,’FontSize’,16)
figure(2)
plot(a, beta,’LineWidth’,lw) ; grid
title(’\bf \beta and \mu’,’FontSize’,16)
xlabel(’\bf a’,’FontSize’,16)
hold on
plot(a, miu,’r’,’LineWidth’,lw) ;
text(0.6,4,’\bf \beta(a)’,’FontSize’,16)
text(0.8,6,’\bf \mu(a)’,’FontSize’,16)
hold off

The coordinates of the text statements depend on the graphs.
To obtain a more accurate approximation for Equation (4.1), we introduce
the centered finite-difference scheme. Let now ϕ be a function of C3-class. By
Taylor’s formula we have

ϕ(x + h) = ϕ(x) + hϕ′(x) +
h2

2
ϕ′′(x) +

h3

6
ϕ′′′(ξ1).

ϕ(x − h) = ϕ(x) − hϕ′(x) +
h2

2
ϕ′′(x) +

h3

6
ϕ′′′(ξ2).

By subtracting the two formulae above we obtain

ϕ′(x) =
ϕ(x+ h) − ϕ(x− h)

2h
+O(h2).

Using this, we get the corresponding finite-difference equation to approximate
(4.1)

y
(j+1)
i+1 − y

(j−1)
i−1

2h
+ μ

(j)
i y

(j)
i = 0.

Taking into account that μ(j)
i = μi, we readily get

y
(j+1)
i+1 = y

(j−1)
i−1 − 2hμiy

(j)
i . (4.17)

Now, formula (4.17) replaces (4.16) and we obtain the following algorithm.

Algorithm 4.2

/* Compute the solution on the first time level (j = 1) from the initial
condition (4.3) */

for i = 1 to M
y(i, 1) = y0(a(i))

end–for
/* Compute the solution for the time level j = 2 using formula (4.16) and

the trapezoidal rule */
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j = 2
i = 2 to M

y(i, j) = y(i− 1, j − 1)/(1 + h ∗ μ(i))
end–for
for i = 1 to M

w(i) = β(i) ∗ y(i, j)
end–for
y(1, j) = trapz(a,w)
/* Compute the solution ascending with respect to time levels j = 3, . . . , N

using formula (4.17) and the trapezoidal rule */
for j = 2 to N − 1

for i = 2 to M − 1
y(i+ 1, j + 1) = y(i− 1, j − 1) − 2 ∗ h ∗ μ(i) ∗ y(i, j)

end–for
i = 2
y(i, j + 1) = y(i− 1, j)/(1 + h ∗ μ(i− 1))
for i = 1 to M

w(i) = β(i) ∗ y(i, j + 1)
end–for
y(1, j + 1) = trapz(a,w)

end–for

Let us point out that, for j = 2 and for i = 2, respectively, we have to use a
one-step formula. For example, y(:, 1) is computed from the initial condition
(4.3), then y(:, 2) is computed by formula (4.16), and finally y(:, j) is computed
by formula (4.17) for j = 3, . . . ,N.
We invite the reader to write a program for Algorithm 4.2, using pop1.m as
the model.
For a numerical test, we take A = 1, T = 1, h = 0.02, B = 10, lw = 4. With
both algorithms above we obtain accurate graphs for β and μ (Figure 4.1)
and y (Figure 4.2). To obtain Figure 4.2, we have rotated the original figure
produced by the program.

Remark 4.8. The discontinuity along the line of equation a = t occurs because
the initial datum y0 ∈ C([0, A]) taken by us does not satisfy the compatibility
condition

y0(0) =
∫ A

0

β(a)y0(a)da.

For more details see [Ani00].

The vectors beta, miu, and y(:, 1) from the above programs, which correspond
to the grid-values of the functions β, μ, and y0, that is,

beta(i) = β(ai), miu(i) = μ(ai), y(i, 1) = y0(ai), i = 1, 2, . . . ,M,
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can be loaded from files. Suppose that the values can be found in the files
”beta.txt” , ”miu.txt”, and ”y0.txt”, with the format one value per record.
Then we introduce the following program sequence.
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load miu.txt
miu = miu′ ; % transform into a row vector
load beta.txt
beta = beta′ ; % transform into a row vector
load y0.txt
y0 = y0′ ; % transform into a row vector

4.2 The optimal harvesting problem

This section concerns an optimal harvesting problem governed by a linear
age-structured population dynamics. The corresponding PDE model was pre-
sented in the previous section. Our purpose is to prove the existence of an
optimal control, obtain first-order necessary conditions of optimality, and use
them to build a numerical algorithm. This algorithm leads to corresponding
programs to approximate optimal control (and the optimal value of the cost
functional).

The problem investigated here has great importance, both from an eco-
nomical point of view (because it indicates the optimal strategy) as well as
from a biological point of view.
We study an optimal harvesting problem; that is,

Maximize
∫ T

0

∫ A

0

u(a, t)yu(a, t)da dt, (OHP)

subject to u ∈ K = {w ∈ L∞(QT ); 0 ≤ w(a, t) ≤ L a.e. in QT}, where yu is
the solution to⎧
⎪⎪⎨

⎪⎪⎩

Dy(a, t) + μ(a, t)y(a, t) = f(a, t) − u(a, t)y(a, t), (a, t) ∈ QT

y(0, t) =
∫ A

0

β(a, t)y(a, t)da, t ∈ (0, T )

y(a, 0) = y0(a), a ∈ (0, A).

(4.18)

Here L > 0, and K is the set of constrained controls. u ∈ K is the control,
or the harvesting effort. u plays the role of an additional mortality rate. The
integral

∫ T

0

∫ A

0
u(a, t)yu(a, t)da dt represents the total harvest.

Our goal is to find the control (the harvesting effort) that gives the maximal
harvest: the optimal control (or the optimal harvesting effort).

The approach in this section is inspired by the paper [AA05].
For the sake of simplicity assume that assumptions (H1)–(H4) hold.
Because μ := μ + u satisfies (H2) (for any u ∈ K), we conclude that system
(4.18) has a unique solution yu. This solution is nonnegative.

Existence of an optimal control
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Theorem 4.9. Problem (OHP) admits at least one optimal control.

Proof. Define

Ψ(u) =
∫ T

0

∫ A

0

u(a, t)yu(a, t)da dt, u ∈ K

and let
d = sup

u∈K
Ψ(u).

By Theorem 4.4 we get that

0 ≤ Ψ(u) ≤ L

∫ T

0

∫ A

0

y0(a, t)da dt < +∞

(y0 is the solution of (4.18) corresponding to u ≡ 0), for any u ∈ K, and
consequently d ∈ [0,+∞).

Let {un}n∈IN∗ ⊂ K be a sequence of controllers satisfying

d− 1
n
< Ψ(un) ≤ d.

The same Theorem 4.4 allows us to conclude that

0 ≤ yun(a, t) ≤ y0(a, t) a.e. in QT

and so, on a subsequence, also denoted by {yun}, we have

yun −→ y∗ weakly in L2(QT ).

We recall now the following corollary of Mazur’s theorem (see [BP86]).

Corollary 4.10. (Mazur) Let {xn}n∈IN be a sequence in a real Banach space
X that is weakly convergent to x ∈ X. Then there exists a sequence {yn}n∈IN ⊂
X, yn ∈ conv{xk; k ≥ n+1}, n ∈ IN , such that {yn}n∈IN converges (strongly)
to x.

By using this corollary we obtain a sequence {ỹn} satisfying

ỹn =
kn∑

i=n+1

λn
i y

ui , λn
i ≥ 0,

kn∑

i=n+1

λn
i = 1

(kn ≥ n+ 1), and
ỹn → y∗ in L2(QT ).

Let the controls ũn be defined as follows.

ũn(a, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑kn

i=n+1 λ
n
i y

ui(a, t)ui(a, t)
∑kn

i=n+1 λ
n
i y

ui(a, t)
, if

∑kn

i=n+1 λ
n
i y

ui(a, t) �= 0,

0 if
∑kn

i=n+1 λ
n
i y

ui(a, t) = 0.
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These controls satisfy ũn ∈ K and

ỹn(a, t) = yũn(a, t) a.e. in QT .

We can take a subsequence (also denoted by {ũn}) such that
⎧
⎪⎨

⎪⎩

ũn → u∗ weakly in L2(QT ),

Ψ(ũn) =
kn∑

i=n+1

λn
i Ψ(ui) → d as n→ +∞,

and we may infer that

d = lim
n→+∞Ψ(ũn) =

∫ T

0

∫ A

0

u∗(a, t)y∗(a, t)da dt. (4.19)

On the other hand the convergence ũn → u∗ weakly in L2(QT ) implies that
yũn → yu∗

weakly in L2(QT ) and this leads to

y∗(a, t) = yu∗
(a, t) a.e. in QT

(because the weak limit is unique). By (4.19) we get that d = Ψ(u∗) and
consequently u∗ is an optimal control for (OHP).

The maximum principle

Theorem 4.11. Assume in addition that f(a, t) > 0 a.e. in QT . If u∗ is an
optimal control for Problem (OHP) and p is the solution of

⎧
⎨

⎩

Dp− μp = u∗(1 + p) − β(a, t)p(0, t), (a, t) ∈ QT

p(A, t) = 0, t ∈ (0, T )
p(a, T ) = 0, a ∈ (0, A),

(4.20)

then we have

u∗(a, t) =
{

0 if 1 + p(a, t) < 0
L if 1 + p(a, t) > 0. (4.21)

Proof. For any v ∈ L∞(QT ), such that u∗ + εv ∈ K and for any ε > 0
sufficiently small, we get

∫ T

0

∫ A

0

u∗yu∗
da dt ≥

∫ T

0

∫ A

0

(u∗ + εv)yu∗+εvda dt,

and this implies that
∫ T

0

∫ A

0

u∗
yu∗+εv − yu∗

ε
da dt+

∫ T

0

∫ A

0

vyu∗+εvda dt ≤ 0. (4.22)

The convergence yu∗+εv → yu∗
in L∞(0, T ;L1(0, A)), as ε→ 0+ follows by

Theorem 4.4.
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Lemma 4.12. The following convergence holds

1
ε

[
yu∗+εv − yu∗]→ z in L∞(0, T ;L1(0, A)), as ε→ 0+,

where z is the solution of
⎧
⎪⎪⎨

⎪⎪⎩

Dz(a, t) + μ(a, t)z(a, t) = −vyu∗ − u∗z, (a, t) ∈ QT

z(0, t) =
∫ A

0

β(a, t)z(a, t)da, t ∈ (0, T )

z(a, 0) = 0, a ∈ (0, A).

(4.23)

Proof of the lemma. Existence and uniqueness of z, the solution of (4.23),
follows by Theorem 4.1. Denote by

wε(a, t) =
1
ε

[
yu∗+εv(a, t) − yu∗

(a, t)
]− z(a, t), (a, t) ∈ QT .

It is obvious that wε is the solution of
⎧
⎪⎪⎨

⎪⎪⎩

Dw(a, t) + μ(a, t)w(a, t) = −u∗w − v
[
yu∗+εv − yu∗]

, (a, t) ∈ QT

w(0, t) =
∫ A

0

β(a, t)w(a, t)da, t ∈ (0, T )

w(a, 0) = 0, a ∈ (0, A).

Because yu∗+εv − yu∗ −→ 0 in L∞(0, T ;L1(0, A)) as ε → 0+ we infer via
Theorem 4.4 that wε → 0 in L∞(0, T ;L1(0, A)) as ε→ 0+ and this concludes
the proof of the lemma.

Proof of Theorem 4.11, continued. By passing to the limit in (4.22) we may
conclude ∫ T

0

∫ A

0

(u∗z + vyu∗
)da dt ≤ 0. (4.24)

By multiplying (4.20)1 by z and integrating over [0, T ]× [0, A] we get:
∫ T

0

∫ A

0

(Dp− μp)z da dt =
∫ T

0

∫ A

0

[u∗(1 + p)z − β(a, t)p(0, t)z(a, t)]da dt.

By using (4.20) and (4.23)2, after some calculation, we obtain

−
∫ T

0

∫ A

0

p(Dz + μz)da dt =
∫ T

0

∫ A

0

u∗(1 + p)z da dt. (4.25)

If we use (4.25) we get that
∫ T

0

∫ A

0

pvyu∗
da dt =

∫ T

0

∫ A

0

u∗z da dt,

and by (4.24) it follows that



164 4 Optimal harvesting for age-structured population

∫ T

0

∫ A

0

v(a, t)(1 + p(a, t))yu∗
(a, t)da dt ≤ 0,

for any v ∈ L∞(QT ), such that u∗ + εv ∈ K, for any ε > 0 sufficiently small.
This implies (along the same lines as in Chapter 2) that

u∗(a, t) =

⎧
⎨

⎩

0 if (1 + p(a, t))yu∗
(a, t) < 0

L if (1 + p(a, t))yu∗
(a, t) > 0.

Because f(a, t) > 0 a.e. in QT , we conclude that yu∗
(a, t) > 0 a.e. in QT , and

consequently (4.21) holds.

Remark 4.13. As a consequence of Theorem 4.11 we obtain that p (the solution
of (4.20)) is a solution of

⎧
⎨

⎩

Dp− μp = L(1 + p)+ − β(a, t)p(0, t), (a, t) ∈ QT

p(A, t) = 0, t ∈ (0, T )
p(a, T ) = 0, a ∈ (0, A).

(4.26)

For more details including uniqueness see [Ani00] and [AA05].

The uniqueness of the optimal control is clarified by the following result.

Remark 4.14. Let u∗ be an optimal control for (OHP). Assume in addition
that f(a, t) > 0 a.e. in QT , and that

(H5)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ(a, t) > 0 a.e. in QT ,

and, for almost any t ∈ (0, T ),
β

μ
(·, t)

is not a strictly positive constant on any subset
of positive measure.

Under these additional conditions, equation (4.20)1 implies that the set

D = {(a, t) ∈ QT ; p(a, t) = −1}
has Lebesgue measure zero (p is the solution of (4.20)), and u∗ is a bang-bang
control (u∗ takes only a finite number of values, almost everywhere).

In addition, the optimal control is unique.

Remark 4.15. If the hypotheses in the previous remark hold, then we may
conclude that the adjoint state p (which is also the solution of (4.26)) does
not depend on f or on y0.

Denote by u∗ this optimal control.

The last remark allows us to formulate the following result for the general
case f(a, t) ≥ 0 a.e. in QT :
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Theorem 4.16. If (H 1)–(H 4) hold, then the control u∗ is optimal also for
Problem (OHP) corresponding to nonnegative inflow f.

Proof. Consider fn ∈ L1(QT ), such that fn(a, t) > 0 a.e. in QT and fn → f
in L1(QT ) (as n → +∞). Denote by Ψn(u) the cost function corresponding
to f := fn in Problem (OHP), and by yu

n the solution to (4.18) corresponding
to u and f := fn.

Theorem 4.4 allows us to conclude that for any u ∈ K,

yu
n → yu

in L∞(0, T ;L1(0, A)), as n→ +∞. This implies

Ψn(u) → Ψ(u) as n→ +∞.

Because for any u ∈ K we have Ψn(u∗) ≥ Ψn(u), and by using the last
convergence, we conclude that u∗ is an optimal control for (OHP).

Remark 4.17. If (H 1)–(H4) hold, then (OHP) admits a unique optimal control
u∗. In order to find u∗ we first determine the solution p of (4.26). The optimal
control is now given by (4.21).

