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Joseph Louis Lagrange (1736–1813)

Joseph Louis Lagrange was one of the two great mathematicians of the eighteenth century. He
was born in France and was appointed professor at the age of 19. He helped in founding the
Royal Academy of Sciences at the Royal Artillery School in 1757. He was very close to the
famous mathematician Euler, who appreciated his work immensely. When Euler left the Berlin
Academy of Science in 1766, Lagrange succeeded him as director of mathematics. He left
Berlin in 1787 and became a member of the Paris Academy of Science and remained there for
the rest of his career. He helped in the establishment of École Polytechnique and taught there
for some time. He survived the French revolution, and Napoleon appointed him to the Legion
of Honour and Count of the Empire.

Lagrange had given two formulae for the expansion of the function f (z) in a power series
of u when z = ug(z) (mémoires de l’Acad. Roy. des Sci. Berlin, 24, 1768, 251) which have
been extensively used by various researchers for developing the class of Lagrangian probability
models and its families described in this book.

Lagrange developed the calculus of variations, which was very effective in dealing with
mechanics. His work Mécanique Analytique (1788), summarizing all the work done earlier in
mechanics, contained unique methods using differential equations and mathematical analysis.
He created Lagrangian mechanics, provided many new solutions and theorems in number the-
ory, the method of Lagrangian multipliers, and numerous other results which were found to be
extremely useful.
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Foreword

It is indeed an honor and pleasure to write a Foreword to the book on Lagrangian Probability
Distributions by P. C. Consul and Felix Famoye.

This book has been in the making for some time and its appearance marks an important
milestone in the series of monographs on basic statistical distributions which have originated
in the second half of the last century.

The main impetus for the development of an orderly investigation of statistical distributions
and their applications was the International Symposium on Classical and Contagious Discrete
Distributions, organized by G. P. Patil in August of 1969–some forty years ago—with the active
participation of Jerzy Neyman and a number of other distinguished researchers in the field of
statistical distributions.

This was followed by a number of international conferences on this topic in various lo-
cations, including Trieste, Italy and Calgary, Canada. These meetings, which took place dur-
ing the period of intensive development of computer technology and its rapid penetration into
statistical analyses of numerical data, served inter alia, as a shield, resisting the growing at-
titude and belief among theoreticians and practitioners that it may perhaps be appropriate to
de-emphasize the parametric approach to statistical models and concentrate on less invasive
nonparametric methodology. However, experience has shown that parametric models cannot
be ignored, in particular in problems involving a large number of variables, and that without
a distributional “saddle,” the ride towards revealing and analyzing the structure of data repre-
senting a certain “real world” phenomenon turns out to be burdensome and often less reliable.

P. C. Consul and his former student and associate for the last 20 years Felix Famoye were
at the forefront of intensive study of statistical distribution—notably the discrete one—during
the golden era of the last three decades of the twentieth century.

In addition to numerous papers, both of single authorship and jointly with leading scholars,
P. C. Consul opened new frontiers in the field of statistical distributions and applications by
discovering many useful and elegant distributions and simultaneously paying attention to com-
putational aspects by developing efficient and relevant computer programs. His earlier (1989)
300-page volume on Generalized Poisson Distributions exhibited very substantial erudition and
the ability to unify and coordinate seemingly isolated results into a coherent and reader-friendly
text (in spite of nontrivial and demanding concepts and calculations).

The comprehensive volume under consideration, consisting of 16 chapters, provides a broad
panorama of Lagrangian probability distributions, which utilize the series expansion of an an-
alytic function introduced by the well-known French mathematician J. L. Lagrange (1736–
1813) in 1770 and substantially extended by the German mathematician H. Bürmann in 1779.



viii Foreword

A multivariate extension was developed by I. J. Good in 1955, but the definition and basic
properties of the Lagrangian distributions are due to P. C. Consul, who in collaboration with
R. L. Shenton wrote in the early 1970s in a number of pioneering papers with detailed discus-
sion of these distributions.

This book is a welcome addition to the literature on discrete univariate and multivariate
distributions and is an important source of information on numerous topics associated with
powerful new tools and probabilistic models. The wealth of materials is overwhelming and the
well-organized, lucid presentation is highly commendable.

Our thanks go to the authors for their labor of love, which will serve for many years as a
textbook, as well as an up-to-date handbook of the results scattered in the periodical literature
and as an inspiration for further research in an only partially explored field.

Samuel Kotz
The George Washington University, U.S.A.
December 1, 2003



Preface

Lagrange had given two expansions for a function towards the end of the eighteenth century,
but they were used very little. Good (1955, 1960, 1965) did the pioneering work by developing
their multivariate generalization and by applying them effectively to solve a number of impor-
tant problems. However, his work did not generate much interest among researchers, possibly
because the problems he considered were complex and his presentation was too concise.

The Lagrange expansions can be used to obtain very useful numerous probability models.
During the last thirty years, a very large number of research papers has been published by
numerous researchers in various journals on the class of Lagrangian probability distributions,
its interesting families, and related models. These probability models have been applied to
many real life situations including, but not limited to, branching processes, queuing processes,
stochastic processes, environmental toxicology, diffusion of information, ecology, strikes in
industries, sales of new products, and amounts of production for optimum profits.

The first author of this book was the person who defined the Lagrangian probability distrib-
utions and who had actively started research on some of these models, in collaboration with his
associates, about thirty years ago. After the appearance of six research papers in quick succes-
sion until 1974, other researchers were anxious to know more. He vividly remembers the day
in the 1974 NATO Conference at Calgary, when a special meeting was held and the first au-
thor was asked for further elucidation of the work on Lagrangian probability models. Since the
work was new and he did not have answers to all their questions he was grilled with more and
more questions. At that time S. Kotz rose up in his defense and told the audience that further
questioning was unnecessary in view of Dr. Consul’s reply that further research was needed to
answer their questions.

The purpose of this book is to collect most of the research materials published in the var-
ious journals during the last thirty-five years and to give a reasonable and systematic account
of the class of Lagrangian probability distributions and some of their properties and applica-
tions. Accordingly, it is not an introductory book on statistical distributions, but it is meant for
graduate students and researchers who have good knowledge of standard statistical techniques
and who wish to study the area of Lagrangian probability models for further research work
and/or to apply these probability models in their own areas of study and research. A detailed
bibliography has been included at the end. We hope that the book will interest research workers
in both applied and theoretical statistics. The book can also serve as a textbook and a source
book for graduate courses and seminars in statistics. For the benefit of students, some exercises
have been included at the end of each chapter (except in Chapters 1 and 16).



x Preface

This book offers a logical treatment of the class of Lagrangian probability distributions.
Chapter 1 covers mathematical and statistical preliminaries needed for some of the materials in
the other chapters. The Lagrangian distributions and some of their properties are described in
Chapters 2 and 3. Their families of basic, delta, and general Lagrangian probability models, urn
models, and other models are considered in Chapters 4 to 6. Special members of these families
are discussed in Chapters 7 through 13. The various generating algorithms for some of the
Lagrangian probability models are considered in Chapter 16. Methods of parameter estimation
for the different Lagrangian probability models have been included. Tests of significance and
goodness-of-fit tests for some models are also given. The treatments and the presentation of
these materials for various Lagrangian probability models are somewhat similar.

The bivariate and the multivariate Lagrangian probability models, some of their properties,
and some of their families are described in Chapters 14 and 15, respectively. There is a vast area
of further research work in the fields of the bivariate and multivariate Lagrangian probability
models, their properties and applications. A list of the notational conventions and abbreviations
used in the book is given in the front of the book.

There is a growing literature on the regression models based on Lagrangian probability
models, such as the generalized Poisson regression models and the generalized binomial re-
gression models. We have deliberately omitted these materials from this book, but not because
their study is unimportant. We feel their study, which depends on some other covariates, is
important and could be included in a book on regression analysis.

The production of a work such as this entails gathering a substantial amount of information,
which has only been available in research journals. We would like to thank the authors from
many parts of the world who have generously supplied us with reprints of their papers and thus
have helped us in writing this book. We realize that some important work in this area might
have been inadvertently missed by us. These are our errors and we express our sincere apology
to those authors whose work has been missed.

We are particularly indebted to Samuel Kotz, who read the manuscript and gave valuable
comments and suggestions which have improved the book. We wish to express our gratitude
to the anonymous reviewers who provided us with valuable comments. We would like to thank
Maria Dourado for typing the first draft of the manuscript. We gratefully acknowledge the sup-
port and guidance of Ann Kostant of Birkhäuser Boston throughout the publication of this work.
We also thank the editorial and production staff of Birkhäuser for their excellent guidance of
copyediting and production. The financial support of Central Michigan University FRCE Com-
mittee under grant No. 48515 for the preparation of the manuscript is gratefully acknowledged
by the second author.

Calgary, Alberta, Canada Prem C. Consul
Mount Pleasant, Michigan Felix Famoye

October 25, 2005
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5.3.2 Pólya-type Sampling from Urn B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Urn Model with Predetermined Strategy for Quasi-Pólya Distribution II . . . . . 105
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1

Preliminary Information

1.1 Introduction

A number of formulas and results are included in this chapter, as they are needed repeatedly in
many chapters. The detailed proofs for most of these results have not been provided because
they are given in most standard books of mathematics and statistics. Since this book will mostly
be used by upper level graduate students and by researchers, we don’t need to go into detailed
proofs of such preliminary results.

1.2 Mathematical Symbols and Results

1.2.1 Combinatorial and Factorial Symbols

The symbol n! is read as “n factorial” and it represents the product of all positive integers from
1 to n. Thus,

n! = n(n − 1)(n − 2) · · · (3)(2)(1). (1.1)

Also, 1! = 1 and 0! = 1.
The product of k positive integers from n to (n − k + 1) is called the descending factorial

and is denoted by n(k). Also, n(0) = 1 and

n(k) = n(n − 1)(n − 2) · · · (n − k + 1) (1.2)

= n!

(n − k)!
. (1.3)

Some authors have used the symbols n(k) and n[k] for the above product of descending
factorial. Accordingly, there is no standard notation for this product. Similarly, there is no
standard notation for the ascending factorial for which the symbol n[k] will be used in this
book. Thus n[0] = 1 and

n[k] = n(n + 1)(n + 2) · · · (n + k − 1) (1.4)

= (n + k − 1)!

(n − 1)!
. (1.5)



2 1 Preliminary Information

The symbol n[k,s] represents the product

n[k,s] = n(n + s)(n + 2s) · · · (n + (k − 1)s) (1.6)

= sk ·
(n

s

) (n

s
+ 1
)(n

s
+ 2
)

· · ·
(n

s
+ k − 1

)

= sk ·
(n

s + k − 1
)
!(n

s − 1
)
!

= sk
(n

s

)[k]
. (1.7)

It may be noted that n
s is not necessarily a positive integer. Also, n[k,1] = n[k] and n[k,−1] =

n(k).
The binomial coefficient

(n
k

)
denotes the number of different ways of selecting k items out

of n different items and(
n
k

)
= n!

k!(n − k)!
= n(n − 1) · · · (n − k + 1)

k!
= n(k)

k!
. (1.8)

Also, (
n
k

)
=
(

n
n − k

)
(1.9)

and (
n
0

)
=
(

n
n

)
= 1. (1.10)

It can be easily shown that (
n
k

)
+
(

n
k + 1

)
=
(

n + 1
k + 1

)
. (1.11)

When n and k are positive integers it is usual to define
(n

k

) = 0, for k < 0 or for k > n.
However, in an extended definition of these symbols for any real value of n and positive integer
k, we have (−n

k

)
= (−n)(−n − 1)(−n − 2) · · · (−n − k + 1)

k!

= (−1)k (n + k − 1)!

k!(n − 1)!
= (−1)k

(
n + k − 1

k

)
. (1.12)

Also,

(−n − 1)!

(−n − k − 1)!
= (−n − k)(−n − k + 1)(−n − k + 2) · · · (−n − 1)

= (−1)k(n + 1)(n + 2)(n + 3) · · · (n + k − 1)(n + k)

= (−1)k (n + k)!

n!
. (1.13)
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When the exponent m is a positive integer, the binomial expansion is

(a + b)m =
m∑

i=0

(
m
i

)
aibm−i (1.14)

= bm + m(1)

1!
abm−1 + m(2)

2!
a2bm−2 + · · · + m(i)

i !
aibm−i + · · · + am . (1.15)

When the exponent m is any real number and −1 < x < +1, the binomial expansion is

(1 + x)m =
∞∑

i=0

m(i)

i !
xi =

∞∑
i=0

(
m
i

)
xi , (1.16)

where
(m

i

)
has the extended definition of (1.12).

Vandermonde’s identity

k∑
i=0

(
m
i

)(
n

k − i

)
=
(

m + n
k

)
(1.17)

can be proved by equating the coefficients of xk in the expansions of (1 + x)m(1 + x)n =
(1 + x)m+n.

The negative binomial expansion is a particular case of (1.16). When x and m are both
negative, we have

(1 − x)−m =
∞∑

i=0

m[i]

i !
xi =

∞∑
i=0

(
m + i − 1

i

)
xi , (1.18)

which gives another Vandermonde-type identity

k∑
i=0

(
m + i − 1

i

)(
n + k − i − 1

k − i

)
=
(

m + n + k − 1
k

)
. (1.19)

The multinomial expansion is

(a1 + a2 + a3 + · · · + ak)
n =

∑ n!

r1!r2! · · · rk!
ar1

1 ar2
2 ar3

3 · · · ark
k , (1.20)

where each ri ≥ 0, i = 1, 2, . . . , k, and the summation is taken over all sets of nonnegative
integers r1, r2, . . . , rk from 0 to n such that r1+r2+r3+· · ·+rk = n. The ratio of the factorials
is called the multinomial coefficient(

n
r1, r2, . . . , rk

)
= n!

r1!r2! · · · rk!
. (1.21)

Riordan (1968) has given a large number of formulas between binomial coefficients. Some
of them are

fn =
n∑

k=1

(−1)k+1 1

k

(
n
k

)
= 1 + 1

2
+ 1

3
+ · · · + 1

n
, (1.22)

n∑
k=1

(−1)k−1
(

n
k

)
fk = 1

n
, (1.23)



4 1 Preliminary Information

n∑
k=0

(−1)n−k22k
(

n + k
2k

)
= 2n + 1, (1.24)

n∑
k=0

(−1)k4n−k
(

2n − k + 1
k

)
= n + 1, (1.25)

n∑
k=0

(−1)m+k
(

m
k

)(
n + k

k

)
=
(

n
m

)
, (1.26)

n∑
k=0

(−1)m+k
(

n
k

)(
n

2m − k

)
=
(

n
m

)
, (1.27)

n∑
k=0

(−1)k
(

n
k

)(
n

2m + 1 − k

)
= 0. (1.28)

1.2.2 Gamma and Beta Functions

The gamma function is denoted by the symbol �(n) and

�(n) = (n − 1)! (1.29)

when n is a positive integer. For all other positive values

�(n) = (n − 1)�(n − 1)

= (n − 1)(n − 2)�(n − 2)

= (n − 1)(n − 2)(n − 3)(n − 4)�(n − 4). (1.30)

The gamma function was defined by Euler as an integral

�(x) =
∫ ∞

0
t x−1e−tdt, x > 0, (1.31)

by which the properties (1.29) and (1.30) can be easily proved. Also,

�

(
1

2

)
= π

1
2 , �

(
n + 1

2

)
= (2n)!π

1
2

n!22n
. (1.32)

When n is large, �(n + 1) or n! can be approximated by any one of the two Stirling’s
formulas

�(n + 1) ≈ (2π)
1
2 (n)n+ 1

2 e−n−1
(

1 + 1

12(n + 1)
+ · · ·

)
, (1.33)

�(n + 1) ≈ (2π)
1
2 (n)n+ 1

2 e−n
(

1 + 1

12n
+ · · ·

)
. (1.34)

The beta function B(a, b) is defined by the integral

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, a > 0, b > 0. (1.35)
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By putting t = u(1 + u)−1,

B(a, b) =
∫ ∞

0
ua−1(1 + u)−a−bdu. (1.36)

Also,

B(a, b) = B(b, a) = �(a)�(b)

�(a + b)
. (1.37)

The incomplete gamma function is defined by

�x(a) = γ (a, x) =
∫ x

0
ta−1e−t dt (1.38)

=
∞∑

k=0

(−1)k

k!

xa+k

a + k
. (1.39)

The ratio �x (a)
�(a) = γ (a, x)

�(a) is more often used in statistics and is also called the incomplete
gamma function.

Similarly, the incomplete beta function

Bx(a, b) =
∫ x

0
ta−1(1 − t)b−1dt, 0 < x < 1, (1.40)

=
∞∑

k=0

(−b + 1)[k]

k!

xa+k

a + k
(1.41)

and the incomplete beta function ratio Bx (a, b)
B(a, b) is used in some places.

1.2.3 Difference and Differential Calculus

The symbols E and � denote the displacement (or shift) operator and the forward differ-
ence operator, respectively. The shift operator E increases the argument of a function f (x) by
unity:

E[ f (x)] = f (x + 1), E[E[ f (x)]] = E[ f (x + 1)] = f (x + 2) = E2[ f (x)].

In general,
Ek[ f (x)] = f (x + k), (1.42)

where k can be any real number.
The forward difference operator � provides the forward difference of a function f (x):

� f (x) = f (x + 1) − f (x) = E[ f (x)] − f (x) = (E − 1) f (x).

Thus
� ≡ E − 1 or E ≡ 1 + �. (1.43)

This symbolic relation in E and � enables us to get many interpolation formulas. If h is
any real number, then
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f (x + h) = Eh[ f (x)] = (1 + �)h f (x)

= f (x) + h� f (x) + (2!)−1h(h − 1)�2 f (x) + · · · (1.44)

=
h∑

k=0

(
h
k

)
�k f (x).

The symbol ∇ is known as the backward difference operator and ∇ ≡ �E−1 ≡ E−1� ≡
E−1(E − 1) ≡ 1 − E−1. Thus,

∇ f (x) = �E−1[ f (x)] = � f (x − 1) = f (x) − f (x − 1). (1.45)

By using these three operators one can obtain many relations. If f (x) is a polynomial of
degree n, the use of the operator � reduces the degree by unity. Thus, for a positive integer n,

�n xn = n!, �n+1xn = 0.

Also,

�x (n) = (x + 1)(n) − x (n)

= (x + 1)x(x − 1) · · · (x − n + 2) − x(x − 1) · · · (x − n + 1)

= x(x − 1) · · · (x − n + 2)[x + 1 − (x − n + 1)] (1.46)

= nx (n−1),

�2x (n) = n(n − 1)x (n−2) = n(2)x (n−2).

In general when k is a nonnegative integer,

�k x (n) = n(k)x (n−k), k ≤ n, (1.47)

and for k > n,
�k x (n) = 0. (1.48)

Also,
�k0n

k!
= �k xn

k!

∣∣∣∣
x=0

(1.49)

is called a difference of zero.
The symbol D will be used as a differentiation operator:

D f (x) = f ′(x) = d f (x)

dx
(1.50)

and
Dkxn = n(n − 1) · · · (n − k + 1)xn−k = n(k)xn−k, k ≤ n. (1.51)

The symbol D may also be used as a partial differential operator ∂
∂x . In such use, a subscript

will be used to indicate the variate under differentiation. Thus,

Dt f (x, t) = ∂ f (x, t)

∂t
.
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If the function f (x) is analytic and successively differentiable, the Taylor’s expansion gives

f (x + a) =
∞∑
j=0

a j

j !
D j f (x) =

∞∑
j=0

(a D) j

j !
f (x) ≡ eaD f (x). (1.52)

By comparing (1.52) with (1.44), we get the formal relation

Ea ≡ (1 + �)a ≡ eaD, (1.53)

which gives
eD ≡ (1 + �) or D ≡ ln(1 + �). (1.54)

The formal relations (1.53) and (1.54) can be used to write many formulas for numerical
differentiation.

Roman and Rota (1978) have defined an Abel operator by DE−λ, where

DE−λ f (u) = D f (u − λ) = d f (u − λ)/du. (1.55)

Thus,

(DE−λ)x(1 + θ)n
∣∣
θ=0 = Dx E−λx(1 + θ)n

∣∣
θ=0 = Dx (1 + θ − xλ)n

∣∣
θ=0

= n!

(n − x)!
(1 − xλ)n−x, (1.56)

and
(DE−λ)xeu

∣∣
u=0 = Dx E−λx eu

∣∣
u=0 = Dx (eu−xλ)

∣∣
u=0 = e−xλ. (1.57)

Also,
Ax(θ; λ) = θ(θ + xλ)x−1, x = 0, 1, 2, . . . (1.58)

are called the Abel polynomials and the polynomials

Gx (s; r) = s(s + xr − 1)(s + xr − 2) · · · (s + xr − x + 1)

= s
(s + xr − 1)!

(s + xr − x)!
= s(s + xr − 1)(x−1) (1.59)

for x = 1, 2, 3, . . . and G0(s; r) = 1 were introduced by Gould (1962) and are called Gould
polynomials by Roman and Rota (1978).

1.2.4 Stirling Numbers

The Stirling numbers of the first kind and the Stirling numbers of the second kind will be de-
noted by the symbols s(n, k) and S(n, k), respectively, a notation used by Riordan (1968).
Many other symbols have been used by different authors. An extensive table of such num-
bers and their properties is given in Abramowitz and Stegun (1965). Charalambides and Singh
(1988) provide a very good review and bibliography of these numbers and their generalizations.

A simple definition of the Stirling numbers of the first kind can be given by expanding x (n)

into a power series of x . Thus

x (n) = x(x − 1)(x − 2) · · · (x − n + 1) =
n∑

k=0

s(n, k) · xk, (1.60)
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which gives

s(n, n) = 1, s(n, n − 1) = (−1)n(n − 1)/2, . . . , s(n, 1) = (−1)n−1(n − 1)!. (1.61)

It follows from (1.60) for k = 0, 1, 2, . . . , n that

s(n, k) = (k!)−1[Dkx (n)]x=0. (1.62)

Also, for a positive integer n,

(x + h)n = Eh xn = (1 + �)h xn =
∞∑

k=0

(
h
k

)
�k xn. (1.63)

By putting x = 0 and h = x , the above becomes

xn =
n∑

k=0

(
x
k

)
�k0n

=
n∑

k=0

S(n, k)
x!

(x − k)!
=

n∑
k=0

S(n, k) · x (k). (1.64)

Thus, the Stirling numbers of the second kind, S(n, k) for k = 0, 1, 2, . . . , n, are the coef-
ficients of the descending factorials x (k) in the expansion of xn and

S(n, k) = �k0n/k!, for k = 0, 1, 2, 3, . . . , n. (1.65)

By multiplying (1.60) by (x − n) it can easily be shown that

s(n + 1, k) = s(n, k − 1) − ns(n, k) (1.66)

for k = 1, 2, . . . , n + 1 and for n = 0, 1, 2, . . . with initial conditions s(0, 0) = 1 and
s(n, 0) = 0, n > 0.

Similarly, by multiplying (1.63) by x = (x − k) + k, it is easy to show that

S(n + 1, k) = S(n, k − 1) + kS(n, k). (1.67)

Two other important relations are

(ex − 1)k = k!
∞∑

n=k

S(n, k)xn

n!
, (1.68)

[ln(1 + x)]k = k!
∞∑

n=k

s(n, k)xn

n!
. (1.69)

It can be shown that

S(n, k) = 1

k!

k∑
r=0

(−1)k−r
(

k
r

)
rn, k = 0, 1, 2, . . . , n. (1.70)
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1.2.5 Hypergeometric Functions

The Gauss hypergeometric function is denoted by the symbol 2 F1[a, b; c; x] and is defined as
a series in the form

2 F1[a, b; c; x] = 1 + ab

c

x

1!
+ a(a + 1)b(b + 1)

c(c + 1)

x2

2!
+ · · ·

=
∞∑

k=0

a[k]b[k]

c[k]

xk

k!
, c 	= 0, −1, −2, . . . , (1.71)

where a[k] is the ascending factorial. The subscripts 2 and 1 on the two sides of F refer to the
number of parameters a, b in the numerator and the one parameter c in the denominator. When
a or b is a negative integer then the series terminates as a[k] or b[k] becomes zero for some value
of k. When the series is infinite, it is absolutely convergent or divergent according as |x | < 1
or |x | > 1, respectively. When |x | = 1, the series is absolutely convergent if c − a − b > 0 and
is divergent if c − a − b < −1.

The Gauss hypergeometric function occurs very frequently in mathematics and in applied
problems. A good reference for numerous results on this function is Higher Transcendental
Functions, Vol. 1, by Erdélyi et al. (1953). When x = 1,

2 F1(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, (1.72)

where c − a − b > 0 and c 	= 0, −1, −2, . . . .
When a and b are nonpositive integers, a = −n, b = −u, and c = v + 1 − n, the

hypergeometric function gives the Vandermonde’s identity (1.17):

n∑
k=0

(
u
k

)(
v

n − k

)
=
(

u + v
n

)
.

For many specific values of a, b, and c the value of 2 F1(a, b; c; x) can be expressed in terms
of elementary algebraic functions.

Confluent hypergeometric functions (Kummer’s Functions), denoted by the symbol
1 F1(a, c; x), represent the series

1 F1[a, c; x] = 1+a

c

x

1!
+a(a + 1))

c(c + 1)

x2

2!
+· · · =

∞∑
k=0

a[k]

c[k]

xk

k!
, c 	= 0, −1, −2, −3, . . . . (1.73)

Similar functions are sometimes denoted by M(a; c; x) or φ(a; c; x) but they will not be
used in this book.

The function

Hn(x) =
[n/2]∑
k=0

n!xn

k!(n − 2k)!

(
−x−2

2

)k

(1.74)

is known as the Hermite polynomial and it can be expressed as a confluent hypergeometric
function:
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H2n(x) = (−1)n(2n)!

2nn!
1 F1

(
−n; 1

2
; x2

2

)
, (1.75)

H2n+1(x) = (−1)n(2n + 1)!x

2nn!
1 F1

(
−n; 3

2
; x2

2

)
. (1.76)

For special values of the parameters, many hypergeometric functions reduce to elementary
functions. Some of them are

1 F1(a, a; x) = ex ,

1 F1(2, 1; x) = (1 + x)ex,

2 F1(a, b; b; x) = (1 − x)−a,

x 2 F1(1, 1; 2; −x) = ln(1 + x),

2x 2 F1(1, 1/2; 3/2; x2) = ln(1 + x) − ln(1 − x).

Many well-known polynomials and special functions, like Legendre polynomials, Jacobi
polynomials, Chebyshev polynomials, incomplete beta function, Bessel functions, and Whit-
taker functions, can also be expressed in terms of hypergeometric functions.

1.2.6 Lagrange Expansions

Let f (z) and g(z) be two analytic functions of z, which are infinitely differentiable in −1 ≤
z ≤ 1 and such that g(0) 	= 0. Lagrange (1736–1813) considered the inversion of the Lagrange
transformation u = z/g(z), providing the value of z as a power series in u, and obtained the
following three power series expansions. Two of these expressions are also given in Jensen
(1902) and Riordan (1968).

z =
∞∑

k=1

uk

k!
[Dk−1(g(z))k]z=0, (1.77)

f (z) =
∞∑

k=0

akuk, (1.78)

where a0 = f (0) and

ak = 1

k!
[Dk−1(g(z))k D f (z)]z=0 (1.79)

and
f (z)

1 − zg′(z)/g(z)
=

∞∑
k=0

bkuk, (1.80)

where b0 = f (0) and

bk = 1

k!
[Dk(g(z))k f (z)]z=0. (1.81)

If we replace the function f (z) in (1.80) by

f1(z) = (1 − zg′(z)/g(z)
)

f (z),
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the Lagrange expansion in (1.80) reduces to the Lagrange expansion in (1.78). Also, replacing
the function f (z) in (1.78) by

f1(z) = f (z)

1 − zg′(z)/g(z)
,

the Lagrange expansion in (1.78) becomes the Lagrange expansion in (1.80). Thus, the two
Lagrange expansions in (1.78) and in (1.80) are not independent of each other.

The three expansions (1.77), (1.78), and (1.80) play a very important role in the theory of
Lagrangian probability distributions. They also provide a number of useful identities, given by
Riordan (1968) and Gould (1972). Some important identities are

∞∑
k=0

a(a + kθ)k−1

k!

[b + (n − k)θ]n−k

(n − k)!
= (a + b + nθ)n

n!
, (1.82)

which can easily be proved by comparing the coefficient of yn in the expansion of exp{(a +
b)z}/(1 − zθ) by (1.80) and (1.81) under the transformation y = z/eθ z with the coefficient of
yn in the product of the expansions of eaz , by (1.78) and (1.79), and of ebz/(1 − zθ), by (1.80)
and (1.81), under the same transformation

y = z/eθ z.

Similarly,

n∑
k=0

a(a + kθ)k−1

k!

{b + (n − k)θ}n−k−1

(n − k)!
= (a + b)(a + b + nθ)n−1

n!
, (1.83)

n∑
k=0

(
n
k

)
(x + kz)k(y − kz)n−k = n!

n∑
k=0

(x + y)kzn−k

k!
, (1.84)

n∑
k=0

x

x + kz

(
x + kz

k

)
y

y + (n − k)z

(
y + (n − k)z

n − k

)
= x + y

x + y + nz

(
x + y + nz

n

)
,

(1.85)

n∑
k=0

x

x + kz

(
x + kz

k

)(
y + nz − kz

n − k

)
=
(

x + y + nz
n

)
. (1.86)

The two Lagrange expansions (1.78) and (1.80) can also be used to provide expansions of
the functions f (θ) and f (θ)/{1 − θg′(θ)/g(θ)}, of a parameter θ , in powers of the function
u = θ/g(θ) as given below:

f (θ) =
⎧⎨
⎩

f (0), k = 0,

∑∞
k=1

(θ/g(θ))k

k! {Dk−1 f ′(θ)(g(θ))k}|θ=0

(1.87)

and
f (θ)

1 − θg′(θ)/g(θ)
=

∞∑
k=0

(θ/g(θ))k

k!
{Dk f (θ)(g(θ))k}|θ=0, (1.88)
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where D = ∂/∂θ . Since the functions f (θ) and g(θ) can be given numerous values, the two
expansions (1.87) and (1.88) open a very wide field of study for power series expansions. As
examples f (θ) = eaθ and g(θ) = ebθ provide the expansions

eaθ =
∞∑

k=0

a(a + bk)k−1

k!
(θe−bθ )k, (1.89)

eaθ

1 − bθ
=

∞∑
k=0

(a + bk)k

k!
(θe−bθ )k, (1.90)

and f (θ) = (1 − θ)−n and g(θ) = (1 − θ)1−m, m > 1, provide the expansions

(1 − θ)−n =
∞∑

k=0

n

n + km

(
n + km

k

)
(θ(1 − θ)m−1)k, (1.91)

(1 − θ)−n+1

1 − mθ
=

∞∑
k=0

(
n + km − 1

k

)
(θ(1 − θ)m−1)k . (1.92)

The Lagrange expansion (1.78), with (1.79), was generalized by Bürmann in 1799 (Whit-
taker and Watson, 1990, pages 128–132) and this generalization is known as the Lagrange–
Bürmann expansion. This generalization has not been used for Lagrangian probability models.

Let f (z1, z2), g1(z1, z2), and g2(z1, z2) be three bivariate functions of z1 and z2 such
that g1(0, 0) 	= 0 and g2(0, 0) 	= 0 and all three functions are successively differentiable
partially with respect to z1 and z2. Poincaré (1886) considered the bivariate expansion of
f (z1, z2) in power series of u and v under the Lagrange transformations u = z1/g1(z1, z2),
v = z2/g2(z1, z2) and obtained the bivariate Lagrange expansion

f (z1, z2) = f (0, 0) +
∞∑

h=0
h+k

∞∑
k=0
>0

uhvk

h!k!
Dh−1

1 {Dk−1
2 [gh

1 gk
2 D1 D2 f

+ gh
1 (D1gk

2(D2 f )) + gk
2(D2gh

1 (D1 f ))]}z1=z2=0, (1.93)

where Di = ∂/∂zi , gi = gi(z1, z2), f = f (z1, z2), and i = 1, 2.
If the functions f, g1, and g2 are of the form f (z1, z2) = [φ(z1, z2)]c, gi(z1, z2) =

[φ(z1, z2)]ci , i = 1, 2, where c, c1, c2 are real constants and φ(z1, z2) is an analytic function
in −1 ≤ zi ≤ +1, the above formula for the bivariate Lagrange expansion can be written as

f (z1, z2) = f (0, 0) +
∞∑

h=0
h+k

∞∑
k=0
>0

uhvk

h!k!
{Dh−1

1 Dk
2[gh

1 gk
2 D1 f )}z1=z2=0 (1.94)

or

f (z1, z2) = f (0, 0) +
∞∑

h=0
h+k

∞∑
k=0
>0

uhvk

h!k!
{Dk−1

2 Dh
1 [gh

1 gk
2 D2 f )}z1=z2=0. (1.95)

The multivariate generalization of the above Poincaré generalization of the Lagrange ex-
pansion was obtained by Good (1960) and will be defined and described in Chapter 15 of this
book.
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1.2.7 Abel and Gould Series

Roman and Rota (1978) have defined and studied the Abel series and the Gould series. Let
A(θ; λ) be a positive analytic function of a parameter θ which may or may not depend
upon another parameter λ and where the parameters have a continuous domain around zero.
Let

A(θ; λ) =
∞∑

x=0

a(x; λ) · Ax(θ; λ), (1.96)

where Ax(θ; λ) = θ(θ + xλ)x−1, x = 0, 1, 2, . . . are the Abel polynomials defined in (1.58)
and the coefficients a(x; λ) are independent of θ for all values of x . The value of a(x; λ) can
be obtained either by one of the Lagrange expansions or by the formula

a(x; λ) = 1

x!
(DE−λ)x A(u; λ)|u=0, (1.97)

restricting the parametric space to the domain where a(x; λ) ≥ 0 for all values of x . The series
given by (1.96) is called the Abel series.

It may be noted that every positive function A(θ; λ) cannot be expressed as an Abel se-
ries (1.96). There seem to be only three functions which provide an Abel series, and they are

A(θ; λ) = eθ , A(θ; λ) = (1 + θ)n, (1.98)

A(θ; λ) = (1 + θ)(1 + θ + nλ)n−1. (1.99)

In view of the above, the utility of the Abel series gets diminished.
Let us assume that a positive analytic function A(n; θ) of the parameter n (and possibly

another parameter θ) can be expanded into a Gould series of the form

A(n; θ) =
∞∑

x=0

a(x; θ) · Gx (n; θ), (1.100)

where G(n; λ) are the Gould polynomials n(n + xλ − 1)(x−1) defined in (1.59) and the coeffi-
cients a(x; θ), x = 0, 1, 2, . . . , are independent of the parameter n. The values of a(x; θ) can
be obtained either by the use of the Lagrange expansions (1.77) to (1.80) or by some combi-
natorial identity, based upon one of the Lagrange expansions, and given by Riordan (1968) or
Gould (1962).

It may be noted that every positive analytic function A(n; θ) of n cannot be expressed in
the form of a Gould series. There seem to be very few functions which can be expressed in the
form of such a series. Three such functions are

(1 − p)−n, (n + m + θk)(k), (n + m)(n + m + θk − 1)(k−1). (1.101)

1.2.8 Faà di Bruno’s Formula

Let G(y) and y = f (x) be two functions such that all derivatives of G(y) and of f (x) ex-
ist. Thus G(y) = G( f (x)) becomes an implicit function of x . Faà di Bruno (1855) consid-
ered the problem of determining the nth derivative of G(y) with respect to x and obtained the
formula
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dn

dxn G[ f (x)] =
∑ n!

k1!k2! · · · kn !

d pG(y)

dy p

(
f ′

1!

)k1
(

f ′′

2!

)k2

· · ·
(

f (n)

n!

)kn

, (1.102)

where the summation is taken over all partitions of n such that

p = k1 + k2 + · · · + kn,

n = k1 + 2k2 + · · · + nkn,
(1.103)

and f ′, f ′′, . . . , f (n) represent the successive derivatives of f (x). The formula can easily be
proved by induction. This formula is quite useful in obtaining the moments and cumulants of
some probability distributions.

1.3 Probabilistic and Statistical Results

1.3.1 Probabilities and Random Variables

Let E1, E2, E3, . . . , En be n events defined on the outcomes of a sample space S. The com-
pound event (E1 ∪ E2) denotes “either E1 or E2 or both” and (E1 ∩ E2) denotes “both events
E1 and E2.” Similarly, (E1 ∪ E2 ∪ · · · ∪ En) = (∪n

i=1 Ei) represents “at least one of the events
E1, E2, . . . , En” and (∩n

i=1 Ei) means “all the events E1, E2, . . . , En.”
The symbols P(Ei), P(E1 ∪ E2), P(E1 ∩ E2) denote “the probability of event Ei ,” “the

probability of events E1 or E2 or both,” and “the probability of both events E1 and E2,” respec-
tively.

The conditional probability of an event E2, given that event E1 has taken place, is denoted
by P(E2|E1) and

P(E2|E1) = P(E2 ∩ E1)

P(E1)
, P(E1) > 0. (1.104)

In general,
P(E1 ∩ E2) = P(E2|E1) · P(E1) = P(E1|E2) · P(E2) (1.105)

and
P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2). (1.106)

The above results can easily be extended to any number of events; e.g.,

P(E1 ∩ E2 ∩ E3) = P(E1 | (E2 ∩ E3)) · P(E2|E3)P(E3), (1.107)

P(E1 ∪ E2 ∪ E3) = P(E1) + P(E2) + P(E3) − P(E1 ∩ E2)

− P(E1 ∩ E3) − P(E2 ∩ E3) + P(E1 ∩ E2 ∩ E3). (1.108)

Two events E1 and E2 are independent if P(E1 ∩ E2) = P(E1) · P(E2) and they are
mutually exclusive if E1 ∩ E2 = ∅. Mutually exclusive events are not independent.

A number of events E1, E2, . . . , En are said to be exhaustive if ∪n
i=1 Ei equals the to-

tal sample space. If A is another event defined on the sample space S and if the events
E1, E2, . . . , En are mutually exclusive and exhaustive, then the total probability of the event
A is

P(A) =
n∑

k=1

P(A|Ek) · P(Ek). (1.109)
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A random variable (r.v.) X is a real valued function defined on the elements of a sample
space S such that there is an associated probability with every value of X . The values of the
random variable X provide a partition of S. All random variables (r.v.s) will be denoted by
uppercase letters like X, Y, Xi , . . . . The probability associated with the value x of X will be
denoted by P[X = x].

The distribution function (DF) of X (also called the cumulative distribution function (cdf)
of X ) is defined by P[X ≤ x] and is denoted by FX (x). The function FX (x) is a nondecreasing
function of x and 0 ≤ FX (x) ≤ 1. Also, limx→−∞ FX (x) = 0 and limx→∞ FX (x) = 1.

For discrete probability distributions FX (x) is a step function with an enumerable num-
ber of steps at x j , j = 1, 2, 3, . . . . If the value of the probability P[X = x j ] = p j , then
p j , j = 1, 2, 3, . . . , is called the probability mass function (pmf). When X takes the values
0, 1, 2, 3, . . . the value of P(X = x) may be denoted by Px .

The function SX(x) = P[X > x] = 1 − FX (x) is called the survival function. Also, the
function

h X (x) = P[X = x]

P[X ≥ x]
= Px

Px + SX(x)
(1.110)

is known as the hazard function (or failure rate) of the distribution. The function h X (x) is
called the force of mortality in actuarial work. When there is no ambiguity in the variables, the
subscripts for FX (x), SX (x), and h X (x) may be dropped.

Let {E1, E2, . . . , Ek} be a set of mutually exclusive and exhaustive events or possible prob-
ability models for an experiment and let {A1, A2, . . . , As} be the set of possible events when
the experiment is made. Also, let P(Ei), i = 1, 2, . . . , k, be the probabilities of the events
or models before the experiment is done; P(A j), j = 1, 2, . . . , s, be the probabilities of the
respective events; and P(A j |Ei ), i = 1, 2, . . . , k, j = 1, 2, . . . , s, be the conditional proba-
bilities that the events A j will take place, given that the event Ei has taken place. That is, the
model Ei generates the event A j ; then the total probability of the event A j is given by (1.109)
and equals

P(A j) =
k∑

i=1

P(A j ∩ Ei) =
k∑

i=1

P(A j |Ei) · P(Ei).

The conditional probability P(Ei |A j ) is the posterior probability of the event Ei (or model
Ei ) given that the event A j has taken place, and it is given by the Bayes’ theorem as

P(Ei |A j) = P(A j |Ei) · P(Ei)∑k
i=1 P(A j |Ei) · P(Ei)

. (1.111)

When the events E1, E2, . . . , Ek do not form an enumerable set but are given by the values
of a parameter θ in an interval a < x < b and p(θ) is the probability density of the parameter,
the quantity P(A j |Ei) becomes p(x |θ) and P(Ei) = p(θ) and the summation becomes the
integral over the domain of p(θ).

1.3.2 Expected Values

Let X1, X2, . . . , Xn denote n discrete random variables and let P(Xi = xi) = pi , i =
1, 2, . . . , n, denote the respective probability mass functions for them. If the r.v.s are inde-
pendent, the joint probability mass function for all of them is

P(X1 ∩ X2 ∩ · · · ∩ Xn) =
n∏

i=1

P(Xi = xi) = p1 p2 . . . pn. (1.112)



16 1 Preliminary Information

The expected value of the r.v.s, X and g(X), denoted by E[X ] and E[g(X)], are given by

E[X ] =
∑

x

x P(X = x), E[g(X)] =
∑

x

g(x) · P(X = x).

If C is a constant, then

E[C] = C, E[Cg(X)] = C E[g(X)],

and

E[c1g1(X1)+c2g2(X2)+c3g3(X3)] = c1 E[g1(X1)]+c2E[g2(X2)]+c3E[g3(X3)]. (1.113)

In general,

E[g(X1, X2, . . . , Xn)] =
∑

g(x1, x2, . . . , xn) · P(X1 ∩ X2 ∩ · · · ∩ Xn), (1.114)

where the summation is taken over all possible values of x1, x2, . . . , xn .
Also,

E

⎡
⎣ s∑

j=1

c j g j (X1, X2, . . . , Xn)

⎤
⎦ =

s∑
j=1

c j E[g j (X1, X2, . . . , Xn)]. (1.115)

When the r.v.s are mutually independent,

E

[
k∏

i=1

gi(X j)

]
=

k∏
i=1

E[gi(X j)]. (1.116)

1.3.3 Moments and Moment Generating Functions

The expected value of the r.v. Xk , where k is an integer, is called the kth moment about zero
and is denoted by

µ
′
k = E[Xk]. (1.117)

The first moment µ
′
1 is also called the mean of the probability distribution and is denoted

by µ.
The kth moment about the mean µ (also called the kth central moment) is denoted by µk

and is defined by

µk = E
[
(X − µ)k

]
= E

[
(X − E[X ])k

]

=
k∑

s=0

(
k
s

)
(−1)s(µ)sµ

′
k−s, (1.118)

which gives

µ2 = µ
′
2 − µ2,

µ3 = µ
′
3 − 3µ

′
2µ + 2µ3,

µ4 = µ
′
4 − 4µ

′
3µ + 6µ

′
2µ

2 − 3µ4,

µ5 = µ
′
5 − 5µ

′
4µ + 10µ

′
3µ

2 − 10µ
′
2µ

3 + 4µ5. (1.119)



1.3 Probabilistic and Statistical Results 17

The first central moment µ1 is always zero and the second central moment µ2 is called the
variance of X and is denoted by V ar(X) = σ 2. The positive square root of V ar(X) is called
the standard deviation σ . Also, the ratio σ/µ is called the coefficient of variation (CV).

The expected value E[et X ] if it exists for |t | < T , where T is a constant > 0, is called the
moment generating function (mgf) of X (or of the probability distribution of X ) and is denoted
by MX (t). This function generates all the moments about zero as indicated below:

MX (t) = E[et X ] = E

[
1 +

∞∑
r=1

tr Xr/r !

]
= 1 +

∞∑
r=1

µ
′
r tr/r !. (1.120)

Thus,
µ

′
r = Dr MX (t)|t=0. (1.121)

It can easily be seen from the definition that

MX+k(t) = ekt MX (t). (1.122)

Also, if the r.v.s X1 and X2 are mutually independent, then

MX1+X2(t) = MX1(t) · MX2(t) (1.123)

and
MX1−X2(t) = MX1(t) · MX2(−t), (1.124)

and for a number of mutually independent r.v.s

MX1+X2+···+Xk (t) = MX1(t) · MX2(t) · · · MXk (t). (1.125)

The central moment generating function (cmgf) is given by

E[e(X−µ)t ] = e−µt MX (t). (1.126)

The kth descending factorial moment of the r.v. X is the expected value of X (k) = X !/(X −
k)! = ∑k

j=0 s(k, j )X j , by relation (1.60), where s(k, j ), j = 0, 1, 2, . . . , are the Stirling

numbers of the first kind. Denoting the kth descending factorial moment E
[
X (k)

]
by µ

′
(k), we

have

µ
′
(k) = E

⎡
⎣ k∑

j=0

s(k, j )X j

⎤
⎦ =

k∑
j=0

s(k, j )µ
′
j . (1.127)

In particular,

µ
′
(1) = µ, µ

′
(2) = µ

′
2 − µ,

µ
′
(3) = µ

′
3 − 3µ

′
2 + 2µ,

µ
′
(4) = µ

′
4 − 6µ

′
3 + 11µ

′
2 − 6µ. (1.128)

Also, by (1.64)

Xk =
k∑

j=0

S(k, j )X ( j),
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and therefore

µ
′
k =

k∑
j=0

S(k, j )µ
′
( j), (1.129)

where S(k, j ), j = 0, 1, 2, . . . , are the Stirling numbers of the second kind. Since

(1 + t)X = 1 + X (1)t + X (2)t2/2! + X (3)t3/3! + · · · (1.130)

the factorial moment generating function of a r.v. X is E[(1 + t)X ].

1.3.4 Cumulants and Cumulant Generating Functions

If the moment generating function MX (t) of a r.v. X exists, then its logarithm is called the
cumulant generating function (cgf) of X and is denoted by K X (t) or K (t). The coefficient of
tr/r ! in the power series expansion of K (t) is called the r th cumulant of X and is denoted by
κr . Thus

K X (t) = ln MX (t) =
∞∑

r=1

κr tr/r !. (1.131)

Also,

κr = Dr K X (t)|t=0. (1.132)

Since

K X+a(t) = ln MX+a(t) = ln
{
eat MX (t)

} = at + K X (t), (1.133)

the coefficients of tr/r !, r ≥ 2, in K X+a(t) and K X (t) are the same, which implies that the
values of κr , r ≥ 2, are not affected if a constant a is added to the r.v. X . On account of
this property, the cumulants are called semi-invariants. Also, by substituting a = −µ, the mgf
MX+a(t) becomes the central mgf and so the cumulants κr , r ≥ 2, become the functions of
the central moments. By using (1.132) it can easily be shown that

κ1 = µ, κ2 = µ2,

κ3 = µ3, κ4 = µ4 − 3µ2
2,

κ5 = µ5 − 10µ3µ2.

(1.134)

If Xi , i = 1, 2, . . . , k, are independent r.v.s and Y =∑k
i=1 Xi , then

KY (t) =
k∑

i=1

K Xi (t), (1.135)

which shows that the cgf of the sum of a number of r.v.s equals the sum of the cgfs of the
individual r.v.s.

1.3.5 Probability Generating Functions

Let X be a discrete r.v. defined over the set of nonnegative integers and let Px , x = 0, 1, 2, . . . ,
denote its probability mass function such that

∑∞
x=0 Px = 1.
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The probability generating function (pgf) of the r.v. X is denoted by g(t) and is defined by

g(t) = E[t X ] =
∞∑

x=0

t x Px . (1.136)

The probabilities Px , x = 0, 1, 2, . . . , provide the pgf g(t) and the pgf provides all the
probabilities Px by the relation

Px = (x!)−1 Dx g(t)|t=0, x = 0, 1, 2, . . . . (1.137)

Thus, there is a relation of uniqueness between the pgf and the probability distribution of a
r.v. X . Also, if the variable t in (1.136) is replaced with eu , the pgf g(t) gets transformed into
the mgf MX (u). Further, the natural logarithm of MX (u) provides a power series in u, where the
coefficients of the different terms are the cumulants of the probability distribution of the r.v. X .

The factorial moment generating function becomes

E[(1 + t)X ] = g(1 + t) (1.138)

and the mgf of the r.v. X is
MX (t) = E[et X ] = g(et) (1.139)

and
K (t) = ln MX (t) = ln g(et). (1.140)

Thus, the pgf g(t) of a r.v. X provides the mgf, the central mgf, the cgf, as well as the
factorial moment generating function.

If X1 and X2 are two independent discrete r.v.s with pgfs g1(t) and g2(t) and if Y =
X1 + X2, then the pgf of Y is G(t) = E[tY ] = E[t X1+X2] = E[t X1 ]E[t X2 ] = g1(t)g2(t). This
property is called the convolution of the two probability distributions. Similarly, if Xi , i =
1, 2, 3, . . . , n, are n mutually independent discrete r.v.s with pgfs g1(t), g2(t), . . . , gn(t),
respectively, then the pgf G(t) of their sum Y =∑n

i=1 Xi becomes

G(t) = g1(t) · g2(t) · · · gn(t), (1.141)

and the pgf for the difference Xi − X j becomes gi(t).g j(t−1). Thus, if X1, X2, . . . , Xn are
independent r.v.s and if their pgfs do exist, then their probability distributions do possess the
convolution property.

If two independent r.v.s X1 and X2 possess similar pgfs g1(t) and g2(t), differing in the
value of one or two parameters only and if the pgf G(t) = g1(t).g2(t) is of the same form
as g1(t) and g2(t), then the probability distributions of X1 and X2 are said to be closed under
convolution or that the r.v.s X1 and X2 are closed under convolution. This property is more
restricted and very few r.v.s possess this property.

1.3.6 Inference

Let X1, X2, . . . , Xn be a random sample of size n taken from a population with
cumulative distribution function F(X1, X2, . . . , Xn|θ1, θ2, . . . , θk), which depends upon k
unknown parameters. The values of the parameters are estimated by some functions of the r.v.s.
X1, X2, . . . , Xn , say Tj ≡ Tj (X1, X2, . . . , Xn), j = 1, 2, 3, . . . , which are called statistics
or the estimators of the particular parameters. Numerous such statistics can be defined.
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A statistic Ti is said to be an unbiased estimator of a parameter θi if E[Ti ] = θi . If µ and σ 2

are the unknown mean and variance of a distribution, then their unbiased estimators are given
by

X̄ = n−1
n∑

i=1

Xi and s2 = (n − 1)−1
n∑

i=1

(Xi − X̄)2. (1.142)

Numerous methods of estimation and the corresponding estimators of parameters have been
defined. Some of them are the (i) method of moments, (ii) zero-frequency and some moments,
(iii) maximum likelihood estimation (MLE) method, (iv) chi-square method, (v) Bayesian
method, (vi) minimum variance unbiased estimation (MVUE), and (vii) robust estimators.
Many books are available in which these are defined and studied.

All these estimators have some good and useful properties but none possess all the good
properties for every probability distribution. These estimators are compared with each other
by considering properties such as unbiasedness, asymptotical unbiasedness, efficiency, relative
efficiency, consistency, and so on.



2

Lagrangian Probability Distributions

2.1 Introduction

Discrete probability distributions are fitted to observed counts to find a pattern which may lead
an investigator to see if some generating models can be set up for the process under study. As
every phenomenon is of a multivariate nature, the task of finding the correct model becomes
difficult. Practically all models for biological, psychological, social, agricultural, or natural
processes are approximations. Thus, every model is a simplification of real life. Possibly, every
observed pattern is the steady state of some stochastic process.

As different researchers in the world are faced with observed counts in their respective
fields and they try to find a specific pattern in their observations, their efforts lead them to
the discovery of new and more complex probability distributions. A large number of discrete
probability distributions are now available which are divided into various classes, families, and
generalized univariate, bivariate, and multivariate discrete distributions. An extensive account
of these discrete probability distributions and their important properties can be found in the
well-known works by Balakrishnan and Nevzorov (2003), Johnson, Kotz, and Balakrishnan
(1997), Johnson, Kotz, and Kemp (1992), Patil, et al. (1984), Patil and Joshi (1968), Johnson
and Kotz (1969), Mardia (1970), Ord (1972), and many others. As this book was ready to go to
press, we were informed that the book by Johnson, Kotz, and Kemp (1992) was under revision.

Discrete Lagrangian probability distributions form a very large and important class which
contains numerous families of probability distributions. These probability distributions are very
useful because they occur quite frequently in various fields. Most of the research work on
these distributions is available in journals only. The generalized Poisson distribution is one
important model which has been discussed in detail by Consul (1989a). Johnson, Kotz, and
Kemp (1992) have described some families of the class of Lagrangian probability distributions
under different titles in five chapters of their book. The prime source of importance in the
class of Lagrangian distributions is the Lagrange transformation z = ug(z), given by Lagrange
(1736–1813) and used by him to express z as a power series in u and then to expand a function
f (z) into a power series of u as described in Chapter 1.

Otter (1949) was the first person who realized the importance of this transformation for the
development of a multiplicative process. If g(z) is the pgf of the number of segments from any
vertex in a rooted tree with a number of vertices, then the transformation z = ug(z) provides
the pgf for the number of vertices in the rooted tree. Otter (1949) showed that the number of
vertices after n segments in a tree can be interpreted as the number of members in the nth
generation of a branching process and that it can be used in the study of epidemics, spread of
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rumors, population growth, nuclear chain reactions, etc. He considered some simple examples.
Neyman and Scott (1964) used Otter’s multiplicative process in their study of stochastic models
for the total number of persons infected in an epidemic which was started by a single person.
Berg and Nowicki (1991) considered the applications of Lagrangian probability distributions
to inferential problems in random mapping theory. They considered random mapping models
with attracting center and those based on loop probability models.

Good (1960, 1965) developed the multivariate generalization of Lagrange expansion and
applied it to stochastic processes and enumeration of trees. Gordon (1962) applied Good’s
theory to polymer distributions. However, these papers were so highly concise and concentrated
(one-line formulae representing one-page expressions) that they did not generate much interest
from other researchers. Jain and Consul (1971), Consul and Jain (1973a, 1973b), Consul and
Shenton (1972, 1973a, 1973b, 1975), and their co-workers have systematically exploited the
technique provided by the Lagrange transformation z = ug(z) and the Lagrange expansions
for deriving numerous Lagrangian probability distributions and studying their properties and
applications.

Janardan (1987) considered the weighted forms of some Lagrangian probability distribu-
tions and characterized them with respect to their weighted forms.

As stated in chapter 1, Lagrange had used the transformation z = ug(z) for giving the two
expansions in (1.78) and (1.80) for functions of z in powers of u. These expansions have been
used to provide numerous Lagrangian probability distributions.

2.2 Lagrangian Probability Distributions

The discrete Lagrangian probability distributions have been systematically studied in a num-
ber of papers by Consul and Shenton (1972, 1973a, 1973b, 1975). The Lagrangian negative
binomial distribution was first obtained by Mohanty (1966) by combinatorial methods as a dis-
tribution of the number of failures x to attain n + mx successes in a sequence of independent
Bernoulli trials. Takács (1962) and Mohanty (1966) showed its usefulness in a queuing process.
Jain and Consul (1971) used the Lagrange transformation z = ug(z) to obtain Lagrangian neg-
ative binomial distribution by considering g(z) as a pgf. The Lagrangian Poisson distribution
was defined and studied by Consul and Jain (1973a, 1973b). Consul’s (1989a) book shows how
intensively the Lagrangian Poisson distribution has been studied for its modes of genesis, prop-
erties, estimation, and applications under the title of a generalized Poisson distribution. The
Lagrangian logarithmic distribution was defined by Jain and Gupta (1973). Consul (1981) has
shown that g(z) need not be a pgf for obtaining the Lagrangian distributions.

The class of Lagrangian probability distributions can be divided into three subclasses:

(i) basic Lagrangian distributions,
(ii) delta Lagrangian distributions,
(iii) general Lagrangian distributions,

according to their probabilistic structure. They will be discussed accordingly.

Basic Lagrangian Distributions

Let g(z) be a successively differentiable function such that g(1) = 1 and g(0) 	= 0. The
function g(z) may or may not be a pgf. Then, the numerically smallest root z = 
(u) of the
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transformation z = u g(z) defines a pgf z = ψ(u) with the Lagrange expansion (1.77) in
powers of u as

z = ψ(u) =
∞∑

x=1

ux

x!

{
Dx−1(g(z))x

}
z=0

, (2.1)

if Dx−1(g(z))x
∣∣
z=0 ≥ 0 for all values of x .

The corresponding probability mass function (pmf) of the basic Lagrangian distribution
becomes

P(X = x) = (1/x!)
{

Dx−1(g(z))x
}

z=0
, x ∈ N . (2.2)

Examples of some basic Lagrangian distributions, based on values of g(z), are given in
Table 2.1.

It may be noted that

(i) the geometric distribution is a special case of the Consul distribution for m = 1;
(ii) the Haight distribution is a special case of the Geeta distribution for m = 2;
(iii) the Geeta distribution becomes degenerate when m → 1 as P(X = 1) → 1;
(iv) when 0 < β = θ < 1 and b = (m − 1)θ, the Katz distribution reduces to the Geeta

distribution and when β < 0 and β = −α, it becomes the Consul distribution by putting
b = mα and α(1 + α)−1 = θ . Also, when β = n−1 and n → ∞, its limit becomes the
Borel distribution;

(v) Otter (1948) had given the pgf of model (7) of Table 2.1 in the form

z = 
(u) =
{

1 −
√

1 − 4pqu2/2qu

}
,

not the probability model as given in (7). Also, this model is a particular case of model
(10) for m = 1.

Many other basic Lagrangian distributions can be obtained by choosing various other
functions for g(z). Of course, the pmfs of these probability distributions will possibly be
more complex than those given in Table 2.1. Examples of some other functions for g(z) are
eλ(z3−1), eλ(z4−1), qm−1(1 − pz2)1−m, (p + qz)(p + qz2), and (p + qz4)m , and their proba-
bility models will be more complicated. Similarly, many other values can be given to g(z).

Delta Lagrangian Distributions

The delta Lagrangian distributions can be obtained from the basic Lagrangian distributions by
taking their n-fold convolutions. However, this method will involve too much labor in compu-
tations. The easiest method of obtaining a delta Lagrangian distribution is to put f (z) = zn

in the general Lagrange expansion (1.78) with (1.79), under the transformation z = ug(z).
If Di (g(z))n+i

∣∣
z=0 ≥ 0 for i = 0, 1, 2, 3, . . . the pgf of the delta Lagrangian distributions

becomes

zn = (ψ(u))n =
∞∑

x=n

nux

(x − n)!x

{
Dx−n(g(z))x}

z=0 (2.3)

and the pmf of the delta Lagrangian distributions can be written as

P(X = x) = n

(x − n)!x
Dx−n(g(z))x

∣∣
z=0 (2.4)

for x = n, n + 1, n + 2, . . . and zero otherwise.
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Table 2.1. Some important basic Lagrangian distributions

No. Name g(z) P(X = x), x = 1, 2, 3, . . .

1. Geometric distribution 1 − p + pz, 0 < p < 1 (1 − p)px−1

2. Borel distribution eλ(z−1), 0 < λ < 1 (xλ)x−1

x! e−xλ

[Borel (1942)]

3. Haight distribution q(1 − pz)−1 1
2x−1

(
2x − 1

x

)
qx px−1

[Haight (1961)] 0 < p = 1 − q < 1

4. Consul distribution (1 − θ + θz)m 1
x

(
mx

x − 1

)
θ x−1

[Consul & Shenton (1975)] 0 < θ < 1, m ∈ N ×(1 − θ)mx−x+1

5. Geeta distribution (1 − θ)m−1(1 − θz)1−m 1
mx−1

(
mx − 1

x

)
θ x−1

[Consul (1990a,b,c)] 0 < θ < 1, 1 < m < θ−1 ×(1 − θ)mx−x

6. Katz distribution
(

1−βz
1−β

)−b/β 1
xb/β+x−1

(
xb/β + x − 1

x

)
[Consul (1993)] b > 0, 0 < β < 1 ×βx−1(1 − β)xb/β

7. Otter distribution p + qz2 1
x

(
x

x−1
2

)
p

x
2 + 1

2 q
x
2 − 1

2 ,

[Otter (1948)] 0 < p = 1 − q < 1 x = 1, 3, 5, . . .

8. Felix distribution eλ(z2−1), 0 < λ < 1 (xλ)(x−1)/2(
x−1

2

)
! x

e−xλ,

x = 1, 3, 5, . . .

9. Teja distribution q(1 − pz2)−1 1
x

( 3(x−1)
2

x − 1

)
qx p(x−1)/2,

0 < p = 1 − q < 1 x = 1, 3, 5, . . .

10. Sunil distribution (p + qz2)m , m ∈ N 1
x

(
mx
x−1

2

)
pmx (q/p)(x−1)/2,

0 < p = 1 − q < 1 x = 1, 3, 5, . . .

