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Plate 1.1 A typical microarray experiment. The mMRNA  complementary to the extracted mRNA by reverse

Condition 2

is extracted from each of the populations of cells and a transcription). Both extracts are incubated with the
representation of the mRNA is labelled with one of two ~ microarray. Labelled gene products from the extracts
different labels, e.g. a green fluorescent dye for cells preferentially bind to their complementary sequences;
grown under condition 1 and a red fluorescent dye for non-bound sample is removed by washing and the
cells grown under condition 2 (more precisely, the hybridised signal is detected by scanning.

labelling is typically carried out by synthesising cDNA
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Plate 4.1 Pearson correlation. Here cach of the small squares represents one dataset, comprising
information about the expression levels of approximately 6000 genes in yeast. Each of the squares
is coloured according to the similarity of the datasets compared. A Pearson correlation of 1.0 is
represented as a red square and a perfect negative correlation is represented by a blue square, with
‘no corrddaton” representied in winte. Some of the datasets are more related to each other than
others, as illustrated by the larger pink areas and the groupings of the datasets (the comparisons
arc carried out for every gene). For example, the datasets in group A are more related to cach
other than they are to the other datasets. Note that each dataset compared with itself has a perfect
positive correlation, as shown by the red diagonal line.
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Plate 4.4 Heat map ofa hierarchical clustering.
expre

sion over a time course

The change in gene
is shown here as a heat map, as obtained using
the visualisation tool Treeview. Each column

corresponds to a different time pointin the time

course, with each row representing a single gene.

The colours indicate the change in gene

. . ) expression for each gene for that time point, with

Fold repression  Fold induction Foogo s N 5 :
red indicating an increase in gene expression,

=0 »3 1 >3 59  blackindicating no change, and green indicating a
decrease in gene expression.
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'BLO02V  HTB2 chromatin structure histone H2B
/BLO03C  HTAZ2 chromatin structure histone H2A
DR224C  HIB1 chromatin structure histone H2B
'DR225W  HTAl chromatin structure histone H2A
MLOSSC  PsAl mannose metabolism nmannose-1-phosphate guanyltransferase
rJL158¢ CIS3 unknown unknown
TOR247W  SRL1 unknown unknown; similar to Svslp, suppressor of RadS
0R248W unknown unknown
fPL127C  HHO1 chromatin structure histone H1
MR215W unknovn unknown; similar to Gaslp
fIL129C  TAO3 transcription (putative) unknown; transcripiotnal activator of OCH1
fBRO09C  HHF1 chromatin structure histone H4
NLO30W  HHF2 chromatin structure histone H4
(NLO31C  HHT2 chromatin structure histone H3
70L012C  HTA3 chromatin structure histone-related
(BRO10W  HHT1 chromatin structure histone H3
’late 4.5 Clusters represented by a heat map (left) and profile graphs (right). Note that profile graphs intuitively

suggest the interpretation of data as a time course, which is not always correct.
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Plate 4.6 Ancxample ofadensity plotin reduced space. (Figure generated using J-Express
software).
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Plate 4.7 A gene expression terrain map created by VxInsight. The map shows 44 ‘gene
mountains’ representing genes whose expression is correlated out of 17,661 genes measured

in 553 hybridisations. The altitude of a mountain corresponds to the density of the genes.
(Reprinted with permission from Science (Kim ez al.), Copyright 2001 American Association for

the Advancement of Science. )
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Plate 4.8 Correspondence analysis (see text for explanation). (Reprinted from Proceedings of the National Academy
of Sciences (USA) (Fellenberg et al.), Copyright 2001 National Academy of Sciences, USA.)
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Preface

Microarrays are a tool for monitoring gene expression levels for thousands of
genes in parallel. This technology has great utility, as patterns in the gene ex-
pression can be used for molecular characterisation of a wide range of diverse
phenomena, from disease states and responses to stimuli, to the underlying dif-
ferences between cells of different types, and for elucidating gene function.
Microarray technology is increasingly finding its way into fields as diverse as
clinical diagnosis, drug screening and environmental testing.

The amount of information obtained from each microarray experiment can
be considerable. This presents new challenges for data storage, management
and analysis by life scientists who have not traditionally had to deal with this
type or quantity of data. An additional challenge is presented by software
for data analysis that has largely been written by statisticians and mathemati-
cians, employing terminology and concepts often unfamiliar to the life scientist.

This book addresses some of the issues faced by researchers in carrying out
their first microarray experiments, and covers aspects of designing and
analysing the results of microarray experiments. Although microarrays can be
used to study phenomena other than gene expression, this remains the most
common use of the technology and is the only use of arrays discussed here. The
book is not intended to replace the bioinformatician, or statistician, but rather
to explain the underlying concepts and principles routinely used in analysis of
gene expression data, facilitating sound experimental design, use of the avail-
able software and communication with statisticians. The book is also intended
for use by statisticians, computer scientists and students of bioinformatics who
want a grounding in the types of analysis currently used to study microarray
data.

Although all the authors contributed to all sections of the book, Chapter 2
was primarily written by Helen Causton, Chapter 3 by John Quackenbush and
Chapter 4 by Alvis Brazma.



Introduction

Knowledge is the process of piling up facts; wisdom lies in their
simplification.
Martin H. Fischer

1.1 The central dogma of molecular biology

1.2 What are microarrays and how do they work?

1.3 Gene function and drug discovery

1.4 Datageneration, processing and analysis: an overview
1.5 Data management

References .

The last 5-10 years have brought spectacular achievements in genome se-
quencing — five higher organisms and over 60 microbes have been sequenced,
the draft human genome has been published, and substantial parts of several
other eukaryotic genomes are now known. However, genome sequencing is
nothing more than the transfer of information from one digital carrier - DNA -
to another — the electronic computer. Even if we assume that all the genes have
been correctly identified, the result represents only sequence and the ‘parts list’
of an organism. It took more than a thousand years for science to progress
from a relatively detailed knowledge of human anatomy to an adequate under-
standing of physiology — scientists hope that understanding how genomes
function will be much faster. This is the goal of the new research field known as
functional genomics.

The success of genome sequencing was largely due to the development of
high throughput DNA sequencing technology, which has radically changed
the way biology is carried out and created a systems approach to biology. Similar
high throughput technologies are now emerging for functional genomics.
Most notable among them is DNA microarray technology, which permits the
researcher to make snapshots of gene expression levels of all of the genes in an
organism in a single experiment. There are several names used to refer to this
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No hypothesis

m = v Non-microarray
o Experimental design experiment
Chapter 2

!

Data generation
Chapter 2

!

Preliminary data analysis
(quality control,
normalisation) Chapter 3

!

Higher level data analysis
(supervised and unsupervised
methods) Chapter 4

fis

Figure 1.1 An overview of a microarray experiment and data analysis. An experiment is designed,
the microarray experiment is carried out, and data are generated. The data must first undergo
preliminary processing and quality assessment, and the datasets obtained from different samples
have to be normalised before they can be compared directly. Higher level analysis may involve
various methods relevant to the biological samples and the information required. The data
provide information on RNA expression levels, not on mechanism or causality. Data analysis
usually leads to new hypotheses that are tested in follow-up experiments.

Hypothesis

technology: DNA microarrays, DNA arrays, DNA chips and gene chips,among
others. A distinction is sometimes made between these names but there are no
standard definitions for associating particular types of microarray technology
with a specific name.

Microarrays are effectively transforming a living cell from a black box into a
transparent box. They allow one to identify the genes that are expressed in dif-
ferent cell types, to learn how their expression levels change in different devel-
opmental stages or disease states, and to identify the cellular processes in which
they participate.

Microarray technology is already producing terabytes of important function-
al genomics data that can provide clues about how genes and gene products in-
teract and their interaction networks. Unfortunately, transforming these data
into knowledge is not a trivial task. The development of methods and tools for
the analysis of these huge amounts of complex data s the task of bioinformatics
and computational biology. Analysis using multiple techniques is often needed
to provide a comprehensive view of the underlying biology. This book provides
an overview of data analysis techniques with the aim of facilitating communica-
tion between biologists, statisticians and bioinformaticians.

The book consists of three major chapters, which follow this introduction —
experimental design, data transformations from raw microarray data to gene
expression matrices, and data mining and analysis of gene expression matrices
(see Figure 1.1). Chapter 2 covers the principles of experimental design. As
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with any technology that has the capacity to detect small changes in a highly dy-
namic system, the underlying experimental design and the manner in which an
experiment is conducted is critical for obtaining high quality data. The raw data
from microarray experiments are images that have to be transformed and or-
ganised into gene expression matrices. These transformations are the subject of
Chapter 3. In Chapter 4 we discuss some of the common methods that are used
for analysing gene expression data matrices with the goal of obtaining new
insights into biology.

Overall the book tries to provide the reader with a general understanding of
the nature of microarray data and how it can be analysed. The book does not
provide a comprehensive review of the literature, nor is it a reference book
describing all existing techniques.

1.1 The central dogma of molecular biology

To understand the essence of gene expression data, we need to consider the
‘central dogma’ of molecular biology (Figure 1.2). The genetic information of
cellular organisms is stored in a long sequence of four different deoxyribo-
nucleotides. These strings of nucleotides are the DNA molecules that compose
the genome of an organism. The genome contains segments of DNA that
encode genes. Genes are transcribed into messenger RNA (mRNA) and
are subsequently translated to form proteins, the main building blocks and
functional molecules ofa living cell. This process is called gene expression.
DNA is a stable molecule and the same genomic DNA is present, with a few
specific exceptions, in all the cells of an organism. Despite this, not all cells are
the same. Many of the differences between them are due to the different subsets

DNA mRNA
(segments of DNA, | Transcription (MRNA  Irpanglation i
‘genes’, are used as abundance Protein
templates for DNA ; |detected using
synthesis) microarrays)
Regulation of gene Modification
expression and folding
Cell structure
Replication \ ' !
! ¥~  Protein |« Protein
S function structure
Repair «— ]
Metabolism

Figure 1.2 The information transfer between DNA, mRNA and protein (the ‘central dogma’).
Segments of DNA are used as a template to make mRNA, which is used as a template to make
protein. The relationship between mRNAs and the genes that encode them can readily be
identified, based on the relationship between their sequences. This property is exploited in
microarray experiments.
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of genes that are expressed in each of the different cell types. We also find differ-
ent subsets of genes expressed in response to stimuli, so that the pattern of gene
expression levels reflects both the cell type and its condition. Microarrays per-
mit the detection of the abundance of various mRNA molecules or zranscripts
in a cell ata given moment. The amount of each mRNA detected in the cell can
provide information on the corresponding protein; however, the relationship
between the abundance of the mRNA and the corresponding protein is not
always straightforward (Gygi ez al., 1999).

A DNA molecule consists of two so-called complementary strands, each
strand containing the information to determine the other. The RNA molecule
transcribed from a gene is complementary to the coding strand of the gene.
Two complementary single-stranded nucleic acid molecules (i.e. DNA or
mRNA) tend to bind, or hybridise, forming a single, double-stranded molecule.
Two single-stranded nucleic acid molecules that are not fully complementary
may also hybridise, but the greater the complementarity, the stronger the
binding.

1.2 What are microarrays and how do they work?

A microarray is typically a glass or polymer slide, onto which DNA molecules
are attached at fixed locations called spotsor features(in the context of microar-
rays these will be treated as synonyms). There may be tens of thousands of spots
on an array, each containing tens of millions of identical DNA molecules (or
fragments of identical molecules), of lengths from tens to hundreds of nu-
cleotides. For gene expression studies, each of these molecules should identify
asingle nRNA molecule, or transcript,ina genome. In practice, itis not always
possible toidentify sequences that monitor the expression of specific transcripts
unambiguously, because of the presence of families of similar genes. The fea-
tures are either printed on the microarrays by a robot or jet, or are synthesised
in situ by photolithography (similar to the process used in the manufacture of
computer chips) or by inkjet printing.

Microarrays may be used to measure gene expression levelsin different ways.
One of the most popular microarray applications is to compare the gene ex-
pression levels in two different samples, e.g. the same cells or cell type under two
different conditions (Plate 1.1, facing p. 88). This is based on labelling a repre-
sentation of the mRNA extracted from each of the samples in two different
ways, forinstance a green label forthe sample from condition 1 and ared one for
the sample from condition 2.

The hybridised microarray is excited by a laser and scanned at wavelengths
suitable for the detection of the red and green dyes. The amount of fluorescence
emitted upon laser excitation corresponds to the amount of nucleic acid bound
to each spot. If the nucleic acid from the sample in condition 1 is in abundance,
.th.c spot will be green, while if the nucleic acid from the sample in condition 2
isin abundance, it will be red. If both are equal, the spot will be yellow, and if
neither are present it will not fluoresce and so appear black. Thus, from the
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fluorescence intensities and colours for each spot, the relative expression levels
of the genes in both samples can be estimated. In this way thousands of data
points each providing information about expression of a particular transcript
can be obtained from a single experiment.

Other platforms for obtaining gene expression profiles exploit the same prin-

ciples as those described above, i.e. the specific binding of labelled nucleic acids
in solution with a ‘library’ of immobilised nucleic acids attached to a substrate.
One popular variation involves hybridisation of a single-labelled population of
nucleic acid to each array. In this instance comparisons are primarily made
between the data obtained from different arrays, as opposed to between the
labelled populations hybridised to a single array.
* Detection of mRNA levels is possible for large numbers of molecules in par-
allel because of the highly specific preferential binding of complementary sin-
gle-stranded nucleic acid sequences. This property of nucleic acids was first
exploited experimentally as long ago as 1965, and gained widespread accept-
ance in the form of a technique that became known as the Southern blot
(Gillespie and Spiegelman, 1965; Southern, 1975). However, it is only with
parallel developments in sequencing of genomes, advances in miniaturisation,
and high density synthesis of nucleic acids on solid supports that microarray
technology has advanced significantly. Microarrays were first used to study
global gene expression in 1997 (DeRisi et al., 1997).

1.3 Gene function and drug discovery

Gene expression studies can be roughly divided in two categories: situations in
which samples are used to provide information on genes, and situations in
which the genes are used to provide information on the samples. The first ap-
proach permits an integrated approach to biology, in which genetic regulation
can be examined within the context of circuitry, a sophisticated network in
which the interplay of positive and negative signals ultimately directs cellular
fate. This approach is already revealing great elegance and efficiency in biologi-
cal design. The second approach is revolutionising molecular medicine at the
level of classification of disease, diagnosis and prognostic prediction, and in a
number of industrial and pharmaceutical applications.

Biologists are discovering that genes involved in common processes are often
co-expressed. These include genes required for nutrition and stress responses,
and genes whose products encode components of metabolic pathways.
Similarly, the genes encoding subunits of several multi-subunit complexes such
as the ribosome, the proteosome and the nucleosome are also coordinately ex-
pressed (Alon ¢t al., 1999; Brown and Botstein, 1999; Causton et al., 2001,
Eisen et al., 1998; Hughes et al., 2000; Lashkari et al., 1997). In many cases,
this is attributable to coordinate regulation by common factors. ‘Waves’ of co-
expressed temporally regulated genes have also been observed during the de-
velopment of the rat spinal cord (Wen ez al., 1998). Coordinate regulation of
genes is extremely efficient, as all the components of multi-subunit complexes
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or factors required for complex processes are usually required in a defined ratio
at the same time, whenever they are needed.

The gene expression profile, or signature, can be thought of as a precise
molecular definition of the cell in a specific state (Young, 2000). Accurate,
quantitative information on the transcriptional profile of biological samples is
therefore of great utility. The expression profile is one of the few relatively ac-
cessible ways of describing a phenotype that can be used to characterise a wide
variety of samples. Cellular phenotypes can be inferred from gene expression
profiles, in part because defects in similar pathways or processes can be detected
via their effects on the expression of similar groups of genes, and because agents
that perturb these pathways also affect the same gene sets. A large reference
collection of profiles against which gene expression data can be compared is
therefore useful, but requires careful and accurate data generation, storage and
description.

The ‘compendium approach’, in which large numbers of biological samples
are profiled and pattern matching used to predict the function of previously un-
characterised genes and putative drug targets, has been elegantly demonstrated
using yeast (Gray ez al., 1998; Hughes ez al., 2000; Marton ¢t al., 1999).
Similarly, databases integrating gene expression data from 60 pharmacologi-
cally characterised human cancer cell lines (NCI60, http://dtp.nci.nih.gov/)
treated with 70,000 agents independently, or in combinations, have been used
to link drug activity with its mode of action, to correlate expression levels of in-
dividual transcripts with mechanisms of drug sensitivity and resistance, and to
examine the variation in gene expression patterns between individuals. The
same dataset was also used to classify cell lines in relation to their tissue of origin
and to predict drug chemosensitivity or resistance (Ross et al., 2000; Scherf
et al.,2000; Staunton ez al., 2001; Weinstein ez al., 1997).

Gene expression has proved a highly robust ‘reporter’ of biological
status for a wide range of samples under a variety of conditions, with the
result that microarray technology is now utilised extensively within industry.
Pharmaceutical companies use microarray technology at numerous stages
of drug development, from high throughput screening of small molecules
for identifying possible drugs, to drug target identification and assessment of
toxicity.

Gene expression data have proven highly informative of disease state, par-
ticularly in the area of oncology, where accurate and early diagnosis, followed
by appropriate treatment, can prove critical. Studies on clinical samples have
shown that gene expression data can be used not only to distinguish between
tumour types, define new (histologically indistinct) subtypes, and identify mis-
classified cell lines, but also to predict prognostic outcomes (Alizadeh ¢t al.,
2000; Bittner ¢z al., 2000; Golub et al., 1999; Perou et al., 1999; Shipp et al.,
2002). This approach is particularly powerful in offering the promise of ‘per-
sonalised medicine’, in which the specific underlying defect can be identified,
the prognosis predicted, and treatment tailored to the genetic makeup of the
individual and the specific defectin each patient, thus reducing the likelihood of
unwanted side effects.
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1.4 Datageneration, processing and analysis: an overview

Every high throughput experiment consists of two major parts: (i) material
processing and data collection; and (ii) information processing. In a microarray
experiment material processing and data collection can be broken down into
five steps:

1 array fabrication;

2 preparation of the biological samples to be studied;

3 extraction and labelling of the RNA (or a representation of the RNA) from
the samples;

4 hybridisation of the labelled extracts to the array;
*5 scanning of the hybridised array.

The scanned image is the starting point for information processing.

Information processing can also be broken down into distinct stages:

6 image quantitation — locating the spots in the image and measuring their
fluorescence intensities;

7 data normalisation and integration — constructing the gene expression
matrix that describes gene expression values from sets of spot quantitations
from different hybridisations;

8 gene expression data analysis and mining, e.g. finding differentially ex-
pressed genes or clusters of similarly expressed genes;

9 generation from these analyses of new hypotheses about the underlying
biological processes.

The last step, if successful, stimulates new hypotheses that in turn should be
tested in follow-up experiments. Note that the material processing steps are
preceded by information processing in the experimental design. Array design is
not a trivial problem, involving, amongst other factors, the selection of an ap-
propriate clone-set or the design of representative nucleic acid sequences that
are spotted, or synthesised, on the array. Steps (1)—(5) also require information
processing, which can be partly carried out using a laboratory information
management system (LIMS). In this book we concentrate mostly on informa-
tion processing steps (7) and (8). Nevertheless, the basic principles of experi-
mental design are also discussed, since the design can significantly affect the
character and the quality of the data that can be used for the subsequent
information processing.

The raw data that are produced from microarray experiments are digital im-
ages. To obtain information about gene expression levels, these images are ana-
lysed, each spot (feature) on the array identified and its intensity measured and
compared with values representing the background. Image quantitation is usu-
ally carried out using image analysis software. Although image analysis is still
considered one of the bottlenecks of microarray technology, significant im-
provements have been made during the past few years. Image analysis can now
be regarded as an area for experts, and comprehensive knowledge of the details
of image analysis may not be necessary for using the software. However, it is
useful to know some principles of image analysis for better understanding the
nature and limitations of microarray data.
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Figure 1.3 Processing of raw data into a gene expression matrix. Data transformation consists of
two steps: (a) image quantitation and (b) normalisation and the combining of replicate
measurements. In spot quantitation matrices rows typically represent all of the measurements
made from individual spots on the array. An experiment typically consists of one or more spot
quantitation matrices representing all of the arrays used in the study. In the gene expression
matrix, columns represent individual arrays and rows represent the genes and their measurements
across all of the arrays.  Reprinted with permission from Narure Genetics(Brazma ¢t al.),
Copyright 2001 Nature Publishing Group.)

An essential feature of all image analysis software is that the digitised mi-
croarray images are processed and the data are extracted and combined in a
table. This is known as a spot quantitation matrix (see Figure 1.3). Each row
corresponds to one spot on the array, and each column represents different
quantitative characteristics of that spot, such as the mean or median pixel inten-
sity of the spot and local background. Some aspects of image analysis are dis-
cussed in Chapter 3.

Generation of the spot quantitation matrices is only an intermediate stage in
data processing. The data from multiple hybridisations must be further trans-
formed and organised in a gene expression matrix. In this matrix each row repre-
sents a gene, or transcript (as opposed to a feature on the array), and each
column represents an experimental condition, such as a particular biological
sample. Each position in such a matrix characterises the expression level (rela-
tive or absolute) of a particular gene, or transcript, under a particular experi-
mental condition. In addition to information on gene expression, we would
also ideally like to have data that could be used to characterise the reliability
or accuracy of each measurement, e.g. the standard deviation of replicate
measurements.

Obrtaining the gene expression matrix that combines the information from
multiple spot quantitations is again not a trivial task. First, a single gene can be
represented by several features on the array, containing the same, or different,
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sequences. Second, the same experimental condition can be monitored in
multiple hybridisations carried out over replicate experiments. All the quanti-
ties relating to a gene (either on the same array or on arrays measuring the same
conditions in replicated experiments) have to be combined to obtain a single
number. Moreover, measurements obtained using different arrays, or even by
different locations on the same array, have to be normalised to make them di-
rectly comparable. Microarray data normalisation and the treatment of repli-
cate measurements are still a major focus of microarray data analysis research.
There are no standard best methods fitting all cases, and new, more sophisti-
cated methods are being developed, so the researcher has to understand these
methods in some detail to be able to make appropriate choices. Data normalisa-
tion and the treatment of data from replicates are therefore a major focus of this
book, and are discussed in Chapter 3. The gene expression matrix may also be
annotated to include additional information about the genes or the experimen-
tal conditions that is not directly represented in the matrix itself.

After the annotated gene expression data matrix has been generated, we can
begin analysing and mining it (step 8). Gene expression levels described in the
matrix are typically not measured in standard or objective units. In most cases
the numbers are comparisons of gene expression of the given experimental con-
dition to a reference sample, which may or may not be the same throughout the
matrix. This complicates data analysis considerably.

The simplest way of analysing gene expression data is to identify genes that
are differentially expressed in two given samples. Here the main problem is in
finding the confidence threshold at which the difference in gene expression can
be considered significant. The only really reliable information here is based on
replicate experiments, although some heuristic methods can be used. There are
two general types of replicates: biological and technical. Biological replicates
use independently derived samples to permit assessment of the variability be-
tween individual samples, as well as that inherent in the assay. Technical repli-
cates use repeated measurements of the same samples, either within the same
array or in independent hybridisations. Both can help to improve experimental
measurements and in the identification of differentially expressed genes, how-
ever biological replicates are considered to provide more information.

Data analysis is based on the hypothesis that there are biologically relevant
patterns to be discovered in the data. For example, there may be genes whose
pattern of expression allows the samples to be classified, or that reflect specific
cellular responses. The data. mining process typically relies on analysis of the
gene expression matrix using unsupervised or supervised methods. The latter
involves the use of additional information such as that obtained from partition-
ing of known samples into healthy and diseased categories. Clustering is an
example of an unsupervised method and class prediction is an example of a
supervised method used in gene expression data analysis. It should be noted,
however, that these methods are only tools for biologically meaningful data
analysis. An understanding of these methods is needed to choose those most
appropriate for solving a particular problem. Gene expression data analysis and
mining is discussed in detail in Chapter 4.
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One ofthe approaches to dataanalysis downstream of clustering is the reverse
engineering of gene regulatory networks (Laub ez 2/., 2000). This is based on
the hypothesis that genes that have similar expression profiles under a variety of
conditions are likely to be regulated by common mechanisms. Therefore, if
genes are clustered based on the similarities in their expression profiles and the
promoter sequences are obtained for genes within such clusters, some of these
promoter sequences may contain a ‘signal’, e.g. a specific sequence pattern,
relevant to the regulation of these genes. This has been used to discover puta-
tive promoter elements in yeast genome (e.g. Vilo ¢z al., 2000). There are
no rules for this type of data analysis, and the results can produce only further
hypotheses that have to be verified in additional laboratory experiments.

Application of different algorithms, or even different parameters (such as dis-
tance measures using the same algorithm), or different data filtering methods
can produce different results. Some may be artefacts of the methods used;
others may reflect the fact that cells typically carry out multiple processes
simultaneously via multiple interacting pathways.

Expression data analysis methods are currently only in their infancy. Even the
more obvious approaches, such as cluster analysis and the identification of
differentially expressed genes, have been used only crudely. For instance, the
appropriateness of gene expression profile similarity measures has not been
explored systematically and they are typically used in an ad hoc manner.
Information characterising the quality or reliability of different data points is
frequently absent. In the next generation of microarrays, where each spot is
printed or synthesised multiple times, it will be significantly easier to estimate
the measurement reliability using the standard deviation between the indi-
vidual measurements, and this information mav be used in subsequent
data mining.

As with genome sequencing, systematic gene expression profiling is not an
end in itself, but rather a tool for creating infrastructure for further research.
There is a long way between having detailed gene expression profiles and real
understanding of the underlying cellular processes. Bioinformatic methods and
tools will be needed to cope with the huge amounts of data, but they will not
bring deep understanding by themselves. On the other hand, traditional ‘gene
by gene’ methods will not be sufficient to understand gene regulatory networks
consisting of thousands or tens of thousands of interdependent genes.
Hypothesis driven and data mining approaches need to be used hand in hand
with high throughput data analysis.

1.5 Datamanagement

Data generated in microarray experiments form a powerful resource if, like
genome sequence data, they are carefully recorded and stored in databases,
where they can be queried, compared and analysed using different computer
software programs. A gene expression database consists of three major parts —
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Figure 1.4 Conceptual view of a gene expression data matrix. There are three parts to a gene
expression data matrix: (i) the gene expression data matrix; (i) gene annotation; and (iii) sample
annotation. The gene and sample annotation are important as the data only have meaning
within the context of the underlying biology. (Reprinted with permission from Nature Genetics
(Brazma et al.), Copyright 2001 Nature Publishing Group.)

the gene expression data matrix already described, gene annotation and sample
annotation (Figure 1.4).

Gene annotation can be provided, to some extent, by links to sequence data-
bases. This is complicated by the many-to-many relationships between genes in
the gene expression matrix and features on the array, that make it necessary to
have a full and detailed description of each of the features. The lack of consis-
tency in the naming of genes is a serious difficulty, though not one limited to
microarray research. A table relating each feature on the array to a list of all syn-
onymous names of the respective gene is a valuable resource.

Microarray technology is still developing rapidly, so itis natural that there are
no established standards for microarray experiments or processing of the raw
data. There are also no standard ways for measuring gene expression levels. In
the absence of such standards the details of how the gene expression data matrix
was obtained should be stored in the database, if the data are to be accurately
interpreted later. The Microarray Gene Expression Data Society (MGED;
http: //www.mged.org/) has developed recommendations for the ‘Minimum
Information About a Microarray Experiment’ (MAIME), that attempt to
define the set of information sufficient to interpret the experiment, and the
results of the experiment, unambiguously, and to enable verification of the data
(Brazma et al.,2001).
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Experimental design

Good ideas are not adopted automatically. They must be driven into
practice with courageous patience.
Admiral Hyman Rickover

2.1 Experimental objectives and features of microarray data
2.2 General principles of experimental design

2.3 Choice and preparation of samples

2.4 Choice and design of arrays

2.5 Hybridisation, scanning and quality control

2.6 Long-term considerations

References

Microarray experiments usually generate large amounts of data. If these
experiments are carefully planned and executed the data can be added to and
mined over a long period of time, in combination with data from other labora-
tories. This chapter describes the steps in experimental design that may be taken
if microarray data are to be exploited in this way. An overview of the more tech-
nical aspects of microarray experiments and detailed protocols can be found
in Jordan (2001). Most of the aspects of experimental design discussed here
would be part of normal ‘good’ experimental practice, although some
reflect knowledge gained with the benefit of hindsight, from conducting data
analysis. '

2.1 Experimental objectives and features of
microarray data

The first questions to ask before designing a microarray experiment are, ‘What
are the objectives of the experiment?” and ‘Is a microarray experiment the best
way to achieve these objectives?’ A single microarray experiment produces data
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on the expression levels of thousands of genes, but has the disadvantage that
data fromindividual hybridisations may be noisy and single data points may not
be reliable, particularly for genes with low abundance transcripts. In addition,
the genes of interest are not always readily apparent among the data, and large
fold changes in the amount of a transcript are not necessarily indicative of
greater biological relevance.

Microarray data provide information only about relative gene expression lev-
els in a set of samples, and obtaining reliable data on absolute expression levels
from a microarray experiment is difficult. DNA arrays do not measure protein
abundance, nor is the correlation between messenger RNA (mRNA) and pro-
tein abundance straightforward (Gygi ¢t al., 1999). The data themselves pro-
vide no direct information on mechanism, i.e. which of the many differences in
expression levels of transcripts are relevant to the biological phenomenon
under study and which reflect inherent variability in the system. The use of time
courses and conditional mutations are some of the ways in which more infor-
mation can be obtained from the system under study and can assist the re-
searcher inidentifying the genes of interest. Taken together this means thatitis
important to consider how the data will be combined with that obtained from
other sources and to design the experiment to exploit existing knowledge about
the system under study, whenever possible.

Microarray technology permits the detection of small differences in tran-
script abundance and so the data reflect the experimental conditions with ex-
quisite sensitivity. This means thatany reduction in the number of variables that
are not central to the experimental question being addressed will increase the
utility of the data. Some of the experimental variables that can confound a
microarray experiment are not usually even considered to be variables. For ex-
ample, refeeding a population of cells produces a transcriptional response,
as does a temperature shift, which might be used to inactivate a conditional
mutant. Biological variation is likely to be the greatest source of variability in
the output, and the more that can be done to address this in the experimental
design, the more informative the data will be.

Microarray data provide information about the overall amount of mRNA in
a sample, which may come from a mixture of different cell types, each having
different transcript profiles. Therefore differences in mRNA abundance de-
tected using microarrays reflect not only differences in gene expression but also
any differences in the composition of the sample. The amount of mRNA can be
considered a reflection of the expression level of a transcript only if the samples
are relatively homogeneous and the stability of the transcript does not change
between the conditions being compared.

In general, microarray data are best used to describe the expression of large
sets of genes, as opposed to the expression ofa small set of & priori known genes
(in which case more ‘traditional’ techniques such as Northern blotting may
perform better). Microarray experiments may help to identify & priori un-
known sets of genes that characterise particular disease states or that permit dis-
tinction between particular subtypes of different disease states. Microarray
technology has made exploratory, rather than hypothesis driven, approaches to
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biology possible; however, these approaches are most effective when based on
large datasets or when used on well-characterised biological systems.

2.2 General principles of experimental design

A microarray experiment consists of one or more hybridisations each of which
involves at least one labelled extract (the population of nucleic acid in solution)
and one array. The same extract can be hybridised to multiple arrays, or several
extracts (usually with different labels) can be hybridised to the same array. In the
terminology used here, the labelled extract is a representation of the sample
(Figure 2.1). A sample can be described in terms of the origin of the biological
material - the biosource—and the treatment.

In this section we discuss issues related to the general experimental design,
such as reducing the number of non-essential variables, determination of the
optimal number of hybridisations, choice of a reference extract, and whether to
use external controls. Topics related to the choice and preparation of the
samples and arrays are discussed in the sections that follow.

Experiment
Sample Hybridisation Array
Scanning S e
Image
Quantitation

Data
Normalisation
and integration

Data

Figure 2.1 Conceptual view of a microarray experiment. A microarray experiment consists of
onc or more hybridisations, each of which relates at least one labelled extract and one array. The
hybridised array is scanned and the image obtained is analysed to obtain gene expression data.
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Many of the topics discussed below would be the same for designing any
experiment in which the system is very sensitive to small perturbations. This
means that adherence to very basic principles, such as those of changing only
one variable at a time and characterising the system (including recording as
much detail as possible about the experiment — this includes information not
normally considered relevant), will pay off when it comes to data analysis.

2.2.1 Reducing the number of variables

A large number of environmental factors — such as temperature, light, time of
sampling, humidity, number of animals per cage and the person conducting the
sexperiment — may contribute to differences in transcription. Batch to batch
variation in bottles of culture media and brand differences in reagents have the
capacity to effect subtle changes in gene expression and can complicate data
analysis, especially where the number of samples is small.

The underlying experimental design can often be structured to reduce the
number of non-essential variables. For example, if a single culture is split imme-
diately prior to treatment, or cells are harvested at different time intervals from
a single culture, between-flask variation will be less than if cells from multiple
flasks are processed in paralle].

There are situations where pooling of samples has proved useful for reducing
the apparent effects of experimental artefacts. For example, sister transfectants
are often very different from each other, more different from each other than
primary cells taken from different individuals. This is probably due to gross
changes that occur in culture, such as chromosomal rearrangements; in this
instance loss of information about individual populations of cells can be an ad-
vantage. Another situation in which pooling has proved useful is in the analysis
of tissue samples from a single individual, as there is great variability in the dis-
tribution of cell types, even in relatively homogeneous tissues such as muscle.
Here, pooling of equal amounts of independently derived labelled extracts has
been used successtully to reduce the effects of variability in individual samples
(Bakay et al.,2002; Chen ez al.,2000).

