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Preface

The purpose of this book is to give a detailed account of some recent develop-
ments in the field of probability and statistics for dependent data. It covers a
wide range of topics from Markov chains theory, weak dependence, dynamical
system to strong dependence and their applications. The title of this book
has been somehow borrowed from the book ”Dependence in Probability and
Statistics: a Survey of Recent Result” edited by Ernst Eberlein and Murad
S. Taqqu, Birkhäuser (1986), which could serve as an excellent prerequisite
for reading this book. We hope that the reader will find it as useful and
stimulating as the previous one.

This book was planned during a conference, entitled “STATDEP2005:
Statistics for dependent data”, organized by the Statistical Laboratory of
the CREST (Research Center in Economy and Statistics), in Paris/Malakoff,
under the auspices of the French State Statistical Institute, INSEE.

See http://www.crest.fr/pageperso/statdep2005/home.htm for some ret-
rospective informations. However this book is not a conference proceeding.
This conference has witnessed the rapid growth of contributions on depen-
dent data in the probabilistic and statistical literature and the need for a
book covering recent developments scattered in various probability and sta-
tistical journals. To achieve such a goal, we have solicited some participants
of the conferences as well as other specialists of the field.

The mathematical level of this book is mixed. Some chapters (chapters 1,
3, 4, 9, 10, part of chapter 12) are general surveys which have been prepared for
a broad audience of readership, with good notions in time-series, probability
and statistics. Specific statistical procedures with dedicated applications are
also presented in the last section and may be of interest to many statisticians.
However, due to the innate nature of the field, the mathematical developments
are important and some chapters of the book are rather intended to researchers
in the field of dependent data.

The book has been organized into three parts: ”Weak dependence and
related concepts”, ”Strong dependence” and Statistical estimation and appli-
cations”.
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The first seven chapters consider some recent development in weak depen-
dence, including some recent results for Markov chains as well as some new
developments around the notion of weak dependence introduced by Doukhan
and Louichi in their seminal paper of 1999. A special emphasis is put on poten-
tial applications and developments of these notions in the field of dynamical
systems. We believe that this part somehow fills a gap between the statistical
literature and the dynamical system literature and that both communities
may find it of interest.

The second part, built around 6 chapters, presents some recent or new
results on strong dependence with a special emphasis on non-linear processes
and random fields currently encountered in applications. Special models ex-
hibiting long range dependence features are also studied in this section. It also
proposes some extensions of the notions of weak dependence to anisotropic
random fields (chapters 9 and 12) which may motivate new researches in the
field.

Finally, the last part considers some general estimation problems ranking
from rate of convergence of maximum likelihood estimators, efficient estima-
tion in parametric or non-parametric times series model with an emphasis
on applications. Although the important problem of non-stationarity is not
specifically addressed (because it covers too large a field), many applications
in this section deal with estimations in a non-stationary framework. We hope
that these applications will also generate some new theoretical developments
in the field of non-stationary time series.

Preparing this book, has been greatly facilitated by the kind cooperation
of the authors, which have done their best to follow our recommandations:
we would like to thank all of them for their contributions. We would also
like to thank the members of the organizing and scientific committees of the
Statdep2005 conference, who have kindly accepted to play the role of “asso-
ciate editors” in the realization of this book. We are in particular grateful to
Jérome Dedecker, Youri Golubev, Sylvie Huet, Gabriel Lang, Jose R. León,
Eric Moulines, Michael H. Neumann, Emmanuel Rio, Alexandre Tsybakov
and Jean-Michel Zaköıan for their help in the refereing processes of the pa-
pers. We are also grateful to all the anonymous referees for their great work
and all their suggestions.

Malakoff and Nanterre, Patrice Bertail
France Paul Doukhan
December 2005 Philippe Soulier
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1 Introduction

1.1 On describing Markov chains via Renewal processes

Renewal theory plays a key role in the analysis of the asymptotic structure
of many kinds of stochastic processes, and especially in the development of
asymptotic properties of general irreducible Markov chains. The underlying
ground consists in the fact that limit theorems proved for sums of independent
random vectors may be easily extended to regenerative random processes, that
is to say random processes that may be decomposed at random times, called
regeneration times, into a sequence of mutually independent blocks of obser-
vations, namely regeneration cycles (see Smith (1955)). The method based
on this principle is traditionally called the regenerative method. Harris chains
that possess an atom, i.e. a Harris set on which the transition probability
kernel is constant, are special cases of regenerative processes and so directly
fall into the range of application of the regenerative method (Markov chains
with discrete state space as well as many markovian models widely used in
operational research for modeling storage or queuing systems are remarkable
examples of atomic chains). The theory developed in Nummelin (1978) (and
in parallel the closely related concepts introduced in Athreya & Ney (1978))
showed that general Markov chains could all be considered as regenerative in
a broader sense (i.e. in the sense of the existence of a theoretical regenerative
extension for the chain, see § 2.3), as soon as the Harris recurrence property
is satisfied. Hence this theory made the regenerative method applicable to
the whole class of Harris Markov chains and allowed to carry over many limit
theorems to Harris chains such as LLN, CLT, LIL or Edgeworth expansions.

In many cases, parameters of interest for a Harris Markov chain may be
thus expressed in terms of regeneration cycles. While, for atomic Markov
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chains, statistical inference procedures may be then based on a random num-
ber of observed regeneration data blocks, in the general Harris recurrent case
the regeneration times are theoretical and their occurrence cannot be deter-
mined by examination of the data only. Although the Nummelin splitting
technique for constructing regeneration times has been introduced as a theo-
retical tool for proving probabilistic results such as limit theorems or proba-
bility and moment inequalities in the markovian framework, this article aims
to show that it is nevertheless possible to make a practical use of the latter
for extending regeneration-based statistical tools. Our proposal consists in an
empirical method for building approximatively a realization drawn from a
Nummelin extension of the chain with a regeneration set and then recover-
ing ”approximate regeneration data blocks”. As will be shown further, though
the implementation of the latter method requires some prior knowledge about
the behaviour of the chain and crucially relies on the computation of a con-
sistent estimate of its transition kernel, this methodology allows for numerous
statistical applications.

We finally point out that, alternatively to regeneration-based statistical
methods, inference techniques based on data (moving) blocks of fixed length
may also be used in our markovian framework. But as will be shown through-
out the article, such blocking techniques, introduced for dealing with general
time series (in the weakly dependent setting) are less powerful, when applied
to Harris Markov chains, than the methods we promote here, which are specif-
ically tailored for (pseudo) regenerative processes.

1.2 Outline

The outline of the paper is as follows. In section 2, notations are set out and
key concepts of the Markov chain theory as well as some basic notions about
the regenerative method and the Nummelin splitting technique are recalled.
Section 3 presents and discusses how to practically construct (approximate)
regeneration data blocks, on which statistical procedures we investigate fur-
ther are based. Sections 4 and 5 mainly survey results established at length
in Bertail & Clémençon (2004a,b,c,d). More precisely, the problem of estima-
ting additive functionals of the stationary distribution in the Harris positive
recurrent case is considered in section 4. Estimators based on the (pseudo)
regenerative blocks, as well as estimates of their asymptotic variance are ex-
hibited, and limit theorems describing the asymptotic behaviour of their bias
and their sampling distribution are also displayed. Section 5 is devoted to the
study of a specific resampling procedure, which crucially relies on the (ap-
proximate) regeneration data blocks. Results proving the asymptotic validity
of this particular bootstrap procedure (and its optimality regarding to second
order properties in the atomic case) are stated. Section 6 shows how to ex-
tend some of the results of sections 4 and 5 to V and U -statistics. A specific
notion of robustness for statistics based on the (approximate) regenerative
blocks is introduced and investigated in section 7. And asymptotic proper-
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ties of some regeneration-based statistics related to the extremal behaviour
of Markov chains are studied in section 8 in the regenerative case only. Fi-
nally, some concluding remarks are collected in section 9 and further lines of
research are sketched.

2 Theoretical background

2.1 Notation and definitions

We now set out the notations and recall a few definitions concerning the com-
munication structure and the stochastic stability of Markov chains (for further
detail, refer to Revuz (1984) or Meyn & Tweedie (1996)). Let X = (Xn)n∈N

be an aperiodic irreducible Markov chain on a countably generated state space
(E, E), with transition probability Π, and initial probability distribution ν.
For any B ∈ E and any n ∈ N, we thus have

X0 ∼ ν and P(Xn+1 ∈ B | X0, ..., Xn) = Π(Xn, B) a.s.

In what follows, Pν (respectively Px for x in E) will denote the probability
measure on the underlying probability space such that X0 ∼ ν (resp. X0 = x),
Eν (.) the Pν-expectation (resp. Ex (.) the Px-expectation), I{A} will denote
the indicator function of the event A and ⇒ the convergence in distribution.

For completeness, recall the following notions. The first one formalizes the
idea of communicating structure between specific subsets, while the second
one considers the set of time points at which such communication may occur.

• The chain is irreducible if there exists a σ-finite measure ψ such that for
all set B ∈ E , when ψ(B) > 0, the chain visits B with strictly positive
probability, no matter what the starting point.

• Assuming ψ-irreducibility, there is d′ ∈ N
∗ and disjoints sets D1, ...., Dd′

(Dd′+1 = D1) weighted by ψ such that ψ(E\∪1≤i≤d′ Di) = 0 and ∀x ∈ Di,
Π(x,Di+1) = 1. The g.c.d. d of such integers is the period of the chain,
which is said aperiodic if d = 1.

A measurable set B is Harris recurrent for the chain if for any x ∈ B,
Px(

∑∞
n=1 I{Xn ∈ B} = ∞) = 1. The chain is said Harris recurrent if it

is ψ-irreducible and every measurable set B such that ψ(B) > 0 is Harris
recurrent. When the chain is Harris recurrent, we have the property that
Px(

∑∞
n=1 I{Xn ∈ B} = ∞) = 1 for any x ∈ E and any B ∈ E such that

ψ(B) > 0.
A probability measure µ on E is said invariant for the chain when µΠ = µ,

where µΠ(dy) =
∫
x∈E µ(dx)Π (x, dy). An irreducible chain is said positive

recurrent when it admits an invariant probability (it is then unique).
Now we recall some basics concerning the regenerative method and its

application to the analysis of the behaviour of general Harris chains via the
Nummelin splitting technique (refer to Nummelin (1984) for further detail).
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2.2 Markov chains with an atom

Assume that the chain is ψ-irreducible and possesses an accessible atom, that
is to say a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all
x, y in A. Denote by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A,
by τA(j) = inf {n > τA(j − 1), Xn ∈ A} for j ≥ 2 the successive return times
to A and by EA (.) the expectation conditioned on X0 ∈ A. Assume further
that the chain is Harris recurrent, the probability of returning infinitely often
to the atom A is thus equal to one, no matter what the starting point. Then,
it follows from the strong Markov property that, for any initial distribution
ν, the sample paths of the chain may be divided into i.i.d. blocks of random
length corresponding to consecutive visits to A:

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...

taking their values in the torus T = ∪∞
n=1E

n. The sequence (τA(j))j≥1 de-
fines successive times at which the chain forgets its past, called regeneration
times. We point out that the class of atomic Markov chains contains not only
chains with a countable state space (for the latter, any recurrent state is an
accessible atom), but also many specific Markov models arising from the field
of operational research (see Asmussen (1987) for regenerative models involved
in queuing theory, as well as the examples given in § 4.3). When an accessible
atom exists, the stochastic stability properties of the chain amount to proper-
ties concerning the speed of return time to the atom only. For instance, in this
framework, the following result, known as Kac’s theorem, holds (cf Theorem
10.2.2 in Meyn & Tweedie (1996)).

Theorem 1. The chain X is positive recurrent iff EA(τA) <∞. The (unique)
invariant probability distribution µ is then the Pitman’s occupation measure
given by

µ(B) = EA(
τA∑
i=1

I{Xi ∈ B})/EA(τA), for all B ∈ E .

For atomic chains, limit theorems can be derived from the application
of the corresponding results to the i.i.d. blocks (Bn)n≥1. One may refer for
example to Meyn & Tweedie (1996) for the LLN, CLT, LIL, Bolthausen
(1980) for the Berry-Esseen theorem, Malinovskii (1985, 87, 89) and Bertail
& Clémençon (2004a) for other refinements of the CLT. The same technique
can also be applied to establish moment and probability inequalities, which
are not asymptotic results (see Clémençon (2001)). As mentioned above, these
results are established from hypotheses related to the distribution of the Bn’s.
The following assumptions shall be involved throughout the article. Let κ > 0,
f : E → R be a measurable function and ν be a probability distribution on
(E, E).
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Regularity conditions:

H0(κ) : EA(τκA) <∞ ,

H0(κ, ν) : Eν(τκA) <∞ .

Block-moment conditions:

H1(κ, f) : EA((
τA∑
i=1

|f(Xi)|)κ) <∞ ,

H1(κ, ν, f) : Eν((
τA∑
i=1

|f(Xi)|)κ) <∞ .

Remark 1. We point out that conditions H0(κ) and H1(κ, f) do not depend
on the accessible atom chosen : if they hold for a given accessible atom A,
they are also fulfilled for any other accessible atom (see Chapter 11 in Meyn
& Tweedie (1996)). Besides, the relationship between the ”block moment”
conditions and the rate of decay of mixing coefficients has been investigated
in Bolthausen (1982): for instance, H0(κ) (as well as H1(κ, f) when f is
bounded) is typically fulfilled as soon as the strong mixing coefficients se-
quence decreases at an arithmetic rate n−ρ, for some ρ > κ− 1.

2.3 General Harris recurrent chains

The Nummelin splitting technique

We now recall the splitting technique introduced in Nummelin (1978) for ex-
tending the probabilistic structure of the chain in order to construct an ar-
tificial regeneration set in the general Harris recurrent case. It relies on the
crucial notion of small set. Recall that, for a Markov chain valued in a state
space (E, E) with transition probability Π, a set S ∈ E is said to be small if
there exist m ∈ N

∗, δ > 0 and a probability measure Γ supported by S such
that, for all x ∈ S, B ∈ E ,

Πm(x,B) ≥ δΓ (B) , (1)

denoting by Πm the m-th iterate of Π. When this holds, we say that the
chain satisfies the minorization condition M(m,S, δ, Γ ). We emphasize that
accessible small sets always exist for ψ-irreducible chains: any set B ∈ E such
that ψ(B) > 0 actually contains such a set (cf Jain & Jamison (1967)). Now
let us precise how to construct the atomic chain onto which the initial chain X
is embedded, from a set on which an iterate Πm of the transition probability
is uniformly bounded below. Suppose that X satisfiesM =M(m,S, δ, Γ ) for
S ∈ E such that ψ(S) > 0. Even if it entails replacing the chain (Xn)n∈N

by
the chain

(
(Xnm, ..., Xn(m+1)−1

)
)n∈N, we suppose m = 1. The sample space
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is expanded so as to define a sequence (Yn)n∈N of independent Bernoulli r.v.’s
with parameter δ by defining the joint distribution Pν,M whose construction
relies on the following randomization of the transition probability Π each time
the chain hits S (note that it happens a.s. since the chain is Harris recurrent
and ψ(S) > 0). If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is dis-
tributed according to Γ ,

• if Yn = 0, (which happens with probability 1 − δ), then Xn+1 is drawn
from (1− δ)−1(Π(Xn+1, .)− δΓ (.)).

Set Berδ(β) = δβ+(1−δ)(1−β) for β ∈ {0, 1}. We now have constructed a
bivariate chain XM = ((Xn, Yn))n∈N

, called the split chain, taking its values
in E × {0, 1} with transition kernel ΠM defined by

• for any x /∈ S, B ∈ E , β and β′ in {0, 1} ,

ΠM ((x, β) , B × {β′}) = Π (x,B)× Berδ(β′) ,

• for any x ∈ S, B ∈ E , β′ in {0, 1} ,

ΠM ((x, 1) , B × {β′}) = Γ (B)× Berδ(β′) ,

ΠM ((x, 0) , B × {β′}) = (1− δ)−1(Π (x,B)− δΓ (B))× Berδ(β′) .

Basic assumptions

The whole point of the construction consists in the fact that S×{1} is an atom
for the split chain XM, which inherits all the communication and stochastic
stability properties from X (irreducibility, Harris recurrence,...), in partic-
ular (for the case m = 1 here) the blocks constructed for the split chain
are independent. Hence the splitting method enables to extend the regener-
ative method, and so to establish all of the results known for atomic chains,
to general Harris chains. It should be noticed that if the chain X satisfies
M(m,S, δ, Γ ) for m > 1, the resulting blocks are not independent anymore
but 1-dependent, a form of dependence which may be also easily handled. For
simplicity ’s sake, we suppose in what follows that condition M is fulfilled
with m = 1, we shall also omit the subscript M and abusively denote by
Pν the extensions of the underlying probability we consider. The following
assumptions, involving the speed of return to the small set S shall be used
throughout the article. Let κ > 0, f : E → R be a measurable function and ν
be a probability measure on (E, E).

Regularity conditions:

H′
0(κ) : sup

x∈S
Ex(τκS ) <∞ ,

H′
0(κ, ν) : Eν(τκS ) <∞ .
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Block-moment conditions:

H′
1(κ, f) : sup

x∈S
Ex((

τS∑
i=1

|f(Xi)|)κ) <∞ ,

H′
1(κ, f, ν) : Eν((

τS∑
i=1

|f(Xi)|)κ) <∞ .

Remark 2. It is noteworthy that assumptions H′
0(κ) and H′

1(κ, f) do not de-
pend on the choice of the small set S (if they are checked for some accessible
small set S, they are fulfilled for all accessible small sets cf § 11.1 in Meyn
& Tweedie (1996)). Note also that in the case when H′

0(κ) (resp., H′
0(κ, ν))

is satisfied, H′
1(κ, f) (resp., H′

1(κ, f, ν)) is fulfilled for any bounded f . More-
over, recall that positive recurrence, conditions H′

1(κ) and H′
1(κ, f) may be

practically checked by using test functions methods (cf
Kalashnikov (1978), Tjøstheim (1990)). In particular, it is well known

that such block moment assumptions may be replaced by drift criteria of
Lyapounov’s type (refer to Chapter 11 in Meyn & Tweedie (1996) for further
details on such conditions and many illustrating examples, see also Douc et
al. (2004)).

We recall finally that such assumptions on the initial chain classically imply
the desired conditions for the split chain: as soon as X fulfills H′

0(κ) (resp.,
H′

0(κ, ν), H′
1(κ, f), H′

1(κ, f, ν)), XM satisfies H0(κ) (resp., H0(κ, ν), H1(κ,
f), H1(κ, f, ν)).

The distribution of (Y1, ..., Yn) conditioned on (X1, ..., Xn+1).

As will be shown in the next section, the statistical methodology for Har-
ris chains we propose is based on approximating the conditional distribu-
tion of the binary sequence (Y1, ..., Yn) given X(n+1) = (X1, ..., Xn+1). We
thus precise the latter. Let us assume further that the family of the condi-
tional distributions {Π(x, dy)}x∈E and the initial distribution ν are domi-
nated by a σ-finite measure λ of reference, so that ν(dy) = f(y)λ(dy) and
Π(x, dy) = p(x, y)λ(dy), for all x ∈ E. Notice that the minorization condition
entails that Γ is absolutely continuous with respect to λ too, and that

p(x, y) ≥ δγ(y), λ(dy) a.s. (2)

for any x ∈ S, with Γ (dy) = γ(y)dy. The distribution of Y (n) = (Y1, ...,
Yn) conditionally to X(n+1) = (x1, ..., xn+1) is then the tensor product of
Bernoulli distributions given by: for all β(n) = (β1, ..., βn) ∈ {0, 1}n , x(n+1) =
(x1, ..., xn+1) ∈ En+1,

Pν(Y (n) = β(n) | X(n+1) = x(n+1)) =
n∏
i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1) ,
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with, for 1 ≤ i ≤ n,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δ, if xi /∈ S ,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) =
δγ(xi+1)
p(xi, xi+1)

, if xi ∈ S .

Roughly speaking, conditioned on X(n+1), from i = 1 to n, Yi is drawn
from the Bernoulli distribution with parameter δ, unless X has hit the small
set S at time i: in this case Yi is drawn from the Bernoulli distribution with pa-
rameter δγ(Xi+1)/p(Xi, Xi+1). We denote by L(n)(p, S, δ, γ, x(n+1)) this prob-
ability distribution.

3 Dividing the sample path into (approximate)
regeneration cycles

In the preceding section, we recalled the Nummelin approach for the theoret-
ical construction of regeneration times in the Harris framework. Here we now
consider the problem of approximating these random times from data sets
in practice and propose a basic preprocessing technique, on which estimation
methods we shall discuss further are based.

3.1 Regenerative case

Let us suppose we observed a trajectory X1, ..., Xn of length n drawn from
the chain X. In the regenerative case, when an atom A for the chain is a priori
known, regeneration blocks are naturally obtained by simply examining the
data, as follows.

Algorithm 1 (Regeneration blocks construction)

1. Count the number of visits ln =
∑n

i=1 I{Xi ∈ A} to A up to time n.
2. Divide the observed trajectory X(n) = (X1, ...., Xn) into ln + 1 blocks

corresponding to the pieces of the sample path between consecutive visits
to the atom A,

B0 = (X1, ..., XτA(1)), B1 = (XτA(1)+1, ..., XτA(2)), ...,

Bln−1 = (XτA(ln−1)+1, ..., XτA(ln)), B(n)
ln

= (XτA(ln)+1, ..., Xn) ,

with the convention B(n)
ln

= ∅ when τA(ln) = n.

3. Drop the first block B0, as well as the last one B(n)
ln

, when non-regenerative
(i.e. when τA(ln) < n).

The regeneration blocks construction is illustrated by Fig. 1 in the case of
a random walk on the half line R

+ with {0} as an atom.
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Fig. 1. Dividing the trajectory of a random walk on the half line into regeneration
data blocks corresponding to successive visits to A = 0

3.2 General Harris case

The principle

Suppose now that observations X1, ..., Xn+1 are drawn from a Harris chain
X satisfying the assumptions of § 2.3.3 (refer to the latter paragraph for
the notations). If we were able to generate binary data Y1, ..., Yn, so that
XM (n) = ((X1, Y1), ..., (Xn, Yn)) be a realization of the split chain XM de-
scribed in § 2.3, then we could apply the regeneration blocks construction
procedure to the sample path XM (n). In that case the resulting blocks are
still independent since the split chain is atomic. Unfortunately, knowledge of
the transition density p(x, y) for (x, y) ∈ S2 is required to draw practically
the Yi’s this way. We propose a method relying on a preliminary estimation of
the ”nuisance parameter” p(x, y). More precisely, it consists in approximating
the splitting construction by computing an estimator pn(x, y) of p(x, y) using
data X1, ..., Xn+1, and to generate a random vector (Ŷ1, ..., Ŷn) conditionally
to X(n+1) = (X1, ..., Xn+1), from distribution L(n)(pn, S, δ, γ,X(n+1)), which
approximates in some sense the conditional distribution L(n)(p, S, δ, γ,X(n+1))
of (Y1, ..., Yn) for given X(n+1). Our method, which we call approximate regen-
eration blocks construction (ARB construction in abbreviated form) amounts
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then to apply the regeneration blocks construction procedure to the data
((X1, Ŷ1), ..., (Xn, Ŷn)) as if they were drawn from the atomic chain XM. In
spite of the necessary consistent transition density estimation step, we shall
show in the sequel that many statistical procedures, that would be consis-
tent in the ideal case when they would be based on the regeneration blocks,
remain asymptotically valid when implemented from the approximate data
blocks. For given parameters (δ, S, γ) (see § 3.2.2 for a data driven choice
of these parameters), the approximate regeneration blocks are constructed as
follows.

Algorithm 2 (Approximate regeneration blocks construction)

1. From the data X(n+1) = (X1, ..., Xn+1), compute an estimate pn(x, y)
of the transition density such that pn(x, y) ≥ δγ(y), λ(dy) a.s., and
pn(Xi, Xi+1) > 0, 1 ≤ i ≤ n.

2. Conditioned on X(n+1), draw a binary vector (Ŷ1, ..., Ŷn) from the dis-
tribution estimate L(n)(pn, S, δ, γ,X(n+1)). It is sufficient in practice to
draw the Ŷi’s at time points i when the chain visits the set S (i.e. when
Xi ∈ S), since at these times and at these times only the split chain may
regenerate. At such a time point i, draw Ŷi according to the Bernoulli
distribution with parameter δγ(Xi+1)/pn(Xi, Xi+1)).

3. Count the number of visits l̂n =
∑n

i=1 I{Xi ∈ S, Ŷi = 1) to the set
AM = S × {1} up to time n and divide the trajectory X(n+1) into l̂n + 1
approximate regeneration blocks corresponding to the successive visits of
(X, Ŷ ) to AM,

B̂0 = (X1, ..., Xτ̂AM (1)), B̂1 = (Xτ̂AM (1)+1, ..., Xτ̂AM (2)), ...,

B̂l̂n−1 = (Xτ̂AM (l̂n−1)+1, ..., Xτ̂AM (l̂n)), B̂
(n)
ln

= (Xτ̂AM (l̂n)+1, ..., Xn+1) ,

where τ̂AM(1) = inf{n ≥ 1, Xn ∈ S, Ŷn = 1} and τ̂AM(j + 1) = inf{n >

τ̂AM(j), Xn ∈ S, Ŷn = 1} for j ≥ 1.
4. Drop the first block B̂0 and the last one B̂(n)

ln
when τ̂AM(l̂n) < n.

Such a division of the sample path is illustrated by Fig. 2 below: from a
practical viewpoint the trajectory may only be cut when hitting the small
set. At such a point, drawing a Bernoulli r.v. with the estimated parameter
indicates whether one should cut here the time series trajectory or not. Of
course, due to the dependence induced by the estimated transition density,
the resulting blocks are not i.i.d. but, as will be shown later, are close (in some
sense) to the one of the true regeneration blocks (which are i.i.d.), provided
that the transition estimator is consistent (see assumption H2 in §1.4.2)

Practical choice of the minorization condition parameters

Because the construction above is highly dependent on the minorization con-
dition parameters chosen, we now discuss how to select the latter with a
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Fig. 2. ARB construction for an AR(1) simulated time-series

data-driven technique so as to construct enough blocks for computing mean-
ingful statistics. As a matter of fact, the rates of convergence of the statistics
we shall study in the sequel increase as the mean number of regenerative (or
pseudo-regenerative) blocks, which depends on the size of the small set chosen
(or more exactly, on how often the chain visits the latter in a trajectory of
finite length) and how sharp is the lower bound in the minorization condition:
the larger the size of the small set is, the smaller the uniform lower bound for
the transition density. This leads us to the following trade-off. Roughly speak-
ing, for a given realization of the trajectory, as one increases the size of the
small set S used for the data blocks construction, one naturally increases the
number of points of the trajectory that are candidates for determining a block
(i.e. a cut in the trajectory), but one also decreases the probability of cut-
ting the trajectory (since the uniform lower bound for {p(x, y)}(x,y)∈S2 then
decreases). This gives an insight into the fact that better numerical results
for statistical procedures based on the ARB construction may be obtained
in practice for some specific choices of the small set, likely for choices corre-
sponding to a maximum expected number of data blocks given the trajectory,
that is

Nn(S) = Eν(
n∑
i=1

I{Xi ∈ S, Yi = 1} |X(n+1)) .

Hence, when no prior information about the structure of the chain is avail-
able, here is a practical data-driven method for selecting the minorization
condition parameters in the case when the chain takes real values. Con-
sider a collection S of borelian sets S (typically compact intervals) and
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denote by US(dy) = γS(y).λ(dy) the uniform distribution on S, where
γS(y) = I{y ∈ S}/λ(S) and λ is the Lebesgue measure on R. Now, for
any S ∈ S, set δ(S) = λ(S). inf(x,y)∈S2 p(x, y). We have for any x, y in S,
p(x, y) ≥ δ(S)γS(y). In the case when δ(S) > 0, the ideal criterion to opti-
mize may be then expressed as

Nn(S) =
δ(S)
λ(S)

n∑
i=1

I{(Xi, Xi+1) ∈ S2}
p(Xi, Xi+1)

. (3)

However, as the transition kernel p(x, y) and its minimum over S2 are un-
known, a practical empirical criterion is obtained by replacing p(x, y) by
an estimate pn(x, y) and δ(S) by a lower bound δn(S) for λ(S).pn(x, y)
over S2 in expression (3). Once pn(x, y) is computed, calculate δn(S) =
λ(S). inf(x,y)∈S2 pn(x, y) and maximize thus the empirical criterion over S ∈ S

N̂n(S) =
δn(S)
λ(S)

n∑
i=1

I{(Xi, Xi+1) ∈ S2}
pn(Xi, Xi+1)

. (4)

More specifically, one may easily check at hand on many examples of real
valued chains (see § 4.3 for instance), that any compact interval Vx0(ε) = [x0−
ε, x0 + ε] for some well chosen x0 ∈ R and ε > 0 small enough, is a small set,
choosing γ as the density of the uniform distribution on Vx0(ε). For practical
purpose, one may fix x0 and perform the optimization over ε > 0 only (see
Bertail & Clémençon (2004c)) but both x0 and ε may be considered as tuning
parameters. A possible numerically feasible selection rule could rely then on
searching for (x0, ε) on a given pre-selected grid G = {(x0(k), ε(l)), 1 ≤ k ≤ K,
1 ≤ l ≤ L} such that inf(x,y)∈Vx0 (ε)2 pn(x, y) > 0 for any (x0, ε) ∈ G.

Algorithm 3 (ARB construction with empirical choice of the small set)

1. Compute an estimator pn(x, y) of p(x, y).
2. For any (x0, ε) ∈ G, compute the estimated expected number of pseudo-

regenerations:

N̂n(x0, ε) =
δn(x0, ε)

2ε

n∑
i=1

I{(Xi, Xi+1) ∈ Vx0(ε)
2}

pn(Xi, Xi+1)
,

with δn(x0, ε) = 2ε. inf(x,y)∈Vx0 (ε)2 pn(x, y).
3. Pick (x∗

0, ε
∗) in G maximizing N̂n(x0, ε) over G, corresponding to the set

S∗ = [x∗
0 − ε∗, x∗

0 + ε∗] and the minorization constant δ∗
n = δn(x∗

0, ε
∗).

4. Apply Algorithm 2 for ARB construction using S∗, δ∗
n and pn.

Remark 3. Numerous consistent estimators of the transition density of Harris
chains have been proposed in the literature. Refer to Roussas (1969, 91a,
91b), Rosenblatt (1970), Birgé (1983), Doukhan & Ghindès (1983), Prakasa
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Fig. 3. Illustration of Algorithm 3 : ARB construction with empirical choice of the
small set.

Rao (1983), Athreya & Atuncar (1998) or Clémençon (2000) for instance in
positive recurrent cases, Karlsen & Tjøstheim (2001) in specific null recurrent
cases.

This method is illustrated by Fig. 3 in the case of an AR(1) model: Xi+1 =
αXi + εi+1, i ∈ N, with εi

i.i.d.∼ N (0, 1), α = 0.95 and X0 = 0, for a trajectory
of length n = 200. Taking x0 = 0 and letting ε grow, the expected number
regeneration blocks is maximum for ε∗ close to 0.9. The true minimum value of
p(x, y) over the corresponding square is actually δ = 0.118. The first graphic
in this panel shows the Nadaraya-Watson estimator

pn(x, y) =
∑n

i=1 K(h−1(x−Xi))K(h−1(y −Xi+1))∑n
i=1 K(h−1(x−Xi))

,

computed from the gaussian kernel K(x) = (2π)−1 exp(−x2/2) with an opti-
mal bandwidth h of order n−1/5. The second one plots N̂n(ε) as a function of
ε. The next one indicates the set S∗ corresponding to our empirical selection
rule, while the last one displays the ”optimal” ARB construction.

Note finally that other approaches may be considered for determining prac-
tically small sets and establishing accurate minorization conditions, which
conditions do not necessarily involve uniform distributions besides. Refer for
instance to Roberts & Rosenthal (1996) for Markov diffusion processes.
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A two-split version of the ARB construction

When carrying out the theoretical study of statistical methods based on the
ARB construction, one must deal with difficult problems arising from the
dependence structure in the set of the resulting data blocks, due to the pre-
liminary estimation step. Such difficulties are somehow similar as the ones
that one traditionally faces in a semiparametric framework, even in the i.i.d.
setting. The first step of semiparametric methodologies usually consists in a
preliminary estimation of some infinite dimensional nuisance parameter (typ-
ically a density function or a nonparametric curve), on which the remaining
(parametric) steps of the procedure are based. For handling theoretical diffi-
culties related to this dependence problem, a well known method, called the
splitting trick, amounts to split the data set into two parts, the first subset
being used for estimating the nuisance parameter, while the parameter of
interest is then estimated from the other subset (using the preliminary esti-
mate). An analogous principle may be implemented in our framework using an
additional split of the data in the ”middle of the trajectory”, for ensuring that
a regeneration at least occurs in between with an overwhelming probability
(so as to get two independent data subsets, see step 2 in the algorithm below).
For this reason, we consider the following variant of the ARB construction.
Let 1 < m < n, 1 ≤ p < n−m.

Algorithm 4 (two-split ARB construction)

1. From the data X(n+1) = (X1, ..., Xn+1), keep only the first m observations
X(m) for computing an estimate pm(x, y) of p(x, y) such that pm(x, y) ≥
δγ(y), λ(dy) a.s. and pm(Xi, Xi+1) > 0, 1 ≤ i ≤ n− 1.

2. Drop the observations between time m + 1 and time m∗ = m + p (under
standard assumptions, the split chain regenerates once at least between
these times with large probability).

3. From remaining observations X(m∗,n) = (Xm∗+1, ..., Xn) and estimate
pm, apply steps 2-4 of Algorithm 2 (respectively of Algorithm 3).

This procedure is similar to the 2-split method proposed in Schick (2001),
except that here the number of deleted observations is arbitrary and easier to
interpret in terms of regeneration. Of course, the more often the split chain
regenerates, the smaller p may be chosen. And the main problem consists in
picking m = mn so that mn →∞ as n→∞ for the estimate of the transition
kernel to be accurate enough, while keeping enough observation n−m∗ for the
block construction step: one typically chooses m = o(n) as n → ∞. Further
assumptions are required for investigating precisely how to select m. In Bertail
& Clémençon (2004d), a choice based on the rate of convergence αm of the
estimator pm(x, y) (for the MSE when error is measured by the sup-norm
over S×S, see assumption H2 in § 4.2) is proposed: when considering smooth
markovian models for instance, estimators with rate αm = m−1 log(m) may
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be exhibited and one shows that m = n2/3 is then an optimal choice (up to
a log(n)). However, one may argue, as in the semiparametric case, that this
methodology is motivated by our limitations in the analysis of asymptotic
properties of the estimators only, whereas from a practical viewpoint it may
deteriorate the finite sample performance of the initial algorithm. To our own
experience, it is actually better to construct the estimate p(x, y) from the
whole trajectory and the interest of Algorithm 4 is mainly theoretical.

4 Mean and variance estimation

In this section, we suppose that the chain X is positive recurrent with un-
known stationary probability µ and consider the problem of estimating an
additive functional of type µ(f) =

∫
f(x)µ(dx) = Eµ(f(X1)), where f is a

µ-integrable real valued function defined on the state space (E, E). Estima-
tion of additive functionals of type Eµ(F (X1, ..., Xk)), for fixed k ≥ 1, may
be investigated in a similar fashion. We set f(x) = f(x)− µ(f).

4.1 Regenerative case

Here we assume further that X admits an a priori known accessible atom
A. As in the i.i.d. setting, a natural estimator of µ(f) is the sample mean
statistic,

µ′
n(f) = n−1

n∑
i=1

f(Xi) . (5)

When the chain is stationary (i.e. when ν = µ), the estimator µ′
n(f) is zero-

bias. However, its bias is significant in all other cases, mainly because of
the presence of the first and last (non-regenerative) data blocks B0 and B(n)

ln
(see Proposition 4.1 below). Besides, by virtue of Theorem 2.1, µ(f) may be
expressed as the mean of the f(Xi)’s over a regeneration cycle (renormalized
by the mean length of a regeneration cycle)

µ(f) = EA(τA)−1
EA(

τA∑
i=1

f(Xi)) .

Because the bias due to the first block depends on the unknown initial distri-
bution (see Proposition 1 below) and thus can not be consistently estimated,
we suggest to introduce the following estimators of the mean µ(f). Define the
sample mean based on the observations (eventually) collected after the first
regeneration time only by

µ̃n(f) = (n− τA)−1
n∑

i=1+τA

f(Xi)
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with the convention µ̃n(f) = 0, when τA > n, as well as the sample mean
based on the observations collected between the first and last regeneration
times before n by

µn(f) = (τA(ln)− τA)−1
τA(ln)∑
i=1+τA

f(Xi)

with ln =
∑n

i=1 I{Xi ∈ A} and the convention µn(f) = 0, when ln ≤ 1
(observe that, by Markov’s inequality, Pν(ln ≤ 1) = O(n−1) as n → ∞, as
soon as H0(1, ν) and H0(2) are fulfilled).

Let us introduce some additional notation for the block sums (resp. the
block lengths), that shall be used here and throughout. For j ≥ 1, n ≥ 1, set

L0 = τA, Lj = τA(j + 1)− τA(j), L
(n)
ln

= n− τA(ln)

f(B0) =
τA∑
i=1

f(Xi), f(Bj) =
τA(j+1)∑
i=1+τA(j)

f(Xi), f(B(n)
ln

) =
n∑

i=1+τA(ln)

f(Xi) .

With these notations, the estimators above may be rewritten as

µ′
n(f) =

f(B0) +
∑ln

j=1 f(Bj) + f(B(n)
ln

)

L0 +
∑ln

j=1 Lj + L
(n)
ln

,

µ̃n(f) =

∑ln
j=1 f(Bj) + f(B(n)

ln
)∑ln

j=1 Lj + L
(n)
ln

, µn(f) =

∑ln
j=1 f(Bj)∑ln
j=1 Lj

.

Let µn(f) designs any of the three estimators µ′
n(f), µ̃n(f) or µn(f). If X

fulfills conditions H0(2), H0(2, ν), H1(f, 2, A), H1(f, 2, ν) then the following
CLT holds under Pν (cf Theorem 17.2.2 in Meyn & Tweedie (1996))

n1/2σ−1(f)(µn(f)− µ(f))⇒ N (0, 1) , as n→∞ ,

with a normalizing constant

σ2(f) = µ (A) EA((
τA∑
i=1

f(Xi)− µ(f)τA)2) . (6)

From this expression we propose the following estimator of the asymptotic
variance, adopting the usual convention regarding to empty summation,

σ2
n(f) = n−1

ln−1∑
j=1

(f(Bj)− µn(f)Lj)2. (7)

Notice that the first and last data blocks are not involved in its construction.
We could have proposed estimators involving different estimates of µ(f), but
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as will be seen later, it is preferable to consider an estimator based on regener-
ation blocks only. The following quantities shall be involved in the statistical
analysis below. Define

α = EA(τA), β = EA(τA
τA∑
i=1

f(Xi)) = covA(τA,

τA∑
i=1

f(Xi)) ,

ϕν = Eν(
τA∑
i=1

f(Xi)), γ = α−1
EA(

τA∑
i=1

(τA − i)f(Xi)) .

We also introduce the following technical conditions.

(C1) (Cramer condition)

lim
t→∞ | EA(exp(it

τA∑
i=1

f(Xi))) |< 1 .

(C2) (Cramer condition)

lim
t→∞ | EA(exp(it(

τA∑
i=1

f(Xi))2)) |< 1 .

(C3) There exists N ≥ 1 such that the N -fold convoluted density g∗N is
bounded, denoting by g the density of the (

∑τA(2)
i=1+τA(1) f(Xi) − α−1β)2’s.

(C4) There exists N ≥ 1 such that the N -fold convoluted density G∗N is
bounded, denoting by G the density of the (

∑τA(2)
i=1+τA(1) f(Xi))2’s.

These two conditions are automatically satisfied if
∑τA(2)

i=1+τA(1) f(Xi) has
a bounded density.

The result below is a straightforward extension of Theorem 1 in Mali-
novskii (1985) (see also Proposition 3.1 in Bertail & Clémençon (2004a)).

Proposition 1. Suppose that H0(4), H0(2, ν), H1(4, f), H1(2, ν, f) and
Cramer condition (C1) are satisfied by the chain. Then, as n→∞, we have

Eν(µ′
n(f)) = µ(f) + (ϕν + γ − β/α)n−1 + O(n−3/2) , (8)

Eν(µ̃n(f)) = µ(f) + (γ − β/α)n−1 + O(n−3/2) , (9)

Eν(µn(f)) = µ(f)− (β/α)n−1 + O(n−3/2) . (10)

If the Cramer condition (C2) is also fulfilled, then

Eν(σ2
n(f)) = σ2(f) + O(n−1) , as n→∞, (11)

and we have the following CLT under Pν ,

n1/2(σ2
n(f)− σ2(f))⇒ N (0, ξ2(f)) , as n→∞ , (12)

with ξ2(f) = µ(A)varA((
∑τA

i=1 f(Xi))2 − 2α−1β
∑τA

i=1 f(Xi)).
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Proof. The proof of (8)-(11) is given in Bertail & Clémençon (2004a) and the
linearization of σ2

n(f) follows from their Lemma 6.3

σ2
n(f) = n−1

ln−1∑
j=1

g(Bj) + rn , (13)

with g(Bj) = f(Bj)2− 2α−1βf(Bj), for j ≥ 1, and for some η1 > 0, Pν(nrn >
η1 log(n)) = O(n−1), as n→∞. We thus have, as n→∞,

n1/2(σ2
n(f)− σ2(f)) = (ln/n)1/2l−1/2

n

ln−1∑
j=1

(g(Bj)− E(g(Bj)) + oPν (1) ,

and (13) is established with the same argument as for Theorem 17.3.6 in Meyn
& Tweedie (1996), as soon as var(g(Bj)) <∞, that is ensured by assumption
H1(4, f). ��

Remark 4. We emphasize that in a non i.i.d. setting, it is generally difficult to
construct an accurate (positive) estimator of the asymptotic variance. When
no structural assumption, except stationarity and square integrability, is made
on the underlying process X, a possible method, currently used in practice, is
based on so-called blocking techniques. Indeed under some appropriate mixing
conditions (which ensure that the following series converge), it can be shown
that the variance of n−1/2µ′

n(f) may be written

var(n−1/2µ′
n(f)) = Γ (0) + 2

n∑
t=1

(1− t/n)Γ (t)

and converges to

σ2(f) =
∞∑
t=∞

Γ (t) = 2πg(0) ,

where g(w) = (2π)−1∑∞
t=−∞ Γ (t) cos(wt) and (Γ (t))t≥0 denote respectively

the spectral density and the autocovariance sequence of the discrete-time
stationary process X. Most of the estimators of σ2(f) that have been pro-
posed in the literature (such as the Bartlett spectral density estimator, the
moving-block jackknife/subsampling variance estimator, the overlapping or
non-overlapping batch means estimator) may be seen as variants of the basic
moving-block bootstrap estimator(see Künsch (1989), Liu and Singh(1992))

σ̂2
M,n =

M

Q

Q∑
i=1

(µi,M,L − µn(f))2 , (14)

where µi,M,L = M−1∑L(i−1)+M
t=L(i−1)+1 f(Xt) is the mean of f on the i-th data

block (XL(i−1)+1, . . . , XL(i−1)+M ). Here, the size M of the blocks and the
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amount L of ‘lag’ or overlap between each block are deterministic (eventually
depending on n) and Q = [n−M

L ] + 1, denoting by [·] the integer part, is the
number of blocks that may be constructed from the sample X1, ..., Xn. In the
case when L = M , there is no overlap between block i and block i + 1 (as
the original solution considered by Hall (1985), Carlstein (1986)), whereas the
case L = 1 corresponds to maximum overlap (see Politis & Romano (1992),
Politis et al. (2000) for a survey). Under suitable regularity conditions (mixing
and moments conditions), it can be shown that if M → ∞ with M/n → 0
and L/M → a ∈ [0, 1] as n→∞, then we have

E(σ̂2
M,n)− σ2(f) = O(1/M) + O(

√
M/n) , (15)

var(σ̂2
M,n) = 2c

M

n
σ4(f) + o(M/n) ,

as n → ∞, where c is a constant depending on a, taking its smallest value
(namely c = 2/3) for a = 0. This result shows that the bias of such esti-
mators may be very large. Indeed, by optimizing in M we find the optimal
choice M ∼ n1/3, for which we have E(σ̂2

M,n) − σ2(f) = O(n−1/3). Vari-
ous extrapolation and jackknife techniques or kernel smoothing methods have
been suggested to get rid of this large bias (refer to Politis & Romano (1992),
Götze & Künsch (1996), Bertail (1997) and Bertail & Politis (2001)). The
latter somehow amount to make use of Rosenblatt smoothing kernels of or-
der higher than two (taking some negative values) for estimating the spectral
density at 0. However, the main drawback in using these estimators is that
they take negative values for some n, and lead consequently to face problems,
when dealing with studentized statistics.

In our specific Markovian framework, the estimate σ2
n(f) in the atomic

case (or latter σ̂2
n(f) in the general case) is much more natural and allows to

avoid these problems. This is particularly important when the matter is to
establish Edgeworth expansions at orders higher than two in such a non i.i.d.
setting. As a matter of fact, the bias of the variance may completely cancel
the accuracy provided by higher order Edgeworth expansions (but also the
one of its Bootstrap approximation) in the studentized case, given its explicit
role in such expansions (see Götze & Künsch (1996)).

From Proposition 1, we immediately derive that

tn = n1/2σ−1
n (f)(µn(f)− µ(f))⇒ N (0, 1) , as n→∞ ,

so that asymptotic confidence intervals for µ(f) are immediately available in
the atomic case. This result also shows that using estimators µ̃n(f) or µn(f)
instead of µ′

n(f) allows to eliminate the only quantity depending on the initial
distribution ν in the first order term of the bias, which may be interesting for
estimation purpose and is crucial when the matter is to deal with an estimator
of which variance or sampling distribution may be approximated by a resam-
pling procedure in a nonstationary setting (given the impossibility to approx-
imate the distribution of the ”first block sum”

∑τA

i=1 f(Xi) from one single
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realization of X starting from ν). For these estimators, it is actually possible
to implement specific Bootstrap methodologies, for constructing second or-
der correct confidence intervals for instance (see Bertail & Clémençon (2004b,
c) and section 5). Regarding to this, it should be noticed that Edgeworth
expansions (E.E. in abbreviated form) may be obtained using the regenera-
tive method by partitioning the state space according to all possible values
for the number ln regeneration times before n and for the sizes of the first
and last block as in Malinovskii (1987). Bertail & Clémençon (2004a) proved
the validity of an E.E. in the studentized case, of which form is recalled be-
low. Notice that actually (C3) corresponding to their v) in Proposition 3.1
in Bertail & Clémençon (2004a) is not needed in the unstudentized case. Let
Φ(x) denote the distribution function of the standard normal distribution and
set φ(x) = dΦ(x)/dx.

Theorem 2. Let b(f) = limn→∞ n(µn(f) − µ(f)) be the asymptotic bias of
µn(f). Under conditions H0(4), H0(2, ν) H1(4, f), H1(2, ν, f), (C1), we
have the following E.E.,

sup
x∈R

|Pν
(
n1/2σ(f)−1(µn(f)− µ(f)) ≤ x

)
− E(2)

n (x)| = O(n−1) ,

as n→∞, with

E(2)
n (x) = Φ(x)− n−1/2 k3(f)

6
(x2 − 1)φ(x)− n−1/2b(f)φ(x) ,

k3(f) = α−1(M3,A −
3β

σ(f)
) , M3,A =

EA((
∑τA

i=1 f(Xi))3)
σ(f)3

.

A similar limit result holds for the studentized statistic under the further hy-
pothesis that (C2), (C3), H0(s) and H1(s, f) are fulfilled with s = 8 + ε for
some ε > 0:

sup
x∈R

|Pν(n1/2σ−1
n (f)(µn(f)− µ(f)) ≤ x)− F (2)

n (x)| = O(n−1 log(n)) ,

as n→∞, with

F (2)
n (x) = Φ(x) + n−1/2 1

6
k3(f)(2x2 + 1)φ(x)− n−1/2b(f)φ(x) .

When µn(f) = µn(f), under C4), O(n−1 log(n)) may be replaced by O(n−1).

This theorem may serve for building accurate confidence intervals for µ(f)
(by E.E. inversion as in Abramovitz & Singh (1983) or Hall (1983)). It also
paves the way for studying precisely specific bootstrap methods, as in Bertail
& Clémençon (2004c). It should be noted that the skewness k3(f) is the sum
of two terms: the third moment of the recentered block sums and a correlation
term between the block sums and the block lengths. The coefficients involved
in the E.E. may be directly estimated from the regenerative blocks. Once
again by straightforward CLT arguments, we have the following result.
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Proposition 2. For s ≥ 1, under H1(f, 2s), H1(f, 2, ν), H0(2s) and H0(2,
ν), then Ms,A = EA((

∑τA

i=1 f(Xi))s) is well-defined and we have

µ̂s,n = n−1
ln−1∑
i=1

(f(Bj)− µn(f)Lj)s = α−1Ms,A + OPν
(n−1/2) , as n→∞ .

4.2 Positive recurrent case

We now turn to the general positive recurrent case (refer to § 2.3 for assump-
tions and notation). It is noteworthy that, though they may be expressed
using the parameters of the minorization conditionM, the constants involved
in the CLT are independent from these latter. In particular the mean and the
asymptotic variance may be written as

µ(f) = EAM(τAM)−1
EAM(

τAM∑
i=1

f(Xi)) ,

σ2(f) = EAM(τAM)−1
EAM((

τAM∑
i=1

f(Xi))2) ,

where τAM = inf{n ≥ 1, (Xn, Yn) ∈ S × {1}} and EAM(.) denotes the
expectation conditionally to (X0, Y0) ∈ AM = S × {1}. However, one cannot
use the estimators of µ(f) and σ2(f) defined in the atomic setting, applied to
the split chain, since the times when the latter regenerates are unobserved. We
thus consider the following estimators based on the approximate regeneration
times (i.e. times i when (Xi, Ŷi) ∈ S × {1}), as constructed in § 3.2,

µ̂n(f) = n̂−1
AM

l̂n−1∑
j=1

f(B̂j) and σ̂2
n(f) = n̂−1

AM

l̂n−1∑
j=1

{f(B̂j)− µ̂n(f)L̂j}2 ,

with, for j ≥ 1,

f(B̂j) =
τ̂AM (j+1)∑
i=1+τ̂AM (j)

f(Xi), L̂j = τ̂AM(j + 1)− τ̂AM(j) ,

n̂
AM = τ̂AM(l̂n)− τ̂AM(1) =

l̂n−1∑
j=1

L̂j .

By convention, µ̂n(f) = 0 and σ̂2
n(f) = 0 (resp. n̂

AM = 0), when l̂n ≤ 1
(resp., when l̂n = 0). Since the ARB construction involves the use of an
estimate pn(x, y) of the transition kernel p(x, y), we consider conditions on
the rate of convergence of this estimator. For a sequence of nonnegative real
numbers (αn)n∈N converging to 0 as n→∞,
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H2 : p(x, y) is estimated by pn(x, y) at the rate αn for the MSE when
error is measured by the L∞ loss over S × S:

Eν( sup
(x,y)∈S×S

|pn(x, y)− p(x, y)|2) = O(αn) , as n→∞ .

See Remark 3.1 for references concerning the construction and the study of
transition density estimators for positive recurrent chains, estimation rates
are usually established under various smoothness assumptions on the density
of the joint distribution µ(dx)Π(x, dy) and the one of µ(dx). For instance,
under classical Hölder constraints of order s, the typical rate for the risk in
this setup is αn ∼ (lnn/n)s/(s+1) (refer to Clémençon (2000)).

H3 : The ”minorizing” density γ is such that infx∈S γ(x) > 0.

H4: The transition density p(x, y) and its estimate pn(x, y) are bounded
by a constant R <∞ over S2.

Some asymptotic properties of these statistics based on the approximate
regeneration data blocks are stated in the following theorem (their proof is
omitted since it immediately follows from the argument of Theorem 3.2 and
Lemma 5.3 in Bertail & Clémençon (2004c)),

Theorem 3. If assumptions H′
0(2, ν), H′

0(8), H′
1(f, 2, ν), H′

1(f, 8), H2, H3
and H4 are satisfied by X, as well as conditions (C1) and (C2) by the split
chain, we have, as n→∞,

Eν(µ̂n(f)) = µ(f)− β/α n−1 + O(n−1α1/2
n ) ,

Eν(σ̂2
n(f)) = σ2(f) + O(αn ∨ n−1) ,

and if αn = o(n−1/2), then

n1/2(σ̂2
n(f)− σ2(f))⇒ N (0, ξ2(f))

where α, β and ξ2(f) are the quantities related to the split chain defined in
Proposition 4.1 .

Remark 5. The condition αn = o(n−1/2) as n → ∞ may be ensured by
smoothness conditions satisfied by the transition kernel p(x, y): under Hölder
constraints of order s such rates are achieved as soon as s > 1, that is a rather
weak assumption.

We also define the pseudo-regeneration based standardized (resp., studen-
tized) sample mean by

ς̂n = n1/2σ−1(f)(µ̂n(f)− µ(f)) ,

t̂n = n̂1/2
AM

σ̂n(f)−1(µ̂n(f)− µ(f)) .

The following theorem straightforwardly results from Theorem 3.
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Theorem 4. Under the assumptions of Theorem 3, we have as n→∞

ς̂n ⇒ N (0, 1) and t̂n ⇒ N (0, 1) .

This shows that from pseudo-regeneration blocks one may easily construct
a consistent estimator of the asymptotic variance σ2(f) and asymptotic confi-
dence intervals for µ(f) in the general positive recurrent case (see Section 5 for
more accurate confidence intervals based on a regenerative bootstrap method).
In Bertail & Clémençon (2004a), an E.E. is proved for the studentized statistic
t̂n. The main problem consists in handling computational difficulties induced
by the dependence structure, that results from the preliminary estimation of
the transition density. For partly solving this problem, one may use Algo-
rithm 4, involving the 2-split trick. Under smoothness assumptions for the
transition kernel (which are often fulfilled in practice), Bertail & Clémençon
(2004d) established the validity of the E.E. up to O(n−5/6 log(n)), stated in
the result below.

Theorem 5. Suppose that (C1) is satisfied by the split chain, and that
H′

0(κ, ν), H′
1(κ, f, ν), H′

0(κ), H′
1(κ, f) with κ > 6, H2, H3 and H4 are

fulfilled. Let mn and pn be integer sequences tending to ∞ as n → ∞, such
that n1/γ ≤ pn ≤ mn and mn = o(n) as n → ∞. Then, the following limit
result holds for the pseudo-regeneration based standardized sample mean ob-
tained via Algorithm 4

sup
x∈R

|Pν (ς̂n ≤ x)− E(2)
n (x)| = O(n−1/2α1/2

mn
∨ n−3/2mn) , as n→∞ ,

and if in addition the preceding assumptions with κ > 8 and C4) are satisfied,
we also have

sup
x∈R

|Pν(t̂n ≤ x)− F (2)
n (x)| = O(n−1/2α1/2

mn
∨ n−3/2mn) , as n→∞ ,

where E
(2)
n (x) and F

(2)
n (x) are the expansions defined in Theorem 4.2 related

to the split chain. In particular, if αmn = mn log(mn), by picking mn = n2/3,
these E.E. hold up to O(n−5/6 log(n)).

The conditions stipulated in this result are weaker than the conditions
ensuring that the Moving Block Bootstrap is second order correct. More pre-
cisely, they are satisfied for a wide range of Markov chains, including nonsta-
tionary cases and chains with polynomial decay of α−mixing coefficients (cf
remark 2.1) that do not fall into the validity framework of the MBB method-
ology. In particular it is worth noticing that these conditions are weaker than
Götze & Hipp (1983)’s conditions (in a strong mixing setting).

As stated in the following proposition, the coefficients involved in the E.E.’s
above may be estimated from the approximate regeneration blocks.
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Proposition 3. Under H′
0(2s, ν), H′

1(2s, ν, f), H′
0(2s ∨ 8), H′

1(2s ∨ 8, f)
with s ≥ 2, H2, H3 and H4, the expectation Ms,AM = EAM((

∑τAM
i=1 f(Xi))s)

is well-defined and we have, as n→∞,

µ̂s,n = n−1
ln−1∑
i=1

(f(B̂j)− µ̂n(f)L̂j)s = EAM(τAM)−1Ms,AM + OPν
(α1/2

mn
) .

4.3 Some illustrative examples

Here we give some examples with the aim to illustrate the wide range of
applications of the results previously stated.

Example 1 : countable Markov chains.

Let X be a general irreducible chain with a countable state space E. For such a
chain, any recurrent state a ∈ E is naturally an accessible atom and conditions
involved in the limit results presented in § 4.1 may be easily checked at hand.
Consider for instance Cramer condition (C1). Denote by Π the transition
matrix and set A = {a}. Assuming that f is µ-centered. We have, for any
k ∈ N

∗:∣∣∣EA(eit
∑τA

j=1 f(Xj))
∣∣∣ =

∣∣∣∣∣
∞∑
l=1

EA(eit
∑l

j=1 f(Xj)|τA = l)PA(τA = l)

∣∣∣∣∣
≤
∣∣∣EA(eit

∑k
j=1 f(Xj)|τA = k)

∣∣∣PA(τA = k) + 1− PA(τA = k) .

It follows that showing that (C1) holds may boil down to showing the partial
conditional Cramer condition

lim
t→∞

∣∣∣EA(eit
∑k

j=1 f(Xj)|τA = k)
∣∣∣ < 1 ,

for some k > 0 such that PA(τA = k) > 0. In particular, similarly to the i.i.d.
case, this condition then holds, as soon as the set {f(x)}x∈E is not a point
lattice (i.e. it is not a regular grid). We point out that the expression obtained
in Example 1 of Bertail & Clémençon (2004b) is clearly incorrect (it does not
hold at t = 0): given that ∀t ∈ R,

EA(eit
∑τA

j=1 f(Xj))

=
∞∑
l=1

∑
x1 �=a,...,xl−1 �=a

eit
∑l

j=1 f(xj)π(a, x1)π(x1, x2)...π(xl−1, a) ,

(C1) does not hold when f maps the state space to a point lattice.
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Example 2 : modulated random walk on R+.

Consider the model

X0 = 0 and Xn+1 = (Xn + Wn)+ for n ∈ N , (16)

where x+ = max(x, 0), (Xn) and (Wn) are sequences of r.v.’s such that, for all
n ∈ N, the distribution of Wn conditionally to X0, ..., Xn is given by U(Xn, .)
where U(x,w) is a transition kernel from R+ to R. Then, Xn is a Markov
chain on R+ with transition probability kernel Π(x, dy) given by

Π(x, {0}) = U(x, ]−∞, − x]) ,

Π(x, ]y, ∞[) = U(x, ]y − x, ∞[) ,

for all x ≥ 0. Observe that the chain Π is δ0-irreducible when U(x, .) has
infinite left tail for all x ≥ 0 and that {0} is then an accessible atom for X.
The chain is shown to be positive recurrent iff there exists b > 0 and a test
function V : R+ → [0, ∞] such that V (0) <∞ and the drift condition below
holds for all x ≥ 0∫

Π(x, dy)V (y)− V (x) ≤ −1 + bI{x = 0} ,

(see in Meyn & Tweedie (1996). The times at which X reaches the value 0 are
thus regeneration times, and allow to define regeneration blocks dividing the
sample path, as shown in Fig. 1. Such a modulated random walk (for which, at
each step n, the increasing Wn depends on the actual state Xn = x), provides
a model for various systems, such as the popular content-dependent storage
process studied in Harrison & Resnick (1976) (see also Brockwell et al. (1982))
or the work-modulated single server queue in the context of queuing systems
(cf Browne & Sigman (1992)). For such atomic chains with continuous state
space (refer to Meyn & Tweedie (1996), Feller (1968, 71) and Asmussen (1987)
for other examples of such chains), one may easily check conditions used in
§ 3.1 in many cases. One may show for instance that (C1) is fulfilled as soon
as there exists k ≥ 1 such that 0 < PA(τA = k) < 1 and the distribution of∑k

i=1 f(Xi) conditioned on X0 ∈ A and τA = k is absolutely continuous. For
the regenerative model described above, this sufficient condition is fulfilled
with k = 2, f(x) = x and A = {0}, when it is assumed for instance that
U(x, dy) is absolutely continuous for all x ≥ 0 and ∅ �=suppU(0, dy) ∩ R

∗
+ �=

R
∗
+.

Example 3: nonlinear time series.

Consider the heteroskedastic autoregressive model

Xn+1 = m(Xn) + σ(Xn)εn+1, n ∈ N ,

28 Patrice Bertail and Stéphan Clémençon

where m : R→ R and σ : R→ R
∗
+ are measurable functions, (εn)n∈N is a

i.i.d. sequence of r.v.’s drawn from g(x)dx such that, for all n ∈ N, εn+1
is independent from the Xk’s, k ≤ n with E(εn+1) = 0 and E(ε2

n+1) = 1.
The transition kernel density of the chain is given by p(x, y) = σ(x)−1g((y −
m(x))/σ(x)), (x, y) ∈ R

2. Assume further that g, m and σ are continuous
functions and there exists x0 ∈ R such that p(x0, x0) > 0. Then, the transition
density is uniformly bounded from below over some neighborhood Vx0(ε)

2 =
[x0 − ε, x0 + ε]2 of (x0, x0) in R

2 : there exists δ = δ(ε) ∈]0, 1[ such that,

inf
(x,y)∈V 2

x0

p(x, y) ≥ δ(2ε)−1 . (17)

We thus showed that the chain X satisfies the minorization condition
M(1, Vx0(ε), δ,UVx0 (ε)). Furthermore, block-moment conditions for such time
series model may be checked via the practical conditions developed in Douc
et al. (2004) (see their example 3).

5 Regenerative block-bootstrap

Athreya & Fuh (1989) and Datta & McCormick (1993) proposed a specific
bootstrap methodology for atomic Harris positive recurrent Markov chains,
which exploits the renewal properties of the latter. The main idea underly-
ing this method consists in resampling a deterministic number of data blocks
corresponding to regeneration cycles. However, because of some inadequate
standardization, the regeneration-based bootstrap method proposed in Datta
& McCormick (1993) is not second order correct when applied to the sample
mean problem (its rate is OP(n−1/2) in the stationary case). Prolongating this
work, Bertail & Clémençon (2004b) have shown how to modify suitably this
resampling procedure to make it second order correct up to OP(n−1 log(n)) in
the unstudentized case (i.e. when the variance is known) when the chain is
stationary. However this Bootstrap method remains of limited interest from
a practical viewpoint, given the necessary modifications (standardization and
recentering) and the restrictive stationary framework required to obtain the
second order accuracy: it fails to be second order correct in the nonstationary
case, as a careful examination of the second order properties of the sample
mean statistic of a positive recurrent chain based on its E.E. shows (cf Mali-
novskii (1987), Bertail & Clémençon (2004a)).

A powerful alternative, namely the Regenerative Block-Bootstrap (RBB),
have been thus proposed and studied in Bertail & Clémençon (2004c), that
consists in imitating further the renewal structure of the chain by resampling
regeneration data blocks, until the length of the reconstructed Bootstrap series
is larger than the length n of the original data series, so as to approximate the
distribution of the (random) number of regeneration blocks in a series of length
n and remove some bias terms (see section 4). Here we survey the asymptotic
validity of the RBB for the studentized mean by an adequate estimator of
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the asymptotic variance. This is the useful version for confidence intervals but
also for practical use of the Bootstrap (cf Hall (1992)) and for a broad class of
Markov chains (including chains with strong mixing coefficients decreasing at
a polynomial rate), the accuracy reached by the RBB is proved to be of order
OP(n−1) both for the standardized and the studentized sample mean. The rate
obtained is thus comparable to the optimal rate of the Bootstrap distribution
in the i.i.d. case, contrary to the Moving Block Bootstrap (cf Götze & Künsch
(1996), Lahiri (2003)). The proof relies on the E.E. for the studentized sample
mean stated in § 4.1 (see Theorems 4.2, 4.6). In Bertail & Clémençon (2004c) a
straightforward extension of the RBB procedure to general Harris chains based
on the ARB construction (see § 3.1) is also proposed (it is called Approximate
Regenerative Block-Bootstrap, ARBB in abbreviated form). Although it is
based on the approximate regenerative blocks, it is shown to be still second
order correct when the estimate pn used in the ARB algorithm is consistent.
We also emphasize that the principles underlying the (A)RBB may be applied
to any (eventually continuous time) regenerative process (and not necessarily
markovian) or with a regenerative extension that may be approximated (see
Thorisson (2000)).

5.1 The (approximate) regenerative block-bootstrap algorithm.

Once true or approximate regeneration blocks B̂1, ..., B̂l̂n−1 are obtained
(by implementing Algorithm 1, 2, 3 or 4 ), the (approximate) regenerative
block-bootstrap algorithm for computing an estimate of the sample distri-
bution of some statistic Tn = T (B̂1, ..., B̂l̂n−1) with standardization Sn =
S(B̂1, ..., B̂l̂n−1) is performed in 3 steps as follows.

Algorithm 5 (Approximate) Regenerative Block-Bootstrap

1. Draw sequentially bootstrap data blocks B∗
1 , ..., B∗

k independently from

the empirical distribution L̂n = (l̂n − 1)−1∑l̂n−1
j=1 δB̂j

of the initial blocks

B̂1, ..., B̂l̂n−1, until the length of the bootstrap data series l∗(k) =∑k
j=1 l(B∗

j ) is larger than n. Let l∗n = inf{k ≥ 1, l∗(k) > n}.

2. From the bootstrap data blocks generated at step 1, reconstruct a pseudo-
trajectory by binding the blocks together, getting the reconstructed
(A)RBB sample path

X∗(n) = (B∗
1 , ...,B∗

l∗n−1) .

Then compute the (A)RBB statistic and its (A)RBB standardization

T ∗
n = T (X∗(n)) and S∗

n = S(X∗(n)) .
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3. The (A)RBB distribution is then given by

H(A)RBB(x) = P
∗(S∗−1

n (T ∗
n − Tn) ≤ x) ,

where P
∗ denotes the conditional probability given the original data.

Remark 6. A Monte-Carlo approximation to H(A)RBB(x) may be straightfor-
wardly computed by repeating independently N times this algorithm.

5.2 Atomic case: second order accuracy of the RBB

In the case of the sample mean, the bootstrap counterparts of the estimators
µn(f) and σ2

n(f) considered in § 4.1 (using the notation therein) are

µ∗
n(f) = n∗−1

A

l∗n−1∑
j=1

f(B∗
j ) and σ∗2

n (f) = n∗−1
A

l∗n−1∑
j=1

{
f(B∗

j )− µ∗
n(f)l(B∗

j )
}2

,

(18)
with n∗

A =
∑l∗n−1

j=1 l(B∗
j ). Let us consider the RBB distribution estimates of

the unstandardized and studentized sample means

HU
RBB(x) = P

∗(n1/2
A σn(f)−1{µ∗

n(f)− µn(f)} ≤ x) ,

HS
RBB(x) = P

∗(n∗−1/2
A σ∗−1

n (f){µ∗
n(f)− µn(f)} ≤ x) .

The following theorem established in Bertail & Clémençon (2004b) shows the
RBB is asymptotically valid for the sample mean. Moreover it ensures that the
RBB attains the optimal rate of the i.i.d. Bootstrap. The proof of this result
crucially relies on the E.E. given in Malinovskii (1987) in the standardized
case and its extension to the studentized case proved in Bertail & Clémençon
(2004a).

Theorem 6. Suppose that (C1) is satisfied. Under H′
0(2, ν), H′

1(2, f, ν),
H′

0(κ) and H1(κ, f) with κ > 6, the RBB distribution estimate for the un-
standardized sample mean is second order accurate in the sense that

∆U
n = sup

x∈R

|HU
RBB(x)−HU

ν (x)| = OPν (n−1) , as n→∞ ,

with HU
ν (x) = Pν(n

1/2
A σ−1

f {µn(f) − µ(f)} ≤ x). And if in addition (C4),
H′

0(κ) and H1(κ, f) are checked with κ > 8, the RBB distribution estimate
for the standardized sample mean is also 2nd order correct

∆S
n = sup

x∈R

|HS
RBB(x)−HS

ν (x)| = OPν
(n−1) , as n→∞ ,

with HS
ν (x) = Pν(n

1/2
A σ−1

n (f){µn(f)− µ(f)} ≤ x).
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5.3 Asymptotic validity of the ARBB for general chains

The ARBB counterparts of the statistics µ̂n(f) and σ̂2
n(f) considered in § 4.2

(using the notation therein) may be expressed as

µ∗
n(f) = n∗−1

AM

l∗n−1∑
j=1

f(B∗
j )

and

σ∗2
n (f) = n∗−1

AM

l∗n−1∑
j=1

{
f(B∗

j )− µ∗
n(f)l(B∗

j )
}2

,

denoting by n∗
AM

=
∑l∗n−1

j=1 l(B∗
j ) the length of the ARBB data series. De-

fine the ARBB versions of the pseudo-regeneration based unstudentized and
studentized sample means (cf § 4.2) by

ς̂∗n = n1/2
AM

µ∗
n(f)− µ̂n(f)

σ̂n(f)
and t̂∗n = n∗1/2

AM

µ∗
n(f)− µ̂n(f)

σ∗
n(f)

.

The unstandardized and studentized version of the ARBB distribution esti-
mates are then given by

HU
ARBB(x) = P

∗(ς̂∗n ≤ x | X(n+1)) and HS
ARBB(x) = P

∗(t̂∗n ≤ x | X(n+1)) .

This is the same construction as in the atomic case, except that one uses the
approximate regeneration blocks instead of the exact regenerative ones (cf
Theorem 3.3 in Bertail & Clémençon (2004c)).

Theorem 7. Under the hypotheses of Theorem 4.2, we have the following
convergence results in distribution under Pν

∆U
n = sup

x∈R

|HU
ARBB(x)−HU

ν (x)| → 0 , as n→∞ ,

∆S
n = sup

x∈R

|HS
ARBB(x)−HS

ν (x)| → 0 , as n→∞ .

5.4 Second order properties of the ARBB using the 2-split trick

To bypass the technical difficulties related to the dependence problem induced
by the preliminary step estimation, assume now that the pseudo regenerative
blocks are constructed according to Algorithm 4 (possibly including the selec-
tion rule for the small set of Algorithm 3). It is then easier (at the price of a
small loss in the 2nd order term) to get second order results both in the case
of standardized and studentized statistics, as stated below (refer to Bertail &
Clémençon (2004c) for the technical proof).
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Theorem 8. Suppose that (C1) and (C4) are satisfied by the split chain. Un-
der assumptions H′

0(κ, ν), H′
1(κ, f, ν), H′

0(f, κ), H′
1(f, κ) with κ > 6, H2,

H3 and H4, we have the second order validity of the ARBB distribution both
in the standardized and unstandardized case up to order

∆U
n = OPν (n−1/2α1/2

mn
∨ n−1/2n−1mn}) , as n→∞ .

And if in addition these assumptions hold with k > 8, we have

∆S
n = OPν (n−1/2α1/2

mn
∨ n−1/2n−1mn) , as n→∞ .

In particular if αm = m log(m), by choosing mn = n2/3, the ARBB is second
order correct up to O(n−5/6 log(n)).

It is worth noticing that the rate that can be attained by the 2-split trick
variant of the ARBB for such chains is faster than the optimal rate the MBB
may achieve, which is typically of order O(n−3/4) under very strong assump-
tions (see Götze & Künsch (1996), Lahiri (2003)). Other variants of the boot-
strap (sieve bootstrap) for time-series may also yield (at least practically) very
accurate approximation (see Bühlmann (2002), (1997)). When some specific
non-linear structure is assumed for the chain (see our example 3), nonpara-
metric method estimation and residual based resampling methods may also
be used : see for instance Franke et al. (2002). However to our knowledge, no
rate of convergence is explicitly available for these bootstrap techniques. An
empirical comparison of all these recent methods would be certainly of great
help but is beyond the scope of this paper.

6 Some extensions to U -statistics

We now turn to extend some of the asymptotic results stated in sections 4
and 5 for sample mean statistics to a wider class of functionals and shall con-
sider statistics of the form

∑
1≤i�=j≤n U(Xi, Xj). For the sake of simplicity, we

confined the study to U -statistics of degree 2, in the real case only. As will be
shown below, asymptotic validity of inference procedures based on such statis-
tics does not straightforwardly follow from results established in the previous
sections, even for atomic chains. Furthermore, whereas asymptotic validity of
the (approximate) regenerative block-bootstrap for these functionals may be
easily obtained, establishing its second order validity and give precise rate
is much more difficult from a technical viewpoint and is left to a further
study. Besides, arguments presented in the sequel may be easily adapted to
V -statistics

∑
1≤i, j≤n U(Xi, Xj).

6.1 Regenerative case

Given a trajectory X(n) = (X1, ..., Xn) of a Harris positive atomic Markov
chain with stationary probability law µ (refer to § 2.2 for assumptions and
notation), we shall consider in the following U -statistics of the form
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Tn =
1

n(n− 1)

∑
1≤i�=j≤n

U(Xi, Xj) , (19)

where U : E2 → R is a kernel of degree 2. Even if it entails introducing
the symmetrized version of Tn, it is assumed throughout the section that the
kernel U(x, y) is symmetric. Although such statistics have been mainly used
and studied in the case of i.i.d. observations, in dependent settings such as
ours, these statistics are also of interest, as shown by the following examples.

• In the case when the chain takes real values and is positive recurrent with
stationary distribution µ, the variance of the stationary distribution s2 =
Eµ((X − Eµ(X))2), if well defined (note that it differs in general from the
asymptotic variance of the mean statistic studied in § 4.1), may be consistently
estimated under adequate block moment conditions by

ŝ2
n =

1
n− 1

n∑
i=1

(Xi − µn)2 =
1

n(n− 1)

∑
1≤i�=j≤n

(Xi −Xj)2/2 ,

where µn = n−1∑n
i=1 Xi, which is a U -statistic of degree 2 with symmetric

kernel U(x, y) = (x− y)2/2.

• In the case when the chain takes its values in the multidimensional space
R
p, endowed with some norm ||. ||, many statistics of interest may be written

as a U -statistic of the form

Un =
1

n(n− 1)

∑
1≤i�=j≤n

H(||Xi −Xj ||) ,

where H : R → R is some measurable function. And in the particular case
when p = 2, for some fixed t in R

2 and some smooth function h, statistics of
type

Un =
1

n(n− 1)

∑
1≤i�=j≤n

h(t, Xi, Xj)

arise in the study of the correlation dimension for dynamic systems (see
Borovkova et al. (1999)). Depth statistical functions for spatial data are also
particular examples of such statistics (cf Serfling & Zuo (2000)).

In what follows, the parameter of interest is

µ(U) =
∫

(x,y)∈E2
U(x, y)µ(dx)µ(dy) , (20)

which quantity we assume to be finite. As in the case of i.i.d. observations, a
natural estimator of µ(U) in our markovian setting is Tn. We shall now study
its consistency properties and exhibit an adequate sequence of renormalizing
constants for the latter, by using the regeneration blocks construction once
again. For later use, define ωU : T

2 → R by
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ωU (x(k), y(l)) =
k∑
i=1

l∑
j=1

U(xi, yj) ,

for any x(k) = (x1, ..., xk), y(l) = (y1, ..., yl) in the torus T = ∪∞
n=1E

n and
observe that ωU is symmetric, as U .

”Regeneration-based Hoeffding’s decomposition”

By the representation of µ as a Pitman’s occupation measure (cf Theorem
2.1), we have

µ(U) = α−2
EA(

τA(1)∑
i=1

τA(2)∑
l=τA(1)+1

U(Xi, Xj))

= α−2
E(ωU (Bl,Bk)) ,

for any integers k, l such that k �= l. In the case of U -statistics based on de-
pendent data, the classical (orthogonal) Hoeffding decomposition (cf Serfling
(1981)) does not hold anymore. Nevertheless, we may apply the underlying
projection principle for establishing the asymptotic normality of Tn by ap-
proximatively rewriting it as a U -statistic of degree 2 computed on the regen-
erative blocks only, in a fashion very similar to the Bernstein blocks technique
for strongly mixing random fields (cf Doukhan (1994)), as follows. As a matter
of fact, the estimator Tn may be decomposed as

Tn =
(ln − 1)(ln − 2)

n(n− 1)
Uln−1 + T (0)

n + T (n)
n + ∆n , (21)

where,

UL =
2

L(L− 1)

∑
1≤k<l≤L

ωU (Bk,Bl) ,

T (0)
n =

2
n(n− 1)

∑
1≤k≤ln−1

ωU (Bk,B0) ,

T (n)
n =

2
n(n− 1)

∑
0≤k≤ln−1

ωU (Bk,B(n)
ln

) ,

∆n =
1

n(n− 1)
{
ln−1∑
k=0

ωU (Bk,Bk) + ωU (B(n)
ln

,B(n)
ln

)−
n∑
i=1

U(Xi, Xi)} .

Observe that the ”block diagonal part” of Tn, namely ∆n, may be straight-
forwardly shown to converge Pν- a.s. to 0 as n→∞, as well as T

(0)
n and T

(1)
n

by using the same arguments as the ones used in § 4.1 for dealing with sam-
ple means, under obvious block moment conditions (see conditions (ii)-(iii)
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below). And, since ln/n → α−1
Pν- a.s. as n → ∞, asymptotic properties of

Tn may be derived from the ones of Uln−1, which statistic depends on the
regeneration blocks only. The key point relies in the fact that the theory of
U -statistics based on i.i.d. data may be straightforwardly adapted to func-
tionals of the i.i.d. regeneration blocks of the form

∑
k<l ωU (Bk,Bl). Hence,

the asymptotic behaviour of the U -statistic UL as L→∞ essentially depends
on the properties of the linear and quadratic terms appearing in the following
variant of Hoeffding’s decomposition. For k, l ≥ 1, define

ω̃U (Bk,Bl) =
τA(k+1)∑
i=τA(k)+1

τA(l+1)∑
j=τA(l)+1

{U(Xi, Xj)− µ(U)} .

(notice that E(ω̃U (Bk,Bl)) = 0 when k �= l) and for L ≥ 1 write the expansion

UL − µ(U) =
2
L

L∑
k=1

ω
(1)
U (Bk) +

2
L(L− 1)

∑
1≤k<l≤L

ω
(2)
U (Bk,Bl) , (22)

where, for any b1 = (x1, ..., xl) ∈ T,

ω
(1)
U (b1) = E(ω̃U (B1,B2)|B1 = b1) = EA(

l∑
i=1

τA∑
j=1

ω̃U (xi, Xj))

is the linear term (see also our definition of the influence function of the
parameter E(ω(B1,B2)) in section 7) and for all b1, b2 in T,

ω
(2)
U (b1, b2) = ω̃U (b1, b2)− ω̃

(1)
U (b1)− ω̃

(1)
U (b2)

is the quadratic degenerate term (gradient of order 2). Notice that by using
the Pitman’s occupation measure representation of µ, we have as well, for any
b1 = (x1, ..., xl) ∈ T,

(EAτA)−1ω
(1)
U (b1) =

l∑
i=1

Eµ(ω̃U (xi, X1)) .

For resampling purposes, we also introduce the U -statistic based on the data
between the first regeneration time and the last one only:

T̃n =
2

ñ(ñ− 1)

∑
1+τA≤i<j≤τA(ln)

U(Xi, Xj) ,

with ñ = τA(ln)− τA and T̃n = 0 when ln ≤ 1 by convention.
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Asymptotic normality and asymptotic validity of the RBB

Now suppose that the following conditions, which are involved in the next
result, are fulfilled by the chain.

(i) (Non degeneracy of the U -statistic)

0 < σ2
U = E(ω(1)

U (B1)2) <∞ .

(ii) (Block-moment conditions: linear part) For some s ≥ 2,

E(ω(1)
|U |(B1)s) <∞ and Eν(ω

(1)
|U |(B0)2) <∞ .

(iii) (Block-moment conditions: quadratic part) For some s ≥ 2,

E|ω|U |(B1,B2)|s <∞ and E|ω|U |(B1,B1)|s <∞ ,

Eν |ω|U |(B0,B1)|2 <∞ and Eν |ω|U |(B0,B0)|2 <∞ .

By construction, under (ii)-(iii) we have the crucial orthogonality property:

cov(ω(1)
U (B1), ω

(2)
U (B1,B2)) = 0 . (23)

Now a slight modification of the argument given in Hoeffding (1948) allows to
prove straightforwardly that

√
L(UL − µ(U)) is asymptotically normal with

zero mean and variance 4σ2
U . Furthermore, by adapting the classical CLT

argument for sample means of Markov chains (refer to in Meyn & Tweedie
(1996) for instance) and using (23) and ln/n → α−1

Pν-a.s. as n → ∞,
one deduces that

√
n(Tn − µ(U)) ⇒ N (0, Σ2) as n → ∞ under Pν , with

Σ2 = 4α−3σ2
U .

Besides, estimating the normalizing constant is important (for constructing
confidence intervals or bootstrap counterparts for instance). So we define the
natural estimator σ2

U, ln−1 of σ2
U based on the (asymptotically i.i.d.) ln − 1

regeneration data blocks by

σ2
U, L = (L− 1)(L− 2)−2

L∑
k=1

[(L− 1)−1
L∑

l=1,k �=l
ωU (Bk,Bl)− UL]2 ,

for L ≥ 1. The estimate σ2
U, L is a simple transposition of the jackknife esti-

mator considered in Callaert & Veraverbeke (1981) to our setting and may be
easily shown to be strongly consistent (by adapting the SLLN for U -statistics
to this specific functional of the i.i.d regeneration blocks). Furthermore, we
derive that Σ2

n → Σ2
Pν-a.s., as n→∞, where

Σ2
n = 4(ln/n)3σ2

U, ln−1 .

We also consider the regenerative block-bootstrap counterparts T ∗
n and Σ∗2

n

of T̃n and Σ2
n respectively, constructed via Algorithm 5 :
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T ∗
n =

2
n∗(n∗ − 1)

∑
1≤i<j≤n∗

U(X∗
i , X∗

j ) ,

Σ∗2
n = 4(l∗n/n

∗)3σ∗2
U, l∗n−1 ,

where n∗ denotes the length of the RBB data series X∗(n) = (X1, ..., Xn∗)
constructed from the l∗n − 1 bootstrap data blocks, and

σ∗2
U, l∗n−1 = (l∗n − 2)(l∗n − 3)−2

l∗n−1∑
k=1

[(l∗n − 2)−1
l∗n−1∑

l=1,k �=l
ωU (B∗

k,B∗
l )− U∗

l∗n−1]
2 ,

(24)

U∗
l∗n−1 =

2
(l∗n − 1)(l∗n − 2)

∑
1≤k<l≤l∗n−1

ωU (B∗
k,B∗

l ) .

We may then state the following result.

Theorem 9. If conditions (i)-(iii) are fulfilled with s = 4, then we have the
CLT under Pν

√
n(Tn − µ(U))/Σn ⇒ N (0, 1) , as n→∞ .

This limit result also holds for T̃n, as well as the asymptotic validity of the
RBB distribution: as n→∞,

sup
x∈R

|P∗(
√

n∗(T ∗
n − T̃n))/Σ∗

n ≤ x)− Pν(
√

n(T̃n − µ(U))/Σn ≤ x)| Pν→ 0 .

Whereas proving the asymptotic validity of the RBB for U -statistics un-
der these assumptions is straightforward (its second order accuracy up to
o(n−1/2) seems also quite easy to prove by simply adapting the argument
used by Helmers (1991) under appropriate Cramer condition on ω

(1)
U (B1) and

block-moment assumptions), establishing an exact rate, O(n−1) for instance
as in the case of sample mean statistics, is much more difficult. Even if
one tries to reproduce the argument in Bertail & Clémençon (2004a) con-
sisting in partitioning the underlying probability space according to every
possible realization of the regeneration times sequence between 0 and n, the
problem boils down to control the asymptotic behaviour of the distribution
P(
∑

1≤i�=j≤m ω
(2)
U (Bi,Bj)/σ2

U, m ≤ y,
∑m

j=1 Lj = l) as m → ∞, which is a
highly difficult technical task̇ (due to the lattice component).

Remark 7. We point out that the approach developed here to deal with the
statistic UL naturally applies to more general functionals of the regeneration
blocks

∑
k<l ω(Bk,Bl), with ω : T

2 → R being some measurable function.
For instance, the estimator of the asymptotic variance σ̂2

n(f) proposed in §
4.1 could be derived from such a functional, that may be seen as a U -statistic
based on observation blocks with kernel ω(Bk,Bl) = (f(Bk)− f(Bl))2/2.
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6.2 General case

Suppose now that the observed trajectory X(n+1) = (X1, ..., Xn+1) is drawn
from a general Harris positive chain with stationary probability µ (see § 2.2 for
assumptions and notation). Using the split chain, we have the representation
of the parameter µ(U) :

µ(U) = EAM(τAM)−2
EAM(ωU (B1,B2)) .

Using the pseudo-blocks B̂l, 1 ≤ l ≤ l̂n−1, as constructed in § 3.2, we consider
the sequence of renormalizing constants for Tn :

Σ̂2
n = 4(l̂n/n)3σ̂2

U, l̂n−1
, (25)

with

σ̂2
U, l̂n−1

= (l̂n − 2)(l̂n − 3)−2
l̂n−1∑
k=1

[(l̂n − 2)−1
l̂n−1∑

l=1,k �=l
ωU (B̂k, B̂l)− Ûl̂n−1]

2 ,

Ûl̂n−1 =
2

(l̂n − 1)(l̂n − 2)

∑
1≤k<l≤l̂n−1

ωU (B̂k, B̂l) .

We also introduce the U -statistic computed from the first approximate regen-
eration time and the last one:

T̂n =
2

n̂(n̂− 1)

∑
1+τ̂A(1)≤i<j≤τ̂A(ln)

U(Xi, Xj) ,

with n̂ = τ̂A(l̂n)− τ̂A(1). Let us define the bootstrap counterparts T ∗
n and Σ∗

n

of T̂n and Σ̂2
n constructed from the pseudo-blocks via Algorithm 5. Although

approximate blocks are used here instead of the (unknown) regenerative ones
Bl, 1 ≤ l ≤ ln−1, asymptotic normality still holds under appropriate assump-
tions, as shown by the theorem below, which we state in the only case when
the kernel U is bounded (with the aim to make the proof simpler).

Theorem 10. Suppose that the kernel U(x, y) is bounded and that H2, H3,
H4 are fulfilled, as well as (i)-(iii) for s = 4. Then we have as n→∞,

Σ̂2
n → Σ2 = 4EAM(τAM)−3

EAM(ω(1)
U (B1)2), in Pν-pr.

Moreover as n→∞, under Pν we have the convergence in distribution

n1/2Σ̂−1
n (T̂n − µ(U))⇒ N (0, 1) ,

as well as the asymptotic validity of the ARBB counterpart

sup
x∈R

|P∗(
√

n∗(T ∗
n − T̂n))/Σ∗

n ≤ x)− Pν(
√

n(T̂n − µ(U))/Σ̂n ≤ x)| Pν→
n→∞ 0 .
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Proof. By applying the results of § 6.1 to the split chain, we get that the
variance of the limiting (normal) distribution of

√
n(Tn − µ(U)) is Σ2 =

4EAM(τAM)−3
EAM(ω(1)

U (B1)2). The key point of the proof consists in con-
sidering an appropriate coupling between (Xi, Yi)1≤i≤n and (Xi, Ŷi)1≤i≤n
(or equivalently between the sequence of the ”true” regeneration times be-
tween 0 and n and the sequence of approximate ones), so as to control the
deviation between functionals constructed from the regeneration blocks and
their counterparts based on the approximate ones. The coupling considered
here is the same as the one used in the proof of Theorem 3.1 in Bertail &
Clémençon (2004c) (refer to the latter article for a detailed construction). We
shall now evaluate how σ̂2

U, l̂n−1
differs from σ2

U, ln−1, its counterpart based
on the ”true” regeneration blocks. Observe first that

Tn =
n̂(n̂− 1)
n(n− 1)

T̂n + T̂ (0)
n + T̂ (n)

n + ∆̂n ,

where

T̂ (0)
n =

2
n(n− 1)

∑
1≤k≤l̂n−1

ωU (B̂k, B̂0) ,

T̂ (n)
n =

2
n(n− 1)

∑
0≤k≤ln−1

ωU (B̂k, B̂(n)
l̂n

) ,

∆̂n =
1

n(n− 1)
{
l̂n−1∑
k=0

ωU (B̂k, B̂k) + ωU (B̂(n)
l̂n

, B̂(n)
l̂n

)−
n∑
i=1

U(Xi, Xi)} .

Now following line by line the proof of lemma 5.2 in Bertail & Clémençon
(2004c), we obtain that, as n→∞, n̂/n− 1 = OPν (1), ∆̂n −∆n, T̂

(0)
n − T̂

(0)
n

and T̂
(n)
n − T̂

(n)
n are OPν

(n−1). It follows thus that T̂n = Tn + oPν
(n−1/2)

as n → ∞, and
√

n(T̂n − µ(U)) is asymptotically normal with variance Σ2.
The same limit results is straightforwardly available then for the Bootstrap
version by standard regenerative arguments. Furthermore, by Lemma 5.3 in
Bertail & Clémençon (2004c) we have | l̂n/n− ln/n |= OPν

(α1/2
n ) as n→∞,

and thus l̂n/n→ EAM(τAM)−1 in Pν-pr. as n→∞. It then follows by simple
(especially when U is bounded) but tedious calculations that Σ̂2

n − Σ2
n =

Dn + oPν (1) as n→∞, with

Dn = 4(ln/n)3[l̂−1
n

l̂n−1∑
i=1

{ 1

l̂n − 2

l̂n−1∑
j=1,j �=i

ωU (B̂i, B̂j)}2

− l−1
n

ln−1∑
i=1

{ 1
ln − 2

ln−1∑
j=1,j �=i

ωU (Bi,Bj)}2] .
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Now set ĝn(B̂i) = (l̂n− 2)−1∑l̂n−1
j=1,j �=i ωU (B̂i, B̂j) for i ∈ {1, ..., l̂n− 1} and

gn(Bi) = (ln − 2)−1∑ln−1
j=1,j �=i ωU (Bi,Bj) for i ∈ {1, ..., l̂n − 1}. By standard

arguments on U -statistics (see for instance Helmers (1991) and the references
therein) and using once again lemma 5.1 and 5.2 in Bertail & Clémençon
(2004b), we have uniformly in i ∈ {1, ..., l̂n − 1} (resp. in i ∈ {1, ..., l̂n − 1}),
ĝn(B̂i) = ω

(1)
U (B̂i) + oPν (1) (resp. gn(Bi) = ω

(1)
U (Bi) + oPν (1)) as n → ∞.

Such uniform bounds are facilitated by the boundedness assumption on U ,
but one may expect that with refined computations the same results could be
established for unbounded kernels.

It follows that as n→∞,

∆n = 4(ln/n)3[l̂−1
n

l̂n−1∑
i=1

{ω(1)
U (B̂i)}2 − l−1

n

ln−1∑
i=1

{ω(1)
U (Bi)}2] + oPν (1) .

The first term in the right hand side is also oPν (1) by lemma 5.2 in Bertail &
Clémençon (2004c). The proof of the asymptotic validity of the Bootstrap ver-
sion is established by following the preceding lines: it may be easily checked by
first linearizing and following the proof of Theorem 3.3 in Bertail & Clémençon
(2004c). As in the i.i.d case, this asymptotic result essentially boils down then
to check that the empirical moments converge to the theoretical ones. This
can be done by adapting standard SLLN arguments for U -statistics. ��

7 Robust functional parameter estimation

Extending the notion of influence function and/or robustness to the frame-
work of general time series is a difficult task (see Künsch (1984) or Martin
& Yohai (1986)). Such concepts are important not only to detect ”outliers”
among the data or influential observations but also to generalize the important
notion of efficient estimation in semiparametric frameworks (see the recent
discussion in Bickel & Kwon (2001) for instance). In the markovian setting, a
recent proposal based on martingale approximation has been made by Müller
et al. (2001). Here we propose an alternative definition of the influence func-
tion based on the (approximate) regeneration blocks construction, which is
easier to manipulate and immediately leads to central limit and convolution
theorems.

7.1 Defining the influence function on the torus

The leitmotiv of this paper is that most parameters of interest related to Harris
chains are functionals of the distribution L of the regenerative blocks (observe
that L is a distribution on the torus T = ∪n≥1E

n), namely the distribution
of (X1, ...., XτA

) conditioned on X0 ∈ A when the chain possesses an atom
A, or the distribution of (X1, ...., XτAM ) conditioned on (X0, Y0) ∈ AM in
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the general case when one considers the split chain (refer to section 2 for
assumptions and notation, here we shall omit the subscript A andM in what
follows to make the notation simpler). In view of Theorem 2.1, this is obviously
true in the positive recurrent case for any functional of the stationary law µ.
But, more generally, the probability distribution Pν of the Markov chain X
starting from ν may be decomposed as follows :

Pν((Xn)n≥1) = Lν((X1, ...., XτA(1)))
∞∏
k=1

L((X1+τA(k), ...., XτA(k+1))) ,

denoting by Lν the distribution of (X1, ...., XτA
) conditioned on X0 ∼ ν.

Thus any functional of the law of (Xn)n≥1 may be seen as a functional of (Lν ,
L). However, pointing out that the distribution of Lν cannot be estimated
in most cases encountered in practice, only functionals of L are of practical
interest. The object of this subsection is to propose the following definition
of the influence function for such functionals. Let PT denote the set of all
probability measures on the torus T and for any b ∈ T, set L(b) = k if b ∈ Ek,
k ≥ 1. We then have the following natural definition, that straightforwardly
extends the classical notion of influence function in the i.i.d. case, with the
important novelty that distributions on the torus are considered here.

Definition 1. Let T : PT → R be a functional on PT. If for L in PT,
t−1(T ((1 − t)L + tδb) − T (L)) has a finite limit as t → 0 for any b ∈ T,
then the influence function T (1) of the functional T is well defined, and by
definition one has for all b in T,

T (1)(b, L) = lim
t→0

T ((1− t)L+ tδb)− T (L)
t

. (26)

7.2 Some examples

The relevance of this definition is illustrated through the following examples,
which aim to show how easy it is to adapt known calculations of influence
function on R to this framework.

a) Suppose that X is positive recurrent with stationary distribution µ. Let
f : E → R be µ-integrable and consider the parameter µ0(f) = Eµ(f(X)).
Denote by B a r.v. valued in T with distribution L and observe that µ0(f) =
EL (f(B))/EL (L(B)) = T (L) (recall the notation f(b) =

∑L(b)
i=1 f(bi) for any

b ∈ T). A classical calculation for the influence function of ratios yields then

T (1)(b,L) =
d

dt
(T ((1− t)L+ tb)|t=0 =

f(b)− µ(f)L(b)
EL (L(B))

.

Notice that EL(T (1)(B,L)) = 0.

b) Let θ be the unique solution of the equation: Eµ(ψ(X, θ)) = 0, where
ψ : R

2 → R is C2. Observing that it may be rewritten as EL(ψ(B, θ)) = 0, a
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similar calculation to the one used in the i.i.d. setting (if differentiating inside
the expectation is authorized) gives in this case

T
(1)
ψ (b,L) = − ψ(b, θ)

EA(
∑τA

i=1
∂ψ(Xi,θ)

∂θ )
.

By definition of θ, we naturally have EL(T (1)
ψ (B,L)) = 0.

c) Assuming that the chain takes real values and its stationary law µ has
zero mean and finite variance, let ρ be the correlation coefficient between
consecutive observations under the stationary distribution:

ρ =
Eµ(XnXn+1)

Eµ(X2
n)

=
EA(

∑τA

n=1 XnXn+1)
EA(

∑τA

n=1 X2
n)

.

For all b in T, the influence function is

T (1)
ρ (b,L) =

∑L(b)
i=1 bi(bi+1 − ρbi)
EA(

∑τA

t=1 X2
t )

,

and one may check that EL(T (1)
ρ (B,L)) = 0 .

d) It is now possible to reinterpret the results obtained for U -statistics in
section 6. With the notation above, the parameter of interest may be rewritten

µ(U) = EL (L(B))−2
EL×L(U(B1,B2)) ,

yielding the influence function: ∀b ∈ T,

µ(1)(b,L) = 2EL (L(B))−2
EL(ω̃U (B1,B2)|B1 = b) .

7.3 Main results

In order to lighten the notation, the study is restricted to the case when
X takes real values, i.e. E ⊂ R, but straightforwardly extends to a more
general framework. Given an observed trajectory of length n, natural em-
pirical estimates of parameters T (L) are of course the plug-in estimators
T (Ln) based on the empirical distribution of the observed regeneration blocks
Ln = (ln − 1)−1∑ln−1

j=1 δBj ∈ PT in the atomic case, which is defined as soon
as ln ≥ 2 (notice that Pν(ln ≤ 1) = O(n−1) as n→∞, if H0(1, ν) and H0(2)
are satisfied). For measuring the closeness between Ln and L, consider the
bounded Lipschitz type metric on PT

dBL(L,L′) = sup
f∈Lip1

T

{
∫

f(b)L(db)−
∫

f(b)L′(db) , (27)

for any L, L′ in PT, denoting by Lip1
T

the set of functions F : T→ R of type
F (b) =

∑L(b)
i=1 f(bi), b ∈ T, where f : E → R is such that supx∈E |f(x)| ≤ 1
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and is 1-Lipschitz. Other metrics (of Zolotarev type for instance, cf Rachev &
Ruschendorf (1998)) may be considered. In the general Harris case (refer to §
3.2 for notation), the influence function based on the atom of the split chain,
as well as the empirical distribution of the (unobserved) regeneration blocks
have to be approximated to be of practical interest. Once again, we shall use
the approximate regeneration blocks B̂1, ..., B̂l̂n−1 (using Algorithm 2, 3 ) in
the general case and consider

L̂n = (l̂n − 1)
l̂n−1∑
j=1

δB̂j
,

when l̂n ≥ 2. The following theorem provides an asymptotic bound for the
error committed by replacing the empirical distribution Ln of the ”true” re-
generation blocks by L̂n, when measured by dBL.

Theorem 11. Under H′
0(4),H′

0(4, ν),H2, H3 and H4, we have

dBL(Ln, L̂n) = O(α1/2
n ) , as n→∞ .

And if in addition dBL(Ln,L) = O(n−1/2) as n→∞, then

dBL(Ln, L̂n) = O(α1/2
n n−1/2) , as n→∞ .

Proof. With no loss of generality, we assume the Xi’s centered. From lemma
5.3 in Bertail & Clémençon (2004c), we have ln/l̂n−1 = OPν (α1/2

n ) as n→∞.
Besides, writing

dBL(Ln, L̂n) ≤ (
ln − 1

l̂n − 1
− 1) sup

f∈Lip1
T

| 1
ln − 1

ln−1∑
j=1

f(Bj)|

+
n

l̂n − 1
sup

f∈Lip1
T

|n−1
ln−1∑
j=1

f(Bj)− n−1
l̂n−1∑
j=1

f(B̂j)| , (28)

and observing that supf∈Lip1
T

|(ln−1)−1∑ln−1
j=1 f(Bj)| ≤ 1, we get that the first

term in the right hand side is OPν (α1/2
n ) as n→∞. Now as supx∈E |f(x)| ≤ 1,

we have

|n−1(
ln∑
j=1

f(Bj)−
l̂n∑
j=1

f(B̂j))| ≤ n−1(|τ̂AM(1)−τAM(1)|+|τ̂AM(ln)−τ̂AM(ln)|) ,

and from lemma 5.1 in by Bertail & Clémençon (2004b), the term in the right
hand side is oPν (n−1) as n→∞. We thus get

dBL(Ln, L̂n) ≤ α1/2
n dBL(Ln,L) + oPν

(n−1) , as n→∞ .

And this completes the proof. ��
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Given the metric on PT defined by dBL, we consider now the Fréchet
differentiability for functionals T : PT → R.

Definition 2. We say that T is Fréchet-differentiable at L0 ∈ PT, if there
exists a linear operator DT

(1)
L0

and a function ε(1)(.,L0): R→ R, continuous
at 0 with ε(1)(0,L0) = 0, such that:

∀L ∈ PT, T (L)− T (L0) = D(1)TL0(L − L0) + R(1)(L,L0) ,

with R(1)(L,L0) = dBL(L,L0)ε(1)(dBL(L,L0),L0). Moreover, T is said to
have a canonical gradient (or influence function) T (1)(.,L0), if one has the
following representation for DT

(1)
L0

:

∀L ∈ PT, DT
(1)
L0

(L − L0) =
∫

T

T (1)(b,L0)L(db) .

Now it is easy to see that from this notion of differentiability on the
torus one may directly derive CLT’s, provided the distance d(Ln,L) may
be controlled.

Theorem 12. In the regenerative case, if T : PT → R is Fréchet differentiable
at L and dBL(Ln,L) = OPν (n−1/2) (or R(1)(Ln,L) = oPν (n−1/2)) as n→∞,
and if EA(τA) <∞ and 0 < varA(T (1)(B1,L)) <∞ then under Pν ,

n1/2(T (Ln)− T (L))⇒ N (0,EA(τA)varA(T (1)(B1,L)) , as n→∞ .

In the general Harris case, if the split chain satisfies the assumptions above
(with A replaced by AM), under the assumptions of Theorem 11, as n → ∞
we have under Pν ,

n1/2(T (L̂n)− T (L))⇒ N (0,EAM(τAM)varAM(T (1)(B1,L)) .

The proof is straightforward and left to the reader. Observe that if one
renormalizes by l

1/2
n instead of renormalizing by n1/2 in the atomic case

(resp., by l̂
1/2
n in the general case), the asymptotic distribution would be sim-

ply N (0, varA(T (1)(B1,L)) (resp., varAM(T (1)(B1,L)), which depends on the
atom chosen (resp. on the parameters of condition M).

Then going back to the preceding examples, we straightforwardly deduce
the following results.

a) Noticing that n1/2/l
1/2
n → EA(τA)1/2 Pν- a.s. as n → ∞, we immedi-

ately get that under Pν , as n→∞,

n1/2(µn(f)− µ(f))⇒ N (0,EA(τA)−1varA(
τA∑
i=1

(f(Xi)− µ(f)) .

b) In a similar fashion, under smoothness assumptions ensuring Fréchet
differentiability, the M -estimator θ̂n being the (unique) solution of the block-
estimating equation
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τA(ln)∑
i=τA+1

ψ(Xi, θ) =
ln∑
j=1

τA(j+1)∑
i=τA(j)+1

ψ(Xi, θ) = 0 ,

we formally obtain that, if EA(
∑τA

i=1
∂ψ(Xi,θ)

∂θ ) �= 0 and θ is the true value of
the parameter, then under Pν , as n→∞,

n1/2(θ̂n − θ)⇒ N (0, [
EA(

∑τA

i=1
∂ψ(Xi,θ)

∂θ )
EA(τA)

]−2 varA(
∑τA

i=1 ψ(Xi, θ))
EA(τA)

) .

Observe that both factors in the variance are independent from the atom A
chosen. It is worth noticing that, by writing the asymptotic variance in this
way, as a function of the distribution of the blocks, a consistent estimator
for the latter is readily available, from the (approximate) regeneration blocks.
Examples c) and d) may be treated similarly.

Remark 8. The concepts developed here may also serve as a tool for robust-
ness purpose, for deciding whether a specific data block has an important
influence on the value of some given estimate or not, and/or whether it may
be considered as ”outlier”. The concept of robustness we introduce is related
to blocks of observations, instead of individual observations. Heuristically, one
may consider that, given the regenerative dependency structure of the pro-
cess, a single suspiciously outlying value at some time point n may have a
strong impact on the trajectory, until the (split) chain regenerates again, so
that not only this particular observation but the whole ”contaminated” seg-
ment of observations should be eventually removed. Roughly stated, it turns
out that examining (approximate) regeneration blocks as we propose before,
allows to identify more accurately outlying data in the sample path, as well as
their nature (in the time series context, different type of outliers may occur,
such as additive or innovative outliers). By comparing the data blocks (their
length, as well as the values of the functional of interest on these blocks) this
way, one may detect the ones to remove eventually from further computations.

8 Some extreme values statistics

We now turn to statistics related to the extremal behaviour of functionals
of type f(Xn) in the atomic positive Harris recurrent case, where f : (E,
E) → R is a given measurable function. More precisely, we shall focus on
the limiting distribution of the maximum Mn(f) = max1≤i≤n f(Xi) over a
trajectory of length n, in the case when the chain X possesses an accessible
atom A (see Asmussen (1998) and the references therein for various examples
of such processes X in the area of queuing systems and a theoretical study of
the tail properties of Mn(f) in this setting).
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8.1 Submaxima over regeneration blocks

For j ≥ 1, we define the ”submaximum” over the j-th cycle of the sample
path:

ζj(f) = max
1+τA(j)≤i≤τA(j+1)

f(Xi) .

The ζj(f)’s are i.i.d. r.v.’s with common d.f. Gf (x) = P(ζ1(f) ≤ x). The
following result established by Rootzén (1988) shows that the limiting dis-
tribution of the sample maximum of f(X) is entirely determined by the tail
behaviour of the df Gf and relies on the crucial observation that the maxi-
mum value Mn(f) = max1≤i≤n f(Xi) over a trajectory of length n, may be
expressed in terms of ”submaxima” over regeneration blocks as follows

Mn(f) = max(ζ0(f), max
1≤j≤ln−1

ζj(f), ζ
(n)
ln

(f)) ,

where ζ0(f) = max1≤i≤τA
f(Xi) and ζ

(n)
ln

(f) = max1+τA(ln)≤i≤n f(Xi) de-
note the maxima over the non regenerative data blocks, and with the usual
convention that the maximum over an empty set equals −∞.

Proposition 4. (Rootzén, 1988) Let α = EA(τA) be the mean return time to
the atom A. Under the assumption (A1) that the first (non-regenerative) block
does not affect the extremal behaviour, i.e. Pν(ζ0(f) > max1≤k≤l ζk(f)) → 0
as l→∞, we have

sup
x∈R

| Pν(Mn(f) ≤ x)−Gf (x)n/α |→ 0 , as n→∞ . (29)

Hence, as soon as condition (A1) is fulfilled, the asymptotic behaviour of
the sample maximum may be deduced from the tail properties of Gf . In partic-
ular, the limiting distribution of Mn(f) (for a suitable normalization) is the ex-
treme df Hξ(x) of shape parameter ξ ∈ R (with Hξ(x) = exp(−x−1/ξ)I{x > 0}
when ξ > 0, H0(x) = exp(− exp(−x)) and Hξ(x) = exp(−(−x)−1/ξ)I{x < 0}
if ξ < 0) iff Gf belongs to the maximum domain of attraction MDA(Hξ)
of the latter df (refer to Resnick (1987) for basics in extreme value the-
ory). Thus, when Gf ∈MDA(Hξ), there are sequences of norming constants
an and bn such that Gf (anx + bn)n → Hξ(x) as n → ∞, we then have
Pν(Mn(f) ≤ a′

nx + bn)→ Hξ(x) as n→∞, with a′
n = an/α

ξ.

8.2 Tail estimation based on submaxima over regeneration blocks

In the case when assumption (A1) holds, one may straightforwardly derive
from (29) estimates of Hf, n(x) = Pν(Mn(f) ≤ x) as n → ∞ based on the
observation of a random number of submaxima ζj(f) over a sample path, as
proposed in Glynn & Zeevi (2000):

Ĥf, n, l(x) = (Ĝf, n(x))l ,
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with 1 ≤ l ≤ ln and denoting by Ĝf, n(x) = 1
ln−1

∑ln−1
i=1 I{ζj(f) ≤ x} the

empirical df of the ζj(f)’s (with Ĝf, n(x) = 0 by convention when ln ≤ 1).
We have the following limit result (see also Proposition 3.6 in Glynn & Zeevi
(2000) for a different formulation, stipulating the observation of a determin-
istic number of regeneration cycles).

Proposition 5. Let (un) be such that n(1−Gf (un))/α→ η <∞ as n→∞.
Suppose that assumptions H0(1, ν) and (A1) holds, then Hf, n(un)→ exp(−η)
as η →∞. And let Nn ∈ N such that Nn/n

2 → 0 as n→∞, then we have

Ĥf, Nn, ln(un)/Hf, n(un)→ 1 in Pν − probability, as n→∞ . (30)

Moreover if Nn/n
2+ρ → ∞ as n → ∞ for some ρ > 0, this limit result also

holds Pν- a.s. .

Proof. First, the convergence Hf, n(un) → exp(−η) as η → ∞ straight-
forwardly follows from Proposition 8.1. Now we shall show that ln(1 −
Ĝf, Nn

(un))→ η in Pν- pr. as n→∞. As ln/n→ α−1
Pν- a.s. as n→∞ by

the SLLN, it thus suffices to prove that

n(Gf (un)− Ĝf, Nn
(un))→ 0 in Pν − probability as n→∞ . (31)

Write

n(Gf (un)− Ĝf, Nn(un)) =
Nn

lNn
− 1

n

Nn

lNn−1∑
j=1

{I{ζj(f) ≤ un} −Gf (un)} ,

and observe that Nn/(lNn
− 1) → α, Pν- a.s. as n → ∞ by the SLLN again.

Besides, from the argument of Theorem 15 in Clémençon (2001), we easily
derive that there exist constants C1 and C2 such that for all ε > 0, n ∈ N

Pν

⎛⎝∣∣∣∣∣∣
lNn−1∑
j=1

{I{ζj(f) ≤ un} −Gf (un)}

∣∣∣∣∣∣ ≥ ε

⎞⎠
≤ C1 exp(−C2ε

2/Nn) + Pν (τA ≥ Nn) .

From this bound, one immediately establishes (31 ). And in the case when
Nn = n2+ρ for some ρ > 0, Borel-Cantelli’s lemma, combined with the latter
bound shows that the convergence also takes place Pν-almost surely. ��

This result indicates that observation of a trajectory of length Nn, with
n2 = o(Nn) as n → ∞, is required for estimating consistently the extremal
behaviour of the chain over a trajectory of length n. As shall be shown below,
it is nevertheless possible to estimate the tail of the sample maximum Mn(f)
from the observation of a sample path of length n only, when assuming some
type of behaviour for the latter, namely under maximum domain of attraction
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hypotheses. As a matter of fact, if one assume that Gf ∈MDA(Hξ) for some
ξ ∈ R, of which sign is a priori known, one may implement classical inference
procedures (refer to § 6.4 in Embrechts et al. (1999) for instance) from the
observed submaxima ζ1(f), ..., ζln−1(f) for estimating the shape parameter ξ
of the extremal distribution, as well as the norming constants an and bn. We
now illustrate this point in the Fréchet case (i.e. when ξ > 0), through the
example of the Hill inference method.

8.3 Heavy-tailed stationary distribution

As shown in Rootzén (1988), when the chain takes real values, assumption
(A1) is checked for f(x) = x (for this specific choice, we write Mn(f) = Mn,
Gf = G, and ζj(f) = ζj in what follows) in the particular case when the chain
is stationary, i.e. when ν = µ. Moreover, it is known that when the chain is
positive recurrent there exists some index θ, namely the extremal index of the
sequence X = (Xn)n∈N (see Leadbetter & Rootzén (1988) for instance), such
that

Pµ(Mn ≤ x) ∼
n→∞ Fµ(x)nθ , (32)

denoting by Fµ(x) = µ(] − ∞, x]) = αEA(
∑τA

i=1 I{Xi ≤ x}) the stationary
df. In this case, as remarked in Rootzén (1988), if (un) is such that n(1 −
G(un))/α→ η <∞, we deduce from Proposition 8.1 and (32) that

θ = lim
n→∞

PA(max1≤i≤τA
Xi > un)

EA(
∑τA

i=1 I{Xi > un})
.

We may then propose a natural estimate of the extremal index θ based on the
observation of a trajectory of length N ,

θ̂N =

∑lN−1
j=1 I{ζj > un}∑N
i=1 I{Xi > un}

,

which may be shown to be consistent (resp., strongly consistent) under Pµ

when N = Nn is such that Nn/n
2 →∞ (resp. Nn/n

2+ρ →∞ for some ρ > 0)
as n→∞ and H0(2) is fulfilled by reproducing the argument of Proposition
9.2. And Proposition 8.1 combined with (32) also entails that for all ξ in R,

G ∈MDA(Hξ) ⇔ Fµ ∈MDA(Hξ) .

8.4 Regeneration-based Hill estimator

This crucial equivalence holds in particular in the Fréchet case, i.e. for ξ > 0.
Recall that assuming that a df F belongs to MDA(Hξ) classically amounts
then to suppose that it satisfies the tail regularity condition

1− F (x) = L(x)x−a ,
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where a = ξ−1 and L is a slowly varying function, i.e. a function L such that
L(tx)/L(x) → 1 as x → ∞ for any t > 0 (cf Theorem 8.13.2 in Bingham
et al. (1987)). Since the seminal contribution of Hill (1975), numerous papers
have been devoted to the development and the study of statistical methods in
the i.i.d. setting for estimating the tail index a > 0 of a regularly varying df.
Various inference methods, mainly based on an increasing sequence of upper
order statistics, have been proposed for dealing with this estimation problem,
among which the popular Hill estimator, relying on a conditional maximum
likelihood approach. More precisely, based on i.i.d. observations X1, ...., Xn

drawn from F , the Hill estimator is given by

HX
k, n = (k−1

k∑
i=1

ln
X(i)

X(k+1)
)−1 , (33)

where X(i) denotes the i-th largest order statistic of the sample X(n) = (X1, ...,
Xn), 1 ≤ i ≤ n, 1 ≤ k < n . Strong consistency (cf Deheuvels et al. (1988))
of this estimate has been established when k = kn → ∞ at a suitable rate,
namely for kn = o(n) and ln lnn = o(kn) as n → ∞, as well as asymp-
totic normality (see Goldie (1991)) under further conditions on F and kn,√

kn(HX
kn,n
− a) ⇒ N (0, a2), as n → ∞. Now let us define the regeneration-

based Hill estimator from the observation of the ln−1 submaxima ζ1, ..., ζln−1,
denoting by ξ(j) the j-th largest submaximum,

ân, k = Hζ
k, ln−1 =

(
k−1

k∑
i=1

ln
ζ(i)

ζ(k+1)

)−1

.

Given that ln →∞, Pν- a.s. as n→∞, results established in the case of i.i.d.
observations straightforwardly extend to our setting (for comparison purpose,
see Resnick & Starica (1995) for properties of the classical Hill estimate in
dependent settings).

Proposition 6. Suppose that Fµ ∈ MDA(Ha−1) with a > 0. Let (kn) be
an increasing sequence of integers such that kn ≤ n for all n, kn = o(n)
and ln lnn = o(kn) as n → ∞. Then the regeneration-based Hill estimator is
strongly consistent

ân, kln−1 → a, Pν- a.s. as n→∞ .

Under the further assumption that Fµ satisfies the Von Mises condition and
that kn is chosen accordingly (cf Goldie (1991)), it is moreover asymptotically
normal in the sense that√

kln−1(ân, kln−1 − a)⇒ N (0, a2) under Pν as n→∞ .
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9 Concluding remarks

Although we are far from having covered the unifying theme of statistics based
on (pseudo-) regeneration for Harris Markov chains, an exhaustive treatment
of the possible applications of this methodology being naturally beyond the
scope of the present survey article, we endeavour to present here enough mate-
rial to illustrate the power of this method. Most of the results reviewed in this
paper are very recent (or new) and this line of research is still in development.
Now we conclude by making a few remarks raising several open questions
among the topics we focused on, and emphasizing the potential gain that the
regeneration-based statistical method could provide in further applications.

• We point out that establishing sharper rates for the 2nd order accuracy
of the ARBB when applied to sample mean statistics in the general Harris
case presents considerable technical difficulties (at least to us). However, one
might expect that this problem could be successfully addressed by refining
some of the (rather loose) bounds put forward in the proof. Furthermore, as
previously indicated, extending the argument to U -statistics requires to prove
preliminary non-uniform limit theorems for U -statistics of random vectors
with a lattice component.

• In numerous applications it is relevant to consider null recurrent (even-
tually regenerative) chains: such chains frequently arise in queuing/network
systems, related to teletraffic data for instance (see Resnick (1997) or Glynn &
Whitt (1995) for example), with heavy-tailed cycle lengths. Hence, exploring
the theoretical properties of the (A)RBB for these specific time series provides
thus another subject of further research: as shown by Karlsen & Tjøstheim
(1998), consistent estimates of the transition kernel, as well as rates of con-
vergence for the latter, may still be exhibited for β-recurrent null chains (i.e.
chains for which the return time to an atom is in the domain of attraction
of a stable law with β ∈]0, 1[ being the stable index), so that extending the
asymptotic validity of the (A)RBB distribution in this case seems conceivable.

• Turning to the statistical study of extremes now (which matters in in-
surance and finance applications for instance), a thorough investigation of the
asymptotic behaviour of extreme value statistics based on the approximate
regeneration blocks remains to be carried out in the general Harris case.

We finally mention ongoing work on empirical likelihood estimation in the
markovian setting, for which methods based on (pseudo-) regeneration blocks
are expected to provide significant results.
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[GK96] Götze, F., Künsch, H.R. (1996). Second order correctness of the blockwise
bootstrap for stationary observations. Ann. Statist., 24, 1914-1933.

[Hal83] Hall P. (1983). Inverting an Edgeworth Expansion. Ann. Statist., 11, 569-
576.

[Hal85] Hall, P. (1985). Resampling a coverage pattern. Stoch. Process. Applic., 20,
231-246.

[Hal92] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer.
[HR76] Harrison, J.M., Resnick, S.J. (1976). The stationary distribution and first

exit probabilities of a storage process with general release rule. Math. Oper. Res.,
1, 347-358.

[Hel91] Helmers, R (1991). On the Edgeworth expansion and the bootstrap approx-
imation for a studentized statistics. Ann. Statist. ,19, 470-484.

[Hoe48] Hoeffding, W. (1948). A class of statistics with asymptotically normal dis-
tributions. Ann. Math. Stat., 19, 293–325.

[JJ67] Jain, J., Jamison, B. (1967). Contributions to Doeblin’s theory of Markov
processes. Z. Wahrsch. Verw. Geb., 8, 19-40.

[Kal78] Kalashnikov, V.V. (1978). The Qualitative Analysis of the Behavior of Com-
plex Systems by the Method of Test Functions. Nauka, Moscow.



Regeneration-based statistics for Harris recurrent Markov chains 53

[KT01] Karlsen, H.A., Tjøstheim, D. (2001). Nonparametric estimation in null re-
current time series. Ann. Statist., 29 (2), 372-416.
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1 Introduction

Let P be a Markov tranition kernel on a state space X equipped with a count-
ably generated σ-field X . For a control function f : X → [1,∞), the f -total
variation or f -norm of a signed measure µ on X is defined as

‖µ‖f := sup
|g|≤f

|µ(g)| .

When f ≡ 1, the f -norm is the total variation norm, which is denoted ‖µ‖TV.
Assume that P is aperiodic positive Harris recurrent with stationary distri-
bution π. Then the iterated kernels Pn(x, ·) converge to π. The rate of con-
vergence of Pn(x, .) to π does not depend on the starting state x, but exact
bounds may depend on x. Hence, it is of interest to obtain non uniform or
quantitative bounds of the following form

∞∑
n=1

r(n)‖Pn(x, ·)− π‖f ≤ g(x) , for all x ∈ X (1)

where f is a control function, {r(n)}n≥0 is a non-decreasing sequence, and g
is a nonnegative function which can be computed explicitly.

As emphasized in [RR04, section 3.5], quantitative bounds have a sub-
stantial history in Markov chain theory. Applications are numerous including
convergence analysis of Markov Chain Monte Carlo (MCMC) methods, tran-
sient analysis of queueing systems or storage models, etc. With few exception
however, these quantitative bounds were derived under conditions which im-
ply geometric convergence, i.e. r(n) = βn, for some β > 1 (see for instance
[MT94], [Ros95], [RT99], [RR04], and [Bax05]).

Geometric convergence does not hold for many chains of practical inter-
est. Hence it is necessary to derive bounds for chains which converge to the
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stationary distribution at a rate r which grows to infinity slower than a geo-
metric sequence. These sequences are called subgeometric sequences and are
defined in [NT83] as non decreasing sequences r such that log r(n)/n ↓ 0 as
n → ∞. These sequences include among other examples the polynomial se-
quences r(n) = nγ with γ > 0 and subgeometric sequences r(n)ecn

δ

with
c > 0 and δ ∈ (0, 1).

The first general results proving subgeometric rates of convergence were
obtained by [NT83] and later extended by [TT94], but do not provide com-
putable expressions for the bound in the rhs of (1). A direct route to quanti-
tative bounds for subgeometric sequences has been opened by [Ver97, Ver99],
based on coupling techniques. Such techniques were later used in specific con-
texts by many authors, among others, [FM00] [JR01] [For01] [FM03b].

The goal of this paper is to give a short and self contained proof of general
bounds for subgeometric rates of convergence, under practical conditions. This
is done in two steps. The first one is Theorem 1 whose proof, based on coupling,
provides an intuitive understanding of the results of [NT83] and [TT94]. The
second step is the use of a very general drift condition, recently introduced in
[DFMS04]. This condition is recalled in Section 2.1 and the bounds it implied
are stated in Proposition 1.

This paper complements the works [DFMS04] and [DMS05], to which we
refer for applications of the present techniques to practical examples.

2 Explicit bounds for the rate of convergence

The only assumption for our main result is the existence of a small set.

(A1). There exist a set C ∈ X , a constant ε > 0 and a probability measure ν
such that, for all x ∈ C, P (x, ·) ≥ εν(·).

For simplicity, only one-step minorisation is considered in this paper. Adapta-
tions to m-step minorisation can be carried out as in [Ros95] (see also [For01]
and [FM03b]).

Let P̌ be a Markov transition kernel on X× X such that, for all A ∈ X ,

P̌ (x, x′, A× X) = P (x,A)1(C×C)c(x, x′) + Q(x,A)1C×C(x, x′) (2)

P̌ (x, x′,X×A) = P (x′, A)1(C×C)c(x, x′) + Q(x′, A)1C×C(x, x′) (3)

where Ac denotes the complementary of the subset A and Q is the so-called
residual kernel defined, for x ∈ C and A ∈ X by

Q(x,A) =

{
(1− ε)−1 (P (x,A)− εν(A)) 0 < ε < 1
ν(A) ε = 1

(4)

One may for example set
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P̌ (x, x′;A×A′) =
P (x,A)P (x′, A′)1(C×C)c(x, x′) + Q(x,A)Q(x′, A)1C×C(x, x′) , (5)

but this choice is not always the most suitable; cf. Section 2.2. For (x, x′) ∈
X × X, denote by P̌x,x′ and Ěx,x′ the law and the expectation of a Markov
chain with initial distribution δx ⊗ δx′ and transition kernel P̌ .

Theorem 1. Assume (A1).

For any sequence r ∈ Λ, δ > 0 and all (x, x′) ∈ X× X,

∞∑
n=1

r(n)‖Pn(x, ·)− Pn(x′, ·)‖TV ≤ (1 + δ)Ěx,x′

[
σ∑
k=0

r(k)

]
+

1− ε

ε
M , (6)

with M = (1 + δ) supn≥0 {R∗r(n− 1)− ε(1− ε)δR(n)/(1 + δ)}+ and R∗ =
sup(y,y′)∈C×C Ěy,y′ [

∑τ
k=1 r(k)].

Let W : X× X→ [1,∞) and f be a non-negative function f such that f(x) +
f(x′) ≤W (x, x′) for all (x, x′) ∈ X× X. Then,

∞∑
n=1

‖Pn(x, ·)− Pn(x′, ·)‖f ≤ Ěx,x′

[
σ∑
k=0

W (Xk, X
′
k)

]
+

1− ε

ε
W ∗ . (7)

with W ∗ = sup(y,y′)∈C×C Ěy,y′ [
∑τ

k=1 W (Xk, X
′
k)].

Remark 1. Integrating these bounds with respect to π(dx′) yields similar
bounds for ‖Pn(x, ·)− π‖TV and ‖Pn(x, ·)− π‖f .