11. Ved distribution (p + qz3)m , m ∈ N 1
x

(
mx
x−1

3

)
pmx (q/p)(x−1)/3,

0 < p = 1 − q < 1 x = 1, 4, 7, . . .
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The choice of various specific functions for g(z) will provide various members of such delta
Lagrangian probability distributions. Examples of some important delta Lagrangian distribu-
tions are given in Table 2.2. (Some of these are from Consul and Shenton (1972).)

Note that the negative binomial distribution is a special case of the delta binomial distrib-
ution (for m = 1) and the Haight distribution is a special case of the delta negative binomial
distribution (for β = 2). Also, the delta binomial distribution and the delta negative bino-
mial distribution become degenerate when m → 0 and β → 1, respectively, and provide
P(X = n) = 1.

Many other delta Lagrangian distributions can be obtained from (2.4) by choosing other
values for the function g(z) such that g(0) 	= 0 and g(1) = 1. Examples of some other functions
for g(z) are (p +qz2)m, (p +qz)(p +qz2), (p +qz)m(p +qz2)m, p−1 + p0z + p1z2, where
p−1 + p0 + p1 = 1 and 0 < pi < 1. Many more values for g(z) can be defined in a similar
manner.

General Lagrangian Distributions

Let g(z) and f (z) be two analytic functions of z which are successively differentiable with
respect to z and are such that g(0) 	= 0, g(1) = 1, f (1) = 1, and

Dx−1 {(g(z))x f ′(z)
}∣∣

z=0 ≥ 0 for x ∈ N . (2.5)

The pgf of the discrete general Lagrangian probability distribution, under the Lagrange
transformation z = ug(z), is given by (1.78) in the form

f (z) = f (ψ(u)) =
∞∑

x=0

(ux/x!)Dx−1 {(g(z))x f ′(z)
}∣∣

z=0 , (2.6)

where ψ(u) is defined as in (2.1) and the pmf of the class of general Lagrangian probability
distributions becomes

P(X = 0) = f (0),

P(X = x) = (1/x!) Dx−1
{
(g(z))x f ′(z)

}∣∣
z=0 , x ∈ N .

(2.7)

This class of general Lagrangian probability distributions will be denoted by L( f (z);
g(z); x) or by L( f ; g; x) for the sake of convenience.

When the functions g(z) and f (z) are pgfs of some probability distributions they do satisfy
the necessary conditions f (1) = g(1) = 1 for generating Lagrangian distributions. However,
they need not necessarily be pgfs. There are many functions f (z) which are not pgfs but they
satisfy the property of f (1) = 1. For example, the two functions [− ln(1 − θ)−1] ln[1 + θ z/
(1−θ)] and (1−θ +θ z)m for 0 < θ < 1, m > 1 are not pgfs because their expansions provide
series whose terms are alternately positive and negative after a few terms; however, their values
at z = 1 are unity.

The two functions g(z) and f (z) are called the transformer function and the transformed
function, respectively. Each set of values of g(z) and f (z), satisfying the condition (2.5) and
the conditions g(0) 	= 0, g(1) = f (1) = 1 will provide a general Lagrangian distribution.
Thus, numerous general Lagrangian distributions can be generated. Examples of some impor-
tant members of general Lagrangian distributions are shown in Table 2.3.
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Table 2.2. Some simple delta Lagrangian distributions

No. Name g(z) P(X = x), x = n, n + 1, n + 2, . . .

1. Negative binomial 1 − p + pz

(
x − 1
n − 1

)
qn px−n

distribution 0 < p = 1 − q < 1

2. Delta-binomial (1 − p + pz)m n
x

(
mx

x − n

)
px−n(1 − p)n+mx−x

distribution 0 < p < 1, 1 < m < p−1

3. Delta-Poisson or eλ(z−1) n
(x−n)!x (λx)x−ne−xλ

Borel-Tanner dist. 0 < λ < 1

4. Haight distribution (1 − p)(1 − pz)−1 n
2x−n

(
2x − n

x

)
px−n(1 − p)x

0 < p < 1

5. Delta-Geeta (1 − θ)β−1(1 − θz)1−β n
x

(
βx − n − 1

x − n

)
θ x−n(1 − θ)βx−x

distribution 0 < θ < 1, 1 < β < θ−1

6. Delta-Katz (1 − β)b/β(1 − βz)−b/β bnβx−n

bx+βx−βn (1 − β)bx/β

(
bx/β + x − n

x − n

)
distribution b > 0, 0 < β < 1

7. Random Walk p + qz2 n
x

(
x

(x − n)/2

)
pn(pq)(x−n)/2

distribution 0 < p = 1 − q < 1 x = n, n + 2, n + 4, . . .

8. Delta-Teja (1 − p)(1 − pz2)−1 2n
3x−n

( 3
2 x − n

2
x

)
p

x
2 − n

2 (1 − p)x

distribution x = n, n + 2, n + 4, . . .

9. Delta-Felix eλ(z2−1), 0 < λ < 1 n( x−n
2

)
! x

(xλ)(x−n)/2 e−xλ,

distribution x = n, n + 2, n + 4, . . .

10. Delta-Sunil (p + qz2)m , m ∈ N n
x

(
mx

x
2 − n

2

)
pmx (q/p)

x
2 − n

2

distribution 0 < p = 1 − q < 1

11. Delta-Ved (p + qz3)m , m ∈ N n
x

(
mx
x−n

3

)
pmx (q/p)(x−n)/3,

distribution 0 < p = 1 − q < 1 x = n, n + 3, n + 6, . . .
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Table 2.3. Some important general Lagrangian distributions

No. Name of Transformed Transformer L( f ; g; x), x = 0, 1, 2, . . .
distribution f (z) g(z)

1. Double (q′ + p′z)n (q + pz)m (q′)n , x = 0

binomial 0 < p′ < 1 0 < p < 1 n
mx+1

(
mx + 1

x

)
(q′)n( qp′

pq ′ )(pqm−1)x

q′ + p′ = 1 q + p = 1 ×[2 F1(1 − n, 1 − x; mx − x + 2; p′q
pq ′ )],

n > 0 m > 0, mp < 1 x ≥ 1

2. Generalized (q + pz)n (q + pz)m n
n+mx

(
n + mx

x

)
px qn+mx−x , x ≥ 0

binomial

3. Binomial- (q + pz)n eλ(z−1) qn , x = 0

Poisson 0 < λ < 1 (xλ)x−1

x!exλ (npqn−1)

×[2 F0(1 − n; 1 − x; ; p
xλq )], x ≥ 1

4. Binomial- (q + pz)n (q ′)k

(1−p′z)k qn , x = 0

negative 0 < k < q′/p′, (kx+x−2)!
x!(kx−1)! npqn−1(p′)x−1(q′)kx

binomial 0 < p′ < 1 ×[2 F1(1 − n; 1 − x; 2 − x − kx; p
qp′ )],

p′ + q′ = 1 x ≥ 1

5. Poisson- eθ(z−1) (q + pz)m e−θ , x = 0

binomial θ > 0 mp < 1 (θqm)x

eθ x!
[2F0(1 − x, −mx; ; −p

qθ )], x ≥ 1

6. Generalized eθ(z−1) eλ(z−1) θ(θ + xλ)x−1e−θ−xλ/x!, x ≥ 0
Poisson (GP) θ > 0 0 < λ < 1

7. Restricted GP eθ(z−1) eαθ(z−1) e−θ (θe−αθ )x (1 + αx)x−1/x!, x ≥ 0

8. Poisson- eθ(z−1) (q)k

(1−pz)k e−θ , x = 0

negative θ > 0 kp < 1 e−θ [θ x qkx /x!][2 F0(1 − x, kx; ;−p/θ)],
binomial x ≥ 1

9. Negative (q ′)k

(1−p′z)k (q + pz)m (q′)k , x = 0

binomial- mp < 1 (p′qm)x

(q ′)−k

(
k + x − 1

x

)
binomial ×[2F1(1 − x, −mx; 1 − k − x; − p

qp′ )],
x ≥ 1

10. Negative qk (1 − pz)−k eλ(z−1) qk , x = 0
binomial- 0 < λ < 1 [kpqk (xλ)x−1e−xλ/x!]
Poisson ×[2 F0(1 − x, k + 1; ;−p/xλ)], x ≥ 1
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Table 2.3. (continued)

No. Name of Transformed Transformer L( f ; g; x), x = 0, 1, 2, . . .
distribution f (z) g(z)

11. Generalized qn(1 − pz)−n qm (1 − pz)−m n
n+mx+x

(
n + mx + x

x

)
px qn+mx ,

neg. binomial mp < 1 x ≥ 0

12. Gen. logarithmic ln (1+pz/q)
(− ln q) (q + pz)m 1

mx

(
mx
x

)
(pqm−1)x

(− ln q) , x ≥ 1

series 1 < m < p−1

13. Logarithmic- ln (1−pz)
ln q eλ(z−1) (xλ)x−1

x! e−λx p
(− ln q)

Poisson 0 < λ < 1 ×[2F0(1 − x, 1; ;− p
xλ )], x ≥ 1

14. Logarithmic- ln (1−pz)
ln q qk (1 − pz)−k 1

kx+x

(
kx + x

x

)
(pqk)x

(− ln q) , x ≥ 1

neg. binomial kp < 1

15. Rectangular- 1−zn

n(1−z) (q + pz)m 1/n, x = 0

binomial mp < 1 1
nx
∑a

r=0(r + 1)

(
mx

x − r − 1

)
×px−1−r qmx−x+r+1, x ≥ 1
a = min (x − 1, n − 2)

16. Rectangular- 1−zn

n(1−z) eλ(z−1) n−1, x = 0

Poisson 0 < λ < 1 e−xλ

nx
∑a

r=0(r + 1) (xλ)x−r−1

(x−r−1)! , x ≥ 1
a = min (x − 1, n − 2)

17. Rectangular- 1−zn

n(1−z) qk (1 − pz)−k n−1, x = 0

negative qkx

nx
∑a

r=0

(
kx + x − r − 2

x − 1 − r

)
binomial ×(r + 1)px−1−r , x ≥ 1

a = min (x − 1, n − 2)

18. Generalized ( 1−βz
1−β )

− a
β ( 1−βz

1−β )
− b

β a/β
(a+bx)/β+x

(
(a + bx)/β + x

x

)
Katz ×βx (1 − β)(a+bx)/β, x ≥ 0

19. Shenton (q + pz2)n (q + pz2)m n
n+mx

(
n + mx

x/2

)
px/2qn+mx−x/2,

Distribution x = 0, 2, 4, 6, . . .

20. Modified Felix eθ(z2−1) eλ(z2−1) θ(θ+xλ)x/2−1

(x/2)! e−θ−xλ

x = 0, 2, 4, 6, . . .

21. Modified Ved (q + pz3)n (q + pz3)m n
n+mx

(
n + mx

x/3

)
px/3qn+mx−x/3,

x = 0, 3, 6, 9, . . .
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It is clear from the examples in Table 2.3 that the formula (2.6) can provide almost an
infinite number of discrete Lagrangian probability distributions by various choices of the set of
functions f (z) and g(z) satisfying the conditions g(0) 	= 0, g(1) = f (1) = 1, and (2.5).

Each one of the probability models in Table 2.3 has interrelations with other probability
models and with the basic Lagrangian and delta Lagrangian probability models. Some of these
relations are described later in this chapter.

It may be noted that if the parameter m is replaced by (m − 1) in the probability model (11)
in Table 2.3, then the model changes to the probability model (2). Thus, these two probability
models are the same and have been studied by the name of generalized negative binomial
distribution. Similarly, the probability models (12) and (14) are also the same because the
parameter k in (14) equals (m − 1) in (12).

The probability models with the names (i) generalized Poisson distribution, (ii) generalized
negative binomial distribution, (iii) generalized logarithmic series distribution, and (iv) gener-
alized Katz distribution will be studied in more depth in later chapters.

If f1(z) is another analytical function of z in closed interval [−1, 1] such that f1(0) ≥ 0
and f1(1) = 1 and if

0 < g′(1) < 1 and
{

Dr (g(z))r f1(z)
}

z=0 ≥ 0 for r = 0, 1, 2, . . . (2.8)

the Lagrangian expansion (1.80) with (1.81) under the transformation z = ug(z) defines a ran-
dom variable Y having another class of general Lagrangian probability distributions, given by

P(Y = y) =
{

(1 − g′(1)) f1(0), y = 0,

(1 − g′(1))(y!)−1 {Dy(g(z))y f1(z)} |z=0, y = 1, 2, 3, . . . .
(2.9)

The pgf of this class of general Lagrangian distributions becomes

H(u) = (1 − g′(1)) f1(z)

1 − zg′(z)/g(z)
= f2(z), where z = ug(z), (2.10)

whose power series expansion in u is given by (1.80) multiplied by the factor (1 − g′(1)). We
denote this class of Lagrangian distributions by L1( f1; g; y).

When f1(z) = z, the discrete probability distribution, given by (2.9), is called the basic
distribution and its pmf becomes

P(Y = y) = 1 − g′(1)

(y − 1)!
Dy−1(g(z))y|z=0, y = 1, 2, 3, . . . . (2.11)

Also, when f1(z) = zn, the discrete probability distribution, given by (2.9), is called the
delta distribution and its pmf becomes

P(Y = y) = 1 − g′(1)

(y − n)!

{
Dy−n(g(z))y}∣∣

z=0 , y = n, n + 1, . . . . (2.12)

Numerous members of this class of Lagrangian distributions are generated by taking various
choices of the functions g(z) and f1(z) in (2.9). Table 2.4 contains twenty-four discrete proba-
bility distributions under three subheadings of (i) basic distributions, (ii) delta distributions, and
(iii) general distributions, together with the particular values of the functions g(z) and f1(z).

Jain (1975a) had studied the linear function binomial and the linear function Poisson distrib-
utions and had obtained their moments. Lingappaiah (1986) discussed the relationship of linear
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function Poisson distribution and the generalized Poisson distribution and showed that they
need not be studied separately because one is a weighted distribution of the other. Charalam-
bides (1987) obtained the factorial moments and some other properties of the linear function
Poisson, binomial, and negative binomial distributions, given in Table 2.4.

2.2.1 Equivalence of the Two Classes of Lagrangian Distributions

Janardan and Rao (1983) and Janardan (1997) had erroneously assumed that the Lagrange
expansion (1.80), under the transformation z = ug(z), was independent of the Lagrange ex-
pansion (1.78) and had obtained the class L1( f1; g; y) of Lagrangian distributions and called
it a new class of discrete Lagrangian probability distributions. Consul and Famoye (2001) had
further extended that work. However, Consul and Famoye (2005) have proved the following
equivalence theorem.

Theorem 2.1. Let g(z), f (z), and f1(z) be three analytical functions, which are successively
differentiable in the domain |z| ≤ 1 and such that g(0) 	= 0 and g(1) = f (1) = f1(1) = 1.
Then, under the transformation z = ug(z), every member of Lagrangian distribution in (2.9) is
a member of the Lagrangian distribution in (2.7); and conversely, every member of Lagrangian
distribution given by (2.7) is a member of the Lagrangian probability distribution in (2.9) by
choosing

f1(z) = (1 − g′(1)
)−1 (1 − zg′(z)/g(z)

)
f (z). (2.13)

Proof. We need to show that the value of f1(z) in (2.13) transforms the expression in (2.9)
into (2.7). On substituting this value of f1(z) in (2.9), we have

P(Y = y) = (y!)−1Dy {(g(z))y (1 − zg′(z)/g(z)
)

f (z)
}∣∣

z=0

= (y!)−1
[

Dy {(g(z))y f (z)
}− Dy

{
z (g(z))y−1 g′(z) f (z)

}]
z=0

= (y!)−1
[

Dy−1
{

y (g(z))y−1 g′(z) f (z) + (g(z))y f ′(z)
}]

z=0

− (y!)−1y Dy−1
{
(g(z))y−1 g′(z) f (z)

}
z=0

= (y!)−1Dy−1 {(g(z))y f ′(z)
}

z=0 ,

which is the same as (2.7). Thus, every member of the class of Lagrangian probability distrib-
utions in (2.9) becomes a member of the class of Lagrangian distributions in (2.7).

Converse. The probability mass function of the class of Lagrangian distributions in (2.7) is

P(X = x) = (x!)−1 Dx−1 {(g(z))x f ′(z)
}∣∣∣

z=0

= (x!)−1 Dx−1
{
(g(z))x f ′(z) + x (g(z))x−1 g′(z) f (z)

}∣∣∣
z=0

− (x!)−1
(

x
1

)
Dx−1

{
(g(z))x−1 g′(z) f (z)

}∣∣∣∣
z=0



2.2 Lagrangian Probability Distributions 31

Table 2.4. Some Lagrangian probability distributions in L1( f1; g; y)

[0 < p = 1 − q < 1, 1 < m < p−1, θ > 0, 0 < λ < 1, n > 0, 0 < p1 = 1 − q1 < 1]

No Name f1(z) g(z) L1( f1; g; y)

Basic Distributions Range o f y = 1, 2, 3, . . .

1. Weighted geometric z p + qz yp2q y−1

2. Weighted Consul z (q + pz)m
(

my
y − 1

)
(1 − mp)py−1qmy−y+1

3. Ved z qm

(1−pz)m

(
my + y − 2

y − 1

)
(1 − mp/q)

×py−1qmy

4. Sudha z eλ(z−1) (1 − λ)e−yλ(yλ)y−1/(y − 1)!

5. Hari z p + qz2 y!p(1−2q)(
1
2 y− 1

2

)
!
(

1
2 y+ 1

2

)
!
(pq)

1
2 y− 1

2

0 < q < 1
2 y = 1, 3, 5, 7, . . .

Delta Distributions Range o f y = n, n + 1, n + 2, . . .

6. Weighted delta binomial zn (q + pz)m
(

my
y − n

)
(1 − mp)py−nqmy−y+n

7. Weighted delta Poisson zn eλ(z−1) (1 − λ)e−yλ(yλ)y−n/(y − n)!

8. Weighted delta negative zn qm

(1−pz)m (1 − mp/q)

(
my + y − n − 1

y − n

)
binomial ×py−nqmy

General Distributions

9. Linear negative binomial qn

(1−pz)n
qm

(1−pz)m

(
n + my + y − 1

y

)
(q − mp)

×pyqn+my−1

10. Linear function Poisson eθ(z−1) eλ(z−1) (1 − λ)(θ + yλ)ye−θ−yλ/y!
[See Jain (1975a)]

11. Linear function binomial (q + pz)n (q + pz)m (1 − mp)

(
n + my

y

)
pyqn+my−y

[See Jain (1975a)]

12. Binomial-Poisson (q + pz)n eλ(z−1) (yλ)y

y! (1 − λ)e−yλqn

×2 F0(−n,−y; p/yλq)

13. Binomial- (q1 + p1z)n qm

(1−pz)m (q − mp)py qmy−1qn
1

(
my + y − 1

y

)
negative binomial × 2 F1(−y,−n; 1 − y − my;−p1/pq1)
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Table 2.4. (continued)

No Name f1(z) g(z) L1( f1; g; y)

14. Binomial-binomial (q1 + p1z)n (q + pz)m qn
1 pyqmy−y(1 − mp)

(
my
y

)
×2F1(−y,−n; my − y + 1; p1q

q1 p )

15. Poisson-binomial eθ(z−1) (q + pz)m (1 − mp)e−θ (θqm )y(y!)−1

× 2 F0(−y,−my; ; p
θq )

16. Poisson- eθ(z−1) qm

(1−pz)m (q − mp)e−θ θ yqmy−1

y!
negative binomial ×2F0(−y, my; ; −p

θ )

17. Negative binomial- qn

(1−pz)n eλ(z−1) (1 − λ)qne−yλ (yλ)y

y!
Poisson ×2F0(−y, n; ; −p

yλ )

18. Double
qn

1
(1−p1z)n

qm

(1−pz)m (q − mp)qn
1 py

1 qmy−1 (n+y−2)!
y!�(n)

negative binomial ×2F1(−y, my; 1 − y − n; p/p1)

19. Negative binomial-binomial
qn

1
(1−p1z)n (q + pz)m (1 − mp)qn

1 qmy(p/q)y
(

my
y

)
×2F1(n,−y; my − y + 1; p1q

−p )

20. Logarithmic-binomial ln(1+pz/q)
(− ln q) (q + pz)m pyqmy−y (1−mp)

(− ln q)

y∑
k=1

(
my

y − k

)
× (−1)k−1

k , y = 1, 2, 3, . . .

21. Logarithmic-Poisson ln(1−pz)
(ln q) eλ(z−1) e−yλ(yλ)y 1−λ

(− ln q)

y∑
k=1

(p/yλ)k

(y−k)!k

22. Logarithmic-negative ln(1−pz)
(ln q)

qm

(1−pz)m
(q−mp)pyqmy−1

(− ln q)

binomial ×∑y
k=1

(
my + y − k − 1

y − k

)
1
k

23. Rectangular-Poisson 1−zn

n(1−z) eλ(z−1) (1−λ)e−yλ

n

a∑
i=0

(yλ)i

i!

a = min(y, n − 1)

24. Rectangular-binomial 1−zn

n(1−z) (q + pz)m 1−mp
n qmy

a∑
i=0

(
my
i

)
(p/q)i ,

a = min(y, n − 1)
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= (x!)−1 Dx−1 {D
[
(g(z))x f (z)

]}∣∣∣
z=0

− (x!)−1 Dx
{

z (g(z))x−1 g′(z) f (z)
}∣∣∣

z=0

= (x!)−1 Dx [(g(z))x {1 − zg′(z)/g(z)
}

f (z)
]∣∣∣

z=0

= (
1 − g′(1)

)
(x!)−1Dx [(g(z))x f1(z)

]∣∣∣
z=0

,

which is the class of Lagrangian probability distributions in (2.9). Thus, L1( f1; g; y) =
L( f ; g; x) is given by (2.13) and L( f ; g; x) = L1( f1; g; y) when f (z) = f2(z) = (1 − g′(1)

)
f1(z)/

(
1 − zg′(z)/g(z)

)
given by (2.10). ��

However, it must also be noted that the replacement of f1(z) by f (z) in L1( f1; g; y) gives
other families of that class and it is evident from the members given in Tables 2.1 to 2.4.

The following example will illustrate Theorem 2.1 more explicitly.

Example. The generalized Poisson distribution (GPD) belongs to the class of Lagrangian dis-
tributions in (2.7) and is listed as (6) in Table 2.3. Its probability mass function is

P(X = x) = e−θ−λxθ(θ + xλ)x−1/x!, x = 0, 1, 2, . . . .

For the class of Lagrangian distributions in (2.9), let g(z) = eλ(z−1) and f1(z) = (1−λ)−1(1−
λz)eθ(z−1), so that g(1) = f1(1) = 1, g(0) = e−λ, f1(0) = e−θ (1 − λ)−1, and g′(1) = λ.

Now, the class of Lagrangian probability distribution in (2.9) is given as

P(Y = y) = (1 − λ)(y!)−1Dy
[
eyλ(z−1)(1 − λ)−1(1 − λz)eθ(z−1)

]
z=0

= e−θ−yλ(y!)−1Dy
[
e(θ+λy)z(1 − λz)

]
z=0

= e−θ−yλ(y!)−1
[
(θ + yλ)y − λy(θ + yλ)y−1

]
= e−θ−yλθ(θ + yλ)y−1/y!,

which is the same as the GPD, which belongs to the class of Lagrangian probability distribu-
tions in (2.7) and it is listed as (6) in Table 2.3.

Important Note: With the proof of Theorem 2.1, one may get the feeling that the results on
Lagrangian probability distributions in (2.9) are redundant. But this is not true because the two
classes in (2.7) and (2.9) enable us to have nice forms of two sets of probability distributions as
given in Tables 2.1, 2.2, 2.3, and 2.4, and they are all different from each other. One inference
we can draw from this theorem is, “Any property which is proved for the members of one class
will also hold true for all the members of the other class.”

2.2.2 Moments of Lagrangian Distributions

The Lagrange transformation z = ug(z), when expanded in powers of u, provides the pgf
z = ψ(u) of the basic Lagrangian distribution. Accordingly, the descending factorial moments
for the basic Lagrangian models become
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µ′
(r) (basic) = dr z

dur

∣∣∣∣
z=1

. (2.14)

One can easily write down the successive derivatives of z = ug(z) with respect to u as
follows:

dz

du
= g(z)[1 − u g′(z)]−1, (2.15)

d2z

du2
= 2g(z) g′(z)

(1 − u g′(z))2
+ z g(z) g′′(z)

(1 − u g′(z))3
, (2.16)

d3z

du3
= g(z)[6(g′(z))2 + 2g(z)g′′(z)]

(1 − u g′(z))3

+ {g(z) g′′(z) + 8 z g′(z) g′′(z) + zg(z)g′′′(z)} g(z)

(1 − u g′(z))4
+ 3z2 g(z)(g′′(z))2

(1 − u g′(z))5
. (2.17)

Thus, the three factorial moments of the basic Lagrangian distributions, on putting z = u = 1,
become

µ′
(1) (basic) = (1 − g′)−1, µ′

(2) = 2g′(1 − g′)−2 + g′′(1 − g′)−3, (2.18)

and

µ′
(3) = 2g′′ + 6(g′)2

(1 − g′)3
+ g′′ + 8 g′g′′ + g′′′

(1 − g′)4
+ 3(g′′)2

(1 − g′)5
. (2.19)

The higher factorial moments can be similarly calculated for the basic Lagrangian distribu-
tion. Thus, the mean and the variance of the basic Lagrangian distributions are

µ (basic) = 1

1 − g′ , σ 2 (basic) = g′

(1 − g′)2
+ g′′

(1 − g′)3
. (2.20)

The pgf of the general Lagrangian distributions is a power series in u given by

f (z) = f (ψ(u)), (2.21)

where z = ψ(u) is defined in (2.1).
The descending factorial moments of the general Lagrangian distributions can be obtained

by successively differentiating the pgf in (2.21) with respect to u, using (2.15) after each dif-
ferentiation and by putting z = u = 1 in the result. The first two derivatives are

∂ f (ψ(u))

∂u
= f ′(z) g(z)(1 − u g′(z))−1,

∂2 f (ψ(u))

∂u2
= [ f ′′(z)g(z) + g′(z) f ′(z)]g(z)

(1 − ug′(z))2
+ f ′(z)g(z)

(1 − ug′(z))2

[
g′(z) + ug′′(z)

∂z

du

]
, (2.22)

which provide the first two factorial moments µ′
(1) and µ′

(2) as

µ′
(1) = µ′ = f ′(1 − g′)−1, (2.23)

µ′
(2) = f ′′ + 2g′ f ′

(1 − g′)2
+ f ′g′′

(1 − g′)3
,
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where g′, f ′, g′′, f ′′ denote the values of the differential coefficients of g(z) and f (z),
respectively, at z = 1. The values of µ′

(2) and µ′
(1) provide the variance σ 2 as

σ 2 = µ′
(2) + µ′

(1) −
(
µ′

(1)

)2

= f ′g′′

(1 − g′)3
+ f ′′ + g′ f ′ + f ′ − ( f ′)2

(1 − g′)2
. (2.24)

The pgf of the class of Lagrangian distributions in (2.9) under the transformation z =
ug(z) is given by (2.10). The factorial moments of this class can be obtained by successively
differentiating H(u) in (2.10) with respect to u, by using (2.15) after each operation, and by
putting u = 1 = z. The first two derivatives of H(u) with respect to u are

(1 − g′(1))−1 ∂ H(u)

∂u
= { f ′

1(z)g(z) + f1(z)g′(z)
} {

1 − ug′(z)
}−2

+ z f1(z)g′′(z)
{
1 − ug′(z)

}−3
,

(1 − g′(1)−1 ∂2 H(u)

∂u2
= { f ′′

1 (z)g(z) + 2 f ′
1(z)g′(z) + f1(z)g′′(z)

}
(1 − ug′(z))−2 ∂z

∂u

+ 2
{

f ′
1(z)g(z) + f1(z)g′(z)

}
(1 − ug′(z))−3

{
g′(z) + ug′′(z)

∂z

∂u

}

+ { f1(z)g′′(z) + z f ′
1(z)g′′(z) + z f1(z)g′′′(z)

}
(1 − ug′(z))−3 ∂z

∂u

+ 3z f1(z)g′′(z)(1 − ug′(z))−4
{

g′(z) + ug′′(z)
∂z

∂u

}
.

By putting z = u = 1 in the above expressions, substituting the value of ∂z/∂u at z = u = 1
from (2.15), and simplifying the expressions, we get

E[Y ] = µ = f ′
1

1 − g′ + g′′ + g′ − (g′)2

(1 − g′)2
(2.25)

and

E[Y (Y − 1)] = f ′′
1 + g′′ + 4 f ′

1g′ + 2(g′)2

(1 − g′)2
+ g′′′ + g′′ + 3 f ′

1g′′ + 5g′g′′

(1 − g′)3
+ 3(g′′)2

(1 − g′)4
,

where f ′
1, f ′′

1 , g′, g′′, g′′′ denote the values of the successive derivatives of f1(z) and g(z),
respectively, at z = 1.

Thus, the variance σ 2 for the general Lagrangian distributions L1( f1; g; y) becomes

σ 2 = E[Y (Y − 1)] + E[Y ] − (E(Y )]2

= f ′′
1 + f ′

1 − ( f ′
1)

2

(1 − g′)2
+
(
1 + f ′

1

) (
g′′ + g′ − (g′)2

)
(1 − g′)3

+ g′′′ + g′′g′ + 2g′′

(1 − g′)3
+ 2

(
g′′)2

(1 − g′)4
. (2.26)
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2.2.3 Applications of the Results on Mean and Variance

Tables 2.1, 2.2, and 2.3 contain more than forty probability distributions, some of which are
particular cases of the others. To determine the mean and variance of each one of these dis-
tributions would have taken a long time, especially because the probability mass functions
for most of the models in Table 2.3 are in terms of hypergeometric functions. The formu-
las (2.23) and (2.24) are very powerful tools to calculate the mean and the variance of each
distribution by simple differentiation of the two pgfs g(z) and f (z) which generate it and
whose values are given in the three respective tables. The values of the means and variances
of 28 models in Tables 2.1, 2.2, and 2.3 have been computed by using the formulas (2.23)
and (2.24). These are given in Table 2.5 for convenience in future work on these probabil-
ity models. The higher moments can also be calculated, if necessary, by using (2.19) and by

calculating d4z
du4 .

Table 2.4 contains a total of 24 probability models, some of which are particular cases of
the others. The calculation of the mean and the variance of each model would take a long time
and the results may not be free from errors. Since the values of the functions f1(z) and g(z)
for each probability model are given in Table 2.4 and these can be differentiated and evaluated
at z = 1, one can use the formulas (2.25) and (2.26) as tools to get the mean and variance for
each model. Their values have been evaluated for most of the models in Table 2.4 and are given
in Table 2.6.

Most of the values of the means and variances given in Tables 2.5 and 2.6 need some simple
restrictions on parameter values so that the denominators may not become zero or negative.
These have not been given in order to shorten Tables 2.5 and 2.6.

2.2.4 Convolution Property for Lagrangian Distributions

A particular case of this property was proved by Consul and Shenton (1972) but the general
result was proved by Consul and Shenton (1975) and by Good (1975).

Theorem 2.2. Let X1and X2 be two independent Lagrangian random variables with probabil-
ity distributions L( f1; g; x1) and L( f2; g; x2), respectively. Then the probability distribution
of the sum Y = X1 + X2 is given by the pmf L( f1 f2; g; y).

Proof. Take the products of the pgfs of X1 and X2 and simplify.

The result can easily be generalized for any number of independent r.v.s. Though the r.v.
Y = X1 + X2 has a Lagrangian distribution; i.e., it belongs to the class of Lagrangian distrib-
utions but it may not be exactly of the same type as the Lagrangian distribution given by f1(z)
or by f2(z) even if f2(z) = f1(z). Thus, the probability distribution may not really be closed
under convolution.

Corollary 2.3. The above theorem provides us the following interesting differentiation formula
which appears to be new:

n∑
r=0

(
n
r

)
∂r−1 {(g(z))r ∂ f1(z)

}
∂n−r−1 {(g(z))n−r ∂ f2(z)

}∣∣
z=0

= ∂n−1 [(g(z))n ∂ { f1(z) f2(z)}]∣∣z=0 . (2.27)
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Table 2.5. The means and variances of some Lagrangian distributions L( f ; g; x)

No. Distribution Mean µ Variance σ 2

1. Delta-Katz n(1−β)
(1−β−b) nb(1 − β)(1 − β − b)−3

2. Delta-binomial n(1 − mp)−1 nmpq(1 − mp)−3

3. Delta-Poisson n(1 − λ)−1 nλ(1 − λ)−3

4. Delta-Geeta n(1−θ)
(1−βθ) n(β − 1)θ(1 − θ)(1 − βθ)−3

5. Random walk n(1 − 2q)−1 4npq(1 − 2q)−3

0 < q < 1
2

6. Delta-Teja nq(1 − 3p)−1 4npq(1 − 3p)−3

0 < p < 1
3

7. Delta-Felix n(1 − 2λ)−1 4nλ(1 − 2λ)−3

0 < λ < 1/2
8. Delta-Ved n(1 − 3mq)−1 9mnpq(1 − 3mq)−3

0 < q < (3m)−1

9. Delta-Sunil n(1 − 2mq)−1 4nmpq(1 − 2mq)−3

0 < q < (2m)−1

10. Double binomial np′(1 − mp)−1 np′[q ′+mp(q−q ′)]
(1−mp)3

11. Generalized binomial np(1 − mp)−1 npq(1 − mp)−3

12. Generalized Poisson θ(1 − λ)−1 θ(1 − λ)−3

13. Binomial-Poisson np(1 − λ)−1 np(q + λp)(1 − λ)−3

14. Binomial-negative binomial npq′(q′ − kp′)−1 npq ′(qq
′2+kp′−kp′q ′q)

(q ′−kp′)3

15. Poisson-binomial θ(1 − mp)−1 θ(1 − mp2)(1 − mp)−3

16. Poisson-negative binomial θq(q − kp)−1 θq(kp2 + q2)(q − kp)−3

17. Negative binomial-binomial kp′(q′ − mpq′)−1 kp′(mpqq ′+1−mp)
(1−mp)3q ′2

18. Negative binomial-Poisson kp[q(1 − λ)]−1 kp[1−λp]
q2(1−λ)3

19. Generalized logarithmic series p
(− ln q)(1−mp)

pq(− ln q)−p2(1−mp)
(− ln q)2(1−mp)3

20. Logarithmic Poisson p
q(− ln q)(1−λ)

(p−λp2)(− ln q)−p2(1−λ)
q2(1−λ)3(− ln q)2

21. Logarithmic-negative binomial p
(− ln q)(q−kp)

pq(− ln q)−p2(q−kp)
(− ln q)2(q−kp)3

22. Rectangular-binomial (n−1)
2(1−mp)

1
2

(n−1)mpq
(1−mp)3 + (n2−1)

12(1−mp)2

23. Rectangular-Poisson (n−1)
2(1−λ)

n2−1
12(1−λ)2 + (n−1)λ(2−λ)

2(1−λ)3

24. Rectangular-Neg. binomial (n−1)q
2(q−kp)

(n−1)kpq
2(q−kp)3 + (n2−1)q2

12(q−kp)2

25. Generalized Katz a(1 − β − b)−1 a(1 − β)(1 − β − b)−3

26. Shenton 2np(1 − 2mp)−1 4npq
(1−2mp)3

0 < p < (2m)−1

27. Modified Felix 2θ(1 − 2λ)−1 4θ(1 − 2λ)−3

28. Modified Ved 3np(1 − 3mp)−1 9npq(1 − 3mp)−3
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Table 2.6. The means and variances of some Lagrangian distributions L1( f1; g; y)

No. Distribution Mean µ Variance σ 2

1. Hari 1+2q−4q2

(1−2q)2
12q

(1−2q)3 + 4q2(1+2q)
(1−2q)4

2. Weighted delta-binomial n
1−mp + mpq

(1−mp)2
(n+1)mpq
(1−mp)3 + 2m(m−1)p2q

(1−mp)4

3. Weighted delta Poisson n
1−λ + λ

(1−λ)2
(n+1)λ
(1−λ)3 + 2λ2

(1−λ)4

4. Weighted delta- nq
q−mp + mp

(q−mp)2
(n+1)mpq
(q−mp)3 + 2m(m+1)p2q

(q−mp)4

negative binomial

5. Linear binomial np
1−mp + mpq

(1−mp)2
(n+mp)pq
(1−mp)3 + 2m(m−1)p2q

(1−mp)4

6. Binomial Poisson np
1−λ + λ

(1−λ)2
npq+nλp2+λ

(1−λ)3 + 2λ2

(1−λ)4

7. Binomial-binomial np1
1−mp + mpq

(1−mp)2
np1q1+mpq+mnpp1(q−q1)

(1−mp)3

+ 2m(m−1)p2q
(1−mp)4

8. Linear Poisson θ
1−λ + λ

(1−λ)2
θ+λ

(1−λ)3 + 2λ2

(1−λ)4

9. Poisson-binomial θ
1−mp + mpq

(1−mp)2
θ+mpq−θmp2

(1−mp)3 + 2m(m−1)p2q
(1−mp)4

10. Poisson- θq
q−mp + mp

(q−mp)2
θq3+mpq(1+θp)

(q−mp)3 + 2m(m+1)p2q
(q−mp)4

negative binomial

11. Negative binomial- np
q(1−λ) + λ

(1−λ)2
λq2+np−λnp2+2(1+λ)λ2q2

q2(1−λ)3 + 2λ4

(1−λ)4

Poisson

12. Double np1q
q1(q−mp) + mp

(q−mp)2
np1q3+mpqq2

1+mnpqp1(q1−q)

q2
1 (q−mp)3

negative binomial + 2m(m+1)p2q
(q−mp)4

13. Negative binomial- np1
q1(1−mp) + mpq

(1−mp)2
np1+mpqq2

1 −mnpp1(1−qq1)

(1−mp)3q2
1

binomial + 2m(m−1)p2q
(1−mp)4

14. Logarithmic-binomial p/(− ln q)
1−mp + mpq

(1−mp)2
−p2−pq ln q

(1−mp)2(ln q)2 + mpq(1−p/ ln q)
(1−mp)3

+ 2m(m−1)p2q
(1−mp)4

15. Logarithmic-Poisson −p
(1−λ)q ln q + λ

(1−λ)2
p(− ln q−p)

(1−λ)2(q ln q)2 + [1−p/(q ln q)]λ
(1−λ)3

+ 2λ2

(1−λ)4

16. Logarithmic- −p
(q−mp) ln q + mp

(q−mp)2
p(− ln q−p)

(q−mp)2(ln q)2 + (q−p/ ln q)mp
(q−mp)3

negative binomial + 2m(m+1)p2q
(q−mp)4

17. Rectangular-binomial n−1
2(1−mp) + mpq

(1−mp)2
(n2−1)(1−mp)+6(n+1)mpq

12(1−mp)3

+ 2m(m−1)p2q
(1−mp)4
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2.2.5 Probabilistic Structure of Lagrangian Distributions L( f ; g; x)

Let f (s) and g(s) be two pgfs such that g(0) 	= 0 and let X(n) denote the variate whose pgf is
the n-fold convolution of the probability distribution represented by the pgf g(s).

By Maclaurin’s theorem

P(X(n) = n − 1) = 1

(n − 1)!
Dn−1 {(g(s))n}∣∣

s=0 . (2.28)

By comparing (2.28) with (2.2) for the basic Lagrangian, we have the following theorem.

Theorem 2.4. The probability P(X = n) in the basic Lagrangian distribution defined by (2.2)
equals n−1 P(X(n) = n − 1).

Since the basic Lagrangian distribution given by the pgf g(s) = q + ps is the geomet-
ric distribution (model (1), Table 2.1) whose pgf is s = ug(s) = u(q + ps), i.e., s =
uq(1 − up)−1, its probability P(X = n) = n−1

(
n

n − 1

)
qpn−1 = qpn−1.

Theorem 2.5. The negative binomial distribution is a special case of the general Lagrangian
distribution given by f (s) = sn = un qn(1 − up)−n.

Theorem 2.6. The general Lagrangian distribution given by the pgf f (s) = g(s), under the
transformation s = ug(s), is the basic Lagrangian distribution, defined by (2.2), displaced by
one step to the left.

Proof. By the result (2.6) for the general Lagrangian distribution for f (s) = g(s),

P(X = x) = 1

x!
Dx−1 [(g(s))x g′(s)

]
s=0 = 1

x!
Dx−1

[
D(g(s))x+1

x + 1

]
s=0

= 1

(x + 1)!
Dx
[
(g(s))x+1

]
= P(X = x + 1)

for the basic Lagrangian distribution (2.2). ��
Theorem 2.7. The general Lagrangian distribution with pgf ψ(u) = f (z) as a power series in
u = z/g(z) is obtained by randomizing the index parameter n in the Lagrangian probability
distribution given by the pgf zn (as a power series in u) according to the pgf f (z) in z.

Proof. Let { fr } , r = 0, 1, 2, . . . , represent the successive probabilities in the probability
distribution of the pgf f (z) in powers of z. Now,

f (z) =
∞∑

r=0

fr zr = f0 +
∞∑

r=1

fr

[ ∞∑
x=1

ux

x!
Dx−1

{
r zr−1(g(z))x

}
z=0

]

= f0 +
∞∑

r=1

r fr

∞∑
x=r

ux

(x − r)!x
Dx−r (g(z))x|z=0.
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On rearranging the summations, it follows that

f (z) = f0 +
∞∑

x=1

ux

x!
Dx−1

[
(g(z))x

{
x∑

r=1

r fr zr−1

}]
z=0

= f0 +
∞∑

x=1

ux

x!
Dx−1 {(g(z))x D f (z)

}
z=0 ,

which proves the result. ��
Theorem 2.8. Let X1, X2, . . . , X N be a sequence of i.i.d. random variables having the basic
Lagrangian distributions based on g(z) and let N be an integer valued r.v. with another pgf
f (z) independent of X1, X2, . . . , X N . Then the sum X = X1 + X2, + · · ·+ X N has the general
Lagrangian distribution.

Proof. Let P(N = n) = fn so that the pgf of N is f (z) =∑∞
n=0 fn zn. Also, let H(u) be the

pgf of the r.v. X. Since

P(X = x) =
∞∑

n=0

P(X = x | N = n).P(N = n)

=
∞∑

n=0

fn · n

(x − n)!x

{
Dx−n (g(z))x}

z=0 ,

the pgf of the r.v. X becomes

H(u) =
∞∑

x=n

∞∑
n=0

ux n fn

(x − n)!x

{
Dx−n(g(z))x}

z=0 =
∞∑

k=0

∞∑
n=0

n fnun+k

k!(n + k)

{
Dk(g(z))n+k

}
z=0

=
∞∑

k=0

uk

k!

[
Dk−1(g(z))k

∞∑
n=0

n fnun(g(z))n−1g′(z)

]
z=0

=
∞∑

k=0

uk

k!

[
Dk−1(g(z))k

∞∑
n=0

D fnun(g(z))n

]
z=0

=
∞∑

k=0

uk

k!

[
Dk−1(g(z))k D

∞∑
n=0

fnzn

]
z=0

=
∞∑

k=0

uk

k!

[
Dk−1(g(z))k f ′(z)

]
z=0

,

which is the pgf of the general Lagrangian distribution. ��
Theorem 2.9. The general Lagrangian distribution provided by the functions f (z) = (q+ pz)n

and g(z) = (q + pz)m, m ≥ 1, is the same as provided by the functions f (z) = qn(1 − pz)−n

and g(z) = qm−1(1 − pz)1−m, m > 1φ.

The proof is simple and the result can easily be checked by the models 2 and 11 in Table 2.3.
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Weighted Lagrangian Distributions

Janardan (1987) has weighted a number of Lagrangian delta distributions by the variable x
and thus he has obtained the weighted distributions for delta-binomial, delta-Poisson and delta-
Geeta models in Table 2.2. He calls them size-biased forms, which belong to the class of La-
grangian distributions in (2.9).

Janardan (1987) has also given the weighted forms of the generalized Poisson (6), general-
ized binomial (2), generalized negative binomial (11), and generalized logarithmic series (12)
in Table 2.3, with weights (θ +λx), (n + mx), (n + mx), and x , respectively. These weighted
forms of members of Lagrangian distributions in (2.7) belong to the class of Lagrangian dis-
tributions in (2.9). This property of getting the probability models of one class by weighing
the models of another class of distributions provides a characterization for the two classes of
distributions.

2.3 Modified Power Series Distributions

The family of modified power series distributions (MPSD) is a generalization of the family of
generalized power series distributions (GPSD) (Noack, 1950; Patil, 1961, 1962) with the pmf
given by

P(X = x) = axθ
x/ f (θ), x ∈ T ⊂ N, (2.29)

where N is the set of nonnegative integers and T is a subset of N . The GPSD is obtained by
the Maclaurin’s expansion of a nonnegative analytic function f (θ) when ax ≥ 0 for all x in
N . Jain (1975b) defined a class of power series distributions by using the Lagrange expansion
in (1.78).

The MPSD were defined by Gupta (1974) by replacing θ x in the GPSD (2.29) by (φ(θ))x

and by assuming that the positive and analytic function f (θ) or h(θ) possesses a power series
expansion in φ(θ), where φ(θ) is another positive and analytic function and ax ≥ 0 for all x in
N . Thus, the probability mass function of an MPSD becomes

P(X = x) = ax(φ(θ))x/h(θ), x ∈ T ⊂ N . (2.30)

The corresponding series function is

h(θ) =
∑
x∈T

ax(φ(θ))x . (2.31)

Thus, the MPSD is an obvious generalization of the GPSD. Also, the MPSD is linear exponen-
tial, just like the GPSD, and can be written in the form

P(X = x) = exp{x ln φ(θ) − ln h(θ) + ln ax}. (2.32)

Many Lagrangian probability distributions (Tables 2.1, 2.2, and 2.3) are MPSDs. All mod-
els in Table 2.1, except the Katz distribution, are MPSDs. Similarly, all the probability mod-
els in Table 2.2 are MPSDs. The generalized binomial model, the restricted generalized Pois-
son model, the generalized negative binomial model, the generalized logarithmic series model
(models (12) and (14)), the Shenton, and the modified Ved are the only ones in Table 2.3 that
are MPSDs.

Gupta (1974) did not provide any method or technique by which a series like (2.31) could
be obtained, though he studied many properties of the MPSD and applied the results to many
of the above well-known probability models.
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2.3.1 Modified Power Series Based on Lagrange Expansions

Let φ(θ) = θ/η(θ) = u so that θ = uη(θ) is a Lagrange transformation. Also, let η(0) 	= 0
though φ(0) = 0. By Lagrange expansion in (2.1),

θ =
∞∑

k=1

uk

k!
Dk−1(η(θ))k|θ=0

=
∞∑

k=1

(θ/η(θ))k

k!

{
Dk−1(η(θ))k

}
θ=0

=
∞∑

k=1

(φ(θ))k

k!

{
Dk−1(η(θ))k

}
θ=0

, (2.33)

which is a power series expansion in φ(θ). Thus a parameter θ , defined over some domain,
including θ = 0, can always be expanded in a power series of φ(θ) = θ/η(θ), where η(0) 	= 0.

In a similar manner any positive and analytic function h(θ) of a parameter θ can be ex-
panded into a power series of the function φ(θ) = θ/η(θ) by the two Lagrange expan-
sions (1.78) and (1.80). The two expansions for the modified power series are

h(θ) = h(0) +
∞∑

k=1

(φ(θ))k

k!

[
Dk−1

{
(η(θ))k h ′(θ)

}]
θ=0

(2.34)

and
h(θ)

1 − η′(θ)φ(θ)
=

∞∑
k=0

(φ(θ))k

k!

[
Dk
{
(η(θ))k h(θ)

}]
θ=0

. (2.35)

If the multiple derivatives with respect to θ are nonnegative for all integral values of k in
the three expansions (2.33), (2.34), and (2.35), then all three of these expansions shall provide
modified power series distributions. Thus, one can have numerous MPSDs by choosing suitable
values for the functions h(θ) and η(θ). Since both functions h(θ) and η(θ) = θ/φ(θ) depend
upon a common parameter θ, these MPSDs will possibly be special cases of the Lagrangian
probability distribution (2.7) which are based upon the functions f (z) and g(z) containing
different parameters.

We apply the expansions (2.34) to obtain a number of MPSDs. The values of the functions
h(θ), η(θ) and the MPSDs generated by them are given in Table 2.7.

The reader should try the expansion (2.33) to get another set of MPSDs by using the above
values of h(θ) and η(θ) and see if the new MPSD can be reduced to one of the forms given
above. The reader should also verify if the above models are special cases of the models given
in Table 2.3.

2.3.2 MPSD as a Subclass of Lagrangian Distributions L( f ; g; x)

Consul (1981) has proved that the MPSDs, as defined by Gupta (1974), belong to a subclass
of the Lagrangian probability distributions. Accordingly, they possess all the properties of the
Lagrangian distributions and have some other properties as well. The same proof is being given
here. We shall first like to modify the probability of the Lagrangian distribution into a more
suitable form.



2.3 Modified Power Series Distributions 43

Table 2.7. Some modified power series distributions

No. Name h(θ) η(θ) P(X = x), x = 0, 1, 2, 3, . . .

1. Poisson- eaθ (1 − θ)−m e−aθ , x = 0

negative binomial a > 0, m > 0 (aθ(1−θ)m)x

eaθ x!
0 < θ < 1 [2 F0(1 − x, mx; ;−a−1)], x ≥ 1

2. Poisson- eaθ (1 + θ)m e−aθ , x = 0

negative binomial a > 0, θ > 0 m ≥ 1 e−aθ axθ x (1+θ)−mx

x!
(altered parameters) ×[2F0(1 − x, −mx; ; a−1)], x ≥ 1

3. Negative binomial- (1 − θ)−m eaθ (1 − θ)m , x = 0

Poisson 0 < θ < 1 (1 − θ)m θ x e−axθ

x! m[x]

×[1F1(1 − x; 2 − m − x; ax)], x ≥ 1
4. Negative binomial- (1 − θ)−m (1 + θ)n (1 − θ)m , x = 0

binomial 0 < θ < 1 n ≥ 1 (1 − θ)m θ x (1+θ)−nx

x! m[x]

×[2F1(1 − x, −nx; −m − x + 1; −1)],
x ≥ 1

5. Binomial-Poisson (1 + θ)m eaθ (1 + θ)−m , x = 0

θ > 0 (1 + θ)−m θ x e−axθ

x! m(x)

×[2F0(1 − x; m − x + 2; ;−ax)], x ≥ 1
6. Binomial- (1 + θ)m (1 − θ)−n (1 + θ)−m , x = 0

negative binomial 0 < θ < 1 (1 + θ)−m θ x (1−θ)nx

x! m(x)

×[2F1(1 − x, nx; m − x + 1;−1)],
x ≥ 1

7. Logarithmic- ln (1 + θ) (1 + θ)m 1
mx

(
mx
x

)
θ x (1+θ)−mx

ln (1+θ) ,

negative binomial θ > 0 m ≥ 1 x ≥ 0
(altered parameters)

8. Logarithmic- − ln (1 − θ) (1 − θ)−m 1
mx+x

(
mx + x

x

)
θ x (1−θ)mx

[− ln (1−θ)] , x ≥ 0

negative binomial 0 < θ < 1

9. Dev emθ (1 − θ)−k e−θ e−mθ (1 − θ)k(θe−θ )x

m > 0, k > 1 0 < θ < 1 ×∑x
r=0

(
k + x − r − 2

x − r

)
×(m + x)r /r !

10. Harish (1−βθ)−k+1

(1−θ)n (1 − θ)β−1 (1 − θ)n(1 − βθ)k+1(θ(1 − θ)β−1)x

0 < θ < 1, 1 < β < 1
θ ×∑x

r=0

(
k + r − 1

r

)

n ≥ 0, k ≥ 1 ×
(

n + βx − r
x − r

)
βr
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Let z = b(v) be a one-to-one transformation such that b(v) = 0 for v = ak and b(v) = 1
for v = ak

1. Also, let f (z) = f (b(v)) = f1(v), g(z) = g(b(v)) = g1(v) so that g1(ak) 	=
0, g1(ak

1) = f1(ak
1) = 1, and 0 < f1(ak) < 1. Since

D ≡ ∂

∂z
= ∂v

∂z
· ∂

∂v

the probabilities (2.7) of the general Lagrangian distributions can be written as

P(X = x) =
{

1

x!

(
∂v

∂z
· ∂

∂v

)x−1 {
(g1(v))x ∂ f1(v)/∂v

∂z/∂v

}∣∣∣∣∣
v=ak

(2.36)

for x ∈ T and zero elsewhere. Also, since the Lagrange transformation is u = z/g(z) =
b(v)/g1(v), the general Lagrange series (2.6) can be written in the form

f1(v) =
∑
x∈T

{b(v)/g1(v)}x P(X = x) (2.37)

so that
∑

x∈T P(X = x) = 1 when v = ak
1 .

Theorem 2.10. The MPSD defined by

P(X = x) = ax(φ(θk))x/h(θk), x ∈ T1, k > 0, (2.38)

and zero otherwise, where ax > 0 and T1 is a subset of the set of nonnegative integers with

h(θk) =
∑
x∈T1

ax(φ(θk))x (2.39)

belongs to the class of Lagrangian probability distributions in (2.7).

When k = 1, the above MPSD becomes the MPSD defined by Gupta (1974).

Proof. The proof will be complete if two functions f (z) and g(z), satisfying all the properties
for the Lagrangian distributions, can be so defined that they provide the above MPSD.

Let b be the smallest integer in the set T1 and let T2 be the set of nonnegative integers ob-
tained by subtracting b from all the elements, except b, of T1. Now, dividing (2.39) by (φ(θk))b,
we get

h(θk)/(φ(θk))b = h1(θ
k) = ab +

∑
x∈T2

cx(φ(θk))x, (2.40)

where cx = ax+b for x ∈ T2.
The convergence of the power series (2.40) implies that the function φ(θk) is bounded by

zero on the left and by some quantity, say M < 1, on the right. Thus there must be some value
of θ , say θ = t , where φ(tk) = 0 and h1(tk) = ab. Therefore,

φ(θk) = (θk − tk)α · w(θk) for α > 0 and w(θk) > 0. (2.41)

Now, we define the functions

z = (v − tk)α

(θk − tk)α
, g1(v) = w(θk)

w(v)
, f1(v) = h1(v)

h1(θk)
, (2.42)
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which are such that z = 0 when v = tk and z = 1 when v = θk . Also, g1(tk) 	= 0 and

g1(θ
k) = f1(θ

k) = 1, 0 < f1(tk) = h1(tk)/h1(θ
k) = ab/h1(θ

k) < 1, and ∂z
∂v = α(v−tk)α−1

(θk−tk )α
.

By substituting these values in (2.36)

P(X = x) = 1

x!

(
(θk − tk)α

α(v − tk)α−1

∂

∂v

)x−1
{(

w(θk)

w(v)

)x
(θk − tk)α

α(v − tk)α−1

∂h1(v)/∂v

h1(θk)

}∣∣∣∣∣
v=tk

=
{
(θk − tk)αw(θk)

}
xα−x

h1(θk) · x!

[(
(v − tk)1−α ∂

∂v

)x−1
{

(v − tk)1−α

(w(v))x
· ∂h1(v)

∂v

}]
v=tk

= (φ(θk))x

h1(θk)
· cx for x ∈ T3, (2.43)

where cx = (x!)−1 × (value of the (x − 1)th derivative at v = tk) and T3 is a subset of N (set
of integers). Also,

P(X = 0) = f1(v)|v=tk = h1(t
k)/h1(θ

k) = ab/h1(θ
k).

It can easily be shown by the convergence of the series that the subsets T3 and T2 are
identical. Thus

P(X = x) = (φ(θk))x

h1(θk)
· ax for x ∈ T1

and zero otherwise.
When α = 1 and t = 0, then v = zθk so that g(z) = w(θ)k

w(zθk)
and f (z) = h1(zθk)

h1(θk)
. Then, one

can use the original formula (2.6) for the probability of the general Lagrangian distributions
to get the same MPSD. Hence the MPSDs form a subclass of the general Lagrangian distribu-
tions. ��

Since the MPSDs are based upon two unknown functions h(θk) and φ(θk), the theorem is
very general and many variations can be introduced in these two functions. Consul (1981) has
given two good examples to illustrate these variations.

2.3.3 Mean and Variance of a MPSD

For every MPSD it is known that

h(θ) =
∑
x∈T

ax · (φ(θ))x .

By differentiation with respect to θ ,

h ′(θ) =
∑
x∈T

ax · x(φ(θ))x−1φ′(θ)

= h(θ)φ′(θ)

φ(θ)
E[X ]

∴ mean µ = E[X ] = h ′(θ)φ(θ)

h(θ) · φ′(θ)
. (2.44)

Then, µ h(θ) =∑x∈T x ax(φ(θ))x .
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By differentiating the above with respect to θ,

dµ

dθ
h(θ) + µ h ′(θ) =

∑
x∈T

x2 ax(φ(θ))x · φ′(θ)/φ(θ)

= E[X2] · h(θ)φ′(θ)/φ(θ).

∴ E[X2] = dµ

dθ
· φ(θ)

φ′(θ)
+ µ

h ′(θ)φ(θ)

h(θ) · φ′(θ)
= dµ

dθ
· φ(θ)

φ′(θ)
+ µ2 .

∴ Variance σ 2 = E(X2) − µ2 = φ(θ)

φ′(θ)

dµ

dθ
. (2.45)

2.3.4 Maximum Entropy Characterization of some MPSDs

Kapur (1982) has described the Shannon–Bayesian entropy, its maximization, and application
of the maximum entropy for the characterization of a number of MPSDs (a subclass of La-
grangian distributions) defined by

P(X = x) = a(x) (g(θ))x/ h(θ) for x ∈ N,

where N is a subset of the set of nonnegative integers.
For each probability model, a prior α(x) ∝ a(x) is chosen over N and then, assigning two

unknowns A and b, the probability mass function P(X = x) = P(x) is taken as

P(x) = α(x)A bx, x ∈ N, (2.46)

subject to the conditions

A
∑
x∈N

α(x)bx = 1, A
∑
x∈N

xα(x)bx = M, (2.47)

where M is the assigned mean of the probability model. Kapur stated that the above two con-
ditions characterize the probability model and gave the values of A and b in terms of M and
the parameters contained in α(x). It is not clear how the values of A and b were obtained from
the two equations. Of course, they can easily be determined by taking the value of mean M and
b = g(θ) from the model. Four examples, given by Kapur (1982), are given below.

(i) Generalized binomial distribution given by

f (t) = (q + pt)n, g(t) = (q + pt)m, p = 1 − q < m−1.

Let

α(x) ∝ n

n + mx

(
n + mx

x

)
, x = 0, 1, 2, . . . (2.48)

and let the mean be prescribed as M . Then

P(x) = A
n

n + mx

(
n + mx

x

)
bx ,
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where

A
∞∑

x=0

n

n + mx

(
n + mx

x

)
bx = 1, A

∞∑
x=0

xn

n + mx

(
n + mx

x

)
bx = M.

These give

A =
(

n + (m − 1)M

n + m M

)n

= qn, b = M

n + m M

(
n + (m − 1)M

n + m M

)m−1

= pqm−1.

Therefore, the generalized negative binomial distribution (GNBD) can be characterized as
the maximum Bayesian entropy distribution (MBED) when the prior probability distribu-
tion is proportional to α(x) in (2.48) and for which the mean M is also given.

(ii) Delta-binomial distribution for f (t) = tn, g(t) = (q + pt)m . Let

α(x) ∝ n

n + x

(
m(n + x)

x

)
, x = 0, 1, 2, . . . (2.49)

and let the mean be given as M . Then

P(x) = An

n + x

(
m(n + x)

x

)
bx, x = 0, 1, 2, . . . ,

where

A
∞∑

x=0

n

n + x

(
mn + mx

x

)
bx = 1, A

∞∑
x=0

xn

n + x

(
mn + mx

x

)
bx = M,

giving

A =
(

1 − M − n

Mn

)mn

= qmn, b = M − n

Mn

(
1 − M − n

Mn

)m−1

= pqm−1.

Thus,

P(x) = n

n + x

(
mn + mx

x

)
pxqmn+mx−x, x = 0, 1, 2, . . . ,

is the model characterized as the MBED with prior given by (2.49) and the mean M .
(iii) Delta-Poisson distribution. Kapur (1982) stated that by taking the prior α(y) = e−y/y!,

y = 0, 1, 2, . . . , and by prescribing E[Y ] = a, E[ln(Y +n)] = b, E[(Y +n) ln(Y +n)] =
c, the MBED is given by

P(y) = (A/y!)e−ay(y + n)b+c(y+n), y = 0, 1, 2, . . . , (2.50)

which gives

P(x) = A

(x − n)!
e−a(x−n)xb+cx , x = n, n + 1, n + 2, . . . .

When c = 1 and b = −n − 1, the above reduces to the delta-Poisson distribution.
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(iv) Generalized Poisson distribution. Similar to (iii), the MBED given by the prior α(x) =
e−x/x!, x = 0, 1, 2, . . . , and by prescribing E[X ] = a, E[ln(M + θ X)] = b, and
E[(M + θ X) ln(M + θ X)] = c is

P(x) = A

x!
e−ax(M + θx)b+c(M+θ x), x = 0, 1, 2, . . . .