The numerical solution

Theorem 4.11 and its consequence derived in formula (4.26) offer a simple
way to get a numerical solution for the optimal control problem. Here is the
algorithm.

• OH1: Compute p as the solution of Equation (4.26); that is,
⎧
⎨

⎩

Dp− μp = L(1 + p)+ − β(a)p(0, t), (a, t) ∈ QT

p(A, t) = 0, t ∈ (0, T )
p(a, T ) = 0, a ∈ (0, A).

• OH2: Compute the optimal control u∗ according to formula (4.21).

Problem (OH1) is solved descending with respect to time levels.

Again using the backward finite-difference approximation for the differential
operator we discretize the first equation (for p) by an explicit method

p
(j)
i − p

(j−1)
i−1

h
− μip

(j)
i = LΠ(p(j)

i ) − βip
(j)
1 . (4.27)

Here we have introduced the function

Π(p) = (1 + p)+.
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We therefore get

p
(j−1)
i−1 = (1 − hμi)p

(j)
i − h[LΠ(p(j)

i ) − βip
(j)
1 ].

The corresponding loops to compute p are:

for j = 1 to N
p(M, j) = 0

end–for
for i = 1 to M

p(i, N) = 0
end–for
for j = N down to 2

for i = 2 to M
temp = h ∗ (L ∗ pp(p(i, j)) − β(i) ∗ p(1, j))
p(i− 1, j − 1) = (1 − h ∗ μ(i)) ∗ p(i, j) − temp

end–for
end–for

Here pp is the positive part function denoted by Π in the mathematical
formulae. The corresponding code follows.

function out = pp(p)
p1 = p + 1;
if (p1>= 0)

out = p1;
else

out = 0;
end

Unfortunately, as concerns the numerical tests the explicit method has a draw-
back. We have considered in our tests the function

μ(a) =
e−a

A− a
,

which (see the previous programs) reads

mu = exp (−a)./(A − a);

It is quite clear that mu(M) is not defined, and MATLAB gives to mu(M)
the value Inf, that is, +∞. But mu(i) is used inside the loop “for i = 2 to M”
of the above algorithm. It follows that mu(M) is used. Therefore we get NaN
(Not a Number) for many values of p.

We therefore replace μi by μi−1 and get the semi-implicit method

p
(j)
i − p

(j−1)
i−1

h
− μi−1p

(j−1)
i−1 = LΠ(p(j)

i ) − βip
(j)
1 ,

which yields
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p
(j−1)
i−1 = (1 + hμi−1)−1[p(j)

i − h(LΠ(p(j)
i ) − βip

(j)
1 )].

The corresponding algorithm is

Algorithm 4.3

for j = 1 to N
p(M, j) = 0

end–for
for i = 1 to M

p(i, N) = 0
end–for
for i = N downto 2

for i = 2 to M
temp = h ∗ (L ∗ pp(p(i, j)) − β(i) ∗ p(1, j))
p(i− 1, j − 1) = (p(i, j) − temp)/(1 + h ∗ μ(i))

end–for
end–for
for i = 1 to M

for j = 1 to N
if (1 + p(i, j) > 0)
u(i, j) = L

else
u(i, j) = 0

end–if
end–for

end–for

The corresponding program is

% file ohp1.m
% Program for optimal harvesting – age dependent population
% (semi-implicit method)
clear
A = input(’The maximal age is A = ’) ;
T = input(’The final time is T = ’) ;
h = input(’The discretization parameter is h = ’) ;
L = input(’L = ’) ;
ct = input(’constant for beta : ’) ; % constant B>0 for β
M = 1 + A/h
N = 1 + T/h
N1 = N + 1 ;
for i = 1:M

a(i) = (i − 1)*h ;
end
for j = 1:N

t(j) = (j − 1)*h ;
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end
beta = ct*a.∧2.*(A − a).*(1 + sin(pi/A*a)) ;
mu = exp(−a)./(A − a) ;
p = zeros(M,N) ;
u = zeros(M,N) ;
for j = 1:N

p(M,j) = 0 ;
end
for i = 1:M

p(i,N) = 0 ;
end
for k = 1:N − 1

j = N1 − k
for i = 2:M

temp = h*(L*pp(p(i,j)) − beta(i)*p(1,j)) ;
p(i − 1,j − 1) = (p(i,j) − temp)/(1 + h*mu(i − 1)) ;

end
end
for i = 1:M

for j = 1:N
temp = 1 + p(i,j) ;
if (temp > 0)

u(i,j) = L ;
end

end
end

for i = 1:M
for j = 1:N

age(i,j) = a(i);
time(i,j) = t(j);

end
end
% make figures
K = max(max(u));
meshz(age,time,u);
axis([0 A 0 T 0 K]);
xlabel(’\bf Age a’,’FontSize’,16)
ylabel(’\bf Time t’,’FontSize’,16)
zlabel(’\bf control u’,’FontSize’,16)
figure(2)
meshz(age,time,p)
xlabel(’\bf Age a’,’FontSize’,16) ;
ylabel(’\bf Time t’,’FontSize’,16) ;
zlabel(’\bf adjoint state p’,’FontSize’,16) ;
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tl = input(’time level : ’) ;
tval = t(tl)
for i = 1:M

w(i) = u(i,tl) ;
end
figure(3)
plot(a,w,’ks’) ; grid
axis([0 1 −2 12])
xlabel(’\bf a’,’FontSize’,16)
w1 = w′ ;
save w1.txt w1 -ascii

Here pp is the function defined previously, and the array w is used to plot
the graph of a �→ u(a, t) for a given time level tl which corresponds to a time
value t denoted tval in the program.

We have tested the above program ohp1.m for A = 1, T = 1, L = 10,
h = 0.005, and B = 10 (the constant for function β). The corresponding
optimal control u is given in Figure 4.3 and the adjoint state p in Figure 4.4.

Taking for the time level tl = 81 we have obtained the vector w correspond-
ing to the time value t = 0.4. The section for the control u can be seen in
Figure 4.5.

Another possibility is to use the implicit method to discretize the first equation
from system (4.26). Therefore formula (4.27) is replaced by

Fig. 4.3. The optimal control
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Fig. 4.4. The adjoint state p
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Fig. 4.5. The optimal control at t = 0.4

p
(j)
i − p

(j−1)
i−1

h
− μi−1p

(j−1)
i−1 = LΠ(p(j−1)

i−1 ) − βi−1p
(j−1)
1 ,

and we get for p(j−1)
i−1 the equation

a1p
(j−1)
i−1 + a2Π(p(j−1)

i−1 ) − a3 = 0,



4.2 The optimal harvesting problem 171

where
a1 = 1 + hμi−1,
a2 = hL,

a3 = p
(j)
i + hβi−1p

(j−1)
1 .

It follows that p(j−1)
i−1 is the solution of the following equation,

a1x+ a2(x+ 1)+ − a3 = 0.

A simple calculation shows that the above equation admits two possible solu-
tions, namely

x1 =
a3 − a2

a1 + a2
≥ −1

and
x2 =

a3

a1
< −1.

We choose one of them and the corresponding algorithm is

Algorithm 4.4

for j = 1 to N
p(M, j) = 0

end–for
for i = 1 to M

p(i, N) = 0
end–for
a2 = h ∗ L;
for j = N downto 2

for i = 2 to M
a1 = 1 + h ∗ μ(i− 1);
a3 = p(i, j) + h ∗ β(i− 1) ∗ p(1, j − 1);
x1 = (a3 − a2)/(a1 + a2);
x2 = a3/a1;
if (x1 < −1) and (x2 >= −1)

error(’NO ROOT’);
end–if
if (x2 < −1)
p(i− 1, j − 1) = x2;

else
p(i− 1, j − 1) = x1;

end–if
end–for

end–for
/* u is computed as in Algorithm 4.3 */

Let us remark that only the inside of the loop “for i = 2 to M” is modified
with respect to Algorithm 4.3.
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We invite the reader to write a program for Algorithm 4.4, using ohp1.m as
the model. We suggest for a numerical test A = 1, T = 1, L = 100, h = 0.01,
B = 10 (the multiplicative constant for function β) and tl = 71, that is,
t = 0.7, for the time level.
A more complicated model is considered in the next section.

4.3 A logistic model with periodic vital rates

This section concerns an optimal harvesting problem for an age-structured
population dynamics with logistic term and periodic vital rates. The starting
point is the following nonlinear model of age-structured population dynamics

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dy(a, t) + μ(a, t)y + M(t, Y (t))y = −u(t)y, (a, t) ∈ Q

Y (t) =
∫ A

0

y(a, t)da, t > 0

y(0, t) =
∫ A

0

β(a, t)y(a, t)da, t > 0

y(a, 0) = y0(a), a ∈ (0, A),

(4.28)

where Q = (0, A) × (0,+∞). The vital rates β (the fertility rate) and μ (the
mortality rate), depending on age and time, are assumed to be T -periodic
with respect to t. Y (t) denotes the density of the total population at the
moment t, and M(t, Y (t)) stands for an additional mortality rate due to
the overpopulation. The T -periodic function u is the harvesting effort (the
control). Notice that system (4.28) is of IVP type. It has been proved in
[AAA08] and [AAS09] that under certain natural hypotheses, the solution yu

to (4.28) satisfies
lim

t→+∞ ‖yu(t) − ỹu(t)‖L∞(0,A) = 0,

where ỹu is the maximal nonnegative solution to the following system, which
is a periodic one

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dy(a, t) + μ(a, t)y + M(t, Y (t))y = −u(t)y, (a, t) ∈ Q

Y (t) =
∫ A

0

y(a, t)da, t > 0,

y(0, t) =
∫ A

0

β(a, t)y(a, t)da, t > 0,

y(a, t) = y(a, t+ T ), (a, t) ∈ Q.

(4.29)

In fact (4.29) has at most two nonnegative solutions (y ≡ 0 is of course a
nonnegative solution for (4.29)).

In this context we consider the problem of finding the T -periodic harvesting
effort u that leads to a maximal harvest on the time interval [t, t + T ] as
t→ +∞.
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By taking into account that, for any positive initial datum y0,
∫ t+T

t

∫ A

0

u(s)yu(a, s)da ds −→
∫ T

0

∫ A

0

u(s)ỹu(a, s)da ds,

as t → +∞ (the total harvest on [t, t + T ] for the population described by
(4.28) is tending to the total harvest on time intervals of length T for a periodic
population given by (4.29)), the problem may be reformulated as

Maximize
∫ T

0

∫ A

0

u(s)ỹu(a, s)da ds, over all u ∈ K, (OH)

where the set of controls K is now given by

K = {v ∈ L∞(IR+); 0 ≤ v(t) ≤ L, v(t) = v(t+ T ) a.e. in IR+},
and L ∈ (0,+∞).

Here are the hypotheses (see [AAA08] and [AAS09]):

(Hyp1)

β ∈ C(IR+;L∞(0, A)),

β(a, t) ≥ 0, β(a, t) = β(a, t+ T ) a.e. (a, t) ∈ Q,

there exist δ, τ > 0 and a0 ∈ (0, A) such that a0 + T ≤ A,
and β(a, τ) ≥ δ a.e. a ∈ (a0, a0 + T ),

This last assumption on β means that the fertile age-period for the population
species is longer than or equal to the period T .

(Hyp2)
μ ∈ C(IR+;L∞(0, Ã)) for any Ã ∈ (0, A),

μ(a, t) ≥ 0, μ(a, t) = μ(a, t+ T ) a.e. (a, t) ∈ Q

(Hyp3) y0 ∈ L∞(0, A), y0(a) > 0 a.e. in (0, A)

(Hyp4) M : IR+ × IR+ → IR+ is a continuous function, continu-
ously differentiable with respect to the second variable and the derivative MY

(with respect to the second variable) is positive on IR+ × IR+. In addition

M(t, Y )= M(t+ T, Y ) for any t, Y ∈ IR+,

M(t, 0)= 0 t ∈ IR+,

lim
Y →+∞

M(t, Y )= +∞ uniformly with respect to t.

By a solution to (4.28) we mean a function yu ∈ L∞(0, T̃ ;L1(0, A)) (for
any T̃ > 0), absolutely continuous along almost every characteristic line (of
equation a− t = k, (a, t) ∈ Q, k ∈ IR), which satisfies
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dyu(a, t) = −μ(a, t)yu(a, t) −M(t, Y u(t))yu(a, t)
−u(t)yu(a, t) a.e. (a, t) ∈ Q

Y u(t) =
∫ A

0

yu(a, t)da a.e. t > 0

yu(0, t) =
∫ A

0

β(a, t)yu(a, t)da a.e. t > 0

yu(a, 0) = y0(a) a.e. a ∈ (0, A).

By a solution to (4.29) we mean a function ỹu, absolutely continuous along
almost every characteristic line (of equation a − t = k, (a, t) ∈ Q, k ∈ IR),
which satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dỹu(a, t) = −μ(a, t)ỹu(a, t) −M(t, Ỹ u(t))ỹu(a, t)
−u(t)ỹu(a, t) a.e. (a, t) ∈ Q

Ỹ u(t) =
∫ A

0

ỹu(a, t)da a.e. t > 0

ỹu(0, t) =
∫ A

0

β(a, t)ỹu(a, t)da a.e. t > 0

ỹu(a, t) = ỹu(a, t+ T ) a.e. (a, t) ∈ Q.

An ergodicity result established in [T84] implies the existence of a unique pair
(α, y∗) ∈ IR × C(IR+;L∞(0, A)) such that y∗ is the nonnegative solution to

⎧
⎪⎪⎨

⎪⎪⎩

Dy∗(a, t) + μ(a, t)y∗ + αy∗ = 0, (a, t) ∈ Q

y∗(0, t) =
∫ A

0

β(a, t)y∗(a, t)da, t > 0

y∗(a, t) = y∗(a, t+ T ), (a, t) ∈ Q,

(4.30)

which satisfies
Ess sup{y∗(a, t); (a, t) ∈ Q} = 1.

Moreover, it follows that y∗ is positive on (0, A) × (0,+∞). The set of all
solutions to (4.30) is a one-dimensional linear space.

Here is the asymptotic behavior result we have mentioned (see [Ani00] and
[Ian95]).

Theorem 4.18. For any u ∈ K, (4.28) has a unique solution yu and

lim
t→+∞ ‖yu(t) − ỹu‖L∞(0,A) = 0,

where ỹu is the maximal nonnegative solution to (4.29).
Moreover,

(i) If Tα >
∫ T

0
u(t)dt, then ỹu is the unique nontrivial nonnegative solution

to (4.29),
(ii) If Tα ≤ ∫ T

0
u(t)dt, then ỹu ≡ 0 is the unique nonnegative solution to

(4.29).
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Remark 4.19. If Tα >
∫ T

0 u(t)dt then ỹu(a, t) = c0y
∗(a, t)hu(t), (a, t) ∈ Q,

where c0 ∈ (0,+∞) is an arbitrary constant and hu is the unique nonnegative
and nontrivial solution for

⎧
⎨

⎩

h′(t) + M(t, Y ∗
0 (t)h(t))h(t) − αh(t) = −u(t)h(t), t ∈ IR+

h(t) = h(t+ T ), t ∈ IR+,
(4.31)

where Y ∗
0 (t) = c0

∫ A

0

y∗(a, t)da, t ≥ 0.

It is obvious that hu depends on c0 (via Y ∗
0 ). However, c0hu is independent

of c0.

Remark 4.20. The result in Theorem 4.18 allows us to approximate the max-
imal nonnegative solution to (4.29) starting from the solution to (4.28) (see
the algorithm (NSM) at the end of this section).

