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Preface

Over the past decades, time series analysis has experienced a proliferous increase of
applications in economics, especially in macroeconomics and finance. Today these
tools have become indispensable to any empirically working economist. Whereas in
the beginning the transfer of knowledge essentially flowed from the natural sciences,
especially statistics and engineering, to economics, over the years theoretical and
applied techniques specifically designed for the nature of economic time series
and models have been developed. Thereby, the estimation and identification of
structural vector autoregressive models, the analysis of integrated and cointegrated
time series, and models of volatility have been extremely fruitful and far-reaching
areas of research. With the award of the Nobel Prizes to Clive W. J. Granger and
Robert F. Engle III in 2003 and to Thomas J. Sargent and Christopher A. Sims in
2011, the field has reached a certain degree of maturity. Thus, the idea suggests
itself to assemble the vast amount of material scattered over many papers into a
comprehensive textbook.

The book is self-contained and addresses economics students who have already
some prerequisite knowledge in econometrics. It is thus suited for advanced
bachelor, master’s, or beginning PhD students but also for applied researchers. The
book tries to bring them in a position to be able to follow the rapidly growing
research literature and to implement these techniques on their own. Although the
book is trying to be rigorous in terms of concepts, definitions, and statements
of theorems, not all proofs are carried out. This is especially true for the more
technically and lengthy proofs for which the reader is referred to the pertinent
literature.

The book covers approximately a two-semester course in time series analysis
and is divided in two parts. The first part treats univariate time series, in particular
autoregressive moving-average processes. Most of the topics are standard and can
form the basis for a one-semester introductory time series course. This part also
contains a chapter on integrated processes and on models of volatility. The latter
topics could be included in a more advanced course. The second part is devoted to
multivariate time series analysis and in particular to vector autoregressive processes.
It can be taught independently of the first part. The identification, modeling, and
estimation of these processes form the core of the second part. A special chapter
treats the estimation, testing, and interpretation of cointegrated systems. The book
also contains a chapter with an introduction to state space models and the Kalman
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filter. Whereas the books is almost exclusively concerned with linear systems, the
last chapter gives a perspective on some more recent developments in the context
of nonlinear models. I have included exercises and worked out examples to deepen
the teaching and learning content. Finally, I have produced five appendices which
summarize important topics such as complex numbers, linear difference equations,
and stochastic convergence.

As time series analysis has become a tremendously growing field with an active
research in many directions, it goes without saying that not all topics received the
attention they deserved and that there are areas not covered at all. This is especially
true for the recent advances made in nonlinear time series analysis and in the
application of Bayesian techniques. These two topics alone would justify an extra
book.

The data manipulations and computations have been performed using the
software packages EVIEWS and MATLAB.1 Of course, there are other excellent
packages available. The data for the examples and additional information can
be downloaded from my home page www.neusser.ch. To maximize the learning
success, it is advised to replicate the examples and to perform similar exercises
with alternative data. Interesting macroeconomic time series can, for example, be
downloaded from the following home pages:

Germany: www.bundesbank.de
Switzerland: www.snb.ch
United Kingdom: www.statistics.gov.uk
United States: research.stlouisfed.org/fred2

The book grew out of lectures which I had the occasion to give over the years
in Bern and other universities. Thus, it is a concern to thank the many students,
in particular Philip Letsch, who had to work through the manuscript and who
called my attention to obscurities and typos. I also want to thank my colleagues
and teaching assistants Andreas Bachmann, Gregor Bäurle, Fabrice Collard, Sarah
Fischer, Stephan Leist, Senada Nukic, Kurt Schmidheiny, Reto Tanner, and Martin
Wagner for reading the manuscript or part of it and for making many valuable
criticisms and comments. Special thanks go to my former colleague and coauthor
Robert Kunst who meticulously read and commented on the manuscript. It goes
without saying that all errors and shortcomings go to my expense.

Bern, Switzerland/Eggenburg, Austria Klaus Neusser
February 2016

1EVIEWS is a product of IHS Global Inc. MATLAB is a matrix-oriented software developed by
MathWorks which is ideally suited for econometric and time series applications.

www.neusser.ch
www.bundesbank.de
www.snb.ch
www.statistics.gov.uk
research.stlouisfed.org/fred2
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Part I

Univariate Time Series Analysis



1Introduction and Basic Theoretical Concepts

Time series analysis is an integral part of every empirical investigation which aims
at describing and modeling the evolution over time of a variable or a set of variables
in a statistically coherent way. The economics of time series analysis is thus very
much intermingled with macroeconomics and finance which are concerned with the
construction of dynamic models. In principle, one can approach the subject from
two complementary perspectives. The first one focuses on descriptive statistics.
It characterizes the empirical properties and regularities using basic statistical
concepts like mean, variance, and covariance. These properties can be directly
measured and estimated from the data using standard statistical tools. Thus, they
summarize the external (observable) or outside characteristics of the time series. The
second perspective tries to capture the internal data generating mechanism. This
mechanism is usually unknown in economics as the models developed in economic
theory are mostly of a qualitative nature and are usually not specific enough to
single out a particular mechanism.1 Thus, one has to consider some larger class
of models. By far most widely used is the class of autoregressive moving-average
(ARMA) models which rely on linear stochastic difference equations with constant
coefficients. Of course, one wants to know how the two perspectives are related
which leads to the important problem of identifying a model from the data.

The observed regularities summarized in the form of descriptive statistics or as a
specific model are, of course, of principal interest to economics. They can be used
to test particular theories or to uncover new features. One of the main assumptions
underlying time series analysis is that the regularities observed in the sample period

1 One prominent exception is the random-walk hypothesis of real private consumption first derived
and analyzed by Hall (1978). This hypothesis states that the current level of private consumption
should just depend on private consumption one period ago and on no other variable, in particular
not on disposable income. The random-walk property of asset prices is another very much
discussed hypothesis. See Campbell et al. (1997) for a general exposition and Samuelson (1965)
for a first rigorous derivation from market efficiency.
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4 1 Introduction and Basic Theoretical Concepts

are not specific to that period, but can be extrapolated into the future. This leads to
the issue of forecasting which is another major application of time series analysis.

Although its roots lie in the natural sciences and in engineering, time series
analysis, since the early contributions by Frisch (1933) and Slutzky (1937), has
become an indispensable tool in empirical economics. Early applications mostly
consisted in making the knowledge and methods acquired there available to
economics. However, with the progression of econometrics as a separate scientific
field, more and more techniques that are specific to the characteristics of economic
data have been developed. I just want to mention the analysis of univariate and
multivariate integrated, respectively cointegrated time series (see Chaps. 7 and 16),
the identification of vector autoregressive (VAR) models (see Chap. 15), and the
analysis of volatility of financial market data in Chap. 8. Each of these topics
alone would justify the treatment of time series analysis in economics as a separate
subfield.

1.1 Some Examples

Before going into more formal analysis, it is useful to examine some prototypical
economic time series by plotting them against time. This simple graphical inspection
already reveals some of the issues encountered in this book. One of the most popular
time series is the real gross domestic product. Figure 1.1 plots the data for the
U.S. from 1947 first quarter to 2011 last quarter on logarithmic scale. Several
observations are in order. First, the data at hand cover just a part of the time series.
There are data available before 1947 and there will be data available after 2011. As
there is no natural starting nor end point, we think of a time series as extending back
into the infinite past and into the infinite future. Second, the observations are treated
as the realizations of a random mechanism. This implies that we observe only one
realization. If we could turn back time and let run history again, we would obtain
a second realization. This is, of course, impossible, at least in the macroeconomics
context. Thus, typically, we are faced with just one realization on which to base our
analysis. However, sound statistical analysis needs many realizations. This implies
that we have to make some assumption on the constancy of the random mechanism
over time. This leads to the concept of stationarity which will be introduced more
rigorously in the next section. Third, even a cursory look at the plot reveals that
the mean of real GDP is not constant, but is upward trending. As we will see, this
feature is typical of many economic time series.2 The investigation into the nature
of the trend and the statistical consequences thereof have been the subject of intense
research over the last couple of decades. Fourth, a simple way to overcome this

2See footnote 1 for some theories predicting non-stationary behavior.
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Fig. 1.1 Real gross domestic product (GDP) of the U.S. (chained 2005 dollars; seasonally
adjusted annual rate)
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Fig. 1.2 Quarterly growth rate of U.S. real gross domestic product (GDP) (chained 2005 dollars)

problem is to take first differences. As the data have been logged, this amounts to
taking growth rates.3 The corresponding plot is given in Fig. 1.2 which shows no
trend anymore.

Another feature often encountered in economic time series is seasonality. This
issue arises, for example in the case of real GDP, because of a particular regularity
within a year: the first quarter being the quarter with the lowest values, the second

3This is obtained by using the approximation ln.1C "/ � " for small " where " equals the growth
rate of GDP.
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Fig. 1.3 Comparison of unadjusted and seasonally adjusted Swiss real gross domestic product
(GDP)

and fourth quarter those with the highest values, and the third quarter being in
between. These movements are due to climatical and holiday seasonal variations
within the year and are viewed to be of minor economic importance. Moreover,
these seasonal variations, because of there size, hide the more important business
cycle movements. It is therefore customary to work with time series which have
been adjusted for seasonality before hand. Figure 1.3 shows the unadjusted and
the adjusted real gross domestic product for Switzerland. The adjustment has been
achieved by taking a moving-average. This makes the time series much smoother
and evens out the seasonal movements.

Other typical economic time series are interest rates plotted in Fig. 1.4. Over the
period considered these two variables also seem to trend. However, the nature of
this trend must be different because of the theoretically binding zero lower bound.
Although the relative level of the two series changes over time—at the beginning of
the sample, short-term rates are higher than long-terms ones—they move more or
less together. This comovement is true in particular true with respect to the medium-
and long-term.

Other prominent time series are stock market indices. In Fig. 1.5 the Swiss
Market Index (SMI) in plotted as an example. The first panel displays the raw
data on a logarithmic scale. One can clearly discern the different crises: the internet
bubble in 2001 and the most recent financial market crisis in 2008. More interesting
than the index itself is the return on the index plotted in the second panel. Whereas
the mean seems to stay relatively constant over time, the volatility is not: in the
periods of crisis volatility is much higher. This clustering of volatility is a typical
feature of financial market data and will be analyzed in detail in Chap. 8.
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Fig. 1.4 Short- and long-term Swiss interest rates (three-month LIBOR and 10 year government
bond)

Finally, Fig. 1.6 plots the unemployment rate for Switzerland. This is another
widely discussed time series. However, the Swiss data have a particular feature
in that the behavior of the series changes over time. Whereas unemployment was
practically nonexistent in Switzerland up to the end of 1990’s, several policy
changes (introduction of unemployment insurance, liberalization of immigration
laws) led to drastic shifts. Although such dramatic structural breaks are rare, one
has to be always aware of such a possibility. Reasons for breaks are policy changes
and simply structural changes in the economy at large.4

1.2 Formal Definitions

The previous section attempted to give an intuitive approach of the subject. The
analysis to follow necessitates, however, more precise definitions and concepts.
At the heart of the exposition stands the concept of a stochastic process. For this
purpose we view the observation at some time t as the realization of random
variable Xt. In time series analysis we are, however, in general not interested in a
particular point in time, but rather in a whole sequence. This leads to the following
definition.

Definition 1.1. A stochastic process fXtg is a family of random variables indexed

by t 2 T and defined on some given probability space.

4Burren and Neusser (2013) investigate, for example, how systematic sectoral shifts affect volatility
of real GDP growth.
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Fig. 1.5 Swiss Market Index (SMI). (a) Index. (b) Daily return

Thereby T denotes an ordered index set which is typically identified with time.
In the literature one can encounter the following index sets:

discrete time: T D f1; 2; : : :g D N

discrete time: T D f: : : ;�2;�1; 0; 1; 2; : : :g D Z

continuous time: T D Œ0;1/ D R
C or T D .�1;1/ D R
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Fig. 1.6 Unemployment rate in Switzerland

Remark 1.1. Given that T is identified with time and thus has a direction, a
characteristic of time series analysis is the distinction between past, present, and
future.

For technical reasons which will become clear later, we will work with T D
Z, the set of integers. This choice is consistent with the use of time indices in
economics as there is, usually, no natural starting point nor a foreseeable endpoint.
Although models in continuous time are well established in the theoretical finance
literature, we will disregard them because observations are always of a discrete
nature and because models in continuous time would need substantially higher
mathematical requirements.

Remark 1.2. The random variables fXtg take values in a so-called state space. In
the first part of this treatise, we take as the state space the space of real numbers R
and thus consider only univariate time series. In part II we extend the state space to
Rn and study multivariate times series. Theoretically, it is possible to consider other
state spaces (for example, f0; 1g, the integers, or the complex numbers), but this will
not be pursued here.

Definition 1.2. The function t ! xt which assigns to each point in time t the

realization of the random variable Xt, xt, is called a realization or a trajectory of

the stochastic process. We denote such a realization by fxtg.
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We denominate by a time series the realization or trajectory (observations or
data), or the underlying stochastic process. Usually, there is no room for misun-
derstandings. A trajectory therefore represents one observation of the stochastic
process. Whereas in standard statistics a sample consists of several, typically,
independent draws from the same distribution, a sample in time series analysis
is just one trajectory. Thus, we are confronted with a situation where there is in
principle just one observation. We cannot turn back the clock and get additional
trajectories. The situation is even worse as we typically observe only the realizations
in a particular time window. For example, we might have data on US GDP from
the first quarter 1960 up to the last quarter in 2011. But it is clear, the United
States existed before 1960 and will continue to exist after 2011, so that there are
in principle observations before 1960 and after 2011. In order to make a meaningful
statistical analysis, it is therefore necessary to assume that the observed part of the
trajectory is typical for the time series as a whole. This idea is related to the concept
of stationarity which we will introduce more formally below. In addition, we want
to require that the observations cover in principle all possible events. This leads to
the concept of ergodicity. We avoid a formal definition of ergodicity as this would
require a sizeable amount of theoretical probabilistic background material which
goes beyond the scope this treatise.5

An important goal of time series analysis is to build a model given the realization
(data) at hand. This amounts to specify the joint distribution of some set of Xt’s with
corresponding realization fxtg.

Definition 1.3 (Model). A time series model or a model for the observations (data)

fxtg is a specification of the joint distribution of fXtg for which fxtg is a realization.

The Kolmogorov existence theorem ensures that the specification of all finite

dimensional distributions is sufficient to characterize the whole stochastic process
(see Billingsley (1986), Brockwell and Davis (1991), or Kallenberg (2002)).

Most of the time it is too involved to specify the complete distribution so that
one relies on only the first two moments. These moments are then given by the
means EXt, the variances VXt, t 2 Z, and the covariances cov.Xt;Xs/ D E.Xt �
EXt/.Xs � EXs/ D E.Xt Xs/ � EXt EXs, respectively the correlations corr.Xt;Xs/ D
cov.Xt;Xs/=.

p
VXt

p
VXs/, t; s 2 Z. If the random variables are jointly normally

distributed then the specification of the first two moments is sufficient to characterize
the whole distribution.

5In the theoretical probability theory ergodicity is an important concept which asks the question
under which conditions the time average of a property is equal to the corresponding ensemble
average, i.e. the average over the entire state space. In particular, ergodicity ensures that the
arithmetic averages over time converge to their theoretical counterparts. In Chap. 4 we allude to
this principle in the estimation of the mean and the autocovariance function of a time series.
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Examples of Stochastic Processes

• fXtg is a sequence of independently distributed random variables with values in
f�1; 1g such that PŒXt D 1� D PŒXt D �1� D 1=2. Xt represents, for example,
the payoff after tossing a coin: if head occurs one gets a Euro whereas if tail
occurs one has to pay a Euro.

• The simple random walk fStg is defined by

St D St�1 C Xt D
tX

iD1
Xi with t � 0 and S0 D 0;

where fXtg is the process from the example just above. In this case St is
the proceeds after t rounds of coin tossing. More generally, fXtg could be
any sequence of identically and independently distributed random variables.
Figure 1.7 shows a realization of fXtg for t D 1; 2; : : : ; 100 and the corresponding
random walk fStg. For more on random walks see Sect. 1.4.4 and, in particular,
Chap. 7.

• The simple branching process is defined through the recursion

XtC1 D
XtX

jD1
Zt;j with starting value: X0 D x0:

In this example Xt represents the size of a population where each member lives
just one period and reproduces itself with some probability. Zt;j thereby denotes
the number of offsprings of the j-th member of the population in period t.
In the simplest case fZt;jg is nonnegative integer valued and identically and
independently distributed. A realization with X0 D 100 and with probabilities
of one third each that the member has no, one, or two offsprings is shown as an
example in Fig. 1.8.

1.3 Stationarity

An important insight in time series analysis is that the realizations in different
periods are related with each other. The value of GDP in some year obviously
depends on the values from previous years. This temporal dependence can be
represented either by an explicit model or, in a descriptive way, by covariances,
respectively correlations. Because the realization of Xt in some year t may depend,
in principle, on all past realizations Xt�1;Xt�2; : : : , we do not have to specify just
a finite number of covariances, but infinitely many covariances. This leads to the
concept of the covariance function. The covariance function is not only a tool for
summarizing the statistical properties of a time series, but is also instrumental in
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Fig. 1.8 Realization of a branching process

the derivation of forecasts (Chap. 3), in the estimation of ARMA models, the most
important class of models (Chap. 5), and in the Wold representation (Sect. 3.2 in
Chap. 3). It is therefore of utmost importance to get a thorough understanding of the
meaning and properties of the covariance function.
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Definition 1.4 (Autocovariance Function). Let fXtg be a stochastic process with

VXt < 1 for all t 2 Z then the function which assigns to any two time periods

t and s, t; s 2 Z, the covariance between Xt and Xs is called the autocovariance
function of fXtg. The autocovariance function is denoted by 
X.t; s/. Formally this

function is given by


X.t; s/ D cov.Xt;Xs/ D E Œ.Xt � EXt/.Xs � EXs/� D EXtXs � EXtEXs:

Remark 1.3. The acronym auto emphasizes that the covariance is computed with

respect to the same variable taken at different points in time. Alternatively, one may

use the term covariance function for short.

Definition 1.5 (Stationarity). A stochastic process fXtg is called stationary if and

only if for all integers r, s and t the following properties hold:

(i) EXt D � constant;

(ii) VXt < 1;

(iii) 
X.t; s/ D 
X.t C r; s C r/.

Remark 1.4. Processes with these properties are often called weakly stationary,
wide-sense stationary, covariance stationary, or second order stationary. As we will
not deal with other forms of stationarity, we just speak of stationary processes, for
short.

Remark 1.5. For t D s, we have 
X.t; s/ D 
X.t; t/ D VXt which is nothing but the
unconditional variance of Xt. Thus, if fXtg is stationary 
X.t; t/ D VXt D constant.

Remark 1.6. If fXtg is stationary, by setting r D �s the autocovariance function
becomes:


X.t; s/ D 
X.t � s; 0/:

Thus the covariance 
X.t; s/ does not depend on the points in time t and s, but only
on the number of periods t and s are apart from each other, i.e. from t � s. For
stationary processes it is therefore possible to view the autocovariance function as a
function of just one argument. We denote the autocovariance function in this case by

X.h/, h 2 Z. Because the covariance is symmetric in t and s, i.e. 
X.t; s/ D 
X.s; t/,
we have


X.h/ D 
X.�h/ for all integers h:

It is thus sufficient to look at the autocovariance function for positive integers only,
i.e. for h D 0; 1; 2; : : :. In this case we refer to h as the order of the autocovariance.
For h D 0, we get the unconditional variance of Xt, i.e. 
X.0/ D VXt.
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In practice it is more convenient to look at the autocorrelation coefficients instead
of the autocovariances. The autocorrelation function (ACF) for stationary processes
is defined as:

�X.h/ D 
X.h/


X.0/
D corr.XtCh;Xt/ for all integers h

where h is referred to as the order. Note that this definition is equivalent to the
ordinary correlation coefficients �.h/ D cov.Xt;Xt�h/p

VXt

p
VXt�h

because stationarity implies

that VXt D VXt�h so that
p
VXt

p
VXt�h D VXt D 
X.0/.

Most of the time it is sufficient to concentrate on the first two moments. However,
there are situations where it is necessary to look at the whole distribution. This leads
to the concept of strict stationarity.

Definition 1.6 (Strict Stationarity). A stochastic process is called strictly stationary
if the joint distributions of .Xt1 ; : : : ;Xtn/ and .Xt1Ch; : : : ;XtnCh/ are the same for all

h 2 Z and all .t1; : : : ; tn/ 2 T n, n D 1; 2; : : :

Definition 1.7 (Strict Stationarity). A stochastic process is called strictly stationary
if for all integers h and n � 1 .X1; : : : ;Xn/ and .X1Ch; : : : ;XnCh/ have the same

distribution.

Remark 1.7. Both definitions are equivalent.

Remark 1.8. If fXtg is strictly stationary then Xt has the same distribution for all
t (n=1). For n D 2 we have that XtCh and Xt have a joint distribution which is
independent of t. This implies that the covariance, if it exists, depends only on h.
Thus, every strictly stationary process with VXt < 1 is also stationary.6

The converse is, however, not true as shown by the following example:

Xt �
(

exponentially distributed with mean 1 (i.e. f .x/ D e�x/; t unevenI
N.1; 1/; t evenI

whereby the Xt’s are independently distributed. In this example we have:

• EXt D 1

• 
X.0/ D 1 and 
X.h/ D 0 for h ¤ 0

Thus fXtg is stationary, but not strictly stationary, because the distribution changes
depending on whether t is even or uneven.

6An example of a process which is strictly stationary, but not stationary, is given by the IGARCH
process (see Sect. 8.1.4). This process is strictly stationary with infinite variance.
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Definition 1.8 (Gaussian Process). A stochastic process fXtg is called a Gaussian
process if all finite dimensional distributions .Xt1 ; : : : ;Xtn/ with .t1; : : : ; tn/ 2 T n,

n D 1; 2; : : :, are multivariate normally distributed.

Remark 1.9. A Gaussian process is obviously strictly stationary. For all
n; h; t1; : : : ; tn, .Xt1 ; : : : ;Xtn/ and .Xt1Ch; : : : ;XtnCh/ have the same mean and the
same covariance matrix.

At this point we will not delve into the relation between stationarity, strict
stationarity and Gaussian processes, rather some of these issues will be further
discussed in Chap. 8.

1.4 Construction of Stochastic Processes

One important notion in time series analysis is to build up more complicated process
from simple ones. The simplest building block is a process with zero autocorrelation
called a white noise process which is introduced below. Taking moving-averages
from this process or using it in a recursion gives rise to more sophisticated process
with more elaborated autocovariance functions. Slutzky (1937) first introduced the
idea that moving-averages of simple processes can generate time series whose
motion resembles business cycle fluctuations.

1.4.1 White Noise

The simplest building block is a process with zero autocorrelation called a white

noise process.

Definition 1.9 (White Noise). A stationary process fZtg is called a white noise
process if fZtg satisfies:

• EZt D 0

• 
Z.h/ D
(
�2 h D 0I
0 h ¤ 0:

We denote this by Zt � WN.0; �2/.

The white noise process is therefore stationary and temporally uncorrelated,
i.e. the ACF is always equal to zero, except for h D 0 where it is equal to one.
As the ACF possesses no structure, it is impossible to draw inferences from past
observations to its future development, at least in a least square setting with linear
forecasting functions (see Chap. 3). Therefore one can say that a white noise process
has no memory.
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If fZtg is not only temporally uncorrelated, but also independently and identically
distributed, we write Zt � IID.0; �2/. If in addition Zt is normally distributed, we
write Zt � IIN.0; �2/. An IID.0; �2/ process is always a white noise process. The
converse is, however, not true as will be shown in Chap. 8.

1.4.2 Construction of Stochastic Processes: Some Examples

We will now illustrate how complex stationary processes can be constructed by
manipulating of a white noise process. In Table 1.1 we report in column 2 the
first 6 realizations of a white noise process fZtg. Figure 1.9a plots the first 100

observations. We can now construct a new process fX
.MA/
t g by taking moving-

averages over adjacent periods. More specifically, we take Xt D Zt C 0:9Zt�1,
t D 2; 3; : : :. Thus, the realization of fX

.MA/
t g in period 2 is fx

.MA/
2 g D �0:8718C

0:9 � 0:2590 D �0:6387.7 The realization in period 3 is fx
.MA/
3 g D �0:7879 C

0:9 � �0:8718 D �1:5726, and so on. The resulting realizations of fX
.MA/
t g for

t D 2; : : : ; 6 are reported in the third column of Table 1.1 and the plot is shown in
Fig. 1.9b. On can see that the averaging makes the series more smooth. In Sect. 1.4.3
we will provide a more detailed analysis of this moving-average process.

Another construction device is a recursion: X
.AR/
t D �X

.AR/
t�1 C Zt, t D 2; 3; : : :,

with starting value X
.AR/
1 D Z1. Such a process is called autoregressive because it

refers to its own past. Taking � D 0:9, the realization of fX
.AR/
t g in period 2 is

fx
.AR/
2 g D �0:6387 D 0:9 � 0:2590 � 0:8718, in period 3 fx

.AR/
3 g D �1:3627 D

0:9 � �0:6387 � 0:7879, and so on. Again the resulting realizations of fX
.AR/
t g for

t D 2; : : : ; 6 are reported in the fourth column of Table 1.1 and the plot is shown in
Fig. 1.9c. On can see how the series becomes more persistent. In Sect. 2.2.2 we will
provide a more detailed analysis of this autoregressive process.

Finally, we construct a new process by taking cumulative sums: X
.RW/
t DPt

�D1 Z� . This process can also be obtained from the recursion above by taking

� D 1 so that X
.RW/
t D X

.RW/
t�1 C Zt. It is called a random walk. Thus, the realization

of fX
.RW/
t g for period 2 is fx

.RW/
2 g D �0:6128 D 0:2590 � 0:8718, for period 3

fx
.RW/
3 g D �1:4007 D �0:6128�0:7879, and so on. Again the resulting realizations

of fX
.RW/
t g for t D 2; : : : ; 6 are reported in the last column of Table 1.1 and the plot

is shown in Fig. 1.9d. On can see how the series moves away from its mean of zero
more persistently than all the other three process considered. In Sect. 1.4.4 we will
provide a more detailed analysis of this so-called random walk process and show
that it is not stationary.

7The following calculations are subject to rounding to four digits.
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Table 1.1 Construction of
stochastic processes assuming
Z0 D X0 D 0

Time White Moving- Auto- Random
noise average regressive walk

1 0:2590 0:2590 0:2590 0:2590

2 �0:8718 �0:6387 �0:6387 �0:6128
3 �0:7879 �1:5726 �1:3627 �1:4007
4 �0:3443 �1:0535 �1:5708 �1:7451
5 0:6476 0:3377 �0:7661 �1:0974
6 2:0541 2:6370 1:3646 0:9567

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−4

−2

0

2

4

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−2

0

2

4

6

8

a b

c d

Fig. 1.9 Processes constructed from a given white noise process. (a) White noise. (b) Moving-
average with � D 0:9. (c) Autoregressive with � D 0:9. (d) Random walk

1.4.3 Moving-Average Process of Order One

The white noise process can be used as a building block to construct more complex
processes with a more involved autocorrelation structure. The simplest procedure
is to take moving averages over consecutive periods.8 This leads to the moving-
average processes. The moving-average process of order one, MA(1) process, is
defined as

8This procedure is an example of a filter. Section 6.4 provides a general introduction to filters.
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Xt D Zt C �Zt�1 with Zt � WN.0; �2/:

Clearly, EXt D EZt C �EZt�1 D 0. The mean is therefore constant and equal to
zero.

The autocovariance function can be computed as follows:


X.t C h; t/ D cov.XtCh;Xt/

D cov.ZtCh C �ZtCh�1;Zt C �Zt�1/

D EZtChZt C �EZtChZt�1 C �EZtCh�1Zt C �2EZtCh�1Zt�1:

Recalling that fZtg is white noise so that EZ2t D �2 and EZtZtCh D 0 for h ¤ 0, we
therefore get the following autocovariance function of fXtg:


X.h/ D

8
ˆ̂<
ˆ̂:

.1C �2/�2 h D 0I
��2 h D ˙1I
0 otherwise:

(1.1)

Thus fXtg is stationary irrespective of the value of � . The autocorrelation function is:

�X.h/ D

8
ˆ̂<
ˆ̂:

1 h D 0I
�

1C�2 h D ˙1I
0 otherwise:

Note that the newly created process now exhibits a dependence from its past as
Xt is correlated with Xt�1. This correlation is restricted to the interval Œ0; 1

2
�, i.e.

0 � j�X.1/j � 1
2
. As the correlation between Xt and Xs is zero when t and s are

more than one period apart, we call a moving-average process a process with finite
memory or a process with finite-range dependence.

Remark 1.10. To motivate the name moving-average, we can define the MA(1)
process more generally as

Xt D �0Zt C �1Zt�1 with Zt � WN.0; �2/ and �0 ¤ 0:

Thus, Xt is a weighted average of Zt and Zt�1. If �0 D �1 D 1=2, Xt is just
the arithmetic mean of Zt and Zt�1. This process is, however, (observationally)
equivalent to the process

Xt D QZt C Q� QZt�1 with QZt � WN.0; Q�2/
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where Q� D �1=�0 and Q�2 D �20�
2. Both processes would generate the same first two

moments and are therefore observationally indistinguishable from each other. Thus,
we can set �0 D 1 without loss of generality.

1.4.4 Random Walk

Let Zt � WN.0; �2/ be a white noise process then the new process fXtg defined as

Xt D Z1 C Z2 C : : :C Zt D
tX

jD1
Zj; t > 0; (1.2)

is called a random walk. Note that, in contrast to fZtg, fXtg is only defined for t > 0.
The random walk may alternatively be defined through the recursion

Xt D Xt�1 C Zt; t > 0 and X0 D 0:

If in each time period a constant ı is added such that

Xt D ı C Xt�1 C Zt;

the process fXtg is called a random walk with drift.
Although the random walk has a constant mean of zero, it is a nonstationary

process.

Proposition 1.1. The random walk fXtg as defined in Eq. (1.2) is nonstationary.

Proof. The variance of XtC1 � X1 equals V.XtC1 � X1/ D V

�PtC1
jD2 Zj

�
D

PtC1
jD2 VZj D t�2.
Assume for the moment that fXtg is stationary then the triangular inequality

implies for t > 0:

0 <
p

t�2 D std.XtC1 � X1/ � std.XtC1/C std.X1/ D 2 std.X1/

where “std” denotes the standard deviation. As the left hand side of the inequality
converges to infinity for t going to infinity, also the right hand side must go
to infinity. This means that the variance of X1 must be infinite. This, however,
contradicts the assumption of stationarity. Thus fXtg cannot be stationary. ut

The random walk represents by far the most widely used nonstationary process
in economics. It has proven to be an important ingredient in many economic
time series. Typical nonstationary time series which are or are driven by random
walks are stock market prices, exchange rates, or the gross domestic product
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(GDP). Usually it is necessary to apply some transformation (filter) first to achieve
stationarity. In the example above, one has to replace fXtg by its first difference
f�Xtg D fXt � Xt�1g D fZtg which is stationary by construction. Time series
which become stationary after differencing are called integrated processes and are
the subject of a more in depth analysis in Chap. 7. Besides ordinary differencing,
other transformations are often encountered: seasonal differencing, inclusion of a
time trend, seasonal dummies, moving averages, etc. Some of them will be discussed
as we go along.

1.4.5 Changing Mean

Finally, here is another simple example of a nonstationary process.

Xt D
�

Yt; t < tc;
Yt C c; t � tc und c ¤ 0

where tc is some specific point in time. fXtg is clearly not stationary because the
mean is not constant. In econometrics we refer to such a situation as a structural

change which can be accommodated by introducing a so-called dummy variable.
Models with more sophisticated forms of structural changes will be discussed in
Chap. 18

1.5 Properties of the Autocovariance Function

The autocovariance function represents the directly accessible external properties
of the time series. It is therefore important to understand its properties and how
it is related to its inner structure. We will deepen the connection between the
autocovariance function and a particular class of models in Chap. 2. The estimation
of the autocovariance function will be treated in Chap. 4. For the moment we will
just give its properties and analyze the case of the MA(1) model as a prototypical
example.

Theorem 1.1. The autocovariance function of a stationary process fXtg is charac-

terized by the following properties:

(i) 
X.0/ � 0;

(ii) 0 � j
X.h/j � 
X.0/;

(iii) 
X.h/ D 
X.�h/;

(iv)
Pn

i;jD1 ai
X.ti � tj/aj � 0 for all n and all vectors .a1; : : : ; an/
0 and .t1; : : : ; tn/.

This property is called non-negative definiteness.

Proof. The first property is obvious as the variance is always nonnegative. The
second property follows from the Cauchy-Bunyakovskii-Schwarz inequality(see
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Theorem C.1) applied to Xt and XtCh which yields 0 � j
X.h/j � 
X.0/. The third
property follows immediately from the definition of the covariance. Define a D
.a1; : : : ; an/

0 and X D .Xt1 ; : : : ;Xtn/
0 then the last property follows from the fact that

the variance is always nonnegative:0 � V .a0X/ D a0V.X/a D
Pn

i;jD1 ai
X.ti�tj/aj.
ut

Similar properties hold for the correlation function �X , except that we have
�X.0/ D 1.

Theorem 1.2. The autocorrelation function of a stationary stochastic process fXtg
is characterized by the following properties:

(i) �X.0/ D 1;

(ii) 0 � j�X.h/j � 1;

(iii) �X.h/ D �X.�h/;

(iv)
Pn

i;jD1 ai�X.ti � tj/aj � 0 for all n and all vectors .a1; : : : ; an/
0 and .t1; : : : ; tn/.

Proof. The proof follows immediately from the properties of the autocovariance
function. ut

It can be shown that for any given function with the above properties there exists
a stationary process (Gaussian process) which has this function as its autocovariance
function, respectively autocorrelation function.

1.5.1 Autocovariance Function of MA(1) Processes

The autocovariance function describes the external observable characteristics of a
time series which can be estimated from the data. Usually, we want to understand
the internal mechanism which generates the data at hand. For this we need a model.
Hence it is important to understand the relation between the autocovariance function
and a certain class of models. In this section, by analyzing the MA(1) model, we
will show that this relationship is not one-to-one. Thus we are confronted with a
fundamental identification problem.

In order to make the point, consider the following given autocovariance function:


.h/ D

8
<
:


0; h D 0I

1; h D ˙1I
0; jhj > 1:

The problem consists of determining the parameters of the MA(1) model, � and
�2, from the values of the autocovariance function. For this purpose we equate

0 D .1C �2/�2 and 
1 D ��2 (see Eq. (1.1)). This leads to an equation system in
the two unknowns � und �2. This system can be simplified by dividing the second
equation by the first one to obtain: 
1=
0 D �=.1C�2/. Because 
1=
0 D �.1/ D �1
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one gets a quadratic equation in � :

�1�
2 � � C �1 D 0:

The two solutions of this equation are

�1;2 D 1

2�1

�
1˙

q
1 � 4�21

�
:

The solutions are real if and only if the discriminant 1 � 4�21 is positive. This is the
case if and only if �21 � 1=4, respectively j�1j � 1=2. Note that one root is the
inverse of the other. The identification problem thus takes the following form:

j�1j < 1=2: there exists two observationally equivalent MA(1) processes corre-
sponding to the two solutions �1 and �2.

�1 D ˙1=2: there exists exactly one MA(1) process with � D ˙1.
j�1j > 1=2: there exists no MA(1) process with this autocovariance function.

The relation between the first order autocorrelation coefficient, �1 D �.1/, and the
parameter � of the MA(1) process is represented in Fig. 1.10. As can be seen,
there exists for each �.1/ with j�.1/j < 1

2
two solutions. The two solutions are

inverses of each other. Hence one solution is absolutely smaller than one whereas the
other is bigger than one. In Sect. 2.3 we will argue in favor of the solution smaller
than one. For �.1/ D ˙1=2 there exists exactly one solution, namely � D ˙1.
For j�.1/j > 1=2 there is no solution. For j�1j > 1=2, �.h/ actually does not
represent a genuine autocorrelation function as the fourth condition in Theorem 1.1,
respectively Theorem 1.2 is violated. For �1 >

1
2
, set a D .1;�1; 1;�1; : : : ; 1;�1/0

to get:

nX

i;jD1
ai�.i � j/aj D n � 2.n � 1/�1 < 0; if n >

2�1

2�1 � 1 :

For �1 D � 1
2

one sets a D .1; 1; : : : ; 1/0. Hence the fourth property is violated.

1.6 Exercises

Exercise 1.6.1. Let the process fXtg be generated by a two-sided moving-average

process

Xt D 0:5ZtC1 C 0:5Zt�1 with Zt � WN.0; �2/:

Determine the autocovariance and the autocorrelation function of fXtg.

Exercise 1.6.2. Let fXtg be the MA(1) process
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Fig. 1.10 Relation between the autocorrelation coefficient of order one, �.1/, and the parameter
� of a MA(1) process

Xt D Zt C �Zt�2 with Zt � WN.0; �2/:

(i) Determine the autocovariance and the autocorrelation function of fXtg for

� D 0:9.

(ii) Determine the variance of the mean .X1 C X2 C X3 C X4/=4.

(iii) How do the previous results change if � D �0:9?

Exercise 1.6.3. Consider the autocovariance function


.h/ D

8
<
:

4; h D 0;

�2; h D ˙1;

0; otherwise.

Determine the parameters � and �2, if they exist, of the first order moving-average

process Xt D Zt C �Zt�1 with Zt � WN.0; �2/ such that autocovariance function

above is the autocovariance function corresponding to fXtg.
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Exercise 1.6.4. Let the stochastic process fXtg be defined as

�
Zt; if t is even;

.Z2t�1 � 1/=
p
2; if t is uneven,

where fZtg is identically and independently distributed as Zt � N.0; 1/. Show that

fXtg � WN.0; 1/, but not IID.0; 1/.

Exercise 1.6.5. Which of the following processes is stationary?

(i) Xt D Zt C �Zt�1
(ii) Xt D ZtZt�1

(iii) Xt D a C �Z0
(iv) Xt D Z0 sin.at/

In all cases we assume that fZtg is identically and independently distributed with

Zt � N.0; �2/. � and a are arbitrary parameters.
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A basic idea in time series analysis is to construct more complex processes from
simple ones. In the previous chapter we showed how the averaging of a white
noise process leads to a process with first order autocorrelation. In this chapter we
generalize this idea and consider processes which are solutions of linear stochastic
difference equations. These so-called ARMA processes constitute the most widely
used class of models for stationary processes.

Definition 2.1 (ARMA Models). A stochastic process fXtg with t 2 Z is called

an autoregressive moving-average process (ARMA process) of order .p; q/, denoted

by ARMA.p; q/ process, if the process is stationary and satisfies a linear stochastic

difference equation of the form

Xt � �1Xt�1 � : : : � �pXt�p D Zt C �1Zt�1 C : : :C �qZt�q (2.1)

with Zt � WN.0; �2/ and �p�q ¤ 0. fXtg is called an ARMA.p; q/ process with

mean � if fXt � �g is an ARMA.p; q/ process.

The importance of ARMA processes is due to the fact that every stationary
process can be approximated arbitrarily well by an ARMA process. In particular,
it can be shown that for any given autocovariance function 
 with the property
limh!1 
.h/ D 0 and any positive integer k there exists an autoregressive moving-
average process (ARMA process) fXtg such that 
X.h/ D 
.h/, h D 0; 1; : : : ; k.

For an ARMA process with mean � one often adds a constant c to the right hand
side of the difference equation:

Xt � �1Xt�1 � : : : � �pXt�p D c C Zt C �1Zt�1 C : : :C �qZt�q:

The mean of Xt is then: � D c
1��1�:::��p

. The mean is therefore only well-defined if

�1 C : : :C �p ¤ 1. The case �1 C : : :C �p D 1 can, however, be excluded because
there exists no stationary solution in this case (see Remark 2.2) and thus no ARMA
process.

© Springer International Publishing Switzerland 2016
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2.1 The Lag Operator

In times series analysis it is customary to rewrite the above difference equation more
compactly in terms of the lag operator L. This is, however, not only a compact
notation, but will open the way to analyze the inner structure of ARMA processes.
The lag or back-shift operator L moves the time index one period back:

LfXtg D fXt�1g:

For ease of notation we write: LXt D Xt�1. The lag operator is a linear operator with
the following calculation rules:

(i) L applied to the process fXt D cg where c is an arbitrary constant gives:

Lc D c:

(ii) Applying L n times:

L : : :L„ƒ‚…
n times

Xt D LnXt D Xt�n:

(iii) The inverse of the lag operator is the lead or forward operator. This operator
shifts the time index one period into the future.1 We can write L�1:

L�1Xt D XtC1:

(iv) For any integers m and n we have:

LmLnXt D LmCnXt D Xt�m�n:

(v) As L�1LXt D Xt we have that

L0 D 1:

(vi) For any real numbers a and b, any integers m and n, and arbitrary stochastic
processes fXtg and fYtg we have:

.aLm C bLn/ .Xt C Yt/ D aXt�m C bXt�n C aYt�m C bYt�n:

In this way it is possible to define lag polynomials: A.L/ D a0Ca1LCa2L2C : : :C
apLp where a0; a1; : : : ; ap are any real numbers. For these polynomials the usual

1One technical advantage of using the double-infinite index set Z is that the lag operators form a
group.
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calculation rules apply. Let, for example, A.L/ D 1 � 0:5L and B.L/ D 1 C 4L2

then C.L/ D A.L/B.L/ D 1 � 0:5L C 4L2 � 2L3.
Applied to the stochastic difference equation, we define the autoregressive and

the moving-average polynomial as follows:

ˆ.L/ D 1 � �1L � : : : � �pLp;

‚.L/ D 1C �1L C : : :C �qLq:

The stochastic difference equation defining the ARMA process can then be written
compactly as

ˆ.L/Xt D ‚.L/Zt:

Thus, the use of lag polynomials provides a compact notation for ARMA processes.
Moreover and most importantly, ˆ.z/ and ‚.z/, viewed as polynomials of the
complex number z, also reveal much of their inherent structural properties as will
become clear in Sect. 2.3.

2.2 Some Important Special Cases

Before we deal with the general theory of ARMA processes, we will analyze some
important special cases first:

q D 0: autoregressive process of order p, AR.p/ process
p D 0: moving-average process of order q, MA.q/ process

2.2.1 The Moving-Average Process of Order q (MA.q/ Process)

The MA.q/ process is defined by the following stochastic difference equation:

Xt D ‚.L/Zt D �0Zt C �1Zt�1 C : : :C �qZt�q with �0 D 1 and �q ¤ 0

and Zt � WN.0; �2/. Obviously,

EXt D EZt C �1EZt�1 C : : :C �qEZt�q D 0;

because Zt � WN.0; �2/. As can be easily verified using the properties of fZtg, the
autocovariance function of the MA.q/ processes are:


X.h/ D cov.XtCh;Xt/ D E.XtChXt/

D E.ZtCh C �1ZtCh�1 C : : :C �qZtCh�q/.Zt C �1Zt�1 C : : :C �qZt�q/
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Fig. 2.1 Realization and estimated ACF of a MA(1) process: Xt D Zt � 0:8Zt�1 with Zt �
IID N.0; 1/

D
(
�2
Pq�jhj

iD0 �i�iCjhj; jhj � qI
0; jhj > q:

This implies the following autocorrelation function:

�X.h/ D corr.XtCh;Xt/ D
(

1Pq
iD0 �

2
i

Pq�jhj
iD0 �i�iCjhj; jhj � qI

0; jhj > q:

Every MA.q/ process is therefore stationary irrespective of its parameters
�0; �1; : : : ; �q. Because the correlation between Xt and Xs is equal to zero if the
two time points t and s are more than q periods apart, such processes are sometimes
called processes with short memory or processes with short range dependence.

Figure 2.1 displays an MA(1) process and its autocorrelation function.
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2.2.2 The First Order Autoregressive Process (AR(1) Process)

The AR.p/ process requires a more thorough analysis as will already become
clear from the AR(1) process. This process is defined by the following stochastic
difference equation:

Xt D �Xt�1 C Zt; Zt � WN.0; �2/ and � ¤ 0: (2.2)

The above stochastic difference equation has in general several solutions. Given a
sequence fZtg and an arbitrary distribution for X0, it determines all random variables
Xt, t 2 Z n f0g, by applying the above recursion. The solutions are, however, not
necessarily stationary. But, according to the Definition 2.1, only stationary processes
qualify for ARMA processes. As we will demonstrate, depending on the value of �,
there may exist no or just one solution.

Consider first the case of j�j < 1. Inserting into the difference equation several
times leads to:

Xt D �Xt�1 C Zt D �2Xt�2 C �Zt�1 C Zt

D : : :

D Zt C �Zt�1 C �2Zt�2 C : : :C �kZt�k C �kC1Xt�k�1:

If fXtg is a stationary solution, VXt�k�1 remains constant independently of k. Thus

V

0
@Xt �

kX

jD0
� jZt�j

1
A D �2kC2

VXt�k�1 ! 0 for k ! 1:

This shows that
Pk

jD0 �
jZt�j converges in the mean square sense, and thus also in

probability, to Xt for k ! 1 (see Theorem C.8 in Appendix C). This suggests to
take

Xt D Zt C �Zt�1 C �2Zt�2 C : : : D
1X

jD0
� jZt�j (2.3)

as the solution to the stochastic difference equation. As
P1

jD0 j� jj D 1
1�� < 1 this

solution is well-defined according to Theorem 6.4 and has the following properties:

EXt D
1X

jD0
� j
EZt�j D 0;
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X.h/ D cov.XtCh;Xt/ D lim
k!1

E

0
@

kX

jD0
� jZtCh�j

1
A
0
@

kX

jD0
� jZt�j

1
A

D �2�jhj
1X

jD0
�2j D �jhj

1 � �2 �
2; h 2 Z;

�X.h/ D �jhj:

Thus the solution Xt D
P1

jD0 �
jZt�j is stationary and fulfills the difference equation

as can be easily verified. It is also the only stationary solution which is compatible
with the difference equation. Assume that there is second solution f QXtg with these
properties. Inserting into the difference equation yields again

V

0
@ QXt �

kX

jD0
� jZt�j

1
A D �2kC2

V QXt�k�1:

This variance converges to zero for k going to infinity because j�j < 1 and because
f QXtg is stationary. The two processes f QXtg and fXtg with Xt D

P1
jD0 �

jZt�j are
therefore identical in the mean square sense and thus with probability one.

Finally, note that the recursion (2.2) will only generate a stationary process if it
is initialized with X0 having the stationary distribution, i.e. if EX0 D 0 and VX0 D
�2=.1� �2/. If the recursion is initiated with an arbitrary variance of X0, 0 < �20 <
1, Eq. (2.2) implies the following difference equation for the variance of Xt, �2t :

�t D �2�2t�1 C �2:

The solution of this difference equation is

�2t � �2� D .�20 � �2�/.�
2/t

where �2� D �2=.1��2/ denotes the variance of the stationary distribution. If �20 ¤
�2�, �2t is not constant implying that the process fXtg is not stationary. However,
as j�j < 1, the variance of Xt, �2t , will converge to the variance of the stationary
distribution.2

Figure 2.2 shows a realization of such a process and its estimated autocorrelation
function.

In the case j�j > 1 the solution (2.3) does not converge. It is, however, possible
to iterate the difference equation forward in time to obtain:

2Phillips and Sul (2007) provide an application and an in depth discussion of the hypothesis of
economic growth convergence.
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Fig. 2.2 Realization and estimated ACF of an AR(1) process: Xt D 0:8Xt�1 C Zt with Zt �
IIN.0; 1/

Xt D ��1XtC1 � ��1ZtC1

D ��k�1XtCkC1 � ��1ZtC1 � ��2ZtC2 � : : : � ��k�1ZtCkC1:

This suggests to take

Xt D �
1X

jD1
��jZtCj

as the solution. Going through similar arguments as before it is possible to show that
this is indeed the only stationary solution. This solution is, however, viewed to be
inadequate because Xt depends on future shocks ZtCj; j D 1; 2; : : : Note, however,
that there exists an AR(1) process with j�j < 1 which is observationally equivalent,
in the sense that it generates the same autocorrelation function, but with a new shock
or forcing variable feZtg (see next section).

In the case j�j D 1 there exists no stationary solution (see Sect. 1.4.4) and
therefore, according to our definition, no ARMA process. Processes with this
property are called random walks, unit root processes or integrated processes. They
play an important role in economics and are treated separately in Chap. 7.



32 2 ARMA Models

2.3 Causality and Invertibility

If we interpret fXtg as the state variable and fZtg as an impulse or shock, we can
ask whether it is possible to represent today’s state Xt as the outcome of current
and past shocks Zt;Zt�1;Zt�2; : : : In this case we can view Xt as being caused by
past shocks and call this a causal representation. Thus, shocks to current Zt will not
only influence current Xt, but will propagate to affect also future Xt’s. This notion of
causality rest on the assumption that the past can cause the future but that the future
cannot cause the past. See Sect. 15.1 for an elaboration of the concept of causality
and its generalization to the multivariate context.

In the case that fXtg is a moving-average process of order q, Xt is given as
a weighted sum of current and past shocks Zt;Zt�1; : : : ;Zt�q. Thus, the moving-
average representation is already the causal representation. In the case of an
AR(1) process, we have seen that this is not always feasible. For j�j < 1, the
solution (2.3) represents Xt as a weighted sum of current and past shocks and is
thus the corresponding causal representation. For j�j > 1, no such representation is
possible. The following Definition 2.2 makes the notion of a causal representation
precise and Theorem 2.1 gives a general condition for its existence.

Definition 2.2 (Causality). An ARMA.p; q/ process fXtg with ˆ.L/Xt D ‚.L/Zt is

called causal with respect to fZtg if there exists a sequence f jg with the propertyP1
jD0 j jj < 1 such that

Xt D Zt C  1Zt�1 C  2Zt�2 C : : : D
1X

jD0
 jZt�j D ‰.L/Zt with  0 D 1:

where ‰.L/ D 1C 1L C 2L2C : : : D
P1

jD0  jLj. The above equation is referred

to as the causal representation of fXtg with respect to fZtg.

The coefficients f jg are of great importance because they determine how an
impulse or a shock in period t propagates to affect current and future XtCj, j D
0; 1; 2 : : : In particular, consider an impulse et0 at time t0, i.e. a time series which is
equal to zero except for the time t0 where it takes on the values et0 . Then, f t�t0et0g
traces out the time history of this impulse. For this reason, the coefficients  j with
j D t � t0, t D t0; t0 C 1; t0 C 2; : : : , are called the impulse response function.
If et0 D 1, it is called a unit impulse. Alternatively, et0 is sometimes taken to be
equal to � , the standard deviation of Zt. It is customary to plot  j as a function of j,
j D 0; 1; 2 : : :

Note that the notion of causality is not an attribute of fXtg, but is defined relative
to another process fZtg. It is therefore possible that a stationary process is causal
with respect to one process, but not with respect to another process. In order to make
this point more concrete, consider again the AR(1) process defined by the equation
Xt D �Xt�1CZt with j�j > 1. As we have seen, the only stationary solution is given
by Xt D �

P1
jD1 �

�jZtCj which is clearly not causal with respect fZtg. Consider as
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an alternative the process

eZt D Xt � 1

�
Xt�1 D ��2Zt C .��2 � 1/

1X

jD1
��jZtCj: (2.4)

This new process is white noise with variance Q�2 D ��2�2.3 Because fXtg fulfills
the difference equation

Xt D 1

�
Xt�1 C QZt;

fXtg is causal with respect to f QZtg. This remark shows that there is no loss of
generality involved if we concentrate on causal ARMA processes.

Theorem 2.1. Let fXtg be an ARMA.p; q/ process with ˆ.L/Xt D ‚.L/Zt and

assume that the polynomials ˆ.z/ and ‚.z/ have no common root. fXtg is causal

with respect to fZtg if and only if ˆ.z/ ¤ 0 for jzj � 1, i.e. all roots of the equation

ˆ.z/ D 0 are outside the unit circle. The coefficients f jg are then uniquely defined

by identity :

‰.z/ D
1X

jD0
 jz

j D ‚.z/

ˆ.z/
:

Proof. Given that ˆ.z/ is a finite order polynomial with ˆ.z/ ¤ 0 for jzj � 1, there
exits � > 0 such that ˆ.z/ ¤ 0 for jzj � 1 C �. This implies that 1=ˆ.z/ is an
analytic function on the circle with radius 1 C � and therefore possesses a power
series expansion:

1

ˆ.z/
D

1X

jD0
�jz

j D „.z/; for jzj < 1C �:

This implies that �j.1C�=2/j goes to zero for j to infinity. Thus there exists a positive
and finite constant C such that

j�jj < C.1C �=2/�j; for all j D 0; 1; 2; : : :

This in turn implies that
P1

jD0 j�jj < 1 and that „.z/ˆ.z/ D 1 for jzj � 1.
Applying„.L/ on both sides of ˆ.L/Xt D ‚.L/Zt, gives:

Xt D „.L/ˆ.L/Xt D „.L/‚.L/Zt:

3The reader is invited to verify this.
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Theorem 6.4 implies that the right hand side is well-defined. Thus ‰.L/ D
„.L/‚.L/ is the sought polynomial. Its coefficients are determined by the relation
‰.z/ D ‚.z/=ˆ.z/.

Assume now that there exists a causal representation Xt D
P1

jD0  jZt�j withP1
jD0 j jj < 1. Therefore

‚.L/Zt D ˆ.L/Xt D ˆ.L/‰.L/Zt:

Take �.z/ D ˆ.z/‰.z/ D
P1

jD0 �jz
j, jzj � 1. Multiplying the above equation by

Zt�k and taking expectations shows that �k D �k, k D 0; 1; 2; : : : ; q, and that �k D 0

for k > q. Thus we get ‚.z/ D �.z/ D ˆ.z/‰.z/ for jzj � 1. As ‚.z/ and ˆ.z/
have no common roots and because j‰.z/j < 1 for jzj � 1, ˆ.z/ cannot be equal
to zero for jzj � 1. ut

Remark 2.1. If the AR and the MA polynomial have common roots, there are two
possibilities:

• No common roots lies on the unit circle. In this situation there exists a unique
stationary solution which can be obtained by canceling the common factors of
the polynomials.

• If at least one common root lies on the unit circle then more than one stationary
solution may exist (see the last example below).

Some Examples

We concretize the above Theorem and Remark by investigating some examples
starting from the ARMA modelˆ.L/Xt D ‚.L/Zt with Zt � WN.0; �2/.

ˆ.L/ D 1 � 0:05L � 0:6L2 and‚.L/ D 1: The roots of the polynomialˆ.z/ are
z1 D �4=3 and z2 D 5=4. Because both roots are absolutely greater than one,
there exists a causal representation with respect to fZtg.

ˆ.L/ D 1C 2L C 5=4L2 and‚.L/ D 1: In this case the roots are conjugate
complex and equal to z1 D �4=5C 2=5{ and z2 D �4=5 � 2=5{. The modulus
or absolute value of z1 and z2 equals jz1j D jz2j D

p
20=25. This number is

smaller than one. Therefore there exists a stationary solution, but this solution is
not causal with respect to fZtg.

ˆ.L/ D 1 � 0:05L � 0:6L2 and‚.L/ D 1C 0:75L: ˆ.z/ and ‚.z/ have the
common root z D �4=3 ¤ 1. Thus one can cancel both ˆ.L/ and ‚.L/ by
1C 3

4
L to obtain the polynomials Q̂ .L/ D 1 � 0:8L and Q‚.L/ D 1. Because the

root of Q̂ .z/ equals 5/4 which is greater than one, there exists a unique stationary
and causal representation with respect to fZtg.

ˆ.L/ D 1C 1:2L � 1:6L2 and‚.L/ D 1C 2L: The roots of ˆ.z/ are z1 D 5=4

and z2 D �0:5. Thus one root is outside the unit circle whereas one is inside.
This would suggest that there is no causal solution. However, the root �0:5 ¤ 1 is
shared byˆ.z/ and‚.z/ and can therefore be canceled to obtain Q̂ .L/ D 1�0:8L
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and Q‚.L/ D 1. Because the root of Q̂ .z/ equals 5=4 > 1, there exists a unique
stationary and causal solution with respect to fZtg.

ˆ.L/ D 1C L and‚.L/ D 1C L: ˆ.z/ and ‚.z/ have the common root �1
which lies on the unit circle. As before one might cancel both polynomials by
1 C L to obtain the trivial stationary and causal solution fXtg D fZtg. This
is, however, not the only solution. Additional solutions are given by fYtg D
fZt C A.�1/tg where A is an arbitrary random variable with mean zero and finite
variance �2A which is independent from both fXtg and fZtg. The process fYtg has
a mean of zero and an autocovariance function 
Y.h/ which is equal to


Y.h/ D
(
�2 C �2A; h D 0I
.�1/h�2A; h D ˙1;˙2; : : :

Thus this new process is therefore stationary and fulfills the difference equation.

Remark 2.2. If the AR and the MA polynomial in the stochastic difference equation
ˆ.L/Xt D ‚.L/Zt have no common root, butˆ.z/ D 0 for some z on the unit circle,
there exists no stationary solution. In this sense the stochastic difference equation
does no longer define an ARMA model. Models with this property are said to have
a unit root and are treated in Chap. 7. If ˆ.z/ has no root on the unit circle, there
exists a unique stationary solution.

As explained in the previous Theorem, the coefficients f jg of the causal
representation are uniquely determined by the relation ‰.z/ˆ.z/ D ‚.z/. If fXtg is
a MA process,ˆ.z/ D 1 and the coefficients f jg just correspond to the coefficients
of the MA polynomial, i.e.  j D �j for 0 � j � q and  j D 0 for j > q. Thus
in this case no additional computations are necessary. In general this is not the
case. In principle there are two ways to find the coefficients f jg. The first one
uses polynomial division or partial fractions, the second one uses the method of
undetermined coefficients. This book relies on the second method because it is more
intuitive and presents some additional insides. For this purpose let us write out the
defining relation ‰.z/ˆ.z/ D ‚.z/:

�
 0 C  1z C  2z

2 C : : :
� �
1 � �1z � �2z

2 � : : : �pzp
�

D 1C �1z C �2z
2 C : : :C �qzq

Multiplying out the left hand side one gets:

 0 �  0�1z �  0�2z2 �  0�3z
3 � � � � �  0�pzp

 1z �  1�1z2 �  1�2z
3 � � � � �  1�pzpC1

C  2 z2 �  2�1z3 � � � � �  2�pzpC2
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: : :

D 1C �1z C �2z
2 C �3z

3 C � � � C �qzq

Equating the coefficients of the powers of z, zj, j D 0; 1; 2; : : : , one obtains the
following equations:

z0 W  0 D 1;

z1 W  1 D �1 C �1 0 D �1 C �1;

z2 W  2 D �2 C �2 0 C �1 1 D �2 C �2 C �1�1 C �21 ;

: : :

As can be seen, it is possible to solve recursively for the unknown coefficients f jg.
This is convenient when it comes to numerical computations, but in some cases one
wants an analytical solution. Such a solution can be obtained by observing that, for
j � maxfp; q C 1g, the recursion leads to the following difference equation of order
p:

 j D
pX

kD1
�k j�k D �1 j�1 C �2 j�2 C : : :C �p j�p; j � maxfp; q C 1g:

This is a linear homogeneous difference equation with constant coefficients. The
solution of such an equation is of the form (see Eq. (B.1) in Appendix B):

 j D c1z
�j

1 C : : :C cpz�j
p ; j � maxfp; q C 1g � p; (2.5)

where z1; : : : ; zp denote the roots of ˆ.z/ D 1 � �1z � : : : � �pzp D 0.4 Note
that the roots are exactly those which have been computed to assess the existence
of a causal representation. The coefficients c1; : : : ; cp can be obtained using the p

boundary conditions obtained from j D
P

0<k�j �k j�k D �j, maxfp; q C1g�p �
j < maxfp; q C 1g. Finally, the values for  j, 0 � j < maxfp; q C 1g � p, must be
computed from the first maxfp; q C 1g � p iterations (see the example in Sect. 2.4).

As mentioned previously, the coefficients f jg are of great importance as
they quantify the effect of a shock to Zt�j on Xt, respectively of Zt on XtCj. In
macroeconomics they are sometimes called dynamic multipliers of a transitory or
temporary shock. Because the underlying ARMA process is stationary and causal,
the infinite sum

P1
jD0 j jj converges. This implies that the effect  j converges to

4In the case of multiple roots one has to modify the formula according to Eq. (B.2).
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zero as j ! 1. Thus the effect of a shock dies out eventually5:

@XtCj

@Zt

D  j ! 0 for j ! 1:

As can be seen from Eq. (2.5), the coefficients f jg even converge to zero exponen-

tially fast to zero because each term ciz
�j

i , i D 1; : : : ; p, goes to zero exponentially
fast as the roots zi are greater than one in absolute value. Viewing f jg as a function
of j one gets the so-called impulse response function which is usually displayed
graphically.

The effect of a permanent shock in period t on XtCj is defined as the cumulative
effect of a transitory shock. Thus, the effect of a permanent shock to XtCj is given byPj

iD0  i. Because
Pj

iD0  i �
Pj

iD0 j ij �
P1

iD0 j ij < 1, the cumulative effect
remains finite.

In time series analysis we view the observations as realizations of fXtg and treat
the realizations of fZtg as unobserved. It is therefore of interest to know whether it is
possible to recover the unobserved shocks from the observations on fXtg. This idea
leads to the concept of invertibility.

Definition 2.3 (Invertibility). An ARMA(p,q) process for fXtg satisfying ˆ.L/Xt

D ‚.L/Zt is called invertible with respect to fZtg if and only if there exists a

sequence f�jg with the property
P1

jD0 j�jj < 1 such that

Zt D
1X

jD0
�jXt�j:

Note that like causality, invertibility is not an attribute of fXtg, but is defined only
relative to another process fZtg. In the literature, one often refers to invertibility as
the strict miniphase property.6

Theorem 2.2. Let fXtg be an ARMA(p,q) process with ˆ.L/Xt D ‚.L/Zt such

that polynomialsˆ.z/ and‚.z/ have no common roots. Then fXtg is invertible with

respect to fZtg if and only if ‚.z/ ¤ 0 for jzj � 1. The coefficients f�jg are then

uniquely determined through the relation:

5The use of the partial derivative sign actually represents an abuse of notation. It is inspired by an

alternative definition of the impulse responses:  j D @QPtXtCj

@xt
where QPt denotes the optimal (in the

mean squared error sense) linear predictor of XtCj given a realization back to infinite remote past
fxt; xt�1; xt�2; : : : g (see Sect. 3.1.3). Thus,  j represents the sensitivity of the forecast of XtCj with
respect to the observation xt. The equivalence of alternative definitions in the linear and especially
nonlinear context is discussed in Potter (2000).
6Without the qualification strict, the miniphase property allows for roots of‚.z/ on the unit circle.
The terminology is, however, not uniform in the literature.
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….z/ D
1X

jD0
�jz

j D ˆ.z/

‚.z/
:

Proof. The proof follows from Theorem 2.1 with Xt and Zt interchanged. ut

The discussion in Sect. 1.3 showed that there are in general two MA(1) processes
compatible with the same autocorrelation function �.h/ given by �.0/ D 1, �.1/ D
� with j�j � 1

2
, and �.h/ D 0 for h � 2. However, only one of these solutions

is invertible because the two solutions for � are inverses of each other. As it is
important to be able to recover Zt from current and past Xt, one prefers the invertible
solution. Section 3.2 further elucidates this issue.

Remark 2.3. If fXtg is a stationary solution to the stochastic difference equation
ˆ.L/Xt D ‚.L/Zt with Zt � WN.0; �2/ and if ˆ.z/‚.z/ ¤ 0 for jzj � 1 then

Xt D
1X

jD0
 jZt�j;

Zt D
1X

jD0
�jXt�j;

where the coefficients f jg and f�jg are determined for jzj � 1 by‰.z/ D ‚.z/

ˆ.z/
and

….z/ D ˆ.z/

‚.z/
, respectively. In this case fXtg is causal and invertible with respect

to fZtg.

Remark 2.4. If fXtg is an ARMA process with ˆ.L/Xt D ‚.L/Zt such that
ˆ.z/ ¤ 0 for jzj D 1 then there exists polynomials Q̂ .z/ and Q‚.z/ and a white
noise process f QZtg such that fXtg fulfills the stochastic difference equation Q̂ .L/Xt D
Q‚.L/ QZt and is causal with respect to f QZtg. If in addition ‚.z/ ¤ 0 for jzj D 1 then
Q‚.L/ can be chosen such that fXtg is also invertible with respect to f QZtg (see the
discussion of the AR(1) process after the definition of causality and Brockwell and
Davis (1991, p. 88)). Thus, without loss of generality, we can restrict the analysis to
causal and invertible ARMA processes.

2.4 Computation of the Autocovariance Function
of an ARMA Process

Whereas the autocovariance function summarizes the external and directly observ-
able properties of a time series, the coefficients of the ARMA process give
information of its internal structure. Although there exists for each ARMA model
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a corresponding autocovariance function, the converse is not true as we have seen
in Sect. 1.3 where we showed that two MA(1) processes are compatible with the
same autocovariance function. This brings up a fundamental identification problem.
In order to shed some light on the relation between autocovariance function and
ARMA models it is necessary to be able to compute the autocovariance function for
a given ARMA model. In the following, we will discuss three such procedures.
Each procedure relies on the assumption that the ARMA process ˆ.L/Xt D
‚.L/Zt with Zt � WN.0; �2/ is causal with respect to fZtg. Thus there exists a
representation of Xt as a weighted sum of current and past Zt’s: Xt D

P1
jD0  jZt�j

with
P1

jD0 j jj < 1.

2.4.1 First Procedure

Starting from the causal representation of fXtg, it is easy to calculate its autoco-
variance function given that fZtg is white noise. The exact formula is proved in
Theorem (6.4).


.h/ D �2
1X

jD0
 j jCjhj;

where

‰.z/ D
1X

jD0
 jz

j D ‚.z/

ˆ.z/
for jzj � 1:

The first step consists in determining the coefficients  j by the method of undeter-
mined coefficients. This leads to the following system of equations:

 j �
X

0<k�j

�k j�k D �j; 0 � j < maxfp; q C 1g;

 j �
X

0<k�p

�k j�k D 0; j � maxfp; q C 1g:

This equation system can be solved recursively (see Sect. 2.3):

 0 D �0 D 1;

 1 D �1 C  0�1 D �1 C �1;

 2 D �2 C  0�2 C  1�1 D �2 C �2 C �1�1 C �21 ;

: : :
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Alternatively one may view the second part of the equation system as a linear
homogeneous difference equation with constant coefficients (see Sect. 2.3). Its
solution is given by Eq. (2.5). The first part of the equation system delivers the
necessary initial conditions to determine the coefficients c1; c2; : : : ; cp. Finally one
can insert the  ’s in the above formula for the autocovariance function.

A Numerical Example
Consider the ARMA(2,1) process with ˆ.L/ D 1 � 1:3L C 0:4L2 and ‚.L/ D
1C 0:4L. Writing out the defining equation for ‰.z/, ‰.z/ˆ.z/ D ‚.z/, gives:

1C  1z C  2z
2 C  3z

3 C : : :

� 1:3z � 1:3 1z2 � 1:3 2z
3 � : : :

C 0:4z2 C 0:4 1z
3 C : : :

: : : D 1C 0:4z:

Equating the coefficients of the powers of z leads to the following equation system:

z0 W  0 D 1;

z W  1 � 1:3 D 0:4;

z2 W  2 � 1:3 1 C 0:4 D 0;

z3 W  3 � 1:3 2 C 0:4 1 D 0;

: : :

 j � 1:3 j�1 C 0:4 j�2 D 0; for j � 2:

The last equation represents a linear difference equation of order two. Its solution is
given by

 j D c1z
�j

1 C c2z
�j

2 ; j � maxfp; q C 1g � p D 0;

whereby z1 and z2 are the two distinct roots of the characteristic polynomial
ˆ.z/ D 1 � 1:3z C 0:4z2 D 0 (see Eq. (2.5)) and where the coefficients c1 and

c2 are determined from the initial conditions. The two roots are 1:3˙
p
1:69�4�0:4
2�0:4 D

5=4 D 1:25 and 2. The general solution to the homogeneous equation therefore is
 j D c10:8

j C c20:5
j. The constants c1 and c2 are determined by the equations:

j D 0 W  0 D 1 D c10:8
0 C c20:5

0 D c1 C c2

j D 1 W  1 D 1:7 D c10:8
1 C c20:5

1 D 0:8c1 C 0:5c2:
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Solving this equation system in the two unknowns c1 and c2 gives: c1 D 4 and
c2 D �3. Thus the solution to the difference equation is given by:

 j D 4.0:8/j � 3.0:5/j:

Inserting this solution for  j into the above formula for 
.h/ one obtains after using
the formula for the geometric sum:


.h/ D �2
1X

jD0

�
4 � 0:8j � 3 � 0:5j

� �
4 � 0:8jCh � 3 � 0:5jCh

�

D �2
1X

jD0
.16 � 0:82jCh � 12 � 0:5j � 0:8jCh

� 12 � 0:8j � 0:5jCh C 9 � 0:52jCh/

D 16�2
0:8h

1 � 0:64 � 12�2 0:8h

1 � 0:4 � 12�2
0:5h

1 � 0:4 C 9�2
0:5h

1 � 0:25

D 220

9
�2.0:8/h � 8�2.0:5/h:

Dividing 
.h/ by 
.0/, one gets the autocorrelation function:

�.h/ D 
.h/


.0/
D 55

37
� 0:8j � 18

37
� 0:5j

which is represented in Fig. 2.3.

2.4.2 Second Procedure

Instead of determining the  j coefficients first, it is possible to compute the
autocovariance function directly from the ARMA model. To see this multiply the
ARMA equation successively by Xt�h; h D 0; 1; : : : and apply the expectations
operator:

EXtXt�h � �1EXt�1Xt�h � � � � � �pEXt�pXt�h

D EZtXt�h C �1EZt�1Xt�h C � � � C �qEZt�qXt�h:

This leads to an equation system for the autocovariances 
.h/, h D 0; 1; 2; : : : :


.h/� �1
.h � 1/� : : : � �p
.h � p/ D �2
X

h�j�q

�j j�h; h <maxfp; q C 1g


.h/� �1
.h � 1/� : : : � �p
.h � p/ D 0; h � maxfp; q C 1g:
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Fig. 2.3 Autocorrelation function of the ARMA(2,1) process: .1 � 1:3L C 0:4L2/Xt D .1 C
0:4L/Zt

The second part of the equation system consists again of a linear homogeneous
difference equation in 
.h/whereas the first part can be used to determine the initial
conditions. Note that the initial conditions depend  1; : : : ;  q which have to be
determined before hand. The general solution of the difference equation is:


.h/ D c1z
�h
1 C : : :C cpz�h

p (2.6)

where z1; : : : ; zp are the distinct roots of the polynomial ˆ.z/ D 1 � �1z � : : : �
�pzp D 0.7 The constants c1; : : : ; cp can be computed from the first p initial
conditions after the  1; : : :  q have been calculated like in the first procedure. The
form of the solution shows that the autocovariance and hence the autocorrelation
function converges to zero exponentially fast.

A Numerical Example
We consider the same example as before. The second part of the above equation
system delivers a difference equation for 
.h/: 
.h/ D �1
.h � 1/C �2
.h � 2/ D
1:3
.h � 1/ � 0:4
.h � 2/, h � 2. The general solution of this difference equation
is (see Appendix B):


.h/ D c1.0:8/
h C c2.0:5/

h; h � 2

7In case of multiple roots the formula has to be adapted accordingly. See Eq. (B.2) in the Appendix.
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where 0:8 and 0:5 are the inverses of the roots computed from the same polynomial
ˆ.z/ D 1 � 1:3z � 0:4z2 D 0.

The first part of the system delivers the initial conditions which determine the
constants c1 and c2:


.0/� 1:3
.�1/C 0:4
.�2/ D �2.1C 0:4 � 1:7/


.1/� 1:3
.0/C 0:4
.�1/ D �20:4

where the numbers on the right hand side are taken from the first procedure.
Inserting the general solution in this equation system and bearing in mind that

.h/ D 
.�h/ leads to:

0:216c1 C 0:450c2 D 1:68�2

�0:180c1 � 0:600c2 D 0:40�2

Solving this equation system in the unknowns c1 and c2 one gets finally gets: c1 D
.220=9/�2 and c2 D �8�2.

2.4.3 Third Procedure

Whereas the first two procedures produce an analytical solution which relies on
the solution of a linear difference equation, the third procedure is more suited for
numerical computation using a computer. It rests on the same equation system as in
the second procedure. The first step determines the values 
.0/; 
.1/; : : : ; 
.p/ from
the first part of the equation system. The following 
.h/; h > p are then computed
recursively using the second part of the equation system.

A Numerical Example
Using again the same example as before, the first of the equation delivers 
.2/; 
.1/
and 
.0/ from the equation system:


.0/� 1:3
.�1/C 0:4
.�2/ D �2.1C 0:4 � 1:7/


.1/� 1:3
.0/C 0:4
.�1/ D �20:4


.2/� 1:3
.1/C 0:4
.0/ D 0

Bearing in mind that 
.h/ D 
.�h/, this system has three equations in three
unknowns 
.0/; 
.1/ and 
.2/. The solution is: 
.0/ D .148=9/�2, 
.1/ D
.140=9/�2, 
.2/ D .614=45/�2. This corresponds, of course, to the same numerical
values as before. The subsequent values for 
.h/; h > 2 are then determined
recursively from the difference equation
.h/D 1:3
.h � 1/� 0:4
.h � 2/.
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2.5 Exercises

Exercise 2.5.1. Consider the AR(1) process Xt D 0:8Xt�1 C Zt with Zt �
WN.0; �2/. Compute the variance of .X1 C X2 C X3 C X4/=4.

Exercise 2.5.2. Check whether the following stochastic difference equations pos-

sess a stationary solution. If yes, is the solution causal and/or invertible with respect

to Zt � WN.0; �2/?

(i) Xt D Zt C 2Zt�1
(ii) Xt D 1:3Xt�1 C Zt

(iii) Xt D 1:3Xt�1 � 0:4Xt�2 C Zt

(iv) Xt D 1:3Xt�1 � 0:4Xt�2 C Zt � 0:3Zt�1
(v) Xt D 0:2Xt�1 C 0:8Xt�2 C Zt

(vi) Xt D 0:2Xt�1 C 0:8Xt�2 C Zt � 1:5Zt�1 C 0:5Zt�2

Exercise 2.5.3. Compute the causal representation with respect to Zt � WN.0; �2/
for the following ARMA processes:

(i) Xt D 1:3Xt�1 � 0:4Xt�2 C Zt

(ii) Xt D 1:3Xt�1 � 0:4Xt�2 C Zt � 0:2Zt�1
(iii) Xt D �Xt�1 C Zt C �Zt�1 with j�j < 1

Exercise 2.5.4. Compute the autocovariance function of the ARMA processes:

(i) Xt D 0:5Xt�1 C 0:36Xt�2 C Zt

(ii) Xt D 0:5Xt�1 C 0:36Xt�2 C Zt C 0:5Zt�1

Thereby Zt � WN.0; �2/.

Exercise 2.5.5. Verify that the process feZtg defined in Eq. (2.4) is white noise with
eZt � WN.0; ��2�2/.



3Forecasting Stationary Processes

An important goal of time series analysis is forecasting. In the following we will
consider the problem of forecasting XTCh, h > 0, given fXT ; : : : ;X1g where fXtg
is a stationary stochastic process with known mean � and known autocovariance
function 
.h/. In practical applications� and 
 are unknown so that we must replace
these entities by their estimates. These estimates can be obtained directly from the
data as explained in Sect. 4.2 or indirectly by first estimating an appropriate ARMA
model (see Chap. 5) and then inferring the corresponding autocovariance function
using one of the methods explained in Sect. 2.4. Thus the forecasting problem is
inherently linked to the problem of identifying an appropriate ARMA model from
the data (see Deistler and Neusser 2012).

3.1 The Theory of Linear Least-Squares Forecasts

We restrict our discussion to linear forecast functions, also called linear predictors,
PTXTCh. Given observation from period 1 up to period T, these predictors take the
form:

PTXTCh D a0 C a1XT C : : :C aTX1 D a0 C
TX

iD1
aiXTC1�i

with unknown coefficients a0; a1; a2; : : : ; aT . In principle, we should index these
coefficients by T because they may change with every new observations. See the
example of the MA(1) process in Sect. 3.1.2. In order not to overload the notation,
we will omit this additional index.

In the Hilbert space of random variables with finite second moments the optimal
forecast in the mean squared error sense is given by the conditional expectation

© Springer International Publishing Switzerland 2016
K. Neusser, Time Series Econometrics, Springer Texts in Business and Economics,
DOI 10.1007/978-3-319-32862-1_3
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E .XTChjc;XT ;XT�1; : : : ;X1/. However, having practical applications in mind, we
restrict ourself to linear predictors for the following reasons1:

(i) The determination of the conditional expectation is usually very difficult
because all possible functions must in principle be considered whereas linear
predictors are easy to compute.

(ii) The coefficients of the optimal (in the sense of means squared errors) linear
forecasting function depend only on the first two moments of the time series,
i.e. on EXt and 
.j/, j D 0; 1; : : : ; h C T � 1.

(iii) In the case of Gaussian processes the conditional expectation coincides with
the linear predictor.

(iv) The optimal predictor is linear when the process is a causal and invertible
ARMA process even when Zt follows an arbitrary distribution with finite
variance (see Rosenblatt 2000, chapter 5).

(v) Practical experience has shown that even non-linear processes can be predicted
accurately by linear predictors.

The coefficients a0; : : : ; aT of the forecasting function are determined such that
the mean squared errors are minimized. The use of mean squared errors as a criterion
leads to a compact representation of the solution to the forecasting problem. It
implies that over- and underestimation are treated equally. Thus, we have to solve
the following minimization problem:

S D S.a0; : : : ; aT/ D E .XTCh � PTXTCh/
2

D E.XTCh � a0 � a1XT � : : : � aTX1/
2 �! min

a0;a1;:::;aT

As S is a quadratic function, the coefficients, aj; j D 0; 1; : : : ;T, are uniquely
determined by the so-called normal equations. These are obtained from the first
order conditions of the minimization problem, i.e. from @S

@aj
D 0; j D 0; 1; : : : ;T:

@S

@a0
D E

 
XTCh � a0 �

TX

iD1
aiXTC1�i

!
D 0; (3.1)

@S

@aj

D E

" 
XTCh � a0 �

TX

iD1
aiXTC1�i

!
XTC1�j

#
D 0; j D 1; : : : ;T: (3.2)

The first equation can be rewritten as a0 D ��
PT

iD1 ai� so that the forecasting
function becomes:

PTXTCh D �C
TX

iD1
ai .XTC1�i � �/ :

1Elliott and Timmermann (2008) provide a general overview of forecasting procedures and their
evaluations.
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The unconditional mean of the forecast error,E .XTCh � PTXTCh/, is therefore equal
to zero. This means that there is no bias, neither upward nor downward, in the
forecasts. The forecasts correspond on average to the “true” value.

Inserting in the second normal equation the expression for PTXTCh from above,
we get:

E
�
.XTCh � PTXTCh/XTC1�j

�
D 0; j D 1; 2; : : : ;T:

The forecast error is therefore uncorrelated with the available information repre-
sented by past observations. Thus, the forecast errors XTCh �PT XTCh are orthogonal
to XT ;XT�1; : : : ;X1. Geometrically speaking, the best linear forecast is obtained by
finding the point in the linear subspace spanned by fXT ;XT�1; : : : ;X1g which is
closest to XTCh. This point is found by projecting XTCh on this linear subspace.2

The normal equations (3.1) and (3.2) can be rewritten in matrix notation as
follows:

a0 D �

 
1 �

TX

iD1
ai

!
(3.3)

0
BBB@


.0/ 
.1/ : : : 
.T � 1/

.1/ 
.0/ : : : 
.T � 2/
:::

:::
: : :

:::


.T � 1/ 
.T � 2/ : : : 
.0/

1
CCCA

0
BBB@

a1

a2
:::

aT

1
CCCA D

0
BBB@


.h/


.h C 1/
:::


.h C T � 1/

1
CCCA : (3.4)

Denoting by �, ˛T and 
T.h/ the vectors .1; 1; : : : ; 1/0, .a1; : : : ; aT/
0 and

.
.h/; : : : ; 
.h C T � 1//0 and by �T D Œ
.i � j/�i;jD1;:::;T the symmetric
T � T covariance matrix of .X1; : : : ;XT/

0 the normal equations can be written
compactly as:

a0 D �
�
1 � �0˛T

�
(3.5)

�T˛T D 
T.h/: (3.6)

Dividing the second equation by 
.0/, one obtains an equation in terms autocorre-
lations instead of autocovariances:

RT˛T D �T.h/; (3.7)

where RT D �T=
.0/ and �T.h/ D .�.h/; : : : ; �.h C T � 1//0. The coefficients of
the forecasting function ˛T are then obtained by inverting �T , respectively RT :

2Note the similarity of the forecast errors with the least-square residuals of a linear regression.
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˛T D

0
B@

a1
:::

aT

1
CA D ��1

T 
T.h/ D R�1
T �T.h/:

A sufficient condition which ensures the invertibility of �T , respectively RT , is given
by assuming 
.0/ > 0 and limh!1 
.h/ D 0.3 The last condition is automatically
satisfied for ARMA processes because 
.h/ converges even exponentially fast to
zero (see Sect. 2.4).

The mean squared error or variance of the forecast error for the forecasting
horizon h, vT.h/, is given by:

vT.h/ D E .XTCh � PTXTCh/
2

D 
.0/� 2

TX

iD1
ai
.h C i � 1/C

TX

iD1

TX

jD1
ai
.i � j/aj

D 
.0/� 2˛0
T
T.h/C ˛0

T�T˛T

D 
.0/� ˛0
T
T.h/;

because �T˛T D 
T.h/. Bracketing out 
.0/, one can write the mean squared
forecast error as:

vT.h/ D 
.0/
�
1 � ˛0

T�T.h/
�
: (3.8)

Because the coefficients of the forecast function have to be recomputed with
the arrival of every new observation, it is necessary to have a fast and reliable
algorithm at hand. These numerical problems have been solved by the development
of appropriate computer algorithms, like the Durbin-Levinson algorithm or the
innovation algorithm (see Brockwell and Davis 1991, Chapter 5).

3.1.1 Forecasting with an AR(p) Process

Consider first the case of an AR(1) process:

Xt D �Xt�1 C Zt with j�j < 1 and Zt � WN.0; �2/:

The equation system (3.7) becomes:

3See Brockwell and Davis (1991, p. 167).
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0
BBBBB@

1 � �2 : : : �T�1

� 1 � : : : �T�2

�2 � 1 : : : �T�3

:::
:::

:::
: : :

:::

�T�1 �T�2 �T�3 : : : 1

1
CCCCCA

0
BBBBB@

a1

a2

a3
:::

aT

1
CCCCCA

D

0
BBBBB@

�h

�hC1

�hC2

:::

�hCT�1

1
CCCCCA
:

The guess-and-verify method immediately leads to the solution:

˛T D .a1; a2; a3; : : : ; aT/
0 D

�
�h; 0; 0; : : : ; 0

�0
:

We therefore get the following predictor:

PTXTCh D �hXT :

The forecast therefore just depends on the last observation with the corresponding
coefficient a1 D �h being independent of T. All previous observations can be
disregarded, they cannot improve the forecast further. To put it otherwise, all the
useful information about XTCh in the entire realization previous to XT , i.e. in
fXT ;XT�1; : : : ;X1g, is contained in XT .

The variance of the prediction error is given by

vT.h/ D 1 � �2h

1 � �2
�2:

For h D 1, the formula simplifies to �2 and for h ! 1, vT.h/ ! 1
1��2 �

2 the

unconditional variance of Xt. Note also that the variance of the forecast error vT.h/

increases with h.
The general case of an AR(p) process, p > 1, can be treated in the same way.

The autocovariances follow a p-th order difference equation (see Sect. 2.4):


.j/ D �1
.j � 1/C �2
.j � 2/C : : :C �p
.j � p/:

Applying again the guess-and-verify method for the case h D 1 and assuming that
T > p, the solution is given by ˛T D

�
�1; �2; : : : ; �p; 0; : : : ; 0

�0
. Thus the one-step

ahead predictor is

PTXTC1 D �1XT C �2XT�1 C : : :C �pXTC1�p; T > p: (3.9)

The one-step ahead forecast of an AR(p) process therefore depends only on the last
p observations.

The above predictor can also be obtained in a different way. View for this purpose
PT as an operator with the following meaning: Take the linear least-squares forecast
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with respect to the information fXT ; : : : ;X1g. Apply this operator to the defining
stochastic difference equation of the AR(p) process forwarded one period:

PTXTC1 D PT .�1XT/C PT .�2XT�1/C : : :C PT

�
�pXTC1�p

�
C PT .ZTC1/ :

In period T observations of XT ;XT�1; : : : ;X1 are known so that PTXT�j D XT�j,
j D 0; 1; : : : ;T � 1. Because fZtg is a white noise process and because fXtg is
a causal function with respect to fZtg, ZTC1 is uncorrelated with XT ; : : : ;X1. This
reasoning leads to the same predictor as in Eq. (3.9).

The forecasting functions for h > 1 can be obtained recursively by successively
applying the forecast operator. Take, for example, the case h D 2:

PTXTC2 D PT .�1XTC1/C PT .�2XT/C : : :C PT

�
�pXTC2�p

�
C PT .ZTC2/

D �1
�
�1XT C �2XT�1 C : : :C �pXTC1�p

�

C �2XT C : : :C �pXTC2�p

D
�
�21 C �2

�
XT C .�1�2 C �3/XT�1 C : : :C

�
�1�p�1 C �p

�
XTC2�p

C �1�pXTC1�p:

In this way forecasting functions for h > 2 can be obtained recursively.
Note that in the case of AR(p) processes the coefficient of the forecast function

remain constant as long as T > p. Thus with each new observation it is not necessary
to recompute the equation system and solve it again. This will be different in the case
of MA processes. In practice, the parameters of the AR model are usually unknown
and have therefore be replaced by some estimate. Section 14.2 investigates in a more
general context how this substitution affects the results.

3.1.2 Forecasting with MA(q) Processes

The forecasting problem becomes more complicated in the case of MA(q) processes.
In order to get a better understanding we analyze the case of a MA(1) process:

Xt D Zt C �Zt�1 with j� j < 1 and Zt � WN.0; �2/:

Taking a forecast horizon of one period, i.e. h D 1, the equation system (3.7) in the
case of a MA(1) process becomes:

0
BBBBBB@

1 �
1C�2 0 : : : 0

�
1C�2 1 �

1C�2 : : : 0

0 �
1C�2 1 : : : 0

:::
:::

:::
: : :

:::

0 0 0 : : : 1

1
CCCCCCA

0
BBBBB@

a1

a2

a3
:::

aT

1
CCCCCA

D

0
BBBBBB@

�
1C�2
0

0
:::

0

1
CCCCCCA
: (3.10)
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Despite the fact that the equation system has a simple structure, the forecasting
function will depend in general on all past observations of XT�j, 0 � j � T. We
illustrate this point by a numerical example which will allow us to get a deeper
understanding.

Suppose that we know the parameters of the MA(1) process to be � D �0:9
and �2 D 1. We start the forecasting exercise in period T D 0 and assume that,
at this point in time, we have no observation at hand. The best forecast is therefore
just the unconditional mean which in this example is zero. Thus, P0X1 D 0. The
variance of the forecast error then is V.X1 � P0X1/ D v0.1/ D �2 C �2�2 D 1:81.
This result is summarized in the first row of Table 3.1. In period 1, the realization of
X1 is observed. This information can be used and the forecasting function becomes
P1X2 D a1X1. The coefficient a1 is found by solving the equation system (3.10)
for T D 1. This gives a1 D �=.1 C �2/ D �0:4972. The corresponding
variance of the forecast error according to Eq. (3.8) is V.X2 � P1X2/ D v1.1/ D

.0/.1 � ˛0

1�1.1// D 1:81.1 � 0:4972 � 0:4972/ D 1:3625. This value is lower
compared to the previous forecast because additional information, the observation
of the realization of X1, is taken into account. Row 2 in Table 3.1 summarizes these
results.

In period 2, not only X1, but also X2 is observed which allows us to base our
forecast on both observations: P2X3 D a1X2 C a2X1. The coefficients can be found
by solving the equation system (3.10) for T D 2. This amounts to solving the
simultaneous equation system

 
1 �

1C�2
�

1C�2 1

!�
a1

a2

�
D
 

�
1C�2
0

!
:

Inserting � D �0:9, the solution is ˛2 D .a1; a2/
0 D .�0:6606;�0:3285/0. The

corresponding variance of the forecast error becomes

V.X3 � P2X3/ D v2.1/ D 
.0/.1� ˛0
2�2.1//

D 
.0/

 
1 �

�
a1 a2

�
 

�
1C�2
0

!!