Its special case given by a = θ, c = θ−1, and b + M/θ = −1 is the generalized Poisson
distribution.

2.4 Exercises

2.1 Find the mean and variance of the following Lagrangian probability distributions.
(a) Geeta and (7) to (11) in Table 2.1
(b) Haight distribution in Table 2.2
(c) Models (1) to (4) in Table 2.7.

2.2 Show that the mean and variance of the Katz distribution ((6) in Table 2.1) are

µ = (1 − β)(1 − β − b)−1, σ 2 = b(1 − β)(1 − β − b)−3.

2.3 Equation (2.35) is obtained by using the Lagrange expansion in (1.80) for the modified
power series distribution. Use the result in (2.35) to obtain the MPSDs based on the
Lagrange expansion in (1.80) for the following functions with 0 < θ < 1 and m > 0:
(a) h(θ) = eaθ and η(θ) = (1 − θ)−m,
(b) h(θ) = (1 − θ)−m and η(θ) = eaθ ,
(c) h(θ) = (1 − θ)−m and η(θ) = (1 + θ)−m,
(d) h(θ) = − ln(1 − θ) and η(θ) = (1 − θ)−m.

2.4 Show that the negative binomial distribution is a special case of the general Lagrangian
distribution given by f (z) = zn = unqn(1 − up)−n (see Theorem 2.5).

2.5 By choosing f (z) and g(z) appropriately, show that the binomial, the Poisson, and the
logarithmic series distributions can be obtained as special cases of the general Lagrangian
distribution given by (2.7).

2.6 Prove that the general Lagrangian distribution provided by the functions f (z) = (1 −
θ + θ z)n and g(z) = (1 − θ + θ z)m, m ≥ 1, is the same as provided by the functions
f (z) = (1 − θ)m (1 − θ z)−n and g(z) = (1 − θ)m−1 (1 − θ z)1−m, m > 1 (see
Theorem 2.9).

2.7 Show that under the transformation p = θ/(1 + θ), the generalized logarithmic series
model (12) in Table 2.3 reduces to the logarithmic negative binomial model (7) in Ta-
ble 2.7. Find the mean and variance of the logarithmic negative binomial model.

2.8 Obtain the probability mass function for the Dev distribution (see Table 2.7) by using
the Lagrange expansion in (1.80). Is it possible to obtain it from the Lagrange expansion
in (1.78), and if so, how?

2.9 Obtain the probability mass function for the Harish distribution (see Table 2.7) by using
the Lagrange expansion in (1.80).

2.10 The basic Lagrangian distribution given by g(z) = eθ(z2−1) is the Felix distribution (see
Table 2.1). Show that a generalized Felix distribution with f (z) = z and g(z) = eθ(zα−1)

is the restricted generalized Poisson distribution.
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2.11 The Sunil distribution in Table 2.1 is obtained from equation (2.2) by using the function
g(z) = (1 − θ + θ z2)m , which depends on two parameters θ and m. Determine a function
g(z), which depends on three parameters θ, m, and β so that equation (2.2) provides the
generalized negative binomial distribution.

2.12 By using the Lagrange expansion in (1.77) on the functions f (z) = z and g(z) =
(1 − θ)n(1 − θ zk)−n, show that the Lagrangian probability distribution from this expan-
sion is the generalized negative binomial distribution. By using a suitable transformation,
determine the value of k in terms of m that gives the generalized negative binomial model
(11) in Table 2.3.
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Properties of General Lagrangian Distributions

3.1 Introduction

The class of discrete Lagrangian probability distributions has three subclasses called the basic,
the delta, and the general Lagrangian distributions. The class has numerous families of proba-
bility distributions. Some of these are given in Tables 2.1 to 2.4 and many more can be obtained
by suitable choices of the functions g(z) and f (z). It has been shown that some families of the
class of Lagrangian distributions in (2.9) are the weighted distributions of the corresponding
families of the class of Lagrangian distributions in (2.7). Also, the equivalence between these
two classes of distributions has been shown in Subsection 2.2.1.

The first two factorial moments and the mean and the variance of the two classes of dis-
tributions were obtained in the last chapter. Though one can use the same methods to find the
higher factorial moments, these become quite laborious. Consul and Shenton (1972, 1975) and
Good (1975) have given interesting methods to obtain the central moments and the cumulants
of the class of Lagrangian distributions in (2.7). Consul and Famoye (2001) has given a similar
method to compute the central moments of the class of Lagrangian distributions in (2.9). The
mean, kth central moment and the kth cumulant of the Lagrangian distributions in (2.7) are
denoted by 1µ, 1µk and 1Lk , k = 1, 2, 3, . . . , respectively. Similarly, the mean, kth central
moment and the kth cumulant of the Lagrangian distributions in (2.9) are denoted by 2µ, 2µk ,
and 2Lk , k = 1, 2, 3, . . . . In this notation 1µ1 and 2µ1 denote the first central moments and
have a value of zero.

Though the functions g (z) and f (z) are not necessarily pgfs, for the sake of convenience
we assume in this chapter that they are pgfs of some r.v.s and that Gk and Fk , k = 1, 2, 3, . . . ,
denote the cumulants of the probability distributions generated by them.

3.2 Central Moments of Lagrangian Distribution L( f ; g; x)

Since g (z) and f (z) are the pgfs of two independent r.v.s and Gk and Fk , k = 1, 2, 3, . . . ,
denote the cumulants of their respective probability distributions, replacing z by eS and taking
logarithms, we get

ln g
(

eS
)

=
∑
k=1

Gk Sk/k!, (3.1)
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ln f
(

eS
)

=
∑
k=1

Fk Sk/k! . (3.2)

Replacing z by eS and u by eβ in the Lagrange transformation z = ug(z), taking logarithms
and using (3.1), we have

β = S − ln g
(

eS
)

= (1 − G1) S −
∑
i=2

Gi Si/ i ! . (3.3)

Let P (X = x) = Px denote the pmf of the general Lagrangian distribution L( f ; g; x)
in (2.7), generated by f (z) under the transformation z = ug(z). Since 1µ is the arithmetic
mean of the distribution, the central moment generating function of Lagrangian distribution
becomes ∑

x=0

Px e
(
x− 1µ

)
β = e−1µβ ·

∑
x=0

Px
(
eβ
)x = e−1µβ

∑
x=0

Px

[
eS/g

(
eS
)]x

= e−1µβ · f
(

eS
)

= e−1µβ exp
[
ln f

(
eS
)]

.

By using the expansions (3.3) and (3.2) on the right side and by expanding e
(
x− 1 µ

)
β as a

power series in β on the left side we obtain

∑
k=0

1µk · βk

k!
= exp

[
{F1 − 1µ (1 − G1)} S +

∑
i=2

(Fi + 1µ · Gi )
Si

i !

]
, (3.4)

where β is to be replaced by the series (3.3).
Since 1µ1 = 0, the term of S with unit power vanishes on the left side of (3.4). Thus, the

corresponding term of S must also vanish on the right-hand side of (3.4) and

1µ = F1/ (1 − G1) . (3.5)

For obtaining the values of the other central moments of the Lagrangian distributions
L( f ; g; x) in (2.7), the identity (3.4) can be written as

∑
k=2

1µk

k!

[
(1 − G1) S −

∑
i=2

Gi
Si

i !

]k

≡
∑
i=2

(
Fi +1 µGi

) Si

i !
+ 1

2!

[∑
i=2

(
Fi + 1µGi

) Si

i !

]2

+ 1

3!

[∑
i=2

(
Fi + 1µGi

) Si

i !

]3

+· · · . (3.6)

By comparing the coefficients of S2, S3, S4, S5, and S6 on both sides, we get the five relations

1µ2 (1 − G1)
2 = F2 +1 µG2,

1µ3 (1 − G1)
3 − 31µ2 (1 − G1) G2 = F3 +1 µG3,

1µ4 (1 − G1)
4 − 61µ3 (1 − G1)

2 G2 +1 µ2

[
3G2

2 − 4G3 (1 − G1)
]

= F4 +1 µG4 + 3 (F2 + 1µG2)
2 ,

1µ5 (1 − G1)
5 − 101µ4G2 (1 − G1)

3 − 101µ3G3 (1 − G1)
2 + 151µ3G2

2 (1 − G1)

+1 µ2 (10G2G3 − 5G4 (1 − G1)) = F5 +1 µG5 + 10 (F3 + 1µG3) (F2 + 1µG2) ,
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1µ6 (1 − G1)
6 − 15G2 (1 − G1)

4
1 µ5 +1 µ4

[
−20G3 (1 − G1)

3 + 45G2
2 (1 − G1)

2
]

−1 µ3

[
10G3

2 + 15G4 (1 − G1)
2 − 10G2G3 (1 − G1)

]
−1 µ2

[
6G5 (1 − G1) − 15G2G4 − 10G2

3

]
= F6 +1 µG6 + 10 (F3 + 1µG3)

2 + 15 (F4 + 1µG4) (F2 + 1µG2) .

On using the value of 1µ from (3.5) in the above five relations and on simplification, the
other five central moments become

1µ2 = F2 (1 − G1)
−2 + F1G2 (1 − G1)

−3 ,

1µ3 = 31µ2G2

(1 − G1)
2

+ F3 (1 − G1) + F1G3

(1 − G1)
4

,

1µ4 = 3 (1µ2)
2 + 61µ3G2

(1 − G1)
2

+ 1µ2

{
4G3

(1 − G1)
3

− 3G2
2

(1 − G1)
4

}

+ F4 (1 − G1) + F1G4

(1 − G1)
5

,

1µ5 = 10 1µ2 (1µ3) + 10 1µ4G2

1 − G1
+ 1µ3

[
10G3

(1 − G1)
3

− 15G2
2

(1 − G1)
5

]

+5 1µ2

[
G4

(1 − G1)
4

− 6 1µ2G2

(1 − G1)
2

− 2G2G3

(1 − G1)
5

]
+ F5 (1 − G1) + F1G5

(1 − G1)
5

,

1µ6 = 15 1µ5G2

1 − G1
+ 51µ4

(1 − G1)
3

[
4G3 − 9G2

2

1 − G1

]

+ 5 1µ3

(1 − G1)
4

[
3G4 − 2G2G3

1 − G1
+ 3G3

2

(1 − G1)
2

]

+ 1µ2

(1 − G1)
5

[
6G5 + 15 (F4 − F4G1 + F1G4) − 15G2G3 + 10G2

3

1 − G1

]

+ F6 − F6G1 + F1G6 + 10 (F3 + 1µG3)
2

(1 − G1)
6

. (3.7)

Higher central moments can also be obtained from the identity (3.6) by comparing the
coefficients of S7, S8, S9, . . . on both sides.

Cumulants of Lagrangian Distributions L( f ; g; x)

Though the central moments can be used to compute the cumulants of a distribution, we are
providing an independent method for obtaining the cumulants of the general Lagrangian distri-
bution. Since the basic Lagrangian distribution is generated by the expansion of z as a power
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series of u by the Lagrange expansion in (1.77) under the transformation z = ug(z), its pgf is
given by (2.1). Replacing z by eS and u by eβ in z = ug (z), and taking logarithms, provides
the cumulant generating function of the basic Lagrangian distribution as a power series in β.
Thus

S = β + ln g
(

eS
)

=
∑
r=1

Dr · βr/r !, (3.8)

where Dr , r = 1, 2, 3, . . . , denote the cumulants of the basic Lagrangian distribution.
Since the power series expansion in β of ln f

(
eS
)

is the cumulant generating function for
the general Lagrangian distribution, given by f (z) under the transformation z = ug (z), from
the relation (3.2), we have

∑
k=1

1Lk · βk

k!
=
∑
r=1

Fr · Sr

r !

=
∑
r=1

Fr

r !

(∑
i=1

Di

i !
β i

)r

[by (3.8)],

so that

1Lk = ∂k

∂βk

[∑
r=1

Fr

r !

(∑
i=1

Di

i !
β i

)r ]
β=0

=
k∑

r=1

⎡
⎣k!

r !
Fr

(
k∑

i=1

Di

i !
β i

)r ⎤⎦
β=0

. (3.9)

The coefficients of Fr , r = 1, 2, 3, . . . , can be obtained by expanding the multinomial(
k∑

i=1

Diβ
i/ i !

)r

and evaluating the coefficient of βk . This can be done precisely by the Faà de Bruno theorem,
where all possible partitions of r are considered.

Thus, the cumulants 1Lk , k = 1, 2, 3, . . . , of the general Lagrangian distribution are given
by (3.9) in the form

1 Lk =
k∑

r=1

k!

r !
Fr

⎡
⎣∑ r !

π1!π2! · · · πk!

k∏
j=1

(
D j

j !

)π j

⎤
⎦ , (3.10)

where the second summation is taken over all partitions π1, π2, π3, . . . , πk of r such that

π1 + π2 + · · · + πk = r and π1 + 2π2 + 3π3 + · · · + kπk = k. (3.11)

The first few cumulants of the general Lagrangian distribution L( f ; g; x) can now be writ-
ten down as particular cases of (3.10) and are
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1L1 = F1 D1,

1L2 = F1 D2 + F2 D2
1,

1L3 = F1 D3 + 3F2 D1 D2 + F3 D3
1,

1L4 = F1 D4 + 3F2 D2
2 + 4F2 D1 D3 + 6F3 D2

1 D2 + F4 D4
1,

1L5 = F1 D5 + 5F2 D1 D4 + 10F2 D2 D3 + 15F3 D1 D2
2

+10F3 D2
1 D3 + 10F4 D3

1 D2 + F5 D5
1,

1L6 = F1 D6 + F2
(
6D1 D5 + 15D2 D4 + 10D2

3

)
+F3

(
15D2

1 D4 + 60D1 D2 D3 + 15D3
2

)
+F4

(
20D3

1 D3 + 45D2
1 D2

2

)+ 15F5 D4
1 D2 + F6 D6

1 .

(3.12)

The above cumulants will be determined explicitly if the values of Dk, k = 1, 2, . . . , the
cumulants of the basic Lagrangian distribution are known. These can be obtained from (3.8),
which can be rewritten in the form

S =
∑
k=1

Dk
βk

k!
= β + ln g

(
eS
)

= β +
∑
r=1

Gr
Sr

r !

= β +
∑
r=1

Gr

r !

(∑
i=1

Di

i !
β i

)r

.

(3.13)

Note that on transferring β to the left side in (3.13), it becomes very similar to (3.9) with
the difference that 1L1 is replaced by D1 − 1, 1Lk by Dk for k = 2, 3, . . . , and Fr is replaced
by Gr . Therefore, one would get the corresponding values of Dk , k = 1, 2, 3, . . . , by making
these changes in (3.12). Thus⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 − 1 = G1 D1, i.e., D1 = (1 − G1)
−1 ,

D2 = G1 D2 + G2 D2
1, i.e. D2 = G2 (1 − G1)

−3 ,

D3 = G1 D3 + 3G2 D1 D2 + G3 D3
1, i.e., D3 = G3 (1 − G1)

−4

+3G2
2 (1 − G1)

−5 ,

D4 = G1 D4 + 3G2 D2
2 + 4G2 D1 D3 + 6G3 D2

1 D2 + G4 D4
1

= G4 (1 − G1)
−5 + 10G3G2 (1 − G1)

−6 + 15G3
2 (1 − G1)

−7 ,

D5 = G1 D5 + 5G2 D1 D4 + 10G2 D2 D3 + 15G3 D1 D2
2 + 10G3 D2

1 D3

+10G4 D3
1 D2 + G5 D5

1

= G5 (1 − G1)
−6 + (15G4G2 + 10G2

3

)
(1 − G1)

−7

+105G3G2
2 (1 − G1)

−8 + 105G4
2 (1 − G1)

−9 ,

and

D6 = G6 (1 − G1)
−7 + (21G5G2 + 35G4G3) (1 − G1)

−8

+ (210G4G2
2 + 280G2

3G2
)
(1 − G1)

−9

+1260G3G3
2 (1 − G1)

−10 + 945G5
2 (1 − G1)

−11 .

(3.14)
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The cumulants {1 Lr }, r = 1, 2, 3, . . . , of all families of distributions belonging to the class
of Lagrangian distributions in (2.7) are completely determined by the relations (3.12) and (3.14)
in terms of the cumulants {Gr } and {Fr } , which are known from the functions g (z) and f (z),
respectively. Substituting the values of the D1, D2, . . . , D6 from the relations (3.14) in the
relations (3.12), the values of the first six cumulants {1Lr } become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1L1 = F1 (1 − G1)
−1 ,

1L2 = F2 (1 − G1)
−2 + F1G2 (1 − G1)

−3 ,

1L3 = F3 (1 − G1)
−3 + (3F2G2 + F1G3) (1 − G1)

−4 + 3F1G2
2 (1 − G1)

−5 ,

1L4 = F4 (1 − G1)
−4 + (6F3G2 + 4F2G3 + F1G4) (1 − G1)

−5

+ (15F2G2
2 + 10F1G2G3

)
(1 − G1)

−6 + 15F1G3
2 (1 − G1)

−7 ,

1L5 = F5 (1 − G1)
−5 + (10F4G2 + 10F3G3 + 5F2G4 + F1G5) (1 − G1)

−6

+ (45F3G2
2 + 60F2G3G2 + 15F1G4G2 + 10F1G2

3

)
(1 − G1)

−7

+105
(
F2G3

2 + F1G3G2
2

)
(1 − G1)

−8 + 105F1G4
2 (1 − G1)

−9 ,

1L6 = F6 (1 − G1)
−6 + (15F5G2 + 20F4G3 + 15F3G4 + 6F2G5 + F1G6) (1 − G1)

−7

+ (105F4G2
2 + 210F3G3G2 + 105F2G4G2 + 60F2G2

3

+21F1G5G2 + 35F1G4G3) (1 − G1)
−8

+ (405F3G3
2 + 840F2G3G2

2 + 210F1G4G2
2 + 280F1G2

3G2
)
(1 − G1)

−9

+ (315F2G4
2 + 1260F1G3G3

2

)
(1 − G1)

−10 + 945F1G5
2 (1 − G1)

−11 .
(3.15)

Example. The Poisson-binomial family of Lagrangian distributions L( f ; g; x) is generated
by f (z) = eθ(z−1) and g (θ) = (q + pz)m , whose cumulants are known. Substituting the
cumulants of f (z) and g(z) in the above relations (3.15), the first four cumulants become⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

κ1 = θ (1 − mp)−1 , κ2 = θ
(
1 − mp2

)
(1 − mp)−3 ,

κ3 = θ
[(

1 − mp2
)2 + 2mpq2

]
(1 − mp)−5 ,

κ4 = θ (1 − mp)−4 + θmpq (5 − 2p) (1 − mp)−5

+θm2 p2q2 (5 + 20q) (1 − mp)−6

+15θm3 p3q3 (1 − mp)−7 .

(3.16)

3.3 Central Moments of Lagrangian Distribution L1( f1; g; y)

By using the equivalence theorem in subsection 2.2.1, all the moments of this class can
be derived from the moments of the class of Lagrangian distributions L( f ; g; x) in (2.7)
but the process will become very complex because f1(z) is given by (2.10) as f1(z) =(
1 − g′(1)

)−1 (1 − zg′(z)/g(z)
)

f (z). Therefore, we will derive moments of Lagrangian dis-
tributions L1( f1; g; y) by using their pgfs. Let P(Y = y) = Py be the pmf of the general
Lagrangian distribution generated by the pgfs f1(z) and g(z) by formula (2.9). On replacing z
by eS and u by eβ in the pgf (2.10) of the general Lagrangian distributions in (2.9), the moment
generating function (mgf) becomes
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H
(
eβ
) = (1 − G1) f1

(
eS
)

1 − (∂/∂S) ln g
(
eS
) = f1

(
eS
)

(1 − G1)
−1 [1 − (∂/∂S) ln g

(
eS
)] , (3.17)

where the Lagrange transformation z = ug(z) changes to

eS = eβg
(

eS
)

, (3.18)

which gives

S = β + ln g
(

eS
)

.

Let 1 Fk, k = 1, 2, 3, . . . , denote the cumulants of the probability distributions given by the
pgf of f1(z). Since (by (3.1) and (3.2))

ln f1

(
eS
)

=
∑
k=1

1 Fk Sk/k!,

ln g
(

eS
)

=
∑
k=1

Gk Sk/k!,

the relation (3.18) provides

β = (1 − G1) S −
∑
k=2

Gk Sk/k!. (3.19)

Since the r th central moment 2µr of the general Lagrangian distributions L1( f1; g; y)
in (2.9) is 2µr =∑y Py (y − 2µ)r , the mgf for central moments is∑

r=0

2µrβ
r/r ! =

∑
r=0

∑
y

Py (y − 2µ)r βr/r !

=
∑

y

Pye(y− 2µ)β = e− 2µβ H
(
eβ
)
, and by (3.17)

= exp
[− 2µβ + ln f1

(
eS
)]

(1 − G1)
−1 [1 − (∂/∂S) ln g

(
eS
)] = C

B
. (3.20)

On substituting the values of β, ln f1
(
eS
)
, and ln g

(
eS
)

in the form of series given above, we
have

C = exp

[
{1 F1 − 2µ (1 − G1)} S +

∑
r=2

(1 Fr + 2µGr ) Sr/r !

]
(3.21)

and

B = 1 −
∑
r=1

Gr+1

1 − G1

Sr

r !
. (3.22)

Note that the mean and the central moments of the Lagrangian distributions in (2.9) can
be obtained by differentiating the relation (3.20) successively with respect to S and by putting
β = 0 = S on both sides. Also, note from (3.19) that

∂β

∂S
= 1 −

∑
i=1

Gi
Si−1

(i − 1)!
,

∂kβ

∂Sk = −
∑
i=k

Gi
Si−k

(i − k)!
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so that

∂β/∂S|S=0 = 1 − G1 and ∂kβ/∂Sk |S=0= −Gk, k = 2, 3, . . . . (3.23)

Also,

∂C

∂S

∣∣∣∣
S=0

= C.D|S=0 = 1 F1 − 2µ (1 − G1) ,

where

D = 1 F1 − 2µ (1 − G1) +
∑
r=2

(1 Fr + 2µGr )
Sr−1

(r − 1)!
.

Obviously,

∂k D

∂Sk

∣∣∣∣
S=0

= 1 Fk+1 − 2µGk+1, k = 1, 2, 3, . . . . (3.24)

Also, by (3.22)

∂k B

∂Sk

∣∣∣∣
S=0

= −
∑
r=k

Gr+1

1 − G1

Sr−k

(r − k)!

∣∣∣∣
S=0

= − Gk+1

1 − G1
, k = 1, 2, 3, . . . . (3.25)

By differentiating the relation (3.20) with respect to S, we get

∑
r=1

2µr
βr−1

(r − 1)!

∂β

∂S
= B−2

(
−∂ B

∂S

)
C + B−1C D. (3.26)

Since 2µ1 = 0, by putting S = 0 and β = 0 in the above relation, we get the mean 2µ from

0 = G2

1 − G1
+ 1 F1 − 2µ (1 − G1) or 2µ = 1 F1

1 − G1
+ G2

(1 − G1)
2
. (3.27)

The second derivative of (3.20) with respect to S is given by (3.26) as

∑
r=2

2µr
βr−2

(r − 2)!

(
∂β

∂S

)2

+
∑
r=1

2µr
βr−1

(r − 1)!

∂2β

∂S2

= 2B−3
(

−∂ B

∂S

)2

C + B−2

(
−∂2 B

∂S2

)
C + 2B−2

(
−∂ B

∂S

)
C D+B−1C D2 + B−1C

∂ D

∂S
.

(3.28)

On putting S = 0 and β = 0 in the above equation

2µ2 (1 − G1)
2 = 3G2

2

(1 − G1)
2

+ G3

1 − G1
+ 2G2 (1 F1 − 2µ (1 − G1))

1 − G1
+ 1 F2 + 2µG2,

which gives the variance (or the second central moment) as

2µ2 = σ 2 = 1 F2

(1 − G1)
2

+ 1 F1G2 + G3

(1 − G1)
3

+ 2G2
2

(1 − G1)
4
. (3.29)
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The third derivative of (3.20) with respect to S is given by (3.28) as

∑
r=3

2µr
βr−3

(r − 3)!

(
∂β

∂S

)3

+
∑
r=2

3 2µr
βr−2

(r − 2)!

∂β

∂S

∂2β

∂S2
+
∑
r=1

2µr
βr−1

(r − 1)!

∂3β

∂S3

= 6B−3C

[
B−1

(
−∂ B

∂S

)3

+ ∂ B

∂S

∂2 B

∂S2
+
(

∂ B

∂S

)2

D

]

− B−2C

[
∂3 B

∂S3
+ 3

∂2 B

∂S2
D + 3

∂ B

∂S
D2 + 3

∂ B

∂S

∂ D

∂S

]

+ B−1C

[
D3 + 3D

∂ D

∂S
+ ∂2 D

∂S2

]
. (3.30)

On putting β = 0, S = 0 in the above, substituting the values of the terms, and on simplifica-
tion, we have

2µ3 = 3 2µ2G2

(1 − G1)
2

+ 1 F3

(1 − G1)
3

+ 1 F1G3 + G4

(1 − G1)
4

+ 4G2G3

(1 − G1)
5

+ 2G3
2

(1 − G1)
6

. (3.31)

The fourth derivative of (3.20) with respect to S can be written down from (3.30) as

∑
r=4

2µr
βr−4

(r − 4)!

(
∂β

∂S

)4

+
∑
r=3

62µr
βr−3

(r − 3)!

(
∂β

∂S

)2 ∂2β

∂S2
+
∑
r=2

32µr
βr−2

(r − 2)!

(
∂2β

∂S2

)2

+
∑
r=2

42µr
βr−2

(r − 2)!

∂β

∂S

∂3β

∂S3
+
∑
r=1

2µr
βr−1

(r − 1)!

∂4β

∂S4

= 24B−5
(

∂ B

∂S

)4

C−36B−4
(

∂ B

∂S

)2 ∂2 B

∂S2
C−24B−4

(
∂ B

∂S

)3

C+6B−3

(
∂2 B

∂S2

)2

C

+ 8B−3 ∂ B

∂S

∂3 B

∂S3
C + 24β−3 ∂ B

∂S

∂2 B

∂S2
C D + 12B−3

(
∂ B

∂S

)2

C D2

+ 12B−3
(

∂ B

∂S

)2

C
∂ D

∂S
− B−2 ∂4 B

∂S4
C − 4B−2 ∂3 B

∂S3
C D − 6B−2 ∂2 B

∂S2
C D2

− 6B−2 ∂2 B

∂S2
C

∂ D

∂S
− 4B−2 ∂ B

∂S
C D3 − 12B−2 ∂ B

∂S
C D

∂ D

∂S
− 4B−2 ∂ B

∂S
C

∂2 D

∂S2

+ B−1C D4 + 6B−1C D2 ∂ D

∂S
+ 3B−1C

(
∂ D

∂S

)2

+ 4B−1C D
∂2 D

∂S2
+ B−1C

∂3 D

∂S3
.

(3.32)
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On putting β = 0, S = 0 in the above and on substituting the values of the terms, we get

2µ4 (1 − G1)
4 − 62µ3G2 (1 − G1)

2 + 32µ2G2
2 − 42µ2G3 (1 − G1)

= 1 F4 + µ′
1G4 + 3

(
1 F2 + µ′

1G2
)2 + 6G3

(
1 F2 + µ′

1G2
)+ G5

1 − G1

+6G2
3 + 6G2

2

(
1 F2 + µ′

1G2
)+ 4G2G4

(1 − G1)
2

+ 18G3G2
2

(1 − G1)
3

+ 9G4
2

(1 − G1)
4

.

On simplification of the above expression, the fourth central moment 2µ4 becomes

2µ4 = 3 2µ
2
2 + 6 2µ3G2

(1 − G1)
2

− 3 2µ2G2
2

(1 − G1)
4

+ 4 2µ2G3

(1 − G1)
3

+ 1 F4

(1 − G1)
4

+ 1 F1G4 + G5

(1 − G1)
5

+ 5G4G2 + 3G2
3

(1 − G1)
6

+ 12G3G2
2

(1 − G1)
7 + 6G4

2

(1 − G1)
8

. (3.33)

The higher central moments can similarly be evaluated by taking more derivatives with
respect to S and by putting β = 0, S = 0 in them.

3.3.1 Cumulants of Lagrangian Distribution L1( f1; g; y)

The mgf of the class of Lagrangian distributions in (2.9) is given by (3.17). On simplification
by the denominator in (3.20) and by (3.22) it becomes

H
(
eβ
) = f1

(
eS
)[

1 −
∑
r=1

Gr+1

1 − G1

Sr

r !

]−1

. (3.34)

On taking the logarithms on both sides, the cumulant generating function (cgf) of the La-
grangian distributions is

ln H
(
eβ
) = ln f1

(
eS
)

− ln

[
1 −

∑
r=1

Gr+1

1 − G1

Sr

r !

]
,

which gives ∑
k=1

2Lk
βk

k!
=
∑
k=1

1 Fk
Sk

k!
+
∑
k=1

1

k

(∑
r=1

Gr+1

1 − G1

Sr

r !

)k

. (3.35)

Now, one can follow the same method of differentiating the relation (3.35) successively
with respect to S and putting S = 0 and β = 0, as was followed for the central moments, to
get the values of the successive cumulants. However, the Lagrange transformation z = ug (z)
changes to eS = eβg

(
eS
)

and provides the power series expansion (3.8) of S in terms of β as

S =
∑

i

Diβ
i/ i !. (3.36)

By substituting the value of S from (3.36) in (3.35), we have the identity

∑
k=1

2Lk
βk

k!
=
∑
k=1

1 Fk

k!

(∑
i=1

Di

i !
β i

)k

+
∑
k=1

1

k

(∑
r=1

Gr+1

1 − G1

1

r !

(∑
i=1

Di

i !
β i

)r)k

. (3.37)
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On equating the coefficients of β, β2, β3, and β4 on both sides in (3.37) we obtain the values
of the first four cumulants of Lagrangian distribution L1( f1; g; y) in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 L1 = 1 F1 D1 + G2 D1 (1 − G1)
−1 ,

2 L2 = 1 F1 D2 + 1 F2 D2
1 + (G2 D2 + G3 D2

1

)
(1 − G1)

−1 + G2 D2
1 (1 − G1)

−2 ,

2 L3 = 1 F1 D3 + 31 F2 D1 D2 + 1 F3 D3
1 + (G2 D3 + 3G3 D1 D2 + G4 D3

1

)
(1 − G1)

−1

+ (3G2G3 D3
1 + 3G2

2 D1 D2
)
(1 − G1)

−2 + 2G3
2 D3

1 (1 − G1)
−3 ,

2 L4 = 1 F1 D4 + 41 F2 D1 D3 + 31 F2 D2
2 + 61 F3 D2

1 D2 + 1 F4 D4
1

+ (G2 D4 + 4G3 D1 D3 + 3G3 D2
2 + 6G4 D2

1 D2 + G5 D4
1

)
(1 − G1)

−1

+ (4G2
2 D1 D3 + 3G2

2 D2
2 + 3G2

3 D4
1 + 18G2G3 D2 D2

1 + 4G4G2 D4
1

)
(1 − G1)

−2

+12
(
G3

2 D2
1 D2 + G2

2G3 D4
1

)
(1 − G1)

−3 + 6G4
2 D4

1 (1 − G1)
−4 .

(3.38)
Similarly, one can write down the values of higher cumulants as well. By substituting the

values of D1, D2, D3, and D4 from the relations (3.14) one would get the cumulants 2Lk, k =
1, 2, 3, 4, in terms of the cumulants of g(z) and f1(z). However, it may be noted that the value
of each cumulant consists of some terms which contain 1 Fk, k = 1, 2, 3, 4, and some terms
which contain Gk, k = 1, 2, 3, 4. The terms containing 1 Fk, k = 1, 2, 3, 4, in each cumulant
are the same as in (3.12) for the respective cumulants for Lagrangian distributions in (2.7) with
f1(z) used in place of f (z). Thus, on substitution of the values of D and on simplification, the
first four cumulants of Lagrangian distributions L1( f1; g; y) become⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2 L1 = 1L1 + G2 (1 − G1)
−2 ,

2 L2 = 1L2 + G3 (1 − G1)
−3 + 2G2

2 (1 − G1)
−4 ,

2 L3 = 1L3 + G4 (1 − G1)
−4 + 7G3G2 (1 − G1)

−5 + 8G3
2 (1 − G1)

−6 ,

2 L4 = 1L4 + G5 (1 − G1)
−5 + (11G4G2 + 7G2

3

)
(1 − G1)

−6

+59G3G2
2 (1 − G1)

−7 + 48G4
2 (1 − G1)

−8 ,

(3.39)

where the values of 1 Lk, k = 1, 2, 3, 4, are given by the first four relations in (3.15) with f (z)
replaced by f1(z). The expressions in (3.39) and the relation (3.35) clearly prove that each cu-
mulant for a particular distribution (generated by f1(z) and g(z), in the class of Lagrangian
distributions (2.9)) has a larger value than the same cumulant for a similar distribution (gen-
erated by the same f1(z) and g(z) in the class of Lagrangian distributions in (2.7)).

3.3.2 Applications

Example 1. The linear Poisson family of the class of Lagrangian distributions in (2.9) is gener-
ated by f1(z) = eθ(z−1) and g(z) = eλ(z−1), for which all the cumulants are θ and λ, respec-
tively.

Substituting the values of the cumulants of f1(z) and g(z) in the results (3.15) and (3.39)
and on simplification, the cumulants of the linear Poisson family become⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2L1 = θ (1 − λ)−1 + λ (1 − λ)−2 ,

2L2 = θ (1 − λ)−3 + λ (1 + λ) (1 − λ)−4 ,

2L3 = θ (1 − 2λ) (1 − λ)−5 + λ
(
1 + 5λ + 2λ2

)
(1 − λ)−6 ,

2L4 = θ
(
1 + 8λ + 6λ2

)
(1 − λ)−7 + λ

(
1 + 15λ + 26λ2 + 6λ3

)
(1 − λ)−8 .

(3.40)
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The same results can be obtained by calculating the central moments from the formu-
las (3.27), (3.29), (3.31), and (3.33).

Example 2. The Poisson-binomial family in the class of Lagrangian distributions in (2.9) has
the pmf

P (Y = y) = (1 − mp) e−θθ yqmy (y!)−1
2 F0 (−y, −my; ; p/θq)

for y = 0, 1, 2, . . . and zero otherwise, where θ > 0, 0 < p = 1 − q < 1, and 0 < m < p−1.
It is given by the pgfs f1(z) = eθ(z−1) and g(z) = (q + pz)m under the Lagrange expansion
in (1.80).

Since all the cumulants of the Poisson distribution given by f1(z) are θ and the first five cu-
mulants of the binomial distribution, given by g(z), are mp, mpq, mpq (q − p),
mpq (1 − 6pq), and mpq (q − p) (1 − 12pq), one can use the four formulas in (3.15) and
(3.39) to write down the first four cumulants of the Poisson-binomial families of L( f ; g; x)
and L1( f1; g; y) classes:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1L1 = θ (1 − mp)−1 ,

1L2 = θ
(
1 − mp2

)
(1 − mp)−3 ,

1L3 = θ
{(

1 − mp2
)2 − 2mpq2

}
(1 − mp)−5 ,

1L4 = θ
(1−mp)4 + θmpq

(1−mp)5 + θmpq2(2+3mp)

(1−mp)6 + θmpq3(6+8mp+m2 p2)
(1−mp)7 ,

(3.41)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2L1 = θ (1 − mp)−1 + mpq (1 − mp)−2 ,

2L2 = θ
(
1 − mp2

)
(1 − mp)−3 + mpq (1 − 2p + mp) (1 − mp)−4 ,

2L3 = 1 L3 + mpq
(1−mp)4

{
1 − 6pq + 7mpq(q−p)

1−mp + 8m2 pq2

(1−mp)2

}
,

2L4 = 1 L4 + mpq(q−p)(1−12pq)

(1−mp)5 + m2 p2q2(18−94pq)

(1−mp)6

+ 59m3 p3q3(q−p)

(1−mp)7 + 48m4 p4q4

(1−mp)8 .

(3.42)

3.4 Relations between the Two Classes L( f ; g; x) and L1( f1; g; y)

A number of theorems establishing the relationship between the two classes of Lagrangian
probability distributions, when f1(z) is replaced with f (z) in L1( f1; g; y), will be proved for
some special cases.

Theorem 3.1. Let f (z) = g(z) and let Y and X be the r.v.s for the corresponding general
L1( f ; g; y) class and general L( f ; g; x) class, respectively. Then P(Y = k) = (k + 1)
(1 − g′(1))P(X = k) for all values of k.

Proof. For the class of Lagrangian probability distribution in (2.7) with f (z) = g(z),

P (X = k) = 1

k!

{
Dk−1

(
gk (z) g′ (z)

)}
z=0

= 1

(k + 1)!

{
Dk
(

gk+1 (z)
)}

z=0
.
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For the class of Lagrangian probability distribution in (2.9),

P (Y = k) =
(
1 − g′ (1)

)
k!

{
Dk
(

gk (z) · g (z)
)}

z=0

= (1 − g′ (1)
)
(k + 1) P (X = k) ,

which proves the theorem. ��
Theorem 3.2. Let X have the delta Lagrangian distribution in (2.4) for f (z) = zn under the
transformation z = ug(z). If each probability P(X = k) is weighted by the weight function
wk = k and Y is the r.v. of the weighted delta Lagrangian distribution in (2.4), then Y has the
corresponding delta Lagrangian distribution in (2.12).

Proof. For the delta Lagrangian distribution in (2.4) with f (z) = zn,

P (X = k) = n

k!

{
Dk−1

(
gk (z) · zn−1

)}
z=0

= n

(k − n)!k

{
Dk−ngk (z)

}
z=0

, k = n, n + 1, . . . .

Therefore, the probability function of the weighted distribution becomes

P (Y = k) = k P (X = k)∑∞
k=n k P (X = k)

= k P (X = k)

E [X ]

= 1 − g′ (1)

f ′ (1)

n

(k − n)!

{
Dk−ngk (z)

}
z=0

(
since E [X ] = f ′ (1) /

(
1 − G′ (1)

))

= (1 − g′ (1)
) 1

(k − n)!

{
Dk−ngk (z)

}
z=0

, k = n, n + 1, . . . , (3.43)

which is the probability function for the delta Lagrangian distribution in (2.12). ��
Theorem 3.3. Let the r.v. X have the general Lagrangian distribution in (2.7) for f (z) =
(g(z))m under the transformation z = ug(z), where m is a real number. If each probability
function P(X = k) is weighted by the weight function wk = m + k and Y is the r.v. represent-
ing the weighted Lagrangian distribution in (2.7), then Y has the corresponding Lagrangian
distribution in (2.9).

Proof. The probability function of the general Lagrangian distribution in (2.7) for f (z) =
(g(z))m becomes

P (X = k) = m

k!

{
Dk−1

(
(g (z))k+m−1 g′ (z)

)}
z=0

, k = 0, 1, 2, . . . ,

= m

k! (m + k)

{
Dk
(
(g (z))k+m

)}
z=0

. (3.44)
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Therefore, the probability function of the weighted distribution becomes

P (Y = k) = (m + k) P (X = k)

/ ∞∑
k=0

(m + k) P (X = k)

= (m + k) P (X = k)

/{
m + f ′ (1)

(
1 − g′ (1)

)−1
}

.

Since f ′ (1) = Dgm(z)|z=1 = mg′ (1), the above probability becomes

P (Y = k) = (1 − g′ (1)
) m + k

m
P (X = k)

= (1 − g′ (1)
) · (k!)−1

{
Dk
(

gk (z) gm (z)
)}

z=0
(by (3.44)) ,

which is the probability function for the corresponding Lagrangian distribution in (2.9). ��
Theorem 3.4. Let the r.v. Y have a general Lagrangian distribution in (2.9) for f (z) = (g(z))m

under the transformation z = ug(z), m being a real number. If each probability function
P(Y = k) is weighted by the weight function wk = (m + k)−1 and X is the r.v. representing
the weighted Lagrangian distribution (2.9), then X has the corresponding Lagrangian distrib-
ution (2.7) divided by m.

Proof. The probability function of the weighted distribution of Y becomes

P (X = k) = wk P (Y = k)∑∞
k=0 wk P (Y = k)

= (m + k)−1
(
1 − g′(1)

) {
Dk gk+m (z)

}
z=0 /k!∑∞

k=0 (m + k)−1 (1 − g′(1))
{

Dkgk+m (z)
}

z=0 /k!

= 1

k!

{
Dk−1

(
gk+m−1 (z) g′ (z)

)}
z=0

/ ∞∑
k=0

1

k!
Dk−1

{
gk+m−1 (z) g′ (z)

}
z=0

= 1

k!
Dk−1

(
gk (z) gm−1 (z) g′ (z)

)∣∣∣∣
z=0

= 1

k!m

{
Dk−1

(
gk (z) f ′ (z)

)}
z=0

,

which is the pmf for the corresponding Lagrangian distribution in (2.7) divided by m. ��

Some Examples

It can easily be verified that the models (3), (4), and (5) of Table 2.4 for the basic Lagrangian
distributions (2.11) are the weighted distributions of P(X = x), weighted with wx = x from
the basic Lagrangian distributions (2.2) as follows:

(i) Ved distribution is the weighted Geeta distribution with g(z) = qm(1 − pz)−m.
(ii) Sudha distribution is the weighted Borel distribution with g (z) = eλ(z−1).
(iii) Hari distribution is the weighted Otter distribution with g(z) = p + qz2.
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Example 4.1. Let the r.v. X have a generalized Poisson distribution GPD with the probability
function

P(X = k) = θ (θ + kλ)k−1 e−θ−kλ/k!, k = 0, 1, 2, . . . ,

which is a Lagrangian distribution in (2.7) with g(z) = eλ(z−1) and f (z) = eθ(z−1) =
(g(z))θ/λ .

From Theorem 3.3, the weight function is wk = θ/λ+k and E [wx ] = θ/λ+θ (1 − λ)−1 =
θ (1 − λ)−1 λ−1. Therefore, if 0 < λ < 1, the weighted distribution of the GPD is

P (Y = k) = (θ/λ + k) P (X = k) /E [θ/λ + X ]

= (θ/λ + k)

θ/λ + θ (1 − λ)−1

1

k!
θ (θ + kλ)k−1 e−θ−kλ, k = 0, 1, 2, . . . ,

= (1 − λ) (θ + kλ)k e−θ−kλ/k!, (3.45)

which is the linear Poisson distribution (model (10) of Table 2.4), defined by Jain (1975a), and
is a family in the class of the Lagrangian distributions in (2.9). Thus, the linear function Poisson
distribution is the weighted form of the GPD with the weight function wk = θ/λ + k.

Example 4.2. Let the r.v. X have a generalized negative binomial distribution (GNBD) with the
probability function

P (X = k) = n

n + mk

(
n + mk

k

)
θk (1 − θ)n+mk−k , k = 0, 1, 2, . . . ,

where 0 < θ < 1, n > 0, m = 0, or ≥ 1 and 0 < mθ < 1. The GNBD is a family in the class
of the Lagrangian distributions in (2.7) with g(z) = (1−θ +θ z)m and f (z) = (1 − θ + θ z)n =
(g (z))n/m .

Since it satisfies the condition of Theorem 3.3, the weight function is wk = n/m + k and

E [wX ] = n

m
+ E [X ] = n

m
+ nθ

1 − mθ
= n

m (1 − mθ)
.

Thus, the weighted distribution of the GNBD is given by

P (Y = k) = wk

E [wx ]
P (X = k)

= (n + mk) (1 − mθ)

n

n

n + mk

(
n + mk

k

)
θk (1 − θ)n+mk−k

= (1 − mθ)

(
n + mk

k

)
θk (1 − θ)n+mk−k , k = 0, 1, 2, . . . ,

which is the linear binomial distribution (model (11) of Table 2.4) of the class of Lagrangian
distributions in (2.9).

Example 4.3. Let the r.v. X have a generalized logarithmic series distribution (GLSD) with the
probability function
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P (X = k) = α � (mk) θk (1 − θ)mk−k

k!� (mk − k + 1)
, k = 1, 2, 3, . . . ,

where α = [− ln (1 − θ)]−1 , 0 < θ < 1, and 1 ≤ m < θ−1. The GLSD is a member of the
class of Lagrangian distributions in (2.7) with g(z) = (1 − θ)m−1 (1 − θ z)1−m and f (z) = α
ln (1 − θ z) .

If the weight function is wk = k, the weighted distribution of the GLSD becomes

P (y = k) = (1 − mθ)

(
mk − 1
k − 1

)
θk−1 (1 − θ)mk−k , k = 1, 2, 3, . . . , (3.46)

which is a generalized geometric distribution and belongs to the class of Lagrangian distribu-
tions in (2.9). Its particular case for m = 1 is the geometric distribution.

3.5 Some Limit Theorems for Lagrangian Distributions

Consul and Shenton (1973a) have given two limit distributions for Lagrangian probability dis-
tributions. Pakes and Speed (1977) have improved these results and have modified them with a
number of conditions and cases.

The Lagrangian distribution L( f ; g; x), defined by (2.7), has the pgf f (z) = f (ψ (u))
given by (2.6), where ψ (u) is the pgf of the basic Lagrangian distribution whose mean and
variance are a = (1 − G1)

−1 and D2 = G2a3, respectively (see (3.14)). The distribution with
pgf f (z) has mean F1 and variance F2. By Theorem 2.8 the r.v. X having the Lagrangian
distribution L( f ; g; x) can be viewed as

X = X1 + X2 + · · · + X N ,

where the i.i.d. Xi , i = 1, 2, . . . , N , have the basic Lagrangian distribution with pgf ψ (u) and
the r.v. N , independent of Xi , i = 1, 2, 3, . . . , has the pgf f (z). By the general results on the
moments of random sums (Feller, 1968, p. 301), the r.v. X , i.e., the Lagrangian distribution,
has mean 1L1 and variance 1L2 given by

µ = 1 L1 = F1a, σ 2 = 1L2 = d2F1 + F2a2 = F1G2a3 + F2a2,

which are the same as given in (3.15).
Rychlik and Zynal (1973) have considered the limit behavior of sums of a random number

of independent r.v.s and have shown that (X − µ) σ−1 is asymptotically standard normal if the
following conditions hold:

(i) N F−1
1 → 1 (in probability) as F1 → ∞.

(ii) (N − F1) F−1/2
2 → a standard normal r.v. (in distribution) as F1 → ∞.

Note that N is a r.v. having mean F1 and variance F2. In both conditions, the mean F1
becomes indefinitely large and it is further implied that the r.v. N assumes a large value. Thus
we have the first limit theorem for the class of Lagrangian distributions in (2.7).

Theorem 3.5. If X is a Lagrangian variate with mean µ = F1 (1 − G1)
−1 and standard devi-

ation σ , then for any specific values of G1 (< 1) and G2, the distribution of the standardized
r.v. Z = (X − µ)/σ is asymptotically normal as F1 → ∞, if the conditions (i) and (ii) hold.
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It may be noted that the above theorem on limiting distribution fails when the condi-
tion F1 → ∞ reduces the distribution, given by f (z), into a degenerate form. Let f (z) =
(1 − p) (1 − pz)−1 so that F1 = p (1 − p)−1. Now F1 → ∞ when p → 1, which changes
f (z) into a degenerate function.

In a similar manner, if f (z) = ln (1 − pz) / ln (1 − p), then the value of F1 =
p [− ln (1 − p)]−1, which approaches ∞ when p → 0. Again, when p → 0, the distribu-
tion given by the pgf f (z) becomes degenerate.

Theorem 3.6. Let X be a Lagrangian variate, defined by the pgf f (z), under the trans-
formation z = ug (z), where g (0) 	= 0, with mean µ = F1 (1 − G1)

−1 and variance
σ 2 = F2 (1 − G1)

−2 + F1G2 (1 − G1)
−3. Also, let g (z) be such that it does not become de-

generate when G1 → 1− and g′′ (1−) > 0. Then the limiting distribution of the variate
Y = X/σ is the inverse Gaussian density function as F1 → ∞ and G1 → 1− such that
F1 (1 − G1) = c2G2, where c is a constant.

For the proof of this theorem we refer the reader to Consul and Shenton (1973a) and Pakes
and Speed (1977).

Minami (1999) also modified the results in Consul and Shenton (1973a) and showed that
the Lagrangian distributions converged to the normal distributions under certain conditions and
to the inverse Gaussian distributions under some other conditions. The conditions presented by
Pakes and Speed (1977) are easier than the conditions presented by Minami (1999), which are
based on higher order cumulants of the Lagrangian generating distributions.

Mutafchiev (1995) obtained an integral representation of the Lagrangian distribution (2.7)
in the form

P [Y (λ, µ) = x] = λφ′(λ)

2xπφ(λ)

∫ π

−π

[
ψ
(
µeiθ

)
ψ(µ)

]m (
φ′ (λeiθ

)
φ′(λ)

)
e−(x−1)iθdθ, (3.47)

where f (z) = φ(λz)/φ(λ), g(z) = ψ(µz)/ψ(µ), λ and µ are parameters. In (3.47), Y (λ, µ)
is considered as a normalized sum of x + 1 independent r.v.s having power series distributions;
x of them have the pgf ψ(z) and one is defined by the derivative φ′(λz)/φ′(λ).

Under some assumptions on φ and ψ , Mutafchiev (1995) proved various local limit theo-
rems for the class of Lagrangian distributions in (2.7) as x → ∞ and the parameters λ and µ
change in an appropriate way.

3.6 Exercises

3.1 Obtain the first four cumulants for the generalized logarithmic series distribution in
Table 2.3.

3.2 Obtain the first four cumulants for the Poisson-negative binomial family of Lagrangian
distributions in (2.7).

3.3 Obtain the first four cumulants for the double negative binomial family of the Lagrangian
distributions (2.9) in Table 2.4.

3.4 Let X have the generalized logarithmic series family in the class of Lagrangian distribu-
tions in (2.7). If each probability mass P(X = k) is weighed by wk = k, find the weighted
distribution of X.
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3.5 A r.v. X has the logarithmic negative binomial distribution (model (14) in Table 2.3). Find
a recurrence relation between the noncentral moments. Also, find a recurrence relation
between the central moments. Hence or otherwise, obtain the first four central moments
for the r.v. X .

3.6 A r.v. X has the generalized Poisson distribution given by the pgfs g(z) = eλ(z−1), 0 <
λ < 1, and f (z) = eθ(z−1), θ > 1. If each probability P(X = k) is weighted by the weight
function wk = θ/λ + k and Y is the r.v. representing the weighted distribution, then find
P(Y = y) in a suitable form. Also, what will be the distribution of Y if wk = (θ/λ + k)−1?

3.7 A random variable X has the generalized negative binomial distribution given by the pgfs
g(z) = qm (1 − pz)−m and f (z) = qn (1 − pz)−n , 0 < p = 1 − q < 1, m > 0, n >
0, mp < 1. If each probability function P(X = k) is weighted by the weight function
wk = (n/m + k)−1 and Y is the r.v. representing the weighted distribution, then find
P(Y = y) in a suitable form.

3.8 Prove the limiting result as stated in Theorem 3.5.
3.9 Let g(z) be a successively differentiable function such that g(1) = 1 and g(0) 	= 0.

Let X and Y be random variables from the delta Lagrangian distribution (2.4) and delta
Lagrangian distribution (2.12), respectively. Prove that

P(Y = k) = k

n

(
1 − g′(1)

)
P(X = k)

for all values of k. Show that this result holds when X and Y have basic Lagrangian distri-
bution (2.2) and basic Lagrangian distribution (2.11), respectively.
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Quasi-Probability Models

4.1 Introduction

A binomial model is based on the assumption of a repeated set of Bernoulli trials wherein the
probability p of the occurrence of an event remains the same for each trial. In a laboratory
experiment one can exercise controls and make sure that p is constant for each trial; however,
in the real world of living beings the value of p changes according to the circumstances. These
changes may be due to the inheritance of genes, psychological effects, feelings of social togeth-
erness, previous experience, determination for success or to face a common danger, adjustments
needed for changes in the environments, etc. Accordingly, the observed counts, generated in
many experiments by a set of Bernoulli-type trials, do not fit a binomial model and exhibit
either much greater or much lesser variation than a binomial model. This over dispersion or
under dispersion is usually classified as extra-binomial variation.

Chaddha (1965) considered a binomial distribution with contagion, while Katti and Sly
(1965) analyzed contagious data by developing some behavioristic models. Crow and Bardwell
(1965) discussed some hyper-Poisson distributions and applied them to a number of data sets.
Katti and Gurland (1961) developed the Poisson Pascal distribution for a similar type of data.

Some other scientists have dealt with such data by a generalization of the binomial model
where the parameter p is taken to be a beta random variable. The beta binomial model, thus
obtained, has been used by Kleinman (1973), Williams (1975), and Crowder (1978) for the
analysis of overly dispersed counts.

Similar changes have been suggested to the hypergeometric probability model, but to a
lesser degree. Pólya (1930) had studied a more complicated model to describe the “contagion”
of different events. Friedman (1949) has described another model and Feller (1968) has shown
that the conditional probabilities can be used to explain a number of physical phenomena.

A quasi-binomial model, a quasi-hypergeometric model, and a quasi-Pólya model were
defined and studied by Consul (1974) to account for the variations in the observed counts.
These were obtained through simple urn models dependent upon the predetermined strategy of
a player. These models are generalizations of the binomial, hypergeometric, and Pólya distri-
butions. Another set of three quasi-probability models was defined and studied by Consul and
Mittal (1975). Janardan (1975, 1978) has studied some additional properties of these models.
Some of these models were used by Consul (1974, 1975) for some characterization theorems.
A detailed study of the quasi-binomial distribution I was made by Consul (1990d). Charalam-
bides (1986) studied some other properties of these models under the title of Gould series
distributions.
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These quasi-probability models do not belong to the class of Lagrangian probability dis-
tributions. However, all these models are based upon some identities which are proved by the
use of the Lagrange expansions in (1.78) and in (1.80). For the same reason these probability
models are included in this chapter, as they form a separate class by themselves.

4.2 Quasi-Binomial Distribution I (QBD-I)

A discrete random variable X is said to have a quasi-binomial distribution I (QBD-I) if its
probability mass function is defined by

P(X = x) =
(

m
x

)
p(p + xφ)x−1(1 − p − xφ)m−x , (4.1)

for x = 0, 1, 2, 3, . . . , m and zero otherwise, where 0 ≤ p ≤ 1 and −p/m < φ <
(1 − p)/m. The QBD-I reduces to the binomial model when φ = 0. The r.v. X represents
the number of successes in m trials such that the probability of success in any one trial is p
and in all other trials is p + xφ, where x is the total number of successes in the m trials.
The probability of success increases or decreases as φ is positive or negative and is directly
proportional to the number of successes. The QBD-I does not possess the convolution prop-
erty but when m → ∞, p → 0, and φ → 0 such that mp = θ and mφ = λ, its limiting
form is the generalized Poisson distribution (Consul, 1989a) which possesses the convolution
property.

Consul (1974, 1975) has proved three theorems on the characterization of the QBD-I and
has shown its usefulness in the characterization of the generalized Poisson distribution. Berg
and Mutafchiev (1990) have shown that the QBD-I is useful in random mappings with an
attracting center.

The probabilities for the various values of x can easily be computed with the help of a
simple computer program by using the recurrence relation

P(X = x+1) = (m − x)(p + xφ)

(x + 1)(1 − p − xφ)

(
1 + φ

p + xφ

)x (
1 − φ

1 − p − xφ

)m−x−1

P(X = x)

(4.2)
for x = 0, 1, 2, . . . , m − 1 and zero otherwise, where P(X = 0) = (1 − p)m.

Consul (1990d) has computed the values of the probabilities of the QBD-I for m =
10, p = 0.2, 0.3, . . . , 0.8 and for various values of φ and has drawn 27 bar diagrams
to show that the QBD-I is very versatile and is unimodal and that for any given set of
values of m and p the distribution shifts to the right-hand side as φ increases in value
and to the left-hand side for negative values of φ. Even small values of φ have a sub-
stantial effect on the respective probabilities and on the values of the mean, mode, and
variance.

4.2.1 QBD-I as a True Probability Distribution

Under the transformation z = u eθ z, by the Lagrange expansion (1.80),

ebz

1 − θ z
=

∞∑
j=0

u j

j !
(b + jθ) j . (4.3)
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By considering the expansion of e(a+b)z/(1 − θ z) = eaz × ebz/(1 − θ z) in a power series
of u on the left-hand side and the product of the power series in u of eaz by (1.78) and of
ebz/(1 − θ z) by (4.3) on the right-hand side and by equating the coefficients of um on both
sides, we get the identity

(a + b + mθ)m

m!
=

m∑
k=0

a(a + kθ)k−1

k!

(b + mθ − kθ)m−k

(m − k)!
. (4.4)

On division by the expression on the left-hand side in (4.4),

1 =
m∑

k=0

(
m
k

)
a

a + b + mθ

(
a + kθ

a + b + mθ

)k−1 (b + mθ − kθ

a + b + mθ

)m−k

. (4.5)

By using the transformation a(a + b + mθ)−1 = p and θ(a + b + mθ)−1 = φ in the
relation (4.5), the expression changes to (4.1) and it is clear that

∑m
k=0 P(X = k) = 1.

If a = mn, b = nmp, and θ = −np in (4.5), it gives a new and simple relation

1 =
m∑

k=1

(
m
k

)(
1 − kp

m

)k−1 (kp

m

)m−k

,

which gives another nice form of QBD-I with two parameters p and m as

P(X = k) =
(

m
k

)(
1 − kp

m

)k−1 (kp

m

)m−k

(4.6)

for k = 1, 2, 3, . . . , m and zero otherwise, where 0 ≤ p ≤ 1.

4.2.2 Mean and Variance of QBD-I

Since m is a positive integer in (4.1) and (4.6), all the moments and cumulants of the QBD-I
exist. However, their expressions are not in a compact form. The mean µ and variance σ 2 of
QBD-I in (4.1) can be obtained as follows:

µ = E[X ] = mp
m∑

x=1

(m − 1)!

(x − 1)!(m − x)!
(p + xφ)x−1(1 − p − xφ)m−x

= mp
m−1∑
x=0

(
m − 1

x

)
(p + φ + xφ)(p + φ + xφ)x−1(1 − p − φ − xφ)m−1−x .

By breaking up the factor p +φ + xφ into p +φ and xφ, we get two summations such that
the first sum becomes unity and the second summation is similar to the original expectation of
X , but m − 1 instead of m. Thus, after several such repetitions, it can be shown that

E[X ] = µ = mp
[
1 + φ(m − 1) + φ2(m − 1)(m − 2) + · · · + φm−1(m − 1)!

]

= p
m−1∑
k=0

(m)(k+1)φ
k . (4.7)
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When φ > 0, it can easily be shown that

mp(1 + φ)m−1 < µ < mp(1 + φ)(1 − φ(m − 2))−1, (4.8)

which implies that the mean µ for QBD-I, when φ > 0, is larger than mp, the mean of the
corresponding binomial model. Similarly, when φ < 0, the value of µ is less than mp. Also,

E[X (X − 1)] = m(m − 1)p
m−2∑
x=0

(
m − 2

x

)
(p + 2φ + xφ)x+1(1 − p − 2φ − xφ)m−2−x .

By expressing the factor (p + 2φ + xφ)x+1 in the form[
(p + 2φ)2 + xφ(2p + 5φ) + x(x − 1)φ2

]
(p + 2φ + xφ)x−1,

the above sum can be split into three sums such that the first sum reduces to the value (p +2φ),
the second sum is similar to the evaluation of µ, and the third sum is like E[X (X − 1)] with
different values of parameters. Thus,

E[X (X − 1)] = m(m − 1)p

[
(p + 2φ) + φ(2p + 5φ)(m − 2)

m−3∑
x=0

φk(m − 3)(k)

+φ2
m−2∑
x=2

(m−2)!

(x −2)!(m− 2 −x)!
(p+2φ+xφ)x−1(1 − p − 2φ − xφ)m−2−x

]
,

and repeating the same process again and again,

E[X (X − 1)] = m(2) p

[
(p + 2φ) + (2p + 5φ)

m−2∑
k=1

φk(m − 2)(k) + φ2(p + 4φ)(m − 2)(2)

+ (2p + 9φ)

m−2∑
k=3

φk(m − 2)(k) + φ4(p + 6φ)(m − 2)(4) + · · ·
]

=
m−2∑
k=0

(k + 1)p2φk(m)(k+2) + 1

2
pφ

m−2∑
k=0

(k + 1)(k + 4)φk(m)(k+2). (4.9)

Since σ 2 = E[X (X − 1)] + E[X ] − (E[X ])2, the expression for the variance can be written
by (4.9) and (4.7). The value of σ 2 is

σ 2 = m p(1 − p) + m(m − 1)pφ[(3 − 4p)

+ φ(6m − 10mp − 12 + 18p) + higher power of φ], (4.10)

which shows that σ 2 increases with the increase in the value of φ only if 0 < p < 3
4 . When

p > 3
4 the value of σ 2 may decrease if φ increases. Thus the QBD-I will have positive or

negative extra binomial variation depending upon the values of p and φ.
Mishra and Singh (1996) derived a recurrence relation among the moments of the QBD-I.

