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Preface

During the last two decades, the use of Bayesian techniques has spread in
different fields thanks to the advent of newly developed simulation-based
approaches (e.g., Markov Chain Monte Carlo-MCMC) which have reduced
computational barriers to the use of Bayesian inference in many applied fields.
Problems that were considered intractable in the past are now routinely solved
thanks to these approaches and to the ever increasing computer power. Fur-
thermore, the long-lasting disjunctive about selecting ”the best” approach,
either Bayesian or frequentist, is now outdated in applied circles and substi-
tuted by a more pragmatic point of view which allows the analyst to select the
most suitable approach depending on the problem at hand. During this time,
the quality profession has also seen some applications and developments in
Bayesian statistics, but this has occurred mainly in the more technical journals
with little of this work reflected in actual practice.

While there are many excellent and recent books on applied Bayesian
Statistics, most of them are related to biostatistics and Econometric appli-
cations. In engineering, the Bayesian approach has certainly been used by
electrical and chemical engineers who have studied or applied Kalman filter-
ing techniques (an area where there are several excellent textbooks too) for
many years. However, the Bayesian paradigm is unfortunately not familiar
to industrial engineers or to most applied or “industrial” statisticians, per-
haps with the only exception of persons involved in reliability studies. Many
industrial problems related to quality control and improvement require an
in-depth use of statistical approaches, but in this era of ”six-sigmas” and
”black belts” the use of advanced statistical methods in practice is difficult to
carry on. Despite the slight attention to Bayesian methodology in the indus-
trial engineering and applied statistics technical journals, it can be observed,
in general, a lack of attention to opportunities arising from the adoption of
Bayesian approaches in actual industrial practice. We believe the gap between
application and development can be bridged by having available more books
on Bayesian statistics with a perspective on engineering applications.

It is with this goal that the project for the present book originated. The
aim is to provide a state-of-the-art survey of applications of Bayesian statis-
tics in three specific fields of industrial engineering and applied or industrial
statistics, namely, process monitoring, process control (or adjustment), and
process optimization. The book is intended as a reference for applied statisti-
cians working in industry, process engineers and quality engineers working
in manufacturing or persons in academia, mainly professors and graduate
students in industrial and manufacturing engineering, applied statistics, and
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operations research departments. This is reflected in the diversity of the con-
tributors to this book, who come from both academia and industry, and are
located in the USA, Europe, and Asia.

The book is organized in four parts. Part I contains two introductory chap-
ters. The first chapter provides an introduction to Bayesian statistics, empha-
sizing basic inferential problems, and outlines how these methods are applied
in process monitoring, control, and adjustment. This chapter contains refer-
ences and brief descriptions to all other chapters in the book, where appropri-
ate. The second chapter presents a general overview of methods developed in
the past few decades for computing Bayesian analysis via simulation (such as
Markov Chain Monte Carlo and Monte Carlo simulation). The use of MCMC
is illustrated with reference to a classic hierarchical model, the variance com-
ponent model, using available software packages (WinBUGS and CODA,
which runs under R). It is our hope that readers not familiar with Bayesian
methodology will find in these two chapters a useful introduction and a guide
to more advanced references.

Part II contains five chapters covering Bayesian approaches for process
monitoring. The advantages of a Bayesian approach to process monitoring
arise from the sequential nature of Bayes’ theorem. As pointed out by some
of the authors in this part of the book, a Bayesian approach allows a more
flexible framework, in particular with respect to the usual assumption made
in classical statistical process control (SPC) charts about known parameters.
This part of the book deals with Bayesian methods for SPC and considers both
univariate and multivariate process monitoring techniques. Application and
development of full Bayesian approaches and empirical bayes methods are
discussed.

The chapters in Part III present some Bayesian approaches which can be
used for time series data analysis (for instance in case of missing data) and
process control (also known as engineering process control). Here the use of
the Kalman filter as an estimator of the state in a state-space formulation is
exploited for prediction and control. This is perhaps the best known applica-
tion of Bayesian techniques in engineering (outside of Industrial), although
it is curious that Kalman himself did not develop his celebrated filter from
a Bayesian point of view. Applications to radar detection and discrete part
manufacturing are included.

Finally, Part IV focuses on Bayesian methods for process optimization. The
three chapters included in this part of the book show how Bayesian methods
can be usefully applied in experimental design and response surface meth-
ods (RSM). This section presents and illustrates the application of Bayesian
regression to sequential optimization, the use of Bayesian techniques for the
analysis of saturated designs, and the use of predictive distributions for op-
timization. The predictive approach to response surface optimization repre-
sents a major advance in RSM techniques, as it incorporates the uncertainty
of the parameter estimates in the optimization process and has no frequentist
counterpart.
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We wish to thank all the contributing authors, with whom we share our
interest in development of Bayesian statistics in industrial applications. A
special thought goes to the late Carol Feltz (Northern Illinois University, USA)
who showed praiseworthy spirit and strength in dedicating her last weeks to
one chapter of this book.

Bianca M. Colosimo

Enrique del Castillo
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ABSTRACT We present in this first chapter a general overview of Bayesian
inference. A brief account of the fundaments is given, after which we focus
on the following problems: inference in normally distributed data (univariate
and multivariate), Kalman filtering, and Bayesian linear regression. Applica-
tions are noted in process monitoring, control, and optimization. Whenever
appropriate, we refer to all subsequent chapters in this book.

1.1 Introduction

This chapter presents a general description of Bayesian inference and assumes
knowledge of undergraduate statistics. Appropriately, this description starts
with telling who Bayes was and what his work was about. Unfortunately,
not many biographical details are known about Bayes (for some of them, see
Press [29]). Reverend Thomas Bayes, a Presbyterian minister, lived in England
in the 18th century and wrote a manuscript on “inverse probability” related to
making inferences about the proportion of a binomial distribution. This was
published posthumously in 1763. In 1774, working independently, Laplace
stated what is now known as Bayes’ theorem in general form.

Bayesian inference combines prior beliefs about model parameters with
evidence from data using Bayes’ theorem. A subjective interpretation of prob-
ability exists in this approach, compared to the “frequentist” approach in
which the probability of an event is the limit of a ratio of frequencies of events.
The main criticisms of Bayesian analysis have been that it is not objective (a
fact that has been debated for many years) and that the required computa-
tions are difficult. As it will be discussed in Chapter 2, the second criticism
has been overcome to a large extent in the last 10 to 15 years due to advances
in integration methods, particularly Markov Chain Monte Carlo (MCMC)
methods. Interestingly, Fisher and other authors have speculated that Bayes’
reluctance in publishing his manuscript was due to his own doubts about
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the principles behind it, in particular his interpretation of subjective proba-
bility and the specification of a prior distribution on the unknown parameter.
However, Stliger [32] disagrees, indicating that Bayes was quite sure and
direct about the use of subjective probability and the use of a prior distribu-
tion in his work, and that it was Bayes’ difficulties with solving an integral
(an incomplete beta function) that lead him not to publish. Thus, if Stigler is
right, Bayes’ himself would be very happy today about recent developments
in the numerical solution of Bayesian inference problems.

In this chapter, we provide a succinct overview of Bayesian inference, men-
tioning applications in monitoring, control, and optimization of production
processes. Whenever possible, we will make references to other contributed
chapters in this volume.

1.2 Basics of Bayesian Inference

1.2.1 Notation

We first introduce some notation used in this chapter. Let θ denote unobserved
quantities or population parameters of interest. This can denote a scalar or
a vector of parameters as the context will make clear. In some sections, par-
ticularly on Kalman filtering, θ will denote a vector of k parameters. Let y
denote observable quantities (data), either a single observation or a vector
of n observations (y1, . . . , yn) if the context does not require any other vector
notation. If the context uses other vector notation (e.g., in multivariate data
and regression analysis), then multivariate observations will be denoted by
the column vector y. If the data is time-ordered (as required in most process
monitoring and control applications), we will use Yt = (yt, yt−1, yt−2, . . .) or
Yt = (yt , yt−1, yt−2, . . .) to denote the data observed up to and including time
instant t. The variable ỹ denotes a future observation of the same nature as
y, and X denotes an n × k matrix of explanatory variables or covariates. X
contains the “experimental design” in a regression analysis.

In this chapter, p(·) denotes a continuous density function and the notation
w|y denotes a conditional random variable w given y (the data). P(·) denotes
the probability of some event defined over a sample space. Sometimes we
will simply write “data” for all the data obtained from an experiment.

1.2.2 Goals of Bayesian Inference

The goal of Bayesian inference is to reach conclusions about — or perhaps,
to make decisions based on — a parameter θ or future observation ỹ using
probability statements conditional on the data y:

p(θ |y) → posterior density of θ

p( ỹ|y) → posterior predictive density of y.
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Bayesian inference considers all unknowns (parameters and future observa-
tions) as random variables. Classical (frequentist) statistical inference consid-
ers population parameters as fixed but data as random (due to sampling).

1.2.3 Bayes’ Theorem for Events

Before looking at Bayes’ theorem for densities, let us look first at the theorem
for simple events. This should be familiar to any reader who has taken a basic
probability course. For events A and B in some sample space S, from the
definition of conditional probability we have,

P( A|B) = P( A∩ B)
P(B)

and

P(B|A) = P( A∩ B)
P( A)

.

These expressions are true if and only if

P( A∩ B) = P( A|B) P(B) = P(B|A) P( A)

from which

P( A|B) = P( A) P(B|A)
P(B)

.

This formulation gives the essence of Bayes’ theorem: if event B represents
some additional information that becomes available, then P( A|B) is the prob-
ability after this information becomes available, i.e., the posterior of A, and
P( A) is the probability before this information becomes available, i.e., the prior
for A.

Suppose events Ai form a partition of S, that is,
⋂

alli Ai = S; Ai ∩ Aj = 	
for all i, j, i 
= j . Then the (“total”) probability of B is given by

P(B) =
∑
all j

P(B|Aj ) P( Aj )

and therefore

P( Ai |B) = P( Ai ) P(B|Ai )∑
all j P(B|Aj ) P( Aj )

. (1.1)

Equation (1.1) is what Laplace [19] referred to as the problem of finding the
“inverse probability” — given that the “effect” B is observed, find which of
several potential “causes” was the true cause of the observed effect.

As clear from the above, nothing is incorrect in Bayes formula, as it is
derived from the probability axioms. The debate concerns the interpretation
of the probabilities involved. Classical statistics regards each probability in the
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formula (prior and posterior) as the limit of the ratio of frequencies; Bayesian
statistics regards each probability as a subjective measure.

1.2.4 Bayes’ Theorem for Densities

Bayes’ theorem also holds for densities and its derivation parallels that of
the previous section. If y denotes data and θ some parameter or vector of
parameters, then from the definition of conditional density, we have that

p(y|θ ) = p(θ , y)
p(θ )

and

p(θ |y) = p(θ , y)
p(y)

.

This implies the joint density is

p(θ , y) = p(θ ) p(y|θ ) = p(y) p(θ |y),

which implies

p(θ |y) = p(θ ) p(y|θ )
p(y)

(1.2)

where analogous to the total probability of an event

p(y) =
∫

all θ

p(θ ) p(y|θ )dθ. (1.3)

Equation (1.2) is Bayes’ law for densities. The denominator is usually not
computed because it is not a function of θ , which is integrated out in Equation
(1.3) and only makes p(θ |y) integrate to one in Equation (1.2). Therefore,
the Bayesian statistics literature uses the proportionality sign ∝, and Bayes’
formula in its most common form is:

p(θ |y) ∝ p(θ ) p(y|θ ). (1.4)

In words, the posterior is proportional to the product of the prior times the likelihood
of the data. Note that the posterior probabilities are therefore proportional to
the likelihood, and the likelihood is a central concept in classical statistics, e.g.,
in maximum likelihood estimation. What we do is to modify the likelihood
according to our prior beliefs of the parameter. If the prior is very “flat,”
Bayesian inferences will be very close to likelihood inferences. In Bayesian
statistics, likelihoods are considered as carrying the only useful information
contained in the data; this is the likelihood principle. Bayesian statistics are
then consistent with the likelihood principle; classical statistics are not. The
typical example is the classic example of rejecting a hypothesis based on a
p-value. Recall this is the probability of observing a sample as extreme or more
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extreme than the one we already have at hand. Thus Jeffreys, in a celebrated
phrase, remarked that by using a p-value, “a hypothesis which may be true
may be rejected because it has not predicted observable results which have
not occurred” [14].

Other information of relevance to making inferences might be available,
not included in the likelihood, which can be available a priori. Bayesian statis-
tics assume this can be incorporated in the prior.

Bayes’ formula provides a recursive mechanism for updating the posterior
distribution that is very useful in applications where the observations are
obtained sequentially. As each new observation is obtained, the posterior is
updated, treating the previous posterior as the prior and forming a chain:

p(θ ) ⇒ p(θ |y1) ⇒ p(θ |y1, y2) ⇒ p(θ |y1, y2, y3) ⇒ · · ·
Evidently, the theorem assures that if more than one observation is obtained
at a time, it is possible to “jump” two or more steps in the chain above with
identical results. For example,

p(θ ) ⇒ p(θ |y1, y2)

will result in the same distribution that would be obtained if going from
p(θ ) to p(θ |y1, y2) via p(θ |y1). The sequential application of Bayes’ theorem
is a central idea in some engineering applications — for example, in Kalman
filtering [23], a theme we return to later on in this chapter. In this volume (see
Chapter 7), Graves discusses the idea of information and how this relates to
Bayesian sequential inference with application to process monitoring.

To make inferences on an unobservable θ , we can simply look at the poste-
rior distribution p(θ |y). This provides a complete characterization of our state
of knowledge about the parameter and we recommend reporting it, perhaps
using a histogram from a simulation or graphs if a closed-form expression
exists. Still, in some applications, a single value or guess is needed about the
unknown parameter, or an interval of possible values is desired or needed.
Such a single value is the analog of a classical “point estimate.” Two usual
Bayesian choices are the mode of the posterior distribution:

θ̂ = arg max p(θ |y),

which evidently implies a maximization problem, and the mean of the pos-
terior distribution

θ̂ = E[p(θ |y)],

which implies an integration. Each choice has different properties. For
example, the mean of p(θ |y) minimizes the expected square error. The mode
maximizes the expected utility function when a unit benefit exists if θ̂ = θ

and zero benefit if θ̂ 
= θ .
A Bayesian interval estimator of a parameter θ or Bayesian credibility

interval is given by the interval (a, b) such that P(a < θ < b|y) = 1 − α,



P1: shibu/Vijay

September 8, 2006 12:34 C5440 C5440˙C001

An Introduction to Bayesian Inference 9

where 1 − α is the “credibility” level. This value, contrary to the confidence
level of a classical interval, is a probability and gives an indication of how
probable that the parameter is contained within the computed interval. This
interpretation is easier to grasp — particularly for beginners — than the long-
run coverage interpretation of a classical confidence interval. Sometimes, a
“highest posterior density” (HPD) interval is desired, which is obtained from
solving

min b − a s.t.
∫ b

a
p(θ |y)dθ = 1 − α.

For symmetric unimodal distributions, this is always a symmetric interval
around the mode. For a multimodal distribution, HPD intervals are harder to
obtain.

To make inferences about a future observation, ỹ, we compute the posterior
predictive density as follows:

p( ỹ|y) =
∫

all θ

p( ỹ, θ |y)dθ

=
∫

all θ

p( ỹ|θ , y) p(θ |y)dθ

=
∫

all θ

p( ỹ|θ ) p(θ |y)dθ , (1.5)

where the last equality follows because ỹ and y are conditionally independent
given θ , that is, the parameters, if known, summarize the data. Similarly
for unobservable parameters, we can use summarizing measures to provide
single estimates or intervals on ỹ. Again, simply looking at a plot of the
posterior predictive distribution is the most complete approach.

Contrasting the predictive density with the classical approach of making
predictions on ỹ is useful. The classical approach uses p( ỹ|θ̂ ), the data den-
sity evaluated at the maximum likelihood or least squares estimator, to make
predictions. Unlike Equation (1.5), this distribution does not account for the
uncertainty in estimating θ , a crucial issue in applications because, as men-
tioned before, different parameter estimates will result in different solutions
of the problem at hand.

1.2.5 Predictivism

The posterior predictive density is the basis of Bayesian predictivism. It is a
weighted average of the probability of a new observation ỹ given the parameter
θ multiplied by the probability of θ given the data. This weighted average
is useful in scientific inference (see Press [29]) and can be illustrated easily
in the case with a discrete number of alternative “theories” we wish to test.
Suppose θ = 1 means “Theory A is true,” and θ = 0 means “Theory B is
true,” and only these two theories are entertained to explain a phenomena.
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We collect measurements and after observing the data, we compute

p( ỹ|data) = p( ỹ|θ = 1) p(θ = 1|data) + p( ỹ|θ = 0) p(θ = 0|data),

which is the predictive probability of a new observation ỹ.
Predictivism is a school of thought in the philosophy of science that pos-

tulates that the value of a scientific theory is measured by its ability to predict
some phenomena, regardless of its ability to explain it. Within Bayesian statis-
tics, predictivism states that the important quantities are the observable ones,
not the unobservable ones (parameters). The posterior predictive density is
the means to make predictions about and test a hypothesis about an observ-
able. In applied problems in science and engineering, “model diagnostics”
are based on the posterior predictive densities. In this type of diagnostics, we
compare simulated predicted ỹ values using the posterior predictive density
versus the data and see how similar they look. If the data is very different
than the simulated responses, this is an indication our model fails to represent
reality well.

1.2.6 Simulation of Posterior Quantities

Given p(θ |y) and p( ỹ|y), we can obtain posterior probabilities for functions
of θ or ỹ as complex as needed.

Example
To find the posterior distribution of the coefficient of variation CV= µ/σ of a
N(µ, σ 2) distribution when both µ and σ are unknown, let θ = (µ, σ )′. Given
p(θ|y), we can simulate instances of θ as shown in Table 1.1. To perform the
simulation of the posterior of the parameters (a widely used “trick” if the joint
posterior is difficult to obtain analytically1) is to note that

p(µ, σ 2|y) = p(µ|σ 2, y) p(σ 2|y).

Thus, an algorithm for the simulation of the posterior of the CV will look like
this2 (see Table 1.1 and Figure 1.1):

1. Collect n observations and compute y and s2.
2. Simulate σ 2|y.
3. Simulate µ|σ 2, y (pairs of simulated values above give µ, σ 2|y).
4. Compute µ

σ
.

5. Go to step 2 until we iterate N times.

1 The joint posterior is not difficult to obtain in this case, but we will use this simpler case for
illustration of this approach.
2 To be more precise, and as it will be seen later, the algorithm requires us to generate σ 2|y ∼
Inv − χ2(n − 1, s2) (a scaled inverse chi squared distribution) and µ|σ 2, y ∼ N(y, σ 2/n). This is
based on noninformative priors.
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TABLE 1.1

Simulation of the Coefficient of Variation
Draw Number Parameters (θ) CV

1 µ1, σ1 µ1/σ1
2 µ2, σ2 µ2/σ2
.
.
.

.

.

.
.
.
.

m µm, σm µm/σm

In Figure 1.1, the values y = 100 and s2 = 10 were observed based on a
sample of size n = 5.

1.2.7 How to Simulate the Posterior Predictive Density

Sometimes the integral required to compute the posterior predictive density
is difficult to obtain. If p( ỹ|θ ) and p(θ |y) are available (if they are not, see
Chapter 2 in this volume), simulation is an easy alternative. To simulate

p( ỹ|y) =
∫

p( ỹ|θ ) p(θ |y)dθ ,

we do the following:

1. Simulate a θ from p(θ |y).
2. Simulate a ỹ from p( ỹ|θ ).
3. Go to step 1 unless N iterations are reached.

A histogram of the N ỹ values characterizes ỹ|y.
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FIGURE 1.1
Simulation of the coefficient of variation of a Normal distribution, N = 10, 000. First row: left
p(σ 2|y); right: p(µ|σ 2, y); Second row: p(CV|y).
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1.3 Choice of Prior Distribution

The question, “Where did the prior come from?” is the most common and
valid criticism in Bayesian analysis, as any prior needs to be justified in prac-
tice. Three common choices of priors are:

1. Conjugate priors
2. Non-conjugate priors
3. Non-informative priors (these are non-conjugate as well)

Conjugate priors. If F is a class of sampling distributions p(y|θ ) and P
is a class of prior distributions for θ , p(θ ), then P is said to be conjugate
for F if

p(θ |y) ∈ P ∀ p(y|θ ) ∈ F , p(θ ) ∈ P.

In words, this means that the prior and the posterior distributions of the
parameter have the same form (with different parameters), so conjugacy is
a closure property. The main merit of conjugate priors is that it simplifies
computations, particularly in sequential applications of Bayes’ theorem. With
these distributions, the integral we need to compute to obtain the posterior
has a familiar form, hence the computational advantage. However, in many
applications “tuning” a conjugate prior to reflect the knowledge of the user
is a difficult problem, or the conjugate priors might not be able to reflect this
knowledge. Whereas some literature is found on “elicitation of priors” (see
Kadane et al. [16] for the case of a regression model), elicitation has had little
impact on statistical practice.

Non-conjugate priors do not have the closure property of conjugate priors;
they result in posteriors that have a different parametric form than the prior.
Until recently, they were not discussed frequently in the literature, given
the hard integrals involved. With the advent of Markov Chain Monte Carlo
(MCMC) methods in the last decade (see Chapter 2 in this volume), these
priors have been used more often as they can now be chosen to better reflect
prior knowledge of the parameters.

Non-informative priors are non-conjugate and try to reflect a situation with
a complete lack of knowledge about a parameter. Therefore, they are called
“objective priors” by some authors, and the resulting analysis is called
objective Bayesian analysis. In applied problems, complete a priori ignorance
hardly exists in an experiment, so a non-informative prior should, in prac-
tice, be regarded as an approximation to a situation where little is known
a priori [3].

We will consider determining non-informative priors for location and scale
parameters of a distribution, so we need the following definitions. Let p(y)
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be any pdf. A location-scale family of density functions has the form

1
σ

p
(

y − µ

σ

)
,

where −∞ < µ < ∞ is a location parameter and σ > 0 is a scale parameter.
That is, µ shifts the location of the distribution on the y axis and σ stretches
(contracts) the graph of p(y) if σ > 1 (σ < 1). In either case, changing
these parameters does not change the shape of the distribution. Examples
of location-scale distributions are the normal distribution and the double
exponential. If σ = 1, then a density of the form p(y − µ) is called a location
density, and if µ = 0, a density of the form p(y/σ )/σ is called a scale density.

1.3.1 Non-Informative Priors

First, let us note that a uniform distribution over a finite range is informative
in the sense that values of the parameter are excluded (if the prior is zero
over some range, the posterior will be zero over that range). Such a prior is
non-informative only if the parameter has a range that coincides with that of
the uniform distribution.

Laplace introduced the principle of insufficient reason for which he implied
that in the absence of any information about a parameter, all values should
be equally likely. Jeffreys generalized this reasoning into what is called the
invariance principle. We will focus on invariance as a principle of finding
non-informative priors, but readers should be aware that many other ap-
proaches have been put forward to define a non-informative prior (see Kass
and Wasserman [18] for an excellent review). In particular, a lot of debate
is found about what “non-informative” means, and this has resulted in the
agreement that the non-informative priors used are more for convenience than
as a true description of lack of information. They should be used as “reference
priors” in the sense of being a default choice that makes sense in the situa-
tion when one knows little about a parameter. Unfortunately, well-known
Bayesian software (e.g., Win BUGS) does not allow non-informative priors
(see Chapter 2).

A summary of non-informative priors is as follows:

1. For parameters θ defined over a finite range of possible values
R ⊂ R, define the prior of θ to be uniform in R. An example of
this was proposed by Bayes himself, who used a uniform (0,1) on
the binomial proportion parameter p.

2. For parameters θ defined over all real numbers R, use a uniform
(−∞, ∞) distribution as prior.

3. For parameters θ defined over the positive real line R
+ ⊂ R, define

a prior for log θ to be uniform in (−∞, ∞).
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likelihood

"flat prior"

parameter
values

FIGURE 1.2

Hypothetical likelihood for a parameter θ defined over all real numbers and a flat but proper
prior density.

4. When trying to set up a non-informative prior in multiple parame-
ters θ = (θ1, θ2, . . . , θk)′, apply the criteria above to each parameter
individually. This means that the parameters are independent
a priori.

Evidently, only the first case above gives a proper prior distribution. Case
2 and case 3 lead to improper prior distributions, that is, density functions
that do not have a finite integral. These improper priors can lead to proper
posteriors in important cases, as we will show shortly. However, proper pos-
teriors will not always result, so one should always check that the posterior
is proper when using improper priors.

The important thing in practice, however, is that a non-informative prior
should be flat where the likelihood is non-negligible. See Figure 1.2, where a
“flat” but proper prior is set on a parameter where the likelihood of the data
given the parameter is non-negligible. Because we cannot know the location
of the likelihood before the data is collected, we will not be able to use such a
flat, proper prior as we will not know where to locate it a priori. Instead, we use
the improper priors in Case 1 and Case 2, which evidently are “everywhere
uniform” over the possible values of either θ (Case 1) or log θ (Case 2). The
improper prior should be seen as a useful device to approximate the ideal
case of Figure 1.2. For a justification of the choice of improper priors (Case 2
and Case 3 above) see Berger [1, pp. 82–90].

1.3.2 Jeffreys’ Non-Informative Priors

The idea of using a formal rule to define a non-informative prior is due to
Jeffreys. He used the concept of invariance as a formal rule. Thus far, we have
not used a well-defined notion of invariance. We now define it more formally.

Invariance principle. If some rule led to p(θ ) as a noninformative prior for
θ , the same rule should lead to

p(φ) = p(θ )
∣∣∣∣ dθ

dφ

∣∣∣∣ (1.6)

as a noninformative prior for φ, where φ = h(θ ) is a one-to-one transforma-
tion. If this is true, posterior inferences based on p(φ) will be the same as those
made on p(θ ).
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Thus, what we request is that the conclusions we reach in our analysis
do not change if we transform the parameter. This occurs only if the prior
for a transformed quantity is consistent with the transformation of random
variables formula (see Appendix). The principle particularly implies that
regardless of the origin and scale of measurements of quantities of interest,
which are always arbitrary, the conclusions that we reach or inferences we
make will be invariant.

Jeffreys then showed that a prior that meets the invariance principle is

p(θ ) ∝ I (θ )1/2, (1.7)

where I (θ ) is Fisher’s information for the parameter θ , defined by

I (θ ) = −E
[

d2log p(y|θ )
dθ2

∣∣∣∣ θ] .

This criterion, when applied individually to location and scale parameters
as in the previous section, results in p(θ ) ∝ constant and p(σ ) ∝ 1/σ ,
respectively.3

That Jeffreys criterion of Equation (1.7) satisfies the invariance principle
of Equation (1.6) is easy to see. The proof is as follows (this proof is presented
in Zellner [35], who attributed it to Stone). Suppose φ = h(θ ), and write
p = p(y|θ ). Then, from the chain rule for differentiation,

d log p
dθ

= d log p
dφ

dφ

dθ
.

Therefore,

I (θ ) = −dφ

dθ
E
(

d log p
dφ

d log p
dφ

)
dφ

dθ
= I (φ)

(
dφ

dθ

)2

.

Thus,

I (θ )1/2 = I (φ)1/2
∣∣∣∣dφ

dθ

∣∣∣∣ .
This implies that if we set p(θ ) ∝ I (θ )1/2 and use the same rule for setting a
prior on φ, then

p(φ) ∝ I (φ)1/2 = I (θ )1/2
∣∣∣∣ dθ

dφ

∣∣∣∣ ∝ p(θ )
∣∣∣∣ dθ

dφ

∣∣∣∣
and this satisfies the invariance principle.

For multiple parameters θ = (θ1, θ2, . . . , θk)′, Jeffreys’ prior is

p(θ) ∝ |I (θ)|1/2 (1.8)

3 Note that for the binomial parameter p (proportion), the prior we recommended earlier (Bayes’
prior) is U(0,1), — equivalent to a Beta(1,1) — but Jeffreys’ criterion of Equation (1.7) yields a
Beta(1/2,1/2).



P1: shibu/Vijay

September 8, 2006 12:34 C5440 C5440˙C001

16 Bayesian Process Monitoring, Control and Optimization

(the square root of the determinant of Fisher’s information matrix), where

Ii j = −E
[

∂log p(y|θ)
∂θi ∂θ j

]
, i, j = 1, 2, . . . , k.

However, when I (θ) is not diagonal, this would imply that a priori, the
parameters are dependent, and this idea is counter to our intuition of a non-
informative prior on the parameters. Therefore, Jeffreys suggests that instead
of using criterion of Equation (1.8), one should use his scalar criterion of
Equation (1.7) one parameter at a time. This implies we assume the multiple
parameters are a priori independent and individually noninformative but do
not follow jointly the concept of what a “non-informative prior” should be
according to Jeffreys himself.

1.3.3 Empirical Bayes Methods

A prior distribution for an unknown parameter θ , p(θ ), has itself parameters,
usually referred to as hyperparameters. The hyperparameters can be assumed
known, as in a classical conjugate analysis. Alternatively, they can be assumed
random variables that themselves have a prior distribution in an additional
level of a hierarchy of parameters and prior distributions that can be repeated
at several levels up to the highest level in the hierarchy in which all parame-
ters are assumed known. The goal is to make inferences about all unknown
parameters at all levels. These are the so-called hierarchical models, which
we describe in Chapter 2 in this volume.

A third alternative for dealing with hyperparameters is to use the data to
estimate them, for example, using maximum likelihood or method of mo-
ments. Such use of the data to estimate the prior receives the name Empirical
Bayes methods, a term first coined by Robbins [30].

Using the data in the prior violates Bayes’ theorem, which requires that
the prior probabilities do not depend on the data. However, Empirical Bayes
methods can be viewed as (well-behaved) approximations to full Bayes’
methods. They are particularly useful in complex inferential problems, or in
problems where assessing the hyperparameters from subjective user opinion
is difficult or impossible.

In Chapter 4, Shiau and Feltz provide a detailed account of Empirical
Bayes methods and their use in process monitoring problems. They consider
monitoring univariate and multivariate continuous data, binary data, and
polytomous data (data that has more than two categories, as in binary data).

1.4 Inferences on Normally-Distributed Data

We present next the application of Bayesian ideas to inference problems when
the data is normally distributed. We consider both the univariate and the
multivariate normal cases.



P1: shibu/Vijay

September 8, 2006 12:34 C5440 C5440˙C001

An Introduction to Bayesian Inference 17

1.4.1 Inferences on Normally Distributed Data (Known Variance)

Consider data that is normal: y ∼ N(θ , σ 2) with σ 2 known and θ unknown.
This situation is probably not very realistic in practice but it is a useful first
simple model to illustrate the ideas. Suppose, also for simplicity, that we
observe one data point. The likelihood for one observation y = y1 is

p(y|θ ) = 1√
2πσ

e− 1
2σ2 (y−θ )2

.

1.4.1.1 Analysis with a Conjugate Prior

The conjugate prior for normal data is

θ ∼ N
(
µ0, τ 2

0

)
,

where we assume that the “hyperparameters” µ0 and τ0 are known. That this
is a conjugate prior for the normal can be seen because the posterior density is
an exponential in a quadratic form in θ , which turns out to be a normal,

p(θ |y) ∝ p(θ ) p(y|θ ) = e
− 1

2

[(
y−θ

σ

)2+
(

θ−µ0
τ0

)2
]

,

which can be simplified by completing the square4 in θ to

p(θ |y) ∝ e
− 1

2τ2
1

(θ−µ1)2

, thus θ |y ∼ N
(
µ1, τ 2

1

)
,

where the posterior mean is

µ1 =
1
τ 2

0
µ0 + 1

σ 2 y
1
τ 2

0
+ 1

σ 2

and the posterior variance follows the relation

1
τ 2

1
= 1

τ 2
0

+ 1
σ 2 .

Thus, the posterior mean is a weighted average of the prior mean and data
with weights equal to the precisions (i.e., the inverse of the variances). The
posterior precision is the sum of the prior precision and data precision. The
posterior mean can also be interpreted as

µ1 = µ0 + (y − µ0)
τ 2

0

σ 2 + τ 2
0

,

4 This is a very common step in Bayesian statistics. Recall that “completing the square” means
we get a perfect binomial square of the form (θ − c)2. Once this is done, we treat anything
not a function of the random variable as a constant, which is not shown due to the use of the
proportionality sign.
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so we can say that the prior mean is adjusted towards the observed y. Similarly,

µ1 = y − (y − µ0)
σ 2

σ 2 + τ 2
0

,

so some authors (e.g., [11]) say that the data “shrinks” towards the prior mean.
Some interesting cases are:

• If τ 2
0 = 0, then µ1 = µ0, i.e., the prior mean is “infinitely precise”

and dominates.
• if σ 2 = 0, then µ1 = y, i.e., the data is “infinitely precise” and

dominates.
• if y = µ0, then µ1 = µ0 = y, i.e., the data and prior means agree

and so does the posterior mean.
• if τ 2

0 → ∞, then µ1 → y, i.e., we approach a “non-informative”
prior on the mean parameter.

The posterior predictive density is obtained from

p( ỹ|y) =
∫

p( ỹ|θ ) p(θ |y)dθ ∝
∫

e− 1
2σ2 ( ỹ−θ )2

e
− 1

2τ2
1

(θ−µ1)2

dθ

=
∫

e
− 1

2 θ2

(
1

σ2 + 1
τ2
1

)
+θ

(
ỹ

σ2 + µ1
τ2
1

)
− 1

2

(
ỹ2

σ2 + µ2
1

τ2
1

)
dθ.

Integrating with respect to θ yields

p( ỹ|y) ∝ e
− 1

2

(
ỹ2

σ2 + µ2
1

τ2
1

)
e

1
2

(
ỹ

σ2 + µ1
τ2
1

)2
(

1
1

σ2 + 1
τ2
1

)
.

Completing the square in ỹ in the exponent gives

p( ỹ|y) ∝ e
− 1

2
( ỹ−µ1)2

σ2+τ2
1 .

Therefore, the posterior predictive density is given by

ỹ|y ∼ N
(
µ1, σ 2 + τ 2

1

)
.

Case of several observations. If n normally-distributed data points y = (y1, . . . , yn)
are observed, the posterior of the mean is

p(θ |y) ∝ p(θ ) p(y|θ ) = p(θ )
n∏

i=1

p(yi |θ )

∝ e
− 1

2τ2
0

(θ−µ0)2 n∏
i=1

e− 1
2σ2 (yi −θ )2

∝ e
− 1

2

(
1
τ2
0

(θ−µ0)2+ 1
σ2

∑n

i=1
(yi −θ )2

)
.
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Completing the square on θ (placing terms not a function of θ in the propor-
tionality constant),

P(θ |y) = p(θ |Y) = N
(
µn, τ 2

n

)
where the first equality follows because the sample mean Y is a sufficient
statistic, i.e., the posterior is only a function of the data through the sample
average. Here we have that

µn =
1
τ 2

0
µ0 + n

σ 2 Y
1
τ 2

0
+ n

σ 2

(1.9)

and the posterior precision is

1
τ 2

n
= 1

τ 2
0

+ n
σ 2 .

Note how as n → ∞ or as τ0 → ∞, µn → Y and τ 2
n → σ 2/n. This coincides

with the frequentist results.

Example
Inferences on normal distributed data, variance known. Suppose σ 2 = 50 is known
from previous experience, and we take n = 5 observations, from which
Y = 370. Figure 1.3 shows the results for a conjugate prior θ ∼ N(500, 22)
distribution. The prior is very precise, and the posterior has a mean close to
the prior mean (µn = 462.85, τn = 1.69). The posterior predictive density also

has mean equal to µn = 462.85, but its standard deviation is
√

σ 2 + τ 2
1 = 7.27.

Therefore, the prior dominates the likelihood.
In contrast, Figure 1.4 shows the corresponding results for a conjugate

prior θ ∼ N(500, 1002), a much flatter distribution. The prior is relatively
imprecise, and the posterior has a mean close to the data mean but with
larger variability (µn = 370.12, τn = 3.16). The posterior predictive density
also has mean equal to µn = 370.12 with a standard deviation equal to√

σ 2 + τ 2
1 = 7.74. Here, the likelihood dominates the prior.
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FIGURE 1.3
Inferences on normally distributed data, σ 2 known, “informative” conjugate prior, Y = 370,
n = 5. Left: p(θ ); center: p(θ |y); right: p( ỹ|y).
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FIGURE 1.4
Inferences on normally distributed data, σ 2 known, “less informative” conjugate prior, Y = 370,
n = 5. Left: p(θ ); center: p(θ |y); right: p( ỹ|y).

1.4.1.2 Analysis with a Non-Informative Prior

For the normal model with σ 2 known, consider now the non-informative
prior p(θ ) ∝ constant. The posterior after n observations y = (y1, . . . , yn) is

p(θ |y) ∝ p(y|θ ) p(θ )
∝ p(y|θ )

∝ e− 1
2σ2

∑n

i=1
(yi −θ )2

= e− 1
2σ2 [nθ2−2θ

∑
yi +
∑

y2
i ]

= e− n
2σ2 (θ2−2θY+

∑
y2

i /n)
.

Completing the square on θ in the exponent (placing constant terms in the
proportionality constant),

p(θ |y) ∝ e− n
2σ2 (θ−Y)2

.

Therefore,

θ |y ∼ N(Y, σ 2/n), (1.10)

which evidently is a proper posterior. Note how we also obtain this distribu-
tion in the conjugate prior case when τ0 → ∞.

1.4.2 Inferences on Normally Distributed Data,
both Parameters Unknown

1.4.2.1 Analysis with a Conjugate Prior

The conjugate prior for this case is

µ|σ 2 ∼ N(µ0, σ 2/κ0)

and

σ 2 ∼ Inv-χ2 (ν0, σ 2
0

)
(a scaled inverse χ2 distribution, see Appendix). Notice that µ depends a
priori on σ 2, so no a priori independence assumption is made. The
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hyperparameter κ0 can be thought of as the number of data points we be-
lieve our prior beliefs to be “worth.” If κ0 > n (sample size), then the prior
will have a strong influence on the posterior and vice versa. The joint prior
density is

p(µ, σ 2) ∝ σ−1e− κ0
2σ2 (µ0−µ)2

(σ 2)−(ν0/2+1)e−ν0σ
2
0 /(2σ 2)

= σ−1(σ 2)−(ν0/2+1)e− 1
2σ2 (ν0σ

2
0 + κ0(µ0−µ)2) ,

which Gelman et al. [11] refer to a Normal-inverse-χ2 distribution (a four
parameter distribution), that is,

(µ, σ 2) ∼ N-Inv-χ2 (µ0, σ 2
0 /κ0; ν0, σ 2

0

)
.

We need to show that the joint posterior distribution after observing y =
(y1, . . . , yn) is also of the Normal-inv-χ2 form. We have that:

p(µ, σ 2|y) ∝ σ−1(σ 2)−(ν0/2+1)e− 1
2σ2 (ν0σ

2
0 +κ0(µ0−µ)2)︸ ︷︷ ︸

p(µ, σ 2)

× (σ 2)−n/2e− 1
2σ2

(∑n

i=1
(yi −Y)2+n(Y−µ)2

)
︸ ︷︷ ︸

p(y|µ, σ 2)

. (1.11)

Thus, we need to show that (µ, σ 2|Y, s2) ∼ N-Inv-χ2(µn, σ 2
n ; νn, σ 2

n ). Note
that the posterior is a function of the data only through Y and s2 (i.e., these
are sufficient statistics). The four parameters of the posterior are given by

µn = κ0

κ0 + n
µ0 + n

κ0 + n
Y

κn = κ0 + n

νn = ν0 + n

νnσ
2
n = ν0σ

2
0 + (n − 1)s2 + κ0n

κ0 + n
(Y − µ0)2. (1.12)

Equation (1.12) can be understood as the posterior sum of squares being equal
to the prior sum of squares, plus the sample sum of squares, plus the sum
of squares due to differences between sample data average and prior mean.
The derivation to find this posterior requires taking the exponents of the
exponential terms in Equation (1.11), completing the square in (µn −µ)2, and
treating all terms not a function of µ or σ constants that are gathered in the
proportionality constant, which is not shown. With this, one obtains

p(µ, σ 2|Y, s2) ∝ σ−1e− κn
2σ2 (µn−µ)2

(σ 2)−(νn/2+1)e− 1
2σ2 νnσ

2
n . (1.13)

Comparing Equation (1.11) and Equation (1.13), we confirm that
(µ, σ 2|Y, s2) ∼ N-Inv-χ2(µn, σ 2

n ; νn, σ 2
n ).

From the above, the conditional posterior distribution of the mean is

µ|σ 2, Y, s2 ∼ N
(

µn,
σ 2

κn

)
= N

(
κ0µ0 + nY

κ0 + n
,

σ 2

κ0 + n

)
.
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This can be written as

N

(
κ0
σ 2 µ0 + n

σ 2 Y
κ0
σ 2 + n

σ 2

,
1

κ0
σ 2 + n

σ 2

)
,

which is in agreement with the posterior obtained for µ in the case that σ 2 is
known — see Equation (1.9), using κ0

σ 2 = 1
τ 2

0
or τ 2

0 = σ 2

κ0
.

The marginal posterior distributions of the parameters, obtained from
integrating the joint posterior, are

σ 2|Y, s2 ∼ Inv-χ2 (νn, σ 2
n

)
(1.14)

and

µ|Y, s2 ∼ tνn

(
µn, σ 2

n /κn
)
. (1.15)

Finally, the predictive posterior distribution of a new observation ỹ is obtained
from

p( ỹ|y) =
∫ ∫

p( ỹ|θ , σ 2, y)︸ ︷︷ ︸
N(θ ,σ 2)

p(θ , σ 2|y)dθdσ 2,

which can be solved analytically, yielding

ỹ|y = ỹ|Y, s2 ∼ tνn

(
µn,

σ 2
n (κn + 1)

κn

)
.

Reporting a graph of the posterior distributions is the most complete
approach for making inferences. If needed, the posterior predictive density
can be simulated either directly from the Student t distribution or approxi-
mated from the posterior of the parameters as follows:

1. Simulate σ 2 from an Inv-χ2(νn, σ 2
n ). If no inverse χ2 generator is at

hand, one can do the following:
(a) Simulate X ∼ χ2

νn
.

(b) Let σ 2 = νnσ
2
n /X.

2. Simulate µ ∼ N(µn, σ 2/κn).
3. Simulate ỹ ∼ N(µ, σ 2).

Example
Inferences on normal data, both parameters unknown, conjugate priors. Suppose
we think a priori that the joint distribution prior of the parameters has hy-
perparameters µ0 = 150, κ0 = 1, ν0 = 1, and σ0 = 10. We then collect 10
observations from which Y = 100 and s2 = 20. With this prior and data, the
posterior parameters are µ10 = 104.54, κ10 = 11, ν10 = 11, and σ 2

10 = 232.06.
We will simulate the predictive density of a new observation, ỹ|y, using a)
the distributions of σ 2|y and θ |σ 2, y and b) using the t distribution directly.
Figure 1.5 shows histograms obtained using 10,000 draws from the marginal
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FIGURE 1.5
Inferences on normally distributed data, θ and σ 2 unknown, conjugate prior, Y = 100, s2 = 20,
n = 10. Left: p(σ 2|y); center: p(θ |σ 2, y); right: p( ỹ|y).

distributions; Figure 1.6 shows the corresponding posterior predictive density
generated directly from the t distribution’s closed form. The two simulated
predictive densities are practically the same as expected. The distribution of
σ 2|y is a scaled inverse chi-square, with expected value ν10/(ν10−2)σ 2

10 = 283.5
and mode at ν10/(ν10 + 2)σ 2

10 = 196.3. Although in this case, using the closed
form of the predictive density is easy (to report it using a graph, from exam-
ple), this illustrates a useful approach to generate the distribution of ỹ|y when
no closed-form expression exists.

1.4.2.2 Analysis with a Non-Informative Prior

We will only sketch the main results for a non-informative prior. For two
unknown parameters, we apply Jeffreys’ rule one parameter at a time, i.e.,

−50 0 50 100 150 200 250
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FIGURE 1.6
Predictive density p( ỹ|y) obtained by simulating directly from the t distribution, θ and σ 2 un-
known, conjugate prior, Y = 100, s2 = 20, n = 10. Compare with the rightmost graph on
Figure 1.5.
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we assume a priori that the parameters are independent, in contrast to the
conjugate case:

p(θ ) ∝ constant and p(σ 2) ∝ 1/σ 2,

which yields

p(θ , σ 2) = p(θ ) p(σ 2) ∝ 1/σ 2.

The joint posterior distribution after observing y = (y1, . . . , yn) is obtained
by making use of the expression

p(θ , σ 2|y) = p(θ |σ 2, y) p(σ 2|y)

where, if σ 2 is given, we have shown — see Equation (1.10) — that for a
noninformative prior on θ ,

θ |σ 2, y ∼ N(Y, σ 2/n).

We can also show that

σ 2|y ∼ I nv − χ2(n − 1, s2).

With these two distributions, the joint posterior can easily be simulated. Note
how the distribution of σ 2|y is analogous to the classical (frequentist) result
(n − 1)s2/σ 2 ∼ χ2

n−1 where s2 is the random variable. In the Bayesian case, σ 2

is the random variable.
The marginal posterior for the mean is

θ |y ∼ tn−1(Y, s2/n),

where the statistics Y and s2 are sufficient. The distribution is a noncentral t
distribution with location parameter Y and scale parameter s2/n. Note this
implies the Bayesian result

θ − Y
s/

√
n

∼ tn−1,

a central t, where θ is the random variable. Compare this with the classical
result:

Y − θ

s/
√

n
∼ tn−1,

where Y is the random variable.
Similarly, as in the conjugate case, the posterior predictive distribution is

given by

p( ỹ|y) =
∫ ∫

p( ỹ|θ , σ 2, y)︸ ︷︷ ︸
N(θ ,σ 2)

p(θ , σ 2|y)dθdσ 2.

The integral can be solved analytically, after some algebra, yielding

ỹ|y ∼ tn−1

(
Y,
(

1 + 1
n

)
s2
)

.
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This equation can be graphed and reported. If needed, the posterior predictive
density can be simulated either by directly drawing from the t distribution
or from the parameter posteriors as follows:

1. Draw (θ , σ 2) from p(θ , σ 2|y):
(a) Draw σ 2 from σ 2|y ∼ Inv-χ2(n − 1, s2).
(b) Draw θ from θ |σ 2, y ∼ N(Y, σ 2/n).

2. Draw ỹ from ỹ ∼ N(θ , σ 2).

1.4.3 Inferences on Multivariate Normally Distributed Data, Mean
and Covariance Matrix Unknown, Conjugate Prior

The developments for the multivariate normal data parallel those of the uni-
variate case. We will consider only the conjugate prior case. If y is a p×1 vector
of observables (in applications, the p elements typically refer to p different
responses observed simultaneously) with distribution

y|µ, Σ ∼ N(µ, Σ),

where Σ is a p × p covariance matrix and µ is a p × 1 vector of means, the
likelihood for one multivariate observation y = y1 is

p(y|µ, Σ) ∝ |Σ|−1/2 e− 1
2 (y−µ)′Σ−1(y−µ).

For a sample of n points, the likelihood is

p(y1, . . . , yn|µ, Σ) ∝ |Σ|−n/2 e− 1
2

∑n

i=1
(yi −µ)′Σ−1(yi −µ)

= |Σ|−n/2 e− 1
2 tr (Σ−1S0) ,

where S0 =∑n
i=1(yi −µ)(yi −µ)′ (the last equality above can be shown going

step by step over the products involved in the exponential).
The conjugate prior is

µ|Σ ∼ N(µ0, Σ/κ0)
Σ ∼ I nv − Wishart

(
ν0, Λ−1

0

)
,

where the inverse Whishart distribution is the multivariate analogy of the
inverse χ2 distribution (see Appendix). Here Λ is a p × p matrix and ν0 are
the degrees of freedom. Just as in the univariate case, the prior of the mean
vector depends on the covariance matrix, so no a priori assumption is made
about the independence of these two parameters. Also, κ0 can be understood
as the number of observations we think our prior is “worth,” with κ0 > n
resulting in a prior that dominates the data and vice versa.

The joint prior density is

p(µ, Σ) ∝ |Σ|−(ν0+p)/2+1 e− 1
2 tr(Λ0Σ−1)− κ0

2 (µ−µ0)′Σ−1(µ−µ0) ,
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which Gelman et al. [11] call a Normal-Inverse Wishart (µ0, Λ0/κ0; ν0, Λ0).
Following exactly the same steps as in the univariate case, the joint posterior
density

p(µ, Σ|y1, . . . , yn) = p(µ, Σ|Y, S)

is

µ, Σ|Y, S ∼ N − Inv − Wishart(µn, Λn/κn; νn, Λn)

with

µn = κ0

κ0 + n
µ0 + n

κ0 + n
Y

κn = κ0 + n

νn = ν0 + n

Λn = Λ0 + S + κ0n
κ0 + n

(Y − µ0)(Y − µ0)′,

where Λn, Λ0 and S are sum of squares for the posterior, the prior, and the
data (just as in the univariate case), and S =∑n

i=1(yi − Y)(yi − Y)′.
The marginal posterior of µ is given by

µ|Y, S ∼ tνn−p+1

(
µn,

Λn

κn(νn − p + 1)

)
.

Finally, the predictive posterior distribution of a future observation ỹ is

ỹ|Y, S ∼ tνn−p+1

(
µn,

Λn(κn + 1)
κn(νn − p + 1)

)
.

Example
Consider a bivariate case (p = 2), where we believe a priori that µ|Σ ∼
N([0, 0]′, Σ/10) and Σ ∼ Inv-Wishart (10, (10I2)−1). We collect 5 samples,
with values yi equal to (6, 4)′, (4, 7)′, (3, 8)′, 6, 3)′, and (5, 5)′, thus Y = (6.4, 7.2)′.
Therefore, we have that the posterior distribution has

µ5 = 10
15

(
0
0

)
+ 5

15

(
4.8
5.4

)
=
(

1.6
1.8

)
κ5 = 15
ν5 = 15

Λ5 = Λ0 + S + 50
15

(Y)(Y)′ =
(

93.6 75.8
75.8 124.4

)
where

S =
(

6.8 −10.6
−10.6 17.2

)
.
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FIGURE 1.7
Posterior predictive density, p(ỹ|y), bivariate Student t distribution, unknown parameters, con-
jugate prior. µ0 = (0, 0)′, Y = (6.4, 7.2)′, n = 5, µ5 = (1.6, 1.8)′. The prior dominates the data, so
the posterior is located not too far from the former.

Figure 1.7 shows 2-D and 3-D plots of the corresponding posterior predictive
distribution. Note that because κ0 > n, the posterior mean is located closer to
the prior mean (the origin) than to the data mean.

In this volume, the case when Σ is known is used by Alt (Chapter 5) to
develop multivariate process monitoring schemes.

1.5 Applications in Process Monitoring

The practice of statistical process control (SPC) advises the use of one or more
control charts to determine the stability of process parameters and to detect
changes in them. Most of the control charting methods used in practice follow
the work by Shewhart, which is frequentist. This is based on collecting data
from the process while it was believed to be in a state of statistical control (by
which is typically meant a state where the data distribution is stable over time)
to estimate the model parameters. Tentative control limits are determined
from these estimates, and if the initial data set is determined to be indeed in
control, the limits are used to monitor future production data — otherwise,
the tentative limits can be revised, and the procedure repeated.

Performance of a chart is based on the frequentist concept of run length
(RL). This is the number of samples until detection, which we want to be large
if the process is in-control (i.e., we want low false-alarm rate) and small if the
process is really out of control (i.e., we want high power).

A problem that has been studied with considerable interest in the SPC
literature in the last 15 years is the “Short Run SPC Problem.” This problem
points out the obvious difficulties one will encounter if the data set used
to estimate the parameters (and control limits) is small, a problem that is
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encountered when manufacturing in small lots of parts. Rather than promis-
ing the impossible, namely, good RL performance (by good, we mean as good
as if parameters were known) with small data sets, one could approach the
short run SPC problem from a Bayesian perspective. Starting from a prior dis-
tribution on the process parameters, posterior distributions are obtained from
which inferences can be made. This makes sense because it is precisely when
little data is available when a prior belief could be incorporated in practice.

For example, considering monitoring the mean of a normally distributed
process, when both parameters are unknown, using conjugate priors. In this
case, we have seen from Equation (1.14) and Equation (1.15) that the marginal
posterior distributions at time n are

σ 2|Y, s2 ∼ I nv − χ2 (νn, σ 2
n

)
and

µ|Y, s2 ∼ tνn

(
µn, σ 2

n /κn
)
.

A graphical device proposed by Hoadley [13] (see also Crowder [6]) is to
determine if the process is on target T by plotting box and whisker graphs
with box limits at

µn ± Lσ 2
n /κn

for some multiple L , which is a percentage point of the t distribution with νn

degrees of freedom. If these boxes fail to cover the target value T , the process
is deemed out of control (notice how “control with respect to a target” is a
different notion than Shewhart’s notion of a state of control, albeit one that
is frequently used in industry). The value of L must be determined based on
the desired RL performance. Crowder [6] provides RL analysis and tables for
a more general model, which we describe in Section 1.7.

Despite how reasonable this approach may be in theory, for a real “short
run” situation in practice, solely determining a state of control to target is
probably not what a manufacturer wants. In most cases in industry, a major
concern is also how to adjust the process to bring back to target a (short-run)
process that might start off-target. This is related to the “Setup Adjustment
Problem,” which we will discuss in Section 1.8.

In Chapter 6 of this volume, Tagaras and Nenes give a review of Bayesian
approaches to process monitoring. They present a model for the optimal
design of X charts in which the time between samples, the sample size, and
control limits can change adaptively, depending on the posterior probabilities
of the process being in control or not. To obtain the solution to the adaptive
X chart problem, they investigate numerical methods for the approximate
solution of the underlying dynamic programming problem.

Parameter monitoring and adaptive chart designs are two instances where
Bayesian methods have been used in the area of statistical process control. A
third instance, of great importance in time series and econometrics applica-
tions, is changepoint detection. In this type of problem, the goal is to infer
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the point in time k at which a process changes one or more of its parameters.
For example, Carlin et al. [4] study a changepoint detection problem in which
data follows

yt ∼ N
(
α1 + β1t, σ 2

1

)
, t = 1, 2, . . . , k

and

yt ∼ N
(
α2 + β2t, σ 2

2

)
, t = k + 1, k + 2, . . .

A priori, the parameters (α1, β1) and (α2, β2) have independent normal dis-
tributions, whereas the variances have independent inverse χ2 distributions.
The key parameter of interest is k, the changepoint, which a priori follows a
uniform distribution over all time indices. A Gibbs sampler (see Chapter 2)
is utilized to find the posterior of the parameters, including k.

1.6 Kalman Filtering from a Bayesian Viewpoint

In this section, we look at a model that is central in process monitoring and
control. The main result is the celebrated Kalman filter, which can be de-
rived using a Bayesian approach, as we do here. We follow in this section the
excellent account by Meinhold and Singpurwalla [23]. However, we point out
that in the original derivation of his filter, Kalman [17] did not use a Bayesian
approach.

Let Yt−1 = (yt−1, yt−2, yt−3, . . .) represent the collection of p-dimensional
data vectors that have been observed from a process up to time instant t − 1.
(If the data is univariate, then p = 1 and the resulting yi ’s are scalars. We
look at the general vector case.) In contrast to previous sections, this is time
series data, that is, to each data point we attach a subscript denoting a discrete
point in time when the observation was made. Assume the data are generated
according to the observation equation:

yt = Ftθt + vt, vt ∼ N(0, Vt) (1.16)

where Ft is a p × q matrix of coefficients assumed known, vt is a p × 1 i.i.d.
random vector with zero mean and covariance matrix Vt, and the q ×1 vector
θt varies according to the state equation:

θt = Gtθt−1 + wt , wt ∼ N(0, Wt) (1.17)

where the q × q matrix Gt is also assumed known, and wt is i.i.d and uncor-
related with vt. The two covariance matrices Vt and Wt are assumed known.
We can only observe yt, but we are interested in knowing the “state” of the
process θt.

Although admittedly with many strong assumptions, the “state-space”
model of Equation (1.16) and Equation (1.17) has found a very large number
of applications in several areas. We detail one application to process quality
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control later in the next section. In the time series and econometrics literature,
the state-space model is known as a dynamic linear model (DLM), see West and
Harrison [33]. Later in this volume (Chapter 8), Hock and Soyer consider a
DLM in conjunction with MCMC methods and apply it to a problem related
to inferences in pulse train signals, such as radar signals, for application in
defense systems.

In 1960, Kalman found a method for recursively estimating θt based on
the most current observation yt and the past observations Yt−1. His method
became known as the Kalman filter, which we now derive using Bayes’
theorem.

From Bayes’ theorem,

p(θt|yt , Yt−1) ∝ p(θt|Yt−1) p(yt|θt , Yt−1).

In this form, Bayes’ theorem provides a recursive equation to update the
posterior distribution of θt given the data. We can use the mean of this
posterior distribution as a “point estimate.” In what follows, we will use
the notation

θt−1|Yt−1 ∼ N(θ̂t−1, Σt−1)

and, in general, θ̂ will refer to E[θ] and Σ will denote Var(θ).
At time t, the prior distribution of the state (θt) (prior to observing yt) is

given by

θt|Yt−1 ∼ N(Gtθ̂t−1, GtΣt−1G′
t + Wt), (1.18)

where we define henceforth the q ×q matrix Rt = GtΣt−1G′
t+Wt, the variance

of the prior of the state.
Suppose the state is given (fixed). From the observation equation, we then

have that

yt|θt , Yt−1 ∼ N(Ftθt , Vt),

noting that this gives the likelihood of the observation at time t. If θt is not
given but instead is unknown, then it is modeled as a random variable and
we have that

yt|Yt−1 ∼ N(FtGtθ̂t−1, FtRtF′
t + Vt). (1.19)

The derivation of the Kalman filter from a Bayesian point of view makes
use of two key facts of conditional multivariate normal distributions. We
indicate these two results in the Appendix to this chapter for completeness.
The second result (which is actually the reverse of the first result) indicates the
following. Let Xt be a q × 1 vector and X2 be a ( p − q ) × 1 vector. If the vector
X1, given a value x2 of the vector X2 (written X1|X2 = x2) has (conditional)
distribution

X1|X2 = x2 ∼ Nq
(
µ1 + Σ12Σ−1

22 (x2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
(1.20)
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and X2 ∼ Np−q (µ2, Σ22), then we have that the joint distribution of X1 and
X2 is (

X1
X2

)
∼ Np

((
µ1
µ2

)
,
(

Σ11 Σ12
Σ21 Σ22

))
.

Applying this result with X1 ≡ yt and X2 ≡ θt, we get that since we have the
prior Equation (1.18) and Equation (1.19), then the joint prior distribution of
the observation and the state is given by(

yt
θt

)
∼N

((
FtGtθ̂t−1

Gtθ̂t−1

)
,
(

Var(yt) = FtRtF′
t + Vt Σ12 = Cov(yt , θt)

Σ21 = Cov(θt , yt) Var(θt) = Rt

))
.

One remaining question to resolve is what is Σ12 = Cov(yt , θt) = Σ′
21. To find

it, notice from Equation (1.16) and Equation (1.20) that

E[yt|θt] = FtGtθ̂t−1︸ ︷︷ ︸
µ1

+Σ12 R−1
t︸︷︷︸

Σ−1
22

( θt︸︷︷︸
x2

− Gtθ̂t−1︸ ︷︷ ︸
θt

) = Ftθt.

For this expression to hold, it is sufficient that

Σ12R−1
t = Ft ⇒ Σ12 = FtRt ,

which also implies Σ21 = R′
tF

′
t. Therefore, the joint prior distribution of state

and observation at time t is given by(
yt
θt

)
∼ N

((
FtGtθ̂t−1

Gtθ̂t−1

)
,
(

FtRtF′
t + Vt FtRt

R′
tF

′
t Rt

))
.

However, what we need to make inferences about the state is θt|yt , Yt−1,
the posterior distribution of the state (posterior after observing yt). To find this
distribution, apply the first “key result” of multivariate conditional normals
listed in the Appendix. The result says that if(

X1
X2

)
∼ Np

((
µ1
µ2

)
,
(
Σ11 Σ12
Σ21 Σ22

))
and |Σ22| > 0, then the marginal distribution of X1 given X2 = x2 is given by

X1|X2 = x2 ∼ Nq
(
µ1 + Σ12Σ−1

22 (x2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
.

Applying this result with X1 = θt and X2 = yt, we get the desired posterior
distribution of the state:

θt|yt , Yt−1 ∼ N(Gtθ̂t−1︸ ︷︷ ︸
µ1

+ R′
tF

′
t︸︷︷︸

Σ12

(FtRtF′
t + Vt)−1︸ ︷︷ ︸
Σ−1

22

(yt︸︷︷︸
x2

− FtGtθ̂t−1︸ ︷︷ ︸
µ2

),

Rt︸︷︷︸
Σ11

− R′
tF

′
t︸︷︷︸

Σ12

(FtRtF′
t + Vt)−1︸ ︷︷ ︸
Σ−1

22

FtRt︸︷︷︸
Σ21

).
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The two moments of this distribution can be updated recursively as each new
observation yt is obtained, yielding the Kalman filter recursive equations. The
mean of the posterior of the state is updated as follows:

θ̂t = Gtθ̂t−1 + R′
tF

′
t(FtRtF′

t + Vt)−1(yt − FtGtθ̂t−1) (1.21)

or, more simply, as

θ̂t = Gtθ̂t−1 + Ktet (1.22)

where

Kt = R′
tF

′
t(FtRtF′

t + Vt)−1 (1.23)

is a q × p matrix called the Kalman gain matrix (note this matrix is not a function
of the data nor a function of any unknown parameter), and et = yt −FtGtθ̂t−1,
a p ×1 vector of one step ahead prediction errors. In the time series literature,
this would be written et = yt − ŷt|t−1 and called the innovations, because
they depend only on the last observation. In other words, the innovations are
so called because they are the newest “correction” introduced into the state
estimate due to the latest observation.

The second recursive equation, which completes the description of the
Kalman filter, is:

Σt = Rt − R′
tF

′
t(FtRtF′

t + Vt)−1FtRt = [I − KtFt]Rt , (1.24)

which updates the variance-covariance matrix of the posterior distribution of
the state.

The three prior equations evidently require starting values θ̂0 and Σ0.
These characterize the initial prior θ0 ∼ N(θ̂0, Σ0). Note how at each point in
time, only the latest observation is needed to update the expressions. This is
a direct consequence of the recursive application of Bayes’ theorem.

The optimality properties of Kalman filter estimates are well known.
Duncan and Horn [8] show how under all the stated assumptions, the Kalman
filter estimate minimizes the mean square error (i.e., it is MMSE optimal)
among all possible estimators. If vt and wt are not normally distributed, the
Kalman filter estimate is MMSE optimal only among all linear estimators.
However, the filter is not robust against non-normality [24]. This is because
the state estimate of Equation (1.22) is not a bounded function of the errors
et, and the variance matrix of Equation (1.24) is not a function of the data.
Thus, an outlier can have a strong effect on the state estimate. Estimation
of the state when errors are non-normal, when the state and or observation
equations are not linear, or when there are unknown parameters needs to be
accomplished with numerical methods. MCMC methods (see Chapter 2) have
been used successfully for such purpose.

As mentioned earlier, Kalman filtering has had a tremendous range of
applications in practice. Besides obvious applications in aircraft control, the
Kalman filter is used, for example, to formulate the likelihood function of
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ARIMA models in the time series literature, a formulation that allows to
include missing data [2].

1.7 An Application of Kalman Filtering to Process Monitoring

To illustrate the use of some of the previous results on Kalman filtering to
process monitoring, consider the following model, studied by Crowder [6]:

yit = θt + εi t , i = 1, 2, . . . , n (1.25)
θt = θt−1 + vt, t = 1, 2, . . . (1.26)

where θt is the process mean and the ε′
i ts and vts are i.i.d random variables with

zero means and variances σ 2
ε and σ 2

v , respectively. This is a slight modification
of the “steady model” studied by Smith [31]. It is a particular case of the state-
space model shown in the previous section with p = n, q = 1, Ft = 1 (an n×1
vector of ones), Vt = σ 2

ε In, Gt = 1 and Wt = σ 2
v . Assuming all parameters

known, the posterior distribution of the state is given by the Kalman recursive
equations, which, after some algebra, reduce to

θ̂t = (1 − λt)θ̂t−1 + λtYt

�t = λtσ
2
ε /n

where

λt = �t−1 + σ 2
v

�t−1 + σ 2
v + σ 2

ε /n
.

Crowder [6] notes how the following limit is approached fast:

λ = lim
t→∞ λt = 1√

� + 1
4 + 1

2

where � = σ 2
ε /n
σ 2

v
. Thus, in practice, one loses little if the state is estimated from

the steady-state filter

θ̂t = (1 − λ)θ̂t−1 + λYt,

which indicates that the MMSE optimal forecast of the process of Equa-
tion (1.25) and Equation (1.26) is an exponentially weighted moving average
(EWMA) of the data with parameter λ.

The ratio � is a measure of how rapidly the process mean “moves.” If
� >> 1, the process mean moves slowly, λ is near zero, and most weight is
given to the older data. Conversely, if � is near zero, the process mean moves
fast, λ is close to 1 and little weight is given to older data, with most weight
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given to the most recent sample mean. Crowder gives RL performance of
EWMA control charts based on this model — although as mentioned recently
by Crowder and Eshleman [7], if the process mean moves fast, the process
monitoring question of whether a major shift has occurred is not relevant.
The focus in such case is instead estimation of the process mean, providing
vital information to process engineers about whether the process needs to be
adjusted.

Crowder [6], (see also Crowder and Eshleman [7]) proposes “adaptive
filtering” methods in case the process parameters are unknown. A different
way to approach such case is to use MCMC or sequential Monte Carlo (SMC)
methods of the kind described in Chapter 2. See Zilong and Del Castillo [36]
for details.

In Chapter 3, Tsiamrytzis and Hawkins study a Bayesian monitoring
problem where the objective is to monitor the state of the following model:

yt = θt−1 + νt , νt ∼ N(0, cσ 2)
θt = θt−1 + wt,

where

wt ∼
{

N(0, σ 2) with probability p

N(δ, σ 2) with probability 1 − p

and δ is the expected magnitude of random “shocks” that occur with prob-
ability 1 − p. Tsiamrytzis and Hawkins derive the posterior distribution of
θt, σ 2, once the nuisance parameters are integrated out, and use it to determine
if the process mean has crossed a given threshold or not.

1.8 An Application of Kalman Filtering to Process Control

We now describe an application of Kalman filtering to the area of engi-
neering process control, or EPC. We consider the so-called Setup Adjustment
Problem, first studied by Grubbs [12]. This relates to a machine that produces
discrete parts in batches, with a setup operation taking place between batches.
Let us initially assume we are interested in controlling a single property
or quality characteristic in the product being produced by manipulating a
single controllable factor. The setups might induce random errors in the qual-
ity characteristic. The goal is to adjust the process to minimize the effect of
the setup errors using a mean square error objective. Let the level or “set-
point” of the controllable factor be Ut. Then Ut − Ut−1 ≡ ∇Ut is the change
or adjustment made at time t. The subscript t denotes the observation or part
number.

If yt denotes the deviation from target of the quality characteristic, in this
type of problem the model describing the process is assumed

yt = µt + vt, vt ∼ N
(
0, σ 2

v

)
, i.i.d., (1.27)
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where

µt = µt−1 + ∇Ut. (1.28)

Equation (1.28) indicates the assumption that adjustments modify the process
mean µt, where the initial recursion will be assumed to be µ1 = µ0 +U0, with
U0 the initial setpoint before production starts. Evidently the two previous
equations correspond to an “observation” and “state” model, because we
only observe yt but not µt. The mean square error (MSE) objective, more
appropriately called mean squared deviation objective in this control context,
is with respect to the state of the process over some finite horizon n, so we
wish to find the adjustments ∇Ut that minimize

E

[
n∑

t=1

(µt|Yt−1 − target)2

]
= E

[
n∑

t=1

µ2
t |Yt−1

]
(1.29)

because the state µ has itself “target” zero as it measures deviation from the
actual target. Each term in the sum is of the form

E
[
µ2

t |Yt−1] = Var
(
µ2

t |Yt−1)+ (E
[
µt|Yt−1])2

. (1.30)

This is simply the usual formula which says that MSE equals variance plus
squared bias applied to the prior distribution of the state at time t. Note how
we wish to choose ∇Ut to control µt, so we cannot make use of the observation
at time t, yt, to do so, because yt depends on µt. This is why the prior at time
t appears in the above equations.

Comparing Equation (1.27) and Equation (1.28) with Equation (1.22) and
Equation (1.24), we see that, using notation from the previous section,
p = q = 1, θ̂ = E[µ], � = Var(µ), Gt = Ft = 1, Vt = σ 2

v , and Wt = 0.
The state equation has the extra term ∇Ut−1, which we simply append to the
Kalman filter expressions.

From Equation (1.18), the distribution of the state prior to observing yt,
needed in the two previous equations is:

µt|Yt−1 ∼ N(µ̂t−1 + ∇Ut−1, �t−1),

thus

E
[
µ2

t |Yt−1] = �t−1 + [µ̂t−1 + ∇Ut−1]2.

To minimize this expression we set

∇t−1 = −µ̂t−1.

This also minimizes the sum, Equation (1.29) [9].
To see what effect this adjustment has, and to better understand how to

compute the right-hand side of the expression above, we need to look at the
distribution of the state after we observe yt, i.e., µt|yt, Yt−1, the posterior of µ.
Its distribution is normal with moments given by the Kalman filter equations.
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Using these equations with the equivalences θ̂t ≡ µ̂t = E[µt|yt, Yt−1] and
�t ≡ Var(µt|yt, Yt−1), we see that

Rt = Gt�t−1Gt−1 + Wt = �t−1

Kt = R′
t F ′

t (Ft Rt F ′
t + Vt)−1 = �t−1

�t−1 + σ 2
v

where

�t = �t−1 − �2
t−1

�t−1 + σ 2
v

= �t−1σ
2
v

�t−1 + σ 2
v

= σ 2
v

t + σ 2
v

�0

, (1.31)

which implies that the Kalman gains are equal to

Kt = �t−1

�t−1 + σ 2
v

= 1

t + σ 2
v

�0

.

The expected value of the posterior distribution of the state is

µ̂t = µ̂t−1 + ∇Ut + Kt(yt − FtGt(µ̂t−1 + ∇Ut−1))

= µ̂t−1 + ∇Ut−1 + 1

t + σ 2
v

�0

(
yt − (µ̂t−1 + ∇Ut−1)

)
. (1.32)

Therefore, the adjustment rule

∇Ut−1 = −µ̂t−1

implies from Equation (1.32) that µ̂t = Kt yt, and this in turn implies that

∇Ut = −Kt yt = − 1

t + σ 2
v

�0

yt. (1.33)

This is the same expression as the one derived by Grubbs [12] who solved
the problem from a clever — but complicated — frequentist approach. If
�0 → ∞, we get ∇Ut = −yt/t, Grubbs’ elegant “harmonic” rule, which
makes the adjustments progressively smaller following the harmonic series
{1/t}.

Extending the previous development to the case when we have p > 1
responses of interest is straightforward, as the Kalman filter formulation is
multivariate. This and other extensions, such as changing the objective func-
tion to include quadratic adjustment costs or assuming errors in the adjust-
ments, is also relatively easy [9] compared with the frequentist approach,
which results instead in intractable problems. For example, to include errors
in the adjustments, all we have to do is to include a additive (normal) ran-
dom error wt to the state equation, and re-apply the Kalman filter recursive
expressions. This shows the advantages of the Bayesian formulation.
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Notice that in this application, the initial prior distribution is (µ0, �0) and
has an easy interpretation: it is our guess of the setup error of the machine.
Thus, for example, if we think a priori that on average no systematic error
exists, we should set µ0 = 0 and set the variance �0 to reflect our confidence
in this guess. Using a frequentist point of view, Grubbs’ indicates that what
we call �0 is simply the variance of the setup over many setup occurrences.
Evidently, if historical information exists about previous batches produced,
this can be used to estimate µ0, �0 in an “empirical Bayes form,” and start
the adjustment procedure accordingly. Related references to Bayesian setup
adjustment are [5, 20–22].

In Chapter 9, Pan discusses the setup adjustment problem in greater detail.
Crowder’s Ph.D. thesis [6] is an excellent reference for applications of Kalman
filtering in process monitoring and control.

1.9 Bayesian Linear Regression and Process Optimization

Consider a normal linear regression model with p regressors x1, x2, . . . , xp,
which themselves can be nonlinear transformations of underlying control-
lable factors. For example, x3 = x1x2, or x4 = log(x2), etc. We assume we
have conducted N “experiments,” an experiment consisting on observing
the values of the p regressors together with the value of the response, y. In
this section, we assume a single response is of interest. The N experimental
conditions are gathered in a N × p matrix

X = [xi j ],

which we will call the “design matrix” in what follows (this will include the
actual N × k design matrix if k underlying factors are used). Put the observed
response values in an N × 1 vector y. If the assumed normal model is valid,
it should be valid for all N observations, so for each observation i , we can
express the response as

yi |β, X = β1xi1 + β2xi2 + · · · + βpxip + εi

where we assume ε ∼ N(0, σ 2) and β denotes the p × 1 vector of parameters.
The response is then assumed to be the result of two effects: the first one,
which we can explain, is due to the p regressors; the second one which we
cannot attribute to any of the p factors, we thus model as a random variable
with mean zero and constant variance. The two sources of uncertainty, due to
not knowing the parameters and due to not knowing the intrinsic variability
of the errors of the model, must be considered in any inference problem. This
is achieved by using the Bayesian approach.

Based on this model, we have that

E[yi |β, X] = β1xi1 + β2xi2 + · · · + βpxip
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and

Var(yi |β, σ 2, X) = σ 2.

In many applications, x1 is assumed to be 1, and the model has an intercept.5

We can summarize the model by saying that

y|β, σ 2, X ∼ N(Xβ, σ 2I)

where y = (y1, . . . , yn)′.

1.9.1 Analysis with a Non-Informative Prior

The non-informative prior for the parameters of this regression model is uni-
form in (β, log σ ), or

p(β, σ 2|X) ∝ 1
σ 2 .

We assume both parameters are independent a priori. Note that we indicate
that the design is given because we can design the experiment before deciding
on the prior. Because of this, in regression cases it is also customary to define
the prior taking advantage of our knowledge of the design. The resulting
design is called a “g-prior” and was proposed by Zellner [34]. In this section
we instead use non-informative priors.

The likelihood for N observations is

p(y|β, σ 2, X) = 1
(2π )N/2σ N

e− 1
2σ2 (y−Xβ)′(y−Xβ) ,

so the posterior (∝ prior × likelihood) is

p(β, σ 2|y, X) = 1
(σ 2)N/2+1 e− 1

2σ2 (y−Xβ)′(y−Xβ)
. (1.34)

The marginals for each parameter can be obtained by integration. For
example, the marginal density for β is obtained from

p(β|y, X) ∝
∫ ∞

0

1
(σ 2)N/2+1 e− 1

2σ2 (y−Xβ)′(y−Xβ)dσ 2

∝ [(y − Xβ)′(y − Xβ)]−N/2.

5 Models for mixture experiments usually have no intercept.



P1: shibu/Vijay

September 8, 2006 12:34 C5440 C5440˙C001

An Introduction to Bayesian Inference 39

Add and subtract Xβ̂ in each parentheses, where β̂ = (X′X)−1X′y makes
the right-hand side equal to

= [(y − Xβ̂)′(y − Xβ̂) + (β − β̂)′X′X(β − β̂)]−N/2

= [(N − p)s2 + (β − β̂)′X′X(β − β̂)]−N/2

=
[

1 + (β − β̂)′X′X(β − β̂)
(N − p)s2

]−N/2

[(N − p)s2]N/2︸ ︷︷ ︸
a constant

∝
[

1 + (β − β̂)′X′X(β − β̂)
(N − p)s2

]−(N−p+p)/2

(s2|X′X|−1)−1/2︸ ︷︷ ︸
another constant

,

which has the form of a multivariate t distribution (see Appendix) with
degrees of freedom v = N − p:

β|y, X ∼ tN−p(β̂, s2(X′X)−1).

Similarly, we can obtain the posterior marginal distribution of σ 2 by
integrating Equation (1.34) over β, obtaining a scaled inverse chi-square
distribution:

σ 2|y, X ∼ Inv χ2(n − p, s2).