D 1:81

�
1 �

�
�0:6606 �0:3285

� ��0:4972
0

��
D 1:2155:

These results are summarized in row 3 of Table 3.1.
In period 3, the realizations of X1, X2 and X3 are known so that the forecast

function becomes P3X4 D a1X3C a2X2C a3X1. The coefficients can again be found
by solving the equation system (3.10) for T D 3:

0
B@

1 �
1C�2 0

�
1C�2 1 �

1C�2
0 �

1C�2 1

1
CA

0
@

a1

a2

a3

1
A D

0
@

�
1C�2
0

0

1
A :
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Table 3.1 Forecast function for a MA(1) process with � D �0:9 and �2 D 1

Time Forecasting function ˛T D .a1; a2; : : : ; aT /
0 Forecast error variance

T D 0 W v0.1/ D 1:8100

T D 1 W ˛1 D .�0:4972/0 v1.1/ D 1:3625

T D 2 W ˛2 D .�0:6606;�0:3285/0 v2.1/ D 1:2155

T D 3 W ˛3 D .�0:7404;�0:4891;�0:2432/0 v3.1/ D 1:1436

T D 4 W ˛4 D .�0:7870;�0:5827;�0:3849;�0:1914/0 v4.1/ D 1:1017

: : : : : : : : :

T D 1 W ˛1 D .�0:9000;�0:8100;�0:7290; : : :/0 v1.1/ D 1

For � D �0:9, the coefficients of the linear predictor are ˛2 D .a1; a2; a3/
0 D

.�0:7404;�0:4891;�0:2432/0. The corresponding variance of the forecast error
becomes

V.X4 � P3X4/ D v3.1/ D 
.0/.1� ˛0
3�3.1//

D 
.0/

0
@1 �

�
a1 a2 a3

�
0
@

�
1C�2
0

0

1
A
1
A

D 1:81

0
@1 �

�
�0:7404 �0:4891 �0:2432

�
0
@

�0:4972
0

0

1
A
1
A

D 1:1436:

These results are summarized in row 4 of Table 3.1. We can, of course, continue in
this way and derive successively the forecast functions for T D 4; 5; : : :.

From this exercise we can make several observations.

• In contrast to the AR process, every new information is used. The forecast
PTXTC1 depends on all available information, in particular on XT ;XT�1; : : : ;X1.

• The coefficients of the forecast function are not constant. They change as more
and more information comes in.

• The importance of the new information can be “measured” by the last coefficient
of ˛T . These coefficients are termed partial autocorrelations (see Definition 3.2)
and are of particular relevance as will be explained in Sect. 3.5. In our example
they are �0:4972;�0:3285;�0:2432, and �0:1914.

• As more information becomes available, the variance of the forecast error
(mean squared error) declines monotonically. It will converge to �2 D 1. The
reason for this result can be explained as follows. Applying the forecasting
operator to the defining MA(1) stochastic difference equation forwarded by
one period gives: PTXTC1 D PTZTC1 C �PTZT D �PTZT with forecast error
XTC1 � PTXTC1 D ZTC1. As more and more observation become available, it
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becomes better and better possible to recover the “true” value of the unobserved
ZT from the observations XT ;XT�1; : : : ;X1. As the process is invertible, in the
limit it is possible to recover the value of ZT exactly (almost surely). The only
uncertainty remaining is with respect to ZTC1 which has a mean of zero and a
variance of �2 D 1.

3.1.3 Forecasting from the Infinite Past

The forecasting function based on the infinitely remote past is of particular
theoretical interest. Thereby we look at the problem of finding the optimal linear
forecast of XTC1 given XT ;XT�1; : : : ;X1;X0;X�1; : : : taking the mean squared error
again as the criterion function. The corresponding forecasting function (predictor)
will be denoted byePTXTCh, h > 0.

Noting that the MA(1) process with j� j < 1 is invertible, we have

Zt D Xt � �Xt�1 C �2Xt�2 � : : :

We can therefore write XtC1 as

XtC1 D ZtC1 C �
�
Xt � �Xt�1 C �2Xt�2 � : : :

�
„ ƒ‚ …

Zt

The predictor of XTC1 from the infinite past,ePT , is then given by:

ePTXTC1 D �
�
XT � �XT�1 C �2XT�2 � : : :

�

where the mean squared forecasting error is

v1.1/ D E
�
XTC1 �ePTXTC1

�2 D �2:

Applying this result to our example gives:

ePTXTC1 D �0:9XT � 0:81XT�1 � 0:729XT�2 � : : :

with v1.1/ D 1. See last row in Table 3.1.

Example of an ARMA(1,1) Process

Consider now the case of a causal and invertible ARMA(1,1) process fXtg:

Xt D �Xt�1 C Zt C �Zt�1;
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where j�j < 1, j� j < 1 and Zt � WN.0; �2/. Because fXtg is causal and invertible
with respect to fZtg,

XTC1 D ZTC1 C .� C �/

1X

jD0
� jZT�j;

ZTC1 D XTC1 � .� C �/

1X

jD0
.��/jXT�j:

Applying the forecast operator ePT to the second equation and noting that
ePTZTC1 D 0, one obtains the following one-step ahead predictor

ePTXTC1 D .� C �/

1X

jD0
.��/jXT�j:

Applying the forecast operator to the first equation, we obtain

ePTXTC1 D .� C �/

1X

jD0
.�/jZT�j:

This implies that the one-step ahead prediction error is equal to XTC1 �ePTXTC1 D
ZTC1 and that the mean squared forecasting error of the one-step ahead predictor
given the infinite past is equal to EZ2TC1 D �2.

3.2 The Wold Decomposition Theorem

The Wold Decomposition theorem is essential for the theoretical understanding of
stationary stochastic processes. It shows that any stationary process can essentially
be represented as a linear combination of current and past forecast errors. Before we
can state the theorem precisely, we have to introduce the following definition.

Definition 3.1 (Deterministic Process). A stationary stochastic process fXtg is

called (purely) deterministic or (purely) singular if and only if it can be forecasted

exactly from the infinite past. More precisely, if and only if

�2 D E
�
XtC1 �ePtXtC1

�2 D 0 for all t 2 Z

whereePtXtC1 denotes the best linear forecast of XtC1 given its infinite past, i.e. given

fXt;Xt�1; : : :g.

The most important class of deterministic processes are the harmonic processes.
These processes are characterized by finite or infinite sums of sine and cosine
functions with stochastic amplitude.4 A simple example of a harmonic process is
given by

4More about harmonic processes can be found in Sect. 6.2.
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Xt D A cos.!t/C B sin.!t/ with ! 2 .0; �/:

Thereby, A and B denote two uncorrelated random variables with mean zero and
finite variance. One can check that Xt satisfies the deterministic difference equation

Xt D .2 cos!/Xt�1 � Xt�2:

Thus, Xt can be forecasted exactly from its past. In this example the last two obser-
vations are sufficient. We are now in a position to state the Wold Decomposition
Theorem.

Theorem 3.1 (Wold Decomposition). Every stationary stochastic process fXtg with

mean zero and finite positive variance can be represented as

Xt D
1X

jD0
 jZt�j C Vt D ‰.L/Zt C Vt; (3.11)

where

(i) Zt D Xt �ePt�1Xt DePtZt;

(ii) Zt � WN.0; �2/ with �2 D E
�
XtC1 �ePtXtC1

�2
> 0;

(iii)  0 D 1 and
P1

jD0  
2
j < 1;

(iv) fVtg is deterministic;

(v) E.ZtVs/ D 0 for all t; s 2 Z.

The sequences f jg, fZtg, and fVtg are uniquely determined by (3.11).

Proof. The proof, although insightful, requires some knowledge about Hilbert
spaces which is beyond the scope of this book. A rigorous proof can be found in
Brockwell and Davis (1991, Section 5.7).

It is nevertheless instructive to give an intuition of the proof. Following the
MA(1) example from the previous section, we start in period 0 and assume that
no information is available. Thus, the best forecast P0X1 is zero so that trivially

X1 D X1 � P0X1 D Z1:

Starting with X1 D Z1, X2;X3; : : : can then be constructed recursively:

X2 D X2 � P1X2 C P1X2 D Z2 C a
.1/
1 X1 D Z2 C a

.1/
1 Z1

X3 D X3 � P2X3 C P2X3 D Z3 C a
.2/
1 X2 C a

.2/
2 X1

D Z3 C a
.2/
1 Z2 C

�
a
.2/
1 a

.1/
1 C a

.2/
2

�
Z1

X4 D X4 � P3X4 C P3X4 D Z4 C a
.3/
1 X3 C a

.3/
2 X2 C a

.3/
3 X1
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D Z4 C a
.3/
1 Z3 C

�
a
.3/
1 a

.2/
1 C a

.3/
2

�
Z2

C
�

a
.3/
1 a

.2/
1 a

.1/
1 C a

.3/
1 a

.2/
2 C a

.3/
2 a

.1/
1 C a

.3/
3

�
Z1

: : :

where a
.t�1/
j , j D 1; : : : ; t � 1, denote the coefficients of the forecast function for Xt

based on Xt�1; : : : ;X1. This shows how Xt unfolds into the sum of forecast errors.
The stationarity of fXtg ensures that the coefficients of Zj converge, as t goes to
infinity, to  j which are independent of t. ut

Every stationary stochastic process is thus representable as the sum of a moving-
average of infinite order and a (purely) deterministic process.5 The weights of the
infinite moving average are thereby normalized such that  0 D 1. In addition,
the coefficients  j are square summable. This property is less strong than absolute
summability which is required for a causal representation (see Definition 2.2).6 The
process fZtg is a white noise process with positive variance �2 > 0. The Zt’s are
called innovations as they represent the one-period ahead forecast errors based on
the infinite past, i.e Zt D Xt � ePt�1Xt. Zt is the additional information revealed
from the t-th observation. Thus, the Wold Decomposition Theorem serves as a
justification for the use of causal ARMA models. In this instance, the deterministic
component fVtg vanishes.

The second part of Property (i) further means that the innovation process fZtg
is fundamental with respect to fXtg, i.e. that Zt lies in the linear space spanned by
fXt;Xt�1;Xt�2; : : :g or that Zt D ePtZt. This implies that ‰.L/ must be invertible
and that Zt can be perfectly (almost surely) recovered from the observations of
Xt;Xt�1; : : : Finally, property (v) says that the two components fZtg and fVtg are
uncorrelated with each other at all leads and lags. Thus, in essence, the Wold
Decomposition Theorem states that every stationary stochastic process can be
uniquely decomposed into a weighted sum of current and past forecast errors plus a
deterministic process.

Although the Wold Decomposition is very appealing from a theoretical perspec-
tive, it is not directly implementable in practice because it requires the estimation
of infinitely many parameters . 1;  2; : : :/. This is impossible with only a finite
amount of observations. It is therefore necessary to place some assumptions on
. 1;  2; : : :/. One possibility is to assume that fXtg is a causal ARMA process and

5The Wold Decomposition corresponds to the decomposition of the spectral distribution function
of F into the sum of FZ and FV (see Sect. 6.2). Thereby the spectral distribution function FZ has

spectral density fZ.�/ D �2

2�
j‰.e�{�/j2.

6The series  j D 1=j, for example, is square summable, but not absolutely summable.
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to recover the  j’s from the causal representation. This amounts to say that ‰.L/ is
a rational polynomial which means that

‰.L/ D ‚.L/

ˆ.L/
D 1C �1L C �2L2 C : : :C �qLq

1 � �1L � �2L2 � : : : � �pLp
:

Thus, the process is characterized by only a finite number, p C q, of parameters.
Another possibility is to place restrictions on the smoothness of the spectrum (see
Chap. 6).

The Wold Decomposition Theorem has several implications which are presented
in the following remarks.

Remark 3.1. In the case of ARMA processes, the purely deterministic part fVtg
can be disregarded so that the process is represented only by a weighted sum of
current and past innovations. Processes with this property are called purely non-

deterministic, linearly regular, or regular for short. Moreover, it can be shown
that every regular process fXtg can be approximated arbitrarily well by an ARMA

process fX
.ARMA/
t g meaning that

sup
t2Z

E

�
Xt � X

.ARMA/
t

�2

can be made arbitrarily small. The proof of these results can be found in Hannan
and Deistler (1988, Chapter 1).

Remark 3.2. The process fZtg is white noise, but not necessarily Gaussian. In
particular, fZtg need not be independently and identically distributed (IID). Thus,
E.ZtC1jXt;Xt�1; : : :/ need not be equal to zero althoughePtZtC1 D 0. The reason is
thatePtZtC1 is only the best linear forecast function, whereas E.ZtC1jXt;Xt�1; : : :/ is
the best forecast function among all linear and non-linear functions. Examples of
processes which are white noise, but not IID, are GARCH processes discussed in
Chap. 8.

Remark 3.3. The innovations fZtg may not correspond to the “true” shocks of
the underlying economic system. In this case, the shocks to the economic system
cannot be recovered from the Wold Decomposition. Thus, they are not fundamental
with respect to fXtg. Suppose, as a simple example, that fXtg is generated by a
noninvertible MA(1) process:

Xt D Ut C �Ut�1; Ut � WN.0; �2/ and j� j > 1:

This generates an impulse response function with respect to the true shocks
of the system equal to .1; �; 0; : : :/. The above mechanism can, however, not be
the Wold Decomposition because the noninvertibility implies that Ut cannot be
recovered from the observation of fXtg. As shown in the introduction, there is an
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observationally equivalent MA(1) process, i.e. a process which generates the same
ACF. Based on the computation in Sect. 1.5, this MA(1) process is

Xt D Zt C Q�Zt�1; Zt � WN.0; Q�2/;

with Q� D ��1 and Q�2 D 1C�2
1C��2 �

2. This is already the Wold Decomposition. The

impulse response function for this process is .1; ��1; 0; : : :/ which is different from
the original system. As j Q� j D j��1j < 1, the innovations fZtg can be recovered
from the observations as Zt D

P1
jD0.� Q�/jXt�j, but they do not correspond to the

shocks of the system fUtg. Hansen and Sargent (1991), Quah (1990), and Lippi and
Reichlin (1993) among others provide a deeper discussion and present additional
more interesting economic examples.

3.3 Exponential Smoothing

Besides the method of least-squares forecasting exponential smoothing can often be
seen as a valid alternative. This method views Xt as a function of time:

Xt D f .tIˇ/C "t;

whereby f .tIˇ/ typically represents a polynomial in t with coefficients ˇ. The above
equation is similar to a regression model with error term "t. This error term is usually
specified as a white noise process f"tg � WN.0; �2/.

Consider first the simplest case where Xt just moves randomly around a fixed
mean ˇ. This corresponds to the case where f .tIˇ/ is a polynomial of degree zero:

Xt D ˇ C "t:

If ˇ is known then PTXTCh, the forecast of XTCh given the observations XT ; : : : ;X1,
clearly is ˇ. If, however, ˇ is unknown, we can substitute ˇ by XT , the average of
the observations:

bPTXTCh D Ǒ D XT D 1

T

TX

tD1
Xt;

where “O” means that the model parameter ˇ has been replaced by its estimate. The
one-period ahead forecast function can then be rewritten as follows:

bPTXTC1 D T � 1

T
bPT�1XT C 1

T
XT

DbPT�1XT C 1

T

�
XT �bPT�1XT

�
:
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The first equation represents the forecast for T C 1 as a linear combination of the
forecast for T and of the last additional information, i.e. the last observation. The
weight given to the last observation is equal to 1=T because we assumed that the
mean remains constant and because the contribution of one observation to the mean
is 1=T. The second equation represents the forecast for T C 1 as the forecast for T

plus a correction term which is proportional to the last forecast error. One advantage
of this second representation is that the computation of the new forecast, i.e. the
forecast for T C1, only depends on the forecast for T and the additional observation.
In this way the storage requirements are minimized.

In many applications, the mean does not remain constant, but is a slowly moving
function of time. In this case it is no longer meaningful to give each observation
the same weight. Instead, it seems plausible to weigh the more recent observation
higher than the older ones. A simple idea is to let the weights decline exponentially
which leads to the following forecast function:

PTXTC1 D 1 � !
1 � !T

T�1X

tD0
!tXT�t with j!j < 1:

! thereby acts like a discount factor which controls the rate at which agents forget
information. 1 � ! is often called the smoothing parameter. The value of ! should
depend on the speed at which the mean changes. In case when the mean changes
only slowly, ! should be large so that all observations are almost equally weighted;
in case when the mean changes rapidly, ! should be small so that only the most
recent observations are taken into account. The normalizing constant 1�!

1�!T ensures
that the weights sum up to one. For large T the term !T can be disregarded so
that one obtains the following forecasting function based on simple exponential

smoothing:

PTXTC1 D .1 � !/
�
XT C !XT�1 C !2XT�2 C : : :

�

D .1 � !/XT C ! PT�1XT

D PT�1XT C .1 � !/ .XT � PT�1XT/ :

In the economics literature this forecasting method is called adaptive expectation.
Similar to the model with constant mean, the new forecast is a weighted average
between the old forecast and the last (newest) observation, respectively between the
previous forecast and a term proportional to the last forecast error.

One important advantage of adaptive forecasting methods is that they can be
computed recursively. Starting with value S0, the following values can be computed
as follows:

P0X1 D S0

P1X2 D !P0X1 C .1 � !/X1
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P2X3 D !P1X2 C .1 � !/X2

: : :

PTXTC1 D !PT�1XT C .1 � !/XT :

Thereby S0 has to be determined. Because

PTXTC1 D .1 � !/
�
XT C !XT�1 C : : :C !T�1;X1

�
C !TS0;

the effect of the starting value declines exponentially with time. In practice, we can
take S0 D X1 or S0 D XT . The discount factor ! is usually set a priori to be a number
between 0.7 and 0.95. It is, however, possible to determine ! optimally by choosing
a value which minimizes the mean squared one-period forecast error:

TX

tD1
.Xt � Pt�1Xt/

2 �! min
j!j<1

:

From a theoretical perspective one can ask the question for which class of models
exponential smoothing represents the optimal procedure. Muth (1960) showed that
this class of models is given by

�Xt D Xt � Xt�1 D Zt � !Zt�1:

Note that the process generated by the above equation is no longer stationary. This
has to be expected as the exponential smoothing assumes a non-constant mean.
Despite the fact that this class seems rather restrictive at first, practice has shown
that it delivers reasonable forecasts, especially in situations when it becomes costly
to specify a particular model.7 Additional results and more general exponential
smoothing methods can be found in Abraham and Ledolter (1983) and Mertens
and Rässler (2005).

3.4 Exercises

Exercise 3.4.1. Compute the linear least-squares predictor PTXTCh, T > 2, and

the mean squared error vT.h/, h D 1; 2; 3, if fXtg is given by the AR(2) process

Xt D 1:3Xt�1 � 0:4Xt�2 C Zt with Zt � WN.0; 2/:

To which values do PTXTCh and vT.h/ converge for h going to infinity?

7This happens, for example, when many, perhaps thousands of time series have to be forecasted in
a real time situation.
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Exercise 3.4.2. Compute the linear least-squares predictor PT.XTC1/ and the mean

squared error vT.1/, T D 0; 1; 2; 3, if fXtg is given by the MA(1) process

Xt D Zt C 0:8Zt�1 with Zt � WN.0; 2/:

To which values do PTXTCh and vT.h/ converge for h going to infinity?

Exercise 3.4.3. Suppose that you observe fXtg for the two periods t D 1 and t D 3,

but not for t D 2.

(i) Compute the linear least-squares forecast for X2 if

Xt D �Xt�1 C Zt with j�j < 1 and Zt � WN.0; 4/

Compute the mean squared error for this forecast.

(ii) Assume now that fXtg is the MA(1) process

Xt D Zt C �Zt�1 with Zt � WN.0; 4/:

Compute the mean squared error for the forecast of X2.

Exercise 3.4.4. Let

Xt D A cos.!t/C B sin.!t/

with A and B being two uncorrelated random variables with mean zero and finite

variance. Show that fXtg satisfies the deterministic difference equation:

Xt D .2 cos!/Xt�1 � Xt�2:

3.5 The Partial Autocorrelation Function

Consider again the problem of forecasting XTC1 from observations XT ;XT�1;
: : : ;X2;X1. Denoting, as before, the best linear predictor by PTXTC1 D a1XT C
a2XT�1 C aT�1X2 C aTX1, we can express XTC1 as

XTC1 D PTXTC1 C ZTC1 D a1XT C a2XT�1 C aT�1X2 C aTX1 C ZTC1

where ZTC1 denotes the forecast error which is uncorrelated with XT ; : : : ;X1. We
can now ask the question whether X1 contributes to the forecast of XTC1 controlling

for XT ;XT�2; : : : ;X2 or, equivalently, whether aT is equal to zero. Thus, aT can be
viewed as a measure of the importance of the additional information provided by
X1. It is referred to as the partial autocorrelation. In the case of an AR(p) process,
the whole information useful for forecasting XTC1, T > p, is incorporated in the
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last p observations so that aT D 0. In the case of the MA process, the observations
on XT ; : : : ;X1 can be used to retrieve the unobserved ZT ;ZT�1 : : : ;Zt�qC1. As Zt

is an infinite weighted sum of past Xt’s, every new observation contributes to the
recovering of the Zt’s. Thus, the partial autocorrelation aT is not zero. Taking T

successively equal to 0, 1, 2, etc. we get the partial autocorrelation function (PACF).
We can, however, interpret the above equation as a regression equation. From

the Frisch-Lovell-Waugh Theorem (See Davidson and MacKinnon 1993), we can
obtain aT by a two-stage procedure. Project (regress) in a first stage XTC1 on
XT ; : : : ;X2 and take the residual. Similarly, project (regress) X1 on XT ; : : : ;X2 and
take the residual. The coefficient aT is then obtained by projecting (regressing)
the first residual on the second. Stationarity implies that this is nothing but the
correlation coefficient between the two residuals.

3.5.1 Definition

The above intuition suggests two equivalent definitions of the partial autocorrelation
function (PACF).

Definition 3.2 (Partial Autocorrelation Function I). The partial autocorrelation
function (PACF) ˛.h/; h D 0; 1; 2; : : :, of a stationary process is defined as follows:

˛.0/ D 1

˛.h/ D ah; h D 1; 2; : : : ;

where ah denotes the last element of the vector ˛h D ��1
h 
h.1/ D R�1

h �h.1/ (see

Sect. 3.1 and Eq. (3.7)).

Definition 3.3 (Partial Autocorrelation Function II). The partial autocorrelation
function (PACF) ˛.h/; h D 0; 1; 2; : : :, of a stationary process is defined as follows:

˛.0/ D 1

˛.1/ D corr .X2;X1/ D �.1/

˛.h/ D corr ŒXhC1 � P .XhC1j1;X2; : : : ;Xh/ ;X1 � P .X1j1;X2; : : : ;Xh/� ;

where P .XhC1j1;X2; : : : ;Xh/ and P .X1j1;X2; : : : ;Xh/ denote the best, in the sense

mean squared forecast errors, linear forecasts of XhC1, respectively X1 given

f1;X2; : : : ;Xhg.

Remark 3.4. If fXtg has a mean of zero, then the constant in the projection operator
can be omitted.

The first definition implies that the partial autocorrelations are determined
from the coefficients of the forecasting function which are themselves functions
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of the autocorrelation coefficients. It is therefore possible to express the partial
autocorrelations as a function of the autocorrelations. More specifically, the partial
autocorrelation functions can be computed recursively from the autocorrelation
function according to the Durbin-Levinson algorithm (Durbin 1960):

˛.0/ D 1

˛.1/ D a11 D �.1/

˛.2/ D a22 D �.2/� �.1/2

1 � �.1/2

: : :

˛.h/ D ahh D
�.h/�

Ph�1
jD1 ah�1;j�h�j

1 �
Ph�1

jD1 ah�1;j�j

;

where ah;j D ah�1;j � ahhah�1;h�j for j D 1; 2; : : : ; h � 1.

Autoregressive Processes
The idea of the PACF can be well illustrated in the case of an AR(1) process

Xt D �Xt�1 C Zt with 0 < j�j < 1 and Zt � WN.0; �2/:

As shown in Chap. 2, Xt and Xt�2 are correlated with each other despite the fact
that there is no direct relationship between the two. The correlation is obtained
“indirectly” because Xt is correlated with Xt�1 which is itself correlated with Xt�2.
Because both correlation are equal to �, the correlation between Xt and Xt�2 is equal
to �.2/ D �2. The ACF therefore accounts for all correlation, including the indirect
ones. The partial autocorrelation on the other hand only accounts for the direct
relationships. In the case of the AR(1) process, there is only an indirect relation
between Xt and Xt�h for h � 2, thus the PACF is zero.

Based on the results in Sect. 3.1 for the AR(1) process, the definition 3.2 of the
PACF implies:

˛1 D � ) ˛.1/ D �.1/ D �;

˛2 D .�; 0/0 ) ˛.2/ D 0;

˛3 D .�; 0; 0/0 ) ˛.3/ D 0:

The partial autocorrelation function of an AR(1) process is therefore equal to zero
for h � 2.

This logic can be easily generalized. The PACF of a causal AR(p) process is
equal to zero for h > p, i.e. ˛.h/ D 0 for h > p. This property characterizes an
AR(p) process as shown in the next section.
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Moving-Average Processes
Consider now the case of an invertible MA process. For this process we have:

Zt D
1X

jD0
�jXt�j ) Xt D �

1X

jD1
�jXt�j C Zt:

Xt is therefore “directly” correlated with each Xt�h, h D 1; 2; : : :. Consequently,
the PACF is never exactly equal to zero, but converges exponentially to zero. This
convergence can be monotonic or oscillating.

Take the MA(1) process as an illustration:

Xt D Zt C �Zt�1 with j� j < 1 and Zt � WN.0; �2/:

The computations in Sect. 3.1.2 showed that

˛1 D �

1C �2
) ˛.1/ D �.1/ D �

1C �2
;

˛2 D
�
�.1C �2/

1C �2 C �4
;

��2
1C �2 C �4

�0
) ˛.2/ D ��2

1C �2 C �4
:

Thus we get for the MA(1) process:

˛.h/ D � .��/h
1C �2 C : : :C �2h

D � .��/
h.1 � �2/

1 � �2.hC1/

3.5.2 Interpretation of ACF and PACF

The ACF and the PACF are two important tools to determining the nature of the
underlying mechanism of a stochastic process. In particular, they can be used to
determine the orders of the underlying AR, respectively MA processes. The analysis
of ACF and PACF to identify appropriate models is know as the Box-Jenkins
methodology (Box and Jenkins 1976). Table 3.2 summarizes the properties of both
tools for the case of a causal AR and an invertible MA process.

If fXtg is a causal and invertible ARMA(p,q) process, we have the following
properties. As shown in Sect. 2.4, the ACF is characterized for h > maxfp; qC1g by
the homogeneous difference equation �.h/ D �1�.h�1/C: : :C�p�.h�p/. Causality
implies that the roots of the characteristic equation are all inside the unit circle. The
autocorrelation coefficients therefore decline exponentially to zero. Whether this
convergence is monotonic or oscillating depends on the signs of the roots. The PACF
starts to decline to zero for h > p. Thereby the coefficients of the PACF exhibit the
same behavior as the autocorrelation coefficients of ��1.L/Xt.
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Table 3.2 Properties of the ACF and the PACF

Processes ACF PACF

AR(p) Declines exponentially
(monotonically or oscillating) to zero

˛.h/ D 0 for h > p

MA(q) �.h/ D 0 for h > q Declines exponentially
(monotonically or oscillating) to
zero

3.6 Exercises

Exercise 3.6.1. Assign the ACF and the PACF from Fig. 3.1 to the following

processes:

Xt D Zt;

Xt D 0:9Xt�1 C Zt;

Xt D Zt C 0:8Zt�1;

Xt D 0:9Xt�1 C Zt C 0:8Zt�1

with Zt � WN.0; �2/.
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Fig. 3.1 Autocorrelation and partial autocorrelation functions. (a) Process 1. (b) Process 2. (c)
Process 3. (d) Process 4



4Estimation of the Mean
and the Autocorrelation Function

In the previous chapters we have seen in which way the mean �, and, more
importantly, the autocovariance function, 
.h/; h D 0;˙1;˙2; : : :, of a stationary
stochastic process fXtg characterize its dynamic properties, at least if we restrict
ourself to the first two moments. In particular, we have investigated how the
autocovariance function is related to the coefficients of the corresponding ARMA
process. Thus the estimation of the ACF is not only interesting for its own sake,
but also for the specification and identification of appropriate ARMA models. It is
therefore of outmost importance to have reliable (consistent) estimators for these
entities. Moreover, we want to test specific features for a given time series. This
means that we have to develop corresponding testing theory. As the small sample
distributions are hard to get, we rely for this purpose on asymptotic theory.1

In this section we will assume that the process is stationary and observed for
the time periods t D 1; 2; : : : ;T. We will refer to T as the sample size. As
mentioned previously, the standard sampling theory is not appropriate in the times
series context because the Xt’s are not independent draws from some underlying
distribution, but are systematically related to each other.

4.1 Estimation of the Mean

The arithmetic average constitutes a “natural” estimator of the mean � of the
stochastic process. The arithmetic mean XT is defined as usual by

XT D 1

T
.X1 C X2 C : : :C XT/ :

1Recently, bootstrap methods have also been introduced in the time series context.
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It is immediately clear that the arithmetic average is an unbiased estimator of the
mean:

EXT D 1

T
.EX1 C EX2 C : : :C EXT/ D �:

Of greater interest are the asymptotic properties of the variance of the arithmetic
mean VXT which are summarized in the following theorem:

Theorem 4.1 (Convergence of Arithmetic Average). If fXtg is a stationary stochas-

tic process with mean � and ACF 
.h/ then the variance of the arithmetic mean

VXT has the following asymptotic properties:

VXT D E
�
XT � �

�2 ! 0; if 
.T/ ! 0I

TVXT D TE
�
XT � �

�2 !
1X

hD�1

.h/; if

1X

hD�1
j
.h/j < 1;

for T going to infinity.

Proof. Immediate algebra establishes:

0 � TVXT D 1

T

TX

i;jD1
cov.Xi;Xj/ D

X

jhj<T

�
1 � jhj

T

�

.h/

�
X

jhj<T

j
.h/j D 2

TX

hD1
j
.h/j C 
.0/:

The assumption 
.h/ ! 0 for h ! 1 implies that for any given " > 0, we can find
T0 such that j
.h/j < "=2 for h � T0. If T > T0 and T > 2T0 
.0/=" then

0 � 1

T

TX

hD1
j
.h/j D 1

T

T0�1X

hD1
j
.h/j C 1

T

TX

hDT0

j
.h/j

� T0 
.0/

T
C 1

T
.T � T0/"=2 � T0 
.0/

T
C "=2 � T0 
.0/"

2T0 
.0/
C "

2
D ":

Therefore VXT converges to zero for T ! 1 which establishes the first property.
Moreover, we have

lim
T!1

TVXT D lim
T!1

X

jhj<T

�
1 � jhj

T

�

.h/ D

1X

hD�1

.h/ < 1:

The infinite sum
P1

hD�1 
.h/ converges because it converges absolutely by
assumption. ut
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This Theorem establishes that the arithmetic average is not only an unbiased
estimator of the mean, but also a consistent one. In particular, the arithmetic average
converges in the mean-square sense, and therefore also in probability, to the true
mean (see appendix C). This result can be interpreted as a reflection of the concept
of ergodicity (see Sect. 1.2). The assumptions are relatively mild and are fulfilled
for the ARMA processes because for these processes 
.h/ converges exponentially
fast to zero (see Sect. 2.4.2, in particular Eq. (2.6)). Under little more restrictive
assumptions it is even possible to show that the arithmetic mean is asymptotically
normally distributed.

Theorem 4.2 (Asymptotic Distribution of Sample Mean). For any stationary

process fXtg given by

Xt D �C
1X

jD�1
 jZt�j; Zt � IID.0; �2/;

such that
P1

jD�1 j jj < 1 and
P1

jD�1  j ¤ 0, the arithmetic average XT is

asymptotically normal:

p
T.XT � �/

d����! N

 
0;

1X

hD�1

.h/

!

D N

0
B@0; �2

0
@

1X

jD�1
 j

1
A
2
1
CA D N.0; �2‰.1/2/

where 
 is the autocovariance function of fXtg.

Proof. The standard proof invokes the Basic Approximation Theorem C.14 and the
Central Limit Theorem for m-dependent processes C.13. To this end we define the
2m-dependent approximate process

X
.m/
t D �C

mX

jD�m

 jZt�j:

For fX
.m/
t g, we have Vm D

Pm
hD�m 
.h/ D �2.

Pm
jD�m  j/

2. This last assertion can
be verified by noting that

V D
1X

hD�1

.h/ D �2

1X

hD�1

1X

jD�1
 j jCh

D �2
1X

jD�1
 j

1X

hD�1
 jCh D �2

0
@

1X

jD�1
 j

1
A
2

:
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Note that the assumption
P1

jD�1 j jj < 1 guarantees the convergence of the
infinite sums. Applying this result to the special case  j D 0 for jjj > m, we
obtain Vm.

The arithmetic average of the approximating process is

X
.m/

T D 1

T

TX

tD1
X
.m/
t :

The CLT for m-dependent processes C.13 then implies that for T ! 1

p
T
�

X
.m/

T � �
�

d����! X.m/ D N.0;Vm/:

As m ! 1, �2.
Pm

jD�m  j/
2 converges to �2.

P1
jD�1  j/

2 and thus

X.m/
d����! X D N.0;V/ D N

0
B@0; �2

0
@

1X

jD�1
 j

1
A
2
1
CA :

This assertion can be established by noting that the characteristic functions of X.m/

approaches the characteristic function of X so that by Theorem C.11 X.m/
d����! X.

Finally, we show that the approximation error becomes negligible as T goes to
infinity:

p
T
�
XT � �

�
�

p
T
�

X
.m/

T � �
�

D T
�1=2

TX

tD1
.Xt � X

.m/
t / D T

�1=2

TX

tD1
e
.m/
t

where the error e
.m/
t is

e
.m/
t D

X

jjj>m

 jZt�j:

Clearly, fe
.m/
t g is a stationary process with autocovariance function 
e such that

P1
hD�1 
e.h/ D �2

�P
jjj>m  j

�2
< 1. We can therefore invoke Theorem 4.1

to show that

V

�p
T
�
XT � �

�
�

p
T
�

X
.m/

T � �
��

D TV

 
1

T

TX

tD1
e
.m/
t

!
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converges to �2
�P

jjj>m  j

�2
as T ! 1. This term converges to zero as m ! 1.

The approximation error
p

T
�
XT � �

�
�

p
T
�

X
.m/

T � �
�

therefore converges in

mean square to zero and thus, using Chebyschev’s inequality (see Theorem C.3
or C.7), also in probability. We have therefore established the third condition of

Theorem C.14 as well. Thus, we can conclude that
p

T
�
XT � �

� d����! X. ut

Under a more restrictive summability condition which holds, however, within
the context of causal ARMA processes, we can provide a less technical proof. This
proof follows an idea of Phillips and Solo (1992) and is based on the Beveridge-
Nelson decomposition (see Appendix D).2

Theorem 4.3. For any stationary process

Xt D �C
1X

jD0
 jZt�j

with the properties Zt � IID.0; �2/ and
P1

jD0 j2j jj2 < 1, the arithmetic average

XT is asymptotically normal:

p
T.XT � �/ d����! N

 
0;

1X

hD�1

.h/

!

D N

0
B@0; �2

0
@

1X

jD0
 j

1
A
2
1
CA D N.0; �2‰.1/2/:

Proof. The application of the Beveridge-Nelson decomposition (see Theorem D.1
in Appendix D) leads to

XT � � D 1

T

TX

tD1
‰.L/Zt D 1

T

TX

tD1
.‰.1/ � .L � 1//e‰.L//Zt

D ‰.1/

 
1

T

TX

tD1
Zt

!
C 1

T
e‰.L/.Z0 � ZT/

p
T.XT � �/ D ‰.1/

 
p

T

PT
tD1 Zt

T

!
C 1p

T
e‰.L/Z0 � 1p

T
e‰.L/ZT :

2The Beveridge-Nelson decomposition is an indispensable tool for the understanding of integrated
and cointegrated processes analyzed in Chaps. 7 and 16.
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The assumption Zt � IID.0; �2/ allows to invoke the Central Limit Theorem C.12

of Appendix C to the first term. Thus,
p

T
PT

tD1 Zt

T
is asymptotical normal with mean

zero and variance �2. Theorem D.1 also implies j‰.1/j < 1. Therefore, the term

‰.1/
p

T
PT

tD1 Zt

T
is asymptotically normal with mean zero and variance �2‰.1/2.

The variances of the second and third term are equal to �2

T

PT
jD0 Q 2j . The

summability condition then implies according to Theorem D.1 that
PT

jD0 Q 2j
converges for T ! 1. Thus, the variances of the last two terms converge to zero
implying that these terms converge also to zero in probability (see Theorem C.7)
and thus also in distribution. We can then invoke Theorem C.10 to establish the
Theorem. Finally, the equality of

P1
hD�1 
.h/ and �2‰.1/2 can be obtained from

direct computations or by the application of Theorem 6.4. ut

Remark 4.1. Theorem 4.2 holds with respect to any causal ARMA process because
the  j’s converge exponentially fast to zero (see the discussion following Eq. (2.5)).

Remark 4.2. If fXtg is a Gaussian process, then for any given fixed T, XT is
distributed as

p
T
�
XT � �

�
� N

0
@0;

X

jhj<T

�
1 � jhj

T

�

.h/

1
A :

According to Theorem 4.2, the asymptotic variance of the average depends on
the sum of all covariances 
.h/. This entity, denoted by J, is called the long-run

variance of fXtg:

J D
1X

hD�1

.h/ D 
.0/

 
1C 2

1X

hD1
�.h/

!
: (4.1)

Note that the long-run variance equals 2� times the spectral density f .�/ evaluated
at � D 0 (see the Definition 6.1 of the spectral density in Sect. 6.1).

As the long-run variance takes into account the serial properties of the time
series, it is also called heteroskedastic and autocorrelation consistent variance (HAC
variance). If fXtg has some nontrivial autocorrelation (i.e. �.h/ ¤ 0 for h ¤ 0), the
long-run variance J is different from 
.0/. This implies among other things that the
construction of the t-statistic for testing the simple hypothesis H0: � D �0 should
be based on J rather than on 
.0/.

In case that fXtg is a causal ARMA process with ˆ.L/Xt D ‚.L/Zt, Zt �
WN.0; �2/, the long-run variance is given by

J D
�
‚.1/

ˆ.1/

�2
�2 D ‰.1/2�2:
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If fXtg is a AR(1) process with Xt D �Xt�1 C Zt, Zt � WN.0; �2/ and j�j < 1,


.0/ D �2

1��2 and �.h/ D �jhj. Thus the long-run variance is given by J D �2

.1��/2 D

.0/ � 1C�

1�� . From this example it is clear that the long-run variance can be smaller

or larger than 
.0/, depending on the sign of �: for negative values of �, 
.0/
overestimates the long-run variance; for positive values, it underestimates J. The
estimation of the long-run variance is dealt with in Sect. 4.4.

4.2 Estimation of the Autocovariance and the Autocorrelation
Function

With some slight, asymptotically unimportant modifications, we can use the stan-
dard estimators for the autocovariances, 
.h/, and the autocorrelations, �.h/, of a
stationary stochastic process:

O
.h/ D 1

T

T�hX

tD1

�
Xt � XT

� �
XtCh � XT

�
; (4.2)

O�.h/ D O
.h/
O
.0/ : (4.3)

These estimators are biased because the sums are normalized (divided) by T rather
than T � h. The normalization with T � h delivers an unbiased estimate only if
XT is replaced by � which, however is typically unknown in practice. The second
modification concerns the use of the complete sample for the estimation of �.3 The
main advantage of using the above estimators is that the implied estimator for the
covariance matrix,b�T , respectively the autocorrelation matrix,bRT , of .X1; : : : ;XT/

0,

b�T D

0
BBB@

O
.0/ O
.1/ : : : O
.T � 1/
O
.1/ O
.0/ : : : O
.T � 2/
:::

:::
: : :

:::

O
.T � 1/ O
.T � 2/ : : : O
.0/

1
CCCA

bRT D
b�T

O
.0/
always delivers, independently of the realized observations, non-negative definite
and for O
.0/ > 0 non-singular matrices. The resulting estimated autocovariance
function will then satisfy the characterization given in Theorem 1.1, in particular
property (iv).

3The standard statistical formulas would suggest to estimate the mean appearing in first multipli-
cand from X1; : : : ;Xt�h, and the mean appearing in the second multiplicand from XhC1; : : : ;XT .
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According to Box and Jenkins (1976, p. 33), one can expect reasonable estimates
for 
.h/ and �.h/ if the sample size is larger than 50 and if the order of the
autocorrelation coefficient is smaller than T=4.

The theorem below establishes that these estimators lead under rather mild
conditions to consistent and asymptotically normally distributed estimators.

Theorem 4.4 (Asymptotic Distribution of Autocorrelations). Let fXtg be the

stationary process

Xt D �C
1X

jD�1
 jZt�j

with Zt � IID.0; �2/,
P1

jD�1 j jj < 1 and
P1

jD�1 jj jj2 < 1. Then we have for

h D 1; 2; : : :

0
B@

O�.1/
:::

O�.h/

1
CA

d����! N

0
B@

0
B@
�.1/
:::

�.h/

1
CA ;

W

T

1
CA

where the elements of W D
�
wij

�
i;j2f1;:::;hg are given by Bartlett’s formula

wij D
1X

kD1
Œ�.k C i/C �.k � i/ � 2�.i/�.k/�Œ�.k C j/C �.k � j/ � 2�.j/�.k/�:

Proof. Brockwell and Davis (1991, section 7.3) ut

Brockwell and Davis (1991) offer a second version of the above theorem whereP1
jD�1 jj jj2 < 1 is replaced by the assumption of finite fourth moments, i.e.

by assuming EZ4t < 1. As we rely mainly on ARMA processes, we do not
pursue this distinction further because this class of process automatically fulfills
the above assumptions as soon as fZtg is identically and independently distributed
(IID). A proof which relies on the Beveridge-Nelson polynomial decomposition (see
Theorem D.1 in Appendix D) can be gathered from Phillips and Solo (1992).

Example: fXtg � IID.0; � 2/

The most important application of Theorem 4.4 is related to the case of a white noise
process. For this process �.h/ is equal to zero for jhj > 0. Theorem 4.4 then implies
that

wij D
�
1; for i D j;
0; otherwise.
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Fig. 4.1 Estimated autocorrelation function of a WN(0,1) process with 95 % confidence interval
for sample size T D 100

The estimated autocorrelation coefficients converge to the true autocorrelation
coefficient, in this case zero. The asymptotic distribution of

p
T O�.h/ converges to

the standard normal distribution. This implies that for large T we can approximate
the distribution of O�.h/ by a normal distribution with mean zero and variance 1=T.
This allows the construction of a 95 % confidence interval assuming that the true

process is white noise. This confidence interval is therefore given by ˙1:96T� 1
2 . It

can be used to verify if the observed process is indeed white noise.
Figure 4.1 plots the empirical autocorrelation function of a WN(0,1) process with

a sample size of T D 100. The implied 95 % confidence interval is therefore equal
to ˙0:196. As each estimated autocorrelation coefficient falls within the confidence
interval, we can conclude that the observed times series may indeed represent a
white noise process.

Instead of examining each correlation coefficient separately, we can test the joint
hypothesis that all correlation coefficients up to order N are simultaneously equal
to zero, i.e. �.1/ D �.2/ D : : : D �.N/ D 0, N D 1; 2; : : : As each

p
T O�.h/

has an asymptotic standard normal distribution and is as<mptotically uncorrelated
with

p
T O�.k/, h ¤ k, the sum of the squared estimated autocorrelation coefficients

is �2 distributed with N degrees of freedom. This test statistic is called Box-Pierce

statistic:

Q D T

NX

hD1
O� 2.h/ � �2N :

A refinement of this test statistic is given by the Ljung-Box statistic:

Q0 D T.T C 2/

NX

hD1

O� 2.h/
T � h

� �2N : (4.4)
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This test statistic is also asymptotically �2 distributed with the same degree of
freedom N. This statistic accounts for the fact that the estimates for high orders
h are based on a smaller number of observations and are thus less precise and more
noisy. The two test statistics are used in the usual way. The null hypothesis that
all correlation coefficients are jointly equal to zero is rejected if Q, respectively Q0

is larger than the critical value corresponding the �2N distribution. The number of
summands N is usually taken to be rather large, for a sample size of 150 in the
range between 15 and 20. The two test are also referred to as Portmanteau tests.

Example: MA(q) Process: Xt D Zt C �1Zt�1 C : : : C �qZt�q

with Zt � IID.0; � 2/

In this case the covariance matrix is determined as

wii D 1C 2�.1/2 C : : :C 2�.q/2 for i > q:

For i; j > q, wij is equal to zero. The 95 % confidence interval for the MA(1) process

Xt D Zt �0:8Zt�1 is therefore given for a sample size of T D 200 by ˙1:96T� 1
2 Œ1C

2�.1/2�
1
2 D ˙0:1684.

Figure 4.2 shows the estimated autocorrelation function of the above MA(1) pro-
cess together with 95 % confidence interval based on a white noise process and
a MA(1) process with � D �0:8. As the first order autocorrelation coefficient is
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Fig. 4.2 Estimated autocorrelation function of a MA(1) process with � D �0:8 with correspond-
ing 95 % confidence interval for T D 200
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clearly outside the confidence interval whereas all other autocorrelation coefficients
are inside it, the figure demonstrate that the observations are evidently the realization
of MA(1) process.

Example: AR(1) Process Xt � �Xt�1 D Zt with Zt � IID.0; � 2/

In this case the covariance matrix is determined as

wii D
iX

kD1
�2i

�
�k � ��k

�2 C
1X

kDiC1
�2k

�
� i � ��i

�2

D
�
1� �2i

� �
1C �2

�

1 � �2 � 2i�2i

� 1C �2

1 � �2 for large i:

The formula for wij with i ¤ j are not shown. In any case, this formula is of
relatively little importance because the partial autocorrelations are better suited for
the identification of AR processes (see Sect. 3.5 and 4.3).

Figure 4.3 shows an estimated autocorrelation function of an AR(1) process. The
autocorrelation coefficients decline exponentially which is a characteristic for an
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Fig. 4.3 Estimated autocorrelation function of an AR(1) process with � D 0:8 and corresponding
95 % confidence interval for T D 100
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AR(1) process.4 Furthermore the coefficients are outside the confidence interval up
to order 8 for white noise processes.

4.3 Estimation of the Partial Autocorrelation Function

According to its definition (see Definition 3.2), the partial autocorrelation of order
h, ˛.h/, is equal to ah, the last element of the vector ˛h D ��1

h 
h.1/ D R�1
h �h.1/.

Thus, ˛h and consequently ah can be estimated by Ǫh D b��1
h O
h.1/ D OR�1

h O�h.1/.
As �.h/ can be consistently estimated and is asymptotically normally distributed
(see Sect. 4.2), the continuous mapping theorem (see Appendix C) ensures that the
above estimator for ˛.h/ is also consistent and asymptotically normal. In particular
we have for an AR(p) process (Brockwell and Davis 1991)

p
T Ǫ .h/ d����! N.0; 1/ for T ! 1 and h > p:

This result allows to construct, as in the case of the autocorrelation coefficients,
confidence intervals for the partial autocorrelations coefficients. The 95 % confi-
dence interval is given by ˙ 1:96p

T
. The AR(p) process is characterized by the fact that

the partial autocorrelation coefficients are zero for h > p. Ǫ .h/ should therefore be
inside the confidence interval for h > p and outside for h � p. Figure 4.4 confirms
this for an AR(1) process with � D 0:8.
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Fig. 4.4 Estimated PACF for an AR(1) process with � D 0:8 and corresponding 95 % confidence
interval for T D 200

4As a reminder: the theoretical autocorrelation coefficients are �.h/ D �jhj.
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Fig. 4.5 Estimated PACF for a MA(1) process with � D 0:8 and corresponding 95 % confidence
interval for T D 200

Figure 4.5 shows the estimated PACF for an MA(1) process with � D 0:8. In
conformity with the theory, the partial autocorrelation coefficients converge to zero.
They do so in an oscillating manner because � is positive (see formula in Sect. 3.5).

4.4 Estimation of the Long-Run Variance

For many applications5 it is necessary to estimate the long-run variance J which is
defined according to Eq. (4.1) as follows6

J D
1X

hD�1

.h/ D 
.0/C 2

1X

hD1

.h/ D 
.0/

 
1C 2

1X

hD1
�.h/

!
: (4.5)

This can, in principle, be done in two different ways. The first one consists in the
estimation of an ARMA model which is then used to derive the implied covariances
as explained in Sect. 2.4. These covariances are then inserted into Eq. (4.5). The
second method is a nonparametric one and is the subject for the rest of this Section.
It has the advantage that it is not necessary to identify and estimate an appropriate
ARMA model, a step which can be cumbersome in practice. Additional and more

5For example, when testing the null hypothesis H0: � D �0 in the case of serially correlated
observations (see Sect. 4.1); for the Phillips-Perron unit-root test explained in Sect. 7.3.2.
6See Theorem 4.2 and the comments following it.
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advanced material on this topic can be found in Andrews (1991), Andrews and
Monahan (1992), or among others in Haan and Levin (1997).7

If the sample size is T > 1, only the covariances 
.0/; : : : ; 
.T � 1/ can, in
principle, be estimated. Thus, a first naive estimator of J is given by OJT defined as

OJT D
T�1X

hD�TC1
O
.h/ D O
.0/C 2

T�1X

hD1
O
.h/ D O
.0/

 
1C 2

T�1X

hD1
O�.h/

!
;

where O
.h/ and O�.h/ are the estimators for 
.h/ and �.h/, respectively, given
in Sect. 4.2. As the estimators of the higher order autocovariances are based on
smaller samples, their estimates become more erratic. At the same time, their weight
in the above sum is the same as the lower order and more precisely estimated
autocovariances. Thus, the higher order autocovariances have a disproportionate
hazardous influence on the above estimator.

A remedy for this problem is to use only a certain number `T of autocovariances
and/or to use a weighted sum instead of an unweighted one. This idea leads to the
following class estimators:

OJT D OJT.`T/ D T

T � r

T�1X

hD�TC1
k

�
h

`T

�
O
.h/;

where k is a weighting or kernel function.8 The kernel functions are required to have
the following properties:

(i) k W R ! Œ�1; 1� is, with the exception of a finite number of points a continuous
function. In particular, k is continuous at x D 0.

(ii) k is quadratically integrable, i.e.
R
R

k.x/2dx < 1;
(iii) k.0/ D 1;
(iv) k is symmetric, i.e. k.x/ D k.�x/ for all x 2 R.

The basic idea of the kernel function is to give relatively little weight to the higher
order autocovariances and relatively more weight to the smaller order ones. As k.0/

equals one, the variance O
.0/ receives weight one by construction. The continuity
assumption implies that also the covariances of smaller order, i.e. for h small, receive
a weight close to one. Table 4.1 lists some of the most popular kernel functions used
in practice.

Figure 4.6 shows a plot of these functions. The first three functions are nonzero
only for jxj < 1. This implies that only the orders h for which jhj � `T are
taken into account. `T is called the lag truncation parameter or the bandwidth. The
quadratic spectral kernel function is an example of a kernel function which takes all

7Note the connection between the long-run variance and the spectral density at frequency zero:
J D 2� f .0/ where f is the spectral density function (see Sect. 6.3).
8Kernel functions are also relevant for spectral estimators. See in particular Sect. 6.3.
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Table 4.1 Common kernel
functions

Name k.x/ D
Boxcar (“truncated”) 1

Bartlett 1� jxj
Daniell sin.� x/

� x

Tukey-Hanning .1C cos.�x//=2

Quadratic Spectral 25
12�2x2

�
sin.6�x=5/

6�x=5
� cos.6�x=5/

�

The function are, with the exception of the quadratic
spectral function, only defined for jxj � 1. Outside this
interval they are set to zero
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Fig. 4.6 Common kernel functions

covariances into account. Note that some weights are negative in this case as shown
in Fig. 4.6.9

The estimator for the long-run variance is subject to the correction term T
T�r

.
This factor depends on the number of parameters estimated in a first step and is only
relevant when the sample size is relatively small. In the case of the estimation of the
mean r would be equal to one and the correction term is negligible. If on the other
hand Xt, t D 1; : : : ;T, are the residuals from multivariate regression, r designates
the number of regressors. In many applications the correction term is omitted.

The lag truncation parameter or bandwidth, `T , depends on the number of
observations. It is intuitive that the number of autocovariances accounted for in

9Phillips (2004) has proposed a nonparametric regression-based method which does not require a
kernel function.
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the computation of the long-run variance should increase with the sample size,
i.e. we should have `T ! 1 for T ! 1.10 The relevant issue is, at which
rate the lag truncation parameter should go to infinity. The literature made several
suggestions.11 In the following we concentrate on the Bartlett and the quadratic
spectral kernel because these function always deliver a positive long-run variance
in small samples. Andrews (1991) proposes the following formula to determine the
optimal bandwidth:

Bartlett W `T D 1:1447 Œ˛Bartlett T�
1
3

Quadratic Spectral W `T D 1:3221
�
˛QuadraticSpectral T

� 1
5

where Œ:� rounds to the nearest integer. The two coefficients ˛Bartlett and
˛QuadraticSpectral are data dependent constants which have to be determined in a
first step from the data (see (Andrews 1991, 832–839), (Andrews and Monahan
1992, 958) and (Haan and Levin 1997)). If the underlying process is approximated
by an AR(1) model, we get:

˛Bartlett D 4 O�2
.1 � O�2/.1C O�2/

˛QuadraticSpectral D 4 O�2
.1 � O�/4 ;

where O� is the first order empirical autocorrelation coefficient.
In order to avoid the cumbersome determination of the ˛’s Newey and West

(1994) suggest the following rules of thumb:

Bartlett W `T D ˇBartlett

�
T

100

� 2
9

Quadratic Spectral W `T D ˇQuadraticSpectral

�
T

100

� 2
25

:

It has been shown that values of 4 for ˇBartlett as well as for ˇQuadraticSpectral lead
to acceptable results. A comparison of these formulas with the ones provided by
Andrews shows that the latter imply larger values for `T when the sample sizes gets

10This is true even when the underlying process is known to be a MA(q) process. Even in this
case it is advantageous to include also the autocovariances for h > q. The reason is twofold. First,
only when `T ! 1 for T ! 1, do we get a consistent estimator, i.e. OJT ! JT , respectively J.
Second, the restriction to O
.h/; jhj � q, does not necessarily lead to positive value for the estimated
long-run variance OJT , even when the Bartlett kernel is used. See Ogaki (1992) for details.
11See Haan and Levin (1997) for an overview.
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larger. Both approaches lead to consistent estimates, i.e. OJT.`T/ � JT

p����! 0 for
T ! 1.

In practice, a combination of both parametric and nonparametric methods proved
to deliver the best results. This combined method consists of five steps:

(i) The first step is called prewhitening and consists in the estimation of a
simple ARMA model for the process fXtg to remove the most obvious serial
correlations. The idea, which goes back to Press and Tukey (1956) (see also
Priestley (1981)), is to get a process for the residuals OZt which is close to a
white noise process. Usually, an AR(1) model is sufficient.12

(ii) Choose a kernel function and, if the method of Andrews has been chosen, the
corresponding data dependent constants, i.e. ˛Bartlett or ˛QuadraticSpectral for the
Bartlett, respectively the quadratic spectral kernel function.

(iii) Compute the lag truncation parameter for the residuals using the above
formulas.

(iv) Estimate the long-run variance for the residuals OZt.
(v) Compute the long-run variance for the original time series fXtg.

If in the first step an AR(1) model, Xt D �Xt�1 C Zt, was used, the last step is
given by:

OJX
T .`T/ D

OJZ
T .`T/

.1 � O�/2
;

where OJZ
T .`T/ and OJX

T .`T/ denote the estimated long-run variances of fXtg and f OZtg.
In the general case, of an arbitrary ARMA model, ˆ.L/Xt D ‚.L/Zt, we get:

OJX
T .`T/ D

�
‚.1/

ˆ.1/

�2
OJZ

T .`T/:

4.4.1 An Example

Suppose we want to test whether the yearly growth rate of Switzerland’s real GDP in
the last 25 years was higher than 1 %. For this purpose we compute the percentage
change against the corresponding quarter of the last year over the period 1982:1
to 2006:1 (97 observations in total), i.e. we compute Xt D .1 � L4/ log.GDPt/.
The arithmetic average of these growth rates is 1.4960 with a variance of 3.0608 .

12If in this step an AR(1) model is used and if a first order correlation O� larger in absolute terms than

0:97 is obtained, Andrews and Monahan (1992, 457) suggest to replace O� by �0:97, respectively
0.97. Instead of using a arbitrary fixed value, it turns out that a data driven value is superior. Sul
et al. (2005) suggest to replace 0.97 by 1� 1=

p
T and �0:97 by �1C 1=

p
T.
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Fig. 4.7 Estimated autocorrelation function for Switzerland’s real GDP growth (percentage
change against corresponding last year’s quarter)

We test the null hypothesis that the growth rate is smaller than one against the
alternative that it is greater than one. The corresponding value of the t-statistic is
.1:4960� 1/=

p
3:0608=97 D 2:7922. Taking a 5 % significance level, the critical

value for this one-sided test is 1.661. Thus the null hypothesis is clearly rejected.
The above computation is, however, not valid because the serial correlation of

the time series was not taken into account. Indeed the estimated autocorrelation
function shown in Fig. 4.7 clearly shows that the growth rate is subject to high and
statistically significant autocorrelations.

Taking the Bartlett function as the kernel function, the rule of thumb formula for
the lag truncation parameter suggest `T D 4. The weights in the computation of the
long-run variance are therefore

k.h=`T/ D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

1; h D 0I
3=4; h D ˙1I
2=4; h D ˙2I
1=4; h D ˙3I
0; jhj � 4:
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The corresponding estimate for the long-run variance is therefore given by:

OJT D 3:0608

�
1C 2

3

4
0:8287C 2

2

4
0:6019C 2

1

4
0:3727

�
D 9:2783:

Using the long-run variance instead of the simple variance leads to a quite different
value of the t-statistic: .1:4960 � 1/=

p
9:2783=97 D 1:6037. The null hypothesis

is thus not rejected at the 5 % significance level when the serial correlation of the
process is taken into account.

4.5 Exercises

Exercise 4.5.1. You regress 100 realizations of a stationary stochastic process fXtg
against a constant c. The least-squares estimate of c equals Oc D 004 with an

estimated standard deviation of O�c D 0:15. In addition, you have estimated the

autocorrelation function up to order h D 5 and obtained the following values:

O�.1/ D �0:43; O�.2/ D 0:13; O�.3/ D �0:12; O�.4/ D 0:18; O�.5/ D �0:23:

(i) How do you interpret the estimated parameter value of 0.4?

(ii) Examine the autocorrelation function. Do you think that fXtg is white noise?

(iii) Why is the estimated standard deviation O�c D 0:15 incorrect?

(iv) Estimate the long-run variance using the Bartlett kernel.

(v) Test the null hypothesis that fXtg is a mean-zero process.
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The specification and estimation of an ARMA(p,q) model for a given realization
involves several intermingled steps. First one must determine the orders p and q.
Given the orders one can then estimate the parameters �j, �j and �2. Finally, the
model has to pass several robustness checks in order to be accepted as a valid model.
These checks may involve tests of parameter constancy, forecasting performance
or tests for the inclusion of additional exogenous variables. This is usually an
iterative process in which several models are examined. It is rarely the case that one
model imposes itself. All too often, one is confronted in the modeling process with
several trade-offs, like simple versus complex models or data fit versus forecasting
performance. Finding the right balance among the different dimensions therefore
requires some judgement based on experience.

We start the discussion by assuming that the orders of the ARMA process
is known and the problem just consists in the estimation of the corresponding
parameters from a realization of length T. For simplicity, we assume that the data
are mean adjusted. We will introduce three estimation methods. The first one is a
method of moments procedure where the theoretical moments are equated to the
empirical ones. This procedure is known under the name of Yule-Walker estimator.
The second procedure interprets the stochastic difference as a regression model and
estimates the parameters by ordinary least-squares (OLS). These two methods work
well if the underlying model is just an AR model and thus involves no MA terms.
If the model comprises MA terms, a maximum likelihood (ML) approach must be
pursued.

5.1 The Yule-Walker Estimator

We assume that the stochastic process has mean zero and is governed by a causal
purely autoregressive model of order p:

ˆ.L/Xt D Zt with Zt � WN.0; �2/

© Springer International Publishing Switzerland 2016
K. Neusser, Time Series Econometrics, Springer Texts in Business and Economics,
DOI 10.1007/978-3-319-32862-1_5
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whereˆ.L/ D 1��1L��2L2�: : :��pLp. Causality with respect to fZtg implies that
there exists a sequence f jg with

P1
jD0 j jj < 1 such that Xt D

P1
jD0  jZt�j D

‰.L/Zt. Multiplying the above difference equation by Xt�j; j D 0; 1; : : : ; p and
taking expectations leads to the following equation system for the parameters
ˆ D .�1; : : : ; �p/

0 and �2:


.0/ � �1
.1/ � : : : � �p
.p/ D �2


.1/� �1
.0/� : : : � �p
.p � 1/ D 0

: : :


.p/� �1
.p � 1/ � : : : � �p
.0/ D 0

This equation system is known as the Yule-Walker equations. It can be written
compactly in matrix algebra as:


.0/�ˆ0
p.1/ D �2;

0
BBB@


.0/ 
.1/ : : : 
.p � 1/


.1/ 
.0/ : : : 
.p � 2/
:::

:::
: : :

:::


.p � 1/ 
.p � 2/ : : : 
.0/

1
CCCA

0
BBB@

�1

�2
:::

�p

1
CCCA D

0
BBB@


.1/


.2/
:::


.p/

1
CCCA ;

respectively


.0/�ˆ0
p.1/ D �2;

�pˆ D 
p.1/:

The Yule-Walker estimator is obtained by replacing the theoretical moments
by the empirical ones and solving the resulting equation system for the unknown
parameters:

b̂ D b��1
p O
p.1/ DbR�1

p O�p.1/

O�2 D O
.0/� b̂0 O
p.1/ D O
.0/
�
1 � O�p.1/

0bR�1
p O�p.1/

�

Note the recursiveness of the equation system: the estimate b̂ is obtained without
knowledge of O�2 as the estimator bR�1

p O�p.1/ involves only autocorrelations. The

estimates b�p,bRp, O
p.1/, O�p.1/, and O
.0/ are obtained in the usual way as explained
in Chap. 4.1

1Note that the application of the estimator introduced in Sect. 4.2 guarantees that b�p is always
invertible.
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The construction of the Yule-Walker estimator implies that the first p values
of the autocovariance, respectively the autocorrelation function, implied by the
estimated model exactly correspond to their estimated counterparts. It can be shown
that this moment estimator always delivers coefficients b̂ which imply that fXtg is
causal with respect to fZtg. In addition, the following Theorem establishes that the
estimated coefficients are asymptotically normal.

Theorem 5.1 (Asymptotic Normality of Yule-Walker Estimator). Let fXtg be an

AR(p) process which is causal with respect to fZtg whereby fZtg � IID.0; �2/.
Then the Yule-Walker estimator is consistent and b̂ is asymptotically normal with

distribution given by:

p
T
�
b̂ �ˆ

�
d����! N

�
0; �2��1

p

�
:

In addition we have that

O�2 p����! �2:

Proof. See Brockwell and Davis (1991, 233–234). ut

Noteworthy, the asymptotic covariance matrix of the Yule-Walker estimate is
independent of �2. In practice, the unknown parameters �2��1

p are replaced by their
empirical counterparts.

Example: AR(1) Process

In the case of an AR(1) process, the Yule-Walker equation is b�1ˆ D O
1.0/ which
simplifies to O
.0/� D O
.1/. The Yule-Walker estimator thus becomes:

b̂ D O� D O
.1/
O
.0/ D O�.1/:

The asymptotic distribution then is

p
T
�

O� � �
�

d����! N

�
0;

�2


.0/

�
D N

�
0; 1� �2

�
:

This shows that the assumption of causality, i.e. j�j < 1, is crucial. Otherwise
no strictly positive value for the variance would exist. For the case � D 1

which corresponds to the random walk, the asymptotic distribution of
p

T. O� � 1/

becomes degenerate as the variance is equal to zero. This case is, however, of prime
importance in economics and is treated detail in Chap. 7.

In practice the order of the model is usually unknown. However, one can expect
when estimating an AR(m) model whereby the true order p is strictly smaller than m
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that the estimated coefficients O�pC1; : : : ; O�m should be close to zero. This is indeed
the case as shown in Brockwell and Davis (1991, 241). In particular, under the
assumptions of Theorem 5.1 it holds that

p
T O�m

d����! N.0; 1/ for m > p: (5.1)

This result justifies the following strategy to identify the order of an AR-model.
Estimate in a first step a highly parameterized model (overfitted model), i.e. a model
with a large value of m, and test via a t-test whether �m is zero. If the hypothesis
cannot be rejected, reduce the order of the model from m to m � 1 and repeat the
same procedure now with respect to �m�1. This is done until the hypothesis can no
longer be rejected.

If the order of the initial model is too low (underfitted model) so that the true
order is higher than m, one incurs an “omitted variable bias”. The corresponding
estimates are no longer consistent. In Sect. 5.4, we take closer look at the problem
of determining the order of a model.

Example: MA(q) Process

The Yule-Walker estimator can, in principle, also be applied to MA(q) or
ARMA(p,q) processes with q > 0. However, the analysis of the simple MA(1)
process in Sect. 1.5.1 showed that the relation between the autocorrelations and the
model parameters is nonlinear and may have two, one, or no solution. Consider
again the MA(1) process as an example. It is given by the stochastic difference
equation Xt D Zt C �Zt�1 with Zt � IID.0; �2/. The Yule-Walker equations are
then as follows:

O
.0/ D O�2.1C O�2/

O
.1/ D O�2 O�

As shown in Sect. 1.5.1, this system of equations has for the case j O�.1/j D
j O
.1/= O
.0/j < 1=2 two solutions; for j O�.1/j D j O
.1/= O
.0/j D 1=2 one solution;
and for j O�.1/j D j O
.1/= O
.0/j > 1=2 no real solution. In the case of several solutions,
we usually take the invertible one which leads to j� j < 1. Invertibility is, however,
a restriction which is hard to implement in the case of higher order MA processes.
Moreover, it can be shown that Yule-Walker estimator is no longer consistent in
general (see Brockwell and Davis (1991, 246) for details). For these reasons, it is not
advisable to use the Yule-Walker estimator in the case of MA processes, especially
when there exist consistent and efficient alternatives.
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5.2 Ordinary Least-Squares (OLS) Estimation
of an AR(p) Model

An alternative approach is to view the AR model as a regression model for Xt with
regressors Xt�1; : : : ;Xt�p and error term Zt:

Xt D �1Xt�1 C : : :C �pXt�p C Zt; Zt � WN.0; �2/:

Given observation for X1; : : : ;XT , the regression model can be compactly written in
matrix algebra as follows:

0
BBB@

XpC1
XpC2
:::

XT

1
CCCA D

0
BBB@

Xp Xp�1 : : : X1

XpC1 Xp : : : X2
:::

:::
: : :

:::

XT�1 XT�2 : : : XT�p

1
CCCA

0
BBB@

�1

�2
:::

�p

1
CCCAC

0
BBB@

ZpC1
ZpC2
:::

ZT

1
CCCA ;

Y D XˆC Z: (5.2)

Note that the first p observations are lost and that the effective sample size is thus
reduced to T � p. The least-squares estimator (OLS estimator) is obtained as the
minimizer of the sum of squares S.ˆ/:

S.ˆ/ D Z0Z D .Y � Xˆ/0.Y � Xˆ/

D
TX

tDpC1

�
Xt � �1Xt�1 � : : : � �pXt�p

�2

D
TX

tDpC1
.Xt � Pt�1Xt/

2 �! min
ˆ
: (5.3)

Note that the optimization problem involves no constraints, in particular causality is
not imposed as a restriction. The solution of this minimization problem is given by
usual formula:

b̂ D
�
X0X

��1 �
X0Y

�
:

Though Eq. (5.2) resembles very much an ordinary regression model, there are
some important differences. First, the standard orthogonality assumption between
regressors and error is violated. The regressors Xt�j, j D 1; : : : ; p, are correlated
with the error terms Zt�j; j D 1; 2; : : :. Second, there is a dependency on the starting
values Xp; : : : ;X1. The assumption of causality, however, insures that these features
do not play a role asymptotically. It can be shown that .X0X/=T converges in
probability to b�p and .X0Y/=T to O
p. In addition, under quite general conditions,
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T�1=2X0Z is asymptotically normally distributed with mean 0 and variance �2�p.

Then by Slutzky’s Lemma C.10,
p

T.b̂ � ˆ/ D
�

X0X
T

��1 �
X0Zp

T

�
converges in

distribution to N.0; �2��1
p / Thus, the OLS estimator is asymptotically equivalent

to the Yule-Walker estimator.

Theorem 5.2 (Asymptotic Normality of the Least-Squares Estimator). Under the

same assumptions as in Theorem 5.1, the ordinary least-squares estimator (OLS

estimator) b̂ D .X0X/�1 .X0Y/ is asymptotically distributed as

p
T
�
b̂ �ˆ

�
d����! N

�
0; �2��1

p

�
;

plim s2T D �2

where s2T DbZ0bZ=T andbZt are the OLS residuals.

Proof. See Chap. 13 and in particular Sect. 13.3 for a proof in the multivariate case.
Additional details may be gathered from Brockwell and Davis (1991, chapter 8).

ut

Remark 5.1. In practice �2��1
p is approximated by s2T.X

0X=T/�1. Thus, for large

T, b̂ can be viewed as being normally distributed as N.ˆ; s2T.X
0X/�1/. This result

allows the application of the usual t- and F-tests.

Because the regressors Xt�j, j D 1; : : : ; p are correlated with the errors terms
Zt�j, j D 1; 2; : : :, the Gauss-Markov theorem cannot be applied. This implies that
the least-squares estimator is no longer unbiased in finite samples. It can be shown
that the estimates of an AR(1) model are downward biased when the true value of
� is between zero and one. MacKinnon and Smith (1998, figure 1) plots the bias as
a function of the sample size and the true parameter (see also Fig. 7.1). As the bias
function is almost linear in the range �0:85 < � < 0:85, an approximately unbiased
estimator for the AR(1) model has been proposed by Marriott and Pope (1954),
Kendall (1954), and Orcutt and Winokur (1969) (for further details see MacKinnon
and Smith 1998):

O�corrected D 1

T � 3.T
O�OLS C 1/:

Remark 5.2. The OLS estimator does in general not deliver coefficients Ô for which
fXtg is causal with respect fZtg. In particular, in the case of an AR(1) model, it
can happen that, in contrast to the Yule-Walker estimator, j O�j is larger than one
despite the fact that the true parameter is absolutely smaller than one. Nevertheless,
the least-squares estimator is to be preferred in practice because it delivers small-
sample biases of the coefficients which are smaller than those of Yule-Walker
estimator, especially for roots ofˆ.z/ close to the unit circle (Tjøstheim and Paulsen
1983; Shaman and Stine 1988; Reinsel 1993).
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Appendix: Proof of the Asymptotic Normality of the OLS Estimator

The proofs of Theorems 5.1 and 5.2 are rather involved and will therefore not
be pursued here. A proof for the more general multivariate case will be given in
Chap. 13. It is, however, instructive to look at a simple case, namely the AR(1)
model with j�j < 1, Zt � IIN.0; �2/ and X0 D 0. Denoting by O�T the OLS estimator
of �, we have:

p
T
�

O�T � �
�

D
1p
T

PT
tD1 Xt�1Zt

1
T

PT
tD1 X2t�1

: (5.4)

Moreover, Xt can be written as follows:

Xt D Zt C �Zt�1 C : : :C � t�1Z1:

By assumption each Zj, j D 1; : : : ; t, is normally distributed so that Xt as a sum
normally distributed random variables is also normally distributed. Because the Zj’s

are independent we have: Xt � N
�
0; �2

1��2t

1��2
�

.

The expected value of 1p
T

PT
tD1 Xt�1Zt is zero because Zt � IIN.0; �2/. The

variance of this expression is given by

V

 
1p
T

TX

tD1
Xt�1Zt

!
D 1

T

TX

tD1
EX2t�1Z

2
t C 2

T

TX

tD1

t�1X

jD1
EZtEXt�1XjZj

D �2

T

TX

tD1
EX2t�1:

Moreover,
PT

tD1 X2t D
PT

tD1 X2t�1 � .X20 � X2T/ D �2
PT

tD1 X2t�1 C
PT

tD1 Z2t C
2�
PT

tD1 Xt�1Zt so that

TX

tD1
X2t�1 D 1

1 � �2 .X
2
0 � X2T/C 1

1 � �2

TX

tD1
Z2t C 2�

1� �2

TX

tD1
Xt�1Zt:

The expected value multiplied by �2=T thus is equal to

�2

T

TX

tD1
EX2t�1 D �2

1 � �2
EX20 � EX2T

T

C �2

1 � �2

PT
tD1 EZ2t

T
C 2�

1 � �2

PT
tD1 Xt�1Zt

T

D ��
4.1� �2T/

T.1 � �2/2 C �4

1 � �2
:
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For T going to infinity, we finally get:

lim
T!1

V

 
1p
T

TX

tD1
Xt�1Zt

!
D �4

1 � �2 :

The numerator in Eq. (5.4) therefore converges to a normal random variable with

mean zero and variance �4

1��2 .

The denominator in Eq. (5.4) can be rewritten as

1

T

TX

tD1
X2t�1 D X20 � X2T

.1 � �2/T
C 1

.1 � �2/T

TX

tD1
Z2t C 2�

.1 � �2/T

TX

tD1
Xt�1Zt:

The expected value and the variance of X2T=T converge to zero. Chebyschev’s
inequality (see Theorem C.3 in Appendix C) then implies that the first term
converges also in probability to zero. X0 is equal to zero by assumption. The second
term has a constant mean equal to �2=.1 � �2/ and a variance which converges to
zero. Theorem C.8 in Appendix C then implies that the second term converges in
probability to �2=.1� �2/. The third term has a mean of zero and a variance which
converges to zero. Thus the third term converges to zero in probability. This implies:

1

T

TX

tD1
X2t�1

p����! �2

1 � �2 :

Putting the results for the numerator and the denominator together and applying
Theorem C.10 and the continuous mapping theorem for the convergence in distri-
bution one finally obtains:

p
T
�

O�T � �
�

d����! N.0; 1� �2/: (5.5)

Thereby the value for the variance is derived from

�4

1 � �2 � 1
�

�2

1��2
�2 D 1 � �2:

5.3 Estimation of an ARMA(p,q) Model

While the estimation of AR models by OLS is rather straightforward and leads to
consistent and asymptotically efficient estimates, the estimation of ARMA models
is more complex. The reason is that, in contrast to past Xt’s Zt;Zt�1; : : : ;Zt�q are
not directly observable from the data. They must be inferred from the observations
of Xt. The standard method for the estimation of ARMA models is the method of
maximum likelihood which will be explained in this section.
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We assume that the process fXtg is a causal and invertible ARMA(p,q) process
following the difference equation

Xt � �1Xt�1 � : : : � �pXt�p D Zt C �1Zt�1 C : : :C �qZt�q

with Zt � IID.0; �2/. We also assume thatˆ.z/ and‚.z/ have no roots in common.
We then stack the parameters of the model into a vector ˇ and a scalar �2:

ˇ D
�
�1; : : : ; �p; �1; : : : ; �q

�0
and �2:

Given the assumption above the admissible parameter space for ˇ, C, is described
by the following set:

C D fˇ 2 R
pCq Wˆ.z/‚.z/ ¤ 0 for jzj � 1; �p�q ¤ 0;

ˆ.z/ and‚.z/ have no roots in commong

The estimation by the method of maximum likelihood (ML method) is based
on some assumption about the joint distribution of XT D .X1; : : : ;XT/

0 given
the parameters ˇ and �2. This joint distribution function is called the likelihood
function. The method of maximum likelihood then determines the parameters
such that the probability of observing a given sample xT D .x1; : : : ; xT/ is
maximized. This is achieved by maximizing the likelihood function with respect
to the parameters.

By far the most important case is given by assuming that fXtg is a Gaussian
process with mean zero and autocovariance function 
 . This implies that XT D
.X1; : : : ;XT/

0 is distributed as a multivariate normal with mean zero and variance
�T .2 The Gaussian likelihood function given the observations xT , LT.ˇ; �

2jxT/, is
then given by

LT.ˇ; �
2jxT/ D .2�/�T=2.det�T/

�1=2 exp

�
�1
2

x0
T�

�1
T xT

�

D .2��2/�T=2.det GT/
�1=2 exp

�
� 1

2�2
x0

TG�1
T xT

�

where GT D ��2�T . Note that, in contrast to �T , GT does only depend on ˇ and not
on �2.3 If one wants to point out the dependence of GT from ˇ we write GT.ˇ/. The
method of maximum likelihood then consists in the maximization of the likelihood
function with respect to ˇ and �2 taking the data xT as given.

2If the process does not have a mean of zero, we can demean the data in a preliminary step.
3In Sect. 2.4 we showed how the autocovariance function 
 and as a consequence �T , respectively
GT can be inferred from a given ARMA model, i.e from a given ˇ.
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The first order condition of this maximization problem with respect to �2

is obtained by taking the logarithm of the likelihood function LT.ˇ; �
2jxT/ and

differentiating with respect �2 and setting the resulting equation equal to zero:

@ ln LT.ˇ; �
2jxT/

@�2
D �T

2

1

�2
C X0

TG�1
T XT

2�4
D 0:

Solving this equation with respect to �2 we get as the solution: �2 D T�1x0
TG�1

T xT .
Inserting this value into the original likelihood function and taking the logarithm,
one gets the concentrated log-likelihood function:

ln LT.ˇjxT/ D � ln.2�/ � T

2
ln
�
T�1x0

TGT.ˇ/
�1xT

�
� 1

2
ln det GT.ˇ/ � T

2
:

This function is then maximized with respect to ˇ 2 C. This is, however, equivalent
to minimizing the function

`T.ˇjxT/ D ln
�
T�1x0

TGT.ˇ/
�1xT

�
C T�1 ln det GT.ˇ/ �! min

ˇ2C
:

The value of ˇ which minimizes the above function is called maximum-likelihood

estimator of ˇ. It will be denoted by Ǒ
ML. The maximum-likelihood estimator for

�2, O�2ML, is then given by

O�2ML D T�1x0
TGT. Ǒ

ML/
�1xT :

The actual computation of det GT.ˇ/ and GT.ˇ/
�1 is numerically involved,

especially when T is large, and should therefore be avoided. It is therefore
convenient to rewrite the likelihood function in a different, but equivalent form:

LT.ˇ; �
2jxT/ D.2��2/�T=2.r0r1 : : : rT�1/

�1=2

exp

 
� 1

2�2

TX

tD1

.Xt � Pt�1Xt/
2

rt�1

!
:

Thereby Pt�1Xt denotes least-squares predictor of Xt given Xt�1; : : : ;X1 and rt D
vt=�

2 where vt is the mean squared forecast error as defined in Sect. 3.1. Several
numerical algorithms have been developed to compute these forecast in a numeri-
cally efficient and stable way.4

Pt�1Xt and rt do not depend on �2 so that the partial differentiation of the
log-likelihood function ln L.ˇ; �2jxT/ with respect to the parameters leads to the
maximum likelihood estimator. This estimator fulfills the following equations:

4One such algorithm is the innovation algorithm. See Brockwell and Davis (1991, section 5) for
details.
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O�2ML D 1

T
S. Ǒ

ML/;

where

S. Ǒ
ML/ D

TX

tD1

.Xt � Pt�1Xt/
2

rt�1

and where Ǒ
ML denote the value of ˇ which minimizes the function

`T.ˇjxT/ D ln

�
1

T
S.ˇ/

�
C 1

T

TX

tD1
ln rt�1

subject to ˇ 2 C. This optimization problem must be solved numerically. In practice,
one chooses as a starting value ˇ0 for the iteration an initial estimate such that
ˇ0 2 C. In the following iterations this restriction is no longer imposed to enhance
speed and reduce the complexity of the optimization problem. This implies that one
must check whether the so obtained final estimates are indeed in C.

If instead of `T.ˇjxT/, the function

S.ˇ/ D
TX

tD1

.Xt � Pt�1Xt/
2

rt�1

is minimized subject to constraint ˇ 2 C, we obtain the least-squares estimator of
ˇ denoted by Ǒ

LS. The least-squares estimator of �2, O�2LS, is then

O�2LS D S. Ǒ
LS/

T � p � q
:

The term 1
T

PT
tD1 ln rt�1 disappears asymptotically because, given the restriction

ˇ 2 C, the mean-squared forecast error vT converges to �2 and thus rT goes to one
as T goes to infinity. This implies that for T going to infinity the maximization of
the likelihood function becomes equivalent to the minimization of the least-squares
criterion. Thus the maximum-likelihood estimator and the least-squares estimator
share the same asymptotic normal distribution.

Note also that in the case of autoregressive models rt is constant and equal to one.
In this case, the least-squares criterion S.ˇ/ reduces to the criterion (5.3) discussed
in the previous Sect. 5.2.
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Theorem 5.3 (Asymptotic Distribution of ML Estimator). If fXtg is an ARMA

process with true parameters ˇ 2 C and Zt � IID.0; �2/ with �2 > 0 then the

maximum-likelihood estimator and the least-squares estimator have asymptotically

the same normal distribution:

p
T
�

Ǒ
ML � ˇ

�
d����! N .0;V.ˇ// ;

p
T
�

Ǒ
LS � ˇ

�
d����! N .0;V.ˇ// :

The asymptotic covariance matrix V.ˇ/ is thereby given by

V.ˇ/ D
�
EUtU

0
t EUtV

0
t

EVtU
0
t EVtV

0
t

��1

Ut D
�
ut; ut�1; : : : ; ut�pC1

�0

Vt D
�
vt; vt�1; : : : ; vt�qC1

�0

where futg and fvtg denote autoregressive processes defined as ˆ.L/ut D wt and

‚.L/vt D wt with wt � WN.0; 1/.

Proof. See Brockwell and Davis (1991, Section 8.8). ut

It can be shown that both estimators are asymptotically efficient.5 Note that the
asymptotic covariance matrix V.ˇ/ is independent of �2.

The use of the Gaussian likelihood function makes sense even when the process
is not Gaussian. First, the Gaussian likelihood can still be interpreted as a measure
of fit of the ARMA model to the data. Second, the asymptotic distribution is still
Gaussian even when the process is not Gaussian as long as Zt � IID.0; �2/.
The Gaussian likelihood is then called the quasi Gaussian likelihood. The use of
the Gaussian likelihood under this circumstance is, however, in general no longer
efficient.

Example: AR(p) Process

In this case ˇ D .�1; : : : ; �p/ and V.ˇ/ D
�
EUtU

0
t

��1 D �2��1
p . This is, however,

the same asymptotic distribution as the Yule-Walker estimator. The Yule-Walker, the
least-squares, and the maximum likelihood estimator are therefore asymptotically
equivalent in the case of an AR(p) process. The main difference lies in the treatment
of the first p observations.

5See Brockwell and Davis (1991) and Fan and Yao (2003) for details.
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In particular, we have:

AR.1/ W O� � N
�
�; .1 � �2/=T

�
;

AR.2/ W
� O�1

O�2

�
� N

��
�1
�2

�
;
1

T

�
1 � �22 ��1.1C �2/

��1.1C �2/ 1 � �22

��
:

Example: MA(q) Process

Similarly, one can compute the asymptotic distribution for an MA(q) process. In
particular, we have:

MA.1/ W O� � N
�
�; .1 � �2/=T

�
;

MA.2/ W
 

O�1
O�2

!
� N

��
�1

�2

�
;
1

T

�
1 � �22 �1.1� �2/

�1.1 � �2/ 1 � �22

��
:

Example: ARMA(1,1) Process

For an ARMA(1,1) process the asymptotic covariance matrix is given by

V.�; �/ D
 �
1� �2

��1
.1C ��/�1

.1C ��/�1
�
1 � �2

��1

!�1

:

Therefore we have:

 
O�
O�

!
� N

��
�

�

�
;
1

T

1C ��

.� C �/2

�
.1 � �2/.1C ��/ �.1 � �2/.1 � �2/
�.1 � �2/.1 � �2/ .1 � �2/.1C ��/

��
:

5.4 Estimation of the Orders p and q

Up to now we have always assumed that the true orders of the ARMA model p and q

are known. This is, however, seldom the case in practice. As economic theory does
usually not provide an indication, it is all too often the case that the orders of the
ARMA model must be identified from the data. In such a situation one can make
two type of errors: p and q are too large in which case we speak of overfitting; p and
q are too low in which case we speak of underfitting.

In the case of overfitting, the maximum likelihood estimator is no longer
consistent for the true parameter, but still consistent for the coefficients of the causal
representation  j, j D 0; 1; 2; : : :, where  .z/ D �.z/

�.z/
. This can be illustrated by the
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Fig. 5.1 Parameter space of a causal and invertible ARMA(1,1) process

following example. Suppose that fXtg is a white noise process, i.e. Xt D Zt �
WN.0; �2/, but we fit an ARMA(1,1) model given by Xt � �Xt�1 D Zt C �Zt�1.
Then, the maximum likelihood estimator does not converge to � D � D 0, but
only to the line-segment � D �� with j�j < 1 and j� j < 1. For values of � and
� on this line-segment we have  .z/ D �.z/=�.z/ D 1. The maximum likelihood
estimator converges to the true values of j, i.e. to the values 0 D 1 and j D 0 for
j > 0. The situation is depicted in Fig. 5.1. There it is shown that the estimator has
a tendency to converge to the points .�1; 1/ and .1;�1/, depending on the starting
values. This indeterminacy of the estimator manifest itself as a numerical problem
in the optimization of the likelihood function. Thus models with similar roots for
the AR and MA polynomials which are close in absolute value to the unit circle are
probably overparametrized. The problem can be overcome by reducing the orders
of the AR and MA polynomial by one.

This problem does not appear in a purely autoregressive models. As explained
in section “Example: AR(1) Process”, the estimator for the redundant coefficients
converges to zero with asymptotic distribution N.0; 1=T/ (see the result in Eq. (5.1)).
This is one reason why purely autoregressive models are often preferred. In addition
the estimator is easily implemented and every stationary stochastic process can be
arbitrarily well approximated by an AR process. This approximation may, however,
necessitate high order models when the true process encompasses a MA component.

In the case of underfitting the maximum likelihood estimator converges to those
values which are closest to the true parameters given the restricted parameter space.
The estimates are, however, inconsistent due to the “omitted variable bias”.
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For these reasons the identification of the orders is an important step. One
method which goes back to Box and Jenkins (1976) consists in the analysis of
the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
(see Sect. 3.5). Although this method requires some experience, especially when
the process is not a purely AR or MA process, the analysis of the ACF und PACF
remains an important first step in every practical investigation of a time series.

An alternative procedure relies on the automatic order selection. The objective
is to minimize a so-called information criterion over different values of p and
q. These criteria are based on the following consideration. Given a fixed number
of observations, the successive increase of the orders p and q increases the fit
of the model so that variance of the residuals O�2p;q steadily decreases. In order to
compensate for this tendency to overfitting a penalty is introduced. This penalty
term depends on the number of free parameters and on the number of observations
at hand.6 The most important information criteria have the following additive form:

ln O�2p;q C (# free parameters)
C.T/

T
D ln O�2p;q C .p C q/

C.T/

T
�! min

p;q
;

where ln O�2p;q measures the goodness of fit of the ARMA(p,q) model and .pCq/
C.T/

T

denotes the penalty term. Thereby C.T/ represents a nondecreasing function of T

which governs the trade-off between goodness of fit and complexity (dimension)
of the model. Thus, the information criteria chooses higher order models for larger
sample sizes T. If the model includes a constant term or other exogenous variables,
the criterion must be adjusted accordingly. However, this will introduce, for a given
sample size, just a constant term in the objective function and will therefore not
influence the choice of p and q.

The most common criteria are the Akaike information criterion (AIC), the
Schwarz or Bayesian information criterion (BIC), and the Hannan-Quinn informa-
tion criterion (HQ criterion):

AIC.p; q/ D ln O�2p;q C .p C q/
2

T

BIC.p; q/ D ln O�2p;q C .p C q/
ln T

T

HQC.p; q/ D ln O�2p;q C .p C q/
2 ln.ln T/

T

Because AIC < HQC < BIC for a given sample size T � 16, Akaike’s criterion
delivers the largest models, i.e. the highest order p C q; the Bayesian criterion is
more restrictive and delivers therefore the smallest models, i.e. the lowest p C q.
Although Akaike’s criterion is not consistent with respect to p and q and has a

6See Brockwell and Davis (1991) for details and a deeper appreciation.
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tendency to deliver overfitted models, it is still widely used in practice. This feature
is sometimes desired as overfitting is seen as less damaging than underfitting.7 Only
the BIC and HQC lead to consistent estimates of the orders p and q.

5.5 Modeling a Stochastic Process

The identification of a satisfactory ARMA model typically involves in practice
several steps.