Pooling has the advantage that variation between individual biosources is
diluted, although it does not amplify common patterns of gene expression.
The more different biosources used, the less each individual contributes to the
overall population of labelled extract, such that abnormalities from one
atypical sample are less likely to skew the RNA population significantly. If pool-
ing can be avoided, the same experiment carried out on multiple individual
samples is likely to be significantly more informative and can provide addi-
tional information on the variation between samples and the common elements
of the phenomenon under study, and thus the opportunity to assign an addi-
tional statistical measure of confidence in the result obtained. As with the issue
of replication of samples, the decision on whether to pool, and the optimal
number of samples, depends on the inherent varjability between samples, the
confidence required in the result, and the nature of the downstream data
analysis. )
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Wherever possible, pooling to reduce variability should be carried out late in
sample preparation, for example once the labelled extract has been prepared
and equal amounts of each extract and equal numbers of extracts used to gener-
ate each pool. Pooling is discussed again, in connection with approaches to
small amounts of sample, in Section 2.3.2.

The stress response is induced in response to large numbers of stimuli,
is fairly general for many types of stress, and involves large numbers of genes
(Causton et al., 2001; Gasch ez al., 2000). This means that conditions for
microarray experiments should be chosen carefully. Less extreme conditions
may result in more informative data if the phenomenon of interest is likely to
be obscured by stress response genes, or to result in cell death, while very mild
conditions may not induce the expected response.

2.2.2 Time courses vs. independent data points

Microarray experiments are frequently used for carrying out pair-wise compar-
isons between samples at a single time point, e.g. wild type and mutant, treated
and untreated cells. The problem with this experimental design is that it is hard
to establish which of the differences observed between the two samples is a pri-
mary effect, e.g. of the mutation or treatmentunder study, and which represent
amore general accommodation of the cell to life under the experimental condi-
tions, particularly if large numbers of genes are affected.

Time course experiments have proved useful in a number of experimental
systems, providing information about the order of events, time scales and
trends, as well as confidence that differences in the amount of each transcript
detected over the multiple time points reflect changes in the system. Unless the
systemis well characterised, it is usually hard to know, in advance, at which times
cells should be harvested. Approaches to this problem include further charac-
terisation to identify the timing of the phenomenon of interest, for example by
monitoring the transcript levels of a few genes of interest over a time course.
Another strategy is harvesting cells at a large number of time points, preparing
labelled extract (or storing the cells at —~80°C) and hybridising and scanning
samples from only a subset of the time points, in the first instance. This is a use-
ful strategy when using arrays that are expensive, because much of the variation
between labelled extracts reflects biological differences between samples as op-
posed to differences in preparation of the extract and in the hybridisation.
Reasonably comparable data can be obtained using this approach, and it is
usually more cost effective than repeating the whole experiment.

2.2.3 Replicates and repeated measurements

Replicate data can be used to provide an estimate of the non-systematic error as-
sociated with a measurement. This permits assessment of the significance of re-
sults and assignment of a ‘confidence score” and can thus increase the precision
of estimation. The answer to the question of how many replicates is optimal de-
pends on the purpose of the experiment, the number of variables, how the data
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will be used, and the confidence required inindividual measurements. The high
cost of microarray experiments is often used as an argument to limit the number
of replicates, but should, on the contrary, be used as an incentive to maximise
the amount of information that can be obtained from each experiment. In some
cases this may mean carrying out many replicates, in others few, or no explicit
replicates at all.

The purpose of generating replicate datasets is generally to assess the range of
variability associated with the measurements. There are several potential
sources of variability, which fall into at least three major classes: (i) the measure-
ment error (experimental noise); (ii) the natural variability of the measured at-
tribute in the biological system; and (iii) the known or unknown variability in
the experimental conditions. Variability in the experimental conditions (except
for the experimental factors to be tested ) should be reduced as much as possible,
as discussed above, so that the known variability may be attributed to the
experimental noise and natural variability. The unknown variability in the
experimental conditions is difficult to assess and often (unintentionally) is
attributed to the natural variability.

Replicates should be chosen to allow separation of the measurement error
from the natural variability in the biological system. In a good experimental de-
sign the experimental noise should be considerably smaller than the natural
variability. In short, the experimental noise should be minimised as much as
possible, while the biological variability should be assessed (within the accuracy
permitted by the experimental noise), and both should be taken into accountin
the subsequent data analysis.

There are two different types of replicates: technical replicates, which can be
used to assess the experimental noise, and biological replicates, which are most-
ly directed towards assessing the natural variability in the system. Technical
replicates provide information on the differences between samples from the
point at which an individual sample was separated and processed independ-
ently. For example, a single-labelled extract of nucleic acid, divided into four
tubes and hybridised to four individual arrays in parallel, provides information
on the between-array and downstream differences, including variability in hy-
bridisation, washing, scanning, detection, etc., but does not provide informa-
tion on the stages that came before, such as RNA preparation and labelling.

Technical replicates are particularly important during tuning and testing
of experimental protocols. There are many levels at which technical replication
is possible, including RNA extraction, labelling, hybridisation, and at the array
element (reporter) level (in general, replication is possible at each step in the
experimental protocol, Figure 2.2). After the experimental protocols have
been optimised and the experimental noise has been assessed, data from techni-
cal replicates can be used as quality controls for reproducibility, or to obtain
extra information for minimising or identifying the noise in subsequent
datasets. :

Two levels of technical replication are becoming standard in microarray ex-
periments: dye swapping for experiments in which multiple extracts are hy-
bridised to each array (i.e. all of the extracts are labelled with each of the labels,
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Figure 2.2 Tree representation of replicate experiments. In this example replication is carried out
at four levels. The first is at the level of biological replicates. This is followed by two independent
mRNA extractions, and reciprocal Cy3 and Cy5 labelling. Finally, on each array each reporter is
printed in triplicate. In this way, each data point in the experiment is replicated a total of 24 times.
In practice, after the protocols have been tested most of the inherent variability should be
biological in origin and some of the replicates may not be needed. Nevertheless, printing reporters
in duplicate (or more) and using reciprocal labelling is highly advisable where more than one label
is used. Note that technical replicates include the variability that is derived from the biological
sample.

e.g. with Cy3 and Cy5, commonly used fluorescent dyes) and replication of re-
porter sequences on the array. Three or more replicate reporters may simplify
image analysis, enabling one to discard the signal from a reporter that has been
identified as faulty, and to rely on the data from the remaining reportersinstead.
Dye swapping is important as different labels may label transcripts with differ-
ent efficiencies or have different hybridisation kinetics.

Biological replicates are obtained using two or more biological specimens
taken from the same biosource and treated in identical ways. The type of repli-
cate needed is determined by what the experimenter wants to obtain from the
replicate data. This is often an estimation of the variability in the dataset as a
whole, in which case the replicates should reflect only as much of the difference
asis expected to be found between samples in the dataset; e.g. ifall the cells used
for sample preparation are harvested on the same day, cells for areplicate dataset
should also be harvested on the same day and processed in parallel with the
other samples. Replicate datasets generated using cells harvested on different
days are likely to encompass greater variation than that reflected in the dataset
under study.
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Figure 2.3 Graph showing the changes in gene expression levels plotted against time.
Irrespective of whether we use all the time points, or only the even time points, we obtain
essentially the same plot. Therefore cach of the measurements in this time course provides
supporting evidence about the reliability of the neighbouring measurements.

It has been demonstrated for yeast (Hughes ez a/., 2000) that under (intend-
ed) identical conditions the variability in expression levels of different genes
may be different for different genes, as some transcripts are present at relatively
constant levels, while others have high natural variability in expression level.

The natural variability of gene expression levels should be taken into account
if we need to set thresholds for identifying gene differential expression (up- or
down-regulation). When comparing two samples, in the absence of any extra
information, in general it is impossible to tell from only one measurement
whether a given gene is differentially expressed or not, unless various assump-
tions are made. Therefore replicates are necessary in experiments designed to
identify differential gene expression (although information from previous ex-
periments may also be used). On the other hand, some experiments, like time
courses, involve a certain amount of implicit replication, even if explicit repli-
catesare not included (Figure 2.3); this is because data from each time point are
related to the data from the adjacent time points. In these situations replicates
may not be essential, provided that the technology is reliable (or it may be suffi-
cient to have explicit replicates for only some of the time points). However, the
possible pitfalls of not carrying out explicit replicates should be considered, and
not generating replicates should be a conscious decision. Finally, the way in
which the replicate measurements are going to be used should be taken into
consideration from the beginning of the experiment.
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2.2.4 Reference samples

Microarray data are often used to provide information on the relative ‘fold
change’ in gene expression between two, or more, labelled extracts. The sample
with which comparisons are made is usually referred to as the ‘reference’ sam-
ple. The choice of the reference is important, as genes whose expression is acti-
vated, or repressed, to the same extent as that in the reference sample may not
beidentified. For technologies in which asingle-labelled extractis hybridised to
each array the data used as a reference can be chosen from those within the
dataset after the experiment has been carried out, but for array technologies
that employ multiple labelled populations of nucleic acid per array it is usually
decided as part of the experimental design.

Use of a common reference sample means that data from multiple arrays can
be compared with each other. In effect, this is very similar to the situation where
a single-labelled population of nucleic acid is hybridised to each array and the
data representabsolute relative expression levels. The reference sample must be
identical for all the extracts to be compared and should contain all of the genes
under study. Examples of common reference samples are genomic DNA or ar-
bitrary pools of RNA. The use of a single reference sample for large numbers
of experiments presents some problems; e.g. it can be hard to make enough of
a reference sample for comparison of large numbers of arrays over a long time
period. ‘Spiked-in’ controls may also be considered a type of reference sample.
This concept was exploited by Dudley ¢t al. (2002), who synthesised a refer-
ence sample composed of labelled oligonucleotides that hybridised to every
feature on the array. The reference sample was used to extend the linear range
for signal detection and to obtain information on transcript abundance.
Spiked-in controls are discussed in more detail in Section 2.2.5.

Kerr and Churchill (2001) have proposed the use of reference-less foop
designs for microarray experiments involving hybridisation of multiple labelled
extracts to each array. In a typical microarray experiment using a reference de-
sign, most of the data collected reflects the representation of genes in the refer-
ence sample — typically the least biologically interesting sample in the study.
Further, since each sample is compared with the reference, all comparisons
between the query samples must be inferred, which is less precise than a direct
comparison.

In a loop design, samples are systematically compared directly with each
other, with an emphasis on comparing the samples that are most closely related,
such as adjacent points in a time course experiment. There are a number of
advantages to this approach. In such a design, each hybridisation measures
expression in a biologically interesting sample, allowing more relevant data
to be generated with each assay. In addition, direct comparisons reduce varia-
tion in each measurement, allowing expression to be estimated more precisely.
However, there are also disadvantages to this approach. Since each sample is
compared with multiple others, loop designs can require more RNA than do
reference designs, and this can be a problem in experiments analysing rare
samples, such as clinical specimens. Further, a single poor quality hybridisation
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can introduce enough uncertainty and missing data into the analysis that esti-
mating the expression in the other samples can be difficult. Replacing a low
quality RNA source can also be difficult, as this would require both a replace-
ment for the bad sample and additional RNA from all samples with which this
sample had been hybridised. Finally, loop designs are not easily extensible as
adding samples requires a redesign of the experiment and selection of the hy-
bridisation pairs. This can be particularly difficult in prospective studies of clin-
ical samples, where hybridisation assays are done using samples as they become
available. Despite these disadvantages, loop designs can give very precise assess-
ments of gene expression levels and should be considered when developing an
experimental strategy. The use of loop designs is also discussed in Chapter 3
{Section 3.4.4).

2.2.5 Exogenous (‘spiked-in’) controls

Exogenous controls are usually RNAs that are added (‘spiked in’) to a sample at
astage in preparation of the labelled extract. These RNAs are either ‘spiked in’
to the sample atan early stage in sample preparation and are labelled in the same
reaction as the endogenous genes, or are labelled nucleic acids that are added
after the endogenous genes have been labelled. The way in which the data ob-
tained from the spiked-in controls is used depends on when these exogenous
controls are added. The most common applications are for quality control of a
stage in sample preparation (such as generation of copy DNA (cDNA), copy
RNA (cRNA) or labelling), or hybridisation) (Baugh ez al., 2001), assessing
the sensitivity with which transcripts can be detected (Hill ez al., 2000), esti-
mation of absolute expression levels, for normalisation (i.e. within- and/or
between-extract comparison) (Hartemink ez al, 2001; Hill er al, 2001;
Holstege ez al.,1998; Schuchhardt e al.,2000), to identify specific features on
the array (e.g. for the purposes of relating the scanned image to individual
features) or for extending the range under which signal intensities can be meas-
ured accurately (Dudley ez a/.,2002).

The controls either represent sequence complementary to that on the array,
or result in the synthesis of sequence complementary to that on the array, and
are added to the sample in known quantities. For example, bacterial genes from
Bacillus subtilisare commonly used as external spikes for experiments involving
non-bacterial samples, and genes from Arabidopsisthalianafor experimentsin-
volving non-plant samples. The arrays used must also have features designed to
hybridise to the spiked-in controls.

The amount of control added to each sample is known, which can help to
relate the spot intensity to the mRNA abundance. This relationship is extra-
polated to all the spots on the array and the information can be used for nor-
malisation (to correct for differences within and between labelled extracts),
as described in Chapter 3. Spiked-in controls have proved to be of particular
utility in situations where the commonly used assumption, that the overall
abundance of mRNA from each sample is the same, is not valid. An example is
when the overall mRNA population is very different in the extracts under com-
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parison, e.g. when transcription of mRNA is inhibited. In this instance controls
for normalisation may be added after total RNA has been prepared. The total
amount of RNA in each sample is assessed, usually by spectrophotometry, and a
standard amount of the control RNA is added (‘spiked in”) per milligram of
total RNA used for preparation of the labelled extract. The underlying principle
is that variadon in the population of mRNA will be negligible relative to the
total RNA population since about 90% of total RNA is ribosomal RNA (rRNA ),
which is relatively stable. The assumption that the signal intensities obtained
from these spikes should be constant is therefore effectively an assumption that
the toral RNA (and not the mRNA sample populations, as for total intensity
normalisation — see Section 3.3.1) should be the same between extracts.

For experiments using spotted arrays the same mRNA messages from B.
subtilis or from A. thaliana are sometimes added to samples prior to prepara-
tion of the labelled extract. The messages are usually used either as positive
controls or in a dilution series, for assessing the sensitivity with which messages
can be detected. The widespread use of defined controls and probes will
greatly enhance the comparability of spotted array data (Schuchhardt ez al,
2000).

The controls most commonly used are a cocktail of five B. subtilismessenger
RNAs. The Dap, Lys, Phe, Thr and Trp mRNAs are generated by #z vitro tran-
scripdon from a linearised plasmid template. Since bacterial messages do not
have poly A tails and poly A tails are required for synthesis of labelled extractin
many protocols, these mRNAs are often prepared by iz pitrotranscription from
a plasmid that contains a poly A tract downstream of the bacterial gene and are
purified using an oligo-dT column. The requirement that these genes containa
poly A tract means that low amounts of bacterial contamination of the RNA
preparation should not contribute to the signal obtained from the B. subtilis
messenger RNAs. poly A tails are not required for controls added at later stages
in sample preparation.

One disadvantage of these approaches is that the addition of the controls has
to be planned ahead, i.¢. spiked-in controls are added at a point during prepara-
tion of the labelled extract and are ideally added to all the samples to be com-
pared, in parallel. The accuracy of the technique is heavily dependent on the
ability of the experimenter to add the controls in the appropriate amounts for
each sample population. Note that the five B. subtiliscontrols listed above have
been known to cross-react with bacterial messenger RNAs and are therefore
not suitable for use in experiments where bacteria have been used to infect
mammalian cells, as well as any situation where bacterial genomes are being
studied. Other genes, such as those from A. thaliana, may be suitable in such
cases, as long as the transcripts are represented on the arrays and they do not
cross-react with those in the endogenous sample.

2.2.6 Duallabelling/dye swapping

Methods for labelling of extract involve either direct incorporation of (usually)
fluorescently labelled nucleotides or incorporation of a group that is fluores-
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cently labelled in a second reaction. Although dye incorporation into the sam-
ple RNA populations should, in theory, be equivalent, some transcripts incor-
porate one dye more readily than the other. In situations where extracts labelled
with different dyes are compared, each extract should be labelled with each of
the fluorescent dyes. This is particularly important where the object of the ex-
periment is to detect differential expression, especially under conditions where
few genesare likely to be differentially expressed. Estimates of the proportion of
genes that have a bias in Cy3 or Cy5 incorporation lie at around 0.1%, which
may seem small, but in an experiment examining the expression of 10,000
genes this works out at 10 genes. Data from dye-swap experimentsare therefore
essential for establishing which genes are differentially expressed. This is dis-
cussed in connection with replicate datasets earlier in this chapter and in
Chapters 3 and 4.

One may note that such dye-specific labelling of transcripts is likely to be
more common in direct-incorporation labelling reactions than in the second-
ary coupling protocols that are now commonly used. The advantage of per-
forming a secondary coupling reaction is that the cDNA or ¢cRNA synthesis
reactions are identical for both samples. This reaction incorporates modified
nucleotides and is followed by a covalent coupling reaction in which the dyesat-
tach to the modified residues. This eliminates any steric or other bias for incor-
poration of one dye over the other in reverse transcription, and consequently
decrease noise in the expression ratios measured at low intensity. Nevertheless,
some dye-specific effects are still present, probably caused by a wavelength-
dependent differential response of the photomultiplier tubes in the array scan-
ners or slight differences in the quantum efficiencies of the fluorescent dyes, but
these can be removed by application of Lowess normalisation and replicate
filtering, as discussed in Chapter 3.

2.2.7 Validation of results

As with any experiment, conclusions, especially those relating to small groups
of genes (as opposed to genome-wide expression profiles), should be validated.
The extent and nature of validation is usually determined by the confidence re-
quired in aresult. Validation may be carried out by replication, or by using other
techniques. Replication has the advantage that information on the sensitivity
and statistical significance of the original data is obtained, but does not always
assist detection of experimental artefacts. Non-microarray-based methods
address the latter. )

More common methods for validating results obtained on individual genes
are Northern blots, RT-PCR (real time polymerase chain reaction) or TagMan
assays, which permit estimation of transcript levels. However, microarray tech-
nology is now fairly robust and so other techniques that directly or indirectly
verify the results of microarray analysis may also be considered, e.g. in situ
hybridisation, which provides information about the location of a transcript,
or techniques that permit examination of the corresponding protein, such as
Western blotting or 2D gel electrophoresis.
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2.3 Choice and preparation of samples

The choice and preparation of the sample should minimise the number of
experimental variables which are not central to the biological question under
study.

2.3.1 Obtaining the appropriate sample
2.3.1.1 STRAIN BACKGROUND

The organisms to be compared should be as similar as possible, unless compar-
ison of differences between them is one of the objectives of the experiment.
This matters less as the number of samplesincreases, but wherever possible con-
genic or isogenic strains should be used and these should be as similar as pos-
sible, e.g. of the same sex/mating type, age, have the same markers. The use of
arrays to probe differences between strains has been described for yeast and
mice (Pavlidis and Noble, 2001; Primig ez /., 2000). Research on Drosophila
shows that gene expression in adults is affected most strongly by sex (7%), then
by genotype and then by age (1%), at the 0.0001 level of significance (Jin ez al.,
2001).

Hybridisation properties are used to provide a measure of gene expression,
therefore it is sometimes worth considering how similar the strain used for
preparation of the labelled extractis to the strain whose sequence is represented
on the microarray. The more similar the strains are, the greater the stringency of
hybridisation. The number of genes whose expression can be scored with con-
fidence decreases the more the strains differ at the sequence level (this is of par-
ticular relevance in situations where the sequences represented on the array are
short, e.g. oligonucleotide arrays). However, samples from species such as
chimpanzee and rhesus monkeys have successfully been analysed on arrays
where the spots represent sequences from human DNA (Bigger ez al., 2001;
Kayo et al.,2001).

A few strains have been identified that produce unusual results when gene
expression is analysed in comparison with other strains. These include the
129SvEv mouse strain, which harbours mutations in the Gas5 gene that affect
mRNA stability (Muller ez al.,1998; Sandberg ez al., 2000).

2.3.1.2 MUTANTS

The function ofa gene can be explored by comparing samples derived from wild
type and mutant forms of the gene. This appears to be an extremely straightfor-
ward type of experiment; however, a number of factors should nevertheless be
considered. First, differences between the wild type and mutantreflect not only
the primary but also the secondary consequences of the mutation, so the more
deleterious the effect of the mutation, the harder it will be to interpret the data.
One way to study the effect of deleterious genes is to use a conditional muta-
tion, whose effect is apparent only under some conditions. When using condi-
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tional mutants it is important that both the wild type and mutant cells or ani-
mals are studied under the same conditions. Second, the mutation should be as
minor and relevant to the question under study as possible. Point mutations
that ‘knock out’ the catalytic function of the associated gene product are prefer-
able to whole gene deletions (Madhani ez al., 1998). Third, the effect of the
gene may be detectable only ifit is not redundant, so the use of mutants associ-
ated with identifiable phenotypes is more likely to provide useful data.

2.3.1.3 REAGENTS

The purity of the reagents used for microarray experiments is possibly more im-
portant than for lower throughput experiments, because of the sensitivity of the
read-out. Reagents should be as pure as possible and should specifically target
the phenomenon of interest. For instance, pleiotropic drugs are likely to reveal
pleiotropic changes in gene expression, complicating data analysis. The effects
of pleiotropic drugs may be great enough that the phenomenon of interest
is masked by the (unintended) induction or repression of other genes. One
example is the response of mammalian cells to a bacterial sugar, lipopolysac-
charide (LPS). This sugar is found ubiquitously in preparations of even highly
purified recombinant protein of bacterial origin, unless rigorous steps are
taken to remove it. The presence of LPS is used as a signal to induce the
immune/stress response in many mammalian systems. Experiments in which
bacterial extracts are added to mammalian cells should therefore be prepared
under ‘LPS-free’ conditions, unless this forms part of the biological system
under study (Alleva ez 2/.,2000).

2.3.1.4 SAMPLE AND SAMPLE COMPOSITION

The use of cell lines and primary cells in culture allows the experimenter to ob-
tain relatively homogeneous cell populations and to manipulate them under
more regulated conditions, thus providing greater potential for carrying out
well-controlled experiments. However, transformed cell lines should be char-
acterised as far as possible before use, as transformation may be accompanied by
changes in copy number and /or rearrangements of chromosomes, which may
affect transcript levels. As with any experiment conducted on cells in culture,
the relevance of the experimental results must be assessed in relation to the
‘natural’ environment of the biological material.

The use of primary cells ex vivo permits the study of cells under more natural
conditions, but other factors need to be considered here. For example, marked
region-specific differences in gene expression have been documented, for ex-
ample within adult mouse brain (Sandberg ¢z /., 2000). For some experiments
this can be addressed by simply excising the tissue to be analysed as cleanly as
possible, with few contaminating cells. For more complex tissues, one should
try to characterise the cellular composition of the tissue by carrying out cell
sorting (e.g. using fluorescence activated cell sorting (FACS) analysis) and
cither use tissue for which the proportion of cell types is the same across
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multiple samples or start with possibly small amounts of homogeneous
material and, if necessary, amplify the RNA.

The amount of each mRNA detected in a microarray experiment depends on
the composition of the sample. This means that if the composition of the
sample changes, for example during differentiation, what is perceived to be a
change in gene expression might instead reflect differences in the distribution
of the cell types in the sample population. The same is true in situations where
there may be contaminating cells, even if the composition of the sample itself
does not change.

The population of cells under study does not have to be homogeneous, but
should be as consistent as possible for the extracts compared. This is particu-
larly important if the data obtained from the hybridisation of labelled extracts
are compared using the assumption that the overall intensity of the signals from
each extract should be the same.

2.3.2 Small amounts of sample: RNA amplification and
pooling

One approach to obtaining information from only the cells of interest is to
start with a smaller, more homogeneous, population of cells, e.g. cells obtained
by laser capture microdissection, and to amplify the RNA extracted (Hooper ez
al.,2001; Leethanakul ezal.,2000; Luo ez al.,1999; Ohyama ez al.,2000). This
has the attraction of permitting analysis of small numbers of cells and has the
porential to provide information on the differences and similarities between
individual cells. Although the technique is successfully exploited in some labo-
ratories, RNA amplification is experimentally challenging, and many of the ex-
isting methods have not been shown to resultin unbiased linear amplification of
the starting RNA population. Some methods have been shown to have a repro-
ducible bias in amplification. The bias is closely related to the amount of start-
ing material and the number of cycles of amplification, so these should be kept
constant, even when more starting material is available. In situations where
amplified RNAs have been analysed, the majority of over-represented
sequences have been found to be AT rich, while mRNAs under-represented
contain a high proportion of messages that are likely to form extensive second-
ary structure. In some cases, amplification at a higher temperature may help to
reduce this bias (M. Kenzelmann, personal communication; Ernst ezal.,2002).
A few methods have been shown to work well for use with microarrays (Baugh
etal.,2001;van Gelder ez al., 1990; Pabon ez al.,2001).

Insome situations the labelled extract may be prepared starting with tissue or
cells derived from several individuals or biosources. This may be the only way
that enough of the starting material can be obtained.

2.3.3 Preparation of the labelled extract

Having harvested cells or tissue under the appropriate conditions, the first step
is to inhibit all further RNA synthesis and degradation as quickly as possible. A
lengthy harvesting process, or one thatinvolves using conditions different from
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those of the experiment, can induce a transcriptional response; e.g. harvesting
cells at room temperature in a refrigerated centrifuge can induce cold shock if
harvesting takes too long. Inhibition of cellular processes is usually achieved by
snap freezing in liquid nitrogen, or by the addition of hot phenol or a chaotrop-
icagent.

Preparation of the labelled extract should be carried out in parallel for as
many samples as can reasonably be processed. The quality of the initial total
RNA or cDNA preparation is a major factor in obtaining high quality labelled
extract for hybridisation. The nucleic acid should be ‘clean’, i.e. free from poly-
saccharide or protein contamination. A common way to assess this is based on
the ratio of the absorbances at 260 nm and 280 nm. (Note that spectropho-
tometers have a finite linear range, and absorbance readings are proportional to
the concentration of nucleic acid only for readings within this range. Itis worth
establishing the linear range empirically for any spectrophotometer in use.) In
addition, the nucleic acid preparation should be of a consistent size range and
yield for the protocol used. Very low yields are potentially a problem, as the re-
sulting extract may not provide an accurate representation of the diversity of
nucleic acid in the original sample. Different RNase inhibitors have been found
to alter the population of RNA in the initial sample selectively, and should
therefore be used only after extensive characterisation and if the same RNase
inhibitor can be added to all the samples. Another way to remove RNases is
to carry out two rounds of extraction with the chaotropic agent. Although
the yield of purified total RNA will be lower, this is an extremely effective and
reproducible way to quickly remove protein from the sample.

Although a large number of different methods for preparation of total RNA
have successfully been used, the detailed methods for subsequent steps of the
protocol depend on the individual researcher, the array to which the sample will
be hybridised, and the type of analysis that will be carried out.

2.3.4 Assessing the quality of the labelled extract

The quality of the Jabelled extract can be assessed based either on gross charac-
teristics, e.g. the ratio of the absorbances at 260 nm and 280 nm, the size range
and the yield, or on characteristics relating to individual genes. In situations
where preparation of the labelled extract involves amplification primed from
the 3’ end, and the extract is hybridised to arrays containing composite se-
quences, the quality of the labelled extract may be assessed from the ratio of the
3’ to 5’ signal for individual transcripts (composite sequences are different
reporter sequences, or spots, on the array that represent different regions
along the length of the same transcript). This is particularly useful when
in vitro transcription is used in sample preparation. Affymetrix (http:/
www.affymetrix.com) produce an oligonucleotide array called a GeneChip™,
with composite sequences representing the 5”and 3” ends of anumber of genes.
Aratio of less than 3 : 1 of 3" to 5’ signal is usually considered reasonable for data
generated using these GeneChips™ and the manufacturer’s methods for
preparation of the labelled extract. This is because transcription is rarely com-
pletely processive and initiates from the 3" end. Amplified RNA usually has a
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stronger 3’ bias. Another way in which the quality of samle preparation may be
assessed is via the use of spiked-in controls. If the cocktail ‘spiked in” includes
transcripts at a range of concentrations these data can be used to assess the sen-
sitivity with which transcripts can be detected; the controls can also be used to
determine the extent to which the sample has been amplified.

2.4 Choice and design of arrays

2.4.1 Choice of array platform

The method of microarray manufacture and the nature of the substrate can be
used to categorise arrays. First there is distinction between the so-called cDNA
arrays, where polymerase chain reaction (PCR) products are typically used as
sequences on the array features (spots), and oligonuclcotide arrays, or oligo-
arrays, where the features (spots) are made up of oligonucleotides. Oligo-
arrays may be either spotted or synthesised 7 situ, i.e. the features can be made
from presynthesised oligomers that are spotted onto the array substrate or from
oligonucleotides that are synthesised directly on the substrate (typically either
by photolithography or by inkjet printing). The array substrate may be cither
non-porous, typically glass or a polymer, or porous, typically a nitrocellulose or
nylon filter.

The DNA sequences that represent the features (spots) on the array are re-
ferred to as reporter sequences. Multiple, different, sequences that provide infor-
mation on the expression of the same transcript, usually a single gene or exon,
are known as composite sequences(or composite elements). An example is the set of
11 to 20 ‘perfect match’ oligonucleotides on an Affymetrix GeneChip™ that
hybridise to different parts of a single transcript.

The choice of array platform is often determined by accessibility and cost;
however, it is worth considering future implications of this decision, as data will
be more comparable if the experimental design and platform are the same for
the duration of a project. While manufacture ofarrays in-house can be attractive
in terms of cost and customisation, the amount of time and effort required to
set up and characterise a robust system is appreciable and is advisable only if
large numbers of microarray experiments are planned. The use of commercial
arrays may place restrictions on the type and distribution of the genes repre-
sented on the array, although manufacturers are increasingly willing to con-
struct custom arrays for an appropriate price. This option is usually most viable
where large numbers of experiments are planned using the same array design, as
the cost per array is frequently smaller for large orders.

Anotherway to classify microarraysis in relation to the number of labelled ex-
tracts that are hybridised to each array at any one time. Single-extract array
methodologies usually involve the use of commercial arrays. These range from
the very simple, e.g. the filters available from ResGen Invitrogen Corporation
(http: //www.resgen.com/) or Clontech (BD Biosciences, http:/www.
clontech.com/), to the highly engineered Affymetrix GeneChip™. The
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corrected spot intensity measurements are used as absolute values and compar-
isons are primarily made between extracts hybridised to different arrays. A
major advantage of this experimental design is that the comparisons between
datasets do not have to be decided ‘up front’.

Multiple extract per array methodologies have typically been used with arrays
spotted with PCR products and the correct spot intensity measurements used
as a ratio of the values obtained from the samples hybridised to a single array.
However, the distinctions between the methodologies for generating micro-
array data are blurring rapidly, and the use of oligonucleotide-based arrays with
multiple extracts is becoming widespread.

' 2.4.2 Oligonucleotides vs. PCR
products

PCR products offer the advantage of amplification, so that limited template
DNA and clone banks can be spotted multiple times after amplification from a
single ‘source’ plate. However, reliance on amplification means that there are
potential problems with contamination. This has been addressed in a number
of ways, from the design of liquid-handling robots with ‘non-contamination
arms’ that permit only single wells of a multi-well plate to be exposed at a time,
to elaborate methods for primer design, so that clones in neighbouring wells
cannot be amplified with the same primers. The sequence available for hybridi-
sation is typically in the range 0f 400 bp to 1 kb.

Oligonucleotides, typically in the range of 25 to 80 base pairs, offer the ad-
vantage thatitis easier to standardise the sequence represented at each spot, suf-
fer less from the effects of contamination between spots, as no amplification is
involved, and can usually be purchased in a form ready for spotting. However,
the design of oligonucleotide features means that the sequences representing
each spot must be known. The sequence available for hybridisation is typically
shorter for oligonucleotides than for PCR products, such that arrays can be de-
signed for the detection of different combinations of exons and exon bound-
aries (that may result from alternative splicing); however, the data obtained
should be carefully controlled for the effects of possible non-specific hybridisa- _
tion. Redesign of the oligonucleotide sequence representing the feature usu-
ally addresses this concern, as does the use of multiple reporters (composite
sequences) for each transcript. The information obtained from composite
sequences is also useful on arrays in which the features are represented by
PCR products.

The following guidelines have proved useful in designing oligonucleotide
elements (T. Freeman, HGMP Resource Centre, Cambridge, UK, personal
communication):

e length of 50-70 nucleotides;

¢ avoid sequences that may be able to form secondary structure;
¢ GC content 0f 45-65%;

* 3’ bias;

less than 70% homology to other known genes.
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Programs that can be used to assist in reporter design include OligoArray
for oligonucleotide elements (http://berrv.engin.umich.edu/oligoarray/)
(Rouillard ez al.,2002). There are also programs for assessing which expressed
sequence tags (ESTs; see Glossary) represent unique transcripts; two of these
are available from the National Center for Biotechnology Information (NCBI)
(hzp://www.ncbi.nlm.nih.gov/UniGene/) and The Institute for Genome
Research (TIGR) (htp: //www.tigr.org/tdb/tgi/hgi/index.html). Both of
these programs are based on clustering of EST dara (Hegde ez al.,2000).

2.4.3 Replicate, guide and control features

Arrays with multiple features (spots) representing each sequence and multiple
feztures representing cach transcript (either identical reporters or composite
sequences) should be printed using more than one pin, or jet, to print each se-
quence, so that factors such as Jocal background, between-pin variation, and
spot morphology can be assessed. Schuchhardt ez /. (2000) have found that
there is significant variability in the signal obtained from individual spots asare-
sultof differences in pin geometry. Some of these problems may be solved as the
use of inkjet printing becomes more widespread.

After the array has been scanned, the scanned image has to be correlated with
information about the spot location and the spot identity. One way to do thisis
to superimpose a grid on the scanned image. The inclusion of spots that pro-
duce astrong fluorescent signal at the corners or edges of the array and at a few
asvmmetric positions may allow the use of these spots as ‘landing lights’ for the
grid and to orient the array.

Transcripts that are expected, and not expected, to be found in the labelled
extract should be represented on each of the arrays. The signal from these
control features is used to provide information on the quality (e.g. sensitivity of
detection, quality of the labelled extract, contamination) and thus the confi-
dence associated with each measurement. Examples of genes that are expected
to bein the labelled extractinclude housekeeping genes and exogenous control
genes. Those that are not expected to be in a labelled extract might include
ribosomal RNA genes and those that represent sequences from other (dissimi-
lar ' genomes.