The optimal harvesting problem

By Theorem 4.18 we can see that for any u ∈ K:
∫ T

0

∫ A

0

u(t)ỹu(t)da dt =
∫ T

0

u(t)Y ∗
0 (t)hu(t)dt,

where hu is the maximal nonnegative solution to (4.31) and so the optimal
harvesting problem may be rewritten as

Maximize
∫ T

0

u(t)Y ∗
0 (t)hu(t)dt, over all u ∈ K. (OH)

If α ≤ 0, then it follows by Theorem 4.18 that hu ≡ 0, for any u ∈ K and
so Problem (OH) is trivial. This is the case when the population is going to
extinction even without harvesting.

In what follows we treat the case

α > 0 ,

when it is clear that if
∫ T

0
u(t)dt is small, then hu(t) > 0, for any t ∈ [0, T ].

We leave it to the reader to prove the existence of an optimal control as an
exercise (see [AAS09]). However, we insist on first-order necessary optimality
conditions.

Theorem 4.21. Let (u∗, h∗) be an optimal pair for (OH). If q is the solu-
tion to
⎧
⎨

⎩

q′(t) −M(t, Y ∗
0 (t)h∗(t))q(t) −MY (t, Y ∗

0 (t)h∗(t))Y ∗
0 (t)h∗(t)q(t)

+ αq(t) = u∗(t)(Y ∗
0 (t) + q(t)),

q(t) = q(t+ T ), t ≥ 0,
(4.32)
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then

u∗(t) =

{
0, if Y ∗

0 (t) + q(t) < 0

L, if Y ∗
0 (t) + q(t) > 0

(4.33)

Proof. Remark that h∗ is the positive solution to
{

(h∗)′(t) = γ(t)h∗(t), t > 0
h∗(0) = h∗(T ),

where γ(t) = α− u∗(t)−M(t, Y ∗
0 (t)h∗(t)) a.e. t ∈ IR+. The T -periodicity of

h∗ implies that
∫ T

0

γ(t)dt = 0.

Our first goal is to prove that (4.32) has a unique solution q. Let us notice
that (4.32) may be rewritten as
{
q′ = −γ(t)q + MY (t, Y ∗

0 (t)h∗(t))Y ∗
0 (t)h∗(t)q(t) + u∗(t)Y ∗

0 (t), t ∈ IR+

q(t) = q(t+ T ) t ∈ IR+.

A solution q satisfies

q(t) = q(0) exp{
∫ t

0
[−γ(s) + MY (s, Y ∗

0 (s)h∗(s))Y ∗
0 (s)h∗(s)]ds}

+

∫ t

0
u∗(s)Y ∗

0 (s) exp{
∫ t

s
[−γ(θ) + MY (θ, Y ∗

0 (θ)h∗(θ))Y ∗
0 (θ)h∗(θ)]dθ}ds,

for any t ∈ IR+. Condition q(0) = q(T ) leads to

q(0) = q(0) exp{
∫ T

0
[−γ(s) + MY (s, Y ∗

0 (s)h∗(s))Y ∗
0 (s)h∗(s)]ds}

+

∫ T

0
u∗(s)Y ∗

0 (s) exp{
∫ T

s
[−γ(θ) + MY (θ, Y ∗

0 (θ)h∗(θ))Y ∗
0 (θ)h∗(θ)]dθ}ds,

for t ∈ IR+, and consequently

q(0) = (1 − exp{
∫ T

0
[−γ(s) + MY (s, Y ∗

0 (s)h∗(s))Y ∗
0 (s)h∗(s)]ds})−1

·
∫ T

0
u∗(s)Y ∗

0 (s) exp{
∫ T

s
[−γ(θ) +MY (θ, Y ∗

0 (θ)h∗(θ))Y ∗
0 (θ)h∗(θ)]dθ}ds<0

(because of the assumptions on M and of the positivity of h∗ and Y ∗
0 ). The

T -periodic function q, that we have obtained is the unique solution to (4.32).
Let v ∈ L∞(IR+) be an arbitrary T -periodic function such that

u∗ + εv ∈ K, for any sufficiently small ε > 0. It is obvious that for suffi-
ciently small ε > 0 we also have that Tα >

∫ T

0 u∗(t)dt+ ε
∫ T

0 v(t)dt. Because
u∗ is an optimal control for (OH) we may infer that
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∫ T

0

u∗(t)Y ∗
0 (t)h∗(t)dt ≥

∫ T

0

(u∗(t) + εv(t))Y ∗
0 (t)hu∗+εv(t)dt,

and
∫ T

0

u∗(t)Y ∗
0 (t)

hu∗+εv(t) − h∗(t)
ε

dt+
∫ T

0

v(t)Y ∗
0 (t)hu∗+εv(t)dt ≤ 0,

for any ε > 0 sufficiently small.

The following result is obtained as in the previous section.

Lemma 4.22. The following convergences hold

hu∗+εv → h∗ in C([0, T ]),

1
ε
[hu∗+εv − h∗] → z in C([0, T ]),

as ε→ 0+, where z is the solution to the following problem,
{
z′ = γ(t)z −MY (t, Y ∗

0 (t)h∗(t))Y ∗
0 (t)h∗(t)z(t) − v(t)h∗(t), t ∈ IR+

z(t) = z(t+ T ), t ∈ IR+.

By passing to the limit (ε→ 0+) in the last inequality, and using the lemma
we may conclude that

∫ T

0

Y ∗
0 (t)[u∗(t)z(t) + v(t)h∗(t)]dt ≤ 0.

By multiplying the first equation in (4.32) by z, and integrating over [0, T ] we
get
∫ T

0

q′(t)z(t)dt =
∫ T

0

z(t)[−γ(t)q(t)+MY (t, Y ∗
0 (t)h∗(t))Y ∗

0 h
∗q+u∗(t)Y ∗

0 (t)]dt.

In as much as
∫ T

0

q′(t)z(t)dt = −
∫ T

0

q(t)z′(t)dt

=
∫ T

0

q(t)[−γ(t)z(t) + MY (t, Y ∗
0 (t)h∗(t))Y ∗

0 (t)h∗(t)z(t) + v(t)h∗(t)]dt,

it follows that
∫ T

0

u∗(t)Y ∗
0 (t)z(t)dt =

∫ T

0

v(t)h∗(t)q(t)dt.

This allows us to infer that
∫ T

0

v(t)h∗(t)(Y ∗
0 (t) + q(t))dt ≤ 0,

for any T -periodic v ∈ L∞(IR+) such that u∗+εv ∈ K and Tα >
∫ T

0
u∗(t)dt+

ε
∫ T

0
v(t)dt, for any ε > 0 sufficiently small. The last relation implies (4.33).



178 4 Optimal harvesting for age-structured population

Remark 4.23. By (4.32) and (4.33) we obtain that q is a solution to
⎧
⎪⎨

⎪⎩

q′(t) −M(t, Y ∗
0 (t)h∗(t))q(t) −MY (t, Y ∗

0 (t)h∗(t))Y ∗
0 (t)h∗(t)q(t)

+αq(t) = L(Y ∗
0 (t) + q(t))+,

q(t) = q(t+ T ), t ∈ IR+.

(4.34)

Remark 4.24. If

(Y ∗
0 )′(t) �= M(t, Y ∗

0 (t)h∗(t))Y ∗
0 (t)+MY (t, Y ∗

0 (t)h∗(t))(Y ∗
0 (t))2h∗(t)−αY ∗

0 (t)

a.e. in IR+, then it follows by (4.34) that

Y ∗
0 (t) + q(t) �= 0 a.e. in (0, T ).

This implies, via (4.33), that

u∗(t) = 0 or L a.e. in (0, T )

(u∗ is a bang-bang control).

Numerical algorithms

Next we develop a conceptual algorithm to approximate the solution of the
optimal harvesting problem (OH). It is based on the optimality conditions in
Theorem 4.21.

We first introduce an abstract Numerical Stabilization Method (NSM) for
periodic differential equations. We consider the following abstract problem.
Find x ∈ X the unique solution of

{
(Fx)(a, t) = z(a, t), (a, t) ∈ Q
x(a, t) = x(a, t+ T ), (a, t) ∈ Q,

(S)

where z ∈ Z is T -periodic with respect to t and F : X → Z is an appropriate
operator between the appropriate spaces X and Z. Problem (S) is T -periodic
with respect to t. As specified in the previous sections the solution of such a
problem can be computed via the Initial-Value Problem (IVP)

{
(Fx)(a, t) = z(a, t), (a, t) ∈ Q
x(a, 0) = x0(a), a ∈ [0, A). (S0)

The corresponding (NSM) is presented below.
Algorithm (NSM)

Step 0 : Solve (S0) for t ∈ [0, T ], and denote the numerical solution x(0);
set k := 1;

Step 1 : Solve
{

(Fx)(a, t) = z(a, t), a ∈ [0, A) , t ∈ [kT, (k + 1)T ]
x(a, kT ) = x(k−1)(a, kT ), a ∈ [0, A), (Sk)

and denote the numerical solution x(k);
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Step 2 : The stopping criterion
if ‖x(k) − x(k−1)‖ < ε

then stop (x(k) is the solution)
else k := k + 1; go to Step 1.

In Step 2 above the norm should be an appropriate one, whereas ε > 0 is a
given convergence parameter. For any time interval [kT, (k+1)T ] of length T
we introduce a discretization grid with equidistant knots

kT = t1 < t2 < · · · < tN = (k + 1)T

and we approximate the corresponding values of x(k) = (x(k)
i )i, i = 1, 2, . . . , N ,

as x(k)
i ≈ x(k)(ti), for i = 1, 2, . . . , N . Of course every x(k)

i also needs a grid
approximation with respect to a. The above norm can be a discrete one with
respect to x(k) = (x(k)

i )i. When the (NSM) stops, x(k) is considered to be the
T -periodic solution of Problem (S).

The biological system analyzed here has the stabilization property required
by the (NSM). Independently of the initial-value function x0 the solution x is
stabilized after some time intervals of length T .

Now we present a Projected Gradient Method (PGM) for the optimal
harvesting problem. By taking into account the control restrictions, we use
Rosen’s algorithm (e.g., [AN03, p. 44]). We also use Algorithm (NSM) above as
a subroutine. To simplify the formulae we consider in the sequel M(t, Y ) = Y
and c0 = 1. The corresponding (PGM) is presented below. Notice that it
works for α > 0.

Algorithm (PGM)
S0 : Compute the parameter α.

S0.0 : Choose y0(a) > 0 and solve the following system
using Algorithm (NSM)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dy(a, t) + μ(a, t)y + Y (t)y(a, t) = 0, (a, t) ∈ Q

Y (t) =
∫ A

0

y(a, t)da, t > 0

y(0, t) =
∫ A

0

β(a, t)y(a, t)da, t > 0

y(a, t) = y(a, t+ T ), (a, t) ∈ Q.

S0.1 : α =
1
T

∫ (k+1)T

kT

∫ A

0

y(a, t)da dt,

where k is obtained by Algorithm (NSM) in Step 2.
S0.2 : Set j := 0, u(j)(t) := u0(t), where u0 is given.
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S1 : Compute y(j) the solution of the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dy(a, t) + μ(a, t)y + Y (t)y(a, t) = −u(j)(t)y(a, t), (a, t) ∈ Q

Y (t) =
∫ A

0

y(a, t)da, t > 0

y(0, t) =
∫ A

0

β(a, t)y(a, t)da, t > 0

y(a, t) = y(a, t+ T ), (a, t) ∈ Q,

using Algorithm (NSM). Here y(j) corresponds to the solution ỹu of system
(4.29).

S2 : Compute h(j) the solution of the system
⎧
⎪⎨

⎪⎩
h′(t) +

(∫ A

0

y(j)(a, t)da

)
h(t) − αh(t) = −u(j)(t)h(t), t ∈ IR+

h(t) = h(t+ T ), t ∈ IR+,

using Algorithm (NSM). Here h(j) corresponds to the solution of system
(4.31).

S3 : Compute q(j).

S3.1 : Y
(j)
0 (t) = (h(j)(t))−1

∫ A

0

y(j)(a, t)da.

S3.2 : Compute q(j) the solution of the system
⎧
⎪⎨

⎪⎩
q′(t) − 2

(∫ A

0

y(j)(a, t)da

)
q(t) + αq(t) = u(j)(t)

(
Y

(j)
0 (t) + q(t)

)
, t ∈ IR+

q(t) = q(t+ T ), t ∈ IR+,

computing first q(0). Here q(j) corresponds to the solution of system (4.32);

S4 : Compute w(j) according to the formula

w(j)(t) =

{
0, if Y (j)

0 (t) + q(j)(t) < 0
L, if Y (j)

0 (t) + q(j)(t) > 0.

Here w(j) is derived using u∗ from formula (4.33).

S5 : Compute the new control u(j+1).
S5.1 : Compute λj ∈ [0, 1] the solution of the maximization problem

max {Φ(λu(j) + (1 − λ)w(j)) ; λ ∈ [0, 1]},
where Φ is the cost functional corresponding to (OH)

S5.2 : Compute u(j+1) = λju
(j) + (1 − λj)w(j).

S6 : The stopping criterion.
if ‖u(j+1) − u(j)‖ < ε
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then stop (u(j+1) is the solution)
else j := j + 1; go to S1.

In S6 above the norm should be an appropriate one, whereas ε > 0 is a given
convergence parameter.

Numerical experiments

We first point out that a convex combination of two bang-bang controls that
take only the values 0 and L, does not necessarily take only these two values.
This is why it is better to replace the convex combination λu(j) + (1−λ)w(j)

from Step 5.1 of Algorithm (PGM) using an idea due to K. Glashoff and E.
Sachs (see [GS77] and for more details [AN03, pp.137–143]). The idea is to
take a convex combination of the switching points of u(j) and of w(j) thus
obtaining a system of switching points for the new bang-bang control.

We propose that reader write a program (based on Algorithms (NSM)
and (PGM)) to approximate the optimal value of the total harvest. Use the
following data.

β(a, t) = B · a2(1 − a)(1 + sin(πa))
∣∣∣∣sin

2πt
T

∣∣∣∣ ,

μ(a, t) =
e−4a(2 + cos 2πt

T
)

(1 − a)1.4
,

and A = 1, T = 0.5, y0(a) = 3, L = 1.5, and B ∈ {50, 75, 100}.
Open problems

• Investigate the problem of maximizing the harvesting
∫ A

0
u(a)yu(a, t)da as

t→ +∞ when β and μ are time-independent and the control u belongs to

V = {v ∈ L∞(0, A); 0 ≤ v(a) ≤ L a.e. a ∈ (0, A)}.
• Investigate the problem of maximizing the harvesting∫ t+T

t

∫ A

0

u(a, s)yu(a, s)da ds as t→ +∞ when the control u belongs to

V = {v ∈ L∞(Q); 0 ≤ v(a, t) ≤ L, v(a, t) = v(a, t+ T ) a.e. (a, t) ∈ Q}.

Bibliographical Notes and Remarks

There is an extensive literature devoted to the problem of optimal harvest-
ing for age-dependent population dynamics with prescribed initial density of
population. Here is a list of some of the most important results concerning this
subject: [GM81], [B85], [Bar94], [AIK98], [Ani00], [HY05], and [FL06]. For the
analysis and control of age-dependent population dynamics in a multi-layer
environment we refer to [CIM05], and [IM09].
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There are, however, only a few papers devoted to the important case of
periodic age-structured population dynamics. We refer to [AIK98], [Ani00],
and [LLW04] for linear models and to [AAA08] for nonlinear ones.