Step 1: Transformations to Achieve Stationary Time Series

Economic time series are often of a non-stationary nature. It is therefore necessary
to transform the time series in a first step to achieve stationarity. Time series which
exhibit a pronounced trend (GDP, stock market indices, etc.) should not be modeled
in levels, but in differences. If the variable under consideration is already in logs,
as is often case, then taking first differences effectively amounts to working with
growth rates. Sometimes first differences are not enough and further differences
have to be taken. Price indices or monetary aggregates are typical examples where
first differences may not be sufficient to achieve stationarity. Thus instead of Xt one
works with the series Yt D .1 � L/dXt with d D 1; 2; : : :. A non-stationary process
fXtg which needs to be differentiated d-times to arrive at a stationary time series
is called integrated of order d, Xt � I.d/.8 If Yt D .1 � L/dXt is generated by an
ARMA(p,q) process, fXtg is said to be an ARIMA(p,d,q) process.

An alternative method to eliminate the trend is to regress the time series against
a polynomial in t of degree s, i.e. against .1; t; : : : ; ts/, and to proceed with the
residuals. These residuals can then be modeled as an ARMA(p,q) process. Chapter 7
discusses in detail which of the two detrending methods is to be preferred under
which circumstances.

Often the data are subject to seasonal fluctuations. As with the trend there are
several alternative available. The first possibility is to pass the time series through
a seasonal filter and work with the seasonally adjusted data. The construction of
seasonal filters is discussed in Chap. 6. A second alternative is to include seasonal
dummies in the ARMA model. A third alternative is to take seasonal differences. In
the case of quarterly observations, this amounts to work with Yt D .1 � L4/Xt. As
1 � L4 D .1 � L/.1C L C L2 C L3/, this transformation involves a first difference
and will therefore also account for the trend.

7See, for example, the section on the unit root tests 7.3.
8An exact definition will be provided in Chap. 7. In this chapter we will analyze the consequences
of non-stationarity and discuss tests for specific forms of non-stationarity.
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Step 2: Finding the Orders p and q

Having achieved stationarity, one has to find the appropriate orders p and q of the
ARMA model. Thereby one can rely either on the analysis of the ACF and the PACF,
or on the information criteria outlined in the previous Sect. 5.4.

Step 3: Checking the Plausibility

After having identified a particular model or a set of models, one has to inspect its
adequacy. There are several dimensions along which the model(s) can be checked.

(i) Are the residuals white noise? This can be checked by investigating at the ACF
of the residuals and by applying the Ljung-Box test (4.4). If they are not this
means that the model failed to capture all the dynamics inherent in the data.

(ii) Are the parameters plausible?
(iii) Are the parameters constant over time? Are there structural breaks? This can

be done by looking at the residuals or by comparing parameter estimates across
subsamples. More systematic approaches are discussed in Perron (2006). These
involve the revolving estimation of parameters by allowing the break point
to vary over the sample. Thereby different type of structural breaks can be
distinguished. A more in depth analysis of structural breaks is presented in
Sect. 18.1.

(iv) Does the model deliver sensible forecasts? It is particularly useful to investi-
gate the out-of-sample forecasting performance. If one has several candidate
models, one can perform a horse-race among them.

In case the model turns out to be unsatisfactory, one has to go back to steps 1
and 2.

5.6 An example: Modeling Real GDP in the Case of Switzerland

This section illustrates the concepts and ideas just presented by working out a
specific example. We take the seasonally unadjusted Swiss real GDP as an example.
The data are plotted in Fig. 1.3. To take the seasonality into account we transform
the logged time series by taking first seasonal differences, i.e. Xt D .1�L4/ ln GDPt.
Thus, the variable corresponds to the growth rate with respect to quarter of the
previous year. The data are plotted in Fig. 5.2. A cursory inspection of the plot
reveals that this transformation eliminated the trend as well as the seasonality.

First we analyze the ACF and the PACF. They are plotted together with
corresponding confidence intervals in Fig. 5.3. The slowly monotonically declining
ACF suggests an AR process. As only the first two orders of the PACF are
significantly different from zero, it seems that an AR(2) model is appropriate. The
least-squares estimate of this model are:
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Fig. 5.2 Real GDP growth rates of Switzerland

Xt � 1.134
(0,103)

Xt�1 C 0.310
(0.104)

Xt�2 D 0:218C Zt with O�2 D 0:728

The numbers in parenthesis are the estimated standard errors of the corresponding
parameter above. The roots of the AR-polynomial are 1.484 and 2.174. They
are clearly outside the unit circle so that there exists a stationary and causal
representation.

Next, we investigate the information criteria AIC and BIC to identify the orders
of the ARMA(p,q) model. We examine all models with 0 � p; q � 4. The AIC and
the BIC values, are reported in Tables 5.1 and 5.2. Both criteria reach a minimum
at .p; q/ D .1; 3/ (bold numbers) so that both criteria prefer an ARMA(1,3) model.
The parameters of this models are as follows:

Xt � 0.527
(0.134)

Xt�1 D 0:6354C Zt C 0.5106
(0.1395)

Zt�1

C 0.5611
(0.1233)

Zt�2 C 0.4635
(0.1238)

Zt�3 with O�2 D 0:648:

The estimated standard errors of the estimated parameters are again reported in
parenthesis below. The AR(2) model is not considerably worse than the ARMA(1,3)
model, according to the BIC criterion it is even the second best model.
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Fig. 5.3 Autocorrelation (ACF) and partial autocorrelation (PACF) function (PACF) of real GDP
growth rates of Switzerland with 95 % confidence interval

Table 5.1 Values of
Akaike’s information
criterium (AIC) for
alternative ARMA(p,q)
models

q

p 0 1 2 3 4

0 0.3021 0.0188 �0.2788 �0.3067

1 �0.2174 �0.2425 �0.2433 �0.3446 �0.2991

2 �0.2721 �0.2639 �0.2613 �0.3144 �0.2832

3 �0.2616 �0.2276 �0.2780 �0.2663 �0.2469

4 �0.2186 �0.1990 �0.2291 �0.2574 �0.2099

Minimum in bold

The inverted roots of the AR- and the MA-polynomial are plotted together with
their corresponding 95 % confidence regions in Fig. 5.4.9 As the confidence regions
are all inside the unit circle, also the ARMA(1,3) has a stationary and causal
representation. Moreover, the estimated process is also invertible. In addition, the
roots of the AR- and the MA-polynomial are distinct.

9The confidence regions are determined by the delta-method (see Appendix E).



106 5 Estimation of ARMA Models

Table 5.2 Values of Bayes’
information criterium (BIC)
for alternative ARMA(p,q)
models

q

p 0 1 2 3 4

0 0.3297 0.0740 �0.1961 �0.1963

1 �0.1896 �0.1869 �0.1600 �0.2335 �0.1603

2 �0.2162 �0.1801 �0.1495 �0.1746 �0.1154

3 �0.1772 �0.1150 �0.1373 �0.0974 �0.0499

4 �0.1052 �0.0573 �0.0591 �0.0590 0.0169

Minimum in bold

Fig. 5.4 Inverted roots of the
AR- and the MA-polynomial
of the ARMA(1,3) model
together with the
corresponding 95 %
confidence regions
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The autocorrelation functions of the AR(2) and the ARMA(1,3) model are
plotted in Fig. 5.5. They show no sign of significant autocorrelations so that both
residual series are practically white noise. We can examine this hypothesis formally
by the Ljung-Box test (see Sect. 4.2 Eq. (4.4)). Taking N D 20 the values of the
test statistics are Q0

AR.2/ D 33:80 and Q0
ARMA.1;3/ D 21:70, respectively. The 5 %

critical value according to the �220 distribution is 31:41. Thus the null hypothesis
�.1/ D : : : D �.20/ D 0 is rejected for the AR(2) model, but not for the
ARMA(1,3) model. This implies that the AR(2) model does not capture the full
dynamics of the data.

Although the AR(2) and the ARMA(1,3) model seem to be quite different at
first glance, they deliver similar impulse response functions as can be gathered from
Fig. 5.6. In both models, the impact of the initial shock is first built up to values
higher than 1:1 in quarters one and two, respectively. Then the effect monotonically
declines to zero. After 10 to 12 quarters the effect of the shock has practically
dissipated.

As a final exercise, we use both models to forecast real GDP growth over the next
nine quarters, i.e. for the period fourth quarter 2003 to fourth quarter 2005. As can
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Fig. 5.5 Autocorrelation function (ACF) of the residuals from the AR(2) and the ARMA(1,3)
model
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Fig. 5.7 Forecasts of real GDP growth rates for Switzerland

be seen from Fig. 5.7, both models predict that the Swiss economy should move out
of recession in the coming quarters. However, the ARMA(1,3) model indicates that
the recovery is taking place more quickly and the growth overshooting its long-run
mean of 1.3 % in about a year. The forecast of the AR(2) predicts a more steady
approach to the long-run mean.



6Spectral Analysis and Linear Filters

Up to now we have viewed a time series as a time indexed sequence of random
variables. The class of ARMA process was seen as an adequate class of models
for the analysis of stationary time series. This approach is usually termed as time
series analysis in the time domain. There is, however, an equivalent perspective
which views a time series as overlayed waves of different frequencies. This view
point is termed in time series analysis as the analysis in the frequency domain.
The decomposition of a time series into sinusoids of different frequencies is called
the spectral representation. The estimation of the importance of the waves at
particular frequencies is referred to as spectral or spectrum estimation. Priestley
(1981) provides an excellent account of these methods. The use of frequency domain
methods, in particular spectrum estimation, which originated in the natural sciences
was introduced to economics by Granger (1964).1 Notably, he showed that most of
the fluctuations in economic time series can be attributed low frequencies cycles
(Granger 1966).

Although both approaches are equivalent, the analysis in the frequency domain is
more convenient when it comes to the analysis and construction of linear filters. The
application of a filter to a time series amounts to take some moving-average of the
time series. These moving-average may extend, at least in theory, into the infinite
past, but also into the infinite future. A causal ARMA process fXtg may be regarded
as filtered white-noise process with filter weights given by  j, j D 1; 2; : : : In
economics, filters are usually applied to remove cycles of a particular frequency, like
seasonal cycles (for example Christmas sales in a store), or to highlight particular
cycles, like business cycles.

1The use of spectral methods in the natural sciences can be traced many centuries back. The modern
statistical approach builds on to the work of N. Wiener, G. U. Yule, J. W. Tukey, and many others.
See the interesting survey by Robinson (1982).

© Springer International Publishing Switzerland 2016
K. Neusser, Time Series Econometrics, Springer Texts in Business and Economics,
DOI 10.1007/978-3-319-32862-1_6
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From a mathematical point of view, the equivalence between time and frequency
domain analysis rest on the theory of Fourier series. An adequate representation
of this theory is beyond the scope of this book. The interested reader may
consult Brockwell and Davis (1991, chapter 4). An introduction to the underlying
mathematical theory can be found in standard textbooks like Rudin (1987).

6.1 The Spectral Density

In the following, we assume that fXtg is a mean-zero (centered) stationary stochastic
process with autocovariance function 
.h/, h D 0;˙1;˙2; : : : Mathematically,

.h/ represents an double-infinite sequence which can be mapped into a real
valued function f .�/, � 2 R, by the Fourier transform. This function is called
the spectral density function or spectral density. Conversely, we retrieve from the
spectral density each covariance. Thus, we have a one-to-one relation between
autocovariance functions and spectral densities: both objects summarize the same
properties of the time series, but represent them differently.

Definition 6.1 (Spectral Density). Let fXtg be a mean-zero stationary stochastic

process absolutely summable autocovariance function 
 then the function

f .�/ D 1

2�

1X

hD�1

.h/e�{h�; �1 < � < 1; (6.1)

is called the spectral density function or spectral density of fXtg. Thereby { denotes

the imaginary unit (see Appendix A).

The sine is an odd function whereas the cosine and the autocovariance function
are even functions.2 This implies that the spectral density can be rewritten as:

f .�/ D 1

2�

1X

hD�1

.h/.cos.h�/� { sin.h�//

D 1

2�

1X

hD�1

.h/ cos.h�/C 0 D 1

2�

1X

hD�1

.h/ cos.�h�/

D 
.0/

2�
C 1

�

1X

hD1

.h/ cos.h�/: (6.2)

2A function f is called even if f .�x/ D f .x/; the function is called odd if f .�x/ D �f .x/. Thus,
we have sin.��/ D � sin.�/ and cos.��/ D cos.�/.
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Because of the periodicity of the cosine function, i.e. because

f .�C 2k�/ D f .�/; for all k 2 Z;

it is sufficient to consider the spectral density only in the interval .��; ��. As the
cosine is an even function so is f . Thus, we restrict the analysis of the spectral
density f .�/ further to the domain � 2 Œ0; ��.

In practice, we often use the period or oscillation length instead of the radiant �.
They are related by the formula:

period length D 2�

�
: (6.3)

If, for example, the data are quarterly observations, a value of 0.3 for � corresponds
to a period length of approximately 21 quarters.

Remark 6.1. We gather some properties of the spectral density function f :

• Because f .0/ D 1
2�

P1
hD�1 
.h/, the long-run variance of fXtg J (see Sect. 4.4)

equals 2�f .0/, i.e. 2�f .0/ D J.
• f is an even function so that f .�/ D f .��/.
• f .�/ � 0 for all � 2 .��; ��. The proof of this proposition can be found

in Brockwell and Davis (1996, chapter 4). This property corresponds to the
non-negative definiteness of the autocovariance function (see property 4 in
Theorem 1.1 of Sect. 1.3).

• The single autocovariances are the Fourier-coefficients of the spectral density f :


.h/ D
Z �

��
e{h�f .�/d� D

Z �

��
cos.h�/f .�/d�:

For h D 0, we therefore get 
.0/ D
R �

�� f .�/d�.

The last property allows us to compute the autocovariances from a given spectral
density. It shows how time and frequency domain analysis are related to each other
and how a property in one domain is reflected as a property in the other.

These properties of a non-negative definite function can be used to characterize
the spectral density of a stationary process fXtg with autocovariance function 
 .

Theorem 6.1 (Properties of a Spectral Density). A function f defined on .��; ��
is the spectral density of a stationary process if and only if the following properties

hold:

• f .�/ D f .��/;
• f .�/ � 0;

•
R �

�� f .�/d� < 1.
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Corollary 6.1. An absolutely summable function 
 is the autocovariance function

of a stationary process if and only if

f .�/ D 1

2�

1X

hD�1

.h/e�{h� � 0; for all � 2 .��; ��:

In this case f is called the spectral density of 
 .

The function f .�/=
.0/ can be considered as a density function of some
probability distribution defined on Œ��; �� because f .�/


.0/
� 0 and

Z �

��

f .�/


.0/
d� D 1:

The corresponding cumulative distribution function G is then defined as:

G.�/ D
Z �

��

f .!/


.0/
d!; �� � � � �:

It satisfies: G.��/ D 0, G.�/ D 1, 1 � G.�/ D G.�/, und G.0/ D 1=2. The
autocorrelation function � is then given by

�.h/ D 
.h/


.0/
D
Z �

��
e{ h�dG.�/:

Some Examples

Some relevant examples illustrating the above are:

white noise: Let fXtg be a white noise process with Xt � WN.0; �2/. For this
process all autocovariances, except 
.0/, are equal to zero. The spectral density
therefore is equal to

f .�/ D 1

2�

1X

hD�1

.h/e�{h� D 
.0/

2�
D �2

2�
:

Thus, the spectral density is equal to a constant which is proportional to the
variance. This means that no particular frequency dominates the spectral density.
This is the reason why such a process is called white noise.

MA(1): Let fXtg be a MA(1) process with autocovariance function


.h/ D

8
<
:

1; h D 0;
�; h D ˙1;
0; otherwise.
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The spectral density therefore is:

f .�/ D 1

2�

1X

hD�1

.h/e�{h� D �e{� C 1C �e�{�

2�
D 1C 2� cos�

2�
:

Thus, f .�/ � 0 if and only j�j � 1=2. According to Corollary 6.1 above, 

is the autocovariance function of a stationary stochastic process if and only if
j�j � 1=2. This condition corresponds exactly to the condition derived in the time
domain (see Sect. 1.3). The spectral density for � D 0:4 or equivalently � D 0:5,
respectively for � D �0:4 or equivalently � D �0:5, and �2 D 1 is plotted in
Fig. 6.1a. As the process is rather smooth when the first order autocorrelation is
positive, the spectral density is large in the neighborhood of zero and small in the
neighborhood of � . For a negative autocorrelation the picture is just reversed.

AR(1): The spectral density of an AR(1) process Xt D �Xt�1 C Zt with Zt �
WN.0; �2/ is:

f .�/ D 
.0/

2�

 
1C

1X

hD1
�h
�
e�{h� C e{h�

�
!

D �2

2�.1 � �2/

�
1C �e{�

1 � �e{�
C �e�{�

1 � �e�{�

�
D �2

2�

1

1 � 2� cos�C �2

The spectral density for � D 0:6 and � D �0:6 and �2 D 1 are plotted
in Fig. 6.1b. As the process with � D 0:6 exhibits a relatively large positive
autocorrelation so that it is rather smooth, the spectral density takes large values
for low frequencies. In contrast, the process with � D �0:6 is rather volatile
due to the negative first order autocorrelation. Thus, high frequencies are more
important than low frequencies as reflected in the corresponding figure.
Note that, as � approaches one, the spectral density evaluated at zero tends to
infinity, i.e. lim�#0 f .�/ D 1. This can be interpreted in the following way.
As the process gets closer to a random walk more and more weight is given to
long-run fluctuations (cycles with very low frequency or very high periodicity)
(Granger 1966).

6.2 Spectral Decomposition of a Time Series

Consider the simple harmonic process fXtg which just consists of a cosine and a sine
wave:

Xt D A cos.! t/C B sin.! t/: (6.4)
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Fig. 6.1 Examples of spectral densities with Zt � WN.0; 1/. (a) MA(1) process. (b) AR(1)
process

Thereby A and B are two uncorrelated random variables with EA D EB D 0 and
VA D VB D 1. The autocovariance function of this process is 
.h/ D cos.! h/.
This autocovariance function cannot be represented as

R �
�� e{h�f .�/d�. However, it

can be regarded as the Fourier transform of a discrete distribution function F:


.h/ D cos.! h/ D
Z

.��;��
e{h�dF.�/;

where

F.�/ D

8
<
:

0; for � < �!;
1=2; for �! � � < !;
1; for � � !.

(6.5)

The integral with respect to the discrete distribution function is a so-called Riemann-
Stieltjes integral.3 F is a step function with jumps at �! and ! and step size of 1=2
so that the above integral equals 1

2
e�{ h! C 1

2
e�{ h! D cos.h!/.

These considerations lead to a representation, called the spectral representation,
of the autocovariance function as the Fourier transform a distribution function over
Œ��; ��.

3The Riemann-Stieltjes integral is a generalization of the Riemann integral. Let f and g be two

bounded functions defined on the interval Œa; b� then the Riemann-Stieltjes integral
R b

a f .x/dg.x/ is
defined as limn!1

Pn
iD1 f .�i/Œg.xi/� g.xi�1/� where a D x1 < x2 < � � � < xn�1 < xn D b. For

g.x/ D x we obtain the standard Riemann integral. If g is a step function with a countable number

of steps xi of height hi then
R b

a f .x/dg.x/ D
P

i f .xi/hi.
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Theorem 6.2 (Spectral Representation). 
 is the autocovariance function of a

stationary process fXtg if and only if there exists a right-continuous, nondecreasing,

bounded function F on .��; �� with the properties F.��/ D 0 and


.h/ D
Z

.��;��
e{h�dF.�/: (6.6)

F is called the spectral distribution function of 
 .

Remark 6.2. If the spectral distribution function F has a density f such that F.�/ DR �
�� f .!/d! then f is called the spectral density and the time series is said to have a

continuous spectrum.

Remark 6.3. According to the Lebesgue-Radon-Nikodym Theorem (see, for exam-
ple, Rudin (1987)), the spectral distribution function F can be represented uniquely
as the sum of a distribution function FZ which is absolutely continuous with respect
to the Lebesgue measure and a discrete distribution function FV . The distribution
function FZ corresponds to the regular part of the Wold Decomposition (see
Theorem 3.1 in Sect. 3.2) and has spectral density

fZ.�/ D �2

2�

ˇ̌
‰.e�{�/

ˇ̌2 D �2

2�

ˇ̌
ˇ̌
ˇ̌

1X

jD0
 je

�{j�

ˇ̌
ˇ̌
ˇ̌

2

:

The discrete distribution FV corresponds to the deterministic part fVtg.

The process (6.4) considers just a single frequency !. We may, however,
generalize this process by superposing several sinusoids. This leads to the class of
harmonic processes:

Xt D
kX

jD1
Aj cos.!j t/C Bj sin.!j t/; 0 < !1 < � � � < !k < � (6.7)

where A1;B1; : : : ;Ak;Bk are random variables which are uncorrelated with each
other and which have means EAj D EBj D 0 and variances VAj D VBj D
�2j , j D 1; : : : ; k. The autocovariance function of such a process is given by


.h/ D
Pk

jD1 �
2
j cos.!j h/. According to the spectral representation theorem the

corresponding distribution function F can be represented as a weighted sum of
distribution functions like those in Eq. (6.5):

F.�/ D
kX

jD1
�2j Fj.�/
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with

Fj.�/ D

8
<
:

0; for � < �!j;
1=2; for �!j � � < !j;
1; for � � !j.

This generalization points to the following properties:

• Each of the k components Aj cos.!j t/C Bj sin.!j t/, j D 1; : : : ; k, is completely
associated to a specific frequency !j.

• The k components are uncorrelated with each other.
• The variance of each component is �2j . The contribution of each component to

the variance of Xt given by
Pk

jD1 �
2
j therefore is �2j .

• F is a nondecreasing step-function with jumps at frequencies ! D ˙!j and step
sizes 1

2
�2j .

• The corresponding probability distribution is discrete with values 1
2
�2j at the

frequencies ! D ˙!j and zero otherwise.

The interesting feature of harmonic processes as represented in Eq. (6.7) is that
every stationary process can be represented as the superposition of uncorrelated
sinusoids. However, in general infinitely many (even uncountably many) of these
processes have to be superimposed. The generalization of (6.7) then leads to the
spectral representation of a stationary stochastic process:

Xt D
Z

.��;��
e{t�dZ.�/: (6.8)

Thereby fZ.�/g is a complex-valued stochastic process with uncorrelated incre-
ments defined on the interval .��; ��. The above representation is known as
the spectral representation of the process fXtg.4 Note the analogy to the spectral
representation of the autocovariance function in Eq. (6.6).

For the harmonic processes in Eq. (6.7), we have:

dZ.�/ D

8
<̂

:̂

AjC{ Bj

2
; for � D �!j and j D 1; 2; : : : ; k;

Aj�{ Bj

2
; for � D !j and j D 1; 2; : : : ; k;

0; otherwise.

In this case the variance of dZ is given by:

EdZ.�/dZ.�/ D
(

�2j
2
; if � D ˙!j;

0; otherwise.

4A mathematically precise statement is given in Brockwell and Davis (1991, chapter 4) where also
the notion of stochastic integration is explained.
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In general, we have:

D
�

F.�/� F.��/; discrete spectrum;
f .�/d�; continuous spectrum.

Thus, a large jump of the spectrum at frequency � is associated with a large
sinusoidal component with frequency �.5

6.3 The Periodogram and the Estimation of Spectral Densities

Although the spectral distribution function is uniquely determined, its estimation
from a finite sample with realizations fx1; x2; : : : ; xTg is not easy. This has to do
with the problem of estimating a function from a finite number of points. We will
present two-approaches: a non-parametric and a parametric one.

6.3.1 Non-Parametric Estimation

A simple estimator of the spectral density, OfT.�/, can be obtained by replacing in
the defining equation (6.1) the theoretical autocovariances 
 by their estimates O
 .
However, instead of a simple sum, we consider a weighted sum:

OfT.�/ D 1

2�

X

jhj�`T

k

�
h

`T

�
O
.h/e�{h�: (6.9)

The weighting function k, also known as the lag window, is assumed to have
exactly the same properties as the kernel function introduced in Sect. 4.4. This
correspondence is not accidental, indeed the long-run variance defined in Eq. (4.1)
is just 2� times the spectral density evaluated at � D 0. Thus, one might choose
a weighting, kernel or lag window from Table 4.1, like the Bartlett-window, and
use it to estimate the spectral density. The lag truncation parameter is chosen in
such a way that `T ! 1 as T ! 1. The rate of divergence should, however, be
smaller than T so that `T

T
approaches zero as T goes to infinity. As an estimator of

the autocovariances one uses the estimator given in Eq. (4.2) of Sect. 4.2.
The above estimator is called an indirect spectral estimator because it requires

the estimation of the autocovariances in the first step. The periodogram provides an
alternative direct spectral estimator. For this purpose, we represent the observations
as linear combinations of sinusoids of specific frequencies. These so-called Fourier

frequencies are defined as !k D 2�k
T

, k D �b T�1
2

c; : : : ; b T
2
c. Thereby bxc denotes

5Thereby F.��/ denotes the left-sided limit, i.e. F.��/ D lim!"� F.!/.
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the largest integer smaller or equal to x. With this notation, the observations xt,
t D 1; : : : ;T, can be represented as a sum of sinusoids:

xt D
b T
2 cX

kD�b T�1
2 c

ake{!k t D
b T
2 cX

kD�b T�1
2 c

ak.cos.!kt/C { sin.!kt//:

The coefficients fakg are the discrete Fourier-transform of the observations
fx1; x2; : : : ; xTg. The periodogram IT is then defined as follows.

Definition 6.2 (Periodogram). Given observations fx1; x2; : : : ; xTg, the peri-

odogram is defined as the function

IT.�/ D 1

T

ˇ̌
ˇ̌
ˇ

TX

tD1
xte

�{t�
ˇ̌
ˇ̌
ˇ

2

:

For each Fourier-frequency!k, the periodogram IT.!k/ equals jakj2. This implies
that

TX

tD1
jxtj2 D

b T
2 cX

kD�b T�1
2 c

jakj2 D
b T
2 cX

kD�b T�1
2 c

IT.!k/:

The value of the periodogram evaluated at the Fourier-frequency !k is therefore
nothing but the contribution of the sinusoid with frequency!k to the variation of fxtg
as measured by sum of squares. In particular, for any Fourier-frequency different
from zero we have that

IT.!k/ D
T�1X

hD�TC1
O
.h/e�{h!k :

Thus the periodogram represents, disregarding the proportionality factor 2� , the
sample analogue of the spectral density and therefore carries the same information.

Unfortunately, it turns out that the periodogram is not a consistent estimator of
the spectral density. In particular, the covariance between IT.�1/ and IT.�2/, �1 ¤
�2, goes to zero for T going to infinity. The periodogram thus has a tendency to get
very jagged for large T leading to the detection of spurious sinusoids. A way out of
this problem is to average the periodogram over neighboring frequencies, thereby
reducing its variance. This makes sense because the variance is relatively constant
within a small frequency band. The averaging (smoothing) of the periodogram over
neighboring frequencies leads to the class of discrete spectral average estimators

which turn out to be consistent:

OfT.�/ D 1

2�

X

jhj�`T

KT.h/IT

�
Q!T;� C 2�h

T

�
(6.10)
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where Q!T;� denotes the multiple of 2�
T

which is closest to �. `T is the bandwidth
of the estimator, i.e. the number of ordinates over which the average is taken. `T

satisfies the same properties as in the case of the indirect spectral estimator (6.9):
`T ! 1 and `T=T ! 0 for T ! 1. Thus, as T goes to infinity, on the one
hand the average is taken over more and more values, but on the other hand the
frequency band over which the average is taken is getting smaller and smaller.
The spectral weighting function or spectral window KT is a positive even function
satisfying

P
jhj�`T

KT.h/ D 1 and
P

jhj�`T
K2

T.h/ ! 0 for T ! 1. It can be
shown that under these conditions the discrete spectral average estimator is mean-
square consistent. Moreover, the estimator in Eq. (6.9) can be approximated by a
corresponding discrete spectral average estimator by defining the spectral window as

KT.!/ D 1

2�

X

jhj�`T

k

�
h

`T

�
e�{h!

or vice versa

k.h/ D
Z �

��
KT.!/e

�{h!d!:

Thus, the lag and the spectral window are related via the Fourier transform. For
details and the asymptotic distribution the interested reader is referred to Brockwell
and Davis (1991, Chapter10). Although the indirect and the direct estimator give
approximately the same result when the kernels used are related as in the equation
above, the direct estimator (6.10) is usually preferred in practice because it is,
especially for long times series, computationally more efficient, in particular in
connection with the fast fourier transformation (FFT).6

A simple spectral weighting function, known as the Daniell spectral window, is
given by KT .h/ D .2`T C1/�1 when jhj � `T and 0 otherwise and where `T D

p
T .

It averages over 2`T C 1 values within a frequency band of approximate width 4�p
T

.

This function corresponds to the Daniell kernel function or Daniell lag window
k.x/ D sin.�x/=.�x/ for jxj � 1 and zero otherwise (see Sect. 4.4). In practice, the
sample size is fixed and the researcher is faced with a trade-off between variance and
bias. On the one hand, a weighting function which averages over a wide frequency
band produces a smooth spectral density, but has probably a large bias because the
estimate of f .�/ depends on frequencies which are rather far away from �. On the
other hand, a weighting function which averages only over a small frequency band
produces a small bias, but probably a large variance. It is thus advisable in practice

6The FFT is seen as one of the most important numerical algorithms ever as it allows a rapid
computation of Fourier transformations and its inverse. The FFT is widely in digital signal
processing.
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Fig. 6.2 Raw periodogram of a white noise time series (Xt � WN.0; 1/, T D 200)

to work with alternative weighting functions and to choose the one which delivers a
satisfying balance between bias and variance.

The following two examples demonstrate the large variance of the periodogram.
The first example consists of 200 observations from a simulated white noise
time series with variance equal. Whereas the true spectrum is constant equal to
one, the raw periodogram, i.e. the periodogram without smoothing, plotted in
Fig. 6.2 is quite erratic. However, it is obvious that by taking averages of adjacent
frequencies the periodogram becomes smoother and more in line with the theoretical
spectrum. The second example consists of 200 observations of a simulated AR(2)
process. Figure 6.3 demonstrates again the jaggedness of the raw periodogram.
However, these erratic movements are distributed around the true spectrum. Thus,
by smoothing one can hope to get closer to the true spectrum and even detect the
dominant cycle with radian equal to one. It is also clear that by smoothing over a
too large range, in the extreme over all frequencies, no cycle could be detected.

Figure 6.4 illustrates these considerations with real life data by estimating the
spectral density of quarterly growth rates of real investment in constructions for the
Swiss economy using alternative weighting functions. To obtain a better graphical
resolution we have plotted the estimates on a logarithmic scale. All three estimates
show a peak (local maximum) at the frequency � D �

2
. This corresponds to a wave

with a period of one year. The estimator with a comparably wide frequency band
(dotted line) smoothes the minimum � D 1 away. The estimator with a comparable
small frequency band (dashed line), on the contrary, reveals additional waves with
frequencies � D 0:75 and 0:3 which correspond to periods of approximately two,
respectively five years. Whether these waves are just artifacts of the weighting
function or whether there really exist cycles of that periodicity remains open.
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Fig. 6.3 Raw periodogram of an AR(2) process (Xt D 0:9Xt�1 � 0:7Xt�2 C Zt with Zt �
WN.0; 1/, T D 200)
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Fig. 6.4 Non-parametric direct estimates of a spectral density with alternative weighting functions

6.3.2 Parametric Estimation

An alternative to the nonparametric approaches just outlined consists in the estima-
tion of an ARMA model and followed by deducing the spectral density from it. This
approach was essentially first proposed by Yule (1927).

Theorem 6.3 (Spectral Density of ARMA Processes). Let fXtg be a causal

ARMA(p,q) process given by ˆ.L/Xt D ‚.L/Zt and Zt � WN.0; �2/. Then the

spectral density fX is given by
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fX.�/ D �2

2�

ˇ̌
‚.e�{�/

ˇ̌2
ˇ̌
ˆ.e�{�/

ˇ̌2 ; �� � � � �: (6.11)

Proof. fXtg is generated by applying the linear filter ‰.L/ with transfer function

‰.e�{�/ D ‚.e�{�/

ˆ.e�{�/
to fZtg (see Sect. 6.4). Formula (6.11) is then an immediate

consequence of Theorem 6.5 because the spectral density of fZtg is equal to �2

2�
. ut

Remark 6.4. As the spectral density of an ARMA process fXtg is given by a quotient
of trigonometric functions, the process is said to have a rational spectral density.

The spectral density of the AR(2) process Xt D �1Xt�1 C �2Xt�2 C Zt with
Zt � WN.0; �2/, for example, is then given by

fX.�/ D �2

2�.1C �21 C 2�2 C �22 C 2.�1�2 � �1/ cos� � 4�2 cos2 �/
:

The spectral density of an ARMA(1,1) process Xt D �Xt�1 C Zt C �Zt�1 with
Zt � WN.0; �2/ is

fX.�/ D �2.1C �2 C 2� cos�/

2�.1C �2 C 2� cos�/
:

An estimate of the spectral density is then obtained by replacing the unknown
coefficients of the ARMA model by their corresponding estimates and by applying
Formula (6.11) to the estimated model. Figure 6.5 compares the nonparametric to
the parametric method based on an AR(4) model using the same data as in Fig. 6.4.
Both methods produce similar estimates. They clearly show waves of periodicity of
half a year and a year, corresponding to frequencies �

2
and � . The nonparametric

estimate is, however, more volatile in the frequency band Œ0:6; 1� and around 2:5.

6.4 Linear Time-Invariant Filters

Time-invariant linear filters are an indispensable tool in time series analysis.
Their objective is to eliminate or amplify waves of a particular periodicity. For
example, they may be used to purge a series from seasonal movements. The
seasonally adjusted time series should then reflect more strongly the business
cyclical movements which are viewed to have period length between two and eight
years. The spectral analysis provides just the right tools to construct and analyze
such filters.

Definition 6.3. fYtg is the output of the linear time-invariant filter (LTF) ‰ D
f j; j D 0;˙1;˙2; : : : g applied to the input fXtg if



6.4 Linear Time-Invariant Filters 123

10−1 100
10−4

10−3

10−2

nonparametric estimate

parametric estimate using an AR(4) model

π/2

Fig. 6.5 Comparison of nonparametric and parametric estimates of the spectral density of the
growth rate of investment in the construction sector

Yt D ‰.L/Xt D
1X

jD�1
 jXt�j with

1X

jD�1
j jj < 1:

The filter is called causal or one-sided if  j D 0 for j < 0; otherwise it is called

two-sided.

Remark 6.5. Time-invariance in this context means that the lagged process fYt�sg
is obtained for all s 2 Z from fXt�sg by applying the same filter ‰.

Remark 6.6. MA processes, causal AR processes and causal ARMA processes can
be viewed as filtered white noise processes.

It is important to recognize that the application of a filter systematically changes
the autocorrelation properties of the original time series. This may be warranted
in some cases, but may lead to the “discovery” of spurious regularities which just
reflect the properties of the filter. See the example of the Kuznets filter below.

Theorem 6.4 (Autocovariance Function of Filtered Process). Let fXtg be a mean-

zero stationary process with autocovariance function 
X . Then the filtered process

fYtg defined as

Yt D
1X

jD�1
 jXt�j D ‰.L/Xt
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with
P1

jD�1 j jj < 1 is also a mean-zero stationary process with autocovariance

function 
Y . Thereby the two autocovariance functions are related as follows:


Y.h/ D
1X

jD�1

1X

kD�1
 j k
X.h C k � j/; h D 0;˙1;˙2; : : :

Proof. We first show the existence of the output process fYtg. For this end, consider

the sequence of random variables fY
.m/
t gmD1;2;::: defined as

Y
.m/
t D

mX

jD�m

 jXt�j:

To show that the limit for m ! 1 exists in the mean square sense, it is, according
to Theorem C.6, enough to verify the Cauchy criterion

E

ˇ̌
ˇY.m/t � Y

.n/
t

ˇ̌
ˇ
2

�! 0; for m; n ! 1:

Taking without loss of generality m > n, Minkowski’s inequality (see Theorem C.2
or triangular inequality) leads to

0
B@E

ˇ̌
ˇ̌
ˇ̌

mX

jD�m

 jXt�j �
nX

jD�n

 jXt�j

ˇ̌
ˇ̌
ˇ̌

2
1
CA

1=2

�

0
B@E

ˇ̌
ˇ̌
ˇ̌

mX

jDnC1
 jXt�j

ˇ̌
ˇ̌
ˇ̌

2
1
CA

1=2

C

0
B@E

ˇ̌
ˇ̌
ˇ̌

�mX

jD�n�1
 jXt�j

ˇ̌
ˇ̌
ˇ̌

2
1
CA

1=2

:

Using the Cauchy-Bunyakovskii-Schwarz inequality and the stationarity of fXtg, the
first term on the right hand side is bounded by

0
@E

mX

j;kDnC1
j jXt�j kXt�kj

1
A
1=2

�

0
@

mX

j;kDnC1
j jjj kjE.jXt�jjjXt�kj/

1
A
1=2

�

0
@

mX

j;kDnC1
j jjj kj.EX2t�j/

1=2

.EX2t�k/
1=2

1
A
1=2

D 
X.0/
1=2

mX

jDnC1
j jj:
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As
P1

jD�1 j jj < 1 by assumption, the last term converges to zero. Thus, the limit

of fY
.m/
t g, m ! 1, denoted by St, exists in the mean square sense with ES2t < 1.

In remains to show that St and
P1

jD�1  jXt�j are actually equal with probability
one. This is established by noting that

E jSt �‰.L/Xtj2 D E lim inf
m!1

ˇ̌
ˇ̌
ˇ̌St �

mX

jD�m

Xt�j

ˇ̌
ˇ̌
ˇ̌

2

� lim inf
m!1

E

ˇ̌
ˇ̌
ˇ̌St �

mX

jD�m

Xt�j

ˇ̌
ˇ̌
ˇ̌

2

D 0

where use has been of Fatou’s lemma.
The stationarity of fYtg can be checked as follows:

EYt D lim
m!1

mX

jD�m

 jEXt�j D 0;

EYtYt�h D lim
m!1

E

2
4
0
@

mX

jD�m

 jXt�j

1
A
 

mX

kD�m

 kXt�h�k

!3
5

D
1X

jD�1

1X

kD�1
 j k
X.h C k � j/:

Thus, EYt and EYtYt�h are finite and independent of t. fYtg is therefore stationary.
ut

Corollary 6.2. If Xt � WN.0; �2/ and Yt D
P1

jD0  jXt�j with
P1

jD0 j jj < 1
then the above expression for 
Y.h/ simplifies to


Y.h/ D �2
1X

jD0
 j jCjhj:

Remark 6.1. In the proof of the existence of fYtg, the assumption of the stationarity
of fXtg can be weakened by assuming only supt EX2t < 1.

Theorem 6.5. Under the conditions of Theorem 6.4, the spectral densities of fXtg
and fYtg are related as

fY.�/ D
ˇ̌
‰.e�{�/

ˇ̌2
fX.�/ D ‰.e{�/‰.e�{�/fX.�/

where ‰.e�{�/ D
P1

jD�1  je�{ j�. ‰.e�{�/ is called the transfer function of the

filter.



126 6 Spectral Analysis and Linear Filters

To understand the effect of the filter ‰, consider the simple harmonic process
Xt D 2 cos.� t/ D e{� t C e�{� t. Passing fXtg through the filter ‰ leads to a
transformed time series fYtg defined as

Yt D 2
ˇ̌
‰.e�{�/

ˇ̌
cos

�
�

�
t � �.�/

�

��

where �.�/ D arg‰.e�{�/. The filter therefore amplifies some frequencies by the
factor g.�/ D

ˇ̌
‰.e�{�/

ˇ̌
and delays Xt by �.�/

�
periods. Thus, we have a change in

amplitude given by the amplitude gain function g.�/ and a phase shift given by the
phase gain function �.�/. If the gain function is bigger than one the corresponding
frequency is amplified. On the other hand, if the value is smaller than one the
corresponding frequency is dampened.

Examples of Filters

• First differences (changes with respect to previous period):

‰.L/ D � D 1 � L:

The transfer function of this filter is .1 � e�{�/ and the gain function is 2.1 �
cos�/. These functions take the value zero for � D 0. Thus, the filter eliminates
the trend which can be considered as a wave with an infinite period length.

• Change with respect to same quarter last year, assuming that the data are
quarterly observations:

‰.L/ D 1� L4:

The transfer function and the gain function are 1 � e�4{� and 2.1 � cos.4�//,
respectively. Thus, the filter eliminates all frequencies which are multiples of �

2

including the zero frequency. In particular, it eliminates the trend and waves with
periodicity of four quarters.

• A famous example of a filter which led to wrong conclusions is the Kuznets
filter (see Sargent 1987, 273–276). Assuming yearly data, this filter is obtained
from two transformations carried out in a row. The first transformation which
should eliminate cyclical movements takes centered five year moving averages.
The second one take centered non-overlapping first differences. Thus, the filter
can be written as:

‰.L/ D 1

5

�
L�2 C L�1 C 1C L C L2

�

„ ƒ‚ …
first transformation

�
L�5 � L5

�
„ ƒ‚ …

second transformation

:
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Fig. 6.6 Transfer function of the Kuznets filters

Figure 6.6 gives a plot of the transfer function of the Kuznets filter. Thereby it
can be seen that all frequencies are dampened, except those around � D 0:2886.
The value � D 0:2886 corresponds to a wave with periodicity of approximately
2�=0:2886 D 21:77 � 22 years. Thus, as first claimed by Howrey (1968), even a
filtered white noise time series would exhibit a 22 year cycle. This demonstrates
that cycles of this length, related by Kuznets (1930) to demographic processes
and infrastructure investment swings, may just be an artefact produced by the
filter and are therefore not endorsed by the data.

6.5 Some Important Filters

6.5.1 Construction of Low- and High-Pass Filters

For some purposes it is desirable to eliminate specific frequencies. Suppose, we
want to purge a time series from all movements with frequencies above�c, but leave
those below this value unchanged. The transfer function of such an ideal low-pass
filter would be:

‰.e�{�/ D
�
1; for � � �c;
0; for � > �c.

By expanding ‰.e�{�/ into a Fourier-series ‰.e�{�/ D
P1

jD�1  je�{ j�, it is
possible to determine the appropriate filter coefficients f jg. In the case of a low-
pass filter they are given by:

 j D 1

2�

Z �c

��c

e�{j!d! D
(
�c

�
; j D 0;

sin.j�c/

j�
; j ¤ 0.
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The implementation of the filter in practice is not straightforward because only a
finite number of coefficients can be used. Depending on the number of observations,
the filter must be truncated such that only those  j with jjj � q are actually
employed. The problem becomes more severe as one gets to the more recent
observations because less future observations are available. For the most recent
period even no future observation is available. This problem is usually overcome
by replacing the missing future values by their corresponding forecast. Despite this
remedy, the filter works best in the middle of the sample and is more and more
distorted as one approaches the beginning or the end of the sample.

Analogously for low-pass filters, it is possible to construct high-pass filters.
Figure 6.7 compares the transfer function of an ideal high-pass filter with two filters
truncated at q D 8 and q D 32, respectively. Obviously, the transfer function with
the higher q approximates the ideal filter better. In the neighborhood of the critical
frequency, in our case �=16, however, the approximation remains inaccurate. This
is known as the Gibbs phenomenon.

6.5.2 The Hodrick-Prescott Filter

The Hodrick-Prescott filter (HP-Filter) has gained great popularity in the macroeco-
nomic literature, particularly in the context of the real business cycles theory. This
high-pass filter is designed to eliminate the trend and cycles of high periodicity and
to emphasize movements at business cycles frequencies (see Hodrick and Prescott
1980; King and Rebelo 1993; Brandner and Neusser 1992).

One way to introduce the HP-filter is to examine the problem of decompos-
ing a time series fXtg additively into a growth component fGtg and a cyclical
component fCtg:

Xt D Gt C Ct:

This decomposition is, without further information, not unique. Following the
suggestion of Whittaker (1923), the growth component should be approximated by a
smooth curve. Based on this recommendation Hodrick and Prescott suggest to solve
the following restricted least-squares problem given a sample fXtgtD1;:::;T :

TX

tD1
.Xt � Gt/

2 C �

T�1X

tD2
Œ.GtC1 � Gt/ � .Gt � Gt�1/�

2 �! min
fGtg

:

The above objective function has two terms. The first one measures the fit of fGtg to
the data. The closer fGtg is to fXtg the smaller this term becomes. In the limit when
Gt D Xt for all t, the term is minimized and equal to zero. The second term measures
the smoothness of the growth component by looking at the discrete analogue to the
second derivative. This term is minimized if the changes of the growth component
from one period to the next are constant. This, however, implies that Gt is a linear
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Fig. 6.7 Transfer function of HP-filter in comparison to high-pass filters

function. Thus the above objective function represents a trade-off between fitting
the data and smoothness of the approximating function. This trade-off is governed
by the meta-parameter � which must be fixed a priori.

The value of � depends on the critical frequency and on the periodicity of the
data (see Uhlig and Ravn 2002, for the latter). Following the proposal by Hodrick
and Prescott (1980) the following values for � are common in the literature:

� D

8
<
:

6:25; yearly observations;
1600; quarterly observations;
14400; monthly observations.

It can be shown that these choices for � practically eliminate waves of periodicity
longer than eight years. The cyclical or business cycle component is therefore
composed of waves with periodicity less than eight years. Thus, the choice of �
implicitly defines the business cycle. Figure 6.7 compares the transfer function of
the HP-filter to the ideal high-pass filter and two approximate high-pass filters.7

As an example, Fig. 6.8 displays the HP-filtered US logged GDP together with
the original series in the upper panel and the implied business cycle component in
the lower panel.

7As all filters, the HP-filter systematically distorts the properties of the time series. Harvey and
Jaeger (1993) show how the blind application of the HP-filter can lead to the detection of spurious
cyclical behavior.
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Fig. 6.8 HP-filtered US logged GDP (upper panel) and cyclical component (lower panel)

6.5.3 Seasonal Filters

Besides the elimination of trends, the removal of seasonal movements represents
another important application in practice. Seasonal movements typically arise when
a time series is observed several times within a year giving rise to the possibility of
waves with periodicity less than twelve month in the case of monthly observations,
respectively of four quarters in the case of quarterly observations. These cycles
are usually considered to be of minor economic interest because they are due
to systematic seasonal variations in weather conditions or holidays (Easter, for
example).8 Such variations can, for example, reduce construction activity during
the winter season or production in general during holiday time. These cycles have
usually quite large amplitude so that they obstruct the view to the economically and
politically more important business cycles. In practice, one may therefore prefer to
work with seasonally adjusted series. This means that one must remove the seasonal
components from the time series in a preliminary stage of the analysis. In section, we
will confine ourself to only few remarks. Comprehensive treatment of seasonality
can be found in Hylleberg (1986) and Ghysels and Osborn (2001).

Two simple filters for the elimination of seasonal cycles in the case of quarterly
data are given by the one-sided filter

‰.L/ D .1C L C L2 C L3/=4

8An exception to this view is provided by Miron (1996).
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In practice, the so-called X–11-Filter or its enhanced versions X–12 and X–13
filter developed by the United States Census Bureau are often applied. This filter is
a two-sided filter which makes, in contrast to two examples above, use of all sample
observations. As this filter not only adjusts for seasonality, but also corrects for
outliers, a blind mechanical use is not recommended. Gómez and Maravall (1996)
developed an alternative method known under the name TRAMO-SEATS. More
details on the implementation of both methods can be found in Eurostat (2009).

Figure 6.9 shows the effect of seasonal adjustment using TRAMO-SEATS by
looking at the corresponding transfer functions of the growth rate of construction
investment. One can clearly discern how the yearly and the half-yearly waves
corresponding to the frequencies �=2 and � are dampened. On the other hand, the
seasonal filter weakly amplifies a cycle of frequency 0:72 corresponding to a cycle
of periodicity of two years.

6.5.4 Using Filtered Data

Whether or not to use filtered, especially seasonally adjusted, data is still an ongoing
debate. Although the use of unadjusted data together with a correctly specified
model is clearly the best choice, there is a nonnegligible uncertainty in modeling
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economic time series. Thus, in practice one faces several trade-offs which must be
taken into account and which may depend on the particular context (Sims 1974,
1993; Hansen and Sargent 1993). One the one hand, the use of adjusted data may
disregard important information on the dynamics of the time series and introduce
some biases. On the other hand, the use of unadjusted data encounters the risk
of misspecification, especially because usual measures of fit may put too large
emphasis on fitting the seasonal frequencies thereby neglecting other frequencies.

6.6 Exercises

Exercise 6.6.1.

(i) Show that the process defined in Eq. (6.4) has an autocovariance function equal

to 
.h/ D cos.!h/.

(ii) Show that the process defined in Eq. (6.7) has autocovariance function


.h/ D
kX

jD1
�2j cos.!jh/

Exercise 6.6.2. Compute the transfer and the gain function for the following filters:

(i) ‰.L/ D 1 � L
(ii) ‰.L/ D 1 � L4



7Integrated Processes

7.1 Definition, Properties and Interpretation

Up to now the discussion concentrated on stationary processes and in particular
ARMA processes. According to the Wold decomposition theorem (see
Theorem 3.1) every purely non-deterministic processes possesses the following
representation:

Xt D �C‰.L/Zt;

where fZtg � WN.0; �2/ and
P1

jD0 
2
j < 1. Typically, we model Xt as an ARMA

process so that ‰.L/ D ‚.L/
ˆ.L/ . This representation implies:

• EXt D �,
• limh!1 PtXtCh D �.

The above property is often referred to as mean reverting because the process moves
around a constant mean. Deviations from this mean are only temporary or transitory.
Thus, the best long-run forecast is just the mean of the process.

This property is often violated by economic time series which typically show
a tendency to growth. Classic examples are time series for GDP (see Fig. 1.3) or
some stock market index (see Fig. 1.5). This trending property is not compatible
with stationarity as the mean is no longer constant. In order to cope with this
characteristic of economic time series, two very different alternatives have been
proposed. The first one consists in letting the mean � be a function of time �.t/.
The most popular specification for �.t/ is a linear function, i.e. �.t/ D ˛ C ıt. In
this case we get:

Xt D ˛ C ıt„ƒ‚…
linear trend

C‰.L/Zt
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The process fXtg is then referred to as a trend-stationary process. In practice one also
encounters quadratic polynomials of t or piecewise linear functions. For example,
�.t/ D ˛1 C ı1t for t � t0 and �.t/ D ˛2 C ı2t for t > t0. In the following, we
restrict ourself to linear trend functions.

The second alternative assumes that the time series becomes stationary after
differentiation. The number of times one has to differentiate the process to achieve
stationarity is called the order of integration. If d times differentiation is necessary,
the process is called integrated of order d and is denoted by Xt � I.d/. If the
resulting time series, �dXt D .1 � L/dXt, is an ARMA(p,q) process, the original
process is called an ARIMA(p,d,q) process. Usually it is sufficient to differentiate
the time series only once, i.e. d D 1. For expositional purposes we will stick to this
case.

The formal definition of an I(1) process is given as follows.

Definition 7.1. The stochastic process fXtg is called integrated of order one or

difference-stationary, denoted as Xt � I.1/, if and only if �Xt D Xt � Xt�1 can be

represented as

�Xt D .1� L/Xt D ı C‰.L/Zt; ‰.1/ ¤ 0;

with fZtg � WN.0; �2/ and
P1

jD0 jj jj < 1.

The qualification ‰.1/ ¤ 0 is necessary to avoid trivial and uninteresting
cases. Suppose for the moment that ‰.1/ D 0, then it would be possible to write
‰.L/ as .1 � L/e‰.L/ for some lag polynomial e‰.L/. This would, however, imply
that the factor 1 � L could be canceled in the above definition so that fXtg is
already stationary and that the differentiation would be unnecessary. The assumption
‰.1/ ¤ 0 thus excludes the case where a trend-stationary process could be regarded
as an integrated process. For each trend-stationary process Xt D ˛CıtCe‰.L/Zt we
have�Xt D ıC‰.L/Zt with‰.L/ D .1�L/e‰.L/. This would violate the condition
‰.1/ ¤ 0. Thus a trend-stationary process cannot be a difference-stationary process.

The condition
P1

jD0 jj jj < 1 implies
P1

jD0  
2
j < 1 and is therefore

stronger than necessary for the Wold representation to hold. In particular, it implies
the Beveridge-Nelson decomposition of integrated processes into a linear trend,
a random walk, and a stationary component (see Sect. 7.1.4). The condition is
automatically fulfilled for all ARMA processes because f jg decays exponentially
to zero.

Integrated processes with d > 0 are also called unit-root processes. This
designation results from the fact that ARIMA processes with d > 0 can be viewed
as ARMA processes, whereby the AR polynomial has a d-fold root of one.1 An
important prototype of an integrated process is the random walk with drift ı:

Xt D ı C Xt�1 C Zt; Zt � WN.0; �2/:

1Strictly speaking this does not conform to the definitions used in this book because our definition
of ARMA processes assumes stationarity.
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Trend-stationary and difference-stationary processes have quite different
characteristics. In particular, they imply different behavior with respect to the
long-run forecast, the variance of the forecast error, and the impulse response
function. In the next section, we will explore these properties in detail.

7.1.1 Long-Run Forecast

The optimal forecast in the least-squares sense given the infinite past of a trend-
stationary process is given by

ePtXtCh D ˛ C ı.t C h/C  hZt C  hC1Zt�1 C : : :

Thus we have

lim
h!1

E
�ePtXtCh � ˛ � ı.t C h/

�2 D �2 lim
h!1

1X

jD0
 2hCj D 0

because
P1

jD0  
2
j < 1. Thus the long-run forecast is given by the linear trend.

Even if Xt deviates temporarily from the trend line, it is assumed to return to it.
A trend-stationary process therefore behaves in the long-run like �.t/ D ˛ C ıt.

The forecast of the differentiated series is

ePt�XtCh D ı C  hZt C  hC1Zt�1 C  hC2Zt�2 C : : :

The level of XtCh is by definition

XtCh D .XtCh � XtCh�1/C .XtCh�1 � XtCh�2/C : : :C .XtC1 � Xt/C Xt

so that

ePtXtCh DePt�XtCh CePt�XtCh�1 C : : :CePt�XtC1 C Xt

D ı C  hZt C  hC1Zt�1 C  hC2Zt�2 C : : :

C ı C  h�1Zt C  hZt�1 C  hC1Zt�2 C : : :

C ı C  h�2Zt C  h�1Zt�1 C  hZt�2 C : : :

C : : :C Xt

D Xt C ıh

C . h C  h�1 C : : :C  1/Zt

C . hC1 C  h C : : :C  2/ Zt�1

: : :
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This shows that also for the integrated process the long-run forecast depends on
a linear trend with slope ı. However, the intercept is no longer a fixed number,
but given by Xt which is stochastic. With each new realization of Xt the intercept
changes so that the trend line moves in parallel up and down. This issue can be well
illustrated by the following two examples.

Example 1. Let fXtg be a random walk with drift ı. Then best forecast of XtCh,
PtXtCh, is

PtXtCh D ıh C Xt:

The forecast thus increases at rate ı starting from the initial value of Xt. ı is therefore
the slope of a linear trend. The intercept of this trend is stochastic and equal to Xt.
Thus the trend line moves in parallel up or down depending on the realization of Xt.

Example 2. Let fXtg be an ARIMA(0,1,1) process given by�Xt D ıC Zt C �Zt�1
with j� j < 1. The best forecast of XtCh is then given by

PtXtCh D ıh C Xt C �Zt:

As before the intercept changes in a stochastic way, but in contrary to the previous
example it is now given by Xt C �Zt. If we consider the forecast given the infinite
past, the invertibility of the process implies that Zt can be expressed as a weighted
sum of current and past realizations of�Xt (see Sects. 2.3 and 3.1).

7.1.2 Variance of Forecast Error

In the case of a trend-stationary process the forecast error is

XtCh �ePtXtCh D ZtCh C  1ZtCh�1 C : : :C  h�1ZtC1:

As the mean of the forecast error is zero, the variance is

E
�
XtCh �ePtXtCh

�2 D
�
1C  21 C  22 C : : :C  2h�1

�
�2:

For h going to infinity this expression converges to �2
P1

jD0  
2
j < 1. This is

nothing but the unconditional variance of Xt. Thus the variance of the forecast error
increases with the length of the forecasting horizon, but remains bounded.

For the integrated process the forecast error can be written as

XtCh �ePtXtCh D ZtCh C .1C  1/ ZtCh�1C
: : :C .1C  1 C  2 C : : :C  h�1/ ZtC1:
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The forecast error variance therefore is

E
�
XtCh �ePtXtCh

�2 D
h
1C .1C  1/

2 C : : :C .1C  1 C : : :C  h�1/
2
i
�2:

This expression increases with the length of the forecast horizon h, but is no longer
bounded. It increases linearly in h to infinity.2 The precision of the forecast therefore
not only decreases with the forecasting horizon h as in the case of the trend-
stationary model, but converges to zero. In the example above of the ARIMA(0,1,1)
process the forecasting error variance is

E .XtCh � PtXtCh/
2 D

h
1C .h � 1/ .1C �/2

i
�2:

This expression clearly increases linearly with h.

7.1.3 Impulse Response Function

The impulse response function (dynamic multiplier) is an important analytical tool
as it gives the response of the variable Xt to the underlying shocks. In the case of the
trend-stationary process the impulse response function is

@ePtXtCh

@Zt

D  h �! 0 for h ! 1:

The effect of a shock thus declines with time and dies out. Shocks have therefore
only transitory or temporary effects. In the case of an ARMA process the effect even
declines exponentially (see the considerations in Sect. 2.3).3

In the case of integrated processes the impulse response function for�Xt implies:

@ePtXtCh

@Zt

D 1C  1 C  2 C : : :C  h:

For h going to infinity, this expression converges
P1

jD0  j D ‰.1/ ¤ 0. This
implies that a shock experienced in period t will have a long-run or permanent
effect. This long-run effect is called persistence. If f�Xtg is an ARMA process then
the persistence is given by the expression

2Proof : By assumption f jg is absolutely summable so that ‰.1/ converges. Moreover, as

‰.1/ ¤ 0, there exists " > 0 and an integer m such that
ˇ̌
ˇ
Ph

jD0  j

ˇ̌
ˇ > " for all h > m. The

squares are therefore bounded from below by "2 > 0 so that their infinite sum diverges to infinity.
3The use of the partial derivative is just for convenience. It does not mean that XtCh is differentiated
in the literal sense.
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‰.1/ D ‚.1/

ˆ.1/
:

Thus, for an ARIMA(0,1,1) the persistence is ‰.1/ D ‚.1/ D 1 C � . In the next
section we will discuss some examples.

7.1.4 The Beveridge-Nelson Decomposition

The Beveridge-Nelson decomposition represents an important tool for the under-
standing of integrated processes.4 It shows how an integrated time series of order
one can be represented as the sum of a linear trend, a random walk, and a stationary
series. It may therefore be used to extract the cyclical component (business cycle
component) of a time series and can thus be viewed as an alternative to the HP-filter
(see Sect. 6.5.2) or to more elaborated so-called structural time series models (see
Sects. 17.1 and 17.4.2).

Assuming that fXtg is an integrated process of order one, there exists, according
to Definition 7.1, a causal representation for f�Xtg:

�Xt D ı C‰.L/Zt with Zt � WN
�
0; �2

�

with the property ‰.1/ ¤ 0 and
P1

jD0 jj jj < 1. Before proceeding to the
main theorem, we notice the following simple, but extremely useful polynomial
decomposition of ‰.L/:

‰.L/ �‰.1/ D 1C  1L C  2L
2 C  3L

3 C  4L
4 C : : :

� 1 �  1 �  2 �  3 �  4 � : : :

D  1.L � 1/C  2.L
2 � 1/C  3.L

3 � 1/C  4.L
4 � 1/C : : :

D .L � 1/
�
 1 C  2.L C 1/C  3.L

2 C L C 1/C : : :
�

D .L � 1/
�
. 1 C  2 C  3 C : : :/C . 2 C  3 C  4 C : : :/L

C . 3 C  4 C  5 C : : :/L2 C : : :
�
:

We state this results in the following Lemma:

Lemma 7.1. Let ‰.L/ D
P

jD0  jLj, then

‰.L/ D ‰.1/C .L � 1/e‰.L/

where e‰.L/ D
P1

jD0 e jLj with Q j D
P1

iDjC1  i.

4Neusser (2000) shows how a Beveridge-Nelson decomposition can also be derived for higher
order integrated processes.
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As fXtg is integrated and because ‰.1/ ¤ 0 we can express Xt as follows:

Xt D X0 C
tX

jD1
�Xj

D X0 C
tX

jD1

˚
ı C

�
‰.1/C .L � 1/e‰.L/

�
Zj




D X0 C ıt C‰.1/

tX

jD1
Zj C

tX

jD1
.L � 1/e‰.L/Zj

D X0 C ıt„ ƒ‚ …
linear trend

C ‰.1/

tX

jD1
Zj

„ƒ‚…
random walk

Ce‰.L/Z0 � e‰.L/Zt„ ƒ‚ …
stationary component

:

This leads to the following theorem.

Theorem 7.1 (Beveridge-Nelson Decomposition). Every integrated process fXtg
has a decomposition of the following form:

Xt D X0 C ıt„ ƒ‚ …
linear trend

C ‰.1/

tX

jD1
Zj

„ƒ‚…
random walk

Ce‰.L/Z0 � e‰.L/Zt„ ƒ‚ …
stationary component

:

The above representation is referred to as the Beveridge-Nelson decomposition.

Proof. The only substantial issue is to show that e‰.L/Z0 � e‰.L/Zt defines a
stationary process. According to Theorem 6.4 it is sufficient to show that the
coefficients of e‰.L/ are absolutely summable. We have that:

1X

jD0
j Q jj D

1X

jD0

ˇ̌
ˇ̌
ˇ̌

1X

iDjC1
 i

ˇ̌
ˇ̌
ˇ̌ �

1X

jD0

1X

iDjC1
j ij D

1X

jD1
jj jj < 1;

where the first inequality is a consequence of the triangular inequality and the
second inequality follows from the Definition 7.1 of an integrated process. ut

Shocks of a random walk component have a permanent effect. This effect is
measured by the persistence ‰.1/, the coefficient of the random walk component.
In macroeconomics aggregate supply shocks are ascribed to have a long-run effect
as they affect productivity. In contrast monetary or demand shocks are viewed to
have temporary effects only. Thus the persistence ‰.1/ can be interpreted as a
measure for the importance of supply shocks (see Campbell and Mankiw (1987),
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Cochrane (1988) or Christiano and Eichenbaum (1990)). For a critical view from an
econometric standpoint see Hauser et al. (1999). A more sophisticated multivariate
approach to identify supply and demand shocks and to disentangle their relative
importance is provided in Sect. 15.5.

In business cycle analysis it is often useful to decompose fXtg into a sum of a
trend component �t and a cyclical component "t:

Xt D �t C "t:

In the case of a difference-stationary series, the cyclical component can be identified
with the stationary component in the Beveridge-Nelson decomposition and the trend
component with the random walk plus the linear trend. Suppose that f�Xtg follows
an ARMA processˆ.L/�Xt D cC‚.L/Zt then��t D ıC‰.1/Zt can be identified
as the trend component. This means that the trend component can be recursively
determined from the observations by applying the formula

�t D ˆ.L/

‚.L/
‰.1/Xt:

The cyclical component is then simply the residual: "t D Xt � �t.
In the above decomposition both the permanent (trend) component as well as

the stationary (cyclical) component are driven by the same shock Zt. A more
sophisticated model would, however, allow that the two components are driven
by different shocks. This idea is exploited in the so-called structural time series
analysis where the different components (trend, cycle, season, and irregular) are
modeled as being driven by separated shocks. As only the series fXtg is observed,
not its components, this approach leads to serious identification problems. See
the discussion in Harvey (1989), Hannan and Deistler (1988), or Mills (2003). In
Sects. 17.1 and 17.4.2 we will provide an overall framework to deal with these
issues.

Examples
Let f�Xtg be a MA(q) process with�Xt D ıCZt C: : :C�qZt�q then the persistence
is given simply by the sum of the MA-coefficients: ‰.1/ D 1 C �1 C : : : C �q.
Depending on the value of these coefficients. The persistence can be smaller or
greater than one.

If f�Xtg is an AR(1) process with�Xt D ıC��Xt�1CZt and assuming j�j < 1
then we get: �Xt D ı

1�� C
P1

jD0 �
jZt�j. The persistence is then given as ‰.1/ DP1

jD0 �
j D 1

1�� . For positive values of �, the persistence is greater than one. Thus,
a shock of one is amplified to have an effect larger than one in the long-run.

If f�Xtg is assumed to be an ARMA(1,1) process with�Xt D ıC��Xt�1CZt C
�Zt�1 and j�j < 1 then�Xt D ı

1�� C Zt C .� C �/
P1

jD0 �
jZt�j�1. The persistence

is therefore given by ‰.1/ D 1C .� C �/
P1

jD0 �
j D 1C�

1�� .
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The computation of the persistence for the model estimated for Swiss GDP in
Sect. 5.6 is more complicated because a fourth order difference 1 � L4 has been
used instead of a first order one. As 1�L4 D .1�L/.1CLCL2CL3/, it is possible
to extend the above computations also to this case. For this purpose we compute the
persistence for .1C L C L2 C L3/ ln BIPt in the usual way. The long-run effect on
ln BIPt is therefore given by ‰.1/=4 because .1C L C L2 C L3/ ln BIPt is nothing
but four times the moving-average of the last four values. For the AR(2) model we
get a persistence of 1.42 whereas for the ARMA(1,3) model the persistence is 1.34.
Both values are definitely above one so that the permanent effect of a one-percent
shock to Swiss GDP is amplified to be larger than one in the long-run. Campbell
and Mankiw (1987) and Cochrane (1988) report similar values for the US.

7.2 Properties of the OLS Estimator in the Case
of Integrated Variables

The estimation and testing of coefficients of models involving integrated variables
is not without complications and traps because the usual asymptotic theory may
become invalid. The reason being that the asymptotic distributions are in general
no longer normal so that the usual critical values for the test statistics are no longer
valid. A general treatment of these issues is beyond this text, but can be found in
Banerjee et al. (1993) and Stock (1994). We may, however, illustrate the kind of
problems encountered by looking at the Gaussian AR(1) case5:

Xt D �Xt�1 C Zt; t D 1; ; 2; : : : ;

where Zt � IID N.0; �2/ and X0 D 0. For observations on X1;X2; : : : ;XT the OLS-
estimator of � is given by the usual expression:

O�T D
PT

tD1 Xt�1XtPT
tD1 X2t�1

D � C
PT

tD1 Xt�1ZtPT
tD1 X2t�1

:

For j�j < 1, the OLS estimator of �, O�T , converges in distribution to a normal
random variable (see Chap. 5 and in particular Sect. 5.2):

p
T
�

O�T � �
�

d����! N
�
0; 1� �2

�
:

The estimated density of the OLS estimator of � for different values of � is
represented in Fig. 7.1. This figure was constructed using a Monte-Carlo simulation
of the above model for a sample size of T D 100 using 10; 000 replications for

5We will treat more general cases in Sect. 7.5 and Chap. 16.
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Fig. 7.1 Distribution of the OLS estimator of � for T D 100 and 10,000 replications

each value of �.6 The figure shows that the distribution of O�T becomes more and
more concentrated if the true value of � gets closer and closer to one. Moreover
the distribution gets also more and more skewed to the left. This implies that the
OLS estimator is downward biased and that this bias gets relatively more and more
pronounced in small samples as � approaches one.

The asymptotic distribution would be degenerated for � D 1 because the
variance approaches zero as � goes to one. Thus the asymptotic distribution
becomes useless for statistical inferences under this circumstance. In order to obtain
a non-degenerate distribution the estimator must be scaled by T instead by

p
T. It

can be shown that

T
�

O�T � �
�

d����! �:

This result was first established by Dickey and Fuller (1976) and Dickey and Fuller
(1981). However, the asymptotic distribution � need no longer be normal. It was first
tabulated in Fuller (1976). The scaling with T instead of

p
T means that the OLS-

estimator converges, if the true value of � equals one, at a higher rate to � D 1. This
property is known as superconsistency.

6The densities were estimated using an adaptive kernel density estimator with Epanechnikov
window (see Silverman (1986)).
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In order to understand this result better, in particular in the light of the derivation
in the Appendix of Sect. 5.2, we take a closer look at the asymptotic distribution of

T
�

O�T � �
�

:

T
�

O�T � �
�

D
1
�2T

PT
tD1 Xt�1Zt

1
�2T2

PT
tD1 X2t�1

:

Under the assumption � D 1, Xt becomes a random walk so that Xt can be written
as Xt D Zt C : : :C Z1. Moreover, as a sum of normally distributed random variables
Xt becomes itself normally distributed as Xt � N.0; �2t/. In addition, we get

X2t D .Xt�1 C Zt/
2 D X2t�1 C 2Xt�1Zt C Z2t

) Xt�1Zt D
�
X2t � X2t�1 � Z2t

�
=2

)
TX

tD1
Xt�1Zt D X2T � X20

2
�
PT

tD1 Z2t

2

) 1

T

TX

tD1
Xt�1Zt D 1

2

"
X2T

T
�
PT

tD1 Z2t

T

#

) 1

�2T

TX

tD1
Xt�1Zt D 1

2

�
XT

�
p

T

�2
� 1

2�2

PT
tD1 Z2t

T

d����! 1

2

�
�21 � 1

�
:

The numerator therefore converges to a �21 distribution. The distribution of the
denominator is more involved, but its expected value is given by:

E

TX

tD1
X2t�1 D �2

TX

tD1
.t � 1/ D �2T.T � 1/

2
;

because Xt�1 � N
�
0; �2.t � 1/

�
. To obtain a nondegenerate random variable one

must scale by T2. Thus, intuitively, T. O�T��/will no longer converge to a degenerate
distribution.

Using similar arguments it can be shown that the t-statistic

tT D
O�T � 1

O� O�
D

O�T � 1r
s2TPT

tD1 X2t�1

with s2T D 1
T�2

PT
tD2

�
Xt � O�TXt�1

�2
is not asymptotically normal. Its distribution

was also first tabulated by Fuller (1976). Figure 7.2 compares its density with the
standard normal distribution in a Monte-Carlo experiment using again a sample of
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Fig. 7.2 Distribution of t-statistic for T D 100 and 10,000 replications and standard normal
distribution

T D 100 and 10; 000 replications. It is obvious that the t-distribution is shifted to
the left. This implies that the critical values will be absolutely higher than for the
standard case. In addition, one may observe a slight skewness.

Finally, we also want to investigate the autocovariance function of a random
walk. Using similar arguments as in Sect. 1.3 we get:


.h/ D E .XTXT�h/

D E Œ.ZT C ZT�1 C : : :C Z1/ .ZT�h C ZT�h�1 C : : :C Z1/�

D E
�
Z2T�h C Z2T�h�1 C : : :C Z21

�
D .T � h/�2:

Thus the correlation coefficient between XT and XT�h is:

�.h/ D 
.h/p
VXT

p
VXT�h

D T � hp
T.T � h/

D
r

T � h

T
; h � T:

The autocorrelation coefficient �.h/ therefore monotonically decreases with h,
holding the sample size T constant. The rate at which �.h/ falls is, however, smaller
than for ARMA processes for which �.h/ declines exponentially fast to zero. Given
h, the autocorrelation coefficient converges to one for T ! 1. Figure 7.3 compares
the theoretical and the estimated ACF of a simulated random walk with T D 100.
Typically, the estimated coefficients lie below the theoretical ones. In addition, we
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show the estimated ACF for an AR(1) process with � D 0:9 and using the same
realizations of the white noise process as in the construction of the random walk.
Despite the large differences between the ACF of an AR(1) process and a random
walk, the ACF is only of limited use to discriminate between an (stationary) ARMA
process and a random walk.

The above calculation also shows that �.1/ < 1 so that the expected value of the
OLS estimator is downward biased in finite samples: E O�T < 1.

7.3 Unit-Root Tests

The previous Sects. 7.1 and 7.2 have shown that, depending on the nature of the
non-stationarity (trend versus difference stationarity), the stochastic process has
quite different algebraic (forecast, forecast error variance, persistence) and statistical
(asymptotic distribution of OLS-estimator) properties. It is therefore important to be
able to discriminate among these two different types of processes. This also pertains
to standard regression models for which the presence of integrated variables can lead
to non-normal asymptotic distributions.

The ability to differentiate between trend- and difference-stationary processes is
not only important from a statistical point of view, but can be given an economic
interpretation. In macroeconomic theory, monetary and demand disturbances are
alleged to have only temporary effects whereas supply disturbances, in particular
technology shocks, are supposed to have permanent effects. To put it in the language
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of time series analysis: monetary and demand shocks have a persistence of zero
whereas supply shocks have nonzero (positive) persistence. Nelson and Plosser
(1982) were the first to investigate the trend properties of economic time series
from this angle. In their influential study they reached the conclusion that, with the
important exception of the unemployment rate, most economic time series in the
US are better characterized as being difference stationary. Although this conclusion
came under severe scrutiny (see Cochrane (1988) and Campbell and Perron (1991)),
this issue resurfaces in many economic debates. The latest discussion relates to the
nature and effect of technology shocks (see Galí (1999) or Christiano et al. (2003)).

The following exposition focuses on the Dickey-Fuller test (DF-test) and the
Phillips-Perron test(PP-test). Although other test procedures and variants thereof
have been developed in the meantime, these two remain the most widely applied in
practice. These types of tests are also called unit-root tests.

Both the DF- as well as the PP-test rely on a regression of Xt on Xt�1 which may
include further deterministic regressors like a constant or a linear time trend. We
call this regression the Dickey-Fuller regression:

Xt D deterministic

variables
C �Xt�1 C Zt: (7.1)

Alternatively and numerically equivalent, one may run the Dickey-Fuller regression
in difference form:

�Xt D deterministic

variables
C ˇXt�1 C Zt

with ˇ D � � 1. For both tests, the null hypothesis is that the process is integrated
of order one, difference stationary, or has a unit-root. Thus we have

H0 W � D 1 or ˇ D 0:

The alternative hypothesis H1 is that the process is trend-stationary or stationary
with constant mean and is given by:

H1 W �1 < � < 1 or � 2 < ˇ D � � 1 < 0:

Thus the unit root test is a one-sided test. The advantage of the second formulation
of the Dickey-Fuller regression is that the corresponding t-statistic can be readily
read off from standard outputs of many computer packages which makes additional
computations unnecessary.
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7.3.1 The Dickey-Fuller Test (DF-Test)

The Dickey-Fuller test comes in two forms. The first one, sometimes called the �-
test, takes T. O� � 1/ as the test statistic. As shown previously, this statistic is no
longer asymptotically normally distributed. However, it was first tabulated by Fuller
and can be found in textbooks like Fuller (1976) or Hamilton (1994b). The second
and much more common one relies on the usual t-statistic for the hypothesis � D 1:

t O� D . O�T � 1/= O� O� :

This test-statistic is also not asymptotically normally distributed. It was for the first
time tabulated by Fuller (1976) and can be found, for example, in Hamilton (1994b).
Later MacKinnon (1991) presented much more detailed tables where the critical
values can be approximated for any sample size T by using interpolation formulas
(see also Banerjee et al. (1993)).7

The application of the Dickey-Fuller test as well as the Phillips-Perron test is
obfuscated by the fact that the asymptotic distribution of the test statistic (�- or t-
test) depends on the specification of the deterministic components and on the true
data generating process. This implies that depending on whether the Dickey-Fuller
regression includes, for example, a constant and/or a time trend and on the nature
of the true data generating process one has to use different tables and thus different
critical values. In the following we will focus on the most common cases listed in
Table 7.1.

In case 1 the Dickey-Fuller regression includes no deterministic component.
Thus, a rejection of the null hypothesis implies that fXtg has to be a mean zero
stationary process. This specification is, therefore, only warranted if one can make
sure that the data have indeed mean zero. As this is rarely the case, except, for
example, when the data are the residuals from a previous regression,8 case 1 is

Table 7.1 The four most important cases for the unit-root test

Data generating process Estimated regression �-test:

(null hypothesis) T. O� � 1/ (Dickey-Fuller regression) t-test

Xt D Xt�1 C Zt Xt D �Xt�1 C Zt Case 1 Case 1

Xt D Xt�1 C Zt Xt D ˛ C �Xt�1 C Zt Case 2 Case 2

Xt D ˛ C Xt�1 C Zt; Xt D ˛ C �Xt�1 C Zt N(0,1)

˛ ¤ 0

Xt D ˛ C Xt�1 C Zt Xt D ˛ C ıt

C�Xt�1 C Zt Case 4 Case 4

7These interpolation formula are now implemented in many software packages, like EVIEWS, to
compute the appropriate critical values.
8This fact may pose a problem by itself.
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very uncommon in practice. Thus, if the data do not display a trend, which can
be checked by a simple time plot, the Dickey-Fuller regression should include a
constant. A rejection of the null hypothesis then implies that fXtg is a stationary
process with mean � D c

1�� . If the data display a time trend, the Dickey-Fuller
regression should also include a linear time trend as in case 4. A rejection of the
null hypothesis then implies that the process is trend-stationary. In the case that the
Dickey-Fuller regression contains no time trend and there is no time trend under the
alternative hypothesis, asymptotic normality holds. This case is only of theoretical
interest as it should a priori be clear whether the data are trending or not. In the
instance where one is not confident about the trending nature of the time series see
the procedure outlined in Sect. 7.3.3.

In the cases 2 and 4 it is of interest to investigate the joint hypothesis H0 W ˛ D 0

and � D 1, and H0 W ı D 0 and � D 1 respectively. Again the corresponding
F-statistic is no longer F-distributed, but has been tabulated (see Hamilton (1994b,
Table B7)). The trade-off between t- and F-test is discussed in Sect. 7.3.3.

Most economic time series display a significant amount of autocorrelation.
To take this feature into account it is necessary to include lagged differences
�Xt�1; : : : ; �Xt�pC1 as additional regressors. The so modified Dickey-Fuller
regression then becomes:

Xt D deterministic

variables
C �Xt�1 C 
1�Xt�1 C : : :C 
p�1�Xt�pC1 C Zt:

This modified test is called the augmented Dickey-Fuller test (ADF-test). This
autoregressive correction does not change the asymptotic distribution of the test
statistics. Thus the same tables can be used as before. For the coefficients of the
autoregressive terms asymptotic normality holds. This implies that the standard
testing procedures (t-test, F-test) can be applied in the usual way. This is true if
instead of autoregressive correction terms moving-average terms are used instead
(see Said and Dickey (1984)).

For the ADF-test the order p of the model should be chosen such that the residuals
are close to being white noise. This can be checked, for example, by looking at
the ACF of the residuals or by carrying out a Ljung-Box test (see Sect. 4.2). In
case of doubt, it is better to choose a higher order. A consistent procedure to find
the right order is to use the Akaike’s criterion (AIC). Another alternative strategy
advocated by Ng and Perron (1995) is an iterative testing procedure which makes
use of the asymptotic normality of the autoregressive correction terms. Starting
from a maximal order p � 1 D pmax, the method amounts to the test whether the
coefficient corresponding to the highest order is significantly different from zero. If
the null hypothesis that the coefficient is zero is not rejected, the order of the model
is reduced by one and the test is repeated. This is done as long as the null hypothesis
is not rejected. If the null hypothesis is finally rejected, one sticks with the model
and performs the ADF-test. The successive test are standard t-tests. It is advisable to
use a rather high significance level, for example a 10 % level. The simulation results
by Ng and Perron (1995) show that this procedure leads to a smaller bias compared
to using the AIC criterion and that the reduction in power remains negligible.



7.3 Unit-Root Tests 149

7.3.2 The Phillips-Perron Test (PP-Test)

The Phillips-Perron test represents a valid alternative to the ADF-test. It is based on
the simple Dickey-Fuller regression (without autoregressive correction terms) and
corrects for autocorrelation by modifying the OLS-estimate or the corresponding
value of the t-statistic. The simple Dickey-Fuller regression with either constant
and/or trend is:

Xt D deterministic

variables
C �Xt�1 C Zt;

where fZtg need no longer be a white noise process, but can be any mean zero
stationary process. fZtg may, for example, be an ARMA process. In principle, the
approach also allows for heteroskedasticity.9

The first step in the Phillips-Perron unit-root test estimates the above appropri-
ately specified Dickey-Fuller regression. The second step consists in the estimation
of the unconditional variance 
Z.0/ and the long-run variance J of the residuals
OZt. This can be done using one of the methods prescribed in Sect. 4.4. These two
estimates are then used in a third step to correct the �- and the t-test statistics. This
correction would then take care of the autocorrelation present in the data. Finally,
one can use the so modified test statistics to carry out the unit-root test applying the
same tables for the critical values as before.

In case 1 where no deterministic components are taken into account (see case 1
in Table 7.1) the modified test statistics according to Phillips (1987) are:

�-Test W T
�

O� � 1
�

� 1

2

�
bJT � O
Z.0/

� 1

T2

TX

tD1
X2t�1

!�1

t-Test W
s

O
Z.0/

bJT

t O� � 1

2

�
bJT � O
Z.0/

� bJT

T2

TX

tD1
X2t�1

!�1=2

:

If fZtg would be white noise so that J D 
.0/, respectivelybJT � O
Z.0/ one gets
the ordinary Dickey-Fuller test statistic. Similar formulas can be derived for the
cases 2 and 4. As already mentioned these modifications will not alter the asymptotic
distributions so the same critical values as for the ADF-test can be used.

The main advantage of the Phillips-Perron test is that the non-parametric correc-
tion allows for very general fZtg processes. The PP-test is particularly appropriate if
fZtg has some MA-components which can be only poorly approximated by low
order autoregressive terms. Another advantage is that one can avoid the exact
modeling of the process. It has been shown by Monte-Carlo studies that the PP-test
has more power compared to the DF-test, i.e. the PP-test rejects the null hypothesis
more often when it is false, but that, on the other hand, it has also a higher size
distortion, i.e. that it rejects the null hypothesis too often.

9The exact assumptions can be read in Phillips (1987) and Phillips and Perron (1988).
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7.3.3 Unit-Root Test: Testing Strategy

Independently whether the Dickey-Fuller or the Phillips-Perron test is used, the
specification of the deterministic component is important and can pose a problem in
practice. On the one hand, if the deterministic part is underrepresented, for example
when only a constant, but no time trend is used, the test results are biased in favor of
the null hypothesis, if the data do indeed have a trend. On the other hand, if too many
deterministic components are used, the power of the test is reduced. It is therefore
advisable to examine a plot of the series in order to check whether a long run trend
is visible or not. In some circumstances economic reasoning may help in this regard.

Sometimes, however, it is difficult to make an appropriate choice a priori. We
therefore propose the following testing strategy based on Elder and Kennedy (2001).

Xt has a long-run trend: As Xt grows in the long-run, the Dickey-Fuller regres-
sion

Xt D ˛ C ıt C �Xt�1 C Zt

should contain a linear trend.10 In this case either � D 1, ı D 0 and ˛ ¤ 0 (unit
root case) or � < 1 with ı ¤ 0 (trend stationary case). We can then test the joint
null hypothesis

H0 W � D 1 and ı D 0

by a corresponding F-test. Note that the F-statistic, like the t-test, is not
distributed according to the F-distribution. If the test does not reject the null, we
conclude that fXtg is a unit root process with drift or equivalently a difference-
stationary (integrated) process. If the F-test rejects the null hypothesis, there are
three possible situations:

(i) The possibility � < 1 and ı D 0 contradicts the primary observation that
fXtg has a trend and can therefore be eliminated.

(ii) The possibility � D 1 and ı ¤ 0 can also be excluded because this would
imply that fXtg has a quadratic trend, which is unrealistic.

(iii) The possibility � < 1 and ı ¤ 0 represents the only valid alternative. It
implies that fXtg is stationary around a linear trend, i.e. that fXtg is trend-
stationary.

Similar conclusions can be reached if, instead of the F-test, a t-test is used to test
the null hypothesis H0 W � D 1 against the alternative H1 W � < 1. Thereby a
non-rejection of H0 is interpreted that ı D 0. If, however, the null hypothesis
H0 is rejected, this implies that ı ¤ 0, because fXtg exhibits a long-run trend.

10In case of the ADF-test additional regressors, �Xt�j; j > 0, might be necessary.
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The F-test is more powerful than the t-test. The t-test, however, is a one-sided
test, which has the advantage that it actually corresponds to the primary objective
of the test. In Monte-Carlo simulations the t-test has proven to be marginally
superior to the F-test.

Xt has no long-run trend: In this case ı D 0 and the Dickey-Fuller regression
should be run without a trend11:

Xt D ˛ C �Xt�1 C Zt:

Thus we have either � D 1 and ˛ D 0 or � < 1 and ˛ ¤ 0. The null hypothesis
in this case therefore is

H0 W � D 1 and ˛ D 0:

A rejection of the null hypothesis can be interpreted in three alternative ways:

(i) The case � < 1 and ˛ D 0 can be eliminated because it implies that fXtg
would have a mean of zero which is unrealistic for most economic time
series.

(ii) The case � D 1 and ˛ ¤ 0 can equally be eliminated because it implies that
fXtg has a long-run trend which contradicts our primary assumption.

(iii) The case � < 1 and ˛ ¤ 0 is the only realistic alternative. It implies that
the time series is stationary around a constant mean given by ˛

1�� .

As before one can use, instead of a F-test, a t-test of the null hypothesis H0 W
� D 1 against the alternative hypothesis H1 W � < 1. If the null hypothesis is not
rejected, we interpret this to imply that ˛ D 0. If, however, the null hypothesis
H0 is rejected, we conclude that ˛ ¤ 0. Similarly, Monte-Carlo simulations have
proven that the t-test is superior to the F-test.

The trend behavior of Xt is uncertain: This situation poses the following prob-
lem. Should the data exhibit a trend, but the Dickey-Fuller regression contains
no trend, then the test is biased in favor of the null hypothesis. If the data have
no trend, but the Dickey-Fuller regression contains a trend, the power of the test
is reduced. In such a situation one can adapt a two-stage strategy. Estimate the
Dickey-Fuller regression with a linear trend:

Xt D ˛ C ıt C �Xt�1 C Zt:

Use the t-test to test the null hypothesis H0 W � D 1 against the alternative
hypothesis H1 W � < 1. If H0 is not rejected, we conclude the process has a unit
root with or without drift. The presence of a drift can then be investigated by
a simple regression of �Xt against a constant followed by a simple t-test of the

11In case of the ADF-test additional regressors, �Xt�j; j > 0, might be necessary.
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null hypothesis that the constant is zero against the alternative hypothesis that the
constant is nonzero. As�Xt is stationary, the usual critical values can be used. 12

If the t-test rejects the null hypothesis H0, we conclude that there is no unit root.
The trend behavior can then be investigated by a simple t-test of the hypothesis
H0 W ı D 0. In this test the usual critical values can be used as fXtg is already
viewed as being stationary.

7.3.4 Examples of Unit-Root Tests

As our first example, we examine the logged real GDP for Switzerland, ln.BIPt/,
where we have adjusted the series for seasonality by taking a moving-average.
The corresponding data are plotted in Fig. 1.3. As is evident from this plot, this
variable exhibits a clear trend so that the Dickey-Fuller regression should include
a constant and a linear time trend. Moreover, f� ln.BIPt/g is typically highly
autocorrelated which makes an autoregressive correction necessary. One way to
make this correction is by augmenting the Dickey-Fuller regression by lagged
f� ln.BIPt/g as additional regressors. Thereby the number of lags is determined
by AIC. The corresponding result is reported in the first column of Table 7.2. It
shows that AIC chooses only one autoregressive correction term. The value of t-
test statistic is �3:110 which is just above the 5-% critical value. Thus, the null
hypothesis is not rejected. If the autoregressive correction is chosen according to
the method proposed by Ng and Perron five autoregressive lags have to be included.
With this specification, the value of the t-test statistic is clearly above the critical
value, implying that the null hypothesis of the presence of a unit root cannot
be rejected (see second column in Table 7.2).13 The results of the ADF-tests is
confirmed by the PP-test (column 3 in Table 7.2) with quadratic spectral kernel
function and band width 20:3 chosen according to Andrews’ formula (see Sect. 4.4).

The second example, examines the three-month LIBOR, fR3Mtg. The series is
plotted in Fig. 1.4. The issue whether this series has a linear trend or not is not easy
to decide. On the one hand, the series clearly has a negative trend over the sample
period considered. On the other hand, a negative time trend does not make sense
from an economic point of view because interest rates are bounded from below
by zero. Because of this uncertainty, it is advisable to include in the Dickey-Fuller
regression both a constant and a trend to be on the safe side. Column 5 in Table 7.2
reports the corresponding results. The value of the t-statistic of the PP-test with
Bartlett kernel function and band width of 5 according to the Newey-West rule of
thumb is �2:142 and thus higher than the corresponding 5-% critical of �3:435.