2.4.4 Cross-hybridisation

If the labelled extract contains families of genes with high sequence identity
(70% or more), the labelled nucleic acid represents a transcript which may hy-
bridise to the spot designed to detect the transcript from a different gene. This
isknown as cross-hybridisation. The resultis that some transcripts may appear to
be more abundant than they really are. There are no good ways for identifying
cross-hybridisation in situations where the nucleic acid sequence making up the
elementis long (e.g. a PCR product).

In general, it is best to avoid possible cross-hybridisation by designing the
reporters so that there is less than 70% similarity for any pair of reporters.
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Unfortunately this is not always possible. Another strategy for increasing speci-
ficity is to design reporters that hybridise to the 3" untranslated region down-
stream of the gene, which is often more characteristic of an individual transcript
than the coding sequence. Until all the genomes of interest are sequenced, we
are unlikely to be able to predictall possible cross-hybridisation events. In these
cases one should try to minimise the effects of cross-hybridisation by increasing
the stringency of washing.

There are several methods for establishing the extent of cross-hybridisation.
The approach described below has been used extensively with data from
GeneChips, using an algorithm developed by Affymetrix. Each gene and ex-
pressed sequence tag is represented by eleven to twenty 25mer oligonucleo-
tides on the array that match the sequence of the gene of interest. These are
called the ‘perfect match’, or ‘PM’, spots. The perfect match elements repre-
sent different regions distributed along the transcript, with a bias towards the 3
end of the coding region and the 3’ untranslated region. There is a ‘mismatch’
spot beside each ‘match’ spot that differs from the match sequence by one
nucleotide at position 13, i.e. in the middle of the 25mer. Hybridisation to
the mismatch sequence is indicative of non-specific hybridisation. The paired
match and mismatch spots for each gene are together, so that local background
effects are similar for both, although the sequences for each transcript are dis-
tributed on the array. This means that topical defects in the array and back-
ground effects do not compromise the quality of the signal obtained from all
the spots representing a transcript.

The signal intensities obtained from each of the 11 to 20 match /mismatch
pairs representing each transcript are used ina weighted voting system to deter-
mine (i) whether the transcript can be reliably detected and to assign a confi-
dence, or discrimination, score (‘P” for present, ‘M’ for marginal and ‘A’ for
absent); and (ii) the expression level of each gene or expressed sequence tag.
The signal intensity value derived using the match and mismatch sequences is
known as the ‘average difference’ or ‘signal’ obtained from analysis of the
match and mismatch sequences, depending on the algorithm used.

A statistical approach for identification of cross-hybridising sequences, con-
tamination and array artefacts based on the standard error between ‘perfect
match’ and ‘mismatch’ sequences on oligonucleotide-based arrays has also
been proposed (Li and Wong, 2001a,b).

2.5 Hybridisation, scanning and quality control

Differences in the amount of labelled extract hybridised to each array are ulti-
mately corrected for by normalisation; however, it is advisable to standardise
the amount used, so that the linear range for fluorescence intensity across a set
of experiments is comparable and the normalisation factor is small.

The starting point for a good hybridisation is a good quality microarray.
While printing protocols have matured significantly, array printing remains a
mixture of art and science. Fortunately, it is relatively easy to check the quality
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of each print run to assure that the DNA deposition was successful and gain
an overall qualitative measure of the print quality. There are a number of
nucleic acid stains, including Vistra Green (Amersham Biosciences), Syto61
(Molecular Probes) and SYBR Green (Molecular Probes), that can be diluted
and used to visualise both single- and double-stranded DNA using the same
confocal laser scanners that are used to assess hybridisation. A good rule of
thumb is to stain and scan both the first and last slides in any print run. This will
allow an assessment of the consistency of spotting across the run and permit
identification of drop-out spotting pens or empty wells in the microtitre plates.
This information is particularly useful in experiments designed to detect the
presence or absence of gene expression for particular genes, as the DNA stain
allows ‘empty’ spots to be excluded from consideration. In most experiments,
arrays with a large number of drop-out spots or inconsistent printing should
not be used. While the cost of printed slides is not inconsequential, typically the
RNA samples are more valuable than the slides themselves, and subsequent
analysis is best when one uses the highest quality data from the best possible
slides.

Inassessing hybridisations there are no hard and fast rules defining what con-
stitutes a ‘good’ scan, but there are a number of guidelines that can be used to
check that the sample and the array are of reasonable quality, the hybridisation
has worked, and the fluorescence intensity values are as expected. Many of the
features of a ‘well-spotted’ array can be seen by visual inspection of the array
after hybridisation. The spots should be evenly spaced and regular in shape,
with little background fluorescence between them. Some of the issues associat-
ed with spot morphology, including the impact of the slide surface, humidity,
temperature and media used for spotting, are described by Hegde eza/.(2000).
A bright background can be anindicator that unincorporated label has not been
efficiently removed from the sample preparation, or that there is dust on the
array.

Another indicator of quality is the number of genes and expressed sequence
tags that can be ‘scored’ with some measure of confidence. This needs to be
based on experience and will depend on a number of factors, including whether
the sample was prepared from the same strain as the elements represented on
the array, whether there was loss of mRNA (e.g. due to a transcriptional
shutdown) and the relative abundance of genes and expressed sequence tags
represented on the array.

The array constructionitself can provide additional, more quantitative meas-
ures of the quality of the hybridisation. If the array is unbiased in its construc-
tion, so that up- or down-regulated genes are not physically arranged to be in
one area or another of the array, and so that a large number of randomly chosen
genes are included, the observed hybridisation should be unbiased as well.
A simple way to test this is to compute the mean and standard deviation of
log,(Cy5,/Cy3) measured for the features in each subgrid and then compare
them with those for the entire arrav; a simple #test will quickly identify outlying
subgrids. This can be used to assess whether spatial biases exist in the array. The
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same test can be applied to detect biases in pen groups. A similar, simple, quali-
tative approach is to quickly do a total intensity normalisation of the array data
(see Chapter 3) and then create a representation of the array with the most
significantly up- and down-regulated genes colour coded to indicate their ex-
pression. A quick visual inspection will identify any regional bias on the array.

2.6 Long-term considerations

On one hand microarray experiments are relatively expensive; on the other, if
carefully planned and executed they can produce data that can be used repeat-
edly in different contexts over a long period of time. There are many examples
of mining and reanalysing of microarray datasets, often in combination with
new datasets to produce significant new results (Alizadeh ez al., 2000; Lee et al.,
2002; Ross et al., 2000; Scherf et al., 2000; Shipp ez al., 2002; Staunton ¢t al.,
2001; Waddell and Kishino, 2000).

It may therefore be advisable to keep some long-term considerations in mind
when designing an experiment. There are three basic principles that should
guide these considerations:

1 experiments and the data generated should be carefully documented;

2 experimental procedures, protocols and reference samples should be
standardised as much as possible;

3 investment in the quality of the data may prove useful, even if it does not
seem important for achieving the immediate goals.

Microarray experiments carried out over long time periods, possibly in different
laboratories, can be compared only if the experimental conditions and proto-
cols have been standardised.

2.6.1 Record keeping

It is not easy to define the minimum information that needs to be reported
abouta microarray experiment that would allow it to be interpreted unambigu-
ously. A recommendation towards this goal has been made by the Microarray
Gene Expression Data Society (MGED) in a document known as the
‘Minimum Information About a Microarray Experiment’ (MIAME) (Brazma
et al., 2001). In addition to the raw and processed data, this information in-
cludes the description of the experiment as a whole (e.g. experimental factors),
the annotation of each sample used in the experiment (e.g. species, cell type
and source), the reference or a description of the array platform used in the
experiment, and the experimental protocols, including those for data
transformations.

Recording these data by hand in a lab-book can be a time consuming task,
and software packages are being developed by several academic and commercial
groups that allow these data to be recorded more easily. Note that much of the
information generated by a laboratory information management system
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(LIMS) is in fact recorded automatically. Data recorded by a LIMS need to be
stored in a well-structured database.

It is important to keep as much raw dara from experiments as possible, in-
cluding images and information on image quantitations. For instance, the ab-
solute corrected spot intensity values for each channel should be recorded in
addition to the ratios, as this can provide valuable additional information re-
garding the expression of the particular gene and the reliability of the measure-
ment (unfortunately often only the ratios of the corrected spot intensities are
reported).

2.6.2 Standardisation

The major reason for standardisation of microarray experiments is to make data
from different hybridisations performed over long time periods comparable.
Unfortunately there are currently few standards for microarray experiments. As
afirststepitisimportant to try to use a consistent reference sample. Some of the
larger laboratories have standardised their experimental protocols. The MGED
website (http://www.mged.org/) provides a resource for reporting micro-
array protocols, and MGED is working on a standardised way to describe such
protocols. ArrayExpress (Brazma ez al., 2002), a public repository of micro-
array data based at the European Bioinformatics Institute (EBI), provides a
resource for reporting protocols and for viewing all the protocols that have
been used in experiments submitted to ArrayExpress (http:/www.ebi.ac.uk/
microarray,/ArrayExpress /arrayexpress.huml).

Even within individual laboratories, a certain level of standardisation will
prove advantageous, ensuring that data generated by different researchers, or
even the same researcher, over a period of years can be compared at least to
some degree. It is worth thinking about experimental design in this context,
even at the stage of designing your first microarray experiment. For example, it
might be worth choosing to hybridise to an array that contains more than just
your genes of interest so that at a later date other researchers can use the same
arrays for their experiments. The data generated may ultimately prove to be a
useful source of information for a large number of researchers and bioinfor-
maticians. Itis useful to evaluate all the considerations described in this chapter
in this context, such as choice of genetic background, source of reagents and
consumables, and time points at which cells are harvested.

There are several public repositories for gene expression data, which, in
time, are likely to serve a role for gene expression data similar to that of
DDBJ/EMBL/GenBank for sequence data: ArrayExpress at the EBI, Gene
Expression Omnibus (GEQO; http:/www.ncbinlm.nih.gov/geo/) at the
NCBI in the USA, and the Center for Information Biology Experimentation
Database (CIBEX) in Japan. In addition, a common data exchange format
MAGE-ML (http:/www.mged.org/Workgroups/MAGE/mage.html) has
been developed as part of a collaborative project between MGED and several
major software companies.
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Image processing,
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In theory there is no difference between theory and practice. In practice
there is.
Andrew S. Tannenbaum
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3.1 Introduction

DNA microarrays permit the collection of data on patterns of gene expression
by surveying thousands of genes in a single experiment. Each microarray typi-
cally contains features representing thousands or tens of thousands of genes
that are surveyed in an assay in which one or more samples representing the
messenger RNA (mRNA) expressed in the tissues, developmental stages, or
treatments of interest are labelled with a distinguishable marker and allowed to
hybridise to features on the array. The underlying assumption is that the relative
level of detectable hybridisation for each of the labelled extracts for each feature
represents the relative population of the corresponding mRNA species in the
experimental samples being surveyed. In a typical experiment, one uses these
results to identify differentially expressed genes, to find patterns of coordinated
gene expression, or to uncover genes whose expression patterns can be used for
sample classification.

In glass slide DNA microarray experiments, RNA from the cells and tissues of
interest are generally used to generate first-strand DNA (¢cDNA) complemen-
tary labelled with spectrally distinguishable fluorescent dyes such as Cy3 and
Cy5. Single-‘colour’” microarray assays can also be performed and include a
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single fluorescently labelled sample hybridised to a glass microarray, a radioac-
tively or chemiluminescently labelled sample hybridised to a nylon filter array,
or hybridisation followed by labelling with a fluorescent tag, such as that used
with Affrmetrix GeneChips ™. Regardless of approach, the arrays are scanned
following hybridisation and independent grey-scale images are generated for
query and control samples, typically as 16-bit TIFF (Tagged Image File
Format) images.

These images must then be analysed to identify the arrayed spots and to
measure the relative fluorescence intensities for each feature. Having identified
each spot on the array and having measured its intensity, one must adjust, or
‘normalise’, the measured hybridisation intensities so that they can be effec-
tively compared within, and between, each array. The data can then be further
filtered in order to facilitate effective comparisons.

3.2 Preliminary processing of the data

3.2.1 Image analysis

The first step in the analysis of microarray data is image processing. Most com-
mercially available microarray scanner manufacturers provide software that
handles this aspect of the analysis, and there are a number of additional image
processing packages available. Nevertheless, it is important to understand how
data are extracted from the images as they represent the primary data collected
from each experiment and everything else is derived from those images and
their initial analysis.

Image processing involves three stages. In the first stage, the spots represent-
‘ing the arrayed features must be identified and distinguished from spurious sig-
nals that can arise as a result of precipitated dye or other hybridisation artefacts,
contaminants such as dust on the surface of the slide, and other sources of non-
specific background. The problem of finding a distributed collection of features
isadifficult one, but for microarrays this is greatly simplified as the systems used
to create the arrays generally produce a regular arrangement of features on the
surface of the slide. In mechanically spotted arrays, these are typically arranged
in subarraysor pen groupsrepresenting each of the pen tips used to deposit the
features. Most arrays have their elements arranged in a rectangular grid, al-
though some use an ‘orange packing’ arrangement to increase spot density.

Microarray image processing software packages generally require the user to
specify approximately where each subgrid lies and to provide additional para-
meters relevant to the spotted array, such as the number of rows and columns in
each subgrid, the number and arrangement of subgrids, and the approximate
spot size. This information is then used to roughly place the grids over the
arrayed spots, adjust them dynamically to best represent the features (often
using a ‘centre of mass’ calculation for each spot), and to determine both the
approximate spot area to be surveyed and a local region that can be used to
estimate background.
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Grid placement is extremely important, as the grid coordinates are used to
identify the individual arrayed features and to assign identities to them. Shifting
or misaligning the grid can cause particular expression levels to be assigned to
the wrong genes. Consequently, many groups use so-called ‘landing lights’ on
their arrays. These are specific features spotted on the array at predetermined
locations, typically at the very start and end of each subgrid or around the
perimeter of the spotted features being queried in the analysis, that are selected
to give a strong fluorescence signal regardless of the quality of the hybridisa-
tion. These then provide hybridisation signals that should allow unambiguous
placement of the array grid. Landing light features are generally designed to
bind to exogenous spiked-in controls (see Section 2.2.5) hybridised to the
arrays, polymerase chain reaction (PCR) products incorporating fluorescently
labelled nucleotides, or the fluorescent nucleotides themselves.

Once the subgrids have been placed, areas within each individual cell in the
grid must be selected to determine the spot signal and an estimate of back-
ground hybridisation. There are two widely used approaches for determining
the spot area. The easiest is to use a fixed region (for spotted arrays, typically a
circle of predetermined area) that is centred on the centre of mass of the spot.
This has the advantage that it is computationally simple and provides a reason-
able estimate of the area occupied by the spot. A disadvantage is that this
method can lead to misestimates of both the spot signal and the local back-
ground signal if the spot size is incorrectly estimated or if there is a great deal of
variability in the spotted features.

An alternative approach is to attempt to precisely identify the spot bound-
aries and to include only those pixels within the boundary. This has the disad-
vantage of being computationally difficult, causing the image processing time
toincrease and, depending on the particular algorithm used, possibly leading to
misidentification of the spot and surrounding background areas. The advan-
tage of this approach is that it allows us to more precisely identify those pixels
representing real hybridisation, and consequently it can provide a better esti-
mate of the actual intensity associated with each feature on the array.

3.2.2 Measuring and reporting expression

The starting point for all of our analyses is an estimation of the expression for
each gene. One must remember during this process that what we are really
doing is trying to infer expression based on measured hybridisation intensities,
and that in reality, hybridisation is assaying relative RNA representation, from
which we infer expression (Figure 3.1). Consequently, the manner in which
hybridisation is measured and reported can have a significant effect on the con-
clusions that we draw from the experiment.

Once the features have been identified, microarray image analysis software
measures the intensities in each channel for each pixel that comprises the image
of each feature, and typically reports a variety of summary statistics. These often
include the total intensity for each feature and the mean, median and mode of
the pixel intensity distribution, as well as an estimate of these for the local back-
ground, and other statistics such as the standard deviation of both signal and
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Figure 3.1 Diagram outlining measurement of gene expression. Microarray assays provide an
estimate of gene expression. Each gene is represented by one or more features on the array for
which fluorescence intensities are measured following hybridisation. From this, we attempt to
deduce the expression level of the gene. This requires that we track a range of diverse information,
including the samples selected, the conditions under which they are collected, the laboratory
protocols and conditions associated with RNA extraction and labelling, and the hybridisation
conditions. Ultimately, what we are measuring is RNA representation, not expression, and each
step in the process can affect the final result.

background. The primary goal of most microarray assays is to identify differ-
ences in expression for each arrayed gene. Tvpically, we calculate the ratio of
signals between independent measurements for each gene, which for two-
colour arrays is just the ratio of the measured signal intensity for each channel.
There are, however, a number of approaches to measuring the fluorescence in-
tensities for the arrayed features.

Most microarray approaches use either the background-subtracted median
or total intensities as the statistic representing each feature. The median, which
is the value of the intensity with exactly half of the pixel measurements at greater
intensity and halfat lower intensity, has the advantage that it is relatively insen-
sitive to outlying, high intensity pixels in the spot image which can be caused by
dust, unincorporated label, or other artefacts that cause a small number of satu-
rated pixels within the spot area. However, the median is sensitive to misident-
fication of the spot area, and an overestimation of the region of the spot that
includes too many of the background pixels can skew the median and any quan-
tities calculated from it. This is because the area of the spot, and consequently
the number of pixels assessed in calculating the median, grows quickly as the ra-
dius of the spot boundary increases beyond the actual area of the feature. The
total intensity, on the other hand, is relatively insensitive to misidentification of
the spot boundary since adding background pixels with intensities near or equal
to 0 after background subtraction has little effect on either the final sum or the
final ratio. The total intensity does have the disadvantage that it can be skewed
by a few anomalous highly fluorescent pixels that greatly inflate the sum in one
or both channels.
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3.2.2.1 SATURATED PIXELS

Microarray scanners typically use a 16-bit analogue-to-digital converter (ADC)
that converts the signal from the photomultiplier tubes (PMTs) that measure
fluorescence to a digital value for each pixel in the resulting image. This means
that relative intensity levels are reported in a range from 0 to 65,535 (216 - 1).
The measured values depend on a variety of factors. including the hybridisation
itself, the voltage set for the PMT, and the laser power used. In scanning
hybridised arrays, one typically tries to strike a balance between detecting as
many spots as possible and avoiding saturation of any of the spots.

Regardless, one will typically find a number of pixels within some of the spots
that are saturated in one or both channels, and these must be considered and
dealt with effectively. One approachis to use the median spotintensity which, as
discussed previously, has the advantage of being relatively insensitive to a small
number of saturated pixels. However, the median can also be skewed if there are
too many saturated pixels in a particular spot. Obviously, pixel saturation will
also have a deleterious effect on the integrated intensity. If pixels in a single
channel are saturated, this can result in an underestimate of the expression in
the sample to which it corresponds. If pixels are sarurated in the images repre-
senting both labelled extracts, then the result is an unpredictable distortion of
the relative expression; examples are shown in Figure 3.2. Consequently, it is
generally good practice to eliminate saturated pixels from calculations of spot
intensities, and most microarray image processing software allows for this.
If there are too many saturated pixels in one or both channels, the spot in that
particular image should be flagged as uninformative and eliminated from
further consideration.

3.2.2.2 THE APPROPRIATE NUMBER OF PIXELS

One other consideration in image processing is the sampling size used for meas-
uring the spots — essentially how many pixels are included in the spot image.
For most scanners the default pixel size is 10 um, so that a circular spot 200 ptm
in diameter contains about 300 pixels (remember that the area of a circle is
A=mn7? and the radius ofa 200 pum spot is 100 pm. or 10 pixels). This provides
afairly large number of measurements for each spotand allows some confidence
that a small number of bad pixels will not unduly influence the result. How-
ever, the number of pixels sampled drops rapidly as the diameter of the
spot decreases. At 160 pm there are only about 200 pixelsin the spot, at 100 um
the number is down to 78, and at 80 um there are only 50; if any of these
are eliminated because they are saturated, or for some other reason, the number
of measurements of each spot is further reduced. Recall that the standard
error for any measurement grows roughly as 1/7, where 7 is the number of
measurements, or in our case the number of pixels. This means that as the
number of pixels decreases, our uncertainty in any measurement we make
grows. .

Most scanners now allow use of 5pum pixels, which provide four times as
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Figure 3.2 Examples of saturation. If pixels are saturated in the images representing one or both
labelled extracts, then the result is an unpredictable distortion of the measured relative
expression.
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many measurements as do 10 um pixels for a spot of the same size. While it may
be useful to use these smaller pixels to increase our confidence in the intensities
we measure, their use also increases the image file size by a factor of four relative
to that for a 10 pm pixel measurement. Consequently, a balance must be struck
between the necessary accuracy of the microarray measurements one would like
to make and the practical issues of file storage and image analysis. Generally,
10 um pixel measurements provide a large enough number of measurements,
but for spots smaller than about 80 um in diameter, smaller pixel sizes should
be considered.

3.2.2.3 ESTIMATING BACKGROUND

Most image processing software reports background-subtracted values for
cach feature on the array by first estimating the background and then subtract-
ing it pixel by pixel from those within the identified area of the feature.
However, this first requires an estimation of the appropriate background fluo-
rescence. There are a variety of sources of potential background in each array,
including natural fluorescence of the glass or its coating, and non-specific
hybridisation. There are also a number of approaches to measuring the
background.

Most image processing software makes a local estimate of the background
by identifying some number of pixels surrounding each spot and using those
to calculate an average or median background level that can be subtracted
from each pixel in the spot. This has the advantage that it treats each spot
separately, allowing variations in the background to be individually estimated.
One possible disadvantage to this approach is thatif the pixels selected contain
portions of either the target spots or those surrounding it, one may overesti-
mate the background significantly. Consequently, some image processing soft-
ware allows the estimation of global background - a single measurement that is
used for the entire slide. Since only one measurement will be used, this general-
ly requires users to select a large representative area of the slide that is devoid
of features. The disadvantage of this, of course, is that it fails to account for
local variations in the background fluorescence of the substrate, and as a
result it may provide either an over- or underestimate of the appropriate
background.

If there is significant non-specific hybridisation to the surface of the micro-
array, both local and global methods may overestimate the background. Many
people have reported the presence of ‘negative spots’ or ‘black holes’ in arrays
where there has been incomplete blocking of the (glass) surface prior to hy-
bridisation. This phenomenon occurs when the labelled extract binds with
higher efficiency to the surface itself than it does to the corresponding features
on the array, with the result that the features themselves serve as blocking agents
reducing non-specific hybridisation. To deal with this, some image processing
software allows users to specify negative hybridisation control spots. These typ-
ically consist of exogenous DNA selected to have as little homology as possible
with the species of interest so that all we measure is the fluorescence of the
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microarray surface under the spot and any non-specific hybridisation to DNA.
This has the advantage that it measures precisely what we want to subtract from
each spot, but it does not take into account local variation in the slide surface
fluorescence nor does it precisely account for sequence-mediated differences in
non-specific hybridisation.

3.2.2.4 REPORTING EXPRESSION WITH AFFYMETRIX GENECHIPST™

As discussed previously, most image processing software reports a variety of
measured parameters for each feature on the array, including mean, median and
total intensities, spot areas, background estimates, and statistical properties
of the feature and background pixel intensity distributions. Affymetrix
GeneChips™ software is a notable exception. The Affymetrix approach to mi-
croarray analysis uses features consisting of 25 base oligonucleotides selected
from each parent gene’s sequence. For each gene, 11 to 20 paired sets of ‘per-
fect match’ (PM) and ‘mismatch’ (MM) are synthesised, such that PM /MM
pairs are in adjacent positions on the array. The PM feature is a perfect match to
the sequence while the MM has a single mismatch nucleotide in the middle of
the strand (position 13 of 25). The MM features are designed to provide a
feature-by-feature estimate of the non-specific hybridisation that one expects
for the PM features and play a role equivalent to the background measures used
in most other systems. As a measure of the expression of the gene, the
Affymetrix image processing software reports an average difference (AD),

N
Z(PMkimcnmy = MM’:nrcnsiry)
AD -~ £l

N

where N is the number of feature pairs for that particular gene. Itis this average
difference that is used in subsequent calculations as a background-subtracted
measure of gene expression.

One potential problem with this approach is that it can result in negative
values for the measured expression levels. Recent versions of the Affymetrix
expression reporting software use a scheme that decreases the relative contribu-
tion of feature pairs with large mismatch values,

N
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Signal ~ £ =
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k=1

where 1w, are the weights assigned to each feature pair. A simple approach
adopted by some users of Affymetrix GeneChips™ prior to the release of the
most recent software system was to use a binary scoring scheme,
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which eliminates features with greater hybridisation to the mismatch probe and
guarantees that the average difference value be positive. This has been shown to
provide much more reproducible measures of expression (Irby ez al., 2002; Li
and Wong, 2001).

3.2.2.5 EXPRESSION RATIOS: THE STARTING POINT
FOR SAMPLE COMPARISON

Regardless ofhow we choose to report expression for each gene in an individual
RNA sample, most analyses focus on differences in gene expression, which are
usually reported as a background-subtracted ratio of expression levels between
aselected query sample and a reference sample. Typically, this is done by taking
ratios of the measured expression between two physical states,

for each gene % on the array, where we designate the query and reference
samples R and G, respectively (as one might choose for a two-colour
DNA microarray where the Cy3 sample is usually represented as green and
the Cy5 channel is represented as red). We will use this notation for what we
present here, but it should be noted that it is not specific to two-colour DNA
microarrays. The same formalism could be applied to separate measurements
on a single-colour array, where the R and G measurements represent those
on independent arrays, or in the Affymetrix GeneChip™ system, where R
and G represent the derived gene expression values from two arrays being
compared.

Asnoted previously, there are a variety of methods for representing the meas-
ured expression for each feature on the array. Consequently, there are a variety
of methods for calculating the expression ratio using the median, mean and
integrated expression measures. If we choose to measure expression using
the median pixel value for each feature, then the median expression ratio for a
given feature is

R feature __ Rbackgmund

median median
median T ~feawre _ (7background
Gmcdian Gmtdi.m

where Rfwre and Rbackground gre the median intensity values measured for

pixels identified in the feature and background, respectively. In a similar

fashion, if is the area of a given feature, we can define the background-
2 cature >

subtracted ratio of integrated intensities as
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It should be noted that the ratio of the integrated background-corrected spot
intensities is equivalent to the ratio of the mean intensities,
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3.2.2.6 TRANSFORMATIONS OF THE EXPRESSION RATIO

Ratios are useful because they allow us to measure expression differences in
an intuitive way, as genes that do not change in their expression level have a ratio
of 1. However, ratios are troublesome because they treat up- and down-regu-
lated genes differently. Genes up-regulated by a factor of 2 have an expression
ratio of 2, while those down-regulated by the same factor have an expression
ratio of ¥4 (0.5). As a result, down-regulated genes are compressed between 1
and 0 while up-regulated genes expand to cover the region between 1 and pos-
itive infinity.

To rectify this problem, the ratio is often transformed to provide a similar rep-
resentation for differentially expressed genes regardless of whether they are up-
or down-regulated. The reciprocal or inverse transformation converts the ratio
to a fold change. For genes with expression ratios less than 1, one takes -1 times
the reciprocal of the expression ratio, or

1,

k

(fold change), = 1
1

k

7,21
T, <1

for the kth gene on the array. The advantage of this approach is obvious: genes
whose expression increases by a factor of 2 have a fold change of +2 while those
that decrease by the same factor have a fold change of -2, providing an intuitive
interpretation for changes. The disadvantage, however, is that the fold change
is discontinuous between -1 and +1 and as a result is not amenable to most
mathematical analyses.

A better alternative is to apply a logarithmic transformation, generally using
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the logarithm base 2. The advantage of this transformation is that it produces a
continuous spectrum of values for differentially expressed genes while treating
up- and down-regulated genes equivalently. Recall that logarithms treat num-
bers and their reciprocals symmetrically: log,(1) =0, log,(2) =1, log,(%) =
-1, log,(4) =2, and log,(}}) = 2. If we take the logarithm of the expression
ratios, these will also be treated symmetrically so that a gene up-regulated by a
factor of 2 has a log,(ratio) of 1, a gene down-regulated by a factor of 2 has a
log,(ratio) or-1, and a gene expressed at a constant level (with a ratio of 1) has
alog,(ratio) equal to 0. The relationship between the ratio and the log,(ratio)
can be seen in Figure 3.3.

It should be noted that there are disadvantages to using expression ratios, or
the transformations derived from them, for data analysis. While ratios can help
to reveal some patterns in the data, they remove all information about absolute
gene expression levels. A variety of parameters depend on the measured inten-
sity, including the confidence limits one places on any microarray measure-
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Figure 3.3 Gene expression ratios and the effect of normalisation. (a) Comparisons of gene
expression patterns are generally represented by ratios comparing measured hybridisation
intensities. (b) Ratios, however, have the disadvantage of compressing measurements below 1 and
expanding them above 1; consequently, the logarithm of the ratio is often used. In a comparison
of related samples, one expects the ratio to be 1, or the corresponding logz(ratio) tobe 0. (c)and
(d) Normalisation adjusts the ratios appropriately to remove experimental biases that might be
present, allowing differential expression to be more accurately assessed.
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ment. While most of the techniques developed for analysis of microarray data
use ratios, many of them can be adapted for use with measured intensities,
although none is yet in widespread use.

3.2.2.7 SITUATIONS WHERE EXPRESSION DOES NOT CORRELATE
WITH SPOT INTENSITY

We must also remember that all the measurements we make are estimates of the
expression level for each gene and that there are anumber of factors that can dis-
tort the relationship between expression and the measurements we make. We
have already discussed a number of possible sources of deviation, including
poor estimation of the median or total intensities, pixel saturation, and back-
ground estimation, but others exist. If the density of fluors in the labelled,
hybridised molecules is high enough, interaction between the dye molecules
can quench fluorescence. Similarly, poor labelling or hybridisation can resultin
signals too faint to allow detection of certain expressed genes.

There are a number of other factors that may contribute to incorrect
estimates of hybridisation. If there is significant cross-hybridisation or non-
specific hybridisation between arrayed features, any measurements may be
incorrect. If we use cDNA clones to construct the arrays, chimeric or misiden-
tified clones may lead us to erroncous conclusions. PCR amplicons or oligonu-
cleotides may be contaminated with other DNAs and may not accurately bind
only the gene of interest, and oligonucleotide sequences may be incorrectly
synthesised. Hybridisation between alternative splice forms and members of
gene families may also cause us to overestimate fluorescence and therefore ex-
pression, even in the most stringent hybridisation assays.

Finally, one must remember that microarray assays allow us to measure only
relative RNA levels within samples, not expression itself. Sample handling can
clearly influence what we measure and may lead to conclusions that reflect less
about the biology of the situation we are studying and more about our labora-
tory practices. Manipulation of tissue samples, hypoxia, cold or heat shock, and
cell death can cause genes to be expressed that are not normally present in the
tissues we want to study, and RNA degradation can skew representation, as
some RNAs are more stable than others. The best protection against any of
these artefacts is to institute validated laboratory protocols selected to
provide the best quality RNA, labelling, hybridisation and scanning. No image
processing or other software can save bad quality data, and the best, most re-
producible results are invariably obtained from the cleanest hybridisations.

3.3 Normalisation

While ratios or their transformations are a good means of comparing levels of
gene expression between a query and a reference sample, before differentially
expressed genes can be reliably identified one must first have an accurate
method for comparing the measured expression levels between states. There
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are a variety of reasons why the raw measurements of gene expression for two
samples may not be directly comparable: the quantity of starting RNA may not
be equal for each of the samples, there mav be differences in labelling and
detection efficiencies for the fluorescent labels, and there may be additional
systematic effects that can skew the measured expression levels and the derived
expression ratios. Consider a self=self comparison in which the same sample is
compared with itself using independent labelling reactions. Here, one expects
the measured log,(ratio) to be 0 for each gene (equivalent to the ratio being 1)
since there should be no difference between the representation of genes in the
starting RNA. However, typically these are found to be distributed with a non-
zero mean and standard deviation, indicating that there is a bias to one sample
or the other, as well as an inherent uncertainty and an associated variation in
cach measurement.

Normalisation is any data transformation that adjusts for these effects and
allows the data from two samples to be appropriately compared. In addition,
there are a number of other data transformations that we may want to apply be-
fore proceeding with any more complex analyses. For example, we may want to
identify and eliminate questionable and low quality data or to average across
replicate measurements. Finally, we may want to perform additional analyses,
such as searching for differentially expressed genes in the datasets we generate.

Normalisation scales one or both of the measured expression levels for each
gene to make them equivalent, and consequently the expression ratios derived
from them. This is done in such a way that the average expression levels are
made equivalent for the two samples being compared. The results of normalis-
ing microarray data can be seen in Figures 3.3 and 3.4. Because normalisation
changes the data, one has to understand both the basic principles that each
technique employs and how it changes the data. Further, all normalisation
strategies are based on some underlying assumptions regarding the data and the
experimental design, and consequently the normalisation approach that is used
must be appropriate to the particular experiment.

Normalisation approaches typically use ecither the complete set of arrayed
genes or a control set, generally either a set of bousekeeping genesor aset of exoge-
nous spiked-in controls. Housekeeping genes are those that, in the systems under
study, are assumed either singly or collectively not to change in expression level.
Exogenous controls are genes from a species other than that under study,
generally selected not to cross-hybridise with other genes included in the array
(e.g. Arabidopsis genes for photosynthesis included in mammalian microarray
experiments), and for which a stable source of RNA is available.