Numerical results for optimal harvesting problems can be found in [AA05]
and [AAS09].

Exercises

4.1. Compute and plot the graph of the solution to the following problem.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dy(a, t) +
a

π − a
y(a, t) = t, (a, t) ∈ (0, π) × (0, 1)

y(0, t) =
∫ π

0

(sin a)y(a, t)da, t ∈ (0, 1)

y(a, 0) = 1, a ∈ (0, π).

4.2. Derive the first-order necessary optimality conditions for the following
more general problem.

Maximize
∫ T

0

∫ A

0

u(a, t)g(a)yu(a, t)da dt, (OHP1)

subject to u ∈ K = {w ∈ L∞(QT ); 0 ≤ w(a, t) ≤ L a.e. in QT}, where yu is
the solution to (4.18). Here L is a positive constant.

We assume that g satisfies

g ∈ C1([0, A]), g(a) > 0 for any a ∈ [0, A].

Here g(a) is the weight (or cost) of an individual of age a. So,
∫ T

0

∫ A

0

u(a, t)g(a)yu(a, t)da dt

gives the total weight (or cost) of the harvested population.

Hint. We denote zu(a, t) = g(a)yu(a, t) and reformulate Problem (OHP1)
with respect to u and zu. Then we use the same approach as in Section 4.2.

4.3. Compute the optimal effort and the optimal cost of the harvested popu-
lation for Problem (OHP1). Take for β, μ and y0 as in the numerical tests in
Section 4.2, and g(a) = 1 + a.

4.4. Derive the first-order necessary conditions for the following problem.

Maximize
∫ T

0

∫ A

0

u(a, t)yu(a, t)da dt, (OHP2)

subject to u ∈ V = {w ∈ L∞(QT ); w1(a, t) ≤ w(a, t) ≤ w2(a, t) a.e. in QT },
where yu is the solution to (4.18). Here w1, w2 ∈ L∞(QT ), 0 ≤ w1(a, t) ≤
w2(a, t) a.e. in QT .
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Hint. Let u∗ be an optimal control for Problem (OHP2), and the adjoint state
p the solution to

⎧
⎨

⎩

Dp+ μp = u∗(1 + p) − β(a, t)p(0, t), (a, t) ∈ QT

p(A, t) = 0, t ∈ (0, T )
p(a, T ) = 0, a ∈ (0, A).

Then we have

u∗(a, t) =
{
w1(a, t) if 1 + p(a, t) < 0
w2(a, t) if 1 + p(a, t) > 0.
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Optimal control of diffusive models

Mathematical biology has its roots in population ecology, which treats the
mathematical modeling of interacting species along the lines established by the
mathematicians A. Lotka (1924) and V. Volterra (1926) in terms of nonlinear
ordinary differential equations.

The goal of the models à la Lotka–Volterra is to offer a quantitative de-
scription of the evolution of the interacting populations in time. However,
there are important aspects that cannot be neglected on the spatial structure
of the relevant populations.

This chapter is devoted to the study of two optimal control problems re-
lated to diffusive models. The maximum principles are deduced, and numerical
algorithms to approximate the optimal values of the cost functionals are indi-
cated. Furthermore, at the end of this chapter an exercise concerning an age-
and space-structured population dynamics is proposed.

5.1 Diffusion in mathematical models

After the pioneering works of R. A. Fisher [F37], A. N. Kolmogorov, I. G.
Petrovskii, and N. S. Piskunov [KPP37], and J. Skellam [S51] (see also [Ske73]
and [Aro85]) the mathematical modeling of spatially structured populations
has been carefully analyzed, giving rise to a very flourishing literature on the
so-called reaction–diffusion systems, in which diffusion of the relevant popu-
lations is added to the nonlinear dynamics of their interaction (see [Oku80]
and [Mur89]).

We start here with a reminder of the two most important and universally
accepted ways for introducing diffusion: one as a trivial consequence of a
conservation law combined with the well-known Fick’s law, and the other due
to a suitable rescaling in time and space of the simple random walk.

Consider the diffusion of a population or any other substance, whose spatial
density at spatial position x and time t is denoted by y(x, t) (here x ∈ Ω ⊂ IRN

S. Aniţa et al. An Introduction to Optimal Control Problems in Life Sciences 185
and Economics, Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-0-8176-8098-5 5, c© Springer Science+Business Media, LLC 2011
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is the habitat, N ∈ IN∗ and t ≥ 0); the function y is such that the population
at time t ≥ 0, in any region V ⊂ Ω (we take open and bounded subsets V
with C1-class boundary ∂V ) is given by

YV (t) =
∫

V

y(x, t)dx. (5.1)

Let V be an arbitrary subregion of Ω with the above-mentioned properties.
We assume for the time being that y is smooth enough.

According to Fick’s law “the flux of the population through x ∈ ∂V is given by

J(x, t) = (γ(x, t)∇xy(x, t)) · ν(x),
where ν(x) is the outward normal versor at x to ∂V , γ(x, t) is the diffusion
parameter, and ∇xy = yx denotes the gradient of y with respect to x.”

If we denote by f(x, t) any contribution to the population dynamics at
x ∈ V , t ≥ 0, a natural conservation law for the change of the population in
region V is

Y ′
V (t) =

∫

∂V

J(x, t)dσ +
∫

V

f(x, t)dx.

By applying the divergence theorem and (5.1) we obtain
∫

V

[
∂y

∂t
(x, t) − divx(γ(x, t)∇xy(x, t)) − f(x, t)

]
dx = 0.

The subregion V is arbitrary, therefore the integrand must be zero, so that

∂y

∂t
(x, t) − divx(γ(x, t)∇xy(x, t)) − f(x, t) = 0. (5.2)

In the case where γ is a constant (5.2) becomes

∂y

∂t
(x, t) − γΔy(x, t) = f(x, t), (5.3)

where Δ = Δx is the Laplacian with respect to x.

Fisher’s equation is a particular case of (5.3) when we have a single population
and f(x, t) describes a birth-and-death process:

∂y

∂t
(x, t) − γΔy(x, t) = −μy(x, t) + βy(x, t)

(
1 − y(x, t)

k

)
. (5.4)

Here β is the natural fertility rate and μ is the natural death rate, whereas k
is a positive constant. This is of course a logistic model (because (β/k)y(x, t)
is an additional mortality rate due to overpopulation, and is proportional to
the population density).
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Let us deduce now the diffusion equation in a different manner starting
from a simple random walk.

A simple random walk is a Markov chain (Xn)n∈IN with a countable state
space E = Z, the set of all integers, and transition matrix

prob (Xn+1 = k + 1 | Xn = k) = pk,k+1 = p

prob (Xn+1 = k − 1 | Xn = k) = pk,k−1 = 1 − p

prob (Xn+1 = j | Xn = k) = pk,j = 0,

for any k ∈ E and j ∈ E, j �= k − 1, j �= k + 1, where p ∈ (0, 1). In the
symmetric case p = 1

2 .

If we set pk(n) = prob(Xn = k), by the theorem of total probabilities, and
the Markov property

prob(Xn+1 = j | Xn = i,Xn−1 = in−1, ..., X0 = i0)
= prob(Xn+1 = j | Xn = i) = pi,j ,

for any i, j ∈ E, we obtain

pk(n) =
1
2
pk+1(n) +

1
2
pk−1(n);

that is,

pk(n+ 1) − pk(n) =
1
2
[pk+1(n) − 2pk(n) + pk−1(n)]. (5.5)

If we take Δt ∈ IR∗
+ as the unit time step, and Δx ∈ IR∗

+ as the unit space
step, Equation (5.5) becomes

pkΔx((n+1)Δt)−pkΔx(nΔt) =
1

2
[p(k+1)Δx(nΔt)−2pkΔx(nΔt)+p(k−1)Δx(nΔt)].

Let kΔx = x, nΔt = t, and

pnΔx(nΔt) := y(x, t);

we have, equivalently,

y(x, t+Δt) − y(x, t) =
1
2
[y(x+Δx, t) − 2y(x, t) + y(x−Δx, t)].

By a usual Taylor approximation, at the second order, the last equality
becomes

y(x, t+Δt) − y(x, t) =
1
2
(Δx)2

∂2y

∂x2
(x, t) + o((Δx)2),

from which
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y(x, t+Δt) − y(x, t)
Δt

=
1
2

(Δx)2

Δt

∂2y

∂x2
(x, t) +

o((Δx)2)
Δt

. (5.6)

If we now let Δt→ 0, Δx→ 0 in such a way that

(Δx)2

Δt
= 2γ, a constant,

from (5.6) we obtain the usual diffusion equation with a constant diffusion
coefficient

∂y

∂t
(x, t) = γ

∂2y

∂x2
(x, t), x ∈ IR, t > 0.

If we impose as initial condition

y(·, 0) = δ0

(the Dirac distribution at 0), from the theory of PDEs we obtain the funda-
mental solution

y(x, t) =
1√

4πγt
exp(− 1

4γt
x2), x ∈ IR, t > 0,

which is the probability density function of a Gaussian N(0, 2γt), which is the
margin distribution of a Brownian motion at time t.

For a more extended discussion on this matter we refer the reader to [Ske73],
[Oku80], and to the review article [O86].

As for the boundary conditions associated with (5.3), (5.4) or to other non-
linear parabolic equations, recall that three of them are usually applied.

• The Dirichlet condition has the form:

y(x, t) = ϕ(x, t), x ∈ ∂Ω, t ≥ 0,

where ϕ is a given function. When ϕ ≡ 0, this indicates (for biological
populations) a completely inhospitable boundary ∂Ω.

• The Neumann condition has the form:

∂y

∂ν
(x, t) = ϕ(x, t), x ∈ ∂Ω, t ≥ 0,

where ϕ is a given function. For biological populations for instance, this
condition means that the population flow through the boundary is ϕ. If
ϕ ≡ 0, then there is no population flow through the boundary, and the
population is isolated in the habitat Ω.

• The Robin condition has the form

∂y

∂ν
(x, t) + α(x, t) = ϕ(x, t), x ∈ ∂Ω, t ≥ 0,
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where α and ϕ are given functions. This condition usually follows (for
populations) from the fact that the population flow through the boundary
is proportional to the difference between the population density y(x, t)
inside Ω, and the population density ỹ(x, t) outside Ω:

∂y

∂ν
(x, t) = −α(x, t)(y(x, t) − ỹ(x, t)), x ∈ ∂Ω, t ≥ 0,

so that

∂y

∂ν
(x, t) + α(x, t)y(x, t) = α(x, t)ỹ(x, t), x ∈ ∂Ω, t ≥ 0.

5.2 Optimal harvesting for Fisher’s model

Consider the following Fisher’s model describing the dynamics of a biological
population that is free to move in an isolated habitat Ω.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
− γΔy = ry

(
1 − y

k

)
−m(x)u(x, t)y(x, t), (x, t) ∈ QT

∂y

∂ν
(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ Ω.

(5.7)

Here Ω is a bounded open subset of IRN (N ∈ IN∗) with a C1-class boundary.
T, γ, r, k are positive constants, QT = Ω × (0, T ), ΣT = ∂Ω × (0, T ), and
y0 ∈ L∞(Ω), y0(x) > 0 a.e. x ∈ Ω (y0 is the initial population density). This
model derives from (5.4), when the natural fertility rate is greater than the
natural mortality rate.

u is the harvesting effort acting only on a nonempty open subset ω ⊂ Ω, and
m is the characteristic function of ω.
By convention

m(x)u(x, t) =

⎧
⎨

⎩

u(x, t), x ∈ ω, t ∈ (0, T )

0, x ∈ Ω \ ω, t ∈ (0, T ).

The total harvest on the time interval [0, T ] is

∫ T

0

∫

ω

u(x, t)yu(x, t)dx dt,

where yu is the solution to (5.7), and so a natural optimal control problem
related to (5.7) is the following one.
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Maximize
∫ T

0

∫

ω

u(x, t)yu(x, t)dx dt, (DP1)

subject to u ∈ K = {w ∈ L2(ω× (0, T )); 0 ≤ w(x, t) ≤ L a.e.} (L > 0), where
yu is the solution to (5.7).

For definitions and basic properties of solutions to parabolic equations we
refer the reader to [Bar98].

If, for a u ∈ K, (5.7) admits a solution yu, then the comparison principle for
parabolic equations (see [PW84]) implies that this solution satisfies

0 < yu(x, t) ≤M = ‖y0‖L∞(Ω)e
rT a.e. (x, t) ∈ QT .

By using Banach’s fixed point result it follows that for any u ∈ K the nonlinear
problem (5.7) admits indeed a unique solution yu, and this satisfies the above-
mentioned double inequality.

Existence of an optimal control

Define

Φ(u) =
∫ T

0

∫

ω

u(x, t)yu(x, t)dx dt, u ∈ K,

and let
d = sup

u∈K
Φ(u).

By using the comparison principle for parabolic equations, we obtain that

0 < yu(x, t) ≤ y0(x, t) a.e. (x, t) ∈ Ω × (0, T ),

and so

0 ≤
∫ T

0

∫

ω

u(x, t)yu(x, t)dx dt ≤ L

∫ T

0

∫

ω

y0(x, t)dx dt

As a consequence we derive that

d ∈ IR+.

Let {un}n∈IN∗ ⊂ K be a sequence of controllers satisfying

d− 1
n
< Φ(un) ≤ d. (5.8)

Because {un}n∈IN∗ is a bounded sequence in L2(ω × (0, T )), it follows that
there exists a subsequence, also denoted by {un}n∈IN∗ , such that

un −→ u∗ weakly in L2(ω × (0, T )),
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and
mun −→ mu∗ weakly in L2(ω × (0, T )).

u∗ ∈ K becauseK is a closed convex subset of L2(ω×(0, T )), and consequently
it is weakly closed (see [Bre83]).

If we denote

an(x, t) = ryun(x, t)
(

1 − yun(x, t)
k

)
−m(x)un(x, t)yun(x, t), (x, t) ∈ QT ,

then it is obvious that {an}n∈IN∗ is bounded in L∞(QT ) (and in L2(QT )),
and yun is the solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
− γΔy = an(x, t), (x, t) ∈ QT

∂y

∂ν
(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ Ω.

The boundedness of {an}n∈IN∗ implies (via the compactness result for
parabolic equations; see [Bar98]) that there exists a subsequence such that

⎧
⎨

⎩

ank
−→ a∗ weakly in L2(QT )

yunk −→ y∗ a.e. in QT ,
(5.9)

and that y∗ is the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
− γΔy = a∗(x, t), (x, t) ∈ QT

∂y

∂ν
(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ Ω.

On the other hand, by (5.9), and by using the weak convergence of {un}n∈IN∗

and the boundedness of {yun}n∈IN∗ in L∞(QT ), we may infer that

ank
−→ ry∗

(
1 − y∗

k

)
−mu∗y∗ in L2(QT ),

and consequently

a∗ = ry∗
(

1 − y∗

k

)
−mu∗y∗ in L2(QT ).
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In conclusion, y∗ is the solution to (5.7) corresponding to u := u∗; that is,
y∗ = yu∗

.

If we pass to the limit in (5.8) we get that

d = Φ(u∗),

and that u∗ is an optimal control for problem (DP1).

The maximum principle

Problem (5.7) may be rewritten as an initial value problem in L2(Ω):
{
y′(t) = f(t, u(t), y(t)), t ∈ (0, T )
y(0) = y0,

where
f(t, u, y) = Ay + ry(1 − y

k
) −muy.