12Eventually, one must correct the corresponding standard deviation by taking the autocorrelation
in the residual into account. This can be done by using the long-run variance. In the literature this
correction is known as the Newey-West correction.
13The critical value changes slightly because the inclusion of additional autoregressive terms
changes the sample size.
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Table 7.2 Examples of unit root tests

ln.BIPt/ ln.BIPt/ ln.BIPt/ R3Mt R3Mt

Test ADF ADF PP PP PP

Autoregressive Ng and Quadratic

correction AIC Perron spectral Bartlett Bartlett

Band width 20.3 5 5

˛ 0.337 0.275 0.121 0.595 �0.014

ı 0.0001 0.0001 0.0002 �0.0021

� 0.970 0.975 0.989 0.963 �0.996


1 0.885 1.047


2 �0.060


3 �0.085


4 �0.254


5 0.231

t O� �3.110 �2.243 �1.543 �2.142 �0.568

Critical value �3.460 �3.463 �3.460 �3.435 �2.878

(5 %)

Critical values from MacKinnon (1996)

Thus, we cannot reject the null hypothesis of the presence of a unit root. We
therefore conclude that the process fR3Mtg is integrated of order one, respectively
difference-stationary. Based on this conclusion, the issue of the trend can now be
decided by running a simple regression of �R3Mt against a constant. This leads to
the following results:

�R3Mt D �0.0315
(0.0281)

C et:

where et denotes the least-squares residual. The mean of �R3Mt is therefore
�0:0315. This value is, however, statistically not significantly different from zero as
indicated by the estimated standard error in parenthesis. Note that this estimate of
the standard error has been corrected for autocorrelation (Newey-West correction).
Thus, fR3Mtg is not subject to a linear trend. One could have therefore run the
Dickey-Fuller regression without the trend term. The result of corresponding to this
specification is reported in the last column of Table 7.2. It confirms the presence of
a unit root.

7.4 Generalizations of Unit-Root Tests

7.4.1 Structural Breaks in the Trend Function

As we have seen, the unit-root test depends heavily on the correct specification of
the deterministic part. Most of the time this amounts to decide whether a linear
trend is present in the data or not. In the previous section we presented a rule how
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Fig. 7.4 Three types of structural breaks at TB. (a) Level shift. (b) Change in slope. (c) Level shift
and change in slope

to proceed in case of uncertainty about the trend. Sometimes, however, the data
exhibit a structural break in their deterministic component. If this structural break is
ignored, the unit-root test is biased in favor of the null hypothesis (i. e. in favor of a
unit root) as demonstrated by Perron (1989). Unfortunately, the distribution of the
test statistic under the null hypothesis, in our case the t-statistic, depends on the exact
nature of the structural break and on its date of occurrence in the data. Following
Perron (1989) we concentrate on three exemplary cases: a level shift, a change in the
slope (change in the growth rate), and a combination of both possibilities. Figure 7.4
shows the three possibilities assuming that a break occurred in period TB. Thereby
an AR(1) process with � D 0:8 was superimposed on the deterministic part.

The unit-root test with the possibility of a structural break in period TB is
carried out using the Dickey-Fuller test. Thereby the date of the structural break is
assumed to be known. This assumption, although restrictive, is justifiable in many
applications. The first oil price shock in 1973 or the German reunification in 1989
are examples of structural breaks which can be dated exactly. Other examples would
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Table 7.3 Dickey-Fuller regression allowing for structural breaks

Model A: Level Shift

H0 W Xt D ˛ C 1ftDTBC1gıB C Xt�1 C Zt

H1 W Xt D ˛ C ıt C 1ft>TBg.˛B � ˛/C �Xt�1 C Zt, � < 1

Model B: Change in Slope (Change in Growth Rate)

H0 W Xt D ˛ C 1ft>TBg.˛B � ˛/C Xt�1 C Zt

H1 W Xt D ˛ C ıt C 1ft>TBg.ıB � ı/.t � TB/C �Xt�1 C Zt, � < 1

Model C: Level Shift and Change in Slope

H0 W Xt D ˛ C 1ftDTBC1gıB C 1ft>TBg.˛B � ˛/C Xt�1 C Zt

H1 W Xt D ˛ C ıt C 1ft>TBg.˛B � ˛/C 1ft>TBg.ıB � ı/.t � TB/ C�Xt�1 C Zt; � < 1

1ftDTBC1g and 1ft>TBg denotes the indicator function which takes the value one if the
condition is satisfied and the value zero otherwise

include changes in the way the data are constructed. These changes are usually
documented by the data collecting agencies. Table 7.3 summarizes the three variants
of Dickey-Fuller regression allowing for structural breaks.14

Model A allows only for a level shift. Under the null hypothesis the series
undergoes a one-time shift at time TB. This level shift is maintained under the null
hypothesis which posits a random walk. Under the alternative, the process is viewed
as being trend-stationary whereby the trend line shifts parallel by ˛B � ˛ at time
TB. Model B considers a change in the mean growth rate from ˛ to ˛B at time TB.
Under the alternative, the slope of time trend changes from ı to ıB. Model C allows
for both types of break to occur at the same time.

The unit-root test with possible structural break for a time series Xt,
t D 0; 1; : : : ;T, is implemented in two stages as follows. In the first stage, we
regress Xt on the corresponding deterministic component using OLS. The residuals
eX0;eX1; : : : ;eXT from this regression are then used to carry out a Dickey-Fuller test:

eXt D �eXt�1 C Zt; t D 1; : : : ;T:

The distribution of the corresponding t-statistic under the null hypothesis depends
not only on the type of the structural break, but also on the relative date of the break
in the sample. Let this relative date be parameterized by � D TB=T. The asymptotic
distribution of the t-statistic has been tabulated by Perron (1989). This table can be
used to determine the critical values for the test. These critical values are smaller
than those from the normal Dickey-Fuller table. Using a 5 % significance level, the
critical values range between �3:80 and �3:68 for model A, between �3:96 and
�3:65 for model B, and between �4:24 and �3:75 for model C, depending on the
value of �. These values also show that the dependence on � is only weak.

In the practical application of the test one has to control for the autocorrelation in
the data. This can be done by using the Augmented Dickey-Fuller (ADF) test. This

14See Eq. (7.1) and Table 7.1 for comparison.
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amounts to the introduction of �eXt�j, t D 1; 2; : : : ; p � 1, as additional regressors
in the above Dickey-Fuller regression. Thereby the order p can be determined by
Akaike’s information criterion (AIC) or by the iterative testing procedure of Ng and
Perron (1995). Alternatively, one may use, instead of the ADF test, the Phillips-
Perron test. In this case one computes the usual t-statistic for the null hypothesis
� D 1 and corrects it using the formulas in Phillips and Perron (1988) as explained
in Sect. 7.3.2. Which of the two methods is used, is irrelevant for the determination
of the critical values which can be extracted from Perron (1989).

Although it may be legitimate in some cases to assume that the time of the
structural break is known, we cannot take this for granted. It is therefore important
to generalize the test allowing for an unknown date for the occurrence of a structural
break. The work of Zivot and Andrews (1992) has shown that the procedure
proposed by Perron can be easily expanded in this direction. We keep the three
alternative models presented in Table 7.3, but change the null hypothesis to a random
walk with drift with no exogenous structural break. Under the null hypothesis, fXtg
is therefore assumed to be generated by

Xt D ˛ C Xt�1 C Zt; Zt � WN.0; �2/:

The time of the structural TB, respectively � D TB=T, is estimated in such a way that
fXtg comes as close as possible to a trend-stationary process. Under the alternative
hypothesis fXtg is viewed as a trend-stationary process with unknown break point.
The goal of the estimation strategy is to chose TB, respectively �, in such a way
that the trend-stationary alternative receives the highest weight. Zivot and Andrews
(1992) propose to estimate � by minimizing the value of the t-statistic t O�.�/ under
the hypothesis � D 1:

t O�.
O�inf/ D inf

�2ƒ
t O�.�/ (7.2)

whereƒ is a closed subinterval of .0; 1/.15 The distribution of the test statistic under
the null hypothesis for the three cases is tabulated in Zivot and Andrews (1992). This
table then allows to determine the appropriate critical values for the test. In practice,
one has to take the autocorrelation of the time series into account by one of the
methods discussed previously.

This testing strategy can be adapted to determine the time of a structural
break in the linear trend irrespective of whether the process is trend-stationary or
integrated of order one. The distributions of the corresponding test statistics have
been tabulated by Vogelsang (1997).16

15Taking the infimum over ƒ instead over .0; 1/ is for theoretical reasons only. In practice, the
choice of ƒ plays no important role. For example, one may take ƒ D Œ0:01; 0:99�.
16See also the survey by Perron (2006).
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7.4.2 Testing for Stationarity (KPSS Test)

The unit-root tests we discussed so far tested the null hypothesis that the process
is integrated of order one against the alternative hypothesis that the process
is integrated of order zero (i.e. is stationary). However, one may be interested
in reversing the null and the alternative hypothesis and test the hypothesis of
stationarity against the alternative that the process is integrated of order one. Such
a test has been proposed by Kwiatkowski et al. (1992), called the KPSS-Test. This
test rests on the idea that according to the Beveridge-Nelson decomposition (see
Sect. 7.1.4) each integrated process of order one can be seen as the sum of a linear
time trend, a random walk and a stationary process:

Xt D ˛ C ıt C d

tX

jD1
Zj C Ut;

where fUtg denotes a stationary process. If d D 0 then the process becomes trend-
stationary, otherwise it is integrated of order one.17 Thus, one can state the null and
the alternative hypothesis as follows:

H0 W d D 0 against H1 W d ¤ 0:

Denote by fStg the process of partial sums obtained from the residuals fetg of
a regression of Xt against a constant and a linear time trend, i.e. St D

Pt
jD1 ej.18

Under the null hypothesis d D 0, fStg is integrated of order one whereas
under the alternative fStg is integrated of order two. Based on this consideration
Kwiatkowski et al. propose the following test statistic for a time series consisting of
T observations:

KPSS test statistic: WT D
PT

tD1 S2t

T2bJT

(7.3)

wherebJT is an estimate of the long-run variance of fUtg (see Sect. 4.4). As fStg is an
integrated process under the null hypothesis, the variance of fStg grows linearly in t

(see Sect. 1.4.4 or 7.2) so that the sum of squared St diverges at rate T2. Thus, the test
statistic remains bounded and can be shown to converge. Note that the test statistic
is independent from further nuisance parameters. Under the alternative hypothesis,
however, fStg is integrated of order two. Thus, the null hypothesis will be rejected for
large values of WT . The corresponding asymptotic critical values of the test statistic
are reported in Table 7.4.

17If the data exhibit no trend, one can set ı equal to zero.
18This auxiliary regression may include additional exogenous variables.
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Table 7.4 Critical values of
the KPSS test

Regression without time trend

Significance level 0.1 0.05 0.01

Critical value 0.347 0.463 0.739

Regression with time trend

Significance level 0.1 0.05 0.01

Critical value 0.119 0.146 0.216

See Kwiatkowski et al. (1992)

7.5 Regression with Integrated Variables

7.5.1 The Spurious Regression Problem

The discussion on the Dickey-Fuller and Phillips-Perron tests showed that in
a regression of the integrated variables Xt on its past Xt�1 the standard

p
T-

asymptotics no longer apply. A similar conclusion also holds if we regress an
integrated variable Xt against another integrated variable Yt. Suppose that both
processes fXtg and fYtg are generated as a random walk:

Xt D Xt�1 C Ut; Ut � IID.0; �2U/

Yt D Yt�1 C Vt; Vt � IID.0; �2V/

where the processes fUtg and fVtg are uncorrelated with each other at all leads and
lags. Thus,

E.UtVs/ D 0; for all t; s 2 Z:

Consider now the regression of Yt on Xt and a constant:

Yt D ˛ C ˇXt C "t:

As fXtg and fYtg are two random walks which are uncorrelated with each other by
construction, one would expect that the OLS-estimate of the coefficient of Xt, Ǒ,
should tend to zero as the sample size T goes to infinity. The same is expected for
the coefficient of determination R2. This is, however, not true as has already been
remarked by Yule (1926) and, more recently, by Granger and Newbold (1974). The
above regression will have a tendency to “discover” a relationship between Yt and Xt

despite the fact that there is none. This phenomenon is called spurious correlation

or spurious regression. Similarly, unreliable results would be obtained by using
a simple t-test for the null hypothesis ˇ D 0 against the alternative hypothesis
ˇ ¤ 0. The reason for these treacherous findings is that the model is incorrect
under the null as well as under the alternative hypothesis. Under the null hypothesis
f"tg is an integrated process which violates the standard assumption for OLS. The
alternative hypothesis is not true by construction. Thus, OLS-estimates should be
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interpreted with caution when a highly autocorrelated process fYtg is regressed on
another highly correlated process fXtg. A detailed analysis of the spurious regression
problem is provided by Phillips (1986).

The spurious regression problem can be illustrated by a simple Monte Carlo
study. Specifying Ut � IIDN.0; 1/ and Vt � IIDN.0; 1/, we constructed N D 1000

samples for fYtg and fXtg of size T D 1000 according to the specification above.
The sample size was chosen especially large to demonstrate that this is not a small
sample issue. As a contrast, we constructed two independent AR(1) processes with
AR-coefficients �X D 0:8 and �Y D �0:5.

Figures 7.5a,b show the drastic difference between a regression with stationary
variables and integrated variables. Whereas the distribution of the OLS-estimates
of ˇ is highly concentrated around the true value ˇ D 0 in the stationary case, the
distribution is very flat in the case of integrated variables. A similar conclusion holds
for the corresponding t-value. The probability of obtaining a t-value greater than
1:96 is bigger than 0:9. This means that in more than 90 % of the time the t-statistic
leads to a rejection of the null hypothesis and therefore suggests a relationship
between Yt and Xt despite their independence. In the stationary case, this probability
turns out to be smaller than 0:05. These results are also reflected in the coefficient of
determination R2. The median R2 is approximately 0:17 in the case of the random
walks, but only 0:0002 in the case of AR(1) processes.

The problem remains the same if fXtg and fYtg are specified as random walks
with drift:

Xt D ıX C Xt�1 C Ut; Ut � IID.0; �2U/

Yt D ıY C Yt�1 C Vt; Vt � IID.0; �2V/

where fUtg and fVtg are again independent from each other at all leads and lags.
The regression would be same as above:

Yt D ˛ C ˇXt C "t:

7.5.2 Bivariate Cointegration

The spurious regression problem cannot be circumvented by first testing for a unit
root in Yt and Xt and then running the regression in first differences in case of no
rejection of the null hypothesis. The reason being that a regression in the levels of
Yt and Xt may be sensible even when both variables are integrated. This is the case
when both variables are cointegrated. The concept of cointegration goes back to
Engle and Granger (1987) and initiated a literal research boom. We will give a more
general definition in Chap. 16 when we deal with multivariate time series. Here we
stick to the case of two variables and present the following definition.

Definition 7.2 (Cointegration, Bivariate). Two stochastic processes fXtg and fYtg
are called cointegrated if the following two conditions are fulfilled:
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Fig. 7.5 Distribution of OLS-estimate Ǒ and t-statistic t Ǒ for two independent random walks and

two independent AR(1) processes. (a) Distribution of Ǒ. (b) Distribution of t Ǒ. (c) Distribution of

Ǒ and t-statistic t Ǒ

(i) fXtg and fYtg are both integrated processes of order one, i.e. Xt � I.1/ and

Yt � I.1/;
(ii) there exists a constant ˇ ¤ 0 such that fYt � ˇXtg is a stationary process, i.e.

fYt � ˇXtg � I.0/.

The issue whether two integrated processes are cointegrated can be decided on
the basis of a unit root test. Two cases can be distinguished. In the first one, ˇ is
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assumed to be known. Thus, one can immediately apply the augmented Dickey-
Fuller (ADF) or the Phillips-Perron (PP) test to the process fYt � ˇXtg. Thereby the
same issue regarding the specification of the deterministic part arises. The critical
values can be retrieved from the usual tables (for example from MacKinnon 1991).
In the second case, ˇ is not known and must be estimated from the data. This can be
done running, as a first step, a simple (cointegrating) regression of Yt on Xt including
a constant and/or a time trend.19 Thereby the specification of the deterministic part
follows the same rules as before. The unit root test is then applied, in the second
step, to the residuals from this regression. As the residuals have been obtained
from a preceding regression, we are faced with the so-called “generated regressor
problem”.20 This implies that the usual Dickey-Fuller tables can no longer be used,
instead the tables provided by Phillips and Ouliaris (1990) become the relevant ones.
As before, the corresponding asymptotic distribution depends on the specification
of the deterministic part in the cointegrating regression. If this regression included
a constant, the residuals have necessary a mean of zero so that the Dickey-Fuller
regression should include no constant (case 1 in Table 7.1):

et D �et�1 C �t

where et and �t denote the residuals from the cointegrating and the residuals of the
Dickey-Fuller regression, respectively. In most applications it is necessary to correct
for autocorrelation which can be done by including additional lagged differences
�O"t�1; : : : ; �O"t�pC1 as in the ADF-test or by adjusting the t-statistic as in the PP-
test. The test where ˇ is estimated from a regression is called the regression test for

cointegration. Note that if the two series are cointegrated then the OLS estimate of
ˇ is (super) consistent.

In principle it is possible the generalize this single equation approach to more
than two variables. This encounters, however, some conceptual problems. First,
there is the possibility of more than one linearly independent cointegrating rela-
tionships which cannot be detected by a single regression. Second, the dependent
variable in the regression may not be part of the cointegrating relation which might
involves only the other variables. In such a situation the cointegrating regression is
again subject to the spurious regression problem. These issues turned the interest
of the profession towards multivariate approaches. Chapter 16 presents alternative
procedures and discusses the testing, estimation, and interpretation of cointegrating
relationships in detail.

19Thereby, in contrast to ordinary OLS regressions, it is irrelevant which variable is treated as the
left hand, respectively right hand variable.
20This problem was first analyzed by Nicholls and Pagan (1984) and Pagan (1984) in a stationary
context.
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An Example for Bivariate Cointegration
As an example, we consider the relation between the short-term interest rate,
fR3Mtg, and inflation, fINFLtg, in Switzerland over the period January 1989 to
February 2012. As the short-term interest rate we take the three month LIBOR.
Both time series are plotted in Fig. 7.6a. As they are integrated according to the
unit root tests (not shown here), we can look for cointegration. The cointegrating
regression delivers:

INFLt D �0:0088C 0:5535 R3Mt C et; R2 D 0:7798: (7.4)

The residuals from this regression, denoted by et, are represented in Fig. 7.6b. The
ADF unit root test of these residuals leads to a value of �3:617 for the t-statistic.
Thereby an autoregressive correction of 13 lags was necessary according to the AIC
criterion. The corresponding value of the t-statistic resulting from the PP unit root
test using a Bartlett window with band width 7 is �4:294. Taking a significance
level of 5 %, the critical value according to Phillips and Ouliaris (1990, Table IIb) is
�3:365.21 Thus, the ADF as well as the PP test reject the null hypothesis of a unit
root in the residuals. This implies that inflation and the short-term interest rate are
cointegrated.

7.5.3 Rules to Deal with Integrated Times Series

The previous sections demonstrated that the handling of integrated variables has
to be done with care. We will therefore in this section examine some rules of
thumb which should serve as a guideline in practical empirical work. These rules
are summarized in Table 7.5. In that this section follows very closely the paper by
Stock and Watson (1988b) (see also Campbell and Perron 1991).22 Consider the
linear regression model:

Yt D ˇ0 C ˇ1X1;t C : : :C ˇKXK;t C "t: (7.5)

This model is usually based on two assumptions:

(1) The disturbance term "t is white noise and is uncorrelated with any regressor.
This is, for example, the case if the regressors are deterministic or exogenous.

(2) All regressors are either deterministic or stationary processes.

If Eq. (7.5) represents the true data generating process, fYtg must be a stationary
process. Under the above assumptions, the OLS-estimator is consistent and the
OLS-estimates are asymptotically normally distributed so that the corresponding
t- and F-statistics will be approximately distributed as t- and F- distributions.

21For comparison, the corresponding critical value according to MacKinnon (1991) is �2:872.
22For a thorough analysis the interested reader is referred to Sims et al. (1990).
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LIBOR. (b) Residuals from cointegrating regression
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Consider now the case that assumption 2 is violated and that some or all
regressors are integrated, but that instead one of the two following assumptions
holds:

(2.a) The relevant coefficients are coefficients of mean-zero stationary variables.
(2.b) Although the relevant coefficients are those of integrated variables, the

regression can be rearranged in such a way that the relevant coefficients
become coefficients of mean-zero stationary variables.

Under assumptions 1 and 2.a or 2.b the OLS-estimator remains consistent. Also the
corresponding t- and F-statistics remain valid so that the appropriate critical values
can be retrieved from the t-, respectively F-distribution. If neither assumption 2.a
nor 2.b holds, but the following assumption:

(2.c) The relevant coefficients are coefficients of integrated variables and the
regression cannot be rewritten in a way that they become coefficients of
stationary variables.

If assumption 1 remains valid, but assumption 2.c holds instead of 2.a and 2.b, the
OLS-estimator is still consistent. However, the standard asymptotic theory for the t-
and the F-statistic fails so that they become useless for normal statistical inferences.

If we simply regress one variable on another in levels, the error term "t is likely
not to follow a white noise process. In addition, it may even be correlated with some
regressors. Suppose that we replace assumption 1 by:

(1.a) The integrated dependent variable is cointegrated with at least one integrated
regressor such that the error term is stationary, but may remain autocorrelated
or correlated with the regressors.

Under assumptions 1.a and 2.a, respectively 2.b, the regressors are stationary, but
correlated with the disturbance term, in this case the OLS-estimator becomes incon-
sistent. This situation is known as the classic omitted variable bias, simultaneous
equation bias or errors-in-variable bias. However, under assumptions 1.a and 2.c, the
OLS-estimator is consistent for the coefficients of interest. However, the standard
asymptotic theory fails. Finally, if both the dependent variable and the regressors are
integrated without being cointegrated, then the disturbance term is integrated and
the OLS-estimator becomes inconsistent. This is the spurious regression problem
treated in Sect. 7.5.1.

Example: Term Structure of Interest
We illustrate the above rules of thumb by investigating again the relation between
inflation (fINFLtg) and the short-term interest rate (fR3Mtg). In Sect. 7.5.2 we found
that the two variables are cointegrated with coefficient Ǒ D 0:5535 (see Eq. (7.4)).
In a further step we want to investigate a dynamic relation between the two variables
and estimate the following equation:
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Table 7.5 Rules of thumb in regressions with integrated processes

Remarks

Assumptions OLS-estimator Consistency Standard asymptotics

(1) (2) Yes Yes Classic results for OLS

(1) (2.a) Yes Yes

(1) (2.b) Yes Yes

(1) (2.c) Yes No

(1.a) (2.a) No No Omitted variable bias

(1.a) (2.b) No No Omitted variable bias

(1.a) (2.c) Yes No

Neither (1) nor (1.a) (2.c) No No Spurious regression

Source: Stock and Watson (1988b); results for the coefficients of interest

R3Mt D c C �1R3Mt�1 C �2R3Mt�2 C �3R3Mt�3 C ı1INFLt�1 C ı2INFLt�2 C "t

where "t � WN.0; �2/. In this regression we want to test the hypotheses �3 D 0

against �3 ¤ 0 and ı1 D 0 against ı1 ¤ 0 by examining the corresponding simple
t-statistics. Note that we are in the context of integrated variables so that the rules of
thumb summarized in Table 7.5 apply. We can rearrange the above equation as

�R3Mt D c

C .�1 C �2 C �3 � 1/R3Mt�1 � .�2 C �3/�R3Mt�1 � �3�R3Mt�2

C ı1INFLt�1 C ı2INFLt�2 C "t:

�3 is now a coefficient of a stationary variable in a regression with a stationary
dependent variables. In addition "t � WN.0; �2/ so that assumptions (1) und (2.b)
are satisfied. We can therefore use the ordinary t-statistic to test the hypothesis �3 D
0 against �3 ¤ 0. Note that it is not necessary to actually carry out the rearrangement
of the equation. All relevant item can be retrieved from the original equation.

To test the hypothesis ı1 D 0, we rearrange the equation to yield:

�R3Mt D c

C .�1 C ı1 Ǒ � 1/R3Mt�1 C �2R3Mt�2 C �3R3Mt�3

C ı1.INFLt�1 � ǑR3Mt�1/C ı2INFLt�2 C "t:

As fR3Mtg and fINFLtg are cointegrated, INFLt�1 � ǑR3Mt�1 is stationary. Thus
assumptions (1) and (2.b) hold again and we use once more the simple t-test. As
before it is not necessary to actually carry out the transformation.
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The prices of financial market securities are often shaken by large and time-varying
shocks. The amplitudes of these price movements are not constant. There are periods
of high volatility and periods of low volatility. Within these periods volatility
seems to be positively autocorrelated: high amplitudes are likely to be followed
by high amplitudes and low amplitudes by low amplitudes. This observation which
is particularly relevant for high frequency data such as, for example, daily stock
market returns implies that the conditional variance of the one-period forecast error
is no longer constant (homoskedastic), but time-varying (heteroskedastic). This
insight motivated Engle (1982) and Bollerslev (1986) to model the time-varying
variance thereby triggering a huge and still growing literature.1 The importance of
volatility models stems from the fact that the price of an option crucially depends
on the variance of the underlying security price. Thus with the surge of derivative
markets in the last decades the application of such models has seen a tremendous
rise. Another use of volatility models is to assess the risk of an investment. In the
computation of the so-called value at risk (VaR), these models have become an
indispensable tool. In the banking industry, due to the regulations of the Basel
accords, such assessments are in particular relevant for the computation of the
required equity capital backing-up assets of different risk categories.

The following exposition focuses on the class of autoregressive conditional
heteroskedasticity models (ARCH models) and their generalization the generalized
autoregressive conditional heteroskedasticity models (GARCH models). These

1Robert F. Engle III was awarded the Nobel prize in 2003 for his work on time-varying volatility.
His Nobel lecture (Engle 2004) is a nice and readable introduction to this literature.
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models form the basis for even more generalized models (see Bollerslev et al. (1994)
or Gouriéroux (1997)). Campbell et al. (1997) provide a broader economically
motivated approach to the econometric analysis of financial market data.

8.1 Specification and Interpretation

8.1.1 Forecasting Properties of AR(1)-Models

Models of volatility play an important role in explaining the behavior of financial
market data. They start from the observation that periods of high (low) volatility are
clustered in specific time intervals. In these intervals high (low) volatility periods
are typically followed by high (low) volatility periods. Thus volatility is usually
positively autocorrelated as can be observed in Fig. 8.3. In order to understand
this phenomenon we recapitulate the forecasting properties of the AR(1) model.2

Starting from the model

Xt D c C �Xt�1 C Zt; Zt � IID.0; �2/ and j�j < 1;

the best linear forecast in the mean-squared-error sense of XtC1 conditional on
fXt;Xt�1; : : :g, denoted by PtXtC1, is given by (see Chap. 3)

PtXtC1 D c C �Xt:

In practice the parameters c and � are replaced by an estimate.
The conditional variance of the forecast error then becomes:

Et .XtC1 � PtXtC1/
2 D EtZ

2
tC1 D �2;

where Et denotes the conditional expectation operator based on information
Xt;Xt�1; : : :. The conditional variance of the forecast error is therefore constant,
irrespective of the current state.

The unconditional forecast is simply the expected value of EXtC1 D � D c
1��

with forecast error variance:

E

�
XtC1 � c

1 � �

�2
D E

�
ZtC1 C �Zt C �2Zt�1 C : : :

�2 D �2

1 � �2 > �
2:

Thus the conditional as well as the unconditional variance of the forecast error are
constant. In addition, the conditional variance is smaller and thus more precise
because it uses more information. Similar arguments can be made for ARMA
models in general.

2Instead of assuming Zt � WN.0; �2/, we make for convenience the stronger assumption that
Zt � IID.0; �2/.
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8.1.2 The ARCH(1) Model

The volatility of financial market prices exhibit a systematic behavior so that the
conditional forecast error variance is no longer constant. This observation led Engle
(1982) to consider the following simple model for heteroskedasticity (non-constant
variance).

Definition 8.1 (ARCH(1) Model). A stochastic process fZtg, t 2 Z, is called an

autoregressive conditional heteroskedastic process of order one, ARCH(1) process,

if it is the solution of the following stochastic difference equation:

Zt D �t

q
˛0 C ˛1Z

2
t�1 with ˛0 > 0 and 0 < ˛1 < 1; (8.1)

where �t � IID N.0; 1/ and where �t and Zt�1 are independent from each other for

all t 2 Z.

We will discuss the implications of this simple model below and consider
generalizations in the next sections. First we prove the following theorem.

Theorem 8.1. Under conditions stated in the definition of the ARCH(1) process,

the difference equation (8.1) possesses a unique and strictly stationary solution with

EZ2t < 1. This solution is given by

Zt D �t

vuuut˛0

0
@1C

1X

jD1
˛

j

1�
2
t�1�

2
t�2 : : : �

2
t�j

1
A: (8.2)

Proof. Define the process

Yt D Z2t D �2t .˛0 C ˛1Yt�1/ (8.3)

Iterating backwards k times we get:

Yt D ˛0�
2
t C ˛1�

2
t Yt�1 D ˛0�

2
t C ˛1�

2
t �

2
t�1.˛0 C ˛1Yt�2/

D ˛0�
2
t C ˛0˛1�

2
t �

2
t�1 C ˛21�

2
t �

2
t�1Yt�2

: : :

D ˛0�
2
t C ˛0˛1�

2
t �

2
t�1 C : : :C ˛0˛

k
1�
2
t �

2
t�1 : : : �

2
t�k

C ˛kC1
1 �2t �

2
t�1 : : : �

2
t�kYt�k�1:
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Define the process fY 0
t g as

Y 0
t D ˛0�

2
t C ˛0

1X

jD1
˛

j

1�
2
t �

2
t�1 : : : �

2
t�j:

The right-hand side of the above expression just contains nonnegative terms.
Moreover, making use of the IID N.0; 1/ assumption of f�tg,

EY 0
t D E.˛0�

2
t /C ˛0E

0
@

1X

jD1
˛

j

1�
2
t �

2
t�1 : : : �

2
t�j

1
A

D ˛0

1X

jD0
˛

j

1 D ˛0

1 � ˛1
:

Thus, 0 � Y 0
t < 1 a.s. Therefore, fY 0

t g is strictly stationary and satisfies the
difference equation (8.3). This implies that Zt D

p
Y 0

t is also strictly stationary
and satisfies the difference equation (8.1).

To prove uniqueness, we follow Giraitis et al. (2000). For any fixed t, it follows
from the definitions of Yt and Y 0

t that for any k � 1

jYt � Y 0
t j � ˛kC1

1 �2t �
2
t�1 : : : �

2
t�kjYt�k�1j C ˛0

1X

jDkC1
˛

j

1�
2
t �

2
t�1 : : : �

2
t�j:

The expectation of the right-hand side is bounded by

�
EjY1j C ˛0

1 � ˛1

�
˛kC1
1 :

Define the event Ak by Ak D fjYt � Y 0
t j > 1=kg. Then,

P.Ak/ � kEjYt � Y 0
t j � k

�
EjY1j C ˛0

1 � ˛1

�
˛kC1
1

where the first inequality follows from Chebyschev’s inequality setting r D 1

(see Theorem C.3). Thus,
P1

kD1 P.Ak/ < 1. The Borel-Cantelli lemma (see
Theorem C.4) then implies that PfAk i:o:g D 0. However, as Ak � AkC1, P.Ak/ D 0

for any k. Thus, Yt D Y 0
t a.s. ut

Remark 8.1. Note that the normality assumption is not necessary for the proof. The
assumption �t � IID.0; 1/would be sufficient. Indeed, in practice it has been proven
useful to adopt distributions with fatter tail than the normal, like the t-distribution
(see the discussion in Sect. 8.1.3).



8.1 Specification and Interpretation 171

Given the assumptions made above fZtg has the following properties:

(i) The expected value of Zt is:

EZt D E�tE

q
˛0 C ˛1Z

2
t�1 D 0:

This follows from the assumption that �t and Zt�1 are independent.
(ii) The covariances between Zt and Zt�h, EZtZt�h, for h ¤ 0 are given by:

EZtZt�h D E

�
�t

q
˛0 C ˛1Z

2
t�1 �t�h

q
˛0 C ˛1Z

2
t�h�1

�

D E�t�t�h E

q
˛0 C ˛1Z

2
t�1

q
˛0 C ˛1Z

2
t�h�1 D 0:

This is also a consequence of the independence assumption between �t and
Zt�1, respectively between �t�h and Zt�h�1.

(iii) The variance of Zt is:

VZt D EZ2t D E�2t
�
˛0 C ˛1Z

2
t�1
�

D E�2t E
�
˛0 C ˛1Z

2
t�1
�

D ˛0

1 � ˛1
< 1:

This follows from the independence assumption between �t and Zt�1 and from
the stationarity of fZtg. Because ˛0 > 0 and 0 < ˛1 < 1, the variance is always
strictly positive and finite.

(iv) As �t is normally distributed, its skewness, E�3t , equals zero. The independence
assumption between �t and Z2t�1 then implies that the skewness of Zt is also
zero, i.e.

EZ3t D 0:

Zt therefore has a symmetric distribution.

The properties (i), (ii) and (iii) show that fZtg is a white noise process. According
to Theorem 8.1 it is not only stationary but even strictly stationary. Thus fZtg is
uncorrelated with Zt�1;Zt�2; : : :, but not independent from its past! In particular we
have:

E .ZtjZt�1;Zt�2; : : :/ D Et�t

q
˛0 C ˛1Z

2
t�1 D 0

V.ZtjZt�1;Zt�2; : : :/ D E
�
Z2t jZt�1;Zt�2; : : :

�

D Et�
2
t

�
˛0 C ˛1Z

2
t�1
�

D ˛0 C ˛1Z
2
t�1:

The conditional variance of Zt therefore depends on Zt�1. Note that this dependence
is positive because ˛1 > 0.
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In order to guarantee that this conditional variance is always positive, we must
postulate that ˛0 > 0 and ˛1 > 0. The stability of the difference equation requires
in addition that ˛1 < 1.3 Thus high volatility in the past, a large realization of Zt�1,
is followed by high volatility in the future. The precision of the forecast, measured
by the conditional variance of the forecast error, thus depends on the history of the
process. This feature is not compatible with linear models and thus underlines the
non-linear character of the ARCH model and its generalizations.

Despite the fact that �t was assumed to be normally distributed, Zt is not normally
distributed. Its distribution deviates from the normal distribution in that extreme
realizations are more probable. This property is called the heavy-tail property. In
particular we have4:

EZ4t D E�4t
�
˛0 C ˛1Z

2
t�1
�2 D E�4t

�
˛20 C 2˛0˛1Z

2
t�1 C ˛21Z4t�1

�

D 3˛20 C 6˛20˛1

1 � ˛1
C 3˛21EZ4t�1:

The strict stationarity of fZtg implies EZ4t D EZ4t�1 so that

.1 � 3˛21/EZ4t D 3˛20.1C ˛1/

1 � ˛1
H)

EZ4t D 1

1 � 3˛21
� 3˛20.1C ˛1/

1� ˛1
:

EZ4t is therefore positive and finite if and only if 3˛21 < 1, respectively if 0 < ˛1 <

1=
p
3 D 0:5774. For high correlation of the conditional variance, i.e. high ˛1 >

1=
p
3, the fourth moment and therefore also all higher even moments will no longer

exist. The kurtosis � is

� D EZ4t

ŒEZ2t �
2

D 3 � 1� ˛21

1 � 3˛21
> 3;

if EZ4t exists. The heavy-tail property manifests itself by a kurtosis greater than 3
which is the kurtosis of the normal distribution. The distribution of Zt is therefore
leptokurtic and thus more vaulted than the normal distribution.

Finally, we want to examine the autocorrelation function of Z2t . This will lead to
a test for ARCH effects, i.e. for time varying volatility (see Sect. 8.2 below).

3The case ˛1 D 1 is treated in Sect. 8.1.4.
4As �t � N.0; 1/ its even moments, m2k D E�2k

t , k D 1; 2; : : :, are given by m2k D
Qk

jD1.2j � 1/.
Thus we get m4 D 3, m6 D 15, etc. As the normal distribution is symmetric, all odd moments are
equal to zero.
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Theorem 8.2. Assuming that EZ4t exists, Yt D Z2t
˛0

has the same autocorrelation

function as the AR(1) process Wt D ˛1Wt�1 C Ut with Ut � WN.0; 1/. In addition,

under the assumption 0 < ˛1 < 1, the process fWtg is also causal with respect

to fUtg.

Proof. From Yt D �2t .1C ˛1Yt�1/ we get:


Y.h/ D EYtYt�h � EYtEYt�h D EYtYt�h � 1

.1 � ˛1/2

D E�2t .1C ˛1Yt�1/ Yt�h � 1

.1 � ˛1/2

D EYt�h C ˛1EYt�1Yt�h � 1

.1 � ˛1/2

D 1

1 � ˛1
C ˛1

�

Y.h � 1/C 1

.1 � ˛1/2

�
� 1

.1 � ˛1/2

D ˛1
Y.h � 1/C 1 � ˛1 C ˛1 � 1

.1 � ˛1/2
D ˛1
Y.h � 1/:

Therefore, 
Y.h/ D ˛h
1
Y.0/ ) �.h/ D ˛h

1 . ut

The unconditional variance of Xt is:

VXt D V

0
@ c

1 � � C
1X

jD0
� jZt�j

1
A D 1

1 � �2
VZt D ˛0

1 � ˛1
� 1

1 � �2 :

The unconditional variance of Xt involves all parameters of the model. Thus
modeling the variance of Xt induces a trade-off between �, ˛0 and ˛1.

Figure 8.1 plots the realizations of two AR(1)-ARCH(1) processes.Both pro-
cesses have been generated with the same realization of f�tg and the same
parameters � D 0:9 and ˛0 D 1. Whereas the first process (shown on the left
panel of the figure) was generated with a value of ˛1 D 0:9 , the second one had a
value of ˛1 D 0:5. In both cases the stability condition, ˛1 < 1, is fulfilled, but for
the first process 3˛21 > 1, so that the fourth moment does not exist. One can clearly
discern the large fluctuations, in particular for the first process.

8.1.3 General Models of Volatility

The simple ARCH(1) model can be and has been generalized in several directions.
A straightforward generalization proposed by Engle (1982) consists by allowing
further lags to enter the ARCH equation (8.1). This leads to the ARCH(p) model:
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Fig. 8.1 Simulation of two ARCH(1) processes (˛1 D 0:9 and ˛1 D 0:5)

ARCH.p/ W Zt D �t�t with �2t D ˛0 C
pX

jD1
˛jZ

2
t�j (8.4)

where ˛0 � 0, ˛j � 0 and �t � IID N.0; 1/ with �t independent from Zt�j, j � 1. A
further popular generalization was proposed by Bollerslev (1986):

GARCH.p; q/ W Zt D �t�t with �2t D ˛0 C
pX

jD1
˛jZ

2
t�j C

qX

jD1
ˇj�

2
t�j (8.5)

where we assume ˛0 � 0, ˛j � 0, ˇj � 0 and �t � IID N.0; 1/ with �t independent
from Zt�j, j � 1, as before. This model is analogous the ordinary ARMA model
and allows for a parsimonious specification of the volatility process. All coefficients
should be positive to guarantee that the variance is always positive. In addition it
can be shown (see for example Fan and Yao (2003, 150) and the literature cited
therein) that fZtg is (strictly) stationary with finite variance if and only if

Pp

jD1 ˛j CPq

jD1 ˇj < 1.5 Under this condition fZtg � WN.0; �2Z / with

�2Z D V.Zt/ D ˛0

1 �
Pp

jD1 ˛j �
Pq

jD1 ˇj

:

5A detailed exposition of the GARCH(1,1) model is given in Sect. 8.1.4.
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As �t is still normally distributed the uneven moments of the distribution of Zt are
zero and the distribution is thus symmetric. The fourth moment of Zt, EZ4t , exists if

p
3

Pp

jD1 ˛j

1 �
Pq

jD1 ˇj

< 1:

This condition is sufficient, but not necessary.6 Furthermore, fZtg is a white noise
process with heavy-tail property if fZtg is strictly stationary with finite fourth
moment.

In addition, fZ2t g is a causal and invertible ARMA.max fp; qg; q/ process satisfy-
ing the following difference equation:

Z2t D ˛0 C
pX

jD1
˛jZ

2
t�j C

qX

jD1
ˇj�

2
t�j C et

D ˛0 C
maxfp;qgX

jD1
.˛j C ˇj/Z

2
t�j C et �

qX

jD1
ˇjet�j;

where ˛pCj D ˇqCj D 0 for j � 1 and “error term”

et D Z2t � �2t D .�2t � 1/

0
@˛0 C

pX

jD1
˛jZ

2
t�j C

qX

jD1
ˇj�

2
t�j

1
A :

Note, however, there is a circularity here because the noise process fetg is defined
in terms of Z2t and is therefore not an exogenous process driving Z2t . Thus, one has
to be precautious in the interpretation of fZ2t g as an ARMA process.

Further generalizations of the GARCH(p,q) model can be obtained by allowing
deviations from the normal distribution for �t. In particular, distributions such as
the t-distribution which put more weight on extreme values have become popular.
This seems warranted as prices on financial markets exhibit large and sudden
fluctuations.7

The Threshold GARCH Model
Assuming a symmetric distribution for �t and specifying a linear relationship
between �2t and Z2t�j bzw. �2t�j, j > 0, leads to a symmetric distribution for Zt.
It has, however, been observed that downward movements seem to be different from

6Zadrozny (2005) derives a necessary and sufficient condition for the existence of the fourth
moment.
7A thorough treatment of the probabilistic properties of GARCH processes can be found in Nelson
(1990), Bougerol and Picard (1992a), Giraitis et al. (2000), Klüppelberg et al. (2004, theorem 2.1),
and Lindner (2009).
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upward movements. This asymmetric behavior is accounted for by the asymmetric
GARCH(1,1) model or threshold GARCH(1,1) model (TGARCH(1,1) model). This
model was proposed by Glosten et al. (1993) and Zakoïan (1994):

asymmetric GARCH.1; 1/ W Zt D �t�t with

�2t D ˛0 C ˛1Z
2
t�1 C ˇ�2t�1

C 
1fZt�1<0gZ
2
t�1:

1fZt�1<0g denotes the indicator function which takes on the value one if Zt�1 is
negative and the value zero otherwise. Assuming, as before, that all parameters ˛0,
˛1, ˇ and 
 are greater than zero, this specification postulates a leverage effect
because negative realizations have a greater impact than positive ones. In order to
obtain a stationary process the condition ˛1 C ˇ C 
=2 < 1 must hold. This model
can be generalized in an obvious way by allowing additional lags Z2t�j and �2t�j, j > 1

to enter the above specification.

The Exponential GARCH Model
Another interesting and popular class of volatility models was introduced by Nelson
(1991). The so-called exponential GARCH models or EGARCH models are defined
as follows:

log �2t D ˛0 C ˇ log�2t�1 C 


ˇ̌
ˇ̌Zt�1
�t�1

ˇ̌
ˇ̌C ı

Zt�1
�t�1

D ˛0 C ˇ log�2t�1 C 
 j�t�1j C ı�t�1:

Note that, in contrast to the previous specifications, the dependent variable is the
logarithm of �2t and not �2t itself. This has the advantage that the variance is always
positive irrespective of the values of the coefficients. Furthermore, the leverage
effect is exponential rather than quadratic because Zt D �t exp.�t=2/. The EGARCH
model is also less recursive than the GARCH model as the volatility is specified
directly in terms of the noise process f�tg. Thus, the above EGARCH model can be
treated as an AR(1) model of log �2t with noise process 
 j�t�1jCı�t�1. It is obvious
that the model can be generalized to allow for additional lags both in �2t and �t.
This results in an ARMA process for flog �2t g for which the usual conditions for the
existence of a causal and invertible solution can be applied (see Sect. 2.3). A detailed
analysis and further properties of this model class can be found in Bollerslev et al.
(1994), Gouriéroux (1997) and Fan and Yao (2003, 143–180).

The ARCH-in-Mean Model
The ARCH-in-mean model or ARCH-M model was introduced by Engle et al.
(1987) to allow for a feedback of volatility into the mean equation. More specifi-
cally, assume for the sake of simplicity that the variance equation is just represented
the ARCH(1) model

Zt D �t�t with �2t D ˛0 C ˛1Z
2
t�1:
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Then, the ARCH-M model is given

Xt D Mtˇ C g.�2t /C Zt (8.6)

where g is a function of the volatility �2t and where M0
t consists of a vector of

regressors, including lagged values of Xt. If Mt D .1;Xt�1/ then we get the AR(1)-
ARCH-M model. The most commonly used specification for g is a linear function:
g.�2t / D ı0 C ı1�

2
t . In the asset pricing literature, higher volatility would require a

higher return to compensate the investor for the additional risk. Thus, if Xt denotes
the return on some asset, we expect ı1 to be positive. Note that any time variation
in �2t translates into a serial correlation of fXtg (see Hong 1991, for details). Of
course, one could easily generalize the model to allow for more sophisticated mean
and variance equations.

8.1.4 The GARCH(1,1) Model

The Generalized Autoregressive Conditional Heteroskedasticity model of order
(1,1), GARCH(1,1) model for short, is considered as a benchmark for more general
specifications and often serves as a starting point for further empirical investigations.
We therefore want to explore its properties in more detail. Many of its properties
generalize in a straightforward way to the GARCH(p,q) process. According to
Eq. (8.5) the GARCH(1,1) model is defined as:

GARCH.1; 1/ W Zt D �t�t with �2t D ˛0 C ˛1Z
2
t�1 C ˇ�2t�1 (8.7)

where ˛0; ˛1; and ˇ � 0. We assume ˛1 C ˇ > 0 to avoid the degenerate case
˛1 D ˇ D 0 which implies that fZtg is just a sequence of IID random variables.
Moreover, �t � IID.0; 1/ with �t being independent of Zt�j, j � 1. Note that we do
not make further distributional assumption. In particular, �t need not required to be
normally distributed. For this model, we can formulate a similar theorem as for the
ARCH(1) model (see Theorem: 8.1):

Theorem 8.3. Let fZtg be a GARCH(1,1) process as defined above. Under the

assumption

E log.˛1�
2
t C ˇ/ < 0;

the difference equation (8.7) possess strictly stationary solution:

Zt D �t

vuut˛0

1X

jD0

jY

iD1
.˛1�

2
t�i C ˇ/

where
Qj

i D 1 whenever i > j. The solution is also unique given the sequence f�tg.

The solution is unique and (weakly) stationary with variance EZ2t D ˛0
1�˛1�ˇ < 1

if ˛1 C ˇ < 1.
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Proof. The proof proceeds similarly to Theorem 8.1. For this purpose, we define
Yt D �2t and rewrite the GARCH(1,1) model as

Yt D ˛0 C ˛1�
2
t�1Yt�1 C ˇYt�1 D ˛0 C .˛1�

2
t�1 C ˇ/Yt�1:

This defines an AR(1) process with time-varying coefficients �t D ˛1�
2
t C ˇ � 0.

Iterate this equation backwards k times to obtain:

Yt D ˛0 C ˛0�t�1 C : : :C ˛0�t�1 : : : �t�k C �t�1 : : : �t�k�t�k�1Yt�k�1

D ˛0

kX

jD0

jY

iD1
�t�i C

kC1Y

iD1
�t�iYt�k�1:

Taking the limit k ! 1, we define the process fY 0
t g

Y 0
t D ˛0

1X

jD0

jY

iD1
�t�i: (8.8)

The right-hand side of this expression converges almost surely as can be seen from
the following argument. Given that �t � IID and given the assumption E log.˛1�2t C
ˇ/ < 0, the strong law of large numbers (Theorem C.5) implies that

lim sup
j!1

1

j

 
jX

iD1
log.�t�i/

!
< 0 a.s.,

or equivalently,

lim sup
j!1

log

 
jY

iD1
�t�i

!1=j

< 0 a.s.

Thus,

lim sup
j!1

 
jY

iD1
�t�i

!1=j

< 1 a.s.

The application of the root test then shows that the infinite series (8.8) converges
almost surely. Thus, fY 0

t g is well-defined. It is easy to see that fY 0
t g is strictly

stationary and satisfies the difference equation. Moreover, if ˛1 C ˇ < 1, we get

EY 0
t D ˛0

1X

jD0
E

jY

iD1
�t�i D ˛0

1X

jD0
.˛1 C ˇ/j D ˛0

1� ˛1 � ˇ
:
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Thus, EZ2t D ˛0
1�˛1�ˇ < 1.

To show uniqueness, we assume that there exists another strictly stationary
process fYtg which also satisfies the difference equation. This implies that

jYt � Y 0
t j D j�t�1j jYt�1 � Y 0

t�1j D
 

kY

iD1
�t�i

!
jYt�k � Y 0

t�kj

�
 

kY

iD1
�t�i

!
jYt�kj C

 
kY

iD1
�t�i

!
jY 0

t�kj

The assumption E log �t D E log.˛1�2t C ˇ/ < 0 together with the strong law of
large numbers (Theorem C.5) imply

kY

iD1
�t�i D

 
exp

 
1

k

kX

iD1
log �t�i

!!k

�! 0 a.s.

As both solutions are strictly stationary so that the distribution of jYt�kj and jY 0
t�kj

do not depend on t, this implies that both
�Qk

iD1 �t�i

�
jYt�kj and

�Qk
iD1 �t�i

�
jY 0

t�kj
converge in probability to zero. Thus, Yt D Y 0

t a.s. once the sequence �t, respectively
�t, is given. Because Zt D �t

p
Y 0

t this completes the proof. ut

Remark 8.2. Using Jensen’s inequality, we see that

E log.˛1�
2
t C ˇ/ � logE.˛1�

2
t C ˇ/ D log.˛1 C ˇ/:

Thus, the condition ˛1 C ˇ < 1 is sufficient, but not necessary, to ensure the
existence of a strictly stationary solution. Thus even when ˛1 C ˇ D 1, a strictly
stationary solution exists, albeit one with infinite variance. This case is known as the
IGARCH model and is discussed below. In the case ˛1 C ˇ < 1, the Borel-Cantelli
lemma can be used as Theorem 8.1 to establish the uniqueness of the solution.
Further details can be found in the references listed in footnote 7.

Assume that ˛1 Cˇ < 1, then a unique strictly stationary process fZtg with finite
variance which satisfies the above difference equation exists. In particular Zt �
WN.0; �2Z / such that

V.Zt/ D ˛0

1 � ˛1 � ˇ :
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Fig. 8.2 Parameter region for which a strictly stationary solution to the GARCH(1,1) process
exists assuming �t � IID N.0; 1/

The assumption 1�˛1�ˇ > 0 guarantees that the variance exists. The third moment
of Zt is zero due to the assumption of a symmetric distribution for �t. The condition
for the existence of the fourth moment is:

p
3 ˛1
1�ˇ < 1.8 The kurtosis is then

� D EZ4t

ŒEZ2t �
2

D 3 � 1 � .˛1 C ˇ/2

1 � .˛1 C ˇ/2 � 2˛21
> 3

if EZ4t exists.9 Therefore the GARCH(1,1) model also possesses the heavy-tail
property because Zt is more peaked than the normal distribution.

Figure 8.2 shows how the different assumptions and conditions divide up the
parameter space. In region I, all conditions are fulfilled. The process has a strictly
stationary solution with finite variance and kurtosis. In region II, the kurtosis does
no longer exist, but the variance does as ˛1 C ˇ < 1 still holds. In region III, the
process has infinite variance, but a strictly stationary solution yet exists. In region
IV, no such solution exists.

Viewing the equation for �2t as a stochastic difference equation, its solution is
given by

�2t D ˛0

1 � ˇ C ˛1

1X

jD0
ˇjZ2t�1�j: (8.9)

8A necessary and sufficient condition is .˛1 C ˇ/2 C 2˛21 < 1 (see Zadrozny (2005)).
9The condition for the existence of the fourth moment implies 3˛21 < .1 � ˇ/2 so that the
denominator 1� ˇ2 � 2˛1ˇ � 3˛21 > 1� ˇ2 � 2˛1ˇ � 1� ˇ2 C 2ˇ D 2ˇ.1� ˛1 � ˇ/ > 0.
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This expression is well-defined because 0 < ˇ < 1 so that the infinite sum
converges. The conditional variance given the infinite past is therefore equal to

V .ZtjZt�1;Zt�2; : : :/ D E
�
Z2t jZt�1;Zt�2; : : :

�
D ˛0

1 � ˇ C ˛1

1X

jD0
ˇjZ2t�1�j:

Thus, the conditional variance depends on the entire history of the time series and
not just on Zt�1 as in the case of the ARCH(1) model. As all coefficients are assumed
to be positive, the clustering of volatility is more persistent than for the ARCH(1)
model.

Defining a new time series fetg by et D Z2t ��2t D .�2t �1/.˛0C˛1Z2t�1Cˇ�2t�1/,
one can verify that Z2t obeys the stochastic difference equation

Z2t D ˛0 C ˛1Z
2
t�1 C ˇ�2t�1 C et D ˛0 C ˛1Z

2
t�1 C ˇ.Z2t�1 � et�1/C et

D ˛0 C .˛1 C ˇ/Z2t�1 C et � ˇet�1: (8.10)

This difference equation defines an ARMA(1,1) process if et has finite variance
which is the case if the fourth moment of Zt exists. In this case, it is easy to verify
that fetg is white noise. The so-defined ARMA(1,1) process is causal and invertible
with respect to fetg because 0 < ˛1 C ˇ < 1 and 0 < ˇ < 1. The autocorrelation
function (ACF), �Z2.h/, can be computed using the methods laid out Sect. 2.4. This
gives

�Z2.1/ D .1 � ˇ2 � ˛1ˇ/˛1

1 � ˇ2 � 2˛1ˇ
D .1 � ˇ'/.' � ˇ/

1C ˇ2 � 2'ˇ ;

�Z2.h/ D .˛1 C ˇ/�Z2.h � 1/ D '�Z2.h � 1/; h D 2; 3; : : : (8.11)

with ' D ˛1 C ˇ (see also Bollerslev (1988)).

The IGARCH Model
Practice has shown that the sum ˛1 C ˇ is often close to one. Thus, it seems
interesting to examine the limiting case where ˛1 C ˇ D 1. This model was
proposed by Engle and Bollerslev (1986) and was termed the integrated GARCH

(IGARCH) model in analogy to the notion of integrated processes (see Chap. 7).
From Eq. (8.10) we get

Z2t D ˛0 C Z2t�1 C et � ˇet�1

with et D Z2t � �2t D .�2t � 1/.˛0 C .1 � ˇ/Z2t�1 C ˇ�2t�1/. As fetg is white noise,
the squared innovations Z2t behave like a random walk with a MA(1) error term.
Although the variance of Zt becomes infinite, the difference equation still allows for
a strictly stationary solution provided that E log.˛1�2t C ˇ/ < 0 (see Theorem 8.3
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and the citations in footnote 7 for further details).10 It has been shown by Lumsdaine
(1986) and Lee and Hansen (1994) that standard inferences can still be applied
although ˛1 C ˇ D 1. The model may easily generalized to higher lag orders.

Forecasting
On many occasions it is necessary to obtain forecasts of the conditional variance �2t .
An example is given in Sect. 8.4 where the value at risk (VaR) of a portfolio several
periods ahead must be evaluated. Denote by Pt�

2
tCh the h period ahead forecast based

on information available in period t. We assume that predictions are based on the
infinite past. Then the one-period ahead forecast based on Zt and �2t , respectively �t

and �2t , is:

Pt�
2
tC1 D ˛0 C ˛1Z

2
t C ˇ�2t D ˛0 C .˛1�

2
t C ˇ/�2t : (8.12)

As �t � IID.0; 1/ and independent of Zt�j, j � 1,

Pt�
2
tC2 D ˛0 C .˛1 C ˇ/Pt�

2
tC1:

Thus, forecast for h � 2 can be obtained recursively as follows:

Pt�
2
tCh D ˛0 C .˛1 C ˇ/Pt�

2
tCh�1

D ˛0

h�2X

jD0
.˛1 C ˇ/j C .˛1 C ˇ/h�1

Pt�
2
tC1: (8.13)

Assuming ˛1 C ˇ < 1, the second term in the above expression vanishes as h goes
to infinity. Thus, the contribution of the current conditional variance vanishes when
we look further and further into the future. The forecast of the conditional variance
then approaches the unconditional one: limh!1 Pt�

2
tCh D ˛0

1�˛1�ˇ . If ˛1 C ˇ D 1

as in the IGARCH model, the contribution of the current conditional variance is
constant, but diminishes to zero relative to the first term. Finally, if ˛1 C ˇ > 1, the
two terms are of the same order and we have a particularly persistent situation.

In practice, the parameters of the model are unknown and have therefore be
replaced by an estimate. The method can be easily adapted for higher order
models. Instead of using the recursive approach outlined above, it is possible to use
simulation methods by drawing repeatedly from the actual empirical distribution of
the O�t D OZt= O�t. This has the advantage to capture deviations from the underlying
distributional assumptions (see Sect. 8.4 for a comparison of both methods). Such
methods must be applied if nonlinear models for the conditional variance, like the
TARCH model, are employed.

10As the variance becomes infinite, the IGARCH process is an example of a stochastic process
which is strictly stationary, but not stationary.
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8.2 Tests for Heteroskedasticity

Before modeling the volatility of a time series it is advisable to test whether
heteroskedasticity is actually present in the data. For this purpose the literature
proposed several tests of which we are going to examine two. For both tests the
null hypothesis is that there is no heretoskedasticity i.e. that there are no ARCH
effects. These tests can also be useful in a conventional regression setting.

8.2.1 Autocorrelation of Quadratic Residuals

The first test is based on the autocorrelation function of squared residuals from a
preliminary regression. This preliminary regression or mean regression produces a
seriesbZt which should be approximately white noise if the equation is well specified.
Then we can look at the ACF of the squared residuals fbZ2t g and apply the Ljung-Box
test (see Eq. (4.4)). Thus the test can be broken down into three steps.

(i) Estimate an ARMA model for fXtg and retrieve the residuals bZ t from this
model. ComputebZ2t . These data can be used to estimate �2 as

O�2 D 1

T

TX

tD1

bZ2t

Note that the ARMA model should be specified such that the residuals are
approximately white noise.

[(ii) ] Estimate the ACF for the squared residuals in the usual way:

O�Z2.h/ D
PT

tDhC1

�
bZ2t � O�2

� �
OZ2t�h � O�2

�

PT
tD1

�
bZ2t � O�2

�2

(iii) It is now possible to use one of the methods laid out in Chap. 4 to test the
null hypothesis that fZ2t g is white noise. It can be shown that under the null

hypothesis
p

T O�Z2.h/
d����! N.0; 1/. One can therefore construct confidence

intervals for the ACF in the usual way. Alternatively, one may use the Ljung-
Box test statistic (see Eq. (4.4)) to test the hypothesis that all correlation
coefficients up to order N are simultaneously equal to zero.

Q0 D T.T C 2/

NX

hD1

O�2
Z2
.h/

T � h
:

Under the null hypothesis this statistic is distributed as �2N . To carry out the
test, N should be chosen rather high, for example equal to T=4.
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8.2.2 Engle’s Lagrange-Multiplier Test

Engle (1982) proposed a Lagrange-Multiplier test. This test rests on an ancil-
lary regression of the squared residuals against a constant and lagged values of
bZ2t�1;bZ2t�2; : : : ;bZ2t�p where the fbZtg is again obtained from a preliminary regression.
The auxiliary regression thus is

bZ2t D ˛0 C ˛1bZ2t�1 C ˛2bZ2t�2 C : : :C ˛p
bZ2t�p C "t;

where "t denotes the error term. Then the null hypothesis H0 W ˛1 D ˛2 D : : : D
˛p D 0 is tested against the alternative hypothesis H1 W ˛j ¤ 0 for at least one j. As
a test statistic one can use the coefficient of determination times T, i.e. TR2. This
test statistic is distributed as a �2 with p degrees of freedom. Alternatively, one may
use the conventional F-test.

8.3 Estimation of GARCH(p,q) Models

8.3.1 Maximum-Likelihood Estimation

The literature has proposed several approaches to estimate models of volatility (see
Fan and Yao (2003, 156–162)). The most popular one, however, rest on the method
of maximum-likelihood. We will describe this method using the GARCH(p,q)
model. Related and more detailed accounts can be found in Weiss (1986), Bollerslev
et al. (1994) and Hall and Yao (2003).

In particular we consider the following model:

mean equation: Xt D c C �1Xt�1 C : : :C �rXt�r C Zt;

where

Zt D �t�t with �t � IIDN.0; 1/ and

variance equation: �2t D ˛0 C
pX

jD1
˛jZ

2
t�j C

qX

jD1
ˇj�

2
t�j:

The mean equation represents a simple AR(r) process for which we assume that it is
causal with respect to fZtg, i.e. that all roots of ˆ.z/ are outside the unit circle. The
method demonstrated here can be easily generalized to ARMA processes or even
ARMA process with additional exogenous variables (so-called ARMAX processes)
as noted by Weiss (1986). The method also incorporates the ARCH-in-mean model
(see equation (8.6)) which allows for an effect of the conditional variance �t on Xt.
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In addition, we assume that the coefficients of the variance equation are all positive,
that

Pp

jD1 ˛j C
Pq

jD1 ˇj < 1 and that EZ4t < 1 exists.11

As �t is identically and independently standard normally distributed, the dis-
tribution of Xt conditional on Xt�1 D fXt�1;Xt�2; : : :g is normal with mean
c C �1Xt�1 C : : : C �rXt�r and variance �2t . The conditional density, f .XtjXt�1/,
therefore is:

f .XtjXt�1/ D 1p
2��2t

exp

�
� Z2t

2�2t

�

where Zt equals Xt � c � �1Xt�1 � : : : � �rXt�r and �2t is given by the variance
equation.12 The joint density f .X1;X2; : : : ;XT/ of a random sample .X1;X2; : : : ;XT/

can therefore be factorized as

f .X1;X2; : : : ;XT/ D f .X1;X2; : : : ;Xs�1/
TY

tDs

f .XtjXt�1/

where s is an integer greater than p. The necessity, not to factorize the first s � 1

observations, relates to the fact that �2t can only be evaluated for s > p in the
ARCH(p) model. For the ARCH(p) model s can be set to p C 1. In the case of a
GARCH model �2t is given by weighted infinite sum of the Z2t�1;Z

2
t�2; : : : (see the

expression (8.9) for �2t in the GARCH(1,1) model). For finite samples, this infinite
sum must be approximated by a finite sum of s summands such that the numbers of
summands s is increasing with the sample size.(see Hall and Yao (2003)).

We then merge all parameters of the model as follows: � D .c; �1; : : : ; �r/
0, ˛ D

.˛0; ˛1; : : : ; ˛p/
0 and ˇ D .ˇ1; : : : ; ˇq/

0. For a given realization x D .x1; x2; : : : ; xT/

the likelihood function conditional on x, L.�; ˛; ˇjx/, is defined as

L.�; ˛; ˇjx/ D f .x1; x2; : : : ; xs�1/
TY

tDs

f .xtjXt�1/

where in Xt�1 the random variables are replaced by their realizations. The likelihood
function can be seen as the probability of observing the data at hand given the values
for the parameters. The method of maximum likelihood then consist in choosing the
parameters .�; ˛; ˇ/ such that the likelihood function is maximized. Thus we chose
the parameter so that the probability of observing the data is maximized. In this way

11The existence of the fourth moment is necessary for the asymptotic normality of the maximum-
likelihood estimator, but not for the consistence. It is possible to relax this assumption somewhat
(see Hall and Yao (2003)).
12If �t is assumed to follow another distribution than the normal, one may use this distribution
instead.
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we obtain the maximum likelihood estimator. Taking the first s realizations as given
deterministic starting values, we then get the conditional likelihood function.

In practice we do not maximize the likelihood function but the logarithm of it
where we take f .x1; : : : ; xs�1/ as a fixed constant which can be neglected in the
optimization:

log L.�; ˛; ˇjx/ D
TX

tDs

log f .xtjXt/

D �T

2
log 2� � 1

2

TX

tDs

log �2t � 1

2

TX

tDs

z2t

�2t

where zt D xt � c � �1xt�1 � : : : � �rxt�r denotes the realization of Zt. The
maximum likelihood estimator is obtained by maximizing the likelihood function
over the admissible parameter space. Usually, the implementation of the stationarity
condition and the condition for the existence of the fourth moment turns out to
be difficult and cumbersome so that often these conditions are neglected and only
checked in retrospect or some ad hoc solutions are envisaged. It can be shown that
the (conditional) maximum likelihood estimator leads to asymptotically normally
distributed estimates.13 The maximum likelihood estimator remains meaningful
even when f�tg is not normally distributed. In this case the quasi maximum
likelihood estimator is obtained (see Hall and Yao (2003) and Fan and Yao (2003)).

For numerical reasons it is often convenient to treat the mean equation and the
variance equation separately. As the mean equation is a simple AR(r) model, it can
be estimated by ordinary least-squares (OLS) in a first step. This leads to consistent
parameter estimates. However, due to the heteroskedasticity, this no longer true for
the covariance matrix of the coefficients so that the usual t- and F-tests are nor
reliable. This problem can be circumvented by the use of the White correction (see
White (1980)). In this way it is possible to find an appropriate specification for
the mean equation without having to estimate the complete model. In the second
step, one can then work with the residuals to find an appropriate ARMA model
for the squared residuals. This leads to consistent estimates of the parameters of
the variance equation. These estimates are under additional weakly assumptions
asymptotically normally distributed (see Weiss (1986)). It should, however, be noted
that this way of proceeding is, in contrast to the maximum likelihood estimator,
not efficient because it neglect the nonlinear character of the GARCH model. The
parameters found in this way can, however, serve as meaningful starting values for
the numerical maximization procedure which underlies the maximum likelihood
estimation.

13Jensen and Rahbek (2004) showed that, at least for the GARCH(1,1) case, the stationarity
condition is not necessary.
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A final remark concerns the choice of the parameter r, p and q. Similarly to the
ordinary ARMA models, one can use information criteria such as the Akaike or the
Bayes criterion, to determine the order of the model (see Sect. 5.4).

8.3.2 Method of Moment Estimation

The maximization of the likelihood function requires the use of numerical opti-
mization routines. Depending on the routine actually used and on the starting value,
different results may be obtained if the likelihood function is not well-behaved. It
is therefore of interest to have alternative estimation methods at hand. The method
of moments is such an alternative. It is similar to the Yule-Walker estimator (see
Sect. 5.1) applied to the autocorrelation function of fZ2t g. This method not only leads
to an analytic solution, but can also be easily implemented. Following Kristensen
and Linton (2006), we will illustrate the method for the GARCH(1,1) model.

Equation (8.11) applied to �Z2.1/ and �Z2.2/ constitutes a nonlinear equation
system in the unknown parameters ˇ and ˛1. This system can be reparameterized
to yield an equation system in ' D ˛1 C ˇ and ˇ which can be reduced to a single
quadratic equation in ˇ:

ˇ2 � bˇ � 1 D 0 where b D '2 C 1 � 2�Z2.1/'

' � �Z2.1/
:

The parameter b is well-defined because ' D ˛1 C ˇ � �Z2.1/ with equality only
if ˇ D 0. In the following we will assume that ˇ > 0. Under this assumption b > 2

so that the only solution with the property 0 < ˇ < 1 is given by

ˇ D b �
p

b2 � 4
2

:

The moment estimator can therefore be constructed as follows:

(i) Estimate the correlations �Z2.1/ and �Z2.2/ and �2 based on the formulas (8.11)
in Sect. 8.2.

(ii) An estimate for ' D ˛1 C ˇ is then given by

O' D 3.˛1 C ˇ/ D O�Z2.2/

O�Z2.1/
:

(iii) use the estimate O' to compute an estimate for b:

Ob D O'2 C 1 � 2 O�Z2.1/ O'
O' � O�Z2.1/

:
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The estimate Ǒ for ˇ is then

Ǒ D
Ob �

p
Ob2 � 4

2
:

(iv) The estimate for ˛1 is Ǫ1 D O'� Ǒ. Because ˛0 D �2.1�.˛1Cˇ//, the estimate
for ˛0 is equal to Ǫ0 D O�2.1 � O'/.

Kristensen and Linton (2006) show that, given the existence of the fourth moment of
Zt, this method of moment leads to consistent and asymptotically normal distributed
estimates. These estimates may then serve as starting values for the maximization
of the likelihood function to improve efficiency.

8.4 Example: Swiss Market Index (SMI)

In this section, we will illustrate the methods discussed previously to analyze the
volatility of the Swiss Market Index (SMI). The SMI is the most important stock
market index for Swiss blue chip companies. It is constructed solely from stock
market prices, dividends are not accounted for. The data are the daily values of the
index between the 3rd of January 1989 and the 13th of February 2004. Figure 1.5
shows a plot of the data. Instead of analyzing the level of the SMI, we will
investigate the daily return computed as the logged difference. This time series
is denoted by Xt and plotted in Fig. 8.3. One can clearly discern phases of high
(observations around t D 2500 and t D 3500) and low (t D 1000 and t D 2000)
volatility. This represents a first sign of heteroskedasticity and positively correlated
volatility.
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Fig. 8.3 Daily return of the SMI (Swiss Market Index) computed as� log.SMIt/ between January
3rd 1989 and February 13th 2004
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Fig. 8.4 Normal-Quantile Plot of the daily returns of the SMI (Swiss Market Index)

Figure 8.4 shows a normal-quantile plot to compare the empirical distribution of
the returns with those from a normal distribution. This plot clearly demonstrates that
the probability of observing large returns is bigger than warranted from a normal
distribution. Thus the distribution of returns exhibits the heavy-tail property. A
similar argument can be made by comparing the histogram of the returns and the
density of a normal distribution with the same mean and the same variance. shown
in Fig. 8.5. Again one can seen that absolutely large returns are more probable than
expected from a normal distribution. Moreover, the histogram shows no obvious
sign for an asymmetric distribution, but a higher peakedness.

After the examination of some preliminary graphical devices, we are going
to analyze the autocorrelation functions of fXtg and fX2t g. Figure 8.6 shows the
estimated ACFs. The estimated ACF of fXtg shows practically no significant
autocorrelation so that we can consider fXtg be approximately white noise. The
corresponding Ljung-Box statistic with L D 100, however, has a value of 129.62
which is just above the 5 % critical value of 124.34. Thus there is some sign of weak
autocorrelation. This feature is not in line with efficiency of the Swiss stock market
(see Campbell et al. (1997)). The estimated ACF of X2t is clearly outside the 95 %
confidence interval for at least up to order 20. Thus we can reject the hypothesis of
homoskedasticity in favor of heteroskedasticity. This is confirmed by the Ljung-Box
statistic with L D 100with a value of 2000.93 which is much higher than the critical
value of 124.34.

After these first investigations, we want to find an appropriate model for the mean
equation. We will use OLS with the White-correction. It turns out that a MA(1)
model fits the data best although an AR(1) model leads to almost the same results. In
the next step we will estimate a GARCH(p,q) model with the method of maximum
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Fig. 8.5 Histogram of the daily returns of the SMI (Swiss Market Index) and the density of a fitted
normal distribution (red line)
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Fig. 8.6 ACF of the daily returns and the squared daily returns of the SMI
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Table 8.1 AIC criterion for
the variance equation in the
GARCH(p,q) model

q

p 0 1 2 3

1 3.0886 2.9491 2.9491 2.9482

2 3.0349 2.9496 2.9491 2.9486

3 2.9842 2.9477 2.9472 2.9460

Minimum value in bold

Table 8.2 BIC criterion for
the variance equation in the
GARCH(p,q) model

q

p 0 1 2 3

1 3.0952 2.9573 2.9590 2.9597

2 3.0431 2.9595 2.9606 2.9617

3 2.9941 2.9592 2.9604 2.9607

Minimum value in bold

likelihood where p is varied between p 1 and 3 and q between 0 and 3. The values
of the AIC, respectively BIC criterion corresponding to the variance equation are
listed in Tables 8.1 and 8.2.

The results reported in these tables show that the AIC criterion favors a
GARCH(3,3) model corresponding to the bold number in Table 8.1 whereas the
BIC criterion opts for a GARCH(1,1) model corresponding to the bold number
in Table 8.2. It also turns out that high dimensional models, in particular those
for which q > 0, the maximization algorithm has problems to find an optimum.
Furthermore, the roots of the implicit AR and the MA polynomial corresponding
to the variance equation of the GARCH(3,3) model are very similar. These two
arguments lead us to prefer the GARCH(1,1) over the GARCH(3,3) model. This
model was estimated to have the following mean equation:

Xt D 0.0755
(0.0174)

C Zt C 0.0484
(0.0184)

Zt�1

with the corresponding variance equation

�2t D 0.0765
(0.0046)

C 0.1388
(0.0095)

Z2t�1 C 0.8081
(0.0099)

�2t�1;

where the estimated standard deviations are reported below the corresponding
coefficient estimate. The small, but significant value of 0.0484 for the MA(1)
coefficient shows that there is a small but systematic correlation of the returns from
one day to the next. The coefficients of the GARCH model are all positive and their
sum ˛1 C ˇ D 0:1388 C 0:8081 D 0:9469 is statistically below one so that all
conditions for a stationary process are fulfilled.14 Because

p
3 ˛1
1�ˇ D

p
3 0:1388
1�0:8081 D

1:2528 > 1, the condition for the existence of the fourth moment of Zt is violated.

14The corresponding Wald test clearly rejects the null hypothesis ˛1 C ˇ D 1 at a significance
level of 1 %.
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As a comparison we also estimate the GARCH(1,1) model using the methods
of moments. First we estimate a MA(1) model for � log SMI. This results in an
estimate O� D 0:034 (compare this with the ML estimate). The squared residuals
have correlation coefficients

O�Z2.1/ D 0:228 and O�Z2.2/ D 0:181:

The estimate of b therefore is Ob D 2:241 which leads to an estimate of ˇ equal to
Ǒ D 0:615. This finally results in the estimates of ˛1 and ˛0 equal to Ǫ1 D 0:179

and Ǫ0 D 0:287 with an estimate for �2 equal to O�2 D 1:391. Thus these estimates
are quite different from those obtained by the ML method.

Value at Risk

We are now in a position to use our ML estimates to compute the Value-at-risk

(VaR). The VaR is a very popular measure to estimate the risk of an investment. In
our case we consider the market portfolio represented by the stocks in the SMI. The
VaR is defined as the maximal loss (in absolute value) of an investment which occurs
with probability ˛ over a time horizon h. Thus a 1 % VaR for the return on the SMI
for the next day is the threshold value of the return such that one can be confident
with 99 % that the loss will not exceed this value. Thus the ˛ VaR at time t for h

periods, VaR˛t;tCh, is nothing but the ˛-quantile of the distribution of the forecast of
the return in h periods given information Xt�k, k D 0; 1; 2; : : :. Formally, we have:

VaR˛t;tCh D inf
˚
x W P

�eXtCh � xjXt;Xt�1; : : :
�

� ˛


;

where eXtCh is the return of the portfolio over an investment horizon of h periods.
This return is approximately equal to the sum of the daily returns: eXtCh DPh

jD1 XtCj.

The one period forecast error is given by XtC1�ePtXtC1 which is equal to ZtC1 D
�tC1�tC1. Thus the VaR for the next day is

VaR˛t;tC1 D inf

(
x W P

"
�tC1 � x �ePtXtC1

�tC1

#
� ˛

)
:

This entity can be computed by replacing the forecast given the infinite past,ePtXtC1,
by a forecast given the finite sample information Xt�k, k D 0; 1; 2; : : : ; t�1, PtXtC1,
and by substituting �tC1 by the corresponding forecast from variance equation,
O�t;tC1. Thus we get:

2VaR˛t;tC1 D inf

�
x W P

�
�tC1 � x � PtXtC1

O�t;tC1

�
� ˛

�
:
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Table 8.3 One percent VaR
for the next day of the return
to the SMI according to the
ARMA(0,1)-GARCH(1,1)
model

VaR (2VaR0;01

t;tC1
)

Date PtXtC1 O�2t;tC1 Parametric Non-parametric

31.12.2001 0.28 6.61 5.71 6.30

5.2.2002 �0.109 6.80 6.19 6.79

24.7.2003 0.0754 0.625 1.77 1.95

Table 8.4 One percent VaR
for the next 10 days of the
return to the SMI according
to the ARMA(0,1)
-GARCH(1,1) model

VaR ( 2VaR0;01

t;tC10
)

Date Pt
QXtC1 Parametric Non-parametric

31.12.2001 0.84 18.39 22.28

5.2.2002 0.65 19.41 21.53

24.7.2003 0.78 6.53 7.70

The computation of 2VaR˛t;tC1 requires to determine the ˛-quantile of the distribution
of �t. This can be done in two ways. The first one uses the assumption about the
distribution of �t explicitly. In the simplest case, �t is distributed as a standard
normal so that the appropriate quantile can be easily retrieved. The 1 % quantile for
the standard normal distribution is �2.33. The second approach is a non-parametric
one and uses the empirical distribution function of O�t D OZt= O�t to determine the
required quantile. This approach has the advantage that deviations from the standard
normal distribution are accounted for. In our case, the 1 % quantile is �2:56 and thus
considerably lower than the �2:33 obtained from the normal distribution. Thus the
VaR is under estimated by using the assumption of the normal distribution.

The corresponding computations for the SMI based on the estimated
ARMA(0,1)-GARCH(1,1) model are reported in Table 8.3. A value of 5.71 for
31st of December 2001 means that one can be 99 % sure that the return of an
investment in the stocks of the SMI will not be lower than �5.71 %. The values for
the non-parametric approach are typically higher. The comparison of the VaR for
different dates clearly shows how the risk evolves over time.

Due to the nonlinear character of the model, the VaR for more than one day
can only be gathered from simulating the one period returns over the corresponding
horizon. Starting from a given date 10’000 realizations of the returns over the next
10 days have been simulated whereby the corresponding values for �t are either
drawn from a standard normal distribution (parametric case) or from the empirical
distribution function of O�t (non-parametric case). The results from this exercise are
reported in Table 8.4. Obviously, the risk is much higher for a 10 day than for a
one day investment. Alternatively, one may use the forecasting equation (8.12) and
the corresponding recursion formula (8.13).
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9Introduction

The Keynesian macroeconomic theory developed in the 1930s and 1940s, in
particular its representation in terms of IS- and LM-diagram, opened a new area
in the application of statistical methods to economics. Based on the path breaking
work by Tinbergen (1939) and Klein (1950) this research gave rise to simultaneous
equation systems which should capture all relevant aspect of an economy. The goal
was to establish an empirically grounded tool which would enable the politicians
to analyze the consequences of their policies and thereby fine tune the economy to
overcome or at least mitigate major business cycle fluctuations. This development
was enhanced by the systematic compilation of national accounting data and by
the advances in computer sciences.1 These systems were typically built by putting
together single equations such as consumption, investment, money demand, export-
and import, Phillips-curve equations to an overall model. The Klein–Goldberger
model for the United States was a first successful attempt in this direction (Klein and
Goldberger 1955). Shocked by disturbances, Adelman and Adelman (1959) showed
that these type of models exhibited cycles with properties similar to those found for
the United States Economy.

As the model became more and detailed over time, they could, in the end, well
account for several hundreds or even thousands of equations. The climax of this
development was the project LINK which linked the different national models to a
world model by accounting for their interrelation through trade flows (Klein 1985).
Although this research program brought many insights and spurred the development
of econometrics as a separate field, by the mid 1970s one had to admit that the
idea to use large and very detailed models for forecasting and policy analysis was
overly optimistic. In particular, the inability to forecast and cope with the oil crisis
of the beginning 1970s raised doubts about the viability of this research strategy. In
addition, more and more economist had concerns about the theoretical foundations
of these models.

1See Epstein (1987) for an historical overview.
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198 9 Introduction

The critique had several facets. First, it was argued that the bottom-up strategy of
building a system from single equations is not compatible with general equilibrium
theory which stresses the interdependence of economic activities. This insight was
even reinforced by the advent of the theory of rational expectations. This theory
postulated that expectations should be formed on the basis of all available infor-
mation and not just by mechanically extrapolating from the past. This implies that
developments in every part of the economy, in particular in the realm of economic
policy making, should in principle be taken into account and shape the expectation
formation. As expectations are omnipresent in almost every economic decision,
all aspects of economic activities (consumption capital accumulation, investment,
etc.) are inherently linked. Thus the strategy of using zero restrictions—which
meant that certain variables were omitted from a particular equation—to identify the
parameters in a simultaneous equation system was considered to be flawed. Second,
the theory of rational expectations implied that the typical behavioral equations
underlying these models are not invariant to changes in policies because economic
agents would take into account systematic changes in the economic environment
in their decision making. This so-called Lucas-critique (Lucas 1976) undermined
the basis for the existence of large simultaneous equation models. Third, simple
univariate ARMA models proved to be as good in forecasting as the sophisticated
large simultaneous models. Thus it was argued that the effort or at least part of the
effort devoted to these models was wasted.

In 1980 Sims (1980b) and proposed an alternative modeling strategy. This
strategy concentrates the modeling activity to only a few core variables, but places
no restrictions what so ever on the dynamic interrelation among them. Thus every
variable is considered to be endogenous and, in principle, dependent on all other
variables of the model. In the linear context, the class of vector autoregressive
(VAR) models has proven to be most convenient to capture this modeling strategy.
They are easy to implement and to analyze. In contrast to the simultaneous equation
approach, however, it is no longer possible to perform comparative static exercises
and to analyze the effect of one variable on another one because every variable
is endogenous a priori. Instead, one tries to identify and quantify the effect of
shocks over time. These shocks are usually given some economic content, like
demand or supply disturbances. However, these shocks are not directly observed,
but are disguised behind the residuals from the VAR. Thus, the VAR approach also
faces a fundamental identification problem. Since the seminal contribution by Sims,
the literature has proposed several alternative identification schemes which will be
discussed in Chap. 15 under the header of structural vector autoregressive (SVAR)
models. The effects of these shocks are then further analyzed by computing impulse
responses and forecast error variance decompositions.2

The reliance on shocks can be seen as a substitute for the lack of experiments
in macroeconomics. The approach can be interpreted as a statistical analogue
to the identification of specific episodes where some unforseen event (shock)

2Watson (1994) and Kilian (2013) provide a general introduction to this topic.
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impinges on and propagates throughout the economy. Singling-out these episodes of
quasi “natural experiments” as in Friedman and Schwartz (1963) convinced many
economist of the role and effects of monetary policy.

Many concepts which have been introduced in the univariate context carry over
in a straightforward manner to the multivariate context. However there are some
new aspects. First, we will analyze the interaction among several variables. This can
be done in a nonparametric way by examining the cross-correlations between time
series or by building an explicit model. We will restrict ourself to the class of VAR
models as they are easy to handle and are overwhelmingly used in practice. Second,
we will discuss several alternative approaches to identify the structural shocks from
VAR models. After analyzing the identification problem in general, we describe
short-run, long-run, and sign restrictions as possible remedies. Third, we will
discuss the modeling of integrated variables in a more systematic way. In particular,
we will extend the concept of cointegration to more than two variables. Finally,
we will provide an introduction to the state space models as a general modeling
approach. State space models are becoming increasingly popular in economics as
they can be more directly linked to theoretical economic models.



10Definitions and Stationarity

Similarly to the univariate case, we start our exposition with the concept of
stationarity which is also crucial in the multivariate setting. Before doing so let us
define the multivariate stochastic process.

Definition 10.1. A multivariate stochastic Process, fXtg, is a family of random

variables indexed by t, t 2 Z, which take values in Rn, n � 1. n is called the

dimension of the process.

Setting n D 1, the above definition includes as a special case univariate stochastic
processes. This implies that the statements for multivariate processes carry over
analogously to the univariate case. We view Xt as a column vector:

Xt D

0
B@

X1t

:::

Xnt

1
CA :

Each element fXitg thereby represents a particular variable which may be treated as a
univariate process. As in the example of Sect. 15.4.5, fXtg represents the multivariate
process consisting of the growth rate of GDP Yt, the unemployment rate Ut, the
inflation rate Pt, the wage inflation rate Wt, and the growth rate of money Mt. Thus,
Xt D .Yt;Ut;Pt;Wt;Mt/

0.
As in the univariate case, we characterize the joint distribution of the elements

Xit and Xjt by the first two moments (if they exist), i.e. by the mean and the variance,
respectively covariance:

�it D EXit; i D 1; : : : ; n


ij.t; s/ D E.Xit � �it/.Xjs � �js/; i; j D 1; : : : ; nI t; s 2 Z (10.1)

It is convenient to write these entities compactly as vectors and matrices:
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�t D

0
B@
�1t

:::

�nt

1
CA D EXt D

0
B@
EX1t

:::

EXnt

1
CA

�.t; s/ D

0
B@

11.t; s/ : : : 
1n.t; s/

:::
: : :

:::


n1.t; s/ : : : 
nn.t; s/

1
CA D E.Xt � �t/.Xs � �s/

0

Thus, we apply the expectations operator element-wise to vectors and matrices. The
matrix-valued function �.t; s/ is called the covariance function of fXtg.

In analogy to the univariate case, we define stationarity as the invariance of the
first two moments to time shifts:

Definition 10.2 (Stationarity). A multivariate stochastic process fXtg is stationary
if and only if for all integers r, s and t we have:

(i) � D �t D EXt is constant (independent of t);

(ii) EX0
t Xt < 1;

(iii) �.t; s/ D �.t C r; s C r/.

In the literature these properties are often called weak stationarity, covariance
stationarity, or stationarity of second order. If fXtg is stationary, the covariance
function only depends on the number of periods between t and s (i.e. on t � s)
and not on t or s themselves. This implies that by setting r D �s and h D t � s the
covariance function simplifies to

�.h/ D �.t � s/ D �.t C r; s C r/ D �.t C h; t/

D E.XtCh � �/.Xt � �/0 D E.Xt � �/.Xt�h � �/0:

For h D 0, �.0/ is the unconditional covariance matrix of Xt. Using the definition
of the covariances in Eq. (10.1) we get:

�.h/ D �.�h/0:

Note that �.h/ is in general not symmetric for h ¤ 0 because 
ij.h/ ¤ 
ji.h/

for h ¤ 0.
Based on the covariance function of a stationary process, we can define the

correlation function R.h/ where R.h/ D .�ij.h//i;j with

�ij.h/ D 
ij.h/p

ii.0/
jj.0/

:
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In the case i ¤ j we refer to the cross-correlations between two variables fXitg and
fXjtg. The correlation function can be written in matrix notation as

R.h/ D V�1=2�.h/V�1=2

where V represents a diagonal matrix with diagonal elements equal to 
ii.0/. Clearly,
�ii.0/ D 1. As for the covariance matrix we have that in general �ij.h/ ¤ �ji.h/ for
h ¤ 0. It is possible that �ij.h/ > �ij.0/. We can summarize the properties of the
covariance function by the following theorem.1

Theorem 10.1. The covariance function of a stationary process fXtg has the

following properties:

(i) For all h 2 Z, �.h/ D �.�h/0;
(ii) for all h 2 Z, j
ij.h/j �

p

ii.0/ � 
jj.0/;

(iii) for each i D 1; : : : ; n, 
ii.h/ is a univariate autocovariance function;

(iv)
Pm

r;kD1 a0
r�.r � k/ak � 0 for all m 2 N and all a1; : : : ; am 2 Rn. This property

is called non-negative definiteness (see Property 4 in Theorem 1.1 of Sect. 1.3

in the univariate case).

Proof. Property (i) follows immediately from the definition. Property (ii) follows
from the fact that the correlation coefficient is always smaller or equal to one. 
ii.h/

is the autocovariance function of fXitg which delivers property (iii). Property (iv)

follows from E
�Pm

kD1 a0
k.Xt�k � �/

�2 � 0. ut

If not only the first two moments are invariant to time shifts, but the distribution
as a whole we arrive at the concept of strict stationarity.

Definition 10.3 (Strict Stationarity). A process multivariate fXtg is called strictly
stationary if and only if, for all n 2 N, t1; : : : ; tn, h 2 Z, the joint distributions of

.Xt1 ; : : : ;Xtn/ and .Xt1Ch; : : : ;XtnCh/ are the same.

An Example

Consider the following example for n D 2:

X1t D Zt

X2t D Zt C 0:75Zt�2

where Zt � WN.0; 1/. We then have � D EXt D 0. The covariance function is
given by

1We leave it to the reader to derive an analogous theorem for the correlation function.
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�.h/ D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

�
1 1

1 1:5625

�
; h D 0I

�
0 0

0 0

�
; h D 1I

�
0 0

0:75 0:75

�
; h D 2:

The covariance function is zero for h > 2. The values for h < 0 are obtained from
property (i) in Theorem 10.1. The correlation function is:

R.h/ D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

�
1 0:8

0:8 1

�
; h D 0I

�
0 0

0 0

�
; h D 1I

�
0 0

0:60 0:48

�
; h D 2:

The correlation function is zero for h > 2. The values for h < 0 are obtained from
property (i) in Theorem 10.1.

One idea in time series analysis is to construct more complicated process from
simple ones, for example by taking moving-averages. The simplest process is the
white noise process which is uncorrelated with its own past. In the multivariate
context the white noise process is defined as follows.

Definition 10.4. A stochastic process fZtg is called (multivariate) white noise
process with mean zero and covariance matrix † > 0, denoted by Zt � WN.0;†/,
if it is stationary fZtg and

EZt D 0;

�.h/ D
�
†; h D 0I
0; h ¤ 0:

If fZtg is not only white noise, but independently and identically distributed we
write Zt � IID.0;†/.