By expressing the moments in terms of a “factorial power series,” they obtained the first four
moments about the origin for the QBD-I.
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4.2.3 Negative Moments of QBD-I

The negative moments are required for the estimation of the parameters of a model and for test-
ing the efficiency of the various types of estimators. Consul (1990d) has obtained the following
23 negative moments:

E
[

X (p + Xφ)−1
]

= mp(p + φ)−1, (4.11)

E
[
(p + Xφ)−1

]
= p−1 − mφ(p + φ)−1, (4.12)

E
[

X (X − 1)(p + Xφ)−1
]

= m(2) p
m−2∑
k=0

φk(m − 2)(k), (4.13)

E
[

X (X − 1)(p + Xφ)−2
]

= m(2) p(p + 2φ)−1, (4.14)

E
[

X2(p + Xφ)−2
]

= mp(p + φ)−2 + m(2) p2(p + φ)−1(p + 2φ)−1,

(4.15)

E
[

X (p + Xφ)−2
]

= mp(p + φ)−2 − m(2) pφ(p + φ)−1 p(p + 2φ)−1,

(4.16)

E
[
(p + Xφ)−2

]
= p−2 − mφ(2 + φ/p)(p + φ)−2

+ m(2)φ
2(p + φ)−1(p + 2φ)−1, (4.17)

E

[
X2(X − 1)

(p + Xφ)2

]
= 2pm(2)

p + 2φ
+ p

m−3∑
k=0

φkm(k+3), (4.18)

E
[

X (X − 1)(X − 2)(p + Xφ)−3
]

= m(3) p(p + 3φ)−1, (4.19)

E
[

X (X − 1)(p + Xφ)−3
]

= m(2) p(p + 2φ)−2 − m(3) pφ(p + 2φ)−1(p + 3φ)−1,

(4.20)

E
[

X2(p + Xφ)−3
]

= mp

p + φ

[
1

(p + φ)2
+ m − 1

(p + 2φ)2
− (m − 1)φ

(p + φ)(p + 2φ)

− (m − 1)(m − 2)φ

(p + 2φ)(p + 3φ)

]
, (4.21)

E
[

X (p + Xφ)−3
]

= mp(p + φ)−3 − m(2) pφ
[
(p + φ)−2(p + 2φ)−1

+(p + φ)−1(p + 2φ)−1
]

+ m(3) pφ2(p + φ)−1(p + 2φ)−1(p + 3φ)−1, (4.22)
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E
[
(p + Xφ)−3

]
= p−3 − mφ

[
p−2(p + φ)−1 + p−1(p + φ)−2

+(p + φ)−3
]

+ m(2)φ
2
[

p−1(p + φ)−1(p + 2φ)−1

+(p + φ)−2(p + 2φ)−1 + (p + 2φ)−2
]

− m(3)φ
3(p + φ)−1(p + 2φ)−1(p + 3φ)−1, (4.23)

E
[
(1 − p − Xφ)−1

]
= (1 − mφ)(1 − p − mφ)−1, (4.24)

E
[

X (1 − p + Xφ)−1
]

= mp(1 − p − mφ)−1, (4.25)

E
[

X (1 − p − Xφ)−2
]

=
[
1 − (m − 1)φ(1 − p − mφ + φ)−1

]
× mp(1 − p − mφ)−1, (4.26)

E
[
(m − X)(1 − p − Xφ)−2

]
= m(1 + φ − mφ)(1 − p − mφ + φ)−1, (4.27)

E
[

X2(1 − p − Xφ)−2
]

= mp(1 − p + φ − m2φ)−1(1 − p − mφ)−1

× (1 − p − mφ + φ)−1, (4.28)

E
[
(m − X)X (1 − p − Xφ)−2

]
= m(m − 1)p(1 − p − mφ + φ)−1, (4.29)

E
[
(m − X)X2(1 − p − Xφ)−2

]
= m(m − 1)2 p(1 − p − mφ + φ)−1 − p

m−3∑
k=0

φkm(k+3),

(4.30)

E
[
(m − X)X (1 − p − Xφ)−3

]
= m(2) p(1 − p − mφ + φ)−2

− m(3) pφ(1 − p − mφ + φ)−1(1 − p − mφ + 2φ)−1,
(4.31)

E
[
(m − X)(1 − p − Xφ)−3

]
= m(1 − mφ + φ)p(1 − p − mφ + φ)−2

− m(2)φ(1 − mφ + 2φ)(1 − p − mφ + φ)−1

× (1 − p − mφ + 2φ)−1, (4.32)

E
[
(m − X)X2(1 − p − Xφ)−3

]
= m(m − 1)2 p(1 − p − mφ + φ)−2

− m(3) p(1 − p)(1 − p − mφ + φ)−1

× (1 − p − mφ + 2φ)−1. (4.33)
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4.2.4 QBD-I Model Based on Difference-Differential Equations

Let there be m insects, bacteria, or microbes and let θ be the initial probability of desire in
each one of them to get into a particular location. On account of various factors like mu-
tual consultation, communication, determination, prevalent conditions, and the numbers suc-
ceeding to get in that location the value of θ may increase or decrease by a small quantity
φ. Accordingly, the probability of finding x insects, bacteria or microbes in that location
will be a function of m, θ, φ and x and we denote it by Px (m; θ, φ). By changing each
one of these two parameters we shall now provide two theorems which provide the QBD-I
model.

Theorem 4.1. If the mean µ for the distribution of the insects is increased by changing θ to
θ + �θ in such a manner that

∂

∂θ
Px(m; θ, φ) = m Px−1(m − 1; θ + φ, φ) − m − x

1 − θ − xθ
Px(m; θ, φ) (4.34)

for x = 0, 1, 2, . . . , m with the initial conditions P0(m; 0, φ) = 1, Px(m; 0, φ) = 0, and
Px(m; θ, φ) = 0 for x < 0, then the probability model is the QBD-I given by (4.1).

Proof. For x = 0, the differential equation (4.34) becomes

∂

∂θ
P0(m; θ, φ) = − m

1 − θ
P0(m; θ, φ),

whose solution is P0(m; θ, φ) = (1 − θ)m · A1(φ), where A1(φ) is an unknown function
of φ due to integration. By the initial condition P0(m; 0, φ) = 1, we get A1(φ) = 1. Thus
P0(m; θ, φ) = (1 − θ)m.

By putting x = 1 in (4.34) and by using the above value of P0(m; θ, φ), we get

∂

∂θ
P1(m; θ, φ) = m(1 − θ − φ)m−1 − m − 1

1 − θ − φ
P1(m; θ, φ),

which is a linear differential equation with the integrating factor of (1 − θ − φ)−m+1. Accord-
ingly, the solution of the equation becomes

P1(m; θ, φ) = (1 − θ − φ)m−1 · mθ + A2(φ).

Since P1(m; 0, φ) = 0, the unknown function A2(φ) = 0. Therefore,

P1(m; θ, φ) = mθ(1 − θ − φ)m−1. (4.35)

Then, by putting x = 2 in (4.34), one gets

∂

∂θ
P2(m; θ, φ) + m − 2

1 − θ − 2φ
P2(m; θ, φ) = m(m − 1)(θ + φ)(1 − θ − 2φ)m−2.

On integration, the solution of the above linear differential equation becomes

P2(m; θ, φ) =
[
(θ + φ)2 m(m − 1)/2 + A3(φ)

]
(1 − θ − 2φ)m−2.
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By the initial condition P2(m; 0, φ) = 0, the value of A3(φ) becomes −m(m − 1)φ2/2 and
thus

P2(m; θ, φ) =
(

m
2

)
θ(θ + 2φ)(1 − θ − 2φ)m−2. (4.36)

In a similar manner, for x = 3 one can show that the difference differential equation (4.34),
together with (4.36) and the initial condition, gives

P3(m; θ, φ) =
(

m
3

)
θ(θ + 3φ)2(1 − θ − 3φ)m−3. (4.37)

Now, assuming the above relation to be true for x = k, putting x = k + 1 in (4.34) and by
using the initial condition Px (m; 0, φ) = 0, it is easy to show by the method of induction that

Px(m; θ, φ) =
(

m
x

)
θ(θ + xφ)x−1(1 − θ − xφ)m−x

for all nonnegative integral values of x from 0 to m. Hence, Px(m; θ, φ), x = 0, 1, 2, . . . , m,
is the QBD-I in (4.1) with p = θ. ��
Theorem 4.2. If the mean µ for the distribution of the insects is increased by changing φ to
φ + �φ in such a manner that

∂

∂φ
Px(m; θ, φ) = m(x − 1)θ

θ + φ
Px−1(m − 1; θ + φ, φ) − x(m − x)

1 − θ − xφ
Px (m; θ, φ) (4.38)

for x = 0, 1, 2, . . . , m with the initial condition

Px(m; θ, 0) =
(

m
x

)
θ x(1 − θ)m−x, (4.39)

then the probability model given by Px(m; θ, φ) is the QBD-I.

Proof. For x = 0, the difference-differential equation gives the solution P0(m; θ, φ) = C1(θ).
Since P0(m; θ, 0) = (1 − θ)m by (4.39), we get C1(θ) = (1 − θ)m . Therefore,

P0(m; θ, φ) = C1(θ) = (1 − θ)m. (4.40)

Then for x = 1, the differential equation (4.38) becomes

∂

∂φ
P1(m; θ, φ) + m − 1

1 − θ − φ
P1(m; θ, φ) = 0,

whose general solution is P1(m; θ, φ) = (1 − θ −φ)m−1C2(θ). By the initial condition we get
C2(θ) = mθ. Thus

P1(m; θ, φ) = mθ(1 − θ − φ)m−1. (4.41)

For x = 2, the difference-differential equation (4.38) provides

∂

∂φ
P2(m; θ, φ) + 2(m − 2)

1 − θ − 2φ
P2(m; θ, φ) = mθ

θ + φ
· P1(m − 1; θ + φ, φ)

= m(m − 1)θ(1 − θ − 2φ)m−2 (by (4.41)),
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for which the integrating factor is (1 − θ − 2φ)−m+2. Thus the general solution of the above
linear differential equation becomes

P2(m; θ, φ) = [m(m − 1)θφ + C2(θ)](1 − θ − 2φ)m−2.

By the initial condition (4.39) for φ = 0, we get C2(θ) = m(m − 1)θ/2. On substitution of
the value of C2(θ) in the above and on simplification,

P2(m; θ, φ) = m(m − 1) θ(θ + 2φ)m−2/2. (4.42)

On putting x = 3 in (4.38) and on using (4.42), we have the linear equation

∂

∂φ
P3(m; θ, φ) + 3(m − 3)

1 − θ − 3φ
P3(m; θ, φ) = m(m − 1)(m − 2) θ(θ + 3φ)(1 − θ − 3φ)m−3

whose general solution is

P3(m; θ, φ) = (1 − θ − 3φ)m−3
[(

m
3

)
θ(θ + 3φ)2 + C3(θ)

]
.

By the initial condition (4.39) for x = 3 and φ = 0, C3(θ) = 0. Hence

P3(m; θ, φ) =
(

m
3

)
θ(θ + 3φ)2(1 − θ − 3φ)m−3. (4.43)

In a similar manner it can be shown for successive values of x = 4, . . . , m that the unknown
coefficients C4(θ), C5(θ), . . . are all zero and that

Px(m; θ, φ) =
(

m
x

)
θ(θ + xφ)x−1(1 − θ − xφ)m−x , x = 0, 1, 2, . . . , m,

which is the QBD-I. ��

4.2.5 Maximum Likelihood Estimation

Let a random sample of size n be taken from the QBD-I of (4.1) and let the observed values be
xi , i = 1, 2, . . . , n. The likelihood function L for the parameters p and φ will be proportional
to

L ∝
n∏

i=1

(
m
xi

)
p(p + xiφ)xi −1(1 − p − xiφ)m−xi , (4.44)

which gives the log-likelihood function 
 as


 ∝ n ln p +
∑

i

(xi −1) ln(p + xiφ)+
∑

i

(m − xi) ln(1− p − xiφ)+
∑

i

ln

(
m
xi

)
. (4.45)

On partial differentiation of 
 with respect to φ and p, we get the two maximum likelihood
(ML) equations in the form

S1 = ∂


∂φ
=

n∑
i=1

xi(xi − 1)

p + xiφ
−

n∑
i=1

(m − xi)xi

1 − p − xiφ
= 0, (4.46)

S2 = ∂


∂p
= n

p
+

n∑
i=1

xi − 1

p + xiφ
−

n∑
i=1

m − xi

1 − p − xiφ
= 0. (4.47)
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Multiplying (4.47) by p and (4.46) by φ and by adding, the equation (4.47) reduces to

n∑
i=1

m − xi

1 − p − xiφ
= mn. (4.48)

The equations (4.46) and (4.48) are to be solved simultaneously for getting the ML esti-
mates p̂ and φ̂ for the two parameters. This is not an easy task, as the equations seem to imply
multiple roots. Of course, many of those roots may be either complex or not admissible ac-
cording to the restrictions on the parameters p and φ, or they may represent saddle points. To
test that the roots represent the ML estimates and to evaluate them numerically we need the
second-order partial derivatives. Accordingly,

∂2


∂φ2
= −

n∑
i=1

x2
i (xi − 1)

(p + xiφ)2
−

n∑
i=1

(m − xi)x2
i

(1 − p − xiφ)2
, (4.49)

∂2


∂φ∂p
= −

n∑
i=1

xi(xi − 1)

(p + xi )2
−

n∑
i=1

(m − xi)xi

(1 − p − xiφ)2
, (4.50)

∂2


∂p2
= − n

p2
−

n∑
i=1

xi − 1

(p + xiφ)2
−

n∑
i=1

m − xi

(1 − p − xiφ)2
, (4.51)

which are all negative for all values of p and φ. Also, their respective expected values I11, I12,
and I22 are

I11 = −nm(m − 1) p[2 + (m − 3)p]

(p + 2φ)(1 − p − mφ + φ)
, (4.52)

I12 = −nm(m − 1) p[1 − (m − 1)φ]

(p + 2φ)(1 − p − mφ + φ)
= I21, (4.53)

I22 = −nm

p
− nm[p − (m − 3)φ + (m − 1)(m − 3)φ2]

(p + 2φ)(1 − p − mφ + φ)
, (4.54)

which provide the Fisher information

I = I11I22 − I21I12 (4.55)

= 2n2m2(m−1)
[
p(1− p)+4φ−(m−1)φ(p+2φ)+(3m−5)p2φ−2(m−1)(m−2)p2φ2

]
(p+2φ)2(1− p−mφ+φ)2

.

Now the ML estimates p̂ and φ̂ can be computed numerically by successive approximation
using the Newton–Raphson method. The proper selection of the starting values p0 and φ0 is
very important for this method. We suggest that the starting value p0 be computed from the
formula

p0 = 1 − ( f0/n)m−1
, (4.56)

where f0 is the observed frequency for x = 0. Also, the value of φ0 may be computed by the
formula
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φ0 = [2(m − 2)]−1[−1 + √{1 + 4(m − 2)(−1 + x̄/mp0)/(m − 1)}], (4.57)

which is obtained by taking the three terms of (4.7) and where x̄ is the sample mean.
Another method that we found to be quite useful for getting the ML estimates p̂ and φ̂ was

to plot the graphs of (4.46) and (4.47) for various values of p and φ around both sides of p0 and
φ0. For every observed sample a unique point of intersection was easily found and it provided
the ML estimates p̂ and φ̂.

We shall now consider three simple cases where the observed data gets reduced to a few
frequency classes.

Some Particular Cases. When the sample values xi , i = 1, 2, . . . , n, are expressed in the
form of a frequency distribution given by s = 0, 1, 2, . . . , m with respective frequencies as
n0, n1, . . . , nm and their sum n0 + n1 + · · · + nm = n, the two ML equations become

∑
i

ni(i − 1)i

p + iφ
−
∑

i

ni(m − i)i

1 − p − iφ
= 0,

n

p
+
∑

i

ni(i − 1)

p + iφ
−
∑

i

ni(m − i)

1 − p − iφ
= 0 .

Case I. For m = 1 and n = n0 + n1, the QBD model reduces to the point binomial model with
p̂ = n1(n0 + n1)

−1.

Case II. For m = 2 and n = n0 + n1 + n2, the ML equations give

2n2

p + 2φ
− n1

1 − p − φ
= 0 or φ = n2(1 − p) − n1 p/2

n1 + n2
,

and
n

p
− n0

p
+ n2

p + 2φ
− 2n0

1 − p
− n1

1 − p − φ
= 0,

which becomes (on putting the value of φ)

n − n0

p
− 2n0

1 − p
− n1 + n2

2 − p
= 0.

The above equation reduces to p2 − 2p + 1 = n0/n, which gives p̂ = 1 − √
(n0/n).

Thus

φ̂ = (n1 + n2)
−1
[(

n2 + 1

2
n1

)√
(n0/n) − n1/2

]
.

Case III. For m = 3 and n = n0 + n1 + n2 + n3, the ML equations become

2n2

p + 2φ
+ 6n3

p + 3φ
− 2n1

1 − p − φ
− 2n2

1 − p − 2φ
= 0,

n

p
− n0

p
+ n2

p + 2φ
+ 2n3

p + 3φ
− 3n0

1 − p
− 2n1

1 − p − φ
− n2

1 − p − 2φ
= 0.
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On multiplying the first equation by φ and the second equation by p and on adding the two
equations and simplifying, we get

3n − 3n0

1 − p
− 2n1

1 − p − φ
− n2

1 − p − 2φ
= 0,

which gives the quadratic equation in φ as

6φ2[n(1 − p) − n0] − φ(1 − p)[9n(1 − p) − 9n0 − 4n1 − n2]

+ (1 − p)2[3n(1 − p) − 3n0 − 2n1 − n2] = 0.

The above equation gives two roots for φ but one of them is inadmissible as it is larger than
(1 − p)/m. Accordingly, the lower value becomes the admissible ML estimate φ̂ given by

φ̂ = (1 − p)
9n(1 − p) − 9n0 − 4n1 − n2 −√{3n(1 − p) − 3n0 − 4n1 + n2}2 + 16n1n2

12[n(1 − p) − n0]
.

When this value of φ is substituted in any one of the two ML equations one gets a single
admissible value of p in the range 0 < p < 1.

4.3 Quasi-Hypergeometric Distribution I

Let a, b, n, and r be four positive integers. A random variable X has a quasi-hypergeometric
distribution I (QHD-I) if its probability mass function is defined by

P(X = x) =
a

a+xr

(a+xr
x

)(b+nr−xr
n−x

)
(a+b+nr

n

) (4.58)

=
(

n
x

)
a(a + xr − 1)(x−1)(b + nr − xr)(n−x)

(a + b + nr)(n)
(4.59)

for x = 0, 1, 2, 3, . . . , n and zero elsewhere.
The QHD-I is a generalization of the hypergeometric distribution as it reduces to the hyper-

geometric model when r = 0. To prove that the QHD-I is a true probability distribution one
has to use the Lagrange expansion of

(1 + z)a+b

1 − r z(1 + z)−1
= (1 + z)a · (1 + z)b

1 − r z(1 + z)−1
, (4.60)

under the transformation z = u (1 + z)r , as a single power series in u on the left-hand side
by (1.80) and as a product of two power series in u on the right-hand side by the formulas (1.78)
and (1.80). On equating the coefficients of un on both sides one gets the identity

(
a + b + nr

n

)
=

n∑
i=0

a

a + ir

(
a + ir

i

)(
b + nr − ir

n − i

)
. (4.61)
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On division by
(a+b+nr

n

)
, it is clear that

∑n
x=0 P(X = x) = 1.

A recurrence relation between the successive probabilities of QHD-I is

P(X = x + 1) =

⎧⎪⎨
⎪⎩

n−x
x+1

(a+xr+r−1)(x)(b+nr−xr−r)(n−x−1)

(a+xr−1)(x−1)(b+nr−xr)(n−x)
P(X = x), x < r,

n−x
x+1

(a+xr)[r](b+nr−xr−n+x)(r−1)

(a+xr−x+1)[r−1](b+nr−xr)(r)
P(X = x), r < x .

(4.62)

Charalambides (1986) has defined and studied the family of Gould series distributions and
has shown that the QHD-I is a member of that family. He has obtained the first two factorial
moments of the QHD-I and has shown that

µ = E[X ] = a

(a + b + nr)(n)

n−1∑
k=0

n(k+1) rk(a + b + nr − k − 1)(n−k−1)

= n! a

a + b + nr

n−1∑
k=0

rk
(

a + b + nr − k − 1
n − k − 1

)
(4.63)

and

σ 2 = an

a + b + nr
+ n! a

(a + b + nr)(n)

n−2∑
k=0

rk
{

r(k2 + 2k + 2) + (k + 1)

(
ak

2
− k

2
− 1

)}

×
(

a + b + nr − k − 2
n − k − 2

)

−
[

n! a

(a + b + nr)(n)

]2 2n−2∑
k=0

rk
(

2a + 2b + 2nr − k − 1
2n − 2k − 1

)
. (4.64)

If a, b, and r become very large such that a(a + b + nr)−1 = p and r(a + b + nr)−1 = φ,
the limiting form of the QHD-I is the QBD-I defined by (4.1).

4.4 Quasi-Pólya Distribution I

Let a, b, c, r , and n be five positive integers. A random variable X is said to have a quasi-Pólya
distribution I (QPD-I) if its probability mass function is given by

P(X = x) =
(

n
x

)
a(a + xr)[x−1,c](b + nr − xr)[n−x,c]

(a + b + nr)[n,c] (4.65)

for x = 0, 1, 2, . . . , n and zero elsewhere.
The above pmf can be expressed in general binomial coefficients in the following two forms:

P(X = x) = a

a + xr + xc

(a/c+xr/c+x
x

)((b+nr−xr)/c+n−x−1
n−x

)
((a+b+nr)/c+n−1

n

) (4.66)

=
(

n
x

)
(−a/c)(−a/c − xr/c − 1)(x−1)(−b/c − nr/c − xr/c)(n−x)

(−a/c − b/c − nr/c)(n)
. (4.67)
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To prove that the sum
∑n

x=0 P(X = x), defined by (4.66), is unity, one has to consider the
Lagrange expansions, under the transformation z = u(1 − z)−r/c, of the product

(1 − z)−(a+b)/c

1 − r z(1 − z)−1/c
= (1 − z)−a/c · (1 − z)−b/c

1 − r z(1 − z)−1/c
(4.68)

as a single power series in u by (1.80) on the left-hand side and as a product of two power
series in u by (1.78) and (1.80) on the right-hand side. Then by equating the coefficients of un

on both sides one gets the identity(
a + b + nr)/c + n − 1

n

)
=

n∑
x=0

a/c

a/c + xr/c + x

(
a/c + xr/c + x

x

)

×
(

(b + nr − xr)/c + n − x − 1
n − x

)
, (4.69)

proved by Jensen (1902) and Gould (1966). The identity (4.69) proves the result (4.66).
The expression (4.67) of the QPD-I is very similar to the expression (4.59) of the QHD-I

with the difference that the positive integers a, b, r in (4.59) are replaced by negative rational
numbers −a/c, −b/c, and −r/c, respectively.

In view of the above observation, the mean µ and variance σ 2 of the QPD-I can be written
down from (4.63) and (4.64) by replacing a, b, r by −a/c, −b/c, and −r/c, respectively, and
by simplifying the same. Thus

µ = a

(a + b + nr)[n,c]

n−1∑
k=0

n(k+1)r
k(a + b + nr + kc + c)[n−k−1,c] (4.70)

and

σ 2 = an

a + b + nr

+ n!a

(a + b + nr)[n,c]

n−2∑
k=0

rk

(n − k − 1)!

{
r(k2 + 2k + 2) + (k + 1)

2
(ak + ck + 2c)

}

×
(

a + b + nr

c

)
(n−k−1)

−
[

n! a

(a + b + nr)[n,c]

]2 2n−2∑
k=0

rk (2a + 2b + 2nr + k + 1)[2n−2k−1,c]

(2n − 2k − 1)!
. (4.71)

4.5 Quasi-Binomial Distribution II

A r.v. X is said to have a quasi-binomial distribution II (QBD-II) if it has a pmf defined by

P(X = x) =
(

n
x

)
ab

a + b

(a + xθ)x−1(b + nθ − xθ)n−x−1

(a + b + nθ)n−1
(4.72)

for x = 0, 1, 2, 3, . . . , n and zero otherwise, where a > 0, b > 0, and θ > −a/n.
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The QBD-II is another generalization of the binomial distribution as it reduces to the bino-
mial probability model when θ = 0. If a(a + b + nθ)−1 = p and θ(a + b + nθ)−1 = α, the
number of parameters in (4.72) can be reduced to three and the probability distribution (4.72)
can be written as

P(X = x) =
(

n
x

)
(1 − p − nα)p

1 − nα
(p + xα)x−1(1 − p − xα)n−x−1 (4.73)

for 0 < p < 1, −pn−1 < α < (1 − p)n−1, and x = 0, 1, 2, . . . , n.

Special Case. If b = aq < a and θ = −aq/n the expression (4.72) gives the following nice
and compact form as a variant of the QBD-II with two parameters n and q:

P(X = x) =
(

n
x

)
q

1 + q

(
1 − xq

n

)x−1 ( xq

n

)n−x−1
(4.74)

for x = 1, 2, 3, . . . , n and zero elsewhere.

4.5.1 QBD-II as a True Probability Model

Under the transformation z = ueθ z, 0 ≤ z ≤ 1, the function eaz can be expressed as a power
series in u by Lagrange expansion (1.78) in the form

eaz =
∞∑

s=0

a(a + sθ)s−1 us/s! . (4.75)

Since e(a+b)z = eaz .ebz , the left-hand side can be expressed as a power series in u by (4.75)
and the right-hand side can be expressed as a product of two power series in u. By equating the
coefficients of un on both sides we get the identity

(a + b)(a + b + nθ)n−1

n!
=

n∑
x=0

a(a + xθ)x−1

x!

b(b + nθ − xθ)n−x−1

(n − x)!
. (4.76)

On division by the left-hand side, we get
∑n

x=0 P(X = x) = 1.

4.5.2 Mean and Variance of QBD-II

The mean or the expected value of the r.v. X, having the QBD-II defined by (4.72) can be easily
determined by using the Jensen (1902) identity

(a + b + nθ)n =
n∑

s=0

(
n
s

)
b(b + sθ)s−1(a + nθ − sθ)n−s, (4.77)

proved in Subsection 4.2.1. Thus,

µ = E[X ] = na(a + b)−1. (4.78)
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Thus the mean of the QBD-II, defined by (4.72), is independent of the value of θ and is the
same as for the corresponding binomial model. However, the mean µ for the QBD-II, defined
by (4.73), is np(1 − nα)−1, which depends upon the additional parameter α and increases
with the increase in the value of α. Its lowest value is np(1 + p)−1 and it may approach n as
α → (1 − p)n−1. Thus, the QBD-II defined by (4.73) is far more versatile than the QBD-II
defined by (4.72). Also, the mean of the QBD-II variate, defined by (4.74), is n(1 + q)−1.

The second factorial moment for the QBD-II, defined by (4.72), is

E[X (X − 1)] = n(n − 1)ab

(a + b)(a + b + nθ)

n∑
x=2

(
n − 2
x − 2

)
(a + xθ)x−1(b + nθ − xθ)n−x−1

(a + b + nθ)n−2
.

By putting n − x = s and by splitting the summation into two summations and writing (a +
nθ − sθ)/(a + b + nθ) = 1 − (b + sθ)/(a + b + nθ), the above expression becomes

E[X (X − 1)] = n(n − 1)ab

(a + b)(a + b + nθ)

[
n−2∑
s=0

(
n − 2

s

)
(b + sθ)s−1(a + nθ − sθ)n−2−s

(a + b + nθ)n−3

−
n−2∑
s=0

(
n − 2

s

)
(b + sθ)s(a + nθ − sθ)n−2−s

(a + b + nθ)n−2

]
. (4.79)

Gould (1972) has given the relation

n∑
k=0

(
n
k

)
(x + kz)k(y − kz)n−k = n!

n∑
k=0

(x + y)kzn−k

k!
. (4.80)

By using the identities (4.76) and (4.80) on (4.79) and on simplification,

E[X (X − 1)] = n(n − 1)a

a + b

[
1 −

n−2∑
s=0

(n − 2)(s) b θ s

(a + b + nθ)s+1

]
,

which gives the variance σ 2 of the QBD-II as

σ 2 = n2ab

(a + b)2
− n(n − 1)ab

a + b

n−2∑
s=0

(n − 2)(s) θ s

(a + b + nθ)s+1
. (4.81)

When θ > 0, it can easily be proved that

nab

(a + b)2
< σ 2 <

n2ab

(a + b)2
, (4.82)

which implies that the QBD-II, defined by (4.72), has a variance, for θ > 0, larger than the
variance of the binomial model.

All the moments of QBD-I in Section 4.2 and all but the first moment of QBD-II in this
section appear in term of series. Mishra, Tiwary, and Singh (1992) obtained expression for
factorial moments of a family of QBD. They considered some particular cases of QBD for
which the first two moments appear in simple algebraic forms. The method of moments can
easily be used to estimate the parameters. One such particular case of QBD was fitted to some
numerical data sets.
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4.5.3 Some Other Properties of QBD-II

(i) Limiting form of QBD-II. When n is very large and a and θ are very small such that
na = c, nθ = d, by putting c(b + d)−1 = M and d(b + d)−1 = φ and by taking the
limit, it can be shown that the probability P(X = x) in (4.72) becomes

P(X = x) = M(M + xφ)x−1e−M−xφ/x!,

which is the GPD studied in detail by Consul (1989a). Also, if a and b are finite, θ →
0, n → ∞ such that nθ is finite, it can be shown that the QBD-II approaches the normal
distribution.

(ii) QBD-II as a conditional distribution. Let X and Y be two independent r.v.s. having the
GPDs with parameters (a, θ) and (b, θ), respectively. Then the r.v. X + Y has a GPD with
parameters (a + b, θ). Accordingly, the conditional distribution of X , given X + Y = n,
becomes

P(X = x |X + Y = n) =
(

n
x

)
a(a + xθ)x−1b(b + nθ − xθ)n−x−1

(a + b)(a + b + nθ)n−1

for x = 0, 1, 2, . . . , n. The above is the pmf of the QBD-II defined by (4.72). Thus, the
QBD-II is a conditional distribution. The converse of this property is also true. Consul
(1974, 1975) has used this property of the QBD-II to characterize the generalized Poisson
distribution and the QBD-II.

(iii) Convolution property. The QBD-II does not possess the convolution property, as each
probability P(X = x) is the product of two probabilities which vary differently. Char-
alambides (1986) has considered the QBD-II as a member of the family of Gould series
distributions and has proved a general theorem showing that it does not possess the con-
volution property along with many other members of the Gould family.

(iv) Maximum probability. When n is not large one can easily determine the values of the
probabilities of the QBD-II defined by (4.72) for all values of x with the help of a pocket
calculator. This will enable a player to find the particular value of x for which the proba-
bility of success is the maximum. Since the guessing of the probabilities for various values
of x is not easy, this model can be used to devise machines for more interesting games of
chance for the players.

4.6 Quasi-Hypergeometric Distribution II

Let a, b, n, and θ be positive integers. A r.v. X is said to have a quasi-hypergeometric distri-
bution II (QHD-II) if its probability mass function is defined by (see Consul and Mittal, 1975;
Janardan, 1978)

P(X = x) =
(

n
x

)
ab

a + b

(a + xθ − 1)(x−1)(b + nθ − xθ − 1)(n−x−1)

(a + b + nθ − 1)(n−1)
(4.83)

for x = 0, 1, 2, . . . , n and zero elsewhere. The QHD-II is slightly different from the QHD-I
defined by (4.59).

When θ = 0, the QHD-II reduces to the ordinary hypergeometric model, and accordingly,
it is another generalization of that model.
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To prove that the QHD-II is a true probability distribution one has to use the Lagrange
expansion of (1 + z)a+b = (1 + z)a(1 + z)b, under the transformation z = u(1 + z)θ , as a
single power series in u by (1.78) on the left-hand side and as a product of two power series
in u on the right-hand side. On equating the coefficients of un on both sides one gets the
identity

a + b

a + b + nθ

(
a + b + nθ

n

)
=

n∑
x=0

ab

a + xθ

(
a + xθ

x

)
b

b + nθ − xθ

(
b + nθ − xθ

n − x

)
.

(4.84)
On division by the left-hand side in (4.84), it follows that

∑n
x=0 P(X = x) = 1.

A recurrence relation between the successive probabilities of QHD-II is

P(X = x + 1) =

⎧⎪⎨
⎪⎩

n−x
x+1

(a+θ+xθ−1)(x)(b+nθ−θ−xθ−1)(n−x−2)

(a+xθ−1)(x−1)(b+nθ−xθ−1)(n−x−1)
P(X = x), x < θ,

n−x
x+1

(a+xθ)[θ](b+nθ−xθ−n+x)(θ−1)

(a+xθ−x+1)[θ−1](b+nθ−xθ−1)(θ)
P(X = x), x > θ.

(4.85)

The mean and variance of the QHD-II are

µ = na(a + b)−1 (4.86)

and

σ 2 = n2ab

(a + b)2
− n(n − 1)ab

a + b

n−1∑
k=0

(n − 2)(k)(θ − 1)k

(a + b + nθ − n + 1)[k+1]
. (4.87)

Charalambides (1986) has considered the QHD-II as a member of the family of Gould
series distributions. His expression for the variance seems to be somewhat more complicated
and different than (4.87).

If a, b, and θ become very large such that a(a + b + nθ)−1 = p, θ(a + b + nθ)−1 =
α, and (a + b + nθ)−1 = 0, then the limiting form of the QHD-II is the QBD-II defined
in (4.73).

4.7 Quasi-Pólya Distribution II (QPD-II)

Let a, b, c, and θ be four positive real numbers and let n be a positive integer. A random
variable X is said to have a quasi-Pólya distribution II (QPD-II) if the r.v. X has the probability
mass function given by

P(X = x) =
(

n
x

)
ab(a + b + nθ)

(a + b)(a + xθ)(b + nθ − xθ)
× (a + xθ)[x,c](b + nθ − xθ)[n−x,c]

(a + b + nθ)[n,c]

(4.88)
for x = 0, 1, 2, 3, . . . , n and zero elsewhere (Consul and Mittal, 1975). It was called the gener-
alized Markov–Pólya distribution by Janardan (1978). This distribution was further generalized
by Sen and Jain (1996), who obtained recurrence relations between the moments.
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The pmf (4.88) can also be expressed in the following two forms:

P(X = x) = ab(a + b + nθ + nc)

(a + b)(a + xθ + xc){b + (n − x)(θ + c)}

×
(a/c+xθ/c+x

x

)(b/c+nθ/c−xθ/c+n−x
n−x

)
(a/c+b/c+nθ/c+n

n

)
=
(

n
x

)
Jx(a, c, θ) Jn−x(b, c, θ)/Jn(a + b, c, θ) (4.89)

for x = 0, 1, 2, . . . , n and zero otherwise, where

Jx(a, c, θ) = a(a + xθ)−1(a + xθ)[x,c]. (4.90)

The QPD-II is a generalized Pólya–Eggenberger model, as its special case, given by θ = 0,
is the Pólya-Eggenberger distribution.

By putting a/(a + b) = p, b/(a + b) = q, c/(a + b) = r , and θ/(a + b) = s the QPD-II
can be expressed in another form with four parameters (Janardan, 1978) as

P(X = x) = pq(1 + ns)
(n

x

)∏x−1
i=0 (p + xs + ir)

∏n−x−1
i=0 (q + ns − xs + ir)

(p + xs)(q + ns − xs)
∏n−1

i=0 (1 + ns + ir)
. (4.91)

The sum of the probabilities P(X = x) in (4.88) for x = 0 to x = n becomes unity on
account of the following Hagen–Rothes (1891) identity given by Gould (1972):

n∑
x=0

a

a + xz

(
a + xz

x

)
b

b + (n − x)z

(
b + nz − xz

n − x

)
= a + b

a + b + nz

(
a + b + nz

n

)
,

(4.92)
where a, b, and z can be replaced by a/c, b/c, and 1+θ/c, respectively. The proof of the above
identity easily follows from the Lagrange expansion in (1.78) with (1.79) for the functions
(1 − z)−(a+b)/c = (1 − z)−a/c.(1 − z)−b/c, under the transformation z = u(1 − z)−θ/c, which
provide the expansions

∞∑
n=0

un

n!

a + b

c

(
a + b + nθ

c
+ 1

)[n−1]

=
∞∑

x=0

ux

x!

a

c

(
a + xθ

c
+ 1

)[x−1] ∞∑
y=0

uy

y!

b

c

(
b + yθ

c
+ 1

)[y−1]

. (4.93)

Equating the coefficients of un on both sides with each other gives the identity. Thus∑n
x=0 P(X = x) = 1 and (4.88) represents a true probability distribution.

4.7.1 Special and Limiting Cases

(i) When c = 0, the QPD-II (4.88) reduces to the QBD-II defined by (4.72).
(ii) When c = −1, the QPD-II (4.88) reduces to the QHD-II defined by (4.83).
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(iii) If c = −1 and θ = 1 or if c = 1 and θ = 0, the QPD-II becomes a negative hypergeomet-
ric distribution (Patil and Joshi, 1968) given by

P(X = x) =
(

a + x − 1
x

)(
b + n − x − 1

n − x

)/(
a + b + n − 1

n

)
. (4.94)

(iv) If a/c, b/c, and n/c are infinitely large quantities of the same order and if θ → 0, the
QPD-II approaches the normal curve (Janardan, 1975).

(v) If n → ∞ and p → 0, r → 0, s → 0 such that np = θ, ns = λ, and nr → 0 in
the QPD-II, given by (4.89), then its limiting form is the generalized Poisson distribution
(Janardan, 1975).

(vi) Conditional distribution. If X and Y are two independent r.v.s having the generalized
negative binomial models with parameters (a, t + 1, α) and (b, t + 1, α), respectively,
then the conditional distribution of X = x , given the sum X + Y = n, is a QPD-II (4.88)
with c = 1. This property characterizes the QPD-II.

4.7.2 Mean and Variance of QPD-II

By using Gould’s (1966) identities, Consul and Mittal (1975) have shown that the mean of the
QPD-II, defined by (4.88), is independent of θ and c and equals

µ = na(a + b)−1. (4.95)

Also, they have shown that the variance σ 2 of the QPD-II is

σ 2 = n2ab

(a + b)2
− n(n − 1)ab

a + b

n−1∑
s=0

(n − 1)(s)(θ + c)s

(a + b + nθ + nc − c)(s+1,c)
. (4.96)

The other higher moments can also be obtained but the process of summation is rather tricky.

4.7.3 Estimation of Parameters of QPD-II

Let fx , x = 0, 1, 2, 3, . . . , n, denote the observed frequencies for various values of X . Also,
let m2 be the sample variance and x̄ be the sample mean. The moment estimators of p, r , and
s in QPD-II in (4.91) are

s∗ = p∗/n, p∗ = x̄

/
n∑

i=0

fi , (4.97)

and

r∗ = m2 − np∗(1 − p∗)
n2 p∗(1 − p∗) − m2

. (4.98)

Janardan (1975) has obtained the following ML equations by partial differentiation of the
log likelihood function from (4.91):

∂L

∂p
= q − p

pq
+

k−1∑
j=1

1

p + ks + jr
−

n−k−1∑
j=1

1

q + (n − k)s + jr
= 0,

∂L

∂s
=

k−1∑
j=1

k

p + ks + jr
+

n−k−1∑
j=1

(n − k)

q + (n − k)s + jr
−

N−1∑
j=1

n

1 + Ns + jr
= 0,
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and

∂L

∂r
=

k−1∑
j=1

j

p + ks + jr
+

n−k−1∑
j=1

j

q + (n − k)s + jr
−

n−1∑
j=1

j

1 + Ns + jr
= 0 . (4.99)

The equations will have to be solved numerically by iterative methods by using the values
p∗, s∗, r∗ as the first set of estimates.

4.8 Gould Series Distributions

The Gould series distributions (GSD) have been defined by Charalambides (1986) by consid-
ering the expansion of some suitable functions as a series of the Gould polynomials

Gx(s; r) = s(s + r x − 1)(x−1), x = 1, 2, 3, . . . ,

= s(s + r x − 1)(s + r x − 2) · · · (s + r x − x + 1),

G0(s; r) = 1. (4.100)

If A(s; r) is a positive function of two parameters s and r and if

A(s; r) =
∑
x∈T

a(x; r) · s(s + r x − 1)(x−1), (4.101)

where a(x; r) ≥ 0, T is a subset of the set of nonnegative integers and if a(x; r) are indepen-
dent of the parameter s, then the series (4.101) provides the GSD whose pmf is

P(X = x) = [A(s; r)]−1 a(x; r) s(s + r x − 1)(x−1) (4.102)

for x ∈ T and zero otherwise. The domain of the parameters s and r may be positive or negative
real numbers such that the terms of the expansion (4.101) are nonnegative.

Charalambides (1986) has given a method, based upon the displacement operator E , the
difference operator � = E − 1, and the Abel-difference operator �E−r , for obtaining the
function a(x; r) from A(s; r) as

a(x; r) = 1

x!

(
�E−r)x A(u; r)|u=0. (4.103)

The generalized negative binomial distribution (GNBD), the QHD-I, the QHD-II, the QPD-
I and the QPD-II belong to this family. Charalambides has studied some properties of this
family and has shown that the GSDs have applications for the busy periods in queuing processes
and in the time to emptiness in dam and storage processes.

Charalambides has also given formal expressions for the pgf and the factorial mgf of the
GSD; however, both expressions contain implicit functions of �E−r and the Lagrange expan-
sion formula is needed to compute the moments in terms of Bell polynomials. He has applied
these formulas to compute the means and variances of the GNBD, QPD-I, and QPD-II.

The GSDs belong to a subclass of the Lagrangian probability models because they are
based on either the Lagrange expansion or some identities that are obtained from Lagrange
expansions.
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4.9 Abel Series Distributions

Let A(θ, λ) be a positive function of two parameters θ and λ which possesses an Abel series
expansion

A (θ, λ) =
∑
x∈T

a(x; λ) θ(θ + xλ)x−1, (4.104)

where 0 ≤ θ ≤ ρ1 and 0 ≤ λ ≤ ρ2 and T is a subset of the set of nonnegative integers.
Charalambides (1990) defined the family of Abel series distribution (ASD) by

p(x; θ, λ) = [A(θ, λ)]−1 a(x, λ) θ(θ + xλ)x−1, (4.105)

for x ∈ T and zero otherwise, if A(θ, λ) has the series function defined by (4.104). By using the
shift operator E, derivative operator D, and the Abel operator DE−λ f (u) = d f (u − λ)/du,
given by Roman and Rota (1978), Charalambides gave an expression for a(x; λ) as

a(x; λ) = [x!]−1 (DE−λ
)x

A(u; λ)|u=0 (4.106)

and stated that a truncated ASD is also an ASD. He showed some applications of the ASDs in
insurance, stochastic processes, length of the busy period in a queuing process, and the time of
first emptiness in dam and storage processes.

The pgf of the ASD (4.105), with (4.106), is given by

G(z; θ, λ) = [A(θ, λ)]−1
[
exp{θ h−1(z D E−λ)}A(u; λ)

]
u=0

, (4.107)

where w = h−1(v) is the inverse of v = h(w) = w e−λw. The expression (4.107) is not a closed
form because the inverse function w is an infinite series based on the Lagrange transformation
v = w e−λw.

Charalambides (1990) obtained an expression for the factorial mgf and showed that the
factorial moments of the ASD can be expressed in a closed form in terms of the Bell partition
polynomials.

The GPD, the QBD-I, and the QBD-II are three important examples of the ASD. Char-
alambides has obtained the means and variances for all three of them (but the proofs seem to
be long) and has shown that the GPD is the only member of the ASD which is closed under
convolution. Nandi and Das (1994) considered the Abel series distributions. They noted that
the QBD-I, QBD-II, and GPD are also ASDs. The ASDs belong to a subclass of the Lagrangian
probability models.

4.10 Exercises

4.1 Suppose a random variable X has the quasi-binomial distribution II given by (4.73). By
using the method of differentiation (with respect to p), obtain a recurrence relation be-
tween the noncentral moments of X . Using your recurrence relation or otherwise, obtain
the first three noncentral moments for X .

4.2 Prove that the QHD-I given by (4.59) tends to the QBD-I defined in (4.1) when the para-
meters a, b, r → ∞ under the conditions that a(a+b+nr)−1 = p and r(a+b+nr)−1 =
φ. Furthermore, show that the limiting form of the QHD-II defined by (4.83) is the
QBD-II defined in (4.72), where a, b, θ → ∞ in such a way that a(a + b + nθ)−1 =
p, b(a + b + nθ)−1 = α and φ(a + b + nθ)−1 = φ.
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4.3 Show that the mean and variance of QPD-I defined in (4.65) are given by the expressions
in (4.70) and (4.71) respectively.

4.4 Show that the inequality in (4.8) holds for the mean of QBD-I.
4.5 Consider the QBD-II defined by (4.73). Obtain the likelihood equations for the two para-

meters p and α. By taking the second partial derivatives with respect to the two parame-
ters, obtain the entries in the Fisher’s information matrix.

4.6 Use the method of proportion of “zero” and the sample mean to estimate the two parame-
ters p and α for the QBD-II given by (4.73).
(a) Obtain the Lagrange expansion of (1 + z)a+b[1 − r z(1 + z)−1]−1 under the transfor-

mation z = u(1 + z)r as a power series in u. (Hint: Use the formula given in (1.80)).
(b) Under the transformation in (a), use the formula in (1.80) to expand (1 + z)b[1 −

r z(1 + z)−1]−1 and the formula in (1.78) to expand (1 + z)a.
(c) By taking the products of the two expansions in (b), and equating the coefficient of

un to that of un in the expansion in (a), show that the QHD-I is a true probability
distribution.

4.7 Show that the QHD-II represents a true probability model.
4.8 Let Xi , i = 1, 2, . . . , n, be a random sample of size n, taken from the probability model

(4.6), with two parameters p and m. Find the moment and the ML estimators for p and m.
4.9 Obtain some suitable applications for the GSDs.
4.10 Let Xi , i = 1, 2, . . . , k, be a random sample of size k, taken from the probability

model (4.74), which has two parameters 0 < q < 1 and n (a positive integer). Obtain
the moment and the ML estimators for q and n.

4.11 Indicate some suitable applications for the ASDs.
4.12 Suppose each probability P(X = x) of a QBD-II in (4.72) is weighted by the weight

function ωk = k and Y is the random variable representing the weighted distribution; find
the P(Y = y). Obtain the mean and the variance of the r.v. Y .

4.13 In the QBD-II in (4.72), suppose n is very large and a and θ are very small such that
na = c, nθ = d . By writing c/(b + d) = M and d/(b + d) = φ, show that the QBD-II
tends to a GPD with parameters M and φ. Suppose further that a and b are finite and if n
is very large and θ → 0 in such a way that nθ is finite, show that the QBD-II approaches
the normal distribution.
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Some Urn Models

5.1 Introduction

Urn models are constructed by considering a number of urns which contain balls of various
colors together with some sequences of experiments (trials) for drawing the balls at random
from the urns under certain rules. These rules prescribe the addition of some balls to and/or
the removal of some balls from certain urns at different stages of the experiment. It is pre-
sumed that all the balls in an urn are equally likely to be drawn in a draw. Thus, if an urn
contains n balls, the probability that a specified ball is chosen in a draw is n−1. The com-
plete process for an urn model can be broken up into simple steps or trials which enable
the scientist to calculate the probabilities for the various stages of the model. Such urn mod-
els are generally used to compute the distributions of drawing a number of balls of various
types in the urns or to compute the waiting time distributions until a particular condition is
satisfied.

In their excellent book on urn models, Johnson and Kotz (1977) have given numerous ref-
erences showing that urn models have been in use since the seventeenth century and that they
have been used by various researchers to analyze a number of complex problems concerning
physical phenomena like contagious events, random walks, ballot problems, occupancy prob-
lems, and games of chance. Some other prominent writers on urn models in the present century
are Pólya (1930), Friedman (1949), and Feller (1968). In all these models, an individual’s strat-
egy or decision plays no significant role.

One cannot deny that most living beings and/or their leaders do make some decisions in
specific situations and that they have to face the consequences as determined by the laws of
nature. On account of such decisions, which become a part of their behavior, some tribes be-
come dormant and gradually become extinct while others succeed in migrating to new places
and adapt themselves nicely to the new circumstances. The cells in the human body develop
immunity against antibiotics on successive use. Similarly, insects develop immunity against
insecticides with the passage of time. Thus, the introduction of some factor, based on strategy
or decisions, into the probability models seems desirable for explaining the observed patterns,
especially those that deal with the behavior of living beings. Consul (1974), Consul and Mittal
(1975, 1977), Famoye and Consul (1989b), and Consul (1994c) have described a number of
urn models that depend upon the strategy of the individual. All these urn models provide prob-
ability distributions that either are particular families of Lagrangian probability models or are
associated with them.
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5.2 A Generalized Stochastic Urn Model

An urn contains w white balls and b black balls. A ball is randomly drawn from the urn by
a player and is given to an umpire without the player seeing it. The umpire returns the same
ball to the urn together with s (≥ −1) balls of the same color and mixes them up. The value
s = −1 implies that the umpire does not return the ball to the urn. This operation (experiment)
is repeated again and again by the player and the umpire under the following rules of the game.

At any particular time let X denote the number of draws which gave black balls and Y be
the number of draws which gave white balls.

(i) The player chooses his strategy by selecting two integers n (≥ 1) and β (≥ −1) and de-
clares them to the umpire.

(ii) The player will continue the process of drawing the balls so long as the number of white
balls drawn from the urn exceeds β times the number of black balls drawn from the urn
until that time, and the player will be declared as a winner of the game if he stops as soon as
the number of black balls and white balls drawn from the urn are exactly x and y = n+βx ,
respectively.

Before deciding the bets for the game, the house wants to determine the probabilities for
a win by the player for the various values of X = 0, 1, 2, 3, . . . . Let P(X = x) denote the
probability that the player wins the game after drawing x black balls. The player will keep
playing the game of drawing the balls if the number of white balls drawn from the urn always
exceeds βx . Thus, if he draws the x th black ball, he must have drawn at least (βx + 1) white
balls in order to remain in the game.

Since the player wins the game when exactly x black balls and exactly n + βx = y white
balls are drawn, let f (x, y) be the number of sequences in which the number y of white balls
drawn from the urn always exceeds βx . The determination of f (x, y) gives rise to three cases:
(i) β = −1, (ii) β = 0, and (iii) β ≥ 1.

Case I. The player selects β = −1.β = −1.β = −1. Since the value of β is −1, for any number of x draws of
black balls, the number of white balls will always exceed βx = −x . Therefore, the player will
win with x draws of black balls if he draws a total of n balls containing y = (n − x) draws of
white balls in any order. Thus,

f (x, y) =
(

y + x
x

)
=
(

n
x

)
(5.1)

and

P (X = x) =
(

n
x

)
b[x,s]w[n−x,s]

(b + w)[n,s] , x = 0, 1, 2, . . . , n, (5.2)

and zero elsewhere. Since the player is sure to win for some value of x , P(X = x) in (5.2) rep-
resents a true probability distribution. It is called the Pólya–Eggenberger distribution (Eggen-
berger and Pólya, 1923). This probability model reduces to a number of well-known distribu-
tions for different values of the parameters:

(i) For s = 0, (5.2) gives the binomial model

P(X = x) =
(

n
x

)
bxwn−x

(b + w)n =
(

n
x

)
θ x (1 − θ)n−x, x = 0, 1, 2, . . . , n,

where 0 < b(b + w)−1 = θ < 1.
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(ii) For s = −1, (5.2) becomes the hypergeometric distribution

P(X = x) =
(

b
x

)(
w

n − x

)/(
b + w

n

)
, x = 0, 1, 2, . . . , min(b, n).

(iii) For s = +1, the model (5.2) becomes the beta-binomial distribution (Kemp and Kemp,
1956)

P(X = x) =
(

b + x − 1
x

)(
w + n − x − 1

n − x

)/(
b + w + n − 1

n

)
, x = 0, 1, 2, . . . , n.

(iv) When s is a positive integer ≥ 2, by putting b/s = c and w/s = d , the model (5.2) can be
written in the form

P(X = x) =
(

c + x − 1
x

)(
d + n − x − 1

n − x

)/(
c + d + n − 1

n

)
, x = 0, 1, 2, . . . , n,

which is the beta-binomial distribution (Kemp and Kemp, 1956) in (iii) above.
(v) For w = b = s, the model (5.2) reduces to the discrete uniform distribution

P(X = x) = (n + 1)−1, x = 0, 1, 2, . . . , n.

(vi) For w = s and b/s = c > 0, the model (5.2) gives the Ascending Factorial distribution
(Berg, 1974)

P(X = x) =
(

c + x − 1
x

)/(
c + n

n

)
, x = 0, 1, 2, . . . , n.

Case II. The player selects β = 0.β = 0.β = 0. Since the number of white balls drawn from the urn must
always exceed βx = 0, to continue in the game the first draw must be a white ball and then the
player can draw the black balls and white balls in any order. The player will win if he draws x
black balls and y = n + βx = n white balls in all, i.e., (n − 1) white balls after the first white
ball. Therefore,

f (x, y) =
(

y + x − 1
x

)
=
(

n + x − 1
x

)
(5.3)

and

P (X = x) =
(

n + x − 1
x

)
b[x,s]w[n,s]

(b + w)[n+x,s] , x = 0, 1, 2, . . . , (5.4)

and zero elsewhere and subject to the values of the other parameters. Since the player is sure
to win for some value of x , the model (5.4) is a true probability distribution. It is called the
inverse Pólya distribution (Sarkadi, 1957). It gives a number of particular cases:

(i) For s = 0, the model (5.4) reduces to the negative binomial distribution

P(X = x) =
(

n + x − 1
x

)
θ x (1 − θ)n, x = 0, 1, 2, . . . , ∞,

where 0 < b(b + w)−1 = θ < 1. When n = a/θ , the above is called the Katz distribution
(Katz, 1965).



96 5 Some Urn Models

(ii) For s = −1, the model (5.4) becomes the negative hypergeometric distribution (Kemp
and Kemp, 1956)

P(X = x) = n

n + x

(
b
x

)(
w
n

)/(
b + w
n + x

)
, x = 0, 1, 2, . . . , b,

where n ≤ w.
(iii) For s = +1, the model (5.4) gives the beta-Pascal distribution (Ord, 1972)

P(X = x) = b

b + w

(
b + x − 1

x

)(
w + n − 1

n − 1

)/(
b + w + n + x − 1

n + x − 1

)
,

x = 0, 1, 2, . . . , ∞.

(iv) When s is a positive integer ≥ 2, by putting b/s = c and w/s = d , the model (5.4)
becomes

P(X = x) = d

c + d

(
c + x − 1

x

)(
d + n − 1

n − 1

)/(
c + d + n + x − 1

n + x − 1

)
,

x = 0, 1, 2, . . . , ∞,

which is also the beta-Pascal distribution.
(v) For w = b = s, the model (5.4) reduces to the Waring distribution (Irwin, 1965)

P(X = x) = n

(n + x)(n + x + 1)
, x = 0, 1, 2, . . . , ∞.

(vi) For w = s and b/s = c > 0, the model (5.4) gives the inverse factorial distribution (Berg,
1974)

P(X = x) = nc(1 + x)[n−1]/(c + x)[n+1], x = 0, 1, 2, . . . , ∞.

Case III. The player selects the integer β ≥ 1.β ≥ 1.β ≥ 1. To be in the game the player must draw
at least βx + 1 white balls before he draws x black balls for x = 0, 1, 2, . . . ; i.e., at least
β + 1 white balls must be drawn before the first black ball is drawn, at least 2β + 1 white
balls must be drawn before the second black ball is drawn, and so on. Thus, at least (βx + 1)
white balls must be drawn before the x th black ball is drawn, and this must hold for each value
of x = 0, 1, 2, 3, . . . . The function f (x, y) denotes the number of sequences in which the y
draws of white balls is always ≥ βx +1, where x denotes the number of black balls. Obviously,
if y = βx + 1, then the last draw must be a black ball but when y ≥ βx + 2, the last draw can
be either a black ball or a white ball. Accordingly,

f (x, y) = 0, for y < βx + 1, (5.5)

= f (x − 1, y), for y = βx + 1, (5.6)

= f (x − 1, y) + f (x, y − 1), for y = βx + k, k ≥ 2. (5.7)

We also know that

f (1, 0) = 0, f (0, y) = 1 . (5.8)
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Also, by equations (5.5) and (5.6), we observe that

f (x, βx) = 0, f (1, β + 1) = 1. (5.9)

By successive applications of (5.7) and the boundary conditions (5.8) and (5.9), for all y =
β + k, k ≥ 1,

f (1, y) = f (0, y) + f (1, y − 1) = f (0, y) + f (0, y − 1) + f (1, y − 2)

= 1 + 1 + · · · + f (0, y − k + 1) + f (1, y − k)

= k + f (1, β) = y − β.

Similarly, for all y = 2β + k, k ≥ 1, and k = y − 2β, (5.7) gives

f (2, y) = f (1, y) + f (2, y − 1) = f (1, y) + f (1, y − 1) + f (2, y − 2)

=
k∑

i=1

f (1, y + 1 − i) + f (2, y − k)

=
k∑

i=1

(y + 1 − i − β) + f (2, 2β) = (y + 1 − β)k − 1

2
k(k + 1)

= 1

2
(y − 2β)(y + 1) = y − 2β

y + 2

(
y + 2

2

)
. (5.10)

Also, for all y = 3β + k, k ≥ 1, and k = y − 3β, repeated use of (5.7) gives

f (3, y) = f (2, y) + f (3, y − 1) = f (2, y) + f (2, y − 1) + f (3, y − 2)

=
k∑

i=1

f (2, y + 1 − i) + f (3, y − k)

=
k∑

i=1

1

2
(y + 1 − i − 2β)(y + 1 − i + 1) (by (5.10))

= 1

2
(y + 1 − 2β)(y + 2)k − 1

4
(2y + 3 − 2β)k(k + 1) + 1

12
k(k + 1)(2k + 1).

By putting k = y − 3β and on simplifying, the above gives

f (3, y) = 1

6
(y − 3β)(y + 2)(y + 1) = y − 3β

y + 3

(
y + 3

3

)
. (5.11)

Since the results for f (1, y), f (2, y), and f (3, y) are similar and have a pattern, to
obtain the general solution for the difference equations (5.7) and (5.6), we use the method of
mathematical induction and assume for some given value of x and for y = βx + k, k ≥ 1, and
k = y − βx ,

f (x, y) = y − βx

y + x

(
y + x

x

)
. (5.12)
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By successive applications of (5.7), we obtain for y = β(x + 1) + k, k ≥ 1,

f (x + 1, y) =
k∑

i=1

f (x, y + 1 − i), where k = y − β(x + 1),

=
k∑

i=1

y + 1 − i − βx

y + 1 − i + x

(
y + 1 − i + x

x

)

=
k∑

i=1

(
y + 1 − i + x

x

)
− (β + 1)

k∑
i=1

(
y + x − i

x − 1

)
.

Now,

k∑
i=1

(
y + 1 + x − i

x

)
= coefficient of t x in

k∑
i=1

(1 + t)y+x+1−i

= coefficient of t x in (1 + t)y+x
[

1 − (1 + t)−k

1 − (1 + t)−1

]

= coefficient of t x in (1 + t)y+x

[
(1 + t) − (1 + t)−k+1

t

]

= coefficient of t x+1 in
[
(1 + t)y+x+1 − (1 + t)y+x+1−k

]

=
(

y + x + 1
x + 1

)
−
(

y + x + 1 − k
x + 1

)

=
(

y + x + 1
x + 1

)
−
(

(β + 1)(x + 1)
x + 1

)
.

Similarly,

k∑
i=1

(
y + x − i

x − 1

)
=
(

y + x
x

)
−
(

y + x − k
x

)
, k = y − β(x + 1),

=
(

y + x
x

)
−
(

β(x + 1) + x
x

)
.

Therefore,

f (x+1, y) =
(

y + x + 1
x + 1

)
−
(

(β + 1)(x + 1)
x + 1

)
−(β+1)

[(
y + x

x

)
−
(

(β + 1)x + β
x

)]
,

which can be easily simplified to

f (x + 1, y) = y − β(x + 1)

y + x + 1

(
y + x + 1

x + 1

)
. (5.13)
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The above (5.13) is precisely the same as (5.12) with x replaced by x + 1. Hence, the rela-
tion (5.12) is true for all values of x .

Since the player wins the game when exactly x black balls are drawn and exactly y = n+βx
white balls are drawn, such that y ≥ βx +1, for values of x = 0, 1, 2, 3, . . . , the probabilities
of a win of the game by the player become

P(X = x) = y − βx

y + x

(
y + x

x

)
b[x, s]w[y, s]

(b + w)[y+x, s]
, where y = n + βx,

= n

n + βx + x

(
n + βx + x

x

)
b[x, s]w[n+βx, s]

(b + w)[n+βx+x, s]
, (5.14)

for x = 0, 1, 2, 3, . . . and subject to the other restrictions based on the values of the parame-
ters β, s, n, b, and w.