The advantage to using a control set is that the only assumption required is
that those genes will be detected at constant levels in all of the samples being
compared. However, it requires careful quantitation of the initial RNA that is
used in each labelling reaction, it ignores much of the data, and it often fails to
account for any variation-dependent expression level. If the control set repre-
sents housekeeping genes, these must, in fact, not change in expression in the
conditions being surveyed, and these sets can easily be biased by incorrect as-
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Figure 3.4 Scatterplots of measured intensities, or their logarithms, can be used to visualise the
effects of normalisation on expression data. Normalisation shifts the average ratio to 1, resulting
in an adjustment of the best-fit slope to 1.

sumptions. Although it is commonly accepted that there is a set of *housekeep-
ing genes’ of relatively invariant expression, there is accumulating evidence to
suggest that many of these genes change in expression under some circum-
stances (Lee ¢z al., 2002; Thellin e al.,1999). This makes it important to use a
large number of control genes as a normalisation set. For strategies using the
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Table 3.1 Techniques for calculating normalisation factors, based on different properties of the
data.

Normalisation set Normalisation type/based on:

All/Percentile of all features e.g. Total intensity, mean, median intensity, linear
regression, Chen’s ratio statistics

Subset of genes, based on:

(a) Source
- endogenous to sample e.g. Housekeeping genes
- exogenous to sample e.g. Spiked-in controls
(b) Signal intensity e.g. Lowess
(c) Location of feature onarray e.g. Local normalisation

entire dataset, RNA quantitation is somewhat less important and the statistical
support for any correction is generally better, but these lack an independent
confirmation and can be skewed if the majority of genes on the array are differ-
entially expressed. A third alternative is to choose an unbiased set of genes
selected by rank ordering the genes or signal from each spot, placing them in
order based on expression level and using only those within a fixed window cen-
tred within the dataset (e.g. those between the 30th and 70th percentile) or
those within a fixed number of standard deviations of the mean (Schadt ez al.,
2001; Tseng et al., 2001). In fact, no single approach can be applied in all
circumstances, and that used must be selected with the experimental system
being examined in mind.

Once a normalisation gene set has been selected, a normalisation factor
(sometimes referred to as a scaling factor) is calculated for each gene and used to
adjust the data to compensate for the observed experimental variability and to
‘balance’ the fluorescence signals from the labelled extracts being compared.
There are a number of techniques that can be used to calculate normalisation
factors (Table 3.1), and we examine some of these below. The measured inten-
sities referred to in the sections that follow assume that the values representing
the expression of each spot have been corrected toaccount for differencesin the
background signal.

3.3.1 Total intensity normalisation

Of all the techniques that have been used for microarray data analysis, total
intensity normalisation is probably the easiest to understand. Total intensity
normalisation relies on two assumptions. First, we assume that the total quanti-
ty of starting mRNA is the same for both samples being analysed and hence, that
we have approximately the same number of molecules in each. While particular
genes may be up-regulated in the sample, others must be down-regulated to
compensate; this is equivalent to assuming that cells have a certain RNA syn-
thesis capacity. Second, we must assume that the genes represented on the array,
or the subset we choose for normalisation, are not biased to significantly over-
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represent genes expected to be differentially expressed between the samples we
are analysing. Consequently, for the hundreds or thousands of genes in the
array, changes in expression level between the labelled extracts under compari-
son should balance out, so that the total quantity of RNA hybridising to the
array from each sample is the same. If this is true, then the hybridisation inten-
sities for both of the samples being compared, summed over all of the features
in the normalisation set, should be equal.

Under this assumption, a normalisation factor can be calculated and used to
rescale the intensity for each gene in the array. One calculates a normalisation
factor by summing the measured intensities in both channels

Narray

where G and R, are, respectively, the measured intensities for the kth array
feature (such as the Cy3 and Cy5 intensities in a two-colour microarray assay)
and N, is the total number of features represented in the microarray; alter-
natively, the summation runs over the subset of features selected as nor-
malisation standards. The intensities are then rescaled such that

G/=N_,G, and R/=R,

total 'k

and the normalised expression ratio for each feature becomes

eghepgt
Gﬁ Nmm/ Gb

which adjusts the ratio such that the mean ratio is equal to 1; this transformation
is equivalent to subtracting a constant from the logarithm of the expression
ratio,

log,(T;) =log,(T,) - log,(N,,,)

This sort of global normalisation is an example of a single-parameter linear nor-
malisation: one that uses a single factor to scale the data. It should be noted that
what we have described here is not the only acceptable approach. Obviously,
one could scale the intensities so that the mean or median intensities are the
same across arrays, or that any of these are set equal to a fixed constant.

3.3.2 Mean log centring

One can easily see that total intensity normalisation approach is related to mean
log-centring normalisation, in which one relies on the assumption that the
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mean log,(ratio) should be equal to 0. In this case, we calculate a normalisation
constant that is equal to the mean log,(ratio) for all of the features in the
normalisation set,

1 Narray 1 Narray R&
Mo Z log,(T,) = N Z log, a

N,

array k=1 array k=1

Using this, the log,(ratio) for each feature is then scaled
log,(T)) =log,(T,)- N,

thus guaranteeing that the average log,(ratio) is 0. Of course, this is equivalent
to adjusting the intensities

G;=2"=G, and R]=R,

or the ratio

in a fashion similar to that described previously.

One disadvantage of this approach is that it is sensitive to outlying, differen-
tially expressed genes. If there are a number of genes that are significantly up-
regulated, for example, one will overestimate N, resulting in an overcorrection
of the expression ratios. A variation of this approach is iterative mean log
centring. First, ratios are adjusted such that the mean log,(ratio) for the entire
collection of genesisset to 0 (ora corresponding average ratio of 1) as described
above. Outliers are then identified and excluded, a new mean is calculated for
the remaining data, and this is used to normalise all of the data; this process is
repeated until convergence.

3.3.3 Linear regression

An alternative approach is to use linear regression analysis. For closely related
samples, one would expect many of the genes to be expressed at nearly constant
levels. In a scatterplot of intensities (or their logarithms) from the two samples
being compared, these genes would cluster along a straight line, the slope of
which would be 1 if the labelling and detection efficiencies were the same for
both samples. Normalisation of these data is equivalent to calculating the best-
fit slope using regression techniques (Chatterjee and Price, 1991) and adjust-
ing the intensities so that the calculated slope s 1.

Regression analysis assumes that the measured intensity for each gene in the
first sample, R, is an approximate linear function of the intensity in the second
channel, G,, so one can model the relationship as
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R, =B0 +BJGA- tu,

where f, and B, are constants representing the intercept and slope, respec-
tively, and #, is random, independently distributed noise in the measured
signal with mean 0 and a common variance. The best-fit estimate of the slope,
by, is given by

3 (R, ~R)G, -0)
b & k=]

1

36, -8

where G and R are, respectively, the mean of all the values in the two samples.
The estimate of the intercept, 4, is then simply

by=R-bG
The measured intensities for each feature, &, of the array can then be rescaled
such that

G, -0
Gk’z[‘—bi] a_nd R/ =R,

1

which again assures that the appropriate ratios are scaled, on average, to 1.

3.3.4 Chen’s ratio statistics

Another approach is the ratio statistics method developed by Chen ¢t al.
(1997). They assume that while individual genes may be up- or down-
regulated, in closely related cells the total amount of mRNA is the same for
a set of *housekeeping genes’ in the extracts being compared. For these, they
assume that there exists a distribution of expression levels, with a common
mean U and standard deviation ¢ independent of the sample. Under this as-
sumption, they develop an approximate probability density for the ratio T, =
R,/ G and describe an iterative process that normalises the mean expression
ratio to 1 and calculates confidence limits that can be used to identify differen-
dally expressed genes. Chen and collaborators have since extended this ap-
proach to use the entire available dataset (personal communication).

3.3.5 Lowess normalisation

It has been noted in a number of reports (see Yang et al.,, 2001) that the
log,(ratio) values often have a systematic dependence on intensity, most often
observed as a deviation from 0 for low intensity spots. Locally weighted linear
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regression, Lowess (Cleveland, 1979), has been proposed as a normalisation
method for microarray assays that can remove intensity-dependent dye-
specific effects in the log,(ratio) values (Yang ez al., 2002a,b).

The starting point for this analysis is plotting the measured log,(R /G) ratios
for each array feature as a function of the log, ,(R* G) product intensities. The
resulting ‘R-I plot’ (for ratio—/ntensity) can reveal intensity-specific artefacts
in the measurement of the ratio, which tend to occur most notably for weakly
fluorescing arrayed features.

Our expectation, similarly to the other approaches described here, is that the
mean log,(R/G) ratio should be 0 for the arrayed features, independent of
intensity. A representative R-I plot for a self-self hybridisation, in which the
same RNA sample was labelled with both Cy3 and Cy5 and hybridised to a
19,200 feature cDNA array, is shown in Figure 3.5. In this case, we expect to see
absolutely no differential expression and consequently all log,(ratio) measures
should be (on average) 0. However, inspection of this R-I plot clearly shows a
slight upward curvature at both high and low intensities, as well as an increased
spread in the distribution of log, (ratio) values at low intensities.

Lowess detects such deviations from the expected behaviour and corrects
them by performing alocal weighted linear regression for each data pointin the
R-Iplot and subtracting the calculated best-fit average log,(ratio) from the ex-
perimentally observed ratio for each point as a function of the log,(intensity).
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Figure 3.5 A widely used diagnostic for gene expression measurements is the R-I plot, in which
the Jogarithm of the ratio of measured intensities is plotted as a function of the logarithm of their
product. R-I plots clearly display systematic variation of the ratio as a function of the intensity.
Here, one can see an increase in the average ratio at high and low intensities, as well as the general
increase in the spread of the measured ratio at low intensities. SD, standard deviation. (Yang ez al.,
2002a)
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The process is conceptually similar to performing a local, weighted mean log
centring.

For each point in the R-T plot, Lowess uses a weight function that de-
emphasises the contribution of data from array features that are far from our
point of interest, so that the farther the distance between the query data and its
neighbouring data, the less the neighbouring data will affect the fit and the re-
sulting regression function. In practice, this is similar to calculating a running
correction, using only the data in a local neighbourhood for the calculation,
and then weighting even those. There are many weight functions that can be
applied, but the most commonly used is the tri-cube weight function,

: w(u) = {(1 —l) Jul<1
0 lu>1

where # is the distance from a particular data point to those in its neighbour-
hood. If we set &, = log, o( R;* G;) and 3, = log,(R,/G,), Lowess then performs
a rather straightforward weighted linear regression to produce an estimate,
¥(x,), of the dependence of the log,(ratio) on the log,(intensity). This
function can then be used, point by point, to correct the measured log,(ratio)
values, so that

log,(T,) =log,(T,) - ¥(x,) =log, (T,) —log, (2"*)
or

1 R 1
log,(T}) =log (T — )zlog (—‘*—-—” )
2\ % 2 =k 2(%) 2 Gk 2(.,)

As with the other normalisation methods, we can make this equivalent to a
transformation on the intensities,

G/=G,*2"¥ and R]=R,

The result of applying a Lowess transformation can be seen in Figure 3.6.

An alternative to applying Lowess to the R-I plot would be to apply it
directly to the log-transformed intensities. One would simply plot y = log,(R,)
against x = log,(G,) for each feature, apply Lowess to approximate the depend-
ence oflog,(R;) on log,(G,), and use the calculated best-fit curve to calculate a
normalisation factor that would adjust the best-fit slope to 1.

3.3.6 Globalvs. local normalisation

Most normalisation algorithms can be applied either globally to the entire
dataset or locally to subsets of the data, such as individual subgrids (i.e. an area
of the array where all the spots were deposited by a single spotting pen, some-
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Figure 3.6 The cffect of Lowess normalisation. Lowess can be used to remove the systematic
variation in the mean gene expression ratio as a function of intensity. The normalised dara,
shown in light grey, are symmetrically distributed around a mean log,(ratio) of 0, unlike the
un-normalised data shown in dark grey. (Yang ¢f a/.,2002a)

times also referred to as a pen group). Applying these algorithms to a single sub-
grid can help to correct for local systematic effects due to a variety of sources,
including variability between the spotting pens used to make the array, variabil-
ity in the slide surface, and slight local differences in hybridisation conditions
across the array.

However, if one is to apply a particular normalisation algorithm locally, all of
the conditions and assumptions that underlie the validity of the approach must
be satisfied. If the algorithm uses exogenous spiked-in controls, or a set of
selected housekeeping genes, then all of these control features must be present
in each subgrid. If, instead, the approach chosen uses all of the data, one must
be sure both that the features in any subgrid were not selected to preferentially
represent differentially expressed genes and also thata sufficiently large number
of features is included in each subgrid for the approach to be valid.

3.4 Data filtering

Normalisation is only one of many transformations that can be applied to
microarray datasets. The goal of most other transformations is to filter the
dataset to reduce its complexity and increase its overall quality. Many are de-
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signed to flag questionable and low quality data, while others are used to iden-
tify differentially expressed genes or to enhance a particular feature of the data.
Again, which methods you choose to apply will depend on your particular ex-
perimental design and on the biological questions you are seeking to address.

3.4.1 Filtering low intensity data

One of the most widely used data filters eliminates those array features that have
hybridisation intensities only slightly above the measured background. The jus-
tification for this approach is simple: those spots with intensities near the back-
ground are the most imprecisely measured and therefore most likely to be of
poor or questionable quality. Typically, one calculates the local background for
each array feature and its standard deviation in each channel, o( G***greundy and
o( Rbackeround) Tf we are using background-subtracted median values for the
hybridisation intensities, those less than two times the standard deviation of
the background are flagged and eliminated, so that we use only spots where the
measured signals meet the criteria that

t background ot background
GIE > 2xo(GMasod) and  R¥CL > 2+ g(R k)
and similarly for the mean. Ifinstead we use the integrated intensities, we must
take into account the measured areas for each spot, so that useful spots are those
where

Gt > 2% O(GhacXQround ) * A

integrated spot
and

Risr?:::;mcd >2+ G(R hﬂfksm""d) * ASPOr

As an alternative, one can use a percentage-based cut-off in which spots are
eliminated if they have intensities less than some arbitrary fraction of the mean
or median background. As another alternative, some groups use fixed mini-
mum intensities to identify and eliminate array features they feel are question-
able, or eliminate array features falling in the lowest fifth or tenth percentile of
intensity valuesin each channel. While these alternative approaches do not have
any particular statistical justification, they can help to improve the general qual-
ity of the data from each hybridisation and the overall quality of any subsequent
analysis.

3.4.2 Setting floors and ceilings

Another approach that is sometimes used to adjust the low and high intensity
data is to set a floor and ceiling, minimum and maximum acceptable values for
intensities. Those data below the floor value are adjusted upwards and set equal
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to the floor, and those above the ceiling are set equal to the ceiling value. This
has the effect of reducing the fold change value for genes expressed at low and
high levels. Such setting of floors is useful for analysis of genes with low expres-
sion levels, as these measures are most likely to be inaccurate. In particular,
floored values can be used to obtain meaningful ratios for genes that are turned
on or off between conditions. It is good practice to flag genes that have been
adjusted to the ceiling or floor as the expression ratios computed for these are
artificial constructs that do not reflect the experimental measurements. One
way to select floor and ceiling values is to find the measured intensity values at
which the relationship between expression in the samples being compared be-
gins to deviate from linearity.

3.4.3 Use of replicate data

Replication is essential for identifying and reducing the effect of variability in
any experimental assay, and microarray analysis is no exception (the generation
and use of replicate datais also discussed in Sections 2.2.3and 4.2.1). Generally,
we divide replicates into two broad classes (Figure 2.2). Biological replicates
use independently derived RNA from distinct biological sources to provide an
assessment of both the variability in the assay and the inherent biological
variability in the system under study. Biological replicates allow commonly ex-
pressed genes to be identified, as well as those that are distinct to the particular
biological sample. Technical replicates, on the other hand, provide only infor-
mation on the variability of the assay. These include replicate features within a
single microarray, multiple independent features for a particular gene within an
array, or replicated hybridisations for a particular sample. The specific approach
used will of course depend on the biological questions being asked and the ex-
perimental design used for a particular study.

3.4.4 Experimental design strategies

Many of the techniques that have been developed for filtering data depend on
the design that is used for a particular experiment. Most microarray experi-
ments use a reference design in which all of the biological samples analysed are
compared with a single common reference sample. One advantage of this ap-
proach is that interpretation of the data and comparison between samples is
rather straightforward: one assumes that genes with similar patterns of expres-
sion relative to the reference wouild in fact exhibit similarities if directly com-
pared. Reference designs are also easily extensible, provided that additional
reference RNA is available. However, one should note that in two-colour
hybridisation experiments using a reference design, the common reference
sample, which is generally the least interesting of all those being assayed, is the
one sample on which we collect the greatest quantity of data on gene expression
levels.

As an alternatve, Kerr and Churchill (2001) have proposed using reference-
less loop designsin which labelled extracts are serially compared with each other
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rather than to a common reference (also discussed in Section 2.2.4). The
advantage of such an approach in two-colour array assays is that each experi-
mental sample is queried more often than would be possible with a reference
design using the same number of experimental assays. This allows the actual ex-
pression for each gene in each condition to be estimated with greater accuracy
than would otherwise be possible. There are, however, two potential draw-
backs to loop designs. First, all the experimental samples must be collected
prospectively and in great enough quantities that all of the required hybridisa-
tions can be carried out. If there is insufficient RNA from a particular sample, or
if the RNA from a sample does not label or hybridise well, then the loop will
contain missing data, and estimating expression may be difficult or even impos-
sible. While one might be able to replace some hybridisations, this would also
require RNA from one or more of the other samples being assayed. Second,
loop designs are not easily extensible, and adding new samples to an analysis is
oftenimpossible. For these reasons, loop designs are often impossible to imple-
ment for clinical studies using samples from human patients, but often perform
well in laboratory and model systems.

However, whether one uses a reference or a loop design, it is clear that repli-
cate hybridisations are essential for improving the accuracy of the measure-
ments made. For two-colour arrays, it is also advisable to use a dye-swap (or
dye-flip) approach (see Section 2.2.6) in which replicates are performed with
the fluorescent labels for the two samples exchanged between hybridisations.
The advantage of thisis that dye-specific effects can more easily be detected and,
if necessary, eliminated.

3.4.5 Replicate filtering

Replicate filtering can allow the identification of questionable or low quality
spots by highlighting inconsistencies in the hybridisation measures from repli-
cates. For convenience, we will focus our discussion on the analysis of data from
a pair of dye-swap technical replicates, but this approach can be generalised for
any replication strategy.

First assume that we are comparing two samples, A and B. In our first experi-
ment, we will label A with Cy5 (red, R) and B with Cy3 (green, G). For the 7th
gene arrayed as a feature, we measure the expression ratio

If we repeat this measurement for a second technical replicate, swapping the
dyes, the 7ith gene gives us the expression ratio

2i

. W
2i Gz,‘ A

Aswe are making two comparisons between identical samples, we expect
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or equivalently,

4, B
log,(T,, *T,,)=lo ( i *J)=0
gZ( 2 2‘) gz Bli AZi
where A,;and A, ; are replicate measurements of the expression of the 7th gene
insample A and B ;and B, are replicate measurements of the 7th gene in sample
B.

Experimental variation in each of the measurements will lead to a distribution
of the measured values for the log of the product ratios, ( Tj; * 75,). One can then
calculate the mean and standard deviation for the arrayed genes. Those that
deviate significantly from the expected value of 0 are likely to contain one or
more poor quality features. Although one cannot determine @ priori which of
the replicatesis likely to be in error, visual inspection may allow the ‘bad’ spot to
be identified and removed before further analysis. Alternatively, and more prac-
tically for large experiments, one can simply eliminate questionable spots. An

- example of the use of such replicate filtering is shown in Figure 3.7, where
log,(ratio) values from replicate experiments in which two cell lines, one
derived from colon and the second from pancreas, were compared on a 19,200
feature cDNA array. In this case, one expects the replicate ratios to be linearly
related to each other. The correlation coefficient increased from » = 0.84 (dark
grey; dashed line) to = 0.96 (light grey; solid line) after 1.7% of outliers were
filtered out using the method described above. The substantial increase in the
correlation coefficient suggests such a filtering procedure efficiently removes
features with at least one unreliable log,(ratio) value. Obviously, a similar ap-
proach can be used to identify and eliminate questionable spots using within-
array replicates.

3.4.6 Averagingreplicate data

Many users also want to average their replicates to produce a single con-
sensus measurement and thereby reduce the complexity of the final dataset. If
we focus on the log,(ratio) for the ith array feature, then what we are seeking is
a constant ¢ which we can use to adjust each of the individual measurements

such that
A, A,
logz(—i)h:‘. =logz(B—;)—c,.

This constraint equation can be easily solved to yield a value for the constant ¢;:

ll (AZi Blij l A’i Bli
c. =—lo —2_lL_]o i B,
=283, a, )7 ®\B, a,

2i
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Figure 3.7 An example of the use of replicate filtering. Analysis of replicates can improve the
accuracy of the ratio measures by removing outlying, low confidence data, as can be seen in this
comparison of measured log,(ratio) values before (dark grey; dashed line) and after (light grey;
solid line) filtering. (Yang ez al.,2002a)

Ifwe use this to correct either of our two measurements, the resultis equivalent
to taking the geometric mean of our measurements, or

log (E ) log, J——AZ" &y
;1= =
B2i Bli
where the average measurements for expression in each of the samples is given
by, respectively,

A, A, and Ei: BB,

A;and B can then be used as to create an R-I plot, with logz(A,/B) plottedasa
function of the log, o A;* B) product intensities for each arrayed feature, or for
any other application.
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3.5 Identification of differentially expressed genes

In many experiments, one of the goals is to find genes that are differentially ex-
pressed between two states. After normalising, filtering and averaging the data,
one can then identfy genes with expression ratios that are significantly different
from 1, or equivalently, those with values for the log,(ratio) that differ from 0.
Many early published microarray studies used an arbitrary cut-off of two-fold
up- or down-regulation as significant, or equivalently, log, (ratio) values greater
than 1 orless than-1.

Such arbitrary, fixed cut-offs may or may not be supported by the data or by
the underlying biology. For example, we know that the expression of some
genes fluctuates a great deal more than others, as well illustrated in the analysis
by Hughes ¢72/.(2000a,b), in which replicate hybridisations were examined to
build gene-specific error models. In general the genes whose expression is most
variable are those in which expression is stress induced, modulated by the
immune system or hormonally regulated (Pritchard ez al, 2001). In a well-
conducted experiment comparing closely related samples, the distribution of
log,(ratio) values might be such that there is very little spread in the measured
values and that, consequently, genes differentially expressed at a much lower
level may indeed be statistically significant. On the other hand, for some genes
where there is much greater variation in the measurement of the log,(ratio),
two-fold may not represent a significant difference.

A more statistically defensible approach is to calculate the mean p and
standard deviadon ¢ for the distribution of log,(ratio) values. Differential
expression at the 95% confidence level can then be identified as log,(ratio)
values more than 1.96 standard deviations from the mean.

3.5.1 Intensity-dependent estimation of
differential expression

Even the approach described above may misidentify differentially expressed
genes. While Lowess normalisation removes dye-specific artefacts that appear
for low intensity data points, the dataset exhibits additional structure that can
be used to evaluate patterns of differential expression. An examination of the
R-I plot in Figure 3.5 suggests that log,(ratio) values at lower intensities are
much more variable than those measured at higher intensities. In an R-I plot,
a fixed log,(ratio) threshold is represented by a pair of straight, horizontal,
parallel lines. Such a fixed cut-off does not take into account the observed
intensity dependence.

An alternative is to identify differentially expressed genes using an intensity-
dependentapproach. Using a sliding window, one calculates the local mean and
standard deviation of the log,(ratio) for each data point in the normalised R-I
plot. This can then be used to calculate a Z-score, which simply measures the
number of standard deviations each data point is from the mean, Differentially
expressed genes at the 95% confidence level then have a value of |Z] > 1.96.
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Figure 3.8 Intensity-dependent identification of differential expression. Data within and outside
one-and two-standard deviation limits are shown in dark grey (121 < 1), medium grey (1 < 121 <
2)and light grey (121 > 2), respectively. The variation in differential expression measurements
depends on the intensity. Consequently, the fold-change level that is statistically significant at high
intensitics may not be significant at lower intensities, By computing an intensity-dependent Z-
score, we can identify differentially expressed genes with high confidence, taking into account the
systematic variation in the data. Many microarray experiments use an arbitrary, global fold-change
level to identify differentially expressed genes; in an R-I plot, these would be parallel horizontal
lines. However, as illustrated in the R-I plot (Figure 3.5), the significance that one can attach to
differential expression depends on the intensity. (Yang ef al., 2002a)

Figure 3.8 depicts the results of such a calculation: data within and outside one-
and two-standard deviation limits are shown in dark grey (12l < 1), medium
grey (1 <121 < 2) and light grey (121 > 2), respectively; genes greater than two
standard deviations from the local mean (121 > 2) are identified as being signifi-
cantly differentially expressed at 95.5% confidence.

3.5.2 Analysis of variance

An alternative approach that has been advocated for the identification of differ-
entially expressed genes is the analysis of variance (ANOVA). ANOVA is a
powerful tool for the analysis of large datasets that can provide estimates of the
relative effects contributing to an observation and error estimates for each of
these. The purpose of ANOVA is to test for significant differences between
means by comparing variances. More specifically, by partitioning the total vari-
ation into different sources (associated with the different effects in the design),
we are able to compare the variance due to the between-groups (or treatments)
varjability with that due to the within-group (treatment) variability. Under the
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null hypothesis that there are no mean differences between groups or treat-
ments in the population, the variance estimated from the within-group (treat-
ment) variability should be about the same as the variance estimated from the
between-groups (treatments) variability. Significantly differendally expressed
genes are those that violate this null hypothesis.

In general, the purpose of ANOVA is to test for significant differences be-
tween means (the name is derived from the fact that in order to test for statisti-
cal significance between means, we are actually analysing variances). ANOVA is
a generalisation of better-known statistical techniques, and if we are comparing
only two means, ANOVA will give the same results as a #-test. At the heart of
ANOVA is the assumption that variances in the measurements made in an ex-
periment can be divided, or parttioned, into those arising from different
sources. The variance, you may recall, is the sum of squared deviations from the
overall mean divided by the sample size minus 1, or

N .

2 -w’

2 o =l
TN
where Nis the sample size and pis the sample mean. Thus, givena certain N, the
variance is a function of the sums of squares (actually squared deviates), or SS.
The goal of an ANOVA is to compare the SS measured within each group thh
the variability due to the differences between means.

In a microarray experiment, we want to evaluate the relative contributions of
the genes, the arrays constructed from them, the dves used to label the samples,
and the RNA samples used in the assay. Kerr, Churchill and collaborators at the
Jackson Laboratory (Kerr and Churchill, 2001; Kerr ¢ al., 2000; Yang et al.,
2002a) have developed an ANOVA model that provides an estimate of the var-
ious potential contributions from a variety of sources to the observed hybridis-
ation intensities. Let ¥, be the fluorescence intensity measured from Array
(the slide) 7, using Dye 7, to label RNA sample (called here the Variety, due to
the fact that this approach was first used in the analysis of crop varieties grown
on different plots) &, and using a feature to represent a Gene g, on the appropri-
ate scale (such as the log of the measured intensity). The basic premise is that
what one actually wants to measure - the expression of the mRNA representing
a particular gene on the array — is in fact influenced by a variety of factors that
contribute random and systematic noise to the measurements. One then con-
structs an ANOVA model representing how these primary terms and interac-
tions contribute to the observed measurement, such as

Vi = Yo t A+ D; +(AD); +G, +(AG), +(VG),, +(DG), +e,,
Here y, is an array-independent constant, (AD), represents dye-specific effects
limited toasingle array, (AG), isa gene-specific effect on a particulararray such
asaprinting irregularity ona smglc array, (DG), isan apparent dye-gene inter-
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action such as a specific feature which always appears green in a two-colour
hybridisation, €, is an additional random error assumed to be normally dis-
tributed around 0, and (VG),M is the effect you actually want to measure, the
true measure of the expression of a particular gene in the labelled extract. In this
model, 5, A, Dand ADare overall normalisation terms. Using well-established
techniques, one can use this model to calculate the relative effects of the various
contributors to the observed fluorescence intensities, and arrive at an estimate
with errors of the gene-specific expression for each experiment. The result is a
collection of (VG),,, measurements that represent the log,(ratio) values. Each
of these estimates the expression for a gene in a particular sample relative to its
average across all measurements. Differentially expressed genes can then be
identified using an F-test, a generalisation of the better-known #-test: the F-test
compares means across multiple samples to identify those genes exhibiting
significant deviation in measured expression from the mean.

ANOVA is particularly effective in the analysis of experiments employing a
loop design, where there is no natural reference sample that can serve as a basis
for comparison between samples.
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Analysis of gene
expression data matrices

Science is built with facts as a house is with stones — but a collection of facts
is no more a science than a heap of stones is a house.
Jules H. Poincaré

4.1 Introduction

4.2 Gene expression data matrices: their features and represen-
~ tations

4.3 Clustering

4.4 Classification algorithms and class prediction

4.5 Time series analysis

4.6 Visualisation

4.7 Downstream from expression profile analysis

References

4.1 Introduction

The goal of microarray data analysis is to find relationships and patterns in the
data and ultimately achieve new insights into the underlying biology. For
instance, one could look for groups of genes having similar expression under
similar conditions and try to find whether their products share similar func-
tional roles in the cell, or for genes whose expression depends on the particular
state of the system and see if the functions of their products can help to explain
the particular phenotype.

As discussed earlier, it is convenient to split microarray data analysis into two
stages — transforming the raw data into a gene expression matrix, and analysis of
the gene expression matrix (Table 4.1). The first stage was discussed in the pre-
vious chapter. In this chapter our starting point is the gene expression data ma-
trix, where rows represent genes, columns represent experimental conditionsor
samples, and the values at each position in the matrix characterise the expression
level of the particular gene under the particular experimental condition. We will
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call these values gene expression levels. (Here we will use the terms a sample’ and
‘an experimental condition’ as synonyms denoting columns in the matrix, al-
though in reality an experimental condition can be represented in the matrix by
several replicate samples, i.e. by several columns. ) We will refer to rows of values
in the matrix as gene expression profiles, and to the columns as sample expression
profiles.

To achieve our ultimate goal of obtaining new insights into biology, at some
point we will need to use additional biological information about the genes and
the experimental conditions which is not directly represented in the gene ex-
pression matrix. This information can, however, be added to the matrix in the
form of gene and sample annotation. For instance, gene annotation may in-
tlude the gene names and sequence information, location in the genome, a de-
scription of the functional roles for known genes, and links to the respective
entries in gene sequence databases. Sample annotation may provide informa-
tion about the part of the organism from which the sample was taken or which
cell type was used, or whether the sample was treated, and if so what was the
treatment (e.g. a chemical compound and concentration). Samples may also be
related: for instance, they may form a time course. The gene expression matrix
together with the annotation will be called the annotated gene expression data
matrix. We can regard gene annotations as additional columns and sample an-
notations as additional rows (Figure 1.3).

Depending on how we treat the annotation, gene expression data analysis
can be either supervised or unsupervised. In supervised analysis we use the
annotation from the very beginning. A typical example of supervised analysis is
sample classification. Here we use sample annotation to split the set of samples
into two or more classes, for instance ‘healthy’ or ‘diseased’ tissues, and try
to find patterns or features in the expression data that are characteristic of
each of the individual classes. If such features are found, they can be used for
diagnostics, i.e. to attribute a ‘healthy’ or ‘diseased’ label to new samples. This
isillustrated on the left side of Figure 4.1, where the objects are dots annotated
as filled or hollow shown in two-dimensional space. The task of the classifica-
ton is to find a way to separate them. A straight line can separate the filled
and hollow dots with only few classification mistakes. However, the quality of
a classifier is determined by how well it performs when new objects are
introduced.

Unsupervised analysis is based on looking for structure in the data itself, ig-
noring any annotation. Examples of such analysis are gene clustering (finding
sets of genes with similar expression patterns), sample clustering (finding which
samples are similar in terms of similarly expressed genes) and principal compo-
nent analysis (finding the axes of greatest variability). Annotation information
is taken into account only later, for instance to see whether the clusters of simi-
larly expressed genes contain those with similar functional roles. This is illus-
trated on the right side of Figure 4.1, where we can identify clusters of dots that
are closer to each other than to those of other clusters.

A combination of supervised and unsupervised analysis is possible —informa-
tion found in annotations can be used only to guide the analysis: for instance,
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Figure 4.1 Supervised vs. unsupervised analysis. The task of supervised analysis (a) is to find a
‘classifier’ separating known classes (filled and hollow dots). The task of unsupervised analysis (b)
is to find groups inherent to the data, such as clusters of points that are closer to each other than to
the rest.

labels ‘healthy” or ‘diseased’ can be added to the matrix columns and used
to guide the clustering. This is often called partially supervised analysis.

Specific properties of the gene expression matrix can be taken into accountin
the analysis. For instance, if some of the experimental conditions represented in
the matrix are closely related (e.g. replicates), the gene expression values in the
columns are likely to be similar. Depending on the goal of the particular analy-
sis, it is possible that the contributions from such columns should be down-
weighted. Another example is the analysis of time course data, when we can
look for possible periodicity in gene expression patterns. It would be meaning-
less to look for periodicity if the list of columns were, for instance, chemical
treatments.

Finally, we can distinguish between hypothesis driven analysis and explora-
tory data analysis (the latter is sometimes known as data mining). Gene cluster-
ing by expression profile similarity can be considered an example of exploratory
analysis — before the analysis is performed we may not know if there are clusters
in the data, how many clusters, whether there is any hierarchical structure in the
clustering, and whether the possible clusters have any correlation with other
biological information. An example of the hypothesis driven approach is taking
a gene of particular interest, and finding its expression pattern and which other
genes are expressed similarly. Note that the distinction between exploratory
analysis and a hypothesis driven approach is not clear-cut.

Instead of giving a ‘final answer’ to a biological question, computational
analysis methods generally only produce a hypothesis or can help to narrow
down an existing hypothesis. Therefore the computational analysis (informa-
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tion processing) is only one step in an iterative loop of knowledge acquisition.
To confirm or reject these hypotheses new experiments (material processing)
are usually needed.

In this chapter we will discuss some of the common methods for gene ex-
pression data matrix analysis. The chapter should not be regarded as a compre-
hensive list of all the available analysis methods, nor as a literature review — its
main goal is to provide an understanding of the basic principles underlying
these methods. More details about many of the described methods can be
found in various multivariate analysis textbooks, for instance Everitt and Dunn
(2001).