The posterior predictive density can be shown to be equal [28] to

p( ỹ|y) ∝ 1[
1 + 1

N−p
( ỹ−w′β̂)2

s2[1+w′(X′X)−1w]

](N+1−p)/2 ,

which is a univariate Student t density (see Appendix):

ỹ|y ∼ tN−p(w′β̂, s2(1 + w′(X′X)−1w)).

Note this implies that

Var( ỹ|y) = N − p
N − p − 2

s2(1 + w′(X′X)−1w)

which is the sum of two components: the first, proportional to s2, is due to
intrinsic (sampling) variability; the second, proportional to s2(w′(X′X)−1w),
represents variance due to the uncertainty in the parameters.

Example
Optimization of a single response process.Consider now the use of the predictive
density for optimization purposes. Peterson [27] first proposed this use in
multiple response optimization and called it a Bayesian “reliability
approach” to optimization (see also Peterson’s contribution in Chapter 10
for a detailed presentation of this approach). The example data come from
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TABLE 1.2

Data for a chemical experiment, from [28]
int. x1 x2 x1x2 x2

1 x2
2 y1 =yield y2 =viscosity

1 -1 -1 1 1 1 76.5 62
1 -1 1 -1 1 1 77 60
1 1 -1 -1 1 1 78 66
1 1 1 1 1 1 79.5 59
1 0 0 0 0 0 79.9 72
1 0 0 0 0 0 80.3 69
1 0 0 0 0 0 80 68
1 0 0 0 0 0 79.7 70
1 0 0 0 0 0 79.8 71
1 1.41421 0 0 2 0 78.4 68
1 −1.41421 0 0 2 0 75.6 71
1 0 1.41421 0 0 2 78.5 58
1 0 −1.41421 0 0 2 77 57

Montgomery [25], who gives a chemical experiment in which three responses
are of interest: the yield of the process, the viscosity of the chemical, and the
molecular weight. In this example, we will consider the viscosity response.
Two underlying factors are controllable, the reaction time and the tempera-
ture, and we fit a quadratic polynomial. The X matrix containing the design
(a rotatable CCD) and the observed responses are shown in Table 1.2. The
process engineer wishes to know the operating conditions that would max-
imize the probability of the viscosity being between 62 and 68 units. To do
this, we need to solve.

max√
2≤x1,x2≤

√
2

∫ 68

62
p( ỹ|y)d ỹ

where the region over we wish to vary the two controllable factors ranges from
−√

2 to
√

2 in coded units, given the central composite design that was used.
Because the objective function is not concave, MATLAB’s fmincon nonlinear
optimization solver is run from a set of initial points selected according to a
random latin hypercube. For the viscosity response, we have that the highest
probability found is 0.7305 at w1 = 0.0852, w2 = 0.7845, so the solution is
well inside the experimental region.

Bayesian regression analysis based on a conjugate prior is discussed in
Chapter 12 by Baba and Gilmour, who discuss the analysis of saturated exper-
imental designs. The conjugate prior is similar to the Normal inverse Wishart
described in the section on multivariate normal data. These authors conclude
that the conjugate prior is quite inflexible to represent prior beliefs, and pro-
pose instead either the use of a finite mixture of densities as a prior or the use
of non-conjugate priors and the corresponding MCMC analysis. Approaches
to regression analysis with informative priors have the advantage of allow-
ing optimization as in the previous example with little data, and to allow



P1: shibu/Vijay

September 8, 2006 12:34 C5440 C5440˙C001

An Introduction to Bayesian Inference 41

sequential optimization as more data is gathered from early on in an
experiment. A successful commercial application of this idea is the Ultramax
sequential optimizer software, developed by Moreno (see Moreno’s descrip-
tion of this process optimization software in Chapter 11).

1.9.2 Comparison of the Bayesian Predictive Approach
to Frequentist Predictions in Regression

In classical (frequentist) regression, a prediction interval is constructed from
the pivot

e√
V̂ar(e)

= ỹ|w − ŷ|w
s
√

1 + w′(X′X)−1w
∼ tN−p

where the point estimate for the next observation ỹ at point w is ŷ|w =
w′β̂ = Ê[ỹ|w]. That is, we take the prediction error, ỹ|w − ŷ|w, divided by its
estimated standard error, which leads to a Student t distribution. This is used
to set up a valid prediction interval on ỹ|w, but notice that we still have that
the distribution of the future observation is simply ỹ|w ∼ N(w′β, σ 2). The t
distribution so obtained is for the prediction error, where ŷ|w is random. The
distribution of the pivot coincides with the predictive density of ỹ under a non-
informative prior. However, the fundamental difference is that in the Bayesian
approach, the probability measure is associated to ỹ|w, not to ŷ|w = w′β̂,
which in the Bayesian setting is simply a constant. But a probability measure
on ỹ that relates to our model is what we need to compute “reliabilities”
(i.e., probabilities of conformance) of the form P( ỹ|data, w ∈ A), where A is
a region defined by product specifications, as in the example. Therefore, no
way exists to compute this type of probabilities from the prediction intervals
(or regions, in case ỹ is multivariate), in the classical-frequentist approach.

1.10 Some General References in Bayesian Statistics

Several textbooks are devoted to Bayesian statistics. To close this chapter,
we would like to provide our suggestions to general references that we have
found particularly pedagogic (so this is indeed a subjective assessment). Three
older but very clear expositions of Bayesian inference, which include most if
not all of the topics discussed in this chapter, are the first edition of the book
by Press [28], the book by Box and Tiao [3], and the book by Zellner [35]. The
newer book by Press [29] includes modern developments, such as MCMC
methods. One of the best recent references in this field is the book by Gelman
et al. [11], which has a level of clarity not often encountered in textbooks. It is
also, in our opinion, one of the best references on MCMC methods (see next
chapter). The predictivist point of view, which we have emphasized in this
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chapter, is nicely discussed in the monograph by Geisser [10]. This book also
includes an interesting chapter of Bayesian methods in feedback control and
optimization problems.

The exposition in this chapter has not considered the important area of
statistical decision theory, in which the Bayesian approach has played an
important role. This is reflected in the books we suggest above. A now classic
presentation of the decision theory approach in Bayesian statistics is the book
by Berger [1], which is also an excellent reference on the foundations issues
of Bayesian statistics compared to classical statistics.

Appendix

Transformation of Random Variables Theorem

Let X be a continuous random variable with density p(x), and assume Y =
u(X) is a one-to-one transformation from A = {x : p(x) > 0} to B =
{y : p(y) > 0} with inverse transformation x = u−1(y) = w(y). If the
derivative d/dy w(y) is continuous and nonzero in B, the density of Y is
given by

p(y) = p(w(y))
∣∣∣∣dw(y)

dy

∣∣∣∣ .
(Scalar) Student t Density Function

p(t) = �((v + 1)/2)
�(v/2)

√
vπσ

(
1 + 1

v

(
t − µ

σ

)2
)−(v+1)/2

where E(t) = µ = mode(t), Var(t) = v
v−2σ 2 (v > 2).

Multivariate Student t Density Function

A q × 1 random vector t is distributed as a multivariate t if its density is

p(t) = �((v + q )/2)
�(v/2)vq/2πq/2 |Σ|−1/2

(
1 + 1

v
(t − µ)′Σ−1(t − µ)

)−(v+q )/2

where E(t) = µ = mode(t), Var(t) = v
v−2Σ(v > 2).
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Scaled Inverse χ2 and Inverse Gamma Distributions

The Inv-χ2(v0, σ 2
0 ) (scaled inverse chi-squared) is the distribution of σ 2

0 v2
0/χ

2
v0

,
i.e., it is the inverse of a usual χ2 distribution with v0 degrees of freedom that
is scaled by the quantity σ 2

0 v2
0, hence its name. Its density is

p(θ ) = (ν/2)ν/2

�(ν/2)
sν θ−(v/2+1) e−νs2/(2θ ) , θ > 0,

which has mean E(θ ) = ν
ν−2 s2, (ν > 2), Mode(θ ) = ν

ν+2 s2 and Var(θ ) =
2ν2s4

(ν−2)2(ν−4) , (ν > 4).
The conjugate prior for the variance of a normal is the Inverse Gamma

distribution (I G(α, β)), whose density is

p(θ ) = βα

�(α)
θ−(α+1) e−β/θ , θ > 0

with mean E[θ ] = β

α−1 , (α > 1), Mode(θ ) = β

α+1 , and Var(θ ) = β2

(α−1)2(α−2) ,
(α > 2).

The scaled inverse χ2 distribution is then a particular IG(ν/2, νs2/2)
distribution, hence it is the conjugate prior distribution for the normal vari-
ance, as discussed in this chapter.

Inverse Wishart Distribution

This is the conjugate prior distribution for the covariance matrix of a multi-
variate normal distribution. It is the multivariate generalization of the scaled
inverse χ2. If W is a p × p positive definite matrix, then the IW density is

p(W) =
(

2νp/2π p( p−1)/4
p∏

i=1

�

(
ν + 1 − i

2

))−1

|S|−ν/2|W|(ν−p−1)/2 e− 1
2 tr (S−1W)

with mean equal to E[W] = νS.

Key Results in Multivariate Statistics Used in Deriving the Kalman Filter

The following two results are used in deriving the Kalman filter expressions.
A proof of them, which is not difficult, can be found in a book on multivariate
statistics, such as Johnson and Wichern’s [15].

Result 1. Let X1 be a q -dimensional random vector and X2 a p − q dimen-
sional random vector. If(

X1
X2

)
∼ Np

((
µ1
µ2

)
,
(

Σ11 Σ12
Σ21 Σ22

))
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and |Σ22| > 0, then the marginal distribution of X1 given X2 is given by

X1|X2 = x2 ∼ Nq
(
µ1 + Σ12Σ−1

22 (x2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
.

Result 2. Let Xt be a q × 1 vector and X2 be a ( p − q ) × 1 vector. If

X1|X2 = x2 ∼ Nq
(
µ1 + Σ12Σ−1

22 (x2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
(1.35)

and X2 ∼ Np−q (µ2, Σ22), then we have that the joint distribution of X1 and X2
is (

X1
X2

)
∼ Np

((
µ1
µ2

)
,
(

Σ11 Σ12
Σ21 Σ22

))
.
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ABSTRACT This chapter presents a general overview of methods devel-
oped in the past few decades for performing Bayesian analysis via simula-
tion. These methods are particularly useful when the posterior distribution is
not analytically tractable as in hierarchical models and in models involving

47
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non-conjugate priors. After introducing the general approach for computing
posterior distribution via simulation, the first part of this chapter is devoted
to simulation-based approaches that make use of independent samples, i.e.,
the Rejection Sampling, the Importance Sampling, and Sampling Importance
Resampling approaches and the Sequential Monte Carlo method. The chapter
then gives particular attention to the most widely used Markov Chain Monte
Carlo (MCMC) methods, with special focus on the Metropolis-Hastings and
the Gibbs sampler algorithm and to methods for checking the convergence of
MCMC simulations. The use of MCMC is further illustrated with reference to
a classic hierarchical model, the variance component model, where MCMC
computation is performed using available software packages (WinBUGS and
CODA, which runs under R). An introductory tutorial on the WinBUGS
package is presented in the Appendix.

2.1 Introduction

The previous chapter emphasized that the major conceptual challenge in
Bayesian analysis involves the selection of an adequate prior. However, the
main practical problem is related to computational issues involved in calcu-
lating the posterior distribution.

Let y = (y1, y2, . . . , yn) denote observed data, characterized by the sam-
pling distribution p(y|θ ), where θ = (θ1, θ2, . . . , θD) are the parameters (as
in Chapter 1, we use vector notation only when the data observations
themselves are multivariate). Before observing the data, information on the
parameters is modeled by a prior distribution, p(θ ). The basic step in the
Bayesian learning process is updating information on the parameters given
observed data, i.e., computing the posterior distribution p(θ |y) through Bayes’
theorem:

p(θ |y) = p(y|θ ) p(θ )∫
p(y|θ ) p(θ )dθ

= q (θ |y)
m(y)

, (2.1)

where q (θ |y) is the unnormalized density (also indicated as q (θ |y) ∝ p(θ |y)),
and m(y) = ∫q (θ |y)dθ is the marginal distribution that does not depend on
parameter θ and is thus considered as a constant because it depends only on
observed data y.

Given the posterior distribution, inference problems in Bayesian ana-
lysis can be solved by computing integrals involving the posterior
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distribution:

J = E( f (θ )|y) =
∫

f (θ ) p(θ |y)dθ , (2.2)

where, for example [2]:

• if f (θ ) = θ , Equation (2.2) allows us to compute the posterior mean.
• if f (θ ) = (θ − µ)(θ − µ)′, with µ denoting the posterior mean,

Equation (2.2) allows us to compute the posterior variance covari-
ance matrix.

• if f (θ ) = IC (θ ), with IC (θ ) denoting the indicator function of θ in C ,
Equation (2.2) allows us to compute the posterior probability of the
event θ ∈ C (this is used when computing Bayes’ factors).

• if f (θ ) = p( ỹ|θ , y), with ỹ denoting a future observation, Equation
(2.2) allows us to compute the posterior predictive distribution.

As is clear from Equation (2.1) and Equation (2.2), the main computa-
tional task in Bayesian statistics is related to calculating complicated integrals
that frequently are high-dimensional. Computation of these integrals can be
skipped for simple (non-hierarchical) problems in which conjugate analysis
is assumed. Thus, integration plays a major role in Bayesian analysis, substi-
tuting the role played by optimization in classical statistics.

In the last few decades, integration difficulties have been greatly reduced
due to the development of simulation-based approaches, which aim to gen-
erate random samples and use these samples to solve inference problems
via Equation (2.2). In particular, Section 2.1 of this chapter describes some
well-known approaches based on simulating independent samples, namely,
the Rejection Sampling, the Importance Sampling and Sampling Importance
Resampling methods and the Sequential Importance Sampling approach.
Section 2.2 deals with Markov Chain Monte Carlo (MCMC) methods, in which
random samples used to compute integrals like Equation (2.2) are generated
using a Markov chain. This section focuses on the most important approaches
for MCMC simulation: the Metropolis-Hastings algorithm and the Gibbs sam-
pler. As will be clear from Section 2.2, a major issue when performing MCMC
simulations relates to the convergence of the algorithms. To make correct in-
ferences, samples should be drawn once the steady-state distribution of a
Markov chain has been achieved. Hence, the final part of Section 2.2 presents
algorithms for convergence check. Section 2.3 then illustrates how powerful
MCMC methods are to handle hierarchical models. In particular, we show
the application of the Gibbs sampler for making inferences in a special type
of hierarchical model, the variance components model, using available soft-
ware for MCMC simulation and convergence checks. Finally, the Appendix
to this chapter provides an introduction and mini-tutorial on the use of the
Win BUGS software package.
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2.2 Simulation-Based Approaches with Independent Samples

2.2.1 Rejection Sampling (RS)

Assume initially we are in the admittedly comfortable position of being able to
generate independent identically distributed (i.i.d.) draws θ k , k = 1, 2, . . . , K
from the posterior distribution p(θ |y). In this case, the generic Equation (2.2)
can be approximated using Monte Carlo integration as follows:

J = E( f (θ )|y) =
∫

f (θ ) p(θ |y)dθ ≈ Ĵ ≈ 1
K

K∑
k=1

f (θ k).

Thanks to Monte Carlo integration, computation of integrals required for
Bayesian inference translates in generating i.i.d. samples from the posterior
distribution, which is also called target density.

Assume now we are unable to generate samples from the posterior dis-
tribution p(θ |y), and suppose that we are able instead to draw samples from
another density g(·) — called the “proposal density” — that obeys the fol-
lowing condition:

p(θ |y) ≤ Mg(θ ) ∀θ in the support of p.

This condition requires that the ratio (or importance ratio) p(θ |y)
g(θ ) has a known

bound M for any possible value of θ . Note that p(θ |y) is seen as a function of
the parameters θ .

The Rejection Sampling (RS) algorithm consists of generating candidate
samples from the proposal density g(·) and accepting them as drawn from
the target density with probability p(θ |y)

Mg(θ ) .
Figure 2.1 shows how the algorithm works. The curve on the top is the

approximating function Mg(θ ), whereas the curve on the bottom is the target
density p(θ |y). As can be observed, the required condition p(θ |y) ≤ Mg(θ ) is
satisfied ∀θ . Once the candidate draw θ̃ is generated from the proposal density
g(·), the probability of accepting this draw is the ratio of the height of the lower
curve to the height of the upper curve in θ̃ . To accept the draw according to
this probability, we can generate a random draw u from a uniform distribution
U(0, 1), compute the quantity uMg(θ̃ ) — which will be uniformly distributed
in the interval [0; Mg(θ̃ )] — and accept the draw if uMg(θ̃ ) ≤ p(θ̃ |y).

The RS algorithm can be summarized in algorithmic form as follows:

Step 1: Set iteration counter k = 1.
Step 2: Draw a candidate sample θ̃k from g(·) and generate u from a

uniform distribution U(0, 1).

Step 3: Accept the candidate sample θ̃k , i.e. θk := θ̃k , if u ≤ p(θ̃k |y)
Mg(θ̃k ) .

Step 4: if k < K , increase k, i.e., k := k + 1 and return to Step 2.
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M g(θ )

p(θ | y )

θθ

M g( θ )

p( θ  | y )

u M g( θ )

accepted 

FIGURE 2.1
Illustration of the Rejection Sampling approach.

Following these steps, the accepted draws will be approximately distributed
as the target density p(θ |y). In fact, we have that:

P(θ ≤ c) = P
(

θ̃ ≤ c|U ≤ p(θ̃ |y)
Mg(θ̃ )

)
=

P
(
θ̃ ≤ c, U ≤ p(θ̃ |y)

Mg(θ̃ )

)
P
(

U ≤ p(θ̃ |y)
Mg(θ̃ )

)

=
∫ c

−∞
∫ p(θ̃ |y)

Mg(θ̃ )
0 dug(θ̃ )d θ̃∫∞

−∞
∫ p(θ̃ |y)

Mg(θ̃ )
0 dug(θ̃ )d θ̃

=
∫ c

−∞
p(θ̃ |y)
Mg(θ̃ ) g(θ̃ )d θ̃∫∞

−∞
p(θ̃ |y)
Mg(θ̃ ) g(θ̃ )d θ̃

=
1
M

∫ c
−∞ p(θ̃ |y)d θ̃

1
M

∫∞
−∞ p(θ̃ |y)d θ̃

=
∫ c

−∞
p(θ̃ |y)d θ̃ .

The efficiency of this procedure directly depends on the bound M. The gen-
erated random draw will be accepted with probability P(U ≤ p(θ̃ |y)

g(θ̃ ) ) = 1/M,
i.e., as a geometric distribution with mean 1/M. As M → 1, the efficiency of
the algorithm increases.

An advantage of the RS algorithm is that it is a self-monitoring approach
because the efficiency of the procedure can be directly monitored by comput-
ing the percentage of accepted draws. When this percentage is low, the bound
M is not close to 1 and the resulting efficiency is poor.

A further advantage of the rejection sampling approach is that it does
not require that the proposal density g(·) integrates to 1 (although it has
to have a finite integral). Therefore, if the proposal density is chosen to be
proportional to the posterior density, g(·) ∝ p(·|y), the algorithm can work
very well accepting every draw with probability 1, given that the bound M
is properly selected.
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A last comment concerns the role of the posterior in the algorithm. In
the illustrated version of the approach, it is assumed that we are unable to
generate samples from the posterior distribution p(θ |y) but we are able to
compute the posterior for a given value of θ in Step 3. This can appear as a
limiting drawback. Fortunately, the algorithm can work by using the unnor-
malized density q (θ |y) ∝ p(θ |y), i.e., p(θ |y) = q (θ |y)

∫
q (θ |y), in place of the

the target density p(θ |y).

2.2.2 Importance Sampling (IS) and Sampling
Importance Resampling (SIR)

For many Bayesian problems in which the bound required by the Rejection
Sampling approach can be difficult to find, an alternative approach is Impor-
tance Sampling (IS). To make posterior inferences through Equation (2.2), the
Importance Sampling method is based on the following simple equalities:

J = E( f (θ )|y) =
∫

f (θ ) p(θ |y)dθ

=
∫

f (θ ) p(θ |y)
g(θ )

g(θ )dθ =
∫

f (θ )w(θ )g(θ )dθ , (2.3)

where g(θ ) is a proposal density that has to be chosen and w(θ ) = p(θ |y)
g(θ ) repre-

sents the importance weight function. Equation (2.3) can be computed through
Monte Carlo integration as:

J =
∫

f (θ )w(θ )g(θ )dθ ≈ Ĵ ≈ 1
K

K∑
k=1

f (θ k)w(θ k), (2.4)

where θ k , k = 1, 2, . . . , K are i.i.d. draws generated from the proposal density
g(θ ), and the importance weights w(θ k) can be computed as:

w(θ k) = p(θ k |y)
g(θ k)

∀k = 1, 2 . . . , K .

The Importance Sampling algorithm can be hence summarized in algo-
rithmic form as follows.

Step 1: Generate K draws θ1, θ2, . . . , θ K from the proposal density g(θ ).

Step 2: Compute the importance weights w(θ k) = p(θ k |y)
g(θ k ) for k = 1, . . . , K .

Step 3: Use Equation (2.4) to compute the required posterior estimate.

Unlike the Rejection Sampling, the approximate or proposal density g(θ )
must be normalized and should have a support that is included in the support
of p(θ |y). The selection of a proper proposal density should also induce a
“nice” behavior of weights. In fact, the approach will produce poor estimates
if many weights assume small values and just a few weights have very high
values.
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If the target density p(θ |y) is only known up to a normalizing constant
(as often happens in Bayesian analysis), the Importance Sampling algorithm
can be used by slightly changing the described approach. Given a draw θ k

generated from the proposal density g(θ ), assume we are able to compute
q (θ k |y) instead of p(θ k |y), where q (θ |y) ∝ p(θ |y). In this case, the Importance
Sampling algorithm works as before by simply substituting Equation (2.4)
with

J = E( f (θ )|y) ≈ Ĵ ≈
1
K

∑K
k=1 f (θ k)w(θ k)

1
K

∑K
k=1 w(θ k)

, (2.5)

where:

w(θ k) = q (θ k |y)
g(θ k)

∀k = 1, 2 . . . , K . (2.6)

Rubin [22] suggests adding a resampling step to the procedure, thus
proposing the Sampling Importance Resampling (SIR) approach. This further
step is performed after Step 1 and Step 2 of the original procedure, starting
from the K draws θ1, . . . , θ k , . . . , θ K and their associated weights w(θ1), . . . ,
w(θ k), . . . , w(θ K ). The resampling step consists in selecting L draws from the
discrete distribution (θ1, . . . , θ k , . . . , θ K ) with probability given by the impor-
tance weights. In algorithmic form, the SIR method consists of substituting
only the third step of the original IS approach with the following substeps.

Step 3a: Sample a value in θ1, θ2, . . . , θ K where the probability of sam-
pling θ k is proportional to the weight w(θ k).

Step 3b: Repeat sampling (Step 3a) without replacement L − 1 more
times.

Step 3c: Compute the required posterior estimate, according to
Equation (2.4), or Equation (2.5) if an unnormalized proposal den-
sity is being used.

As outlined by Gelman et al. [14], the resampling step is performed without
replacement to improve the accuracy of the estimates. In fact, in the worst case
of many small importance weights and very few large values, if we sample
with replacement, we will end up selecting the same values of θ k again and
again.

Unlike RS, IS’s and SIR’s accuracy cannot be easily monitored. How-
ever, observing the histogram of the weights can help to outline situations in
which the distribution of weights is bad behaved.

2.2.3 Sequential Importance Sampling (SIS) or Sequential
Monte Carlo (SMC)

The Sequential Importance Sampling (SIS) or Sequential Monte Carlo (SMC) ap-
proach [8] is a sequential variant of the SIR algorithm. As SIR, the SIS method
consists of generating a set of draws (also called “particles” in the context
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of sequential methods) from the proposal distribution of the unknown
parameters and associating a weight to each set of particles. Unlike IR or
SIR, the SIS method allows us to deal with data that becomes available se-
quentially, as in many real-life applications related with process control or
process monitoring (for an application in data mining, see [1]). To better ex-
plain the motivation behind SIR, let Yt = (y1, y2, . . . , yt) denote all the data
collected until time t. Assume that posterior estimates are required each time
new data is available. At time t, the SIR approach requires us to perform all the
mentioned steps (generating draws and computing their associated weights,
resampling, performing the required estimates). When the new data yt+1 is
collected, the SIR algorithm should start over from the beginning without us-
ing information (draws, weights, or estimates) obtained in the previous step.
Unlike SIR, the SIS approach allows us to sequentially update weights each
time a new observation is available.

To show how SIS works, consider the special case in which the importance
sampling function g(θ ) is the prior distribution p(θ ). As showed by Smith
and Gelfand [23], this resampling strategy simply means that more weight
is given to prior samples that are more “likely” to happen. Because the
unnormalized density q (θ |Yt) is the product of the likelihood times the
prior — see Equation (2.1) — at time t, the kth weight in Equation (2.6) can be
rewritten as

w(θ k)t = q (θ k |Yt)
g(θ k)

= p(Yt|θ k) p(θ k)
p(θ k)

= p(Yt|θ k), ∀k = 1, 2, . . . , K .

In this case, the unnormalized weight associated with the kth particle can be
computed as

w(θ k)t = p(Yt|θ k) = p(yt|θ k) p(Yt−1|θ k) = p(yt|θ k)w(θ k)t−1.

Therefore, the weight associated with the kth particle changes accordingly to
the likelihood of observing yt evaluated at each particle θ k . This expression
allows us to sequentially update the weights each time a new data is observed
and is thus applicable in situations in which data arise sequentially.

Despite the benefits of sequential updating, this method poses some im-
plementation difficulties in practice. The problem arises if the generated par-
ticles remain the same throughout all iterations and only the weights or the
frequencies associated with the particles change. In this case, a phenomenon
known as the “degeneracy” of the sample can arise. Degeneracy means that
after some iterations of SMC, just a few of the K original particles will have
weights greater than zero. In fact, when the K particles are generated from
noninformative priors, most of these particles (the ones that are less likely,
given the data observed) will have weights equal to zero after few iterations.
In these cases, particles associated with weights greater than zero will be very
few, say K ∗ << K . In other words, the sequential algorithm will be based
on an “impoverished” sample, thus inducing biased estimates of unknown
parameters. This phenomenon is particularly severe when the original prior
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distributions have large variances or high dimension, when the number of
particles is small, or when the observed data set is large (i.e., when the number
of iterations of the SMC method is large).

The degree of degeneracy due to an “impoverished” sample [1] can be
monitored via the Effective Sample Size (ESS) [18], [21], which at time
index t, is given by

ESSt = K
1 + var (w(θ k)t)

, (2.7)

where K is the original number of particles and w(θ k)t is the weight associated
to particle k at time t. In Equation (2.7), the degree of degeneracy is described
by the variance of weights w(θ k)t at time t. If at time t just few particles have
associated weights greater than zero, the variance var (w(θ k)t) will be large
and the ESSt small.

To overcome the degeneracy problem, a “rejuvenation” step of the K par-
ticles can be performed using the One-pass Particle Filtering (1PFS) algorithm
described in [1]. The rejuvenation step disperses the particles when ESS drops
below a specific level, thus reducing the degeneracy problem. The rejuvena-
tion step involves approximating the posterior densities of particles with a
shrinkage kernel smoothing method.

2.3 Markov Chain Monte Carlo (MCMC)

Until now, all the simulation-based approaches presented (RS, IS, and SIR)
assume that generating independent draws from the proposal density is
possible.

The Markov Chain Monte Carlo (MCMC) methods [17] are instead based on
drawing dependent samples that admit as stationary distribution the target
density. In particular, the type of dependence considered is a Markov chain,
i.e., the next state of the sample will depend just on the current state of the
chain. As clear from the name, the approach is based on performing Monte
Carlo integration on samples generated by a Markov chain. In fact, MCMC
allows us to compute posterior inference of the type given in Equation (2.2)
using the following approximation:

J = E( f (θ )|y) ≈ Ĵ ≈ 1
K − k0

K∑
k=k0+1

f (θ k), (2.8)

where θ k are dependent samples generated by a Markov chain whose
stationary distribution is the target posterior density, and k0 represents the
end of the transient period (also called the “burn-in” period) at which the
Markov chain has eventually reached its steady-state (i.e., draws generated
after the kth

0 step can be assumed to be generated by the stationary
distribution). As clear from Equation (2.8), the Monte Carlo integration step
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must be performed discarding samples generated from the transient state
because these samples are not yet drawn from the target density. Therefore,
one of the main concerns in MCMC is related to convergence issues and to
methods aimed at deciding the iteration step at which convergence of the
Markov chain can be considered achieved.

To perform MCMC, the generated Markov chain should satisfy the
ergodicity property. Ergodicity is achieved when the chain is irreducible and
aperiodic. Irreducibility means that any state can be reached from any other
state in a finite number of moves. This property is required to let the chain
forget the starting point, as any state can be reached from any starting point.
The chain should be also aperiodic, which means that no cyclic pattern arises
in the chain. This property allows us to avoid cyclic behavior of the generated
states.

Therefore, the general steps required for computing posterior estimates
by using MCMC can be summarized as follows:

Step 1: Start from arbitrary values for unknown parameters θ0.
Step 2: Generate K draws from a Markov chain whose transition kernel

is T(θ k |θ k−1) and which admits as stationary distribution the target
density (i.e., the posterior density).

Step 3: Skip k0 samples from the burn-in period (transient period) of
the chain, and compute required estimates by using Equation (2.8).

As clear from this brief description, the core of any MCMC approach
is the transition kernel or transition density T(θ k |θ k−1), which represents the
probability of moving from one state θ k−1 of the chain to the next θ k , thus
defining the way in which a new state of the chain is obtained given the
actual state. All the MCMC algorithms use the basic algorithmic structure
described by Step 1 to Step 3 but basically change in the way in which the
transition kernel in Step 2 is defined. In the following section the two most
popular MCMC methods, the Metropolis-Hastings approach and the Gibbs
Sampler, will be described.

2.3.1 Metropolis-Hastings (M-H) Algorithm

As outlined by Chib and Greemberg [6], traditional Markov chain theory
starts from a specific transition kernel and focuses on determining conditions
under which the invariant or stationary distribution exists and conditions
under which the transition kernel converges to this invariant distribution.
In MCMC methods, the problem is turned upside down: the stationary dis-
tribution is known (at least up to a constant multiple) and coincides with
the posterior density we want to find, while the main problem is selecting a
suitable transition kernel that converges to this stationary distribution. With
reference to the Bayesian problem, the target density p(·) we want to sample
from is the posterior distribution p(·|y); however, to keep notation simpler,
we will skip dependence on data , i.e., |y, from this point on.
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The problem of finding an appropriate transition kernel can be solved
starting from the “detailed balance equation” or “reversibility condition.”
A Markov chain with transition kernel T(θ k+1|θ k) satisfies this condition if a
distribution p(·) exists such that:

T(θ k |θ k+1) p(θ k+1) = T(θ k+1|θ k) p(θ k) ∀(θ k , θ k+1). (2.9)

If this result holds, the chain is reversible and the distribution p(·) is the
stationary or invariant distribution because∫

T(θ k+1|θ k) p(θ k)dθ k =
∫

T(θ k |θ k+1) p(θ k+1)dθ k

= p(θ k+1)
∫

T(θ k |θ k+1)dθ k = p(θ k+1),

which is the definition of an invariant distribution. The balance Equation (2.9)
intuitively says that if two samples θ k and θ k+1 are taken from the station-
ary distribution, the probability of moving from θ k to θ k+1 is equal to the
probability of moving in the opposite way, i.e., the chain is reversible. There-
fore, if the transition kernel is selected to satisfy the reversibility condition in
Equation (2.9), the stationary distribution of the chain will be the desired target
density. Unfortunately, finding a chain that exactly satisfies the reversibility
condition can be difficult: if an arbitrary proposal kernel density T ′ is selected,
the balance equation might not hold. Without loss of generality, suppose that
the selected proposal density T ′ is such that

T ′(θ k+1|θ k) p(θ k) > T ′(θ k |θ k+1) p(θ k+1). (2.10)

In this case, the chain moves from θ k to θ k+1 too often and from θ k+1 to θ k

too rarely. To correct this asymmetry, a factor α(θ k , θ k+1) < 1 can be used to
reduce the number of moves from θ k to θ k+1, changing the balance equation
as follows:

T ′(θ k+1|θ k)α(θ k , θ k+1) p(θ k) = T ′(θ k |θ k+1) p(θ k+1). (2.11)

Obviously, a symmetric factor α(θ k+1, θ k) = 1 is implicitly considered on the
right-hand side of Equation (2.11). The factor α(θ k , θ k+1) can thus
represent the probability of moving from θ k to θ k+1 and can be derived from
the previous equation as α(θ k , θ k+1) = T ′(θ k |θ k+1) p(θ k+1)

T ′(θ k+1|θ k ) p(θ k ) . If the inequality in
Equation (2.10) is reversed, i.e., the chain moves from θ k to θ k+1 too rarely,
we should set α(θ k , θ k+1) = 1, i.e., allow with probability 1 this move, and
derive α(θ k+1, θ k) < 1 as before. Therefore, to build a kernel that satisfies the
reversibility condition by construction, we should accept a move from θ k to
θ k+1 with probability

α(θ k , θ k+1) = min
{

T ′(θ k |θ k+1) p(θ k+1)
T ′(θ k+1|θ k) p(θ k)

, 1
}

. (2.12)
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This factor is thus playing the role of an acceptance ratio in the algorithm:
given the actual state of the chain θ k , a candidate sample θ̃ k+1 is generated and
accepted as the next state of the chain with probability α(θ k , θ̃ k+1), computed
using Equation (2.12). If the candidate sample is not accepted, the chain will
remain in the current state θ k . Note also that this acceptance ratio resembles the
acceptance probability used in the Rejection Sampling algorithm described in
Section 2.2.1. Note that in that algorithm when a candidate sample is rejected,
a new sample is drawn, whereas in the Metropolis-Hastings (M-H) algorithm,
the current sample is taken as the next one. Given the simplified notation
adopted in this section, the target density p(·) in Equation (2.12) is actually
the posterior density, i.e., p(·|y). Fortunately, the unnormalized density q (·|y)
introduced in Equation (2.1) can be used here in place of the target density
p(·|y). In fact, the normalizing constant −m(y) in Equation 2.1 - appears both
in the numerator and in the denominator of Equation (2.12).

Back to the basic problem of generating draws from the posterior density
p(θ |y), the M-H algorithm can be summarized in algorithmic form as follows:

Step 1: Initialize the chain by selecting an (arbitrary) starting point θ0,
and set the stage k = 0.

Step 2: At step k, draw a proposal sample θ̃ k+1 from T ′(θ̃ k+1|θ k).
Step 3: Accept the sample, i.e. θ k+1 := θ̃ k+1, with probability

α(θ k , θ̃ k+1) = min
{

T ′(θ k |θ̃ k+1) p(θ̃ k+1)
T ′(θ̃ k+1|θ k) p(θ k)

, 1
}

;

otherwise, set θ k+1 := θ k . To perform this acceptance step, generate a
random draw u from U(0,1) if u < α(θ k , θ̃ k+1), then set θ k+1 := θ̃ k+1;
otherwise, set θ k+1 := θ k .

Step 4: If k ≤ K , increase k, i.e., k := k + 1, and return to Step 2.
Step 5: Skip samples from the burn-in period of the chain, and compute

the required estimates by using Equation (2.8).

As previously mentioned, the MCMC approach works well if the chain is
irreducible and aperiodic. These conditions are usually verified if the proposal
kernel density has a support included in the support of the target density. This
simple requirement explains why the M-H algorithm has been so extensively
applied. However, this condition does not assure a good efficiency (fast con-
vergence) of the adopted algorithm, which depends on the selection of the
transition kernel T ′(a, b). In the following, the more commonly used types of
transition kernels to adopt in the M-H algorithm are described.

1. Symmetric kernel, for which T ′(a, b) = T ′(b, a ). In this case, compu-
tation of the acceptance ratio simplifies to α(a, b) = min{ p(b)

p(a ) , 1}. A
common selection in this case is T ′(a, b) = f (b − a ), where f is a
symmetric density, i.e., f (−c) = f (c), such as a multivariate uni-
form centered at 0, a multivariate-t, or a multivariate normal with
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mean equal to 0. In this last case, the candidate sample is given by
b = N(a, Σ), or equivalently by b = a + N(0, Σ), i.e., the candidate
is given by the current sample plus random noise. This case is called
a Metropolis Random Walk.

2. Independent chain. In this case, the candidate sample is generated
independently from the actual state of the chain, i.e., T ′(a, b) = f (b).
Again, f can be a multivariate normal or multivariate-t but we need
to choose both the location and the spread of this density.

Further possible choices for the M-H algorithm are described in [6].

Example 1:
Simulating a bivariate normal using the M-H algorithm (adapted from [6] and
[14]). To illustrate how the M-H algorithm works, consider a single obser-
vation y = (y1 y2)′ is observed from a bivariate normal distribution with

unknown mean θ = (θ1 θ2)′ and known covariance matrix Σ =
(

1 ρ

ρ 1

)
.

Using a uniform prior distribution on θ, the posterior distribution is is a
bivariate normal given by(

θ1
θ2

) ∣∣∣∣y ∼ N
((

y1
y2

)
,
(

1 ρ

ρ 1

))
.

Although this example is trivial (simulating draws from the bivariate normal
is quite an easy task), it can clearly show how the M-H algorithm can be
implemented. Assume y = (1 2)′ and ρ = 0.9. Using a symmetric transition
kernel, the acceptance ratio in this case is given by

α(a, b) = min
{

exp[−0.5(b − y)′Σ−1(b − y)]
exp[−0.5(a − y)′Σ−1(b − y)]

, 1
}

.

Consider a Metropolis Random Walk transition density, b = a + c, where c is
a bivariate uniform, i.e., a bivariate distribution in which the i th component is
uniformly distributed in (−δi , δi ), for i = 1, 2. In the performed simulations,
we set δi = 1 for i = 1, 2. The two plots in Figure 2.2 illustrate the behavior
of four chains simulated with the M-H algorithm for 30 and 1000 iterations.
Each chain is obtained from a different starting point. As can be observed,
with just 30 iterations the chain has not reached the steady-state behavior
because each chain has not yet “forgotten” the starting point. However, af-
ter 1000 iterations the chains seem to have reached the steady-state point
because samples are drawn from the target distribution. The left plot in
Figure 2.3 shows the final behavior of the M-H chain obtained using an
initial starting point at (−5,−5), 10,000 iterations, and an initial burn-in equal
to 2000 iterations (i.e., the plot is obtained considering just the last 8000 iter-
ations of the chain). The plot on the right of Figure 2.3 shows the accepted
(dot) and the rejected (cross) draws obtained with the M-H algorithm after
burn-in has been already skipped (the acceptance probability obtained in this
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FIGURE 2.2
Four chains obtained with the M-H algorithm to simulate a bivariate normal using starting
points (−5,−5), (−5,5), (5,−5) and (5,5); the plots show the first 30 (left) and the first 1000 (right)
iterations.

simulation is around 47%). As can be observed, the M-H algorithm prop-
erly rejects candidate samples drawn far from the region in which the actual
bivariate density has a higher likelihood.

2.3.2 Gibbs Sampling (GS)

One of the most powerful MCMC methods is the Gibbs sampling (GS), which
has the relevant advantage of being almost independent of the number of
parameters (and model’s stages when hierarchical models as the one de-
scribed in Section 2.4 are considered). As with any MCMC approach, the
Gibbs sampler adopts the general algorithmic structure described at the end
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FIGURE 2.3
On the left: Scatter plot of samples obtained to simulate the bivariate normal with 10,000 iterations
of the M-H algorithm and a burn-in equal to 2000. On the right: Scatter plots of accepted (dot)
and rejected (cross) samples in the chain showed on the left.
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of Section 2.3. The main difference consists in the specific transition kernel
that allows us to move from one state to the next of the chain. To show
how the Gibbs sampler works, consider the general problem of estimating D
parameters θ1, θ2, . . . , θD and assume that the “full conditional” (posterior)
distributions,

p(θd |y, θl �=d ) = p(θd |y, θ1, θ2, . . . , θd−1, θd+1, . . . , θD) d = 1, . . . , D,

are all given. Given an arbitrary set of starting values (θ0
1 , θ0

2 , . . . , θ0
D), the first

iteration in Gibbs sampling is performed as follows:

Draw θ1
1 ∼ p(θ1|y, θ0

2 , . . . , θ0
D)

Draw θ1
2 ∼ p(θ2|y, θ1

1 , θ0
3 , . . . , θ0

D)

. . .

Draw θ1
D ∼ p(θD|y, θ1

1 , . . . , θ1
D−1),

thus obtaining as a result a set of points (θ1
1 , θ1

2 , . . . , θ1
D) that represent the

starting values for the next step. Iterating the process and denoting with l
the generic iteration of the algorithm, Geman and Geman [15] showed that
the simulated draws can be viewed as generated from the joint posterior
density as l → ∞, i.e.,(

θ l
1, θ l

2, . . . , θ l
D

) d→ (θ1, θ2, . . . , θD) ∼ p(θ1, θ2, . . . , θD|y),

and hence draws obtained for each parameter θd (d = 1, . . . , D) can be viewed
as generated from the marginal posterior density as l → ∞ (see [9]), i.e.,

θ l
d

d→ θd ∼ p(θd |y).

Therefore, the Gibbs sampling can be described in algorithmic form as follows:

Step 1: Initialize the chain by selecting an (arbitrary) starting point
(θ0

1 , θ0
2 , . . . , θ0

D), and set the stage k = 1.
Step 2: At iteration k, performs the following D steps:

• Draw the sample θ k
1 from p(θ1|y, θ k−1

2 , . . . , θ k−1
D ), i.e., the full con-

ditional posterior.
• Draw the sample θ k

2 from p(θ2|y, θ k
1 , θ k−1

3 , . . . , θ k−1
D ).

. . .

• Draw the sample θ k
D from p(θD|y, θ k

1 , . . . , θ k
D−1).

Step 3: If k < K , increase k, i.e., k := k + 1, and return to Step 2.
Step 4: Skip k0 samples from the burn-in period of the chain, and com-

pute required estimates by using Equation (2.8).

With reference to the general structure of the MCMC algorithms, the
Gibbs sampler can be seen as a specific instance that uses as its transition



P1: shibu/Vijay

September 8, 2006 12:47 C5440 C5440˙C002

62 Bayesian Process Monitoring, Control and Optimization

kernel [2]:

T(θ k |θ k−1) =
D∏

d=1

p(θD|y, θ k
j , θ k−1

l ; j < d, l > d)

To show why the Gibbs sampler works, let us start from a simple case in
which the vector of parameters is composed by D = 2 parameters (θ1, θ2) [9].
The idea behind the Gibbs sampler is to extract the marginal posterior distri-
butions p(θd |y) (d = 1, 2) from the full conditional distributions, p(θ1|y, θ2)
and p(θ2|y, θ1). To derive the marginal posterior distribution, we can compute
two integrals:

p(θ1|y) =
∫

p(θ1|y, θ2) p(θ2|y)dθ2 (2.13)

p(θ2|y) =
∫

p(θ2|y, θ1) p(θ1|y)dθ1 (2.14)

The solution of each integral requires the solution of the other one, thus de-
termining a system of two linear integral equations, given by Equation (2.13)
and Equation (2.14). Substituting the last equation in the first one and for
simplicity skipping the conditional dependence on the data (i.e., |y) in the
notation, we obtain:

p(θ1) =
∫

p(θ1|θ2)
∫

p(θ2|θ ′
1) p(θ ′

1)dθ ′
1dθ2 =

∫
h(θ1, θ ′

1) p(θ ′
1)dθ ′

1, (2.15)

where h(θ1, θ ′
1) = ∫p(θ1|θ2) p(θ2|θ ′

1)dθ2. Equation (2.15) is called a fixed point
integral equation, because substituting for p(θ ′

1) in the right-hand side the cor-
rect density of the marginal posterior, we obtain it once again on the left, as
θ ′

1 is just a “dummy” argument. If instead we substitute on the right-hand
side a density p0(θ1) that is close to the real one, we will obtain on the left
a different density that can be denoted as p1(θ1). Iterating this substitution
process, Equation (2.15) can be rewritten as

pi+1(θ1) =
∫

h(θ1, θ ′
1) pi (θ ′

1)dθ ′
1fori = 0, 1, . . . (2.16)

Tanner and Wong [26] proved that under a mild regularity condition, the
sequence thus generated, {pi (θ1)}, converges monotonically to p(θ1) and there-
fore an iterative approach to derive the true marginal density is provided.
Unfortunately, the remaining difficulty consists in computing the integral in
Equation (2.15) at each step of the iterative approach, which is often impossi-
ble to evaluate (otherwise no iterative approach will be needed). The problem
can be overcome by replacing the analytical solution with a sampling-based
substitution at each step of the iterative approach. In this case, at the first step
we draw θ0

1 ∼ p0(θ1) and then θ1
2 ∼ p(θ2|θ0

1 ), which is characterized by the
marginal distribution

p1(θ2) =
∫

p(θ2|θ1) p0(θ1)dθ1. (2.17)
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The next draw θ1
1 ∼ p(θ1|θ1

2 ) has thus marginal distribution

p1(θ1) =
∫

p(θ1|θ2) p1(θ2)dθ2. (2.18)

Substituting Equation (2.17) on the right-hand side of Equation (2.18), the last
can be rewritten as

p1(θ1) =
∫

p(θ1|θ2)
∫

p(θ2|θ ′
1) p0(θ ′

1)dθ ′
1dθ2 = h(θ1, θ ′

1) p0(θ ′
1)dθ ′

1,

which is the recursive Equation (2.16) for i = 0. Therefore, iterating the
approach, the sequences {θ i

1} and {θ i
2} are such that

θ i
1

d→ θ1 ∼ p(θ1)and θ i
2

d→ θ2 ∼ p(θ2).

The approach just presented is the “data augmentation” algorithm developed
by Tanner and Wong [26] in the context of missing data and is closely related
to the Gibbs sampler approach (as outlined in [9], the two approaches are
identical if D = 2 parameters and are slightly different if the number of
parameters is greater than 2).

As clear from the previous description, the main elements needed for
implementing Gibbs sampling are the full (posterior) conditionals. Starting
from the joint posterior distribution, the full conditional can be easily found
by considering that

p(θd |y, θr 	=d ) = p(θd , θr 	=d |y)∫
p(θd |y, θr 	=d )dθd

∝ p(θd , θr 	=d |y).

Therefore, without considering the normalizing constant, the full conditional
can be derived as the expression of the joint posterior distribution that con-
tains the specific parameter.

Example 2:
Simulating a bivariate normal using Gibbs sampling. Back to the bivariate problem
used to show the M-H algorithm in Example 1, assume we want to simulate

samples from a bivariate normal N(y, Σ) where y = (y1 y2)′ and Σ =
(

1 ρ

ρ 1

)
.

As showed by Gelman et al. [14], this distribution represents the posterior
when one sample y is observed from a bivariate normal N(θ, Σ) with known
Σ and with a uniform prior assumed for θ. As already mentioned, this is a
trivial example as simulating draws from the bivariate (posterior) normal is
quite easy. However, the example is useful to show how the Gibbs sampler
can be implemented. To apply the Gibbs sampler to θ = (θ1, θ2)′, Gelman
et al. [14] show that the conditional posterior distribution can be derived
from properties of multivariate normal distributions (discussed in Chapter 1
in the derivation of Kalman filters) and are given by

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1 − ρ2)
θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1 − ρ2).
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FIGURE 2.4
Draws obtained for the bivariate normal example using four independent chains of the Gibbs
sampler with 5 (left) and 500 (right) iterations of the algorithm (each iteration is composed by
two moves of the chain to update the two components of θ ) and starting points (−5,−5), (−5,5),
(5,−5) and (5,5).

Therefore, the Gibbs sampler can be simply implemented and consists
of drawing samples alternatively from the conditional posterior densities.
Assuming y = (1 2)′ and ρ = 0.9, results obtained using the Gibbs sampler
are shown in Figure 2.4 and Figure 2.5. In particular, Figure 2.4 reports samples
obtained with 5 (left plot) and 500 (right plot) iterations of the algorithm. Note
that each iteration consists in two steps: The first step is used to update the
first component of θ and the second one to update the second component of θ.
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FIGURE 2.5
Samples drawn form the posterior distribution using the Gibbs sampler for the bivariate normal
example (obtained by skipping the first 500 iterations as burn-in and using a further set of 4000
iterations).
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Figure 2.5 reports samples obtained at the steady state of the Markov chain
(in this case, obtained in 4000 iterations of the Gibbs sampler after an initial
burn-in of 1000 iterations has been discarded).

2.3.3 Convergence Diagnostics in MCMC Approaches

A complete implementation of a “MCMC method requires dealing with con-
vergence issues. In particular, specifying the k0 (truncation point) and K (stop-
ping point) in Equation (2.8) is necessary. The k0 variable, often called the
burn-in period, is constituted of observations that must be discarded before
computing moments of the posterior densities. This burn-in period repre-
sents the transient period in which the Markov chain has not yet reached
stability and is thus highly influenced by starting points (initial values of the
parameters that must be estimated).

The second variable, K , is the total number of iterations and is required to
determine the additional number of samples K − k0 that must be drawn after
convergence has been reached to compute all relevant moments of the pos-
terior distribution of Equation 2.8. This variable is critical due to the Markov
nature of the algorithm. If convergence has been reached, all the samples are
identically distributed. However, because the samples are autocorrelated, the
slower the simulation algorithm is moving within the sample space, the higher
the number of samples required to efficiently obtain the required estimates.

Although typical choices adopted in the literature (k0 = 1000 and K =
10000) have shown to be appropriate for many applications, convergence di-
agnostic algorithms should be used to evaluate if these values are satisfactory
for the specific problem under study. Convergence diagnostic tools analyze
outputs produced by MCMC simulations to decide whether convergence has
been reached with the adopted settings. Numerous studies [4, 7] reviewed
methods proposed in the literature for convergence assessment. At this time,
no diagnostic algorithm seems globally superior to all others, and the rec-
ommended approach is applying simultaneously more than one diagnostic
method to assess convergence. In the following the most commonly used ap-
proaches will be described. These algorithms are implemented in the CODA
library [19], which runs under R, the freely available version of S-plus.

2.3.3.1 Raftery and Lewis’ Convergence Diagnostic

The algorithm proposed by Raftery and Lewis [20] is aimed at calculating
the length of the burn-in period and the whole number of iterations required
to estimate a given quantile of the posterior distribution of parameters of
interest. This convergence approach is based on a single run of a Markov
chain. In particular, the method requires as input the quantile Q that must
be estimated, the accuracy of this estimate r , and a probability s, i.e., the
estimated quantile should lie within ±r of the true value with probability s.
Default values suggested by Raftery and Lewis are Q = 0.025, r = 0.005 and
s = 0.95.
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2.3.3.2 Geweke’s Convergence Diagnostic

Geweke [16] proposed a convergence diagnostic that is based on considering
two subsets of a single chain (usually the first 10% and the last 50%) in which
burn-in has already been skipped. Given the two subsequences of samples, the
method is based on testing the assumption that the mean of samples drawn
from the first subset of the chain is equal to the mean of samples drawn
from the last part of the chain. If the assumption of equality of the means
can not be rejected, samples should be drawn from the same (stationary)
distribution and this means that convergence has already been achieved. To
test the assumption, Geweke suggests using the following statistics:

Z = θ̄A − θ̄B√
1

nA
ŜA

θ (0) + 1
nB

ŜB
θ (0)

,

where nA and nB denote the number of samples used in the first and in the
last part of the chain, θ̄A and θ̄B are the sample means of θ obtained using
samples drawn from the first and the last part of the chain; and SA

θ (0) and
SB

θ (0) denote estimates of the spectral density at zero (i.e., variance estimates).
The Z statistic is asymptotically distributed as a standard normal.

2.3.3.3 Gelman and Rubin’s Convergence Diagnostic

Methods based on a single simulated chain can have the main drawback of
masking excessively slow convergence of Markov chain simulation. Look-
ing at one single chain, convergence could seem achieved although the chain
is stuck in one place of the target distribution. To overcome this problem,
Gelman and Rubin [13] (see also [11]) suggest performing multiple simula-
tions, starting from different initial values for parameters that must be esti-
mated. These values must be chosen to be “overdispersed” with reference
to the target density. Because the target density is not known in advance,
this technique has been criticized for the lack of guidelines about select-
ing the starting points. However, this choice can be performed considering
basic knowledge of the problem under study. For example, a rough idea of
the process capability can give information on the range of variation (at least
its magnitude) of the quality characteristic, and this information can be eas-
ily used in determining overdispersed initial values for parameters derived
through MCMC. Once starting values are selected, the Gelman and Rubin
algorithm is based on mixing simulated chains and comparing the variance
within each chain to the total variance of the mixture of chains. These (esti-
mated) variances permit us to derive the “estimated potential scale reduction”
factor, or “shrink factor,” R̂. As simulations converge, R̂ declines to 1, thus
assessing that parallel chains are essentially overlapping. The rule of thumb
suggested when performing this diagnostic is to continue simulation until R̂
is close to 1, for example, lower than 1.2.
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2.4 Bayesian Computation in Hierarchical Models

Many real problems are characterized by different unknown parameters
often related to each other by a “structure,” depending on the specific prob-
lem addressed. Hierarchical models (HM) are suitable to deal with statistical
analysis for this type of complex multivariate models. Some typical problems
that can be studied with a HM framework are:

1. Hierarchically designed experiments, when observed data are
drawn from clusters that are nested on each other as in random
effects (variance components) or mixed models analysis. As an ex-
ample, consider the case in which parts are produced in small lots.

2. Meta-analysis, where the objective is to combine results coming
from different studies that share the same inferential problem. The
statistical analysis should therefore account for extra variability
due to the different conditions in which each experiment has been
performed while simultaneously trying to merge evidence arising
from each single experiment. Most of the time, ideal conditions that
should characterize experiment execution cannot be respected (all
the experiments performed on the same machine, in the same condi-
tions, and soon). Therefore, a meta-analysis can result in a significant
reduction in experimental costs and time.

3. When the assumption of (conditional) independence can be consid-
ered an unrealistic simplification and therefore all the data cannot
be considered to be drawn from a single population. Most of the
time, heterogeneity describes real data. In this case, using mixture
models and latent variables in a hierarchical structure is common
practice.

4. Model selection and representation of model uncertainty. In
principle, when different models can represent the collected data,
a further stage in a hierarchical structure can be added to repre-
sent models under study. In this case, the statistical analysis can be
conducted for all the models at once.

Hierarchical models can be seen as a ‘multi-stage’ extension of Bayes’
Theorem. Assume the observed data y = (y1, y2, . . . , yt) are characterized
by a probability distribution f (y|θ ), where θ = (θ1, θ2, . . . , θK ) is the vector
of unknown parameters. Instead of considering these parameters as a set of
unknown constants, as in a frequentist approach, the Bayesian point of view
is based on modeling these quantities as random variables. The unknown
parameters are a priori supposed to be distributed according to a prior distri-
bution p(θ |η), where η is a vector of unknown hyperparameters. Inference on
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θ is then based on the posterior distribution, given by

p(θ |η, y) = p(y|θ ) p(θ |η)∫
p(y|u) p(u|η)du

.

Considering each conditional model (data given the parameters and param-
eters given the hyperparameters) as a stage in a hierarchy, the basic approach
to Bayesian inference can be seen as a two-stage hierarchical model in which:

• First stage: composed by the distribution of data given the parame-
ters p(y|θ ).

• Second stage: composed by the distribution of the parameters given
the hyperparameters p(θ |η).

Because the prior itself depends on a set of hyperparameters η, a further stage
can be added assuming that this set of unknown quantities is itself a vector of
random variables, characterized by an hyperprior (or more generally a second
stage prior) distribution, thus deriving a third stage in the hierarchy:

• Third stage: Distribution of the hyperparameters p(η).

This practice of specifying a model over more than one level in a hierarchy
can be theoretically extended to a desired number of levels. The choice of the
number of levels is strictly related to the problem addressed, although most
of the applications require a three-level model [5].

Despite their flexibility, hierarchical models have been applied just to sim-
ple problems because of computational difficulties associated to posterior
estimates. The advent of modern computational methods, first of all MCMC
approaches, allowed us to overcome these difficulties, as will be shown in the
next section.

2.4.1 Variance Components Model

A simple hierarchical model is the well-known and frequently adopted
random effects or variance components model. As an example, suppose the data
are obtained in lots or batches (or different experiments) and the objective of
the analysis is to find the variance components, i.e., the amount of variation
imputable to changes from lot to lot (between-lots or between-batches
variability) versus the one occurring within lots (within-lot or within-batch
variability). As an example, the first variance component (between-lots) can
be related to changes in raw materials or processing conditions, whereas the
second one (within-lot) is mainly due to the inner (or natural) variability
related with the process and the measuring system. In this case, the model
characterizing data observed is given by

yi j = θi + εi j (i = 1, . . . , I ; j = 1, . . . , J ),

where, assuming conditional independence throughout:
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• i = 1, . . . , I is the index denoting lots and j = 1, . . . , J is the index
of parts in each lot;

• yi j is the characteristic observed in the j th part of the i th lot;
• θ = (θi , i = 1, . . . , I ) is a vector of normally distributed random

variables,

θi |µ, σ 2
θ ∼ N

(
µ, σ 2

θ

)
, (2.19)

where in the “pure” random effect model µ is assumed equal to 0;
• εi j are normally distributed independent random variables,

εi j |σ 2
ε ∼ N

(
0, σ 2

ε

)
.

To show the modeling flexibility offered by hierarchical models, assume that
a further objective of the analysis is to distinguish between variability due to
the production process and variability due to the measuring system. By per-
forming repeated measures of the quality characteristic on parts processed,
a stage can be added in the hierarchy and a further variance component
can be estimated. As outlined by the example, a strict connection offer exists
between the “design” of the experiment (how many measures must be taken
on the same characteristic, how many parts in a lot, and so on.) and the
following statistical analysis.

The model specified until now is quite general and is independent of the
adoption of a frequentist or a Bayesian point of view. It is characterized by
the problem of estimating the variance components σ 2

θ and σ 2
ε from the data.

Box and Tiao [3], Gelman et al. [14], and Carlin and Louis [5] contrasted
random effects model estimation using classical and Bayesian analyses of
variance. Using a classical approach, the variance between lots σ 2

θ is obtained
as the difference of the between- and within-batch mean squares divided
by the number of batches. In cases where the between-batch mean square
is lower than the within-batch mean square, this leads to the unsatisfactory
situation of a negative variance estimate. Furthermore, the classical approach
induces difficulties in computation of the confidence interval for this variance
component σ 2

θ because of the complicated sampling distribution. Bayesian
estimation of variance components allows us to overcome these difficulties [3].

To estimate unknown parameters in the random effects model, the
Bayesian approach requires us to assume a set of prior distributions. A
common choice for the random effect model [9, 10] is adopting conjugacy
at each step of the hierarchical model, thus assuming:

µ|µ0, σ 2
0 ∼ N

(
µ0, σ 2

0

)
σ 2

θ |a1, b1 ∼ I G(a1, b1)
σ 2

ε |a2, b2 ∼ I G(a2, b2),

where µ0, σ 2
0 , a1, b1, a2, and b2 are assumed known and I G represents an

Inverse-Gamma distribution. A vague prior for µ can be assumed by set-
ting σ 2

0 sufficiently great, e.g., σ 2
0 ≥ 104. Parameters of the Inverse-Gamma
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FIGURE 2.6
The random effects hierarchical model.

a1, b1 (or a2, b2) can be assumed equal to 0 to model the usual improper
prior for σ 2

θ (σ 2
ε ). A common choice for a1, b1 (or a2, b2) is to set both equal

to 0.001 to model “vague” prior information [24]. Here we point out that this
usual “vague” IG prior has been recently criticized as actually being informa-
tive, and recommendations have been given for using some other distribution
family as a prior in the variance components [12, 25] . These alternative choices
can lead to better results (i.e., a smaller posterior uncertainty concerning the
variance components). However, in this chapter we will describe the stan-
dard approach adopting Inverse-Gamma priors for both variance components
[9, 10] .

The random effects model can be described by three, partially ‘nested’
stages: data, parameters, and hyperparameters as described in Figure 2.6. Af-
ter the observations y = (yi j , i = 1, . . . , I ; j = 1, . . . , J ) have been collected,
inference on the unknown parameters must be performed. Due to conjugacy
adopted at each step, all the (full) conditional posterior required to perform
Gibbs sampling can be derived as follows [10]:

p
(
θi |y, µ, σ 2

θ , σ 2
ε

) = N
(

J σ 2
θ

J σ 2
θ + σ 2

ε

ȳi + σ 2
ε

J σ 2
θ + σ 2

ε

µ,
σ 2

θ σ 2
ε

J σ 2
θ + σ 2

ε

)
, i = 1, 2, . . . , I

p
(
µ|y, θ, σ 2

θ , σ 2
ε

) = N
(

σ 2
θ µ0 + σ 2

0
∑

i θi

σ 2
θ + Iσ 2

0
,

σ 2
θ σ 2

0

σ 2
θ + Iσ 2

0

)

p
(
σ 2

θ |y, θ, µ, σ 2
ε

) = I G

(
a1 + 1

2
I, b1 + 1

2

∑
i

(θi − µ)2

)

p
(
σ 2

ε |y, θ, µ, σ 2
θ

) = I G

a2 + 1
2

I J , b2 + 1
2

∑
i

∑
j

(yi j − θi )2



where ȳi =
∑

j
yi j

J and θ = (θ1, θ2, . . . , θI ) .
To show how Gibbs sampling works in the variance component models,

consider the data reported in Table 2.1. This data were presented in [3] in the
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TABLE 2.1

Dyestuff Data yi j for i = 1, . . . , 6 and j = 1, . . . , 5 (Yield of Dyestuff in
Grams of Standard Color Computed with Respect to a Target Value of
1400 g) [3]
Batch Dyestuff data

1 1545 1440 1440 1520 1580
2 1540 1555 1490 1560 1495
3 1595 1550 1605 1510 1560
4 1445 1440 1595 1465 1545
5 1595 1630 1515 1635 1625
6 1520 1455 1450 1480 1445

framework of Bayesian estimation in one-way random effects model. Data in
Table 2.1 refers to the yield of dyestuff measured in five samples taken from
six batches of raw material.

The MCMC simulation is coded in the WinBUGS (Bayesian inference
Using Gibbs Sampling) language [24], which we introduce in the Appendix to
this chapter. The random effects model is one of the examples in Volume 1 of
the Bugs and WinBUGS manuals [24]. The convergence diagnostic algorithms
used (Raftery and Lewis’, Geweke’s, and Gelman and Rubin’s convergence
diagnostics) are run under R — the freely available version of S-plus —using
the CODA library [19]. Two MCMC chains are simulated starting from dif-
ferent initial values of the unknown parameters (µ, σ 2

θ , σ 2
ε , and θi , where

i=1,. . . ,6). Among these parameters, the θi ’s can be randomly generated by
the software, using Equation (2.19). Initial values used in these examples are
reported in Table 2.2. To see how the effect of the starting values disappears
as the MCMC simulation proceeds, consider the plots shown in Figure 2.7.
They represent the first 2000 iterations of the MCMC chains estimating µ, σ 2

θ

and σ 2
ε , given data reported in Table 2.1. As can be observed, the two chains

seem to have almost forgotten the starting point after 1000 iterations. There-
fore, a first guess for the burn-in can be set to k0 = 2000. The total number of
runs K is set to 100, 000 because of the high autocorrelation observed within
each chain. Given this first attempt for the burn-in and the total length of the
Markov chain, a convergence check can be performed using all the methods
described.

Figure 2.8 shows the Z-scores obtained using the Geweke statistics for
the two chains starting from the overdispersed starting points in Table 2.2.
Z-scores outside the two bands at ±2 denote that the test of equality

TABLE 2.2

Initial Values Adopted in the Two MCMC
Chains for the Random Effects Model
Chain µ σ2

θ σ2
ε

First 2000 1 1
Second 1000 0.01 0.01
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FIGURE 2.7
First 2000 iterations of the two MCMC chains simulating µ, σ 2

θ , and σ 2
ε in the random effect

model, given data in Table 2.1.

of means failed when the corresponding burn-in (reported on the abscissa)
is adopted. These Z-scores show that burn-in lower than 20, 000 can cause
problems, especially for convergence of the variance components
σ 2

ε and σ 2
θ .

Table 2.3 shows results obtained using the Raftery and Lewis diagnostic
for the two chains used for the random effect model. As can be observed, val-
ues reported for the burn-in period are quite small. Therefore, convergence
is basically achieved using the current burn-in truncation point of k0 = 2000,
according to this diagnostic check. However, the total number of draws sug-
gested for estimating σ 2

θ is almost double than the one adopted (K = 10, 0000).
The requirement for longer chains is due to the high autocorrelation (i.e., the
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Z-scores (Geweke’s convergence diagnostic) for the two simulated Markov chains (first chain,
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was K = 10, 0000.

“dependence factor” show in Table 2.3) that the Markov chain shows for this
parameter.

Figure 2.9 shows the Gelman and Rubin’ shrink factor R̂ as a function of
the burn-in truncation point. In all the plots the median and the 97.5% shrink
factor is below the critical value 1.2. Therefore, according to the Gelman and
Rubin diagnostic, convergence has been reached with the adopted burn-in
truncated at k0 = 2000.

One additional Markov chain was simulated using the parameters in-
ferred from Geweke’s diagnostic statistic (i.e., a burn-in truncation point of

TABLE 2.3

Results Obtained Using the Raftery and Lewis Diagnostic for the Two Chains
with Burn-In k0 = 2000 and Whole Number of Draws K = 10, 0000

First chain Second chain
Parameter Burn-in Total Dependence factor Burn-in Total Dependence factor

µ 4 8000 2.14 6 7952 2.12
σ 2

θ 148 211,492 56.50 160 213,824 57.10
σ 2

ε 4 8024 2.14 3 4111 1.10
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Gelman and Rubin shrink factor R̂ as a function of the burn-in truncation point, random effects
model. From left to right: shrink factors for µ, σ 2

ε , and σ 2
θ . The burn-in period was k0 = 2000 and

the total number of draws was K = 100, 000.

k0 = 25, 000) and from Raftery and Lewis’ diagnostic statistic (i.e., a total
number of draws of K = 200, 000). Figure 2.10 shows that the Z-scores are
now always within the bound at ±2 and hence convergence seems achieved
according to this diagnostic approach. Results obtained with the Raftery and
Lewis’ diagnostic (showed in Table 2.4) confirm that with these new settings,
the burn-in and the total number of samples are satisfactory.

TABLE 2.4

Results Obtained Using the Raftery and Lewis Diagnostic for the
Chain with Burn-in Truncation at k0 = 25, 000 and a Total Number
of Draws of K = 200, 000
Parameter Burn-in Total Dependence factor

µ 6 8296 2.21
σ 2

θ 168 182,252 48.70
σ 2

ε 4 7830 2.09
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FIGURE 2.10
Z-scores (Geweke’s convergence diagnostic) for µ, σ 2

ε , and σ 2
θ , using a burn-in truncation point

of k0 = 25, 000 and a total number of draws of K = 200, 000.

Results obtained with this last chain are reported in Figure 2.11. Table 2.5
shows the final estimates obtained with the Gibbs sampling for unknown
parameters. As can be observed in Figure 2.11, the posterior distribution for
σ 2

θ has a very long upper tail, and hence the posterior mean for this parameter
is considerably larger than the median in Table 2.5.

TABLE 2.5

Final Estimates Obtained for the Random Effects Model with Burn-In
Truncation Point of 25,000 and Total Number of Draws of K=200,000
Node Mean SD 2.5% Median 97.5% Start Sample

µ 1527.0 21.49 1484.0 1527.0 1571.0 25,000 175,001
σ 2

θ 2192.0 4126.0 0.006919 1279.0 10130.0 25,000 175,001
σ 2

ε 3038.0 1115.0 1557.0 2806.0 5794.0 25,000 175,001
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FIGURE 2.11
Steady-state behavior of the two MCMC chains when simulating µ, σ 2

θ , and σ 2
ε in the random

effects model, given the data in Table 2.1.

Appendix: Mini-Tutorial on WinBUGS 1.4

WinBUGS is a statistical software for Bayesian analysis of statistical models
using MCMC. It was developed under the BUGS (Bayesian inference Using
Gibbs Sampling) project that began in 1989 in the MRC Biostatistics Unit of
the University of Cambridge (UK) and that was further developed jointly
with the Imperial College School of Medicine at St Mary’s, London.

The current version of the software as of this writing (WinBUGS 1.4.1)
is available at http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. In this
short tutorial, the main steps required to run MCMC using WinBUGS will
be described with reference to the variance components model described in
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Section 2.4.1 and included as an examples in Volume 1 in the WinBUGS help
documentation. We will refer to this example as the “Dyes example.” To run
a MCMC simulation using WinBUGS, two main steps are required:

1. Specify the model in the WinBUGS language and provide all the
data required to make inferences;

2. Perform the MCMC simulation and compute all the desired
statistics.

In the following, these two steps will be briefly described. Further details can
be found in the WinBUGS User Manual.

Model Specification and Data Format

WinBUGS allows us to specify the model in two alternative forms: a graphical
representation, in which the model is represented by a directed graph, and a
text-based description, in which the model is defined in the BUGS language.
In the following, the second type of representation will be briefly described.
In BUGS language, two basic relationships can be used:

• Stochastic or probabilistic relationships, which are denoted by the
tilde symbol, ∼;

• Deterministic or logical relationships, which are denoted by the left-
arrow symbol, <-.

Stochastic relationships are used to assign a distribution to variables. As an
example, y dorm(mu,tau) specifies that y is a stochastic variable that is
normally distributed with mean mu and precision (i.e., the inverse of the
variance) tau. Logical relationships are used to define variables as functions
of other variables or constants. As an example: sigma2<-1/tau allows us
to define the variance sigma2 as a function of the precision tau. To handle
arrays, indexes can be used to specify different elements in the array and a
“for-loop” can be used as follows:

for(i in 1:5){
mu[i] ~ dnorm(mu.all, tau.btw)

}

where mu is a vector of five elements that are normally distributed. Hence,
the random effects model for the Dyes example described in Section 2.4.1 can
be specified in the BUGS language as follows:

model {
for( i in 1 : batches ) {

mu[i] ~ dnorm(mu.all, tau.btw)
for( j in 1 : samples ) {

y[i , j] ~ dnorm(mu[i], tau.with)
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}
}
mu.all ~ dnorm(0.0, 1.0E-10)
# prior for within-variation
tau.with ~ dgamma(0.001, 0.001)
sigma2.with <- 1 / tau.with
# prior for between-variation
tau.btw ~ dgamma(0.001, 0.001)
sigma2.btw <- 1 / tau.btw

}

where # allows us to comment out the expression which follows and dgamma
refers to the Gamma distribution. As we mentioned, WinBUGS allows us to
describe a model both in the BUGS language (text-based description) and
in a graphical form. The graphical representation of the model described
is reported in Figure 2.12. As can be observed, the model is characterized by
two constantsbatches andsamples, an array of data denoted withy[i,j]
and unknown parameters mu.all, tau.with, tau.btw, and mu[i]. To
perform the MCMC simulation, we must specify values for the constants
and the observed data. With reference to the Dyes example, batches = 6,
samples = 5, and data y[,] are reported in Table 2.1. These values can be
given in the following S-plus format:

list(batches = 6, samples = 5,
y = structure(
.Data = c(1545, 1440, 1440, 1520, 1580,
1540, 1555, 1490, 1560, 1495,
1595, 1550, 1605, 1510, 1560,
1445, 1440, 1595, 1465, 1545,
1595, 1630, 1515, 1635, 1625,
1520, 1455, 1450, 1480, 1445), .Dim = c(6, 5))).

To start performing the MCMC simulation, initial values for all the un-
known parameters must be defined for each Markov chain that must be sim-
ulated. To assign initial values reported in Table 2.2, the same S-plus format
can be used for the first chain:

list(mu.all=2000, tau.with=1, tau.btw=1);

and for the second chain:

list(mu.all=1000, tau.with=100, tau.btw=100).

Note that initial values for unknown parameters mu[i] can be directly
generated by WinBUGS, and that this is a preferable choice for random effects
model (for fixed effects model, the WinBUGS manual suggests to define initial
values for all the parameters involved).
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sigma2.btw

tau.btw

tau.with

sigma2.with

mu.all

mu[i]

y[i, j]

for(j IN 1 : samples)

for(i IN 1 : batches)

FIGURE 2.12
Graphical representation of the variance components model in WinBUGS.

Performing the MCMC Simulation and Obtaining
the Required Posterior Statistics

Given the specified model, the first step consists in checking whether the
model syntax is correct. To perform this step, we should point to Model in the
tool bar and highlight the Specification... option. The Specification Tool win-
dow will appear (Figure 2.13). In the window containing the model code, the
word model must be selected and highlighted and the check model button
in the Specification Tool window clicked. If the model is correct, the mes-
sage “model is syntactically correct” should appear in the bottom left of the
WinBUGS program window.

FIGURE 2.13
The Specification Tool dialog box in WinBUGS.
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The second step consists of loading the data and can be performed by
highlighting the word list at the beginning of the data file and clicking the
load data button in the Specification Tool. The message “data loaded” should
appear in the bottom left of the WinBUGS program window.

The final step consists of specifying the number of chains we want to
run and the initial values for each chain. To specify the number of chains,
the desired number should be inserted in the box labelled num of chains in
the Specification Tool. After clicking the compile button, the message “model
compiled” should appear. For each chain, the initial values can be loaded by
highlighting the word list at the beginning of each set of initial values and
clicking the load inits button in the Specification Tool. When some parameters
have no initial values (as in the random effects model we are referring to),
the message “this chain contains uninitialized variables” should appear. By
clicking the gen inits button, the software will generate initial values by sam-
pling from the prior distributions for all the uninitialized variable in all the
chains. The final message “initial values loaded, model initialized” testifies
that the software is ready to start running the simulation.

To properly collect results of the simulations, we need to specify to Win-
BUGS which samples should be stored before running the MCMC simulation.
This step can be performed by selecting the Samples... option from the Infer-
ence tool bar. In the Sample Monitor Tool window (reported in Figure 2.14), we
can type the name of the parameter to be monitored in the box node, select the
“burn-in samples” that need to be discarded in the box beg, and the whole
number of samples we want to simulate in the box end, and then click the
button labelled set. This procedure must be repeated for all the parameters
that we want to monitor. If we want to compute statistics based just on sam-
ples from every kth iteration, we need to type k in the box thin.

The Sample Monitor Tool window contains some further commands that
can be of interest: the trace and history buttons allow us to obtain plots of

FIGURE 2.14
The Sample Monitor Tool dialog box in WinBUGS.
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FIGURE 2.15
The Update Tool dialog box in WinBUGS.

the values of each parameter monitored against the iteration number. The
only difference between the two commands is that trace generates a dynamic
plot showing the last iterations of the simulation, whereas the history com-
mand generates a plot that shows the whole behavior of the chain from the
beginning of the simulation to the current time. Both the commands are use-
ful to support convergence check. In fact, when multiple chains are simu-
lated, these commands show plots in which each chain is represented with a
different color on the same graph. Convergence can be qualitatively consid-
ered achieved when the different chains overlap. Further plots as smoothed
kernel density or autocorrelation functions can be obtained with the corre-
sponding buttons.

To run the simulation, we must point to Model in the tool bar and highlight
the Update... option. The Update tool window will appear (Figure 2.15). In this
window, we can specify the number of MCMC updates to be carried out in the
updates box and the number of updates between redrawing the screen (and
hence redrawing the trace plots) in the refresh box. By setting the box thin equal
to k > 1, we can specify that just samples from every kth iteration must be
stored. Note that this thinning option is different from the one appearing in the
Sample Monitor Tool dialog box. When we specify thinning in the Update tool
window, we are permanently discarding samples. When thinning is specified
via the Sample Monitor Tool, we are temporarily discarding some samples to
perform the required statistics but we are not reducing the number of samples
stored (and hence we can not use this command to free-up memory). In the
Update tool dialog box, the two fields over relax and adapting are specifically
related with options concerning the MCMC method used (for further details,
refer to the WinBUGS manual in the “Update options...” section).