We name (5.14) for β ≥ 1 together with (5.2) for β = −1 and (5.4) for β = 0 as the Prem
distribution with the five parameters n, β, s, b, and w. It is a genuine probability model when
s = −2, −1 and s = 0. When s is a positive integer ≥ 1, the model (5.14) still represents the
probabilities of a win of the player for x = 0, 1, 2, 3, . . . , but the sum of the probabilities will
be less than 1 because as x → ∞, the total number of added balls xs+(n+βx)s = (n+βx+x)s
becomes infinitely large, which is an impossibility.

As an example, let β = 1 and b = w = s in (5.14). Then,

P(X = x) = n

n + 2x

(
n + 2x

x

)
x!(n + x)!

(n + 2x + 1)!
= n

(n + 2x)(n + 2x + 1)
, x = 0, 1, 2, 3, . . . .

Therefore,
∞∑

x=0

P(X = x) =
∞∑

x=0

n

(n + 2x)(n + 2x + 1)

<

∞∑
x=0

n

(n + x)(n + x + 1)
=

∞∑
x=0

[
n

n + x
− n

n + x + 1

]
= 1.

Particular Cases. The Prem distribution in (5.14) gives the following well-known probability
models as particular cases.

(i) For n = β = 1, s = 0, b(b + w)−1 = θ , and x = y − 1, we get the Haight distribution

P(Y = y) = 1

2y − 1

(
2y − 1

y

)
θ y−1(1 − θ)y, y = 1, 2, 3, . . . , ∞.

(ii) For n = m, s = 0, β = m − 1, x = y − 1, and b(b + w)−1 = θ , it gives the Consul
distribution (Consul and Shenton, 1975)

P(Y = y) = 1

y

(
my

y − 1

)
θ y−1(1 − θ)my−y+1, y = 1, 2, 3, . . . , ∞.

(iii) For n = β = m − 1, s = 0, x = y − 1, and b(b + w)−1 = θ , it reduces to the Geeta
distribution (Consul, 1990b)

P(Y = y) = 1

my − 1

(
my − 1

y

)
θ y−1(1 − θ)my−y, y = 1, 2, 3, . . . , ∞.
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(iv) For n = mk, β = m − 1, s = 0, x = y − k, and b(b + w)−1 = θ , it becomes the
delta-binomial distribution (Consul and Shenton, 1972)

P(Y = y) = k

y

(
my

y − k

)
θ y−k(1 − θ)k+my−y, y = k, k + 1, k + 2, . . . , ∞.

(v) For β = 1, s = 0, and b(b + w)−1 = θ , it gives the displaced lost games distribution

P(X = x) = n(n + 2x − 1)!

x!(n + x)!
θ x(1 − θ)n+x , x = 0, 1, 2, . . . , ∞.

(vi) For s = 0, β = m − 1, and b(b + w)−1 = θ , it reduces to the generalized negative
binomial distribution (Jain and Consul, 1971)

P(X = x) = n

n + mx

(
n + mx

x

)
θ x (1 − θ)n+mx−x, x = 0, 1, 2, . . . , ∞.

(vii) For β = 1, s = −1, w > n + x , we get the negative hypergeometric distribution

P(X = x) = n

n + 2x

(
b
x

)(
w

n + x

)/(
b + w
n + 2x

)
, x = 0, 1, 2, . . . , b.

(viii) For β = m, s = −1, b > x , and w > n + mx , we obtain the inverse hypergeometric
distribution as

P(X = x) = n

n + mx + x

(
b
x

)(
w

n + mx

)/(
b + w

n + mx + x

)
, x = 0, 1, 2, . . . , b.

(ix) For s = −2, b > 2x , and w > 2(n + βx), we get another inverse hypergeometric
distribution

P(X = x) = n

n + βx + x

(
b/2
x

)(
w/2

n + βx

)/(
b/2 + w/2
n + βx + x

)
, x = 0, 1, 2, . . . , b/2.

Possibly, many other models can be obtained from the Prem distribution by assigning other
values to the parameters or as limiting forms of the models given in (i) to (viii).

The Prem probability distribution can also be obtained as a generalization of the generalized
negative binomial distribution in (vi) by assuming θ to be a beta variable with parameters
(ξ, η), which gives

P(X = x) = n

n + mx + x

(
n + mx + x

x

)
�(ξ + η)�(ξ + x)�(η + n + mx)

�(ξ)�(η)�(ξ + η + n + mx + x)
, (5.15)

and then replacing m with β, ξ , with b/s and η with w/s, which are rational numbers. It may
also be noted that all the probability models, given by s = 0 in (i) to (vi) above, belong to the
class of Lagrangian probability distributions.

5.2.1 Some Interrelations among Probabilities

If the probabilities P (X = x) of the Prem model (5.14) are represented by the symbol
f (x; n, b, w), then the successive probabilities can easily be determined by the recurrence
relation
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f (x + 1; n, b, w) = n (n + β + βx + x + 1) (b + sx)

(n + β) (x + 1) (b + w + s (n + β + βx + x))
f (x; n + β, b, w) ,

(5.16)
where f (0; n, b, w) = w[n,s]

(b+w)[n,s] .

Two other relations between these probabilities are

f (x; n, b + s, w − s) = (w − s) (b + sx)

b (w + ns + βxs − s)
f (x; n, b, w) , (5.17)

f (x; n, b − s, w + s) = (b − s) (w + ns + bxs)

w (b + xs − s)
f (x; n, b, w) . (5.18)

5.2.2 Recurrence Relation for Moments

Denoting the kth moment about the origin by M ′
k (n, b, w), of the Prem distribution, we have

M ′
k (n, b, w) =

∞∑
x=0

xk n(n + βx + x − 1)!

x!(n + βx)!

b[x,s]w[n+βx,s]

(b + w)[n+βx+x,s]

= n
∞∑

x=0

(1 + x)k−1 (n + βx + x + β)!

x!(n + βx + β)!

b[x+1,s]w[n+βx+β,s]

(b + w)[n+βx+x+β+1,s]

= n
k−1∑
j=0

(
k − 1

j

) ∞∑
x=0

x j (n + βx + x + β − 1)!

x!(n + βx + β)!

(b + s)[x,s]w[n+βx+β,s]

(b + s + w)[n+βx+x+β,s]

× b

b + w
[n + (β + 1)x + β]

= nb

b + w

k−1∑
j=0

(
k − 1

j

)

×
[

M ′
j (n + β, b + s, w) + β + 1

n + β
M ′

j+1(n + β, b + s, w)

]
(5.19)

for k = 1, 2, 3, . . . .
The above is a recurrence relation between the moments about the origin. Obviously,

M ′
0(n, b, w) = 1. (5.20)

The mean for Prem distribution. By putting k = 1 in the above recurrence relation,

M ′
1(n, b, w) = nb

b + w

[
1 + β + 1

n + β
M ′

1(n + β, b + s, w)

]
. (5.21)

By using the relation (5.21) repeatedly, we obtain the first moment about the origin (or
mean µ) in the form

µ = nb

b + w
+ nb2(β + 1)

(b + w)(b + w + s)
+ nb3(β + 1)2

(b + w)(b + w + s)(b + w + 2s)
+ · · · . (5.22)
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The Prem distribution provides the probability models for s = 0 and s = −1 only. There-
fore, when s = 0 and b(b + w)−1 = θ , we have from (5.22)

µ = nθ
[
1 + (β + 1)θ + (β + 1)2θ2 + (β + 1)3θ3 + · · ·

]
= nθ [1 − (β + 1)θ]−1 for (β + 1)θ < 1. (5.23)

When s = −1, the maximum value of x is b. Accordingly, the value of the mean µ is given
by (5.22) as

µ =
b∑

i=0

nbi+1(β + 1)i

(b + w)(b + w − 1) · · · (b + w − i)
. (5.24)

Variance of Prem distribution. Now, by putting k = 2 in the recurrence relation (5.19), we
get the recurrence relation for the second moment about zero as

M ′
2(n, b, w) = nb

b + w

[
1 + β + 1

n + β
M ′

1(n + β, b + s, w) + M ′
1(n + β, b + s, w)

+ β + 1

n + β
M ′

2(n + β, b + s, w)

]
.

On simplification by (5.21), it gives

M ′
2(n, b, w) = M ′

1(n, b, w)+ nb

b + w
M ′

1(n+β, b+s, w)+ nb(β + 1)

(b + w)(n + β)
M ′

2(n+β, b+s, w).

(5.25)
When s = 0 and b(b + w)−1 = θ , by using (5.23) the formula (5.25) gives

M ′
2(n, b, w) = nθ

1 − (β + 1)θ
+ nθ(n + β)θ

1 − (β + 1)θ
+ nθ(β + 1)

n + β
M ′

2(n + β, b, w). (5.26)

By using the formula (5.26) repeatedly, the second moment can be expressed in the form of
three infinite series as

M ′
2(n, b, w) = [1 − (β + 1)θ]−1

[
nθ

∞∑
i=0

((β + 1)θ)i + n2θ2
∞∑

i=0

((β + 1)θ)i

+ nβθ2
∞∑

i=1

i ((β + 1)θ)i−1

]

= nθ [1 − (β + 1)θ]−2 + n2θ2 [1 − (β + 1)θ]−2 + nβθ2 [1 − (β + 1)θ]−3 .

Therefore,

variance σ 2 = M ′
2(n, b, w) − µ2

= nβθ2 [1 − (β + 1)θ]−3 + nθ [1 − (β + 1)θ]−2 . (5.27)
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When s = −1, the use of (5.24) in (5.25) provides the formula

M ′
2(n, b, w) =

b∑
i=0

nbi+1(β + 1)i

(b + w)(b + w − 1) · · · (b + w − i)

+
b−1∑
i=0

n(n + β)b(b − 1)i+1(β + 1)i

(b + w)(b + w − 1) · · · (b + w − i − 1)

+ nb(β + 1)

(n + β)(b + w)
M ′

2(n + β, b − 1, w). (5.28)

By repeated use of (5.28), the values of M ′
1(n, b, w) can be expressed as a finite number of

series, which can be used to get the variance for the model when s = −1.

5.2.3 Some Applications of Prem Model

(i) Infectious diseases. We are living in a very complex world where bacteria of all kinds
are always floating around us. These bacteria are multiplying with their own cycles and
are attacking human beings, who have varying powers of resistance. When the effect of
a particular kind of bacteria equals or exceeds the resistance level of a person, then the
person becomes a victim of the disease, the bacteria multiply much faster in the body, and
this person becomes infectious. As medicines are used to increase the resistance among
persons and to kill the bacteria, they (bacteria) increase their own strength and their re-
sistance to the medicines, and they attack other persons with a greater vigor. This process
keeps going on with an increase of the diseased persons in the form of an epidemic and
then the control of the epidemic. The black balls can represent the number of bacteria of
the disease, the white balls can represent the number of disease-fighting cells in the body,
s may represent the increase or decrease in their numbers after each attack, while β and n
may represent the threshold numbers necessary for getting infected. Thus, P(X = x) will
represent the probability of x persons getting infected by the disease.

(ii) Sales of a new product. Whenever a new consumer product is introduced in the market, the
manufacturer generates some market for it through TV and newspapers ads and by giving
special incentives to the salespeople. Since consumers have been using other products and
have been happy with them, there is some resistance due to these old preferences. Some
people who are affected by the ads buy the new product and use it. If they like the product,
they speak to their friends about it. Also, the manufacturer hires people who advertise the
product by saying they have used it and it is far better than other available products. Thus,
more buyers are generated. The whole process becomes like the spread of an infectious
disease. In this case, the data on the number of persons using the product each day in the
country will possibly be according to the Prem distribution.

(iii) Environmental toxicology. Hoover and Fraumeni (1975) have considered changes in the
incidence of diseases due to exposure to various toxicants and pollutants. The pollutants
increase due to reproduction and due to immigration or emigration. They are also checked
by the use of chemicals. The problem becomes very similar to the one described in (i).
Accordingly, the Prem model will be applicable, and for any observed data, the parameters
of interest can be estimated by the Prem model.

(iv) Games of pleasure. The different special models of the Prem distribution can easily be
used to develop a number of computer games for students and the public.
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5.3 Urn Model with Predetermined Strategy for Quasi-Binomial
Distribution I

Let there be two urns, marked A and B. The urn A contains w white balls and urn B contains w
white and b black balls. Let n and s be two other known positive integers. In a game of chance,
a player is allowed to choose his strategy by selecting an integer k such that 0 ≤ k ≤ n and
then draws the balls one by one from the urns under the following conditions.

(i) ks black balls are added to urn A and ks white balls and (n − k) s black balls are added to
urn B before any draw is made.

(ii) The player randomly draws a ball from urn A. If the ball drawn is black, the player loses
the game and gets no opportunity to draw balls from urn B.

(iii) If the ball drawn from urn A is white, the player will make n draws of one ball each time,
with replacement, from urn B and will be declared to be a winner if the n draws (trials)
contain exactly k white balls.

The probability of drawing a white ball from urn A is w (w + ks)−1. Since the urn B
contains w + ks white balls and b + (n − k) s black balls the chance of drawing a white ball
in each trial is (w + ks) / (w + b + ns). Therefore, the probability of drawing exactly k white
balls in n trials of one ball each time, with replacement, is

(
n
k

)(
w + ks

w + b + ns

)k (b + (n − k) s

w + b + ns

)n−k

.

Thus, the joint probability of drawing a white ball from urn A and then drawing k white
balls in n draws from urn B becomes

w

w + ks

(
n
k

)(
w + ks

w + b + ns

)k (b + ns − ks

w + b + ns

)n−k

.

Accordingly, the probability of a win by the player is

P (X = k) =
(

n
k

)(
w

w + b + ns

)(
w + ks

w + b + ns

)k−1 (b + ns − ks

w + b + ns

)n−k

(5.29)

for k = 0, 1, 2, . . . , n.
By using the transformation w (w + b + ns)−1 = p and s (w + b + ns)−1 = φ, the above

gives the three-parameter QBD-I

P (X = k) =
(

n
k

)
p (p + kφ)k−1 (1 − p − kφ)n−k (5.30)

for k = 0, 1, 2, . . . , n and zero otherwise with 0 < p + nφ ≤ 1.

5.3.1 Sampling without Replacement from Urn B

In the above urn model, if the n draws in condition (iii) are made without replacement, then the
joint probability of drawing a white ball from urn A and of drawing exactly k white balls in n
draws from urn B becomes
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P (X = k) =
(

n
k

)
w

w + ks

(w + ks)(k) (b + ns − ks)(n−k)

(w + b + ns)(n)
(5.31)

for k = 0, 1, 2, · · · , n and where (a)(k) = a (a − 1) (a − 2) · · · (a − k + 1) .
The urn model (5.31) represents the QHD-I, which can be expressed in the form

P (X = x) = w

w + xs

(
w + xs

x

) (
b + ns − xs

n − x

)/(
w + b + ns

n

)
(5.32)

for x = 0, 1, 2, . . . , n.

5.3.2 Pólya-type Sampling from Urn B

In the urn model of section 5.3 the condition (iii) is modified to Pólya-type sampling in which
if the player gets a white ball from urn A in the first draw, he gets the chance of making n draws
of one ball each time from urn B. After each draw from the urn B the ball is returned to urn B,
c balls of the same color as the ball drawn are added to urn B, and they are thoroughly mixed
before performing the next draw. The player is declared a winner if he gets exactly k white
balls in these n draws from urn B.

In this new Pólya-type sampling the probability of the player becoming a winner is the joint
probability of drawing a white ball from urn A in one draw and of drawing exactly k white
balls in n independent draws from urn B, under the new condition, and is given by

P (X = k) = w

w + ks
·
(

n
k

)
(w + ks)[k,c] (b + ns − ks)[n−k,c]

(w + b + ns)[n,c] (5.33)

for k = 0, 1, 2, 3, . . . , n and zero otherwise.
The above urn model is the QPD I. By putting w/c = a, b/c = d , and s/c = h, the above

model can also be expressed in the form

P (X = x) = a

a + xh

(a+xh+x−1
x

)(d+nh−xh+n−x−1
n−x

)
(a+d+nh+n−1

n

) . (5.34)

5.4 Urn Model with Predetermined Strategy for Quasi-Pólya Distribution II

In a four-urn model, let each one of the urns A and D contain a white balls and b black balls; let
urn B contain b black balls and urn C contain a white balls. Given two other positive integers n
and θ , a player decides his winning strategy by choosing a positive integer k (0 ≤ k ≤ n) when
he has to make the draws under the following conditions:

(i) (n − k) θ white balls and kθ black balls are added to the urns B and C , respectively, and
kθ white balls and (n − k) θ black balls are added into urn D and the contents of each urn
are mixed thoroughly.

(ii) The player is to draw one ball from urn A. The next draw by the player will be from urn
B or from urn C according to whether the first ball drawn is white or black, respectively.

(iii) If the two balls drawn by the player are of the same color, the player loses his opportunity
for further draws and loses the game; but if the two balls are of different colors, the player
is allowed to make n random drawings of one ball each from urn D, and after each draw
the particular ball and c additional balls of the same color are added to the urn D.
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The player is declared a winner of the game if he gets exactly k white balls in the n draws
(trials) from urn D. This urn model was given by Consul and Mittal (1975) and in a slightly
modified form by Janardan (1978) by the name of the Markov–Pólya urn model. It can be
represented by the flow-diagram below:

a Wh. + b Bl.

b Bl. + (n − k)θ Wh.

a Wh. + kθ Bl.

a + kθ Wh.

b + (n − k)θ Bl.

�
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���

	

	

	

White

Black White

Black

White

Black Failure

Failure

k White
+(n − k) Black

Winner

A

B

C

D

The probability that the player will get the opportunity of n drawings from urn D is

a

a + b

b

b + (n − k) θ
+ b

a + b

a

a + kθ

= ab(a + b + nθ)

(a + b) (a + kθ) (b + nθ − kθ)
,

and the conditional probability of success in the n drawings from urn D is(
n
k

)
(a + kθ)[k,c] (b + nθ − kθ)[n−k,c]

(a + b + nθ)[n,c] .

Thus, the joint probability P (X = k) of the player becoming a winner is given by

P (X = k) =
(

n
k

)
ab

(a + b) (a + kθ)

(a + kθ)[k,c] (b + nθ − kθ + c)[n−k−1,c]

(a + b + nθ + c)[n−1,c]
(5.35)

=
(

n
k

)
Jk (a, θ, c) Jn−k (b, θ, c) /Jn (a + b, θ, c) , (5.36)

where k = 0, 1, 2, 3, . . . , n and zero otherwise and

Jk (a, θ, c) = a (a + kθ)−1 (a + kθ)[k,c] . (5.37)

The probabilities (5.35) or (5.36) represent the QPD-II.

5.4.1 Sampling with Replacement from Urn D

In the above urn model, if the n draws in condition (iii) are made with replacement and no other
balls are added, i.e., if c = 0, then the joint probability of becoming a winner, by drawing k
white balls in n draws from urn D, is given by (5.35) as
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P (X = k) =
(

n
k

)
ab

(a + b) (a + kθ)

(
a + kθ

a + b + nθ

)k (b + nθ − kθ

a + b + nθ

)n−k−1

(5.38)

for k = 0, 1, 2, . . . , n and zero otherwise. The above is the QBD-II.

5.4.2 Sampling without Replacement from Urn D

In the above urn model, if the n draws from urn D are made without replacement and no balls
of the same color are added, then c becomes −1. By substituting c = −1 in (5.35), the joint
probability for winning the urn model game becomes

P (X = k) = Hk (a, θ) Hn−k (b, θ) /Hn (a + b, θ) (5.39)

for k = 0, 1, 2, . . . , n and zero otherwise. This is the QHD-II
(Janardan, 1978), where

Hk (a, θ) = a

a + kθ

(
a + kθ

k

)
. (5.40)

5.4.3 Urn Model with Inverse Sampling

In the four-urn model with predetermined strategy the initial composition of the four urns
remains the same but the rules of the game are changed. The player is given one positive integer
θ and is required to decide the winning strategy by choosing two integers k and r (k ≥ 0, r ≥ 1)
before making any draws from the urns under the following conditions:

(i) rθ white balls are added to urn B, kθ black balls are added to urn C , and kθ white
balls plus rθ black balls are added to urn D. The contents of each urn are thoroughly
mixed.

(ii) The player is to draw one ball from urn A. The next draw by the player will be from urn
B or from urn C according to whether the first ball is white or black, respectively.

(iii) If the two balls drawn by the player are of the same color, the opportunity for further draws
is lost and the player loses the game; but if the two balls are of different colors, the player
is allowed to make (k + r) random drawings of one ball each from urn D, and after each
draw the particular ball and c additional balls of the same color are added to the urn before
the next draw.

The player will be declared as a winner of the game if the r th black ball is obtained in the
(k+r)th draw from urn D; otherwise the player will lose the game. The probabilities of success
of the player under this urn model, for various values of k and r , are given by

P (X = k) = ab

a + b

(
1

b + rθ
+ 1

a + kθ

)(
r + k − 1

k

)
(a + kθ)[k,c] (b + rθ)[r,c]

(a + b + kθ + rθ)[r+k,c]

=
(

r + k − 1
k

)
Jk (a, θ, c) Jr (b, θ, c) /Jr+k (a + b, θ, c) (5.41)

for k = 0, 1, 2, 3, . . . and zero otherwise.
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If Y denotes the number of draws from urn D for the success of the player, then the above
probability distribution can be expressed as

P (Y = y) =
(

y − 1
r − 1

)
Jr (b, θ, c) Jy−r (a, θ, c) /Jn (a + b, θ, c) (5.42)

for y = r , r + 1, r + 2, . . . and zero otherwise.
Janardan (1978) has given a three-urn model for the same probability distribution. When

θ = 0, the probability distribution (5.41) reduces to the inverse-Pólya distribution, given by
Patil and Joshi (1968), and when θ = 1, c = −1 or when θ = 0, c = 1, the pmf (5.41) yields
the beta-Pascal distribution, derived by Ord (1972) as a model for the counts of diamondiferous
stones.

5.5 Exercises

5.1 Consider a random variable X with the conditional distribution

P(X = x | � = θ) = m

m + βx

(
m + βx

x

)
θ x (1 − θ)m+βx−x,

where parameter � is a beta random variable with parameters (ξ, η). Show that the un-
conditional distribution of X is given by the Prem distribution.

5.2 Verify the two relations (5.17) and (5.18) between the probabilities of Prem distribution.
5.3 Consider the Prem distribution given by (5.14). Show that if β = m − 1, s = 0, and

θ = b(b + w)−1, the Prem distribution reduces to the generalized negative binomial
distribution.

5.4 Show that the Prem distribution reduces to the inverse factorial distribution (model (vi) in
Case II) if β = 0, b/s = c, and w = s.

5.5 Describe five possible applications for the QBD-I with suitable interpretations for the
parameters and variables of the model.

5.6 Obtain the mean and variance of the three-parameter QBD-I, defined by (5.30), and of
the QHD-I, defined by (5.32).

5.7 Describe two suitable applications of the QPD-II in (5.35).
5.8 Obtain the mean and variance of the four-parameter QBD-II in (5.38). Also, change the

model (5.38) into the one with three parameters by suitable substitution.
5.9 Show that the Prem distribution in (5.14) reduces to the delta-binomial distribution when

n = mk, β = m − 1, s = 0, x = y − k, and b/(b + ω) = θ . Find a recurrence relation
between the central moments of the delta-binomial distribution. Using your recurrence
relation or otherwise, find the mean, variance, and a measure of skewness for the delta-
binomial distribution.

5.10 The Prem distribution in (5.14) reduces to the displaced lost games distribution when
β = 1, s = 0, and b/(b + ω) = θ . Find the mean, variance, a measure of skewness, and
a measure of kurtosis for the lost games distribution. What are the values of θ for which
the mean of lost games distribution is greater than, equal to, or smaller than the variance
of lost games distribution?
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Development of Models and Applications

6.1 Introduction

The study of chance mechanisms enables a person to understand the principles by which the
observable events are taking place in nature and provide the different models which can be
used as formulas for future guidance, if they are applicable. A number of such probabilistic
mechanisms for Lagrangian probability distributions are being described in this chapter.

The branching (multiplication) process contains a sequence of random variables X0, X1,
X2, . . . representing the number of objects (cells or individuals) in zeroth, first, second, . . .
generations. In section 6.2, it is shown that the general Lagrangian probability distribution is the
model for the total progeny in a branching process. Such processes have many applications in
the study of population growth, the spread of rumors, and nuclear chain reactions. The queuing
process with a single server under the queue discipline of first-come, first-served is discussed in
section 6.3. It is shown that the general Lagrangian distribution is the probability model which
describes the total number of customers served in a busy period under certain conditions.

A stochastic process for epidemics is discussed in section 6.4. The total number of infected
individuals is shown to have the general Lagrangian probability distribution. The enumeration
of trees and a cascade process have been considered in sections 6.5 and 6.6, respectively.

6.2 Branching Process

In a branching process, each one of the initial objects can give rise to more objects of the same
type or of different types. The objects produced, before dying, reproduce a certain number of
new objects. If the reproduction process starts with a single individual, we are interested in the
probability distribution of the total progeny at the moment of extinction or at a particular gen-
eration. Also, the probability distribution of the total progeny, when the reproduction process
starts with a random number of ancestors, will be considered.

Let X0, X1, X2, . . . , Xn, . . . denote the total number of objects in the zeroth, first, second,
. . . , nth, . . . generations. Let the probability distribution of the number of objects produced by
each object remain unaltered over successive generations and let its pgf be denoted by g(z).
Let the pgf for the total number of objects in the nth generation be

gn(z) = E(zXn ).
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Suppose X0 = 1 with probability 1 (i.e., the branching process starts with a single ancestor).
Then

g0(z) = z and g1(z) = g(z).

In a branching process, the conditional distribution of Xn+1 given Xn = j is that of the sum of
j independent random variables, each having the same distribution as X1 (Harris, 1947).

Now for n = 2, 3, 4, . . .

gn+1(z) =
∞∑

k=0

P(Xn+1 = k)zk

=
∞∑

k=0

zk
∞∑
j=0

P(Xn+1 = k|Xn = j )P(Xn = j )

=
∞∑
j=0

P(Xn = j ) (g(z)) j

= gn(g(z)).

Also, g2(z) = g1(g(z)) = g(g(z)) = g(g1(z)), and similarly gn+1(z) = g(gn(z)). The above
branching process will stop as soon as P(Xn = 0) = 1 for some large positive integer n. The
necessary and sufficient condition for this to happen is that g′(1) < 1.

Suppose the branching process stops after the nth generation. Let

Yn = X0 + X1 + X2 + · · · + Xn,

where for the moment X0 = 1. Let Gn(z) be the pgf of

Un = X1 + X2 + · · · + Xn .

Then, G1(z) = g1(z) = g(z), and the pgf of Y1 is given by

E
(

zY1
)

= E
(

zX0+X1
)

= zg(z) = R1(z), say.

Since each object of X1 will start a new generation, the pgf of U2 becomes

G2(z) = g(zG1(z)) = g(R1(z)),

and similarly,
Gn(z) = g(Rn−1(z)), n = 2, 3, 4, . . . .

Hence, the pgf of Yn = 1 + Un is

Rn(z) = zGn(z) = zg(Rn−1(z)).

On taking the limit as n increases,

G(z) = lim
n→∞ Rn(z) = zg

(
lim

n→∞ Rn−1(z)
)

,



6.3 Queuing Process 111

and so
G(z) = zg (G(z)) . (6.1)

On putting G(z) = t in (6.1), we obtain t = zg(t).
Given that the branching process started with one object, the Lagrange expansion of t as a

function of z may be used by putting f (z) = z to obtain the probability distribution of the total
number of objects at generation n. This leads to the basic Lagrangian probability distribution
given in (2.2).

Suppose X0 = M with probability 1. Then f (z) = zM , and the probability distribution
of the total progeny is the delta Lagrangian probability distribution defined in (2.4) with n
replaced by M . If X0 is a random variable with a pgf f (z), the probability distribution of the
total progeny at the nth generation is given by the general Lagrangian probability distribution
in (2.7).

Shoukri and Consul (1987) and Consul and Shoukri (1988) proved the above and had shown
that the generalized Poisson model and a number of other Lagrangian models represented the
probability distributions of the total number of infected individuals when the infection got
started by a random number of infectives.

These branching processes are also applicable to the spread of fashions and sales, where
a random number of customers are generated by television commercials and these customers
(infectives) subsequently generate other customers by their use, associations, appreciation, etc.
In a similar manner, the probability distributions of salespeople in dealerships (like AVON,
AMWAY, Tupperware, cleaning chemicals, etc.) will also be Lagrangian because each distrib-
utor (infected) collects a group of persons (susceptibles) and enrolls some of them (infects
them). The branching process continues on and on until it dies out.

The probability distribution of purchases of a product by customers will be of a similar
nature because the sales potential is generated by advertising campaigns, and then others follow
the trend. The distributions of burnt trees in forest fires will be of a basic Lagrangian form
because the fire gets started with a single spark to one tree. Some of these have been further
discussed in section 6.4.

6.3 Queuing Process

The Lagrangian probability distributions with generating functions g(z) and f (z) are defined
in chapter 2. When f (z) = z, we obtain the basic Lagrangian distribution and when f (z) = zn

we obtain the delta Lagrangian distribution. The pgf of the delta Lagrangian distribution is
provided in (2.3). The coefficients of un+i , i = 0, 1, 2, . . . , are functions of n and also the
successive derivatives of [g(z)]n+i at z = 0. These Lagrangian probabilities can be denoted by
f (n)
n+i and the pgf in (2.3) can be rewritten as

zn = un f (n)
n + un+1 f (n)

n+1 + un+2 f (n)
n+2 + · · · + un+i f (n)

n+i + · · · . (6.2)

Consul and Shenton (1973a) used probabilistic arguments to show that the Lagrangian prob-
ability distributions play important roles in queuing theory. Suppose the number of customers
served during a busy period when the queue was initiated by n customers is denoted by Nn . Let
f (n)
r denote the probability of a busy period of r customers initiated by a queue of n customers.

Therefore,
f (n)
r = P(Nn = r) with f (n)

r = 0 if r < n.



112 6 Development of Models and Applications

Let gn(s), s = 1, 2, 3, . . . , denote the probability of s arrivals during the service time of n
customers. If g(z) is the pgf of a univariate random variable, so also is [g(z)]n, whose expansion
can be written as

[g(z)]n =
∞∑

s=0

zngn(s). (6.3)

Note that gn(s) represents the probability generated by the function [g(z)]n.
Let b be the service time per customer. If no new customers arrive during the total service

period nb of initial n customers, we have

f (n)
n = gn(0), (6.4)

where gn(0) is the probability of zero arrivals in a total service period t = nb.
If some new customers arrive during the service period of initial n customers, the busy pe-

riod will continue and Nn −n more customers will be served before the queue ends. Therefore,
for Nn = n + i, i = 1, 2, 3, . . . , we obtain

f (n)
n+i =

i∑
s=1

gn(s) f (s)
i . (6.5)

On multiplying (6.4) by un and (6.5) by un+i and summing over i from 0 to ∞, we get

∞∑
i=0

un+i f (n)
n+i = un gn(0) +

∞∑
i=1

i∑
s=1

un+i gn(s) f s
i

= un
∞∑

i=0

gn(s)

{ ∞∑
i=s

ui f (s)
i

}
.

By using the results in (6.2) and in (6.3), we have

zn = un
∞∑

s=0

gn(s)zs = un[g(z)]n = [ug(z)]n.

We observe that z = ug(z), the transformation for the Lagrangian probability distribution,
is one of the roots of the above equation. Hence, the delta Lagrangian distribution represents
the distribution of number of customers served in a busy period if the service was initiated by
n customers.

Sibuya, Miyawaki, and Sumita (1994) reviewed Lagrangian distributions and related them
to the busy period in queuing systems. The result of Consul and Shenton (1973a) presented
above was generalized by Kumar (1981). Kumar’s work is presented in subsection 6.3.1.

6.3.1 G|D|1 Queue

Consider a single server queue satisfying the following conditions: (i) arrivals during the service
period of each customer are independent of each other and are identically distributed, and (ii)
service time for each customer is constant.

Suppose X denotes the number of customers served in a busy period. Let the random vari-
able Y denote the number of arrivals during one service. Let the random variable N be the
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number of customers initiating the queue. As shown earlier, Consul and Shenton (1973a) gave
the result for the distribution of X when N is a constant. For a random variable N , Kumar
(1981) stated and proved the following theorem.

Theorem 6.1. Let X and N be two discrete random variables taking on nonnegative integer
values. Let g(z) and f (z) be two pgfs such that g(0) 	= 0 and f (z) =E(Z N ). Then

P(X = x |N = n) = n

x!
Dx−1

z

[
zn−1 {g(z)}x

]∣∣∣
z=0

(6.6)

if and only if

P(X = x) = 1

x!
Dx−1

z

[
f ′(z) {g(z)}x]∣∣

z=0 , (6.7)

where Dz denotes ∂
∂z .

Proof. Let

P(X = x |N = n) = n

x!
Dx−1

z

[
zn−1 {g(z)}x

]∣∣∣
z=0

.

Then

P(X = x) =
x∑

n=1

1

(n − 1)!

1

x!
Dx−1

z

[
zn−1 {g(z)}x

]∣∣∣
z=0

Dn
z [ f (z)] |z=0

=
x∑

n=1

1

x!

(
x − 1
n − 1

)
Dx−n

z

[{g(z)}x]∣∣
z=0 Dn−1

z

[
f ′(z)

]∣∣
z=0

= 1

x!
Dx−1

z

[{g(z)}x f ′(z)
]∣∣

z=0 .

The converse of the theorem can be proved by tracing the steps backward. In the statement
of the theorem we observe that (6.6) is the delta Lagrangian distribution, while (6.7) is the
general Lagrangian distribution. ��

Suppose the initial queue length is denoted by the random variable N . Let f (z) be the pgf of
N . By using the theorem, we conclude that the distribution of the number of customers served
in a busy period is given by the general Lagrangian distribution provided in (2.7).

6.3.2 M|G|1 Queue

The M|G|1 queue is a single server queue with Poisson arrivals and arbitrary service-time
distribution denoted by B(x). Suppose the service time probability function is denoted by b(x).
Suppose further that the number of customers X served in a busy period has pgf k(s), which is
given by Kleinrock (1975, p. 184) as

k(s) = s B∗(λ − λk(s)), (6.8)

where

B∗(t) =
∫ ∞

0
e−t xb(x)dx

is the Laplace transform of b(x) and λ is the arrival rate.
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On using the Lagrange expansion in (1.77) under the transformation z = k(s), the numeri-
cally smallest nonzero root of (6.8) is given by

z = k(s) =
∞∑

i=1

si

i !
Dx−1

z

[
Bx∗ (λ − λz)

]∣∣
z=0 . (6.9)

The above gives

P(X = x) = 1

x!
Dx−1

z

[
Bx∗ (λ − λz)

]∣∣
z=0 (6.10)

for x = i, i + 1, i + 2, . . .
The probability function in (6.10) is the basic Lagrangian distribution with t = 1 and

g(z) = B∗(λ − λz). Suppose there are N (a constant) customers initiating the queue. The
distribution of X is given by the i th convolution of (6.10) to get

P(X = x |N = i) = i

x!
Dx−1

z

[
Bx∗ (λ − λz)zi−1

]∣∣∣
z=0

for x = i, i + 1, i + 2, . . . .
If we further assume that N is a random variable with pgf f (z), by using the theorem given

before, we get

P(X = x) = 1

x!
Dx−1

z

[
Bx∗ (λ − λz) f ′(z)

]∣∣
z=0 (6.11)

for x = 1, 2, 3, . . .
The above probability distribution given in (6.11) is the general Lagrangian distribution

in (2.7).

Special cases of the queuing process.

(a) Let f (z) = z, g(z) = eθ(z−1), (θ < 1). These give

P(X = x) = (xθ)x−1e−θ x

x!
, x = 1, 2, 3, . . . ,

which is the Borel distribution.
(b) Let f (z) = zn, g(z) = eθ(z−1) (θ < 1). These give

P(X = x) = n

x

(xθ)x−ne−θ x

(x − n)!
, x = n, n + 1, n + 2, . . . ,

which is the Borel–Tanner distribution. This represents the distribution derived by Tanner
(1953) as the distribution of the busy period for a single server queue with Poisson input.

(c) Let f (z) = zn, g(z) = (q + pz)m (mp < 1). These generating functions give

P(X = x) = n

x

(
mx

x − n

)
qmx(p/q)x−n, x = n, n + 1, n + 2, . . . ,

which represents the distribution of the busy period for a single server queue with binomial
input.
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(d) Let f (z) = zn, g(z) = qk(1 − pz)−k (kp/q < 1). These generating functions give

P(X = x) = n

x

(
kx + x − n − 1

x − n

)
px−n(q)kx, x = n, n + 1, n + 2, . . . ,

which is a queue distribution indicating the stochastic law of the busy period for a single
server queue with negative binomial input. A particular case of this probability distribution
was discussed by Haight (1961).

(e) Let f (z) = (1 − θ)eλ(z−1)/(1 − θ z), g(z) = eθ(z−1) (θ < 1). These two generating
functions lead to

P(X = x) = (1 − θ)(λ + θx)x

x!
e−λ−θ x, x = 1, 2, 3, . . . ,

which is the linear Poisson distribution (model (10), Table 2.4), and is a queue distribution
representing the number of customers served during the busy period for a single server
queue under certain conditions.

(f) Let f (z) = eθ(z−1), g(z) = eλ(z−1) (λ < 1). These two generating functions lead to

P(X = x) = θ(θ + λx)x−1

x!
e−θ−λx, x = 0, 1, 2, . . . ,

which is the GPD defined and studied in chapter 9. Thus, the GPD represents the distribu-
tion of the number of customers served in a busy period when the arriving customers have
a Poisson distribution and the number of customers waiting, before the service begins, also
has a Poisson distribution.

6.4 Stochastic Model of Epidemics

An important problem in the theory of epidemics is finding the probability distribution of the
total number N(u) of infected anywhere in the habitat, starting from those infected by a single
infectious individual at location u and up to the time of extinction of the epidemic.

Neyman and Scott (1964) discussed a stochastic model for epidemics. They assumed that
the number ν(u) of susceptibles infected by an infectious individual depends on the location of
u of the infectious in the habitat. They also assumed that an individual infected at one point, say
u, of the habitat does not usually remain at the point through his incubation period but moves
away and becomes infectious himself at a different point X , where X is a random variable with
its own probability distribution. With this set up, a stochastic model for epidemics appears as
an extension of the branching process discussed in section 6.2.

Let g(z|u) be the pgf of the number ν(u) of susceptibles who would be infected at point u
if there is an infectious individual. Neyman (1965) assumed that g(z|u) = g(z) is independent
of u and showed that

G(z) = g(zG(z)) = g(τ ),

where τ = zG(z) = zg(τ ), and G(z) is the pgf of the random variable N , the number of
infected individuals before the extinction of the epidemics.

Under the transformation τ = zg(τ ), we expand g(τ ) as a power series in z. This gives
the basic Lagrangian distribution defined in (2.2). If the epidemics started with X0 = M , a
constant, the distribution of N , the number of infected individuals before the extinction of the
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epidemic is the delta Lagrangian distribution defined in (2.4). If the epidemic started with a r.v.
X0, which has a pgf f (z), the distribution of N is the general Lagrangian distribution defined
in (2.7).

Consul and Shoukri (1988) considered an epidemic example in which tourists arrive at
different destinations into a country. The number of tourists is assumed to be large and the
probability that a tourist carries an infectious bacteria is very small. Each infectious tourist
comes in contact with a large number of persons in the country who are susceptible to infection.
Upon contact with the population of susceptible, each infected tourist may infect a random
number of susceptible. Consul and Shoukri assumed that the probability distribution of the
number of persons who get infected among the susceptible is a Poisson random variable whose
pgf is g(z) = eλ(z−1).

Suppose X0 = 1 with probability 1. Then f (z) = z and the probability distribution of the
total number of infected individuals is

P(Y = y|X0 = 1) = (λy)y−1e−λy

y!
, y = 1, 2, 3, . . . ,

which is known as the Borel distribution.
Suppose X0 = M with the probability 1. Then f (z) = zM and the probability distribution

of the total number of infected individuals is

P(Y = y|X0 = M) = M

(y − M)!
yy−M−1λy−M e−λM , y = M, M + 1, M + 2, . . . ,

which is known as the Borel–Tanner distribution.
Suppose X0 is a random variable with pgf f (z) = eθ(z−1), and the probability distribution

of the total number of infected individuals is given by the generalized Poisson distribution
defined and studied in chapter 9.

Kumar (1981) considered an application in which g(z) = (q + pz)m and the epidemic is
initiated by a random number of infected individuals having a binomial distribution, given by
the pgf f (z) = (q + pz)m. The distribution of the total number infected before the epidemic
dies out is

P(Y = y) = m

m + my

(
m + my

y

)
pyqm+my−y, y = 0, 1, 2, . . . ,

which is a special case of the generalized negative binomial distribution.

6.5 Enumeration of Trees

Cayley (1857) was the first to discuss the mathematical theory of trees. Henze and Blair (1931)
developed recursive formulas for counting the number of rooted trees having the same number
of vertices, where the number of branches at a vertex is at most four, except for a root vertex
which has at most three branches. Pólya (1937) used power series as generating functions to
study the number of rooted trees. Pólya’s work is mainly concerned with trees and rooted trees,
which are of interest to chemists.

Otter (1948, 1949) discussed the use of generating functions and the Lagrange expansion
to study the enumeration of trees.
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A tree is defined as any finite, connected topological graph without cycles. A vertex or a
node of a tree is an end point of a line segment occurring in the tree. A rooted tree is one
in which exactly one vertex, called the root, is distinguished from all other nodes in the tree.
The ramification number of a vertex is the number of line segments which have that vertex in
common. Otter (1948) considered trees and rooted trees where the ramification number of each
vertex is not greater than a certain arbitrarily selected positive integer.

The root of a tree is generally said to be in the zeroth generation. A node is said to be in
the kth generation (k = 1, 2, . . . ) if it is connected to one in the (k − 1)th generation. If P is
a node in the kth generation, then the set of nodes in the (k + 1)th generation to which P is
connected is called the litter of P .

Good (1965) discussed the various types of trees. He distinguished between Cayley’s trees
and ordered trees and noted that the Lagrange expansion is applicable only to ordered trees. An
ordered tree is a rooted tree embedded in a plane. For an ordered tree, the order from left to
right within each generation is important. Two trees with different orderings are not identical.

Consider ordered trees in which there is no constraint on the size of a litter. Suppose the
enumeration (probability) generating function (pgf) for a litter is g(z). Let the pgf for the num-
ber of nodes in the whole tree be denoted by G(z). The subtrees that start at the first, instead of
the zeroth, generation have the same pgf as G(z). If the root has exactly n children, the pgf for
the whole tree would be z[G(z)]n. Good (1965) showed that the pgf for the whole tree satisfies
the relation

G(z) = zg(G(z)) = u, say.

Thus u = zg(u), and on using the Lagrange expansion in (1.77) to expand g(u) as a power
series in z, we get the basic Lagrangian distribution provided in (2.2). Hence, the distribution
of number of nodes in the whole tree is that of Lagrangian probability distribution.

If a forest has X0 = M trees where M is a constant, the distribution of the number of nodes
in the M trees will be delta Lagrangian distribution given by (2.4). In a similar way, if the forest
has X0 trees, where X0 is a random variable with pgf f (z), the distribution of the number of
nodes is the general Lagrangian distribution given in (2.7).

6.6 Cascade Process

Suppose a class of individuals gives rise seasonally to a number of new individuals, which will
be referred to as children. Let the probabilities of an individual having x(x = 0, 1, 2, . . . ) chil-
dren be denoted by Px (x = 0, 1, 2, . . . ). Good (1949) considered the number of individuals in
a cascade process by assuming that the probabilities Px (x = 0, 1, 2, . . . ) are the same for all
individuals and are independent. The individuals formed in one season are called a new gener-
ation, and only this generation can reproduce in the next season. Cascade process is similar to
branching process.

Let g(z) be the pgf of the number of children of an individual. Good (1949) showed that the
pgf of the number of individuals in the nth generation, given that there is exactly one individual
in the zeroth generation, is

g(g(g(· · · g(z) · · · ))) = gn(z),

where g1(z) = g(z) and gn+1(z) = g(gn(z)), n = 1, 2, 3, . . . . Let the total number of the
individuals in each generation be denoted by Xi (i = 0, 1, 2, . . . , n, . . . ). For the moment,
X0 = 1. The total number of descendants of an individual in the first n generation is
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Un = X1 + X2 + · · · + Xn .

Let Gn(z) be the pgf of Un . The pgf of Un , the total number of descendants of an individual in
the first n generation of a cascade process, is given by

Gn(z) = g(zg(zg(· · · zg(z) · · · ))),
where

G(z) = G1(z) = g(z), and

Gn(z) = g(zGn−1(z)). (6.12)

On taking the limit in (6.12) as n increases, we obtain

G(z) = g[zG(z)] = g(τ ),

where τ = zG(z) = zg(τ ) and G(z) is the pgf of Un . Under the transformation τ = zg(τ ),
we expand g(τ ) as a power series in z. This gives the basic Lagrangian distribution provided
in (2.2).

Suppose there are X0 = M individuals in the zeroth generation. If M is a constant, then
f (z) = zM and the distribution of the total number of descendants of M individuals in the first
n generations is given by the delta Lagrangian distribution. If there are X0 individuals in the
zeroth generation, and X0 is a random variable with pgf f (z), the total number of descendants
is given by the general Lagrangian distribution in (2.7).

6.7 Exercises

6.1 Suppose the probability that an individual (in the zeroth generation) transmits a rumor
is p. If the individual transmits the rumor, it is picked up by a random number X1 of
individuals which make up the first generation. Each of the X1 including the originator
become transmitters to the second generation X2, and this process continues. Ultimately,
the rumor becomes extinct or dies down. Suppose the individuals in the first, second, . . .
generations have independent probability distribution whose pgf is g(t) = eλ(t−1). Find
the distribution, mean, and variance of the total number of individuals who picked up the
rumor.

6.2 Suppose there are k customers waiting for service in a queue at a counter when the service
is initiated. Suppose there are r additional customers, whose arrivals follow a negative
binomial distribution, before the end of the first busy period. Customers are joining the
queue under the condition of first-come, first-served, and service time is constant.
(a) If k is a random variable with negative binomial distribution, find the distribution,

mean, and variance of X = k + r , the total number of customers served in the first
busy period.

(b) If k is a constant, find the distribution, mean, and variance of X = k + r , the total
number of customers served in the first busy period.

(c) Using your result in (b) or otherwise, deduce the distribution for X = k + r if the
service is initiated by a single customer.
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6.3 Consider the relocation of five individuals who have been exposed to an infectious disease.
The probability that an individual from the group of five will be infected is p. Upon reloca-
tion to a large city, those who are infected can transmit the disease to X1 individuals in the
city. The process will continue until the disease dies out. Suppose X1, X2, X3, . . . are the
number of infected individuals of the first, second, third, . . . generations. If the distribution
of X1, X2, X3, . . . are independent Poisson with mean λ, find the distribution, mean, and
variance of the total number of individuals infected by the disease at the nth generation.

6.4 Consider a forest with X0 number of trees, where X0 is a random variable with Poisson
distribution. The X0 roots of the trees belong to the zeroth generation. Suppose there are
X1, X2, X3, . . . nodes in the first, second, third, . . . generations whose independent dis-
tribution is that of Poisson, whose mean differs from that of X0. Show that the probability
distribution of the total number of nodes in the forest at the nth generation is that of GPD.

6.5 The number of customers waiting in a single server queue, when the service begins, is
a random number N whose pgf is f (z). The arrivals during the service period of each
customer are independent and are identically distributed with pgf g(z), g(0) 	= 0. Let the
queue discipline be first-come, first-served, the service time for each customer be constant,
and X be the number of customers served in the busy period. Show that the probability
distribution of X is a Lagrangian distribution.

6.6 Show that the GPD represents the probability distribution of the number of customers
served in a busy period when the arrivals during the service period of each customer are
independent and have the same Poisson distribution, when queue discipline is first-come,
first-served, and when the number of customers waiting in the queue before the service
begins has another Poisson distribution.

6.7 Suppose that n customers are waiting for service in a queue with a single server when the
service begins. The arrivals for service during the service time of each customer are inde-
pendent of each other and are given by a binomial model with pgf g(z) = (q + pz)m , 0 <
p = 1 − q < 1, mp < 1. Obtain the probability distribution of the number of customers
served in the busy period. What additional conditions will be necessary to obtain the solu-
tion?

6.8 Let X0 be the total number of individuals at the zeroth generation of a cascade process.
The total number of descendants of each individual in the first n generations is Un =
X1 + X2 + · · · + Xn and g(t) = (1 − θ + θ t)m is the pgf of the number of children of an
individual.
(a) If X0 = 1, find the distribution of the total number of descendants.
(b) If X0 is a constant k, find the distribution of the total number of descendants.
(c) If X0 is a random variable with pgf f (t) = eθ(t−1), find the distribution of the total

number of descendants.
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Modified Power Series Distributions

7.1 Introduction

The class of modified power series distributions (MPSDs), represented by

P(X = x) = ax(φ(θ))x/h(θ), x ∈ T ⊂ N, (7.1)

and originally defined and studied by R. C. Gupta (1974), was described in section 2.3. It was
shown that all modified power series distributions (MPSDs) are linear exponential and that they
form a subclass of the class of Lagrangian probability distributions L( f ; g; x). Some important
probability models belonging to the MPSD class are given in Table 2.7. A truncated MPSD is
also a MPSD. The expressions for the mean µ and the variance σ 2, given in (2.44) and (2.45),
are

µ = E[X ] = φ(θ)h ′(θ)

φ′(θ)h(θ)
(7.2)

and

σ 2 = φ(θ)

φ′(θ)

dµ

dθ
. (7.3)

Gupta (1976) studied the application of MPSDs in genetics and derived a general expression
for the correlation coefficient between the number of boys and the number of girls when the
family size has a MPSD. This subclass of probability models has been studied in great detail
by numerous researchers. Some of the important research papers on this subject are by Consul
(1981, 1990c), Famoye and Consul (1989a), R. C. Gupta (1975a, 1975b, 1976, 1977, 1984),
P. L. Gupta (1982), P. L. Gupta and Singh (1981), R. C. Gupta and Singh (1982), R. C. Gupta
and Tripathi (1985), Jani (1978a,b), Jani and Shah (1979a, 1979b), Kumar and Consul (1980),
Patel and Jani (1977), and Tripathi et al. (1986).

Nikulin and Voinov (1994) considered a chi-square goodness-of-fit test for the MPSD.
R. C. Gupta and Tripathi (1992) developed statistical inferences concerning the parameters
of the MPSD based on samples from the corresponding length-biased MPSD model.

Johnson, Kotz, and Kemp (1992) have described some elementary properties of the MPSDs.
A more detailed description of the properties and the estimation of the MPSDs will be given in
this chapter.



122 7 Modified Power Series Distributions

7.2 Generating Functions

It has been shown in (2.33) that θ can be expressed as a function of φ(θ), say ψ(φ(θ)), by
means of the Lagrange expansion. Accordingly, the pgf of a r.v. X having a MPSD can be
written in the form

gX(t) = E
[
t X
]

=
∑
x∈T

t x ax(φ(θ))x/h(θ)

=
∑

x

ax(tφ(θ))x/h(θ)

= h {ψ(tφ(θ))}
h {ψ(φ(θ))} . (7.4)

The mgf MX (t) of a MPSD, if it exists, is given by

MX (t) = E
[
et X
]

=
∑
x∈T

(
et − 1 + 1)x) ax(φ(θ))x/h(θ)

=
∑

x

x∑
i=0

(
x
i

)
ax(φ(θ))x (et − 1

)x−i
/h(θ)

=
∞∑

i=0

∞∑
y=0

(
y + i

i

)
y! ay+i(φ(θ))y+i (et − 1

)y
/ [h(θ)y!] .

By expanding (et −1)y as a power series in t , Gupta and Singh (1982) obtained the mgf for
the MPSD as

MX (t) =
∞∑

s=0

t s

s!

∞∑
y=0

∞∑
i=0

(
y + i

i

)
y! ay+i(φ(θ))y+i S(s, y)/h(θ), (7.5)

where S(s, y) denote the Stirling numbers of the second kind, defined in subsection 1.2.4.

7.3 Moments, Cumulants, and Recurrence Relations

By differentiating the r th noncentral moment

µ′
r = [h(θ)]−1

∑
x∈T

xr ax(φ(θ))x (7.6)

on both sides with respect to θ , we get

dµ′
r

dθ
= 1

h(θ)

∑
x∈T

xr+1ax(φ(θ))x φ′(θ)

φ(θ)
− h ′(θ)

h2(θ)

∑
x∈T

xr ax(φ(θ))x

= φ′(θ)

φ(θ)
µ′

r+1 − h ′(θ)

h(θ)
µ′

r ,
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which gives the recurrence relation for noncentral moments as

µ′
r+1 = φ(θ)

φ′(θ)

dµ′
r

dθ
+ µ′

1µ
′
r , r = 0, 1, 2, . . . , (7.7)

where µ′
0 = 1.

By using a similar technique (see Exercises 7.1 and 7.2), Gupta (1974) obtained the fol-
lowing recurrence relations for the central moments µr , r = 1, 2, 3, . . . , and the ascending
factorial moments µ[r], r = 1, 2, 3, . . .

µr+1 = φ(θ)

φ′(θ)

dµr

dθ
+ r µ2µr−1, r = 1, 2, 3, . . . (7.8)

with µ0 = 1, µ1 = 0, and

µ[r+1] = φ(θ)

φ′(θ)

dµ[r]

dθ
+ µ[r](µ − r), r = 1, 2, 3, . . . . (7.9)

Noack (1950) proved a general relation between the noncentral moments and the cumulants
K j , j = 1, 2, 3, . . . , of any discrete probability distribution as

µ′
r =

r∑
j=1

(
r − 1
j − 1

)
µ′

r− j K j , r = 1, 2, 3, . . . . (7.10)

On differentiating (7.10) with respect to θ , we obtain

dµ′
r

dθ
=

r∑
j=1

(
r − 1
j − 1

){dµ′
r− j

dθ
K j + µ′

r− j
d K j

dθ

}
. (7.11)

By combining (7.7), (7.8), and (7.11), we get

r+1∑
j=1

(
r

j − 1

)
µ′

r+1− j K j

=
r∑

j=1

(
r − 1
j − 1

){[
φ(θ)

φ′(θ)

dµ′
r− j

dθ
+ µ′

1 µ′
r− j

]
K j + φ(θ)

φ′(θ)
µ′

r− j
d K j

dθ

}
.

By using (7.7) and keeping only the (r + 1)th term on the left side, Gupta (1974) obtained the
recurrence relation

Kr+1 = φ(θ)

φ′(θ)

r∑
j=1

(
r − 1
j − 1

)
µ′

r− j
d K j

dθ
−

r∑
j=2

(
r − 1
j − 2

)
µ′

r+1− j K j (7.12)

for r = 1, 2, 3, . . . , between the cumulants and the noncentral moments of the MPSD.
Also, the mgf in (7.5) provides the r th moment about the origin as

µ′
r =

r∑
x=0

∞∑
i=0

ax+i
(x + i)!

i !

(φ(θ))x+i

h(θ)
S(r, x), (7.13)

and the r th ascending factorial moment as

µ[r] =
∞∑

i=0

ar+i (r + i)!

i !

(φ(θ))r+i

h(θ)
. (7.14)
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Negative and Incomplete Moments

Suppose a discrete r.v. X has a MPSD with φ(0) = 0 and let k be a nonnegative number such
that k + x 	= 0 for x ∈ T . We define the rth negative moment of X by

M(r, k) = E(X + k)−r =
∑
x∈T

axφ
x(θ)

(x + k)r h(θ)
. (7.15)

By differentiating (7.15) with respect to θ, we get

M ′(r, k) =
∑
x∈T

ax

(x + k)r

φx (θ)

h(θ)

{
x

φ′(θ)

φ(θ)
− h ′(θ)

h(θ)

}

= φ′(θ)

φ(θ)
M(r − 1, k) −

{
kφ′(θ)

φ(θ)
+ h ′(θ)

h(θ)

}
M(r, k).

After rearrangement, the above gives the linear differential equation

M ′(r, k) + M(r, k)

{
kφ′(θ)

φ(θ)
+ h ′(θ)

h(θ)

}
= φ′(θ)

φ(θ)
M(r − 1, k). (7.16)

On multiplying (7.16) by the factor h(θ)φk(θ) and integrating from 0 to θ , Kumar and Consul
(1979) obtained the recurrence relation for successive negative moments as

M(r, k) = 1

h(θ)φk(θ)

∫ θ

0
M(r − 1, k)φ′(θ)h(θ)φk−1(θ)dθ (7.17)

for r = 1, 2, 3, . . . , and where M(0, k) = E(X + k)0 = 1.
From (7.17),

M(1, k) = E[(X + k)−1] =
∫ θ

0 φ′(θ)h(θ)φk−1(θ)dθ

h(θ)φk(θ)
. (7.18)

Let X be a r.v. defined over a subset of the set of real numbers with distribution function
F(·). Then

µ′
r (t) =

∫ t

−∞
xr d F(x) (7.19)

is called the r th incomplete moment of X . The r th incomplete moment for the MPSD in (7.1)
is given by

µ′
r (t) =

t∑
x=1

xr axφ
x (θ)/h(θ). (7.20)

By differentiating both sides of (7.20) with respect to θ , Tripathi, Gupta, and Gupta (1986)
obtained a recurrence relation between the incomplete moments as

µ′
r+1(t) = φ(θ)

φ′(θ)

dµ′
r(t)

dθ
+ µ′

1 µ′
r (t). (7.21)
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Let the r th incomplete ascending factorial moment for MPSD be given by

µ[r](t) =
t∑

x=1

x [r] axφ
x (θ)/h(θ), t ≥ r. (7.22)

By differentiating both sides of (7.22) with respect to θ, a recurrence relation between the
incomplete ascending factorial moments for MPSD (Tripathi, Gupta, and Gupta 1986) is

µ[r+1](t) = φ(θ)

φ′(θ)

dµ[r](t)

dθ
+ µ[r](t){µ − r}. (7.23)

Jani and Shah (1979b) considered a situation where the observations corresponding to x =
1 are sometimes erroneously misclassified as those corresponding to x = 0 with probability α,
0 ≤ α ≤ 1. They obtained recurrence relations for moments about the origin, moments about
the mean, and factorial moments of such a model with misclassification.

7.4 Other Interesting Properties

Theorem 7.1. A necessary and sufficient condition for the variance of a random variable hav-
ing MPSD to equal its mean for all values of θ is

h(θ) = c. exp(kφ(θ)), (7.24)

where k > 0 and c are arbitrary constants and where h(θ) generates the Poisson distribution.

We shall prove only the necessary part, as the sufficient part is straightforward.

Proof. Condition is necessary. If the mean and variance are equal, then µ = µ2, which gives

µ = φ(θ)

φ′(θ)

dµ

dθ
. (7.25)

On using (7.2) in (7.25), the expression can be written in the form

[
1 − d

dθ

φ(θ)

φ′(θ)

]
φ(θ)

φ′(θ)

d

dθ
ln h(θ) =

(
φ(θ)

φ′(θ)

)2 d2 ln h(θ)

dθ2
,

i.e.,
d2 ln h(θ)

dθ2

/
d ln h(θ)

dθ
= φ′(θ)

φ(θ)

[
1 − d

dθ

(
φ(θ)

φ′(θ)

)]
. (7.26)

On integrating (7.26) with respect to θ , we have

ln

{
d

dθ
ln h(θ)

}
= ln φ(θ) − ln

(
φ(θ)

φ′(θ)

)
+ ln k,

where k > 0 is an arbitrary constant. On taking the antilog of the above,

d

dθ
ln h(θ) = kφ′(θ). (7.27)
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On integrating (7.27) with respect to θ , we obtain

ln h(θ) = kφ(θ) + d1,

where d1 is an arbitrary constant and which gives the condition

h(θ) = c · exp(kφ(θ)) (with c = exp(d1)),

which represents a Poisson distribution. ��
Theorem 7.2. A MPSD has its variance greater than the mean if and only if

h(θ) = c · exp

{
k
∫

P(θ)φ′(θ)dθ

}
, (7.28)

where P(θ) > 0 is a monotone increasing function of θ.

Proof. Condition is necessary. By using (7.26) in the proof of Theorem 7.1, variance of a
MPSD is greater than its mean if

d2 ln h(θ)

dθ2

/
d ln h(θ)

dθ
>

φ′(θ)

φ(θ)

[
1 − d

dθ

(
φ(θ)

φ′(θ)

)]
,

which can be written in the form

d2

dθ2
ln h(θ)

/
d

dθ
ln h(θ) = φ′(θ)

φ(θ)
− φ′(θ)

φ(θ)

d

dθ

(
φ(θ)

φ′(θ)

)
+ P ′(θ)

P(θ)
, (7.29)

where P(θ) > 0 is a monotonically increasing function of θ so that P ′(θ) > 0. On integrat-
ing (7.29) with respect to θ , we get

ln

{
d

dθ
ln h(θ)

}
= ln φ(θ) − ln

(
φ(θ)

φ′(θ)

)
+ ln P(θ) + ln k

= ln{P(θ)φ′(θ) · k},
where k > 0 is an arbitrary constant. Thus,

d

dθ
ln h(θ) = k · P(θ)φ′(θ). (7.30)

On integrating (7.30) again, we obtain

ln h(θ) = k
∫

P(θ)φ′(θ)dθ + d1.