4.2 Gene expression data matrices: their features
and representations

4.2.1 Gene expression matrices

As we already mentioned, the starting point in this chapter is a gene expression
data matrix, which can be either annotated or unannotated. Effectively we are
trying to separate as far as possible the gene expression data matrix analysis from
the information processing leading from the raw images to the matrix. For in-
stance, we are no longer interested in which image analysis algorithm has been
used to analyse the raw data, and even what normalisation methods have been
used.

Although such abstraction is central to the concept of the gene expression
data matrix, unfortunately we cannot ignore the nature of the gene expression
values completely. For instance. we may need to know: do the columns repre-
sent absolute or relative measurements, are the values in the matrix ratios, log
ratios or something else, are the reference samples for relative measurements
the same for all the columns, and has the normalisation been performed in a way
that permits comparisons between different columns of the matrix? Depending
on the answers to these questions various analysis approaches may or may not
make sense. :

We have to distinguish between matrices that contain data from a set of
related hybridisations that were done using the same protocol, the same refer-
ence sample, and the same batch of arrays, from matrices constructed by com-
bining results from different experiments using different reference samples.
Often gene expression matrices are a combination of both, i.e. they contain dif-
ferent sections where (inside a section) the same reference sample has been
used. For instance, the well-known and frequently studied dataset of 80 exper-
imental conditions in yeast (Eisen ez al., 1998) was composed by putting to-
gether various independent time series, including diauxic shift (the stage at
which yeast switch from anaerobic to aerobic growth) and cell cycle data. We
will discuss this question in more detail later in the chapter (see Section 4.3.11).
A special type of gene expression matrix is produced from the circular, or ‘loop’,
design (see Section 3.4.4).
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Consider the gene expression matrices in Tables 4.2, 4.3 and 4.4. They all
represent the expression levels of genes G1-G8 for experimental conditions
C1, C2, C3 and C4, but use different measurements — absolute levels (in ab-
stractunits)in Table 4.2, relative measurements using C4 asareference in Table
4.3, and relative values transformed into logarithms in Table 4.4. Note that
gene expression profiles that look rather different in the absolute value table
may be similar in the relative measurement table.

Most gene expression data analysis algorithms assume that the gene expres-
sion values are represented as sca/ars, i.e. one numerical value (such as log ratio)
per expression value. If the gene expression levels for a specific experimental
condition have been measured, for instance, in three replicate hybridisations,
then to use such an algorithm either they have to be treated as three separate
experimental conditions (i.e. all three columns should be treated separately) or
they have to be replaced by one generalising scalar such as arithmetic mean or
median. In the latter case all the information about the variance is lost, and so it
may be advisable to include all the replicate measurements in the matrix as sep-
arate columns. However, it should be noted that columns for replicate experi-
ments are likely to be closely correlated, and therefore if some of the samples are
represented in data by more replicates than others, they will contribute to gene
expression profiles more and may skew the clustering.

For relative measurements, where we typically rely on ratios or log ratios, any
information about the absolute level of gene expression is lost (e.g. ratio values
for 400,200, 40/20 and 4/2 are all the same). Knowing the respective ab-
solute intensity values can provide the algorithm with valuable information
about the reliability of the ratio. Yet most current data analysis algorithms (e.g.

Table 4.2 Gene expression data matrix of absolute expression
measurements for ssmples C1, C2, C3 and C4, given in abstract
measurement units.

c1 2 c3 ca
G1 2 3 4 2
G2 2 3 4 20
G3 20 30 40 20
G4 200 300 400 200
G5 20 30 40 2
G6 20 30 40 1
G7 1 4 16 4
G8 4 5 4 4
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Table 4.3 Gene expression data matrix containing relative
expression measurements comparing conditions C1, C2 and
C3 with the control condition C4. Compare with Table 4.2.
Note that rather different absolute measurements, such as
4/2,40/20 0r400,/200, all give the same ratios. ~ ~

r=C1/C4 | r2=C2/C4 ‘; r3=C3/Ca
G1 1 1.5 \ 2
T
G2 0.1 0.15 0.2
G3 1 15 2
G4 1 15 2
G5 10 15 " 20
G6 20 30 |40
G7 0.25 1 4
G8 1 1.25 1

Table 4.4 Gene expression data matrix containing log ratios
(base 2) from Table 4.3. Compare with Table 4.3. Note that
four-fold down- and up-regulation for gene G7 reflects as 0.25
and 4 in the ratio table, while in the log ratio table the values
are symmetric,—2 and +2.

fogr1 logr2 logr3
G1 0 0.58 1
G2 332 274 _2.32
G3 S0 0.58 1
G4 0 0.58 1
G5 3.32 3.91 432
G6 ) 4.91 5.32‘l
G7 2 0 2
G8 0 032 0

77
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clustering algorithms) ignore this information. Currently the use of this infor-
mation is difficult, because of the lack of established error models and standards
for the measurement and representation of gene expression levels.

The use of ratios (or log ratios) instead of absolute gene expression values
scales the values in the gene expression matrix towards a more comparable
range. For instance, the absolute gene expression levels (e.g. measured as the
number of mRNA copies per cell) have a wide range, from less than one copy
per cell on average to hundreds of mRNA copies per cell. In ratio matrices these
values will usually be compensated if the genes that tend to have high expression
levels are likely to be present in higher amounts in the reference sample as'well.

As a starting point of gene expression data analysis we can also use a discre-
tised gene expression matrix, such as a binary matrix where 0 means that the
gene is not expressed, and 1 that it is expressed. For comparative experiments
we can use three values: —1 meaning substantially reduced expression compared
with the reference sample, 0 unchanged expression and +1 substandally in-
creased expression (Table 4.5). Although such discretisation may result in the
loss of information from the original table, it enables the application of various
analysis methods that are not appropriate for real value matrices. For instance,
mutual information between genes or conditions (see Section 4.2.3.4) can be
defined for discretised tables more easily than for real value matrices.

Finally, it should be noted that in gene expression data obtained from mi-
croarray experiments there may be missing (unknown or formally #ndefined)
values. Some of the analysis methods cannot handle matrices with undefined

Table 4.5 Discretised gene expression matrix obtained from
the log ratios in Table 4.4 by treating all values of at least 2 as
up-regulation (represented by 1), those of less than or equal to
-2 asdown-regulation (represented by —1), and others as
unchanged (represented by 0). D(r) denotes the above
described discretisation of the log ratio.

D(r1) D(r2) i D(r3)
G1 0 0 0
G2 -1 -1 -1
G3 0 0 0
G4 0 0 0
G5 1 1 1
G6 1 1 1
G7 -1 0 1
G8 0 0 0
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values, and to use these methods ecither we have to exclude any row or
columns containing an undefined value (which often leaves one with a rather
small matrix) or find a way to interpolate the known values to fill in the missing
ones.

Having organised the data in a gene expression matrix, a typical next step is to
try to narrow down the genes of interest before more sophisticated analysis is
attempted. The genes that are typically used are those that undergo a specified
fold change in at least one of the samples, e.g. genes whose expression changes
by at least two-fold.

4.2.2 Representation of expression data as vector space
—sample space and gene space

Each gene (each row in the matrix) can be considered as a point in m-
dimensional space, where 2 is the number of samples (columns in the matrix).
Similarly, each sample (each column in the matrix) can be considered as a vector
in n-dimensional space, where nis the number of genes (i.e. rows in the matrix).
In this way we can talk about gene space and sample (or condition) space.

Let us consider an example of three genes A, B and C and two experimen-
tal conditions Cl and C2 (i.e. m=2 and n=3) (Table 4.6). This can be
visualised cither as 3 two-dimensional vectors in the condition space, or 2
three-dimensional vectors in the gene space, as depicted in Figure 4.2.

Each point in a multidimensional space defines a vector (joining the points in
the respective space to the coordinate zero point). Viewing genes or samples as
vectors or points in the appropriate multidimensional space allows one to use
data analysis methods developed in linear algebra and to visualise different data
transformations as operations in the respective vector space. Many of the prop-
erties of multidimensional space can be demonstrated in two or three dimen-
sions, which is a particular attraction of this approach. For instance, we can
visualise the similarity or difference between two gene expression profiles as the
distance between the respective points or vectors.

When introducing new concepts related to multidimensional space, wher-
ever possible we will demonstrate them in two or three-dimensional space first.
The aim of this section is not to introduce a list of formulae, but to help the

Table 4.6 Gene expression matrix of three
genes under two conditions. The gene
expression measurements are in arbitrary units.

c1 c2
A 2 3
B 3 4
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Figure 4.2 Visualising genes in condition space (a) and conditions in gene space (b) for the gene
expression matrix given in Table 4.6.

reader to understand the meaning of the basic concepts used in expression pro-
file comparison and how they relate to each other.

Throughout the rest of this chapter we will use the following notation. Let X
be the gene expression matrix with 7 columns and 7 rows (we often call such a
matrixan 7 X zmatrix). Let x,-jbc the expression value in the /throw and the jth
column,i.e.
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oo %) Xl
X X. X.
n ¥n
X - 2m
Xp1 %2 Xom

For instance, the expression of the three genes under two conditions in Figure
4.2 isrepresented by the 2 X 3 matrix

2 3
3 4
4 2

The rows or columns of the matrix define vectors A=(ay,..., a;) (e.g.
1'\,. = (%15 J'v,.m) for the 7th row of the matrix and A‘?—- (% - . ., x,) for the
jthcolumn). Givenavector A= (ay, ..., a,), we defineitslength 1Al as

|Al=va2+...+a2

For instance, the length of the vector (2, 3, 4) is W/E Note that in the case
of two-dimensional space, i.e. for k= 2, the formula expresses the length of the
hypotenuse in accordance with the well-known Pythagoras’s theorem.

Ifwe are given a vector A = (ay, . . ., a;) of length |Al, we can transform it to
vector A’ = (aj, . . ., a;) having the same direction but unit length, by taking
aj=a/Al, ..., a;=a/IAl (Figure 4.3). This is sometimes called vector
normalisation and should not be confused with the normalisation of micro-
array data, discussed in the previous section.

4.2.3 Distance and similarity measures in expression
space

Most of the gene expression data analysis methods are based on comparisons
between the gene or sample expression profiles. In order to make these com-
parisons first we need a way to measure similarity or dissimilarity between these
objects, i.e. between vectors representing genes or samples. Often it is easier to
measure the distance between the objects (vectors in our case) instead of the
similarity, though one can be transformed into the other.

The distance between A and B, D(A, B), is said to be metricifit satisfies the
following properties:
1 if A= B then D(A, B) =0, i.c. the distance from an object to itselfis 0;
2 it A# B,then D(A, B) 2 0,i.e. the distance is always non-negative;
3 D(A, B)=D(B, A), i.c. it does not matter in which order we measure the
distance;
4 D(A, B)+ D(B, C) 2 D(A, C),i.e. given three objects, the length of a direct
path from the first to the third objects cannot be greater than the length of the
path through the second object.
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The last is called the triangle inequality. The distance measures that satisfy
properties (1)—(3), but not the triangle property, are called semimetric. Some
dara analysis algorithms can be applied only for metric distances. An example of
non-metric distance measure is a distance measured between cities as the cheap-
estairfare to fly from one city to another.

4.2.3.1 EUCLIDEAN, MINKOWSKI, MANHATTAN, ANGLE AND
CHORD DISTANCES

Euclidean distance is the most common distance measure, and the one we use
in everyday situations, e.g. to measure how long a cable is needed to reach the
corners ofaroom fromasocket. Euclidean distance between points A = (a,, a,)
and B= (4, b,) in two dimensions can be expressed using Pythagoras’s

theorem:
DEucl(A’ B) = (al _bl)2 +(ﬂ2 _b2)2

For instance, for genes A= (2, 3) and B =(3, 4) in Figure 4.2 the distance
berween them equals (2 _3,)2 4.(3_4)2 —+/2. In n-dimensional space for

vectors A=(a;,...,a,)and B=(b, ..., b,), Euclidean distance can be ex-

pressed as
D;,q(A, B) = Z(ﬂ,- —17’.)2
i=1

i.e. the square root of the sum of the square of the distances between the points
in each dimension. Minkowski distance is a generalisation of Euclidean distance
and is expressed as

” A
Dyintonsii (A, B)= (Z |ﬂ,- —b, |P)
=1

The parameter p s called the order: the higher the value of p, the more signifi-
cantis the contribution of the largest components |2, - 4. Euclidean distance
corresponds to the distance described by the second order Minkowski distance
(ie.p=2).

Manhattan, or rectilinear, distance corresponds to the distance described by
the first order Minkowski distance, when p=1. The Manhattan distance be-
tween the coordinates of the two vectors A = (a,, . . . ,a,)andB= (&, . . ., b,)
is the sum of the distance between them in each dimension

DM:mhntan (A$ B) = leﬂi - b,l

In two-dimensional space Manhattan distance is the distance between the
points on the first axis, plus the distance between them on the second axis (e.g. -
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the Manhattan distance between genes A and Cin Figure 4.2 equals [4 — 2] + [2
- 3l =3). Manhattan distance is sometimes referred to as ‘city block distance’
as it measures the route one might have to travel between two points in a
place such as Manhattan where the streets and avenues are arranged at right
angles to one another. It is also known as Hamming distance when applied to
dara expressed in binary form, e.g. if the expression levels of the genes have
been discretised into 1s and Os.

Euclidean distance is one of the most intuitive ways to measure the distance
berween points in space, but it is not always the most appropriate one for ex-
pression profiles. For example, if the gene expression data represent compara-
tive expression measurements, the absolute values in the matrix may not be
meaningful. Even with absolute measurements sometimes we may be more in-
terested in comparing the changes in the expression, rather than the absolute
levels. In these cases we need to define distance measures that score as similar
gene expression profiles that show similar trends, rather than those that depend
on the absolute levels.

Two simple distance measures that can be used in such cases are the angle and
chord distances. Let us first assume that all the expression values are positive.
The angle distanceis defined as the angle (e.g. expressed in radians: 360° equals
2n radians) between the two vectors. For positive values the angle varies in the
range from 0 to m/2. Instead of the angle o, we can also use function sino,
which for positive vectors varies in the range from 0 to 1. Note thatsin? o= 1 —
cos? a.

Let us consider Figure 4.3. The cosines of the angle between the two vectors
A and B can be expressed as cos 0. = cos (Y~ ) = cos B cosy + sin Bsiny. Noting
that cos B = a, /IAl, sin B = a,/IAl, cosy= &, /IBl, and siny = 4,/IB| we obtain

ab, +a,b,
coso = —————=+2
|AlB|
The angle between the normalised vectors A" = (a7, a3,) and B’ = (&}, ;) is the
same as the angle between the original vectors, therefore

s TV rpr
coso. = a b +ajb;

In n-dimensional space for vectors A= (a,, ..., a,)and B= (4, ..., b,) the
cosine is defined as ‘

P
zn: 2 ab;
coso.= ) alhl=-+-—
P |AIB]
The sum z:;l a,b is known as the dot product, sometimes denoted by A- B, and
can be used as a similarity measure.
The chord distance is defined as the length of the chord between the vectors
of unit length having the same directions as the original ones, as shown in
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Figure 4.3 Angle and chord distances ( see text for explanation).

Figure 4.3. Evidently the chord distance is the same for the normalised as for
the original vectors. For normalised vectors the chord and the Euclidean dis-
tances are the same. This is an important property, since some of the data analy-
sis methods, such as K-means clustering, require the use of Euclidean distance
properties. If one first normalises the vectors, one can perform analysis in
normalised space using Euclidean distance, which will give the same results as
using chord distance in the original space.

Using Pythagoras’s theorem, in the case of two dimensions, we see from
Figure 4.3 that

a b\ (a, b\
D,,4(A,B)= (n;“b:’)-+(”;—[’;)2= ( g 1) +( 2 2)

1" B)) "\lal" Bl

Since (a - b)* = a? - 2ab + 7, after simple transformations we obtain

Do (A, B) =201~ (at] +a85)) =¥2(1 - cosar)

The last part of the equation is true for any number of dimensions. We can see
directly from Figure 4.3 that D, (A, B) =2sina,/2, confirming the well-
known trigonometric relationship 2sin0,/2 =1 - cos 0.

A related distance measure that is sometimes used for comparing gene ex-
pression is the chi-square merric (x* metric), which is used in correspondence
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analysis (described in Section 4.6). Consider the m x 7 matrix X in Section
4.2.2.The chord distance betweenrows A = (x,,, . .., x,,)and B=(x,, . . .,
xbm) cquals

D,,,4(A, B) =

Suppose the sum of the elements x;of the column jequals y,= x;;+ . . . %, In
chord distance measure the samples (columns) that have the highest values y;
contribute predominantly (note that this is not always necessarily so, since
«differences between large values may be small). To compensate for this we can
lessen the influence of these samples by ‘normalising’ the contributions from
eachexperiment, i.e. by dividing each by the total expression level of the sample

yj:xU+ . .xnj:

D.(A,B)=

m —1— xﬂj _-xi =
,g.y, (IAI lBi)

Note that for some datasets this may lead to ‘overcompensation’, i.e. it is pos-
sible that for large sums y,, the actual differences in parentheses are in fact small.

One can also adjust weights of various columns (i.e. contributions from vari-
ous dimensions) by using a priori knowledge, e.g. by increasing the weights
for those experimental conditions that are thought to be more important for
determining the similarity between genes and decreasing the weights for the
less important ones.

Finally, note thatifwe have defined a distance measure and are given gene ex-
pression matrix m X n (m samples and # genes), we can compute distances
among all given expression profiles (vectors oflength ), and represent these in
a square 7 % m matrix Z, with elements z; representing the distance between
gene 7 and gene j. Since according to the definition of a distance z,;;= z; the
matrix is symmetric, and, since z;= 0, the diagonal elements in tlllis matrix
are zero.

4.2.3.2 PEARSON CORRELATION DISTANCE, ADJUSTING THE MEAN AND
VARIANCE, CORRELATION MATRICES, AND THE RELATIONSHIP BETWEEN
EUCLIDEAN AND CORRELATION DISTANCES

Although so far we have considered vectors with positive values, our considera-
tions are generally true also for negative values. We obtain positive values
for absolute expression measurements, but not for log ratio matrices. In the
case where data represent log ratio matrices, it is sometimes natural to assume
that the ‘centre of gravity’ for each gene expression profile is zero, which is
equivalent to assuming that the total change in expression over all the experi-
ments averages to zero. More precisely, we assume that the arithmetic mean of
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each gene expression profile is zero. We will see that under this assumption the
angle distance is closely related to the Pearson correlation coefficient (see
below).

First let us consider the example shown in Figure 4.4, where two expression
profiles A and B for four samples are given. These are represented by vectors
in four-dimensional space: A = (a,, a,, a3, a,) and B = (&, b,, by, b,). We can
calculate the mean value for each profile as

‘E=(u1+az+u3+a4)/4 and b =(b,+b,+b,+b,)/4

and shift each profile ‘down’ by its mean, i.e. obtain new vectors

A°=(a,~@,n,~@,n,~7,a,~7) and B®=(b,~b,b,~b,b,~b,b,~b)
Their dot product equals

A+ B® =(a, ~ )b, ~b)+(a, - a)b, —b)+(a, - 2)b; ) +(a, —7)b, - b)
In general, in #-dimensional space

"
0. RO = =BV &
A’ B’ = Z]‘(a,. a)b,-b)
=
If we divide this by # — 1, we obtain the well-known expression for covariance,
whichis used to establish the degree of association between two or more distri-
butions. Covariance is calculated in the same way as variance, except that there
are multiple distributions. The variance can be thought of as a measure of the

Samples (S)

Log ratio of expression
o

Figure 4.4 Mecan centring (see text for explanation).
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distance from the mean, or the ‘spread’ of the data. Covariance is the generali-
sation of variance for two distributions and can be expressed as

A°.B°
Cov(A,B)=——"r
(A, B) =)
The normalised covariance gives the expression for linear correlation, also
known as the Pearson correlation coefficient (PCC):

AO . BO
Cor(A, B) = TAT]BY]
In this way we see that the PCC between vectors A and B is the same as the angle
distance between these vectors in normalised and mean centred space. For un-
related distributions the PCCis near 1 for a strong correlation and near zero for
aweak correlation (Figure 4.5 and Plate 4.1, facing p. 88). We can compensate
for different contributions from each column by dividing by the sum of the total
expression in the column as we did for the chi-square distance. The angle may
be larger than /2 and the angle distance cos o may vary in the range from -1 to
1, in which case we may have a negative correlation, sometimes also called
anticorrelation. Note that for mean centred vectors the PCC equals the dot
product.

Since the distance should be: positive (according to the definition of
distance), we have two possibilities for defining the distance: cither D, =
1-cosa,or D=1~ lcosal. In the first case a perfect correlation will give
a distance of zero, while anticorrelation will give the maximum distance of 2.
In the second case correlation and anticorrelation are treated equally, and
perfectly correlated or anticorrelated profiles will both have zero distance.

Since centring the vector space and normalising the vector length to 1 sub-
stantially simplifies the calculation of the correlation coefficient (for mean cen-
tred vectors it is expressed by the dot product), it is tempting to transform the

(@) (b) (©

Figure 4.5 Pearson correlation. The linear correlations between two distributions, the values of
which are represented by each axis, are positive in (a), negative in (b) and close to zeroin (c).



88 CHAPTER 4

original vector space (gene or condition) into the mean centred normalised
space right at the beginning. In this space the chord distance becomes equal to
the Euclidean distance and there is a simple relationship between the chord, the
angle and the linear correlation distances (Figure 4.3).

It should be noted that transformation of the original vector space to such a
‘normalised’ space results in the loss of information — we can no longer tell how
long the original vectors were, i.e. what the expression levels were. Although
vector centring and normalisation preserves the relative ‘shapes’ of the expres-
sion profiles, the magnitudes are lost. If the expression levels were measured
in absolute terms (e.g. if we are using the absolute fluorescence intensity values
for analysis), such transformation can be justified only as a technical means to
simplify calculation. On the other hand, if we use ratio or log ratio values, the
absolute expression values may not be meaningful.
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Figure 4.6 Pecarson and rank correlation. Gene expression profiles for time series A and B.
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4.2.3.3 SPEARMAN’S RANK CORRELATION

Consider two gene expression profiles for the time series A = (0, 2, -2, 3, -3)
and B =(0, 1,-1, 10, -10), as shown in Figure 4.6. Note that the expression
values are changing in a very similar way (always going up and down for the
same time intervals). Both expression profiles are mean centred (0+2 -2+ 3
-3=0and0+1-1+10-10=0), therefore A=A and B® = B, and A°- B®
=0-0+2-1+(=2)-(-1) +3-10 + (-3)-(~10) = 64. Noting that |A|=+26
and [B| = 4202 we obtain

64

R e

=0.88

Although the correlation is strong;, it is not perfect, which is intuitively under-
standable — the magnitude of the change in expression value is different be-
tween adjacent time points in series A and B.

Spearman’s rank correlation (SRC) is a disrance measure that is invariant to
monotone changes, i.e. ignores the magnitude of the changes if their relative
ranks within the series are preserved. The idea of the rank correlation is to trans-
form the original values into ranks, and then to compute the linear correlation
between the series of ranks.

More precisely, first we order the values in each of the series non-decreasing-
ly and assign to cach value a rank beginning with 1. For instance, the vector A =
(0,2,-2,3,-3)is ransformed into rank vector A, = (3,4, 2,5,1) (the small-
estvalue in A is—3, which gets rank 1, the second smallestis —2, which gets rank
2, ..., the largest among the five elements of the vector has a value equal to 3,
which gets rank 5). Similarly, B = (0, 1, -1, 10,~10) is transformed to B, =
(3,4,2,5,1)

We define the rank correlation between A and B as the Pearson correlation
between A_ and B, .. Note that A, =B_ ,, therefore the correlation
between them s perfect,i.e. equal to 1.

If two or more values in a series are repeated, the rank calculation is
slightly more complicated - see, e.g. Francis (1988) — but for gene expression
data this is not usually a problem.) A non-trivial derivation, which we do not
present here, shows that the rank correlation coefficient can be expressed
directly as

6(>.d?)

Rank(A, B)=1-
k(A ) n(n*-1)

where 4,is the difference between the ranksat position =1, . . ., #,and nis the
number of dimensions, i.e. samples. An advantage of rank correlation is that
it does not change by a large amount if there are outliers in the data. The dis-
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advantage in using a rank correlation-based measure is that some information
about gene expression Jevels may be lost in ranking the data.

4.2.3.4 DISTANCES IN DISCRETISED SPACE, AND MUTUAL INFORMATION

As already mentioned, sometimes it is advantageous to use a discretised expres-
sion matrix as the starting point, e.g. to assign values 0 (expression unchanged),
1 (increased) and —1 (decreased) as in Table 4.5. There are some distance or
similarity measures that are defined only for discretised space. For instance, we
can define the similarity between two discretised vectors as:

1 the number of positions that have the same value;

2 the number of positions that have the same non-zero value (i.e. we do not
count zero for measuring the similarity);

3 the number of positions that have an equal non-zero value, divided by the
total number or positions that have non-zero values in both vectors.

A useful similarity measure is based on the notion of mutual information. This
can be defined for discretised as well as non-discretised matrices, but the defini-
tion is much simpler for the discretised matrix. The measure is based on the
notion of Shannon or information entropy, and can be intuitively thought of as
the amount of ‘information’ one can obtain from one expression profile, for
predicting the behaviour of the other. This gives us a powerful similarity
measure, which is more general than linear or rank correlation (although one
should note that discretisation may result in a certain loss of information from
the original profiles).

Shannon entropy characterises the level of uncertainty of a chosen positionin
the expression profile having a certain value. For instance, consider the discre-
tised gene expression matrix in Table 4.7. If we consider the discretised values
for gene A, they are all ‘certain’ to have value 1, while for gene C or D, the
‘probability’ of the value of a randomly chosen position being equal to—-1, 0 or
1is 1/3, therefore in a sense these profiles have the greatest possible ‘uncer-
tainty’ (for the case of three possible values). Another way to see this is as an
‘information gap’ that needs to be filled in for knowing the (discretised) ex-
pression values of the gene. The values for gene B are more often equal to 1 than
-1, and are never equal to 0, therefore they are not as ‘uncertain’ as the values
for Cand D.

Table 4.7 The expression levels for genes A, B, C and D have been discretised, to
reflect the change in gene expression in relation to a reference sample.

A o1 1 1 1 1 1
B 1 1 1 -1 -1 1
o 1 0 -1 -1 1 0
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The mutual information between two expression profiles is the decrease in
‘uncertainty’ (or ‘information gap’) of the values for one gene that can be ob-
tained from knowing the values for the other gene. For instance, we can notice
from the matrix that the expression values of genes C and D completely deter-
mine each other (if gene C has value 1, D has value 0,if Cis 0, Dis 1 and if C
is—1, D is —1), thus from knowing one the uncertainty of the other is reduced
to 0.

More precisely, let x be a variable that can assume discrete values 1, . . . , x;
with relative frequencies py, . .., p,. Assuming that p; +...+p,=1we can
treat the frequencies as naive probabilities. Shannon entropy H(x) is defined as

H(x)= ‘21’, IOgP.‘
i=l

In our case the gene expression values in the table are equal to -1, 0 or 1, with
probabilities depending on the frequency of their occurrence for the particular
gene. Forinstance, for gene A the probabilities of values —1 and 0 are equal to 0,
while the probability of the value 1 is equal to 1. Itis easy to calculate that H(A)
=0.Forgenes Cand D, H(C) = H(D) =-3(1/3)log(1/3) =log 3. For gene B
the entropy equals H(B)=—(2/3) log(2/3)-(1/3) log(1/3)=log3 -
(2/3)log2. We see that the entropy of C and D is maximal, the entropy of A is
minimal, and the entropy of B is in between.

Having two variables xand yranging over the set of discrete values (x;, 39») with
frequencies p;;we can define the joint entropy H(x, y) as

H(x, y)= 2 p, logp,
i

For instance, the joint entropy of C and D equals H(C, D)=
-3(1/3)log(1/3) =log 3, since there are three possible values (1, 0), (0, 1)
and (-1, —1) (i.e. the ‘probabilities” of all other pairs are 0), each with the
same ‘probability’ 1,/3.

We define the conditional entropy H(xly) of x given yas

H(x|y)=H(x)- H(x, )

The conditional entropy characterises the ‘uncertainty’ of random variable x,
provided that we know the value of y. Note that for genes C and D, the condi-
tional entropy H(CID) =log3 -log3 =0, which is intuitive, since knowing
the discretised expression values of D, we can determine that of C.

The symmetric version of this is what is called mutual information and is
defined as

M(x, y)=H(x)+H(y)- H(x, y) = H(xly)+ H(y)
and can be used as a similarity measure between aand y.

This ends our discussion of distance measures. No fewer than 26 different
distance and similarity measures are listed in Legendre and Legendre (1998). It
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isnot possible to provide a ‘recipe’ that describes which distance measure to use
in each situation —one has to consider the nature of the dataand the goals of the
analysis, and then choose one or a few different measures. Variations of correla-
tion coefficients and chi-square distances are probably the most commonly
used ones. Although these measures are intuitive, they are not necesarily appro-
priate in all situations.

4.2.4 Principal component analysis, eigen-vectors and
eigen-genes

Principal component analysis (PCA) is one of the most common methods used
for gene expression data analysis, primarily to reduce the dimensionality of data
and to find combinations of experiments or genes that jointly contribute most
to variability in the data. Although the techniques used in PCA are not simple,
the underlying idea is quite intuitive — it is based on finding the directions in
multidimensional vector space that have the largest amplitude in the dispersion
of data points. These directions then serve as new coordinate axes. It turns out
that for many microarray datasets most of the variability can be accounted for
by a small number of principal directions. By taking only two or three most im-
portant (most variable) directions one can visualise the data in two or three
dimensions often without losing much information.

We start by introducing the most basic elements of linear algebra that are
needed to understand PCA. Linear algebra is a rich and non-trivial subject; for
amore comprehensive introduction see, for instance, Strang (1993). Full un-
derstanding of this subsection is not essential for being able to comprehend
what follows in the text with the exception of a few, inessential, details, there-
fore the reader who has had enough of mathematics at this point may want to
skip the rest of this subsection.

Given a vector X=(xy,..., &,), and a constant ¢, we define the scalar
multiplication as a new vector cX = (cxy, . . ., ¢x,). A vector Y is said to be a
linear combination of vectors X, . . ., X, ifit can be expressed as

Y=¢X +...c,X,

for some constants ¢, . .., ¢,. If a row (or a column) in a matrix can be ex-
pressed as a linear combination of other rows (respectively, columns), then it is
said to be linearly dependent on the other rows (respectively, columns). Itis an
important property of matrices, that the maximal number of linearly independ-
ent rows and columns is limited by the minimum of the number of rows or
columns in the matrix. For gene expression matrices we often have thousands
of genes (rows) but only tens of experimental conditions (columns), which
effectively means that the behaviour of most genes can be explained via the
small number of combinations of gene expression profiles.

We saw in the previous sections that vector space can be transformed into a
new space by shifting the coordinate system to a new zero.point. A more
general transformation is a rotation of the coordinate system (e.g. Figure 4.7).
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It can be shown that for coordinate system transformations that are based on a
shift and rotation, the vector coordinates in the new (transformed) space can be
expressed as linear combinations of the vectors in the original space (to be more
precise, in the formal language of linear algebra the transformations involving
shift are called affine, as they include adding a constant vector).

We can use linear combinations of vectors (rows or columns) to transform
the original vector space into a new vector space so that the axes in the new co-
ordinate system are oriented along the directions of greatest variability. This is
the essence of principal component analysis: transformation of the original vec-
tor space to a new space by rotating the coordinate system so that the new axes
are in the directions of greatest variability. An example is shown in Figure 4.7.

+Ingeneral there may be as many principal components as there are linearly in-
dependent rows or columns in the matrix, although only a few ‘largest’ compo-
nents have intuitive meaning. The technique used for finding the vector space
where the axes are oriented in the direction of the principal components (we
can call these principal axes) is called singular value decomposition (SVD). The
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Figure 4.7 A numerical example of principal component analysis. (a) Five objects are plotted with
respect to descriptors y, and y,. (b) After centring of the data, the objects are now plotted with
respect to (y, — ¥,) and (y, — ¥,), represented by dashed axes. (¢) The objects are plotted with
reference to principal axes Tand IT, which are centred with respect to the scatter of points. (d) The
two systems of axes (b and ¢) can be superimposed after a rotation 0f 26°34”. (Reprinted from
Numerical Ecology, 2nd edn, P. Legendre & L. Legendre, fig. 9.2, Copyright 1998, with
permission from Elsevier Science.)
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vectors representing the directions of the new axes are called eigen-vectors.
For gene expression matrices, they are sometimes called ezgen-genes or eigen-
conditions. Note that the maximum number of eigen-genes in a matrix is no
larger than the minimum number of experiments or genes, whichever is the
smallest. Eigen-genes are mutually orthogonal, meaning that their dot products
are equal to zero. This can be interpreted as zero correlation berween the ex-
pression values on the principal axes.

Singular value decomposition can reveal different characteristics of the gene
expression matrix. For instance, it may reveal which experiments (i.e. experi-
mental conditions) provide the most significant contribution to the gene
expression profiles, or which experiments are mutually correlated. It has been
shown by Alter e a/. (2000) that in many gene expression experiments only a
few principal axes contribute to most of the variability in expression data.

One of the applications of singular value decomposition is visualisation of
higher dimensional space in two or three dimensions. By finding the principal
components we can project the #-dimensional vectors on the two (or three)
dimensions that have the greatest variability. This is used, for instance, in
correspondence analysis, discussed later. Where these two or three dimensions
account for most of the variability in the data, the relative distances among
points in the new space will reflect the distances in the original space. However,
if there are more than two or three axes of high variability, the visualisation will
distort the distances between data points in the original multidimensional data.
The extent to which the distances in the original space are preserved in the re-
duced space can be used as an indicator of how appropriate the space reduction
is. Space reduction in normalised, mean centred space (i.e. using a covariance
matrix) is also known as multidimensional scaling.