Remark 10.1. Even if each component of fZitg is univariate white noise, this does
not imply that fZtg D f.Z1t; : : : ;Znt/

0g is multivariate white noise. Take, for example

the process Zt D .ut; ut�1/0 where ut � WN.0; �2u /. Then �.1/ D
�
0 0

�2u 0

�
¤ 0.

Taking moving averages of a white noise process it is possible to generate new
stationary processes. This leads to the definition of a linear process.

Definition 10.5. A stochastic process fXtg is called linear if there exists a represen-

tation
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Xt D
1X

jD�1
‰jZt�j

where Zt � IID.0;†/ and where the sequence f‰jg of the n�n matrices is absolutely

summable, i.e.
P1

jD�1 k‰jk < 1. If for all j < 0 ‰j D 0, the linear process is also

called an MA.1/ process.

Theorem 10.2. A linear process is stationary with a mean of zero and with

covariance function

�.h/ D
1X

jD�1
‰jCh†‰

0
j D

1X

jD�1
‰j†‰

0
j�h; h D 0;˙1;˙2; : : :

Proof. The required result is obtained by applying the properties of fZtg to �.h/ D
EXtChX0

t D limm!1 E

�Pm
jD�m‰jZtCh�j

� �Pm
kD�m‰kZt�k

�0
. ut

Remark 10.1. The same conclusion is reached if fZtg is a white noise process and
not an IID process.

Appendix: Norm and Summability of Matrices

As in the definition of a linear process it is often necessary to analyze the
convergence of a sequence of matrices f‰jg, j D 0; 1; 2; : : :. For this we need to
define a norm for matrices. The literature considers different alternative approaches.
For our purposes, the choice is not relevant as all norms are equivalent in the finite
dimensional vector space. We therefore choose the Frobenius, Hilbert-Schmidt or
Schur norm which is easy to compute.2 This norm treats the elements of a m � n

matrix A D .aij/ as an element of the Rm�n Euclidean space and defines the length

of A, denoted by kAk, as kAk D
qP

i;j a2ij. This leads to the formal definition below.

Definition 10.6. The Frobenius, Hilbert-Schmidt or Schur norm of a m � n matrix

A, denoted by kAk, is defined as:

kAk2 D
X

i;j

a2ij D tr.A0A/ D
nX

iD1
�i

where tr.A0A/ denotes the trace of A0A, i.e. the sum of the diagonal elements of A0A,

and where �i are the n eigenvalues of A0A.

2For details see Meyer (2000, 279ff).
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The matrix norm has the following properties:

kAk � 0 and kAk D 0 is equivalent to A D 0;

k˛Ak D j˛jkAk for all ˛ 2 R;

kAk D kA0k;
kA C Bk � kAk C kBk for all matrices A and B of the same dimension;

kABk � kAkkBk for all conformable matrices A and B:

The last property is called submultiplicativity.
A sequence of matrices f‰jg, j D 0; 1; : : : , is called absolutely summable if and

only if
P1

jD0 k‰jk < 1; the sequence is said to be quadratic summable if and only

if
P1

jD0 k‰jk2 < 1. The absolute summability implies the quadratic summability,
but not vice versa.

Corollary 10.1. Absolute summability of f‰jg is equivalent to the absolute summa-

bility of each sequence fŒ‰j�klg, k; l D 1; : : : ; n, i.e. to limj!1 jŒ‰j�klj exists and is

finite.

Proof. In particular, he have:

jŒ‰j�klj � k‰jk D

vuut
nX

kD1

nX

lD1
Œ‰j�

2
kl �

nX

kD1

nX

lD1
jŒ‰j�klj:

Summation over j gives

1X

jD0
jŒ‰j�klj �

1X

jD0
k‰jk �

1X

jD0

nX

kD1

nX

lD1
jŒ‰j�klj D

1X

kD1

nX

lD1

nX

jD0
jŒ‰j�klj

The absolute convergence of each sequence fŒ‰j�klg, k; l D 1; : : : ; n, follows from
the absolute convergence of f‰jg by the first inequality. Conversely, the absolute
convergence of f‰jg is implied by the absolute convergence of each sequence
fŒ‰j�klg, k; l D 1; : : : ; n, from the second inequality. ut



11Estimation of Mean and Covariance Function

11.1 Estimators and Their Asymptotic Distributions

We characterize the stationary process fXtg by its mean and its (matrix) covariance
function. In the Gaussian case, this already characterizes the whole distribution. The
estimation of these entities becomes crucial in the empirical analysis. As it turns out,
the results from the univariate process carry over analogously to the multivariate
case. If the process is observed over the periods t D 1; 2; : : : ;T, then a natural
estimator for the mean � is the arithmetic mean or sample average:

O� D XT D 1

T
.X1 C : : :C XT/ D

0
B@

X1
:::

Xn

1
CA :

We get a theorem analogously to Theorem 4.1 in Sect. 4.1.

Theorem 11.1. Let fXtg be stationary process with mean� and covariance function

�.h/ then asymptotically, for T ! 1, we get

E
�
XT � �

�0 �
XT � �

�
! 0; if 
ii.T/ ! 0 for all 1 � i � nI

TE
�
XT � �

�0 �
XT � �

�
!

nX

iD1

1X

hD�1

ii.h/;

if

1X

hD�1
j
ii.h/j < 1 for all 1 � i � n:

Proof. The Theorem can be established by applying Theorem 4.1 individually to
each time series fXitg, i D 1; 2; : : : ; n. ut
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Thus, the sample average converges in mean square and therefore also in
probability to the true mean. Thereby the second condition is more restrictive
than the first one. They are, in particular, fulfilled for all VARMA processes (see
Chap. 12). As in the univariate case analyzed in Sect. 4.1, it can be shown with some
mild additional assumptions that XT is also asymptotically normally distributed.

Theorem 11.2. For any stationary process fXtg

Xt D �C
1X

jD�1
‰jZt�j

with Zt � IID.0;†/ and
P1

jD�1 k‰jk < 1, the arithmetic average XT is

asymptotically normal:

p
T
�
XT � �

� d���! N

 
0;

1X

hD�1
�.h/

!

D N

0
@0;

0
@

1X

jD�1
‰j

1
A†

0
@

1X

jD�1
‰0

j

1
A
1
A

D N
�
0;‰.1/†‰.1/0

�
:

Proof. The proof is a straightforward extension to the multivariate case of the one
given for Theorem 4.2 of Sect. 4.1. ut

The summability condition is quite general. It is, in particular, fulfilled by causal
VARMA processes (see Chap. 12) as their coefficients matrices‰j go exponentially
fast to zero. Remarks similar to those following Theorem 4.2 apply also in the
multivariate case.

The above formula can be used to construct confidence regions for �. This
turns out, however, to be relatively complicated in practice so that often univariate
approximations are used instead (Brockwell and Davis 1996, 228–229).

As in the univariate case, a natural estimator for the covariance matrix function
�.h/ is given by the corresponding empirical momentsb�.h/:

b�.h/ D

8
<
:

1
T

PT�h
tD1

�
XtCh � XT

� �
Xt � XT

�0
; 0 � h � T � 1I

b� 0.�h/; �T C 1 � h < 0:

The estimator of the covariance function can then be applied to derive an estimator
for the correlation function:

bR.h/ D OV�1=2b�.h/ OV�1=2
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where OV1=2 D diag
�p

O
11.0/; : : : ;
p

O
nn.0/
�

. Under the conditions given in

Theorem 11.2 the estimator of the covariance matrix of order h, b�.h/, converges

to the true covariance matrix �.h/. Moreover,
p

T
�
b�.h/ � �.h/

�
is asymptotically

normally distributed. In particular, we can state the following Theorem:

Theorem 11.3. Let fXtg be a stationary process with

Xt D �C
1X

jD�1
‰jZt�j

where Zt � IID.0;†/,
P1

jD�1 k‰jk < 1, and
P1

jD�1‰j ¤ 0. Then, for each

fixed h, b�.h/ converges in probability as T ! 1 to �.h/:

b�.h/ p����! �.h/

Proof. A proof can be given along the lines given in Proposition 13.1. ut

As for the univariate case, we can define the long-run covariance matrix J as

J D
1X

hD�1
�.h/: (11.1)

As a non-parametric estimator we can again consider the following class of
estimators:

OJT D
T�1X

hD�TC1
k

�
h

`T

�
b�.h/

where k.x/ is a kernel function and where b�.h/ is the corresponding estimate
of the covariance matrix at lag h. For the choice of the kernel function and the
lag truncation parameter the same principles apply as in the univariate case (see
Sect. 4.4 and Haan and Levin (1997)).

11.2 Testing Cross-Correlations of Bivariate Time Series

The determination of the asymptotic distribution of b�.h/ is complicated. We
therefore restrict ourselves to the case of two time series.

Theorem 11.4. Let fXtg be a bivariate stochastic process whose components can

be described by
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X1t D
1X

jD�1
˛jZ1;t�j with Z1t � IID.0; �21 /

X2t D
1X

jD�1
ˇjZ2;t�j with Z2t � IID.0; �22 /

where fZ1tg and fZ2tg are independent from each other at all leads and lags and

where
P

j j˛jj < 1 and
P

j jˇjj < 1. Under these conditions the asymptotic

distribution of the estimator of the cross-correlation function �12.h/ between fX1tg
and fX2tg is

p
T O�12.h/

d�! N

0
@0;

1X

jD�1
�11.j/�22.j/

1
A ; h � 0: (11.2)

For all h and k with h ¤ k, .
p

T O�12.h/;
p

T O�12.k//0 converges in distribution to a

bivariate normal distribution with mean zero and variances and covariances given

by
P1

jD�1 �11.j/�22.j/ and
P1

jD�1 �11.j/�22.j C k � h/, respectively.

This result can be used to construct a test of independence, respectively uncor-
relatedness, between two time series. The above theorem, however, shows that the
asymptotic distribution of

p
T O�12.h/ depends on �11.h/ and �22.h/ and is therefore

unknown. Thus, the test cannot be based on the cross-correlation alone.1

This problem can, however, be overcome by implementing the following two-
step procedure suggested by Haugh (1976).

First step: Estimate for each times series separately a univariate invertible

ARMA model and compute the resulting residuals OZit as OZit D
P1

jD0 O� .i/j Xi;t�j,
i D 1; 2. If the ARMA models correspond to the true ones, these residuals should
approximately be white noise. This first step is called pre-whitening.

Second step: Under the null hypothesis the two time series fX1tg and fX2tg
are uncorrelated with each other. This implies that the residuals fZ1tg and
fZ2tg should also be uncorrelated with each other. The variance of the cross-
correlations between fZ1tg and fZ2tg are therefore asymptotically equal to 1=T

under the null hypothesis. Thus, one can apply the result of Theorem 11.4
to construct confidence intervals based on formula (11.2). A 95-% confidence
interval is therefore given by ˙1:96T�1=2. The Theorem may also be used to
construct a test whether the two series are uncorrelated.

If one is not interested in modeling the two time series explicitly, the simplest way
is to estimate a high order AR model in the first step. Thereby, the order should
be chosen high enough to obtain white noise residuals in the first step. Instead

1The theorem may also be used to conduct a causality test between two times series (see Sect. 15.1).
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of looking at each cross-correlation separately, one may also test the joint null
hypothesis that all cross-correlations are simultaneously equal to zero. Such a test
can be based on T times the sum of the squared cross-correlation coefficients. This
statistic is distributed as a �2 with L degrees of freedom where L is the number of
summands (see the Haugh-Pierce statistic (15.1) in Sect. 15.1).

11.3 Some Examples for Independence Tests

Two Independent AR Processes

Consider two AR(1) process fX1tg and fX2tg governed by the following stochastic
difference equation Xit D 0:8Xi;t�1 C Zit, i D 1; 2. The two white noise processes
fZ1tg and fZ2tg are such that they are independent from each other. fX1tg and
fX2tg are therefore independent from each other too. We simulate realizations of
these two processes over 400 periods. The estimated cross-correlation function
of these so-generated processes are plotted in the upper panel of Fig. 11.1. From
there one can see that many values are outside the 95 % confidence interval given
by ˙1:96T�1=2 D 0:098, despite the fact that by construction both series are
independent of each other. The reason is that the so computed confidence interval
is not correct because it does not take the autocorrelation of each series into
account. The application of Theorem 11.4 leads to the much larger 95-% confidence
interval of

˙1:96p
T

vuut
1X

jD�1
�11.j/�22.j/ D ˙1:96

20

vuut
1X

jD�1
0:8j0:8j

D ˙1:96
20

r
1C 2 � 0:64

1 � 0:64
D ˙0:209

which is more than twice as large. This confidence interval then encompasses most
the cross-correlations computed with respect to the original series.

If one follows the testing procedure outline above instead and fits an AR(10)
model for each process and then estimates the cross-correlation function of the
corresponding residual series (filtered or pre-whitened time series), the plot in
the lower panel of Fig. 11.1 is obtained.2 This figure shows no significant cross-
correlation anymore so that one cannot reject the null hypothesis that both time
series are independent from each other.

2The order of the AR processes are set arbitrarily equal to 10 which is more than enough to obtain
white noise residuals.
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Fig. 11.1 Cross-correlations between two independent AR(1) processes with � D 0:8

Consumption Expenditure and Advertisement Expenses

This application focuses on the interaction between nominal aggregate private
consumption expenditure and nominal aggregate advertisement expenditures. Such
an investigation was first conducted by Ashley et al. (1980) for the United States.3

The upper panel of Fig. 11.2 shows the raw cross-correlations between the two
time series where the order h runs from �20 to C20. Although almost all cross-
correlations are positive and outside the conventional confidence interval, it would
be misleading to infer a statistically significant positive cross-correlation. In order
to test for independence, we filter both time series by an AR(10) model and estimate
the cross-correlations for the residuals.4 These are displayed in the lower panel of
Fig. 11.2. In this figure, only the correlations of order 0 and 16 fall outside the
confidence interval and can thus be considered as statistically significant. Thus, we

3The quarterly data are taken from Berndt (1991). They cover the period from the first quarter 1956
to the fourth quarter 1975. In order to achieve stationarity, we work with first differences.
4The order of the AR processes are set arbitrarily equal to 10 which is more than enough to obtain
white noise residuals.
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Fig. 11.2 Cross-correlations between aggregate nominal private consumption expenditures and
aggregate nominal advertisement expenditures

can reject the null hypothesis of independence between the two series. However,
most of the interdependence seems to come from the correlation within the same
quarter. This is confirmed by a more detailed investigation in Berndt (1991) where
no significant lead and/or lag relations are found.

Real Gross Domestic Product and Consumer Sentiment
The procedure outlined above can be used to examine whether one of the two time
series is systematically leading the other one. This is, for example, important in
the judgment of the current state of the economy because first provisional national
accounting data are usually published with a lag of at least one quarter. However,
in the conduct of monetary policy more up-to-date knowledge is necessary. Such a
knowledge can be retrieved from leading indicator variables. These variables should
be available more quickly and should be highly correlated with the variable of
interest at a lead.

We investigate whether the Consumer Sentiment Index is a leading indicator
for the percentage changes in real Gross Domestic Product (GDP).5 The raw

5We use data for Switzerland as published by the State Secretariat for Economic Affairs SECO.
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Fig. 11.3 Cross-correlations between real growth of GDP and the consumer sentiment index

cross-correlations are plotted in the upper panel of Fig. 11.3. It shows several
correlations outside the conventional confidence interval. The use of this confidence
interval is, however, misleading as the distribution of the raw cross-correlations
depends on the autocorrelations of each series. Thus, instead we filter both time
series by an AR(8) model and investigate the cross-correlations of the residuals.6

The order of the AR model was chosen deliberately high to account for all
autocorrelations. The cross-correlations of the filtered data are displayed in the
lower panel of Fig. 11.3. As it turns out, only the cross-correlation which is
significantly different from zero is for h D 1. Thus the Consumer Sentiment Index
is leading the growth rate in GDP. In other words, an unexpected higher consumer
sentiment is reflected in a positive change in the GDP growth rate of next quarter.7

6With quarterly data it is wise to set to order as a multiple of four to account for possible seasonal
movements. As it turns out p D 8 is more than enough to obtain white noise residuals.
7During the interpretation of the cross-correlations be aware of the ordering of the variables
because �12.1/ D �21.�1/ ¤ �21.1/.



12Stationary Time Series Models: Vector
Autoregressive Moving-Average Processes
(VARMA Processes)

The most important class of models is obtained by requiring fXtg to be the solution
of a linear stochastic difference equation with constant coefficients. In analogy to
the univariate case, this leads to the theory of vector autoregressive moving-average
processes (VARMA processes or just ARMA processes).

Definition 12.1 (VARMA process). A multivariate stochastic process fXtg is a vec-

tor autoregressive moving-average process of order .p; q/, denoted as VARMA.p; q/
process, if it is stationary and fulfills the stochastic difference equation

Xt �ˆ1Xt�1 � : : : �ˆpXt�p D Zt C‚1Zt�1 C : : :C‚qZt�q (12.1)

where ˆp ¤ 0, ‚q ¤ 0 and Zt � WN.0;†/. fXtg is called a VARMA.p; q/ process

with mean � if fXt � �g is a VARMA.p; q/ process.

With the aid of the lag operator we can write the difference equation more
compactly as

ˆ.L/Xt D ‚.L/Zt

where ˆ.L/ D In � ˆ1L � : : : � ˆpLp and ‚.L/ D In C ‚1L C : : : C ‚qLq.
ˆ.L/ and ‚.L/ are n � n matrices whose elements are lag polynomials of order
smaller or equal to p, respectively q. If q D 0, ‚.L/ D In so that there is no
moving-average part. The process is then a purely autoregressive one which is
simply called a VAR(p) process. Similarly if p D 0, ˆ.L/ D In and there is no
autoregressive part. The process is then a purely moving-average one and simply
called a VMA(q) process. The importance of VARMA processes stems from the
fact that every stationary process can be arbitrarily well approximated by a VARMA
process, VAR process, or VMA process.

© Springer International Publishing Switzerland 2016
K. Neusser, Time Series Econometrics, Springer Texts in Business and Economics,
DOI 10.1007/978-3-319-32862-1_12
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12.1 The VAR(1) Process

We start our discussion by analyzing the properties of the VAR(1) process which is
defined as the solution the following stochastic difference equation:

Xt D ˆXt�1 C Zt with Zt � WN.0;†/:

We assume that all eigenvalues of ˆ are absolutely strictly smaller than one. As
the eigenvalues correspond to the inverses of the roots of the matrix polynomial
det.ˆ.z// D det.In �ˆz/, this assumption implies that all roots must lie outside the
unit circle:

det.In �ˆz/ ¤ 0 for all z 2 C with jzj � 1:

For the sake of exposition, we will further assume that ˆ is diagonalizable, i.e.
there exists an invertible matrix P such that J D P�1ˆP is a diagonal matrix with
the eigenvalues of ˆ on the diagonal.1

Consider now the stochastic process

Xt D Zt CˆZt�1 Cˆ2Zt�2 C : : : D
1X

jD0
ˆjZt�j:

We will show that this process is stationary and fulfills the first order difference
equation above. For fXtg to be well-defined, we must show that

P1
jD0 kˆjk < 1.

Using the properties of the matrix norm we get:

1X

jD0
kˆjk D

1X

jD0
kPJjP�1k �

1X

jD0
kPkkJjkP�1k

�
1X

jD0
kPk kP�1k

vuut
nX

iD1
j�ij2j

� kPk kP�1k
p

n

1X

jD0
j�maxj2j < 1;

where �max denotes the maximal eigenvalue of ˆ in absolute terms. As all
eigenvalues are required to be strictly smaller than one, this clearly also holds for
�max so that infinite matrix sum converges. This implies that the process fXtg is
stationary. In addition, we have that

1The following exposition remains valid even if ˆ is not diagonalizable. In this case one has to
rely on the Jordan form which complicates the computations (Meyer 2000).
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Xt D
1X

jD0
ˆjZt�j D Zt Cˆ

1X

jD0
ˆjZt�1�j D ˆXt�1 C Zt:

Thus, the process fXtg also fulfills the difference equation.
Next we demonstrate that this process is also the unique stationary solution to

the difference equation. Suppose that there exists another stationary process fYtg
which also fulfills the difference equation. By successively iterating the difference
equation one obtains:

Yt D Zt CˆZt�1 Cˆ2Yt�2

: : :

D Zt CˆZt�1 Cˆ2Zt�2 C : : :CˆkZt�k CˆkC1Yt�k�1:

Because fYtg is assumed to be stationary, VYt D VYt�k�1 D �.0/ so that

V

0
@Yt �

kX

jD0
ˆjZt�j

1
A D ˆkC1

V.Yt�k�1/ˆ
0kC1 D ˆkC1�.0/ˆ0kC1:

The submultiplicativity of the norm then implies:



ˆkC1�.0/ˆ0kC1

 �


ˆkC1

2 k�.0/k D kPk2kP�1k2k�.0/k

 
nX

iD1
j�ij2.kC1/

!
:

As all eigenvalues of ˆ are absolutely strictly smaller than one, the right hand side
of the above expression converges to zero for k going to infinity. This implies that
Yt and Xt D

P1
jD0ˆ

jZt�j are equal in the mean square sense and thus also in
probability.

Based on Theorem 10.2, the mean and the covariance function of the VAR(1)
process is:

EXt D
1X

jD0
ˆj

EZt�j D 0;

�.h/ D
1X

jD0
ˆjCh†ˆ0j D ˆh

1X

jD0
ˆj†ˆ0j D ˆh�.0/:

Analogously to the univariate case, it can be shown that there still exists a unique
stationary solution if all eigenvalues are absolutely strictly greater than one. This
solution is, however, no longer causal with respect to fZtg. If some of the eigenvalues
of ˆ are on the unit circle, there exists no stationary solution.
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12.2 Representation in Companion Form

A VAR(p) process of dimension n can be represented as a VAR(1) process of dimen-
sion p � n. For this purpose we define the pn vector Yt D .X0

t ;X
0
t�1; : : : ;X

0
t�pC1/

0.
This new process fYtg is characterized by the following first order stochastic
difference equation:

Yt D

0
BBBBB@

Xt

Xt�1
Xt�2
:::

Xt�pC1

1
CCCCCA

D

0
BBBBB@

ˆ1 ˆ2 : : : ˆp�1 ˆp

In 0 : : : 0 0

0 In : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : In 0

1
CCCCCA

0
BBBBB@

Xt�1
Xt�2
Xt�3
:::

Xt�p

1
CCCCCA

C

0
BBBBB@

Zt

0

0
:::

0

1
CCCCCA

D ˆYt�1 C Ut

where Ut D .Zt; 0; 0; : : : ; 0/
0 with Ut � WN

�
0;

�
† 0

0 0

��
. This representation is

also known as the companion form or state space representation (see also Chap. 17).
In this representation the last p.n �1/ equations are simply identities so that there is
no error term attached. The latter name stems from the fact that Yt encompasses all
the information necessary to describe the state of the system. The matrixˆ is called
the companion matrix of the VAR(p) process.2

The main advantage of the companion form is that by studying the properties
of the VAR(1) model, one implicitly encompasses VAR models of higher order and
also univariate AR(p) models which can be considered as special cases. The relation
between the eigenvalues of the companion matrix and the roots of the polynomial
matrix ˆ.z/ is given by the formula (Gohberg et al. 1982):

det
�
Inp �ˆz

�
D det

�
In �ˆ1z � : : : �ˆpzp

�
: (12.2)

In the case of the AR(p) process the eigenvalues of ˆ are just the inverses of the
roots of the polynomial ˆ.z/. Further elaboration of state space models is given in
Chap. 17.

12.3 Causal Representation

As will become clear in Chap. 15 and particularly in Sect. 15.2, the issue of the
existence of a causal representation is even more important than in the univariate

2The representation of a VAR(p) process in companion form is not uniquely defined. Permutations
of the elements in Yt will lead to changes in the companion matrix.
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case. Before stating the main theorem let us generalize the definition of a causal
representation from the univariate case (see Definition 2.2 in Sect. 2.3) to the
multivariate one.

Definition 12.2. A VARMA((p,q) process fXtg with ˆ.L/Xt D ‚.L/Zt is called
causal with respect to fZtg if and only if there exists a sequence of absolutely
summable matrices f‰jg, j D 0; 1; 2; : : :, i.e.

P1
jD0 k‰jk < 1, such that

Xt D
1X

jD0
‰jZt�j:

Theorem 12.1. Let fXtg be a VARMA(p,q) process with ˆ.L/Xt D ‚.L/Zt and

assume that

detˆ.z/ ¤ 0 for all z 2 C with jzj � 1;

then the stochastic difference equationˆ.L/Xt D ‚.L/Zt has exactly one stationary

solution with causal representation

Xt D
1X

jD0
‰jZt�j;

whereby the sequence of matrices f‰jg is absolutely summable and where the

matrices are uniquely determined by the identity

ˆ.z/‰.z/ D ‚.z/:

Proof. The proof is a straightforward extension of the univariate case. ut

As in the univariate case, the coefficient matrices which make up the causal
representation can be found by the method of undetermined coefficients, i.e. by
equating ˆ.z/‰.z/ D ‚.z/. In the case of the VAR(1) process, the f‰jg have to
obey the following recursion:

0 W ‰0 D In

z W ‰1 D ˆ‰0 D ˆ

z2 W ‰2 D ˆ‰1 D ˆ2

: : :

zj W ‰j D ˆ‰j�1 D ˆj

The recursion in the VAR(2) case is:
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0 W ‰0 D In

z W �ˆ1 C‰1 D 0 ) ‰1 D ˆ1

z2 W �ˆ2 �ˆ1‰1 C‰2 D 0 ) ‰2 D ˆ2 Cˆ21

z3 W �ˆ1‰2 �ˆ2‰1 C‰3 D 0 ) ‰3 D ˆ31 Cˆ1ˆ2 Cˆ2ˆ1

: : :

Remark 12.1. Consider a VAR(1) process with ˆ D
�
0 �

0 0

�
with � ¤ 0 then

the matrices in the causal representation are ‰j D ˆj D 0 for j > 1. This
means that fXtg has an alternative representation as a VMA(1) process because
Xt D Zt C ˆZt�1. This simple example demonstrates that the representation of
fXtg as a VARMA process is not unique. It is therefore impossible to always
distinguish between VAR and VMA process of higher orders without imposing
additional assumptions. These additional assumptions are much more complex in
the multivariate case and are known as identifying assumptions. Thus, a general
treatment of this identification problem is outside the scope of this book. See Hannan
and Deistler (1988) for a general treatment of this issue. For this reason we will
concentrate exclusively on VAR processes where these identification issues do not
arise.

Example

We illustrate the above concept by the following VAR(2) model:

Xt D
�
0:8 �0:5
0:1 �0:5

�
Xt�1 C

�
�0:3 �0:3
�0:2 0:3

�
Xt�2 C Zt

with Zt � WN

��
0

0

�
;

�
1:0 0:4

0:4 2:0

��
:

In a first step, we check whether the VAR model admits a causal representation
with respect to fZtg. For this purpose we have to compute the roots of the equation
det.I2 �ˆ1z �ˆ2z

2/ D 0:

det

�
1 � 0:8z C 0:3z2 0:5z C 0:3z2

�0:1z C 0:2z2 1C 0:5z � 0:3z2

�

D 1 � 0:3z � 0:35z2 C 0:32z3 � 0:15z4 D 0:
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The four roots are: �1:1973; 0:8828 ˙ 1:6669�; 1:5650. As they are all outside
the unit circle, there exists a causal representation which can be found from the
equation ˆ.z/‰.z/ D I2 by the method of undetermined coefficients. Multiplying
the equation system out, we get:

I2 �ˆ1z �ˆ2z2

C‰1z�ˆ1‰1z2 �ˆ2‰1z
3

C‰2z2 �ˆ1‰2z
3�ˆ2‰2z4

: : : D I2:

Equating the coefficients corresponding to zj, j D 1; 2; : : ::

z W ‰1 D ˆ1

z2 W ‰2 D ˆ1‰1 Cˆ2

z3 W ‰3 D ˆ1‰2 Cˆ2‰1

: : : : : :

zj W ‰j D ˆ1‰j�1 Cˆ2‰j�2:

The last equation shows how to compute the sequence f‰jg recursively:

‰1 D
�
0:8 �0:5
0:1 �0:5

�
‰2 D

�
0:29 �0:45

�0:17 0:50

�

‰3 D
�
0:047 �0:310

�0:016 �0:345

�
: : :

12.4 Computation of the Covariance Function
of a Causal VAR Process

As in the univariate case, it is important to be able to compute the covariance
and the correlation function of VARMA process (see Sect. 2.4). As explained in
Remark 12.1 we will concentrate on VAR processes. Consider first the case of a
causal VAR(1) process:

Xt D ˆXt�1 C Zt Zt � WN.0;†/:

Multiplying the above equation first by X0
t and then successively by X0

t�h from the
left, h D 1; 2; : : :, and taking expectations, we obtain the Yule-Walker equations:

E
�
XtX

0
t

�
D �.0/ D ˆE

�
Xt�1X

0
t

�
C E

�
ZtX

0
t

�
D ˆ�.�1/C†;

E
�
XtX

0
t�h

�
D �.h/ D ˆE

�
Xt�1X

0
t�h

�
C E

�
ZtX

0
t�h

�
D ˆ�.h � 1/:
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Knowing �.0/ and ˆ, �.h/, h > 0, can be computed recursively from the second
equation as

�.h/ D ˆh�.0/; h D 1; 2; : : : (12.3)

Given ˆ and †, we can compute �.0/. For h D 1, the second equation above
implies �.1/ D ˆ�.0/. Inserting this expression in the first equation and using the
fact that �.�1/ D �.1/0, we get an equation in �.0/:

�.0/ D ˆ�.0/ˆ0 C†:

This equation can be solved for �.0/:

vec�.0/ D vec.ˆ�.0/ˆ0/C vec†

D .ˆ˝ˆ/vec�.0/C vec†;

where ˝ and “vec” denote the Kronecker-product and the vec-operator, respec-
tively.3 Thus,

vec�.0/ D .In2 �ˆ˝ˆ/�1vec†: (12.4)

The assumption that fXtg is causal with respect to fZtg guarantees that the
eigenvalues of ˆ˝ ˆ are strictly smaller than one in absolute value, implying that
In2 �ˆ˝ˆ is invertible.4

If the process is a causal VAR(p) process the covariance function can be found in
two ways. The first one rewrites the process in companion form as a VAR(1) process
and applies the procedure just outlined. The second way relies on the Yule-Walker
equation. This equation is obtained by multiplying the stochastic difference equation
from the left by X0

t and then successively by X0
t�h, h > 0, and taking expectations:

�.0/ D ˆ1�.�1/C : : :Cˆp�.�p/C†;

D ˆ1�.1/
0 C : : :Cˆp�.p/

0 C†;

�.h/ D ˆ1�.h � 1/C : : :Cˆp�.h � p/: (12.5)

The second equation can be used to compute �.h/, h � p, recursively taking
ˆ1; : : : ; ˆp and the starting values �.p � 1/; : : : ; �.0/ as given. The starting value
can be retrieved by transforming the VAR(p) model into the companion form and
proceeding as explained above.

3The vec-operator stacks the column of a n � m matrix to a column vector of dimension nm. The
properties of ˝ and vec can be found, e.g. in Magnus and Neudecker (1988).
4If the eigenvalues ofˆ are �i, i D 1; : : : ; n, then the eigenvalues ofˆ˝ˆ are �i�j, i; j D 1; : : : ; n

(see Magnus and Neudecker (1988)).
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Example

We illustrate the computation of the covariance function using the same example as
in Sect. 12.3. First, we transform the model into the companion form:

Yt D

0
BB@

X1;t

X2;t

X1;t�1
X2;t�1

1
CCA D

0
BB@

0:8 �0:5 �0:3 �0:3
0:1 �0:5 �0:2 0:3

1 0 0 0

0 1 0 0

1
CCA

0
BB@

X1;t�1
X2;t�1
X1;t�2
X2;t�2

1
CCAC

0
BB@

Z1;t

Z2;t

0

0

1
CCA :

Equation (12.4) implies that �Y.0/ is given by:

vec�Y.0/ D vec

�
�X.0/ �X.1/

�X.1/
0 �X.0/

�
D .I16 �ˆ˝ˆ/�1vec

�
† 0

0 0

�

so that �X.0/ and �X.1/ become:

�X.0/ D
�
2:4201 0:5759

0:5759 3:8978

�
�X.1/ D

�
1:3996 �0:5711

�0:4972 �2:5599

�
:

The other covariance matrices can then be computed recursively according to
Eq. (12.5):

�X.2/ D ˆ1�X.1/Cˆ2�X.0/ D
�
0:4695 �05191
0:0773 2:2770

�
;

�X.3/ D ˆ1�X.2/Cˆ2�X.1/ D
�
0:0662 �0:6145

�0:4208 �1:8441

�
:

Appendix: Autoregressive Final Form

Definition 12.1 defined the VARMA process fXtg as a solution to the corresponding
multivariate stochastic difference equation (12.1). However, as pointed out by
Zellner and Palm (1974) there is an equivalent representation in the form of n

univariate ARMA processes, one for each Xit. Formally, these representations, also
called autoregressive final form or transfer function form (Box and Jenkins 1976),
can be written as

detˆ.L/Xit D
�
ˆ�.L/‚.L/

�
i� Zt
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where the index i� indicates the i-th row ofˆ�.L/‚.L/. Therebyˆ�.L/ denotes the
adjugate matrix ofˆ.L/.5 Thus each variable in Xt may be investigated separately as
an univariate ARMA process. Thereby the autoregressive part will be the same for
each variable. Note, however, that the moving-average processes will be correlated
across variables.

The disadvantage of this approach is that it involves rather long AR and MA lags
as will become clear from the following example.6 Take a simple two-dimensional
VAR of order one, i.e. Xt D ˆXt�1CZt , Zt � WN.0;†/. Then the implied univariate
processes will be ARMA(2,1) processes. After some straightforward manipulations
we obtain:

.1� .�11 C �22/L C .�11�22 � �12�21/L
2/X1t D Z1t � �22Z1;t�1 C �12Z2;t�1;

.1� .�11 C �22/L C .�11�22 � �12�21/L
2/X2t D �21Z1;t�1 C Z2t � �11Z2;t�1:

It can be shown by the means given in Sects. 1.4.3 and 1.5.1 that the right hand sides
are observationally equivalent to MA(1) processes.

5The elements of the adjugate matrix A� of some matrix A are given by ŒA��ij D .�1/iCjMij where
Mij is the minor (minor determinant) obtained by deleting the i-th column and the j-th row of A
(Meyer 2000, p. 477).
6The degrees of the AR and the MA polynomial can be as large as np and .n�1/pCq, respectively.
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13.1 Introduction

In this chapter we derive the Least-Squares (LS) estimator for vectorautoregressive
(VAR) models and its asymptotic distribution. For this end, we have to make several
assumption which we maintain throughout this chapter.

Assumption 13.1. The VAR process fXtg is generated by

ˆ.L/Xt D Zt

Xt �ˆ1Xt�1 � � � � �ˆpXt�p D Zt with Zt � WN.0;†/;

† nonsingular, and admits a stationary and causal representation with respect

to fZtg:

Xt D Zt C‰1Zt�1 C‰2Zt�2 C : : : D
1X

jD0
‰jZt D ‰.L/Zt

with
P1

jD0 k‰jk < 1.

Assumption 13.2. The residual process fZtg is not only white noise, but also

independently and identically distributed:

Zt � IID.0;†/:

Assumption 13.3. All fourth moments of Zt exist. In particular, there exists a finite

constant c > 0 such that

E
�
ZitZjtZktZlt

�
� c for all i; j; k; l D 1; 2; : : : ; n; and for all t:

© Springer International Publishing Switzerland 2016
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Note that the moment condition is automatically fulfilled by Gaussian processes.
For the ease of exposition, we omit a constant in the VAR. Thus, we consider the
demeaned process.

13.2 The Least-Squares Estimator

Let us denote by �.k/ij the .i; j/-th element of the matrixˆk, k D 1; 2; : : : ; p, then the
i-th equation, i D 1; : : : ; n, can be written as

Xit D �
.1/
i1 X1;t�1 C : : :C �

.1/
in Xn;t�1 C : : :C �

.p/
i1 X1;t�p C : : :C �

.p/
in Xn;t�p C Zit:

We can view this equation as a regression equation of Xit on all lagged variables
X1;t�1; : : : ;Xn;t�1; : : : ;X1;t�p; : : : ;Xn;t�p with error term Zit. Note that the regres-
sors are the same for each equation. The np regressors have coefficient vector�
�
.1/
i1 ; : : : ; �

.1/
in ; : : : ; �

.p/
i1 ; : : : ; �

.p/
in

�0
. Thus, the complete VAR(p) model has n2p

coefficients in total to be estimated. In addition, there are n.n C 1/=2 independent
elements of the covariance matrix† that have to be estimated too.

It is clear that the n different equations are linked through the regressors and the
errors terms which in general have non-zero covariances �ij D EZitZjt. Hence, it
seems warranted to take a systems approach and to estimate all equations of the
VAR jointly. Below, we will see that an equation-by-equation approach is, however,
still appropriate.

Suppose that we have T C p observations with t D �p C 1; : : : ; 0; 1; : : : ;T, then
we can write the regressor matrix for each equation compactly as a T �np matrix X:

X D

0
BBB@

X1;0 : : : Xn;0 : : : X1;�pC1 : : : Xn;�pC1
X1;1 : : : Xn;1 : : : X1;�pC2 : : : Xn;�pC2
:::

: : :
:::

: : :
:::

: : :
:::

X1;T�1 : : : Xn;T�1 : : : X1;T�p : : : Xn;T�p

1
CCCA :

Using this notation, we can write the VAR for observations t D 1; 2; : : : ;T as

.X1;X2; : : : ;XT/„ ƒ‚ …
DY

D .ˆ1; ˆ2; : : : ; ˆp/„ ƒ‚ …
Dˆ

0
BBB@

X0 X1 : : : XT�1
X�1 X0 : : : XT�2
:::

:::
: : :

:::

X�pC1 X�pC2 : : : XT�p

1
CCCA

„ ƒ‚ …
DX0

C .Z1;Z2; : : : ;ZT /„ ƒ‚ …
DZ
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or more compactly

Y D ˆX0 C Z:

There are two ways to bring this equation system in the usual multivariate regression
framework. One can either arrange the data according to observations or according
to equations. Ordered in terms of observations yields:

vec Y D vec.ˆX0/C vec Z D .X ˝ In/ vecˆC vec Z (13.1)

with vec Y D .X11;X21; : : : ;Xn1;X12;X22; : : : ;Xn2; : : : ;X1T ;X2T ; : : : ;XnT/
0. If the

data are arranged equation by equation, the dependent variable is vec Y 0 D
.X11;X12; : : : ;X1T ;X21;X22; : : : ;X2T ; : : : ;Xn1;Xn2; : : : ;XnT/

0. As both representa-
tions, obviously, contain the same information, there exists a nT � nT permutation
or commutation matrix KnT such that vec Y 0 D Knt vec Y. Using the computation
rules for the Kronecker product, the vec operator, and the permutation matrix
(see Magnus and Neudecker 1988), we get for the ordering in terms of equations

vec Y 0 D KnT vec Y D KnT

�
vec.ˆX0/C vec Z

�

D KnT.X ˝ In/ vecˆC KnT vec Z

D .In ˝ X/Kn2p vecˆC KnT vec Z

D .In ˝ X/ vecˆ0 C vec Z0 (13.2)

where Kn2p is the corresponding n2�p permutation matrix relating vecˆ and vecˆ0.
The error terms of the different equations are correlated because, in general, the

covariances �ij D EZitZjt are nonzero. In the case of an arrangement by observation
the covariance matrix of the error term vec Z is

V vec Z D E.vec Z/.vec Z/0

D

0
BBBBBBBBBBBBBBBBBBB@

�21 : : : �1n 0 : : : 0 : : : 0 : : : 0
:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

�n1 : : : �
2
n 0 : : : 0 : : : 0 : : : 0

0 0 0 �21 : : : �1n : : : 0 : : : 0
:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

0 : : : 0 �n1 : : : �
2
n : : : 0 : : : 0

:::
:::

:::
:::

:::
:::
: : :

:::
:::

:::

0 : : : 0 0 : : : 0 : : : �21 : : : �1n

:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

0 : : : 0 0 : : : 0 : : : �n1 : : : �
2
n

1
CCCCCCCCCCCCCCCCCCCA

D IT ˝†:
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In the second case, the arrangement by equation, the covariance matrix of the error
term vec Z0 is

V vec Z0 D E.vec Z0/.vec Z0/0

D

0
BBBBBBBBBBBBBBBBBBB@

�21 : : : 0 �12 : : : 0 : : : �1n : : : 0
:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

0 : : : �21 0 : : : �12 : : : 0 : : : �1n

�21 : : : 0 �22 : : : 0 : : : �2n : : : 0
:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

0 : : : �21 0 : : : �22 : : : 0 : : : �2n

:::
:::

:::
:::

:::
:::
: : :

:::
:::

:::

�n1 : : : 0 �n2 : : : 0 : : : �2n : : : 0
:::
: : :

:::
:::
: : :

::: : : :
:::
: : :

:::

0 : : : �n1 0 : : : �n2 : : : 0 : : : �2n

1
CCCCCCCCCCCCCCCCCCCA

D †˝ IT :

Given that the covariance matrix is not a multiple of the identity matrix, efficient
estimation requires the use of generalized least squares (GLS). The GLS estimator
minimizes the weighted sum of squared errors

S.vecˆ/ D .vec Z/0.IT ˝†/�1.vec Z/ �! min
ˆ
:

The solution of this minimization problem can be found in standard econometric
textbooks like (Dhrymes 1978; Greene 2008; Hamilton 1994b) and is given by

.vec b̂/GLS D
�
.X ˝ In/

0.IT ˝†/�1.X ˝ In/
��1

.X ˝ In/
0.IT ˝†/�1 vec Y

D
�
.X0 ˝ In/.IT ˝†�1/.X ˝ In/

��1
.X0 ˝ In/.IT ˝†�1/ vec Y

D
�
.X0 ˝†�1/.X ˝ In/

��1
.X0 ˝†�1/ vec Y

D
�
.X0X/˝†�1��1 .X0 ˝†�1/ vec Y

D
�
.X0X/�1 ˝†

�
.X0 ˝†�1/ vec Y D

�
..X0X/�1X0/˝ In

�
vec Y

D .vec b̂/OLS

As the covariance matrix † cancels, the GLS and the OLS-estimator deliver
numerically exactly the same solution. The reason for this result is that the
regressors are the same in each equation. If this does not hold, for example when
some coefficients are set a priori to zero, efficient estimation would require the use
of GLS.
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Further insights can be gained by rewriting the estimation problem in terms of
the arrangement by equation (see Eq. (13.2)). For this purpose, multiply the above
estimator from the left by the commutation matrix Kn2p

1:

.vec b̂0/OLS D Kn2p.vec b̂/OLS D Kn2p

�
..X0X/�1X0/˝ In

�
vec Y

D
�
In ˝ ..X0X/�1X0/

�
KnT vec Y D

�
In ˝ ..X0X/�1X0/

�
vec Y 0:

This can be written in a more explicit form as

.vec b̂0/OLS D

0
BBB@

.X0X/�1X0 0 : : : 0

0 .X0X/�1X0 : : : 0
:::

:::
: : :

:::

0 0 : : : .X0X/�1X0

1
CCCA vec Y 0

D

0
BBB@

.X0X/�1X0Y1 0 : : : 0

0 .X0X/�1X0Y2 : : : 0
:::

:::
: : :

:::

0 0 : : : .X0X/�1X0Yn

1
CCCA

where Yi, i D 1; : : : ; n, stacks the observations of the i-th variable such that Yi D
.Xi1;Xi2; : : : ;XiT/

0. Thus, the estimation of VAR as a system can be broken down
into the estimation of n regression equations with dependent variable Xit. Each of
these equations can then be estimated by OLS.

Thus, we have proven that

vec b̂ D .vec b̂/GLS D .vec b̂/OLS D
�
..X0X/�1X0/˝ In

�
vec Y; (13.3)

vec b̂0 D .vec b̂0/GLS D .vec b̂0/OLS D
�
In ˝ ..X0X/�1X0/

�
vec Y 0: (13.4)

The least squares estimator can also be rewritten without the use of the vec-operator:

b̂ D YX.X0X/�1:

Under the assumptions stated in the Introduction Sect. 13.1, these estimators are
consistent and asymptotically normal.

Theorem 13.1 (Asymptotic Distribution of OLS Estimator). Under the assumption

stated in the Introduction Sect. 13.1, it holds that

plim b̂ D ˆ

1Alternatively, one could start from scratch and investigate the minimization problem S.vecˆ0/ D
.vec Z0/0.†�1 ˝ IT /.vec Z0/ ! minˆ.
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and that

by observation:
p

T
�

vec b̂ � vecˆ
�

d����! N
�
0;��1

p ˝†
�
;

respectively,

by equation:
p

T
�

vec b̂0 � vecˆ0
�

d����! N
�
0;†˝ ��1

p

�

where � p D plim 1
T
.X0X/.

Proof. See Sect. 13.3. ut

In order to make use of this result in practice, we have to replace the matrices †
and �p by some estimate. A natural consistent estimate of �p is given according to
Proposition 13.1 by

b� p D X0X

T
:

In analogy to the multivariate regression model, a natural estimator for † can be
obtained from the Least-Squares residualsbZ:

b† D 1

T

TX

tD1

bZt
bZ0

t D
bZbZ0

T
D .Y � b̂X0/.Y � b̂X0/0

T
:

The property of this estimator is summarized in the proposition below.

Theorem 13.2. Under the condition of Theorem 13.1

plim
p

T

�
b† � ZZ0

T

�
D 0

Proof. See Sect. 13.3. ut

An alternative, but asymptotically equivalent estimator e† is obtained by adjust-
ing b† for the degrees of freedom:

e† D T

T � np
b†: (13.5)

If the VAR contains a constant, as is normally the case in practice, the degrees of
freedom correction should be T � np � 1.
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Small sample inference with respect to the parametersˆ can therefore be carried
out using the approximate distribution

vec b̂ � N
�

vecˆ;b†˝ .X0X/�1
�
: (13.6)

This implies that hypothesis testing can be carried out using the conventional t- and
F-statistics. From a system perspective, the appropriate degree of freedom for the
t-ratio would be nT � n2p � n, taking a constant in each equation into account.
However, as that the system can be estimated on an equation by equation basis,
it seems reasonable to use T � np � 1 instead. This corresponds to a multivariate
regression setting with T observation and np C 1 regressors, including a constant.

However, as in the univariate case the Gauss Markov theorem does not apply
because the lagged regressors are correlated with past error terms. This results in
biased estimates in small samples. The amount of the bias can be assessed and
corrected either by analytical or bootstrap methods. For an overview, a comparison
of the different corrections proposed in the literature, and further references see
Engsteg and Pedersen (2014).

13.3 Proofs of the Asymptotic Properties
of the Least-Squares Estimator

Lemma 13.1. Given the assumptions made in Sect. 13.1, the process fvec Zt�jZ
0
t�ig,

i; j 2 Z and i ¤ j, is white noise.

Proof. Using the independence assumption of fZtg, we immediately get

E vec Zt�jZ
0
t�i D E.Zt�i ˝ Zt�j/ D 0;

V.vec Zt�jZ
0
t�i/ D E

�
.Zt�i ˝ Zt�j/.Zt�i ˝ Zt�j/

0�

D E
�
.Zt�iZ

0
t�i/˝ .Zt�jZ

0
t�j/
�

D †˝†;

�vec Zt�jZ
0
t�i
.h/ D E

�
.Zt�i ˝ Zt�j/.Zt�i�h ˝ Zt�j�h/

0�

D E
�
.Zt�iZ

0
t�i�h/˝ .Zt�jZ

0
t�j�h/

�
D 0; h ¤ 0:

ut

Under the assumption put forward in the Introduction, 1
T
.X0X/ converges in

probability for T ! 1 to a np � np matrix � p. This matrix consists of p2 blocks
where each .i; j/-th block corresponds to the covariance matrix �.i � j/. Thus we
have the following proposition:

Proposition 13.1. Under the assumption stated in the Introduction Sect. 13.1
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X0X

T

p����! �p D

0
BBB@

�.0/ �.1/ : : : �.p � 1/

� 0.1/ �.0/ : : : �.p � 2/
:::

:::
: : :

:::

� 0.p � 1/ � 0.p � 2/ : : : �.0/

1
CCCA :

with �p being nonsingular.

Proof. Write 1
T
.X0X/ as

X0X

T
D

0
BBB@

b�.0/ b�.1/ : : : b�.p � 1/
b� 0.1/ b�.0/ : : : b�.p � 2/
:::

:::
: : :

:::
b� 0.p � 1/ b� 0.p � 2/ : : : b�.0/

1
CCCA

where

b�.h/ D 1

T

T�1X

tD0
XtX

0
t�h; h D 0; 1; : : : ; p � 1:

We will show that each componentb�.h/ of 1
T

X0X converges in probability to �.h/.
Taking the causal representation of fXtg into account

b�.h/ D 1

T

T�1X

tD0
XtX

0
t�h D 1

T

T�1X

tD0

1X

jD0

1X

iD0
‰jZt�jZ

0
t�h�i‰

0
i

D
1X

jD0

1X

iD0
‰j

 
1

T

T�1X

tD0
Zt�jZ

0
t�h�i

!
‰0

i

D
1X

jD0

1X

iDh

‰j

 
1

T

T�1X

tD0
Zt�jZ

0
t�i

!
‰0

i�h:

According to Lemma 13.1 above fZt�jZ
0
t�ig, i ¤ j, is white noise. Thus,

1

T

T�1X

tD0
Zt�jZ

0
t�i

p
����! 0; i ¤ j;
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according to Theorem 11.1. Hence, for m fixed,

Gm.h/ D
mX

jD0

mChX

iDh
i¤j

‰j

 
1

T

T�1X

tD0
Zt�jZ

0
t�i

!
‰0

i�h

p����! 0:

Taking absolute values and expectations element-wise,

E jG1.h/� Gm.h/j D E

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X

j>m or i>mCh
i¤j

‰j

 
1

T

T�1X

tD0
Zt�jZ

0
t�i

!
‰0

i�h

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�
X

j>m or i>mCh
i¤j

j‰jj
 
1

T

T�1X

tD0
EjZt�jZ

0
t�ij
!

j‰0
i�hj

�
X

j>m or i>mCh
i¤j

j‰jj
�
EjZ1Z0

2j
�

j‰0
i�hj

�
X

j>m or i>m
i¤j

j‰jj
�
EjZ1Z0

2j
�

j‰0
ij

�
X

j>m

j‰jj
 
EjZ1Z0

2j
X

i

j‰0
i j
!

C

0
@X

j

j‰jj EjZ1Z0
2j

1
AX

i>m

j‰0
i j

As the bound is independent of T and converges to 0 as m ! 1, we have

lim
m!1

lim sup
T!1

E jG1.h/ � Gm.h/j D 0:

The Basic Approximation Theorem C.14 then establishes that

G1.h/
p

����! 0:

Henceforth

b�.h/ D G1.h/C
1X

jDh

‰j

 
1

T

T�1X

tD0
Zt�jZ

0
t�j

!
‰0

j�h

D G1.h/C
1X

jDh

‰j

 
1

T

T�1X

tD0
ZtZ

0
t

!
‰0

j�h C remainder
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where the remainder only depends on initial conditions2 and is therefore negligible
as T ! 1. As

1

T

T�1X

tD0
ZtZ

0
t

p����! †;

we finally get

b�.h/ p����!
1X

jDh

‰j†‰
0
j�h D �.h/:

The last equality follows from Theorem 10.2. ut

Proposition 13.2. Under the assumption stated in the Introduction Sect. 13.1

1p
T

TX

tD1
vec.ZtX

0
t�1;ZtX

0
t�2; : : : ;ZtX

0
t�p/

D 1p
T

vec.ZX/ D 1p
T
.X0 ˝ In/ vec Z

d����! N.0;�p ˝†/

Proof. The idea of the proof is to approximate fXtg by some simpler process fX
.m/
t g

which allows the application of the CLT for dependent processes (Theorem C.13).
This leads to an asymptotic distribution which by the virtue of the Basic Approxima-
tion Theorem C.14 converges to the asymptotic distribution of the original process.

Define X
.m/
t as the truncated process from the causal presentation of Xt:

X
.m/
t D Zt C‰1Zt�1 C : : :C‰mZt�m; m D p; p C 1; p C 2; : : :

Using this approximation, we can then define the process fY
.m/
t g as

Y
.m/
t D vec

�
ZtX

.m/0
t�1 ;ZtX

.m/0
t�2 ; : : : ;ZtX

.m/0
t�p

�
D

0
BBBB@

X
.m/
t�1

X
.m/
t�2
:::

X
.m/
t�p

1
CCCCA

˝ Zt:

2See the proof of Theorem 11.2.2 in Brockwell and Davis (1991) for details.
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Due to the independence of fZtg this process is a mean zero white noise process,
but is clearly not independent. It is easy to see that the process is actually .m C p/-
dependent with variance Vm given by

Vm D EY
.m/
t Y

.m/0
t D E

0
BBBB@

0
BBBB@

X
.m/
t�1

X
.m/
t�2
:::

X
.m/
t�p

1
CCCCA

˝ Zt

1
CCCCA

0
BBBB@

0
BBBB@

X
.m/
t�1

X
.m/
t�2
:::

X
.m/
t�p

1
CCCCA

˝ Zt

1
CCCCA

0

D

0
BBB@E

0
BBB@

X
.m/
t�1

X
.m/
t�2
: : :

X
.m/
t�p

1
CCCA

0
BBB@

X
.m/
t�1

X
.m/
t�2
: : :

X
.m/
t�p

1
CCCA

01
CCCA˝ EZtZ

0
t

D

0
BBB@

� .m/.0/ � .m/.1/ : : : � .m/.p � 1/
� .m/.1/0 � .m/.0/ : : : � .m/.p � 2/

:::
:::

: : :
:::

� .m/.p � 1/0 � .m/.p � 2/0 : : : � .m/.0/

1
CCCA˝†

D � .m/
p ˝†

where � .m/p is composed of

� .m/.h/ D EX
.m/
t�1X

.m/0
t�1�h

D E .Zt�1 C‰1Zt�2 C : : :C‰mZt�1�m/

.Zt�1�h C‰1Zt�2�h C : : :C‰mZt�1�m�h/
0

D
mX

jDh

‰j†‰
0
j�h; h D 0; 1; : : : ; p � 1:

Thus, we can invoke the CLT for .m C p/-dependent process (see Theorem C.13) to
establish that

p
T

 
1

T

TX

tD1
Y
.m/
t

!
d����! N.0;Vm/:

For m ! 1, � .m/.h/ converges to �.h/ and thus � .m/
p to �p. Therefore, Vm �!

�p ˝†.



236 13 Estimation of VAR Models

The variance of the approximation error is equal to

V

 
1p
T

TX

tD1

�
vec.ZtX

0
t�1; : : : ;ZtX

0
t�p/ � Y

.m/
t

�!

D 1

T
V

 
TX

tD1
vec

�
Zt.Xt�1 � X

.m/
t�1/

0; : : : ;Zt.Xt�p � X
.m/
t�p/

0
�!

D 1

T
V

0
@

TX

tD1
vec

0
@Zt

0
@

1X

jDmC1
‰jZt�1�j

1
A

0

; : : : ;Zt

0
@

1X

jDmC1
‰jZt�p�j

1
A

01
A
1
A

D V

0
@vec

0
@Zt

0
@

1X

jDmC1
‰jZt�1�j

1
A

0

; : : : ;Zt

0
@

1X

jDmC1
‰jZt�p�j

1
A

01
A
1
A

D E

0
B@

0
B@

P1
jDmC1‰jZt�1�j

:::P1
jDmC1‰jZt�p�j

1
CA˝ Zt

1
CA

0
B@

0
B@

P1
jDmC1‰jZt�1�j

:::P1
jDmC1‰jZt�p�j

1
CA˝ Zt

1
CA

0

D

0
B@

P1
jDmC1‰j†‰

0
j : : : : : :

:::
: : :

:::

: : : : : :
P1

jDmC1‰j†‰
0
j

1
CA˝†:

The absolute summability of ‰j then implies that the infinite sums converge to

zero as m ! 1. As X
.m/
t

m.s.������! Xt for m ! 1, we can apply the Basic
Approximation Theorem C.14 to reach the required conclusion

1p
T

TX

tD1
vec.ZtX

0
t�1;ZtX

0
t�2; : : : ;ZtX

0
t�p/

d����! N.0;�p ˝†/:
ut

Proof of Theorem 13.1

Proof. We prove the Theorem for the arrangement by observation. The prove for the
arrangement by equation can be proven in a completely analogous way. Inserting the
regression formula (13.1) into the least-squares formula (13.3) leads to:

vec b̂ D ...X0X/�1X0/˝ In/.X ˝ In/ vecˆC ...X0X/�1X0/˝ In/ vec Z

D vecˆC ...X0X/�1X0/˝ In/ vec Z: (13.7)
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Bringing vecˆ to the left hand side and taking the probability limit, we get using
Slutzky’s Lemma C.10 for the product of probability limits

plim.vec b̂ � vecˆ/ D plim vec
�
ZX.X0X/�1

�

D vec

 
plim

ZX

T
plim

�
X0X

T

��1!
D 0:

The last equality follows from the observation that Proposition 13.1 implies
plim X0X

T
D �p nonsingular and that Proposition 13.2 implies plim ZX

T
D 0. Thus,

we have established that the Least-Squares estimator is consistent.
Equation (13.7) further implies:

p
T.vec b̂ � vecˆ/ D

p
T
�
..X0X/�1X0/˝ In

�
vec Z

D
 �

X0X

T

��1
˝ In

!
1p
T
.X0 ˝ In/ vec Z

As plim X0X
T

D �p nonsingular, the above expression converges in distribution
according to Theorem C.10 and Proposition 13.2 to a normally distributed random
variable with mean zero and covariance matrix

.��1
p ˝ In/.�p ˝†/.��1

p ˝ In/ D ��1
p ˝†

ut

Proof of Theorem 13.2

Proof.

b† D .Y � b̂X0/.Y � b̂X0/0

T

D .Y �ˆX0 C .ˆ � b̂/X0/.Y �ˆX0 C .ˆ� b̂/X0/0

T

D 1

T
.Z C .ˆ � b̂/X0/.Z C .ˆ � b̂/X0/0

D ZZ0

T
C ZX

T
.ˆ � b̂/0 C .ˆ� b̂/X0Z0

T
C .ˆ � b̂/X0X

T
.ˆ � b̂/0

Applying Theorem C.7 and the results of Propositions 13.1 and 13.2 shows that

ZX.ˆ� b̂/0p
T

p
����! 0
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and

.ˆ � b̂/X0X

T

p
T.ˆ� b̂/0 p

����! 0:

Hence,

p
T

 
.Y � b̂X0/.Y � b̂X0/0

T
� ZZ0

T

!
D

p
T

�
b† � ZZ0

T

�
p����! 0

ut

13.4 The Yule-Walker Estimator

An alternative estimation method can be derived from the Yule-Walker equations.
Consider first a VAR(1) model. The Yule-Walker equation in this case simply is:

�.0/ D ˆ�.�1/C†

�.1/ D ˆ�.0/

or

�.0/ D ˆ�.0/ˆ0 C†

�.1/ D ˆ�.0/:

The solution of this system of equations is:

ˆ D �.1/�.0/�1

† D �.0/ �ˆ�.0/ˆ0 D �.0/ � �.1/�.0/�1�.0/�.0/�1�.1/0

D �.0/� �.1/�.0/�1�.1/0:

Replacing the theoretical moments by their empirical counterparts, we get the Yule-

Walker estimator for ˆ and †:

b̂ D b�.1/b�.0/�1;
b† D b�.0/ � b̂b�.0/b̂0:
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In the general case of a VAR(p) model the Yule-Walker estimator is given as the
solution of the equation system

b�.h/ D
pX

jD1

b̂
j
b�.h � j/; k D 1; : : : ; p;

b† D b�.0/� b̂
1
b�.�1/ � : : : � b̂

p
b�.�p/

As the least-squares and the Yule-Walker estimator differ only in the treatment
of the starting values, they are asymptotically equivalent. In fact, they yield very
similar estimates even for finite samples (see e.g. Reinsel (1993)). However, as in the
univariate case, the Yule-Walker estimator always delivers, in contrast to the least-
square estimator, coefficient estimates with the property det.In� Ô

1z�: : :� Ô
pzp/ ¤

0 for all z 2 C with jzj � 1. Thus, the Yule-Walker estimator guarantees that the
estimated VAR possesses a causal representation. This, however, comes at the price
that the Yule-Walker estimator has a larger small-sample bias than the least-squares
estimator, especially when the roots of ˆ.z/ get close to the unit circle (Tjøstheim
and Paulsen 1983; Shaman and Stine 1988; Reinsel 1993). Thus, it is generally
preferable to use the least-squares estimator in practice.



14Forecasting with VAR Models

14.1 Forecasting with Known Parameters

The discussion of forecasting with VAR models proceeds in two steps. First, we
assume that the parameters of the model are known. Although this assumption is
unrealistic, it will nevertheless allow us to introduce and analyze important concepts
and ideas. In a second step, we then investigate how the results established in the
first step have to be amended if the parameters are estimated. The analysis will
focus on stationary and causal VAR(1) processes. Processes of higher order can be
accommodated by rewriting them in companion form. Thus we have:

Xt D ˆXt�1 C Zt; Zt � WN.0;†/;

Xt D Zt C‰1Zt�1 C‰2Zt�2 C : : : D
1X

jD0
‰jZt�j;

where ‰j D ˆj. Consider then the following forecasting problem: Given observa-
tions fXT ;XT�1; : : : ;X1g, find a linear function, called predictor or forecast function,
PTXTCh, h � 1, which minimizes the expected quadratic forecast error

E .XTCh � PTXTCh/
0 .XTCh � PTXTCh/

D E tr.XTCh � PTXTCh/.XTCh � PTXTCh/
0:

Thereby “tr” denotes the trace operator which takes the sum of the diagonal elements
of a matrix. As we rely on linear forecasting functions, PTXTCh can be expressed as

PTXTCh D A1XT C A2XT�1 C : : :C ATX1 (14.1)

© Springer International Publishing Switzerland 2016
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with matrices A1;A2; : : : ;AT still to be determined. In order to simplify the
exposition, we already accounted for the fact that the mean of fXtg is zero.1

A justification for focusing on linear least-squares forecasts is given in Chap. 3.
The first order conditions for the least-squares minimization problem are given by
the normal equations:

E
�
XTCh � PT XTCh

�
X0

s D E
�
XTCh � A1XT � : : :� AT X1

�
X0

s

D EXTChX0
s � A1EXT X0

s � : : :� ATEX1X
0
s D 0; 1 � s � T:

These equations state that the forecast error .XTCh �PTXTCh/ must be uncorrelated
with the available information Xs, s D 1; 2; : : : ;T. The normal equations can be
written as

.A1;A2; : : : ;AT/

0
BBB@

�.0/ �.1/ : : : �.T � 1/
� 0.1/ �.0/ : : : �.T � 2/
:::

:::
: : :

:::

� 0.T � 1/ � 0.T � 2/ : : : �.0/

1
CCCA

D
�
�.h/ �.h C 1/ : : : �.T C h � 1/

�
:

Denoting by �T the matrix

�T D

0
BBB@

�.0/ �.1/ : : : �.T � 1/
� 0.1/ �.0/ : : : �.T � 2/
:::

:::
: : :

:::

� 0.T � 1/ � 0.T � 2/ : : : �.0/

1
CCCA ;

the normal equations can be written more compactly as

.A1;A2; : : : ;AT/�T D
�
�.h/ �.h C 1/ : : : �.T C h � 1/

�
:

Using the assumption that fXtg is a VAR(1), �.h/ can be expressed as �.h/ D
ˆh�.0/ (see Eq. (12.3)) so that the normal equations become

.A1;A2; : : : ;AT/

0
BBB@

�.0/ ˆ�.0/ : : : ˆT�1�.0/
�.0/ˆ0 �.0/ : : : ˆT�2�.0/
:::

:::
: : :

:::

�.0/ˆ0T�1 �.0/ˆ0T�2 : : : �.0/

1
CCCA

D
�
ˆh�.0/ ˆhC1�.0/ : : : ˆTCh�1�.0/

�
:

1If the mean is non-zero, a constant A0 must be added to the forecast function.
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The easily guessed solution is given by A1 D ˆh and A2 D : : : D AT D 0. Thus,
the sought-after forecasting function for the VAR(1) process is

PTXTCh D ˆhXT : (14.2)

The forecast error XTCh � PTXTCh has expectation zero. Thus, the linear least-
squares predictor delivers unbiased forecasts. As

XTCh D ZTCh CˆZTCh�1 C : : :Cˆh�1ZTC1 CˆhXT ;

the expected squared forecast error (mean squared error) MSE.h/ is

MSE.h/ D E
�
XTCh �ˆhXT

� �
XTCh �ˆhXT

�0

D †Cˆ†ˆ0 C : : :Cˆh�1†ˆ0h�1 D
h�1X

jD0
ˆj†ˆ0j: (14.3)

In order to analyze the case of a causal VAR(p) process with T > p, we transform
the model into the companion form. For h D 1, we can apply the result above to get:

PTYTC1 D ˆYT D

0
BBBBB@

PTXTC1
XT

XT�1
:::

XT�pC2

1
CCCCCA

D

0
BBBBB@

ˆ1 ˆ2 : : : ˆp�1 ˆp

In 0 : : : 0 0

0 In : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : In 0

1
CCCCCA

0
BBBBB@

XT

XT�1
XT�2
:::

XT�pC1

1
CCCCCA
:

This implies that

PTXTC1 D ˆ1XT Cˆ2XT�1 C : : :CˆpXT�pC1: (14.4)

The forecast error is XTC1 � PTXTC1 D Zt which has mean zero and covariance
variance matrix †. In general we have that PTYTCh D ˆhYT so that PTXTCh is
equal to

PTXTCh D ˆ
.h/
1 XT Cˆ

.h/
2 XT�1 C : : :Cˆ.h/p XT�pC1

where ˆ.h/i , i D 1; : : : ; p, denote the blocks in the first row of ˆh. Alternatively, the
forecast for h > 1 can be computed recursively. For h D 2 this leads to:

PTXTC2 D PT .ˆ1XTC1/C PT .ˆ2XT/C : : :C PT

�
ˆpXTC2�p

�
C PT .ZTC2/

D ˆ1
�
ˆ1XT Cˆ2XT�1 C : : :CˆpXTC1�p

�

Cˆ2XT C : : :CˆpXTC2�p

D
�
ˆ21 Cˆ2

�
XT C .ˆ1ˆ2 Cˆ3/XT�1 C : : :C

�
ˆ1ˆp�1 Cˆp

�
XTC2�p

Cˆ1ˆpXTC1�p:
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For h > 2 we proceed analogously. This way of producing forecasts is sometimes
called iterated forecasts.

In general, the forecast error of a causal VAR(p) process can be expressed as

XTCh � PTXTCh D ZTCh C‰1ZTCh�1 C : : :C‰h�1ZTC1

D
h�1X

jD0
ˆjZTCh�j:

The MSE.h/ then is:

MSE.h/ D †C‰1†‰
0
1 C : : :C‰h�1†‰

0
h�1 D

h�1X

jD0
‰j†‰

0
j : (14.5)

Example

Consider again the VAR(2) model of Sect. 12.3. The forecast function in this case
is then:

PTXTC1 D ˆ1Xt Cˆ2Xt�1

D
�
0:8 �0:5
0:1 �0:5

�
Xt C

�
�0:3 �0:3
�0:2 0:3

�
Xt�1;

PTXTC2 D .ˆ21 Cˆ2/Xt Cˆ1ˆ2Xt�1

D
�
0:29 �0:45

�0:17 0:50

�
Xt C

�
�0:14 �0:39
0:07 �0:18

�
Xt�1;

PTXTC3 D .ˆ31 Cˆ1ˆ2 Cˆ2ˆ1/Xt C .ˆ21ˆ2 Cˆ22/Xt�1

D
�
0:047 �0:310

�0:016 �0:345

�
Xt C

�
0:003 �0:222

�0:049 0:201

�
Xt�1:

Based on the results computed in Sect. 12.3, we can calculate the corresponding
mean squared errors (MSE):

MSE.1/ D † D
�
1:0 0:4

0:4 2:0

�
;

MSE.2/ D †C‰1†‰
0
1 D

�
1:82 0:80

0:80 2:47

�
;

MSE.3/ D †C‰1†‰
0
1 C‰2†‰

0
2 D

�
2:2047 0:3893

0:3893 2:9309

�
:

A practical forecasting exercise with additional material is presented in Sect. 14.4.
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14.1.1 Wold Decomposition Theorem

At this stage we note that Wold’s theorem or Wold’s Decomposition carries over to
the multivariate case (see Sect. 3.2 for the univariate case). This Theorem asserts that
there exists for each purely non-deterministic stationary process2 a decomposition,
respectively representation, of the form:

Xt D �C
1X

jD0
‰jZt�j;

where‰0 D In, Zt � WN.0;†/with† > 0 and
P1

jD0 k‰jk2 < 1. The innovations

fZtg have the property Zt D Xt �ePt�1Xt and consequently Zt D ePtZt. TherebyePt

denotes the linear least-squares predictor based on the infinite past fXt;Xt�1; : : :g.
The interpretation of the multivariate case is analogous to the univariate one.

14.2 Forecasting with Estimated Parameters

In practice the parameters of the VAR model are usually unknown and have
therefore to be estimated. In the previous Section we have demonstrated that

PTXTCh D ˆ1PTXTCh�1 C : : :CˆpPTXTCh�p

where PTXTCh�j D YTCh�j if j � h. Replacing the true parameters by their
estimates, we get the forecast function

bPTXTCh D b̂
1
bPTXTCh�1 C : : :C b̂

p
bPTXTCh�p:

where a hat indicates the use of estimates. The forecast error can then be decom-
posed into two components:

XTCh �bPTXTCh D .XTCh � PTXTCh/C
�
PTXTCh �bPTXTCh

�

D
h�1X

jD0
ˆjZTCh�j C

�
PTXTCh �bPTXTCh

�
: (14.6)

Dufour (1985) has shown that, under the assumption of symmetrically distributed
Zt’s (i.e. if Zt and �Zt have the same distribution) the expectation of the forecast
error is zero even when the parameters are replaced by their least-squares estimates.

2A stationary stochastic process is called deterministic if it can be perfectly forecasted from its
infinite past. It is called purely non-deterministic if there is no deterministic component (see
Sect. 3.2).
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This result holds despite the fact that these estimates are biased in small samples.
Moreover, the results do not assume that the model is correctly specified in terms
of the order p. Thus, under quite general conditions the forecast with estimated

coefficients remains unbiased so that E
�

XTCh �bPTXTCh

�
D 0.

If the estimation is based on a different sample than the one used for forecasting,
the two terms in the above expression are uncorrelated so that its mean squared error
is by the sum of the two mean squared errors:

bMSE.h/ D
h�1X

jD0
‰j†‰

0
j

CE

�
PTXTCh �bPTXTCh

� �
PTXTCh �bPTXTCh

�0
: (14.7)

The last term can be evaluated by using the asymptotic distribution of the coeffi-
cients as an approximation. The corresponding formula turns out to be cumbersome.
The technical details can be found in Lütkepohl (2006) and Reinsel (1993). The
formula can, however, be simplified considerably if we consider a forecast horizon
of only one period. We deduce the formula for a VAR of order one, i.e. taking
Xt D ˆXt�1 C Zt, Zt � WN.0;†/.

PTXTCh �bPTXTCh D .ˆ � b̂/XT D vec
�
.ˆ� b̂/XT

�
D .X0

T ˝ In/ vec.ˆ � b̂/:

This implies that

E

�
PTXTCh �bPTXTCh

� �
PTXTCh �bPTXTCh

�0

D E.X0
T ˝ In/ vec.ˆ� b̂/.vec.ˆ � b̂//0.XT ˝ In/

D E.X0
T ˝ In/

��1
1 ˝†

T
.XT ˝ In/ D 1

T
E.X0

T��1
1 XT/˝†

D 1

T
E.trX0

T��1
1 XT/˝† D 1

T
tr.��1

1 E.XTX0
T//˝†

D 1

T
.tr.In/˝†/ D n

T
†:

Thereby, we have used the asymptotic normality of the least-squares estimator (see
Theorem 13.1) and the assumption that forecasting and estimation uses different
realizations of the stochastic process. Thus, for h D 1 and p D 1, we get

bMSE.1/ D †C n

T
† D T C n

T
†:
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Higher order models can be treated similarly using the companion form of VAR(p).
In this case:

bMSE.1/ D †C np

T
† D T C np

T
†: (14.8)

This is only an approximation as we applied asymptotic results to small sample
entities. The expression shows that the effect of the substitution of the coefficients
by their least-squares estimates vanishes as the sample becomes large. However, in
small sample the factor TCnp

T
can be sizeable. In the example treated in Sect. 14.4,

the covariance matrix †, taking the use of a constant into account and assuming
8 lags, has to be inflated by TCnpC1

T
D 196C4�8C1

196
D 1:168. Note also that the

precision of the forecast, given†, diminishes with the number of parameters.

14.3 Modeling of VAR Models

The previous section treated the estimation of VAR models under the assumption
that the order of the VAR, p, is known. In most cases, this assumption is unrealistic
as the order p is unknown and must be retrieved from the data. We can proceed
analogously as in the univariate case (see Sect. 5.1) and iteratively test the
hypothesis that coefficients corresponding to the highest lag, i.e. ˆp D 0, are
simultaneously equal to zero. Starting from a maximal order pmax, we test the null
hypothesis thatˆpmax

D 0 in the corresponding VAR.pmax/ model. If the hypothesis
is not rejected, we reduce the order by one to pmax � 1 and test anew the null
hypothesis ˆpmax�1 D 0 using the smaller VAR.pmax � 1/ model. One continues
in this way until the null hypothesis is rejected. This gives, then, the appropriate
order of the VAR. The different tests can be carried out either as Wald-tests (F-tests)
or as likelihood-ratio tests (�2-tests) with n2 degrees of freedom.

An alternative procedure to determine the order of the VAR relies on some
information criteria. As in the univariate case, the most popular ones are the Akaike
(AIC), the Schwarz or Bayesian (BIC) and the Hannan-Quinn criterion (HQC).
The corresponding formula are:

AIC(p): ln dete†p C 2pn2

T
;

BIC(p): ln dete†p C pn2

T
ln T;

HQC(p): ln dete†p C 2pn2

T
ln .ln T/;

where e†p denotes the degree of freedom adjusted estimate of the covariance matrix
† for a model of order p (see equation(13.5)). n2p is the number of estimated
coefficients. The estimated order is then given as the minimizer of one of these
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criteria. In practice the Akaike’s criterion is the most popular one although it has a
tendency to deliver orders which are too high. The BIC and the HQ-criterion on the
other hand deliver the correct order on average, but can lead to models which suffer
from the omitted variable bias when the estimated order is too low. Examples are
discussed in Sects. 14.4 and 15.4.5.

Following Lütkepohl (2006), Akaike’s information criterion can be rationalized
as follows. Take as a measure of fit the determinant of the one period approximate
mean-squared errors bMSE.1/ from Eq. (14.8) and take as an estimate of † the
degrees of freedom corrected version in Eq. (13.5). The resulting criterion is called
according to Akaike (1969) the final prediction error (FPE):

FPE.p/ D det

�
T C np

T
� T

T � np
e†
�

D
�

T C np

T � np

�n

dete†: (14.9)

Taking logs and using the approximations TCnp

T�np
� 1C 2np

T
and log.1C 2np

T
/ � 2np

T
,

we arrive at

AIC.p/ � log FPE.p/:

14.4 Example: A VAR Model for the U.S. Economy

In this section, we illustrate how to build and use VAR models for forecasting
key macroeconomic variables. For this purpose, we consider the following four
variables: GDP per capita (fYtg), price level in terms of the consumer price index
(CPI) (fPtg), real money stock M1 (fMtg), and the three month treasury bill rate
(fRtg). All variables are for the U.S. and are, with the exception of the interest rate,
in logged differences.3 The components of Xt are with the exception of the interest
rate stationary.4 Thus, we aim at modeling Xt D .� log Yt; � log Pt; � log Mt;Rt/

0.
The sample runs from the first quarter 1959 to the first quarter 2012. We estimate
our models, however, only up to the fourth quarter 2008 and reserve the last thirteen
quarters, i.e. the period from the first quarter 2009 to first quarter of 2012, for an out-
of-sample evaluation of the forecast performance. This forecast assessment has the
advantage to account explicitly of the sampling variability in estimated parameter
models.

The first step in the modeling process is the determination of the lag-length.
Allowing for a maximum of twelve lags, the different information criteria produce
the values reported in Table 14.1. Unfortunately, the three criteria deliver different

3Thus, � log Pt equals the inflation rate.
4Although the unit root test indicate that Rt is integrated of order one, we do not difference this
variable. This specification will not affect the consistency of the estimates nor the choice of the
lag-length (Sims et al. 1990), but has the advantage that each component of Xt is expressed in
percentage points which facilitates the interpretation.



14.4 Example: VAR Model 249

Table 14.1 Information
criteria for the VAR models
of different orders

Order AIC BIC HQ

0 �14.498 �14.429 �14.470

1 �17.956 �17.611 �17.817

2 �18.638 �18.016 �18.386

3 �18.741 �17.843 �18.377

4 �18.943 �17.768 �18.467

5 �19.081 �17.630 �18.493

6 �19.077 �17.349 �18.377

7 �19.076 �17.072 �18.264

8 �19.120 �16.839 �18.195

9 �18.988 �16.431 �17.952

10 �18.995 �16.162 �17.847

11 �18.900 �15.789 �17.639

12 �18.884 �15.497 �17.512

Minimum in bold

orders: AIC suggests 8 lags, HQ 5 lags, and BIC 2 lags. In such a situation it is
wise to keep all three models and to perform additional diagnostic tests.5 One such
test is to run a horse-race between the three models in terms of their forecasting
performance.

We evaluate the forecasts according to the two criteria: the root-mean-squared-
error (RMSE) and the mean-absolute-error (MAE)6:

RMSE W

vuut1

h

TChX

TC1
.bXit � Xit/2 (14.10)

MAE W 1

h

TChX

TC1
jbXit � Xitj (14.11)

where bXit and Xit denote the forecast and the actual value of variable i in period t.
Forecasts are computed for a horizon h starting in period T. We can gain further
insights by decomposing the mean-squared-error additively into three components:

1

h

TChX

TC1
.bXit � Xit/

2 D
  

1

h

TChX

TC1

bXit

!
� Xi

!2

C.�bXi
� �Xi

/2 C 2.1� �/�bXi
�Xi
:

5Such tests would include an analysis of the autocorrelation properties of the residuals and tests of
structural breaks.
6Alternatively one could use the mean-absolute-percentage-error (MAPE). However, as all vari-
ables are already in percentages, the MAE is to be preferred.
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The first component measures how far the mean of the forecasts 1
h

PTCh
TC1bXit is away

from the actual mean of the data Xi. It therefore measures the bias of the forecasts.
The second one compares the standard deviation of the forecast �bXi

to those of the
data �Xi

. Finally, the last component is a measure of the unsystematic forecast errors
where � denotes the correlation between the forecast and the data. Ideally, each of
the three components should be close to zero: there should be no bias, the variation
of the forecasts should correspond to those of the data, and the forecasts and the
data should be highly positively correlated. In order to avoid scaling problems, all
three components are usually expressed as a proportion of 1

h

PTCh
TC1.bXit � Xit/

2:

bias proportion:

��
1
h

PTCh
TC1bXit

�
� Xi

�2

1
h

PTCh
TC1.bXit � Xit/2

(14.12)

variance proportion:
.�bXi

� �Xi
/2

1
h

PTCh
TC1.bXit � Xit/2

(14.13)

covariance proportion:
2.1 � �/�bXi

�Xi

1
h

PTCh
TC1.bXit � Xit/2

(14.14)

We use these models to produce dynamic or iterated forecasts PTXTC1;
PTXTC2; : : : ;PTXTCh. Forecasts for h � 2 are computed iteratively by inserting
for the lagged variables the forecasts obtained in the previous steps. For
details see Chap. 14. Alternatively, one may consider a recursive or rolling
out-of-sample strategy where the model is reestimated each time a new
observation becomes available. Thus, we would evaluate the one-period-ahead
forecasts PTXTC1;PTC1XTC2; : : : ;PTCh�1XTCh, the two-period-ahead forecasts
PTXTC2;PTC1XTC3; : : : ;PTCh�2XTCh, and so on. The difference between the
recursive and the rolling strategy is that in the first case all observations are used
for estimation whereas in the second case the sample is rolled over so that its size is
kept fixed at T.

Figure 14.1 displays dynamic or iterated forecasts for the four variables
expressed in log-levels, respectively in levels for the interest rate. Forecast
are evaluated according to the performance measures explained above. The
corresponding values are reported in Table 14.2. All models see a quick recovery
after the recession in 2008 and are thus much too optimistic. The lowest RMSE
for log Yt is 5.678 for the VAR(8) model. Thus, GDP per capita is predicted to be
on average almost 6 % too high over the forecast period. This overly optimistic
forecast is reflected in a large bias proportion which amounts to more than 95 %.
The situation looks much better for the price level. All models see an increase in
inflation starting in 2009. Especially, the two higher order models fare much better.
Their RMSE is just over 1 %. The bias proportion is practically zero for the VAR(8)
model. The forecast results of the real money stock are mixed. All models predict a
quick recovery. This took indeed place, but first at a more moderate pace. Starting in
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Fig. 14.1 Forecast comparison of alternative models. (a) log Yt. (b) log Pt. (c) log Mt. (d) Rt

mid-2010 the unconventional monetary policy of quantitative easing, however, led
to an unforeseen acceleration so that the forecasts turned out to be systematically
too low for the later period. Interestingly, the smallest model fared significantly
better than the other two. Finally, the results for the interest rates are very diverse.
Whereas the VAR(2) model predicts a rise in the interest rate, the other models
foresee a decline. The VAR(8) model even predicts a very drastic fall. However,
all models miss the continuation of the low interest rate regime and forecasts an
increase starting already in 2009. This error can again be attributed to the unforeseen
low interest rate monetary policy which was implemented in conjunction with the
quantitative easing. This misjudgement resulted in a relatively large bias proportion.

Up to now, we have just been concerned with point forecasts. Point forecasts,
however, describe only one possible outcome and do not reflect the inherent
uncertainty surrounding the prediction problem. It is, thus, a question of scientific
integrity to present in addition to the point forecasts also confidence intervals. One
straightforward way to construct such intervals is by computing the matrix of mean-
squared-errors MSE using Eq. (14.5). The diagonal elements of this matrix can be
interpreted as a measure of the forecast error variances for each variable. Under
the assumption that the innovations fZtg are Gaussian, such confidence intervals can
be easily computed. However, in practice this assumption is likely to be violated.
This problem can be circumvented by using the empirical distribution function of
the residuals to implement a bootstrap method similar to the computation of the
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Table 14.2 Forecast
evaluation of alternative VAR
models

VAR(2) VAR(5) VAR(8)

log Yt

RMSE 8.387 6.406 5.678

Bias proportion 0.960 0.961 0.951

Variance proportion 0.020 0.010 0.001

Covariance proportion 0.020 0.029 0.048

MAE 8.217 6.279 5.536

log Pt

RMSE 3.126 1.064 1.234

Bias proportion 0.826 0.746 0.001

Variance proportion 0.121 0.001 0.722

Covariance proportion 0.053 0.253 0.278

MAE 2.853 0.934 0.928

log Mt

RMSE 5.616 6.780 9.299

Bias proportion 0.036 0.011 0.002

Variance proportion 0.499 0.622 0.352

Covariance proportion 0.466 0.367 0.646

MAE 4.895 5.315 7.762

Rt

RMSE 2.195 2.204 2.845

Bias proportion 0.367 0.606 0.404

Variance proportion 0.042 0.337 0.539

Covariance proportion 0.022 0.057 0.057

MAE 2.125 1.772 2.299

RMSE and MAE for log Yt, log Pt, and log Mt are
multiplied by 100

Value-at-Risk in Sect. 8.4. Figure 14.2 plots the forecasts of the VAR(8) model
together with a 80 % confidence interval computed from the bootstrap approach. It
shows that, with the exception of the logged price level, the actual realizations fall
out of the confidence interval despite the fact that the intervals are already relatively
large. This documents the uniqueness of the financial crisis and gives a hard time
for any forecasting model.

Instead of computing a confidence interval, one may estimate the probability
distribution of possible future outcomes. This provides a complete description of the
uncertainty related to the prediction problem (Christoffersen 1998; Diebold et al.
1998; Tay and Wallis 2000; Corradi and Swanson 2006). Finally, one should be
aware that the innovation uncertainty is not the only source of uncertainty. As the
parameters of the model are themselves estimated, there is also a coefficient uncer-
tainty. In addition, we have to face the possibility that the model is misspecified.

The forecasting performance of the VAR models may seem disappointing at
first. However, this was only be a first attempt and further investigations are usually
necessary. These may include the search for structural breaks (See Bai et al. 1998;
Perron 2006). This topic is treated in Sect. 18.1. Another reason for the poor
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Fig. 14.2 Forecast of VAR(8) model and 80 % confidence intervals (red dotted lines). (a) log Yt.
(b) log Pt. (c) log Mt. (d) Rt

forecasting may be due to the over-parametrization of VAR models. The VAR(8)
model, for example, 32 lagged dependent variables plus a constant in each of the
four equations which leads to a total 132 parameters. This problem can be dealt with
by applying Bayesian shrinkage techniques. This approach, also known as Bayesian
VAR (BVAR), was particularly successful when using the so-called Minnesota prior
(See Doan et al. 1984; Litterman 1986; Kunst and Neusser 1986; Banbura et al.
2010). This prior is presented in Sect. 18.2.

Besides these more fundamental issues, one may rely on more technical reme-
dies. One such remedy is the use of direct rather iterated forecasts. This difference is
best explained in the context of the VAR(1) model Xt D ˆXt�1CZt, Zt � WN.0;†/.
The iterated forecast for XTCh uses the OLS-estimate b̂ to compute the forecast
b̂hXT (see Chap. 14). Alternatively, one may estimate instead of the VAR(1), the
model Xt D ‡Xt�h CZt and compute the direct forecast for XTCh as b‡XT . Although
b‡ has larger variance than b̂ if the VAR(1) is correctly specified, it is robust to
misspecification (see Bhansali 1999; Schorfheide 2005; Marcellino et al. 2006).

Another interesting and common device is intercept correction or residual
adjustment. Thereby the constant terms are adjusted in such a way that the residuals
of the most recent observation become zero. The model is thereby set back on
track. In this way the forecaster can guard himself against possible structural breaks.
Residual adjustment can also serve as a device to incorporate anticipated events, like
announced policies, which are not yet incorporated into the model. See Clements
and Hendry (1996, 2006) for further details and additional forecasting devices.



15Interpretation and Identification of VAR
Models

Although the estimation of VAR models poses no difficulties as outlined in the
previous chapter, the individual coefficients are almost impossible to interpret.
On the one hand, there are usually many coefficients, a VAR(4) model with
three variables, for example, already has twelve coefficients per equation and thus
36 coefficients in total to interpret; on the other hand, there is in general no
unambiguous relation of the VAR coefficients to the coefficients of a particular
model. The last problem is known as the identification problem. To overcome this
identification problem, many techniques have been developed which should allow
to give the estimated VAR model an explicit economic interpretation.

15.1 Wiener-Granger Causality

As a first technique for the understanding of VAR processes, we analyze the concept
of causality which was introduced by Granger (1969). The concept is also known as
Wiener-Granger causality because Granger’s idea goes back to the work of Wiener
(1956). Take a multivariate time series fXtg and consider the forecast of X1;TCh,
h � 1, given XT ;XT�1; : : : where fXtg has not only X1t as a component, but also
another variable or group of variables X2t. Xt may contain even further variables than
X1;t and X2;t. The mean-squared forecast error is denoted by MSE1.h/. Consider now
an alternative forecast of X1;TCh given eXT ;eXT�1; : : : where feXtg is obtained from
fXtg by eliminating the component X2;t. The mean-squared error of this forecast is

denoted by eMSE1.h/. According to Granger, we can say that the second variable
X2;t causes or is causal for X1;t if and only if

MSE.h/1 < eMSE1.h/ for some h � 1:
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This means that the information contained in fX2tg and its past improves the forecast
of fX1tg in the sense of the mean-squared forecast error. Thus the concept of Wiener-
Granger causality makes only sense for purely non-deterministic processes and rest
on two principles1:

• The future cannot cause the past. Only the past can have a causal influence on
the future.2

• A specific cause contains information not available otherwise.

The concept of Wiener-Granger causality played an important role in the debate
between monetarists and Keynesians over the issue whether the money stock has
an independent influence on real activity. It turned out that this question can only
be resolved within a specific context. Sims (1980a), for example, showed that the
relationship between the growth rate of the money stock and changes in real activity
depends on whether a short interest rate is accounted for in the empirical analysis or
not. Another problem of the concept is that it is not unambiguously possible to infer
a causal relationship just from the chronology of two variables as demonstrated
by Tobin (1970). This and other conceptual issues (see Zellner (1979) and the
discussion in the next chapter) and econometric problems (Geweke 1984) led to
a decline in the practical importance of this concept.