Once the desired number of samples have been simulated through the
Update tool, we can eventually obtain all the summaries from the posterior
distribution by typing * in the node box of the Sample Monitor Tool and clicking
the button marked stats. Smoothed kernel density plots based on the poste-
rior samples can be also obtained by clicking the button labelled density. The
button coda allows us to generate ASCII files containing all monitored values.
These files can then be read with the CODA diagnostic package (running
under R or S-plus) to perform the desired convergence checks.
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ABSTRACT The frequentist Shewhart charts have proved valuable for the
first stage of quality improvement in many manufacturing settings. However,
their statistical foundation is on a model with exactly known process param-
eters and independent identically distributed process readings. One or more
aspects of this foundation are often lacking in real problems. A Bayesian
framework allowing an escape from the independence and the known-para-
meter assumptions provides a conceptually sounder and more effective
approach for process control when one moves away from this first ideal-
ization of a process.
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3.1 Introduction

The Shewhart X-bar chart [12] is the most widely used statistical process con-
trol tool. While many practitioners downplay statistical models for the chart,
we believe these are essential to fully appreciate its capabilities and limita-
tions. In the idealized situation that all process readings follow a common
normal distribution with known parameters and are independent, all the
properties of the chart are well-known. Its run length (both in- and out-of-
control) is geometric with a known probability of signal. With independence
and known parameters, one can advance to more sensitive tools such as the
cumulative sum [10] and the exponentially weighted moving average charts
[11], and again the independent known-parameter normal model allows for
exact calculation of all statistical properties of the charts.

However, increasing realization exists that process parameters are hardly
ever known to an adequate precision for these theoretical calculations to be
plausible. Furthermore, many process drift. The most familiar is the tool wear
problem, but other settings are also found. Food safety is one such problem.
Food may start out safe, but it deteriorates with time — ideally steadily, but
perhaps (for example, if refrigeration fails) suddenly and catastrophically. In
clinical chemistry, standards change slowly over time, and they too can de-
teriorate suddenly in case of contamination or environmental change. Other
problems do not have systematic drift but show varying degrees of serial
association — blending problems are an example of this.

These thoughts motivate the search for methods that escape the known-
parameter straitjacket; that allow for serial dependence [17], and that can
model sharp shifts [2]. Bayesian methods in statistical process control (SPC) are
particularly attractive because one can easily convert the inference part into a
decision theory problem [16], but mainly because they allow for optimal use of
partial information on the process [4, 9]. In what follows, we will develop one
such framework, concentrating on the monitoring of the mean of a normally
distributed process measurement.

3.2 Statistical Modeling

We consider the problem of control of the mean of a Normal distribution
model when the mean is unknown and not necessarily constant and the vari-
ance is unknown. Furthermore, the mean of the process will be modeled as a
random walk that is subject to random jumps. More precisely, writing θn for
the process true mean at stage n, when moving between successive stages of
the process, we model:

θn+1|(θn, σ 2, p, δ) ∼
{

N(θn, σ 2) with probability p
N(θn + δ, σ 2) with probability 1 − p

}
,
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where σ 2 represents the random drift of the mean. The mean can also undergo
a jump of size δ with probability 1− p. This model does not give rise to a steady
state; rather, θn increases (or decreases) without bound. Despite the absence of
an asymptotic steady state, the model is still attractive for settings that do not
have steady states. Examples are the tool wear problem; spoilage problems
(of food, vaccine, perishable raw materials) and chemical assay standards, in
each of which at some point the process will become unacceptable and must
be stopped. Our model allows this to occur through either or both of drifting
and step changes. We are mainly interested in the mean of the process but
also have nuisance parameters φ = (σ 2, p, δ).

Finally, we assume that θn is measured only with some measurement error
variability, i.e.,

Xn+1|θn+1 ∼ N(θn+1, cσ 2),

where c > 0 is a known constant expressing the ratio of the measurement to
the drift random variability. (We do not need to know the measurement error
variance, just the ratio of these two variances.)

The case where the vector of nuisance parameters φ was known or could
be estimated from historical data has been treated in [14], where the inference
for the mean based on the posterior distribution of the parameter of interest
was derived and its relation to the Kalman filter [8] approach was studied.

In what follows, we will treat the vector φ of nuisance parameters in a
Bayesian fashion, using a prior distribution and obtaining the joint posterior.
Integrating out the nuisance parameters, we will obtain the posterior for the
parameters of interest.

3.2.1 Prior Settings

For the random walk model with occasional jumps we studied here, we
adopted a sequential updating scheme where the posterior distribution at
each stage of the process will be the prior of the next stage. To have a closed
form updating mechanism, using natural conjugates for the prior is best. More
precisely, our model is:

θn+1|(θn, σ 2, p, δ) ∼ pN(θn, σ 2) + (1 − p)N(θn + δ, σ 2).

The natural conjugate prior for the pair (θ , σ 2) is the Normal-Inverted Gamma
(N-IG) distribution. With this choice, we get independently: (θn, σ 2) ∼ N − I G

p ∼Beta(α, β)
δ ∼Normal(δ0, λσ 2)

 .

The Beta distribution for p is quite convenient because appropriate choice
of the parameters α and β can lead to a member of a wide range of possible
a priori beliefs. These include prior ignorance (uniform distribution) or more
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informative beliefs (symmetric, U-shaped, strictly increasing or decreasing,
and so on).

The size of the jump is set by δ. We allow jumps of random size where prior
knowledge will allow us to decide on the predetermined value of the mean
δ0, whereas the prior confidence we have for the size of δ will be expressed via
an appropriate choice of λ (a multiple of the model’s variability, σ 2), where
small values will lead to informative cases and large values express ignorance.
Providing that λ is quite small (indicating very informative cases), the type
of processes we are interested in will determine the sign of δ0. For processes
where the mean gradually increases (like the tool wear setting) and we are
concerned with not exceeding an upper limit, δ0 will be positive. Alternately, δ0
will be negative for the type of processes where we are interested in guarding
against a lower control limit. The case where δ0 = 0 (and λ > 0) will not affect
the mean of the process but its variance because the unconditional mean will
take the form of a contaminated Normal distribution. This special case refers
to the processes where it is not the mean that can undergo sudden jumps but
the variance, which might be elevated from one stage to the next.

3.2.2 Model Evolution

Before the process starts to operate, we have an initial prior distribution:

π(θ0, σ 2) ∼ N(µ(0) , k(0)σ 2) I G( A(0) , B(0))

where µ(0) , k(0) , A(0) , and B(0) are hyperparameters whose values we will
assume known. Due to the fact that our model allows the process mean to
either jump or not jump at every stage of the process, the posterior distribu-
tion after n steps will be a mixture of 2n components. More precisely, once
the nuisance parameters p and δ are integrated out, we will have the prior
for the stage n + 1, (i.e., before we will observe xn+1) (θn+1, σ 2)|Xn to be a
mixture of 2n+1 N-1G distributions, where by Xn = {x1, x2, . . . , xn} we will
denote the data available from time 1 until n. Then combining the likelihood
and the prior in Bayes theorem, we will obtain the posterior distribution of
(θn+1, σ 2)|Xn+1. More precisely, we have the following:

THEOREM 3.1
At time n + 1 the posterior distribution of (θn+1, σ 2) will be a mixture of 2n+1

Normal-Inverted Gamma distributions:

p(θn+1, σ 2|Xn+1) ∼
2n+1−1∑

j=0

w(n+1)
j N

(
µ

(n+1)
j , k(n+1)

j σ 2)I G
(

A(n+1) , B(n+1)
j

)
,

where the weights and the parameters of the posterior obey the following recursive
rules

A(n+1) = A(n) + 1
2
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and for i = 0, 1, . . . , 2n − 1,

µ
(n+1)
2i =

(
k(n)

i + 1
)
xn+1 + cµ(n)

i

c + k(n)
i + 1

µ
(n+1)
2i+1 =

(
λ + k(n)

i + 1
)
xn+1 + c

(
µ

(n)
i + δ0

)
c + λ + k(n)

i + 1

k(n+1)
2i =

(
k(n)

i + 1
)
c

c + k(n)
i + 1

k(n+1)
2i+1 =

(
λ + k(n)

i + 1
)
c

c + λ + k(n)
i + 1

B(n+1)
2i =

[ (
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) + 1

B(n)
i

]−1

B(n+1)
2i+1 =

[(
xn+1 − µ

(n)
i − δ0

)2

2
(
c + λ + k(n)

i + 1
) + 1

B(n)
i

]−1

w(n+1)
2i =

(
α

α+β

)
w(n)

i mi (xn+1)

NC

w(n+1)
2i+1 =

(
β

α+β

)
w(n)

i m∗
i (xn+1)

NC
,

where

mi (xn+1) = 

(

A(n) + 1
2

)

( A(n))

√√√√ B(n)
i

2π
(
c + k(n)

i + 1
)

×
[

1 + B(n)
i

(
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) ]−( A(n)+ 1

2 )

m∗
i (xn+1) = 


(
A(n) + 1

2

)

( A(n))

√√√√ B(n)
i

2π
(
c + λ + k(n)

i + 1
)

×
[

1 + B(n)
i

(
xn+1 − µ

(n)
i − δ0

)2

2
(
c + λ + k(n)

i + 1
) ]−( A(n)+ 1

2 )
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and

NC =
2n−1∑
i=0

[(
α

α + β

)
w(n)

i mi (xn+1) +
(

β

α + β

)
w(n)

i m∗
i (xn+1)

]
.

The proof of the theorem is given in the Appendix.
As we mentioned in the prior settings section, in very informative cases

of δ, appropriate choice of δ0 provides for processes that we are interested
in upward shifts (δ0 > 0), downward shifts (δ0 < 0), or no jumps but ele-
vated variance (δ0 = 0) between successive stages. If we are interested for
cases where the mean can undergo both positive and negative jumps, the
conditional distribution of the mean θn+1|(θn, σ 2, p, δ) would then be given
as a mixture of three components, including two unidirectional jump compo-
nents of opposite direction. This would provide a posterior distribution with
3n components [13].

A binary representation is helpful in identifying the terms of the mixture.
At stage n, the index of any of the 2n components in the mixture can be used as a
“state vector” defining that term’s provenance. We do this by writing the term
number/state vector as an n-bit binary integer. Bit i is 1 if the process jumped
at stage i and is 0 otherwise. Each component of the mixture has as weight its
mixture (posterior) probability, w(n)

i . The state vector j = 0 in the sum refers
to the length n string of zeros that represents the no-jump case. As we can
see in the proof of the theorem, the even-numbered components represent
the case of not having a jump at the nth stage of the process (with all 2n−1

possible scenarios for the history), whereas the odd-numbered components
refer to the case of having a jump at the current stage (again, with all possible
history).

3.2.3 Approximating the Posterior

In the posterior distribution, the number of components in the mixture grows
exponentially with n, the number of stages in the process. However, after a
few stages of the increasingly large number of terms, most will have small
posterior probabilities and so make small contributions to the overall mixture
distribution. This fact motivates us to use an approximation, replacing the
exact distribution with another mixture having far fewer components. This
can be done in several ways. In [14], the authors proposed prunine all the
components that have “small” weights w(n)

i , because all their descendants
will have even smaller weights in the updated prior distribution. This is
done because the pruned components represent the most unlikely scenarios
of model evolution, and thus we end up keeping the “active” components
whose weights are non-negligible. Instead of pruning the low-probability
components, we could (as suggested in [15]) pool neighboring components,
replacing them with a single approximating normal distribution.

Either approximation will reduce the number of terms in the model and
make it able to handle longer sequences. If we adopt the “pooling” approach,
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however, we lose with it the ability to identify a term’s history from the binary
representation of its number.

3.3 Inference

As a result of the updating mechanism at the end of each stage, we obtain the
joint posterior distribution of the mean θn and the variance σ 2 of the model.
The marginal posterior distribution of each parameter can be obtained easily
by integrating out the other. In particular, if we integrate out the mean θn, we
obtain the posterior of σ 2|Xn as a mixture of 2n Inverted Gamma distributions.
Alternetely, if we integrate out σ 2, then we get the posterior distribution of
θn|Xn as a mixture of 2n Student t distributions. This leads to the following:

LEMMA 3.1
The posterior distribution of σ 2|Xn will be

p(σ 2|Xn) ∼
2n−1∑
i=0

w(n)
i I G

(
A(n) , B(n)

i

)
,

whereas the marginal posterior mean distribution will be

p(θn|Xn) ∼
2n−1∑
i=0

w(n)
i Student

(
θn | µ

(n)
i ,

A(n) B(n)
i

k(n)
i

, 2A(n)

)

=
2n−1∑
i=0

w(n)
i



(

A(n) + 1
2

)



(
A(n)

)
√√√√ B(n)

i

2πk(n)
i

[
1 + B(n)

i

(
θn − µ

(n)
i

)2

2k(n)
i

]−( 2A(n)+1
2 )

.

In what follows, we will apply some of the standard decision theory tools
in drawing inference for the mean of the process (inference on the model
variability σ 2 proceeds analogously). In the framework of point estimation
regarding the mean of the process, we have that under squared error loss, the
Bayes rule is the mean of the posterior distribution, i.e.,

θ̂n =
2n−1∑
i=0

w(n)
i µ

(n)
i .

One situation of interest is where the process has an upper limit on the
tolerable θn and, correspondingly, the jumps are positive. If we wish to signal
when the mean is thought to have crossed some upper threshold value M,
we can set up a sequence of hypothesis tests:{

H0 : θn ≤ M
H1 : θn > M

}
.
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If we are concerned for processes with negative jumps, the symmetric
hypothesis test can be applied. At each stage of the process, we perform the
hypothesis test and allow the process to continue operating when H0 is not
rejected. Alternately, rejection of H0 at some stage will stop the process and
some corrective action will be taken (like an intervention and initialization of
the whole process).

Deciding on whether H0 will be rejected or not can be done in several dif-
ferent ways. For instance, one might use the posterior coverage probabilities
of the region (−∞, M]. At each stage n of the process, we can estimate the
probability

pn = p(θn ≤ M|Xn) =
2n−1∑
i=0

w(n)
i Fi (M),

whereFi is the Student t cumulative distribution function (cdf) corresponding
to component i . We will reject H0 when pn < c∗, where c∗ is some prespecified
constant. For instance, if we use the “generalized 0 − 1” loss function, with
cI and cI I being the costs of type I and II errors, respectively, the value of
c∗ = cI I /(cI + cI I ) provides a Bayes test [1]. A time series plot of the pn

probabilities will offer further insight into the behavior of the mean.
A different alternative for doing the hypothesis testing is to use the ratio

of the posterior to prior odds of H0, which is known as Bayes factor [7].
Depending on the value of this ratio, we will get evidence for or against H0
(in [7], a table of cutoff values to be used is provided). More generally, in [3]
one can find a variety of sequential decision problem approaches that can be
adapted for our setup.

3.4 Forecasting

A particularly interesting feature in the Bayesian paradigm is forecasting.
Namely, one can use the available data Xn = {x1, . . . , xn} to derive the predic-
tive distribution of the next (unseen) observation Xn+1. From [6], the predictive
distribution Xn+1|Xn in our model setting will be given by

P(Xn+1|Xn) =
∫∫

f (Xn+1|θn+1, σ 2)π(θn+1, σ 2|Xn)dθn+1dσ 2,

where f (Xn+1|θn+1, σ 2) is the likelihood and π(θn+1, σ 2|Xn) is the prior at stage
n + 1. From the proof of Theorem 3.1 we have that

P(Xn+1|Xn) =
2n−1∑
i=0

[(
αw(n)

i

α + β

)
mi (xn+1) +

(
βw(n)

i

α + β

)
m∗

i (xn+1)

]
,

where the form of mi (xn+1) and m∗
i (xn+1) were provided in the Theorem 3.1.

Thus, we have the following:
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LEMMA 3.2
The predictive distribution of Xn+1|Xn will be given as a mixture of 2n+1 Student t
distributions:

P(Xn+1|Xn) = α

α + β

2n−1∑
i=0

w(n)
i Student

(
xn+1 | µ

(n)
i ,

A(n) B(n)
i

c + k(n)
i + 1

, 2A(n)

)

+ β

α + β

2n−1∑
i=0

w(n)
i Student

(
xn+1 | µ

(n)
i + δ0,

A(n) B(n)
i

λ + c + k(n)
i + 1

, 2A(n)

)
.

This predictive distribution leads to, for instance, means and predictive in-
tervals for the upcoming observation, which can be useful in the common
tolerance interval settings.

3.5 Making the Model Robust

In this section, we study the behavior of our model in the presence of out-
liers. In [5], two types of time series outliers were identified, innovative and
additive. Innovative outliers persist, whereas additive outliers affect a sin-
gle process reading but leave no after-effect. A heavy-tailed distribution for
the measurement error would lead to additive outliers, whereas the jump
included in the modeling of the mean offers protection against innovative
outliers.

If a possibility of additive outliers exists, making the SPC scheme against
them make robust would be helpful. A convenient method of doing so (that
preserves conjugacy) is the γ scale-contaminated normal distribution:

Xn|(θn, σ 2) ∼ γ N(θn, cσ 2) + (1 − γ ) N(θn, Lcσ 2),

where 0 < γ < 1 and L > 1. The choice of specific values for γ and L depend
on the application.

Using a mixture of two components for both the mean and the measure-
ment equation will cause our model’s posterior distribution of (θn, σ 2)|Xn to
be a mixture of 4n different components.

3.6 Example

The developed methodology will be applied to a data set (Table 3.1), provided
to us by Dr. Daniel Schultz of the Rogasin Institute, that provides a usual labo-
ratory quality control setting. Clinical chemistry laboratories carry out assays
for a variety of biological markers in the blood (triglycerides, in our data). As
each day’s run involves an instrument calibration, having quality controls on
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TABLE 3.1

The 13 Consecutive Measurements of the Riglycerides (in mg/dL)
Time 1 2 3 4 5 6 7 8 9 10 11 12 13

Trigl. 112 109 108 107 110 109 114 113 111 112 113 119 120

the day’s runs is important. These are commonly provided by using quality
control samples— specimens. These are then assayed along with the patient
unknowns, and the reading checked against the previous assays and any prior
information on the specimen. The specimens are commonly a large pool of
blood serum stored under conditions where the lipids remain quite stable.
However, some day-to-day change exists and if the storage conditions are
lost, the pool can spoil. These control assays are therefore natural candidates
for our model.

The fact that the lab has a long history of previous pools, and pools used
for different blood components, means that quite good prior information is
available when a new pool is introduced. From several series of historic data,
we have elicited the following prior settings:

 (θ0, σ 2) ∼ N(110, σ 2) I G (3, 1/6)
p ∼ Beta(8, 2)
δ ∼ Normal(4, σ 2/2)

 .

In Figures 3.1 and Figure 3.2, we plot the prior distributions of p and σ 2,
respectively, where the prior mean of p (the probability of not having a jump)
has an average value E( p) = 0.8, whereas for the marginal of σ 2, we put a
prior that has E(σ 2) = 3 and V(σ 2) = 9.

Assembling the information on three different analysts in three different
lipid assays, we selected c = 1 (the sensitivity analysis regarding the choice c
and the rest of hyperparameters will be carried over). Finally, with respect to
the upper specification limit, this was specified to be M = 118 mg/DL.

Next, we applied the proposed methodology and we obtained the full
posterior probability for each stage of the process. (A Matlab code that runs
the proposed model and reproduces this example’s results can be downloaded
at http://www.stat-athens.aueb.gr/∼pt/software.) The data along with the
posterior means at each stage (Bayes rule for the parameter θn under squared
error loss) can be seen in Figure 3.3.

Performing the sequence of hypothesis testing of whether the mean has
exceeded the upper threshold value M, or not we obtain the posterior cov-
erage probabilities of H0 (pn) and the Bayes factors shown in Tables 3.2 and
Table 3.3 respectively.

Based on these posterior coverage probabilities, we are very confident that
the mean is well below the threshold value for the first 11 observations. At the
12th observation (which, based on the sequential view of the data, looks to be
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FIGURE 3.1
The Beta prior distribution for the probability of not having a jump p.
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FIGURE 3.2
The marginal prior distribution for the parameter σ 2.
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FIGURE 3.3
The solid line represents the data and the dashed line refers to the Bayes posterior mean for the
marginal posterior of θn.

TABLE 3.2

The Posterior Probabilities P(θn > M|Xn) for Each Stage of the Process
Time 1 2 3 4 5 6 7 8 9 10 11 12 13

pn 0.999 0.999 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.454 0.088

TABLE 3.3

The Bayes Factor for Each Stage of the Process
Time 1 2 3 4 5 6 7 8 9 10 11 12 13

Bayes 33.868 499.46 765.11 1429.2 165.76 2068.6 5.5456 219.33 2069 693.67 247.5 0.046681 0.15597
factor
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TABLE 3.4

The Marginal Posterior Probability of Having a Jump at Each Stage of the
Process (Independent of the History)
Time 1 2 3 4 5 6 7 8 9 10 11 12 13

Prob. of 0.1958 0.0270 0.0290 0.0283 0.2385 0.0481 0.6666 0.0540 0.0199 0.0573 0.0963 0.8544 0.1774
jump

either an outlier or a result of a mean jump), the posterior coverage of H0 falls
below 0.5, and with the 13th observation, drops to a very low value, indicating
that the mean has exceeded the upper threshold. This is an indication that
either the pool has deteriorated to the point that a new pool might be advisable
or that some change in the assay itself has occurred (possibly a calibration
issue or an instrument change) that should be investigated and remedied.
The similar story is provided to us from the Bayes factors as well, where we
observe that at stage 12 of the process, we have a value well below 1, indicating
strong evidence against H0 according to the guidelines given in [7].

Based on the binary representation of the weights (which are the posterior
probabilities of the respective components), we can calculate the marginal
probability of a jump occurring at each stage (irrespective of the earlier
history) by simply summing all the odd number weights. These marginal
probabilities can be seen in Table 3.4.

From these posterior probabilities, the mean of the processes appears to
have underwent two jumps, one at stage 7 and a second at stage 12. Combing
these values with the posterior coverage probabilities, we observe that the
second jump was decisive in setting the mean above the threshold value.

A sensitivity analysis showed that the results were quite robust with
respect to the choice of the hyperparameters, as long as we are not becoming
extremely informative. In this spirit, the value of c (ratio of the model to mea-
surement variance) hardly alters the posterior coverage probabilities unless it
becomes very small —which is the equivalent of directly observing the mean
of the process— or very large —where so much error contaminates the actual
measurement that the underlying pattern is lost.

3.7 Conclusions

Statistical process control has been immensely valuable as a first line of
attack in quality improvement. However, many real-world settings are not
accommodated by the traditional Shewhart or the newer, more sensitive tools.
Bayesian methods make a good bridge between the frequentist extremes of to-
tal knowledge and total ignorance of process parameters. We have sketched
a Bayesian formulation that allows for serial correlation and jumps in the
process mean. It is particularly suitable for short-run processes, which is a
setting that is not covered well by existing methodologies.
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Appendix

The proof of the theorem will be given via induction. Proving that it holds for
n = 1 is easy. Assume this is also true for n, i.e.,

p(θn, σ 2|Xn) ∼
2n−1∑
i=0

w(n)
i N

(
µ

(n)
i , k(n)

i σ 2)I G
(

A(n) , B(n)
i

)
.

We then show that it is true for n + 1. We have

θn+1|θn, σ 2, p, δ ∼ pN(θn, σ 2) + (1 − p)N(θn + δ, σ 2)

π(θn, σ 2|Xn) ∼ ∑2n−1
i=0 w(n)

i N
(
µ

(n)
i , k(n)

i σ 2
)

I G
(

A(n) , B(n)
i

)
π( p) ∼ Beta (α, β)
π(δ) ∼ N(δ0, λσ 2)

 .

From the above, we are interested in deriving the distribution of (θn+1, σ 2)|Xn,
which will play the role of the updated prior in the Bayes theorem. We have

π(θn+1, σ 2|Xn) =
∫∫∫

π(θn+1, σ 2, p, δ)dp dδ dθn

=
∫∫∫

π(θn+1|θn, σ 2, p, δ)π(θn, σ 2|Xn)π( p)π(δ)dp dδ dθn

=
∫

π(θn, σ 2|Xn)

×
[∫

π(δ)
[∫

π(θn+1|θn, σ 2, p, δ)π( p)dp
]

dδ

]
dθn = (I).

For the inner integral, we have

I1 =
∫

π(θn+1|θn, σ 2, p, δ)π( p)dp

=
∫ [

p√
2πσ 2

exp
{

− (θn+1 − θn)2

2σ 2

}
+ 1 − p√

2πσ 2
exp

{
− (θn+1 − θn − δ)2

2σ 2

}]

×
[

1
Be(α, β)

pα−1(1 − p)β−1
]

dp

= Be(α + 1, β)
Be(α, β)

1√
2πσ 2

exp
{

− (θn+1 − θn)2

2σ 2

}

+ Be(α, β + 1)
Be(α, β)

1√
2πσ 2

exp
{

− (θn+1 − θn − δ)2

2σ 2

}
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=
(

α

α + β

)
1√

2πσ 2
exp

{
− (θn+1 − θn)2

2σ 2

}

+
(

β

α + β

)
1√

2πσ 2
exp

{
− (θn+1 − θn − δ)2

2σ 2

}
Then the second integral becomes

I2 =
∫

π(δ) × I1dδ

=
∫ [

1√
2πλσ 2

exp
{

− (δ − δ0)2

2λσ 2

}]
×

[
α

(α + β)
√

2πσ 2
exp

{
− (θn+1 − θn)2

2σ 2

}

+ β

(α + β)
√

2πσ 2
exp

{
− (θn+1 − θn − δ)2

2σ 2

}]
dδ

= α

(α + β)
√

2πσ 2
exp

{
− (θn+1 − θn)2

2σ 2

}
+ β

(α + β)
√

2πσ 2
√

2πλσ 2∫
exp

{
− (δ − δ0)2

2λσ 2 − (θn+1 − θn − δ)2

2σ 2

}
dδ

= α

(α + β)
√

2πσ 2
exp

{
− (θn+1 − θn)2

2σ 2

}

+ β

(α + β)
√

2πσ 2
√

λ + 1
exp

{
− (θn+1 − θn − δ0)2

2(λ + 1)σ 2

}
,

and thus we have

(I) = π(θn+1, σ 2|Xn) =
∫

π(θn, σ 2|Xn) × I2dθn

=
∫ 2n−1∑

i=0

w(n)
i√

2πk(n)
i σ 2

exp

{
−

(
θn − µ

(n)
i

)2

2k(n)
i σ 2

}

× 1


( A(n))
[
B(n)

i

]A(n)

1
(σ 2) A(n)+1

exp

{
− 1

B(n)
i σ 2

}]

×
[

α

(α + β)
√

2πσ 2
exp

{
− (θn+1 − θn)2

2σ 2

}

+ β

(α + β)
√

2πσ 2
√

λ + 1
exp

{
− (θn+1 − θn − δ0)2

2(λ + 1)σ 2

}]
dθn



P1: shibu/Vijay

August 8, 2006 15:8 C5440 C5440˙C003

102 Bayesian Process Monitoring, Control and Optimization

= 1
2π(α + β)
( A(n))(σ 2) A(n)+2

2n−1∑
i=0

w(n)
i√

k(n)
i

1[
B(n)

i

]A(n) exp

{
− 1

B(n)
i σ 2

}

×
[
α

∫
exp

{
− (θn − θn+1)2

2σ 2 −
(
θn − µ

(n)
i

)2

2k(n)
i σ 2

}
dθn

+ β√
λ + 1

∫
exp

{
− (θn − (θn+1 − δ0))2

2(λ + 1)σ 2 −
(
θn − µ

(n)
i

)2

2k(n)
i σ 2

}
dθn

]

= 1
2π(α + β)
( A(n))(σ 2) A(n)+2

2n−1∑
i=0

w(n)
i√

k(n)
i

1[
B(n)

i

]A(n) exp

{
− 1

B(n)
i σ 2

}

×
α

√
2πk(n)

i σ 2√
k(n)

i + 1
exp

{
−

(
θn+1 − µ

(n)
i

)2

2
(
k(n)

i + 1
)
σ 2

}

+ β√
λ + 1

√
λ + 1

√
2πk(n)

i σ 2√
λ + 1 + k(n)

i

exp

{
−

(
θn+1 − δ0 − µ

(n)
i

)2

2
(
λ + 1 + k(n)

i

)
σ 2

}

=
2n−1∑
i=0

w(n)
i

(α + β)
1


( A(n))
[
B(n)

i

]A(n)

1
(σ 2) A(n)+1

exp

{
− 1

B(n)
i σ 2

}

×
 α√

2π
(
k(n)

i + 1
)
σ 2

exp

{
−

(
θn+1 − µ

(n)
i

)2

2
(
k(n)

i + 1
)
σ 2

}

+ β√
2π

(
λ + k(n)

i + 1
)
σ 2

exp

{
−

(
θn+1 − µ

(n)
i − δ0

)2

2
(
λ + k(n)

i + 1
)
σ 2

} .

Therefore, the prior of (θn+1, σ 2) at stage n + 1 of the process will be

π(θn+1, σ 2|Xn) ∼
2n−1∑
i=0

[
αw(n)

i

α + β
N
(
µ

(n)
i ,

(
k(n)

i + 1
)
σ 2)I G

(
A(n) , B(n)

i

)

+ βw(n)
i

α + β
N
(
µ

(n)
i + δ0,

(
λ + k(n)

i + 1
)
σ 2)I G

(
A(n) , B(n)

i

)]

∼
2n−1∑
i=0

[
αw(n)

i

α + β
πi (θn+1, σ 2|Xn) + βw(n)

i

α + β
π∗

i (θn+1, σ 2|Xn)

]
,
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where

πi (θn+1, σ 2|Xn) ≡ N
(
µ

(n)
i ,

(
k(n)

i + 1
)
σ 2)I G

(
A(n) , B(n)

i

)
and

π∗
i (θn+1, σ 2|Xn) ≡ N

(
µ

(n)
i + δ0,

(
λ + k(n)

i + 1
)
σ 2)I G

(
A(n) , B(n)

i

)
.

At time n+ 1, the observation xn+1 will become available from the likelihood:

f (xn+1|θn+1, σ 2) ∼ N(θn+1, cσ 2).

Then for the posterior of interest, we will have

p(θn+1, σ 2|Xn+1) ∝ f (xn+1|θn+1, σ 2)π(θn+1, σ 2|Xn)

=
2n−1∑
i=0

[
αw(n)

i

α + β
f (xn+1|θn+1, σ 2)πi (θn+1, σ 2|Xn)

+ βw(n)
i

α + β
f (xn+1|θn+1, σ 2)π∗

i (θn+1, σ 2|Xn)

]
.

We will call

mi (xn+1) =
∫∫

f (xn+1|θn+1, σ 2)πi (θn+1, σ 2|Xn)dθn+1dσ 2

=
∫∫  1√

2πcσ 2
exp

{
− (θn+1 − xn+1)2

2cσ 2

}
1√

2π
(
k(n)

i + 1
)
σ 2

× exp

{
−

(
θn+1 − µ

(n)
i

)2

2
(
k(n)

i + 1
)
σ 2

}
× 1


( A(n))
[
B(n)

i

]A(n)

1
(σ 2) A(n)+1

× exp

 − 1

B(n)
i σ 2


 dθn+1dσ 2

=
∫

1√
2πcσ 2

1√
2π

(
k(n)

i + 1
)
σ 2

1


( A(n))
[
B(n)

i

]A(n)

1
(σ 2) A(n)+1

× exp

{
− 1

B(n)
i σ 2

}
×

[∫
exp

{
−

(
θn+1 − µ

(n)
i

)2

2
(
k(n)

i + 1
)
σ 2

}

× exp
{

− (θn+1 − xn+1)2

2cσ 2

}
dθn+1

]
dσ 2 = (II),
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but we know that

exp
{

− (θ − x)2

2cσ 2 − (θ − µ)2

2kσ 2

}
= exp

−
[
θ − kx+cµ

k+c

]2

2
( kc

k+c

)
σ 2

× exp
{

− (x − µ)2

2(k + c)σ 2

}

and thus for the inner integral I3, we will have

I3 = exp

{
−

(
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
)
σ 2

}∫
exp

−

[
θn+1 −

(
k(n)

i +1
)

xn+1+cµ(n)
i(

c+k(n)
i +1

) ]2

2
[(

k(n)
i +1

)
c

c+k(n)
i +1

]
σ 2

 dθn+1

=
√√√√2π

[ (
k(n)

i + 1
)
c

c + k(n)
i + 1

]
σ 2 exp

{
−

(
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
)
σ 2

}
,

then

(II) =
∫

1√
2πcσ 2

1√
2π

(
k(n)

i + 1
)
σ 2

1


( A(n))
[
B(n)

i

]A(n)

1
(σ 2) A(n)+1

× exp

{
− 1

B(n)
i σ 2

}
×

√√√√2π

[ (
k(n)

i + 1
)
c

c + k(n)
i + 1

]
σ 2

× exp

{
−

(
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
)
σ 2

}
dσ 2

= 1√
2π

(
c + k(n)

i + 1
) 1


( A(n))
[
B(n)

i

]A(n)

×
∫

1

(σ 2) A(n)+ 1
2 +1

exp

{
−

[ (
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) + 1

B(n)
i

]
1
σ 2

}
dσ 2,

where the integral is the kernel of an Inverted Gamma distribution. Thus we
have

I4 =
∫

1

(σ 2) A(n)+ 1
2 +1

exp

{
−

[ (
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) + 1

B(n)
i

]
1
σ 2

}
dσ 2

= 


(
A(n) + 1

2

)[ (
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) + 1

B(n)
i

]−( A(n)+ 1
2 )
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and therefore

mi (xn+1) = 

(

A(n) + 1
2

)

( A(n))

√√√√ B(n)
i

2π
(
c + k(n)

i + 1
)[1 + B(n)

i

(
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) ]−( A(n)+ 1

2 )
.

Similarly,

m∗
i (xn+1) =

∫∫
f (xn+1|θn+1, σ 2)π∗

i (θn+1, σ 2|Xn)dθn+1dσ 2

= 
( A(n) + 1
2 )


( A(n))

√√√√ B(n)
i

2π
(
c + λ + k(n)

i + 1
)

×
[

1 + B(n)
i

(
xn+1 − µ

(n)
i − δ0

)2

2
(
c + λ + k(n)

i + 1
) ]−( A(n)+ 1

2 )
.

We then have

p(θn+1, σ 2|Xn+1) ∝
2n−1∑
i=0

[
αw(n)

i

α + β
mi (xn+1) pi (θn+1, σ 2|Xn+1)

+ βw(n)
i

α + β
m∗

i (xn+1) p∗
i (θn+1, σ 2|Xn+1)

]

where pi (·) and p∗
i (·) will be the posterior distributions, which (based on Bayes

theorem) will be Normal-Inverted Gamma. If we call NC the normalizing
constant of the posterior distribution, i.e.,

NC =
2n−1∑
i=0

[(
α

α + β

)
w(n)

i mi (xn+1) +
(

β

α + β

)
w(n)

i m∗
i (xn+1)

]
,

we then get

p(θn+1, σ 2|Xn+1) =
2n−1∑
i=0


(

α
α+β

)
w(n)

i mi (xn+1)

NC
pi (θn+1, σ 2|Xn+1)

+
(

β

α+β

)
w(n)

i m∗
i (xn+1)

NC
p∗

i (θn+1, σ 2|Xn+1)


=

2n−1∑
i=0

[
w(n+1)

2i pi (θn+1, σ 2|Xn+1) + w(n+1)
2i+1 p∗

i (θn+1, σ 2|Xn+1)
]
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where

w(n+1)
2i =

(
α

α+β

)
w(n)

i mi (xn+1)

NC

and

w(n+1)
2i+1 =

(
β

α+β

)
w(n)

i m∗
i (xn+1)

NC
.

For the posterior distribution, applying standard Bayes theory we have

pi (θn+1, σ 2|Xn+1) ∼ N
(
µ

(n+1)
2i ,

(
k(n+1)

2i + 1
)
σ 2)I G

(
A(n+1) , B(n+1)

2i

)
p∗

i (θn+1, σ 2|Xn+1) ∼ N
(
µ

(n+1)
2i+1 ,

(
k(n+1)

2i+1 + 1
)
σ 2)I G

(
A(n+1) , B(n+1)

2i+1

)
,

where

A(n+1) = A(n) + 1
2

µ
(n+1)
2i =

(
k(n)

i + 1
)
xn+1 + cµ(n)

i

c + k(n)
i + 1

µ
(n+1)
2i+1 =

(
λ + k(n)

i + 1
)
xn+1 + c

(
µ

(n)
i + δ0

)
c + λ + k(n)

i + 1

k(n+1)
2i =

(
k(n)

i + 1
)
c

c + k(n)
i + 1

k(n+1)
2i+1 =

(
λ + k(n)

i + 1
)
c

c + λ + k(n)
i + 1

B(n+1)
2i =

[ (
xn+1 − µ

(n)
i

)2

2
(
c + k(n)

i + 1
) + 1

B(n)
i

]−1

B(n+1)
2i+1 =

[(
xn+1 − µ

(n)
i − δ0

)2

2
(
c + λ + k(n)

i + 1
) + 1

B(n)
i

]−1

.

References

1. Casella, G. and Berger, R.L., Statistical Inference, Pacific Grove, CA: Wadsworth
& Brooks-Cole, 1990.

2. Chang, J. T. and Fricker, R.D., “Detecting when a monotonically increasing mean
has crossed a threshold,” Journal of Quality Technology, 31, 217–234, 1999.



P1: shibu/Vijay

August 8, 2006 15:8 C5440 C5440˙C003

A Bayesian Approach to Statistical Process Control 107

3. De Groot, M.H., Optimal Statistical Decision, New York: McGraw-Hill, 1970.
4. Harvey, A.C., Forecasting, Structural Time Series Models and the Kalman Filter,

New York: Cambridge University Press, 1989.
5. Fox, A.J., “Outliers in time series,” Journal of the Royal Statistical Society, Series B,

34, 350–363 1972.
6. Geisser, S., Predictive Inference: An Introduction, London: Chapman & Hall, 1993.
7. Jeffreys, H., Theory of Probability, 2nd Ed., Oxford UK: University Press, 1948.
8. Kalman, R.E., “A new approach to linear filtering and prediction problems,”

Journal of Basic Engineering, 82, 35–45 1960.
9. Kirkendall, N.J., “The relationship between certain Kalman filter models and

exponential smoothing models,” in Statistical Process Control in Automated
Manufacturing, Keats, J.B. and Hubele, N.F. (Eds.) New York: Marcel Dekker,
1989.

10. Page, E.S., “Continuous inspection schemes,” Biometrika, 41, 100–115, 1954.
11. Roberts, S.W., “Control chart tests based on geomrtric moving averages,”

Technometrics, 1, 239–250, 1959.
12. Shewhart, W.A., Economic Control of Quality of Manufactured Product, New York:

Van Nostrand, 1931.
13. Tsiamyrtzis, P., “A Bayesian approach to quality control problems,” Ph.D.

Dissertation, School of Statistics, University of Minnesota 2000.
14. Tsiamyrtzis, P. and Hawkins, D.M., “A Bayesian scheme to detect changes in

the mean of a short run process,” Technometrics, 47, 446–456, 2005.
15. West, M., “Approximating posterior distributions by mixtures,” Journal of Royal

Statistical Society, Series B, 55, 2, 409–422, 1993.
16. Woodward, P.W., and Naylor, J.C., “An application of Bayesian methods in SPC,”

The Statistician, 42, 461–469, 1993.
17. Wright, C.M., Booth, D.E., and Hu, M.Y., “Joint estimation: SPC method for

short-run autocorellated data,” Journal of Quality Technology, 33, 365–378, 2001.



P1: shibu/Vijay

August 8, 2006 15:8 C5440 C5440˙C003



P1: shibu/Vijay

August 30, 2006 14:34 C5440 C5440˙C004

4
Empirical Bayes Process Monitoring
Techniques

Jyh-Jen H. Shiau
Institute of Statistics, National Chiao Tung University

Carol J. Feltz
Division of Statistics, Northern Illinois University

CONTENTS

4.1 Introduction................................................................................................ 110
4.2 Empirical Bayes Process Monitoring for a Univariate

Continuous Variable ................................................................................. 111
4.2.1 Estimation....................................................................................... 113
4.2.2 A Monitoring Scheme................................................................... 115
4.2.3 An Example.................................................................................... 116

4.3 Empirical Bayes Process Monitoring for a Multivariate
Continuous Variable ................................................................................. 117
4.3.1 Estimation....................................................................................... 118
4.3.2 Monitoring Schemes .....................................................................120
4.3.3 An Example....................................................................................121

4.4 Empirical Bayes Process Monitoring for Pass/Fail
or Other Binary Variables.........................................................................122
4.4.1 Estimation.......................................................................................124
4.4.2 Monitoring Schemes .....................................................................126

4.5 Empirical Bayes Process Monitoring for a Polytomous
Discrete Variable........................................................................................126
4.5.1 Estimation.......................................................................................129
4.5.2 Monitoring Schemes .....................................................................132

4.6 Summary and Discussion.........................................................................134
Appendix..............................................................................................................135
Acknowledgements ............................................................................................137
References.............................................................................................................137

109



P1: shibu/Vijay

August 30, 2006 14:34 C5440 C5440˙C004

110 Bayesian Process Monitoring, Control and Optimization

ABSTRACT In this chapter, some empirical Bayes monitoring techniques are
presented for statistical process control (SPC). In particular, techniques are
presented for monitoring univariate and multivariate continuous measure-
ments, as well as yield/defect data (pass/fail data) and polytomous data. For
each type of data, a Bayesian model is assumed for the process data, a prior
with unknown hyperparameters is chosen, and empirical Bayes estimators
are accordingly given for each of the parameters in the Bayesian model. In
addition to estimating where the current process is, the estimators provide a
distribution for the process parameter of interest, such as yield. Furthermore,
by combining the empirical Bayes techniques with exponential smoothing,
one can see where the process has been in the past, as well as where it is
currently. Recursive equations for the estimators are provided for efficient
computation, which is essential for successful implementation of real-time
analysis of processes in factories.

4.1 Introduction

Many statistical process control (SPC) techniques have been proven useful in
quality and productivity improvement of products and processes. Among
them, monitoring processes by control charts has become a standard or even
a required procedure in many industries, especially in manufacturing. Most
of the control charts designed so far were derived based on statistical infer-
ences from frequentist points of view. Only a few researchers have developed
process monitoring schemes from Bayesian perspectives.

In this chapter, we present an empirical Bayes methodology for monitor-
ing process data, including univariate/multivariate and continuous/discrete
measurements, in which the process parameters of interest such as mean
or yield/defect levels can vary over time. Some of these empirical Bayes
techniques have been implemented in high-speed electronics manufactur-
ing facilities, where the testing equipment is connected to a central com-
puter and data are taken automatically as product items are being tested. The
empirical Bayes methodology takes advantage of this on-line environment
by using previous data to choose its own prior. By using recursive equations
and maintaining a small database of sufficient statistics, these empirical Bayes
techniques provide a very efficient method for monitoring quality.

Some of the key features of this empirical Bayes methodology for process
monitoring are:

1. Using the likelihood as the sampling distribution to identify the
sampling variability of measurements coming from the current
production.

2. Using the empirically estimated Bayes prior to infer the process
mean and process variation, or how the process changes over time.
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3. Using the posterior distribution to create a distribution estimate
for the varying process parameter of interest in the process— how
much variability is inherent in this process parameter.

4. By weighting the observations differently, one can create two dis-
tributions to see the “long-term” pattern and a “short-term” view
of the behavior of the process parameter. Also, embedded in each
of the exponentially weighted estimators of the process parameters
is an exponentially weighted moving average (EWMA) statistic. Both
features can be used for process monitoring.

5. Using recursive equations for estimators based on sufficient
statistics to make the computation efficient.

Univariate process data monitoring is still the most commonly used SPC
technique in real-life applications. In Section 4.2, we first describe some uni-
variate methods for monitoring continuous measurements. However, with
enhancing technologies and computer power, more and more frequently
we encounter process data of two or more variables that simultaneously
impact quality or the yield of the process. In addition, these variables can
“interact” in a way that, even when each variable is within its specification
limits, the product might not function. Thus, the role of monitoring multivari-
ate process data has become more and more important in quality improve-
ment nowadays. Section 4.3 extends the monitoring techniques for univariate
continuous data to techniques for multivariate continuous data.

Because yield and defect data are also frequently observed and of great
importance to process control in many industrial applications, empirical Bayes
techniques for monitoring binary and polytomous data are presented in
Section 4.4 and Section 4.5, respectively. We conclude the chapter with a brief
summary and discussion in Section 4.6.

Tremendous amounts of literature are found in both research fields of
Bayesian analysis and quality control techniques. In this chapter, references
are given to works used or related to developing the techniques presented
here as well as the subsequent works in the field. We apologize in advance
to those authors whose works might have been inadvertently missed. The
literature review pertaining to each technique is included in that section.

4.2 Empirical Bayes Process Monitoring for a Univariate
Continuous Variable

Several Bayesian or Bayesian-like analyses, such as Kalman filtering, have
been applied to the problem of process control. Kamat [14] developed a
Bayesian control procedure for a variable with linear shift tendencies. Hoadley
[9] developed a more general Bayesian procedure to monitor and rate quality
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variables by taking sample audits. Phadke [18] developed a similar procedure
using a Kalman filter approach. The following empirical Bayes analysis was
developed in Sturm et al. [21]

Let Xt be the continuous quality characteristic of interest, such as voltage
or resistance. Since Xt has measurement and sampling error, we assume that
Xt is normally distributed with mean µt and variance σ 2 at time t. More
specifically, the conditional probability density function (p.d.f.) of Xt given
µt is given by

g1(Xt|µt) = 1√
(2πσ 2)

exp
[−(Xt − µt)2

2σ 2

]
.

Hereσ 2 is usually an unknown constant representing the combined variability
of measurement and sampling errors.

For example, suppose in semiconductor fabrication, the Si O2 layer is
targeted to be 720 nm. When the layer is made, its thickness will not always
be exactly 720 nm, as there is natural variability (often called sampling
variation) exists in the process that forms the layer. Also, measurement errors
occur when measuring the thickness by any measuring equipment. Thus, we
assume that the thickness values of the same layer at the same place on several
plates made at time t are generated by approximately the same process,
so that the thickness Xt at time t should have a distribution that is centered
at µt.

Assume also that the mean quality characteristic µt varies over time due to
processing variations and environmental changes such as temperature and
humidity. This variation (called process variation) can be described by the
so-called “prior” distribution in Bayesian analysis. Assume thatµt is normally
distributed with mean µ and variance γ 2. Then the p.d.f. of µt is given by

g2(µt) = 1√
(2πγ 2)

exp
[−(µt − µ)2

2γ 2

]
,

where µ and γ 2 are unknown constants, often called hyperparameters in
Bayesian analysis.

Please note the two sources of variation in this Bayesian model. The first
source of variation, which contains measurement errors as well as natural
fluctuations of the quality characteristic Xt when the process is centered at
µt, is represented by the sampling varianceσ 2. The second source of variation,
which is due to the changing behavior of the process parameter µt over time,
is represented by the process variance γ 2.

To estimate the mean µt of the quality characteristic Xt at time t using the
information contained in Xt, Bayes’ theorem is invoked as follows. The p.d.f.
of µt given Xt is

f (µt|Xt) = g1(Xt|µt)g2(µt)∫
g1(Xt|µt)g2(µt)dµt

.
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In Bayesian terminology, f (µt|Xt) is called the posterior distribution of
µt. For this application, µt given Xt has a normal distribution with mean

µpt = wµ + (1 − w)Xt (4.1)

and variance

σ 2
p = γ 2w, (4.2)

where w = σ 2/(γ 2 + σ 2), as described in Chapter 1. We can see clearly from
Equation (4.1) that the posterior mean is a linear combination of the current
observation Xt and the prior mean µ. Also, Equation (4.2) implies that the
posterior variance is only a portion of the process variance γ 2.

As the parameters µ, σ 2, and γ 2 are not known, in the empirical Bayes
methodology they are estimated empirically from the Xt’s (the only
observables) and used to estimate the posterior distribution of µt, or where
the process is at time t. Estimation of these unknown parameters will be
discussed next.

4.2.1 Estimation

To be theoretically rigorous, it must be noted that with µt varying over time,
the Xt’s are independent but not identically distributed and the covariance
structure between the Xt’s and µt’s is messy. This makes any estimation pro-
cedure difficult. By making certain assumptions that approximately hold in
many applications, these difficulties can be avoided.

Assume that the process parameter µt stays relatively constant over small
time intervals, for example, minutes or hours. Then consecutive Xt’s are
approximately independent and identically distributed (i.i.d.) with the p.d.f.
g1(Xt|µt). Given a set of data of size T , {X1, . . . , XT }, we can estimate µ, σ 2,
and γ 2 as follows.

By the double expectation method, the marginal distribution of Xt has the
mean

E(Xt) = Eµt EXt (Xt|µt) = µ.

Because each Xt is an unbiased estimate of µ, a reasonable estimator µ̂ of µ

is the overall average of the Xt’s. That is,

µ̂ =
∑T

t=1 Xt

T
. (4.3)

Next, we estimate the sampling variance σ 2. By assuming that µt is not chang-
ing rapidly, adjacent observations — for example, Xt and Xt−1 — should come
from approximately the same distribution. Because Var (Xt − Xt−1) = 2σ 2 for
i.i.d. random variables, estimating σ 2 by averaging squared moving ranges
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is natural:

σ̂ 2 =
∑T

t=2(Xt − Xt−1)2/2
T − 1

. (4.4)

In estimating the process variance γ 2, we note that the marginal variance of
Xt can be obtained by the conditional expectation method as follows:

V ≡ Var(Xt) = Eµt [Var(Xt|µt)] + Varµt [E(Xt|µt)] = σ 2 + γ 2.

In other words, the total variance in Xt is equal to the sampling variance plus
the process variance. By using µ̂ of Equation (4.3) as the estimator for µ, we
can estimate the total variance V by

V̂ =
∑T

t=1(Xt − µ̂)2

T
. (4.5)

Let γ̂ 2 be V̂ − σ̂ 2 if it is positive; otherwise, let γ̂ 2 be κV̂, where κ is a small
arbitrary number, say, 0 < κ < 0.1. It is possible that the estimator V̂ − σ̂ 2

may be less than zero is possible, especially when the process variance (γ 2)
is small relative to the sampling variance (σ 2). If this is the case, selecting a
small value for κ will bound the estimate of γ 2 relative to σ 2.

Note that the estimates given in Equations (4.3)–(4.5) would soon be
weighted down with “old” data since T gets larger and larger as time goes
by. However, if the process changes over time, the current data should have
more weight in the estimation of the current process distribution than the data
collected far away back in the past. To reflect this, the following exponentially
weighted estimators were proposed by Sturm et al. [21] for µ, σ 2, and V. Let
the Xt’s be ordered in time so that XT is the most current observation. The
weighted version of the estimators are

µ̂T =
∑T

t=1λ
T−t Xt∑T

t=1λ
T−t

, (4.6)

σ̂ 2
T =

∑T
t=2λ

T−t(Xt − Xt−1)2/2∑T
t=2λ

T−t
, (4.7)

and

V̂T =
∑T

t=1λ
T−t(Xt − µ̂)2∑T
t=1λ

T−t
, (4.8)

respectively. Here λT−t is the weight given to time period t, where λ is some
positive number less than 1 (usually 0.80 < λ < 1.0). The choice of λ depends
on the application. If data taken m observations ago are no longer relevant
to the current process, then the λ should be chosen appropriately. To weight
away data that is m observations ago, λ can be chosen to be ε1/m, where
ε is a very small number given to weight the observation m periods ago.
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For example, to weight away data that are 50, 100, or 200 observations ago, by
letting ε = 0.0001, we can choose λ = 0.832, 0.912 or λ = 0.955, respectively.
In our experience, λ = 0.99 and λ = 0.95 were used for some applications in
factories where the monitoring technique was implemented.

By incorporating the weighting into the empirical Bayes approach, we
maintain our distributional structure so that we can partition the variability
into the sampling and process variability as well as using the distribution
to identify shifts in the process mean. Also, by using the weight λT−t, the
older Xt’s gradually have less and less importance in the calculations. When
analyzing large amounts of data on-line, these weighted estimators have the
additional benefit that old data are automatically and gradually weighted
out using the above equations, so that time-expensive reads and purges of
databases are not necessary. One needs only update the sufficient statistics
with the current observations. For efficient computation, we rewrite the above
equations in the recursive form as follows.

Let θt = 1/
∑t

k=1 λt−k and note that θ1 = 1. After some algebra, the
following EWMA-like recursive equations can be obtained:

µ̂0 = 0, µ̂t = θt Xt + (1 − θt)µ̂t−1, t = 1, . . . , T,

σ̂ 2
1 = 0, σ̂ 2

t = θt(Xt − Xt−1)2/2 + (1 − θt)σ̂ 2
t−1, t = 2, . . . , T,

V̂0 = 0, V̂t = θt(Xt − µ̂t)2 + (1 − θt)(V̂t−1 + (µ̂t − µ̂t−1)2), t = 1, . . . , T.

The recursive equations for the non-weighted estimators (4.3)–(4.5) can also
be obtained from the above recursive equations by taking λ = 1. For this
special case, θt = 1/t.

Finally, by using the exponentially decaying weights, one can see that
the estimator for µ is some sort of EWMA, but not exactly a usual EWMA
statistic used in SPC. Note the smoothing parameter in an EWMA statistic is
a constant, whereas the θt here depends on t. Nevertheless, θt approaches the
constant 1 − λ as time t goes on.

4.2.2 A Monitoring Scheme

One approach for identifying process changes would be to select two different
smoothing parameters for λ, λlong and λshort, to create a “long-term” and a
“short-term” posterior distribution for µt, respectively. With λshort < λlong ,
the short-term distribution uses fewer “effective” observations and hence is
more volatile than the long-term distribution. Also, by giving more weights
to more recent historical data, it also reflects more of the current situation.
When the two distributions start to separate, a change in the distribution of
µt is flagged. This is the approach suggested by Sturm et al. [21], although
details were not given there. Specifically, Sturm et al. proposed to flag an out-
of-control signal if the short-term posterior mean estimate falls outside of the
10th to 90th percentile interval of the long-term posterior distribution. By using
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a box-plot to represent the estimated long-term distribution and a symbol “s”
to locate the estimated short-term posterior mean, they graphically displayed
an easy-to-see status report of the process for on-line operators.

4.2.3 An Example

We illustrate the monitoring scheme of Sturm et al. [21] described above
by the following example. Suppose that the SiO2 layer in a semiconductor
fabrication process is supposed to be deposited to a target thickness of 720 nm
on a wafer. However, due to a variety of mechanical and composition factors,
variation of the deposition thickness exists. In fact, the sampling variability in
the past is approximately 90nm2. Also, due to mechanical and environmental
conditions, the mean thickness deposited can change over time to give some
process variability. For our example, suppose the process has been stable for
some time, so that the short-term distribution is centered over the long-term
distribution.

Suppose we monitor 10 observations of thickness of the SiO2 layer for
sequential wafers. For this example, let λshort = 0.95 and λlong = 0.99. The
effect of each observation is given in Table 4.1, where the box-plot denotes
the long-term posterior distribution and the “s” indicates the location of the
“short-term” posterior mean.

If the process is under control, the “short-term” posterior mean should be

TABLE 4.1

Short-Term and Long-Term Posterior Distributions
Short-Term Dist Long-Term Dist
(λ=0.95) of µt|Xt (λ=0.99) of µt|Xt

Obs µ̂pt σ̂2
p µ̂ σ̂2 γ̂2 µ̂pt σ̂2

p µ̂ σ̂2 γ̂2 Box-Plots

714.3 719.1 8.2 719.7 77.8 9.3 719.4 8.1 719.9 80.3 9.1 S

729.9 721.1 7.0 720.2 80.0 7.7 721.0 7.9 720.0 80.8 8.7 S

719.3 720.1 4.3 720.2 78.8 4.5 720.0 7.4 720.0 80.5 8.1 S

710.3 719.0 6.3 720.0 76.9 6.9 719.6 7.5 720.0 79.5 8.3 S

717.0 719.4 5.4 719.5 74.1 5.8 719.6 7.5 719.9 79.5 8.3 S

730.8 721.0 6.2 720.1 75.2 6.7 721.1 7.7 720.0 79.7 8.5 S

741.7 726.4 19.0 721.2 74.4 25.6 723.1 10.8 720.2 79.5 12.4 S

755.2 739.0 37.5 722.9 75.2 74.7 728.5 18.2 720.6 79.6 23.5 S

746.8 737.0 41.6 724.1 73.2 96.3 727.9 21.6 720.8 79.2 29.7 S

752.4 742.9 45.5 725.5 70.4 128.8 731.5 26.1 721.2 78.5 39.1 S

752.4 742.9 45.5 725.5 70.4 128.8 731.5 26.1 721.2 78.5 39.1 S

680 720 760

Note: (“s” indicates the location of the “short-term” posterior mean.)
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hovering around the center of the “long-term” posterior distribution. How-
ever, with these observations, one can see from the box-plots in Table 4.1 that
the “short-term” posterior mean drifts outside of the “long-term” posterior
distribution. This indicates something is causing the distribution of thickness
to change. When the “short-term” posterior mean moves below (above) the
10th (90th) percentile of the “long-term” posterior distribution, a report will
be produced to alert the factory personnel.

The above example shows the thickness of SiO2 deposition is changing to
be larger.

4.3 Empirical Bayes Process Monitoring for a Multivariate
Continuous Variable

Jain et al. [11] described a Bayesian approach for monitoring multivariate
continuous process data. In their paper, they showed that their multivariate
control chart procedure was better at identifying out-of-control processes than
existing procedures. In this section, we first describe an extension of Jain
et al. [11] given in Feltz and Shiau [6] and then we will propose some new
monitoring schemes.

The techniques of empirical Bayes process monitoring in the multivariate
case mirror that of the univariate case described in Section 4.2. The main differ-
ence between the two cases is the availability and estimation of the covariance
between variables, for both process variation and sampling variation.

Suppose that we want to monitor p quality characteristics of the process
simultaneously. Denote the quality characteristics observed at time t by a
p × 1 vector Xt. This is an observation vector with each component being an
observation of one of the p quality characteristics. Because our multivariate
observation Xt has sampling error as well as measurement error, we assume
that at a given time t, Xt is normally distributed with mean vector µt and
covariance matrix Σ. Then the p.d.f. of Xt given µt can be written as

g1(Xt|µt) = 1

(2π )
p
2 |Σ| exp

[
−1

2
(Xt − µt)

′Σ−1(Xt − µt)
]

,

where Σ is an unknown nonnegative-definite matrix. Although we allow the
process mean µt to vary over time, we assume that the sampling variability
Σ stays constant. We further assume that µt is distributed as a multivariate
normal with mean vector µ and covariance matrix G to model the time-
varying process mean.

Similar to the univariate case, the above model allows two sources of
variability: (i) the sampling variability, representing the amount of variation
present among samples when the quality characteristic Xt is centered at its
mean µt; and (ii) process variability, representing the amount of variability
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due to process (mean) changing over time. In our previous work in the elec-
tronics industry, we found that by allowing the process (mean) to have its own
variability, we gained information about the process behavior as well as infor-
mation about how the sample behaves around the process mean. We remark
that the above setup generalizes Jain et al. approach, in that the underlying
process variability was assumed to be the same as the sampling variability,
i.e., G = Σ, which puts a very strong restriction on applications.

By treating the distribution of µt as the prior distribution for µt, as in
the Bayesian approach, we have the well-known result that the posterior
distribution of µt is a multivariate normal distribution with mean

µpt = E(µt|Xt) = Xt − Σ(Σ + G)−1(Xt − µ) (4.9)

and covariance matrix

V p = Cov(µt|Xt) = Σ − Σ(Σ + G)−1Σ. (4.10)

Let W = Σ(Σ + G)−1, a weighting matrix. The posterior mean of
Equation (4.9) can be rewritten as

µpt = Wµ + (I − W)Xt,

a form analogous to Equation (4.1) in the univariate case. It is not intuitive to
see the effects of W on the posterior mean for general W’s . However, for the
special case that W is a diagonal matrix— which can happen when there is no
correlation between process characteristics— we can easily see the effects of
the weighting matrix W. In this case, large components of W indicate that the
corresponding process characteristics have a large sampling variation, which
will pull their posterior means at time t toward their prior means. Alternately,
small components of W indicate small sampling variability on those quality
characteristics and hence pull the corresponding posterior means at time t
toward their current observations. When process quality characteristics are
correlated, the effects of W can be interpreted in terms of the principal com-
ponents. That is, for the principal component directions with large (small)
eigenvalues of W, their posterior means are pulled toward their prior means
(observations).

4.3.1 Estimation

Similar to the univariate case, the parameters that must be estimated areµ, Σ,
and G. The estimation method is also similar. Note that the marginal mean
and covariance matrix of Xt are µ and V = Σ + G, respectively. Assume that
T data vectors X1, . . . , XT are observed sequentially in time. It is natural to
estimate µ and V by the sample mean

µ̂ =
∑T

t=1 Xt

T
(4.11)
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and the sample covariance matrix

V̂ =
∑T

t=1(Xt − µ̂)(Xt − µ̂)′

T
, (4.12)

respectively.
To estimate the sampling variability, we would need multiple indepen-

dent observations at time t since µt is varying over time. However, in our
experience replications are seldom available. To circumvent this obstacle, we
must assume that the µt’s are fairly stable. Assume that the process mean at
time t remains relatively constant over short time intervals. Thus, consecutive
Xt’s can be thought of as independent random variables from the same dis-
tribution if there is very little time lag between them. Under this assumption,
one common estimate of Σ is

Σ̂ =
∑T

t=2(Xt − Xt−1)(Xt − Xt−1)′/2
T − 1

. (4.13)

To estimate G, because V = Σ + G, we simply use the subtraction:

Ĝ = V̂ − Σ̂.

Similar to the univariate case, if Ĝ is not positive definite (which can mean that
the process variation is relatively small compared to the sampling variation),
let Ĝ be κV̂ , where κ is a small number (0 < κ < 0.1), subject to the application.

To incorporate weighting into the estimators of the above equations as in
the univariate case, let

µ̂T =
∑T

t=1 λT−tXt∑T
t=1 λT−t

, (4.14)

Σ̂T =
∑T

t=2 λT−t(Xt − Xt−1)(Xt − Xt−1)′/2∑T
t=2 λT−t

, (4.15)

and

V̂T =
∑T

t=1λ
T−t(Xt − µ̂)(Xt − µ̂)′∑T

t=1λ
T−t

. (4.16)

The choice of λ is as discussed in the univariate case.
To make the analysis more computationally efficient, the above weighted

estimators can be written in the form of recursive equations as follows. With
the initial values µ̂0 = 0, Σ̂1 = 0, and V̂0 = 0,

µ̂t = θtXt + (1 − θt)µ̂t−1, for t = 1, , . . . , T, (4.17)

Σ̂t = θt(Xt − Xt−1)(Xt − Xt−1)′/2 + (1 − θt)Σ̂t−1, for t = 2, . . . , T, (4.18)
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V̂ t = θt(Xt − µ̂t)(Xt − µ̂t)
′

+(1 − θt)(V̂ t−1 + (µ̂t − µ̂t−1)(µ̂t − µ̂t−1)′), for t = 1, , . . . , T, (4.19)

where θt = 1/
∑t

k=1 λt−k . The recursive equations for the non-weighted
estimators (4.11)–(4.13) can also be obtained from the above recursive equa-
tions (4.17)–(4.19) above by taking λ = 1, which implies θt = 1/t.

4.3.2 Monitoring Schemes

In this subsection, we present some possible monitoring schemes. These
methods are different from the methods in Jain et al. [11] and Feltz and Shiau
[6]. Performance studies of these schemes are underway.

Using marginal distribution of Xt. For online process monitoring (Phase II),
assuming that the in-control marginal mean µ and covariance matrix V are
known or have been well estimated from some historical data, we can simply
use the usual Hotelling T2 statistic [10] to monitor the process:

T2
t = (Xt − µ)′V−1(Xt − µ), (4.20)

where Xt is the current observation vector to be monitored. The control limit
is C p = χ2

p,0.0027, the 99.73th percentile of the Chi-square distribution with
p degrees of freedom, which corresponds to the regular Shewhart’s three-
sigma control chart limits. Recall that p is the number of variables being
monitored simultaneously.

Note that constructing a control chart for determining whether or not a
process is in control based on a set of historical data (Phase I) is different from
that for on-line process monitoring (Phase II). In Phase I analysis, µ and V are
usually unknown and need to be estimated. It is natural to estimate them by
Equation (4.11) and Equation (4.12), respectively. It can be easily shown that
the following T2 statistic,

T2
t = (Xt − µ̂)′V̂

−1
(Xt − µ̂),

is distributed as an F distribution with freedom p and T − p for each obser-
vation vector Xt in the historical data. Thus, the upper control limit for Phase
I application is p(T + 1)/(T − p)F0.0027, p,T−p , where F0.0027, p,T−p is the 99.73th

percentile of the F distribution with degrees of freedom p and T − p.

Using the posterior distribution. Given a new observation Xt, compute
the posterior mean µpt and covariance matrix V p by Equation (4.9) and
Equation (4.10). Check if the central 99.73% credible set covers the vector
of target values. That is, we flag an out-of-control warning if the statistic

T2
pt = (T − µpt)

′V−1
p (T − µpt) (4.21)

is greater than χ2
p,0.0027, where T is the target vector. When µ, V , and Σ

are unknown, estimate them by the equations (4.11)–(4.13) from a set of
in-control data.
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Using long-term/short-term posterior distributions. When a new quality char-
acteristic vector Xt is observed at time t, estimate the process parameters
µ, Σ, and V recursively by the above equations (4.17)–(4.19) for a long term
λlong and a short-term λshort. Compute the long-term and short-term posterior
distributions by Equation (4.9) and Equation (4.10). If the short-term posterior
mean falls outside the central (1−a ) ×100% credible set of the long-term pos-
terior distribution, then the process is flagged as out of control. The constant
a can be chosen so that the monitoring scheme will achieve the prescribed
in-control average run length ARL0, say, 370.4. Note that 1 − a cannot be
the regular 0.9973 level because weighted estimators are used that makes the
monitoring statistics within a short time interval correlated. This is the same
reason why the control limit multiples in standard EWMA charts are not 3.
We suggest using Monte Carlo simulation to choose a . In practice, a can be
chosen subjectively to suit the practical situations.

4.3.3 An Example

The example presented in Jain et al. [11] is used to illustrate the first two
schemes described in the previous subsection. In this example, data came
from a machining operation for valve seat inserts. The variables and their
target values are given in Table 4.2.

Jain et al. [11] obtained an approximate population covariance matrix for
V based on sufficient historical data, shown in Table 4.3.

They then used 10 observations to illustrate their multivariate Bayesian
procedure by assuming Σ = G = V/2. Without further information on the
process, we take the above covariance matrix as V , the target vector as the
prior mean µ, and assume Σ = rV for simplicity. With these assumptions,
we can compute the posterior mean in Equation (4.9), the Hotelling T2

t in
Equation (4.20), and the posterior T2

pt in Equation (4.21) for each observation.
It can be easily verified that

T2
pt = 1 − r

r
T2

t and V p = (1 − r )Σ = r (1 − r )V.

Thus, when Σ = G (i.e., r = 0.5), two T2 statistics are equal. When the
sampling variation is larger than the process variation (i.e., r > 0.5), T2

pt is
smaller than T2

t .

TABLE 4.2

Variables and Target Values in Valve Set Inserts
Machining [11]
Characteristic Variable Target Value

Outside diameter X1 90.0
Width X2 19.7
Seat height X3 25.2
Seat angle X4 0.48
Seat concentricity X5 4.52
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TABLE 4.3

Approximate Covariance Matrix V Based on Historical Data [11]
Variable X1 X2 X3 X4 X5

X1 8.990 0.137 0.223 0.067 −0.055
X2 0.137 0.830 −0.122 −0.030 −0.050
X3 0.223 −0.122 2.220 0.589 0.041
X4 0.067 −0.030 0.589 0.310 0.004
X5 −0.055 −0.050 0.041 0.004 0.830

As an example, for the case of r = 0.8, Table 4.4 presents the 10 obser-
vations, their corresponding posterior means, and the two T2 statistics.
The cut-off point for either test statistic is χ2

5,0.9973 = 18.2. Thus, none of
the observations are close to being significant to flag the out-of-control
warning.

4.4 Empirical Bayes Process Monitoring for Pass/Fail
or Other Binary Variables

In this section, we discuss process monitoring of binary variables, such as
system-pass/system-fail or component-pass/component-fail data. One of the
key benchmarks of a manufacturing line is the first-pass yield. By using test
and repair data, estimates of first-pass yield distributions are constructed for
each type of product, as well as estimates of the nonconformity levels of the
components that make up a product. The use of empirical Bayes techniques
on binary Pass/Fail data was first presented by Yousry et al. [25]. The data
analysis system described in [25] can and has been used to detect the following
three types of problems: shifts in yield for a particular product, shifts in defect
levels of each component, and lack of agreement between “identical” test
stations testing the same type of products by comparing the distributions.

TABLE 4.4

Example of the Multivariate Bayesian Procedure
Observation X1 X2 X3 X4 X5 Posterior Mean T2

t T2
pt

Target 90.0 19.7 25.2 0.48 4.52 90.0 19.70 25.20 0.48 4.52
1 93.0 20.0 24.0 0.0 5.0 90.6 19.76 24.96 0.38 4.62 2.29 0.57
2 90.0 18.0 25.0 0.0 5.0 90.0 19.36 25.16 0.38 4.62 4.91 1.23
3 90.0 19.0 26.0 1.0 6.0 90.0 19.56 25.36 0.58 4.82 3.95 0.99
4 94.0 18.0 26.0 1.0 3.0 90.8 19.36 25.36 0.58 4.22 9.31 2.33
5 91.0 20.0 27.0 1.0 6.0 90.2 19.76 25.56 0.58 4.82 4.36 1.09
6 88.0 20.0 25.0 0.0 6.0 89.6 19.76 25.16 0.38 4.82 4.38 1.10
7 95.0 21.0 25.0 0.0 5.0 91.0 19.96 25.16 0.38 4.62 6.22 1.55
8 91.0 20.0 28.0 2.0 5.0 90.2 19.76 25.76 0.78 4.62 8.03 2.01
9 93.0 19.0 25.0 1.0 4.0 90.6 19.56 25.16 0.58 4.42 4.19 1.05

10 92.0 21.0 25.0 0.0 3.0 90.4 19.96 25.16 0.38 4.22 6.15 1.54
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Assume that nt product items are tested at time t. Let the yield variable
Xt be the number of items that pass the test. Xt is assumed to be binomially
distributed with parameters pt and nt, where pt is the probability that an item,
such as a circuit board or a thin film circuit, passes a certain test at time t. The
probability mass function (p.m.f.) of Xt is

g1(xt | pt) =
(

nt

xt

)
pxt

t (1 − pt)nt−xt , for xt = 0, . . . , nt.

As in the continuous case, we consider the situation that the yield level pt

might be changing over time t. By assuming that pt follows a beta distribution
with unknown hyperparameters α and β, the p.d.f. of pt is

g2( pt) = �(α + β)
�(α)�(β)

pα−1
t (1 − pt)β−1, for 0 < pt < 1.

The mean and variance of pt are, respectively,

µ ≡ E( pt) = α

α + β
(4.22)

and

γ 2 ≡ Var( pt) = αβ

(α + β)2(α + β + 1)
.

The variation inherent in pt is called the process variation, whereas the vari-
ance of Xt given pt is called the sampling variance.

The beta distribution was chosen for a few reasons. First, just like pt, a
beta variate takes on values in the interval (0, 1). Second, the beta family is
rich enough to provide flexible modelling for pt in the sense that the family
consists of distributions of a variety of shapes. The third reason is simply
for mathematical convenience. In a Bayesian framework, the beta distribu-
tion is the conjugate prior of the binomial, and a conjugate prior induces a
posterior distribution in the same family; hence, a closed-form solution (see
Chapter 1).

We are interested in estimating the parameter pt, the yield at time t. In
Bayesian analysis, the posterior mean or posterior mode is often used as a
point estimator for pt, whereas the credible interval based on the posterior
distribution is used as an interval estimator. It is well known that the posterior
distribution of pt given Xt = xt is a beta distribution with parameters xt + α

and nt − xt + β. The mean and variance of this posterior distribution are,
respectively,

µpt ≡ E( pt|xt) = xt + α

α + β + nt

and

σ 2
pt ≡ Var( pt|xt) = (xt + α)(nt − xt + β)

(α + β + nt)2(α + β + nt + 1)
.
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4.4.1 Estimation

In the empirical Bayes approach, we need to estimate the unknown hyperpa-
rameters α and β with the only observables being Xt’s.

The marginal mean and variance of the sample proportion Xt/nt can be
obtained as before by double expectation

µ ≡ E(Xt/nt) = E pt [E(Xt/nt)| pt] = α

α + β

and conditional expectation

Vt ≡ Var(Xt/nt) = E pt [Var(Xt/nt|pt)] + Varpt [E(Xt/nt|pt)]

= αβ

nt(α + β)(α + β + 1)
+ αβ

(α + β)2(α + β + 1)
≡ σ 2

t + γ 2, (4.23)

respectively. Equation (4.23) again says that the total variation in the sample
proportion is the sum of the sampling variation and process variation. Note
in particular that because the sampling variance (denoted by σ 2

t ) depends on
nt, so does the marginal variance Vt. By noting this, the estimation method
presented here is slightly different from that given in Yousry et al. [25].

Naturally, we estimate the overall mean µ by

µ̂ =
∑T

t=1 Xt∑T
t=1 nt

and the weighted averaged variance

Vtotal ≡
T∑

t=1

ntVt

/ T∑
t=1

nt

by

V̂total =
∑T

t=1 nt(Xt/nt − µ̂)2∑T
t=1 nt

.

Let αs = α + β. Then α = µαs and β = (1 − µ)αs . By the method of moments,
we can obtain estimators of α and β by

α̂ = µ̂ α̂s

β̂ = (1 − µ̂) α̂s ,

where

α̂s =
∑T

t=1 ntµ̂(1 − µ̂) −∑T
t=1 nt(Xt/nt − µ̂)2∑T

t=1 nt(Xt/nt − µ̂)2 − Tµ̂(1 − µ̂)
.
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As to weighting the older data out, we consider the following estimators:

µ̂T =
∑T

t=1 λT−t Xt∑T
t=1 λT−tnt

(4.24)

V̂total,T =
∑T

t=1 λT−tnt(Xt/nt − µ̂T )2∑T
t=1 λT−tnt

(4.25)

α̂s,T =
∑T

t=1 λT−tntµ̂T (1 − µ̂T ) −∑T
t=1 λT−tnt(Xt/nt − µ̂T )2∑T

t=1 λT−tnt(Xt/nt − µ̂T )2 −∑T
t=1 λT−tµ̂T (1 − µ̂T )

. (4.26)

Define

Nt =
t∑

j=1

λt− j n j ,

St =
t∑

j=1

λt− j Xj ,

S∗
t =

t∑
j=1

λt− j X2
j

n j
,

for t = 1, . . . , T . Then with the initial values N0 = 0, S0 = 0, and S∗
0 = 0,

Nt, St, and S∗
t can be computed recursively by

Nt = nt + λNt−1,

St = Xt + λSt−1,

S∗
t = X2

t /nt + λS∗
t−1,

for t = 1, . . . , T . Then Equation (4.24) can be computed recursively by

µ̂t = St

Nt
= Xt + λSt−1

nt + λNt−1
for t = 1, . . . , T. (4.27)

Also, after some simple algebra, Equation (4.25) can be rewritten as

V̂total,t = S∗
t

Nt
− µ̂2

t = X2
t /nt + λS∗

t−1

nt + λNt−1
−
(

Xt + λSt−1

nt + λNt−1

)2

,

for t = 1, . . . , T. (4.28)

It is interesting to note is that the recursive equations for µ̂t in Equation

(4.27) and the first term of V̂total,t in Equation (4.28), Ut ≡ X2
t /nt+λS∗

t−1
nt+λNt−1

, have the
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following EWMA-like forms:

µ̂0 = 0, µ̂t = θt
Xt

nt
+ (1 − θt)µ̂t−1, for t = 1, . . . , T

U0 = 0, Ut = θt
X2

t

n2
t

+ (1 − θt)Ut−1, for t = 1, . . . , T,

where θt = nt/(
∑t

j=1 λt− j n j ).
Let N∗

t = ∑t
j=1 λt− j . N∗

t can be also computed recursively by noting that
N∗

t = 1 + λN∗
t−1. Having computed Nt, N∗

t , µ̂t , and V̂total,t by their recursive
equations, we first compute At = µ̂t(1 − µ̂t) and then α̂s,t by

α̂s,t = Nt At − NtV̂total,t

NtV̂total,t − N∗
t At

.