Here A is a linear unbounded operator. In fact A is defined by

D(A) = {w ∈ H2(Ω);
∂w

∂ν
= 0 on ∂Ω},

Ay = γΔy, y ∈ D(A).

For definitions and basic properties of the Sobolev spaces Hk(Ω) we refer the
reader to [Ada75], and [Bre83]. The equation satisfied by the adjoint state p
is suggested in Section 2.1:

p′(t) = −A∗p− rp+
2r
k
yup+mu(1 + p), t ∈ (0, T ).

Remark also that A is a self-adjoint operator, and soA∗ may be replaced by A.

Actually, here is the result we prove.

Theorem 5.1. If (u∗, yu∗
) is an optimal pair for (DP1), and if p is the solu-

tion to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂t
+ γΔp = −rp+

2r
k
yu∗

p+mu∗(1 + p), (x, t) ∈ QT

∂p

∂ν
(x, t) = 0, (x, t) ∈ ΣT

p(x, T ) = 0, x ∈ Ω,

(5.10)

then we have

u∗(x, t) =

⎧
⎨

⎩

0, if 1 + p(x, t) < 0

L, if 1 + p(x, t) > 0
(5.11)

a.e. (x, t) ∈ ω × (0, T ).
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Proof. Consider the set

V = {w ∈ L2(ω × (0, T )); u∗ + εw ∈ K for any ε > 0 sufficiently small}.
For an arbitrary but fixed v ∈ V we have that
∫ T

0

∫

ω

u∗(x, t)yu∗
(x, t)dx dt ≥

∫ T

0

∫

ω

(u∗(x, t) + εv(x, t))yu∗+εv(x, t)dx dt,

and that
∫ T

0

∫

ω

u∗
yu∗+εv − yu∗

ε
dx dt+

∫ T

0

∫

ω

vyu∗+εvdx dt ≤ 0, (5.12)

for any ε > 0 sufficiently small.

We postpone for the time being the proof of the following result.

Lemma 5.2. The following convergences hold

yu∗+εv −→ yu∗
in L∞(QT ),

1
ε

[
yu∗+εv − yu∗] −→ z in L∞(QT ),

as ε −→ 0+, where z is the solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂z

∂t
− γΔz = rz − 2r

k
yu∗

z −mu∗z −mvyu∗
, (x, t) ∈ QT

∂z

∂ν
(x, t) = 0, (x, t) ∈ ΣT

z(x, 0) = 0, x ∈ Ω.

(5.13)

Proof of theorem (continued). If we pass to the limit in (5.12) (and use
Lebesgue’s theorem and Lemma 5.2) we may conclude that

∫ T

0

∫

ω

[u∗(x, t)z(x, t) + v(x, t)yu∗
(x, t)]dx dt ≤ 0. (5.14)

We multiply the parabolic equation in (5.13) by p and we obtain that
∫ T

0

∫

Ω

p

[
∂z

∂t
− γΔz

]
dx dt =

∫ T

0

∫

Ω

p

[
rz − 2r

k
yu∗

z −mu∗z −mvyu∗
]
dx dt.

If we integrate by parts (with respect to t) and use Green’s formula (with
respect to x) we get that
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−
∫ T

0

∫

Ω

z

[
∂p

∂t
+γΔp

]
dx dt =

∫ T

0

∫

Ω

p

[
rz−2r

k
yu∗

z −mu∗z −mvyu∗
]
dx dt.

Because p is a solution to system (5.10), we get that

−
∫ T

0

∫

Ω

z

[
−rp+

2r
k
yu∗

p+mu∗(1 + p)
]
dx dt

=
∫ T

0

∫

Ω

p

[
rz − 2r

k
yu∗

z −mu∗z −mvyu∗
]
dx dt,

and so, we may infer that
∫ T

0

∫

Ω

m(x)u∗(x, t)z(x, t)dx dt =
∫ T

0

∫

Ω

m(x)v(x, t)yu∗
(x, t)p(x, t)dx dt.

This is equivalent to

∫ T

0

∫

ω

u∗(x, t)z(x, t)dx dt =
∫ T

0

∫

ω

v(x, t)yu∗
(x, t)p(x, t)dx dt. (5.15)

Finally, by (5.14) and (5.15) we get that

∫ T

0

∫

ω

v(x, t)yu∗
(x, t)(1 + p(x, t))dx dt ≤ 0 for any v ∈ V.

In the same manner as in Chapter 2 (and using the positivity of yu∗
) it follows

that u∗ satisfies (5.11), and that for any u ∈ U = L2(ω× (0, T )) we can prove
that

Φu(u) = yu(1 + p).

Let us prove now the first part of the lemma. The second part can be proved
in the same manner.

For any v ∈ V , and for any ε > 0 sufficiently small, we have that

0 ≤ yu∗
(x, t), yu∗+εv ≤M a.e. (x, t) ∈ QT .

We denote wε = yu∗+εv − yu∗
; wε is the solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂w

∂t
− γΔw = rw − r

k
w(yu∗+εv + yu∗

) −muw − εmvyu∗+εv, (x, t) ∈ QT

∂w

∂ν
(x, t) = 0, (x, t) ∈ ΣT

w(x, 0) = 0, x ∈ Ω.
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If we again use the comparison result for parabolic equations, we obtain that

w1ε(x, t) ≤ w(x, t) ≤ w2ε(x, t) a.e. (x, t) ∈ QT , (5.16)

where w1ε is the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂w1

∂t
− γΔw1 =

(
r +

2rM
k

+ L

)
w1 − εM‖v‖L∞(QT ), (x, t) ∈ QT

∂w1

∂ν
(x, t) = 0, (x, t) ∈ ΣT

w1(x, 0) = 0, x ∈ Ω,

and w2ε is the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂w2

∂t
− γΔw2 =

(
r +

2rM
k

+ L

)
w2 + εM‖v‖L∞(QT ), (x, t) ∈ QT

∂w2

∂ν
(x, t) = 0, (x, t) ∈ ΣT

w2(x, 0) = 0, x ∈ Ω.

By direct verification we have that

w1ε(x, t) = −εM‖v‖L∞(QT )

∫ t

0

eM0(t−s)ds a.e. (x, t) ∈ QT ,

and

w2ε(x, t) = εM‖v‖L∞(QT )

∫ t

0

eM0(t−s)ds a.e. (x, t) ∈ QT ,

where M0 = r + (2rM)/(k) + L.

It is obvious that
w1ε, w2ε −→ 0 in L∞(QT ),

as ε→ 0+.

These convergences, and (5.16) imply that

wε −→ 0 in L∞(QT ),

as ε→ 0+, and this concludes the first part of the lemma.

For the second part take

lε =
1
ε

[
yu∗+εv − yu∗]− z
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and prove in the same manner (by using comparison results for parabolic
equations) that

lε −→ 0 in L∞(QT ),

as ε→ 0+ (which gives the conclusion of the second part of the lemma).

It is important to notice that the proof of the second convergence in the lemma
is based on the first convergence.

If we are interested in investigating the problem without the logistic term,
then we obtain:

Maximize
∫ T

0

∫

ω

u(x, t)yu(x, t)dx dt, (DP1′)

where u ∈ K, and yu is the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
− γΔy = ry −m(x)u(x, t)y(x, t), (x, t) ∈ QT

∂y

∂ν
(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ Ω.

Existence of an optimal control follows in the same way.

Here are the first-order necessary conditions of optimality.

Theorem 5.3. If (u∗, yu∗
) is an optimal pair for (DP1′), and if p is the so-

lution of ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂t
+ γΔp = −rp+ u∗(1 + p), (x, t) ∈ QT

∂p

∂ν
(x, t) = 0, (x, t) ∈ ΣT

p(x, T ) = 0, x ∈ Ω,

(5.17)

then we have

u∗(a, t) =

⎧
⎨

⎩

0 if 1 + p(a, t) < 0

L if 1 + p(a, t) > 0
(5.18)

a.e. (x, t) ∈ ω × (0, T ).

By (5.17) and (5.18) we obtain in this case that p is the solution (which is
unique) to
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂t
+ γΔp = −rp+mL(1 + p)+, (x, t) ∈ QT

∂p

∂ν
(x, t) = 0, (x, t) ∈ ΣT

p(x, T ) = 0, x ∈ Ω.

(5.19)

If we approximate the solution p to this problem (which does not depend on
u∗ or on yu∗

), then by using (5.18) we immediately obtain u∗. Here is the
algorithm.

• OP1: Compute p as the solution of Problem (5.19).
• OP2: Compute the optimal control by formula (5.18).

Problem (OP1) is solved by descending with respect to time levels. Of course
the computed control is still an approximation due to the fact that Problem
(OP1) is computed numerically. But the algorithm is quite simple.

By (5.17) and (5.18) we may also conclude that u∗ is a bang-bang control. It
also follows that the optimal control u∗ does not depend explicitly on y0.

Numerical algorithm for (DP1)

The last theorem and the form of Φu allow us to establish an algorithm to
approximate the optimal value of the cost functional. We describe below a
projected gradient-type algorithm (Uzawa’s method).

Uzawa’s method for (DP1)

S0: Choose u(0) ∈ K;
Set j:=0;

S1: Compute y(j), the solution to (5.7), with the input u(j):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
− γΔy = ry

(
1 − y

k

)
−mu(j)y, (x, t) ∈ QT

∂y

∂ν
(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ Ω.

S2: Compute p(j), the solution to (5.10), with the input y(j), u(j):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂t
+ γΔp = −rp+

2r
k
y(j)p+mu(j)(1 + p), (x, t) ∈ QT

∂p

∂ν
(x, t) = 0, (x, t) ∈ ΣT

p(x, T ) = 0, x ∈ Ω.

S3: Compute the gradient direction w(j):

w(j) := Φu(u(j)) = y(j)(1 + p(j)).

S4: (The stopping criterion)
If ‖w(j)‖ < ε

then STOP (u(j) is the approximating control)
else go to S5.

S5: Compute the steplength ρj such that

Φ(PK(u(j) + ρjw
(j))) = max

ρ≥0
{Φ(PK(u(j) + ρw(j)))}.

S6: Compute the new control

u(j+1) := PK(u(j) + ρjw
(j)).

j := j + 1; go to S1.

Another possible choice is to use formula (5.11), and to develop a Rosen-type
projected gradient method.

Rosen’s method for (DP1)

S0: Choose u(0) ∈ K;
Set j:=0;

S1: Compute y(j) the solution to (5.7) with the input u(j):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
− γΔy = ry

(
1 − y

k

)
−mu(j)y, (x, t) ∈ QT

∂y

∂ν
(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ Ω.
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S2: Compute p(j) the solution to (5.10) with the input y(j), u(j):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂t
+ γΔp = −rp+

2r
k
y(j)p+mu(j)(1 + p), (x, t) ∈ QT

∂p

∂ν
(x, t) = 0, (x, t) ∈ ΣT

p(x, T ) = 0, x ∈ Ω.

S3: Compute v(j) according to the formula

v(j)(x, t) =

⎧
⎨

⎩

0 if 1 + p(j)(x, t) < 0

L if 1 + p(j)(x, t) ≥ 0,

for (x, t) ∈ ω× (0, T ). Here v(j) is derived using u∗ from formula (5.11).
S4: Compute λj ∈ [0, 1], the solution of the maximization problem

max
λ∈[0,1]

Φ(λu(j) + (1 − λ)v(j)).

S5: Compute the new control u(j+1) by

u(j+1) = λju
(j) + (1 − λj)v(j).

S6: (The stopping criterion)
if ‖u(j+1) − u(j)‖ < ε

then STOP (u(j+1) is the approximating control)
else j := j + 1; go to S1.

We recall that a convex combination of two bang-bang controls that take only
the values 0 and L, does not necessarily take only these two values. This is
why it is better to replace the convex combination λu(j) +(1−λ)v(j) from S4
and S5 by a convex combination of the switching points of u(j) and of v(j) as
discussed in Section 4.3.
As concerns the use of MATLAB R© we say that for Ω ⊂ IR one can apply
finite-difference schemes for the approximation of the PDEs in S1 and S2
and write a corresponding program. For Ω ⊂ IR2 the Finite Element Method
(FEM) can be used and therefore the Partial Differential Equation ToolboxTM

of MATLAB.

5.3 A working example: Control of a reaction–diffusion
system

The model proposed for investigation in this section is related to the predator–
prey model studied in Section 2.3.
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Assume that the two populations are free to diffuse in the same habitat Ω.
A subsequent departure from various reaction–diffusion systems arising in

population dynamics or epidemiology – and other application fields as well –
lies in one of the reaction terms that is nonlocal in essence and involves an
integral term. Going back to our motivating problem the biomass of captured
and eaten prey at x in the habitat Ω is thereafter spatially distributed over the
whole range occupied by the predator species, Ω. This produces local/nonlocal
interspecific interactions between the two species at the predator level; that is,
the functional response to predation is local whereas the numerical response to
predation is nonlocal and distributed overΩ; see also [CW97], [G00], [GVA06],
and [AFL09].

This is again a departure from most standard predator–prey models, see
[Mur89]. From a phenomenological point of view we have chosen to intro-
duce a rather generic integral kernel term to model the spatial distribution of
biomass. For nonlocal diffusive epidemic models see [C84].

Let us now derive the mathematical problem with which we are working.
Let y1(x, t) be the density at position x and time t of a prey species distributed
over a spatial domain Ω ⊂ IRN , N = 1, 2, or 3, and assume its spatiotemporal
dynamics is governed by the equation

∂y1
∂t

− d1Δy1 = r1y1, x ∈ Ω, t ∈ (0, T ),

wherein r1 > 0 is the natural growth rate, d1 > 0 is the diffusion coefficient,
and T > 0. Let y2(x, t) be the density at position x and time t of a predator
species distributed over the same habitat; in the absence of the aforementioned
prey – assumed to be its unique resource – the predator population will decay
at an exponential rate r2 > 0 and its spatiotemporal dynamics is governed by
a basic linear model,

∂y2
∂t

− d2Δy2 = −r2y2, x ∈ Ω, t ∈ (0, T ),

where d2 > 0 is the diffusion coefficient.

When both populations are present, predation occurs on Ω; assume that the
functional is of Lotka–Volterra type (see [Mur89]). The prey dynamics is mod-
ified by predation and reads

∂y1
∂t

− d1Δy1 = r1y1 − μ1u(x, t)y1y2, x ∈ Ω, t ∈ (0, T ), (5.20)

where μ1 > 0 and 1− u(x, t) is the segregation of the two populations. u is in
fact the control.

Prey captured and eaten at time t > 0 and location x′ ∈ Ω are transformed
into biomass via a conversion factor yielding a numerical response to predation
μ2u(x′, t)y1(x′, t)y2(x′, t) (μ2 > 0 is a constant). We assume that this quantity
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is distributed overΩ via a generic nonnegative kernel �(x, x′) (� ∈ L∞(Ω×Ω),
�(x, x′) ≥ 0 a.e. (x, x′) ∈ Ω × Ω) so that �(x, x′)μ2u(x′, t)y1(x′, t)y2(x′, t) is
the biomass distributed at x ∈ Ω resulting from predation at x′ ∈ Ω. Biomass
conservation implies a consistency condition must hold;

∫
Ω
�(x, x′)dx = 1, a.e.

x′ ∈ Ω.