4.2.5 Dealing with missing values

So far we have assumed that all the values in the gene expression matrix are de-
fined, i.e. all expression levels are represented by real values. Unfortunately,
in practice microarray data frequently contain missing values, i.e. some of the
values in the matrix are undefined. Not all data analysis methods are directly
defined for matrices with missing values. For instance, the distance measures
described above are not directly applicable for vectors with missing values,
although in many cases they can be generalised to include missing values in
a straightforward manner (e.g. the dimensions containing missing values can
simply be ignored). However, for some methods such a generalisation is more
difficult and we either have to substitute the missing values by arbitrary values
(e.g. zero) or try to estimate the missing values from the rest of the data.
Suppose the value x; for the gene 7in the experiment jis missing. Three dif-
ferent methods that could be used for imputing this value from information in
the existing data are listed below.
1 Row average method — simply uses the average value of the gene expression
data from the gene of interest from other samples or other genes.
2 Weighted K-nearest neighbour method - finds K genes with the most simi-
lar expression profiles to gene i forwhich the values xy , . . . , % are defined. The
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method estimates the missing value x;; from the values x e X using a
weighted average, where the contribution of each gene is weighted based on
how similar its expression profile is to that of gene 7.

3 A method based on principal component analysis, more precisely: (i) finding
the first % principal axes (as outlined in the previous section), i.e. the £ most
significant eigen-genes; (ii) projecting these eigen-genes onto the gene 7 and
calculating the contribution of each eigen-gene; and (iii) reconstructing
the missing value x;; from the jth components of the eigen-genes, taking each
proportional to the contribution of the respective eigen-gene to gene i.

These methods are described in detail in Troyanskaya ez 2. (2001). Evaluation
comparing the three methods concluded that the K-nearest neighbour ap-
proach performed the best and that the optimum value of K ranged from 10
to 20. It should be noted that the weighted K-nearest neighbour approach
has implications for downstream analysis, since gene expression data are fre-
quently analysed with the objective of identifying genes with similar expression
profiles.

4.2.6 Representation of gene expression data by
graphs (networks)

Gene expression data may provide information about various relationships be-
tween genes, which often can be viewed as networks or graphs. We can define a
gene expression graph or network as a graph where nodes represent genes and
edgesrepresent relationships between genes; an example is shown in Figure 4.8.
Forinstance, we can draw an edge between genes A and B, if the correlation dis-
tance between the expression profiles of these genes is smaller than a predefined
significance threshold. Note that such a graph is simply a representation of a dis-
cretised distance matrix, called an adjacency matrix, where 1 at the position (7,
) represents the edge between gene g;and g;. In fact any distance matrix can be
transformed into a graph by applying a significance threshold, i.e. by discretis-
ing the data.

Labels can be attached to nodes or edges, in which case we talk about a /a-
belled graph. For instance, genes can be labelled with their names or functional
classes, and edges by the distances between the respective gene expression pro-
files. Edges can be oriented, representing a possible asymmetry in the relation-
ship between the genes, in which case they are often called a7cs. For instance, in
the network represented in Figure 4.8, the grey arc from gene SS72 to FUS2
means that the expression of gene FUS2 is greater in a strain in which SST2is
mutated thaninanon-mutantstrain (Rung ez /. 2002). On the other hand, the
dashed arc from gene FUS3 to URA3 means that the expression of the gene
UR A3is greater in a non-mutant strain than in one where FUS3is mutated.

4.2.7 Gene expression matrix annotation

So far we have considered gene expression matrices separately from gene and
sample annotation. The use of annotation has two applications. First, each gene
or sample should be assigned a unique (standard) identifier, allowing re-
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Figure 4.8 An example of a gene expression graph or network, where nodes (circles) represent
genes and edges (arrows connecting the circles) represent relationships between genes.

searchers from different laboratories to communicate unambiguously (i.e. to
make sure that indeed the same gene or experimental condition has been iden-
tified). Note that the lack of standards even for gene names is a serious problem.
Second, the annotation can represent various types of information known
about the particular gene (e.g. ﬁmmonal role) or experimental condition (e.g.
particular disease state).

Annotation can either be in free text format or use controlled vocabularies
(CV). If we use CVs, it is possible to incorporate the annotation in the mathe-
matical analysis of the data by treating it as a categorical variable. Controlled
vocabularies can either be flaz (i.e. provided as a simple list of terms without
structure) or organised. The simplest way of organising a vocabulary is hierar-
chical, i.e.in the form ofa tree. An example is a species taxonomy tree. In a hi-
erarchical CV every term can have only one parent term, but many descendent
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terms. Sometimes there is a need to make this structure more flexible and to
allow the possibility of more than one parent. In this case we can organise the
vocabulary in what is known as a directed acyclic graph, or DAG.

A system of controlled vocabularies for annotation of gene functions is being
developed by the Gene Ontology consortium (GO) (see GO consortium, 2000
and http://www.geneontology.org/), and GO terms are becoming a more
commonly accepted standard. The GO system works at three levels for each
gene product: molecular function, biological processand cellular component. All
three controlled vocabularies are independent and each is organised in a DAG
(a hierarchical organisation is not sufficient; for instance, in biological process
ontology, ‘DNA ligation’ is a subclass of ‘DNA repair’ and ‘DNA recombina-
tion’). GO terms are facilitating the interpretation of the results of gene expres-
sion analysis, e.g. by permitting the display of gene functions in a concise way
with their expression profiles (Plate 4.2, facing p. 88). It has been shown that in
many cases biological processes defined by GO correlate with expression
profiles.

Sample and experimental condition annotation is less developed. Only the
organism classification has a well-adopted standard — the species taxonomy
database maintained at the National Center for Biotechnology Information.
Standards for cell and tissue types, organism parts, developmental stages and
disease states are under development. For some model organisms, e.g. mouse,
such standards are emerging through the efforts of community databases, such
as the mouse database at the Jackson Laboratory. To standardise the annotation
for treatments is an even more daunting task. The Ontology Working Group of
the Microarray Gene Expression Data Society is currently developing standards
for sample annotation (see http://www.mged.org/ontology/).

A simple way to annotate samples is possible when we can categorise them
into two or more classes, e.g. representing diseased or normal tissues. In this
case we can assign, for instance, 0 to the normal tissues and 1 to diseased ones,
which effectively extends each columnin the matrix by one row. Distance meas-
ures for vectors that include categorical values can be defined and used in the
downstream analysis. Similarly, we may assign value 0 or 1 to genes, depending
on whether the gene belongs to a particular GO category or not. Since each
gene may be associated with many GO terms, it is not always trivial to decide
which part of the vocabulary is most appropriate for each case; often more than
one term for a gene can be used, and we may use more than one column for gene
annotation. .

In this way, adding annotation to the expression matrix may be considered an
extension of the original matrix. However, the nature of the values in the ex-
tended columns is different from that of the expression values. Supervised
analysis can be defined as a method of matrix analysis that uses these additional
columns or rows in a particular way. In unsupervised analysis we use the anno-
tation only to interpret the data after the analysis is completed.
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4.3 Clustering

The goal of gene expression data clustering is to group together genes or
samples that have similar expression profiles. Clustering is currently the
most popular method of gene expression matrix analysis. It can be useful for
discovering ‘tvpes’ of behaviour, for reducing the dimensionality of the data
(allowing tens of thousands of genes to be represented by a few groups each
containing genes that behave similarly), as well as for the detection of outliers in
the data.

Clustering is one of the unsupervised approaches to data analysis, which can
be used in the absence of 2 priori information, or when annotations are not
considered in the analysis. Clustering is a well-established field and various
clustering algorithms have been invented, many of which can be considered as
‘classic’. These include hierarchical agglomerative clustering, which is based on
iteratively grouping together the objects that are most similar to each other, and
K-means clustering (Hartigan, 1975), in which the number of clusters is de-
fined a priori, and the clustering is iteratively improved by adjusting the cluster
centres in Euclidean space. There are also newer clustering algorithms, such as
Kohonen’s self-organising maps (Kohonen, 1990), which is similar to K-means
methods, graph theory-based algorithms (Sharan and Shamir, 2000), and
methods that use PCA (Hastie ¢z al., 2000). Jain ez al. (1999) give an overview
of clustering algorithms.

Many of'the well-known clustering algorithms have been used for clustering
of expression profiles, including hierarchical clustering (Alon ez al.,1999; Eisen
et al., 1998), K-means clustering (Tavazoie ez al., 1999; Vilo et al., 2000)
and self-organising maps (Tamayo ¢t al., 1999; Toronen et al.,1999). A simple
clustering algorithm based on binning, i.e. discretising the expression profile
space dnd clustering together the profiles that map to the same bin, has been
shown to be useful for grouping data in situations where the number of experi-
mental conditions is relatively small (Brazma ¢z al., 1998).

There is no compelling evidence that more sophisticated clustering algo-
rithms perform better than the simplest ones with respect to the biological
insights that have been obtained. At the same time this does not mean that
all clustering algorithms are appropriate for all datasets. Itis possible thatin the
future, when we have better understanding of the nature of gene expression
data, more specialised algorithms that perform significantly better than others
will be developed.

Before choosing a clustering algorithm, one has to think about which
distance measure is likely to be the most appropriate for the particular dataset.
We have to think about what type of clusters might be expected in the data. For
example, consider Figure 4.10, where different clustering methods are likely
to group these points in rather different ways.

Some clustering algorithms are applicable only for particular distance meas-
ures, e.g. K-means assumes that the distance measure has Euclidean properties.
Another consideration is the performance of the various algorithms. When
clustering thousands of genes for hundreds of experimental conditions, we are
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dealing with large data matrices, and some of the early implementations of
clustering algorithms are not able to process these.

4.3.1 Types of clustering

Clustering can be either hierarchical or flat, as well as agglomerative or divisive.
Agglomerative processes start out by considering each object as a separate clus-
ter and proceed to group the most similar objects in an iterative fashion until all
the data are included. Divisive methods start out with the complete set of data
as one large group, or cluster, and proceed by partitioning the objects starting
with those that are most dissimilar (Alon ez al.,1999). In addition to agglomer-
ative or divisive methods, the clustering algorithm may start with the partition-
ing of the data into the predefined number of clusters, and then refine the
assignment of the objects to clusters by changing the cluster boundaries.
K-means is an example of such an algorithm.

Hierarchical clustering algorithms typically build a tree (also known asa den-
drogram; see below) that represents a hierarchical structure in the data (e.g. see
Figure 4.11 and Plate 4.3, facing p. 88). Flat clustering gives either a partition-
ing of the object space into a number of subsets (Figure 4.9a) or a system of
overlapping clusters, which are not organised in any particular hierarchy (e.g.
Venn diagrams — Figure 4.9b). A typical example of a flat partitioning is
K-means (see Section 4.3.4). The number of clusters in a flat clustering can
cither be provided by the user or determined based on various theoretical or
heuristic principles.

A different way to categorise clustering algorithms is based on whether the
algorithm optimises a defined scoring function rating the ‘goodness’ of the

(a) (b)

~._All genes

Figure 4.9 (a) A polygonal diagram and (b) a Venn diagram. (TFIID and SAGA are multi-
subunit complexes that are involved in the transcription of protein-encoding genes. The two
smaller circles represent the genes affected by mutations in individual subunits of TFIID and
SAGA respectively.) ((b) reprinted with permission from Nature (Lee et al.), Copyright 2000
Macmillan Magazines Ltd.)
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Figure 4.10 Which are the clusters?

clustering, or is based on some heuristics such as iterative joining of the most
similar objects. Most of the commonly used clustering algorithms are heuristic.
It is not easy to define a good optimisation function rating the ‘goodness’ of
clustering. For instance, consider Figure 4.10: Are there any clusters in these
data? How one would describe them? Even answering the question, ‘How do
we find the best balance between the cluster size and the compactness?” is not a
trivial problem. Some possible cluster optimisation functions are described
later in this chapter. :

4.3.2 Hierarchical agglomerative clustering

Hierarchical agglomerative clustering is a process in which the data are succes-
sively fused, typically until all the data points are included. For hierarchical ag-
glomerative clustering usually all the pair-wise distances between objects need
to be defined. An agglomerative process typically starts by considering each ob-
ject/data point as a separate, or singleton, cluster. Starting with 7 objects, the
result of the firstiteration of clustering is that the two objects that are most sim-
ilar are grouped together to form a single cluster, leaving ( # — 1) clusters. The
distance between the objects and the newly formed cluster containing two ob-
jectsis then updated and the next most similar objects and clusters are grouped
together as a single cluster (Eisen ez al.,1998). This process is carried out itera-
tively until there is a single large cluster, as shown in Figure 4.11 for five data
points.

" The results of hierarchical clustering are frequendy represented in a hierar-
chical tree, also known as a desdrogram (Figure 4.11 and Plate 4.3, facing
p. 88). The branch lengths of the tree may represent the degree of similarity
between the data. Note that the threshold values, i.e. where to split the tree to
obtain distinct clusters, have to be established independently. Usually this is
done quite arbitrarily by picking the clusters either that seem to be the tight-
est, or thatinclude genes with similar functional annotadon.

The process of hierarchical clustering illustrated in Figure 4.11 uses the
minimum distance for determining which of the objects and clusters are most
similar. There are, however, several methods by which the distance between the
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Figure 4.11 Stepsin hierarchical clustering. Objects with the minimum distance between them
are grouped together to form a new cluster, or ‘single” object. The distance between all the
clusters, or objects, is recalculated and the cycle is repeated iteratively.

“= Minimum distance
=> Single linkage

== Maximum distance
=> Complete linkage

== Average distance
=> Average linkage

Figure 4.12 Single, complete and average linkage.

clusters — or between clusters and objects — can be measured (summarised in
Figure 4.12):

1 Single linkage (also known as nearest neighbour linkage, not to be confused
with the supervised approach known as nearest neighbour analysis) uses the
minimum distance between objects in the two clusters as the measurement of
the distance between the clusters. This results in clusters that are spread out, as
the grouping is based on minimum dissimilarity between members of each
group. The method is not sensitive to outliers.

2 Complete linkage clustering groups objects according to the greatest dis-
tance between the objects in the clusters. Complete linkage is also known as the
maximum or furthest neighbourhood method. Complete linkage tends to
form tight clusters of similar objects as the distance between objects is based on
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the greatest dissimilarity between them. A disadvantage of this method is that it
is sensitive to outliers. '

3 Average linkage clustering measures the distance as the average distance be-
tween every point in a cluster and every point in the other cluster. The average
can be calculated in a number of ways. Average linkage methods can be either
weighted or unweighted, depending on whether we compensate for the size of
the cluster, or treat clusters of different sizes equally. When using a clustering
algorithm based on average linkage it is useful to know how the average is
calculated.

4 The centroid method is similar to the average linkage method, the difference
being that it uses the ‘mean centroid’ of each cluster to represent the clusterasa
whole. The ‘centroid’ is calculated by taking the mean for each dimension sep-
arately. (In Euclidean space the centroid can be visualised as the intuitive centre
of gravity of the cluster.) The advantage of the centroid method is that the
properties of each cluster are represented by one object —a centroid. The disad-
vantage is that the centroid position and the distances from all centroids to the
new one have to be recalculated with every merging of the clusters, which
affects the performance of the algorithm (for non-centroid methods the
distances can be updated more efficiently). Centroid clustering may cause ‘re-
versals’ in the dendrogram (Figure 4.13), since the distance to the centroid ofa
new cluster C resulting from merging clusters A and B may be smaller than that
between A and B. In practice this does not cause problems, as the reversals are
typically rather small. Like average linkage clustering, centroid clustering can
be weighted.

5 InWard’s method, also known as minimum variance clustering, the distance
between objects and clusters is obtained by calculating the sum of the squared
distances from the mean centroid of each cluster. This creates a measure of dis-
persion or of heterogeneity between objects in the group. Objects A and B are
joined only if the increase in the sum of the squared distances between A and B

E

Figure4.13 Centroid clustering may cause ‘reversals’ in the dendrogram, e.g. if the distance to
the centroid after merging A and B is smaller than the distance between A and B.
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is less than the increase in the sum of the squared distances of joining other
objects. Ward’s method favours small, equally sized clusters, with minimal
within-group dispersion; however, itis computationally expensive.

While intuitively appealing as a method, hierarchical clustering has some lim-
itations. The process of grouping continues until all the clusters are joined, and
therefore in the end objects that have no similarity to each other are grouped to-
gether. This means that, in practice, the most relevant groupings are those that
relate small numbers of genes. Each iteration of the cycle produces a fixed clas-
sification that is built upon in successive iterations of the algorithm; there is no
opportunity to re-evaluate the groupings that were assigned early. This makes
hierarchical methods less robust, i.e. small changes in the data can produce
a completely different clustering, and as a result hierarchical clustering is less
suitable for noisy data.

The disadvantage of a ‘classical’ hierarchical clustering is also that the full dis-
tance matrix of all pair-wise distances has to be calculated in advance, which for
n objects takes on the order of 77 steps. For large gene expression data matrices
consisting of tens of thousands of genes, the performance of the algorithm may
prove a limitation. An alternative approach to hierarchical clustering that does
not require the calculation of all pair-wise distances is self-organising trees (see
Section 4.3.5).

4.3.3 Hierarchical divisive clustering

Hierarchical divisive clustering starts with the whole set of objects and divides
them into two or more subgroups. After this each subgroup is considered sepa-
rately and the division is repeated iteratively (Lance and Williams, 1967).

Partitioning is usually done along one of the axes of the »-dimensional space
ata time. Principal components analysis can be used to find the principal axes at
each step. The division can be done either along the most significant original
axis, or along the new axes in the transformed space. Various hierarchical divi-
sive methods are described in Legendre and Legendre (1998). The method has
been applied to gene expression analysis (Alon ez al., 1999), though overall it is
less popular than hierarchical agglomerative methods.

Hierarchical clustering organises the datain a tree and leaves it to the user to
define similarity thresholds that are used to determine which objects should be
considered as a cluster. An advantage of this approach is its flexibility, which al-
lows the user to choose the particular clusters from the dendrogram. Thisis also
a disadvantage, however, as it makes fully automated data analysis more diffi-
cult. Hierarchical clustering has been criticised by those who argue that there
are no compelling reasons why there should be any ‘real” hierarchical structure
in gene expression data. The popularity of hierarchical clustering in biology
stems partly from the successful application of hierarchical taxonomic princi-
ples in many different contexts. Such relationships may not exist in gene
expression data; nevertheless, hierarchical clustering provides a powerful tool
for organising thousands of expression profiles in a way that has been proved to
be useful.
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4.3.4 Non-hierarchical clustering — K-means

Non-hierarchical, or flat, clustering groups the data into non-overlapping, or
overlapping, clusters. The number of clusters can either be given in advance or
estimated from the data by applying various criteria. The most common non-
hierarchical methods are K-means clustering, self-organising maps and various
so-called Bayesian approaches. Self-organising maps impose a partial structure
on the data, such that adjacent clusters are related. Bayesian clustering permits
the incorporation of priors, i.e. additional information about our knowledge
of the data.

K-means is the most common method of partition-based clustering. It starts
with the given pumber of cluster centres, chosen either randomly or by apply-
ing some heuristics, some of which are described below. Next the distance from
the centroids to every object is calculated, and each object is assigned to the
cluster defined by the closest centroid; then, for each cluster the new centroid is
found. The distance from each object to each of the new centroids is calculated
and in this way the boundaries of the partitioning are revised. This is repeated
cither until the centroids stabilise (which is not guaranteed) or until an a prior:
defined maximum number of iterations has been reached. It is common that
algorithms proceed through 20,000 to 100,000 cycles before the position of
the nodes stabilises. This process is illustrated in Figure 4.14.

The initial position of the centroid nodes, called seeds, can be determined by
one of several methods. A random selection of objects can be used to represent

1. Guess K centres
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Figure 4.14 K-mecans clustering (see text for explanation). The large circles represent the
centroids and the small circles represent the objects.
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each of the nodes (if this method is used, it is usually carried out a number of
times, i.e. multiple seeds are used). The nodes can be chosen deterministically
by selecting the objects most distant from the gravity center of the whole data as
well as from each other. Another possibility is to choose the centres of K nodes
after hierarchical clustering of a small subset of objects (Li and Vitanyi, 1993).

As the inital position of the nodes may influence the final partitioning, some
implementations permit multiple ‘rounds of clustering’. For instance, cluster-
ing is carried out three times starting with different seeds each time and the
most stable clusters, or those that best meet a criterion, such as minimisation of
within-cluster variance, are used as the final result. The optimum number of
seeds is such that the assignment of genes to clusters and the expression profile
of each cluster is stable.

Finally, it should be noted that K-means is one of the most scalable algo-
rithms for large datasets.

4.3.5 Self-organising maps and trees

Self-organising maps were first introduced by Kohonen in 1990 (Kohonen,
1990) and were first used to analyse gene expression data by Tamayo et al.
(1999). The method has since been implemented in a number of gene expres-
sion analysis programs (Tamayo et al., 1999; Torénen ¢t al., 1999). Self-
organising maps (SOM) work well with noisy data (Mangiameli ¢z /., 1996).
Self-organising map-based algorithms are a divisive clustering approach. Prior
to initiating the analysis, the user defines a geometric configuration for the
partitions, typically a two-dimensional rectangular or hexagonal grid, and the
number of clusters. Each cluster is represented by a node called a ‘reference
vector’ and the reference vectors are placed on the chosen grid.

Let us consider the situation shown in Figure 4.15, where we have 19 objects
in expression space. Suppose we have decided on the rectangular geometry and
the number of clusters as equal to six. The nodes are projected onto the gene ex-
pression space and each of the data points is assigned to the nearest node, in a
process known as initialisation. After the initialisation the following two steps
are iterated: '

1 Ageneis picked at random.

2 Thereference vector thatis closest to the selected gene is moved closer to the
randomly picked gene.

The reference vectors that are nearby on the two-dimensional grid are also ad-
justed by small amounts so that they too are more similar to the randomly
selected gene. Increasing the stringency is used to define closeness in each step.

Finally, the genes are mapped to the relevant partitions depending on the ref-
erence vector to which they are most similar.

In choosing the geometric configuration for the clusters, the user is, effec-
tively, specifving the interrelationships between clusters. As with K-means clus-
tering, the user has to rely on some other source of information (possibly
empirical) to determine the number of clusters that best represent the available
data.
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Figure4.15 Sclf-organising maps (see text for explanation). The initial positions of the reference
vectors are depicted by the shaded circles.

The self-organising tree algorithm (SOTA) is one of the newer methods and
was developed by Dopazo et al. (Dopazo and Carazo, 1997; Herrero et al.,
2001). The algorithm combines ideas taken from hierarchical clustering and
self-organising maps to produce clustering that is claimed to be more robust
than classical hierarchical clustering, as well as more efficient. The SOTA pro-
duces a hierarchical, binary organisation of the data and proceeds divisively. A
criterion, based on comparison of the data with a randomised sample of the
same data, is provided as statistical support for the clustering obtained, and used
to assist in calculating the point at which the data should no longer be sub-
divided into individual clusters. The ‘growing’ process may be terminated
when the heterogeneity of the gene expression profiles in a cluster falls below a
predefined threshold, giving rise to asymmetric growth, or may proceed until
all the data are incorporated into the hierarchical structure, producing a result
similar o that obtained by classical hierarchical clustering.

4.3.6 Relationship between clustering and PCA

Both clustering and principal component analysis can be considered a means of
reducing dimensionality in the data, though in rather different ways. Clustering
groups expression profiles by similarity and each group can then be considered
as a separate object, e.g. an object represented by a centroid. In this way, the
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Figure 4.16 There is one principal axis describing most of the variability in the data, but no fewer
than six distinct clusters,

original gene space of possibly thousands of genes can be reduced to a few
clusters.

Principal component analysis, on the other hand, can be used to find the di-
rections in the data space which account for the greatest variability in the data,
orient the coordinate axes in these directions, and recalculate the expression
profiles in the new transformed space. If only a few directions account for most
of the variability (which is often a property of gene expression datasets), then
the other directions are less important, and in this way the dimensionality is re-
duced to the few important'axes. These axes can sometimes be interpreted as a
combination of experimental conditions.

Note that although both methods reduce the dimensionality, they are en-
tirely different, and PCA should not be confused with clustering. For instance,
the data may have only one important axis accounting for, say, 90% of the vari-
ability, while at the same time there may be many distinct clusters in the data
arranged along this axis (e.g. as in Figure 4.16).

4.3.7 ‘Geneshaving’

Gene shaving is a clustering method, introduced by Tibshirani ¢z al. (1999),
that exploits PCA. This clustering method relies on an iterative heuristic algo-
rithm that identifies subsets of genes with coherent expression patterns and
large variation across conditions. The algorithm worksiteratively by alternating
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PCA analysis and picking the ‘best’ clusters consisting of genes contributing
most to the variability in the data.

The algorithm starts by finding the first principal component in gene space.
Then starting from genes that are most similar to the first principal component,
the algorithm builds a mutually inclusive system of clusters of various sizes in-
cluding these genes. For each of the inclusive clusters it estimates the ‘quality’
of the cluster using a measure called a ‘gap statistic’ (a measure introduced by
the authors - for details see the original paper) and chooses the cluster with the
highest score. Next, the algorithm transforms the gene space by removing the
component from each gene that is parallel to the first principal axis (this is
known as orthogonalisation of the data with respect to the first principal com-
ponent). The algorithm iterates the process.

Gene shaving is different from the methods discussed above in that it does
not produce a partitioning — a gene may belong to several clusters.

4.3.8 Clustering in discretised space

Discretisation of the gene expression data matrix allows one to use several clus-
tering methods that are difficult or impossible to define for a continuous space.
Remember that discretisation allowed us to define some similarity measures
that are not defined for continuous space. These can also be used in clustering.

Discretisation divides the space into a finite number of bins, therefore dis-
cretisationitself can be used as a way of clustering — each expression profile from
the original space maps into one of the bins, and each bin that is not empty (i.e.
contains at least one expression profile) can be considered a cluster. For in-
stance, if we have two experimental conditions, and the gene expression levels
are discretised into three groups —1, 0 and +1, then each expression profile can
fall into one of the nine bins: (-1, -1), (-1, 0), .. ., (+1, +1), where the first
component is the discretised expression level of a gene for the first experimen-
tal condition, and the second component is the second experimental condition.
The use of this simple clustering method has been described in Brazma ez al.
(1998). Essentially the same method has recently been applied for clustering
gene expression time course data (Filkov ez a/.,2001).

One problem with binning methods is that the number of bins grows expo-
nentially with the number of experimental conditions, and ifa considerable part
of them are populated, there may be too many clusters for the clustering to
be useful. A way round this is to perform divisive hierarchical clustering
component-by-component until the desired number of clusters has been
reached.

4.3.9 Graph-based clustering

Formally, graph theory defines a graph as a set of nodes (sometimes also called
vertices) and a set of edges,i.e. G= (N, E), where Nis the set of nodes and Ethe
set of edges (see, e.g., Harary, 1969). A subgraph is a graph that consists of a
subset of the nodes of the original graph and all the edges in the original graph
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that are adjacent to the nodes in the subgraph. A subgraph is called a cligueifit
contains all the edges between any pair of the nodes of the subgraph. We can
also talk about ‘approximate cliques’ i.e. subgraphs that can be transformed
into cliques by adding a small number of edges. A graph is connectedif for every
pair of the nodes in the graph there is a path from one node to the other follow-
ing the edges. If a graph is used to describe relationships between genes, the
connectivity in the graph can be used to find modules in the underlying nerwork
(approximate cliques can be thought of as clusters). A novel graph theory-
based clustering algorithm CLICK, based on a representation of the gene ex-
pression matrix as a graph (see Section 4.2.6) and designed specifically for gene
expression profile clustering, has been proposed (Sharan and Shamir, 2000).
+This algorithm does not require any prior assumptions about the structure or
the number of clusters.

The initial graphis defined by edges connecting two genes in the graph ifthe
distance between these genes (e.g. correlation distance) is below a particular
threshold. Each edge is weighted according to the similarity between the genes.
The underlying assumptionis that the ‘real’ clusters correspond to approximate
cliques in the graph. The CLICK algorithm looks for the approximate cliques.
In each step the algorithm considers a particular connected component of a
subgraph consisting of yet-unclustered objects. If this component satisfies a
particular ‘tightness’ criterion, it is declared a kernel, otherwise it is split into
two, according to a so-called minimum weight cut (minimum weight cutis de-
fined in graph theory, and intuitively means the set of edges with the minimum
total width, the removal of which means that the graph would split into two).
Once the graph is split into a number of kernels, each kernel is expanded into a
cluster by adding the closest singleton objects (i.e. nodes that were not origi-
nally connected to any of the kernels). For full details of this algorithm see the
original paper (Sharan and Shamir, 2000).

4.3.10 Bayesian or model-based clustering and
fuzzy clustering

Most of the clustering methods described above are heuristic in the sense that
they do not try to optimise any scoring function describing the overall quality of
the clustering. Model-based clustering assumes that the data have been gener-
ated by some, typically probabilistic (Bayesian), model, and tries to find the
clustering corresponding to the most probable model. The methods may still
be heuristic in that they may not guarantee identification of the most probable
clustering.

Various model-based approaches have recently been introduced. Although
model-based clustering has the potential to incorporate a priori knowledge
about the domain in the analysis, it is not easy to apply it in a way that produces
more meaningful biological results than purely heuristic methods.

The clustering methods discussed so far are all deterministic, by which we
mean that given a cluster and an object, the object either belongs or does not
belong to the given cluster. Fuzzy clustering assigns to each object the likeli-
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hood (or probability) of belonging to the particular cluster. Bayesian methods
are often used for fuzzy clustering.

4.3.11 Clustering genes and samples —applications
of clustering

Clustering can be used either for genes or for samples, or for both simultane-
ously. When applied to genes, clustering helps to identify genes that are co-
regulated or that participate in similar biological processes. This can be used,
for instance, for promoter prediction (Brazma ez al., 1998; DeRisi et al., 1997,
Spellman et al., 1998; Vilo et al., 2000) as well as for prediction of gene
function.

Alizadeh ez al. (2000) applied hierarchical clustering to samples, for cluster-
ing tumour samples based on their expression patterns, and used this to find
new potential tumour subclasses. Diffuse large B-cell lymphoma (DLBCL) was
studied using 96 samples of normal and malignant lymphocytes. Applying hier-
archical clustering to these samples, Alizadeh ¢ al. showed that there is diversi-
ty in gene expression among the tumours of DLBCL patients. The authors
identified two molecularly distinct forms of DLBCL that have gene expression
patterns indicative of different stages of B-cell differentiation. These two
groups correlated well with patient survival rates, thus confirming that the clus-
ters are meaningful and showing that gene expression data have prognostic
value.

The sample clustering approach has been combined with gene clustering to
identify which groups of genes are the most important for the sample clustering
(Alizadeh et al., 2000; Alon et al., 1999). Alon et al. applied a partitioning-
based clustering algorithm to study a gene expression matrix comprising 6500
genes in 40 tumour and 22 normal colon tissues. Clustering by both genes and
samples, a method known as two-way clustering, permitted identification of
groups of genes characteristic of each of the sample types.

Although general principles of gene and sample clustering are the same, the
same distance measures and algorithms are not necessarily optimal for cluster-
ing of each. Note that in most cases gene expression matrices contain many
more genes than samples. Therefore, when clustering samples, there are many
more attributes (genes) for each object (sample) than the number of samples.
The expression levels of most genes may be unimportant for clustering, butasa
set they can influence the outcome of the clustering substantially. The clusters
will be more robust if genes notimportant for the analysis are filtered out before
clustering is performed. Usually the genes whose expression does not change
substantially in more than a certain percentage of samples are excluded from
cluster analysis.

Note also that while gene expression profiles can be compared and clustered
even if the reference samples and experimental and normalisation protocols for
different columns in the matrix are different, one should attempt to cluster
samples only if the data for each sample have been generated consistently. To
demonstrate this, let us consider the example given in Table 4.8. The right part
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Table 4.8 The left part of the table shows the hypothetical absolute gene expression levels under
conditions A (labelled red), A’ (labelled green), B (labelled red) and B’ (labelled green), and the
mixture of extracts A’and B (labelled green). A and A" are replicates of each other, as are B and B’.
The right part of the table shows log ratios.

log log log log
A|A | B B’ | (A’+B)/2 A/B B'/A” | 2A/(A’+B) | 2B/(A’+B)
G1 5 6 1 1 35 2.32 -2.58 0.51 -1.81
G2 6 5 2 1 35 1.58 -2.32 0.78 -1.81
G3 | 11 {12 3 2 74 1.87 -2.58 0.55 -1.91
G4 2 2110 11 6.0 -2.32 2.46 -1.58 0.87
G5 3 2 11|10 6.5 -3.46 232 -2.70 0.62
G6 7 7 8 9 .5 -0.19 0.36 -0.10 0.26
G7 4 5 4 4 4.5 0 -0.32 -0.17 -0.17

of the table represents a log ratio matrix obtained in four two-channel hybridi-
sation experiments, for two experimental conditions A and B and seven genes
Gl1, ..., G7. The left part represents the ‘real” gene expression levels (in ab-
stract absolute units) under each of the experimental conditions. In reality we
do not know these values — all we use is the ratios.

Assume that in the first hybridisation the condition A (¢.g. labelled red) is
compared directly with condition B (e.g. labelled green), and the result is rep-
resented as the red /green ratio A/B. In the second hybridisation a replicate of
the condition A, denoted by A’, is compared with a replicate of condition B,
denoted by B’; the labelling is done reciprocally, therefore the result is repre-
sented by the red /green ratio B’ /A, In the third and fourth hybridisations, the
samples A and B” are compared with an artificial reference sample made by mix-
ing A” and B taken in equal’amounts. The ratio is normalised (i.e. half of the
total amount of A’ + B is taken), and therefore the red /green ratio values are
equalto2A/(A"+B)and 2B’ /(A + B).

The absolute values of gene expression are given in the left part of the table,
the ratios in the right part. If we consider the absolute levels of gene expression,
the gene expression profiles roughly fall into three clusters: cluster 1: {G1, G2,
G3} -high expressionin condition A and lowin B; cluster 2: {G4, G5} —low ex-
pression in condition A and high in B; and cluster 3: {G6, G7} - expression not
changed substantially. Cluster 1 can be splitinto two subclusters depending on
the absolute level of gene expression: {G1, G2} — lower absolute expression
level; and {G3} - higher expression value.

Now let us consider the respective relative expression values given by log ra-
tios in the right part of the table. Note that a gene clustering on this ratio table,
i.e. clustering the rows, would reproduce the same essential clusters 1, 2 and
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3asthe absolute expression values. It would not find the two subclusters of clus-
ter 1; nevertheless, we can say that gene comparison is meaningful, even if the
reference samples are different for each column.