Thus

h(θ) = c · exp

{
k
∫

P(θ)φ′(θ)dθ

}
,

where c is an arbitrary constant. This completes the proof of the necessary part. ��
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Similarly, a MPSD has its variance smaller than the mean if and only if

h(θ) = c∗ · exp

{
k∗
∫

Q(θ)φ′(θ)dθ

}
, (7.31)

where k∗ > 0 and c∗ are arbitrary constants and Q(θ) > 0 is a monotone decreasing function
of θ . (See Exercise 7.4.)

Jani and Shah (1979a) obtained integral expressions for the tail probabilities of the MPSD
by proving the following theorem.

Theorem 7.3. For the MPSD defined by (7.1), there exists a family of absolutely continuous
distributions

f (z; x) =
⎧⎨
⎩

c(x; z)axφ
x (z)/h(z), 0 ≤ z < ρ,

0, otherwise,
(7.32)

where x ∈ T such that

q(x; θ) =
x∑

j=0

a jφ
j (θ)/h(θ) =

∫ ρ

θ

c(x; z)axφ
x (z)

h(z)
dz, (7.33)

if and only if h(ρ) = ∞. The function c(x; z) is given by

c(x; z)axφ
x (z) = φ′(θ)

φ(θ)

x∑
j=0

(µ − j )a jφ
j (θ), (7.34)

where µ is the mean of MPSD.

Proof. Suppose f (z; x) is a probability function such that (7.32) holds. Then

q(x; θ) =
∫ ρ

θ
f (z; x)dz =

∫ ρ

0
f (z; x)dz −

∫ θ

0
f (z; x)dz.

If θ → ρ, then

q(x; θ) → q(x; ρ) = 1 −
∫ ρ

0
f (z; x)dz = 0, (7.35)

which implies that h(ρ) = ∞.
The converse of (7.35) is straightforward. To prove (7.34), differentiate (7.33) with respect

to θ and use (7.2) to obtain

dq(x; θ)

dθ
= φ′(θ)

φ(θ)

x∑
j=0

( j − µ) a jφ
j (θ). (7.36)

On differentiating (7.35) with respect to θ , we get

dq(x; θ)

dθ
= − f (θ; x). (7.37)

By using (7.36) and (7.37), the result in (7.34) follows. ��
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7.5 Estimation

The MPSD as defined by (7.1) may have many other unknown parameters besides the parame-
ter θ . However, this section deals with the estimation of the parameter θ only.

7.5.1 Maximum Likelihood Estimation of θ

Let X1, X2, . . . , Xn be a random sample of size n from the MPSD (7.1) and let x̄ denote the
sample mean. The likelihood function L is given by

L =
n∏

i=1

{
axi φ

xi (θ)/h(θ)
}
. (7.38)

On differentiating the loglikelihood function ln L with respect to θ , we obtain the likelihood
equation for θ as

1

L

d L

dθ
= n

φ′(θ)

φ(θ)
(x̄ − µ(θ)) = 0. (7.39)

The solution of (7.39) is given by
x̄ = µ(θ). (7.40)

If µ(θ) is invertible, the MLE of θ, obtained by inverting (7.40), is given by

θ̂ = µ−1(x̄).

If µ(θ) is not invertible, one may solve (7.40) iteratively using the Newton–Raphson method.
Haldane and Smith (1956) showed that the amount of bias b(θ̂) of the MLE of any parameter
θ is given by

b(θ̂) = −(2n)−1B1 A−2
1 , (7.41)

where

A1 =
∑

x

1

P(X = x)

(
d P(X = x)

dθ

)2

and

B1 =
∑
x∈T

1

P(X = x)

(
d P(X = x)

dθ

)(
d2 P(X = x)

dθ2

)
.

Now,

A1 =
∑
x∈T

1

P(X = x)

(
d

dθ
P(X = x)

)2

=
∑
x∈T

P(X = x) ·
{

x
φ′(θ)

φ(θ)
− h ′(θ)

h(θ)

}2

=
(

φ′(θ)

φ(θ)

)2∑
x∈T

(x − µ′
1)

2 P(X = x)

=
(

φ′(θ)

φ(θ)

)2

µ2. (7.42)
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Also

B1 =
∑
x∈T

1

P(X = x)

(
d

dθ
P(X = x)

)(
d2

dθ2
P(X = x)

)

=
∑
x∈T

(
x
φ′(θ)

φ(θ)
− h ′(θ)

h(θ)

)3

P(X = x)

+
∑
x∈T

(
x
φ′(θ)

φ(θ)
− h ′(θ)

h(θ)

)[
x
φ(θ)φ′′(θ) − (φ′(θ))2

(φ(θ))2
− h(θ)h ′′(θ) − (h ′(θ))2

(h(θ))2

]
P(X = x)

=
∑
x∈T

(
φ′(θ)

φ(θ)

)3

(x − µ′
1)

3 P(X = x)

+
∑
x∈T

φ′(θ)

φ(θ)
(x − µ′

1) · x · φ(θ)φ′′(θ) − [φ′(θ)]2

[φ(θ)]2
· P(X = x)

=
(

φ′(θ)

φ(θ)

)3

µ3 +
(

φ′(θ)

φ(θ)

)3∑
x

(x − µ′
1)

2 P(X = x) · φ(θ)φ′′(θ) − [φ′(θ)]2

[φ(θ)]2

=
(

φ′(θ)

φ(θ)

)3
{

µ3 + φ(θ)φ′′(θ) − [φ′(θ)]2

[φ(θ)]2
µ2

}
, (7.43)

where µ3 = φ(θ)
φ′(θ)

dµ2
dθ .

By using (7.42) and (7.43) in (7.41), the bias of θ̂ becomes

b(θ̂) = −1

nµ2
2

φ(θ)

φ′(θ)

{
µ3 + φ(θ)φ′′(θ) − [φ′(θ)]2

[φ′(θ)]2
µ2

}
. (7.44)

The MLE θ̂ is unbiased when B1 = 0, i.e., when

µ3 = φ(θ)

φ′(θ)

dµ2

dθ
= −{φ(θ)φ′′(θ) − [φ′(θ)]2}

[φ′(θ)]2
µ2. (7.45)

Equation (7.45) yields
1

µ2

dµ2

dθ
= −φ′′(θ)

φ′(θ)
+ φ′(θ)

φ(θ)
,

and on integration with respect to θ , we obtain

ln µ2 = − ln φ′(θ) + ln φ(θ) + ln k

= ln

(
φ(θ)

φ′(θ)
k

)
.

Thus
µ2 = k φ(θ)/φ′(θ), (7.46)
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where k is a constant independent of θ . A necessary and sufficient condition for the MLE θ̂ of
θ to be unbiased is that (7.46) hold.

The asymptotic variance of θ̂ is given by

V ar(θ̂) = φ(θ)

φ′(θ)

/[
n

dµ

dθ

]
. (7.47)

If ψ = ω(θ) is a one to one function of θ , then the MLE of ψ is given by

ψ̂ = ω(θ̂). (7.48)

The bias and the asymptotic variance of ψ̂ (see Exercise 7.5) are given, respectively, by

b(ψ̂) = −1

2nµ2
2

φ(θ)

φ′(θ)

dψ

dθ

{
µ3 − µ2

[
1 − φ(θ)φ′′(θ)

[φ′(θ)]2
+ φ(θ)

φ′(θ)

d2ψ

dθ2

/
dψ

dθ

]}
(7.49)

and

V ar(ψ̂) = φ(θ)

φ′(θ)

(
dψ

dθ

)2
/

(nµ2). (7.50)

7.5.2 Minimum Variance Unbiased Estimation

Let I r = {r, r + 1, r + 2, . . . }, where r is a nonnegative integer, and let T be such that T ⊆ I 0.
Let

Y =
n∑

i=1

Xi

be the sample sum. Then Y is a complete and sufficient statistic for θ in (7.1) and the distribu-
tion of Y (Kumar and Consul 1980) is also a MPSD given by

P(Y = y) = b(n, y)φy(θ)/hn(θ), y ∈ Dn, (7.51)

where
Dn =

{
y|y =

∑
xi , xi ∈ T, i = 1, 2, . . . , n

}
(7.52)

and
b(n, y) =

∑
ax1ax2 . . . axn .

The summation extends over all ordered n-tuples (x1, x2, . . . , xn) of integers xi ∈ T under the
condition

∑n
i=1 xi = y.

If 
(θ) is a given function of θ and there exists some positive integer n such that


(θ)hn(θ) =
∑
i∈En

c(n, i)φi(θ), (7.53)

where c(n, i) 	= 0 for i ∈ En ⊆ I 0, then we write 
(θ) ∈ L(n, φ(θ), h(θ)).
Kumar and Consul (1980) have given a necessary and sufficient condition for a function


(θ) to admit a unique minimum variance unbiased (MVU) estimator.
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Theorem 7.4. The function 
(θ) of the parameter θ in the MPSD (7.1) is MVU estimable if and
only if there exists a positive integer n such that 
(θ) ∈ L(n, φ(θ), h(θ)) and En ⊆ Dn, where
the sets Dn and En are defined in (7.52) and (7.53), respectively, and the MVU estimator f (y)
of 
(θ), when MVU estimable, is given by

f (y) =
{

c(n, y)/b(n, y), y ∈ En,

0, otherwise.
(7.54)

Proof. Necessary. Suppose 
(θ) is estimable. Then there exists a function f (y) of the sample
sum Y for some n ∈ I 1 such that

E{ f (y)} = 
(θ) for all θ. (7.55)

From (7.55) and (7.51), we have∑
y∈Dn

f (y)b(n, y)φy(θ) = 
(θ)hn(θ), (7.56)

which shows that 
(θ) ∈ L(n, φ(θ), h(θ)). By using (7.53), we rewrite (7.56) as∑
y∈Dn

f (y)b(n, y)φy(θ) =
∑
y∈En

c(n, y)φy(θ), (7.57)

where c(n, y) 	= 0 for y ∈ En . Therefore, for every y ∈ En , b(n, y) 	= 0, and so y ∈ Dn ,
which shows that En ⊆ Dn . On equating the coefficients of φy(θ) in (7.57),

f (y) =
{

c(n, y)/b(n, y), y ∈ En

0, otherwise.

Sufficiency. See Necessary. Suppose 
(θ) ∈ L(n, φ(θ), h(θ)) and En ⊆ Dn . From (7.53), we
have


(θ) =
∑
i∈En

c(n, i)φi(θ)/hn(θ)

=
∑
i∈En

c(n, i)

b(n, i)
· b(n, i)φi(θ)

hn(θ)
. (7.58)

From the distribution of Y in (7.51) and (7.54), we write (7.58) as


(θ) =
∑
i∈Dn

f (i)P(Y = i)

and so f (Y ) is an unbiased estimator of 
(θ). Since f (Y ) is a function of the complete and
sufficient statistic Y , it must be an MVU estimator for 
(θ). ��

MVU estimators of θ and some function 
(θ) have been derived by Gupta (1977) and by
Kumar and Consul (1980) for some members of the MPSD class. Gupta and Singh (1982)
obtained the MVU estimator for the probability function in (7.1) as

P

(
X = x |Y =

n∑
xi = y

)
=
{

axb(n − 1, y − x)/b(n, y), y ∈ (n − 1)[T ] + x,

0, otherwise.
(7.59)

Abu-Salih (1980) considered the resolution of a mixture of observations from two MPSDs.
The method of ML was used to identify the population of origin of each observation and to
estimate the population parameters.
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7.5.3 Interval Estimation

Famoye and Consul (1989a) considered the problem of interval estimation for θ in the class of
MPSD. Confidence intervals (CIs) (θ
, θu) for θ in small samples are obtained by solving the
equations

∞∑
x=y

axφ
x (θ
)/hn(θ
) = 1

2
α (7.60)

and
y∑

x=0

axφ
x (θu)/hn(θu) = 1

2
α, (7.61)

where y =∑n
i=1 xi .

CIs for θ in a large sample may be based on the statistic

W = (X̄ − µ)
√

n/σ, (7.62)

which converges stochastically to a normal distribution with mean zero and variance unity. The
upper bound θu and the lower bound θ
 are the solutions of the equations

x̄ − φ(θ)h ′(θ)

φ′(θ)h(θ)
± zα/2

(
φ(θ)

nφ′(θ)

dµ

dθ

)1/2

= 0, (7.63)

where zα/2 is the critical value from the normal probability tables.
The result in (7.63) is based on a single statistic X̄ . Famoye and Consul (1989a) also pro-

vided a CI for θ based on two statistics, the sample mean X̄ and the sample variance S2. A
two-sided 100(1 − α)% CI for θ in a large sample is obtained from

1 − α = Pr

{
X̄ − zα/2

S√
n

<
φ(θ)h ′(θ)

φ′(θ)h(θ)
< X̄ + zα/2

S√
n

}
. (7.64)

An advantage of (7.64) over (7.63) is that the inequality in (7.64) can often be solved alge-
braically for θ and the result can therefore be expressed in the form

1 − α = Pr{θl < θ < θu}, (7.65)

where (θl, θu) is the two-sided 100(1 − α)% CI for θ .

7.6 Some Characterizations

Gupta (1975b) gave a characterization of the MPSD by using a length-biased distribution. A
slightly different theorem is being given here.

Theorem 7.5. Let X be a discrete r.v. with a MPSD and let Y be the r.v. representing its length-
biased distribution. Then

P(Y = y) = y P(X = y)

µ
. (7.66)

If E(Y − 1) = E(X), then h(θ) = d exp(kφ(θ)), where k > 0 and d are arbitrary constants.
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Proof. By (7.66), the probability distribution of Y becomes

P(Y = y) = yayφ
y(θ)/h1(θ), y = 1, 2, 3, . . . , (7.67)

where h1(θ) = µ(θ)h(θ), where µ(θ) is the mean for the r.v. X . But (7.67) is itself a MPSD
with

E(Y ) = φ(θ)h ′
1(θ)

φ′(θ)h1(θ)
= µ(θ) + µ2/µ(θ), (7.68)

where µ2 is the variance of X .
From E(Y − 1) = E(X), we obtain

µ(θ) + µ2/µ(θ) − 1 = µ(θ).

Hence, µ2 = µ(θ) and by using Theorem 7.1, we get

h(θ) = d · exp(kφ(θ)).

��
Theorem 7.6. A discrete probability distribution is a MPSD if and only if the recurrence rela-
tion between its cumulants is

Kr+1 = φ(θ)

φ′(θ)

d Kr

dθ
, r = 1, 2, 3, . . . (7.69)

(Jani, 1978b).

Proof. Condition is necessary. We put φ(θ) = eu so that θ = ψ(φ(θ)) = ψ(eu) and h(θ) =
h{ψ(eu)} = G(u), say. By (7.4) the mgf MX (t) = M(t) becomes

M(t) = E[et X ] = h{ψ(et · eu)}
G(u)

= h{ψ(et+u)}
G(u)

= G(t + u)

G(u)
. (7.70)

Then, the cgf K (t, u) for the MPSD, with parameter u, is given by

K (t, u) = ln M(t) = ln G(t + u) − ln G(u).

On differentiation with respect to t ,

∂

∂t
K (t, u) = S(t, u)

= G′(t + u)

G(t + u)
= G1(t + u), say. (7.71)

Because of symmetry in G1(t + u) of t and u, one has(
∂

∂t

)r

G1(t + u) =
(

∂

∂u

)r

G1(t + u) = Gr
1(t + u), say.

Then

Kr =
{(

∂

∂t

)r

K (t, u)

}
t=0

= Gr−1
1 (u).
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Hence,

Kr+1 = Gr
1(u) = ∂

∂u
Kr , (7.72)

which is equivalent to

Kr+1 = φ(θ)
∂Kr

∂φ(θ)
(7.73)

and so

Kr+1 = φ(θ)

φ′(θ)

d Kr

dθ
.

Sufficiency. Now

S(t, u) = ∂

∂t
K (t + u) = ∂

∂t

∞∑
r=1

Kr tr/r ! =
∞∑

r=0

Kr+1tr/r !.

From (7.72),

Kr+1 =
(

∂

∂u

)r

K1.

By using the last result and the fact that K1 = S(0, u), equation (7.73) reduces to

S(t, u) =
∑(

∂

∂u

)r

{S(0, u)}tr/r !. (7.74)

Also, we have

S(t, u) =
∑{(

∂

∂t

)r

[S(t, u)]

}
t=0

tr/r !. (7.75)

From (7.74) and (7.75), we have the identity(
∂

∂u

)r

S(0, u) =
{(

∂

∂t

)r

[S(t, u)]

}
t=0

. (7.76)

By substituting u = 0 in (7.76) and using the equivalence of two power series expansions, we
have

S(0, u) = S(u, 0) = m(u), say.

With the transformation u = c + u′, where c is an arbitrary constant and applying the same
argument for (7.76), we obtain

S(0, c + u′) = S(u′ + c).

Thus, S(t, u) = m(t + u). On integrating both sides of this equation with respect to t , we have∫
S(t, u)dt =

∫
m(t + u)dt

or
K (t, u) = M(t + u) − M(t), (7.77)

where M is any functional relation. By the properties of transforms, a distribution with cgf
of the form (7.77) is MPSD when the random variable is of discrete type. This completes the
proof. ��
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Theorem 7.7. Let X1, X2, . . . , Xn be n i.i.d. nonnegative integer-valued r.v.s such that∑n
i=1 Xi = Y . For any x and each fixed y, the conditional probability of X1 at X1 = x

for given Y = y is

P(X1 = x | Y = y) = axb(n − 1, y − x)/b(n, y), 0 ≤ x ≤ y,

and where
b(n, y) =

∑
ax1ax2 . . . axn

and the summation extends over all ordered n-tuples (x1, x2, . . . , xn) of integers under the
condition

∑n
i=1 Xi = Y = y, if and only if X1 follows the MPSD (Jani (1985)).

Proof. Condition is necessary. The random variables X1, X2, . . . , Xn are i.i.d. as (7.1). By
using (7.59),

P(X1 = x | Y = y) = P(X1 = x, Y = y)

P(Y = y)
= P(X1 = x) P(Y − X1 = y − x)

P(Y = y)

=
[
ax (φ(θ))x /h(θ)

] [
b(n − 1, y − x) (φ(θ))y−x / (h(θ))n−1]

b(n, y) (φ(θ))y / (h(θ))n

= ax b(n − 1, y − x)/b(n, y).

Sufficiency. Let P(X1 = x) = f (x) > 0 and
∑∞

x=0 f (x) = 1, and P(Y = y) = g(y) >
0, P(Y − X1 = y − x) = g(y − x) > 0; 0 ≤ x ≤ y. The conditional probability gives

P(X1 = k | Y = y) = f (k) g(y − k)

g(y)
= ak b(n − 1, y − k)

b(n, y)
,

which holds for all values of k ≤ y and for all values of y. For y ≥ 1 and 0 ≤ k ≤ y, the above
yields the functional relation

f (k) g(y − k)

f (k − 1) g(y − k + 1)
= ak

ak−1

b(n − 1, y − k)

b(n − 1, y − k + 1)
. (7.78)

By replacing k and y by k + 1 and y + 1, respectively, in (7.78) and by dividing it by (7.78),
one gets f (k + 1) f (k − 1)/[ f (k)]2 on the left-hand side and a messy expression on the right-
hand side. Since the left-hand side is independent of y and n, the right-hand side must also be
independent of y and n. Thus,

f (k + 1) f (k − 1)

[ f (k)]2
= ak+1 ak−1

(ak)2
. (7.79)

Putting k = 1, 2, 3, . . . , x − 1 in (7.79) and multiplying them together,

f (x)

f (x − 1)
= f (1)

f (0)

a0

a1

ax

ax−1
, x ≥ 1.

The above gives

f (x) = a0 f (1)

a1 f (0)

ax

ax−1
f (x − 1) =

(
a0 f (1)

a1 f (0)

)x ax

a0
f (0). (7.80)

The above relation (7.80) can be written as

f (x) = ax (φ(θ))x /h(θ),

where a0/ f (0) = h(θ). Since
∑∞

x=0 f (x) = 1, f (x) represents the MPSD. ��
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Theorem 7.8. Suppose X has a MPSD given by (7.1). Then

h ′(θ)

h(θ)
= c

φ′(θ)

φ(θ)
exp

{∫
ψ(θ)

φ′(θ)

φ(θ)
dθ

}
, (7.81)

where c is a constant and ψ(θ) = V ar(X)/E(X) (Gupta, 1977).

Proof. We have

ψ(θ) = µ2/µ
′
1 = h (θ)

h ′(θ)

dµ′
1

dθ
= 1 + φ(θ)

φ′(θ)

{
h ′′(θ) − h ′(θ)h ′(θ)

h ′(θ)h(θ)
− φ′′(θ)

φ′(θ)

}
.

On rearranging the above, we have

h ′′(θ) − [h ′(θ)]2

h ′(θ)h(θ)
= (ψ(θ) − 1)

φ′(θ)

φ(θ)
+ φ′′(θ)

φ′(θ)
,

which is equivalent to

d

dθ
ln

(
h ′(θ)

h(θ)

)
= ψ(θ)

φ′(θ)

φ(θ)
− d

dθ
ln φ(θ) + d

dθ
ln φ′(θ). (7.82)

On integrating (7.82) with respect to θ , we obtain

ln

(
h ′(θ)

h(θ)

)
=
∫

ψ(θ)
φ′(θ)

φ(θ)
dθ − ln φ(θ) + ln φ′(θ) + ln c

= ln

(
cφ′(θ)

φ(θ)

)
+
∫

ψ(θ)
φ′(θ)

φ(θ)
dθ,

which gives

h ′(θ)

h(θ)
= c

(
φ′(θ)

φ(θ)

)
exp

{∫
ψ(θ)

φ′(θ)

φ(θ)
dθ

}
.

��

7.7 Related Distributions

7.7.1 Inflated MPSD

Murat and Szynal (1998) studied the class of inflated MPSD where inflation occurs at any of
the support points. They gave expressions for the moments, factorial moments, and central mo-
ments. Furthermore, they considered the MLE of the parameters. They derived the distribution
of the sum of i.i.d. r.v.s from inflated MPSD with inflation point s. The results of Gupta, Gupta,
and Tripathi (1995) are special cases when the inflation point is at s = 0.

A discrete r.v. X is said to have an MPSD inflated at the point s if

P(X = x) =
⎧⎨
⎩

φ + (1 − φ)a(x) [g(θ)]x / f (θ), x = s,

(1 − φ)a(x) [g(θ)]x / f (θ), x 	= s,
(7.83)
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where 0 < φ ≤ 1, x is a nonnegative integer, f (θ) = ∑x a(x) [g(θ)]x and g(θ) are positive,
finite and differentiable, and the coefficients a(x) are nonnegative and free of θ .

Let m′
r , m′

(r), µ′
r denote the moments about zero, factorial moments, and central moments

of MPSD, respectively, and mr , m(r), µr denote the moments about zero, factorial moments,
and central moments of inflated MPSD, respectively. Murat and Szynal (1998) gave

mr = φsr + (1 − φ)m′
r ,

m(r) = φs(r) + φm′
(r),

µr = (1 − φ)φ(s − m′
1)
[
(1 − φ)r−1 − (−φ)r−1

]

+ (1 − φ)

r∑
j=2

(
r
j

) [
φ(m′

1 − s)
]r− j

µ′
j ,

where r ≥ 1.
The pgf G X (t) of inflated MPSD in terms of the pgf GY (t) of MPSD is given by

G X (t) = φt s + (1 − φ)GY (t).

The recurrence relation between the ordinary moments of inflated MPSD is

mr+1 = g(θ)

g′(θ)

dmr

dθ
+ m1mr

1 − φ
− φs

1 − φ

[
mr + sr−1(m1 − s)

]
.

For the factorial moments, we have

m(r+1) = g(θ)

g′(θ)

dm(r)

dθ
−
[

r − m1

1 − φ

]
m(r) + φ

1 − φ

[
s(r)(s − m1) + sm(r)

]
.

The recurrence relation between the central moments is

µr+1 = g(θ)

g′(θ)

[
dµr

dθ
+ r

dm1

dθ
µr−1

]
− φ(s − m1)

1 − φ
µr + φ

1 − φ
(s − m1)

r−1.

A special case of the inflated MPSD is the zero-inflated GPD given by s = 0 and the
MPSD is the restricted GPD in (9.77). Gupta, Gupta, and Tripathi (1996) studied the zero-
inflated GPD, which is useful for a situation when the proportion of zeros in the data is higher
or lower than that predicted by the GPD model (9.77). The three parameters of the model
are estimated by the method of maximum likelihood. Angers and Biswas (2003) considered
Bayesian analysis of zero-inflated GPD. They discussed some prior distributions and obtained
the posterior distributions by using Monte-Carlo integration.

7.7.2 Left Truncated MPSD

Let X be a r.v. having a left truncated MPSD given by

P(X = x) = axφ
x (θ)/h(r, θ), (7.84)

where x ∈ I r = {r, r + 1, r + 2, . . . } and h(r, θ) = ∑∞
x=r axφ

x(θ). If r is known, (7.84) is a
MPSD as it can be reduced to (7.1). For the rest of this section, we assume that r is an unknown
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truncation point. If X1, X2, . . . , Xn is a random sample from (7.84), then Y = ∑n
i=1 Xi and

Z = min(X1, X2, . . . , Xn) are jointly sufficient and complete statistics for the parameters θ
and r (Fraser, 1952). Kumar and Consul (1980) gave the joint distribution of (Y, Z) as

P(Y = y, Z = z) = [A(y, n, z) − A(y, n, z + 1)]

hn(r, θ)
φy(θ), (7.85)

z = r, r + 1, r + 2, . . . ; y = nz, nz + 1, . . . , and

A(y, n, z) =
∑

ax1ax2 · · · axn , (7.86)

where the summation extends over all ordered n-tuples (x1, x2, . . . , xn) under the conditions
xi ≥ z for i = 1, 2, . . . , n and

∑n
i=1 xi = y.

Kumar and Consul (1980) stated without proof the following theorem on the MVU estima-
tion of rm in a left truncated MPSD with unknown truncation point r .

Theorem 7.9. For a random sample of size n taken from the distribution (7.84), the MVU esti-
mator w(Y, Z) of the parametric function rm, m ∈ I ′, is given by

w(Y, Z) = Zm − A(Y, n, Z + 1)

A(Y, n, Z) − A(Y, n, Z + 1)

m−1∑
i=1

(
m
i

)
Zi . (7.87)

Proof. By Rao–Blackwell and Lehmann–Scheffe theorems, w(Y, Z) is the unique MVU esti-
mator of rm . From the unbiasedness property,

E{w(Y, Z)} = rm

for all θ and every r ≥ 1. From (7.85), we obtain∑
y=rn

∑
z=r

w(y, z){A(y, n, z)− A(y, n, z + 1)} φy(θ)

=
∑
y=rn

∑
z=r

rm{A(y, n, z) − A(y, n, z + 1)} φy(θ),

which holds if and only if

[y/n]∑
z=r

w(y, z){A(y, n, z)−A(y, n, z+1)} =
[y/n]∑
z=r

rm{A(y, n, z)−A(y, n, z+1)} = rm A(y, n, r)

(7.88)
with A(y, n, [y/n] + 1) = 0. By replacing r in (7.88) with r + 1, we have

[y/n]∑
z=r+1

w(y, z){A(y, n, z)− A(y, n, z + 1)} = (r + 1)m A(y, n, r + 1). (7.89)

On subtracting (7.89) from (7.88), we obtain

w(y, r){A(y, n, z)− A(y, n, z + 1)}

= rm{A(y, n, r) − A(y, n, r + 1)} − A(y, n, r + 1)

m−1∑
i=0

(
m
i

)
r i ,
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which holds for every r ≥ 1. Hence, we obtain the estimator w(Y, Z) for rm as

w(Y, Z) = Zm − A(Y, n, Z + 1)

A(Y, n, Z) − A(Y, n, Z + 1)

m−1∑
i=0

(
m
i

)
Zi .

��
Theorem 7.10. The function l(θ) of the parameter θ in a left truncated MPSD is MVU es-
timable if l(θ) has a power series expansion

l(θ) =
∑
i∈E

aiφ
i (θ), E ⊆ I 0;

and for any random sample of size n, the MVU estimator f (Y, Z) of the function l(θ) is given
by

f (Y, Z) =
∑Y

i=nZ η(Y − i)A(i, n, Z) −∑Y
i=n(Z+1) η(Y − i)A(i, n, Z + 1)

A(Y, n, Z) − A(Y, n, Z + 1)
(7.90)

for Y = nZ, nZ + 1, . . . , Z = r, r + 1, . . . , where

η(i) =
{

ai , if i ∈ E,

0, otherwise,

and A(Y, n, Z) is given by (7.86).

The above theorem was given by Kumar and Consul (1980) and its proof is similar to the proof
of Theorem 7.9 (see Exercise 7.7).

Jani (1978b) proved a theorem on the MVU estimator of the probability of left truncated
MPSD.

Theorem 7.11. Whenever the MVU estimator P(Y, Z) of the left truncated MPSD defined in
(7.84) exists, it is given by

P(Y, Z) = a(r){A(Y − r, n − 1, Z) − A(Y − r, n − 1, Z + 1)}
A(Y, n, Z) − A(Y, n, Z + 1)

(7.91)

for Y = nZ, nZ + 1, . . . , Z = r, r + 1, . . . and zero otherwise.

Proof. By the condition of unbiasedness,

E{P(Y, Z)} = P(X = x).

By using (7.85) and (7.86), we obtain∑
y=nr

∑
z=r

P(y, z){A(y, n, z)− A(y, n, z + 1)}φy(θ)

=
∑
y=nr

∑
z=r

ar {A(y, n − 1, z) − A(y, n − 1, z + 1)}φy+r (θ)

=
∑
y=nr

∑
z=r

ar {A(y − r, n − 1, z) − A(y − r, n − 1, z + 1)}φy(θ).
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On equating the coefficients of φy(θ) on both sides of the above, we get

P(y, z){A(y, n, z)− A(y, n, z + 1)} = ar {A(y − r, n − 1, z) − A(y − r, n − 1, z + 1)}.
Hence, the MVU estimator is given by

P(Y, Z) =

⎧⎪⎨
⎪⎩

ar {A(Y−r,n−1,Z)−A(Y−r,n−1,Z+1)}
A(Y,n,Z)−A(Y,n,Z+1) ,

Y = nZ, nZ + 1, . . . ,

Z = r, r + 1, . . . ,

0, otherwise.

��
Remarks. The MPSD is a wide class consisting of restricted generalized Poisson distribution,
the generalized negative binomial distribution, and the generalized logarithmic series distri-
bution. Some of the results derived in this chapter will be used in subsequent chapters on
distributions that belong to the MPSD class.

7.8 Exercises

7.1 If X is a r.v. with a MPSD, show that a recurrence relation between the central moments
is given by

µr+1 = φ(θ)

φ′(θ)

dµr

dθ
+ rµ2µr−1,

where µ0 = 1, µ1 = 0, and r = 1, 2, 3, . . . .
7.2 For a MPSD, show that a recurrence relation between the factorial moments is given by

µ[r+1] = φ(θ)

φ′(θ)

dµ[r]

dθ
+ µ[r](µ[1] − r), r = 1, 2, 3, . . . .

7.3 If X has a MPSD with h(0) 	= 0, find E{(X + 1)−1}.
7.4 Prove that a MPSD has its variance smaller than the mean if and only if

f (θ) = exp

{
d + k

∫
φ(θ)φ′(θ)dθ

}
,

where k > 0 and d are arbitrary constants and φ(θ) > 0 is a monotone decreasing
function of θ .

7.5 Suppose � = ω(θ) is a one to one function of θ in a MPSD. Verify the expressions for
the bias b(�̂) in (7.49) and the asymptotic variance V ar(�̂) in (7.50).

7.6 For a MPSD, find the MVU estimators of φk(θ) and hk(θ).
7.7 Prove Theorem 7.10.
7.8 For a left truncated MPSD, show that the MVU estimator of φk(θ), whenever it exists, is

given by

ϕ(Y, Z) = A(Y − k, n, Z) − A(Y − k, n, Z + 1)

A(Y, n, Z) − A(Y, n, Z + 1)

for Y = nZ, nZ + 1, . . . , Z = r, r + 1, . . . , and zero otherwise.
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7.9 Describe the application of MPSDs in genetics considered by Gupta (1976), wherein he
obtained the correlation coefficient between the number of boys and the number of girls
when the family size has a MPSD.

7.10 By using the distribution in (7.83), write down the probability distribution for the zero-
inflated MPSD. Derive the recurrence relations between (i) the noncentral moments, and
(ii) the central moments of zero-inflated MPSD. Use your results to obtain the mean and
variance of zero-inflated MPSD.
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Some Basic Lagrangian Distributions

8.1 Introduction

Let g(z) be a successively differentiable function such that g(1) = 1 and g(0) 	= 0. The
function g(z) may or may not be a pgf. On applying the Lagrange expansion to the variable z
under the transformation z = ug(z), the basic Lagrangian distributions in (2.2) of chapter 2 is
obtained as

P(X = x) = 1

x!

[
Dx−1 (g(z))x

]
z=0

, x = 1, 2, 3, . . . . (8.1)

Examples of some important basic Lagrangian distributions are provided in Table 2.1 of chap-
ter 2. In this chapter three members of this family, the Geeta distribution, the Consul distrib-
ution, and the Borel distribution, are described in detail, as they appear to be more important
than others. These three distributions are L-shaped like the generalized logarithmic series dis-
tribution described in chapter 11.

8.2 Geeta Distribution

8.2.1 Definition

Suppose X is a discrete r.v. defined over positive integers. The r.v. X is said to have a Geeta
distribution with parameters θ and β if

P(X = x) =
⎧⎨
⎩

1
βx−1

(βx−1
x

)
θ x−1 (1 − θ)βx−x , x = 1, 2, 3, . . . ,

0, otherwise,
(8.2)

where 0 < θ < 1 and 1 < β < θ−1. The upper limit on β has been imposed for the existence
of the mean. When β → 1, the Geeta distribution degenerates and its probability mass gets
concentrated at the point x = 1. Consul (1990a) defined and studied some of the properties of
the model in (8.2).

The Geeta distribution is L-shaped (or reversed J -shaped) for all values of θ and β. Its
tail may be short or long and heavy depending upon the values of θ and β. The mean and the
variance of Geeta distribution are given by

µ = (1 − θ)(1 − θβ)−1 (8.3)
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and
σ 2 = (β − 1)θ(1 − θ)(1 − θβ)−3. (8.4)

Consul (1990b) defined the class of location-parameter discrete probability distributions
(LDPDs). By expressing the parameter θ in terms of µ in (8.3), the location-parameter form of
the Geeta distribution becomes

P(X = x) =
⎧⎨
⎩

1
βx−1

(βx−1
x

) ( µ−1
βµ−1

)x−1 (
µ(β−1)
βµ−1

)βx−x
, x = 1, 2, 3, . . . ,

0, otherwise,
(8.5)

where the parameters are µ ≥ 1 and β > 1. Consul (1990b) showed that the Geeta distribution
is characterized by its variance σ 2 = (β − 1)−1 µ(µ − 1)(βµ − 1), when the probability is
nonzero over all integral values of X . The Geeta distribution satisfies properties of both over-
dispersion and under-dispersion. The over-dispersion property is satisfied when the variance is
larger than the mean. Since

σ 2/µ = (β − 1)θ(1 − βθ)−2

and
∂

∂θ

[
σ 2

µ

]
= (β − 1)(1 + βθ)(1 − βθ)−3 > 0,

the quantity σ 2/µ is a monotonic increasing function of θ and its value varies from zero (at
θ = 1) to ∞ (at θ = β−1). Thus, for smaller values of θ , the Geeta distribution has under-
dispersion and for larger values of θ < β−1 it has over-dispersion. The variance σ 2 equals the
mean µ when

θ = 1

2

[
(3β − 1) +

√
(3β − 1)2 + 4β2

]
β−2.

8.2.2 Generating Functions

The Geeta distribution can be generated by using Lagrange expansion on the parameter θ(0 <
θ < 1) under the transformation θ = u(1 − θ)−β+1 for β > 1. This leads to

θ =
∞∑

x=1

ux

x!

[(
∂

∂θ

)x−1

(1 − θ)−βx+x

]
θ=0

,

i.e.,

θ =
∞∑

x=1

1

βx − 1

(
βx − 1

x

)
θ x (1 − θ)βx−x . (8.6)

On dividing (8.6) by θ , the quantity on the right-hand side is the sum of the Geeta distribution
probabilities in (8.2) and this sum is 1.

The pgf of a Geeta variate X , with parameters θ and β, is given by the Lagrange expansion
of

f (u) = z, where z = u(1 − θ)β−1(1 − θ z)−β+1, 1 < β < θ−1. (8.7)

By putting z = es and u = er in (8.7), one obtains the mgf for the Geeta distribution as

Mx(r) = es , where es = er(1 − θ)β−1(1 − θes)−β+1. (8.8)
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8.2.3 Moments and Recurrence Relations

All the moments of Geeta distribution exist if 0 < θ < 1 and 1 < β < θ−1. Using µk to denote
the kth central moment, Consul (1990a) obtained the following recurrence relations between
the central moments of Geeta distribution in (8.2):

µk+1 = θµ
dµk

dθ
+ kµ2µk−1, k = 1, 2, 3, . . . , (8.9)

where µ0 = 1, µ1 = 0, and µ2 = σ 2, as defined in (8.4). The third and the fourth central
moments are given by

µ3 = (β − 1)θ(1 − θ)(1 − 2θ + 2θβ − θ2β)(1 − θβ)−5 (8.10)

and
µ4 = 3µ2

2 + (β − 1)θ(1 − θ)A(1 − θβ)−7, (8.11)

where A = 1 − 6θ + 6θ2 + 2θβ(4 − 9θ + 4θ2) + θ2β2(6 − 6θ − 4θ2 + 5θ3).
For the Geeta distribution defined in (8.5), a recurrence relation between the central mo-

ments is given by

µk+1 = σ 2
{

dµk

dµ
+ kµk−1

}
, k = 1, 2, 3, . . . . (8.12)

On using (8.12), the third central moment for model (8.5) is

µ3 = σ 2(3βµ2 − 2βµ − 2µ + 1)(β − 1)−1, (8.13)

which is equivalent to (8.10).

8.2.4 Other Interesting Properties

Theorem 8.1 (Convolution Property). Suppose X1, X2, . . . , Xn are i.i.d. Geeta r.v.s, as
defined in (8.2). The sample sum Y =∑ Xi has a Geeta-n distribution given by

P(Y = y) =

⎧⎪⎨
⎪⎩

n
y

(βy−n−1
y−n

)
θ y−n(1 − θ)βy−y, y = n, n + 1, . . . ,

0, otherwise.

(8.14)

The Geeta-n distribution in (8.14) reduces to the Haight distribution when β = 2.

Proof. See Exercise 8.1.

Theorem 8.2 (Unimodality Property). The Geeta distribution is unimodal but not strongly
unimodal for all values of θ and β and the mode is at the point x = 1.

Proof. See Exercise 8.2.

The successive probabilities for the Geeta distribution in (8.5) can be computed by using
the recurrence relation



146 8 Basic Lagrangian Distributions

P(X = k + 1) =
k∏

i=1

(
1 + β

βk − i

)
µ − 1

µ

(
(β − 1)µ

βµ − 1

)β

· P(X = k), k = 2, 3, 4, . . . ,

(8.15)
where

P(X = 1) =
(

(β − 1)µ

βµ − 1

)β−1

(8.16)

and

P(X = 2) = µ − 1

µ

(
(β − 1)µ

βµ − 1

)2β−1

. (8.17)

8.2.5 Physical Models Leading to Geeta Distribution

Consul (1990c) gave two stochastic models for the Geeta distribution. He showed that the Geeta
distribution can be obtained as an urn model and that it is also generated as a model based on a
difference-differential equation.

An urn model. Let an urn A contain some white and black balls such that the probability of
drawing a black ball with replacement is θ . Thus, the probability of drawing a white ball is
1 − θ . As soon as a ball is drawn from urn A, it is returned to A and another ball of the same
color is put into an urn B which is initially empty before the first draw. A game is played under
the following conditions:

(a) The player selects a strategy by choosing an integer β ≥ 2.
(b) The player is allowed to draw balls one by one from urn A as long as the number of white

balls in urn B exceeds (β − 1) times the number of black balls in urn B and loses the game
as soon as this condition is violated.

(c) The player wins the game when the number of black and white balls in urn B are exactly
x − 1 and (β − 1)x , respectively, where x = 1, 2, 3, . . . .

Suppose P(X = x) is the probability that a player wins the game. Now, one can consider
the derivation of P(X = x) for the various values of x = 1, 2, 3, . . . . When x = 1,

P(X = 1) = P(drawing β − 1white balls and 0 black balls)
(8.18)

= (1 − θ)β−1θ0 = (1 − θ)β−1.

When x = 2,

P(X = 2) = P(drawing 2β − 2 white balls and 1 black ball such

that the black ball is drawn in the last β − 1 draws)
(8.19)

=
(

β − 1
1

)
θ1(1 − θ)2β−2 = (β − 1)θ(1 − θ)2β−2.

When x > 2, let the probability of drawing exactly (x − 1) black balls and y = βx − x white
balls be

P(X = x) = f (x − 1, y)θ x−1(1 − θ)y, (8.20)

where f (x −1, y) denotes the number of sequences in which y always exceeds (β −1)(x −1).
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To win the game with any number (x − 1) of black balls, by condition (c), the player has
to draw a total of (β − 1)x + x − 1 = βx − 1 balls. Let each one of the (β − 1)x white
balls be denoted by a (−1) and each of the black balls be denoted by a (+1). By condition (b),
the player stays in the game until his selection is such that the number of white balls in urn
B always exceeds (β − 1)(x − 1). Thus, the player must have selected [(β − 1)(x − 1) + 1]
white balls before drawing the (x − 1)th black ball. Therefore, the partial sum Sx of −1 and
+1 is ≤ x − 1 − [(β − 1)(x − 1) + 1] = (2 − β)(x − 1) − 1. So, the player stays in the game
as long as

Sx ≤ (2 − β)(x − 1) − 1, x = 1, 2, 3, . . . . (8.21)

Since y in (8.20) must always exceed (β − 1)(x − 1), we have

f (x − 1, y) = 0 for y ≤ (β − 1)(x − 1). (8.22)

The last draw in the game can either be a white ball (−1) or a black ball (+1). Therefore,

f (x − 1, y) = f (x − 2, y) + f (x − 1, y − 1), y > (β − 1)(x − 1) + 1, (8.23)

and
f (x − 1, y) = f (x − 2, y), y > (β − 1)(x − 1) + 1. (8.24)

We have the initial conditions
f (0, y) = f (1, 0) = 1. (8.25)

From (8.22), we have f (x − 1, (β − 1)(x − 1)) = 0.
The solution of the system of equations in (8.23) and (8.24) with the boundary conditions

in (8.25) is

f (x − 1, y) = y − (x − 1)(β − 1)

y + x − 1

(
y + x − 1

x − 1

)
. (8.26)

By using y = βx − x and (8.26) in (8.20), we obtain the probability that a player wins the
game as

P(X = x) = 1

βx − 1

(
βx − 1

x

)
θ x−1(1 − θ)βx−x, x = 1, 2, 3, . . . ,

which is the Geeta distribution in (8.2).

Model based on difference-differential equations. Consider a regenerative process which is
initiated by a single microbe, bacteria, or cell and which may grow into any number. Let the
probability of x cells in a location be Px(θ, β).

Theorem 8.3. If the mean µ for the distribution of the microbes is increased by changing θ to
θ + �θ in such a way that

d Px(θ, β)

dθ
+ x(β − 1)

1 − θ
Px (θ, β) = x − 1

x

(βx − x)[x−1](1 − θ)β−1

(βx − x − β + 1)[x−2]
Px−1(θ, β) (8.27)

for all integral values of x ≥ 1 with the initial conditions

P1(0, β) = 1 and Px(0, β) = 0 for x ≥ 2, (8.28)

then the probability model Px(θ, β) is the Geeta distribution, where a[k] = a(a + 1) · · · (a +
k − 1).



148 8 Basic Lagrangian Distributions

Proof. For x = 1, equation (8.27) becomes

d P1(θ, β)

dθ
+ β − 1

1 − θ
P1(θ, β) = 0,

which is a simple differential equation with the solution

P1(θ, β) = (1 − θ)β−1. (8.29)

For x = 2, equation (8.27) with (8.29) gives

d P2(θ, β)

dθ
+ 2(β − 1)

1 − θ
P2(θ, β) = (β − 1)(1 − θ)2β−2.

The solution to the above equation is

P2(θ, β) = (2β − 2)[1]θ(1 − θ)2β−2/2!. (8.30)

By putting x = 3 in equation (8.27) and by using (8.30), we obtain another linear differential
equation whose solution is

P3(θ, β) = (3β − 3)[2]θ2(1 − θ)3β−3/3!. (8.31)

By using the principle of mathematical induction, one can show that the solution for x = k is
given by

Pk(θ, β) = (βk − k)[k−1] θk−1(1 − θ)k(β−1)/k!

= 1

βk − 1

(
βk − 1

k

)
θk−1(1 − θ)βk−k,

which is the Geeta distribution defined in (8.2). ��

8.2.6 Estimation

Let a random sample of size n be taken from the Geeta distribution and let the observed fre-
quencies be denoted by nx , x = 1, 2, . . . , k, such that

∑k
x=1 nx = n. The sample mean and

sample variance are given, respectively, by

x̄ = n−1
k∑

x=1

xnx

and

s2 = (n − 1)−1
k∑

x=1

(x − x̄)2nx .

Three methods of estimation for the parameters µ and β in model (8.5) are given below.

Moment estimation. By equating the parameters µ and σ 2 with their corresponding sample
values x̄ and s2, one gets
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µ = x̄ and σ 2 = µ(µ − 1)(βµ − 1)(β − 1)−1 = s2,

which provide the moment estimates as

µ̃ = x̄ and β̃ =
[
s2 − x̄(x̄ − 1)

]/[
s2 − x̄2(x̄ − 1)

]
. (8.32)

The moment estimate β̃ of β is greater than 1 when s2 > x̄2(x̄−1). Thus, a necessary condition
for the applicability of the Geeta model to an observed data set is that

s2 > x̄2(x̄ − 1).

Method based on sample mean and first frequency. Let the estimates be denoted by µ∗ and β∗.
Equating P(X = 1) with the corresponding sample value,

(
1 − µ − 1

βµ − 1

)β−1

= n1

n
. (8.33)

On combining equation (8.33) with the condition µ∗ = x̄, one gets the expression

J (β) =
(

(β − 1)x̄

β x̄ − 1

)β−1

= n1

n
. (8.34)

On differentiating J (β) in (8.34) with respect to β,

d J (β)

dβ
= J (β)

{
x̄ − 1

β x̄ − 1
+ log

(
1 − x̄ − 1

β x̄ − 1

)}

= J (β)

{
−1

2

(
x̄ − 1

β x̄ − 1

)2

− 1

3

(
x̄ − 1

β x̄ − 1

)3

− · · ·
}

< 0.

Therefore, J (β) is a decreasing function of β and so equation (8.34) has a unique root and it
can be solved iteratively to obtain β∗. The initial value of β can be taken to be the moment
estimate β̃ of β in (8.32).

Maximum likelihood estimation. The log likelihood function for the Geeta distribution can be
written as

log L = nx̄ {(β − 1) log [µ (β − 1)] − β log (βµ − 1) + log (µ − 1)} + n {log (βµ − 1)

(8.35)

− log(µ − 1)} +
k∑

x=2

x∑
i=2

nx log(βx − i) −
k∑

x=2

nx log(x!).

On taking partial derivatives of (8.35) with respect to µ and β and equating to zero, one gets
the equations

∂ log L

∂µ
= (β − 1)x̄

µ
− β2 x̄

βµ − 1
+ x̄ − 1

µ − 1
+ β

βµ − 1
= 0 (8.36)



150 8 Basic Lagrangian Distributions

and

∂ log L

∂β
= nx̄ {log(β − 1) + log x̄ − log (β x̄ − 1)} +

k∑
x=2

x∑
i=2

xnx

βx − i
= 0. (8.37)

On simplification, equation (8.36) gives the ML estimate µ̂ of µ as

µ̂ = x̄ . (8.38)

Also, the relation (8.37) can be written in the form

G(β) = (β − 1)x̄

β x̄ − 1
= e−H(β), (8.39)

where

H(β) = 1

nx̄

k∑
x=2

x∑
i=2

xnx

βx − i
. (8.40)

The function H(β) is a monotonically decreasing function of β and so e−H(β) is a monotoni-
cally increasing function of β. Also, the function

G(β) = (β − 1) x̄/(β x̄ − 1) (8.41)

is a monotonically increasing function of β.
Thus the ML estimation of β will be the unique point of intersection of the graphs of (8.41)

and of e−H(β), where H(β) is given by (8.40). Alternatively, one can solve equation (8.39)
iteratively for β̂, the ML estimate of β. The moment estimate of β can be used as the initial
guess for parameter β.

Minimum variance unbiased estimation. Consul (1990a) gave the mvu estimates for some func-
tions of parameter θ , which are similar to the results obtained for the MPSD considered in
chapter 7.

8.2.7 Some Applications

(i) Suppose a queue is initiated with one member and has traffic intensity with negative bi-
nomial arrivals, given by the generating function g(z) = (1 − θ)β−1(1 − θ z)−β+1 and
constant service time. Then the Geeta distribution represents the probability that exactly x
members will be served before the queue vanishes.

(ii) In the branching process, discussed in section 6.2, started by a single member, let the
member before dying reproduce a certain number of new members with a probability given
by the negative binomial distribution, and each member of the new generation, before
dying, reproduces new members in the same manner. If the branching process continues
in this manner, then the probability distribution of the total progeny at the nth generation
is given by the Geeta model.

(iii) In the stochastic model of epidemics (section 6.4), let X0 = 1 with probability 1 and
let the number of new persons infected, among the susceptibles, by each infected person
be distributed according to the negative binomial distribution. If the process of infection
continues in this manner again and again, then the probability distribution of the total
number of persons infected at any given time will be given by the Geeta model.
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(iv) The Geeta model will be applicable to the sales and spread of fashions as well whenever
the conditions provided in (ii) and/or (iii) above are satisfied. Similarly, the probability
distributions of salespeople in dealerships like AVON or AMWAY, etc., where the process
gets started by a single dealer, will be the Geeta model if each dealer succeeds in enrolling
new members according to the negative binomial distribution.

8.3 Consul Distribution

8.3.1 Definition

A discrete r.v. X is said to have a Consul distribution if its probability function is given by

P(X = x) =
{

1
x

( mx
x−1

)
θ x−1(1 − θ)mx−x+1, x = 1, 2, 3, . . . ,

0, otherwise,
(8.42)

where 0 < θ < 1 and 1 ≤ m ≤ θ−1. The mean and the variance of the model exist when
m < θ−1. The Consul distribution reduces to the geometric distribution when m = 1. Famoye
(1997a) obtained the model in (8.42) by using Lagrange expansion on the pgf of a geometric
distribution and called it a generalized geometric distribution. He studied some of its properties
and applications.

The probability model (8.42) belongs to the class of location-parameter discrete distribu-
tions studied by Consul (1990b). This class of discrete distributions is characterized by their
variances.

The mean and variance of Consul distribution are given by

µ = (1 − θm)−1 and σ 2 = mθ(1 − θ)(1 − θm)−3. (8.43)

From the mean, one obtains the value of θ as θ = (µ − 1)/mµ. On using this value of θ
in (8.42), the Consul distribution can be expressed as a location-parameter discrete probability
distribution in the form

P(X = x) =
⎧⎨
⎩

1
x

( mx
x−1

) (µ−1
mµ

)x−1 (
1 − µ−1

mµ

)mx−x+1
, x = 1, 2, 3, . . . ,

0, otherwise,
(8.44)

where the mean µ > 1 and m ≥ 1. In the form (8.44), the variance of the Consul distribution is

σ 2 = µ(µ − 1)(mµ − µ + 1)/m. (8.45)

It can easily be shown from (8.43) that σ 2/µ = mθ(1 − θ)(1 − θm)−2 is a monotonically
increasing function of θ . Similarly, by (8.45) σ 2/µ = µ(µ − 1) − (µ − 1)2/m is also a
monotonically increasing function of µ as well as of m. Accordingly, the minimum value for
the ratio σ 2/µ is at the point m = 1 and the maximum value is when m → ∞. Thus, we have
that

µ − 1 ≤ σ 2/µ < µ(µ − 1). (8.46)

The Consul probability distribution satisfies the dual properties of under-dispersion and
over-dispersion. The model is under-dispersed for all values of m ≥ 1 when µ ≤ (

√
5 + 1)/2

and is over-dispersed for all values of m ≥ 1 when µ > 2. When (
√

5 + 1)/2 < µ < 2, the
Consul model is under-dispersed for 1 < m < (µ − 1)2(µ2 − µ − 1)−1 and over-dispersed
for m > (µ − 1)2(µ2 − µ − 1)−1. The mean and variance of the Consul distribution are equal
when µ = 2 and m = 1.
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8.3.2 Generating Functions

Let f (z) = (1 − θ)z(1 − θ z)−1 and g(z) = (1 − θ)m−1(1 − θ z)−m+1, m > 1, be two
functions of z where f (z) is the pgf of a geometric distribution and g(z) may or may not be a
pgf. It is clear that both functions f (z) and g(z) are analytic and are successively differentiable
with respect to z any number of times. Also, f (1) = g(1) = 1 and g(0) 	= 0. Under the
transformation z = ug(z), the function f (z) can be expressed as a power series expansion of u
by the Lagrange expansion to obtain

f (z) =
∞∑

x=1

ux

x

(
mx

x − 1

)
θ x−1(1 − θ)mx−x+1, (8.47)

which is the pgf for Consul distribution. Thus the pgf can be written as

h(u) = (1 − θ)z(1 − θ z)−1, where z = u(1 − θ)m−1(1 − θ z)−m+1. (8.48)

Another pgf for the Consul distribution is given by

h(u) = z, where z = u(1 − θ + θ z)m. (8.49)

The Consul distribution can also be obtained by taking the Lagrange expansion of the func-
tion θ(1 − θ)−1 (0 < θ < 1) under the transformation θ = u(1 − θ)−m+1 and then dividing
the series by θ(1 − θ)−1.

By putting z = es and u = eβ in (8.48), one obtains the mgf for the Consul distribution as

MX (β) = (1 − θ)es(1 − θes)−1 where es = eβ(1 − θ)m−1(1 − θes)−m+1. (8.50)

8.3.3 Moments and Recurrence Relations

All the moments of Consul distribution exist for 0 < θ < 1 and 1 ≤ m < θ−1. Let the kth
noncentral moment be denoted by µ′

k . This is given by

µ′
k = E(Xk) =

k∑
x=1

xk−1
(

mx
x − 1

)
θ x−1(1 − θ)mx−x+1. (8.51)

By differentiating (8.51) with respect to θ and simplifying the expression, one can obtain the
recurrence relation

µ′
k+1 = θ(1 − θ)(1 − θm)−1 dµ′

k

dθ
+ µ′

1 µ′
k, k = 0, 1, 2, . . . , (8.52)

where µ′
1 = (1 − θm)−1 as given by (8.43).

Denoting the kth central moment as µk , it can be shown that the recurrence relation between
the central moments for the Consul distribution is

µk+1 = θ(1 − θ)(1 − θm)−1 dµk

dθ
+ kµ2 µk−1, k = 1, 2, 3, . . . , (8.53)

where µ2 = σ 2 = mθ(1−θ)(1−θm)−3. The result (8.53) gives the third and the fourth central
moments for the Consul distribution as

µ3 = mθ(1 − θ)(1 − 2θ + 2θm − θ2m)(1 − θm)−5 (8.54)

and
µ4 = 3µ2

2 + mθ(1 − θ)A(1 − θm)−7, (8.55)

where A = 1 − 6θ + 6θ2 + 2θm(4 − 9θ + 4θ2) + θ2m2(6 − 6θ + θ2).
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8.3.4 Other Interesting Properties

Theorem 8.4. If X1, X2, . . . , Xn are i.i.d. r.v.s having Consul distribution, then their sample
sum Y =∑ Xi is a delta-binomial distribution given by

P(Y = y) =
⎧⎨
⎩

n
y

( my
y−n

)
θ y−n(1 − θ)my−y+n, y = n, n + 1, . . . ,

0, otherwise
(8.56)

(Famoye, 1997a).

Proof. Each Xi has the pgf h(u) = (1 − θ)z(1 − θ z)−1 where z = u(1 − θ)m−1(1 − θ z)−m+1.
Since the Xi ’s are i.i.d., the pgf of Y =∑ Xi is

{h(u)}n = (1 − θ)nzn(1 − θ z)−n where z = u(1 − θ)m−1(1 − θ z)−m+1.

The Lagrange expansion of [h(u)]n , under the transformation z = u(1 − θ)m−1(1 −
θ z)−m+1, gives

[h(u)]n = (1 − θ)nzn(1 − θ z)−n

=
∞∑

y=n

uy · n

y

(
my

y − n

)
θ y−n(1 − θ)my−y+n.

Since z = 1 when u = 1, the above leads to

1 =
∞∑

y=n

n

y

(
my

y − n

)
θ y−n(1 − θ)my−y+n,

which gives the probability distribution of Y =∑ Xi as (8.56). ��
Theorem 8.5 (Unimodality Property). The Consul distribution, defined in (8.42), is unimodal
but not strongly unimodal for all values of m ≥ 1 and 0 < θ < 1 and the mode is at the point
x = 1 (Famoye, 1997a).

Proof. Keilson and Gerber (1971) gave a necessary and sufficient condition for the sequence
{Px } to be strongly unimodal as

P2
x

/ [
Px−1 Px+1

] ≥ 1 for all values of x . (8.57)

Substituting the values of the probabilities in the above expression for x = 2 from the
Consul model (8.42), one gets

P2
2 P−1

1 P−1
3 = 2m(3m − 1)−1 < 1

for all values of m and θ . Therefore, the Consul distribution in (8.42) is not strongly unimodal
since it does not satisfy (8.57) even for x = 2.

When m = 1, the Consul distribution reduces to the geometric distribution which is uni-
modal. We shall now consider the unimodality when m > 1. For all values of x = 1, 2, 3, . . . ,
(8.42) gives
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Px+1

Px
= 1

x + 1

�(mx + m + 1) �(mx − x + 2)

�(mx + m − x + 1) �(mx + 1)
θ(1 − θ)m−1. (8.58)

But the function θ(1 − θ)m−1 is an increasing function of θ and it achieves its maximum as
θ → m−1. So,

max
θ

θ(1 − θ)m−1 = m−1
(

1 − 1

m

)m−1

.

By using this value in (8.58),

Px+1

Px
<

1

x + 1
· 1

m

(
1 − 1

m

)m−1 �(mx + m + 1) �(mx − x + 2)

�(mx + m − x + 1) �(mx + 1)

=
(

1 − 1

m

)m−1 mx + 1

mx + m

m∏
i=2

(
1 + x

mx − x + i

)

<

(
1 − 1

m

)m−1 mx + 1

mx + m

(
1 + x

mx − x + 2

)m−1

= mx + 1

mx + m

[(
1 − 1

m

)(
1 + x

mx − x + 2

)]m−1

= mx + 1

mx + m

(
1 − 2

m(mx − x + 2)

)m−1

< 1.

Therefore, the Consul distribution in (8.42) is unimodal with its mode at the point x = 1. Thus,
the model has a maximum at x = 1 and is L-shaped for all values of m and θ such that m ≥ 1
and 0 < θ < 1. ��
Theorem 8.6 (Limit of Zero-Truncated Model). The Consul distribution defined in (8.42) is
the limit of zero-truncated GNBD (Famoye, 1997a).

Proof. The zero-truncated GNBD is given by (10.121) in chapter 10. On taking the limit
of (10.121) as the parameter β → 1, we get

lim
β→1

fx(θ, β, m) = 1

x

(
mx

x − 1

)
θ x−1(1 − θ)mx−x+1,

which is the Consul distribution in (8.42). ��

8.3.5 Estimation

Famoye (1997a) obtained the moment estimates, the estimates based upon sample mean and
first frequency, and the ML estimates. Suppose nx , x = 1, 2, 3, . . . , k, are the observed fre-
quencies in a random sample of size n and let

n =
k∑

x=1

nx .
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The sample mean and sample variance are given by

x̄ = n−1
k∑

x=1

xnx (8.59)

and

s2 = (n − 1)−1
k∑

x=1

(x − x̄)2 nx . (8.60)

Moment estimation. By equating the sample mean in (8.59) and sample variance in (8.60) with
the corresponding population values in (8.45), the moment estimates are given by

µ̃ = x̄ (8.61)

and
s2 = σ 2 = µ̃(µ̃ − 1)(m̃µ̃ − µ̃ + 1)/m̃, (8.62)

which provides

m̃ = x̄(x̄ − 1)2
[
x̄2(x̄ − 1) − s2

]−1
. (8.63)

Since the moment estimate m̃ must be greater than or equal to 1, we have

x̄2(x̄ − 1) ≥ s2 ≥ x̄(x̄ − 1). (8.64)

In subsection 8.2.6, the corresponding estimate for parameter β in Geeta distribution is greater
than 1 when

s2 > x̄2(x̄ − 1). (8.65)

In applying either distribution to an observed data set, one has to compute x̄ and s2 from the
sample. If s2 ≥ x̄2(x̄ − 1), one should apply the Geeta model to the observed data set. If

x̄(x̄ − 1) ≤ s2 < x̄2(x̄ − 1),

the Consul distribution is more suitable. If s2 < x̄(x̄ − 1), then none of these models may be
applicable.