4.4.2 Monitoring Schemes

The following are two potential monitoring schemes.

Using the long-term and short-term distributions. As in the continuous case,
we can check if the short-term posterior mean is in the two equal-probability
tails of the long-term posterior distribution. This is the approach proposed
in Yousry et al. [25] They used λlong = 0.99 and λshort = 0.95. To determine
objectively the cut-off points in the tails for flagging out-of-control signals,
we suggest using Monte Carlo simulation to find the points such that the
in-control ARL is about right, or simply choose them subjectively based on
the practical situations. For example, Yousry et al. [25] used the 10th and 90th

percentiles as the cut-off points in their real-life applications.

Using the marginal distribution of the sample proportion. As mentioned before,
it is common to use the marginal distribution to make inferences from data.
Shiau et al. [19] proposed and studied a monitoring scheme for polytomous
data in this approach. The binomial/beta model for binary data described
in this section can be treated as a special case in their multinomial/Dirichlet
model for polytomous data. To save space, we leave the description to the
next section.

4.5 Empirical Bayes Process Monitoring for a Polytomous
Discrete Variable

In many real-life applications, one has more information than just pass or fail
when a product item is tested. It is very common that a product has several
failure modes and there may be categories of passes. Sometimes even with just
pass/fail records, the tested items are classified as fail-low, pass, or fail-high.
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Such categorical data with more than two categories are sometimes referred
to as polytomous data. McCullagh and Nelder [16] (Chapters 4 and 5) provided
a good reference on binary and polytomous data analyses.

Many authors have investigated methods for monitoring the non-
conforming fraction for binary data (see Chapter 6 of Montgomery [17] for
a good literature review). But only few have developed methods for polyto-
mous data. [22] is an example, in which Voss et al. investigate the multinomial
model for monitoring the quality of bacterial colony counting procedures for
polytomous data.

Analyzing polytomous data with a Bayesian approach is not new.
Lindley [15] developed the Bayesian analysis of contingency tables for polyto-
mous data using the multinomial model with an improper prior distribution.
Lindley’s approach is classical Bayesian, meaning the prior distribution is
specified in advance. Walley [23] used the multinomial model with an im-
precise Dirichlet prior to model polytomous data when no prior information
was available. More recently, Shiau et al. [19] developed an empirical Bayes
process monitoring technique for polytomous data, in which they model
the sample fractions of pass/fail modes by a multinomial distribution with
its conjugate prior, the Dirichlet prior of unknown hyperparameters. They
developed a control chart with randomized control limits based on the
marginal distribution of the sample proportion for each pass/fail category.

In this section, we will present two monitoring schemes for polytomous
data. One is the scheme developed by Shiau et al. [19]; the other is an extension
of the scheme developed by Yousry et al. [25] for binary data.

Let k be the number of the defect types. Assume that each product item
is classified as either pass or having one of the k defect types. Although in
this section we are mainly dealing with polytomous data for which k ≥ 2,
the methods described here can be applied to binary data by simply taking
k = 1.

Denote pit as the probability of a product item, sampled at time t, having
the ith defect type for i = 1, . . . , k. Then p0t = 1 − ∑k

i=1 pit is the yield
probability. Let nt be the number of the product items tested, X0t be the
number of the items that pass the test, and Xit be the number of tested
items that are of the ith defect type at time t for i = 1, . . . , k. Obviously,
X0t = nt −∑k

i=1 Xit.
Let the observation vector Xt = (X0t , X1t , . . . , Xkt)′ be distributed as multi-

nomial (nt;pt), where pt = ( p0t , p1t , . . . , pkt)′ with 0 ≤ p0t , p1t , . . . , pkt ≤ 1 and∑k
i=0 pit = 1. Then the conditional p.m.f. of Xt given pt is

f (xt|pt) = nt!
x0t!x1t! · · · xkt!

px0t
0t px1t

1t · · · pxkt
kt (4.29)

for x0t , x1t , . . . , xkt ∈ {0, 1, . . . , nt} and
∑k

i=0 xit = nt. The conditional sampling
mean of Xt/nt given pt is

E(Xt/nt|pt) = pt
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and the conditional sampling covariance matrix is

Cov(Xt/nt|pt) = (diag{pt} − ptp
′
t)/nt,

where diag{pt} ≡ diag{p0t , p1t , . . . , pkt}.
Again we assume the process parameters pit’s can vary over time. By

modeling a process with time-varying parameters by a Bayesian model, one
gains a great advantage of ready-to-use Bayesian analysis. The following
Bayesian setup and results can be easily found in the Bayesian literature, for
example, in Carlin and Louis [3], or in page 76 of Gelman et al. [7].

Assume that pt has a Dirichlet(α) prior distribution, where α = (α0, α1,
. . . , αk)′ is the hyperparameter vector with α0, α1, . . . , αk > 0. Denote the sum
of all αi ’s by αs =∑k

i=0 αi . The prior p.d.f. of pt is

f (pt;α) = �(αs)
�(α0)�(α1) · · · �(αk)

pα0−1
0t pα1−1

1t · · · pαk−1
kt

for 0 ≤ p0t , p1t , . . . , pkt ≤ 1 and
∑k

i=0 pit = 1. Let α∗ = (α∗
0 , α∗

1 , . . . , α∗
k )′ =

α/αs . The process mean is

E(pt) = α∗

and the covariance matrix of pt is

Cov(pt) = (diag{α∗} − α∗α∗′)/(αs + 1).

As before, the variation of pt will be referred to as the process variation while
the variation of Xt/nt given pt will be referred to as the sampling variation.

Similar to the beta prior for the binomial model, the Dirichlet(α) distri-
bution is the conjugate prior for the multinomial model and provides great
flexibility for modelling pt. It is well known that the posterior distribution of
pt given Xt = xt is the Dirichlet(α + xt) distribution with the p.d.f.

f (pt|xt , α)

= �(αs + nt)
�(α0 + x0t)�(α1 + x1t) · · · �(αk + xkt)

pα0+x0t−1
0t pα1+x1t−1

1t · · · pαk+xkt−1
kt (4.30)

for 0 ≤ p0t , p1t , . . . , pkt ≤ 1 and
∑k

i=0 pit = 1.
In applications, we are interested in estimating pt, the yield probability

along with all defect-type probabilities at time t. Common practice in the
Bayesian approach is estimating pt by the posterior mean of pt given Xt,
since it is the Bayes estimator under the quadratic error loss (Chapter 1). The
posterior mean and covariance matrix of pt given Xt are

E(pt|Xt) = (α + Xt)/(αs + nt) ≡ p̃t(α), (4.31)

Cov(pt|Xt) = [diag{p̃t(α)} − p̃t(α)p̃′
t(α)]/(αs + nt + 1),

respectively.
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Let wt = αs/(αs + nt). The posterior mean of pt given Xt can be re-
written as

p̃t(α) = wtα
∗ + (1 − wt)

Xt

nt
, (4.32)

which indicates that the posterior mean p̃t(α) is a weighted average of the
prior mean α∗ and the observed proportion vector Xt/nt. A large weight wt

(i.e., more weight on the prior information) pulls the posterior mean toward
the prior mean, whereas a small weight wt (i.e., more weight on current data)
pulls the posterior mean toward the observed proportions.

4.5.1 Estimation

Using an empirical Bayes approach, we let data speak for themselves in esti-
mating α as follows. First, the marginal p.m.f. of Xt is

f (xt ; α) = f (xt , pt ; α)
f (pt|xt ; α)

= f (xt|pt) f (pt ; α)
f (pt|xt ; α)

= nt!
x0t!x1t! · · · xkt!

�(αs)
�(α0)�(α1) · · · �(αk)

×�(α0 + x0t)�(α1 + x1t) · · · �(αk + xkt)
�(αs + nt)

= exp

 nt∑
j=1

log
(

j
αs + j − 1

)
−

k∑
i=0

xit∑
j=1

log
(

j
αi + j − 1

)(4.33)

for x0t , x1t , . . . , xkt ∈ {0, 1, . . . , nt} and
∑k

i=0 xit = nt. The last equality can be
easily derived by noting �(x) = (x −1)�(x −1) for x > 0. The above marginal
distribution of Xt is called the multivariate Pólya-Eggenberger distribution, or
the Dirichlet-compound multinomial distribution with parameters nt and α
(e.g., see page 80 of Johnson et al. [12]). When k = 1 (i.e., for the binary data),
the marginal distribution of Xit is the Pólya distribution with parameters
nt, αi , and αs for each i = 0, 1, . . . , k.

The marginal mean of Xt/nt can be obtained by double expectation as

E(Xt/nt) = E[E(Xt/nt|pt)] = E(pt) = α∗ (4.34)

and the marginal covariance matrix of Xt/nt, using conditional expec-
tation, is

Cov(Xt/nt) = E[Cov(Xt/nt|pt)] + Cov[E(Xt/nt|pt)]

= (αs + nt)(diag{α∗} − α∗α∗′)/[nt(αs + 1)]. (4.35)
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Let X1, . . . , XT be independent observations such that each Xt has the
marginal p.m.f. of Equation (4.33). Since by Equation (4.34), Xt/nt is an unbi-
ased estimator of α∗ for each t = 1, . . . , T , we estimate α∗ by the following
weighted average:

α̂∗ =
∑T

t=1 Xt∑T
t=1 nt

. (4.36)

It is easy to see by Equation (4.34) and Equation (4.35) that

E(α̂∗) = α∗ (4.37)

Cov
(
α̂∗) =

∑T
t=1 nt(αs + nt)

(αs + 1)
(∑T

t=1 nt
)2

(
diag{α∗} − α∗α∗′) . (4.38)

Shiau et al. [19] stated that under regularity conditions, α̂∗ is a strongly con-
sistent estimator of α∗ (i.e., α̂∗ converges to α∗ almost surely) and

(αs + 1)1/2∑T
t=1 nt[∑T

t=1 nt(αs + nt)
]1/2 (α̂∗ − α∗)

d→ N(0, diag{α∗} − α∗α∗′)

as T → ∞, where the symbol “
d→” represents “convergence in distribution”.

Having estimated α∗ by Equation (4.36), we can estimate α by α̂sα̂
∗ if an

estimate α̂s of αs is available. By treating αs as the only hyperparameter to be
estimated in the model, Shiau et al. considered two methods for estimating
αs : the method of moments and the pseudo-maximum likelihood method.

The method of moments estimator (MME) of αs derived by Shiau et al.
[19] is

α̂s, MM =
∑T

t=1 nt
∑k

i=0 α̂∗
i (1 − α̂∗

i ) −∑T
t=1 nt

∑k
i=0(Xit/nt − α̂∗

i )2∑T
t=1 nt

∑k
i=0(Xit/nt − α̂∗

i )2 − T
∑k

i=0 α̂∗
i (1 − α̂∗

i )
, (4.39)

which, under regularity conditions, is a weakly consistent estimator of αs

(i.e., α̂s, MM converges to αs in probability) and asymptotically normally dis-
tributed as T → ∞.

The pseudo-maximum likelihood method was originally introduced by
Gong and Samaniego [8]. It is called “pseudo” because only part of the
parameters are estimated by the maximum likelihood method. Here, with
Equation (4.36), αs is the only hyperparameter under consideration.

The pseudo-maximum likelihood estimator (PMLE) α̂s, P ML of αs can be
obtained by the Newton-Raphson method as follows: first, choose a good
initial value α̂

(0)
s, P ML of αs , for example, the method-of-moment estimate

α̂s, MM given in Equation (4.39). Then iterate the following recursive equation

α̂
(u+1)
s, P ML = α̂

(u)
s, P ML + sP

(
α̂

(u)
s, P ML ; x1, . . . , xT

)
jP (· ; x1, . . . , xT )
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for u = 0, 1, 2, . . . until convergence, where sP (· ; x1, . . . , xT ) and
jP (· ; x1, . . . , xT ) are respectively the pseudo-score function and the pseudo-
observed information for αs (given in the Appendix). Under regularity
conditions, α̂s, P ML is a weakly consistent estimator of αs and asymptotically
normally distributed as T → ∞ according to Shiau et al. [19]. The derivations
of the MME and PMLE of αs are presented in the Appendix. With α̂s = α̂s, MM

or α̂s, P ML , plugging α̂ = α̂sα̂
∗ into the posterior mean of Equation (4.31) or

Equation (4.32), we get an empirical Bayes estimator of pt:

p̂t = α̂sα̂
∗ + Xt

α̂s + nt
= α̂s

α̂s + nt
α̂∗ + nt

α̂s + nt

Xt

nt
.

Shiau et al. [19] conducted a comparative study by simulation and reported
that the PMLE performs slightly better than the MME in their study.

For the second monitoring scheme proposed in this chapter, we need the
exponentially weighted estimators of α∗, αs , and

Vtotal ≡
T∑

t=1

ntVt

/ T∑
t=1

nt,

where Vt =∑k
i=0 Var(Xit/nt) for t = 1, . . . , T . Consider

α̂∗ =
∑T

t=1 λT−tXt∑T
t=1 λT−tnt

(4.40)

V̂total =
∑T

t=1 λT−tnt
∑k

i=0

(
Xit/nt − α̂∗

i

)2∑T
t=1 λT−tnt

(4.41)

α̂s, MM =
∑T

t=1 λT−tnt
∑k

i=0 α̂∗
i (1 − α̂∗

i ) −∑T
t=1 λT−tnt

∑k
i=0(Xit/nt − α̂∗

i )2∑T
t=1 λT−tnt

∑k
i=0(Xit/nt − α̂∗

i )2 −∑T
t=1 λT−t

∑k
i=0 α̂∗

i (1 − α̂∗
i )

.

(4.42)

Similar to the binary case, the recursive equations for (4.40)–(4.42) can be
obtained as follows. Let N0 = 0, S0 = 0, and S∗

i0 = 0 for i = 0, . . . , k, and

Nt =
t∑

j=1

λt− j n j

St =
t∑

j=1

λt− j X j

S∗
i t =

t∑
j=1

λt− j X2
i j

n j
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for t = 1, . . . , T . It can be easily seen that Equation (4.40) can be computed
recursively by

α̂∗
t = St

Nt
= Xt + λSt−1

nt + λNt−1
, for t = 1, . . . , T. (4.43)

Also, after some simple algebra, Equation (4.41) can be rewritten as

V̂total,t =
k∑

i=0

(
S∗

i t

Nt
− (α̂∗

i t)
2
)

=
k∑

i=0

[
X2

i t/nt + λS∗
i,t−1

nt + λNt−1
−
(

Xit + λSi,t−1

nt + λNt−1

)2
]

(4.44)

for t = 1, . . . , T . Let

Uit = (X2
i t/nt + λS∗

i,t−1

)
/(nt + λNt−1).

It is interesting to note that the recursive equations for α̂∗
t in Equation (4.43)

and Uit in V̂total,t Equation (4.44) have the following EWMA-like forms:

α̂∗
0 = 0, α̂∗

t = θt
Xt

nt
+ (1 − θt)α̂

∗
t−1, for t = 1, . . . , T

Ui1 = 0, Uit = θt
X2

i t

n2
t

+ (1 − θt)Uit−1, for t = 1, . . . , T

where

θt = nt

/( t∑
j=1

λt− j n j

)
.

As in Section 4.4, let N∗
t = ∑t

j=1 λt− j = 1 + λN∗
t−1. In each iteration,

having computed Nt, N∗
t , V̂total,t , α̂

∗
t recursively, we can first compute At ≡∑k

i=0 α̂∗
i t(1 − α̂∗

i t) and then α̂s, MM,t by

α̂s, MM,t = Nt At − NtV̂total,t

NtV̂total,t − N∗
t At

.

4.5.2 Monitoring Schemes

In this subsection, we describe two monitoring schemes for polytomous data.
The first one is based on the long-term/short-term posterior distributions,
extending the method by Yousry et al. [25] for the univariate case. Recall that
the posterior distribution of pt given Xt is the Dirichlet distribution given in
Equation (4.30). However, finding an appropriate out-of-control region for
a Dirichlet distribution such that the monitoring scheme has an about-right
in-control ARL is difficult.
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Two major problems arise here: (i) Dirichlet distributions are multivariate,
for which the numerical computation of the boundary-region probability is
not an easy task; and (ii) even if (i) can be solved, the correlation among the
monitoring statistics due to exponential weighting is still an issue. Also, using
a T2-like statistic for defining the out-of-control region has the disadvantage
that users cannot tell which defect types are having problems when an out-of-
control signal is flagged. Thus for simplicity and for being more informative,
we suggest monitoring each of the components individually. Note that the
posterior distribution of pit given data Xit = xit is a beta distribution with
parameter αi + xit. Again, obtain a long-term and a short-term posterior dis-
tribution of pt with weights λlong and λshort, respectively. Select an appropriate
interval of the long-term posterior distribution such that the scheme has an
about-right in-control ARL or is based on some criteria according to the real
situations. If the short-term posterior mean is in the interval, then the process
is considered in control.

Next, we present the monitoring scheme proposed by Shiau et al. [19], a
scheme based on the marginal distribution of the sample proportion Xit/nt

for i = 0, 1, . . . , k. Recall that Xt has a Dirichlet-compound multinomial dis-
tribution with the p.m.f. given in Equation (4.33). Again, finding a reasonable
out-of-control set for such a multivariate discrete distribution is difficult. Thus
for simplicity and better interpretation, Shiau et al. [19] suggested monitoring
each component of the observed proportions Xt/nt. Note that the marginal
distribution of Xit is a Pólya distribution with parameters nt, αi , and αs for
each i = 0, 1, . . . , k with the p.m.f.

f (xit ; αi , αs) = exp

 nt∑
j=1

log
(

j
αs + j − 1

)
−

xit∑
j=1

log
(

j
αi + j − 1

)

−
nt−xit∑

j=1

log
(

j
αs − αi + j − 1

) (4.45)

for xit ∈ {0, 1, . . . , nt}.
Because Xit/nt is a discrete random variable, the conventional false-alarm

rate a is almost impossible to attain if deterministic control limits are used.
Based on the concept of the randomized test in hypothesis testing, Shiau
et al. [19] proposed a randomized-control-limits approach as follows.

To find the lower control limit (LCL) by Equation (4.45), start accumulating
the tail probability from 0 until the first l such that

∑l
xit=0 f (xit ; αi , αs) ≥ a/2.

If the equality holds (which is very unlikely), then no need exists for random-
ization and LCL = l/nt. If the equality does not hold, then the randomized
lower control limit RLCL = l/nt. The randomization is done by signaling an
out-of-control condition with probability

γRLCL(αi , αs) = a/2 −∑l−1
xit=0 f (xit ; αi , αs)

f (l ; αi , αs)
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when Xit = l is observed. A randomized upper control limit (RUCL) can be
obtained similarly.

Shiau et al. [19] illustrated the above described monitoring scheme by a
numerical example of four different defect types. To demonstrate the effec-
tiveness of the above control scheme, they shifted α from = (60, 15, 10, 10, 5)′

to (55, 15, 10, 10, 10)′, which means the chance of the fourth defect type to oc-
cur has increased whereas the chances of other defect types remain the same.
The control charts for individual components of Xt/nt successfully demon-
strated that only the control charts for X0t/nt and X4t/nt flagged out-of-control
warnings, reflecting exactly the true situation.

4.6 Summary and Discussion

This chapter gives a framework for analyzing measurements from a manu-
facturing process in which the variation in the observations comes from two
sources: sampling variation and process variation. By allowing the process
parameter of interest to vary over time, such as process mean or yield/defect
levels, Bayesian models are conveniently borrowed to model this type of pro-
cess data. Bayesian models, including the Gaussian model with Gaussian
prior for univariate/multivariate continuous data, binomial model with beta
prior for binary data, and multinomial model with Dirichlet prior for polyto-
mous data are investigated. For estimating the parameters in the model from
data, the empirical Bayes approach is used. Some monitoring schemes based
on statistics relating to the process parameters of interest are developed. One
advantage of adopting this Bayesian framework is that we can create esti-
mates for the distribution of the process parameter at time t, such as process
mean (µt or µt) or yield/defect level (pt or pt), that can be used in many
ways by quality practitioners. Furthermore, in addition to the usual process
monitoring, one can use these distribution estimates to compare distributions
of the same component across product lines or across different testing equip-
ment. For more examples on the comparison of different distributions, see
Sturm et al. [21]

By weighting data exponentially in time, the empirical Bayes estimators
inherently become EWMA-like. However, with the usual EWMA methods
alone, one does not have a distribution for the varying process parameter, nor
does one have estimators for the sampling variation and process variation.
One could view the empirical Bayes model with weights as an enhancement
of EWMA control charts, which has been shown to be very useful in quality
monitoring. For example, see [2, 4, 13, 20, 24].

For being able to implement the monitoring schemes for real-time data
analysis of on-line data, efficient computation is necessary. Recursive equa-
tions for both weighted and non-weighted estimators are derived for all the
statistics needed for implementation.
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We remark that some techniques presented in this chapter have been
implemented in factories and proved quite useful in monitoring some high-
volume, data-intensive manufacturing lines (see [21] and [25]). We also
remark that the performance studies of some monitoring schemes proposed
in this chapter are currently under study.

The empirical Bayes methodology is a very rich and fruitful methodology
for monitoring production data. This chapter covers the methodology and
models for univariate and multivariate, discrete (binomial/multinomial), and
continuous (Gaussian) data. Other types of data have been considered in the
literature. Just recently, Bayarri and Garcia-Donato [1] proposed a sequen-
tial empirical Bayes u-control chart for attribute data. They used the Poisson
model with a gamma prior to account for the extra variability (also called
over-dispersion) that is often present in processes for which the assumption
of the usual Poisson model is not appropriate. However, the quality control
field has a rich array of types of data, so there is much room for new mod-
els handling different types of data. The models can be as varied as the data
produced in the manufacturing and service industries [5].

Appendix

Derivations of MME and PMLE

We first derive the method of moments estimator given in Equation (4.39). By
Equation (4.35), the marginal variance of Xit/nt can be rewritten as

Vit ≡ Var(Xit/nt) = αs + nt

αs + 1
α∗

i (1 − α∗
i )

nt

for i = 0, 1, . . . , k and t = 1, . . . , T . Thus, let

Vtotal ≡
∑T

t=1 nt
∑k

i=0 Vit∑T
t=1 nt

= Tαs +∑T
t=1 nt

αs + 1

∑k
i=0 α∗

i (1 − α∗
i )∑T

t=1 nt
. (A.1)

Solving Equation (A.1) for αs , we have

αs =
∑T

t=1 nt
∑k

i=0 α∗
i (1 − α∗

i ) −∑T
t=1 nt

∑k
i=0 Vit∑T

t=1 nt
∑k

i=0 Vit − T
∑k

i=0 α∗
i (1 − α∗

i )
. (A.2)

By Equation (4.34) and Equation (4.37), Vtotal can be estimated by

V̂total =
∑T

t=1 nt
∑k

i=0

(
Xit/nt − α̂∗

i

)2∑T
t=1 nt

.
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Estimate
∑T

t=1 nt
∑k

i=0 Vit by V̂total
∑T

t=1 nt. Then plugging all the parameter
estimators into Equation (A.2), Equation (4.39) is obtained.

To derive the PMLE, we need the pseudo-likelihood function for αs . Given
Xt = xt for t = 1, . . . , T , by Equation (4.33), the pseudo-likelihood function
for αs can be defined as

L P (αs ; x1, . . . , xT ) ≡
T∏

t=1

f (xt ; α)|α∗=α̂∗ = exp


T∑

t=1

 nt∑
j=1

log
(

j
αs + j − 1

)

−
k∑

i=0

xit∑
j=1

log
(

j
α̂∗

i αs + j − 1

) . (A.3)

The corresponding pseudo-log-likelihood function for αs is then

�P (αs ; x1, . . . , xT ) ≡ log[L P (αs ; x1, . . . , xT )] =
T∑

t=1

 nt∑
j=1

log
(

j
αs + j − 1

)

−
k∑

i=0

xit∑
j=1

log
(

j
α̂∗

i αs + j − 1

) .

The pseudo-score function for αs is

sP (αs ; x1, . . . , xT ) ≡ ∂�P (αs ; x1, . . . , xT )
∂αs

=
T∑

t=1


 k∑

i=0

α̂∗
i

xit∑
j=1

1
α̂∗

i αs + j − 1


−

nt∑
j=1

1
αs + j − 1

 ≡
T∑

t=1

sP,t(αs ; x1, . . . , xT )

and the pseudo-observed information for αs is

jP (αs ; x1, . . . , xT ) ≡ −∂2�P (αs ; x1, . . . , xT )
∂α2

s

=
T∑

t=1


 k∑

i=0

α̂∗2
i

xit∑
j=1

1
(α̂∗

i αs + j − 1)2

−
nt∑

j=1

1
(αs + j − 1)2

 .

With the above pseudo-score function and pseudo-observed information,
the PMLE can be obtained by the Newton-Raphson method as described in
Section 4.5.1.
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ABSTRACT A Bayesian multivariate quality control procedure for moni-
toring the process mean vector is introduced and compared with existing
multivariate procedures. Under the Bayesian framework, one blends prior
information about the process mean vector with the sample data to estimate
the posterior mean vector and use this to decide if the process is in control.

Several multivariate Bayesian procedures are proposed in this paper. The
first procedure, denoted as IMBP, performed significantly better for detecting
small shifts than Crosier’s multivariate CUSUM procedure (CMCUSUM) and
Lowry et al’s multivariate exponentially weighted moving average
(MEWMAE) procedure with exact covariance matrix. The IMBP was revised
(RMBP) so that it could be designed without resorting to simulation. The
RMBP also performed better than CMCUSUM and MEWMAE for detecting
moderate and larger shifts. The RMBP was further revised to overcome the
problem of inertia.

Furthermore, it appears that the RMBPs are quite robust to departures
from the assumption of multivariate normality. The robustness study also
indicated that the MBPs are able to detect increased variability as well as a
shift in the process mean vector.

5.1 Introduction

In process control applications, we often need to monitor several correlated
quality characteristics simultaneously. Hotelling [10] was among the first to
do so when he proposed the T2 chart to analyze multivariate bombsight data.
When the covariance matrix of the process is known, Alt [1] suggested the
use of a χ2 control chart.

Multivariate versions of cumulative sum and exponentially weighted
moving average charts were developed later, including those proposed by
Woodall and Ncube [19], Pignatiello and Kasunic [13], Pignatiello, Runger and
Korpela [15], Pignatiello and Runger [14], and Crosier [6]. One of Crosier’s two
procedures turned out to be the best for early detection of an out-of-control
process.

Lowry at al [12] developed a multivariate exponentially weighted moving
average (MEWMA) procedure which, when used with the exact covariance
matrix of the MEWMA vector, leads to a fast initial response.

In this paper, we propose a multivariate control chart procedure using
a Bayesian approach, together with several variations of the basic Bayesian
approach. We use the acronym MBP to denote the multivariate Bayesian pro-
cedures. Based on simulation results, we show that the refined MBPs perform



P1: shibu/Vijay

September 8, 2006 14:4 C5440 C5440˙C005

A Bayesian Approach 141

better than the existing procedures of Crosier [6] and Lowry et al [12]. With
much higher in-control average run length (ARL), the out-of-control ARLs
for MBPs are, in general smaller than those for the other procedures.

We also look at different interpretations of a MBP, their design and
robustness.

Although the emphasis is on MBPs, the univariate equivalent of the MBP
is also considered.

5.2 Existing Multivariate Procedures

In what follows, we will compare the Bayesian procedures with Crosier’s
better multivariate cusum procedure (MCUSUM), and Lowry et al’s multi-
variate exponentially weighted moving average (MEWMAE) procedure with
exact covariance matrix.

At time i, we observe a vector xi of p quality characteristics. The vector
xi may represent a vector of individual observations or a vector of sample
means. Assume that the Xi ’s are independent multivariate normal random
vectors with mean vectors µi for i = 1, 2, . . .. Without loss of generality, it is
assumed that the in-control process mean vector is µ0 = (0, 0, . . . , 0)′ = 0.

In Lowry’s MEWMAE procedure, we let Zt = rXt + (1 − r )Zt−1 where
Z0 = 0 and 0 < r ≤ 1. The MEWMAE procedure gives an out-of-control
signal as soon as T2

1 > h2, where T2
1 = Z′

t�
−1
Zt Zt. The value of h2 is found by

simulation.
In Crosier’s CMCUSUM procedure, define Ct = {(St−1 + Xt)′�−1

(St−1 +Xt)}1/2 where St = 0 if Ct ≤ k. Otherwise, St = (St−1 +Xt)(1−k/Ct) for
t = 1, 2, . . . . S0 = 0, and k > 0. This procedure gives an out-of-control signal
when Yt = (S′

t�
−1St)1/2 > h. The values of h and k are found by simulation.

In the design of the CMCUSUM and MEWMAE procedures, it is assumed
that we want to detect any shifts from the in-control mean vector as early as
possible and that shifts of the same non-centrality measure (λ) are equally
important.

5.3 Bayesian Approaches

5.3.1 Univariate Bayesian Procedures

Girshick and Rubin [9] were among the first to adopt a Bayesian perspec-
tive for univariate process control. Other early work included the economic
design approaches of Bather [2] and Carter [5]. A quasi-Bayesian approach for
finding control limits was suggested by Calvin [4]. Calvin’s procedure hinges
on whether or not one expects the process to be stable. Although Calvin
suggested the use of a Shewhart-type control chart, he did not compare his
procedure with existing procedures. The problem of determining whether or
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not the process mean has changed can also be viewed as determining the
point in a sequence of random variables at which the underlying distribu-
tion changes. The Bayesian approach to a change point was addressed by
Smith [16].

Joseph and Bowen [11] developed a univariate Bayesian procedure (re-
ferred to as JUBP) and compared it with the univariate CUSUM procedure.
They found that the Bayesian technique was inferior to the CUSUM procedure
in the case of a full drift (process mean is off by D units from the target mean)
in one sampling period, but provided improved average run lengths in the
case of incremental drifts of the process mean from the target in 5 and 10 suc-
cessive sampling intervals of time. The JUBP is considered more extensively
in Section 5 of this paper.

A more extensive overview of the univariate Bayesian approach is found
in Tagaras and Nenes [18] (see Chapter 6 in this volume).

5.3.2 A Multivariate Bayesian Approach

Assume that the process mean vector for a multivariate random variable is not
known but a prior distribution for the process mean vector can be specified.
Then, using sample information, one can find the posterior distribution of the
mean vector. Details are in Berger [3].

Let π(µ) denote a prior probability density function for µ and let f (x|µ)
be the probability density function of x given µ, referred to as the sampling
distribution. The posterior distribution of µ given x is denoted π(µ|x). Note
that µ and x have joint density

h(x, µ) = π(µ) f (x|µ)

and that the marginal density of x is

m(x) =
∫

h(x, µ)dµ.

If m(x) is not equal to 0,

π(µ|x) = h(x, µ)/m(x).

In order to find the posterior distribution of an unknown parameter vector µ,
we need to specify a prior density. For the multivariate Bayesian procedures
(MBP), we will assume a conjugate prior.

Assume that the multiple quality characteristics of interest have a multi-
variate normal distribution with a known covariance matrix Σ but unknown
mean vectorµ. Using each new observation and a conjugate multivariate nor-
mal prior, the process mean vector is estimated at that step. An advantage of
using a conjugate multivariate normal prior is that the posterior distribution
will also be multivariate normal.

Suppose X ∼ Np(µ, Σ) and π(µ) ∼ Np(θ, A), where θ is a known
( p × 1) vector and Σ and A are known ( p × p) positive definite matrices.
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It is well known that π(µ|x) ∼ Np(µπ (x), Vπ (x)), where the posterior mean is
given by

µπ (x) = x − Σ(Σ + A)−1(x − θ)

and the posterior covariance matrix by

Vπ (x) = (A−1 + Σ−1)−1 = Σ − Σ(A + Σ)−1Σ.

5.3.3 An Initial Multivariate Bayesian Procedure (IMBP)

At time i , we observe a vector xi of p quality characteristics. The vector xi may
represent a vector of individual observations or a vector of sample means.
Assume that the Xi ’s are independent multivariate normal random vectors
with mean vectors µi for i = 1, 2, . . .. Without loss of generality, it is assumed
that the in-control process mean vector is µ0 = (0, 0, . . . , 0)′ = 0.

If we assume that the process is in control at the start (time 0), the prior
distribution of the unknown process mean vector can be considered multi-
variate normal with mean vector µ0 and covariance matrix Σ. Then, θ = µ0
and A = Σ. To estimate µ at time 1 using the first sample observation, use
the posterior distribution of the unknown process mean vector at time 1.

For the IMBP, assume that X is Np(µ, Σ) and that the prior distribution,
π(µ), of µ is Np(µ0, Σ). Once the vector x1 is observed, the posterior distri-
bution of µ given x1, π(µ|x1), is Np(µ1, Σ1) where

µ1 = x1 − Σ(Σ + covariance of prior distribution)−1(x1 − µ0)
= x1 − Σ(Σ + Σ)−1(x1 − µ0) = x1/2,

Σ1 = Σ − Σ(Σ + covariance of prior distribution)−1Σ

= Σ − Σ(Σ + Σ)−1Σ = Σ/2

Thus, π(µ|x1) is distributed as Np(x1/2, Σ/2) and x1/2 is an estimate of the
process mean vector at time 1.

Simulation was used to find a decision interval for IMBP. The initial pro-
cedure is as follows:

1. At time 1, assume the prior distribution of µ to be Np(µ0, Σ).
2. At time i , observe xi .
3. For all i > 1, find the posterior distribution π(µ|xi ) using the poste-

rior distribution at time i − 1 as the prior distribution at time i of µ.
For i = 1, use the prior as specified in step 1 to compute the poste-
rior distribution. It can be shown that the posterior distribution at
time i , π(µ|xi ), is Np(µi , Σi ) where

µi = (x1 + x2 + . . . + xi )/(i + 1) and Σi = Σ/(i + 1).

4. Calculate Bi = µi ′(Σi )−1µi . If Bi > h4, this is interpreted as a signal
that the process is out of control. One searches for an assignable
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cause and takes corrective action. Then, set i = 1 and go back to
step 1. Otherwise, set i = i + 1 and go to step 2.

Using simulation, we can find a value of h4 such that the in-control ARL
is at least 200 and yet the out-of-control ARLs are smaller than those for
competing multivariate procedures.

5.3.4 Different Interpretations of IMBP

The multivariate Bayesian procedure as developed above can be interpreted
in several different ways.

1. IMBP can be considered a MEWMA procedure with the modifica-
tion that the smoothing constant r is not fixed but is dependent on
the observation number.

Let the MEWMA vector Z0 = 0, For observation i , let ri = 1/(i +
1). Then Zi equals (x1 + x2 + . . . + xi )/(i + 1), the posterior mean at
time i . Even though the vector Zi is the same as the posterior mean
at time i , the covariance matrices used in the computation of Bi and
the MEWMAE statistic (T2

1 ) are different.
2. By modifying the third step of the IMBP, we can show the equiva-

lence of the Bayesian procedure to the MEWMA procedure. For all
i > 1, let the mean of the prior for µ be the same as the posterior
mean at time i −1 but the covariance matrix of the prior is assumed
to be the same as at the start of the procedure. For i = 1, use the
prior as specified in step 1. It can be shown that when the prior
covariance matrix is Σ for all i , the posterior mean at step i is equal
to the MEWMA statistic, Zi , with the smoothing constant r = 1/2.
If the prior covariance matrix is assumed to be Σ/9, the smoothing
constant will be 0.1.

3. The posterior mean vector generated by the initial multivariate
Bayesian procedure could also be considered the vector obtained
if the cumulative sum vector at time i is shrunk by a factor of
[1 − i/(i + 1)].

4. IMBP provides a shrinkage-type estimator of the process mean vec-
tor. After an observation is obtained at time i , we compute the mean
vector using all i observations and shrink this mean vector by a fac-
tor of [1 − 1/(i + 1)] to compute the posterior mean at time i .

5.3.5 Average Run Length Comparisons

Table 5.1 compares the in-control run length distribution of IMBP with those of
Crosier’s CMCUSUM and Lowry’s EWMAE procedures for values of p = 2,
5 and 10, respectively. Based on these results, we find that almost 65% to
70% of the run lengths are greater than 200 in the case of IMBP. For the



P1: shibu/Vijay

September 8, 2006 14:4 C5440 C5440˙C005

A Bayesian Approach 145

TABLE 5.1

In-Control Run Length Distribution — Initial Procedure
p = 2 p = 5 p = 10

Run CMCU- CMCU- CMCU-
Length SUM MEWMAE IMBP SUM MEWMAE IMBP SUM MEWMAE IMBP

<10 118 471 392 16 474 379 1 429 415
10–19 323 318 322 198 311 357 51 314 472
20–29 321 296 181 342 305 223 211 313 283
30–39 317 287 121 308 237 174 330 294 201
40–49 280 278 110 321 248 131 328 282 162
50–99 1280 1142 336 1298 1176 413 1555 1187 476

100–149 957 925 204 998 882 238 1154 932 282
150–199 763 699 129 823 717 136 840 713 182
200–249 609 559 106 642 594 104 656 560 159
>249 2032 2025 5099 2054 2026 4845 1874 1976 4368

other procedures, at most 37% to 40% of the run lengths are greater than 200.
The median run length for all procedures, other than IMBP, is significantly
less than 200; the median run length for the IMBP exceeds 200. For both the
IMBP and the MEWMAE procedures, the frequency of run lengths less than
10 is comparatively much higher than the corresponding frequencies for the
CMCUSUM procedure.

These comparisons indicate that while the ARL is frequently used as the
basis for comparison, it is not an ideal performance measure and the distri-
bution of run length can be much more revealing.

Table 5.2 shows ARL comparisons of Crosier’s CUSUM, Lowry’s EWMA
with exact covariance matrix and the IMBP for p = 2, 5 and 10, respec-
tively. Crosier and Lowry had shown that the performance of their procedures
depended on the process mean vector and covariance matrix only through
the non-centrality parameter. In the Appendix of this paper, it is shown that
the IMBP’s performance depends on the process mean vector and covariance
matrix only through the value of the non-centrality parameter.

In Table 5.2, the comparison of the IMBP with Crosier’s procedure
(CMCUSUM), and the MEWMA procedure with exact covariance matrix
(MEWMAE) is based on 7,000 independent run lengths and have been com-
puted by truncating the run length at 500. The in-control ARLs would have
been higher if the run length truncation was chosen at values higher than 500.
We also assume that we want to detect any shifts from the in-control mean
vector as early as possible and that shifts of equal non-centrality measure are
equally important.

Based on these simulation results, IMBP is found to perform significantly
better than MEWMAE for detecting small shifts, that is, shifts of non-centrality
parameter λ ≤ 1. Furthermore, for λ ≤ 1, the performance of the IMBP
increases as p increases. The performance of the MEWMAE procedure, how-
ever, is the best for detecting large shifts.



P1: shibu/Vijay

September 8, 2006 14:4 C5440 C5440˙C005

146 Bayesian Process Monitoring, Control and Optimization

TA
B

LE
5.

2

A
R

L
C

om
pa

ri
so

ns
—

In
it

ia
lP

ro
ce

d
ur

e
p

=
2

p
=

5
p

=
10

C
M

C
U

S
U

M
M

E
W

M
A

E
IM

B
P

C
M

C
U

S
U

M
M

E
W

M
A

E
IM

B
P

C
M

C
U

S
U

M
M

E
W

M
A

E
IM

B
P

λ
h

=
5.

5
h

2
=

8.
79

h
5

=
6.

91
h

=
9.

46
H

2
=

14
.7

4
h

4
=

11
.9

h
=

14
.9

h
2

=
22

.9
1

h
4

=
18

.2

0
20

0.
9

(2
.2

8)
19

9.
3

(2
.3

4)
37

4.
5

(2
.3

6)
20

7.
7

(2
.2

7)
20

1.
8

(2
.4

5)
35

7.
2

(2
.4

4)
19

5.
3

(2
.0

5)
19

8.
3

(2
.4

3)
32

6.
5

(2
.5

3)
.5

29
.6

(.2
66

)
25

.2
(.2

47
)

23
.8

(.2
14

)
35

.4
(.2

65
)

34
.1

(.3
48

)
29

.4
(.2

53
)

42
.8

(.2
56

)
44

.7
(.4

68
)

33
.5

(.2
96

)
1.

0
9.

9
(.0

57
)

7.
8

(.0
61

)
7.

7
(.0

54
)

13
.8

(.0
62

)
10

.2
(.0

80
)

9.
8

(.0
67

)
18

.7
(.0

67
)

12
.7

(.0
98

)
11

.3
(.0

74
)

1.
5

5.
8

(.0
25

)
4.

0
(.0

28
)

4.
3

(.0
25

)
8.

4
(.0

29
)

5.
2

(.0
35

)
5.

4
(.0

30
)

11
.9

(.0
33

)
6.

3
(.0

42
)

6.
2

(.0
34

)
2.

0
4.

1
(.0

15
)

2.
6

(.0
16

)
2.

9
(.0

15
)

6.
1

(.0
17

)
3.

2
(.0

16
)

3.
6

(.0
17

)
8.

8
(.0

20
)

4.
0

(.0
24

)
4.

3
(.0

19
)

2.
5

3.
2

(.0
10

)
1.

9
(.0

11
)

2.
3

(.0
10

)
4.

9
(.0

12
)

2.
3

(.0
13

)
2.

8
(.0

11
)

5.
9

(.0
11

)
2.

8
(.0

16
)

3.
2

(.0
13

)
3.

0
2.

7
(.0

08
)

1.
5

(.0
08

)
1.

8
(.0

08
)

4.
0

(.0
09

)
1.

8
(.0

10
)

2.
3

(.0
08

)
4.

06
(.0

4)
2.

1
(.0

11
)

2.
6

(.0
09

)

N
ot

e:
N

um
be

rs
in

pa
re

nt
he

se
s

()
ar

e
th

e
st

an
d

ar
d

er
ro

rs
of

th
e

ru
n

le
ng

th
s.



P1: shibu/Vijay

September 8, 2006 14:4 C5440 C5440˙C005

A Bayesian Approach 147

Although it is not shown, it should be noted that the MEWMAE procedure
performs better than the Shewhart-based χ2 procedure for λ = 3. This is
mainly due to the fact that, even though the MEWMAE statistic is exactly the
same as the χ2 statistic for the first observation, the decision interval for the
MEWMAE procedure is smaller than the decision interval for the Shewhart-
based χ2 procedure.

IMBP is better than Crosier’s procedure for detecting all magnitudes of
shifts. We also notice that the standard errors of out-of-control run lengths
associated with IMBP are smaller than the corresponding standard errors
associated with the MEWMAE procedure, with the difference being most
notable as p increases.

Based on all of these results, it is seen that IMBP is better than competing
multivariate quality control procedures as it detects small shifts in the process
mean vector faster than other procedures and also results in a significantly
higher in-control median run length.

5.3.6 A Revised Multivariate Bayesian Procedure

In this section, the IMBP will be revised by varying the prior distribution so
that the procedure can be designed without using simulation. The revised pro-
cedure (RMBP) will then be compared with the MEWMAE and CMCUSUM
procedures.

Suppose X ∼ Np(µ, Σ) and π(µ) ∼ Np(θ, A), where θ is a known ( p × 1)
vector and Σ and A are known ( p × p) covariance matrices.

Berger [3] suggested that another way of specifying the parameters of a
multivariate normal prior is to consider the ellipsoid

{µ : (µ − θ)′A−1(µ − θ) ≤ p − .6}
which has approximately a 50% chance of containing µ. He noted that p − .6
was approximately equal to χ2

p,.50. For example, for p = 2, χ2
2,.50 = 1.386 while

for p = 3, χ2
3,.50 = 2.366.

Taking the covariance matrix A of the prior as RΣ where R = (χ2
p,(1−α))/

( p − .6), the ellipsoid becomes{
µ : (µ − θ)′Σ−1(µ − θ) ≤ χ2

p,(1−α)

}
,

which is the 100(1 − α)% highest posterior density (HPD) credible set for the
process mean vector based on an estimator µ.

A credible set to a Bayesian corresponds to a traditional confidence set
while a HPD credible set corresponds to the method used to obtain a like-
lihood set. According to Berger [3], credible sets do not have a clear deci-
sion theoretic role and only provide an easily reportable crude summary of
the posterior distribution. The credible sets are also not necessarily invariant
under transformations.

For the revised procedure, we set R = (χ2
p,(1−α))/( p− .6). When R = 1, this

implies that the prior covariance matrix is equal to the covariance matrix of
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the observation vector, whereas R > 1 implies greater dispersion associated
with the prior process mean vector.

Multiplying Σ by R preserves the correlations between the variables. In
other words, the correlation matrices for Σ and RΣ are exactly the same.

Assuming that π(µ) is Np(µ0, RΣ), the revised posterior distribution,
π(µ|xi ), at step i is Np(µi , Σi ), where

µi = R(x1 + x2 + . . . + xi )/(1 + i R),

and

Σi = RΣ/(1 + i R).

Using the revised posterior with h5 = χ2
p,(1−α) , steps 1 to 4 previously

outlined in Section 3.3 for the initial procedure can now be used to implement
the revised procedure. The revised procedure with R = χ2

p,.9�9/χ
2
p,.5 and h5 =

χ2
p,.99 is quite comparable, with respect to the out-of-control ARLs, to the

CMCUSUM procedure with an in-control ARL of 200. The in-control ARL for
the RMBP is at least twice as large as the in-control ARLs of the CMCUSUM
procedure.

5.3.7 Average Run Length Comparisons for the RMBP

Table 5.3 presents the ARL comparisons of the RMBP for p = 2, 5 and 10,
respectively, with the CMCUSUM and MEWMAE procedures. The in-control
ARLs given in these tables have been achieved when the run length was
truncated at 500. The in-control ARLs would have been higher if the run
length was truncated at values higher than 500.

The results in these tables indicate that RMBP performs significantly better
than the CMCUSUM procedure for detecting shifts of non-centrality param-
eter λ > .5. The performance of the MEWMAE procedure, however, is the
best for detecting shifts of all magnitudes.

Table 5.4 gives the in-control run length distribution for the RMBP proce-
dure for p = 2, 5 and 10. The results of Table 5.4 indicate that in more than
86% of the 7,000 simulations, the in-control run length is at least 249. Even
the frequency with which this procedure gives run lengths less than 10 is sig-
nificantly smaller than the corresponding frequencies of both the IMBP and
MEWMAE procedures.

5.3.8 Interpretation of Out-of-Control Signals

The interpretation of out-of-control signals from multivariate control charts
may be problematic. An advantage of the MBPs is that the process mean
vector is estimated at time i . The estimate of the process mean vector does
give an indication of the direction of the shift. When MBPs signal an out-of-
control process, we suggest the use of a univariate Bayesian procedure for
each of the variables to identify the quality characteristic(s) responsible for
the out-of-control signal.
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TABLE 5.4

In-Control Run Length Distribution
for the RMBP

p
Run Length 2 5 10
< 10 269 199 180

10–19 137 124 122
20–29 78 92 94
30–39 57 59 49
40–49 40 33 50
50–99 149 146 164

100–149 91 119 117
150–199 69 64 78
200–249 49 67 51
> 249 6061 6097 6095

5.3.9 Study of Inertia

Several researchers (e.g., Yashchin [20]; Crosier, [6]; Lowry et al., [12]) have
suggested that both univariate and multivariate CUSUM and EWMA proce-
dures could suffer from the problem of inertia. It has been suggested that the
use of a Shewhart-type rule along with the CUSUM or the EWMA procedures
could partially alleviate this problem. Lowry et al. [12] , however, point out
that this solution involves a trade off between protection from inertia and
faster detection of small shifts in the mean vector.

The same type of inertia problems can occur with the MBP procedures.
Suppose the process has been in control and then shifts immediately prior to
observation i . Then the posterior mean µi has accumulated all but the last
observation from an in-control process. Since the divisor is (i + 1), there is
no discounting of the (i − 1) observations from an in-control process. In an
EWMA scheme and CUSUM scheme, previous observations get discounted.

Table 5.5 give the ARL comparisons of the IMBP, RMBP, MEWMAE and
CMCUSUM procedures for the bivariate case under the assumption that the
process is in control for the first n(n = 20 and 50) sampling epochs and then
goes out of control. In this case, the MEWMAE and MCUSUM procedures
perform better than the MBPs. The differences in the in-control run length
distributions of the three procedures are responsible for this result. The issue
of what sampling epochs to explore has been discussed by Sparks [17]. He
states “Generally, the process may fluctuate from in-control to out-of-control
situations. It is impossible to simulate all practical examples.”

To alleviate the inertia problem, the RMBP procedure will be further re-
fined in the next section so that it has in-control ARL equal to the in-control
ARLs of the other procedures.

Based on simulation results, the RMBP is found to be better than the
CMCUSUM procedure for detecting shifts in the mean vector with a value of
the non-centrality parameter of at least 1 for p = 2, 5 and 10. The RMBP not
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TABLE 5.5

ARL Comparisons When the Process is in Control
First 20 Sampling Epochs First 50 Sampling Epochs

CMCUSUM MEWMAE IMBP RMBP CMCUSUM MEWMAE IMBP RMBP
λ h = 5.5 h2 = 8.79 h4 = 6.91 h5 = 9.21 h = 5.5 h2 = 8.79 h4 = 6.91 h5 = 9.21

0.0 200.90 199.30 374.55 437.72 200.00 199.30 374.55 437.72
0.5 45.69 42.82 52.55 63.74 67.92 63.87 86.29 103.60
1.0 28.15 27.12 32.75 36.69 52.91 50.59 62.70 70.74
1.5 24.64 23.78 27.62 29.96 49.92 47.92 56.39 61.97
2.0 23.23 22.36 25.11 26.92 48.55 46.57 53.51 57.89
2.5 22.45 21.54 23.90 25.32 47.83 45.81 51.66 55.68
3.0 22.94 21.22 22.96 24.23 47.47 45.31 50.58 54.33

Note: ARLs are computed for p = 2.

only has better in-control ARLs for the values of p considered but also has
better out-of-control ARLs. Although one does not need to use simulation to
start the procedure, one does have to resort to simulation in order to find the
out-of-control ARLs for different values of p and different values of λ.

Another advantage of the MBPs is that the process mean vector is esti-
mated at time i , and the estimate could give an indication of the direction of
the shift.

5.4 Refinement of RMBP to Alleviate Inertia

In Section 3.9, it was pointed out that the RMBP suffers from the problem
of inertia. To alleviate this problem and to ensure a fair comparison of the
RMBP with other procedures, the parameters of RMBP should be chosen to
obtain a fixed in-control ARL of 200. One approach for handling this problem
is presented here. In this approach, the statistic Bi is based on the k latest
observations and results in RMBPs with fixed in-control run lengths.

5.4.1 Moving Window of the k Latest Observations

The approach used is to base the statistic Bi on the k latest observations. In
this case, the statistic Bi is computed as follows:

Bi = {R/(1 + i R)}(x1 + x2 + . . . + xi )′Σ−1(x1 + x2 + . . . + xi ) for i < k

and,

Bi = {R/(1 + k R)}(xi−k+1 + xi−k+2 + . . . + xi )′Σ−1(xi−k+1 + xi−k+2 + . . . + xi )
for i ≥ k

An out-of-control signal occurs at time i if Bi is greater than h5.
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The parameters to be determined are k, R, and h5. The values of k used
were 19, 29 and 39. Since at time 1, the statistic B1 equals {R/(1 + R)} times
the χ2 statistic, the value of h5 for a given R is taken as {R/(1 + R)}χ2

p,(1−α) .
Combinations of p = 2, 3, 5 and 10 and k = 19, 29 and 39, were used.

For a given combination of ( p, k), the value of R that results in an in-control
run length between 199.5 to 200.5 is found based on simulation experiments
of 7,000 independent runs each. In the following section, we study the per-
formance of these revised procedures.

5.4.2 ARL Comparisons using Moving Window Bayesian Procedures

Since the MEWMAE procedure is better than the CMCUSUM procedure, the
performance of the revised Bayesian procedures is compared with the per-
formance of the MEWMAE procedure only. The revised Bayesian procedures
with k = 19, 29 and 39 will be referred to as the RMBP1, RMBP2, and RMBP3,
respectively.

Tables 5.6 and 5.7 give the ARL comparisons of the RMBP1, RMBP2, and
RMBP3 procedures with the MEWMAE procedures for p = 2, 3, 5 and 10. The
ARLs are based on 7,000 run lengths each. Comparisons of the procedures
are based on 99% pairwise confidence intervals for each ARL.

Irrespective of the value of p, the performance of RMBP2 is significantly
better than the MEWMAE procedure for detecting small shifts, i.e., shifts
of non-centrality parameter λ ≤ 1.5. The RMBP3 procedure performs better
than the MEWMAE for detecting shifts of non-centrality parameter λ ≤ 2.0
for all values of p > 2. For p = 10, RMBP3 is significantly better than
MEWMAE for detecting shifts as large as λ = 2.5. The performance of the
MEWMAE procedure, however, is better than the performance of at least one
of the RMBPs for detecting large shifts, i.e., shifts of non-centrality parameter
λ ≥ 2.0.

Although the comparative in-control run length distributions of the four
procedures were studied for p = 2, 3, 4, 5 and 10, the results are presented in
Table 5.8 for p = 2 only. These comparisons indicate that the in-control run
length distributions of the four procedures are quite similar. In other words,
the better performance of RMBP3 is not at the expense of a worse in-control
run length distribution.

However, the probability of false alarm associated with the first observa-
tion is at least twice as large for the MEWMAE procedure as the corresponding
probability for RMBPs. For example, in the case of RMBPs for p = 2, h5 is
chosen so that the probability of false alarm associated with the first observa-
tion is .005. The decision interval for the MEWMAE procedure is [0, 8.79] for
p = 2 and the corresponding probability of false alarm is 0.012.

In this section an approach was introduced for refining the multivariate
Bayesian procedure by using a moving window. Through simulation it is
shown that the RMBPs based on the latest k = 29 and 39 observations perform
better than the MEWMAE procedure for detecting small to moderate shifts
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TABLE 5.8

In-Control Run Length Distribution Comparisons
MEWMAE RMBP1 RMBP2 RMBP3
h2 = 8.79 h5 = 7.773 h5 = 7.043 h5 = 6.523

Procedure r = .1 R = 2.75 R = 1.98 R = 1.6

Mean 199.32 200.04 199.74 199.66
Median 136.50 142.00 141.00 137.00
SEMEAN 2.41 2.34 2.42 2.47
Q1 54.00 59.00 56.00 53.00
Q3 279.00 277.00 278.00 280.00
MAX 1543.00 1837.00 2572.00 1956.00

Note: Run lengths are computed for p = 2.

in the process mean vector. The MEWMAE procedure, however, performs
better than RMBPs for detecting large shifts.

It is also pointed out that when the process is in control, the probability
of a false alarm associated with the first observation in case of MEWMAE
is at least twice as large as the corresponding probability for the RMBPs.
This, in turn, leads to a faster detection of out-of-control processes. When
the process is in control for n = 10, 20, 50 and 100 sampling periods and then
goes out of control, RMBP3 outperforms all the other procedures for detecting
small shifts.

Another observation which has practical significance is that the values
of h5 are approximately equal to χ2

p,.98, χ2
p,.97 and χ2

p,.96 for k = 19, 29 and
39, respectively. Given the approximate value of h5 for a given p and k, the
value of R to be used is given by h5/(χ2

p,.995 − h5). Thus, simulation is not
needed.

5.4.3 Study of Inertia

Although the ARLs were compared for MEWMAE, RMBP1, RMBP2, and
RMBP3 for p = 2 under the assumption that the process is in control for the
first n (n = 10, 20, 50 and 100) sampling epochs and then suddenly goes out
of control, we present in Table 5.9 the results only for n = 20 and 50.

A comparison of the results in Table 5.9 with those in Table 5.5 shows that
the RMBP1, RMBP2, and RMBP3 procedures do not suffer from the problem
of inertia to the same extent as the original RMBP.

There is no statistically significant difference between the RMBP2, RMBP3
and MEWMAE procedures for detecting small shifts, i.e., shifts of non-
centrality parameter λ ≤ 0.5. The performance of the MEWMAE procedure
appears better than that of RMBPs for moderate to large shifts. However, one
has to keep in mind that the large probability of false alarms when the process
is in-control also results in faster out-of-control signals.
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TABLE 5.10

ARL Comparisons
MEWMAE RMBP1 RMBP2 RMBP3

λ h2 = 8.79 R = 2.75 R = 1.98 R = 1.6

0.0 200.00 200.00 200.00 200.00
0.5 31.20 (.252) 32.70 (.255) 30.76 (.219) 29.57 (.211)
1.0 14.60 (.068) 15.81 (.070) 15.40 (.074) 14.80 (.073)
1.5 10.82 (.039) 11.69 (.043) 11.29 (.043) 10.94 (.043)
2.0 9.10 (.030) 9.75 (.032) 9.44 (.032) 9.18 (.032)
2.5 8.08 (.025) 8.56 (.027) 8.29 (.027) 8.14 (.027)
3.0 7.37 (.022) 7.78 (.023) 7.54 (.023) 7.38 (.023)

Note: ARLs are computed for p = 2 when the process mean vector drifts at
a constant rate for the first 10 sampling epochs. Numbers in ( ) are standard
errors of average run lengths.

5.4.4 Drifting Process Mean Vector

In this section, we study the performance of the RMBPs and MEWMAE pro-
cedures when the process mean vector drifts to an out-of-control mean vector
at a constant rate in n sampling intervals. For example, in the bivariate case
if the process mean vector drifts to (0.5, 0) from the in-control process mean
(0.0, 0.0) in 10 sampling epochs, the drift per epoch is at the rate of (0.05, 0.0).

Although this was studied for n = 10, 20, 50 and 100, we present the
results only for n = 10. Table 5.10 gives the ARL comparisons for the four
procedures. We see that RMBP3 detects shifts of non-centrality parameter
λ = .5 for n = 10 significantly faster than the MEWMAE procedure. For
n = 10 and for all other shifts of λ considered, there was no significant differ-
ence between the performance of RMBP3 and MEWMAE.

5.5 A Revised Univariate Bayesian Procedure

For the JUBP procedure mentioned in Section 3.1, the target mean is denoted
by T0 and the process standard deviation by σ0. The periodic sample size is
denoted by n. Assume the prior distribution of the mean to be normal with
mean T0 and variance σ 2

0 = σ 2/n. If there is a current run of i sample averages
on the same side of T0, a statistic bi is computed as follows:

bi = |y − T0| ∗ i/(σ0 ∗
√

(i + 1)),

where y is the average of the sample averages. Let � = D/σ0, where D is the
drift of the process mean µ way from T0. Implementation of the procedure
involves first finding the value of a factor F by simulation which determines
the run length and the false alarm rate. The steps involved are:
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Step 1: If bi > F ∗ �, an out-of-control signal is given.
Step 2: If the deviation of the next sample mean from the target mean

has the same sign as y − T0, go to step 1 with i = i + 1; otherwise
set i = 1 and restart the procedure with the latest sample mean.

It will now be shown that the statistic computed in JUBP is the square root
of the statistic computed in the initial multivariate Bayesian procedure with
sample size equal to 1.

A modification suggested here is in the choice of the prior. We recommend
the prior variance of the mean be R times the prior variance suggested by
Joseph and Bowen [11]. The statistic bi will then change as follows:

bi = |y − T0|
√

R ∗ i/(σ0 ∗
√

(1 + i R))

In the case of MBPs with in-control run length of 200, the approximate val-
ues of h were χ2

(.98) , χ2
(.97) , χ2

(.96) for RMBP1, RMBP2, and RMBP3, respectively.
The corresponding values of R are computed as follows:

R = h
/(

χ2
(.995) − h

)
Since the statistic computed in the univariate cases can take positive as

well as negative values, the approximate values of h for the univariate ver-
sions of RMBP1, RMBP2, and RMBP3 were taken as z.99, z.985, and z.98. The
corresponding values of R were computed as follows:

R = h2/(z2
.9975 − h2) = h2/(2.812 − h2)

The univariate versions of the RMBPs will be referred to as the UBPs.
Table 5.11 gives the results based on simulations of 7,000 independent run
lengths. Shifts are given in terms of the number of standard deviations away
from the mean. The results indicate that the in-control ARLs of the proce-
dures are approximately 200 each. There is no significant difference in the

TABLE 5.11

ARL Comparisons of UBPs
UBP1(k = 19) UBP2(k = 29) UBP3(k = 39)

Shift* h = 2.33 h = 2.172 h = 2.056
λ R = 2.203 R = 1.486 R = 1.153

0.0 226.6 (2.73) 214.16 (2.61) 211.95 (2.63)
0.5 21.36 (.208) 19.00 (.181) 17.54 (.169)
1.0 6.64 (.051) 6.16 (.047) 5.85 (.044)
1.5 3.58 (.023) 3.43 (.022) 3.33 (.021)
2.0 2.40 (.014) 2.34 (.013) 2.31 (.013)
2.5 1.82 (.010) 1.80 (.009) 1.78 (.009)
3.0 1.48 (.007) 1.47 (.007) 1.47 (.007)

Note: Numbers in ( ) are standard errors of average run lengths.
* Shift is given in terms of the number of standard deviations
away from mean.
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TABLE 5.12

ARLs of Optimal CUSUM and EWMA Charts
CUSUM EWMA

Shift * h = 4.39 h = 0.76
λ k = .5 r = 0.15

0.0 250.00 250.00
0.5 30.80 26.90
1.0 9.16 8.75
1.5 5.14 5.05
2.0 3.60 3.59
2.5 2.81 2.82
3.0 2.34 2.36

* Shift is given in terms of the number of standard deviat-
ions away from mean.

performance of the three procedures in detecting shifts ≥2 standard devia-
tions away from the process mean. However, detection of small/moderates
shifts (shifts ≤1 standard deviation away from the process mean) is signifi-
cantly faster with UBPs based on the k = 29 and 39 latest observations than
the UBP based on 19 observations.

Table 5.12 gives the ARL comparisons of optimal cumulative sum
(CUSUM) and optimal exponentially weighted moving average (EWMA)
procedures (Gan, [7] ). The procedures are optimal in the sense that they
have fixed in-control ARLs of 250 each and have the smallest out-of-control
ARLs for shifts of size one standard deviation away from the mean.

Since Joseph and Bowen [11] did not give the in-control ARLs as well as
ARLs for shifts of size 0.5, 2.5, and 3.0 for their procedure, Table 5.12 does not
include any information about them. Though the in-control ARLs of the UBPs,
CUSUM and EWMA are not equal, it still is evident that the performance of the
new univariate procedures based on moving sums of 19 observations or more
is better than both the optimal cumulative sum and the optimal exponentially
weighted moving average procedures.

5.6 Robustness of the Multivariate Bayesian Procedures

The multivariate Bayesian procedures have been developed under the as-
sumption of a multivariate normal distribution for the observation vector.
This section explores the robustness of the RMBPs to departures from this
distributional assumption. The multivariate normal distribution is a mem-
ber of the class of elliptically symmetric distributions. The class of elliptically
symmetric distributions includes the multivariate normal as well as the multi-
variate Cauchy, the Pearsonian Types II and VII, and the Laplace distributions
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as its members. Elliptically contoured distributions provide a useful class of
distributions for assessing the robustness of statistical procedures.

5.6.1 Elliptically Contoured Distributions

Let X be a ( p × 1) random vector having an elliptically contoured (EC) distri-
bution. Then X has a density function of the form

f (x) = kp|Σ|−1/2g[(x − µ)′Σ−1(x − µ)],

where g() is a one-dimensional real-valued function independent of p and kp

is a scalar proportionality constant. For example, for the multivariate nor-
mal distribution Np (µ,Σ ), g(t) is exp(−t/2) and kp = (2π )−p/2. Elliptically
contoured symmetric distributions are denoted as X ∼ EC p(µ, Σ, g).

5.6.2 Robustness of the MBPs

Giri [8] states that a test is robust if a certain property which the test en-
joys in the case of a multivariate normal distribution can be extended to the
class of elliptically symmetric distributions. Elliptically contoured distribu-
tions suitable for Monte Carlo investigations are the Pearson Types II and VII
multivariate families. For the multivariate Bayesian procedures, it has been
previously assumed that the observation vector X has a multivariate normal
distribution with process mean vector 0 and Cov(X) = Σ. If the observation
vector X has a Pearson Type VII multivariate distribution, its parameters can
be chosen so that Cov(X) = Σ. So, it is assumed that the observation vec-
tor has a Pearson Type VII distribution with in-control mean vector 0 and
covariance matrix �.

In general, the density function of the multivariate Pearson Type VII
distribution, for m > p/2, is:

f (x) = kp|Σ|−1/2g[(x − µ)′Σ−1(x − µ)]

where

kp = �(m)/[�((m − p)/2)π p/2]

and

g[(x − µ)′Σ−1(x − µ)] = [1 + (x − µ)′Σ−1(x − µ)]−m

If m > ( p + 2)/2, then

Cov(X) = Σ/(2m − p − 2)

The statistic used in RMBPs requires the computation of (X − µ)′Σ−1

(X − µ). If X has a Pearson Type VII distribution, then Z = (X − µ)′Σ−1

(X − µ) has a univariate Pearson Type VI distribution. On the other hand,
if X has a multivariate normal distribution, then Z as defined above has a
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TABLE 5.13

ARL Comparisons of RMBPs
Observations Drawn from

Multivariate Normal Pearson Type VII∗

λ MBP1 MBP2 MBP3 MBP1 MBP2 MBP3

0.0 200.0 (2.34) 199.7 (2.42) 199.7 (2.47) 230.3 (2.84) 251.2 (3.07) 259.0 (3.19)
0.5 26.0 (.258) 22.9 (.221) 21.2 (.202) 29.7 (.290) 24.7 (.223) 22.2 (.193)
1.0 7.8 (.059) 7.3 (.055) 7.0 (.053) 8.1 (.055) 7.5 (.050) 7.1 (.048)
1.5 4.1 (.026) 3.9 (.025) 3.8 (.024) 4.2 (.024) 4.0 (.022) 3.9 (.021)
2.0 2.7 (.015) 2.6 (.015) 2.6 (.014) 2.7 (.013) 2.65 (.012) 2.6 (.012)
2.5 2.0 (.010) 2.0 (.010) 2.0 (.010) 2.1 (.009) 2.0 (.008) 2.0 (.008)
3.0 1.6 (.008) 1.6 (.008) 1.6 (.008) 1.7 (.007) 1.65 (.007) 1.65 (.007)

Note: ARLs are computed for p = 2. Numbers in ( ) are standard errors of average run lengths.
∗m = 2.5

χ2
p distribution. The Cov(X) for a Pearson Type VII distribution equals Σ for

m = 2.5 and p = 2.
Random vectors having a Pearson Type VII multivariate distribution can

be generated using Cambani’s approach.

5.6.3 Average Run Length Comparisons When Cov(X) = Σ

Since the MBPs have been designed under the assumption of a known co-
variance matrix Σ, the parameter m of the Pearson Type VII distribution was
chosen to ensure that Cov(X) equals Σ. For a given p, m = ( p + 3)/2 has been
used in the random variate generation to ensure that feature.

For p = 2, 5 and 10, Tables 5.13 through 5.15 give the ARL comparisons
of the RMBP1, RMBP2, and RMBP3 when the observations are drawn from

TABLE 5.14

ARL Comparisons of RMBPs
Observations Drawn from

Multivariate Normal Pearson Type VII∗

λ MBP1 MBP2 MBP3 MBP1 MBP2 MBP3

0.0 199.9 (2.34) 199.7 (2.42) 200.1 (2.44) 175.9 (2.24) 206.8 (2.69) 226.4 (2.97)
0.5 35.4 (.360) 30.2 (.295) 27.7 (.261) 45.8 (.511) 36.0 (.358) 31.6 (.300)
1.0 10.1 (.077) 9.5 (.071) 9.0 (.068) 10.8 (.075) 10.0 (.067) 9.6 (.064)
1.5 5.2 (.033) 4.9 (.031) 4.7 (.030) 5.5 (.031) 5.3 (.029) 5.1 (.028)
2.0 3.3 (.019) 3.2 (.018) 3.1 (.017) 3.5 (.017) 3.4 (.016) 3.3 (0.16)
2.5 2.4 (.012) 2.4 (.011) 2.4 (.012) 2.6 (.011) 2.5 (.011) 2.5 (.010)
3.0 1.9 (.009) 1.9 (.009) 1.9 (.009) 2.0 (.008) 2.0 (.007) 2.0 (.007)

Note: Comparisons for p = 5. Numbers in ( ) are standard errors of average run lengths.
∗m = 4.
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TABLE 5.15

ARL Comparisons of RMBPs
Observations Drawn from

Multivariate Normal Pearson Type VII∗

λ MBP1 MBP2 MBP3 MBP1 MBP2 MBP3

0.0 200.2 (2.40) 200.4 (2.44) 200.2 (2.55) 141.3 (1.88) 175.7 (2.39) 200.0 (2.74)
0.5 47.1 (.494) 39.2 (.388) 35.5 (.338) 60.5 (.737) 49.2 (.566) 41.8 (.451)
1.0 12.7 (.096) 11.7 (.086) 11.0 (.081) 14.3 (.117) 12.9 (.092) 12.21 (.087)
1.5 6.3 (.040) 6.0 (.038) 5.7 (.036) 7.0 (.041) 6.7 (.039) 6.4 (.038)
2.0 4.0 (.022) 3.9 (.022) 3.8 (.021) 4.4 (.023) 4.3 (.022) 4.2 (0.21)
2.5 2.9 (.015) 2.8 (.014) 2.7 (.014) 3.2 (.015) 3.1 (.014) 3.0 (.014)
3.0 2.2 (.011) 2.2 (.010) 2.2 (.010) 2.5 (.010) 2.4 (.010) 2.4 (.010)

Note: Comparisons for p = 10. Numbers in ( ) are standard errors of average run lengths.
∗m = 6.5

a multivariate normal distribution vs. when they are drawn from a Pearson
Type VII multivariate distribution (RMBPs in the Tables have been referred
as MBPs). The results in these tables are based on simulations of 7,000 inde-
pendent run lengths each.

The results show that the RMBPs are quite robust to departures from
the multivariate normality distributional assumption used in this paper. For
a Pearson Type VII multivariate process, the in-control ARLs for the three
RMBPs ranged from 141 to 259. In general, the in-control ARL for RMBP3
is at least 200 for all values of p that were considered. For p = 2 and 5, the
in-control ARL is at least 200 for RMBP2. The in-control ARL for RMBP1,
however, is at least 200 only for p = 2 and 3. The out-of-control ARLs for
detecting small shifts (λ ≤ 1) are comparatively higher for the Pearson Type
VII distribution than the corresponding out-of-control ARLs for a multivari-
ate normal process. There are two reasons for these differences. Firstly, the
Pearson Type VII distribution is a heavy-tailed distribution; and secondly, the
distributions of the statistics being computed are different.

5.6.4 Average Run Length Comparisons When Cov(X) �= Σ and p = 2

The results in Table 5.16 are based on two cases. First, the random vectors X
have been drawn from a Pearson Type VII bivariate distribution with param-
eter m = 2.2, in-control mean vector = 0, and Cov (X) = 2.5I. In the second
case, m = 3.2, the in-control mean vector = 0, and Cov(x) = Σ/2.4. The re-
sults indicate that in-control ARLs, when Cov(X) = Σ/2.4, are much larger
than the in-control ARLs when Cov(X) = 2.5Σ. This clearly indicates that the
MBPs are able to detect not only the process mean shift but also increased
variability.
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5.7 Summary and Conclusions

The main objective of this paper was to develop a simple and effective mul-
tivariate process control procedure using a Bayesian approach. An initial
multivariate Bayesian procedure (IMBP) was proposed and, based on sim-
ulation results, it was shown to be better than the existing multivariate proce-
dures. With a much higher in-control ARL than other procedures, the IMBP
had much smaller out-of-control ARLs than those of the other procedures.
Thus, IMBP performed better than other multivariate procedures in terms of
both in-control and out-of-control ARLs.

The IMBP was revised so that it could be designed without resorting to
simulation. The revised procedure (RMBP) was better than the CMCUSUM
and MEWMAE procedures for detecting shifts in the mean vector when the
non-centrality parameter was at least 1.0.

The CMCUSUM, MEWMAE and MBP suffer from inertia in reacting to
shifts in the mean. Initial simulations to study the inertia problem indicated
that IMBP and RMBP both performed worse than the CMCUSUM and MEW-
MAE procedures in this respect. The main reason for this poor performance
was that the in-control ARLs of the MBPs were much higher than the in-control
ARLs of the other procedures. To overcome this, two different alternatives
were considered to make the MBPs comparable to the other procedures in
terms of the in-control ARL.

The first alternative was to restart the procedure after a fixed number of
observations had been obtained. This alternative did result in procedures with
fixed in-control ARLs and partially alleviated the inertia problem. However,
the second alternative in which the statistic Bi was based on the k latest
observations resulted in RMBPs (for k = 29 and 39) that performed better
than existing procedures for detecting small shifts in the process mean vector.
Also, when the process is in-control for 10, 20, 50 and 100 sampling epochs
and then goes out-of-control, the RMBP based on the 39 latest observations
outperformed other procedures in detecting small shifts.

As a special case of the RMBPs, the univariate Bayesian procedures based
on the k latest observations performed much better than the univariate CUSUM
and EWMA procedures.

Appendix

We show that the IMBP’s performance depends on the values of the process
mean vector and the covariance matrix only through the value of the non-
centrality parameter λ. By using Crosier’s [6 ] approach, the desired result
can be easily proven by showing that the IMBP’s statistic, Bi , is invariant to
any full-rank transformation of the data.
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THEOREM 5.1
The distribution of Bi depends only on the value of the non-centrality
parameter λ.

In order to prove Theorem 1, we need to prove the following four lemmas.

LEMMA 5.1
Bi is invariant to any full-rank transformation of the data, i.e., if xi

∗ = Mxi ,
for i = 1, 2, . . ., where M is a (pxp) full-rank matrix, then B∗

i = Bi .

LEMMA 5.2
The value of the non-centrality parameter computed from original observa-
tions equals the value of the non-centrality parameter computed from trans-
formed observations based on a full-rank transformation.

LEMMA 5.3
If µ′

1Σ
−1µ1 = µ′

2Σ
−1µ2, then there exists a non-singular matrix M such that

µ1 = Mµ2.

LEMMA 5.4
If µ′

1Σ
−1µ1 = µ′

2Σ
−1µ2, then the probability density of Bi given E(x) = µ1,

denoted by f [Bi |E(x) = µ1], equals f [Bi |E(x) = µ2], the probability density
of Bi given E(x) = µ2.

Proof of Lemma 1

We know that π(µ|xi ) is Np[(
∑i

j=1 x j/(i + 1)), Σ/(i + 1)].
If xi

∗ = Mxi , for i = 1, 2, . . . , then π(Mµ|xi
∗) is Np[(

∑i
j=1 Mx j/(i + 1)),

MΣM′/(i + 1)].
Hence B∗

i = [(
∑i

j=1 Mx j/(i + 1))′(MΣM′/(i + 1))−1(
∑i

j=1 Mx j/(i + 1))]
= Bi .

The proofs of Lemmas 5.2 to 5.4 follow directly from Crosier’s [6] proofs.
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ABSTRACT Past research on Bayesian process control has concentrated on
the design of one-sided control charts. In practice, though, the most commonly
used control chart is the two-sided chart for detecting both upward and
downward shifts of the mean of a quality characteristic. Until a few years
ago the computational difficulties associated with the optimal design of two-
sided Bayesian charts were practically insurmountable. However, given the
amazing continuous progress in computing technology and power, it is natural
to pose again today the following very practical questions: Is it yet feasible to
design and operate an effective two-sided control chart using the principles
of Bayesian process control? And if so, how exactly? The objective of this
chapter is to provide convincing answers to the above questions.

167
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To this end, we first describe the dynamic programming formulation for
the optimal design of a fully adaptive Bayesian two-sided X-chart. Then, we
explore the computational requirements and accuracy of that formulation for
different discretizations of the continuous state variables, namely the out-of-
control probabilities, which summarize all the available information about
the actual state of the production process and are updated at each inspection
instance. In addition, we investigate the effect of the allowable values of the
adaptive sample size and sampling interval on the quality of the Bayesian
process control scheme.

The main conclusion is that the answer to our first question is clearly
positive: the computational requirements for obtaining a near-optimal
Bayesian two-sided chart design are not prohibitive any more. The answers to
the “how exactly” question are somewhat more involved as they are related
to the technical details of the implementation. As such, they are discussed in
the main body of the chapter.