Remark 2. The trade off between the size of the coupling set and the constant ε
appears clearly: if the small set is big, then the chain returns more often to
the small set and the moments of the hitting times can expected to be smaller,
but the constant ε will be smaller. This trade-off is illustrated numerically in
[DMS05, Section 3].

By interpolation, intermediate rates of convergence can be obtained. Let
α and β be positive and increasing functions such that, for some 0 ≤ ρ ≤ 1,

α(u)β(v) ≤ ρu + (1− ρ)v , for all (u, v) ∈ R
+ × R

+ . (8)

Functions satisfying this condition can be obtained from Young’s inequality.
Let ψ be a real valued, continuous, strictly increasing function on R

+ such
that ψ(0) = 0; then for all a, b > 0,

ab ≤ Ψ(a) + Φ(b) ,where Ψ(a) =
∫ a

0
ψ(x)dx and Φ(b) =

∫ b

0
ψ−1(x)dx ,

where ψ−1 is the inverse function of ψ. If we set α(u) = Ψ−1(ρu) and β(v) =
Φ−1((1− ρ)v), then the pair (α, β) satisfies (8). A trivial example is obtained
by taking ψ(x) = xp−1 for some p ≥ 1, which yields α(u) = (pρu)1/p and
β(u) = (p(1− ρ)u/(p− 1))(p−1)/p. Other examples are given in Section 2.1.
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Corollary 1. Let α and β be two positive functions satisfying (8) for some
0 ≤ ρ ≤ 1. Then, for any non-negative function f such that f(x) + f(x′) ≤
β ◦W (x, x′) and δ > 0, for all x, x′ ∈ X and n ≥ 1,

∞∑
n=1

α(r(n))‖Pn(x, ·)− Pn(x′, ·)‖f ≤ ρ(1 + δ)Ěx,x′

[
σ∑
k=0

r(k)

]

+ (1− ρ)Ěx,x′

[
σ∑
k=0

W (Xk, X
′
k)

]
1− ε

ε
{ρM + (1− ρ)W ∗} . (9)

2.1 Drift Conditions for subgeometric ergodicity

The bounds obtained in Theorem 1 and Corollary 1 are meaningful only if
they are finite. Sufficient conditions are given in this section in the form of
drift conditions. The most well known drift condition is the so-called Foster-
Lyapounov drift condition which not only implies but is actually equivalent
to geometric convergence to the stationary distribution, cf. [MT93, Chapter
16]. [JR01], simplifying and generalizing an argument in [FM00], introduced
a drift condition which implies polynomial rates of convergence. We consider
here the following drift condition, introduced in [DFMS04], which allows to
bridge the gap between polynomial and geometric rates of convergence.
Condition D(φ, V, C): There exist a function V : X → [1,∞], a concave
monotone non decreasing differentiable function φ : [1,∞] �→ (0,∞], a mea-
surable set C and a constant b > 0 such that

PV + φ ◦ V ≤ V + b1C .

If the function φ is concave, non decreasing and differentiable, define

Hφ(v) :=
∫ v

1

dx

φ(x)
. (10)

Then Hφ is a non decreasing concave differentiable function on [1,∞). More-
over, since φ is concave, φ′ is non increasing. Hence φ(v) ≤ φ(1)+φ′(1)(v−1)
for all v ≥ 1, which implies that Hφ increases to infinity. We can thus define
its inverse H−1

φ : [0,∞) → [1,∞), which is also an increasing and differen-
tiable function, with derivative (H−1

φ )′(x) = φ ◦ H−1
φ (x). For k ∈ N, z ≥ 0

and v ≥ 1, define

rφ(z) := (H−1
φ )′(z) = φ ◦H−1

φ (z) . (11)

It is readily checked that if limt→∞ φ′(t) = 0, then rφ ∈ Λ, cf [DFMS04,
Lemma 2.3].

Proposition 2.2 and Theorem 2.3 in [DMS05] show that the drift condition
D(φ, V, C) implies that the bounds of Theorem 1 are finite. We gather here
these results.
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Proposition 1. Assume that Condition D(φ, V, C) holds for some small set
C and that infx/∈C φ ◦ V (x) > b. Fix some arbitrary λ ∈ (0, 1 − b/ infx/∈C φ ◦
V (x)) and define W (x, x′) = λφ(V (x) + V (x′) − 1). Define also V ∗ = (1 −
ε)−1 supy∈C {PV (y)− εν(V )}. Let σ be the hitting time of the set C×C. Then

Ěx,x′

[
σ∑
k=0

rφ(k)

]
≤ 1 +

rφ(1)
φ(1)

{V (x) + V (x′)}1(x,x′)/∈C×C ,

Ěx,x′

[
σ∑
k=0

W (Xk, X
′
k)

]
≤ sup

(y,y′)∈C×C
W (y, y′) + {V (x) + V (x′)}1(x,x′)/∈C×C ,

R∗ ≤ 1 +
rφ(1)
φ(1)

{2V ∗ − 1}

W ∗ ≤ sup
(y,y′)∈C×C

W (y, y′) + 2V ∗ − 1 .

Remark 3. The condition infy/∈C φ◦V (y) > b may not be fulfilled. If level sets
{V ≤ d} are small, then the set C can be enlarged so that this condition holds.
This additional condition may appear rather strong, but can be weakened by
using small sets associated to some iterate Pm of the kernel (see e.g. [Ros95],
[For01] and [FM03b]).

We now give examples of rates that can be obtained by (11).

Polynomial rates

Polynomial rates of convergence are obtained when Condition D(φ, V, C)
holds with φ(v) = cvα for some α ∈ [0, 1) and c ∈ (0, 1]. The rate of con-
vergence in total variation distance is rφ(n) ∝ nα/(1−α) and the pairs (r, f)
for which (9) holds are of the form (n(1−p)α/(1−α), V αp) for p ∈ [0, 1], or in
other terms, (nκ−1, V 1−κ(1−α)) for 1 ≤ κ ≤ 1/(1 − α), which is Theorem 3.6
of [JR01].

It is possible to extend this result by using more general interpolation
functions. For instance, choosing for b > 0, α(x) = (1 ∨ log(x))b and β(x) =
x(1 ∨ log(x))−b yields the pairs (n(1−p)α/(1−α) logb(n), V αp(1 + log V )−b), for
p ∈ [0, 1].

Logarithmic rates of convergence

Rates of convergence slower than any polynomial can be obtained when con-
dition D(φ, V, C) holds with a function φ that increases to infinity slower than
polynomially, for instance φ(v) = c(1+ log(v))α for some α ≥ 0 and c ∈ (0, 1].
A straightforward calculation shows that

rφ(n) � logα(n) .

Pairs for which (9) holds are thus of the form ((1 + log(n))(1−p)α, (1 +
log(V ))pα).
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Subexponential rates of convergence

Subexponential rates of convergence faster than any polynomial are obtained
when the condition D(φ, V, C) holds with φ such that v/φ(v) goes to infinity
slower than polynomially. Assume for instance that φ is concave and differen-
tiable on [1,+∞) and that for large v, φ(v) = cv/ logα(v) for some α > 0 and
c > 0. A simple calculation yields

rφ(n) � n−α/(1+α) exp
(
{c(1 + α)n}1/(1+α)

)
.

Choosing α(x) = x1−p(1 ∨ log(x))−b and β(x) = xp(1 ∨ log(x))b for p ∈ (0, 1)
and b ∈ R; or p = 0 and b > 0; or p = 1 and b < −α yields the pairs

n−(α+b)/(1+α) exp
(
(1− p){c(1 + α)n}1/(1+α)

)
, V p(1 + log V )b .

2.2 Stochastically monotone chains

Let X be a totally ordered set and let the order relation be denoted by �
and for a ∈ X, let (−∞, a] denote the set of all x ∈ X such that x � a. A
transition kernel on X is said to be stochastically monotone if x � y implies
P (x, (−∞, a]) ≥ P (y, (−∞, a]) for all a ∈ X. If Assumption (A1) holds, for a
small set C = (−∞, a0], then instead of defining the kernel P̌ as in (5), it is
convenient to define it, for x, x′ ∈ X and A ∈ X ⊗ X , by

P̌ (x, x′;A) = 1(x,x′)/∈C×C

∫ 1

0
1A(P←(x, u), P←(x′, u)) du

+ 1C×C(x, x′)
∫ 1

0
1A(Q←(x, u), Q←(x′, u)) du ,

where, for any transition kernel K on X, K←(x, ·) is the quantile function of
the probability measure K(x, ·), and Q is the residual kernel defined in (4).
This construction makes the set {(x, x′) ∈ X × X : x � x′} absorbing for P̌ .
This means that if the chain (Xn, X

′
n) starts at (x0, x

′
0) with x0 � x′

0, then
almost surely, Xn � X ′

n for all n. Let now σC and σC×C denote the hitting
times of the sets C and C × C, respectively. Then, we have the following
very simple relations between the moments of the hitting times of the one
dimensional chain and that of the bidimensional chain with transition kernel
P̌ . For any sequence r and any non negative function V all x � x′

Ěx,x′

[
σC×C∑
k=0

r(k)V (Xk, X
′
k)

]
≤ Ex′

[
σC∑
k=0

r(k)V (X ′
k)

]
.

A similar bound obviously holds for the return times. Thus, there only re-
main to obtain bounds for this quantities, which is very straightforward if
moreover condition D(φ,V,C) holds. Examples of stochastically monotone
chains with applications to queuing and Monte-Carlo simulation that satisfy
condition D(φ,V,C) are given in [DMS05, section 3].
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3 Proof of Theorem 1

Define a transition kernel P̃ on the space X̃ = X × X × {0, 1} endowed with
the product σ-field X̃ , for any x, x′ ∈ X and A,A′ ∈ X , by

P̃ ((x, x′, 0), A×A′ × {0}) = {1− ε1C×C(x, x′)}P̌ ((x, x′), A×A′) , (12)

P̃ ((x, x′, 0), A×A′ × {1}) = ε1C×C(x, x′)νx,x′(A ∩A′) , (13)

P̃ ((x, x′, 1), A×A′ × {1}) = P (x,A ∩A′) . (14)

For any probability measure µ̃ on (X̃, X̃ ), let P̃µ̃ be the probability measure
on the canonical space (X̃N, X̃⊗N) such that the coordinate process {X̃k} is a
Markov chain with transition kernel P̃ and initial distribution µ̃. The corre-
sponding expectation operator is denoted by Ẽµ̃.

The transition kernel P̃ can be described algorithmically. Given X̃0 =
(X0, X

′
0, d0) = (x, x′, d), X̃1 = (X1, X

′
1, d1) is obtained as follows.

• If d = 1 then draw X1 from P (x, ·) and set X ′
1 = X1, d1 = 1.

• If d = 0 and (x, x′) ∈ C × C, flip a coin with probability of heads ε.
– If the coin comes up heads, draw X1 from νx,x′ and set X ′

1 = X1 and
d1 = 1.

– If the coin comes up tails, draw (X1, X
′
1) from P̌ (x, x′; ·) and set d1 = 0.

• If d = 0 and (x, x′) �∈ C × C, draw (X1, X
′
1) from P̌ (x, x′; ·) and set d1 = 0.

The variable dn is called the bell variable; it indicates whether coupling has
occurred by time n (dn = 1) or not (dn = 0). The first index n at which
dn = 1 is the coupling time;

T = inf{k ≥ 1 : dk = 1}.

If dn = 1 then Xk = X ′
k for all k ≥ n. This coupling construction is carried

out in such a way that under P̃ξ⊗ξ′⊗δ0 , {Xk} and {X ′
k} are Markov chains

with transition kernel P with initial distributions ξ and ξ′ respectively.

The main tool of the proof is the following relation between Ẽx,x′,0 and
Ěx,x′ , proved in [DMR04, Lemma 1]. For any non-negative adapted process
(χk)k≥0 and (x, x′) ∈ X× X,

Ẽx,x′,0[χn1{T>n}] = Ěx,x′
[
χn (1− ε)Nn−1

]
, (15)

where Nn =
∑n

i=0 1C×C(Xi, X
′
i) is the number of visits to C × C before

time n.
We now proceed with the proof of Theorem 1.

Step 1 Lindvall’s inequality [Lin79, Lin92]

∞∑
k=0

r(k)‖P k(x, ·)− P k(x′, ·)‖f ≤ Ẽx,x′,0

⎡⎣T−1∑
j=0

r(j) {f(Xj) + f(X ′
j)}

⎤⎦ . (16)
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Proof. For any measurable function φ such that |φ| ≤ f , and for any (x, x′) ∈
X× X it holds that

|P kφ(x)− P kφ(x′)| =
∣∣∣Ẽx,x′,0[{φ(Xk)− φ(X ′

k)}1{dk=0}]
∣∣∣

≤ Ẽx,x′,0[{f(Xk) + f(X ′
k)}1{T>k}] .

Hence ‖P k(x, · · · )−P k(x′, ·)‖f ≤ Ẽx,x′,0[{f(Xk) + f(X ′
k)}1{T>k}]. Summing

over k yields (16). ��

Step 2 Denote Wr,f (x, x′) = Ěx,x′ [
∑σ

k=0 r(k)f(Xk, X
′
k)] and W ∗(r, f) =

sup(x,x′)∈C×C [
∑τ

k=1 r(k)f(Xk, X
′
k)] /r(0). Then

Ẽx,x′,0

[
T−1∑
k=0

r(k)f(Xk, X
′
k)

]
≤Wr,f (x, x′) + ε−1(1− ε)W ∗

r,f Ẽx,x′,0[r(T − 1)] . (17)

Proof. Applying (15), we obtain

Ẽx,x′,0

[
T−1∑
k=0

r(k)f(Xk, X
′
k)

]
=

∞∑
k=0

Ẽx,x′,0
[
r(k)f(Xk, X

′
k)1{T>k}

]
=

∞∑
k=0

Ěx,x′
[
r(k)f(Xk, X

′
k)(1− ε)Nk−1

]
=

∞∑
j=0

∞∑
k=0

(1− ε)jĚx,x′
[
r(k)f(Xk, X

′
k)1{Nk−1=j}

]
= Wr,f (x, x′) +

∞∑
j=1

∞∑
k=0

(1− ε)jĚx,x′
[
r(k)f(Xk, X

′
k)1{Nk−1=j}

]
For j ≥ 0, let σj denote the (j + 1)-th visit to C × C. Then Nk−1 = j iff
σj−1 < k ≤ σj . Since r is a subgeometric sequence, r(n+m) ≤ r(n)r(m)/r(0),
thus

∞∑
k=0

r(k)f(Xk, X
′
k)1{Nk−1=j} =

σj∑
k=σj−1+1

r(k)f(Xk, X
′
k)

=
τ◦θσj−1∑
k=1

r(σj−1 + k)f(Xk, X
′
k)

≤ r(σj−1)
r(0)

(
τ◦θσj−1∑
k=1

r(k)f(Xk, X
′
k)

)
◦ θσj−1 .

Applying the strong Markov property yields



Subgeometric ergodicity of Markov chains 63

Ẽx,x′,0

[
T−1∑
k=0

r(k)f(Xk, X
′
k)

]
≤Wr,f (x, x′)

+ (1− ε)W ∗(f, g)
∞∑
j=0

(1− ε)jĚx,x′ [r(σj)] .

By similar calculations, (15) yields

Ẽ[r(T − 1)] = ε

∞∑
j=0

(1− ε)jĚ[r(σj)] ,

which concludes the proof of (17). ��

Step 3 Applying (17) with r ≡ 1 yields (7).

Step 4 If r ∈ Λ, then limn→∞ r(n)/R(k) = 0, with R(0) = 1 and R(n) =∑n−1
k=0 r(k), n ≥ 1. Thus we can define, for r ∈ Λ and δ > 0

Mδ = (1 + δ) sup
n≥0

{
ε−1(1− ε)W ∗

r,1r(n− 1)− δR(n)/(1 + δ)
}

+
.

Mδ is finite for all δ > 0. This yields

Ẽx,x′,0[R(T )] ≤ (1 + δ)Wr,1(x, x′) + Mδ .

Applying this bound with (16) yields (6). ��

References

[Bax05] Peter H. Baxendale. Renewal theory and computable convergence rates
for geometrically ergodic markov chains. Annals of Applied Probability,
15(1B):700–738, 2005.

[DFMS04] Randal Douc, Gersende Fort, Eric Moulines, and Philippe Soulier. Prac-
tical drift conditions for subgeometric rates of convergence. Annals of
Applied Probability, 14(3):1353–1377, 2004.

[DMR04] Randal Douc, Eric Moulines, and Jeff Rosenthal. Quantitative bounds for
geometric convergence rates of Markov chains. Annals of Applied Proba-
bility, 14(4):1643–1665, 2004.

[DMS05] Randal Douc, Eric Moulines, and Philippe Soulier. Computable Conver-
gence Rates for Subgeometrically Ergodic Markov Chains Preprint, 2005.

[FM00] Gersende Fort and Eric Moulines. V -subgeometric ergodicity for
a Hastings-Metropolis algorithm. Statistics and Probability Letters
49(4):401–410, 2000.

[FM03a] Gersende Fort and Eric Moulines. Convergence of the monte carlo ex-
pectation maximization for curved exponential families. Ann. Statist.,
31(4):1220–1259, 2003.

64 Randal Douc, Eric Moulines, and Philippe Soulier

[FM03b] Gersende Fort and Eric Moulines. Polynomial ergodicity of Markov tran-
sition kernels,. Stochastic Processes and Their Applications, 103:57–99,
2003.

[For01] Gersende Fort. Contrôle explicite d’ergodicité de chanes de Markov: ap-
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Université de Paris VI, 2001.

[JR01] Soren Jarner and Gareth Roberts. Polynomial convergence rates of Markov
chains. Annals of Applied Probability, 12(1):224–247, 2001.

[Lin79] Torgny Lindvall. On coupling of discrete renewal sequences. Z. Wahrsch.
Verw. Gebiete, 48(1):57–70, 1979.

[Lin92] Torgny Lindvall. Lectures on the Coupling Method. Wiley Series in Prob-
ability and Mathematical Statistics. John Wiley & Sons, New-York, 1992.

[MT93] Sean P. Meyn and Robert L. Tweedie. Markov chains and stochastic sta-
bility. Communications and Control Engineering Series. Springer-Verlag
London, 1993.

[MT94] Sean P. Meyn and Robert L. Tweedie. Computable bounds for convergence
rates of Markov chains. Annals of Applied Probability, 4:981–1011, 1994.

[NT83] Esa Nummelin and Pekka Tuominen. The rate of convergence in Orey’s
theorem for Harris recurrent Markov chains with applications to renewal
theory. Stochastic Processes and Their Applications, 15:295–311, 1983.

[Ros95] Jeffrey S. Rosenthal. Minorization conditions and convergence rates for
Markov chain Monte Carlo. Journal American Statistical Association,
90:558–566, 1995.

[RR04] Gareth O. Roberts and Jeffrey S. Rosenthal General state space Markov
chains and MCMC algorithms. Probability Suveys, 1:20–71, 2004

[RT99] Gareth O. Roberts and Richard L. Tweedie. Bounds on regeneration times
and convergence rates for Markov chains. Stochastic Processes and Their
Applications, 80:211–229, 1999.

[TT94] Pekka Tuominen and Richard Tweedie. Subgeometric rates of convergence
of f -ergodic Markov Chains. Advances in Applied Probability, 26:775–798,
1994.

[Ver97] Alexander Veretennikov. On polynomial mixing bounds for stochastic
differential equations. Stochastic Process. Appl., 70:115–127, 1997.

[Ver99] Alexander Veretennikov. On polynomial mixing and the rate of conver-
gence for stochastic differential and difference equations. Theory of prob-
ability and its applications, pages 361–374, 1999.



Limit Theorems for Dependent U-statistics

Herold Dehling

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780
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1 Introduction

The asymptotic distribution of U -statistics, and of the related von-Mises-
statistics, of independent observations has been investigated for almost 60
years and is rather well understood. All the classical limit theorems for par-
tial sums of independent random variables have a U -statistics counterpart. In
this paper we give a survey of some recent progress for U -statistics of weakly
dependent observations. We will mostly assume that the observations are gen-
erated by functionals of absolutely regular processes. Specifically, we will con-
sider the U -statistic ergodic theorem, the U -statistic central limit theorem
and the invariance principle for U -processes. We motivate our investigations
by a wide range of examples, e.g. from fractal dimension estimation in time
series analysis.

In this paper we will always assume that (Xn)n∈Z is a stationary ergodic
process of R

k-valued random variables. In parts of the paper further restric-
tions have to be made, e.g. in the form of weak dependence assumptions.

Definition 1. Let h: R
k × R

k → R be a measurable symmetric function, i.e.
h(x, y) = h(y, x) for all x, y ∈ R

k. We then define the U-statistic Un(h) by

Un(h) =
1(
n
2

) ∑
1≤i<j≤n

h(Xi, Xj)

and the von-Mises-statistic Vn(h) by

Vn(h) =
1
n2

∑
1≤i,j≤n

h(Xi, Xj) .

The function h is called the kernel of the U -statistic, respectively von-Mises-
statistic.
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We can easily extend the definition of U -statistics and von-Mises-statistics
to kernels h : (Rk)m → R, in which case Un(h) and Vn(h) are defined as
averages of h(Xi1 , · · · , Xim), 1 ≤ i1 < · · · < im ≤ n or h(Xi1 , · · · , Xim),
1 ≤ i1, · · · , im ≤ n, respectively. In this paper we will restrict attention to the
bivariate case, i.e. m = 2. Essentially all results remain valid in the general
case. Moreover we will mainly consider R-valued U -statistics, again noting
that all results also hold for R

k-valued processes.
By symmetry of h, we can rewrite a U -statistics as

Un(h) =
1

n(n− 1)

∑
1≤i�=j≤n

h(Xi, Xj) .

The essential difference between U -statistics and von-Mises-statistics thus lies
in the fact that the diagonal terms h(Xi, Xi) are included in the von Mises-
statistics and excluded in the U -statistics. As

n2Vn(h)− n(n− 1)Un(h) =
n∑
i=1

h(Xi, Xi)

and since the asymptotic behavior of the partial sum
∑n

i=1 h(XiXi) is well
understood, one can fairly easily obtain results for U -statistics from corre-
sponding results for von-Mises-statistics and vice versa.

U -statistics have been introduced independently by Halmos (1946) and
Hoeffding (1948). Von-Mises-statistics were introduced by von Mises (1947).
The motivation in each of these papers was rather different. Halmos was in-
terested in the theory of unbiased estimation, noting that in the case of i.i.d.
observations X1, · · · , Xn

E(Un(h)) = Eh(X1, X2) .

Hence Un(h) is an unbiased estimator of the functional θ = θ(F ) :=
EFh(X1, X2), where EF indicates that the random variables Xi have marginal
distribution F . Moreover

Un(h) = E(h(X1, X2)|X(1), · · · , X(n)) ,

where X(1) ≤ · · · ≤ X(n) denote the order statistics. If the class of possible
marginal distributions specified by a given statistical model is rich enough, the
order statistic is a complete sufficient statistic and thus Un(h) is the minimum
variance unbiased estimator of θ(F ). Hoeffding (1948) stressed the fact that
U -statistics are a generalized mean, namely of the terms h(Xi, Xj), 1 ≤ i <
j ≤ n, and that one could still show asymptotic normality as in the case of
ordinary means.

Von-Mises-statistics originated in the theory of differentiable statistical
functionals, initiated by von Mises (1947). Suppose we are given a family P
of possible marginal distributions of Xi, where X1, · · ·Xn is again an i.i.d.
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sample. We want to estimate the parameter θ = T (F ) when T : P → R is a
given map. A natural estimator for θ is then the plug-in estimator θ̂ = T (Fn),
where

Fn =
1
n

n∑
i=1

δXi

denotes the empirical distribution function. Von Mises proposed to investigate
the asymptotic distribution of θ̂n− θ by a Taylor expansion of the operator T
in a neighborhood of the true distribution F . Under suitable differentiability
assumptions this leads to the expansion

T (Fn)−T (F ) = DFT (Fn−F )+
1
2
D2
FT (Fn−F, Fn−F )+higher order terms.

Making use of linearity of the operator DFT , the first order term in this
expansion can be rewritten as

DFT (Fn − F ) = DFT

(
1
n

n∑
i=1

δXi − F

)
=

1
n

n∑
i=1

DFT (δXi − F ) ,

and is thus an average of i.i.d. variables DFT (δXi
− F ). As the 2nd order

derivative D2
FT is a bilinear operator, we obtain

D2
FT (Fn − F, Fn − F ) = D2

FT

(
1
n

n∑
i=1

δXi − F,
1
n

n∑
i=1

δXi − F

)

=
1
n2

∑
1≤i,j≤n

D2
FT

(
δXi
− F, δXj

− F
)
) .

Hence D2
FT (Fn − F, Fn − F ) is a von-Mises-statistic with kernel h(x, y) =

D2
FT (δx − F, δy − F ).

Many sample statistics can be expressed at least approximately as U -
statistics or von-Mises-statistics, thus providing a very practical reason for
the study of these classes of statistics. Below we list some examples, ranging
from standard textbook examples to some recent applications in the area of
dimension estimation of distributions with a fractal support.

Sample Variance

The sample variance is defined as

s2
X :=

1
n− 1

n∑
i=1

(Xi − X̄)2 ,

where X̄ := 1
n

∑n
i=1 Xi is the sample mean. Some small calculations show

that s2
X is a U -statistic with kernel h(x, y) = 1

2 (x− y)2.
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Cramér-von-Mises statistics

Given a distribution function F0 and a weight function w we define the kernel

h(x, y) :=
∫ (

1[x,∞)(s)− F0(s)
) (

1[y,∞)(s)− F0(s)
)
w(s) ds .

The associated von-Mises-statistic is

Vn(h) =
∫

(Fn(s)− F0(s))
2
w(s) ds .

This statistic is known as the Cramér-von Mises-statistic that can be used for
testing the hypothesis that F0 is the underlying distribution of the random
variables Xi, 1 ≤ i ≤ n.

χ2-test statistic

The χ2-statistic for testing goodness-of-fit in models for discrete random vari-
ables X1, · · · , Xn with possible outcomes a1,··· ,aK is another example of a
von-Mises-statistic, arising from the kernel

h(x, y) =
K∑
k=1

1
pk

(
1{x=ak} − pk

) (
1{y=ak} − pk

)
.

In this case, the associated von-Mises-statistic is

Vn(h) =
1
n2

∑
1≤i,j≤n

h(Xi, Xj)

=
1
n

K∑
k=1

1
npk

(Nk − npk)
2
,

where Nk denotes the number of observations among X1, . . . , Xn with out-
come ak. Thus, up to a norming constant 1

n , Vn(h) is the usual χ2-test statistic.

Grassberger-Procaccia estimator of the correlation dimension

Our last two examples of U-statistics concern the estimation of fractal dimen-
sions. One such notion is the correlation dimension, associated to distributions
F on R

k. We first define the correlation integral

C(r) =
∫

Rk

F (Br(x)) dF (x) ,

where Br(x) := {y : ‖x− y‖ ≤ r} denotes the ball of radius r around x. Thus
C(r) is the average mass that the distribution F gives to a ball of radius r,
averaged with respect to the distribution F . The scaling behavior of C(r) as
r → 0 gives information about the dimension of the support of F . If
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C(r) ∼ const. · rd, as r → 0 , (1)

we call d the correlation dimension of F .
Often we do not know the distribution F , but we are only given a finite

sample X1, . . . , Xn of observations from a stationary process with marginal
distribution F . Based on this sample, we want to estimate d. We start by
estimating the correlation integral, noting that by Fubini’s theorem C(r) can
alternatively be expressed as

C(r) = P(‖X − Y ‖ ≤ r),

where X,Y are independent random variables with distribution F . Thus, a
natural estimator for C(r) is the sample analogue

Cn(r) =
1(
n
2

)# {1 ≤ i < j ≤ n : ‖Xi −Xj‖ ≤ r}

=
1(
n
2

) ∑
1≤i<j≤n

1{‖Xi−Xj‖≤r} ,

which is a U−statistic with kernel h(x, y) = 1{‖x−y‖≤r}. To get an estimator
for d, we take the logarithm on both sides of (1) to obtain

logC(r) ≈ const. + d log r .

This suggests to take linear regression of logC(r) on log r and to estimate d
by the slope of the regression line. This estimator was introduced in 1984 by
Grassberger and Procaccia. As the scaling property (1) only holds asymtoti-
cally as r → 0, the estimation of d should be based on Cn(r)-values in a small
region 0 ≤ r ≤ r. There is then the usual bias-variance trade-off, as a small
region means few observations and thus a larger variance. The choice of r0
should also depend on n with r0 = r0(n)→ 0 as n→∞.

Takens’ estimator

An alternative estimator for the correlation dimension was proposed by Tak-
ens (1985). The considerations leading to Takens’ estimator start from the
assumption that exact scaling holds in a neighborhood of 0, i.e. that

C(r) = const · rd, 0 ≤ r ≤ r0 ,

for some r0. Suppose moreover that we are given independent random vari-
ables R1, . . . , RK with distribution

P(Rk ≤ r) = P(‖X − Y ‖ ≤ r| ‖X − Y ‖ ≤ r0) ,

where X and Y are independent random variables with distribution F . The
Maximum Likelihood estimator of d, based on the observations R1, . . . , RK ,
then becomes
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d̂ML =

(
− 1

K

K∑
k=1

log(Rk/r0)

)−1

.

If we replace the independent copies R1, . . . , RK by those dependent pair
distances ‖Xi −Xj‖, 1 ≤ i, j ≤ n, that satisfy ‖Xi −Xj‖ ≤ r0, we obtain the
Takens estimator

d̂ =

∑
1≤i<j≤n 1{‖Xi −Xj‖ ≤ r0}∑
1≤i<j≤n log−(‖Xi −Xj‖/r0)

.

Here log−(x) = max(− log(x), 0) denotes the negative part of the logarithm.
Thus, the Takens estimator is given by a ratio of two U-statistics, with kernels
1{‖x−y‖≤r0} and log−(||x− y||/r0), respectively.

Dimension estimation is applied in the analysis of time series arising from
a deterministic dynamical system. Let (X ,F , µ) be a probability space and
T : X → X a measure preserving map, i.e. µ(T−1A) = µ(A) for any A ∈ F .
Moreover let f : X → R be a measurable map and consider the process

yn = f(TnX0), n ≥ 0 ,

where X0 is a randomly chosen initial value with distribution µ. Though aris-
ing from an underlying deterministic system, the process (yn)n≥0 may exhibit
seemingly random behavior. Information about the underlying dynamical sys-
tem can be gained from a sample of the so-called reconstruction vectors

Xn = (yn, yn−1,··· ,yn−k+1) .

E.g., estimation of the dimension of the distribution of Xn leads to information
about the dimension of the attractor of the dynamical system (X ,F , µ, T ).
A theoretical basis for many of these procedures is given by Takens’ (1981)
reconstruction theorem stating that for generic maps f , the reconstruction
map Reck : X → R

k defined by

Reck(x) = (f(x), f(Tx), · · · , f(T k−1x))

is an embedding, provided k ≥ 2d + 1, where d = dim(X ).

2 Independent Limit Theory

In this section we want to give a brief survey of limit theorems for U -statistics
when the underlying observations (Xn)n≥0 form an i.i.d. process of random
variables with marginal distribution F . Analogues of the well-known classical
limit theorems for partial sums of i.i.d. random variables have been established
for U -statistics in the period between 1948 and 1989.
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The law of large numbers for U -statistics was proved independently by
Hoeffding (1961) and Berk (1966). If h ∈ L1(F × F ), we have

lim
n→∞Un(h) =

∫ ∫
h(x, y) dF (x) dF (y) ,

almost surely. One can prove this result using martingale techniques, observing
that (Un)n≥2 is a backwards martingale.

All further limit theorems make essential use of a technical tool, the so-
called Hoeffding decomposition. We define functions h1(x) and h2(x, y) by

h1(x) = Eh(x, Y )− θ (2)
h2(x, y) = h(x, y)− h1(x)− h1(y)− θ , (3)

where θ := E(h(X,Y )) and where X,Y are independent random variables with
distribution F . From (3) we immediately obtain the Hoeffding decomposition
of the kernel h, given by

h(x, y) = θ + h1(x) + h1(y) + h2(x, y) . (4)

In this way, we have written h(x, y) as a sum of a constant term, of two
functions of the variables x and y separately, and of a function h2 of both
variables. The functions h1 and h2 have special properties, namely

Eh1(X) = 0 , (5)
Eh2(x, Y ) = Eh2(X, y) = 0, x, y ∈ R

k , (6)

as one can easily show. Property (6) is a crucial property of h2 and is know
as the degeneracy condition. A kernel h satisfying

Eh(x, Y ) = Eh(X, y) = 0 ∀x, y ∈ R
k ,

is called a degenerate kernel. Sometimes, one calls h degenerate if Eh(x, Y ) =
Eh(X, y) ≡ θ, in which case h(x, y)− θ satisfies the above property.

From (4) we obtain via a small computation the Hoeffding decomposition
of the U -statistic Un(h),

Un(h) = θ +
2
n

n∑
i=1

h1(Xi) + Un(h2) .

In this way, we have decomposed Un(h) into a sum of three terms, namely
the constant term θ, an average of h1(Xi) and a U -statistic with a degenerate
kernel. By (5) and (6), the terms h1(Xi), 1 ≤ i ≤ n and h2(Xi, Xj), 1 ≤ i <
j ≤ n are all mutually uncorrelated. Thus we get

var

(
2
n

n∑
i=1

h1(Xi)

)
=

4
n

var (h1(X1)) ,

var (Un(h2)) =
1(
n
2

)var (h2(X1, X2)) .
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Thus Un(h2) = OP(n−1) and hence we can obtain the U -statistic central limit
theorem from the CLT for partial sums of i.i.d. random variables. The result,
due to Hoeffding (1948), is as follows,

√
n (Un(h)− θ) L→ N (0, 4 var(h1(X))) , (7)

provided that E(h(X,Y ))2 < ∞. Using similar arguments, a Donsker type
invariance principle and a law of the iterated logarithm for U -statistics have
been established.

An interesting special situation occurs when h1(x) ≡ 0, i.e. when h is
itself a degenerate kernel. In this case the limit distribution in the CLT is
degenerate, and one can apply a different normalization in order to get a
non-trivial limit distribution. The result, due to Fillipova (1964), is most con-
veniently presented when the underlying observations (Xi)i≥1, are uniformely
distributed on [0, 1]. Invoking the quantile transform technique, one may as-
sume this without loss of generality. Then for any L2-kernels h : [0, 1]2 → R

one has

2
n

∑
1≤i<j≤n

h(Xi, Xj)
L→
∫ 1

0

∫ 1

0
h(x, y) dW (x) dW (y) , (8)

where W denotes standard Brownian motion and the stochastic double inte-
gral is to be taken in the sense of Itô, i.e. not integrating over the diagonals.
The corresponding Donsker invariance principle was established by Denker,
Grillenberger and Keller (1985) who could show that in the space D([0, 1])
equipped with the Skorohod topology⎛⎝ 2

n

∑
1≤i<j≤[nt]

h(Xi, Xj)

⎞⎠
0≤t≤1

L→
(∫ 1

0

∫ 1

0
h(x, y)K(t,dx)K(t,dy)

)
0≤t≤1

,

(9)
where K(t, x) denotes the Kiefer-Müller process. The law of the iterated loga-
rithm as well as an almost sure invariance principle for degenerate U -statistics
was established in a series of papers by Dehling, Denker, Philipp (1983, 1984)
and Dehling (1989a, 1989b), assuming that the kernel h has finite 2nd mo-
ments in the bivariate case and finite (2 + δ)th moments in the general case.
The latter assumption was weakened to finite 2nd moments also for m-variate
U -statistics by Dehling, Utev (1993) and independently by Arcones and Giné
(1993). A survey of the limit theory for degenerate U -statistics was given by
Dehling (1986).

3 Functionals of Absolutely Regular Processes

In the remaining part of this paper, we will consider U -statistics with depen-
dent observations (Xn)n∈Z. The minimal assumption will be that (Xn)n∈Z is
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a stationary ergodic process. For most of our results we will need stronger
assumptions concerning the weak dependence of the underlying process. In
the context of U -statistic limit theorems, the notion of an absolutely regular
process is most suitable.

Definition 2. (i) Let (Ω,A,P) be a probability space, and let F ,G be sub-σ-
fields of A. We define

β(F ,G) := sup
F1,...,Fm,G1,...,Gn

m∑
i=1

n∑
j=1

|P(Fi ∩Gj)− P(Fi) · P(Gj)| ,

where the supremum is taken over all partitions F1, . . . , Fm and G1, . . . , Gn

of Ω into elements of F and G, respectively.
(ii) Given a stochastic process (Xn)n∈Z and integers a ≤ b, we denote by Fba
the σ-field generated by the random variables Xa+1, . . . , Xb. We define the
mixing coefficients of absolute regularity by

βk := sup
n∈Z

β
(
Fn−∞,F∞

n+k
)

.

The process (Xn)n∈Z is called absolutely regular if limk→∞ βk = 0.

Absolutely regular processes were introduced by Volkonskii and Rozanov
(1956). Independently they were introduced in ergodic theory by Ornstein
under the name weak Bernoulli processes. Comparing with other well-known
notions of weak dependence, absolute regularity is weaker than uniform mix-
ing and stronger than strong mixing.

In many applications, e.g. in time series analysis, one encounters stochastic
processes that do not satisfy any weak dependence condition but that can be
represented as a functional of a weakly dependent process. If (Xn)n≥0 is the
orbit of a dynamical system given by the measure preserving map T : X → X
and the initial value X0, i.e. Xn = T (Xn−1), then (Xn)n≥0 does not satisfy
any of the weak dependence properties of probability theory. However, in some
cases one can still express (Xn)n≥0 as a functional of an absolutely regular
process. This was e.g. established by Hofbauer and Keller (1982) for piecewise
monotone expanding maps of [0, 1].

Definition 3. Let (Ω,F ,P) be a probability space and let (Zn)n∈Z be a sta-
tionary stochastic process. We say that the process (Xn)n∈Z is a functional of
(Zn)n∈Z if there exists a measurable function f : R

Z → R such that

Xn = f ((Zn+k)k∈Z) .

Similarly. we say that the process (Xn)n∈N is a one-sided functional of
(Zn)n∈N if Xn = f((Zn+k)k≥0), for some function f : R

N → R.
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Example 1. Consider the transformation T : [0, 1]→ [0, 1], defined by T (x) =
2x [mod1] and the process Xn = Tn(X0), where X0 is a uniformly [0, 1]-
distributed random variable. Let Zn = 1{Xn≥ 1

2}, n ≥ 0. Then (Zn)n≥0 is a
sequence of i.i.d. symmetric Bernoulli random variables and

Xn =
∞∑
k=0

Zn+k
1

2k+1 .

Thus, the deterministic sequence (Xn)n≥0 can be represented as a functional
of the i.i.d. process (Zn)n≥0.

The concept of a functional of a mixing process is one way to treat pro-
cesses that are ‘almost’ weakly dependent, which has been used already by
Billingsley (1968) and by Ibragimov and Linnik (1971). An alternative ap-
proach has recently been developed by Doukhan and Louhichi (1999).

Limit theorems for functionals of absolutely regular processes require some
form of continuity of the functional f : R

Z → R. Below we formulate two con-
tinuity properties, the r-approximation condition and the Lipschitz condition.

Definition 4. (i) Let (Xn)n∈Z be a functional of (Zn)n∈Z, and let (al)l≥0 be a
sequence of non-negative constants satisfying liml→∞ al = 0. We say that the
process (Xn)n∈Z is an r-approximating functional of (Zn)n∈Z with constants
(al)l≥0 if

E |X0 − E(X0|Z−l, · · · , Zl)|r ≤ al . (10)

(ii) We say that (Xn)n∈Z is a Lipschitz functional of (Zn)n∈Z if Xn =
f((Zn+k)k∈Z) and if there exists α ∈ [0, 1) such that f : R

Z → R satisfies

|f((zi)i∈Z)− f((z′
i)i∈Z)| ≤ const. αn, (11)

for all (zi)i∈Z and (z′
i)i∈Z such that z−n = z′

−n, . . . , zn = z′
n.

The r-approximation condition is weaker than the Lipschitz condition and is
satisfied by many examples, see e.g. Borovkova, Burton and Dehling (2001).

An important role in the treatment of absolutely regular processes and
their functionals is played by coupling techniques. For a stationary and abso-
lutely regular process (Zn)n∈Z with mixing coefficients (βk)k≥0, Berbee (1979)
showed that one can find a copy (Z ′

n)n∈Z with the same joint distribution as
the original process (Zn)n∈Z such that

(Z ′
n)n<0 is independent of (Zn)n∈N (12)

P(Zj = Z ′
j , ∀j ≥ k) ≥ 1− βk, for all k ∈ N . (13)

Thus one can find a stochastic process (Z ′
n)n∈Z whose development until time

n = 0 is independent of (Zn)n∈Z and that from time n = 1 on couples to the
development of (Zn)n∈Z in such a way that the two processes become close
with large probability.
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The following lemma gives a coupling for functionals of absolutely regular
processes. First we introduce some notation. For a stochastic process (Xn)n∈Z

and an index set I = {i1 < · · · < im} ⊂ Z we write

XI = (Xi1 , . . . , Xim) .

Lemma 1. Let (Xk)k∈Z be an r-approximating functional with constants
(al)l≥0 of an absolutely regular process with mixing coefficients (βk)k≥0. Let
i1 < . . . ij < ij+1 < . . . < ik be integers and define I1 := (i1, . . . , ij) and
I2 := (ij+1, . . . , ik). Then there exist copies (X ′

I1
, X ′

I2
) and (X ′′

I1
, X ′′

I2
) of

(XI1 , XI2) with the following properties

(X ′′
I1 , X

′′
I2) is independent of (XI1 , XI2) (14)

P(‖X ′′
I1 −X ′

I1‖ ≥ ε) ≤ 2k
(

2
ε

)r
am (15)

P(‖X ′
I2 −XI2‖ ≥ ε) ≤ 2k

(
2
ε

)r
am + βij+1−ij−2m (16)

where m ∈ N0 and ε > 0 are given.

Proof. By the Berbee coupling method, we can find copies (Z ′
n)n∈Z and

(Z ′′
n)n∈Z of the underlying absolutely regular process (Zn)n∈Z such that

(Z ′
n)n≤ij+m is independent of (Zn)n≤ij+m

P

⎛⎝ ∞⋃
n=ij+1−m

{Z ′
n �= Zn}

⎞⎠ ≤ βij+1−ij−2m

(Z ′′
n)n≤ij+m = (Z ′

n)n≤ij+m
(Z ′′

n)n is independent of (Zn) .

Let (X ′
n)n∈Z and (X ′′

n)n∈Z denote the corresponding functionals of (Z ′
n)n∈Z

and (Z ′′
n)n∈Z, respectively. Define

fI1((ui)i∈Z) :=
(
f((ui1+i)i∈Z), . . . , f((uij+i)i∈Z)

)
fm(u−m, . . . , um) := E(f(Zi)i∈Z|Z−m = u−m, . . . , Zm = um)

fI1,m((ui)i∈Z) :=
(
fm(ui1−m, . . . , ui1+m), . . . , fm(uij−m, . . . , uij+m)

)
and analogously fI2 and fI2,m. Thus we have XI1 = fI1((Zi)i∈Z), XI2 =
fI2((Zi)i∈Z). Observe that fI1,m((Zi)i∈Z) is a function of (Zi)i≤ij+m only,
and that fI2,m((Zi)i∈Z) is a function of (Zi)i≥ij+1−m, only. Now we get
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P
(
‖X ′

I2 −XI2‖ ≥ ε
)
≤ P (‖fI2((Z ′

i)i∈Z)− fI2,m((Z ′
i)i∈Z)‖ ≥ ε/2)

+P (‖fI2(Zi)i∈Z − fI2,m((Zi)i∈Z)‖ ≥ ε/2)

+P (fI2,m((Z ′
i)i∈Z) �= fI2,m((Zi)i∈Z))

≤ 2
(

2
ε

)r
E‖fI2((Zi)i∈Z)− fI2,m((Zi)i∈Z)‖r

+βij+1−ij−m

≤ 2k
(

2
ε

)r
am + βij+1−ij−m .

Similarly, we can prove (15). (14) is a direct consequence of the independence
of (Zi)i∈Z and (Z ′

i)i∈Z. ��

4 U -statistic ergodic theorem

Birkhoff’s (1930) ergodic theorem states that for a stationary ergodic process
(Xi)i≥0 with one-dimensional marginal distribution F and an L1(F )-function
g : R→ R we have

1
n

n−1∑
i=0

g(Xi)→
∫

g(x) dF (x) ,

almost surely. In view of this result and the law of large numbers for U -
statistics, we can ask whether

lim
n→∞

1(
n
2

) ∑
1≤i<j≤n

h(Xi, Xj) =
∫ ∫

h(x, y) dF (x) dF (y) (17)

holds, almost surely. Aaronson, Burton, Dehling, Gilat, Hill and Weiss (1996)
have shown that this is generally not the case, as the following example shows.

Example 2. Let T : [0, 1] → [0, 1] be defined by Tx = 2x mod 1, as in Exam-
ple 1, and define again Xn = TnX0, where X0 is a uniformly [0, 1]-distributed
random variable. Consider the kernel

h(x, y) = 1G(x, y) + 1G(y, x) ,

where G := ∪∞
n=0{(x, Tnx) : 0 ≤ x ≤ 1}, i.e. G is the union of graphs of the

iterates of T . Note that h(Xi, Xj) ≡ 1 for all i < j and that G is a null set in
[0, 1]2. Thus we get that the left hand side of (17) equals 1, whereas the right
hand side equals 0, i.e. the U -statistics ergodic theorem fails.

Several more counterexamples to the U -statistic ergodic theorem have been
given by Borovkova, Burton and Dehling (1999). Investigating the above ex-
ample somewhat closer, we can see that poor mixing properties of the process
(Xn)n≥0 together with extreme discontinity of h make the ergodic theorem
fail. This motivates the conditions in the following theorem that gives suffi-
cient conditions for the U -statistic ergodic theorem.
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Theorem 1. (Aaronson et al, 1996) Let (Xi)i≥0 be a stationary ergodic pro-
cess and let h : R

2 → R be a symmetric kernel. Assume moreover that one of
the following two conditions is satisfied
(i) h is bounded and F × F - almost surely continuous
(ii) h is bounded and (Xi)i≥0 is an absolutely regular process.
Then

lim
n→∞

1(
n
2

) ∑
1≤i<j≤n

h(Xi, Xj) =
∫ ∫

h(x, y) dF (x) dF (y) ,

i.e. the U-statistic ergodic theorem holds.

Remark 1. (i) Condition (i) is satisfied by the kernel arising in the sample
correlation integral, h(x, y) = 1{‖x−y‖≤r}, provided that

F × F ({(x, y) : ‖y − x‖ = r}) = 0 .

This holds e.g. for atom-free F , and hence we have

lim
n→∞Cn(r) = C(r) .

This special case was proved independently by Serinko (1996).
(ii) Borovkova, Burton and Dehling (1999, 2002) have given sufficient con-
ditions for the law of large numbers for U -statistics with possibly unbonded
kernels.

5 U -statistic CLT

The Central Limit Theorem for U -statistics with absolutely regular observa-
tions was proved first by Yoshihara (1976) and later sharpened by Denker and
Keller (1983). We define

σ2 = E(h1(X1))2 + 2
∞∑
j=1

cov(h1(X1), h1(Xj)) ; (18)

note that σ2 = limn→∞ 1
nvar(

∑n
j=1 h1(Xj)).

Theorem 2. (Denker and Keller, 1983) Let (Xi)i≥1 be an absolutely regular
process with mixing coefficients satisfying

∑∞
k=1 β

δ/(2+δ)
k < ∞ and let h :

R
2 → R be a symmetric kernel satisfying

sup
i<j

E|h(Xi, Xj)|2+δ <∞ .

Then
√

n (Un(h)− θ) L→ N(0, 4σ2).
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The proof of Theorem 2 makes use of the Hoeffding decomposition. As in
the case of i.i.d. observations, we have

√
n (Un(h)− θ) =

2√
n

n∑
i=1

h1(Xi) +
√

nUn(h2) , (19)

where h1 and h2 are defined as in (5) and (6). In order to prove weak conver-
gence of

√
n (Un(h)− θ), we prove that 1√

n

∑n
i=1 h1(Xi)

L→ N(0, σ2) and that
√

nUn(h2)→ 0 in probability. The first part can be achieved by applying one
of the well-known central limit theorems for partial sums of weakly dependent
random variables, see e.g. Bradley (2005), Doukhan (1994) or Rio (2000). The
second part will follow if we can prove that E(

√
nUn(h2))2 → 0. Note that

E
(√

nUn(h2)
)2

=
4

n(n− 1)2
∑

1≤i1<j1≤n,1≤i2<j2≤n
E (h2(Xi1 , Xj1)h2(Xi2 , Xj2)) . (20)

In the case of i.i.d. observations, the terms h(Xi, Xj), 1 ≤ i < j ≤ n, are mu-
tually uncorrelated and thus the right hand side of (20) equals 4

n(n−1)2
(
n
2

)
=

O( 1
n ). For weakly dependent observations, we have to find upper bounds on

E(h2(Xi1 , Xj1)h2(Xi2 , Xj2)) in terms of the maximal spacing among the in-
dices. We formulate the required result in a more general setting. Let (Xn)n∈Z

be a stationary process and let i1 < . . . < ij < ij+1 < . . . < ik be integers.
Denote for abbreviation I1 = (i1, . . . , ij), I2 = (ij+1, . . . , ik) and the random
vectors XI1 = (Xi1 , . . . , Xij ), XI2 = (Xij+1 , . . . , Xik). Finally, let EXI1

be the
expectation operator with respect to the random variables XI1 , keeping the
remaining random variables fixed. I.e., we have for any measurable function
g : R

k → R

EXI1
g(Xi1 , . . . , Xik) =

∫
Rj

g(x1, . . . , xj , Xij+1 , . . . , Xik) dPXI1
(x1, . . . , xj) .

In the same way we define the expectation operator EXI2
.

Lemma 2. (Yoshihara, 1976) Let (Xn)n∈Z be an absolutely regular process
with mixing coefficients (βk)k≥0, let i1 < . . . < ij < ij+1 < . . . < ik be
integers. Let r, s > 0 satisfy 1

r + 1
s = 1 and let g : R

k → R be a measurable
function. Then∣∣E (g(Xi1 , . . . , Xik))− EXI1

(
EXI2

(g(Xi1 , . . . , Xik))
)∣∣ (21)

≤ 4 max
{
(E|g(Xi1 , . . . , Xik)|r)1/r,

(
EXI1

EXI2
|g(Xi1 , . . . , Xik)|r

)1/r}
β

1/s
ij+1−ij ,

where I1 = (i1, . . . , ij) and I2 = (ij+1, . . . , ik).
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With the help of this inequality one can now show that E(
√

nUn(h2))2 → 0.
Inequalities of the type (21) are natural generalizations of correlation inequal-
ities that give upper bounds on cov(ξ, η) for random variables ξ and η that
are Fn−∞, respectively F∞

n+k measurable. We thus call (21) a generalized cor-
relation inequality. They form a crucial ingredient in the study of U -statistics
of weakly dependent observations, in the same way as standard correlation
inequalities do for partial sums.

Central limit theorems for U -statistics of functionals of an absolutely reg-
ular process require some form of continuity of the kernel h. Below we formu-
late two different conditions that were introduced in the U -statistic context
by Denker and Keller (1986).

Definition 5. Let h : R
2 → R be a symmetric kernel.

(a) We say that h satisfies the Lipschitz condition if there exist L, ρ > 0 and
r ≥ 0 such that

|h(x1, x2)− h(y1, y2)| ≤ L (|x1 − y1|ρ + |x2 − y2|ρ)
· (1 + |x1|r + |x2|r + |y1|r + |y2|r) .

(b) We say that h satisfies the oscillation condition if∫
osc(h, ε, (x1, x2)) dF (x1) dF (x2) = O(εr)

as ε→ 0, where

osc(h, ε, (x1, x2)) := sup
yi,y′

i∈R,|yi−xi|<ε,|y′
i−xi|<ε,i=1,2

|h(y1, y2)− h(y′
1, y

′
2)|

denotes the ε-oscillation of h in (x1, x2).

Theorem 3. (Denker and Keller, 1986) Let (Xn)n∈Z be a Lipschitz functional
of the absolutely regular process (Zn)n∈Z with mixing coefficients satisfying

βδ/(2+δ)n = O(n−2−ε)

for some ε, δ > 0. Moreover let h : R
2 → R be a symmetric kernel satisfying

the Lipschitz condition or the oscillation condition. Then
√

n(Un(h) − θ) L→
N(0, 4σ2).

In their proof of Theorem 3, Denker and Keller follow the usual pattern
of proof of limit theorems for functionals of absolutely regular processes, or
generally of any kind of mixing processes. Introduce the following finite block
functionals Xm

n as approximations to Xn = f((Zn+k)k∈Z),

Xm
n = E(Xn |Zn−m, . . . , Zn+m) .

Then (Xm
n )n∈Z is still an absolutely regular process and hence Theorem 2

applies. By the Lipschitz property of the functional f and by the Lipschitz or
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oscillation condition satisfied by the kernel h, one can show that the original
U -statistic Un(h) is closely approximated by

Um
n (h) =

1(
n
2

) ∑
1≤i<j≤n

h(Xm
i , Xm

j ) ,

as m→∞. With some technical effort one can then show that the CLT holds
for Un(h).

Borovkova, Burton and Dehling (2001) proposed a different approach to
the study of functionals of an absolutely regular process, treating the pro-
cess (Xn)n∈Z directly, without approximation by finite block functionals. In
this way they could derive limit theorems such as U -process invariance prin-
ciples. In what follows we will outline some ingredients of their technique in
connection with the U -statistic CLT. Again, one has to require some form of
continuity of the kernel h.

Definition 6. Let (Xn)n∈N be a stationary stochastic process and let h : R
2 →

R be a symmetric kernel. We say that h satisfies the p-continuity condition if
there exists φ : [0,∞)→ [0,∞) satisfying φ(ε) = o(1) as ε→ 0 such that

E
(
|h(X,Y )− h(X ′, Y )|p 1{|X−X′|≤ε}

)
≤ φ(ε) ,

for all triples of random variables X,X ′, Y with marginal distribution F and
such that (X,Y ) either has distribution F × F or PX0,Xk

for some k ∈ N0.

Remark 2. (i) Lipschitz continuous kernels are p-continuous under a moment
assumption on the variables Xk. We get namely

|h(X,Y )− h(X ′, Y )|p 1{|X−X′|≤ε} ≤ ερ p(1 + |X|r + |X ′|r + 2|Y |r)p

and thus p-continuity holds with φ(ε) = O(ερ p) provided E|X0|rp <∞.
(ii) p-continuity is close in spirit to the oscillation condition, in that it also
requires continuity in some average sense. The main difference is that in the
oscillation condition only the product measure F × F enters whereas for p-
continuity we need to consider averages with respect to the joint distribution
of (Xi, Xj) for all pairs i < j.

Example 3. We consider the kernel that was used in the definition of the sam-
ple correlation integral, i.e. h(x, y) = 1{|x−y|≤t}. Observing that∣∣1{|x−y|≤t} − 1{|x′−y|≤t}

∣∣p 1{|x−x′|≤ε} ≤ 1{t−ε≤|x−y|≤t+ε} ,

we get

E
∣∣1{|X0−Xk|≤t} − 1{|X′

0−Xk|≤t}
∣∣p 1{|X0−X′

0|≤ε} ≤ P(t−ε ≤ |X0−Xk| ≤ t+ε) .

Thus the kernel 1{|x−y|≤t} is p-continuous provided that supk P(t− ε ≤ |X0−
Xk| ≤ t + ε) = o(1), as ε → 0 and similarly P(t − ε ≤ |X − Y | ≤ t + ε) =
o(1), where X and Y are independent with the same distribution F . These
conditions specify equicontinuity of the family of distribution functions of
|X0 −Xk| at t as well as continuity of the distribution function of |X − Y |.
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As shown in the remarks about the proof of Theorem 2 we are often led
to expressions of the type E(h(Xi1 , Xj1)h(Xi2 , Xj2)) with a given kernel h :
R

2 → R. For the treatment of such expectations we introduce a generalization
of the notion of p-continuity to functions g : R

k → R.

Definition 7. Let (Xn)n∈Z be a stationary stochastic process. A function g :
R
k → R is called p-continuous if there exists a function φ : R+ → R+ with

φ(ε) = o(1) as ε→ 0 such that for all index sets I = {i1 < . . . < ik} ⊂ Z and
all non-empty disjoint sets I1, I2 with I1 ∪ I2 = I we have

E |g(ξ, η)− g(ξ, η′)|p 1{‖η−η′‖≤ε} ≤ φ(ε) , (22)

for all random variables ξ : Ω → R
|I1|, η, η′ : Ω → R

|I2| such that (ξ, η) has
distribution PXI1 ,XI2

or PXI1
× PXI2

.

Lemma 3. (Borovkova et al, 2001) Let h : R
2 → R be a symmetric p-

continuous kernel and define

g(x1, x2, x3, x4) = h(x1, x2)h(x3, x4) . (23)

(i) If h is bounded, then g is also p-continuous.
(ii) If supk E|h(X0, Xk)|p <∞ and EX0EXk

|h(X0, Xk)|p <∞, then g is p/2-
continuous.

Lemma 4. (Borovkova et al, 2001) Let h : R
2 → R be a symmetric p-

continuous kernel. Then the terms h1 and h2 of the Hoeffding decomposition
are also p-continuous.

The following proposition gives a generalized correlation inequality for
functionals of absolutely regular processes. Such inequalities were first proved
by Borovkova et al (2001). We improve their Lemma 4.3 by replacing the
constants αk =

√
2
∑∞

i=k ai by
√

ak.

Proposition 1. Let (Xn)n∈Z be an absolutely regular process with mixing co-
efficients (βk)k≥0, let i1 < . . . < ij < ij+1 < . . . < ik be integers. Let r, s > 0
satisfy 1

r + 1
s = 1 and let g : R

k → R be a measurable function. Then∣∣E (g(Xi1 , . . . , Xik))− EXI1

(
EXI2

(g(Xi1 , . . . , Xik))
)∣∣ (24)

≤ 4 max
{

(E|g(Xi1 , . . . , Xik)|r)1/r ,
(
EXI1

EXI2
|g(Xi1 , . . . , Xik)|r

)1/r}
·
(
βij+1−ij−2m + a1/2

m

)1/s
+ 2φ(a1/2

m ) .

where I1 = (i1, . . . , ij), I2 = (ij+1, . . . , ik).

Proof. Let (X ′
I1
, X ′

I2
) and (X ′′

I1
, X ′′

I2
) be copies of (XI1 , XI2) as defined in

Lemma 1. By independence of (XI1 , XI2) and (X ′′
I1
, X ′′

I2
), we get
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(
EXI2

(g(Xi1 , . . . , Xik))
)∣∣

=
∣∣Eg

(
X ′′
I1 , XI2

)
− Eg

(
X ′
I1 , X

′
I2

)∣∣
≤
∣∣Eg

(
X ′′
I1 , XI2

)
− Eg

(
X ′′
I1 , X

′
I2

)∣∣+ ∣∣Eg
(
X ′′
I1 , X

′
I2

)
− Eg

(
X ′
I1 , X

′
I2

)∣∣ .(25)

We now define the events B := {‖XI2 − X ′
I2
‖ ≤ a

1/2
m } and D := {‖X ′

I1
−

X ′′
I1
‖ ≤ a

1/2
m }. By (15) and (16) we get P(Dc) ≤ 4a1/2

m and P(Bc) ≤ 4a1/2
m +

βij+1−ij−2m. Now we can bound the two terms on the right hand side of (25)
separately. By the 1-continuity property of g we get

E
∣∣g (X ′′

I1 , XI2

)
− g

(
X ′′
I1 , X

′
I2

)∣∣ 1B ≤ φ(a1/2
m ) .

Using Hölder’s inequality we find

E
∣∣g (X ′′

I1 , XI2

)
− g

(
X ′′
I1 , X

′
I2

)∣∣ 1Bc ≤ 2M(P(Bc))1/s

≤ 2M
(
a1/2
m + βij+1−ij−2m

)
.

Similarly we obtain the following bounds for the second term on the right
hand side of (25),∣∣Eg

(
X ′′
I1 , X

′
I2

)
− Eg

(
X ′
I1 , X

′
I2

)∣∣ 1D ≤ φ(a1/2
m )∣∣Eg

(
X ′′
I1 , X

′
I2

)
− Eg

(
X ′
I1 , X

′
I2

)∣∣ 1Dc ≤ 2Ma1/2s
m .

Putting the last four inequalities together we obtain the statement of the
proposition. ��

Theorem 4. Let (Xn)n∈Z be a 1-approximating functional with constants
(al)l≥0 of an absolutely regular process with mixing coefficients (βk)k≥0. Let
h be a bounded 1-continuous kernel and suppose that

∞∑
k=1

k2(βk + a
1/2
k + φ(a1/2

k )) <∞ .

Then, as n→∞ √
n (Un(h)− θ) L→ N(0, σ2) ,

where σ2 is defined as in (18).

6 Empirical U -processes

Recall that one of the examples motivating the study of dependent U -statistics
was the sample correlation integral

Cn(r) =
1(
n
2

) ∑
1≤i<j≤n

1{‖Xi−Xj‖≤r} .
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For fixed r, this is simply a U -statistic. Considered as a stochastic process
indexed by r ∈ [0, R], however, Cn(r) becomes the empirical distribution
function of the observations ‖Xi −Xj‖, 1 ≤ i < j ≤ n.

More generally, one can consider the empirical distribution function of
h(Xi, Xj), 1 ≤ i < j ≤ n, given by

Un(t) :=
1(
n
2

) ∑
1≤i<j≤n

1{h(Xi,Xj)≤t} =
1(
n
2

) ∑
1≤i<j≤n

ht(Xi, Xj) , (26)

where we have defined ht(x, y) := 1{h(x,y)≤t}. Moreover, we define the empir-
ical U -process √

n(Un(t)− U(t)), 0 ≤ t ≤ t0 ,

where U(t) = P(h(X,Y ) ≤ t).
Weak convergence of the empirical U -process to an appropriate Gaussian

process was established by Silverman (1983) and by Serfling (1984) in the case
of i.i.d. observations and by Borovkova (1995) and Arcones and Yu (1994) for
absolutely regular processes. Borovkova et al (2001) could establish the same
result for functionals of absolutely regular processes.

Theorem 5. Let (Xn)n∈Z be a 1-approximating functional with constants
(al)l≥0 of an absolutely regular process with mixing coefficients (βk)k≥0. As-
sume that ht(x, y) are 1-continuous with φt ≡ φ and that

∞∑
k=1

k2(a1/2
k + βk + φ(a1/2

k ))1/3−ε <∞

for some ε > 0. Moreover assume that |U(t) − U(s)| ≤ C|t − s| and that
|Eht(X0, Xk)− Ehs(X0, Xk)| ≤ C |t− s| for all k. Then

√
n (Un(t)− U(t))→W (t) ,

where (W (t))0≤t≤1 is a mean-zero Gaussian process with

E(W (s)W (t)) = 4cov(hs,1(X1), ht,1(X1)) + 4
∞∑
k=2

cov(hs,1(X1), ht,1(Xk))

+4
∞∑
k=2

cov(hs,1(Xk), ht,1(X1)) .

The proof of this theorem uses again the Hoeffding decomposition. For each
fixed t we get

√
n(Un(t)− U(t)) =

2√
n

n∑
i=1

ht,1(Xi) +
2√

n(n− 1)

∑
1≤i<j≤n

ht,2(Xi, Xj) .

84 Herold Dehling

The first term on the right hand side is an ordinary empirical process indexed
by the class of functions ht,1 and converges to (W (t))0≤t≤1 by standard empir-
ical process theory for dependent samples. The second term converges to 0 in
probability uniformly in t. The proof of this fact uses the chaining technique
in combination with the generalized correlation inequality; details are given
in Borovkova et al (2001).
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1 Introduction

There exists a wide literature on limit theorems under various classical mixing
conditions such as strong mixing condition (α−mixing), absolute regularity
(β−mixing), or Φ−mixing. For recent and complete results on the properties
of these coefficients, we refer to the monographs by Doukhan [Dou94], Rio
[Rio00a] and Bradley [Bra02]. However, many commonly used models do not
satisfy these mixing conditions. For example, Andrews [AND84] proved that
if (εi)i≥1 is i.i.d. with marginal B (1/2), then the stationary solution (Xi)i≥0
of the equation

Xn =
1
2
(Xn−1 + εn) , X0 independent of (εi)i≥1

is not α−mixing. Many authors have therefore introduced modifications of
these various mixing coefficients. Let (Ω,A,P) be a probability space, X a
real-valued random variable with law PX and M a σ−algebra of A. Let us
first recall the definition of the usual mixing coefficients betweenM and σ(X),
introduced respectively by Rosenblatt [Ros56], Volkonskii and Rozanov [RV59]
and Ibragimov [Inr62]:

α(M, σ(X)) =
1
2

sup
A∈B(R)

‖PX|M(A)− PX(A)‖1 ,

β(M, σ(X)) = ‖ sup
A∈B(R)

|PX|M(A)− PX(A)| ‖1 ,

φ(M, σ(X)) = sup
A∈B(R)

‖PX|M(A)− PX(A)‖∞ .

We refer to the book of Doukhan [Dou94] for the properties of these coef-
ficients. However, to derive limit theorems for random processes modeling
real-world phenomena which do not satisfy classical mixing conditions, it is
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useful to weaken the definitions above. Of course the goal is to catch more
examples without losing too much of the nice properties of classical mixing
processes. Following an idea of Rosenblatt [Ros56], we can look at what hap-
pens when considering coarser sets than M or B(R). Changing M leads to
coefficients which behave quite differently from the usual mixing coefficients.
Let us cite for instance the work of Doukhan and Louhichi [DL99]. One differ-
ent approach is to consider instead of B(R) the coarser set {]−∞, t], t ∈ R} .
This has been done by Rio [Rio00a] and later by Peligrad [Pel02] for the strong
mixing coefficient. Dedecker and Prieur [DP05] have broadened and system-
atically developed this approach. The coefficients thus obtained measure the
difference between the conditional distribution function FX|M of PX|M and
the distribution function FX of PX . We define below the four dependence
coefficients introduced in [DP05].

Definition 1.
τ(M, X) =

∫
‖FX|M(t)− FX(t)‖1 dt ,

α(M, X) = supt∈R ‖FX|M(t)− FX(t)‖1 ,
β(M, X) = ‖ supt∈R |FX|M(t)− FX(t)| ‖1 ,
φ(M, X) = supt∈R ‖FX|M(t)− FX(t)‖∞ .

The coefficient α(M, X) was first introduced by Rio ([Rio00a], equa-
tion 1.10 c). It has then been used by Peligrad [Pel02], while τ(M, X) was
introduced in the current form by Dedecker and Prieur [DP03]. However,
Rüschendorf first introduced the coefficient τ , in a “dual” form (equation 10
in [Rüs85]). These coefficients are smaller than their corresponding mixing
coefficients, but they are in many situations easier to compute. It is worth
of interest to notice that the coefficients τ(M, X), α(M, X), β(M, X) and
φ(M, X), as other measures of dependence, can be defined as supremum over
some family of functions. For this, we first need to introduce some definitions
and notations.

Definition 2. A σ-finite signed measure is the difference of two positive σ-
finite measures, one of them at least being finite. We say that a function h
from R to R is σ-BV if there exists a σ-finite signed measure dh such that
h(x) = h(0)+dh([0, x[) if x ≥ 0 and h(x) = h(0)−dh([x, 0[) if x ≤ 0 (h is left
continuous). The function h is BV if the signed measure dh is finite. Recall
also the Hahn-Jordan decomposition: for any σ-finite signed measure µ, there
is a set D such that µ+(A) = µ(A ∩ D) ≥ 0 and −µ−(A) = µ(A\D) ≤ 0.
µ+ and µ− are singular, one of them at least is finite and µ = µ+ − µ−. The
measure |µ| = µ+ + µ− is called the total variation measure for µ. Denote by
‖µ‖ = |µ|(R).

We then get the result written in Lemma 1 below (compare to Theorem
4.4 in Bradley [Bra02] for usual mixing coefficients).
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Lemma 1. [DP05] Let (Ω,A,P) be a probability space, X a real-valued ran-
dom variable and M a σ-algebra of A. Let Λ1 be the space of 1-Lipschitz
functions from R to R, and BV1 be the space of BV functions h such that
‖dh‖ ≤ 1. We have

(A1). τ(M, X) =
∥∥∥sup

{∣∣∣∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ Λ1

}∥∥∥
1
.

(A2). α(M, X) = sup{‖E(f(X)|M)− E(f(X))‖1, f ∈ BV1}.
(A3). β(M, X) =

∥∥∥sup
{∣∣∣∫ f(x)PX|M(dx)−

∫
f(x)PX(dx)

∣∣∣, f ∈ BV1

}∥∥∥
1
.

(A4). φ(M, X) = sup{‖E(f(X)|M)− E(f(X))‖∞, f ∈ BV1}.

This paper is a survey of recent results on dependence in the causal frame.
For the non-causal frame, we refer e.g. to Doukhan and al or Ango Nze and
Doukhan [Dou03, AND02]. In Section 2 we state useful tools in limit theory
for dependent sequences. In Section 3 we give a way to compare the different
coefficients of dependence. Section 4 is devoted to statistical applications.
In Section 5, we give exponential inequalites. We then see in Section 6 how
to extend some of the coefficients of Definition 1 to the multidimensionnal
case. To conclude, we give in Section 7 some results for particular classes of
dynamical systems on [0, 1].

2 Main tools for statistical applications

2.1 Covariance inequalities

For statistical applications, it was made clear by Viennet [Vie97] that covari-
ance inequalities in the style of Delyon [Del90] are more efficient than the
usual covariance inequalities. Viennet’s result applies to linear estimators and
provides optimal results for the mean integrated square error.

In Proposition 1 below, we give two covariance inequalities. Inequality (1)
is a weak version of that of Delyon [Del90] in which appear two random vari-
ables b1(σ(Y ), σ(X)) and b2(σ(X), σ(Y )) each having mean β(σ(Y ), σ(X)).
Inequality (2) is a weak version of that of Peligrad [Pel83], where the depen-
dence coefficients are φ(σ(Y ), σ(X)) and φ(σ(X), σ(Y )).

Proposition 1. [Ded04] Let X and Y be two real-valued random variables
on the probability space (Ω,A,P). Let FX|Y = {t → PX|Y (] − ∞, t])} be a
distribution function of X given Y and let FX be the distribution function of
X. Define the random variable b(σ(Y ), X) = supx∈R |FX|Y (x) − FX(x)|. For
any conjugate exponents p and q, we have the inequalities

|cov(Y,X)| ≤ 2{E(|X|pb(σ(X), Y ))} 1
p {E(|Y |qb(σ(Y ), X))} 1

q (1)

≤ 2φ(σ(X), Y )
1
p φ(σ(Y ), X)

1
q ‖X‖p‖Y ‖q . (2)
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In order to derive the MISE of the unknown marginal density of a stationary
sequence (Section 4), we need Corollary 1 below.

Corollary 1. [Ded04] Let f1, f2, g1, g2 be four increasing functions, and let
f = f1 − f2 and g = g1 − g2. For any random variable Z, let ∆p(Z) =
infa∈R ‖Z − a‖p and ∆p,σ(X),Y (Z) = infa∈R(E(|Z − a|pb(σ(X), Y )))1/p. For
any conjugate exponents p and q, we have the inequalities

|cov(g(Y ), f(X))| ≤ 2
{
∆p,σ(X),Y (f1(X)) + ∆p,σ(X),Y (f2(X))

}{
∆q,σ(Y ),X(g1(Y )) + ∆q,σ(Y ),X(g2(Y ))

}
,

|cov(g(Y ), f(X))| ≤ 2φ(σ(X), Y )
1
p φ(σ(Y ), X)

1
q
{
∆p(f1(X)) + ∆p(f2(X))

}{
∆q(g1(Y )) + ∆q(g2(Y ))

}
.

In particular, if µ is a signed measure with total variation ‖µ‖ and f(x) =
µ(]−∞, x]), we have

|cov(Y, f(X))| ≤ ‖µ‖E(|Y |b(σ(Y ), X)) ≤ φ(σ(Y ), X)‖µ‖ ‖Y ‖1 . (3)

Two different proofs of inequality (3) above can be found in [DP05] and
[Ded04].

2.2 Coupling

Coupling is another popular and useful method to obtain limit theorems for
sequences of dependent random variables. The coupling result stated in this
section just concerns real valued sequences. Thanks to conditional quantile
transformation [Maj78], we get an explicit formula for the coupled variable.
A more general result in higher dimension has been stated by Rüschendorf
[Rüs85] (Section 6.2).

Lemma 2. [Rüs85, DP03] Let (Ω,A,P) be a probability space, X an inte-
grable real-valued random variable, and M a σ-algebra of A. Assume that
there exists a random variable δ uniformly distributed over [0, 1], independent
of the σ-algebra generated by X and M. Then there exists a random vari-
able X∗, measurable with respect toM∨ σ(X)∨ σ(δ), independent of M and
distributed as X, such that

‖X −X∗‖1 = τ(M, X) . (4)

Let U = FX|M(X−0)+ δ
(
FX|M(X)− FX|M(X − 0)

)
, where FX|M(t−0) =

sups<t FX|M(s). The random variable U is uniformly distributed over [0, 1]
and independent of M. An explicit solution for the coupling is then given by
X∗ = F−1

X (U).
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3 Comparison of coefficients

The four coefficients introduced in Definition 1 can be compared to each other.
It is the purpose of Proposition 2 below. Comparing coefficients to each other
is useful for example when deriving upper bounds for τ(M, X) , α(M, X),
β(M, X) and φ(M, X).

Proposition 2. [DP05] Let (Ω,A,P) be a probability space, X a real-valued
random variable and M a σ-algebra of A.

(A1). We have the inequalities α(M, X) ≤ β(M, X) ≤ φ(M, X).
(A2). Let QX be the generalized inverse of the tail function t → P(|X| > t): if

u ∈]0, 1[, QX(u)=inf{t∈R : P(|X| > t) ≤ u}. We have the inequality

τ(M, X) ≤ 2
∫ α(M,X)

0
QX(u)du .

(A3). Assume moreover that X has a continuous distribution function F with
modulus of continuity w. Define the function g by g(x) = xw(x). Then

β(M, X) ≤ 2τ(M, X)
g−1(τ(M, X))

. (5)

In particular, if F is Hölder, that is there exist C > 0 and α ∈ ]0, 1] such
that for all (x, y) |F (x)− F (y)| ≤ C|x− y|α, then

β(M, X) ≤ 2C1/(α+1) (τ(M, X))α/(α+1)
.

When X has a density bounded by K, we obtain the bound

β(M, X) ≤ 2
√

Kτ(M, X) . (6)

4 Application to mean integrated square error

We deal in this section with the problem of estimating the unknown marginal
density f from the observations (X1, . . . , Xn) of a stationary sequence (Xi)i≥0.
There exist many works on density estimation under various mixing condi-
tions. The results of Proposition 3 are comparable to results of Mokkadem
(Theorem 1.2 in [Rio00a], and also [Mok90]). The ones of Proposition 4 are to
be compared to Theorem 1.3 (a) in [Rio00a]. These results of Mokkadem and
Rio are obtained for the strong mixing coefficients α (σ(X0), σ(Xi)). Viennet
[Vie97] proved, under the minimal assumption on the β−mixing coefficients∑

k>0

β(σ(X0), σ(Xk)) < +∞ , (7)

that the mean integrated square error (MISE) is of the same order than in
the i.i.d. case. Let us now state the results we obtain when working with
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our weaker coefficient β defined in Definition 1. We first define the coefficients
τ(i), α(i), β(i), and φ(i) related to a sequence of real-valued random variables.

Definition 3. Let (Ω,A,P) be a probability space. Let (Xi)i≥0 be a sequence
of integrable real-valued random variables and (Mi)i≥0 be a sequence of σ-
algebras of A. The sequence of coefficients τ(i) is then defined by

τ(i) = sup
k≥0

τ(Mk, Xi+k) . (8)

The coefficients α(i), β(i) and φ(i) are defined in the same way.

According to Definition 3 above and to the stationarity of (Xi)i≥0, we let
β(i) = β(σ(X0), Xi). Both Propositions 3 and 4 give upper bounds for the
variance of estimators of the marginal density f.

Proposition 3. [DP05] Let K be any BV function such that
∫
|K(x)|dx is

finite. Let (Xi)i≥0 be a stationary sequence, and define

Yk,n = h−1K(h−1(x−Xk)) and fn(x) =
1
n

n∑
k=1

Yk,n . (9)

The following inequality holds

nh

∫
var(fn(x))dx ≤

∫
(K(x))2dx + 2

(n−1∑
k=1

β(k)
)
‖dK‖

∫
|K(x)|dx .

Proposition 4. [DP05] Let (ϕi)1≤i≤n be an orthonormal system of L
2(R, λ)

(λ is the Lebesgue measure) and assume that each ϕi is BV. Let (Xi)i≥0 be a
stationary sequence, and define

Yj,n =
1
n

n∑
k=1

ϕj(Xk) and fn =
m∑
j=1

Yj,nϕj . (10)

The following inequality holds

n

∫
var(fn(x))dx ≤ sup

x∈R

( m∑
j=1

ϕ2
j (x)

)
+ 2

( n−1∑
k=1

β(k)
)

sup
x∈R

( m∑
j=1

‖dϕj‖ |ϕj(x)|
)

.

These upper bounds allow deriving some quite sharp rates of convergence for
some estimators of the unknown density f. We can write indeed fn(x)−f(x) =
(fn(x)− Efn(x)) + (Efn(x)− f(x)). The bias term BIASn(x) = Efn(x) −
f(x) does not depend on the dependence properties of the stationary sequence
(Xi)i≥0, but only on the regularity of the marginal density f . We refer to
Prieur [Pri01] page 63 for a detailed study of this term.
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For kernel density estimators, optimal results can be obtained for the MISE
under the condition ∑

k>0

β(σ(X0), Xk) < +∞

as far as we assume that the kernel K is BV and Lebesgue integrable. This
condition is weaker than condition (7). For projection estimators, it does not
work in the general case. We have to assume moreover that the basis is well
localized, because the variance inequality of Proposition 4 is less precise than
that of Viennet. It is due to the fact that the covariance inequality (3) of
Corollary 1 is not symetric contrary to Delyon’s covariance inequality [Del90]
used in Viennet [Vie97]. We refer to [DP05] for more detailed results as far as
for the proofs.

5 Exponential inequalities

In this section, we state Hoeffding-type inequalities (Propositions 5 and 6) for
partial sums under φ−mixing conditions. The coefficients φ(k) are defined as
in Definition 3.
Proposition 5. [DP05] Let (Xi)i≥0 be a sequence of centered and square in-
tegrable random variables and Mi = σ(Xj , 1 ≤ j ≤ i). For any BV function
h, define

Sn(h) =
n∑
i=1

h(Xi) and bi,n =
(n−i∑
k=0

φ(k)
)
‖dh‖ ‖h(Xi)− E(h(Xi))‖p/2 .

For any p ≥ 2 we have the inequality

‖Sn(h)−E(Sn(h))‖p ≤
(
2p

n∑
i=1

bi,n

)1/2
≤ ‖dh‖

(
2p

n−1∑
k=0

(n−k)φ(k)
)1/2

. (11)

We also have that

P(|Sn(h)− E(Sn(h))| > x) ≤ e1/e exp

(
−x2

4e‖dh‖2
∑n−1

k=0(n− k)φ(k)

)
. (12)

Proposition 6. Let (Xi)i≥0 be a sequence of centered and square integrable
random variables and Mi = σ(Xj , 1 ≤ j ≤ i). For any BV function h, define
Sn(h) =

∑n
i=1 h(Xi). For any p ≥ 2 we have the inequality

P(|Sn(h)− E(Sn(h))| > x) ≤ 2 exp

(
−x2

2‖dh‖2
∑n

i=1

(
1 + 2

∑n−i+1
k=1 φ(k)

)2
)

.

(13)

Inequalities (12) and (13) are of the same type as soon as
∑

k>0 φ(k) is finite.
Proposition 5 applies to obtain an empirical central limit theorem for classes
of BV functions. We refer to Dedecker and Prieur [DP05] for statement and
proof of the empirical central limit theorem as far as for applications.
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6 The higher dimension case

6.1 Extension of the coefficients

To get more precise inequalities and limit theorems, it is often necessary to
consider the dependence between a past σ−algebra and several points in the
future of the sequence. Therefore we focus in this section on the problems aris-
ing when extending coefficients based on the conditional distribution function
to dimension greater than 2. This is a rather complicated problem. One way
to proceed is to start with the functional definition (Definition 2) of the coef-
ficients. Even by doing so, it remains difficult to extend α(M, X), β(M, X)
and φ(M, X) because the notion of bounded variation is delicate as soon as
we are in dimension greater or equal to 2. But dealing with τ is more effi-
cient. We get the following immediate extension, whose “dual” form has been
introduced by Rüschendorf [Rüs85].

Let (Ω,A,P) be a probability space,M a σ-agebra of A and X a random
variable with values in a Polish space (X , d). As in R there exists a conditional
distribution PX|M of X givenM (Theorem 10.2.2 in [Dud89]). Let Λ1(X ) be
the space of 1-lipschitz functions from X to R. Assume that

∫
d(0, x)PX(dx)

is finite and define

τ(M, X) =
∥∥∥sup

{∣∣∣∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ Λ1(X )

}∥∥∥
1
. (14)

If d(0, X) is bounded, we can also define the uniform version of τ , which was
first introduced by Rio [Rio86]:

ϕ(M, X) = sup{‖E(f(X)|M)− E(f(X))‖∞, f ∈ Λ1(X )} .

Let us just mention here that Rio’s definition of ϕ [Rio86] is slightly different
from the definition above. He defines the class Λ1(X ) as the set of 1−Lipschitz
functions from X to [0, 1].

Thanks to such definitions in spaces of higher dimension, we now define
the dependence between two sequences (Xi)i≥0 and (Mi)i≥0 by considering
k−tuples in the future and not only a single variable.

In the following, if (X , d) is some Polish space, we put on X k the distance

d1(x, y) = d(x1, y1) + · · ·+ d(xk, yk). (15)

We then define

τk(i) = max
1≤l≤k

1
l

sup{τ(Mp, (Xj1 , . . . , Xjl)), p + i ≤ j1 < · · · < jl} (16)

and τ∞(i) = sup
k>0

τk(i).

The coefficients ϕk and ϕ∞ are defined in the same way.
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6.2 Coupling

A coupling result for the one-dimensional case and for the coefficient τ has
already been stated in Lemma 2 of Section 2.2. In order to extend this result,
let us first give some definitions.

Definition 4. In the following,

• (X , d) is a Polish space,
• (Ω,A,P) is a given probability space,
• c : X × X → R+ is a cost function satisfying

c(x, y) = sup
u∈Lip(c)

X

|u(x)− u(y)| , (17)

where Lip
(c)
X is the class of continuous bounded functions u on X such that

|u(x)− u(y)| ≤ c(x, y)·
We assume that

∫
c(x, x0)PX(dx) is finite for some (and therefore any) x0 in

X . We then introduce the following generalization of the coefficient τ defined
by (14)

τc(M, X) =
∥∥∥sup

{∣∣∣∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ Lip

(c)
X
}∥∥∥

1
. (18)

Let us notice that if Lip
(c)
X is a separating class, this coefficient measures the

dependence betweenM and X (τc(M, X) = 0 if and only if X is independent
ofM).

We are now in position to state a general coupling result.

Lemma 3. [Rüs85, DPR05] Let X be a random variable with values in (X , d).
Assume that there exists a random variable δ uniformly distributed over [0, 1],
independent of the σ-algebra generated by X and M. Then there exists a
random variable X∗, measurable with respect toM∨σ(X)∨σ(δ), independent
of M and distributed as X, such that

τc(M, X) = E(c(X,X∗)) . (19)

Remark 1.
Lemma 3 above can be extended to the case where X is not a Polish space
[DPR05].
If c(x, y) = Ix�=y, (19) was first written by Berbee [Ber79]. In the case where
c is a distance for which X is a Polish space, the result has been proved by
Rüschendorf [Rüs85] in the particular case where Ω is Polish. The proof of
Lemma 3 can be found in [Rüs85, DPR05]. It mainly relies on a parametrized
version of the Kantorovich-Rubinštein Theorem (Proposition 4 in [Rüs85] and,
for the duality, Theorem 2.1 in [DPR05]).
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6.3 Exponential inequalities and statistical results

Working with the coefficients (16), we obtain further results for τ−dependent
sequences. We sum up these results below.

Proposition 7. [DP03] Let (Xi)i>0 be a sequence of real-valued random vari-
ables bounded by M , andMi = σ(Xk, 1 ≤ k ≤ i). Let Sk =

∑k
i=1(Xi−E(Xi))

and Sn = max1≤k≤n |Sk|. Let q be some positive integer, vq some nonnegative
number such that

vq ≥ ‖Xq[n/q]+1 + · · ·+ Xn‖22 +
[n/q]∑
i=1

‖X(i−1)q+1 + · · ·+ Xiq‖22 .

and h the function defined by h(x) = (1 + x) ln(1 + x)− x.

(A1). For any positive λ, P(|Sn| ≥ 3λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q +

1) .

(A2). For any λ ≥ Mq, P(Sn ≥ (1q>1 + 3)λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q + 1) .

Proposition 7 above extends Bennett’s inequality for independent sequences.
Starting from the second inequality of Proposition 7 and from the coupling
property of Lemma 2, we can prove a functional law of the iterated logarithm
(Theorem 1 below). We need some preliminary notations. Let (Xi)i∈Z be a
stationary sequence of real-valued random variables. Let Q = QX0 be defined
as in Proposition 2 and let G be the inverse of x →

∫ x
0 Q(u)du. Let S be

the subset of C([0, 1]) consisting of all absolutely continuous functions with
respect to the Lebesgue measure such that h(0) = 0 and

∫ 1
0 (h′(t))2dt ≤ 1.

Theorem 1. [DP03] Let (Xi)i∈Z be a stationary sequence of real-valued zero-
mean square integrable random variables, and Mi = σ(Xj , j ≤ i). Let
Sn = X1 + · · ·+ Xn and define the partial sum process Sn(t) = S[nt] + (nt−
[nt])X[nt]+1. If

∞∑
k=1

∫ τ∞(k)

0
Q ◦G(u) du <∞ (20)

then var(Sn) converges to σ2 =
∑

k∈Z
cov(X0, Xk). If furthermore σ > 0 then

the process
{σ−1 (2n ln lnn)−1/2 Sn(t) : t ∈ [0, 1]} is almost surely relatively compact in
C([0, 1]) with limit set S.

To conclude with the statistical applications, we would like to mention two
results: the first one is a concentration inequality which is a straightforward
consequence of Theorem 1 in Rio [Rio00b], and the second one is a Berry-
Esseen inequality due to Rio [Rio86].
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The space Λ1(Xn) is the space of 1-Lipschitz functions from Xn to R with
respect to d1 defined by (15).

Theorem 2. [DP05] Let (X1, . . . Xn) be a sequence of random variables with
values in a Polish space (X , d) and Mi = σ(X1, . . . , Xi).

Let ∆i = inf{2‖d(Xi, x)‖∞, x ∈ X} and define

Bn = ∆n and for 1 ≤ i < n, Bi = ∆i + 2ϕ(Mi, (Xi+1, . . . , Xn)) .

For any f in Λ1(Xn), we have that

P(f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

B2
1 + · · ·+ B2

n

)
.

Theorem 3. [Rio86] Let (Xi)i∈Z be a stationary sequence of real-valued
bounded and centered random variables and Mi = σ(Xj , j ≤ i). Let Sn =
X1 + · · ·+ Xn and σn = ‖Sn‖2. If lim supn→∞ σn =∞ and∑

n>0

nϕ3(n) <∞ , (21)

then σ2
n converges to σ2 =

∑
k∈Z

cov(X0, Xk). Moreover σ > 0 and

sup
x∈R

∣∣∣P(Sn ≤ xσn)− 1√
2π

∫ x

−∞
exp(−x2/2)dx

∣∣∣ ≤ C√
n

,

where C depends only on ‖X0‖∞, (ϕ3(k))k≥0 and σ.

7 Application to dynamical systems on [0, 1]

The mixing conditions studied in this paper are similar to the usual mixing
conditions. However, they are weaker and therefore applicable to substantially
broader classes of processes. In this section, we are interested in classes of
dynamical systems on [0, 1]. We refer to [DP03, DP05] for other classes of
examples.

The statistical study of dynamical systems is really important because
even very simple and determinist dynamical systems may behave in an un-
predictable way. Indeed, if we consider two close initial conditions, one can
obtain after some finite time two orbits with quite different behaviours. In the
litterature on dynamical systems, mixing in the ergodic-theoric sense (MES)
is different from mixing in the sense of Rosenblatt [Ros56]. A dynamical sys-
tem (Tn, µ) is said to be MES if for any sets A and B in B(R), the sequence
Dn(A,B, µ, T ) = |µ(A ∩ T−n(B)) − µ(A)µ(B)| converges to zero. For such
dynamical systems it is easy to see that strong mixing is a uniform version of
MES. As MES only gives a non uniform control of Dn(A,B, µ, T ), it is not suf-
ficient in general to obtain functional limit theorems or deviation inequalities
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for large classes of functions. There exist number of works on the statistical
properties of dynamical systems. Of course, we do not pretend to give a com-
plete account of the literature. One way to derive covariance inequalities for
dynamical systems is to study the spectral properties of the associated Perron-
Frobenius operator in some well chosen Banach space ([HK82, LY74, Mor94]
for example). More recently Pène obtained rates of convergence in the central
limit theorem for two-dimensional dispersive billiards [Pen02] and also rate
of convergence in multidimensional limit theorems for the Prokhorov metric
[Pen04]. Chazottes, Collet, Martinez and Schmitt gave exponential inequali-
ties for expanding maps of the interval [CMS02], Devroye inequalities [CCS04]
and statistical applications [CCS05] for a class of non-uniformly hyperbolic
dynamical systems. A first approach to study dynamical systems using tools
of the theory of weak dependence, in the sense of Doukhan and Louhichi
[DL99], can be found in Prieur [Pri01]. Some more recent works of Dedecker
and Prieur [DP05] prove that furhter results can be obtained by working with
the coefficient Φ defined in Definition 1 of Section 1 and with the Markov
chain associated to the dynamical system (Section 7.1 for a precise definition
of this Markov chain).

We now introduce the model (Section 7.1), and then apply some of the
results of Sections 4 and 6 (Sections 7.2, 7.3 below) to this model.

7.1 Introduction of the model

Let I = [0, 1], T be a map from I to I and define Xi = T i. If µ is invariant
by T , the sequence (Xi)i≥0 of random variables from (I, µ) to I is strictly
stationary.

For any finite measure ν on I, we use the notations ν(h) =
∫
I
h(x)ν(dx).

For any finite signed measure ν on I, let ‖ν‖ = |ν|(I) be the total variation
of ν. Denote by ‖g‖1,λ the L

1-norm with respect to the Lebesgue measure λ
on I.

Covariance inequalities. In many interesting cases, one can prove that, for
any BV function h and any k in L

1(I, µ),

|cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (22)

for some nonincreasing sequence an tending to zero as n tends to infinity. Note
that if (22) holds, then

|cov(h(X0), k(Xn))| = |cov(h(X0)− h(0), k(Xn))|
≤ an‖k(Xn)‖1(‖h− h(0)‖1,λ + ‖dh‖) .

Since ‖h− h(0)‖1,λ ≤ ‖dh‖, we obtain that

|cov(h(X0), k(Xn))| ≤ 2an‖k(Xn)‖1‖dh‖ . (23)

Inequality (23) is similar to the second inequality in Proposition 1 item 2,
with X = X0 and Y = k(Xn), and one can wonder if φ(σ(Xn), X0) ≤ 2an.
The answer is positive, due to the following Lemma.
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Lemma 4. [DP05] Let (Ω,A,P) be a probability space, X a real-valued ran-
dom variable and M a σ-algebra of A. We have the equality

φ(M, X) =
sup{|cov(Y, h(X))| : Y is M-measurable, ‖Y ‖1 ≤ 1 and h ∈ BV1} .

Hence, we obtain an easy way to prove that a dynamical system (T i)i≥0 is
φ-dependent:

If (22) holds, then φ(σ(Xn), X0) ≤ 2an. (24)

In many cases, Inequality (22) follows from the spectral properties of the
Markov operator associated to T . In these cases, due to the underlying Marko-
vian structure, (24) holds withMn = σ(Xi, i ≥ n) instead of σ(Xn).

Proof of Lemma 4. Write first |cov(Y, h(X))| = |E(Y (E(h(X)|M)−E(h(X))))|.
For any positive ε, there exists Aε in M such that P(Aε) > 0 and for any ω
in Aε,

|E(h(X)|M)(ω)− E(h(X))| > ‖E(h(X)|M)− E(h(X))‖∞ − ε.

Define the random variable

Yε :=
1Aε

P(Aε)
sign (E(h(X)|M)− E(h(X))) .

Then Yε is M-measurable, E|Yε| = 1 and |cov(Yε, h(X))| ≥ ‖E(h(X)|M) −
E(h(X))‖∞ − ε. This being true for any positive ε, we infer from Lemma 1
that

φ(M, X) ≤
sup{|cov(Y, h(X))| : Y is M-measurable, ‖Y ‖1 ≤ 1 and h ∈ BV1} .

The converse inequality follows immediately from Lemma 1 of Section 1.

Spectral gap. Define the operator L from L
1(I, λ) to L

1(I, λ) via the equality∫ 1

0
L(h)(x)k(x)dλ(x) =

∫ 1

0
h(x)(k ◦ T )(x)dλ(x) ,

where h ∈ L
1(I, λ) and k ∈ L

∞(I, λ).
The operator L is called the Perron-Frobenius operator of T . In many in-

teresting cases, the spectral analysis of L in the Banach space of BV -functions
equiped with the norm ‖h‖v = ‖dh‖+ ‖h‖1,λ can be done by using the Theo-
rem of Ionescu-Tulcea and Marinescu [LY74, HK82]. Assume that 1 is a simple
eigenvalue of L and that the rest of the spectrum is contained in a closed disk
of radius strictly smaller than one. Then there exists a unique T -invariant
absolutely continuous probability µ whose density fµ is BV , and
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Ln(h) = λ(h)fµ + Ψn(h) with ‖Ψn(h)‖v ≤ Kρn‖h‖v. (25)

for some 0 ≤ ρ < 1 and K > 0. Assume moreover that:

I∗ = {fµ �= 0} is an interval, and

there exists γ > 0 such that fµ > γ−1 on I∗. (26)

Without loss of generality assume that I∗ = I (otherwise, take the restriction
to I∗ in what follows). Define now the Markov kernel associated to T by

P (h)(x) =
L(fµh)(x)

fµ(x)
. (27)

It is easy to check (for instance [BGR00]) that (X0, X1, . . . , Xn) has the same
distribution as (Yn, Yn−1, . . . , Y0) where (Yi)i≥0 is a stationary Markov chain
with invariant distribution µ and transition kernel P . Since ‖fg‖∞ ≤ ‖fg‖v ≤
2‖f‖v‖g‖v, we infer that, taking C = 2Kγ(‖dfµ‖+ 1),

Pn(h) = µ(h) + gn with ‖gn‖∞ ≤ Cρn‖h‖v. (28)

This estimate implies (22) with an = Cρn. Indeed,

|cov(h(X0), k(Xn))| = |cov(h(Yn), k(Y0))|
≤ ‖k(Y0)(E(h(Yn)|σ(Y0))− E(h(Yn)))‖1
≤ ‖k(Y0)‖1‖Pn(h)− µ(h)‖∞
≤ Cρn‖k(Y0)‖1(‖dh‖+ ‖h‖1,λ) .

Collecting the above facts, we infer that φ(σ(Xn), X0) ≤ 2Cρn. Moreover,
using the Markov property we obtain that

φ(σ(Xn, . . . , Xm+n), X0) = φ(σ(Y0, . . . Ym), Yn+m)
= φ(σ(Ym), Yn+m)
= φ(σ(Xn), X0) .

This being true for any integer m, it holds for Mn = σ(Xi, i ≥ n). We
conclude that if (25) and (26) hold then there exists C > 0 and 0 ≤ ρ < 1
such that

φ(σ(Xi, i ≥ n), X0) ≤ 2Cρn . (29)

Application: Expanding maps. Let ([ai, ai+1[)1≤i≤N be a finite partition
of [0, 1[. We make the same assumptions on T as in Collet et al [CMS02].

(A1). For each 1 ≤ j ≤ N , the restriction Tj of T to ]aj , aj+1[ is strictly mono-
tonic and can be extented to a function T j in C2([aj , aj+1]).

(A2). Let In be the set where (Tn)′ is defined. There exists A > 0 and s > 1
such that infx∈In |(Tn)′(x)| > Asn.

(A3). The map T is topologically mixing: for any two nonempty open sets U, V ,
there exists n0 ≥ 1 such that T−n(U) ∩ V �= ∅ for all n ≥ n0.

If T satisfies 1. 2. and 3. then (25) holds. If furthermore (26) holds ([Mor94]
for sufficient conditions), then (29) holds.
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7.2 MISE

Let us now specify the results concerning the MISE in the particular case of
dynamical systems described in Section 7.1 above. We know via Proposition
2 that β(M, X) ≤ φ(M, X). Hence, Propositions 3 and 4 apply to dynami-
cal systems satisfying (22) with 2

∑n−1
i=1 ak instead of

∑n−1
i=1 β(k). For kernel

estimators such a result can also be deduced from a variance estimate [Pri01].

7.3 Exponential inequalities

This section is devoted to exponential inequalities which can be obtained for
dynamical systems. We first need to give the dependence properties of the
Markov chain associated to our dynamical system. Let T be a map from [0, 1]
to [0, 1] satisfying Conditions 1. 2. and 3. of Section 7.1. Assume moreover that
the density fµ of the invariant probability µ satisfies (26). Let Xi = T i and
define P as in (27). We know from Section 7.1 that on ([0, 1], µ), the sequence
(Xn, . . . , X0) has the same distribution as (Y0, . . . , Yn) where (Yi)i≥0 is the
stationary Markov chain with Markov Kernel P . Consequently

ϕ(σ(Xj , j ≥ i + k), (X0, . . . , Xk)) = ϕ(σ(Y0), (Yi, . . . , Yi+k)) . (30)

To bound ϕ(σ(Y0), (Yi, . . . , Yi+k)), the first step is to compute
E(f(Y0, . . . , Yk)|Y0 = x). As for P , define the operator Qk by∫ 1

0
Qk(f)(x)g(x)fµ(x)dλ(x) =∫ 1

0
f(T k(x), T k−1(x), . . . , x)g(T k(x))fµ(x)dλ(x) .

Clearly E(f(Y0, . . . , Yk)|Y0 = x) = Qk(f)(x) and by definition

ϕ(σ(Y0), (Yi, . . . , Yi+k)) = supf∈Λ1(Rk+1) ‖P i ◦Qk(f)− µ(Qk(f))‖∞
= supf∈Λ1(Rk+1) ‖(P i − µ) ◦ (Qk(f)−Qk(f)(0)) ‖∞

(31)
Here, we use a recent result of Collet et al. [CMS02]. Denote by ΛL1,...,Ln

the
set of functions f from R

n to R such that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ L1|x1 − y1|+ · · ·+ Ln|xn − yn| . (32)

Adapting Lasota-Yorke’s approach to higher dimension Collet et al. prove
(page 312 line 6 [CMS02]) that there exist K > 0 and 0 ≤ σ < 1 such that,
for any f in ΛL1,...,Lk+1 ,

‖dQk(f)‖ ≤ K

k∑
i=0

σiLi+1 . (33)
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Applying (28), we infer from (31) and (33) that

ϕ(σ(Y0), (Yi, . . . , Yi+k)) ≤ Cρi‖Qk(f)−Qk(f)(0)‖v ≤ Cρi2‖dQk(f)‖

≤ Cρi2K
k∑
j=0

σj .

Moreover, according to (30), the same bound holds for ϕ(σ(Xj , j ≥ i +
k), (X0, . . . , Xk)). For the Markov chain (Yi)i≥0 and the σ-algebras Mi =
σ(Yj , j ≤ i) we obtain from (33) that

ϕ∞(i) ≤
(
2CK

∑
j≥0

σj
)
ρi .

Several exponential inequalities for dynamical systems are derived from depen-
dence properties of the associated Markov chain. Exponential inequalities of
Propositions 5 and 6 in Section 4 can be applied to the sequence (Xi−EXi)i∈N.
In this section, we would like to focus on the concentration inequality for Lip-
schitz functions stated in Theorem 2. Starting from (33) and (28) we get that,
for any function f belonging to ΛL1,...,Ln ,

P(f(Y1, . . . , Yn)− E(f(Y1, . . . , Yn)) ≥ x) ≤ exp
( −2x2

M2
1 + · · ·+ M2

n

)
. (34)

with

Mn = Ln∆0 and for 1 ≤ i < n,

Mi = ∆0Li + 4CKρ(Li+1 + · · ·+ Lnσ
n−i−1) .

Since (X1, . . . , Xn) has the same distribution as (Yn, . . . , Y1), the bound (34)
holds for f(X1, . . . , Xn) with

Mn = L1∆0 and for 1 ≤ i < n,

Mi = ∆0Ln−i+1 + 4CKρ(Ln−i + · · ·+ L1σ
n−i+1) .

Remark 2. Assume that (34) holds for Mi = δ0Li + δiLi+1 + · · · + δn−iLn
(which is the case in the four examples studied above) and let Cn =
δ0 + · · ·+ δn−1. Applying Cauchy-Schwarz’s inequality, we obtain the bound
M2
i ≤ Cn

∑n
j=i δj−iL

2
i , and consequently

∑n
i=1 M2

i ≤ C2
n

∑n
i=1 L2

i . Hence,
(34) yields the upper bound

P(f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

C2
n(L2

1 + · · ·+ L2
n)

)
.

(35)
For expanding maps, (35) has been proved by Collet et al [CMS02].
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[DL99] Doukhan, P., Louhichi, S.: A new weak dependence condition and applica-
tions to moment inequalities. Stochastic Process. Appl., 84, 313-342 (1999).

[Dud89] Dudley, R.M.: Real analysis and probability. Wadworsth Inc., Belmont,
California (1989).

[HK82] Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piece-
wise monotonic transformations. Math. Z., 180, 119-140 (1982).

[Inr62] Ibragimov, I.A.: Some limit theorems for stationary processes. Theory
Probab. Appl., 7, 349-382 (1962).

[LY74] Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise
monotonic transformations. Trans. Amer. Math. Soc., 186, 481-488 (1974).

[Maj78] Major, P.: On the invariance principle for sums of identically distributed
random variables. J. Multivariate Anal., 8, 487-517 (1978).

104 Clémentine Prieur

[Mok90] Mokkadem, A.: Study of risks of kernel estimators. Teor. Veroyatnost. i
Primenen, 35, no. 3, 531-538 (1990); translation in Theory Probab. Appl.,
35 (1990), no. 3, 478-486 (1991).

[Mor94] Morita, T.: Local limit theorem and distribution of periodic orbits of
Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc.
Japan, 46, 309-343 (1994).

[Pel83] Peligrad, M.: A note on two measures of dependence and mixing sequences.
Adv. Appl. Probab., 15, 461-464 (1983).

[Pel02] Peligrad, M.: Some remarks on coupling of dependent random variables.
Stat. Prob. Letters, 60, 201-209 (2002).

[Pen02] Pène, F.: Rates of convergence in the CLT for two-dimensional dispersive
billiards. Comm. Math. Phys. 225, no. 1, 91-119 (2002).

[Pen04] Pène, F.: Multiple decorrelation and rate of convergence in multidimen-
sional limit theorems for the Prokhorov metric. Ann. Probab. 32, no. 3B,
2477-2525 (2004).

[Pri01] Prieur, C.: Density Estimation For One-Dimensional Dynamical Systems.
ESAIM, Probab. & Statist., WWW.emath.fr/ps, 5, 51-76 (2001).
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1 Introduction and notations

Let µ and ν be two probability measures on a Polish space (S, d). In 1970
Dobrušin [Dob70, page 472] proved that there exists a probability measure λ
on S× S with marginals µ and ν, such that

λ({x �= y, (x, y) ∈ S× S}) =
1
2
‖µ− ν‖v , (1)

where ‖ · ‖v is the variation norm. More precisely, Dobrušin gave an explicit
solution to (1) defined by

λ(A×B) = (µ− π+)(A ∩B) +
π+(A)π−(B)

π+(S)
for A, B in BS , (2)

where µ− ν = π+ − π− is the Hahn decomposition of π = µ− ν.
Starting from (2) (see [Ber79, Proposition 4.2.1]), Berbee obtained the fol-

lowing coupling result ([Ber79, Corollary 4.2.5]): let (Ω,A,P) be a probability
space, letM be a σ-algebra of A, and let X be a random variable with values
in S. Denote by PX the distribution of X and by PX|M a regular conditional
distribution of X given M. If Ω is rich enough, there exists X∗ distributed
as X and independent ofM such that

P(X �= X∗) =
1
2

E(‖PX|M − PX‖v) . (3)

To prove (3), Berbee built a couple (X,X∗) whose conditional distribution
givenM is the random probability λω defined by (2), with random marginals
µ = PX|M and ν = PX .
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It is by now well known that Dobrušin’s result (1) is a particular case of the
Kantorovich-Rubinštein duality theorem (which we recall at the beginning of
Section 2) applied to the discrete metric c(x, y) = 1x�=y (see [RR98, page 93]).
Starting from this simple remark, Berbee’s proof can be described as follows:
one can find a couple (X,X∗) whose conditional distribution with respect to
M solves the duality problem with cost function c(x, y) = 1x�=y and random
marginals µ = PX|M and ν = PX .

A reasonable question is then: for what class of cost functions can we
obtain the same kind of coupling than Berbee’s? Or, equivalently, given two
random probabilities µω and νω on a Polish space (S, d), for what class of cost
functions is there a random probability λω on S × S solution to the duality
problem with marginals (µω, νω)? Combining Proposition 4 in [Rüs85] and the
Kantorovitch-Rubinštein duality Theorem, we shall see in point 1 of Theorem
2.1 that such a λω exists provided the cost function c satisfies

c(x, y) = sup
u∈Lip(c)

S

|u(x)− u(y)| , (4)

where Lip(c)
S

is the class of continuous bounded functions u on S such that
|u(x)− u(y)| ≤ c(x, y). In fact, except for the duality, Rüschendorf proved in
[Rüs85, Proposition 4] a more general result, which is true for any measurable
cost funcion c. In point 2 of Theorem 2.1 we also prove that the parametrized
Kantorovich–Rubinštein theorem given in [CRV04, Theorem 3.4.1] still holds
for any cost function c satisfying (4).

In Section 3, we give the application of Theorem 2.1 to the coupling of
random variables, as done in Section 2 of [Rüs85]. In particular, Corollary 1
extends Berbee’s coupling in the following way: if (Ω,A,P) is rich enough, and
if c is a mapping satisfying (4) such that

∫
c(X,x0)dP is finite for some x0 in

S, then there exists a random variable X∗ distributed as X and independent
ofM such that

E (c(X,X∗)) =
∥∥∥ sup
f∈Lip(c)

S

∣∣∣ ∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣ ∥∥∥

1
. (5)

If c(x, y) = 1x�=y is the discrete metric, (5) is exactly Berbee’s coupling (3).
If c = d, (5) has been proved in [Rüs85, Proposition 6]. For more details on
the coupling property (5) and its applications, see Section 3.2.

In 1979, Goldstein [Gol79] obtained a more precise result than (1) in the
case where S = S

∞
1 = Π∞

k=1M is a product space. This result can be written as
follows: let µ and ν be two probability measures on S

∞
1 and let µ(i) and ν(i) be

the marginals of µ and ν on S
∞
i = Π∞

k=iM. There exists a probability measure
λ on S

∞
1 × S

∞
1 with marginals λ(i) on S

∞
i × S

∞
i , such that λ(· × S

∞
1 ) = µ(·),

λ(S∞
1 × ·) = ν(·), and for any i ≥ 1,

1
2
‖µ(i) − ν(i)‖v = λ(i)({x �= y, (x, y) ∈ S

∞
i × S

∞
i }) . (6)
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Starting from (6) (see [Ber79, Theorem 4.3.2]), Berbee obtained the follow-
ing coupling result ([Ber79, Theorem 4.4.7]): let X = (Xk)k≥1 be a S

∞
1 -valued

random variable and let X(i) = (Xk)k≥i. If Ω is rich enough, there exists X∗

distributed as X and independant ofM such that, for any i ≥ 1,

1
2

E(‖PX(i)|M − PX(i)‖v) = P(X(i) �= X∗
(i)) , (7)

where PX(i) is the distribution of X(i) and PX(i)|M is a regular distribution of
X(i) givenM. If (Xk)k∈Z is a strictly stationary sequence of M-valued random
variables and M = σ(Xi, i ≤ 0), the sequences for which P(X(i) �= X∗

(i))
converges to zero as i tends to infinity are called β-mixing or absolutely regular
sequences. The property (7) is very powerful (see [Rio98] and [BBD01] for
recent applications).

In Section 4, we shall see that, contrary to (1), the property (6) is char-
acteristic of the discrete metric. Hence, no analogue of (7) is possible if the
underlying cost function is not proportional to the discrete metric.

Preliminary notations

For any topological space T, we denote by BT the Borel σ–algebra of T and
by P(T) the space of probability laws on (T,BT), endowed with the narrow
topology, that is, for every mapping ϕ : T→ [0, 1], the mapping µ �→

∫
T
ϕ dµ

is l.s.c. if and only if ϕ is l.s.c.
Throughout, S is a given completely regular topological space and (Ω,A,P)

a given probability space. Note that in [Rüs85], both Ω and S were assumed to
be Polish. However the results are valid in much more general spaces, without
significant changes in the proofs. The reader who is not interested by this level
of generality may assume as well in the sequel that all topological spaces we
consider are Polish. On the other hand, we give in appendix some definitions
and references which might be useful for a complete reading.

2 Parametrized Kantorovich–Rubinštein theorem

Most of the ideas of this Section are contained in [Rüs85], except for the
duality part of point 2 of Theorem 1, which draws inspiration from [CRV04,
§3.4].

For any µ, ν ∈ P(S), let D(µ, ν) be the set of probability laws π on (S ×
S,BS×S) with marginals µ and ν, that is, π(A×S) = µ(A) and π(S×A) = ν(A)
for every A ∈ BS. Let us recall the

Kantorovich–Rubinštein duality theorem [Lev84], [RR98, Theorem
4.6.6] Assume that S is a completely regular pre-Radon space4, that is, ev-
4 In [Lev84] and [RR98, Theorem 4.6.6], the space S is assumed to be a universally

measurable subset of some compact space. But this amounts to assume that
it is completely regular and pre-Radon: see [RR98, Lemma 4.5.17] and [GP84,
Corollary 11.8].
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ery finite τ–additive Borel measure on S is inner regular with respect to the
compact subsets of S. Let c : S × S → [0,+∞] be a universally measurable
mapping. For every (µ, ν) ∈ P(S)× P(S), let us denote

∆
(c)
KR(µ, ν) := inf

π∈D(µ,ν)

∫
S×S

c(x, y) dπ(x, y) ,

∆
(c)
L (µ, ν) := sup

f∈Lip(c)
S

(µ(f)− ν(f)) ,

where Lip(c)
S

= {u ∈ Cb (S) ; ∀x, y ∈ S |u(x)− u(y)| ≤ c(x, y)}. Then the
equality ∆

(c)
KR(µ, ν) = ∆

(c)
L (µ, ν) holds for all (µ, ν) ∈ P(S) × P(S) if and

only if (4) holds.

Note that, if c satifies (4), it is the supremum of a set of continuous func-
tions, thus it is l.s.c. Every continuous metric c on S satisfies (4) (see [RR98,
Corollary 4.5.7]), and, if S is compact, every l.s.c. metric c on S satisfies (4)
(see [RR98, Remark 4.5.6]).

Denote

Y(Ω,A,P; S) = {µ ∈ P(Ω × S,A⊗ BS); ∀A ∈ A µ(A× S) = P(A)} .

When no confusion can arise, we omit some part of the information, and use
notations such as Y(A) or simply Y (same remark for the set Y c,1(Ω,A,P; S)
defined below). If S is a Radon space, every µ ∈ Y is disintegrable, that is,
there exists a (unique, up to P-a.e. equality) A∗

µ-measurable mapping ω �→ µω,
Ω → P(S), such that

µ(f) =
∫
Ω

∫
S

f(ω, x) dµω(x) dP(ω) ,

for every measurable f : Ω × S → [0,+∞] (see [Val73]). If furthermore the
compact subsets of S are metrizable, the mapping ω �→ µω can be chosen
A-measurable, see the Appendix.

Let c satisfy (4). We denote

Y c,1(Ω,A,P; S) = {µ ∈ Y;
∫
Ω×S

c(x, x0) dµ(ω, x) < +∞}

where x0 is some fixed element of S (this definition is independent of the
choice of x0). For any µ, ν ∈ Y, let D(µ, ν) be the set of probability laws π on
Ω × S× S such that π(.× .× S) = µ and π(.× S× .) = ν. We now define the
parametrized versions of ∆

(c)
KR and ∆

(c)
L . Set, for µ, ν ∈ Y c,1,

∆
(c)
KR(µ, ν) = inf

π∈D(µ,ν)

∫
Ω×S×S

c(x, y) dπ(ω, x, y) .

Let also Lip(c) denote the set of measurable integrands f : Ω × S → R such

that f(ω, .) ∈ Lip(c)
S

for every ω ∈ Ω. We denote
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∆
(c)
L (µ, ν) = sup

f∈Lip(c)
(µ(f)− ν(f)) .

Theorem 1 (Parametrized Kantorovich–Rubinštein theorem). As-
sume that S is a completely regular Radon space and that the compact subsets
of S are metrizable (e.g. S is a regular Suslin space). Let c : S× S→ [0,+∞[
satisfy (4). Let µ, ν ∈ Y c,1 and let ω �→ µω and ω �→ νω be disintegrations of
µ and ν respectively.

(A1). Let G : ω �→ ∆
(c)
KR(µω, νω) = ∆

(c)
L (µω, νω) and let A∗ be the universal

completion of A. There exists an A∗–measurable mapping ω �→ λω from
Ω to P(S× S) such that λω belongs to D(µω, νω) and

G(ω) =
∫

S×S

c(x, y) dλω(x, y) .

(A2). The following equalities hold:

∆
(c)
KR(µ, ν) =

∫
Ω×S×S

c(x, y) dλ(ω, x, y) = ∆
(c)
L (µ, ν) ,

where λ is the element of Y(Ω,A,P; S × S) defined by λ(A × B × C) =∫
A
λω(B × C) dP(ω) for any A in A, B and C in BS. In particular, λ

belongs to D(µ, ν), and the infimum in the definition of ∆
(c)
KR(µ, ν) is at-

tained for this λ.

Remark 1. In the case where both Ω and S are Polish spaces, point 1 and
the first equality in point 2 of Theorem 1 are contained in Proposition 4 of
Rüschendorf [Rüs85]. The proof we give below follows that of Proposition 4 in
[Rüs85] and of Theorem 3.4.1 in [CRV04]. As in [Rüs85], the main argument
is a measurable selection lemma given in [CV77].

The set of compact subsets of a topological space T is denoted by K(T).

Lemma 1 (A measurable selection lemma). Assume that S is a Suslin
space. Let c : S × S → [0,+∞] be an l.s.c. mapping. Let B∗ be the universal
completion of the σ–algebra BP(S)×P(S). For any µ, ν ∈ P(S), let

r(µ, ν) = inf
π∈D(µ,ν)

∫
c(x, y) dπ(x, y) ∈ [0,+∞] .

The function r is B∗–measurable. Furthermore, the multifunction

K :
{
P(S)× P(S)→ K (P(S× S))
(µ, ν) �→

{
π ∈ D(µ, ν);

∫
c(x, y) dπ(x, y) = r(µ, ν)

}
has a B∗–measurable selection, that is, there exists a B∗–measurable mapping
λ : (µ, ν) �→ λµ,ν defined on P(S) × P(S) with values in K (P(S× S)), such
that λµ,ν ∈ K(µ, ν) for all µ, ν ∈ P(S).
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Proof. Observe first that the mapping r can be defined as

r : (µ, ν) �→ inf {ψ(π); π ∈ D(µ, ν)} ,

with

ψ :
{
P(S× S)→ [0,+∞]
π �→

∫
S×S

c(x, y) dπ(x, y) .

The mapping ψ is l.s.c. because it is the supremum of the l.s.c. mappings
π �→ π(c ∧ n), n ∈ N (if c is bounded and continuous, ψ is continuous).
Furthermore, we have D = Φ−1, where Φ is the continuous mapping

Φ :
{
P(S× S)→ P(S)× P(S)
λ �→ (λ(· × S), λ(S× ·)) .

(Recall that D(µ, ν) is the set of probability laws π on S× S with marginals
µ and ν.) Therefore, the graph gph (D) of D is a closed subset of the Suslin
space X =

(
P(S) × P(S)

)
× P(S× S). Applying Lemma III.39 of [CV77] as

done in [Rüs85], we infer that r is B∗–measurable. Now the fact that K has a
B∗–measurable selection follows from the application of Lemma III.39 given
in paragraph 39 of [CV77]. ��

Proof (Proof of Theorem 1). By the Radon property, the probability measures
µ(Ω× .) and ν(Ω× .) are tight, that is, for every integer n ≥ 1, there exists a
compact subset Kn of S such that µ(Ω×(S\Kn)) ≤ 1/n and ν(Ω×(S\Kn)) ≤
1/n. Now, we can clearly replace S in the statements of Theorem 1 by the
smaller space ∪n≥1Kn. But ∪n≥1Kn is Suslin (and even Lusin), so we can
assume without loss of generality that S is a regular Suslin space. We easily
have

∆
(c)
L (µ, ν) = sup

f∈Lip(c)

∫
Ω

∫
S

∫
S

(f(ω, x)− f(ω, y)) dµω(x) dνω(y) dP(ω)

≤
∫
Ω

∫
S

∫
S

c(x, y) dµω(x) dνω(y) dP(ω) ≤ ∆
(c)
KR(µ, ν) . (8)

So, to prove Theorem 1, we only need to prove that ∆
(c)
KR(µ, ν) ≤ ∆

(c)
L (µ, ν)

and that the minimum in the definition of ∆
(c)
KR(µ, ν) is attained.

Using the notations of Lemma 1, we have G(ω) = r(µω, νω), thus G is
A∗–measurable (indeed, the mapping ω �→ (µω, νω) is measurable for A∗ and
B∗ because it is measurable for A and BP(S)×P(S)). From Lemma 1, the mul-
tifunction ω �→ D(µω, νω) has an A∗–measurable selection ω �→ λω such that,
for every ω ∈ Ω, G(ω) =

∫
S×S

c(x, y) dλω(x, y). We thus have

∆
(c)
KR(µ, ν) ≤

∫
Ω×S×S

c(x, y) dλ(ω, x, y) =
∫
Ω

G(ω) dP(ω) . (9)

Furthermore, since µ, ν ∈ Y c,1, we have G(ω) < +∞ a.e. Let Ω0 be the almost
sure set on which G(ω) < +∞. Fix an element x0 in S. We have, for every
ω ∈ Ω0,



Parametrized Kantorovich-Rubinštein theorem and coupling 111

G(ω) = sup
g∈Lip(c)

S

(µω(g)− νω(g)) = sup
g∈Lip(c)

S
, g(x0)=0

(µω(g)− νω(g)) .

Let ε > 0. Let µ̃ and ν̃ be the finite measures on S defined by

µ̃(B) =
∫
Ω×B

c(x0, x) dµ(ω, x) and ν̃(B) =
∫
Ω×B

c(x0, x) dν(ω, x)

for any B ∈ BS. Let S0 be a compact subset of S containing x0 such that
µ̃(S \ S0) ≤ ε and ν̃(S \ S0) ≤ ε. For any f ∈ Lip(c), we have∣∣∣∣∫

Ω

(µω − νω)(f(ω, .)) dP(ω)−
∫
Ω

(µω − νω)(f(ω, .)1S0) dP(ω)
∣∣∣∣

=
∣∣∣∣∫
Ω

(µω − νω)(f(ω, .)1S\S0) dP(ω)
∣∣∣∣ ≤ 2ε . (10)

Set, for all ω ∈ Ω0,

G′(ω) = sup
g∈Lip(c)

S
, g(x0)=0

(µω − νω)(g1S0) .

We thus have ∣∣∣∣∫
Ω0

G dP−
∫
Ω0

G′ dP

∣∣∣∣ ≤ 2ε . (11)

Let Lip(c)
S S0

denote the set of restrictions to S0 of elements of Lip(c)
S

. The set
S0 is metrizable, thus Cb (S0) (endowed with the topology of uniform conver-
gence) is metrizable separable, thus its subspace Lip(c)

S S0
is also metrizable

separable. We can thus find a dense countable subset D = {un; n ∈ N} of
Lip(c)

S
for the seminorm ‖u‖Cb(S0) := supx∈S0

|u(x)|. Set, for all (ω, x) ∈ Ω0×S,

N(ω) = min
{
n ∈ N ;

∫
S

un(x) d(µω − νω)(x) ≥ ∆
(c)
L (µω, νω)− εG′(ω)− ε

}
,

and f(ω, x) = uN(ω)(x). We then have, using (10) and (11),

∆
(c)
L (µ, ν) ≥

∫
Ω0×S

f d(µ− ν) ≥
∫
Ω0×S0

f d(µ− ν)− 2ε

≥
∫
Ω0

G′ dP− 3ε ≥
∫
Ω0

G dP− 5ε .

Thus, in view of (8) and (9),

∆
(c)
KR(µ, ν) =

∫
Ω×S×S

c(x, y) dλ(ω, x, y) = ∆
(c)
L (µ, ν) .

��
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3 Application: coupling for the minimal distance

In this section S is a completely regular Radon space with metrizable compact
subsets, c : S × S → [0,+∞] is a mapping satisfying (4) and M is a sub-σ-
algebra of A. Let X be a random variable with values in S, let PX be the
distribution of X, and let PX|M be a regular conditional distribution of X
given M (see Section 5 for the existence). We assume that

∫
c(x, x0)PX(dx)

is finite for some (and therefore any) x0 in S (which means exactly that the
unique measure of Y(M) with disintegration PX|M(·, ω) belongs to Y c,1(M)).
The proof of the following result is comparable to that of Corollary 4.2.5 in
[Ber79] and of Proposition 5 in [Rüs85].

Theorem 2 (A general coupling theorem). Assume that Ω is rich enough,
that is, there exists a random variable U from (Ω,A) to ([0, 1],B([0, 1])), in-
dependent of σ(X) ∨M and uniformly distributed over [0, 1]. Let Q be any
element of Y c,1(M). There exists a σ(U) ∨ σ(X) ∨ M-measurable random
variable Y , such that Q. is a regular conditional probability of Y given M,
and

E (c(X,Y )|M) = sup
f∈Lip(c)

S

∣∣∣ ∫ f(x)PX|M(dx)−
∫

f(x)Q.(dx)
∣∣∣ P-a.s. (12)

Proof. We apply Theorem 1 to the probability space (Ω,M,P) and to the
disintegrated measures µω(·) = PX|M(·, ω) and νω = Qω. As in the proof
of Theorem 1, we assume without loss of generality that S is Lusin regular.
From point 1 of Theorem 1 we infer that there exists a mapping ω �→ λω
from Ω to P(S × S), measurable for M∗ and BP(S×S), such that λω belongs
to D(PX|M(·, ω), Qω) and G(ω) =

∫
S×S

c(x, y)λω(dx,dy).
On the measurable space (M, T ) = (Ω × S× S,M∗ ⊗BS ⊗BS) we put the

probability

π(A×B × C) =
∫
A

λω(B × C)P( dω) .