Method based on sample mean and first frequency. By equating the probability of x = 1 with
the corresponding sample proportion, one obtains

n1

n
= P1 = (1 − θ)m =

(
1 − µ − 1

mµ

)m

. (8.66)

On combining (8.66) with (8.61) and solving the two equations, we get

µ∗ = x̄

and

H(m) = m log

(
1 − x̄ − 1

mx̄

)
− log

(n1

n

)
= 0. (8.67)
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By expanding the log term into a series and by differentiation of (8.67),

∂ H(m)

∂m
=
{

1

2m2

(
x̄ − 1

x̄

)2

+ 2

3m3

(
x̄ − 1

x̄

)3

+ 3

4m4

(
x̄ − 1

x̄

)4

+ · · ·
}

> 0.

Hence, the root of equation (8.67) is unique. This equation can be solved iteratively to obtain
m∗, the estimate based on the sample mean and the first frequency. The initial estimate of m
for the iterative process can be taken as the moment estimate m̃ in (8.63).

Maximum likelihood estimation. The log likelihood function for the Consul distribution can be
written as

log L = n(x̄ − 1) log(µ − 1) + n(mx̄ − x̄ + 1) log(mµ − µ + 1)

− nmx̄ log(mµ) −
k∑

x=1

nx log(x!) +
k∑

x=2

x−2∑
i=0

nx log(mx − i). (8.68)

The partial derivatives of (8.68) with respect to µ and m are given by

∂ log L

∂µ
= x̄ − 1

µ − 1
+ (m − 1)(mx̄ − x̄ + 1)

mµ − µ + 1
− mx̄

µ
(8.69)

and

∂ log L

∂m
= x̄ log [(mµ − µ + 1) /mµ] + µ(mx̄ − x̄ + 1)

mµ − µ + 1
− x̄ + 1

n

k∑
x=2

x−2∑
i=0

xnx

mx − i
. (8.70)

On equating (8.69) to zero, it gives
µ̂ = x̄ (8.71)

as the ML estimate for parameter µ.
On equating (8.70) to zero, using (8.71) in (8.70) and on simplifying, we obtain

0 = log

(
1 − x̄ − 1

mx̄

)
+ 1

nx̄

k∑
x=2

x−2∑
i=0

xnx

mx − i
. (8.72)

Equation (8.72) can be rewritten as

mx̄ − x̄ + 1

mx̄
= e−H(m) = G(m),

where

H(m) = 1

nx̄

k∑
x=2

x−2∑
i=0

xnx

mx − i
. (8.73)

But the function G(m) = (mx̄ − x̄ + 1)/mx̄ is a monotonically increasing function of m as
m increases from m = 1 to m → ∞. Also, the function H(m) in (8.73) is a monotonically
decreasing function of m as m increases from m = 1 to m → ∞. Therefore, the function
G(m) = e−H(m) represents a monotonically increasing function over m = 1 to m → ∞. Since
e−H(m) and the function G(m) = (mx̄ − x̄ + 1)/mx̄ are both monotonically increasing over
the same values of m, the two functions can have at most a single point of intersection. Hence,
the ML estimate m̂ of m from (8.72) is unique.

By starting with the moment estimate m̃ as the initial value, the equation (8.72) is solved
iteratively to obtain the ML estimate m̂ of m.
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8.3.6 Some Applications

(i) Suppose a queue is initiated with one member and has traffic intensity with binomial
arrivals, given by the generating function g(z) = (1 − θ + θ z)m and constant service time.
Then the Consul distribution represents the probability that exactly x members will be
served before the queue vanishes.

(ii) In the branching process, discussed in section 6.2, started by a single member, let the
member before dying reproduce a certain number of new members with a probability
given by the binomial distribution and each member of the new generation, before dying,
reproduces new members in the same manner. If the branching process continues in this
manner, then the probability distribution of the total progeny at the nth generation is given
by the Consul model.

(iii) In the stochastic model of epidemics (section 6.4), let X0 = 1 with probability 1 and let
the number of new persons infected, among the susceptibles, by each infected person be
distributed according to the binomial distribution. The number of susceptibles is a finite
number m as used by Kumar (1981). If the process of infection continues in this manner
again and again, then the probability distribution of the total number of persons infected
at any given time will be given by the Consul model.

(iv) The Consul model will be applicable to the sales and spread of fashions as well whenever
the conditions provided in (ii) and/or (iii) above are satisfied. Similarly, the probability
distributions of salespeople in dealerships like AVON or AMWAY, etc., where the process
gets started by a single dealer, will be the Consul model if each dealer succeeds in enrolling
new members according to the binomial distribution.

(v) Molecular size distribution in polymers. Yan (1978) derived a molecular size distribution
in linear and nonlinear polymers. For the derivation, the following three assumptions were
made: (a) all functional groups A’s are equally reactive; (b) no intramolecular reactions
occur; (c) the weight of materials lost during condensation is negligible.
Let P(X = x) be the distribution of the number of an x-mer. Yan (1978) considered the
size distribution to be of the form of a generalized power series distribution given by

P(X = x) = ax [φ(θ)]x/ h(θ), x = 1, 2, 3, . . . ,

for ax ≥ 0, θ > 0, and h(θ) = ∑∞
x=1 ax [φ(θ)]x . The parameter θ is the fraction of

reacted functional groups.
For the condensation of an R Aβ monomer, consider the generating function φ(θ) = θ(1−
θ)β−2 and h(θ) = θ(1 − βθ/2)(1 − θ)−2. On using the Lagrange expansion in (2.34) on
h(θ) under the transformation φ(θ) = θ/η(θ), one obtains a Lagrange power series which
provides the pgf of the molecular size distribution.
Yan (1979) considered the condensation of ARBβ−1 monomers, where β is the number
of functional groups. In this condensation, A may react with B, but reactions between like
functional groups are excluded. Suppose the generating function φ(θ) = θ(1 − θ)β−2

and h(θ) = θ/(1 − θ). By using the Lagrange expansion in (2.34) on h(θ) under the
transformation φ(θ) = θ/η(θ), we obtain

P(X = x) = 1

x

(
(β − 1)x

x − 1

)
θ x−1(1 − θ)(β−1)x−x−1,

which is the Consul distribution in (8.42).
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8.4 Borel Distribution

8.4.1 Definition

A discrete random variable X is said to have the Borel distribution if its probability mass
function is given by

P(X = x) =
{

(xλ)x−1

x! e−λx , x = 1, 2, 3, . . . ,

0, otherwise,
(8.74)

where 0 < λ < 1. The probability distribution in (8.74) was first obtained by Borel (1942).
Suppose a queue is initiated with one member and has traffic intensity under the Poisson

arrivals and constant service time. Haight and Breuer (1960) pointed out that the Borel distri-
bution in (8.74) represents the probability that exactly x members of the queue will be served
before the queue vanishes.

The mean and variance of the distribution in (8.74) are given by

µ = (1 − λ)−1 and σ 2 = λ(1 − λ)−3. (8.75)

The Borel model satisfies the properties of under-dispersion and over-dispersion. There is over-
dispersion when λ satisfies the inequality 3/2 − √

5/2 < λ < 1. The model is under-dispersed
when λ < 3/2 − √

5/2. The mean and the variance are both equal when λ = 3/2 − √
5/2.

8.4.2 Generating Functions

The Borel distribution can be generated by using Lagrange expansion on parameter λ (0 <
λ < 1) under the transformation λ = ueλ. This leads to

λ =
∞∑

x=1

ux

x!

[(
∂

∂λ

)x−1

eλx

]
λ=0

,

which gives

λ =
∞∑

x=1

(xλ)x−1

x!
e−λx , (8.76)

which shows that the sum of the Borel distribution in (8.74) is 1.
The pgf of the Borel distribution is given by the Lagrange expansion of

f (u) = z, where z = ueλ(z−1), 0 < λ < 1. (8.77)

By putting z = es and u = eβ in (8.77), the mgf for Borel distribution becomes

MX (β) = es, where s = β + λ(z − 1). (8.78)
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8.4.3 Moments and Recurrence Relations

All the moments of the Borel distribution exist for 0 < λ < 1. Let µ′
k denote the kth noncentral

moment for the Borel distribution. Thus,

µ′
k = E

(
Xk
)

=
∞∑

x=1

xk (xλ)x−1

x!
e−xλ . (8.79)

On differentiating (8.79) with respect to λ and on simplifying the result, it gives the recur-
rence relation

µ′
k+1 = λ(1 − λ)−1 dµ

′
k

dλ
+ µ′

1µ
′
k, k = 0, 1, 2, . . . , (8.80)

where µ′
1 = (1 − λ)−1.

By using µk to denote the central moments, a recurrence relation between the central mo-
ments is given by

µk+1 = λ(1 − λ)−1 dµk

dλ
+ kµ2µk−1, k = 1, 2, 3, . . . , (8.81)

where µ2 = σ 2 is given by (8.75). The third and the fourth central moments can be obtained
by using (8.81) and these are given by

µ3 = λ(1 + 2λ)(1 − λ)−5 (8.82)

and
µ4 = λ(1 + 8λ + 6λ2)(1 − λ)−7 + 3µ2

2. (8.83)

By using the values of µ2, µ3, and µ4, the expressions for the coefficient of skewness (β1)
and kurtosis (β2) become

β1 = 1 + 2λ√
λ(1 − λ)

(8.84)

and

β2 = 3 + 1 + 8λ + 6λ2

λ(1 − λ)
. (8.85)

These values in (8.84) and (8.85) are similar to those obtained for the generalized Poisson
distribution in chapter 9. It is clear from (8.84) that the Borel distribution is always positively
skewed. From (8.85), it is clear that β2 is always greater than 3 and so the Borel distribution is
leptokurtic.

8.4.4 Other Interesting Properties

Theorem 8.7. Suppose X1, X2, . . . , Xn are i.i.d. r.v.s with Borel distribution in (8.74), and the
sample sum Y =∑ Xi has a Borel–Tanner distribution given by

P(Y = y) =
{

n
y

(λy)y−n

(y−n)! e−λy, y = n, n + 1, . . . ,

0, otherwise.
(8.86)

Proof. By using Lagrange expansion on f (u) = zn under the transformation z = eλ(z−1), one
can show that the distribution of Y =∑ Xi is the Borel–Tanner distribution.
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The Borel–Tanner distribution in (8.86) was given by Haight and Breuer (1960) as a proba-
bility model to describe the number of customers served in the first busy period when the queue
is initiated by n customers.

Theorem 8.8 (Unimodality Property). The Borel distribution is unimodal but not strongly
unimodal for all values of λ in 0 < λ < 1, and the mode is at the point x = 1.

Proof. See Exercise 8.9.

The successive probabilities for the Borel distribution can be computed by using the recurrence
relation

Px+1 =
(

1 + 1

x

)x−1

λ e−λ Px , x = 1, 2, 3, . . . , (8.87)

where P1 = e−λ.

8.4.5 Estimation

Suppose a random sample of size n is taken from the Borel distribution and let the observed
frequencies be denoted by nx , x = 1, 2, . . . , k, such that

∑k
x=1 nx = n. The sample mean is

given by x̄ = n−1∑k
x=1 xnx . We now provide three methods for estimating the parameter λ in

model (8.74).

Moment estimation. On equating the sample mean with the population mean, the moment esti-
mate λ̃ of λ is given by

λ̃ = 1 − 1

x̄
. (8.88)

Method based on first frequency. On equating P(X = 1) to the corresponding sample propor-
tion,

n1

n
= P1 = e−λ,

which gives the first frequency estimate of λ as

λ∗ = log

(
n

n1

)
. (8.89)

Maximum likelihood estimate. The log likelihood function for the Borel distribution can be
written as

log L = n(x̄ − 1) log λ − nx̄λ +
k∑

x=1

nx
[
(x − 1) log x − log(x!)

]
. (8.90)

On differentiating (8.90) with respect to λ and equating to zero, it can easily be shown that the
ML estimate λ̂ of λ is

λ̂ = 1 − 1

x̄
, (8.91)

which is the same as the moment estimate in (8.88).
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8.5 Weighted Basic Lagrangian Distributions

The class L1( f1; g; x) of Lagrangian probability distributions were defined in chapter 2 by
using the Lagrange expansion given in (1.80). On using the pgf for the basic Lagrangian distri-
butions under the Lagrange expansion in (1.80), we obtain the basic Lagrangian distributions
provided in (2.11) as

P1(X = x) = 1 − g′(1)

(x − 1)!

[(
∂

∂z

)x−1

(g(z))x

]
z=0

, x = 1, 2, 3, . . . , (8.92)

where
[
1 − g′(1)

]−1
is the mean of corresponding basic Lagrangian distribution.

Suppose X , the number of individuals in a group, is a random variable with probability
function P(X = x). Suppose that a group gets recorded only when at least one of the members
in the group is sighted. If each individual has an independent probability q of being sighted,
Patil and Rao (1978) showed that the probability that an observed group has x individuals is

Pw (X = x) = w(x) P (X = x) /E [w(x)] , (8.93)

where w(x) = 1 − (1 − q)x . The limit of (8.93) as q → 0 is given by

P0(X = x) = x P(X = x)

E(X)
, (8.94)

which provides a size biased (or weighted) distribution. It is interesting to note that all the basic
L1 distributions are the corresponding size biased (or weighted) Lagrangian distributions given
by (2.2). From (8.92), one can rewrite the basic L1 distributions as

P1(X = x) =
x

[(
∂
∂z

)x−1
(g(z))x

]
z=0

x!E(X)

= x P0(X = x)

E(X)
, (8.95)

where P0(X = x) is the probability mass at X = x for the basic Lagrangian distribution. Thus,
P1(X = x) represents the size biased (or weighted) distribution. From (8.95), the moments
of weighted distribution given by P1(X = x) can be obtained from the moments of the basic
Lagrangian distribution given by P0(X = x).

Weighted Geeta distribution. A r.v. X is said to have a weighted Geeta distribution if its proba-
bility function is given by

P(X = x) =
{

(1 − θβ)
(βx−2

x−1

)
θ x−1(1 − θ)βx−x−1, x = 1, 2, 3, . . . ,

0, otherwise,
(8.96)

where 0 < θ < 1 and 1 < β < θ−1. The condition 1 < β < θ−1 is imposed for the existence
of all moments. The mean and variance of weighted Geeta distribution in (8.96) are given by

µ = (1 − θ)(1 − θβ)−2 − θ(1 − θβ)−1 = (1 − 2θ + θ2β)(1 − θβ)−2 (8.97)
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and
σ 2 = 2(β − 1) θ(1 − θ) (1 − βθ)−4. (8.98)

Weighted Consul distribution. A r.v. X is said to follow a weighted Consul distribution if its
pmf is given by

P(X = x) =
{

(1 − θm)
( mx

x−1

)
θ x−1(1 − θ)mx−x−1, x = 1, 2, 3, . . . ,

0, otherwise,
(8.99)

where 0 < θ < 1 and 1 ≤ m < θ−1. For all the moments to exist, we impose the condition
1 ≤ m < θ−1. The mean and variance of the model in (8.99) are given by

µ = (1 − mθ2)(1 − θm)−2

and
σ 2 = 2mθ(1 − θ)2(1 − θm)−4.

Weighted Borel distribution. A discrete r.v. X is said to have a weighted Borel distribution if its
pmf is

P(X = x) =
⎧⎨
⎩(1 − λ) (λx)x−1

(x−1)! e−λx , x = 1, 2, 3, . . . ,

0, otherwise,
(8.100)

where 0 < λ < 1. The mean and variance of the model in (8.100) are given by

µ = (1 − λ)−2

and
σ 2 = 2λ(1 − λ)−4.

8.6 Exercises

8.1 Suppose that X1, X2, . . . , Xn is a random sample from Geeta distribution with parameters
θ and β. Show that the distribution of Y =∑ Xi has a Geeta-n distribution

P(Y = y) = n

y

(
βy − n − 1

y − n

)
θ y−n(1 − θ)βy−y, y = n, n + 1, . . . .

8.2 Prove that the Geeta distribution with parameters θ and β is unimodal but not strongly
unimodal and that the mode is at the point x = 1.

8.3 Suppose that X1, X2, . . . , Xn is a random sample from Borel distribution with parameter
λ. Show that the distribution of Y =∑ Xi has the Borel–Tanner distribution

P(Y = y) = n

y

(
(λy)y−n

(y − n)!

)
e−λy, y = n, n + 1, . . . .

8.4 Find the recurrence relations between the noncentral moments of the following distribu-
tions:
(a) weighted Borel distribution,
(b) weighted Consul distribution,
(c) weighted Geeta distribution.
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8.5 (a) Suppose X is a Geeta r.v. with known value of β. Find the MVU estimators for the
mean and variance of X.

(b) Suppose a r.v. X has the Consul distribution with known value of m. Find the MVU
estimators for the mean and variance of X.

8.6 Consider a weighted Borel distribution. Obtain the moment estimate for λ and derive an
equation for finding the ML estimate of λ. Also, obtain the ML estimate of λ.

8.7 Consider a zero-truncated GNBD with parameters θ, β, and m given as

P(X = x) = β

β + mx

(
β + mx

x

)
θ x(1 − θ)β+mx−x

1 − (1 − θ)β
, x = 1, 2, . . . .

(a) Show that the Consul distribution is a particular case of the zero-truncated GNBD
when β = 1.

(b) What is the limiting form of the zero-truncated GNBD when β → 0?
8.8 Consider a regenerative process which is initiated by a single cell that may grow into any

number of cells. Let the probability of x cells be Px(θ, m). Suppose the mean µ for the
distribution of cells is increased by changing θ to θ + �θ in such a manner that

d Px(θ, m)

dθ
+ mx − x + 1

1 − θ
Px(θ, m)= x − 1

x

(mx − x + 2)[x−1](1 − θ)m−1

(mx − m − x + 3)[x−2]
Px−1(θ, m)

for all x ≥ 1, a[k] = a(a + 1)(a + 2) · · · (a + k − 1), with the initial conditions

P1(0, m) = 1 and Px (0, m) = 0 for all x ≥ 2.

Show that Px(θ, m) is the Consul distribution with parameters θ and m.
8.9 Prove that the Borel distribution in (8.74) is unimodal but not strongly unimodal and that

the mode is at the point x = 1.
8.10 Show that the Geeta probability distribution is L-shaped for all values of θ and β and that

its tail may be either thin or heavy depending upon the values of θ and β.
8.11 Develop an urn model, based upon two or three urns, which may lead to the Consul

probability distribution.
8.12 (a) When β is very large and θ is very small such that βθ = λ, show that the Geeta

distribution in (8.2) approaches the Borel distribution.
(b) When m is very large and θ is very small such that mθ = λ, show that the Consul

distribution in (8.42) approaches the Borel distribution.
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Generalized Poisson Distribution

9.1 Introduction and Definition

Let X be a discrete r.v. defined over nonnegative integers and let Px (θ, λ) denote the probability
that the r.v. X takes a value x . The r.v. X is said to have a GPD with parameters θ and λ if

Px(θ, λ) =
{

θ(θ + λx)x−1e−θ−λx/x!, x = 0, 1, 2, . . . ,

0, for x > m if λ < 0,
(9.1)

and zero otherwise, where θ > 0, max(−1, −θ/m) ≤ λ ≤ 1, and m (≥ 4) is the largest
positive integer for which θ + mλ > 0 when λ < 0. The parameters θ and λ are independent,
but the lower limits on λ and m ≥ 4 are imposed to ensure that there are at least five classes with
nonzero probability when λ is negative. The GPD model reduces to the Poisson probability
model when λ = 0. Consul and Jain (1973a, 1973b) defined, studied, and discussed some
applications of the GPD in (9.1).

The GPD belongs to the class of Lagrangian distributions L( f ; g; x), where f (z) =
eθ(z−1), θ > 0, and g(z) = eλ(z−1), 0 < λ < 1, and is listed as (6) in Table 2.3. It be-
longs to the subclass of MPSD. Naturally, it possesses all the properties of these two classes of
distributions.

When λ is negative, the model includes a truncation due to Px(θ, λ) = 0 for all x > m and
the sum

∑m
x=0 Px(θ, λ) is usually a little less than unity. However, this truncation error is less

than 0.5% when m ≥ 4 and so the truncation error does not make any difference in practical
applications.

The multiplication of each Px(θ, λ) by [Fm(θ, λ)]−1, where

Fm(θ, λ) =
m∑

x=0

Px(θ, λ), (9.2)

has been suggested for the elimination of this truncation error. (See Consul and Shoukri (1985),
Consul and Famoye (1989b).)

Lerner, Lone, and Rao (1997) used analytic functions to prove that the GPD will sum to 1.
Tuenter (2000) gave a shorter proof based upon an application of Euler’s difference lemma.

The properties and applications of the GPD have been discussed in full detail in the book
Generalized Poisson Distribution: Properties and Applications, by Consul (1989a). Accord-
ingly, some important results only are being given in this chapter. The GPD and some of its
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properties have also been described in Univariate Discrete Distributions by Johnson, Kotz, and
Kemp (1992).

9.2 Generating Functions

The pgf of the GPD with parameters (θ, λ) is given by the Lagrange expansion in (1.78) as

G(u) = eθ(z−1), where z = u eλ(z−1). (9.3)

The above pgf can also be stated in the form

G(u) = eθ(w(u)−1), (9.4)

where the function w(u) is defined by the relation

w(u) = u exp {λ(w(u) − 1)} . (9.5)

The function w(u) is 0 at u = 0 and 1 at u = 1, and its derivative is

w′(u) =
[
e−λ(w(u)−1) − uλ

]−1
. (9.6)

By putting z = es and u = eβ in (9.3), one obtains the mgf for the GPD model as

Mx(β) = eθ(es−1), where s = β + λ(es − 1). (9.7)

Thus, the cgf of the GPD becomes

ψ(β) = ln Mx(β) = θ(es − 1), where s = β + λ(es − 1). (9.8)

It has been shown in chapter 2 that the GPD is a particular family of the class of Lagrangian
distributions L( f ; g; x) and that the mean µ and variance σ 2 are

µ = θ(1 − λ)−1, σ 2 = θ(1 − λ)−3. (9.9)

The variance σ 2 of the GPD is greater than, equal to, or less than the mean µ according to
whether λ > 0, λ = 0, or λ < 0, respectively.

Ambagaspitiya and Balakrishnan (1994) have expressed the pgf Px(z) and the mgf Mx(z)
of the GPD (9.1) in terms of Lambert’s W function as

Mx(z) = exp
{−(λ/θ)

[
W (−θ exp(−θ − z)) + θ

]}
and

Px(z) = exp
{−(λ/θ)

[
W (−θ z exp(−θ)) + θ

]}
,

where W is the Lambert’s function defined as

W (x) exp (W (x)) = x .

They have derived the first four moments from them, which are the same as those given in (9.9)
and (9.13).
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9.3 Moments, Cumulants, and Recurrence Relations

All the cumulants and moments of the GPD exist for λ < 1. Consul and Shenton (1975) and
Consul (1989a) have given the following recurrence relations between the noncentral moments
µ′

k and the cumulants Kk :

(1 − λ) µ′
k+1 = θ µ′

k + θ
∂µ′

k

∂θ
+ λ

∂µ′
k

∂λ
, k = 0, 1, 2, . . . , (9.10)

(1 − λ)Kk+1 = λ
∂Kk

∂λ
+ θ

∂Kk

∂θ
, k = 1, 2, 3, . . . . (9.11)

A recurrence relation between the central moments of the GPD is

µk+1 = kθ

(1 − λ)3
µk−1 + 1

1 − λ

{
d µk(t)

dt

}
t=1

, k = 1, 2, 3, . . . , (9.12)

where µk(t) is the central moment µk with θ and λ replaced by θ t and λt , respectively. The
mean and variance of GPD are given in (9.9). Some other central moments of the model are

µ3 = θ(1 + 2λ)(1 − λ)−5,

µ4 = 3θ2(1 − λ)−6 + θ(1 + 8λ + 6λ2)(1 − λ)−7,

µ5 = 10θ2(1 + 2λ)(1 − λ)−8 + θ(1 + 22λ + 58λ2 + 24λ3)(1 − λ)−9,

and

µ6 = 15θ3(1 − λ)−9 + 5θ2(5 + 32λ + 26λ2)(1 − λ)−10

+θ(1 + 52λ + 328λ2 + 444λ3 + 120λ4)(1 − λ)−11.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.13)

By using the values of µ2 = σ 2 in (9.9), µ3 and µ4 in (9.13), the expressions for the
coefficients of skewness (β1) and kurtosis (β2) are given by

β1 = 1 + 2λ√
θ(1 − λ)

and β2 = 3 + 1 + 8λ + 6λ2

θ(1 − λ)
. (9.14)

For any given value of λ, the skewness of the GPD decreases as the value of θ increases and
becomes zero when θ is infinitely large. Also, for any given value of θ, the skewness is infinitely
large when λ is close to unity. The skewness is negative for λ < − 1

2 .
For all values of θ and for all values of λ in 0 < λ < 1, the GPD is leptokurtic as β2 > 3.

When

−1

6

√
10 − 2

3
< λ <

1

6

√
10 − 2

3
,

the GPD becomes platykurtic since β2 becomes less than 3.
The expressions for the mean deviation, the negative integer moments, and the incomplete

moments are all given in the book by Consul (1989a).

9.4 Physical Models Leading to GPD

The GPD does relate to a number of scientific problems and can therefore be used to describe
many real world phenomena.
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Limit of Generalized Negative Binomial Distribution

The discrete probability model of GNBD, discussed in chapter 10, is given by

P(X = x) = m

m + βx

(
m + βx

x

)
px(1 − p)m+βx−x, x = 0, 1, 2, . . . , (9.15)

and zero otherwise, where 0 < p < 1 and 1 ≤ β < p−1 for m > 0.
Taking m and β to be large and p to be small such that mp = θ and βp = λ, the GNBD

approaches the GPD.

Limit of Quasi-Binomial Distribution

While developing urn models dependent upon predetermined strategy, Consul (1974) obtained
a three-parameter QBD-I defined in (4.1). If p → 0, φ → 0, and n increases without limit
such that n p = θ and n φ = λ, the QBD-I approaches the GPD.

Consul and Mittal (1975) gave another urn model which provided a three-parameter QBD-II
defined in (4.73). When p → 0, α → 0 and n increases without limit such that n p = θ and
nα = λ, the QBD-II approaches the GPD.

Limit of Generalized Markov–Pólya Distribution

Janardan (1978) considered a four-urn model with predetermined strategy and obtained the
generalized Markov–Pólya distribution given by

P(X = k) = pq(1 + Ns)
(N

k

)∏k−1
j=0 (θ + ks + jr)

∏N−k−1
j=0 (q + Ns − ks + jr)

(p + ks)(q + Ns − ks)
∏N−1

j=0 (q + Ns + jr)
(9.16)

for k = 0, 1, 2, . . . , N and zero otherwise, where 0 < p < 1, q = 1 − p, r > 0, s > 0, and
N is a positive integer.

When N increases without limit and p → 0, r → 0, s → 0 such that Np = θ, Ns = λ,
and Nr → 0, the Markov–Pólya distribution in (9.16) approaches the GPD.

Models Based on Difference-Differential Equations

Consul (1988) provided two models, based on difference-differential equations, that generate
the GPD model. Let there be an infinite but countable number of available spaces for bacteria or
viruses or other micro-organisms. Let the probability of finding x micro-organisms in a given
space be Px(θ, λ).

Model I. Suppose the mean µ(θ, λ) for the probability distribution of the micro-organisms is
increased by changing the parameter θ to θ + �θ in such a way that

d P0(θ, λ)

dθ
= −P0(θ, λ), (9.17)

and
d Px(θ, λ)

dθ
= −Px (θ, λ) + Px−1(θ + λ, λ), (9.18)

for all integral values of x > 0 with the initial conditions P0(0, λ) = 1 and Px(0, λ) = 0 for
x > 0, then the probability model Px(θ, λ), x = 0, 1, 2, . . . , is the GPD.
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Proof. See Consul (1989a).

Model II. Suppose the mean µ(θ, λ) for the distribution of the micro-organisms is increased
by changing the parameter λ to λ + �λ in such a way that

d P0(θ, λ)

dλ
= 0 (9.19)

and
d Px(θ, λ)

dλ
= −x Px(θ, λ) + (x − 1)θ

θ + λ
Px−1(θ + λ, λ) (9.20)

for all integral values of x > 0 with the initial conditions Px(θ, 0) = e−θ θ x/x! for all values
of x . Then the probability given by Px (θ, λ), x = 0, 1, 2, . . . is the GPD.

Proof. See Consul (1989a).

Queuing Process

Let g(z), the pgf of a Poisson distribution with mean λ, denote the pgf of the number of cus-
tomers arriving for some kind of service at a counter and let X be a random variable which
denotes the number of customers already waiting for service at the counter before the service
begins. Also, let f (z), the pgf of another Poisson distribution with mean θ , denote the pgf of X .
Consul and Shenton (1973a) showed that the number of customers Y served in a busy period
of the counter is a GPD. (See more on queuing process in chapter 6.)

Branching Process

Suppose

(a) the total number of units in a group is large,
(b) the probability of acquiring a particular characteristic by a unit in the group is small,
(c) each of the units having the particular characteristic becomes a spreader of the characteristic

for a short time, and
(d) the number of members in the group where each spreader having the particular character-

istic is likely to spread it is also large.

Consul and Shoukri (1988) proved that the total number of individuals having the particular
characteristic (i.e., the total progeny in the branching process) is the GPD. (See more on the
branching process in chapter 6.)

Thermodynamic Process

Consul (1989a) described generating GPD from a thermodynamic process with forward and
backward rates. Let the forward and backward rates be given, respectively, by

ak = (θ + kλ)1−k and bk = keλ(θ + kλ)1−k, (9.21)

which become smaller and smaller in value as k increases. Under the above forward and back-
ward rates, the steady state probability distribution of a first-order kinetic energy process is that
of the GPD model.

Proof. See Consul (1989a).
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9.5 Other Interesting Properties

Theorem 9.1 (Convolution Property). The sum X +Y of two independent GP variates X and
Y , with parameters (θ1, λ) and (θ2, λ), respectively, is a GP variate with parameters (θ1 +
θ2, λ) (Consul, 1989a).

Theorem 9.2 (Unimodality). The GPD models are unimodal for all values of θ and λ and the
mode is at x = 0 if θe−λ < 1 and at the dual points x = 0 and x = 1 when θe−λ = 1, and for
θe−λ > 1 the mode is at some point x = M such that

(
θ − e−λ

) (
eλ − 2λ

)−1
< M < a, (9.22)

where a is the smallest value of M satisfying the inequality

λ2 M2 + M
[
2λθ − (θ + 2λ) eλ

]+ θ2 > 0 (9.23)

(Consul and Famoye (1986a)).

A number of useful relations on the derivatives, integrals, and partial sums of the GPD
probabilities are given in the book by Consul (1989a).

9.6 Estimation

Let a random sample of n items be taken from the GPD and let x1, x2, . . . , xn be their corre-
sponding values. If the sample values are classified into class frequencies and ni denotes the
frequency of the i th class, the sample sum y can be written as

y =
n∑

j=1

x j =
k∑

i=0

ini , (9.24)

where k is the largest of the observations,
∑

ni = n, and x̄ = y/n is the sample mean. The
sample variance is given by

s2 = (n − 1)−1
k∑

i=0

ni(i − x̄)2 = (n − 1)−1
n∑

j=1

(x j − x̄)2. (9.25)

9.6.1 Point Estimation

Moment Estimation

Consul and Jain (1973a) gave the moment estimators in the form

θ̃ =
√

x̄3

s2
and λ̃ = 1 −

√
x̄

s2
. (9.26)

Shoukri (1980) computed the asymptotic biases and the asymptotic variances of the moment
estimators correct up to the second order of approximation. They are
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b(θ̃) � 1

4n

[
5θ + 3λ (2 + 3λ)

1 − λ

]
, (9.27)

b(λ̃) � − 1

4nθ

[
5θ(1 − λ) + λ

(
10 + 9λ2

)]
, (9.28)

V (θ̃) � θ

2n

[
θ + 2 − 2λ + 3λ2

1 − λ

]
, (9.29)

V (λ̃) � 1 − λ

2nθ

[
θ − θλ + 2λ + 3θ2

]
, (9.30)

and

Cov(θ̃ , λ̃) � − 1

2n

[
θ(1 − λ) + 3λ2

]
. (9.31)

Bowman and Shenton (1985) stated that the ratio of the sample variance to the sample mean
estimates a simple function of the GPD dispersion parameter λ. They provided moment series
to order n−24 for related estimators and obtained exact integral formulations for the first two
moments of the estimator.

Estimation Based on Sample Mean and First (Zero-Class) Frequency

When the frequency for the zero-class in the sample is larger than most other class frequencies
or when the graph of the sample distribution is approximately L-shaped (or reversed J-shaped),
estimates based upon the mean and zero-class frequency may be appropriate. These estimates
are given by

θ∗ = − ln(n0/n) and λ∗ = 1 − θ∗/x̄ . (9.32)

Their variances and covariance up to the first order of approximation are

V (θ∗) � 1

n

(
eθ − 1

)
, (9.33)

V (λ∗) � 1 − λ

nθ2

[
(1 − λ)

(
eθ − 1

)+ θ(2λ − 1)
]
, (9.34)

and

Cov(θ∗, λ∗) � − 1 − λ

nθ

(
eθ − θ − 1

)
. (9.35)

Maximum Likelihood Estimation

The ML estimate λ̂ of λ is obtained by solving

H(λ) =
k∑

x=0

x(x − 1)nx

x̄ + (x − x̄)λ
− nx̄ . (9.36)

The ML estimate θ̂ of θ is obtained from

θ̂ = x̄(1 − λ̂) .
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Consul and Shoukri (1984) proved that the ML estimates θ̂ > 0 and λ̂ > 0 are unique when
the sample variance is larger than the sample mean. Consul and Famoye (1988) showed that if
the sample variance is less than the sample mean, the ML estimates θ̂ > 0 and λ̂ < 0 are also
unique.

The GPD satisfies the regularity conditions given by Shenton and Bowman (1977). The
variances and covariance of the ML estimators up to the first order of approximation are

V (θ̂) � θ(θ + 2)

2n
, (9.37)

V (λ̂) � (θ + 2λ − θλ)(1 − λ)

2nθ
, (9.38)

and

Cov(θ̂ , λ̂) � − θ(1 − λ)

2n
. (9.39)

Consul and Shoukri (1984) gave the asymptotic biases as

b(θ̂) � −θ(5θ2 + 28θλ − 6θλ2 + 24λ2)

2n(1 − λ)(θ + 2λ)2(θ + 3λ)
(9.40)

and

b(λ̂) � 5θ3(1 − λ) − 2θ2λ
(
2λ2 + 9λ − 13

)+ 4θλ2(11 − 6λ) + 24λ2

2n(1 − λ)θ(θ + 2λ)2(θ + 3λ)
. (9.41)

In comparing other estimators with the ML estimators, Consul (1989a) gave the asymptotic
relative efficiency (ARE). The ARE for the moment estimators θ̃ and λ̃ is given by

ARE(θ̃ , λ̃) = 1 − 3λ2

θ(1 − λ) + λ(2 + λ)
. (9.42)

The ARE in (9.42) decreases monotonically as the value of λ increases, while it increases
monotonically with θ . It was suggested that the moment estimators were reliable when −0.5 <
λ < 0.5 and θ > 2.

The ARE for the estimators based on mean and zero-class frequency is given by

ARE(θ∗, λ∗) = λ + θ/2

λ + (eθ − 1 − θ
)
θ−1

< 1 . (9.43)

For small values of θ , the estimators based on the mean and zero-class frequency will be better
than the moment estimators.

Empirical Weighted Rates of Change Estimation

Famoye and Lee (1992) obtained point estimates for parameters θ and λ by using the empir-
ical weighted rates of change (EWRC) method. Let fx = nx/n be the observed frequency
proportion for class x . The GPD likelihood equations can be written as

∑
x

fx
∂

∂θi
ln Px(θ, λ) = 0, i = 1, 2,
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where θ1 = θ and θ2 = λ. From the fact that
∑

x Px(θ, λ) = 1, we obtain

∑
x

Px
∂

∂θi
ln Px(θ, λ) = 0.

On combining the above with the likelihood equations, Famoye and Lee (1992) obtained
the weighted discrepancies estimating equations as

∑
x

[ fx − Px(θ, λ)]

[
x(θ + λ)

θ(θ + λx)
− 1

]
= 0

and

∑
x

[ fx − Px(θ, λ)]

[
x(x − 1)

(θ + λx)
− x

]
= 0 .

The score function
∂

∂θi
ln Px(θ, λ)

is viewed as the relative rates of change in the probabilities as the parameters θ and λ change.
This score function is being weighted by the relative frequency in the case of the MLE method
and is weighted by the discrepancy between the relative frequency and the estimated proba-
bility in the case of the weighted discrepancies estimation method. Famoye and Lee (1992)
considered the combination of these two methods to define the EWRC estimators. The EWRC
estimating equations are

∑
x

fx [ fx − Px(θ, λ)]

[
x(θ + λ)

θ(θ + λx)
− 1

]
= 0 (9.44)

and ∑
x

fx [ fx − Px(θ, λ)]

[
x(x − 1)

(θ + λx)
− x

]
= 0 . (9.45)

The bias under the EWRC estimation is as small or smaller than the bias from ML and moment
estimation methods.

Lee and Famoye (1996) applied several methods to estimate the GPD parameters for fitting
the number of chromosome aberrations under different dosages of radiations. They compared
the methods of moments, ML, minimum chi-square, weighted discrepancy, and EWRC. They
found that the EWRC method provided the smallest mean square error and mean absolute error
for most dosages of radiation.

9.6.2 Interval Estimation

When the parameter λ is fixed at λ0 in a small sample, Famoye and Consul (1990) showed that
a 100(1 − α)% CI (θ
, θu) for θ can be obtained by solving for θu and θ
 in equations

y∑
j=0

nθu(nθu + jλo)
j−1 e−nθu− jλo/j ! = α

2
(9.46)
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and ∞∑
j=y

nθ
(nθ
 + jλo)
j−1 e−nθ
− jλo/j ! = α

2
, (9.47)

where y is the sample sum.
When the ML point estimate of θ is more than 10, a sharper 100(1 − α)% CI for θ may

be obtained by using the property of normal approximation. Thus, a 100(1 − α)% CI for θ is
given by

x̄(1 − λ0)
3

(1 − λ0)2 + zα/2
< θ <

x̄(1 − λ0)
3

(1 − λ0)2 − zα/2
. (9.48)

For large sample size, a 100(1 − α)% CI for θ is given by(
x̄ − zα/2s

)
(1 − λ0)√

n
< θ <

(
x̄ + zα/2s

)
(1 − λ0)√

n
. (9.49)

The statistic s in (9.49) may be dropped for σ 2 = θ(1 −λ0)
−3. By using only the sample mean

x̄ , a 100(1 − α)% CI for θ becomes

x̄(1 − λ0)
3√n

(1 − λ0)2
√

n + zα/2
< θ <

x̄(1 − λ0)
3√n

(1 − λ0)2
√

n − zα/2
. (9.50)

When the parameter θ is fixed at θ0 in a small sample, a 100(1 − α)% CI for λ can be
obtained from equations (9.46) and (9.47) by replacing θu and θ
 with θ0 and by replacing λ0
in (9.46) with λu and λ0 in (9.47) with λ
. For large samples, a 100(1 − α)% CI for λ, when
statistics x̄ and s are used, is given by

1 − θ0

x̄ − zα/2s/
√

n
< λ < 1 − θ0

x̄ + zα/2s/
√

n
. (9.51)

If only the sample mean x̄ is used, a 100(1 − α)% CI for λ is given by finding the smallest
value of λ that satisfies the inequality

[(1 − λ) x̄ − θ0]
√

n(1 − λ) +√θ0 zα/2 > 0, (9.52)

and the largest value of λ that satisfies the inequality

[(1 − λ) x̄ − θ0]
√

n(1 − λ) −√θ0 zα/2 < 0 . (9.53)

The smallest and largest values of λ satisfying (9.52) and (9.53), respectively, may be deter-
mined with the help of a computer program, as given in the book by Consul (1989a).

Suppose the two parameters θ and λ are unknown and we wish to obtain CIs for one of the
parameters. The parameter, which is not of interest, becomes a nuisance parameter and has to
be eliminated before any inference can be made. The method of “maximization of likelihood”
for eliminating the nuisance parameter can be applied. Let θ̂ and λ̂ be the ML estimates of θ and
λ, respectively. Famoye and Consul (1990) applied the method of “maximization of likelihood”
and derived a U-shaped likelihood ratio statistic for determining a 100(1 − α)% CI for θ when
λ is a nuisance parameter. The statistic is given by

Tm(θ) = −2n
[
ln(θ/θ̂) − θ + θ̂ − x̄(λ̃(θ) − λ̂)

]
−

n∑
i=1

2(xi − 1) ln

(
θ + λ̃(θ)xi

θ̂ + λ̂xi

)
. (9.54)
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A 100(1 − α)% limits for θ are the values θ
 and θu of θ at which the straight line

Tm(θ) = χ2
α,1

intersects the graph of the function Tm(θ) against θ . The value χ2
α,1 is the upper percentage

point of the chi-square distribution with 1 degree of freedom. The corresponding statistic for
constructing a 100(1 − α)% CI for parameter λ when θ is a nuisance parameter is given by

Tm(λ) = −2n
[
ln(θ̃(λ)/θ̂) + θ̂ − θ̃ (λ) + x̄(λ̂ − λ)

]
−

n∑
i=1

2(xi − 1) ln

(
θ̃ (λ) + λxi

θ̂ + λ̂xi

)
.

(9.55)

9.6.3 Confidence Regions

The partial derivatives of the log likelihood function can be used to obtain an approximate chi-
square expression for constructing confidence regions when the sample size is large. Famoye
and Consul (1990) derived the bivariate log likelihood function

T (θ, λ) = θ(θ + 2λ)

n(θ − θλ + 2λ)

⎧⎨
⎩
[

n(1 − θ)

θ
+

n∑
i=1

xi − 1

θ + λxi

]2

+ 1 − λ

2(θ + 2λ)

×
[

nθ − nx̄(2 − λ + 2λ/θ) + (1 + 2λ/θ)

n∑
i=1

xi(xi − 1)

θ + λxi

]2
⎫⎬
⎭ , (9.56)

which has an asymptotic chi-square distribution with two degrees of freedom. An approximate
100(1 − α)% confidence region for (θ, λ) is the set of values of θ and λ for which

T (θ, λ) ≤ χ2
α,2 .

9.7 Statistical Testing

9.7.1 Test about Parameters

Consul and Shenton (1973a) showed that if the r.v. X has a GPD and if λ < 0.5, the standard-
ized variate

z = X − µ

σ

tends to a standard normal form as θ increases without limit. Accordingly, a test for

H0 : λ = λ0 ≤ 0.5 against H1 : λ > λ0

can be based on normal approximation. Famoye and Consul (1990) based the test on X̄ =
1
n

∑
Xi , and the critical region at a significance level α is X̄ > C , where

C = θ0(1 − λ0)
−1 + zα

√
θ0(1 − λ0)−3

n
. (9.57)
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The power of the test is given by

π = 1 − β = P(X̄ > c | H1) .

In large samples, the test for θ or λ can be based on the likelihood ratio test. For a test about
θ, the likelihood ratio test statistic is

T = −2

[
nθ̂ − nθ0 + yλ̂ − yλ̃(θ0) + n ln(θ0/θ̂) +

n∑
i=1

(xi − 1) ln

(
θ0 + λ̃(θ0)xi

θ̂ + λ̂xi

)]
.

(9.58)
The null hypothesis H0 : θ = θ0 (against the alternative H1 : θ 	= θ0) is rejected if

T > χ2
α,1 .

To test the hypothesis H0 : λ = λ0 against an alternative composite hypothesis H1 : λ 	= λ0, a
similar likelihood ratio test statistic as in (9.58) can be used.

Famoye and Consul (1990) obtained the power of the likelihood ratio test of H0 : θ = θ0
against H1 : θ 	= θ0. The power is approximated by

π = 1 − β �
∫ ∞

a
d χ2

(
1 + γ1

1 + 2γ1

)
, (9.59)

where χ2(r) is a central chi-square variate with r degrees of freedom,

a = (1 + γ1)(1 + 2γ1)
−1 χ2

α,1 (9.60)

and

γ1 = (θ1 − θ0)
2n
[
θ1 − θ1λ̃(θ1) + 2λ̃(θ1)

]
θ1

[
θ1 + 2λ̃(θ1)

] . (9.61)

In (9.61), θ1 is the specified value of θ under the alternative hypothesis.
Fazal (1977) has considered an asymptotic test to decide whether there is an inequality

between the mean and the variance in Poisson-like data. If the test indicates inequality between
them, then the GPD is the appropriate model for the observed data.

9.7.2 Chi-Square Test

The goodness-of-fit test of the GPD can be based on the chi-square statistic

χ2 =
k∑

x=0

(Ox − Ex)
2/Ex , (9.62)

where Ox and Ex are the observed and the expected frequencies for class x . The parameters θ
and λ are estimated by the ML technique. The expected value Ex is computed by

Ex = n Px(θ, λ), (9.63)

where n is the sample size.
The random variable χ2 in (9.62) has an asymptotic chi-square distribution with k − 1 − r

degrees of freedom where r is the number of estimated parameters in the GPD.
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9.7.3 Empirical Distribution Function Test

Let a random sample of size n be taken from the GPD model (9.1) and let nx , x =
0, 1, 2, . . . , k, be the observed frequencies for the different classes, where k is the largest of
the observations.

An empirical distribution function (EDF) for the sample is defined as

Fn(x) = 1

n

x∑
i=0

ni , x = 0, 1, 2, . . . , k. (9.64)

Let the GPD cdf be

F(x; θ, λ) =
x∑

i=0

Pi (θ, λ), x ≥ 0, (9.65)

where Pi(θ, λ) is given by (9.1). The EDF statistics are those that measure the discrepancy
between Fn(x) in (9.64) and F(x; θ, λ) in (9.65). Let θ̃ and λ̃ be the moment estimators of the
GPD, based on the observed sample. To test the goodness-of-fit of the GPD, Famoye (1999)
defined some EDF statistics analogous to the statistics defined for the continuous distributions.
(a) The Kolmogorov–Smirnov statistic

Kd = supx

∣∣∣Fn(x) − F(x; θ̃ , λ̃)
∣∣∣ . (9.66)

(b) The modified Cramer–von Mises statistic

W ∗
d = n

k∑
x=0

[
Fn(x) − F(x; θ̃ , λ̃)

]2
Px(θ̃, λ̃).

(c) The modified Anderson–Darling statistic

A∗
d = n

k∑
x=0

[
Fn(x) − F(x; θ̃ , λ̃)

]2
Px(θ̃ , λ̃)

F(x; θ̃ , λ̃)
[
1 − F(x; θ̃ , λ̃)

] .

The EDF test statistics use more information in the data than the chi-square goodness-of-fit
test. By using the parametric bootstrap method, Famoye (1999) has carried out Monte Carlo
simulations to estimate the critical values of the above three EDF test statistics and has shown
that, in general, the Anderson–Darlin statistic A∗

d is the most powerful of all the EDF test
statistics for testing the goodness-of-fit of the GPD model.

9.8 Characterizations

A large number of characteristic properties of the GPD have been provided in section 9.1
through section 9.5. Ahsanullah (1991a) used the property of infinite divisibility to characterize
the GPD. We next consider some general probabilistic and statistical properties which lead to
different characterizations of the GPD. For the proofs of these characterization theorems, the
reader is referred to the book by Consul (1989a).

The following characterizations are based on the conditional probability.
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Theorem 9.3. Let X1 and X2 be two independent discrete r.v.s whose sum Z is a GP variate
with parameters θ and λ as defined in (9.1). Then X1 and X2 must each be a GP variate defined
over all nonnegative integers (Consul, 1974).

Theorem 9.4. If X1 and X2 are two independent GP variates with parameters (θ1, λ) and
(θ2, λ), respectively, then the conditional probability distribution of X1 given X1 + X2 = n is
a QBD-II (Consul, 1975).

Theorem 9.5. If a nonnegative GP variate N is subdivided into two components X and Y in
such a way that the conditional distribution P(X = k, Y = n − k | N = n) is QBD-II
with parameters (n, p, θ), then the random variables X and Y are independent and have GP
distributions (Consul, 1974).

Theorem 9.6. If X and Y are two independent r.v.s defined on the set of all nonnegative integers
such that

P(X = k | X + Y = n) =
(n

k

)
pnπn (pn + kλ)k−1 [πn + (n − k)λ]n−k−1

(1 + nλ)n−1
(9.67)

for k = 0, 1, 2, . . . , n, and zero otherwise, where pn + πn = 1, then

(a) pn is independent of n and equals a constant p for all values of n, and
(b) X and Y must have GP distributions with parameters (pα, λα) and (πα, λα), respectively,

where α(> 0) is an arbitrary number (Consul, 1974).

Theorem 9.7. If X and Y are two independent nonnegative integer-valued r.v.s such that

(a)

P(Y = 0 | X + Y = n) = θ1(θ1 + nα)n−1

(θ1 + θ2)(θ1 + θ2 + nα)n−1
, (9.68)

(b)

P(Y = 1 | X + Y = n) = nθ1θ2(θ1 + nα − α)n−2

(θ1 + θ2)(θ1 + θ2 + nα)n−1
, (9.69)

where θ1 > 0, θ2 > 0, 0 ≤ α ≤ 1. Then X and Y are GP variates with parameters (θ1 p, αp)
and (θ2 p, αp), respectively, where p is an arbitrary number 0 < p < 1 (Consul, 1975).

Situations often arise where the original observations produced by nature undergo a de-
structive process and what is recorded is only the damaged portion of the actual happenings.
Consul (1975) stated and proved the following three theorems on characterizations by damage
process.

Theorem 9.8. If N is a GP variate with parameters (θ, αθ) and if the destructive process is
QBD-II, given by

S(k | n) =
(

n
k

)
pπ

1 + nα

(
p + kα

1 + nα

)k−1(π + (n − k)α

1 + nα

)n−k−1

, k = 0, 1, 2, . . . , n,

(9.70)
where 0 < p < 1, p + π = 1, α > 0, and Y is the undamaged part of N, then

(a) Y is a GP variate with parameters (pθ, αθ),
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(b) P(Y = k) = P(Y = k | N damaged) = P(Y = k | N undamaged), and
(c) Sk = 0 for all k if Sk = P(Y = k) − P(Y = k | N undamaged) does not change its sign

for any integral value of k.

Theorem 9.9. Suppose that S(k | n) denotes the QBD-II given by (9.70). Then P(Y = k) =
P(Y = k | X undamaged) if and only if {Px} is a GP variate.

Theorem 9.10. If a GP variate N, with parameters (θ, θα), gets damaged by a destructive
process S(k | n) and is reduced to a variate Y such that

P(Y = k) = P(Y = k | N undamaged),

the destructive process S(k | n) must be QBD-II.

Theorem 9.11. Let X1, X2, . . . , X N be a random sample taken from a discrete population pos-
sessing the first three moments. Let

� = X1 + X2 + · · · + X N ,

and let a statistic T be defined in terms of the eight subscripts g, h, . . . , n, by

T = 120
∑

Xg Xh · · · Xm [28Xn + (N − 7)(14 − 3Xm)]

− 20(N − 6)(2)
∑

Xg · · · Xk X2

 [X
 − 3Xk + 6]

+ 6(N − 5)(3)
∑

Xg Xh Xi X2
j X2

k [2Xk + 2 − 3Xi ]

− (N − 4)(4)
∑

Xg Xh · · · X2
i X2

j

[
Xn X j − 1

3
Xi X j + 2Xn − 18Xg Xn

]
, (9.71)

where (N)( j) = N !/(N − j )! and the summations are taken over all subscripts g, h, i, . . . , n
which are different from each other and vary from 1 to N. Then the population must be a GPD
if and only if the statistic T has a zero regression on the statistic � (Consul and Gupta, 1975).

9.9 Applications

Chromosomes are damaged one or more times in the production process, and zero or more
damages are repaired in the restitution process. The undamaged chromosomes form a queue in
the production process and the damaged ones form a queue in the restitution process. Janardan
and Schaeffer (1977) have shown that if X is the net number of aberrations (damaged chromo-
somes) awaiting restitution in the queue, then the probability distribution of the r.v. X is the
GPD given by (9.1). It was suggested that the parameter λ in the GPD represented an equilib-
rium constant which is the limit of the ratio of the rate of induction to the rate of restitution,
and thus the GPD could be used to estimate the net free energy for the production of induced
chromosome aberrations.

Consul (1989a) described the application of GPD to the number of chromosome aberrations
induced by chemical and physical agents in human and animal cells. Janardan, Schaeffer, and
DuFrain (1981) observed that a three-parameter infinite mixture of Poisson distributions is
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slightly better than the GPD when the parameters are estimated by the moment method. Consul
(1989a) used the ML estimates and found that the fit by the GPD model was extremely good.

Schaeffer et al. (1983) provided a formal link between the GPD and the thermodynamic
free energy by using a Markov-chain model and estimated that the free energy required to
produce isochromatid breaks or dicentrics is about 3.67 KJ/mole/aberration and 18.4 KJ/mole,
which is in good agreement with free energy estimates on the formation of DNA. A detailed
description of this model can be studied either in their paper or in Consul (1989a), where many
other models and applications are also given.

Janardan, Kerster, and Schaeffer (1979) considered sets of data on spiders and sow bugs,
weevil eggs per bean, and data on sea urchin eggs. They showed that the observed patterns can
be easily explained and described by the GPD models. Interpretative meanings were given to
the parameters θ and λ in GPD.

Consul (1989a) also described the use of GPD to study shunting accidents, home injuries,
and strikes in industries. Meanings were given to both parameters θ and λ in the applications.

The number of units of different commodities purchased by consumers over a period of
time follows the GPD model. Consul (1989a) suggested the following interpretations for the
parameter values: θ reflects the basic sales potential for the product and λ represents the average
rates of liking generated by the product among consumers.

Other important applications discussed by Consul (1989a) are references of authors, spatial
patterns, diffusion of information, and traffic and vehicle occupancy.

Tripathi, Gupta, and Gupta (1986) have given a very interesting use of the GPD in the
textile manufacturing industry. Since the Poisson distribution, a particular case of the GPD, is
generally used in the industry, they compared it with the GPD for increasing the profits. Let X
be a random variable which represents the characteristic of a certain product and let x be its
observed value. The profit P(x) equals the amount received for good product plus the amount
received for scrap (unusable) product minus the manufacturing cost of the total product and
minus the fixed cost. They took E[P(X)] and obtained the condition for its maximization. By
considering different values for the various parameters in the problem they found that in each
case the profits were larger when the GPD was used instead of the Poisson distribution.

Itoh, Inagaki, and Saslaw (1993) showed that when clusters are from Poisson initial condi-
tions, the evolved Eulerian distribution is generalized Poisson. The GPD provides a good fit to
the distribution of particle counts in randomly placed cells, provided the particle distributions
evolved as a result of gravitational clustering from an initial Poisson distribution. In an appli-
cation in astrophysics, Sheth (1998) presented a derivation of the GPD based on the barrier
crossing statistics of random walks associated with Poisson distribution.

9.10 Truncated Generalized Poisson Distribution

Consul and Famoye (1989b) defined the truncated GPD by

Pr(X = x) = Px (θ, λ)/Fm(θ, λ), x = 0, 1, 2, . . . , m, (9.72)

and zero otherwise, where θ > 0, −∞ < λ < ∞ and Fm(θ, λ) is given by (9.2). In (9.72), m
is any positive integer less than or equal to the largest possible value of x such that θ +λx > 0.

When λ < −θ/2, the truncated GPD reduces to the point binomial model with m = 1 and
probabilities

P(X = 0) = (1 + θe−λ
)−1

(9.73)
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and
P(X = 1) = θe−λ

(
1 + θe−λ

)−1
. (9.74)

When λ > − θ/2, the value of m can be any positive integer ≤ −θ/λ. When 0 < λ < 1,
the largest value of m is +∞ and the truncated GPD reduces to the GPD model (9.1) since
Fm(θ, λ) = 1 for m = ∞. When λ > 1, the quantity Px(θ, λ) is positive for all integral values
of x and the largest value of m is +∞. However, F∞(θ, λ) is not unity.

The mean µm and variance σ 2
m of the truncated GPD can be written in the form

µm = E(X) = [Fm(θ, λ)]−1
m∑

x=1

x Px(θ, λ) (9.75)

and

σ 2
m = [Fm(θ, λ)]−1

m∑
x=1

x2 Px(θ, λ) − µ2
m . (9.76)

Consul and Famoye (1989b) considered the ML estimation of the parameters of truncated GPD.
They also obtained estimates based upon the mean and ratio of the first two frequencies.

Shanmugam (1984) took a random sample Xi , i = 1, 2, . . . , n, from a positive (zero
truncated or decapitated) GPD given by

P(X = x) = λ(1 + αx)x−1 (θe−αθ
)x/

x!, x = 1, 2, 3, . . . ,

where λ = (eθ − 1
)−1

, and obtained a statistic, based on the sample sum
∑n

i=1 Xi = k to test
the homogeneity of the random sample.

The probability distribution of the sample sum is given by

P

(
n∑

i=1

Xi = k

)
= λ−nn! t (k, n, α)

(
θe−αθ

)k/
k!

for k = n, n + 1, n + 2, . . . and where

t (k, n, α) =
k−1∑
i=0

(
k − 1

i

)
(αk)k−i−1 S(n, i + 1),

S(n, i + 1) being the Stirling numbers of the second kind. The conditional distribution of X1,
given

∑n
i=1 Xi = k, is then

P

(
X1 = x

∣∣∣∣∣
n∑

i=1

Xi = k

)
=
(k

x

)
(1 + αx)x−1t (k − x, n − 1, α)

n t (k, n, α)
, x = 1, 2, . . . , k − n + 1.

Since the positive GPD is a modified power series distribution and the above expression is in-
dependent of θ , the sum

∑n
i=1 Xi becomes a complete sufficient statistic for θ and the above

expression provides an MVU estimate for the probability of the positive GPD. The above con-
ditional distribution provides a characterization also that the mutually independent positive
integer-valued r.v.s X1, X2, . . . , Xn, n ≥ 2, have the same positive GPD.
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Shanmugam (1984) defines a statistic

V =
n∑

i=1

X2
i for fixed

n∑
i=1

Xi = k,

and shows that though the r.v.s X1, X2, . . . , Xn, are mutually dependent on account of the
fixed sum, yet they are asymptotically mutually independent and V is asymptotically normally
distributed. Under the null hypothesis

H0 : (X1, X2, . . . , Xn) is a homogeneous random sample from positive GPD,

Shanmugam obtains complex expressions for

µ0 = E

[
V

∣∣∣∣∣
n∑

i=1

Xi = k

]
, σ 2

0 = Var

[
V

∣∣∣∣∣
n∑

i=1

Xi = k

]
.

The null hypothesis H0 is rejected if

σ−1
0 | V − µ0 |≥ zε/2,

where zε/2 is the (1 − ε/2)th percentile of the unit normal distribution.

9.11 Restricted Generalized Poisson Distribution

9.11.1 Introduction and Definition

In many applied problems, it is known in advance that the second parameter λ in the GPD
model (9.1) is linearly proportional to the parameter θ (see an example in Consul, 1989a, sec-
tion 2.6). Putting λ = αθ in the model (9.1), we get the probabilities for the restricted GPD
model in the form

Px (θ, αθ) = (1 + xα)x−1 θ x e−θ−xαθ/x! , x = 0, 1, 2, . . . , (9.77)

and zero otherwise. For the probability model in (9.77), the domain of α is
max(−θ−1, −m−1) < α < θ−1, and accordingly, the parameter α is restricted above by θ−1.
In (9.77), Px(θ, αθ) = 0 for x > m when α < 0. The model reduces to the Poisson distribution
when α = 0.

The mean and variance of the restricted GPD are given by

µ = θ(1 − αθ)−1 and σ 2 = θ(1 − αθ)−3 . (9.78)

Other higher moments can be obtained from (9.13) by replacing λ with αθ .

9.11.2 Estimation

The restricted GPD is a MPSD defined and discussed in chapter 7 with

φ(θ) = θ e−αθ and h(θ) = eθ .
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When α is known, all the results derived for the MPSD in chapter 7 hold for the restricted GPD.
Thus, the ML estimation of θ , MVU estimation of θ , and its function 
(θ) for both restricted
GPD and truncated restricted GPD are similar to the results obtained for the MPSD in chapter 7.