6.1 Introduction

The origins of statistical process monitoring through Bayesian updating of the
knowledge about the state of the process can be traced to the early theoretical
papers of Girshik and Rubin [10], Bather [1], and Taylor [18, 19]. Although
these papers provided the foundations of Bayesian process control and estab-
lished the optimality of the Bayesian approach, they did not deal explicitly
with the practical problem of control chart design. Much later, Calabrese [2],
Tagaras [15, 16], Porteus and Angelus [14], Colosimo and Semeraro [7], Tagaras
and Nikolaidis [17], Colosimo [6] and Celano et al. [3, 4] revisited the issue
of Bayesian process control from an application-oriented point of view, deal-
ing directly with the issue of chart design, namely, the economically optimal
selection of the frequency of sampling, the sample sizes and the control lim-
its. These papers considered various types of control charts for attributes
and variables, but they all concentrated on one-sided charts, essentially as-
suming that there exists a single assignable cause or multiple causes with
a similar effect on the process, which is either an increase or a decrease of
the monitored process parameter (mean, fraction nonconforming, number of
nonconformities).

In practice, the parameter that is most frequently monitored through
process control is the mean of a critical quality characteristic, which is
subject to both upward and downward shifts due to the occurrence of a
multitude of possible assignable causes. Such a situation necessitates the use
of a two-sided X chart with upper and lower control limits, like the standard
Shewhart chart, the EWMA chart, a two-sided or two one-sided CUSUM
charts etc. The principles of Bayesian process control can also be applied to
the design and operation of two-sided X charts. As was first shown explicitly
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by Tagaras [16], the two-sided case may be formulated with no additional
conceptual difficulty over the one-sided case. However, the issues of compu-
tational requirements and accuracy become much more important because
of the expansion of the state space. As a matter of fact no specific numerical
results had been reported for two-sided Bayesian charts, until a very recent
working paper by Celano et al. [5] that investigated the possibility of using
a hybrid genetic – dynamic programming (DP) algorithm to overcome the
computational difficulties and arrive at a near-optimal economic design of
the two-sided Bayesian X chart.

This chapter investigates the computational efficiency and accuracy of the
“pure” DP formulation, i.e., without combining it to genetic or similar-type
algorithms, as applied to the design and operation of the two-sided Bayesian
X control chart. Like most previous related work we concentrate on monitor-
ing production runs of finite duration and we adopt an economic optimiza-
tion perspective. The objective of the investigation is to provide answers to
the following interrelated practical questions:

• Given the capabilities of modern computers, how difficult is it
today to design and operate a two-sided X control chart using the
principles of Bayesian process control?

• How should we discretize the state variables (out-of-control prob-
abilities) and how should we choose the allowable values of the
adaptive decision variables (sampling intervals and sample sizes)
so as to achieve a good balance between economic effectiveness and
accuracy on one hand and computational efficiency on the other?

The next section contains a brief description of the problem setting and
the DP formulation. Sections 3 and 4 present and discuss the results of the
numerical investigation for eight different sets of cost and process parameters,
analyzed under a variety of discretizations of the state space (Section 3) and
decision space (Section 4). The results of all DP computations are validated
by extensive simulations. The last section summarizes the main findings and
conclusions of this research, which constitute the answers to the above two
questions. Fortunately enough, these answers are very encouraging. In short,
we conclude that with a suitable discretization of the state variables and the
proper choice of decision variables the two-sided Bayesian X control charts
can be rather easily optimized and used for economically effective monitoring
of production processes.

6.2 Problem Description and Formulation

We consider a production process that is set up for a production run of a
specific net operating time T . The critical quality characteristic that is to be
monitored is a normally distributed random variable X, with target value µ0
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and constant variance σ 2. In the beginning of the production run the process
operates in a state of statistical control (state 0), with the mean of X equal
to its target value µ0. The process is subject to the occurrence of assignable
causes, which may shift the mean of X either upwards (out-of-control state 1)
or downwards (out-of-control state 2). For the sake of presentation simplicity
we assume that the assignable causes have no effect on the variance of X
and that the magnitude δσ of the upward shift in the mean is equal to the
magnitude of the downward shift, i.e., the mean of X in state 1 is µ1 = µ0+δσ ,
while the mean of X in state 2 is µ2 = µ0 − δσ , δ > 0. Both these assumptions
can be relaxed at the expense of more cumbersome notation but with no other
essential effect on the formulation that follows.

The time until the occurrence of an assignable cause is an exponentially
distributed random variable with mean 1/λ. The average rate of upward
shifts is λ1, the average rate of downward shifts is λ2 and λ = λ1 + λ2. In
other words, the occurrences of upward and downward shifts are indepen-
dent Poisson processes with rates λ1 and λ2 respectively. Once an assignable
cause occurs and brings the process to the out-of-control state 1 or 2, the
process is assumed to remain in that out-of-control state (i.e., no other shift
may take place) until the problem is detected and removed or the produc-
tion run is completed, whichever happens first. In the former case, after the
corrective action the process continues its operation until it completes the pro-
duction run. It is possible that assignable causes may affect the process again
(and again) in the remaining operating time.

6.2.1 Monitoring with a Standard Shewhart Chart

Since the assignable causes are not directly observable, their occurrences may
be detected only indirectly through sample measurements of X. The simplest
way would be to plot the sample averages X on a Shewhart-type control chart.
The operation of the standard Shewhart chart calls for taking samples of size
n at sampling intervals of length h and comparing the sample mean X against
the control limits µ0±kσ/

√
n. The optimal economic design of that chart is the

combination of h, n and k values that minimize the expected total cost of in-
spection, false alarms, out-of-control operation and restorations. The design of
Shewhart-type X-charts specifically for monitoring production runs of finite
net operating time T has been studied by Del Castillo and Montgomery [8]
and by Tagaras [16], based on the approach of Ladany [11] for the economic
design of p-charts in a finite horizon. Del Castillo and Montgomery [9] studied
the effect of the setup operation on the chart design in a somewhat different
context, where a production run terminates if the presence of an assignable
cause is detected.

The minimal expected cost TCs of the standard Shewhart chart for a pro-
duction run of length T can be used as a benchmark, against which the effec-
tiveness of more complicated charts may be evaluated. Note that T = ( I +1)h,
where I is the total number of samples taken at times h, 2h, . . . , Ih. Since the
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sampling interval h can be determined indirectly from the equivalent deci-
sion variable I , for notational and optimization convenience the expected
total cost using the Shewhart-type chart, TCS, is expressed as the following
function of I , n and k [16]:

TCS = (b + cn) I + M
(

h − γ

λ

) I∑
i=0

F (i)

+Mγ h
I∑

i=0

F (i)
{

1 − α1

α1
[1 − (1 − α1) I−i ]

}

+ L0α0(1 − γ )
I−1∑
i=0

F (i) + L1γ

I−1∑
i=0

F (i)[1 − (1 − α1) I−i ] (6.1)

where

α0 = 2�(−k) (6.2)

α1 = �(−k + δ
√

n) + �(−k − δ
√

n) (6.3)

γ = 1 − e−λh (6.4)

F (i) = (1 − α1)i+1γ (1 − γ )i + α1

1 − (1 − α1)(1 − γ )
for i = 0, 1, . . . , I, (6.5)

and �(•) is the cdf of the standard normal variable. The cost parameters
appearing in (6.1) are

b : fixed cost of inspection per sample
c : inspection cost per unit
M: cost per time unit of operation in an out-of-control state
L0: cost of false alarm
L1: cost of detection and restoration from an out-of-control state to

in-control operation.

Note that α0 and α1 are the probabilities of type I and type II errors of the
chart, γ is the probability that an assignable cause occurs within a sampling
interval of length h that starts in control and F (i) is the probability that at the
interval after the i-th sample the process will start operating in the in-control
state. Since the production run starts with the process in control, F (0) = 1.
The first term of TCS in (6.1) stands for the expected total inspection cost, the
next two terms express the total expected cost of out-of-control operation and
the last two terms are the expected total costs of false alarms and restorations
to in-control operation respectively.

The above formulation assumes that at least one sample is taken during
the production run (I > 0) and is equally valid whether the process is stopped
for investigation when the control chart issues an alarm or the process is not
stopped but the investigation for a possible out-of-control condition takes
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negligible time. The time to sample, measure and plot the measurements
is assumed to be insignificant. If no sampling and monitoring takes place
throughout the production run (I = 0), the total quality-related cost is the
expected cost due to possible out-of-control operation, which remains unde-
tected until the end of the run:

TC0 = M
(

T − 1 − e−λT

λ

)
. (6.6)

6.2.2 Monitoring with a Bayesian Chart

A more powerful alternative to monitoring the mean of X in the above setting
is to employ a two-sided Bayesian X-chart, which will incorporate all avail-
able relevant information through the continuous update of our knowledge
about the actual state of the process. The knowledge about the unobservable
(except for times of intervention) process state is sufficiently expressed by the
probabilities p0, p1 and p2 that the process is actually in state 0, or state 1 or
state 2 respectively. Since p0 + p1 + p2 = 1, it obviously suffices to consider
only the pair (p1, p2). Depending on the values of p1 and p2 immediately
after a sample, a decision a is made whether to continue production (a = 0)
or stop and investigate if an assignable cause has occurred (a = 1). In addition,
the length h of the next sampling interval and the size n of the next
sample are also determined if the Bayesian chart is implemented in its fully
adaptive version. Alternatively, h and/or n may be fixed and constant for the
entire duration of the production run.

The knowledge updating mechanism is the application of Bayes’ formula,
every time a sample is taken and the sample mean X is recorded, to transform
the values of p1 and p2 taking into account X and the average shift rates
λ1 and λ2. Specifically, let f j (X) be the normal density function of X when the
actual process mean is µ j , j = 0,1,2. Also, let p1 and p2 be the probabilities
that the process is in state 1 and in state 2, as they have been computed after
the previous sample. Note that if a = 0 the probabilities p1 and p2 retain their
values after the decision a is made but if a = 1 the probabilities p1 and p2
vanish since the investigation of the process in case of a signal is assumed
to accurately reveal the true state of the process and the process restoration,
if needed, brings the process back to the in-control state 0 with certainty.
Suppose now than after a sampling interval of h time units a next sample of
size n is taken. Given the values of p1 and p2 immediately after the previous
sample and the decision a , n, and h, the density function of the new sample
mean f (X|p1, p2, a , n, h) is written as follows for a = 0 and for a = 1:

f (X|p1, p2, 0, n, h) = [(1 − γ )(1 − p1 − p2)] f0(X )
+[γ1(1 − p1 − p2) + p1] f1(X ) + [γ2(1 − p1 − p2) + p2] f2(X ),

f (X|p1, p2, 1, n, h) = (1 − γ ) f0(X ) + γ1 f1(X ) + γ2 f2(X ) (6.7)
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where γ j = γ (λ j/λ) is the probability that the mean of X changes to µ j ( j = 1,
2) within a sampling interval of length h that starts with the process in control.
If the actual value of that sample mean is x̄, then using Bayes’ formula the
probabilities p1 and p2 are transformed to the updated probabilities T1 and
T2 that the process is in state 1 and 2 respectively as follows:

Tj ( p1, p2|x̄, 0, n, h) = [γ j (1 − p1 − p2) + p j ]
× f j (x̄ )/ f (x̄|p1, p2, 0, n, h) j = 1, 2, (6.8)

Tj ( p1, p2|x̄, 1, n, h) = γ j f j (x̄)/ f (x̄|p1, p2, 1, n, h) j = 1, 2. (6.9)

Having established the information updating mechanism, the optimal
process monitoring and control policy follows from a dynamic programming
(DP) formulation. To accommodate the possibility of variable sampling inter-
vals we divide the total length Tof the production run into an integer number
of intervals hmin, where hmin stands for the shortest allowable sampling inter-
val. Thus, a sampling interval h has to be a multiple of hmin (h = ihmin) and the
stage N of the DP formulation expresses the number of remaining minimum
sampling intervals (“periods”) until the completion of the run; a decision
h = Nhmin at stage N signifies that no other inspection will take place until
the end of the production run. If CN( p1, p2) denotes the minimum expected
cost when the process is in state j with probability p j ( j = 1,2) N periods
before the end of the run, the dynamic programming recursive equation for
the fully adaptive two-sided Bayesian X-chart is

CN( p1, p2) = min
a,n,h

[C( p1, p2, a , n, h)

+
∫

CN−i [T1( p1, p2|X, a, n, h), T2( p1, p2|X, a, n, h)]

× f (X|p1, p2, a , n, h)d X] (6.10)

where C( p1, p2, a , n, h) is the expected cost in the current sampling interval
of length h = ihmin, given p1, p2, the decision a and the next sample size n.
For a = 0 and a = 1 this immediate expected cost is computed from

C( p1, p2, 0, n, h) = (1 − p1 − p2) [M(h − γ /λ)]
+( p1 + p2)Mh + cn + b (6.11)

C( p1, p2, 1, n, h) = (1 − p1 − p2)L0 + ( p1 + p2)L1

+ M(h − γ /λ) + cn + b. (6.12)

Note that if h = Nhmin (i = N) the expected cost C( p1, p2, a , n, h) does not
contain the sampling cost cn + b because no sample is taken at the end of the
production run. Also note that C0( p1, p2) = 0 for all p1, p2 since we assume
that at the completion of the current production run the process will be set up
for the next run at some cost irrespective of its actual state and consequently
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the ending state is irrelevant. It is obviously trivial to relax this assumption
and assign a setup cost dependent on the ending state without essentially
complicating the solution procedure. Finally observe that γ = 1 − e−λh is a
function of the decision variable h, but its dependence on h is suppressed for
the sake of notational simplicity.

The above formulation is a direct extension of the formulation presented in
[17] for the one-sided Bayesian X-chart to the case of a two-sided chart for the
detection of both upward and downward shifts in the process mean. Although
it does not present any additional theoretical difficulty, it nevertheless poses
some challenging implementation questions due to the computational com-
plications arising from the expansion of the state space from one dimension
(probability p of being in the single out-of-control state) to two dimensions
(probabilities p1 and p2). These issues are addressed in the next section. How-
ever, before proceeding to the examination of computational aspects and in
order to lay the ground for better understanding them, it is useful to illus-
trate the application of the Bayesian control chart through a simple numerical
example.

6.2.2.1 Illustrative Example

Consider a production run of net operating time T = 8 hours (one shift) and
with the following process and cost parameters: µ0 = 100, σ = 10, λ1 =
λ2 = 0.02, δ = 1.1, b = 0, c = 1.8, L0 = 30, L1 = 150, M = 200. The length of a
sampling interval may be either h1 = hmin = 1 hour or h2 = 2hmin = 2 hours,
while the allowable values of the sample size are n1 = 3 and n2 = 5. Thus,
the total length T = 8 of the finite horizon is divided into 8 periods of length
hmin = 1 hour. The objective is to determine the optimal monitoring and con-
trol policy by applying the recursive equation (6.10) for N = 1, 2, . . . 8 and
specifying the optimal decisions a (0 or 1), n (n1 or n2) and h (h1 or h2) at each
potential inspection instance (stage) N as a function of p1 and p2.

Assuming that the production run starts with the process in statistical
control (N = 8, p1 = p2 = 0) and using a particular discretization of the state
space for computational purposes (discretization D3, as defined in the follow-
ing section) it turns out that the minimum total expected cost of the optimal
policy in this case is C8(0, 0) = 146.27. In the beginning of the production run
the optimal policy calls for taking the first sample of size n2 = 5 after h2 = 2
hours. For each stage that follows, the DP computational procedure specifies
the optimal decisions a, n, h for all possible combinations of the (discretized)
probabilities p1 and p2. The totality of these decisions prescribes the optimal
operation of the sampling and control scheme. For example, if at stage N = 6
the actual value of the first sample mean is 100.5, then by (8) the updated
values become p1 = 0.02404 and p2 = 0.00016. The optimal decision for
those p1 and p2 values at N = 6 is a = 0 (no alarm, continue production) and
h = 1, n = 3 (take a new sample of size 3 after one hour). Note that at the last
stage (N = 1), the only decision that has to be made is whether to continue
production (a = 0) or stop and investigate if an assignable cause has occurred
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(a = 1); no other sample will be taken until the end of the run in any case. In
the numerical example under consideration the optimal decision at N = 1 is
a = 0 as long as p1 + p2 < 0.396; otherwise a = 1.

Figure 6.1 is a graphical representation of the optimal control policy at
stage N = 4 (halfway through the production run). As one would expect, if
the out-of-control probabilities p1 and p2 are both close to zero, the optimal
decision is to continue production (a = 0) and take the next sample after h2 = 2
hours rather than h1 = 1. If these probabilities take somewhat larger values,
the control decision a remains the same but the optimal next sampling interval
becomes h1 = 1, because there is some evidence that there may be a problem;
the optimal size of the next sample is n1 = 3. For even larger p1 and/or p2 it is
still better not to stop and investigate for assignable causes, but in addition to
taking the next sample at the shortest possible time (h1 = 1) it is now optimal
to use the largest possible sample size n2 = 5 at the next sampling instance,
because the evidence of a potential problem is stronger and consequently the
process must be checked again quickly and with more accuracy. Finally, if the
out-of-control probabilities exceed some critical values, the optimal decision is
to stop the process and investigate if an assignable cause has occurred (a = 1).
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FIGURE 6.1
Optimal policy at stage N = 4 of the illustrative example.
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Whatever the outcome of this investigation, i.e., no matter whether the alarm
was found to be true or false, after this intervention and the restoration of
the process, if needed, it is known with certainty that the process is in the
in-control state. Consequently p1 = p2 = 0 and the optimal decision for the
next sample is h2 = 2, n2 = 5.

The critical region of the state space where the optimal control decision
is a = 1 is shown as a grey area in Figure 6.1. The boundary between this
region and the area where the optimal control decision is a = 0 is an almost
straight line (if we ignore the effect of discretization of p1 and p2), which in
this case has a slope of -1 because of the symmetry of the two out-of-control
states. The approximate equation of this line for N = 4 is p1 + p2 = 0.105.
Thus, (p1 + p2)∗ = 0.105 is the critical value of the out-of-control probability,
beyond which the optimal decision is a = 1. For the sake of precision it must
be noted that the boundary between the a = 0 and a = 1 regions is not always
an exactly straight line; it usually has a slight curvature similar to that of the
line separating the regions (a = 0, h = 1, n = 3) and (a = 0, h = 1, n = 5) in
Figure 6.1.

The value of (p1 + p2)∗ is not the same at all stages N. Figure 6.2 shows the
critical values (p1 + p2)∗ as a function of the number of periods N (hours) until
the end of the production run for this particular example. The figure shows
that near the end of the run and especially at N = 1 the critical value (p1 + p2)∗

increases significantly. This is certainly expected, since the expected benefit
of an intervention near the end of the run is limited, given the assumption
that at the completion of the current production run the process will be set up
for the next run at some cost irrespective of its actual ending state. Another
observation from Figure 6.2 is that the optimal (p1 + p2)∗ stabilizes quickly. In
fact, detailed results for many cases besides this particular example show that
the entire optimal policy, i.e., not only the control parameter a but also the
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FIGURE 6.2
Critical out-of-control probability as a function of time to the end of the run.
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optimal sampling parameters n and h as a function of p1 and p2, converges to
a specific policy that remains the same for all stages beyond some stage Nc ,
where Nc is usually not very large. This “steady-state” policy is apparently the
optimal monitoring and control policy for continuously operating processes
with the same parameters λ1, λ2, δ, b, c, L0, L1, M. In other words, the DP
procedure described in this section for obtaining the optimal control policy in
short runs can also be used to derive the optimal control policy in the infinite
horizon case.

6.3 The Effect of State-Space Discretization on Computational
Efficiency and Accuracy

In order to perform the computations required to obtain the optimal monitor-
ing and control policy via the two-sided Bayesian X-chart DP formulation of
the previous section it is necessary to determine first how the two-dimensional
state variable (p1, p2) will be discretized. Tagaras [16] explains in detail how
any specific discretization of the (p1, p2) variable can be used to implement
the computational procedure.

There is a practically infinite number of ways to discretize the two-
dimensional state space defined by

p1 ≥ 0

p2 ≥ 0

p1 + p2 < 1

p1 p2 �= 0 unless p1 = p2 = 0

so that it is expressed by means of a grid of points/states, where each point
(p1, p2), with the exception of (0,0), represents all values in its neighborhood
(p1 ± 
1, p2 ± 
2). Note that 
1 and 
2 need not be constant for all (p1, p2)
values. As a matter of fact, extensive computational experience has led to the
conclusion that it is preferable to have a finer discretization at low values of
p1 and p2 (small 
1, 
2) rather than at high values. For example, Tagaras
[16] suggests that a good compromise between accuracy and computational
requirements is obtained in the one-sided X-chart case if the (0, 1) interval for
the out-of-control probability p is divided into 100 unequal intervals (states)
as follows: 10 points/states of length 0.002 each, covering the interval (0, 0.02);
20 states of length 0.004 for the interval [0.02, 0.10); 50 states of length 0.01
for [0.10, 0.60); and 20 states of length 0.02 for [0.60, 1.00). Adding the state
p = 0, the total number of states is 101. This discretization has been used in
later studies as well [3, 4].
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TABLE 6.1

Alternative discretizations of p1, p2

D1 (Coarse) D2 (Medium) D3 (Fine)

V L Interval V L Interval V L Interval
5 0.004 (0, 0.02) 10 0.002 (0, 0.02) 20 0.001 (0, 0.02)

10 0.008 [0.02, 0.10) 20 0.004 [0.02, 0.10) 40 0.002 [0.02, 0.10)
25 0.02 [0.10, 0.60) 50 0.01 [0.10, 0.60) 20 0.005 [0.10, 0.20)
10 0.04 [0.60, 1.00) 20 0.02 [0.60, 1.00) 40 0.01 [0.20, 0.60)

20 0.02 [0.60, 1.00)

Note: V = value, L = length.

In the two-sided X-chart case a similar discretization of the state space
results in a much larger number of states (p1, p2) and consequently in much
higher computational requirements. If, in addition to the state (0,0), both p1
and p2 are discretized into 100 values each exactly as described above for
p, the resulting total number of discrete pairs (p1, p2) satisfying p1 + p2 <

1 and p1 p2 �= 0 increases to 7707. Although with the currently available
computational capabilities this number may not be prohibitive any more, it is
still problematic. Therefore, in the remainder of this section we investigate the
computational efficiency and accuracy of several discretizations of the state
space to arrive at practical conclusions and guidelines for the implementation
of two-sided Bayesian X-charts.

Table 6.1 presents three alternative discretizations, which are denoted D1,
D2, D3 and differ significantly in the degree of detail in which they express
the state space. Specifically, for each one of p1 and p2 Table 1 shows how many
values V of length L are used to cover every sub-interval of (0, 1) under D1
(coarse discretization), D2 (medium discretization) and D3 (fine discretiza-
tion). The lengths of the 50 intervals of D1 are exactly twice as large as those
of the 100 intervals of D2 within the respective sub-interval. The discretization
D2 coincides with the one already described above, which has been suggested
and used repeatedly in the one-sided case. The finest discretization is obvi-
ously D3, where (0,1) is divided into 140 intervals. To be more precise, D3
constitutes a much finer discretization than D2 in the interval (0, 0.2), while
it is identical to D2 in [0.2, 1) with the rationale that very often a relatively
low p1 or p2 value triggers an alarm (decision a = 1); consequently it is not
as effective to express higher values with accuracy as it is to concentrate on
values of p1 and p2 close to zero.

The total number of resulting discrete pairs (p1, p2) is 1928 for D1, 7707 for
D2 and 17031 for D3. Figure 6.3 shows the density of coverage of the entire
feasible state space by means of D1, D2 and D3. Note that the discretizations
described in Table 6.1 and shown graphically in Figure 6.3 constitute a sub-
set of a larger set of discretizations that have been considered. They have
been chosen because they have been found to be the most accurate among
other candidates with more or less the same total number of discrete states
(p1, p2).
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FIGURE 6.3
Coverage of feasible state space (p1, p2) by means of alternative discretizations.

6.3.1 Accuracy of Cost Estimation

It has been previously suggested that the discretization of the state space
affects mainly the accuracy in the estimation of the total expected cost while
the quality of the solution (optimal policy) depends mostly on the allowable
values of the decision variables n and h [16]. The extent of validity of those sug-
gestions and the computational implications of using alternative discretiza-
tions are investigated by applying D1, D2 and D3 in the 8 test cases with net
operating time T = 8 that are described in Table 6.2. The rationale behind the
selection of the specific cases was to have a representative wide spectrum of
optimal economic designs for the respective Shewhart-type charts, so that the
optimal Bayesian monitoring policies in the test cases can also be expected
to cover a broad range of possible situations. In practical terms, this experi-
mental design objective was translated into the identification of cases where
each of the three parameters I , n, k optimizing TCS of (6.1) would take their
respective optimal values at two substantially different levels (IS = 3 and 11,
nS = 5 and 11, kS = 1.5 and 2.5) in all 23 = 8 possible combinations. The
objective was achieved by the appropriate choice of the model parameters δ,
c, L0 and M, as shown in Table 6.2. The other model parameters were kept
constant in all 8 cases (λ1 = λ2 = 0.02, b = 0, L1 = 150).

TABLE 6.2

Optimal Control Chart Parameters of the Shewhart-Type Charts and Model
Parameters for Test Cases

Parameters Model Parameters

Case Is ns ks λ1 = λ2 δ b c L0 L1 M TCS

1 3 11 1.5 0.02 0.7 0 1.2 50 150 250 193.03
2 11 11 1.5 0.02 0.7 0 0.8 30 150 1100 350.53
3 3 5 1.5 0.02 1.1 0 1.8 30 150 200 148.92
4 11 5 1.5 0.02 1.1 0 1.8 30 150 1200 356.27
5 3 11 2.5 0.02 1.1 0 0.5 90 150 120 96.92
6 11 11 2.5 0.02 1.1 0 0.5 90 150 700 207.95
7 3 5 2.5 0.02 1.7 0 0.8 60 150 100 82.96
8 11 5 2.5 0.02 1.7 0 0.8 60 150 500 157.77

Note: TCs = total expected cost.
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For each of the cases of Table 6.2 we obtained the optimal control policy
using fully adaptive two-sided Bayesian X-charts with six choices for the
sample size n and six choices for the sampling interval h, as follows [17]:

• Depending on the optimal sample size nS of the respective Shewhart
chart, the set of allowable values of n is Sn = {1, 2, 3, 4, 5, 6} for
nS = 5 (Cases 3, 4, 7, 8) and Sn = {1, 3, 5, 7, 9, 11} for nS = 11 (Cases
1, 2, 5, 6).

• Depending on the optimal sampling interval hS = T/(IS+1) of the
respective Shewhart chart, the set of allowable values of h is Sh =
{0.25hS, 0.5hS, 0.75hS, hS , 1.5hS, 2hS }, i.e., hmin = 0.5 (30 min) in cases
1, 3, 5, 7 (implying 16 stages in the DP formulation) and hmin = 0.167
(10 min) in cases 2, 4, 6, 8 (48 stages in the DP formulation).

The expected total costs of the optimal policies using each one of the
discretizations D1, D2, D3 are shown in Table 6.3 as C16(0,0) for cases 1, 3, 5, 7
and C48(0,0) for cases 2, 4, 6, 8. The values CN(0,0) are clearly approximations
of the true cost figures, since their computation is based on an approximate
(discrete) mapping of the continuous state space. In order to estimate the
accuracy of these approximations we simulated every one of the 8 cases one
million times (production runs), applying each one of the optimal policies
derived under D1, D2, D3 with the exact (continuous) values of p1 and p2;
these values were computed from (8) and (9) using the simulated sample
means x̄. The simulation point estimates of the expected costs of the optimal
policies under discretization D1, D2, D3 will be denoted as CD1, CD2, CD3.
Table 6.3 shows the 99% confidence intervals of the expected costs of the
optimal policies, including the corresponding point estimates CDi (i = 1,
2, 3). The 99% confidence intervals are very narrow; their length is always
smaller than 1% of the respective point estimate, indicating that the simulation
estimates are quite accurate.

Given that the simulation estimates of the total expected costs are very
close to the true values, the main conclusion following from the careful
examination of the numbers in Table 6.3 is that the finest of the three dis-
cretizations, D3, provides the most accurate results, as expected, which differ
from the simulation point estimates by at most 1.6% in the 8 cases exam-
ined. At the other end, the expected cost values computed with the coarse
discretization D1 differ by as much as 8.2% from the respective simulation
estimates. Discretization D2 comes in-between with the largest observed dif-
ference being 4%. Naturally, the higher accuracy of D3 comes at the expense
of higher computational requirements. Specifically, the computation time
required to determine the optimal policy with dynamic programming
using D1 is in the range 3 – 15 minutes on a Pentium IV-3.4GHz computer,
while it takes 1 – 5 hours to obtain the optimal policy using D3. Discretiza-
tion D2 is, computationally, about 5 times more demanding than D1 and
about 4 times less demanding than D3. It is important to note that it is
not necessary to perform the DP computations for all discrete states and all
6×6 = 36 allowable combinations of n and h at each stage; the computational
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TABLE 6.3

Expected Cost of Optimal Policy
Discretizations

Case D1 D2 D3
1 C16(0,0) 185.39 184.43 184.15

99% CI 184.28 ± 0.68 184.09 ± 0.67 184.25 ± 0.67

2 C48(0,0) 342.04 334.33 331.68
99% CI 333.69 ± 1.12 331.12 ± 1.09 330.68 ± 1.07

3 C16(0,0) 143.59 142.60 142.30
99% CI 142.46 ± 0.52 142.25 ± 0.52 142.14 ± 0.52

4 C48(0,0) 350.10 340.56 337.17
99% CI 338.35 ± 1.14 336.33 ± 1.10 335.80 ± 1.09

5 C16(0,0) 92.27 90.80 90.14
99% CI 90.04 ± 0.37 89.82 ± 0.36 89.79 ± 0.35

6 C48(0,0) 206.49 196.06 191.01
99% CI 191.45 ± 0.70 188.71 ± 0.67 187.91 ± 0.65

7 C16(0,0) 79.05 77.67 77.05
99% CI 76.80 ± 0.32 76.58 ± 0.32 76.53 ± 0.31

8 C48(0,0) 159.00 150.02 146.06
99% CI 147.01 ± 0.57 144.22 ± 0.53 143.84 ± 0.52

Note: Expected cost, CN(0,0), is computed by dynamic programming and estima-
ted by simulation, 99% CI (limits of the 99% confidence interval; the middle of
each confidence interval is the respective point estimate CDi ).

requirements are significantly reduced by exploiting several properties of
the optimal policy [12]. The computation times reported above refer to the
implementation of the DP procedure with the reduced requirements.

6.3.2 Quality of Bayesian Control Policies Under Different
State-Space Discretizations

From Table 6.3 and the preceding discussion the trade-off between accuracy
and computational requirements is obvious. However, the accurate and ef-
ficient estimation of the expected cost of a particular policy is of secondary
importance, because simulation is a very effective tool than can serve this
purpose. The really important question is whether, how and to what extent
it is possible to determine a high-quality (near-optimal) Bayesian X-chart
policy given the capabilities of today’s computers. To be more specific, the
practically interesting trade-off is between the computational requirements
for determining the optimal policy using D1, D2 or D3 and the quality of
the resulting policies. The former (computational requirements) has already
been discussed above. The latter can be evaluated by comparing the “true”
(simulated) costs CD1, CD2, CD3 of the policies obtained using D1, D2, D3.
Although these costs are contained in Table 6.3, their direct comparison is
facilitated by Table 6.4, which also contains the percentage differences 
CD32



P1: Binaya Dash

September 8, 2006 14:14 C5440 C5440˙C006

182 Bayesian Process Monitoring, Control and Optimization

TABLE 6.4

Effect of State-Space Discretization on the Quality of the Optimal Control Policy
and Cost Penalties for Using Shewhart-Type Rather than Bayesian Charts

Discretization Cost Percentage Differences

Case TCS CD1 CD2 CD3 ∆CD32(%) ∆CD31(%) ∆CSD3(%)
1 193.03 184.28 184.09 184.25 −0.09 0.02 4.77
2 350.53 333.69 331.12 330.68 0.13 0.90 6.00
3 148.92 142.46 142.25 142.14 0.08 0.22 4.77
4 356.28 338.35 336.33 335.80 0.16 0.75 6.10
5 96.92 90.04 89.82 89.79 0.04 0.28 7.94
6 207.95 191.45 188.71 187.91 0.42 1.85 10.66
7 82.96 76.80 76.58 76.53 0.07 0.35 8.40
8 157.77 147.01 144.22 143.84 0.27 2.16 9.68

Note: TCs = total expected cost.

and 
CD31 that are computed as follows:


CD32 = CD2 − CD3

CD2
× 100%


CD31 = CD1 − CD3

CD1
× 100%


CD32 (
CD31) measures the reduction in expected cost that is achieved when
we move from the policy obtained using the discretization D2 (D1) to the
generally better optimal policy determined using the finest discretization D3.
To put these numbers into proper perspective, Table 6.4 also contains the
percentage difference


CSD3 = TCS − CD3

CD3
× 100%

that is the cost penalty from using the optimal Shewhart-type static X-chart
rather than the optimal adaptive Bayesian X-chart (under D3).

The main conclusion from Table 6.4 is that it is not necessary to employ a
very fine and computationally demanding state-space discretization, like D3,
to obtain a near-optimal policy. More specifically, discretization D2, which is
computationally about 4 times less demanding than D3, yields policies that
are practically as good as those obtained with D3. The percentage differences

CD32 are lower than 0.42% in all 8 cases. In fact, direct comparison of the
99% confidence intervals in Table 6.3 reveals that the difference in the expected
costs of the policies determined with D2 and D3 is not significant at the 1%
level in any of the 8 test cases. Even the policies obtained with the coarse
discretization D1 are not much inferior to those of D3; the average 
CD31
difference is 0.82% while the highest recorded 
CD31 is 2.16% in Case 8. Note
that 
CSD3 is 9.68% in Case 8, implying that the improvement from using
the Bayesian adaptive X-chart with D1 instead of the optimal static Shewhart
chart would be substantial. More generally, the 
CD31 differences are an order
of magnitude smaller than the respective 
CSD3.
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In short, it is possible to obtain in only a few minutes a Bayesian adaptive
X-chart monitoring and control policy that is considerably more economical
than that of the standard Shewhart chart. The anticipated cost reduction is
around 5% to 10%. In cases of expensive processes where the economic stakes
are really high and even a small percentage cost improvement is important we
recommend to employ the D2 discretization for deriving and implementing
the two-sided Bayesian Xcontrol scheme. The control policy can be obtained
in a reasonable time and will be very close to the true optimum.

6.4 The Effect of Allowable Choices for the Sample Size
and Sampling Interval

All the numerical examples and results in the previous section concern the
fully adaptive Bayesian scheme with 36 specific combinations of allowable
sample sizes n and sampling intervals h. Previous research that was focused
on one-sided X-charts [16, 17] has established that the economic effectiveness
of the Bayesian scheme strongly depends on the number of feasible (n, h) pairs
and on the choice of the exact elements of the sets Sn and Sh , which contain the
allowable values. Specifically, with respect to Sh it has been found that the best
results are obtained by using as short an hmin as possible, while maintaining
a relatively long h. As far as Sn is concerned, the previous investigations have
concluded that it is advisable to contain mostly small sample sizes, especially
if the sampling intervals can be short.

We have conducted a large number of numerical experiments with two-
sided Bayesian X-charts in addition to the test cases of Tables 6.2 and 6.3
and we have arrived at the same as above conclusions and guidelines for the
allowable (n, h) pairs, as reflected by our choice of the sets Sn and Sh in
Section 6.3. Among other experimentations, we used the cases of Table 6.2 as
a vehicle for the investigation of the effectiveness of fully adaptive Bayesian
X-charts with only two allowable sample sizes, namely n1 = 1 and n2 = 6 (if
nS = 5) or n1 = 1 and n2 = 11 (if nS = 11), and/or only two allowable sampling
intervals, namely h1 = 0.25hS and h2 = 2hS. More specifically, for each of
the 8 test cases of Table 6.2 we determined the optimal Bayesian monitoring
schemes, using D1, D2 and D3, with three additional sets of allowable (n, h)
pairs:

(a) 4 (n, h) pairs: all combinations of n1 = 1 and n2 = 6 or 11 with
h1 = 0.25hS and h2 = 2hS;

(b) 12 (n, h) pairs: all combinations of n1 = 1 and n2 = 6 or 11 with the
6 values of Sh of Section 6.3;

(c) 12 (n, h) pairs: all combinations of h1 = 0.25hS and h2 = 2hS with
the 6 values of Sn of Section 6.3.
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Although it is not worthwhile providing the detailed results here, it is
interesting to highlight some interesting findings:

• The 
CD32 differences are consistently lower than 0.5% with the
exception of one case where 
CD32 = 0.7%. This result provides
additional support to the claim that the D2 discretization yields
Bayesian schemes that are practically as good as those obtained with
the much more computationally demanding discretization D3.

• The average value of the percentage difference 
CD31 over all 32
cases (8 test cases solved with 4 different sets of allowable (n, h)
combinations) is only 0.52% while the maximum observed 
CD31
difference is 2.2%. Thus, it is confirmed that D1 constitutes a very
efficient and effective discretization alternative for most practical
cases.

• Although the adaptive Bayesian charts typically outperform the
static Shewhart chart, in Cases 3 and 4 the expected cost TCS of
the optimal Shewhart chart is lower than the simulated expected
cost CD3 of the Bayesian scheme with only 4 allowable (n, h) pairs.
The obvious implication is that the allowable (n, h) combinations
of the Bayesian scheme should be chosen with great care, other-
wise the use of this potentially more powerful control mechanism
may result in worse performance than the use of a much simpler
tool.

Before closing this section it is necessary to reiterate and emphasize that
the discretization of the decision space (i.e., the elements of the sets Sn and
Sh) that was adopted here and used for the purposes of the numerical in-
vestigation is based on extensive computational experience but it is certainly
just one of infinite such possibilities and in many cases it will not be quite
as effective as other alternatives. If maximal effectiveness of the Bayesian
X-chart is desired, the only way to come close to achieving it is through care-
ful and extensive numerical experimentation that will result in a customized
decision-space discretization. It is comforting to know, though, that it suffices
to use relatively few carefully selected allowable values of the adaptive chart
parameters n and h to reap most of the benefits that the Bayesian approach
can offer [17].

6.5 Summary and Conclusions

Bayesian process control has been developing for many years now, with
some success in the theoretical domain but with much less success in the
application field. Its limited progress in terms of acceptance by other
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researchers and practitioners can be attributed to its relative complexity and
the excessive computations required to determine the optimal statistical mon-
itoring and control policy. Because of these difficulties the study of Bayesian
control charts has so far concentrated mostly on one-sided X-charts and on
control charts for attributes (percent nonconforming, nonconformities) that
are typically implemented as one-sided charts. It is encouraging that an indus-
trial application of a Bayesian one-sided X-chart for monitoring the quality
of tiles at a particular stage of the production process is now appearing for
the first time in the academic literature [13].

The computational problems associated with the design of Bayesian con-
trol charts are exacerbated when the chart is two-sided, as is usually the case
with X-charts, because of the expansion of the state space from one dimen-
sion to two. In order to perform the dynamic programming computations the
continuous state space (out-of-control probabilities) must be discretized and
represented as a grid in two dimensions, dense enough to result in accurate
approximations. The implementation of the dynamic programming approach
with a state-space discretization of satisfactory density and accuracy was not
possible until a few years ago. However, thanks to the tremendous advances
in computer technology, the situation is very different today. The research
presented in this chapter, mostly computational in flavour, has proved that it
is now feasible to obtain a near-optimal design of a fully adaptive two-sided
Bayesian X-chart in reasonable computer time.

In addition, our findings reaffirm that the choice of the allowable val-
ues for the sample size and the sampling interval of the adaptive chart is of
paramount importance to the economic effectiveness of the procedure. Even
though some general guidelines are available and can be used as a starting
point, the economic performance of the Bayesian process control scheme may
be optimized only if this choice is made through careful experimentation on
a case-by-case basis.

Incidentally, the numerical results presented in this chapter confirm
earlier evidence that a properly designed adaptive Bayesian process control
scheme can be economically much more effective than the static Shewhart
X-chart. However, a very natural and interesting question is whether and
to what extent the economic advantage of the Bayesian chart is due to the
additional degrees of freedom in selecting sampling intervals and sample
sizes, i.e., to its adaptive nature itself. A well documented answer to this
question may only be provided by means of a future systematic performance
comparison between adaptive Bayesian and adaptive Shewhart-type control
charts.

Finally, it must be noted that despite the focus of the exposition on mon-
itoring short production runs, which is reflected in the title of the chapter
as well, the general approach and the main findings and conclusions of this
chapter carry over to the cases of long production runs and continuously
operating production processes.
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ABSTRACT This chapter describes (a ) how Bayes’ theorem implies the
addition of (observed) information and (b) the use of this property to easily
compute posteriors: Defining “score” and “observed information” via deriva-
tives of the log densities, the posterior score is the prior score plus the score
from the data, and observed information similarly adds. These facts provide
simple derivations of many Bayesian results, especially for normal approxi-
mations. Other tools can then be used to evaluate the adequacy of these ap-
proximations. Even when, for example, a normal posterior is not sufficiently
accurate for direct use, it can still be used as part of an improved solution
obtained via adaptive Gauss-Hermite quadrature or importance sampling in
Monte Carlo integration, for example.

One important realm for application of these techniques is with various
kinds of (extended) Kalman filtering following a 2-step Bayesian sequen-
tial updating cycle of (1) updating the posterior from the last observation to
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create a prior for the next that considers possible changes of state in the
interim, and (2) using Bayes’ theorem to combine the current prior and
observation to produce an updated posterior. These tools provide easy deriva-
tions of posteriors, especially for normal approximations. Another applica-
tion involves mixed effects models outside the normal linear framework. This
chapter includes derivations of Bayesian exponentially weighted moving
averages (EWMAs) for exponential family/exponential dispersion models
including gamma-Poison, beta-binomial and Dirichlet-multinomial.
Procedures are also outlined for using these techniques to model changes
in the Poisson defect rate between manufacturing equipment and products
in the production of integrated circuits. Pathologies that occur with viola-
tions of standard assumptions are illustrated with an exponential-uniform
model.

7.1 Introduction

Many tools are available for deriving and easily understanding sums of ran-
dom variables. This chapter presents two comparable (dual) properties of
Bayes’ theorem. These results concern the “score” and the “information”,
where the score = the first derivative of the log(likelihood) [3], extended
here to include log(prior) and log(posterior); differentiation is with respect to
parameter(s) of the distribution of the observations, which are therefore the
random variables of the prior and posterior. Similarly, the “observed informa-
tion” = the negative of the second derivatives. With these definitions, (a) the
posterior score is the prior score plus the score from the data, and (b) the
posterior observed information is the prior information plus the information
from the data. Previous Bayesian analyses have used this mathematics (e.g.,
[6], [7]) but without recognizing it as having sufficient general utility to merit
a name like “Bayes’ Rule of Information”.

These tools provide relatively easy derivations of extended Kalman
filtering and of Laplace approximations for mixed models outside the normal
linear case (e.g., [20], which includes software for S-Plus and R). The adequacy
of these approximations can then be evaluated using techniques like impor-
tance sampling with Monte Carlo integration (including, e.g., importance
weighted marginal posterior density estimation within Markov Chain Monte
Carlo [5], see Chapter 2 in this book) or in low dimensions adaptive Hermite
quadrature [8], [26]. The error in the simple approximation can then be used to
decide if the additional accuracy provided by the more sophisticated methods
is worth the extra expense.

We therefore focus on the power and simplicity obtainable from “keeping
score with Bayes’ theorem” and accumulating observed information from
prior to posterior. In Sections 7.2 and 7.3, we derive the properties of interest
by factoring the joint distribution of observations y and parameters µ in two
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ways: (predictive) × (posterior) = (observation) × (prior):

p(y, µ) = p(y) × p(µ|y) = p(y|u) × p(µ)

(joint) = (predictive) × (posterior) = (observation) × (prior),
(7.1)

where p(·) = probability density of observations or parameters as indicated.
In Kalman filtering applications, we want to track the evolution of unknown,
latent parameters µ over time through their influence on the observations.
The predictive distribution does not appear in the score and information
equations, but can be useful for evaluating if it is plausible to assume that y
came from this model; if y seems inconsistent with that model, the posterior
computation might be skipped and other action taken [43].

Beta-binomial, gamma-Poisson, and other conjugate exponential family
applications appear in Section 7.2. In Section 7.4 (and the appendix), we keep
score with Bayes’ theorem and apply Bayes’ rule of information with approx-
imating normal priors and posteriors. The results are specialized further to
normal observations including linear regression in Section 7.5. Section 7.6
reviews the connection between Bayes’ and central limit theorems. Special-
ized systems for monitoring the production of integrated circuits are outlined
in Section 7.7. The relationships between alternative definitions of informa-
tion in statistics are reviewed in Section 7.8, and concluding remarks appear
in Section 7.9.

7.2 Factoring Joint Probability and Keeping Score

Taking logarithms of (7.1), letting l ( . ) = log [p ( . )] = the logarithm of the
corresponding probability density, we get the following:

l(y) + l(µ|y) = l(y|µ) + l(µ)
(predictive) + (posterior) = (observation) + (prior).

R. A. Fisher described the first derivative of the log(density) as the “efficient
score” [3], [25, p. 470]. In this sense, the “score” from n independent obser-
vations is the sum of the scores from the individual observations, and with
regular likelihood, prior and posterior, the likelihood is maximized or the
posterior mode is located where the applicable score (i.e., the first derivative
of the log density) “balances” at 0.

In particular, the posterior score is the prior score plus the score from the
data:

∂l(µ|y)
∂µ

= ∂l(y|µ)
∂µ

+ ∂l(µ)
∂µ

, (7.2)

Expression (7.2) is a powerful tool for computing Bayesian posteriors. This
is particularly valuable when a normal distribution is an adequate
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approximation for both prior and posterior or when a normal distribution
is used as a kernel for adaptive Hermite quadrature or for importance sam-
pling in Monte Carlo. As a mnemonic device to make it easier to remember,
it describes how to keep score with Bayes’ theorem.

Before taking the second derivative, we illustrate the use of (7.2) in
examples.

Example 1: Gamma-Poisson.
Consider the gamma-Poisson conjugate pair. In this case, the gamma prior
p(λ) = βαλα−1eλβ/�(α), so the prior score for λ is ∂l(λ)/∂λ = {[(α−1)/λ]−β}.
Meanwhile, the observation density is p(y|λ) = λye−λ/y!, so the score of the
data is ∂l(y|λ)/∂λ = {[y/λ] − 1}. Whence, the posterior score is ∂l(λ|y)/∂λ =
{[(α1 − 1)/λ] − β1}, where α1 = α + y and β1 = β + 1. Since this has the same
form as the prior score, we can exponentiate and integrate it to prove that the
posterior is also gamma. Thus, Bayes’ theorem tells us to keep score in the
gamma-Poisson model by adding y to α and 1 to β.

Suppose now that we have a series of Poisson observations yt with prior
distribution for λt of �(αt|t−1, βt|t−1). Then keeping score with Bayes’ theorem
tells us that the posterior is �(αt|t , βt|t) with αt|t = αt|t−1+yt and βt|t = βt|t−1+1.
Let’s model a possible migration over time in λ = λt with a discount factor
θ (0 < θ < 1), as αt+1|t = θαt|t and βt+1|t = θβt|t. Thus, αt+1|t = θ (αt|t−1 + yt) =
θyt + θ2 yt−1 + · · ·, and βt+1|t = θ (βt|t−1 + 1) = θ + θ2 + · · · ∼= θ/(1 − θ ), if t = 0
is sufficiently far in the past to be irrelevant. In that case, βt+1|t is constant,
and αt+1|t = θ ỹt/(1 − θ ), where ỹt = θ ỹt−1 + (1 − θ ) yt = an exponentially
weighted moving average (EWMA) of the observations yt. In essence, Bayes’
theorem tells us to track the gamma scale parameter α by keeping score with
an EWMA. For an EWMA application with a somewhat different gamma-
Poisson model, see [24].

Example 2: Beta-Binomial.
Consider the beta-binomial pair with observation y ∼ bin(π, m) and prior
π ∼ beta (α, β). The same logic as for gamma-Poisson tells us that keeping
score with Bayes’ theorem produces a posterior that is beta (α1, β1) with
α1 = α + y and β1 = β + m − y. With a sequence yt ∼ bin(πt, mt), and prior
πt ∼ beta(αt|t−1, βt|t−1), we keep score with αt+1|t = θ (αt|t−1 + yt) and βt+1|t =
θ [βt|t−1 + (mt − yt)]. If mt = m is constant and t = 0 is sufficiently far in the
past to be negligible, then αt+1|t = θ ỹt/ ( 1 − θ ), where ỹt is the EWMA of the
observations as before, and βt+1| t = θ (m − yt) + θβt|t−1 = θ (m − ỹt)/(1 − θ ).
Yousry et al. [44] discuss the use of this kind of EWMA in manufacturing.

Example 3: Conjugate Updating an Exponential Dispersion Model.
Examples 1 and 2 can be generalized to an arbitrary exponential family or
exponential dispersion model [19], with

p(y|µ, φ) = exp{φ[y′µ − b(µ)] − c(y, φ)}, (7.3)
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for some φ > 0. The multinomial distribution with (k + 1) categories can be
written in this form, with the k-vectorµbeing the logistic transformation of the
probabilities with π0 = 1/{1 +∑ exp(µi )} and πi = π0 exp (µi ), i = 1, . . . , k,
and with φy being nonnegative integers whose sum never exceeds another
integer N [so (N − φy) is the number in category 0]; with k = 1, this is the
binomial distribution.

For a distribution of the form (7.3), consider a conjugate prior, CP(α, s),
on the natural parameter µ with density

p(µ) = exp{s[α′µ − b(µ)] − g(α, s)}, (7.4)

where b(µ) is the same as in (7.3), and s > 0 and α are known.
The gamma-Poisson model of Example 1 can be written in the form (7.3)-

(7.4) with µ = log(λ). The beta-binomial of Example 2 can also be expressed
in this form with µ = log [π/(1 − π )]; this is called the “logit,” “log(odds)” or
“logistic” transformation. If the two possible outcomes of the beta-binomial
are further subdivided binomially into (k + 1) > 2 possible outcomes, we get
a Dirichlet-multinomial model.

The “scores” required for (7.2) are simple:

dl(y|µ)/dµ = φ[y − db(µ)/dµ],

and

dl(µ)/dµ = s[α − db(µ)/dµ] (7.5)

The sum of these two gives us the posterior score, which we write as
follows:

dl(µ)/dµ = s1[α1 − db(µ)/dµ],

where

s1 = s + φ , (7.6)

and

α1 = α + κ(y − α) with κ = φ/s1.

The integral of the posterior score has the same form as the logarithm of
the prior (7.4); moreover, the constant of integration must match g ( α1, s1)
because (7.4) must integrate to 1.1

For an exponential family with a conjugate prior that can be written in
the form (7.3)-(7.4), these results can be obtained from standard exponen-
tial family properties without “keeping score” in this way. Specifically, the
product of (7.3) and (7.4) gives us the joint distribution, also in exponential

1 This establishes that the posterior is CP(α1, s1), conjugate to the prior.
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family form:

p(y|µ) p(µ) = exp{(sα + φy)′µ − (s + φ)b(µ) − c(y, φ) − g(α, s)}. (7.7)

Since the prior density (7.4) must integrate to 1 for any s > 0 and any α, it
must also integrate to 1 for α1 and s1 per (6). This property allows us to easily
integrate out µ to get the predictive distribution:

p(y) = exp{g(α1, s1) − g(α, s) − c(y, φ)}. (7.8)

This predictive distribution can be used to evaluate the consistency of each
new observation with this model. New observations that seem implausible
relative to this predictive distribution (7.8) should trigger further study to
determine if these observations (a ) might suggest improvements to the model
or to the data collection methodology or (b) are honest rare events that deserve
to be incorporated into the posterior with other observations or (c) are outliers
that should not be incorporated into the posterior.

The standard application of Bayes’ theorem in this context proceeds by
dividing the joint density (7.7) by this predictive density p(y) to get a posterior
of the form (7.4) with parameters (7.6). However, if we use anything other than
a conjugate prior like (7.4), the posterior might not be obtained so easily. It is
precisely for such situations that more general tools like keeping score using
(7.2) are most useful; see also [20].

Before leaving this example, suppose we have a series of observations yt
with density (7.3) and prior CP(αt|t−1, st|t−1). Then the posterior is CP(αt|t,
st|t), where

αt|t = αt|t−1 + κt(yt − αt|t−1),

with st|t = st|t−1 + φ (with φ constant) and κt = φ/st|t. Similar to examples
1 and 2, we model a possible change in µt between the current and the next
observations with a discount factor θ on s:

st+1|t = θst|t = θ (st|t−1 + φ) = θ [φ + θ (st−1|t−2 + φ)]. (7.9)

If t = 0 is sufficiently remote to be negligible, we substitute this expression into
itself repeatedly to get st+1|t ∼= φθ/(1 − θ ), which makes it essentially constant
over time. If we further assume that αt+1|t = αt|t, we get the following:

αt+1|t = αt|t−1 + κ(yt − αt|t−1),

where

κ = 1 − θ. (7.10)

In sum, a standard EWMA of the random variable yt of an exponential family
(7.3) estimates the prior location parameter αt|t−1 of a standard conjugate
prior (7.4) of the location µt of yt as µt evolves over time as modeled by the
discount factor θ on the prior information parameter st|t−1 per (7.9) and (7.10).
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The gamma-Poison and beta-binomial models of Examples 1 and 2 are special
cases of this.

This exponential family EWMA has been discussed, applied, and general-
ized by West and Harrison [43, sec. 14.2], Grigg and Spiegelhalter [16], Klein
[20] and others. We will interpret κ in (10) using “Bayes’ rule of Information”
in the next section. Before that, however, we note that this exponential family
EWMA can be applied in a quasi-likelihood context [25], not assuming a com-
plete distribution for the observations but only that (a ) the logarithm of (7.3)
times some constant provides an adequate approximation to the log(density)
of the observations and (b) prior and posterior are adequately approximated
by (7.4) and (7.6). We could check the adequacy of these assumptions using
Markov Chain Monte Carlo (MCMC) (see Chapter 2) with a sample of such
data. This could be quite valuable in engineering applications where MCMC
might be used during engineering design to evaluate whether a much cheaper
EWMA would be adequate for routine use where MCMC would not be
feasible.

7.3 Bayes’ Rule of Information

We return now to (7.2) and take another derivative to get the following:

∂2l(µ|y)
∂µ∂µ′ = ∂2l(y|µ)

∂µ∂µ′ + ∂2l(µ)
∂µ ∂µ′ . (7.11)

In this chapter, we let J(.) denote the observed information, which we define
here as the negative of the matrices of second partials in (7.11). Then (7.11)
becomes

J(µ|y) = J(y|µ) + J(µ)(
posterior

information

)
=
(

information from
observation(s)

)
+
(

prior
information

)
. (7.12)

We call this “Bayes’ Rule of Information”, as it quantifies in many appli-
cations the accumulation of information via Bayes’ theorem. If y ∼ Nk(µ, V),
we get J(y|µ) = V−1. Since J(y|µ) is constant independent of µ in this case,
it is also the Fisher (expected) information, though that is not true in other
applications. Similarly, with a prior µ ∼ Nk(θ0, Σ0), we have J(µ) = Σ−1

0 .
Then (7.12) tells us that J(µ|y) = V−1 + Σ−1

0 . Since we know from other ar-
guments [e.g., exponential family conjugacy (7.3)-(7.6)] that the posterior is
also normal, this gives us the posterior variance in the form of its inverse, the
“information”.

In the normal case, the information terms in (7.12) are also called preci-
sion parameters [4], being the inverse of variances (or covariance matrices);
this case is considered further in Section 7.5. In Section 7.4, we assume that the
prior is normal and the observed information can be adequately approximated
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by a constant over probable variations in µ (though it may depend on the ob-
servation y). This will support using a normal approximation for the posterior,
which is discussed further in Section 7.6.

An apparent exception that often supports the rule involves multimodal
distributions. In such cases, the observed information from the observation(s)
[−∂2l(y|µ)/∂µ∂µ′] can even have negative eigenvalues in a certain region
between modes. Fortunately, many such examples are still sufficiently regu-
lar that standard results can be used to show that observations with indefi-
nite or even negative definite information are so rare that their impact on the
posterior vanishes almost surely as more data are collected. If this is not ad-
equate, we could handle mixtures by computing the posterior as a mixture,
deleting components with negligible posterior mixing probabilities as sug-
gested by West and Harrison [43, ch. 12]. (For more on finite mixtures, see [42]
and [28].)

Example 3 (cont.): EWMA for Exponential Dispersion Data.
What does “Bayes’ Rule of Information” tell us about processing data from
a (possibly overdispersed) generalized linear model (7.3) with a conjugate
prior (7.4)? To find out, we differentiate (7.5):

J(y|µ) = φ

[
d2b(µ)
dµ dµ′

]
, and J(µ) = s

[
d2b(µ)
dµ dµ′

]
(7.13)

To help build our intuition about this, we use dimensional analysis assuming
y has “y units”, and µ has “µ units”. Then b(µ) has (yµ) units. If the exponent
in (7.3) is dimensionless, φ must have (yµ)−1 units. For a normal distribution,
“µ units” are “y units”, so φ has y−2 units. For a Poisson distribution, y is
counts of events, and µ is in log(counts). Then φ has

(
count × log(count)

)−1

units. A similar analysis applies to binomial or multinomial observations,
where µ is in logits and y is either counts or proportions; in the latter case,
φ is in (count × logit)−1. Thus, d b(µ)/dµ has “y units”, which it must since
a standard exponential family property makes Ey = db (µ)/dµ. Similarly,
d2b(µ)/(dµ dµ′) has (yµ−1) units. Then by (7.13), J(y|µ) has µ−2 units, which
it must have, because the inverses of observed and Fisher information ap-
proximate the variance of µ.

Another standard exponential family property has

var(y|µ) = φ−1
[

d2b(µ)
dµdµ′

]
.

This is the same as J(y|µ) except that the scale factor φ is inverted, which
change the units from µ−2 to y2, as required for var (y|µ).

In Section 7.4, we will assume that the posterior information is always
positive (or nonnegative definite) and can be adequately approximated by a
constant in a region of sufficiently high probability near the posterior mode.
In this case, with a normal prior, a normal posterior also becomes a reason-
able approximation. Before turning to that common case, we first illustrate
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pathologies possible with irregular likelihood when the range of support
depends on a parameter of interest.

Example 4: Exponential - Uniform.
Pathologies with likelihood often arise with applications where the range of
support of a distribution involves parameter(s) of interest. For example, con-
sider y ∼ Uniform(0, eµ). We take as a prior for µ a 2-parameter exponential
with mean ν−1 and support on (µ0, ∞). We denote this by Exp(ν−1, µ0); its
density is as follows:

f (µ) = ν exp[−ν(µ − µ0)]I (µ > µ0),

where I ( A) is the indicator function of the event A. Then the log(density) is
as follows:

l(µ) = ln(ν) − ν(µ − µ0), for (µ > µ0). (7.14)

Also, the density for y is as follows:

f (y|µ) = e−µ I (0 < y < eµ),

so

l(y|µ) = (−µ), for (0 < y < eµ). (7.15)

Therefore, the support for the joint distribution has µ > max {µ0, ln (y)}.
To keep score with Bayes’ theorem, we need the prior score and the score from
the data. We get the prior score by differentiating (14):

∂l(µ)
∂µ

= (−ν), for (µ > µ0). (7.16)

For the data, by differentiating (7.15) we see that the score function is a
constant (−1):

∂l(y|µ)
∂µ

= (−1), for (0 < y < eµ), i.e., {ln (y) < µ} . (7.17)

We add this to (7.16) to get the posterior score:

∂l(µ|y)
∂µ

= (−1 − ν) = (−ν1), for (µ > µ1 = max{µ0, log(y)}),

where ν1 = ν+1. By integrating the posterior score over (µ > µ1), the range of
support for µ, we find that the posterior is Exp(ν−1

1 , µ1). Thus, the 2-parameter
exponential is a conjugate prior for the uniform distribution considered here.
With repeated data collection, ν1 increases by 1 with each observation pulling
E (µ) = µ1 + ν−1

1 ever closer to the lower limit µ1.



P1: shibu/Vijay

September 7, 2006 17:20 C5440 C5440˙C007

196 Bayesian Process Monitoring, Control and Optimization

To get the observed information, we differentiate (7.16) and (7.17) a second
time to get

J(µ) = J(µ|y) = J(y|µ) = 0.

Thus, in this example, the observed information from prior, data, and
posterior are all 0. Clearly, the posterior gets sharper with additional data
collection. Each observation reflects an accumulation of knowledge, and the
score equation (7.2) helps us quantity that, even though in this example, there
is no “observed information” in anything!

The problems in this case arise because the range of support for the dis-
tribution of y depends on the parameter, which means that many of the stan-
dard properties of “regular likelihood” do not hold. However, the score and
information equations (7.2) and (7.12) are valid wherever the densities are
defined. If we change the parameterization, we get different pathologies. For
example consider y ∼ U(0, β) with β following a Pareto distribution [36].
Then the score from the data is (−1/β) if 0 < y < β, so the Fisher information
defined as the variance of the score is 0. The observed information, however,
is not zero; it’s negative = (−β−2)! The usual equality between the Fisher
information and the expected observed information assumes that the order
of differentiation and expectation can be interchanged, which does not hold
in this case. Fisher information may not be useful in such irregular situations,
but we can still keep score and accumulate observed information using (7.2)
and (7.12). If instead of exponential or Pareto priors and posteriors, we used
a truncated normal, we would reach similar conclusions; the analysis would
still include pathologies, though different from what we’ve just discussed.

A primary area for application of Bayes’ Rule of Information (7.12) and
the companion scoring rule (7.2) is for Kalman filtering, especially nonlinear
extended Kalman filtering and for more general Bayesian sequential updating
([43]; [31]; [15]). Such cases involve repeated applications of Bayes’ theorem,
where the information from the data arriving with each cycle accumulates in
the posterior, summarizing all the relevant information in the data available
at that time, which then with a possible transition step becomes the prior for
the next cycle.

Another important area of application is for deriving importance weight-
ing kernels for Monte Carlo integration with random effects and/or Bayesian
mixed effect models outside of the normal linear paradigm. Beyond provid-
ing a first order approximation, which may not be adequate, they provide a
tool for handling relatively easily the “curse of dimensionality,” which says
roughly that almost everything is sparse in high enough dimensions. For
example, Evans and Schwartz [8] note that the volume of a k-dimensional
unit sphere as a proportion of the circumscribing unit cube, [−1, 1]k , goes
to zero as k increases without bounds. Thus, if we try to estimate the vol-
ume of this sphere via Monte Carlo sampling from a uniform distribution on
[−1, 1]k , we would need ever larger Monte Carlo samples as k increases just to
maintain a fixed probability of getting at least one observation in this sphere!
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However, if most of the mass of the distribution is close to the center of an ap-
propriate normal approximation, most of the k-dimensional pseudo-random
normal variates generated will also be relevant to the non-normal distribu-
tion of interest. This makes importance sampling a simple yet valuable tool
for evaluating the adequacy of a normal approximation and for improving
upon it when it is not adequate.

7.4 Normal Prior and Posterior

We assume in this and the next sections that the prior and posterior are
both adequately approximated by normal distributions, Np (θ0, Σ0) and
Np (θ1, Σ1), respectively. Then

l(µ) = c0 − 1
2

(µ − θ0)′Σ−1
0 (µ − θ0),

and

l(µ|y) = c1 − 1
2

(µ − θ1)′Σ−1
1 (µ − θ1),

where c0 and c1 are appropriate constants (relative to µ). We’d like to use
(7.12) to compute Σ1 and (7.2) to get θ1. For this, we need following:

∂l(µ)
∂µ

= [−Σ−1
0 (µ − θ0)

]
;

∂l(µ|y)
∂µ

= [−Σ−1
1 (µ − θ1)

]
, (7.18)

and

J (µ) =
[
−∂2l (µ)

∂µ∂µ′

]
= Σ−1

0 ; J
(
µ|y) =

[
−∂2l(µ|y)

∂µ∂µ′

]
= Σ−1

1 . (7.19)

To keep things simple, we substitute (7.19) into (7.12) evaluating J(y|µ) at
the prior mode µ = µ0 to get the following (provided only that the likelihood
for y is regular):

Σ−1
1 = J(y|µ = θ0) + Σ−1

0 . (7.20)

We assume in this section that variations in J(y|µ) are so small that a nor-
mal approximation with mean at the posterior mode θ1 and “information”
Σ−1

1 per (7.20) provides an adequate approximation to the posterior. This
approximation is often quite accurate when the prior summarizes many
previous observations and the information provided by y is relatively mod-
est by comparison. With relatively noninformative priors, this may be less
adequate. In some cases, replacing θ0 by θ1 in (7.20) would improve the
approximation to the posterior; this would require an iteration as discussed
in the appendix.
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We now use (7.18) to compute the score (7.2) at the prior mode µ = θ0:

−Σ−1
1 (θ0 − θ1) =

[
∂l(y|µ = θ0)

∂µ

]
+ 0,

so

θ1 = θ0 + Σ1

[
∂l(y|µ = θ0)

∂µ

]
, (7.21)

assuming the posterior information matrix Σ−1
1 is of full rank. Thus, when

the normal distribution with information Σ−1
1 computed via (7.20) is an

adequate approximation to the posterior, (7.21) provides a simple way to
obtain the posterior mean θ1. If in addition the observations are linear in µ
plus normal error, J(y|µ) is constant in µ, and the posterior is exactly normal,
as we explain in the next section.

With a series of observations, (7.20) and (7.21) are applied repeatedly to
convert the prior for yi ∼ Np(θi |i−1, Σi |i−1) into the posterior Np(θi |i , Σi |i ). We
then typically increment the posterior variance to obtain the prior variance
for the next observation, e.g.,

Σi+1|i = Σi |i + Wi , (7.22)

to model possible random changes of state between observation i at time
ti and observation (i + 1) at time ti+1. In many cases, Wi = (ti+1 − ti ) W is
proportional to the elapsed time since the last observation. This migration
variance can be related to the probability distribution of time to failure [13].
Depending on the application, θi+1|i may equal θi |i or it may follow some
deterministic change that is a function of the time between observations and
possible external inputs or feedback controls. Special consideration must be
given to cases where the posterior information Σ−1

i−1|i−1 from the previous
observation is singular; we consider this in the next section.

7.5 Normal Observations

In this section, we first assume that y ∼ Np(µ, V) and later that y ∼ Nk(Zµ, V).
In the first case, the log(likelihood) is as follows:

l(y|µ) = cy − 1
2

(y − µ)′V−1(y − µ).

Then the score from the data is

∂l(y|µ)
∂µ

= V−1(y − µ). (7.23)
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Taking second derivatives gives us

J(y|µ) = V−1.

We now substitute this into (7.20) to get

Σ−1
1 = V−1 + Σ−1

0 . (7.24)

We substitute (7.23) into (7.21) to get

θ1 = θ0 + K(y − θ0), (7.25)

where K = Σ1V−1 is called the Kalman gain. Now consider iterating be-
tween (7.24) and (7.25) n times with a series of n numbers starting with a
non-informative prior Σ−1

0 = 0. We can show by induction that the final θ1
will be the arithmetic average of the n numbers or vectors assuming V−1 is
nonsingular. This provides a way to compute an average without storing all
the numbers. Alternating these computations with a migration following a
normal random walk produces a Bayesian EWMA [13].

In a regression situation, y ∼ Nk(Zµ, V), this same analysis gives us

Σ−1
1 = Z′V−1Z + Σ−1

0 ,

and

θ1 = θ0 + K(y − Zθ0), where K = Σ1Z′V−1. (7.26)

Kalman filtering can be derived by repeated use of (7.26), obtaining the prior
covariance matrix for the each observation Σi | i−1 by adding a covariance
matrix Wi to the posterior Σi−1 | i−1 as indicated in (7.22) to model changes
between observations [15, Sections 3-6].

However, if the posterior information from the previous stepΣ−1
i−1|i−1 is sin-

gular, we must consider this fact in handling the migration. In such cases, we
use the information matrix rather than the covariance matrix as the primary
representation of the variability of the distribution, because it is easier compu-
tationally to handle zero information than infinite variance. Let Q0Λ−1

0 Q′
0 =

Σ−1
i−1 | i−1 denote the eigenvalue decomposition of Σ−1

i−1 | i−1 omitting its null
space. Then Q0Λ0Q′

0 is the Moore-Penrose pseudo-inverse of Σ−1
i−1 | i−1 and

is therefore a reasonable representation of the singular covariance matrix
Σi−1 |i−1. To get Σi | i−1, we can’t just add Wi to this Σi−1 | i−1, because that
would make Σi | i−1 nonsingular, ignoring the infinite variance in the orthog-
onal space of Q0. Instead, we compute Σi | i−1 = Q0Λ0Q′

0 + Q0Q′
0Wi Q0Q′

0 =
Q0 [Λ0 + Q′

0Wi Q0] Q′
0 andΣt|t−1

−1 = Q0 [Λ0 + Q′
0Wi Q0]−1 Q′

0. If we do this
starting with zero information, Σ−1

1 | 0 = 0, and ignore the migration by letting
W = 0, we can get ordinary least squares regression.

West, Harrison and Pole [31], [43] extend this to obtain dynamic linear
models with Student’s t distributions. This does not follow directly from any
results I know. Rather it is a byproduct of standard normal-gamma conjugate
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updating for both the normal mean (vector) and a scalar parameter factor-
ing out of the information matrices, which are otherwise assumed known.
The predictive distributions become (multivariate) t after integrating out first
the normal mean and then the gamma/chi-square information parameter.
Similarly, the marginal prior and posterior for the mean are also t. Graves,
Bisgaard and Kulahci [14] used this to describe the obvious heteroscedastic-
ity of measured deficits in angular acceleration, used to detect misfires in an
automobile engine.

The resulting theory is relatively simple, given the inherent complexity
of the applications, with substantial utility for many applications. Its major
deficiency is that it does not generalize easily with multiple variance and
covariance parameters. For this, we replace the gamma/chi-square distribu-
tions by normal approximations for the logarithms of variances and a tanh
for various parameters relating to the correlations that are constrained to lie
between −1 and +1, as discussed by Pinheiro and Bates [30]. The score and
information equations (7.2) and (7.11) can be used to derive Bayesian updating
equations, thereby supporting Kalman filters for monitoring variance com-
ponents. For most purposes, there is little loss of accuracy in approximating
a chi-square by a lognormal, except when the number of degrees of freedom
is quite small, because most properties of the two distributions are so similar
that substantial quantities of data would be required to tell them apart.

7.6 Bayes and the Central Limit Theorem

The use of normal approximations for prior and posterior as discussed in Sec-
tion 7.4 relates to more general results regarding the sampling distribution
of maximum likelihood estimators (MLEs). Standard proofs of asymptotic
normality and results on rates of convergence to normality involve key steps
that could be written recursively using (7.2) to “keep score” and (7.12) to
“accumulate information” with succeeding observations. The results work,
roughly speaking, because the “score”, being stochastic, grows as the square
root of n, the number of observations, while the information and higher
cumulants grow linearly with n. To get a standard normal, the score is
divided by the square root of the information, which makes the kth cumulant
of this ratio roughly proportional to n1−k/2, so the skewness declines as n−1/2,
the fourth cumulant (kurtosis) as n−1, etc. With standard Edgeworth expan-
sions, the first correction term involves the skewness, O(n−1/2), the second
involves the kurtosis and the square of the skewness, both O(n−1), etc., as
discussed, e.g., in [35], [38], [39], and [11]. The same math including a prior
with a sufficiently flat dominating measure would produce a normal approx-
imation to the posterior with information Σ−1

1 and mean θ1 computed via
(7.20) and (7.21). Under suitable regularity conditions, as more information
is accumulated into the posterior, it becomes more nearly normal ([1]; [33]).
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Central limit convergence of MLEs has been proven with otherwise
adequately behaved multimodal distributions, even though the observed
information J(y|µ) is sometimes negative (or negative definite) for µ in cer-
tain regions. Fortunately, the regions of negative information vanish almost
surely with increasing numbers of observations. If that is not adequate, fi-
nite mixtures in prior and observation distributions can often be adequately
approximated by the obvious finite mixtures in the posterior, dropping all but
the dominant components as described by West and Harrison [43, ch. 12].

7.7 Monitoring in Manufacturing Integrated Circuits

Modern manufacturing, especially of integrated circuits (ICs or “computer
chips”), includes collecting substantial quantities of data on process para-
meters and product performance. IC production uses photolithography, print-
ing images for successive layers for a computer chip on top of previous layers
to produce a circuit. Many chips, from tens to thousands, are printed simul-
taneously on a disk called a wafer. They are tested, the good kept and the bad
discarded. Data on electrical characteristics and the failure modes of malfunc-
tioning chips and accompanying test circuits help managers and engineers
manage and improve the production processes and thereby the yield (defined
as the percent of chips that are good). The tools described in this chapter
can help develop better ways of extracting useful information from the data
collected. Examples 2 and 3 in Section 7.2 above show that a simple exponen-
tially weighted moving average (EWMA) of yield, ỹt, tracks the evolution of
expected yield via the relationship of ỹt to the parameters of a beta distribution
conjugate to the assumed binomial distribution of yield.

However, other priors seem to match the physics of wafer fab better than
a beta distribution. In particular, the number of defects per chip is often
approximately Poisson, and the yield (ignoring possible repair circuitry) is
the probability of zero defects. Thus, Ey = e−DA, where D is the “fail rate”
= number of defects per unit area of the approximating Poisson distribution
and A is the area of the chip (or the “critical area” of a particular layer). We
call DA the “defect rate”, to distinguish it from the “fail rate” D. Thus, DA
has units of defects/chip. The area A is typically measured in cm2, in which
case D has units of defects/cm2. To a first order of approximation, different
products produced in the same factory (called a “Fab”) often have approxi-
mately the same defects/cm2, D; different products typically differ more in
the area A of the chip than in the fail rate D.

Moreover, D exhibits both systematic and random variations across the
wafer and between wafers within a lot, as well as random variations between
lots. An important aid in modeling and decomposing these different sources
of variability is simply to create appropriate probability plots. Figure 7.1 is one
example, depicting the distribution of yield by lot for 755 lots of a product with
324 chips per wafer averaging 7864 chips per lot. This image is fairly typical
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FIGURE 7.1
Normal Probability Plots of Yield, Defect Rate, and log(Defect Rate).

of the hundreds of plots like this that I’ve reviewed: In all but a few cases, the
log(defect rate) is more nearly normally distributed than either the defect rate
or the yield. Moreover, the deviations from normality suggest lack of statistical
process control. In this case, the log(defect rate) plot suggests a mixture of
two normal populations [42], with roughly 94% of the lots following one
normal distribution and the remaining 6% following another with both a
higher median defect rate and greater variability.

The dashed line in the log(defect rate) plot indicates the slope of the line
that would be expected if the only source of variability were binomial sam-
pling: the slope of the line is inversely proportional to the standard deviation
of the reference normal distribution. The latter is the square root of the in-
verse of the Fisher information, which we will compute here after first noting
that the difference between the slope of the dashed line and the slope of a
line through the points represents extrabinomial variations within and be-
tween wafers and lots. Similar plots of wafer-level yield generally present an
image similar to Figure 7.1 but with less difference between the slopes of a
line through the data and the binomial sampling line.

Even though there is more variability in the data than just binomial
sampling, it is still useful to consider a binomial likelihood with a prior
normal in log(D) or log(DA), using (7.20) and (7.21) to compute the pos-
terior information and mean. For this, we first differentiate the binomial
log(likelihood) with respect to γ = log(λ) = log[− log(π )], with λ = DA.
This transformation from π to γ is called the “complementary log-log” or
“cloglog”, and is an alternative “link function” commonly offered as an alter-
native to logits in software for generalized linear models, e.g., in R [34]. With
binomial yield y expressed as a proportion, the log(likelihood) can be written
as follows:

l(y|γ ) = log
(

n
n y

)
− n y λ + n(1 − y) log( 1 − π ).
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To simplify the notation in computing the score and information, we recall that
π = e−λ and λ = eγ , so (dλ/dγ ) = λ and dπ/dγ = (−π )(dλ/dγ ) = (−λπ ).
Then

dl(y|γ )
dγ

= −nyλ + n(1 − y)λπ

(1 − π )
= nλ

(1 − π )
[(1 − y)π − (1 − π )y],

so

dl(y|γ )
dγ

= nλ

(1 − π )
(π − y). (7.27)

As a check, we note that the expected score is 0, as it should be. Moreover, if
π > y, it says we should increase γ , which would decrease π , as it should.