If I = (I1, I2, I3) is the identity on M, we see that a regular conditional
distribution of (I2, I3) given I1 is given by P(I2,I3)|I1=ω = λω. Since PX|M(·, ω)
is the first marginal of λω, a regular conditional probability of I2 given I1
is given by PI2|I1=ω(·) = PX|M(·, ω). Let λω,x = PI3|I1=ω,I2=x be a regular
conditional distribution of I3 given (I1, I2), so that (ω, x) �→ λω,x is measurable
forM∗⊗BS and BP(S). From the uniqueness (up to P-a.s. equality) of regular
conditional probabilities, it follows that

λω(B × C) =
∫
B

λω,x(C)PX|M(dx, ω) P-a.s. (13)

Assume that we can find a random variable Ỹ from Ω to S, measurable for
σ(U) ∨ σ(X) ∨M∗ and BS, such that PỸ |σ(X)∨M∗(·, ω) = λω,X(ω)(·). Since
ω �→ PX|M(·, ω) is measurable for M∗ and BP(S), one can check that PX|M
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is a regular conditional probability of X given M∗. For A in M∗, B and C
in BS, we thus have

E
(
1A1X∈B1Ỹ ∈C

)
= E

(
1AE

(
1X∈BE

(
1Ỹ ∈C |σ(X) ∨M∗) |M∗))

=
∫
A

(∫
B

λω,x(C)PX|M(dx, ω)
)
P( dω)

=
∫
A

λω(B × C)P( dω) .

We infer that λω is a regular conditional probability of (X, Ỹ ) givenM∗. By
definition of λω, we obtain that

E

(
c(X, Ỹ )|M∗

)
= sup

f∈Lip(c)
S

∣∣∣ ∫ f(x)PX|M(dx)−
∫

f(x)Q.(dx)
∣∣∣ P-a.s.

(14)
Since S is Lusin, it is standard Borel (see Section 5). Applying Lemma 2, there
exists a σ(U) ∨ σ(X) ∨M-measurable modification Y of Ỹ , so that (14) still
holds for E(c(X,Y )|M∗). We obtain (12) by noting that E (c(X,Y )|M∗) =
E (c(X,Y )|M) P-a.s.

It remains to build Ỹ . Since S is standard Borel, there exists a one to one
map f from S to a Borel subset of [0, 1], such that f and f−1 are measurable
for B([0, 1]) and BS. Define F (t, ω) = λω,X(ω)(f−1(]−∞, t])). The map F (·, ω)
is a distribution function with càdlàg inverse F−1(·, ω). One can see that the
map (u, ω)→ F−1(u, ω) is B([0, 1])⊗M∗∨σ(X)-measurable. We now use the
fact that Ω is rich enough: the existence of the random variable U uniformly
distributed over [0, 1] and independent of σ(X)∨M allows some independent
randomization. Let T (ω) = F−1(U(ω), ω) and Ỹ = f−1(T ). It remains to see
that PỸ |σ(X)∨M∗(·, ω) = λω,X(ω)(·). For any A inM∗, B in BS and t in R, we
have

E

(
1A1X∈B1Ỹ ∈f−1(]−∞,t])

)
=
∫
A

1X(ω)∈B1U(ω)≤F (t,ω)P( dω) .

Since U is independent of σ(X) ∨M, it is also independent of σ(X) ∨M∗.
Hence

E

(
1A1X∈B1Ỹ ∈f−1(]−∞,t])

)
=
∫
A

1X(ω)∈BF (t, ω)P( dω)

=
∫
A

1X(ω)∈Bλω,X(ω)(f−1(]−∞, t]))P( dω) .

Since {f−1(]−∞, t]), t ∈ [0, 1]} is a separating class, the result follows. ��

Coupling and dependence coefficients

Define the coefficient
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τc(M, X) =
∥∥∥ sup
f∈Lip(c)

S

∣∣∣ ∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣ ∥∥∥

1
. (15)

If Lip(c)
S

is a separating class, this coefficient measures the dependence between
M and X (τc(M, X) = 0 if and only if X is independent ofM). From point
2 of Theorem 1, we see that an equivalent definition is

τc(M, X) = sup
f∈Lip(c)

S,M

∫
f(ω,X(ω))P( dω)−

∫ (∫
f(ω, x)PX(dx)

)
P( dω) .

where Lip(c)
S,M is the set of integrands f from Ω × S → R, measurable for

M⊗BS, such that f(ω, .) belongs to Lip(c)
S

for any ω ∈ Ω.
Let c(x, y) = 1x�=y be the discrete metric and let ‖ · ‖v be the variation

norm. From the Riesz-Alexandroff representation theorem (see [Whe83, The-
orem 5.1]), we infer that for any (µ, ν) in P(S)× P(S),

sup
f∈Lip(c)

S

|µ(f)− ν(f)| = 1
2
‖µ− ν‖v .

Hence, for the discrete metric τc(M, X) = β(M, σ(X)) is the β-mixing co-
efficient between M and σ(X) introduced in [RV59]. If c is a distance for
which S is Polish, τc(M, X) has been introduced in [Rüs85, Inequality (10)]
in its“dual” form, and in [DP04], [DP05] in its present from (obviously the
reference to [Rüs85] is missing in these two papers).

Applying Theorem 2 with Q = P ⊗ PX , we see that this coefficient has
a characteristic property which is often called the coupling or reconstruction
property.

Corollary 1 (reconstruction property). If Ω is rich enough (see Theorem
2), there exists a σ(U)∨σ(X)∨M-measurable random variable X∗, indepen-
dent of M and distributed as X, such that

τc(M, X) = E (c(X,X∗)) . (16)

If c(x, y) = 1x�=y, (16) is given in [Ber79, Corollary 4.2.5] (note that in Berbee’s
corollary, S is assumed to be standard Borel. For other proofs of Berbee’s
coupling, see [Bry82], [Rüs85, Proposition 5 and Remark 2 page 123] and
[Rio00, Section 5.3]). If c is a distance for which S is a Polish space, (16) has
been proved in [Rüs85, Proposition 6] (in [Rüs85] a more general result for
sequences is given, in the spirit of [BP79]. For an other proof of (16) when
(S, c) is Polish, see [DP04]).

Coupling is a very useful property in the area of limit theorems and statis-
tics. Many authors have used Berbee’s coupling to prove various limit theo-
rems (see for instance the review paper [MP02] and the references therein)
as well as exponential inequalities (see for instance the paper [DMR95] for
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Bernstein-type inequalities and applications to empirical central limit theo-
rems). Unfortunately, these results apply only to β-mixing sequences, but this
property is very hard to check and many simple processes (such as iterates
of maps or many non-irreducible Markov chains) are not β-mixing. In many
cases however, this difficulty may be overcome by considering another distance
c, more adapted to the problem than the discrete metric (typically c is a norm
for which S is a separable Banach space). The case S = R and c(x, y) = |x−y|,
is studied in the paper [DP04], where many non β-mixing examples are given.
In this paper the authors used the coefficients τc to prove Bernstein-type in-
equalities and a strong invariance principle for partial sums. In the paper
[DP05, Section 4.4] the same authors show that if T is an uniformly expand-
ing map preserving a probability µ on [0, 1], then τc(σ(Tn), T ) = O(an) for
c(x, y) = |x− y| and some a in [0, 1[.

The following inequality (which can be deduced from [MP02, page 174])
shows clearly that β(M, σ(X)) is in some sense the more restrictive coefficient
among all the τc(M, X): for any x in S, we have that

τc(M, X) ≤ 2
∫ β(M,σ(X))

0
Qc(X,x)(u)du , (17)

where Qc(X,x) is the generalized inverse of the function t �→ P(c(X,x) > t).
In particular, if c is bounded by M , τc(M, X) ≤ 2Mβ(M, σ(X)).

A simple example

Let (Xi)i≥0 be a stationary Markov chain with values in a Polish space S,
satisfying the equation Xn+1 = F (Xn, ξn+1), where (ξi)i>0 is a sequence
of independent and identically distributed random variables with values in
some measurable space M and independent of X0, and F is a measurable
function from S ×M to S. Let X∗

0 be a random variable distributed as X0
and independent of (X0, (ξi)i>0), and let X∗

n+1 = F (X∗
n, ξn+1). The sequence

(X∗
i )i≥0 is independent of X0 and distributed as (Xi)i≥0. From the definition

(15) of τc, we easily infer that

τc(σ(X0), Xk) ≤ E(c(Xk, X
∗
k)) .

Let µ be the distribution of X0 and (X(x)
n )n≥0 the chain starting from X

(x)
0 =

x. With these notations, we have that

E(c(Xk, X
∗
k)) =

∫∫
E(c(X(x)

k , X
(y)
k ))µ(dx)µ(dy) .

If there exists a sequence (δi)i≥0 of nonnegative numbers such that

E(c(X(x)
k , X

(y)
k )) ≤ δkc(x, y) ,

then
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τc(σ(X0), Xk) ≤ δkE(c(X0, X
∗
0 )) .

For instance, in the case where E(c(F (x, ξ0), F (y, ξ0))) ≤ κc(x, y) for some
κ < 1, we can take δk = κk. An important example is the case where S = M

is a separable Banach space and Xn+1 = f(Xn) + ξn+1 for some κ lipschitz
function f with respect to c.

Let us consider the well known example 2Xn+1 = Xn + ξn+1, where X0
has uniform distribution λ over [0, 1] and ξ1 is Bernoulli distributed with
parameter 1/2. If c(x, y) = |x − y|, it follows from our preceding remarks
that τc(σ(X0), Xk) ≤ 2−k. However, it is well known that this chain is not β
mixing. Indeed, it is a stationary Markov chain with invariant distribution λ
and transition kernel

K(x, ·) =
1
2
(δx/2 + δ(x+1)/2) ,

so that ‖Kk(x, .)−λ‖v = 2. Consequently β(σ(X0), σ(Xk)) = 1 for any k ≥ 0.

A simple application

Let (Xi)i∈Z be a stationary sequence of real-valued random variables with
common distribution function F . LetM0 = σ(Xk, k ≤ 0), and let FXk|M0 be
a conditional distribution function of Xk givenM0. Let Fn = n−1∑n

i=1 1Xi≤t
be the empirical distribution function. Let µ be a finite measure on (R,B(R)).
In [DM03, Example 2, Section 2.2], it is proved that the process {t �→√

n(Fn(t) − F (t))} converges weakly in L
2(µ) to a mixture of L

2(µ)-valued
Gaussian random variables as soon as∑

k>0

E

(∫
|FXk|M0(t)− F (t)|2µ(dt)

)1/2
<∞ . (18)

Let X∗
k be a random variable distributed as Xk and independent ofM0, and

let Fµ(x) = µ(]−∞, x[). Since F = FX∗
k |M0 , it follows that

E

(∫
|FXk|M0(t)− F (t)|2µ(dt)

)1/2
≤ E

(√
|Fµ(Xk)− Fµ(X∗

k)|
)

.

Let dµ(x, y) =
√
|Fµ(x)− Fµ(y)|. From (16) it follows that one can choose

X∗
k such that

E

(√
|Fµ(Xk)− Fµ(X∗

k)|
)

= τdµ(M0, Xk) .

Consequently (18) holds as soon as
∑

k>0 τdµ(M0, Xk) <∞. This is an exam-
ple where the natural cost function dµ is not the discrete metric c(x, y) = 1x�=y
nor the usual norm c(x, y) = |x− y|.
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4 A counter example to maximal coupling

In this section we prove that no analogue of Goldstein’s maximal coupling
(see [Gol79]) is possible if the cost function is not proportional to the discrete
metric.

More generally, we consider the following problem. Let M be a Polish
space and S = M × M. Let c be any symmetric measurable function from
M×M to R

+, such that c(x, y) = 0 if and only if x = y. Let F be the class of
symmetric measurable functions ϕ from R

+×R
+ to R

+, such that x �→ ϕ(0, x)
is increasing. For ϕ ∈ F , we define the cost function cϕ((x1, x2), (y1, y2)) =
ϕ(c(x1, y1), c(x2, y2)) on S× S.

The question Q is the following. For which couples (ϕ, c) do we have the
property: for any probability measures µ, ν on S with marginals µ(2)(A) =
µ(M × A) and ν(2)(A) = ν(M × A), there exists a probability measure λ in
D(µ, ν) with marginal λ(2)(A×B) = λ(M×A×M×B), such that

∆
(cϕ)
KR (µ, ν) =

∫
ϕ(c(x1, y1), c(x2, y2)) λ(dx1,dx2,dy1,dy2) , (19)

∆
(c)
KR(µ(2), ν(2)) =

∫
c(x2, y2)λ(2)(dx2,dy2) . (20)

From Goldstein’s result we know that the couple (ϕ(x, y) = x ∨ y, c(x, y) =
1x�=y) is a solution to Q. The following proposition shows that, if c is not
proportional to the discrete metric, no couple (ϕ, c) can be a solution to Q.

Proposition 1. Suppose that c is not proportional to the discrete metric.
There exist a1, b1, a2, b2 in M such that a1 �= b1 and a2 �= b2 and two probabil-
ities µ and ν on {(a1, a2), (a1, b2), (b1, a2), (b1, b2)} for which, for any ϕ ∈ F ,
there is no λ in D(µ, ν) satisfying (19) and (20) simultaneously.

Proof. Since c is not proportional to the discrete metric, there exist at least
two points (a1, b1) and (a2, b2) in M × M such that a1 �= b1, a2 �= b2 and
c(a1, b1) > c(a2, b2) > 0. Define the probabilities µ and ν by

µ(a1, a2) = 1
2 , ν(a1, a2) = 0 ,

µ(a1, b2) = 0 , ν(a1, b2) = 1
2 ,

µ(b1, a2) = 0 , ν(b1, a2) = 1
2 ,

µ(b1, b2) = 1
2 , ν(b1, b2) = 0 .

The set D(µ, ν) is the set of probabilities λα such that λα(a1, a2, a1, b2) =
λα(b1, b2, b1, a2) = α, λα(a1, a2, b1, a2) = λα(b1, b2, a1, b2) = 1/2− α, for α in
[0, 1/2]. Consequently, for any ϕ in F ,∫

ϕ(c(x1, y1), c(x2, y2))λα(dx1,dx2,dy1,dy2)

= 2αϕ(0, c(a2, b2)) + (1− 2α)ϕ(c(a1, b1), 0) . (21)
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Since c(a1, b1) > c(a2, b2), since ϕ is symmetric, and since x �→ ϕ(0, x) is
increasing, ϕ(c(a1, b1), 0) > ϕ(0, c(a2, b2)). Therefore, the unique solution to
(19) is λ1/2. Now∫

c(x2, y2)λ1/2(dx1,dx2,dy1,dy2) = c(a2, b2) > 0 .

Since µ(2) = ν(2), ∆
(c)
KR(µ(2), ν(2)) = 0. Hence λ1/2 does not satisfy (20). ��

Remark 2. If now c is the discrete metric c(x, y) = 1x�=y, the right hand term
in equality (21) is ϕ(c(a1, b1), 0). Consequently, any λα is solution to (19) and
λ0 is solution to both (19) and (20). We conjecture that if c is the discrete
metric, then any couple (ϕ, c), ϕ ∈ F , is a solution to Q.

5 Appendix: topological and measure-theoretical
complements

Topological spaces

Let us recall some definitions (see [ScH73, GP84] for complements on Radon
and Suslin spaces). A topological space S is said to be

• regular if, for any x ∈ S and any closed subset F of S which does not
contain x, there exist two disjoint open subsets U and V such that x ∈ U
and F ⊂ V ,

• completely regular if, for any x ∈ S and any closed subset F of S which
does not contain x, there exists a continuous function f : S → [0, 1] such
that f(x) = 0 and f = 1 on F (equivalently, S is uniformizable, that is,
the topology of S can be defined by a set of semidistances),

• pre-Radon if every finite τ–additive Borel measure on S is inner regular
with respect to the compact subsets of S (a Borel measure µ on S is
τ–additive if, for any family (Fα)α∈A of closed subsets of S such that
∀α, β ∈ A ∃γ ∈ A Fγ ⊂ Fα ∩ Fβ , we have µ(∩α∈AFα) = infα∈A µ(Fα)),

• Radon if every finite Borel measure on S is inner regular with respect to
the compact subsets of S,

• Suslin, or analytic, if there exists a continuous mapping from some Polish
space onto S,

• Lusin if there exists a continuous injective mapping from some Polish space
onto S. Equivalently, S is Lusin if there exists a Polish topology on S which
is finer than the given topology of S.

Obviously, every Lusin space is Suslin and every Radon space is pre-Radon.
Much less obviously, every Suslin space is Radon. Every regular Suslin space
is completely regular.

Many usual spaces of Analysis are Lusin: besides all separable Banach
spaces (e.g. Lp (1 ≤ p < +∞), or the Sobolev spaces Ws,p(Ω) (0 < s < 1
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and 1 ≤ p < +∞)), the spaces of distributions E ′, S ′, D′, the space H(C) of
holomorphic functions, or the topological dual of a Banach space, endowed
with its weak∗–topology are Lusin. See [ScH73, pages 112–117] for many more
examples.

Standard Borel spaces

A measurable space (M,M) is said to be standard Borel if it is Borel-
isomorphic with some Polish space T, that is, there exists a mapping f :
T → M which is one-one and onto, such that f and f−1 are measurable for
BT and M. We say that a topological space S is standard Borel if (S,BS) is
standard Borel.

If τ1 and τ2 are two comparable Suslin topologies on S, they share the
same Borel sets. In particular, every Lusin space is standard Borel.

A useful property of standard Borel spaces is that every standard space
S is Borel-isomorphic with a Borel subset of [0, 1]. This a consequence of
e.g. [Kec95, Theorem 15.6 and Corollary 6.5], see also [Sko76] or [DM75,
Théorème III.20]. (Actually, we have more: every standard Borel space is
countable or Borel-isomorphic with [0, 1]. Thus, for standard Borel spaces,
the Continuum Hypothesis holds true!)

Another useful property of standard Borel spaces is that, if S is a stan-
dard Borel space, if X : Ω �→ S is a measurable mapping, and if M is a
sub-σ-algebra of A, there exists a regular conditional distribution PX|M (see
e.g. [Dud02, Theorem 10.2.2] for the Polish case, which immediately extends
to standard Borel spaces from their definition). Note that, if S is radon, then
the distribution PX of X is tight, that is, for every integer n ≥ 1, there exists
a compact subset Kn of S such that PX(S\Kn) ≥ 1/n. Hence one can assume
without loss of generality that X takes its values in ∪n≥1Kn. If moreover
S has metrizable compact subsets, then ∪n≥1Kn is Lusin (and hence stan-
dard Borel), and there exists a regular conditional distribution PX|M. Thus,
if S is Radon with metrizable compact subsets, every element µ of Y has
an A-measurable disintegration. Indeed, denoting A′ = A ⊗ {∅,S}, one only
needs to consider the conditional distribution PX|A′ of the random variable
X : (ω, x) �→ x defined on the probability space (Ω × S,A⊗ BS, µ).

For any σ–algebra M on a set M, the universal completion of M is the
σ-algebra M∗ = ∩µM∗

µ, where µ runs over all finite nonegative measures on
M and M∗

µ is the µ–completion of M. A subset of a topological space S is
said to be universally measurable if it belongs to B∗

S
. The following lemma can

be deduced from e.g. [VW96, Exercise 10 page 14] and the Borel-isomorphism
theorem.

Lemma 2. Assume that S is a standard Borel space. Let X : Ω → S be A∗–
measurable. Then there exists an A–measurable modification Y : Ω → S of
X, that is, Y is A–measurable and satisfies Y = X a.e.
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1 Introduction

This paper deals with the problems of typicality and conditional typical-
ity of “empirical probabilities” for stochastic process and the estimation of
potential functions for Gibbs measures and dynamical systems. The ques-
tions of typicality have been studied in [FKT88] for independent sequences,
in [BRY98, Ris89] for Markov chains. In order to prove the consistency of esti-
mators of transition probability for Markov chains of unknown order, results
on typicality and conditional typicality for some (Ψ)-mixing process where
obtained in [CsS, Csi02]. Unfortunately, lots of natural mixing process do
not satisfy this Ψ -mixing condition (see [DP05]). We consider a class of mix-
ing process inspired from [DP05]. For this class, we prove strong typicality
and strong conditional typicality. In the particular case of Gibbs measures (or
complete connexions chains) and for certain dynamical systems, from the typ-
icality results we derive an estimation of the potential as well as a procedure
to test the nullity of the asymptotic variance of the process.
More formally, we consider X0, ...., Xn, ... a stochastic process taking values
on an complete set Σ and a sequence of countable partitions of Σ, (Pk)k∈N

such that if P ∈ Pk then there exists a unique P̃ ∈ Pk−1 such that almost
surely, Xj ∈ P implies Xj−1 ∈ P̃ . Our aim is to obtain empirical estimates of
the probabilities:

P(Xj ∈ P ), P ∈ Pk ,

the conditional probabilities:

P(Xj ∈ P | Xj−1 ∈ P̃ ), P ∈ Pk

and the limit when k →∞ when it makes sense.
We shall define a notion of mixing with respect to a class of functions. Let C
be a Banach space of real bounded functions endowed with a norm of the
form:
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‖f‖C = C(f) + ‖f‖ ,

where C(f) is a semi-norm (i.e. ∀f ∈ C, C(f) ≥ 0, C(λf) = |λ|C(f) for λ ∈ R,
C(f + g) ≤ C(f) + C(g)) and ‖ ‖ is a norm on C. We will denote by C1 the
subset of functions in C such that C(f) ≤ 1.
Particular choices of C may be the space BV of functions of bounded variation
on Σ if it is totally ordered or the space of Hölder (or piecewise Hölder)
functions. Recall that a function f on Σ is of bounded variation if it is bounded
and ∨

f := sup
n∑
i=0

|f(xi)− f(xi+1)| <∞ ,

where the sup is taken over all finite sequences x1 < · · · < xn of elements of
Σ. The space BV endowed with the norm ‖f‖ =

∨
f + ‖f‖∞ is a Banach

space.
Inspired from [DP05], we define the ΦC-mixing coefficients.

Definition 1. For i ∈ N, let Mi be the sigma algebra generated by X1, ...,
Xi. For k ∈ N,

ΦC(k) = sup{|E(Y f(Xi+k))− E(Y )E(f(Xi+k))| , i ∈ N ,

Y is Mi −measurable with ‖Y ‖1 ≤ 1, f ∈ C1} . (*)

Our main assumption on the process is the following.

Assumption 1
n−1∑
k=0

(n− k)ΦC(k) = O(n) .

Remark 1. Assumption 1 is equivalent to (ΦC(k))k∈N summable. We prefer to
formulate it in the above form because it appears more naturally in our con-
text.
Our definition is inspired from Csiszár’s (which is Ψ -mixing for variables tak-
ing values in a finite alphabet) and Dedecker-Prieur. It covers lots of natural
systems (see Section 3 for an example with dynamical systems and [DP05]
for further examples). Our definition extends Csiszár’s which was for random
variables on a finite alphabet.

We consider a sequence (Pk)k∈N of countable partitions of Σ such that: almost
surely, for all j, k ∈ N, we have

for any P ∈ Pk , there exists P̃ ∈ Pk−1 , Xj ∈ P ⇒ Xj−1 ∈ P̃ . (**)

For i,  ∈ N, for P ∈ Pk, consider the random variable:

N �
i (P ) =

�+i−1∑
j=i

1P (Xj) .
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Our aim is to have quantitative informations on how close are the empirical
probabilities Ni+n

i (P )
n to the expected value Qi+n

i (P ) := E

(
Ni+n

i (P )
n

)
. We are

especially interested in “large scale typicality”: k will grow with n. We wonder
also about “conditional typicality”, for P ∈ Pk, let

ĝn(P ) =
Nn+1

1 (P )

Nn−1
0 (P̃ )

n− 1
n

.

Our main result is that ĝn(P ) is a consistent estimator of the conditional prob-

abilities Qn(P |P̃ ) :=
Qn+1

1 (P )

Qn−1
0 (P̃ )

. This follows from an exponential inequality

(see Theorem 1).
If the conditional probabilities Qn(P |P̃ ) converge when k → ∞, we may

obtain an estimator of the limit function. This is the case for certain dynamical
systems (see Section 3) and g-measures (see Section 4). In these settings, we
obtain a consistent estimator of the potential function. This may leads to a
way of testing the nullity of the asymptotic variance of the system (see Section
5 for details).

Section 2 contains general results on typicality and conditional typicality
for some weak-dependant sequences. In Section 3, we apply these results to
expanding dynamical systems of the interval. Section 4 is devoted to Gibbs
measures and chains with complete connections. Finally, in Section 5 we sketch
an attempt to test the nullity of the asymptotic variance of the system.

2 Typicality and conditional typicality via exponential
inequalities

Following Csiszár, we wonder about typicality that is: how close are the “em-
pirical probabilities” Nn+i

i (P )
n to the expected probability Qn+i

i (P ) ? This is
done via a “Hoeffding-type” inequality for partial sums.
The following Proposition has been obtained in [DP05], we sketch here the
proof because our context is a bit different.

Proposition 1. Let (Xi) be a sequence a random variables. Let the coeffi-
cients ΦC(k) be defined by (*). For ϕ ∈ C, p ≥ 2, define

Sn(ϕ) =
n∑
i=1

ϕ(Xi)

and

bi,n =

(
n−i∑
k=0

Φ(k)

)
‖ϕ(Xi)− E(ϕ(Xi))‖ p

2
C(ϕ) .

For any p ≥ 2, we have the inequality:
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‖Sn(ϕ)− E(Sn(ϕ))‖p ≤
(

2p
n∑
i=1

bi,n

) 1
2

≤ C(ϕ)

(
2p

n−1∑
k=0

(n− k)ΦC(k)

) 1
2

. (1)

As a consequence, we obtain

P (|Sn(ϕ)− E(Sn(ϕ))| > t) ≤ e
1
e exp

(
−t2

2e(C(ϕ))2
∑n−1

k=0(n− k)ΦC(k)

)
. (2)

Proof (Sketch of proof). There are two ingredients to get (1). Firstly we need
a counterpart to Lemma 4 in [DP05].

Lemma 1.

ΦC(k) = sup {‖E(ϕ(Xi+k)|Mi)− E(ϕ(Xi+k))‖∞ , ϕ ∈ C1} .

We postpone the proof of Lemma 1 to the end of the proof of the proposition.
Secondly, we apply Proposition 4 in [DD03] to get: (let Yi = ϕ(Xi)−E(ϕ(Xi)))

‖Sn(ϕ)− E(Sn(ϕ))‖p ≤
(

2p
n∑
i=1

max
i≤�≤n

‖Yi
�∑

k=i

E(Yk|Mi)‖ p
2

) 1
2

≤
(

2p
n∑
i=1

‖Yi‖ p
2

n∑
k=i

‖E(Yk|Mi)‖∞

) 1
2

≤
(

2p
n∑
i=1

bi,n

) 1
2

.

We have used that by Lemma 1, ‖E(Yk+i|Mi)‖∞ ≤ C(ϕ)ΦC(k). To obtain the
second part of inequality (2), use ‖Yi‖ p

2
≤ ‖Yi‖∞ ≤ C(ϕ)ΦC(0)). The second

inequality (2) follows from (1) as in [DP05]. ��
Proof (Proof of Lemma 1). We write

E(Y f(Xi+k))− E(Y )E(f(Xi+k)) = E(Y [E(f(Xi+k)|Mi)− E(f(Xi+k))])
≤ ‖E(f(Xi+k)|Mi)− E(f(Xi+k))‖∞.

To prove the converse inequality, for ε > 0, consider an event Aε such that
for ω ∈ Aε,

|E(f(Xi+k)|Mi)(ω)− E(f(Xi+k))| ≥ ‖E(f(Xi+k)|Mi)− E(f(Xi+k))‖∞ − ε,

and consider the random variable

Yε =
1Aε

P(Aε)
sign(E(h(Xi+k)|Mi)(ω)− E(f(Xi+k))) .

Yε is Mi-measurable, ‖Yε‖1 ≤ 1 and

E(Yεf(Xi+k))− E(Yε)E(f(Xi+k)) ≥ ‖E(f(Xi+k)|Mi)− E(f(Xi+k))‖∞ − ε .

Thus, the lemma is proved. ��
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We shall apply inequality (2) to the function ϕ = 1P , P ∈ Pk.
Corollary 1. If the process (X1, . . . , Xn, . . .) satisfies Assumption 1, if the
sequence of partitions (Pk)k∈N satisfies (**) and for all P ∈ Pk, 1P ∈ C,
then, there exists a constant C > 0 such that for all k ∈ N, for all P ∈ Pk,
for any t ∈ R, for all i, n ∈ N,

P

(∣∣∣∣Nn+i
i (P )

n
−Qn+i

i (P )
∣∣∣∣ > t

)
≤ e

1
e e

(
− Ct2n

C(1P )2

)
. (3)

Proof. It follows directly from (2) applied to ϕ = 1P and Assumption 1. ��

Let us denote by P̂
n+i
i (P ) = Nn+i

i (P )
n . The following corollary is a counterpart

to Csiszár’s result (Theorem 1 in [Csi02]) in our context.

Corollary 2. There exists C > 0 such that for all P ∈ Pk for which(
Qn+i
i (P )
C(1P )

)2

n ≥ ln2 n, we have:

P

(∣∣∣∣∣ P̂n+i
i (P )

Qn+i
i (P )

− 1

∣∣∣∣∣ > t

)
≤ e

1
e e(−Ct

2 ln2 n) .

Proof. We apply Corollary 1 with t ·Qn+i
i (P ) instead of t. We get:

P

(∣∣∣∣∣ P̂n+i
i (P )

Qn+i
i (P )

− 1

∣∣∣∣∣ > t

)
≤ e

1
e exp

(
−Ct2(Qn+i

i (P ))2n
(C(1P ))2

)
.

The result follows. ��
Remark 2. Let us consider the case where C = BV . If the partition Pk is a
partition into interval, then for all P ∈ Pk, C(1P ) = 2.

We are now in position to prove our theorem on conditional typicality. Recall
that

ĝn(P ) =
n− 1

n

Nn+1
1 (P )

Nn−1
0 (P̃ )

.

Theorem 1. Let the process (Xp)p∈N satisfy Assumption 1, let the sequence
of partitions (Pk)k∈N satisfy (**) and assume that if P ∈ Pk then 1P ∈ C.
There exists K > 0 such that for all ε < 1, for all P ∈ Pk for which

Qn−1
0 (P̃ )
C(1P )

and
Qn−1

0 (P̃ )
C(1P̃ )

≥ n− ε
2 ,

we have

P

(∣∣∣ĝn(P )−Qn(P |P̃ )
∣∣∣ > t

)
≤ 4e−Kt

2n1−ε

+ 2e−Kn
1−ε

.

If the sequence is stationary, the result may be rewritten as:

P

(∣∣∣ĝn(P )− P(X1 ∈ P | X0 ∈ P̃ )
∣∣∣ > t

)
≤ 4e−Kt

2n1−ε

+ 2e−Kn
1−ε

.
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Proof. Fix R > 0, let us bound the probability

P

(∣∣∣ĝn(P )−Qn(P |P̃ )
∣∣∣ > t

)
with the sum of the probabilities:

(1) = P

(∣∣∣P̂n+1
1 (P )−Qn+1

1 (P )
∣∣∣ > t ·Qn−1

0 (P̃ )
2

)
,

(2) = P

(∣∣∣P̂n−1
0 (P̃ )−Qn−1

0 (P̃ )
∣∣∣ > tQn−1

0 (P̃ )R
2

)
,

(3) = P

(
P̂
n−1
0 (P̃ )

P̂
n+1
1 (P )

< R

)
.

The terms (1) and (2) are easily bounded using Corollary 1: we get

(1) ≤ e
1
e exp

(
−Ct2n1−ε

4

)
(2) ≤ e

1
e exp

(
−Ct2R2(n− 1)1−ε

4

)
.

It remains to bound the term (3). We have (recall that almost surely, Xj ∈
P ⇒ Xj−1 ∈ P̃ ):

P̂
n+1
1 (P )

P̂
n−1
0 (P̃ )

≤ n− 1
n

(
1 +

1{Xn∈P}
Nn−1

0 (P̃ )

)
.

So we have that
P̂
n+1
1 (P )

P̂
n−1
0 (P̃ )

< 2 unless if Nn−1
0 (P̃ ) = 0. Take R = 1

2 , we have:

(3) ≤ P(Nn−1
0 (P̃ ) = 0)

and

P(Nn−1
0 (P̃ ) = 0) ≤ P

(
P̂
n−1
0 (P̃ ) ≤ Qn−1

0 (P̃ )
2

)
.

Apply Corollary 1 with t = Qn−1
0 (P̃ )

2 (of course our hypothesis imply that
Qn−1

0 (P̃ ) > 0) to get
(3) ≤ e

1
e e−Cn

1−ε

.

These three bounds give the result (we have bounded e
1
e by 2). ��
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3 Applications to dynamical systems

We turn now to our main motivation: dynamical systems. Consider a dynam-
ical system (Σ,T , µ). Σ is a complete space, T : Σ → Σ is a measurable
map, µ is a T -invariant probability measure on Σ. As before, C is a Banach
space of bounded functions on Σ (typically, C will be the space of function of
bounded variations or a space of piecewise Hölder functions, see examples in
Section 3.1). It is endowed with a norm of the form:

‖f‖C = C(f) + ‖f‖ ,

where C(f) is a semi-norm (i.e. ∀f ∈ C, C(f) ≥ 0, C(λf) = |λ|C(f) for
λ ∈ R, C(f + g) ≤ C(f) + C(g)) and ‖ ‖ is a norm on C. In addition, we
assume that the norm ‖ ‖ on C is such that for any ϕ ∈ C, there exists a real
number R(ϕ) such that ‖ϕ + R(ϕ)‖ ≤ C(ϕ) (for example, this is the case if
‖ ‖ = ‖ ‖∞ and C(ϕ) =

∨
(ϕ) or ‖ ‖ = ‖ ‖∞ and C(ϕ) is the Hölder constant).

We assume that the dynamical system satisfy the following mixing property:
for all ϕ ∈ L1(µ), ψ ∈ C,∣∣∣∣∣∣

∫
Σ

ψ · ϕ ◦ Tn dµ−
∫
Σ

ψ dµ

∫
Σ

ϕ dµ

∣∣∣∣∣∣ ≤ Φ(n)‖ϕ‖1 ‖ψ‖C , (4)

with Φ(n) summable.
Consider a countable partition A1, . . . , Ap, . . . of Σ. Denote by Pk the count-
able partition of Σ whose atoms are defined by: for i0, . . . , ik−1, denote

Ai0,...,ik−1 = {x ∈ Σ / for j = 0, . . . , k − 1, T j(x) ∈ Aij} .

We assume that for all i0, . . . , ik−1, f = 1Ai0,...,ik−1
∈ C and let C(ii0 , . . . , ik−1)

be denoted by C(f). Consider the process taking values into Σ: Xj(x) =
T j(x), j ∈ N, x ∈ Σ. Clearly if Xj ∈ Ai0,...,ik−1 then Xj+1 ∈ Ai1,...,ik−1 .
That is for any P ∈ Pk, there exists a unique P̃ ∈ Pk−1 such that
Xj ∈ P ⇒ Xj+1 ∈ P̃ .
Condition (4) may be rewritten as: for all ϕ ∈ L1(µ), ψ ∈ C,

|Cov(ψ(X0), ϕ(Xn))| ≤ Φ(n)‖ϕ‖1‖ψ‖C .

Moreover, we assume that for ψ ∈ C, there exists a real number R(ψ) such
that ‖ψ + R(ψ)‖ ≤ C(ψ). We have:

|Cov(ψ(X0), ϕ(Xn))| = |Cov([ψ(X0) + R(ψ)], ϕ(Xn))|
≤ Φ(n)‖ϕ‖1‖ψ + R(ψ)‖C ≤ Φ(n)‖ϕ‖1C(ψ) . (5)

Using the stationarity of the sequence (Xj), we have for all i ∈ N, for ψ ∈ C1,
ϕ ∈ L1, ‖ϕ‖1 ≤ 1,
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|Cov(ψ(Xi), ϕ(Xn+i))| ≤ 2Φ(n) . (6)

So, our Assumptions 1 and (**) are satisfied for a “time reversed” process: con-
sider a process (Yn)n∈N such that (Yn, · · · , Y0) as the same law as (X0, · · · , Xn),
then Cov(ψ(Xi), ϕ(Xn+i)) = Cov(ψ(Yi+n), ϕ(Yi)) and the process (Yn)n∈N

satisfies our Assumptions 1. Using the stationarity, it satisfies also(**), see
[BGR00] and [DP05] for more developments on this “trick”. Applying Theo-
rem 1 to the process (Yn)n∈N and using that

n∑
j=1

1P (Yj)
Law=

n−1∑
0

1P (Xj)

and
n−2∑
j=0

1P̃ (Yj)
Law=

n−2∑
j=0

1P̃ (Xj) ,

we obtain the following result.

Theorem 2. There exists a constant C > 0, such that for all k, n ∈ N, for
any sequence i0, . . . , ik−1, for all t ∈ R,

P

(∣∣∣∣Nn
0 (Ai0,...,ik−1)

n
− µ(Ai0,...,ik−1)

∣∣∣∣ > t

)
≤ e

1
e e

− Ct2n
C(i0,...,ik−1)2 .

Let ĝn(Ai0,...,ik−1) =
Nn

0 (Ai0,...,ik−1 )

Nn−1
0 (Ai1,...,ik−1 )

n−1
n , there exists K > 0 such that for all

ε < 1, if
µ(Ai1,...,ik−1)
C(i0, . . . , ik−1)

and
µ(Ai1,...,ik−1)
C(i1, . . . , ik−1)

≥ n− ε
2 ,

then we have:

P
(∣∣ĝn(Ai0,...,ik−1)− P(X0 ∈ Ai0 |X1 ∈ Ai1 , . . . , Xk−1 ∈ Aik−1)

∣∣ > t
)

≤ 4e−Kt
2n1−ε

+ 2e−Kn
1−ε

.

Let us end this section with a lemma stating that the elements P ∈ Pk are
exponentially small. It indicates that we might not expect to take k of order
greater than lnn in the above theorem.

Lemma 2. Assume that Cmax = max
j=1,...,

C(1Aj
) <∞. There exists 0 < γ < 1

such that for all P ∈ Pk, we have

µ(P ) ≤ γk .

Proof. The proof of Lemma 2 follows from the mixing property. It is inspired
from [Pac00]. Let n0 ∈ N to be fixed later. Let P ∈ Pk, for some indices
i0, . . . , ik−1, we have that
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P = {x ∈ Ai0 , . . . , T
k−1x ∈ Aik−1} .

Then, let  = [ kn0
],

µ(P ) = P(X0 ∈ Ai0 , . . . , Xk−1 ∈ Aik−1)
≤ P(X0 ∈ Ai0 , Xn0 ∈ Ain0

, . . . , X�n0 ∈ Ai�n0
) .

The random variable

Y =
1Ain0

(Xn0) · · ·1Ai�n0
(X�n0)

P(Xn0 ∈ Ain0
, . . . , X�n0 ∈ Ai�n0

)

is M�n0-measurable with L1 norm less than 1 and
1Ai0
Cmax

is in C1. From the
mixing property (6), we get: (let s = supj=1,... µ(Aj) < 1)

P(X0 ∈ Ai0 , Xn0 ∈ Ain0
, . . . , X�n0 ∈ Ai�n0

)

≤ P(Xn0 ∈ Ain0
, . . . , X�n0 ∈ Ai�n0

) · (ΦC(n0)Cmax + s) .

Choosing n0 such that ΦC(n0)Cmax+s < 1, we obtain the result by induction.
��

3.1 Expanding maps of the interval

In this section, we consider piecewise expanding maps on the interval I = [0, 1].
That is, T is a piecewise expanding map, defined on a finite partition into
intervals A1, . . . , A�. Pk is the partition of I with atoms: Ai0 ∩ T−1Ai1 ∩
· · · ∩ T−(k−1)Aik−1 . If for all j = 1, . . . ,  , T (Aj) is a union of the Ap’s, T is
said to be a Markov map. For x ∈ I, let Ck(x) be the atom of the partition
Pk containing x. Under an assumption of aperiodicity in the Markov case or
covering in general, the map T admits a unique invariant measure absolutely
continuous with respect to the Lebesgue measure m. Let h be the invariant
density. The potential of the system is g = h

|T ′|·h◦T , we have also that g−1 is
the Radon-Nikodym derivative of µ◦T with respect to µ (if µ = hm). We shall
prove that g(x) may be estimated by ĝn,k(x) := ĝn(Ck(x)) for k = Θ(lnn).
Formally the assumptions on the system are the following.

Assumption 2(A1). the restriction of T to each Aj is a C2 one-to-one map
from Aj to T (Aj) =: Bj.

(A2). T is expanding: there exists 1 < θ−1 such that for all x ∈ I, θ−1 ≤ |T ′(x)|.
(A3). If T is a Markov map, we assume that it is aperiodic: there exists N ∈ N

such that for all i, j = 1, . . . ,  , for all n ≥ N ,

T−nAi ∩Aj �= ∅ .

(A4). If T is not Markov, we assume that it satisfies the covering property: for
all k ∈ N, there exists N(k) such that for all P ∈ Pk,

TN(k)P = [0, 1] .
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The above conditions are sufficient to ensure existence and uniqueness of an
absolutely continuous invariant measure as well as an estimation of the speed
of mixing (see for example [Sch96] for the Markov case and [CoL96], [Liv95]
for the general case). Under more technical assumptions, these results on
existence and uniqueness of an absolutely continuous invariant measure as
well as an estimation of the speed of mixing remain valid, with an infinite
countable partition ([Bro96], [L,S,V], [Mau01]).

Theorem 3. ([Sch96], [CoL96], [Liv95]) Let C be the space of functions on
[0, 1] of bounded variations. Let T satisfy the assumptions 2. Then we have
the following mixing property: there exists C > 0, 0 < ξ < 1 such that for all
ϕ ∈ L1(µ), ψ ∈ C,∣∣∣∣∣∣

∫
Σ

ψ · ϕ ◦ Tndµ−
∫
Σ

ψdµ

∫
Σ

ϕdµ

∣∣∣∣∣∣ ≤ Cξn‖ϕ‖1‖ψ‖C .

Moreover, we have that the invariant density h belongs to BV and 0 < inf h ≤
suph <∞. If the map is Markov, then h is C1 on each Bj.

In other words, our system satisfy (4) for bounded variation functions. More-
over, for any k ∈ N, the element P of Pk are subintervals, so the indicators
1P belong to BV and C(1P ) =

∨
(1P ) = 2. So, we shall apply Theorem 2,

this will lead to the announced estimation of the potential g.
Let us also introduce a very useful tool in dynamical systems: the transfer
operator. For f ∈ BV , let

L(f)(x) =
∑

y/T (y)=x

g(y)f(y) .

We have L(1) = 1, for all f1 ∈ BV , f2 ∈ L1(µ),∫
I

L(f1) · f2dµ =
∫
I

f1 · f2 ◦ Tdµ .

The process (Yn)n∈N introduced after Lemma 2 is a Markov process with
kernel L (see [BGR00]). The following three lemmas are the last needed bricks
between Theorem 2 and the estimation of the potential g.

Lemma 3. Assume that T satisfies Assumption 2 and is a Markov map, let
γ be given by Lemma 2. There exists K > 0 such that for all k ∈ N, for all
x ∈ I,

(1−Kγk)g(x) ≤ µ(Ck(x))
µ(Ck−1(Tx))

≤ (1 + Kγk)g(x) . (7)

Proof. Because the map is Markov, for all x ∈ I, T (Ck(x)) = Ck−1(Tx). We
have:
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µ(T (Ck(x))) =
∫

1
g
1Ck(x)dµ,

min
y∈Ck(x)

1
g(y)

∫
1Ck(x)dµ ≤

∫
1
g
1Ck(x)dµ ≤ max

y∈Ck(x)

1
g(y)

∫
1Ck(x)dµ .

Since the map is Markov, h and h ◦ T are C1 on each Ck(x), so g is C1 on
Ck(x) and since T is expanding, we conclude that

max
y∈Ck(x)

1
g(y)

≤ (1 + Kγk)
1

g(x)

and
min

y∈Ck(x)

1
g(y)

≥ (1−Kγk)
1

g(x)
.

The result follows. ��

If the map T is not Markov, we shall prove a result not so strong (but sufficient
for our purpose). To deal with non Markov maps, we have to modify the above
proof at two points: firstly, we have not T (Ck(x)) = Ck−1(Tx) for all x (but
for lots of them) ; secondly, g = h

|T ′|h◦T is not smooth (due to h). The following
lemma shows that we control the irregularity of h.

Lemma 4. Let a =
∨

h, for any interval P , let
∨
P

h be the variation of h on

P . For all k ≥ 1, for all uk > 0,

µ{x ∈ [0, 1] /
∨
Ck(x)

h ≥ uk} ≤
γk

uka
.

Proof. We have:

µ{x ∈ [0, 1] /
∨
Ck(x)

h ≥ uk} =
∑

P∈Pk∨
P h≥uk

µ(P ) ,

a =
∨

h ≥
∑
P∈Pk

∨
P

h ≥ #{P ∈ Pk /
∨
P

h ≥ uk}uk .

In other words, #{P ∈ Pk /
∨
P h ≥ uk} ≤

a

uk
. Using Lemma 2, we get:

µ{x ∈ [0, 1] /
∨
Ck(x)

h ≥ uk} ≤ #{P ∈ Pk /
∨
P

h ≥ uk}γk ≤
γk

uka
.

��

Corollary 3. For all κ > γ, there exists a constant K > 0 and for all k ∈ N
∗,

a set Bk such that µ(Bk) ≤ γk

κka
and if x �∈ Bk, y ∈ Ck(x),

(1−Kκk) ≤ g(x)
g(y)

≤ (1 + Kκk) . (8)



134 V. Maume-Deschamps

Proof. Recall that g = h
|T ′|h◦T . Because T is piecewise C2 and expanding, 1

|T ′|
satisfies an equation of the type (8) for all x ∈ [0, 1], for κ = γ. We just have
to prove that h satisfies such an inequality. Fix κ > γ, let

Bk = {x ∈ [0, 1] /
∨
Ck(x)

h ≥ κk} .

Let x �∈ Bk and y ∈ Ck(x).

|h(x)− h(y)| ≤
∨
Ck(x)

h ≤ κk .

Now, h(x)
h(y) = 1 + h(x)−h(y)

h(y) , thus

1− 1
suph

κk ≤ h(x)
h(y)

≤ 1 +
1

inf h
κk .

Of course, the same equation holds for h ◦ T by replacing k with k − 1,
combining this equations (for h, h ◦ T and |T ′|) gives the result. ��
Lemma 5. Assume that T satisfies Assumption 2 and is not necessary a
Markov map. There exists K > 0 such that for all k ∈ N, for all κ > γ,

µ

{
x ∈ I / (1−Kκk)g(x) ≤ µ(Ck(x))

µ(Ck−1(Tx))
≤ (1 + Kκk)g(x)

}
≥ 1−

(
2 γk + a

(γ

κ

)k)
.

Proof. We begin with a simple remark. Let us denote ∂P the union of the
boundaries of the Aj ’s. For x ∈ [0, 1], if Ck(x) ∩ ∂P = ∅ then T (Ck(x)) =
Ck−1(Tx), otherwise, T (Ck(x)) is strictly included into Ck−1(Tx). This ele-
mentary remark is very useful in the study of non Markov maps. The points
x such that T (Ck(x)) = Ck−1(Tx) will be called k-Markov points. If the map
is Markov then all points are k-Markov for all k ∈ N. For k-Markov points,
we may rewrite the proof of Lemma 3 to get the inequalities:

min
y∈Ck(x)

1
g(y)

µ(Ck(x)) ≤ µ(Ck−1(Tx)) ≤ max
y∈Ck(x)

1
g(y)

µ(Ck(x)) .

Now, we use Corollary 3 and we have that if x is a k-Markov point that do
not belong to Bk then

(1−Kκk)g(x) ≤ µ(Ck(x))
µ(Ck−1(Tx))

≤ (1 + Kκk)g(x) . (9)

So, we have that the set Dk of points not satisfying 9 for one k is included
into the set of points x such that Ck(x)∩∂P �= ∅ or in Bk (given by Corollary
3). Clearly, there are at most 2 elements P of Pk such that P ∩ ∂P �= ∅,
moreover, by Lemma 2, we have for P ∈ Pk, µ(P ) ≤ γk. We have proved that
µ(Dk) ≤ 2 γk + γk

κka
. ��
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We are now in position to prove that ĝn,k(x) is a consistent estimator of the
potential g(x).

Theorem 4. For all κ > γ, there exists Dk and Ek finite union of elements
of Pk satisfying µ(Dk) ≤ 2 γk + a

(
γ
κ

)k, µ(Ek) ≤ γk and there exists L > 0
such that if

• x �∈ Dk ∪ Ek,

•
ln( t

2K )
ln(κ)

≤ k ≤ ε

2
ln 2n
ln( �γ )

then
P(|ĝn,k(x)− g(x)| > t) ≤ 4e−Lt

2n1−ε

+ 2e−Ln
1−ε

.

Proof. Fix κ > γ, let Dk be given by Lemma 5: if x �∈ Dk then

(1−Kκk)g(x) ≤ µ(Ck(x))
µ(Ck−1(Tx))

≤ (1 + Kκk)g(x),

let Ek be the set of points x such that µ(Ck(x)) ≤ γk

�k . Clearly, if x ∈ Dk then
Ck(x) ⊂ Dk and if x ∈ Ek then Ck(x) ⊂ Ek, so Dk and Ek are finite union
of elements of Pk.
Let x �∈ Dk ∪ Ek, then µ(Ck(x)) > γk

�k . If k ≤ ε
2

ln 2n
ln( �

γ )
then µ(Ck(x)) ≥ 2n− ε

2 .

Since Ck(x) is an interval, we have C(1Ck(x)) =
∨

(1Ck(x)) = 2 and then

µ(Ck−1(Tx))
C(1Ck(x))

=
µ(Ck−1(Tx))
C(1Ck−1(Tx))

≥ µ(Ck(x))
2

≥ n− ε
2 .

We shall use Theorem 2.

P(|ĝn,k(x)− g(x)| > t)

≤ P(|ĝn,k(x)− µ(Ck(x))
µ(Ck−1(Tx))

| > t− | µ(Ck(x))
µ(Ck−1(Tx))

− g(x)|)

≤ P(|ĝn,k(x)− µ(Ck(x))
µ(Ck−1(Tx))

| > t−Kκk) (because x �∈ Dk)

≤ 4e−L(t−Kκk)2n1−ε

+ 2e−Ln
1−ε

(where we have used Theorem 2) .

If ln(t/2)/ ln(1/κ) ≤ k, we conclude

P(|ĝn,k(x)− g(x)| > t) ≤ 4e−Lt
2n1−ε

+ 2e−Ln
1−ε

.

��

We derive the following corollary. Fix κ > γ.
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Corollary 4. Let α = c/{2(1 + c)} with c = ln(1/κ)/ ln(l/γ) and k(n) be an
increasing sequence such that

ln
( 1

2Knα

)
ln(κ)

≤ k(n) ≤ ε

2
ln 2n
ln( �γ )

.

Let ĝn = ĝn,k(n), then |ĝn(x)− g(x)| = OP(n−α).

Proof. It suffices to prove that:

lim
M→∞

lim sup
n→∞

P(nα|ĝn(x)− g(x)| > M) = 0 .

We chose t = n−α in Theorem 4 and obtain:

P(nα|ĝn(x)− g(x)| > M) ≤ P(|ĝn(x)− g(x)| > 1
nα

) ≤ 4e−Ln
1−ε−2α

+ o(1) .

The best rate is obtained for α = c/{2(1 + c)} with c = ln(1/κ)/ ln(l/γ). ��

Remark 3. In [CMS02], an exponential inequality is proven for Lipschitz func-
tions of several variables for expanding dynamical systems of the interval. We
can not use such a result here because characteristic functions of intervals are
not Lipschitz, the result could maybe be improved to take into consideration
piecewise Lipschitz functions. The Lipchitz constant enter in the bound of the
exponential inequality and any kind of piecewise Lipschitz constant would be
exponentially big for 1P , P ∈ Pk. Nevertheless, such a result for functions of
several variables could be interesting to estimate the conditional probabilities
and potential g: we could construct an estimator by replacing N �

j (Ai0,...,ik−1)
with

Ñn
j (Ai0,...,ik−1) =

∣∣{p ∈ {j, ..., n + j − k} / Xj ∈ Ai0 , . . . , Xj+k−1 ∈ Aik−1

}∣∣ .

4 Gibbs measures and chains with complete connections

In this section, we state our results in the particular setting of Gibbs measures
or chains with complete connections. Gibbs measures and chains with com-
plete connections are two different point of view of the same thing - consider
a stationary process (Xi)i∈N or Z taking values into a finite set A satisfying:
for all a0, ..., ak, ... in A. If P(X0 = a0, . . . , Xk = ak) �= 0 for all k, then

lim
k→∞

P(X0 = a0|X1 = a1, . . . , Xk−1 = ak−1) = P(X0 = a0|Xi = ai, i ≥ 1) ,

exists. Moreover, there exists a summable sequence γk > 0 such that if a0 = b0,
..., ak = bk, ∣∣∣∣P(X0 = a0|Xi = ai, i ≥ 1)

P(X0 = b0|Xi = bi, i ≥ 1)
− 1

∣∣∣∣ ≤ γk . (10)
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Define Σ ⊂ AN be the set of admissible sequences:

Σ = {x = (x0, . . . , xk, . . . , ) ∈ AN |
for all k ≥ 0, P(X0 = x0, . . . , Xk = xk) �= 0} .

Σ is compact for the product topology and is invariant by the shift map σ:
σ(x0, x1, . . .) = (x1, . . .). We denote by µ the image measure of the Xi’s. We
assume that the process is mixing: there exists N > 0 such that for all i, j ∈ A,
for all n > N ,

P(X0 = i and Xn = j) �= 0 .

We shall denote by

Aj = {x ∈ Σ / x0 = j} and Ai0,...,ik−1 = {x ∈ Σ / xj = ij j = 0, . . . k − 1} .

As before, Pk is the partition of Σ whose atoms are the Ai0,...,ik−1 ’s and Ck(x)
is the atom of Pk containing x.
We assume also that the process has a Markov structure: for x = (x0, . . . , ) ∈
Σ, ax = (a, x0, . . .) ∈ Σ if and only if ay ∈ Σ for all y ∈ Ax0 .
For x ∈ Σ, let g(x) = P(X0 = x0|Xi = xi, i ≥ 1). We shall prove that ĝn,k is
a consistent estimator of g.
It is known (see [KMS97], [Mau98], [BGF99], [Pol00]) that such a process is
mixing for suitable functions.
Let γ�n =

∑
k≥n γk, define a distance on Σ by d(x, y) = γ�n if and only if

xj = yj for j = 0, . . . , n − 1 and xn �= yn. Let L be the space of Lipschitz
functions for this distance, endowed with the norm ‖ψ‖ = sup |ψ| + L(ψ)
where L(ψ) is the Lipschitz constant of ψ.

Theorem 5. ([KMS97], [Mau98], [BGF99], [Pol00]) A process satisfying
(10), being mixing and having a Markov structure is mixing for functions
in L in the sense that equation (4) is verified for ϕ ∈ L1(µ) and ψ ∈ L with
Φ(n) n→∞−→ 0. If γ�n is summable, so is Φ(n).

In what follows, we assume that γ�n is summable. For any ψ ∈ L, let R =
− inf ψ then sup |ψ+R| ≤ L(ψ), then we have (6) for the process (Xi)i∈N and
ψ ∈ L such that L(ψ) ≤ 1 and Theorem 2 is satisfied.
We have that

L(1Aj ) ≤
1
γ�0

and L
(
1Ai0,...,ik−1

)
≤ 1

γ�k
.

Equation (10) gives the following lemma which will be used instead of Corol-
lary 3.

Lemma 6. For all x ∈ Σ, for all k ∈ N, y ∈ Ck(x),

1− γk ≤
g(x)
g(y)

≤ 1 + γk .
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Following the proof of Lemma 3, we get: for all x ∈ Σ, for k ∈ N,

(1− γk)g(x) ≤ µ(Ck(x))
µ(Ck−1(T (x)))

≤ (1 + γk)g(x) . (11)

Let γ < 1 be given by Lemma 2, let  = |A|.

Theorem 6. Assume that γ�k is summable, and that the process satisfy (10),
is mixing and has a Markov structure. Then there exists L > 0 such that if:

(A1). µ(Ck(x)) ≥ γk

�k ,

(A2).
(γ

 

)k
γ�k ≥ n− ε

2 ,

(A3). γk ≤ t
2 .

we have
P(|ĝn,k(x)− g(x)| > t) ≤ 4e−Lt

2n1−ε

+ 2e−Ln
1−ε

.

Moreover,

(A1). µ{x ∈ Σ / µ(Ck(x)) < γk

�k } ≤ γk,

(A2).
(γ

 

)k
γ�k ≥ n− ε

2 if k ≤ a lnn for suitable a > 0,

(A3). γk ≤ t
2 if k ≥ bt−

1
2 for suitable b > 0.

Proof. The proof follows the proof of Theorem 4 using Lemma 6 instead of
Lemma 5. The estimates on k are obtained by noting that since γ�k is summable
then γk = o( 1

k2 ) and γ�k = o( 1
k ). Of course, better estimates may be obtained

if γk decreases faster. ��

As in Section 3.1, we derive the following corollary.

Corollary 5. For k = Θ(lnn), there exists α > 0 such that ĝn,k goes to g(x)
in probability at rate n−α.

5 Testing if the asymptotic variance is zero: the
complete case

In this section, we study the problem of testing whether the asymptotic vari-
ance of the process is zero. This is motivated by the fact that for the process
studied in the previous sections, we may prove a central limit theorem pro-
vided the asymptotic variance is not zero (see [Bro96], [Val01] for examples).
We are concerned with a process (Xj)j∈N satisfying Conditions of Section 3.1
or Section 4. We assume moreover that the system is complete: T (Ai) = I
for all i if we are in the context of Section 3.1 or σ(Ai) = Σ if we are in the
context of Section 4. Our arguments should probably be generalized to non
complete situations. In what follows, we shall denote T for T : I → I as well
as σ : Σ → Σ.
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Definition 2. ([Bro96]) Let

Sn =
n−1∑
j=0

(Xj − E(X0)) and Mn =
∫ (

Sn√
n

)2

dP .

The sequence Mn converges to V which we shall call the asymptotic variance.

Proposition 2. ([Bro96], [CM04]) The asymptotic variance V is zero if and
only if the potential log g is a cohomologous to a constant: log g = log a + u−
u ◦ T , with a > 0, u ∈ BV or u ∈ L.

Because we are in a stationary setting, we have that the asymptotic variance
is zero if and only if g is indeed constant (the fact that the system is complete
is here very important). We deduce a way of testing if the asymptotic variance
is zero. Using Theorem 4 or Theorem 6, we have that if g is constant,

P(| sup ĝn,k − inf ĝn,k| > t) ≤ 2 · (4e−Lt
2n1−ε

+ 2e−Ln
1−ε

) + γk .

To use such a result, we have to compute sup ĝn,k and inf ĝn,k, so we have
 k computations to make with k = Ω(lnn). A priori, all the constants in the
above inequality, may be specified. In theory, for t > 0, we may find k, n
satisfying the hypothesis of Theorem 4 or Theorem 6 so that P(| sup ĝn,k −
inf ĝn,k| > t) is smaller than a specified value. If the computed values of
sup ĝn,k and inf ĝn,k agree with this estimation this will indicates that g is
probably constant so that the asymptotic variance is probably 0.
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[BGF99] X Bressaud, R. Fernàndez, A. Galves, Decay of correlations for non-
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1 Introduction

Let (Ω,A, µ) be a probability space, T a measure preserving bijective and
bimeasurable mapping of Ω onto itself. By I we denote the σ-algebra of A ∈ A
for which T−1A = A; if all elements of I are of measure 0 or 1 we say that µ
is ergodic. A sequence of Xi = f ◦T i, i ∈ Z, where f is a measurable function,
is strictly stationary and any strictly stationary sequence of random variables
Xk can be represented in this way. By a filtration we shall mean a sequence
of σ-fields (Fk)k where Fk = T−kF0, Fk ⊂ Fk+1.

One of the tools for proving central limit theorems for stationary se-
quences of random variables has been approximating the partial sums Sn(f) =∑n−1

i=0 f ◦ T i by a martingale, thus reducing the original problem to a study
of limit theorems for martingale differences. In most of the known results, the
variances of the partial sums Sn(f) grow linearly. The two methods shown
here admit a nonlinear growth. In [WW04], one of the most general condi-
tions for the existence of such a martingale approximation has been given.
In the original version, the result was formulated for additive functionals of
stationary Markov chains but in fact (as the authors remarked) it holds true
for stationary sequences in general. Here we shall show a generalization to the
case when the filtration (Fk)k is not the natural filtration of the process (Xk).
The proof is presented in a way avoiding the language of Markov chains.

Another approach giving central limit theorems for processes with non-
linear growth of variances is given by a sequence of martingale-coboundary
representations.

In the last chapter, a few related results concerning the conditional central
limit theorem and the choice of filtration are announced.
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2 On an approximation of Wu and Woodroofe

Let (Fk)k be a filtration. For X integrable and k ∈ Z let us denote

Qk(X) = E(X|Fk) , Rk(X) = X − E(X|Fk) .

Remark that

X = Qk(X) + Rk(X) ,

QkQk−1(X) = Qk−1Qk(X) = Qk−1(X) ,

RkRk−1(X) = Rk−1Rk(X) = Rk(X) ,

Rk−1(X)−Rk(X) = Qk(X)−Qk−1(X) = E(X|Fk)− E(X|Fk−1) . (1)

For a sequence (Xk)k we denote Sn =
∑n

i=1 Xi; if, moreover, Xk ∈ L2

and E(Xk | I) = 0, we denote σ2
n = E(S2

n). We shall abuse the notation by
omitting to write a.s. and by writing L2 instead of L2.

In [WW04] Wu and Woodroofe proved

Theorem 1. Let (Xk)k be a stationary and ergodic sequence adapted to the
filtration (Fk), Xk ∈ L2, E(Xk) = 0. Then there exists a stationary martingale
difference array (Dn,i) (adapted to the filtration (Fk)k for each n) such that
for Mn,k =

∑k
i=1 Dn,i,

max
1≤k≤n

‖Sk −Mn,k‖2 = o(σn)

if and only if ‖Q0(Sn)‖2 = o(σn).
In such a case

σn =  (n)
√

n

where  (n) is a slowly varying function.

We shall show an analogue of Theorem 1 as well as analogs of other limit
theorems for noncausal sequences.

Let us suppose that all random variables we work with belong to the
Hilbert space H of X ∈ L2 such that E(X|F−∞) = 0 and E(X|F∞) = X.
This assumption implies E(X|I) = 0 (cf. e.g. [Vol87], Theorem 2). Let us
denote

UX = X ◦ T , X ∈ H .

For every X ∈ H and any k ∈ Z, we have by (1) that X = Qk(X) + Rk(X).
For a process (Xk)k, the sequence of Qk(Xk) is adapted to the filtration (Fk).
As we shall see the martingale approximations of the sequence (Rk(Xk))k can
be studied in the same way as approximations of adapted processes.

Let H− be the range of Q0, H−− the range of Q−1; H+ = H�H−. Define

PkX = E(X | Fk)− E(X | Fk−1)
= Rk−1(X)−Rk(X) = Qk(X)−Qk−1(X) , k ∈ Z .
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Recall that for any σ-algebra F ⊂ A and for f ∈ L2 we have UE(f | F) =
E(Uf |T−1F), hence

UQk(f) = Qk+1(Uf) , URk(f) = Rk+1U(f) , UPif = Pi+1Uf .

For f ∈ H+ define

V f =
∞∑
i=1

U−iP0U
−if .

V is an isomorphism of the Hilbert space H+ onto the Hilbert space H−−. To
see this, it is sufficient to realise that for each i > 0 V is an isomorphism of
Hi = L2(Fi) � L2(Fi−1) onto H−i: we have UPi = Pi+1U hence for f ∈ Hi,
V f = U−2if . H+ is the direct sum of Hi, i > 0, while H−− is the direct sum
of H−i, i > 0 and U is a unitary operator.

Remark that one can easily extend the definition of V to the whole space
H by defining

V f =
∑
i∈Z

U−iP0U
−if .

Proposition 1. For every k ∈ Z, n ≥ 0 and f ∈ H+ we have

V Ukf = U−kV f , (2)
V Rn(f) = Q−n−1(V f) . (3)

Proof. Because f =
∑∞

i=1 Pif we have P0U
k−if = 0 for i ≤ k hence

V Ukf =
∞∑

i=k+1

U−iP0U
k−if =

∞∑
i=1

U−kU−iP0U
−if = U−kV f ,

which proves (2).
For any f ∈ H, Rnf =

∑∞
i=n+1 Pif hence

V Rn(f) =
∞∑

i=n+1

U−iP0U
−if = Q−n−1(V f) ,

which proves (3). ��

Corollary 1. Let f ∈ H+, Xi = U if , i ∈ Z. Define Zi = U iV f , i ∈ Z,
Sn =

∑n
i=1 Xi, S′

n =
∑n

i=1 Zi, n ≥ 1. Then the process (Zi) is adapted to the
filtration (Fi−1) and

i. E(S2
n) = E(S′2

n),
ii. ‖Rn−1(Sn)‖2 =

∥∥Q0
(∑n−1

i=0 Zi
)∥∥

2.
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Proof. By (2) we have ‖S′
n‖2 =

∥∥∑n
i=1 U−iV f

∥∥
2 =

∥∥V ∑n
i=1 Xi

∥∥
2 = ‖Sn‖2.

This proves (i).
By (3) and (2), V Rn−1(Sn) = Q−n(

∑n
k=1 V Ukf) = Q−n(

∑n
i=1 Z−i) hence

‖Rn−1(Sn)‖2 = ‖V Rn−1(Sn)‖2 =
∥∥UnQ−n(

n∑
i=1

Z−i)
∥∥

2 =
∥∥Q0(

n∑
i=1

Zn−i)
∥∥

2 .

This proves (ii). ��

Theorem 2. Let (Xk = UkX)k be a stationary sequence,
X ∈ L2(F∞)�L2(F−∞), σn = ‖Sn‖2 →∞. The following are equivalent:

a. ‖Q0(Sn)‖2 = o(σn), ‖Rn(Sn)‖2 = o(σn);
b. there exists a stationary martingale difference array (Dn,i) (adapted to the

filtration (Fk)k) such that for Mn,k =
∑k

i=1 Dn,i,

max
1≤k≤n

‖Sk −Mn,k‖2 = o(σn) ;

c. there exists a stationary adapted sequence (Yk = UkY )k such that ‖Sn(X−
Y )‖2 = o(σn) and ‖Q0(Sn(Y ))‖2 = o(σn).

If (a) or (b) or (c) holds then σn =  (n)
√

n where  (n) is a slowly varying
function.

Proof. Let us suppose (a). Notice that under this assumption

‖Q1(Sn)‖2 = o(σn) . (4)

To prove this let ε > 0. Then there exists N such that ‖Q0(Sk)‖2 < εσk for all
k ≥ N . Note that Q1(Sn) = Q1(X1)+Q1(Sn−X1). By stationarity ‖Q1(Sn−
X1)‖2 = ‖Q0(Sn−1)‖2 from which it follows ‖Q1(Sn)‖2 ≤ ‖Q0(Sn−1)‖2 +
‖X1‖2. ‖Q0(Sn)‖2 = o(σn) and σn →∞ hence ‖Q1(Sk)‖2 < εσk−1 +‖X1‖2 <
2εσk−1 for all k sufficiently big. Because σn → ∞ and |σn − σn−1| ≤ ‖X1‖2
we have σn/σn−1 → 1. This finishes the proof of (4).

We shall prove that σn =  (n)
√

n where  (n) is a slowly varying function.
For positive integers n,m we have

Sn = Q0(Sn) + (Qn −Q0)(Sn) + Rn(Sn) ,

Sn+m − Sn = Qn(Sn+m − Sn) + (Qn+m −Qn)(Sn+m − Sn)
+ Rn+m(Sn+m − Sn) ,

hence by orthogonality

E[Sn(Sn+m − Sn)] = E[Q0(Sn)Qn(Sn+m − Sn)]
+ E[(Qn −Q0)(Sn)Qn(Sn+m − Sn)]
+ E[Rn(Sn)(Qn+m −Qn)(Sn+m − Sn)]
+ E[Rn(Sn)Rn+m(Sn+m − Sn)] .
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From the Schwartz inequality and (a) it follows

|E[Sn(Sn+m − Sn)]| ≤ o(σn)o(σm) + σno(σm) + o(σn)σm + o(σn)o(σm) .

By the remark in [IL71], p.330 (cf. [WW04], proof of Lemma 1) it follows
that σ2

n =  ′(n)n where  ′(n) is a slowly varying function. This proves that
σn =  (n)

√
n where  (n) is a slowly varying function.

By [Res87], Theorem 06, we have
∑n

k=1 k1/2 (k) ≈ (2/3)n3/2 (n) hence

sup
n

1
nσn

n∑
k=1

σk <∞. (5)

We define

Gn,k = Gn,k(X) =
1
n

n∑
j=1

j−1∑
i=0

Qk(Xk+i) ,

Hn,k = Hn,k(X) =
1
n

n∑
j=1

j−1∑
i=0

Rk(Xk−i) .

Then

Qk(Xk) = Gn,k −Qk(Gn,k+1) +
1
n

n∑
j=1

Qk(Xk+j) ,

Rk(Xk) = Hn,k −Rk(Hn,k−1) +
1
n

n∑
j=1

Rk(Xk−j) .

Denote

D
(1)
n,k = D

(1)
n,k(X) = Gn,k −Qk−1(Gn,k) ,

D
(2)
n,k = D

(2)
n,k(X) = Hn,k−1 −Rk(Hn,k−1) ,

Dn,k = Dn,k(X) = D
(1)
n,k + D

(2)
n,k .

Then

D
(1)
n,k =

1
n

n∑
j=1

j−1∑
i=0

PkXk+i =
n−1∑
i=0

n− i

n
PkXk+i ,

D
(2)
n,k =

1
n

n∑
j=1

j−1∑
i=0

PkXk−i−1 =
n∑
i=1

n− i + 1
n

PkXk−i ,

n∑
k=1

Qk(Xk) =
n∑
k=2

D
(1)
n,k + Gn,1 −Qn(Gn,n+1) +

1
n

n∑
k=1

n∑
j=1

Qk(Xk+j) ,

n∑
k=1

Rk(Xk) =
n∑
k=2

D
(2)
n,k + Hn,n −R1(Hn,0) +

1
n

n∑
k=1

n∑
j=1

Rk(Xk−j) ,

(6)
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therefore

n∑
k=1

Xk =
n∑
k=2

Dn,k + Gn,1 −Qn(Gn,n+1)

+
1
n

n∑
k=1

n∑
j=1

Qk(Xk+j) + Hn,n −R1(Hn,0) +
1
n

n∑
k=1

n∑
j=1

Rk(Xk−j) .

It remains to be proved that all the terms Dn,1, Gn,1, Gn,n+1, Hn,n, Hn,0,
1
n

∑n
k=1

∑n
j=1 Qk(Xk+j), 1

n

∑n
k=1

∑n
j=1 Rk(Xk−j) are o(σn). Let us show this

for Gn,1; the other proofs are similar.
By (4), for each ε > 0 there exists N such that ‖Q1(Sk)‖2 < εσk for all

k ≥ N . For n ≥ N ,

‖Gn,1‖2 ≤
1
n

N−1∑
k=1

‖Q1(Sk)‖2 +
1
n

n∑
k=N

‖Q1(Sk)‖2 ≤
1
n

N−1∑
k=1

σk +
ε

n

n∑
k=N

σk .

We have
1
n

n∑
k=N

σk ≤ σn sup
l

(1/(lσl))
l∑

k=1

σk .

By (5), supl(1/(lσl))
∑l

k=1 σk < ∞ and for N fixed, n → ∞, the term
1
n

∑N−1
k=1 σk is going to zero.

We have proved that max1≤k≤n ‖Sk − Mn,k‖2 = o(σn). Notice that we
actually proved

max
1≤k≤n

‖
k∑
j=1

Qk(Xk)−
k∑
j=1

D
(1)
n,j‖2 = o(σn) ,

max
1≤k≤n

‖
k∑
j=1

Rk(Xk)−
k∑
j=1

D
(2)
n,j‖2 = o(σn) .

(7)

The proof that (b) implies ‖Q0(Sn)‖2 = o(σn), ‖Rn(Sn)‖2 = o(σn) follows
from Q0(Mn,n) = 0 = Rn(Mn,n).

It remains to prove that (a), (b) are equivalent to (c). Let us suppose (a),
(b). We have X = Q0(X0) + R0(X0) = X ′ + X ′′; define

Y = Q0(X0) + V R0(X0) = Y ′ + Y ′′ , Yk = UkY = Y ′
k + Y ′′

k , k ∈ Z .

We shall denote Sn(Y ) =
∑n

i=1 Yi. Recall that by (1)

QkQk−1(X) = Qk−1Qk(X) = Qk−1(X) ,

RkRk−1(X) = Rk−1Rk(X) = Rk(X)

and notice that

Martingale approximation 147

X ′
k = Y ′

k = UkQ0(X0) = Qk(Xk) .

Therefore Q0(
∑n

i=1 Y ′
i ) = Q0(

∑n
i=1 Qi(Xi)) = Q0(

∑n
i=1 Xi) = Q0(Sn) hence

‖Q0(Sn(Y ′))‖2 = o(σn) .

To show
‖Q0(Sn(Y ))‖2 = o(σn) (8)

it remains to prove
‖Q0(Sn(Y ′′))‖2 = o(σn) . (9)

We have

Q0(Sn(Y ′′)) = Q0(Y ′′
n )−Q0(Y ′′

0 ) + Q0

( n−1∑
i=0

Y ′′
i

)
and by Corollary 1(ii) ‖Q0(

∑n−1
i=0 Y ′′

i )‖2 = ‖Rn−1(Sn(X ′′))‖2 hence

|‖Rn−1(Sn(X ′′))‖2 − ‖Q0(Sn(Y ′′))‖2| ≤ 2‖X0‖2.

Rn−1(Sn(X ′′)) = Rn−1(UnX ′′) + Rn−1(Sn−1(X ′′)), therefore

|‖Rn−1(Sn(X ′′))‖2 − ‖Rn−1(Sn−1(X ′′))‖2| ≤ ‖X ′′
0 ‖2 ≤ ‖X0‖2.

From X ′′
k = UkR0(X) = Rk(Xk) it follows

‖Rn−1(Sn−1(X ′′))‖2 = ‖Rn−1(Sn−1(X))‖2. We thus have

|‖Q0(Sn(Y ′′))‖2 − ‖Rn−1(Sn−1(X))‖2| ≤ 3‖X0‖2.

Because |σn − σn−1| ≤ ‖X0‖2, using (a), we deduce

‖Q0(Sn(Y ′′))‖2 = o(σn). (10)

Let us show ‖Sn(X − Y )‖2 = o(σn).
We denote

Dn,k(Y ′) = Gn,k(Y ′)−Qk−1Gn,k(Y ′) =
n−1∑
i=0

n− i

n
PkY

′
k+i,

Dn,k(Y ′′) = Gn,k(Y ′′)−Qk−1Gn,k(Y ′′) =
n−1∑
i=0

n− i

n
PkY

′′
k+i,

Dn,k(Y ) = Dn,k(Y ′) + Dn,k(Y ′′).

We have Y =
∑∞

i=0 P−iY . For i ≥ 0, P0Y
′
i = P0Xi and P0Y

′′
0 = 0. For i ≥ 1,

P0Y
′′
i = P0U

i
∑∞

j=1 U−jP0U
−jX = P0

∑∞
j=1 Pi−jU i−2jX = P0U

−iX. Using
stationarity we deduce
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n−1∑
i=0

n− i

n
PkY

′
k+i =

n−1∑
i=0

n− i

n
PkXk+i,

n−1∑
i=0

n− i

n
PkY

′′
k+i =

n−1∑
i=1

n− i

n
PkXk−i,

therefore

Dn,k −Dn,k(Y ) =
1
n

n∑
i=1

PkXk−i =
1
n
Rk−1

( n∑
i=1

Xk−i
)
− 1

n
Rk

( n∑
i=1

Xk−i
)
,

1 ≤ k ≤ n. By (a) ‖Dn,k−Dn,k(Y )‖2 = o(σn/n), hence ‖Mn,n−Mn,n(Y )‖2 =
o(σn).

Next we prove
‖Sn(Y )−Mn,n(Y )‖2 = o(σn).

By (7), ‖Sn(Y ′) − Mn,n(Y ′)‖2 = ‖Sn(X ′) − Mn,n(X ′)‖2 = o(σn) where
Mn,n(X ′) =

∑n
k=1 D

(1)
n,k. By (6),

‖ Sn(Y ′′)−Mn,n(Y ′′)‖2 ≤

‖ Dn,1(Y ′′)‖2 + ‖Gn,1(Y ′′)‖2 − ‖Qn(Gn,n+1(Y ′′))‖2 + ‖ 1
n

n∑
k=1

n∑
j=1

Qk(Y ′′
k+j)‖2.

We show ‖Gn,1(Y ′′)‖2 = o(σn); for the other terms on the right it can be done
in the same manner.

‖Gn,1(Y ′′)‖2 ≤
1
n

n∑
k=1

‖Q1(Sk(Y ′′))‖2.

From (4) and (8) it follows ‖Q1(Sk(Y ′′))‖2 = o(σk) hence we can prove
‖Gn,1(Y ′′)‖2 = o(σn) in the same way as we proved ‖G(1)

n,1‖2 = o(σn).
Therefore,

‖Sn(Y )− Sn(X)‖2
≤ ‖Sn(Y )−Mn,n(Y )‖2 +‖Mn,n(Y )−Mn,n‖2 +‖Mn,n−Sn(X)‖2 = o(σn).

This finishes the proof of (c).
Eventually we prove that (c) implies (a), (b). Suppose (c). We get

‖Q0(Sn(Y ))‖2 = o(‖(Sn(Y ))‖2)

so that (a) is satisfied for Y . By the equivalence of (a) and (b) we get (b) for
Y and from ‖Sn(X − Y )‖2 = o(σn) it follows (b) for X. Therefore, (a) holds
for X as well. ��
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Proposition 2. In Theorem 2, we can take the following martingale approx-
imation:

Mn,k =
k∑
j=1

Dn,j

where

Dn,k =
∞∑
j=0

( n

n + 1

)j+1
PkXk+j +

∞∑
j=0

( n

n + 1

)j+1
PkXk−1−j .

Proof. Define

Y +
n,k =

∞∑
j=0

( n

n + 1

)j+1
E(Xk+j | Fk),

Y −
n,k =

∞∑
j=0

( n

n + 1

)j+1
[Xk−j − E(Xk−j | Fk)],

Yn,k = Y +
n,k + Y −

n,k.

We then have (
1 +

1
n

)
Y +
n,k = E(Xk | Fk) + Qk(Y +

n,k+1)

and (
1 +

1
n

)
Y −
n,k = [Xk − E(Xk | Fk)] + Rk(Y −

n,k−1)

hence (
1 +

1
n

)
Yn,k = Xk + Qk(Y +

n,k+1) + Rk(Y −
n,k−1),

n∑
k=1

Xk =
n∑
k=1

[Yn,k −Qk(Y +
n,k+1)−Rk(Y −

n,k−1)] +
1
n

n∑
k=1

Yn,k.

We have
n∑
k=1

[Yn,k −Qk(Y +
n,k+1)−Rk(Y −

n,k−1)]

=
n∑
k=1

[Y +
n,k −Qk(Y +

n,k+1)] +
n∑
k=1

[Y −
n,k −Rk(Y −

n,k−1)]

=
n∑
k=2

[Y +
n,k −Qk−1(Y +

n,k)] + Y +
n,1 −Qn(Y +

n,n+1)

+
n∑
k=2

[Y −
n,k−1 −Rk(Y −

n,k−1)] + Y −
n,n −R1(Y −

n,0).
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Notice that Qk(Y +
n,k) = Y +

n,k, Rk(Y −
n,k) = Y −

n,k. By (1) we thus get

Y +
n,k −Qk−1(Y +

n,k) =
∞∑
j=0

(
1 +

1
n

)−(j+1)
PkXk+j

and

Y −
n,k−1 −Rk(Y −

n,k−1) =
∞∑
j=0

(
1 +

1
n

)−(j+1)
PkXk−1−j ,

hence for

Dn,k =
∞∑
j=0

( n

n + 1

)j+1
Pk(Xk+j) +

∞∑
j=0

( n

n + 1

)j+1
Pk(Xk−1−j)

it is
n∑
k=1

Xk =
n∑
k=2

Dn,k + Y +
n,1 −Qn(Y +

n,n+1) + Y −
n,n −R1(Y −

n,0) +
1
n

n∑
k=1

Yn,k.

In the same way as in the proof of Corollary 1 in [WW04] we prove that
‖Yn,k‖2 = o(σn). ��

The optimal approximation was studied in [Rüs85]. In [KV05] it is shown
that for σ′

n =
∥∥∑n

k=1 X ′
k

∥∥
2 and σ′′

n =
∥∥∑n

k=1 X ′′
k

∥∥
2 we can have lim supn→∞ σ′

n/σ
′′
n =

∞, lim infn→∞ σ′
n/σ

′′
n = 0, limn→∞ σn/σ

′
n = 0 = limn→∞ σn/σ

′′
n.

The approximation from Theorems 1, 2 alone does not imply the CLT.
For the CLT it is needed also a limit theorem for the triangular array (Dn,i)
([WW04]). On the other hand, it is possible to generalize to nonadapted pro-
cesses the CLT of Maxwell and Woodroofe ([MW00], Theorem 1):

Theorem 3. Let
∞∑
n=1

n−3/2‖Q0(Sn)‖2 <∞,

∞∑
n=1

n−3/2‖Rn(Sn)‖2 <∞.

Then there exists a martingale (Mn) with strictly stationary increments such
that ‖Sn −Mn‖2 = o(

√
n) as n→∞.

Proof. We use the representation Xk = X ′
k + X ′′

k where X ′
k = Qk(Xk) =

UkQ0(X0) and X ′′
k = Rk(Xk) = UkR0(X0), k ∈ Z. We denote Sn(X ′) =∑n

i=1 X ′
i, Sn(X ′′) =

∑n
i=1 X ′′

i . The sequence (X ′
k) satisfies the assumption∑∞

n=1 n−3/2‖Q0(Sn(X ′))‖2 < ∞ of [MW00], Theorem 1 (cf. [PI05], Theo-
rem 1, for the nonergodic version), hence there exists a martingale (M ′

n) such
that

∥∥M ′
n −

∑n
i=1 X ′

i

∥∥
2 = o(

√
n).

As in Corollary 1(ii) we define Zk = UkV X ′′
0 . The process (Zk) is adapted

to the filtration (Fk). By Corollary 1,
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∥∥Q0(
n−1∑
k=0

Zk)
∥∥

2 = ‖Rn−1(
n∑
k=1

X ′′
k )‖2

= ‖Rn−1(Sn)− E(Xn | Fn) + E(Xn | Fn−1)‖2
≤ ‖Rn−1(Sn)‖2 + 2‖X0‖2 .

From this, ‖Rn(Sn)−Rn−1(Sn)‖2 ≤ ‖Rn(Sn)−Rn−1(Sn−1)‖2+‖Rn−1(Sn−1)−
Rn−1(Sn)‖2 and the assumption

∑∞
n=1 n−3/2‖Rn(Sn)‖2 <∞ it follows that

∞∑
n=1

n−3/2‖Q0

( n−1∑
k=0

Zk

)
‖2 <∞ .

Hence [MW00], Theorem 1 ([PI05], Theorem 1 in the nonergodic case), can
be applied again and there exist martingale differences Dk such that Dk+1 =
UDk, PkDk = Dk and

∥∥∑n
i=1(Zi − Di)

∥∥
2 = o(

√
n). For k ≥ 1 we have

V −1Z−k = X ′′
k (by (2), V X ′′

k = V Rk(Xk) = V UkX ′′
0 = U−kV X ′′

0 = Z−k)
and V −1D−k = U2kU−kD0 = Dk (recall that for X = PkX, V X = U−2kX)
hence ∥∥∥ n∑

k=1

(X ′′
k −Dk)

∥∥∥
2

=
∥∥∥ n∑
k=1

(Z−k −D−k)
∥∥∥

2
= o(
√

n) .

Mn = M ′
n +

∑n
i=1 Di give the martingale approximation. ��

Using different methods, a result similar to that of Maxwell and Woodroofe
was proved by Derriennic and Lin [DL01]. For adapted sequences, Peligrad and
Utev [PI05] proved under the same assumptions as Maxwell and Woodroofe
the Donsker invariance principle. In [Wu05] the strong laws (strong laws of
large numbers, laws of the iterated logarithm, strong invariance principles)
are studied.

3 Successive martingale-coboundary representations

A classical result ([Gor69], Theorem 1, [HH80]) establishes the CLT for sta-
tionary sequences (f ◦T i) for which there exists a certain class G of functions
h such that (1/

√
n) lim supn→∞ ‖Sn(f − h)‖2 = 0; for each h ∈ G there exist

g,m ∈ L2 such that h = m+ g− g ◦ T and (m ◦ T i) is a martingale difference
sequence. All the martingale difference sequences have the same filtration.
In [Vol93] it is shown that Gordin’s condition is equivalent to the existence
of a single square integrable function m such that (m ◦ T i) is a martingale
difference sequence and lim supn→∞ ‖Sn(f −m)‖2 = 0. The existence of the
decomposition f = m + g − g ◦ T with m, g ∈ L2 and (m ◦ T i) a martingale
difference sequence implies the Gordin’s condition; the converse, however, is
not true ([Vol93]).

Let us show a more general case. LetM⊂ T−1M be a sub-σ-algebra of A,
Pif = E(f |T−i−1M)− E(f |T−iM). For each n let 0 ≤ k1(n) ≤ k2(n) <∞,
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fn =
k2(n)∑

i=−k1(n)

Pif , mn =
k2(n)∑

i=−k1(n)

P0U
if .

Then,
fn = mn + gn − Ugn

where

gn =
k1(n)∑
i=1

k1(n)−i∑
k=0

P−iUkfn −
k2(n)∑
i=0

k2(n)−i∑
k=1

PiU
−kfn .

As an immediate consequence of [Gor69], Theorem 1, we get:

Theorem 4. If

i.
lim
n→∞

1
n‖mn‖22

‖Sn(f − fn)‖22 = 0 ,

ii.

lim
n→∞

‖gn‖22
n‖mn‖22

= 0 ,

iii.
1

‖mn‖2
√

n
Sn(mn)→

D
−→ν ,

then the distributions of (1/‖mn‖2
√

n)Sn(f) weakly converge to the law ν.

Proof. From (i) and (ii) it follows that

lim
n→∞

1√
n‖mn‖2

‖Sn(f −mn)‖2 = 0

hence the weak limit of the distributions of (1/
√

n‖mn‖2)Sn(f) is the same
as the weak limit of the distributions of (1/

√
n‖mn‖2)Sn(mn). By (iii) this

limit equals ν. ��

Using the same idea as in Theorem 4 we can prove the central limit theorem
for linear processes with divergent series of an.

Let (Zi) be a martingale difference sequence with Zi ∈ L2, (ai) a sequence
of random variables, independent of (Zi), such that

∑
i∈Z
‖ai‖22 < ∞. We

define
Xk =

∑
i∈Z

ak−iZi , k ∈ Z .

Theorem 5. Let (Zi) be a stationary martingale difference sequence with
‖Zi‖2 = 1 for all i ∈ Z,

∑
i∈Z
‖ai‖22 <∞ and

Xk =
∑
i∈Z

ak−iZi , Yn,k =
n−1∑

i=−n+1

aiZk , k ∈ Z , n = 1, 2, . . .
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sn =
∥∥∥ n−1∑
i=0

ai

∥∥∥
2
, s−n =

∥∥∥ 0∑
i=−n+1

ai

∥∥∥
2
, s(n) =

∥∥∥ n−1∑
i=−n+1

ai

∥∥∥
2
.

Let

i.

sup
n≥0

max
0≤k≤n

∥∥∥ n−1∑
i=k

ai

∥∥∥
2
/sn <∞, sup

n≥0
max

0≤k≤n

∥∥∥ n−1∑
i=k

a−i
∥∥∥

2
/s−n <∞ ,

ii. for every ε > 0,

max
εn≤k≤n

∥∥∥ n−1∑
i=k

ai

∥∥∥
2
/sn → 0, max

εn≤k≤n

∥∥∥ n−1∑
i=k

a−i
∥∥∥

2
/s−n → 0 ,

iii.
n

s2
n

∞∑
i=n

‖ai‖22 → 0,
n

s2−n

∞∑
i=n

‖a−i‖22 → 0 .

If lim infn→∞ s(n) > 0, lim infn→∞ s(n)/sn > 0, lim infn→∞ s(n)/s−n > 0,
then

1
s(n)
√

n

∥∥∥ n−1∑
k=0

(Xk − Yn,k)
∥∥∥

2
→ 0 as n→∞ .

If n−1/2∑n−1
k=0 Zk converge in distribution to N(0, 1) and s(n)−1∑n−1

i=−n+1 ai

converge in distribution to a random variable η, then s(n)−1n−1/2∑n−1
k=0 Yn,k

converge in distribution to a law with the characteristic function ϕ(t) =
E[exp(− 1

2η
2t2)].

Proof. For l < k, define
∑l

j=k aj = 0. We have

n−1∑
k=0

(Xk − Yn,k) =
n−1∑
k=0

( ∞∑
i=−∞

ak−iZi −
n−1∑

i=−n+1

aiZk

)

=
−1∑

i=−∞
Zi

n−1∑
k=0

ak−i +
∞∑
i=n

Zi

n−1∑
k=0

ak−i +
n−1∑
i=0

Zi

( n−1∑
k=0

ak−i −
n−1∑

j=−n+1

aj

)

=
−1∑

i=−∞
Zi

n−1∑
k=0

ak−i +
∞∑
i=n

Zi

n−1∑
k=0

ak−i −
n−1∑
i=0

Zi

( n−1∑
j=i+1

a−j +
n−1∑
j=n−i

aj

)
.

By mutual orthogonality of Zi we thus get

∥∥∥ n−1∑
k=0

(Xk − Yn,k)
∥∥∥2

2
=

−1∑
i=−∞

∥∥∥ n−1∑
k=0

ak−i
∥∥∥2

2

+
∞∑
i=n

∥∥∥ n−1∑
k=0

ak−i
∥∥∥2

2
+
n−1∑
i=0

∥∥∥ n−1∑
j=i+1

a−j
∥∥∥2

2
+
n−1∑
i=0

∥∥∥ n−1∑
j=n−i

aj

∥∥∥2

2
.
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By (i) and (ii) we have

1
ns2−n

n−1∑
i=0

∥∥∥ n−1∑
j=i+1

a−j
∥∥∥2

2
→ 0 ,

1
ns2

n

n−1∑
i=0

∥∥∥ n−1∑
j=n−i

aj

∥∥∥2

2
→ 0 as n→∞ .

It remains to show

1
ns2

n

−1∑
i=−∞

∥∥∥ n−1∑
k=0

ak−i
∥∥∥2

2
→ 0 ,

1
ns2−n

∞∑
i=n

∥∥∥ n−1∑
k=0

ak−i
∥∥∥2

2
→ 0 as n→∞ .

We shall prove the first convergence, the other one follows from the same idea
by symmetry.

−1∑
i=−∞

∥∥∥ n−1∑
k=0

ak−i
∥∥∥2

2
=

∞∑
i=1

∥∥∥ n−1∑
j=0

ai+j

∥∥∥2

2
=

n−1∑
i=1

∥∥∥ n−1∑
j=0

ai+j

∥∥∥2

2
+

∞∑
i=n

∥∥∥ n−1∑
j=0

ai+j

∥∥∥2

2
.

By (i) and (ii)

1
ns2

n

n−1∑
i=1

∥∥∥ n−1∑
j=0

ai+j

∥∥∥2

2
→ 0 as n→∞ .

By the Cauchy-Schwarz inequality
∑∞

i=n

∥∥∑n−1
j=0 ai+j

∥∥2
2 ≤ n2∑∞

i=n ‖ai‖22 and
using (iii) we deduce

1
ns2

n

∞∑
i=n

∥∥∥ n−1∑
j=0

ai+j

∥∥∥2

2
≤ n

s2
n

∞∑
i=n

‖ai‖22 → 0 as n→∞ .

��
A direct calculation shows that the assumptions of Theorem 5 are verified

for the following linear process with nonrandom coefficients ai.

Corollary 2. Let (Zi) be a stationary martingale difference sequence with
‖Zi‖2 = 1 for all i ∈ Z,

∑
i∈Z

a2
i <∞ and

Xk =
∑
i∈Z

ak−iZi , Yn,k =
n−1∑

i=−n+1

aiZk , k ∈ Z n = 1, 2, . . .

where an = loga |n|/|n| for |n| ≥ 1, a < 1. If 1√
n

∑n−1
k=0 Zk converge in distribu-

tion to N(0, 1) then 1
s(n)

√
n

∑n−1
k=0 Yn,k, sn =

∑n−1
i=0 ai, converge in distribution

to N(0, 1) as well.

For ak = k−β with 1/2 < β < 1 the assumptions of Theorem 5 are
not satisfied and as noticed in [WW04], the approximation in the sense of
Theorem 2 does not exist either; nevertheless, Sn/σn converge to a normal
law. The results for stationary linear processes presented here partially overlap
with those from [WW04] and [Yok95].
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4 Concluding remarks

The central limit theorems proved by martingale approximation have their
conditional versions. Let (Fk)k be a given filtration, ∆ a suitable distance
between probability distributions (for example the Lévy distance). Let ν be a
probability law and νn,ω be the conditional laws of Sn/σn given F0. We say
that the sequence (Sn/σn) converges to ν conditionally given F0 if

lim
n→∞

∫
∆(ν, νn,ω)µ(dω) = 0 .

The conditional convergence was studied by Dedecker and Merlevède [DM02].
It implies the weak convergence but in general, the implication does not hold
vice versa. Dedecker and Merlevède showed, for example ([DM02], Proposi-
tion 1), that for adapted sequences satisfying the assumptions of [Gor69], The-
orem 1, the convergence is conditional. Wu and Woodroofe proved ([WW04])
that for a sequence (Xk) adapted to the filtration, Sn/σn converge condition-
ally to the standard normal law given F0 if and only if the approximation
in the sense of Theorem 2 exists and the approximating array of martingale
differences satisfies conditions of Gänssler and Häeusler ([GH79], Theorem 2,
see also conditions (11) and (12) in [WW04]).

In [OV05] (cf. also [Vol88]) it is shown that in the case of a nonergodic
measure µ the conditional convergence can take place while for the ergodic
components the sequence of laws of Sn/σn does not weakly converge (has
different limit points). For several central limit theorems this situation cannot
happen, e.g. for [MW00], Theorem 1.

The existence of the martingale approximation depends on the choice of
the filtration. Even for the stationary linear process Xk =

∑
i∈Z

ak−iZi, k ∈
Z it can happen that there exists no aproximation by martingales adapted to
the filtration (Fk)k generated by the sequence of Zi but there exists an ap-
proximation with respect to another filtration (F ′

k)k ([Vol05]). The sequence
(Sn/σn) then can converge conditionally given F ′

0 but not given F0.
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[Rüs85] Ludger Rüschendorf. The Wasserstein distance and approximation theo-
rems. Zeitschrift für Wahrscheinligkeits Theorie und Verwandte Gebiete,
70(1):117–129, 1985.
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UFR de Mathématiques – Bat M2
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1 Introduction

Since their introduction by [Gla61, Gla63] much attention has been given
to periodically correlated (PC) or almost periodically correlated (APC) pro-
cesses, mainly because of their potential use in modeling of cyclical phenomena
appearing in hydrology, climatology and econometrics. Following the pioneer
work of [Gla63], an important part of the literature has been devoted to APC
continuous time processes. The reader can refer to [DH94] for a review includ-
ing spectral analysis.

In the present paper, we focus on discrete time. A discrete time process is
PC when there exists a non zero integer T such that

E(Xt+T ) ≡ E(Xt) and cov(Xt+T , Xs+T ) ≡ cov(Xt, Xs) .

Usually, as it is the case throughout the present paper, E(Xt) is supposed to be
zero, the attention being focused on the second order periodicity. A review on
PC discrete time processes is proposed in [LB99]. A large part of the literature
on this topic is devoted to the so-called PARMA (periodic ARMA) models,
processes having representation of the form

XtT+j −
p(j)∑
k=1

φk(j)XtT+j−k =
q(j)∑
k=0

θk(j)εtT+j−k , t ≥ 0 , j = 0, . . . , T − 1 ,

(1)
where (εt) is a zero-mean white noise with unit variance. See for example
[BL01, LB00, BLS04] for existence of a solution, statistical developments and
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forecasting methods. [BH94] give invertibility conditions for periodic moving
averages. [HMM02] provide conditions for the existence of L2 bounded solu-
tions of AR(1) models with almost periodic coefficients.

All these models are short-memory ones. Now, it is well known that in the
above mentioned scientific fields many data sets presenting some periodicity
also exhibit long range dependence. Such phenomena can be modeled via
stationary processes: the so called seasonal fractional models presented and
studied among others by [GZW89, VDO95, OOV00] belong to this category.
Another idea could be to turn to non stationary models and build PC or
APC processes allowing for some strong dependence. To our knowledge, the
only attempt to mix together in such a way periodicity and long memory is
in [HL95] who propose a 2-PC process consisting in fact in two independent
fractional long memory components based on two independent white noises

X2t = (I −B)−d1ε(1)
t and X2t+1 = (I −B)−d2ε(2)

t , (2)

where B denotes the backshift operator.
The aim of this article is to propose models of APC long memory processes

and to investigate their second order properties and the convergence of their
partial sums.

Theoretically, in order to build a long memory PC process (Xt) with pe-
riod T , it is enough to adjust a long memory stationary model to the T -variate
process (XTt, · · · , XTt+T−1)′. In other words, examples of PC long memory
processes are nothing else than examples of long memory stationary vector
processes (see for example [Arc94, Mar05] for a study of multivariate long
memory). However models of this sort may be not easy to generalize in the
direction of almost periodicity, so we prefer to keep to a few particular con-
structions.

Among the different definitions of almost periodicity we adopt in this paper
the following one : a sequence d = (dt, t ∈ Z) ∈  ∞(Z) is almost periodic if it
is the limit in  ∞(Z) of periodic elements
i.e. for any ε > 0 there exists a pε-periodic sequence d(ε) such that

sup
t∈Z

|dt − d
(ε)
t | ≤ ε .

Recall that an almost periodic sequence is bounded and averageable, in the
sense that the following limit exits, uniformly with respect to s

(t− s)−1
t∑

u=s

du −→ d , as t− s→ +∞ . (3)

The limit d is called the mean value of the sequence d. We define APC
processes as in [Gla63]:

Definition 1. A zero mean second order process is APC if for fixed h, the
sequence (cov(Xt, Xt+h))t is almost periodic.
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In the present paper we focus on APC processes with long memory. Our
starting point are Definitions 2 and 3 suggested by the corresponding defi-
nitions in the theory of stationary processes [Ber94] and the theory of point
processes [DV00, DV97].

Definition 2. A second order APC process (Xt) has long memory if

lim sup
N→∞

N−1var
( N∑
t=1

Xt

)
=∞ .

Definition 3. The Hurst index H of APC process (Xt) is defined by

H = inf
{
h : lim sup

N→∞
N−2hvar

( N∑
t=1

Xt

)
<∞

}
.

Since the covariance function of an APC process is bounded, the Hurst
index is well-defined and takes values in [0, 1]. For example, when

var
( N∑
t=1

Xt

)
= L(N)N2α ,

for some 0 < α < 1 and some positive L(·) slowly varying at infinity, the
Hurst index is H = α.

Remark 1. Definitions 2 and 3 refer to partial sums in the interval t ∈
[1, 2, . . . , N ]. It is not difficult to show that this interval can be replaced by
any interval
[s + 1, . . . , s + N ] and so,

H = inf
{
h : lim sup

N→∞
N−2hvar

( s+N∑
t=s+1

Xt

)
<∞, ∀s ∈ Z

}
.

In the stationary case, the Hurst index is closely related to the decay rate of
the autocovariance cov(Xt, Xt+j), roughly meaning that cov(Xt, Xt+j) decays
as j2H−2 when the lag j increases. For an APC process (Xt), the mean value
of the almost periodic sequence cov(Xt, Xt+j) denoted by

ρ(j) := lim
N→∞

N−1
N∑
t=1

cov(Xt, Xt+j) , (4)

takes the place of the autocovariance, as shall be seen in Proposition 1 below.
In the sequel we call ρ(j) the averaged autocovariance of the APC process
(Xt).

The paper is organized as follows. Section 2 links the averaged covariance
(4) to the Hurst index of an APC process, and provides the expression and
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the asymptotic behavior of ρ(j) for most of the models introduced in Section
3, underscoring their long memory characteristics. In Section 3 we present
four families of PC or APC long memory models. The three first ones are
directly deduced from the classical fractional integrated stationary model by
modulating the variance, the time index or the memory exponent, while the
last one is newer and less simple. In Section 4, we study the invertibility and
the covariance structure of the models of this new family. Section 5 provides,
for the processes defined in Section 3, the convergence of the Donsker lines
in the Skorohod space D([0, 1]), showing that, even in the case of modulated
memory, the asymptotic behavior is the same as what is obtained in the case
of stationary long memory. Section 6, is devoted to simulations, illustrating
and completing the theoretical results. Technical proofs are relegated to the
Appendix.

2 Hurst index and the averaged autocovariance

The following result points out the link between decay rate of ρ(j), the long
memory of the process and the value of its Hurst parameter.

Proposition 1. Let ρ(j) be the averaged autocovariance of an APC process
(Xt). Assume that

ρ(j) = s(j)j2H−2L(j) , (5)

where 1/2 < H < 1, L is slowly varying at infinity, and where s(j) is bounded
and Cesaro summable with mean value s̄ �= 0:

lim
k→∞

k−1
k∑
j=1

s(j) =: s̄ �= 0 . (6)

Moreover, assume that the convergence towards the mean value of the sequence
(cov(Xt, Xt+j))t is uniform with respect to j:

lim
N→∞

sup
j∈Z

∣∣∣∣∣ 1
ρ(j)N

N∑
t=1

cov(Xt, Xt+j)− 1

∣∣∣∣∣ = 0 . (7)

Then

var
( N∑
t=1

Xt

)
= L1(N)N2H ,

where L1(N) is a slowly varying function such that

lim
N→∞

L1(N)
L(N)

=
s̄

H(2H − 1)
.

In particular, (Xt) has long memory and its Hurst index is H.
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Proof. We have

var
( N∑
t=1

Xt

)
= 2

N−1∑
j=1

N−j∑
t=1

EXtXt+j +
N∑
t=1

EX2
t =: 2Σ1 + Σ2 . (8)

Write
Σ1

L(N)N2H = N1−2H
N−1∑
j=1

L(j)s(j)
L(N)

j2H−2θj,N ,

where

θj,N :=
1

ρ(j)N

N−j∑
t=1

EXtXt+j =
N − j

N
+ θ′

j,N ,

θ′
j,N :=

(N − j

N

)( 1
ρ(j)(N − j)

N−j∑
t=1

EXtXt+j − 1
)

.

Now, we need the following technical lemma whose proof is in the Appendix.

Lemma 1. Let H > 1/2. Let L(·) be slowly varying at infinity and s(j), j ≥ 1
be a bounded sequence summable in the Cesaro sense to s̄ �= 0. Then

lim
N→∞

N1−2H

L(N)

N∑
j=1

j2H−2L(j)s(j) =
s̄

2H − 1
.

¿From this lemma it immediately follows that

N1−2H
N−1∑
j=1

L(j)s(j)
L(N)

j2H−2
(
1− j

N

)
∼ s̄

2H(2H − 1)
.

On the other hand, from (7), for arbitrary small ε > 0 there exists K < ∞
such that sup0≤j≤N−K |θ′

j,N | < ε and therefore

N1−2H
∣∣∣N−K∑
j=1

L(j)s(j)
L(N)

j2H−2θ′
j,N

∣∣∣ ≤ CεN1−2H
N−1∑
j=1

L(j)
L(N)

j2H−2 < Cε , (9)

with C independent of N . Finally, as N →∞,

N1−2H
∣∣∣ N−1∑
j=N−K+1

L(j)
L(N)

j2H−2θ′
j,N

∣∣∣ < CK2N−2HL−1(N)→ 0 ,

by definition of θ′
j,N and the boundedness of EXtXt+j . This proves

Σ1

L(N)N2H →
s̄

H(2H − 1)
.

Finally, Σ2 defined in (8) satisfies Σ2 = O(N) = o(L(N)N2H). ��
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For many families of processes the memory and the Hurst parameter can
be deduced from a direct inspection of the covariance, as stated in the next
proposition which shall be used in Section 3.

Proposition 2. Let (Xt) be an APC process such that there exists 1/2 < H <
1 and an almost periodic function At, t ∈ Z with mean value Ā �= 0 such that

cov(Xs, Xt) ∼ AsAt|t− s|2H−2 uniformly as t− s→∞ . (10)

Then:

(A1). the averaged covariance ρ(j) has the form

ρ(j) = (s(j) + o(1))j2H−2 ,

where s(j) is the mean value of the almost periodic sequence (AtAt+j)t
(A2). the process (Xt) has long memory with Hurst parameter H.

Proof. (i) From (10),

lim
N→∞

N−1
N∑
t=1

(
cov(Xt, Xt+j)j2−2H −AtAt+j

)
= 0 ,

leading to

ρ(j) = lim
N→∞

N−1
N∑
t=1

cov(Xt, Xt+j) = s(j)j2H−2 .

Condition (6), with s̄ = Ā2, follows from almost periodicity.
(ii) It suffices to show that

var
( N∑
t=1

Xt

)
∼ Ā2

H(2H − 1)
N2H , as N →∞ . (11)

As condition (7) is not necessarily satisfied, (11) cannot be deduced from
Proposition 1 and has to be proved directly. By condition (10), the proof
reduces to

∑N
t�=s=1 AsAt|t− s|2H−2 ∼ CN2H , which in turn follows from∑

1≤t�=s≤N
(AsAt − Ā2)|t− s|2H−2 = o(N2H) .

Let Ãt := At − Ā, then∑
1≤t�=s≤N

(AsAt − Ā2)|t− s|2H−2 =
∑

1≤t�=s≤N
AsÃt|t− s|2H−2

+ Ā
∑

1≤t�=s≤N
Ãt|t− s|2H−2 .
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¿From (47), we have ∑
1≤t�=s≤N

Ãt|t− s|2H−2 = o(N2H) .

It remains to show that∑
1≤t�=s≤N

AsÃt|t− s|2H−2 =
∑

1≤s<t≤N
+

∑
1<t<s≤N

=: Q1,N + Q2,N = O(N2H) .

Then,

Q1,N =
N∑
s=1

As

N−s∑
j=1

j2H−2Ãs+j

=
N∑
s=1

As

N−s∑
j=1

j2H−2(αs,s+j − αs,s+j−1) ,

where αs,s+j :=
∑j

i=1 Ãs+i and j−1αs,s+j → 0(j → ∞) uniformly in s.
Rewrite the sum over j as

(N − s)2H−2αs,N −
N−s−1∑
j=1

(
j2H−2 − (j + 1)2H−2

)
αs,s+j .

We obtain

N∑
s=1

As(N − s)2H−2αs,N =
N∑
s=1

As(N − s)2H−1 1
N − s

N−s∑
i=1

Ãs+i

= o

(
N∑
s=1

(N − s)2H−1

)
= o(N2H) .

Also,

N−s−1∑
j=1

j2H−1
(
1−

(
1 +

1
j

)2H−2)
(j−1αs,s+j) = o

(N−s∑
j=1

j2H−2
)

= o((N − s)2H−1) ,

implies a similar result for the remaining sum, yielding Q1,N = o(N2H). The
sums Q2,N is treated similarly. This proves part (ii) of the proposition. ��

3 Examples

Here and throughout the paper, εt is a zero-mean white noise with unit vari-
ance.
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The four classes below are more or less directly built from the classical
FARIMA (0, d, 0)

Yt = (I −B)−dεt = εt +
∑
j≥1

ψj(d)εt−j , (12)

with

ψj(d) =
Γ (d + j)

Γ (d)Γ (j + 1)
=

j∏
k=1

k − 1 + d

k
, ∀ j �= 0 ,

where d ∈ (0, 1/2).
Recall that the covariance of (Yt) is

Γd(h) := cov(Y0, Yh) =
Γ (h + d)Γ (1− 2d)

Γ (h− d + 1)Γ (d)Γ (1− d)
, (13)

and behaves as a power of h as h→∞:

Γd(h) ∼ Γ (1− 2d)
Γ (d)Γ (1− d)

|h|2d−1 =: c(d)|h|2d−1 . (14)

The first two examples are obtained by amplitude modulation and phase
modulation.

3.1 Amplitude modulation

Let Yt be the FARIMA (0, d, 0) defined in (12) and St an almost periodic
deterministic sequence. The process defined by

XAM
t = StYt , (15)

is a APC process since its covariance is

cov(XAM
s , XAM

t ) = SsStΓd(t− s) ∼ c(d)SsSt|t− s|2d−1 as |t− s| → ∞ .
(16)

¿From Proposition 2 the process (XAM
t ) has long memory with Hurst param-

eter HAM = d + (1/2). Moreover, the averaged covariance is

ρAM(j) = (s(j) + o(1))j2H−2 ,

where s(j) is the mean value of the sequence (StSt+j)t.

Remark 2. As noticed by [LB99], this model is rather simplistic in so far as,
at least if St > 0 for every t, the correlation cor(XAM

s , XAM
t ) = cor(Yt, Ys) is

stationary.
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3.2 Phase modulation

With the same ingredients as above, assuming that St takes only integer
values, consider

XPM
t = Yt+St . (17)

Being integer valued, the sequence St is necessarily periodic and the process
is PC with covariance

cov(XPM
s , XPM

t ) = Γd(|t− s + St − Ss|) ∼ c(d)|s− t|2d−1 as |s− t| → ∞ .
(18)

¿From Proposition 2, the process (XPM
t ) has long memory and its Hurst

parameter is HPM = d + (1/2) and ρPM(j) ∼ j2H−2.

Remark 3. Contrary to what happens in amplitude modulation, var(XPM
s )

does not depend on s. Moreover the proper periodicity of the covariance
disappears as the lag |s − t| tends to infinity, giving rise to an asymptotic
stationarity.

In this model, as in the previous one when St is periodic, the memory is
the same for the T stationary components (XTt+h)t∈Z and for the cross corre-
lations, and is characterized by the parameter d of the underlying FARIMA.
It is no more the case in the following example.

3.3 Modulated memory

Here the periodicity is directly obtained by modulating the memory exponent
d. Consider d = (dt, t ∈ Z) an almost periodic sequence such that for all t,
dt ∈ (0, 1/2) and that d+ := sup{dt : t ∈ Z} < 1/2. Let εt be a zero-mean
white noise and XMM

t defined by

XMM
t = (I −B)−dtεt ∀t ∈ Z , (19)

this expression merely meaning that

XMM
t =

∞∑
j=0

ψj(dt)εt−j , with ψj(dt) =
Γ (dt + j)

Γ (dt)Γ (j + 1)
. (20)

It is easy to check that, as t− s→∞,

cov(XMM
s , XMM

t ) =
∞∑
j=0

ψj(ds)ψj+t−s(dt) ∼
Γ (1− ds − dt)
Γ (dt)Γ (1− dt)

(t− s)ds+dt−1 ,

(21)
showing that the memory exponent itself is almost periodic.

Proposition 3.(A1). The process (XMM
t ) is APC. It has long memory and its

Hurst parameter is given by HMM = (1/2) + d+ .
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(A2). Assume that d is T -periodic. Then, as j →∞,

ρMM(j) = c(d+)(s(j) + o(1))j2d+−1 ,

where
s(j) = #{1 ≤ t ≤ T : t ∈ D+, t + j ∈ D+} , (22)

with
D+ := {t ∈ Z : dt = d+} .

Proof. (1) Let d(ε) be a T (ε)-periodic sequence such that sup |dt−d
(ε)
t | < ε/2.

Since for any t

|ψk(dt)− ψk(d
(ε)
t )| ≤ Cεψk(d+) , (23)

where C <∞ is independent of t, it is easy to obtain

sup
t,s∈Z

|cov(XMM
s , XMM

t )−
∞∑
j=0

ψj(d(ε)
s )ψj+t−s(d

(ε)
t )| < Cε

∞∑
j=0

ψj(d+)2 ,

implying that (XMM
t ) is APC.

Observe that 0 ≤ cov(XMM
s , XMM

t ) ≤ C(|t − s| ∨ 1)2d
+−1 (this is obvious

by (20), (21) and the monotonicity of ψj(d) with respect to d), and that one
can find C > 0 and p ∈ {0, . . . , T (ε) − 1}, such that

cov(XMM
s , XMM

t ) ≥ C(t− s)2d
+−1−2ε , t �= s ∈ {p + kT (ε) , k ∈ Z} .

(24)
Indeed, let D+

ε := {t ∈ Z : d(ε)
t = d+

ε }. Then for t ∈ D+
ε ,

dt > d
(ε)
t − ε/2 = d+

ε − ε/2 > d+ − ε ,

implying, for any t �= s ∈ D+
ε ,

cov(XMM
s , XMM

t ) ≥
∞∑
k=0

ψk(d+ − ε)ψk+t−s(d+ − ε) ≥ C(t− s)2d
+−1−2ε ,

whence (24). We thus obtain

C1N
2d++1−2ε ≤ var

( N∑
t=1

XMM
t

)
≤ C2N

2d++1 ,

for any ε > 0 and N large enough, meaning that the Hurst index of (XMM
t )t

is HMM = d+ + (1/2).
(2) Write
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ρN (j) = N−1
N∑
t=1

cov(Xt, Xt+j)

=
1
T

∑
1≤t≤T :t∈D+

cov(Xt, Xt+j) +
1
T

∑
1≤t≤T :t�∈D+

cov(Xt, Xt+j) + O(N−1)

=: ρ1(j) + ρ2(j) + O(N−1) ,

where

ρ2(j) = o(j2d+−1) = o(j2H−2)

ρ1(j) ∼ c(d+)s(j)j2d+−1 , ift + j ∈ D+for somet = 1, . . . , T ,

ρ1(j) = o(j2d+−1) , if t + j �∈ D+, t = 1, . . . , T .

and where s(j) is defined in (22). This proves part (ii). ��

Remark 4. Consider the periodic case. Note that in (22) s is periodic and
that s(j) = 0 is quite possible for a sub-sequence jn (see for example Model
(A3) in Section 6 where s(2) = s(3) = 0). Then ρMM(jn) = o(j2d+−1

n ),
implying that the averaged covariance presents abrupt changes of memory.
Nevertheless, the asymptotic behavior of var

(∑N
t=1 XMM

t

)
is roughly the same

as that of the stationary FARIMA(0, d+, 0) process.

3.4 Modulated coefficients

Despite the fact that it allows for some memory variability, a major drawback
of the previous model is that, apart when d is a constant sequence, nothing
is clear concerning its invertibility. At any case, in general, we have

εt �≡ (I −B)dtXMM
t .

So, we present another extension of the standard FARIMA model (12)
based on the ideas of [PSV04] about fractional processes with time varying
parameter.

Let d = (dt, t ∈ Z) be an almost periodic sequence. Consider the time-
varying fractionally integrated model (TVFI, in the sequel)

XCM
t =

∞∑
j=0

aj(t)εt−j , (25)

where (εt)t∈Z is a zero-mean L2 white noise and where the coefficients aj(t),
directly built from formula (13) of the the FARIMA coefficients, are defined
by a0(t) ≡ 1 and

aj(t) =
j∏

k=1

k − 1 + dt−k
k

=
dt−1

1
· · · dt−j + j − 1

j
, ∀ j �= 0 . (26)
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As it is the case for the model (19), the standard fractional process (12)
is recovered when dt ≡ d ∈ (0, 1/2).

Under suitable conditions on the sequence d, the next section establishes
that the series in (25) converges in the L2 sense. The induced process is APC
and bounded in the L2 sense and an explicit expansion of εt with respect to
the (XCM

j )’s is available. Moreover, the covariance of this process behaves as

cov(XCM
s , XCM

t ) ∼ c(d)γ(s)γ(t)(t− s)2d−1 , t− s→∞ ,

for a suitable d ∈ (0, 1/2) to be defined, and where γ(t) is almost periodic (see
(33) and Proposition 6).

According to Proposition 2, the process (XCM) exhibits long memory and
its Hurst parameter is equal to HCM = 1/2 + d. Moreover, the averaged
covariance is given by

ρCM(j) = c(d) (s(j) + o(1)) j2d−1 as j →∞ .

s(j) being the mean value of the sequence (γ( )γ( + j))�.

Remark 5. This model is richer than the the amplitude modulated one: com-
paring with (16) shows that both covariances have the same asymptotic be-
havior, but it is clear that the correlation of XCM is only asymptotically
stationary.

3.5 Note on stationary seasonal memory

It may be interesting to compare the above models to some particular sta-
tionary ones. Stationary processes presenting seasonal long memory are well
known (see for example [OOV00, LV00] for references, properties and simula-
tions). As an example, consider the fractional ARMA process

XS
t = (I −B)−d(I − 2B cos(

2π
T

) + B2))−dεt , (27)

where d ∈ (0, 1/2) and T a positive period. This process is stationary and,
if the period T is an integer, its covariance has the same kind of asymptotic
behavior as the averaged covariance ρ(j) for the processes XAM, XMM and
XCM: precisely, as j tends to infinity

cov(XS
t , X

S
t+j) =

(
c1 + c2 cos

(
2π
T

j

)
+ o(1)

)
j2d−1 ,

where c1 and c2 are non zero constants (see [LV00]).
Such processes are not properly PC processes, but they have many similar

properties.
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4 Existence, invertibility and covariance structure of the
TVFI APC processes

4.1 Existence and invertibility

For these questions, we only give the results, referring to [PSV04] for the
proofs.

Consider the operators

A(d)xt =
∞∑
j=0

aj(t)xt−j and B(d)xt =
∞∑
j=0

bj(t)xt−j , (28)

where the coefficients aj are defined in (26), and where the bj ’s are defined
by b0(t) ≡ 1 and

bj(t) = dt−1

j∏
k=2

k − 1 + dt−j+k−2

k
, j ≥ 1 . (29)

First, B(−d) is the inverse of A(d), since, at least formally,

B(−d)A(d)xt = A(d)B(−d)xt = xt ∀t . (30)

Now, [PSV04] prove that if the sequence d satisfies the condition

[H(a)
D ] : for all integers s < t such that t− s is larger than some K > 0∑

s<u<t

du −D

t− u
≤ 0 ,

the coefficients of the time varying operator A(d) are bounded above by the
coefficients ψj(D), i.e. there exists C > 0 such that

|aj(t)| ≤ Cψj(D) , ∀ t ∈ Z , ∀ j ∈ N . (31)

(see [PSV04] for the proof)
Taking into account the well know properties of the FARIMA(0,d,0) filter,

inequalities (31) immediately imply that

(A1). if [H(a)
D ] holds with D < 0, then A(d) boundedly operates from L1 to L1

(A2). if [H(a)
D ] holds with D < 1/2, then A(d) boundedly operates from L2

0 to
L2,

where Lp (p = 1, 2) denotes the class of all real-valued random processes
{xt, t ∈ Z} such that supt E|xt|p < ∞ and L2

o ⊂ L2 the subclass of all zero
mean orthogonal sequences.

Similar results hold for the second operator B(d) if condition [H(a)
D ] is

replaced by
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[H(b)
D ] : there exists K <∞ such that for all integers s < t such that

t− s > K ∑
s<u<t

du −D

u− s
≤ 0 .

The following lemma, whose proof is in the Appendix, shows that condi-
tions [H(a)

D ] and [H(b)
D ] are well adapted to almost periodic sequences.

Lemma 2. Let d be an almost periodic sequence with mean value d defined
in (3). Conditions [H(a)

D ] and [H(b)
D ] hold with any D > d.

Finally, gathering all these results and remarks allows to specify the con-
vergence of (25) and to obtain an inverse expansion.

Proposition 4. Let d be an almost periodic sequence with mean value d ∈
(0, 1/2). Consider the operators A(d) and B(d) defined in (28), (26) and
(29). Let ε be a zero-mean L2 white noise. Then the process

XCM
t = A(d)εt =

∞∑
j=0

aj(t)εt−j , t ∈ Z ,

is bounded in L2 and the inversion formula is

εt = B(−d)XCM
t =

∞∑
j=0

b−j (t)XCM
t−j , ∀ t ∈ Z .

where the b−j (t)’s denote the coefficient of the linear operator B(−d).

Remark 6. The condition d ∈ (0, 1/2) does not imply that the sequence itself
is in this domain. Excursions of the sequence outside the classical stability
interval (0, 1/2) of the FARIMA are allowed, producing interesting sample
paths as shall be seen in Section 6.

4.2 Covariance structure

Next propositions state almost periodicity and the slow decay of the covari-
ances.

Proposition 5. Under conditions of Proposition 4, the process (XCM
t ) defined

in (25) is almost periodically correlated.

Proof. The proof is in the Appendix. ��

As a preliminary towards the asymptotic study of the covariances, we get
the asymptotic behavior of the coefficients of the time varying filter. For this
purpose we need to assume that there exists δ > 0 and C > 0 such that



APC processes with long memory 173

sup
s<t

∣∣∣ 1
t− s

t∑
u=s

(du − d)
∣∣∣ ≤ C|t− s|−δ . (32)

The next lemma points out that the coefficients of the time varying filter
are asymptotically close to γ(v)ψv−u(d) where the (ψk(d))’s are the coefficients
of the FARIMA (0, d, 0) and where γ is the almost periodic sequence (33).

Lemma 3. Under the assumption (32) on the almost periodic sequence d and
if 0 < d < 1/2,

(i) the infinite product

γ(v) :=
∏
u<v

(
1 +

du − d

d + v − u− 1

)
, (33)

converges for any v ∈ Z and the sequence γ(v) is almost periodic.
(ii) the coefficients defined in (26) can be rewritten

av−u(v) = γ(v)ψv−u(d)θu,v , (34)

with
|θu,v − 1| = O(|v − u|−δ) as v − u→ +∞ .

The proof is postponed in the Appendix.
This result is now used to show that the covariance (35) asymptotically

behaves as the product of the almost periodic sequences γ(s)γ(t) and (t −
s)2d−1. This last term is the asymptotic covariance of a stationary FARIMA
(0, d, 0), showing a kind of asymptotic averaging of the memory.

Proposition 6. Let (εt)t∈Z is a weak white noise. Under the assumption (32)
on the almost periodic sequence d and if 0 < d < 1/2, the covariance function
of the process XCM defined in (25), XCM

t = A(d)εt satisfies, as t− s→∞

cov(XCM
s , XCM

t ) ∼ c(d)γ(s)γ(t)(t− s)2d−1 , (35)

uniformly in s < t.

Proof. Let s < t. The covariance is equal to

cov(XCM
s , XCM

t ) =
∑
u≤s

as−uat−u = γ(s)γ(t)
∑
u≤s

ψs−u(d)ψt−u(d) + RA(s, t) .

Firstly, we have [BD91] (Chap. 13)

∑
u≤s

ψs−u(d)ψt−u(d) ∼
Γ (1− 2d)

Γ (d)Γ (1− d)
(t− s)2d−1 (t− s→∞) .

Secondly, using Lemma 3,
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|RA(s, t)| =
∣∣∣γ(s)γ(t)

∑
u≤s

ψs−u(d)ψt−u(d)(θs,uθt,u − 1)
∣∣∣

≤ C
∑
u≤s

ψs−u(d)ψt−u(d)(1 + s− u)−δ = o((t− s)2d−1) ,

uniformly in s < t. This proves (35). ��

5 Convergence of the partial sums

In this section, we turn to the asymptotic behavior of partial sums processes
for each of the four classes of models of Section 3.