We propose two econometric implementations of the causality concept. The
first one is based on a VAR, the second one is non-parametric and uses the
cross-correlations. In addition, we propose an interpretation in terms of the causal
representation, respectively the Wold Decomposition Theorem (see Chap. 14)

15.1.1 VAR Approach

If one restricts oneself to linear least-squares forecasts, the above definition can
be easily operationalized in the context of VAR models with only two variables (see
also Sims 1972). Consider first a VAR(1) model. Then according to the explanations
in Chap. 14 the one-period forecast is:

PTXTC1 D
�
PTX1;TC1
PTX2;TC1

�
D ˆXT D

�
�11 �12
�21 �22

��
X1;T

X2;T

�

and therefore

PTX1;TC1 D �11X1T C �12X2T :

1Compare this to the concept of a causal representation developed in Sects. 12.3 and 2.3.
2Sometimes also the concept of contemporaneous causality is considered. This concept is,
however, controversial and has therefore not gained much success in practice and will, therefore,
not be pursued.



15.1 Wiener-Granger Causality 257

If �12 D 0 then the second variable does not contribute to the one-period forecast
of the first variable and can therefore be omitted: MSE1.1/ D eMSE1.1/. Note that

ˆh D
�
�h
11 0

� �h
22

�
;

where � is a placeholder for an arbitrary number. Thus the second variable is not
only irrelevant for the one-period forecast, but for any forecast horizon h � 1. Thus,
the second variable is not causal for the first variable in the sense of Wiener-Granger
causality.

These arguments can be easily extended to VAR(p) models. According to
Eq. (14.4) we have that

PTX1;TC1 D �
.1/
11 X1T C �

.1/
12 X2T C : : :C �

.p/
11 X1;T�pC1 C �

.p/
12 X2;T�pC1

where �.k/ij denotes .i; j/-th element, i D 1; 2, of the matrix ˆk, k D 1; : : : ; p. In
order for the second variable to have no influence on the forecast of the first one,
we must have that �.1/12 D �

.2/
12 D : : : D �

.p/
12 D 0. This implies that all matrices

ˆk, k D 1; : : : ; p, must be lower triangular, i.e. they must be of the form

�
� 0
� �

�
.

As the multiplication and addition of lower triangular matrices is again a lower
triangular matrix, the second variable is irrelevant in forecasting the first one at any
forecast horizon. This can be seen by computing the corresponding forecast function
recursively as in Chap. 14.

Based on this insight it is straightforward to test the null hypothesis that the
second variable does not cause the first one within the VAR(p) context:

H0 W fX2tg does not cause fX1tg.

In terms of the VAR model this hypothesis can be stated as:

H0 W �.1/12 D �
.2/
12 D : : : D �

.p/
12 D 0:

The alternative hypothesis is that the null hypothesis is violated. As the method
of least-squares estimation leads under quite general conditions to asymptotically
normal distributed coefficient estimates, it is straightforward to test the above
hypothesis by a Wald-test (F-test). In the context of a VAR(1) model a simple t-
test is also possible.

If more than two variables are involved the concept of Wiener-Granger causality
is no longer so easy to implement. Consider for expositional purposes a VAR(1)
model in three variables with coefficient matrix:
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ˆ D

0
@
�11 �12 0

�21 �22 �23

�31 �32 �33

1
A :

The one-period forecast function of the first variable then is

PTX1;TC1 D �11X1T C �12X2T :

Thus, the third variable X3T is irrelevant for the one-period forecast of the first
variable. However, as the third variable has an influence on the second variable,
�23 ¤ 0, and because the second variable has an influence on the first variable,
�12 ¤ 0, the third variable will provide indirectly useful information for the forecast
of the first variable for forecasting horizons h � 2. Consequently, the concept of
causality cannot immediately be extended from two to more than two variables.

It is, however, possible to merge variables one and two, or variables two and
three, into groups and discuss the hypothesis that the third variable does not cause
the first two variables, seen as a group; likewise that the second and third variable,
seen as a group, does not cause the first variable. The corresponding null hypotheses
then are:

H0 W �23 D �13 D 0 or H0 W �12 D �13 D 0:

Under these null hypotheses we get again lower (block-) triangular matrices:

0
BBBBBB@

�11 �12
::: 0

�21 �22
::: 0

: : : : : :
::: : : :

�31 �32
::: �33

1
CCCCCCA

or

0
BBBBB@

�11
::: 0 0

: : : : : : : : : : : :

�21
::: �22 �23

�31
::: �32 �33

1
CCCCCA
:

Each of these hypotheses can again be checked by a Wald-test (F-test).

15.1.2 Wiener-Granger Causality and Causal Representation

We can get further insights into the concept of causality by considering a bivariate
VAR, ˆ.L/Xt D Zt, with causal representation Xt D ‰.L/Zt. Partitioning the
matrices according to the two variables fX1tg and fX2tg, Theorem 12.1 of Sect. 12.3
implies that

�
ˆ11.z/ ˆ12.z/

ˆ21.z/ ˆ22.z/

��
‰11.z/ ‰12.z/

‰21.z/ ‰22.z/

�
D
�
1 0

0 1

�
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where the polynomials ˆ12.z/ and ˆ21.z/ have no constant terms. The hypothesis
that the second variable does not cause the first one is equivalent in this framework
to the hypothesis thatˆ12.z/ D 0. Multiplying out the above expression leads to the
condition

ˆ11.z/‰12.z/ D 0:

Because ˆ11.z/ involves a constant term, the above equation implies that
‰12.z/ D 0. Thus the causal representation is lower triangular. This means that
the first variable is composed of the first shock, fZ1tg only whereas the second
variable involves both shocks fZ1tg and fZ2tg. The univariate causal representation
of fX1tg is therefore the same as the bivariate one.3 Finally, note the similarity to the
issue of the identification of shocks discussed in subsequent sections.

15.1.3 Cross-Correlation Approach

In the case of two variables we also examine the cross-correlations to test for
causality. This non-parametric test has the advantage that one does not have to
rely on an explicit VAR model. This advantage becomes particularly relevant, if a
VMA model must be approximated by a high order AR model. Consider the cross-
correlations

�12.h/ D corr.X1t;X2;t�h/:

If �12.h/ ¤ 0 for h > 0, we can say that the past values of the second variable
are useful for forecasting the first variable such that the second variable causes the
first one in the sense of Wiener and Granger. Another terminology is that the second
variable is a leading indicator for the first one. If in addition, �12.h/ ¤ 0, for h < 0,
so that the past values of the first variable help to forecast the second one, we have
causality in both directions.

As the distribution of the cross-correlations of two independent variables depends
on the autocorrelation of each variable, see Theorem 11.4, Haugh (1976) and Pierce
and Haugh (1977) propose a test based on the filtered time series. Analogously to
the test for independence (see Sect. 11.2), we proceed in two steps:

Step 1: Estimate in the first step a univariate AR(p) model for each of the two
time series fX1tg and fX2tg. Thereby chose p such that the corresponding residuals
f OZ1tg and f OZ2tg are white noise. Note that although f OZ1tg and f OZ2tg are both not
autocorrelated, the cross-correlations �Z1;Z2.h/may still be non-zero for arbitrary
orders h.

3As we are working with causal VAR’s, the above arguments also hold with respect to the Wold
Decomposition.
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Step 2: As f OZ1tg and f OZ2tg are the forecast errors based on forecasts which rely
only on the own past, the concept of causality carries over from the original
variables to the residuals. The null hypothesis that the second variable does not
cause the first variable in the sense of Wiener and Granger can then be checked
by the Haugh-Pierce statistic:

Haugh-Pierce statistic: T

LX

hD1
O�2Z1 ;Z2.h/ � �2L: (15.1)

Thereby O�2Z1 ;Z2.h/, h D 1; 2; : : :, denotes the squared estimated cross-correlation

coefficients between f OZ1tg and f OZ2tg. Under the null hypothesis that the second
variable does not cause the first one, this test statistic is distributed as a �2

distribution with L degrees of freedom.

15.2 Structural and Reduced Form

15.2.1 A Prototypical Example

The discussion in the previous section showed that the relation between VAR models
and economic models is ambiguous. In order to better understand the quintessence
of the problem, we first analyze a simple macroeconomic example. Let fytg and
fmtg denote the output and the money supply of an economy4 and suppose that
the relation between the two variables is represented by the following simultaneous

equation system:

AD-curve: X1t D yt D a1mt C 
11yt�1 C 
12mt�1 C vyt

policy reaction curve: X2t D mt D a2yt C 
21yt�1 C 
22mt�1 C vmt

Note the contemporaneous dependence of yt on mt in the AD-curve and a corre-
sponding dependence of mt on yt in the policy reaction curve. These equations are
typically derived from economic reasoning and may characterize a model explicitly
derived from economic theory. In statistical terms the simultaneous equation system
is called the structural form. The error terms fvytg and fvmtg are interpreted as
demand shocks and money supply shocks, respectively. They are called structural

shocks and are assumed to follow a multivariate white noise process:

Vt D
�
vyt

vmt

�
� WN .0;�/ with� D

 
!2y 0

0 !2m

!
:

4If one is working with actual data, the variables are usually expressed in log-differences to achieve
stationarity.
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Note that the two structural shocks are assumed to be contemporaneously uncor-
related which is reflected in the assumption that � is a diagonal matrix. This
assumption in the literature is uncontroversial. Otherwise, there would remain some
unexplained relationship between them. The structural shocks can be interpreted
as the statistical analog of an experiment in the natural sciences. The experiment
corresponds in this case to a shift of the AD-curve due to, for example, a temporary
non-anticipated change in government expenditures or money supply. The goal of
the analysis is then to trace the reaction of the economy, in our case represented
by the two variables fytg and fmtg, to these isolated and autonomous changes
in aggregate demand and money supply. The structural equations imply that the
reaction is not restricted to contemporaneous effects, but is spread out over time.
We thus represent this reaction by the impulse response function.

We can write the system more compactly in matrix notation:

�
1 �a1

�a2 1

��
yt

mt

�
D
�

11 
12


21 
22

��
yt�1
mt�1

�
C
�
1 0

0 1

��
vyt

vmt

�

or

AXt D �Xt�1 C BVt

where A D
�
1 �a1

�a2 1

�
, � D

�

11 
12

21 
22

�
and B D

�
1 0

0 1

�
.

Assuming that a1a2 ¤ 1, we can solve the above simultaneous equation system
for the two endogenous variables yt and mt to get the reduced form of the model:

X1t D yt D 
11 C a1
21

1 � a1a2
yt�1 C 
12 C a1
22

1 � a1a2
mt�1 C vyt

1 � a1a2
C a1vmt

1 � a1a2

D �11yt�1 C �12mt�1 C Z1t

X2t D mt D 
21 C a2
11

1 � a1a2
yt�1 C 
22 C a2
12

1 � a1a2
mt�1 C a2vyt

1 � a1a2
C vmt

1 � a1a2

D �21yt�1 C �22mt�1 C Z2t:

Thus, the reduced form has the structure of a VAR(1) model with error term
fZtg D f.Z1t;Z2t/

0g. The reduced form can also be expressed in matrix notation as:

Xt D A�1�Xt�1 C A�1BVt

D ˆXt�1 C Zt
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where

Zt � WN.0;†/ with † D A�1B�B0A0�1:

Whereas the structural form represents the inner economic relations between the
variables (economic model), the reduced form given by the VAR model summarizes
their outer directly observable characteristics. As there is no unambiguous relation
between the reduced and structural form, it is impossible to infer the inner
economic relationships from the observations alone. This is known in statistics
as the identification problem. Typically, a whole family of structural models is
compatible with a particular reduced form. The models of the family are thus
observationally equivalent to each other as they imply the same distribution for fXtg.
The identification problem can be overcome if one is willing to make additional
a priori assumptions. The nature and the type of these assumption and their
interpretation is subject of the rest of this chapter.

In our example, the parameters characterizing the structural and the reduced
form are

fa1; a2; 
11; 
12; 
21; 
22; !
2
y ; !

2
mg

and

f�11; �12; �21; �22; �21 ; �12; �22 g:

As there are eight parameters in the structural form, but only seven parameters in the
reduced form, there is no one-to-one relation between structural and reduced form.
The VAR(1) model delivers estimates for the seven reduced form parameters, but
there is no way to infer from these estimates the parameters of the structural form.
Thus, there is a fundamental identification problem.

The simple counting of the number of parameters in each form tells us that we
need at least one additional restriction on the parameters of the structural form.
The simplest restriction is a zero restriction. Suppose that a2 equals zero, i.e. that
the central bank does not react immediately to current output. This seems reasonable
because national accounting figures are usually released with some delay. With this
assumption, we can infer the structural parameters from the reduced ones:


21 D �21; 
22 D �22;

�mt D Z2t ) !2m D �22 ; ) a1 D �12=�
2
2 ; ) !2y D �21 � �212=�22


11 D �11 � .�12=�
2
2 /�21; 
12 D �12 � .�12=�

2
2 /�22:

Remark 15.1. Note that, because Zt D A�1BVt, the reduced form disturbances Zt

are a linear combination of the structural disturbances, in our case the demand dis-
turbance vyt and the money supply disturbance vmt. In each period t the endogenous
variables output yt and money supply mt are therefore hit simultaneously by both
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shocks. It is thus not possible without further assumptions to assign the movements
in Zt and consequently in Xt to corresponding changes in the fundamental structural
shocks vyt and vmt.

Remark 15.2. As Cooley and LeRoy (1985) already pointed out, the statement
“money supply is not causal in the sense of Wiener and Granger for real economic
activity”, which, in our example is equivalent to �12 D 0, is not equivalent to the
statement “money supply does not influence real economic activity“ because �12 can
be zero without a1 being zero. Thus, the notion of causality is not very meaningful
in inferring the inner (structural) relationships between variables.

15.2.2 Identification: The General Case

We now present the general identification problem in the context of VAR.5 The
starting point of the analysis consists of a linear model, derived ideally from
economic theory, in its structural form:

AXt D �1Xt�1 C : : :C �pXt�p C BVt (15.2)

where Vt are the structural disturbances. These disturbances usually have an
economic interpretation, for example as demand or supply shocks. A is a n � n

matrix which is normalized such that the diagonal consists of ones only. The matrix
B is also normalized such that its diagonal contains only ones. The process of
structural disturbances, fVtg, is assumed to be a multivariate white noise process
with a diagonal covariance matrix �:

Vt � WN.0;�/ with � D EVtV
0
t D

0
BBB@

!21 0 : : : 0

0 !22 : : : 0
:::

:::
: : :

:::

0 0 : : : !2n

1
CCCA :

The assumption that the structural disturbance are uncorrelated with each other is
not viewed as controversial as otherwise there would be unexplained relationships
between them. In the literature one encounters an alternative completely equivalent
normalization which leaves the coefficients in B unrestricted but assumes the
covariance matrix of Vt, �, to be equal to the identity matrix In.

The reduced form is obtained by solving the equation system with respect to Xt.
Assuming that A is nonsingular, the premultiplication of Eq. (15.2) by A�1 leads to
the reduced form which corresponds to a VAR(p) model:

5A thorough treatment of the identification problem in econometrics can be found in Rothenberg
(1971), and for the VAR context in Rubio-Ramírez et al. (2010).
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Xt D A�1�1Xt�1 C : : :C A�1�pXt�p C A�1BVt

D ˆ1Xt�1 C : : :CˆpXt�p C Zt: (15.3)

The relation between the structural disturbances Vt and the reduced form distur-
bances Zt is in the form of a simultaneous equation system:

AZt D BVt: (15.4)

While the structural disturbances are not directly observed, the reduced form
disturbances are given as the residuals of the VAR and can thus be considered as
given. The relation between the lagged variables is simply

�j D Aˆj; j D 1; 2; : : : ; p:

Consequently, once A and B have been identified, not only the coefficients of
the lagged variables in the structural form are identified, but also the impulse
response functions (see Sect. 15.4.1). We can therefore concentrate our analysis
of the identification problem on Eq. (15.4).

With these preliminaries, it is now possible to state the identification problem
more precisely. Equation (15.4) shows that the structural form is completely
determined by the parameters .A;B; �/. Taking the normalization of A and B into
account, these parameters can be viewed as points in Rn.2n�1/. These parameters
determine the distribution of Zt D A�1BVt which is completely characterized by
the covariance matrix of Zt, †, as the mean is equal to zero.6 Thus, the parameters
of the reduced form, i.e. the independent elements of † taking the symmetry into
account, are points in Rn.nC1/=2. The relation between structural and reduced form
can therefore be described by a function g W Rn.2n�1/ ! Rn.nC1/=2:

† D g.A;B; �/ D A�1B�B0A0�1: (15.5)

Ideally, one would want to find the inverse of this function and retrieve, in this way,
the structural parameters .A;B; �/ from†. This is, however, in general not possible
because the dimension of the domain space of g, n.2n � 1/, is strictly greater, for
n � 2, than the dimension of its range space, n.n C 1/=2. This discrepancy between
the dimensions of the domain and the range space of g is known as the identification

problem. To put it in another way, there are only n.n C 1/=2 (nonlinear) equations
for n.2n � 1/ unknowns.7

6As usual, we concentrate on the first two moments only.
7Note also that our discussion of the identification problem focuses on local identification, i.e. the
invertibility of g in an open neighborhood of †. See Rothenberg (1971) and Rubio-Ramírez et al.
(2010) for details on the distinction between local and global identification.
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To overcome the identification problem, we have to bring in additional infor-
mation. A customary approach is to impose a priori assumptions on the structural
parameters. The Implicit Function Theorem tells us that we need

3n.n � 1/=2 D n.2n � 1/ � n.n C 1/=2 (15.6)

such restrictions, so-called identifying restrictions, to be able to invert the function
g. Note that this is only a necessary condition and that the identification problem
becomes more severe as the dimension of the VAR increases because the number of
restrictions grows at a rate proportional to n2.

This result can also be obtained by noting that the function g in Eq. (15.5) is
invariant under the following transformation h:

h W .A;B; �/ �! .RA;RB�1=2Q��1=2;D�D�1/

where R, Q and D are arbitrary invertible matrices such that R respects the
normalization of A and B, Q is an orthogonal matrix, and D is a diagonal matrix.
It can be verified that

.g ı h/.A;B; �/ D g.A;B; �/:

The dimensions of the matrices R, Q, and D are n2 � 2n, n.n � 1/=2, and n,
respectively. Summing up gives 3n.n � 1/=2 D n2 � 2n C n.n � 1/=2C n degrees
of freedom as before8.

The empirical economics literature proposed several alternative identification
schemes:

(i) Short-run restrictions place restrictions, usually zero restrictions, on the
immediate impact of structural shocks (among many others, Sims 1980b;
Blanchard 1989; Blanchard and Watson 1986; Christiano et al. 1999). See
Sect. 15.3 for details.

(ii) Long-run restrictions place restrictions, usually zero-restrictions, on the long–
run impact structural shocks (Blanchard and Quah 1989; Galí 1992). See
Sect. 15.5 for details.

(iii) Maximization of the contribution to the forecast error variance of some
variable at some horizon with respect to a particular shock (Faust 1998; Uhlig
2004; Francis et al. 2014; Uhlig, 2003, What drives real GNP? unpublished).
This method has seen an interesting application in the identification of
news shocks (see Barsky and Sims 2011). Further details will discussed in
Sect. 15.4.2.

(iv) Sign restrictions restrict the set of possible impulse response functions (see
Sect. 15.4.1) to follow a given sign pattern (Faust 1998; Uhlig 2005; Fry and

8See Neusser (2016) for further implications of viewing the identification problem from an
invariance perspective.
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Pagan 2011; Kilian and Murphy 2012; Rubio-Ramírez et al. 2010; Arias et al.
2014; Baumeister and Hamilton 2015). This approach is complementary to
the two previous identification schemes and will be discussed in Sect. 15.6.

(v) Identification through heteroskedasticity (Rigobon 2003)
(vi) Restrictions derived from a dynamic stochastic general equilibrium (DSGE)

model. These restrictions often come as nonlinear cross-equation restrictions
and are viewed as the hallmark of rational expectations models (Hansen and
Sargent 1980). Typically, the identification issue is overcome by imposing a
priori restrictions via a Bayesian approach (Negro and Schorfheide (2004)
among many others).

(vii) Identification using information on global versus idiosyncratic shocks in the
context of multi-country or multi-region VAR models (Canova and Ciccarelli
2008; Dees et al. 2007)

(viii) Instead of identifying all parameters, researchers may be interested in iden-
tifying only one equation or a subset of equations. This case is known as
partial identification. The schemes presented above can be extended in a
straightforward manner to the partial identification case.

These schemes are not mutually exclusive, but can be combined with each other.
In the following we will only cover the identification through short- and long-
run restrictions, because these are by far the most popular ones. The economic
importance of these restrictions for the analysis of monetary policy has been
emphasized by Christiano et al. (1999).

15.2.3 Identification: The Case n D 2

Before proceeding further, it is instructive to analyze the case n D 2 in more detail.9

Assume for simplicity A D I2, then the equation system (15.5) can be written
explicitly as

�21 D !21 C .B/212!
2
2

�12 D .B/21!
2
1 C .B/12!

2
2

�22 D .B/221!
2
1 C !22

with unknowns .B/12; .B/21; !21 , and !22 . Note that the assumption of † being
positive definite implies that .B/12.B/21 ¤ 1. Thus, we can solve out !21 and !22
and reduce the three equations to only one:

�
.B/12 � b�1

21

� �
.B/21 � b�1

12

�
D r�2

12 � 1 (15.7)

where b21 and b12 denote the least-squares regression coefficients of Z2t on Z1t,
respectively of Z1t on Z2t, i.e. b21 D �12=�

2
1 and b12 D �12=�

2
2 . r12 is the correlation

9The exposition is inspired by Leamer (1981).
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Fig. 15.1 Identification in a
two-dimensional structural
VAR with �12 > 0
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coefficient between Z2t and Z1t, i.e. r12 D �12=.�1�2/. Note that imposing a zero
restriction by setting .B/12, for example, equal to zero, implies that .B/21 equals b21;
and vice versa, setting .B/21 D 0, implies .B/12 D b12. As a final remark, the right
hand side of Eq. (15.7) is always positive as the inverse of the squared correlation
coefficient is bigger than one. This implies both product terms must be of the same
sign.

Equation (15.7) delineates all possible combinations of .B/12 and .B/21 which
are compatible with a given covariance matrix †. Its graph represents a rectangular
hyperbola in the parameter space ..B/12; .B/21/ with center C D .b�1

21 ; b
�1
12 /

and asymptotes .B/12 D b�1
21 and .B/21 D b�1

12 and is plotted in Fig. 15.1.10

The hyperbola consist of two disconnected branches with a pole at the center
C D .b�1

21 ; b
�1
12 /. At this point, the relation between the two parameters changes

sign. The figure also indicates the two possible zero restrictions .B/12 D 0 and
.B/21 D 0, called short-run restrictions. These two restrictions are connected and
its path completely falls within one quadrant. Thus, along this path the sign of the
parameters remain unchanged.

Suppose that instead of fixing a particular parameter, we only want to restrict
its sign. Assuming that .B/12 � 0 implies that .B/21 must lie in one of the two
disconnected intervals .�1; b21� and .b�1

12 ;C1/.11 Although not very explicit,
some economic consequences of this topological particularity are discussed in Fry
and Pagan (2011). Alternatively, assuming .B/12 � 0 implies .B/21 2 Œb21; b

�1
12 /.

Thus, .B/21 is unambiguously positive. Sign restrictions for .B/21 can be discussed
in a similar manner. Section 15.6 discuses sign restrictions more explicitly.

10Moon et al. (2013; section 2) provided an alternative geometric representation.
11That these two intervals are disconnected follows from the fact that † is positive definite.
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15.3 Identification via Short-Run Restrictions

Short-run restrictions represent the most common identification scheme encoun-
tered in practice. They impose direct linear restrictions on the structural parameters
A and B and restrict in this way the contemporaneous effect of the structural shocks
on the variables of the system. The most common type of such restrictions are zero

restrictions which set certain coefficients a priori to zero. These zero restrictions
are either derived from an explicit economic theory or are based on some ad
hoc arguments. As explained above, it is necessary to have at least 3n.n � 1/=2

restrictions at hand. If there are more restrictions, we have an overidentified system.
This is, however, rarely the case in practice because the number of necessary
restrictions grows at a rate proportional to n2. The case of overidentification is, thus,
not often encountered and as such is not treated.12 The way to find appropriate
restrictions in a relatively large system is documented in Sect. 15.4.5. If the number
of restrictions equals 3n.n � 1/=2, we say that the system is exactly identified.

Given the necessary number of a priori restrictions on the coefficients A and B,
there are two ways to infer A, B, and �. The first one views the relation (15.4)
as a simultaneous equation system in Zt with error terms Vt and to estimate the
coefficients by instrumental variables as in Blanchard and Watson (1986).13 The
second way relies on the method of moments and solves the nonlinear equation
system (15.5) as in Bernanke (1986). In the case of exact identification both methods
are numerically equivalent.

In our example treated of Sect. 15.2.1, we had n D 2 so that three restrictions
were necessary (six parameters, but only three equations). These three restrictions
were obtained by setting B D I2 which gives two restrictions (i.e. b12 D b21 D 0).
The third restriction was to set the immediate reaction of money supply to a demand
shock to zero, i.e. to set a2 D 0. We then showed that these three restrictions are
also sufficient to solve the nonlinear equation system (15.5).

Sims (1980b) proposed in his seminal article the VAR approach as an adequate
alternative to then popular structural simultaneous approach. In particular, he
suggested a simple recursive identification scheme. This scheme takes A D In so
that the equation system (15.5) simplifies to:

† D B�B0:

Next we assume that B is a lower triangular matrix:

B D

0
BBB@

1 0 : : : 0

� 1 : : : 0
:::
:::
: : :

:::

� � : : : 1

1
CCCA

12The case of overidentification is, for example, treated in Bernanke (1986).
13A version of the instrumental variable (IV) approach is discussed in Sect. 15.5.2.
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where � is just a placeholder. The matrices B and� are uniquely determined by the
Cholesky decomposition of the matrix †. The Cholesky decomposition factorizes
a positive-definite matrix † uniquely into the product B�B0 where B is a lower
triangular matrix with ones on the diagonal and a diagonal matrix � with strictly
positive diagonal entries (Meyer 2000). As Zt D BVt, Sims’ identification gives rise
to the following interpretation. v1t is the only structural shock which has an effect on
X1t in period t. All other shocks have no contemporaneous effect. Moreover, Z1t D
v1t so that the residual from the first equation is just equal to the first structural shock
and that �21 D !21 . The second variable X2t is contemporaneously only affected by
v1t and v2t, and not by the remaining shocks v3t; : : : ; vnt. In particular, Z2t D b21v1tC
v2t so that b21 can be retrieved from the equation �21 D b21!

2
1 . This identifies the

second structural shock v2t and !22 . Due to the triangular nature of B, the system
is recursive and all structural shocks and parameters can be identified successively.
The application of the Cholesky decomposition as an identification scheme rests
crucially on the ordering of the variables .X1t;X2t; : : : ;Xnt/

0 in the system.
Sims’ scheme, although easy to implement, becomes less plausible as the number

of variables in the system increases. For this reason the more general scheme with
A ¤ In and B not necessarily lower triangular are more popular. However, even for
medium sized systems such as n D 5, 30 restrictions are necessary which stresses
the imagination even of brilliant economists as the estimation of Blanchard’s model
in Sect. 15.4.5 shows.

Focusing on the identification of the matrices A and B brings also an advantage
in terms of estimation. As shown in Chap. 13, the OLS-estimator of the VAR
coefficient matrices ˆ1; : : : ; ˆp equals the GLS-estimator independently of †.
Thus, the estimation of the structural parameters can be broken down into two
steps. In the first step, the coefficient matrices ˆ1; : : : ; ˆp are estimated using
OLS. The residuals are then used to estimate † which leads to an estimate of the
covariance matrix (see Eq. (13.6)). In the second step, the coefficients of A, B, and
� are then estimated given the estimate of †, b†, by solving the nonlinear equation
system (15.5) taking the specific identification scheme into account. Thereby † is

replaced by its estimate b†. As
p

T
�

vech.b†/ � vech.†/
�

converges in distribution

to a normal distribution with mean zero, OA, OB and b� are also asymptotically normal
because they are obtained by a one-to-one mapping from b†.14 The Continuous
Mapping Theorem further implies that OA, OB and b� converge to their true means
and that their asymptotic covariance matrix can be obtained by an application of the
delta-method (see Theorem E.1 in the Appendix E). Further details can be found
in Bernanke (1986), Blanchard and Watson (1986), Giannini (1991), Hamilton
(1994b), and Sims (1986).

14The vech operator transforms a symmetric n � n matrix † into a 1
2
n.n C 1/ vector by stacking

the columns of † such that each element is listed only once.
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15.4 Interpretation of VAR Models

15.4.1 Impulse Response Functions

The direct interpretation of VAR models is rather difficult because it is composed of
many coefficients so that it becomes difficult to understand the dynamic interactions
between the variables. It is therefore advantageous to simulate the dynamic effects
of the different structural shocks by computing the impulse response functions.
They show the effect over time of the structural shocks on the variables at issue.
These effects can often be related to the underlying economic model and are thus
at the heart of the VAR analysis. The examples in Sect. 15.4.4 and 15.4.5 provide
some illustrations of this statement.

The impulse response functions are derived from the causal representation15 of
the VAR process (see Sect. 12.3):

Xt D Zt C‰1Zt�1 C‰2Zt�2 C : : :

D A�1BVt C‰1A
�1BVt�1 C‰2A

�1BVt�2 C : : : (15.8)

The effect of the j-th structural disturbance on the i-th variable after h periods,

denoted by
@Xi;tCh

@vjt
is thus given by the .i; j/-th element of the matrix ‰hA�1B:

@Xi;tCh

@vjt

D
�
‰hA�1B

�
i;j
:

Clearly, the impulse response functions depends on the identification scheme
chosen. There are n2 impulse response functions if the system consists of n

variables. Usually, the impulse response functions are represented graphically as
a plot against h.

15.4.2 Forecast Error Variance Decomposition

Another instrument for the interpretation of VAR models is the forecast error

variance decomposition (“FEVD”) or variance decomposition for short which
decomposes the total forecast error variance of a variable into the variances of
the structural shocks. It is again based on the causal representation of the VAR(p)
model. According to Eq. (14.3) in Chap. 14 the variance of the forecast error or
mean squared error (MSE) is given by:

MSE.h/ D E.XtCh � PtXtCh/.XtCh � PtXtCh/
0

15Sometimes the causal representation is called the MA.1) representation.
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D
h�1X

jD0
‰j†‰

0
j D

h�1X

jD0
‰jA

�1B�B0A0�1‰0
j :

Given a specific identification scheme and estimates of the structural parameters,
it is possible to attribute the MSE to the variance of the structural disturbances.
Thereby it is customary to write the contribution of each disturbance as a percentage
of the total variance. For this purpose let us write the MSE.h/ explicitly as

MSE.h/ D

0
BBBB@

m
.h/
11 � : : : �
� m

.h/
22 : : : �

:::
:::
: : :

:::

� � : : : m
.h/
nn

1
CCCCA
:

Our interest lies exclusively on the variances, m
.h/
ii , i D 1; : : : ; n, so that we represent

the uninteresting covariance terms by the placeholder �. These variances can be seen
as a linear combination of the !2i ’s because the covariance matrix of the structural
disturbances� D diag

�
!21 ; : : : ; !

2
n

�
is a diagonal matrix:

m
.h/
ii D d

.h/
i1 !

2
1 C : : :C d

.h/
in !

2
n

or in matrix form

D e0
i

0
@

h�1X

jD0
‰j†‰

0
j

1
A ei D e0

i

0
@

h�1X

jD0
‰jA

�1B�B0A0�1‰0
j

1
A ei

where the vector ei has entries equal to zero, except for the i-th entry which is equal

to one. Given the positive definiteness of †, the weights d
.h/
ij , i; j D 1; : : : ; n and

h D 1; 2; : : :, are strictly positive. They can be computed as

d
.h/
ij D

 
h�1X

kD0
Œ‰kA�1B�2ij

!

In order to arrive at the percentage value of the contribution of the j-th disturbance

to the MSE of the i-th variable at forecast horizon h, denoted by f
.h/
ij , we divide each

summand in the above expression by the total sum:

f
.h/
ij D

d
.h/
ij !

2
j

m
.h/
ii

; i; j D 1; : : : ; n; for h D 0; 1; 2; : : :
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The corresponding matrix expression is

D
e0

i

�Ph�1
jD0 ‰jA

�1B�1=2eje
0
j�

1=2B0A0�1‰0
j

�
ei

e0
i

�Ph�1
jD0 ‰j†‰

0
j

�
ei

Usually, these numbers are multiplied by 100 to give percentages and are either
displayed graphically as a plot against h or in table form (see the example in

Sect. 15.4.5). The forecast error variance f
.h/
ij thus shows which percentage of the

forecast variance of variable i at horizon h can be attributed to the j-th structural
shock and thus measures the contribution of each of these shocks to the overall
fluctuations of the variables in question.

The FEVD can be used as an alternative identification scheme, sometimes called
max share identification. Assume for the ease of exposition that A D In. The VAR
disturbances and the structural shocks are then simply related as Zt D BVt (compare
Eq. (15.4)). Moreover, take � D In, but leave B unrestricted. This corresponds to
a different, but equivalent normalization which economizes on the notation. Then
the j-th structural disturbance can be identified by assuming that it maximizes the
forecast error variance share with respect to variable i. Noting that, given †, B can
be written as B D RQ with R being the unique Cholesky factor of† and Q being an
orthogonal matrix, this optimization problem can be casted as

max
qj

e0
i

0
@

h�1X

jD0
‰jRqjq

0
jR

0‰0
j

1
A ei s.t. q0

jqj D 1

where qj is the j-th column of Q, i.e. qj D Qej. The constraint q0
jqj D 1 normalizes

the vector to have length 1. From Zt D BVt it then follows that corresponding
structural disturbance is equal to Vjt D q0

jR
�1Zt. Because e0

jQ
0R�1†R0�1Qek D 0

for j ¤ k, this shock is orthogonal to the other structural disturbances. For
practical applications it is advisable for reasons of numerical stability to transform
to optimization problem into an equivalent eigenvalue problem (see Faust 1998;
appendix).

15.4.3 Confidence Intervals

The impulse response functions and the variance decomposition are the most
important tools for the analysis and interpretation of VAR models. It is, therefore,
of importance not only to estimate these entities, but also to provide corresponding
confidence intervals to underpin the interpretation from a statistical perspective. In
the literature two approaches have been established: an analytic and a bootstrap
approach. The analytic approach relies on the fact that the coefficient matrices
‰h, h D 1; 2; : : :, are continuously differentiable functions of the estimated VAR
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coefficients: vec.‰h/ D Fh.ˇ/ where ˇ denotes as in Chap. 13 the vectorized
form of the VAR coefficient matrices ˆ1; : : : ; ˆp.16 The relation between VAR
coefficients and the causal representation (MA(1) representation) was established
in Sect. 12.3. This discussion shows that the functions Fh W Rpn2 �! Rn2 are highly

nonlinear. In Chap. 13 it was shown that
p

T
�

Ǒ � ˇ
�

d����! N
�
0;†˝ ��1

p

�
so

that we can apply the Continuous Mapping Theorem (see Theorem E.1 or Serfling
(1980; 122–124)), sometimes also called the Delta method to get

p
T
�

Fh. Ǒ/ � Fh.ˇ/
�

d����! N

�
0;

�
@Fh.ˇ/

@̌ 0

� �
†˝ ��1

p

� �@Fh.ˇ/

@̌ 0

�0�

where in practice the covariance matrix is estimated by replacing ˇ and † by
their estimate. The computation of the gradient matrices @Fh.ˇ/

@ˇ0 is rather involved,
especially when h becomes large. Details can be found in Lütkepohl (1990, 2006)
and Mittnik and Zadrozny (1993).

The use of this asymptotic approximation has two problems. First, the complexity
of the relationship between the ˆi’s and the ‰h’s augments with h so that the
quality of the approximation diminishes with h for any given sample size. This
is true even when Ǒ is exactly normally distributed. Second, the distribution of
Ǒ is approximated poorly by the normal distribution. This is particularly relevant

when the roots of ˆ.L/ are near the unit circle. In this case, the bias towards
zero can become substantial (see the discussion in Sect. 7.2). These two problems
become especially relevant as h increases. For these reasons the analytic approach
has becomes less popular.

The bootstrap approach (Monte Carlo or Simulation approach), as advocated
by Runkle (1987), Kilian (1998) and Sims (1999), has become the most favored
approach. This is partly due to the development of powerful computer algorithms,
and the increased speed in computations. The so-called naive bootstrap approach
consists of several steps.17

First step: Using a random number generator new disturbances are created.
This can be done in two ways. The first one assumes a particular distribution
for Vt: Vt � N.0;b�/, for example. The realizations V1; : : : ;VT are then
independent draws from this distribution. The second one, takes random draws
with replacement from the identified realizations OV1; : : : ; OVT .18 The second way
has the advantage that non explicit distributional assumption is made which
results in a better approximation of the true distribution of OVt .

16Recall that the vec operator stacks the columns of a n � m matrix to get one nm vector.
17The bootstrap is a resampling method. Efron and Tibshirani (1993) provide a general introduction
to the bootstrap.
18The draws can also be done blockwise. This has the advantage that possible remaining temporal
dependences are taken in account.
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Second step: Given the fixed starting values X�pC1; : : : ;X0, the estimated coef-

ficients matrices b̂1; : : : ; b̂p and the new disturbances drawn in step one, a new
realization of the time series for fXtg is generated.

Third step: Estimate the VAR model, given the newly generated realizations for
fXtg, to obtain new estimates for the coefficient matrices.

Fourth step: Generate a new set of impulse response functions given the new
estimates, taking the identification scheme as fixed.

The steps one to four are repeated several times to generate a whole family of
impulse response functions which form the basis for the computation of the confi-
dence bands. In many applications, these confidence bands are constructed in a naive
fashion by connecting the confidence intervals for individual impulse responses at
different horizons. This, however, ignores the fact that the impulse responses at
different horizons are correlated which implies that the true coverage probability of
the confidence band is different from the presumed one. Thus, the joint probability
distribution of the impulse responses should serve as the basis of the computation of
the confidence bands. Recently, several alternatives have been proposed which take
this feature in account. Lütkepohl et al. (2013) provides a comparison of several
methods.

The number of repetitions should be at least 500. The method can be refined
somewhat if the bias towards zero of the estimates of the ˆ’s is taken into account.
This bias can again be determined through simulation methods (Kilian 1998).
A critical appraisal of the bootstrap can be found in Sims (1999) where additional
improvements are discussed. The bootstrap of the variance decomposition works in
similar way.

15.4.4 Example 1: Advertisement and Sales

In this example we will analyze the dynamic relationship between advertisement
expenditures and sales by a VAR approach. The data we will use are the famous data
from the Lydia E. Pinkham Medicine Company which cover yearly observations
from 1907 to 1960. These data were among the first ones which have been used
to quantify the effect of advertisement expenditures on sales. The data are taken
from Berndt (1991; Chapter 8) where details on the specificities of the data and a
summary of the literature can be found.

We denote the two-dimensional logged time series of advertisement expenditures
and sales by fXtg D f.ln.advertisementt/; ln.salest//

0g. We consider VAR models of
order one to six. For each VAR(p), p D 1; 2; : : : ; 6, we compute the corresponding
information criteria AIC and BIC (see Sect. 14.3). Whereas AIC favors a model of
order two, BIC proposes the more parsimonious model of order one. To be on the
safe side, we work with a VAR model of order two whose estimates are reported
below:
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Xt D

0
BBB@

0.145
(0.634)

0.762
(0.333)

1
CCCAC

0
BBB@

0.451
(0.174)

0.642
(0.302)

-0.068
(0.091)

1.245
(0.159)

1
CCCAXt�1

C

0
BBB@

-0.189
(0.180)

0.009
(0.333)

-0.176
(0.095)

-0.125
(0.175)

1
CCCAXt�2 C Zt;

where the estimated standard deviations of the coefficients are reported in parenthe-
sis. The estimate b† of the covariance matrix † is

b† D
�
0:038 0:011

0:011 0:010

�
:

The estimated VAR(2) model is taken to be the reduced form model. The struc-
tural model contains two structural shocks: a shock to advertisement expenditures,
VAt, and a shock to sales, VSt. The disturbance vector of the structural shock is thus
fVtg D f.VAt;VSt/

0g. It is related to Zt via relation (15.4), i.e. AZt D BVt. To identify
the model we thus need 3 restrictions.19 We will first assume that A D I2 which
gives two restrictions. A plausible further assumption is that shocks to sales have
no contemporaneous effects on advertisement expenditures. This zero restriction
seems justified because advertisement campaigns have to be planed in advance.
They cannot be produced and carried out immediately. This argument then delivers
the third restriction as it implies that B is a lower triangular. This lower triangular
matrix can be obtained from the Cholesky decomposition of b†:

bB D
�

1 0

0:288 1

�
and b� D

�
0:038 0

0 0:007

�
:

The identifying assumptions then imply the impulse response functions plotted
in Fig. 15.2.

The upper left figure shows the response of a sudden transitory increase in
advertisement expenditures by 1 % (i.e. of a 1-% increase of VAt) to itself. This shock
is positively propagated to the future years, but is statistically zero after four years.
After four years the shock even changes to negative, but statistically insignificant,
expenditures. The same shock produces an increase of sales by 0.3 % in the current
and next year as shown in the lower left figure. The effect then deteriorates and
becomes even negative after three years. The right hand figures display the reaction

19Formula (15.6) for n D 2 gives 3 restrictions.
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Fig. 15.2 Impulse response functions for advertisement expenditures and sales with 95-%
confidence intervals computed using the bootstrap procedure

of a sudden transitory increase of sales by 1 %. Again, we see that the shock is
positively propagated. Thereby the largest effect is reached after two years and then
declines monotonically. The reaction of advertisement expenditures is initially equal
to zero by construction as it corresponds to the identifying assumption with regard
to B. Then, the effect starts to increase and reaches a maximum after three years and
then declines monotonically. After 15 years the effect is practically zero. The 95-%
confidence intervals are rather large so that all effects are no longer statistically
significant after a few number of years.
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15.4.5 Example 2: IS-LM Model with Phillips Curve

In this example we replicate the study of Blanchard (1989) which investigates the
US business cycle within a traditional IS-LM model with Phillips curve.20 The
starting point of his analysis is the VAR(p) model:

Xt D ˆ1Xt�1 C : : :CˆpXt�p C C Dt C Zt

where fXtg is a five-dimensional time series Xt D .Yt;Ut;Pt;Wt;Mt/
0. The

individual elements of Xt denote the following variables:

Yt : : : growth rate of real GDP

Ut : : : unemployment rate

Pt : : : inflation rate

Wt : : : growth rate of wages

Mt : : : growth rate of money stock:

The VAR has attached to it a disturbance term Zt D .Zyt;Zut;Zpt;Zwt;Zmt/
0. Finally,

fDtg denotes the deterministic variables of the model such as a constant, time trend
or dummy variables. In the following, we assume that all variables are stationary.

The business cycle is seen as the result of five structural shocks which impinge
on the economy:

Vdt : : : aggregate demand shock

Vst : : : aggregate supply shock

Vpt : : : price shock

Vwt : : : wage shock

Vmt : : : money shock:

We will use the IS-LM model to rationalize the restrictions so that we will be able
to identify the structural form from the estimated VAR model. The disturbance of
the structural and the reduced form models are related by the simultaneous equation
system:

AZt D BVt

where Vt D .Vyt;Vst;Vpt;Vwt;Vmt/
0 and where A and B are 5� 5 matrices with ones

on the diagonal. Blanchard (1989) proposes the following specification:

20The results do not match exactly those of Blanchard (1989), but are qualitatively similar.
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(AD): Zyt D Vdt C b12Vst

(OL): Zut D �a21Zyt C Vst

(PS): Zpt D �a34Zwt � a31Zyt C b32Vst C Vpt

(WS): Zwt D �a43Zpt � a42Zut C b42Vst C Vwt

(MR): Zmt D �a51Zyt � a52Zut � a53Zpt � a54Zwt C Vmt:

In matrix notation the above simultaneous equation system becomes:

0
BBBBB@

1 0 0 0 0

a21 1 0 0 0

a31 0 1 a34 0

0 a42 a43 1 0

a51 a52 a53 a54 1

1
CCCCCA

0
BBBBB@

Zyt

Zut

Zpt

Zwt

Zmt

1
CCCCCA

D

0
BBBBB@

1 b12 0 0 0

0 1 0 0 0

0 b32 1 0 0

0 b42 0 1 0

0 0 0 0 1

1
CCCCCA

0
BBBBB@

Vdt

Vst

Vpt

Vwt

Vmt

1
CCCCCA
:

The first equation is interpreted as an aggregate demand (AD) equation where the
disturbance term related to GDP growth, Zyt, depends on the demand shock Vdt and
the supply shock Vst. The second equation is related to Okun’s law (OL) which
relates the unemployment disturbance Zut to the demand disturbance and the supply
shock. Thereby an increase in GDP growth reduces unemployment in the same
period by a21 whereas a supply shock increases it. The third and the fourth equation
represent a price (PS) and wage setting (WS) system where wages and prices interact
simultaneously. Finally, the fifth equation (MR) is supposed to determine the money
shock (MR). No distinction is made between money supply and money demand
shocks. A detailed interpretation of these equations is found in the original article
by Blanchard (1989).

Given that the dimension of the system is five (i.e. n D 5), formula (15.6)
instructs us that we need 3 � .5 � 4/=2 D 30 restrictions. Counting the number
of zero restrictions implemented above, we see that we only have 28 zeros. Thus
we lack two additional restrictions. We can reach the same conclusion by counting
the number of coefficients and the number of equations. The coefficients are
a21; a31; a34; a42; a43; a51; a52; a53; a54, b12; b32; b42 and the diagonal elements of �,
the covariance matrix of Vt. We therefore have to determine 17 unknown coefficients
out of .5 � 6/=2 D 15 equations. Thus we find again that we are short of two
restrictions. Blanchard discusses several possibilities among which the restrictions
b12 D 1:0 and a34 D 0:1 seem most plausible.

The sample period runs through the second quarter in 1959 to the second
quarter in 2004 encompassing 181 observations. Following Blanchard, we include a
constant in combination with a linear time trend in the model. Whereas BIC suggests
a model of order one, AIC favors a model of order two. As a model of order one
seems rather restrictive, we stick to the VAR(2) model whose estimated coefficients
are reported below21:

21To save space, the estimated standard errors of the coefficients are not reported.



15.4 Interpretation of VAR Models 279

b̂
1 D

0
BBBBB@

0:07 �1:31 0:01 0:12 0:02

�0:02 1:30 0:03 �0:00 �0:00
�0:07 �1:47 0:56 0:07 0:03

0:07 0:50 0:44 0:07 0:06

�0:10 1:27 �0:07 0:04 0:49

1
CCCCCA

b̂
2 D

0
BBBBB@

0:05 1:79 �0:41 �0:13 0:05

�0:02 �0:35 0:00 0:01 �0:00
�0:04 1:38 0:28 0:05 �0:00
0:07 �0:85 0:19 0:10 �0:04

�0:02 �0:77 �0:07 0:11 0:17

1
CCCCCA

bC D

0
BBBBB@

2:18 �0:0101
0:29 0:0001

0:92 �0:0015
4:06 �0:0035

�0:98 �0:0025

1
CCCCCA

b† D

0
BBBBB@

9:94 �0:46 �0:34 0:79 0:29

�0:46 0:06 �0:02 �0:05 � 0:06

�0:34 �0:02 1:06 0:76 0:13

0:79 �0:05 0:76 5:58 0:76

0:29 �0:06 0:13 0:76 11:07

1
CCCCCA
:

The first column of bC relates to the constants, whereas the second column gives
the coefficients of the time trend. From these estimates and given the identifying
restrictions established above, the equationb† D A�1B�B0A0�1 uniquely determines
the matrices A, B and�:

bA D

0
BBBBB@

1 0 0 0 0

0:050 1 0 0 0

0:038 0 1 0:1 0

0 1:77 �0:24 1 0

0:033 1:10 0:01 �0:13 1

1
CCCCCA

bB D

0
BBBBB@

1 1 0 0 0

0 1 0 0 0

0 �1:01 1 0 0
0 1:55 0 1 0

0 0 0 0 1

1
CCCCCA
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b� D

0
BBBBB@

9:838 0 0 0 0

0 0:037 0 0 0

0 0 0:899 0 0

0 0 0 5:162 0

0 0 0 0 10:849

1
CCCCCA

In order to give better interpretation of the results we have plotted the impulse
response functions and their 95-% confidence bands in Fig. 15.3. The results show
that a positive demand shock has only a positive and statistically significant effect
on GDP growth in the first three quarters, after that the effect becomes even
slightly negative and vanishes after sixteen quarters. The positive demand shock
reduces unemployment significantly for almost fifteen quarters. The maximal effect
is achieved after three to four quarters. Although the initial effect is negative, the
positive demand shock also drives inflation up which then pushes up wage growth.
The supply shock also has a positive effect on GDP growth, but it takes more than
four quarters before the effect reaches its peak. In the short-run the positive supply
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Fig. 15.3 Impulse response functions for the IS-LM model with Phillips curve with 95-%
confidence intervals computed using the bootstrap procedure (compare with Blanchard (1989))
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shock even reduces GDP growth. In contrast to the demand shock, the positive
supply shock increases unemployment in the short-run. The effect will only reduce
unemployment in the medium- to long-run. The effect on price and wage inflation
is negative.

Finally, we compute the forecast error variance decomposition according to
Sect. 15.4.2. The results are reported in Table 15.1. In the short-run, the identifying
restrictions play an important role as reflected by the plain zeros. The demand shock
accounts for almost all the variance of GDP growth in the short-run. The value of
99:62% for forecast horizon of one quarter, however, diminishes as h increases to
40 quarters, but still remains with a value 86:13 very high. The supply shock on the

Table 15.1 Forecast error
variance decomposition
(FEVD) in terms of demand,
supply, price, wage, and
money shocks (percentages)

Horizon Demand Supply Price Wage Money

Growth rate of real GDP

1 99.62 0.38 0 0 0

2 98.13 0.94 0.02 0.87 0.04

4 93.85 1.59 2.13 1.86 0.57

8 88.27 4.83 3.36 2.43 0.61

40 86.13 6.11 4.29 2.58 0.89

Unemployment rate

1 42.22 57.78 0 0 0

2 52.03 47.57 0.04 v0.01 0.00

4 64.74 33.17 1.80 0.13 0.16

8 66.05 21.32 10.01 1.99 0.63

40 39.09 16.81 31.92 10.73 0.89

Inflation rate

1 0.86 4.18 89.80 5.15 0

2 0.63 13.12 77.24 8.56 0.45

4 0.72 16.79 68.15 13.36 0.97

8 1.79 19.34 60.69 16.07 2.11

40 2.83 20.48 55.84 17.12 3.74

Growth rate of wages

1 1.18 0.10 0.97 97.75 0

2 1.40 0.10 4.30 93.50 0.69

4 2.18 2.75 9.78 84.49 0.80

8 3.80 6.74 13.40 74.72 1.33

40 5.11 8.44 14.19 70.14 2.13

Growth rate of money stock

1 0.10 0.43 0.00 0.84 98.63

2 1.45 0.44 0.02 1.02 97.06

4 4.22 1.09 0.04 1.90 92.75

8 8.31 1.55 0.81 2.65 86.68

40 8.47 2.64 5.77 4.55 78.57
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contrary does not explain much of the variation in GDP growth. Even for a horizon
of 40 quarters, it contributes only 6.11 %. The supply shock is, however, important
for the variation in the unemployment rate, especially in the short-run. It explains
more than 50 % whereas demand shocks account for only 42.22 %. Its contribution
diminishes with the increase of the forecast horizon giving room for price and
wage shocks. The variance of the inflation rate is explained in the short-run almost
exclusively by price shocks. However, as the forecast horizon is increased supply
and wage shocks become relatively important. The money growth rate does not
interact much with the other variables. Its variation is almost exclusively explained
by money shocks.

15.5 Identification via Long-Run Restrictions

15.5.1 A Prototypical Example

Besides short-run restrictions, essentially zero restrictions on the coefficients of
A and/or B, Blanchard and Quah (1989) proposed long-run restrictions as an
alternative option. These long-run restrictions have to be seen as complementary
to the short-run ones as they can be combined. Long-run restrictions constrain
the long-run effect of structural shocks. This technique makes only sense if some
integrated variables are involved, because in the stationary case the effects of all
shocks vanish eventually. To explain this, we discuss the two-dimensional example
given by Blanchard and Quah (1989).

They analyze a two-variable system consisting of logged real GDP denoted by
fYtg and the unemployment rate fUtg. Logged GDP is typically integrated of order
one (see Sect. 7.3.4 for an analysis for Swiss GDP) whereas Ut is considered to
be stationary. Thus they apply the VAR approach to the stationary process fXtg D
f.�Yt;Ut/

0g. Assuming that fXtg is already demeaned and follows a causal VAR
process, we have the following representations:

Xt D
�
�Yt

Ut

�
D ˆ1Xt�1 C : : :CˆpXt�p C Zt

D ‰.L/Zt D Zt C‰1Zt�1 C‰2Zt�2 C : : : :

For simplicity, we assume that A D I2, so that

Zt D BVt D
�
1 b12

b21 1

��
vdt

vst

�

where Vt D .vdt; vst/
0 � WN.0;�/ with� D diag.!2d ; !

2
s /. Thereby fvdtg and fvstg

denote demand and supply shocks, respectively. The causal representation of fXtg
implies that the effect of a demand shock in period t on GDP growth in period t C h

is given by:
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@�YtCh

@vdt

D Œ‰hB�11

where Œ‰hB�11 denotes the upper left hand element of the matrix ‰hB. YtCh can be
written as YtCh D �YtCh C �YtCh�1 C : : : C �YtC1 C Yt so that the effect of the
demand shock on the level of logged GDP is given by:

@YtCh

@vdt

D
hX

jD0
Œ‰jB�11 D

2
4

hX

jD0
‰jB

3
5
11

:

Blanchard and Quah (1989) propose, in accordance with conventional economic
theory, to restrict the long-run effect of the demand shock on the level of logged
GDP to zero:

lim
h!1

@YtCh

@vdt

D
1X

jD0
Œ‰jB�11 D 0:

This implies that

1X

jD0
‰jB D

0
@

1X

jD0
‰j

1
AB D ‰.1/B D

�
0 �
� �

�
;

where � is a placeholder. This restriction is sufficient to infer b21 from the relation
Œ‰.1/�11b11 C b21Œ‰.1/�12 D 0 and the normalization b11 D 1:

b21 D � Œ‰.1/�11
Œ‰.1/�12

D � Œˆ.1/
�1�11

Œˆ.1/�1�12
:

The second part of the equation follows from the identity ˆ.z/‰.z/ D I2 which
gives ‰.1/ D ˆ.1/�1 for z D 1. The long-run effect of the supply shock on Yt is
left unrestricted and is therefore in general nonzero. Note that the implied value of
b21 depends on ˆ.1/, and thus on ˆ1; : : : ; ˆp. The results are therefore, in contrast
to short-run restrictions, much more sensitive to correct specification of the VAR.

The relation Zt D BVt implies that

† D B

�
!2d 0

0 !2s

�
B0

or more explicitely

† D
�
�21 �12

�12 �
2
2

�
D
�
1 b12

b21 1

��
!2d 0

0 !2s

��
1 b21

b12 1

�
:
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Taking b21 as already given from above, this equation system has three equations
and three unknowns b12; !

2
d ; !

2
s which is a necessary condition for a solution to

exist.

Analytic Solution of the System
Because b21 is already determined from the long-run restriction, we rewrite the
equation system22 explicitly in terms of b21:

�21 D !2d C b212!
2
s

�12 D b21!
2
d C b12!

2
s

�22 D b221!
2
d C !2s :

Using the last two equations, we can express !2d and !2s as functions of b12:

!2d D �12 � b12�
2
2

b21 � b12b
2
21

!2s D �22 � b21�12

1 � b12b21
:

These expressions are only valid if b21 ¤ 0 and b12b21 ¤ 1. The case b21 D 0

is not interesting with regard to content. It would simplify the original equation
system strongly and would results in b12 D �12=�

2
2 , !2d D .�21�

2
2 � �212/=�

2
2 > 0

and !2s D �22 > 0. The case b12b21 D 1 contradicts the assumption that † is a
positive-definite matrix and can therefore be disregarded.23

Inserting the solutions of !2d and !2s into the first equation, we obtain a quadratic
equation in b12:

�
b21�

2
2 � b221�12

�
b212 C

�
b221�

2
1 � �22

�
b12 C

�
�12 � b21�

2
1

�
D 0:

The discriminant� of this equation is:

� D
�
b221�

2
1 � �22

�2 � 4
�
b21�

2
2 � b221�12

� �
�12 � b21�

2
1

�

D
�
b221�

2
1 C �22

�2 � 4b21�12
�
b221�

2
1 C �22

�
C 4b221�

2
12

D
�
b221�

2
1 C �22 � 2b21�12

�2
> 0:

22This equation system is similar to the one analyzed in Sect. 15.2.3.
23If b12b21 D 1, det† D �21�

2
2 � �212 D 0. This implies that Z1t and Z2t are perfectly correlated,

i.e. �2Z1t ;Z2t
D �212=.�

2
1�

2
2 / D 1.
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The positivity of the discriminant implies that the quadratic equation has two real

solutions b
.1/
12 and b

.2/
12 :

b
.1/
12 D �22 � b21�12

b21�
2
2 � b221�12

D 1

b21
;

b
.2/
12 D �12 � b21�

2
1

�22 � b21�12
:

The first solution b
.1/
12 can be excluded because it violates the assumption b12b21 ¤ 1

which stands in contradiction to the positive-definiteness of the covariance matrix†.
Inserting the second solution back into the solution for !2d and !2s , we finally get:

!2d D �21�
2
2 � �212

b221�
2
1 � 2b21�12 C �22

> 0

!2s D
�
�22 � b21�12

�2

b221�
2
1 � 2b21�12 C �22

> 0:

Because† is a symmetric positive-definite matrix, �21�
2
2 � �212 and the denominator

b221�
2
1 � 2b21�12 C �22 are strictly positive. Thus, both solutions yield positive

variances and we have found the unique admissible solution.

15.5.2 The General Approach

The general case of long-run restrictions has a structure similar to the case of short-
run restrictions. Take as a starting point the structural VAR (15.2) from Sect. 15.2.2:

AXt D �1Xt�1 C : : :C �pXt�p C BVt; Vt � WN.0;�/;

A.L/Xt D BVt

where fXtg is stationary and causal with respect to fVtg. As before the matrix A

is normalized to have ones on its diagonal and is assumed to be invertible, � is a
diagonal matrix with � D diag.!21 ; : : : ; !

2
n /, and B is a matrix with ones on the

diagonal. The matrix polynomial A.L/ is defined as A.L/ D A � �1L � : : : � �pLp.
The reduced form is given by

ˆ.L/Xt D Zt; Zt � WN.0;†/

where AZt D BVt and Aˆj D �j, j D 1; : : : ; p, respectively Aˆ.L/ D A.L/.
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The long-run variance of fXtg, J, (see Eq. (11.1) in Chap. 11) can be derived
from the reduced as well as from the structural form, which gives the following
expressions:

J D ˆ.1/�1† ˆ.1/�10 D ˆ.1/�1A�1B�B0A0�1ˆ.1/�10 D A.1/�1B�B0A.1/�10

D ‰.1/† ‰.1/0 D ‰.1/A�1B�B0A0�1‰.1/0

where Xt D ‰.L/Zt denotes the causal representation of fXtg. The long-run variance
J can be estimated by adapting the methods in Sect. 4.4 to the multivariate case.
Thus, the above equation system has a similar structure as the system (15.5) which
underlies the case of short-run restrictions. As before, we get n.n C 1/=2 equations
with 2n2 � n unknowns. The nonlinear equation system is therefore undetermined
for n � 2. Therefore, 3n.n � 1/=2 additional equations or restrictions are necessary
to achieve identification. Hence, conceptually we are in a similar situation as in the
case of short-run restrictions.24

In practice, it is customary to achieve identification through zero restrictions
where some elements of ‰.1/A�1B, respectively ˆ.1/�1A�1B, are set a priori
to zero. Setting the ij-th element Œ‰.1/A�1B�ij D Œˆ.1/�1A�1B�ij equal to zero
amounts to set the cumulative effect of the j-th structural disturbance Vjt on the
i-th variable equal to zero. If the i-th variable enters Xt in first differences, as was
the case for Yt in the previous example, this zero restriction restrains the long-run
effect on the level of that variable.

An interesting simplification arises if one assumes that A D In and that‰.1/B D
ˆ.1/�1B is a lower triangular matrix. In this case, B and � can be estimated from
the Cholesky decomposition of the estimated long-run variance OJ. Let OJ D OL OD OL0

be the Cholesky decomposition where OL is lower triangular matrix with ones on
the diagonal and OD is a diagonal matrix with strictly positive diagonal entries.
As OJ D Ô .1/�1B O�B0 Ô .1/�10, the matrix of structural coefficients can then be
estimated as OB D Ô .1/ OL OU�1. The multiplication by the inverse of the diagonal
matrix U D diag. Ô .1/ OL/ is necessary to guarantee that the normalization of OB
(diagonal elements equal to one) is respected.� is then estimated as O� D OU OD OU.

Instead of using a method of moments approach, it is possible to use an
instrumental variable (IV) approach. For this purpose we rewrite the reduced form
of Xt in the Dickey-Fuller form (see Eqs. (7.1) and (16.4)):

�Xt D �ˆ.1/Xt�1 C ê
1�Xt�1 C : : :C ê

p�1�Xt�pC1 C Zt;

where êj D �
Pp

iDjC1ˆi, j D 1; 2; : : : ; p�1. For the ease of exposition, we assume
B D In so that AZt D Vt. Multiplying this equation by A yields:

A�Xt D �Aˆ.1/Xt�1 C Aê1�Xt�1 C : : :C Aêp�1�Xt�pC1 C Vt: (15.9)

24See Rubio-Ramírez et al. (2010) for a unified treatment of both type of restrictions.
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Consider for simplicity the case that Aˆ.1/ is a lower triangular matrix. This implies
that the structural shocks V2t;V3t; : : : ;Vnt have no long-run impact on the first
variable X1t. It is, therefore, possible to estimate the coefficients A12;A13; : : : ;A1n

by instrumental variables taking X2;t�1;X3;t�1; : : : ;Xn;t�1 as instruments.
For n D 2 the Dickey-Fuller form of the equation system (15.9) is:

�
1 A12

A21 1

��
� QX1t

� QX2t

�
D �

�
ŒAˆ.1/�11 0

ŒAˆ.1/�21 ŒAˆ.1/�22

�� QX1;t�1
QX2;t�1

�
C
�

V1t

V2t

�
;

respectively

� QX1t D �A12� QX2t � ŒAˆ.1/�11 QX1;t�1 C V1t

� QX2t D �A21� QX1t

� ŒAˆ.1/�21 QX1;t�1 � ŒAˆ.1/�22 QX2;t�1 C V2t:

Thereby � QX1t and � QX2t denote the OLS residuals from a regression of �X1t,
respectively�X2t on .�X1;t�1; �X2;t�1; : : : ; �X1;t�pC1; �X2;t�pC1/. QX2;t�1 is a valid
instrument for� QX2t because this variable does not appear in the first equation. Thus,
A12 can be consistently estimated by the IV-approach. For the estimation of A21,
we can use the residuals from the first equation as instruments because V1t and
V2t are assumed to be uncorrelated. From this example, it is easy to see how this
recursive method can be generalized to more than two variables. Note also that the
IV-approach can also be used in the context of short-run restrictions.

The issue whether a technology shock leads to a reduction of hours worked in
the short-run, led to a vivid discussion on the usefulness of long-run restrictions for
structural models (Galí 1999; Christiano et al. 2003, 2006; Chari et al. 2008). From
an econometric point of view, it turned out, on the one hand, that the estimation
of ˆ.1/ is critical for the method of moments approach. The IV-approach, on the
other hand, depends on the strength or weakness of the instrument used (Pagan and
Robertson 1998; Gospodinov 2010).

It is, of course, possible to combine both short- and long-run restrictions
simultaneously. An interesting application of both techniques was presented by Galí
(1992). In doing so, one must be aware that both type of restrictions are consistent
with each other and that counting the number of restrictions gives only a necessary
condition.

Example 3: Identifying Aggregate Demand and Supply Shocks

In this example, we follow Blanchard and Quah (1989) and investigate the behavior
of the growth rate of real GDP and the unemployment rate for the US over the
period from the first quarter 1979 to the second quarter 2004 (102 observations). The
AIC and the BIC suggest models of order two and one, respectively. Because some
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coefficients of b̂2 are significant at the 10 % level, we prefer to use the VAR(2)
model which results in the following estimates25:

b̂
1 D

�
0:070 �3:376

�0:026 1:284

�

b̂
2 D

�
0:029 3:697

�0:022 �0:320

�

b† D
�

7:074 �0:382
�0:382 0:053

�
:

These results can be used to estimate ˆ.1/ D I2 � ˆ1 � ˆ2 and consequently also
‰.1/ D ˆ.1/�1:

b̂.1/ D
�
0:901 �0:321
0:048 0:036

�

b‰.1/ D b̂.1/�1 D
�
0:755 6:718

�1:003 18:832

�
:

Assuming that Zt D BVt and following the argument in Sect. 15.5.1 that the demand
shock has no long -run impact on the level of real GDP, we can retrieve an estimate
for b21:

Ob21 D �Œb‰.1/�11=Œb‰.1/�12 D �0:112:

The solution of the quadratic equation for b12 are �8:894 and 43.285. As the first
solution results in a negative variance for!22 , we can disregard this solution and stick
to the second one. The second solution makes also sense economically, because a
positive supply shock leads to positive effects on GDP. Setting b12 D 43:285 gives
the following estimates for covariance matrix of the structural shocks �:

b� D
�

O!2d 0

0 O!2s

�
D
�
4:023 0

0 0:0016

�
:

The big difference in the variance of both shocks clearly shows the greater
importance of demand shocks for business cycle movements.

Figure 15.4 shows the impulse response functions of the VAR(2) identified by
the long-run restriction. Each figure displays the dynamic effect of a demand and a
supply shock on real GDP and the unemployment rate, respectively, where the size
of the initial shock corresponds to one standard deviation. The result conforms well
with standard economic reasoning. A positive demand shock increases real GDP

25The results for the constants are suppressed to save space.
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Fig. 15.4 Impulse response functions of the Blanchard-Quah model (Blanchard and Quah 1989)
with 95-% confidence intervals computed using the bootstrap procedure

and lowers the unemployment rate in the short-run. The effect is even amplified
for some quarters before it declines monotonically. After 30 quarters the effect of
the demand has practically vanished so that its long-run effect becomes zero as
imposed by the restriction. The supply shock has a similar short-run effect on real
GDP, but initially increases the unemployment rate. Only when the effect on GDP
becomes stronger after some quarters will the unemployment rate start to decline.
In the long-run, the supply shock has a positive effect on real GDP but no effect
on unemployment. Interestingly, only the short-run effects of the demand shock are
statistically significant at the 95-% level.

15.6 Sign Restrictions

In recent years the use of sign restrictions has attracted a lot of attention. Pioneering
contributions have been provided by Faust (1998), Canova and De Nicoló (2002),
and Uhlig (2005). Since then the literature has abounded by many applications in
many contexts. Sign restrictions try to identify the impact of the structural shocks by
requiring that the signs of the impulse response coefficients have to follow a given
pattern. The motivation behind this development is that economists are often more
confident about the sign of an economic relationship than about its exact magnitude.
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This seems to be true also for zero restrictions, whether they are short- or long-run
restrictions. This insight already led Samuelson (1947) to advocate a calculus of
qualitative relations in economics. Unfortunately, this approach has been forgotten
in the progression of economic analysis.26 With the rise in popularity of sign
restrictions his ideas may see a revival.

To make the notion of sign restrictions precise, we introduce a language based
on the following notation and definitions. Sign restrictions will be specified as sign

pattern matrices. These matrices make use of the sign function of a real number x,
sgn.x/, defined as

sgn.x/ D

8
<
:

1; if x > 0;
�1; if x < 0;
0; if x D 0.

Definition 15.1. A sign pattern matrix or pattern for short is a matrix whose

elements are solely from the set f1;�1; 0g. Given a sign pattern matrix S, the sign
pattern class of S is defined by

S.S/ D fM 2 M.n/ j sgn.M/ D Sg

where M.n/ is the set of all n � n matrices and where sgn is applied elementwise

to M. Clearly, S.S/ D S.sgn.S//.

Remark 15.1. Often the set fC;�; 0g is used instead of fC1;�1; 0g to denote the
sign patterns.

Remark 15.2. In some instances we do not want to restrict all signs but only a subset
of it. In this case, the elements of the sign pattern matrix S may come from the larger
set f�1; 0; 1; #g where # stands for an unspecified sign. S is then called a generalized

sign pattern matrix or a generalized pattern. The addition C and the multiplication
� of (generalized) sign pattern matrices are defined in a natural way.

In order not to overload the discussion, we set A D In and focus on the case where
Zt D BVt.27 Moreover, we use a different, but completely equivalent normalization.
In particular, we relax, on the one hand, the assumption that B has only ones on its
diagonal, but assume on the other hand that � D In. Note that † D EZtZ

0
t D BB0 is

a strictly positive definite matrix. Assuming that a causal representation of fXtg in
terms of fZtg and thus also in terms of fVtg exists, we can represent Xt as

26It is interesting to note that Samuelson’s ideas have fallen on fruitful grounds in areas like
computer science or combinatorics (see Brualdi and Shader 1995; Hall and Li 2014).
27The case with general A matrices can be treated analogously.
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Xt D BVt C‰1BVt�1 C‰2BVt�2 C : : : D
1X

hD0
‰hBVt�h D ‰.L/BVt:

Denote by B.†/ the set of invertible matrices B such that † D BB0, i.e. B.†/ D
fB 2 GL.n/ j BB0 D †g.28 Thus, B.†/ is the set of all feasible structural
factorizations (models).

Sign restrictions on the impulse responses Œ‰hB�i;j can then be defined in terms
of a sequence of (generalized) sign pattern matrices fShg, h D 0; 1; 2; : : :

Definition 15.2 (Sign Restrictions). A causal VAR allows a sequence of (general-

ized) sign pattern matrices fShg if and only if there exists B 2 B.†/ such that

‰hB 2 S.Sh/; for all h D 0; 1; 2; : : : (15.10)

Remark 15.3. As k‰jBk converges to zero for j ! 1, it seems reasonable to
impose sign restrictions only up to some horizon hmax < 1. In this case, Sh,
h > hmax, is equal to the generalized sign pattern matrix whose elements consist
exclusively of #’s. A case of particular interest is given by hmax D 0. In this case, we
drop the index 0 and say that the VAR allows (generalized) sign pattern matrix S.

Remark 15.4. With this notation we can also represent (short-run) zero restrictions
if the sign patterns are restricted to 0 and #.

A natural question to ask is how restrictive a prescribed sign pattern is. This
amounts to the question whether a given VAR can be compatible with any sign
pattern. As is already clear from the discussion of the two-dimensional case in
Sect. 15.2.3, this is not the case. As the set of feasible parameters can be represented
by a rectangular hyperbola, there will always be one quadrant with no intersection
with the branches of the hyperbola. In the example plotted in Fig. 15.1, this is
quadrant III. Thus, configurations with .B/21 < 0 and .B/12 < 0 are not feasible
given .†/12 > 0. This argument can be easily extended to models of higher
dimensions. Thus, there always exist sign patterns which are incompatible with a
given †.

As pointed out in Sect. 15.3 there always exists a unique lower triangular matrix
R, called the Cholesky factor of †, such that † D RR0. Thus, B.†/ ¤ ; because
R 2 B.†/.

Lemma 15.1. Let the Cholesky factor of † be R, then

B.†/ D fB 2 GL.n/ j 9Q 2 O.n/ W B D RQg:

28GL.n/ is known as the general linear group. It is the set of all invertible n � n matrices.
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Proof. Suppose B D RQ with Q 2 O.n/, then BB0 D RQQ0R0 D †. Thus,
B 2 B.†/. If B 2 B.†/, define Q D R�1B. Then, QQ0 D R�1BB0.R0/�1 D
R�1†.R0/�1 D R�1RR0.R0/�1 D In. Thus, Q 2 O.n/. ut

This lemma establishes that there is a one-to-one function '† from the group
of orthogonal matrices O.n/ onto the set of feasible structural factorizations B.†/.
From the proof we see that '†.Q/ D RQ and '�1

† .B/ D R�1B. Moreover, for
any two matrices B1 and B2 in B.†/ with B1 D RQ1 and B2 D RQ2, there exists
an orthogonal matrix Q equal to Q0

2Q1 such that B1 D B2Q. As '† and '�1
† are

clearly continuous, '† is a homeomorphism. See Neusser (2016) for more details
and further implications.

To make the presentation more transparent, we focus on sign restrictions only and
disregard zero restrictions. Arias et al. (2014) show how sign and zero restrictions
can be treated simultaneously. Thus, the entries of fShg are elements of f�1;C1; #g
only. Assume that a VAR allows sign patterns fShg, h D 0; 1; : : : ; hmax. Then
according to Definition 15.2, there exists B 2 B.†/ such that ‰hB 2 S.Sh/ for all
h D 0; 1; : : : ; hmax. As the (strict) inequality restrictions delineate an open subset of
B 2 B.†/, there exist other nearby matrices which also fulfill the sign restrictions.
Sign restrictions therefore do not identify one impulse response sequence, but a
whole set. Thus, the impulse responses are called set identified.

This set is usually difficult to characterize algebraically so that one has to rely on
computer simulations. Conditional on the estimated VAR, thus conditional on fb‰jg
and b†, Lemma 15.1 suggests a simple and straightforward algorithm (see Rubio-
Ramírez et al. 2010; Arias et al. 2014; for further details):

Step 1: Draw at random an element Q from the uniform distribution on the set of
orthogonal matrices O.n/.

Step 2: Convert Q into a random element of B.b†/ by applying 'b† to Q. As 'b† is
a homeomorphism this introduces a uniform distribution on B.†/.

Step 3: Compute the impulse responses with respect to 'b†.Q/, i.e. compute
b‰h 'b†.Q/.

Step 4: Keep those models with impulse response functions which satisfy the
prescribed sign restrictions b‰h 'b†.Q/ 2 S.Sh/, h D 0; 1; : : : ; hmax.

Step 5: Repeat steps 1–4 until a satisfactory number of feasible structural models
with impulse responses obeying the sign restrictions have been obtained.

The implementation of this algorithm requires a way to generate random draws
Q from the uniform distribution on O.n/.29 This is not a straightforward task
because the elements of Q are interdependent as they must ensure the orthonormality
of the columns of Q. Edelman and Rao (2005) proposes the following efficient

29It can be shown that this probability measure is the unique measure � on O.n/ which satisfies
the normalization �.O.n// D 1 and the (left)-invariance property �.QQ/ D �.Q/ for every
Q � O.n/ and Q 2 O.n/. In economics, this probability measure is often wrongly referred
to as the Haar measure. The Haar measure is not normalized and is, thus, unique only up to a
proportionality factor.
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two-step procedure. First, draw n�n matrices X such that X � N.0; In˝In/, i.e. each
element of X is drawn independently from a standard normal distribution. Second,
perform the QR-decomposition which factorizes each matrix X into the product of
an orthogonal matrix Q and an upper triangular matrix R normalized to have positive
diagonal entries.30

As the impulse responses are only set identified, the way to report the results and
how to conduct inference becomes a matter of discussion. Several methods have
been proposed in the literature:

(i) One straightforward possibility consists in reporting, for each horizon h, the
median of the impulse responses. Although simple to compute, this method
presents some disadvantages. The median responses will not correspond to any
of the structural models. Moreover, the orthogonality of the structural shocks
will be lost. Fry and Pagan (2011) propose the median–target method as an
ad hoc remedy to this shortage. They advocate to search for the admissible
structural model whose impulse responses come closest to the median ones.

(ii) Another possibility is to search for the admissible structural model which
maximizes the share of the forecast error variance at some horizon of a given
variable after a particular shock.31 An early application of this method can be
found in Faust (1998). This method remains, however, uninformative about the
relative explanatory power of alternative admissible structural models.

(iii) The penalty function approach by Mountford and Uhlig (2009) does not
accept or reject particular impulse responses depending on whether it is in
accordance with the sign restrictions (see step 4 in the above algorithm).
Instead, it associates for each possible impulse response function and every
sign restriction a value which rewards a “correct” sign and penalizes a “wrong”
sign. Mountford and Uhlig (2009) propose the following ad hoc penalty
function: f .x/ D 100x if sgn.x/ is wrong and f .x/ D x if sgn.x/ is correct. The
impulse response function which minimizes the total (standardized) penalty is
then reported.

(iv) The exposition becomes more coherent if viewed from a Bayesian perspective.
From this perspective, the uniform distribution on O.n/, respectively on B.b†/,
is interpreted as diffuse or uninformative prior distribution.32 The admissible
structural models which have been retained in step 5 of the algorithm are then
seen as draws from the corresponding posterior distribution. The most likely
model is then given by the model which corresponds to the mode of the poste-
rior distribution. This model is associated an impulse response function which

30Given a value of n, the corresponding MATLAB commands are [Q,R]=qr(randn(n));

Q = Q*diag(sign(diag(R))); (see Edelman and Rao 2005).
31The minimization of the forecast error variance share have also been applied as an identification
device outside the realm of sign restrictions. See Sect. 15.4.2.
32Whether this distribution is always the “natural” choice in economics has recently been disputed
by Baumeister and Hamilton (2015).
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can then be reported. This method also allows the construction of 100.1�˛/-%
highest posterior density credible sets (see Inoue and Kilian 2013; for details).
As shown by Moon and Schorfheide (2012) these sets cannot, even in a large
sample context, be interpreted as approximate frequentist confidence intervals.
Recently, however, Moon et al. (2013) proposed a frequentist approach to the
construction of error bands for sign identified impulse responses.
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As already mentioned in Chap. 7, many raw economic time series are nonstationary
and become stationary only after some transformation. The most common of these
transformations is the formation of differences, perhaps after having taken logs. In
most cases first differences are sufficient to achieve stationarity. The stationarized
series can then be analyzed in the context of VAR models as explained in the
previous chapters. However, many economic theories are formalized in terms of
the original series so that we may want to use the VAR methodology to infer also
the behavior of the untransformed series. Yet, by taking first differences we loose
probably important information on the levels. Thus, it seems worthwhile to develop
an approach which allows us to take the information on the levels into account and at
the same time take care of the nonstationary character of the variables. The concept
of cointegration tries to achieve this double requirement.

In the following we will focus our analysis on variables which are integrated
of order one, i.e. on time series which become stationary after having taken first
differences. However, as we have already mentioned in Sect. 7.5.1, a regression
between integrated variables may lead to spurious correlations which make statisti-
cal inferences and interpretations of the estimated coefficients a delicate issue (see
Sect. 7.5.3). A way out of this dilemma is presented by the theory of cointegrated

processes. Loosely speaking, a multivariate process is cointegrated if there exists
a linear combination of the processes which is stationary although each process
taken individually may be integrated. In many cases, this linear combination can be
directly related to economic theory which has made the analysis of cointegrated
processes an important research topic. In the bivariate case, already been dealt
with in Sect. 7.5.2, the cointegrating relation can be immediately read off from the
cointegrating regression and the cointegration test boils down to a unit root test for
the residuals of the cointegrating regression. However, if more than two variables
are involved, the single equation residual based test is, as explained in Sect. 7.5.2,
no longer satisfactory. Thus, a genuine multivariate is desirable.

© Springer International Publishing Switzerland 2016
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The concept of cointegration goes back to the work of Engle and Granger
(1987) which is itself based on the precursor study of Davidson et al. (1978). In
the meantime the literature has grown tremendously. Good introductions can be
found in Banerjee et al. (1993), Watson (1994) or Lütkepohl (2006). For the more
statistically inclined reader Johansen (1995) is a good reference.

16.1 A Theoretical Example

Before we present the general theory of cointegration within the VAR context, it is
instructive to introduce the concept in the well-known class of present discounted
value models. These models relate some variable Xt to present discounted value of
another variable Yt:

Xt D 
.1� ˇ/

1X

jD0
ˇj
PtYtCj C ut; 0 < ˇ < 1;

where ut � WN.0; �2u / designates a preference shock. Thereby, ˇ denotes the
subjective discount factor and 
 is some unspecified parameter. The present
discounted value model states that the variable Xt is proportional to the sum of
future YtCj, j D 0; 1; 2; : : :, discounted by the factor ˇ. We can interpret Xt and Yt

as the price and the dividend of a share, as the interest rate on long- and short-term
bonds, or as consumption and income. In order to operationalize this model, we
will assume that forecasts are computed as linear mean-squared error forecasts. The
corresponding forecast operator is denoted by Pt. Furthermore, we will assume that
the forecaster observes Yt and its past Yt�1;Yt�2; : : : The goal of the analysis is the
investigation of the properties of the bivariate process f.Xt;Yt/

0g. The analysis of this
important class models presented below is based on Campbell and Shiller (1987).1

The model is closed by assuming some specific time series model for fYtg. In
this example, we will assume that fYtg is an integrated process of order one (see
Definition 7.1 in Sect. 7.1) such that f�Ytg follows an AR(1) process:

�Yt D �.1 � �/C ��Yt�1 C vt; j�j < 1 and vt � WN.0; �2v /:

This specification of the fYtg process implies that Pt�YtCh D �.1 � �h/C �h�Yt.
Because PtYtCh D Pt�YtCh C : : : C Pt�YtC1 C Yt, h D 0; 1; 2; : : :, the present
discounted value model can be manipulated to give:

1A more recent interesting application of this model is given by the work of Beaudry and Portier
(2006).
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Xt D 
.1� ˇ/
�
Yt C ˇPtYtC1 C ˇ2PtYtC2 C : : :

�
C ut

D 
.1� ˇ/Œ Yt

C ˇ Yt C ˇ Pt�YtC1

C ˇ2Yt C ˇ2Pt�YtC1 C ˇ2Pt�YtC2

C ˇ3Yt C ˇ3Pt�YtC1 C ˇ3Pt�YtC2 C ˇ3Pt�YtC3

C : : :�C ut

D 
.1� ˇ/

�
1

1 � ˇ
Yt C ˇ

1 � ˇPt�YtC1 C ˇ2

1 � ˇ
Pt�YtC2 C : : :

�
C ut

This expression shows that the integratedness of fYtg is transferred to fXtg. Bringing
Yt to the left we get the following expression:

St D Xt � 
Yt D 


1X

jD1
ˇj
Pt�YtCj C ut:

The variable St is occasionally referred to as the spread. If 
 is greater than zero,
expected increases in �YtCj, j � 1, have a positive impact on the spread today.
For 
 D 1, St can denote the log of the price-dividend ratio of a share, or minus
the logged savings ratio as in the permanent income model of Campbell (1987). If
investors expect positive (negative) change in the dividends tomorrow, they want to
buy (sell) the share thereby increasing (decreasing) its price already today. In the
context of the permanent income hypothesis expected positive income changes lead
to a reduction in today’s saving rate. If, on the contrary, households expect negative
income changes to occur in the future, they will save already today (“saving for the
rainy days”).

Inserting for Pt�YtCj, j D 0; 1; : : :, the corresponding forecast equation
Pt�YtCh D �.1� �h/C �h�Yt, we get:

St D ˇ
�.1 � �/

.1 � ˇ/.1 � ˇ�/ C ˇ
�

1 � ˇ��Yt C ut:

The remarkable feature about this relation is that fStg is a stationary process because
both f�Ytg and futg are stationary, despite the fact that fYtg and fXtg are both
integrated processes of order one. The mean of St is:

ESt D ˇ
�

1 � ˇ
:

From the relation between St and �Yt and the AR(1) representation of f�Ytg we
can deduce a VAR representation of the joint process f.St; �Yt/

0g:
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�
St

�Yt

�
D �.1 � �/

 
ˇ


.1�ˇ/.1�ˇ�/ C ˇ
�

1�ˇ�
1

!
C
 
0

ˇ
�2

1�ˇ�
0 �

!�
St�1
�Yt�1

�

C
 

ut C ˇ
�

1�ˇ� vt

vt

!
:

Further algebraic transformation lead to a VAR representation of order two for the
level variables f.Xt;Yt/

0g:

�
Xt

Yt

�
D c Cˆ1

�
Xt�1
Yt�1

�
Cˆ2

�
Xt�2
Yt�2

�
C Zt

D �.1 � �/

 



.1�ˇ/.1�ˇ�/
1

!
C
 
0 
 C 
�

1�ˇ�
0 1C �

!�
Xt�1
Yt�1

�

C
 
0

�
�
1�ˇ�

0 ��

!�
Xt�2
Yt�2

�
C
 
1




1�ˇ�
0 1

!�
ut

vt

�

Next we want to check whether this stochastic difference equation possesses a
stationary solution. For this purpose, we must locate the roots of the equation
detˆ.z/ D det.I2 �ˆ1z �ˆ2z2/ D 0 (see Theorem 12.1). As

detˆ.z/ D det

 
1
�
�
 � 
�

1�ˇ�

�
z C 
�

1�ˇ� z2

0 1 � .1C �/z C �z2

!
D 1 � .1C �/z C �z2;

the roots are z1 D 1=� and z2 D 1. Thus, only the root z1 lies outside the unit circle
whereas the root z2 lies on the unit circle. The existence of a unit root precludes
the existence of a stationary solution. Note that we have just one unit root, although
each of the two processes taken by themselves are integrated of order one.

The above VAR representation can be further transformed to yield a representa-
tion of process in first differences f.�Xt; �Yt/

0g:

�
�Xt

�Yt

�
D �.1 � �/

 



.1�ˇ/.1�ˇ�/
1

!
�
�
1 �

0 0

��
Xt�1
Yt�1

�

C
 
0


�

1�ˇ�
0 �

!�
�Xt�1
�Yt�1

�
C
 
1




1�ˇ�
0 1

!�
ut

vt

�
:

This representation can be considered as a generalization of the Dickey-Fuller
regression in first difference form (see Eq. (7.1)). In the multivariate case, it is
known as the vector error correction model (VECM) or vector error correction
representation. In this representation the matrix
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… D �ˆ.1/ D
�

�1 

0 0

�

is of special importance. This matrix is singular and of rank one. This is not
an implication which is special to this specification of the present discounted
value model, but arises generally as shown in Campbell (1987) and Campbell and
Shiller (1987). In the VECM representation all variables except .Xt�1;Yt�1/0 are
stationary by construction. This implies that �….Xt�1;Yt�1/0 must be stationary
too, despite the fact that f.Xt;Yt/

0g is not stationary as shown above. Multiplying
�….Xt�1;Yt�1/0 out, one obtains two linear combinations which define stationary
processes. However, as … has only rank one, there is just one linearly independent
combination. The first one is Xt�1 � 
Yt�1 and equals St�1 which was already
shown to be stationary. The second one is degenerate because it yields zero. The
phenomenon is called cointegration.

Because … has rank one, it can be written as the product of two vectors ˛ and ˇ:

… D ˛ˇ0 D
�

�1
0

��
1

�


�0
:

Clearly, this decomposition of … is not unique because Q̨ D a˛ and Q̌ D a�1ˇ,
a ¤ 0, would also qualify for such a decomposition as … D Q̨ Q̌0. The vector
ˇ is called a cointegration vector. It has the property that fˇ0.Xt;Yt/

0g defines a
stationary process despite the fact that f.Xt;Yt/

0g is non-stationary. The cointegration
vector thus defines a linear combination of Xt and Yt which is stationary. The matrix
˛, here only a vector, is called the loading matrix and its elements the loading

coefficients.
The VAR and the VECM representations are both well suited for estimation.