We now differentiate a second time to get the information:

d2l(y|γ )
dγ 2 = n

{[
λ

(1 − π )
− πλ 2

(1 − π )2

]
(π − y) − πλ2

(1 − π )

}
.

This is the sum of a term with zero expectation and another independent of
y. We write the second term first and rearrange to get the following:

J(y|γ ) = nλ

{
πλ

(1 − π )
− 1

(1 − π )

[
1 − πλ

(1 − π )

]
(π − y)

}
. (7.28)

In Bayesian updating assuming approximate normal prior and posterior,
we first substitute this into (7.20) to compute the posterior information Σ−1

1 .
From this, we compute Σ1 and substitute it with (7.27) into (7.21) to compute
the posterior mean. We can use this sequentially as described with (7.22),
provided we know the migration variance Wi ; we can often estimate a rea-
sonable, parsimonious model for Wi by maximizing an appropriate likelihood
or posterior.

We can further simplify (7.28) by taking expectation to get the Fisher
information. This leaves only the first term, which we rewrite as follows:

EJ(y|γ ) = nλ

(
πλ

1 − π

)
= nλ

(
λ

eλ − 1

)
. (7.29)

This particular form seems useful for the insight it provides into the behavior
of the Fisher information for small λ: In that case, eλ = 1 + λ + O(λ2) which
makes E J (y|γ ) = nλ[1 + O(λ)]. This says that the (Fisher) information per
observation goes to zero with the defect rate. Conversely, as λ increases, the
Fisher information (7.29) increases to a point, and then declines eventually
becoming asymptotic to nλ2e−λ. The square root of (7.29) gives the slope of
the dashed line in Figure 7.1.

With real data such as in Figure 7.1, the extrabinomial variability should
be considered in the likelihood. We can model this using the marginal like-
lihood after integrating out the wafer- and lot-specific parameters. Let yi =
(yi1, yi2, . . . , yiki ), where yi j = the yield from wafer j of lot i , and the number
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of wafers ki in a lot may vary from one lot to the next due, e.g., to breakage
and other major processing problems, where

E(yi j |γ0, γi , γi j ) = πi j = exp
{− exp(γ0 + γi + γi j ) A

}
,

where γ0, γi , and γi j follow normal distributions with means �0, 0, and 0, and
with variances σ 2

0 , σ 2
lot, and σ 2

wafer, respectively. We integrate out the wafer-
level parameters γi j as follows:

f (yi j |γi , µ) =
(

n
nyi j

) ∞∫
−∞

π
n yi j
i j (1 − πi j )n( 1−yi j )φ

(
γi j

σwafer

)
dγi j

σwafer
, (7.30)

where φ(·) is the standard normal density and µ is a vector of parameters
including γ0, σ 2

wafer, and other parameters. For the entire lot, we similarly
compute the marginal likelihood as follows:

f (yi |µ) =
∞∫

−∞
f (yi j |γi )φ

(
γi

σlot

)
dγi

σlot
. (7.31)

State of the art software for this kind of application could be produced as a
relatively easy modification of the “lmer” function in the “lme4” package [2]
in R [34] to (a ) allow input of an appropriate prior for the parameters includ-
ing γ0, σ 2

lot, and σ 2
wafer, (b) compute the posterior (rather than the maximum of

the likelihood) using (7.20) and (7.21) and the appendix, and (c) include the
posterior in the returned object. Required derivatives of the log of this likeli-
hood could be computed either by numerical differentiation or by numerical
integration of the derivatives in (7.30) and (7.31).

For this kind of application, the “lmer” function supports using the Laplace
method, which approximates the integrals (7.30) and (7.31) by replacing the
logarithm of the (ki + 1)-dimensional integrand by its second-order Taylor
series expansion about the maximum of the integrand. This approximate
integrand has the form of a normal density, which can then be integrated
to produce an approximation to the integral. If either σ 2

lot = 0 or σ 2
wafer = 0,

“lmer” allows the use of “AGQ” = adaptive Gauss-Hermite quadrature. One
type of AGQ finds the maximum of the integrand, then uses Gauss-Hermite
quadrature relative to the normal distribution defined by the second order
Taylor expansion at the posterior mode or maximum of the likelihood. For
quadrature of order r , this computes a weighted average of the ratio of the
integrand to the approximating normal density at r points, with the quadra-
ture points and weights chosen to make the integral exact when the integrand
is a polynomial of order (2r − 1) times the approximating normal density. The
approximating normal distribution is found by balancing the score and com-
puting the information essentially equivalent to (7.2) and (7.12), iteratively as
described in the appendix. With r = 1, this AGQ is the Laplace approximation.
Quadrature points and weights are easily obtained from “gauss.quad” in the
“statmod” package in R [40].
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Good importance sampling algorithms also use approximating normal
distributions, averaging the ratio of the integrand to the approximating nor-
mal density over samples of pseudo-random normal deviates. Both methods
average numbers that should be close to 1 unless the posterior is quite non-
normal. Hartford [18] reported excellent results from applying this type of
AGQ to maximum likelihood estimation for nonlinear mixed models and
good results from using this same distribution with importance sampling.

AGQ works well for any integrand for which the derivative of order 2r is
bounded by some number that is moderately small. It’s primary deficiency
for multivariate applications like this is the need for repeated evaluations of
inner integrals. For “lot i” with ki wafers, we must first evaluate the product
(or the sum of the logarithms) of ki integrals like (7.30), and the integrand of
each must be evaluated at r points for a total of kir evaluations. The outer
integral (7.31) requires us to do this r times, for a total of (kir )r evaluations.
Moreover, we must do this repeatedly to find the posterior mode (or the
maximum likelihood) for, e.g., a normal approximation to the distribution of
[γ0, log(σ 2

lot), log(σ 2
wafer)]. When the Laplace approximation is not adequate,

AGQ is generally preferred for low-dimensional integrals, while importance
sampling is recommended for higher dimensions [8].

Monitoring procedures keeping score (7.20) and accumulating informa-
tion (7.21) with likelihoods like (7.30) and (7.31) have many applications. For
example, in a Fab running multiple products, iterations like this could be
used to refine an estimate of a different γ0 = γ0p for each product p. These
numbers could then be plotted with Student’s t confidence bounds as de-
scribed near the end of Section 7.5; if the confidence bounds for product p
consistently fail to include the γ0 for all products combined, it suggests that
the fail rate (in defects/cm2) for product p is different from the average across
multiple products. Moreover, the difference (γ0p − γ0) could be used to esti-
mate the amount of money represented by this difference.

Similarly, we could compute a different γ0 = γ0su for each different piece
of equipment u used at step s in the process. A typical Fab has between 500
and 1500 steps and uses several superficially equivalent machines at many
of them. It would be a waste of time, if not physically impossible, to have
someone look at a different chart for each step. We need simple summaries
to tell us which few charts to examine. One such summary might be the
log(posterior odds) for a difference at a step s compared to the assumption
of no difference. This is the log(prior odds) plus the log(likelihood ratio),
where the likelihood under both H0 and H1 has the form (7.31), except that
under H1, a separate parameter γ0su is estimated for each machine u used at
step s, while under H0, γ0su = γ0 for all u. We typically expect the condition of
equipment to change over time. Immediately after maintenance, the condition
of equipment used at step s will often be consistent with H0. However, after
an appropriate passage of time, the condition will likely change to H1. A one-
sided cumulative sum of log(likelihood ratio) using the predictive distribution
provides a monitoring rule that is similar to computing the posterior log(odds)
with a floor giving by the log(hazard odds); see [12]. These cusums can then be
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used to distinguish between random variations in the numbers and steps with
honest equipment differences. This is similar to “Multiple Model Adaptive
Estimation” (MMAE), used (at least in simulations) to diagnose malfunctions
in the F-16 fighter aircraft (e.g., [17]). For steps with substantive differences,
differences like |γ0su − γ0sv| for machines u and v used at step s could be
combined with production forecasts produce a “Forecasted Pareto” to help
prioritize alternative improvement efforts in terms of the estimated monetary
value of the apparent yield losses at different steps.

7.8 Alternative Definitions of Information in Statistics

Several different types of “information” have been defined and used in
statistical work (see, e.g., [41]). Fisher and observed information are both
used to develop approximate sampling distributions for maximum likeli-
hood estimates. However, (7.12) is similar to but distinct from the traditional
frequentist result that the Fisher information for the joint distribution of two
independent random variables is the sum of the Fisher information for each
marginal [32, sec. 5a.4].

Shannon [37] argued that the information contained in a “message”
(observation) y is the number of “bits” required to produce the equivalent
reduction in uncertainty, which is E{− log2[ f (y)]}. For example, if y is the out-
come of the toss of coin with probability of success p, then E{− log2[ f (y)]} =
p[− log2( p)] + (1 − p)[− log2(1 − p)]. When p = 0.5, this is 1, and declines
monotonically to 0 as p goes to either 1 or 1 is 0. Thus, knowing the outcome
of a single toss of a fair coin is 1 “bit” of information, while knowing the out-
come of a toss of a biased coin is between 0 and 1. Important results in modern
communication theory are based on Shannon’s concept of information.

Using natural rather than base 2 logarithms, Kullback and Leibler [21]
(see also [27]) quantified the mean information in an observation y for dis-
criminating a probability density f (y) from g(y) as E{log[ f (y)/g(y)]| f };
they called this a measure of “distance” between f and g. Kullback and Leibler
related their information distance to the Fisher (expected) information:

I (µ, µ + δ) = E{log[ f (y|µ)/ f (y|µ + δ)]|µ} ∼= 0.5 δ′E[J (y|µ)|µ]δ.

To help educate our intuition about this, consider y ∼ N(µ, V). Then

I (µ, µ + δ) = 0.5 E{[y − (µ + δ)]′V−1[y − (µ + δ)] − [y − µ]′V−1[y − µ]}
= Eδ′V−1[0.5δ + µ − y] = 0.5δ′V−1

δ.

This matches the general result, since the Fisher information in this context is
V−1.

In sum, several different concepts of “information” have been discussed in
the statistics literature, with each serving different purposes. The focus of this
chapter has been Fisher’s efficient score and the observed information, which
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provide powerful tools for deriving exact and approximate posterior distri-
butions. For a more general review of these and other types of “information”
used in statistics, see [41], [10], [23], and [9].

7.9 Summary

We discussed Bayes’ rule of information generally in (7.12) and in approximate
and exact normal applications in (7.20), (7.24) and (7.26) with manufacturing
applications in Section 7.7. We also showed how keeping score with Bayes’
theorem provides easy derivations of the posterior for the gamma-Poisson,
beta-binomial, and exponential-uniform conjugate pairs. These tools have
long been used when prior and observations are normal (e.g., [29] and [22]),
but without substantive consideration of their more general utility. Yousry
et al. [44] describe the use in quality control of an EWMA for binomial data
with a beta prior. Their derivation is similar to the discussion in Example 2,
Section 7.2 above, but without the convenience of using the concept of Fisher’s
efficient score or of Bayesian sequential updating, promoted as a general
foundation for monitoring [15].

In many cases, a normal distribution provides an adequate approxima-
tion to the posterior, even with nonlinear or non-normal likelihood. When
it is not convenient to compute derivatives analytically, the score function
and information from the data can be estimated by numerical differentiation.
After the posterior mode and information (θ1, Σ−1

1 ) are found, the adequacy
of the normal approximation might be checked using importance sampling,
which averages the ratio of exp[l(µ|y)] to the N(θ1, Σ1) density over a ran-
dom sample from N(θ1, Σ1). If the posterior is exactly N(θ1, Σ1), this ratio
will always be 1, so the sample standard deviation will be 0. If the posterior
is close to normality, the ratio will be close to 1, and the sample standard de-
viation will be small ([8], [18]). Of course, we must also assure ourselves that
the posterior does not have another substantive mode that might be com-
pletely missed with this importance sampling. If substantive discrepancies
are found, they can be reported with profile confidence intervals [30], high-
lighting the discrepancies between the profile and the normal approximation.
Certain likelihoods (e.g., mixtures; see [42] or [28]) are known to have poten-
tial difficulties. These cases might be identified by excessive variability in the
observed information from the data. Once identified, special procedures can
be developed appropriate to the situation.

Appendix: Non-Constant Observed Information

In this appendix, we develop an iteration to an approximate normal posterior
Np(θ1, Σ1) from a normal prior Np(θ0, Σ0) and either non-normal data or
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data with normal errors nonlinearly related to parameters of interest θ. We
shall not prove here anything about the convergence of our iteration; such a
proof would follow the lines of comparable results on convergence to MLEs.

The iteration will ultimately require keeping score at the posterior mode
θ = θ1, rather than the prior mode as with (7.21), substituting (7.18) into (7.2)
to obtain the following:

0 =
[

∂l(y|θ = θ1)
∂θ

]
− Σ−1

0 (θ1 − θ0). (7.32)

Since θ1 is initially unknown, we expand the score from the data in a Taylor
approximation about an arbitrary point θ = ξ j , beginning from ξ0 = θ0, as
follows: [

∂l(y|θ = θ1)
∂θ

]
∼=
[

∂l(y|θ = ξ j )
∂θ

]
− J(y|θ = ξ j )(θ1 − ξ j ).

Substituting this into (7.32) produces the following:

0 ∼=
[

∂l(y|θ = ξ j )
∂θ

]
− J(y|θ = ξ j )(θ1 − ξ j ) − Σ−1

0 {(θ1 − ξ j ) + (ξ j − θ0)}.
(7.33)

Iteration ( j + 1) begins by evaluating (7.12) at θ = ξ j using (7.19) as
follows:

Σ−1
1 j = J(y|θ = ξ j ) + Σ−1

0 .

By substituting this into (7.33) while replacing the unknown θ1 with an
improved estimate ξ j+1, we get the following:

Σ−1
1 j (ξ j+1 − ξ j ) =

[
∂l(y|θ = ξ j )

∂θ

]
− Σ−1

0 (ξ j − θ0),

so

ξ j+1 = ξ j + Σ1 j

{[
∂l(y|θ = ξ j )

∂θ

]
− Σ−1

0 (ξ j − θ0)
}

,

if Σ−1
1 j is nonsingular. By (7.32), when ξ j is sufficiently close to the desired

posterior mode θ1, the change between ξ j and ξ j+1 will be negligible. An
appropriate algorithm based on this mathematics would include a check to
confirm that ξ j+1 produces a number in (7.32) closer to 0 than with ξ j and
would reduce the step size if necessary to achieve this.
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ABSTRACT In this chapter, a Bayesian framework is presented for analysis
of pulse trains that are corrupted by noise and missing pulses at unknown
locations. The existence of missing pulses at unknown locations complicates
the analysis and model selection process. This type of hidden “missingness”
in the pulse data is different from the usual missing observations problem that
arises in time-series analysis where standard methodology is available. We
develop a Bayesian methodology for dealing with the hidden missingness.
Bayesian analysis of pulse trains with hidden missingness presents a structure

215
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similar to the hidden Markov models considered in the literature. Our de-
velopment is based on Markov Chain Monte Carlo (MCMC) methods and
involves both inference and model selection. Analysis of the pulse trains also
requires formal treatment of correlated noise terms. The presented frame-
work deals with this issue via the use of MCMC methods and it allows
for sequential processing of data by using a Bayesian dynamic linear model
(DLM) setup.

8.1 Introduction

In electronic warfare (EW) applications, many threat radars are designed so
that the time interval between pulses or the frequency of pulses varies in
a cyclical manner. Classifying and predicting these variations in real-time
is important so that the threat can be tracked and protective measures can
be taken as necessary. Time interval between two pulses emitted by a threat
radar is defined as a pulse repetition interval (PRI). The time-series of the PRIs is
referred to as a pulse train. PRI tracking is an important problem in naval EW
applications because knowledge of the PRI is used to defend ships against
radar-guided missiles by performing deceptive jamming. The purpose of a
PRI tracking algorithm is to predict the PRIs or, equivalently, the pulse time
of arrivals (TOA) for various PRI types.

The pulse/signal environment will generally be very complex with many
different radars (emitters) transmitting simultaneously. A different set of
signal parameters will characterize each emitter in the environment. The elec-
tronic support (ES) receiver has the capability of separating each signal from
all the others in the environment by sorting pulses with similar parameters.
The ES receiver provides data to the PRI tracker from a single designated
emitter. In many applications due to the complexity of the environment, sen-
sitivity of the receiver might be reduced during jamming, and this results in
missing pulses in the observed data. For tracking to be performed identifying
the PRI type of the pulse train in the presence of missing pulses is essen-
tial. The pulse train available to the tracker possibly has up to 15% missing
pulses. The presence of missing pulses complicates the identification of the
PRI modulation type because never known is whether a pulse has actually
been missed by the ES receiver.

The presence of missing pulses complicates the analysis and identification
of the PRI modulation type because the location of missing pulses is unknown.
As noted by Hock and Soyer [14], this type of hidden “missingness” in the
pulse data is different from the usual missing observations problem that arises
in time-series analysis where standard methodology is available [16,19].

Another source of difficulty in identifying the location of missing pulses
is the presence of noise in the pulse train. When the ES receiver records the
TOAs of pulses, these readings are subjected to noise. The major type of
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noise that contaminates the TOAs will be referred to as jitter noise. Jitter noise
is added to the data at the missile radar transmitter, and it can be either
unintentional or intentional. Unintentional jitter is caused by imperfections
in the transmitting equipment that result in oscillator instability. Intentional
jitter is a deliberate distortion of the pulse timing for the purpose of making the
pulse train more difficult to track. The TOAs are also affected by measurement
noise. The ES receiver adds measurement noise to the data. The magnitude
of the measurement noise is determined by the resolution of the receiver. It
is a quantity that can be measured and is typically small, but its presence
introduces correlated noise components for the PRIs and affects the analysis.

In this Chapter, we develop a formal Bayesian approach to describe hidden
missingness for the analysis of pulse trains and for identification of the type
of PRI modulation present on an isolated pulse train. Several possible types
of PRI modulations exist. We consider staggered PRI modulation (several
different PRIs in a repeating pattern) and jittered PRI modulation (random
variation in PRI about a mean value) and develop a Bayesian analysis of
these with hidden missingness using Markov Chain Monte Carlo (MCMC)
methods. We also present a Bayesian model selection approach for identifying
PRI modulation types and develop the methodologies for analysis of pulse
trains with correlated noise.

A synopsis of this chapter is as follows: Section 8.2 begins with a defini-
tion of the jitter and stagger modulation types and a discussion of hidden
missingness in pulse trains. Notation and preliminaries are introduced and
a discrete time Markov chain model is presented to describe the missingness
structure and motivation for considering correlated noise (error) is discussed.
In Section 8.3, Bayesian inference for the model using the Gibbs sampler
is developed. An alternate Bayesian approach is introduced in Section 8.4
using a dynamic linear model (or a Kalman filter) setup. This setup allows
for sequential processing of data and avoids matrix inversions during the
implementation of the Gibbs sampler. A model comparison approach, based
on marginal likelihood, is introduced in Section 8.5. The developed methodol-
ogy is illustrated using simulated data in Section 8.6 and concluding remarks
are given in Section 8.7.

8.2 A Hidden Markov Model for PRIs

8.2.1 Notation and Preliminaries

The data available to the PRI tracker consists of a batch of observed
PRI values. This pulse train of n observed PRI are obtained by taking the
difference between consecutive measured TOAs. Let {τ0, τ1, . . . , τn} denote the
observed TOA sequence and {z1, . . . , zn} denote the corresponding observed
PRI sequence such that zi = τi − τi−1 for i = 1, . . . , n. Both the TOA values
and the observed PRI values are affected by missing pulses.
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To distinguish between the transmitted PRI values by the threat radar and
the observed values by the ES receiver due to missingness, we denote the
transmitted PRI values by the sequence {yki }, i = 1, . . . , n. In {yki }, ki denotes
the transmitted pulse index, whereas i denotes the observed pulse index such
that ki ≥ i with equality holding only for the case of no missing observations
in the pulse train. Similarly, the TOA sequence associated with the transmitted
pulses will be denoted by {tki }, i = 1, . . . , n, where yki = tki −tki −1. If no missing
pulses are in a given interval, the observed PRI value of the interval will be
equivalent to the corresponding PRI value from the transmitted pulse train,
that is, zi = yki .

However, if a pulse is missing in an interval from the incoming data stream,
the next observed PRI value represents the sum of two consecutive PRI values
in the transmitted sequence rather than a single PRI value. Similarly, if two
consecutive pulses are missing from the incoming data stream, the following
observed PRI value represents the sum of three consecutive PRI values. In
general, when missing pulses corrupt the data set, the observed PRIs are
expressed as

zi =
mi∑
j=0

yki − j (8.1)

where mi is the number of missing pulses between the (i − 1)st and ith
observed pulses. A sum of two or more transmitted PRI values will be referred
to as aggregate data. For example, in Figure 8.1, the transmitted sequence
consists of {y1, y2, y3, y4, y5}. The observed sequence has a missing pulse in
the third interval and as a result, the observed sequence is obtained as z1 = y1,
z2 = y2, z3 = y3 + y4, and z4 = y5.

In the observed data {z1, . . . , zn}, each data point can represent either a
single PRI value or an aggregate PRI value. The number of PRI values included
in a data point will be referred to as its state. The states are unobservable latent
variables associated with each data point. Following Hock and Soyer [14], we

y1 y3y2 y4 y5

t0 t1 t2 t3 t4 t5

τ0 τ1 τ2 τ3 τ4

z1 z2 z3 z4

FIGURE 8.1
Effect of a single missing pulse on the observed data.
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denote the states by {s1, . . . , sn}. For the data point i , the state si = 1 if the ith
data point represents a single PRI value, that is, no missing pulse is in the
ith observed pulse interval. The state si = 2 if the ith data point represents
the sum of two consecutive PRI values from the transmitted pulse sequence,
that is, if a missing pulse is in the ith observed pulse interval. Thus, we can
write the observed pulse index as ki = ∑i

j=1 s j . For example, in Figure 8.1,
s1 = s2 = s4 = 1 and s3 = 2, implying that k3 = 4.

In general, if missing pulses are mi in the ith observed pulse interval, then
si = mi + 1. As noted by [14], in many applications the value of m is small,
typically 1 or 2. We note that when a sequence of n PRIs are observed by the ES
receiver and if the data is corrupted by missing pulses, the actual transmitted
sequence will consist of

∑n
i=1 si PRI values, where n ≤ ∑n

i=1 si .

8.2.2 Noisy PRI Modulations and Hidden Missingness

As pointed out in Section 8.1, the two most commonly observed types of PRI
modulation transmitted by the threat radar are the staggered and jittered PRI
modulation.

Under the staggered PRI modulation it is assumed that the transmitted
PRIs form a discrete time-series generated by a unknown periodic function.
The Fourier representation theorem states that any periodic function can be
expressed as a linear combination of sine and cosine terms plus a constant. The
frequencies of the sine and cosine terms correspond to the different harmonics
present in the function. A discrete time series can be represented by a finite
number of harmonics. Specifically, if a discrete time series has period p, it
can be described as

a0 +
q∑

i=1

ai cos
(

2π
i
p

k
)

+ bi sin
(

2π
i
p

k
)

, (8.2)

where k = 1, 2, . . . is the time index, ai s and bi s are the unknown Fourier
coefficients, and

q =
{

p/2 for p even
( p − 1)/2 for p odd.

In Equation (8.2), the first harmonic has frequency 1/p and completes
its cycle in p time periods. The second harmonic has frequency 2/p and
completes its cycle in p/2 time periods. If p is even, at most p/2 harmonics
are required to represent the time series because the period corresponding to
the ( p/2)th harmonic is 2, which is the shortest possible cycle length. If p is
odd, at most ( p − 1)/2 harmonics are needed.

As discussed in Section 8.1, two different types of noise can contaminate
the PRIs: jitter noise and measurement noise. Jitter noise is added to the data
at the missile radar transmitter. It is a deliberate distortion of the pulse timing
for the purpose of making the pulse train more difficult to track, and its
magnitude is unknown. The ES receiver on the victim ship introduces the
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measurement noise. The magnitude of the measurement noise is determined
by the resolution of the receiver.

A staggered PRI sequence that is subjected only to jitter noise can be
represented as follows:

yk = a0 +
q∑

i=1

ai cos
(

2π
i
p

k
)

+ bi sin
(

2π
i
p

k
)

+ wk, (8.3)

where wk is the jitter noise term that is normally distributed with mean 0 and
unknown variance σ 2

w , and the last sine term reduces to zero when p is even. In
what follows, we will refer to Equation (8.3) as the stagger model. The jittered
PRI modulation is a special case of Equation (8.3) where the transmitted PRIs
randomly vary around a constant mean, that is,

yk = a0 + wk . (8.4)

We will refer to Equation (8.4) as the jitter model. Because the jitter model is
a special case of the stagger model, our development will focus on the latter.

For an observed PRI sequence {z1, . . . , zn}, corrupted with missing pulses,
if the sequence of states {s1, . . . , sn} are known for all i = 1, . . . , n, then using
Equation (8.1) the time-series of the observed PRIs can be aggregated as

zi =
mi∑
j=0

yki − j =
si −1∑
j=0

yki − j . (8.5)

For example, in the jitter model, Equation (8.5) reduces to

zi =
si −1∑
j=0

(a0 + wki − j ) = si a0 + ui , (8.6)

where ui = ∑si −1
j=0 wki − j . Note that the ui ’s do not share any common jitter

noise terms and thus they are independent Gaussian terms with mean 0 and
variance siσ

2
w . Similarly, for the stagger model with period p, we can write

zi =
si −1∑
j=0

[
a0 +

q∑
l=1

alcos
(

2π
l
p

(ki − j)
)

+ blsin
(

2π
l
p

(ki − j)
)]

+ui , (8.7)

where the jitter model is obtained as the special case with q = 0.
To consider the presence of measurement noise at the ES receiver, we

define τm
i as the ith observed TOA that is corrupted by the measurement

noise vi and write

τm
i = τi + vi , (8.8)

where τi denotes the measurement noise free TOA. The measurement noise
sequence {vi } is a zero-mean independent normal sequence whose variance σ 2

v
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will be known when the resolution of the receiver is known. Furthermore, the
measurement noise sequence {vi } is independent of the jitter noise sequence
{wki − j }.

It follows from the above that the ith PRI is given by

zm
i = τm

i − τm
i−1 = zi + vi − vi−1, (8.9)

where zi = τi − τi−1 and

zm
i =

si −1∑
j=0

[
a0 +

q∑
l=1

alcos
(

2π
l
p

(ki − j)
)

+ blsin
(

2π
l
p

(ki − j)
)]

+ uc
i ,

(8.10)

with uc
i = ui + vi − vi−1. We can note from Equation (8.9) that the zm

i terms
that are one period apart will be correlated, that is,

Cov
(
zm

i , zm
i−h

) =
{

−σ 2
v if h = 1

0 if h > 1
(8.11)

and the variance of zm
i is given by

Var
(
zm

i

) = siσ
2
w + 2σ 2

v . (8.12)

It can be easily shown that −0.5 < Corr(zm
i , zm

i−1) < 0, and the correlation
approaches to −0.5 as the ratio of the variances σ 2

w/σ 2
v gets smaller.

In what follows, we will supress the dependence on the superscript m and
write the correlated noise model for PRIs as

zi =
si −1∑
j=0

[
a0 +

q∑
l=1

alcos
(

2π
l
p

(ki − j)
)

+ blsin
(

2π
l
p

(ki − j)
)]

+ uc
i .

(8.13)

8.2.3 Modeling Hidden Missingness

Given the latent sequence {s1, . . . , sn} under the stagger model with period p,
we can write the observed PRIs as

zi =
si −1∑
j=0

Xki − jθ + uc
i , (8.14)

where

Xki − j =
(

1 cos
(

2π
1
p

(ki − j)
)

sin
(

2π
1
p

(ki − j)
)

· · · sin
(

2π
q
p

(ki − j)
))

and θ′ = (a0 a1 b1 . . . aq bq ). Thus, given the latent sequence {s1, . . . , sn}, it is
possible to write the observed PRIs as a linear model, that is,

z = Xθ + uc, (8.15)
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where
∑si −1

j=0 Xki − j is the ith row of the n× p design (regression) matrix X and
uc is the n × 1 vector of error terms uc

i . In other words, we have correlated
error terms

uc
i =

si −1∑
j=0

wki − j + vi − vi−1. (8.16)

with

Cov
(
uc

i , uc
i−h

) =
{

−σ 2
v if h = 1

0 if h > 1,

and Var(uc
i ) = siσ

2
w + 2σ 2

v . Thus, the variance-covariance matrix of the uc

vector is given by

Uc=



s1σ
2
w + 2σ 2

v −σ 2
v 0 · · · · · · 0

−σ 2
v s2σ

2
w + 2σ 2

v −σ 2
v 0 · · · 0

0 −σ 2
v

. . .
. . . 0 0

... 0 −σ 2
v

. . .
. . .

...

...
... 0

. . .
. . . −σ 2

v

0 0 0 · · · −σ 2
v snσ

2
w + 2σ 2

v


. (8.17)

Note that in Equation (8.15), the noise vector uc has a multivariate normal
distribution with zero-mean vector and variance-covariance matrix given by
Equation (8.17). In Equation (8.17), the measurement noise variance σ 2

v is a
known quantity, whereas the variance component σ 2

w is unknown. Thus, given
(θ, σ 2

w = 1/φ) and the latent variables Sn = (s1, . . . , sn), the distribution of z
will be a multivariate normal density given by

(z|θ, φ , Sn) ∼ N(Xθ, Uc). (8.18)

In the case of the jitter model, the X matrix reduces to a column of 1’s. We
note that it is possible to write the variance-covariance matrix Uc as

Uc = J + U/φ , (8.19)

where U is the diagonal matrix for the case of no measurement noise

U =


s1 0 · · · · · · 0

0 s2 0 0
...

. . .
...

0 0 0 sn


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and J is a known matrix given by

J =



2σ 2
v −σ 2

v 0 · · · · · · 0

−σ 2
v 2σ 2

v −σ 2
v 0 · · · 0

0 −σ 2
v

. . .
. . . 0 0

... 0 −σ 2
v

. . .
. . .

...

...
... 0

. . .
. . . −σ 2

v

0 0 0 · · · −σ 2
v 2σ 2

v


.

Note that ki = ∑i
j=1 s j , and thus the elements of the design matrix X are

functions of the latent variables. In the stagger model where the PRIs cor-
rupted by missing pulses, the aggregate data can be constructed given the
latent sequence {si }, i = 1, . . . n. As a result, all predictions for future PRIs
will be conditional on the latent variables describing the missingness struc-
ture. Thus, describing the probabilistic structure of the latent sequence is
essential for modeling and forecasting of the PRIs. One strategy for modeling
{si } is to assume that this categorical time series is independent over time, but
this practice is rather restrictive for modeling purposes because it ignores any
possible correlation in the si ’s over time. A more flexible and reasonable mod-
eling strategy for {si } is to assume that the latent sequence evolves according
to a Markov chain with transition matrix P, that is,

p(si |si−1, si−2, . . .) = p(si |si−1), (8.20)

where P = {pkj }, k, j = 1, 2, . . . , M + 1, is the transition probability matrix
of the Markov chain, that is, pkj = Pr (si = j |si−1 = k). We assume that the
Markov chain is time-homogeneous. In the above setup, M represents the
upper bound for the number of missing pulses in an interval. As previously
noted, M is a small number for typical applications and thus the dimension
of the transition matrix will not be high.

If the observed PRIs follow the stagger model of Equation (8.14) with the
Markov chain structure on the latent sequence {si }, we can write

p
(
zi |θ, σ 2

w, Si−1
) =

M+1∑
l=1

p
(
zi |θ, σ 2

w, Si−1, si = l
)

p(si = l|si−1), (8.21)

where Si−1 = (s1, . . . , si−1) and (zi |θ, σ 2
w , Si−1, si = l) follows the normal

model given by Equation (8.14). This type of model where the latent sequence
is described by a Markov chain is referred to as a hidden Markov model (HMM).
Examples of such models can be found in engineering, econometrics, and
statistics literature. For example, hidden Markov models have been used in
engineering for speech recognition [17] and signal processing [6] in econo-
metrics for modeling change points of a time-series [4], and in statistics for
analysis of mixture models [18].
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8.3 Bayesian Analysis of the HMM

For the stagger model with period p, the observed PRIs are given by Equation
(8.14). The Bayesian approach requires that we specify our uncertainty about
the unknown coefficient vector θ and the unknown variance σ 2

w in the linear
model setup of Equation (8.15) by a prior probability distribution. Under the
normality of uc

i ’s, a conjugate prior for this Equation (8.15) is given by the
normal-gamma distribution

θ|φ ∼ N(m, V/φ), (8.22)

φ ∼ Gamma (d/2, c/2). (8.23)

In the above, φ = 1/ σ 2
w is the unknown precision, m is a p × 1 specified

mean vector, V is a specified variance-covariance matrix of θ, and d and c are
specified prior parameters for the distribution of φ. The joint distribution of
θ and φ that is obtained as the product of the Equation (8.22) and Equation
(8.23) is known as the Normal-Gamma distribution, which implies that the
marginal prior ofθ is a multivariate Student t density with degrees of freedom
(d + p), mean vector m, and scale matrix c

d V . This density will be denoted as

θ ∼ T(d + p, m, Vc/d). (8.24)

It is assumed that a priori, (θ, φ) are independent of the latent
variables si ’s.

For the observed PRI sequence zT = (z1 . . . zn), given (θ, φ) and the latent
variables Sn = (s1, . . . , sn), the distribution of z will be a multivariate normal
density given by (z|θ, φ , Sn) ∼ N(Xθ, Uc) as in Equation (8.18), where the
measurement noise variance σ 2

v is known. Given the latent sequence Sn, the
Bayesian analysis of the model can be made using conjugate analysis to obtain
the posterior distribution p(θ, φ|Sn, z). But as Sn is not observed, the Bayesian
analysis requires the joint posterior distribution p(θ, φ, Sn|z) to be given by

p(θ, φ , Sn|z) ∝ p(z|θ, φ , Sn) p(θ, φ) p(Sn) (8.25)

due to the prior independence of (θ, φ) and Sn. Because Sn follows a Markov
chain with unknown transition matrix P, the joint posterior distribution
required for the Bayesian analysis is

p(θ, φ, Sn, P|z) ∝ p(z|θ, φ , Sn) p(θ, φ) p(Sn|P) p(P), (8.26)

where p(P) is the prior distribution for the transition matrix P of the Markov
chain, which is assumed to be independent of (θ, φ). We assume that Pi , the
ith row of P, follows a Dirichlet distribution

p(Pi ) ∝
M+1∏
j=1

pαi j −1
i j , i = 1, . . . , M + 1 (8.27)
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with parameters αi j , denoted as Pi ∼ Dirichlet(αi j ; j = 1, . . . , M + 1). Also,
Pi ’s are assumed to be independent for all i .

Under any choice of prior distributions, the joint posterior distribution
p(θ, φ , Sn, P|z) in Equation (8.26) cannot be evaluated analytically. Such
evaluation is also computationally infeasible due to the presence of latent
sequence Sn. Each latent variable si can belong to one of the M+ 1 categories,
implying that (M + 1)n possible latent sequences exist for n observed pulses.
Thus in what follows, a Markov Chain Monte Carlo approach, or more specifi-
cally a Gibbs sampler, will be presented to generate samples from the joint pos-
terior distribution Equation (8.26). The attractive feature of the Gibbs sampler
is that it enables the generation of samples from the posterior distributions
without having to obtain the exact distributional forms. This is achieved by
successive drawings from the full conditional distributions of θ, φ , Sn, and P
given z. For example, the full conditional distribution of θ is p(θ|φ , Sn, P, z).
For a more detailed discussion of the Gibbs sampler and other related Monte
Carlo methods, see Gelfand and Smith [9], Casella and George [1], and Chap-
ter 2 in this volume.

8.3.1 Implementation of the Gibbs Sampler

In the stagger model, the implementation of the Gibbs sampler requires the
full conditional distributions p(θ|φ, Sn, P, z), p(φ|θ, Sn, P, z), p(P|θ, φ ,
Sn, z), and p(si |θ, φ , S−i , P, z) for i = 1, . . . , n, where S−i = {s j | j �= i, j =
1, 2, . . . , n}. Once the full conditional distributions are obtained the Gibbs
sampler can be implemented by succesively generating from these distribu-
tions to obtain a sample from the joint posterior distribution.

From Equation (8.26), we can see that given Sn, z does not depend on
the transition matrix P. Thus, learning about P is through the updating of Sn

based on observed data z. This implies that the full conditional distribution
of P is p(P|θ, φ, Sn, z) = p(P| Sn). Furthermore, given Sn the full conditional
distributions of θ and φ are not dependent on P, that is, p(θ|φ, Sn, P, z) =
p(θ|φ, Sn, z) and p(φ|θ, Sn, P, z) = p(φ|θ, Sn, z).

Note that the latent sequence Sn follows a Markov chain with a state space
of dimension M + 1, where M is the maximum possible number of missing
pulses in an interval. We can write down the full conditional distribution of
si as

p(si |θ, φ, S−i , P, z) ∝ p(z|si ,θ, φ, S−i , P) p(si |θ, φ, S−i , P). (8.28)

As pointed out in the above, the first term on the right-hand side of Equation
(8.28) does not depend on the transition matrix P, that is, p(z|si ,θ,φ, S−i , P) =
p(z|si ,θ,φ, S−i ). It follows from Equation (8.14) that only the zi , zi+1, . . . , zn

will depend on si , and thus

p(si |θ,φ, S−i , P, z) ∝ p(zi , . . . , zn|θ, φ, Sn) p(si | S−i , P), (8.29)

where p(zi , . . . , zn|θ,φ, Sn) is a multivariate normal density as implied by
Equation (8.18). In other words, (zi , . . . , zn) will have a mean vector that is
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the product of a submatrix consisting of rows i, i + 1, . . . , n of X, and θ
and will have a variance-covariance matrix consisting of rows and columns
i, i + 1, . . . , n of Uc. Using the Markov property, for 2 ≤ i ≤ n − 1

p(si | S−i , P) ∝ p(si |si−1, P) p(si+1|si , P) (8.30)

and Equation (8.29) reduces to

p(si |θ, φ, S−i , P, z) ∝ p(si |si−1, P) p(si+1|si , P) p(zi , . . . , zn|θ, φ, Sn). (8.31)

Since the si ’s are discrete random variables, Equation (8.31) can be easily
normalized by summing over all possible values of si . Also, for the special
cases of i = 1 and i = n,

p(si |θ, φ, S−i , P, z) ∝
{

p(s1|P) p(s2|s1, P)n p(z1, . . . , zn|θ, φ, S j ), i = 1
p(sn|sn−1, P) p(zn|θ, φ, Sn), i = n,

where p(s1|P) can be chosen as the stationary distribution of the Markov chain
with transition matrix P. For the case of the jitter model where θ = a0 is a
scalar, the full conditional of si reduces to

p(si |a0, φ, S−i , P, z) ∝ p(si |si−1, P) p(si+1|si , P) p(zi |a0, φ, si ), (8.32)

where p(zi |a0, φ, si ) is a normal density. Unlike the stagger model, in this case
full conditional of si depends only on the neighboring latent variables si−1
and si+1.

As previously pointed out, the full conditional distribution of the transi-
tion matrix P is dependent only on Sn, that is, p(P|θ, φ, Sn, z) = p(P| Sn).
Given the independent Dirichlet priors on each row Pi ∼ Dirichlet(αi j ; j =
1, . . . , M + 1), the full conditional distribution of each row is given by

p(Pi | Sn) ∝
n∏

k=1

p(sk+1|sk = i) p(Pi ),

where p(Pi ) is the Dirichlet prior given in Equation (8.27). Thus, the above
can be written as

p(Pi | Sn) ∝
M+1∏
j=1

pαi j −1
i j p

∑n

k=1
1(sk+1= j,sk=i)

i j , (8.33)

where 1(·) is an indicator function. From the above, the full conditional dis-
tribution of Pi is Dirichlet of the form

(Pi | Sn) ∼ Dirichlet

(
αi j +

n∑
k=1

1(sk+1 = j, sk = i) ; j = 1, . . . , M + 1

)
.

(8.34)
Given Sn, the Pi ’s, i = 1, . . . M + 1, are independent.
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The full conditional distributions of θ and φ do not depend on P given Sn,
that is, p(θ|φ, Sn, P, z) = p(θ|φ, Sn, z) and p(φ|θ, Sn, P, z) = p(φ|θ, Sn, z). In
obtaining p(θ|φ, Sn, z), we can write

p(θ|φ, Sn, z) ∝ p(z|θ, φ , Sn) p(θ|φ), (8.35)

where p(θ|φ) is given by Equation (8.22) and it does not depend on the latent
vector Sn due to the prior independence assumptions. The first term on the
right-hand side of Equation (8.35) is the conditional likelihood function of θ
given (φ, Sn, z), which is given by the multivariate normal form in Equation
(8.18). Thus, Equation (8.35) can be written as

p(θ|φ, Sn, z) ∝ exp
(

− 1
2

[(z − Xθ)′(Uc)−1(z − Xθ) + (θ − m)′φV−1(θ − m)]
)

.

Using standard Bayesian conjugate analysis [7, p. 251], From the above that
(θ|φ, Sn, z) ∼ N(m∗, V∗) where the posterior mean and variance are given by

m∗ = (φV−1 + X′(Uc)−1X)−1(φV−1m + X′(Uc)−1z) (8.36)

and

V∗ = (φV−1 + X′(Uc)−1X)−1 (8.37)

Note that the above results are similar to Bayesian analysis presented by
Gelman et al. [11, p. 255] for regression models with unequal variances or with
heteroskedasticity.

The full conditional distribution of φ, p(φ|θ, Sn, z) is given by

p(φ|θ, Sn, z) ∝ p(z|θ, φ , Sn) p(φ|θ) ∝ p(z|θ, φ , Sn) p(θ|φ) p(φ). (8.38)

Given θ and Sn, the first term on the right-hand side of Equation (8.38),
p(z|θ, φ , Sn), is the conditional likelihood of φ, which is a multivariate normal
form, and the remaining terms are the components of the Normal-Gamma
prior given by Equation (8.22) and Equation (8.23). Thus, Equation (8.38) can
be written as

p(φ|θ, Sn, z) ∝
[
| Uc |−1/2 exp

(
− 1

2
[(z − Xθ)′(Uc)−1(z − Xθ)]

)]

×
[
φ p/2exp

(
− φ

2
[(θ − m)′V−1(θ − m)]

)]
× φ(d/2)−1 exp

(
−φ

c
2

)
, (8.39)

where Uc = J + U/φ is a function of φ. In this case, the full conditional distri-
bution of φ does not have a known form. However, in drawing from the full
conditional of Equation (8.39), a Metropolis (see for example [2]) step can be
used at each iteration of the Gibbs sampler. In so doing, a Gamma distribution
can be used as the proposal density for p(φ|θ, Sn, z). This is a very reasonable
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choice because Uc approaches U for small values of the measurement noise
variance σ 2

v and in this case Equation (8.39) will approach to a gamma den-
sity with parameters d∗/2 and c∗/2, that is, (φ|θ, Sn, z) ∼ Gamma (d∗/2, c∗/2),
where d∗ = n + p + d and

c∗ = [(z − Xθ)′U−1(z − Xθ) + (θ − m)′V−1(θ − m) + c]. (8.40)

In this case, the proposal density is not symmetric and an independence chain
— where the proposed transition is independent of previous position — can
be used.

Alternatively, a reparameterization of the model can be used and the full
conditional distribution of φ can be obtained as a gamma density. It is not
unreasonable to assume that the measurement noise variance is proportional
to the jitter noise variance, that is, we can assume that the measurement noise
variance is given by σ 2

v σ 2
w = σ 2

v /φ in Equation (8.17). In this case, we can define
(8.19) as Uc = (J + U)/φ and show that (φ|θ, Sn, z) ∼ Gamma (d∗/2, c∗/2),
where d∗ = n + p + d and c∗ is given by Equation (8.40) by replacing U with
(J + U).

We note that the implementation of the Gibbs sampler requires inversion
of the variance covariance matrix at each iteration. This is not an issue in the
special case of no measurement noise, where Uc approaches to the diagonal
matrix U in Equation (8.19). However, in the general case with measurement
noise, as n gets large the matrix inversions can become computationally infea-
sible. An alternate inference strategy for the general model can be developed
by using a Kalman filter-type setup for the correlated noise problem. Imple-
mentation of the Gibbs sampler in this setup requires sequential processing of
the data and this procedure has certain advantages in developing inference
because it avoids matrix inversions of Uc. The state-space framework that
uses the Kalman filtering to avoid such matrix inversions is not uncommon
in signal processing literature; for example, see Doucet and Duvaut [6] for a
different application. Furthermore, for the PRI tracker to have the ability to
process data in a sequential manner is desirable and therefore the Kalman
filter setup is attractive for real time implementation of the methodology. The
Kalman filter setup will be presented next.

8.4 Kalman Filter Setup for the Model

The Kalman filter setup is also referred to as the dynamic linear model (DLM)
setup in Bayesian time-series literature, where many well-known models can
be represented as special cases; for example, see Harrison and Stevens [13] and
West and Harrison [19]. In our case, the main reason for using the DLM setup
is to generate from the full posterior conditional distributions via sequential
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processing of data. As pointed out in the previous section, the DLM setup
enables us to avoid matrix inversions in the implementation of the Gibbs
sampler.

Given the latent sequence Sn, we consider the stagger model given by
Equation (8.14) and rewrite it as

zi =
si −1∑
j=0

(Xki − jθ + wki − j ) + vi − vi−1 (8.41)

by substituting uc
i = ui +vi −vi−1 = ∑si −1

j=0 wki − j +vi −vi−1. We can represent
the above as

zi = [ F′
i

1 −1 ]Θi + ui , (8.42)

where F′
i
=

∑si −1
j=0 Xki − j , ui = ∑si −1

j=0 wki − j , and Θi is a state vector that
includes θ as well as the noise terms vi and vi−1, that is,

Θi =
 θi

vi

vi−1

 (8.43)

with θi = θ for all i . In the Kalman filter model setup, Equation (8.42) is
referred to as the observation equation (see Chapter 1). The system, or state,
equation of the Kalman filter setup for the correlated noise model is given by

Θi = GΘi−1 + vi (8.44)

where

G =
Ip×p 0p×1 0p×1

01×p 0 0
01×p 1 0

 , vi =
 0p×1

vi

0

 , (8.45)

Ip×p is the p−dimensional identity matrix and 0p×1 is p × 1 vector of zeros.
The Kalman filter setup of the above equations is similar to the dynamic linear
model setup for the moving average process with known coefficients given
in [13].

We note that given the latent sequence Sn, the above setup satisfies all
the assumptions of the normal dynamic linear models of West and Harrison
[19]. More specifically, in the observation Equation (8.42), ui represents the
observation noise of the model and ui ’s are independent normally distributed
random variables with mean 0 and variance siσ

2
w , where σ 2

w is the unknown
jitter noise variance as before. In the system Equation (8.44), vi represents
the system noise vector of the DLM that is normally distributed with zero
mean vector and the diagonal variance-covariance matrix Wi , where all the
diagonal elements are zero except the ( p + 1, p + 1) element, which is the
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known measurement noise variance σ 2
v . We note that vi ’s and ui ’s are both

independent and mutually independent. They are also independent of the
initial distribution of Θ0 at time 0. Furthermore, at time (i − 1), given Di−1 =
(z1, z2, . . . , zi−1) in the observation equation, ui is independent of the state
vector Θi and in the state equation, vi is independent of Θi−1.

We note that in developing inference for the correlated noise model, we
will be still using the Gibbs sampler to the generate the posterior distributions
of all the unknown quantities. In the implementation of the Gibbs sampler, we
will be using the DLM setup to generate the full conditional distributions of θ
andφ = 1/σ 2

w . This is achieved by updating the distributions of the noise terms
vi ’s as part of the state vector Θi using some results known from Bayesian
analysis of DLMs. In what follows, conditional on the latent sequence Sn, we
will present Bayesian updating in the DLM setup. For notational convenience,
dependence on Sn will be suppressed in our presentation.

8.4.1 Review of Bayesian Updating in DLMs

We consider the general DLM setup given by the observation and state
equations

zi = FiΘi + ui , ui ∼ N
(
0, siσ

2
w

)
Θi = GΘi−1 + vi , vi ∼ N(0( p+2)×1, Wi )

where Fi = [ F′
i

1 −1 ] and given prior information D0, the initial state vector
has a normal distribution

(Θ0|D0) ∼ N(m0, Σ0)

with m0 and Σ0 specified. In the case where φ = 1/σ 2
w is unknown in the

observation equation, we can rewrite the above by rescaling all the variances
by the unknown precision term φ and assuming a gamma prior on φ. In other
words, following our discussion at the end of Section 8.3.1, we assume that
the measurement noise variance is given by σ 2

v /φ in the model. Thus, the
DLM setup is given by the observation and state equations

zi = FiΘi + ui , ui ∼ N(0, si/φ) (8.46)

Θi = GΘi−1 + vi , vi ∼ N(0( p+2)×1, Wi/φ) (8.47)

and prior specifications

(Θ0|φ , D0) ∼ N(m0, Σ0/φ) (8.48)

(φ|D0) ∼ Gamma (d0/2, c0/2). (8.49)
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Following the development presented in [19], if we assume that the distribu-
tion of state vector Θi−1 given φ at time period (i −1) is a normal distribution
as

(Θi−1|φ , Di−1) ∼ N(mi−1, Σi−1/φ) (8.50)

then the prior distribution of state vector Θi will be given by

(Θi |φ , Di−1) ∼ N(Gmi−1, Ri/φ), (8.51)

where Ri = GΣi−1G′+ Wi . Note that Equation (8.51) follows from the state
Equation (8.47), and it follows from the observation Equation (8.46) that

(zi |φ , Di−1) ∼ N(Fi Gmi−1, (si + Fi RiF
′
i )/φ). (8.52)

Using properties of the Normal distribution and Bayesian machinery, the
posterior distribution of Θi can be obtained as a normal distribution

(Θi |φ , Di ) ∼ N(mi , Σi/φ), (8.53)

where

mi = Gmi−1 + RiF
′
i (si + Fi RiF

′
i )

−1ei , (8.54)

with ei = zi − Fi Gmi−1 and

Σi = Ri − RiF
′
i (si + Fi RiF

′
i )Fi Ri . (8.55)

We note that in the above, Fi Gmi−1 and (si + Fi RiF
′
i ) are scalars and ei is the

one-step ahead forecast error. Furthermore, the posterior distribution of the
precision φ has a Gamma distribution at time i given by

(φ|Di ) ∼ Gamma (di/2, ci/2) (8.56)

where di = di−1 + 1 and ci = ci−1 + e2
i /(si + Fi RiF

′
i). Given the DLM setup

in Equations (8.46-8.49), the above results in Equations (8.50-8.56) hold for
all i . Details of the proofs of these results are given in [19]; see also Chapter 1
in this volume, where a somewhat different parameterization is presented.

8.4.2 Bayesian Analysis of the Model Using DLM Setup

In the DLM setup of the correlated noise model, the first p elements of the state
vector Θi are constant, that is, θi = θ for all i where θ′ = (a0 a1 b1 . . . aq bq ).
The dynamic nature of the state vector is due to the presence of noise terms
vi and vi−1 as shown in Equation (8.43). As a result of this, in implementing the
Gibbs sampler, at each iteration — given the latent sequence Sn — we are inter-
ested in sampling from the joint posterior distribution p(Θ1, . . .Θn, φ|Sn, Dn).
This can be achieved by sampling from the distributions p(φ|Sn, Dn) and
p(Θ1, . . .Θn|φ , Sn, Dn), where p(φ|Sn, Dn) is given by the Gamma density
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of Equation (8.56). Generation from the second distribution, that is, from
p(Θ1, . . .Θn|φ , Sn, Dn) can be achieved by iteratively generating from the
full conditional distributions p(Θi |φ , Θ−i , Sn, Dn) for i = 1, . . . , n, where
Θ−i = {Θ j | j �= i , j = 1, 2, . . . , n}. However, this is not very efficient and it
is more desirable to generate directly from p(Θ1, . . .Θn|φ , Sn, Dn) whenever
possible. In what follows, we will present a scheme to directly generate from
the joint posterior p(Θ1, . . .Θn|φ , Sn, Dn). This is based on the forward filter-
ing backward sampling algorithm of Fruhwirth-Schnatter [8] that is given in
West and Harrison [19]. After we present the general algorithm, we will illus-
trate the adoption of this algorithm to the correlated noise model and discuss
the implementation details. In our presentation, for notational convenience
we will suppress dependence on φ and Sn.

As pointed out in [19], using the Markov structure of the DLM setup, the
joint distribution p(Θ1, . . .Θn| Dn) can be written as

p(Θ1, . . . ,Θn|Dn) = p(Θn|Dn) p(Θn−1|Θn, Dn−1) · · · p(Θ1|Θ2, D1), (8.57)

where the first term p(Θn|Dn) is available from the DLM updating Equation
(8.53) for i = n. Thus, we can start the sampling from Θn and then sequentially
sample Θn−1, . . . , Θ1 using densities p(Θi−1|Θi , Di−1) for i = n−1, . . . , 2. The
required distributions can be obtained using the DLM setup. Using Bayes rule,
we can write

p(Θi−1|Θi , Di−1) ∝ p(Θi |Θi−1, Di−1) p(Θi−1|Di−1), (8.58)

where

(Θi |Θi−1, Di−1) ∼ N(GΘi−1, Wi/φ)

and

(Θi−1|Di−1) ∼ N(mi−1, Σi−1/φ).

It follows from the above that,

(Θi−1|Θi , Di−1) ∼ N(hi−1, Hi−1/φ), (8.59)

where

hi−1 = mi−1 + Σi−1G′R−1
i (Θi − Gmi−1) (8.60)

Hi−1 = Σi−1 − Σi−1G′R−1
i GΣi−1. (8.61)

Note that because all the distributions are of normal form, generating from
the joint posterior distribution Equation (8.57) is straightforward in a general
DLM. However, implementation of the algorithm in special cases like we
have requires consideration of certain technical issues. In our case, the state
vectors Θi and Θi−1 share common components as Θ′

i = (θ vi vi−1 ) and
Θ′

i−1 = (θ vi−1 vi−2). As a result, the variance-covariance matrix Hi−1 in
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Equation (8.61) is not positive definite and the distribution p(Θi−1|Θi , Di−1)
cannot be sampled. As pointed out in West and Harrison [19], this issue arises
in many problems where consecutive state vectors share common compo-
nents and the algorithm must be modified to alleviate such difficulties.

In our case, going from Θi to Θi−1 in p(Θi−1|Θi , Di−1), all but one of the
components of the state vector Θi−1 will be known, and therefore we only
need to draw from a univariate distribution to update Θi−1. Thus, we can
generate from Equation (8.57) using the following algorithm:

(i) Sample Θn from p(Θn|Dn) using, Equation (8.53) with i = n,
(ii) for i = n − 1, n − 2, . . . , 2, sample the value of vi−1 from p(vi−1|θ, vi+1,

vi , Di ) and update the remaining elements of Θi using the common compo-
nents from Θi+1.

In implementing the algorithm, the only distribution we need then is the
univariate density p(vi−1|θ, vi+1, vi , Di ). Using Bayes rule and the fact that
Di = (zi , Di−1), we can write

p(vi−1|θ, vi+1, vi , Di ) ∝ p(zi |θ, vi+1, vi , vi−1, Di−1) p(vi−1|θ, vi+1, vi , Di−1).

In the above, we note that using the observation equation the first term reduces
to

p(zi |θ, vi+1, vi , vi−1,Di−1) = p(zi |Θi , vi+1, Di−1) = p(zi |Θi )

where (zi |Θi ) ∼ N(FiΘi , siφ) and FiΘi = F′
i
θ+vi −vi−1. To obtain the second

term, we note that given Di−1, vi−1 is independent of vi , vi+1, . . . , vn. Thus,

p(vi−1|θ, vi+1, vi , Di−1) = p(vi−1|θ, Di−1)

and p(vi−1|θ, vi+1, vi , Di ) reduces to

p(vi−1|θ, vi , Di ) ∝ p(zi |Θi ) p(vi−1|θ, Di−1) (8.62)

where the density p(vi−1|θ, Di−1) can be obtained as a normal density from
the posterior distribution of (Θi−1|Di−1) using Normal distribution theory.
More specifically, we have

(Θi−1|Di−1) ∼ N(mi−1, Σi−1/φ)

where Θ′
i−1 = (θ vi−1 vi−2), implying that

(vi−1, θ|Di−1) ∼ N
[(

mvi−1

mθ

)
,
(

�vi−1 Σθvi−1

Σθvi−1 Σθ

)]
with dependence on φ suppressed.

We note that in general (see Chapter 1 and its appendix), if we have(
X1

X2

)
∼ N

[(
µ1
µ2

)
,
(

V11 V12

V21 V22

)]
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then

(X1|X2) ∼ N(µ1(X2), V1(X2)),

where

µ1(X2) = µ1 + V12V−1
22 (X2−µ2) (8.63)

and

V1(X2) = V11−V12V−1
22 V21. (8.64)

Now letting X1 = vi−1 and X2 = θ, from the above,

(vi−1|θ, Di−1) ∼ N(µvi−1|θ , Vvi−1|θ ) (8.65)

where µvi−1|θ and Vvi−1|θ are obtained from Equation (8.63) and Equation (8.64)
accordingly. Given Equation (8.65) and the fact that

(zi |Θi ) ∼ N(FiΘi , si/φ),

using Equation (8.62), we can show that

(vi−1|θ, vi , Di ) ∼ N(µvi−1 ,Vvi−1 ), (8.66)

where

µvi−1 =
(

si/φ

si/φ + Vvi−1|θ

)
µvi−1|θ +

(
Vvi−1|θ

si/φ + Vvi−1|θ

)
(F′

i
θ + vi − zi ) (8.67)

and

Vvi−1 = (si/φ) Vvi−1|θ

si/φ + Vvi−1|θ
. (8.68)

We note that in writing Equation (8.66), dependence on the latent variable
si and the precision φ has been suppressed, that is, Equation (8.66) gives us
p(vi−1|φ , Sn, θ, vi , Di ), and given θ, we can write p(vi−1|φ , Sn, θ, vi , Di ) =
p(vi−1|φ , si , θ,vi , Di ). To summarize, using the DLM setup in generating the
full conditional distribution p(Θ1, . . ., Θn|φ , Sn, Dn), we start with sampling
Θn from p(Θn|φ , Sn, Dn), and then for i = n − 1, n − 2, . . . , 1, we sample the
value of vi−1 from Equation (8.66) and update the remaining elements of Θi

using the common components from Θi+1. At a given iteration of the Gibbs
sampler, this gives us a sample for θ, vn, . . . , v0 and φ is sampled directly from
p(φ|Sn, Dn) given by Equation (8.56).

As in Section 8.3.1, the full conditional distribution of P is given by the
Dirichlet form of Equation (8.34). In obtaining the full conditional distri-
bution of latent variables Sn, we now consider p(si |θ, φ, S−i ,P, z, v) where
v = (v0, v1, . . . , vn) and z = Dn. Thus in Equation (8.28), we need to obtain
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p(z|si ,θ, φ, S−i , v), which can be written as

p(z|si ,θ, φ, S−i , v) =
n∏

j=1

p(z j |si ,θ,φ, S−i , v j , vj−1) (8.69)

due to the independence of zi ’s given Θi as implied by the observation Equa-
tion (8.46). Using a similar development to that in Section 8.3.1, we can show
that the full conditional distribution of si is obtained as

p(si |θ, φ, S−i , P, z, v) ∝ p(si |si−1, P) p(si+1|si , P)
n∏

j=i

p(z j |Θ j , φ, S j ) (8.70)

where Θ′
j = (θ vj v j−1).

8.5 Model Comparison

In Bayesian paradigm, a formal model comparison can be made by also
describing uncertainty about models probabilistically, that is, specify prior
probabilities describing our uncertainty about the candidate models and up-
date these to posterior model probabilities after data is observed. For example,
assume that we are considering two alternative models, say 1 and 2. Prior
to observing the data, we can describe our uncertainty about these models
via probabilities p1 and p2, then after observing data z, the posterior model
probabilities are given by

p(i |z) ∝ p(z|i) pi

for i = 1, 2, where p(z|i) denotes the marginal likelihood under model i . Note
that if we take the ratio of the posterior model probabilities, we obtain the
posterior odds in favor of model 1 written as

p(1|z)
p(2 |z)

= p(z| 1)
p(z| 2)

× p1

p2
,

where the first ratio, that is,

p(z| 1)
p(z| 2)

(8.71)

is known as the Bayes factor. In Bayesian paradigm, model comparison is
typically based on Bayes factors that are obtained as the ratio of marginal
likelihoods under two competing models; see Kass and Raftery [15] for a
comprehensive review.

In many problems, p(z|i) is not available in an analytical form and its
evaluation using posterior Monte Carlo samples is not a trivial task. Thus,
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various alternatives to marginal likelihoods have been suggested in the liter-
ature for model selection using Monte Carlo samples; see Gelfand [10] for a
recent review.

However, in certain problems where a Gibbs sampler is used and all the full
conditional distributions are known, it is possible to approximate the marginal
likelihoods from the posterior samples using a method introduced by
Chib [3]. As discussed in Section 8.3.1 and Section 8.4 in Bayesian analy-
ses of the stagger model with hidden missingness, all the full conditionals
are known. Thus, in what follows, the approach proposed by Chib will be
adopted to compare models with different periods.

8.5.1 Marginal Likelihood Computation for the Model

The approach presented by Chib [3] is based on two ideas. First, the marginal
likelihood for a particular model is expressed as

p(z) = p(z|
) p(
)
p(
|z)

, (8.72)

where 
 is a vector of parameters. Secondly, as pointed out by Chib, the above
holds for any value of 
, say 
∗, and the value of posterior density p(
∗|z)
can be estimated by p̂(
∗|z) using Monte Carlo samples. Because p(z|
∗) and
p(
∗) can be evaluated at 
∗, the log marginal likelihood can be estimated as

ln p̂(z) = ln p(z|
∗) + ln p(
∗) − p̂(
∗|z). (8.73)

In Equation (8.73), the only term that is not readily available is p̂(
∗|z), but
as shown in [3], this can be obtained using the outputs from the Gibbs sampler.
In our case, 
 consists of (θ, φ , Sn, P) and using independence assumptions,
we can write the marginal likelihood as

p(z) = p(z|θ, φ , Sn) p(θ|φ) p(φ) p(Sn|P) p(P)
p(θ, φ, Sn, P|z)

. (8.74)

All the terms in the numerator of Equation (8.74) can be evaluated at
(θ, φ, Sn, P) = (θ∗, φ∗, S∗

n, P∗). Thus to approximate p(z), we need to obtain
p(θ∗, φ∗, S∗

n, P∗|z). Using the multiplication rule and the conditional indepen-
dence of (θ, φ) with transition matrix P given Sn, p(θ∗, φ∗, S∗

n, P∗|z) is given
by

p(θ∗, φ∗, S∗
n, P∗|z) = p(S∗

n|z) p(P∗|S∗
n) p(φ∗| S∗

n, z) p(θ∗|φ∗, S∗
n, z), (8.75)

where the term p(P∗|S∗
n) is the product of independent Dirichlet densities

of Equation (8.34) and p(θ∗|φ∗, S∗
n, z) is the full conditional of θ, which is

normal with mean and variance given by Equation (8.36) and Equation (8.37).
The third term on the right-hand side of Equation (8.75), p(φ∗| S∗

n, z), can be
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obtained as

p(φ∗| S∗
n, z) =

∫
p(φ∗|θ, S∗

n, z) p(θ|S∗
n, z) dθ. (8.76)

Note that the posterior samples obtained using the Gibbs sampler are from
the posterior density p(θ|z) and not from p(θ|S∗

n, z). However, as suggested
in [3], if we continue to sample for additional G ′ iterations using conditional
densities

p(φ|θ, S∗
n, z) and p(θ|φ, S∗

n, z),

then we can obtain a Monte Carlo estimate as

p(φ∗|S∗
n, z) ≈ 1

G ′

G ′∑
g=1

p(φ∗|θ(g) , S∗
n, z) (8.77)

where θ(g) are samples from p(θ|φ,S∗
n, z). In our particular case, this step

can be avoided by updating θ and φ as a block to obtain p(θ, φ|Sn, z), since
(θ, φ|Sn, z) follows a normal-gamma density. We note that this is applicable by
using the reparameterization of the measurement error variance as discussed
in Section 8.3.1 and Section 8.4. Otherwise, if a Metropolis step is needed
within the Gibbs, then the method of Chib and Jeliazkov [5] can be used. In
our development, we assume that the reparameterization is used and the full
conditionals are available. Thus, the only term we need to evaluate is p(S∗

n|z).
Using the multiplication rule, we can write

p(S∗
n|z) = p(s∗

1 |z) p(s∗
2 |s∗

1 , z) · · · p(s∗
i |S∗

i−1, z) · · · p(s∗
n|S∗

n−1, z), (8.78)

where the first term p(s∗
1 |z) can be estimated from the draws available from

the Gibbs sampler as

p(s∗
1 |z) ≈ 1

G

G∑
g=1

p(s∗
1 |θ(g) , φ(g) , (S−i )(g) , P(g) , z). (8.79)

Evaluation of the remaining densities requires additional sampling. For a
general term p(s∗

i |S∗
i−1, z) that is given by

p(s∗
i |S∗

i−1, z) =
∫

p(s∗
i |θ, φ , Sl>i , P, S∗

i−1, z)dp(θ, φ , Sl>i , P|S∗
i−1, z), (8.80)

where Sl>i = {sl ; l > i}, we need to continue sampling from full conditionals
of (θ, φ , si , Sl>i , P) given (S∗

i−1, z). In other words, additional sampling will
use the full conditional distributions

p(θ, φ|si , Sl>i , S∗
i−1, z), p(P|si , Sl>i , S∗

i−1), p(si |θ, φ , Sl>i , P, S∗
i−1, z),

and

p(s j |θ, φ , si , S− j
l>i , P, S∗

i−1, z), j = i + 1, . . . , n.
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Then Equation (8.80) can be approximated as

p(s∗
i |S∗

i−1, z) ≈ 1
G ′

G ′∑
g=1

p(s∗
i |θ(g) , φ(g) , (Sl>i )(g) , P(g) , S∗

i−1, z), (8.81)

where (θ(g) , φ(g) , (S−i )(g) , P(g)) represents samples from p(θ, φ , Sl>i , P|S∗
i−1, z).

This enables us to approximate the marginal likelihood in Equation (8.74).
For sequential processing of the data using the DLM setup of Section 8.4,

we can write the marginal likelihood as

p(z) =
∏n

i=1 p(zi |Θi , φ , Sn) p(Θi |Θi−1, φ) p(Θ0|φ) p(φ) p(Sn|P) p(P)
p(Θ1, . . . , Θn, φ, Sn, P|z)

(8.82)

where p(zi |Θi , φ , Sn) and p(Θi |Θi−1, φ) are obtained from Equations (8.46-
8.47), and p(Θ0|φ) and p(φ) are given by Equation (8.48) and Equation (8.49),
respectively. The rest of the terms in the numerator of Equation (8.82) are
obtained as discussed in the above. In obtaining the denominator of Equation
(8.82), we can rewrite Equation (8.75) as

p(Θ∗
1, . . . , Θ∗

n, φ∗, S∗
n, P∗|z) = p(S∗

n|z) p(P∗|S∗
n)

×p(Θ∗
1, . . . , Θ∗

n| φ∗, S∗
n, z) p(φ∗|S∗

n, z)

where p(S∗
n|z) and p(P∗|S∗

n) are obtained as before and p(φ∗|S∗
n, z) is given by

Equation (8.56) with z = Dn. In obtaining the last term above, we can use
Equation (8.57) by noting that all the terms are conditional on φ∗ and S∗

n, that
is,

p(Θ∗
1, . . . , Θ∗

n|φ∗, S∗
n, z) = p(Θ∗

n|φ∗, S∗
n, Dn)

n∏
i=2

p(Θ∗
i−1|Θ∗

i , φ∗, S∗
n, Di−1)

(8.83)
where p(Θ∗

i−1|Θ∗
i , φ∗, S∗

n, Di−1) is given by Equation (8.59).

8.6 Numerical Illustration

Even though the problem and methodology presented in previous sections are
motivated by a real application, no published real data is available. Thus, the
numerical illustration of the methodology will be presented using simulated
data.

We consider a period-3 stagger data set with jitter noise variance σ 2
w =

1/φ = 252. The actual values of the coefficients for this data are a0 = 333.33,
a1 = −133.33, and b1 = 115.47. There are eight missing TOA values in the
sequence resulting in aggregate data points at indices 12, 18, 45, 54, 65, 71, and
80. The aggregate data point at index 45 is composed of three PRI values and
thus represents two missing pulses. All the other aggregate data points are
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FIGURE 8.2
Observed pulse train for period-3 stagger model.

composed of two PRI values and thus are associated with a single missing
pulse. Each data set consists of 90 observed PRIs, implying that the actual
number of transmitted PRIs is 98. The observed PRI values are shown in
Figure 8.2. We note that because of the wide variation in PRI values in the
sequence, some of these aggregate data points cannot be identified by
magnitude.

We have analyzed the data using four different candidate models: jitter
model and stagger model with periods 3, 5, and 6. In analyzing the data, in
all cases we have used noninformative priors for the coefficient vector θ and
noise precision φ. For the prior of θ, we have specified m as zero vector and
the V as a diagonal matrix with diagonal components all equal to 1 × 1013.
For prior of φ, we have specified d = c = 1 × 10−6.

In the analysis, the maximum number of missing observations in
an interval was assumed to be M = 2, implying a 3×3 Markov transition ma-
trix. For each row of the transition matrix, a Dirichlet prior was assigned with
parameters (90 9 1), implying a prior expectation of 10% missing pulses in the
series. We note that prior information might be available on the percentage of
missing pulses (but not on their location) and such information can be used to
specify the prior parameters of the Dirichlet distribution. In our case, all rows
of the transition matrix have the same parameters because, prior to observing
the data, we assume that the data states are independent.
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TABLE 8.1

Posterior Distributions of Selected si ’s Under
Stagger Model with Period 3
i Actual si p(si = 1| z) p(si = 2|z) p(si = 3|z)

4 1 0.9980 0.0020 0.0000
12 2 0.0322 0.9637 0.0041
18 2 0.1221 0.8778 0.0001
45 3 0.0002 0.0937 0.9061
54 2 0.1168 0.8828 0.0004
65 2 0.1281 0.8718 0.0001
71 2 0.0063 0.9806 0.0131
80 2 0.0391 0.9574 0.0035

We note that the performance of the approach is dependent on its ability
to infer the unknown locations of the missing pulses. In Table 8.1, for the
stagger model with period 3 and σw = 25, we illustrate the posterior dis-
tributions of the latent variables si ’s associated with missing pulse locations
i = 12, 18, 45, 54, 65, 71, and 80. The posterior distribution of s4 associated with
a no missing pulse location is also shown for comparison purposes. Each row
in Table 8.1 represents the posterior distribution associated with the particu-
lar pulse location. We note that for s4, which is the state variable for location 4
with no missing pulse, the posterior probability of no missing pulse (s4 = 1)
is 0.998. For locations i = 12, 71, and 80, where there is one missing pulse in
each case, the corresponding posterior probabilities p(si = 2| z) are all higher
than 0.95. Note that these are the PRI values that are large in magnitude as
can be seen from Figure 8.1. For locations i = 18, 54, and 65, with one missing
pulse the probabilities p(si = 2| z) are not as large as in the previous group
but they are still larger than 0.87. Note that these are the locations with PRI
values that are not large in magnitude but the procedure is still able to infer
the missing pulse with high probability. Finally, location 45 has two missing
pulses and the corresponding posterior probability p(s45 = 3| z) = 0.9061.
In summary, the inference procedure seems to be identifying the location of
missing pulses.

Using the above priors, the Gibbs sampler was run for each candidate
model following our development in Section 8.3. From the Gibbs sampler
output, for each candidate model the marginal likelihoods were computed
using the procedure presented in Section 8.5. The analyses were repeated
for each model using simulated data with σw = 1, 5, 10, 15, 20, 25, and 30. In
each simulation, the data were generated from the model with period 3 and
there were eight missing pulses. In Figure 8.3, we present the log marginal
likelihoods of the four models for the different values of the σw (as shown
on the x-axis). The figure illustrates that our approach identifies the stagger
model with period 3 as the correct model in all cases except the last one, where
σw = 30. As expected, performance deteriorates as σw gets large as shown by
the decreasing value of the log marginal likelihood for stagger model with
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FIGURE 8.3
Plots of the log marginal likelihoods versus σw .

period 3. Similarly, the posterior distribution of σw under the correct model
was more concentrated around the actual values of σw compared to the other
models.

8.7 Conclusion

In this chapter, a Bayesian approach was developed for analysis of pulse
trains corrupted by missing pulses at unknown locations. The development
was motivated by electronic warfare applications where it is of interest to
infer the locations of missing pulses and to identify the PRI modulation type.

The presented Bayesian approach is based on Markov Chain Monte Carlo
methods and enables us to make posterior and predictive inferences about
model parameters, location of missing pulses, and future PRIs. It also allows
us to evaluate the marginal likelihoods of models with different periods and
thus provides us with a Bayesian model comparison tool. An alternative setup
of the model using the Bayesian DLM framework allows for sequential pro-
cessing of data and avoids matrix inversions during the implementation of
the Gibbs sampler.
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The implementation of the approach was demonstrated using simulated
data and the Bayesian approach was shown to perform adequately in locating
the missing pulses and identifying the correct model. However, the results
presented here are based on limited data sets and more experience is needed
with more complicated data structures.

A comparison of the model selection approach with other approaches such
as the the reversible jump Markov Chain Monte Carlo methods of Green [12]
remains to be seen. Also, application of sequential Markov chain techniques
can be considered as an alternate approach to the problem. These are areas
for further research.
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ABSTRACT In this chapter, some Bayesian algorithms for detecting a per-
sistent process mean shift and for adjusting the process back to target are
presented. We discuss the connection between the Bayesian algorithm and
the cumulative sum (CUSUM) algorithm, a popular tool for detecting small
process mean shifts. The process adjustment method is based on a Kalman
filter technique, which provides a sequential adjustment strategy along with
process measurements. The integration of this sequential adjustment method
with different control charts is evaluated through simulations.

9.1 Introduction

Quality control of a manufacturing process consists of two distinct func-
tions: detecting any abnormal process change and adjusting process after the
change has been identified. Using control charts to monitor manufacturing
process outputs is considered to be the specific function of statistical process
control (SPC). In SPC, the root cause of process change should be isolated

245
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and removed after the change is detected. This typically requires production
stoppage and thorough analysis and diagnosis of the manufacturing process.
If some controllable process variables exist and the influence of these con-
trollable variables on process outputs has been quantified, we can adjust the
process by varying these controllable variables, which is known as process
adjustment and is particularly desirable on automated processes.

However, SPC techniques do not provide an explicit process adjustment
method. Process adjustment is usually regarded as function pertaining to
engineering process control (EPC), an area that has traditionally belonged to
process engineers rather than to quality engineers. Integrating EPC and SPC
techniques for process quality control has been discussed by several authors in
the recent literature [4, 24, 26, 29, 40, 41]. This chapter will derive both process
monitoring and process adjustment methods from Bayes theory and compare
them with conventional methods.

We assume a univariate process that consists of a measurable quality char-
acteristic y and a single controllable factor x. The process mean is defined
as the expectation of y. The process is initially in a stationary and uncorre-
lated state, but a random disturbance can shift the process mean off-target. A
control chart is in use to monitor this process and the chart is applied to
individual samples because the production lot size assumed is small. When-
ever the control chart signals an “out-of-control” alarm, we suspect that a
mean shift has occurred and proceed with adjusting the process. This chapter
focuses on studying methods for sequential process adjustment based on the
Kalman filter (KF) technique. We define a sequential adjustment strategy as
a finite number of adjustments implemented after a shift disturbance on a
process is detected.

In the following sections, some commonly used control charts are
reviewed and a Bayesian algorithm for detecting process change is derived.
In particular, we discuss the connection between the Bayesian algorithm
and the cumulative sum (CUSUM) algorithm. A sequential process adjust-
ment method based on the KF technique is then proposed. Finally, the per-
formance of various combinations of this adjustment method and different
control charts is evaluated for a mean shift type of process change as the one
represented in Figure 9.1.