In this setting the predator dynamics reads

∂y2
∂t

− d2Δy2 = −r2y2 + μ2

∫

Ω

�(x, x′)u(x′, t)y1(x′, t)y2(x′, t)dx′, (5.21)

x ∈ Ω, t ∈ (0, T ).

To complete our model boundary conditions must be imposed on both species.
We choose no-flux boundary conditions corresponding to isolated populations:

∂y1
∂ν

(x, t) =
∂y2
∂ν

(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ). (5.22)

The last nonnegative and bounded initial conditions are prescribed at time
t = 0:

⎧
⎨

⎩

y1(x, 0) = y01(x), x ∈ Ω

y2(x, 0) = y02(x), x ∈ Ω.
(5.23)

Then (5.20)–(5.23) is a basic model for our controlled predator–prey system.

Assume that
y01, y02 ∈ L∞(Ω),

and

y01(x) > 0, y02(x) > 0 a.e. x ∈ Ω.

We are interested in maximizing the total number of individuals of both pop-
ulations at moment T > 0. This problem is related to (P3) in Section 2.3.

The problem may be reformulated:

Maximize Ψ(u) =
∫

Ω

[yu
1 (x, T ) + yu

2 (x, T )]dx, (DP2)

subject to u ∈ L2(Ω× (0, T )), 0 ≤ u(x, t) ≤ 1 a.e. t ∈ (0, T ), where (yu
1 , y

u
2 ) is

the solution to (5.20)–(5.23).

We propose that the reader proves that for any such u problem (5.20) and
(5.21) admits a unique solution, and that the following result holds.
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Theorem 5.4. If (u∗, (y∗1 , y
∗
2)) is an optimal pair for (DP2), and if p =

(p1, p2) is the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p1

∂t
+ d1Δp1 =−r1p1 + μ1u

∗y∗2p1 − μ2u
∗(x, t)y∗2(x, t)

∫

Ω

�(x′, x)p2(x′, t)dx′,

∂p2

∂t
+ d2Δp2 = r2p2 + μ1u

∗y∗1p1 − μ2u
∗(x, t)y∗1(x, t)

∫

Ω

�(x′, x)p2(x′, t)dx′,

(x, t) ∈ Ω× ∈ (0, T )

∂p1

∂ν
(x, t) =

∂p2

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0, T )

p1(x, T ) = p2(x, T ) = 1, x ∈ Ω,

then

u∗(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if μ2

∫

Ω

�(x′, x)p2(x′, t)dx′ − μ1p1(x, t) < 0

1, if μ2

∫

Ω

�(x′, x)p2(x′, t)dx′ − μ1p1(x, t) > 0

a.e. on Ω × (0, T ).

It would be interesting to study the corresponding optimal control problems
for all investigated models, with space structure this time (adding diffusion
when necessary).

We now outline a Rosen-type projected gradient algorithm to approximate
the optimal control of the above problem. Let K = {w ∈ L2(Ω× (0, T )); 0 ≤
w(x, t) ≤ 1 a.e.}.

A projected gradient algorithm for problem (DP2) (Rosen’s
method)

S0: Choose u(0) ∈ K;
Set j:=0;

S1: Compute y(j) = (y(j)
1 , y

(j)
2 ) the solution to (5.20)–(5.23) with the input

u(j):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1
∂t

− d1Δy1 = r1y1 − μ1u
(j)(x, t)y1y2, x ∈ Ω, t ∈ (0, T )

∂y2

∂t
− d2Δy2 = −r2y2 + μ2

∫

Ω

�(x, x′)u(j)(x′, t)y1(x′, t)y2(x′, t)dx′,

x ∈ Ω, t ∈ (0, T )
∂y1
∂ν

(x, t) =
∂y2
∂ν

(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )

y1(x, 0) = y01(x), y2(x, 0) = y02(x), x ∈ Ω.

S2: Compute p(j) = (p(j)
1 , p

(j)
2 ), the solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p1

∂t
+ d1Δp1 = −r1p1 + μ1u

(j)y
(j)
2 p1

− μ2u
(j)(x, t)y(j)

2 (x, t)
∫

Ω

�(x′, x)p2(x′, t)dx′, (x, t) ∈ Ω× ∈ (0, T )

∂p2

∂t
+ d2Δp2 = r2p2 + μ1u

(j)y
(j)
1 p1

− μ2u
(j)(x, t)y(j)

1 (x, t)
∫

Ω

�(x′, x)p2(x′, t)dx′, (x, t) ∈ Ω× ∈ (0, T )

∂p1

∂ν
(x, t) =

∂p2

∂ν
(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

p1(x, T ) = p2(x, T ) = 1, x ∈ Ω.

S3: Compute v(j) according to the formula in Theorem 5.4:

v(j)(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if μ2

∫

Ω

�(x′, x)p(j)
2 (x′, t)dx′ − μ1p

(j)
1 (x, t) < 0

1 if μ2

∫

Ω

�(x′, x)p(j)
2 (x′, t)dx′ − μ1p

(j)
1 (x, t) ≥ 0

a.e. on Ω × (0, T ).
S4: Compute λj ∈ [0, 1], the solution of the maximization problem

max
λ∈[0,1]

Ψ(λu(j) + (1 − λ)v(j)).

S5: Compute the new control u(j+1) by

u(j+1) = λju
(j) + (1 − λj)v(j).
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S6: (The stopping criterion)
if ‖u(j+1) − u(j)‖ < ε

then STOP (u(j+1) is the approximating control)
else j := j + 1; go to S1.

We recall that a convex combination of two bang-bang controls that take only
the values 0 and 1, does not necessarily take only these two values. This is
why it is better to replace the convex combination λu(j) +(1−λ)v(j) from S4
and S5 by a convex combination of the switching points of u(j) and of v(j) as
discussed in Section 4.3.

Bibliographical Notes and Remarks

There is an extensive literature devoted to the optimal control of diffusive
models (see, e.g., [Lio72]). For models in population dynamics we refer to the
monograph [Ani00]. For models regarding epidemics we refer to the mono-
graph [Cap93] and references therein. For different models in economics as
well as in physics and engineering, see [Bar94] and references therein. A vari-
ety of control problems for spatially structured epidemic systems can be found
in [AC02], [AC09], [ACa09], and [ACv09].

For numerical methods for optimal control problems governed by PDEs
we recommend [AN03].

Exercises

5.1. Derive the maximum principle for the following problem,

Maximize
∫ T

0

∫ A

0

∫

ω

u(x, a, t)yu(x, a, t)dx da dt,

where u ∈ L2(Ω × (0, A) × (0, T )), 0 ≤ u(x, a, t) ≤ L a.e., and yu is the
solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
+
∂y

∂a
− γΔy + μ(a)y = −m(x)u(x, t)y(x, a, t), (x, a, t) ∈ Q

∂y

∂ν
(x, a, t) = 0, (x, t) ∈ Σ

y(x, 0, t) =
∫ A

0

β(a)y(x, a, t)da, (x, t) ∈ Ω × (0, T )

y(x, a, 0) = y0(x, a), (x, t) ∈ Ω × (0, A),
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where Q = Ω × (0, A) × (0, T ), Σ = ∂Ω × (0, A)× (0, T ). Here γ > 0, Ω, and
ω satisfy the assumptions in Section 5.2, and β and μ satisfy the hypotheses
in Section 4.1.

Hint. For details we refer to [Ani00].

5.2. Under the assumptions in Section 5.3, derive the maximum principle for
the following problem:

Maximize
∫

Ω

[yu
1 (x, T ) + yu

2 (x, T )]dx, (DP2′)

subject to u ∈ L2(Ω× (0, T )), 0 ≤ u(x, t) ≤ 1 a.e. t ∈ (0, T ), where (yu
1 , y

u
2 ) is

the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1
∂t

− d1Δy1 = r1y1 − μ1u(x, t)y1y2, (x, t) ∈ Ω× ∈ (0, T )

∂y2
∂t

− d2Δy2 = −r2y2 + μ2u(x, t)y1y2, (x, t) ∈ Ω× ∈ (0, T )

∂y1
∂ν

(x, t) =
∂y2
∂ν

(x, t) = 0, (x, t) ∈ ∂Ω × (0, T )

y1(x, 0) = y01(x), y2(x) = y02(x), x ∈ Ω.

Hint. (yu
1 , y

u
2 ) is the solution of the following initial-value problem (in L2(Ω)×

L2(Ω)). {
y′(t) = f(t, u(t), y(t)), t ∈ (0, T )
y(0) = y0,

where

y0 =
(
y01
y02

)
,

f(t, u, y) = Ay +

⎛

⎝
r1y1 − μ1uy1y2

−r2y2 + μ2uy1y2

⎞

⎠ .

Here

y =
(
y1
y2

)
,

and A is a linear unbounded operator. In fact A is defined by

D(A) = {w = (w1, w2) ∈ H2(Ω) ×H2(Ω);
∂w1

∂ν
=
∂w2

∂ν
= 0 on ∂Ω},

Ay =

⎛

⎝
d1Δy1

d2Δy2,

⎞

⎠ , y ∈ D(A).
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5.3. Under the assumptions in Section 5.3, derive the maximum principle for
the following problem.

Maximize
∫

Ω

[yu
1 (x, T ) + yu

2 (x, T )]dx, (DP2′′)

subject to u ∈ L2(Ω× (0, T )), 0 ≤ u(x, t) ≤ 1 a.e. t ∈ (0, T ), where (yu
1 , y

u
2 ) is

the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1
∂t

− d1Δy1 = r1y1
(
1 − y1

k

)
− μ1u(x, t)y1y2, (x, t) ∈ Ω× ∈ (0, T )

∂y2
∂t

− d2Δy2 = −r2y2 + μ2u(x, t)y1y2, (x, t) ∈ Ω× ∈ (0, T )

∂y1
∂ν

(x, t) =
∂y2
∂ν

(x, t) = 0, (x, t) ∈ ∂Ω × (0, T )

y1(x, 0) = y01(x), y2(x) = y02(x), x ∈ Ω.

Here k is a positive constant.
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Appendices

A.1 Elements of functional analysis

A.1.1 The Lebesgue integral

Let the real numbers be ai < bi, i = 1, 2, . . . ,m. A set of the form

C =
m∏

i=1

[ai, bi]

is called a cell.
Denote by F the set of all finite unions of disjoint cells. If F =

⋃n
i=1 Ci ∈ F ,

where Ci are disjoint cells, then we define the measure of F by

μ(F ) =
n∑

i=1

μ(Ci),

where μ(Ci) is the volume of Ci. Let Ω ⊂ IRm be an open subset. We define
the measure of Ω by

μ(Ω) = sup{μ(F ); F ⊂ Ω, F ∈ F}. (A.1)

Let K ⊂ IRm be a compact subset. We define the measure of K by

μ(K) = inf{μ(Ω); K ⊂ Ω, Ω open}. (A.2)

Let now A ⊂ IRm be a bounded set. We define the outer measure of A by

μ∗(A) = inf{μ(Ω); A ⊂ Ω, Ω open}
and the inner measure of A by

μ∗(A) = sup{μ(K); K ⊂ A, K compact}.

207
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By definition the bounded set A is measurable if μ∗(A) = μ∗(A). The common
value is denoted by μ(A) or meas(A) and it is called the measure of A.

Now let A ⊂ IRm be an unbounded set. We introduce the ball

Br = {x ∈ IRm; ‖x‖ < r},
where ‖ · ‖ denotes the Euclidean norm in IRm.

By definition the unbounded set A is measurable if the bounded set A∩Br is
measurable for any r > 0.

We say that a certain property holds almost everywhere on A (a.e. on A) if
the property holds on A\A0, where A0 ⊂ A is measurable and μ(A0) = 0.

Now let f : IRm → [−∞,+∞]. The function f is said to be measurable if for
each λ ∈ IR, the level set {x ∈ IRm; f(x) ≤ λ} is measurable.

Let f : IRm → IR. The function f is finitely valued if there exist ai ∈ IR, i =
1, 2, . . . , n, and Ai ⊂ IRm, i = 1, 2, . . . , n, measurable and mutually disjoint
subsets such that

f(x) =
n∑

i=1

aiχAi(x), x ∈ IRm, (A.3)

where χAi is the characteristic function of Ai.
If f : IRm → [−∞,+∞] is measurable then there is a sequence of finitely
valued functions that is a.e. convergent to f on IRm. The integral I(f) of the
finitely valued function f defined by formula (A.3) is, by definition,

I(f) =
n∑

i=1

aiμ(Ai). (A.4)

Let f : IRm → [0,+∞]. The function f is Lebesgue integrable if

I(f) = sup {I(ϕ); 0 ≤ ϕ ≤ f, ϕ finitely valued} < +∞. (A.5)

Then I(f) is called the Lebesgue integral of f . It is also denoted
∫
f(x)dx.

If A ⊂ IRm is a measurable subset, then the integral of f on A is defined by
∫

A

f(x)dx = I(χAf),

where χA is the characteristic function of A.

Now let f : IRm → [−∞,+∞]. We define the positive part of f to be f+ :
IRm → [0,+∞] by f+(x) = max {f(x), 0} and the negative part of f to be
f− : IRm → [0,+∞] by f−(x) = max{−f(x), 0}. A simple calculus shows
that f = f+ − f−, and |f | = f+ + f−.
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The function f is Lebesgue integrable if f+ and f− are both Lebesgue
integrable. Then the integral of f is defined by

∫
f(x)dx =

∫
f+(x)dx −

∫
f−(x)dx.

A first result refers to sequences of measurable functions.

Theorem A.1. If {fk} is a sequence of measurable functions, and

f(x) = lim
k→+∞

fk(x) a.e. x ∈ IRm,

then f is measurable.

We also have the following theorem.

Theorem A.2. Let f : IRm → [−∞,+∞] be a measurable function. If f is
integrable, then ∣∣∣∣

∫
f(x)dx

∣∣∣∣ ≤
∫

|f(x)|dx.

The following result is known as the Lebesgue dominated convergence theorem.

Theorem A.3. Let {fk} be a sequence of measurable functions and g an in-
tegrable function such that

|fk(x)| ≤ g(x) a.e. x ∈ IRm,

and
f(x) = lim

k→+∞
fk(x) a.e. x ∈ IRm.

Then f is integrable and
∫
f(x)dx = lim

k→+∞

∫
fk(x)dx.

A.1.2 Lp spaces

Let Ω ⊂ IRm be a bounded measurable subset and 1 ≤ p < +∞. Then Lp(Ω)
is the space of all measurable functions (classes of functions) f : Ω → IR such
that |f |p is Lebesgue integrable on Ω. Lp(Ω) is a Banach space with the norm

‖f‖Lp(Ω) =
(∫

Ω

|f(x)|pdx
)1/p

. (A.6)

Moreover, for 1 < p < +∞ the dual of the Banach space Lp(Ω) is Lq(Ω),
where 1/p+ 1/q = 1, and Lp(Ω) is reflexive (for details see [Bre83]).
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For p = 2 the space L2(Ω) is a Hilbert space endowed with the scalar product
(inner product)

(f, g)L2(Ω) =
∫

Ω

f(x)g(x)dx. (A.7)

For p = 1 we have the particular case of L1(Ω), the space of all Lebesgue
integrable functions on Ω. The corresponding norm is

‖f‖L1(Ω) =
∫

Ω

|f(x)|dx.

For p= +∞ we have L∞(Ω), the space of essentially bounded functions on Ω.

‖f‖L∞(Ω) = Ess sup{|f(x)|; x ∈ Ω}.