However, if we want to compute the impulse responses, we need a causal represen-
tation. Such a causal representation does not exist due to the unit root in the VAR
process for f.Xt;Yt/

0g (see Theorem 12.1). To circumvent this problem we split the
matrix ˆ.z/ into the product of two matrices M.z/ and V.z/. M.z/ is a diagonal
matrix which encompasses all unit roots on its diagonal. V.z/ has all its roots outside
the unit circle so that V�1.z/ exists for jzj < 1. In our example, we get:

ˆ.z/ D M.z/V.z/

D
�
1 0

0 1 � z

� 
1
�
�
 � 
�

1�ˇ�

�
z C 
�

1�ˇ� z2

0 1 � �z

!
:

Multiplyingˆ.z/ with eM.z/ D
�
1 � z 0

0 1

�
from the left, we find:

eM.z/ˆ.z/ D eM.z/M.z/V.z/ D .1 � z/I2V.z/ D .1 � z/V.z/:
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The application of this result to the VAR representation of f.Xt;Yt/g leads to a causal
representation of f.�Xt; �Yt/g:

ˆ.L/

�
Xt

Yt

�
D M.L/V.L/

�
Xt

Yt

�
D c C Zt

eM.L/ˆ.L/
�

Xt

Yt

�
D .1 � L/V.L/

�
Xt

Yt

�

D �.1 � �/

�
1� L 0
0 1

� 


.1�ˇ/.1�ˇ�/
1

!
C
�
1 � L 0
0 1

�
Zt

V.L/

�
�Xt

�Yt

�
D
�

0

�.1 � �/

�
C
�
1 � L 0
0 1

�
Zt

�
�Xt

�Yt

�
D �

�



1

�
C V�1.L/

�
1 � L 0
0 1

�
Zt

�
�Xt

�Yt

�
D �

�



1

�
C‰.L/Zt:

The polynomial matrix ‰.L/ can be recovered by the method of undetermined
coefficients from the relation between V.L/ and ‰.L/:

V.L/‰.L/ D
�
1 � L 0
0 1

�

In this exposition, we abstain from the explicit computation of V�1.L/ and ‰.L/.
However, the following relation holds:

V.1/ D
�
1 �

0 1 � �

�
H) V�1.1/ D

 
1




1��
0 1
1��

!
:

Implying that

‰.1/ D V�1.1/

�
0 0

0 1

�
D .1 � �/�1

�
0 


0 1

�
:

The cointegration vector ˇ D .1;�
/0 and loading matrix ˛ D .�1; 0/0 therefore
have the following properties:

ˇ0‰.1/ D
�
0 0
�

and ‰.1/˛ D
�
0

0

�
:
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Like in the univariate case (see Theorem 7.1 in Sect. 7.1.4), we can also construct
the Beveridge-Nelson decomposition in the multivariate case. For this purpose, we
decompose‰.L/ as follows:

‰.L/ D ‰.1/C .L � 1/e‰.L/

with e‰j D
P1

iDjC1‰i. This result can be used to derive the multivariate Beveridge-
Nelson decomposition (see Theorem 16.1 in Sect. 16.2.3):

�
Xt

Yt

�
D
�

X0

Y0

�
C �

�



1

�
t C‰.1/

tX

jD1
Zj C stationary process

D
�

X0

Y0

�
C �

�



1

�
t C 1

1� �

�
0 


0 1

� 
1




1�ˇ�
0 1

!
tX

jD1

�
uj

vj

�

C stationary process

D
�

X0

Y0

�
C �

�



1

�
t C 1

1� �

�
0 


0 1

� tX

jD1

�
uj

vj

�

C stationary process: (16.1)

The Beveridge-Nelson decomposition represents the bivariate integrated process
f.Xt;Yt/

0g as a sum of three components: a linear trend, a multivariate random walk
and a stationary process. Multiplying the Beveridge-Nelson decomposition from
the left by the cointegration vector ˇ D .1;�
/0, we see that both the trend and
the random walk component are eliminated and that only the stationary component
remains.

Because the first column of ‰.1/ consists of zeros, only the second structural
shock, namely fvtg, will have a long-run (permanent) effect. The long-run effect is

=.1 � �/ for the first variable, Xt, and 1=.1 � �/ for the second variable, Yt. The
first structural shock (preference shock) futg has non long-run effect, its impact is of
a transitory nature only. This decomposition into permanent and transitory shocks
is not typical for this model, but can be done in general as part of the so-called
common trend representation (see Sect. 16.2.4).

Finally, we will simulate the reaction of the system to a unit valued shock in vt.
Although this shock only has a temporary influence on�Yt, it will have a permanent
effect on the level Yt. Taking � D 0:8, we get long-run effect (persistence) of
1=.1� �/ D 5 as explained in Sect. 7.1.3. The present discounted value model then
implies that this shock will also have a permanent effect on Xt too. Setting 
 D 1,
this long-run effect is given by 
.1�ˇ/

P1
jD0 ˇ

j.1��/�1 D 
=.1��/ D 5. Because
this long-run effect is anticipated in period t, the period of the occurrence of the
shock, Xt will increase by more than one. The spread turns, therefore, into positive.
The error correction mechanism will then dampen the effect on future changes of Xt
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Fig. 16.1 Impulse response functions of the present discounted value model after a unit shock to
Yt (
 D 1; ˇ D 0:9; � D 0:8)

so that the spread will return steadily to zero. The corresponding impulse responses
of both variables are displayed in Fig. 16.1.

Figure 16.2 displays the trajectories of both variables after a stochastic simulation
where both shocks futg and fvtg are drawn from a standard normal distribution.
One can clearly discern the non-stationary character of both series. However, as
it is typically for cointegrated series, they move more or less in parallel to each
other. This parallel movement is ensured by the error correction mechanism. The
difference between both series which is equal to the spread under this parameter
constellation is mean reverting around zero.

16.2 Definition and Representation of Cointegrated Processes

16.2.1 Definition

We now want to make the concepts introduced earlier more precise and give a
general definition of cointegrated processes and derive the different representations
we have seen in the previous section. Given an arbitrary regular (purely non-
deterministic) stationary process fUtgt2Z of dimension n, n � 1, with mean zero
and some distribution for the starting random variable X0, we can define recursively
a process fXtg, t D 0; 1; 2; : : : as follows:

Xt D �C Xt�1 C Ut; t D 1; 2; : : :
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Fig. 16.2 Stochastic simulation of the present discounted value model under standard normally
distributed shocks (
 D 1; ˇ D 0:9; � D 0:8)

Thereby, � denotes an arbitrary constant vector of dimension n. If Ut � WN.0;†/,
then fXtg is a multivariate random walk with drift �. In general, however, fUtg is
autocorrelated and possesses a Wold representation Ut D ‰.L/Zt (see Sect. 14.1.1)
such that

�Xt D �C Ut D �C‰.L/Zt D �C Zt C‰1Zt�1 C‰2Zt�2 C : : : ; (16.2)

where Zt � WN.0;†/ and
P1

jD0 k‰jk2 < 1 with ‰0 D In. We now introduce the
following definitions.

Definition 16.1. A regular stationary process fUtg with mean zero is integrated of

order zero, I.0/, if and only if it can be represented as

Ut D ‰.L/Zt D Zt C‰1Zt�1 C‰2Zt�2 C : : :

such that Zt � WN.0;†/,
P1

jD0 jk‰jk < 1, and ‰.1/ D
P1

jD0‰j ¤ 0.

Definition 16.2. A stochastic process fXtg is integrated of order d, I.d/, d D 0;

1; 2; : : :, if and only if �d.Xt � E.Xt// is integrated of order zero.

In the following we concentrate on I(1) processes. The definition of an I(1)
process implies that fXtg equals Xt D X0 C �t C

Pt
jD1 Uj and is thus non-

stationary even if � D 0. The condition ‰.1/ ¤ 0 corresponds to the one in the
univariate case (compare Definition 7.1 in Sect. 7.1). On the one hand, it precludes
the case that a trend-stationary process is classified as an integrated process. On the
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other hand, it implies that fXtg is in fact non-stationary. Indeed, if the condition is
violated so that ‰.1/ D 0, we could express ‰.L/ as .1 � L/e‰.L/. Thus we could
cancel 1 � L on both sides of Eq. (16.2) to obtain a stationary representation of
fXtg, given some initial distribution for X0. This would then contradict our primal
assumption that fXtg is non-stationary. The condition

P1
jD0 jk‰jk < 1 is stronger

than
P1

jD0 k‰jk2 < 1 which follows from the Wold’s Theorem. It guarantees the

existence of the Beveridge-Nelson decomposition (see Theorem 16.1 below).2 In
particular, the condition is fulfilled if fUtg is a causal ARMA process which is the
prototypical case.

Like in the univariate case, we can decompose an I(1) process additively into
several components.

Theorem 16.1 (Beveridge-Nelson Decomposition). If fXtg is an integrated process

of order one, it can be decomposed as

Xt D X0 C �t C‰.1/

tX

jD1
Zj C Vt;

where Vt D e‰.L/Z0 � e‰.L/Zt with e‰j D
P1

iDjC1‰i, j D 0; 1; 2; : : : and fVtg
stationary.

Proof. Following the proof of the univariate case (see Sect. 7.1.4):

‰.L/ D ‰.1/C .L � 1/e‰.L/

with e‰j D
P1

iDjC1‰i. Thus,

Xt D X0 C �t C
tX

jD1
Uj D X0 C �t C

tX

jD1
‰.L/Zj

D X0 C �t C
tX

jD1

�
‰.1/C .L � 1/e‰.L/

�
Zj

D X0 C �t C‰.1/

tX

jD1
Zj C

tX

jD1
.L � 1/e‰.L/Zj

D X0 C �t C‰.1/

tX

jD1
Zj C e‰.L/Z0 � e‰.L/Zt:

The only point left is to show that e‰.L/Z0 � e‰.L/Zt is stationary. Based
on Theorem 10.2, it is sufficient to show that the coefficient matrices are

2This condition could be relaxed and replaced by the condition
P1

jD0 j2k‰jk2 < 1. In addition,
this condition is an important assumption for the application of the law of large numbers and for
the derivation of the asymptotic distribution (Phillips and Solo 1992).
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absolutely summable. This can be derived by applying the triangular inequality
and the condition for integrated processes:

1X

jD0
ke‰jk D

1X

jD0









1X

iDjC1
‰i








�

1X

jD0

1X

iDjC1
k‰ik D

1X

jD1
jk‰jk < 1:

ut

The process fXtg can therefore be viewed as the sum of a linear trend,
X0 C �t, with stochastic intercept, a multivariate random walk, ‰.1/

Pt
jD0 Zt,

and a stationary process fVtg. Based on this representation, we can then define the
notion of cointegration (Engle and Granger 1987).

Definition 16.3 (Cointegration). A multivariate stochastic process fXtg is called

cointegrated if fXtg is integrated of order one and if there exists a vector ˇ 2 Rn,

ˇ ¤ 0, such that fˇ0Xtg, is integrated of order zero, given a corresponding

distribution for the initial random variable X0. ˇ is called the cointegrating or

cointegration vector. The cointegrating rank is the maximal number, r, of linearly

independent cointegrating vectors ˇ1; : : : ; ˇr . These vectors span a linear space

called the cointegration space.

The Beveridge-Nelson decomposition implies that ˇ is a cointegrating vector
if and only if ˇ0‰.1/ D 0. In this case the random walk component

Pt
jD1 Zj is

annihilated and only the deterministic and the stationary component remain.3 For
some issues it is of interest whether the cointegration vector ˇ also eliminates the
trend component. This would be the case if ˇ0� D 0. See Sect. 16.3 for details.

The cointegration vectors are determined only up to some basis transformations.
If ˇ1; : : : ; ˇr is a basis for the cointegration space then .ˇ1; : : : ; ˇr/R is also a
basis for the cointegration space for any nonsingular r � r matrix R because
..ˇ1; : : : ; ˇr/R/

0‰.1/ D 0.

16.2.2 Vector Autoregressive (VAR) and Vector Error
Correction Models (VECM)

Although the Beveridge-Nelson decomposition is very useful from a theoretical
point of view, in practice it is often more convenient to work with alternative
representations. Most empirical investigations of integrated processes start from a
VAR(p) model which has the big advantage that it can be easily estimated:

Xt D c Cˆ1Xt�1 C : : :CˆpXt�p C Zt; Zt � WN.0;†/ (16.3)

where ˆ.L/ D In � ˆ1L � : : : � ˆpLp and c is an arbitrary constant. Subtracting
Xt�1 on both sides of the difference equation, the VAR model can be rewritten as:

3The distribution of X0 is thereby chosen such that ˇ0X0 D ˇ0e‰.L/Z0 .
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�Xt D c C…Xt�1 C �1�Xt�1 C : : :C �p�1�Xt�pC1 C Zt (16.4)

where… D �ˆ.1/ D �In Cˆ1 C : : : ˆp and �i D �
Pp

jDiC1ˆj. We will make the
following assumptions:

(i) All roots of the polynomial detˆ.z/ are outside the unit circle or equal to one,
i.e.

detˆ.z/ D 0 H)
�

jzj > 1 or
z D 1;

(ii) The matrix… is singular with rank r, 1 � r < n.
(iii) Rank.…/ D Rank.…2/.

Assumption (i) makes sure that fXtg is an integrated process with order of integration
d � 1. Moreover, it precludes other roots on the unit circles than one. The
case of seasonal unit roots is treated in Hylleberg et al. (1990) and Johansen and
Schaumburg (1998).4 Assumption (ii) implies that there exists at least n � r unit
roots and two n � r matrices ˛ and ˇ with full column rank r such that

… D ˛ˇ0:

The columns of ˇ thereby represent the cointegration vectors whereas ˛ denotes
the so-called loading matrix. The decomposition of … in the product of ˛ and ˇ0

is not unique. For every non-singular r � r matrix R we can generate an alternative
decomposition … D ˛ˇ0 D .˛R0�1/.ˇR/0. Finally, assumption (iii) implies that
the order of integration is exactly one and not greater. The number of unit roots is
therefore exactly n � r.5 This has the implication that ˆ.z/ can be written as

ˆ.z/ D U.z/M.z/V.z/

where the roots of the matrix polynomials U.z/ and V.z/ are all outside the unit
circle and where M.z/ equals

M.z/ D
�
.1 � z/In�r 0

0 Ir

�
:

This representation ofˆ.z/ is a special form of the Smith-McMillan factorization of
polynomial matrices (see Kailath (1980) and Yoo (1987)). This factorization isolates
the unit roots in one simple matrix so that the system can be analyzed more easily.

4The seasonal unit roots are the roots of zs � 1 D 0 where s denotes the number of seasons. These
roots can be expressed as cos.2k�=s/ C � sin.2k�=s/, k D 0; 1; : : : ; s � 1.
5For details see Johansen (1995), Neusser (2000) and Bauer and Wagner (2003).
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These assumptions will allow us to derive from the VAR(p) model several repre-
sentations where each of them brings with it a particular interpretation. Replacing…
by ˛ˇ0 in Eq. (16.4), we obtain the vector error correction representation or vector

error correction model (VECM):

�Xt D c C ˛ˇ0Xt�1 C �1�Xt�1 C : : :C �p�1�Xt�pC1 C Zt: (16.5)

Multiplying both sides of the equation by .˛0˛/�1˛0 and solving for ˇ0Xt�1, we get:

ˇ0Xt�1 D .˛0˛/�1˛0

0
@�Xt � c �

p�1X

jD1
�j�Xt�j � Zt

1
A :

˛ has full column rank r so that ˛0˛ is a non-singular r � r matrix. As the right hand
side of the equation represents a stationary process, also the left hand side must be
stationary. This means that the r-dimensional process fˇ0Xt�1g is stationary despite
the fact that fXtg is integrated and has potentially a unit root with multiplicity n.

The term error correction was coined by Davidson et al. (1978). They interpret
the mean of ˇ0Xt, �� D Eˇ0Xt, as the long-run equilibrium or steady state around
which the system fluctuates. The deviation from equilibrium (error) is therefore
given by ˇ0Xt�1���. The coefficients of the loading matrix ˛ should then guarantee
that deviations from the equilibrium are corrected over time by appropriate changes
(corrections) in Xt.

An Illustration
To illustrate the concept of the error correction model, we consider the following
simple system with ˛ D .˛1; ˛2/

0, ˛1 ¤ ˛2, and ˇ D .1;�1/0. For simplicity,
we assume that the long-run equilibrium �� is zero. Ignoring higher order lags, we
consider the system:

�X1t D ˛1.X1;t�1 � X2;t�1/C Z1t

�X2t D ˛2.X1;t�1 � X2;t�1/C Z2t:

The autoregressive polynomial of this system is:

ˆ.z/ D
�
1 � .1C ˛1/z ˛1z

�˛2z 1 � .1 � ˛2/z

�
:

The determinant of this polynomial is detˆ.z/ D 1 � .2 C ˛1 � ˛2/z C .1 C
˛1 � ˛2/z

2 with roots equal to z D 1 and z D 1=.1 C ˛1 � ˛2/. This shows that

assumption (i) is fulfilled. As … D
�
˛1 �˛1
˛2 �˛2

�
, the rank of … equals one which

implies assumption (ii). Finally,
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…2 D
�
˛21 � ˛1˛2 �˛21 C ˛1˛2

�˛22 C ˛1˛2 ˛22 � ˛1˛2

�
:

Thus, the rank of …2 is also one because ˛1 ¤ ˛2. Hence, assumption (iii) is also
fulfilled.

We can gain an additional insight into the system by subtracting the second
equation from the first one to obtain:

X1t � X2t D .1C ˛1 � ˛2/.X1;t�1 � X2;t�1/C Z1t � Z2t:

The process ˇ0Xt D X1t � X2t is stationary and causal with respect to Z1t � Z2t if and
only if j1 C ˛1 � ˛2j < 1, or equivalently if and only if �2 < ˛1 � ˛2 < 0. Note
the importance of the assumption that ˛1 ¤ ˛2. It prevents that X1t � X2t becomes a
random walk and thus a non-stationary (integrated) process. A sufficient condition
is that �1 < ˛1 < 0 and 0 < ˛2 < 1 which imply that a positive (negative) error,
i.e. X1;t�1 � X2;t�1 > 0.< 0/, is corrected by a negative (positive) change in X1t and
a positive (negative) change in X2t. Although the shocks Z1t and Z2t push X1t � X2t

time and again away from its long-run equilibrium, the error correction mechanism
ensures that the variables are adjusted in such a way that the system moves back to
its long-run equilibrium.

16.2.3 The Beveridge-Nelson Decomposition

We next want to derive from the VAR representation a causal representation or
MA.1/ representation for f�Xtg. In contrast to a normal causal VAR model,
the presence of unit roots precludes the simple application of the method of
undetermined coefficients, but requires an additional effort. Multiplying the VAR
representation in Eq. (16.3), ˆ.L/Xt D U.L/M.L/V.L/Xt D c C Zt, from the left
by U�1.L/ we obtain:

M.L/V.L/Xt D U�1.1/c C U�1.L/Zt:

Multiplying this equation by eM.L/ D
�

In�r 0

0 .1 � L/Ir

�
leads to:

V.L/�Xt D eM.1/U�1.1/c C eM.L/U�1.L/Zt

which finally leads to

�Xt D V�1.1/eM.1/U�1.1/c C V�1.L/eM.L/U�1.L/Zt

D �C‰.L/Zt:

This is the MA.1/ representation of f�Xtg and corresponds to Eq. (16.2).
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Because … D �ˆ.1/ D �U.1/M.1/V.1/, the following relation holds for the
partitioned matrices:

ˆ.1/ D
�

U11.1/ U12.1/

U21.1/ U22.1/

��
0 0

0 Ir

��
V11.1/ V12.1/

V21.1/ V22.1/

�
D
�

U12.1/

U22.1/

��
V21.1/ V22.1/

�
:

This implies that we can define ˛ and ˇ as

˛ D �
�

U12.1/

U22.1/

�
and ˇ D

�
V21.1/

0

V22.1/
0

�
:

U.1/ and V.1/ are non-singular so that ˛ and ˇ have full column rank r. Based on
this derivation we can formulate the following lemma.

Lemma 16.1. The columns of the so-defined matrix ˇ are the cointegration vectors

for the process fXtg. The corresponding matrix of loading coefficients is ˛ which

fulfills ‰.1/˛ D 0.

Proof. We must show that ˇ0‰.1/ D 0 which is the defining property of cointe-
gration vectors. Denoting by .V.ij/.1//i;jD1;2 the appropriately partitioned matrix of
V.1/�1, we obtain:

ˇ0‰.1/ D ˇ0
�

V.11/.1/ V.12/.1/

V.21/.1/ V.22/.1/

��
In�r 0

0 0

�
U�1.1/

D
�
V21.1/ V22.1/

� �V.11/.1/ 0

V.21/.1/ 0

�
U�1.1/

D
�

V21.1/V
.11/.1/C V22.1/V

.21/.1/
::: 0

�
U�1.1/ D 0n

where the last equality is a consequence of the property of the inverse matrix.
With the same arguments, we can show that ‰.1/˛ D 0. ut

The equivalence between the VEC and the MA representation is known as
Granger’s representation theorem in the literature. Granger’s representation theorem
immediately implies the Beveridge-Nelson decomposition:

Xt D X0 C‰.1/c t C‰.1/

tX

jD1
Zj C Vt (16.6)

D X0 C V�1.1/eM.1/U�1.1/c t C V�1.1/eM.1/U�1.1/
tX

jD1
Zj C Vt (16.7)

where the stochastic process fVtg is stationary and defined as Vt D e‰.L/Z0 �
e‰.L/Zt with e‰j D

P1
iDjC1‰i and ‰.L/ D V�1.L/eM.L/U�1.L/. As ˇ0‰.1/ D

ˇ0V�1.1/eM.1/U�1.1/ D 0, ˇ eliminates the stochastic trend (random walk),Pt
jD1 Zt, as well as the deterministic linear trend �t D V�1.1/eM.1/U�1.1/c t.
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An interesting special case is obtained when the constant c is a linear combination
of the columns of ˛, i.e. if there exists a vector g such that c D ˛g. Under this
circumstance, ‰.1/c D ‰.1/˛g D 0 and the linear trend vanishes and we have
E�Xt D 0. In this case, the data will exhibit no trend although the VAR model
contains a constant. A similar consideration can be made if the VAR model is
specified to contain a constant and a linear time trend d t. The Beveridge-Nelson
decomposition would then imply that the data should follow a quadratic trend.
However, in the special case that d is a linear combination of the columns of ˛,
the quadratic trend disappears and only the linear remains because of the constant.

16.2.4 Common Trend and Triangular Representation

The ‰.1/ in the Beveridge-Nelson decomposition is singular. This implies that the
multivariate random walk‰.1/

P1
jD1 Zj does not consist of n independent univariate

random walks. Instead only n � r independent random walks make up the stochastic
trend so that fXtg is driven by n� r stochastic trends. In order to emphasize this fact,
we derive from the Beveridge-Nelson decomposition the so-called common trend

representation (Stock and Watson 1988a).
As‰.1/ has rank n�r, there exists a n�r matrix 
 such that‰.1/
 D 0. Denote

by 
? the n � .n � r/matrix whose columns are orthogonal to 
 , i.e. 
 0
? D 0. The
Beveridge-Nelson decomposition can then be rewritten as:

Xt D X0 C‰.1/
�

? ::: 


� �

? ::: 


��1
c t

C‰.1/
�

? ::: 


� �

? ::: 


��1 tX

jD1
Zj C Vt

D X0 C
�
‰.1/
? ::: 0

� �

? ::: 


��1
c t

C
�
‰.1/
? ::: 0

� �

? ::: 


��1 tX

jD1
Zj C Vt

D X0 C
�
‰.1/
? ::: 0

�
Qc t C

�
‰.1/
? ::: 0

� tX

jD1

eZj C Vt

where Qc D
�

? ::: 


��1
c and eZj D

�

? ::: 


��1
Zj. Therefore, only the first

n � r elements of the vector Qc are relevant for the deterministic linear trend. The
remaining elements are multiplied by zero and are thus irrelevant. Similarly, for
the multivariate random walk only the first n � r elements of the process feZtg are
responsible for the stochastic trend. The remaining elements of eZt are multiplied
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by zero and thus have no permanent, but only a transitory influence. The above
representation decomposes the shocks orthogonally into permanent and transitory

ones (Gonzalo and Ng 2001). The previous lemma shows that one can choose for 

the matrix of loading coefficients ˛.

Summarizing the first n � r elements of Qc andeZt to Qc1 andeZ1t, respectively, we
arrive at the common trend representation:

Xt D X0 C BQc1 t C B

tX

jD1

eZ1j C Vt

where the n � .n � r/ matrix B is equal to ‰.1/
?.
Applying these results to our introductory example, we arrive at

B D 1

1 � �

�



1

�
; Qc D �.1 � �/; and eZ1t D ut:

This again demonstrates that the trend, the linear as well as the stochastic trend,
are exclusively stemming from the nonstationary variables fYtg (compare with
Eq. (16.1)).

Finally, we want to present a triangular representation which is well suited to
deal with the nonparametric estimation approach advocated by Phillips (1991) and
Phillips and Hansen (1990) (see Sect. 16.4). In this representation we normalize
the cointegration vector such ˇ D .Ir;�b0/0. In addition, we partition the vector Xt

into X1t and X2t such that X1t contains the first r and X2t the last n � r elements.
Xt D .X0

1t;X2t/
0 can then be expressed as:

X1t D b0X2t C �1Dt C u1t (16.8a)

�X2t D �2�Dt C u2t (16.8b)

where Dt summarizes the deterministic components such as constant and linear
time trend. fu1tg and fu2tg denote potentially autocorrelated and cross-correlated
stationary time series.

16.3 Johansen’s Test for Cointegration

In Sect. 7.5.2 we have already discussed a regression based test for cointegration
among two variables. It was based on a unit root of the residuals from a bivari-
ate regression of one variable against the other. In this regression, it turned out to
be irrelevant which of the two variables was chosen as the regressor and which
one as the regressand. This method can, in principle, be extended to more than
two variables. However, with more than two variables, the choice of the regressand
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becomes more crucial as not all variables may be part of the cointegrating relation.
Moreover, more than one independent cointegrating relation may exist. For these
reasons, it is advantageous to use a method which treats all variables symmetrically.
The cointegration test developed by Johansen fulfills this criterion because it is
based on a VAR which does not single out a particular variable. This test has
received wide recognition and is most often used in practice. The test serves two
purposes. First, we want to determine the number r of cointegrating relationships.
Second, we want to test properties of the cointegration vector ˇ and the loading
matrix ˛.

The exposition of the Johansen test follows closely the work of Johansen where
the derivations and additional details can be found (Johansen 1988, 1991, 1995). We
start with a VAR(p) model with constant c in VEC form (see Eq. (16.4)):

�Xt D c C…Xt�1 C �1�Xt�1 C : : :C �p�1�Xt�pC1 C Zt;

t D 1; 2; : : : ;T (16.9)

where Zt � IIDN.0;†/ and given starting values X0 D x0; : : : ; X�pC1 D x�pC1.
The problem can be simplified by regressing �Xt as well as Xt�1 against
c; �Xt�1; : : : ; �Xt�pC1 and working with the residuals from these regressions.6

This simplification results in a VAR model of order one. We therefore start our
analysis without loss of generality with a VAR(1) model without constant term:

�Xt D …Xt�1 C Zt

where Zt � IIDN.0;†/.7

The phenomenon of cointegration manifests itself in the singularity of the
matrix…. In particular, we want to determine the rank of… which gives the number
of linearly independent cointegrating relationships. Denoting by r, the rank of …,
0 � r � n, , we can formulate a sequence of hypotheses:

H.r/ W rank.…/ � r; r D 0; 1; : : : ; n:

Hypothesis H.r/, thus, implies that there exists at most r linearly independent
cointegrating vectors. The sequence of hypotheses is nested in the sense that H.r/
implies H.r C 1/:

H.0/ � H.1/ � : : : � H.n/:

The hypothesis H.0/ means that rank.…/ D 0. In this case, … D 0 and there are
no cointegration vectors. fXtg is thus driven by n independent random walks and

6If the VAR model (16.9) contains further deterministic components besides the constant, these
components have to be accounted for in these regressions.
7This two-stage least-squares procedure is also known as partial regression and is part of the Frisch-
Waugh-Lowell Theorem (Davidson and MacKinnon 1993; 19–24).
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the VAR can be transformed into a VAR model for f�Xtg which in our simplified
version just means that �Xt D Zt � IIDN.0;†/. The hypothesis H.n/ places no
restriction on … and includes in this way the case that the level of fXtg is already
stationary. Of particular interest are the hypotheses between these two extreme ones
where non-degenerate cointegrating vectors are possible. In the following, we not
only want to test for the number of linearly independent cointegrating vectors, r,
but we also want to test hypotheses about the structure of the cointegrating vectors
summarized in ˇ.

Johansen’s test is conceived as a likelihood-ratio test. This means that we must
determine the likelihood function for a sample X1;X2; : : : ;XT where T denotes the
sample size. For this purpose, we assume that fZtg � IIDN.0;†/ so that logged
likelihood function of the parameters ˛, ˇ, and † conditional on the starting values
is given by :

`.˛; ˇ;†/ D �Tn

2
ln.2�/C T

2
ln det.†�1/

� 1

2

TX

tD1
.�Xt � ˛ˇ0Xt�1/

0†�1.�Xt � ˛ˇ0Xt�1/

where … D ˛ˇ0. For a fixed given ˇ, ˛ can be estimated by a regression of �Xt

on ˇ0Xt�1:

Ǫ D Ǫ .ˇ/ D S01ˇ.ˇ
0S11ˇ/

�1

where the moment matrices S00; S11; S01 and S10 are defined as:

S00 D 1

T

TX

tD1
.�Xt/.�Xt/

0

S11 D 1

T

TX

tD1
Xt�1X

0
t�1

S01 D 1

T

TX

tD1
.�Xt/X

0
t�1

S10 D S0
01:

The covariance matrix of the residuals then becomes:

b† D b†.ˇ/ D S00 � S01ˇ.ˇ
0S11ˇ/

�1ˇ0S10:

Using these results, we can concentrate the log-likelihood function to obtain:
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`.ˇ/ D `. Ǫ .ˇ/; ˇ;b†.ˇ// D �Tn

2
ln.2�/� T

2
ln det.b†.ˇ//� Tn

2

D �Tn

2
ln.2�/ � Tn

2
� T

2
ln det

�
S00 � S01ˇ.ˇ

0S11ˇ/
�1ˇ0S10

�
: (16.10)

The expression Tn
2

in the above equation is derived as follows:

1

2

TX

tD1
.�Xt � Ǫˇ0Xt�1/

0b†�1.�Xt � Ǫˇ0Xt�1/

D 1

2
tr

 
TX

tD1
.�Xt � Ǫˇ0Xt�1/.�Xt � Ǫˇ0Xt�1/

0b†�1
!

D 1

2
tr
�
.TS00 � T Ǫˇ0S10 � TS01ˇ Ǫ 0 C T Ǫˇ0S11ˇ Ǫ 0/b†�1

�

D T

2
tr

0
B@.S00 � Ǫˇ0S10/„ ƒ‚ …

Db†

b†�1

1
CA D Tn

2
:

The log-likelihood function is thus maximized if

det.b†.ˇ// D det
�
S00 � S01ˇ.ˇ

0S11ˇ/
�1ˇ0S10

�

D det S00
det
�
ˇ0.S11 � S10S

�1
00 S01/ˇ

�

det.ˇ0S11ˇ/

is minimized over ˇ.8 The minimum is obtained by solving the following general-
ized eigenvalue problem (Johansen 1995):

det
�
�S11 � S10S

�1
00 S01

�
D 0:

This eigenvalue problem delivers n eigenvalues

1 � O�1 � O�2 � : : : � O�n � 0

8Thereby we make use of the following equality for partitioned matrices:

det

�
A11 A12

A21 A22

�
D det A11 det.A22 � A21A

�1
11 A12/ D det A22 det.A11 � A12A

�1
22 A21/

where A11 and A22 are invertible matrices (see for example Meyer 2000; p. 475).
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with corresponding n eigenvectors Ǒ
1; : : : ; Ǒ

n. These eigenvectors are normalized
such that Ǒ0S11 Ǒ D In. Therefore we have that

argminˇ det.b†.ˇ// D .det S00/

nY

iD1

O�i:

Remark 16.1. In the case of cointegration, … is singular with rankb… D r. To
estimate r, it seems natural to investigate the number of nonzero eigenvalues of
b… D S01S

�1
11 . However, because eigenvalues may be complex, it is advantageous

not to investigate the eigenvalues of b… but those of b…0b… which are all real and
positive due to the symmetry of b…0b…. These eigenvalues are called the singular

values of b….9 Noting that

0 D det
�
�S11 � S10S

�1
00 S01

�
D det S11 det

�
�In � S

�1=2
11 S10S

�1
00 S01S

�1=2
11

�

D det S11 det
�
�In � .S

�1=2
00 S01S

�1=2
11 /0.S�1=2

00 S01S
�1=2
11 /

�
;

the generalized eigenvalue problem above therefore just determines the singular

values of S
�1=2
00 S01S

�1=2
11 D S

�1=2
00

b…S
1=2
11 .

Remark 16.2. Based on the observation that, for n D 1, � D S01S10
S11S00

equals the
squared empirical correlation coefficient between �Xt and Xt�1, we find that the
eigenvalues �j, j D 1; : : : ; n, are nothing but the squared canonical correlation
coefficients (see Johansen 1995; Reinsel 1993). Thereby, the largest eigenvalue,
O�1, corresponds to the largest squared correlation coefficient that can be achieved
between linear combinations of�X1 and Xt�1. Thus ˇ1 gives the linear combination
of the integrated variable Xt�1 which comes closest in the sense of correlation
to the stationary variable f�Xtg. The second eigenvalue �2 corresponds to the
maximal squared correlation coefficient between linear combinations of �Xt and
Xt�1 which are orthogonal to the linear combination corresponding to �1. The
remaining squared canonical correlation coefficients are obtained by iterating this
procedure n times.

If the dimension of the cointegrating space is r then Ǒ consists of those eigen-
vectors which correspond to the r largest eigenvalues O�1; : : : ; O�r. The remaining
eigenvalues �rC1; : : : ; �n should be zero. Under the null hypothesis H.r/, the log-
likelihood function (16.10) can be finally expressed as:

9An appraisal of the singular values of a matrix can be found in Strang (1988) or Meyer (2000).
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`. Ǒ
r/ D �Tn

2
ln� � Tn

2
� T

2
ln det S00 � T

2

rX

iD1
ln.1 � �i/:

The expression for the optimized likelihood function can now be used to
construct the Johansen likelihood-ratio test. There are two versions of the test
depending on the alternative hypothesis:

trace test: H0 W H.r/ against H.n/;

max test: H0 W H.r/ against H.r C 1/:

The corresponding likelihood ratio test statistics are therefore:

trace test: 2.`. Ǒ
n/ � `. Ǒ

r// D �T

nX

jDrC1
ln.1� O�j/ � T

nX

jDrC1

O�j;

max test: 2.`. Ǒ
rC1/ � `. Ǒ

r// D �T ln.1 � O�rC1/ � T O�rC1:

In practice it is useful to adopt a sequential test strategy based on the trace test. Given
some significance level, we test in a first step the null hypothesis H.0/ against H.n/.
If, on the one hand, the test does not reject the null hypothesis, we conclude that
r D 0 and that there is no cointegrating relation. If, on the other hand, the test rejects
the null hypothesis, we conclude that there is at least one cointegrating relation. We
then test in a second step the null hypothesis H.1/ against H.n/. If the test does not
reject the null hypothesis, we conclude that there exists one cointegrating relation,
i.e. that r D 1. If the test rejects the null hypothesis, we examine the next hypothesis
H.2/, and so on. In this way we obtain a test sequence. If in this sequence, the null
hypothesis H.r/ is not rejected, but H.r C 1/ is, we conclude that exist r linearly
independent cointegrating relations as explained in the diagram below.

H.0/ against H.n/
rejection

�������! H.1/ against H.n/
rejection

�������! H.2/ against H.n/ : : :
??y

??y
??y

r D 0 r D 1 r D 2

If in this sequence we do not reject H.r/ for some r, it is useful to perform the max
test H.r/ against H.r C1/ as a robustness check. The asymptotic distributions of the
test statistics are, like in the Dickey-Fuller unit root test, nonstandard and depend on
the specification of the deterministic components.
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16.3.1 Specification of the Deterministic Components

As mentioned previously, the asymptotic distribution of Johansen’s test depends on
the specification of the deterministic components. Thus, some care must be devoted
to this issue. We illustrate this point by decomposing the model additively into a
linear deterministic and a stochastic component in vector error correction form (see
Johansen (1995; 80–84) and Lütkepohl (2006; section 6.4)):

Xt D �0 C �1t C Yt (16.11)

�Yt D …Yt�1 C Zt D ˛ˇ0Yt�1 C Zt: (16.12)

For the ease of exposition, we have omit the autoregressive corrections. Eliminating
Yt using Yt D Xt � �0 � �1t and �Yt D �Xt � �1 leads to

�Xt � �1 D ˛ˇ0 .Xt�1 � �0 � �1.t � 1//C Zt:

This equation can be rewritten as

�Xt D c0 C c1.t � 1/C ˛ˇ0Xt�1 C Zt (16.13)

with c0 D �1 � ˛ˇ0�0 and c1 D �˛ˇ0�1

D c0 C ˛.ˇ0;�ˇ0�1/X
0
t�1 C Zt (16.14)

where X0t D .X0
t ; t/

0. Equation (16.13) is just the vector error correction model (16.4)
augmented by the linear trend term c1t. If the term c1 would be left unrestricted
arguments similar to those in Sect. 16.2.3 would show that Xt exhibits a determinis-
tic quadratic trend with coefficient vector ‰.1/c1. This, however, contradicts the
specification in Eq. (16.11). However, if we recognize that c1 in Eq. (16.13) is
actually restricted to lie in the span of ˛, i.e. that c1 D ˛
1 with 
1 D �ˇ0�1,
no quadratic trend would emerge in the levels because ‰.1/˛ D 0 by Granger’s
representation Theorem 16.1. Alternatively, one may view the time trend as showing
up in the error correction term, respectively being part of the cointegrating relation,
as in Eq. (16.14).

Similarly, one may consider the case that Xt has a constant mean �0, i.e. that
�1 D 0 in Eq. (16.11). This leads to the same error correction specification (16.13),
but without the term c1t. Leaving the constant c0 unrestricted, this will generate a
linear trend ‰.1/c0t as shown in Sect. 16.2.3. In order to reconcile this with the
assumption of a constant mean, we must recognize that c0 D ˛
0 with 
0 D �ˇ0�0.
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Table 16.1 Trend specifications in vector error correction models

Case
Deterministic term
in VECM or VAR Restriction Trend in Xt E�Xt E.ˇ0Xt/

I None – Zero Zero Zero

II c0 c0 D ˛
0 Constant Zero Constant

III c0 None Linear Constant Constant

IV c0 C c1t c1 D ˛
1 Linear Constant Linear

V c0 C c1t None Quadratic Linear Linear

Table inspired by Johansen (2007)

Based on these arguments, we can summarize the discussion by distinguishing
five different cases displayed in Table 16.1.10 This table also shows the implications
for E�Xt and E.ˇ0Xt/. These can read off from Eqs. (16.13) and (16.14).

The corresponding asymptotic distributions of the trace as well as the max test
statistic in these five cases are tabulated in Johansen (1995), MacKinnon et al.
(1999), and Osterwald-Lenum (1992).11 The finite sample properties of theses tests
can be quite poor. Thus, more recently, bootstrap methods have been proven to
provide a successful alternative in practice (Cavaliere et al. 2012).

16.3.2 Testing Hypotheses on Cointegrating Vectors

As mentioned previously, the cointegrating vectors are not unique, only the coin-
tegrating space is. This makes the cointegrating vectors often difficult to interpret
economically, despite some basis transformation. It is therefore of interest to see
whether the space spanned by the cointegrating vectors summarized in the columns
of Ǒ can be viewed as a subspace spanned by some hypothetical vectors H D
.h1; : : : ; hs/, r � s < n. If this hypothesis is true, the cointegrating vectors should
be linear combinations of the columns of H so that the null hypothesis can be
formulated as

H0 W ˇ D H' (16.15)

for some s � r matrix '. Under this null hypothesis, this amounts to solve an
analogous general eigenvalue problem:

det
�
'H0S11H � H0S10S

�1
00 S01H

�
D 0:

The solution of this problem is given by the eigenvalues 1 > Q�1 � Q�2 � : : : Q�s > 0

with corresponding normalized eigenvectors. The likelihood ratio test statistic for
this hypothesis is then

10It is instructive to compare theses cases to those of the unit root test (see Sect. 7.3.1).
11The tables by MacKinnon et al. (1999) allow for the possibility of exogenous integrated variables.
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T

rX

jD1
ln
1 � Q�j

1 � O�j

:

This test statistic is asymptotically distributed as a �2 distribution with r.n � s/

degrees of freedom.
With similar arguments it is possible to construct a test of the null hypothesis that

the cointegrating space spanned by the columns of Ǒ contains some hypothetical
vectors K D .h1; : : : ; hs/, 1 � s � r. The null hypothesis can then be formulated as

H0 W K' D ˇ (16.16)

for some s � r matrix '. Like in the previous case, this hypothesis can also be
tested by the corresponding likelihood ratio test statistic which is asymptotically
distributed as a �2 distribution with s.n � r/ degrees of freedom. Similarly, it is
possible to test hypotheses on ˛ and joint hypotheses on ˛ and ˇ (see Johansen
1995; Kunst and Neusser 1990; Lütkepohl 2006).

16.4 Estimation and Testing of Cointegrating Relationships

Johansen’s approach has become very popular because it presents an integrated
framework for testing and estimating cointegrating relationships based on the
maximum likelihood method. However, it requires the specification of a concrete
VAR model. This proves sometimes difficult it practice, especially when the true
data generating process is not purely autoregressive. Similar to the Phillips-Perron
test discussed in Sect. 7.3.2, Phillips and Hansen (1990) propose a nonparametric
approach for the estimation and hypothesis testing of cointegrating relationships.
This approach is especially appropriate if the long-run relationships are the prime
objective of the investigation as f.e. in Neusser and Kugler (1998).

The Phillips and Hansen approach is based on the triangular representation
of cointegrated processes given in the equation system (16.8). Thereby the r

cointegration vectors are normalized such that ˇ D .Ir;�b0/0 where b is the
regression coefficient matrix from a regression of X1t on X2t controlling for
deterministic components Dt (see Eq. (16.8a)).12 The least-squares estimate of b

is (super) consistent as already noted in Sect. 7.5.2. However, the estimator is
not directly suitable for hypothesis testing because the conventional test statistics
do not have the usual asymptotic distributions. The idea of Phillips and Hansen
(1990) is to correct the conventional least-squares estimates to account for serial
correlation and for the endogeneity arising from the cointegrating relationship. This
leads to the fully-modified ordinary least-squares estimator (FMOLS estimator).

12The choice of the variables used for normalization turns out to be important in practice. See the
application in Sect. 16.5.
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As the endogeneity shows up in the long-run correlation between the variables, the
proposed modification uses of the long-run variance J of ut D .u0

1t; u
0
2t/

0. According
to Sect. 11.1 this entity defined as:

J D
�

J11 J12

J21 J22

�
D

1X

hD�1
�.h/ D ƒCƒ0 �†

where

ƒ D
1X

hD0
�.h/ D

�
ƒ11 ƒ12

ƒ21 ƒ22

�
;

† D E.utu
0
t/ D

�
�11 �12

�21 �22

�
:

The fully-modified ordinary least-squares estimator of .b; �1/ is then constructed as
follows. Estimate the Eqs. (16.8a) and (16.8b) by ordinary least-squares to compute
the residuals Out D .Ou0

1t; Ou0
2t/

0. From these residuals estimate † as b† D
PT

tD1 utu
0
t

and the long-run variance J and its one-sided counterpartƒ. Estimates of J and ƒ,
denoted by OJ and Oƒ, can be obtained by applying a kernel estimator as explained in
Sect. 4.4, respectively Sect. 11.1. The estimators b†, OJ and Oƒ are consistent because
ordinary least-squares is. The corresponding estimates are then used to correct the

data for X1t and to construct the bias correction term Oƒ.C/
21 :

X
.C/
1t D X1t � OJ12 OJ�1

22 Ou2t;

Oƒ.C/
21 D Oƒ21 � OJ12 OJ�1

22
Oƒ22:

The fully-modified ordinary least-squares estimator (FMOLS estimator) is then
given by

�
Ob; O�1

�
D
  

TX

tD1
X
.C/
1t .X

0
2t;D

0
t/

!
� T. Oƒ.C/0

21 ; 0/

!

 
TX

tD1
.X0

2t;D
0
t/

0.X0
2t;D

0
t/

!�1

:

It turns out that this estimator is asymptotically equivalent to full maximum
likelihood with limiting distributions free of nuisance parameters.

The main advantage of the FMOLS estimator is that conventional Wald test
statistics, appropriately modified, have limiting �2 distributions. This brings statisti-
cal inference back to the realm of traditional econometric analysis. Consider testing
the null hypothesis
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H0 W R vec b D q:

where q is a vector of dimension g and R selects the appropriate elements of vec b.
Thus, in effect we are considering hypothesis of the form H0 W b D b0. The
hypothesis b D 0 is thereby of particular interest. The Wald test statistic is then
defined as

W D

.R vec Ob � q/0

2
4R

0
@ OJ11:2 ˝

 
TX

tD1
.X0

2t;D
0
t/

0.X0
2t;D

0
t/

!�11
AR0

3
5

�1

.R vec Ob � q/

where OJ11:2 D OJ11� OJ12 OJ�1
22

OJ21. It can be shown that the so defined modified Wald test
statistic is asymptotically distributed as �2 with g degrees of freedom (see Phillips
and Hansen 1990; Hansen 1992).

16.5 An Example

This example reproduces the study by Neusser (1991) with actualized data for
the United States over the period first quarter 1950 to fourth quarter 2005. The
starting point is a VAR model which consists of four variables: real gross domestic
product (Y), real private consumption (C), real gross investment (I), and the ex-
post real interest rate (R). All variables, except the real interest rate, are in logs.
First, we identify a VAR model for these variables where the order is determined
by Akaike’s (AIC), Schwarz’ (BIC) or Hannan-Quinn’ (HQ) information criteria.
The AIC suggests seven lags whereas the other criteria propose a VAR of order two.
As the VAR(7) consists of many statistically insignificant coefficients, we prefer the
more parsimonious VAR(2) model which produces the following estimates:

Xt D

0
BB@

Yt

Ct

It

Rt

1
CCA D

0
BBBBBBBBBBBBB@

0.185
(0.047)

0.069
(0.043)

0.041
(0.117)

-0.329
(0.097)

1
CCCCCCCCCCCCCA

C

0
BBBBBBBBBBBBB@

0.951
(0.086)

0.254
(0.091)

0.088
(0.033)

0.042
(0.032)

0.157
(0.079)

0.746
(0.084)

0.065
(0.031)

-0.013
(0.030)

0.283
(0.216)

0.250
(0.229)

1.304
(0.084)

0.026
(0.081)

0.324
(0.178)

-0.536
(0.189)

-0.024
(0.069)

0.551
(0.067)

1
CCCCCCCCCCCCCA

Xt�1
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C

0
BBBBBBBBBBBBB@

-0.132
(0.085)

-0.085
(0.093)

-0.089
(0.033)

-0.016
(0.031)

-0.213
(0.078)

0.305
(0.085)

-0.066
(0.031)

0.112
(0.029)

-0.517
(0.214)

0.040
(0.233)

-0.364
(0.084)

0.098
(0.079)

-0.042
(0.176)

0.296
(0.192)

0.005
(0.069)

0.163
(0.065)

1
CCCCCCCCCCCCCA

Xt�2 C Zt

where the estimated standard errors of the corresponding coefficients are reported
in parenthesis. The estimate covariance matrix †, b†, is

b† D 10�4

0
BB@

0:722 0:428 1:140 0:002

0:428 0:610 1:026 �0:092
1:140 1:026 4:473 �0:328
0:002 �0:092 �0:328 3:098

1
CCA :

The sequence of the hypotheses starts with H.0/ which states that there exists
no cointegrating relation. The alternative hypothesis is always H.n/ which says that
there are n cointegrating relations. According to Table 16.2 the value of the trace
test statistic is 111.772 which is clearly larger than the 5 % critical value of 47.856.
Thus, the null hypothesis H.0/ is rejected and we consider next the hypothesis H.1/.
This hypothesis is again clearly rejected so that we move on to the hypothesis
H.2/. Because H.3/ is not rejected, we conclude that there exists 3 cointegrating
relations. To check this result, we test the hypothesis H.2/ against H.3/ using the
max test. As this test also rejects H.2/, we can be pretty confident that there are
three cointegrating relations given as:

Ǒ D

0
BB@

1:000 0:000 0:000

0:000 1:000 0:000

0:000 0:000 1:000

�258:948 �277:869 �337:481

1
CCA :

Table 16.2 Evaluation of the results of Johansen’s cointegration
test

Trace statistic Max statistic

Null hypothesis Eigenvalue
Test
statistic

Critical
value

Test
statistic

Critical
value

H.0/ W r D 0 0.190 111.772 47.856 47.194 27.584

H.1/ W r � 1 0.179 64.578 29.797 44.075 21.132

H.2/ W r � 2 0.081 20.503 15.495 18.983 14.265

H.3/ W r � 3 0.007 1.520 3.841 1.520 3.841

Critical 5 % values are taken from MacKinnon et al. (1999)
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This matrix is actually the outcome from the EVIEWS econometrics software
package. It should be noted that EVIEWS, like other packages, chooses the
normalization mechanically. This can become a problem if the variable on which
the cointegration vectors are normalized is not part of the cointegrating relation.

In this form, the cointegrating vectors are economically difficult to interpret. We
therefore ask whether they are compatible with the following hypotheses:

ˇC D

0
BB@

1:0

�1:0
0:0

0:0

1
CCA ; ˇI D

0
BB@

1:0

0:0

�1:0
0:0

1
CCA ; ˇR D

0
BB@

0:0

0:0

0:0

1:0

1
CCA :

These hypotheses state that the log-difference (ratio) between consumption and
GDP, the log-difference (ratio) between investment and GDP, and the real interest
rate are stationary. They can be rationalized in the context of the neoclassical growth
model (see King et al. 1991; Neusser 1991). Each of them can be brought into
the form of Eq. (16.16) where ˇ is replaced by its estimate Ǒ. The corresponding
test statistics for each of the three cointegrating relations is distributed as a �2

distribution with one degree of freedom,13 which gives a critical value of 3.84
at the 5 % significance level. The corresponding values for the test statistic are
12.69, 15.05 and 0.45, respectively. This implies that we must reject the first two
hypotheses ˇC and ˇI . However, the conjecture that the real interest is stationary,
cannot be rejected. Finally, we can investigate the joint hypothesisˇ0 D .ˇC; ˇI ; ˇR/

which can be represented in the form (16.15). In this case the value of the test
statistic is 41.20 which is clearly above the critical value of 7.81 inferred from the
�23 distribution.14 Thus, we must reject this joint hypothesis.

As a matter of comparison, we perform a similar investigation using the fully-
modified approach of Phillips and Hansen (1990). For this purpose we restrict
the analysis to Yt, Ct, and It because the real interest rate cannot be classified
unambiguously as being stationary, respectively integrated of order one. The long-
run variance J and its one-sided counterpart ƒ are estimated using the quadratic
spectral kernel with VAR(1) prewhitening as advocated by Andrews and Monahan
(1992) (see Sect. 4.4). Assuming two cointegrating relations and taking Yt and Ct

as the left hand side variables in the cointegrating regression (Eq. (16.8a)), the
following results are obtained:

0
BBB@

Yt

Ct

1
CCCA D

0
BBB@

0.234
(0.166)

0.215
(0.171)

1
CCCA It C

0
BBB@

6.282
(0.867)

5.899
(0.892)

1
CCCAC

0
BBB@

0.006
(0.002)

0.007
(0.002)

1
CCCA t C Ou1t

13The degrees of freedom are computed according to the formula: s.n � r/ D 1.4� 3/ D 1.
14The degrees of freedom are computed according to the formula: r.n � s/ D 3.4� 3/ D 3.
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where the estimated standard deviations are reported in parenthesis. The specifica-
tion allows for a constant and a deterministic trend as well as a drift in the equation
for�It (Eq. (16.8b), not shown).

Given these results we can test a number of hypotheses to get a better understand-
ing of the cointegrating relations. First we test the hypothesis of no cointegration of
Yt, respectively Ct with It. Thus, we test H0 W b.1/ D b.2/ D 0. The value of the
corresponding Wald test statistic is equal to 2.386 which is considerably less than
the 5 % critical value of 5.992. Therefore we can not reject the null hypothesis no
cointegration Another interesting hypothesis is H0 W b.1/ D b.2/ which would
mean that Yt and Ct are cointegrated with cointegration vector .1;�1/. As the
corresponding Wald statistic is equal to 0.315, this hypothesis can not be rejected at
the 5 % critical value of 3.842. This suggests a long-run relation between Yt and Ct.

Repeating the analysis with Ct and It as the left hand side variables leads to the
following results:

0
BBB@

Ct

It

1
CCCA D

0
BBB@

0.834
(0.075)

2.192
(0.680)

1
CCCA Yt C

0
BBB@

0.767
(0.561)

-11.27
(5.102)

1
CCCAC

0
BBB@

0.002
(0.001)

-0.008
(0.006)

1
CCCA t C Ou1t

As before first the hypothesis H0 W b.1/ D b.2/ D 0 is tested. The corresponding
value of the test statistic is 137.984 which is clearly above the 5 % critical value.
Thus, the null hypothesis of no cointegration is rejected. Next, the hypothesis H0 W
b.1/ D b.2/ D 1 is tested. This hypothesis is rejected as the value 7.717 of the
test statistic is above the critical value. If these hypotheses are not tested jointly, but
individually, the null hypothesis b.1/ D 1 can be rejected, but b.2/ D 1 can not.
These findings conform reasonably well with those based on the Johansen approach.

The diverse result between the two specifications demonstrates that the sensi-
tivity of cointegration analysis with respect to the normalization. It is important
that the variable on which the cointegrating vector is normalized is indeed in the
cointegrating space. Otherwise, insensible results may be obtained.
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The state space representation is a flexible technique originally developed in
automatic control engineering to represent, model, and control dynamic systems.
Thereby we summarize the unobserved or partially observed state of the system in
period t by an m-dimensional vector Xt. The evolution of the state is then described
by a VAR of order one usually called the state equation. A second equation describes
the connection between the state and the observations given by a n-dimensional
vector Yt. Despite its simple structure, state space models encompass a large variety
of model classes: VARMA, respectively VARIMA models,1 unobserved-component
models, factor models, structural time series models which decompose a given time
series into a trend, a seasonal, and a cyclical component, models with measurement
errors, VAR models with time-varying parameters, etc.

From a technical point of view, the main advantage of state space modeling is
the unified treatment of estimation, forecasting, and smoothing. At the center of
the analysis stands the Kalman-filter named after its inventor Rudolf Emil Kálmán
(Kalman 1960, 1963). He developed a projection based algorithm which recursively
produces a statistically optimal estimate of the state. The versatility and the ease of
implementation have made the Kalman filter an increasingly popular tool also in the
economically oriented times series literature. Here we present just an introduction
to the subject and refer to Anderson and Moore (1979), Brockwell and Davis (1991;
Chapter 12), Brockwell and Davis (1996; Chapter 8), Hamilton (1994b; Chapter 13),
Hamilton (1994a), Hannan and Deistler (1988), or Harvey (1989), and in particular
to Durbin and Koopman (2011) and Kim and Nelson (1999) for extensive reviews
and further details.

1VARIMA models stand for vector autoregressive integrated moving-average models.

© Springer International Publishing Switzerland 2016
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17.1 The State Space Model

We consider a dynamical system whose state at each point in time t is determined
by a vector Xt. The evolution of the system over time is then described by a
state equation. The state is, however, unobserved or only partly observed to the
outside observer. Thus, a second equation, called the observation equation, is
needed to describe the connection of the state to the observations. This relation
may be subject to measurement errors. The equation system consisting of state and
observation equation is called a state space model which is visualized in Fig. 17.1.
The state equation typically consists of a VAR model of order one whereas the
observation equation has the structure of multivariate linear regression model.2

Despite the simplicity of each of these two components, their combination is very
versatile and able to represent a great variety of models.

In the case of time invariant coefficients3 we can set up these two equations as
follows:

state equation: XtC1 D FXt C VtC1; t D 1; 2; : : : (17.1)

observation equation: Yt D A C GXt C Wt; t D 1; 2; : : : (17.2)

Thereby Xt denotes an m-dimensional vector which describes the state of the system
in period t. The evolution of the state is represented as a vector autoregressive model

internal dynamics:

X
t+1 = FX

t 
+ V

t+1

state equation

✲
present X

t
✲

future X
t+1

❄

error V
t+1

�

❄

observations: Y
t
 = A + GX

t
 + W

t

data possibly contaminated

by measurement errors W
t

Fig. 17.1 State space model

2We will focus on linear dynamic models only. With the availability of fast and cheap computing
facilities, non-linear approaches have gained some popularity. See Durbin and Koopman (2011)
for an exposition.
3For the ease of exposition, we will present first the time-invariant case and analyze the case of
time-varying coefficients later.
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of order one with coefficient matrix F and disturbances VtC1.4 As we assume that the
state Xt is unobservable or at least partly unobservable, we need a second equation
which relates the state to the observations. In particular, we assume that there is
a linear time-invariant relation given by A and G of the n-dimensional vector of
observations, Yt, to the state Xt. This relation may be contaminated by measurement
errors Wt. The system is initialized in period t D 1.

We make the following simplifying assumption of the state space model repre-
sented by Eqs. (17.1) and (17.2).

(i) fVtg � WN.0;Q/ where Q is a constant nonnegative definite m � m matrix.
(ii) fWtg � WN.0;R/ where R is a constant nonnegative definite n � n matrix.

(iii) The two disturbances are uncorrelated with each other at all leads and lags, i.e.:

E.WsV
0
t / D 0; for all t and s.

(iv) Vt and Wt are multivariate normally distributed.
(v) X1 is uncorrelated with Vt as well as with Wt, t D 1; 2; : : :

Remark 17.1. In a more general context, we can make both covariance matrices Q

and R time-varying and allow for contemporaneous correlations between Vt and Wt

(see example Sect. 17.4.1).

Remark 17.2. As both the state and the observation equation may include identities,
the covariance matrices need not be positive definite. They can be non-negative
definite.

Remark 17.3. Neither fXtg nor fYtg are assumed to be stationary.

Remark 17.4. The specification of the state equation and the normality assumption
imply that the sequence fX1;V1;V2; : : :g is independent so that the conditional
distribution XtC1 given Xt;Xt�1; : : : ;X1 equals the conditional distribution of XtC1
given Xt. Thus, the process fXtg satisfies the Markov property. As the dimension of
the state vector Xt is arbitrary, it can be expanded in such a way as to encompass
every component Xt�1 for any t (see, for example, the state space representation of
a VAR(p) model with p > 1). However, there remains the problem of the smallest
dimension of the state vector (see Sect. 17.3.2).

Remark 17.5. The state space representation is not unique. Defining, for example,
a new state vector QXt by multiplying Xt with an invertible matrix P, i.e. QXt D PXt,
all properties of the system remain unchanged. Naturally, we must redefine all the
system matrices accordingly: QF D PFP�1, QQ D PQP0, QG D GP�1.

4In control theory the state equation (17.1) is amended by an additional term HUt which represents
the effect of control variables Ut. These exogenous controls are used to regulate the system.
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Given X1, we can iterate the state equation forward to arrive at:

Xt D Ft�1X1 C
t�1X

jD1
Fj�1VtC1�j; t D 1; 2; : : :

Yt D A C GFt�1X1 C
t�1X

jD1
GFj�1VtC1�j C Wt; t D 1; 2; : : :

The state equation is called stable or causal if all eigenvalues of F are inside the unit
circle which is equivalent that all roots of det.Im �Fz/ D 0 are outside the unit circle
(see Sect. 12.3). In this case the state equation has a unique stationary solution:

Xt D
1X

jD0
Fj�1VtC1�j: (17.3)

The process fYtg is therefore also stationary and we have:

Yt D A C
1X

jD0
GFj�1VtC1�j C Wt: (17.4)

In the case of a stationary state space model, we may do without an initialization
period and take t 2 Z.

In the case of a stable state equation, we can easily deduce the covariance
function for fXtg, �X.h/, h D 0; 1; 2; : : : According to Sect. 12.4 it holds that:

�X.0/ D F�X.0/F
0 C Q;

�X.h/ D Fh�X.0/; h D 1; 2; : : :

where �X.0/ is uniquely determined given the stability assumption. Similarly, we
can derive the covariance function for the observation vector,�Y.h/, h D 0; 1; 2; : : ::

�Y.0/ D G�X.0/G
0 C R;

�Y.h/ D GFh�X.0/G
0; h D 1; 2; : : :

17.1.1 Examples

The following examples should illustrate the versatility of the state space model
and demonstrate how many economically relevant models can be represented in this
form.
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VAR(p) Process

Suppose that fYtg follows a n-dimensional VAR(p) process given by ˆ.L/Yt D Zt,
respectively by Yt D ˆ1Yt�1 C : : : C ˆpYt�p C Zt, with Zt � WN.0;†/. Then
the companion form of the VAR(p) process (see Sect. 12.2) just represents the state
equation (17.1):

XtC1 D

0
BBBBB@

YtC1
Yt

Yt�1
:::

Yt�pC1

1
CCCCCA

D

0
BBBBB@

ˆ1 ˆ2 : : : ˆp�1 ˆp

In 0 : : : 0 0

0 In : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : In 0

1
CCCCCA

0
BBBBB@

Yt

Yt�1
Yt�2
:::

Yt�p

1
CCCCCA

C

0
BBBBB@

ZtC1
0

0
:::

0

1
CCCCCA

D FXt C VtC1;

with VtC1 D .Z0
tC1; 0; 0; : : : ; 0/

0 and Q D
�
† 0

0 0

�
: The observation equation is just

an identity because all components of Xt are observable:

Yt D .In; 0; 0; : : : ; 0/Xt D GXt:

Thus, G D .In; 0; 0; : : : ; 0/ and R D 0. Assuming that Xt is already mean adjusted,
A D 0.

ARMA(1,1) Process

The representation of ARMA processes as a state space model is more involved
when moving-average terms are involved. Let fYtg be an ARMA(1,1) process
defined by the stochastic difference equation Yt D �Yt�1 C Zt C �Zt�1 with
Zt � WN.0; �2/ and �� ¤ 0.

Define fXtg as the AR(1) process defined by the stochastic difference equation
Xt � �Xt�1 D Zt and Xt D .Xt;Xt�1/0 as the state vector, then we can write the
observation equation as:

Yt D .1; �/Xt D GXt

with R D 0. The state equation is then

XtC1 D
�

XtC1
Xt

�
D
�
� 0

1 0

��
Xt

Xt�1

�
C
�

ZtC1
0

�
D FXt C VtC1;

where Q D
�
�2 0

0 0

�
. It is easy to verify that the so defined process fYtg satisfies

the stochastic difference equation Yt D �Yt�1 C Zt C �Zt�1. Indeed Yt � �Yt�1 D
.1; �/Xt ��.1; �/Xt�1 D Xt C�Xt�1��Xt�1���Xt�2 D .Xt ��Xt�1/C�.Xt�1�
�Xt�2/ D Zt C �Zt�1.
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If j�j < 1, the state equation defines a causal process fXtg so that the unique
stationary solution is given by Eq. (17.3). This implies a stationary solution for fYtg
too. It is thus easy to verify if this solution equals the unique solution of the ARMA
stochastic difference equation.

The state space representation of an ARMA model is not unique. An alternative
representation in the case of a causal system is given by:

XtC1 D �Xt C .� C �/Zt D FXt C VtC1

Yt D Xt C Zt D Xt C Wt:

Note that in this representation the dimension of the state vector is reduced from two
to one. Moreover, the two disturbances VtC1 D .�C �/Zt and Wt D Zt are perfectly
correlated.

ARMA(p,q) Process

It is straightforward to extend the above representation to ARMA(p,q) models.5 Let
fYtg be defined by the following stochastic difference equation:

ˆ.L/Yt D ‚.L/Zt with Zt � WN.0; �2/ and �p�q ¤ 0:

Define r as r D maxfp; q C 1g and set �j D 0 for j > p and �j D 0 for j > q.
Then, we can set up the following state space representation with state vector Xt

and observation equation

Yt D .1; �1; : : : ; �r�1/Xt

where the state vector equals Xt D .Xt; : : : ;Xt�rC2;Xt�rC1/0 and where fXtg follows
an AR(p) process ˆ.L/Xt D Zt. The AR(p) process can be transformed into
companion form to arrive at the state equation:

XtC1 D

0
BBBBB@

�1 �2 : : : �r�1 �r

1 0 : : : 0 0

0 1 : : : 0 0
:::
:::
: : :

:::
:::

0 0 : : : 1 0

1
CCCCCA

Xt C

0
BBBBB@

Zt

0

0
:::

0

1
CCCCCA
:

Missing Observations

The state space approach is best suited to deal with missing observations. However,
in this situation the coefficient matrices are no longer constant, but time-varying.
Consider the following simple example of an AR(1) process for which we have

5See also Exercise 17.2.
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only observations for the periods t D 1; : : : ; 100 and t D 102; : : : ; 200, but not for
period t D 101 which is missing. This situation can be represented in state space
form as follows:

XtC1 D �Xt C Zt

Yt D GtXt C Wt

Gt D
�
1; t D 1; : : : ; 100; 102; : : : ; 200;
0; t D 101.

Rt D
�
0; t D 1; : : : ; 100; 102; : : : ; 200;
c > 0; t D 101.

This means that Wt D 0 and that Yt D Xt for all t except for t D 101. For the
missing observation, we have G101 D Y101 D 0. The variance for this observation is
set to R101 D c > 0.

The same idea can be used to obtain quarterly data when only yearly data are
available. This problem typically arises in statistical offices which have to produce,
for example, quarterly GDP data from yearly observations incorporating quarterly
information from indicator variables (see Sect. 17.4.1). More detailed analysis for
the case of missing data can be found in Harvey and Pierce (1984) and Brockwell
and Davis (1991; Chapter 12.3).

Time-Varying Coefficients

Consider the regression model with time-varying parameter vector ˇt:

Yt D x0
tˇt C Wt (17.5)

where Yt is an observed dependent variable, xt is a K-vector of exogenous regressors,
and Wt is a white noise error term. Depending on the specification of the evolution
of ˇt several models have been proposed in the literature:

Hildreth-Houck W ˇt D Ň C vt

Harvey-Phillips: ˇt � Ň D F.ˇt � Ň/C vt

Cooley-Prescott: ˇt D ˇ
p
t C v1t

ˇ
p
t D ˇ

p

t�1 C v2t

where vt, v1t, and v2t are white noise error terms. In the first specification, proposed
originally proposed by Hildreth and Houck (1968), the parameter vector is in
each period just a random from a distribution with mean Ň and variance given
by the variance of vt. Departures from the mean are seen as being only of a
transitory nature. In the specification by Harvey and Phillips (1982), assuming that
all eigenvalues of F are strictly smaller than one in absolute value, the parameter
vector is a mean reverting VAR of order one. In this case, the departures from
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the mean can have a longer duration depending on the eigenvalues of F. The last
specification due to Cooley and Prescott (1973, 1976) views the parameter vector as
being subject to transitory and permanent shifts. Whereas shifts in v1t have only a
transitory effect on ˇt, movements in v2t result in permanent effects.

In the Cooley-Prescott specification, for example, the state is given by
Xt D .ˇ0

t ; ˇ
p
t

0/0 and the state equation can be written as:

XtC1 D
�
ˇtC1
ˇ

p

tC1

�
D
�
0 1

0 1

�

„ƒ‚…
DF

�
ˇt

ˇ
p
t

�
C
�
v1t

v2t

�

The observation equation then becomes:

Yt D yt D
�

xt

0

�0
Xt C Wt

Thus, A D 0 and Gt D .x0
t; 0/. Note that this an example of a state space model with

time-varying coefficients. In Sect. 18.2, we will discuss time-varying coefficient
models in the context of VAR models.

Structural Time Series Analysis

An important application of the state space representation in economics is the
decomposition of a given time series into several components: trend, cycle, season
and irregular component. This type of analysis is usually coined structural time
series analysis (See Harvey 1989; Mills 2003). Consider, for example, the additive
decomposition of a time series fYtg into a trend Tt, a seasonal component St, a
cyclical component fCtg, and an irregular or cyclical component Wt:

Yt D Tt C St C Ct C Wt:

The above equation relates the observed time series to its unobserved components
and is called the basic structural model (BSM) (Harvey 1989).

The state space representation is derived in several steps. Consider first the case
with no seasonal and no cyclical component. The trend is typically viewed as a
random walk with time-varying drift ıt�1:

Tt D ıt�1 C Tt�1 C "t; "t � WN.0; �2" /

ıt D ıt�1 C �t; �t � WN.0; �2� /:

The second equation models the drift as a random walk. The two disturbances f"tg
and f�tg are assumed to be uncorrelated with each other and with fWtg. Defining the

state vector X
.T/
t as X

.T/
t D .Tt; ıt/

0, the state and the observation equations become:

X
.T/
tC1 D

�
TtC1
ıtC1

�
D
�
1 1

0 1

��
Tt

ıt

�
C
�
"tC1
�tC1

�
D F.T/X

.T/
t C V

.T/
tC1

Yt D .1; 0/X
.T/
t C Wt
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with Wt � WN.0; �2W/. This representation is called the local linear trend (LLT)
model and implies that fYtg follows an ARIMA(0,2,2) process (see Exercise 17.5.1).

In the special case of a constant drift equal to ı, �2� D 0 and we have that
�Yt D ı C "t C Wt � Wt�1. f�Ytg therefore follows a MA(1) process with
�.1/ D ��2W=.�2" C 2�2W/ D �.2 C �/�1 where � D �2" =�

2
W is called the signal-

to-noise ratio. Note that the first order autocorrelation is necessarily negative. Thus,
this model is not suited for time series with positive first order autocorrelation in its
first differences.

The seasonal component is characterized by two conditions St D St�d andPd
tD1 St D 0 where d denotes the frequency of the data.6 Given starting values

S1; S0; S�1; : : : ; S�dC3, the subsequent values can be computed recursively as:

StC1 D �St � : : : � St�dC2 C �tC1; t D 1; 2; : : :

where a noise �t � WN.0; �2� / is taken into account.7 The state vector related to the

seasonal component, X
.S/
t , is defined as X

.S/
t D .St; St�1; : : : ; St�dC2/0 which gives

the state equation

X
.S/
tC1 D

0
BBBBB@

�1 �1 : : : �1 �1
1 0 : : : 0 0

0 1 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : 1 0

1
CCCCCA

X
.S/
t C

0
BBBBB@

�tC1
0
:::

0

0

1
CCCCCA

D F.S/X
.S/
t C V

.S/
tC1

with Q.S/ D diag.�2� ; 0; : : : ; 0/.
Combining the trend and the seasonal model to an overall model with state vector

Xt given by Xt D
�

X
.T/
t

0;X.S/t
0
�0

, we arrive at the state equation:

XtC1 D
�

F.T/ 0

0 F.S/

�
Xt C

 
V
.T/
tC1

V
.S/
tC1

!
D FXt C VtC1

with Q D diag.�2" ; �
2
ı ; �

2
� ; 0; : : : ; 0/. The observation equation then is:

Yt D
�
1 0 1 0 : : : 0

�
Xt C Wt

with R D �2W .
Finally, we can add a cyclical component fCtg which is modeled as a harmonic

process (see Sect. 6.2) with frequency �C , respectively periodicity 2�=�C:

Ct D A cos.�Ct/C B sin.�Ct/

6Four in the case of quarterly and twelve in the case of monthly observations.
7Alternative seasonal models can be found in Harvey (1989) and Hylleberg (1986).
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Fig. 17.2 Spectral density of the cyclical component for different values of �C and �

Following Harvey (1989; p.39), we let the parameters A and B evolve over time by
introducing the recursion

�
CtC1
C�

tC1

�
D �

�
cos�C sin�C

� sin�C cos�C

��
Ct

C�
t

�
C
 

V
.C/
1;tC1

V
.C/
2;tC1

!

where C0 D A and C�
0 D B and where fC�

t g is an auxiliary process. The dampening

factor � allows for additional flexibility in the specification. The processes fV
.C/
1;t g

and fV
.C/
2;t g are two mutually uncorrelated white noise processes. It is instructive to

examine the spectral density (see Sect. 6.1) of the cyclical component in Fig. 17.2.
It can be shown (see Exercise 17.5.2) that fCtg follows an ARMA(2,1) process.

The cyclical component can be incorporated into the state space model above
by augmenting the state vector XtC1 by the cyclical components CtC1 and C�

tC1
and the error term VtC1 by fV

.C/
1;tC1g and fV

.C/
2;tC1g. The observations equation has to

be amended accordingly. Section 17.4.2 presents an empirical application of this
approach.

Dynamic Factor Models
Dynamic factor models are an interesting approach when it comes to modeling
simultaneously a large cross-section of times series. The concept was introduced
into macroeconomics by Sargent and Sims (1977) and was then developed further
and popularized by Quah and Sargent (1993), Reichlin (2003) and Breitung and
Eickmeier (2006), among others. The idea is to view each time series Yit, i D
1; : : : ; n, as the sum of a linear combination of some joint unobserved factors
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ft D .f1t; : : : ; frt/
0 and an idiosyncratic component fWitg, i D 1; : : : n. Dynamic

factor models are particularly effective when the number of factors r is small
compared to the number of time series n. In practice, several hundred time series
are related to a handful factors. In matrix notation we can write the observation
equation for the dynamic factor model as follows:

Yt D ƒ0ft Cƒ1ft�1 C : : :Cƒqft�q C Wt

where ƒi, i D 0; 1; : : : ; q, are n � r matrices. The state vector Xt equals
.f 0

t ; : : : ; f
0
t�q/

0 if we assume that the idiosyncratic component is white noise, i.e.
Wt D .W1t; : : : ;Wnt/

0 � WN.0;R/. The observation equation can then be written
compactly as:

Yt D GXt C Wt

where G D .ƒ0; ƒ1; : : : ; ƒq/. Usually, we assume that R is a diagonal matrix. The
correlation between the different time series is captured exclusively by the joint
factors.

The state equation depends on the assumed dynamics of the factors. One
possibility is to model fftg as a VAR(p) process with ˆ.L/ft D et, et � WN.0;†/,
and p � q C 1, so we can use the state space representation of the VAR(p) process
from above. For the case p D 2 and q D 2 we get:

XtC1 D

0
@

ftC1
ft

ft�1

1
A D

0
@
ˆ1 ˆ2 0

Ir 0 0

0 Ir 0

1
A
0
@

ft

ft�1
ft�2

1
AC

0
@

etC1
0

0

1
A D FXt C VtC1

and Q D diag.†; 0; 0/. This scheme can be easily generalized to the case p > q C 1

or to allow for autocorrelated idiosyncratic components, assuming for example that
they follow autoregressive processes.

The dimension of these models can be considerably reduced by an appropriate
re–parametrization or by collapsing the state space adequately (Bräuning and
Koopman 2014). Such a reduction can considerably increase the efficiency of the
estimation.

Real Business Cycle Model (RBC Model)
State space models are becoming increasingly popular in macroeconomics, espe-
cially in the context of dynamic stochastic general equilibrium (DSGE) models.
These models can be seen as generalizations of the real business cycle (RBC)
models.8 In these models a representative consumer is supposed to maximize the
utility of his consumption stream over his infinite life time. Thereby, the consumer
has the choice to consume part of his income or to invest his savings (part of his

8Prototypical models can be found in King et al. (1988) or Woodford (2003). Canova (2007) and
Dejong and Dave (2007) present a good introduction to the analysis of DSGE models.
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income which is not consumed) at the market rate of interest. These savings can
be used as a mean to finance investment projects which increase the economy wide
capital stock. The increased capital stock then allows for increased production in the
future. The production process itself is subject to a random shocks called technology
shocks.

The solution of this optimization problem is a nonlinear dynamic system
which determines the capital stock and consumption in every period. Its local
behavior can be investigated by linearizing the system around its steady state.
This equation can then be interpreted as the state equation of the system. The
parameters of this equation F and Q are related, typically in a nonlinear way, to
the parameters describing the utility and the production function as well as the
process of technology shocks. Thus, the state equation summarizes the behavior
of the theoretical model.

The parameters of the state equation can then be estimated by relating the state
vector, given by the capital stock and the state of the technology, via the observation
equation to some observable variables, like real GDP, consumption, investment, or
the interest rate. This then completes the state space representation of the model
which can be analyzed and estimated using the tools presented in Sect. 17.3.9

17.2 Filtering and Smoothing

As we have seen, the state space model provides a very flexible framework for a
wide array of applications. We therefore want to develop a set of tools to handle
this kind of models in terms of interpretation and estimation. In this section we
will analyze the problem of inferring the unobserved state from the data given the
parameters of the model. In Sect. 17.3 we will then investigate the estimation of the
parameters by maximum likelihood.

In many cases the state of the system is not or only partially observable. It is
therefore of interest to infer from the data Y1;Y2; : : : ;YT the state vector Xt. We can
distinguish three types of problems depending on the information used:

(i) estimation of Xt from Y1; : : : ;Yt�1, known as the prediction problem;
(ii) estimation of Xt from Y1; : : : ;Yt, known as the filtering problem;

(iii) estimation of Xt from Y1; : : : ;YT , known as the smoothing problem.

For the ease of exposition, we will assume that the disturbances Vt and Wt

are normally distributed. The recursive nature of the state equation implies that
Xt D Ft�1X1 C

Pt�2
jD0 FjVt�j. Therefore, Xt is also normally distributed for all

t, if X1 is normally distributed. From the observation equation we can infer also

9See Sargent (2004) or Fernandez-Villaverde et al. (2007) for systematic treatment of state space
models in the context of macroeconomic models. In this literature the use of Bayesian methods is
widespread (see An and Schorfheide 2007; Dejong and Dave 2007).
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that Yt is normally distributed, because it is the sum of two normally distributed
random variables A C GXt and Wt. Thus, under these assumptions, the vector
.X0

1; : : : ;X
0
T ;Y

0
1; : : : ;Y

0
T/

0 is jointly normally distributed:

0
BBBBBBBBB@

X1
:::

XT

Y1
:::

YT

1
CCCCCCCCCA

� N

��
0

�Y

�
;

�
�X �YX

�XY �Y

��

where the covariance matrices �X; �YX ; �XY and �Y can be retrieved from the model
given the parameters.

For the understanding of the rest of this section, the following theorem is essential
(see standard textbooks, like Amemiya 1994; Greene 2008).

Theorem 17.1. Let Z be a n-dimensional normally distributed random variable

with Z � N.�;†/. Consider the partitioned vector Z D .Z0
1;Z

0
2/

0 where Z1 and Z2
are of dimensions n1 � 1 and n2 � 1, n D n1 C n2, respectively. The corresponding

partitioning of the covariance matrix † is

† D
�
†11 †12
†21 †22

�

where†11 D VZ1,†22 D VZ2, and†12 D †0
21 D cov.Z1;Z2/ D E.Z1�EZ1/

0.Z2�
EZ2/. Then the partitioned vectors Z1 and Z2 are normally distributed. Moreover, the

conditional distribution of Z1 given Z2 is also normal with mean and variance

E.Z1jZ2/ D EZ1 C†12†
�1
22 .Z2 � EZ2/;

V.Z1jZ2/ D †11 �†12†�1
22 †21:

This formula can be directly applied to figure out the mean and the variance
of the state vector given the observations. Thus, setting Z1 D .X0

1; : : : ;X
0
t/

0 and
Z2 D .Y 0

1; : : : ;Y
0
t�1/

0, we get the predicted values; setting Z1 D .X0
1; : : : ;X

0
t/

0 and
Z2 D .Y 0

1; : : : ;Y
0
t /

0, we get the filtered values; setting Z1 D .X0
1; : : : ;X

0
t/

0

and Z2 D .Y 0
1, : : : ;Y

0
T/

0, we get the smoothed values.

AR(1) Process with Measurement Errors

We illustrate the above ideas by analyzing a univariate AR(1) process with
measurement errors10:

10Sargent (1989) provides an interesting application showing the implications of measurement
errors in macroeconomic models.
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XtC1 D �Xt C vtC1; vt � IIDN.0; �2v /

Yt D Xt C wt; wt � IIDN.0; �2w/:

For simplicity, we assume j�j < 1. Suppose that we only have observations Y1
and Y2 at our disposal. The joint distribution of .X1;X2;Y1;Y2/0 is normal. The
covariances can be computed by applying the methods discussed in Chap. 2:

0
BB@

X1

X2

Y1

Y2

1
CCA � N

0
BBBB@

0
BB@

0

0

0

0

1
CCA ;

�2v
1 � �2

0
BBBB@

1 � 1 �

� 1 � 1

1 � 1C �2w.1��2/
�2v

�

� 1 � 1C �2w.1��2/
�2v

1
CCCCA

1
CCCCA

The smoothed values are obtained by applying the formula from Theorem 17.1:

E

��
X1

X2

�ˇ̌
ˇ̌ Y1;Y2

�
D

1

.1C �2w.1��2/
�2v

/2 � �2

�
1 �

� 1

�0
@1C �2w.1��2/

�2v
��

�� 1C �2w.1��2/
�2v

1
A
�

Y1

Y2

�

Note that for the last observation, Y2 in our case, the filtered and the smoothed values
are the same. For X1 the filtered value is

E.X1jY1/ D 1

1C �2w.1��2/
�2v

Y1:

An intuition for this result can be obtained by considering some special cases.
For � D 0, the observations are not correlated over time. The filtered value for X1
therefore corresponds to the smoothed one. This value lies between zero, the uncon-
ditional mean of X1, and Y1 with the variance ratio �2w=�

2
v delivering the weights:

the smaller the variance of the measurement error the closer the filtered value is to
Y1. This conclusion holds also in general. If the variance of the measurement error is
relatively large, the observations do not deliver much information so that the filtered
and the smoothed values are close to the unconditional mean.

For large systems the method suggested by Theorem 17.1 may run into numerical
problems due to the inversion of the covariance matrix of Y, †22. This matrix can
become rather large as it is of dimension nT � nT. Fortunately, there exist recursive
solutions to this problem known as the Kalman filter, and also the Kalman smoother.
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17.2.1 The Kalman Filter

The Kalman filter circumvents the problem of inverting a large nT � nT matrix
by making use of the Markov property of the system (see Remark 17.4). The
distribution of Xt given the observations up to period t can thereby be computed
recursively from the distribution of the state in period t � 1 given the information
available up to period t � 1. Starting from some initial distribution in period 0, we
can in this way obtain in T steps the distribution of all states. In each step only an
n � n matrix must be inverted. To describe the procedure in detail, we introduce the
following notation:

E.XtjY1; : : : ;Yh/ D Xtjh

V.XtjY1; : : : ;Yh/ D Ptjh:

Suppose, we have already determined the distribution of Xt conditional on the
observations Y1; : : : ;Yt. Because we are operating in a framework of normally
distributed random variables, the distribution is completely characterized by its
conditional mean Xtjt and variance Ptjt. The goal is to carry forward these entities
to obtain XtC1jtC1 and PtC1jtC1 having observed an additional data point YtC1. This
problem can be decomposed into a forecasting and an updating step.

Step 1: Forecasting Step The state equation and the assumption about the
disturbance term VtC1 imply:

XtC1jt D FXtjt (17.6)

PtC1jt D FPtjtF
0 C Q

The observation equation then allows to compute a forecast of YtC1 where we
assume for simplicity that A D 0:

YtC1jt D GXtC1jt (17.7)

Step 2: Updating Step In this step the additional information coming from the
additional observation YtC1 is processed to update the conditional distribution of the
state vector. The joint conditional distribution of .X0

tC1;Y
0
tC1/

0 given Y1; : : : ;Yt is

�
XtC1
YtC1

�ˇ̌
ˇ̌ Y1; : : : ;Yt � N

��
XtC1jt
YtC1jt

�
;

�
PtC1jt PtC1jtG0

GPtC1jt GPtC1jtG0 C R

��

As all elements of the distribution are available from the forecasting step, we can
again apply Theorem 17.1 to get the distribution of the filtered state vector at time
t C 1:

XtC1jtC1 D XtC1jt C PtC1jtG
0.GPtC1jtG

0 C R/�1.YtC1 � YtC1jt/ (17.8)

PtC1jtC1 D PtC1jt � PtC1jtG
0.GPtC1jtG

0 C R/�1GPtC1jt (17.9)
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where we replace XtC1jt, PtC1jt, and YtC1jt by FXtjt, FPtjtF0 C Q, and GFXtjt,
respectively, which have been obtained from the forecasting step.

Starting from given values for X0j0 and P0j0, we can therefore iteratively compute
Xtjt and Ptjt for all t D 1; 2; : : : ;T. Only the information from the last period is
necessary at each step. Inserting Eq. (17.8) into Eq. (17.6) we obtain as a forecasting
equation:

XtC1jt D FXtjt�1 C FPtjt�1G
0.GPtjt�1G

0 C R/�1.Yt � GXtjt�1/

where the matrix

Kt D FPtjt�1G
0.GPtjt�1G

0 C R/�1

is know as the (Kalman) gain matrix. It prescribes how the innovation Yt � Ytjt�1 D
Yt � GXtjt�1 leads to an update of the predicted state.

Initializing the Algorithm It remains to determine how to initialize the recursion.
In particular, how to set the starting values for X0j0 and P0j0. If Xt is stationary and
causal with respect to Vt, the state equation has the solution X0 D

P1
jD0 FjVt�j.

Thus,

X0j0 D E.X0/ D 0

P0j0 D V.X0/

where P0j0 solves the equation (see Sect. 12.4)

P0j0 D FP0j0F
0 C Q:

According to Eq. (12.4), the solution of the above matrix equation is:

vec.P0j0/ D ŒI � F ˝ F��1vec.Q/:

If the process is not stationary, we can set X0j0 to zero and P0j0 to infinity. In
practice, a very large number is sufficient.

17.2.2 The Kalman Smoother

The Kalman filter determines the distribution of the state at time t given the
information available up to this time. In many instances, we want, however, make
an optimal forecast of the state given all the information available, i.e. the whole
sample. Thus, we want to determine XtjT and PtjT . The Kalman filter determines
the smoothed distribution for t D T, i.e. XTjT and PTjT . The idea of the Kalman
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smoother is again to determine the smoothed distribution in a recursive manner. For
this purpose, we let the recursion run backwards. Starting with the last observation
in period t D T, we proceed back in time by letting t take successively the values
t D T � 1;T � 2; : : : until the first observation in period t D 1.

Using again the linearity of the equations and the normality assumption, we get:

�
Xt

XtC1

�ˇ̌
ˇ̌ Y1;Y2; : : : ;Yt � N

��
Xtjt

FXtjt

�
;

�
Ptjt PtjtF0

FPtjt PtC1jt

��

This implies that

E.XtjY1; : : : ;Yt;XtC1/ D Xtjt C PtjtF
0P�1

tC1jt.XtC1 � XtC1jt/:

The above mean is only conditional on all information available up to time t and
on the information at time t C 1. The Markov property implies that this mean also
incorporates the information from the observations YtC1; : : : ;YT . Thus, we have:

E.XtjY1; : : : ;YT ;XtC1/ D E.XtjY1; : : : ;Yt;XtC1/

D Xtjt C PtjtF
0P�1

tC1jt.XtC1 � XtC1jt/

Applying the law of iterated expectations or means (see, f.e. Amemiya 1994; p. 78),
we can derive XtjT :

XtjT D E.XtjY1; : : : ;YT/ D E.E.XtjY1; : : : ;YT ;XtC1/jY1; : : : ;YT/

D E.Xtjt C PtjtF
0P�1

tC1jt.XtC1 � XtC1jt/jY1; : : : ;YT/

D Xtjt C PtjtF
0P�1

tC1jt.XtC1jT � XtC1jt/: (17.10)

The algorithm can now be implemented as follows. In the first step compute
XT�1jT according to Eq. (17.10) as

XT�1jT D XT�1jT�1 C PT�1jT�1F
0P�1

TjT�1.XTjT � XTjT�1/:

All entities on the right hand side can readily be computed by applying the Kalman
filter. Having found XT�1jT , we can again use Eq. (17.10) for t D T � 2 to evaluate
XT�2jT :

XT�2jT D XT�2jT�2 C PT�2jT�2F
0P�1

T�1jT�2.XT�1jT � XT�1jT�2/:

Proceeding backward through the sample we can derive a complete sequence of
smoothed states XTjT ;XT�1jT ;XT�2jT ; : : : ;X1jT . These calculations are based on the
computations of Xtjt, XtC1jt, Ptjt, and PtC1jt which have already been obtained from
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the Kalman filter. The smoothed covariance matrix PtjT is given as (see Hamilton
1994b; Section 13.6):

PtjT D Ptjt C PtjtFP�1
tC1jt.PtC1jT � PtC1jt/P

�1
tC1jtF

0Ptjt:

Thus, we can compute also the smoothed variance with the aid of the values already
determined by the Kalman filter.

AR(1) Process with Measurement Errors (Continued)

We continue our illustrative example of an AR(1) process with measurement errors
and just two observations. First, we determine the filtered values for the state vector
with the aid of the Kalman filter. To initialize the process, we have to assign a
distribution to X0. For simplicity, we assume that j�j < 1 so that it makes sense
to assign the stationary distribution of the process as the distribution for X0:

X0 � N

�
0;

�2V
1 � �2

�

Then we compute the forecasting step as the first step of the filter (see Eq. (17.6)):

X1j0 D �X0j0 D 0

P1j0 D �2
�2v

1 � �2
C �2v D �2v

1 � �2

Y1j0 D 0:

P1j0 was computed by the recursive formula from the previous section, but is, of
course, equal to the unconditional variance. For the updating step, we get from
Eqs. (17.8) and (17.9):

X1j1 D
�

�2v
1 � �2

��
�2v

1 � �2
C �2w

��1
Y1 D 1

1C �2w.1��2/
�2v

Y1

P1j1 D
�

�2v
1 � �2

�
�
�

�2v
1 � �2

�2 �
�2v

1 � �2 C �2w

��1

D �2v
1 � �2

0
@1 � 1

1C �2w.1��2/
�2v

1
A

These two results are then used to calculate the next iteration of the algorithm.
This will give the filtered values for t D 2 which would correspond to the smoothed
values because we just have two observations. The forecasting step is:
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X2j1 D �

1C �2w.1��2/
�2v

Y1

P2j1 D �2�2v
1 � �2

0
@1 � 1

1C �2w.1��2/
�2v

1
AC �2v

Next we perform the updating step to calculate X2j2 and P2j2. It is easy to verify that
this leads to the same results as in the first part of this example.