µt–1

µt=µt–1+δ(t)

δ~(µs,σs2)

t–1 t

FIGURE 9.1
Step-type disturbance on the process mean.
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9.2 Bayesian Algorithm for Detecting Process Change

Assume that a process quality characteristic y is under surveillance of a pro-
cess monitoring scheme. Process measurements, y1, y2, . . ., are originally gen-
erated from a Normal distribution N(µ0, σ 2); however, a process disturbance
will shift the process mean to µ1 at a random time. For any process monitoring
scheme, minimizing the number of false alarms that occur before the appear-
ance of the process disorder is desirable. Alternately, we must guarantee a
small delay in the time taken to detect a disorder.

Shewhart control charts with ±3σ control limits are the simplest type of
process monitoring scheme, but it is well known that the Shewhart chart is
insensitive to small or moderate persistent mean shifts [27]. In order to detect
small shifts more quickly, CUSUM and EWMA (exponentially weighted mov-
ing average) charts are usually recommended. In particular, a CUSUM chart
can be shown to be the generalized sequential probability ratio test (SPRT) for
the hypothesis H0 : µ = µ0 versus H1 : µ = µ1, where µ1 is a predetermined
out-of-control mean [23]. Considering the single-sided monitoring scheme
for µ1 > µ0, the test statistics of the CUSUM algorithm are

c+
t = max

{
0, yt − k + c+

t−1

}
, (9.1)

where t is considered here as discrete time and k = (µ1 + µ0)/2 is the middle
between the original process mean value and the shifted process mean value
that one wishes to detect [44]. The control limit of the CUSUM statistics is
defined as H = hσ , where h is another design parameter. Whenever c+ ex-
ceeds H, an out-of-control alarm is signaled.

EWMA charts use the EWMA smoothing method to predict the process
mean. This utilizes not only the current measurement but the discounted
historical data as well. The EWMA statistic is defined as

zt = λyt + (1 − λ)zt−1, 0 < λ < 1, (9.2)

where λ is the smoothing parameter or weight, and the starting value z0 is the

process target. The EWMA chart control limits are ±L σ
√

λ
(2−λ) [1 − (1 − λ)2t].

Bayesian approach to a quality control model was first attempted in [13].
Shiryaev [37] and Roberts [34] independently proposed the same Bayesian
algorithm for detecting process mean shift. This algorithm also appears in
Basseville and Nikiforov [2]. Here we describe this algorithm in detail.

At a discrete time t, suppose the manufacturing process could be in one
of two states, 0 or 1, where state 0 is a normal state modeled by a distri-
bution f0 and state 1 is the abnormal state modeled by a distribution f1.
An intrinsic transition probability of process change exists, ξ , such that the
normal process can change to abnormal at the next time step with prob-
ability ξ and then stay abnormal until it is detected. In other words, the
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random disturbance that can change the process state from 0 to 1 strikes on the
process with a rate of occurrence as ξ . Therefore, the current state of the
process depends on its immediate previous state, i.e., it is a Markov chain. We
must estimate the posterior probability of process in state 1, given all process
observations.

Let πt be the probability of the process in state 1 at time t; then π0 is the prior
probability of process change when no process measurement is available. By
Bayes’ law, the posterior probability of the process change at time 1, π1, is
updated by

π1 = P(S1 = 1|π0, ξ , y1)

= P(S1 = 1, y1|π0, ξ )
P(y1|π0, ξ )

= π0 f1(y1) + (1 − π0)ξ f1(y1)
π0 f1(y1) + (1 − π0)ξ f1(y1) + (1 − π0)(1 − ξ ) f0(y1)

. (9.3)

Similarly, πt is given by

πt = πt−1 f1(yt) + (1 − πt−1)ξ f1(yt)
πt−1 f1(yt) + (1 − πt−1)ξ f1(yt) + (1 − πt−1)(1 − ξ ) f0(yt)

. (9.4)

If πt exceeds a certain threshold, then a signal of process change will be
issued.

In dealing with this algorithm is convenient using a log-likelihood ratio
form. Let gt = ln πt

1−πt
, then

gt = ln(ξ + egt−1 ) − ln(1 − ξ ) + ln
f1(yt)
f0(yt)

. (9.5)

A signal will be issued at time t when gt ≥ s, where s is the threshold
value.

To calculate gt, the state transition probability ξ , as well as f1, the prob-
ability density function of the abnormal process, must be known. These
assumptions are not realistic for most manufacturing processes. This seems
to be the reason that the Bayesian algorithm has not been widely applied in
manufacturing quality control practice.

A popular algorithm used in quality control is CUSUM algorithm pro-
posed by Page [28]. Equation (9.1) is equivalent to a sequential probability
ratio test, which is

gt = max
{

gt−1 + ln
f1(yt)
f0(yt)

, 0
}

(9.6)

and g0 = 0. The alarm signal is issued when gt ≥ s.
Notice that in the CUSUM algorithm, the decision function gt can be reset

to 0 and the measurement data used in detecting process change are within
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a moving time window. In other words, the action involved in the CUSUM
algorithm can be one of the following three decisions:

gt < 0: The process is deemed to be normal and the monitoring scheme
is reinitiated by setting gt = 0.

0 ≤ gt < s: The process cannot be judged and the current monitoring
scheme is continued.

gt ≥ s: The process is deemed to be abnormal and signal an out of
control alarm.

This is not the feature of the Bayesian algorithm. However, when λ = 0,
the Bayesian decision function will degenerate to a similar form as the CUSUM
algorithm except with multiple decisions. In the next section, the connec-
tion between the CUSUM algorithm and Bayesian decision theory will be
discussed.

Suppose a normal (in-control) process can be modeled by a normal dis-
tribution N(µ0, σ 2) and σ 2 is known. A random disturbance will shift the
process mean from µ0 to µ1. Then we can easily derive the probability ratio

f1(yt)
f0(yt)

= e− (yt−µ1)2−(yt−µ0)2

2σ2 (9.7)

and the log ratio

ln
f1(yt)
f0(yt)

= b
σ

(yt − k), (9.8)

where b = (µ1 − µ0)/σ and k = (µ1 + µ0)/2.
Assume at the beginning of process monitoring, no prior information of

the state of the process is known, i.e., π0 = 0.5; then g0 = 0. If the chance of
process disturbance is so small that ξ ≈ 0, then

gt = gt−1 + b
σ

(yt − k), (9.9)

and clearly

gt = b
σ

t∑
i=1

(yi − k). (9.10)

Given one decision threshold s, an alarm of process mean change will be
signaled when gt ≥ s, or

t∑
i=1

(yi − k) > H, (9.11)

where H = hσ and h = s/b.
By the CUSUM algorithm, two decision thresholds exist — 0 and s. When

gt < 0, the current process is deemed to be in-control and the monitoring
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scheme will be reinitiated by setting gt = 0; when 0 ≤ gt < s, the monitoring
scheme will continue; when gt ≥ s, an alarm will signal and the process will be
stopped and investigated for a process change. This algorithm is equivalent
to

t∑
i=1

(yi − k) < 0, reinitiate;

0 <

t∑
i=1

(yi − k) < H, continue;

t∑
i=1

(yi − k) > H, signal. (9.12)

One can see that Equation (9.12) is simply another expression of Equation
(9.1).

From the definition of gt, gt < 0 only when πt < 0.5, which indicates that
after considering a series of process measurements up to time t, the posterior
probability of the process being abnormal is less than that of being normal and
the process is deemed to be in-control. To reinitiate the monitoring scheme,
we set gt = 0, which means no information from the previous process mea-
surements will contribute to the prior probability for the foregoing process,
so it is reset to 0.5.

Pollak and Siegmund [32] derived and compared the average run length
(ARL) of the Bayesian and CUSUM algorithms by utilizing the Martingale
properties of the corresponding continuous time process. Let λ be close to 0
and h and s have the values such that the run length of false alarm (ARL0)
of both algorithms are same. Their main conclusions are (1) neither
algorithm is dramatically superior to the other; (2) the Bayesian algorithm
has a shorter run length for detecting small process mean changes than the
CUSUM algorithm does but it is worse when the mean change is large; and (3)
for other types of process change, such as the change of process variance, the
run length properties of the Bayesian algorithm can be analytically studied
but these are difficult for the CUSUM algorithm.

9.3 CUSUM and Bayesian Decision Making

Harrison and Veerapen [16] developed a convenient interpretation of the
CUSUM algorithm from Bayesian decision theory point of view. Instead of
predicting process status as illustrated in the previous Bayesian algorithm, in
[16], the decision of whether or not the process has changed is made based
on the posterior estimation of a particular process parameter. Therefore, no
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need exists for the prior probability of process state but a prior distribution
of the process parameter is used.

Let the process be modeled by a normal distribution N(µ, σ 2), where
again for simplicity assume σ 2 is known; however, µ is a random variable as
permitted by Bayesian theory. To guard a potential change in process mean,
the posterior distribution of the process mean is monitored. Suppose the prior
distribution of the process mean is N(m0, τ 2); then its posterior distribution
after t process measurements (y1, y2, . . . , yt) is N(mt, ρ2), where

ρ2 = σ 2τ 2

σ 2 + tτ 2

and

mt = ρ2

τ 2 m0 + ρ2

σ 2

t∑
i=1

yi .

The above equation can be rewritten as

ntmt = n0m0 +
t∑

i=1

yi , (9.13)

where n0 = σ 2

τ 2 and nt = t + n0. The value n0 can be explained as the pre-
cision of the prior estimation of µ, and nt as the precision of its posterior
estimation.

To detect a positive shift in process mean, three possible decisions exist in
the CUSUM algorithm. Assume that a linear loss function is associated with
each decision and two indifference points exist, at which two adjunctive loss
functions will have the same value. We can have the following loss functions
corresponding to the three decisions:

lt(µ) ∝ (µ−at): The process is accepted as in control and the monitoring
scheme will be reinitiated;

lt(µ) = 0: The current monitoring scheme will be continued;
lt(µ) ∝ (st − µ): An out of control signal is issued;

where at and st are the two indifference points and st > at. Clearly, the decision
to be made is the one that has the minimum loss function value. Converting
to the posterior estimation of the process mean, we have

mt < at, reinitiate;
at ≤ mt < st, continue;

mt ≥ st, signal. (9.14)

The two indifference points at and st have such property that when the
number of process measurements increases, the distance between at and st
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decreases. It is reasonable to assume that the distance between at and st will
decrease in proportion to the inverse of the precision of posterior estimation.
A convenient choice is to let st = k, a0 = m0, and (k − at) = n0

nt
(k − a0); then

by combining Equation (9.13) and Equation (9.14), we have

t∑
i=1

(yi − k) < 0, reinitiate;

0 ≤
t∑

i=1

(yi − k) < n0(k − m0), continue;

t∑
i=1

(yi − k) ≥ n0(k − m0), signal. (9.15)

This is the same as the CUSUM algorithm, where the threshold for the out-of-
control alarm is set at n0(k − m0). Let m0 = µ0 and comparing Equation (9.15)
with Equation (9.12), it is easy to find that s in Equation (9.12) is equivalent
to (µ1 − µ0)2/(2τ 2), i.e., half of the ratio of the square of process mean shift
size to the variance in prior distribution. Therefore, the value of the signal
threshold in the CUSUM algorithm reflects one’s prior belief of the in-control
process distribution model.

The CUSUM algorithm can be formulated as a sequential probability ratio
test (SPRT) for the exponential distribution family. However, a major weak-
ness of SPRT is its failure to signal outliers and huge jumps in quality for
nonexponential family models such as the t distribution and distributions
with inverse polynomial tails. Harrison and Lai [17] discussed this problem
in detail. They called Equation (9.15) the “popular decision scheme” (PDS)
and demonstrated that it can be applied on more complex process models.
Recent development of this scheme for detecting other types of process change
can be found in [12, 36].

9.4 Kalman Filter Approach to Process Mean Adjustment

After detecting a shift in process mean, adjusting the process to bring back
the mean level to an acceptable value is necessary. This normally requires a
root cause diagnosis for the process change and the estimation of a current
process mean. Many change point identification and estimation algorithms
can be employed for this purpose in the retrospective study of SPC. Chen
and Elsayed [6] applied a Bayesian method on identification and estima-
tion of process mean change, and Kelton et al. [18] use the aggregated mean
for estimation. However, they are one-time adjustment strategies, that is,
no adjustment will be made until the current process mean value can be
precisely estimated. Another adjustment strategy is on line adaptive
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adjustment, which is based on the feedback principle that has become an
important resource in the toolkit used by quality engineers [3, 5, 35]. This
section presents a formulation that unifies several well-known process ad-
justment schemes and shows how several extensions can be obtained using
standard methods from control engineering, initially discussed in del Castillo
et al. [9, 10].

To motivate the type of adjustment problems considered in this chapter
and to introduce some necessary notation, consider the setup adjustment
problem first studied by Grubbs [14]. Suppose, without loss of generality, that
process measurements yt correspond to the deviations from target of some
quality characteristic of the items as they are produced at discrete points in
time t = 1, 2, . . ., i.e., yt ∼ N(0, σ 2) if the process was properly set up. Here
σ 2 is the variance of random process error, or measurement error. In some
manufacturing processes such as machining, an incorrect setup operation can
result in drastic consequences in the quality of the parts produced thereafter.
Grubbs proposed a method for the adjustment of the machine to bring the
process back to target if at start-up it was off-target by d units.

This is analogous to Deming’s “funnel experiment” when the funnel is
initially off-target. If the adjustment cost is negligible, a significant cost is
associated with running the process off-target. That the process should be
adjusted back to the target is evident. Figure 9.2 illustrates this experiment at
process on-target, off-target, and adjusted scenarios.

Consider a manufacturing process has a setup error d, which is a random
variable with known mean d and known variance P0. Assume a controllable
process variable x will directly impact on process measurement y. So the full
process model can be formulated as

yt = d + xt−1 + εt , (9.16)

where d ∼ D(d, P0), D is any distribution with first and second moments
finite, and εt ∼ N(0, σ 2).

Let us first assume d is a unknown constant, then for the first manufactured
part, the expected quality characteristics is

µ1 = d + x0, (9.17)

where x0 is the initial setting of the controllable variable. After the first process
measurement y1, an adjustment ∇x1 = x1 − x0 is made on the process, which
results in a new process mean of

µ2 = µ1 + ∇x1 = d + x1. (9.18)

Because in fact d is a random variable, the objective of process adjustment
is to find the process adjustments ∇x1, ∇x2, . . . that minimize

E

[
n∑

t=1

µ2
t

]
. (9.19)
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FIGURE 9.2
Deming’s funnel experiments with a process setup error and process adjustments. (a) Funnel
apparatus; (b) Simulated locations of dropping balls when no setup error exists; (c) Simulated
locations of dropping balls when a one-unit setup error on both x- and y-axes exists; (d) Simulated
locations of dropping balls when five sequential adjustments based on Grubbs’ harmonic rule
are taken on the off-target process.

In other words, quadratic off-target costs are assumed but no cost is incurred
when performing the adjustments.

Optimization of this type of criterion is based on the separation principle
[1]. For the setup adjustment problem under consideration, this principle
indicates that the optimal solution can be found by solving separately the
problem of estimating the µt’s (process means) from the problem of find-
ing the best adjustments {∇xt}. If the optimal adjustment equation obtained
through this separation is identical to what would have been obtained if the
process were deterministic, the controller is said to be a certainty equivalence
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controller. This essentially means that the parameter estimates are used in
the control equation as if they were the true parameters. In our case, if the
means µt were known, evidently the best adjustment would be simply to set
∇xt = −µt, which yields a minimum variance process. In what follows, we
will derive the posterior distribution of µt and then the process adjustment
formula by using the Kalman filter technique.

The estimation problem of µt is solved in a Bayesian framework using a
simple Kalman filter [25]. Given the model of Equation (9.16), define

yt|µt ∼ N(µt , σ 2).

Let mt−1 and Pt−1 be the posterior mean and variance of the parameter µt−1,
respectively. Then after the adjustment ∇xt−1, the prior distribution of µt

becomes

µt|yt−1 ∼ N(mt−1 + ∇xt−1, Pt−1),

where yt = {y1, y2, . . . , yt} are all available data at time t. The first mean has
a prior distribution µ1 ∼ N(d + x0, P0) where d = E[d], P0 = Var(d), and x0
is the initial setpoint of the machine. Note that if d is known, then we should
set x0 = −d and get µ1 ∼ N(0, P0).

Given this setup, we have that the posterior distribution of µt given the
observations is

µt|yt ∼ N(mt, Pt)

with

mt = mt−1 + ∇xt−1 + Pt−1

Pt−1 + σ 2 [yt − (mt−1 + ∇xt−1)] (9.20)

and

Pt = Pt−1σ
2

σ 2 + Pt−1
, (9.21)

which is a recurrence equation easily solved by iteration, yielding

Pt = σ 2 P0

σ 2 + tP0
, (9.22)

where P0 is known. The Kalman filter estimate of the process mean given the
data is

mt = E[µt|yt] = mt−1 + ∇xt−1 + Kt(yt − (mt−1 + ∇xt−1)), (9.23)

where the quantities

Kt = Pt−1

Pt−1 + σ 2 = 1

t + σ 2

P0

(9.24)

are the “Kalman weights.” Under the stated assumptions of normality, mt

is the minimum mean square error (MMSE) estimator of µt. As shown by
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Duncan and Horn [11], if the normality assumptions are relaxed, mt is the
MMSE linear estimator, i.e., among all estimators that are linear combinations
of the observations, it has smallest MSE, but better nonlinear estimators might
be found.

To minimize E[
∑n

t=1 µ2
t ], one can argue as follows. Conditioning on all

available data at time t − 1, we have that

E
[
µ2

t |yt−1] = Var(µt|yt−1) + [E(µt|yt−1)]2

= σ 2 P0

σ 2 + (t − 1) P0
+ (mt−1 + ∇xt−1)2, (9.25)

which is minimized by taking ∇xt−1 = −mt−1. From our earlier discussion,
this is a certainty equivalence controller. Applying this adjustment rule at
every point in time also minimizes the sum of the squared mean reported in
Equation (9.19). The minimum of the expected sum of the squared mean is

E

[
n∑

t=1

µ2
t

]
=

n∑
t=1

σ 2 P0

σ 2 + P0(t − 1)
. (9.26)

Substituting the control rule into the process mean estimate, we get

mt = 1

t + σ 2

P0

yt = Kt yt, (9.27)

and the adjustment rule is

∇xt = −yt

t + σ 2

P0

, (9.28)

an expression identical to Grubbs’ extended rule [14].
We conclude that Grubbs’ extended rule minimizes the expected sum of

squared deviations provided the setup error mean and variance are known.
If the errors are all normally distributed, Grubbs’ extended rule is the opti-
mal solution for the criterion of Equation (9.19). If the errors are not normal,
Grubbs’ extended rule is the best linear control law that minimizes Equa-
tion (9.19) [1, 19]. These additional facts can also be proved using LQ or LQG
(linear control gaussian) theory.

Besides the aforementioned equivalence with Grubbs’ extended rule, the
Kalman filter of Equation (9.27) together with Equation (9.28) provide three
other particular cases of interest:

Grubbs harmonic rule and Robbins and Monro stochastic approximation. If P0 →
∞, which implies lack of any a priori information on the offset d, Grubbs’
“harmonic rule” is obtained because, under these conditions, the Kalman
weights are

Kt → 1
t
.
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The mean estimates become

mt = 1
t

yt

and

xt = xt−1 − 1
t

yt, (9.29)

which is exactly Grubbs’ harmonic rule. Grubbs obtained Equation (9.29) by
solving a constrained optimization problem — i.e., min Var(Yt+1), subject to
E[Yt+1] = 0 — under the assumption the setup error d was an unknown
constant (a machine offset). Del Castillo et al. [9] also shows that Grubbs’
harmonic rule is a special case of Robbins and Monro’s stochastic approxi-
mation algorithm for the sequential estimation of the offset d [33].

Recursive least squares. If σ 2 is set equal to one, the recursive least squares
estimate of d is obtained [22, 45]:

d̂t = d̂t−1 + 1
1
P0

+ t
yt.

In this case, we are again assuming the first case studied by Grubbs, that of
an unknown constant setup error d.

Unreliable measurements. If σ 2 → ∞, i.e., if the measurements are com-
pletely unreliable, this implies that Kt → 0 and ∇xt = 0 for t = 2, 3, . . .. In
such case, it is optimal to let x = −d. If σ 2 is large but finite, the KF adjustment
method will eventually bring the process to target but the convergence will
be very slow.

EWMA controller. Although not a particular case of the KF formulation,
also of interest is to consider the case when Kt = λ, in which case a discrete
integral controller [5], also called an EWMA controller [8, 35], is obtained:

∇xt = −λyt.

This controller has the main advantage of compensating against sudden shifts
that can occur at any point in time besides the initial offset d. This means that
the controller remains “alert” to compensate for shifts or other disturbances. A
disadvantage is that it is not clear what value of λ to use. Because of this, some
attempts have been made at developing adaptive techniques that modify λ

as the control session evolves [31]. In particular, Guo et al. [15] proposed to
apply a “time varying” EWMA controller such that it minimizes the mean
square deviation of the quality characteristic after a sudden shift occurs. Not
surprisingly, the optimal weights once again obey Grubbs’ harmonic rule:

λ∗
t = 1

t − τ + 1
,
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where τ is the point in time when a shift in the mean occurs. Hence, if τ = 1
we have the initial setup error case, and the time varying EWMA controller
exactly equals Grubbs’ harmonic rule.

9.5 Extensions to More Complex Setup Adjustment Problems

It was mentioned in the previous section that the Kalman filter model that
yields Grubbs’ extended rule is optimal for the criterion E[

∑n
t=1 µ2

t ] and this
constitutes a simple instance of a linear quadratic control problem. Recent
literature has made use of the more general LQ formulation to derive optimal
adjustment rules for more complex setup adjustment problems. Del Castillo
et al. [9] provided KF solutions for three specific problems — errors in ad-
justment, quadratic adjustment costs, and multiple-input-multiple-output —
that might be of interest to quality engineers. Problems such as errors in ad-
justments and cost of adjustments were also considered by Trietsch [39], Pan
and del Castillo [30], and Lian and del Castillo [20].

The previous section considered a single manufacturing process with an
unknown process setup error. Colosimo et al. [7] proposed a different ap-
proach for process adjustments over a set of batches when no previous knowl-
edge on the parameters of the distribution of the setup offsets and on the
process variability is available, i.e., when µ, P0, and σ 2 are unknown. Their
approach is based on hierarchical Bayesian models and uses Markov Chain
Monte Carlo (MCMC) to derive estimates used to compute the adjustments
at each observation. Further development of the MCMC approach to process
adjustments can be found in Lian et al. [21]

9.6 Integration of Process Monitoring and Process Adjustment

The KF solution to optimal process adjustment cannot only be applied on
correcting process setup errors but also on compensating process mean shifts
that could be caused by random disturbance. Parameter d in the model of
Equation (9.16) can be viewed as the size of mean shift. When an on line pro-
cess monitoring scheme is employed, this shift will be detected and estimated
by the control chart algorithm. Then using this information as the prior belief
of a mean shift and start a sequence of adjustments is natural.

Pan and del Castillo [29] proposed an integrated process monitoring and
adjustment scheme that consists of three steps: monitor the process using
a control chart, estimate the shift size when a shift in the process mean is
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TABLE 9.1

Six Methods of Integrating Control Charts and Sequential Adjustments
Method Shift detection Shift size estimation Adjustment

1 Shewhart chart for Last observation One adjustment after
individuals (3σ limits) (Taguchi’s method) an out-of-control alarm

2 Shewhart chart for Maximum likelihood One adjustment according
individuals (3σ limits) estimate (Wiklund’s to the MLE value

method)

3 CUSUM chart for CUSUM estimate One adjustment according
individuals (k=0.5 h=5) to the CUSUM estimate

4 Shewhart chart for last observation Five sequential adjustments
individuals (3σ ) (Taguchi’s method)

5 Shewhart chart for MLE Five sequential adjustments
individuals (3σ ) (Wiklund’s method)

6 CUSUM chart for CUSUM estimate Five sequential adjustments
individuals (k=0.5 h=5)

detected, and finally apply an adjustment procedure to bring the process
mean back to target. They compared the performance of six combinations of
control charts and adjustment methods, which are listed in Table 9.1.

On the shift size estimation, the last observation method, as sugg-
ested by Taguchi [38], utilizes the last value of yt that exceeds the control
limit of a Shewhart chart as the current estimation of process mean. This
estimation always gives a large shift size, and thus is significantly biased
when the actual shift size is small. The Wiklund method [42, 43] is a max-
imum likelihood estimation (MLE) of the process mean based on a truncated
normal probability density function. The argument relies on the fact that
the estimation of the process mean is made on the condition that one finds a
point exceeding the control limit of the Shewhart chart. The CUSUM
estimate is taken from Montgomery [27]. For a positive mean shift, the
CUSUM estimate of the mean after the CUSUM chapter issues a out-of-control
signal is

µ̂ = k + c+
t

N+ , (9.30)

where N+ is the number of periods in which a run of nonzero values of c+

were observed.
After the shift is detected, the process is adjusted either by one single

adjustment based on the shift size estimation or by sequential adjustments
following the Grubbs’ harmonic rule of Equation (9.29). Assume that a shift
occurs at time t0, i.e., µt = δ for t ≥ t0; then Kt = 1

t−t0
and the sequential

adjustment scheme is of the form

xt = xt−1 − Kt yt, for t > t0. (9.31)
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FIGURE 9.3
Performance of six integrated methods of control charts and adjustments (the process mean was
shifted after the fifth observation).

The performance of an adjustment scheme is evaluated by the scaled Average
integrated squared deviation (AISD) of the process output, which is defined as

AISD(n)
σ 2 = 1

nσ 2

n∑
t=1

y2
t . (9.32)

We first simulate a manufacturing process yt ∼ N(0, σ 2) for a total of 50
observations. A process mean shift with a size varying from 0 to 4σ occurs
after the fifth run. Process adjustments are conducted immediately after the
shift is detected. The mean value of 10,000 simulation results are illustrated in
Figure 9.3. The y-axis in the figure represents the percentage improvement in
the AISD of using some adjustment method compared to the AISD without
adjustment, i.e.,

AISDno adjust − AISDmethod i

AISDno adjust
× 100,

so this is a “the larger the better” value. On the figure, the average percentage
improvement in AISD is plotted with respect to the actual shift size, which
was varied from 0 to 4σ . One can see that the sequential adjustment methods
(Methods 4 to 6) are superior to the one-step adjustment methods (Methods
1 to 3) for almost all shift sizes. More specifically, using a CUSUM chart and
sequential adjustments (method 6) has a significant advantage over other
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methods when the shift size is small or moderate, and using a Shewhart chart
and sequential adjustments (method 4) is better for large shifts.

To study a general shifting process, the mean shift in another set of sim-
ulations is modeled by a stochastic process in which shifts occur randomly
in time according to a geometric distribution. Specifically, the occurrence of
a shift at each run is a Bernoulli trial with probability p = 0.05, and the shift
size is normally distributed as N(µs , 1) and µs varies from 0 to 4σ . Besides
the previous six methods, an EWMA controller was studied for comparison
purposes. The EWMA control scheme takes the same form as Equation (9.31)
except that Kt is a constant λ; here we set this control parameter at 0.2. No
process monitoring is needed for the integral control scheme because the
controller is always in action. The simulations were repeated 10,000 times.

Figure 9.4 shows that sequential adjustment methods still outperform any
one-step adjustment method. Evidently, the EWMA controller performs better
than any other sequential method when the shift size mean is small, which
explains the popularity of EWMA controllers. However, one main advan-
tage of the proposed SPC/EPC integrated methods is that they detect process
changes using common SPC charts, whereas the EWMA controller alone does
not have this SPC function — in other words, there is no possibility for pro-
cess improvement through correction of assignable causes if only an EWMA
controller is utilized. Process improvement through human intervention is
facilitated by having a monitoring (SPC) mechanism that triggers the adjust-
ment procedure and keeps a time-based record of alarms useful for process
diagnostics.
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Performance of six integrated methods and EWMA controller for a general shift model (the shift
occurs with probability p = 0.05 at each observation).
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FIGURE 9.5
Performance of EPC and SPC integration for the general shift model, less frequent shifts
(p=0.01).

Another drawback of the EWMA controller is that one must decide what
value of the control parameter λ to use. This parameter should be small to
maintain the stability of the process [35], but small parameter values might
not be optimal from an AISD point of view, especially when the mean shift
size is large.

Moreover, the high performance of the EWMA scheme comes from the
frequent random shifts modeled in the previous simulation study (an av-
erage of 2.5 shifts per 50 runs). If the chance of shifts decreases, the infla-
tion of variance that is caused by adjusting an on-target process will dete-
riorate the effectiveness of this scheme. In Figure 9.5, the simulation was
conducted with the probability of random shifts p being decreased to 0.01. In
this case, one can see that the EWMA method cannot compete well with the
sequential adjustment methods combined with CUSUM or Shewhart chart
monitoring.

More simulation results for different probabilities of shifts p are listed
in Table 9.2. The EWMA adjustment method is found to be better for small
shifts and Method 4 is better for large shifts when p is large; as p gets smaller
(p < 0.02), i.e., as the process is subject to more infrequent random shocks,
Method 6 gets harder to beat. Therefore, the proposed control chart-sequential
adjustment integrated methods work better when p is small. Pan and
del Castillo [29] studied some other process monitoring-adjustment comb-
inations to further improve this integrated quality control scheme. Interested
readers may look up their paper.
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TABLE 9.2

Performance of SPC/EPC Integrated Adjustment Schemes and EWMA Scheme
When Varying the Probability of a Shift

Mean of shift size

% improvement on AISD 0 1σ 2σ 3σ 4σ

p = 0.05 Method 4 11.20 36.05 62.27 74.93 81.04
(0.30) (0.38) (0.36) (0.31) (0.29)

Method 6 18.89 41.50 64.07 73.90 78.73
(0.28) (0.35) (0.33) (0.30) (0.29)

EWMA controller 24.91 43.11 60.47 67.76 70.71
(λ = 0.1) (0.27) (0.32) (0.30) (0.28) (0.28)

EWMA controller 24.51 45.32 65.26 73.31 76.68
(λ = 0.2) (0.30) (0.36) (0.33) (0.31) (0.30)

EWMA controller 21.16 44.02 65.59 74.21 78.38
(λ = 0.3) (0.33) (0.39) (0.36) (0.33) (0.32)

p = 0.035 Method 4 6.65 24.31 47.76 62.41 68.85
(0.26) (0.37) (0.40) (0.39) (0.38)

Method 6 13.80 30.35 50.56 61.91 66.68
(0.25) (0.33) (0.36) (0.36) (0.36)

EWMA controller 18.31 32.18 48.68 56.01 59.58
(λ = 0.1) (0.25) (0.32) (0.34) (0.34) (0.34)

EWMA controller 16.82 32.81 51.21 61.09 64.35
(λ = 0.2) (0.29) (0.36) (0.39) (0.38) (0.39)

EWMA controller 13.13 30.33 51.76 60.82 65.48
(λ = 0.3) (0.32) (0.40) (0.41) (0.41) (0.42)

p = 0.02 Method 4 1.48 11.85 28.86 41.60 48.34
(0.24) (0.32) (0.39) (0.43) (0.45)

Method 6 8.07 17.52 32.53 41.94 47.20
(0.21) (0.29) (0.36) (0.39) (0.41)

EWMA controller 10.37 18.86 30.68 38.05 41.06
(λ = 0.1) (0.22) (0.29) (0.35) (0.38) (0.39)

EWMA controller 7.35 17.09 31.40 39.49 43.57
(λ = 0.2) (0.26) (0.33) (0.40) (0.43) (0.45)

EWMA controller 2.16 13.03 28.90 38.19 42.28
(λ = 0.3) (0.28) (0.37) (0.44) (0.47) (0.49)

p = 0.005 Method 4 −3.36 −1.02 3.64 9.02 12.57
(0.18) (0.21) (0.28) (0.34) (0.37)

Method 6 1.32 3.60 7.88 11.77 14.37
(0.12) (0.16) (0.23) (0.28) (0.32)

EWMA controller −0.36 1.55 5.53 7.72 9.95
(λ = 0.1) (0.13) (0.17) (0.24) (0.27) (0.30)

EWMA controller −5.55 −2.91 1.42 4.89 7.19
(λ = 0.2) (0.16) (0.21) (0.27) (0.32) (0.35)

EWMA controller −11.25 −8.47 −2.94 0.42 3.15
(λ = 0.3) (0.18) (0.23) (0.31) (0.36) (0.39)

Note: The numbers are the mean values and standard errors (in parenthesis) of the percent-
age improvement on AISD (compared to the process without adjustment) computed from
10,000 simulations. Bold numbers are the largest improvement for each p and mean shift size
combination.
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9.7 Summary

In this chapter, Bayesian algorithms for detecting process change and for
adjusting processes were developed. We discussed the connection between
the Bayesian process monitoring scheme and the CUSUM algorithm. A
sequential process adjustment method was derived from the Kalman filter
technique. Through simulation studies, this sequential adjustment method
combined with various control charts was found effective in quality control
of a manufacturing process that could be deteriorated by shifts in the process
mean.
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ABSTRACT This chapter is a review of recently proposed Bayesian pre-
dictive approaches to response surface optimization, in particular multiple
response surface optimization. The posterior predictive distribution of a
regression model is used to compute the posterior probability that a vector
of response variables, Y, is contained in a specified region, A, conditional
on a vector of predictive factors, x. Response surface optimization can then
be achieved by maximizing this posterior probability with respect to x. For
a chosen regression model, all of the uncertainty, as well as the correlation
among the response types, is accounted for through the posterior predic-
tive distribution. Some previously published frequentist approaches had not
accounted for the correlation among the response types and many have
ignored some aspects of model parameter uncertainty.

Applications of this Bayesian approach to response surface optimization
include the standard multivariate regression model, the seemingly unrelated
regressions model, the incorporation of noise variables, the “dual response”
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model (for mean and standard deviation), and Bayesian model averaging.
Related frequentist approaches are also reviewed. In addition, the notion of
preposterior calculations are discussed as they relate to sample size augmen-
tation that may be needed to refine a posterior predictive probability measure.
Some future research possibilities are also outlined.

10.1 Introduction

In multiple response surface optimization it is important for investigators to
have access to an optimization procedure that is easy to interpret and takes
into account the uncertainty of all of the unknown model parameters and
future (multivariate) responses. The Bayesian paradigm offers such an
approach through the posterior predictive distribution of the responses. This
posterior predictive distribution allows the investigator to compute a reliabil-
ity measure (e.g. conformance specification probability) that can be used for
process optimization. The Bayesian approach is also nice in that a preposterior
analysis can be done to estimate the effect of acquiring more data to reduce
model parameter uncertainty. In addition to inferences about single and mul-
tiple response types, this approach allows one to compute a Bayesian credible
region of factor-level points that possess an associated reliability measure that
is deemed satisfactory by the investigator.

In this section, I review two traditional approaches to multiple response
surface optimization and some additional approaches found in the response
surface literature. In subsequent sections of this chapter, I review recent results
based upon the posterior predictive approach and briefly discuss some future
modeling extensions in this area.

Two traditional approaches to multiple response surface optimization
have employed “overlapping response surfaces” and desirability functions.
Both of these approaches have serious problems with regard to ignoring
model parameter uncertainty. Fortunately, the posterior predictive distribu-
tion approach discussed in this chapter solves these problems and can even
be adapted to the above mentioned two traditional approaches in a natural
way.

The earliest and simplest approach to multiple response surface optimiza-
tion is the “overlapping mean response surface” method. Apparently, this
dates back to Lind et al. [25]. This method involves simply looking at over-
lapping response surfaces (e.g. by way of contour plots) to ascertain what
has been called a “sweet spot” (Anderson and Whitcomb [2]) where two or
more mean response surfaces possess a region of overlap with a desirable
multiple-response configuration. Further discussion of this approach can be
found in Montgomery and Bettencourt [29].

Below is an example of an optimization of a HPLC assay where the “over-
lapping mean response surface” method was used. Here, four responses were
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DESIGN-EXPERT Plot

Actual Factors:
X = % IPA
Y = Temp

Actual Constants:
PH (%H3PO4) = 0.175

Overlay Plot
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Tailing: 0.85

FIGURE 10.1
An overlay plot of the four mean response surfaces for the HPLC assay experiment.

considered for this optimization problem, “tailing”, “run time”, “Rs (critical
resolution)”, and “S/N (signal to noise ratio)”. It was desired to configure the
assay such that: Rs > 1.8, run time < 15, S/N > 300, and tailing is between
0.75-0.85. Three factors were involved in the optimization: “percent isopropyl
alcohol (%IPA)”, “column temperature (Temp)”, and pH. With the pH set at
0.175 (halfway between the experimental upper and lower pH limits), an
overlapping mean response surface plot (from the Design Expert statistical
package) is given in Figure 10.1. The “sweet spot” is represented by the lighter
triangular area in Figure 10.1. However, it is not clear how reliable this HPLC
assay will be for factor levels within the “sweet spot” region. In other words,
it is not clear what is the value of the posterior probability,

p(x) = Pr(Rs > 1.8, Run time < 15, S/N > 300,

0.75 < tailing < 0.85 | x, data)

for each factor level configuration x = (x1, x2, x3)′, where x1 = %IPA, x2 =
Temp, and x3 = pH. In general, this approach may be awkward to graph if
there are more than two or three experimental factors.

Another traditional approach to multiple response surface optimization
involves the use of what are called desirability functions. This approach was
put forth by Harrington [18], and later refined by Derringer and Suich [15],
and del Castillo, Montgomery, and McCarville [14]. The desirability function
takes on values in [0, 1] and is the (weighted) geometric mean of individual
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metrics on [0, 1], one for each response type. The weighting allows one to
place more emphasis on some response types versus others. The geometric
mean is useful in that if the desirability metric for one response type is very
poor (i.e. close to zero) then the overall desirability function will be close
to zero. Likewise, the geometric mean will be close to one, only if all of the
individual metrics are close to one. Harrington [18] proposed an absolute scale
to accompany his desirability function, while other desirability functions only
provide relative measures.

The “overlapping mean response” and desirability function approaches
have some serious drawbacks. They do not take into consideration the corre-
lations among the response types and the variability of the predictions. They
only take into consideration the values of the mean response surfaces; the
uncertainty of all of the model parameters is ignored.

Some attempts to model the prediction properties of multiple response
surfaces have used quadratic loss functions. These approaches require some
type of target value for each response type. Khuri and Conlon [22], Pignatiello
[38], Ames et al. [1], Vining [50], and Ko et al. [24] have proposed various
types of quadratic loss function approaches to multiple response surface opt-
imization. Except for Ames et al. [1], these methods take into account the
correlation structure of the responses types. However, they do not take into ac-
count the uncertainty of the variance-covariance matrix of the regression error
vectors. In addition, the properties of a loss function based upon a multivari-
ate quadratic form may be difficult for some experimenters to understand.

The most recent result by Ko et al. [24] provides a multivariate quadratic
loss function of the form

(E[Ŷ(x)] − T)′C(E[Ŷ(x)] − T) + trace[CΣŶ(x)] + trace[CΣY(x)], (10.1)

where C is a “cost” matrix, Ŷ(x) is the predicted value of y at x, T is a user-
specified vector of target values, ΣŶ(x) is the variance-covariance matrix of
the predicted response, Ŷ(x), at x, andΣY(x)is the variance-covariance matrix
of the true response, Y, at x. For the standard multivariate regression model,
ΣY(x) = Σ ( a constant matrix) and ΣŶ(x) = x′(X′X)−1xΣ. While the second
term in (10.1) takes into account the uncertainty of the predicted response, it
does not take into account the uncertainty of not knowing Σ. Likewise, the
third term in (10.1) also does not account for the uncertainty of not knowing
Σ. Ko et al. [24] and earlier related papers simply estimate Σ and treat it as
fixed. As we shall see below, the Bayesian approach takes into account the
uncertainty of all of the model parameters, including Σ. In fact, as discussed
below, the Bayesian approach can even average over different possible model
forms to account for model form uncertainty as well.

The overlapping mean response, desirability function, and quadratic loss
function approaches have the drawback that they do not completely char-
acterize the uncertainty associated with future multivariate responses and
their associated optimization measures. The danger of this is that an experi-
menter may use one of these methods to get an optimal factor configuration,
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validate it with two or three successful runs, and then begin production. For
example, suppose that the probability that a future multivariate response is
satisfactory is only 0.7. Even so, the chance of getting three successful, inde-
pendent validation runs is 0.343, which can easily happen. Hunter [21] states
that the variance of univariate response indices for multiresponse optimiza-
tion “can be disturbing” and further study is needed to assess the influence
of parameter uncertainty.

Del Castillo [13] proposed a multiple response surface optimization
method that uses confidence regions for the optimum to address regression
model parameter uncertainty. While this approach is easier to understand
than a multivariate quadratic form, it requires the type of problem that can
be formulated as having a primary response variable (and various secondary
response variables). Furthermore, the correlation structure of the responses
types are not taken into consideration.

Chiao and Hamada [12] took an important step in multiple response sur-
face optimization. They have proposed an approach which provides a method
to estimate the probability that a multivariate normal response will satisfy
desired conformance conditions. Their approach is nice in that it takes into
account the variance-covariance structure of the multivariate response, can
accommodate heteroscedastic and noise variable regression models, and is
easy for investigators to understand. However, even this approach does not
take into account the uncertainty of the model parameter estimates. In some
cases, this can cause the probability of conformance to appear larger than it
should be.

I review in the next section the basic approach proposed in Peterson [36]
and show some of its advantages over the two traditional approaches men-
tioned above as well and the quadratic loss function approach. In Sections 10.3
to 10.6, I discuss various generalizations of this posterior predictive approach.
In Section 10.7, a summary and some future possibilities are presented.

10.2 Illustration of the Posterior Predictive Approach using
the Standard Multivariate Regression Model

Let Y = (Y1, Y2, . . . Yr )′ be the multivariate (r × 1) response vector and let x =
(x1, x2, . . . , xk)′ be the (k×1) vector of factor variables. The standard regression
model for multiple response surface modeling is the standard multivariate
multiple regression model,

Y = Bz(x) + e, (10.2)

where B is an r × q matrix of regression coefficients and z(x) is a q × 1 vector-
valued function of x. The vector e has a multivariate normal distribution
with mean vector 0 and variance-covariance matrix, Σ. Typically in response
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surface analysis, the model in (10.2) is composed of a quadratic model for
each mean response, but we are allowing a more general covariate structure
here. The typical multivariate regression assumption, that z(x) is the same for
each response type, is assumed in this section.

If the experimenter is simply interested in Y being in some desirable sub-
set of the response space, A, then he or she should consider the posterior
probability,

p(x) = Pr(Y ∈ A | x, data), (10.3)

where the probability measure, p(x), is based upon the posterior predictive
distribution of Y given the vector of factor levels, x. This will then give the
experimenter a measure of the reliability of Y being in A for a given x. This
measure, of course, takes into account the variance-covariance structure of the
data and the uncertainty of all of the model parameters through the posterior
predictive distribution of Y. A search of the x-space will then provide the
experimenter with information on conditions for optimizing the reliability of
Y being in A.

If for some reason, an investigator desires to use a some type of desirability
function, D(y), this posterior predictive approach can still be applied by using
the probability measure, p(x) = Pr(D(Y) > D∗ | x, data) for some specified
lower desirability bound D∗. (An investigator may want to use a desirability
function to weight various response types differently.) The event {D(Y) > D∗}
is of course equivalent to {Y ∈ A} for an appropriate set A. A similar statement
can be made about a quadratic loss function, Q(y) for some upper bound Q∗.
Whatever the form of the D or Q functions, the variance-covariance structure
of the responses and uncertainty of all of the model parameters are accounted
for through the posterior predictive distribution.

Assuming the classical noninformative prior for the model parameters,
B and Σ, which is proportional to |Σ|−(r+1)/2, it follows that the posterior
predictive distribution for Y given x is multivariate t with ν = n−r −q +1 df.
(Here, of course, it is assumed that n is such that ν ≥ 1.) This multivariate
t-distribution has a location parameter vector equal to µ̂ = B̂z(x), where B̂
is the least squares estimate of B. Furthermore, this t-distribution has a scale
parameter matrix, S, equal to

(1 + z(x)′D−1z(x))Σ̂,

where D =
n∑

i=1
z(xi ) z(xi )′ and Σ̂ = 1

ν
(y∗ − (B̂Z)′)′(y∗ − (B̂Z)′). Note, Z is the

q ×n matrix formed by the n z(xi )covariate vectors and y∗ is the n×r matrix
formed by the ny′

i (1 × r ) vectors. For more details see Press [39] (Chapter 12)
and Chapter 1 in this volume.

Probabilities, like p(x) in (10.3) can be computed simply by Monte Carlo
simulation from the above multivariate t-distribution. One can simulate a
multivariate t random variable (r.v.), Y, by simulation of a multivariate normal
r.v. and an independent chi-square r.v. For this particular problem the
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simulation is done as follows. Let W be a multivariate normal r.v. with zero
mean vector and variance-covariance matrix equal to S. Let U be a chi-square
r.v. with ν df. that is stochastically independent of W. Next, define

Yj = (
√

ν Wj/
√

U) + µ̂ j , for j = 1, . . . , r (10.4)

where Yj is the j th element of Y, Wj is the j th element of W, and µ̂ j is the j th

element of µ̂ = B̂z(x). It follows then that Y has a multivariate t-distribution
with ν df. Note that W can be easily simulated by generating the random
variable, Γ′e, where Γ′ Γ = S and e is an r × 1 vector of independent standard
normal rv’s.

Using Monte Carlo simulation from (4), one can approximate the reliability
p(x) in (10.3) for various x-values in the experimental region (using large N)

p(x) ≈ 1
N

N∑
s=1

I (Y(s) ∈ A),

where N is the number of simulations, I (.) is the 0-1 indicator function, and
the Y(s) r.v.’s are simulated conditional on x and the data. For a small number
of factors it is computationally reasonable to grid over the experimental region
to compute values of p(x) for purposes of optimization. However, even for
three or more factors, it may be preferable to have a more efficient approach to
optimizing p(x). One approach is to maximize p(x) using general optimization
methods such as those discussed in Nelder-Mead [33], Price [40], or Chatterjee,
Laudato, and Lynch [9].

Another approach is to compute p(x) for x-points in some response surface
experimental design and then fit a closed-form response surface model to
obtain an approximate reliability surface, p̃(x). Since values of p̃(x) can be
computed much more quickly than p(x), approximate optimization of p(x)
can be done. For example, a ridge analysis could be done on p̃(x) to explore
in an approximate fashion how p(x) changes as x moves out from the center
of the experimental region in an optimal way (i.e. optimally over spheres of
increasing radius centered at the center of the experimental region). For a
review of ridge analysis see Hoerl [20].

To evaluate the reliability of optimal results produced by the “overlapping
mean responses”, desirability function, and quadratic loss function
approaches, Peterson [36] computes Bayesian probabilities, p(x), of the form
Pr(Y ∈ A | x, data), Pr(D(Y) > D∗ | x, data), and Pr(Q(Y) < Q∗ | x, data)
respectively. One example involves a 3-component mixture experiment with
two responses, Y1 and Y2, where it is assumed that one desires Y1 to be at most
234 and Y2 to be at most 18.5, hence for this experiment A = {(y1, y2)′ : y1 ≤
234, y2 ≤ 18.5}. Using the standard multivariate class of regression models,
the resulting estimated models were:

ŷ1 = 248x1 + 272x2 + 533x3 − 485x1x3 − 424x2x3

ŷ2 = 18.7x1 + 14.1x2 + 35.4x3 − 36.7x1x3 + 18.0x2x3 .
(10.5)
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Using the overlapping mean responses approach it appears that the point
x = (0.75, 0, 0.25)′ is a good choice. (See Figure 1 in Peterson [36].) However,
using the multivariate t posterior predictive distribution described above
it turns out that Pr(Y ∈ A | x, data) is only 0.68 which is disappointingly
small even though both corresponding means satisfy the conditions described
by the set A. For this example, the desirability function of Deringer and
Suich [15] is also optimized to obtain an optimum value of Dopt = 0.74
obtained at x = (0.78, 0, 0.22)′. However, the associated Bayesian reli-
ability Pr(D(Y) > D∗ = 1/2 Dopt | x, data) is only 0.6. In other words, the
posterior probability of D(Y) exceeding only one-half of Dopt is only 0.6 at
x = (0.78, 0, 0.22)′. While the more commonly used Derringer-Suich [15]
desirability function does not provide an absolute quality criterion, the
Harrington [18] desirability function does. Harrington provides an absolute
quality scale for his desirability function (call it DH): DH = 0-0.37 (“very
poor” to “poor”), DH = 0.37-0.60 (“fair”), DH = 0.60-0.80 (“good”), and
DH = 0.80-1 (“excellent”). Here, it is interesting to note that DH(ŷ) is maxi-
mized to 0.96 at x = (0.76, 0, 0.24)’. However, pH(x) = Pr(DH(Y) ≥ 0.60 | x) =
0.72. This shows that the probability of obtaining a future response that is at
least borderline “good” is only 0.72 despite the fact that the optimal desirabil-
ity was estimated to be 0.96, which is “excellent” on the Harrington scale!

For the quadratic loss function, Q(y), developed in Vining [50], the mini-
mized value of Q(ŷ) is Qopt = 7.79 at x = (0.76, 0, 0.24)’. However Pr(Q(Y) <

2Qopt | x = (0.76, 0, 0.24)′) is only 0.38, i.e. the posterior probably of the Q(Y)
quadratic loss being less than twice Qopt is only 0.38.

In the situation where the posterior probability, p(x), is not large enough
it is still possible to estimate how p(x) would change if more data were gath-
ered or if the process variability were reduced. If the response means are all
satisfactory, i.e. if E(Y | x) is in the interior of A, then p(x) should increase if
the spread of the posterior predictive distribution were reduced. The spread
of the posterior predictive distribution should decrease if more data are gath-
ered or if the process variability is reduced. One can estimate the effect of
reducing the process variation by using the pseudo-data, y∗

j = ŷj +(1 − λ j )ê j ,
j = 1,. . . , p, (where 100 λ j represents a percent reduction in residual size for the
j th response type) to artificially generate new process data having the same
mean values but with reduced variances. This will help with understanding
how the process variation affects the reliability.

An additional approach is to modify the posterior predictive distribution
in such a way that one can simulate responses from this distribution as if
more data had been acquired. For the posterior sampling model in (4) this
is easily done as follows. Note that the multivariate t posterior predictive
density depends upon the data only through the sufficient statistics, Σ̂ and B̂,
the degrees of freedom, and the design matrix Z. By increasing the rows of the
design matrix (to add new data points), and augmenting the df accordingly,
one can simulate new data. This corresponds to adding artificial data in such
a way that the sufficient statistics, Σ̂ and B̂, remain the same. This will give the
experimenter an idea of how much the reliability can be increased by reducing



P1: Binaya Dash

September 7, 2006 17:50 C5440 C5440˙C010

A Review of Bayesian Reliability Approaches 277

model uncertainty. For example, the experimenter can forecast the effects of
replicating the experiment a certain number of times. This idea is similar
in spirit to the notion of a “preposterior” analysis as described by Raiffa and
Schlaiffer [41]. For example, Peterson [36] shows that for the mixture example
discussed above by reducing the process variation by 25% we should expect
an increase in Pr(Y ∈ A | x, data) from 0.68 to 0.80 (using the same amount of
data). On the other hand, without changing the underlying process variation,
by replicating the experiment to double the amount of data we should expect
an increase in Pr(Y ∈ A | x, data) from 0.68 to 0.88. If reducing the process
variation is difficult and 0.88 is considered an adequate reliability, then it
may be preferable to simply repeat the experiment to get more data. If higher
reliability is needed, then one may need to both decrease the process variation
and increase the size of the experiment. For example, if the process variation
were reduced by 50% and the size of the experiment were doubled then we
would expect Pr(Y ∈ A | x, data) to increase to 0.995.

With regard to the choice of λ j values, these would be calibrated to increase
p(x) = Pr(Y ∈ A | data, x) to the required level if the preposterior analysis
indicates that a reasonable increase in sample size will not increase p(x) to
the desired level of reliability. (As stated previously, this of course assumes
that E(Y) is in the interior of A.) For example, if three replications of the data
increase p(x) from 0.65 to 0.75, and the minimum required value for p(x) is 0.9,
then one may want to consider what value of λ ( or λ’s) would be needed to
push p(x) up to 0.9. This will provide an indication of how much the process
variability will need to be reduced to achieve the required reliability.

It is worth pointing out that simulating from the posterior predictive dis-
tribution to get “new” data raises a subtle but important issue for Bayesian
analysis. The issue is that if p(x) = Pr(Y ∈ A | data, x) is your optimization
criterion, then the use of additional data simulated from the posterior pre-
dictive distribution does not help. A heuristic argument for this begins with
the fact that Y values simulated from the posterior predictive distribution are
adjusted for the uncertainty in the regression model parameters. If we use
these Y values as additional data, then the Bayesian process to compute p(x)
over adjusts for model parameter uncertainty resulting in an updated value
for p(x) that is the same as before. This can in fact be shown mathematically
as follows. To keep the notation simple, I will consider the use of only one
new Y value simulated from the posterior predictive distribution and I will
suppress notation for the dependence upon x.

Consider Pr(Y ∈ A | y1, . . . yn, Yn+1), where Yn+1 was simulated from the
posterior predictive distribution conditional on y1, . . . , yn. A natural pre-
posterior update, using Yn+1, might be to compute (e.g. via Monte Carlo
simulation),

EYn+1|y1,...,yn{Pr(Y ∈ A | y1, . . . , yn, Yn+1)}.

However, it can be shown that EYn+1|y1,...,yn{Pr(Y ∈ A | y1, . . . , yn, Yn+1)} =
Pr(Y ∈ A | y1, . . . , yn), so this type of update puts you right back where you
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started. To see this note that

EYn+1|y1,...,yn{Pr(Y ∈ A|y1, . . . , yn, Yn+1)}

=
∫ ∫

A

p(y|y1, . . . , yn, yn+1) p(yn+1|y1, . . . , yn)dy dyn+1

=
∫ ∫

A

p(y, yn+1|y1, . . . , yn) dy dyn+1

=
∫
A

∫
p(y, yn+1|y1, . . . , yn)dyn+1dy

= Pr(Y ∈ A|y1, . . . , yn).

As a byproduct of Monte Carlo computation of Pr(Y ∈ A|x, data), it is
easy to also compute marginal probabilities involving each of the individual
responses. If we denote

pi (x) = Pr(Yi ∈ Ai |x, data),

where Ai is an interval (possibly one or two sided), then we can assess the
pi (x)’s simultaneously along with p(x). Modification of A and the Ai ’s can be
used to allow an investigator to directly observe economic or performance
issues through the p(x) and pi (x)’s respectively, which can be easily related
to how often the process will be invoked. Of course, other marginal (joint)
probabilities concerning the Yi ’s can be computed in a similar fashion.

For purposes of assessing process ruggedness, a Bayesian credible region
can also be computed. For example, this can be done by using p(x) for mapping
out all of the x-values for which p(x) is at least 0.95, say. See Peterson [36] for
an example.

As one can see, the posterior predictive approach described above offers
a good deal of flexibility for inference about multiple response surface
experiments. The Bayesian approach provides a complete way to model all
of the sources of uncertainty. Alternatively, one could compute p(x;µ, Σ) =
Pr(Y ∈ A|x, µ, Σ) and try to apply frequentist inference theory to p(x;µ, Σ),
but this would be difficult as p(x;µ, Σ) may require Monte Carlo compu-
tations just to compute it for any specific values of µ and Σ. Optimization
over p(x;µ, Σ) would somehow have to take into account the uncertainty of
µ and Σ.

10.3 Incorporation of Noise Variables

Noise variables are factors that affect a process but are not directly controlled
in typical process runs. Such factors may be related to uncontrolled condi-
tions such as ambient temperature, humidity, process aging, variation in raw
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materials, or customer usage. The strategy of configuring controllable factors
to reduce the influence of the noise variables often comes under the heading
of “robust parameter design”. The application of response surface method-
ology for improving processes involving noise variables dates back to the
early 1990’s (Box and Jones [6], Vining and Myers [49], Myers, Khuri, and
Vining [30]).

The quadratic response surface model (for one response) that is often used
for incorporating noise variables with controllable factors was initially pro-
posed by Box and Jones (1990), and appears in well-known response surface
texts by Khuri and Cornell [23] (p. 423) and Myers and Montgomery [32]
(p. 557). It has the form

Y = β0 + β′xc + x′
cBxc + γ ′xn + x′

c∆xn + e, (10.6)

where xc is a k × 1 vector of control factors, xn is an l × 1 vector of noise vari-
ables, and e is a random normal error term with mean zero and variance σ 2.
Here,β is a k×1 vector of regression coefficients corresponding to xcand B is a
k × k symmetric matrix with diagonal elements equal to βi i (i = 1, . . . , k) and
off-diagonal elements equal to 1/2 βi j (i < j). Furthermore, γ = (γ1, . . . , γl)′

and ∆ is a k × l matrix composed of elements δi j (i = 1, . . . , k; j = 1, . . . l). In
the model in (10.6), it is assumed that the noise variables have a multivariate
normal distribution, and have been scaled so that they have a mean vector
equal to 0 and a variance-covariance matrix equal to σ 2

xn
Ω. It is also typically

assumed that Ω is equal to the identity matrix, I, so the noise variables are
independent. The assumption that Ω = I may not always hold but is appro-
priate for many practical situations (Borror, Montgomery, and Myers [5]).

In the presence of random noise variables, xn, we wish to do robust opti-
mization, that is we wish to find factor levels of xc (the controllable factors)
that minimize the influence of the noise variables. Let x = (x′

c , x′
n)′. Frequen-

tist univariate approaches have considered two basic strategies. One involves
computing

min
xc∈R

Varxn,e (Y|x),

subject to Exn,e (Y|x) = c

where the expected value and variance are computed relative to both the
xn and e r.v.’s. Here, R is some specified experimental region and c is a
specified constant. This approach however has the drawback requiring the
experimenter to specify a (possibly artificial) constraint value for Exn,e (Y|x).
See Miró-Quesada and del Castillo [28] for a recent paper on a frequentist
approach to this problem.

Another strategy is to minimize Exn,e{(Y − T)2|x} for some specified target
value, T . For robust optimization problems that involve “larger the better”
(LTB) or “smaller the better” (STB) response values, other loss functions have
been proposed. For the STB case the loss function is sometimes defined as
above but with T = 0, whereas for the LTB problems, loss function forms
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involving m(xc , xn;φ)−2 or exp(−m(xc , xn;φ)) have been proposed, where
m(xc , xn;φ) represents the first five terms in (10.6) (Steiner and Hamada [48]).
Myers and Montgomery [31] (p492) have also proposed loss functions for the
STB and LTB cases based upon notions of upper and lower prediction limits
respectively.

On the other hand, for the STB (LTB) case Peterson and Kuhn [37] propose
setting

T = min
(max)
xc∈R

(β̂0 + x′
cβ̂ + x′

cB̂xc),

where β̂ and B̂ are the least squares estimates ofβ and B respectively. Suppose
we wish to minimize (maximize) the mean response. The expression for the
target, T , is taken as the minimum (maximum) mean response value with
respect to the controllable variables, xc . This may be a more natural and direct
approach than previous target forms that have been used for “smaller the
better” and “larger the better” situations.

Chiao and Hamada [12], Romano et al. [44], and Miró-Quesada and del
Castillo [27] have proposed non-Bayesian solutions to the multivariate-
response robust parameter design problem. For consulting purposes, the
latter two optimization criteria are mathematically more difficult to intuitively
understand than that of Chiao and Hamada [12] who obtains a frequentist
estimate of the probability of conformance, unconditional on the noise vari-
ables. Their approach, however, requires a crossed-array replicated design
because the variances at each factor level combination are computed from
the replications. All of these three multivariate approaches do not take into
account the uncertainty of the all of the model parameter estimates.

Miró-Quesada et al. [26] extend the approach of Peterson [36] to incorpo-
rate noise variables. They compute the posterior probability,

p(xc) = Pr(Y ∈ A|xc , data) = Exn (Pr(Y ∈ A|x, data));

in other words the probability of conformance unconditional on the noise vari-
ables. Robust process optimization can then be done by maximizing p(xc).
In addition, p(xc) is easier to understand than the most of the frequentist
noise variable optimization objective functions. And, of course, the Bayesian
approach models the uncertainty of all of the model parameters. A Monte
Carlo estimate of p(xc) can be obtained by a slight modification of the ap-
proach in Peterson [36]. Since it is typically assumed that the distribution of
the noise variables are known, we simply simulate an xn to obtain x = (x′

c , x′
n)′

and then use x to simulate Y given x and the data. This process is repeated N
times (for large N) to get a Monte Carlo estimate of p(xc).

Miró-Quesada et al. [26] use the HPLC example discussed in the Intro-
duction section to compute

p(xc) = Pr(Rs > 1.8, Run time < 15, S/N > 300,

0.75 < tailing < 0.85|xc , data),
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assuming that the (coded) “%IPA” factor was a noise factor with mean 0
and standard deviation 0.1. The maximum p(xc) value obtained over the
experimental region was 0.966 (using 5,000 simulations). On the other hand,
if the “%IPA” factor was not modeled as a noise factor, but instead as a control
factor, the maximum p(x) value obtained over the experimental region was
estimated to be 1 even for 10,000 simulations. That p(xc) is less than p(x) is to
be expected, because for p(xc), the “%IPA” factor is random in a neighborhood
of zero, which is not optimal when considered as a control factor.

10.4 Bayesian Model Averaging

The posterior predictive approach to response surface optimization can be
taken one step further by averaging over a competing set of models. For
the univariate response case (with normally distributed regression errors),
this approach has been put forth by Rajagopal and del Castillo [42]. Using
previous results on Bayesian model selection they obtain an expression for
the posterior probability of model i , Pr(Mi |data), for each of several plausible
models. It follows directly that

p(x) =
∑

i

Pr(Y ∈ A|x, data, Mi ) Pr(Mi |data) (10.7)

is a probability of conformance that is a weighted average over several re-
gression models, where the weights correspond to the posterior probabilities
of the models under consideration. Rajagopal and del Castillo [42] derive a
computationally efficient and accurate expression for Pr(Y ∈ A|x, data, Mi )
that does not require Monte Carlo simulation. The expression for Pr(Mi |data)
is in closed form, so p(x) in (10.7) can be computed quickly even for a large
number of regression models.

Rajagopal and del Castillo [42] use two examples from the literature to
show that the Bayesian model averaging approach that maximizes p(x) in
(10.7) above appears to provide a more robust optimization in the sense that it
produces an x-point that provides good values of p(x) for any of the individual
models that have a relatively high posterior probability, i.e. relatively high
Pr(Mi |data).

Rajagopal et al. [43] present a modification to incorporate noise variables.
They do this by averaging over the noise variables to compute

Pr(Y ∈ A|xc , data, Mi ) = Exn (Pr(Y ∈ A|xc , xn, data, Mi )).

Robust process optimization (within the Bayesian model averaging frame-
work) can then be done by maximization of

p(xc) =
∑

i

Pr(Y ∈ A|xc , data, Mi ) Pr(Mi |data).
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With or without noise variables, the extension to multivariate response
models is more challenging. The multiple response framework may require
the use of MCMC methods (such as Gibbs Sampling, Geman and Geman
[16]). A nice review of Gibbs Sampling is given by Casella and George [8].
A related reference by Brown et al. [7] involves variable selection for the
standard multivariate regression model using MCMC techniques. See also
Chapter 2 in this volume for a discussion of Bayesian computational
methods.

10.5 Seemingly Unrelated Regressions Model

An extension of the work of Peterson [36] to the seemingly unrelated regres-
sions model was given by Peterson, et al. [35]. To compute p(x) = Pr(Y ∈ A|x)
for multiresponse process optimization, we need to obtain the posterior pre-
dictive distribution for Y given x. The regression model considered here is
the one that allows the experimenter to use a different (parametrically) linear
model for each response type. This will allow for more flexible and accu-
rate modeling of Y than one would obtain with the standard multivariate
regression (SMR) model.

Here, Y = (Y1, . . . , Yr )′ is a vector of r response-types and x is a k × 1
vector of factors that influence Y by way of the functions

Yi = zi (x)′βi + ei , i = 1, . . . , r (10.8)

where βi is a qi × 1 vector of regression model parameters and zi (x) is a
qi × 1 vector of covariates which are arbitrary functions of x. Furthermore,
e = (e1, . . ., er )′ is a random variable with a multivariate normal distribution
having mean vector 0 and variance-covariance matrix, Σ. The model in (10.8)
has been referred to as the “seemingly unrelated regressions” (SUR) model
(Zellner [52]). When z1(x) = · · · = zr (x) ≡ z(x), one obtains the SMR model.

In order to model all of the data and obtain a convenient form for estimat-
ing the regression parameters, consider the following vector-matrix form,

Ỹ = Zβ + ẽ

where Ỹ = [Ỹ ′
1, . . . , Ỹ ′

r ], β = [β′
1, . . . , β′

r ]′, ẽ = [ẽ′
1, . . . , ẽ′

r ]′, and Z is a nr × q
block diagonal matrix of the form diag(Z1, . . . , Zr ), with q = q1 + · · · + qr .
Here, Ỹ ′

i = (Yi1, . . . , Yin), ẽ′
i = (ei1, . . . , ein), and Zi = [zi1(x)′, . . . , zin(x)′]′

for i = 1,. . . , r . For a given Σ, the maximum likelihood estimate (MLE) of β
can be expressed as

β̂ = [Z′(Σ ⊗ In)−1Z]−1Z′(Σ ⊗ In)−1Ỹ, (10.9)
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where In is the n × n identity matrix and ⊗ is the Kronecker direct product
operator. The variance-covariance matrix of β̂ is

Var(β̂) = [Z′(Σ ⊗ In)−1Z]−1.

The variance-covariance matrix, Σ, can be estimated by

Σ̂
∗ = Σ̂(β̂OL S) = 1

n

n∑
j=1

ê j (β̂OL S)ê j (β̂OL S)′, (10.10)

where ê′
j (β̂OL S) = (ê1 j (β̂OL S), . . . , êr j (β̂OL S)) and êi j (β̂OL S) = yi j−

zi (xj )′β̂OL S
i , i= 1,. . . , r . The estimator, β̂OL S

i is the ordinary least squares
estimator ofβi for each response-type i independently of the other responses.
The estimator of β,

β̂∗ = [Z′(Σ̂
∗ ⊗ In)−1Z]−1Z′(Σ̂

∗ ⊗ In)−1Ỹ,

is called the two-stage Aiken estimator (Zellner [52]). For the SMR model, the
MLE for β exists and becomes β̂ = [In ⊗ (Z′Z)−1Z′]Ỹ.

For the SUR model no closed-form posterior density or sampling proce-
dure exists. However, using Gibbs-sampling it is easy to generate random
pairs of SUR model parameters from the posterior distribution of (β, Σ). See
for example Griffiths [17] (pp 263–290). Using the SUR model in (10.8) it is then
straightforward to simulate Y r.v.’s from the posterior predictive distribution
of Y given x.

In order to compute and maximize p(x) = Pr(Y ∈ A|x) over the exper-
imental region, it is important to have a relatively efficient method for ap-
proximating p(x) by Monte Carlo simulations. The approach taken in this
paper is to simulate a large number of r.v.’s from the posterior distribution of
(β, Σ), and use each (β, Σ) value to generate a Y r.v. for each x. In this way, the
sample of (β, Σ) values can be re-used for simulating Y values at each x point,
instead having to do the Gibbs Sampling all over again for each x-point.

Consider the noninformative prior for(β, Σ) which is proportional to
|Σ|−(r+1)/.2. Note that the posterior distribution of β given Σ is modeled by

β∼ N(β̂(Σ), (Z′(Σ ⊗ In)−1Z)−1),

where β̂(Σ) has the form in (10.9). This follows from Srivastava and Giles
[46] (pp 317–318). Note also that the posterior distribution of Σ−1 given β is
described by

Σ−1 ∼ W(n, n−1Σ̂
−1

(β)),

where W is the Wishart distribution with n df and noncentrality parameter
n−1Σ̂

−1
(β). This follows from a slight modification of expressions in Percy

[34]. Here, Σ̂(β) has the form in (10.10) with β̂OL S replaced by β. Sampling
values from the posterior distribution of (β, Σ) can be done as follows using
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Gibbs sampling. Generate a β value using

β = β̂(Σ) + R′ε0,

where R′R = [Z′(Σ ⊗ In)−1Z]−1 and ε0 is distributed as N(0, Ir ). Generate a
Σ value using

Σ−1 = Γ′SΓ,

where Γ′Γ = n−1Σ̂
−1

(β), S =∑n
i=1 εiε

′
i , and ε0, ε1, . . . , εn are iid N(0, Ir ). To

compute p(x), N Y-vectors are generated for each x. Each simulated Y-vector,
Y(s) , is generated using

Y(s) =

z1(x)′
...

zr (x)′

β(s) + e(s) ,

where e(s) is sampled from N(0, Σ(s)), (β(s) , Σ(s)) is sampled using the Gibbs
sampler, and s = 1,. . . , N. For each new x-point, the same N(β(s) , Σ(s)) pairs
are used. The Bayesian reliability, p(x), can be approximated by

1
N

N∑
s=1

I (Y(s) ∈ A),

for large N.
Percy [34] provides a similar, but three-step, Gibbs sampling procedure

that generates a (Y, β, Σ) triplet for a given x value. However, this is not
efficient for our purposes as this Gibbs sampling procedure might have to
be re-done for many x-points in order to optimize p(x). Percy also proposes
a multivariate normal approximation to the posterior predictive distribution
of Y given x. However, such an approximation may not be accurate for small
sample sizes. This is because one would expect the true posterior predictive
distribution of Y given x to have heavier tails than a normal distribution due
to model parameter uncertainty; this is indeed the case with the SMR model.

As a comparison, Peterson, et al. [35] computed p(x) = Pr(Y1 ≤ 234, Y2 ≤
19|x) for the three-component mixture experiment discussed in Section 10.2,
but this time using a SUR multivariate regression model instead of the stan-
dard multivariate model in (10.1). In this case Peterson, et al. [35] used a
Becker-type model (Becker [3]) for the second response variable. The esti-
mated model has the form

ŷ2 = 18.8x1 + 15.6x2 + 35.4x3 − 3.59 min(x1, x2) − 17.7 min(x1, x3)
+ 10.0 min(x2, x3),

which resulted in a mean squared error of 1.71, which is a 53% reduction
over the mean squared error for the quadratic model for Y2 in (10.5). For the
standard multivariate regression model, Pr(Y1 ≤ 234, Y2 ≤ 19|x) maximized
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over the experimental region was determined to be 0.86, while for the SUR
model it was determined to be only 0.54. One might expect the best posterior
predictive probability to be better for the two SUR models when one of them
has a much better fit than its counterpart using the standard multivariate
regression model. However, the Becker model also had a generally higher
mean for Y2 in the region surrounding the best operating conditions.

10.6 The “Dual Response” Model

In the process optimization literature the term “dual response” (regression)
model has come to mean a regression model where both the mean and vari-
ance of a (single) response is a function of the experimental factors. This
model is nice in that it gives the experimenter the flexibility of assessing how
both the mean and variance change over the experimental region. This is an
important issue with regard to maximizing p(x) = Pr(Y ∈ A|x, data)as p(x)
is sensitive to both the mean and variance of the regression response model.

Chen and Ye [11] have proposed a Bayesian hierarchical model for the
dual response situation. They show how to use Gibbs Sampling to simulate
from the posterior of the regression model parameters. They do not make
inferences of the form p(x) = Pr(Y ∈ A|x, data), nor do they compute the
posterior predictive distribution of their regression model. However, such
computations are straightforward if one can simulate values from the joint
posterior of all the model parameters.

They do, however, solve the difficult aspects of the problem by using
a hierarchical approach in their Bayesian formulation. The set-up for their
regression model is as follows. It is assumed that there are m design points,
and at each design point there are two or more responses measured. Let x
represent a k×1 vector of control factors. For each xi design point, yi1, . . . , yini

responses are sampled. For each yi j response we have

yi j |β, σ 2
i ∼ N

(
x′

iβ, σ 2
i

)
for i = 1, . . . , m; j = 1, . . . , ni .

Also,

ln σ 2
i

∣∣γ, δ2 ∼ N(z′
iγ, δ2) for i = 1, . . . , m

The following diffuse prior distributions are used for β, γ, and δ2:

π(β) ∝ 1, π(γ) ∝ 1, π(δ2) ∝ 1
δ2 exp

(
− λ

δ2

)
,

where λ is a small, positive number. (They also propose a proper prior distri-
bution for β and for γ.) In addition to the usual assumption of independence
of the y′

i j s (given β and σi ), it is further assumed that the σ ′
i s are independent

conditional on γ and δ2. Furthermore, β, γ, and δ2 are assumed to be apriori
independent.
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Chen and Ye [11] sample from the joint posterior distribution of (β, γ, δ2,
σ 2

1 , . . . , σ 2
m) using Gibbs Sampling with a modification for the simulation of

the σ 2
i ’s conditional on the data and other parameters, because this simulation

is not direct. Chen and Ye [11] use a rejection algorithm to simulate the σ 2
i ’s

conditional on the data and other parameters. The Gibbs Sampling posterior
distribution forms are:

π(β|others) ∼ N(β̂, Σ̂), where β̂ = (X′V−1X)−1X′V−1Ȳ

and Σ̂ = (X′V−1X)−1

π(γ|others) ∼ N(γ̂, Ω̂), where γ̂ = (Z′Z)−1Z′d and Ω̂ = (Z′Z)−1δ2

π(δ2|others) ∼ Inverse − gamma
(

N
2

,
(d − Zγ)′(d − Zγ) + 2λ

2

)
π
(
σ 2

i

∣∣others
) ∝ 1(

σ 2
i

)ni /2+1 exp
{

− 1
2σ 2

i

[
(ni − 1)s2

i + ni ( ȳ − x′
iβ)2]

− 1
2δ2

(
ln σ 2

i − z′
iγ
)2
}

,

for i = 1,. . . , m.
The Ȳ above is the m × 1 vector of sample means at each of the m design

points, V is the variance-covariance matrix for Ȳ, and d = (ln σ 2
1 , . . . , ln σ 2

m).
Here, X is an m × p design matrix for the distinct x’s and Z is an m × q
design matrix for the distinct z’s. While it is not possible to sample from
π(σ 2

i |others)directly, Chen and Ye [11] sample indirectly using a rejection
algorithm. Using their improper prior distributions on β and γ, Chen and Ye
[11] prove that the resulting joint posterior density of (β, γ, σ 2

1 , . . . , σ 2
m, δ2) is

proper for ni > 1 for i = 1,. . . , m.
Using the MCMC approach of Chen and Ye [11], one can get posterior

samples of (β, γ) and use these to estimate p(x) = Pr(Y ∈ A|x, data) for any
x. Typically, A= [L , U] for some specified lower and upper limits, respectively.
The point x does not have to be a design point, although good statistical prac-
tice dictates that x should be within (or not far outside of) the experimental
region. One can estimate p(x) = Pr(Y ∈ A|x, data) by simulating many re-
sponse values of y(s) , where

y(s) = x′β(s) + exp(z′γ(s))ε(s) ,

(β(s) , γ(s)) is a sample from the joint posterior distribution of β and γ, and
ε(s) ∼ N(0, 1) independently of β and γ.

10.7 Summary and Future Possibilities

The approaches discussed above for various statistical models all have a
common theme in that one is trying to compute p(x) = Pr(Y ∈ A|x, data)
for various values of a set of controllable factors, x , for the purpose of
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optimizing p(x). Of course, it is not surprising that one can conceive of many
more statistical models can be could be embedded into the p(x) = Pr(Y ∈ A|x,
data) paradigm for optimization. In this final section, I discuss some fur-
ther possibilities and leave it to the reader to try to think of others as well.
(I would be very happy to hear about ideas for models not mentioned in this
chapter!)

For many investigations, the experiment must be broken up into two or
more parts or “experimental batches” due to time or physical constraints or
the existence of certain hard-to-change factors. This modification of the de-
sign typically induces a type of split plot experiment which involves at least
two sources of random error (aside from noise variables). Gibbs Sampling
methods exist for univariate split-plot models (Hobert and Casella [19]), and
hence Monte Carlo estimation of p(x) = Pr(Y ∈ A|x, data) is possible by
sampling from the joint posterior distribution of all of the model
parameters and using this distribution to sample from the posterior predictive
distribution of Y(as shown in the immediately proceeding section). Gibbs
Sampling can also be applied to multiple-response mixed-effects models
(Schafer and Yucel [45]) for estimation of p(x) as well. This notion of “batches”
of data may also need to come into play for a preposterior analysis if the
experimenter believes that simply replicating the experiment will induce a
batch effect.