Recall that f is essentially bounded if there exists a constant α such that
|f(x)| ≤ α a.e. on Ω. The infimum of such constants α is denoted by
Ess sup{|f(x)|; x ∈ Ω}.
We also recall the Hölder inequality. Let f ∈ Lp(Ω) and g ∈ Lq(Ω), where
p, q ∈ (1,+∞), 1/p+ 1/q = 1. Then

∫

Ω

|f(x)g(x)|dx ≤
(∫

Ω

|f(x)|pdx
)1/p

·
(∫

Ω

|g(x)|qdx
)1/q

. (A.8)

Moreover for fi ∈ Lpi(Ω), i = 1, 2, . . . , n, with
∑n

i=1 1/pi = 1, (pi > 1), we
have ∣∣∣∣∣

∫

Ω

n∏

i=1

fi(x)dx

∣∣∣∣∣ ≤
n∏

i=1

(∫

Ω

|fi(x)|pidx

)1/pi

.

We consider now the extension of the integral to a Banach space-valued func-
tion defined on a real interval. To begin let f : IR → V , where V is a (real)
Banach space. We denote by ‖ · ‖ the norm of V . Let {A1, A2, . . . , An} be a
finite set of measurable and mutually disjoint subsets of IR each having finite
measure and {a1, a2, . . . , an} a corresponding set of elements of V . We say
that f given by

f(t) =
n∑

i=1

aiχAi(t), t ∈ IR,

where χAi is the characteristic function of Ai, is a finitely valued function.

Now let a < b and f : [a, b] → V . The function f is strongly measurable on
[a, b] if there exists a sequence {fk} of finitely valued functions, fk : [a, b] → V ,
such that

lim
k→+∞

‖fk(t) − f(t)‖ = 0 a.e. t ∈ [a, b]. (A.9)
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We say that f is Bochner integrable on [a, b] if there exists a sequence {fk}
of finitely valued functions, fk : [a, b] → V , such that (A.9) is satisfied (f is
strongly measurable) and

lim
k→+∞

∫ b

a

‖fk(t) − f(t)‖dt = 0.

A necessary and sufficient condition that f : [a, b] → V is Bochner integrable
is that f is strongly measurable, and

∫ b

a ‖f(t)‖dt < +∞.

Let A ⊂ IR be a measurable set. Then∥∥∥∥
∫

A

f(t)dt
∥∥∥∥ ≤

∫

A

‖f(t)‖dt.

We denote by Lp(a, b;V ) the linear space of (classes of) measurable functions
f : [a, b] → V such that ‖f(·)‖ ∈ Lp(a, b); that is,

∫ b

a

‖f(t)‖pdt < +∞ for 1 ≤ p < +∞,

and
Ess sup {‖f(t)‖; t ∈ [a, b]} < +∞ for p = +∞.

The corresponding norm is, respectively,

‖f‖ =

(∫ b

a

‖f(t)‖pdt

)1/p

for f ∈ Lp(a, b;V ), 1 ≤ p < +∞, (A.10)

and
‖f‖ = Ess sup{‖f(t)‖; t ∈ [a, b]} for f ∈ L∞(a, b;V ). (A.11)

If the Banach space V is reflexive and 1 < p < +∞, then the dual space of
Lp(a, b;V ) is Lq(a, b;V ∗) where 1/p+1/q = 1 and V ∗ is the dual space of V .

For PDEs usually we consider Lp(0, T ;V ) (p ∈ [1,+∞]); that is, the time
interval [a, b] becomes [0, T ]. A particular useful case is V = Lr(Ω) with
Ω ⊂ IRm a nonempty bounded open set. Another one is V = IRN .
The set Lp

loc(a, b;V ) is defined by

Lp
loc(a, b;V ) = {f ∈ Lp(c, d;V ); for any c, d such that a < c < d < b}.

For p = 1 we say that f is locally integrable.

For any A, T ∈ (0,+∞), we finally define

L∞
loc([0, A)) = {f : [0, A) → IR; f ∈ L∞(0, Ã) for any Ã ∈ (0, A)}

(the set of all locally essentially bounded functions from [0, A) to IR), and

L∞
loc([0, A) × [0, T ]) = {f : [0, A) × [0, T ] → IR; f ∈ L∞((0, Ã) × (0, T ))

for any Ã ∈ (0, A)}
(the set of all locally essentially bounded functions from [0, A)× [0, T ] to IR).



212 A Appendices

A.1.3 The weak convergence

Let H be a real Hilbert space endowed with the scalar product (inner product)
(·, ·) and the corresponding norm ‖ · ‖ defined by ‖x‖ = (x, x)1/2. We assume
that H is identified with its own dual (by Riesz’s theorem).

We say that the sequence {xn} ⊂ H is weakly convergent to x ∈ H if

lim
n→+∞(xn, y) = (x, y) for any y ∈ H.

The following results are valid.

Theorem A.4. Let {xn} be a sequence in the Hilbert space H and x ∈ H.

(1) If {xn} is strongly convergent to x, that is, limn→+∞ ‖xn − x‖ = 0, then
{xn} is weakly convergent to x.

(2) If {xn} is weakly convergent to x, then the sequence ‖xn‖ is bounded and
‖x‖ ≤ lim inf ‖xn‖.

(3) If {xn} is weakly convergent to x and {yn} ⊂ H is strongly convergent to
y ∈ H, then {(xn, yn)} is convergent to (x, y) in IR.

For a finite-dimensional space (for instance, IRm) the weak and strong con-
vergence are equivalent to the usual convergence.

We say that a subset A ⊂ H is sequentially weakly compact if every sequence
{xn} ∈ A contains a weakly convergent subsequence. For finite-dimensional
spaces the sequentially weakly compact sets are the relatively compact sets
and the weak convergence is the usual one. A very important property of
Hilbert spaces, and more generally of reflexive Banach spaces, is that every
bounded subset is sequentially weakly compact. Namely, the following result
is valid.

Theorem A.5. Let {xn} ⊂ H be a bounded sequence. Then there exists a
subsequence {xnk

} ⊂ {xn} that is weakly convergent to an element of H.

If we apply Theorem A.5 to the Hilbert space H = L2(Ω) (where Ω ⊂ IRm,
m ∈ IN∗, is a nonempty bounded open subset) it follows that every bounded
subset of L2(Ω) is sequentially weakly compact. If {fn} ⊂ L2(Ω) is a bounded
sequence of functions, that is, there exists M > 0 such that

‖fn‖L2(Ω) ≤M for any n,

then there exists the subsequence {fnk
} ⊂ {fn} and f ∈ L2(Ω) such that

lim
k→+∞

∫

Ω

fnk
(x)ϕ(x)dx =

∫

Ω

f(x)ϕ(x)dx for any ϕ ∈ L2(Ω).



A.1 Elements of functional analysis 213

A.1.4 The normal cone

Let K be a closed convex subset of the real Hilbert space V endowed with the
inner product (·, ·) and u ∈ K. The set

NK(u) = {w ∈ V ; (v − u,w) ≤ 0 for any v ∈ K}
is called the normal cone to K at u.

Example A.6. If V = IR, K = [a, b] (a, b ∈ IR, a < b), then

NK(u) =

⎧
⎨

⎩

IR+, u = b
{0}, a < u < b
IR−, u = a.

Example A.7. Let Ω ⊂ IRm (m ∈ IN∗) be an open and bounded subset, and
ζ1, ζ2 ∈ L2(Ω), with ζ1(x) < ζ2(x) a.e. x ∈ Ω. Define

K = {y ∈ L2(Ω); ζ1(x) ≤ y(x) ≤ ζ2(x) a.e. x ∈ Ω}.
K is a closed convex subset of L2(Ω). Let y ∈ K. Then for any z ∈ NK(y) we
have:

• z(x) ≤ 0 for y(x) = ζ1(x);
• z(x) ≥ 0 for y(x) = ζ2(x);
• z(x) = 0 for ζ1(x) < y(x) < ζ2(x),

a.e. in Ω.

Indeed, consider A = {x ∈ Ω; y(x) = ζ1(x)}. Let us prove that z(x) ≤ 0
a.e. x ∈ A. Assume by contradiction that there exists a subset Ã ⊂ A such
that μ(Ã) > 0 and z(x) > 0 a.e. x ∈ Ã.
Because z ∈ NK(y), we get that

∫

Ω

z(x)(h(x) − y(x))dx ≤ 0,

for any h ∈ K.
We may choose h ∈ K such that

h(x) = ζ1(x) a.e. x ∈ Ω \ Ã,

h(x) > ζ1(x) a.e. x ∈ Ã.

Thus ∫

Ω

z(x)(h(x) − y(x))dx =
∫

Ã

z(x)(h(x) − y(x))dx > 0,

which is absurd. In conclusion, z(x) ≤ 0 a.e. x ∈ A.
In the same manner it follows that z(x) ≥ 0 for almost any x ∈ Ω such that
y(x) = ζ2(x), and z(x) = 0 for almost any x ∈ Ω such that ζ1(x) < y(x) <
ζ2(x).
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A.1.5 The Gâteaux derivative

Consider the real normed spaces V and H and the operator F : D ⊆ V → H .
We define the directional derivative of F at x ∈ int(D) along the direction
h ∈ V by

F ′(x, h) = lim
λ→0

F (x+ λh) − F (x)
λ

,

if the limit exists.
It is easy to see that F ′(x, 0) = 0 for any x ∈ int(D) and that the operator

h→ F ′(x, h) is homogeneous:

F ′(x, αh) = αF ′(x, h) for any α ∈ IR.

However, the operator above does not have the additivity property and there-
fore it is not necessarily linear.

Let us introduce now the left and right directional derivatives. The right
directional derivative of F at x ∈ int(D) along the direction h ∈ V is given
by

F ′
+(x, h) = lim

λ→0+

F (x+ λh) − F (x)
λ

if the limit exists. The left directional derivative of F at x ∈ int(D) along the
direction h ∈ V is given by

F ′
−(x, h) = lim

λ→0−

F (x+ λh) − F (x)
λ

if the limit exists. It is easy to see that F ′
−(x, h) = −F ′

+(x,−h).

Proposition A.8. F has the directional derivative at x ∈ int(D) along the
direction h if and only if both the right and left directional derivatives at x
along the direction h exist and are equal. In such a case we have

F ′(x, h) = F ′
+(x, h) = F ′

−(x, h).

We can now state the definition of the Gâteaux derivative.
If for x ∈ int(D) the derivative F ′(x, h) exists along any direction h and

if the operator h �→ F ′(x, h) is linear and continuous, then we say that F
is Gâteaux differentiable (weakly differentiable) at x. In such a case F ′(x) ∈
L(V,H) defined by

F ′(x)h = lim
λ→0

F (x+ λh) − F (x)
λ

,

is called the Gâteaux derivative (the weak derivative) of F at x. It is also
denoted by Fx(x) or by dF (x).

An equivalent definition is the following one. F is weakly differentiable at
x ∈ int(D) if there exists the linear and continuous operator A : V → H such
that
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lim
λ→0

‖F (x+ λh) − F (x) − λAh‖
λ

= 0

for any h ∈ V . In such a case F ′(x) = A and

lim
λ→0

F (x+ λh) − F (x)
λ

= Ah. (A.12)

We also have the following.

Lemma A.9. The linear operator A defined above is unique.

In the finite-dimensional case, F : D ⊆ IRn → IRm, we make some
computational remarks. Consider that F = (f1, f2, . . . , fm)T , where
fi :D⊂ IRn → IR, i=1, 2, . . . ,m. We take h = ej in (A.12), where ej is
the normal unit vector, and because A is a real matrix with m rows and n
columns we get component by component

lim
λ→0

fi(x + λej) − fi(x)
λ

= aij ,

and hence aij = ∂fi/∂xj(x), j = 1, 2, . . . , n, i = 1, 2, . . . ,m. We may conclude
that the matrix representation of the operator A = F ′(x) is the Jacobi matrix

F ′(x) = [aij ]m×n, aij =
∂fi

∂xj
(x).

It is also denoted by
∂F

∂x
(x) or Fx(x).

Consider the particular case in which m = 1. Then f : D ⊆ IRn → IR and

f ′(x) =
(
∂f

∂xi
(x)

)

i=1,...,n

is the gradient of f at x. However, f ′x) is usually considered as a column

vector, and it is also denoted by
∂f

∂x
, fx(x), ∇f(x), ∇xf(x), or gradf(x).

Let us recall that

• The existence of the Jacobi matrix, that is, the existence of all partial
derivatives, at x ∈ D does not imply the weak differentiability at x.

• The existence of the weak derivative at x ∈ D does not imply the continuity
at x.

For more elements of functional analysis we recommend [Ada75], [Bre83], and
[BP86].

A.2 Bellman’s lemma

We present here two useful results related to integral inequalities. We begin
with Gronwall’s lemma.
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Lemma A.10. Let x : [a, b] → IR (a, b ∈ IR, a < b) be a continuous function,
ϕ ∈ L∞(a, b), and ψ ∈ L1(a, b), ψ(t) ≥ 0 a.e. t ∈ (a, b). If

x(t) ≤ ϕ(t) +
∫ t

a

ψ(s)x(s)ds,

for almost any t ∈ [a, b], then

x(t) ≤ ϕ(t) +
∫ t

a

ϕ(s)ψ(s) exp
(∫ t

s

ψ(τ)dτ
)
ds,

for almost any t ∈ [a, b].

Proof. Denote

y(t) =
∫ t

a

ψ(s)x(s)ds, t ∈ [a, b].

The equality
y′(t) = ψ(t)x(t) a.e. t ∈ (a, b),

and the hypotheses imply that

y′(t) ≤ ψ(t)ϕ(t) + ψ(t)y(t) a.e. t ∈ (a, b).

We multiply the last inequality by exp
(
− ∫ t

a
ψ(s)ds

)
, and obtain that

d

dt

[
y(t)exp

(
−
∫ t

a

ψ(s)ds
)]

≤ ψ(t)ϕ(t)exp
(
−
∫ t

a

ψ(s)ds
)

a.e. t ∈ (a, b). By integration we infer that

y(t) ≤
∫ t

a

ψ(s)ϕ(s)exp
(∫ t

s

ψ(τ)dτ
)
ds,

for any t ∈ [a, b], and consequently we obtain the conclusion of the lemma.

If in addition, ϕ(t) = M for each t ∈ [a, b] (ϕ is a constant function), by
Lemma A.10 we may deduce the following Bellman’s lemma.

Lemma A.11. If x ∈ C([a, b]), ψ ∈ L1(a, b), ψ(t) ≥ 0 a.e. t ∈ (a, b), M ∈ IR,
and

x(t) ≤M +
∫ t

a

ψ(s)x(s)ds,

for each t ∈ [a, b], then

x(t) ≤M exp
(∫ t

a

ψ(s)ds
)
,

for each t ∈ [a, b].
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A.3 Existence and uniqueness of Carathéodory solution

Let X be a real Banach space with norm ‖ · ‖. Let a, b ∈ IR, a < b. We say
that function x : [a, b] → X is continuous at t0 ∈ [a, b] if the real function
g : [a, b] → IR,

g(t) = ‖x(t) − x(t0)‖, t ∈ [a, b]

is continuous at t0. If x is continuous at each t ∈ [a, b], we say that x is
continuous on [a, b].

Denote by C([a, b];X) the space of all continuous functions x : [a, b] → X .
This is a Banach space with the norm

‖x‖C([a,b];X) = max{‖x(t)‖; t ∈ [a, b]}.