An interesting special case is obtained when we assume that � D 1 so that the
state variable is a simple random walk. In this case the unconditional variance of Xt

and consequently also of Yt are no longer finite. As mentioned previously, we can
initialize the Kalman filter by X0j0 D 0 and P0j0 D 1. This implies:

Y1j0 D X1j0 D X0j0 D 0

P1j0 D P0j0 C �2V D 1:

Inserting this result in the updating Eqs. (17.8) and (17.9), we arrive at:

X1j1 D P1j0
P1j0 C �2W

.Y1 � Y1j0/ D P0j0 C �2V

P0j0 C �2V C �2W
Y1

P1j1 D P1j0 �
P2
1j0

P1j0 C �2W
D .P0j0 C �2V/

�
1 � P1j0

P1j0 C �2W

�
D .P0j0 C �2V/�

2
W

P0j0 C �2V C �2W
:

Letting P0j0 go to infinity, leads to:

X1j1 D Y1

P1j1 D �2W :

This shows that the filtered variance is finite for t D 1 although P1j0 was infinite.

17.3 Estimation of State Space Models

Up to now we have assumed that the parameters of the system are known and
that only the state is unknown. In most economic applications, however, also the
parameters are unknown and have therefore to be estimated from the data. One big
advantage of the state space models is that they provide an integrated approach
to forecasting, smoothing and estimation. In particular, the Kalman filter turns
out to be an efficient and quick way to compute the likelihood function. Thus, it
seems natural to estimate the parameters of state space models by the method of
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maximum likelihood. Kim and Nelson (1999) and Durbin and Koopman (2011)
provide excellent and extensive reviews of the estimation of state space models
using the Kalman filter.

More recently, due to advances in computational methods, in particular with
respect to sparse matrix programming, other approaches can be implemented. For
example, by giving the states a matrix representation Chan and Jeliazkov (2009)
derive a viable and efficient method for the estimation of state space models.

17.3.1 The Likelihood Function

The joint unconditional density of the observations .Y 0
1; : : : ;Y

0
T /

0 can be factorized
into the product of conditional densities as follows:

f .Y1; : : : ;YT/ D f .YT jY1; : : : ;YT�1/f .Y1; : : : ;YT�1/

D
:::

D f .YT jY1; : : : ;YT�1/f .YT�1jY1; : : : ;YT�2/ : : : f .Y2jY1/f .Y1/

Each conditional density is the density of a normal distribution and is therefore
given by:

f .YtjY1; : : : ;Yt�1/ D .2�/�n=2.det�t/
�1=2

exp

�
�1
2
.Yt � Ytjt�1/

0��1
t .Yt � Ytjt�1/

�

where�t D GPtjt�1G0CR. The Gaussian likelihood function L is therefore equal to:

L D .2�/�.Tn/=2

 
TY

tD1
det.�t/

!�1=2

exp

"
�1
2

TX

tD1
.Yt � Ytjt�1/

0��1
t .Yt � Ytjt�1/

#
:

Note that all the entities necessary to evaluate the likelihood function are provided
by the Kalman filter. Thus, the evaluation of the likelihood function is a byproduct
of the Kalman filter. The maximum likelihood estimator (MLE) is then given by
the maximizer of the likelihood function, or more conveniently the log-likelihood
function. Usually, there is no analytic solution available so that one must resort
to numerical methods. An estimation of the asymptotic covariance matrix can
be obtained by evaluating the Hessian matrix at the optimum. Under the usual
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assumptions, the MLE is consistent and delivers asymptotically normally distributed
estimates (Greene 2008; Amemiya 1994).

The direct maximization of the likelihood function is often not easy in prac-
tice, especially for large systems involving many parameters. The expectation-
maximization algorithm, EM algorithm for short, represents a valid, though slower
alternative. As the name indicates, it consists of two steps which have to be
carried out iteratively. Based on some starting values for the parameters, the first
step (expectation step) computes estimates, XtjT , of the unobserved state vector Xt

using the Kalman smoother. In the second step (maximization step), the likelihood
function is maximized taking the estimates of Xt, XtjT , as additional observations.
The treatment of XtjT as additional observations, allows to reduce the maximization
step to a simple multivariate regression. Indeed, by treating XtjT as if they were
known, the state equation becomes a simple VAR(1) which can be readily estimated
by linear least-squares to obtain the parameters F and Q. The parameters A, G and
R are also easily retrieved from a regression of Yt on XtjT . Based on these new
parameter estimates, we go back to step one and derive new estimates for XtjT
which are then used in the maximization step. One can show that this procedure
maximizes the original likelihood function (see Dempster et al. 1977; Wu 1983). A
more detailed analysis of the EM algorithm in the time series context is provided by
Brockwell and Davis (1996).11

Sometimes it is of interest not only to compute parameter estimates and to derive
from them estimates for the state vector via the Kalman filter or smoother, but also
to find confidence intervals for the estimated state vector to take the uncertainty
into account. If the parameters are known, the methods outlined previously showed
how to obtain these confidence intervals. If, however, the parameters have to be
estimated, there is a double uncertainty: the uncertainty from the filter and the
uncertainty arising from the parameter estimates. One way to account for this
additional uncertainty is by the use of simulations. Thereby, we draw a given number
of parameter vectors from the asymptotic distribution and compute for each of
these draws the corresponding estimates for the state vector. The variation in these
estimates is then a measure of the uncertainty arising from the estimation of the
parameters (see Hamilton 1994b; Section 13.7).

11The analogue to the EM algorithm in the Bayesian context is given by the Gibbs sampler. In
contrast to the EM algorithm, we compute in the first step not the expected value of the states, but
we draw a state vector from the distribution of state vectors given the parameters. In the second
step, we do not maximize the likelihood function, but draw a parameter from the distribution of
parameters given the state vector drawn previously. Going back and forth between these two steps,
we get a Markov chain in the parameters and the states whose stationary distribution is exactly the
distribution of parameters and states given the data. A detailed description of Bayesian methods
and the Gibbs sampler can be found in Geweke (2005). Kim and Nelson (1999) discuss this method
in the context of state space models.
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17.3.2 Identification

As emphasized in Remark 17.5 of Sect. 17.1, the state space representations are
not unique. See, for example, the two alternative representations of the ARMA(1,1)
model in Sect. 17.1. This non-uniqueness of state space models poses an identi-
fication problem because different specifications may give rise to observationally
equivalent models.12 This problem is especially serious if all states are unob-
servable. In practice, the identification problem gives rise to difficulties in the
numerical maximization of the likelihood function. For example, one may obtain
large differences for small variations in the starting values; or one may encounter
difficulties in the inversion of the matrix of second derivatives.

The identification of state space models can be checked by transforming them
into VARMA models and by investigating the issue in this reparameterized setting
(Hannan and Deistler 1988). Exercise 17.5.6 invites the reader to apply this method
to the AR(1) model with measurement errors. System identification is a special field
in systems theory and will not be pursued further here. A systematic treatment can
be found in the textbook by Ljung (1999).

17.4 Examples

17.4.1 Disaggregating Yearly Data into Quarterly Ones

The official data for quarterly GDP are released in Switzerland by the State
Secretariat for Economic Affairs (SECO). They estimate these data taking the yearly
values provided by the Federal Statistical Office (FSO) as given. This division of
tasks is not uncommon in many countries. One of the most popular methods for
disaggregation of yearly data into quarterly ones was proposed by Chow and Lin
(1971).13 It is a regression based method which can take additional information
in the form of indicator variables (i.e. variables which are measured at the higher
frequency and correlated at the lower frequency with the variable of interest) into
account. This procedure is, however, rather rigid. The state space framework is much
more flexible and ideally suited to deal with missing observations. Applications of
this framework to the problem of disaggregation were provided by Bernanke et al.
(1997:1) and Cuche and Hess (2000), among others. We will illustrate this approach
below.

Starting point of the analysis are the yearly growth rates of GDP and indicator
variables which are recorded at the quarterly frequency and which are correlated
with GDP growth. In our application, we will consider the growth of industrial pro-
duction .IP/ and the index on consumer sentiment .C/ as indicators. Both variables

12Remember that, in our context, two representations are equivalent if they generate the same mean
and covariance function for fYtg.
13Similarly, one may envisage the disaggregation of yearly data into monthly ones or other forms
of disaggregation.
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are available on a quarterly basis from 1990 onward. For simplicity, we assume that
the annualized quarterly growth rate of GDP, fQtg, follows an AR(1) process with
mean �:

Qt � � D �.Qt�1 � �/C wt; wt � WN.0; �2w/

In addition, we assume that GDP is related to industrial production and consumer
sentiment by the following two equations:

IPt D ˛IP C ˇIPQt C vIP;t

Ct D ˛C C ˇCQt C vC;t

where the residuals vIP;t and vC;t are uncorrelated. Finally, we define the relation
between quarterly and yearly GDP growth as:

Jt D 1

4
Qt C 1

4
Qt�1 C 1

4
Qt�2 C 1

4
Qt�3; t D 4; 8; 12 : : :

We can now bring these equations into state space form. Thereby the observation
equation is given by

Yt D At C GtXt C Wt

with observation and state vectors

Yt D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

0
@

Jt

IPt

Ct

1
A ; t D 4; 8; 12; : : : I

0
@
0

IPt

Ct

1
A ; t ¤ 4; 8; 12; : : :

Xt D

0
BB@

Qt � �

Qt�1 � �
Qt�2 � �
Qt�3 � �

1
CCA

and time-varying coefficient matrices
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At D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

0
@
�

˛IP

˛C

1
A ; t D 4; 8; 12; : : : I

0
@
0

˛IP

˛C

1
A ; t ¤ 4; 8; 12; : : :

Gt D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

0
@

1
4

1
4
1
4
1
4

ˇIP 0 0 0

ˇC 0 0 0

1
A ; t D 4; 8; 12; : : : I

0
@
0 0 0 0

ˇIP 0 0 0

ˇC 0 0 0

1
A ; t ¤ 4; 8; 12; : : :

Rt D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

0
@
0 0 0

0 �2IP 0

0 0 �2C

1
A ; t D 4; 8; 12; : : : I

0
@
1 0 0

0 �2IP 0

0 0 �2C

1
A ; t ¤ 4; 8; 12; : : :

The state equation becomes:

XtC1 D FXt C VtC1

where

F D

0
BB@

� 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1
CCA

Q D

0
BB@

�2w 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCA

On my homepage http://www.neusser.ch/ you will find a MATLAB code which
maximizes the corresponding likelihood function numerically. Figure 17.3 plots the
different estimates of GDP growth and compares them with the data released by
State Secretariat for Economic Affairs (SECO).

http://www.neusser.ch/
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Fig. 17.3 Estimates of quarterly GDP growth rates for Switzerland

17.4.2 Structural Time Series Analysis

A customary practice in business cycle analysis is to decompose a time series into
several components. As an example, we estimate a structural time series model
which decomposes a times series additively into a local linear trend, a business
cycle component, a seasonal component, and an irregular component. This is the
specification studied as the basic structural model (BSM) in Sect. 17.1.1. We
carry over the specification explained there to apply it to quarterly real GDP of
Switzerland. Figure 17.4 shows the smoothed estimates of the various components.
In the left upper panel the demeaned logged original series (see Fig. 17.4a) is
plotted. One clearly discern the trend and the seasonal variations. The right upper
panel shows the local linear trend (LLT). As one can see the trend is not a
straight line, but exhibits pronounced waves of low frequency. The business cycle
component showed in Fig. 17.4c is much more volatile. The large drop of about
2.5 % in 2008/09 corresponds to the financial markets. The lower right panel
plots the seasonal component (see Fig. 17.4d). From a visual inspections, one
can infer that the volatility of the seasonal component is much larger than the
cyclical component (compare the scale of the two components) so that movements in
GDP are dominated by seasonal fluctuations.14 Moreover, the seasonal component
changes its character over time.

14The irregular component which is not shown has only very small variance.
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Fig. 17.4 Components of the basic structural model (BSM) for real GDP of Switzerland. (a)
Logged Swiss GDP (demeaned). (b) Local linear trend (LLT). (c) Business cycle component. (d)
Seasonal component

17.5 Exercises

Exercise 17.5.1. Consider the basic structural time series model for fYtg:

Yt D Tt C Wt; Wt � WN.0; �2W/

Tt D ıt�1 C Tt�1 C "t; "t � WN.0; �2" /

ıt D ıt�1 C �t; �t � WN.0; �2� /

where the error terms Wt, "t and �t are all uncorrelated with other at all leads

and lags.

(i) Show that fYtg follows an ARIMA(0,2,2) process.

(ii) Compute the autocorrelation function of f�2Ytg.

Exercise 17.5.2. If the cyclical component of the basic structural model for fYtg is:

�
Ct

C�
t

�
D �

�
cos�C sin�C

� sin�C cos�C

��
Ct�1
C�

t�1

�
C
 

V
.C/
1;t

V
.C/
2;t

!
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where fV
.C/
1;t g and fV

.C/
2;t g are mutually uncorrelated white-noise processes.

(i) Show that fCtg follows an ARMA(2,1) process with ACF given by


h.h/ D �h cos�Ch.

Exercise 17.5.3. Write the ARMA(p,q) process Yt D �1Xt�1 C : : :C�pXt�p C Zt C
�1Zt�1C: : :C�qZt�q as a state space model such that the state vector Xt is given by:

Xt D

0
BBBBBBBBBBBBB@

Yt

Yt�1
:::

Yt�p

Zt�1
Zt�2
:::

Zt�q

1
CCCCCCCCCCCCCA

:

Exercise 17.5.4. Show that Xt and Yt have a unique stationary and causal solution

if all eigenvalues of F are absolutely strictly smaller than one. Use the results from

Sect. 12.3.

Exercise 17.5.5. Find the Kalman filter equations for the following system:

Xt D �Xt�1 C wt

Yt D �Xt C vt

where � and � are scalars and where

�
vt

wt

�
� N

��
0

0

�
;

�
�2v �vw

�vw �2w

��
:

Exercise 17.5.6. Consider the state space model of an AR(1) process with mea-

surement error analyzed in Sect. 17.2:

XtC1 D �Xt C vtC1; vt � IIDN.0; �2v /

Yt D Xt C wt; wt � IIDN.0; �2w/:

For simplicity assume that j�j < 1.
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(i) Show that fYtg is an ARMA(1,1) process given by Yt ��Yt�1 D Zt C�Zt�1 with

Zt � WN.0; �2Z /.
(ii) Show that the parameters of the state space, �; �2v ; �

2
w and those of the

ARMA(1,1) model are related by the equation

��2Z D ���2w
1

1C �2
D ���2w
�2v C .1C �2/�2w

(iii) Why is there an identification problem?
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Autoregressive moving-average models have become the predominant approach in
the analysis of economic, especially macroeconomic time series. The success of
these parametric models is due to a mature and by now well-understood statistical
theory which has been the subject of this book. The main assumption behind this
theory is its linear structure. Although convenient, the assumption of a constant
linear structure turned out to be unrealistic in many empirical applications. The
evolution of economies and the economic dynamics are often not fully captured by
constant coefficient linear models. Many time series are subject to structural breaks
which manifest themselves as a sudden change in the model coefficients by going
from one period to another. The detection and dating of such structural breaks is
the subject of Sect. 18.1. Alternatively, one may think of the model coefficients as
varying over time. Such models have proven to be very flexible and able to generate
a variety of non-linear features. We present in Sects. 18.2 and 18.3 two variants of
such models. In the first one, the model parameters vary in a systematic way with
time. They are, for example, following an autoregressive process. In the second
one, the parameters switch between a finite number of states according to a hidden
Markov chain. These states are often identified as regimes which have a particular
economic meaning, for example as booms and recessions. Further parametric and
nonparametric methods for modeling and analyzing nonlinear time series can be
found in Fan and Yao (2003).

18.1 Structural Breaks

There is a extensive literature dealing with the detection and dating of structural
breaks in the context of time series. This literature is comprehensibly summarized
in Perron (2006), among others. A compact account can also be found in Aue
and Horváth (2011) where additional testing procedures, like the CUSUM test, are
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presented. In this short exposition we follow Bai et al. (1998) and focus on Chow
type test procedures. For the technical details the interested reader is referred to
these papers.

18.1.1 Methodology

Consider, for the ease of exposition, a VAR(1) process which allows for a structural
break at some known date tb:

Xt D dt.tb/
�
c.1/ Cˆ.1/Xt�1

�
C .1 � dt.tb//

�
c.2/ Cˆ.2/Xt�1

�
C Zt (18.1)

where

dt.tb/ D
�
1; t � tbI
0; t > tb:

Thus, before time tb the coefficients of the VAR process are given by c.1/ and ˆ.1/

whereas after tb they are given by c.2/ andˆ.2/. The error process fZtg is assumed to
be IID.0;†/ with † positive definite.1 Suppose further that the roots of ˆ.1/.z/ as
well as those ofˆ.2/.z/ are outside the unit circle. The process therefore is stationary
and admits a causal representation with respect to fZtg before and after date tb.

The assumption of a structural break at some known date tb can then be
investigated by testing the hypothesis

H0 W c.1/ D c.2/ and ˆ.1/ D ˆ.2/ against H1 W c.1/ ¤ c.2/ or ˆ.1/ ¤ ˆ.2/:

The standard way to test such a hypothesis is via the F-statistic. Given a sample
ranging from period 0 to period T, the strategy is to partition all variables
and matrices along the break date tb. Following the notation and the spirit of
Sect. 13.2, define Y D vec.Y.1/;Y.2// where Y.1/ D .X1;X2; : : : ;Xtb/ and Y.2/ D
.XtbC1;XtbC2; : : : ;XT/, Z D .Z1;Z2; : : : ;ZT/, and

X.1/ D

0
BBB@

1 X1;0 : : : Xn;0

1 X1;1 : : : Xn;1

:::
:::

: : :
:::

1 X1;tb�1 : : : Xn;tb�1

1
CCCA X.2/ D

0
BBB@

1 X1;tb : : : Xn;tb

1 X1;tbC1 : : : Xn;tbC1
:::

:::
: : :

:::

1 X1;T�1 : : : Xn;T�1

1
CCCA ;

1Generalization to higher order VAR models is straightforward. For changes in the covariance
matrix † see Bai (2000). For the technical details the reader is referred to the relevant literature.
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then the model (18.1) can be written as

Y D vec.Y.1/;Y.2// D
�

X.1/ ˝ In 0

0 X.2/ ˝ In

�

„ ƒ‚ …
X

vec.c.1/; ˆ.1/; c.2/; ˆ.2//„ ƒ‚ …
ˇ

C vec Z:

The least-squares estimator becomes

Ǒ D vec.Oc.1/; b̂.1/; Oc.2/; b̂.2// D .X0X/�1X0Y

D
 
..X.1/0X.1//�1X.1/0/˝ In 0

0 ..X.2/0X.2//�1X.2/0/˝ In

!
vec.Y.1/;Y.2//:

This amounts to estimate the model separately over the two sample periods. Note
that as in Sect. 13.2 the GLS estimator is numerically identical to the OLS estimator
because the same regressors are used for each equation. The corresponding Wald-
test can be implemented by defining R D .In2Cn;�In2Cn/ and computing the
F-statistic

F.tb/ D .R Ǒ/0ŒR.X0.IT ˝ b†�1
tb
/X/R0��1.R Ǒ/ (18.2)

where Ǒ D vec.Oc.1/; b̂.1/; Oc.2/; b̂.2// and where b†tb is computed from the least-

squares residualsbZt as b†tb D 1
T

PT
tD1bZt

bZ0
t given break date tb. Under the standard

assumptions made in Sect. 13.2, the test statistic F.tb/=.n2 C n/ converges for
T ! 1 to a chi-square distribution with n2 C n degrees of freedom.2 This test
is known in the literature as the Chow test.

The previous analysis assumed that the potential break date tb is known. This
assumption often turns out to be unrealistic in practice. The question then arises how
to determine a potential break date. Quandt (1960) proposed a simple procedure:
compute the Chow-test for all possible break dates and take as a candidate break
date the date where the F-statistic reaches its maximal value. Despite its simplicity,
Quandt’s procedure could not be implemented coherently because it was not clear
which distribution to use for the construction of the critical values. This problem
remained open for more than thirty years until the contribution of Andrews (1993).3

Denote by bxc the value of x rounded to the nearest integer towards minus infinity,
then the maximum Wald statistic and the logarithm of the Andrews and Ploberger
(1994) exponential Wald statistic can be written as follows:

2As the asymptotic theory requires that tb=T does not go to zero, one has to assume that both the
number of periods before and after the break go to infinity.
3A textbook version of the test can be found in Stock and Watson (2011).
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sup F W sup
�2.��;1���/

F.bT�c/

exp F W log

Z 1���

��

exp. 1
2
F.bT�c//d�

where �� denotes the percentage of the sample which is trimmed. Usually, �� takes
the value of 0:15 or 0:10. Critical values for low degrees of freedom are tabulated in
Andrews (1993, 2003) and Stock and Watson (2011). It is possible to construct an
asymptotic confidence interval for the break date. The corresponding formulas can
be found in Bai et al. (1998; p. 401–402).

18.1.2 An Example

The use of the structural break test is demonstrated using historical data for the
United Kingdom. The data consist of logged per capita real GDP, logged per
capita real government expenditures, logged per capita real government revenues,
the inflation based on the consumer price index, and a long-term interest rate
over a sample period from 1830 to 2003. The basis for the analysis consists of
a five variable VAR(2) model including a constant term and a linear trend. Three
alternative structural break modes are investigated: break in the intercept, break
in the intercept and the time trend, and break in all coefficients, including the
VAR coefficients. The corresponding F-statistics are plotted in Fig. 18.1 against
all possible break dates allowing for a trimming value of 10 %. The horizontal lines
show for all three alternative break modes the corresponding critical values for the
supF test given 5 % significance levels. These critical values have been obtained
from Monte Carlo simulations as in Andrews (1993, 2003) and are given as 18.87,
28.09, and 97.39.4

Figure 18.1 shows that for all three modes a significant structural break occurs.
The corresponding values of the supF statistics are 78.06, 104.75, and 285.22. If
only the deterministic parts are allowed to change, the break date is located in 1913.
If all coefficients are allowed to change, the break is dated in 1968. However, all
three F-statistics show a steep increase in 1913. Thus, if only one break is allowed
1913 seems to be the most likely one.5 The breaks are quite precisely dated. The
corresponding standard errors are estimated to be two years for the break in the
intercept only and one year for the other two break modes.

4Assuming a trimming value of 0:10 Andrews (2003; table I) reports critical values of 18.86 for
p D 5 which corresponds to changes in the intercept only and 27.27 for p D 10 which corresponds
to changes in intercept and time trend.
5See Perron (2006) for a discussion of multiple breaks.
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Fig. 18.1 Analysis of breaks dates with the sup F test statistic for historical UK time series

18.2 Time-Varying Parameters

This section discusses time-varying coefficient vector autoregressive models (TVC-
VAR models). This model class retains the flavor of VAR models but assumes that
they are only valid locally. Consider for this purpose a VAR(1) model with time-
varying autoregressive coefficientsˆt:

XtC1 D ˆtXt C ZtC1; Zt � IID.0;†/ with † > 0; t 2 Z: (18.3)

This model can be easily generalized to higher order VAR’s (see below) or,
alternatively, one may think of Eq. (18.3) as a higher order VAR in companion
form. The autoregressive coefficient matrix is assumed to be stochastic. Thus, ˆt

is a random n � n matrix. Models of this type have been widely discussed in the
probabilistic literature because they arise in many diverse contexts. In economics,
Eq. (18.3) can be interpreted as the probabilistic version describing the value of a
perpetuity, i.e. the present discounted value of a permanent commitment to pay a
certain sum each period. Thereby Zt denotes the random periodic payments and ˆt

the random cumulative discount factors. The model also plays an important role in
the characterization of the properties of volatility models as we have seen in Sect. 8.1
(see in particular the proofs of Theorems 8.1 and 8.3). In this presentation, the above
model is interpreted as a locally valid VAR process.

A natural question to ask is under which conditions Eq. (18.3) admits a stationary
solution. An answer to this question can be found by iterating the equation
backwards in time:
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Xt D ˆt�1Xt�1 C Zt D ˆt�1.ˆt�2Xt�2 C Zt�1/C Zt

D Zt Cˆt�1Zt�1 Cˆt�1ˆt�2Xt�2

D Zt Cˆt�1Zt�1 Cˆt�1ˆt�2Zt�2 Cˆt�1ˆt�2ˆt�3Xt�3

: : :

D
kX

jD0

 
jY

iD1
ˆt�i

!
Zt�j C

 
kC1Y

iD1
ˆt�i

!
Xt�k�1; k D 0; 1; 2; : : :

where it is understood that
Q0

iD1 D In. This suggests as a solution candidate

Xt D lim
k!1

kX

jD0

 
jY

iD1
ˆt�i

!
Zt�j

D Zt Cˆt�1Zt�1 Cˆt�1ˆt�2Zt�2 Cˆt�1ˆt�2ˆt�3Zt�3 C : : : (18.4)

Based on results obtained by Brandt (1986) and extended by Bougerol and Picard
(1992b), we can cite the following theorem.

Theorem 18.1 (Solution TVC-VAR(1)). Let f.ˆt;Zt/g be a strictly stationary

ergodic process such that

(i) E.logC kˆtk/ < 1 and E.logC kZtk/ < 1 where xC denotes maxfx; 0g;

(ii) the top Lyapounov exponent 
 defined as


 D inf
n2N

�
E

�
1

n C 1
log kˆ0ˆ�1 : : : ˆ�nk

��

is strictly negative.

Then Xt as defined in Eq. (18.4) converges a.s. and fXtg is the unique strictly

stationary solution of equation (18.3).

Remark 18.1. The Lyapunov exponent measures the rate of separation of nearly
trajectories in a dynamic system. The top Lyapunov exponent gives the largest of
these rates. It is used to characterize the stability of a dynamic system (see Colonius
and Kliemann (2014)).

Remark 18.2. Although Theorem 18.1 states only sufficient conditions, these
assumptions can hardly be relaxed.

The solution (18.4), if it exists, is similar to a causal representation. The matrix
sequence f

Qh
iD1ˆtCh�ighD0;1;2;::: D fIn; ˆt; ˆtC1ˆt; ˆtC2ˆtC1ˆt; : : :g represents

the effect of an impulse in period t to XtCh, h D 0; 1; 2; : : : and can therefore
be interpreted as impulse response functions. In contrast to the impulse response
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functions studied so far, they are clearly random and time-dependent because the
effect of Zt depends on future coefficients. In particular, the effect of Zt on XtCh,
h � 1, is not the same as the effect of Zt�h on Xt. Nevertheless it is possible
to construct meaningful impulse response functions by Monte Carlo simulations.
One may then report the mean of the impulse responses or some quantiles for
different time periods.6 Alternatively, one may ignore the randomness and time-
dependency and define “local” impulse responses as ˆh

t , h D 0; 1; 2; : : :. Note,
however, that the impulse responses so defined still vary with time. Irrespectively
how the impulse responses are constructed, they can be interpreted in the same
way as in the case of constant coefficients. In particular, we may use some of the
identification schemes discussed in Chap. 15 and compute the impulse responses
with respect to structural shocks. Similar arguments apply to the forecast error
variance decomposition (FEVD).

The model is closed by fixing the law of motion for ˆt. As already mentioned
in Sect. 17.1.1 there are several possibilities. In this presentation we adopt the
following flexible autoregressive specification:

ˇtC1 � Ň D F.ˇt � Ň/C VtC1 Vt � WN.0;Q/ (18.5)

where ˇt D vecˆt denotes the n2 vector of stacked coefficients. Q is assumed to be
fixed and is, usually, specified as a diagonal matrix. If the eigenvalues of F are inside
the unit circle, the autoregressive model is mean-reverting and Ň can be interpreted
as the average coefficient vector. The formulation in Eq. (18.5) is, however, not
restricted to this case and allows explicitly the possibility that fˇtg follows a random
walk. This specification has become very popular in the empirical macroeconomic
literature and was initially adopted by Cogley and Sargent (2001) to analyze the
dynamics of inflation across different policy regimes.7

The model consisting of Eqs. (18.3) and (18.5) can be easily reformulated as a
state space model by defining �t D ˇt � Ň as the state vector. The state and the
measurement equation can then be written as:

state equation: �tC1 D F�t C VtC1 (18.6)

measurement equation: Xt D .X0
t�1 ˝ In/ Ň C .X0

t�1 ˝ In/�t C Zt: (18.7)

Conditional on initial values for the coefficients and their covariances, the state
space model can be estimated by maximum likelihood by applying the Kalman
filter (see Sect. 17.3 and Kim and Nelson (1999)). One possibility to initialize the
Kalman filter is to estimate the model for some initial sample period assuming fixed
coefficients and extract from these estimates the corresponding starting values.

6Potter (2000) discusses the primal problems of defining impulse responses in a nonlinear context.
7They allow for a correlation between Vt and Zt.
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As it turns out, allowing time-variation only in the coefficients of the VAR model
overstates the role attributed to structural changes. We therefore generalize the
model to allow for time-varying volatility. More specifically, we also allow † in
Eq. (18.3) to vary with time. The modeling of the time-variation in † is, however,
not a straightforward task because we must ensure that in each period †t is a
symmetric positive definite matrix. One approach is to specify a process especially
designed for modeling the dynamics of covariance matrices. This so-called Wishart
autoregressive process was first introduced to economics by Gouriéroux et al. (2009)
and successfully applied by Burren and Neusser (2013). It leads to a nonlinear state
space system which can be estimated with the particle filter, a generalization of the
Kalman filter.

Another more popular approach was initiated by Cogley and Sargent (2005)
and Primiceri (2005). It is based on the Cholesky factorization of the time-varying
covariance matrix†t. Using the same notation as in Sect. 15.3†t is decomposed as

†t D Bt�tB
0
t (18.8)

where Bt is a time-varying lower triangular matrix with ones on the diagonal and�t

a time-varying diagonal matrix with strictly positive diagonal elements.8 The logged
diagonal elements of �t are then assumed to evolve as independent univariate
random walks. This specification can be written in matrix terms as

�t D �t�1 exp.Dt/ (18.9)

where Dt is a diagonal matrix with diag.Dt/ � WN.0;�D/. In the above
formulation exp denotes the matrix exponential.9 Taking the matrix logarithm, we
get exactly the formulation of Cogley and Sargent (2005) and Primiceri (2005). For
the time evolution of Bt we propose a similar specification:

Bt D Bt�1 exp.Ct/ (18.10)

where Ct is a strictly lower triangular matrix, i.e. Ct is a lower triangular matrix with
zeros on the diagonal. The non-zero entries of Ct, denoted by ŒCt�i>j, are assumed to
follow a multivariate white noise process with diagonal covariance matrix †B, i.e.
ŒCt�i>j � WN.0;†B/. It can be shown that the matrix exponential of strictly lower
triangular matrices are triangular matrices with ones on the diagonal. As the set of
triangular matrices with ones on the diagonal form a group, called the unipotent

group and denoted by SLTn, the above specification is well-defined. Moreover, this
formulation is a very natural one as the set of strictly lower triangular matrices

8It is possible to consider other short-run type identification schemes (see Sect. 15.3) than the
Cholesky factorization.
9The matrix exponential of a matrix A is defined as exp.A/ D P1

iD0
1
iŠ

Ai where A is any matrix.

Its inverse log.A/ is defined only for kAk < 1 and is given by log.A/ D P1
iD1

.�1/i�1

i
Ai.
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is the tangent space of SLTn at the identity (see Baker 2002; for details). Thus,
Eq. (18.10) can be interpreted as a log-linearized version of Bt. The technique
proposed for the evolution of Bt in Eq. (18.10) departs from Primiceri (2005) who
models each element of the inverse of Bt and therefore misses a coherent system
theoretic approach. See Neusser (2016) for details.

Although this TVC-VAR model with time-varying volatility can in principle also
be estimated by maximum likelihood, this technique can hardly be implemented
successfully in practice. The main reason is that the likelihood function of such a
model, even when the dimension and the order of the VAR is low, is a very high
dimensional nonlinear object with probably many local maxima. Moreover, as the
variances governing the time-variation are small, at least for some of the coefficients,
the likelihood function is flat in some regions of the parameter space. These features
make maximization of the likelihood function a very difficult, if not impossible,
task in practice. For these reasons, Bayesian techniques have been used almost
exclusively. There is, however, also a conceptional issue involved. As the Bayesian
approach does not strictly distinguish between fixed “true” parameters and random
samples, it is better suited to handle TVC-VAR models which treat the parameters
as random. In this monograph, we will not tackle the Bayesian approach but refer
to the relevant literature. See for example Primiceri (2005), Negro and Primiceri
(2015), Cogley and Sargent (2005), Canova (2007) and Koop and Korobilis (2009)
among others.

The Minnesota Prior

Although, we will not discuss the Bayesian approach to VAR modeling, it is
nevertheless instructive to portray the so-called Minnesota prior applied by Doan
et al. (1984) to TVC-VAR models. This prior has gained some reputation in
connection to forecasting with VAR models and as a way to specify the initial
distribution for the Kalman filter in time-varying models. The combination of the
prior distribution with the likelihood function delivers via Bayes’ rule a posterior
distribution of the parameters which can then be analyzed using simulation methods.

The Minnesota prior is based on the a priori belief that each variable follows a
random walk with no interaction among the variables nor among the coefficients of
the VAR equations. We expose one version of the Minnesota prior in the general
context of a TVC-VAR model of order p with time-varying constant term ct:

Xt D ct Cˆ
.1/
t�1Xt�1 C : : :Cˆ

.p/
t�1Xt�p C Zt: (18.11)

This model can be written compactly as

Xt D .X0
t�1 ˝ In/ vecˆt�1 C Zt D .X0

t�1 ˝ In/ˇt�1 C Zt (18.12)
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where Xt�1 D .1;X0
t�1; : : : ;X

0
t�p/

0, ˆt�1 D .ct; ˆ
.1/
t�1; : : : ; ˆ

.p/
t�1/, and ˇt D vecˆt.

Assuming for ˇt the same autoregressive form as in Eq. (18.5), the state space
representation (18.6) and (18.7) also applies to the TVC-VAR(p) model with Xt�1
replaced by Xt�1. Note that the dimension of the state equation can become very
high because ˇt is a n C n2p vector.

Taking date 0 as the initial date, the prior distribution of the autoregressive
parameters is supposed to be normal:

ˇ0 D vecˆ0 � N. Ň;P0j0/

where Ň D vec.0; In; 0; : : : ; 0/. This implies that the mean for all coefficients,
including the constant term, is assumed to be zero except for the own lag coefficients

of order one Œˆ.1/0 �ii, i D 1; : : : ; n, which are assumed to be one. The covariance
matrix P0j0 is taken as being diagonal so that there is no correlation across
coefficients. Thus, the prior specification amounts to assuming that each variable
follows a random walk with no interaction with other variables.

The strength of this belief is governed by a number of so-called hyperparameters
which regulate the diagonal elements of P0j0. The first one, 
2, controls the

confidence placed on the assumption that Œˆ.1/0 �ii D 1:

h
ˆ
.1/
0

i
ii

� N.1; 
2/; i D 1; 2; : : : ; n:

A small (large) value of 
2 thus means more (less) confidence. As the lag order

increases more confidence is placed on the assumption Œˆ.h/0 �ii D 0:

h
ˆ
.h/
0

i
ii

� N

�
0;

2

h

�
; h D 2; : : : ; p and i D 1; : : : ; n

Instead of the harmonic decline other schemes have been proposed. For h D 1; : : : ; p

the off-diagonal elements of ˆ.h/0 are assumed to have prior distribution

h
ˆ
.h/
0

i
ij

� N

 
0;

w2
2 O�2i
h O�2j

!
; i; j D 1; : : : ; n; i ¤ j; h D 1; 2; : : : ; p:

Thereby O�2i = O�2j represents a correction factor which accounts for the magnitudes of

Xit relative to Xjt. Specifically, O�2i is the residual variance of a univariate AR(1)
model. The hyperparameter w2 is assumed to be strictly smaller than one. This
represents the belief that Xj;t�h is less likely to be important as an explanation for
Xi;t, i ¤ j, than the own lag Xi;t�h. Finally, the strength of the belief that the constant
terms are zero is

ci0 D N.0; g O�i/:
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This completes the specification for the prior belief on ˇ0. Combining all elements
we can write P0j0 as a block diagonal matrix with diagonal blocks:

P0j0 D
 

P
.c/

0j0 0

0 P
.�/

0j0

!

where P
.c/

0j0 D g � diag. O�1; : : : ; O�n/ and P
.�/

0j0 D diag.vec.G ˝ ‡//. Thereby, G and
‡ are defined as

G D .
2; 
2=2; : : : ; 
2=p/

Œ‡�ij D
(
1; i D jI
w2. O�2i = O�2j /; i ¤ j:

According to Doan et al. (1984) the preferred values for the three hyperparameters
are g D 700, 
2 D 0:07, and w2 D 0:01.

Thus, for a bivariate TVC-VAR(2) model the mean vector is given by
Ň D .0; 0; 1; 0; 0; 1; 0; 0; 0; 0/0 with diagonal covariance matrix P0j0:

P0j0 D

0
B@

P
.c/

0j0 0 0

0 P
.1/

0j0 0

0 0 P
.2/

0j0

1
CA

with

P
.c/

0j0 D g

�
O�21 0

0 O�22

�
;

P
.1/

0j0 D 
2

0
BB@

1 0 0 0

0 w2 O�22 = O�21 0 0

0 0 w2 O�21 = O�22 0
0 0 0 1

1
CCA

and

P
.2/

0j0 D 
2

2

0
BB@

1 0 0 0

0 w2 O�22 = O�21 0 0

0 0 w2 O�21 = O�22 0
0 0 0 1

1
CCA
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Next we specify the parameters of the state transition equation (18.5). Following
Doan et al. (1984), F D �FInCpn2 with �F D 0:999 and Q D �QP0j0 with �Q D
10�7. The proportionality factor does, however, not apply to the constant terms. For
these terms, the corresponding diagonal elements of Q, ŒQ�ii, i D 1; : : : ; n, are set
to �QŒP0j0�i.nC1/;i.nC1/, i D 1; : : : ; n. The reason for this correction is that the prior
put on the constants is rather loose as expressed by the high value of g. The final
component is a specification for †, the variance of Zt. This matrix is believed to be
diagonal with † D �†diag. O�21 ; : : : ; O�2n / and �† D 0:9.

With these ingredients the state space model is completely specified. Given
observations X1; : : : ;Xt, the Kalman filter produces a sequence of ˇtC1jt,
t D 1; 2; : : : and one-period ahead forecasts XtC1jt computed as

XtC1jt D .X0
t ˝ In/ˇtC1jt:

Doan et al. (1984) suggest to compute an approximate h period ahead forecast by
treating the forecast from the previous periods as if they were actual observations.

18.3 Regime Switching Models

The regime switching model is similar to the time-varying model discussed in the
previous section. The difference is that the time-varying parameters are governed
by a hidden Markov chain with a finite state space S D f1; 2; : : : ; kg. Usually,
the number of states k is small and is equal in practice to two or maximal three.
The states have usually an economic connotation. For example, if k equals two,
state 1 might correspond to a boom phase whereas state 2 to a recession. Such
models have a long tradition in economics and have therefore been used extensively.
Seminal references include Goldfeld and Quandt (1973, 1976), Hamilton (1994b),
Kim and Nelson (1999), Krolzig (1997), and Maddala (1986). Frühwirt-Schnatter
(2006) presents a detailed statistical analysis of regime switching models.

The starting point of our presentation of the regime switching model is again the
TVC-VAR(1) as given in Eq. (18.3). We associate to each state j 2 S a coefficient
matrixˆ.j/. Thus, in the regime switching model the coefficientsˆt can only assume
a finite number values ˆ.1/; : : : ; ˆ.k/ depending on the state of the Markov chain.
The actual value assigned to ˆt is governed by a Markov chain defined through a
fixed but unknown transition probability matrix P where

ŒP�ij D P
�
ˆt D ˆ.j/jˆt�1 D ˆ.i/

�
i; j D 1; : : : ; k: (18.13)

Thus, ŒP�ij is the probability that ˆt assumes value ˆ.j/ given that it assumed in the
previous period the value ˆ.i/. The probability that ˆtCh is in state j given that ˆt

was in state i is therefore ŒPh�ij. The definition of the transition matrix in Eq. (18.13)

implies that P is a stochastic matrix, i.e. that ŒP�ij � 0 and
Pk

jD1ŒP�ij D 1.
Moreover, we assume that the chain is regular meaning that it is ergodic (irreducible)
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and aperiodic.10 This is equivalent to the existence of a fixed integer m > 0

such that Pm has only strictly positive entries (see Berman and Plemmons 1994;
Chapter 8). Regular Markov chains have a unique ergodic (stationary) distribution
vector� with strictly positive entries and determined by � 0P D � 0. This distribution
is approached from any initial distribution vector �0, i.e. limt!1 � 0

0P
t D � 0.

Moreover, limt!1 Pt D P1 where P1 is a transition matrix with all rows equal
to � 0.

Given this setup we can again invoke Theorem 18.1 and claim that a (strictly)
stationary solution of the form of Eq. (18.4) exists if all the autoregressive matrices
ˆ.j/, j D 1; 2; : : : ; k, have eigenvalues strictly smaller than one.

Given observations xT ; xT�1; : : : ; x1; x0 for XT ;XT�1; : : : ;X1;X0, a maximum
likelihood approach can be set up to estimate the unknown parameters
ˆ.1/; : : : ; ˆ.k/; †;P.11 Collect these parameters into a vector � and denote by
st 2 S the state of the Markov chain in period t and by Xt D .xt; xt�1; : : : ; x1; x0/ the
information available up to period t. Write the conditional density of xt given st D j

and observations Xt�1 as

f .xtjst D j;Xt�1I �/:

The joint density of .xt; st D j/ is

f .xt; st D jjXt�1I �/ D f .xtjst D j;Xt�1I �/ � P.st D jjXt�1I �/

where in analogy to the Kalman filter the expressions P.st D jjXt�1I �/,
j D 1; : : : ; k, are called the predicted transition probabilities. The conditional
marginal density of xt then becomes

f .xtjXt�1I �/ D
kX

jD1
f .xtjst D j;Xt�1I �/ � P.st D jjXt�1I �/:

In the case of Zt � IID N.0;†/ the above density is a finite mixture of Gaussian
distributions (see Frühwirt-Schnatter 2006; for details). The (conditional) log
likelihood function, finally, is therefore given by

`.�/ D
TX

tD1
log f .xtjXt�1I �/:

10A chain is called ergodic or irreducible if for every states i and j there is a strictly positive
probability that the chain moves from state i to state j in finitely many steps. A chain is called
aperiodic if it can return to any state i at irregular times. See, among others, Norris (1998) and
Berman and Plemmons (1994) for an introduction to Markov chains and its terminology.
11The presentation of the maximum likelihood approach follows closely the exposition by
Hamilton (1994b; chapter 22) where more details can be found.
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In order to evaluate the likelihood function note that the joint density of .xt; st D j/

may also be factored as

f .xt; st D jjXt�1I �/ D P.st D jjXtI �/ � f .xtjXt�1I �/:

Combining these expressions one obtains an expression for the filtered transition
probabilities P.st D jjXtI �/:

P.st D jjXtI �/ D f .xtjst D j;Xt�1I �/ � P.st D jjXt�1I �/
f .xtjXt�1I �/

D f .xtjst D j;Xt�1I �/ � P.st D jjXt�1I �/Pk
jD1 f .xtjst D j;Xt�1I �/ � P.st D jjXt�1I �/

(18.14)

Next period’s predicted transition probabilities are then obtained by multiplication
with the transition matrix:

0
B@

P.stC1 D 1jXtI �/
:::

P.stC1 D kjXtI �/

1
CA D P0 �

0
B@

P.st D 1jXtI �/
:::

P.st D kjXtI �/

1
CA (18.15)

Given initial probabilities P.s1 D jjX0I �/, j D 1; : : : ; k, and a fixed value for
� , Eqs. (18.14) and (18.15) can be iterated forward to produce a sequence of
predicted transition probabilities .P.st D 1jXt�1I �/; : : : ;P.st D kjXt�1I �//0,
t D 1; 2; : : : ;T which can be used to evaluate the Gaussian likelihood function.
Numerical procedures must then be used for the maximization of the likelihood
function. This task is not without challenge because the likelihood function of
Gaussian mixture models typically has singularities and many local maxima.
Kiefer (1978) showed that there exists a bounded local maximum which yields
a consistent and asymptotically normal estimate for � for which standard errors
can be constructed in the usual way. In practice, problems encountered during the
maximization can be alleviated by experimentation with alternative starting values.
Thereby the initial probability .P.s1 D 1jX0I �/; : : : ;P.s1 D kjX0I �/ could either
be treated as additional parameters as in Goldfeld and Quandt (1973) or set to the
uniform distribution. For technical details and alternative estimation strategies, like
the EM algorithm, see Hamilton (1994b; chapter 22) and in particular Frühwirt-
Schnatter (2006).

By reversing the above recursion it is possible to compute smoothed transition
probabilities P.st D jjXT I �/ (see Kim 1994):

P.st D jjXT I �/ D P.st D jjXtI �/
kX

iD1
ŒP�ij

P.stC1 D ijXT I �/
P.stC1 D ijXtI �/

The iteration is initialized with P.sT D jjXT I �/ which has been computed in the
forward recursion.
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The basic model can and has been generalized in several dimensions. The most
obvious one is the inclusion of additional lags beyond the first one. The second
one concerns the possibility of a regime switching covariance matrix †. These
modifications can be accommodated using the methods outlined above. Thirdly,
one may envision time-varying transition probabilities to account for duration
dependence. In business cycle analysis, for example, the probability of moving out
of a recession may depend on how long the economy has been in the recession
regime. This idea can be implemented by modeling the transition probabilities via a
logit specification:

ŒP�ij D exp.z0
t˛i/

1C exp.z0
t˛i/

i ¤ j

where zt includes a constant and a set of additional variables. These additional
variables can be some exogenous variables, but more interestingly may include
some lagged variables xt�d (Krolzig 1997). Note that the transition probabilities do
not only depend on zt, but also on the state. The resulting model has some features
shared with the smooth transition autoregressive model of Granger and Teräsvirta
(1993). Early economic applications of regime switching models with time-varying
transition probabilities can be found in Diebold et al. (1994), Filardo (1994), and
Filardo and F.Gordon (1998).

An important aspect in practice is the determination of the number of regimes.
Unfortunately, there is no direct test available for the null hypothesis k D m

against the alternative k D m C 1. The reason is that the likelihood contains
parameters which are only present under the alternative. The parameters describing
the m C 1-th state are unidentified under the null hypothesis. The problem has
been analyzed by Andrews and Ploberger (1994) in a general theoretical context.
Alternatively, one may estimate the model under the null hypothesis and conduct
a series of specification tests as proposed by Hamilton (1996). It has also been
suggested to use the information criteria like AIC and BIC to determine the number
of regimes (Frühwirt-Schnatter 2006; p. 346–347):

AIC D �2`.�/C 2k.k � 1/
BIC D �2`.�/C log.T/k.k � 1/

where k.k � 1/ are the free parameters in the transition matrix P.



AComplex Numbers

The simple quadratic equation x2 C 1 D 0 has no solution in the field of real
numbers,R. Thus, it is necessary to envisage the larger field of complex numbers C.
A complex number z is an ordered pair .a; b/ of real numbers where ordered means
that we regard .a; b/ and .b; a/ as distinct if a ¤ b. Let x D .a; b/ and y D .c; d/ be
two complex numbers. Then we endow the set of complex numbers with an addition
and a multiplication in the following way:

addition: x C y D .a; b/C .c; d/ D .a C c; b C d/

multiplication: xy D .a; b/.c; d/ D .ac � bd; ad C bc/:

These two operations will turn C into a field where .0; 0/ and .1; 0/ play the role of
0 and 1.1 The real numbers R are embedded into C because we identify any a 2 R

with .a; 0/ 2 C.
The number { D .0; 1/ is of special interest. It solves the equation x2 C 1 D 0,

i.e. {2 D �1. The other solution being �{ D .0;�1/. Thus any complex number
.a; b/ may be written as .a; b/ D a C {b where a; b are arbitrary real numbers.2

1Substraction and division can be defined accordingly:

subtraction: .a; b/� .c; d/ D .a � c; b � d/

division: .a; b/=.c; d/ D .ac C bd; bc � ad/

.c2 C d2/
; c2 C d2 ¤ 0:

2A more detailed introduction of complex numbers can be found in Rudin (1976) or any other
mathematics textbook.
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370 A Complex Numbers

An element z in this field can be represented in two ways:

z D a C {b Cartesian coordinates

D re{� D r.cos � C { sin �/ polar coordinates:

In the representation in Cartesian coordinates a D Re.z/ D <.z/ is called the real

part whereas b D Im.z/ D =.z/ is called the imaginary part of z.
A complex number z can be viewed as a point in the two-dimensional Cartesian

coordinate system with coordinates .a; b/. This geometric interpretation is repre-
sented in Fig. A.1.

The absolute value or modulus of z, denoted by jzj, is given by r D
p

a2 C b2.
Thus, the absolute value is nothing but the distance of z viewed as a point in the
complex plane (the two-dimensional Cartesian coordinate system) to the origin (see
Fig. A.1). � denotes the angle to the positive real axis (x-axis) measured in radians.
It is denoted by � D arg z. It holds that tan � D b

a
. Finally, the conjugate of z,

denoted by Nz, is defined by Nz D a � {b.
Setting r D 1 and � D � , gives the following famous formula:

e{� C 1 D .cos� C { sin�/C 1 D �1C 1 D 0:

This formula relates the most famous numbers in mathematics.

Fig. A.1 Representation of a
complex number
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From the definition of complex numbers in polar coordinates, we immediately
derive the following implications:

cos � D e{� C e�{�

2
D a

r
;

sin � D e{� � e�{�

2{
D b

r
:

Further implications are de Moivre’s formula and Pythagoras’ theorem (see
Fig. A.1):

de Moivre’s formula
�
re{�

�n D rne{n� D rn.cos n� C { sin n�/

Pythagoras’ theorem 1 D e{�e�{� D .cos � C { sin �/.cos � � { sin �/

D cos2 � C sin2 �

From Pythagoras’ theorem it follows that r2 D a2 C b2. The representation in polar
coordinates allows to derive many trigonometric formulas.

Consider the polynomialˆ.z/ D �0��1z��2z2� : : :��pzp of order p � 1 with
�0 D 1.3 The fundamental theorem of algebra then states that every polynomial of
order p � 1 has exactly p roots in the field of complex numbers. Thus, the field
of complex numbers is algebraically complete. Denote these roots by �1; : : : ; �p,
allowing that some roots may appear several times. The polynomial can then be
factorized as

ˆ.z/ D
�
1� ��1

1 z
� �
1 � ��1

2 z
�
: : :
�
1 � ��1

p z
�
:

This expression is well-defined because the assumption of a nonzero constant
(�0 D 1 ¤ 0) excludes the possibility of roots equal to zero. If we assume that
the coefficients �j, j D 0; : : : ; p, are real numbers, the complex roots appear in
conjugate pairs. Thus if z D a C {b, b ¤ 0, is a root then Nz D a � {b is also a root.

3The notation with “��jz
j” instead of “�jz

j” was chosen to conform to the notation of AR-models.
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Linear difference equations play an important role in time series analysis. We there-
fore summarize the most important results.1 Consider the following linear difference
equation of order p with constant coefficients. This equation is defined by the
recursion:

Xt D �1Xt�1 C : : :C �pXt�p; �p ¤ 0; t 2 Z:

Thereby fXtg represents a sequence of real numbers and �1; : : : ; �p are p constant
coefficients. The above difference equation is called homogeneous because it
involves no other variable than Xt. A solution to this equation is a function F W
Z ! R such that its values F.t/ or Ft reduce the difference equation to an identity.

It is easy to see that if fX
.1/
t g and fX

.2/
t g are two solutions than fc1X

.1/
t C c2X

.2/
t g,

for any c1; c2 2 R, is also a solution. The set of solutions is therefore a linear space
(vector space).

Definition B.1. A set of solutions ffX
.1/
t g; : : : ; fX

.m/
t gg, m � p, is called linearly

independent if

c1X
.1/
t C : : :C cmX

.m/
t D 0; for t D 0; 1; : : : ; p � 1

implies that c1 D : : : D cm D 0. Otherwise we call the set linearly dependent.

Given arbitrary starting values x0; : : : ; xp�1 for X0; : : : ;Xp�1, the difference
equation determines all further through the recursion:

Xt D �1Xt�1 C : : :C �pXt�p t D p; p C 1; : : : :

1For more detailed presentations see Agarwal (2000), Elaydi (2005) or Neusser (2009).
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374 B Linear Difference Equations

Similarly for Xt mit t D �1;�2; : : :. Suppose we have p linearly independent

solutions ffX
.1/
t g; : : : ; fX

.p/
t gg then there exists exactly p numbers c1; : : : ; cp such

that the solution

Xt D c1X
.1/
t C c2X

.2/
t C : : :C cpX

.p/
t

is compatible with arbitrary starting values x0; : : : ; xp�1. These starting values then
determine uniquely all values of the sequence fXtg. Thus fXtg is the only solution
compatible with starting values. The goal therefore consists in finding p linearly
independent solutions.

We guess that the solutions are of the form Xt D z�t where z may be a complex
number. If this guess is right then we must have for t D 0:

1 � �1z � : : : � �pzp D 0:

This equation is called the characteristic equation.2 Thus z must be a root of the
polynomialˆ.z/ D 1� �1z � : : :� �pzp. From the fundamental theorem of algebra
we know that there are exactly p roots in the field of complex numbers. Denote these
roots by z1; : : : ; zp.

Suppose that these roots are different from each other. In this case
ffz�t

1 g; : : : ; fz�t
p gg constitutes a set of p linearly independent solutions. To show

this it is sufficient to verify that the determinant of the matrix

W D

0
BBBBBB@

1 1 : : : 1

z�1
1 z�1

2 : : : z�1
p

z�2
1 z�2

2 : : : z�2
p

:::
:::

:::

z
�pC1
1 z

�pC1
2 : : : z�pC1

p

1
CCCCCCA

is different from zero. This determinant is known as Vandermonde’s determinant
and is equal to det W D

Q
1�i<j�p.zi � zj/. This determinant is clearly different from

zero because the roots are different from each other. The general solution to the
difference equation therefore is

Xt D c1z
�t
1 C : : :C cpz�t

p (B.1)

where the constants c1; : : : ; cp are determined from the starting values (initial
conditions).

In the case where some roots of the characteristic polynomial are equal, the
general solution becomes more involved. Let z1; : : : ; zr , r < p, be the roots which

2Sometimes one can find zp � �1z
p�1 � : : :� �p D 0 as the characteristic equation. The roots are

of the two characteristic equations are then reciprocal to each other.
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are different from each other and denote their corresponding multiplicities by
m1; : : : ;mr. It holds that

Pr
jD1 D p. The general solution is then given by

Xt D
rX

jD1

�
cj0 C cj1t C : : :C cjmj�1 t

mj�1� z�t
j (B.2)

where the constants cji are again determined from the starting values (initial
conditions).



CStochastic Convergence

This appendix presents the relevant concepts and theorems from probability theory.
The reader interested in more details should consult corresponding textbooks, for
example Billingsley (1986), Brockwell and Davis (1991), Hogg and Craig (1995),
or Kallenberg (2002) among many others.

In the following, all real random variables or random vectors X are defined with
respect to some probability space .�;A;P/. Thereby,� denotes an arbitrary space
with �-field A and probability measure P. A random variable, respectively random
vector, X is then defined as a measurable function from� to R, respectivelyRn. The
probability space� plays no role as it is introduced just for the sake of mathematical
rigor. The interest rather focuses on the distributions induced by P ı X�1.

We will make use of the following important inequalities.

Theorem C.1 (Cauchy-Bunyakovskii-Schwarz Inequality). For any two random

variables X and Y,

jE.XY/j �
p
EX2

p
EY2:

The equality holds if and only if X D E.XY/

E.Y2/
Y.

Theorem C.2 (Minkowski’s Inequality). Let X and Y be two random variables with

EjXj2 < 1 and EjYj2 < 1, then

�
EjX C Yj2

�1=2 �
�
EjXj2

�1=2 C
�
EjYj2

�1=2
:

Theorem C.3 (Chebyschev’s Inequality). If EjXjr < 1 for r � 0 then for every

r � 0 and any " > 0

PŒjXj � "� � "�r
EjXjr:
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Theorem C.4 (Borel-Cantelli Lemma). Let A1;A2; : : : 2 A be an infinite sequence

of events in some probability space .�;A;P/ such that
P1

kD1 P.Ak/ < 1. Then,

PfAk i:o:g D 0. The event fAk i:o:g is defined by fAk i:o:g D lim supkfAkg DT1
kD1

S1
jDk Aj where i:o: stands for infinitely often.

On several occasions it is necessary to evaluate the limit of a sequence of
random variables. In probability theory several concepts of convergence are dis-
cussed: almost sure convergence, convergence in probability, convergence in r-th

mean (convergence in quadratic mean), convergence in distribution. We only give
definitions and the most important theorems leaving an in-depth discussion to the
relevant literature. Although not explicitly mentioned, many of the theorem below
also hold in an analogous way in a multidimensional context.

Definition C.1 (Almost Sure Convergence). For random variables X and fXtg
defined on the same probability space .�;A;P/, we say that fXtg converges almost
surely or with probability one to X if

P
n
! 2 � W lim

t!1
Xt.!/ D X.!/

o
D 1:

This fact is denoted by Xt

a:s:��! X or lim Xt D Xa:s:

Theorem C.5 (Kolmogorov’s Strong Law of Large Numbers (SLLN)). Let

X;X1;X2; : : : be identically and independently distributed random variables. Then,

the arithmetic average XT D 1
T

PT
tD1 Xt converges almost surely to EX if and only

if EjXj < 1.

Definition C.2 (Convergence in Probability). For random variables X and fXtg
defined on the same probability space, we say that fXtg converges in probability
to X if

lim
t!1

PŒjXt � Xj > "� D 0 for all " > 0:

This fact is denoted by Xt

p�! X or plim Xt D X.

Remark C.1. If X and fXtg are real valued random vectors, we replace the absolute
value in the definition above by the Euclidean norm k:k. This is, however, equivalent
to saying that every component Xit converges in probability to Xi, the i-th component
of X.

Definition C.3 (Convergence in r-th Mean). A sequence fXtg of random variables

converges in r-th mean to a random variable X if

lim
t!1

E.jXt � Xjr/ D 0 for r > 0:
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We denote this fact by Xt

r�! X. If r D 1 we say that the sequence converges

absolutely; and if r D 2 we say that the sequence converges in mean square which

is denoted by Xt

m:s:���! X.

Remark C.2. In the case r D 2, the corresponding definition for random vectors is

lim
t!1

E.kXt � Xk2/ D lim
t!1

E.Xt � X/0.Xt � X/ D 0:

Theorem C.6 (Riesz-Fisher). Let fXtg be a sequence of random variables such

supt EjXtj2 < 1. Then there exists a random variable X with EjXj2 < 1 such that

Xt

m:s:���! X if and only if EjXt � Xsj2 ! 0 for t; s ! 1:

This version of the Riesz-Fisher theorem provides a condition, known as the
Cauchy criterion, which is often easier to verify when the limit is unknown.

Definition C.4 (Convergence in Distribution). A sequence fXtg of random vectors

with corresponding distribution functions fFXt
g converges in distribution, if there

exists an random vector X with distribution function FX such that

lim
t!1

FXt
.x/ D FX.x/ for all x 2 C

where C denotes the set of points for which FX.x/ is continuous. We denote this fact

by Xt

d�! X.

Note that, in contrast to the previously mentioned modes of convergence,
convergence in distribution does not require that all random vectors are defined on
the same probability space. The convergence in distribution states that, for large
enough t, the distribution of Xt can be approximated by the distribution of X.

The following Theorem relates the four convergence concepts.

Theorem C.7. (i) If Xt

a:s:��! X then Xt

p�! X.

(ii) If Xt

p�! X then there exists a subsequence fXtng such that Xtn

a:s:��! X.

(iii) If Xt

r�! X then Xt

p�! X by Chebyschev’s inequality (Theorem C.3).

(iv) If Xt

p�! X then Xt

d�! X.

(v) If X is a fixed constant, then Xt

d�! X implies Xt

p�! X. Thus, the two concepts

are equivalent under this assumption.



380 C Stochastic Convergence

These facts can be summarized graphically:

Xtn

a:s:��! X

*

Xt

a:s:��! X H) Xt

p��! X H) Xt

d��! X

*

Xt

r��! X

A further useful theorem is:

Theorem C.8. If EXt �! � and VXt �! 0 then Xt

m:s:���! � and consequently

Xt

p�! �.

Theorem C.9 (Continuous Mapping Theorem). For any continuous function

f W Rn �! Rm and random vectors fXtg and X defined on some probability space,

the following implications hold:

(i) Xt

a:s:��! X implies f .Xt/
a:s:��! f .X/.

(ii) Xt

p�! X implies f .Xt/
p�! f .X/.

(iii) Xt

d�! X implies f .Xt/
d�! f .X/.

An important application of the Continuous Mapping Theorem is the so-called
Delta method which can be used to approximate the distribution of f .Xt/ (see
Appendix E).

A further useful result is given by:

Theorem C.10 (Slutzky’s Lemma). Let fXtg and fYtg be two sequences of random

vectors such that Xt

d�! X and Yt

d�! c, c constant, then

(i) Xt C Yt

d����! X C c,

(ii) Y 0
t Xt

d����! c0X.

(iii) Xt=Yt

d����! X=c if c is a nonzero scalar.

Like the (cumulative) distribution function, the characteristic function provides
an alternative way to describe a random variable.

Definition C.5 (Characteristic Function). The characteristic function of a real

random vector X, denoted by 'X , is defined by

'X.s/ D Ee{�
0X; � 2 R

n;

where { is the imaginary unit.

If, for example, X � N.�; �2/, then 'X.s/ D exp.{s�� 1
2
�2s2/. The characteris-

tic function uniquely determines the distribution of X. Thus, if two random variables
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have the same characteristic function, they have the same distribution. Moreover,
convergence in distribution is equivalent to convergence of the corresponding
characteristic functions.

Theorem C.11 (Convergence of Characteristic Functions, Lévy). Let fXtg be a

sequence of real random variables with corresponding characteristic functions 'Xt

then

Xt

d����! X if and only if lim
t!1

'Xt
.�/ D 'X.�/; for all � 2 R

n:

In many cases the limiting distribution is a normal distribution. In which case
one refers to the asymptotic normality.

Definition C.6 (Asymptotic Normality). A sequence of random variables fXtg
with “means” �t and “variances” �2t > 0 is said to be asymptotically normally
distributed if

��1
t .Xt � �t/

d����! X � N.0; 1/:

Note that the definition does not require that �t D EXt nor that �2t D V.Xt/.
Asymptotic normality is obtained if the Xt’s are identically and independently
distributed with constant mean and variance. In this case the Central Limit Theorem
(CLT) holds.

Theorem C.12 (Central Limit Theorem). Let fXtg be a sequence of identically

and independently distributed random variables with constant mean� and constant

variance �2 then

p
T

XT � �
�

d����! N.0; 1/;

where XT D T�1PT
tD1 Xt is the arithmetic average.

It is possible to relax the assumption of identically distributed variables in various
ways so that there exists a variety of CLT’s in the literature. For our purpose it is
especially important to relax the independence assumption. A natural way to do this
is by the notion of m-dependence.

Definition C.7 (m-Dependence). A strictly stationary random process fXtg is called

m-dependent for some nonnegative integer m if and only if the two sets of random

variables fX� ; � � tg and fX� ; � � t C m C 1g are independent.

Note that for such processes �.j/ D 0 for j > m. This type of dependence allows
to proof the following generalized Central Limit Theorem (see Brockwell and Davis
1991).

Theorem C.13 (CLT for m-Dependent Processes). Let fXtg be a strictly stationary

mean zero m-dependent process with autocovariance function �.h/ such that Vm DPm
hD�m �.h/ ¤ 0 then
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(i) limT!1 TV.XT/ D Vm and

(ii)
p

TXT is asymptotically normal N.0;Vm/.

Often it is difficult to derive the asymptotic distribution of fXtg directly. This
situation can be handled by approximating the original process fXtg by a process

fX
.m/
t g which is easier to handle in terms of its asymptotic distribution and where

the precision of the approximation can be “tuned” by the parameter m.

Theorem C.14 (Basis Approximation Theorem). Let fXtg and fX
.m/
t g be two

random vectors process such that

(i) X
.m/
t

d����! X.m/ as t ! 1 for each m D 1; 2; : : :,

(ii) X.m/
d����! X as m ! 1, and

(iii) limm!1 lim supt!1 PŒjXt � X
.m/
t j > �� D 0 for every � > 0.

Then

Xt

d����! X as t ! 1:



DBeveridge-Nelson Decomposition

The Beveridge-Nelson decomposition proves to be an indispensable tool. Based on
the seminal paper by Phillips and Solo (1992), we proof the following Theorem
for matrix polynomials where k:k denotes the matrix norm (see Definition 10.6 in
Chapter 10). The univariate version is then a special case with the absolute value
replacing the norm.

Theorem D.1. Any a lag polynomial ‰.L/ D
P1

jD0‰jLj where ‰j are n � n

matrices with ‰0 D In can be represented by

‰.L/ D ‰.1/� .In � L/e‰.L/ (D.1)

where e‰.L/ D
P1

jD0 e‰jL with e‰j D
P1

iDjC1‰i. Moreover,

1X

jD1
j2k‰jk2 < 1 implies

1X

jD0
ke‰jk2 < 1 and k‰.1/k < 1:

Proof. The first part of the Theorem is obtained by the algebraic manipulations
below:

‰.L/ �‰.1/ D In C‰1L C‰2L
2 C : : :

� In �‰1 �‰2 � : : :

D ‰1.L � In/C‰2.L
2 � In/C‰3.L

3 � In/C : : :

D .L � In/‰1 C .L � In/‰2.L C In/

C .L � In/‰3.L
2 C L C In/C : : :
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D �.In � L/..‰1 C‰2 C‰3 C : : :/„ ƒ‚ …
e‰0

C

.‰2 C‰3 C : : :/„ ƒ‚ …
e‰1

L C .‰3 C : : :/„ ƒ‚ …
e‰2

L2 C : : :/

Taking any ı 2 .1=2; 1/, the second part of the Theorem follows from

1X

jD0
ke‰jk2 D

1X

jD0









1X

iDjC1
‰j









2

�
1X

jD0

0
@

1X

iDjC1
k‰jk

1
A
2

D
1X

jD0

0
@X

iDjC1
iık‰jki�ı

1
A
2

�
1X

jD0

0
@

1X

iDjC1
i2ık‰jk2

1
A
0
@

1X

iDjC1
i�2ı

1
A

� .2ı � 1/�1
1X

jD0

0
@

1X

iDjC1
i2ık‰ik2

1
A j1�2ı

D .2ı � 1/�1
1X

iD0

0
@

i�1X

jD0
j1�2ı

1
A i2ık‰ik2

� Œ.2ı � 1/.2� 2ı/��1
1X

jD0
j2ık‰ik2j2�2ı

D Œ.2ı � 1/.2� 2ı/��1
1X

jD0
j2k‰ik2 < 1:

The first inequality follows from the triangular inequality for the norm. The second
inequality is Hölder’s inequality (see, for example, Naylor and Sell 1982; p. 548)
with p D q D 2. The third and the fourth inequality follow from the Lemma below.
The last inequality, finally, follows from the assumption.
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The last assertion follows from

k‰.1/k �
1X

jD0
k‰jk D kInk C

1X

jD1
jk‰jkj�1

� kInk C

0
@

1X

jD1
j2k‰jk2

1
A
20
@

1X

jD1
j�2

1
A
2

< 1:

The last inequality is again a consequence of Hölder’s inequality. The summability
assumption then guarantees the convergence of the first term in the product.
Cauchy’s condensation test finally establishes the convergence of the last term. ut

Lemma D.1. The following results are useful:

(i) For any b > 0,
P1

iDjC1 i�1�b � b�1j�b.

(ii) For any c 2 .0; 1/,
Pi

jD1 jc�1 � c�1ic.

Proof. Let k be a number greater than j, then k�1�b � j�1�b and

k�1�b �
Z k

k�1
j�1�bdj D b�1.k � 1/�b � b�1k�b:

This implies that
P1

kDjC1 k�1�b � b�1j�b. This proves part (i) by changing the

summation index back from k to j. Similarly, kc�1 � jc�1 and

kc�1 �
Z k

k�1
jc�1dj D c�1kc � c�1.k � 1/c:

Therefore
Pi

kD1 kc�1 � c�1ic which proves part (ii) by changing the summation
index back from k to j. ut

Remark D.1. An alternative common assumption is
P1

jD1 jk‰jk < 1. It is,
however, easy to see that this assumption is more restrictive as it implies the one
assumed in the Theorem, but not vice versa. See Phillips and Solo (1992) for more
details.
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It is often the case that it is possible to obtain an estimate Ǒ
T of some parameter

ˇ, but that one is really interested in a function f of ˇ. The Continuous Mapping
Theorem then suggests to estimate f .ˇ/ by f . Ǒ

T/. But then the question arises how
the distribution of Ǒ

T is related to the distribution of f . Ǒ
T/.

Expanding the function into a first order Taylor approximation allows to derive
the following theorem.

Theorem E.1. Let f Ǒ
Tg be a K-dimensional sequence of random variables with the

property
p

T. Ǒ
T � ˇ/

d����! N.0;†/ then

p
T
�

f . Ǒ
T/� f .ˇ/

�
d����! N

�
0;rf .ˇ/ † rf .ˇ/0

�
;

where f W RK �! RJ is a continuously differentiable function with Jacobian matrix

(matrix of first order partial derivatives) rf .ˇ/ D @f .ˇ/=@̌ 0.

Proof. See Serfling (Serfling 1980; 122–124). ut

Remark E.1. In the one-dimensional case where
p

T. Ǒ
T �ˇ/ d����! N.0; �2/ and

f W R �! R the above theorem becomes:

p
T
�

f . Ǒ
T/ � f .ˇ/

�
d����! N

�
0; Œf 0.ˇ/�2�2

�

where f 0.ˇ/ is the first derivative evaluated at ˇ.
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Remark E.2. The J�K Jacobian matrix of first order partial derivatives is defined as

rf .ˇ/ D @f .ˇ/=@̌ 0 D

0
BB@

@f1.ˇ/

@ˇ1
: : :

@f1.ˇ/

@ˇK

:::
: : :

:::
@fJ .ˇ/

@ˇ1
: : :

@fJ .ˇ/

@ˇK

1
CCA :

Remark E.3. In most applications ˇ is not known so that one evaluates the Jacobian
matrix at Ǒ

T .

Example: Univariate

Suppose we have obtained an estimate of ˇ equal to Ǒ D 0:6 together with an
estimate for its variance O�2Ǒ D 0:2. We can then approximate the variance of f . Ǒ/ D
1= Ǒ D 1:667 by

OV.f . Ǒ// D
"

�1
Ǒ2

#2
O�2Ǒ D 1:543:

Example: Multivariate

In the process of computing the impulse response function of a VAR(1) model with

ˆ D
�
�11 �12

�21 �22

�
one has to calculate ‰2 D ˆ2. If we stack all coefficients of ˆ into

a vector ˇ D vec.ˆ/ D .�11; �21; �12; �22/
0 then we get:

f .ˇ/ D vec‰2 D vecˆ2 D

0
BBB@

 
.2/
11

 
.2/
21

 
.2/
12

 
.2/
22

1
CCCA D

0
BB@

�211 C �12�21
�11�21 C �21�22
�11�12 C �12�22
�12�21 C �222

1
CCA ;

where ‰2 D
h
 
.2/
ij

i
. The Jacobian matrix then becomes:

rf .ˇ/ D

0
BBBBBB@

@ 
.2/
11

@�11

@ 
.2/
11

@�21

@ 
.2/
11

@�12

@ 
.2/
11

@�22

@ 
.2/
21

@�11

@ 
.2/
21

@�21

@ 
.2/
21

@�12

@ 
.2/
21

@�22

@ 
.2/
12

@�11

@ 
.2/
12

@�21

@ 
.2/
12

@�12

@ 
.2/
12

@�22

@ 
.2/
22

@�11

@ 
.2/
22

@�21

@ 
.2/
22

@�12

@ 
.2/
22

@�22

1
CCCCCCA

D

0
BB@

2�11 �12 �21 0

�21 �11 C �22 0 �21

�12 0 �11 C �22 �12
0 �12 �21 2�22

1
CCA :
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In Section 15.4.4 we obtained the following estimate for a VAR(1) model for
fXtg D f.ln.At/; ln.St//

0g:

Xt D Oc C Ô Xt�1 C OZt D
�

�0:141
0:499

�
C
�
0:316 0:640

�0:202 1:117

�
Xt�1 C OZt:

The estimated covariance matrix of vec Ô , OV.vec Ô /, was:

OV. Ǒ/ D OV.vec Ô / D

0
BB@

0:0206 0:0069 �0:0201 �0:0067
0:0069 0:0068 �0:0067 �0:0066

�0:0201 �0:0067 0:0257 0:0086

�0:0067 �0:0066 0:0086 0:0085

1
CCA :

We can then approximate the variance of f . Ǒ/ D vec.ˆ2/ by

OV.f .vec Ô // D OV.vec Ô 2/ D rf .vecˆ/jˆD Ô OV.vec Ô / rf .vecˆ/j0
ˆD Ô :

This leads :

OV.f .vec Ô // D

0
BB@

0:0245 0:0121 �0:0245 �0:0119
0:0121 0:0145 �0:0122 �0:0144

�0:0245 �0:0122 0:0382 0:0181

�0:0119 �0:0144 0:0181 0:0213

1
CCA :
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causality condition, 33
estimation, 95
invertibility, 37
invertibility condition, 37
maximum likelihood estimation, 95
state space representation, 330

Autocorrelation function, 14
confidence interval

MA(q) process, 76
AR(1) process, 77

estimation, 73
asymptotic distribution, 74
Bartlett’s formula, 74
confidence interval, 75

interpretation, 64
order, 14
properties, 21
random walk, 144
univariate, 14

Autocorrelation function, partial, 62
AR process, 63

estimation, 78
interpretation, 64
MA process, 52, 64

Autocovariance function, 13
ARMA process, 38
estimation, 73
linear process, 124
MA(1) process, 21
multivariate, 202
order, 13
properties, 20
random walk, 144
univariate, 13

Autoregressive conditional heteroskedasticity
models, see Volatility

Autoregressive final form, 223
Autoregressive moving-average process, 25
Autoregressive moving-average prozess

mean, 25

B

Back-shift operator, see also Lag operator
Bandwidth, 80
Bartlett’s formula, 74
Basic structural model, 332, 349

cylical component, 333
local linear trend model, 333
seasonal component, 333

Bayesian VAR, 253
Beveridge-Nelson decomposition, 138, 383
Bias proportion, 250
Bias, small sample, 92, 231

correction, 92, 231
BIC, see Information criterion, 101, see

Information criterion, 247
Borel-Cantelli lemma, 377
Box-Pierce statistic, 75
BSM, see Basic structural model
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C

Canonical correlation coefficients, 315
Cauchy-Bunyakovskii-Schwarz

inequality, 377
Causal representation, 32
Causality, see also Wiener-Granger

causality, 328
Wiener-Granger causality, 255

Central Limit Theorem
m-dependence, 381

Characteristic function, 380
Chebyschev’s inequality, 377
Chow test, 355
Cointegration, 159

Beveridge-Nelson decomposition, 304,
309

bivariate, 159
common trend representation, 310
definition, 305
fully-modified OLS, 319, 323
Granger’s representation theorem, 309
normalization, 323
order of integration, 303
shocks, permanent and transitory, 311
Smith-McMillan factorization, 306
test

Johansen test, 312
regression test, 161

triangular representation, 311
VAR model, 305

assumptions, 305
VECM, 307
vector error correction, 307
Wald test, 321

Companion form, 218
Convergence

Almost sure convergence, 378
Convergence in r-th mean, 378
Convergence in distribution, 379
Convergence in probability, 378

Correlation function, 202
estimator, 208
multivariate, 202

Covariance function
estimator, 208
properties, 203

covariance function, 202
Covariance proportion, 250
Covariance, long-run, 209
Cross-correlation, 203

distribution, asymptotic, 209
Cyclical component, 128, 333

D

Dickey-Fuller distribution, 142
Durbin-Levinson algorithm, 48, 63
Dynamic factor model, 335
Dynamic multiplier, see Shocks, transitory

E

EM algorithm, 345
Ergodicity, 10, 69
Estimation

ARMA model, 95
order, 99

Estimator
maximum likelihood estimator, 95, 96
method of moments

GARCH(1,1) model, 187
moment estimator, 88
OLS estimator, 91

process, integrated, 141
Yule-Walker estimator, 88

Example
AD-curve and Money Supply, 260
advertisement and sales, 274
ARMA processes, 34
cointegration

fully-modified OLS, 323
Johansen approach, 321

consumption expenditure and
advertisement, 212

demand and supply shocks, 287
estimation of long-run variance, 83
estimation of quarterly GDP, 346
GDP and consumer sentiment index, 213
growth model, neoclassical, 323
inflation and short-term interest rate, 162
IS-LM model with Phillips curve, 277
modeling real GDP of Switzerland, 103
present discounted value model, 296
structural breaks, 356
Swiss Market Index, 188
term structure of interest rate, 164
unit root test, 152

Expectation, adaptive, 59
Exponential smoothing, 58

F

Factor model, dynamic, see Dynamic factor
model

FEVD, see also Forecast error variance
decomposition
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Filter
gain function, 126
Gibbs phenomenon, 128
high-pass, 128
Hodrick-Prescott filter, 128
HP-filter, 128
Kuznets filter, 126
low-pass, 127
phase function, 126
TRAMO-SEATS, 131
transfer function, 125
X-11 filter, 131
X-12-Filter, 131

Filter, time invariant, 122
Filtering problem, 336
Final form, see Autoregressive final form
FMOLS estimator, 319, 323

Wald test, 321, 324
Forecast error variance decomposition, 270
Forecast evaluation

Bias proportion, 250
Covariance proportion, 250
Mean-absolute-error, 249
Out-of-sample strategy, 250
Root-mean-squared-error, 249
Uncertainty, 251
Variance proportion, 250

Forecast function, 45
AR(p) process, 48
ARMA(1,1) process, 53
forecast error, 47
infinite past, 53
linear, 45
MA(q) process, 50
variance of forecast error, 48

Forecast, direct, 253
Forecast, iterated, 244, 250, 253
Fourier frequencies, 117
Fourier transform, discrete, 118
FPE, see Information criterion, 248
Frequency domain, 109
Fully-modified ordinary least-squares, 319

G

Gain function, 126
Gauss Markov theorem, 92
Growth component, 128

H

HAC variance, see also variance,
heteroskedastic and autocorrelation
consistent

Harmonic process, 54, 115
Hodrick-Prescott filter, 128
HQC, see Information criterion, 101, see

Information criterion, 247

I

Identification
Box-Jenkins, 64
Kalman filter, 346

Identification problem, 262
Impulse response function, 32, 37
Information criterion, 101, 247

AIC, 101, 247
BIC, 101, 247
Final prediction error, 248
FPE, 248
Hannan-Quinn, 247
HQC, 101
Schwarz, 101, 247

Innovation algorithm, 48
Innovations, 56
Integrated GARCH, 181
Integrated process, 102
Integrated regressors

rules of thumb, 162
Integration, order of, 134
Intercept correction, 253
Invertibility, 37

J

Johansen test
distribution, asymptotic, 318
hypothesis tests over ˇ, 318
max test, 316
specification of deterministic part, 317
trace test, 316

K

Kalman filter, 339
application

basic structural model, 349
estimation of quarterly GDP, 346

AR(1) process, 337, 342
assumptions, 327
causal, 328
EM algorithm, 345
filtering problem, 336
forecasting step, 339
gain matrix, 340
identification, 346
initialization, 340
likelihood function, 344
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Kalman filter (cont.)
Markov property, 327
measurement errors, 342
observation equation, 326
prediction problem, 336
smoother, 341
smoothing problem, 336
stable, 328
state equation, 326
stationarity, 328
updating step, 339

Kalman smoother, 341
Kernel function, 80

bandwidth, 80
optimal, 82
rule of thumb, 82

Bartlett, 80
boxcar, 80
Daniell, 80
lag truncation parameter, 80

optimal, 82
quadratic spectral, 80
Tukey-Hanning, 80

L

Lag operator, 26
calculation rules, 26
definition, 26
polynomial, 26

Lag polynomial, 26
Lag truncation parameter, 80
Lag window, 117
Lead operator, 26
Leading indicator, 213, 259
Least-squares estimator, 91, 97
Likelihood function, 95, 344, 365

ARMA process, 95
Kalman filter, 344
regime switching model, 365

Ljung-Box statistic, 75
Loading matrix

definition, 306
Local linear trend model, 333
Long-run identification, 285

instrumental variables, 286

M

m-dependence, 381
MA process, 17, 27

autocorrelation function, 28
autocovariance function, 21, 27

MAE, 249

Markov chain, 364
ergodic distribution, 365
regular, 365

Matrix norm, 205
absolute summability, 206
quadratic summability, 206
submultiplicativity, 206

Max share identification, see also VAR
process, see also VAR process

Maximum likelihood estimator, 96, 184
ARMA(p,q) model, 95
asymptotic distribution, 98

AR process, 98
ARMA(1,1) process, 99
MA process, 99

GARCH(p,q) model, 186
Maximum likelihood method, 95
Mean, 67, 207

asymptotic distribution, 69, 71
distribution, asymptotic, 208
estimation, 67, 207
estimator, 208

Mean reverting, 133
Mean squared error matrix

estimated coefficients, 247
known coefficients, 244

Measurement errors, 337
Median–target method, 293
Memory, short, 28
Minnesota prior, 253, 361
Missing observations, 331
Mixture distributions, 365
Model, 10

N

Normal distribution, multivariate
conditional, 337

Normal equations, 46

O

Observation equation, 326
Observationally equivalent, 262
OLS estimator, 91

distribution, asymptotic, 92
Order of integration, 134
Ordinary-least-squares estimator, 91
Oscillation length, 111
Overfitting, 99

P

PACF, see also Autocorrelation function,
partial
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Partial autocorrelation function
computation, 63
estimation, 78

Particle filter, 360
Penalty function approach, 293
Period length, 111
Periodogram, 117
Perpetuity, 357
Persistence, 137
Phase function, 126
Portmanteau test, 76
PP-test, 149
Prediction problem, 336
Predictor, see also Forecast function
Present discounted value model, 296

Beveridge-Nelson decomposition, 301
cointegration, 299
spread, 297
VAR representation, 298
vector error correction model, 298

Prewhitening, 83
Process, ARIMA, 134
Process, stochastic, 7, 201

ARMA process, 25
branching process, 11
deterministic, 54
difference-stationary, 134
finite memory, 18
finite-range dependence, 18
Gaussian process, 15
harmonic process, 54
integrated, 102, 134, 303

Beveridge-Nelson decomposition,
138

forecast, long-run, 135
impulse response function, 137
OLS estimator, 141
persistence, 137
variance of forecast error, 136

linear, 204
linearly regular, 57
memory, 15
moving-average process, 17
multivariate, 201
purely non-deterministic, 57
random walk, 19
random walk with drift, 19
singular, 54
spectral representation, 116
trend-stationary, 134

forecast, long-run, 135
impulse response function, 137
variance of forecast error, 136

white noise, 15

R

Random walk, 11, 19
autocorrelation function, 144
autocovariance function, 144

Random walk with drift, 19
Real business cycle model, 336
Realization, 9
Regime switching model, 364

maximum likelihood estimation, 365
Restrictions

long-run, 282
short-run, 268
sign restrictions, 267

RMSE, 249

S

Seasonal component, 333
Set identified, 292
Shocks

fundamental, 57
permanent, 37
structural, 260
transitory, 36

Short range dependence, see also Memory,
short

Signal-to-noise ratio, 333
Singular values, 315
Smoothing, 341
Smoothing problem, 336
Smoothing, exponential, 58
Spectral average estimator, discrete, 118
Spectral decomposition, 109
Spectral density, 110, 115

ARMA process, 121
autocovariance function, 111
estimator, direct, 117
estimator, indirect, 117
Fourier coefficients, 111
spectral density, rational, 122
variance, long-run, 117

Spectral distribution function, 115
Spectral representation, 114, 116
Spectral weighting function, 119
Spectral window, 119
Spectrum estimation, 109
Spurious correlation, 158
Spurious regression, 158
State equation, 326
State space, 9
State space representation, 218, 326

ARMA processes, 330
ARMA(1,1), 329
missing observations, 331
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State space representation (cont.)
stationarity, 328
time-varying coefficients, 331, 357

Cooley-Prescott, 331
Harvey-Phillips, 331
Hildreth-Houck, 331

VAR process, 329
Stationarity, 13

multivariate, 202
strict, 14
weak, 13

Stationarity, strict
multivariate, 203

Strong Law of Large Numbers, 378
Structural breaks, 153, 252, 354

Chow test, 355
dating of breaks, 356
tests, 356

Structural change, 20
Structural time series analysis, 140
Structural time series model, 332, 349

basic structural model, 332
Summability

absolute, 206
quadratic, 206

Summability Condition, 383
Superconsistency, 142
Swiss Market Index (SMI), 188

T

Test
autocorrelation, squared residuals, 183
cointegration

regression test, 161
Dickey-Fuller regression, 146
Dickey-Fuller test, 146, 147

augmented, 148
correction, autoregressive, 148

heteroskedasticity, 183
Engle’s Lagrange-multiplier test, 184

Independence, 210
Johansen test, 312

correlation coefficients, canonical, 315
distribution, asymptotic, 318
eigenvalue problem, 314
hypotheses, 312
hypothesis tests over ˇ, 318
likelihood function, 315
max test, 316
singular values, 315
trace test, 316

Kwiatkowski-Phillips-Schmidt-Shin-test,
157

Phillips-Perron test, 146, 149
stationarity, 157
uncorrelatedness, 210
unit root test

structural breaks, 153
testing strategy, 150

unit-root test, 146
white noise

Box-Pierce statistic, 75
Ljung-Box statistic, 75
Portmanteau test, 76

Time, 8
Time domain, 109
Time series model, 10
Time-varying coefficients, 331, 357

Minnesota prior, 361
regime switching model, 364

Times series analysis, structural, 140
Trajectory, 9
Transfer function, 125
Transfer function form, 223
Transition probability matrix, 364

U

Underfitting, 99

V

Value-at-Risk, 192
VaR, see Value-at-Risk
VAR process

Bayesian VAR, 253
correlation function, 221
covariance function, 221
estimation

order of VAR, 247
Yule-Walker estimator, 238

forecast error variance decomposition, 270
forecast function, 241

mean squared error, 243, 244
form, reduced, 261, 263
form, structural, 260, 263
identification

forecast error variance share
maximization, 272, 293

long-run identification, 282, 285
short-run identification, 268
sign restrictions, 267, 289
zero restrictions, 268

identification problem, 262, 264
Cholesky decomposition, 269

impulse response function, 270
bootstrap, 273
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confidence intervals, 272
delta method, 273

state space representation, 329
Structural breaks, 252
time-varying coefficients, 357
VAR(1) process, 216

stationarity, 216
variance decomposition

confidence intervals, 272
Variance proportion, 250
Variance, heteroskedastic and autocorrelation

consistent, 72
Variance, long-run, 72, 209

estimation, 79, 83
prewhitening, 83

multivariate, 209
spectral density, 117

VARMA process, 215
causal representation, 219
condition for causal representation, 219

VECM, see also Cointegration
Vector autoregressive moving-average process,

see also VARMA process
Vector autoregressive process, see also VAR

process
Volatility

ARCH(p) model, 173
ARCH-in-mean model, 176
EGARCH model, 176
Forecasting, 182
GARCH(1,1) model, 177
GARCH(p,q) model, 174

ARMA process, 175

heavy-tail property, 175
GARCH(p,q) model, asymmetric, 176
heavy-tail property, 172
IGARCH, 181
models, 173
TARCH(p,q) model, 176
time-varying, 360
Wishart autoregressive process, 360

W

Weighting function, 80
White noise, 15

multivariate, 204
univariate, 15

Wiener-Granger causality, 255
test

F-test, 257
Haugh-Pierce test, 260

Wishart autoregressive process, 360
Wold Decomposition Theorem, 55

multivariate, 245
univariate, 55

Y

Yule-Walker equations
multivariate, 221
univariate, 88

Yule-Walker estimator, 88
AR(1) process, 89
asymptotic distribution, 89
MA process, 90
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