First consider the FARIMA (0,d,0) process (12): it is now well known that
its suitably normalized partial sums converge in the Skorohod space towards
a fractional Brownian motion (see for instance [Taq03] or [Dav70]):

N−d−(1/2)
[Nτ ]∑
t=1

Yt
D[0,1]−−−−→ σ(d)Bd+1/2(τ) , (36)

where σ(d) is a positive constant such that

σ(d)2 =
c(d)

d(2d + 1)
=

1
d(2d + 1)

Γ (1− 2d)
Γ (d)Γ (1− d)

. (37)

We shall see that this result still holds, with an adapted parameter d and
a modified constant factor, for all the models presented in Section 3. Almost
periodicity of the covariance has no effect on the partial sums. This is not very
surprising since a PC process can be viewed as a multivariate stationary one.
Returning to stationary seasonal long memory, it is worth noticing that the
partial sums of the process XS defined in (27) have exactly the same asymp-
totic behavior (see for example [OV03]). Indeed, for a stationary sequence, the
partial sums are asymptotically insensitive to unboundedness of the spectrum
at non zero frequencies.

Consider the case of phase modulation (processes XPM
t ).

Theorem 1. Let XPM be a process defined in (17). Then, as N →∞

N−d−(1/2)
[Nτ ]∑
t=1

XPM
t

D[0,1]−−−−→ σ(d)Bd+1/2(τ) , (38)

where Bd+1/2(τ) is a fractional Brownian motion with Hurst parameter d +
1/2.

Proof. By definition of XPM we have
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Zt := XPM
t − Yt = Yt+St

− Yt

=
∞∑
j=0

(ψj+St(d)− ψj(d))εt−j +
∑

t<u≤t+St

ψt+St−u(d)εu := Z ′
t + Z ′′

t .

As St is bounded, the process (Z ′′
t ) is finitely dependent and therefore

E
(∑N+s

t=s+1 Z ′′
t

)2 ≤ CN , with C independent of s and of N . Also, since
|ψj+p(d) − ψj(d)| ≤ Cj−1ψj(d) ≤ Cjd−2 for all j ≥ 0, 0 ≤ p ≤ K and
some C = C(K) <∞, we obtain for any s ≤ t

EZ ′
sZ

′
t =

∞∑
j=0

jd−2(j + t− s)d−2
+ ≤ C(t− s)d−2 ,

and hence E
(∑N+s

t=s+1 Z ′
t

)2 ≤ CN . Therefore

[Nτ ]∑
t=1

XPM
t =

[Nτ ]∑
t=1

Yt + Op(N1/2) ,

proving the convergence of fidis distributions in (38). From the above bounds,
for any 0 ≤ τ < τ + h ≤ 1, Nh ≥ 1

E

( [N(τ+h)]∑
t=[Nτ ]

XPM
t

)2
≤ 2E

( [N(τ+h)]∑
t=[Nτ ]

Yt

)2
+ 2E

( [N(τ+h)]∑
t=[Nτ ]

Zt

)2

≤ C((Nh)1+2d + (Nh)) ≤ C(Nh)1+2d ,

implying tightness of the partial sums of (XPM
t ) in D[0, 1] [Bil68] (Theorem

15.6). ��

Remark 7. Since the process XPM is periodically correlated, the above result
could be viewed as a consequence of functional limit theorems on multivariate
stationary processes. In fact it is a consequence of Theorem 6 in [Arc94].
Indeed this theorem works if the same memory parameter governs all the
cross-covariances of the vector process (XTt, . . . , XT (t+1 − 1)), which is the
case for the process XPM

t . However the expression of the limiting process in
[Arc94] is rather involved, we preferred to give a more direct proof.

Now, we consider the modulated memory processes in the particular case
of a T -periodic sequence d.

Remark 8. Despite the fact that we restrict the study to the periodic case,
Theorem 6 in [Arc94] does not apply to processes XMM since different memory
parameters appear in the T components of the associated vector process.

Theorem 2. Consider the process XMM defined in (19) from a T -periodic
sequence d. Denote by d+ ∈ (0, 1/2) the maximum of d on a period. Then, as
N →∞
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N−d+−(1/2)
[Nτ ]∑
t=1

XMM
t

D[0,1]−−−−→ κσ(d+)
T

Bd++1/2(τ) .

where κ = #{1 ≤ t ≤ T : dt = d+}

Proof. Tightness is obvious by |Cov(Xs, Xt)| ≤ C|t − s|2d+−1. To prove the
fidi convergence, let D+ = {t ∈ Z : dt = d+}. Without loss of generality
assume for simplicity kT ∈ D+, k ∈ Z+. We have

N∑
t=1

XMM
t =

[N/T ]∑
k=1

∑
(k−1)T<t≤kT,t∈D+

XMM
t + op(N2d++1)

= κ

[N/T ]∑
k=1

ZkT +
[N/T ]∑
k=1

Z ′
k + op(N2d++1) ,

where
Z ′
k :=

∑
(k−1)T<t≤kT,t∈D+

XMM
t − κXMM

kT ,

and Zt =
∑∞

j=0 ψj(d+)εt−j is the FARIMA (0, d+, 0). Similarly as in the proof

of Theorem 1, we get that E
(∑[N/T ]

k=1 Z ′
k

)2 = O(N). Then, the remaining
details are standard. ��

Hence, at least in the purely periodic case, the partial sums of the model
with modulated memory (17) behave exactly as if the process was governed
only by the strongest memory component. The result still holds (up to a mul-
tiplicative constant) if the maximum d+ of the sequence is achieved at several
points of the period. Whether it holds for other almost periodic sequences is
an open question.

The following theorem permits to treat in the same time the cases of am-
plitude modulation (processes XAM

t ) and of modulated coefficients (processes
XCM
t ).

Theorem 3. Let q be an almost periodic sequence and d a real number in
(0, 1/2). Consider a zero-mean white noise (εt) and the second order process

Xt =
∑
s≤t

at−s(t)εs , for all t ∈ Z

where the time varying coefficients at−s(t) satisfy

at−s(t) = q(t)ψt−s(d)θt,s , (39)

with, for some δ > 0,

|θt,s − 1| < C|t− s|−δ ∀s < t . (40)



APC processes with long memory 177

Then, as N →∞,

N−d−(1/2)
[Nτ ]∑
t=1

Xt
D[0,1]−−−−→ σ(d) q Bd+1/2(τ) , (41)

where Bd+1/2(τ) is a fractional Brownian motion with Hurst parameter equal
to d + 1/2. The constant σ(d) > 0 is defined in (37) and q is the mean value
of q.

Proof. We follow the scheme of discrete stochastic integrals (see [Sur03,
Sur83]). For simplicity, we only consider the one-dimensional convergence at
τ = 1.

The left hand side of (41) can be expressed as

N−d−(1/2)
N∑
t=1

Xt =
∫

fNdZN := IN ,

where

fN (x) := N−d
{∑N

t=1 at−s(t) , x ∈ ((s− 1)/N, s/N ], x ∈ (−∞, 1] ,
0 , otherwise ,

and ZN is defined on finite intervals (x′, x′′], x′ < x′′ by

ZN ((x′, x′′]) := N−1/2
∑

x′<s/N≤x′′
εs .

According to the central limit theorem, for any m < ∞ and any disjoint
intervals (x′

i, x
′′
i ], i = 1, . . . ,m,

(ZN ((x′
1, x

′′
1 ]), . . . , ZN ((x′

m, x′′
m])) law−−→ (Z((x′

1, x
′′
1 ]), . . . , Z((x′

m, x′′
m]) , (42)

where Z(dx) is a standard Gaussian noise with mean zero and variance dx.
On the other hand, the limit process in (41) can be written

∫
fdZ with

f(x) :=
q̄σ(d)
ν(d)

{∫ 1
0 (t− x)d−1

+ dt , x ≤ 1 ,
0 , otherwise .

See [Taq03] for details on the representation of BH as a stochastic integral
and an explicit form of the positive constant ν(d) such that

ν(d)2 =
∫ 1

−∞

(∫ 1

0
(t− x)d−1

+ dt
)2

dx .

As proved in [Sur03, Sur83], the convergence IN
law−−→ I follows from the

convergence ‖fN − f‖2 → 0.
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By using (40) and (39), it suffices to show ‖f̃N − f‖2 → 0, where

f̃N (x) := N−d
{∑N

t=1 q(t)ψt−s(d) , x ∈ ( s−1
N , sN ] ∩ (−∞, 1] ,

0 , otherwise .

Next, split f̃N = f ′
N + f ′′

N , where

f ′
N (x) :=

⎧⎪⎨⎪⎩N−dq̄
N∑
t=1

ψt−s(d) , for x ∈ ( s−1
N , sN ] ∩ (−∞, 1]

0 , otherwise ,

and

f ′′
N (x) :=

⎧⎪⎨⎪⎩N−d
N∑
t=1

(q(t)− q̄)ψt−s(d̄) , for x ∈ ( s−1
N , sN ] ∩ (−∞, 1] ,

0 , otherwise .

It is easily seen that ‖f ′
N − f‖2 → 0, hence it suffices to show that

‖f ′′
N‖2 → 0 , (43)

which is equivalent to

RN :=
N∑

s=−∞

( N∑
t=1

(q(t)− q̄)ψt−s(d)
)2

= o(N1+2d) .

We split the sum RN =
∑0

s=−∞ · · ·+
∑N

s=1 · · · =: R′
N + R′′

N and put

G(t) :=
t∑

u=1

(q(u)− q̄) .

Then ε(t) := |G(t)/t| → 0(t→∞) since q(·)− q̄ is almost periodic with zero
mean value.

Fix s ≤ 0. Using summation by parts we obtain

N∑
t=1

(q(t)− q̄)ψt−s(d) = G(N)ψN−s(d) +
N−1∑
t=1

G(t)(ψt+1−s(d)− ψt−s(d)) .

Let us recall that the FARIMA coefficients satisfy

|ψN−s(d)| ≤ C(N − s)d−1 and |ψt+1−s(d)− ψt−s(d))| ≤ C|t− s|d−2 .

we obtain

R′
N ≤ Cε2(N)N2

∞∑
s=0

(N + s)2d−2 + C

∞∑
s=0

( N∑
t=1

ε(t)t(t + s)d−2
)2

.
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Here, N2
∞∑
s=0

(N+s)2d−2 = O(N1+2d) while the second sum on the r.h.s. above

is dominated by

CN2d+1
∫ ∞

0

(∫ 1

0
ε(t/N)t(t + s)d−2dt

)2
ds .

Since ∫ ∞

0

(∫ 1

0
t(t + s)d−2dt

)2
ds <∞ ,

the above inequalities and the dominated convergence theorem imply

R′
N = o(N1+2d) .

The relation R′′
N = o(N1+2d) follows similarly, with G(t) replaced by

G(t)−G(s). This proves (43) and the finite dimensional convergence in (41).
Tightness in D[0, 1] is obtained by the criterion given in [Bil68] (Theorem

15.6). Using Lemma 3 and boundedness of qA(t), the proof is standard. ��

Returning now to amplitude modulation and to coefficients modulation
processes presented in Subsections 3.1 and 3.4, it is clear that the assumptions
of Theorem 3 are satisfied by processes XAM

t with q(t) = St, θs,t ≡ 1 and
by processes XCM

t with q(t) = γ(t), d = d, θs,t defined in (34), under the
conditions of Lemma 3.

Corollary 1.

(A1). Consider the process XAM
t defined in (15) from the FARIMA (0,d,0) with

d ∈ (0, 1/2) and the almost periodic sequence St with mean value S. As
N →∞,

N−d−(1/2)
[Nτ ]∑
t=1

XAM
t

D[0,1]−−−−→ σ(d) SBd+1/2(τ) .

(A2). Consider the process XCM
t defined in (25) and (26) from the almost peri-

odic sequence d submitted to the conditions of Lemma 3. As N →∞,

N−d−(1/2)
[Nτ ]∑
t=1

XCM
t

D[0,1]−−−−→ σ(d) qBd+1/2(τ) .

6 Simulation

In this section, we provide some numerical examples to illustrate the properties
of models of Section 3. We only consider periodic sequences.
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6.1 Comparison of the models via simulation

The period is T = 5 for all models, and the memory parameters are chosen in
such a way that they provide the same limiting behaviour of the partial sums.
Namely

(A1). (XAM
t ) : d = 0.35 and St = γ(t) where γ is the infinite product (33)

associated to the sequence d of the model (XCM
t ) just below,

(A2). (XPM
t ) : d = 0.35 and (S1, . . . , S5) = (1, 1, 5, 5, 5)

(A3). (XMM
t ) : (d1, . . . , d5) = (0.25, 0.25, 0.35, 0.35, 0.35)

(A4). (XCM
t ) : (d1, . . . , d5) = (−0.25,−0.25, 0.75, 0.75, 0.75), this implies that

d = 0.35.

Moreover, the periodic sequence driving XAM
t is chosen to be St = γ(t)

where γ is the infinite product (33) associated to model XCM
t with the above

preassigned parameters dj . Hence, the theoretical covariances (16) and (35)
have exactly the same asymptotic behavior.

The models are built from a Gaussian zero-mean white noise with unit
variance, and for each one a sample path of length n = 104 is simulated.

Estimation of the averaged autocovariance.

Let

ρ̂N (j) =
1
N

N−j∑
t=1

(Xt − X̄)(Xt+j − X̄) , X̄ :=
1
N

N∑
t=1

Xt ,

be the sample autocovariance and the sample mean. Next proposition proves
that, under rather weak assumptions (for example an assumption on the fourth
cumulants which is trivially satisfied for Gaussian processes), the empirical
autocovariance is an L2 convergent estimator of the averaged covariance (4).
Denote by χ(t1, t2, t3, t4) the 4th order joint cumulant of Xt1 , Xt2 , Xt3 , Xt4 .

Proposition 7. Let (Xt) be a zero mean APC process with averaged covari-
ance ρ such thatsupt∈Z EX4

t <∞. Moreover, assume

lim
h→∞

sup
t∈Z

|E(XtXt+h)| = 0, and

lim
h→∞

sup
t1≤t2≤t3≤t1+h

|χ(Xt1 , Xt2 , Xt3 , Xt1+h)| = 0 . (44)

Then for any j ≥ 0

E(ρ̂N (j)− ρ(j))2 → 0 (N →∞) .
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Proof. Write

ρ(j)− ρ̂N (j) =

ρ(j)− 1
N

N∑
t=1

(Xt − X̄)(Xt+j − X̄) +
1
N

N∑
t=N−j+1

(Xt − X̄)(Xt+j − X̄) ,

where it is clear that the variance of the last term tends to zero as N → ∞.
Now,

ρ(j)− 1
N

N∑
t=1

(Xt − X̄)(Xt+j − X̄) =
3∑
i=1

δi(j) ,

with

δ1(j) := ρ(j)−N−1
N∑
t=1

E(XtXt+j) ,

δ2(j) := −N−1
N∑
t=1

(XtXt+j − E(XtXt+j)) ,

δ3(j) := X̄2 .

By the definition of ρ(j), δ1(j)→ 0. Writing

E(XtXt+jXsXs+j) = χ(t, t + j, s, s + j)
+ E(XtXt+j)E(XsXs+j)) + E(XsXt+j)E(XtXs+j))
+ E(XtXs)E(Xt+jXs+j)) ,

and using assumptions (44) easily leads to the convergence to zero of E(δ2(j))2

and E(δ3(j))2. ��

Figures 1 show the empirical autocovariances of the four sample paths.
From Proposition 7, they should mimic the theoretical sequences ρ(j) whose
behavior is specified, for each model, in Section 3.

In our situation, given the choice of the parameters, ρAM (j) and ρCM (j)
have exactly the same asymptotic behavior: a 5-periodic sequence damped
by j−0.3. In ρPM (j), the periodic effect is present for small values of j but
asymptotically disappears, the behavior being then exactly as j−0.3. As for
ρMM (j), the highest value of this maximum is achieved for h = 5k, so that the
convergence to zero of ρMM (5k) is slower than the convergence of the other
subsequences ρMM (5k+ ). As expected, those remarks are well illustrated by
the shapes of the corresponding empirical autocovariances of Figure 1.

The associated T -variate processes and estimation of the memory

Consider the four 5-variate stationary processes Zt = (X5t, · · · , X5t+4)′.
Their correlations are estimated from the corresponding subsequences of the
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Fig. 1. The empirical autocovariances of the simulated sample. The models and
their parameters are precised in Section 6.1

four sample paths and represented in Figures 2-3-4-5. To each model corre-
sponds 25 graphics. The graphic (j, k) represents ρ̂j,k(h), an estimation of
cor(X5t+j , X5(t+h)+k). For all the models, long memory is well visible in the
autocorrelations ρ̂j,j(h). Comparing what happens for models XAM

t , XCM
t

is particularly interesting since for these two models, the empirical autoco-
variances are quite similar, giving the wrong impression that these models are
close to each other. Here, we see that, for the process XAM

t , the graphs ρ̂j,k(h)
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Fig. 2. The empirical autocorrelation of the 5 variate simulated sample for the
processes XAM. The parameters are given in Section 6.1, Model (A1).

remain the same (except for the sign) when j − k is kept constant, which is
not surprising since

cor(XAM
5t+j , X

AM
5(t+h)+k) = cor(Y5t+j , Y5(t+h)+k) =

Γd(5h + k − j)
Γd(0)

.

This is not at all the case for the process XCM
t .

According to the asymptotic behavior of the covariance function, we know
that for XCM, XAM and XPM, the sub processes of (X5t+�)t  ∈ {0, . . . , 4}
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Fig. 3. The empirical autocorrelation of the 5 variate simulated sample for the
processes XPM. The parameters are given in Section 6.1, Model (A2).

have the same long memory parameter. This is visible in Figures 2-3 but less
evident in the two first columns of Figure 5, surely because for small values of
the lag, cor(XCM

s , XCM
t ) can be very far from the correlation of the FARIMA

(0,d,0). As seen in Figure 4, the situation for XMM is different. For example
the memory coefficient of XMM

5t and XMM
5t+1 is d1 = 0 whereas it is d3 = 0.35

for the 3 other sub processes. Notice also that, for model XPM, the cross
correlations can take their maximum values for non a zero lag. For instance,
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Fig. 4. The empirical autocorrelation of the 5 variate simulated sample for the
processes XMM. The parameters are given in Section 6.1, Model (A3).

processes X5k+2 and X5k+3, have a cross correlation equal to 1 at lag 1, as
easily seen on Figure 3. This is due to the fact that the sequence t+St is not
monotonic.

Table 1 provides estimations of the memory parameters. These estimations
are calculated from each of the five sub samples X5t+� ( = 1, . . . , 5), using the
local Whittle estimate (see for instance [BLO03]). For the models XAM and
XPM the estimated parameter is d, with value 0.35. For model XMM, each
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Fig. 5. The empirical autocorrelation of the 5 variate simulated sample for the
processes XCM. The parameters are given in Section 6.1, Model (A4).

� 1 2 3 4 5
XAM 0.34 0.35 0.30 0.34 0.34
XPM 0.35 0.39 0.39 0.36 0.36
XMM -0.08 0.12 0.28 0.35 0.27
XCM 0.30 0.34 0.29 0.35 0.37

Table 1. Estimation of long memory parameters calculated on each sub processes.
The sample size is 104.
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sub sample gives an estimation of its own parameter, namely d1 = d2 = 0
and d3 = d4 = d5 = 0.35. For model XCM the estimated parameter is the
mean value d, with value 0.35. It can be noticed that, despite the fact that
the memory is not at all visible on Figure 5 for the two first sub samples, they
nevertheless furnish not so bad estimations of d. This is not surprising, since
the Whittle estimator is only based on low frequencies of the periodogram,
ignoring the small lags in the covariance.

6.2 Other example of XCM processes

As noticed before, the sequence d on which is based a XCM process can
leave the stability domain ]0, 1/2[, the only constraint concerning its mean
value (see Remark 6). We present here a model for which this phenomenon is
particularly marked, causing important bursts in the sample paths.

We consider the following sequence d with period T = 150 and mean value
d = 0.3

dt =

⎧⎪⎨⎪⎩
−.4 if t ∈ {1, . . . , 50} ,

.4 if t ∈ {51, . . . , 100} ,

.9 if t ∈ {101, . . . , 150} .

(45)

Figure 6 well illustrates that the values of (dt)t∈Z outside the interval
]0, 1/2[ create strong local nonstationarities, suggesting that models XCM

could be used to model non linearities.

7 Appendix

7.1 Proof of Lemma 1

Proof. Write

N−1∑
j=1

L(j)s(j)
L(N)

j2H−2 =
N−1∑
j=1

s(j)j2H−2 +
N−1∑
j=1

s(j)
( L(j)
L(N)

− 1
)
j2H−2

=: R1 + R2 .

Firstly, the term R2 is negligible, i.e.

R2 = o(N2H−1) . (46)

Indeed,
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Fig. 6. XCM process associated to the 150−periodic sequence (dt)t∈Z defined in
(45). [top] A simulated sample path of length 104. [Bottom] The empirical autocor-
relations of the simulated sample

|R2| ≤ C

N∑
j=1

∣∣∣ L(j)
L(N)

− 1
∣∣∣j2H−2

= C

⎛⎝ ∑
1≤j<N/2

∣∣∣ L(j)
L(N)

− 1
∣∣∣j2H−2 +

∑
N/2≤j≤N

∣∣∣ L(j)
L(N)

− 1
∣∣∣j2H−2

⎞⎠
=: C(R21 + R22) .

Then,

R22 ≤ sup
x∈[1/2,∞)

x−κ
∣∣∣L(Nx)
L(N)

− 1
∣∣∣ ∑
N/2≤j≤N

j2H−2(j/N)κ ,

where κ is any positive number. Consequently,∑
N/2≤j<N

j2H−2(j/N)κ ≤ N−κ ∑
1≤j<N

j2H−2+κ = O(N2H−1) ,
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and R22 = o(N2H−1) follows from the well known property of slowly varying
functions:

sup
x∈[x0,∞)

1
xκ

∣∣∣L(Nx)
L(N)

− 1
∣∣∣→ 0 , for all x0, κ > 0 .

Relation R21 = o(N2H−1) follows similarly by

sup
x∈(0,x0]

xκ
∣∣∣L(Nx)
L(N)

− 1
∣∣∣→ 0 , for all x0, κ > 0 .

This proves (46).
Let us now show that N1−2HR1 converges to s̄

2H−1 . Clearly, the statement
follows from the fact that

lim
N→∞

N1−2H
N∑
j=1

j2H−2U(j) = 0 , (47)

for any bounded sequence U(j) such that T (j) := j−1∑j
k=1 U(k) tends to

zero as j →∞. To prove (47), first notice that since T (j)→ 0

N1−2H
N∑
j=1

j2H−2T (j − 1)→ 0, as N →∞ .

Hence,

N1−2H
N∑
j=1

j2H−2U(j) = N1−2H( N∑
j=1

j2H−1(T (j)− T (j − 1)) +
N∑
j=1

j2H−2T (j − 1)
)

= N1−2H
N∑
j=1

j2H−1(T (j)− T (j − 1)) + o(1) .

A summation by parts leads to

N1−2H
N∑
j=1

j2H−1(T (j)− T (j − 1)) =

T (N) + N1−2H
N−1∑
j=1

(j2H−1 − (j + 1)2H−1)T (j) .

Then, as N →∞, T (N)→ 0 and

N1−2H
N−1∑
j=1

|j2H−1 − (j + 1)2H−1||T (j)| ≤ cN1−2H
N−1∑
j=1

j2H−2|T (j)| → 0 .

Therefore (47) is proved. ��
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7.2 Proof of Lemma 2

For any δ > 0, there exists K <∞ such that for all s < t, t− s > K

αs,t :=
∑
s<u<t

(du −D′) < 0 with D′ = δ + d . (48)

Let D = d + 2δ. Then, for all s < t, t− s > K we have∑
s<u<t

du −D

t− u
= −δ

∑
s<u<t

1
t− u

+
∑
s<u<t

du −D′

t− u
=: −δJ ′

s,t + J ′′
s,t ,

where J ′
s,t → ∞ as t − s → ∞. Therefore, it suffices to prove that J ′′

s,t is
bounded above. Using (48) and summation by parts,

J ′′
s,t =

hs,t
t− s− 1

+
t−s−2∑
i=1

ht−i−1,t

(1
i
− 1

i + 1

)
<

t−s−2∑
i=1

ht−i−1,t

i(i + 1)
=: Is,t .

Then, for fixed K,

Is,t =
K∑
i=1

ht−i−1,i

i(i + 1)
+

t−s−2∑
i=K+1

ht−i−1,i

i(i + 1)
≤

K∑
i=1

ht−i−1,i

i(i + 1)
,

which is bounded, uniformly in t. This proves [H(a)
D ] with any D > d. Similarly,

we obtain that [H(b)
D ] with any D > d.

7.3 Proof of Proposition 5

Let dε be a periodic sequence such that ‖d− dε‖∞ ≤ ε. Denote

αs−j(s) = ds−1 . . . (dj + s− j − 1) ,

and α
(ε)
s−j(s) the corresponding sequence built from dε. The familiar inequality

|
k∏
j=1

aj −
k∏
j=1

bj | ≤

|ak − bk|
k−1∏
j=1

|aj |+ |ak−1 − bk−1|
k−2∏
j=1

|aj ||bk|+ . . . + |a1 − b1|
k∏
j=2

|bj | ,

leads to

∆
(ε)
s−j(s) := |α(ε)

s−j(s)− αs−j(s)| ≤ (s− j)ε(2‖d‖∞)s−j−1
. (49)

Let us now compare cov(XCM
s , XCM

t ) to the periodic sequence
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σ(ε)(s, t) =
∑
j<s

α
(ε)
s−j(s)α

(ε)
t−j(t)

(s− j)!(t− j)!
.

¿From (49),

|cov(XCM
s , XCM

t )− σ(ε)(s, t)| ≤
∑
j<s

|α(ε)
s−j(s)α

(ε)
t−j(t)− αs−j(s)αt−j(t)|
(s− j)!(t− j)!

≤
∑
j<s

|αs−j(s)||∆(ε)
s−j(s)|+ |α

(ε)
t−j(t)||∆

(ε)
s−j(s)|

(s− j)!(t− j)!

≤ Cε
∑
j<s

(2‖d‖∞)s+t−2j

(s− j)!(t− j)!

≤ Cε

(
sup
l≥0

(2‖d‖∞)l

l!

)∑
j≥1

(2‖d‖∞)j

j!
,

with some constant C, and the proof is over.

7.4 Proof of Lemma 3

Proof of (i). For fixed n ≥ 1, we define the sequence γn by

γn(v) :=
n∏
p=1

(
1 +

dv−p − d

d + p− 1

)
=:

n∏
p=1

(1 + βp(v)) ,

The sequence βp is almost periodic for any p ≥ 1, hence so is γn for any
n ≥ 1. It is well-known that uniform limit of almost periodic functions is
almost periodic. The statement of the lemma thus follows from

sup
v∈Z

|γn(v)− γm(v)| → 0 , as m,n→∞ .

Since d is bounded, there exists n0 such that |βp(v)| < 1/2 holds for any
p ≥ n0, v ∈ Z. Now, uniform convergence of γn is equivalent to the uniform
convergence of γn/γn0 , and we can suppose in the sequel that n0 = 1, or that
|βp(v)| < 1/2 holds for all p ≥ 1.

Then γn(v) > 0 ∀n ≥ 1, and

|γn(v)− γm(v)| ≤ γn(v)

∣∣∣∣∣
m∏

p=n+1

(1 + βp(v))− 1

∣∣∣∣∣ (n < m) .

Using the inequalities ex−x
2 ≤ 1 + x ≤ ex for |x| < 1/2 we obtain
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γn(v) ≤ exp
{ n∑
p=1

βp(v)
}

,

exp
{ m∑
p=n+1

βp(v)−
m∑

p=n+1

β2
p(v)

}
≤

m∏
p=n+1

(1 + βp(v)) ≤ exp
{ m∑
p=n+1

βp(v)
}

.

Here,
∑m

p=n+1 β2
p(v) ≤ Cn−1, due to β2

p(v) ≤ Cp−2.
Let Dn,m(v) :=

∑m
p=n+1(dv−p − d). A summation by parts leads to

m∑
p=n+1

βp(v) =
Dn,m(v)
d + m− 1

+
m−1∑
p=n+1

Dn,p(v)
( 1
d + p− 1

− 1
d + p

)
. (50)

By (32),
|Dn,m(v)| ≤ C|n−m|1−δ

where the constant C does not depend on v.
The first term on the r.h.s. of (50) does not exceed

C|n−m|1−δm−1 ≤ Cn−δ ,

while
m−1∑
p=n+1

|Dn,p(v)|
∣∣∣ 1
d + p− 1

− 1
d + p

∣∣∣ ≤ C

∞∑
p=n+1

|p− n|1−δp−2 ≤ Cn−δ .

Therefore, for n sufficiently large,

e−Cn
−δ ≤

m∏
p=n+1

(1 + βp(v)) ≤ eCn
−δ

, (51)

for some constant C > 0 independent of v, n and m > n. It also follows that
supn≥1,v∈Z γnA(v) <∞, and (i) is proved.

Now let us prove (ii). By definition,

θu,v = av−u/γ(v)ψv−u(d̄) =
∞∏

p=v−u
(1 + βp(v))−1 ,

Then from (51), e−C(v−u)−δ ≤ θu,v ≤ eC(v−u)−δ

for all v−u sufficiently large,
yielding |θu,v − 1| = O(|v − u|−δ) and (ii) is proved.
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approximations of multiple Itô-Wiener integrals. In Doukhan, P., Op-
penheim, G., and Taqqu, M., editors, Theory and Applications of Long
Range Dependence. Birkhäuser, Boston.
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Laboratoire Paul Painlevé, UMR CNRS 8424, 59655 Villeneuve d’Ascq, France
lavancier@ensae.fr

1 Introduction

A random field X = (Xn)n∈Zd is usually said to exhibit long memory, or
strong dependence, or long-range dependence, when its covariance function
r(n), n ∈ Z

d, is not absolutely summable :
∑

n∈Zd |r(n)| =∞. An alternative
definition involves spectral properties : a random field is said to be strongly
dependent if its spectral density is unbounded. These two points of view are
closely related but not equivalent.

Generalizing a hypothesis widely used in dimension 1, most studies on
long-range dependent random fields assume that the covariance function be-
haves at infinity as

r(h) ∼
h→∞

|h|−αL(|h|) b

(
h

|h|

)
, 0 < α < d , (1)

where L is slowly varying at infinity and where b is continuous on the unit
sphere of R

d, |.| denoting the l1-norm on R
d.

Even if the form (1) is not exactly isotropic because of the presence of the
function b defined on the unit sphere, the long memory is due to the term
|h|−α which depends only on the norm. So we will call isotropic this kind of
long-range dependence. Let us focus on the spectral domain to precise this
notion of isotropy.

Definition 1. A stationary random field exhibits isotropic long memory if it
admits a spectral density which is continuous everywhere except at 0 where

f(x) ∼ |x|α−dL
(

1
|x|

)
b

(
x

|x|

)
, 0 < α < d , (2)

where L is slowly varying at infinity and where b is continuous on the unit
sphere in R

d.
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Conditions (1) and (2) are linked by a result of [Wai65] who proved that
if the covariance of a random field satisfies (1) and if its spectral density is
continuous outside 0, then this random field exhibits isotropic long memory
according to definition 1.

Conditions (1) and (2) are regular ways for a random field to be strongly
dependent. Now, it is easy to build long memory random fields which fail to
satisfy these conditions, either by filtering white noises through unbounded
filters like some special AR filters or by aggregating random parameters short
memory random fields. Besides, non-isotropic long memory fields naturally
arise in statistical mechanics in relatively simple situations of phase transition.

So, the aim of the paper is to give a presentation as complete as possible
of isotropic or non-isotropic long memory random fields.

In the first section, we present families of models presenting different kinds
of long memory with special glance to Ising model and Gaussian systems in
the more specific domain of statistical mechanics.

In the second section, we present a review of the available limit theorems.
The first part is devoted to the convergence of partial sums and the second part
to the empirical process. We present some well-known results concerning the
isotropic long-memory setting : the asymptotic behaviour of the partial sums
investigated by [DM79] for Gaussian subordinated fields and by [Sur82] for
functionals of linear fields ; the convergence of the empirical process for linear
fields proved in [DLS02]. We also give the asymptotic behaviour of the partial
sums and of the empirical process in some non-isotropic long memory cases.
For these new results, we explain the scheme of proof, based on a spectral
convergence theorem. In both situations of isotropic and non-isotropic strong
dependence, we observe, like in dimension d = 1, a non standard rate of
convergence and a non standard limiting process.

2 Modeling long memory stationary random fields

We present two classes of long-memory stationary random fields. The first
class is a straightforward generalization of models now widely used for random
processes (d = 1). The second one comes from mechanical statistics and is for
that reason specifically adapted to dimensions d > 1.

2.1 Filtering and aggregation

Filtering white noises through unbounded filters or aggregating random coef-
ficients ARMA processes are the two main ways leading to long-memory pro-
cesses. Since the pioneer works of [GJ80], [Gra80] and [Hos81], these methods
have been generalized and improved, providing large families of long-memory
one-dimensional processes. See for instance [BD91] for filtered processes and
[OV04] for aggregation schemes. These methods are easily extended to di-
mensions d > 1. In fact they lead to rather close covariance structures, but
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the aggregation method produces only Gaussian random fields. Both provide
useful simulation methods.

Filtering

Let us consider a zero-mean white noise (εn)n∈Zd with spectral representation

εn =
∫

[−π,π]d
ei<n,λ>dZ(λ) ,

where the control measure of Z has constant density σ2/(2π)d on [−π, π]d,
and the random field X obtained from ε by the filtering operation

Xn =
∫

[−π,π]d
ei<n,λ>a(λ)dZ(λ) , (3)

where a ∈ L2([−π, π]d).
The spectral density of the induced field is

fX(λ) =
σ2

(2π)d
|a(λ)|2 , ∀λ ∈ [−π, π]d , (4)

and long-memory is achieved when a is unbounded at certain frequencies.

Example 1 (Long memory ARMA fields). ARMA fields are obtained when
a(λ) = Q

P (eiλ) where P and Q are polynomial functions. Denoting by Lj the
lag operator for index j , i.e.

LjXn1,n2...,nd
= Xn1,...,nj−1,nj−1,nj+1,...,nd

,

we can write an ARMA field in the most popular way

P (L1, . . . , Ld)Xn1,...,nd
= Q(L1, . . . , Ld)εn1,...,nd

. (5)

If P (eiλ) �= 0 for all λ ∈ [−π, π]d, (5) admits a unique stationary solution (cf.
for instance [Ros85] and [Guy93]).

But contrary to the one dimensional case, this condition is not necessary
when d > 1, and there exist stationary fields having an ARMA representation
(5) with P (eiλ) = 0 at some frequencies λ. In this case, the induced field X
exhibits long memory since its spectral density, given by (4), is unbounded.

The following ARMA representation in dimension d = 5 is a trivial exam-
ple of this phenomena :

Xn1,...,n5−
1
5
(Xn1−1,n2,...,n5 +Xn1,n2−1,n3,n4,n5 +· · ·+Xn1,...,n5−1) = εn1,...,n5 .

This representation admits a stationary solution since the filter a(λ1, . . . , λ5) =(
1− 1

5 (eiλ1 + · · ·+ eiλ5)
)−1 is in L2([−π, π]5), and the induced field X is

strongly dependent because its spectral density is unbounded at λ = 0.
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Example 2 (Fractional integration). Generalizing the FARIMA processes de-
fined by

(I − L)αXn = εn ,

we consider random fields of the form

(P (L1, . . . , Ld))
α
Xn1,...,nd

= εn1,...,nd
,

where P is a polynomial having roots on the unit circle and where α > 0 is
chosen such that a(λ) =

(
P (eiλ)

)−α ∈ L2([−π, π]d).
As an example, consider, for a fixed positive integer k, the model

(I − L1L
k
2)αXn1,n2 = εn1,n2 ,

where 0 < α < 1/2. The spectral density of X is

fX(λ1, λ2) =
σ2

4π2

∣∣∣1− ei(λ1+kλ2)
∣∣∣−2α

,

where σ2 is the variance of the white noise ε. The field X exhibits non-isotropic
long memory since fX is unbounded all over the line λ1 +kλ2 = 0 and fails to
satisfy (2). Using well known results on FARIMA processes (cf [BD91]) easily
leads to: {

ρ(h, kh) =
∏

0<j≤h
j−1+α
j−α h = ±1,±2, . . .

ρ(h, l) = 0 if l �= kh ,

where ρ denotes the correlation function of X. The field X has a non summable
correlation function in the direction l = kh since ρ(h, kh) is asymptotically
proportional to h2α−1. Compared to (1), this confirms that X is a non-
isotropic long memory random field.

Aggregation

Let us consider a sequence (X(q))q≥1 of independent copies of the field

P (L1, . . . , Ld)Xn1,...,nd
= εn1,...,nd

, (6)

where P is a polynomial function with random coefficients such that P has
almost surely no roots on the unit sphere and (εn)n∈Zd is a zero-mean white
noise with variance σ2.

The representation (6) admits almost surely the solution :

Xn =
∑
j∈Zd

cjεn−j , (7)

where (cj)j∈Zd are the coefficients of the Laurent expansion of P−1. The field
X given by (7) belongs to L2 if and only if
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j∈Zd

E(|cj |2) <∞ , (8)

and its spectral density is

f(λ) =
σ2

(2π)d
E
∣∣P−1 (eiλ)∣∣2 . (9)

Now, from the central limit theorem, the finite dimensional distributions
of N−1/2∑N

q=0 X
(q)
n converge as N →∞ to the so-called aggregated field Z

Zn = lim
N→∞

1√
N

N∑
q=0

X(q)
n , n ∈ Z

d .

This process is Gaussian and has the same second order characteristics as the
X(q)’s. In particular, its spectral density is (9) and long memory is obtained
when E

∣∣P−1
(
eiλ
)∣∣2 is unbounded.

Example 3. Let us consider, in dimension d = 2, the AR representation

Xn,m − aXn−1,m − bXn,m−1 + abXn−1,m−1 = εn,m , (10)

where a and b are independent and where a (resp. b) has on [0, 1] the density

(1− x)αΦ1(x) , (resp. (1− x)βΦ2(x)) , (11)

where 0 < α, β < 1 and where Φj , j = 1, 2 are bounded, continuous at x = 1,
with Φ1(1)Φ2(1) �= 0 .

It is easily checked that the above random parameters AR fields satisfy
all the required conditions to lead to an aggregated random field with long
memory (see for instance [OV04]). The spectral density of the aggregated field
Z is a tensorial product and

f(λ1, λ2) ∼ c|λ1|α−1|λ2|β−1 when λ→ 0 ,

where c is a positive constant. Therefore Z exhibits long memory.

Example 4. Consider the AR representation

Xn,m − aXn+k,m−1 = εn,m , (12)

where k ∈ Z is fixed and where a is a random parameter on [0, 1] with density
(11).

The spectral density of the induced aggregated field Z is unbounded on
the line λ2 = kλ1 since

f(λ1, λ2) ∼ c |λ2 − kλ1|α−1
, as λ2 − kλ1 → 0

where c is a positive constant. Hence the long-memory is non-isotropic.

200 Frédéric Lavancier

We present two 2-dimensional models produced by aggregating N = 1000
autoregressive fields with random parameters. The first one (figure 1) is con-
structed according to the scheme of example 3, the parameters a and b having
the same density 3

2

√
1− x.

The second model (figure 2) is constructed as in example 4 with k = −1
and where a has the same density as above. For both models, an image of
size 100 × 100 has been obtained where, at each point, the realization of the
random variable is represented by a level of gray.

Anisotropy clearly appears in figure 2. The strong dependence only occurs
in one direction and the long memory is non-isotropic. Its periodogram is
unbounded all over the line λ2 + λ1 = 0 and fails to follow (2). Moreover,
its covariance function decays slowly in only one direction and is not of the
form (1). In contrast, in the first model, strong dependence occurs along two
directions, with the same intensity. This is the reason why the phenomena of
anysotropy is less visible in figure 1.

2.2 Long memory in statistical mechanics

Statistical mechanics explains the macroscopic behaviour of systems of parti-
cles by their microscopic properties and provides interpretations of thermody-
namic or magnetic phenomena like phase transition. There is phase transition
when a system is unstable. For instance, it is the case during the liquid-vapour
transition of a gas or when a magnetic material is in transition between the
ferromagnetic and the paramagnetic phase. A rigorous mathematical formal-
ism of statistical mechanics can be found for example in [Geo88]. Our aim
is to underline the strong dependence properties of some systems in phase
transition by focusing on the Ising model and on systems based on quadratic
interactions.

Let us consider a system of particles on the lattice Z
d. The state of a

particle located on j ∈ Z
d is described by the spin xj , a random variable

with values in a polish space X. The pair potential Φ = (Φi,j)i,j∈Zd gives the
interactions between the pairs of particles.

A system configuration is an element ω = (xi)i∈Zd of the space Ω = XZ
d

.
The energy on each finite set Λ of Z

d involves not only the energy quantity
inside the set Λ but also the edges interactions:

EΛ(ω) =
∑

{i,j}⊂Λ
Φi,j(xi, xj) +

∑
i∈Λ
j∈Λc

Φi,j(xi, xj) . (13)

Now, consider on Ω an a priori measure ρ = ⊗i∈Zdρi (typically ρi is the
Lebesgue measure when X = R or a Bernoulli measure when X = {±1}). A
measure µ on Ω is called a Gibbs measure associated with the potential Φ
with respect to ρ if, for every finite set Λ, ωΛ and ωΛc denoting the restriction
of ω to Λ and to its complementary set,
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Fig. 1. [top] Long memory random field of a product form obtained by aggregating
random parameters AR fields of the form (10) with α = β = 0.5 [bottom-left] Its
periodogram [bottom-right] Its covariance function
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Fig. 2. [top] Non-isotropic long memory random field obtained by aggregating ran-
dom parameters AR fields of the form (12) with k = −1 [bottom-left] Its periodogram
[bottom-right] Its covariance function
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µ (dωΛ|ωΛc) =
1

ZΛ(ωΛc)
e−EΛ(ω)ρ(dω) , (14)

where ZΛ(ωΛc) is a normalizing constant.
A Gibbs measure is locally characterized by (14). This formalism, at-

tributed to Dobrushin, Landford and Ruelle, guarantees the coherence of the
conditional distributions.

For a given system, a fundamental question is whether a Gibbs measure
exists or not. Phase transition occurs when there exists several Gibbs mea-
sures. The set of all Gibbs measures is a convex set whose extreme elements
are the pure phases, the other Gibbs measures being mixtures of the pure
phases.

Now, consider the spins’ system equipped with the Gibbs measure as a
random field. When the second order moments exist, we can measure the
memory of the spins’ system via the covariance between two sites i and j,
r(i, j) = cov(xi, xj). In the following examples the field is stationary (r(h) =
cov(xi, xi+h)) and presents long-range dependence properties.

The Ising model

The well known Ising model has been introduced to study magnetism and
fluid dynamic. The state space is X = {−1, 1}, the a priori measure is the
Bernoulli measure 1/2(δ−1 + δ1) and the potential is restricted to the nearest
neighbors:

Φi,j(xi, xj) =
{

βxixj if |i− j| = 1
0 otherwise,

where β > 0 is a constant representing the inverse temperature.
In dimension d = 1, there exists a unique Gibbs measure for any β, there-

fore the system is never in phase transition. In dimension d ≥ 2, Gibbs mea-
sures exist and phase transition takes place if β is greater than a critical value
βc depending on the dimension d (see [Ons44] in dimension d = 2 and [Dob65]
in any dimension). When d = 2, βc = 1

2 ln(1 +
√

2) ≈ 0.441.
Let us consider the covariance function. In their physical approach of the

Ising model, [KO49] and [Fis64] obtain the asymptotic behaviour of r. When
β �= βc, the covariance function decays exponentially but when β = βc the
rate of decay is slow and the covariance is not summable. We have

r(h) ∼
h→∞

{
|h|−1e−κ|h| if β �= βc

|h|−(d−2+µ) ifβ = βc ,

where κ > 0 is the Boltzmann’s constant and µ ∈ [0, 2] is a critical parameter
which is 1/4 in case d = 2. The strong dependence at the critical point is
isotropic.

Remark 1. The long-range dependence structure of the Ising model at the
critical point was pointed out in [CJL78] where one can also find others models
exhibiting long memory.
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Remark 2. There exist some models, slightly more complex than the Ising
model, which exhibit long-range dependence without being in phase transi-
tion. This is the case for the XY model and for the Heiseinberg model : they
are never in phase transition when d ≤ 2 but their covariance function in
dimension d = 2 is not summable all over an interval of low temperatures (see
[KT78]).

Homogeneous Gaussian models

The state space is X = R, the a priori measure ρ is the Lebesgue measure
and the potential is

Φi,j(xi, xj) =
{

β
( 1

2J(0)x2
i + exi

)
if i = j

βJ(i− j)xixj if i �= j,

where β and e are constants representing respectively the inverse temperature
and an external magnetic field and where (J(i))i∈Zd is a positive definite real
sequence with J(i) = J(−i) for every i and

∑
i∈Zd J(i) <∞. We suppose for

simplicity that e = 0. Contrary to the Ising model, the temperature has no
influence on the appearance of phase transition. The main parameter is the
sequence J , improperly named potential.

This system was studied by [Kün80] and [Dob80]. All the results can be
found in [Geo88]. The pure phases are Gaussian and their characteristics are
directly linked to the potential J via its Fourier transform

Ĵ(λ) =
∑
n∈Zd

J(n)ei<n,λ> , λ ∈ [−π, π]d .

Theorem 1 (Künsch, Dobrushin). Under the above hypotheses on J and
in the case e = 0, the set of Gibbs measures is non empty if and only if∫

[−π,π]d
Ĵ−1(λ)dλ <∞ .

In this case, the pure phases are the Gaussian measures with covariance func-
tion

r(h) =
∫

[−π,π]d
Ĵ−1(λ)ei<h,λ>dλ (15)

and with mean vector a sequence (un)n∈Zd such that, for all k ∈ Z
d,∑

J(n)uk+n = 0 .

Remark 3. In the case e �= 0, further hypotheses are needed for the existence
of a Gibbs measure.
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The occurrence of phase transition in the particular case e = 0 can be
deduced from Theorem 1 and is given in the following corollary. Note that,
despite the fact that the pure phases are Gaussian, all Gibbs measures are
not necessarily so. Phase transition can take place with one or several mea-
sures without second moment. Insofar as we are interested in the covariance
function, the corollary is stated in the L2 setting:

Corollary 1 (Künsch). Under the hypotheses of Theorem 1, there exist sev-
eral Gibbs measures with finite second moments if and only if Ĵ has at least
one root in [−π, π]d.

Therefore, when the system is in phase transition, every Gibbs measure
having a finite second moment is strongly dependent. Indeed Ĵ−1, which is
the spectral density of the pure phases, according to (15), is unbounded if
there is phase transition.

Example 5. In dimension d ≥ 3, the harmonic potential is a simple example of
finite range interaction leading to long-memory random fields. The potential
is defined by:

J(n) =

⎧⎨⎩
− 1

2d if |n| = 1
1 if n = 0
0 otherwise

and we have

Ĵ(λ) = 1−
∑
|n|=1

1
2d

ei<n,λ> = 1− 1
d

d∑
k=1

cos(λk)

whose inverse is integrable on [−π, π]d since d ≥ 3. Hence, Theorem 1 guaran-
tees the existence of a Gibbs measure associated with this potential. Moreover
Ĵ(0) = 0 and according to Corollary 1, the system is in phase transition and
the second order Gibbs measures exhibit long memory. The long-range depen-
dence is isotropic in the sense of definition 1.

Example 6. In dimension d = 2, consider the potential :

J(k, l) =

⎧⎨⎩
∏

0<j≤k
j−1−α
j+α if l = pk, |k| > 1

1 if k = l = 0
0 otherwise

where p is a non null fixed integer and α ∈]0, 1/2[.
The sequence J(k, pk) corresponds to the autocorrelation function of an

integrated stationary process of order α, from which (see [BD91] )

J(k, pk) ∼ Γ (1 + α)
Γ (−α)

k−2α−1, when k →∞ .
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This shows the summability of J . Moreover, using the well known properties
of the FARIMA processes,∑

k∈Z

J(k, pk)eikλ Γ 2(1 + α)
Γ (1 + 2α)

∣∣∣∣2 sin
(

λ

2

)∣∣∣∣2α .

Finally

Ĵ(λ1, λ2) =
∑
k,l∈Z2

J(k, l)ei(kλ1+lλ2) =
∑
k∈Z

J(k, pk)eik(λ1+pλ2)

=
Γ 2(1 + α)
Γ (1 + 2α)

∣∣∣∣2 sin
(

λ1 + pλ2

2

)∣∣∣∣2α .

Since α ∈]0, 1/2[ , Ĵ−1 is integrable on [−π, π]2 and the existence of a Gibbs
measure is guaranteed by Theorem 1. In addition, Ĵ vanishes all along the line
λ1 + pλ2 = 0 which shows that the system is in phase transition according to
Corollary 1 and that the Gibbs measures exhibit non-isotropic long memory.

3 Limit theorems under isotropic and non-isotropic
strong dependence

We present some limit theorems for the partial sums process and the doubly
indexed empirical process of long memory random fields.

3.1 Partial sums of long memory random fields

Since the results for isotropic long-memory fields are nearly classical while
those related to non-isotropic long memory are newer and still incomplete,
we split this section in two parts according to the regularity of the strong
dependence. The first one is devoted to isotropic long memory: available re-
sults concern Gaussian subordinated fields and some particular functionals of
linear fields. In the second part, related to non-isotropic long memory, we first
present the spectral convergence theorem on which is based the convergence of
the partial sums. Then we apply it to some non-isotropic long memory fields.

In a third part, we give a tightness criterion for partial sums and we apply
it to situations needed for the doubly-indexed empirical process treated in the
next section.

In the sequel we adopt the notation An = {1, . . . , n}d and
fidi
=⇒ for the

convergence of the finite dimensional distributions.

Convergence of partial sums under isotropic long memory

The first study of partial sums is due to [DM79] who considered Gaussian
subordinated fields presenting isotropic long memory. Then the same results
for some functional of linear fields are obtained in [Sur82] and [AT87].
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Let us first introduce the so-called Hermite process Zm of order m which
is the limiting process we shall encounter here.

Zm(t) =
∫

Rmd

d∏
j=1

eitj
(
x
(1)
j +···+x(m)

j

)
− 1

i
(
x

(1)
j + · · ·+ x

(m)
j

) ZG0(dx
(1)) . . . ZG0(dx

(m)) (16)

where ZG0 is the random Gaussian spectral field with control measure G0. The
spectral measure G0 depends on a parameter α and a function b continuous
on the unit sphere in R

d and it is given by

2d
∫

Rd

ei<t,x>
d∏
j=1

1− cos(xj)
x2
j

G0(dx) =
∫

[−1,1]d

b
(
x+t
|x+t|

)
|x + t|α

d∏
j=1

(1− |xj |)dx .

(17)
When d = 1 (16) simplifies because G0 admits a density proportional to |x|α−1

and in this case

Zm(t) = κ−k/2
∫

Rm

eit(x(1)+···+x(m)) − 1
i(x(1) + · · ·+ x(m))

m∏
k=1

∣∣∣x(k)
∣∣∣α−1

2
dW (x(k)) ,

where W is the Gaussian white noise spectral field and where κ =
∫

R
eix|x|α−1.

Let us now summarize the convergence results.

Theorem 2. [[DM79]] Let (Xn)n∈Zd be a zero-mean, stationary, Gaussian
random field. Let H be a measurable function such that∫

R

H(x)e
−x2

2 dx = 0 and
∫

R

H2(x)e
−x2

2 dx <∞ .

Denote by m its Hermite rank.
We suppose that (Xn) admits the following covariance function

r(k) = |k|−αL(|k|)b
(

k

|k|

)
,

with r(0) = 1, where 0 < mα < d and where L is a slowly varying function at
infinity and b is a continuous function on the unit sphere in R

d.
Then

1
Nd−mα/2(L(N))m/2

∑
k∈A[Nt]

H(Xk)
fidi
=⇒ cmZm(t) , (18)

where Zm is the Hermite process of order m defined in (16) and where cm is
the coefficient of rank m in the Hermite expansion of H.

The following theorem concerns linear fields. The class of functions H is
restricted to the Appell polynomials.
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Theorem 3. [[Sur82] and [AT87]] Let (εn)n∈Zd be a sequence of zero-mean
i.i.d random fields with variance 1 and finite moments of any order. Let
(Xn)n∈Zd be the linear field

Xn =
∑
k∈Zd

akεn−k ,

where

ak = |k|−βL(|k|)a
(

k

|k|

)
, d < 2β < d (1 + 1/m) , (19)

where L is a slowly varying function at infinity and a is a continuous function
on the unit sphere in R

d.
Let Pm be the mth Appell polynomial associated with the distribution of

X0. Then
1

Nd−m(β− d
2 )

∑
k∈A[Nt]

Pm(Xk)
fidi
=⇒ Zm(t) ,

where Zm is the Hermite process of order m defined by (16) and (17) in which
α = 2β − d and

b(t) =
∫

Rd

a

(
s

|s|

)
a

(
s− t

|s− t|

)
|s|−β |t− s|−βds .

Remark 4. Theorem 3 relates to isotropic long memory since condition (19)
implies that the covariance function of X has asymptotically the form (1).

Remark 5. One can find a presentation of the tools for proving Theorems 2
and 3 in [DOT03].

Convergence of partial sums under non-isotropic long memory

The proofs of Theorem 2 and 3 rely on the convergence of multiple stochastic
integrals. This method fails to work under non-isotropic long memory. So we
turn to a method based on convergence of spectral measures.

Starting from a filter a ∈ L2([−π, π]d) and a zero-mean random field ξ
having a spectral density fξ, we consider the linear field

Xn =
∑
k∈Zd

akξn−k , n ∈ Z
d (20)

where ak are the Fourier coefficients of a:

a(λ) =
∑
k∈Zd

ake−i<k,λ> .

The filter a is directly linked to the spectral density fX of X by the relation :
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fX(λ) = fξ(λ)|a(λ)|2 .

First, the partial sums are rewritten using the spectral field W of ξ. Since

ξk =
∫

[−π, π]d
ei<k,λ>dW (λ) , (21)

if the random measure Wn on [−nπ; nπ]d is defined for all Borel set A by

Wn(A) = nd/2W (n−1A) ,

we have

n−d/2 ∑
k∈A[nt]

Xk =
∫

[−nπ,nπ]d
a

(
λ

n

) d∏
j=1

eiλj [tjn]/n − 1
n(eiλj/n − 1)

dWn(λ) , (22)

where [nt] = ([nt1], . . . , [ntd]).
Hence, in order to investigate the convergence of the partial sums (22),

it suffices to handle stochastic integrals of the form
∫

ΦndWn where Φn ∈
L2(Rd). This is made possible by the spectral convergence theorem.

The spectral convergence theorem

Let (ξk)k∈Zd be a real stationary random field. We work under the following
assumptions :

H1 : The zero-mean stationary random field (ξk)k∈Zd has a spectral density
fξ bounded above by M > 0. Moreover, the sequence of partial sums of the
noise

Sξn(t) = n−d/2 ∑
k∈A[nt]

ξk, t ∈ [0, 1]d , (23)

converges in the finite dimensional distributions sense to a field B.

Theorem 4. Under H1, there exists a linear application I0 from L2(Rd) into
L2(Ω,A,P) which has the following properties :

(i) ∀Φ ∈ L2(Rd) E (I0 (Φ))2 ≤ (2π)dM ||Φ||22
(ii) I0

(∏d
j=1

eitjλj −1
iλj

)
= B(t1, . . . , td)

(iii) If the sequence Φn converges in L2(Rd) to Φ, then
∫

Φn(x)dWn(x) con-
verges in law to I0 (Φ).

(iv) If ξ is i.i.d, then ∀Φ ∈ L2(Rd) I0(Φ) =
∫

ΦdW0, where W0 is the Gaus-
sian white noise spectral field.

Remark 6. When ξ is i.i.d, B is the Brownian sheet, property (ii) correspond-
ing to its harmonisable representation

B(t) =
∫ d∏

j=1

eitjλj − 1
iλj

dW0(λ) ,
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and I0 becomes in this case an isometry from L2(Rd) into L2(Ω,A,P) which
can then be considered as the stochastic integral with respect to W0.

In the general case, point (i) shows that I0 might not be an isometry so
that I0 cannot be always viewed as a stochastic integral.

Remark 7. Although our purpose is only to investigate the convergence of the
partial sums, Theorem 4 appears to be a useful tool to obtain the asymptotic
properties of any linear statistic writable in the form

∫
ΦndWn.

Proof. The theorem is proved in [LS00] in dimension d = 1. The details of
the generalization to the context of random fields can be found in [Lav05a],
so we only give a sketch of the proof. Let us consider the field

Bn(t) =
∫

[−nπ, nπ]d

d∏
j=1

eitjλj − 1
iλj

dWn(λ) . (24)

Denoting Φ̂ the Fourier transform of Φ, we prove after some integrations by
parts that∫

[−nπ, nπ]d
Φ̂(x)dWn(x) =

(−1)d

(2π)d/2

∫
Rd

∂Φ(t1, . . . , td)
∂t1 . . . ∂td

Bn(t1, . . . , td)dt1 . . .dtd .

(25)
Besides, Bn − Sξn converges to 0 in L2, which leads to the finite dimensional
convergence of Bn to B. Then, extending to d > 1 a theorem of [Gri76] leads
to the convergence in law of (25) to

IB(Φ) = (−1)d
∫

Rd

∂Φ(t)
∂t1 . . . ∂td

B(t)dt .

Finally the linear application I0 of the theorem is defined by

I0(Φ) = IB(Φ̌) , (26)

where Φ̌ is the inverse Fourier transform of Φ in L2(Rd) and we have

E (I0(Φ))2 = E
(
IB(Φ̌)

)2
≤ lim E

(
(2π)d/2

∫
[−nπ, nπ]d

Φ̂dWn

)2

≤ (2π)dM ||Φ||22 ,

which is (i) of Theorem 4.
Theorem 4.2 in [Bil68] implies that

∫
ΦdWn converges to I0(Φ). Hence∫

ΦndWn converges to I0(Φ) as soon as Φn goes to Φ in L2(Rd). This proves
(iii).

The particular choice Φ̌ = 1[0,t1]×···×[0,td] in (26) leads to (ii).
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Convergence of partial sums

In view of the spectral representation (22) and of Theorem 4, for proving the
convergence of the partial sums it is sufficient to check the L2-convergence of
a(x/n). This leads to several types of proofs according to the form of a.

The following propositions focus on filters which lead to non-isotropic long
memory random fields. Their proofs can be found in [Lav05a].

The first result concerns the simplest situation of a tensorial product.

Proposition 1. Let (ξk)k∈Zd be a noise satisfying H 1. Let (Xk)k∈Zd be the
random field defined by (20), constructed by filtering ξ through a filter of the
form :

a(λ1, . . . , λd) =
d∏
j=1

aj(λj) , (27)

where the aj’s satisfy:

aj(λj) ∼ |λj |−αj when λj → 0 ,

with 0 < αj < 1/2. Then

1

nd/2−(
∑d

j=1 αj)

∑
k∈A[nt]

Xk
fidi
=⇒ I0

⎛⎝ d∏
j=1

eitjλj − 1
iλj |λj |αj

⎞⎠ , (28)

where I0 is the linear application defined in Theorem 4.

Remark 8. When ξ is i.i.d, the limiting field (28) is the Fractional Brownian
sheet with parameters (αj , j = 1, . . . , d).

It is well known that, in dimension d = 1, only the spectral behaviour at
0 determines the asymptotic of the partial sums. This result still holds for
d = 2, as stated in the next proposition.

Proposition 2. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let
(Xk)k∈Zd be defined by (20), constructed by filtering ξ through a.

(i) If the filter a ∈ L2([−π, π]d) is continuous at the origin with a(0) �= 0,
then, for d ≤ 2,

1
nd/2

∑
k∈A[nt]

Xk
fidi
=⇒ a(0)B(t) , (29)

where B is the limit of the partial sums of ξ introduced in hypotheses H1.
(ii)If the filter a is equivalent at 0 to a homogeneous function ã, i.e. for all c,

ã(cλ) = |c|−α ã(λ), with degree α ∈]0, 1[ such that a ∈ L2([−π, π]d), then,
for d ≤ 2,

1
nd/2+α

∑
k∈A[nt]

Xk
fidi
=⇒ I0

⎛⎝ã(λ)
d∏
j=1

eitjλj − 1
iλj

⎞⎠ , (30)

where I0 is the linear application defined in Theorem 4.
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Remark 9. When ξ is i.i.d, the limiting process can be written as a stochastic
integral with respect to a Gaussian white noise measure (cf Remark 6).

Remark 10. Filtering a white noise through a filter satisfying the hypotheses
in (i) can produce a weakly dependent random field, for instance if a is contin-
uous on [−π, π]d. It produces non-isotropic long memory when a is unbounded
since the covariance function is then not absolutely summable. This memory
involves only non-zero singularities of the spectral density and, as expected,
does not modify the limit obtained under weak dependence.

Condition (ii) of Theorem 2 can be satisfied with isotropic as well as with
non isotropic long-memory. The memory is non-isotropic for instance when
the filter is a(λ1, λ2) = |λ1 + θλ2|−α, where 0 < α < 1/2 and θ ∈ R, θ �= 0.

Unfortunately, probably due to the spectral method, these results cannot
be extended in dimension d ≥ 3 without further assumptions. We only give
an example of filters unbounded all over a linear subspace of [−π, π]d.

Proposition 3. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let
(Xk)k∈Zd be the random field defined by (20).

Suppose that a has the following form :

a(λ) =

∣∣∣∣∣
d∑
i=1

ciλi

∣∣∣∣∣
−α

,

where 0 < α < 1/2 and the ci’s are real constants.
Then, as long as

0 < 2α <
1

(d− 2) ∨ 1
, (31)

we have
1

nd/2+α

∑
k∈A[nt]

Xk
fidi
=⇒ I0

⎛⎝a(λ)
d∏
j=1

eitjλj − 1
iλj

⎞⎠ , (32)

where I0 is the linear application defined in Theorem 4.

Remark 11. The condition (31) on α is a restriction only when d ≥ 4.

Tightness criteria for partial sums

So far, only the convergence of the finite-dimensional distributions of the
partial sums has been stated. In dimension d = 1, a convenient criterion for
tightness is given in [Taq75] from which the convergence in D([0, 1]) follows
easily.

General conditions for tightness in D([0, 1]d) of a sequence of random fields
are given in [BW71]. The following lemma, a corollary of Theorems 2 and 3
in [BW71], is very useful for proving tightness of the partial sums of strongly
dependent fields.
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Lemma 1. Let us consider a stationary random field (Xk)k∈Zd and its nor-
malized partial sum process

Sn(t) = d−1
n

[nt1]∑
k1=0

· · ·
[ntd]∑
kd=0

Xk1,...,kd
, t ∈ [0, 1]d .

If the finite-dimensional distributions of Sn converge to those of X and if
there exist c > 0 and β > 1 such that for all p1, . . . , pd ∈ {1, . . . , n}

E

(
d−1
n

p1∑
k1=0

· · ·
pd∑

kd=0

Xk1,...,kd

)2

≤ c

(
d∏
i=1

pi
n

)β
, (33)

then

Sn
D([0,1]d)

=⇒ X .

Moreover the field X admits a continuous version.

The details of the proof can be found in [Lav05b].
In the next section, we study the doubly-indexed empirical process of long

memory random fields and we investigate its asymptotic behaviour for the long
memory Gaussian subordinated fields of Theorem 2 and for the non-isotropic
long memory situation of Proposition 3. For this, we need the convergence
of the partial sums in D([0, 1]d) in both settings. Since the convergence of
their finite-dimensional distributions has already been stated, only tightness
is missing, which is the subject of the next results. Their proofs, based on the
tightness criterion presented in Lemma 1, can be found in [Lav05b].

Proposition 4. Under the hypothesis of Theorem 2, the partial sums process

1
Nd−mα/2(L(N))m/2

∑
k∈A[Nt]

H(Xk)

is tight and convergence (18) takes place in D([0, 1]d).

Proposition 5. Under the hypothesis of Proposition 3, the partial sums pro-
cess

1
Nd/2+α

∑
k∈A[Nt]

Xk

is tight and convergence (32) takes place in D([0, 1]d).

3.2 Empirical Process of long memory random fields

We study the asymptotic behaviour of the empirical process
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j∈A[nt]

[
1{G(Xj)≤x} − F (x)

]
, (34)

where G is a measurable function and where F is the cumulative distribution
function of G(X1), (Xk)k∈Zd being a long-range dependent stationary random
field.

Our presentation relates to Gaussian subordinated random fields and to
(non necessarily Gaussian) linear random fields.

In the first situation, we prove a uniform weak reduction principle and
apply it to different situations of strong dependence. We present the conver-
gence of (34) in D(R× [0, 1]d) when X is Gaussian with isotropic long-range
dependence, generalizing in dimension d > 1 the result of [DT89]. In the non-
isotropic long memory setting, we give the convergence of (34) in D(R×[0, 1]d)
when the random field X is linear, Gaussian, and when the Hermite rank of
1{G(Xj)≤x} − F (x) is 1.

In the situation of (non necessarily Gaussian) linear random fields a uni-
form weak reduction principle is more difficult to obtain. The only available
results are those proved in [DLS02] where the authors obtain the convergence
of (34) for t = 1, when G is the identity function, and in the situation of
isotropic long-memory.

In each situation described above, the limiting process is degenerated in-
sofar as it has the form f(x)Z(t) where f is a deterministic function and Z
a random field. This asymptotic behaviour of the empirical process is a char-
acteristic property of strong dependence in dimension d = 1. It seems to be
also the case with random fields even if the strong dependence is anisotropic
such as in Corollary 3 below.

Empirical process of Gaussian subordinated fields

The main tool to obtain the convergence of the empirical process is the uni-
form weak reduction principle introduced in [DT89] which allows to replace in
most cases the empirical process by the first term in its expansion on the Her-
mite basis. We present an inequality generalizing this principle to dimension
d > 1. Then we specify the dependence structure of the random field in two
corollaries. The first one refers to the isotropic long-range dependent Gaussian
fields of Theorem 2. The second one relates to non-isotropic long memory. It
focuses on the random field of Proposition 3 which is in addition supposed
here to be Gaussian. The proofs of this section are detailed in [Lav05b].

Let (Xn)n∈Zd be a stationary Gaussian random field with covariance func-
tion r such that r(0) = 1.

Let G be a measurable function. We consider the following expansion on
the Hermite basis :

1{G(Xj)≤x} − F (x) =
∞∑
q=m

Jq(x)
q!

Hq(Xj) ,
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where F (x) = P(G(X1) ≤ x). Hq is the Hermite polynomial of degree q and

Jq(x) = E
[
1{G(X1)≤x}Hq(X1)

]
.

Let

Sn(x) =
∑
j∈An

[
1{G(Xj)≤x} − F (x)− Jm(x)

m!
Hm(Xj)

]
.

Now, we formulate the inequality leading to the uniform weak reduction
principle. Its proof follows the same lines as in [DT89].

Theorem 5. Let

d2
N = var

⎛⎝ ∑
j∈AN

Hm(Xj)

⎞⎠ = m!
∑

j,k∈A2
N

rm(k − j) .

If dN −→∞, we have, for all η, δ > 0 and for all n ≤ N ,

P

(
sup
x

d−1
N |Sn(x)| > η

)
≤ CNδd−2

N

∑
j,k∈A2

N

|r(k − j)|m+1 +
d2
n

N2d , (35)

where C is a positive constant depending only on η.

If the limit of d−1
N

∑
j∈A[Nt]

Hm(Xj) is known, inequality (35) provides the
asymptotic behaviour of the empirical process (34) if the upper bound in (35)
vanishes when N goes to infinity.

The first corollary below relates to the Gaussian subordinated fields of
Theorem 2.

Corollary 2. Under the above notations, we suppose that the Gaussian field
(Xn)n∈Zd admits the covariance function

r(k) = |k|−αL(|k|)b
(

k

|k|

)
, r(0) = 1 , (36)

where 0 < mα < d, where L is slowly varying at infinity and where b is
continuous on the unit sphere in R

d.
Then

1
Nd−mα/2(L(N))m/2

∑
j∈A[Nt]

[
1{G(Xj)≤x} − F (x)

] D(R̄×[0,1]d)
=⇒ Jm(x)

m!
Zm(t) ,

where the convergence takes place in D(R̄× [0, 1]d) endowed with the uniform
topology and the σ-field generated by the open balls and where Zm, defined in
(16), is the Hermite process of order m.
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Proof (Sketch of proof). From (36), as N →∞

d2
N ∼ N2d−mα(L(N))m ,

and ∑
j,k∈AN

|r(k − j)|m+1 = O(N2d−(m+1)αL(N)m+1) + O(Nd) .

Hence the upper bound in (35) goes to zero for small values of δ.
Moreover Theorem 2 gives the convergence of d−1

N

∑
j∈A[Nt]

Hm(Xj) to the
Hermite process, this convergence taking place in D([0, 1]d) from Proposition
4. Now, Jm is bounded and so :

Jm(x)d−1
N

∑
j∈A[Nt]

Hm(Xj)
D(R̄×[0,1]d)

=⇒ Jm(x)Zm(t) . (37)

The measurability of the empirical process is obtained if D(R̄ × [0, 1]d), en-
dowed with the uniform topology, is equipped with the σ-field generated by
the open balls. Finally (37) and (35) give the convergence claimed in the
corollary.

The next corollary focuses on the non-isotropic random field of Propo-
sition 3 based on Gaussian noise. Since this Proposition only gives the limit
distribution of d−1

N

∑
j∈A[Nt]

Xj , we restrict ourselves to functions G such that
the Hermite rank of (34) is 1.

Corollary 3. Let (εn)n∈Zd be a stationary Gaussian field with a bounded spec-
tral density. We consider the linear field

Xn =
∑
k∈Zd

akεn−k , (38)

where the (ak)’s are, up to a normalisation providing var(X1) = 1, the Fourier
coefficients of

a(λ) =

∣∣∣∣∣
d∑
i=1

ciλi

∣∣∣∣∣
−α

, 0 < α < 1/2 , (39)

where (c1, . . . , cd) are real valued parameters.
We suppose that the Hermite rank of 1{G(Xn)≤x} − F (x) is 1.
If

0 < 2α <
1

(d− 2) ∨ 1
, (40)

then
1

nd/2+α

∑
j∈A[nt]

(
1{G(Xj)≤x} − F (x)

) D(R̄×[0,1]d)
=⇒ J1(x)R(t) ,
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where J1(x) = E[1{G(X1)≤x}X1], and where the convergence takes place in
D(R̄× [0, 1]d) endowed with the uniform topology and the σ-field generated by
the open balls.

When ε is a white noise, the limiting field is defined by

R(t) =
∫

Rd

a(u)
d∏
j=1

eitjuj − 1
iuj

dW0(u) ,

where W0 is the Gaussian white noise spectral field.

Remark 12. As in Proposition 3, the condition (40) is not a restriction when
d ≤ 3.

Proof (Sketch of proof). From (39), d2
n ∼ nd+2α when n→∞ and

if 0 < 2α < 1/2 ,
∑

j,k∈A2
n

r2(k− j) = O(nd) ,

if 1/2 < 2α < 1 ,
∑

j,k∈A2
n

r2(k− j) = O(nd−1+4α) .

Therefore the upper bound in (35) tends to zero if δ is small enough. Since
Proposition 3 and Proposition 5 prove the convergence of the partial sums of
X in D([0, 1]d), the convergence of the empirical process follows.

Empirical process of long memory linear fields

Without the Gaussian assumption, a general uniform weak reduction principle
as in Theorem 5 is not yet available. This has been done in [DLS02] in the
particular case of the isotropic long memory linear random fields of Theorem
3. These authors obtain the convergence of the empirical process (34) for t = 1
and when G is the identity function.

Theorem 6 ([DLS02]). Let ε be a zero-mean i.i.d random field with variance
1. Assume that there exist positive constants C and δ such that∣∣Eeiaε0

∣∣ ≤ C(1 + |a|)−δ , a ∈ R ,

and
E|ε0|2+δ <∞ .

Let X be the linear field defined by

Xn =
∑
k∈Zd

akεn−k , n ∈ Z
d

with
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ak = |k|−αb
(

k

|k|

)
, k ∈ Z

d ,

where d/2 < α < d and where b is continuous on the unit sphere in R
d.

Then, with Z ∼ N (0, 1) a standard Gaussian variable,

1
n3d/2−α

∑
k∈An

[
1{Xk≤x} − F (x)

] D(R)
=⇒ cf(x)Z ,

where c is a positive constant, F denoting the cumulative distribution function
of X1 and f = F ′.

Remark 13. In [DLS02], the authors actually studied the convergence of the
weighted empirical process ∑

k∈An

γn,k1{Xk≤x+ξn,k} ,

where supn maxk∈An(|ξn,k|+ |γn,k|) = O(1). They obtain the same result.

4 Conclusion

All the above results confirm some specificities of the long memory compared
with the short one : particularly a non standard normalisation and a degen-
erated limit for the empirical process. However, the study is far from being
complete and should be extended for instance in the direction of seasonal
phenomena, as it is done in dimension d = 1 ([OH02]), where the correct
approximation of the empirical process might not be based on the first term
of the Hermite expansion.

Finally, all results on the empirical process are a first step towards the
study of U-statistics, Cramer Von Mises or Kolmogorov Smirnov statistics,
and of M and L-statistics. They are the object of a current work.
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1 Introduction

It is generally accepted that many time series of practical interest exhibit
strong dependence, i.e., long memory. For such series, the sample autocor-
relations decay slowly and log-log periodogram plots indicate a straight-line
relationship. This necessitates a class of models for describing such behavior.
A popular class of such models is the autoregressive fractionally integrated
moving average (ARFIMA) (see [Ade74], [GJ80]), [Hos81], which is a linear
process. However, there is also a need for nonlinear long memory models. For
example, series of returns on financial assets typically tend to show zero cor-
relation, whereas their squares or absolute values exhibit long memory. See,
e.g., [DGE93]. Furthermore, the search for a realistic mechanism for generat-
ing long memory has led to the development of other nonlinear long memory
models. In this chapter, we will present several nonlinear long memory mod-
els, and discuss the properties of the models, as well as associated parametric
and semiparametric estimators.

Long memory has no universally accepted definition; nevertheless, the
most commonly accepted definition of long memory for a weakly station-
ary process X = {Xt, t ∈ Z} is the regular variation of the autocovariance
function: there exist H ∈ (1/2, 1) and a slowly varying function L such that

cov(X0, Xt) = L(t)|t|2H−2 . (1)

Under this condition, it holds that:

lim
n→∞n−2HL(n)−1var

(
n∑
t=1

Xt

)
= 1/(2H(2H − 1)). (2)

The condition (2) does not imply (1). Nevertheless, we will take (2) as an
alternate definition of long memory. In both cases, the index H will be referred
to as the Hurst index of the process X. This definition can be expressed in
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terms of the parameter d = H − 1/2, which we will refer to as the memory
parameter. The most famous long memory processes are fractional Gaussian
noise and the ARFIMA(p, d, q) process, whose memory parameter is d and
Hurst index is H = 1/2 + d. See for instance [Taq03] for a definition of these
processes.

The second-order properties of a stationary process are not sufficient to
characterize it, unless it is a Gaussian process. Processes which are linear with
respect to an i.i.d. sequence (strict sense linear processes) are also relatively
well characterized by their second-order structure. In particular, weak con-
vergence of the partial sum process of a Gaussian or strict sense linear long
memory processes {Xt} with Hurst index H can be easily derived. Define
Sn(t) =

∑[nt]
k=1(Xk − E[Xk]) in discrete time or Sn(t) =

∫ nt
0 (Xs − E[Xs])ds

in continuous time. Then var(Sn(1))−1/2Sn(t) converges in distribution to a
constant times the fractional Brownian motion with Hurst index H, that is
the Gaussian process BH with covariance function

cov(BH(s), BH(t)) =
1
2
{|s|2H − |t− s|2H + t2H} .

In this paper, we will introduce nonlinear long memory processes, whose
second order structure is similar to that of Gaussian or linear processes, but
which may differ greatly from these processes in many other aspects. In Sec-
tion 2, we will present these models and their second-order properties, and
the weak convergence of their partial sum process. These models include con-
ditionally heteroscedastic processes (Section 2.1) and models related to point
processes (Section 2.2). In Section 3, we will consider the problem of estimat-
ing the Hurst index or memory parameter of these processes.

2 Models

2.1 Conditionally heteroscedastic models

These models are defined by

Xt = σtvt , (3)

where {vt} is an independent identically distributed series with finite variance
and σ2

t is the so-called volatility. We now give examples.

LMSV and LMSD

The Long Memory Stochastic Volatility (LMSV) and Long Memory Stochas-
tic Duration (LMSD) models are defined by Equation (3), where σ2

t = exp(ht)
and {ht} is an unobservable Gaussian long memory process with memory pa-
rameter d ∈ (0, 1/2), independent of {vt}. The multiplicative innovation series
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{vt} is assumed to have zero mean in the LMSV model, and positive support
with unit mean in the LMSD model. The LMSV model was first introduced by
[BCdL98] and [Har98] to describe returns on financial assets, while the LMSD
model was proposed by [DHH05] to describe durations between transactions
on stocks.

Using the moment generating function of a Gaussian distribution, it can
be shown (see [Har98]) for the LMSV/LMSD model that for any real s such
that E[|vt|s] <∞,

ρs(j) ∼ Csj
2d−1 j →∞,

where ρs(j) denotes the autocorrelation of {|xt|s} at lag j, with the convention
that s = 0 corresponds to the logarithmic transformation. As shown in [SV02],
the same result holds under more general conditions without the requirement
that {ht} be Gaussian.

In the LMSV model, assuming that {ht} and {vt} are functions of a mul-
tivariate Gaussian process, [Rob01] obtained similar results on the autocor-
relations of {|Xt|s} with s > 0 even if {ht} is not independent of {vt}. Sim-
ilar results were obtained in [SV02], allowing for dependence between {ht}
and {vt}.

The LMSV process is an uncorrelated sequence, but powers of LMSV or
LMSD may exhibit long memory. [SV02] proved the convergence of the cen-
tered and renormalized partial sums of any absolute power of these processes
to fractional Brownian motion with Hurst index 1/2 in the case where they
have short memory.

FIEGARCH

The weakly stationary FIEGARCH model was proposed by [BM96]. The FIE-
GARCH model, which is observation-driven, is a long-memory extension of the
EGARCH (exponential GARCH) model of [Nel91]. The FIEGARCH model
for returns {Xt} takes the form 2.1 innovation series {vt} are i.i.d. with zero
mean and a symmetric distribution, and

log σ2
t = ω +

∞∑
j=1

ajg(vt−j) (4)

with g(x) = θx + γ(|x| − E|vt|), ω > 0, θ ∈ R, γ ∈ R, and real constants
aj such that the process {log σ2

t } has long memory with memory parameter
d ∈ (0, 1/2). If θ is nonzero, the model allows for a so-called leverage effect,
whereby the sign of the current return may have some bearing on the future
volatility. In the original formulation of [BM96], the {aj} are the AR(∞)
coefficients of an ARFIMA(p, d, q) process.

As was the case for the LMSV model, here we can once again express the
log squared returns as in (18) with µ = E[log v2

t ]+ω, ut = log v2
t−E[log v2

t ], and
ht = log σ2

t −ω. Here, however, the processes {ht} and {ut} are not mutually
independent. The results of [SV02] also apply here, and in particular, the
processes {|Xt|u}, {log(X2

t )} and {σt} have the same memory parameter d.
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ARCH(∞) and FIGARCH

In ARCH(∞) models, the innovation series {vt} is assumed to have zero mean
and unit variance, and the conditional variance is taken to be a weighted sum
of present and past squared returns:

σ2
t = ω +

∞∑
k=1

ajX
2
t−j , (5)

where ω, aj , j = 1, 2, . . . are nonnegative constants. The general framework
leading to (3) and (5) was introduced by [Rob91]. [KL03] have shown that∑∞

j=1 aj ≤ 1 is a necessary condition for existence of a strictly stationary
solution to equations (3), (5), while [GKL00] showed that

∑∞
j=1 aj < 1 is

a sufficient condition for the existence of a strictly stationary solution. If∑∞
j=1 aj = 1, the existence of a strictly stationary solution has been proved

by [KL03] only in the case where the coefficients aj decay exponentially fast.
In any case, if a stationary solution exists, its variance, if finite, must be equal
to ω(1−

∑∞
k=1 ak)−1, so that it cannot be finite if

∑∞
k=1 ak = 1 and ω > 0. If

ω = 0, then the process which is identically equal to zero is a solution, but it
is not known whether a nontrivial solution exists.

In spite of a huge literature on the subject, the existence of a strictly or
weakly stationary solution to (3), (5) such that {σ2

t }, {|Xt|u} or {log(X2
t )}

has long memory is still an open question. If
∑∞

j=1 aj < 1, and the coefficients
aj decay sufficiently slowly, [GKL00] found that it is possible in such a model
to get hyperbolic decay in the autocorrelations {ρr} of the squares, though
the rates of decay they were able to obtain were proportional to r−θ with
θ > 1. Such autocorrelations are summable, unlike the autocorrelations of a
long-memory process with positive memory parameter. For instance, if the
weights {aj} are proportional to those given by the AR(∞) representation of
an ARFIMA(p, d, q) model, then θ = −1−d. If

∑∞
j=1 aj = 1, then the process

has infinite variance so long memory as defined here is irrelevant.
Let us mention for historical interest the FIGARCH (fractionally inte-

grated GARCH) model which appeared first in [BBM96]. In the FIGARCH
model, the weights {aj} are given by the AR(∞) representation of an
ARFIMA(p, d, q) model, with d ∈ (0, 1/2), which implies that

∑∞
j=1 aj = 1,

hence the very existence of FIGARCH series is an open question, and in any
case, if it exists, it cannot be weakly stationary. The lack of weak stationarity
of the FIGARCH model was pointed out by [BBM96]. Once again, at the time
of writing this paper, we are not aware of any rigorous result on this process
or on any ARCH(∞) process with long memory.

LARCH

Since the ARCH structure (appearently) fails to produce long memory, an
alternative definition of heteroskedasticity has been considered in which long
memory can be proved rigorously. [GS02] considered models which satisfy the
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equation Xt = ζtAt + Bt, where {ζt} is a sequence of i.i.d. centered ran-
dom variables with unit variance and At and Bt are linear in {Xt} instead of
quadratic as in the ARCH specification. This model nests the LARCH model
introduced by [Rob91], obtained for Bt ≡ 0. The advantage of this model is
that it can exhibit long memory in the conditional mean Bt and/or in the con-
ditional variance At, possibly with different memory parameters. See [GS02,
Corollary 4.4]. The process {Xt} also exhibits long memory with a memory
parameter depending on the memory parameters of the mean and the con-
ditional variance [GS02, Theorem 5.4]. If the conditional mean exhibits long
memory, then the partial sum process converges to the fractional Brownian
motion, and it converges to the standard Brownian motion otherwise. See
[GS02, Theorem 6.2]. The squares {X2

t } may also exhibit long memory, and
their partial sum process converge either to the fractional Brownian motion
or to a non Gaussian self-similar process. This family of processes is thus very
flexible. An extension to the multivariate case is given in [DTW05].

We conclude this section by the following remark. Even though these pro-
cesses are very different from Gaussian or linear processes, they share with
weakly dependent processes the Gaussian limit and the fact that weak limits
and L2 limits have consistent normalisations, in the sense that, if ξn denotes
one of the usual statistics computed on a time series, there exists a sequence
vn such that vnξn converges weakly to a non degenerate distribution and
v2
nE[ξ2

n] converges to a positive limit (which is the variance of the asymptotic
distribution). In the next subsection, we introduce models for which this is no
longer true.

2.2 Shot noise processes

General forms of the shot-noise process have been considered for a long time;
see for instance [Tak54], [Dal71]. Long memory shot noise processes have been
introduced more recently; an early reference seems to be [GMS93]. We present
some examples of processes related to shot noise which may exhibit long mem-
ory. For simplicity and brevity, we consider only stationary processes.

Let {tj , j ∈ Z} be the points of a stationary point process on the line,
numbered for instance in such a way that t−1 < 0 ≤ t0, and for t ≥ 0, let
N(t) =

∑
j≥0 1{tj≤t} be the number of points between time zero and t. Define

then

Xt =
∑
j∈Z

εj1{tj≤t<tj+ηj}, t ≥ 0. (6)

In this model, the shocks {εj} are an i.i.d. sequence; they are generated at
birth times {tj} and have durations {ηj}. The observation at time t is the
sum of all surviving present and past shocks. In model (6), we can take time
to be continuous, t ∈ R or discrete, t ∈ Z. This will be made precise later for
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each model considered. We now describe several well known special cases of
model (6).

(A1). Renewal-reward process; [TL86], [Liu00].
The durations are exactly the interarrival times of the renewal process:
η0 = t0, ηj = tj+1 − tj , and the shocks are independent of their birth
times. Then there is exactly one surviving shock at time t:

Xt = εN(t). (7)

(A2). ON-OFF model; [TWS97].
This process consists of alternating ON and OFF periods with indepen-
dent durations. Let {ηk}≥1 and {ζk}k≥1 be two independent i.i.d. se-
quences of positive random variables with finite mean. Let t0 be indepen-
dent of these sequences and define tj = t0 +

∑j
k=1(ηk + ζk). The shocks

εj are deterministic and equal to 1. Their duration is ηj . The ηjs are the
ON periods and the ζjs are the OFF periods. The first interval t0 can also
be split into two successive ON and OFF periods η0 and ζ0. The process
X can be expressed as

Xt = 1{tN(t)≤t<tN(t)+ηN(t)}. (8)

(A3). Error duration process; [Par99].
This process was introduced to model some macroeconomic data. The
birth times are deterministic, namely tj = j, the durations {ηj} are i.i.d.
with finite mean and

Xt =
∑
j≤t

εj1{t<j+ηj}. (9)

(A4). Infinite Source Poisson model.
If the tj are the points of a homogeneous Poisson process, the dura-
tions {ηj} are i.i.d. with finite mean and εj ≡ 1, we obtain the infinite
source Poisson model or M/G/∞ input model considered among others
in [MRRS02].
[MRR02] have considered a variant of this process where the shocks (re-
ferred to as transmission rates in this context) are random, and possibly
contemporaneously dependent with durations.

In the first two models, the durations satisfy ηj ≤ tj+1 − tj , hence are not
independent of the point process of arrivals (which is here a renewal process).
Nevertheless ηj is independent of the past points {tk, k ≤ j}. The process
can be defined for all t ≥ 0 without considering negative birth times and
shocks. In the last two models, the shocks and durations are independent of
the renewal process, and any past shock may contribute to the value of the
process at time t.
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Stationarity and second order properties

• The renewal-reward process (7) is strictly stationary since the renewal pro-
cess is stationary and the shocks are i.i.d. It is moroever weakly stationary if
the shocks have finite variance. Then E[Xt] = E[ε1] and

cov(X0, Xt) = E[ε2] P(η0 > t) = λE[ε21] E[(η1 − t)+] , (10)

where η0 is the delay distribution and λ = E[(t1 − t0)]−1 is intensity of the
stationary renewal process. Note that this relation would be true for a general
stationary point process. Cf. for instance [TL86] or [HHS04].

• The stationary version of the ON-OFF was studied in [HRS98]. The first
On and OFF period η0 and ζ0 can be defined in such a way that the process
X is stationary. Let Fon and Foff be the distribution functions of the ON and
OFF periods η1 and ζ1. [HRS98, Theorem 4.3] show that if 1−Fon is regularly
varying with index α ∈ (1, 2) and 1− Foff(t) = o(1− Fon(t)) as t→∞, then

cov(X0, Xt) ∼ cP(η0 > t) = cλE[(η1 − t)+] , (11)

• Consider now the case when the durations are independent of the birth
times. To be precise, assume that {(ηj , εj)} is an i.i.d. sequence of random
vectors, independent of the stationary point process of points {tj}. Then the
process {Xt} is strictly stationary as long as E[η1] <∞, and has finite variance
if E[ε21η1] <∞. Then E[Xt] = λE[ε1η1] and

cov(X0, Xt) = λE[ε21 (η1 − t)+]
+ {cov(ε1 N(−η1, 0], ε2 N(t− η2, t])− λE[ε1ε2 (η1 ∧ (η2 − t)+]} ,

where λ is the intensity of the stationary point process, i.e. λ−1 = E[t0]. The
last term has no known general expression for a general point process, but it
vanishes in two particular cases:

- if N is a homogeneous Poisson point process;
- if ε1 is centered and independent of η1.

In the latter case (10) holds, and in the former case, we obtain a formula
which generalizes (10):

cov(X0, Xt) = λE[ε21 (η1 − t)+] . (12)

We now see that second order long memory can be obtained if (10) holds and
the durations have regularly varying tails with index α ∈ (1, 2) or,

E[ε211{η1>t}] =  (t)t−α . (13)

Thus, if (13) and either (11) or (12) hold, then X has long memory with Hurst
index H = (3− α)/2 since

228 Rohit Deo, Mengchen Hsieh, Clifford M. Hurvich, and Philippe Soulier

cov(X0, Xt) ∼
λ

α− 1
 (t)t1−α . (14)

Examples of interest in teletraffic modeling where ε1 and η1 are not indepen-
dent but (13) holds are provided in [MRR02] and [FRS05].

We conjecture that (14) holds in a more general framework, at least if the
interarrival times of the point process have finite variance.

Weak convergence of partial sums

This class of long memory process exhibits a very distinguishing feature. In-
stead of converging weakly to a process with finite variance, dependent sta-
tionary increments such as the fractional Brownian motion, the partial sums
of some of these processes have been shown to converge to an α-stable Levy
process, that is, an α-stable process with independent and stationary incre-
ment. Here again there is no general result, but such a convergence is easy to
prove under restrictive assumptions. Define

ST (t) =
∫ Tt

0
{Xs − E[Xs]}ds .

Then it is known in the particular cases described above that the finite di-
mensional distributions of the process  (T )T−1/αST (for some slowly varying
function  ) converge weakly to those of an α-stable process. This was proved in
[TL86] for the renewal reward process, in [MRRS02] for the ON-OFF and infi-
nite source Poisson processes when the shocks are constant. A particular case
of dependent shocks and durations is considered in [MRR02]. [HHS04] proved
the result in discrete time for the error duration process; the adaptation to the
continuous time framework is straightforward. It is also probable that such a
convergence holds when the underlying point process is more general.

Thus, these processes are examples of second order long memory process
with Hurst index H ∈ (1/2, 1) such that T−HST (t) converges in probability to
zero. This behaviour is very surprising and might be problematic in statistical
applications, as illustrated in Section 3.

It must also be noted that convergence does not hold in the space D of
right-continuous, left-limited functions endowed with the J1 topology, since a
sequence of processes with continuous path which converge in distribution in
this sense must converge to a process with continuous paths. It was proved
in [RvdB00, Theorem 4.1] that this convergence holds in the M1 topology for
the infinite source Poisson process. For a definition and application of the M1
topology in queuing theory, see [Whi02].

Slow growth and fast growth

Another striking feature of these processes is the slow growth versus fast
growth phenomenon, first noticed by [TL86] for the renewal-reward process
and more rigorously investigated by [MRRS02] for the ON-OFF and infinite
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source Poisson process3. Consider M independent copies X(i), 1,≤ i ≤ M of
these processes and denote

AM,T (t) =
M∑
i=1

∫ Tt

0
{X(i)

s − E[Xs]}ds .

If M depends on T , then, according to the rate growth of M with respect to
T , a stable or Gaussian limit can be obtained. More precisely, the slow growth
and fast growth conditions are, up to slowly varying functions MT 1−α → 0
and MT 1−α → ∞, respectively. In other terms, the slow and fast growth
conditions are characterized by var(AM,T (1)) b(MT ) and var(AM,T (1))!
b(MT ), respectively, where b is the inverse of the quantile function of the
durations.

Under the slow growth condition, the finite dimensional distributions of
L(MT )(MT )−1/αAM,T converge to those of a Levy α-stable process, where L
is a slowly varying function. Under the fast growth condition, the sequence of
processes T−H −1/2(T )M−1/2AM,T converges, in the space D(R+) endowed
with the J1 topology, to the fractional Brownian motion with Hurst index
H = (3 − α)/2. It is thus seen that under the fast growth condition, the
behaviour of a Gaussian long memory process with Hurst index H is recovered.

Non stationary versions

If the sum defining the process X in (6) is limited to non negative indices
j, then the sum has always a finite number of terms and there is no restric-
tion on the distribution of the interarrival times tj+1 − tj and the durations
ηj . These models can then be nonstationary in two ways: either because of
initialisation, in which case a suitable choice of the initial distribution can
make the process stationary; or because these processes are non stable and
have no stationary distribution. The latter case arises when the interarrival
times and/or the durations have infinite mean. These models were studied by
[RR00] and [MR04] in the case where the point process of arrivals is a re-
newal process. Contrary to the stationary case, where heavy tailed durations
imply non Gaussian limits, the limiting process of the partial sums has non
stationary increments and can be Gaussian in some cases.

2.3 Long Memory in Counts

The time series of counts of the number of transactions in a given fixed interval
of time is of interest in financial econometrics. Empirical work suggests that
such series may possess long memory. See [DHH05]. Since the counts are
3 Actually, in the case of the Infinite Source Poisson process, [MRRS02] consider a

single process but with an increasing rate λ depending on T , rather than super-
position of independent copies. The results obtained are nevertheless of the same
nature.
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induced by the durations between transactions, it is of interest to study the
properties of durations, how these properties generate long memory in counts,
and whether there is a connection between potential long memory in durations
and long memory in counts.

The event times determine a counting process N(t) = Number of events
in (0, t]. Given any fixed clock-time spacing ∆t > 0, we can form the time
series {∆Nt′} = {N(t′∆t)−N [(t′ − 1)∆t]} for t′ = 1, 2, . . ., which counts the
number of events in the corresponding clock-time intervals of width ∆t. We
will refer to the {∆Nt′} as the counts. Let τk > 0 denote the waiting time
(duration) between the k − 1’st and the k’th transaction.

We give some preliminary definitions taken from [DVJ03].

Definition 1. A point process N(t) = N(0, t] is stationary if for every
r = 1, 2, . . . and all bounded Borel sets A1, . . . , Ar, the joint distribution of
{N(A1 + t), . . . , N(Ar + t)} does not depend on t ∈ [0,∞).

A second order stationary point process is long-range count dependent
(LRcD) if

lim
t→∞

var(N(t))
t

=∞ .

A second order stationary point process N(t) which is LRcD has Hurst
index H ∈ (1/2, 1) given by

H = sup{h : lim sup
t→∞

var(N(t))
t2h

=∞} .

Thus if the counts {∆Nt′}∞t′=−∞ on intervals of any fixed width ∆t > 0
are LRD with memory parameter d then the counting process N(t) must
be LRcD with Hurst index H = d + 1/2. Conversely, if N(t) is an LRcD
process with Hurst index H, then {∆Nt′} cannot have exponentially decaying
autocorrelations, and under the additional assumption of a power law decay of
these autocorrelations, {∆Nt′} is LRD with memory parameter d = H − 1/2.

There exists a probability measure P 0 under which the doubly infinite
sequence of durations {τk}∞k=−∞ are a stationary time series, i.e., the joint
distribution of any subcollection of the {τk} depends only on the lags be-
tween the entries. On the other hand, the point process N on the real line is
stationary under the measure P . A fundamental fact about point processes is
that in general (a notable exception is the Poisson process) there is no single
measure under which both the point process N and the durations {τk} are
stationary, i.e., in general P and P 0 are not the same. Nevertheless, there is a
one-to-one correspondence between the class of measures P 0 that determine
a stationary duration sequence and the class of measures P that determine
a stationary point process. The measure P 0 corresponding to P is called the
Palm distribution. The counts are stationary under P , while the durations are
stationary under P 0.

We now present an important theoretical result obtained by [Dal99].
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Theorem 1. A stationary renewal point process is LRcD and has Hurst in-
dex H = (1/2)(3−α) under P if the interarrival time has tail index 1 < α < 2
under P 0.

Theorem 1 establishes a connection between the tail index of a duration
process and the persistence of the counting process. According to the theorem,
the counting process will be LRcD if the duration process is iid with infinite
variance. Here, the memory parameter of the counts is completely determined
by the tail index of the durations.

This prompts the question as to whether long memory in the counts can
be generated solely by dependence in finite-variance durations. An answer in
the affirmative was given by [DRV00], who provide an example outside of the
framework of the popular econometric models. We now present a theorem on
the long-memory properties of counts generated by durations following the
LMSD model. The theorem is a special case of a result proved in [DHSW05],
who give sufficient conditions on durations to imply long memory in counts.

Theorem 2. If the durations {τk} are generated by the LMSD process with
memory parameter d, then the induced counting process N(t) has Hurst index
H = 1/2 + d, i.e. satisfies var(N(t)) ∼ Ct2d+1 under P as t → ∞ where
C > 0.

3 Estimation of the Hurst index or memory parameter

A weakly stationary process with autocovariance function satisfying (1) has
a spectral density f defined by

f(x) =
1
2π

∑
t∈Z

γ(t)eitx . (15)

This series converges uniformly on the compact subsets of [−π, π] \ {0} and
in L1([−π, π], dx). Under some strengthening of condition (1), the behaviour
of the function f at zero is related to the rate of decay of γ. For instance, if
we assume in addition that L is ultimately monotone, we obtain the following
Tauberian result [Taq03, Proposition 4.1], with d = H − 1/2.

lim
x→0

L(x)−1x2df(x) = π−1Γ (2d) cos(πd). (16)

Thus, a natural idea is to estimate the spectral density in order to estimate the
memory paramter d. The statistical tools are the discrete Fourier transform
(DFT) and the periodogram, defined for a sample U1, . . . , Un, as

JUn,j = (2πn)−1/2
n∑
t=1

Uteitwj , IU (ωj) = |JUn,j |2,
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where ωj = 2jπ/n, 1 ≤ j < n/2 are the so-called Fourier frequencies. (Note
that for clarity the index n is omitted from the notation). In the classical
weakly stationary short memory case (when the autocovariance function is
absolutely summable), it is well known that the periodogram is an asymptot-
ically unbiased estimator of the spectral density fU defined in (15). This is no
longer true for second order long memory processes. [HB93] showed (in the
case where the function L is continuous at zero but the extension is straight-
forward) that for any fixed positive integer j, there exists a positive constant
c(k,H) such that

lim
n→∞ E[IU (ωj)/fU (ωj)] = c(j,H).

The previous results are true for any second order long memory process.
Nevertheless, spectral method of estimation of the Hurst parameter, based
on the heuristic (but incorrect) assumption that the renormalised DFTs
f

−1/2
U (ωj)JUn,j are i.i.d. standard complex Gaussian have been proposed and

theoretically justifed in some cases. The most well known is the GPH esti-
mator of the Hurst index, introduced by [GPH83] and proved consistent and
asymptotically Gaussian for Gaussian long memory processes by [Rob95b] and
for a restricted class of linear processes by [Vel00]. Another estimator, often
referred to as the local Whittle or GSE estimator was introduced by [Kün87]
and again proved consistent asymptotically Gaussian by [Rob95a] for linear
long memory processes.

These estimators are built on the m first log-periodogram ordinates, where
m is an intermediate sequence, i.e. 1/m + m/n → 0 as n → ∞. The choice
of m is irrelevant to consistency of the estimator but has an influence on the
bias. The rate of convergence of these estimators, when known, is typically
slower than

√
n. Trimming of the lowest frequencies, which means taking the

 first frequencies out is sometimes used, but there is no theoretical need for
this practice, at least in the Gaussian case. See [HDB98]. For nonlinear series,
we are not sure yet if trimming may be needed in general.

In the following subsections, we review what is known, both theoretically
and empirically, about these and related methods for the different types of
nonlinear processes described previsoulsy.

We start by describing the behaviour of the renormalized DFTs at low
frequencies, that is, when the index j of the frequency ωj remains fixed as
n→∞.

3.1 Low-Frequency DFTs of Counts from Infinite-Variance
Durations

To the best of our knowledge there is no model in the literature for long
memory processes of counts. Hence the question of parametric estimation
has not arisen so far in this context. However, one may still be interested in
semiparametric estimation of long memory in counts. We present the following
result on the behavior of the Discrete Fourier Transforms (DFTs) of processes
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of counts induced by infinite-variance durations that will be of relevance to
us in understanding the behavior of the GPH estimator. Let n denote the
number of observations on the counts, ωj = 2πj/n, and define

J∆Nn,j =
1√
2πn

n∑
t′=1

∆Nt′eit′ωj .

Assume that the distribution of the durations satisfies

P (τk ≥ x) �  (x)x−α x→∞ (17)

where  (x) is a slowly varying function with limx→∞
�(kx)
�(x) = 1 ∀k > 0 and

 (x) is ultimately monotone at ∞.

Theorem 3. Let {τk} be i.i.d. random variables which satisfy (17) with α ∈
(1, 2) and mean µτ . Then for each fixed j,  (n)−1n1/2−1/αJ∆Nn,j converges in
distribution to a complex α-stable distribution. Moreover, for each fixed j,

ωdj J
∆N
n,j

p

→ 0, where d = 1− α/2.

The theorem implies that when j is fixed, the normalized periodogram of
the counts, ω2d

j I∆N (ωj) converges in probability to zero. The degeneracy of
the limiting distribution of the normalized DFTs of the counts suggests that
the inclusion of the very low frequencies may induce negative finite-sample
bias in semiparametric estimators. In addition, the fact that the suitably nor-
malized DFT has an asymptotic stable distribution could further degrade
the finite-sample behavior of semiparametric estimators, more so perhaps for
the Whittle-likelihood-based estimators than for the GPH estimator since the
latter uses the logarithmic transformation.

By contrast, for linear long-memory processes, the normalized periodogram
has a nondegenerate positive limiting distribution. See, for example, [TH94].

3.2 Low-Frequency DFTs of Counts from LMSD Durations

We now study the behavior of the low-frequency DFTs of counts generated
from finite-variance LMSD durations.

Theorem 4. Let the durations {τk} follow an LMSD model with memory
parameter d. Then for each fixed j, ωdj J

∆N
n,j , converges in distribution to a

zero-mean Gaussian random variable.

This result is identical to what would be obtained if the counts were a
linear long-memory process, and stands in stark contrast to Theorem 3. The
discrepancy between these two theorems suggests that the low frequencies will
contribute far more bias to semiparametric estimates of d based on counts
if the counts are generated by infinite-variance durations than if they were
generated from LMSD durations.
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3.3 Low and High Frequency DFTs of Shot-Noise Processes

Let X be either the renewal-reward process defined in (7) or the error duration
process (9). [HHS04], Theorem 4.1, have proved that Theorem 3 still holds,
i.e. n1/2−1/αJXn,j converges in distribution to an α-stable law, where α is the
tail index of the duration. This result can probably be extended to all the
shot-noise process for which convergence in distribution of the partial sum
process can be proved.

The DFTs of these processes have an interesting feature, related to the
slow growth/fast growth phenomenon. The high frequency DFTs, i. e. the
DFT JXn,j computed at a frequency ωj whose index j increases as nρ for some
ρ > 1−1/α, renormalized by the square root of the spectral density computed
at ωj , have a Gaussian weak limit. This is proved in Theorem 4.2 of [HHS04].

3.4 Estimation of the memory parameter of the LMSV and LMSD
models

We now discuss parametric and semiparametric estimation of the memory
parameter for the LMSV/LMSD models. Note that in both the LMSV and
LMSD models, logX2

t can be expressed as the sum of a long memory signal
and iid noise. Specifically, we have

logX2
t = µ + ht + ut, (18)

where µ = E
(
log v2

t

)
and ut = log v2

t − E
(
log v2

t

)
is a zero-mean iid series

independent of {ht}. Since all the existant methodology for estimation for
the LMSV model exploits only the above signal plus noise representation, the
methodology continues to hold for the LMSD model.

Assuming that {ht} is Gaussian, [DH01] derived asymptotic theory for the
log-periodogram regression estimator (GPH; [GPH83]) of d based on {logX2

t }.
This provides some justification for the use of GPH for estimating long mem-
ory in volatility. Nevertheless, it can also be seen from Theorem 1 of [DH01]
that the presence of the noise term {ut} induces a negative bias in the GPH
estimator, which in turn limits the number m of Fourier frequencies which
can be used in the estimator while still guaranteeing

√
m-consistency and

asymptotic normality. This upper bound, m = o[n4d/(4d+1)], where n is the
sample size, becomes increasingly stringent as d approaches zero. The results
in [DH01] assume that d > 0 and hence rule out valid tests for the presence of
long memory in {ht}. Such a test based on the GPH estimator was provided
and justified theoretically by [HS02].

[SP03] proposed a nonlinear log-periodogram regression estimator d̂NLP
of d, using Fourier frequencies 1, . . . ,m. They partially account for the noise
term {ut} through a first-order Taylor expansion about zero of the spectral
density of the observations, {logX2

t }. They establish the asymptotic normality
of m1/2(d̂NLP−d) under assumptions including n−4dm4d+1/2 → Const. Thus,
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d̂NLP, with a variance of order n−4d/(4d+1/2), converges faster than the GPH
estimator, but still arbitrarily slowly if d is sufficiently close to zero. [SP03]
also assumed that the noise and signal are Gaussian. This rules out most
LMSV/LMSD models, since {log v2

t } is typically non-Gaussian.
For the LMSV/LMSD model, results analogous to those of [DH01] were

obtained by [Art04] for the GSE estimator, based once again on {logX2
t }. The

use of GSE instead of GPH allows the assumption that {ht} is Gaussian to be
weakened to linearity in a Martingale difference sequence. [Art04] requires the
same restriction on m as in [DH01]. A test for the presence of long memory
in {ht} based on the GSE estimator was provided by [HMS05].

[HR03] proposed a local Whittle estimator of d, based on log squared re-
turns in the LMSV model. The local Whittle estimator, which may be viewed
as a generalized version of the GSE estimator, includes an additional term
in the Whittle criterion function to account for the contribution of the noise
term {ut} to the low frequency behavior of the spectral density of {logX2

t }.
The estimator is obtained from numerical optimization of the criterion func-
tion. It was found in the simulation study of [HR03] that the local Whittle
estimator can strongly outperform GPH, especially in terms of bias when m
is large.

Asymptotic properties of the local Whittle estimator were obtained by
[HMS05], who allowed {ht} to be a long-memory process, linear in a Martin-
gale difference sequence, with potential nonzero correlation with {ut}. Under
suitable regularity conditions on the spectral density of {ht}, [HMS05] es-
tablished the

√
m-consistency and asymptotic normality of the local Whittle

estimator, under certain conditions on m. If we assume that the short memory
component of the spectral density of {ht} is sufficiently smooth, then their
condition on m reduces to

lim
n→∞

(
m−4d−1+δn4d + n−4m5 log2(m)

)
= 0 (19)

for some arbitrarily small δ > 0.
The first term in (19) imposes a lower bound on the allowable value of m,

requiring that m tend to∞ faster than n4d/(4d+1). It is interesting that [DH01],
under similar smoothness assumptions, found that for m1/2(d̂GPH − d) to be
asymptotically normal with mean zero, where d̂GPH is the GPH estimator,
the bandwidth m must tend to ∞ at a rate slower than n4d/(4d+1). Thus for
any given d, the optimal rate of convergence for the local Whittle estimator
is faster than that for the GPH estimator.

Fully parametric estimation in LMSV/LMSD models once again is based
on {logX2

t } and exploits the signal plus noise representation (18). When {ht}
and {ut} are independent, the spectral density of {logX2

t } is simply the sum
of the spectral densities of {ht} and {ut}, viz.

flogX2(λ) = fh(λ) + σ2
u/(2π), (20)

where flogX2 is the spectral density of {logX2
t }, fh is the spectral density of

{ht} and σ2
u = var(ut), all determined by the assumed parametric model. This
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representation suggests the possibility of estimating the model parameters in
the frequency domain using the Whittle likelihood. Indeed, [Hos97] claims
that the resulting estimator is

√
n-consistent and asymptotically normal. We

believe that though the result provided in [Hos97] is correct, the proof is
flawed. [Deo95] has shown that the quasi-maximum likelihood estimator ob-
tained by maximizing the Gaussian likelihood of {logX2

t } in the time domain
is
√

n-consistent and asymptotically normal.
One drawback of the latent-variable LMSV/LMSD models is that it is dif-

ficult to derive the optimal predictor of |Xt|s. In the LMSV model, {|Xt|s}
for s > 0 serves as a proxy for volatility, while in the LMSD model, {Xt}
represents durations. A computationally efficient algorithm for optimal linear
prediction of such series was proposed in [DHL05], exploiting the Precondi-
tioned Conjugate Gradient (PCG) algorithm. In [CHL05], it is shown that the
computational cost of this algorithm is O(n log5/2 n), in contrast to the much
more expensive Levinson algorithm, which has cost of O(n2).

3.5 Simulations on the GPH Estimator for Counts

We simulated i.i.d. durations from a positive stable distribution with tail index
α = 1.5, with an implied d for the counts of .25. We also simulated durations
from an LMSD (1, d, 0) model with Weibull innovations, AR(1) parameter
of −.42, and d = .3545, as was estimated from actual tick-by-tick durations
in [DHH05]. The stable durations were multiplied by a constant c = 1.21 so
that the mean duration matches that found in actual data. For the LMSD
durations, we used c = 1. One unit in the rescaled durations is taken to repre-
sent one second. Tables 1 and 2, for the stable and LMSD cases respectively,
present the GPH estimates based on the resulting counts for different values
of ∆t, using n = 10, 000, m = n0.5 and m = n0.8. For the stable case, the
bias was far more strongly negative for the smaller value of m, whereas for
the LMSD case, the bias did not change dramatically with m. This is consis-
tent with the discussion in Section 3.2, and also with the averaged log− log
periodogram plots presented in Figure 1, where the averaging is taken over a
large number of replications, and all positive Fourier frequencies are consid-
ered, j = 1, . . . , n/2. The plot for the stable durations (upper panel) shows
a flat slope at the low frequencies. For this process, using more frequencies
in the regression seems to mitigate the negative bias induced by the flatness
in the lower frequencies as indicated by the less biased estimates of d when
m = n0.8.

For the LMSD process, by Theorem 2 the counts have the same memory
parameter as the durations, d = .3545. We did not find severe negative bias in
the GPH estimators on the counts, though the estimate of d seems to increase
with ∆t in the case when m = n0.5. The averaged log− log periodogram plot
presented in the lower panel of Figure 1 shows a near-perfect straight line
across all frequencies, which is quite different from the pattern we observed
in the case of counts based on stable durations. The straight-line relationship
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here is consistent with the bias results in our LMSD simulations, and with
the discussion in Section 3.2.

Statistical properties of d̂GPH and the choice of m for Gaussian long-
memory time series have been discussed in recent literature. [Rob95b] showed
for Gaussian processes that the GPH estimator is m1/2-consistent and asymp-
totically normal if an increasing number of low frequencies L is trimmed from
the regression of the log periodogram on log frequency. [HDB98] showed that
trimming can be avoided for Gaussian processes. In our simulations, we did
not use any trimming. There is as yet no theoretical justification for the GPH
estimator in the current context since the counts are clearly non-Gaussian,
and presumably constitute a nonlinear process. It is not clear whether trim-
ming would be required for such a theory, but our simulations and theoretical
results suggest that in some situations trimming may be helpful, while in
others it may not be needed.

Table 1. Mean of GPH estimators for counts with different �t. Counts generated
from iid stable durations with skewness parameter β = 0.8 and tail index α = 1.5.
The corresponding memory parameter for counts is d = .25. We generated 500
replications each with sample size n = 10, 000. The number of frequencies in the log
periodogram regression was m = n0.8 = 1585 and m =

√
n = 100. t-values marked

with ∗ reject the null hypothesis, d = 0.25 in favor of d < 0.25.

�t m = n0.5 m = n0.8

c = 1.21 Mean(d̂GPH) t-Value Mean(d̂GPH) t-Value

5 min 0.1059 −17.65∗ 0.2328 −5.77∗

10 min 0.0744 −23.08∗ 0.2212 −8.31∗

20 min 0.0715 −23.23∗ 0.2186 −7.75∗

Table 2. Mean of the GPH estimators for counts with different ∆t. Counts generated
from LMSD durations with Weibull (1, γ) shocks. The number of frequencies in the
log periodogram regression was m =

√
n and m = n0.8. We used d = .3545 and

γ = 1.3376 for our simulations. We simulated 200 replications of the counts, each
with sample size n = 10, 000. t-values marked with ∗ reject the null hypothesis,
d = 0.3545 in favor of d < 0.3545.

�t m = n0.5 m = n0.8

c = 1 Mean(d̂GPH) t-Value Mean(d̂GPH) t-Value

5 min 0.3458 −1.76∗ 0.3471 −6.49∗

30 min 0.3873 3.45∗ 0.3469 −3.59∗

60 min 0.3923 4.05∗ 0.3478 −3.20∗
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Fig. 1. Averaged log − log periodogram plots for the counts generated from iid
Stable and LMSD durations.

• • • • • • • • • • •••••••••••••
•••••••

••
•
•
•
••••
••
•••
•
•
••••••

••••••••••••
•
••••
••••
•
•••••••••••••••

••
•••••••
••••
••••••••
•
•••••
••
•••••
•••••••••••
•••
•

•
••
••••
••
••
••••••
•
••
•
••
••••
•••••••
•
•••
•••••••••••
••••••
•
•••
••••
•
•
•••••••••••
••
•••
•
•••••
•••••••
•
••
•
•
•••••••••••••
•
•••••
•
•••
•
•
••••
••••
•••
•
•••
•••
•••
•••••••••
•
••
•••••
••••
•
••
•
•••••
••
•••
•
•••
•
••••
•
•••
•••••••••••
••••
•
••
••
••••••
•
••
•
••
••
•••••••
•
••
•
••
•
••••••••
••••••
•
•••
•
••
•••••••••
•••••••••
•
•
•••••••
•••
••••
••

•
•••••••••
•••••••
•
••
•••
•
•••••
••••••
•
••
•••••••
••••

•
•••
••••••
•
•
••••••••••••••••••
••••••
•
•••••••••••
•
••••
•••
•
•••••
•
•
••••
•
•••
••••
•
•••••••
••••••••••••
••
••
••••••
••••••

•
•••••
••
••
••••••
••
••••••••••
•
•••
••
•
••
•
••••
••
••
•
••••
•
•
•
••
••
•
••
•••
•
•
•
•••••••
••

•
•••••
•••••••••
•••
•
•••
••
•••••••
•
•••
•
•
•••••••
•••
•

••
•••
•••••
••••••••••
•••••
••••
•••••••
•••••
•
••
••
••••••••
•••
•
••
•••
•
•
•••
•
•
••
••••
•••••••••••
••
•••••••
•
•
•••
••
•
••••
••••••
•
•
••
•
••
•
••
••
•
••
•••••••
•••
•
•••••••
•
•
••••••
•
•
•
•
•••
•
•••••
•
•••
•••
••••
•••
••
•
•••••
•••••
•
•
•
•••••••
••••
•
••
••
••
••••••
•••
•
•
••
•
••
•
•
•
••
•••••
•
•••
••
•
•••

••
•••••••••
••••••
•••••••••••
••
•
•••••••
•••••••
•
•••••••
•••
••
••••••
••
•••••••
•••••
•••
•
•
•••••
•••••
•
•
•••••
••••••
•••
•
•••
••
••••••••••••

•
•••••
••••
•
•
••••
•
•
•
•••••
•
••••••
•••••
•
••
•••••••
•
•
••
•
•
•
•
•
••
•
•••••••••
•••••••••
••••••••••••••
••••••
•••
••••••
••••
•
•
••••
••••••
•
••
••
•
•••••••••••••
•••
••
•••
••
•
••
••
•••
•
•••••••
•••••••••
•
•
•
•
•
•••
•
•••
••••••
•

••
•••
•••
•••
••••••••
••••••
•
•
•••••
•

•••
••
•
•
••••
•
•
•••
•
••
•
•••••
••
•••
••••••
••••

•

••••••
••
•••
•
••••
•
••
••
•
•
••
••••••
•
••••
•••
••••
••••••
••••••••••
••
••••
••
•••
••••••
••••
••••••••
••••
••
•
••••••
••
•
••
••
•
•
•••••
•

•
•••
•

••
••
•
•
••
••••
•••••••
•
•
•
••••
•••••
•••
••
•
•••••
•••
••••••••
•••
•

•
•••
•••
•
•••
•••••••
•
•
•••••
••••••
•••••••••
•
••
•
•••••
•
•••••••
•••
•••
•
••••••••••••
••
•••
•

•
•
•••••
•
••
•••
••••
•••••••••

•
••••
•
••••••
•••
•••••••
•••••••
•
••
•
••••
••••••
•••••
•
•
•
•••
•
•••
•
••
••
•
•
•
•
••
•••••••••••••••••••
•
•••
••
•
•
••
•
•••
••
•••

•

•••
••
•
•
••••
•
•••••
••
•••••••
•
•
•
•••
•••
•
•
•••
•
••••••
••
•
••••••••
••••••
•
••••••••••••••
•••
•••••
••
•••
••••
•••••
••••••
••
••
•••
•••••
•
•••••
••••••••••••
••••••
••
•••
•
••••••
•••••
•
•
••
•••
•••
•
••
••
•••
•
•••
••
••
•••••••••••
••••••••••••••••
••••••••••••

••
•••
•
••••
•
•••
•
•••••
••
••••
••••••
•
••
•••••
•
••
•
•
••••••
••••••
•
••
•••
•
•••
•
•
•••••
•••••
•
•
••••••
•••••••
•
•••••••
••
•••
•
••••
•
••
••
•
•
•
•••••••
•••••
••
•

•
•••••
••••••••••
•
••
•
•••
••

•
••••••
•
•••
•••••••••
•
•
•
••
•

••
••••••
•
•••
•
••••
••••••
••
••••••
••
•
••
•••
•••••
••••
•
••
•••••
••••
•
•
•
••••••••••
•
•
••••••••
••
•
••••••••••
•

••
•••••••••••••••
•••••••••••••
•
••••••••
•
••
•••••
••••••••
•••••
•
••
••
•
•
••
•••••
•••••••
••••
•••
••••
••••
••
•

••
••
•••••••
•••
•
•••••
••
••
•••
•
••••
•
•
•••
•
•••
••••••
•••
•
•••
•
••
•
•
••••
•
•••••
•••
•••••••••
••
•
•••••••
•••
••••
••••••••
•••••••
•
••
••
•
••••••
•••••
••••••
•
•••
••••
••
••
••••••
•
•••••
•••
•
••••••••••••••
•
••
••••••••••••••••
•••
•
••
••••••••
••••
•
•
•••••
•
••
••
•
•
•
•
•••••
•••••••
•
••
•••
•
•
••••••
••••••••••
•
••••••••••
••
••••
••••••
•
•
•
••
••••••
•
•••••
••••
•
•••
••
••
•
•
•
•
•••••
••••
•
•
•••••••••
••••••
•
••
••
•
••
•
•
•
••••
••
•
••
••••••
•
•
••
••••••••
••••••••
•
•••••••••
•
••
••
••
••
••••••••••
•••••
••••••
•••
•••
•
••
••••
•
••
•••
••••
•
•
•
••
•••
•••••••
••
••
••
•••••
•
•••••••
••••
••
•
••••
••
•
••
•
••••••••
•

•

••
••••
••
•
•••••
•
•••••••••
•
•
•••
•
••••
•
•••
•••••
•••••••••••
••
•
•••
••••••
•
•
•
•••••
•••••••
•••••••
•••••••••••
•
•••
•

•
•••
•
•••••
•••••
••
•
••••
••
•
•••
•
••••
••••••
••••
••••••••••
•••••••••
•••
••••••
•
•••••••••
•
••
•
•••••
••••
•
•••••
•
••
••
•
•••••••
•••••••••
•••
•
••••
••
•••
•
•
•
••••
•
•
••••
•••
•
••••••••
••••••••
••
•
•••••
•
•
•
•••••
••
•
•
••••••••••••
•••
••
•
•
•••
•
••••••
••••••••••
••••
•
•
•••••
•••
•
•
•
•
••••••••
•
•••
•
•••••••
•••
•
•••
•
•••••••
•
•••
••••••••••••
•
••••
•••••
•
•
•••••
•
••
•••
••
•
•••••
•••••••
•
••
••••••••••••
••
•
•
•
••
••••••••
••
•
•
••
••••••
••••
•
•••••••••
•
••
•
••
•••••••
••••••
•
•

•
•••••••••
••••••
•
•
••
•
•
•
•••••••••••••••
•••
•
••••
•
•
•
•••••••
•
•••••
•••••
•
••••••
••
••
••
••••••••
•••
•
•
••
•
••
••
•
•
•••••••
••
••••••••••
•
••••
•
•
•••
•••
••
•
•
••
•
••
••••••••••••
••••••
••
•
••
••••
•
•••••
•

•

•••••••••••
•
•••••
••
••
•
•••
•
••
•••
•

•
•
••
•
••
•••••••
•••••••••••
•••••
•
•••••
•••••••
•
••
•••
••••
•••••••
•
•
•••••
•••••••
•
•••
•
••••••
••
•••••••
•
•
••••••
•

•
•••••••••
••••••••
•
•••
•••
••
•
••
•

•
•••••••••
•
•
••••
•
••
••
•
••••
•••
•••••••••••••
•••
•••••••
•
•
••
••••••
•
••••
•
•••
••••••••
•••
••
•
•••••••••
••••
•
••
••
••••
•
•
•
•••••
••••
•
•
••••
•
••••
••
•
•••••••
••••••••
•••••
•••••••••
•••••••••
•••
•
•
••••
•
••
•••
•
•••
•••
••
•
••
•••••
••••••••
•
•••
•
•
••
••
••
•
••
••••
•••
•••••
••
•••••
•
••••
•

•
••••
••••••
•••
•
•••••
••••
•
•
•••
•
•••••
•••••••
•••••••••••
••
•••
••
•••
•
••
••
••••••
•••••••
•
•
•••••
••••
•
••••••••
••••
•••
•
••
•
•••
••••
•
•
••••
••••
••
•
•
••
•
••••
••••
•••••
•
•••••••••••
•••••••
•
•
•
••
••••••
•••••
•
•••
•
••
•
••••••
•••••••••••••••
•••
••
•
•••••
••••
••••
•
•
••
••••
••
•••••
••••
•
••
•
•••
•••••
•••
•••••••
•••••••
•
••
•
••••
•
••••
•
•
••••
•••
•••••
••
•••••

•
••
•
••••
••••
••••••
••
•
•••••••••
•
••
•••
•
•
••••
•
••••
•
••
••••••
•
•
••••••
•••
••
••••••••••
•••••••
••••••••
••••••
•
•
•••••••••••
•
•
•••••••
•
•••••••
•••••
•••••
••••
•
•••••••••••
•
••••
•
•••••
•
•••••
•
•

••
•••
•••••••••
••••
•••••••••
•
•
•
••
•
•••
•••
•
•••••
••
•
••
•
•
••
•
•
•
••••
•
•
•••••••
••••
•••
•
•
•
•
•
•
•••••
••••••
•
•••
•
••
••••••
••
•
•
•••
••
•••

•

••
••••••
•
••
•
••••
••••••••
••••
••
•••
••••
•
•
•
••••
••
•
•
•
•••••
•
••
••
•
••
••
••
•
••••••••
•••••
•
•
•
•
•
••
•••
••
••
•
•
••
•
••••
•
•••
•
•
•••
••••
•••
••••
••••
•

•
•
••
••••••
•
•••
•••
•
•••••
••
•••••
•
••
•
••••••
•••••••••
•••••
••
•
••
••
•••••••
•

•••
••
•
•
•
••
•••
•••
•
•
•
••••••
••••••••••••••
•
•
••••
•
•••
•
••••
••••
•
•
•
••••
•••••
•
••
•••••••

•
••••••
•••
•
••••••
•
•
••••••
•••••
•
•
•
•••
••
••
••

•

Log Periodogram vs. Log Frequency, iid Stable durations
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3.6 Estimation of the memory parameter of the Infinite Source
Poisson process

Due to the underlying Poisson point process, the Infinite Poisson Source pro-
cess is a very mathematically tractable model. Computations are very easy
and in particular, convenient formulas for cumulants of integrals along paths
of the process are available. This allows to derive the theoretical properties of
estimators of the Hurst index or memory parameter. [FRS05] have defined an
estimator of the Hurst index of the Infinite Poisson source process (with ran-
dom transmission rate) related to the GSE and proved its consistency and rate
of convergence. Instead of using the DFTs of the process, so-called wavelets
coefficients are defined as follows. Let ψ be a measurable compactly supported
function on R such that

∫
ψ(s) ds = 0. For j ∈ N and k = 0, . . . , 2j − 1, define

wj,k = 2j/2
∫

ψ(2−js− k)Xs ds .