The comparison between the sample expression profiles (i.e. columns in the
matrix) is meaningful only if the reference sample is the same and the protocols
standardised for all experimental conditions that we want to compare. For in-
stance, clustering of the ratio columns in the table would be meaningless, while
for the absolute measurements the replicates would cluster together as we
expect.

'4.3.12 Cluster scoring and validation

There is no simple answer to the question of how to find if there are any clusters
in data, how many clusters there are, or how good a particular clustering is. It is
often easier to devise a heuristic clustering method than to define a good scor-
ing function characterising the overall ‘goodness’ or quality of the clustering.
If the data contain well-defined clusters, a function that scores these clusters
highly can usually be found. Unfortunately, in gene expression data there are
often no strong clusters, either because of the presence of noise, or because of
the nature of the particular underlying biological process. In these cases finding
good optimisation functions is particularly difficult. However, if such a func-
tion can be defined, it can be used either for guiding the clustering or for assess-
ing the ‘goodness’ of particular clusters or the clustering system after the
clustering is complete.

To assess the cut-off thresholds and thus the number of clusters in hierarchi-
cal clustering, we can look for any ‘jumps’ in the distribution of distances used
for merging the clusters. Ifa jump’ is present in this distribution, this might be
a natural cut-off point for defining separate clusters. Some clustering software
packages (e.g. Expression Profiler) provide visualisation of this distance distri-
bution, facilitating decision-making for the user.

Several measures and techniques to assess clustering quality have been pro-
posed, but none of these is universally accepted. The most popular method for
assessing the significance of the clustering and possible cut-off thresholds is
based on randomisation of the data, e.g. by shuffling, which removes the corre-
lations between individual data points, followed by comparison of the cluster-
ing with the shuffled data (Efron and Tibshirani, 1991; Tusher ¢z al., 2001). It
isimportant to preserve the characteristics of the original dataset, including the
range of values, frequency, and number of points, thus avoiding making as-
sumptions about the data or the way in which the data are distributed. This ap-
proach can be used, for instance, with the self-organising tree algorithm to
assign a threshold at which the data are considered sufficiently similar to stop
subdividing them into separate clusters (Herrero ez al.,2001).

The ‘goodness’ ofa cluster depends on how close its objects are to each other,
and how far they are from the next closest cluster. A clustering significance
measure based on this observation has been proposed by Rousseeuw (1987)
and is called a silhouette plot. For each object in a cluster we define the average
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distance to the other objects of that particular cluster, as well as the average dis-
tance to the objects of the next closest cluster. In ‘good’ clusters the average dis-
tance within the cluster should be smaller than the distance to the next closest
cluster for most objects.

Finally, let us note that the ultimate proof of the significance of clustering is
whether it produces biologically meaningful results.

4.4 Classification algorithms and class prediction

Clustering algorithms try to find structure in the data without using any exter-

.nal information. Classification algorithms, by contrast, use external informa-
tion, such as annotation, right from the beginning and try to find properties in
the data that support this information. For instance, given a gene expression
data matrix with samples annotated as ‘diseased’ or ‘normal’, the classification
algorithm would look for combinations of genes that are expressed either only
in diseased samples or only in normal ones. If such genes are found, the knowl-
edge can later be used to assign ‘diseased’ or ‘normal’ states based on gene ex-
pression data only, i.e. for diagnostics.

Classification is a typical example of a supervised data analysis approach. The
first well-known application of supervised learning to gene expression was
classification of 72 leukaemia samples, from which 25 were acute myeloid
leukaemias (AML) and 47 were acute lymphoblastic leukaemias (ALL), by
Golub ¢t al. (1999). Expression data from 6817 genes were used and expres-
sion profiles characteristic of each of these diseased states were found.

Classification algorithms can be used either to classify samples, e.g. to find
specific expression patterns distinguishing various cell types, or to classify
genes, e.g. to find specific expression patterns for genes in a particular GO cat-
egory. There are examples of both applications in the literature, although in
practice sample classification is more popular. There are at least two reasons for
this. First, reliable classification of various diseased samples has a diagnostic
value. Second, while there are many meaningful sample classifications that are
entirely based on morphology, it is not easy to group genes into meaningful
functional classes without using gene expression data in the first place.

There are many different classification algorithms, which have been devel-
oped mostly by the machine learning and statistical learning communities.
The simplest of these are linear regression and K-nearest neighbour methods.
One of the classification methods that is gaining popularity in gene expression
analysis is support vector machines (see below). Typically, these classifiers
are ‘trained’ on a subset of data with an & priori, given classification (the train-
ing set) and tested for accuracy on another subset with known classification (the
test set). After assessment of the quality of the prediction, the classifier can
be applied to new data. For example, in the above mentioned paper by Golub
et al. the classifier was initdally built from 38 leukaemia samples (11 AML
and 27 ALL), and later tested on 34 samples, of which 29 were predicted
accurately.
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We will begin by formulating the classification problem more precisely.

4.4.1 Definition of the problem

Consider the m x » gene expression matrix X given in Section 4.2.2. Let us
denote the columns of X by 4,,..., 4, (i.e. A= (x1,...5,%,),...,4,=
(X1 « - + 5X,,,))- SUppOSE cachcolumnA has alabelL € {1,-1} (i.e. assuming
values 1 or-1)attached toiit,i.e. we have matrix

L I L,
Xn o % Xm
X Xy Xy,
Xar Fua 7 Kem

Vector (L, . .., L) is called the c/ass vector and labels L;are called class vari-
ables. The domain oflabels can be generalised to any controlled vocabulary. The
set (A, L), - .. (A, L,)is called the set of labelled profiles.

A classifierisan algonthm which, given an expression profile A; outputs (pre-
dicts) the label L. If for the given A; the label is predicted correctly,l e.if L/ =
L;, we say that the profile is Clﬂ.\'ﬂ_ﬁLd correctly. If on the other hand L] # L, we
say that the proﬁlc has been misclassified. Given a classifier and labellcd set (Al,
L),...,(4,,L,),wecan count the number of labels that are incorrectly as-
signed and use [hlS as the classification performance estimator. In fact this
simple count is not a good performance estimator and in practice more sophis-
ticated estimators (e.g. estimators that measure specificity, sensitivity or various
combinations of both) are used, which we do not discuss here.

After we have chosen the type of classifier we want to use, we have to train it
on the given labelled dataset with the goal of achieving the best prediction per-
formance. We can use a subset of the data to #rain the classifier, and another
subset to test the performance. In practice, when dealing with sample classifica-
tion often we have datasets that are too small to leave out more than a few sam-
ples from the training set. Therefore we can use an approach that systematically
leaves out one (or a given number of) profile(s), builds the classifier from the
rest of the data, measures the performance of the unused data and repeats the
process. The average mlsclasmﬁcanon count for all iterations can be used to rate
the performance.

Different types of classifiers use different training algorithms. In fact, devel-
oping an efficient training algorithm is the most non-trivial part of building a
classifier. Often, when talking about classifiers, in fact we mean the chosen type
of a classifier together with the chosen training algorithm. The assumption
underlying this approach is that if the dataset is representative and the classifier
performs well, it will correctly classify a new expression profile 4, ,; correctly.
Machine learning theory studies the conditions under which this assumption is
likely to be correct for different types of classifiers. The Occam’s razor principle



ANALYSIS OF GENE EXPRESSION DATA MATRICES 115

captures an empirical observation — that among the classifiers that correctly
classify the given data, the simplest one has the best chance of performing cor-
rectly on new data.

One of the ways the Occam’s razor principle is applied in practice is as the
basis of the so-called minimum description length (MDL) principle (Li and
Vitanyi, 1993). This principle notes that there may be a trade-off between the
simplicity of a classifier and its accuracy. It assigns relative weights to the com-
plexity of the classifier and the amount of misclassified data, and tries to min-
imise the sum.

When dealing with gene expression data, and particularly when trying to
build sample classifiers, one problem is that there are usually many more attrib-
.utes (genes) than objects (samples) to be classified: typically there are around
ten thousand genes and fewer than a hundred samples. Therefore it is usually
possible to find a few genes correctly classifying the samples, which at the same
time may not give robust classification when the data are extended to new sam-
ples. For instance, for the above mentioned leukaemia example it turns out that
using just three or even two first principal components in gene space (i.e. two or
three eigen-genes built from 6817 genesin the dataset) it is possible to build an
almost perfect classifier (Niranjan, personal communication). Building classi-
fiers that describe the original data well, but perform badly on new data, is
known as overfitting. Using simple classifiers instead of complex ones, unless
there is a particular reason to use a particular complex one, may help to avoid
overfitting.

In practice, classifiers are usually built based on the expression profiles of a
relatively small set of informative genes. The success of the method relies to a
large extent on how well this subset has been chosen. The performance also de-
pends on how noisy the datasets are, whether the classes used to train the algo-
rithm are correct, and whether the learning algorithm itself is appropriate for
the particular data.

In the following subsections we discuss various types of classification algo-
rithms and training methods.

4.4.2 Linear discriminants

Linear discriminants are one of the oldest classification methods and have been
used for the past 30 years. We explain the basic idea in two-dimensional space,
i.e. for the matrix

L I, L
'm

o Xy v X

X % *2m

Remember .that. vectors A = (¥ %), -5 4,= (%1 .me) can be repre-
sented as pointsin two-dimensional space. A linear discriminantin two dimen-
sions is a straight line that separates (most) points labelled by 1 from those
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Figure 4.17 Linear discriminants. (a) The dots represent the expression profiles in two-
dimensional space. Suppose the hollow dots are expression profiles labelled by 1, while the filled
ones are labelled by —1. A straight line separates them perfectly. Given a new, unlabelled point, the
method assigns the label -1 or 1 depending on whether it is placed below or above the regression
line. For instance, the new point denoted by a cross will be assigned a label +1. (b) Note that in this
case perfect separation by a straight line is not possible in two-dimensional space. (c) Many
different linear discriminants can separate the filled and hollow dots in this case. Which one is the
best in the sense that it is most likely to correctly classify a new point? Note that the cross is on
different sides of different discriminants. {d) To solve the problem of the ‘best’ linear discriminant
we can try to find the widest possible separation area between the points of different labels, i.c. to
find maximal Dsuch that the space of the width D separates all points correctly. This area is
defined by only a few points, denoted here by squares, which are called support vectors. (¢) If
perfect separation is not possible, we can try to limit the total distance of points on the wrong side
of the separation area, i.e. the total length of lines connecting them to the outer side of the
separation area. All points on the wrong side of this area or in it become support vectors in this
case. (f) A linear discriminant will not work here. The K-nearest neighbour method estimates the
label from the labels of the K points nearest to the given point. For instance, if we take K= 16,
then the label to the new point is denoted by the crossin the figure. This will be assigned a value
-1 (i.e. filled) by majority voting.
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labelled by —1 (Figure 4.17a,b). In some cases discrimination by a straight line
perfectly classifies the data (Figure 4.17a), in some imperfectly (Flgurc 4.17b),
in some not at all (Figure 4.17f).

In two dimensions a straight line is described by the equation x, = ax, + &.
This means that all we have to do to build a linear classifier is to find the two pa-
rameters aand &. Note that a point A;= (, ;, x,;) is situated above the discrimi-
nation line if x,; — ax;;— &> 0, and below the discrimination line if x,; — ax;; -
b < 0.We would like to position the discrimination line to minimise the number
of points A;= (x, x,,), such that L;=~1, but x),— ax;;— 4> 0, or L;=1, but
X,;—ax,;— b<0.

A common method used to find a discrimination line (i.e. to train a linear dis-
criminant) is Jeast squares fit, which is essentially the same method used in the
linear regression-based normalisation algorithm described in the previous
chapter. We define the residual sum of squares as

RSS(a, b) = Y.(L, - (x,, — ax,, +b))’
=1
The least squares fit seeks to minimise RSS(a, &), for the given set of labelled
samples (A4, L,), . . ., (4,, L,,), where A; = (x,,, x,,). After we have found the
regression line, given a new point A, = (xy;, x,,) the classifier will assign to it
label -1 if the point is below the regression line or +1 if it is placed above the
line.

In three-dimensional space linear separation is accomplished by a plane,
which can be described by three parameters, while in 7 dimensions the dis-
crimination is accomplished by an # — 1-dimensional hyperplane, described by
n parameters. In this way, the classification problem using linear discriminants
boils down to finding a set of parameters describing a hyperplane separating
pointslabelled by 1 from points labelled by -1 in #-dimensional space. The least
squares fit can be generalised to the arbitrary number of dimensions in a
relatively straightforward manner. Most standard statistical analysis software
packages include this method.

4.4.3 Support vector machines

Consider the example in Figure 4.17¢. Note that various different linear dis-
.criminants separate the filled and hollow dots perfectly. So how do we deter-
mine which describes the best separation of the data? One possible approach
would be to use an area of separation instead of a line and to try to maximise the
width of this area, as shown in Figure 4.17d. Note that the widest possible area
of separation (i.e. the maximum Din Figure 4.17c¢)isin fact determined by only
a few points (three points denoted by squares in the figure). These points are
called support vectors.

Unfortunately it is not always possible to separate all the points using a linear
discriminant (e.g. Figure 4.17b). In this case one possibility is to permit mis-
classified points, and, for instance, to limit the total permitted distance between
misclassified points and the far side of the separation area. In this case, all points
inside and on the *wrong’ side of the separation area are support vectors.
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An alternative method would be to allow higher order surfaces instead of
hyperplanes to separate the data (for instance in two dimensions one could use
second order lines, i.e. parabolic lines). In fact, it turns out that instead of al-
lowing for higher order discriminants directly, it is advantageous to project the
original vector space to a higher dimensional space, and build the linear dis-
criminant in the new space. This technique is known as support vector machines
(SVMs).

In the SVM method each vector X in the original multidimensional space is
transformed to a vector h(X) in a higher dimensional space. Hyperplanesin the
higher dimensional space correspond to higher order surfaces in the original
space. To use this method we need to define the function h. It turns out that all
that is needed to apply the SVM method is the definition of the dot product in
the higher dimensional space for vectors, given in the original space (recall from
Section 4.1 that for vectors X = (%, . . . ,»,)and Y = (y,, . . ., %,) the dot prod-
uctisdefinedas X - Y=uxy +...+x,y,). The function defining the dot prod-
uct in the higher dimensional space is called the kernel function. One of the
most often used kernel functions is K(X, Y) =(X-Y + 1).

We will not discuss SVMs in any detail here (those interested in finding out
more about the techniques may wish to consult Hastie ¢t al., 2001). However,
it should be noted that SVMs have been widely used for supervised gene ex-
pression data analysis, both for sample and for gene classification. It has often
been noted that SVMs give better classification performance than most other
classification methods. Nevertheless, the success with which classification
accuracy is achieved needs to be evaluated in relation to the complexity of the
classifier. )

SVMs have been used for yeast gene classification by Brown ez al. (2000).
Functional categories for some classes of genes, such as those encoding
ribosomal proteins and histones (as labelled in the MIPS database;
http: //mips.gsf.de /proj/yeast/CYGD /db/index.html), were found to be
readily predictable, while some other functional classes, such as kinases, are not
predictable from gene expression data. SVMs showed better classification per-
formance than all the other classification methods used. SVMs have been re-
ported to show the best classification performance also for sample classification;
however, the applications are usually based on independently selecting a few
genes (e.g. 50 genes) thatare used later.

4.4.4 K-nearest neighbour method

The linear discriminant method assumes that the labelled points can be sepa-
rated by a hyperplane. In the example shown in Figure 4.17a,b this may be a
reasonable assumption — only a few points are misclassified. However, in
some cases this assumption is inappropriate; for instance, in the example shown
in Figure 4.17f any linear discriminant will perform rather badly. A parabolic
separator would perform better, thus SVMs may be more appropriate. A simple
alternative to SVMs in some cases is the K-nearest neighbour method.

In the K-nearest neighbour method, the label of a new a priori unlabelled
point is estimated from the labels of the closest K points (using a defined dis-
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tance measure, e.g. Euclidean distance). Sometimes Kis interpreted not as the
number of points but as the radius around the given point. The simplest way to
assign the label to anew point s so-called majority voting, where we simply take
the K nearest points and count how many of them are labelled each way.
Weighted majority voting assigns different weights to different dimensions. In
this situation, the task of training the algorithm is to find the optimal weight for
each dimension.

As discussed above for sample classification, there are many more gene ex-
pression profiles than samples to be classified. Moreover, most of the genes are
likely to be irrelevant for the particular classification, and should be attributed
weights equal to zero in the weighted majority voting. Unfortunately we do not
[know a priori which genes will be important for classification.

A heuristic method for selecting the genes that are likely to be important
for analysis right at the beginning was proposed by Golub ez a/. (1999). They
treated the class vector (see Section 4.4.1) as a gene expression vector charac-
terising the sample, and looked for genes with expression profiles within dis-
tance K from the class vector. This effectively means looking for genes that are
predominantly highly expressed in samples of one class, and expressed at low
levels in the samples of the other class, and vice versa.

The distance can be measured as the correlation of the gene to the class vec-
tor. Let us assume that the given gene has a mean expression value within the
samples of the first class equal to i, and a standard deviation equal to G,. Let
the mean expression value within the samples of the second class equal p, and
the variance 6,. The correlation between the class vector and the given expres-
sion profile can be defined as the ratio (u; — p,)/(0, - G,).

Next, one has to find whether the genes that correlate with the samples (in
the sense described above) exist, and if they do, what is the optimal radius K.
The first question can be addressed by finding whether the number of genes
within the given distance K from the class vector is larger than expected by
chance (which can be determined by comparing this number with that in ran-
domised expression space). The second question can be addressed by trying out
different values of K. It should be noted, however, that even if a gene perfectly
correlates with the class vector, it will not necessarily prove a good classifier,
since such a one gene-based classifier may be rather sensitive to possible noise in
the data.

Once the K has been chosen (i.e. the genes that have higher than zero value
in voting), the individual weights for the voting schema should be assigned to
these genes. Heuristics weighting the genes by how well the gene correlates
with the class vector was used in the above mentioned leukaemia classification
example (Golub ¢¢al.,1999).

4.4.5 Neural networks, decision trees and applications
of classification

Neural networks and decision trees are two of the more common alternative
types of classifiers. Neural networks describe a wide range of different classifica-
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tion methods, most of which are special cases of SVMs for appropriate kernel
functions. We will not discuss these in detail here.

Decision trees are a simple classification method based on making the classi-
fication decision by asking a series of yes/no questions, where each successive
question depends on the answer to the previous question. It has been demon-
strated that decision trees can be used to predict functional classes of genes for
yeast from gene expression profiles (Brazma, unpublished results). Yet another
classification algorithm, based on selecting pairs of genes, has been proposed by
Boand Jonassen (2002).

Diagnostics is an obvious application for classification. Ifa classifier is based
on a simple set of rules, such as comparing the expression levels of a relatively
small set of genes with some threshold values, knowing these rules canaid in un-
derstanding the underlying mechanisms of the particular phenomena. For in-
stance, having a list of genes whose expression levels are important for cancer
classification may provide a clue to the mechanisms associated with particular
cancer types. On the other hand, gene classification may also help to reveal
which experimental conditions are related to various gene functions.

4.4.6 Partially supervised analysis

In partially supervised analysis we use the external information (i.e. the class
vector) in the analysis as a guide, without necessarily trying to fit the data to the
class vector perfectly. Two ways to achieve this are (i) including the class vector
in the gene expression matrix as an additional dimension (as described in
Section 4.4.1) and applying a clustering algorithm; and (ii) using a hierarchical
clustering algorithm to build a dendrogram from the data, initially ignoring the
class vector, and then looking for the clusters in the data best fitting the class
vector.

Ben-Dor ez al. (2000) used the second approach for classification of gene ex-
pression data from colon and ovarian cancer. After applying clustering to find
the hierarchical structure in the data (i.c. the dendrogram), they used super-
vised learning to find the best thresholds at which to cut each subtree in the den-
drogram to obtain the best correspondence between the clustered data and the
class vector.

If we include the class vector in the initial analysis, the data analysis method
can be changed from pure clustering to supervised analysis by varying the
weight of the respective dimension in the distance measure. By making this
weight equal to zero we have a completely unsupervised method, and by in-
creasing it, and thus increasing the importance of the class vector in determin-
ing the clusters, we achieve supervised learning. This approach has been
proposed in combination with the gene shaving algorithm in Hastie ez al
(2000).

4.4.7 Class discovery

In sample classification we assume that the classes, such as acute myeloid
leukaemias and acute lymphoblastic leukaemias, are defined a priori. In reality,
however, samples that look morphologically the same in fact may represent sev-
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eral such groups each characterised by different expression profiles. Therefore
subgroups may be revealed within a group of morphologically similar samples
by gene expression analysis. Clustering can be used to try to discover such new
classes. An example of such an approach has been used by Alizadeh et al.
(2000),in which a heuristic clustering algorithm was applied to classify gene ex-
pression profiles. This permitted correct prediction of prognostic outcomes,
supporting the hypothesis that the discovered clusters correspond to ‘real’
subclasses of tumours.

Application of the clustering approach to class discovery was used by Bittner
etal. (Bittner et al., 2000; Dougherty ez al., 2002), where subclasses of malig-
nant melanoma were discovered. A different approach to class discovery has

+been described by Heydebreck ez /. (2001).

4.5 Time series analysis

Time series experiments provide a particular type of gene expression profile, re-
vealing information about the order and the time scale of the expression events.
There are a number of ways one can treat time series that would not be mean-
ingful for other types of expression profile. An obvious example of time series
analysis is directed towards finding periodicity or a trend (Figure 4.18a). This
approach was used by Spellman ez al. (1998) for identifying genes whose ex-
pression correlates with known events in the cell cycle of yeast (so-called cell
cvcle regulated genes).

For an expression level of a particular gene the period Tcan be defined as the
time after which the expression level of the gene repeats. The frequencyis de-
fined as the inverse of the period, i.e. f=1/T. The amplitude of the fluctuation
is the difference between the maximum and minimum values. Ifthe average ex-
pression value systematically increases or decreases, we can say that the time
course has a trend.

Given a time series we may be interested to find out whether it is periodic. A
common method used in signal processing for finding periodic components in
data is Fourier analysis. Time series in microarray experiments typically do not
contain enough time points to make application of this powerful method nec-
essary — for a limited set of data points we can simply look for correlations be-
tween the original ime course and time courses obtained from the original by
shiftingitby 1, 2, . . . time points. If we obtain a strong correlation upon shift-
ing by ktime points, this means that there is a period equal to k.

To be able to detect the true fluctuation period we have to sample the time
points with a frequency at least as high as that of the real fluctuation. For in-
stance, if we perform the measurements with a frequency that equals half of the
true frequency, we would conclude from the measurements that the true fre-
quency is half of what it actually is (e.g. Figure 4.18b). A sampling frequency
that is close to but slightly larger than the true one may also lead to the ‘detec-
don’ of a false trend.

In microarray experiments we measure expression levels of thousands of
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Figure 4.18 Time series analysis. (a) Time course: periodicity and trend. If the fluctuarion period
equals 7, then the fluctuation frequency is defined as f= 1 /T. (b) Time course: if the gene
expression fluctuation frequency is larger than the sampling frequency (i.e. the gene expression
fluctuation period is smaller than the sampling period) we will not be able to identify the correct
period. (¢) Two time series fluctuations with the same frequency may be shifted in phase. (d) Time
warping {see text for explanation).
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genes in parallel. Looking for periodicity in time series of each of the thousands
of genes separately, we are likely to find periodic behaviour for some genes
which is simply the result of noise in the data. Luckily, it is unlikely that in any
biological system many genes have different periods — in most cases we are
looking for periods that are common to many genes, as the possible result of co-
regulation. Moreover, often such periods will also correlate with some mor-
phological changes in the system, such as the cell cycle. In the above mentioned
paper by Spellman ez al., about 800 genes that change with the cell cycle were
detected.

Genes changing with the same period can still have different fluctuation
phases (Figure 4.18c). Clustering algorithms will usually cluster together
genes that have similar periods and phases. For instance, in the cell cycle
experiment, five major ‘phase groups’ associated with G1, S, G2, M and
M/G1 phases can be distinguished (the exact distinction is somewhat
arbitrary).

Sometimes we may wish to compare gene expression time series from differ-
ent experiments corresponding to similar biological situations. An example of
such an approach is comparing gene expression during the cell cycle for cell cul-
tures synchronised using different methods. In this case we cannot be sure that
the periods will be exactly the same. If some of the genes involved in the process
under study are known, we can ‘synchronise’ the periods, by comparing the ex-
pression levels of these known genes (for instance by relating each successive
maximum and minimum in both series). However, in general we may need to
use a distance measure, for which the time points from both time series that cor-
respond to each other are not defined 2 priori. This is known as time warping
(Figure 4.18d).

Time warping has been studied in different contexts, and various algorithms
—usually based on so-called dynamic programming - have been developed. For
instance, one such algorithm by Krusksal and Liberman (1999) has been ap-
plied to gene expression data analysis (Aach and Church, 2001). In this study,
series from yeast cell cycle samples synchronised by different methods were
compared.

4.6 Visualisation

Visualisation is a powerful data mining technique for finding patterns in
data, and has been used extensively for gene expression data analysis. For
instance, a simple technique called a Venn diagram (Figure 4.9b) can be used
to demonstrate the extent that clusters of gene expression data overlap as well
as to show the overlaps of gene expression data clusters with GO functional
annotation.

Owing to the high dimensionality of gene expression matrices, visualisation
is usually coupled with techniques allowing reduction of the dimensionality in
the data, such as clustering or principal component analysis. The most popular
visualisation techniques are heat maps, firstintroduced for gene expression data
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analysis by Michael Eisen (Eisen ez al., 1998). Essentially a heat map is simply a
representation of the gene expression matrix using colour coding. For instance,
for log ratio matrices, the positive values can be represented using the colour
red, negative values using the colour green. The intensity of the colour repre-
sents the absolute value (i.e. O is represented by black), as shown in Plate 4.4
(facing p. 88). Heat maps are typically used in association with clustering. Ifhi-
erarchical clustering is used the dendrogram can be given using the same visual-
isation. Various software packages provide a means for zooming-in, thus
gradually revealing increasingly more detailed information, such as gene names
and functional annotation.

A different popular way to depict gene expression profiles and clusters of pro-

Jiles is through the use of profile graphs (see Plate 4.5, facing p. 88). Profile
graphs can be obtained by plotting expression values on the vertical axis, sam-
ples on the horizontal axis, and joining the points corresponding to the same
genesin different samples. Note that profile graphs do not necessarily represent
time series. If they are used to represent other types of gene expression data, the
lines joining sample expression values should not be interpreted as interpola-
tions of expression values, but only as a means to relate the same genesin differ-
ent samples.

A rather different visualisation method makes use of the reduction in the di-
mensionality achieved by applying principal component analysis (as discussed
in Section 4.2.4). If most of the variability in the data can be attributed to two
or three principal axes, these can be used for visualising data in two or three di-
mensions. Colour coding can be used to plot the density of the genes in the re-
duced space to visualise clusters. As an example, such a density plot in two
principal dimensions is shown in Plate 4.6 (facing p. 88), where two clusters can
be identified.

Another way in which covariance or gene expression datasets has been repre-
sented is using a topo, or gene expression terrain map (see Plate 4.7, facing p.
88). The expression levels of genes are used to calculate the covariance between
datasets in large numbers of experiments. The covariance is represented in two
dimensions, such that closely related data are together and the altitude of the
‘gene mountain’ represents the density of genes at that site.

Correspondence analysisisa method that uses principal component analysisin
a chi-square distance matrix and visualises the two or three principal axes of
gene and sample space in the same diagram. This allows us to assess which ex-
perimental conditions are most important for defining which groups of genes,
and vice versa (i.e. which genes are most important in which of the experimen-
tal conditions). Cell cycle data from Spellman ¢z /. (1998) visualised in this way
are shown in Plate 4.8 (facing p. 88). For more details on correspondence
analysis see Fellenberg ¢ al. (2001).

A rather different visualisation method is based on depicting the relation-
ships among genes in the form of networks (see Section4.2.6). Graph layout al-
gorithms can be used for visualising various gene expression networks, like that
shown in Figure 4.8.

Visualisation methods can also be used to combine gene expression data with
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other relevant data. We have already seen how heat maps can be used in combi-
nation with GO annotation (Plate 4.2, facing p. 88). Another simple visualisa-
tion technique, but of a different kind, is grid display. This is often used to
display gene expression levelsin relation to the position of the gene on the array,
allowing gross array defects and local variation to be detected easily (Figure
4.19a). Chromosome displayscan be used to visualise the expression of genes in
relation to their position along the chromosome. This is useful for identifying
whether gene expression correlates with chromosomal location (Figure
4.19b).

Visualisation canalso be used to find if sets of co-expressed genes contain par-
ticular sequence elements in their promoters. This method has been popular in
the analysis of transcriptional regulation in yeast, since it is believed that pro-
moter sequences are typically within a few hundred base pairs upstream of the
genes they regulate — see Plate 4.9 (facing p. 88) and Plate 4.10 (facing p. 88)
for sequence patterns found in yeast.

Similarly, visualisation is used to highlight the expressed genes in metabolic
pathways; an example is shown in Figure 4.20.

Visualisation can also be applied to distance matrices. Plate 4.1 (facing p. 88)
shows a coloured version of a covariance matrix in which the Pearson correla-
tion obtained from a comparison of two genome-wide datasets is represented.
The datasets that affect similar sets of genes, and are therefore closely related,
can be seen as blocks of pink squares.

4.7 Downstream from expression profile analysis

The types of supervised, unsupervised and data visualisation methods described
above are only the first steps in expression data analysis. First, co-expressed
genes are of interest because there is evidence that many functionally related
genes are co-expressed. This has been widely demonstrated for genes involved
in processes such as translation and elongation and for subunits of multi-
subunit complexes, such as ribosomal protein subunits and histones (Brown
and Botstein, 1999). Second, co-expression may be the result of co-regulation;
e.g. two genes that are co-expressed may be regulated by a common transcrip-
tional regulator. This can be used to study gene regulation mechanisms, as de-
scribed below.

Comparisons between groups of genes, such as those identified by
clustering, can be performed in a number of ways, e.g. comparison with other
groups of co-expressed genes, or comparison with annotated characteristics of
genes or the literature. The object of the exercise is usually to see if there are
correlations between the groups under comparison that are greater than might
be expected by chance. In some instances, the genes in a cluster may fall into
subgroups.
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Figure 4.19 Examples of grid and chromosome displays. Both representations of the data show
the results of a comparison between a mutant yeast strain and its isogenic wild type counterpart. In
a grid display, each of the boxes represents the relative expression level of a gene. The shade of the
box indicates whether there has been an increase in the amount of mRNA encoding the gene ora
decrease in the mRNA relative to the control strain. Panel (a) shows the effect of inactivating RNA
polymerase I1, the enzyme responsible for the transcription of most protein-encoding genes in
yeast, using a grid display. The transcript levels appear to drop markedly for most genes because
transcription of these messages ceases upon activation of the enzyme. Panel (b) shows the effect of
inactivating histone H4 using a chromosome display. Here the genes are ordered according to
their normal positions along each chromosome in half-chromosome segments, beginning at the
telomere of the chromosome (left or right) and ending at the centromere (black circle). ((a)
reprinted from Cell (Holstege et al.), Copyright 1998, with permission from Elsevier Science. (b)
reprinted with permission from Nature (Wyrick ez al.), Copyright 1998 Macmillan Magazines
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Figure 4.20 Metabolic pathway from the KEGG database (http://www.genome.ad.jp/kegg/), with genes
belonging to a particular cluster of expression profiles highlighted.

4.7.1 Identification of regulatory signals

It seems reasonable to hypothesise that genes with similar expression profiles,
i.e. genes that are co-expressed, may share common regulatory mechanisms,
i.e. may be co-regulated, and this can be applied to finding groups of potential-
ly co-regulated genes and to search for putative regulatory signals. The outline
of such a discovery method is as follows: (i) cluster the genes based on a selec-
tion of expression measurements; (ii) extract putative promoter sequences for
the genes in the clusters; (iii) search for sequence patterns statistically over-
represented in these clusters; and (iv) assess the quality of discovered patterns
using some statistical significance criteria.
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One ofthe most difficult steps in this approachisidentifying the putative pro-
moter sequences. In higher eukaryotes gene regulatory sequences can be found
far from the coding regions of the gene, and are difficult to detect. For yeast,
however, there is evidence that most regulatory regions are relatively close to
the coding regions, typically within about 600-800 base pairs upstream from
the translation start point. Therefore upstream sequences within these limits
can be used as putative promoter regions.

A systematic application of this approach has been reported for the yeast
Saccharomyces cerevisine using a public dataset from Stanford University (Eisen
et al., 1998), combining various yeast expression experiments (80 conditions
for 6221 genes). In the absence of theoretically ‘correct’ similarity measures
and clustering algorithms, the simplest measure was selected and different clus-
terings carried out. All genes were clustered based on their expression profiles
by the K-means clustering algorithm using Euclidean distance. In total over
900 separate clusterings were obtained, and clusters containing between 20
and 100 genes were selected, totalling over 52,100 different (mostly overlap-
ping) clusters (Vilo ez al. 2000).

For each cluster of genes the set of upstream sequences of length 600 base
pairs was selected, and all sequence patterns that could be represented as sub-
strings of any length occurring in at least 10 sequences in a cluster were scored
according to the binomial probability of their occurrences in the cluster (the
background probability was estimated based on the number of occurrences of
each pattern in upstream sequences of all 6221 genes). To determine the statis-
tical significance threshold for the patterns, the last step was repeated on ran-
domised data. After removal of patterns common to highly homologous
upstream sequences, 1498 significant patterns remained. These patterns can be
matched back to the gene upstream sequences and visualised in conjunction
with gene expression data, and some of them are shown in Plate 4.10 (facing p.
88) and Figure 4.20.

As 1498 patterns is still too many for each to be studied individually, they
were clustered using a similarity measure based on common information con-
tent. This produced 62 clusters of similar patterns. For each cluster of patterns
an approximate alignment and a consensus pattern was calculated.