We say that the function x : [a, b] → X is absolutely continuous on [a, b] if for
each ε > 0, there exists δ(ε) > 0 such that

N∑

k=1

‖x(tk) − x(sk)‖ < ε,

whenever
∑N

k=1 |tk − sk| < δ(ε) and (tk, sk) ∩ (tj , sj) = ∅, for k �= j (tk, sk ∈
[a, b], for any k ∈ {1, 2, . . . , N}).
We denote by AC([a, b] : X) the space of all absolutely continuous functions
x : [a, b] → X .

We say that the function x : [a, b] → X is differentiable at t0 ∈ [a, b] if there
exists x′(t0) ∈ X , the derivative of x at t0, such that

lim
t→t0

∥∥∥∥
1

t− t0
(x(t) − x(t0)) − x′(t0)

∥∥∥∥ = 0.

The derivative x′ is also denoted by dx/dt. We say that x is differentiable on
[a, b] if x is differentiable at each t ∈ [a, b].

We denote by Ck([a, b];X) (k ∈ IN∗) the space of all functions x : [a, b] → X ,
k times differentiable, with continuous kth derivative.

Theorem A.12. Let X be a reflexive Banach space. If x ∈ AC([a, b];X),
then x is almost everywhere differentiable on [a, b], and

x(t) = x(a) +
∫ t

a

x′(s)ds for any t ∈ [a, b].

For the proof see [Bar93].
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Theorem A.13. If x ∈ C([a, b];X) and x′ ∈ L1(a, b;X), then x ∈
AC([a, b];X).

For the proof see [Bar98].

Let us consider the following Cauchy problem (IVP):
{
x′(t) = f(t, u(t), x(t)), t ∈ (0, T )
x(0) = x0,

(A.13)

where T > 0, x0 ∈ IRN (N ∈ IN∗), and u ∈ L1(0, T ; IRm) (m ∈ IN∗). Here
f : [0, T ]× IRm × IRN → IRN , is measurable in t and continuous in (u, x) and
satisfies

‖f(t, u, x)‖ ≤ a1(t)‖x‖ + a2(t),
‖f(t, u, x) − f(t, u, y)‖ ≤ b(t)‖x− y‖,

a.e. (t, u, x), (t, u, y) ∈ (0, T )× IRm × IRN , where a1, a2, b ∈ L1(0, T ) and ‖ · ‖
denotes the norm of IRN .

By a Carathéodory solution (or simply solution) to Problem (A.13) we mean
an absolutely continuous function x : [0, T ] → IRN such that

{
x′(t) = f(t, u(t), x(t)) a.e. t ∈ (0, T )
x(0) = x0.

(A.14)

Note that IRN is a reflexive Banach space so that Theorem A.12 applies.

Theorem A.14. Problem (A.13) admits a unique solution.

For the proof see [CL55].

A.4 Runge–Kutta methods

Let us consider the Initial-Value Problem (IVP) (1.4) from Chapter 1, that
is, {

y′(x) = f(x, y(x)),
y(x0) = y0,

(A.15)

together with the related hypotheses (see Theorem 1.1 in Chapter 1). Let
[α, β] be a real interval, ϕ ∈ C([α, β]) some given function, and the general
numerical integration formula

∫ β

α

ϕ(x)dx =
q∑

i=1

ciϕ(zi) +Rq(ϕ). (A.16)

Here ci ∈ IR, i = 1, 2, . . . , q, are the coefficients of the formula, zi ∈ [α, β],
i = 1, 2, . . . , q, are the knots, and Rq(ϕ) is the remainder. To use the numerical
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integration formula (A.16) means to neglect the remainder and to get the
approximation ∫ β

α

ϕ(x)dx ≈
q∑

i=1

ciϕ(zi). (A.17)

Coming back to the IVP (A.15), we introduce the following grid x0 < x1 <
· · · < xN of equidistant knots of step h and we now integrate the corresponding
ODE successively on the intervals [x0, x1], [x1, x2], . . . ,[xN−1, xN ]. Let us now
integrate it on some interval [xn, xn+1]. We get

y(xn+1) = y(xn) +
∫ xn+1

xn

f(x, y(x))dx. (A.18)

We denote in the sequel by yj the numerical approximation of y(xj), where y is
the solution of problem (A.15), for any j. Formula (A.18) raises the following
problem. We have integrated (A.15) up to xn and we want to advance now
from xn to xn+1, that is, to integrate the IVP

{
y′(x) = f(x, y(x)), x ∈ (xn, xn+1]
y(xn) = yn,

where yn is the approximation already known for y(xn). However, we have no
numerical information about the solution y(x) on the interval (xn, xn+1] to
apply a numerical integration formula. Hence we first introduce the unknown
knots of the numerical integration formula

xn,i = xn + αih ∈ [xn, xn+1],

for i = 1, 2, . . . , q. We assume of course that xn = xn,1 ≤ xn,2 ≤ · · · ≤ xn,q =
xn+1. By using a formula like (A.17) for (A.18) we get that

yn+1 = yn + h

q∑

i=1

pif(xn,i, yn,i). (A.19)

Comparing with formula (A.17) we see that xn,i stands for zi, ci = hpi, and
yn,i denotes the corresponding approximation of y(xn,i). We now integrate
the ODE from xn to xn,i and obtain

y(xn,i) = y(xn) +
∫ xn,i

xn

f(x, y(x))dx. (A.20)

We use the knots xn,j , j = 0, 1, . . . , i− 1, on the interval [xn, xn,i] and we get
the following numerical integration formula for (A.20):

yn,i = yn + h

i−1∑

j=1

bijf(xn,j , yn,j). (A.21)
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Because xn,1 = xn, we also have yn,1 = yn.

The problem now is to find the unknowns pi, αi, and bij . Let us first denote

ki = ki(h) = hf(xn,i, yn,i), i = 1, . . . , q. (A.22)

Therefore formula (A.19) may be rewritten as

yn+1 = yn +
q∑

i=1

piki, (A.23)

and (A.21) reads

yn,i = yn +
i−1∑

j=1

bijkj , i = 1, . . . , q. (A.24)

Let us assume that f ∈ Cm(D) (m ∈ IN∗), where (we recall from Section 1.4):

D = {(x, y) ∈ IR2; |x− x0| ≤ a, |y − y0| ≤ b} (a, b > 0).

Then, according to Remark 1.3 from Section 1.4, the solution of Problem
(A.15) satisfies y ∈ Cm+1([x0, x0 + δ]). We take, of course, xN ≤ x0 + δ. By
Taylor’s formula one has

y(xn+1) = y(xn + h) = y(xn) +
m∑

j=1

hj

j!
y(j)(xn) +

hm+1

(m+ 1)!
y(m+1)(xn + θh),

(A.25)
where 0 < θ < 1. On the other hand yn+1 from Formula (A.23) depends on
h by the contributions of the functions ki(h). We therefore have the Taylor
expansion

yn+1(h) = yn+1(0) +
m∑

j=1

hj

j!
y
(j)
n+1(0) +

hm+1

(m+ 1)!
y
(m+1)
n+1 (ξ), (A.26)

where 0 < ξ < h.

The idea behind Runge–Kutta (RK) methods is the following. Find the un-
known coefficients (pi, αi, and bij) such that the expansions (A.25) and (A.26)
have equal terms as much as possible; that is, the numerical approximation
(A.26) of (A.25) is as good as possible. It is quite clear that the number of
coefficients in formulae (A.23) and (A.24), the coefficients to be determined,
depends on q which is called the order of the RK method. We demonstrate
that the first term in both expansions (A.25) and (A.26) is the same. From
the initial condition of the IVP integrated on the interval [xn, xn+1] we have
y(xn) = yn. By Formula (A.22) we get ki(0) = 0, and Formula (A.23) leads
to yn+1(0) = yn. Hence y(xn) = yn+1(0). Then we introduce the following
conditions:

y(j)(xn) = y
(j)
n+1(0), j = 1, . . . , s. (A.27)
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By taking into account (A.27), the truncation error becomes

y(xn+1) − yn+1(h) =
hs+1

(s+ 1)!

[
y(s+1)(xn) − y

(s+1)
n+1 (0)

]
+O(hs+2). (A.28)

Solving the system (A.27) we get the values of the unknowns pi, αi, and bij
such that formulae (A.23) and (A.24) lead to the approximation of y(xn+1)
with the precision given by formula (A.28).

Deriving Runge–Kutta methods. As already asserted we always consider
xn,1 = xn and yn,1 = yn. Therefore α1 = 0 and b11 = 0.

Runge–Kutta methods of order 1 (q = 1). For q = 1 formulae (A.23)
and (A.22) read

yn+1 = yn + p1k1, k1 = hf(xn, yn).

Here we have only one unknown, namely p1. To find it we use formula (A.27)
for j = 1 which leads to

y′(xn) = y′n+1(0). (A.29)

From the IVP written on the interval [xn, xn+1] we obtain

y′(xn) = f(xn, y(xn)) = f(xn, yn). (A.30)

On the other hand
yn+1(h) = yn + p1k1(h),

which yields
y′n+1(h) = p1k

′
1(h) = p1f(xn, yn).

For h = 0 we therefore have

y′n+1(0) = p1f(xn, yn). (A.31)

By (A.29), (A.30), and (A.31) we deduce that p1 = 1 and therefore the Runge–
Kutta method of order 1 for Problem (A.15) is

yn+1 = yn + hf(xn, yn), (A.32)

which is Euler’s method.

Runge–Kutta methods of order 2 (q = 2). We first write the correspond-
ing Formula (A.23):

yn+1 = yn + p1k1 + p2k2

= yn + p1hf(xn, yn) + p2hf(xn + α2h, yn + b21hf(xn, yn)).

We develop the last term above to get the corresponding formula (A.25)
which is
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yn+1 = yn + p1hf(xn, yn) + p2hf(xn, yn)

+ h2

[
p2α2

∂f

∂x
(xn, yn) + p2b21f(xn, yn) · ∂f

∂y
(xn, yn)

]
+O(h3).

(A.33)
The corresponding Formula (A.24) is

y(xn+1) = y(xn) + hy′(xn) + h2

2 y
′′(xn) +O(h3)

= yn+hf(xn, yn)+
h2

2

[
∂f

∂x
(xn, yn)+f(xn, yn)

∂f

∂y
(xn, yn)

]
+O(h3).

(A.34)
Comparing the terms in h from formulae (A.33) and (A.34) we get the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1 + p2 = 1

p2α2 =
1
2

p2b21 = 1
2
.

(A.35)

The system above has three equations and four unknowns (p1, p2, α2, b21).
Hence its solution is not unique. For instance, a solution is

p1 = p2 =
1
2
, α2 = b21 = 1.

The corresponding Runge–Kutta method, namely the Euler–Cauchy
method, is defined by

⎧
⎪⎨

⎪⎩

yn+1 = yn +
1
2
(k1 + k2),

k1 = hf(xn, yn),
k2 = hf(xn + h, yn + k1).

Another solution of system (A.35) is

p1 = 0, p2 = 1, α2 = b21 =
1
2
.

The corresponding Runge–Kutta method, namely the Euler modified
method, is therefore defined by

yn+1 = yn + hf

(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
.

For higher-order methods the systems to be solved are more complicated and
each has more than one solution. For practical reasons methods of order higher
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than 5 are not used. We cite here the standard Runge–Kutta method of
order 4: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4)

k1 = hf(xn, yn),

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3).

(A.36)

The MATLAB function ode45 uses the Runge–Kutta–Fehlberg method
with adaptive step (h can change from a subinterval to the next one). This
method is a combination of methods of order 4 and 5.

Let us remark that all RK methods have the general form

yn+1 = yn + hΦ(xn, yn, h), (A.37)

where Φ, called the Henrici function, is an approximation of f on the interval
[xn, xn+1]. For example, in the case of Euler’s method above we have

Φ(xn, yn, h) = f(xn, yn),

whereas for the Euler modified method, Φ has the form

Φ(xn, yn, h) = f

(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
.

The convergence of Runge–Kutta methods. We consider once again
Problem (A.15), where we change the notation of the initial value (to fit with
the numerical method):

{
y′(x) = f(x, y(x)),
y(x0) = η,

(A.38)

and the general RK method written under the form (A.37), more exactly
{
yn+1 = yn + hΦ(xn, yn, h), n = 0, 1, . . . , N − 1
y0 = ηh.

(A.39)

Here h ∈ [0, h∗], with h∗ > 0. We suppose that Φ is continuous.

Definition A.15. The numerical method (A.39) is consistent with IVP
(A.38) if for any solution of the corresponding ODE

y′(x) = f(x, y(x)),

the limit of the sum
N−1∑

n=0

|y(xn+1) − y(xn) − hΦ(xn, y(xn), h)|

is 0, as h→ 0.



224 A Appendices

The following result holds (e.g., [CM89, Section 5.2]).

Theorem A.16. Assume that

Φ(x, y, 0) = f(x, y) for any (x, y).

Then the Runge–Kutta method (A.39) is consistent with IVP (A.38) in the
sense of Definition A.15.

Definition A.17. The numerical method (A.39) is stable if there exists a
constant M̃ > 0 independent of h such that for all sequences yn, zn, εn,
n = 0, 1, . . . , N that satisfy

yn+1 = yn + hΦ(xn, yn, h),

and
zn+1 = zn + hΦ(xn, zn, h) + εn,

we have

max{|zn − yn| ; 0 ≤ n ≤ N} ≤ M̃

[
|y0 − z0| +

N−1∑

n=0

|εn|
]
.

The definition above means that “small” perturbations of the data of the
numerical method imply a “small” perturbation of the numerical solution.
This is very important from a practical point of view because it also takes
into account the roundoff errors of the computer. The following theorem is
also valid (e.g., [CM89, Section 5.2]).

Theorem A.18. Assume that there exists a constant Λ > 0 such that

|Φ(x, y, h) − Φ(x, z, h)| ≤ Λ|y − z| for any (x, y, h), (x, z, h) ∈ D(Φ).

Then the Runge–Kutta method (A.39) is stable in the sense of Definition A.17.
Moreover M̃ = eΛc, where M̃ is the constant from Definition A.17.

Definition A.19. The numerical method (A.39) is convergent if

lim
h→0

ηh = η

implies

lim
h→0

max{|y(xn) − yn|; 0 ≤ n ≤ N} = 0,

where y is the solution of (A.38) and yn is the solution of (A.39).
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Theorem A.20. If the numerical method (A.39) is stable in the sense of
Definition A.17 and consistent in the sense of Definition A.15, then it is
convergent in the sense of Definition A.19.

Proof. Let us denote zn = y(xn) for all n, and

εn = y(xn+1) − y(xn) − hΦ(xn, y(xn), h).

It is obvious that the sequences zn and εn satisfy the condition from Definition
A.17. Using Definition A.15 we get that the sum

∑N−1
n=0 |εn| converges to 0 for

h→ 0. Now Definition A.17 yields

max{|y(xn) − yn|; 0 ≤ n ≤ N} ≤ M̃

[
|ηh − η| +

N−1∑

n=0

|εn|
]
,

and therefore we get the conclusion.

As a consequence of the previous theorems we obtain the following.

Theorem A.21. Assume that Φ satisfies the condition from Theorem A.16
and the one from Theorem A.18. Then the Runge–Kutta method (A.39) is
convergent in the sense of Definition A.19.

For more details about (the convergence of) Runge–Kutta methods we rec-
ommend [CM89, Chapter 5].
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[Cea71] Céa, J. Optimisation. Théorie et Algorithmes. Dunod, Paris (1971)
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