If (13) holds, then E[wj,k] = 0 and var(wj,k) = L(2j)2(2−α)j = L(2j)22dj ,
where α is the tail index of the durations, d = 1−α/2 is the memory parameter
and L is a slowly varying function at infinity. This scaling property makes it
natural to define a contrast function

Ŵ (d′) = log
(∑

(j,k)∈∆ 2−2d′jw2
j,k

)
+ δd′ log(2) ,

where ∆ is the admissible set of coefficients, which depends on the interval
of observation and the support of the function ψ. The estimator of d is then
d̂ = arg mind′∈(0,1/2) W (d′). [FRS05] have proved under some additional tech-
nical assumptions that this estimator is consistent. The rate of convergence
can be obtained, but the asymptotic distribution is not known, though it is
conjectured to be Gaussian, if the set ∆ is properly chosen.

Note in passing that here again, the slow growth/fast growth phenomenon
arises. It can be shown, if the shocks and durations are independent, that for
fixed k, 2(1−α)j/2wj,k converges to an α-stable distribution, but if k tends to
infinity at a suitable rate, 2−djwjk converges to a complex Gaussian distribu-
tion. This slow growth/fast growth phenomenon is certainly a very important
property of these processes that should be understood more deeply.
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Appendix

Proof ( of Theorem 3). For simplicity, we set the clock-time spacing ∆t = 1.
Define

Sτ,n(θ) =
�nθ�∑
k=1

τk 0 ≤ θ ≤ 1 ,

S∆N,n(θ) =
�nθ�∑
t′=1

∆Nt′ 0 ≤ θ ≤ 1 .

Since α < 2 and {τk} is an i.i.d. sequence, by the fonctional central limit
theorem (FCLT) for random variables in the domain of attraction of a stable
law (see [EKM97, Theorem 2.4.10]), l(n)n−1/α{Sτ,n(θ) − "nθ#µτ} converges
weakly in D(0, 1) to an α-stable motion, for some slowly varying function l.
Now define

Un(θ) = (2π)−1/2l(n)n−1/α{S∆N,n(θ)− "nθ#/µτ} .

By the equivalence of FCLTs for the counting process and its associated partial
sums of duration process (see [IW71]), Un also converges weakly in D([0, 1])
to an α-stable motion, say S. Summation by parts yields, for any nonzero
Fourier frequency ωj (with fixed j > 0)

l(n)n1/2−1/αJ∆Nn,j = (2π)−1/2l(n)n−1/α
n∑

t′=1

{∆Nt′ − 1/µτ} eit′ωj

=
n∑

t′=1

{Un(t′/n)− Un((t′ − 1)/n)} eit′ωj =
∫ 1

0
e2ijπx dUn(x) .

Hence by the continuous mapping theorem
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√
2π l(n)n1/2−1/αJ∆Nn,j

d−→
∫ 1

0
e2iπjx dS(x)

which is a stochastic integral with respect to a stable motion, hence has a
stable law.

To prove the second statement of the theorem, note that for fixed j and
as n→∞, f(ωj) ∼ l1(n)ω−2d

j for some slowly varying function l1, so

f−1/2(ωj)J∆Nn,j =
l(n)n1/α−1/2

f1/2(ωj)
J∆Nn,j

l(n)n1/α−1/2

∼ C1l(n)n1/α+α/2−3/2 J∆Nn,j

µ
−1−1/α
τ l(n)n1/α−1/2

. (21)

Since 1/α+α/2−3/2 < 0, we have l(n)n1/α+α/2−3/2 → 0. Hence by Slutsky’s
Theorem, (21) converges to zero. ��

Proof (of Theorem 4). Let Sn(t) = n−H∑[nt]
k=1(τk − E[τk]), t ∈ (0, 1). It is

shown in Surgailis and Viano (2002) that Sn(t) d⇒ BH(t) in D([0, 1]) where
BH(t) is fractional Brownian motion with Hurst parameter H = d + 1/2.
Thus, by Iglehart and Whitt (1971), it follows that t−HN → ABH in D([0, 1]),
where A is a nonzero constant. The result follows as above by the continuous
mapping theorem and summation by parts. ��
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1 Introduction

The purpose of this chapter is to propose a unified framework for the study
of ARCH(∞) processes that are commonly used in the financial econometrics
literature. We extend the study, based on Volterra expansions, of univariate
ARCH(∞) processes by Giraitis et al. [GKL00] and Giraitis and Surgailis
[GS02] to the multi-dimensional case.

Let {ξt}t∈Z be a sequence of real valued random matrices independent and
identically distributed of size d×m, {aj}j∈N∗ be a sequence of real matrices
m× d, and a be a real vector of dimension m. The vector ARCH(∞) process
is defined as the solution to the recurrence equation:

Xt = ξt

⎛⎝a +
∞∑
j=1

ajXt−j

⎞⎠ . (1)

The following section 2 displays a chaotic expansion solution to this equa-
tion; we also consider a random fields extension of this model. Some approx-
imations of this solutions are listed in the next section 3, where we consider
approximations by m-dependent sequences, coupling results and approxima-
tions by Markov sequences. Section 4 details the weak dependence properties
of the model and section 5 provides an existence and uniqueness condition
for the solution of the previous equation; in that case, long range dependence
may occur. The end of this section is dedicated to review examples of this
vector valued model.

The vector ARCH(∞) model nests a large variety of models, the two first
extensions being obvious:

(A1). The univariate linear ARCH(∞) (LARCH) model, where the Xt and aj
are scalar,
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(A2). The bilinear model, with

Xt = ζt

⎛⎝α +
∞∑
j=1

αjXt−j

⎞⎠+ β +
∞∑
j=1

βjXt−j ,

where all variables are scalar, and ζt are iid centered innovations. We set

ξt = (ζt, 1) , a =
(

α
β

)
, aj =

(
αj
βj

)
.

In that case, the expansion (3) is the same as the one used by Giraitis
and Surgailis [GS02].

(A3). With a suitable re-parameterization, this vector ARCH(∞) nests the stan-
dard GARCH–type processes used in the financial econometrics literature
for modeling the non-linear structure of the conditional second moments.
The GARCH(p, q) model is defined as

rt = σtεt ,

σ2
t =

p∑
j=1

βjσ
2
t−j + γ0 +

q∑
j=1

γjr
2
t−j , γ0 > 0 , γj ≥ 0 , βi ≥ 0 ,

where the εt are centered and iid. This model is nested in the class of
bilinear models with the following re-parameterization

α0 =
γ0

1−
∑

βi
,
∑

αiz
i =

∑
γiz

i

1−
∑

βizi
,

see Giraitis et al. [GLS05]. The covariance function of the sequence {r2
t }

has an exponential decay, which is implied by the exponential decay of
the sequence of weights αj ; see Giraitis et al. [GKL00].

(A4). The ARCH(∞) model, where the sequence of weights βj might have either
a exponential decay or a hyperbolic decay.

rt = σtεt , σ2
t = β0 +

∞∑
j=1

βjr
2
t−j ,

with the following parameterization

Xt = r2
t , ξt =

(
ε2
t − λ1

κ
, 1
)

, a =
(

κβ0
λ1β0

)
, aj =

(
κβj
λ1βj

)
,

where the ε are centered and iid, λ1 = E(ε2
0), and κ2 = var(ε2

0). Note that
the first coordinate of ξ0 is thus a centered random variable. Conditions
for stationarity of the unidimensional ARCH(∞) model have been derived
using Volterra expansions by Giraitis et al. [GKL00] and Giraitis and
Surgailis [GS02]. The present paper is a multidimensional generalization
of these previous works.
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(A5). We can consider models with several innovations and variables such as:

Zt = ζ1,t

⎛⎝α +
∞∑
j=1

α1
jZt−j

⎞⎠+ µ1,t

⎛⎝β +
∞∑
j=1

β1
jYt−j

⎞⎠+ γ +
∞∑
j=1

γ1
jZt−j ,

Yt = ζ2,t

⎛⎝α +
∞∑
j=1

α2
jYt−j

⎞⎠+ µ2,t

⎛⎝β +
∞∑
j=1

β2
jZt−j

⎞⎠+ γ +
∞∑
j=1

γ2
jYt−j .

This model is straightforwardly described through equation (1) with d = 2

and m = 3. Here ξt =
(

ζ1,t µ1,t 1
ζ2,t µ2,t 1

)
is a 2×3 iid sequence, aj =

⎛⎝α1
j α2

j

β1
j β2

j

γ1
j γ2

j

⎞⎠
is a 3 × 2 matrix and a =

⎛⎝α
β
γ

⎞⎠ is a vector in IR3 and the process

Xt =
(

Zt
Yt

)
is a vector of dimension 2. Dimensions m = 3 and d = 2 are

only set here for simplicity. Replacing m = 3 by m = 6 would allow to
consider different coefficients α, β and γ for both lines in this system of
two coupled equations.
This generalizes the class of multivariate ARCH(∞) processes, defined in
the p-dimensional case as:

Rt = Σ
1
2
t εt ,

where Rt is a p–dimensional vector, Σt is a p× p positive definite matrix,
and εt is a p–dimensional vector. Those models are formally investigated
by Farid Boussama in [Bou98]; published references include [Bou00] and
[EK96].
This model is of interest in financial econometrics as the volatility of asset
prices of linked markets, e.g., major currencies in the Foreign Exchange
(FX) market, are correlated, and in some cases display a common strong
dependence structure; see [Tey97]. This common dependence structure can
be modeled with the assumption that the innovations ε1, . . . , εp are cor-
related. An (empirically) interesting case for the bivariate model (Xt, Yt)
is obtained with the assumption that the (ζ1,t, ζ2,t) are cross-correlated.

2 Existence and Uniqueness in Lp

In the sequel, we set A(x) =
∑

j≥x ‖aj‖, A = A(1), where ‖ · ‖ denotes the
matrix norm.

Theorem 1. Let p > 0, we denote
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ϕ =
∑
j≥1

‖aj‖p∧1 (E‖ξ0‖p)
1

p∧1 . (2)

If ϕ < 1, then a stationary solution in Lp to equation (1) is given by:

Xt = ξt

⎛⎝a +
∞∑
k=1

∑
j1,...,jk≥1

aj1ξt−j1 · · · ajkξt−j1−···−jk · a

⎞⎠ . (3)

Proof. The norm used for the matrices is any multiplicative norm. We have
to show that expression (3) is well defined under the conditions stated above,
converges absolutely in Lp, and that it satisfies equation (1).
Step 1. We first show that expression (3) is well defined (after the second line
we omit to precise the norms). For p ≥ 1, we have∑

j1,...,jk≥1

‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖m×m

≤
∑

j1,...,jk≥1

‖aj1‖m×d · · · ‖ajk‖m×d‖ξt−j1‖d×m · · · ‖ξt−j1−···−jk‖d×m .

The series thus converges in norm Lp because
∞∑
k=1

∑
j1,...,jk≥1

(E‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖p)
1/p

≤
∞∑
k=1

∑
j1,...,jk≥1

‖aj1‖ · · · ‖ajk‖(E‖ξt−j1‖p)1/p · · · (E‖ξt−j1−···−jk‖p)1/p

≤
∞∑
k=1

∑
j1,...,jk≥1

‖aj1‖ · · · ‖ajk‖ (E‖ξ0‖p)
k
p ≤

∞∑
k=1

ϕk .

The series
∑∞

k=1 ϕk is finite since ϕ < 1, hence the series (3) converges in Lp.
For p < 1, the convergence is defined through the metric dp(U, V ) =

E‖U − V ‖p between vector valued Lp random variables U, V and we start
from⎛⎝ ∑

j1,...,jk≥1

‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖

⎞⎠p

≤
∑

j1,...,jk≥1

‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖p ,

and we use the same arguments as for p = 1.
Step 2. We now show that equation (3) is solution to equation (1):

Xt = ξt

⎛⎝a +
∞∑
k=1

∑
j1,...jk≥1

aj1ξt−j1 · · · ajkξt−j1−···−jk · a

⎞⎠
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= ξt

⎛⎝a +
∑
j≥1

ajξt−j+

+
∞∑
k=2

∑
j1≥1

ajξt−j
∑

j2,...,jk≥1

aj2ξt−j−j2 · · · ajkξt−j−j2−···−jk · a

⎞⎠
= ξt

⎛⎝a +
∑
j≥1

aj×

ξt−j
{
a +

∞∑
k=2

∑
j2,...,jk≥1

aj2ξ(t−j)−j2 · · · ajkξ(t−j)−j2−···−jk · a
}⎞⎠

= ξt

(
a +

∑
j≥1

ajXt−j
)

.

Remark 1. The uniqueness of this solution is not demonstrated without addi-
tional condition; see Theorem 2 and section 5 below.

Theorem 2. Assume that p ≥ 1 then from (2), ϕ =
∑

j ‖aj‖‖ξ0‖p. Assume
ϕ < 1. If a stationary solution (Yt)t∈ZZ to equation (1) exists (a.s.), if Yt is
independent of the sigma-algebra generated by {ξs; s > t}, for each t ∈ ZZ,
then this solution is also in Lp and it is (a.s.) equal to the previous solution
(Xt)t∈ZZ defined by equation (3).

Proof. Step 1. We first prove that ‖Y0‖p < ∞. From equation (1) and from
{Yt}t∈ZZ’s stationarity, we derive

‖Y0‖p ≤ ‖ξ0‖p

⎛⎝‖a‖+
∞∑
j=1

‖aj‖‖Y0‖p

⎞⎠ <∞ ,

hence, the first point in the theorem follows from:

‖Y0‖p ≤
‖ξ0‖p‖a‖

1− ϕ
<∞ .

Step 2. As in [GKL00] we write recursively Yt = ξt

(
a +

∑
j≥1 ajYt−j

)
=

Xm
t + Smt , with

Xm
t = ξt

⎛⎝a +
m∑
k=1

∑
j1,··· ,jk≥1

aj1ξt−j1 · · · ajkξt−j1···−jka

⎞⎠ ,

Smt = ξt

⎛⎝ ∑
j1,··· ,jm+1≥1

aj1ξt−j1 · · · ajmξt−j1···−jmajm+1Yt−j1···−jm

⎞⎠ .
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We have

‖Smt ‖p ≤ ‖ξ‖p
∑

j1,··· ,jm+1≥1

‖aj1‖ · · · ‖ajm+1‖‖ξ‖mp ‖Y0‖p = ‖Y0‖pϕm+1 .

We recall the additive decomposition of the chaotic expansion Xt in equation
(3) as a finite expansion plus a negligible remainder that can be controlled
Xt = Xm

t + Rm
t where

Rm
t = ξt

⎛⎝∑
k>m

∑
j1,··· ,jk≥1

aj1ξt−j1 · · · ajkξt−j1···−jka

⎞⎠ ,

satisfies
‖Rm

t ‖p ≤ ‖a‖‖ξ0‖p
∑
k>m

ϕk ≤ ‖a‖‖ξ0‖p
ϕm

1− ϕ
→ 0 .

Then, the difference between those two solutions is controlled as a function of
m with Xt − Yt = Rm

t − Smt , hence

‖Xt − Yt‖p ≤ ‖Rm
t ‖p + ‖Smt ‖p

≤ ϕm

1− ϕ
‖a‖‖ξ0‖p + ‖Y0‖pϕm ≤ 2

ϕm

1− ϕ
‖a‖‖ξ0‖p ,

and thus Yt = Xt a.s.

We also consider the following extension of equation (1) to random fields
{Xt}t∈ZD :

Lemma 1. Assume that aj are m × d-matrices now defined for each j ∈
Z
D \ {0}. Fix an arbitrary norm ‖ · ‖ on Z

D. We extend the previous function
A to A(x) =

∑
‖j‖≥x ‖aj‖, A = A(1) and we suppose with p = ∞ that ϕ =

A‖ξ0‖∞ < 1. Then the random field

Xt = ξt

⎛⎝a +
∞∑
k=1

∑
j1 �=0

· · ·
∑
jk �=0

aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞⎠ (4)

is a solution to the recursive equation:

Xt = ξt

⎛⎝a +
∑
j �=0

ajXt−j

⎞⎠ , t ∈ Z
D . (5)

Moreover, each stationary solution to this equation is also bounded and equals
Xt, a.s.

The proof is the same as before, we first prove that any solution is bounded
and we expand it as the sum of the first terms in this chaotic expansion, up to
a small remainder (wrt to sup norm); the only important modification follows
from the fact that now j1 + · · ·+ j� may really vanish for nonzero ji’s which
entails that the bound with expectation has to be replaced by upper bounds.
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Remark 2. In the previous lemma, the independence of the ξ’s does not play
a role. We may have stated it for arbitrary random fields {ξt} such that
‖ξt‖∞ ≤M for each t ∈ Z

D; such models with dependent inputs are interest-
ing but assumptions on the innovations are indeed very strong. This means
that such models are heteroscedastic but with bounded innovations: according
to [MH04], this restriction excludes extreme phenomena like crashes and bub-
bles. Mandelbrot school has shown from the seminal paper [Man63] that asset
prices returns do not have a Gaussian distribution as the number of extreme
deviations, the so–called “Noah effects”, of asset returns is far greater than
what is allowed by the Normal distribution, even with ARCH–type effects. It
is the reason why this extension is not pursued in the present paper.

3 Approximations

This section is aimed to approximate a sequence {Xt} given by (3), solu-
tion to eqn. (1) by a sequence {X̃t}. We shall prove that we can control the
approximation error E‖Xt − X̃t‖ within reasonable small bounds.

3.1 Approximation by Independence

The purpose is to approximate Xt by a random variable independent of X0.
We set

X̃t = ξt

⎛⎝a +
∞∑
k=1

∑
j1+···+jk<t

aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞⎠ .

Proposition 1. Define ϕ from (2). A bound for the error is given by:

E‖Xt − X̃t‖ ≤ E‖ξ0‖
(

E‖ξ0‖
t−1∑
k=1

kϕk−1A

(
t

k

)
+

ϕt

1− ϕ

)
‖a‖ .

Furthermore, we have as particular results that if b, C > 0 and q ∈ [0, 1), then
for a suitable choice of constants K, K ′:

E‖Xt − X̃t‖ ≤
{

K (log(t))b∨1

tb
, for Riemannian decays A(x) ≤ Cx−b ,

K ′(q ∨ ϕ)
√
t , for geometric decays A(x) ≤ Cqx .

Remark 3. Note that in the first case this decay is essentially the same Rie-
mannian one while it is sub-geometric (like t �→ e−c

√
t) when the decay of the

coefficients is geometric.

Remark 4. In the paper Riemannian or Geometric decays always refer to the
previous relations.
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Idea of the Proof. A careful study of the terms in Xt’s expansion which do
not appear in X̃t entails the following bound with the triangular inequality.
For this, quote that if j1 + · · · + jk ≥ t for some k ≥ 1 then, at least, one of
the indices j1, . . . , or jk is larger than t/k. The additional term corresponds
to those terms with indices k > t in the expansion (3).

The following extension to the case of the random fields determined in
lemma 1 is immediate by setting

X̃t = ξt

⎛⎜⎝a +
∞∑
k=1

∑
j1, . . . , jk �= 0

‖j1‖ + · · · + ‖jk‖ < ‖t‖

aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞⎟⎠ .

Proposition 2. The random field (Xt)t∈ZD defined in lemma 1 satisfies:

E‖Xt − X̃t‖ ≤ E‖ξ0‖

⎛⎝‖ξ0‖∞ ∑
1≤k<‖t‖

kϕk−1A

(
‖t‖
k

)
+

ϕ‖t‖

1− ϕ

⎞⎠ ‖a‖ .

3.2 Coupling

First note that the variable X̃t which approximates Xt does not follow the
same distribution. For dealing with this issue, it is sufficient to construct a
sequence of iid random variables ξ′

i which follow the same distribution as the
one of the ξi, each term of the sequence being independent of all the ξi. We
then set

ξ∗
t =

{
ξt if t > 0 ,
ξ′
t if t ≤ 0 ,

X∗
t = ξt

⎛⎝a +
∞∑
k=1

∑
j1,...,jk

aj1ξ
∗
t−j1 · · · ajkξ

∗
t−j1−···−jka

⎞⎠ .

Coefficients τt for the τ–dependence introduced by Dedecker and Prieur
[DP01] are easily computed. In this case, we find the upper bounds from
above, up to a factor 2:

τt = E‖Xt −X∗
t ‖ ≤ 2E‖ξ0‖

(
E‖ξ0‖

t−1∑
k=1

kϕk−1A

(
t

k

)
+

ϕt

1− ϕ

)
‖a‖ ;

see also Rüschendorf [RüS], Prieur [Pri05]. These coefficients τk are defined
as τk = τ(σ(Xi, i ≤ 0), Xk) where for each random variable X and each
σ-algebraM one sets

τ(M, X) = E

{
sup

Lipf≤1

∣∣∣∣∫ f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣∣
}

where PX and PX|M denotes the distribution and the conditional distribution
of X on the σ–algebraM and Lipf = supx�=y |f(x)− f(y)|/‖x− y‖.
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3.3 Markovian Approximation

We consider equation (1) truncated at the order N : Yt = ξt(a+
∑N

j=1 ajYt−j).
The solution considered above can be rewritten as

XN
t = ξt

⎛⎝a +
∞∑
k=1

∑
N≥j1,...,jk≥1

aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞⎠ .

We can easily find an upper bound of the error: E‖Xt−XN
t ‖ ≤

∑∞
k=1 A(N)k.

As in proposition 1, in the Riemannian case, this bound of the error writes
as C

∑∞
k=1 N−bk ≤ C/(N b − 1) with b > 1, while in the geometric case, this

writes as CqN/(1− qN ) ≤ CqN/(1− q), 0 < q < 1.

4 Weak Dependence

Consider integers u, v ≥ 1. Let i1 < · · · < iu, j1 < · · · < jv be integers with
j1−iu ≥ r, we set U and V for the two random vectors U = (Xi1 , Xi2 , . . . , Xiu)
and V = (Xj1 , Xj2 , . . . , Xjv ). We fix a norm ‖ · ‖ on R

d. For a function
h :
(
R
d
)w → R we set

Lip(h) = sup
x1,y1,...,xw,yw∈Rd

|h(x1, . . . , xw)− h(y1, . . . , yw)|∑w
i=1 ‖xi − yi‖

.

Theorem 3. Assume that the coefficient defined by (2) satisfies ϕ < 1. The
solution (3) to the equation (1) is θ−weakly dependent, see [DD03]. This
means that:

|cov(f(U), g(V ))| ≤ 2v‖f‖∞Lip(g)θr ,

for any integers u, v ≥ 1, i1 < · · · < iu, j1 < · · · < jv such that j1 − iu ≥ r;
with

θr = E‖ξ0‖
(

E‖ξ0‖
r−1∑
k=1

kϕk−1A
( r

k

)
+

ϕr

1− ϕ

)
‖a‖ .

Proof. For calculating a weak dependence bound, we approximate the vector
V by the vector V̂ = (X̂j1 , X̂j2 , . . . , X̂jv ), where we set

X̂t = ξt

⎛⎝a +
∞∑
k=1

∑
j1+···+jk<s

aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞⎠ .

Note that for each index j ∈ Z, X̂j is independent of (Xj−s)s≥r. Note that
for 1 ≤ k ≤ v, E‖Xjk − X̂jk‖ ≤ θr defined in theorem 3. Then
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|cov(f(U), g(V ))| ≤
∣∣∣E(f(U)(g(V )− g(V̂ )

)
− E(f(U))E(g(V )− g(V̂ ))

∣∣∣
≤ 2‖f‖∞E

∣∣∣g(V )− g(V̂ )
∣∣∣

≤ 2‖f‖∞Lip(g)
v∑

k=1

E‖Xjk − X̂jk‖

≤ 2v‖f‖∞Lip(g)θr .

Remark 5. We obtain explicit expressions for this bound in Proposition 1 for
the Riemannian and geometric decay rates.

Remark 6. In the case of random fields the η-weak dependence condition in
[DL99] or [DL02] holds in a similar way with

ηr = 2E‖ξ0‖

⎛⎝‖ξ0‖∞ ∑
k<r/2

kϕk−1A
( r

k

)
+

ϕ[r/2]

1− ϕ

⎞⎠ ‖a‖ ,

which means that the previous bound now reads

|cov(f(U), g(V ))| ≤
(
u‖g‖∞Lip(f) + v‖f‖∞Lip(g)

)
ηr .

The argument is the same except for the fact that now Û and V̂ are inde-
pendent vectors with truncations at a level s = [r/2] but V̂ and U are not
necessarily independent (recall that independence of U and V̂ follows from
s ≥ r in the proof for the causal case). This point makes the previous bound a
bit more complicated than the one in theorem 3 and it explains the appearance
of the factor 2 in the expression of ηr.

Remark 7. These weak dependence conditions imply various limit theorems
both for partial sums processes and for the empirical process (see [DL99],
[DD03] and [DL02]).

5 L2 Properties

For the univariate case, the uniqueness of a stationary solution to (1) has been
proved by [GKL00]. We present a criterion for existence and uniqueness of a
solution in L2. This solution is no longer necessarily weakly dependent.

Theorem 4. Assume that the iid sequence {ξt} is centered and the spectral
radius ρ(S) of the matrix S =

∑∞
k=1 a′

kE(ξ′
kξk)ak satisfies ρ(S) < 1. Then

there exists a unique stationary solution in L2 to equation (1) given by (3).

Remark 8.

• The assumption ρ(S) < 1 implies ξt ∈ L2 for t ∈ Z.
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• The bilinear model of Example 2 is shown in [GS02] to display the double
long memory property when the series {αj} and {βj} are not summable
but satisfy the condition

∞∑
j=1

(
α2
jEζ2

0 + β2
j

)
< 1 .

As a particular case, the squares of the LARCH(∞) process in Exam-
ple 1 display long–range dependence. [GS02] prove that the corresponding
partial sums process converges to the fractional Brownian Motion with
normalization !

√
n.

• The GARCH(p, q) models in example 3, are always weakly dependent, in
the sense of [DL99].

• Note that [GKL00] and [GS02] prove that the stationary ARCH(∞) model
(Example 4), is not long range dependent in the previous sense; more
precisely the partial sums process, normalized with

√
n, converges to the

Brownian Motion.

Proof. Step 1: existence. Define T = E(ξ′
kξk). Consider the chaotic solution (3)

and set
Ct(k2, . . . , k�) = ξtak2ξt−k2 · · · ak�

ξt−k2···−k�
a .

Write E(X ′
tXt) = a′

Eξ′
tξta + B = a′Ta + B, where

B =
∑

�,k1,...,k�≥1

EC ′
t−k1

(k2, . . . , k�)a′
k1

Tak1Ct−k1(k2, . . . , k�)

=
∑

�,k1,...,k�

EC ′
t−k1

(k2, . . . , k�)a′
k1

Eξ′
t−k1

ξt−k1ak1Ct−k1(k2, . . . , k�)

=
∑

�,k1,...,k�

EC ′
t−k1

(k2, . . . , k�)
(
Ea′

k1
ξ′
t−k1

ξt−k1ak1

)
Ct−k1(k2, . . . , k�)

=
∑

�,k1,...,k�

EC ′
t(k2, . . . , k�)

(
Ea′

k1
ξ′
t−k1

ξt−k1ak1

)
Ct(k2, . . . , k�)

=
∑

�,k2,...,k�

EC ′
t(k2, . . . , k�)SCt(k2, . . . , k�)

≤ ρ(S)
∑

�,k2,...,k�

EC ′
t(k2, . . . , k�)Ct(k2, . . . , k�)

≤ E(ξ0a)′(ξ0a)
∞∑
�=1

ρ(S)� (recursively)

≤ a′aρ(T )
∞∑
�=1

ρ(S)� ,

hence,
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E(X ′
tXt) ≤ a′Ta + a′a

ρ(T )
1− ρ(S)

<∞ . (6)

In the previous relations we used both the fact that the ξt are centered and
iid and the relation v′Av ≤ v′vρ(A) which holds if A denotes a non-negative
d×d matrix and v ∈ R

d. This conclude the proof of the existence of a solution
in L2.
Step 2: L2 uniqueness. Let now X1

t and X2
t be two solutions to equation (1)

in L2. Define X̃t = X1
t −X2

t , then X̃t is solution to

X̃t = ξtÃt , Ãt =
∞∑
k=1

akX̃t−k . (7)

Now we use (7) and the fact that X̃t is centered and thus EX̃sX̃t = 0 for s �= t
to derive

E

(
(X̃tg)′(X̃tg)

)
=

∞∑
k=1

g′
E

(
X̃ ′
t−ka

′
t−kTat−kX̃t−k

)
g

=
∞∑
k=1

g′
E

(
X̃ ′
ta

′
t−kTat−kX̃t

)
g = g′

E

(
X̃ ′
tSX̃t

)
g

= E

(
(X̃tg)′S(X̃tg)

)
≤ ρ(S)E

(
(X̃tg)′(X̃tg)

)
.

From equation (6), this expression is finite and thus the assumption ρ(S) < 1
concludes the proof.

Remark 9. The proof does not extend to the case of random fields because
in this case the previous arguments of independence cannot be used. In that
case we cannot address the question of uniqueness.

The previous L2 existence and uniqueness assumptions do not imply that∑
j≥1 ‖aj‖ < ∞, thus this situation is perhaps not a weakly dependent one.

Giraitis and Surgailis [GS02], prove results both for the partial sums processes
of Xt and X2

t − EX2
t . In our vector case the second problem is difficult and

will be addressed in a forthcoming work. However Xt is now the increment
of a (vector valued-)martingale and thus we partially extend Theorem 6.2 in
[GS02], providing a version of Donsker’s theorem for partial sums processes
of {Xt}.

Proposition 3. Let the assumptions of Theorem 4 hold. Define Sn(t) =∑
1≤i≤ntXi for 0 ≤ t ≤ 1. Then Sn(t)/

√
varSn(t) converges to ΣW (t), for

0 ≤ t ≤ 1 and where W (t) is a R
d valued Brownian motion and Σ is a sym-

metric non negative matrix such that Σ2 is the covariance matrix of X0. The
convergence holds for finite dimensional distributions.

Remark 10.
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• The convergence only holds for any k-tuples (t1, . . . , tk) ∈ [0, 1]k and since
the section is related to L2 properties we cannot use the tightness argu-
ments in [GS02] to obtain the Donsker theorem; indeed tightness is ob-
tained through moment inequalities of order p > 2. Lp existence conditions
are obtained in [GS02] for the bilinear case if p = 4; the method is based
on the diagram formula and does not extend simply to this vector valued
case. A bound for the moments of order p > 2 of the partial sum process
Sn(t) can be obtained using Rosenthal inequality, Theorem 2.11 in [HH80],
if E‖Xt‖p < ∞. This inequality would imply the functional convergence
in the Skohorod space D[0, 1] if p > 2.

• If Eξ0 �= 0 (as for the case of the bilinear model in [GS02]), we may write
Xt = ∆Mt + Eξ0

(
a +

∑∞
j=1 ajXt−j

)
where

∆Mt = (ξt − Eξt)

⎛⎝a +
∞∑
j=1

ajXt−j

⎞⎠
is a martingale increment. This martingale also obeys a central limit the-
orem. then,

n−1/2Sn(t)→ Σ̄W (t) ,

where W (t) is a vector Brownian motion, where Σ̄′Σ̄ = Σ. If Eξ0 = 0 this
is a way to prove proposition 3, which is a multi-dimensional extension of
the proof in [GS02].
For the case of the bilinear model, Giraitis and Surgailis also prove the
(functional) convergence of the previous sequence of process to a Fractional
Brownian Motion in [GS02]. For this, Riemannian decays of the coefficients
are assumed. The covariance function of the process is also completely
determined to prove such results; this is a quite difficult point to extend
to our vector valued frame.

• A final comment concerns the analogue for powers of Xt which, if suit-
ably normalized, are proved to converge to some higher order Rosenblatt
process in [GS02] for the bilinear case. We have a structural difficulty to
extend it; the only case which may reasonably be addressed is the real
valued one (d = 1), but it also presents very heavy combinatorial diffi-
culties. Computations for the covariances of the processes (Xk

t )t∈Z will be
addressed in a forthcoming work in order to extend those results.

Acknowledgements. The authors are grateful to the referees for their valu-
able comments.
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1 Introduction

1.1 Time series motivation

One-dimensional discrete time series with long memory have been extensively
studied [Hur51], [GJ80], [Hos81], [Ber94], [WTT99]. The FARIMA family, for
example, models the series Xt, t ∈ Z as the solution of an equation

φ(B)(1−B)dXt = θ(B)εt (1)

where B is the operator of backward translation in time, φ(B), θ(B) are poly-
nomials, d is a real number and εt is white noise. Using this family of models, it
is usually possible via an extension of the classical Box-Jenkins methodology,
to chose the parameter d and the coefficients of the polynomials φ(B), θ(B)
such that the residuals εt display white noise behaviour and hence may safely
be discarded for prediction purposes.

In view of the prevalence of spatial statistics applications, it is impor-
tant to develop models and methods which replace the assumption of a one-
dimensional discrete time index with that of a multidimensional continuous
one.

This paper was motivated by the attempt to extend to the case of multi-
dimensional continuous indices certain central limit theorems of Giraitis and
Surgailis, Fox and Taqqu and Giraitis and Taqqu, which were reorganised and
generalized in [AB89], [AT89], [Avr92]. The approach of these papers reduced
the central limit theorems considered to an application of three analytical
tools:

(A1). The well-known diagram formula for computing moments/cumulants of
Wick products – see Appendix B, section B.
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(A2). A generalisation of the Hölder-Young inequality, which has become more
recently known as the Hölder-Brascamp-Lieb-Barthe inequality – see Ap-
pendix A, section A.

(A3). Some generalizations of a Grenander-Szegö theorem on the trace of prod-
ucts of Toeplitz matrices –see Subsection 1.9.

We will review throughout the paper the one-dimensional discrete results
in [AB89], [AT89], [Avr92], [AF92]; however, despite not having achieved yet
the generalisation to continuous indices, we will formulate the results us-
ing a unifying measure theoretic notation, which includes the discrete one-
dimensional setup and the continuous multi-dimensional one. This will allow
us to discuss possible extensions.

1.2 The model

Let ξA, A ⊂ R
d denote a set indexed Lévy process with mean zero, finite

second moments, independent values over disjoint sets and stationary intensity
given by the Lebesgue measure. Let Xt, t ∈ R

d denote a linear random field

Xt =
∫
u∈Rd

â(t− u)ξ(du) , t ∈ R
d , (2)

with a square-integrable kernel â(t), t ∈ R
d. For various other conditions

which ensure that (2) is well-defined, see for example Anh, Heyde and Leo-
nenko [AHL02], pg. 733.

By choosing an appropriate ”Green function” â(t), this wide class of pro-
cesses includes the solutions of many differential equations with random noise
ξ(du).

The random field Xt is observed on a sequence IT of increasing finite
domains. In the discrete-time case, the cases IT = [1, T ]d, T ∈ Z+ (in keeping
with tradition) or IT = [−T/2, T/2]d, T ∈ 2Z+ will be assumed. In the
continuous case, rectangles IT = {t ∈ R

d : −Ti/2 ≤ ti ≤ Ti/2, i = 1, ..., d}
will be taken. For simplicity, we will assume always T1 = ... = Td = T → ∞,
but the extension to the case when all coordinates converge to∞ at the same
order of magnitude is immediate.

1.3 Spectral representations

We will assume throughout that all the existing cumulants of our station-
ary process Xt are expressed through Fourier transforms ck(t1, t2, ..., tk) of
”spectral densities” fk(λ1, ..., λk−1) ∈ L1, i.e:

ck(t1, t2, ..., tk)
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=
∫
λ1,...,λk−1∈S

ei
∑k−1

j=1 λj(tj−tk)fk(λ1, ..., λk−1)µ(dλ1)...µ(dλk−1)

=
∫
λ1,...,λk∈S

ei
∑k

j=1 λjtjfk(λ1, ..., λk−1) δ(
k∑
j=1

λj) µ(dλ1)...µ(dλk)

where, throughout the paper, integrals involving delta functions will simply be
used as a convenient notation for the corresponding integrals over lower dimen-
sional subspaces. Throughout, S will denote the ”spectral” space of discrete
and continuous processes, i.e. [−π, π]d with Lebesgue measure normalized to
unity, and R

d with Lebesgue measure, respectively.
For k = 2, we will denote the spectral density by f(λ) = f2(λ) and the

second order cumulants/covariances by r(t− s) = c2(s, t).

1.4 The problem

Limit theory for quadratic forms is a subset of the more general task of pro-
viding limit theorems for sums/integrals and bilinear forms

ST =
∫
t∈IT

h(Xt)dt , QT =
∫
t1,t2∈IT

b̂(t1 − t2) h(Xt1 , Xt2)dt1dt2 (3)

where Xt is a stationary sequence. In the discrete time case, ST and QT

become respectively

ST = ST (h) =
T∑
i=1

h(Xi) , QT = QT (h) =
T∑
i=1

T∑
j=1

b̂(i− j) h(Xi, Xj) . (4)

These topics, first studied by Dobrushin and Major [DM79] and Taqqu [Taq79]
in the Gaussian case, gave rise to very interesting non-Gaussian generalisations
–see [GS86], [AT87], and are still far from fully understood in the case of the
continuous, ”spatial” multidimensional indices arising in spatial statistics.

It is well-known in the context of discrete time series that the expan-
sion in univariate/bivariate Appell polynomials determines the type of cen-
tral limit theorem (CLT) or non-central limit theorem (NCLT) satisfied by
the sums/quadratic forms (3). Hence, this paper considers the problem (3)
with h being an Appell polynomial.

1.5 Appell polynomials

In this paper we consider central limit theorems for quadratic forms

QT = Q
(m,n)
T =

∫
t,s∈IT

Pm,n(Xt, Xs)b̂(t− s)dsdt (5)
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involving the bivariate Appell polynomials

Pm,n(Xt, Xs) =: Xt, . . . , Xt︸ ︷︷ ︸
m

, Xs, . . . , Xs︸ ︷︷ ︸
n

: m,n ≥ 0,m + n ≥ 1 ,

which are defined via the Wick product : X1, . . . , Xm : (see Appendix B). We
will assume that E|ξI1 |2(m+n) < ∞ in order to ensure that QT has a finite
variance and suppose that t and s are discrete, that is, we consider in fact (4).

For a warm-up, we consider also sums

ST = S
(l)
T =

∫
t∈IT

Pl(Xt)dt (6)

involving the univariate Appell polynomials

Pl(Xt) =: Xt, . . . , Xt︸ ︷︷ ︸
l

:

Note that when b̂(t−s)dsdt = δ(t−s)dt, where δ is the Kronecker function,
the quadratic forms (5) reduce to the sums (6) with l = m + n.

The variables Xt will be allowed to have short-range or long-range depen-
dence (that is, with summable or non-summable sum of correlations), but the
special short-range dependent case where the sum of correlations equals 0 will
not be considered, since the tools described here are not sufficient in that case.

1.6 Asymptotic normality

We focus here on the asymptotic normality of Q(1,1)
T via the method of cumu-

lants. One of the classical approaches to establish asymptotic normality for
processes having all moments consists in computing all the scaled cumulants
χk,T of the variables of interest, and in showing that they converge to those
of a Gaussian distribution, that is, to 0 for k ≥ 3.

We review now this method in the simplest case of symmetric bilinear
forms QT = Q

(1,1)
T in stationary Gaussian discrete-time series Xt, with co-

variances ri−j , i, j ∈ Z and spectral density f(λ) (note that S
(1)
T =

∫
t∈IT

Xtdt

is ”too simple” for our purpose, since it is Gaussian and χk(S
(1)
T ) = 0, ∀k �= 2).

For Q
(1,1)
T , a direct computation yields the formula:

χk = χ(QT , ..., QT ) = 2k−1(k − 1)! Tr[(TT (b)TT (f))k] (7)

where

TT (b) = (b̂i−j , i, j = 1, ..., T ) , TT (f) = (r(i− j), i, j = 1, ..., T )

denote Toeplitz matrices of dimension T ×T and Tr denotes the trace. A limit
theorem for traces of products of Toeplitz matrices
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Tr

[
k∏
e=1

TT (fe)

]
=

T∑
j1,...,jk=1

r1(j1 − j2)r2(j2 − j3)...rk(jk − j1) , (8)

obtained by Grenander and Szegö [GS58] and strengthened by Avram [Avr88],
yields then the asymptotic normality of Q

(1,1)
T , under the condition that

b(λ)f(λ) ∈ L2. Note that replacing the sequences re(j) by their Fourier rep-
resentations re(j) =

∫
S
fe(λ)eijλdλ in (8) and putting

∆T (λ) =
T∑
t=1

eitλ

yields the following alternative spectral integral representation for traces of
products of Toeplitz matrices:

Tr

[
k∏
e=1

TT (fe)

]
(9)

=
∫
λ1,...,λk∈S

f1(λ1)f2(λ2)...fk(λk)
k∏
e=1

∆T (λe+1 − λe)
k∏
e=1

µ(dλe)

=
∫
ue∈S,e=1,...,k−1

∆T (−
k−1∑
1

ue)
k−1∏
e=1

(∆T (ue)µ(due)

×
(∫

λ∈S
f1(λ)f2(λ + u1)...fk(λ +

k−1∑
1

ue)dλ
)

where the index k + 1 is defined to equal 1, and where we changed variables
to λ = λ1 and ue = λe+1−λe, e = 1, ..., k−1. The first expression in the RHS
of (9) is our first example of a ”delta graph integral”, to be introduced in the
next subsection. These are integrals involving trigonometric kernels like ∆T ,
applied to linear combinations which may be associated to the vertex-edge
incidence structure of a directed graph: in this occurrence, the cycle graph on
the vertices {1, ..., k}. The next expression in the RHS of (9) is a change of
variables which will reveal the asymptotic behavior of delta graph integrals.

To obtain the central limit theorem by the method of cumulants for
T−1Q

(1,1)
T , one wants to show that:

(A1).

lim
T→∞

T−1χ2

(
Q

(1,1)
T

T

)
is finite

and that
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(A2).

lim
T→∞

T−k/2χk

(
Q

(1,1)
T

T

)
= 0 , k ≥ 3 .

The asymptotic normality follows roughly from three facts:

(A1). Under appropriate integrability conditions, the function

J(u1, ..., uk−1) :=
∫
λ∈S

f1(λ)f2(λ + u1)...fk(λ +
k−1∑
1

ue)dλ

in the RHS of (9) is continuous in ue, e = 1, ..., k − 1.
(A2). When T →∞, the measures

T−1∆T (−
k−1∑
1

ue)
k−1∏
e=1

(∆T (ue)µ(due)

converge weakly to the measure δ0(u1, ...uk−1). Together, the first two
facts yield the convergence of the normalized variance:

lim
T→∞

χ2,T

T
= J(0, ..., 0) =

∫
λ∈S

f1(λ)f2(λ)...fk(λ)dλ

(A3). For k ≥ 3, the cumulants satisfy

lim
T→∞

χk,T
T

= 0 .

In the case of bilinear forms in Hermite/Appell polynomials Pm,n(X,Y ) of
Gaussian/linear processes, more complicated cumulant formulas arising from
the so-called diagram expansion lead to spectral integral representations with
a combinatorial structure similar to (9), but associated to graphs displaying
a more complicated cycle structure – see Figure 1 and end of Appendix B.

This motivates introducing a class of spectral representations generalizing
(9), in which the cycle graph is replaced by a general directed graph or matroid
structure. The generalization of the limiting statements above will be referred
to as ”Szegö type limit theorems”.

1.7 Delta graph integrals

Let G = (V, E) denote a directed graph with V vertices, E edges and co(G)
components. Let M denote the V × E incidence matrix of the graph.

Definition 1. The incidence matrix M of a graph has entries Mv,e = ±1 if
the vertex v is the end/start point of the edge e, and 0 otherwise.
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Definition 2. (Delta graph integrals). Suppose that associated to the edges
of a directed graph G = (V, E) there is a set fe(λ), e = 1, . . . , E of functions
satisfying integrability conditions

fe ∈ Lpe(µ(dλ)), 1 ≤ pe ≤ ∞ ,

where µ is the normalized Lebesgue mesure on the torus [−π, π] or the Lebesgue
mesure on R.

A Delta graph integral JT = JT (G, fe, e = 1, ..., E) is an integral of the
form:

JT =
∫
λ1,...,λE∈S

f1(λ1)f2(λ2)...fE(λE)
V∏
v=1

∆T (uv)
E∏
e=1

µ(dλe) (10)

where E, V and M denote respectively the number of edges, vertices, and the
incidence matrix of the graph G, where

(u1, ..., uV )′ = M(λ1, ..., λE)′

and where a prime denotes a transpose. Finally,

∆T (x) =
T/2∑

−T/2
eitxdt =

sin((T + 1)x/2)
sin(x/2)

(11)

or

∆T (x) =
∫ T/2

−T/2
eitxdt =

sin(Tx/2)
x/2

(12)

is the Fejer kernel in discrete or continuous time, respectively.

The concept of Delta graph integrals arose from the study of cumulants
of sums/quadratic forms in Appell polynomials of stationary Gaussian pro-
cesses. A simple computation based on the diagram formula [Avr92] – see also
Proposition 2 – shows that the cumulants χk(S

(l)
T ) and χk(Q

(m,n)
T ) are sums

of Delta graph integrals.
The rest of the paper is devoted to reviewing ”Szegö-type” limit theorems

for Delta graph integrals in the one-dimensional discrete time case, following
[AB89], [AT89], [Avr92].

1.8 Delta matroid integrals

Quoting Tutte [Tut59], it is probably true that ”any theorem about graphs
expressible in terms of edges and circuits exemplifies a more general result
about matroids”, a concept which formalizes the properties of the ”rank func-
tion” r(A) obtained by considering the rank of an arbitrary set of columns A
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in a given arbitrary matrix M (thus, all matrices with the same rank function
yield the same matroid). Tutte’s ”conjecture” holds in the case under consid-
eration: a matroid Szegö-type limit theorem, in which the graph dependence
structure is replaced with that of an arbitrary matroid, was given in Avram
[Avr92].

A matroid is a pair E , r : 2E → N of a set E and a ”rank like function”
r(A) defined on the subsets of E . The most familiar matroids, associated to
the set E of columns of a matrix and called vector matroids, may be specified
uniquely by the rank function r(A) which gives the rank of any set of columns
A (matrices with the same rank function yield the same matroid). Matroids
may also be defined in equivalent ways via their independent sets, via their
bases (maximal independent sets) via their circuits (minimal dependent sets),
via their spanning sets (sets containing a basis) or via their flats (sets which
may not be augmented without increasing the rank). For excellent expositions
on graphs and matroids, see [Oxl92], [Oxl04] and [Wel76]. We ask the reader
not familiar with this concept to consider only the particular case of graphic
matroids, which are associated to the incidence matrix of an oriented graph.
It turns out that the algebraic dependence structure translates in this case
into graph-theoretic concepts, with circuits corresponding to cycles.

Here, we will only need to use the fact that to each matroid one may
associate a dual matroid with rank function

r∗(A) = |A| − r(M) + r(M −A) ,

and that in the case of graphic matroids, the dual matroid may be represented
by the C × E matrix M∗ whose rows c = 1, ..., C are obtained by assigning
arbitrary orientations to the circuits (cycles) c of the graph, and by writing
each edge as a sum of ± the circuits it is included in, with the ± sign indicating
a coincidence or opposition to the orientation of the cycle 3.

Definition 3. Let fe(λ), e = 1, . . . , E denote ”base functions” associated with
the columns of M and satisfying integrability conditions

fe ∈ Lpe(dµ) , 1 ≤ pe ≤ ∞ , (13)

where µ is Lebesgue mesure on R or normalized Lebesgue mesure on the torus
[−π, π]. Let M denote an arbitrary matrix in the first case, and with integer
coefficients in the second case. Let f̂e(k), k ∈ I denote the Fourier transform
of fe(λ), i.e.

f̂e(k) =
∫
S

eikλfe(λ)µ(dλ)

A Delta matroid integral is defined by either one of two equivalent expres-
sions, which correspond to the time and spectral domain, respectively:
3 It is enough to include in M∗ a basis of cycles, thus excluding cycles which may

be obtained via addition modulo 2 of other cycles, after ignoring the orientation.
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JT = JT (M,fe, e = 1, ..., E)

=
∫
j1,...,jV ∈IT

f̂1(i1)f̂2(i2)...f̂E(iE)
V∏
v=1

djv (14)

=
∫
λ1,...,λE∈S

f1(λ1)f2(λ2)...fE(λE)
V∏
v=1

∆T (uv)
E∏
e=1

µ(dλe) (15)

where
(i1, ..., iE) = (j1, ..., jV )M

and
(u1, ..., uV )′ = M(λ1, ..., λE)′

and where, in the torus case, the linear combinations are computed modulo
[−π, π].

See [Avr92] for more information, in particular relations (1.3) and (3.1) of
that paper. A “Delta matroid integral” is also called a “Delta graph integral”
when the matroid is associated to the incidence matrix M of a graph (graphic
matroid). Observe that (15), just as its graph precursor (10)), does not depend
on the matrix M representing the matroid.

1.9 The Szegö-type limit theorem for Delta matroid integrals

Let
zj =

1
pj
∈ [0, 1] , j = 1, · · · , E , (16)

where pj is defined in (13). Theorem 1 below, which is a summary of Theorems
1, 2 and Corollary 1 of [Avr92], yields an upper bound and sometimes also
the limit for Delta matroid integrals, in the case of discrete one-dimensional
time series. The order of magnitude of the rate of convergence is

αM (z) = V − r(M) + max
A⊂1,...,E

[
∑
j∈A

zj − r∗(A)] (17)

or equivalently,

αM (z) = max
A⊂1,...,E

[co(M −A)−
∑
j∈A

(1− zj)] (18)

where we define
co(M −A) = V − r(M −A) . (19)

Note: In the case of graph integrals, the function co(M − A) represents the
number of components, after the edges in A have been removed.

The function αM (z) is thus found in the case of graph integrals by the
following optimization problem:

The ”graph breaking” problem:
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Find a set of edges whose removal maximizes the number of
remaining components, with∑

j∈A
(1− zj) =

∑
j∈A

(1− p−1
j )

as small as possible.

The function αM (z) is then used in the following theorem which is a Szegö-
type limit theorem for Delta matroid integrals. The theorem, which is formu-
lated in a general way, has been established for functions defined on [−π, π]
and extended periodically outside that interval. The following definition will
be used.

Definition 4. Let Lp(dµ) be the Banach space of functions which may be
approximated arbitrarily close by trigonometric polynomials, in the Lp(dµ)
norm. The space Lp(dµ) is endowed with the Lp norm.

The space Lp(dµ) is used in the following theorem because the proof of Part 2
involves considering first functions f that are linear combinations of trigono-
metric polynomials and then passing to the limit.

Theorem 1. Let JT = JT (M,f1, ..., fE) denote a Delta matroid integral and
let r(A), r∗(A) denote respectively the ranks of a set of columns in M and in
the dual matroid M∗.

Suppose that for every row l of the matrix M , one has r(M) = r(Ml),
where Ml is the matrix with the row l removed. Then:

(A1).

JT (M,f1, ..., fE) ≤ cMTαM (z) (20)

where cM is a constant and αM (z) is given by (17).
(A2). Suppose now that fe ∈ Lpe(dµ) and set z = (p−1

1 , ...p−1
E ).

a) If ∑
j∈A

zj ≤ r∗(A), ∀A (21)

(or, equivalently, αM (z) = V − r(M) = co(M)), then

lim
T→∞

JT (M)
T co(M) = J(M∗, f1, ..., fE) (22)

where

J(M∗, f1, ..., fE) = cM

∫
SC

f1(λ1)f2(λ2)...fE(λE)
C∏
c=1

µ(dyc)
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and where (λ1, ...λE) = (y1, ..., yC)M∗ (with every λe reduced mod-
ulo [−π, π] in the discrete case), and C denotes the rank of the dual
matroid M∗.

b) If a strict inequality αM (z) > co(M) holds, then the inequality of part
1) may be strengthened to:

JT (M) = o(Tα(M))

Remarks. 1) The conditions (21) applied to integrands Fe(λ) with power
type behavior are the famous power counting conditions, which were used
to ensure the convergence of integrals with dependent variables. These condi-
tions, in fact, also yield a Hölder type inequality, as shown in [BLL74], [AB89]
and [AT89].

2) The results of the theorem, that is, the expression of αM (z) and the limit
integral J(M∗) = J(M∗, f1, ..., fE) depend on the matrix M only via the two
equivalent rank functions r(A), r∗(A), i.e. only via the matroid dependence
structure between the columns.

We refer to [Avr92] for the proof of parts 1 and 2 b) of this theorem.

1.10 Sketch of the proof

We sketch now the proof of Theorem 1, part 2 (a), for Delta graph integrals
given in [AB89], in the discrete one-dimensional setup, and for a connected
graph (w.l.o.g.). Note that in a connected graph there are only V −1 indepen-
dent rows of the incidence matrix M (or independent variables uj), since the
sum of all the rows is 0 (equivalently, uV = −

∑V−1
v=1 uv). Thus, r(M) = V −1,

co(M) = 1, and the order of magnitude appearing in the LHS of (22) is just
T .

(A1). Change of variables. The main idea behind the proof of Theorem 1 is
to identify a basis y1, ..., yC in the complement of the space generated by
the uv’s, v = 1, . . . , V , switch to the variables u1, ..., uV−1, y1, ..., yC and
integrate in (15) first over the variables yc’s, c = 1, . . . , C. This is easier in
the graph case, when, fixing some spanning tree T in the graph, we have
a one to one correspondence between a set of independent cycles (with
cardinality C) and the complementary set of edges T c. Assume w.l.o.g.
that in the list (λ1, ..., λE), the edges in T c are listed first, namely (λe, e ∈
T c) = (λ1, ..., λC). We make the change of variables y1 = λ1, ..., yC = λC ,
and (u1, ..., uV−1)′ = M̃(λ1, ..., λE)′, where M̃ is the first V − 1 rows of
M . Thus,

(y1, ..., yC , u1, ..., uV−1)′ =
(
IC 0
M̃

)
(λ1, ..., λE)′

where the first rows are given by an identity matrix IC completed by
zeroes. Inverting this yields
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(λ1, ..., λE) = (y1, ..., yC , u1, ..., uV−1)
(
M∗ | N

)
, (23)

that is, it turns out that the first columns of the inverse matrix are pre-
cisely the transpose of the dual matroid M∗.

Definition 5. The function

hM∗,N (u1, ..., ur(M)) =
∫
y1,...,yC∈S

f1(λ1)f2(λ2)...fE(λE)
C∏
c=1

dµ(yc) (24)

where λe are represented as linear combinations of y1, ..., yC , u1, ..., uV−1
via the linear transformation (23) will be called a graph convolution.

The change to the variables y1, ..., yC , u1, ..., uV−1 and integration over
y1, ..., yC transforms the Delta graph integral into the following integral
of the product of a ” graph convolution” and a certain trigononetric kernel:∫

u1,...,uV −1∈S
hM∗,N (u1, ..., uV−1)

V∏
v=1

∆T (uv)
V−1∏
v=1

dµ(uv) .

It turns out that the trigonometric kernel converges under appropriate
conditions to Lebesgue measure on the graph u1 = ... = uV−1 = 0. Since
(λ1, ..., λE) are linear functions of (y1, ..., yC , u1, ..., uV−1) such that when
u1 = ... = uV−1 = 0 the relation (λ1, ..., λE) = (y1, ..., yC)M∗ is satisfied,
hM∗,N (0, ..., 0) = J(M∗), as defined in (22).
Thus, part 2 of Theorem 1 will be established once the convergence of
the kernels and the continuity of the graph convolutions h(u1, ..., ur(M))
in the variables (u1, ..., ur(M)) is established.

(A2). The continuity of graph convolutions. Note that the function h :
R
V−1 → R is a composition

hM∗,N (u1, ..., uV−1) = J(M∗, T1(f1), ..., TE(fE))

of the continuous functionals

Te(u1, ..., uV−1) : R
V−1 → Lpe

and of the functional

J(M∗, f1, ..., fE) :
E∏
e=1

Lpe
→ R .

The functional Te is defined by Te(u1, ..., uV−1) = fe(.+
∑

v uvNv,e), where
the Nv,e are the components of the matrix N in (23). The functionals Te
are clearly continuous when fe is a continuous function, and this contin-
ues to be true for functions fe ∈ Lpe

, since these can be approximated
in the Lpe sense by continuous functions. Thus, under our assumptions,



On a Szegö type limit theorem 271

the continuity of the functional hM∗,N (u1, ..., uV−1) follows automatically
from that of J(M∗, f1, ..., fE).
Finally, under the ”power counting conditions” (21), the continuity of the
function J(M∗, f1, ..., fE) follows from the Hölder-Brascamp-Lieb-Barthe
inequality:

|J(M∗, f1, ..., fE)| ≤
E∏
e=1

‖fe‖pe

(see (c1), Theorem 2 below).

Remark. In the spatial statistics context ([ALS04], [ALS03]), the conti-
nuity of the graph convolutions hM∗,N (u1, ..., uV−1) was usually assumed
to hold, and indeed checking whether this assumption may be relaxed to
Lp integrability conditions in the spectral domain is one of the outstanding
difficulties for the spatial extension.

(A3). Weak convergence of the measures. The final step in proving Theo-
rem 1 part 2 (a) is to establish that the measures

T−1∆T (−
V−1∑
v=1

uv)
V−1∏
v=1

∆T (uv)
V−1∏
v=1

dµ(uv)

converge weakly to the measure δ0(u1, ..., uV−1) This convergence of mea-
sures holds since their Fourier coefficients converge – see [FT87], Lemma
7.1 – and since the absolute variations of these measures are uniformly
bounded, as may be seen by applying the corresponding Hölder-Brascamp-
Lieb-Barthe inequality (see Theorem 2 below) to the Delta graph integral,
using estimates of the form

||∆T ||s−1
v
≤ k(sv)T 1−sv

with optimally chosen sv, v = 1, · · · , V .
In conclusion, the convergence of the product of Fejer kernels to a δ func-
tion implies the convergence of the scaled Delta graph integral

JT (M,fe, e = 1..., E)

to
J(0, ..., 0) = J(M∗, fe, e = 1..., E) ,

establishing Part 2 (a) of the theorem.

Remark. It is not difficult to extend this change of variables to the case
of several components and then to the matroid setup. In the first case, one
would need to choose independent cycle and vertex variables y1, ..., yr(M∗)
and u1, ..., ur(M), note the block structure of the matrices, with each block
corresponding to a graph component, use the fact that for graphs with several
components, the rank of the graphic matroid is r(M) = V − co(G) and finally
Euler’s relation E − V = C − co(G), which ensures that

E =
(
V − co(G)

)
+ C = r(M) + r(M∗)
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1.11 Central limit theorems for variables whose cumulants are
Delta matroid integrals

We draw now the attention to the convenient simplifications offered by these
tools for establishing central limit theorems, cf. [AB89], [AT89], [Avr92]. They
arise from the fact that the cumulants are expressed as sums of integrals of
the form (10) and their order of magnitude may be computed via the graph-
optimization problem (17). Then a Szegö-type limit theorem (Theorem 1) is
used to conclude the proof. This shows that the central limit theorem can
sometimes be reduced to a simple optimization problem.

We quote now Corollary 2 of [Avr92].

Corollary 1. Let ZT be a sequence of zero mean random variables, whose
cumulants of all orders are sums of Delta matroid integrals:

χk(ZT ) =
∑
G∈Gk

JT (G)

Suppose that the “base functions” (see Definition 3) intervening in these in-
tegrals satisfy integrability conditions which imply that

αG(z) ≤ k/2,∀G ∈ Gk

where z is the vector of reciprocals of the integrability indices of the base
functions intervening in JT (G).

Then, a central limit theorem

ZT
σT 1/2 → N(0, 1)

holds, with
σ2 =

∑
G∈G2

J(G∗) ,

where J(G∗) is defined in the Theorem 1.2 (a).

These results reduce complicated central limit theorems for Gaussian pro-
cesses to simple ”graph breaking problems”.

In all the examples currently studied, it turned out that the ”Szegö theo-
rems” ensure that the CLT holds whenever the integral defining the limiting
variance converges.

For example, by Theorem 1.2 (a), the integral defining the limiting vari-
ance of sums SmT , of Hermite polynomials Pm(Xt) of a Gaussian stationary
sequence, m ≥ 2, is:∫
y1,...,ym−1∈S

f(y1)f(y2 − y1)...f(ym−1 − ym−2)f(−ym−1)
m−1∏
c=1

dyc = f (∗,m)(0)
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m "f"
 edgesn "f""b"  edge

edges

y1 y2 ym

"b" edge
Fig. 1. Typical graph appearing in the expansion of the limiting variance
of quadratic forms in bivariate Hermite polynomials P (m,n), m=3, n=2.
Ignoring the right half of the picture yields the graph appearing in the
limiting variance of sums of Hermite polynomials Pm. The arrows show
the orientation of cycles and edges: an ”edge variable” λe is the combi-
nation of all the ”cycle variables” ±yc containing that edge, with a minus
sign when the direction of yc is different from the direction of the edge.

where f (∗,m)(0) denotes the m’th convolution, and the condition ensuring its
convergence is that f ∈ Lp, where the integrability index z = p−1 satisfies
z ≤ 1/m.

In the case of Gaussian quadratic forms Q
(m,n)
T , the limiting variance is a

sum of terms of the type:∫
y1,...,ym−1∈S

f(y1)f(y2 − y1)...f(ym−1 − ym−2)f(−ym−1 + ym)

× b(ym)b(−ym)f(ym+1 − ym)...f(−ym+n−1)
m+n−1∏
c=1

dyc

=
∫
ym∈S

f (∗,m)(ym)b(ym)b(−ym)f (∗,n)(−ym)dym

where one special cycle variable – ym in our notation – corresponds to a four-
cycle containing the two ”b” edges (see Figure 1) and the rest correspond to
cycles containing only two ”f” edges (see Proposition 2, Appendix B). The
fact that the convergence of this expression is enough to ensure the CLT was
first shown in Giraitis and Taqqu [GT97] – see (2.5), Theorem 2.1 of that
paper.

The convergence of the above integral is assured whenever f ∈ Lp1 , b ∈ Lp2
and z = (z1, z2) is within the polytope in Figure 2 by the Hölder-Brascamp-
Lieb-Barthe inequality (see Theorem 2, c1)).
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Dm,n

(0,1/2)

z2

(1−1/m,1/2)

(1−1/n,m/(2n)

A(1−1/(m+n), 0)

z1

m z1 + 2 z  = m2

Fig. 2. The domain of the central limit theorem

Remarks

(A1). Giraitis and Taqqu expressed the upper boundary of this polytope in a
convenient fashion:

dm(z1) + dn(z1) + 2z2 = 1 (25)

where
dm(z) = 1−m(1− z)+.

(A2). The extremal points are solutions of equations αG(z) = 1, obtained for
certain specific graphs G ∈ G2. The fact that at these points one has the
inequalities αG(z) ≤ k/2, ∀G ∈ Gk,∀k ≥ 2 may be checked (see [Avr92])
by solving some graph-breaking problem, described after equation (17).
An example is presented at the end of the paper.

Hence the conditions of Corollary 1 hold at the extremal points of the
polytope in Figure 2, and hence throughout the polytope, yielding thus the
asymptotic normality result of Avram [Avr92], Theorem 4, and of Giraitis
and Taqqu [GT97], Theorem 2.3.

1.12 Conclusion

The problem of establishing the central limit theorem by the method of mo-
ments is related to some beautiful mathematics: the Hölder-Brascamp-Lieb-
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Barthe inequality, the continuity of matroid convolutions and the matroid
weak Szegö theorem.

This leads to fascinating mathematical questions like extending the ma-
troid weak Szegö theorem to a strong one (i.e. providing correction terms).

The analytic methodology presented above suggests also the following con-
jecture:

Conjecture. A central limit theorem holds in the continuous one dimen-
sional index case, with the same normalization and limiting variance as in
the discrete one-dimensional index case, if

f ∈ Lz−1
1

, b̂ ∈ Lz−1
2

,

and the exponents z1, z2 lie on the upper boundary of the polytope in the
Figure 2.

The tools described in this paper are also expected to be useful for studying
processes with continuous multidimensional indices. Let us mention for exam-
ple the versatile class of isotropic spatio-temporal models, of a form similar
to (1) (with the Laplacian operator ∆ replacing the operator B), recently in-
troduced by Anh, Leonenko, Kelbert, McVinnish, Ruiz-Medina, Sakhno and
coauthors [ALM01], [AHL02], [ALS04],[ALS03], [KLRM05]. These authors use
the spectral approach as well and the tools described above hold the potential
of simplifying their methods.

Even for unidimensional discrete processes, these tools might be useful
for strengthening the central limit theorem to sharp large deviations state-
ments, as in the work on one-dimensional Gaussian quadratic forms of Bercu,
Gamboa, Lavielle and Rouault [BGL00], [BGR97].

Finally, these tools might improve asymptotic results concerning Whittle’s
estimator of spectral densities – see [Han70], [FT86], [GT99], [HG89], [HG93],
[Hey97], [Guy95].

APPENDIX

A The Hölder-Brascamp-Lieb-Barthe inequality

Set here V = m and E = n. Let M be a m× n matrix, x = (x1, . . . , xm) and
let l1(x), . . . ln(x) be n linear transformations such that

(l1(x), . . . , ln(x)) = (x1, . . . , xm)M .

Let fj , j = 1, . . . , n be functions belonging respectively to

Lpj (dµ), 1 ≤ pj ≤ ∞, j = 1, . . . , n .

We consider simultaneously three cases:
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(C1) µ(dx) is the Lebesgue measure on the torus [−π, π]nj , and M has all its
coefficients integers.

(C2) µ(dx) is the counting mesure on Z
nj , M has all its coefficients integers,

and all its non-singular minors of dimension m×m have determinant ±1.
(C3) µ(dx) is Lebesgue measure on (−∞,+∞)nj .

The following theorem, due when nj = 1,∀j in the first case to [AB89], in the
second to [AT89] and in the last to [Bar05], with arbitrary nj yields conditions
on

zj =
1
pj

, j = 1, . . . , n ,

so that a generalized Hölder inequality holds. For a recent exposition and
extensions, see [BCCT05], [BCCT].

The key idea of the proof in [AB89], [AT89], is that it is enough to find
those points z= (z1, . . . , zn) with coordinates zi equal to 0 or 1, for which the
inequality (GH) below holds, then by the Riesz-Thorin interpolation theorem,
(GH) will hold for the smallest convex set generated by these points. This
yields:

Theorem 2 (Hölder-Brascamp-Lieb-Barthe inequality). Suppose, re-
spectively, that the conditions (C1), (C2) and (C3) hold and let fj , j =
1, . . . , n be functions fj ∈ Lpj (µ(dx)), 1 ≤ pj ≤ ∞, where the integration
space is either [−π, π]nj , Z

nj , or R
nj , and µ(dx) is respectively normalized

Lebesgue measure, counting measure and Lebesgue measure. Let zj = (pj)−1.
For every subset A of columns of M (including the empty set ∅), denote by

r(A) the rank of the matrix formed by these columns, and suppose respectively:

(c1)
∑
j∈A

zj ≤ r(A), ∀A

(c2)
∑
j∈A

zj + r(Ac) ≥ r(M), ∀A

(c3)
T∑
j=1

zj = m, and one of the conditions (c1) or (c2) is satisfied.

Then, the following inequality holds:

(GH)
∣∣∣∣∫ T∏

j=1

fj(lj(x))
m∏
i=1

dµ(xi)
∣∣∣∣≤ K

T∏
j=1

‖fj‖pj

where the constant K in (GH) is equal to 1 in the cases (C1) and (C2) and
is finite in the case (C3) (and given by the supremum over centered Gaussian
functions – see [Bar05]).

Alternatively, the conditions (c1-c3) in the theorem are respectively equiv-
alent to:

(A1). z = (z1, . . . , zn) lies in the convex hull of the indicators of the sets of
independent columns of M , including the void set.
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(A2). z = (z1, . . . , zn) lies above the convex hull of the indicators of the sets of
columns of M which span its range.

(A3). z = (z1, . . . , zn) lies in the convex hull of the indicators of the sets of
columns of M which form a basis.

Examples.
1. As an example of (c1) , consider the integral

J =
∫
T

∫
T

f1(x1)f2(x2)f3(x1 + x2)f4(x1 − x2)dx1dx2

where T denotes the torus [0, 1], so fj(x ± 1) = fj(x), j = 1, . . . , 4. Here
m = 2, n = 4 and the matrix

M =
(

1 0 1 1
0 1 1 −1

)
has rank r(M) = 2. The flats consist of ∅, the single columns and M . Only ∅
and M are flat, irreducible, and not singleton. Since (a1′) always holds for ∅,
it is sufficient to apply it to M . The theorem yields

|J | ≤ ‖f1‖1/z1 ‖f2‖1/z2 ‖f3‖1/z3‖f4‖1/z4
for any z = (z1, z2, z3, z4) ∈ [0, 1]4 satisfying z1 + z2 + z3 + z4 ≤ 2, e.g. if
z = (0, 1, 1/4, 1/2), then

|J | ≤
(

sup
0≤x≤1

|f1(x)|
)(∫ 1

0
|f2(x)|dx

)(∫ 1

0
f4
3 (x)dx

)1/4(∫ 1

0
f2
4 (x)dx

)1/2

.

2. To illustrate (c2), consider

S =
∞∑

x1=−∞

∞∑
x2=−∞

f1(x1)f2(x2)f3(x1 + x2)f4(x1 − x2) .

Since m,n and M are as in Example 1, we have r(M) = m and the only flat
and irreducible sets which are not singleton are ∅ and M . Since it is sufficient
to apply (c2) to ∅, the theorem yields |S| ≤ ‖f1‖1/z1‖f2‖1/z2‖f3‖1/z3‖f4‖1/z4
for any z = (z1, z2, z3, z4) ∈ [0, 1]4 satisfying z1 + z2 + z3 + z4 ≥ 2, e.g.

|S| ≤
∏4
j=1

(∑+∞
x=−∞ f2

j (x)
)1/2

.

B The application of the diagram formula for computing
moments/cumulants of Wick products of linear processes

B.1 Wick products

We start with some properties of the Wick products (cf. [GS86], [Sur83]) and
their application in our problem.
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Definition 6. The Wick products (also called Wick powers) are multivariate
polynomials:

: y1, . . . , yn :(ν) =

∂n

∂z1 . . . ∂zn

[
exp(

n∑
1

zjyj)/
∫

Rn

exp(
n∑
1

zjyj)dν(y)

]∣∣∣∣∣
z1=···=zn=0

corresponding to a probability measure ν on R
n. Interpret this as a formal

expression if ν does not have a moment generating function, the Wick products
being then obtained by formal differentiation.

A sufficient condition for the Wick products : y1, . . . , yn :(ν) to exist is
E|Yi|n <∞, i = 1, . . . , n.

When some variables appear repeatedly, it is convenient to use the notation

: Yt1 , . . . , Yt1︸ ︷︷ ︸
n1

, ..., Ytk , . . . , Ytk︸ ︷︷ ︸
nk

:= Pn1,...,nk
(Yt1 , ..., Ytk)

(the indices in P correspond to the number of times that the variables in
“: :” are repeated). The resulting polynomials Pn1,...,nk

are known as Appell
polynomials. These polynomials are a generalization of the Hermite polynomi-
als, which are obtained if Yt are Gaussian; like them, they play an important
role in the limit theory of quadratic forms of dependent variables (cf. [Sur83],
[GS86], [AT87]).

For example, when m = n = 1, P1,1(Xt, Xs) = XtXs − EXtXs, and the
bilinear form (5) is a weighted periodogram with its expectation removed.

Let W be a finite set and Yi, i ∈W be a system of random variables. Let

YW =
∏
i∈W

Yi

be the ordinary product,
: YW :

the Wick product, and

χ(YW ) = χ(Yi, i ∈W )

be the (mixed) cumulant of the variables Yi, i ∈ W , respectively, which is
defined as follows:

χ(Y1, . . . , Yn) =
∂T

∂z1 . . . ∂zn
log E exp(

T∑
i=1

zjYj)
∣∣∣
z1=···=zn=0

.

The following relations hold ([Sur83], Prop. 1):

: YW :=
∑
U⊂W

Y U
∑
{V }

(−1)rχ(Y V1) · · ·χ(Y Vr ),
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YW =
∑
U⊂W

: Y U :
∑
{V }

χ(Y V1) · · ·χ(Y Vr ) =
∑
U⊂W

: Y U : E(YW\U )

where the sum
∑

U⊂W is taken over all subsets U ⊂W, including U = ∅, and
the sum

∑
{V } is over all partitions {V } = (V1, . . . , Vr), r ≥ 1 of the set W\U .

We define Y ∅ =: Y ∅ := χ(Y ∅) = 1.

B.2 The cumulants diagram representation

An important property of the Wick products is the existence of simple com-
binatorial rules for calculation of the (mixed) cumulants, analogous to the
familiar diagrammatic formalism for the mixed cumulants of the Hermite poly-
nomials with respect to a Gaussian measure [Mal80]. Let us assume that W
is a union of (disjoint) subsets W1, . . . ,Wk. If (i, 1), (i, 2), . . . , (i, ni) represent
the elements of the subset Wi, i = 1, . . . , k, then we can represent W as a
table consisting of rows W1, . . . ,Wk, as follows:⎛⎝ (1, 1), . . . , (1, n1)

. . . . . . . . .
(k, 1), . . . , (k, nk)

⎞⎠ = W . (26)

By a diagram γ we mean a partition γ = (V1, . . . , Vr), r = 1, 2, . . . of the table
W into nonempty sets Vi (the “edges” of the diagram) such that |Vi| ≥ 1. We
shall call the edge Vi of the diagram γ flat, if it is contained in one row of the
table W ; and free, if it consists of one element, i.e. |Vi| = 1. We shall call the
diagram connected, if it does not split the rows of the table W into two or
more disjoint subsets. We shall call the diagram γ = (V1, . . . , Vr) Gaussian,
if |V1| = · · · = |Vr| = 2. Suppose given a system of random variables Yi,j
indexed by (i, j) ∈W . Set for V ⊂W ,

Y V =
∏

(i,j)∈V
Yi,j , and : Y V : = : (Yi,j , (i, j) ∈ V ) : .

For each diagram γ = (V1, . . . , Vr) we define the number

Iγ =
r∏
j=1

χ(Y Vj ) . (27)

Proposition 1. (cf. [GS86], [Sur83]) Each of the numbers

(i) EYW = E(YW1 . . . YWk) ,

(ii) E(: YW1 : · · · : YWk :) ,

(iii) χ(YW1 , . . . , YWk) ,

(iv) χ(: YW1 :, . . . , : YWk :)

is equal to
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where the sum is taken, respectively, over
(i) all diagrams,
(ii) all diagrams without flat edges,
(iii) all connected diagrams,
(iv) all connected diagrams without flat edges.

If EYi,j = 0 for all (i, j) ∈W , then the diagrams in (i)-(iv) have no singletons.

It follows, for exampgle, that E : YW := 0 (take W = W1, then W has
only 1 row and all diagrams have flat edges).

B.3 Multilinearity

An important property of Wick products and of cumulants is their multilin-
earity. This implies that for QT defined in (5) that

χk(QT , ..., QT ) =∫
ti,si∈IT

χ(: Xt1,1 , . . . , Xt1,m
, Xs1,1 , . . . , Xs1,n

: ,

. . . , : Xtk,1 , . . . , Xtk,m
, Xsk,1 , . . . , Xsk,n

:)
k∏
i=1

b̂ti−si
dtidsi

where the cumulant in the integral needs to be taken for a table W of k rows
R1...., Rk, each containing the Wick product of m variables identically equal
to Xtk and of n variables identically equal to Xsk

.
A further application of part (iv) of Proposition 1 will decompose this as

a sum of the form

∑
γ∈Γ (n1,...,nk)

∫
ti,si∈IT

Rγ(ti, si)
k∏
i=1

b̂ti−si
dtidsi

where Γ (n1, . . . , nk) denotes the set of all connected diagrams γ = (V1, . . . , Vr)
without flat edges of the table W and Rγ(ti, si) denotes the product of the
cumulants corresponding to the partition sets of γ.

Example 1: When m = n = 1, the Gaussian diagrams are all products of
correlations and the symmetry of b̂ implies that all these 2k−1(k−1)! terms are
equal. We get thus the well-known formula (7) for the cumulants of discrete
Gaussian bilinear forms.

Example 2: When m = n = 1 and k = 2, besides the Gaussian diagrams we
have also one diagram including all the four terms, which makes intervene the
fourth order cumulant of Xt.
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B.4 The cumulants of sums and quadratic forms of linear processes

Consider

SmT =
T∑
i=1

Pm(Xti) , Qm,n
T =

T∑
i=1

T∑
j=1

b̂(i− j) Pm,n(Xti , Xtj ) . (28)

By part (iv) of proposition 1, applied to a table W of k rows R1...., Rk,
with K = n1+ ...nk variables, and by the definition (27) and of Iγ, we find the
following formula for the cumulants of the Wick products of linear variables
(2):

χ(: Xt1,1 , . . . , Xt1,n1
:, . . . , : Xtk,1 , . . . , Xtk,nk

:) =
∑

γ∈Γ (n1,...,nk)

κγJγ(t) (29)

where Γ (n1, . . . , nk) denotes the set of all connected diagrams γ = (V1, . . . , Vr)
without flat edges of the table W , κγ = χ|V1|(ξI1) . . . χ|Vr|(ξI1) and

Jγ(t1, ..., tK) =
r∏
j=1

JVj
(tVj

) (30)

=
∫
s1,...,sr∈I

k∏
j=1

[
â(tj,1 − sj,1)â(tj,n1 − sj,n1) . . .

. . . â(tk,1 − sk,1) . . . â(tk,nk
− sk,nk

)
]
ds1 . . .dsr

=
∫
λ1,...,λK

ei
∑K

j=1 tj λj

K∏
i=1

a(λi)
r∏
j=1

δ(
∑
i∈Vj

λi)
K∏
i=1

dλi

where si,j ≡ sl if (i, j) ∈ Vl, l = 1, . . . , r.
We will apply now this formula to compute the cumulants of (28), in which

case each row j contains just one, respectively two random variables. We will
see below that this yields decompositions as sums of Delta graph integrals
with a specific graph structure.

For example, it is easy to check that the variance of S
(2)
T is:

χ2(S
(2)
T ) = 2

∫
λ1,λ2∈S

f(λ1)f(λ2)∆T (λ1 − λ2)∆T (λ2 − λ1)
2∏
e=1

µ(dλe) .

Note that there are two possible diagrams of two rows of size 2, and that they
yield both a graph on two vertices (corresponding to the rows), connected one
to the other via two edges.

For another example, the third cumulant χ3(S
(2)
T ) is a sum of terms similar

to:
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22
∫
λ1,λ2,λ3∈S

f(λ1)f(λ2)f(λ3)∆T (λ1−λ2)∆T (λ2−λ3)∆T (λ3−λ1)
3∏
e=1

µ(dλe).

This term comes from the 22 diagrams in which the row 1 is connected to row
2, 2 to 3 and 3 to 1.

The general structure of the intervening graphs is as follows (see [Avr92]):

(A1). In the case of cumulants of sums, we get graphs belonging to the set
Γ (m, k) of all connected graphs with no loops over k vertices, each of
degree m.

(A2). In the case of cumulants of quadratic forms, we get – see Figure 3 – graphs
belonging to the set Γ (m,n, k) of all connected bipartite graphs with no
loops whose vertex set consists of k pairs of vertices. The ”left” vertex of
each pair arises out of the first m terms : Xt1 , ..., Xtm : in the diagram
formula, and the ”right” vertex of each pair arises out of the last n terms
: Xs1 , ..., Xsn : The edge set consists of:
a) k ”kernel edges” pairing each left vertex with a right vertex. The kernel

edges will contribute below terms involving the function b(λ).
b) A set of ”correlation edges”, always connecting vertices in different

rows, and contributing below terms involving the function f(λ)). They
are arranged such that each left vertex connects to m and each right
vertex connects to n such edges, yielding a total of k(m + n)/2 corre-
lation edges.

Thus, the k ”left vertices” are of degree m + 1, and the other k vertices
are of degree n + 1. (The “costs” mentionned in Figure 3 refer to (17)).

The following proposition is easy to check.

Proposition 2. Let Xt, t ∈ IT denote a stationary linear process given by (2)
with d = 1. Then, the cumulants of the sums and quadratic forms defined in
(28) are given respectively by:

χk,l = χk(S
(l)
T , ..., S

(l)
T ) =

∑
γ∈Γ (m,k)

κγ σγ(T )

and
χk,m,n = χk(Q

(m,n)
T , ..., Q

(m,n)
T ) =

∑
γ∈Γ (m,n,k)

κγ τγ(T )

where ∆T (x) is the Fejer kernel, Γ (l, k), Γ (m,n, k) were defined above, and

σγ(T ) =
∫
t∈Ik

T

Jγ(t)dt

=
∫
λ1,...,λK

k∏
j=1

∆T (
mj∑

i=m(j−1)+1

λi)
K∏
i=1

a(λi)
r∏
j=1

δ(
∑
i∈Vj

λi)
K∏
i=1

dλi ,
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correlation edges 

with cost  1− z

kernel edges

with cost   1− z

m "1−z1" edges
n "1−z

1

1" edges

2

2 ’

kernel edges

   pairs of ’1−  z k

Fig. 3. The graphs appearing in the expansion of cumulants of quadratic
forms. Here k=4, m=5, n=4. The figure displays only some of the
k(m+n)/2=18 correlation edges.

τγ(T ) =
∫
µ1,...,µk,λ1,...,λK ,λ′

1,...,λ
′
K′

k∏
j=1

⎡⎣∆T

(
µj +

mj∑
i=m(j−1)+1

λi

)
∆T

(
− µj +

n j∑
i=n(j−1)+1

λ′
i

)
b(µj)

⎤⎦
×

K∏
i=1

a(λi)
K′∏
i=1

a(λ′
i)

r∏
j=1

δ(
∑
i∈Vj

λi +
∑
i∈Vj

λ′
i)

K∏
i=1

dλi
K′∏
i=1

dλ′
i

k∏
i=1

dµi .

These graph structures are simple enough to allow a quick evaluation of the
orders of magnitude αM (z), via the corresponding graph-breaking problems;
for the case of bilinear forms we refer to Lemma 1 in [Avr92].

For the case of sums, the domain of applicability of the CLT is 1 − z1 ≥
1/m. We check now that at the extremal point 1− z1 = 1/m we have

αG(z1) = max
A

p(A)

= max
A

[co(G−A)−
∑
e∈A

(1− ze)]

= max
A

[co(G−A)− |A|(1− z1)]

≤ k/2, ∀G ∈ Gk

where we interpret p(A) as a ”profit,” equal to the ”gain” co(G − A) minus
the “cost”

∑
e∈A(1 − ze). We thus need to show that at the extremal point
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1− z1 = 1/m,
co(G−A)] ≤ |A|/m + k/2, ∀G ∈ Gk .

Indeed, this inequality holds with equality for the ”total breaking” A = E
(which contains (km)/2 edges). It is also clear that no other set of edges A
can achieve a bigger ”profit” p(A) (defined in (31)) than the total breaking,
since for any other set A which leaves some vertex still attached to the others,
the vertex could be detached from the others with an increase of the number of
components by 1 and a cost no more than m 1

m ; thus the profit is nondecreasing
with respect to the number of vertices left unattached and thus the total
breaking achieves the maximum of p(A).
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1986.

[GT97] L. Giraitis and M. S. Taqqu. Limit theorems for bivariate Appell poly-
nomials: Part I. Central limit theorems. Probability Theory and Related
Fields, 107:359–381, 1997.

[GT99] L. Giraitis and M. S. Taqqu. Whittle estimator for non-Gaussian long-
memory time series. The Annals of Statistics, 27:178–203, 1999.

[Guy95] X. Guyon. Random Fields on a Network: Modeling, Statistics and Ap-
plications. Springer-Verlag, New York, 1995.

[Han70] E.J. Hannan. Multiple Time Series. Springer-Verlag, New York, 1970.
[Hey97] C.C. Heyde. Quasi-Likelihood And Its Applications: A General Approach

to Optimal Parameter Estimation. Springer-Verlag, New York, 1997.
[HG89] C. C. Heyde and R. Gay. On asymptotic quasi-likelihood. Stochastic

Processes and their Applications, 31:223–236, 1989.
[HG93] C. C. Heyde and R. Gay. Smoothed periodogram asymptotics and es-

timation for processes and fields with possible long-range dependence.
Stochastic Processes and their Applications, 45:169–182, 1993.

286 Florin Avram and Murad S. Taqqu

[Hos81] J. R. M. Hosking. Fractional differencing. Biometrika, 68(1):165–176,
1981.

[Hur51] H. E. Hurst. Long-term storage capacity of reservoirs. Transactions of
the American Society of Civil Engineers, 116:770–808, 1951.

[KLRM05] M. Kelbert, N.N. Leonenko, and M.D. Ruiz-Medina. Fractional random
fields associated with stochastic fractional heat equations. Advances of
Applied Probability, 37:108–133, 2005.

[Mal80] V. A. Malyshev. Cluster expansions in lattice models of statistical
physics and the quantum theory of fields. Russian Mathematical Sur-
veys, 35(2):1–62, 1980.

[Oxl92] J.G. Oxley. Matroid Theory. Oxford University Press, New York, 1992.
[Oxl04] J.G. Oxley. What is a matroid? Preprint: www.math.lsu.edu/ ox-

ley/survey4.pdf, 2004.
[Sur83] D. Surgailis. On Poisson multiple stochastic integral and associated equi-

librium Markov process. In Theory and Applications of Random Fields,
pages 233–238. Springer-Verlag, Berlin, 1983. In: Lecture Notes in Con-
trol and Information Science, Vol. 49.

[Taq79] M. S. Taqqu. Convergence of integrated processes of arbitrary Hermite
rank. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
50:53–83, 1979.

[Tut59] W.T. Tutte. Matroids and graphs. Transactions of the American Math-
ematical Society, 90:527–552, 1959.

[Wel76] D. Welsh. Matroid Theory. Academic Press, London, 1976.
[WTT99] W. Willinger, M. S. Taqqu, and V. Teverovsky. Stock market prices and

long-range dependence. Finance and Stochastics, 3:1–13, 1999.



Aggregation of Doubly Stochastic Interactive
Gaussian Processes and Toeplitz forms of
U -Statistics.

Didier Dacunha-Castelle1 and Lisandro Fermı́n1,2
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1 Introduction

Granger [Gra80] has shown that by aggregating random parameter AR(1)
processes one may obtain long memory (LM) processes with spectral density
equivalent to 1/λα near λ = 0 for some α, 0 < α < 1. His study was the break-
through to an enhanced technique of analyses and modeling of LM processes
through elementary short memory (SM) processes. Following this discovery,
several authors, e.g. [GG88, Lin99, LZ98], studied the aggregation of AR(1)
and AR(2) processes. In particular, Lippi and Zaffaroni give a general presen-
tation of Granger’s results for AR(1) processes and more generally for ARMA
processes.

In this work we develop an aggregation procedure by considering some
doubly random, zero mean, second order and stationary elementary processes
Zi = {Zi

t(Y
i), t ∈ T} with spectral density g(λ, Y i). Here Y = {Y i, i ∈ N

d} is
a sequence of i.i.d. random variables with common distribution µ on R

s. For
every fixed path Y (ω), we define the sequence of partial aggregation processes
XN = {XN

t (Y ), t ∈ T} of the elementary processes {Zi}, by

XN
t (Y ) =

1
BN

∑
i∈{1,...,N}d

Zi
t(Y

i) , (1)

where BN is a sequence of positive numbers that will be presented in detail
further in the article. Under some general conditions, for almost every path
Y (ω), XN converges in distribution to the same Gaussian process X, which is
called the aggregation of the elementary processes {Zi}. A different approach
of aggregation using renewal switching processes is given in [TWS97].

First, we give a general framework for the aggregation procedure in the
discrete time case as well as in the continuous case. Then, we extend the
aggregation procedure in order to introduce dependence between elementary
processes. It could be thought of as interactions between elementary processes,
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with the formalism for instance of statistical mechanics or as interactions
between economical or sociological agents belonging to some sub-populations
separated by a distance |i− j|.

Lippi and Zaffaroni [LZ98], introduce an innovation process of the form
εt+ηit, where {εt, t ∈ Z} is the common innovation to all elementary process
and ηi = {ηit, t ∈ Z} are independent sequences of white noises. In economical
vocabulary ηi is the idiosyncratic component. But for aggregation they always
consider the normalization BN =

√
N which forces to split the aggregation

in two parts, a convergent part associated to ηit and a non convergent part
associated to εt. Because of this inherent impediment, we approached the
problem in a different way.

In our paper, we address the above issue by considering Y = {Y i, i ∈ N
d}

as the random environment model. Then we introduce interaction between
elementary processes “living at i” starting from interaction between noises as
E[εitε

j
t ] = χ(i − j), where χ is a given covariance on Z

d. Thus, the common
innovation case is given by χ(j) = 1, for all j, and the orthogonal innovation
by χ(j) = 0, for j �= 0. This procedure induces a random stationary covariance
between the elementary processes, given by E[Zi

tZ
j
t+τ ] = Ψτ (Y i, Y j)χ(i− j),

where {χ(j), j ∈ {0, ..., N}d} is a Toeplitz operator sequence and Ψτ (Y i, Y j)
is, for τ fixed, a second order U -statistic. The main tool used to prove the
existence and the form of the aggregated process X is focused on second order
U -statistic Toeplitz forms.

We obtain interesting qualitative behavior of our processes. First, we can
show that the existence of aggregation is only linked to the asymptotic os-
cillation of the interaction and not, as believed previously, to the random
environment, i.e. to the probability defined on the dynamics of elementary
processes. In the case d = 1, the aggregation exists iff sk =

∑k−1
j=1 χ(j) has a

limit in the Cesaro sense, finite or infinite (in the last case necessarily positive).
If the aggregation exists in L1 or a.s. (where the existence in L1 or a.s

means that the random covariance of XN converges in L1 or respectively
a.s.) then its spectral density is always of the form aF (λ) + bH2(λ). The
function F (λ) is the mixture of the spectral densities g(λ, Y i) with respect to
the common distribution µ of Y i and the function H(λ) is the mixture, with
respect to µ, of the transfer functions h(λ, Y i) defined by h2(λ, y) = g(λ, y).

When there is no interaction, that is χ(j) = 0 for j �= 0, or when sk → 0,
as for the increments of the fractional Brownian motion with index less than
1/2, then b = 0 and BN ∼

√
N .

When sk →∞, which is here considered as a qualitatively strong interac-
tion with large range, then a = 0 and N = o(B2

N ).
If sk → s <∞, for instance for short interaction,

∑∞
j=0 |χ(j)| <∞, or for

large range moderate oscillation when
∑∞

j=0 χ(j) <∞ and
∑∞

j=0 |χ(j)| =∞,
then a > 0, b > 0.

So the limit is always a convex combination of the two extreme cases:
independent innovations (F (λ), BN ∼

√
N) and common innovations (H2(λ),
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BN ∼ N). The limit is reached for the normalization BN which depends on
the behavior of sN .

Reaching LM for the aggregation has been one initial application of the
procedure. It can be reached, for instance, aggregating AR(1) elementary
processes with random correlation parameter Y i on D = (−1, 1). Then, if the
distribution of Y i is concentrated sufficiently near the boundary δD = {−1, 1}
we can obtain LM. In our approach, it is seen clearly that F as well as H2

can give the LM property. For modeling purposes, the simplest is to use H2,
since we only need to simulate one white noise. Therefore, LM is obtained
by aggregating random parameter AR(1) processes with the same innovation.
Furthermore, in this case the concentration near the boundary δD is strong.
The simplest way to illustrate this point is to choose 1/(1 − Y i) as random
variables with distribution µ′. If we want to simulate a LM processes with
spectral density G(λ) such that G(λ) ∼ 1/λα, when λ→ 0, using the classical
simulation with independent innovations we have to take µ′ as a p-stable
positive distribution with 1 < p < 2, and for the common innovation we have
to choose 1/2 < p ≤ 1.

In Sect. 2 we introduce doubly stochastic processes. In Sect. 3 we define
the aggregation procedure of doubly stochastic Gaussian processes considering
dependence between elementary processes. We provide a Strong Law of Large
Numbers (SLLN) for a random Toeplitz form of a second order U -statistic.
Then we apply it to prove the convergence of the partial aggregations, see
[Avr88, FT86, Gri76]. Finally in Sect. 4 we show the influence of this interac-
tion on the LM character of the processes, obtained by means of aggregation
of random parameter AR(1) processes.

2 Doubly Stochastic Processes

We define the sequence of the elementary doubly stochastic processes for dis-
crete and continuous time in the following way.

Let Y = {Y i, i ∈ N
d} be a sequence of i.i.d. random variables with common

distribution µ on R
s and define a family W = {W i(λ), λ ∈ Λ, i ∈ N

d} of
complex Brownian random fields in the following way: let m denote Lebesgue’s
measure on Λ, where Λ = (−π, π]d in the case of discrete processes and Λ = R

d

in the continuous case. Let χ be a correlation function on Z
d. For simplicity

we consider here only the one dimensional case, leaving for a follow-up paper
the case d > 1 which is not very different from the case d = 1 except for very
specific problems linked to anisotropy. We consider a sequence {W i, i ∈ N} of
complex Brownian random fields defined on (Ω,F ,P) by

E[W i(A)W j(B)] = χ(i− j)m(A ∩B) , (2)

where i, j ∈ N and A,B ∈ A = {A ∈ B(Λ) : m(A) < ∞}. The set of finite
dimensional distributions of {W i(Ai) : Ai ∈ A, i = 1, ..., n} is a coherent
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family of distributions, thus Kolmogorov’s Theorem implies the existence of
the family of random fields {W i, i ∈ N}. From equation (2) we obtain for all
f, g∈L2(m)

E

[∫
Λ

f(λ)dW i(λ)
∫
Λ

g(ϕ)dW j(ϕ)
]

= χ(|i− j|)
∫
Λ

f(λ)g(λ)dλ . (3)

Then the function χ is considered as the interaction correlation between the
individual innovations W i, with χ(0) = 1.

Let g(λ, y), y ∈ R
s, be a family of spectral densities, measurable on Λ

⊗
R
s

and such that g(λ, y) ∈ L1(m), µ−a.s. We will denote by h a particular square
root of g, for simplicity we consider the real one.

We define the elementary processes Zi = {Zi
t(Y

i, ω)} by

Zi
t(y, ω) =

∫
Λ

eitλh(λ, y)W i(ω, dλ) . (4)

For µ-almost all y, given Y i = y, Zi = {Zi
t(y)} is a stationary Gaussian

process with spectral density g(λ, y) and

E
Y
[
Zi
tZ

j
t+τ

]
= χ(|i− j|)

∫
Λ

e−iτλh(λ, Y i)h(λ, Y j)dλ ,

where E
Y [·] is the conditional expectation given Y .

Remark 1. We can also define the elementary processes as follows.

• Discrete time case: Let {εin, n ∈ Z} be the discrete Fourier transform of
W i, then {εin, i ∈ N, n ∈ Z} is an infinity array of normalized Gaussian
random variables such that for a fixed i, {εin, n ∈ Z} is a white noise,
where E[εinε

j
n] = χ(|i− j|) with χ(0) = 1 and E[εinε

j
m] = 0 for n �= m.

Then we define the sequence Zi = {Zi
n(Y i), n ∈ Z} of doubly random

elementary processes by setting

Zi
n(y) =

∑
k∈Z

ck(y)εin−k , (5)

where for µ-almost all y, {ck(y)} is the sequence of Fourier coefficients of
µ.

• Continuous time case: Let Bi be the Fourier transform of W i, which is
a Brownian motion with the same properties as W i. In this case Zi

t is
defined by

Zi
t(y) =

∫ t

−∞
c(t− s, y)dBi

s , (6)

where for µ-almost all y, c(·, y) is the Fourier transform of h(·, y).
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3 Aggregations and Mixtures

We will study the procedure of aggregation in the context of mixtures of spec-
tral densities. The µ-mixture of the spectral densities g(λ, y) is the spectral
density F defined by

F (λ) =
∫

Rs

g(λ, y) dµ(y) . (7)

The function F (λ) is a well defined spectral density iff

V (F ) =
∫
Λ

F (λ) dλ <∞ . (8)

The mixture function given by

H(λ) =
∫

Rs

h(λ, y) dµ(y) , (9)

is well defined and will be called a transfer function iff H2 is a spectral den-
sity, i.e. if H2 is is integrable with respect to Lebesgue’s measure. This is a
consequence of condition (8) and Jensen’s inequality.

We will call {XN
t , N ∈ N}, defined in equation (1), the partial aggregation

sequence of the elementary processes {Zi} associated to the mixture F (λ).
We now study convergence in distribution of XN to some Gaussian process

X, called the aggregation of the processes {Zi}, for almost all paths of Y . Let
ν be the probability measure of the process Y , i.e. ν = µ

⊗
N.

Definition 1. Let XN (Y ) be the partial aggregation of the sequence of el-
ementary processes {Zi(Y i), i ∈ N}. We say that the aggregation X exists
ν − a.s. iff for ν-almost every sequence Y = {Y i}, the partial aggregation
process XN (Y ) converges weakly to X.

As the elementary processes Zi are ν−a.s. Gaussian and zero-mean, then
Definition 1 is equivalent to the following definition.

Definition 2. The aggregation X exists ν − a.s. iff, for every τ ∈ T , the
covariance functions ΓN (τ, Y ) of {XN

t (Y )} converge ν−a.s. to the covariance
Γ (τ) of X.

We will need the following definition.

Definition 3. Let XN (Y ) be the partial aggregation of the sequence of ele-
mentary processes {Zi(Y i), i ∈ N}. We say that the aggregation X exists in
Lp(ν) (quadratic means q.m, for p = 2) iff ΓN (τ, Y ) converges in Lp(ν) to
the covariance Γ (τ) of X.

Let ΓN (τ,B) be the covariance functions of the partial aggregation process
XN (Y ),
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ΓN (τ, Y ) =
1

B2
N

N∑
i=1

Ψτ (Y i, Y i) +
1

B2
N

∑
1≤i�=j≤N

Ψτ (Y i, Y j)χ(i− j) , (10)

with
Ψτ (Y i, Y j) =

∫
Λ

e−iτλh(λ, Y i)h(λ, Y j)dλ . (11)

Let [χ]N,1 =
∑

1≤i�=j≤N χ(i − j) and [χ]N,2 =
∑

1≤i�=j≤N χ2(i − j), where
the function χ denotes the interaction correlation between innovations, and
χ(0) = 1. If sk =

∑k−1
j=1 χ(j) then [χ]N,1 = 2

∑N
k=1 sk.

As χ is a positive definite sequence, we have that Nχ(0) + [χ]N,1 ≥ 0.
Hence [χ]N,1

N = 2
N

∑N
k=1 sk ≥ −1, therefore sk ≥ −1

2 . This implies that if sk

converges in the Cesaro sense to s, denoted by sk
c→ s, then − 1

2 ≤ s ≤ ∞. So
that there are only three cases to consider.

i. Weak interaction: when sk
c→ s <∞.

ii. Strong interaction: when sk
c→∞.

iii. Oscillating interaction : when the sequence sk does not converge in the
Cesaro sense.

Let γ and φ be the respective covariances of F and H2. By Jensen’s in-
equality we have that F ≥ H2 and γ0 ≥ φ0 so that γ0N +φ0[χ]N,1 ≥ 0. Since
2s ≥ −1 then F (λ) + 2sH2(λ) ≥ 0 and γ0 + 2sφ0 > 0 for γ0 − φ0 > 0.

First we will prove that ΓN (τ, Y ) converges ν − a.s. and in L1(ν) iff con-
dition (8) holds and the interaction correlation χ satisfies some additional
conditions.

Theorem 1 (SLLN for ΓN (τ, Y ) ). Let B2
N = γ0N + φ0[χ]N,1. The co-

variance function ΓN (τ, Y ) converges in L1(ν) iff condition (8) holds and sk
converges in the Cesaro sense to s, − 1

2 ≤ s ≤ ∞. Then its limit is given by

Γ (τ) =
γ(τ) + 2sφ(τ)

γ0 + 2sφ0
,

with Γ (τ) = φ(τ)/φ0 for s =∞.
If condition (8) is satisfied then we have the following results:

(A1). L1(ν) convergence is a necessary condition for ν − a.s. convergence, and
in the case both limits exist, then they are the same.

(A2). In the case of weak interaction, let rk =
∑k

j=1 |χ(j)|. Then
∑∞

k=1 k−2r2
k2 <

∞ is a sufficient condition for ν − a.s. convergence.
(A3). In the case of strong interaction, the conditions

∑∞
N=1[χ]−2

N,1[χ]N,2 < ∞

and
∑N

k=1s
2
kΘ
(∑N

k=1 s2
k

)
= O

({∑N
k=1 sk

}2
)

, for some function Θ such

that
∑∞

n=1 n−1Θ(n)−1 < ∞, are jointly sufficient conditions for ν − a.s.
convergence.

Remark 2. In Theorem 1:
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(A1). The condition of item 2 holds if χ ∈ l1 or if χ(j) = (−1)jL(j)j−α with
α > 0 and {L(j), j ∈ N} any sequence of slow variation.

(A2). Let ζ(N) = N−1∑N
k=1 sk, s+

k =
∑k

j=1(χ(j)∨ 0) and s−
k =

∑k
j=1(−χ(j)∨

0), then sk = s+
k − s−

k . Then the conditions of item 3 are satisfied if
s−
k = o(s+

k ) and
∑∞

k=1 k−1ζ(k)−1 <∞.
In this case

[χ]N,2 = O

(
N∑

K=1

s+
k +

N∑
K=1

s−
k

)
= O

(
N∑

K=1

s+
k

)
,

and [χ]N,1 ∼
∑N

K=1 s+
k . Then [χ]N,2/[χ]2N,1 = O

(
N−1ζ(N)−1

)
and so the

condition
∑∞

k=1{[χ]k,2/[χ]2k,1} <∞ holds.
On the other hand, supk≤N{s+

k } ∼ ζ(N), since s+
k is increasing, and

ζ(N) ≤ N . Then, choosing Θ(n) = nε/3, for 0 < ε < 1, we have that∑N
k=1 s2

k Θ
(∑N

k=1 s2
k

)
(∑N

k=1 sk

)2 = O

(
Θ(Nζ2(N))

N

)
= O

(
1

N1−ε

)
.

Two particular cases are: when χ(j) = j−α for 0 < α < 1 and when χ(j)
has a fixed sign for j large enough and

∑∞
N=1 N−1s−1

N <∞.

Proof. The proof of theorem will be presented in two parts.
Part 1: (Convergence in L1).
Since {h(λ, Y i), i ∈ N} is an i.i.d sequence such that

E[h(λ, Y i)] =
∫

h(λ, y)dµ(y) = H(λ) ,

E[h(λ, Y i)2] =
∫

h2(λ, y)dµ(y) =
∫

g(λ, y)dµ(y) = F (λ) ,

then E[Ψτ (Y i, Y j)] = φ(τ) for i �= j and E[Ψτ (Y i, Y i)] = γ(τ). So condition (8)
is equivalent to E[Ψτ (Y i, Y j)] <∞ and by equation (10) we have

RN (τ,B) = E[ΓN (τ, Y )] =
Nγ(τ) + [χ]N,1φ(τ)

Nγ0 + [χ]N,1φ0
.

Then RN (τ,B) has a non-zero limit iff sk converges in the Cesaro sense.
In this case we obtain:

i. Weak interaction: if sk
c→ s <∞, then RN (τ,B)→ γ(τ)+2sφ(τ)

γ(0)+2sφ(0) .

ii. Strong interaction: if sk
c→∞, then RN (τ,B)→ φ(τ)

φ(0) .

iii. Oscillating interaction: if the sequence sk does not converge in the Cesaro
sense then RN (τ,B) does not have a limit.
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Part 2: (Convergence ν − a.s).
Let Mτ (Y i) = E

i[Ψτ (Y i, Y j)], for i �= j. Then {Mτ (Y i), i ∈ N} is a sequence
of i.i.d. random variables, such that E[Mτ (Y i)] = E[Ψτ (Y i, Y j)] = φ(τ) where
E
i[·] is the conditional expectation with respect to Y i.

Let H be the Hilbert space generated by {Ψτ (Y i, Y j); 1 ≤ i �= j ≤ N}, H1
the linear space generated by {Ψτ (Y i, Y j)−Mτ (Y i)−Mτ (Y j)+φ(τ); 1 ≤ i <
j ≤ N}, H2 the linear space generated by {Mτ (Y i) + Mτ (Y j) − 2φ(τ); 1 ≤
i < j ≤ N} and C the space of constants, then H1, H2, C form an orthogonal
decomposition of H; i.e. H = H1

⊕
H2
⊕
C. This can be checked by realizing

that E
i[Φτ (Y i, Y j)] = 0 µ− a.s. for i �= j. Define

TN (τ,B) =
1

B2
N

N∑
i=1

(
Ψτ (Y i, Y i)− γ(τ)

)
,

QN (τ,B) =
1

B2
N

∑
1≤i�=j≤N

(
Mτ (Y i) + Mτ (Y j)− 2φ(τ)

)
χ(i− j) ,

UN (τ,B) =
1

B2
N

∑
1≤i�=j≤N

(
Ψτ (Y i, Y j)−Mτ (Y i)−Mτ (Y j) + φ(τ)

)
χ(i− j) .

H’s orthogonal decomposition applied to ΓN (τ, Y ) − TN (τ,B) gives the fol-
lowing orthogonal decomposition

ΓN (τ, Y )− TN (τ,B) = UN (τ,B) + QN (τ,B) + RN (τ,B) .

In what follows, we will show that TN , QN and UN converge to zero ν−a.s
and in L1(ν) under given conditions. If the limits ν − a.s and in L1(ν) of ΓN

exist, then they are the same.
Step 1: (TN ’s convergence to zero).
As {Ψτ (Y i, Y i), i ∈ Z} is an i.i.d sequence and E[Ψτ (Y i, Y i)] <∞ is equivalent
to condition (8), if N = O(B2

N ) then by applying the Strong Law of Large
Numbers (SLLN) we obtain, under condition (8), for each τ that TN (τ,B)
converges in L1(ν) and ν − a.s. to zero.

i. Weak interaction: sk
c→ s and − 1

2 ≤ s <∞, then clearly N = O(B2
N ).

ii. Strong interaction: if sk
c→∞ then N

B2
N

= o(1) so the result holds.

Step 2: (QN ’s convergence to zero).
We can write

QN (τ,B) =
2

B2
N

N∑
i=1

ξi ,

where ξi =
(
Mτ (Y i)− φ(τ)

)
(sN−i + si−1) is an i.i.d sequence such that

E[ξi] = 0, so that E[QN (τ,B)] = 0 and

E[QN (τ,B)]2 =
Aτ

B4
N

N∑
i=1

(sN−i + si−1)
2

,
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with

Aτ = E[Mτ (Y i)− φ(τ)]2 =
∫ ∫

A(λ, θ)H(λ)H(θ)ei(λ+θ)τdλdθ − φ2(τ) ,

where A(λ, θ) = E[h(λ, Y i)h(θ, Y i)]. Condition (8) implies that A(τ) <∞.
As

∑N
i=1 (sN−i + si−1)

2 = O(
∑N

i=1 s2
i ) → ∞ when N → ∞, then it is

sufficient to show that 1
B4

N

∑N
k=1 s2

k → 0 when N →∞.

i. Weak interaction: sk
c→ s < ∞,

∑N
k=1 s2

k = O(N) and N = O(B2
N ),

therefore 1
B4

N

∑N
k=1 s2

k = O( 1
N ).

ii. Strong interaction: sk
c→ ∞. As sup sk = ∞ and for j large enough

|χ(j)| ≤ 1, then 1 ≤ |sj | ≤ j ≤ N , and B2
N = O(

∑N
k=1 sk), whence,

for some constant C > 0,∑N
k=1 s2

k

B4
N

≤ C

(
sup1≤k≤N sk

)∑N
k=1 sk(∑N

k=1 sk

)2 = O

(
N∑N
k=1 sk

)
= o(1) .

This implies that QN (τ,B) converges to zero in q.m. and therefore in L1(ν).
In order to prove limN→∞ QN (τ,B) = 0 ν − a.s., we can apply Petrov’s

Theorem ([Pet75],6.17 p 222): let ∆N =
∑N

i=1 ξi be a sum of independent
random variables such that its variance VN = Aτ

∑N
i=1 (sN−i + si−1)

2 diverge
to infinity. Then ∆N−E[∆N ] = o(

√
VNΘ(VN )) for some function Θ such that∑∞

n= n−1Θ(n)−1 <∞.
So it is sufficient to find Θ such that√√√√ N∑

k=1

s2
k Θ

(
N∑
k=1

s2
k

)
= O(B2

N ) .

i. Weak interaction: sk
c→ s <∞,

∑N
k=1 s2

k = O(N) and N = O(B2
N ) so we

can apply Petrov’s Theorem, taking Θ(n) = nε for 0 < ε < 1.
ii. Strong interaction: sk

c→∞. In this case, by hypothesis, we have∑N
k=1 s2

k Θ
(∑N

k=1 s2
k

)
(∑N

k=1 sk

)2 = O(1) ,

for some function Θ such that
∑∞

n=1 n−1Θ(n)−1 < ∞. Since
∑N

k=1 sk =
O(B2

N ), we have√∑N
k=1 s2

kΘ(
∑N

k=1 s2
k)

B2
N

∼

√∑N
k=1 s2

kΘ(
∑N

k=1 s2
k)∑N

k=1 sk
= O(1) .
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Step 3: (UN ’s convergence to zero).
We consider the kernel Φ(Y i, Y j) defined, for i �= j, by

Φτ (Y i, Y j) = Ψτ (Y i, Y j)−Mτ (Y i)−Mτ (Y j) + φ(τ) .

This kernel is symmetric and degenerated, i.e., E
j [Φτ (Y i, Y j)] = 0 µ − a.s.

Therefore we have that E[Φτ (Y i, Y j)] = 0, E[Φτ (Y i, Y j)Φτ (Y k, Y l)] = 0 for
(i, j) �= (k, l), and

στ = E[Φ2
τ (Y

i, Y j)] =
∫ ∫

(A(λ, θ)−H(λ)H(θ))2 ei(λ+θ)τ dλdθ .

Condition (8) implies E[Φ2
τ (Y

i, Y j)] < ∞, for i �= j. Then UN (τ,B) is a
random Toeplitz form of the second order U -statistic. The orthogonality of
the random variables Φτ (Y i, Y j), for i �= j, implies that

αN = E[|UN (τ,B)|2] =
στ [χ]N,2

B4
N

.

Then UN (τ,B) converges to zero in q.m. iff B−4
N [χ]N,2 → 0 when N → ∞.

Let us see that this is always true when sk has a limit s ≤ ∞.

i. Weak interaction: sk
c→ s < ∞, χ(j) → 0, then B−4

N [χ]N,2 ∼ N−2[χ]N,2
and

[χ]N,2
N2 ≤ 1

N

K0∑
k=1

(
1− k

N

)
χ2(k)

+ sup
K0≤k≤N

|χ(k)| 1
N

N∑
k=K0+1

(
1− k

N

)
|χ(k)| ,

from where B−4
N [χ]N,2 → 0 when N →∞. In particular, when χ ∈ l2 then

αN = O(N−1).
ii. Strong interaction: sk

c→∞, then N−1[χ]N,1 →∞ and [χ]N , 1 = O(B2
N ),

from where
[χ]N,2
B4
N

= O

(
[χ]N,2
[χ]2N,1

)
= o(1).

Let us now prove the ν − a.s. convergence for this random Toeplitz form,
following the scheme of the classical proof for the SLLN in the case of i.i.d.
random variables as in Petrov, [Pet75], See [Sur03] for the Central Limit
Theorem.

First we consider the weak interaction case, N = O(B2
N ). Let a > 0,

P(max
n≥N

|Un(τ,B)| ≥ 2a) ≤
∞∑

k=�√N�
P(|Uk2(τ,B)| ≥ a)

+
∞∑

k=�√N�
P

(
max

k2≤n≤(k+1)2
|Un(τ,B)− Uk2(τ,B)| ≥ a

)
.
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From the estimation of αN and applying Tchebychev’s inequality, we have

P(|Uk2(τ,B)| ≥ a) ≤ στrk2

a2k2 ,

where rk =
∑k

j=1 |χ(j)|. Then if
∑∞

k=1k
−2r2

k2 <∞ we prove that the series∑∞
k=�√N�P(|Uk2(τ,B)|≥a) converges.
On the other hand,

Un(τ,B)− Uk2(τ,B) =
∑

i,j∈A(n,k2)

Φτ (Y i, Y j)χ(i− j) ,

where A(n, k2) = {i, j : 1 ≤ i < j, k2 < j ≤ n} ∪ {i, j : 1 ≤ j < i, k2 < i ≤ n},
and so

max
k2≤n≤(k+1)2

|Un(τ,B)− Uk2(τ,B)| ≤ ak + bk .

with

ak = max
k2≤n≤(k+1)2

∣∣∣∣∣∣ 1n
∑

A(n,k2)

Φτ (Y i, Y j)χ(i− j)

∣∣∣∣∣∣ .

bk = max
k2≤n≤(k+1)2

∣∣∣∣ 1n − 1
k2

∣∣∣∣
∣∣∣∣∣∣

∑
1≤i<j≤k2

Φτ (Y i, Y j)χ(i− j)

∣∣∣∣∣∣ .

Since ak ≤ 1
k2

∑
A(k2,(k+1)2) |Φτ (Y i, Y j)||χ(i− j)|, then

P(ak ≥ a) ≤ 1
a2k4 E

⎡⎢⎣
⎛⎝ ∑
A(k2,(k+1)2)

|Φτ (Y i, Y j)χ(i− j)|

⎞⎠2
⎤⎥⎦

≤ στk
2

a2k4

⎛⎝(k+1)2∑
l=1

|χ(l)|

⎞⎠2

= O

(
r2
k2

k2

)
.

Furthermore, bk ≤ 2
k3

∣∣∣∑1≤i<j≤k2 Φτ (Y i, Y j)χ(i− j)
∣∣∣ so

P(bk ≥ a) ≤ 4στk2[χ]k2,2

a2k6 = O
(rk2

k2

)
.

As P(maxk2≤n≤(k+1)2 |Un(τ,B) − Uk2(τ,B)| ≥ a) ≤ P(ak ≥ a) + P(bk ≥ a)
then

∞∑
k=�√N�

P( max
k2≤n≤(k+1)2

|Un(τ,B)− Uk2(τ,B)| ≥ a) <∞ .
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Finally, from Borel-Cantelli’s lemma we derive the ν − a.s. convergence to
zero of UN (τ,B). This proves the convergence ν − a.s in the weak interaction
case.

Note that, taking k1+β instead of k2 and N
1

1+β instead of N
1
2 in the

previous proof, we can see that the result remains true for χ(j) = (−1)j

jα , with
1
2 < α<1.

Let us now prove the ν − a.s. convergence of UN in the strong interaction
case. In general we have

P

(
max
N≥K

|UN (τ,B)| ≥ a

)
≤

∞∑
N=K

P (|UN (τ,B)| ≥ a)

≤ στ
a2

∞∑
N=K

[χ]N,2
B4
N

∼ στ
a2

∞∑
N=K

[χ]N,2
[χ]2N,1

.

If
∑∞

N=1{[χ]N,2/[χ]2N,1} < ∞, then Borel-Cantelli’s lemma implies that
UN (τ,B) converges ν − a.s. to zero.

Part 3: (Convergence of ΓN ).
We have proved, in Part 2, that TN , QN and UN converge to zero in L1(ν),
then from decomposition

ΓN (τ, Y )−RN (τ,B) = TN (τ,B) + QN (τ,B) + UN (τ,B) ,

we have that ΓN (τ, Y ) − RN (τ,B) converges to zero in L1(ν). Additionally,
in Part 1, we have proved that RN (τ,B) converges to Γ (τ) iff sN

c→ s ≤ ∞.
Then

E[|ΓN (τ, Y )− Γ (τ)|] ≤ E[|ΓN (τ, Y )−RN (τ,B)|] + |RN (τ,B)− Γ (τ)| → 0 ,

when N →∞. Therefore, ΓN (τ, Y ) is convergent in L1(ν) iff sN
c→ s ≤ ∞.

The ν−a.s convergence of ΓN (τ, Y ) is implied by the ν−a.s convergence
of TN , QN and UN , and the convergence of RN . In this case, we obtain that
ΓN (τ, Y ) also converges to Γ (τ). Notice that the convergence of sk in the
Cesaro sense is a necessary condition for the convergence ν−a.s. of ΓN . This
can be checked by considering a ν−a.s. convergent subsequence of {ΓN}, and
the earlier conclusion follows from the uniqueness of the limit. ��

Remark 3. It is easy to see that ΓN (τ, Y ) is convergent in q.m. if we suppose
that

V2(F ) =
∫
Λ

F 2(λ)dλ <∞ , (12)

and B−4
N [χ]N,2 → 0, when N → ∞, since condition (12) is equivalent to

E[|Ψτ (Y i, Y i)|2] < ∞ which implies that TN (τ,B) converges to zero in L2.
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This explain why condition (12) is necessary to obtain q.m. convergence of
ΓN (τ, Y ).

Remark 4. In the strong interaction case, condition
∑∞

k=1{[χ]N,2/[χ]2N,1} <∞
is not necessary for the ν-a.s. convergence. For instance, if we consider an in-
novation process given by εt = ε1,t + ε2,t, where ε1,t, ε2,t are independent
Gaussian innovations with respective interaction functions χ1(j) = (−1)j+1

and χ2(j) = 1
jα . Then for 1

2 < α < 1, taking B2
N = N2−α and splitting

XN into the independent partial aggregation processes XN
1 and XN

2 , which
corresponds respectively to ε1,t and ε2,t, we obtain that the aggregated pro-
cesses exist ν − a.s. However, [χ]N,2 ∼ N2 and [χ]N,1 ∼ N2−α, therefore∑N

k=1{[χ]k,2/[χ]2k,1} ∼
∑N

k=1 k2α−2 =∞.

Remark 5. As Φ(Y i, Y j), for i �= j, is a symmetric and degenerated kernel,
then using classical Freedholm theory we can write Φ as

Φ(x, y) =
∞∑
k=1

λkuk(x)uk(y) ,

with
∑∞

k=1 λ2
k <∞, E[uk(Y )] = 0, E[u2

k(Y )] = 1 and E[uk(Y )uj(Y )] = 0, for
k �= j. Then the proof of the convergence (ν − a.s and q.m.) for the random
Toeplitz form UN (τ,B) is equivalent to the proof of the convergence for the
product kernel defined by Φ̃(x, y) = uk(x)uk(y). If χ̂ is the Fourier transform
of χ, this is also equivalent to the proof of the convergence for the integrated
periodogram

1
B2
N

∫ π

−π

∣∣∣∣∣∣
N∑
j=1

u(Y j)eijλ

∣∣∣∣∣∣ dλ ,

for centered and second order i.i.d. random variables {u(Y j), j ∈ N}, see
[DD83]. For a different approach see [LS01].

We will now prove that the aggregation always exists in L1(ν) iff condi-
tion (8) is satisfied. Then under the conditions on the interaction correlation
χ, given in Theorem 1, we deduce the ν− a.s. convergence. In these cases the
spectral density of the aggregated process is a convex combination of F and
H2; F disappears for strong interactions, and H disappears for orthogonal
innovations. The result is summarized in the following theorem.

Theorem 2 (Aggregation Convergence). Under conditions in Theorem 1,
the aggregated process X exists ν−a.s. or in L1(ν). In this case its spectral den-
sity is given by G(λ) = {F (λ)+2sH2(λ)}/{γ0 +2sφ0} with G(λ) = H2(λ)/φ0
if s =∞.

Proof. Since the elementary processes Zi are Gaussians, the convergence, for
each τ , of ΓN (τ, Y ) to the covariance function
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Γ (τ) =
γ(τ) + 2sφ(τ)

γ0 + 2sφ0
,

implies the convergence of the finite dimensional distributions of the process
{XN

t (Y )} to the Gaussian distribution with covariance function Γ (τ), in some
sense (L1(ν), q.m. or ν − a.s.). Hence, in the discrete case we obtain that
{XN

t (Y )} converges to a Gaussian process with covariance function Γ (τ) and
spectral density G(λ).

In the continuous time case it is necessary that ΓN (τ, Y ) converges ν−a.s.
to a covariance function Γ (τ), for all τ ∈ R.

To see this, take a sequence {ψn} such that ψn is a positive continuous
function with compact support, and ψ → 1. If FN (λ) denotes the Fourier
transform of ΓN (τ, Y ), equivalently as for the discrete time case∫

ψj(λ)dFN (λ)→
∫

ψj(λ)dF (λ) ,

for every j, ν − a.s.. This convergence and
∫

dFN (λ) →
∫

dF (λ) together
imply that {Fn, n ∈ N} is a tight sequence and

∫
ψdFn →

∫
ψdF for ψ in a

denumerable dense set. Then every convergent subsequence has F as limit; i.e.
Fn → F strongly ν − a.s., and so ΓN (τ, Y ) converges to Γ (τ) for all τ ∈ R,
ν − a.s.

Reciprocally, if the aggregated process X exists, in some sense, then X is
a zero mean second order Gaussian process with spectral density given by a
convex combination of F and H2, in which case F satisfies condition (8). ��

Proposition 1. For independent innovations and Y = {Y i, i ∈ N} any sta-
tionary ergodic process with invariant measure ν, the aggregated process X
exists ν − a.s. and in L1(ν). In this case its spectral density is given by
G(λ) = F (λ)/γ0.

In the case of independent innovation, ΓN (τ, Y ) converges in L1(ν) and
ν−a.s. to γ(τ), for every τ . In this case, we only need the SLLN for {Y i, I ∈ N}
µ-integrable variables that can be chosen as any stationary ergodic process
with invariant measure ν.

4 Aggregation of AR(1) Processes and Long Memory

In this section we study the aggregation of random parameter AR(1) processes
considering dependence between individual innovations in order to show the
influence of interactive innovations on the construction of LM processes.

We consider the elementary processes Zi
n(Y i) as random parameter AR(1)

processes; i.e. Zi
n has the MA(∞) expansion

Zi
n(Y i) =

∑
k∈Z

ck(Y i)εin−k ,
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where {εin, i ∈ N, n ∈ Z} are interactive individual innovations such that
E[εinε

j
n] = χ(|i − j|) with χ(0) = 1 and E[εinε

j
m] = 0 for n �= m, {Y i} is a

sequence of i.i.d. random variables with common distribution µ on D = (−1, 1)
and {ck(y), k ∈ Z} are the Fourier coefficients of h(λ, y), where h(λ, y) is the
real root of the spectral density g(λ, y) = σ2{1 − 2y cosλ + y2}−1. In this
case we have that the spectral densities mixture and the transfer function are
given by

F (λ) =
∫ 1

−1

σ2

1− 2y cosλ + y2 dµ(y) .

H(λ) =
∫ 1

−1

σ2

(1− 2y cosλ + y2)1/2
dµ(y) .

When µ is concentrated sufficiently near the boundary δD = {−1, 1} of D,
we can produce a singularity on F and on H at the frequencies 0 or π.

We take dµ(y) = |1 − y|dψ(y)dy, where ψ is a bounded positive function
supported in [0, 1], continuous at y = 1 with ψ(1) > 0. Then we can verify
that

i. If −1 < d < 1, then near λ = 0

F (λ) ∼ ψ(1)
|λ|1−d

∫ ∞

0

ud

1 + u2 du .

ii. If −1 < d < 0, then near λ = 0

H(λ) ∼ ψ(1)
|λ|−d

∫ ∞

0

ud

(1 + u2)1/2
du .