The patterns identified were evaluated against known transcription factor
binding sites. All 1498 ‘interesting’ patterns were matched against experi-
mentally verificd DNA binding sites of yeast as given in SCPD databases
(http: //cgsigma.cshl.org/jian/).

Of'the 62 clusters of patterns, 48 had matches in SCPD and 14 did not have
a match at any site reported in the SCPD database. Table 4.9 shows the partial
consensus patterns that have been calculated from pattern alignments for these
14 clusters. The fact that 48 out of 62 pattern classes match experimentally
verified yeast transcription factor binding sites indicates the validity of the
described computational discovery method. However, the most interesting
patternsare likely to be the ones that do not have matches in the known binding
sites. Automatic or semiautomatic generation of such hypotheses is one of the
main tasks of bioinformatics.and data mining approaches.
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Table 4.9 Consensi of the pattern clusters that do not have matches in the SCPD database (see
text .. Brackets mean that any of the nucleotides inside can occur in the pattern (e.g. [AT] means
that either A or T can occur at that position and have been observed in data with at least 25%
frequency). Inside the groups nucleotides are ordered based on their frequency in the data.
Lowercase is used when the majority of the patterns do not have any nucleotide at that position,
i.e. when the most frequent nucleotide in the respective column is a dash.

aaTCTTCATGt

¢gTACCTCTa

gACAGCTAC
tAT[TACIGTTAAgC
ACTTTATTT
[ag]TAACTT[AT]Ca
TATCGAG (singleton)
t[ta]CGAATA[AG]aaaa
[ta]TGCATGAAC
a[TG][GC]GTATAC
[aglica][AG]ATATG[TG][ga]laglg
tag[AG]TAGA[TA]A[ga]aaaa
ATCCAAGAg
tTTTTCTG[CT][TAlC
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Appendix: non-commercial
software

A.1 Statistical analysis

A.2 Normalisation, clustering and classification
A.3 Visualisation

A.4 Multifunctional software

Many tools for the analysis of gene expression data have been developed and are
free for academic use. Despite their utility and a general need for additional data
analysis tools, many of these programs are not widely used (Cluster, XCluster
and Treeview, developed at Stanford University, and D-Chip are notable ex-
ceptions). There are, however, several excellent programs that extend the range
of available tools and, in some cases, offer functionality not found in com-
mercial data analysis packages. A few of these programs are described in this
Appendix, along with information on how to obtain access to them (for clarity
‘http://” has been omitted from the start of URLs). There are many sites that
provide links to other software for data analysis: three that are expecially worth

looking at are ep.ebi.ac.uk/Links.html, linkage.rockefeller.edu /wli /microar-

ray/soft.html and www.bioconductor.org.

A.1 Statistical analysis

BCLUST

bioinformatics.med.yale.edu

A program to assess reliability of gene clusters from expression data by using a
consensus tree and bootstrap resampling method, as described by Zhang and
Zhao (2000).

BRB ArrayTools
linus.nci.nih.gov/BRB-ArrayTools.html
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BRB ArrayTools is an integrated package, developed by Richard Simon and
Amy Peng at the National Cancer Institute, for the visualisation and statistical
analysis of DNA microarray gene expression data. The package uses an Excel
front end with integrated analytical and visualisation tools.

Cyber-T
genebox.ncgr.org/genex/cybert/

Cyber-T is a web interface designed to detect changes in gene expression in
large scale gene expression experiments. It operates on a set of functions written
in R by Tony Long and Harry Mangalam, and can be run either via the Web or
via direct manipulations in R. Cyber-T employs statistical tests, based on the
t-test, to identify statistically significant differences between sample sets. These
t-tests employ either the observed variance among replicates within treatments
or a Bayesian estimate of the variance among replicates within treatments.

GEDA (Gene Expression Data Analysis)
www.biostat.wisc.edu/geda/eba.html

The GEDA algorithm uses an empirical Bayesian method to estimate true dif-
ferential expression and identify significant differential expression in data gen-
erated using spotted arrays (Newton ez al.,2001). Estimates of gene expression
changes are derived in a model that accounts for measurement error and
fluctuations in absolute gene expression levels. GEDA is available in S-plus.

MA-ANOVA programs for microarray data
www.jax.org/research /churchill /software /anova/

MA-ANOVA is a set of functions for the analysis of variance of microarray data.
The program is written in Matlab and includes functions for the calculation of
log ratios, ratio-intensity plots, permutation tests and bootstrapping of confi-
dence intervals.

PaGE (Patterns from Gene Expression)

www.cbil.upenn.edu/PaGE/

PaGE is a tool to attach descriptive and easily interpretable expression patterns
to genes represented in microarray or macroarray data. The algorithm incorpo-
rates a novel method to identify differentially expressed genes between two
sample types with attached measures of confidence (Manduchi ez aZ., 2000).
The method is also described in Grant ez al. (2002).

SMA (Statistics for Microarray Analysis)

stat.berkeley.edu/users/terry/zarray/Software /smacode.html
The SMA code includes simple R functions for within-slide normalisation for
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two-channel microarray data and identification of single differentally ex-
pressed genes. Further information is available in two technical reports ( Dudoit
etal.,2000; Yang et al.,2001).

VERA (Variability and Error Assessment) and SAM
(Significance of Array Measurement)

www.systemsbiology.org/VERAandSAM /

VERA estimates the parameters of a statistical model that describes multiplica-
tive and additive errors influencing a two-channel microarray experiment,
using a maximum likelihood method. This is combined with the SAM pro-
gram (www-stat.stanford.edu/~tibs/SAM /index.html; Tusher eza/. 2001 ) to
calculate the significance of fold change in gene expression (Ideker ez 2/.,2000).

A.2 Normalisation, clustering and classification

CLEAVER (Classification of Expression Arrays)

classify.stanford.edu

Software developed at Stanford Biomedical Informatics for analysis of microar-
ray data, including classification using discriminant analysis, K-means cluster-
ing and visualisation using principal component analysis. Calculations are
carried out on the server side. Examples of input data files are available from

smi-web.stanford.edu/projects /helix/pubs/pda/.

CLICK

CLICK and EXPANDER

www.cs.tau.ac.il/~rshamir/expander/expander.html

CLICK (CLuster Identification via Connectivity Kernels) and EXPANDER
(EXpression Analysis and Display ManagER) is a java-based tool for clustering
and visualising gene expression data. It has implementations of several cluster-
ing algorithms including K-means, self-organising maps, hierarchical cluster-
ing and CLICK. CLICK is a novel clustering algorithm, developed by Roded
Sharan and Ron Shamir in which'no prior assumptions are made on the struc-
ture or the number of the clusters. The algorithm uses techniques from statis-
tics and graph theory to identify tight groups of highly similar elements
(kernels), which dre likely to belong to the same cluster. Heuristic procedures
are subsequently used to expand the kernels.

CLUSFAVOR
mber.bem.tme.edu/genepi/

CLUSter and Factor Analysis using Varimax Orthogonal Rotation performs
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cluster and factor analysis of gene expression data obtained from cDNA mi-
croarrays (Peterson, 2002 ). The user can perform cluster analysis and varimax
orthogonal rotation, view dendrograms, and run factor analysis on selected
cluster-specific genes. An optional output contains matrices for the input data,
distance matrices, factor loadings, eigen-values, eigen-vectors, and the percent-
age of total variation for genes within a cluster.

Gene Cluster

rana.lbl.gov/EisenSoftware.htm and www.microarrays.org/software.html

Gene Cluster permits filtering, log transformation and mean centring of gene
expression data, and downstream analysis including hierarchical clustering,
self-organising maps and K-means clustering (Eisen ez 2l.,1998). A useful fea-
ture is that the data can be weighted, so samples for which there are replicates
can be ‘down-weighted” when calculating the distances between samples. The
output is usually visualised using Treeview.

Gene Cluster and Treeview are frequently used together to generate charac-
teristic red—green images. These typically represent changes in gene expression
of clustered expression data (e.g. Plate 4.8, facing p. 88).

GeneCluster

www-genome.wi.mit.edu/cancer/software /software.html

GeneCluster is a program for generating self-organising maps. Data can be nor-
malised and filtered within the program and the output provides a graphical
representation of the clusters. Use of the algorithm is described in Tamayo ez al.
(1999). GeneCluster 2.06 extends these capabilities and includes supervised
classification, gene selection and permutation test methods. It implements the
methodology used in Golus ez al. (1999).

Kimono (K-means Integrated Models for
Oligonucleotide Arrays)

www.fruitfly.org/~ihh/kimono/

Kimono is a software package for finding regulatory elements in promoter
sequences using quantitative expression data. The algorithm uses K-
means-based clustering to group a dataset of promoter sequences and
associated expression profiles.

Plaid

wwwstat.stanford.edu/~owen/plaid/

Plaid implements a novel algorithm for clustering of gene expression data in
which a gene can belong to more than one cluster and gene clusters may be
defined with respect to samples. Further information can be obrained in a
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technical report www.stat.stanford.edu/~owen/reports/ and in the accompa-
nying paper (Lazzaroni and Owen, 2002).

RCluster

enex.ncgr.org/genex/rcluster /help.html
RClusterisa Webinterface for a collection of clustering routines written in R for
analysis of gene expression data. The algorithm permits hierarchical agglom-
erative clustering using a number of distance measures and linkage methods.

SOTA (Self-Organising Tree Algorithm)
bioinfo.cnio.es/sotarray/

The SOTA program uses a divisive hierarchical method for clustering data
(Dopazo and Carazo, 1997). The advantage of this approach is that clustering
can be stopped at a point appropriate for the individual dataset. This point may
be chosen based on a variability threshold, orat a predefined number of clusters.
SOTA runs on a server, and is described in Herrero ez al. (2001).

SVDMAN (Singular Value Decomposition
Microarray Analysis)

public.lanl.gov/mewall /svdman /

This algorithm permits singular value decomposition using two new methods.
One is a threshold method for identifying groups of genes and the other meas-
ures confidence in SVD analysis (Wall ez a/.,2001).

SNOMAD (Standardization and Normalization of
Microarray Data)

pevsnerlab.kennedykrieger.org/snomad.htm
SNOMAD is a collection of Web-based tools for the standardisation and gene

normalisation of expression data (Colantuoni ¢t al., 2002). The program in-
cludes visualisation and transformation tools, including those that correct for
local bias and variance in gene expression measurements.

Xcluster

genome-www.stanford.edu /~sherlock/cluster.html

A program for filtering and clustering data. The program includes an option to
partition the data into sets of related genes using self-organising maps or K-
means, before carrying out hierarchical clustering. In addition, thereis a ‘node
flipping’ option, that permits rotation about the nodes of clustered data such
that the two most similar outermost members of the nodes are placed adjacent
to each other. The output can be visualised using Treeview and maxdView.
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A.3 Visualisation

GenMAPP (Gene MicroArray Pathway Profiler)

WWW.genmapp.or.
GenMAPP is an application for the visualisation and display of gene expression
data, using maps representing biological pathways and groupings of genes. The
program can be used to display data from human, mouse, rat and yeast, and
there are links to species-specific gene databases.

TreeArrange and Treeps
monod.uwaterloo.ca/software/

TreeArrange and Treeps are programs for reordering and displaying microarray
data. Treeps is a tool for displaying expression array data and associated hierar-
chical clustering, while TreeArrange reorders the branches of the ‘tree’/
dendrogram so that similar ‘leaves’ are placed together. The algorithm is
described in Biedl ¢z al. (2001 ). The program can be run using the output files
from Gene Cluster and Xcluster.

Treeview

rana.lbl.gov/EisenSoftware.htm

Treeview is a visualisation tool for the representation of gene expression data,
typically log, fold change in gene expression, using a gradient of red through
black to green (Eisen ez al., 1998). Treeview is often used with Gene Cluster to
display the results of cluster analysis.

A.4 Multifunctional software

d Chip

www.dchip.org/
The DNA-Chip Analyzer (dChip) package is for model-based analysis of

oligonucleotide microarrays and can be used directly on data generated on the
Affymetrix platform. The model operates on spot-level data, and provides tools
for outlier detection, identifying and handling cross-hybridising spots and
contaminating areas on the array, clustering and visualisation. The algorithm
is described in Li and Wong (2001) and Schadt et al. (2001). Applications
of d Chip are described in Hakak ¢#a/. (2001).

Expression Profiler

ep.ebi.ac.uk
Expression Profiler is a set of tools for clustering, analysis and visualisation of
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gene expression and other genomic data. The user can perform cluster analysis,
pattern discovery and visualisation, search based on Gene Ontology categories,
extract putative regulatory sequences, study protein interactions and link analy-
sis results to external tools and databases. EPCLUST, the clustering module of
Expression Profiler, allows users to perform data selection, normalisation, ran-
domisation, clustering, similarity searches and other operations with expres-
sion data. All tools in EP are accessible over the Internet via a Web interface.
Calculations are performed on the server side. Use of these tools for automatic
discovery of potential regulatory signals in genomes has been described (Vilo
etal.,2000).

J-Express
www.molmine.com/

J-Express is a portable software package for the analysis of microarray data. It
accepts as input gene expression matrices or spot quantitation files. The pro-
gram contains routines for normalisation and filtering to transform spot quan-
titation into log ratio gene expression matrices. Expression profiles can be
explored using (two-ways) hierarchical clustering, K-means, clustering, self-
organising maps, principal component analysis, and profile similarity searches.
The program also contains a project management system complete with meta-
data for all derived datasets to allow for documentation of results (Dysvik and
Jonassen, 2001).

MAExplorer
www.lecb.ncifcrf.gov/mae /

MAExplorer permits analysis of cDNA microarrays from mouse mammary tis-
sue and databases from the Mammary Genome Anatomy Project (MGAP).
The userisable toanalyse expression ofindividual genes, gene families and clus-
ters, and compare expression patterns generated from data in the linked data-
bases.

maxdView

bioinf.man.ac.uk/microarray /maxd /maxdView/

maxdView is a modular analysis and visualisation environment for integrating
existing analysis and display tools and for facilitating the development of new
tools. maxdView can be run as part of the ISYS environment (ISYS is a flexible
platform for the integration of bioinformatics software tools and databases:

www.ncgr.org/isvs/).

MeV (Microarray experiment Viewer)

www.tigr.org/softlab/

MeV is one of a number of bioinformatics tools developed by The Institute for
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Genome Research (Rockville, MD). Gene expression data can be processed
using anumber of methods, including filtering, sorting, log transformation and
normalisation, and the resulting data grouped using hierarchical clustering,
self-organising maps, K-means, principal component analysis or support vector
machines. A useful display tool provides an overview of the steps employed in
cach analysis.

TIGR Microarray Data Analysis System (MIDAS)

www.tigr.org/softlab

TIGR MIDAS is a data quality fitting and normalisation tool. Raw data can be
analysed using multiple normalisation, fitting and transformations algorithms
including Lowes (Locfit) normalisation, consistency checking and intensity-
dependent z-score fitting (slice analysis).
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Glossary

The glossary describes terms used throughout the text and in the wider
microarray literature and also seeks to explain some of the concepts and termi-
nology proposed by the Microarray Gene Expression Data Society (MGED) as
part of the ‘Minimum Information About a Microarray Experiment’
(MIAME) and the Microarray Gene Expression Markup Language (MAGE)
(Brazma et al., 2001). This terminology is more technical than that used on a
daily basis within laboratories, but will need to be more widely understood if the
proposed guidelines for the reporting and description of microarray data are
adopted. Note that as with any emerging subject area, there is stll little
standardisation in the ways terms are defined, and so the following definitions
may differ from those used elsewhere.

ALTERNATIVE SPLICING

Splicing is the process by which different regions of RNA are removed from a
transcript and the remaining RNA is joined together before translation. See
also http://www.mged.org/micml. If different regions, or combinations of
regions, can be removed from the same mRNA, the transcript s said to be alter-
natively spliced. Alternative splicing of transcripts is one of the mechanisms by
whichalarge number of proteins may be encoded by a smaller number of genes.

ARRAYEXPRESS

ArrayExpress is a public repository for gene expression data, based at the
European Bioinformatics Institute (EBI).

BACKGROUND/LOCAL BACKGROUND

The signal intensity detected in regions of the array that do not correspond to
features (spots)is referred toas the ‘background signal’. Data processing usual-
ly includes a step in which the signal intensity value for each feature is corrected
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to account for the background, to obtain the ‘corrected spot intensity’ (CSI).
This correction may be derived from alocal calculation of the background, e.g.
the background in the vicinity of the feature, and/or from the background
across the whole of the array.

BIOSOURCE

Biological information relating to the source of the labelled extract. This in-
cludes the genus and species of the organism of origin, and other information
that usually depends on the type of organism, e.g. strain, strain background,
sex, age, organ, tissue, etc.

CIBEX (CENTRE FOR INFORMATION BIOLOGY EXPERIMENTATION DATABASE)

The public repository for gene expression data at the DNA Data Bank of
Japan.

CO-EXPRESSION

Transcripts with similar expression patterns are said to be co-expressed. Co-
expression may, or may not, indicate that the transcripts are co-regulated.

COMPOSITE SEQUENCE

A set of reporters that provide information on the expression of a single
transcript or gene. An example is the set of ‘match oligonucleotides’ on an
Affymetrix GeneChip™ that hybridise to different parts of a single transcript
and are used to derive a value that represents the relative expression level.
Composite sequences are sometimes referred to as composite reporters.

CO-REGULATION

Transcripts with similar expression patterns that can be attributed to common
regulatory mechanisms are said to be co-regulated. A typical example would be
two genes that are activated by a common transcription factor.

DATA TRANSFORMATION

An operation applied to either raw or transformed data.

DYE-FLIP OR DYE-SWAP EXPERIMENTS

Experiments in which two or more hybridisations of labelled extract are carried
out, such that each of the labelled extracts is labelled with each of the dyes, e.g.:
¢ Hybridisation 1, extract A is labelled with Cy5 and extract B is labelled with
Cy3.
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e Hybridisation 2, extract B is labelled with Cy5 and extract A is labelled with
Cy3.

Data from dye-swap experiments may be thought of as replicate data. It is im-
portant to include dye swaps in the experimental design in situations where
more than one labelled extract is hybridised to each array, and for determining
which genes are differentially expressed between the extracts under study be-
cause of differential dye incorporation. Loop designs, which are similar in prin-
ciple to dye-swap experiments, are another method ofaddressing this problem.

ELEMENT

Another word used in place of ‘feature’ or ‘spot’, i.e. the location and nature of
the reporter on the array, where the reporter is the material that makes up the
feature (e.g. the oligonucleotide or PCR generated sequence). Other terms
used are ‘target’ and ‘probe’, although these are used differently in connection
with different types of arrays and are thus ambiguous.

ERROR

Errors associated with measurement may be divided into two types:

1 Systematic error. Systematic erroris also known as bias, and results in the con-
sistent over- or underestimation of the true value. Sources of bias are factors
such as differential incorporation of label or the location of a feature (spot) on
the array. Normalisation is used to account for systematic error between data
obtained from individual features and between labelled extracts.

2 Random error. Random errors reflect inevitable uncertainty in the measure-
ment of data. Random errors cannot be removed, but may be reduced by
reducing the number of variables in the experimental design, e.g. by processing
samples at the same time of day, and keeping the strain background consistent
across experiments. Estimates of the random error obtained from replicate
datasets may be used to assign a confidence score for assessing the statistical
validity of a measurement.

ESTS (EXPRESSED SEQUENCE TAGS)

Short unique DNA sequences (200 to 500 base pairs), ‘expressed” as mRNA
and whose location and sequence are known.

EXON

An exon is a region of a gene that is used as a template for translation, i.e. a
region of a gene that encodes for protein.

FACS (FLUORESCENCE ACTIVATED CELL SORTING)

A technique for separating cell populations in which some cells fluoresce and
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others do not. The fluorescence usually derives from expression of a reporter
construct, or from labelling of a subpopulation of cells.

FEATURE (SPOT)

The location and nature of the reporter on the array, where the reporter is
the material that makes up the feature (e.g. the oligonucleotide or PCR gener-
ated sequence). Other terms used are ‘target’ and ‘probe’, although these
are used differently in connection with different types of arrays and are thus
ambiguous.

FEATURE EXTRACTION

The process in which the information describing the feature (spot) is extracted
from the scanned image.

FILTER ARRAY

Arrays or chips may be printed on a number of different surfaces, including ni-
trocellulose. These are sometimes referred to as “filter arrays’ to distinguish
them from those on glass, or silicon, substrates.

FILTERING

Filtering is a way of identifying subsets of data that fulfil defined criteria. It can
be carried outin numerous ways to identify the data of interest. Filtering is most
commonly used to remove values that fall below or above a certain threshold.
An alternative to filtering is to ‘floor’ the data (see below).

FLAG (OR ‘TAG’)

Data may be flagged, or tagged, to remind the data analyst about a property of
the data that may be important for subsequent interpretation of the results.
Flagging has the advantage that the particular piece of datais not removed from
the dataset, but bears a ‘mark’ to distinguish it from the rest of the data.
Examples include flagging of ‘low confidence’ data, outlier data, data that have
been floored, and imputed data.

FLOORING

The process by which scaled dataare adjusted so that values that fall belowa cer-
rain number of intensity units are brought up to the value of the ‘floor’. An ex-
ample is when fluorescence intensities of below 50 are raised to 50. Thisis a way
of including data for genes that are expressed at a low level without using the
actual value obtained, which could be largely due to noise. Flooring is often
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carried out before the fold change in gene expression is calculated. Flooring
produces apparently smaller fold changes for genes expressed at a low level.

The parallel process by which genes whose expression level is high are
brought down to a value is sometimes called setting a ‘ceiling’. This permits in-
clusion of data from genes whose expression level is high but probably cannot
be calculated accurately, e.g. if the signal is likely to be saturated.

FUNCTIONAL GENOMICS

The subjectareas known collectively as functional genomics consider biological
systems on a genome-wide scale and include analysis of genome sequence, gene
‘prediction, identification of gene function, genes and gene product interac-
dons, etc., as well as comparisons across genomes.

GENECHIP™

A trademark of Affymetrix used to describe a type of oligonucleotide-based
array thatis synthesised 7z situ on a silicon substrate by photolithography.

GEO (GENE EXPRESSION OMNIBUS)

GEO is a gene expression and hybridisation array data repository, as well as an
online resource for the retrieval of gene expression data from any organism or
artificial source. GEO is run by the National Center for Biotechnology
Information (NCBI). Further information can be obtained at

http: //www.ncbi.nih.gov/geo/.

INTRON

A non-coding region of a gene, i.e. a region that may be removed from the
corresponding transcript before translation.

LABELLED EXTRACT

A term used to refer to the Jabelled population of nucleic acid that is hybridised
to the array. Terms such as ‘target” and ‘probe’ should be avoided as they are
used to refer to both the labelled nucleic acid in solution and the nucleic acid
attached to the array (feature /spot), depending on the microarray platform.

LIMS (LABORATORY INFORMATION MANAGEMENT SYSTEM)

A database/data warehouse for recording technical aspects of array construc-
tion, design within the laboratory and other experimental information. LIMSs
are frequently used to keep track of which nucleic acid is present on each array,
where itis stored in the laboratory, the source of the nucleic acid, etc.
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MAGE (MICROARRAY GENE EXPRESSION)

The ‘Microarray Gene Expression’ working group (http://www.mged.org/
Workgroups/MAGE/mage.html) is a group working towards setting
standards for the representation of microarray expression data via the establish-
ment of a data exchange model (MAGE-OM: Microarray Gene Expression —
Object Model) and data exchange format (MAGE-ML: Microarray Gene
Expression — Markup Language). MAGEstk (MAGE Software Toolkit) is a
collection of packages that act as converters between MAGE-OM and
MAGE-ML.

MEDIAN

The value in a set of data such that half of the values are above it and half are
below it. The median fluorescence intensity of each chip is often used to derive
a scaling factor for between-array comparison.

MIAME (MINIMUM INFORMATION ABOUT A MICROARRAY EXPERIMENT)

MIAME is an informal specificadon that has been put forward by members of
the Microarray Gene Expression Data Society (see http:/www.mged.org/
miame) to guide cooperative data collection and description (Brazma et al.,
2001). The object of MIAME is to ensure optimum interpretability of experi-
mental results, and to facilitate independent verification and data exchange and
the establishment of databases and public repositories of data.

MIAME can be thought of as (i) an attempt to formulate the minimum in-
formation that should be included in a description of a microarray experiment
to enable unambiguous interpretation, or potential verification, of its results;
and (ii) a description of the information that would be required by an experi-
menter from a different laboratory for repeating an experimental method and
comparing the results. MIAME is not a formal specification and items that
make up the ‘minimum information’ will be different for different datasets. The
terms used in this book follow conventions endorsed by MIAME, wherever
possible.

MIAME COMPLIANT

Microarray data that include information, or references/links to information,
required by the MIAME document are said to be MIAME compliant.

MIAMEXPRESS

A Web-based submission tool created at the European Bioinformatics Institute
(EBI) for submitting data to ArravExpress. The tool supports the generation of
MIAME supportive data in XML. Further information may be obtained at
http: //www.ebi.ac.uk/microarrav/. :
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MICROARRAY GENE EXPRESSION DATA SOCIETY (MGED)

The MGED is an international organisation for facilitating the sharing of
microarray data from functional genomics and proteomics experiments. This
includes setting standards for DNA array experiment annotation and data
representation, and introduction of standard experimental controls and data
normalisation methods. This will facilitate the establishment of gene expression
dara repositories, enhance the comparability of gene expression data from
different sources and the inter-operability of different gene expression data-
bases and data analysis software. Further information can be found at
http: //www.ebi.ac.uk/microarray/MGED/.

OLIGONUCLEOTIDE

Ashortsequence of DNA (usually 80 or fewer nucleotides). Within the context
of a microarray, this sequence is used to provide information on a transcript of
complementary sequence, via a hybridisation reaction. Features (spots) on
arrays are usually made up of oligonucleotide sequences, or longer DNA
sequences generated by PCR, representing transcripts or fragments of
transcripts.

ORF (OPEN READING FRAME)

An open reading frame is a region of sequence, interrupted by a stop codon,
that encodes all or part of a protein.

OUTLIER

An extreme value in a distribution. Outliers may represent informative or
artefactual data.

POLY A RNA

In eukaryotes most messenger RNA (the RNA that encodes protein) ends in a
string of riboadenosine triphosphates. This characteristic of mRNA distin-
guishes it from ribosomal RNA (rRNA) and transfer RNA (tRNA) and is a
property commonly exploited in order to isolate mRNA from total RNA.
Bacterial mRNAs do not have poly A tails, so mRNA isolation from bacterial
samples is carried out using other methods. An artificial poly A tail is added to
the bacterial control mRNA that is sometimes ‘spiked in’ to total RNA from
eukaryotic cells during sample preparation. This ensures that the bacterial
RNA is represented in the sample and that non-modified contaminating bacte-
rial RNA does not contribute to the signal from the control spots.
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PROBE

In the context of spotted arrays the term probe often refers to the labelled
population of nucleic acid in solution, while in connection with GeneChips™
itis used to refer to the nucleic acid attached to the array. To avaid confusion,
here we use the MIAME convention in referring to the mobile population of
nucleic acid as the labelled extract and the nucleic acid attached to the array as
the reporter, feature or spot.

REFERENCE ARRAY/CHIP

Data from a ‘reference’ or ‘baseline’ array may be used as the basis for compar-
ing data obtained from hybridisation of labelled extracts to other arrays.
A typical way to use the data from a ‘reference chip’ is to scale, or normalise, all
the data to that of the reference, based on a property such as global intensity.

REFERENCE SAMPLE

A reference sample is the sample that others are compared with. Reference
samples are frequently used with spotted arrays where two or more labelled
extracts are hybridised to a single array. A commonly used reference sample is
genomic DNA.

REFERENCE SET

Arrays whose data have been scaled together can be compared directly and form
areference set.

REPLICATE ‘SPOTS’

There are two types of replicate features — those for which the element (the se-
quence represented) is the same and those for which the element is different.
Where the reporter (the nucleic acid molecules that make up the feature) is dif-
ferent, the replicates may be referred to as a composite sequence or composite
element.

REPORTER SEQUENCE

The MIAME/MAGE convention uses ‘reporter’ or ‘reporter sequence’ to
refer to the set of molecules that make up a feature or spot. This may be a set of
oligonucleotide or PCR generated sequences. Note that the same reporter can
be at multiple locations on an array, while a ‘feature /spot’ cannot, because the
latter term includes information about the location of the nucleic acid on the
array.
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SAMPLE

The sample is the biological material from which the gene expression profile
was obtained. A description of a sample would typically include the source of
the material (e.g. genus, species, the tissue or cell type, also known as the
‘biosource’) and the conditions or treatment applied. Nucleic acid is extracted
from the sample and labelled to obtain one or more labelled extracts that are
hybridised to the array. Note that a distinction is sometimes made between a
primary and a derived sample: a derived sample may consist of multiple pri-
mary samples, for example where samples are pooled.

SATURATION

The measured signal intensity, usually representative of the gene expression
level, increases in proportion to the increasing concentration of the labelled
molecule (nucleic acid in the labelled extract) over the ‘linear range’, and at
some point reaches saturation. At this point the measured expression level of
the gene does not increase further.

SNP (SINGLE-NUCLEOTIDE POLYMORPHISM, )

Single-nucleotide polymorphisms are positions in a genome at which alterna-
tive bases occur at significant frequency. SNPs are the most frequent type of se-
quence variation found in the human genome, and knowledge of the location
and frequency of SNPs is therefore exploited extensively in medical genetics.

SPIKED-IN CONTROLS

Exogenous controls that are added at a stage in the preparation of the labelled
extract and are designed to hybridise to complementary features on the array.
The information obtained from spiked-in controls may be used for normalisa-
tion between labelled extracts, for assessing the sensitivity with which gene ex-
pression can be detected, and /or as a calibration reference to obtain absolute
expression levels and extend the linear signal intensity range for scanning.

SPLICING

The process by which pieces of mRNA are cut, a segment is excised and the re-
maining sequence is joined together. Splicing permits greater protein diversity
from a discrete amount of DNA, as mRNA can be cut and rejoined in different
combinations. Differential splicing contributes to the observed physiological
complexity of cells.

SPOT (FEATURE)

Spot is used as a generic term to refer to the nucleic acid thatis attached to the
array. MAGE uses the word ‘spot’ (or feature)) to describe the location and na-
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ture of the reporter on the array, where the reporter is the material that makes
up the feature (e.g. the oligonucleotide or PCR generated sequence). Other
terms used are ‘target” and ‘probe’, although these are used differently in con-
nection with different types of arrays and are thus ambiguous.

TARGET

Inrelation to spotted arrays the term targetis used to refer to the nucleic acid at-
tached to the array and the word ‘probe’ to refer to the labelled population of
nucleic acid with which it is hybridised. The terms usually have the reverse
meaning when referring to GeneChips™. We have tried to avoid use of the
term target and instead refer to the labelled, mobile population of nucleic acid
asthe labelled extractand the nucleic acid attached to the array as a spot, feature
or reporter.

TARGETED CELLTYPE

The target cell type is the cell type of primary interest. The biomaterial may be
derived from a mixed population of cells allthough only one cell type is of
interest.

TILING ARRAYS

Arrays in which overlapping sequences are represented by the features (spots)
on the array. These are commonly used to identify the 5" and 3’ ends of tran-
scripts, for gene discovery and annotation.

TRANSCRIPTION FACTOR

A factor that regulates transcription (the making of an RNA copy of a DNA
segment). Usually a protein, or multi-subunit complex.

TREATMENT OR CONDITION

The condition or treatment describes ‘what has happened’ to the biosource, i.e.
the biological material under study, before preparation of the labelled extract. A
sample may be described in terms of the biosource and the treatment.

VENN DIAGRAM

A graphical method of representing data that have been assigned to different
classes. A ‘flat” method of clustering.
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subarrays (subgrids) 41,59-60
subgraph  108-9
substrate, array 30
sums of squares (SS) 68
supervised data analysis 9,73, 74,97
classification  113-21
partially 73,120
support vector machines (SVMs) 113,117-18
supportvectors 116,117

SVDMAN 138
SYBR Green 34
Syto61 34

tags (flags) 61,62,146
TagMan assays 25
target 152
targeted cell type 152
taxonomy database, species 97
The Institute for Genome Research (TIGR) 32
3'to 5’signal ratio  29-30
thresholds (cut-offs)
clustering 112
differential gene expression 21,66
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TIGR Microarray Data Analysis System (MIDAS)
140 '
tiling arrays 152
time course experiments 18
dataanalysis 74,1214, Plate 4.4
vs. replicates 21
time warping  122-3,124
topo (gene expression terrainmap) 125, Plate 4.7
training algorithms  114-15
transcription factor 129,152
transcripts  4-5
transformation, data see data transformation
transformed cell lines 27
treatment, experimental see condition, experimental
tree see dendrogram
TreeArrange 139
Treeps 139
Treeview 139, Plate 4.4
trends (over time) 121, 122-3,124
tri-cube weight function 59
triangle inequality 82
two-color microarray assays 40,48
data filtering 624
normalisation 55
two-dimensional (2D) gel electrophoresis 25

undefined values see missing values
unsupervised data analysis 9,73, 74,97
combined with supervised 73
see alsoclustering

validation
cluster 112-13
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ofrresults 25
variability
geneexpression 21
pin geometry-related 32
sources 15,19
variables, reducing numberof  15,17-18
variance 68,86-7
vector 79
normalisation 81
space  79-81
Venn diagram 99,124,152
VERA (Variability and Error Measurement)
136
vertices 108
Vistra Green 34
visualisation  124-6
software  138-9

Ward’s method  102-3

weighted K-nearest neighbour method, missing
values 94-5

Western blotting 25

Xcluster 138

yeast 6,75,127
cell cycle regulated genes 121,124,125
gene classification 118
promoter sequences 10,126, 129-30, Plates 4.9,
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Z-scores, intensity-dependent - 66-7



A Beginner’s Guide

Microarray

Gene Expression Data Analysis

This quide covers aspects of designing microarray experiments and analysing the data
generated, and includes information on some of the tools that are available from non-
commercial sources. Concepts and principles underpinning gene expression analysis
are emphasised, and wherever possible the mathematics has been simplified. The
guide is intended for use by graduates and researchers in bioinformatics and the life
sciences and is also suitable for statisticians who are interested in the approaches
currently used to study gene expression.
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