An important regression model for multivariate normally distributed re-
sponses has been proposed by Chaio and Hamada [12]. It is a generalization
of the SUR model in that the variance-covariance matrix of the vector of
errors, as well as the vector of response means, is a function of (controllable
and noise) factors. A Bayesian solution to computing p(x) = Pr(Y ∈ A|x, data)
for controllable factors, x, using this model would provide a very general
model for process optimization for normally distributed data. Again, the
Bayesian approach would adjust for the substantial number of unknown
parameters that could occur with such a model.

Outside of the normally distributed response situation, one may prefer
to use generalized linear models or survival data (time-to-response) models
of either a univariate or multivariate form. Zeger and Karim [51] provide a
Gibbs Sampling procedure for a (univariate) generalized linear mixed model.
But one must take care with this approach with regard to having a proper joint
posterior (Hobert and Casella [19]). Besag, Green, Higdon, and Mengersen [4]
provide a review of MCMC that includes a discussion of MCMC applications
to the generalized linear mixed model.

Chen, Shao, and Ibrahim [10] (Chapter 10) give a nice review of simulating
values from the posterior of a semiparametric proportional hazards regression
model (for univariate response-time data). Once such samples are available,
simulation from the posterior predictive density can be done to compute
p(x) = Pr(Y ∈ A|x). In many cases, investigators would be most interested in
maximizing the survivorship function, S(t0; x) = Pr(Y > t0|x), for a specified
time point, t0, say. For the multivariate response-time case, Stefanescu and
Turnbull [47] have proposed a Bayesian frailty model.
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It is sometimes the case that when an experiment has several responses,
some of these responses may naturally be of a mixed data type. For exam-
ple, some responses could be continuous while others are ordinal or binary.
Or, even if all responses were of the same basic type, some could have natu-
rally different distributions (e.g. normal & gamma or Poisson & binary). Such
difficulties, combined with the existence of random effects, pose a challenge
to the Bayesian approach and, in some cases, even to constructing a tractable
likelihood function. But since regression models are fundamental to so many
experiments, it is certain that Bayesian statisticians will be continually adding
to their repertoire of computational procedures for sampling from the poste-
rior of the model parameters. Hence, computation of p(x) = Pr(Y ∈ A|x, data)
should be a straightforward consequence of utilization of such new methods.
However, it is up to applied statisticians to test such procedures on data from
a wide variety of real experiments to fully assess the utility of such methods
for response surface and process optimization.
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ABSTRACT One of the main motivations to use Bayesian statistical models
in a sequential learning environment is to get useful knowledge sooner, and
thus derive benefits sooner and/or achieve desired results with less work. A
second important motivation is to avoid fitting noise and attempt to get a
closer picture of the underlying input/output system operating characteris-
tics — especially when there is limited data.

The methodology presented in this chapter was originally developed for
adjusting production processes so as to achieve and maintain maximum value
generation with existing equipment, which is one of management’s perennial
problems in industrial production. “Value” depends on the process, product
and business conditions; and could include a combination of: better quality
(means and variations); higher throughput (particularly valuable if capacity
constrained); lower consumption costs (particularly valuable if sales con-
strained); lower losses and rework; and lower undesirable byproducts, such
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as pollution; all while maintaining safety, contractual, legal and capacity con-
straints.

An on-line methodology to achieve the above objectives is Sequential
Empirical Optimization (SEO). SEO could be applied more generally to other
input/output systems where operating performance is managed through ad-
justment of inputs, such as racing a sail boat, or the treatment of diabetes.

This chapter presents a commercial solution for generic sequential empiri-
cal optimization. It describes the problem of optimal I/O system adjustments;
the generic SEO solution approach; and finally the relevant specifics of the
Ultramax® SEO solution, where in addition to the benefits of a Bayesian ap-
proach, a computational method is described that is suitable for the quick
processing of data in on-line applications. An example is illustrated.

11.1 Introduction to a Typical Situation in Industrial Production

The original problem that led to this application of Bayesian statistics was
this perennial problem in industrial production:

Adjust a production process so as to achieve and maintain maximum value
generation rate with existing equipment. “Value” depends on the process,
product and business conditions; and could include a combination of: better
quality (means and variations); higher throughput (particularly valuable if
capacity constrained); lower consumption costs (particularly valuable if sales
constrained); lower losses and rework; and lower undesirable byproducts,
such as pollution; all while maintaining safety, contractual, legal and capacity
constraints. The optimal adjustments usually depend on varying conditions,
such as raw materials’ characteristics, environmental and process conditions,
and economic and other business conditions.

Our experience with the Ultramax®’s Sequential Empirical Optimization
(SEO) on-line technology (www.ultramax.com) to achieve the above objec-
tives illustrates that a fairly large percentage of processes underutilize their
latent capabilities by over $1M/year, and a very small percentage are already
relatively close to the optimum.

11.2 Process Operations and its Optimization

In general, imagine a generic Input/Output System represented in Figure 11.1,
where a user or manager wishes to improve or optimize operating perfor-
mance. The decisions available are the adjustments of adjustable inputs
through which operating performance is controlled (the control inputs),
whose effects most probably depend on the value of physical conditions
(uncontrolled inputs).
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FIGURE 11.1
Decision Input/Output Diagram.

To be more specific, consider a production process as it looks to plant per-
sonnel. In particular, the “process” includes the built-in automatic logic to do
process control and the sensors to collect measurements. The process control
almost always includes regulatory or first-level feedback control (i.e., making
controlled process parameters have desired setpoint values by manipulating
some compensation for perturbations — e.g., add more steam to heat up to
desired temperature). Process control may also contain some logic to adjust
the setpoint values as a function of certain conditions such as uncontrolled
inputs (this logic is very seldom optimal).

Better operating performance at the production floor is achieved by mak-
ing better adjustments of the combination of:

• manual settings, if any, such as a manually set damper
• setpoints for first level feedback control (knobs or equivalent in

control panels)
• biases, if any, for those setpoints set by the control logic — since

the control logic is likely to represent only some basic engineering
relationships, and is unlikely to have been refined and optimized in
terms of contribution to current company objectives

• control parameters, possible (but done rarely) such as gains for first-
level feedback control; and constants, factors, limits, etc. for control
logic — if the parameter settings are accessible from the digital
control system

An example of the above is shown by the adjusted variables (Role #1) in the
Appendix. As explained later, the Appendix shows an Optimization Plan for
operations of a boiler for power generation.
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To formalize the above, imagine an Input/Output System characterized
as follows:

1. The system has inputs x that can be independently adjusted; uncon-
trolled inputs u that one needs to accept (i.e., the current conditions)
which are independent of the adjustments (but can be interdepen-
dent among themselves); and all other variables are their conse-
quences, called outputs y = {y0, y1, y2, . . .}

2. A run of the system with certain inputs x, u produces an output
vector y. The output values have a mean value which is a steady-
state consequence of the inputs; and have stochastic components
(noise) due to unknown uncontrolled inputs that change, errors in
measurement, inherent system variability (e.g., bounded instabil-
ities — chaos), leftover transient effects due to changes in x and
continuing changes in u.

Operations with the I/O system is “equipment limited”. That is, only one
or a few operating runs can be made at a time, runs are sequential; e.g.,
an industrial production process, sailing a boat, or a personal treatment of
diabetes. The opposite are “parallel runs” such as biological and agricultural
experiments, where a large number of experiments run simultaneously.

System operations is managed by the decisions made on the adjustments.
The objective is to maximize (or minimize) an objective function (a real-time
production Performance Index in production) while variables operate within
all defined constraints. The optimal adjustments depend on the values of the
uncontrolled inputs (and the business conditions).

Having viable tools to define a Performance Index to represent multiple objec-
tives is critical to doing practical optimization, and to avoid the syndrome of
improving something while degrading something else at a higher cost.

The process is conceptually represented by the list of variables (some with
one or two constraints), the Performance Index, and any known calculations.
Putting all together this is called the Optimization Plan (OP) for operations.
The Appendix displays an example for a coal-fired boiler producing steam
for a power generating turbine.

The following mathematical formulation of an I/O Process and of
Sequential Empirical Optimization is from Moreno [6] (pp. 138–142 in re-
vision 5/27/05). Let:

y = f (x, u) + ε

where:

• f (x, u) is the steady-state mean (i.e., after transients due to read-
justments in continuous processes) process output vector, or the
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“response”. The output vector f also has the indices 0, 1, 2, 3, . . .

where f 0(x, u) is the value of the Objective Function (Performance
Index).

As we shall see, the “empirical” part of the SEO solution is be-
cause the form of f and the coefficients for any approximate fit are
unknown, as well as the values of ε below.

f , as usual in production processes, is relatively “smooth” in the
area of interest. f could possibly be changing slowly with time (or
equivalently, changing because of slow changes in unknown un-
controlled inputs not included in u). Fast changes are represented
by noise.

• ε is the noise vector produced by a bell-shaped distribution with
mean zero and covariance matrix �. The square root of the diago-
nal elements are the standard deviations, sigma or noise vector n;
most likely affected by x,u.

ε is a property of the process and of the Optimization Plan, in
particular, of the inputs included and how y is measured (e.g., av-
erages of more raw data may have lower noise, especially if u does
not change too quickly).

This concept of noise is smaller than in most quality control anal-
yses because major changes in the known uncontrolled inputs u do
not contribute to noise, while they do in regular methods.

Almost no industrial processes produces data following a normal
distribution (except averages of data obtained similarly — Central
Limit Theorem). There are almost no physical principles that
indicate that process outputs should be normally distributed — one
exception being the energy emitted by a black object vs. the log of
the frequency. On the contrary, for instance, a process often places
limits — resulting in trimming tails — which destroys a normal
distribution. This has been confirmed by experience, where with
sufficient data one almost always can prove that the process output
distributions are not normal.

Note that in this model “errors” are assigned only to the outputs. The inputs
are presumed to be perfectly correct.

We define Optimal Operations as to Maximize the Objective Function (the
Performance Index) — while all constraint requirements are satisfied — by
making adjustments x for given the values of u. (It could be Minimize if the
Objective Function is a cost or loss function.)

The constraint requirements are:

a) The mean process values almost never violate any upper (UC) and lower
(LC) constraints.

Note: In this Chapter “mean” is used to express the average for
the same values of the inputs for one run; “average” is used for the
average of several runs across time (with possible changes in inputs).
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b) The actual data for each run is almost never beyond a constraint by more
than the amount “Minimum Important Difference” (MID) (defined by
the user). An MID>0 allows for a “gray” area for the actual noisy data
constraint violation.

Mathematically, given the value of u:

Maxx/u{ f0(x, u)} f0is the objective function
s.t. (subject to; that is, while satisfying these

constraint requirements)

The subscript “i” below applies to all variables with respective upper or
lower constraints

Requirement (a)

xi ≤ UCi (as a decision, it has to obey constraints)
xi ≥ LCi

fi (x, u) ≤ UCi most of the time
fi (x, u) ≥ LCi most of the time

Requirement (b)

yi = fi (x, u) + εi ≤ UCi + MIDi most of the time
yi = fi (x, u) + εi ≥ LCi − MIDi most of the time

The “most of the time” requirement is translated into requiring that the
condition be satisfied for εi ≤ 3ni (3sigmas), called the 3sigma protection
(we are not using the criterion of the probability of violating constraints in
order to avoid having to make assumptions about the distribution of the
data).

Similarly, practical optimization is when the achieved f0 is within MID0 of
the optimal one defined above.

So, bringing both constraint requirements (a) and (b) into one composite
set of equations, the optimum we are searching is defined as:

Maxx/u{ f0(x, u)}
s.t.xi ≤ UCi

xi ≥ LCi

fi (x, u) ≤ UCi − max {3ni − MIDi , 0}
fi (x, u) ≥ LCi + max {3ni − MIDi , 0}

which defines the optimum adjustment x∗ and the mean optimum outputs y∗ =
f (x∗,u); or [x∗,y∗] for each value of u.
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FIGURE 11.2
The “Effective Operating Area” to satisfy (b) requirement; the area of acceptable output means.

The last two inequalities define the Effective Operating Area for the mean
outputs f i (x, u), where the Safety Buffer = max{3ni − MIDi , 0}, are illustrated
in Figure 11.2. If the Safety Buffer is larger than zero this constitutes a loss in
Operating Area which results in a loss of opportunities for higher f0 if there
are outputs with active constraints.

The practical objective is not just to find the optimal x, but to define x’s
that satisfy all constraints and produces mean outputs no further away from
the optimal f0(x∗,u) than MID0. The set of such x’s defines the Window of
Operations.

If there are outputs with upper and lower constraints, a sufficiently large
Safety Buffer could result in no Operating Range, and then the process is
totally incapable. In this case optimization makes little sense — the problem
should be fixed by engineering or other such teams. The following procedures
would apply also to reduce the losses in Operating Area due to high noise:

• find the cause of noise and reduce or eliminate its effects
(reduce noise)

• find the cause of noise and include it as an uncontrolled input
(recognize the source in the Optimization Plan, that is, eliminate it as
a cause of noise, and enable SEO to compensate for its known value)

• relax the Constraints and/or enlarge the MIDs (relax requirements)

If process runs with Adjustments at Baseline do not satisfy some output con-
straints, doing the above will not necessarily assure that all constraints can
be obeyed; this can be determined only after optimizing the adjustments —
and there are many success stories in this respect.
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11.3 A Solution: Sequential Empirical Optimization (SEO)

SEO starts with a customer-defined optimization plan that includes the vari-
ables, their roles, any constraints, the maximum reasonable adjustment
changes (under MID in the Appendix), the MID for the output constraints,
and any calculations for the calculated outputs, as illustrated in the Appendix.

Operations with SEO go through the following cycles to improve perfor-
mance as it builds up knowledge: (1) adjust inputs; (2) produce and collect
data (which will be stored); (3) collect predicted values of new uncontrolled
inputs (usually the current values); (4) update prediction models; and (5) cal-
culate new adjustments for the next cycle. The first cycle adjustments are at
Baseline or current practices, from which improvements will be measured.

In the case of production processes we see that SEO is a way to automate
the decision processes — the adjustments — made by plant personnel to
manage performance. This is usually part of “supervisory control”, including
what is called “tweaking”. Supervisory control practices tend to be distinctive
for each crew — an undesirable source of variation.

The main characteristics of an SEO approach to optimize an I/O system
are:

• It is Empirical: that is, series of run data {x, u, y}t are known, but
f (x, u) is not (some may be known), and neither is ε. In particular
the form of f is also not known except to assume that it is reasonably
“smooth”.

• It is Sequential: that is, it continually stores operating (run) data and
continually accesses all the stored run data to extract information
and knowledge from it to create updated sequential advice to adjust
the process for the next cycle. Then a process run produces a new
{x, u, y} which in turn is stored in the database to repeat the cycle.
Thus SEO creates the series of {x, u, y}t stored in a data base. The
first xt is the adjustments at Baseline, defined by the user.

Note how the sequential analysis above emulates the process of
a mind gaining experience through repeated action; and using the
remembered actions, conditions and outcomes to make better action
decisions in the future, an aspect of learning and skill development.
Sequential analysis has a very valuable advantage (Wald [8]): it uses
the information in newly collected run data immediately in order to
refine knowledge and to decide where to run next, thus increasing
value generated right away. By comparison, in traditional more par-
allel empirical studies (DOE, Neural Networks) the information is
not obtained until the data is analyzed at the end, and turned into
increased value even later. The simple advantage of early use of
information is the most important reason why a properly imple-
mented SEO technology such as Ultramax is in our view the fastest
empirical optimizer available today.
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The other synergistic reason (“bootstrapping”) is that since SEO
converges the optimum faster, the database has relatively more data
around the optimum, which is the most valuable data to understand
the location of the optimum (recall, a generic SEO does not require
including the form of the response or process transfer function).

To be suitable for on-line production optimization SEO is meant to aim at a
local optimum at the end-path of continuous improvements from the starting
adjustments, and ideally jumping over minor local optima. On the other hand,
making adjustments for finding “separate other mountains” to climb — if they
exist at all — is taken as a responsibility of engineering or R&D, not of daily
production.

The performance of a SEO solution should be evaluated, basically, by:

• How quickly the series {x, u, y}t converges to the optimum {x∗, u, y∗}.
• How closely the series {x, u, y}t converges the optimum {x∗, u, y∗}.
• In production, which is a case of continual value generation, the

evaluation is the cumulative value generated since starting the opti-
mization implementation project. Equivalently, one would take into
account the poor performance and time that it takes, e.g., to collect
experimental data for model-based alternative approaches (such as
DOE and Neural Networks); and to design and implement the first-
principle models and collect data to validate them.

The “quick” and “cumulative” requirements are the ones that motivate the
use of Bayesian statistics as will be described below. The “closely” is aided
by the “locally accurate models” briefly discussed in Section 11.5.

Depending on the SEO technology used (or on how it is adjusted), achieve-
ments in terms of the objective function f0 may frequently be increased at the
sacrifice of increasing the incidence of violating some constraints, and thus the
SEO needs to proceed carefully. The sequence of xt needs to be ”intelligent”:
low risk, effective, and responsive to changes in conditions.

11.4 The Ultramax Approach for SEO

So far, we have defined the problem that needs to be solved, and the generic
characteristics of a SEO solution. The “quick” and “cumulative” requirements
described above are the ones that motivate the use of Bayesian statistics as
will be described below.

Now we will develop the aspects of the Ultramax approach which takes
advantage of Bayesian Statistics, as it suits the topic of this book. Some intro-
ductory aspects, and other aspects of the approach not described here are in
the Blue Book [6].
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11.4.1 General Aspects and Introduction to Bayesian Models

Every time a new adjustment is required, the Ultramax SEO solution is based
on the following.

• Creating prediction model(s) m(x, u) which is a suitable approx-
imation to f (x, u) around the best known and predicted running
conditions

• Generating adjustment decisions (advice) by optimizing the predic-
tion models

The SEO optimization, like most others, is based on prediction models,
but it is unique in that it depends on sequential empirical learning to quickly
extrapolate towards the optimum. A technique that is sequential but is not
based on prediction models is the Simplex search method, Walters et al [9].

At the same time the technology creates m(x, u) ∼= f (x, u) based on the
whole set of accumulated historical run data {x, u, y}t, it also creates:

• An Area of Confidence (AOC), which is the region in x, u where
m(x, u) is most accurate — within the region covered by {x, u}t. It is
calculated by an elaborate pattern application of the Mahalanobis
[2] distance which allows the AOC to be concave or even composed
of disjointed areas.

Optimum Estimates and Adjustment Advices are given only
within the AOC — where an optimum estimate at the edge of the
AOC is an indicator that optimal operating conditions are seen out-
side the AOC.

• An estimate of the covariance matrix � of ε, and therefore of the
noise vector n

The following two properties about the model m for SEO yield significant
simplification and effectiveness in calculations:

1. It is not required to understand the effects of each input separately;
it is just necessary to be able to predict results in the AOC region.
Thus, with the protection afforded by the AOC, confounding of
input effects is of little consequence.

2. Trying to make m accurate away from the optimum (e.g., by
making its generic form too involved or by fitting data away from
the optimum) is not only unnecessary, but it distorts the fitted mod-
els resulting in lesser accuracy around the optimum.

These two properties are less demanding on m(x, u) than the usual require-
ments for DOE, Neural Networks and First Principle models (each for
different reasons).

When not using user-supplied calculations, the generic mathematical mod-
els of m are a linear or quadratic approximation of the response surface f (x, u)
for each output as a function of all inputs.
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Models are created with Bayesian statistics when there is little data.
Bayesian approaches enable us to utilize the information available in as little
as two runs (with different input values) to increase the probability of moving
sequentially in a direction of improvements.

What is desirable is illustrated by this thought problem. Let us suppose that:

• A process (I/O system) with two adjustments and one result is to
be maximized

• There are two process runs (with different adjustments and differ-
ent output values), which correspond to two points in the three
dimensional space.

• Now, we ask the question: in which direction would we change the
adjustments next with the highest likelihood of improving results?
Obviously we would move the adjustments towards and beyond
the high performing run away from the low performing run. Now,
what prediction model would yield such result?

The simplest prediction model form would be a linear model with three
parameters (a constant and a linear coefficient for each input).

Classical statistics cannot create a prediction model with the above data
(there are two data points to estimate three parameters).

Bayesian statistics can create such a model. When using non-informative pri-
ors the result matches what our intuition above indicates. This holds true for
any dimensionality of the input space! Thus Ultramax’s sequential Bayesian
models will start increasing the probability to obtain performance improve-
ments starting from the third run. The example in Section 11.5 below with 40
inputs illustrates this behavior in Figure 11.3, where in this application the
TPL is the Total Performance Loss and the symbols indicate the degree of
constraint satisfaction by all variables. Note that there are improvements in
the first 40 runs while classical statistics cannot even venture a guess until the
42nd run. Neural Networks, having many more coefficients, would be much
worse in this respect.

11.4.2 A Short-Cut to Calculate Bayesian Prediction Models

The “pure” Bayesian, generic approach would assume a non-informative
prior for the model coefficients of m(x, u), add the actual operating data,
to end up with a posterior distribution of the coefficients. The prediction
model used would have coefficients at the mean of the posterior distribu-
tion (there are new developments taking advantage of the distribution of the
coefficients — see Rajagopal and del Castillo [7]).

Now, such true Bayesian analysis, involving multidimensional integrals,
is very CPU time consuming — for instance as compared to classical regres-
sion analysis. Thus, to be practical for an on-line application, a quasi-Bayesian
analysis was developed around 1983 and published by Hurwitz [1], 1993. In
summary:
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FIGURE 11.3
Plot of Sequential Performance Index values for the Example.

Models are created applying classical regression analysis using (1) dummy
non-informative “prior data” and (2) the actual operating data.

This alternate approach was inspired by the solution of optimal sequen-
tial sampling plans in binomial sampling. The approach used Markov chains
to represent each sequential sample, and the transition probabilities calcu-
lated with Bayesian statistics and optimized with Dynamic Optimization (see
Moreno [4] and [5]). It turns out that the closed form of the Bayesian tran-
sition probabilities are a conceptual set of prior data plus the outcome from
observations from the last sampling step.

It has been proven that under certain conditions Bayesian regression has
a form of ridge regression (see Hurwitz [1] and Melluish et al. [3]). Since the
solution here does not follow the assumptions above (it does not assume a
normal distribution) we call it quasi-Bayesian.

Using prior non-informative data also ends up in a form of ridge regres-
sion, as follows:

For one run, the inputs x, u (of total size n, the number of inputs) are
expanded into the single vector p of size (1 + n) for only linear terms or



P1: shibu/Vijay

September 14, 2006 12:45 C5440 C5440˙C011

An Application of Bayesian Statistics to Sequential Empirical Optimization 303

(n+1)(n+2)
2 for linear plus quadratic terms. For the “linear” model coefficient

matrix B the prediction equation is m = pB. To be clear, this is linear regression
in form, but the model can really be quadratic in terms of the process inputs
in Figure 11.1.

Let us expand the conceptual vectors p and y into matrices P and Y of
data, one row per run or operating experience, but with standardized data.

There will be two sets of “data”: the prior data and the actual data. Let Pp

be the partition with the prior data and Pa be the partition with the actual run
data. Similarly for the outputs Y p and Ya .

Pa and Ya will be created with standardized data for each variable
(column) with mean = 0 and standard deviation = 1.

Note that if P is partitioned into separate sets of run data, P′P = Pp
′Pp +

Pa
′Pa .
The least-square solution for the matrix B for all outputs is the traditional

“normal equation”:

B = (P′P)−1P′Y

where eventually B will be transformed so as to use it with the original scales.
The non-informative prior data used has:

• An orthogonal distribution, thus Pp
′Pp = D is a diagonal matrix of

positive values.
• Zero for all output Y p values (that is, representing the average actual

output).

Thus,

P′P = Pp
′Pp + Pa

′Pa = D + Pa
′Pa

P′Y = Pa
′Ya

This is the identical form of P′P as for ridge regression, except that D has a
different interpretation: it is from prior input data rather than a penalty for
estimating high values of Bi . The effect of D is practically the same: to have
reasonable values of B . . .

1. when otherwise it could not be calculated because Pa
′Pa is singular

(rank-deficient), such as fewer runs than number of inputs
2. for ill-conditioned distribution of actual inputs, as it will happen

for a sequence of SEO runs that approach the optimum quickly
3. to reduce fitting the noise rather than the underlying actual response

surface when there is too little data, i.e., few excess data (degrees of
freedom) to calculate the noise

The models created in this manner are good for predicting, but not necessarily
for understanding the effects of each input separately (the partial derivatives);
but as already explained the latter is not necessary for optimization.
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Note that if D = 0 then we have a totally uninformative prior, that is,
only the actual data determines the estimation of coefficients, and it is regular
regression. This is true separately for each component of Di as well. The larger
the component in D the more the coefficient is tempered towards zero.

Note that D is all that matters for this Bayesian regression approach. The
D used here is internal to the software, the user is not aware of it.

D is the product of: (1) a diagonal matrix which is the distribution of one
prior data, times (2) a factor which is the amount of prior data which is lower
the larger the amount of actual data. In particular:

• The distribution of one prior data is a constant diagonal array that has:
– zero for the constant term (totally non-informative, relies ex-

clusively on actual data)
– a uniform distribution with range ±0.10 for linear terms
– a uniform distribution with range ±1.00 for quadratic terms

This approach “tempers” quadratic terms more than the linear
terms, which is useful to keep even “soft” information about direc-
tion to improvements.

• A factor that is the amount of prior data required, defined as follows:
The driving equation is the “number of degrees of freedom” NDF

NDF = #prior data + #actual data − #coefficients

(Note that the meaning of NDF is relative because for the same D
the # prior data could be different depending on the meaning of the
“distribution of one prior data”.)

The key heuristic applied is to force having a “Minimum NDF”
(MNDF), which in turn determines the “# prior data” required.
MNDF is a function of n (the number of process inputs). MNDF is
n times a sigmoid transition between 1.0 with few data points to 2.0
with a lot of data. (These and all such arbitrary numbers undergo
periodic refinement in the course of more empirical studies and
experience.)

Thus, the amount of prior data factor used is such that NDF ≥
MNDF; or

#prior data = max {MNDF + #coefficients − #actual data, 0}

Finally, the “# coefficients” or size of p depends on the model
being fit:
• 1 for (the model is the average) for only one actual run data
• n + 1 for linear model for the first as-many runs plus MNDF
• (n+1)(n+2)

2 for full quadratic model thereafter (all second order
terms including interactions between inputs)
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Note that the transition from linear to quadratic models is also
determined by MNDF: as soon as there is sufficient data to require
no prior data for linear models, then continue with Bayesian models
but with full quadratics.

Until version 6.0, Ultramax built up the quadratic models one
component at a time, as explained by Hurwitz [1]. We have found
that often enough the most useful quadratic components appeared
later, and that is why now we use them all from the very beginning
of quadratic models. To do this involves hundreds of prior data. So,
we had to solve another problem: the NDF as defined above when
there is prior data is not the best divider to the sum of squares of
residuals. The resolution was a fitted curve nearly optimized with
empirical studies.

So, after we turn to full quadratics, the large D is gradually reduced as actual
run data is accumulated, until by the time that there is enough data to cal-
culate all quadratic coefficients plus the desired MNDF. From then on there
is zero prior data and thus we gradually revert to normal least-square linear
regression.

The factors that define the size of one prior data and the MNDF were deter-
mined heuristically through common sense and through optimizing rounds
of SEO with simulated processes. The factor optimization takes place using
another copy of Ultramax acting as a higher lever optimizing supervisory
control controlling those factors in the working Ultramax.

11.5 An Example

Let us now illustrate the notion of achieving performance improvements with
SEO; in particular at the beginning with few run data, the reason for applying
Bayesian statistics.

This I/O system has:

• 40 adjusted (decision) inputs (e.g., several Crude Feeds, Ingredients,
Temperatures)

• No uncontrolled inputs (if it had changing uncontrolled inputs it
would be much more difficult to illustrate the gains just from better
adjustments)

• 55 measured outputs (e.g., several % Solids, Viscosities, Pressures)
plus 4 calculated outputs (sums of loss function for: Throughput, all
Solids, Viscosities, and Pressures, plus the addition of these sums
for a Total Loss Function (TPL) to be minimized.)
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• 31 explicit constraints, of which 10 are active. 16 are constraints on
Crude Feeds (decision inputs), and 15 are constraints on Pressures
(consequent outputs).

• 66 (upper and lower) quality specifications which are represented as
losses from not being at ideal target in the Performance Index. This
is done because outstanding production quality is not just to satisfy
specification constraints, but to be consistently as close as possible
to nominal design values — a significant awareness in world-class
quality considerations. (It would also work in addition to include the
quality specifications limits as constraints.)

While ideally the user would construct an economic impact calculation, in
this particular application that was impossible. Here the Performance Index
(Objective Function) is a quasi-economic “Total Performance Loss” (TPL) of
a “cost” metric to be minimized, representing 11 Crude Feeds to be maxi-
mized and 33 outputs to be as close to nominal (target) values as possible.
The latter is actually a way to use optimization to apply regulatory process
control to outputs which cannot be controlled directly by process control
systems.

The adjustments at baseline satisfy the explicit constraints but frequently
violate one of the quality specification limits — one of the reasons SEO was
applied.

In Figure 11.3 we see a plot of the TPL Performance Index values for the
first 200 sequential operating runs with SEO optimization. At 45 min. per
optimization adjustment cycle the plot represents about 150 hours or 20 shifts
of “normal” operations — no: startup, shutdown, changeover, cleaning, or
while doing maintenance.

Note in particular that the gains obtained during the first 40 runs are
possible because of the Bayesian models, while the simplest standard re-
gression models cannot even be created (more linear coefficients than actual
data).

Until about run # 81 the model form was linear, and from then on a full
quadratic. Then, until about 900 runs (not shown) the driving equation calls
for Bayesian models (with decreasing priors), and thereafter it will be regular
regression. Note, as well, that the gains due to quadratic models up to the 900
runs are possible because of the Bayesian models.

At the level of using regular regression, another novel approach is used
aimed at the objective of getting closer to the optimum: weighted regression to
create locally accurate models around the optimum — and reducing or avoid-
ing altogether the distortion created by fitting data away from the optimum
(Property #2 in Section 4a above).

The rate of SEO improvement is determined by several factors, including:

• the maximum change in adjustments that the user considers pru-
dent from a production operating run to the next, the input MIDs
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• the noise level n

• the gradient of the response surface (vis-à-vis the noise level and
the maximum allowed changes in adjustments)

The lighter diamonds in Figure 11.3 are an indication of pushing against
at least one explicit output constraint. Had the quality requirements also
be included as constraints, then the first few runs would have been darker
diamonds (none in the plot), to indicate definite constraint violation.

Eventually, constraint sensitivity analysis will lead to understanding their
impact on business, and to constraint relaxation or elimination through
re-engineering.

11.6 Summary

Designing a Sequential Empirical Optimization tool that delivers likely
improvements even in very early sequential cycles is solved by creating
prediction models which are reasonable when:

• there is not sufficient data to generate classical least-square models
• the matrix of input values is ill- conditioned
• there is too little data to discriminate between underlying process

behavior and noise

The method described here is to create Bayesian regression models with
appropriate priors.

In addition, this chapter also offers a quasi-Bayesian solution which is com-
putationally much faster (and simpler) and thus suitable for on-line
applications. The solution is simply to expand the normal equations by adding
a Bayesian diagonal matrix to the standardized Pa

′Pa of actual data to repre-
sent non-informative prior data according to rules such as discussed above.
This approach turns out to be similar to ridge regression.

The benefit of enabling the user to derive improvements sooner than oth-
erwise is a great complement to the “sequential” aspect of SEO that enables
faster improvements and optimization than all alternative approaches.

Since all this logic is built in and applied automatically, this makes starting
and restarting SEO very easy for the customer, such as restarting after making
such changes to the process when the old data is no longer representative.
This benefit also applies when restarting due to adding new input variables
to the Optimization Plan.

All this adds up to a practical, effective and easy-to-use solution suitable
for generic on-line analysis for optimizing production operations through
better adjustments.
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Appendix

Optimization Plan for combustion optimization of a power plant boiler.

PROCESS OPTIMIZATION PLAN
15:41 10 APR 2005

APPLICATION: xxxxxx.umax #7 Boiler Optimisation
ULTRAMAX® 7.0.02 c©1982-2004, Ultramax
Corporation. All rights reserved.

========================================================
VAR| NAME | UNITS | DEPENDENCY | RO| MO| MID | CONSTRAINTS |

#| | | | LE| DE| | LO | HI |
---| ----------| -------| ------------| --| --| -----| -----| ------|

1 MILL_A_run on/off 2 A 1. -- --
2 MILL_B_run on/off 2 A 1. -- --
3 MILL_C_run on/off 2 A 1. -- --
4 MILL_D_run on/off 2 A 1. -- --
5 MILL_E_run on/off 2 A 1. -- --
6 MILL_F_run on/off 2 A 1. -- --
7 MILL_A_man Yes-No ( MILL_A_run 2 H 1. -- --
8 MILL_B_man on/off MILL_B_run 2 H 1. -- --
9 MILL_C_man on/off MILL_C_run 2 H 1. -- --

10 MILL_D_man on/off MILL_D_run 2 H 1. -- --
11 MILL_E_man on/off MILL_E_run 2 H 1. -- --
12 MILL_F_man on/off MILL_F_run 2 H 1. -- --
13 MILL_A_bias % MILL_A_run 1 H 4. 80. 100.
14 MILL_B_bias % MILL_B_run 1 H 4. 80. 100.
15 MILL_C_bias % MILL_C_run 1 H 4. 80. 100.
16 MILL_D_bias % MILL_D_run 1 H 4. 80. 100.
17 MILL_E_bias % MILL_E_run 1 H 4. 80. 100.
18 MILL_F_bias % MILL_F_run 1 H 4. 80. 100.
19 MILL_A_feed % MILL_A_man 1 A 5. 30. 90.
20 MILL_B_feed % MILL_B_man 1 A 5. 30. 90.
21 MILL_C_feed % MILL_C_man 1 A 5. 30. 90.
22 MILL_D_feed % MILL_D_man 1 A 5. 30. 90.
23 MILL_E_feed % MILL_E_man 1 A 5. 30. 90.
24 MILL_F_feed % MILL_F_man 1 A 5. 30. 90.
25 O2_sp % dry vo 1 H 0.6 2.8 4.
26 RHTR_A_sp deg c 1 H 3. 530. 545.
27 RHTR_B_sp deg c 1 H 3. 530. 545.
28 RHTR_SPRAY_s Deg C 1 H 8. 450. 580.
29 SAH_A_CET_sp deg c 1 H 3. 55. 65.
30 SAH_B_CET_sp deg c 1 H 3. 55. 65.
31 PAH_A_TP_sp deg C 1 H 20. -- --
32 PAH_B_TP_sp deg c 1 H 20. -- --
39 MILL_TP_sp deg c 1 H 3. -- 90.
40 ID_FAN_bias % bias 1 H 4. -10. 10.
41 FD_FAN_bias % bias 1 H 4. -10. 10.
42 PA_BUS_PR_sp kPa 1 H 1.5 7.5 12.
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43 MAIN_A_sp deg c 1 H 3. 500. 545.
44 MAIN_B_sp deg c 1 H 3. 500. 545.
45 MW_LOAD MW 2 H 60. -- --
46 SOOTBLOW_HR hours 2 H 100. -- --
49 FD_IL_TEMP deg c 2 H 12. -- --
50 COAL_SE MJ/kg 2 H 1.2 -- --
51 COAL_MOIST % 2 H 1.5 -- --
52 COAL_ASH % 2 H 1.2 -- --
53 FEED_W_FLOW kg/s 4 H 1. -- --
54 FEED_W_TEMP deg c 5 H 1. -- --
55 MAIN_A_TMP deg c 5 H 0.5 528. 545.
56 MAIN_B_TMP deg c 5 H 0.5 528. 545.
57 MAIN_TEMP_av deg c 5 C 0.5 528. 545.
58 RHT_A_TMP deg c 5 H 0.5 528. 545.
59 RHT_B_TMP deg c 5 H 0.5 528. 545.
60 RHT_TMP_avg deg c 5 C 0.5 528. 545.
61 RHT_SPRAY kg/s 5 H 0.5 -- 20.
62 MAIN_PRESS MPa 5 H 0.2 8. 17.
63 GAS_EX_TMP deg c 5 H 0.5 80. 150.
64 GAS_DIF_TMP deg c 5 C 0.5 70. 130.
65 FLUE_A_O2 % 5 H 0.1 2.5 5.
66 FLUE_B_O2 % 5 H 0.1 2.5 5.
67 FLUE_O2_avg % 5 C 0.1 2.5 5.
68 FLUE_B_CO % CO 5 H 10. -- 150.
69 DUST_A % 5 H 3.8 -- 30.
70 DUST_B % 5 H 3.8 -- 30.
71 CinD_B % carbon 5 H 1. -- 20.
72 CinD_C % carbon 5 H 1. -- 20.
73 CinD_avg % carbon 5 C 1. -- 20.
74 UNIT_FUEL kg/s 4 H -- -- --
75 BOILER_HEAT MW 4 H -- -- --
76 BN_TILT_A deg 4 H -- -- --
77 BN_TILT_B deg 4 H -- -- --
78 B_EFF_LOSS % 5 C 0.1 -- --
79 TURB_EFF % corr 5 C 0.01 -- --
80 TOTAL_EFF % blr ef 5 C 0.1 -- --

---| ----------| -------| ------------| --| --| -----| -----| ------|
MAXimizing objective function, variable # 80, "TOTAL_EFF" (Type 6)

Calculations:
MAIN_TEMP_av = ( MAIN_A_TMP + MAIN_B_TMP )/2
RHT_TMP_avg = ( RHT_A_TMP + RHT_B_TMP )/2
GAS_DIF_TMP = ( GAS_EX_TMP - FD_IL_TEMP )
FLUE_O2_avg = ( FLUE_A_O2 + FLUE_B_O2 )/2
CinD_avg = ( CinD_B + CinD_C ) /2
B_EFF_LOSS = (88.99

+ (( COAL_SE * 0.004876 - 0.12032)
+ ( CinD_avg *(-0.00258) + 0.015482)
+ ( GAS_DIF_TMP*(-0.000612) + 0.057354)
+ ( COAL_ASH * 0.000273 - 0.00568)
+ (FLUE_O2_avg *(-0.002215) + 0.006165)
)*100)

TURB_EFF = (1
+(((0.0006043* MAIN_PRESS * 1000)-9.64479)/100)
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+(((0.022703* MAIN_TEMP_av )-12.2109)/100)
+(((0.0272571* RHT_TMP_avg )-14.655)/100)
)

TOTAL_EFF = B_EFF_LOSS * TURB_EFF

Definitions:
Role

Role = 1 Input - Control
Role = 2 Input - Uncontrolled
Role = 4 Output - monitored
Role = 5 Output -- important (has constraints or is used in

calculations)
Role = 6 Objective Function -- Performance Index
Role = 8 Input -- ruled

Entry Mode
Mode = H Manual Entry (by Hand)
Mode = C Calculated (within ULTRAMAX with equations given by the

user)
Mode = A Automatic, entered through integration
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ABSTRACT Saturated designs are very useful for screening factors and in
experiments where the observations are very difficult or expensive to obtain.
Due to lack of degrees of freedom available to make inferences about the
parameters in the model, the frequentist approach is extremely limited, so
the Bayesian approach is a good way to analyse data from saturated designs.
However, because of the reliance on prior information, Bayesian methods
must be used carefully. Conjugate priors are shown to be somewhat inflexi-
ble, whereas priors using finite mixtures of densities yield more natural pos-
terior densities. Also shown is that non-conjugate priors, with independence
between the effect parameters and the variance, can be useful.

12.1 Introduction

Factorial designs of various types are among the most commonly used sta-
tistical methods in industrial research and development. They can be used
whenever a product or process is to be improved or optimized experimentally.

311
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In the early stages of experiments, often a large number of candidate factors
exist to test and the initial objective is to identify the factors that have the
largest influences on the outcome of this experiment, i.e., those in which
the factors are active. Saturated designs allow the screening of these factors
by testing the largest number of factors with the least number of obser-
vations. They are popular as economical designs when a large number of
factors must be tested on an expensive process, e.g., when testing is
destructive.

A saturated design is a fractional factorial design in which the number of
parameters in the main effects model is equal to the number of runs. Here we
concentrate on two-level saturated designs in which k = n − 1 main effects
are considered in n experimental units without replicates. In such designs,
all information is used to estimate the effect parameters, leaving no degrees
of freedom to estimate the error variance. The classical analysis of data from
saturated designs allows only the estimation of main effects under the
assumption that interactions are negligible.

The frequentist approach is extremely limited, being confined to the con-
struction of the normal probability plot of main effect estimates, and there
being no degrees of freedom left to estimate the experimental error variance.
Consequently, standard tests cannot be used to identify the significant factors
in the experiment without making very strong prior assumptions. On the
other hand, in a Bayesian framework it is possible to estimate all these pa-
rameters is possible, where the marginal posterior distribution of each effect
can show if that effect is active or not. Also, graphical displays of the pos-
terior distributions of effects can be developed, making their interpretation
easy. For all these reasons, a Bayesian approach is a good way to analyse data
from saturated designs.

Most work on two-level saturated designs is based on the groundbreaking
work of Plackett and Burman [12], who constructed designs from Hadamard
matrices of order n, where n is a multiple of 4, that is, n ≡ 0 mod 4. Such
Plackett-Burman designs use a set of orthogonal columns, thus giving optimal
estimation of all main effects.

Our goal in this chapter is to show practical applications of Bayesian
methods applied to data from saturated designs. It is shown that the conjugate
prior gives some undesirable results and the prior using a finite mixture of
densities improves the results of the posterior densities, although it produces
some unexpected results. This chapter is structured as follows: Section 12.2
describes the statistical model for the data from a saturated design used in
this work. In Section 12.3, a brief review of the frequentist approach and some
comments about the subjectivity of the methods used are presented. Section
12.4 describes the Bayesian approach, where estimation is discussed using
conjugate priors, priors that are finite mixtures of conjugate densities and
non-conjugate priors. Finally, the last section is dedicated to final comments
about Bayesian methods for saturated designs.
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TABLE 12.1

Saturated Design with 8 Runs
for 7 Factors

Factor

A B C D E F G

− − − − − − −
− − + − + + +
− + − + − + +
− + + + + − −
+ − − + + − +
+ − + + − + −
+ + − − + + −
+ + + − − − +

12.2 The Model for Saturated Designs

The model for the data from a two-level saturated design is defined as

E(Y) = β0 + β1x1 + β2x2 + · · · + βk xk , (12.1)

where xi represents the ith factor’s main effect. The model can be expressed
in matrix notation as

E(Y) = Xβ, (12.2)

with X an n × p matrix showing the levels at which the factors are fixed, β
a p × 1 vector of parameters (intercept included), and Y an n × 1 vector of
observations. A simple example of a design matrix of a saturated design with
8 runs for 7 factors is presented in Table 12.1.

12.3 Classical Analysis

The difficulty that arises in saturated factorial designs is that the usual analysis
of variance (ANOVA) can no longer be used because, although main effect
estimates can be obtained by least squares, no degrees of freedom are left to
estimate error. Hence, frequentist techniques can allow estimation but cannot
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be used to make inferences about parameters. Assuming that the matrix X′X
is nonsingular, as for a Plackett-Burman design, the least squares estimators
of the main effects are obtained from

β̂ = (X′X
)−1 X′y. (12.3)

A graphical method has been proposed [6] to identify the important effects
on the response variable, that is, to show up the active factors that produce a
change in the response. The estimated effects are arranged on a half-normal
probability plot. A similar method using the full normal plot to show the
important effects [2, 7] is now more popular.

The idea behind these methods is to give a simple exploratory analysis
to make judgements about the estimated effects. If the distribution of the
response variable Y is assumed Normal with mean Xβ and dispersion matrix
σ 2I, then the sampling distribution of β̂ is Normal with mean β and disper-
sion matrix σ 2(X′X)−1. Therefore, under the null hypothesis that all the effects
are zero, the means of all the estimated effects are zero and the estimated
effects will be close to a straight line. When some of the effects are nonzero, the
corresponding estimated effects will tend to be larger and fall off the straight
line. For positive effects, the estimated effects fall above the line whereas those
for negative effects fall below the line.

The problem with this method is the subjectivity inherent in it because
the visual judgement used to analyse the active factors is particular to each
individual. From Figure 12.1, clearly the factors J and L are active but the effect
B is not so easy to judge. Furthermore, no frequentist inference of any kind
can be determined and this analysis can only ever be regarded as exploratory.

A detailed review of the analysis of unreplicated factorial experiments is
given in [9], where many attempts to carry out formal inference for saturated
designs are described. Among the methods presented in that paper, that of
Lenth [10] is by far the most often used due to its computational simplicity.
The performance of this method has been shown to be reasonable [9]. Lenth’s
method can be presented as a formal test of effect significance for unreplicated
experiments [15] where sample variance is absent. Lenth’s method uses robust
estimation of the standard deviation of estimated factorial effects to define
a measure called the pseudo-standard error, that is, a trimmed median that
attempts to remove contrasts corresponding to active effects. It can be shown
to have reasonable frequentist properties in many cases but note that it cannot
be considered to be a strictly correct frequentist procedure. It is possible to
construct examples where it fails completely, so that by the formal definition,
the size of the test is always 100%.

The first Bayesian method proposed for analyzing data from saturated
designs was due to Box and Meyer [3]. They suggested using priors for each
effect that are a mixture of two Normal distributions, both having mean zero,
one with a small variance and one with a large variance. They concentrated
on the mixing parameter, which they interpreted as the prior probability of an
effect being active. The priors were then updated using the estimated effects
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FIGURE 12.1
Normal plot of main effects using hypothetical data.

as data to obtain the posterior probability of each effect being active. Here we
take this approach further by using the full prior and posterior distributions
and concentrating on estimating the effects rather than just identifying them
as being active or inactive.

12.4 Bayesian Estimation

Bayesian inference differs from classical procedures by formalizing the prior
knowledge in the form of subjective probability distributions, incorporating
the information from the data, and then providing updated posterior proba-
bility distributions based on these two sources. To carry out this approach, it
is necessary to specify the prior distribution for the parameters that represent
the prior beliefs about the possible values of parameters before obtaining the
data. Bayesian inference has been termed “subjective” inference because it
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allows a certain subjectivity in the selection of the prior distribution. In situa-
tions where the data do not provide much information, the prior distribution
can strongly affect the posterior distribution, as we will see.

If care is taken over the choice of prior, Bayesian inference methods can
give very satisfactory answers when a saturated design is being used. There-
fore, in the next sections some approaches to the use of Bayesian methods are
presented, such as conjugate priors, priors as mixtures of conjugate densities,
and non-conjugate priors.

12.4.1 Conjugate Priors

The model for the data from a saturated design is a particular case of the
general linear model, and several works have proposed its analysis using
Bayesian methods [1, 4, 11]. However, a particular detail of a saturated design
appears in the likelihood function that shows what is different from the usual
general linear model as follows.

The likelihood function of β and σ 2 is

f (y|β, σ 2) = (2πσ 2)
−n/2

exp
{

− 1
2σ 2 (y − Xβ)′(y − Xβ)

}
. (12.4)

Another way to write this expression is by expanding the quadratic form
(y − Xβ)′(y − Xβ) to justify the choice of the conjugate prior density, i.e.,

f (y|β, σ 2) = (2πσ 2)
−n/2

exp
{

− 1
2σ 2 [(β − β̂)′X′X(β − β̂) + Q]

}
, (12.5)

where β̂ = (X′X)−1X′y is the well-known classical maximum likelihood es-
timator of β, which is the same as the least squares estimator, and Q =
(y − Xβ̂)′(y − Xβ̂) is the residual sum of squares.

In a saturated design, estimating the vector of parameters β is feasible but
the amount Q is always zero, which means that the error variance cannot be
estimated from the likelihood and so the analysis used in the general linear
model is not proper for saturated designs.

From Equation (12.5) and following the same structure of the likelihood
function expression, it is natural to propose a joint prior density ofβ and σ 2 as

f (β, σ 2) = ( a
2 )

d
2 (σ 2)

− (d+p+2)
2

(2π ) p/2 |V|1/2 �
( d

2

) exp
{

− 1
2σ 2

[
(β − m)′V−1(β − m) + a

]}
,

(12.6)

with hyperparameters a > 0, d > 0, m ∈ �p and V a p × p positive definite
matrix.

The prior density in Equation (12.6) is known as the Normal-Inverse
Gamma, denoted by N-IG(a, d, m, V), and it is useful to explore some fea-
tures of this density to see the dependence among the parameters β and σ 2.
For instance, the conditional distribution ofβ given σ 2 is Normal with mean m
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and dispersion matrix σ 2V. It is not complicated to see that the marginal den-
sity of σ 2 is that of the Inverse-Gamma distribution with shape parameter d/2
and scale parameter a/2. Also, the marginal distribution of β is a multivariate
t distribution with d degrees of freedom, location vector m, and scale
matrix V. A summary of means and dispersions related to the parameters is
as follows:

(i) E(β) = m

(ii) Var(β) = aV
d−2 , d > 2

(iii) E(σ 2) = a
d−2 , d > 2 (12.7)

(iv) Var(σ 2) = 2a2

(d−2)2(d−4) , d > 4

(v) E(β|σ 2) = m

(vi) Var(β|σ 2) = σ 2V

Note that Var(β) = E(σ 2)V and Var(β|σ 2) = σ 2V, showing the complete
dependence of β on σ 2.

Therefore, the posterior density can be written as

f (β, σ 2|y) = ( a∗
2 )

d∗
2 (σ 2)

− (d∗+p+2)
2

(2π ) p/2 |V∗|1/2 �
( d∗

2

)
exp

{
− 1

2σ 2 [ (β − m∗)′(V∗)
−1

(β − m∗) + a∗]
}

, (12.8)

where V∗ = (V−1 + X′X)
−1

, d∗ = d + n, m∗ = V∗(V−1m + X′y), and a∗ =
a + m′V−1m + y′y − m∗′ (V∗)−1 m∗.

To understand the effect of the dependence, it is interesting to draw some
pictures of posterior densities and see the influence of the choice of hyper-
parameters in the prior distribution. Example 1 shows a numerical appli-
cation where a set of data is simulated to illustrate the prior and posterior
densities.

Example 1:
Consider a 12-run Plackett-Burman design and also consider simulated data
from the true model Y = 2x1 + x2 + 1.5x3 + ε with ε ∼ N(0, 0.252), where

x1 =
{

−1 when factor A uses “low” level (−)
1 when factor A uses “high” level (+).

A similar coding is used for factors B to K. This means that the factors
A, B, and C are active in the experiment. The simulated data are shown in
Table 12.2.

From Equation (12.3), the least squares estimates of the main effects and
the intercept can be easily calculated and are as follows:
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TABLE 12.2

Twelve-Run Plackett-Burman Design
Factor

A B C D E F G H I J K response

+ + − + + + − − − + − 1.7502
+ − + + + − − − + − + 2.7130
− + + + − − − + − + + 0.4377
+ + + − − − + − + + − 4.4825
+ + − − − + − + + − + 1.4302
+ − − − + − + + − + + −0.5429
− − − + − + + − + + + −4.4129
− − + − + + − + + + − −1.4384
− + − + + − + + + − − −2.4942
+ − + + − + + + − − − 2.5350
− + + − + + + − − − + 0.8998
− − − − − − − − − − − −4.6797

β̂0 = 0.057, β̂1 = 2.005, β̂2 = 1.028, β̂3 = 1.548,

β̂4 = 0.031, β̂5 = 0.091, β̂6 = 0.071, β̂7 = 0.021,

β̂8 = −0.069, β̂9 = −0.010, β̂10 = −0.011, β̂11 = 0.031.

Figure 12.2 shows the normal plot of the least squares estimates and clearly
the three points at the top right-hand side are distant from the other nine,
which means the effects associated with these estimates are active. These
three points are the estimates of β2, β3, and β1 in a sequence from left to right.

In this example, it will be assumed that V = cIp, which can be interpreted
as the prior beliefs about the βi ’s being mutually independent. Figure 12.3
shows the marginal posterior density of β1 and the posterior density of σ 2, fix-
ing the hyperparameters c, d, m = 0, and a taking values 0.1 (top),
1 (middle), and 10 (bottom). The prior and posterior variance of β1, given
by the t distribution, increase as the hyperparameter a increases for c, d, and
m fixed, confirming the linear relationship shown in the properties of the
marginal distributions given above. Also, the prior and posterior distribu-
tions of σ 2 have the same linear relationship, that is, when the value of a
increases, the mean and posterior variance of σ 2 increase as well. A similar
interpretation can be given to the hyperparameter d, that is, the larger the
value of d is, the smaller are the prior and posterior variance of β1.

Figure 12.4 is constructed in a similar way and shows the marginal poste-
rior density of β1 and the posterior density of σ 2, fixing the hyperparameters
a, d, m = 0, and c taking values 0.1 (top), 1 (middle), and 10 (bottom). In this
case, the interpretation the effect of changing the value of c on the posterior
distribution of β1 and σ 2 is not obvious because the posterior hyperparame-
ters a∗ and V∗ are functions of c and the relationship is not easy to determine.
In this case, the posterior mode of β1 tends to the true value 2 when c increases
and in general, the variability of β1 also decreases as c increases.
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FIGURE 12.2
Normal plot of main effects of hypothetical data from Example 1.

The general message from these and other examples is that conjugate
priors are a very inflexible way of describing prior opinion. Very informative
priors can lead to the posterior being very vague and centered in the wrong
place, whereas very vague priors make the dependence between the βi ’s and
σ 2 persistent. We now seek more flexible, but still simple, families of priors
that might be more useful.

12.4.2 Prior as a Finite Mixture of Densities

Due to the dependence among the parameters, the use of conjugate prior
distributions is often criticized because it is too restrictive. However, we can
increase the flexibility of these families by considering mixtures of conjugate
prior distributions.

Some general theory for finite mixtures of distributions [5] shows that the
class of conjugate priors can be enlarged using this method. To describe the
theory, start by assuming that φ is a discrete random variable taking values
φ1, φ2, . . . , φm such that P(φ = φi ) = pi . A mixture of distributions fi (θ ) with
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FIGURE 12.3
Marginal prior (dashed) and posterior (solid) of β1 and σ 2 using hyperparameters a = 0.1, 1, 10
(from top to bottom), d = 10, and c = 1.

weights pi is given by

f (θ ) =
m∑

i=1

pi fi (θ ), (12.9)

where each component of the mixture fi (θ ) = f (θ |φ = φi ) is the conditional
distribution of θ given φ = φi .

If f (θ ) represents the prior distribution of θ , then the posterior distribution
of θ given data x is

f (θ |x) =
m∑

i=1

p∗
i fi (θ |x), (12.10)

where

fi (θ |x) = fi (θ ) f (x|θ )∫
fi (θ ) f (x|θ ) dθ

(12.11)

and

p∗
i = pi

∫
fi (θ ) f (x|θ ) dθ∑m

j=1 p j
∫

f j (θ ) f (x|θ ) dθ
, (12.12)

which means that p∗
i is proportional to pi

∫
fi (θ ) f (x|θ ) dθ .
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FIGURE 12.4
Marginal prior(dashed) and posterior (solid) of β1 and σ 2 using hyperparameters a = 1, d = 10,
and c = 0.1, 1, 10 (from top to bottom).

The posterior distribution expressed in Equation (12.10) is also a mixture
of distributions fi (θ |x) where the weights p∗

i are updated after incorporating
the information from the data. Applying Equation (12.9), the prior of (β, σ 2)
can be expressed as a mixture of N-IG densities, i.e.,

f (β, σ 2) =
m∑

i=1

pi fi (β, σ 2),

where

fi (β, σ 2) = ( ai
2 )

di
2 (σ 2)

− (di +p+2)
2

(2π ) p/2 |Vi |1/2 �
( di

2

) exp
{

− 1
2σ 2 [ (β − mi)′V−1

i (β − mi ) + ai ]
}

.

(12.13)

This prior density has N-IG densities as the components of the mixture, which
have different sets of hyperparameters ai , di , mi , and Vi to define the distri-
bution suggested by the experimenter.

Using the likelihood function of Equation (12.4), the posterior density from
Equation (12.10) can be formulated as

f (β, σ 2|y) =
m∑

i=1

p∗
i fi (β, σ 2|y),
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where the component of the posterior mixture is given as a posterior density
of the N-IG density, i.e.,

fi (β, σ 2|y) = ( a∗
i

2 )
d∗
i
2 (σ 2)− (d∗

i
+p+2)

2

(2π ) p/2
∣∣V∗

i

∣∣1/2
�
(

d∗
i
2

)
exp

{
− 1

2σ 2 [ (β − m∗
i )′(V∗

i )
−1

(β − m∗
i ) + a∗

i ]
}

(12.14)

assuming that a∗
i , d∗

i , m∗
i , and V∗

i are the same as in Equation (12.8).
The updated weights are calculated using

∫ ∫
fi (β, σ 2) f (y|β, σ 2)dβ dσ 2 =

( ai
2

) di
2

�
(

d∗
i
2

) ∣∣V∗
i

∣∣1/2

(
a∗

i
2

) d∗
i
2

�
( di

2

) |Vi |1/2 (2π )
n
2

. (12.15)

Observe that the quotient above uses the prior, likelihood, and posterior infor-
mation. Actually, this quotient is composed of the normalizing constant from
the prior density, the likelihood function, and the posterior density. Conse-
quently,

p∗
i ∝ pi

(ai )
di
2 �
(

d∗
i
2

) ∣∣V∗
i

∣∣1/2

(
a∗

i

) d∗
i
2 �

( di
2

) |Vi |1/2 π
n
2

. (12.16)

In order to compare the impact of the hyperparameters on the prior and
posterior, the marginal density of βi will be rewritten below. Note that from
Equation (12.13), the marginal density of the vector of parameters β is

fi (β) =
�
(

di +p
2

)
(diπ ) p/2�

( di
2

) ∣∣∣( ai Vi
di

)∣∣∣1/2

[
1 + 1

di
(β − mi )′

(
ai Vi

di

)−1

(β − mi )

]− di +p
2

and then the marginal density of each β j is given by

fi (β j ) = �
( di +1

2

)
�
( di

2

)
(πai v j j,i )1/2

[
1 + 1

di

(
di

ai v j j,i

)
(β j − m j,i )2

]− di +1
2

, (12.17)

where vj j,i is the ( j + 1)th diagonal element of the matrix Vi and m j,i is the
( j + 1)th element of the mean vector mi . Therefore, the marginal posterior
density of β is

fi (β|y) =
�
(

d∗
i +p
2

)
�( d∗

i
2 )(d∗

i π ) p/2
∣∣∣ a∗

i
d∗

i
V∗

i

∣∣∣1/2

[
1 + 1

d∗
i

(β − m∗
i )′
(

a∗
i V∗

i

d∗
i

)−1

(β − m∗
i )

]− d∗
i

+p

2
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FIGURE 12.5
Prior of β1 and σ 2 using weights 0.7 and 0.3 for the mixture, a = 0.75, d = 5, and c is 1 and 10 to
compose the mixture.

and consequently, the marginal posterior density of each β j is

fi (β j |y) =
�
(

d∗
i +1
2

)
�
(

d∗
i
2

)
(π a∗

i v∗
j j,i )1/2

[
1 + 1

d∗
i

(
d∗

i

a∗
i v∗

j j,i

)
(β j − m∗

j,i )
2

]− d∗
i

+1

2

,

(12.18)

where v∗
j j,i is the ( j + 1)th diagonal element of the matrix V∗

i .

Example 1: (continued)
The aim here is to show the marginal prior and posterior densities of βi under
different values of the hyperparameters. First, let the prior density be a mix-
ture of two densities with weights 0.7 and 0.3. Figure 12.5 shows the prior and
posterior density of β1 in the first line and the prior and posterior density of the
variance in the second line. The graph on the top left is composed of the prior
density (solid) and the two components of the mixture, where one component
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is given by N-IG(0.75, 5, 0, 1) with weight 0.7 (dashed) and the second one is
N-IG(0.75, 5, 0, 10) (dotted). For the graph in the middle, the first line is the
posterior density (solid), which is the mixture of N-IG(7.669, 17, 1.850, 0.077)
and N-IG(1.493, 17, 1.988, 0.083) with updated weights 0.581 and 0.419. The
graph in the first line on the right side shows the prior (dashed) and posterior
(solid) densities. The hyperparameters used in this case are the smallest for a
and d such that E(σ 2) = 0.25, and the values of c are used for the dispersion
matrix V. In the second line, from left to right, is the prior density (solid) of
the variance σ 2 with its two mixture components, the posterior density (solid)
of the variance with its two mixture components, and the prior (dashed) and
posterior (solid) densities of variance. The pattern found here in the posterior
is something of a surprise.

Figure 12.6 uses the same values of c but the values of a and d are larger so
that E(σ 2) is preserved. The posterior density of β1 in Figure 12.6 has smaller
variance than in Figure 12.5, and this difference is explained by the choice of
higher values of the hyperparameters a and d. The prior expectation of σ 2 is
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FIGURE 12.6
Prior of β1 and σ 2 using weights 0.7 and 0.3 for the mixture, a = 24.5, d = 100, and c is 1 and 10
to compose the mixture.
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the same but the dispersion on the t distribution of βi depends on the quotient
a/d instead of a/(d − 2).

The change in the posterior induced by changing the values of a and d is
not as drastic as when the value of c is changed. The posterior distribution
is much more sensitive to changes in c than in other hyperparameters. What
happens to the marginal density of β when the values for c are smaller?
Figure 12.7 and Figure 12.8 show the change in the posterior density with
hyperparameter c. Clearly, these figures show the change in the variance for
the marginal prior density of β1 when the values of c decrease and the prior
and posterior densities have the same behavior, i.e., the posterior density does
not change much and the prior density is thinner when the hyperparameters
for a and d are smaller.

Again the conclusion is that great care is needed in choosing the prior dis-
tributions. However, the extra flexibility gained by using mixtures of conju-
gate distributions seems to be worthwhile. Using more than two components
in the mixture of distributions is perfectly possible, but little advantage seems
evident in doing so. Each effect having a moderate to large probability of
being close to zero, with the rest of the probably being spread widely around
zero, seems to describe the assumptions of effect sparsity, and with little
being known about the specific effects, that is usually the case when satu-
rated designs are being used.

12.4.3 Non-Conjugate Priors

The advantage of using conjugate priors is that an analytic expression for
the posterior density can be obtained that does not need any method of
approximating or simulation. Alternately, the prior density of β depends
on σ 2 completely, which forces the results of posterior estimation of β to be
dependent on the prior distribution of this parameter.

The prior information on β and σ 2 might be obtained independently, for
example, that for σ 2 might come from the routine running of the process,
whereas that for β might come from experiments on a pilot plant. In such
cases, one might assume that the prior distribution ofβ is multivariate Normal
with mean b and dispersion matrix W, and that the prior distribution of σ 2

is Inverse-Gamma with shape parameter α and scale parameter δ. Therefore,
the joint prior density of (β, σ 2) is given by

f (β, σ 2) ∝ (σ 2)−(α+1) exp
{

−1
2

(β − b)′W−1(β − b) − δ

σ 2

}
. (12.19)

The posterior density of (β, σ 2) will be determined by incorporating the
prior knowledge of Equation (12.19) with data information, given by the
likelihood function of Equation (12.5), and is

f (β, σ 2|y) ∝ (σ 2)−( n
2 +α+1)

exp
{

−1
2

(β − b)′W−1(β − b) − δ

σ 2 − 1
2σ 2 (β − β̂)′X′X(β − β̂)

}
. (12.20)
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TABLE 12.3

Statistics from Simulated Data Using Non-Conjugate Prior for
(β, σ 2) with h = 0.125, α = 5, and δ = 0.5

Parameter Mean SD MC Error 2.5% Median 97.5%

β0 0.040 0.1949 0.000883 −0.3721 0.045 0.439
β1 1.391 0.4487 0.002432 0.4145 1.483 1.989
β2 0.713 0.2841 0.001482 0.0484 0.776 1.109
β3 1.074 0.3697 0.001921 0.2434 1.152 1.574
β4 0.022 0.1971 0.000856 −0.3961 0.023 0.431
σ 2 0.930 1.0000 0.005164 0.0740 0.556 3.589

TABLE 12.4

Statistics from Simulated Data Using Non-Conjugate Prior for
(β, σ 2) with h = 0.125, α = 10, and δ = 10

Parameter Mean SD MC Error 2.5% Median 97.5%

β0 0.026 0.2596 0.001210 −0.4837 0.028 0.532
β1 0.923 0.3094 0.002185 0.2953 0.934 1.504
β2 0.471 0.2716 0.001442 −0.0829 0.477 0.990
β3 0.712 0.2916 0.001847 0.1219 0.722 1.255
β4 0.012 0.2590 0.001134 −0.4969 0.013 0.519
σ 2 1.885 0.6995 0.005586 0.8988 1.758 3.601

TABLE 12.5

Statistics from Simulated Data Using Non-Conjugate Prior
for (β, σ 2) with h = 1, α = 10, and δ = 10

Parameter Mean SD MC Error 2.5% Median 97.5%

β0 0.053 0.2862 0.001338 −0.515 0.054 0.612
β1 1.842 0.2881 0.001434 1.258 1.848 2.394
β2 0.941 0.2874 0.001268 0.357 0.945 1.494
β3 1.422 0.2890 0.001377 0.834 1.428 1.976
β4 0.026 0.2851 0.001257 −0.536 0.027 0.587
σ 2 1.081 0.3668 0.002457 0.579 1.013 2.000

Example 1 (continued):
The following results show the output of the posterior density simulated using
WinBUGS [14], where b = 0 and W = hIp were assumed. Thus, a different set
of values for h, α, and δ is used to produce the summary of 50,000 simulated
points from the posterior and the graphs of the marginal posteriors for the
parameters.

Table 12.3 summarizes the statistics of the parameters β0, β1, β2, β3, β4, and
σ 2 using h = 0.125, α = 5, and δ = 0.5. Table 12.4 summarizes the statistics
of parameters β0, β1, β2, β3, β4, and σ 2 using h = 0.125, α = 10, and δ = 10,
and Table 12.5 summarizes the statistics of parameters β0, β1, β2, β3, β4, and
σ 2 using h = 1, α = 10, and δ = 10. The corresponding simulated marginal
posterior distributions are shown in Figure 12.9, Figure 12.10 and Figure 12.11.
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FIGURE 12.9
Posterior from Non-Conjugate Prior for β0, β1, β2, β3, β4, and σ 2 Using h = 0.125, α = 5, and
δ = 0.5.

These results seem to be less sensitive to changes in the prior distributions
than those from the conjugate priors. In particular, if the prior for σ 2 is badly
misspecified, the effect on the posterior of βi seems to be less damaging. In
particular, Figure 12.9 shows that the main impact of underestimating σ 2 with
a highly informative prior does not stop the posterior for β1 covering the true
value. However, it does mean that β is widely spread.

12.5 Conclusions

The main message from this chapter is that great care is needed when using
Bayesian estimation with saturated designs. This requirement is only to be
expected. It is well known that the data from saturated designs provide only
limited information, so naturally the interpretation of these data depends
heavily on the prior assumptions made. This is also true of the classical anal-
ysis, where the interpretation of the normal plots depends on how strongly
the experimenter believes in factor sparsity.
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FIGURE 12.10
Posterior from Non-Conjugate Prior for β0, β1, β2, β3, β4, and σ 2 Using h = 0.125, α = 10, and
δ = 10.

We have presented results in which the priors for β are noninformative
as well as those in which they are moderately or highly informative. How-
ever, the priors for σ 2 have been either moderately or highly informative. Us-
ing noninformative priors for all parameters simultaneously does not seem
appropriate for several reasons. First, noninformative priors do not realis-
tically describe the true state of experimenters’ prior knowledge, as some-
thing is always known about the order of magnitude of run-to-run variation.
Second, finding a prior that is noninformative for σ 2 is notoriously difficult
[13]. Most importantly, however, is the fact that in a saturated design, we
are using n observations to estimate n + 1 parameters. In the absence of any
prior knowledge, the data do not provide any information. This condition
is also true for classical analyses in which a point prior is required for σ 2 to
obtain finite standard errors for the other parameters. The Bayesian analysis
has the advantage that useful conclusions can still be drawn even if the prior
knowledge on σ 2 is only moderately informative.

The conjugate priors seem to be too inflexible for most applications but
mixtures of conjugate priors greatly increase the flexibility. However, advan-
tages also exist in having priors for the factors’ effects that are independent of
those for the variance. The choice must depend on the experimenters’ prior
beliefs about their process. If the run-to-run variation is bigger than expected,
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FIGURE 12.11
Posterior from Non-Conjugate Prior for β0, β1, β2, β3, β4, and σ 2 using h = 1, α = 10, and δ = 10.

are the effects of factors likely to be also bigger than expected? In summary,
the Bayesian analysis provides the opportunity to get more information from
saturated designs at the cost of having to be more careful about the specifica-
tion of the prior assumptions. When more than a vague indication of which
factors are active is needed, this method seems like a good deal.
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A

adjustment, see process control and
setup adjustment

adjustment costs, 258
average run length (ARL), 121,

144–163, 250
adaptive control charts, 172–185

B

Bayes factor, 49, 94
Bayes, Thomas, 4
Bayes’ theorem, 6–7
Bayesian decision theory, 249–251
beta distribution, 123, 190
binomial distribution, 123, 190
bugs, see software
burn in (truncation point), 72–75

C

categorical data, 126–134
certainty equivalence controller, 254,

256
change point, 28–29
conjugate analysis, 12, 89, 123
control chart, see also process

monitoring
attribute control chart, 122–126
CUSUM control chart, 141–148,

247–252, 259
economic design of control charts,

169–186
EWMA control chart, see also

Exponentially Weighted
Moving Average, 140–144, 247

Individuals control chart, 259
inertia in control chart, 150–152, 155
Xbar control chart, 167–185
multivariate control chart, 117–122,

126–135, 140–164

convergence diagnostic, see also
software CODA, 65–67,
71–76

credibility intervals, 8–9
credibility region, 278
Cumulative Sum (CUSUM), see also

control chart: CUSUM, 259

D

decision theory, see Bayesian Decision
Theory

degeneracy (in sequential Monte
Carlo), 54

desirability function (in process
optimization), 271–272, 276

Design of Experiments (DOE), see
Experimental Design

diagnostic in MCMC, see
convergence diagnostic

Dirichlet distribution, 127–134,
225–226

drifting process, 87–100, 157
Dual Response Model (in process

optimization), 285
dynamic linear models, see Kalman

filter
dynamic programming, 169, 173–175

E

economic design of control charts, see
control charts

empirical Bayes method, 16, 110–134
effective sample size, 55
elliptical contoured distribution, 160
engineering process control (EPC),

see process control
ergodicity, 56
experimental design, 311–331
exponential distribution family,

190–191, 252
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exponentially weighted
moving-average (EWMA), see
also control chart, 115, 121,
140–144, 192–194

EWMA controller, 257, 261–263

F

factorial design, 312
fast initial response, 140
Fisher’s information, 15, 188–189, 206
Fisher’s score, see Fisher’s

information
forward filtering backward sampling

algorithm, 232
Fourier components see periodic

functions
full conditionals, 62, 63, 70

G

gamma distribution, see also
inverse-gamma distribution,
190, 224

general linear model, 316
generalized linear model, 287
Gibbs sampling, see also Markov

Chain Monte Carlo (MCMC),
60–65, 71–76, 225–228, 231–235,
237, 283–286

H

half-normal probability plot, 314
harmonic rule, 256
hidden Markov Models, 223–225
hierarchical models, 67–68, 258, 285
highest posterior density (HPD), 9,

147
Hotelling T2, see also control chart:

multivariate, 120, 140

I

inertia in control chart, see control
charts

importance sampling see also
sampling importance
resampling and sequential
importance sampling, 52–53

invariance principle, 13,15

inverse-χ2 distribution, 20–24, 39, 43
inverse-gamma distribution, 43, 69,

89–93, 286, 316, 321, 324, 325
inverse-Wishart distribution, 25–27,

43
integrated circuits manufacturing,

201–206
interval estimator, see credibility

interval

J

Jeffreys’ rule for non-informative
priors, 15

K

Kalman filter, 29–33, 89, 196–200,
228–230

Kalman filter and process
monitoring, 33–34, 111

Kalman filter and process control,
34–37, 255–258

L

Laplace, 4
Laplace approximation, 188
latent variables, 221–223
likelihood principle, 7
linear regression, 37–39, 221–222,

273–286, 303, 313
linear quadratic (LQ) control, 256, 258
logit transformation, 191
loss function, quadratic, 272

M

Markov model, see Hidden Markov
Model

Markov chain Monte Carlo (MCMC),
see also Gibbs sampling and
Metropolis-Hastings
algorithm, 55–67, 225–238, 258,
282

Metropolis-Hastings algorithm,
56–60, 237

Metropolis random walk, 59
missing values, 216–224
mixed-effects model, 287
mixture experiment, 275
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mixtures (posterior distribution),
90–93, 319–325

mixtures (prior distribution), 319–325
model Averaging, 281–282
model selection and comparison,

235–238
monitoring see process monitoring
Monte Carlo simulation, 50, 274, 277,

280, 283
Monte Carlo, sequential see

Sequential Importance
Sampling

multinomial distribution, 127–128,
191

multiple response surface
optimization, see Response
Surface Methods (RSM)

multivariate analysis, 25–27, 29–33,
117–118, 127–129, 142–143

multivariate control chart, see control
chart

multivariate normal distribution, see
normal model, multivariate

multivariate t distribution, 42

N

noise variable in process
optimization, see Robust
process optimization

non-informative priors, 13
normal-inverse-χ2(prior), 21
normal-inverse-Wishart (prior), 26
normal model, 16–25

normal model, multivariate, 25–27

O

outliers, 95

P

particle, see Sequential Importance
Sampling

pass/fail variables, 122
Pearson Type II and Type VII

multivariate distributions, 160
periodic functions, 219–221
Plackett-Burman design,312, 314, 317
Poisson distribution, 190
Pòlya distribution, 133

polytomous data, see categorical data
posterior distribution, 7

posterior mean, 8
posterior mode, 8
posterior predictive distribution, 9,

94, 189, 270, 273–278
posterior simulation, 10–11, 47–81

prediction, frequentist, 41
predictive distribution, see posterior

predictive distribution
predictivism, 10
principle of insufficient reason, 13
principle, invariance, see invariance

principle
prior distribution, choice, 12–16
process adjustment, see process

control
process control, 34–37, 245, 252–258
process monitoring, see also control

chart, 27–29, 33–34, 87–100,
110–137, 140–164, 167–185,
187–207, 245–252

process monitoring and process
control integration, 258–264

process optimization, see also
Response Surface Methods
(RSM), 37–41, 269–288,
291–307

Q

quasi-Bayesian analysis, 301

R

R, see software
random walk, 88
random effects model, see variance

components model
recursive least squares, 257
rejection sampling, 50–52, 286
rejuvenation, 55
regression, see linear regression
response surface methods (RSM),

269–288
Ridge regression, 265, 303
robust parameter design, see robust

process optimization
robust process optimization, 278–281

robust process optimization: Larger
the Better, 279
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robust process optimization:
Smaller the Better, 279

robustness, 95, 159–161

S

scaled inverse-χ2 distribution, 43
sampling importance resampling

(SIR), 53
sampling plan, see sequential

sampling plan
saturated design, 311–331
score, see Fisher’s score
separation principle in process

control, 254
sequential importance sampling

(sequential Monte Carlo),
53–55

sequential probability ratio test
(SPRT), see also Cumulative
Sum (CUSUM), 248, 252

sequential process optimization,
291–307

sequential sampling plan, 302
setup adjustment, 253–258
Shewhart control chart, see control

chart
short-run production, 27–28, 99,

169–186
software,

software, CODA under R, see also
convergence diagnostics, 65, 71

software, R, 204
software, Ultramax, 292, 299, 300
software, WinBUGS (or BUGS),

71–72, 76–81, 328–329
state-space model, see also Kalman

filter, 29
statistical process control (SPC), see

process monitoring
SPC/EPC integration, 258–263
Student-t distribution, 22, 24, 26, 28,

39, 93, 224, 174, 275, 276
stochastic approximation, 256

T

time series, 219–223
transition kernel or density, 56–59,

61–62

U

uniform distribution, 195
Ultramax, see software

V

variance components model, 68–76

W

wear (tool wear), 88
WinBUGS, see software
Wishart distribution, 283