From the above results follow two qualitative ways of obtaining α-LM
processes, for 0 < α < 1; i.e. LM processes with spectral density G(λ) such
that G(λ) ∼ |λ|−α near λ = 0:

1. If 0 < d < 1, we can obtain by aggregation α-LM processes with 0<α<1.
In this case H2 does not produce LM.

2. If − 1
2 < d < 0 then considering strong long interaction between innova-

tions, we can also obtain by aggregation α-LM processes with 0 < α < 1,
from H2 contribution but for a much stronger concentration of the mix-
ture measure near δD.
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1 Introduction

The asymptotic properties of the QMLE of GARCH processes have attracted
much attention in the recent years. It turned out that, contrary to what
seemed to emerge from pioneering works, such estimators are consistent and
asymptotically normal under fairly weak conditions on the parameter space
and the true parameter value. See [1], [2], [3], [14], [12], for recent references
on the QML estimation of general GARCH(p, q) models. See [20] for a recent
comprehensive monograph on the estimation of GARCH models.

A serious limitation of the QMLE, however, is that some of its asymptotic
properties require the existence of fourth-order moments for the underlying
iid (independent and identically distributed) process (ηt). In [1] and [14] it is
shown that the QMLE is not

√
n-consistent if E|η0|s = ∞ with 0 < s < 4.

Another limitation of the QMLE is obviously its possible lack of efficiency
when the underlying error distribution is not standard Gaussian.

This paper is concerned with efficiency properties in the framework of
GARCH models. In a recent paper, [2] established the asymptotic properties
of a class of estimators including the QMLE and the MLE. In the monograph
[20], a chapter is devoted to ML estimation in a very general setting. In the
present paper we limit ourselves to the MLE and, in Section 2, we establish
its consistency and asymptotic normality, under weaker and/or more explicit
conditions than those of the aforementioned references. Detailed comments on
the assumptions are provided below. From a technical point of view, working
with a general likelihood instead of the gaussian quasi-likelihood is far from
being a trivial extension. Many problems arise from the need to put mild
assumptions on the errors distribution, avoiding high-order moments. Next,
we propose illustrations showing that (i) the gaussian QMLE is in general
inefficient, (ii) it may reach the ML efficiency when the underlying distribution
is not gaussian, (iii) the QML estimator can be improved by the so-called
one-step method. In Section 3 we consider the problem of hypothesis testing
based on the MLE and QMLE. The relative efficiency of Wald tests based on
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these two estimators is analyzed via a sequence of local alternatives. Section
4 concludes. All proofs are collected in an appendix.

For a matrix A of generic term A(i, j) we use the norm ‖A‖ =
∑
|A(i, j)|.

The spectral radius of a square matrix A is denoted by ρ(A). The symbol
⇒ denotes the convergence in distribution. Let x− = max(0,−x) and x+ =
max(0, x). Let λ denote the Lebesgue measure on R.

2 Framework and main results

Let (ε1, . . . , εn) be a realization of length n of a nonanticipative strictly sta-
tionary solution (εt) to the GARCH(p, q) model introduced by [10] and [6]:{

εt =
√

htηt
ht = ω0 +

∑q
i=1 α0iε

2
t−i +

∑p
j=1 β0jht−j , ∀t ∈ Z

(1)

where ω0 > 0, α0i ≥ 0 (i = 1, . . . , q), β0j ≥ 0 (j = 1, . . . , p), and

A1: (ηt) is a sequence of independent and identically distributed (i.i.d)
random variables with a positive density f , such that for some δ1 > 0,
supy∈R |y|1−δ1f(y) <∞ and supy∈R |y|1+δ1f(y) <∞.

In this paper we investigate the properties of the classical MLE, which
means that f is assumed to be known. On the other hand, we do not need
to assume Eηt = 0 and Eη2

t = 1 (such moments may even not exist in our
framework). This may seem surprising since for QML estimation, this kind of
assumptions is crucial for identifiability. In the ML framework, the innovation
density is supposed to be known so that every existing moment of ηt is also
known. By avoiding the condition Eη2

t = 1 we allow for distributions with
infinite variance (for instance the Cauchy distribution, see Comment 4 below
for other examples). We then interpret the variable ht as a conditional scale
variable, instead of a conditional variance as is usually the case within the
GARCH framework.

The vector of parameters is

θ = (θ1, . . . , θp+q+1)′ = (ω, α1, . . . , αq, β1, . . . , βp)′

and it belongs to a compact parameter space Θ ⊂]0,+∞[×[0,∞[p+q. The true
parameter value is denoted by

θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p)′ = (ω0, α0[1:q−1], α0q, β0[1:p−1], β0p)′ .

We assume θ0 ∈ Θ. Of course model (1) admits an infinity of representations
parameterized by (θ0, f), but once f has been fixed, θ0 is uniquely determined
(under Assumption A4 below)

From [7] it is known that, assuming E log+ ‖A0t‖ < ∞, there exists a
unique nonanticipative strictly stationary solution (εt) to Model (1) if and only
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if the sequence of matrices A0 = (A0t) has a strictly negative top Lyapunov
exponent, γ(A0) < 0, where

A0t =

⎛⎜⎝α0[1:q−1]η
2
t α0qη

2
t β0[1:p−1]η

2
t β0pη

2
t

Iq−1 0q−1×1 0q−1×p−1 0q−1×1
α0[1:q−1] α0q β0[1:p−1] β0p
0p−1×q−1 0p−1×1 Ip−1 0p−1×1

⎞⎟⎠ ,

with Ik being the k×k identity matrix and 0k×k′ being the k×k′ null matrix.
Note that A1 entails E log+ η2

0 <∞ and thus E log+ ‖A0t‖ <∞, as required
in [7] for the existence of γ(A0) in R∪{−∞}. We do not make the stationarity
assumption for all θ. Instead we will assume that

A2: γ(A0) < 0 and ∀θ ∈ Θ,
∑p

j=1 βj < 1 .

Note that
∑p

j=1 β0j < 1 is implied by γ(A0) < 0. An important consequence
of Assumptions A1-A2 is that

Eη2s
t <∞ , Ehst <∞ , Eε2st <∞ , 0 ≤ s < δ1/2 (2)

where (εt) stands for the strictly stationary solution to Model (1). The exis-
tence of a moment of order 2s for ηt follows directly from A1. The moment
existence for ht, and hence for εt, can be shown by a straightforward extension
of the proofs given in [18] and [3] (Lemma 2.3) which assume Eη2

t <∞.
Conditionally on initial values ε0, . . . , ε1−q, σ̃2

0 , . . . , σ̃
2
1−p, (see [12] for ap-

propriate choices of the initial values), the likelihood is given by

Ln,f (θ) = Ln,f (θ; ε1, . . . , εn) =
n∏
t=1

1
σ̃t

f

(
εt
σ̃t

)
,

where the σ̃2
t are defined recursively, for t ≥ 1, by

σ̃2
t = σ̃2

t (θ) = ω +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βj σ̃
2
t−j .

The parameter space Θ is a compact subset of [0,∞[p+q+1 that bounds the
first component away from zero. Namely, ω ≥ ω for all θ ∈ Θ, for some positive
constant ω. A MLE of θ is defined as any measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln,f (θ) = arg max
θ∈Θ

Ln,f (θ)
Ln,f (θ0)

= arg max
θ∈Θ

Q̃n,f (θ) (3)

where

Q̃n,f (θ) = Q̃n,f (θ; εn, . . . , ε1) = n−1
n∑
t=1

 ̃t(θ)−  ̃t(θ0) ,

and

 ̃t(θ) =  ̃t = log f

(
εt
σ̃t

)
− log σ̃t .

Write h = log f and g(y) = yh′(y). The next conditions concern the smooth-
ness of g.
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A3: There is a 0 < C0 < ∞ and a 0 ≤ δ2 < ∞ such that |g(y)| ≤
C0(|y|δ2 + 1) for all y ∈ (−∞,∞).

Note that this assumption holds for the standard normal distribution (with
C0 = 1 and δ2 = 2). Let Aθ(z) =

∑q
i=1 αiz

i and Bθ(z) = 1 −
∑p

j=1 βjz
j .

By convention, Aθ(z) = 0 if q = 0 and Bθ(z) = 1 if p = 0. Under the
condition A2, which entails invertibility of the polynomial Bθ(z), we can define
B−1
θ (z)Aθ(z) =

∑∞
i=1 γiz

i for |z| ≤ 1. It will be convenient to consider ergodic
and stationary approximations of (σ̃2

t ) and ( ̃t), defined by

σ2
t = σ2

t (θ) = B−1
θ (1)ω +

∞∑
i=1

γiε
2
t−i ,  t =  t(θ) = h

(
εt
σt

)
− log σt ,

and to introduce

Qn,f (θ) = Qn,f (θ; εn, . . . , ε1) = n−1
n∑
t=1

 t(θ)−  t(θ0) .

The following assumption is made for identifiability reasons.

A4: if p > 0, Aθ0(z) and Bθ0(z) have no common root, Aθ0(1) �= 0, and
α0q + β0p �= 0.

2.1 Consistency and asymptotic normality

We are now in a position to state our first result.

Theorem 1. Let (θ̂n) be a sequence of MLE satisfying (3). If A1-A4 hold
then

lim
n→∞ θ̂n = θ0 , a.s.

To obtain asymptotic normality of the MLE it is also necessary to replace
the nonnegativity assumptions on the true parameter value by the stronger
assumption

A5: θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

For the function g(0)(y) = g(y) and its derivatives g(1)(y) = g′(y) and
g(2)(y) = g′′(y), we strengthen the smoothness assumptions in A3.

A6: There is 0 < C0 < ∞ and 0 ≤ κ < ∞ such that |ykg(k)(y)| ≤
C0(|y|κ + 1) for all y ∈ (−∞,∞) and such that E|ηt|κ <∞ for k = 0, 1, 2.

The first condition of the next assumption ensures the existence of the infor-
mation matrix of the scale parameter σ > 0 in the density family σ−1f(·/σ).
The second condition is a mild smoothness condition which is satisfied by all
the standard densities (see Comment 4 below).

A7: Ĩf =
∫
{1 + g(y)}2 f(y)dy <∞ , and limy→±∞ y2f ′(y) = 0 .
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Theorem 2. Let (θ̂n) be a sequence of MLE satisfying (3). If A1-A7 hold

√
n
(
θ̂n − θ0

)
⇒ N

{
0, I−1

f (θ0)
}

, as n→∞,

where

If (θ0) =
Ĩf
4

E
1
σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′ (θ0) .

In connection with Theorems 1 and 2, the following comments should be
noted.

Comments: 1. The inverse of the asymptotic variance of the MLE
is the product of the Fisher information Ĩf , evaluated at the value σ = 1,
in the model 1

σf(y/σ), σ > 0, and a matrix depending on the sole GARCH
coefficients. This means, for instance, that if a vector of GARCH parameters
is difficult to estimate for a given density f , in the sense that the asymptotic
variance of the MLE is large, it will also be difficult to estimate with any
other distribution of the iid process. Note also that the asymptotic variance
of the MLE is proportional to that of the QMLE relying on an ad hoc normal
likelihood whatever the true underlying distribution of ηt.

2. Our results are closely connected with those of [2] and [20]. Our con-
ditions are generally simpler then theirs because we limit ourselves to the
maximum likelihood estimator and to standard GARCH. The results of [2]
are useful because they can handle general criteria, assuming f is not necessar-
ily the errors density in (3). On the other hand, contrary to [2], for consistency
we allow θ0 to be on the boundary of the parameter space. This point is of
importance because it allows to handle cases where some components of θ0
are null (provided A4 is satisfied), for instance when one of the orders, p or
q, is overidentified. The results of [20] are also useful because he considers a
general setting, including the standard GARCH and allowing the unknown
error distribution to depend on a nuisance parameter. In the general case,
however, his conditions for consistency and asymptotic normality are not in
closed form (see for instance his assumption (6.7)). In the particular case of
student innovations, more explicit conditions are given in his Lemma 6.1.6.,
but it is easily seen that the density given in (7) below does not fulfill the
conditions of this Lemma.

3. Our Assumptions A1 and A3, required for consistency, do not impose
any link between the constants δ1 and δ2. For instance consider a density of
the form

f(y) = K(1 + |y|)−(1+α)(1 + ε + cos y2γ) , where α, ε, γ > 0 . (4)

Then A1 holds for any δ1 ≤ α, and A3 holds for any δ2 ≥ 2γ. It follows that
the MLE is strongly consistent by Theorem 1. By contrast, condition (1.14)
in [2] is, with our notations, in particular (2):∣∣∣∣ ∂∂t log{tf(yt)}

∣∣∣∣ ≤ C1(y)(tν1+1)/t , t > 0 , y ∈ R, for some 0 ≤ ν1 ≤ 2s .
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It is easily seen that this assumption does not hold true for the density in (4)
with γ ≥ α.

4. It should be emphasized that the assumptions on the density f are
mild and that they hold for all standard distributions. Easy computations
show that Assumptions A1, A3, A6 and A7 hold for : (i) the standard
Gaussian distribution, for any δ1 ∈ (0, 1], δ2 ≥ 2 and κ ≥ 2; (ii) the two-sided
exponential (Laplace) distribution, f(y) = (1/2)e−|y|, for any δ1 ∈ (0, 1),
δ2 ≥ 1 and κ ≥ 1; (iii) the Cauchy distributions for any δ1 ∈ (0, 1), δ2 ≥ 0 and
κ < 1; (iv) the Student distribution with parameter ν > 0, for δ1 = ν, δ2 ≥ 0
and κ < ν; (v) the density displayed in (7) below with δ1 ≤ 2a, δ2 ≥ 2 and
κ ≥ 2. For the distribution in (4), Assumption A6 is satisfied whence 3γ < α.

2.2 Comparison with the QMLE

In this section we quantify the efficiency loss due to the use of the QMLE,
compared with the MLE. It will be seen, in particular, that the QMLE can
be efficient even for non normal densities.

Recall that the QMLE of θ is defined as any measurable solution θ̂QML
n of

θ̂QML
n = arg min

θ∈Θ

n∑
t=1

{
ε2t

σ̃2
t (θ)

+ log σ̃2
t (θ)

}
, (5)

and that, under A2, A5 and the additional assumption that η2
t has a non-

degenerate distribution with Eη2
t = 1 and Eη4

t <∞, the QMLE is consistent
and asymptotically normal with mean 0 and variance

(Eη4
t − 1)

{
E

1
σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′ (θ0)
}−1

=
(Eη4

t − 1)Ĩf
4

I−1
f (θ0) . (6)

The QMLE is not efficient since, in general, (Eη4
t − 1)Ĩf > 4. More precisely,

we have the following result.

Corollary 1. Suppose that the assumptions of Theorem 2 hold and assume
that Eη2

t = 1 and Eη4
t < ∞. Then the QMLE has the same asymptotic vari-

ance as the MLE when the density of ηt is of the form

f(y) =
aa

Γ (a)
e−ay

2 |y|2a−1 , a > 0 , Γ (a) =
∫ ∞

0
ta−1e−tdt . (7)

When the density f of the noise ηt does not belong to the family defined by
(7), the QMLE is asymptotically inefficient in the sense that

varas
√

n
{
θ̂QML
n − θ0

}
− varas

√
n
{
θ̂n − θ0

}
=

(
(Eη4

t − 1)Ĩf
4

− 1

)
I−1
f (θ0) .

is positive definite, when θ̂n is the MLE defined by (3).
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Comments. 1. Obviously, the QMLE is efficient in the gaussian case, which
corresponds to a = 1/2 in (7). The QMLE is also efficient when ηt follows some
non gaussian distributions, which is less intuitive. As an illustration consider
the density f(y) = 4e−2y2 |y|3, which corresponds to a = 2 in (7). For this
distribution we have Ĩf = 8 and Eη4 = 3/2. So we check that (Eη4

t −1)Ĩf = 4,
which entails that the QMLE is efficient.

Even if the QMLE is inefficient compared to the MLE when ηt follows a
density which is not of the form (7), it should be noted that the QMLE is
more robust than the MLE.

2. It is easily seen that the density in (7) is that of the variable

Z =

√
χ2

2a

2a
u

for 2a integer, where χ2
2a has a χ2 distribution with 2a degrees of freedom,

and is independent of u, taking the values ±1 with equal probabilities. For
general a, the χ2

2a distribution can be replaced by a γ( 1
2 , a).

2.3 Illustration

The loss of efficiency of the QMLE can be calculated explicitly for most stan-
dard densities f . For instance in the case of the Student distribution with ν
degrees of freedom, rescaled such that they have the required zero mean and
unit variance, the Asymptotic Relative Efficiency (ARE) of the MLE with
respect to the QMLE is {1− 12

ν(ν−1)}−1. Table 1 shows that the efficiency loss
can be important.

Table 1. ARE of the MLE with respect to the QMLE: varasθ̂
QML
n := ARE ×

varasθ̂n, when f(y) =
√

ν/ν − 2fν(y
√

ν/ν − 2), and fν denotes the Student density
with ν degrees of freedom.

ν 5 6 7 8 9 10 20 30 ∞
ARE 5/2 5/3 7/5 14/11 6/5 15/13 95/92 145/143 1

To compare the finite sample relative efficiencies of the QMLE and MLE with
their ARE given in Table 1, we simulated N = 1000 independent samples
of sizes n = 100 and n = 1000 of an ARCH(1) with true parameters values
ω = 0.2 and α = 0.9. For the distribution of the noise ηt, we used the same
densities as in Table 1. Table 2 summarizes the estimation results obtained for
the QMLE θ̂QML

n and the one-step efficient estimator θ̄n defined in Theorem
3 (with θ̃n = θ̂QML

n as preliminary estimator). This table shows that the one-
step estimator θ̄n may indeed be more accurate than the QMLE even in small
samples. The observed efficiency gain is close to the asymptotic efficiency gain.
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Table 2. Comparison of the QMLE and the efficient one-step estimator θ̄n for
N = 1000 replications of the ARCH(1) model εt = σtηt, σ2

t = ω + αε2t−1, ω = 0.2,
α = 0.9, ηt ∼ f(y) =

√
ν/ν − 2fν(y

√
ν/ν − 2). The AREs are estimated by taking

the ratios of the RMSEs.

θ̂QML
n θ̄n

ν n θ0 Mean RMSE Mean RMSE ÂRE

5 100 ω = 0.2 0.202 0.0794 0.211 0.0646 1.51
α = 0.9 0.861 0.5045 0.857 0.3645 1.92

1000 ω = 0.2 0.201 0.0263 0.201 0.0190 1.91
α = 0.9 0.897 0.1894 0.886 0.1160 2.67

∞ 2.5

6 100 ω = 0.2 0.212 0.0816 0.215 0.0670 1.48
α = 0.9 0.837 0.3852 0.845 0.3389 1.29

1000 ω = 0.2 0.202 0.0235 0.202 0.0186 1.61
α = 0.9 0.889 0.1384 0.888 0.1060 1.70

∞ 1.67

20 100 ω = 0.2 0.207 0.0620 0.209 0.0619 1.00
α = 0.9 0.847 0.2899 0.845 0.2798 1.07

1000 ω = 0.2 0.199 0.0170 0.199 0.0165 1.06
α = 0.9 0.899 0.0905 0.898 0.0885 1.05

∞ 1.03

2.4 One-step efficient estimator

It is possible to improve on the efficiency of the QMLE estimator without
having to use optimization procedures. The technique is standard and consists
in running one Newton-Raphson iteration with the QMLE, or any other

√
n-

consistent preliminary estimator, as starting point. More precisely, we obtain
the following result.

Theorem 3. Suppose that the assumptions of Theorem 2 hold. Let θ̃n be a
preliminary estimator of θ0 such that

√
n(θ̃n − θ0) = OP(1), and let În,f be

any weakly consistent estimator of If (θ0). The so-called one-step estimator

θ̄n = θ̄n,f = θ̃n + Î−1
n,f

1
n

∂

∂θ
logLn,f (θ̃n)

has the same asymptotic distribution as the MLE :

√
n
(
θ̄n − θ0

)
⇒ N

{
0, I−1

f (θ0)
}

as n→∞ .

In practice the density f of the noise ηt is unknown so θ̄n,f and ML esti-
mation are not feasible. However, one can estimate f from the standardized
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residuals η̂t = εt/σt(θ̂QML
n ), t = 1, . . . , n (using for instance a non parametric

kernel density estimator f̂). One could wonder whether θ̄n,f̂ is an adaptive
estimator, i.e. if it inherits the asymptotic optimality properties of θ̄n,f . Adap-
tive estimation goes back to [19] and has been applied to GARCH models by
several authors (see e.g [11], [17], [8], [16]. In particular, [8] showed that adap-
tive estimation of all GARCH coefficients is not possible, due to the presence
of the scale parameter ω. An appropriate reparameterization of the model
allows to estimate the volatility parameters (up to a scale parameter) with
the same asymptotic precision as if the error distribution were known. In this
sense adaptivity holds. In [13] the efficiency losses, with respect to the MLE,
of the QMLE and Semi-Parametric estimators, are quantified. The simula-
tion experiments of [11], and [8] confirm that the Semi-Parametric method is
between the QMLE and MLE in terms of efficiency.

3 Application to efficient testing

Efficient tests can be derived from the efficient estimator θ̂n defined in (3). As
an illustration consider the test of m linear restrictions about θ0, defined by
the null hypothesis

H0 : Rθ0 = r ,

where R is a known m× (p + q + 1) matrix, and r is a known m× 1 vector.

3.1 Wald test based on the MLE and Wald test based on the
QMLE

The Wald test based on the efficient estimator θ̂n has the rejection region
{Wn,f > χ2

m(1− α)} where

Wn,f = n(Rθ̂n − r)′
(
RÎ−1

n,fR
′
)−1

(Rθ̂n − r) ,

and χ2
m(1− α) denotes the (1− α)-quantile of a chi-square distribution with

m degree of freedom. Natural estimators of the information matrix If (θ0) are

În,f = − 1
n

n∑
t=1

∂2

∂θ∂θ′  ̃t(θ̂n) or În,f =
1
n

n∑
t=1

∂

∂θ
 ̃t(θ̂n)

∂

∂θ′  ̃t(θ̂n) .

One can also consider a Wald test based on the QMLE. This test has rejection
region {WQML

n > χ2
m(1− α)} where

WQML
n = n(Rθ̂QML

n − r)′
(
RÎ−1

N R′
)−1

(Rθ̂QML
n − r) ,

with
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Î−1
N =

1
n

n∑
t=1

{
ε2t

σ̃2
t (θ̂n)

− 1

}2{
1
n

n∑
t=1

1
σ̃4
t

∂σ̃2
t

∂θ

∂σ̃2
t

∂θ′ (θ̂n)

}−1

or any other asymptotically equivalent estimator.
If, under the null, the assumptions of Theorem 2 and those of Theorem

2.2 of [12] are satisfied (in particular θ0 ∈
◦
Θ), then both tests have the same

asymptotic level α.

3.2 Local asymptotic powers of the two Wald tests

To compare the asymptotic powers of the two tests, let us consider local
alternatives. In these sequences of local alternatives, the true value of the
parameter is supposed to vary with n, and is therefore denoted by θ0,n:

Hn : θ0,n = θ0 + h/
√

n , with Rθ0 = r and Rh �= 0 ,

where h ∈ R
p+q+1.

Consider the function

h→ Λn,f (θ0 + h/
√

n, θ0) := log
Ln,f (θ0 + h/

√
n)

Ln,f (θ0)
.

From [8], and [9] it is known that, under mild regularity conditions, ARCH
and GARCH (1,1) processes are locally asymptotically normal (LAN) in the
sense that, as n→∞

Λn,f (θ0 + h/
√

n, θ0) = h′ 1√
n

n∑
t=1

∂

∂θ
 t(θ0)−

1
2
h′If (θ0)h + oPθ0

(1) , (8)

with

1√
n

n∑
t=1

∂

∂θ
 t(θ0) =

−1√
n

n∑
t=1

1
2σ2

t

{
1 + ηt

f ′(ηt)
f(ηt)

}
∂σ2

t

∂θ
(θ0)

⇒ N {0, If (θ0)} under Pθ0 . (9)

When (8) holds true, we deduce

Λn,f (θ0 + h/
√

n, θ0) = N
(
−1

2
τ, τ

)
+ oPθ0

(1) , τ = h′If (θ0)h .

The LAN property (8) entails that the MLE is locally asymptotically optimal
(in the minimax sense and in various other senses, see [21] for details about
LAN). As we will see in the sequel of this section, the LAN property also
facilitates the computation of local asymptotic powers of tests.

Note that in the proof of Theorem 2 we have seen that

On Efficient Inference in GARCH Processes 315

√
n
(
θ̂n − θ0

)
= If (θ0)−1 1√

n

n∑
t=1

∂

∂θ
 t(θ0) + oPθ0

(1) . (10)

In view of (8), (9) and (10), we have under H0( √
n(Rθ̂n − r)

Λn,f (θ0 + h/
√

n, θ0)

)
=

(
RI

−1/2
f (θ0)X

h′I1/2
f (θ0)X − h′If (θ0)h

2

)
+ oPθ0

(1) , (11)

where X follows a standard gaussian distribution in R
1+p+q. Thus the asymp-

totic distribution of the vector defined in (11) is

N
{(

0
−h′If (θ0)h

2

)
,

(
RI−1

f (θ0)R′ Rh

h′R′ h′If (θ0)h

)}
under H0 . (12)

Le Cam’s third lemma (see [21], p. 90) entails that

√
n(Rθ̂n − r)⇒ N

{
Rh,RI−1

f (θ0)R′
}

under Hn .

This result shows that the optimal Wald test of rejection region {Wn,f >
χ2
m(1− α)} has the asymptotic level α and the local asymptotic power

h �→ 1− Φm,ch

{
χ2
m(1− α)

}
, ch = h′R′

{
RI−1

f (θ0)R′
}−1

Rh

where Φm,c(·) denotes the distribution function of the noncentral chi-square
distribution with m degrees of freedom and noncentrality parameter c. This
test enjoys asymptotic optimalities (see [21]).

Recall that, under some regularity conditions, the QMLE satisfies
√

n(θ̂QML
n − θ0)

= 2
{

E
1
σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′ (θ0)
}−1 −1√

n

n∑
t=1

1
2σ2

t

{
1− ε2t

σ2
t

}
∂σ2

t

∂θ
(θ0) + oPθ0

(1)

=
Ĩf
2

I−1
f (θ0)

−1√
n

n∑
t=1

1
2σ2

t

{
1− η2

t

} ∂σ2
t

∂θ
(θ0) + oPθ0

(1) .

Thus, using (8), (9), we obtain

covas
{√

n(θ̂QML
n − θ0), Λn,f (θ0 + h/

√
n, θ0)

}
=

Ĩf
2

I−1
f (θ0)E

{
(1− η2

t )(1 + ηt
f ′(ηt)
f(ηt)

)
}

Eθ0

{
1

4σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′

}
h

= h + oPθ0
(1)

under H0. So the previous arguments and Le Cam’s third lemma show that
√

n(Rθ̂QML
n − r)⇒ N

{
Rh,RI−1

N (θ0)R′} under Hn.
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Consequently the QMLE Wald test of rejection region {WQML
n > χ2

m(1−α)}
has the asymptotic level α and the local asymptotic power

h �→ 1− Φm,c̃h

{
χ2
m(1− α)

}
,

where

c̃h = h′R′ {RI−1
N (θ0)R′}−1

Rh =
4

(
∫

x4f(x)dx− 1)Ĩf
ch .

For simplicity, consider the case where m = 1, and f is the rescaled Student
with 5 degrees of freedom, and θ0 is such that RI−1

f (θ0)R′ = 1. Setting c =
Rh, the local asymptotic powers of the optimal and QMLE Wald tests are
respectively

c �→ 1− Φ1,c2
{
χ2

1(0.95)
}

and c �→ 1− Φ1,c̃
{
χ2

1(0.95)
}

,

with
c̃ =

4
(
∫

x4f(x)dx− 1)Ĩf
c2 .

Figure 1 compares these two local asymptotic powers. It is seen that, for this
density, the Wald test based on the MLE has a considerably better power
function than that based on the QMLE for c not too small and not too large.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Fig. 1. Local asymptotic power of the optimal Wald test
{
Wn,f > χ2

1(0.95)
}

(full line) and local asymptotic power of the QMLE Wald test
{
WQML

n > χ2
1(0.95)

}
(dotted line), when m = 1 and f(y) =

√
ν/ν − 2fν(y

√
ν/ν − 2) with ν = 5.
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4 Conclusion

In this paper we established the consistency and asymptotic normality of the
MLE, for the general GARCH model, under weak assumptions on the error
distribution and the parameter space. In particular, contrary to the QMLE
(see [1], [14]), the MLE remains

√
n-consistent under heavy-tailed errors. The

MLE requires knowing the distribution of the errors, which is obviously a
strong assumption. However, [15] showed that it is possible to fit this error
distribution. Of course, caution is needed in practical uses of the MLE. Even
if the efficiency loss of the QMLE compared to the MLE can be substantial, as
was illustrated in this paper, the MLE fails in general to be consistent when
the error distribution is misspecified.

A Appendix: Proofs

Let K and ρ be generic constants, whose values will be modified along the
proofs, such that K > 0 and 0 < ρ < 1.

A.1 Proof of Theorem 1

Following the scheme of proof of Theorem 2.1 in [12], this theorem will be a
consequence of the following intermediate results:

i) lim
n→∞ sup

θ∈Θ
|Qn,f (θ)− Q̃n,f (θ)| = 0 , a.s.

ii)
(
∃t ∈ Z such that σ2

t (θ) = σ2
t (θ0) Pθ0 a.s.

)
=⇒ θ = θ0 ,

iii) if θ �= θ0 , Eθ0{ t(θ)−  t(θ0)} < 0 ,

iv) any θ �= θ0 has a neighborhood V (θ) such that
lim sup
n→∞

sup
θ∗∈V (θ)

Q̃n,f (θ∗) < 0 , a.s.

We will use the following notations for σ2
t and its derivatives, introduced

in [12],

σ2
t =

∞∑
k=0

Bk(1, 1)

(
ω +

q∑
i=1

αiε
2
t−k−i

)
, (13)

∂σ2
t

∂ω
=

∞∑
k=0

Bk(1, 1),
∂σ2

t

∂αi
=

∞∑
k=0

Bk(1, 1)ε2t−k−i , (14)

∂σ2
t

∂βj
=

∞∑
k=1

Bk,j(1, 1)

(
ω +

q∑
i=1

αiε
2
t−k−i

)
(15)

where
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Bk,j =
∂Bk

∂βj
=

k∑
m=1

Bm−1B(j)Bk−m , B =

⎛⎜⎜⎜⎝
β1 β2 · · · βp
1 0 · · · 0
...
0 · · · 1 0

⎞⎟⎟⎟⎠ , (16)

and B(j) is a p×p matrix with (1, j)th element 1, and all other elements equal
to zero. By A2 and the compactness of Θ, we have

sup
θ∈Θ

ρ(B) < 1 . (17)

In the aforementioned paper, we showed that, almost surely, supθ∈Θ |σ2
t−σ̃2

t | ≤
Kρt , ∀t . In view of |σt − σ̃t| = |σ2

t − σ̃2
t |/(σt + σ̃t) it follows that, almost

surely,

sup
θ∈Θ
|σt − σ̃t| ≤ Kρt, ∀t. (18)

Thus, using log x ≤ x− 1, almost surely

sup
θ∈Θ

n−1
n∑
t=1

| t(θ)−  ̃t(θ)|

≤ n−1
n∑
t=1

sup
θ∈Θ

{∣∣∣∣h( εt
σt

)
− h

(
εt
σ̃t

)∣∣∣∣+ ∣∣∣∣log
(

1 +
σt − σ̃t

σ̃t

)∣∣∣∣}

≤ K

ω
n−1

n∑
t=1

ρt sup
θ∈Θ

∣∣∣∣ εtσ∗
t

h′
(

εt
σ∗
t

)∣∣∣∣+ K

ω1/2 n−1
n∑
t=1

ρt

≤ Kn−1
n∑
t=1

ρt(|εt|δ2 + 1) + Kn−1 (19)

where σ∗
t = σ∗

t (θ) is between σ̃t and σt. The last inequality rests on Assump-
tion A3. By the Markov inequality and (2), we deduce

∞∑
t=1

P(ρt|εt|δ2 > ε) ≤
∞∑
t=1

E(ρ2t/δ2ε2t )
s

ε2s/δ2
<∞ (20)

and thus ρt|εt|δ2 → 0 a.s. By the Cesaro lemma, the right-hand side of (19)
tends to 0, and i) follows straightforwardly.

To prove ii), we proceed as in [12]. It turns out that it is sufficient to
prove that no exact linear combination of the (ε2t−i)i≥0 exists. Assume that
ε2t belongs to the σ-field generated by {ε2t−i, i > 0}. It follows that

0 = ε2st − Eθ0(ε
2s
t |εt−i, i > 0) = σ2s

t (θ0)(η2s
t − Eη2s

t ) with probability 1,

which entails P(η2s
t = Eη2s

t ) = 1, in contradiction with the assumption that
the law of ηt has a density.
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Note that

 t(θ)−  t(θ0) = log
1

σt(θ)
f
(

εt
σt(θ)

)
1

σt(θ0)
f
(

εt
σt(θ0)

)
is defined Pθ0 (the distribution of the εt process)-almost surely. By Jensen we
get

Eθ0( t(θ)−  t(θ0) | εt−i, i > 0) ≤ log
∫

1
σt(θ)

f

(
x

σt(θ)

)
dx = 0 . (21)

The inequality is strict, unless if

1
σt(θ)

f

(
εt

σt(θ)

)
=

1
σt(θ0)

f

(
εt

σt(θ0)

)
, Pθ0-a.s.

The latter equality would imply σt(θ0)ηt = σt(θ)ηt, a.s, and thus, by integra-
tion σ2s

t (θ0)Eη2s
t = σ2s

t (θ)Eη2s
t , and finally σt(θ0) = σt(θ). This is excluded

for θ �= θ0 in view of ii). Therefore the inequality in (21) is strict whenever
θ �= θ0. By integration, iii) follows.

Now we will show iv). For any θ ∈ Θ and any positive integer k, let Vk(θ)
be the open ball with center θ and radius 1/k. We have

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n,f (θ∗)

≤ lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Qn,f (θ∗) + lim sup
n→∞

sup
θ∈Θ
|Qn,f (θ)− Q̃n,f (θ)|

≤ lim sup
n→∞

n−1
n∑
t=1

sup
θ∗∈Vk(θ)∩Θ

 t(θ∗)−  t(θ0)

:= lim sup
n→∞

n−1
n∑
t=1

Xt,k(θ) (22)

where the second inequality comes from i).
First we will show that, for any θ ∈ Θ and for k sufficiently large,

Eθ0X
+
t,k(θ) < +∞. Let

f(ε) = sup
σ>ω

{
1
σ
f
( ε

σ

)}
.

Note that f(ε) <∞ by Assumption A1. We have

X+
t,k(θ) = log+

supθ∗∈Vk(θ)∩Θ
{

1
σt(θ∗)f

(
εt

σt(θ∗)

)}
1

σt(θ0)
f
(

εt
σt(θ0)

)
≤ log+ f(εt)

1
σt(θ0)

f
(

εt
σt(θ0)

) ≤ K

⎡⎣ f(εt)
1

σt(θ0)
f
(

εt
σt(θ0)

)
⎤⎦α
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for any α > 0. It follows that, for any m > 1

Eθ0(X
+
t,k(θ) | εt−i, i > 0)

≤ K

∫ {
f(ε)

}α{ 1
σt(θ0)

f

(
ε

σt(θ0)

)}1−α
dλ(ε)

≤ K

[∫ {
f(ε)

}mα
dλ(ε)

] 1
m

⎡⎣∫ {
1

σt(θ0)
f

(
ε

σt(θ0)

)}m(1−α)
m−1

dλ(ε)

⎤⎦
m−1

m

= K

[∫ {
f(ε)

}mα
dλ(ε)

] 1
m
[∫
{f(ε)}

m(1−α)
m−1 dλ(ε)

]m−1
m

{σt(θ0)}
mα−1

m .(23)

Choosing 1
m < α <

δ1+ 1
m

δ1+1 , and in addition α < 1
m(1−δ1) when δ1 < 1, we get∫

{f(ε)}
m(1−α)

m−1 dλ(ε)

≤
∫
|ε|≤1

{
|ε|δ1−1 sup

y
|y|1−δ1f(y)

}m(1−α)
m−1

dλ(ε) +
∫
|ε|>1

{f(ε)}
m(1−α)

m−1 dλ(ε)

≤ K + K

∫
|ε|>1

|ε|
−m(1−α)(1+δ1)

m−1 dλ(ε) <∞, (24)

and ∫ {
f(ε)

}mα
dλ(ε) ≤

∫
|ε|≤1

{
f(ε)

}mα
dλ(ε) +

∫
|ε|>1

{
f(ε)

}mα
dλ(ε)

≤
∫
|ε|≤1

{
1

ωδ1 |ε|1−δ1 sup
y∈R

|y|1−δ1f(y)
}mα

dλ(ε)

+
∫
|ε|>1

{
1
|ε| sup

y∈R

|y|f(y)
}mα

dλ(ε)

<∞ . (25)

In the previous inequalities we used the expression, for all ε �= 0

f(ε) ≤ 1
|ε| sup

|τ |<|ε|/ω
|τ |f (τ) ≤ 1

ωδ1 |ε|1−δ1 sup
y∈R

|y|1−δ1f(y)

and
f(ε) ≤ 1

|ε| sup
|τ |<|ε|/ω

|τ |f (τ) ≤ 1
|ε| sup

y∈R

|y|f(y) .

From (23), (24) and (25) we deduce that

Eθ0(X
+
t,k(θ) | εt−i, i > 0) ≤ K {σt(θ0)}

mα−1
m .
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Thus, because mα−1
m < δ1, and in view of (2)

Eθ0{X+
t,k(θ)} ≤ KE {σt(θ0)}

mα−1
m <∞ . (26)

Now we will use an ergodic theorem for stationary and ergodic processes
(Xt) such that E(Xt) exists in R ∪ {−∞,+∞} (see [5] p. 284 and 495). In
view of (26), Eθ0{Xt,k(θ)} exists and belongs to R ∪ {−∞}. It follows that

lim sup
n→∞

n−1
n∑
t=1

Xt,k(θ) = Eθ0{Xt,k(θ)} .

When k tends to infinity, the sequence {Xt,k(θ)}k decreases to Xt(θ) =
 t(θ)−  t(θ0). Thus {X−

t,k(θ)}k increases to X−
t (θ). By the Beppo-Levi theo-

rem, Eθ0X
−
t,k(θ) ↑ Eθ0X

−
t (θ) when k ↑ +∞. By (26), the fact that the sequence

{X+
t,k(θ)}k is decreasing, and the Lebesgue theorem, Eθ0X

+
t,k(θ) ↓ Eθ0X

+
t (θ)

when k ↑ +∞. Thus we have shown that the right-hand side of (22) converges
to Eθ0{X(θ)} when k →∞. By iii) this limit is negative and iv) is proved.

Using a standard compactness argument we complete the proof of Theo-
rem 1.

A.2 Proof of Theorem 2

Assumption A5 and Theorem 1 entail that almost surely ∂
∂θ logLn,f (θ̂n) = 0

for n large enough. In this case, a standard Taylor expansion gives

0 =
1√
n

∂

∂θ
logLn,f (θ0) +

1
n

∂2

∂θ∂θ′ logLn,f (θ∗)
√

n
(
θ̂n − θ0

)
(27)

where the elements of the matrix ∂2

∂θ∂θ′ logLn,f (θ∗) are ∂2

∂θi∂θj
logLn,f (θ∗

ij)

with θ∗
ij between θ̂n and θ0.

Recall that ∂
∂θ logLn,f (θ0) =

∑n
t=1

∂
∂θ  ̃t(θ0). We will show the following

intermediate results.

a) lim
n→∞

1√
n

{
n∑
t=1

∂

∂θ
 ̃t(θ0)−

n∑
t=1

∂

∂θ
 t(θ0)

}
= 0 , a.s.

b)
1√
n

n∑
t=1

∂

∂θ
 t(θ0)⇒ N {0, If (θ0)} , and If (θ0) is invertible,

c)
1
n

∂2

∂θ∂θ′ logLn,f (θ∗)→ −If (θ0) , a.s.

The announced result will straightforwardly follow.
First mention that in [12] (see equation (4.14) and the proof of (iii)) we

have shown that, under A1, A2 and A5, for any k ∈ {1, 2, 3}, any i1, . . . , ik ∈
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{1, . . . , p+q+1}, and any d ≥ 1, there exists a neighborhood V(θ0) of θ0 such
that

Eθ0 sup
θ∈V(θ0)

1
σ2d
t

∣∣∣∣ ∂kσ2
t

∂θi1 · · · ∂θik
(θ)
∣∣∣∣d <∞ . (28)

Similarly to (18), it can be shown that∥∥∥∥ 1
σ2
t

∂σ2
t

∂θ
(θ)− 1

σ̃2
t

∂σ̃2
t

∂θ
(θ)
∥∥∥∥ ≤ Kρt + Kρt

∥∥∥∥ 1
σ2
t

∂σ2
t

∂θ
(θ)
∥∥∥∥ . (29)

Using
n∑
t=1

∂

∂θ
 t(θ0) = −

n∑
t=1

1
2σ2

t

{1 + g (ηt)}
∂σ2

t

∂θ
(θ0) , (30)

a similar expression for
∑n

t=1
∂
∂θ  ̃t(θ0), Assumption A6, Inequalities (18) and

(29), and a Taylor expansion similar to that used in (19), we obtain

n∑
t=1

∥∥∥∥ ∂

∂θ
 ̃t(θ0)−

∂

∂θ
 t(θ0)

∥∥∥∥ ≤ K

n∑
t=1

∥∥∥∥ 1
σ2
t

∂σ2
t

∂θ
(θ0)

∥∥∥∥ |εt|κ ρt

+K

n∑
t=1

∣∣∣∣1 + g

(
εt
σ̃t

)∣∣∣∣ ρt ∥∥∥∥ 1
σ2
t

∂σ2
t

∂θ
(θ0)

∥∥∥∥
= O(1) a.s. (31)

The last equality is obtained from (28) with k = d = 1, (20) and the expansion∣∣∣∣1 + g

(
εt
σ̃t

)∣∣∣∣ =
∣∣∣∣1 + g(0) +

εt
σ̃t

g(x∗)
∣∣∣∣ ≤ 1 + |g(0)|+ |εt|

1+κ

ω1+κ ,

where x∗ stands for some point between 0 and εt/σ̃t. Clearly a) is deduced
from (31).

Let νt = − 1
2σ2

t (θ0)
{1 + g (ηt)} ∂σ

2
t

∂θ (θ0), and let Ft be the σ-algebra gener-
ated by the random variables ηt−i, i ≥ 0. Using A1, we obtain

Eg(ηt) =
∫

xf ′(x)dx = lim
a,b→∞

[xf(x)]a−b −
∫

f(x)dx = −1 . (32)

Thus

E(νt|Ft−1) = [E {1 + g (ηt)}]
−1

2σ2
t (θ0)

∂σ2
t

∂θ
(θ0) = 0 a.s.,

and (νt,Ft) is a martingale difference. Moreover (νt) is stationary and square
integrable, with covariance matrix Eν1ν

′
1 = If (θ0). The existence of If (θ0)

is ensured by (28) with k = 1 and d = 2, and the first condition in A7.
The invertibility of E

1
σ4

t

∂σ2
t

∂θ
∂σ2

t

∂θ′ (θ0) = 4
Ĩf

If (θ0) is shown in [12] under the
assumptions A2 and A4. The convergence in law in b) is then obtained from
the central limit theorem of [4].
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A Taylor expansion yields

1
n

∂2

∂θi∂θj
logLn,f (θ∗

ij) =
1
n

∂2

∂θi∂θj
logLn,f (θ0)

+
1
n

∂

∂θ′

{
∂2

∂θi∂θj
logLn,f (θ̃ij)

}(
θ∗
ij − θ0

)
,

where θ̃ij is between θ∗
ij and θ0 (and thus between θ̂n and θ0). In view of the

consistency of θ̂n, to establish c) it suffices to show that

d) lim
n→∞

1
n

n∑
t=1

∂2

∂θ∂θ′  t(θ0) = −If (θ0), a.s.

e) lim
n→∞

1
n

n∑
t=1

∣∣∣∣ ∂2

∂θi∂θj
 ̃t(θ0)−

∂2

∂θi∂θj
 t(θ0)

∣∣∣∣ = 0 , a.s.

and, for some neighborhood V(θ0) of θ0,

f) lim
n→∞

1
n

n∑
t=1

sup
θ∈V(θ0)

∣∣∣∣ ∂3

∂θi∂θj∂θk
 ̃t(θ)−

∂3

∂θi∂θj∂θk
 t(θ)

∣∣∣∣ = 0 , a.s.

g) lim sup
n→∞

1
n

n∑
t=1

sup
θ∈V(θ0)

∣∣∣∣ ∂3

∂θi∂θj∂θk
 t(θ)

∣∣∣∣ <∞ , a.s.

In view of (30) we obtain

∂2

∂θi∂θj
 t(θ0) = −1

2
{1 + g(ηt)}

{
1
σ2
t

∂2σ2
t

∂θi∂θj
(θ0)−

1
σ4
t

∂σ2
t

∂θi

∂σ2
t

∂θj
(θ0)

}
+

1
4
g′(ηt)ηt

1
σ4
t

∂σ2
t

∂θi

∂σ2
t

∂θj
(θ0) . (33)

Using (28) and (32), the expectation of the first summand in the right-hand
side of (33) is equal to 0. In view of (32) and the last condition in A7,∫

x2f ′′(x)dx = lim
a,b→∞

[x2f ′(x)]a−b − 2
∫

xf ′(x)dx = 2 .

It follows that

E {g′(ηt)ηt}+ E {1 + g(ηt)}2 = 1 +
∫ {

3xf ′(x) + x2f ′′(x)
}
dx = 0 .

Thus E {g′(ηt)ηt} = −Ĩf and E
∂2

∂θ∂θ  t(θ0) = −If (θ0) in view of (33). The
ergodic theorem entails d).

Using (29) and noting that the partial derivatives of σ2
t (·) are all a.s.

positive, it is easy to show that
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σ4
t

∂σ2
t

∂θi
(θ)

∂σ2
t

∂θj
(θ)− 1

σ̃4
t

∂σ̃2
t

∂θi
(θ)

∂σ̃2
t

∂θj
(θ)
∣∣∣∣

≤ Kρt
{

1 +
1
σ2
t

∂σ2
t

∂θi
(θ)
}{

1 +
1
σ2
t

∂σ2
t

∂θj
(θ)
}

. (34)

We also have∣∣∣∣ 1
σ2
t

∂2σ2
t

∂θi∂θj
(θ)− 1

σ̃2
t

∂2σ̃2
t

∂θi∂θj
(θ)
∣∣∣∣ ≤ Kρt

{
1 +

1
σ2
t

∂2σ2
t

∂θi∂θj
(θ)
}

. (35)

Note that (33) continues to hold when  t(θ0), σt and ηt are replaced by  ̃t(θ0),
σ̃t and εt/σ̃t. Then, using (29), (34) and (35), we obtain∣∣∣∣ ∂2

∂θi∂θj
 t(θ0)−

∂2

∂θi∂θj
 ̃t(θ0)

∣∣∣∣ ≤ a1t + a2t + a3t + a4t

with

a1t = Kρt |1 + g(ηt)|
[{

1 +
1
σ2
t

∂2σ2
t

∂θi∂θj
(θ0)

}
+
{

1 +
1
σ2
t

∂σ2
t

∂θi
(θ0)

}{
1 +

1
σ2
t

∂σ2
t

∂θj
(θ0)

}]
,

a2t = Kρt |g′(ηt)ηt|
{

1 +
1
σ2
t

∂2σ2
t

∂θi∂θj
(θ0)

}
,

and, using A6 to show

|g(εt/σ̃t)− g(ηt)| ≤ K(|εt|κ + 1)ρt

and
|g′(εt/σ̃t)εt/σ̃t − g′(ηt)ηt| ≤ K(|εt|κ + 1)ρt,

a3t = Kρt (1 + |ηt|κ)
{

1
σ2
t

∂2σ2
t

∂θi∂θj
(θ0) +

1
σ4
t

∂σ2
t

∂θi
(θ)

∂σ2
t

∂θj
(θ)
}

,

a4t = Kρt (|εt|κ + 1)
1
σ2
t

∂2σ2
t

∂θi∂θj
(θ0) .

Using the Borel-Cantelli lemma and the Markov inequality, as in (20), we show
that akt → 0 a.s. as t → ∞, for k = 1, . . . , 4, and e) follows. Now note that
(29), (34) and (35) are valid uniformly over any neighborhood V(θ0) ⊂ Θ. For
instance we have

sup
θ∈V(θ0)

∥∥∥∥ 1
σ2
t

∂σ2
t

∂θ
(θ)− 1

σ̃2
t

∂σ̃2
t

∂θ
(θ)
∥∥∥∥ ≤ Kρt + Kρt sup

θ∈V(θ0)

∥∥∥∥ 1
σ2
t

∂σ2
t

∂θ
(θ)
∥∥∥∥ . (36)

where V(θ0) satisfies (28). Consequently e) can be strengthened to obtain
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lim
n→∞

1
n

n∑
t=1

sup
θ∈V(θ0)

∣∣∣∣ ∂2

∂θi∂θj
 t(θ)−

∂2

∂θi∂θj
 ̃t(θ)

∣∣∣∣ = 0 , a.s.

for some neighborhood V(θ0) of θ0. A direct extension to the third order
derivatives gives f).

In view of (30) and (33), the third derivatives ∂3

∂θi∂θj∂θk
 t(θ) can be written

as a sum of products of several terms involving

1
σ2
t

∂σ2
t

∂θi
,

1
σ2
t

∂2σ2
t

∂θi∂θj
,

1
σ2
t

∂3σ2
t

∂θi∂θj∂θk
,

g

(
εt
σt

)
, g′

(
εt
σt

)
εt
σt

, g′′
(

εt
σt

)
ε2t
σ2
t

. (37)

All these products contain one and only one of the last 3 terms. In view of
(28), for each of the first 3 terms the sup over θ ∈ V(θ0) has finite moments
of any order. In [12] it is shown (see (4.25)) that for a sufficiently small V(θ0),
supθ∈V(θ0) σ

2
t (θ0)/σ2

t admits moments of all orders. Thus, using A6 and writ-
ing εt/σt = ηtσt(θ0)/σt, we have

sup
θ∈V(θ0)

E

∣∣∣∣g( εt
σt

)∣∣∣∣ ≤ K + KE |ηt|κ E sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)
σ2
t

∣∣∣∣κ <∞ .

We have the same inequality when g (εt/σt) is replaced by the last two terms
of (37). We deduce that

E sup
θ∈V(θ0)

∣∣∣∣ ∂3

∂θi∂θj∂θk
 t(θ)

∣∣∣∣ <∞
and g) follows from the ergodic theorem.

A.3 Proof of Corollary 1

In view of the expression (6) of the asymptotic variance of the QMLE, it
suffices to show that

(Eη4
t − 1)Ĩf ≥ 4 , (38)

with equality iff f satisfies (7). Using Eη2
t = 1 and (32), we have∫

(y2 − 1)
(

1 +
f ′(y)
f(y)

y

)
f(y)dy =

∫
y3f ′(y)dy −

∫
yf ′(y)dy

= lim
a,b→∞

[y3f(y)]a−b −
∫

3y2f(y)dy + 1 = −2 .

Thus, the Cauchy-Schwarz inequality yields

4 ≤
∫

(y2 − 1)2f(y)dy
∫ (

1 +
f ′(y)
f(y)

y

)2

f(y)dy = (Eη4
t − 1)Ĩf
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with equality iff there exists a �= 0 such that 1+ηtf
′(ηt)/f(ηt) = −2a

(
η2
t − 1

)
a.s. The latter equality holds iff f ′(y)/f(y) = −2ay + (2a − 1)/y almost
everywhere. The solution of this differential equation, under the constraint
f ≥ 0 and

∫
f(y)dy = 1, is given by (7).

A.4 Proof of Theorem 3

Using d)-g) in the proof of Theorem 2, a Taylor expansion around θ0 gives

1√
n

∂

∂θ
logLn,f (θ̃n) =

1√
n

∂

∂θ
logLn,f (θ0)− If (θ0)

√
n
(
θ̃n − θ0

)
+ oPθ0

(1) .

Moreover

√
n
(
θ̄n − θ̃n

)
= Î−1

n,f

1√
n

∂

∂θ
logLn,f (θ̃n)

= I−1
f (θ0)

1√
n

∂

∂θ
logLn,f (θ̃n) + oPθ0

(1) .

Thus we have
√

n
(
θ̄n − θ0

)
=
√

n
(
θ̄n − θ̃n

)
+
√

n
(
θ̃n − θ0

)
= I−1

f (θ0)
1√
n

∂

∂θ
logLn,f (θ̃n)

+I−1
f (θ0)

{
1√
n

∂

∂θ
logLn,f (θ0)−

1√
n

∂

∂θ
logLn,f (θ̃n)

}
+ op(1)

= I−1
f (θ0)

1√
n

∂

∂θ
logLn,f (θ0) + op(1)⇒ N

{
0, I−1

f (θ0)
}

,

using b) in the proof of Theorem 2.
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1 Introduction

Though the maximum likelihood estimation (MLE) of the drift for continu-
ously observed diffusions is now quite a classical topic, many recent articles
and monographs contribute to complete known results (see e.g. the works of
Basawa and Prakasa Rao [BP80], Feigin [F76], Jankunas and Khasminskii
[JKh97], Küchler and Sørensen [KS99], Dietz, Höpfner, Kutoyants [Ku03],
[DKu03], [HKu03], van Zanten [Z03a, Z03b], Yoshida [Y90]). In particular,
one question of interest is the rate of convergence of normalized MLE in
concrete models. The large majority of papers treats the case of linear de-
pendence on the parameter (as in [DKu03, JKh97, HKu03, KS99]) or that of
one-dimensional ergodic diffusions ([L03, Z03a, Z03b]). In these frameworks
many important results concerning the rate of convergence in probability have
been obtained. This rate depends on the entropy of the parameter set and the
regularity of diffusion coefficients, and is deterministic. An extensive survey of
the state-of-art in this domains can be found in the book [Ku03] by Kutoyants.

In the present article we contribute to two less known aspects of this prob-
lem: firstly, we are interested in almost sure rates of convergence; secondly,
we provide a unified treatment for multidimensional recurrent diffusions, in-
cluding the ergodic but also less studied null-recurrent case.

Let us give a rough formulation of the problem. Suppose that Θ is a
compact metric space with a distance d(θ, θ′), such that the entropy of Θ
grows at most exponentially. This is the case for all compacts in R

d, but also
for some interesting functional spaces (see [VW96] for a recent treatment of
the topic). Consider a diffusion Xt in R

n given by

dXt = σ(Xt) dBt + b(θ0, Xt) dt,
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where Bt is a Brownian motion, and put a = σσ∗. Suppose that θ0 ∈ Θ
is an unknown parameter to be found. It is well-known that any maximum
likelihood estimator θ̂t of θ0 can be written as

θ̂t = arg sup
θ∈Θ

(
Mt(θ)−

1
2
At(θ)

)
,

where

Mt(θ) =
∫ t

0
(bθ − bθ0)

∗a−1σ(Xθ0
s ) dWs

are martingales under the law P of Xt, with Mt(θ0) = 0, and At(θ) = 〈M(θ)〉t
are their quadratic variations.

Recall that an upper rate of convergence of θ̂t is a “maximal” process rt
such that rtd(θ̂t, θ0) < ∞ in some sense. Namely, two important notions of
boundedness can be considered:

P

(
lim sup
t→∞

rtd(θ̂t, θ) =∞
)

= 0 (a.s. rate)

and

lim
M→∞

lim sup
t→∞

P

(
rtd(θ̂t, θ) > M

)
= 0 (rate in probability)

A standard way (that we also follow) to obtain a lower bound for rt is ex-
posed in [VW96]. Its main idea is to controll the properly normalized families
Mt(θ) and At(θ) by some functions of d(θ, θ0) uniformly in t. Indeed, since
Mt(θ0) = 0, any MLE θ̂t must satisfy 2Mt(θ̂t) ≥ At(θ̂t). Bounding Mt(θ̂t)
from above and At(θ̂t) from below in terms of d(θ̂t, θ0) will then provide an
estimate for d(θ̂t, θ0).

To gain such control, one firstly imposes some kind of regularity (almost
sure or in the mean) on the normed family 〈M(θ)−M(θ′)〉t. In the present
article we restrict ourselves to the Hölder framework, since all the applica-
tions we have in mind belong to it. Namely, we suppose that there exist two
continuous processes Ut and Vt ↗∞ such that lim inft→∞ Ut/Vt > 0 and for
t great enough

∀θ ∈ Θ, d2κ(θ, θ0)Ut ≤ 〈M(θ)−M(θ0)〉t
and ∀(θ, θ′) ∈ Θ2, 〈M(θ)−M(θ′)〉t ≤ d2δ(θ, θ′)Vt (H)

for some constants δ ≤ 1 and κ ≥ δ. As we shall see below, these properties
are rather natural and easy to check in many situations, and the first of them
provides the required lower bound on At(θ).

The second (and more difficult) step is to deduce from (H) corresponding
normalizer and upper bound (or modulus of continuity) for Mt(θ). The main
difficulty comes from the fact that this bound has to be uniform in t, which
typically implies its dependence on the entropy of Θ.
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When studying the convergence in probability, this task can be achieved
by Nishiyama maximal inequality [N99], further developed in van Zanten [Z05]
(see also the forthcoming paper [VZ05] by van der Vaart and van Zanten).
Without entering into the details, let us just note that for Θ ⊂ R

d and Hölder
framework as above, one obtains that |Mt(θ)−Mt(θ′)|/

√
Vt ∼ dδ(θ, θ′) in the

mean.
To apply this general scheme in our almost sure setting, we need to de-

rive an a.s. modulus of continuity of normalized martingales Mt(θ). Since we
have not found a suitable result in the literature3, this is done in section 2,
theorem 1. Namely, we show that under the hypothesis (H), P-a.s. for t great
enough

∀(θ, θ′) ∈ Θ2,
|Mt(θ)−Mt(θ′)|√

Vt ln lnVt
≤ dδ(θ, θ′)l(d(θ, θ′))

for some decreasing function l(x) depending on the entropy of Θ.
Two points can be noted by comparison with the corresponding modulus

in the mean. The first one is the presence of ln lnVt term, which is natural
since we consider the almost sure convergence and the best normalizer is there
given by the law of the iterated logarithm.

The second point is that even for Θ ⊂ R
d, our Kolmogorov-type proof

does not allow to get rid of the additional factor l(x). In fact, one can take
l(x) =

√
ln(1/x) in this case, which recalls the Lévy modulus of continuity for

Brownian motion (see [RY94, p. 30]). On the other hand, l(x) is unnecessary
in some simple situations (for example, if Mt(θ) = θ ·Mt), so it would be
interesting to know whether in general theorem 1 holds with l(x) = const for
Θ ⊂ R

d.
Once the necessary moduli of continuity are obtained, we use them to

deduce an a.s. rate of convergence rt in the way outlined above. Assuming the
hypothesis (H), we show in section 3 (theorem 2) that rt can be found from

r2κ−δ
t l

(
1
rt

)
=
√

Vt
ln lnVt

,

where l(x) is the function from Theorem 1. This kind of equation (without
ln lnVt factor) is known for the rate of convergence in probability (see [VW96,
Theorem 3.2.5]), so theorem 2 can be considered as its almost sure counter-
part.

Finally, in section 4 we apply theorem 2 to find an upper rate of con-
vergence of MLE in some concrete examples. From what precedes, given a
diffusion

dXt = σ(Xt) dBt + b(θ0, Xt) dt, θ0 ∈ Θ ,

3 A uniform law of the iterated logarithm was already used by van de Geer and
Stougie in [GS91] to find an a.s. rate of convergence, but in some rather different
context.
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we only have to check that the hypothesis (H) holds. The verification is based
on the fact that 〈M(θ)−M(θ′)〉t can be expressed in terms of b and σ. To
simplify the formulations, suppose that Xt ∈ R and σ(x) = 1, then

〈M(θ)−M(θ′)〉t =
∫ t

0
(b(θ,Xs)− b(θ′, Xs))2 ds .

An obvious way to fulfill the necessary conditions is to suppose that the func-
tion b(θ, x) satisfies for all (θ, θ′, x) ∈ Θ2 × R,

K(x)dκ(θ, θ′) ≤ |b(θ, x)− b(θ′, x)| ≤ C(x)dδ(θ, θ′) (∗)

for some non-negative C(x) and K(x). Then we can take Ut =
∫ t
0 K2(Xs) ds

and Vt =
∫ t
0 C2(Xs) ds and, as soon as

lim
t→∞

∫ t

0
C2(Xs) ds =∞ and lim inf

t→∞

∫ t
0 K2(Xs) ds∫ t
0 C2(Xs) ds

> 0 , (∗∗)

theorem 2 applies.
An important framework where (∗∗) is easy to check is that of Harris

recurrent diffusions. Recall that Xt ∈ R
n is called recurrent if it admits an

invariant measure µ such that µ(f) =
∫

f(x)µ(dx) > 0 implies
∫∞
0 f(Xs) ds =

∞ a.s. for every µ-integrable f(x) ≥ 0. According to the case µ(Rn) < ∞ or
µ(Rn) =∞ the diffusion is called ergodic or null-recurrent.

Assuming that Xt is recurrent, suppose that C2(x) and K2(x) are both
integrable and positive with respect to µ. This µ-integrability condition is
generally satisfied for ergodic diffusions (since µ is finite), and is not really
restrictive for null-recurrent ones. Then Vt ↗ ∞, and the Chacon-Ornstein
theorem (see e.g. [RY94]) insures that the ratio of two integrals in (∗∗) con-
verges to µ(K2)/µ(C2) > 0, as required. Thus for recurrent diffusions with
a Hölder drift we obtain rt as a function of an integrable additive functional
(IAF) Vt. All IAF of a recurrent diffusion have the same order of growth and
express thereby a natural random scale for the rate of convergence of MLE. In
particular, for ergodic diffusions any IAF is equivalent to t, so the rate rt be-
comes deterministic, as usual. For example, one obtains rt

√
ln rt ∼

√
t/ ln ln t

for Θ ⊂ R
d and a Lipschitz drift. For null-recurrent diffusions rt preserves a

random form, but depends only on trajectory, so it can be calculated from
observations.

The scope of application of theorem 2 is not limited by the assumption (∗),
which is often too restrictive. Using some kind of “uniform Chacon-Ornstein
theorem”, we can find the rate of convergence for diffusions with discontinuous
drift (example 3). As noticed before, Θ can also be a functional space, provided
that its entropy is not too great. In particular, we are able to treat an equation

dXt = θ(Xt) dt + dBt
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if Xt is recurrent (exemple 5).
The rate of convergence of MLE for null-recurrent diffusions is the main

statistical contribution of our paper, since there are only few known results
on this topic (see [DKu03, HKu03, LL05]). Nevertheless, theorem 2 applies
also in some transient cases (example 1).

2 Regularity of martingale families

Let Θ be a bounded metric space with a distance d. Consider a filtered prob-
ability space Ω = (Ω,Ft,P) and a family of real processes {Mt(θ); t ≥ 0, θ ∈
Θ} on Ω such that for all θ the process {Mt(θ)} is a continuous local martin-
gale starting at zero. For every martingale Mt(θ) denote by At(θ) its quadratic
variation. Denote also by Mt(θ, θ′) and At(θ, θ′) respectively the martingale
Mt(θ)−Mt(θ′) and its quadratic variation.

Suppose there exist a constant δ ∈ ]0, 1], a random variable τ(ω) ≥ 0 and
an adapted continuous increasing process Vt ↗∞ such that almost surely

∀(θ, θ′) ∈ Θ2, ∀t > τ, At(θ, θ′) ≤ d2δ(θ, θ′)Vt .

In this section we prove a uniform law of the iterated logarithm for Mt(θ) and
find a modulus of continuity of the family

{
Mt(θ)√
Vt ln lnVt

}
.

Let us start with some auxiliary results. Without loss of generality we
suppose diam(Θ) ≤ 1. Let m ∈ N and cover Θ by open balls of radius 2−m.
Amongst all such coverings choose a minimal one and define Θm as the set of
its centers and N(2−m) as the number of points in Θm. We suppose that Θ
has a finite entropy, i.e. N(2−m) <∞ for all m. Note that Θ0 is reduced to a
single point. Let also

Ψm =
m⋃
l=0

Θl and Ψ =
∞⋃
l=0

Θl .

For m > 0 define a projection π : Θm �→ Θm−1 such that π(θ) is the center
of a ball of radius 2−(m−1) covering θ. Actually, we consider here a family
of projections (one for each m) all denoted by π, for notational simplicity.
Clearly, d(θ, π(θ)) < 2−(m−1) for θ ∈ Θm.

Now construct the projection θ → θp of Ψ to Ψp in the following way. Let
m be the smallest integer such that θ ∈ Θm. If p ≥ m then put θp = θ, else
define θp by the well-known chaining rule:

θ → π(θ)→ . . .→ πm−p(θ) = θp .

By the triangle inequality we have

d(θ, θp) ≤ d(θ, π(θ)) + . . . + d(πm−p−1(θ), πm−p(θ))

<
1

2m−1 + . . . +
1
2p

<
2
2p

. (1)
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Note that this bound is obviously true also for p ≥ m.
Let ϕ : [0, 10] �→ R

+ be a continuous function such that for all 0 < t ≤ 10
and some constants c(t)

ϕ(x) is increasing, and ∀x ∈ [0, 1], ϕ(tx) ≤ c(t)ϕ(x), with c

(
1
2

)
< 1 . (Φ)

Such ϕ(x) will play the role of modulus of continuity of normalized martingale
families in the sequel. Namely, we will be interested in the functions of the
form ϕ(x) = xδ ·l(x), where l(x) is decreasing. Note that this form implies that
ϕ(tx) ≤ tδϕ(x) and l(tx) ≥ t−δl(x) for t ≥ 1. On the other hand, if ϕ(x)/xγ

is increasing for some γ > 0, then ϕ(x) is increasing too and ϕ(tx) ≤ tγϕ(x)
for t ≤ 1. This provides a simple way to construct a function satisfying the
condition (Φ). Some examples are ϕ(x) = xγ or ϕ(x) = xγ ln(c/x) for γ > 0
and c large enough.

The following classical type lemma will be used to extend the ϕ-continuity
from “near” points of Ψm on all Ψ .

Lemma 1. Let ϕ(x) satisfy (Φ) and let f : Θ �→ R be a function such that for
all m ≥ 1

∀(θ, θ′) ∈ Ψ2
m, d(θ, θ′) < 5 · 2−m ⇒ |f(θ)− f(θ′)| ≤ ϕ(d(θ, θ′)) .

Then there exists a constant C such that

∀(θ, θ′) ∈ Ψ2, |f(θ)− f(θ′)| ≤ Cϕ(d(θ, θ′)) .

Proof. We only have to consider the case θ �= θ′. Take (θ, θ′) ∈ Ψ2, θ �= θ′ and
let p be such that 2−(p+1) < d(θ, θ′) ≤ 2−p. Then (1) implies

d(θp, θ′
p) ≤ d(θp, θ) + d(θ, θ′) + d(θ′, θ′

p) < 5 · 2−p ,

hence

|f(θp)− f(θ′
p)| ≤ ϕ

(
5 · 2−p) ≤ ϕ(10 · d(θ, θ′)) ≤ c(10) · ϕ(d(θ, θ′)) . (2)

Now write

|f(θ)− f(θ′)| ≤ |f(θ)− f(θp)|+ |f(θp)− f(θ′
p)|+ |f(θ′

p)− f(θ′)| . (3)

Suppose that θ ∈ Θm where m is minimal. The first term of the last sum
equals zero if m ≤ p, otherwise note that πl(θ) and πl+1(θ) belong to Ψm−l
and that d(πl(θ), πl+1(θ)) < 2 · 2−(m−l) for 0 ≤ l < m− p, so

|f(θ)− f(θp)| ≤ |f(θ)− f(π(θ))|+ . . . + |f(πm−p−1(θ))− f(πm−p(θ))|
≤ ϕ(2−(m−1)) + . . . + ϕ(2−p)

≤
(
cm−p−1(1/2) + . . . + c(1/2) + 1

)
ϕ(2−p)

≤ c(2)
1− c(1/2)

ϕ(d(θ, θ′)) . (4)
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The same holds for |f(θ′)− f(θ′
p)|, so we get from (3), (2) and (4)

|f(θ)− f(θ′)| ≤ Cϕ(d(θ, θ′)) ,

where C = c(10) + 2c(2)/(1− c(1/2)). ��

Our first theorem concerns the uniform ϕ-continuity of martingale fami-
lies. The Kolmogorov-like proof is typical for the situation when we want to
obtain a uniform continuity property of the paths using similar property of
the moments (see e.g. Senoussi [Se00]). A notable exception is that we use a
random normalization and prove an equicontinuity property on the infinite
time interval.

Theorem 1. Suppose there exist a constant δ ∈ ]0, 1], a random variable
τ(ω) ≥ 0 and an adapted continuous increasing process Vt ↗ ∞ such that
almost surely

∀(θ, θ′) ∈ Θ2, ∀t > τ, At(θ, θ′) ≤ d2δ(θ, θ′)Vt .

Let ϕ(x) = xδ · l(x) satisfy the condition (Φ), where l(x) is decreasing and
such that ∑

m≥1

m2N2(2−m) exp
(
−l2(2−m)

)
<∞ . (5)

Then there exists a version M̃t(θ) of Mt(θ) such that for almost all ω ∈ Ω

there is a t(ω) such that the family
{

M̃t(θ)√
Vt ln lnVt

}
t>t(ω)

of functions of θ is

Cϕ-continuous on Θ for some constant C depending only on ϕ. In particular,
M̃t(θ) is continuous in θ for all t > t(ω).

Proof. Put c = 4e·52δ/l2(1/2). We start by showing the “local”
√

cϕ-regularity
of Mt/

√
Vt ln lnVt. Denote by Ψ̃2

m the set of all couples (θ, θ′) ∈ Ψ2
m such that

0 < d(θ, θ′) < 5 · 2−m. Let τn = inf{t : Vt = en} and

An =
{
∀(θ, θ′), Aτn

(θ, θ′) ≤ d2δ(θ, θ′)en
}

,

so {τ < τn} ⊆ An. For n ≥ 1 denote

Bn =

{
∃m ≥ 1, ∃(θ, θ′) ∈ Ψ̃2

m, sup
[τn−1,τn[

|Mt(θ, θ′)|√
Vt ln lnVt

>
√

cϕ(d(θ, θ′))

}
∩ An

and let P(A;B; . . .) = P(A ∩ B ∩ . . .). Recall the Bernstein inequality for
continuous local martingales (see e.g. [RY94])

P

(
sup
t≤τ
|Mt| ≥ z; 〈M〉τ ≤ L

)
≤ 2 exp

(
− z2

2L

)
.

We have for n great enough
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P(Bn) ≤
∑
m≥1

∑
Ψ̃2

m

P

(
sup

[τn−1,τn[
|Mt(θ, θ′)| > ϕ(d(θ, θ′))

√
cen−1 ln ln en−1) ; An

)

≤
∑
m≥1

∑
Ψ̃2

m

2 exp
(
−cen−1 ln(n− 1)

2end2δ(θ, θ′)
· d2δ(θ, θ′)l2(d(θ, θ′))

)

≤2
∑
m≥1

∑
Ψ̃2

m

exp
(
− 4e · 52δ

2e · l2(1/2)
ln(n− 1) · 5−2δl2(2−m)

)

≤2
∑
m≥1

m2N2(2−m) exp
(
−l2(2−m)

)( e

(n− 1)2/l2(1/2)

)l2(2−m)

≤
2 exp

(
l2(1/2)

)
(n− 1)2

∑
m≥1

m2N2(2−m) exp
(
−l2(2−m)

)
.

The bound on the second line is due to the Bernstein inequality and the third
one to the fact that l(d(θ, θ′)) ≥ l(5 · 2−m) ≥ 5−δl(2−m). On the fourth line
we use the bound Card Ψ̃2

m ≤ m2N2(2−m) (see the remark 2 below). Finally,
the fifth one is valid as soon as (n− 1)2/l

2(1/2) > e.
By the assumption (5), the m-series converges and we get P(Bn) ≤

C(n− 1)−2. So the n-series converges too, and by the Borel-Cantelli lemma,
P(lim sup Bn) = 0.

Since τn → +∞, for almost all ω ∈ Ω and all t greater than some t(ω) we
have:

∀m ≥ 1, ∀(θ, θ′) ∈ Ψ̃2
m,

|Mt(θ)−Mt(θ′)|√
Vt ln lnVt

≤
√

cϕ(d(θ, θ′)) .

Here ω is fixed and for a given t the ratio Mt(θ)/
√

Vt ln lnVt is a real function
of θ ∈ Θ. By the lemma 1 the family

{
Mt(θ)√
Vt ln lnVt

}
t>t(ω)

is then Cϕ-continuous

on Ψ with some constant C not depending on t.
Now, since Ψ is dense in Θ, the existence of a version claimed in the

theorem follows by classical technique, taking

M̃t(θ) = lim
θ′→θ
θ′∈Ψ

Mt(θ′)

for t large enough. ��

Remark 1. Using aϕ(x) (with a > 0) instead of ϕ(x), we can replace the
entropy condition (5) by∑

m≥1

m2N2(2−m) exp
(
−a2l2(2−m)

)
<∞ .
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Remark 2. Since l2(ε) ≤ cε−2δ, the entropy condition (5) can be satisfied only
by compacts with N(ε) bounded by exp (const · ε−α), α ≤ 2δ. This is the case
for any compact of R

d, since N(ε) ∼ ε−d. There are also interesting functional
spaces satisfying this condition for some α < 2 (see examples in section 4).

In fact, the bound Card Ψ̃2
m ≤ CardΨ2

m ≤ (mN(2−m))2 used in the
proof may seem too rough; for example, if Θ ⊂ R

d, it could be replaced
by const · N(2−m). But for the cases we are interested in, namely when
N(ε) ≤ exp (const · ε−α), the terms (mN(2−m))2 and N(2−m) are of the same
order compared with exp

(
−l2(2mβ)

)
, so we do not need such a refinement.

Let us formulate a result that will be referred to in the sequel. It concerns
the modulus of continuity ϕ(x) in theorem 1.

Corollary 1. Let Θ be a metric compact as above.

• If Θ ⊂ R
d then we can take ϕ(x) = xδ

√
ln(c/x) with c large enough;

• If N(ε) ∼ exp (cε−α) with 0 < α < 2δ then ϕ(x) = xδ−α/2.

The proof is a direct application of remark 1 with an appropriate choice of
aϕ(x).

3 Upper rate of convergence of MLE

Consider a metric compact Θ and let Xθ
t be a family of n-dimensional diffu-

sions given by

dXθ
t = σ(Xθ

t ) dBt + b(Xθ
t , θ) dt , Xθ

0 = x ∈ R
n , θ ∈ Θ , (6)

where Bt is a k-dimensional Brownian motion. We suppose that for each
θ ∈ Θ the functions b and σ satisfy the usual assumptions for the existence
of a weak solution on [0,+∞[ (see e.g. [RY94]); we put a = σσ∗ supposed
positive definite.

If the true value of θ is unknown and one observes a trajectory (Xθ
s , s ≤ t)

of the solution of (6), one can estimate θ by the maximum likelihood method.
In this section we show the existence of such estimator and give its rate of
convergence in terms of some stochastic process written explicitly as a function
of the coefficients of (6).

Take Ω = C([0,∞[→ R
n) and let F be its borelian σ-field, and (Ft)

its natural filtration. Denote P
x
θ the law of the solution of (6) issued from

x ∈ R
n. The measures P

x
θ are locally absolutely continuous w.r.t. the law P

x

of the solution of
dXt = σ(Xt) dBt , X0 = x .

Let Lθ,xt be the local density of P
x
θ w.r.t. P

x:

Lθ,xt = exp
[∫ t

0
b∗θa

−1 dXs −
1
2

∫ t

0
b∗θa

−1bθ ds
]

,
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where a = a(Xs) and bθ = b(θ,Xs). We suppose that ∀(θ, x) the process Lθ,xt
is given and for fixed (x, t) consider Lθ,xt (ω) as a function of θ and of the
continuous trajectory ω → Xs(ω), s ≤ t.

Denote by θ0 the (unknown) true value of the parameter. The maximum
likelihood estimator θ̂t of θ0 is defined as a maximizer of the random map
θ → Lθ,xt provided it exists. ¿From now on we omit the superscript x, all the
results being true for all x ∈ R

n.
Notice that the maximizer of θ → Lθt coincides with that of θ → Lθt /L

θ0
t .

The last function is more convenient for showing the existence and studying
the properties of MLE. Indeed, we have under Pθ0

Lθt /L
θ0
t = exp

(∫ t

0
(bθ − bθ0)

∗a−1σ(Xθ0
s ) dWs

−1
2

∫ t

0
(bθ − bθ0)

∗a−1(bθ − bθ0)(X
θ0
s ) ds

)
= exp

(
Mt(θ)−

1
2
At(θ)

)
,

where Wt is a Brownian motion under Pθ0 ,

Mt(θ) =
∫ t

0
(bθ − bθ0)

∗a−1σ(Xθ0
s ) dWs

and

At(θ) = 〈M(θ)〉t =
∫ t

0
(bθ − bθ0)

∗a−1(bθ − bθ0)(X
θ0
s ) ds .

In particular,

θ̂t = arg sup
θ∈Θ

(
Mt(θ)−

1
2
At(θ)

)
,

and since M(θ0) = 0, we see that Mt(θ̂t)− 1
2At(θ̂t) ≥ 0.

Recall that At(θ, θ′) denotes the quadratic variation of Mt(θ)−Mt(θ′):

At(θ, θ′) = 〈M(θ)−M(θ′)〉t =
∫ t

0
(bθ − bθ′)∗a−1(bθ − bθ′)(Xθ0

s ) ds . (7)

The foregoing theorem establishes an upper rate of convergence of MLE pro-
vided that At(θ, θ′) can be controlled by d(θ, θ′).

Theorem 2. Consider a family of diffusions given by (6). Suppose that there
are two adapted continuous positive processes Ut and Vt, two constants δ ∈
]0, 1] and κ ≥ δ, a function ϕ(x) = xδ · l(x) satisfying the condition (Φ), where
l(x) is decreasing and a random variable τ = τ(ω) such that the following
points hold Pθ0-almost surely:

• The families Mt(θ) and At(θ) are continuous in θ for t > τ , and

|Mt(θ)|√
Vt ln lnVt

≤ ϕ(d(θ, θ0)) . (8)
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• For all t > τ and θ ∈ Θ,

d2κ(θ, θ0)Ut ≤ At(θ) . (9)

• Vt ↗∞ and lim inft→∞ Ut/Vt > 0.

Let rt be a positive increasing process such that for t large enough

r2κ
t ϕ

(
1
rt

)
= r2κ−δ

t l

(
1
rt

)
≤
√

Vt
ln lnVt

. (10)

Then, Pθ0-a.s. a MLE exists for t large enough and, if Pθ0 is complete

Pθ0

(
lim sup
t→∞

rt(ω)d(θ̂t, θ0) =∞
)

= 0 .

Proof. By our assumptions Lθt /L
θ0
t is continuous on Θ and since Θ is compact,

a MLE θ̂t exists for t great enough.
Let us estimate the distance d(θ̂t, θ0). Denote

St,j(ω) =
{
θ : 2j < rtd(θ, θ0) ≤ 2j+1} ⊂ Θ .

Let J = J(ω) ∈ N be a random variable. We have for fixed t{
rtd(θ̂t, θ0) > 2J

}
=
{
∃j ≥ J, 2j < rtd(θ̂t, θ0) ≤ 2j+1

}
⊆{

∃j ≥ J, sup
St,j

(
Mt(θ)
Vt

− 1
2
At(θ)
Vt

)
≥ 0

}
⊆{

∃j ≥ J, sup
St,j

Mt(θ)
Vt

≥ inf
St,j

1
2
At(θ)
Vt

}
.

By the first two assumptions for all t > τ ,

|Mt(θ)|√
Vt ln lnVt

≤ ϕ(d(θ, θ0)) and At(θ) ≥ d2κ(θ, θ0)Ut . (11)

Let T1 = T1(ω) be such that

∀t > T1,
Ut
Vt
≥ l = l(ω) > 0 . (12)

Finally, let T2 be such that (10) holds for t > T2.
Put T = max(τ, T1, T2) and denote B a set of the full probability such

that (12) and (11) hold for t > T . Let also

BT =
{
ω ∈ B : ∃t > T, rtd(θ̂t, θ0) > 2J

}
.
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Then

BT ⊆
{
ω ∈ B : ∃t > T, ∃j ≥ J, sup

St,j

Mt(θ)
Vt

≥ 1
2

inf
St,j

At(θ)
Vt

}

⊆
{
∃t > T, ∃j ≥ J, sup

St,j

ϕ(d(θ, θ0))
√

ln lnVt
Vt

≥ inf
St,j

d2κ(θ, θ0)
Ut
Vt

}

⊆
{
∃t > T, ∃j ≥ J, ϕ(2j+1/rt)

√
ln lnVt

Vt
≥ (2j/rt)2κ · l

}

⊆
{
∃t > T, ∃j ≥ J, C(ω)r2κ

t ϕ(1/rt)
√

ln lnVt
Vt

≥ 2(2κ−δ)j
}

⊆
{
∃j ≥ J, C(ω) ≥ 2(2κ−δ)j

}
=
{
C(ω) ≥ 2(2κ−δ)J

}
.

For an appropriate choice of J(ω), the last set is empty. Hence, if Pθ0 is
complete,

Pθ0

(
∃t > T, rtd(θ̂t, θ0) > 2J

)
= 0

and the theorem follows. ��

Remark 3. The assumption (8) of theorem 2 can be replaced by

∀t > τ, ∀(θ, θ′) ∈ Θ2, At(θ, θ′) ≤ Vtd
2δ(θ, θ′) , (8′)

and then deduced from it using theorem 1 for an appropriate choice of ϕ(x)
(see corollary 1). Generally, (8′) is much easier to check than (8), but in some
cases the function ϕ(x) obtained from theorem 1 is not optimal (see the linear
example below).

4 Examples

Before proceeding to examples, let us present two classical frameworks where
(some of) the assumptions of theorem 2 are easy to check. For the sake of
simplicity, denote by Xt the diffusion Xθ0

t corresponding to the true parameter
θ0. Recall that we consider a multidimensional diffusion

dXt = b(θ,Xt) dt + σ(Xt) dWt, θ ∈ Θ,

such that a(x) = σ(x)σ∗(x) is invertible.

Hölder drift

Suppose that

∀(θ, θ′, x) ∈ Θ2 × R
n, |b(θ, x)− b(θ′, x)| ≤ C(x)dδ(θ, θ′) (13)



Almost sure rate of convergence of MLE 341

for some borelian C(x) > 0. Further, suppose that for some K(x) ≥ 0 and
κ ≥ δ it satisfies the following distinguishability condition:

∀(θ, x) ∈ Θ × R
n, |b(θ, x)− b(θ0, x)| ≥ K(x)dκ(θ, θ0) . (14)

Typically, one can take

C(x) = sup
Θ2

|b(θ, x)− b(θ′, x)|
dδ(θ, θ′)

and K(x) = inf
Θ2

|b(θ, x)− b(θ′, x)|
dκ(θ, θ′)

.

As easily seen from (7), the assumptions (8′) and (9) then hold with

Vt =
∫ t

0
C2|a−1|(Xs) ds and Ut =

∫ t

0
K2|a|−1(Xs) ds ,

where | · | denotes the usual matrix norm: |a| = sup|u|=1 u∗au. Note that Ut
and Vt are here additive functionals of Xt.

Recurrent diffusion

Suppose that Xt ∈ R
n is Harris recurrent, with invariant measure µ, so µ(f) >

0 implies
∫∞
0 f(Xs) ds =∞ for every measurable f(x) ≥ 0.

Suppose that Ut and Vt are integrable additive functionals of Xt, say
Ut =

∫ t
0 f(Xs) ds and Vt =

∫ t
0 g(Xs) ds, with 0 < µ(f), µ(g) < ∞. For ex-

ample, if the drift is Hölder in θ as above, it means that K2|a|−1 and C2|a−1|
have to be µ-integrable. Then it follows immediately that Vt ↗ ∞, and
limt→∞ Ut/Vt = µ(f)/µ(g) by Chacon-Ornstein limit ratio theorem, hence
the third assumption of theorem 2 holds in this case.

In fact, the pointwise inequalities (13) and (14) are too restrictive in some
recurrent examples (a drift with a single cusp or jump). Since At(θ, θ′)/Vt
converges to some limit f(θ, θ′) by Chacon-Ornstein theorem, we can replace
it by the Hölder assumption on f(θ, θ′), provided the convergence is uniform
in (θ, θ′).

Concrete examples

The first group concerns the conventional parametric estimation, when Θ ⊂
R
d. Note that in this case the assumptions (8′) and Vt ↗ ∞ imply by theo-

rem 1 that (8) holds for ϕ(x) = xδ
√

ln(c/x) (see corollary 1). In particular,
the continuity in θ of (some version of) Mt(θ) follows from the continuity of
ϕ at zero.

The second group of examples belongs to the framework of semi-parametric
estimation, since the compact Θ therein is infinite-dimensional. Its covering
numbers N(ε) will satisfy N(ε) ≤ exp (a · ε−α) with α < 2δ, so we will take
ϕ(x) = cxδ−α/2 in theorem 2.

342 Dasha Loukianova and Oleg Loukianov

Example 1 (Linear model). Consider a one-dimensional diffusion

dXt = θ · b(Xt) + dWt, θ ∈ Θ ⊂ R .

We have in this case

Mt(θ) = (θ − θ0)
∫ t

0
b(Xs) dWs and At(θ) = (θ − θ0)2

∫ t

0
b2(Xs) ds .

According to the remark above, the assumptions of theorem 2 are satisfied
with δ = k = 1, Ut = Vt =

∫ t
0 b2(Xs) ds and ϕ(x) = x

√
ln(c/x) as soon as

Vt → ∞. But the obtained modulus ϕ(x) is not optimal. In fact, if we put
Mt =

∫ t
0 b(Xs) dWs then Vt = 〈M〉t, and

Mt(θ)−Mt(θ′)√
Vt ln lnVt

= (θ − θ′)
Mt√

Vt ln lnVt
∼ (θ − θ′)

by the law of the iterated logarithm for t great enough. Hence one can take
ϕ(x) = x and we get rt ∼

√
Vt/ ln lnVt.

Actually, this is a trivial result, since one finds easily that θ̂t−θ0 = Mt/Vt,
so d(θ̂t, θ0) �

√
ln lnVt/Vt, which shows that the rate rt above is optimal.

In some cases one can calculate Vt explicitly. For example, consider the
one-dimensional Ornstein-Uhlenbeck process

dXt = θXt dt + dWt .

It is easy to see that Xt is ergodic for θ < 0, null-recurrent for θ = 0 and
transient for θ > 0. Also, it is well known that Xt ∼ eθtZθ when θ > 0, where
Zθ =

∫∞
0 e−θt dWt. So we get

Vt ∼

⎧⎨⎩
t if θ < 0∫ t

0 W 2
s ds if θ = 0
e2θt if θ > 0

which shows that theorem 2 applies for any Θ and gives the upper rate of
convergence of MLE.

Another example is given by a one-dimensional diffusion

dXt = θ|Xt|αdt + dWt

with 0 < α < 1 . In this case Xt is transient for any θ �= 0, and |Xt| ∼ t
1

1−α

(see [DKu03]). So we find

Vt ∼
{

t
1+α
1−α if θ �= 0∫ t

0 W 2α
s ds if θ = 0

which gives (up to ln lnVt, due to the almost sure convergence) the rate
of [DKu03]. Note that the consistency of MLE in these examples does not
depend on the nature (recurrent or transient) of Xt, but the rate does. As we
see, it is the best in the transient case and the worst in the ergodic one.
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Example 2 (Recurrent diffusions with Hölder drift). Suppose that Θ ⊂ R
d

and that Xt ∈ R
n is Harris recurrent, with invariant measure µ. Recall that

according to the case µ(Rn) <∞ or µ(Rn) =∞ the diffusion is said ergodic
or null-recurrent.

Suppose that the coefficient b(θ, x) satisfies (13) and (14), where the func-
tions C2(x)|a−1(x)| and K2(x)|a(x)|−1 are µ-integrable and µ(K2|a|−1) > 0.
Then it follows from the discussion above that theorem 2 applies, and the rate
we obtain satisfies

r2κ−δ
t

√
ln(crt) =

√
Vt

ln lnVt
.

It is easy to see that Vt in this case can be replaced by any integrable pos-
itive additive functional. In particular, if Xt is ergodic then every additive
functional is equivalent to t. If b(θ, x) is Lipschitz (δ = κ = 1), we ob-
tain rt

√
ln rt ∼

√
t/ ln ln t, which is slightly worse then the expected rate

rt =
√

t/ ln ln t known for the case of linear dependence, but we do not know
if one can get rid of ln rt factor in general.

The assumptions of µ-integrability can seem restrictive for null-recurrent
diffusions, since µ is infinite. But consider a one-dimensional diffusion dXt =
b(Xt) dt + dWt and put B(x) =

∫ x
0 b(y) dy. It is recurrent if and only if the

function
S(x) =

∫ x

0
exp(−2B(y)) dy

is a space transformation of R : limx→±∞ S(x) = ±∞. If b(x) depends on θ,
typically it means that exp(−2B(x)) grows at least as 1/x1−ε for the values
of θ such that Xt is recurrent, which gives b(x) � c/x. Since in this case
dµ/dx = 2 exp(2B(x)) � x1−ε, we see that b2(x) is µ-integrable. Now if b(x)
is Hölder on Θ, the order of its Hölder coefficient C(x) is in general the same
as b(x), so C2(x) is µ-integrable too.

To illustrate this informal reasoning, consider the following SDE:

dXt =
θXt

1 + θ2 + X2
t

dt + dWt .

It is easy to see that its solution is recurrent if and only if θ ≤ 1/2 and
null-recurrent for |θ| ≤ 1/2. A simple calculation shows that δ = κ = 1
and C(x) ∼ K(x) ∼ (1 + |x|)−1 for |x| great enough. If θ0 ∈] − ∞, 1/2[,
then µ(dx) ∼ (1 + |x|)2θ0 dx, so the integrability assumptions are fulfilled
and theorem 2 applies. But it is not clear what happens in the “border” case
θ0 = 1/2 as well as for θ0 > 1/2 when Xt becomes transient.

Example 3 (Recurrent diffusion with discontinuous drift). We borrow this ex-
ample from [Ku03, p. 270]. Consider a diffusion with a switching drift

dXt = −sgn(Xt − θ) dt + dWt, θ ∈ [a, b] ⊂ R .

It is easy to see that Xt is ergodic with invariant measure µ(dx) = exp(−2|x−
θ|) dx. By the ergodic theorem
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1
t
At(θ, θ′) =

4
t

∫ t

0
1[θ,θ′](Xs) ds→ 4

∫
1[θ,θ′](x)µ(dx) = f(θ, θ′) .

The function f(θ, θ′) satisfies K|θ−θ′| ≤ f(θ, θ′) ≤ C|θ−θ′| for some constants
0 < K < C. Hence, if we prove that the convergence above is uniform in (θ, θ′),
then the assumptions of theorem 2 will hold with κ = δ = 1/2, Ut = Kt/2 and
Vt = 2t. The proof follows immediately from the uniform ergodic lemmas 4.1
and 4.2 in [Z99], which claim that

sup
θ

∣∣∣∣1t
∫ t

0
1]−∞,θ](Xs) ds−

∫
1]−∞,θ](x)µ(dx)

∣∣∣∣ → 0 as t→∞ .

So, an upper rate of convergence in this model can be found from rt ln rt ∼
t/ ln ln t.

Example 4 (Signal transform). Suppose that Θ is a set of real functions on
[0, 1] such that

∀θ ∈ Θ, sup
0≤s≤1

|θ(s)|+ sup
0≤s<t≤1

|θ(t)− θ(s)|
|t− s|α ≤ 1 (15)

for some α ∈]1/2, 1], and

∀(θ1, θ2) ∈ Θ2, (∃s ∈ [0, 1], θ1(s) < θ2(s))⇒ (∀s ∈ [0, 1], θ1(s) ≤ θ2(s))

Then the covering numbers N∞(ε) of Θ in the uniform norm satisfy

N∞(ε) ≤ exp
(
const · ε− 1

α

)
(see [VW96]). Since ‖ · ‖1 ≤ ‖ · ‖∞ on Θ, we have N1(ε) ≤ N∞(ε). Hence the
assumption (5) is satisfied for l(x) = cx−1/(2α) (see corollary 1).

Now consider the following family of SDE:

dXt = dWt + b(θ,Xt)dt ,

where b(θ, x) =
∫ 1
0 θ(s)Ψ(s, x) ds with 0 < m ≤ Ψ(s, x) ≤ M . This equation

can be viewed as describing a dynamical system, where θ(s) is an unknown
input signal transformed by a known filter Ψ . Then

|b(θ, x)− b(θ1, x)| ≤
∫ 1

0
|θ(s)− θ1(s)|Ψ(s, x) ds ≤M‖θ − θ1‖1

and
|b(θ, x)− b(θ0, x)| ≥ m‖θ − θ0‖1 ,

so it is easy to check that all assumptions of theorem 2 are satisfied for l(x)
above, with Vt = M2t, Ut = m2t, d(θ, θ1) = ‖θ − θ1‖1 and δ = κ = 1.

Hence the MLE for this model is consistent and its a.s. upper rate of
convergence is found from crt · r1/(2α)

t =
√

t
ln ln t , that is rt ∼

(
t

ln ln t

) 1
2+1/α .
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Example 5 (Infinite-dimensional parametric space). Consider a diffusion

dXt = θ(Xt) dt + dWt ,

where θ(x) is an unknown function to be estimated. Suppose that any candi-
date θ(x) is supported by [0, 1] and satisfies (15) for some α > 1/2, and let
Θ be the set of all such θ. Then Xt is null-recurrent for any θ ∈ Θ and its
invariant measure µ satisfies

0 < mθ ≤ dµ/dx ≤Mθ

for some constants.
Denote by µ0 the invariant measure corresponding to the unknown true

parameter θ0. The metrics on Θ we will consider is d(θ, θ1) = ‖θ − θ1‖L2(µ0).
We have

mθ0‖θ‖2L2(dx) ≤ ‖θ‖2L2(µ0) ≤Mθ0‖θ‖2L2(dx) ≤ const

and ∫ 1

0
|θ(x + h)− θ(x)|2 dx ≤

∫ 1

0
h2α dt = h2α,

which implies by M. Riesz theorem that Θ is compact in L2(µ0). Moreover,
since ‖·‖L2(µ0) ≤ c‖·‖∞, we have N(Θ, ε, d) ≤ N(Θ, cε, ‖·‖∞) ∼ exp

(
Aε−1/α

)
,

so the entropy condition (5) is satisfied for l(x) = cx−1/(2α).
Now let us find two processes Ut and Vt such that (4) holds. In our case

At(θ, θ1) =
∫ t

0
(θ − θ1)2(Xs) ds .

Put

Zt =
∫ t

0
1[0,1](Xs) ds ,

then At(θ, θ1) and Zt are integrable additive functionals of Xt, hence by
Chacon-Ornstein theorem

∀(θ, θ1),
At(θ, θ1)

Zt
→ d2(θ, θ1)

µ0([0, 1])
a.s.

We will show that this convergence is uniform on Θ2. Choose a ‖ · ‖∞-dense
countable subset Θ′ of Θ such that the convergence above almost surely holds
for all (θ, θ1) ∈ Θ′ ×Θ′. We have

|At(θ, θ1)−A(ψ,ψ1)|
Zt

=
1
Zt

∣∣∣∣∫ t

0
((θ − θ1)2 − (ψ − ψ1)2)(Xs) ds

∣∣∣∣
≤ 1

Zt

∫ t

0
|θ − θ1 − ψ + ψ1| · |θ − θ1 + ψ − ψ1|(Xs) ds

≤ (‖θ − ψ‖∞ + ‖θ1 − ψ1‖∞)

∫ t
0 4 · 1[0,1](Xs) ds

Zt
= 4(‖θ − ψ‖∞ + ‖θ1 − ψ1‖∞) .
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A.s. the family At(θ, θ1)/Zt (indexed by t) being equicontinuous and con-
vergent on dense subset Θ′ × Θ′ to a continuous limit d2(θ, θ1)/µ0([0, 1]), it
converges uniformly on whole Θ2. Hence a.s. there exists some τ(ω) such that

∀t > τ, ∀(θ, θ1) ∈ Θ2,
d2(θ, θ1)

2µ0([0, 1])
≤ At(θ, θ1)

Zt
≤ 2d2(θ, θ1)

µ0([0, 1])
.

Taking Ut = Zt/2µ0([0, 1]) and Vt = 2Zt/µ0([0, 1]) we satisfy all the assump-
tions of theorem 2 and obtain

rt ∼
(

Zt
ln lnZt

) 1
2+1/α

.

In the same manner, if we take for Θ the space of decreasing functions
θ : R → [−1, 1] such that limx→±∞ θ(x) = ∓1, then N(Θ, ε, d) ∼ exp (1/ε)
(see [VW96]). In this case Xt is ergodic, and the calculations above hold with

Zt = t, hence we get rt ∼
(

t
ln ln t

) 1
3 .
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Centre Pierre Mendès France, 90 rue de Tolbiac, F-75634 Paris Cedex 13,
France. olivier.wintenberger@univ-paris1.fr

1 Introduction

Assume that (Xn)n∈Z is a sequence of R
d valued random variables with com-

mon distribution which is absolutely continuous with respect to Lebesgue’s
measure, with density f . Stationarity is not assumed so that the case of a sam-
pled process {Xi,n = xhn(i)}1≤i≤n for any sequence of monotonic functions
(hn(.))n∈Z and any stationary process (xn)n∈Z that admits a marginal density
is included. This paper investigates convergence rates for density estimation
in different cases. First, we consider two concepts of weak dependence:

• Non-causal η-dependence introduced in [DL99] by Doukhan & Louhichi,
• Dedecker & Prieur’s φ̃-dependence (see [DP04]).

These two notions of dependence cover a large number of examples of time
series (see section § 3). Next, following Doukhan (see [Dou90]) we propose a
unified study of linear density estimators f̂n of the form

f̂n(x) =
1
n

n∑
i=1

Kmn(x,Xi) , (1)

where {Kmn} is a sequence of kernels. Under classical assumptions on {Kmn}
(see section § 2.2), the results in the case of independent and identically dis-
tributed (i.i.d. in short) observations Xi are well known (see for instance
[Tsy04]). At a fixed point x ∈ R

d, the sequence mn can be chosen such that

‖f̂n(x)− f(x)‖q = O
(
n−ρ/(2ρ+d)

)
. (2)

The coefficient ρ > 0 measures the regularity of f (see Section 2.2 for the defi-
nition of the notion of regularity). The same rate of convergence also holds for
the Mean Integrated Square Error (MISE), defined as

∫
‖f̂n(x)−f(x)‖22p(x) dx
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for some nonnegative and integrable function p. The rate of uniform conver-
gence on a compact set incurs a logarithmic loss appears. For all M > 0 and
for a suitable choice of the sequence mn,

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O
(

log n

n

)qρ/(d+2ρ)

, (3)

and

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O
(

log n

n

)ρ/(d+2ρ)

. (4)

These rates are optimal in the minimax sense. We thus have no hope to
improve on them in the dependent setting. A wide literature deals with
density estimation for absolutely regular or β-mixing processes (for a defi-
nition of mixing coefficients, see [Dou94]). For instance, under the assumption
βr = o

(
r−3−2d/ρ

)
, Ango Nze & Doukhan prove in [AD98] that (2), (3) and

(4) still hold. The sharper condition
∑

r |βr| < ∞ entails the optimal rate
of convergence for the MISE (see [Vie97]). Results for the MISE have been
extended to the more general φ̃- and η-dependence contexts by Dedecker &
Prieur ([DP04]) and Doukhan & Louhichi in [DL01]. In this paper, our aim
is to extend the bounds (2), (3) and (4) in the η- and φ̃-weak dependence
contexts.

We use the same method as in [DL99] based on the following moment
inequality for weakly dependent and centered sequences (Zn)n∈Z. For each
even integer q and for each integer n ≥ 2:∥∥∥∥∥

n∑
i=1

Zi

∥∥∥∥∥
q

q

≤ (2q − 2)!
(q − 1)!

{
V
q/2
2,n ∨ Vq,n

}
, (5)

where ‖X‖qq = E|X|q and for k = 2, . . . , q,

Vk,n = n

n−1∑
r=0

(r + 1)k−2Ck(r) ,

with
Ck(r) := sup{|cov(Zt1 · · ·Ztp , Ztp+1 · · ·Ztk)|} , (6)

where the supremum is over all the ordered k-tuples t1 ≤ · · · ≤ tk such that
sup1≤i≤k−1 ti+1 − ti = r.

We will apply this bound when the Zis are defined in such a way that∑n
i=1 Zi is proportional to the fluctuation term f̂n(x)−Ef̂n(x). The inequal-

ity (5) gives a bound for this part of the deviation of the estimator which
depends on the covariance bounds Ck(r). The other part of the deviation is
the bias, which is treated by deterministic methods. In order to obtain suit-
able controls of the fluctuation term, we need two different type of bounds
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for Ck(r). Conditions on the decay of the weak dependence coefficients give a
first bound. Another type of condition is also required to bound Ck(r) for the
smaller values of r; this is classically achieved with a regularity condition on
the joint law of the pairs (Xj , Xk) for all j �= k. In Doukhan & Louhichi (see
[DL01]), rates of convergence are obtained when the coefficient η decays geo-
metrically fast and the joint densities are bounded. We relax these conditions
to cover the case when the joint distributions are not absolutely continuous
and when the η- and φ̃-dependence coefficients decrease slowly (sub-geometric
and Riemannian decays are considered).

Under our assumptions, we prove that (2) still holds (see Theorem 1). Un-
fortunately, additional losses appear for the uniform bounds. When ηr or φ̃r =
O(e−ar

b

) with a > 0 and b > 0, we prove in Theorem 2 that (3) and (4) hold
with log(n) replaced by log2(b+1)/b(n). If ηr or φ̃ = O(r−a) with a > 1, The-
orem 3 gives bounds similar to (3) and (4) with the right hand side replaced by
O(n−qρq0/{2ρq0+d(q0+2)}) and O({log2+4/(q0−2)(n)/n}ρ(q0−2)/{2ρq0+d(q0+2)}), re-
spectively, and with q0 = 2+(a−1)/2, (by definition +x, is the smallest integer
larger than or equal to the real number x). As already noticed in [DL01], the
loss w.r.t the i.i.d. case highly depends on the decay of the dependence co-
efficients. In the case of geometric decay, the loss is logarithmic while it is
polynomial in the case of polynomial decays.

The paper is organized as follows. In Section 2.1, we introduce the notions
of η and φ̃ dependence. We give the notation and hypothesis in Section 2.2.
The main results are presented in Section 2.3. We then apply these results
to particular cases of weak dependence processes, and we provide examples
of kernel Km in Section 3. Section 4 contains the proof of the Theorems and
three important lemmas.

2 Main results

We first describe the notions of dependence considered in this paper, then we
introduce assumptions and formulate the main results of the paper (conver-
gence rates).

2.1 Weak dependence

We consider a sequence (Xi)i∈Z of R
d valued random variables, and we fix a

norm ‖ · ‖ on R
d. Moreover, if h : R

du → R for some u ≥ 1, we define

Lip (h) = sup
(a1,...,au)�=(b1,...,bu)

|h(a1, . . . , au)− h(b1, . . . , bu)|
‖a1 − b1‖+ · · ·+ ‖au − bu‖

.

Definition 1 (η-dependence, Doukhan & Louhichi (1999)). The pro-
cess (Xi)i∈Z is η-weakly dependent if there exists a sequence of non-negative
real numbers (ηr)r≥0 satisfying ηr → 0 when r →∞ and
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(
Xiu+1 , . . . , Xiu+v

))∣∣ ≤ (uLip(h) + vLip(k))ηr ,

for all (u+ v)-tuples, (i1, . . . , iu+v) with i1 ≤ · · · ≤ iu ≤ iu+ r ≤ iu+1 ≤ · · · ≤
iu+v, and h, k ∈ Λ(1) where

Λ(1) =
{
h : ∃u ≥ 0, h : R

du → R,Lip (h) <∞, ‖h‖∞ = sup
x∈Rdu

|h(x)| ≤ 1
}

.

Remark The η-dependence condition can be applied to non-causal sequences
because information “from the future” (i.e. on the right of the covariance)
contributes to the dependence coefficient in the same way as information “from
the past” (i.e. on the left). It is the non-causal alternative to the θ condition
in [DD03] and [DL99].

Definition 2 (φ̃-dependence, Dedecker & Prieur (2004)). Let (Ω,A,P)
be a probability space and M a σ-algebra of A. For any l ∈ N

∗, any random
variable X ∈ R

dl we define:

φ̃(M, X) = sup{‖E(g(X)|M)− E(g(X))‖∞, g ∈ Λ1,l} ,

where Λ1,l = {h : R
dl �→ R/Lip (h) < 1}. The sequence of coefficients φ̃k(r) is

then defined by

φ̃k(r) = max
l≤k

1
l

sup
i+r≤j1<j2<···<jl

φ̃(σ({Xj ; j ≤ i}), (Xj1 , . . . , Xjl)) .

The process is φ̃-dependent if φ̃(r) = supk>0 φ̃k(r) tends to 0 with r.

Remark The φ̃ dependence coefficients provide covariance bounds. For a
Lipschitz function k and a bounded function h,∣∣cov (h (Xi1 , . . . , Xiu) , k

(
Xiu+1 , . . . , Xiu+v

))∣∣
≤ vE |h (Xi1 , . . . , Xiu)|Lip (k)φ̃(r) . (7)

2.2 Notations and definitions

Assume that (Xn)n∈Z is an η or φ̃ dependent sequence of R
d valued random

variables. We consider two types of decays for the coefficients. The geometric
case is the case when Assumption [H1] or [H1’] holds.

[H1]: ηr = O
(
e−ar

b
)

with a > 0 and b > 0,

[H1’]: φ̃(r) = O
(
e−ar

b
)

with a > 0 and b > 0.

The Riemannian case is the case when Assumption [H2] or [H2’] holds.

[H2]: ηr = O(r−a) with a > 1,
[H2’]: φ̃(r) = O(r−a) with a > 1.

Convergence rates for density estimators of weakly dependent time series 353

As usual in density estimation, we shall assume:

[H3]: The common marginal distribution of the random variables Xn,
n ∈ Z is absolutely continuous with respect to Lebesgue’s measure, with
common bounded density f .

The next assumption is on the density with respect to Lebesgue’s measure (if
it exists) of the joint distribution of the pairs (Xj , Xk), j �= k.

[H4] The density fj,k of the joint distribution of the pair (Xj , Xk) is uni-
formly bounded with respect to j �= k.

Unfortunately, for some processes, these densities may not even exist. For
example, the joint distributions of Markov chains Xn = G(Xn−1, εn) may not
be absolutely continous. One of the simplest example is

Xk =
1
2

(Xk−1 + εk) , (8)

where {εk} is an i.i.d. sequence of Bernoulli random variables and X0 is
uniformly distributed on [0, 1]. The process {Xn} is strictly stationary but
the joint distributions of the pairs (X0, Xk) are degenerated for any k.
This Markov chain can also be represented (through an inversion of the
time) as a dynamical system (T−n, . . . , T−1, T0) which has the same law as
(X0, X1, . . . , Xn) (T0 and X0 are random variables distributed according to
the invariant measure, see [BGR00] for more details). Let us recall the defini-
tion of a dynamical system.

Definition 3 (dynamical system). A one-dimensional dynamical system is
defined by

∀k ∈ N , Tk := F k(T0) , (9)

where F : I → I, I is a compact subset of R and in this context, F k denotes
the k-th iterate of the appplication F : F 1 = F , F k+1 = F ◦ F k, k ≥ 1. We
assume that there exists an invariant probability measure µ0, i.e. F (µ0) = µ0,
absolutely continuous with respect to Lebesgue’s measure, and that T0 is a
random variable with distribution µ0.

We restrict our study to one-dimensional dynamical systems T in the class F
of dynamical systems defined by a transformation F that satisfies the following
assumptions (see [Pri01]).

• ∀k ∈ N, ∀x ∈ int(I), limt→0+ F k(x+t) = F k(x+) and limt→0− F k(x+t) =
F k(x−) exist;

• ∀k ∈ N
∗, denoting Dk

+ = {x ∈ int(I), F k(x+) = x} and Dk
− = {x ∈

int(I), F k(x−) = x}, we assume λ

( ⋃
k∈N∗

(
Dk

+

⋃
Dk

−
))

= 0, where λ is

the Lebesgue measure.
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When the joint distributions of the pairs (Xj , Xk) are not assumed abso-
lutely continuous (and then [H4] is not satisfied), we shall instead assume:

[H5] The dynamical system (Xn)n∈Z belongs to F .

We consider in this paper linear estimators as in (1). The sequence of kernels
Km is assumed to satisfy the following assumptions.

(a) The support of Km is a compact set with diameter O(1/mn);
(b) The functions x �→ Km(x, y) and x �→ Km(y, x) for all y are Lipschitz

functions with Lipschitz constant O
(
m1/d

)
;

(c) For all x,
∫

Km(x, y) dy = 1;
(d) The sequence Km is uniformly bounded.
(e) The bias of the estimator f̂n defined in (1) is of order m

−ρ/d
n , uniformly

on compact sets.

sup
‖x‖≤M

∣∣∣E[f̂n(x)]− f(x)
∣∣∣ = O(m−ρ/d

n ) . (10)

2.3 Results

In all our results we consider kernels Km and a density estimator of the
form (1) such that assumptions (a), (b), (c), (d), (e) hold.

Theorem 1 (Lq-convergence).

Geometric case. Under Assumptions [H4] or [H5] and [H1] or [H1’], the
sequence mn can be chosen such that inequality (2) holds for all 0 < q <
+∞.

Riemannian case. Under the assumptions [H4] or [H5], if additionally
• [H2] holds with a > max (1 + 2/d + (d + 1)/ρ, 2 + 1/d) (η-dependence),
• or [H2’] holds with a > 1 + 2/d + 1/ρ (φ̃-dependence),
then the sequence mn can be chosen such that inequality (2) holds for all
0 < q ≤ q0 = 2 +(a− 1)/2,.

Theorem 2 (Uniform rates, geometric decays). For any M > 0, under
Assumptions [H4] or [H5] and [H1] or [H1’] we have, for all 0 < q < +∞,
and for a suitable choice of the sequence mn,

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O

⎛⎝( log2(b+1)/b(n)
n

)qρ/(d+2ρ)
⎞⎠ ,

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O

⎛⎝( log2(b+1)/b(n)
n

)ρ/(d+2ρ)
⎞⎠ .
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Theorem 3 (Uniform rates, Riemannian decays). For any M > 0, un-
der Assumptions [H4] or [H5], [H2] or [H2’] with a ≥ 4 and ρ > 2d, for
q0 = 2+(a− 1)/2, and q ≤ q0, the sequence mn can be chosen such that

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O
(
n

− qρq0
2ρq0+d(q0+2)

)
,

or such that

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O

⎛⎜⎝( log2+4/(q0−2) n

n

) ρ(q0−2)
2ρq0+d(q0+2)

⎞⎟⎠ .

Remarks.

• Theorem 1 shows that the optimal convergence rate of (2) still holds in the
weak dependence context. In the Riemannian case, when a ≥ 4, the con-
ditions are satisfied if the density function f is sufficient regular, namely,
if ρ > d + 1.

• The loss with respect to the i.i.d. case in the uniform convergence rates
(Theorems 2 and 3) is due to the fact that the probability inequalities
for dependent observations are not as good as Bernstein’s inequality for
i.i.d. random variables (Bernstein inequalities in weak dependence context
are proved in [KN05]). The convergence rates depend on the decay of the
weak dependence coefficients. This is in contrast to the case of independent
observations.

• In Theorem 2 the loss is a power of the logarithm of the number of obser-
vations. Let us remark that this loss is reduced when b tends to infinity. In
the case of η-dependence and geometric decreasing, the same result is in
[DL99] for the special case b = 1. In the framework of φ̃-dependence, The-
orem 2 seems to provide the first result on uniform rates of convergence
for density estimators.

• In Theorem 3, the rate of convergence in the mean is better than the
almost sure rate for technical reasons. Contrary to the geometric case, the
loss is no longer logarithmic but is a power of n. The rate gets closer to
the optimal rate as q0 →∞, or equivalently a→∞.

• These results are new under the assumption of Riemannian decay of the
weak dependence coefficients. The condition on a is similar to the condition
on β in [AD03]. Even if the rates are better than in [DL01], there is a huge
loss with respect to the mixing case. It would be interesting to know the
minimax rates of convergence in this framework.

3 Models, applications and extensions

The class of weak dependent processes is very large. We apply our results
to three examples: two-sided moving averages, bilinear models and ex-
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panding maps. The first two will be handled with the help of the coefficients
η, the third one with the coefficients φ̃.

3.1 Examples of η-dependent time series.

It is of course possible to define η-dependent random fields (see [DDLLLP04]
for further details); for simplicity, we only consider processes indexed by Z.

Definition 4 (Bernoulli shifts). Let H : R
Z → R be a measurable function.

A Bernoulli shift is defined as Xn = H(ξn−i, i ∈ Z) where (ξi)i∈Z is a sequence
of i.i.d random variables called the innovation process.

In order to obtain a bound for the coefficients {ηr}, we introduce the following
regularity condition on H. There exists a sequence {δr} such that

sup
i∈Z

E
∣∣H (ξi−j , j ∈ Z)−H

(
ξi−j1|j|<r, j ∈ Z

)∣∣ ≤ δr ,

Bernoulli shifts are η-dependent with ηr = 2δr/2 (see [DL99]). In the fol-
lowing, we consider two special cases of Bernoulli shifts.

(A1). Non causal linear processes. A real valued sequence (ai)i∈Z such that∑
j∈Z

a2
j <∞ and the innovation process {ξn} define a non-causal linear

process Xn =
∑+∞

−∞ aiξn−i. If we control a moment of the innovations,
the linear process (Xn) is η-dependent. The sequence {ηr}r∈N is directly
linked to the coefficients {ai}i∈Z and various types of decay may occur. We
consider only Riemannian decays ai = O

(
i−A

)
with A ≥ 5 since results

for geometric decays are already known. Here ηr = O
(∑

|i|>r/2 ai

)
=

O(r1−A) and [H2] holds. Furthermore, we assume that the sequence (ξi)i∈Z

is i.i.d. and satisfies the condition |Eeiuξ0 | ≤ C(1 + |u|)−δ, for all u ∈ R

and for some δ > 0 and C < ∞. Then, the densities f and fj,k exist for
all j �= k and they are uniformly bounded (see the proof in the causal case
in Lemma 1 and Lemma 2 in [GKS96]); hence [H4] holds. If the density f
of X0 is ρ-regular with ρ > 2, our estimators converge to the density with
the rates:
• n−ρ/(2ρ+1) in L

q-norm (q ≤ 4) at each point x,
• n−ρ/(2ρ+3/2) in L

q-norm (q ≤ 4) uniformly on an interval,

•
(
log4(n)/n

)ρ/(4ρ+3)
almost surely on an interval.

In the first case, the rate we obtain is the same as in the i.i.d. case. For
such linear models, the density estimator also satisfies the Central Limit
Theorem (see [HLT01] and [Ded98]).

(A2). Bilinear model. The process {Xt} is a bilinear model if there exist
two sequences (ai)i∈N∗ and (bi)i∈N∗ of real numbers and real numbers a
and b such that:
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Xt = ξt

⎛⎝a +
∞∑
j=1

ajXt−j

⎞⎠+ b +
∞∑
j=1

bjXt−j . (11)

Squared ARCH(∞) or GARCH(p, q) processes satisfy such an equa-
tion, with b = bj = 0 for all j ≥ 1. Define

λ = ‖ξ0‖p
∞∑
j=1

aj +
∞∑
j=1

bj .

If λ < 1, then the equation (11) has a strictly stationary solution in Lp

(see [DMR05]). This solution is a Bernoulli shift for which we have the
behavior of the coefficient η:
• ηr = O

(
e−λr

)
for some λ > 0 if there exists an integer N such that

ai = bi = 0 for i ≥ N .
• ηr = O(e−λ

√
r) for some λ > 0 if ai = O(e−Ai) and bi = O(e−Bi) with

A > 0 and B > 0.
• ηr = O({r/ log(r)}−λ) for some λ > 0 if ai = O(i−A) and bi = O(i−B)

with A > 1 and B > 1.
Let us assume that the i.i.d. sequence {ξt} has a marginal density fξ ∈ Cρ,
for some ρ > 2. The density of Xt conditionally to the past can be written
as a function of fξ. We then check recursively that the common density
of Xt for all t, say f , also belongs to Cρ. Furthermore, the regularity of fξ
ensures that f and the joint densities fj,k for all j �= k are bounded (see
[DMR05]) and [H4] holds. The assumptions of Theorem 1 are satisfied,
and the estimator f̂n achieves the minimax bound (2) if either:
• There exists an integer N such that ai = bi = 0 for i ≥ N ;
• There exist A > 0 and B > 0 such that ai = O(e−Ai) and bi =

O(e−Bi);
• There exist A ≥ 4 and B ≥ 5 such that ai = O(i−A) and bi =

O(i−B). Then, this optimal bound holds only for 2 ≤ q < q(A,B)
where q(A,B) = 2[((B − 1) ∧A)/2].

Note finally that the rates of uniform convergence provided by Theorems 2
and 3 are sub-optimal.

3.2 Examples of φ̃-dependent time series.

Let us introduce an important class of dynamical systems:

Example 1. (Ti = F i(T0))i∈N is an expanding map or equivalently F is a
Lasota-Yorke function if it satisfies the three following criteria.

• (Regularity) There exists a grid 0 = a0 ≤ a1 · · · ≤ an = 1 such as F ∈ C1
and |F ′(x)| > 0 on ]ai−1, ai[ for each i = 1, . . . , n.

• (Expansivity) Let In be the set on which (Fn)′ is defined. There exists
A > 0 and s > 1 such that infx∈In |(Fn)′| > Asn.
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• (Topological mixing) For any nonempty open sets U , V , there exists n0 ≥ 1
such as F−n(U) ∩ V �= ∅ for all n ≥ n0.

Examples of Markov chains Xn = G(Xn+1, εn) associated to an expand-
ing map {Tn} belonging to F are given in [BGR00] and [DP04]. The simplest
one is Xk = (Xk−1 + εk) /2 where the εk follows a binomial law and X0 is
uniformly distributed on [0, 1]. We easily check that F (x) = 2x mod 1, the
transformation of the associated dynamical system Tn, satisfies all the as-
sumptions such as Tn is an expanding map belonging to F .

The coefficients of φ̃-dependence of such a Markov chain satisfy φ̃(r) =
O(e−ar) for some a > 0 (see [DP04]). Theorems 1 and 2 give the L

q rate

n−ρ/(2ρ+1), the uniform L
q rate and the almost sure rate

(
log4(n)/n

)ρ/(2ρ+1)

of the estimators of the density of µ0.

3.3 Sampled process

Since we do not assume stationarity of the observed process, the following
observation scheme is covered by our results. Let (xn)n∈Z be a stationary
process whose marginal distribution is absolutely continuous, let (hn)n∈Z be a
sequence of monotone functions and consider the sampled process {Xi,n}1≤i≤n
defined by Xi,n = xhn(i). The dependence coefficients of the sampled process
may decay to zero faster than the underlying unoberved process. For instance,
if the dependence coefficients of the process (xn)n∈Z have a Riemannian decay,
those of the sampled process {xhn(i)} with hn(i) = i2n decay geometrically
fast. The observation scheme is thus a crucial factor that determines the rate
of convergence of density estimators.

3.4 Density estimators and bias

In this section, we provide examples of kernels Km and smoothness assump-
tions on the density f such that assumptions (a), (b), (c), (d) and (e) of
subsection 2.2 are satisfied.
Kernel estimators The kernel estimator associated to the bandwidth pa-
rameter mn is defined by:

f̂n(x) =
mn

n

n∑
i=1

K
(
m1/d
n (x−Xi)

)
.

We briefly recall the classical analysis for the deterministic part Rn in this case
(see [Tsy04]). Since the sequence {Xn} has a constant maringal distribution,
we have E[f̂n(x)] = fn(x) with fn(x) =

∫
D

K(s)f
(
x− s/m

1/d
n

)
ds. Let us

assume that K is a Lipschitz function compactly supported in D ⊂ R
d. For

ρ > 0, let K satisfy, for all j = j1 + · · ·+ jd with (j1, . . . , jd) ∈ N
d:
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∫
xj11 · · ·x

jd
d K(x1, . . . , xd)dx1 · · ·dxd =

⎧⎪⎨⎪⎩
1 if j = 0,
0 for j ∈ {1, . . . , +ρ− 1, − 1},
�= 0 if j = +ρ− 1,.

Then the kernels Kmn(x, y) = mnK
(
m

1/d
n (x− y)

)
satisfy (a), (b), (c) and

(d). Assumption (e) holds and if f ∈ Cρ, where Cρ is the class of function f
such that for ρ = +ρ− 1,+ c with 0 < c ≤ 1, f is +ρ− 1,-times continuously
differentiable and there exists A > 0 such that ∀(x, y) ∈ R

d×R
d, |f (�ρ−1�)(x)−

f (�ρ−1�)(y)| ≤ A|x− y|c.
Projection estimators We only consider in this section the case d = 1.
Under the assumption that the family {1, x, x2, . . . } belongs to L2(I, µ), where
I is a bounded interval of R and µ is a measure on I, an orthonormal basis of
L2(I, µ) can be defined which consists of polynomials {P0, P1, P2, . . . }. The
fact that I is compact and the Christoffel-Darboux formula and its corollary
(see [Sze33]) ensure properties (a), (b) and (d) for the elements of the basis.
We assume that f belongs to a class C′ρ which is slightly more restrictive
than the class Cρ (see Theorem 6.23 p.218 in [DS01] for details). Then for any
f ∈ L2(I, µ)∩C′ρ, there exists a function πf,mn

∈ Vmn
such that supx∈I |f(x)−

πf,mn
(x)| = O(m−ρ

n ). Consider then the projection πmn
f of f on the subspace

Vmn =Vect{P0, P1, . . . , Pmn}. It can be expressed as

πmnf(x) =
mn∑
j=0

{∫
I

Pj(s)f(s)dµ(s)
}

Pj(x).

The projection estimator of the density f of the real valued random variables
{Xi}1≤i≤n is naturally defined as

f̂n(x) =
1
n

n∑
i=1

Kmn
(x,Xi) =

1
n

n∑
i=1

mn∑
j=0

Pj(Xi)Pj(x) .

Then Ef̂n(x) = πmnf(x) is an approximation of f(x) in Vmn . We easily check
that properties (a), (b), (c) and (d) hold for the kernels Kmn . Unfortunately,
the optimal rate (m−ρ

n ) does not necessarily hold. We then have to consider
the weighted kernels Ka

m(x, y) defined by:

Ka
m(x, y) =

m∑
j=0

am,j

j∑
k=0

Pk(x)Pk(y) ,

where {am,j ; m ∈ N, 0 ≤ j ≤ m} is a weight sequence satisfying
∑m

j=0 am,j =
1 and for all j: limm→∞ am,j = 0. If the sequence {am,j} is such that Ka

m

is a nonnegative kernel then ‖Ka
m‖1 =

∫
I
Ka
m(x, s)dµ(s) = 1 and the kernel

Ka
m satisfies (a), (b), (c), (d). Moreover, the uniform norm of the operator

f �→ Ka
m ∗ f(x) is sup‖f‖∞=1 ‖Ka

m ∗ f‖∞ = ‖Ka
m‖1 = 1. The linear estimator

built with this kernel is
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f̂an(x) =
1
n

n∑
i=1

mn∑
j=0

amn,j

j∑
k=0

Pk(Xi)Pk(x) ,

and its bias has the optimal rate:

|Ef̂an(x)− f(x)| = |Ka
mn
∗ f(x)− πf,mn

f(x) + πf,mn
f(x)− f(x)| ,

≤ |Ka
mn
∗ (f(x)− πf,mn

f(x)) + πf,mn
f(x)− f(x)| ,

≤ (‖Ka
mn
‖1 + 1)m−ρ

n = O(m−ρ
n ) .

Such an array {am,j} cannot always be defined. We give an example where it
is possible.

Example 2 (Fejer kernel). For the trigonometric basis {cos(nx), sin(nx)}n∈N,
we can find a 2π-periodic function f ∈ C′1 such that supx∈[−π;π] |f(x) −
πmf(x)| = O(m−1 logm). The associated estimator reads:

f̂n(x) =
1
2π

+
1
nπ

n∑
i=1

mn∑
k=1

cos(kXi) cos(kx) + sin(kXi) sin(kx) .

We remark that Ef̂n is the Fourier series of f truncated at order mn:

Dmn
f(x) =

1
2π

∫ 2π

0
f(t)Dmn(x− t)dt .

where

Dm(x) =
m∑

k=−m
eikx =

sin({2m + 1}x/2)
sin(x/2)

is (the symmetric) Dirichlet’s kernel. Recall that Fejer’s kernel is defined as

Fm(x) =
1
m

m−1∑
k=0

Dk(x) =
m−1∑

k=−(m−1)

(
1− |k|

m

)
eikx =

sin2(mx/2)
m sin2(x/2)

.

The kernel Fm is a nonnegative weighted kernel corresponding to Dirichlet’s
kernel and the sequence of weights am,j = 1/m and satisfies (a), (b), (c) and
(d). The estimator associated to the Fejer’s kernels is defined by

f̃n(x) =
1
2π

+
1
nπ

n∑
i=1

mn∑
j=1

1
mn

j∑
k=1

cos kXi cos kx + sin kXi sin kx ,

If the common density f is 2π-periodic and belongs to C′1, then assumption
(e) holds.

Using general Jackson’s kernels (see [DS01]), we can find an estimator such
that Rn = O(m−ρ/d

n ) for other values of ρ, but the weight sequence am,j highly
depends of the value of ρ.
Wavelet estimation Wavelet estimation is a particular case of projection
estimation. For the sake of simplicity, we restrict hte study to d = 1.
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Definition 5 (Scaling function [Dou88]). A function φ ∈ L2(R) is called
a scaling function if the family {φ(· − k) ; k ∈ Z} is orthonormal.

We choose the bandwidth parameter mn = 2j(n) and define Vj = Vect{φj,k, k ∈
Z}, where φj,k = 2j/2φ(2j(x−k)). Under the assumption that φ is compactly
supported, we define (the sum over the index k is in fact finite):

f̂n(x) =
1
n

∞∑
k=−∞

n∑
i=1

φj(n),k(Xi)φj(n),k(x) .

The wavelets estimator is of the form (1) with K(x, y) =
∑∞

k=−∞ φ(y−k)φ(x−
k) and Km(x, y) = mK(mx,my). Under the additionnal assumption that∑

k∈Z
φ(x− k) = 1 for almost all x, we can write:∣∣∣E(f̂n(x)− f(x))

∣∣∣ ≤ ∣∣∣∣∫ Kmn(y, x)f(y)dy − f(x)
∣∣∣∣ ,

=
∣∣∣∣∫ mnK(mny,mnx)(f(y)− f(x))dy

∣∣∣∣ ,

=
∣∣∣∣∫ mnK(mnx + t,mnx)(f(x + t/mn)− f(x))dt

∣∣∣∣ .

If φ is a Lipschitz function such that
∫

φ(x)xjdx = 0 if 0 < j < +ρ − 1, and∫
φ(x)x�ρ−1�dx �= 0, then the kernel Km satisfy properties (a), (b), (c) and

(d). If f ∈ Cρ, then Assumption (e) holds.

4 Proof of the Theorems

The proof of our results is based on the decomposition:

f̂n(x)− f(x) = f̂n(x)− E

(
f̂n(x)

)
︸ ︷︷ ︸
FLn(x)=fluctuation

+ E

(
f̂n(x)

)
− f(x)︸ ︷︷ ︸

bias

. (12)

The bias term is of order m
−ρ/d
n by Assumption (e). We now present three

lemmas useful to derive the rate of the fluctuation term.

Lemma 1 (Moment inequalities). For each even integer q, under the as-
sumption [H4] or [H5] and if moreover one of the following assumption holds:

• [H1] or [H1’] holds (geometric case);
• [H2] holds, mn = nδ log(n)γ with δ > 0, γ ∈ R and

a > max
(
q − 1,

(q − 1)δ(4 + 2/d)
q − 2 + δ(4− q)

, 2 +
1
d

)
,
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• [H2’] holds, mn = nδ log(n)γ with δ > 0 and γ ∈ R and

a > max
(
q − 1,

(q − 1)δ(2 + 2/d)
q − 2 + δ(4− q)

, 1 +
1
d

)
.

Then, for each x ∈ R
d,

lim sup
n→∞

(n/mn)q/2 ‖FLn(x)‖qq < +∞ .

Lemma 2 (Probability inequalities).

• Geometric case. Under Assumptions [H4] or [H5] and [H1] or [H1’] there
exist positive constants C1, C2 such that

P

(
|FLn(x)| ≥ ε

√
mn/n

)
C1 ≤ exp{−C2ε

b/(b+1)} .

• Riemannian case. Under Assumptions [H4] or [H5], if mn = nδ log(n)γ

and if one of the following assumtions holds:
– [H2] with a > max{1 + 2(δ + 1/d)/(1− δ), 2 + 1/d},
– [H2’] with a > max (1 + 2{1/d(1− δ)}, 1 + 1/d),
then, there exists C > 0 such that

P

(
|FLn(x)| ≥ ε

√
mn/n

)
≤ Cε−q0 ,

with q0 = 2 +(a− 1)/2,.

Lemma 3 (Fluctuation rates). Under the assumptions of Lemma 2, we
have for any M > 0,

• Geometric case.

sup
‖x‖≤M

|FLn(x)| =a.s. O

(√
mn

n
log(b+1)/b(n)

)
;

• Riemannian case.

sup
‖x‖≤M

|FLn(x)| =a.s. O

⎛⎝√m
1+2/q0
n

n1−2/q0
log n

⎞⎠ ,

with q0 = 2 +(a− 1)/2,.

Remarks.

• In Lemma 1, we improve the moment inequality of [DL01], where the
condition in the case of coefficient η is a > 3(q − 1), which is always
stronger than our condition.
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• In the i.i.d. case a Bernstein type inequality is available:

P

(
|FLn(x)| ≥ ε

√
m

n

)
≤ C1 exp

(
−C2ε

2) ,

Lemma 2 provides a weaker inequality for dependent sequences. Other
probability inequalities for dependent sequences are presented in [DP04]
and [KN05].

• Lemma 3 gives the almost sure bounds for the fluctuation. It is derived
directly from the two previous lemmas.

Proof of the lemmas

Proof (Proof of Lemma 1). Let x be a fixed point in R
d. Denote Zi = un(Xi)−

Eun(Xi) where un(.) = Kmn(., x)/
√

mn. Then

n∑
i=1

Zi =
n∑
i=1

un(Xi)− Eun(Xi) =
n√
mn

(f̂n(x)− Ef̂n(x)) =
n√
mn

FLn(x) .

(13)
The order of magnitude of the fluctuation FLn(x) is obtained by applying
the inequality (5) to the centered sequence {Zi}1≤i≤n defined above. We then
control the normalized fluctuation of (13) with the covariance terms Ck(r)
defined in equation (6). Firstly, we bound the covariance terms:

• Case r = 0. Here t1 = · · · = tk = i. Then we get:

Ck(r) =
∣∣cov (Zt1 · · ·Ztp , Ztp+1 · · ·Ztk

)∣∣ ≤ 2E|Zi|k .

By definition of Zi:

E|Zi|k ≤ 2kE|un(Xi)|k ≤ 2k‖un‖k−1
∞ E|un(X0)| . (14)

• Case r > 0. Ck(r) =
∣∣cov (Zt1 · · ·Ztp , Ztp+1 · · ·Ztk

)∣∣ is bounded in differ-
ent ways, either using weak-dependence property or by direct bound.
– Weak-dependence bounds:
· η-dependence: Consider the following application:

φp : (x1, . . . , xp) �→ (un(x1) · · ·un(xp)) .

Then ‖φp‖∞ ≤ 2p‖un‖p∞ and Lipφp ≤ 2p‖un‖p−1
∞ Lipun. Thus by

η-dependence, for all k ≥ 2 we have:

Ck(r) ≤
(
p2p‖un‖p−1

∞ + (k − p)2p−k‖un‖p−k−1
∞

)
Lipunηr ,

≤ k2k‖un‖k−1
∞ Lipunηr . (15)
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· φ̃-dependence: We use the inequality (7). Using the bound

E|φp(X1, . . . , Xp)| ≤ ‖un‖p−1
∞ E|un(X0)| ,

we derive a bound for the covariance terms:

Ck(r) ≤ k2k‖un‖k−2
∞ E|un(X0)|Lipunφ̃(r) . (16)

– Direct bound: Triangular inequality implies for Ck(r):

∣∣cov (Zt1 · · ·Ztp , Ztp+1 · · ·Ztk
)∣∣ ≤ ∣∣∣∣∣E

k∏
i=1

Zti

∣∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣∣E
p∏
i=1

Zti

∣∣∣∣∣︸ ︷︷ ︸
Bp

∣∣∣∣∣∣E
k∏

i=p+1

Zti

∣∣∣∣∣∣︸ ︷︷ ︸
Bk−p

,

A = |E (un(Xt1)− Eun(Xt1)) · · · (un(Xtk)− Eun(Xtk))| ,
= |Eun(X0)|k + |E (un(Xt1) · · ·un(Xtk))|

+
k−1∑
s=1

|Eun(X0)|k−s
∑

ti1≤···≤tis

∣∣E (un(Xti1
) · · ·un(Xtis

)
)∣∣ .

Firstly, with k ≥ 2:

|Eun(X0)|k ≤ ‖un‖k−2
∞ (E|un(X0)|)2 .

Secondly, if 1 ≤ s ≤ k − 1:∣∣E (un(Xti1
) · · ·un(Xtis

)
)∣∣ ≤ E|un(Xti1

) · · ·un(Xtis
)| ,

≤ ‖un‖s−1
∞ E|un(X0)| ,

|Eun(X0)|k−s ≤ ‖un‖k−s−1
∞ E|un(X0)| .

Thirdly there is at least two different observations with a gap of r > 0
among Xt1 , . . . , Xtk so for any integer k ≥ 2 :

|E (un(Xt1) · · ·un(Xtk))| ≤ ‖un‖k−2
∞ E|un(X0)un(Xr)| .

Then, collecting the last four inequations yields:

A ≤ ‖un‖k−2
∞ (E|un(X0)|)2

+(E|un(X0)|)2
k−1∑
s=1

Ck
s ‖un(X0)‖k−2

∞ + ‖un‖k−2
∞ E|un(X0)un(Xr)| .

So:

A ≤ ‖un‖k−2
∞

(
(2k − 1)(E|un(X0)|)2 + E|un(X0)un(Xr)|

)
. (17)
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Now, we bound Bi with i < k. As before:

Bi = |E (un(Xt1)− Eun(Xt1)) · · · (un(Xti)− Eun(Xti))| ,

=
i∑

s=0

|E(un(X0)|i−s
∑

tj1≤···≤tjs

∣∣E (un(Xtj1
) · · ·un(Xtjs

)
)∣∣ ,

≤ 2i‖un‖i−2
∞ (E|un(X0)|)2 .

Then:

Bp ×Bk−p ≤ 2k‖un‖k−4
∞ (E|un(X0)|)4 ≤ 2k‖un‖k−2

∞ (E|un(X0)|)2 .
(18)

Another interesting bound for r > 0 follows, because according to
inequalities (17) and (18) we have:

Ck(r) ≤ ‖un‖k−2
∞

(
(2k+1 − 1)(E|un(X0)|)2 + E|un(X0)un(Xr)|

)
.

Noting γn(r) = E|un(X0)un(Xr)| ∨ (E|un(X0)|)2, we have:

Ck(r) ≤ 2k+1‖un‖k−2
∞ γn(r) . (19)

We now use the different values of the bounds in inequalities (14), (15), (16)
and (19). If we define the sequence (wr)0≤r≤n−1 as:

• w0 = 1,
• wr = γn(r) ∧ ‖un‖∞Lipunηr ∧ E|un(X0)|Lipunφ̃(r),

then, for all r such that 0 ≤ r ≤ n− 1 and for all k ≥ 2:

Ck(r) ≤ k2k‖un‖k−2
∞ wr .

We derive from this inequality and from (5):∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
q

q

≤ (2q − 2)!
(q − 1)!

⎧⎨⎩
(
n
n−1∑
r=0

C2(r)

)q/2
∨ n

n−1∑
r=0

(r + 1)q−2Cq(r)

⎫⎬⎭ ,

�
(
q
√

n
)q⎧⎨⎩

(
n−1∑
r=0

wr

)q/2
∨
(
‖un‖∞√

n

)q−2 n−1∑
r=0

(r + 1)q−2wr

⎫⎬⎭ .

The symbol � means ≤ up to an universal constant. In order to control wr,
we give bounds for the terms γn(r) = E|un(X0)un(Xr)| ∨ (E|un(X0)|)2:

• In the case of [H4], we have:

E|un(X0)un(Xr)| ≤ supj,k ‖fj,k‖∞‖un‖21 ,

(E|un(X0)|)2 ≤ ‖f‖2∞‖un‖21 .
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• In the case of [H5], Lemma 2.3 of [Pri01] proves that E|un(X0)un(Xr)| ≤
(E|un(X0)|)2 for n sufficiently large and the same bound as above remains
true for the last term.

In both cases, we conclude that γn(r) � ‖un‖21. The properties (a), (b), (c)

and (d) of section 2.2 ensures that ‖un‖21 �
1

mn
, ‖un‖∞Lipun � m1+1/d

n and

E|un(X0)|Lipun � m1/d
n . We then have for r ≥ 1:

wr �
1

mn
∧m1+1/d

n ηr ∧m1/d
n φ̃r . (20)

In order to prove Lemma 1, it remains to control the sums(
‖un‖∞√

n

)k−2 n−1∑
r=0

(r + 1)k−2wr , (21)

for k = 2 and k = q in both Riemannian and geometric cases.

• Geometric case.
Under [H1] or [H1’]: We remark that a ∧ b ≤ aαb1−α for all α ∈ [0; 1].
Using (20), we obtain first that wr � (ηr ∧ φ̃r)αm

α(1+1/d)−(1−α)
n for n

sufficiently large. Then for 0 < α ≤ d/(2d+1) we bound wr independently
of mn: wr � (ηr ∧ φ̃r)α. For all even integer k ≥ 2 we derive from the form
of ηr ∧ φ̃r that (in the third inequality u = arb):

n−1∑
r=1

(r + 1)k−2wr �
n−1∑
r=0

(r + 1)k−2 exp(−αarb) ,

�
∫ ∞

0
rk−2 exp(−αarb)dr ,

� 1

ba
k−1

b

∫ ∞

1
u

k−1
b −1 exp(−u)du ,

� 1

ba
k−1

b

Γ

(
k − 1

b

)
.

Using the Stirling formula, we can find a constant B such that, for the
special cases k = 2 and k = q:

n−1∑
r=1

(r + 1)k−2wr �
1

ba
k−1

b

Γ

(
k − 1

b

)
� (Bk)

k
b .

• Riemannian case.
Under [H2]: we have mn = nδ log(n)β for some 0 < δ < 1 and γ > 0 and
the assumption of Lemma 1 implies that:

a > max
(
q − 1,

δ(q − 1)(4 + 2/d)
q − 2 + δ(4− q)

, 2 +
1
d

)
.
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Then, we have a > max
(
k − 1,

δ(k − 1)(4 + 2/d)
k − 2 + δ(4− k)

)
for both cases k = q

or k = 2. This assumption on a implies that:

(k + 2/d)δ + 2− k

2(a− k + 1)
<

(4− k)δ + k − 2
2(k − 1)

.

Furthermore, reminding that 0 < δ < 1:

0 <
(4− k)δ + k − 2

2(k − 1)
= 1− k(1 + δ)− 4δ

2(k − 1)
≤ 1 .

We derive from the two previous inequalities that there exists ζk ∈]0, 1[

verifying
(k + 2/d)δ + 2− k

2(a− k + 1)
< ζk <

(4− k)δ + k − 2
2(k − 1)

.

For k = q or k = 2, we now use Tran’s technique as in [ABD02]. We divide
the sum (21) in two parts in order to bound it by sequences tending to 0,
due to the choice of ζk:(√

mn

n

)k−2 [nζk ]−1∑
r=0

(r + 1)k−2wr �
(√

mn

n

)k−2
[nζk ]k−1

mn
,

� n(2ζk(k−1)−((4−k)δ+k−2))/2 ,

= O(1) ,(√
mn

n

)k−2 n−1∑
r=[nζk ]

(r + 1)k−2wr ≤
(√

mn

n

)k−2

m1+1/d
n [nζk ]k−1−a ,

≤ n(−2ζk(a−k−1)+((k+2/d)δ+2−k))/2 ,

= O(1) .

Under [H2’]: Under the assumption of Lemma 1:

a > max
(
q − 1,

δ(q − 1)(2 + 2/d)
q − 2 + δ(4− q)

, 1 +
1
d

)
,

we derive exactly as in the previous case that there exists ζk ∈]0; 1[ for
k = q or k = 2 such that

(k − 2 + 2/d)δ + 2− k

2(a− k + 1)
< ζk <

(4− k)δ + k − 2
2(k − 1)

.

We then apply again the Tran’s technique that bound the sum (21) in that
case.

Lemma 1 directly follow from (13). ��

Remarks. We have in fact proved the following sharper result. There exists
a universally constant C such that
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n

mn

)q/2
‖FLn(x)‖qq ≤

{
(Cq)q in the Riemaniann case,
(Cq1+1/b√n)q in the geometric case.

(22)

Proof (Proof of Lemma 2). The cases of Riemannian or geometric decay of
the dependence coefficients are considered separately.

• Geometric decay We present a technical lemma useful to deduce expo-
nential probabilities from moment inequalities at any even order.

Lemma 4. If the variables {Vn}n∈Z satisfies, for all k ∈ N
∗

‖Vn‖2k ≤ φ(2k) , (23)

where φ is an increasing function with φ(0) = 0. Then:

P(|Vn| ≥ ε) ≤ e2 exp
(
−φ−1(ε/e)

)
.

Proof. By Markov’s inequality and Assumption (23), we obtain

P (|Vn| ≥ ε) ≤
(

φ(2k)
ε

)2k

.

With the convention 00 = 1, the inequality is true for all k ∈ N. Reminding
that φ(0) = 0, there exists an integer k0 such that φ(2k0) ≤ ε/e < φ(2(k0+
1)). Noting φ−1 the generalized inverse of φ, we have:

P (|Vn| ≥ ε) ≤
(

φ(2k0)
ε

)2k0

≤ e−2k0 = e2e−2(k0+1) ,

≤ e2 exp
(
−φ−1(ε/e)

)
.

��

We rewrite the inequality (22):
∥∥∥√ n

mn
FLn

∥∥∥
2k
≤ φ(2k) with φ(x) = Cx

b+1
b

for a convenient constant C. Applying Lemma 4 to Vn =
√

n
mn

FLn we

obtain:

P

(
|FLn| ≥ ε

√
mn

n

)
≤ e2 exp

(
−φ−1(ε/e)

)
,

and we obtain the result of the Lemma 2.
• Riemannian decay In this case, the result of Lemma 1 is obtained only

for some values of q depending of the value of the parameter a:
– In the case of η-dependence:

a > max
(
q − 1,

1 + δ + 2/d
1− δ

, 2 +
1
d

)
.
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– In the case of φ̃-dependence:

a > max
(
q − 1, 1 +

2
d(1− δ)

, 1 +
1
d

)
.

We consider that the assumptions of the Lemma 2 on a are satisfied in
both cases of dependence. Then q0 = 2 +(a− 1)/2, is the even integer such
that a− 1 ≤ q0 < a + 1. It is the largest order such that the assumptions
of Lemma 1 (recalled above) are verified and then the Lemma 1 gives
us directly the rate of the moment: lim supn→∞ (n/mn)q0/2 ‖FLn(x)‖q0q0 <
+∞. We apply Markov’s inequality to obtain the result of Lemma 2:

P

(
|FLn(x)| ≥ ε

√
mn/n

)
≤

(√
n/mn ‖FLn(x)‖q0

)q0
εq0

.

��

Proof (Proof of Lemma 3). We follow here Liebscher’s strategy as in [AD03].
We recover B := B(0,M), the ball of center 0 and radius M , by at least
(4Mµ+1)d balls Bj = B(xj , 1/µ). Then, under the assumption that Km(., y)
is supported on a compact of diameter proportional to 1/m, we have, for all j:

sup
x∈Bj

|FLn(x)| ≤ |f̂(xj)− Ef̂(xj)|

+ C
mn

1/d

µ
(|f̃(xj)− Ef̃(xj)|+ 2|Ef̃(xj)|) , (24)

with C a constant and f̃ = n−1mn

∑n
i=1 K̃mn(x,Xi) where K̃mn is a kernel

of type K̃mn
(x, y) = Kmn

(xj , y)1|x−xj |≤m−1
n

satisfying properties (a), (b), (c)
and (d) of section 2.2. Then using (24) and with obvious short notation:

P

(
sup

‖x‖≤M
|FLn(x)| > ε

√
mn

n

)
≤

(4Mµ+1)d∑
j=1

P

(
sup
x∈Bj

|FLn(x)| > ε

√
mn

n

)
,

≤ (4Mµ + 1)d
[
sup
j

P

(
|FLn(xj)| > ε

√
mn

n

)
+P

(
C

m
1/d
n

µ
|F̃Ln(x)| > ε

√
mn

n

)

+P

(
2C

m
1/d
n

µ
|Ef̃n(x)| > ε

√
mn

n

)]
.

Using the fact that f is bounded, Ef̃n =
∫

K̃mn
(s)f(x − hs)ds is bounded

independently of n. We deduce that the last probability term of the sum tends
to 0 with n.
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With the choice µ = m
1/d
n , we apply Lemma 2 on f and f̃ . We have then the

same rate (uniform in x) for both terms P

(
Cµ−1m

1/d
n |F̃Ln(x)| > ε

√
mn/n

)
and P

(
|FLn(x)| > ε

√
mn/n

)
. Then replacing µd by mn, we obtain uniform

probability inequalities in both cases of geometric or Riemannian decays:

P

(
sup

‖x‖≤M
|FLn(x)| ≥ εn

√
mn/n

)
� mn exp

(
−Cεb/b+1

n

)
, (25)

P

(
sup

‖x‖≤M
|FLn(x)| ≥ εn

√
mn/n

)
� mnε

−q0
n . (26)

In the geometric case, we take εn with the form G(log n)(b+1)/b such that the
bound in the inequality (25) becomes mnn

−GC . Reminding that mn ≤ n, the
sequence mnn

−GC , bounded by n1−GC , is summable for a conveniently chosen
constant G. Borel-Cantelli’s Lemma then concludes the proof in this case.
In the Riemannian case, we take εn = (mnn)q

−1
0 log n such that the bound

in the inequality (26) becomes n−1 log−q0 n. Reminding that q0 ≥ 2, this
sequence is summable and here again we conclude by applying Borel-Cantelli’s
Lemma. ��

Proof of the theorems

The order of magnitude of the bias is given by Assumption (e) and the Lemmas
provide bounds for fluctuation term. There only remain to determine the
optimal bandwidth mn in each case.

Proof (Proof of Theorem 1). Applying Lemma 1 yields Theorem 1 when q is
an even integer. For any real q, Lemma 1 with 2(+q/2,+ 1) ≥ 2 and Jensen’s
inequalities yields:(

n

mn

)q/2
E|FLn(x)|q =

(
n

mn

)q/2
E

(
FLn(x)2(�q/2�+1)

)q/{2(�q/2�+1)}
,

≤
((

n

mn

)�q/2�+1

EFLn(x)2(�q/2�+1)

)q/{2(�q/2�+1)}
.

Plugging this bound and the bound for the bias in (12), we obtain a bound
for the L

q-error of estimation:

‖f̂n(x)− f(x)‖q ≤ ‖FLn(x)‖q + |Rn(x)| = O

(√
mn

n
+ m−ρ/d

n

)
.

The optimal bandwidth m∗
n = nd/(2ρ+d) is the same as in the i.i.d. case. Set

δ = d/(2ρ + d). For this value of δ, the conditions on the parameter a of
Lemma 2 are equivalent to those of Theorem 1. ��
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Proof (Proof of Theorem 2). Applying the probability inequality (25) in the
proof of Lemma 3 and the identity E|Y |q =

∫ +∞
0 P

(
|Y | ≥ t1/q

)
dt, we obtain

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O

({√
mn

n
log(b+1)/b(n)

}q
+ m−qρ/d

n

)
.

Lemma 3 gives the rate of almost sure convergence:

sup
‖x‖≤M

|f̂n(x)− f(x)| =a.s. O

(√
mn

n
log

b+1
b n + m−ρ/d

n

)
.

In both cases, the optimal bandwidth is m∗
n = (n/ log2(b+1)/b(n))d/(2ρ+d),

which yields the rates claimed in Theorem 2. ��

Proof (Proof of Theorem 3). Applying the probability inequality (26) and the
same line of reasoning as in the previous proof, we obtain

E sup
‖x‖≤M

|f̂n(x)− f(x)|q = O

((√
mn

n
m1/q0
n

)q
+ m−qρ/d

n

)
,

where q0 = 2 +(a− 1)/2,. The optimal bandwidth is m∗
n = ndq0/(d(q0+2)+2ρq0).

Set δ = dq0/(2ρq0 + d(q0 + 2)). For this value of δ, the conditions on a of
Lemma 2 are satisfied as soon as a ≥ 4 and ρ > 2d.
Lemma 3 gives the rate for the fluctuation in the almost sure case. This leads
the optimal bandwidth

m∗
n =

(
n/ log2+4/(q0−2)(n)

)d(q0−2)/(2ρq0+d{q0+2})
.

We deduce the two rates of Theorem 3 in the almost sure and L
q framework.

��
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1 Introduction

For the univariate case in extreme value theory, it is well known (e.g. [EKM97])
that parametric models characterize the asymptotic behavior of extremes (e.g.
sample maxima, exceedances above a high threshold) as the sample size in-
creases. More precisely, a Generalized Extreme Value (GEV) distribution
approximates the distribution of sample maxima and a Generalized Pareto
Distribution fits asymptotically exceedances. These results can be extended
to stationary observations under some general conditions, e.g. [LLR83]. In a
multivariate setting and therefore, for spatial extremes, a general structure of
the limiting behavior of component-wise maxima has also been proposed in
terms of max-stable processes, e.g. [HR77], see Equation (3) for a definition
of such processes. However, an important distinction between the univariate
and the multivariate case is that no parametrized model can entirely represent
max-stable processes. Hence, statistical inference has mostly focused on spe-
cial bivariate cases, e.g. logistic or bilogistic model (see Chapter 8 in [Col01]).
When dealing with spatial data, there are as many variables as locations and
consequently, additional assumptions have to be made in order to work with
manageable models. The multivariate framework has rarely been treated from
a statistical point of view (e.g. [HT04]), but there has been a growing interest
in the analysis of spatial extremes in recent years. For example, [HP05] pro-
posed two specific stationary models for extreme values. These models depend
on one parameter that varies as a function of the distance between two points.
[DM04] proposed space-time processes for heavy tail distributions by linearly
filtering i.i.d. sequences of random fields at each location. [Sch02, Sch03] sim-
ulated stationary max-stable random fields and studied the extremal coeffi-
cients for such fields. Bayesian or latent processes for modeling extremes in
space has been also investigated by several authors. In this case, the spa-
tial structure was modeled by assuming that the extreme value parameters
were realizations of a smoothly varying process, typically a Gaussian process
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with a spatial dependence [CC99]. In geostatistics, a classical approach called
“Gaussian anamorphosis” consists of transforming a spatial field into a Gaus-
sian one (e.g. Chapter 33 in [Wac03]). Indicator functions are then used to
obtain information about the tails. Although the approach performs well for
some specific cases, it is not based on extreme value theory and therefore,
modeling extremes with a Gaussian anamorphosis does not take advantage of
the theoretical foundation provided by extreme value theory.

In comparison with all these past developments, our research can be seen
as a further step in the direction taken by [Sch03] and [Sch02]. We work with
stationary max-stable fields and focus on capturing the spatial structure with
extremal coefficients. The novelty is that we propose different estimators of
extremal coefficients that are more clearly linked to the field of geostatistics.
In contrast with the work of [HP05] in which a special structure was imposed
(i.e. a parameter measured the dependence as a function of the distance be-
tween locations), our estimator can be used for any max-stable field. It is also
worthwhile to emphasize the following two points. First, we will show that
our estimators are closely related to a distance introduced in [DR93]. Sec-
ond, although we do not pursue the Gaussian anomorphosis approach used in
geostatistics, one should not forget that the field of geostatistics has a long his-
tory of modeling spatial data sets, and its development has been tremendous
in terms of environmental, climatological and ecological studies. Hence, find-
ing connections between geostatistics and extreme value theory is of primary
interest for improving the analysis of complex fields of extreme values.

In geostatistics, it is classical to define the following second-order statistic

γ(h) =
1
2

E|Z(x + h)− Z(x)|2 , (1)

where {Z(x)} represents a spatial and stationary process with a well-defined
covariance function and x ∈ R

2. The function γ(.) is called the (non-centered)
(semi) variogram and it has been extensively used by the geostatistic com-
munity, see [Wac03], [CD99], [Ste99] and [Cre93]. With respect to extremes,
this definition is not well adapted, because a second order statistic is difficult
to interpret inside the framework of extreme value theory. Instead of taking
the squared difference in γ(.), we will show that working with the absolute
difference |Z(x + h) − Z(x)| is more appropriate when dealing with extreme
values. The first-order moment of this difference leads to the definition of the
madogram

ν(h) =
1
2

E|Z(x + h)− Z(x)| , (2)

where the stationary process {Z(x)} with an assumed finite mean represents
extreme values at different locations x, say annual maximum precipitation
at given weather stations. The basic properties of this first-order variogram
have been studied by [Mat87] but he did not explore the connection between
madograms and extreme value theory. Besides the basic properties ν(0) = 0,
ν(h) ≥ 0, ν(h) = ν(−h) and ν(h + k) ≤ ν(h) + ν(k), he showed that

Variograms for spatial max-stable random fields 375

ν(h) =

+∞∫
−∞

γ(h;u) du with γ(h;u) =
1
2

E|1(Z(x + h) > u)− 1(Z(x) > u)| ,

and

∑
i

∑
j

λi ν(hi − hj)λj ≤ 0, for all λ1, . . . , λk such that
k∑
i=1

λi = 0 .

Here 1(A) represents the indicator function that is equal to 1 if A true and
equal to 0 otherwise. In addition, the madogram satisfies

√
2ν(h) ≤

√
γ(h)

and it is differentiable at the origin, if and only if, it has a linear behavior
near the origin. A detailed discussion of the properties of the madogram can
be found in Chapter 6 of [Pon04].

Our research can be seen as an extension of the work by [NPC05] who
studied the bivariate case but did not treat the spatial aspect of the madogram
for extreme value theory. In addition, the estimation of the madogram for
simulated max-stable random fields is novel.

This paper is organized as follows. In Section 2.1, we recall the basic prin-
ciples of max-stable processes and two specific classes of max-stables processes
that are used in our simulations. Section 2.2 links the extremal coefficient and
the madogram in the context of max-stable processes. This part provides a
bridge between geostatistics and extreme value theory. To illustrate how this
relationship works, simulations of the estimated madograms are presented in
Section 2.3. Conclusions and future research directions are described in Sec-
tion 3.

2 Spatial extremes

2.1 Max-stable processes

In this work, we assume that {Z(x)} is a max-stable process [Res87, Smi04].
To define such a process, we consider that the marginal distribution has been
transformed to unit Fréchet

P(Z(x) ≤ u) = exp(−1/u), for any u > 0 .

Then, we impose that all the finite-dimensional distributions are max-stable,
i.e.

P (Z(x1) ≤ tu1, ..., Z(xr) ≤ tur)
t = P (Z(x1) ≤ u1, ..., Z(xr) ≤ ur) ,

for any t ≥ 0, r ≥ 1, xi ∈ R
2, ui > 0 with i = 1, .., r. Such processes can be

rewritten [Sch02, Sch03, DR93] as
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P
(
Z(x) ≤ u(x), for all x ∈ R

2) = exp
[
−
∫

max
x∈R2

{
g(s, x)
u(x)

}
δ(ds)

]
, (3)

where the function g(.) is a nonnegative function which is measurable in
the first argument, upper semi-continuous in the second and has to satisfy∫

g(s, x)δ(ds) = 1.
To display the characteristics of such random fields, we plot two types of

max-stable fields in figures 1 and 2. The first class was developed by [Smi90],
where points in (0,∞)× R

2 are simulated according to a point process:

Z(x) = sup
(y,s)∈Π

[s f(x− y)] , with x ∈ R , (4)

where Π is a Poisson point process on R
2× (0,∞) with intensity s−2dyds and

f is a non-negative function such that
∫

f(x)dx = 1. In this paper f is taken to
be a two-dimensional Gaussian density function with the identity covariance
matrix. Figure 1 displays a field realization with dimensions of 40× 40.

The second type proposed by [Sch02] stems from a Gaussian random field
which is then scaled by the realization of a point process on (0,∞):

Z(x) = max
s∈Π

sYs(x) , (5)

where Ys are i.i.d. stationary Gaussian processes and Π is a Poisson point pro-
cess on (0,∞) with intensity

√
2πr−2dr. Figure 2 shows one realization of such

a process. Both figures of max-stable random fields have Gumbel margins; it is
more convenient to visualize the spatial structure with Gumbel margins than
with Fréchet ones. They were simulated using a code developed by Schlather,
see http://cran.r-project.org contributed package RandomFields. The
spatial structure of these two examples will be detailed in the next section.

2.2 Extremal coefficient and madogram

Concerning the spatial dependence, we note that Equation (3) gives

P (Z(x) ≤ u and Z(x + h) ≤ u) = exp [−θ(h)/u] ,

where the quantity θ(h) equals

θ(h) =
∫

max{g(s, x), g(s, x + h)}δ(ds) ,

and is called the extremal coefficient. It has been used in many dependence
studies for bivariate vectors [Fou04, LT97]. The coefficient belongs to the in-
terval [1, 2] and gives partial, but not complete, information about the depen-
dence structure of the bivariate couple (Z(x), Z(x+h)). If the two variables of
this couple are independent, then θ(h) is 2. At the other end of the spectrum,
if the variables are equal in probability, then θ(h) = 1. Hence, the extremal
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coefficient value θ(h) provides some dependence information as a function of
the distance between two locations.

The bivariate distribution for the Schlather model P(Z(x) ≤ s, Z(x+h) ≤
t) corresponds to

exp

{
−1

2

(
1
t

+
1
s

)(
1 +

√
1− 2 (ρ(h) + 1)

st

(s + t)2

)}
, (6)

where ρ(h) is the covariance function of the underlying Gaussian process. This
yields an extremal coefficient of

θ(h) = 1 +

√
1− 1

2
(ρ(h) + 1) . (7)

In Figure 2, the covariance function ρ(h) is chosen to be equal to ρ(h) =
exp(−h/40).

For the Smith model the bivariate distribution P(Z(x) ≤ s, Z(x + h) ≤ t)
equals

exp
{
−
[
1
s
Φ

(
a

2
+

1
a

log
t

s

)
+

1
t
Φ

(
a

2
+

1
a

log
s

t

)]}
, (8)

where Φ(.) corresponds to the cumulative distribution function of the stan-
dardized Normal distribution, see Figure 2. In equality (8), the extremal co-
efficient equals

θ(h) = 2Φ
(√

hTΣ−1h/2
)

, (9)

where a2 = hTΣ−1h.
The immediate statistical question is: how can we estimate θ(h) when

observations from a max-stable field are available? Proposition 1 and Section
2.3 will provide elements to answer this question.

In this paragraph, we assume that the marginals of {Z(x)} follows a unit
Fréchet distribution. This implies that the first-order moment of {Z(x)} is
not finite and the madogram defined by (2) can not be computed. To bypass
this hurdle, we introduce the following rescaled madogram

ηt(h) =
1
2

E |t1(Z(x + h) ≤ t)− t1(Z(x) ≤ t)| , (10)

where t ∈ (0,∞). By construction, the madogram ηt(h) is always defined.

Proposition 1. For any stationary max-stable spatial random field with unit
Fréchet marginals and extremal coefficient θ(h), the madogram ηt(h) defined
by (10) is equal to ηt(h) = t

(
e−1/t − e−θ(h)/t

)
, and consequently, the limiting

madogram, η(h) = lim ηt(h) as t ↑ ∞, is η(h) = θ(h)− 1.

Hence, this proposition indicates that a madogram completely characterizes
the extremal coefficient and vice-versa. The extremal coefficient enables us to
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make the link between max-stable processes and madograms. The proof of
Proposition 1 can be found in the Appendix. Note that η(h) is a madogram,
as [Mat87] stated that the limit of madograms is a madogram. The following
argument justifies this claim.

[DR93] defined a L1 distance for max-stable bivariate random variables
(X,Y ), i.e.

P(X ≤ x, Y ≤ y) = exp

(
−
∫

[0,1]
max

[
f(s)
x

,
g(s)
y

]
ds

)
,

where f, g ∈ L1([0, 1]) are called spectral functions. This definition can be
compared to (3) and it provides another way to characterize max-stable pro-
cesses. The distance d(X,Y ) was defined as the distance between the spectral
functions

d(X,Y ) =
∫

[0,1]
|f(s)− g(s)|ds .

If we denote θ(X,Y ) =
∫

max[f(s), g(s)]ds, the equality |a−b| = 2 max(a, b)−
(a + b) gives us

d(X,Y ) = 2θ(X,Y )−
(∫

f(s)ds +
∫

g(s)ds
)

,

= 2(θ(X,Y )− 1) , (11)

because assuming unit Fréchet margins implies that the spectral functions
have unit L1 norms, i.e.

∫
f(s)ds =

∫
g(s)ds = 1. Equality (11) has to be

compared with the one stated in Proposition 1, η(h) = θ(h)− 1. Both equali-
ties contain the same message, a L1 norm (either expressed in terms of mado-
grams or spectral functions) fully characterizes the extremal coefficient. From
the madogram, it is straightforward to define an asymptotically unbiased es-
timator from Equation (10)

η̂t(h) =
1

2|Nh|
∑

(xi,xj)∈Nh

|t1(Z(xi) ≤ t)− t1(Z(xj) ≤ t)| ,

where Nh is the set of sample pairs lagged by the distance h and |Nh| is the
cardinal of this set.

Numerous simulations (not shown here but available from the authors
upon request) indicate that the choice of t in η̂t(h) is difficult and that η̂t(h)
only provides reasonable estimates when the dependence is strong, i.e. when
the extremal coefficient is close to 1. One drawback is that η̂t(h) converges
very slowly if the extremal coefficient is close to 2, i.e. weak dependence be-
tween two sites. The reason for this stems for the archetypical assumption
of Fréchet margins used in multivariate extremes. As an alternative, we will
present other madograms in the next paragraph that have the advantage of
giving much better estimates of θ(h). The fundamental difference is that we
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will not assume having Fréchet margins anymore but instead Generalized Ex-
treme Value (GEV) margins with finite second moments. This can be done
without loss of generality. To implement this strategy, we recall that the GEV
distribution is defined as

P(Z(x) ≤ u) = exp(−1/uβ(u)), with uβ(u) =
(

1 + ξ
u− µ

σ

)1/ξ

+
, (12)

where a+ is equal to a if a > 0 and 0 otherwise. The parameter vector β is
defined as β = (µ, σ, ξ). In Equation (12), µ, σ > 0 and ξ are the location,
scale and shape parameters, respectively. The shape parameter drives the tail
behavior of F . For example, the classical Gumbel distribution corresponds to
ξ = 0. If ξ > 0 then the distribution is heavy tailed (e.g. the variance is infinite
if ξ ≥ 0.5). If ξ < 0, it has a bounded upper tail. With these new notations,
the relationship between the madogram and the extremal coefficient for the
GEV case can be elegantly expressed by the following proposition.

Proposition 2. Let {Z(x)} be any stationary max-stable spatial random field
with GEV marginals and the extremal coefficient θ(h). If the GEV shape pa-
rameter ξ satisfies ξ < 1, then the madogram ν(h) and the extremal coefficient
θ(h) verify

θ(h) =

⎧⎨⎩uβ

(
µ + ν(h)

Γ (1−ξ)
)
, if ξ < 1 and ξ �= 0 ,

exp
(
ν(h)
σ

)
, if ξ = 0 ,

(13)

where uβ(.) is defined by (12) and Γ (.) is the classical Gamma function.

The proof is a direct extension of the result obtained by [NPC05] for the
bivariate case. For completeness, the proof is included in the Appendix. A
direct application of Proposition 2 gives ν(h) = 1 − 1

θ(h) , if {Z(x)} has unit
Weibull margins (µ = 0, σ = 1, ξ = −1) and ν(h) = log θ(h), if {Z(x)} has
unit Gumbel margins (µ = 0, σ = 1, ξ = 0).

It is important to note that there is not a unique way to make the connec-
tion between madograms and the extremal coefficient. For example, we can
introduce the F -madogram

νF (h) =
1
2

E|F (Z(x + h))− F (Z(x))| ,

where the margin of {Z(x)} equals F (u) = exp(−1/uβ(u)). Implementing the
same strategy to derive Proposition 2, it is easy to show the equality

νF (h) = θE[F (Z(x))F (Z(x))θ(h)−1]− E[F (Z(x))] .

We also have E[F r(Z(x))] = 1/(1 + r) because F (Z(x)) follows a uniform
distribution. Hence, we can write 2νF (h) = θ(h)−1

θ(h)+1 , or conversely
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θ(h) =
1 + 2νF (h)
1− 2νF (h)

. (14)

This last equality shows a different way of linking θ(h) to a madogram, com-
pared to Equality (13).

Another important goal when working with spatial extremes is to be able
to construct valid extremal coefficients θ(h). [Sch03] investigated this issue.
For example, these authors deduced that if θ(h) is a real function such that 1−
2(θ(h)− 1)2 is positive semi-definite, then θ(h) is a valid extremal coefficient.
To prove this assertion, they simply defined the function ρ(h) = 1−2(θ(h)−1)2

as a covariance. From equations (6) and (7), it followed there exists a max-
stable random field with such a θ(h).

Using the madogram, we can show, in a different way, some of propositions
obtained by [Sch03], but our proofs are much shorter and simpler. For exam-
ple, taking advantage of the link between θ(h) and madograms, it is possible
to derive properties for θ(h).

Proposition 3. Any extremal coefficient θ(h) is such that 2−θ(h) is positive
semi-definite.

In addition, new conditions for the extremal coefficient function θ(h) are found
via the madogram.

Proposition 4. Any extremal coefficient θ(h) satisfies the following inequal-
ities

θ(h + k) ≤ θ(h)θ(k),
θ(h + k)τ ≤ θ(h)τ + θ(k)τ − 1, for all 0 ≤ τ ≤ 1 ,

θ(h + k)τ ≥ θ(h)τ + θ(k)τ − 1, for all τ ≤ 0 .

The proofs of propositions 3 and 4 can also be found in the Appendix.

2.3 Extremal coefficient estimators

Estimating the extremal coefficient is of primary interest in spatial extreme
value theory. In practice, it is assumed that the margins have first been trans-
formed to unit Fréchet, i.e. the GEV parameters (µ, σ, ξ) were estimated and
then used to transform the data. In a second step, the extremal coefficient was
estimated. Similarly, if we suppose that (µ, σ, ξ) are known, we can assume
without loss of generality that, instead of having unit Fréchet margins, the
margins follow any GEV with ξ < 0.5. This restriction on ξ allows us to work
with a finite variogram and to take advantage of the relationship between
the madogram and the extremal coefficient stated in (13). Hence, a natural
estimator of θ(h) is

θ̂(h) = uβ

(
µ +

ν̂(h)
Γ (1− ξ)

)
, (15)

Variograms for spatial max-stable random fields 381

where

ν̂(h) =
1

2|Nh|
∑

(xi,xj)∈Nh

|Z(xj)− Z(xi)| ,

and Nh is the set of sample pairs lagged by the distance h. The main advan-
tages of working with the estimator defined by (15) are: (i) it is based on a
simple concept (madogram and Equation (13)), (ii) it is straightforward to
implement (see the definition of ν̂), (iii) it works well in practice (see figures
5 and 4) and (iv) its main theoretical properties can be easily derived if the
properties of ν̂(h) are known.

To determine the quality of the fit between the theoretical value of θ(h)
and its estimate θ̂(h), a sequence of 300 random max-stable fields from the
Smith and Schlather models was simulated. Figure 3 shows the sample points
used to estimate the empirical variogram ν̂(h). In figures 4 and 5, the solid
blue lines represent the theoretical values (either for the madogram or the
extremal coefficient) and the red blue points correspond to the estimated
values (empirical mean of the 300 fields). In addition, the box plots display
the variability of the estimator. As for the madogram, the adequation between
the theorical extremal coefficient θ(h) and θ̂(h) is good overall. The best fit
is obtained for short distances and the worst one for points that are far away.

The asymptotic properties of the estimator θ̂(h) depend on the asymptotic
behavior of the empirical madogram ν̂(h). By construction, this madogram
is simply a sum of stationary absolute increments. Depending on the type of
asymptotic behavior under study, e.g. a growing number of observations in a
fixed and bounded region, one can derive the asymptotic distribution of ν̂(h).
The δ-method (see Proposition 6.4.1 of Brockwell and Davis’ book ([BD91]))
can be then applied to get the asymptotic properties of the estimator θ̂(h).

3 Conclusion

In this paper, we apply a classical concept in geostatistics, variograms, to the
analysis of max-stable random fields. Working with the first-order variogram
called the madogram has a few advantages: it is simple to define and easy to
compute, and it has a clear link with extreme value theory throughout the
extremal coefficient. While the unit Fréchet distribution plays a central role in
multivariate extreme value theory and deserves special attention, our results
indicate that working with GEV margins with ξ < 0.5 brings more flexibility
in statistical modeling. To illustrate this point, two different types of max-
stable fields were studied. Simulations show that the madogram can capture
relatively well the prescribed extremal coefficient. In addition, the proof of
Proposition 2 shows the relationship between the madogram and probability
weighted moments. These moments have been used to estimate the parameters
of GEV and GP distributions in the i.i.d. case (see [HW87], [HWW85]). De-
spite being appreciated by hydrologists ([KPN02]) for its simplicity and having
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good properties for small samples, this method-of-moment has recently fallen
out of fashion because of its lack of flexibility for non-stationary time series
(in comparison to the maximum likelihood estimation method, see [Col99]).
It is interesting that these moments appear again in the analysis of spatial
extremes through the madogram.

Still, much more research, theoretical as well as practical, has to be un-
dertaken to determine the full potential of such a statistic. In particular, the
madogram only captures a partial spatial dependence structure for bivari-
ate vectors such as (Z(x + h), Z(x)). Two important questions remain. First,
how to extend the madogram in order to capture the full bivariate structure?
Second, how to completely characterize the full spatial dependence with a
madogram-base statistic? Currently, we are working on these two issues and
preliminary results indicats that the first question could be answered in the
near future. Investigating the second issue provides a bigger challenge and
more research is needed in this area.
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Research (NCAR) and the European project E2C2. Some of the figures were
obtained with the freely available R package developed by Martin Schlather.
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4 APPENDIX

Proof (Proof of Proposition 1). By definition of ηt(h) and the equality |a−b| =
(a + b)− 2 min(a, b), we can write the following equalities

ηt(h)
t

=
1
2

E |1(Z(x + h) ≤ t)− 1(Z(x) ≤ t)| ,

= E[1(Z(x) ≤ t)]− E[1(Z(x + h) ≤ t)1(Z(x) ≤ t)],
= P[Z(x) ≤ t]− P[Z(x + h) ≤ t, Z(x) ≤ t],
= exp(−1/t)− exp(−θ(h)/t).

The required result follows immediately. ��

Proof (Proof of Proposition 2). The equality |a − b| = 2 max(a, b) − (a + b)
allows us to rewrite the madogram ν(h) = E|Z(x + h)− Z(x)|/2 as

ν(h) = E[M(h)]− E[Z(x)], where M(h) = max(Z(x + h), Z(x)) .

In addition, we have P(M(h) ≤ u) = F θ(h)(u) with F (u) = P(Z(x) ≤ u). This
is a direct consequence from the original definition of θ, see [Sch03], eq. (1)
for example. It follows that the mean of M(h) is

E[M(h)] = θ(h)
∫

zF θ(h)−1(z) dF (z) .

It is straightforward to recognize the link between E[M(h)] and probability
weighted moments (PWM) E[Z(x)F r(Z(x))]. From the work of Hoskings and
Wallis [HW87, HWW85], we know the analytical expressions of the PWM for
the GEV distribution, also see [GLMW79] and [LMW79]. More precisely, we
have

E[Z(x)F r(Z(x))] =
1

1 + r

(
µ− σ

ξ
+

σ

ξ
Γ (1− ξ)(1 + r)ξ

)
,

for r ≥ 0 and ξ < 1. We deduce E[Z(x)] = µ− σ
ξ + σ

ξ Γ (1− ξ) and

E[Z(x)F θ(h)−1(Z(x))] =
1

θ(h)

(
µ− σ

ξ
+

σ

ξ
Γ (1− ξ)θξ(h)

)
.

Equality (13) for the GEV is then obtained. For the special case ξ = 0, we
use an asymptotic argument by letting ξ → 0. ��

Proof (Proof of Proposition 3). Let Z(x) be any spatial max-stable random
field with extremal coefficient θ(h) and unit Fréchet margins. For all z ≥ 0, it
is possible to define the function Cz as

Cz(h) = E[
√

z1(Z(x) ≤ z)
√

z1(Z(x + h) ≤ z)]−
E[
√

z1(Z(x) ≤ z)]E[
√

z1(Z(x + h) ≤ z)] .
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By construction Cz(h) is a covariance function and it equals

Cz(h) = zP(Z(x) ≤ z, Z(x + h) ≤ z))− zP(Z(x) ≤ z)P(Z(x + h) ≤ z)),
= z (exp(−θ(h)/z)− exp(2/z)) , because P(Z(x) ≤ z) = exp(−1/z) .

It follows that
lim

z→+∞Cz(h) = 2− θ(h) .

Hence, 2−θ(h), as a limit of covariance functions, is a covariance function. ��

Proof (Proof of Proposition 4). For the first inequality, we assume that the
max-stable field has Gumbel margins. This implies ν(h) = log θ(h). Applying
the triangular inequality and the definition of the madogram gives

log θ(h + k) ≤ log θ(h) + log θ(k) .

The second and third inequalities are derived in a similar way. We now choose
the margins such that the madogram is equal to Γ (1−τ)

τ (θ(h)τ − 1) with 0 <
τ < 1. Again, this madogram satisfies the triangular inequality, i.e.

Γ (1− τ)
τ

(θ(h + k)τ − 1) ≤ Γ (1− τ)
τ

(θ(h)τ − 1) +
Γ (1− τ)

τ
(θ(k)τ − 1) .

The required inequalities follow. The special case τ = 1 is obtained by let-
ting τ ↑ 1. ��
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5 Figures

Fig. 1. One realization of a max-stable random field with Gumbel margins. The
spatial structure is based on the Smith model, see equations (4) and (9).

Variograms for spatial max-stable random fields 387

Fig. 2. One realization of a max-stable random field with Gumbel margins. The
spatial structure is based on the Schlather model, see equations (5) and (7).
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Fig. 3. Locations of the sampling used to estimate the madogram (see Equation
(15)). The triangles represent points that were used to get the estimated madogram
at short distances, i.e. near the origin (h close to zero).

Variograms for spatial max-stable random fields 389

Fig. 4. Schlather model defined by (6): the upper panel shows the theoretical mado-
gram and the boxplots for the estimates of 300 max-stable realizations with Gumbel
margins; the bottom panel corresponds to the extremal coefficients, see (9) obtained
from Equality (15). For both panels, the solid line gives the theoretical values as a
function of the distance h between two locations. The crosses represent the empirical
mean.
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Fig. 5. Smith model defined by (8): the upper panel shows the theoretical mado-
gram and the boxplots for the estimates of 300 max-stable realizations with Gumbel
margins; the bottom panel corresponds to the extremal coefficients, see (9) obtained
from Equality (15). For both panels, the solid line gives the theoretical values as a
function of the distance h between two locations. The crosses represent the empirical
mean.
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1 Introduction

This paper discusses a non-stationary, unconditional approach to understand-
ing the dynamic of multivariate financial returns. Non-stationary modeling
has a long tradition in financial econometric literature predating the cur-
rently prevalent stationary, conditional paradigm of which the autoregressive
conditionally heteroscedastic (ARCH) -type processes and stochastic volatil-
ity models are outstanding examples (see for example, Officer [Off76] or Hsu,
Miller and Wichern [HMW74]). Our work is motivated by growing evidence of
instability in the stochastic features of stock returns. More concretely, a grow-
ing body of econometric literature (Diebold [Die86], Lamoureux and Lastrapes
[LL90], Simonato [Sim92], Cai [Cai94], Lobato and Savin [LS98], Mikosch and
Stărică [MS02], [MS04] among others) argues that most of the features of
return series that puzzle through their omni-presence, the so called “stylized
facts”, including the ARCH effects, the slowly decaying sample ACF for ab-
solute returns and the IGARCH effect (for definitions and details see Mikosch
and Stărică [MS04]) could be manifestations of non-stationary changes in the
second moment dynamic of returns (see also Stock and Watson [SW96]). We
illustrate our methodology through a detailed analysis of a tri-variate sample
of daily log-returns consisting of the foreign exchange rate Euro/Dollar (EU),
the FTSE 100 index, and the 10 year US T-bond. The three series are common
examples of risk factors4.
4 For a definition and examples of the importance of modeling the joint dynamic

of risk factors, see for example the RiskMetrics document [Risk95]. Briefly, a
common current approach to modeling the joint dynamic of large portfolios of
financial instruments consists in reducing the size of the model by relating the
movements of a large number of the instruments in the portfolio to a relatively
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The paper concentrates on answering the following methodological ques-
tion: How can one analyze the multivariate dynamic of returns in the non-
stationary conceptual framework? We argue that a possible adequate set-up
could be that of classical non-parametric regression with fixed equidistant
design points (see Campbell et al. [CLM96] or Wand and Jones [WJ95]).
More concretely, the vectors of financial returns are assumed have a time-
varying unconditional covariance matrix that evolves smoothly. Its dynamics
is estimated by a local weighted average or local smoothing. The vectors of
standardized innovations are assumed to have asymmetric heavy tails and are
modeled parametrically. The careful description of the extremal behavior of
the standardized innovations yields a model suited for precise VaR calcula-
tions and for generation of stress-testing scenarios.

A closely related issue to the methodological question discussed is: What
type of non-stationarities might affect the multivariate dynamic of financial
returns? The in-depth analysis in Section 5 as well as the forecasting results in
Section 6 indicate the time-varying second unconditional moment as a possible
main source of non-stationarity of returns on the three financial instruments
we use to exemplify our approach5.

An important aspect of the methodology we propose is related to an-
swering the following: How should we interpret the slow decay of the sample
autocorrelation function (SACF) of absolute returns (see Figures 1 and 2)?
Should we take it at face value, supposing that events that happened a num-
ber of months (or years) ago bear a strong impact on the present dynamics
of returns? Or are the non-stationarities in the returns responsible for its
presence as a number of authors have argued lately (the list of related rel-
evant references includes Hidalgo and Robinson [HR96], Lobato and Savin
[LS98], Granger and Hyung [GH99], Granger and Teräsvirta [GT99], Diebold
and Inoue [DI01], Mikosch and Stărică [MS02], [MS04])? In a recent paper,
Stărică and Granger [SG05] have documented the superiority of the paradigm
of time-varying unconditional variance over some specifications of station-
ary long memory and stationary conditional autoregressive heteroscedastic
methodology in longer horizon volatility forecasting. Our approach is based

small number of so called risk factors (market indices, foreign exchange rates,
interest rates). The modeling then concentrates on describing the dynamics of
the risk factors.

5 Our findings and the modeling methodology that they motivate extend to the
multivariate framework the work of Officer [Off76] and Hsu, Miller and Wichern
[HMW74]. The former, using a non-parametric approach to volatility estimation,
reports evidence of time-varying second moment for the time series of returns on
the S&P 500 index and industrial production. The later modeled the returns as
a non-stationary process with discrete shifts in the unconditional variance. Note
also that, although the paper only reports the detailed results of an analysis of
three risk factors, qualitatively similar results are obtained for a large number of
other risk factors.
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on interpreting the slow decay of the SACF/SCCF of absolute returns as a
sign of the presence of non-stationarities in the second moment structure.

Our primary goal is to propose an approach that, while capable of explain-
ing the multivariate dynamics of financial data adequately, is simple and easy
to implement. For this reason, at each step of our modeling and estimation
approach, we deliberately choose simple and well known methodologies rather
than complex estimation techniques. Our empirical study, to which a substan-
tial portion of this article is devoted, demonstrates that the non-stationary
paradigm is capable of fitting multivariate data accurately and that it out-
performs the plain-vanilla specification of the industry standard Riskmetrics
in a simulation study of distributional forecasts.

Non-parametric techniques have been extensively used in the economet-
ric literature on financial and macro-economic time series. For example,
Rodŕıguez-Poo and Linton [RL01] use kernel-based inference technique to es-
timate the time-dependent volatility structure of residuals of an VAR pro-
cess. They apply their methodology to macro-economic time series. Fan et
al. [FJZZ03] also use kernel regression to estimate time-dependent parametric
models for means and covariances in a Gaussian setting. These models are
time-dependent generalizations of the time-homogeneous, stationary models
discussed in Fan and Yao [FY98]. Unlike these studies, we focus on the the dy-
namic modeling of the full distribution of multivariate returns and not only on
particular features of it (like mean or second moment structure). We empha-
size a non-Gaussian, heavy-tailed modeling of the standardized innovations
for an accurate description of the extremal behavior of the multivariate dis-
tribution of returns.

The rest of the paper is organized as follows. Section 2 introduces our
non-stationary paradigm, Section 3 collects the relevant results from the sta-
tistical literature on non-parametric curve estimation. Section 4 discusses a
heavy-tail parametric model for the innovation series. In Section 5, the non-
stationary paradigm described in Section 2 is used to analyse the dynamics
on a tri-variate sample of returns on the foreign exchange rate Euro/Dollar
(EU), the FTSE 100 index, and the 10 year US T-bond (the dimension of
the multivariate vector of returns has been intentionally kept low to facili-
tate an in-depths statistical analysis). Section 6 evaluates the performance
of our model in forecasting the distribution of multivariate returns. In Sec-
tion 7 we comment on the relationship between our modeling approach and
the RiskMetrics methodology while Section 8 concludes.

2 A simple non-stationary paradigm for multivariate
return modeling

Denote by rk the d× 1-dimensional vector of returns k = 1, 2, . . . , n. ARCH-
type models assume that (rk) is a stationary, dependent, white noise sequence
with a certain conditional second moment structure. More specifically, the
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d × d conditional variance-covariance matrix Hk := E(rkr
′
k | rk−1, rk−2, . . .)

is assumed to follow a stationary stochastic process defined in terms of past
r’s and past H’s. Often, it is assumed that P (rk ∈ · | rk−1, rk−2, . . .) =
P (N(0,Hk) ∈ · ). The common assumptions of the ARCH-type models imply
that (rk) is a strongly stationary sequence. In particular, the unconditional
covariance does not change in time (see Stărică [Stă03] for a discussion on the
implications of this assumption on modeling and forecasting univariate index
returns).

Our alternative approach assumes (rk) to be a non-stationary sequence of
independent random vectors. More concretely, the distribution of rk is char-
acterized by a changing unconditional covariance structure that is a man-
ifestation of complex market conditions. The covariance dynamics is hence
driven by exogenous factors. We emphasize that, in our approach, the pres-
ence of autocorrelation structure in absolute (square) returns is explained by
a non-stationary covariance structure6. To acknowledge the slow nature of the
changes, i.e. the persistence in the second moment structure, the covariance
is modeled as a smooth function of time. This approach leads to the following
regression-type model7:

rk = S(tk,n) ε k,n, k = 1, 2, . . . , n, where tk,n := k/n, tk ∈ [0, 1]

S(t) : [0, 1]→ R d×d is an invertible matrix and a smooth function of time,
(ε k,n) is an iid sequence of random vectors with mutually independent
coordinates, such that E ε k,n = 0, V ar ε k,n = Id . (1)

(The notation is that of the classical non-parametric regression set-up and
is motivated by the specific nature of the asymptotic results8. We will omit
indices n whenever feasible.)

The precise smoothness assumptions on S(t) are discussed in the sequel.
The elements of the sequence (ε k,n) are called the standardized innovations.
From (1), it follows that

6 Sequences of independent observations will display spurious autocorrelation struc-
ture if there is a break in the unconditional variance. In other words, the presence
of autocorrelation structure is not incompatible with the assumption of indepen-
dence. See Diebold and Inoue [DI01] and Mikosch and Stărică [MS04].

7 A mean term could be included in model (1). Denoting by uk := rk − Er, k =
1, . . . , n, the model would then assume ut to be independent with covariance
matrix S(t)S

′
(t), a smooth function of t. We have implemented both procedures,

i.e. with and without removing of a mean estimate in a preliminary step, and
obtained qualitatively equal results. Hence, in the sequel, we work under the
simplifying assumption of a negligeable mean of the return series.

8 Unlike in other fields of statistics, the asymptotic results involve not only an
increasing number of observations but also an increase in the frequency with
which the unknown function is observed. To attain this goal, the observations are
indexed between 0 and 1. In this way an increase in the sample size implies also
an increase in the frequency with which we observe the regression function.
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E(rkr
′
k | rk−1, rk−2, . . .) = E(rkr

′
k) = S(t k,n)S

′
(t k,n) := Σ(t k,n), and

P(rk ∈ · | rk−1, rk−2, . . .) = P (rk ∈ · ), k = 1, 2, . . . , n .

This modeling approach reflects the belief that the distribution of the vector
of future returns incorporates a changing pool of information which is partly
expressed in the recent past of the time series and the fact that we are not
aware of exogenous variables capable of reliably explaining the dynamics of
the volatility. In other words, our uncertainty about the form of the model is
manifestly expressed in the choice of the non-parametric regression approach.

Furthermore, we will assume the existence of a smooth9 function V(t) :
[0, 1] → R d×d such that var ri,krj,k = vij(tk) (in short, var rkr

′
k = V(tk))

where ri,k is the i-th coordinate of rk and tk = k/n10. With this notation

ri,krj,k = Σij(tk) + v
1/2
ij (tk)ε̃

ij
k , k = 1, 2, . . . , n, i, j = 1, 2, . . . d , (2)

where the errors ε̃ ijk are iid vectors with independent coordinates, such that
E ε̃ ijk = 0, var ε̃ ijk = 1. Hence the function Σ(t) can be estimated by standard
non-parametric heteroscedastic regression methods for non-random, equidis-
tant design points using the series rkr

′
k, k = 1, . . . , n.

The non-stationary paradigm that we have introduced above can be used
both for describing the dynamics of multivariate data as well as for short
horizon forecasting. The methodological difference between applying it for
data description or for forecasting will become clear in the next section.

3 Non-parametric smoothing

Non-parametric regression develops a special type of asymptotics based on the
so-called ”infill” assumption. Under this paradigm, increasing the sample size
entails having more observations covering the same time span. It is important
to understand that in the framework of the current paper the reading we give
to the ”infill” assumption is quite different from the common working hy-
pothesis of financial time series analysis where, commonly, more observations
in the same time interval amounts to a higher sampling frequency. Bluntly,
for us the increase of the sample size does not mean observing the data on
a finer grid11. In the framework of the present work, an increase of the sam-
ple is understood as an increase in the number of daily returns available for
estimation. The following simple-minded example might clarify the use of non-
parametric asymptotics at work in the sequel. If initially the sample available
9 The precise smoothness assumptions on V(t) are discussed in the sequel.

10 In words, we assume that the covariance structure and the variance of the covari-
ance are evolving smoothly through time.

11 Changing the sampling frequency entails changing the deterministic function that
needs to be estimated. This situation is not covered by the classical theory of non-
parametric regression and will be dealt with somewhere else.
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for estimation was the daily returns on the first Monday of every year for, say,
eleven consecutive years, i.e. eleven observations, the sample size increases to
twenty two observations by adding the daily returns on the first Monday in
the month of June of the eleven years, to thirty three by adding the daily
returns on all the first Mondays in every trimester, to forty four observations
adding those of every quarter, and so on. Note that the sample covers always
eleven years of financial history and that the sample increases without any
change in the sampling frequency. All the returns in the sample are daily
returns. Our assumption is that, at the point when the sample includes all
the daily returns in the eleven year interval, the condition are met for the
non-parametric regression asymptotics to work.

Having said all that, let us now turn to present the main statistical results
that form the basis of the empirical analysis to follow. Our main reference in
the context of non-parametric regression is Müller and Stadtmüller [MS87] on
kernel curve estimation in the heteroscedastic regression model

yk,n = µ(tk,n) + σ(tk,n) εk,n, k = 1, 2, . . . , n . (3)

The random variables yk are observations of the unknown regression function
µ(t) : [0, 1] → R, perturbed by heteroscedastic errors σ(tk)εk. The stan-
dardized errors εk are iid with mean zero and unit variance not necessarily
Gaussian. The functions µ : [0, 1] → R and σ : [0, 1] → R+ are assumed
smooth (the smoothness requirements will be made precise in the sequel).

Our analysis uses kernel regression smoothing. For an introduction on
smoothing estimator and in particular, on kernel estimators, see Section 12.3
of Campbell et al. [CLM96] or Wand and Jones [WJ95]. The following kernel
estimator will be used in the various steps of mean and variance estimation
in the heteroscedastic regression model (3)

f̂(t;h) =
n∑
k=1

Wk(t;h)Uk , (4)

where Uk stand for σ̃2(tk), preliminary variance estimates, in the estimation
of f := σ2(t) and for yk in the estimation of f := µ(t) . The weights Wk(t)
satisfy

Wk(t;h) = Wk,n(t;h) =
1
h

∫ sk

sk−1

K

(
t− u

h

)
du , sk =

tk−1 + tk
2

. (5)

The quantity h > 0 is the bandwidth of the estimator and the kernel function
K on [−1, 1] satisfies the basic condition

∫
K(u)du = 1 and some further as-

sumptions. These are satisfied by the Gaussian kernel density function when it
is first truncated at [−3, 3], then rescaled to [−1, 1] and finally made Lipschitz
continuous such that K(−1) = K(1) = 0 by changing the kernel appropriately
in [−1, 1]\[−1 + δ, 1− δ] for δ = 0.01. This is the kernel used in Section 5. We
note that such estimates use past and future information. A modified kernel,
only based on the past, will be introduced later.
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3.1 Estimation of the variance

Let us summarize now some of the necessary theory for the estimation of
σ̂ in the heteroscedastic model (3). The kernel estimator of σ(t) in the het-
eroscedastic regression model (3) is defined in two steps.

(1) First, a preliminary smoothing removes the mean function µ in (3) in
some neighborhood of tk. The preliminary estimator of the variance at an
inner point tk in [0, 1] is given by

σ̃2(tk) =

⎛⎝ m2∑
j=−m1

wj yj+k

⎞⎠2

, (6)

with the weights wj satisfying
∑m2

j=−m1
wj = 0 and

∑m2
j=−m1

w2
j = 1 for

some fixed m1,m2 ≥ 0 .
(2) Second, we view the preliminary estimates of the variance, σ̃2(tk) as mea-

surements from the following regression model:

σ̃2(tk) = σ2(tk) + ε̃k, 1 ≤ k ≤ n , (7)

where the errors ε̃k form an m1 + m2-dependent sequence, Eε̃k = 0 .
The estimator of the variance is then given by

σ̂2(t) := σ̂2(t;hσ2) =
n∑
k=1

Wk(t;hσ2) σ̃2(tk) , (8)

where the weights Wk(t;h) are defined in (5).

In the sequel we assume that σ2 is twice differentiable with a continuous
second derivative, µ is Lipschitz continuous of order α ≥ 0.25 and E|εi|5+δ <
∞ for some δ > 0. Then the following statements can be derived from Theorem
3.1 and Remark at the bottom of p. 622 in Müller and Stadtmüller [MS87]:

(1) The estimated variance σ̂2(t) satisfies∣∣σ̂2(t)− σ2(t)
∣∣ ≤ c (h2

σ2 + (logn/nhσ2)1/2) ,

almost surely, for some unspecified positive constant c, uniformly on any
compact of the interval (0,1), if the bandwidth hσ2 satisfies

lim inf n1/5+δ
′
hσ2/ log n > 0, lim inf nh2

σ2 > 0 ,

where 0 < δ
′
< δ.

(2) The expected value Eσ̂2(t) satisfies

|Eσ̂2(t)− σ2(t)| ≤ c (h2
σ2 + n−1)

for some unspecified positive constant c, uniformly on any compact of the
interval (0,1) .
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3.2 Estimation of the mean in the heteroscedastic regression
model

If moreover, µ is twice differentiable with continuous second derivative,
Lemma 5.3 of Müller and Stadtmüller [MS87] gives the following results for
µ̂He(t;hµ), the estimator given by (4) with f := µ:

(1) The expected value Eµ̂He(t) satisfies, as n → ∞ and hµ := hµ,n → 0,
nhµ →∞
(i)

Eµ̂He(t)− µ(t) = µ
′′
(t)h2

µB + o(h2
µ) + O(n−1) , (9)

where B =
∫

K(u)u2du/2,
(ii)

|Eµ̂He(t)− µ(t)| ≤ c (h2
µ + n−1) ,

for some unspecified positive constant c, uniformly for t ∈ [δ, 1 − δ],
any fixed δ ∈ (0, 1) .

(2) The variance of µ̂He(t) satisfies for every t, as n→∞ and hµ := hµ,n → 0,
nhµ →∞

var(µ̂He(t)) =
σ2(t)
nhµ

U (1 + o(1)) , (10)

where U =
∫

K2(u)du = 0.84 for the normal kernel used in our analysis.
Note that the bandwidths hµ in the estimation of µ and hσ2 in that of σ2

are in general very different.

These results apply to the concrete heteroscedastic regressions of interest
(2) as follows. The estimator of Σ(t) as given by the heteroscedatic approach
described in subsection 3.2 is

Σ̂(t; h) :=
n∑
k=1

Wk, n(t;h) rkr
′
k , (11)

where the weights Wk, n are defined in (5). Note that the matrix Σ̂(t; h) is
positive definite by construction.

The estimator of V(t) in (2) given by the methodology described in sub-
section 3.1 is

V̂(t; h̃) :=
n∑
k=1

Wk, n(t; h̃)

(
m2∑

l=−m1

wl rl+kr
′
l+k

)2

, (12)

where the square operation has to be intended component-wise. The weights
wl satisfying

∑m2
l=−m1

wl = 0 and
∑m2

l=−m1
w2
l = 1 for some fixed m1,m2 ≥ 0.
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Note that the matrix V is not a covariance matrix and that we have simply
used the convenience of the matrix notation in order to write concisely d× d
(coordinate-wise) equations. In the analysis that follows, we have used m1 = 1,
m2 = 0 and w1 = w2 = 1/

√
(2).

If the coordinates of S are twice differentiable with continuous second
derivatives and E|ε1|5+δ <∞ for some δ > 0 then, as n→∞

(i)

|E σ̂ij(t)− σij(t)| ≤ c (h2 + n−1) ,

as h → 0, nh → ∞, for some unspecified positive constant c, uniformly
on any compact in (0,1);

(ii) as h → 0, nh → ∞, σ̂ij(t) − σij(t) is approximately distributed as

N

(
σ

′′
ij(t)h

2 B,
vij(t)
nh

U

)
;

(iii) if the bandwidth h̃ is chosen as h̃ ∼ (logn)/n1/5+δ
′
, where 0 < δ

′
< δ,

then as n→∞

v̂ij(t)→ vij(t) ,

almost surely, uniformly on any compact in (0,1). Moreover[
σ̂ij(t)− zα/2

√
v̂ij(t)U

nh
, σ̂ij(t) + zα/2

√
v̂ij(t)U

nh

]
(13)

are approximate (100 − α)% point-wise confidence intervals for σij(t),
where zα/2 are the (100− α/2)% normal quantile.

In the analysis of the multivariate return time series in Section 5, a Gaus-
sian kernel is used. We note that, according to our experience, an exponential
kernel or the LOESS procedure produce very close results. This is in accor-
dance with the established fact that for the equidistant design set-up, the
shape of the kernel function makes little difference; see the monographes by
Müller [Mul88] and Wand and Jones [WJ95].

As we have already emphasized, the non-stationary paradigm under dis-
cussion can be used both for understanding the nature of past changes in the
dynamics of multivariate data as well as for short horizon forecasting. The
methodological difference between the use of the paradigm for data descrip-
tion and that for forecasting consists in the type of kernel used in estimation
of the regression function. A symmetric kernel will be used when interested
in describing the dynamic of the changes in the historical sample while an
asymmetric one, giving weights only to the past and current observations
will be applied in the forecasting exercises. See Sections 5 and 6 for detailed
applications of the paradigm in the two set-ups.
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3.3 Bandwidth selection

The equations (9) and (10) yield the asymptotic integrated square error
(MISE) of µ̂He(t), the estimator of µ in (3) given by (4) :

MISE = h4
µB2

∫
µ

′′
(u)2du +

∫
σ2(u)du
nhµ

U .

Minimizing the MISE with respect to the bandwidth hµ yields the globally
optimal bandwidth

h(g)
µ =

( ∫
σ2(u)duU

4nB2
∫

µ′′(u)2du

)1/5

. (14)

The choice of smoothing parameter or bandwidth is crucial when apply-
ing non-parametric regression estimators, such as kernel estimators. For this
reason we applied a set of different methods of bandwidth selection. Cross-
validation is a method based on minimizing residual mean squared error crite-
ria frequently used to infer the optimal smoothing parameter. Another method
builds on estimating the asymptotically optimal global bandwidth (14) from
the data. Since estimators for the residual variance and for an asymptotic
expression for the bias (9) are plugged into the asymptotic formula (14), such
selection rules are called ‘plug-in’ estimators. The functional that quantifies
bias is approximated by the integrated squared second derivative of the re-
gression function. This functional is determined by an iterative procedure in-
troduced in Gasser et al. [GKK91] based on a kernel estimator µ̂′′(t;hµ′′ ) for
the derivative. Such an estimator has the form (4) with the kernel K tailored
to estimate second derivatives (see Gasser et al. [GMM85]; for our application
we used the optimal (2,4) kernel).

4 A heavy-tailed model for the distribution of the
innovations

The final step is modeling the distribution of the estimated standardized in-
novations defined as

ε̂k := Ŝ−1(tk) r̂k, k = 1, 2, . . . , n (15)

with Ŝ(t), the square root of the estimate Σ̂(t) of S(t)S
′
(t) in (11). One

possibility is to use the empirical cumulative distribution function (cdf) of ε̂
as a model for the standardized innovations as done in Barone-Adesi et al.
[BGV99]. However, since the estimated standardized innovations are usually
heavy tailed (see Section 5.3 for evidence supporting this claim), the use of the
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empirical cdf 12 will underestimate the probability of extreme standardized
innovations and, hence, the risk of extreme returns, with potentially serious
consequences for risk managing.

Since we assume the estimated standardized innovations to have d indepen-
dent coordinates, it is sufficient to specify the distributions of ε̂i, i = 1, . . . , d.
A flexible and parcimonious family of distributions that allow for asymmetry
between the distributions of positive and negative standardized innovations
and, in addition, for arbitrary tail indices can be defined starting from the
Pearson type VII distribution with shape parameter m and scale parameter
c; see Drees and Stărică [DS02]. The density of this distribution is

f(x;m, c) =
2Γ (m)

cΓ (m− 1/2)π1/2

(
1 +

(x

c

)2)−m
, x > 0 . (16)

Note that f is the density of a t-distributed random variable with ν = 2m− 1
degrees of freedom multiplied by the scale parameter cν−1/2. This family
was also used to model the distribution of financial returns in an univariate
stochastic volatility framework by Nagahara and Kitagawa [NK99].

According to our experience, this distribution (concentrated on the posi-
tive axis) fits well the positive standardized innovations and the absolute value
of the negative ones. Because usually there are about as many positive stan-
dardized innovations as there are negative ones, it may be assumed that the cdf
of the standardized innovations has median 0. Hence, denoting the densities
of the negative and positive standardized innovations by f−( · ;m−, c−) and
f+( · ;m+, c+), respectively, the density of the distribution of the coordinates
of the standardized innovations is

fV II(x;m−, c−,m+, c+) = (17)
1
2

(
f−(x;m−, c−)1(−∞,0)(x) + f+(x;m+, c+)1[0,∞)(x)

)
.

We refer to the distribution with density (17) (that covers the whole real axis)
as the asymmetric Pearson type VII and denote its cdf by FV II .

To summarize, for a given coordinate, fV II is determined by four pa-
rameters m−, c−, m+, and c+, with (m−, c−) and (m+, c+) being estimated
separately by fitting a one-sided Pearson type VII distribution to the absolute
values of the negative and positive standardized innovations, respectively, e.g.
by maximum likelihood. These parameters, together with the covariance es-
timates Ŝ(t) fully specify the distribution of the time series of returns in the
model (1).

12 Using the empirical cdf is tantamount to assuming that the worse case scenarios
cannot be any worse than what we have in the sample. Using extreme value
techniques for modeling the tails of the innovations allows to extrapolate outside
the range of the observed data producing events that are more extreme than the
limited history available and that are in line with the distributional features of
the observed sample.
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5 Understanding the dynamics of multivariate returns.
An example.

In this section, we apply the methods described in the previous section to
the 2927 observations (from January 2, 1990 until September 12, 2001) of
the time series of daily returns of three qualitatively different financial in-
struments: one foreign exchange rate, the Euro/Dollar (EU), an index, the
FTSE 100 and an interest rate, the 10 year US T-bond. The EU and the
US T-bond series are available on the site of the US Federal Reserve Board:
http://www.federalreserve.gov/releases/. To facilitate a graphical display of
the empirical analysis, we conduct our study in a tri-variate setup. Note that
similar modeling results have been achieved with higher dimensional vectors
of returns.

The goal of the discussion in this section is to provide a picture of the
changes in the dynamic of the multivariate vector of returns and to check the
quality of the non-parametric paradigm applied in the set-up of modeling. The
next section will consider the performance of the paradigm in the forecasting
set-up.

Figures 1 and 2 display the SACF-SCCF of the data and that of the
absolute values of the data.
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Fig. 1. SACF-SCCF of the data (EU returns, the first coordinate, FTSE returns, the
second coordinate, the 10 year T-bond returns, the third coordinate respectively).
On the diagonal the SACF of the 3 series. Off the diagonal the SCCF of pairs. Since
the dependency structure in the data is unknown, no confidence intervals for the
correlations are displayed.
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The SACF/SCCF of the returns (Figure 1) show extremely small auto- or
cross-correlations at lags greater then 4 between the EU, the FTSE or the 10
year T-bond returns. In contrast to this, the SACF/SCCF of absolute returns
in Figure 2 show larger correlations in the absolute values.
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Fig. 2. SACF-SCCF of the absolute values of the data (EU returns, the first coor-
dinate, FTSE returns, the second coordinate, the 10 year T-bond returns, the third
coordinate respectively). On the diagonal the SACF of the 3 series. Off the diago-
nal the SCCF of pairs. Since the dependency structure in the data is unknown, no
confidence intervals for the correlations are displayed.

Note that an SACF/SCCF that displays positive correlations at large lags
(like that in Figure 2) is not evidence of dependent data. Independent and
non-stationary observations with a time-varying unconditional variance can
produce SACF/SCCF like the ones in Figure 2. Positive correlations at large
lags could be a sign of non-stationarities in the second moment structure of the
time series as well as a proof of stationary, non-linear, long-range dependence;
see Mikosch and Stărică [MS04]. As emphasized earlier, our working paradigm
is consistent with the non-stationary interpretation of the SACF/SCCF.

5.1 The evolution of the unconditional covariance structure.

We estimated the optimal bandwidth in the set-up of the model (3) with
yk = |rkr

′
k|, k = 1, 2, . . . , n, using cross-validation and the method of Gasser

et al. [GKK91]13. Figure 3 displays the cross-validation graph. Based on this

13 Using yk = |rk| yields qualitatively egual results.
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graph, the choice for the bandwidth is h
(c)
µ ∈ [0.005, 0.008] with a minimum at

0.006. The procedure of Gasser et al. [GKK91] produced h
(g)
µ = 0.0076. This

is the bandwidth that we use in defining Σ̂(t).
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Fig. 3. The cross validation graph for the choice of the bandwidth hµ for µ̂ in (4)
and yk = |rkr

′
k|. The bandwidths h

(c)
µ that minimize the cross validation function

belongs to the interval [0.005, 0.008].

The graphs in Figure 4 display two estimates of the time-varying standard
deviations (sd’s) of the three time series. Those in Figure 5 show two estimates
of the time-dependent correlation between the three pairs of univariate time
series (in the top graph, EU and FTSE, in the middle FTSE and T-bill, in
the lower one, EU and T-bill). In all the pictures, the solid line is the estimate
obtained using Σ̂, defined in (11) with bandwidth h = 0.0076. The dotted line
is the estimate obtained using the estimator

Σ̂1(t) :=
n∑
k=1

W̃k, n(t) rkr
′
k , (18)

where the weights W̃k, n are defined as in (5) with the symmetric kernel K
replaced by K̃(u) = K(u)1u≤0. The bandwidth used in (18) was h = 0.007 14.
Note that Σ̂1(t), estimate of S(t)S′(t), uses only the information available at
day t. This estimator will be used to produce the forecasting results presented
in Section 615.

The 95% confidence intervals given by (13) are also plotted. Note that
the estimated volatilities and correlations that use only the past information
belong almost always to the 95% confidence intervals. Hence using only past
information seems to yield a rather precise estimates.

The graphs in Figure 4 and 5 show rather large variations in the esti-
mated standard deviations as well as in the estimated correlation structure
14 For the choice of this value, see Section 6.
15 The boundary modification proposed in Rice [Ric84] has been used to take care

of the boundary effect.
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Fig. 4. Local estimates (Σ̂(t), h = 0.0076, solid line, Σ̂1(t), h = 0.007, dotted line)
of the (annualized) standard deviation (sd) of the data: EU, (Top), FTSE (Middle)
and the 10-year T-bond (Bottom). The annualized sd is obtained by multiplying the
daily sd by a factor of

√
250. The 95% confidence intervals given by (13) are also

displayed.

of the series. They individuate the existence of periods with unconditional
volatilities and unconditional correlations that are statistically significant dif-
ferent. In particular, the estimated correlation between the EU and the T-bond
switched from negative values in the interval (-0.3, -0.2) in the beginning of
the 90’s, to positive ones around 0.2 in the beginning of the second half of
the decade. The largest fluctuations in the estimated sd are displayed by the
FTSE with increases from values around 10% in the middle of the decade to
a peak of roughly 25% towards the end of the 90’s. The two figures support
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Fig. 5. Local estimates (Σ̂(t), h = 0.0076, solid line, Σ̂1(t), h = 0.0076, dotted line)
of the correlations between the data: EU and FTSE, (Top), FTSE and 10-year T-
bond (Middle) and 10-year T-bond and EU (Bottom). The 95% confidence intervals
given by (13) are also displayed.

the assumption of time-varying unconditional covariance structure that is the
basis of our non-stationary paradigm.

A discussion of the behavior of the proposed methodology on return data
generated by state-of-the-art models from the stationary, conditional volatility
paradigm is included in Section 916. Since the comparison with the stationary
conditional paradigm is not the focus of this paper, the discussion is reduced
in size. However, the simulation results presented suggest that the proposed
procedure can distinguish between a stationary dependent series with condi-
tional heteroscedasticity from a non-stationary independent series.
16 This discussion was suggested by an anonimous referee.
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5.2 The dependence structure of the standardized innovations

In this section we analyze the dependency structure of the estimated stan-
dardized innovations ε̂t defined in (15). A battery of three tests is used to
achieve this goal. In the sequel we are ignoring the fact that the innovations
come from a kernel regression and we treat them as if they were directly ob-
served. In doing this we neglect the possible effect of the estimation error on
the asymptotic properties of the statistics we present. As a consequence, the
p-values of the tests should be interpreted more as upper limits than as precise
values.

With this caveat in mind, we begin by verifying that the marginal dis-
tributions of the coordinates of the estimated standardized innovations ε̂i,
i = 1, 2, 3, do not change through time. Towards this goal, for a given coor-
dinate i, we split the sample (ε̂i,t) in three subsamples of equal length, (ε̂(1)

i,t ),

(ε̂(2)
i,t ), (ε̂(3)

i,t ) respectively. Then, we perform a pairwise comparison of the
three resulting empirical cumulative distribution functions using a 2-sample
Kolmogorov-Smirnov test, producing three p-values.

For the pair (ε̂(1)
i , ε̂(2)

i ), the working assumptions are that ε̂
(1)
i ’s and ε̂

(2)
i ’s

are mutually independent (see the independence tests (20) in the sequel for
evidence supporting this assumption) and that all the observations in the
sample (ε̂(1)

i ) come from the same continuous population F
(1)
i , while all the

observations in the sample (ε̂(2)
i ) come from the same continuous population

F
(2)
i . The null hypothesis is

H0 : F
(1)
i and F

(2)
i are identical. (19)

Table 1 reports the nine p-values (3 for each coordinate) for the estimated
standardized innovations (ε̂t) (left) together with the nine values correspond-
ing to their absolute values (|ε̂t|) (right).

Table 1. The p-values corresponding to the 2-sample Kolmogorov-Smirnov tests
on subsamples of estimated standardized innovations (ε̂t) (left) and their absolute
values (|ε̂t|) (right). The column labels code the pairs of subsamples.

1 and 2 1 and 3 2 and 3 1 and 2 1 and 3 2 and 3
ε̂1 0.93 0.23 0.05 |ε̂1| 0.89 0.39 0.21
ε̂2 0.10 0.46 0.59 |ε̂2| 0.20 0.43 0.75
ε̂3 0.23 0.63 0.65 |ε̂3| 0.09 0.48 0.64

Table 1 supports the hypothesis of stationarity of the coordinates of the
sequence of estimated standardized innovations (ε̂t).

In the sequel we use the covariance/autocovariance structure of the es-
timated standardized innovations (ε̂t) and their absolute values (|ε̂t|) (see
Figures 6 and 7) to test the hypothesis
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Fig. 6. SACF/SCCF of the estimated standardized innovations (ε̂t). The covariance
structure was estimated using Σ̂.

H0 : ε̂t are iid vectors with independent coordinates. (20)

The confidence intervals in Figures 6 and 7 correspond to the null hy-
pothesis (20). These figures show that accounting for the changing covariance
produces standardized innovations that are practically uncorrelated, remov-
ing the long memory look of the SACF of absolute returns in Figure 2. They
support the choice of modeling the standardized innovations as a sequence of
iid vectors with independent coordinates.

The visual test of the hypothesis (20) is complemented by a Ljung-Box test
for the first 25 lags. Table 2 gives the p-values for the estimated standardized
innovations (ε̂t) (the left half) and their absolute values (the right half). The
value reported at the intersection of the i-th line with the j-th column is the
p-value of the Ljung-Box statistic obtained by summing the first 25 values
of the SCCF between the coordinate i and past lags of the coordinate j.
Besides the pair (1,3), all other p-values do not reject the hypothesis (20) at
5% significance levels.

Finally, the hypothesis that the coordinates of the estimated standardized
innovations, ε̂1, ε̂2, ε̂3 are pair-wise independent is tested using Kendall’s τ
distribution-free statistic. Kendall’s τ takes values between -1 and 1 (indepen-
dent variables have τ=0) and provides an alternative measure of dependence
between two variables to the usual correlation. While the easy-to-compute
correlation is the natural scalar measure of linear dependence, Kendall’s τ
is a valuable measure of dependency also in the case of non-normality and
non-linearity. In large samples, as the sample size n goes to ∞,
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Fig. 7. SACF/SCCF of the absolute values of the estimated standardized innova-
tions (|ε̂t|). The covariance structure was estimated using Σ̂.

Table 2. The p-values for the Ljung-Box test at lag 25 of the estimated standardized
innovations (ε̂t) (left) and their absolute values (|ε̂t|) (right). The row and column
numbers represent the coordinates.

1 2 3 1 2 3
1 0.15 0.17 0.03 0.20 0.89 0.12
2 0.81 0.12 0.11 0.62 0.21 0.16
3 0.70 0.88 0.07 0.25 0.50 0.22

3τ

√
n(n− 1)
2(2n + 5)

d→ N(0, 1) .

Therefore Kendall’s τ can be used as a test statistic for testing the null hy-
pothesis of independent variables. (For more details on Kendall’s τ we refer
to Kendall and Stuart [KS79].)

The test is applied to all pairs of coordinates (ε̂i, ε̂j) (i, j = 1, 2, 3, i < j)
and all pairs of their absolute values. observations (ε̂i,t, ε̂j,t), t = 1, . . . , n, are
mutually independent (see the independence tests (20) for evidence supporting
this assumption) and come from the same continuous bivariate population.
The null hypothesis is

H0 : the random variables ε̂i and ε̂j are independent. (21)

The resulting p-values are given in Table 3. For all pairs the hypothesis of
independence (21) is not rejected at usual statistical levels of significance..
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At this point, we conclude that the battery of test described above do not
reject the hypothesis that the estimated standardized innovations (ε̂t) is a
stationary sequence of iid vectors with independent coordinates.

5.3 The multivariate distribution of the standardized innovations

In this section we concentrate on modeling the marginal distribution of the
estimated standardized innovations (ε̂t). We begin by presenting some evi-
dence that supports our claim that the marginal distributions of the three
coordinate series (ε̂i), i = 1, 2, 3, are heavy tailed. Figure 8 displays the stan-
dard normal plots of three coordinate series of the estimated standardized
innovations (ε̂t). The graphs seem to show departures from normality for at
least two of the three coordinates (the first and the third) with the right tail
apparently heavier than the left one.
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Fig. 8. Normal probability plots of the three series of coordinates the of estimated
standardized innovations (ε̂t).

The impression given by Figure 8 is confirmed by the p-values of the
Kolmogorov-Smirnov (K-S) and Andersen-Darling (A-D) tests (for details
on these tests see [SW86]) applied to the coordinate series (ε̂i), i = 1, 2, 3
reported in the left half of Table 4. The null hypothesis is

H0 : Fi is the standard normal distribution. (22)

The K-S and A-D tests are chosen for their complementary nature. It is well
known that the Kolmogorov-Smirnov test is sensitive to departures from the

Table 3. The p-values for the Kendall’s τ distribution-free test of independence
applied to the estimated standardized innovations sequence (ε̂t) (left) and to the
absolute values (|ε̂t|) (right). The pairs on the top are pairs of coordinates.

(1,2) (1,3) (2,3) (1,2) (1,3) (2,3)
Kendall 0.34 0.60 0.89 0.98 0.99 0.71
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hypothesized law affecting the middle of the distribution while the Andersen-
Darling test has been proved to be effective in identifying departures that
affect the tails. The normality assumption is rejected at the 5% level by the
A-D test for all three coordinates, while the K-S rejects it for the first and
third coordinate.

Table 4. The p-values for the Andersen-Darling and Kolmogorov-Smirnov tests of
normality (left) and of asymmetric VII Pearson (right) applied to the 3 coordinate
series of the estimated standardized innovations (ε̂t).

H0: Normal A-D K-S H0: Pearson VII A-D K-S
ε̂1 0.007 0.038 ε̂1 0.21 0.20
ε̂2 0.037 0.108 ε̂2 0.17 0.48
ε̂3 ¡0.001 0.003 ε̂3 0.10 0.25

Figure 8 and the values on the left side of Table 4 show that the estimated
standardized innovations have tails that are heavier than normal tails.

We continue with the parametric modeling of the marginals of the esti-
mated standardized innovations (ε̂t) as asymmetric Pearson type VII heavy
tailed distributions. Table 5 contains the estimated parameters obtained by
fitting an asymmetric Pearson VII distribution (17) to the three coordinates
of the estimated standardized innovations (ε̂t).

Table 5. The parameters of the asymmetric Pearson distribution corresponding to
the 3 series of estimated standardized innovations ε̂t (the standard deviations are
provided in parentheses). The tail indices are given by ν = 2m − 1.

m− c− m+ c+ Left tail Right tail
ε̂1 5.94 (1.48) 2.92 (0.47) 3.88 (0.60) 2.24 (0.25) 10.87 6.75
ε̂2 9.24 (3.71) 3.87 (0.91) 9.84 (4.22) 4.14 (1.03) 17.48 18.67
ε̂3 6.62 (1.86) 3.16 (0.55) 4.30 (0.75) 2.40 (0.29) 12.23 7.59

The estimated parameters in Table 5 confirm the results of the previous
tail analysis: the first and the third coordinates have heavier tails then the
second, with the right tail being heavier then the left one.

The estimated tail indexes reported in Table 5 are all sufficiently large for
the regularity conditions needed for nonparametric regression to hold. More
concretely, recall that the results in Section 3 that guarantee the asymp-
totic normality of the estimators of time-varying variance-covariance matrix
assume, at least, a fifth finite moment17. The consistency of the estimator
17 If this condition is violated, the confidence intervals around our estimated time-

varying variance-covariance structure would be quite different.
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continues to hold as long as a finite moment of order larger than two exists18.
However, as observed by an anonimous referee, the estimated tail indexes in
Table 5 could be affected by a positive bias induced by estimation of the tail
parameters based on the residuals ε̂t and not on the true standardized inno-
vations εt. As residuals tend to look more normal than innovations, this could
lead to an underestimation of the tails. The true tail indexes of the standard-
ized innovations εt could be in fact heavier than they appear to be according
to the estimates in Table 5.

To measure the bias induced by using ε̂t instead of εt we conducted the
following simulation study. Series with the variance-covariance structure dis-
played in Figures 4 and 5 structure and standardized innovations from the
asymmetric Pearson distribution with tail indexes ranging from ν = 4 to
ν = 6 were simulated. Note that the interval of tail indexes covered by the
simulations is centered in five, the minimal value needed for the asymptotic
normality results in Section 3 to hold. We then smoothed the simulated series
as described in Section 3 and produced the estimated standardized innova-
tions. These residuals were then used to estimate the tail parameters m. Recall
that the tail index ν = 2m− 1. The exercise was repeated 1000 times.

Table 6. Estimation results for the parameter m on 1000 simulations of series with
the variance-covariance structure displayed in Figures 4 and 5 and standardized
innovations from the asymmetric Pearson distribution with given parameters m+

and m−. The second and fourth columns represent the true parameters, the third
and fifth columns are the mean of the estimates with the standard deviation (in
parentheses). The simulated series were first smoothed as described in Section 3 to
produce the estimated standardized innovations ε̂ on which the parameters m+ and
m− were then estimated. For tail indexes around the theoretically critical value of
five, the estimation of the tail index based on estimated standardized innovations ε̂t

is reasonably reliable.

m− m̂− m+ m̂+

ε̂1 2.5 2.8065 (0.37) 3.5 3.5743 (0.65)
ε̂2 3 3.3550 (0.55) 3 3.4018 (0.61)
ε̂3 3.5 3.9515 (0.80) 2.5 2.8017 (0.38)

Table 6 reports the results of the simulation exercise. They show that,
at least for tail indexes around the theoretically critical value of five, the
estimation of the tail index based on estimated standardized innovations ε̂t
is reasonably reliable. Although we confirm the presence of a positive bias,
this is relatively small and the confidence intervals cover the true parameter.
According to our simulations, for the value m = 3 which corresponds to a tail
index ν = 5 (the hypothesis for the asymptotic normality of the estimator
holds), the limit of the 90% one sided upper confidence interval rests at 4.18.
18 If the tail is so heavy that the variance is infinite, it is not clear that smoothing

heavy-tailed data with linear smoothers would be a fruitful endeavor.
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Based on this value and on the values in Table 5, only the right tail of the
first coordinate might not have a finite fifth moment (although the probability
of this happening is rather small). All the other standardized innovations
seem to fulfill, with high probability, the moment condition needed for the
asymptotic normality of the variance-covariance estimator. Moreover, for a
tail index ν = 4 (corresponding to a value of m = 2.5), the limit of the 99%
one sided upper confidence interval is 3.68. Together with Table 5, this result
confirms that all the innovation sequences have, with high probability, a finite
forth moment. Hence the consistency of the variance-covariance estimator
comfortably holds.

To test the hypothesis

H0 : V ar(ε̂t) = Id , (23)

two estimates of the variances of the coordinates of the estimated standard-
ized innovations (ε̂t) together with the corresponding standard deviations are
produced. The first estimate is the sample variance with the standard devia-
tion given by

√
m4
i /n, i = 1, 2, 3, where m4

i is the sample fourth moment of
(ε̂i). The second estimate is the variance of the estimated asymmetric Pearson
type VII given by (17). Since the variance of any coordinate is a function of
the parameters reported in Table 5, the standard deviation for this variance
estimate is obtained from the covariance matrix of the MLE estimates us-
ing the delta method. The three pairs of point estimates together with the
standard deviations are reported on the left half of Table 7. The right half of
the same table reports the sample covariance together with the corresponding
standard deviation. According to the values in Table 7 the hypothesis that
V ar(ε̂t) = Id is not rejected at the 5% significance level.

Table 7. The estimated variances of the coordinates of the estimated standardized
innovations (ε̂t). The first column reports the sample variance while the second one
is the variance of the estimated asymmetric Pearson type VII. The last column
reports the sample covariance. The standard deviations are reported in parentheses.

Empirical Pearson VII Covariance
ε̂1 0.971 (0.043) 1.007 (0.10) ε̂1, ε̂2 0.0080 (0.020)
ε̂2 0.957 (0.037) 0.997 (0.17) ε̂1, ε̂3 0.0026 (0.020)
ε̂3 0.944 (0.041) 1.002 (0.10) ε̂2, ε̂3 0.0004 (0.019)

To verify the goodness of fit of the asymmetric Pearson type VII distri-
bution, the probability plot of the coordinates of the estimated standardized
innovations (ε̂t) using the estimated asymmetric Pearson VII distributions
are displayed in Figure 9. A good fit of the asymmetric Pearson VII distri-
butions should translate in linear graphs close to the first diagonal. The null
hypothesis is
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H0 : Fi is the asymmetric Pearson VII distribution with parameters given in
Table 4.
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Fig. 9. The asymmetric Pearson VII probability plots of the three coordinate series
of the estimated standardized innovations (ε̂i,t), i = 1, 2, 3.

The straight plots in Figure 9 are a confirmation of the good fit of the
asymmetric Pearson VII distribution.

The hypothesis (24) is formally tested using the Kolmogorov-Smirnov and
Andersen-Darling tests. The p-values of these tests are reported on the right
in Table 4. The hypothesis is not rejected at usual levels of significance.

The plots in Figure 9 and the results in Table 4 provide evidence that the
parametric family described by (17) is indeed an appropriate model for the
estimated standardized innovations (ε̂t) .

This concludes the evaluation of the goodness of fit of the model (1). The
statistical analysis seems to show that the model provides an overall good
description of the multivariate data set considered. We now direct our at-
tention towards evaluating the forecasting performance of the non-stationary
paradigm.

6 Forecasting multivariate returns

In this section we discuss aspects related to forecasting the multivariate re-
turns using the non-stationary paradigm described in Section 2. We emphasize
that we are interested in forecasting the whole distribution of the vector of
future returns and not only the second moment structure.

We begin by specifying the m-day ahead forecasting methodology. Then
we check the quality of our 1-day multivariate distributional forecasts. We
end the section with a comparison (in the univariate framework) between the
forecasting behavior of the industry standard Riskmetrics and that of our
methodology on randomly generated portfolios containing the three instru-
ments EU, the FTSE, and the US T-bond at one-day, ten-day and twenty-day
horizons.
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The main reason for the focus on relatively short-horizon forecasts is the
fact that Riskmetrics, the benchmark methodology, is mainly used for this
type of forecasting. A second reason is the non-stationary nature of the data
as well as the frequency we chose to analyze. In a non-stationary set-up,
the dynamics of the data is unknown and forecasting is possible only due to
the gradual nature of the changes. An estimation based on data of a given
frequency, say days, will provide information for forecasts of the order of a
few time units (in our case, days) ahead (one, ten or twenty). If the goal of
the forecast is a longer horizon, the frequency of the data used for estimation
would change as to match the desired forecasting horizon. (For month- (year-
) ahead forecasts, monthly (yearly) data would be used, etc). We have not
investigated the forecasting behavior of our methodology at longer horizon19.

6.1 The m-day ahead forecasting methodology

Given Σ̂1(·), an estimate of the unconditional covariance matrix Σ(·) =
S(·)S′

(·) based only on past information, denote by F̂V II
i,t , i = 1, 2, 3, the

asymmetric Pearson type VII distributions (17) with parameters estimated
on the coordinates of the series (Ŝ−1

1 (1) r1, Ŝ−1
1 (2) r2,. . . , Ŝ−1

1 (t) rt), where
Ŝ1(·) is the square root of Σ̂1(·) .

Based on the model (1), the distributional forecast at time t of the m-day
ahead return rt+1,m := rt+1 + . . . + rt+m is given by

rREGt,m =
m∑
l=1

Ŝ1(t) ε lt , (25)

ε lt, l = 1, . . . ,m, are iid d-dimensional random vectors,
εi,lt are mutually independent with distributions F̂V II

i,t , (i = 1, 2, 3).

In other words, since the covariance matrix evolves slowly through time,
to produce the m-day ahead forecast, the next m multivariate returns are
assumed iid with a covariance matrix and parameters of the distribution of
the standardized innovations estimated on recent past data.

For our forecasting exercise we use the one-sided-kernel estimate of the un-
conditional covariance matrix S(·)S′

(·) defined in (18). While the theoretical
discussion in Section 2 focused on symmetric kernels, similar results are avail-
able for estimators of the type (18) (see Gijbels, Pope and Wand [GPW99]
for the homoscedastic case). In particular, the bias and the variance of these

19 We have no reason to believe that stationary models from the conditional het-
eroscedastic variance class would automatically produce better longer horizon
forecasts due to their mean-reversion as an anonimous referee suggested. By con-
trary, at least in the univariate case, the results in Stărică ([Stă03]) and Stărică
et al. ([SHN05]) show that for extensive periods, the Garch(1,1) model produces
significantly poorer forecasts than a non-stationary set-up closely related to the
methodology in Section 3.
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estimators are also given by (9) and (10). Moreover, for forecasting, cross-
validation can be safely employed as a method of bandwidth selection even
when the errors are serially correlated 20.

6.2 One-day ahead multivariate density forecast evaluation

Evaluating the multivariate distributional forecast (see Diebold et al. [DHT99])
is particularly simple in the case of the model (1), due to the assumption of
independence of the sequence (rt). Verifying that the distribution of rREGt,1
defined by (25) coincides with that of rt+1,1 = rt+1 is equivalent to checking
that the m-dimensional vectors (zt)

zi, t := FV II
i,t (vi,t), i = 1, 2, 3, where vt = Ŝ−1

1 (t)rt , (26)

are iid, with independent, uniformly (0,1) distributed coordinates.
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Fig. 10. SACF of the sequence (zt − z̄).

For evaluating the forecasting performance the sample is split in two: the
first 1000 observations are used to produce the initial parameter estimates
20 Cross-validation mistakes the smoothness of the series caused by positive correla-

tion for low variability, yielding bandwidth choices usually smaller then than the
optimal one. While this can be disastrous in mean estimation, it is the correct
type of behavior in the forecasting context since averaging over a small number
of past observations is more likely to be close to the next value in the series when
there are positive correlations.
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while the remaining 1926 observations are used to check the goodness of fit
of the distribution forecast.

For an informed decision on the bandwidth to be used in the estimation of
the unconditional covariance matrix (18), the cross-validation was run (using
only the first 1000 observations) in the set-up of the model (3) with yk =
|rkr

′
k|, k = 1, 2, . . . , n both for K, the symmetric Gaussian kernel and for the

asymmetric K̃, K̃(u) = K(u)1u≤0. The results are displayed in Figure 11: on
the left, the graph for the Gaussian kernel K, on the right, the one for K̃. The
cross-validation optimal bandwidth seem to belong to the interval [0.0025,
0.008] for the Gaussian kernel and to the interval [0.004, 0.007] for K̃. The
empirical relationship between the two intervals of optimal bandwidth is in
accordance with the equivalent kernel theory according to which the optimal
bandwidths corresponding to the two kernels are related by: h(K̃) = 21/5h(K).
Although in the forecasting exercise a fixed band-width, hµ = 0.007 was used,
an adaptative choice is also available. A time-depending bandwidth can be
obtained by running the cross-validation on the sample up to the moment
when the forecast is made.
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Fig. 11. The cross validation graph for the choice of the bandwidth hµ for µ̂ in (4)
and yk = |rkr

′
k| using only the first 1000 observations for the Gaussian kernel (Left:

h
(c)
µ ∈ [0.0025, 0.008]) and the kernel K̃ (Right: h

(c)
µ ∈ [0.004, 0.007]).

A battery of tests similar to the one in Section 5 is employed to verify
the hypotheses of iid-ness of the sequence (zt) and those of uniformity and
mutual independence of the coordinate sequences (zi,t), i = 1, 2, 3. The pre-
cise working assumptions are those of the corresponding tests in Section 5.
The same caveat on the impact of the uncertainty with respect to the esti-
mated covariance matrix as in Section 5 applies. Figures 10 and 12 display
the SACF/SCCF of the sequence (zt− z̄) and that of its absolute values (z̄ is
the sample mean). Overall, they seem to support the hypothesis of iid vectors
with independent coordinates for the sequence (zt), although small violations
of the confidence intervals are observed in the absolute values at the first lag
of pairs (1,3) and (2,3).
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Fig. 12. SACF of the absolute values of the sequence (zt − z̄).

The visual test of the SACF/SCCF is complemented by the Ljung-Box
test for the first 25 lags (the p-values are reported in Table 8). The value
at the intersection of the row i with column j corresponds to the p-value of
the Ljung-Box statistic associated with the SACF/SCCF of the coordinate
i and past lags of the coordinate j. The p-values confirm the validity of the
assumption of iid vectors with independent coordinates for the sequence (zt).

Table 8. The p-values for the Ljung-Box test at lag 25 of the sequence (zt − z̄) (left)
and the absolute values (|zt − z̄|)(right). The row and column numbers represent
the coordinates.

1 2 3 1 2 3
1 0.53 0.20 0.38 0.50 0.34 0.62
2 0.96 0.20 0.09 0.71 0.51 0.32
3 0.80 0.75 0.67 0.52 0.47 0.49

The hypothesis of pair-wise, mutual independence of the coordinates of the
vector z is tested using the already familiar distribution-free test of Kendall’s
τ . The p values corresponding to the pairs of coordinates are given in Table 9.
For all pairs the hypothesis of independent coordinates is not rejected at usual
levels of statistical significance.

Figure 13 displays the uniform probability plots for the three coordinates
zi, i = 1, 2, 3. The straight plots in this figure together with the p-values of
the Andersen-Darling and Kolmogorov-Smirnov tests of uniformity given in
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Table 9. The p values for Kendall’s τ distribution-free test of independence applied
to the sequence (zt − z̄) (left) and to that of absolute values (|zt − z̄|) (right).

(1,2) (1,3) (2,3) (1,2) (1,3) (2,3)
Kendall 0.31 0.55 0.95 0.97 0.99 0.98
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Fig. 13. The uniform probability plot of the three series of coordinates zi, i = 1, 2, 3,
t = 1, . . . , 1926.

Table 10 support the conclusion that the marginal distributions of the three
sequences (zi,t), i = 1, 2, 3 are uniform (0,1).

Table 10. p-values for the Andersen-Darling and Kolmogorov-Smirnov tests of uni-
formity applied to the coordinates of the sequence (zt).

1 2 3 1 2 3
A-D 0.14 0.19 0.77 K-S 0.10 0.24 0.58

6.3 Univariate density forecast evaluation

We conclude this section with a distributional forecast comparison in a uni-
variate framework. The comparison is done between the industry standard
RiskMetrics and the approach described in Section 6.1 for forecasting hori-
zons of one, ten and twenty days. Both methodologies are used to produce
daily distributional forecasts for the returns of randomly generated portfolios
containing the (by now familiar) three financial instruments. More specifically,
for a given day t, the two approaches are first used to produce two multivariate
distributional forecasts for the next day vector of returns. For RiskMetrics,
the distributional forecast is

rRMt,m
d= N(0,mΣ̂2

t ) , (27)

where
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Σ̂2
t :=

l−1∑
i=0

λt−irt−ir
′
t−i/

l−1∑
i=0

λt−i , (28)

is the exponential moving average estimate of the conditional covariance ma-
trix Σ2

t . The parameters used were λ = 0.94 and l = 120 for one-day ahead
forecasts and λ = 0.97 and l = 200 for ten- and twenty-day ahead forecasts
(as stipulated in the RiskMetrics documents [Risk95]). For the regression-type
model (1), the m-day forecast rREGt,m is given by (25).

Note that our comparison focuses on the most common specification of the
distributional forecast of RiskMetrics, i.e. that where the future returns are
jointly normal. We chose this specification due to the fact that it is widely used
in practice. Comparisons with other specifications (normal mixture models,
GED models) are currently under investigation and the results will be reported
elsewhere.

The return of a given portfolio w with weights w = (w1, w2, w3) over
the period [t + 1, t + m] is denoted by r

(w)
t+1,m. The distribution of r

(w)
t+1,m

forecasted by the RiskMetrics methodology, which we denote by FRM
t,m , is the

distribution of wrRMt,m (a normal with mean 0 and variance mwΣ̂2
tw

′
). The

distribution forecasted by the regression-type model (1), denoted by FREG
t,m ,

is that of wrREGt,m .
As explained in Diebold et al. [DGT98], evaluating the correct dis-

tributional forecast Fmt,m at the realized portfolio returns r
(w)
mt+1,m, t =

1, . . . , [n/m] − 1 yields an iid sequence (Fmt,m(r(w)
mt+1,m)) of uniform (0,1)

random variables. Hence the quality of a distributional forecast Gmt,m can
then be assessed by testing the hypothesis

H0: (Gmt,m(r(w)
mt+1,m)) is an iid sequence with uniform (0,1)

marginal distribution. (29)

In the sequel we test hypothesis (29) for Gt,m = FRM
t,m and Gt,m = FREG

t,m .

More concretely the sequences (FRM
mt,m(r(w)

mt+1,m)) and (FREG
mt,m(r(w)

mt+1,m)), t =
1, . . . , [n/m]−1 are tested for variance 1/12 (the variance of a uniform (0,1)),
using a test based on the Central Limit Theorem, for uniform (0,1) marginal
distribution, employing the Kolmogorov-Smirnov and Andersen-Darling test
and for independence, using the Ljung-Box statistic at lag 10. We used the
following simulation set-up.

For every horizon (m = 1, m = 10, m = 20) three thousand portfolios
were randomly generated. The weights of each portfolio w were sampled from
a uniform (0,1) distribution then normalized such that they added up to 1. As
in Section 6.2, the sample is split into two parts: the first 1000 observations
serve to produce the initial parameter estimates for the regression-type model
while the remaining 1926 observations are used to compute the sequences
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21 (FRM
mt,m(r(w)

mt+1,m)) and (FREG
mt,m(r(w)

mt+1,m)), t = 1, . . . , [n/m] − 1, for each
portfolio w. (We kept the weights of the portfolios constant during the testing
period.) For every sequence we produced the p-values corresponding to the
four mentioned statistics.
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Fig. 14. The percentage of the p-values for the K-S (1), A-D (2), the L-B at lag 10
(3) and the variance test (4) that are smaller than 5% (Left and Center) and 10%
(Right). For a given test, the first bar concerns the RiskMetrics methodology while
the second one refers to the forecasting methodology described in Section 6.1. Left:
One-day ahead, Center: Ten-day ahead, Right: Twenty-day ahead.

The results of these simulations are summarized in Figure 14 where the
percentage of p-values smaller than 5% for m = 1, m = 10 and than 10% for
m = 20 is reported 22. For a given test, the first bar concerns RiskMetrics
while the second one refers to the forecasting methodology described in Sec-
tion 6.1. It is interesting to notice that, for one-day ahead forecasting, for
almost 90% of the portfolios, plain-vanilla RiskMetrics fails (at the 5% level)
the variance test. This should be compared to the 94% acceptance rate for
our methodology. Moreover, 25% of the sequences (FRM

t,1 (r(w)
t+1)) fail at least

one of the uniformity tests (either K-S or A-D) compared to only 5% of the
(FREG

t,1 (r(w)
t+1)) sequences. Finally, RiskMetrics fails at least one of the four

tests in 94% of the cases compared to only 9% for our methodology.
For m = 10 and m = 20, the empirical percentage of p-values for the last

two tests were, for both methods, below the fixed theoretical level of 5% for
ten-day forecasts and 10% for the twenty-day forecasts23. For the variance
test, this is not surprising, since, due to averaging, for ten- and twenty-day
21 The sequence of the m-days ahead forecast would exhibit an intertemporal m−1

dependence. To keep the independence between observations, necessary for the
statistical tests, we restricted the sample to the sub-sequence of m-days apart
forecasts.

22 For m = 20, a higher percentage of 10 has been used due to the small number of
observations in the sequences (Gmt,m(r(w)

mt+1,m)), t = 1, . . . , [n/m] − 1.
23 For this reason, they are not reported in the graphs in the center and right of

Figure 14.
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returns, the multivariate normality assumption of RiskMetrics is more ade-
quate than for daily returns. However, the normality tests show once again
the superiority of our methodology over the plain-vanilla RiskMetrics24. As
mentioned before, comparisons involving other RiskMetrics specifications of
the conditional distribution are under study and the results will be reported
elsewhere.

7 RiskMetrics vs. non-parametric regression

We conclude with a few remarks on the relationship between our approach
and RiskMetrics. Univariately, the probabilistic model that forms the basis of
RiskMetrics forecasting methodology outlined in (27) and (28) is the following
conditional, multiplicative process

rt = σt εt, εt ∼ N (0, 1) , (30)

(see page 73 of [Risk95]) where

σ2
t = λσ2

t−1 + (1− λ)r2
t−1 , (31)

according to Section B.2.1 of the Appendix B of [Risk95]. This specification
is, up to a constant term, that of a IGARCH process explaining why in the
literature the RiskMetrics model is often thought of as being an IGARCH
model.

From a probabilistic point of view, the model (30) and (31) is faulty.
Results by Kesten [Kes73] and Nelson [Nel90] imply that a time series evolving
according to the dynamics (30) and (31) will tend to 0 almost surely.

The claimed close relationship between the RiskMetrics methodology and
GARCH-type models, prompted by the deceiving formal analogy between the
GARCH(1,1) specification

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 ,

and (31) and emphasized by the comparisons in Section 5.2.3 of ([Risk95]),
is hence misleading. Instead, the RiskMetrics approach can be motivated by
the non-stationary model (1).

Note that the forecast (28) is just a kernel smoother of the type (18)
with an one-sided exponential kernel Kexp(x) = ax1[−∞,0](x), a = λm and
h = 1/m. Our experience shows that replacing the normal kernel with the
exponential leads to results very similar to the ones reported in Section 6.
24 This forecasting methodology has been thoroughly investigated in the univariate

case in a companion paper by Drees and Stărică [DS02]. There the authors show
by the example of the S&P 500 time series of returns that this apparently struc-
tureless forecasting methodology outperforms conventional GARCH-type models
both over one day and over time horizons of up to forty days.
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This finding is in line with the well-known fact that the choice of the band-
width h affects the performance of a kernel regression estimator much more
strongly than the choice of the kernel. In fact, in the Sections 5 and 6 we have
deliberately chosen the normal kernel instead of the exponential filter (more
common in time series analysis) to demonstrate that the choice of the kernel
does not matter much.

Besides providing a solid statistical framework, the set-up of the non-
stationary paradigm introduced in Section 2 allows for a optimal choice of the
bandwidth, motivated by results from the statistical theory of curve estima-
tion. By contrast, the choice of the parameters λ and l is empirical.

While the volatility forecasts by the RiskMetrics methodology are simi-
lar to ours, the assumption of normal innovations is too restrictive to yield
accurate forecasts of the distribution of future returns. This has also been
observed in [Risk95]. In Appendix B of the RiskMetrics document normal
mixture models or GED models for the innovations are proposed. However,
these alternative models lack two features that are essential for a successful fit
of many real data sets: they do not allow for asymmetry of the distribution of
innovations and they assume densities with exponentially decaying tails, thus
excluding heavy tails.

8 Conclusions

In this paper a simple multivariate non-stationary paradigm for modeling and
forecasting the distribution of returns on financial instruments is discussed.

Unlike most of the multivariate econometric models for financial returns,
our approach supposes the volatility to be exogenous. The vectors of returns
are assumed to be independent and to have a changing unconditional covari-
ance structure. The methodological frame is that of non-parametric regres-
sion with fixed equidistant design points where the regression function is the
evolving unconditional covariance. The vectors of standardized innovations
have independent coordinates and asymmetric heavy tails and are modeled
parametrically. The use of the non-stationary paradigm is exemplified on a tri-
variate sample of risk factors consisting of a foreign exchange rate Euro/Dollar
(EU), an index, FTSE 100 index, and an interest rate, the 10 year US T-bond.
The paradigm provides both a good description of the changes in the dynamic
of the three risk factors and good multivariate distributional forecasts.

We believe that the careful parametric modeling of the extremal behavior
of the standardized innovations makes our approach amenable for precise VaR
calculations. Evaluating its behavior in these settings is, however, subject of
further research.
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9 Appendix

As the most commonly used paradigm for modeling of financial returns is
that of stationary conditional heteroscedastic volatility, it is of interest to
evaluate the behavior of our methodology were the returns produced by a
data generating processes of this type.

More concretely, we simulated returns both from a stationary conditional
heteroscedastic volatility model, using parameters as fitted to the real data
and from our model, using the variance-covariance structure and the inno-
vation’s distribution estimated on the real data. We then ran the smoothing
procedure in Section 3 on the simulated data and evaluated the null hypothe-
sis that the estimate innovation vectors are independent25. If the hypothesis is
not rejected on the simulated stationary conditional heteroscedastic volatility
data, then the proposed procedure may be overly flexible, in the sense that
it can make a stationary dependent series with conditional heteroscedasticity
look indistinguishable from a non-stationary independent series. Otherwise,
the simulation exercise brings additional evidence supporting the modeling of
returns as non-stationary, independent vectors.

Given the large number of possible specifications of a multivariate con-
ditional heteroscedastic volatility set-up in the econometric literature, the
choice of the model to simulate from is, of course, subjective and possibly
open to criticism. Since an exhaustive comparison with the stationary condi-
tional volatility paradigm is not the aim of the paper, we chose to have a closer
look at one specification that is both parsimonious and widely used in the lit-
erature: the dynamic conditional correlation model of Engle and Sheppard
[ES02].

The model was first estimated on the data. The estimated parameters
were used to simulate 1000 samples of the length of the return data, i.e.
3000 observations. For every sample the smoothing procedure in Section 3
is applied. First the cross-validation procedure ran on the norm series of the
tri-dimensional vector data to select the bandwidth to be used for the smooth-
ing of the sample. Then the kernel smoothing procedure with the bandwidth
chosen in the previous step was applied and a sample of residuals was pro-
duced. The same steps were applied to simulated independent vectors with
the time-varying variance-covariance structure displayed in Figures 4 and 5.
Both steps, i.e. the bandwidth estimation as well as the estimation of the
innovations, produce qualitatively different results depending on the type of
data used in simulations.
25 As seen previously, this hypothesis was not rejected on the actual data
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Fig. 15. The estimated optimal bandwidth for the DCC samples (left) and samples
from our model (right). The bandwidth were obtained for each sample by cross
validation.

The graphs in Figure 15 show strong qualitative differences between the
estimation of the smoothing bandwidth h. While for the independent, non-
stationary simulations, the values of the bandwidth are strongly concentrated
around the value obtained when using the real data, for the simulations of
the DCC model, the smoothing parameter shows a wide dispersion with more
than 15% of the samples yielding values of the bandwidth larger or equal to
0.08 or more than ten times the desired value (to keep the scale of the graph
within a reasonable range all the values larger than 0.08 were set to this value).

The graphs in Figure 16 display the histogram of the sample autocorre-
lation at lag one for the absolute values of the estimated standardized in-
novations ε̂

(1)
i , i = 1, 2, 3. The left hand side histograms correspond to the

residuals of the DCC model while the ones on the right hand side to those
from the non-stationary model. The residuals were obtained by smoothing the
simulated samples using the methodology in Section 3. The bandwidth used
in smoothing were obtained for each sample by cross validation. The vertical
lines are the 95% confidence intervals corresponding to a sample of length
3000 of iid data. While the autocorrelation of the residuals obtained from
samples generated by the non-stationary model do not reject the hypothesis
of independent residuals, those corresponding to the residuals from samples
generated by the DCC model indicate more often than the statistical error
would grant that the estimated innovations are not iid.

To conclude, the evidence presented seems to support the fact that
the smoothing methodology can distinguish between a stationary dependent
model with conditional heteroscedasticity and a non-stationary independent
model. However, since the differences are measured based on the behavior of
statistical instruments, it may take more than one sample to be able to detect
the difference.
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Fig. 16. Sample ACF at lag one of the estimated standardized innovations ε̂
(1)
i ,

i = 1, 2, 3 of the DCC model (left) and our model (right). The lines correspond to the
three sequences of innovations. The bandwidth used in smoothing were obtained for
each sample by cross validation. The distribution of the SACF at lag 1 of the resid-
uals of the non-stationary model is consistent with the hypothesis of independence
while that of the residuals of the DCC model is not.

To end the section, we show that the estimated DCC model cannot repro-
duce the covariance structure of the real data. The samples simulated in the
previous study were used to determine the range of possible covariance struc-
tures that the DCC model and our model can produce. The graphs in Figure 17
display the mean (stem) and the 95% one-sided point-wise simulation-based
confidence interval (dotted) for the sample cross-correlation between the ab-
solute values of the second and the third coordinates of samples generated
from the DCC model with the parameters estimated on our real data (left)
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Fig. 17. The mean (stem) and the 95% one-sided point-wise simulation-based confi-
dence interval (dotted) for the sample cross-correlation between the absolute values
of the second and the third return series. The samples generated from the DCC
model with the parameters estimated on our real data were used to produce the
graph on the left while the simulated independent vectors with the time-varying
variance-covariance structure displayed in Figure 5 were used to produce the graph
on the right. 1000 samples of each model were generated.

and that of the simulated independent vectors with the time-varying variance-
covariance structure displayed in Figures 4 and 5 (right). The dashed line is
the sample cross-correlation of the data. The graphs show clearly that, while
our model could produce a covariance structure for this pair of coordinates
that comes close to that of the real data, it is highly unlikely that the DCC
model could match it.



Multivariate Non-Linear Regression with
Applications

Tata Subba Rao1 and Gyorgy Terdik2

1 School of Mathematics, University of Manchester, POB 88, Manchester M60
1QD, United Kingdom tata.subbarao@umist.ac.uk

2 Department of Information Technology, Faculty of Informatics, University of
Debrecen, 4010 Debrecen, Pf.12, Hungary terdik@delfin.unideb.hu

1 Introduction

Observations, especially those of geophysics, are rarely stationary; in most of
the cases they are of the form

Y t = Xt (ϑ) + Zt ,

where Xt (ϑ) is some deterministic “trend” and Zt is some stationary “noise”.
We discuss the problem of estimating the parameter ϑ included in some pa-
rameter space Θ ⊂ R

p and Xt (ϑ) some uniformly continuous known func-
tion of ϑ with vector values. Robinson [Rob72] established some asymptotic
properties of generalized least squares estimates of ϑ in the non-linear mul-
tiple model. Earlier Hannan [Han71], [Han73] obtained fundamental results
on weighted least squares estimates of ϑ in the frequency domain, occurring
in the scalar model. The frequency domain approach proves to be very natu-
ral because the classical Grenander’s conditions [Gre54] are given in terms of
the regression spectrum, and most of the trends have nice Fourier transforms
that can be computed easily and fast. Constrained non-linear regression was
studied by [Wan96] and [Wan04] and we refer to [RH97], [Hos97] and [CT01]
for stochastic regression models with long-range dependence.

In this chapter we consider the multivariate non-linear regression model
with multiple stationary residuals. The minimum contrast estimate [Guy95],
[Hey97] of the unknown parameter is constructed in the frequency domain
using Hannan’s idea [Han71]. Robinson’s result [Rob72] on the strong consis-
tency of the estimate is quoted. We do not give very general conditions al-
though we point out some possibilities for weakening some assumptions. Our
main result is the exact form of the asymptotic variance of the estimator in
terms of the weight function and the regression spectrum. We introduce a scal-
ing technique for the application of the general CLT to several cases where the
original assumptions of the asymptotic results do not hold. The mixed model

432 Tata Subba Rao and Gyorgy Terdik

containing linear regression and linear combinations of non-linear regression
is considered in detail. One of the most important applications is linear re-
gression with harmonic trend when the harmonic frequencies are unknown.
It is applied to the real data set referred to as the Chandler wobble. Based
on high-resolution GPS data it is shown that beside the well-known Chandler
period (410 days in our case) the period of 12 hours is also present and the
residual series is long-range dependent.

2 Non-Linear Time Series Regression

2.1 Model

Consider a multiple model of dimension d; that is, the observation Y t, the
random disturbances Zt and the function Xt (ϑ0) containing the regressors
are d-dimensional vectors and

Y t = Xt (ϑ0) + Zt . (1)

The function Xt (ϑ) is a possibly non-linear function of both the regressors and
the multiple parameter ϑ of dimension p, and Zt is a stationary time series.
The parameter ϑ ∈ Θ ⊂ R

p. The set Θ of admissible parameters ϑ is defined
by a number of possibly nonlinear equations (see [Rob72] for more details).
We assume that the set Θ is chosen suitably in each case. There should be
no confusion when we call Xt (ϑ) the regressor, although in particular cases
the picture is more colorful. The regressor, more strictly, is a function of t
depending non-linearly on some parameters. A particular model that we keep
in mind, has Xt (ϑ) in the form

Xt (ϑ) = B1X1,t + B2X2,t (λ)

= [B1,B2]
[

X1,t
X2,t (λ)

]
= BX3,t (λ) ,

see Section 5.2 for details. Here X2,t (λ) is some non-linear function of λ. The
multiple parameter ϑ contains the entries of the matrices B1 and B2 and
moreover the vector λ. The admissible set Θ is the union of three subsets.
There is no restriction on the entries of matrix B1 with size d× p1, say. The
matrix B2 and the vector λ have some delicate connection, because λ must
be entirely identifiable. The parameter λ is identifiable unless some partic-
ular entries of B2 annihilate an entry, say λk, from the model. Finally λ is
constrained to lie within a compact set; for instance, for harmonic regressors
λ ∈ [−1/2, 1/2]2, see Section 5.3.

We assume that Zt is linear; that is, it has moving average representation
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Zt =
∞∑

k=−∞
AkW t−k ,

∞∑
k=−∞

Tr (AkCWA∗
k) <∞ ,

where W t is an i.i.d. series and CW = VarW t, is non-singular. Moreover Zt

has a piecewise continuous spectral density SZ(ω) [Han70], [Bri01]. The model
is feedback free; that is, Zt does not depend on Xt.

2.2 The regression spectrum

We start with a regressor Xt (ϑ) which is a function of t depending non-
linearly on some parameters and with a compact set Θ. It is known that the
so-called Grenander’s conditions ([Gre54], [GR57]) for the regressor Xt (ϑ)
are sufficient and in some situations ([Wu81]) are necessary as well for the
consistency of the LS estimators. We state them below. Denote

‖Xk,t (ϑ)‖2T =
T∑
t=1

X2
k,t (ϑ) .

Condition 1 (G1) For all k = 1, 2, . . . , d,

lim
T→∞

‖Xk,t (ϑ)‖2T =∞ .

Condition 2 (G2) For all k = 1, 2, . . . , d,

lim
T→∞

X2
k,T+1 (ϑ)

‖Xk,t (ϑ)‖2T
= 0 .

Without any restriction of generality we assume that the regressor Xt (ϑ)
is properly scaled: ‖Xk,t (ϑ)‖2T - T, for all k; see Definition 1 and a note
therein. Define the following matrices for any integer h ∈ [0, T ),

ĈX,T (h, ϑ1, ϑ2) =
1
T

T−h∑
t=1

Xt+h (ϑ1)X
ᵀ
t (ϑ2) , (2)

ĈX,T (−h, ϑ1, ϑ2) = Ĉᵀ
X,T (h, ϑ2, ϑ1) .

If ϑ1 = ϑ2 = ϑ, here and everywhere else, we use the shorter notation
ĈX,T (h, ϑ1, ϑ2)

∣∣∣
ϑ1=ϑ2=ϑ

= ĈX,T (h, ϑ). The next condition is essentially say-

ing that the regressor Xt (ϑ) is changing “slowly” in the following sense: for
each integer h, ‖Xk,t (ϑ)‖2T+h - T .

Condition 3 (G3) For each integer h,

lim
T→∞

ĈX,T (h, ϑ) = CX (h, ϑ) .
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Condition 4 (G4) CX (0, ϑ) is non-singular.

One can apply Bochner’s theorem to the limit CX :

CX (h, ϑ) =
∫ 1/2

−1/2
e2iπλh dF (λ, ϑ) ,

where F is a spectral distribution matrix function of the regressors whose
entries are of bounded variations, SDFR for short. The SDFR can be reached
as the limit of the periodogram in the following sense; see [Bri01] for details.
Let us introduce the discrete Fourier transform

dX,T (ω, ϑ) =
T−1∑
t=0

Xt (ϑ) z−t , z = e2iπ ω , −1
2
≤ ω <

1
2

,

and the periodogram of the nonrandom series Xt (ϑ),

IX,T (ω, ϑ1, ϑ2) =
1
T

dX,T (ω, ϑ1) d
∗
X,T (ω, ϑ2) ,

where ∗ denotes the transpose and complex conjugate. Both dX,T and IX,T
depend on some parameters. We have the well-known connections

ĈX,T (h, ϑ1, ϑ2) =
∫ 1/2

−1/2
e2iπλh IX,T (λ, ϑ1, ϑ2) dλ ,

IX,T (ω, ϑ1, ϑ2) =
∑

|h|<T
ĈX,T (h, ϑ1, ϑ2) e−2iπωh ,

Iᵀ
X,T (ω, ϑ1, ϑ2) = IX,T (ω, ϑ2, ϑ1) ,

between ĈX,T and the periodogram. The definition (2), which Jennrich
[Jen69] calls the tail product, reminds us of the empirical cross-covariance
matrix of a stationary time series. It is scaled by 1/T (which might not work
in some particular cases of the regressors without some additional scaling),
which implies that the series Xt does not belong to L2; that is,

lim
T→∞

∥∥∥dX,T (ω, ϑ)
∥∥∥2

=∞ ,

and the rate of divergence is T . For the univariate case, we refer to the classical
books of Grenander and Rosenblatt [GR57] and Anderson [And71], and for
the vector-valued case, of Hannan [Han70] and Brillinger [Bri01].

Now, define the empirical SDFR FT as

FT (ω, ϑ1, ϑ2) =
∫ ω

0
IX,T (λ, ϑ1, ϑ2)dλ .

It follows from the Grenander’s conditions above that F is the weak limit of
FT . This is the condition what we need later. This was noticed by Ibragimov
and Rozanov [IR78, Chapter 7].
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Condition 5 (I-R) The matrix function FT converges to F weakly; more
precisely for each continuous bounded function ϕ (ω) the limit

lim
T→∞

∫ 1/2

−1/2
ϕ (ω) dFT (ω, ϑ1, ϑ2) =

∫ 1/2

−1/2
ϕ (ω) dF (ω, ϑ1, ϑ2) (3)

holds.

If FT converges to F weakly then (3) is valid not only for continuous
bounded functions but for some wider class of functions as well, in particu-
lar for piecewise continuous functions having discontinuity in finitely many ω
points with F-measure zero. This is very important, in particular for distur-
bances with long memory. In fact, if the random disturbances Zt have some
long memory components, then the corresponding entries of the spectral den-
sity matrix of Zt have discontinuities at zero. Yajima [Yaj91] has proved that
the standard results of Grenander are valid as far as dF(0, ϑ1, ϑ2) = 0. Hence
special attention is necessary only for those long memory components of Zt

for which the corresponding dFk,k(0, ϑ1, ϑ2) > 0.
The matrix function F is Hermite symmetric because FT fulfils the fol-

lowing equations

Fᵀ
T (ω, ϑ1, ϑ2) = FT (ω, ϑ2, ϑ1) = FT (−ω, ϑ2, ϑ1) .

The regressor Xt (ϑ) depends on the parameter ϑ ∈ Θ, therefore we require
all Grenander’s conditions uniformly in ϑ.

2.3 The Objective Function

Frequency domain analysis has a number of advantages. First of all, the
Fourier transform of a large stationary sample behaves like i.i.d. complex
Gaussian under some broad assumptions; see [Bri01]. The FFT, a techni-
cally simple and easy procedure, turns the data Y t, t = 1, 2, . . . , T, from
the time domain into frequency domain dY ,T (ωk). We deal with Fourier
frequencies ωk = k/T ∈ [−1/2, 1/2], k = −T1, . . . ,−1, 0, 1, . . . , T1, where
T1 = Int [(T − 1)/2], only. From (1) we have the equation

dY ,T (ω) = dX,T (ω, ϑ0) + dZ,T (ω) ,

for the Fourier transforms, with obvious notation. The parameter ϑ0 denotes
the true unknown value and we would like to adjust the regressor Xt (ϑ) to
the model, finding a parameter ϑ such that the distance

dY ,T (ω)− dX,T (ω, ϑ) = dX,T (ω, ϑ0)− dX,T (ω, ϑ) + dZ,T (ω) , (4)

is minimal, in some sense. The Euclidean distance, for instance, is
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T1∑
k=−T1

∥∥∥dY ,T (ωk)− dX,T (ωk, ϑ)
∥∥∥2

=
T1∑

k=−T1

∥∥∥dX,T (ωk, ϑ0)− dX,T (ωk, ϑ) + dZ,T (ωk)
∥∥∥2

,

which, by the Parseval theorem, actually corresponds to the sum of squares
in time domain

T−1∑
t=0

‖Y t −Xt (ϑ)‖2 =
T−1∑
t=0

‖Xt (ϑ0)−Xt (ϑ) + Zt‖
2

.

Therefore minimizing either expression leads to the same result. The sequence
{Zt} itself is not necessarily i.i.d. hence we are facing a generalized non-
linear regression problem with stationary residuals. The quadratic function,
suggested by Hannan [Han71] for the scalar-valued case, that we are going to
minimize is

QT (ϑ)

=
1
T 2

T1∑
k=−T1

(
dY ,T (ωk)− dX,T (ωk, ϑ)

)∗
Φ(ωk)

(
dY ,T (ωk)− dX,T (ωk, ϑ)

)

=
1
T

T1∑
k=−T1

Tr
(
IY ,T (ωk)Φ(ωk)

)
+ Tr

(
IX,T (ωk, ϑ)Φ(ωk)

)
− 2ReTr

(
IY ,X,T (ωk, ϑ)Φ (ωk)

)
, (5)

where Φ (ωk) is a series of matrix weights, originated from a continuous, Her-
mitian matrix function Φ, satisfying Φ (ω) ≥ 0. Equation (4) provides the
more informative form for the above

QT (ϑ) =
1
T

T1∑
k=−T1

Tr
(
IX,T (ωk, ϑ0)Φ(ωk)

)
+ Tr

(
IX,T (ωk, ϑ)Φ(ωk)

)
+ Tr

(
IZ,T (ωk)Φ(ωk)

)
+ 2Tr

([
IX,Z,T (ωk, ϑ0)− IX,Z,T (ωk, ϑ)

]
Φ (ωk)

)
− 2 Tr

(
IX,T (ωk, ϑ, ϑ0)Φ(ωk)

)
.

The proof of IX,Z,T (ωk, ϑ)→ 0, a.s. and uniformly in ϑ is given by Robinson
[Rob72, Lemma 1]. Now, suppose Conditions I-R, (or G1-G4) and take the
limit
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Q (ϑ) = lim
T→∞

QT (ϑ)

=
∫ 1/2

−1/2
Tr (Φ (ω) d [F (ω, ϑ0) + F (ω, ϑ)− F (ω, ϑ0, ϑ)− F (ω, ϑ, ϑ0)])

+
∫ 1/2

−1/2
Tr
[
SZ (ω)Φ (ω)

]
dω

=R (ϑ, ϑ0) +
∫ 1/2

−1/2
Tr
[
Φ (ω)SZ (ω)

]
dω . (6)

The function

R (ϑ, ϑ0)

=
∫ 1/2

−1/2
Tr (Φ (ω) d [F (ω, ϑ0) + F (ω, ϑ)− F (ω, ϑ0, ϑ)− F (ω, ϑ, ϑ0)]) ,

is the only part of Q (ϑ) depending on ϑ. We require the following condition
for the existence of the minimum, see [Rob72].

Condition 6 (R)

R (ϑ, ϑ0) > 0, ϑ ∈ Θ, ϑ �= ϑ0 .

Obviously
lim
T→∞

[QT (ϑ)−QT (ϑ0)] = R (ϑ0, ϑ) .

The minimum contrast estimator ϑ̂T is the value which realizes that minimum
value of QT (ϑ)

ϑ̂T = arg min
ϑ∈Θ

QT (ϑ) .

One can easily see (using [MN99, Theorem 7, Chapter 7]) under some addi-
tional assumptions given below, that QT (ϑ) is convex because the Hessian
HQ (ϑ0) is non-negative definite. Therefore the next theorem, due to Robin-
son [Rob72], is valid not only for a compact Θ but for a more general case
such as a convex parameter set Θ as well. The minimum contrast method
is also called quasi-likelihood and it is very efficient in several cases, even in
non-Gaussian situations; for instance, see [ALS04].

Theorem 1. Under assumptions I-R (or G1-4), and R, the minimum con-
trast estimator ϑ̂T converges a.s. to ϑ0.

3 Asymptotic Normality

For the asymptotic normality it is necessary to consider the second order
derivatives of the SDFR and their limits for the objective function as usual,
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see [Rob72]. The matrix of the second derivatives of ĈX,T (h, ϑ1, ϑ2) can be
calculated, by the matrix differential calculus [MN99];

∂2ĈX,T (h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

=
∂

∂ϑᵀ
1

Vec

(
∂ Vec ĈX,T (h, ϑ1, ϑ2)

∂ϑᵀ
2

)
.

Here the differentiating of the right-hand side can be carried out directly;
see Section 7.2. Notice, the order of the variables ϑ1, ϑ2 in ĈX,T is opposite
to the order of the partial derivatives: ∂ϑᵀ

2∂ϑ
ᵀ
1 . The latter means that one

differentiates first by ϑ2 then by ϑ1; that is, the operator acting on the right
hand side. Starting the differentiating by ϑ1, then followed by ϑ2 is “indirect”.
It can be expressed by the help of the “direct” one

∂2ĈX,T (h, ϑ1, ϑ2)
∂ϑᵀ

1∂ϑ
ᵀ
2

= (Kp·d ⊗Ud)Kd·dp
∂2ĈX,T (−h, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑ

ᵀ
2

;

here we apply the commutation matrix Kp·d (see (20), ⊗ denotes the Kro-
necker product, and Ud is the d×d identity matrix. Following Hannan [Han71]
we assume

Condition 7 (H) The second partial derivatives of the regressor Xt (ϑ) exist
and (∂2ĈX,T (h, ϑ1, ϑ2))/ϑ

ᵀ
2∂ϑ

ᵀ
1 converges to some limit, denoted by

∂2CX(h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

.

It is necessary to emphasize that Condition H is

∂2CX (h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

•= lim
T→∞

∂2ĈX,T (h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

,

where the left-hand side is defined by the limit but is necessarily the derivative
of CX . From now on we use the symbol •= for the definition of the left side of
an expression.

The above notation is used for the regression spectrum as well.

Condition 8 (I-R-H) The derivative (∂2FT (ω, ϑ1, ϑ2))/∂ϑ
ᵀ
1∂ϑ

ᵀ
2 of the ma-

trix function FT converges weakly to some function denoted by

∂2F(ω, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

.

Again
∂2F (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

•= lim
T→∞

∂2FT (ω, ϑ1, ϑ2)
∂ϑᵀ

1∂ϑ
ᵀ
2

,

by definition. According to the above derivatives we calculate the Hessian HF
for the SDFR F as well; see Section 7.2 for the proof.
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Lemma 1. Assume Condition I-R-H, then

HF(ω, ϑ) =
[
Hϑ1

F(ω, ϑ1, ϑ2) +
∂2F(ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑ

ᵀ
2

(7)

+ Hϑ2
F(ω, ϑ1, ϑ2) +

∂2F(ω, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

]∣∣∣∣
ϑ1=ϑ2=ϑ

,

where the indirect derivative fulfills

∂2F (ω, ϑ1, ϑ2)
∂ϑᵀ

1∂ϑ
ᵀ
2

= (Kp·d ⊗Ud)Kd·dp
∂2F (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑ

ᵀ
2

.

3.1 Asymptotic Variance

For the variance of Vec(∂QT (ϑ0))/∂ϑ
ᵀ consider the expression

T Vec
∂QT (ϑ)

∂ϑᵀ (8)

=
T1∑

k=−T1

[
∂ Vec IX,T (ωk, ϑ)

∂ϑᵀ −
∂
(
Vec IY ,X,T (ωk, ϑ) + Vec IX,Y ,T (ωk, ϑ)

)
∂ϑᵀ

]ᵀ

× [VecΦᵀ (ωk)] .

Let Ψ be some matrix function of appropriate dimension, and introduce the
following expression, which is frequently used below,

J(Ψ,F) =
∫ 1/2

−1/2
(Up ⊗ [Vec(Ψᵀ(ωk))]ᵀ) d

(
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

∣∣∣∣
ϑ1=ϑ2=ϑ0

)
,

where Up denotes the identity matrix of order p.

Lemma 2.

lim
T→∞

Var
[√

T Vec
∂QT (ϑ0)

∂ϑᵀ

]
= 4J(ΦSZΦ,F) .

See Section 7.3 for the proof.
The limit of the Hessian is calculated from (8). The Hessians according to

Hϑ1
IX,T (ωk, ϑ1, ϑ2) and Hϑ2

IX,T (ωk, ϑ1, ϑ2) of the terms in (8) at ϑ1 = ϑ2 =
ϑ0 is canceled with HϑIY ,X,T (ωk, ϑ) and HϑIX,Y ,T (ωk, ϑ), respectively. So we
have to deal only with the mixed derivatives of IX,T (ωk, ϑ). See Section 7.4.
Hence the Hessian of Q(ϑ) at ϑ = ϑ0 follows.

Lemma 3.
HQ (ϑ0) = lim

T→∞
[HQT (ϑ0)] = 2J (Φ,F) .
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Notice that the matrix J = J
(
ΦSZΦ,F

)
and the Hessian HQ (ϑ0) are the

same except that the latter depends only on Φ; that is, HQ(ϑ0) = J(Φ,F).
Put

JT = Var
[√

T Vec
∂QT (ϑ0)

∂ϑᵀ

]
,

and suppose

Condition 9 (R) The limit variance matrix J
(
ΦSZΦ,F

)
of JT is positive

definite, for all admissible spectral density SZ and SDFR F, and moreover
J (Φ,F) > 0.

Theorem 2. Under assumptions I-R, I-R-H, and R,

√
TJ−1/2

T HQT

(̂̂
ϑ

)(
ϑ̂T − ϑ0

) D→ N (0,Up) ,

where ̂̂ϑ is closer to ϑ0 than ϑ̂T . In other words

lim
T→∞

Var
[√

T
(
ϑ̂T − ϑ0

)]
= J−1 (Φ,F)J

(
ΦSZΦ,F

)
J

−1 (Φ,F)
∣∣∣
ϑ=ϑ0

. (9)

The optimal choice of Φ (ω) is S−1
Z (ω) assuming SZ (ω) > 0. The choice

S−1
Z (ω) is appropriate because the “residual” series dZ,T (ωk) is asymptot-

ically independent Gaussian with variance TSZ (ωk) . The variance in this

case
(
Φ =S−1

Z

)
follows from (9)

lim
T→∞

Var
[√

T
(
ϑ̂T − ϑ0

)]
= J−1

(
S−1
Z ,F

)
, (10)

where

J−1
(
S−1
Z ,F

)
=

[∫ 1/2

−1/2

[
Up ⊗

(
Vec

[
S−1
Z (ω)

]ᵀ)ᵀ]
d
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

∣∣∣∣
ϑ1=ϑ2=ϑ0

]−1

.

4 Scaling

To assess the generality of scaling consider the linear case

Y t = BXt + Zt ,

first. In this case ϑ = VecB, so the regressor Xt depends on the parameter ϑ
linearly (Xt depends on t but not on ϑ). Here B is d × p and Xt is p × 1. If
‖Xk,t‖T - Dk (T ) which tends to infinity by the Grenander’s Condition G1,
then the matrix
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ĈX,T (h, ϑ1, ϑ2) =
1
T

T−h∑
t=1

Xt+h (ϑ1)X
ᵀ
t (ϑ2) ,

might not converge unless each Dk (T ) -
√

T . This is not the case for the
important problem of polynomial regression, say. Grenander’s solution to this
problem can be interpreted in the following way. Define the diagonal matrix
DT = diag(D1, D2, . . . , Dp), where Dk = Dk(T ) - ‖Xk,t‖T . Now, consider
the linear regression problem

Y t = B̃V t + Zt ,

where V t =
√

TD−1
T Xt. One solves this linear regression problem and observes

the connection

B̃V t =
(

1√
T

BDT

)(√
TD−1

T Xt

)
between the original and the scaled equation. Therefore the asymptotic vari-
ance of the estimate of the unknown matrix B is connected by

lim
T→∞

Var
√

T ( ̂̃B− B̃0) = lim
T→∞

Var[(B̂−B0)DT ] .

We call this type of transformation “primary” scaling and the result is the
properly scaled regressor. Note here that the procedure of scaling opens
the possibility of considering random regressors that are not necessarily
weakly stationary, either because the second-order moment does not exist
(see [KM96]), or because stationarity holds only asymptotically.

Definition 1. The series Xt is properly scaled if

‖Xk,t‖2T - T ,

as T →∞, for each k = 1, 2, . . . , d.

In general, let Dk(T ) - ‖Xk,t‖T , for each k and define

DT = diag(D1, D2, . . . , Dd) .

Then it is easy to see that the new series
√

TD−1
T Xt is properly scaled. The pri-

mary scaling of the non-linear regressors Xt (ϑ) is possible if Dk (T ) does not
depend on the unknown parameter ϑ. Even if the regressors Xt (ϑ) are prop-
erly scaled, some problem may arise when we take the limit of the derivatives
because there is no guarantee for their convergence. Therefore we introduce
some further scaling of the properly scaled regressors Xt (ϑ).

First, a diagonal matrix DT = diag(DX,k(T ), k = 1, 2, . . . , d) applies; the
result is

√
TD−1

T Xt (ϑ). Another type of scaling goes through the process of
differentiating. We define the scaled partial derivative ∂s,T (ϑ) according to
the diagonal matrix D1,T = diag(D(1)

k (T ), k = 1, 2, . . . , p) by ∂(D−1
1,Tϑ); hence
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∂

∂s,Tϑ
ᵀ
[
D−1
T Xt (ϑ)

]
=
(

∂

∂ϑᵀ
[
D−1
T Xt (ϑ)

])
D−1

1,T . (11)

The result of these scalings is

∂

∂s,Tϑ
ᵀ
[
D−1
T Xt (ϑ)

]
= D−1

T

[
∂

∂ϑᵀ Xt (ϑ)
]
D−1

1,T .

The entries of the scaled partial derivatives are[
DX,j (T )D(1)

k (T )
]−1

∂Xj,t (ϑ) /∂ϑk.

The second scaled derivative of ĈX,T (h, ϑ1, ϑ2) is of interest:

∂2
s,T ĈDTX,T (h, ϑ1, ϑ2)

∂s,Tϑ
ᵀ
2∂s,Tϑ

ᵀ
1

=
(
D−1

1,T ⊗Ud2

) ∂2Ĉ√
TD−1

T X,T (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

D−1
1,T

= T
(
D−1

1,T ⊗D−1
T ⊗D−1

T

) ∂2ĈX,T (h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

D−1
1,T ;

see Section 7.5 for the proof. Notice that the 1/T in the expression of ĈX,T is
canceled and the role of scaling has been taken totally by the scaling matrices.

Condition 10 (H′) All the second partial derivatives of the regressor Xt (ϑ)
exist. There exist diagonal matrices DT and D1,T such that uniformly in ϑ,
the scaled derivative

∂2
s,T Ĉ√

TD−1
T X,T (h, ϑ1, ϑ2)

∂s,Tϑ
ᵀ
2∂s,Tϑ

ᵀ
1

converges to some limit, denoted by

∂2
sCX(h, ϑ1, ϑ2)

∂sϑ1∂sϑ2
.

Condition H means

∂2
sCX (h, ϑ1, ϑ2)

∂sϑ
ᵀ
2∂sϑ

ᵀ
1

•= lim
T→∞

∂2
s,T ĈDTX,T (h, ϑ1, ϑ2)

∂s,Tϑ
ᵀ
2∂s,Tϑ

ᵀ
1

.

The diagonal matrices DT and D1,T can be chosen directly if the effects of
the entries and the partial derivatives are separate; that is,

‖∂Xj,t (ϑ) /∂ϑk‖T - BX,j (T )B(1)
k (T ) ,

then DT = diag(BX,j(T ), j = 1, . . . , d), and D1,T = diag(B(1)
k (T ), k =

1, . . . , p), say. Note here that the matrix DT contains the factors of pri-
mary scaling. There are regressors Xt (ϑ), of course, having more sophisticated
derivatives and the above procedure does not apply.

The above notation is used for the regression spectrum as well.
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Condition 11 (I-R-H′) The scaled derivative of matrix function FT ,

∂2
s,TFT (ω, ϑ1, ϑ2)
∂s,Tϑ

ᵀ
1∂s,Tϑ

ᵀ
2

,

converges weakly to some function denoted by

∂2
sF(h, ϑ1, ϑ2)
∂sϑ

ᵀ
2∂sϑ

ᵀ
1

.

Introduce the notation

JT (DT ,Ψ,F)

=
∫ 1/2

−1/2
(Up ⊗ [Vec (DTΨᵀ (ωk)DT )]ᵀ) d

(
∂2
sF (ω, ϑ1, ϑ2)
∂sϑ

ᵀ
2∂sϑ

ᵀ
1

∣∣∣∣
ϑ1=ϑ2=ϑ0

)
.

Theorem 3. Under conditions I-R and I-R-H′ we have
√

TJ−1/2
T Hs,TQT (ϑ0)D1,T

(
ϑ̂T − ϑ0

) D→ N (0,Up) .

In other words the variance of
(
ϑ̂T − ϑ0

)
can be approximated by

D−1
1,T J−1

T (DT ,Φ,F)JT
(
DT ,ΦSZΦ,F

)
J−1
T (DT ,Φ,F)D−1

1,T

∣∣∣
ϑ=ϑ0

.

Moreover if Φ =S−1
Z , one has the asymptotic variance

D1,TJ−1
T

(
DT ,S−1

Z ,F
)
D1,T

of (ϑ̂T −ϑ0). We show in the next section that the linear regressors are scaled
directly.

The spectrum SZ in general is not known. This leads to a semiparametric
problem, therefore one uses recursion for the estimation of the parameters.
Fortunately, the additional term to the function R in the objective function
is the Whittle likelihood up to a constant. As far as we are concerned with a
rational spectral density, the method of Hannan [Han71] applies and both the
estimator of the unknown parameter ϑ and the estimator for the parameters
of the spectrum are consistent.

5 Some Particular Cases

We derive from the above general formulae some particular cases of interest.
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5.1 Multiple Linear Regression with Stationary Errors

Consider the linear case
Y t = BXt + Zt .

In this case ϑ = VecB, so the regressors depend on the parameter ϑ linearly
(Xt depends only on t but not on ϑ). Here B is d × p and Xt is p × 1. The
primary scaling, if it is necessary, is given by the diagonal matrix

√
TD−1

T

with DT = diag(D1, D2, . . . , Dp), where Dk(T ) - ‖Xk,t‖T . It is easy to see
that

ĈX,T (h, ϑ1, ϑ2) =
1
T

T−h∑
t=1

Xt+h (ϑ1)X
ᵀ
t (ϑ2) ,

where Xt (ϑ) = BXt, converges for all possible values of B if and only if

ĈX,T (h) =
1
T

T−h∑
t=1

Xt+hX
ᵀ
t

converges. Assume that Xt is properly scaled (otherwise scale it; that is,
replace it by

√
TD−1

T Xt). Observe that

∂Xt(ϑ)
∂ϑk

=
∂BXt

∂ϑk
=
[
0, . . . , 0, Xjk,t

, 0, . . . , 0
]ᵀ

,

therefore the secondary scaling is D1,T = Udp. The discrete Fourier transform
simplifies to

dY ,T (ω) = BdX,T (ω) + dZ,T (ω) ,

together with the periodograms

IX,T (ωk, ϑ) = BIX,T (ωk)Bᵀ ,

IY ,X,T (ωk, ϑ) = IY ,X,T (ωk)Bᵀ ,

IX,Y ,T (ωk, ϑ) = BIX,Y ,T (ωk) .

The normal equation
∂QT (B)

∂B
= 0 ,

gives the estimate

Vec
(
B̂
)

=

(
T1∑

k=−T1

Iᵀ
X,T (ωk)⊗Φ (ωk)

)−1

Vec
T1∑

k=−T1

Φ (ωk) IY ,X,T (ωk) .

The inverse here can be taken in the Moore-Penrose sense as well. This esti-
mate is linear and unbiased because

E
T1∑

k=−T1

Φ (ωk) IY ,X,T (ωk) = Φ (ωk)B0IX,T (ωk) .
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The Hessian of QT (B) is

HQT (B) =
1
T

T1∑
k=−T1

(
Iᵀ
X,T (ωk)⊗Φ (ωk) + IX,T (ωk)⊗Φᵀ (ωk)

)
=
∫ 1/2

−1/2
dFᵀ(ω)⊗Φ(ω) + o(1) .

The variance matrix of the estimate B̂

lim
T→∞

Var

(
1√
T

Vec
T1∑

k=−T1

Φ (ωk) IY ,X,T (ωk)

)

= 4 Vec
∫ 1/2

−1/2
dFᵀ (ω)⊗

[
Φ (ω)SZ (ω)Φ (ω)

]
;

see (29). In particular we have the variance for two frequently used estimates:
the linear least squares (LS) estimator if Φ (ω) = Ud, or the best linear
unbiased estimator (BLUE) if Φ (ω) = S−1

Z (ω). Grenander shows that under
some assumption the LS and BLUE are equivalent. Actually, both have the
same limit variance

lim
T→∞

Var
[√

T Vec(B̂)
]

=

[∫ 1/2

−1/2
dFᵀ(ω)⊗ S−1

Z (ω)

]−1

.

This limit does not depend on B0. This result can be reached from the general
formula (10) for the variance.

Remark 1. The estimation of the transpose of matrix B is customary and more
direct in the time domain; see [Han70]. The variance of B̂ᵀ follows from (12)
easily

Var[
√

T Vec(B̂ᵀ)] = Var[Kp·d Vec(B̂)] = Kp·d Var Vec(B̂)Kd·p ;

hence

lim
T→∞

Var[
√

T Vec(B̂ᵀ)] =

[∫ 1/2

−1/2
S−1
Z (ω)⊗ dFᵀ(ω)

]−1

.

In practice, we are interested in the asymptotic variance of B̂ according to
the original unscaled regressors. We have estimated the matrix T−1/2BDT ,
because

BXt =
(

1√
T

BDT

)√
TD−1

T Xt .

It implies that the asymptotic variance of Vec B̂ is
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−1/2
DTdFᵀ(ω)DT ⊗ S−1

Z (ω)

]−1

; (12)

see [Han70, Theorem 10, Chapter VII]. For instance, if we are concerned
with polynomial regressor Xj,t = tj−1, j = 1, , . . . , p, then the corresponding
scales are Tj (T ) -

√
T 2j−1/ (2j − 1) (this latter one applies for any fractional

j > 1/2 as well), and DT = diag(T1, T2, . . . Td). The SDFR F is concentrated
at zero with values dFj,k (0) =

√
(2k − 1) (2j − 1)/ (k + j − 1) , so the asymp-

totic variance of Vec B̂ is[
D−1
T dF−1(0)D−1

T

]
⊗ SZ(0) ;

see [GR57, p. 247], for the scalar-valued case.

5.2 Mixed Model

A very realistic model to consider is the following

Y t = Xt(ϑ0) + Zt ,

where the regressor has the form

Xt (ϑ) = B1X1,t + B2X2,t (λ) (13)

= [B1,B2]
[

X1,t
X2,t (λ)

]
= BX3,t (λ) .

Here the unknown parameter is ϑ = Vec(VecB1,VecB2, λ), where B1 is d×p,
B2 is d × q, λ is r × 1, X1,t has dimension p, X2,t (λ) has dimension q,

B = [B1,B2], and X3,t (λ) =
[

X1,t
X2,t (λ)

]
. First we turn to the problem of

estimation. Minimize the objective function

QT (B, λ)

=
1
T

T1∑
k=−T1

[
Tr
(
IY ,T (ωk)Φ(ωk)

)
+ Tr

(
BIX3,T

(ωk, λ)BᵀΦ(ωk)
)

−Tr
(
IY ,X3,T

(ωk, λ)BᵀΦ(ωk)
)
− Tr

(
BIX3,Y ,T

(ωk, λ)Φ(ωk)
)]

. (14)

Then, take the derivative with respect to B1,B2, and λ. Actually, we can apply
the linear method for B in terms of X3,t (λ). Suppose that B̂ =

[
B̂1, B̂2

]
and

λ̂ fulfill the system of equations

∂QT (B, λ)
∂B

= 0 ,

Vec
∂QT (λ)

∂λᵀ = 0 .
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The estimation of the linear parameters B1 and B2 can be carried out as linear
regression when the parameter λ is fixed. It leads to a recursive procedure.
When λ = λ̃ is a fixed initial value, the normal equation gives the estimates

Vec(B̂)

=

(
T1∑

k=−T1

Iᵀ
X3,T

(ωk, λ̃)⊗Φ(ωk)

)−1

Vec
T1∑

k=−T1

Φ(ωk)IY ,X3,T
(ωk, λ̃) .

Now, to get the estimate for λ, we keep B = B̂ fixed and minimize (14), that
is, find the solution to the equation

T1∑
k=−T1

[
∂BIX3,T

(ωk, λ)Bᵀ

∂λᵀ −
∂IY ,X3,T

(ωk, λ)Bᵀ

∂λᵀ −
∂BIX3,Y ,T

(ωk, λ)
∂λᵀ

]ᵀ

λ=λ̂

×VecΦᵀ (ωk) = 0 .

The primary scaling of X3,t (λ) =
[

X1,t
X2,t (λ)

]
is given by

DT = diag (DX1,T ,DX2,T ) ,

where DX1,T = diag(DX1,k(T ), k = 1, . . . , p) and DX2,T = diag(DX2,k(T ), k =
1, . . . , q). The secondary scaling of regressors is D1,T = diag(Udp+dq,D3,T ).
Let us denote the limit variance of the derivative⎡⎢⎢⎢⎢⎣

[
∂QT (B1,B2,λ)

∂ VecBᵀ
1

]ᵀ
[
∂QT (B1,B2,λ)

∂ VecBᵀ
2

]ᵀ
[
∂QT (B1,B2,λ)

∂λᵀ

]ᵀ
⎤⎥⎥⎥⎥⎦

by

Σ = 2

⎡⎣ Σ11 Σ12 Σ1λD3,T
Σ21 Σ22 Σ2λD3,T

D3,TΣλ1 D3,TΣλ2 D3,TΣλλD3,T

⎤⎦ ,

where the blocks of Σ already contain the scaling DT of the regressor. Here
as well as later on Φ = S−1

Z . The linear part

Σ11 =
∫ 1/2

−1/2
DX1,T dFᵀ

11 (ω)DX1,T ⊗ S−1
Z (ω) ,

Σ12 =
∫ 1/2

−1/2
DX2,T dFᵀ

12 (ω, λ0)DX1,T ⊗ S−1
Z (ω) ,

Σ22 =
∫ 1/2

−1/2
DX2,T dFᵀ

22 (ω, λ0)DX2,T ⊗ S−1
Z (ω) .
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The mixed blocks are

Σ1λ =
∫ 1/2

−1/2

(
DX1,T ⊗ S−1

Z (ω)B2,0DX2,T

)
d
∂F1,2 (ω, λ0)

∂λᵀ ,

Σ2λ =
∫ 1/2

−1/2

(
DX2,T ⊗ S−1

Z (ω)B2,0DX2,T

)
d
∂F2,2 (ω, λ0)

∂λᵀ .

The nonlinear block Σλλ comes from the general result (10):

Σλλ =2
∫ 1/2

−1/2

(
Ur ⊗Vec

([
DX2,TBᵀ

2,0S
−1
Z (ω)B2,0DX2,T

]ᵀ)ᵀ)
× d

∂2F2,2 (ω, λ1, λ2)
∂λᵀ

2∂λ
ᵀ
1

∣∣∣∣
λ1=λ2=λ0

.

Finally the variance matrix of the estimates Vec(Vec B̂1,Vec B̂2, λ̂) is

Var[Vec(Vec B̂1,Vec B̂2, λ̂)] -

⎡⎣ Σ11 Σ12 Σ1λD3,T
Σ21 Σ22 Σ2λD3,T

D3,TΣλ1 D3,TΣλ2 D3,TΣλλD3,T

⎤⎦−1

.

5.3 Linear Trend with Harmonic Components

Here we consider a particular case of the mixed model above. Let

Y t = Xt (ϑ0) + Zt ,

where

Xt (ϑ) = B
[

1
t

]
+ A

⎡⎢⎢⎣
cos(2πtλ1)
sin(2πtλ1)
cos(2πtλ2)
sin(2πtλ2)

⎤⎥⎥⎦ ,

The parameter is ϑᵀ = ([VecB1]
ᵀ
, [VecB2]

ᵀ
, [λ1, λ2]) , |λi| ≤ π, λ1 �= λ2, λi �=

0,±1/2. It is readily seen that the estimation of the coefficient B of the linear
regression

B =
[
b11 b12
b21 b22

]
can be done separately as it has no influence on the estimation of the rest of
the parameters.

A =
[
a11 a12 a13 a14
a21 a22 a23 a24

]
.

The primary scaling for X1,t is DX1,T
= diag

(
T 1/2, T 3/2/

√
3
)
, and for

X2,t (λ) is DX2,T
= T 1/2/

√
2U4, because X1,t = [1, t]ᵀ and

X2,t(λ) = [cos(2πtλ1), sin(2πtλ1), cos(2πtλ2), sin(2πtλ2)] .



Multivariate Non-Linear Regression with Applications 449

The secondary scaling for the linear part X1,t, as we have already seen, is U2,
and the secondary one for the nonlinear part is U4. The scaled partial deriva-
tive according to λ is D3,T = 2πT/

√
3U2 because the primary scaling

√
T/2

has already been applied. Therefore the scaling matrix DT of the regressors[
Xᵀ

1,t, X
ᵀ
2,t(λ)

]ᵀ is DT = diag(DX1,T
,DX2,T

) and D1,T = diag(U12,D3,T ).
The asymptotic variance is

D−1
1,TJ−1

(
DTS−1

Z DT ,F
)
D−1

1,T .

The proper scaling for the term Xk,tXm,t+h in ĈX,T is
(
‖Xk,t‖T ‖Xm,t‖T

)−1,
in general. Here it can be changed into an equivalent function of T ; instead
of (2) we have

ĈX,T (h, ϑ1, ϑ2) = D−1
T

T−h∑
t=1

Xt+h (ϑ1)X
ᵀ
t (ϑ2)D

−1
T .

Let us partition the second derivative of SDFR according to the parameters.
With obvious notation, denote

∂2F (ω, λ1, λ2)
∂λᵀ

2∂λ
ᵀ
1

=

⎡⎣F11 F12 F1λ
F21 F22 F2λ
Fλ1 Fλ2 Fλλ

⎤⎦ ,

and assume λ1 �= λ2, λi �= 0,±1/2.

(A1). The regression spectrum of the linear part is

dF11 (ω) =
[

1
√

3/2√
3/2 1

]
dδω≥0

where δω≥0 denotes the Kronecker delta. Hence the block Σ11 follows

Σ11 = DX1,T
dF11(0)DX1,T

⊗ S−1
Z (0) .

(A2). It is seen that there is no mixed effect: F12 (ω, λ0) = 0, Σ12 = 0, and
F1λ (ω, λ0) = 0, Σ1λ = 0.

(A3). The F22 (ω, λ0) corresponds to the coefficient A. Let

H1h(λ) =
[
cos(2πλh) − sin(2πλh)
sin(2πλh) cos(2πλh)

]
,

Notice

ĈX2,T

(
h, λ, µ

)
= D−1

X2,T

T−h∑
t=1

X2,t+h(λ)Xᵀ
2,t

(
µ
)
D−1
X2,T

→
[
δλ1=µ1H1h (λ1) δλ1=µ2H1h (λ1)
δλ2=µ1H1h (λ2) δλ2=µ2H1h (λ2)

]
,
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where δλ=ω denotes the Kronecker delta. Define the step functions

gcλ (ω) =

⎧⎨⎩
0 , ω < −λ ,

1/2 , −λ ≤ ω < λ ,
1 , λ ≤ ω ,

gsλ (ω) =

⎧⎨⎩
0 , ω < −λ ,

i/2 , −λ ≤ ω < λ ,
0 , λ ≤ ω ,

and

G1λ (ω) =
[
gcλ (ω) −gsλ (ω)
gsλ (ω) gcλ (ω)

]
.

Now we have

lim
T→∞

ĈX2,T

(
h, λ, µ

)
=
∫ 1/2

−1/2
e2iπωh dF22(ω, λ, µ) ,

where

F22(ω, λ, µ) =
[
δλ1=µ1G1λ1 (ω) δλ1=µ2G1λ1 (ω)
δλ2=µ1G1λ2 (ω) δλ2=µ2G1λ2 (ω)

]
.

The scaled version of the block is

2
T

Σ22 =
∫ 1/2

−1/2
(DX2,TdFᵀ

22 (ω, λ0)DX2,T )⊗ S−1
Z (ω)

=

⎡⎢⎢⎢⎢⎣
[

ReS−1
Z (λ1) ImS−1

Z (λ1)
− ImS−1

Z (λ1) ReS−1
Z (λ1)

]
0

0

[
ReS−1

Z (λ2) ImS−1
Z (λ2)

− ImS−1
Z (λ2) ReS−1

Z (λ2)

]
⎤⎥⎥⎥⎥⎦ .

(A4). For F2λ (ω, λ0), define the matrices

U2 (1) =
[

1 0
0 0

]
,

U2 (2) =
[

0 0
0 1

]
;

then we have

1
πT

∂ Vec ĈX2,X2,T

(
h, λ, µ

)
∂µᵀ →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δλ1=µ1U2(1)⊗
[
− sin(2πλ1h)
cos(2πλ1h)

]
δλ1=µ2U2(1)⊗

[
− cos(2πλ1h)
− sin(2πλ1h)

]
δλ2=µ1U2(2)⊗

[
− sin(2πλ2h)
cos(2πλ2h)

]
δλ2=µ2U2(2)⊗

[
− cos(2πλ2h)
− sin(2πλ2h)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that if λ = µ and λ1 �= λ2 then this latter matrix is written
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[Vec[U2(1)⊗H2h(λ1)],Vec[U2(2)⊗H2h(λ2)]] ,

where

H2h (λ) =
[
− sin(2πλh) − cos(2πλh)
cos(2πλh) − sin(2πλh)

]
.

Notice that for three frequencies λ = [λ1, λ2, λ3] we would have,

[Vec[U3(k)⊗H2h(λk)]]|k=1,2,3 ,

where U3 (j) is a 3×3 matrix with zero elements except for the jth entry
in the diagonal which is 1.

F2λ(ω, λ) =
√

3
2

[Vec[U2 (1)⊗G2λ1(ω)],Vec[U2(2)⊗G2λ2(ω)]] ,

where

G2λ (ω) =
[
−gsλ(ω) −gcλ(ω)
gcλ(ω) −gsλ(ω)

]
.

Let us apply the general formula for Σ2λ, so

Σ2λ =
∫ 1/2

−1/2

(
U4 ⊗ S−1

Z (ω)A0DX2,T

) (
DX2,T

⊗U4
)
dF2λ (ω, λ0)

=
T

2

∫ 1/2

−1/2

(
U4 ⊗ S−1

Z (ω)A0

)
dF2λ (ω, λ0) .

Put

Γ2 =
[
i −1
1 i

]
Λ2 (ω) = U4 ⊗ S−1

Z (ω)A0

Σ2λ =
√

3T
4

[
Λ2(λ1) Vec[U2(1)⊗ Γ2], Λ2(λ2) Vec[U2(2)⊗ Γ2]

]
.

(A5). Finally, Fλλ(ω, λ0) is

3
(2π)2T 2

∂2 Vec ĈX2,T

(
h, λ, µ

)
∂µᵀ∂λᵀ →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δλ1=µ1U2(1)⊗
[
cos(2πλ1h)
sin(2πλ1h)

]
δλ1=µ1U2(1)⊗

[
− sin(2πλ1h)
cos(2πλ1h)

]
016×2

δλ2=µ2U2(2)⊗
[
cos(2πλ2h)
sin(2πλ2h)

]
δλ2=µ2U2(2)⊗

[
− sin(2πλ2h)
cos(2πλ2h)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Define now the matrix U2,4 (1, 1) of 2 × 4 with all elements zero except
the entry (1, 1) which is one; we have

452 Tata Subba Rao and Gyorgy Terdik[
Vec[U2,4(1, 1)⊗H3h(λ1)], Vec[U2,4(2, 4)⊗H3h(λ2)]

]
,

where

H3h (λ) =
[
cos(2πλh) − sin(2πλh)
sin(λ2πh) cos(2πλh)

]
.

The SDFR

Fλλ(ω, λ)

= (2π)2
[
Vec[U2,4(1, 1)⊗G3λ1(ω)], Vec[U2,4(2, 4)⊗G3λ2(ω)]

]
,

where

G3λ (ω) =
[
gcλ(ω) −gsλ(ω)
gsλ(ω) gcλ(ω)

]
.

The corresponding variance matrix is

2
T

Σλλ =
T

2

∫ 1/2

−1/2

(
U2 ⊗Vec[Aᵀ[S−1

Z (ω)]ᵀA]ᵀ
)

dFλλ(ω, λ)

=
∫ 1/2

−1/2

⎡⎣[Vec(Aᵀ[S−1
Z (ω)]ᵀA)

]ᵀ
01×16

01×16

[
Vec(Aᵀ[S−1

Z (ω)]ᵀA)
]ᵀ
⎤⎦

× dFλλ(ω, λ) .

Put, for computational purposes,

Γ3 =
[

1 i
−i 1

]
,

Λ(ω) = U2 ⊗
[
Vec(Aᵀ[S−1

Z (ω)]ᵀA)
]ᵀ

;

then the variance matrix has the form

Σλλ =

2π2T

2
Re
[
Λ(λ1) Vec[U2,4(1, 1)⊗ Γ3], Λ(λ2) Vec[U2,4(2, 4)⊗ Γ3]

]
.

It simplifies further:

Σλλ =
T

2

[
σ11 0
0 σ22

]
;

the entries are given in terms of the entries Amn (ω) =
[
Aᵀ

[
S−1
Z

]ᵀ
A
]
mn

,

σ11 = ReA11 (λ1) + ImA21 (λ1)− ImA12 (λ1) + ReA22 (λ1) ,

σ22 = ReA33 (λ2) + ImA43 (λ2)− ImA34 (λ2) + ReA44 (λ2) .
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Now we return to the asymptotic variance matrix of the parameters; let us
collect the blocks of the variance matrix

D1,T

⎡⎣Σ11 0 0
0 Σ22 Σ2λ
0 Σλ2 Σλλ

⎤⎦D1,T ,

where D1,T = diag(U12,D2,T ). The variance matrix of the coefficient Â is

2
T

(
Σ′

22 −Σ′
2λΣ

′−1
λλ Σ′

λ2
)−1

,

and of λ̂

D−1
3,T

(
Σλλ −Σλ2Σ

−1
22 Σ2λ

)−1
D−1

3,T =
6

(2π)2 T 3

(
Σ′
λλ −Σ′

λ2Σ
′−1
22 Σ′

2λ
)−1

,

where D3,T = 2πT/
√

3U12, and Σ′ denotes the covariance matrix without
scaling. The speed of convergence of the variance matrix of the coefficient Â
is T/2 and that of the frequency λ̂ is (2π)2 T 3/6.

6 Chandler Wobble
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Fig. 1. Centralized wobbling motion in polar coordinates

Data Description: The Chandler wobble, named after its 1891 discov-
erer, Seth Carlo Chandler, Jr., is one of several wobbling motions exhibited
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by the Earth as it rotates on its axis, much as a top wobbles as it spins.
The period of this wobbling is 430 to 435 days. It has been estimated by sev-
eral workers, for instance, Brillinger [Bri73] and Arató et al. [AKS62]. Some
properties of the monthly data have been shown in [IT97].

0 0.5 1 1.5 2 2.5 3

x 10
4

−300

−200

−100
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100

200

300

Fig. 2. x-values and the fitted ones in mas versus hours.

Since 1995, a combined solution to the various GPS (Global Positioning
System) series has been performed. Here the hourly measurements between
MJD 49719 (JAN 1, ’95) and 50859 (FEB 15, ’98) (MJD is for Modified Julian
Day), are used in our current analyses. The values of the data are given in mas
= milli-arcseconds, 1 arcsec ∼ 30 m. The number of data points is T = 27, 361.

Rotational variations of polar motion are due to the superposition of the
influences of six partial tides. Different techniques suggest that these are real
oscillations of polar motion. Rapid oscillations with periods of 12 h have al-
ready been considered; see IVS 2004 General Meeting Proceedings [Gro00].

The aim of this investigation is to give some statistical evidence of the
presence of 12 h oscillation, in other words to show that the frequency 2π/12
has significantly non-zero weight. It is also a question whether there is any
significant shift in the position of the center.

The model [SNS01] to be fitted is a linear trend with harmonic compo-
nents,

Y t = B2×2

[
1
t

]
+ A4×2

⎡⎢⎢⎣
cos(2πtλ1)
sin(2πtλ1)
cos(2πtλ2)
sin(2πtλ2)

⎤⎥⎥⎦+ Zt ,
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where Y t is the measurement and the matrices A and B together with the
frequencies λi, (|λi| ≤ π) are unknown parameters. So we are faced with a
non-linear regression problem.

6.1 Chandler Wobble, Results

We started the computation with the initial values λ1 = 2π/410/24 and
λ2 = 2π/12, and the number of Fourier frequencies was 213. The estimated
parameters are

B̂ =
[

41.6043 0.0003
323.4485 −0.0007

]
,

Â =
[
−244.8065 16.5279 0.1248 −0.0521
25.3854 256.5682 0.0166 0.1064

]
,

and

λ̂ =
[
0.0001
0.0833

]
.

The estimated frequencies correspond to the periods 410.5626 days and
11.9999 hours. Analyzing the residual series Zt we found ourselves in the
situation of long-range dependent data.

6.2 Disturbance with Long Memory

Let Zt be a stationary time series with piecewise continuous spectral density

SZ (ω) = Λ (ω)S#2 (ω)Λ∗ (ω) ,

where

Λ(ω) = diag([1− e2iπω]−h1 , [1− e2iπω]−h2 , . . . , [1− e2iπω]−hd) ,

hk ∈ [0, 1/2), k = 1, 2, . . . , d, and the matrix S#2 (ω) is a positive continuous
spectral density matrix (we often have in mind a stationary, physically real-
izable, vector-ARIMA time series). The Hurst exponents (h1, h2, . . . , hd) are
not necessarily different; denote them h = (h1, h2, . . . , hd). Yajima [Yaj91]
shows that for each fixed hk the regressors are classified according to the dis-
continuity of their spectrum at zero. In our case it concerns the linear part
only. We introduce the third-rate scaling according to the long memory. Let
DL,T = diag(Thk , k = 1, 2, . . . , d) be the diagonal matrix; then

Σ11 = DX1,T
dF11(0)DX1,T

⊗DL,TS−1
Z (0)DL,T .

Robinson and Hidalgo [RH97, Theorem 5] establish that the weights S−1
Z are

consistently estimated via recursion even if the data are long-range dependent.
The technique of estimation we follow is a multiple recursion. First we put

a constant for SZ , and some initial value for the nonlinear parameter ϑ. We
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keep the initial value of ϑ fixed and iterate for the linear parameters updating
the estimated residual spectrum SZ step by step. We then fix the estimated
linear parameter and find the estimate of the non-linear parameter ϑ through a
weighted nonlinear least squares procedure; meanwhile the estimated residual
spectrum SZ is updated; then we iterate the whole process.

6.3 Conclusions

• The estimation of the Hurst parameter is calculated by the method of
[IT03], based on the behavior of the cumulants up to order 5. Both are
very close to 1/2; that is, h1 = 0.4986 and h2 = 0.4860. This might
be the reason that other procedures failed, including the quasi-maximum
likelihood estimates of Lobato [Lob97], [Lob99], for vector-valued time
series. Therefore we proceed with the marginal Hurst parameters.

• As is expected, there is no real information on the location parameter (the
constant in the model) because the estimated variances of the parameters
and b21 are so large. Some improvement can be reached by Dahlhaus’s
[Dah95] result. The diagonals of the variance matrix of Vec B̂ are [1.1733∗
106, 0.7725 ∗ 106, 0.2097, 0.1381].

• The standard deviation for the parameters b12 and b22 are 0.4579 and
0.3716; hence there is no evidence of the shifting of either coordinate, at
least with larger than 95% confidence.

• Actually, we have only “two observations” of the period ∼ 410 days, there-
fore it is not surprising that the standard deviation of the parameters
a1:2,1:2 again, are large, showing no information on the values. More pre-
cisely, the standard deviations are [397.1890, 481.8903, 436.7575, 442.9037].

• The quantity of main interest is the standard deviation of the param-
eters λ2 and a1:2,3:4. The standard deviation of the estimates â1:2,3:4 is
[0.0154, 0.0218, 0.0233, 0.0146] so we conclude that all of them are non-zero
except a1,3, at least with probability .95. There is some empirical evidence
for fitting a model with an additional frequency λ3 = 30, λ4 = 2λ2. The
latter one raises some special problems, known from biology; see [Bro90].

Acknowledgement. The Chandler wobble data with high resolution are through the
courtesy of Professor József Závoti.
This research was partially supported by the Hungarian NSF, OTKA No. T047067.

7 Appendix

7.1 Some Matrix Relations

Vec(abᵀ) = b⊗ a , (15)
aᵀ ⊗ b = baᵀ = b⊗ aᵀ. (16)
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see [MN99, p. 28].
(VecA)ᵀ VecB = Tr(AᵀB) , (17)

see [MN99, p. 30]. The vectors a, b, and c fulfill

(a⊗ b) cᵀ = a⊗ (bcᵀ) (18)
(a⊗ b) cᵀ = (acᵀ)⊗ b , (19)

The commutation matrix Km·n is defined by the relation

Km·n VecA = VecAᵀ , (20)

for any matrix A with dimension m× n. The next identity is

(a⊗ b) cᵀ = Kd·d (b⊗ a) cᵀ . (21)

We have (see [MN99, p. 47]): if A is m× n and B is p× q then

Vec (A⊗B) = (Un ⊗Kq·m ⊗Up) (VecA⊗VecB) (22)
Kp·m (A⊗B)Kn·q = B⊗A . (23)

One can prove the following identity

ABbaᵀ = [U⊗ (VecB)ᵀ] (Kn·d ⊗Um)Kd·mn [baᵀ ⊗VecAᵀ] , (24)

where the only assumption for the matrices A and B, vectors b and a, is that
the matrix product on the left-hand side should be valid; and U is the identity
matrix with appropriate order. We also have the following

Kdp·d (Kd·p ⊗Ud) = Up ⊗Kd·d . (25)

7.2 Jacobian and Hessian of SDFR, Proofs

Consider the Jacobian ∂Xt (ϑ) /∂ϑᵀ of the regressor Xt (ϑ). Then the Jaco-
bian of ĈX,T (h, ϑ) is

∂ĈX,T (h, ϑ)
∂ϑᵀ =

1
T

T−h∑
t=1

[
Xt (ϑ)⊗

∂Xt+h (ϑ)
∂ϑᵀ +

∂Xt (ϑ)
∂ϑᵀ ⊗Xt+h (ϑ)

]

=
∂ĈX (h, ϑ1, ϑ2)

∂ϑᵀ
1

+
∂ĈX (h, ϑ1, ϑ2)

∂ϑᵀ
2

∣∣∣∣∣
ϑ1=ϑ2=ϑ

;

see (18), (19), and (16). Now take the limit of ∂ĈX,T (h, ϑ) /∂ϑᵀ and define
the Jacobian ∂F (λ, ϑ) /∂ϑᵀ for SDFR F by

∂CX (h, ϑ)
∂ϑᵀ =

∫ 1/2

−1/2
exp (i2πλh) d

∂F (λ, ϑ)
∂ϑᵀ ;
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that is, the ∂CX (h, ϑ) /∂ϑᵀ is the inverse Fourier transform of ∂F (λ, ϑ) /∂ϑᵀ.
If the limit of the Jacobian

∂FT (ω, ϑ)
∂ϑᵀ =

∫ ω

0

∂IX,T (λ, ϑ)
∂ϑᵀ dλ ,

exists and the differential operator and the limit are exchangeable then we
have

lim
T→∞

∂FT (ω, ϑ)
∂ϑᵀ =

∂

∂ϑᵀ lim
T→∞

FT (ω, ϑ) =
∂F (ω, ϑ)

∂ϑᵀ .

This is not always the case. Notice

FT (ω, ϑ) =
∫ ω

0
IX,T (λ, ϑ) dλ

=
∫ ω

0

1
T

dX,T (λ, ϑ1)d
∗
X,T (λ, ϑ2) dλ

∣∣∣∣
ϑ1=ϑ2=ϑ

= FT (ω, ϑ1, ϑ2)|ϑ1=ϑ2=ϑ
,

therefore

∂F (ω, ϑ)
∂ϑᵀ =

∂F (ω, ϑ1, ϑ2)
∂ϑᵀ

1
+

∂F (ω, ϑ1, ϑ2)
∂ϑᵀ

2

∣∣∣∣
ϑ1=ϑ2=ϑ

.

This corresponds to the Jacobian

∂CX (h, ϑ)
∂ϑᵀ =

∂CX (h, ϑ1, ϑ2)
∂ϑᵀ

1
+

∂CX (h, ϑ1, ϑ2)
∂ϑᵀ

2

∣∣∣∣
ϑ1=ϑ2=ϑ

.

The Hessian HF of F (λ, ϑ) is defined similarly; first the Hessian of ĈX,T (h, ϑ),

HĈX,T (h, ϑ)

=
1
T

T−h∑
t=1

∂ Vec
[
Xt (ϑ)⊗ ∂Xt+h(ϑ)

∂ϑᵀ + ∂Xt(ϑ)
∂ϑᵀ ⊗Xt+h (ϑ)

]
∂ϑᵀ

=
1
T

T−h∑
t=1

∂ (Kp·d ⊗Ud)
(
Xt (ϑ)⊗Vec

∂Xt+h(ϑ)
∂ϑᵀ

)
∂ϑᵀ

+
∂
(
Vec ∂Xt(ϑ)

∂ϑᵀ ⊗Xt+h (ϑ)
)

∂ϑᵀ

=
1
T

T−h∑
t=1

(Kp·d ⊗Ud)
[
∂Xt (ϑ)

∂ϑᵀ ⊗Vec
∂Xt+h (ϑ)

∂ϑᵀ + Xt (ϑ)⊗ HXt+h (ϑ)
]

+
[
Vec

∂Xt (ϑ)
∂ϑᵀ ⊗

∂Xt+h (ϑ)
∂ϑᵀ + HXt (ϑ)⊗Xt+h (ϑ)

]
.



Multivariate Non-Linear Regression with Applications 459

Notice

(Kp·d ⊗Ud)
[
∂Xt (ϑ)

∂ϑᵀ ⊗Vec
∂Xt+h (ϑ)

∂ϑᵀ

]
= (Kp·d ⊗Ud)Kd·dp

[
Vec

∂Xt+h (ϑ)
∂ϑᵀ ⊗ ∂Xt (ϑ)

∂ϑᵀ

]
,

(Kp·d ⊗Ud)
[
Xt (ϑ)⊗ HXt+h (ϑ)

]
= (Kp·d ⊗Ud)Kd·dp

[
HXt+h (ϑ)⊗Xt (ϑ)

]
;

see (23). Let us denote the limit of HĈX,T (h, ϑ) by HCX (h, ϑ), and its inverse
Fourier transform by HF (λ, ϑ); that is,

HCX(h, ϑ) =
∫ 1/2

−1/2
e2iπλh dHF(λ, ϑ) .

Similarly to the above

HCX(h, ϑ)

= (Kp·d ⊗Ud)Kd·dp

[
Hϑ1

CX (−h, ϑ2, ϑ1) +
∂2CX (−h, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑ

ᵀ
2

]∣∣∣∣
ϑ1=ϑ2=ϑ

+ Hϑ2
CX(h, ϑ1, ϑ2) +

∂2CX(h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

∣∣∣∣
ϑ1=ϑ2=ϑ

;

where we used the shorthand notation

∂2CX (h, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

=
∂

∂ϑᵀ
1

Vec
(

∂ VecCX (h, ϑ1, ϑ2)
∂ϑᵀ

2

)
;

here the partial derivative of the right side can be carried out directly. (The
order of the variables ϑ1, ϑ2 is opposite to the order of the derivatives; ∂ϑᵀ

2∂ϑ
ᵀ
1

means differentiating first by ϑ2 then by ϑ1, that is, the operator acting on
right-hand side.) Starting with ϑ1 then followed by ϑ2 is indirect, because

∂2CX (h, ϑ1, ϑ2)
∂ϑᵀ

1∂ϑ
ᵀ
2

= (Kp·d ⊗Ud)Kd·dp
∂2CX (−h, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑ

ᵀ
2

;

for the reason behind this see (22). Note that

CX (−h, ϑ2, ϑ1) = Cᵀ
X (h, ϑ1, ϑ2) .

Similarly the Hessian with respect to ϑ2 is direct and with respect to ϑ1 is
indirect; that is,

Hϑ1
CX (h, ϑ1, ϑ2) = (Kp·d ⊗Ud)Kd·dpHϑ1

CX (−h, ϑ2, ϑ1) .
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According to the above notations we write

HF (ω, ϑ) =
[
Hϑ1

F (ω, ϑ1, ϑ2) +
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑ

ᵀ
2

+ Hϑ2
F (ω, ϑ1, ϑ2) +

∂2F (ω, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

]∣∣∣∣
ϑ1=ϑ2=ϑ

.

Again here, for instance

∂2F (ω, ϑ1, ϑ2)
∂ϑᵀ

1∂ϑ
ᵀ
2

= (Kp·d ⊗Ud)Kd·dp
∂2F (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑ

ᵀ
2

.

7.3 Variance of the Derivative

The summands in

T Vec
∂QT (ϑ)

∂ϑᵀ

=
T1∑

k=−T1

[
∂ Vec IX,T (ωk, ϑ)

∂ϑᵀ −
∂
(
Vec IY ,X,T (ωk, ϑ) + Vec IX,Y ,T (ωk, ϑ)

)
∂ϑᵀ

]ᵀ

× [VecΦᵀ(ωk)]

are asymptotically independent. Therefore first we are interested in the vari-
ance separately. Notice that[

∂
(
Vec IZ,X,T (ωk, ϑ) + Vec IX,Z,T (ωk, ϑ)

)
∂ϑᵀ

]ᵀ

VecΦᵀ (ωk)

= 2
[
∂ Vec IZ,X,T (ωk, ϑ)

∂ϑᵀ

]ᵀ
VecΦᵀ (ωk) .

Indeed[
∂ Vec IZ,X,T (ωk, ϑ)

∂ϑᵀ

]ᵀ
[VecΦᵀ (ωk)] = Vec

∂ TrΦᵀ (ωk) I
ᵀ
X,Z,T (ωk, ϑ)

∂ϑᵀ

=
[
∂ Vec IX,Z,T (ωk, ϑ)

∂ϑᵀ

]ᵀ
VecΦᵀ (ωk) ,

and

T

T1∑
k=−T1

∂ Vec IZ,X,T (ωk, ϑ)
∂ϑᵀ VecΦᵀ(ωk)

=
T1∑

k=−T1

[(
Vec

∂dX,T (ωk, ϑ)
∂ϑᵀ

)
⊗ dZ,T (ωk)

]
VecΦᵀ(ωk) ,
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therefore we consider the variance matrix of the complex variable; see [Bri01,
p. 89].

Var
([

∂ Vec IX,Z,T (ωk, ϑ)
∂ϑᵀ

]ᵀ
[VecΦᵀ (ωk)]

)
=

1
T 2 Var

([
∂dX,T (ωk, ϑ)

∂ϑᵀ

]ᵀ
Φᵀ (ωk) dZ,T (ωk)

)

=
1
T

[
∂dX,T (ωk, ϑ)

∂ϑᵀ

]ᵀ
Φᵀ (ωk)S

ᵀ
Z (ωk)Φᵀ (ωk)

[
∂dX,T (ωk, ϑ)

∂ϑᵀ

]
+ o (1) .

Because of (24), this limit is written[
∂dX,T (ωk, ϑ)

∂ϑᵀ
1

]ᵀ
Φᵀ (ωk)S

ᵀ
Z (ωk)Φᵀ (ωk)

[
∂dX,T (ωk, ϑ)

∂ϑᵀ
2

]
= T

(
Up ⊗ [Vec(Φᵀ(ωk)S

ᵀ
Z(ωk)Φᵀ(ωk))]ᵀ

)
×
(

∂dX,T (ωk, ϑ2)
∂ϑᵀ

2
⊗Vec

∂dX,T (ωk, ϑ1)
∂ϑᵀ

1

)
.

The variance matrix of the derivative (∂QT (ϑ0))/∂ϑ
ᵀ has the limit

lim
T→∞

Var
[√

T Vec
∂QT (ϑ0)

∂ϑᵀ

]
=
∫ 1/2

−1/2

(
Up ⊗

[
Vec(Φᵀ(ω)Sᵀ

Z(ω)Φᵀ(ω))
]ᵀ)

× d

(
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

+
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑ

ᵀ
2

∣∣∣∣
ϑ1=ϑ2=ϑ0

)
.

It is worth noticing that(
Up ⊗ [Vec(Φᵀ(ω)Sᵀ

Z(ω)Φᵀ(ω))]ᵀ
)

(Kp·d ⊗Ud)Kd·dp

=
(
Up ⊗ [Vec(Φ(ω)SZ(ω)Φ(ω))]ᵀ

)
, (26)

and
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑ

ᵀ
2

= (Kp·d ⊗Ud)Kd·dp
∂2F (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑ

ᵀ
2

;

hence the asymptotic variance is written
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−1/2

(
Up ⊗ [Vec(Φᵀ(ωk)S

ᵀ
Z(ωk)Φᵀ(ωk))]ᵀ

)
× d

(
∂2F(ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

+
∂2F(ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑ

ᵀ
2

∣∣∣∣
ϑ1=ϑ2=ϑ0

)

= 2
∫ 1/2

−1/2

(
Up ⊗ [Vec(Φᵀ(ωk)S

ᵀ
Z(ωk)Φᵀ(ωk))]ᵀ

)
× d

(
∂2F(ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

∣∣∣∣
ϑ1=ϑ2=ϑ0

)
.

7.4 Hessian of Q

We are interested in, for instance,

∂

∂ϑᵀ
2

([
∂ Vec IX,T (ωk, ϑ1, ϑ2)

∂ϑᵀ
1

]ᵀ
VecΦᵀ (ωk)

)∣∣∣∣
ϑ1=ϑ2=ϑ

.

Now, using the chain rule for the derivatives, we have

∂

∂ϑᵀ
2

Vec
(

[VecΦᵀ (ωk)]
ᵀ
[
dX,T (ωk, ϑ2)⊗

∂dX,T (ωk, ϑ1)
∂ϑᵀ

1

])
= (Up ⊗ [VecΦᵀ (ωk)]

ᵀ)
∂

∂ϑᵀ
2

Vec
(
dX,T (ωk, ϑ2)⊗

∂dX,T (ωk, ϑ1)
∂ϑᵀ

1

)
= (Up ⊗ [VecΦᵀ (ωk)]

ᵀ) (Kp·d ⊗Ud)

Kd·dp

(
Vec

∂dX,T (ωk, ϑ1)
∂ϑᵀ

1
⊗

∂dX,T (ωk, ϑ2)
∂ϑᵀ

2

)

= (Up ⊗ [VecΦ (ωk)]
ᵀ)

(
Vec

∂dX,T (ωk, ϑ1)
∂ϑᵀ

1
⊗

∂dX,T (ωk, ϑ2)
∂ϑᵀ

2

)

= T (Up ⊗ [VecΦ (ωk)]
ᵀ)

∂2IX,T (−ω, ϑ2, ϑ1)
∂ϑᵀ

1∂ϑ
ᵀ
2

; (27)

see (24) and (25). Similar steps lead to the mixed derivative ∂2/∂ϑᵀ
2∂ϑ

ᵀ
1 ,

∂

∂ϑᵀ
1

Vec

(
[VecΦᵀ (ωk)]

ᵀ
[
∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

⊗ dX,T (ωk, ϑ1)

])

= (Up ⊗ [VecΦᵀ (ωk)]
ᵀ)

[
Vec

∂dX,T (ωk, ϑ2)
∂ϑᵀ

2
⊗

∂dX,T (ωk, ϑ1)
∂ϑᵀ

1

]

= T (Up ⊗ [VecΦᵀ (ωk)]
ᵀ)

∂2IX,T (ω, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

; (28)

clearly at ϑ1 = ϑ2 = ϑ the expressions (27) and (28) are complex conjugate.
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7.5 Scaled Derivative

Consider the second scaled derivative of Xt+h (ϑ1)X
ᵀ
t (ϑ2),

∂2
s,TXt+h(ϑ1)X

ᵀ
t (ϑ2)

∂s,Tϑ
ᵀ
2∂s,Tϑ

ᵀ
1

= Vec
∂s,TXt (ϑ2)

∂s,Tϑ
ᵀ
2
⊗

∂s,TXt+h(ϑ1)
∂s,Tϑ

ᵀ
1

+ (Kp·d ⊗Ud)Kd·dp

[
Vec

∂s,TXt+h (ϑ1)
∂s,Tϑ

ᵀ
1

⊗ ∂s,TXt (ϑ2)
∂s,Tϑ

ᵀ
2

]
,

at DTXt(ϑ). The scaled derivative of each term is

DT

[
∂

∂ϑᵀ Xt (ϑ)
]
D1,T ,

by definition; hence

Vec
∂s,TDTXt(ϑ2)

∂s,Tϑ
ᵀ
2

⊗
∂s,TDTXt+h(ϑ1)

∂s,Tϑ
ᵀ
1

= (D1,T ⊗DT ⊗DT )×
[
Vec

∂Xt (ϑ2)
∂ϑᵀ

2
⊗

∂Xt+h (ϑ1)
∂ϑᵀ

1

]
D1,T .

The matrices (D1,T ⊗DT ⊗DT ) and (Kp·d ⊗Ud)Kd·dp commute. We con-
clude

∂2
s,TDTXt+h (ϑ1)DTX

ᵀ
t (ϑ2)

∂s,Tϑ
ᵀ
2∂s,Tϑ

ᵀ
1

= (D1,T ⊗DT ⊗DT )
[
∂2Xt+h (ϑ1)X

ᵀ
t (ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

]
D1,T .

7.6 Asymptotic Variance for the Linear Model

The variance matrix of the complex vector Vec
∑T1

k=−T1
Φ(ωk)IY ,X,T (ωk) is

an easy calculation based on the calculus worked out in [Ter02]. It turns out
that

lim
T→∞

Var

(
1
T

Vec
T1∑

k=−T1

Φ (ωk) IY ,X,T (ωk)

)

= Vec
∫ 1/2

−1/2
dFᵀ(ω)⊗

[
Φ(ω)SZ(ω)Φ(ω)

]
. (29)

Taking Φ(ω) = S−1
Z (ω), we derive the variance (12) directly from (10). The

mixed derivative
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑ

ᵀ
1

,
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is the inverse Fourier transform of the same mixed derivative of CX (h, ϑ)
which is the limit of the (∂2IX,T (ω, ϑ1, ϑ2))/∂ϑ

ᵀ
2∂ϑ

ᵀ
1 at ϑ1 = ϑ2 = ϑ; in our

case,

∂2IX,T (ω, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

= Vec
∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

⊗
∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

(30)

= Vec
∂B2dX,T (ωk)
∂ (VecB2)

ᵀ ⊗
∂B1dX,T (ωk)
∂ (VecB1)

ᵀ

= dX,T (ωk)⊗VecUd ⊗ dᵀ
X,T (ωk)⊗Ud .

The product

(Upd ⊗ [VecΦᵀ (ωk)]
ᵀ)
(
dX,T (ωk)⊗VecUd ⊗ dᵀ

X,T (ωk)⊗Ud

)
equals [

dX,T (ωk) d∗
X,T (ωk)

]ᵀ
⊗Φ (ωk) ,

and (12) follows.

7.7 Variance Matrix for the Mixed Model

Put the objective function in terms of the parameters

QT (B1,B2, λ) (31)

=
T1∑

k=−T1

[Tr(IY ,T (ωk)Φ(ωk))

+ Tr(B1IX1,T
(ωk)B

ᵀ
1Φ(ωk)) + Tr(B1IX1,X2,T

(ωk, λ)Bᵀ
2Φ(ωk))

+ Tr(B2IX2,X1,T
(ωk, λ)Bᵀ

1Φ(ωk)) + Tr(B2IX2,T
(ωk, λ)Bᵀ

2Φ(ωk))

− Tr(IY ,X1,T
(ωk)B

ᵀ
1Φ(ωk))− Tr(B1IX1,Y ,T

(ωk)Φ(ωk))

− Tr(IY ,X2,T
(ωk, λ)Bᵀ

2Φ(ωk))− Tr(B2IX2,Y ,T
(ωk, λ)Φ(ωk))] .

Consider now the normal equations

∂QT (B1,B2, λ)
∂B1

= 0 ,

∂QT (B1,B2, λ)
∂B2

= 0 ,

Vec
∂QT (B1,B2, λ)

∂λᵀ = 0 .

They are written
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∂QT (B1,B2, λ)
∂B1

=
T1∑

k=−T1

Φᵀ (ωk)B1I
ᵀ
X1,T

(ωk) + Φ (ωk)B1IX1,T
(ωk)

+ Φᵀ (ωk)B2I
ᵀ
X1,X2,T

(ωk, λ) + Φ (ωk)B2IX2,X1,T
(ωk, λ)

−Φ (ωk) IY ,X1,T
(ωk)−Φᵀ (ωk) I

ᵀ
X1,Y ,T

(ωk) .

Similarly

∂QT (B1,B2, λ)
∂B2

=
T1∑

k=−T1

Φᵀ (ωk)B2I
ᵀ
X2,T

(ωk, λ) + Φ (ωk)B2IX2,T
(ωk, λ)

+ Φᵀ (ωk)B1I
ᵀ
X1,X2,T

(ωk, λ) + Φ (ωk)B1IX2,X1,T
(ωk, λ)

−Φ (ωk) IY ,X2,T
(ωk, λ)−Φᵀ (ωk) I

ᵀ
X2,Y ,T

(ωk, λ) ,

and finally

Vec
∂QT (B1,B2, λ)

∂λᵀ

=
T1∑

k=−T1

[
∂B1IX1,X2,T

(ωk, λ)Bᵀ
2

∂λᵀ +
∂B2IX2,X1,T

(ωk, λ)Bᵀ
1

∂λᵀ

+
∂B2IX2,T

(ωk, λ)Bᵀ
2

∂λᵀ −
∂IY ,X2,T

(ωk, λ)Bᵀ
2

∂λᵀ

−
∂B2IX2,Y ,T

(ωk, λ)
∂λᵀ

]
Vec[Φᵀ(ωk)] .

The variance of the derivative Let us denote the limit of the Hessian
matrix of the estimates Vec(Vec B̂1,Vec B̂2, λ̂) by

Σ = 2

⎡⎣Σ11 Σ12 Σ1λ
Σ21 Σ22 Σ2λ
Σλ1 Σλ2 Σλλ

⎤⎦ .

The second derivative of ∂QT (B1,B2, λ)/∂B1 by B1 depends neither on B2
nor λ. Therefore, according to (12),

Σ11 =
∫ 1/2

−1/2
dFᵀ

11(ω)⊗ S−1
Z (ω) ;

here as well as later on Φ = S−1
Z . The matrix Σ12 between Vec B̂1 and Vec B̂2

follows from

∂2QT (B1,B2, λ)
∂B2∂B1

=
T1∑

k=−T1

IX1,X2,T
(ωk, λ)⊗Φᵀ(ωk) + Iᵀ

X2,X1,T
(ωk, λ)⊗Φ(ωk) ,
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so it is

Σ12 =
∫ 1/2

−1/2
dFᵀ

1,2(ω, λ0)⊗ S−1
Z (ω) .

The second derivative of ∂QT (B1,B2, λ)/∂B2 by B2 is similar except the
SDFR depends on λ

Σ22 =
∫ 1/2

−1/2
dF2(ω, λ0)⊗ [S−1

Z (ω)]ᵀ .

Now for the matrix Σ1λ consider

∂2QT (B1,B2, λ)
∂B1∂λᵀ =

T1∑
k=−T1

∂ VecΦᵀ (ωk)B2I
ᵀ
X1,X2,T

(ωk, λ)

∂λᵀ

+
∂ VecΦ (ωk)B2IX2,X1,T

(ωk, λ)
∂λᵀ

=
1
T

T1∑
k=−T1

[
∂ VecΦᵀ (ωk)B2dX2,T

(ωk, λ)dᵀ
X1,T

(ωk)

∂λᵀ

+
∂ VecΦ (ωk)B2dX2,T

(ωk, λ) d∗
X1,T

(ωk)

∂λᵀ

]

=
1
T

T1∑
k=−T1

(Up ⊗Φᵀ(ωk)B2)

[
dX1,T

(ωk)⊗
∂dX2,T

(ωk, λ)

∂λᵀ

]

+ (Up ⊗Φ (ωk)B2)

[
dX1,T

(ωk)⊗
∂dX2,T

(ωk, λ)

∂λᵀ

]
;

hence the limit

Σ1λ =
∫ 1/2

−1/2
(Up ⊗Φ (ω)B2,0) d

∂F1,2 (ω, λ0)
∂λᵀ

=
∫ 1/2

−1/2
(Up ⊗ S−1

Z (ω)B2,0) d
∂F1,2(ω, λ0)

∂λᵀ .

The matrix Σ2λ based on

∂QT (B1,B2, λ)
∂B2

=
T1∑

k=−T1

Φᵀ(ωk)B2I
ᵀ
X2,T

(ωk, λ) + Φ(ωk)B2IX2,T
(ωk, λ)

+ Φᵀ (ωk)B1I
ᵀ
X1,X2,T

(ωk, λ) + Φ (ωk)B1IX2,X1,T
(ωk, λ)

−Φ (ωk) IY ,X2,T
(ωk, λ)−Φᵀ (ωk) I

ᵀ
X2,Y ,T

(ωk, λ) ,
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∂2QT (B1,B2, λ)
∂B2∂λᵀ

=
T1∑

k=−T1

∂ VecΦᵀ (ωk)B2I
ᵀ
X2,T

(ωk, λ)

∂λᵀ +
∂ VecΦ (ωk)B2IX2,T

(ωk, λ)
∂λᵀ

+
∂ VecΦᵀ (ωk)B1I

ᵀ
X1,X2,T

(ωk, λ)

∂λᵀ +
∂ VecΦ (ωk)B1IX2,X1,T

(ωk, λ)
∂λᵀ

−
∂ VecΦ (ωk) IY ,X2,T

(ωk, λ)
∂λᵀ −

∂ VecΦᵀ (ωk) I
ᵀ
X2,Y ,T

(ωk, λ)

∂λᵀ

= 2
T1∑

k=−T1

∂ VecΦᵀ (ωk)B2I
ᵀ
X2,T

(ωk, λ1, λ2)

∂λ1
ᵀ

∣∣∣∣∣
λ1=λ2=λ

.

By equation (13), the limit of the derivative at ϑ = ϑ0 is zero, thus

Σ2λ =
∫ 1/2

−1/2
(Uq ⊗Φ (ω)B2,0)

∂F2,2 (ω, λ1, λ2)
∂λᵀ

1

∣∣∣∣
λ1=λ2=λ0

.

The matrix Σλλ comes from the general result (10):

Σλλ =
∫ 1/2

−1/2
(Ur ⊗ [Vec([S−1

Z (ω)]ᵀ)ᵀ(B2,0 ⊗B2,0)])

× d
∂2F2,2 (ω, λ1, λ2)

∂λᵀ
2∂λ

ᵀ
1

∣∣∣∣
λ1=λ2=λ0

=
∫ 1/2

−1/2
(Ur ⊗Vec([Bᵀ

2,0S
−1
Z (ω)B2,0]ᵀ)ᵀ)

× d
∂2F2,2 (ω, λ1, λ2)

∂λᵀ
2∂λ

ᵀ
1

∣∣∣∣
λ1=λ2=λ0

.

Finally

lim
T→∞

Var[Vec(Vec B̂1,Vec B̂2, λ̂)] =

⎡⎣Σ11 Σ12 Σ1λ
Σ21 Σ22 Σ2λ
Σλ1 Σλ2 Σλλ

⎤⎦−1

.

Use Theorem 2 of [MN99, p. 16] for the inverse.
We use the general formula for the variance of the estimate of ϑ =

Vec(VecB1,VecB2, λ), where B1 is d × p, B2 is d × q, λ is r × 1, X1,t has
dimension p, and X2,t(λ) has dimension q. For the mixed derivative

∂2F (ω, ϑ1, ϑ2)
∂ϑᵀ

2∂ϑ
ᵀ
1

(32)

we use
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IX,T (ωk, ϑ) = BIX3,T
(ωk, λ)Bᵀ

= [B1dX1,T
(ωk) + B2dX2,T

(ωk, λ)]

× [B1dX1,T
(ωk) + B2dX2,T

(ωk, λ)]∗ |B1=B2 .

To the parameters ϑ1, ϑ2 will correspond ϑi = Vec(VecB1i,VecB2i, λi), i =
1, 2. Write

IX,T (ωk, ϑ1, ϑ2) = [B11dX1,T
(ωk) + B21dX2,T

(ωk, λ1)]

× [B12dX1,T
(ωk) + B22dX2,T

(ωk, λ2)]
∗

= B11dX1,T
(ωk)d∗

X1,T
(ωk)B

ᵀ
12

+ B21dX2,T
(ωk, λ1)d

∗
X1,T

(ωk)B
ᵀ
12

+ B11dX1,T
(ωk)d∗

X2,T
(ωk, λ2)B

ᵀ
22

+ B21dX2,T
(ωk, λ1)d

∗
X2,T

(ωk, λ2)B
ᵀ
22 .

The variance of ⎡⎢⎢⎢⎢⎣
[
∂QT (B1,B2,λ)

∂ VecBᵀ
1

]ᵀ
[
∂QT (B1,B2,λ)

∂ VecBᵀ
2

]ᵀ
[
∂QT (B1,B2,λ)

∂λᵀ

]ᵀ
⎤⎥⎥⎥⎥⎦

according to the mixed derivative (32) contains nine nonzero terms.

(A1). We have already seen the case

∂2B11dX1,T
(ωk)d∗

X1,T
(ωk)B

ᵀ
12

∂B12∂B11

= dX1,T
(ωk)⊗VecUd ⊗ dᵀ

X1,T
(ωk)⊗Ud .

See (30). The linear model shows

(Upd ⊗ [VecΦᵀ(ωk)]ᵀ)(dX1,T
(ωk)⊗VecUd ⊗ dᵀ

X1,T
(ωk)⊗Ud)

= [dX1,T
(ωk)d∗

X1,T
(ωk)]ᵀ ⊗Φ(ωk) .

The cases

∂2B21dX2,T
(ωk, λ1) d

∗
X1,T

(ωk)B
ᵀ
12

∂B12∂B21

= dX1,T
(ωk)⊗VecUd ⊗ dᵀ

X2,T
(ωk, λ1)⊗Ud ,

∂2B11dX1,T
(ωk) d∗

X2,T
(ωk, λ2)B

ᵀ
22

∂B22∂B11

= dX2,T
(ωk, λ2)⊗VecUd ⊗ dᵀ

X1,T
(ωk)⊗Ud ,
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and

∂2B21dX2,T
(ωk, λ1) d

∗
X2,T

(ωk, λ2)B
ᵀ
22

∂B22∂B21

= dX2,T
(ωk, λ2)⊗VecUd ⊗ dᵀ

X2,T
(ωk, λ1)⊗Ud

are similar because the parameters λi are fixed here. Also

(Upd ⊗ [VecΦᵀ (ωk)]
ᵀ)
(
dX1,T

(ωk)⊗VecUd ⊗ dᵀ
X2,T

(ωk, λ1)⊗Ud

)
=
[
dX2,T

(ωk, λ1) d
∗
X1,T

(ωk)
]ᵀ
⊗Φ (ωk) ,

(Upd ⊗ [VecΦᵀ (ωk)]
ᵀ)
(
dX1,T

(ωk)⊗VecUd ⊗ dᵀ
X2,T

(ωk, λ2)⊗Ud

)
=
[
dX1,T

(ωk) d∗
X2,T

(ωk, λ2)
]ᵀ
⊗Φ (ωk) ,

(Uqd ⊗ [VecΦᵀ (ωk)]
ᵀ)
(
dX2,T

(ωk, λ2)⊗VecUd ⊗ dᵀ
X2,T

(ωk, λ1)⊗Ud

)
=
[
dX2,T

(ωk, λ1) d
∗
X2,T

(ωk, λ2)
]ᵀ
⊗Φ (ωk) .

(A2). Taking the derivative with respect to λ2 and λ1,

∂2B21dX2,T
(ωk, λ1)d

∗
X2,T

(ωk, λ2)B
ᵀ
22

∂λᵀ
2∂λ

ᵀ
1

= VecB22
∂dX2,T

(ωk, λ2)

∂λᵀ
2

⊗B21
∂dX,T (ωk, λ1)

∂λᵀ
1

=

[
(Ur ⊗B22) Vec

∂dX2,T
(ωk, λ2)

∂λᵀ
2

]
⊗B21

∂dX,T (ωk, λ1)
∂λᵀ

1

=(Ur ⊗B22 ⊗B21)
∂2dX2,T

(ωk, λ1)d
∗
X2,T

(ωk, λ2)

∂λᵀ
2∂λ

ᵀ
1

,

therefore we can apply the earlier result.
(A3). Consider now
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(Upd ⊗ [VecΦᵀ(ωk)]ᵀ)
∂2B21dX2,T

(ωk, λ1) d
∗
X1,T

(ωk)B
ᵀ
12

∂B12∂λ
ᵀ
1

=(Upd ⊗ [VecΦᵀ(ωk)]ᵀ)

× ∂

∂λᵀ
1

Vec
∂ Vec[B21dX2,T

(ωk, λ1)d
∗
X1,T

(ωk)B
ᵀ
12]

∂(VecB12)ᵀ

=(Upd ⊗ [VecΦᵀ(ωk)]ᵀ)
∂

∂λᵀ
1
(Udp ⊗Kd·d)

×Vec(B21dX2,T
(ωk, λ1)d

∗
X1,T

(ωk)⊗Ud)

=(Upd ⊗ [VecΦ(ωk)]ᵀ)

× ∂

∂λᵀ
1

Vec(B21(dX2,T
(ωk, λ1)d

∗
X1,T

(ωk))⊗Ud)

=
∂

∂λᵀ
1

Vec[[VecΦ(ωk)]ᵀ(B21(dX2,T
(ωk, λ1)d

∗
X1,T

(ωk))⊗Ud)]

=
∂

∂λᵀ
1

Vec[(B21(dX2,T
(ωk, λ1)d

∗
X1,T

(ωk))⊗Ud) VecΦ(ωk)]

=
∂

∂λᵀ
1

Vec[Φ(ωk)B21(dX2,T
(ωk, λ1)d

∗
X1,T

(ωk))]

=(Up ⊗Φ(ωk)B21)

[
dX1,T

(ωk)⊗
∂dX2,T

(ωk, λ)

∂λᵀ

]
.

(A4). The case

(Uqd ⊗ [VecΦ (ωk)]
ᵀ)

∂2B21dX2,T
(ωk, λ1) d

∗
X2,T

(ωk, λ2)B
ᵀ
22

∂B22∂λ
ᵀ
1

= (Uq ⊗Φ (ωk)B21)

[
dX2,T

(ωk, λ2)⊗
∂dX2,T

(ωk, λ1)

∂λ1
ᵀ

]
.

is as the previous one.
(A5).
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∂2B21dX2,T
(ωk, λ1) d

∗
X2,T

(ωk, λ2)B
ᵀ
22

∂λᵀ
2∂B21

=
∂

∂ (VecB21)
ᵀ Vec

[
(B22 ⊗B21)

(
dX2,T

(ωk, λ2)

∂λᵀ
2

⊗ dX2,T
(ωk, λ1)

)]

=
∂

∂ (VecB21)
ᵀ([(

dX2,T
(ωk, λ2)

∂λᵀ
2

⊗ dX2,T
(ωk, λ1)

)ᵀ

⊗Ud2

]
Vec (B22 ⊗B21)

)

=

[(
dX2,T

(ωk, λ2)

∂λᵀ
2

⊗ dX2,T
(ωk, λ1)

)ᵀ

⊗Ud2

]
× (Uq ⊗Kq·d ⊗Ud) (VecB22 ⊗Udq) .

(A6).

∂2B11dX1,T
(ωk)d∗

X2,T
(ωk, λ2)B

ᵀ
22

∂λᵀ
2∂B11

=

[(
dX2,T

(ωk, λ2)

∂λᵀ
2

⊗ dX1,T
(ωk)

)ᵀ

⊗Ud2

]
(Uq ⊗Kp·d ⊗Ud)(VecB22 ⊗Udp) .

The block follows∫ 1/2

−1/2
Ur ⊗ ([Vec (Φᵀ (ωk))]

ᵀ [B22 ⊗B21]) d
∂2F2 (ω, λ1, λ2)

∂λᵀ
2∂λ

ᵀ
1

.
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Nonparametric estimator of a quantile function
for the probability of event with repeated data
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1 Introduction

Consider the case where an event occurs when a process Y decreases under a
specific value µY . The knowledge of the threshold µY is of particular interest,
but there are situations where Y is not observable. Instead, suppose that we
are able to observe a process X associated to Y by a function m such that
E{X} = E{m(Y )}. When m is monotonic, it becomes possible to estimate
the threshold µX = m(µY ) for the process X related to the occurrence of
event.

These issues are frequently encountered in biomedical fields, where longi-
tudinal data, such as demographic or clinical characteristics, are recorded to
reflect a more complex disease evolution process. Think for example to the dia-
betes mellitus that is caused by the destruction or the dysfunction of β-cells of
the islets of Langerhans in pancreas; indirect measures of this β-cells dysfunc-
tion rely on biological parameters such as glycosolated hemoglobin increase.
Another example, studied in this paper, is the Duchenne Muscular Dystrophy
(DMD), a disease resulting from a deficit in a protein called dystrophin, and
passed by a mother to her son. The diagnosis of being a DMD gene carrier
for a mother is difficult to make since only slight symptoms are experienced.
However, several enzymes levels have been shown to increase significantly for
the carrier mothers. One can then develop diagnostic tests by estimating on a
sample of mothers with known status (DMD carrier or not) the limiting values
of the enzymes levels above which the diagnosis is considered as positive.

We suppose that for a sample of n individuals, a random number of obser-
vations, say Ji, is recorded for each individual. For subject i, i = 1, ..., n, for
observation j, j = 1, ..., Ji, let Yij be the value of the unmeasurable process
Y , such that Yij ≥ Yij+1. We observe (δij , Xij) with δij = I {Yij ≤ µY } and
Xij = m(Yij)+ εij , where (i) the {εij} have zero mean, are independent from
the {Yij}, with continuous distribution function Fε and with density function
fε continuously differentiable and symmetrical at 0; (ii) m is continuous and
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monotonic, assumed increasing in the following, so that E{Xij} ≥ E{Xij+1}.
Then, for any i = 1, ..., n, Yi = (Yi1, ..., YiJi)

′, Xi = (Xi1, ..., XiJi)
′ and

εi = (εi1, ..., εiJi)
′ are vectors of dependent variables.

Conditionally to Xi, {δij , j = 1, ..., Ji} is a sequence of Bernoulli variables
with parameter p(x) = Pr{δij = 1|Xij = x} = 1 − Fε(x − µX), and with
E{δijδij′ |Xij = x,Xij′ = x′} = p(x) for j′ > j.

By symmetry of fε, p(µX) = 1/2, and reciprocally µX = p−1(1/2); since p
is a decreasing continuous function, its inverse distribution p−1 is defined by

p−1(u) = sup {x : p(x) ≥ u}

for u ∈ (0, 1). Let q(u) denote p−1(u) for u in (0, 1), so that µX = q(1/2).
The nonparametric estimation of the quantile distribution of a cumulative

density function has been extensively studied in the literature for indepen-
dent data. Quantiles estimators may be obtained by smoothing the empir-
ical quantile function, for example with kernel functions (see among others
Parzen, 1979; Sheather and Marron, 1990; Cheng and Parzen, 1997, and the
references therein), or by quantile regression (see e.g. Koenker and Bassett,
1978). Methods to handle dependent data differ with the structure of the
dependence between observations. For stationary time series, mixing assump-
tions ensure the asymptotic independence of blocks of observations (Billings-
ley, 1968, Doukhan, 1994). For repeated data, when the function m is linear,
quantile regression provides estimators that are conditional to the value of the
process Y and whose properties have been explored as both the number of
subjects in the sample n and the number of measures per subject Ji = J tend
to infinity, provided J grows faster than n (Koenker, 2004). In this paper, we
let the function m unspecified, and we consider that asymptotics is achieved
for large n whereas the number of observations per subject remains bounded,
supposing an ergodic property for the unknown densities of the Xij ’s. We
propose to estimate the quantile function q by inverting a smooth estimator
of the probability curve p, leading to the following estimator:

q̂N,h(u) = sup{x : p̂N,h(x) ≥ u}

for u in (0, 1), where p̂N,h denotes a kernel estimator of p depending on the
total number of observations N and of a smoothing parameter h.

In section 2, we begin to establish the asymptotics for the probability
estimator p̂N,h(x): by classical arguments (Hall, 1984; Shorack and Wellner,
1986; Nadaraya, 1989, Härdle, 1990), we derive its bias and variance, and
their convergence to zero implies the L2-convergence of p̂N,h(x) to p(x). We
then prove the convergence in distribution of the process (Nh)1/2{p̂N,h −
p} to a Gaussian variable of which expectation and variance are deduced
from the bias and variance of p̂N,h. These results allow to state the main
theorem of this article about the convergence in distribution of the process
(Nh)1/2{q̂N,h−q}. In section 3, we give an asymptotic expression of the Mean
Squared Error of q̂N,h(u) for u in (0; 1), and its minimization in h is shown
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equivalent to the minimization in h of the MSE of p̂N,h(x) for x = q(u),
resulting in a unique optimal local bandwidth, an approximation of which is
possible with a bootstrap procedure. The last section illustrates the method
with an application to real data about the diagnosis of Duchenne Muscular
Dystrophy.

2 Asymptotics

The conditional probability p(x) is estimated by the smooth estimator

p̂N,h(x) =
N−1∑n

i=1
∑Ji

j=1 Kh(x−Xij)δij

N−1
∑n

i=1
∑Ji

j=1 Kh(x−Xij)
, (1)

with N =
∑n

i=1 Ji and with Kh(x) = h−1K(h−1x), where K is a kernel
function for which we suppose the following assumptions hold:

(K1) K is a positive symmetrical function having compact support [−1; 1];
(K2)

∫
K(v)dv = 1, κ =

∫
v2K(v)dv < ∞, κγ =

∫
Kγ(v)dv < ∞ for γ ≥ 0,∫

|K ′(v)|γdv <∞ for γ = 1, 2;
(K3) as n→∞, h→ 0 and Nh5 converges to a finite N0 a.s.;
(K4) for supi=1,...,n Ji <∞, a.s.

This condition implies that, as n → ∞, N → ∞ with N/n < ∞ a.s. and
J(n)/N <∞ a.s. where J(n) =

∑n
i=1 Ji(Ji − 1).

Let fXij and f(Xij ,Xij′ ) be the unknown density functions of the Xij ’s and
of the (Xij , Xij′)’s for j �= j′ respectively. We restrict the study to a finite
sub-interval IX = [a, b] of the support of the process X, and, for h > 0, let
IX,h denote [a+ h; b− h]. In addition of the hypotheses formulated above, we
suppose that

(D1) the function p is twice continuously differentiable and strictly monotonic
on IX ;

(D2) E{N−1∑n
i=1

∑Ji

j=1 fXij (x)} converges as N → ∞ to a function s(0)(x),
where s(0) is strictly positive and twice continuously differentiable on IX .
We denote by s(γ) its γth derivative for γ ≤ 2;

(D3) E{N−1∑n
i=1

∑Ji

j=1 fXij
(x1)fXij

(x2)} converges as N → ∞ to a continu-
ous function v(x1, x2) on I⊗2

X ;
(D4) The expectations E{J(n)−1∑n

i=1
∑Ji

j=1
∑

j′ �=j f(Xij ,Xij′ )(x1, x2)} and

E{J(n)−1∑n
i=1

∑Ji

j=1
∑

j′ �=j fXij
(x1)fXij′ (x2)} converge as N → ∞ to

continuous functions c1(x1, x2) and c2(x1, x2) respectively on I⊗2
X .

We introduce n̂N,h(x) and d̂N,h(x) as the numerator and denominator of
(1) respectively; let also dN,h(x) = E{d̂N,h(x)}, nN,h(x) = E {n̂N,h(x)} and
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pN,h(x) = E {p̂N,h(x)} . When N , and J1, . . . , Jn are actually random, our
results hold conditionally on N .

Proposition 1 states different results about the kernel estimator p̂N,h(x):
part (a) concerns the convergence in probability of p̂N,h; its bias, its vari-
ance and its higher order moments are given in part (b); the derivation
of its variance allows an expansion of (Nh)1/2{p̂N,h − pN,h}(x) in part (c)
that will be central to prove the convergence in distribution of the process
(Nh)1/2{p̂N,h − pN,h} in Theorem 1.

Proposition 1. For h > 0, on IX,h,
(a) p̂N,h converges in probability to p uniformly in x.

(b) p̂N,h(x) converges in norm L2 to p(x), with bias

bN,h(x) = h2B(x) + o(h2), B(x) = κ
{
p(1)(x)s(1)(x){s(0)(x)}−1 +

1
2
p(2)(x)

}
,

and with variance

vN,h(x) = N−1h−1σ2(x) + o(N−1h−1), σ2(x) = p(x){1− p(x)}κ2{s(0)(x)}−1.

(c) The following expansion holds:

(Nh)1/2 {p̂N,h − pN,h} (x) = (Nh)1/2
{
s(0)(x)

}−1

×
[
{n̂N,h − nN,h} (x)− p(x){d̂N,h − dN,h}(x)

]
+ oL2 (1) . (2)

Theorem 1. For h > 0, the process UN,h = (Nh)1/2{p̂N,h − p}I{IX,h} con-

verges in distribution to W +N
1/2
0 B where W is a centered Gaussian variable

on IX with variance σ2 and with null covariances.

Proof (Proof of Theorem 1). Under assumptions (K1 −K4) and (D1 −D4),

(Nh)1/2
(
n̂N,h(x)− nN,h(x), d̂N,h(x)− dN,h(x)

)′
converges in distribution to

a centered Gaussian variable for any x ∈ IX,h.
The convergence of (Nh)1/2{p̂N,h(x) − pN,h(x)} to a centered Gaussian

variable follows then from formula (2), and its limiting variance is σ2(x).
Now, for any x ∈ IX,h, write UN,h(x) = (Nh)1/2{p̂N,h(x) − pN,h(x)} +

(Nh)1/2bN,h(x). With Proposition 1,

UN,h(x) = (Nh)1/2{p̂N,h(x)− pN,h(x)}+ (Nh5)1/2B(x) + o
(
(Nh5)1/2

)
.

Since, as N → ∞, Nh5 converges a.s. to a finite N0, UN,h(x) converges to
{W + N

1/2
0 B}(x).
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To ensure the weak convergence of the process UN,h on IX,h, we have
to prove the weak convergence of its finite dimensional distributions and its
tightness (Billingsley, 1968). Let x1, ..., xm be elements of IX,h each. As shown
above, for k = 1, ...,m, UN,h(xk) converges to a Gaussian variable with vari-
ance σ2(xk); the vector (UN,h(x1), ..., UN,h(xm))′ converges then to a mul-
tivariate Gaussian distribution with variance covariance matrix

{
σ2(xk, xl)

}
for k = 1, ...,m and l = 1, ...,m, where σ2(xk, xl) remains to be expressed for
k �= l. By (2),

cov{UN,h(xk), UN,h(xl)} =
Nh

s(0)(xk)s(0)(xl)
[cov{n̂N,h(xk), n̂N,h(xl)}

− p(xk)cov{d̂N,h(xk), n̂N,h(xl)} − p(xl)cov{n̂N,h(xk), d̂N,h(xl)}

+ p(xk)p(xl)cov{d̂N,h(xk), d̂N,h(xl)}
]

+ o(1).

With assumptions (D3) and (D4),

cov{n̂N,h(xk), n̂N,h(xl)} = N−1h−1p

(
xk + xl

2

)
s(0)

(
xk + xl

2

)
× 1{0 ≤ α < 1}

∫
K (v − α)K (v + α) dv + o(N−1h−1),

where α = |xl − xk|/(2h). For 0 ≤ α < 1,

p

(
xk + xl

2

)
= p(xk) + o(1) = p(xl) + o(1),

s(0)
(

xk + xl
2

)
= s(0)(xk) + o(1) = s(0)(xl) + o(1),

and the first term of cov {UN,h(xk), UN,h(xl)} becomes

1
2

{
p(xk)

s(0)(xk)
+

p(xl)
s(0)(xl)

}
1{0 ≤ α < 1}

(∫
K (v − α)K (v + α) dv

)
+ o(1).

By similar developments for the other covariance terms,

cov {UN,h(xk), UN,h(xl)} =
1
2

{
p(xk)(1− p(xk))

s(0)(xk)
+

p(xl)(1− p(xl))
s(0)(xl)

}
1{0 ≤ α < 1}

(∫
K (v − α)K (v + α) dv

)
+ o(1).

As N → ∞, h → 0 and 1 {0 ≤ α < 1} → 0 unless xk = xl: for xk �= xl,
cov {UN,h(xk), UN,h(xl)} = o(1), so that the limiting variance covariance ma-
trix of the Gaussian variable W is such that σ2(xk, xl) = 0.

The tightness of the sequence {UN,h} on IX,h will follow from (i) the tight-
ness of {UN,h(a)} and (ii) a bound of the increments E |UN,h(x2)− UN,h(x1)|2.
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For condition (i), let ε > 0 and c > N
1/2
0 |B(a)|+

(
2ε−1σ2(a)

)1/2. Then

Pr{|UN,h(a)| > c} ≤ Pr
{

(Nh)1/2|(p̂N,h − pN,h)(a)|+ (Nh)1/2|bN,h(a)| > c
}

≤ var{(Nh)1/2(p̂N,h − pN,h)(a)}
{c− (Nh)1/2|bN,h(a)|}2 ;

for N sufficiently large,

Pr{|UN,h(a)| > c} ≤ σ2(a)

{c−N
1/2
0 |B(a)|}2

+ o(1) < ε.

Consider condition (ii). UN,h is written WN,h + (Nh)1/2bN,h where

{bN,h(x1)− bN,h(x2)}2 ≤ cb,N,h(x1 − x2)2

with cb,N,h a positive constant, and

WN,h = (Nh)1/2 {p̂N,h − pN,h}

=
(Nh)1/2

d̂N,h

{
[n̂N,h − nN,h]− p

[
d̂N,h − dN,h

]
−
(

nN,h
dN,h

− p

)[
d̂N,h − dN,h

]}
+ (Nh)1/2

(
nN,h
dN,h

− pN,h

)
.

One can then compute

(Nh)1/2
(

nN,h
dN,h

− pN,h

)
= o

(
(Nh5)1/2

)
= o(1),

1
dN,h

=
1

f (0)

{
1−

[
dN,h − f (0)

]
[1 + o(1)]

f (0)

}
=

1
f (0)

[
1−O(h2)

]
,

1

d̂N,h
=

1
dN,h

∑
k≥0

(
− d̂N,h − dN,h

dN,h

)k
=

[
1−O(h2)

]
f (0)

∑
k≥0

{
− d̂N,h − dN,h

f (0)

}k
.

As for Proposition 1, we can prove that var{d̂N,h(x1)− d̂N,h(x2)} ≤ cd(x1 −
x2)2(Nh)−1 for a constant cd, and similar bounds hold for var{n̂N,h(x1) −
n̂N,h(x2)} and var{p̂N,h(x1) − p̂N,h(x2)}. Under conditions (D1)-(D4), this
implies that there exists a constant cN,h such that

E
{
1ΩN,h

[UN,h(x1)− UN,h(x2)]
}2 ≤ cN,h(x1 − x2)2,

where ΩN,h is a probability set where all the o converging to zero in the
approximation of the process UN,h by the previous expansions are sufficiently
small for large N . ��
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Since the limiting distribution of the process UN,h does not depend on the
bandwidth h, one can state the following corollary:

Corollary 1. suph>0:Nh5→N0 a.s. UN,h converges in distribution to W+N
1/2
0 B.

Consider now the quantile estimator

q̂N,h(u) = sup{x ∈ IX,h : p̂N,h(x) ≥ u} (3)

introduced in section 1; as asserted in the following lemma, the uniqueness
of q̂N,h(u) for any u in ÎU,h = p̂N,h(IX,h) is guaranteed by the asymptotic
monotonicity of p̂N,h, due to its convergence in probability (Proposition 1)
and to the monotonicity of p.

Lemma 1. As N → ∞ and h → 0, for any x1 < x2 in IX,h and for every
ζ > 0, there exists C > 0 such that Pr{p̂N,h(x1)− p̂N,h(x2) > C} ≥ 1− ζ.

We can now state the main theorem that establishes the convergence in
distribution of the process (Nh)1/2{q̂N,h − q} to a non centered Gaussian
variable, the necessary condition for this variable to be centered being that
the limit N0 of Nh5 as N →∞ has to be null.

Theorem 2. For h > 0, on ÎU,h,
(a) q̂N,h converges in probability to q uniformly in u.

(b) The process (Nh)1/2{q̂N,h−q}1{ÎU,h} converges in distribution to the pro-

cess
W −N

1/2
0 B

p(1) ◦ q.

Proof. For u ∈ ÎU,h, there exists a unique x in IX,h such that u = p̂N,h(x);
then we have

q̂N,h(u)− q(u) = q ◦ p(x)− q ◦ p̂N,h(x) = − p̂N,h(x)− p(x)
p(1)(x)

+ o(p̂N,h(x)− p(x));

by Proposition 1(a), and since infx∈IX
|p(1)| > 0 by assumption (D1), q̂N,h(u)

converges in probability to q(u) uniformly on ÎU,h. Now write

(Nh)1/2 {q̂N,h − q} = (Nh)1/2
p ◦ q̂N,h − p ◦ q

∆̂N,h

with

∆̂N,h =
p ◦ q̂N,h − p ◦ q

q̂N,h − q
.

Since p ◦ q̂N,h − p ◦ q = {p− p̂N,h} ◦ q̂N,h, the numerator becomes

p ◦ q̂N,h − p ◦ q = {p− p̂N,h} ◦ q̂N,h,
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hence

(Nh)1/2{q̂N,h − q} =
−UN,h ◦ q̂N,h

∆̂N,h

.

By Theorem 1 and by uniform convergence in probability of q̂N,h to q(u),
the numerator converges in distribution to {W − N

1/2
0 B} ◦ q; again by uni-

form convergence in probability of q̂N,h, the denominator converges to p(1) ◦ q
uniformly on ÎU,h.

3 Optimal bandwidth

Although we do not express explicitly the bias and the variance of the esti-
mator q̂N,h(u) for a fixed u in ÎU,h, it is possible to find out an asymptotic
equivalent of its Mean Squared Error using the results of Proposition 1(b):
for any x in IX,h, an asymptotic equivalent of the MSE of p̂N,h(x) is

AMSEp(x, h) = N−1h−1σ2(x) + h4B2(x).

As in proof of Theorem 2, write, for any u in ÎU,h,

q̂N,h(u)− q(u) = −{p̂N,h − p} ◦ q̂N,h(u)
p(1) ◦ q̂N,h(u)

+ o({p̂N,h − p} ◦ q̂N,h(u)),

so that

q̂N,h(u)− q(u) = −{p̂N,h − p} ◦ q(u)
p(1) ◦ q(u)

+ oL2(1),

and an asymptotic equivalent of the MSE of q̂N,h(u) is

AMSEq(u, h) =
AMSEp(q(u), h)
{p(1) ◦ q(u)}2 .

The minimization in h of AMSEq(u, h) leads to the following optimal band-
width, varying with u, and called the optimal local bandwidth:

hopt(u) = N−1/5
{

σ2 ◦ q(u)
4B2 ◦ q(u)

}1/5

.

Note that hopt(u) equals the optimal local bandwidth minimizing AMSEp(x, h)
for the unique value of x such that x = q(u).

Several remarks can be made at this point. First of all, Theorem 1 extends
to a variable bandwidth h, that is, a function such that N supx∈IX

|h(x)|5 is
finite, and the optimal bandwidth has a rate of convergence given by N−1/5,
so that the rate of convergence of q̂N,hopt to q is N−4/5.
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Then, the limit N0 of Nh5 as N → ∞ is not null, so that the process
(Nh)1/2{q̂N,hopt − q} converges in distribution to a non centered Gaussian
variable.

Last, the optimal bandwidth depends on the probability function p, on its
first derivative p(1), on the limiting density s(0) and its first derivative s(1),
each of them being unknown. To obtain the optimal bandwidth estimate in
avoiding the estimation of these unknown distributions, we propose to use a
bootstrap procedure. For a fixed bandwidth h, let µ̂X = q̂N,h(1/2) be the esti-
mator (3) of µX in the whole sample of size N . B bootstrapped samples of size
N∗ are generated, including in a sample the entire block of observations of a
subject to maintain the dependence structure; estimating µX in these B sam-
ples allow to estimate the bias and variance of µ̂X and then AMSEq(1/2, h).
Reitering this procedure for different values of h leads to the optimal local
bandwidth corresponding to the minimal AMSE.

4 Application

The Duchenne Muscular Dystrophy (DMD) is an inherited disorder passed by
a mother to her son. The disorder is caused by a mutation of the dystrophin
gene, that codes for the dystrophin, a protein that is required inside muscle
cells for structural support. A deficit in dystrophin has for consequence a pro-
gressive muscular atrophy. Since the first signs of the disorder appear between
3 and 5, sometimes earlier, the Duchenne dystrophy is rapidly diagnosed for
children. But it is much more difficult to confirm that a mother is a carrier of
the DMD gene, because the carriers experience only slight symptoms; how-
ever, their levels of several enzymes were shown to be highest than for the
non-carrier mothers (Andrews and Herzberg, 1985). Our objective was to es-
timate the threshold values for these enzymes (several µX) corresponding to
the threshold value for dystrophin (µY ) above which a mother is declared car-
rier of the DMD gene (δ = 1); the function m linking X and Y is decreasing.
There were 125 subjects, 38 (30.4%) of them carrying the DMD gene. For
each woman, data consisted in the levels of creatine kinase, hemopexin, lac-
tate dehydrogenase and pyruvate kinase measured on a single blood sample,
up to seven times several days apart for some women.

Table 1 shows the sample mean, median and variance of each first mea-
surement enzyme level depending on the mother status; means and medians
were all tested significantly different for carrier and non carrier mothers.

The large values of sample variances in the carrier mother group are due to
several outliers. Because of this heterogeneity, the monotonicity of the Xij ’s is
not guaranteed; in this case, the value 1/2 may be reached more than once by
the function p̂N,h. We then compare the quantile estimator µ̂X,sup as defined
by (3) to

µ̂
X,inf = inf {x ∈ IX,h : p̂N,h(x) ≤ 1/2}



484 Claire Pinçon and Odile Pons

Enzyme Non-Carrier Carrier
Creatine kinase (UI/l) mean (s.d) 39.82 (19.03) 175.87 (192.82)

median 35.00 102.50
Hemopexin (mg/dl) mean (s.d) 83.40 (13.01) 93.99 (10.84)

median 82.50 93.05
Pyruvate kinase (UI/l) mean (s.d) 12.96 (3.91) 23.13 (17.60)

median 12.70 19.45
Lactate dehydrogenase (U/g) mean (s.d) 170.16 (41.63) 243.08 (62.26)

median 167.50 242.50

Table 1. Enzymes levels description according to the status of the mothers (carriers
vs non-carriers of the DMD gene) for the first blood sample.

to observe if there are notable differences between these estimates. For con-
venience, we suppress the subscript X in the names of the above estimators.

Each estimate is computed with the Epanechnikov kernel K(x) = 0.75(1−
x2)I {−1 < x < 1} for x ∈ IX,h. The bootstrap procedure introduced in sec-
tion 3 is used to estimate their bias and variance, so that we can compute
unbiased estimates equal to initial estimates minus estimated bias, and 95%
confidence intervals. We compare our estimators with a naive one defined as
inf {Xij : δij = 1}; again, a bootstrap procedure allows to compute naive un-
biased threshold estimates, denoted by µ̂naive, and 95% confidence intervals.

Results are described in Table 2. For each enzyme, the threshold estimates
allows to compute the sensitivity, the specificity, the positive and negative
predicted values (denoted by PPV and NPV respectively) of the diagnostic.
Recall that the PPV is the probability of being a carrier conditionally to a
positive diagnosis, and the NPV is the probability of being a non-carrier condi-
tionally to a negative diagnosis. The threshold estimators we propose produce
a more accurate diagnosis than the naive estimator, since the PPV and NPV
are more balanced. The differences between µ̂inf and µ̂sup are explained by
the variances of the enzymes levels.

Appendix: Proof of Proposition 1

To prove Proposition 1, we need the following lemma about the numerator
n̂N,h(x) and the denominator d̂N,h(x) of p̂N,h(x). These results are derived in
using arguments that apply for kernel density estimators; expressions of the
bias and the moments are obtained with Taylor expansions, most of the terms
in these developments vanishing by assumptions (D3) and (D4).

Lemma 2. For x ∈ IX,h,
(a) n̂N,h(x) converges in norm L2 to p(x)s(0)(x), with bias

b{n̂N,h(x)} =
h2

2
κ{p s(0)}(2)(x) + o(h2) ,
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µ̂ [CI95%] Se (%) Sp (%) PPV (%) NPV (%)
Creatine kinase µ̂naive 15.90 [11.08;26.92] 100 1.15 30.65 100

(UI/l) µ̂inf 39.91 [34.45;45.37] 89.47 60.92 50.00 92.98
µ̂sup 137.07 [110.22;163.91] 34.21 100 100 77.68

Hemopexin µ̂naive 7.48 [0;19.18] 100 0 30.4 0
(mg/dl) µ̂inf 78.17 [69.60;86.74] 94.74 29.89 37.11 92.86

µ̂sup 90.56 [86.69;94.44] 60.53 71.26 47.92 80.52
Pyruvate kinase µ̂naive 8.04 [7.52;9.08] 100 11.49 33.04 100

(UI/l) µ̂inf 10.00 [9.99;10.01] 94.74 24.14 35.29 91.30
µ̂sup 15.82 [12.73;18.92] 68.42 78.16 57.78 85.00

Lactate µ̂naive 116.41 [105.89;138.11] 100 4.88 32.76 100
dehydrogenase µ̂inf 202.03 [184.34;219.72] 68.42 80.49 61.90 84.62

(U/g) µ̂sup 199.95 [187.70;212.20] 68.42 79.27 60.47 84.42

Table 2. Enzymes thresholds estimates and bootstrap 95% confidence intervals
(from 1000 bootstrapped samples); sensitivity (Se), specificity (Sp), positive and
predictive values (PPV and NPV resp.) are estimated on the sample of first blood
measures (n = 125).

and variance

var{n̂N,h(x)} = N−1h−1κ2 p(x)s(0)(x) + o(N−1h−1) ;

its higher order moment expansions are o(N−1h−1).
(b) d̂N,h(x) converges in norm L2 to s(0)(x), with bias

b{d̂N,h(x)} =
h2

2
κs(2)(x) + o(h2) ,

and variance

var{d̂N,h(x)} = N−1h−1κ2 s(0)(x) + o(N−1h−1) ;

its higher order moments expansions are o(N−1h−1).
(c) Their joint moment equals N−1h−1κ2 p(x)s(0)(x) + o(N−1h−1).

Proof (Proof of Proposition 1). Let x ∈ IX,h, and begin with the proof of (a).
By assumption (K2),

∫
|K ′(v)|dv <∞, and by (K3), h may be written hn =

cnn
−1/5 with a bounded sequence cn, and for an = (exp{−γc2n}) it satisfies∑∞

n=1 exp{−nγh2
n} =

∑∞
n=1{an}n

3/5
<∞ for every γ > 0. Then (Rao, 1983),

n̂N,h − nN,h and d̂N,h − dN,h converge both in probability to 0 uniformly on
IX,h. Hence, supx∈IX,h

|p̂N,h(x)− p(x)| converges to 0 in probability.

Consider now the proof of (b). To compute the bias of p̂N,h(x), we begin
to prove that

pN,h(x) =
nN,h(x)
dN,h(x)

+ O
(
N−1h−1) .
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Write

pN,h(x) =
nN,h(x)
dN,h(x)

−
E

[
n̂N,h(x){d̂N,h(x)− dN,h(x)}

]
d 2
N,h(x)

+
E

[
p̂N,h(x){d̂N,h(x)− dN,h(x)}2

]
d 2
N,h(x)

; (4)

then ∣∣∣∣pN,h(x)− nN,h(x)
dN,h(x)

∣∣∣∣ ≤ |ϕ1(x)|+ |ϕ2(x)| ,

with

ϕ1(x) ≤

[
var{n̂N,h(x)}var{d̂N,h(x)}

]1/2
d 2
N,h(x)

= O
(
N−1h−1) ,

ϕ2(x) ≤ var{d̂N,h(x)}
d 2
N,h(x)

= O
(
N−1h−1) .

Therefore, for any x ∈ IX,h,

pN,h(x) =
nN,h(x)
dN,h(x)

+ O
(
N−1h−1) . (5)

The bias of p̂N,h(x) is

bN,h(x) =
(

nN,h(x)
dN,h(x)

− p(x)
)

+
(
pN,h(x)− nN,h(x)

dN,h(x)

)
.

With a second order Taylor expansion of d−1
N,h(x), one obtains

nN,h(x)
dN,h(x)

= p(x) + h2{p(1)(x)s(1)(x){s(0)(x)}−1

+
1
2
p(2)(x)}

∫
v2K(v)dv + o(h2) .

Furthermore, by (5),

pN,h(x)− nN,h(x)
dN,h(x)

= o(h2) . (6)

The bias of p̂N,h(x) follows immediately. The variance vN,h(x) of p̂N,h(x) is

vN,h(x) = E

{
p̂N,h(x)− nN,h(x)

dN,h(x)

}2

−
{
pN,h(x)− nN,h(x)

dN,h(x)

}2

.
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By using twice relation (4),

dN,h(x)
{
p̂N,h(x)− nN,h(x)

dN,h(x)

}
= n̂N,h(x)− nN,h(x)− pN,h(x)

{
d̂N,h(x)− dN,h(x)

}
(7)

−
{n̂N,h(x)− nN,h(x)}

{
d̂N,h(x)− dN,h(x)

}
dN,h(x)

+
p̂N,h(x)

{
d̂N,h(x)− dN,h(x)

}2

dN,h(x)

+
{
pN,h(x)− nN,h(x)

dN,h(x)

}{
d̂N,h(x)− dN,h(x)

}
,

so that

d 2
N,h(x) E

{
p̂N,h(x)− nN,h(x)

dN,h(x)

}2

= var{n̂N,h(x)}+ p 2
N,h(x)var{d̂N,h(x)} − 2pN,h(x)π0,1,1(x)

+2
pN,h(x)
dN,h(x)

π0,1,2(x)− 2
π0,2,1(x)
dN,h(x)

+
π0,2,2(x)
d2
N,h(x)

+
π2,0,4(x)
d2
N,h(x)

+ 2
π1,1,2(x)
dN,h(x)

−2pN,h(x)
π1,0,3(x)
dN,h(x)

− 2
π1,1,3(x)
d2
N,h(x)

+
{
pN,h(x)− nN,h(x)

dN,h(x)

}
ϕ3(x) ,

where

πk,k′,k′′(x) = E

[
p̂ k
N,h(x){n̂N,h(x)− nN,h(x)}k′{d̂N,h(x)− dN,h(x)}k′′]

for k ≥ 0, k′ ≥ 0 and k′′ ≥ 0, and with

ϕ3(x) =
{
pN,h(x)− nN,h(x)

dN,h(x)

}
var{d̂N,h(x)}

+ 2
[
pN,h(x)var{d̂N,h(x)}+ π0,1,1(x)− π0,1,2(x)

dh(x)
+

π1,0,3(x)
dh(x)

]
.

Since p̂N,h(x) ∈ ]0, 1[, using Cauchy-Schwarz inequalities, and by Lemma 2,
one can prove that the πk,k′,k′′(x)’s in the above expression are o(N−1h−1)
except π0,1,1(x). By (5),{

pN,h(x)− nN,h(x)
dN,h(x)

}
ϕ3(x) = o(N−1h−1) .

Since dN,h(x) = s(0)(x) + O(h2) and pN,h(x) = p(x) + O(h2),
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vN,h(x) = {s(0)(x)}−2[var{n̂N,h(x)}+ p 2(x) var{d̂N,h(x)}
− 2p(x) cov{n̂N,h(x), d̂N,h(x)}] + o(N−1h−1) .

From the above expression we can deduce the following results. First,

(Nh)1/2{p̂N,h(x)− pN,h(x)} = (Nh)1/2{s(0)(x)}−1[{n̂N,h(x)

− nN,h(x)} − p(x){d̂N,h(x)− dN,h(x)}] + oL2(1) ,

as stated in (2), and, by Lemma 2,

vN,h(x) = N−1h−1
{
s(0)(x)

}−1
p(x) {1− p(x)}κ2 + o

(
N−1h−1) .

Consider now E{p̂N,h(x)− pN,h(x)}l for l ≥ 3; we have

E |p̂N,h(x)− pN,h(x)|l

≤ 2l
{

E

∣∣∣∣p̂N,h(x)− nN,h(x)
dN,h(x)

∣∣∣∣ l + E

∣∣∣∣nN,h(x)
dN,h(x)

− pN,h(x)
∣∣∣∣ l
}

by relation (7), and since the moments of order ≥ 3 of n̂N,h(x) and of d̂N,h(x)
are o(N−1h−1) by Lemma 2, the first term of this sum is o(N−1h−1). By
formula (5), the second term of the sum is O(N−lh−l) = o(N−1h−1). Hence,
E{p̂N,h(x)− pN,h(x)}l = o(N−1h−1).
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