When both parameters θ and α are unknown in (9.77), the moment estimators are

θ̃ =
√

x̄3

s2
and α̃ =

√
s2

x̄3
− 1

x̄
. (9.79)

Kumar and Consul (1980) obtained the asymptotic biases, variances, and covariance of the
moment estimators in (9.79) as

b(θ̃) � θ

4n

[
5 + 3α(2 + 3αθ)

1 − αθ

]
, (9.80)

b(α̃) � −3

4nθ

[
1 + 2α + α2θ

1 − αθ

]
, (9.81)

V (θ̃) � θ

2n

[
θ + 2 − 2αθ + 3α2θ2

1 − αθ

]
, (9.82)

V (α̃) � 1

2nθ2

[
1 + 2α + α2θ

1 − αθ

]
, (9.83)

and

Cov(θ̃ , α̃) � −1

2n

[
1 + 2α + α2θ

1 − αθ

]
. (9.84)

The generalized variance of θ̃ and α̃ is given by∣∣∣∑∣∣∣ � n − 1

2n3θ

[
1 − αθ + n − 1

n

(
2α + α2θ

)]
. (9.85)

For estimators based on sample mean and zero-class frequency, Consul (1989a) gave the
following:

θ∗ = − ln
(n0

n

)
and a∗ = (θ∗)−1 − 1

x̄
. (9.86)

The variance of θ∗ is the same as given in (9.33). However, the variance of α∗ and the covari-
ance of θ∗ and α∗ are given by

V (α∗) � 1

nθ4

[
eθ − 1 − θ(1 − αθ)

]
(9.87)

and

Cov(θ∗, α∗) � −1

nθ2

[
eθ − 1 − θ(1 − αθ)

]
. (9.88)

The ML estimate θ̂ of θ in restricted GPD is found by solving

n∑
i=1

xi(xi − 1)

θ(x̄ − xi) + xi x̄
− n = 0 (9.89)
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iteratively. The corresponding ML estimate α̂ of α is obtained from

α̂ = θ̂−1 − 1

x̄
.

The uniqueness of the ML estimates for the restricted GPD has not been shown. Consul (1989a)
conjectured that the estimate will be unique and that θ̂ will be greater than x̄ or less than x̄
according to whether the sample variance is greater or less than the, sample mean.

The asymptotic biases, variances, and covariance are

b(θ̃) � θ(5 + 12α)

4n(1 + 3α)
, (9.90)

b(α̂) � −3

4nθ

1 − 2α

1 + 3α
, (9.91)

V (θ̂) � θ(2 + θ)

2n
, (9.92)

V (α̂) � 1 + 2α

2nθ2
, (9.93)

and

Cov(θ̂ , α̂) � −(1 + 2α)

2n
. (9.94)

Let �1 = ln θ and �2 = ln(1 − αθ), so that �′ = (�1, �2) denote the new parameters for
estimation and

η1 = ln µ = ln θ − ln(1 − αθ) = �1 − �2

η2 = ln µ2 = ln θ − 3 ln(1 − αθ) = �1 − 3�2

η3 = ln(− ln P0) = ln θ = �1 .

⎫⎪⎪⎬
⎪⎪⎭ (9.95)

We note that ln(x̄), ln(s2), and ln [− ln(n0/n)] are the sample estimates for η1, η2, and η3,
respectively.

By using

h ′ =
(

ln(x̄), ln(s2), ln [− ln(n0/n)]
)

and
η′ = (η1, η2, η3

)
with η = W �

where

W =
⎡
⎣1 −1

1 −3
1 0

⎤
⎦ ,

Consul (1989a) derived a generalized minimum chi-square estimators θ̃ and α̃ for θ or α. The
estimators are given by

θ̃ = exp (�1) and α̃ = (1 − e�2
)
/θ̃ . (9.96)

When the sample is small and parameter α in restricted GPD is known, a 100(1 − α)% CI
for θ can be based on the statistic Y which is complete and sufficient for θ. The result is similar
to the interval estimation in section 9.6 for the GPD model in (9.1).
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When the two parameters θ and α are unknown in the model (9.77), the method of max-
imization of likelihood can be used to eliminate the nuisance parameter. In addition to this
method, Famoye and Consul (1990) proposed the method of conditioning for eliminating para-
meter θ in the restricted GPD. This approach led to the statistic

Tc(α) = −2

[
(nx̄ − 1) ln

(
1 − α̂

1 + αx̄

)
+

n∑
l=1

(xi − 1) ln

(
1 + αxi

1 + 2xi

)]
. (9.97)

The function Tc(α) is U-shaped and a 100(1−α)% CI for α can be obtained by finding the two
values α
 and αu at which the straight line

Tc(α) = χ2
α,1

intersects the graph of Tc(α) in (9.97).

9.11.3 Hypothesis Testing

All the tests described in section 9.7 of this chapter are applicable to the restricted GPD model.
In addition, a uniformly most powerful test for θ when α is known can be constructed. Famoye
and Consul (1990) described a uniformly most powerful test for testing

H0 : θ ≤ θ0 against H1 : θ > θ0.

Consider the null hypothesis

H0 : θ = θ0 against H1 : θ = θ1 (θ1 > θ0). (9.98)

If X1, X2, . . . is a sequence of independent r.v.s from the restricted GPD in (9.77) and the value
of α is known, Consul (1989a) proposed a sequential probability ratio test for the hypotheses
in (9.98). The test is to observe {Xi } , i = 1, 2, . . . , N , successively and at any state N ≥ 1,

(i) reject H0 if L(x) ≥ A,
(ii) accept H0 if L(x) ≤ B,
(iii) continue observing X N+1 if B < L(x) < A, where

L(x) = θ1

θ0

N∑
i=1

xi e

(
N+α

∑N
i=1 xi

)
(θ0−θ1) . (9.99)

The constants A and B are approximated by

A � 1 − β1

α1
and B � β1

1 − α1
, (9.100)

where α1 and β1 are the probabilities of type I and type II errors, respectively.

Let Zi , i = 1, 2, 3, . . . , r, r + 1 be independent restricted GP variates with parameters
(θi , αi). Famoye (1993) developed test statistics to test the homogeneity hypothesis

H0 : θ1 = θ2 = · · · = θr+1 = θ (9.101)
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against a general class of alternatives. When θ is known, the test statistic is

T = (1 − αθ)2
r+1∑
i=1

(
Zi − θ

1 − αθ

)2

−
r+1∑
i=1

Zi , (9.102)

which can be approximated by a normal distribution. The mean and variance of T are

E(T ) = 0 and Var(T ) = 2θ2 (r + 1)(1 − αθ + 2α + 3α2θ)

(1 − αθ)3
. (9.103)

When θ is unknown, a test of homogeneity for the restricted GPD against a general class of
alternatives is based on a large value of

∑r+1
i=1 Z2

i conditional on the sample sum
∑r+1

i=1 Zi = m.

9.12 Other Related Distributions

9.12.1 Compound and Weighted GPD

Goovaerts and Kaas (1991) defined a random variable S by

S = X1 + X2 + · · · + X N ,

where Xi , i = 1, 2, . . . , N , denote the amounts of the claims under the different insurance
policies and N is the number of claims produced by a portfolio of policies in a given time
period. Assuming that the random variables N, X1, X2, . . . are mutually independent, that
X1, X2, . . . , X N are identically distributed r.v.s with the distribution function F(x), and that N
has the GPD, they obtained the distribution function of S as

FS(x) =
∞∑

n=0

F∗n(x)λ(λ + nθ)n−1e−λ−nθ/(n!)

and called it the compound generalized Poisson distribution (CGPD). They used a recursive
method, involving Panjer’s recursion, to compute the total claims distribution of S.

Ambagaspitiya and Balakrishnan (1994) have obtained the pgf PS(z) and the mgf MS(z) of
the CGPD, the total claim amount distribution in terms of the Lambert’s W function as

PS(z) = exp
{−(λ/θ)

[
W (−θ exp(−θ)PX(z)) + θ

]}
and

MS(z) = exp
{−(λ/θ)

[
W (−θ exp(−θ)MX(z)) + θ

]}
,

where PX (z), MX (z), and W are defined in section 9.2. They have also derived an integral
equation for the probability distribution function of CGPD, when the insurance claim severities
are absolutely continuous and have given a recursive formula for the probability function of
CGPD.

By using Rao’s (1965) definition of a weighted distribution

fx(θ, λ) = ω(θ + λx, λ)Px(θ, λ)

W (θ, λ) =∑x ω(θ + λx, λ)Px(θ, λ)
,
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Ambagaspitiya (1995) has defined a weighted GPD as

Px(θ, λ) = W (θ + λ, λ)

W (θ, λ)

θ

θ + λ

(
λ + θ

x

)
Px−1(θ + λ, λ)

for x = 1, 2, 3, . . . . When ω(θ, λ) = θ , the above reduces to the linear function Poisson
distribution (Jain, 1975a). He obtained the pgf of the weighted GPD above and showed that it
satisfies the convolution property.

Also, Ambagaspitiya (1995) considered a discrete distribution family with the property

Px(a, b) =
[
h1(a, b) + x−1h2(a, b)

]
Px−1(a + b, b), x = 1, 2, 3, . . . ,

and showed that the weighted GPD, with weight of the form ω(θ + λx, λ), forms a subclass of
this family. A recursive formula for computing the distribution function has been provided.

9.12.2 Differences of Two GP Variates

Suppose that X has the distribution Px(θ1, λ) and Y has the distribution Py(θ2, λ) and X and
Y are independent. Consul (1986) showed that the probability distribution of D = X − Y is

P(D = X − Y = d) = e−θ1−θ2−dλ
∞∑

y=0

(θ1, λ)y+d (θ2, λ)y e−2yλ , (9.104)

where

(θ, λ)x = θ(θ + xλ)x−1

x!
(9.105)

and d takes all integral values from −∞ to +∞.
The pgf of the r.v. D = X − Y is

G(u) = exp
[
θ1(z1 − 1) + θ2(z2 − 1)

]
, (9.106)

where z1 = u eλ(z1−1) and z2 = u−1 eλ(z2−1).
From (9.106), the cgf of D is

ψ(β) = θ1(Z1 − β)

λ
+ θ2(Z2 − β)

λ
, (9.107)

where Z1 = β + λ
(
eZ1 − 1

)
and Z2 = −β + λ

(
eZ2 − 1

)
.

Consul (1989a) denoted the cumulants by Lk, k = 1, 2, 3, . . . , and obtained the relation

(1 − λ) Lk+1 =
(

1 + λ
∂

∂λ

)(
2θ1

∂

∂θ1
− 1

)
Lk, k = 1, 2, 3, . . . . (9.108)

The first four cumulants are given by

L1 = θ1 − θ2

1 − λ
, (9.109)

L2 = θ1 + θ2

(1 − λ)3
, (9.110)

L3 = (θ1 − θ2) (1 + 2λ)

(1 − λ)5
, (9.111)
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and

L4 = (θ1 + θ2) (1 + 8λ + 6λ2)

(1 − λ)7 . (9.112)

The coefficients of skewness and kurtosis for the r.v. D are

β1 = (θ1 − θ2)
2

(θ1 + θ2)
3

(1 + 2λ)2

1 − λ
and β2 = 3 + 1 + 8λ + 6λ2

(θ1 + θ2) (1 − λ)
. (9.113)

9.12.3 Absolute Difference of Two GP Variates

Let X1 and X2 be two independent GP variates and let Y = |X1 − X2| be the absolute differ-
ence. Let the probability distributions of the two variates be given by

P( j)
i = (1 + iλ)i−1

i !

(
θ j e−λθ j

)i
e−θ j , i = 0, 1, 2, . . . , j = 1, 2,

= C(i, λ)(ϕ j)
i e−θ j (9.114)

and zero otherwise, where C(i, λ) = (1 + iλ)i−1/ i ! and ϕ j = θ j e−λθ j . By using

ϕ′
j = dϕ j

dθ j
= (1 − λθ j ) e−λθ j ,

Consul (1986) showed that the probability distribution of the r.v. Y is given by

P(Y = k) =
⎧⎨
⎩
∑∞

i=0 [C(i, λ)]2 (ϕ1.ϕ2)
i e−θ1−θ2, k = 0,∑∞

i=0 C(i, λ)C(i + k, λ) e−θ1−θ2

[
ϕi+k

1 ϕi
2 + ϕi

1ϕ
i+k
2

]
, k = 1, 2, 3, . . . .

(9.115)

9.12.4 Distribution of Order Statistics when Sample Size Is a GP Variate

Suppose Xi , i = 1, 2, . . . , N , is a random sample of size N from a population with pdf f (x)
and cdf F(x). Suppose Y1, Y2, . . . , YN denote the corresponding order statistics and the sample
size N is a restricted GP variate with probability distribution Px(θ, αθ) in (9.77).

Let g j(y | n) denote the conditional pdf of the j th order statistics Y j for a given N = n,
let h j be the unconditional pdf of Y j , and let hi j be the joint unconditional pdf of Yi and Y j .
Consul (1984) showed that the unconditional pdf of the j th order statistics Y j is given by

h j =
(
θ e−αθ

) j
F j−1

j f j

( j − 1)! eθ Q j(θ, αθ)

∞∑
r=0

(1 + α j + αr)r+ j−1

r !

[
θ(1 − Fj ) e−αθ

]r
, (9.116)

where

Q j (θ, αθ) =
∞∑

i= j+1

Pi(θ, αθ) . (9.117)

Also, the joint pdf of Yi and Y j , i < j , is given by

hi j = Fi−1
j

(
Fj − Fi

) j−i−1
fi f j

(
θ e−αθ

) j

(i − 1)!( j − i − 1)! eθ Q j (θ, αθ)

∞∑
r=0

(1 + α j + αr)r+ j−1

r !

(
1 − Fj

)r
θr e−rαθ ,

(9.118)
where Fi and Fj are the distribution functions of Yi and Y j , respectively.
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9.12.5 The Normal and Inverse Gaussian Distributions

Let X be a GP variate with parameters θ and λ. Consul and Shenton (1973a) showed that for
all values of λ, the random variable

Z = X − µ

σ
(9.119)

approaches the standard normal curve as θ becomes infinitely large. When −0.5 < λ < 0.2, a
value of θ such as 15 makes the GPD model approximately normal.

If X is a GP variate with mean µ and variance σ 2, Consul and Shenton (1973a) showed that
the distribution of

Y = X/σ

approaches the inverse Gaussian density function with mean c and variance 1 when θ → ∞
and λ → 1 such that the product θ(1 − λ) = c2.

9.13 Exercises

9.1 Let X be a discrete random variable which has a generalized Poisson distribution with
parameters (θ t, λt). If E(X − µ

′
1)

k is denoted by µk , show that

µk+1 = kθ(1 − λ)−3 µk−1 + (1 − λ)−1
{

d

dt
µk(t)

}
t=1

.

By using the above relation, verify the first six central moments given by equations (9.9)
and (9.13).

9.2 If the kth negative integer moment of the GPD is denoted by

�k(θ, r) = E
[
(X + r)−k

]
,

show that

�2(θ, θ/λ) = λ2

θ2
− λ3

θ(θ + λ)
− λ3

(θ + λ)2
+ λ4

(θ + λ)(θ + 2λ)
.

Find a corresponding expression for the restricted GPD.
9.3 Suppose the probability distribution of finding X bacteria in a given space is denoted

by Px (θ, λ). Suppose further that the mean µ(θ, λ) of X is increased by changing the
parameter λ to λ + �λ in such a way that

d P0(θ, λ)

dλ
= 0

and
d Px(θ, λ)

dλ
= −x Px(θ, λ) + (x − 1)θ

θ + λ
Px−1(θ + λ, λ)

for all integral values of x > 0 with the initial conditions Px(θ, 0) = e−θ θ x/x! for all
values of x . Show that Px(θ, λ) is a GPD.

9.4 Suppose the initial number k of customers is a Poisson random variable with mean θ per
unit service interval and the subsequent arrivals are also Poissonian with mean λ per unit
service interval. Prove that the probability distribution of the number of customers served
in the first busy period of a single server is the GPD model with parameters (θ, λ).
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9.5 Verify the asymptotic biases, variances, and covariance of the moment estimators as given
in the results (9.27)–(9.31).

9.6 If a nonnegative GP variate Z is subdivided into two components X and Y in such a way
that the conditional distribution P(X = k, Y = z − k|Z = z) is QBD-II with parameters
(z, p, θ), show that the random variables X and Y are independent and that they have GP
distributions.

9.7 Suppose X follows the restricted GPD with parameters θ and α. Show that a recurrence
relation between the noncentral moments is given by

µ
′
k+1 = µ

′
1

{
µ

′
k + dµ

′
k

dθ

}
, k = 0, 1, 2, . . . .

Also, obtain a corresponding recurrence relation between the central moments

µk, k = 2, 3, 4, . . . .

9.8 Suppose that the probability of buying a product by a person is small and the number of
persons is very large. If each buyer of the product becomes its advertiser for a short time
in his or her town, which has a large population, show by using the principle of branching
process that the total number of persons who will become advertisers will be given by the
GPD.

9.9 Draw the graphs of the generalized Poisson distribution for the following sets of parame-
ter values:
(a) θ = 8, λ = −0.1; (b) θ = 8, λ = 0.2; (c) θ = 8, λ = 0.8;
(d) θ = 8, λ = −2.0; (e) θ = 16, λ = −2.0; (f) θ = 16, λ = −3.0.

9.10 A textile mill produces bolts of cloth of length L. Let X be the actual length of each bolt.
If X ≥ 1, the bolt is sold for $A and if X < L, the bolt is sold as scrap at a price sx ,
where s is fixed and x is the observed value of X . If the production cost is c0 +cx dollars,
where c0 and c are the cost constants. Find the expectation E(P(X)) where P(X) is the
profit function of the bolt of cloth when
(a) X is a Poisson random variable with mean θ , and
(b) X is a GP random variable with parameters θ and λ.
Find the maximum value of E(P(X)) as θ increases in the two cases. (Hint: See Tripathi,
Gupta, and Gupta, 1986.)

9.11 Use the recurrence relation in Exercise 9.7 to determine the mean, the second, third,
and fourth central moments of the restricted GPD. Obtain a measure of skewness and
a measure of kurtosis. Determine the parameter values for which the restricted GPD is
negatively skewed, positively skewed, leptokurtic, and platykurtic.

9.12 Suppose s = 0, β = m − 1, and n are very large, and b/(b + ω) = p is very small such
that np = θ and mp = λ in Prem distribution in (5.14). Show that the Prem distribution
approaches the generalized Poisson distribution in (9.1).
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Generalized Negative Binomial Distribution

10.1 Introduction and Definition

A discrete r.v. X is said to have a generalized negative binomial distribution (GNBD) with
parameters θ, β, and m if its pmf is given by

Px(θ, β, m) = m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x (10.1)

for x = 0, 1, 2, 3, . . . and zero otherwise, where 0 < θ < 1, β = 0 or 1 ≤ β ≤ θ−1, and
m > 0. Also, when β = 0, the parameter m is a positive integer. The probability model (10.1)
reduces to the binomial distribution when β = 0 and to the negative binomial distribution when
β = 1. Johnson, Kotz, and Kemp (1992) have given the model under the title of Lagrangian
“generalized negative binomial distribution.”

The GNBD model was defined, studied, and applied by Jain and Consul (1971), however
in their definition the domain of the parameter β included negative values and values in (0,
1) as well. Consul and Gupta (1980) have shown that the parameter cannot take values in (0,
1). For negative values of β the GNBD gets truncated and the probabilities do not sum to
unity. In an unpublished study Consul and Famoye (1985) have shown that for small negative
values of β such that the values of the probability mass function (10.1) are positive for at
least x = 0, 1, 2, 3, 4, the truncation error is less than 5%. This error is much smaller than the
truncation error due to the sampling process unless very large samples (in thousands) are taken.

Famoye and Consul (1993) have defined and studied the truncated GNBD (given later in this
chapter) where β can take all values in (−∞, ∞) and the model represents a true probability
distribution.

The GNBD is a member of the class of Lagrangian distributions L( f ; g; x) in (2.7) and is
also a member of its subclass, the MPSD. It is listed at (2) and (11) in Table 2.3. Accordingly,
it possesses all the properties of the MPSD and of the Lagrangian distributions L( f ; g; x)
discussed in the earlier chapters. According to the results in subsection 2.3.3, the mean and the
variance of the GNBD are

µ = mθ(1 − θβ)−1 and σ 2 = mθ(1 − θ)(1 − θβ)−3, (10.2)

which exist for 1 ≤ β < θ−1. Also, the model exists for θβ = 1 but its mean and variance do
not exist.
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10.2 Generating Functions

According to the results obtained for the Lagrangian distributions L( f ; g; x) in chapter 2, the
pgf of the GNBD in (10.1) is

G(u) = f (z) = (1 − θ + θ z)m, where z = u (1 − θ + θ z)β, (10.3)

for all values of the parameters.
Another pgf for the GNBD is

G(u) = f (z) = (1 − θ)m(1 − θ z)−m, (10.4)

where
z = u (1 − θ)β−1(1 − θ z)−β+1. (10.5)

Thus, the GNBD is one of the few probability models which gets generated through two differ-
ent sets of functions.

Consul and Famoye (1995) gave two other methods by which the GNBD is generated. The
GNBD model can be generated through the Lagrange expansion of (1 − θ)−m in powers of
u = θ(1 − θ)β−1 under the transformation θ = u(1 − θ)1−β . Also, the GNBD model can be
generated as a particular case of the Lagrangian Katz family discussed in chapter 12.

10.3 Moments, Cumulants, and Recurrence Relations

All the moments of the GNBD model (10.1) exist for 1 ≤ β < θ−1. Jain and Consul (1971)
obtained the first four noncentral moments by using the recurrence relation

Mk(m) = mθ

k−1∑
j=0

(
k − 1

j

){
M j (m + β − 1) + β

m + β − 1
M j+1(m + β − 1)

}
(10.6)

for k = 1, 2, 3, . . . , and where Mk(m) = E(Xk) is a function of the parameters m, β, and θ.
The r th noncentral moment of the GNBD is

µ′
r =

∞∑
x=0

xr m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x . (10.7)

On differentiating (10.7) with respect to θ, we obtain

dµ′
r

dθ
= 1 − θβ

θ(1 − θ)

∞∑
x=0

xr Px(θ, β, m){x − µ′
1}.

Hence
θ(1 − θ)

1 − θβ

dµ′
r

dθ
= µ′

r+1 − µ′
1µ

′
r ,

and so a recurrence relation between the noncentral moments is given by

µ′
r+1 = θ(1 − θ)

1 − θβ

dµ′
r

dθ
+ µ′

1µ
′
r , r = 0, 1, 2, 3, . . . . (10.8)
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Ali-Amidi (1978) showed that a recurrence relation between the central moments of GNBD
is given by

µk = µ2

{
dµk−1

dθ
· 1

dµ/dθ
+ (k − 1)µk−2,

}
(10.9)

for k = 2, 3, 4, . . . .
The recurrence relation (10.9) can also be written in the form

µk+1 = θ(1 − θ)

1 − θβ

dµk

dθ
+ k µ2 µk−1 (10.10)

for k = 1, 2, 3, . . . .
By using the method of differentiation one can obtain a recurrence relation (see Exercise

10.1) between the descending factorial moments of the GNBD as

µ(r+1) = θ(1 − θ)

1 − θβ

dµr

dθ
+ (r − µ(1)

)
µ(r) (10.11)

for r = 1, 2, 3, . . . .
Denoting the r th cumulant by Lr , Consul and Shenton (1975) gave the following recurrence

relation between the cumulants of the GNBD model as

(1 − θβ) Lr+1 = θ(1 − θ)
d Lr

dθ
(10.12)

for r = 1, 2, 3, . . . , where L1 = mθ(1 − θβ)−1.
Shoukri (1980) obtained the third, fourth, fifth, and sixth central moments of the GNBD as

µ3 = mθ(1 − θ)(1 − 2θ + 2θβ − θ2β)(1 − θβ)−5, (10.13)

µ4 = 3µ2
2 + mθ(1 − θ)A(1 − θβ)−7, (10.14)

µ5 = 10µ2µ3 + mθ(1 − θ)B(1 − θβ)−9, (10.15)

and

µ6 = 15µ2µ4 + 10µ2
3 − 30µ3

2 + m2θ2(1 − θ)2C(1 − θβ)−10

+ mθ(1 − θ)(1 − 2θ + 8θβ − 7θ2β)B(1 − θβ)−11, (10.16)

where

A = 1 − 6θ + 6θ2 + 2θβ(4 − 9θ + 4θ2) + θ2β2(6 − 6θ + θ2), (10.17)

B = 1 − 14θ + 36θ2 + 24θ3 + 2θβ(11 − 42θ + 28θ2)

− θ2β(29 − 96θ + 58θ2) + θ2β2(58 − 96θ + 29θ2)

− 2θ3β2(28 − 42θ + 11θ2) + 2θ3β3(12 − 9θ + θ2)

− θ4β3(18 − 12θ + θ2) (10.18)

and C = d B
dθ .
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By using the above moments, the measures of skewness and kurtosis become

√
β1 = 1 − 2θ + θβ(2 − θ)√

mθ(1 − θ)(1 − θβ)
(10.19)

and

β2 = 3 + A

mθ(1 − θ)(1 − θβ)
, (10.20)

where A is given by (10.17). For any given value of θ and β, the skewness of the GNBD model
decreases as the value of m increases and becomes zero when m is infinitely large. Also, for
small values of β and m, the skewness is infinitely large when θ is close to unity, zero, or 1/β.
The skewness becomes negative when

β < (2θ − 1)[θ(2 − θ)]−1.

Since

A = (1 − θ)2(1 + 8βθ + β2θ2) + (1 − 2θ)2 + θ2(1 − β)2 + 4β2θ2(1 − θ) > 0,

the kurtosis β2 is always greater than 3 and so the GNBD model is leptokurtic when β >
0. The recursive relation between the negative moments of GNBD is a special case of the
recursive relation between the negative moments of the MPSD discussed in chapter 7. The first
three incomplete moments and the incomplete factorial moments for the GNBD are given by
Tripathi, Gupta, and Gupta (1986). The recurrence relation between the incomplete moments
and the incomplete factorial moments follow that of the MPSD discussed in chapter 7. Gupta
and Singh (1981) provided formulas for computing the moments and factorial moments for the
GNBD.

10.4 Physical Models Leading to GNBD

The GNBD is a very versatile model and has been derived by different researchers under very
diverse conditions. Takács (1962) and Consul and Shenton (1975) have obtained the GNBD
as queuing models while Mohanty (1966) derived it as a random walk model. Hill and Gulati
(1981) obtained the GNBD as the probability of a gambler being ruined at the nth step. Some
of these models are described below.

Random Walk Model

Suppose a is an integer, for example, a = −1 or +1. Consider a random walk where the particle
at any stage moves either −1 with probability θ or +1 with probability 1 − θ. We consider the
probability of the first passage time (FPT) through m = 1, 2, . . . . Let f (x; θ, a, m) denote the
probability of FPT through m with x a’s. Mohanty (1979) showed that if a = 0, f (x; θ, 0, m)
is the negative binomial distribution

f (x; θ, a, m) =
(

m + x − 1
x

)
θ x(1 − θ)m, x = 0, 1, 2, . . . , (10.21)

where
(m+x−1

x

)
is the number of paths from (0, 1) to (m, x) that do not touch the line x = m

except at the end. Mohanty also proved that for a = β − 1, the number of paths from (0, 0) to
(m + ax, x) that do not touch the line x = y + m except at the end is given by
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m

m + βx

(
m + βx

x

)
. (10.22)

By using (10.22), the probability distribution of the FPT is given by

f (x; θ, β − 1, m) = m

m + βx

(
m + βx

x

)
θ x (1 − θ)m+βx−x,

which is the GNBD model (10.1). This is a special case of the random walk model discussed
in chapter 13.

Queuing Model

Suppose that there are k customers waiting for service at a single server queue when the service
is initially started. Suppose that the customers arriving during the service period of the k cus-
tomers have a binomial distribution with parameters θ and β and that they are joining the queue
under the condition of “first-come, first-served.” The first busy period (FBP) will end when the
server becomes idle. Also, suppose that the number k is a binomial random variable with para-
meters p and m. Consul and Shenton (1975) have shown that the probability distribution of X,
the number of customers served in the FBP, is the double binomial distribution

P(Y = 0, i.e., when FBP is nonexistent) = (1 − p)m,

and

P(Y = y) = m

y
(1 − p)m

[
θ(1 − θ)β−1

]y b∑
k=1

(
m − 1
k − 1

)(
βy

y − k

)(
p(1 − θ)

θ(1 − p)

)k

(10.23)

for y = 1, 2, 3, . . . , where b = min(m, y). A special case of the double binomial distribution
in (10.23) is obtained by setting p = θ . This yields the GNBD in (10.1) as a queue model.

Another special case of the queue model is the result by Takács (1962). Suppose that the
customers arrive at a counter in batches of size β −1 according to a Poisson process with traffic
intensity λ. The customers are served individually by a single server with i.i.d. service times
distribution

h(w) =
{

e−bw, w > 0,
0, otherwise.

(10.24)

The service times are independent of the arrival times. The probabilities of arrival and departure
are, respectively, θ = λ(λ + b)−1 and 1 − θ = b(λ + b)−1. Takács (1962) showed that the
probability that a busy period consists of (β − 1)x services is

P(X = x) = β − 1

β − 1 + βx

(
β − 1 + βx

x

)
θ x(1 − θ)β−1+βx−x, (10.25)

which is a special case of the GNBD with parameters θ, β, and m = β − 1.

Mixture Distribution

The Lagrangian delta-binomial distribution is given in Table 2.2 as a member of delta La-
grangian distributions. Its probability function can be written as
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P(X = x | N) = N

x

(
βx

x − N

)
θ x−N (1 − θ)N+βx−x

for x = N, N + 1, . . . and zero otherwise.
Suppose N is a binomial random variable with parameters θ and m (m > 0 and 0 < θ < 1);

then a binomial mixture of the delta binomial distributions is given by

P(X = x) =
m∑

n=0

P(X = x | N = n) · P(N = n)

=
m∑

n=0

n

x

(
βx

x − n

)
θ x−n(1 − θ)n+βx−x ·

(
m
n

)
θn(1 − θ)m−n

= m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x, x = 0, 1, 2, . . . ,

which is the GNBD in (10.1).

Urn Model

Let there be two urns, marked A and B. Urn A contains a fixed number of white balls and a
fixed number of black balls so that the probability of drawing a black ball with replacement is
θ and of drawing a white ball with replacement is 1 − θ. Urn B is initially empty. When a ball
is drawn from urn A without being seen by the player, another ball of the same color is put in
urn B. A player observes the following three conditions:

(i) The player chooses a strategy by selecting a positive integer “m” and a nonnegative integer
“β.”

(ii) The player is allowed to draw balls from urn A one by one, give them without seeing them
to an umpire, who returns them each time to urn A and puts a ball of the same color each
time in urn B. The player continues with this process of drawing balls until the number
of white balls in urn B exceeds (β − 1) times the number of black balls in urn B and will
lose the game as soon as this condition is violated.

(iii) The player will be declared a winner of the game if he stops when the number of black
balls and white balls in urn B are exactly x and m + (β − 1)x , respectively.
The probability of realizing condition (iii) is

P(X = x) = f (x, y) · θ x(1 − θ)y,

where f (x, y) is the number of sequences in which the number of white balls y = m +
(β − 1)x in urn B always exceeds (β − 1)x . By using the conditions of the game, Famoye
and Consul (1989b) obtained the difference equations

f (x, y) =

⎧⎪⎨
⎪⎩

0, (β − 1)x ≥ y,

f (x − 1, y), (β − 1)x = y − 1,

f (x − 1, y) + f (x, y − 1), (β − 1)x < y − 1,

(10.26)

with the boundary conditions

f (1, 0) = f (0, y) = 1. (10.27)
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The solution of the system of equations in (10.26) is

f (x, y) = y − x(β − 1)

y + x

(
y + x

x

)
, y > x(β − 1). (10.28)

By using y = m + βx − x and (10.28) in (10.26), the probability that a player wins the
game is given by

P(X = x) = m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x,

which is the GNBD in (10.1).

This is a special case of urn models defined and studied in chapter 5.

10.5 Other Interesting Properties

The GNBD possesses numerous interesting properties. Some of these are given below.

Convolution Property

Theorem 10.1. The sum of two independent generalized negative binomial variates X1 and X2
with the parameters (θ, β, m1) and (θ, β, m2) is a GNB variate with the parameters (θ, β, m1+
m2) (Jain and Consul, 1971).

Proof.

P(X1 + X2 = x) =
x∑

j=0

Pj (θ, β, m1) · Px− j (θ, β, m2)

= θ x(1 − θ)m1+m2+βx−x
x∑

j=0

m1

m1 + β j

(
m1 + β j

j

)

× m2

m2 + β(x − j )

(
m2 + β(x − j )

x − j

)
. (10.29)

By using the identity (1.85), the above gives

P(X1 + X2 = x) = m1 + m2

m1 + m2 + βx

(
m1 + m2 + βx

x

)
θ x(1 − θ)m1+m2+βx−x ,

which is a GNBD with parameters (θ, β, m1 + m2). ��
Thus the GNBD possesses the convolution property and is closed under convolution. Char-

alambides (1986) has shown that among all Gould series distributions, the GNBD is the only
distribution which is closed under convolution.

Unimodality

Lemma 10.2 (Steutel and van Harn, 1979). Let {Px }∞0 be a probability distribution on the
nonnegative integers with pgf G(z) satisfying



198 10 Generalized Negative Binomial Distribution

d

dz
log{G(z)} = R(z) =

∞∑
k=0

γk zk, (10.30)

where the γk, k = 0, 1, 2, . . . , are all nonnegative. Then {Px}∞0 is unimodal if {γx}∞0 is non-
increasing, and {Px }∞0 is nonincreasing if and only if in addition γ0 ≤ 1.

Theorem 10.3. The GNBD is unimodal for all values of θ, β, and m (Consul and Famoye,
1986b).

Proof. For β = 0 and β = 1, the GNBD reduces to the binomial and the negative binomial
distributions whose unimodality has been well known. In this proof, we consider β > 1. The
pgf of GNBD is given by (10.3). Since self-decomposability is preserved under positive powers,
we consider

G1(u) = (1 − θ + θ z)1, where z = u(1 − θ + θ z)β.

By using f (z) = log(1 − θ + θ z) in the Lagrange expansion in (1.78), differentiating with
respect to u, and changing k to k + 1, we get

d

du
log G1(u) = θ(1 − θ)β−1 + θ

∞∑
k=0

uk
(

βk + β − 1
k

)
θk(1 − θ)(β−1)(k+1)

=
∞∑

k=0

γk zk .

Thus
γk

γk−1
= θ(1 − θ)β−1

k
· (βk + β − 1)!(βk − k)!

(βk − 1)!(βk + β − k − 1)!
(10.31)

for k = 1, 2, 3, . . .
By using the inequalities given by Feller (1968, p. 54) on (10.31), and after much simplifi-

cation, we obtain

γk

γk−1
<

{
(β − 1)(βk + β − 1)

β(βk − k + β − 1)

}β

· 1

e
·
(

1 + 1

βk − 1

)βk

≤
(

(βk + β − 1)

β(k + 1)

)β

< 1.

So
γk

γk−1
< 1 and it follows that the sequence {γx}∞0 is nonincreasing. Hence the GNBD is

unimodal.
For Gm(u) = (1 − θ + θ z)m, γ0 = mθ(1 − θ)β−1. If γ0 = mθ(1 − θ)β−1 < 1, the GNBD

is nonincreasing and so the mode is at the point x = 0. If γ0 = mθ(1 − θ)β−1 = 1, the mode
is at the dual points x = 0 and x = 1, as both have the same probability mass. However, if

γ0 = mθ(1 − θ)β−1 = mϕ > 1,

the mode is at some point x = N such that
mϕ

1 − ϕ(2β − 1)
< N < h, (10.32)

where h is the value of N satisfying the inequality β(β − 1)ϕN2 + {ϕ(2mβ − m + 1) − (m +
2β − 1)}N + ϕ(m2 − 1) > 0. ��
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Relations between Probabilities

For computation of probabilities, the following recurrence relation between the probabilities is
useful:

Px+1(θ, β, m) = m + (β − 1)x + β

x + 1
θ(1 − θ)β−1

x−1∏
j=1

(
1 + β

m + βx − j

)
Px(θ, β, m)

(10.33)
for x = 1, 2, 3, 4, . . . , with

P0(θ, β, m) = (1 − θ)m and P1(θ, β, m) = mθ(1 − θ)m+β−1.

Suppose

Fk(θ, β, m) =
k∑

x=0

Px(θ, β, m) (10.34)

and

Qk(θ, β, m) =
∞∑

x=k

Px(θ, β, m). (10.35)

Then we obtain the following relationships between the GNBD probabilities:

m

m − β
Pk(θ, β, m − β) = θ

1 − θ

m + (β − 1)(k − 1)

k
Pk−1(θ, β, m), (10.36)

(k + 1)Pk+1(θ, β, m) = mθ[m + β + (β − 1)k]

(1 − θ)(m + β)
Pk(θ, β, m + β), (10.37)

Pk(θ, β, m) = Fk(θ, β, m) − Fk−1(θ, β, m), (10.38)

Pk(θ, β, m) = Qk−1(θ, β, m) − Qk(θ, β, m), (10.39)

1∫
0

Px (θ, β, m) dθ = m

(m + βk)(m + βk + 1)
, (10.40)

∞∑
j=x

( j − x) Pj(θ, β, m) =
∞∑
j=0

j Pj+x(θ, β, m), (10.41)

Pk(θ, β, m + k) = m + k

m
Pk(θ, β + 1, m), (10.42)

and

θ(1 − θ)
d Pk(θ, β, m)

dθ
= (1 − θβ)(k − µ)Pk(θ, β, m), (10.43)

where µ is the mean of the GNBD given in (10.2).
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Completeness and Sufficiency Property

A family ℘ = {Pθ (X = x), θ ∈ �} of probability distributions of a r.v. X is complete if for
any function φ(x) satisfying

Eθ [φ(X)] = 0 for all θ ∈ �,

the function φ(x) = 0 for all x (except possibly on a set of probability zero), where Eθ denotes
the expectation.

For the GNBD family defined by (10.1),

Eθ [φ(X)] =
∞∑

x=0

φ(x)
m

m + βx

(
m + βx

x

)
θ x (1 − θ)m+βx−x

if Eθ [φ(X)] = 0 for all θ in (0, 1). Then, assuming θ(1 − θ)β−1 = ψ, the above expression
implies that

∞∑
x=0

φ(x)
m

m + βx

(
m + βx

x

)
ψ x = 0

for all ψ in
(
0, (β − 1)β−1β−β

)
. Since the above sum of a power series is zero for all values

of ψ , all the terms must be identically zero, i.e., φ(x) = 0 for all integral values of x . Hence
the family of the GNBDs defined in (10.1) is complete.

Also, if Xi , i = 1, 2, . . . , n, represents a random sample of size n taken from the GNBD
model in (10.1), the probability distribution of the sample sum Y =∑n

i=1 Xi is given by

P(Y = y) = nm

nm + βy

(
nm + βy

y

)
θ y(1 − θ)nm+βy−y

= h(y)ψθ(y),

which is a product of two functions ψθ(y), a function of the statistic Y and θ, and of h(y)
which is independent of θ . Hence, by the factorization theorem, the sample sum Y is a sufficient
statistic for the parameter θ .

10.6 Estimation

Let a random sample of size n be taken from the GNBD model (10.1) and let the observed val-
ues be x1, x2, . . . , xn. If the sample values are classified into class frequencies and ni denotes
the frequency of the i th class, the sample sum y can be written in the form

y =
n∑

j=1

x j =
k∑

i=0

ini , (10.44)

where k is the largest of the observations,
∑k

i=0 ni = n, and x̄ = y/n is the sample mean. The
sample variance is

S2 = (n − 1)−1
k∑

i=0

ni (i − x̄)2 = (n − 1)−1
n∑

j=1

(x j − x̄)2. (10.45)
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The third central moment for the sample is given by

S3 = (n − 1)−1
k∑

i=0

ni (i − x̄)3 = (n − 1)−1
n∑

j=1

(x j − x̄)2. (10.46)

10.6.1 Point Estimation

Moment Estimation

Jain and Consul (1971) gave the moment estimators of the GNBD in the form

θ̃ = 1 − 1

2
A + (A2/4 − 1)

1
2 , (10.47)

where A = −2 + (x̄ S3 − 3S2
2)2/(x̄ S3

2),

β̃ =
⎧⎨
⎩1 −

(
x̄(1 − θ̃ )

S2

) 1
2

⎫⎬
⎭
/

θ̃ , (10.48)

and
m̃ = x̄(1 − θ̃ β̃)/θ̃ . (10.49)

Estimation Based on Moments and Zero-Class Frequency

Consul and Famoye (1995) considered the estimation method based upon zero-class frequency
and the first two moments. When the frequency for the zero class in the sample is larger than
most other class frequencies, estimates based upon the first two moments and the zero-class
frequency may be appropriate. These estimates are obtained by solving the following equations:

µ′
1 = mθ(1 − θβ)−1 = x̄, (10.50)

µ2 = mθ(1 − θ)(1 − θβ)−3 = S2, (10.51)

and
P0 = (1 − θ)m = n0

n
= f0. (10.52)

On simplification, equations (10.50)–(10.52) lead to

f1(θ) = S2(ln f0)
2/x̄3 − (1 − θ)(ln(1 − θ))2/θ2 = 0. (10.53)

Equation (10.53) is solved iteratively to obtain θ∗, the estimate of θ based on the first two
moments and the zero frequency. The initial estimate of θ can be taken to be the moment
estimate of θ in (10.47). On getting θ∗ from equation (10.53), one obtains the estimates for m
and β as

m∗ =
{
(1 − θ∗)x̄3/S2

} 1
2
/

θ∗ (10.54)

and

β∗ = 1

θ∗ − m∗/x̄ . (10.55)
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Estimation Based on Moments and Ratio of Frequencies

Suppose P1 and P0 denote the probabilities of the “one” and “zero” classes, respectively. The
ratio of the one class to the zero class is given by

P1/P0 = mθ(1 − θ)β−1.

On equating the above ratio to the corresponding sample ratio, one obtains

P1/P0 = mθ(1 − θ)β−1 = n1

n0
= f10. (10.56)

By combining equation (10.56) with the first two moment equations (10.50) and (10.51), we
obtain estimates based on the first two moments and the ratio of the first two frequencies. On
simplification, equations (10.50), (10.51), and (10.56) lead to

f2(θ) =
{

2

θ
− 2

θ

(
x̄(1 − θ)

S2

) 1
2 − 1

}
ln(1 − θ) − ln

(
S2 f 2

10/x̄3
)

= 0. (10.57)

After solving equation (10.57) iteratively to obtain θ̄ , the estimate of θ based on the first two
moments and the ratio of the first two frequencies, estimate β̄ and m̄ are given by

m̄ =
{
(1 − θ̄ )x̄3/S2

} 1
2 /

θ̄ (10.58)

and

β̄ = 1

θ̄
− m̄/x̄ . (10.59)

Maximum Likelihood Estimation

Consul and Famoye (1995) considered the ML estimation method for the GNBD model. The
log likelihood function of the GNBD model (10.1) is given by


 = log L(θ, β, m) = log

{
k∏

x=0

[Px(θ, β, m)]nx

}

= (n − n0) log m + nx̄ log θ + n[m + (β − 1)x̄] log(1 − θ)

+
k∑

x=2

nx

{
x−1∑
i=1

log(m + βx − i) − log(x!)

}
. (10.60)

On differentiating (10.60), we obtain the likelihood equations

∂


∂θ
= n[x̄ − θ(m + β x̄)]

θ(1 − θ)
= 0, (10.61)

∂


∂β
= nx̄ ln(1 − θ) +

k∑
x=2

x−1∑
i=1

xnx

m + βx − i
= 0, (10.62)



10.6 Estimation 203

and
∂


∂m
= n − n0

m
+ n ln(1 − θ) +

k∑
x=2

x−1∑
i=1

nx

m + βx − i
= 0, (10.63)

where 
 = ln L(θ, β, m). Equation (10.61) gives

θ̂ = x̄(m + β x̄)−1, (10.64)

and thus equations (10.62) and (10.63) can be written in the form

(n − n0)x̄

m
−

k∑
x=2

x−1∑
i=1

(x − x̄)nx

m + βx − i
= 0 (10.65)

and

nx̄ ln[1 − x̄(m + β x̄)−1] +
k∑

x=2

x−1∑
i=1

xnx

m + βx − i
= 0. (10.66)

The ML estimates m̂ and β̂ are obtained by solving (10.65) and (10.66) iteratively, starting
with their moment estimates as the initial values. The Newton–Raphson iterative technique or
some other technique can be used. Then, the value of θ̂ is given by (10.64).

MVU Estimation when β and m Are Known

When the parameters β and m are known in GNBD, the sample sum Y is a complete and
sufficient statistic for the parameter θ . Since the GNBD is a MPSD defined in chapter 2 and
discussed in chapter 7, the MVU estimators of θ and functions of θ are special cases of the
MVU estimators considered in chapter 7 for the class of MPSD. Consul and Famoye (1989a)
obtained the MVU estimators for µ, µ2, and σ 2 (see Exercise 10.2) as

µ̃ = y

n
, y = 0, 1, 2, . . . , (10.67)

µ̃2 =
{

m
n

y!
(nm+βy−1)!

∑y−1
i=1

(nm+βy−i−1)!
(y−i−1)! , y = 2, 3, . . . ,

0, y = 0, 1,
(10.68)

and

σ̃ 2 =
{

nm+βy−y
(nm+βy−1)!

y!
n

∑y−1
i=0

β i (i+1)(nm+βy−i−2)!
(y−i−1)! , y = 1, 2, . . . ,

0, y = 0.
(10.69)

Gupta (1977) and Kumar and Consul (1980) obtained MVU estimators for some parametric
functions of θ for the GNBD model (10.1). Let {{
(θ)}} denote the MVU estimator for 
(θ).
Kumar and Consul (1980) provided the following MVU estimators (see Exercise 10.3):

{{θk}} = y!(nm + βk − k)(βy + nm − k − 1)!

(y − k)! mn (βy + mn − 1)!
, y ≥ k and k ∈ I ′, (10.70)

{{(θ(1 − θ)β−1)k}} =

⎧⎪⎪⎨
⎪⎪⎩

y!
mn(mn+βy−1)(y−1) , y = k,

y!(mn+β(y−k)−1)(y−k−1)

(y−k)!(mn+βy−1)(y−1) , y > k,

0,

(10.71)
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where k ∈ I ′.

{{(1 − θ)mt}} =
⎧⎨
⎩

1; y = 0(n−t
n

) (m(n−t)+βy−1)(y−1)

(mn+βy−1)(y−1) ; y ≥ 1
(10.72)

where t (≤ n) is an integer, and

{{P(X = k)}} =

⎧⎪⎨
⎪⎩

y!
mn(mn+βy−1)(y−1) , y = k,(

n−1
n

)
y(k)(m(n−1)+β(y−k)−1)(y−k−1)

(mn+βy−1)(y−1) , y > k,
(10.73)

where k ∈ I 0 and if β = 0, m ≥ k.
When parameters m and β are known, the moment and the ML estimates of θ are both equal

to
θ̃ = θ̂ = x̄/(m + β x̄). (10.74)

The bias of θ̂ up to order n−1 is

b(θ̂) = −θβ(1 − θ)/mn, (10.75)

and the variance of θ̂ up to the first order of approximation is

V (θ̂) = θ(1 − θ)(1 − θβ)/mn. (10.76)

The Bayes estimator of θ under a prior distribution which is beta with parameters a and b (see
Exercise 10.4) is given by

θ∗∗ = (a + y)/(nm + βy + a + b). (10.77)

Famoye (1997c) considered the estimation methods based on moments and zero-class fre-
quency, moments and ratio of frequencies, ML, and that of minimum chi-square. Famoye
(1997c) derived and compared the asymptotic relative efficiencies for these estimation meth-
ods. The minimum chi-square method is more efficient than the method based on moments and
zero-class frequency and the method based on moments and ratio of frequencies. From simula-
tion results, the method based on moments and zero-class frequency is the best when both bias
and variance properties of the estimators are considered.

10.6.2 Interval Estimation

When the parameters β and m are fixed at β0 and m0, respectively, in a small sample, Famoye
and Consul (1989a) obtained a 100(1 − α)% CI for θ by solving for θ
 and θu in equations

∞∑
x=y

nm0

nm0 + β0x

(
nm0 + β0x

x

)
θ x

 (1 − θ
)

nm0+β0x−x = α

2
(10.78)

and
y∑

x=0

nm0

nm0 + β0x

(
nm0 + β0x

x

)
θ x

u (1 − θu)nm0+β0x−x = α

2
. (10.79)
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When β0 = 0, the above equations correspond to those in Johnson, Kotz, and Kemp (1992) for
the binomial distribution. Similarly, β0 = 1 provides the corresponding result for the negative
binomial distribution.

When the parameters β and m are fixed and the sample is large, a 100(1 − α)% CI can be
obtained by using the method considered for the MPSD in chapter 7. By applying the method
based on two statistics X̄ and S2, a 100(1 − α)% CI was obtained by Famoye and Consul
(1989a) as (

x̄ − zα/2S2/
√

n

m0 + β0(x̄ − zα/2S2/
√

n)
,

x̄ + zα/2S2/
√

n

m0 + β0(x̄ − zα/2S2/
√

n)

)
. (10.80)

By using the method based on a single statistic X̄ , a 100(1−α)% CI for θ can be obtained (see
Exercise 10.5).

10.7 Statistical Testing

The goodness-of-fit test of the GNBD can be based on the chi-square statistic

χ2 =
k∑

x=0

(Ox − Ex)
2/Ex , (10.81)

where Ox and Ex are the observed and the expected frequencies for class x and k is the largest
observed value of x . The parameters θ, β, and m are estimated by the ML technique. The
expected value Ex is computed by

Ex = n Px(θ, β, m), (10.82)

where n is the sample size.
The r.v. χ2 in (10.81) has a chi-square distribution with k −1−r degrees of freedom where

r is the number of estimated parameters in the GNBD.
Famoye (1998a) developed goodness-of-fit test statistics based on the EDF for the GNBD

model. For small sample sizes, the tests are compared with respect to their simulated power
of detecting some alternative hypotheses against a null hypothesis of a GNBD. The discrete
Anderson–Darling-type test (defined in subsection 9.7.3) is the most powerful among the EDF
tests.

When both parameters m and β are known constants and Xi , i = 1, 2, 3, . . . , n, is a
random sample of size n, a uniformly most powerful test for testing

H0 : θ ≤ θ0 against Ha : θ > θ0 (10.83)

can be constructed by using the following result in from Lehmann (1997, p. 80).

Corollary. Let θ be a real parameter, and let X have probability density (with respect to some
measure µ)

Pθ (x) = C(θ)eQ(θ)T(x)h(x), (10.84)

where Q(θ) is strictly monotone. Then there exists a uniformly most powerful test φ(x) for
testing (10.83). If Q(θ) is increasing, the test is given by
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φ(x) =

⎧⎪⎨
⎪⎩

1, T (x) > k,

γ, T (x) = 0,

0, T (x) < k,

(10.85)

where the constant k and the quantity γ are determined by E (φ(X) |θ0 ) = α. If Q(θ) is
decreasing, the inequalities are reversed.

For the GNBD model in (10.1), the random variable X is discrete and µ is a counting
measure, therefore by using (10.84) for a random sample of size n, we get

Pθ (x) = enm ln(1−θ)e[ln θ+(β−1) ln(1−θ)]
∑

xi

n∏
i=1

m

m + βxi

(
m + βxi

xi

)
, (10.86)

where x = (x1, x2, . . . , xn). By comparing (10.86) with (10.84), we note that

Q(θ) = ln θ + (β − 1) ln(1 − θ)

is a strictly increasing function of θ and the uniformly most powerful test is given by (10.85)
with T (x) =∑ xi . The quantities k and γ are determined from

α = P
(∑

Xi > k |H0

)
+ γ P

(∑
Xi = k |H0

)
,

where the last term is only of interest if one desires randomization to obtain an exact signif-
icance level α. Quite often, statisticians ignore this last term as pointed out by Famoye and
Consul (1990).

A sequential probability ratio test may be used to test the hypotheses

H0 : θ = θ0 against Ha : θ = θ1. (10.87)

Suppose B < A are two constants. A sequential probability ratio test S(B, A) for the test
in (10.87) is defined as follows:

Observe {Xi }, i = 1, 2, 3, . . . , N , sequentially, and at stage N ≥ 1,

(i) reject H0 if L(x) ≥ A,
(ii) accept H0 if L(x) ≤ B,
(iii) continue by observing X N+1 if B < L(x) < A where

L(x) = L(θ1, x)

L(θ0, x)
= L(θ1; x1,x2, . . . , xN )

L(θ0; x1,x2, . . . , xN )

and

L(θ1, x) =
N∏

i=1

Pxi (θ1, β, m).

The measures of effectiveness of this test are obtained through α0, the probability of type I
error; α1, the probability of type II error; and N , the expected sample size when H0 is true. By
using the approximations

B � α1

1 − α0
and A � 1 − α1

α0
, (10.88)
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a sequential probability ratio test is of the form

K
 <

N∑
i=1

Xi < Ku , (10.89)

where

K
 =
log A − log

[(
1−θ1
1−θ0

)m N
]

log

[
θ1
θ0

(
1−θ1
1−θ0

)β−1
] (10.90)

and

Ku =
log B − log

[(
1−θ1
1−θ0

)m N
]

log

[
θ1
θ0

(
1−θ1
1−θ0

)β−1
] . (10.91)

We continue to observe when (10.89) holds and the process is terminated when

N∑
i=1

Xi ≤ K
 or
N∑

i=1

Xi ≥ Ku .

10.8 Characterizations

A number of characteristic properties of the GNBD model are provided in sections 10.1
through 10.4. We now consider some general probabilistic and statistical properties which fur-
ther characterize the GNBD model in (10.1).

Theorem 10.4. Let X1 and X2 be two independent r.v.s whose sum Y is a GNB variate with
parameters θ, β, and m. Then X1 and X2 must each be a GNB variate defined over all
nonnegative integers (Famoye, 1994).

Proof. The r.v. Y has a lattice distribution defined over all nonnegative integers. By using the
arguments of Raikov (1937a, 1937b) we conclude that the r.v.s X1 and X2 must have lattice
distributions defined over all nonnegative integers.

Denote the pgf of the random variable Xi , i = 1, 2, by

gi(u) =
∞∑

x=0

Pi (x)ux, | u | < 1, (10.92)

where the probability distribution of Xi , i = 1, 2, is given by

P(Xi = x) = Pi (x).

Since Y is a GNB r.v. and from (10.3), its pgf is given by

g(u) = �(z) = (1 − θ)m(1 − θ z)−m, where z = u(1 − θ)β−1(1 − θ z)−β+1.

Since X + X2 = Y, then

g1(u) · g2(u)=g(u)=�(z)= (1 − θ)m(1 − θ z)−m with z =u(1 − θ)β−1(1 − θ z)−β+1.
(10.93)
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By using an argument similar to that of Raikov (1937a, 1937b), the pgf of a negative binomial
distribution in (10.93) can be factored into pgfs of negative binomial distributions. Thus, the
factors �1(z) and �2(z) of �(z) = (1 − θ)m(1 − θ z)−m must be given by

�1(z) = (1 − θ)m1(1 − θ z)−m1 and �2(z) = (1 − θ)m−m1(1 − θ z)−m+m1,

where m > m1 > 0 is an arbitrary number. Hence the pgfs of X1 and X2 become

g1(u) = (1 − θ)m1(1 − θ z)−m1 and g2(u) = (1 − θ)m−m1(1 − θ z)−m+m1,

where z = u(1 − θ)β−1(1 − θ z)−β+1. Because of the uniqueness property, the pgfs g1(u) and
g2(u) must represent GNBD models. Therefore, X1 and X2 must be GNB variates, defined
over all nonnegative integers, with respective parameters (θ, β, m1) and (θ, β, m − m1). ��
Theorem 10.5. If a nonnegative GNB variate Z is subdivided into two components X and Y
such that the conditional distribution

P(X = k, Y = z − k | Z = z)

is a generalized negative hypergeometric distribution

P(X = x) =
m1

m1+βx−x

(m1+βx−1
x

) m−m1
m−m1+β(z−x)−(z−x)

(m−m1+β(z−x)−1
z−x

)
m

m+βz−z

(m+βz−1
z

) (10.94)

with parameters (m, m1, z, β), m > m1 > 0, then the random variables X and Y are indepen-
dent and have the GNBD (Jain and Consul, 1971).

Proof. Let Z be a GNB variate with parameters (θ, β, m). Its probability distribution is

P(Z = z) = m

m + βz

(
m + βz

z

)
θ z(1 − θ)m+βz−z, z = 0, 1, 2, . . . ,

and zero otherwise. The joint probability distribution of the r.v.s X and Y is given by the
conditional probability distribution as the product

P(X = k, Y = z − k) = P(X = k, Y = z − k | Z = z) · P(Z = z)

=
m1

m1+βk−k

(m1+βk−1
k

) m−m1
m−m1+β(z−k)−(z−k)

(m−m1+β(z−k)−1
z−k

)
m

m+βz−z

(m+βz−1
z

)
× m

m + βz

(
m + βz

z

)
θ z(1 − θ)m+βz−z . (10.95)

The result in (10.95) can be rewritten in the form

P(X = k, Y = z − k) = m1

m1 + βk

(
m1 + βk

k

)
θk · (1 − θ)m1+βk−k

× m − m1

m − m1 + β(z − k)

(
m − m1 + β(z − k)

z − k

)
θ z−k(1 − θ)m−m1+(β−1)(z−k)

= Pk(θ, β, m1) · Pz−k(θ, β, m − m1),
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which is a product of two GNB probabilities corresponding to the r.v.s X and Y. Thus, the
random variables X and Y are independent and have GNBD models with respective parameters
(θ, β, m1) and (θ, β, m − m1). ��
Theorem 10.6. If X1 and X2 are two independent GNB variates with parameters (θ, β, m1)
and (θ, β, m − m1), m > m1 > 0, respectively, the conditional probability distribution of
X1, given X1 + X2 = Z, provides a generalized negative hypergeometric distribution with
parameters (m, m1, z, β) (Jain and Consul, 1971).

Proof.

P(X1 = x | X1 + X2 = z) = Px (θ, β, m1) · Pz−x(θ, β, m − m1)∑z
j=0 Pj (θ, β, m1)Pz− j(θ, β, m − m1)

=
m1

m1+βx−x

(m1+βx−1
x

) m−m1
m−m1+β(z−x)−(z−x)

m
m+βz−z

(m+βz−1
z

)
×
(

m − m1 + β(z − x) − 1
z − x

)
,

which is a generalized negative hypergeometric distribution. ��
Theorem 10.7. If X and Y are two independent nonnegative integer-valued r.v.s such that

P(X = 0 | X + Y = z) =
m−m1

m−m1+βz−z

(m−m1+βz−1
z

)
m

m+βz−z

(m+βz−1
z

) (10.96)

and

P(X =1 | X + Y = z)=
m1

m1+β−1

(m1+β−1
1

) m−m1
m−m1+(β−1)(z−1)

(m−m1+β(z−1)−1
z−1

)
m

m+βz−z

(m+βz−1
z

) , (10.97)

where m > m1 > 0, β and z are real numbers, then X and Y are GNB variates with parame-
ters (θ, β, m1) and (θ, β, m − m1), respectively (Famoye, 1994).

Proof. Let P(X = x) = f (x) and P(Y = y) = g(y). By the condition in (10.96),

f (0)g(z)∑z
i=0 f (i)g(z − i)

=
m−m1

m−m1+βz−z

(m−m1+βz−1
z

)
m

m+βz−z

(m+βz−1
z

) (10.98)

and by condition (10.97),

f (1)g(z − 1)∑z
i=0 f (i)g(z − i)

=
m1

m1+β−1

(m1+β−1
1

) m−m1
m−m1+(β−1)(z−1)

(m−m1+β(z−1)−1
z−1

)
m

m+βz−z

(m+βz−1
z

) . (10.99)

On dividing (10.98) by (10.99), we obtain

g(z) f (0)

g(z − 1) f (1)
= m − m1 + β(z − 1)

m − m1 + βz

(m−m1+βz
z

)
(m−m1+β(z−1)

z−1

) · 1

m1
.
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Thus,

g(z)

g(z − 1)
= m − m1 + β(z − 1)

m − m1 + βz

(m−m1+βz
z

)
(m−m1+β(z−1)

z−1

) · f (1)

m1 f (0)

= m − m1 + β(z − 1)

m − m1 + βz

(m−m1+βz
z

)
(m−m1+β(z−1)

z−1

) · θ(1 − θ)β−1,

where
f (1)/[m1 f (0)] = θ(1 − θ)β−1.

Hence

g(z) = m − m1 + β(z − 1)

m − m1 + βz

(m−m1+βz
z

)
(m−m1+β(z−1)

z−1

)θ(1 − θ)β−1g(z − 1) . (10.100)

By using the relation (10.100) recursively, we get

g(y) = m − m1

m − m1 + βy

(
m − m1 + βy

y

)(
θ(1 − θ)β−1

)y
g(0) .

By using the fact that
∑

y g(y) = 1 and the Lagrange expansion in (1.78), it is clear that
g(0) = (1 − θ)m−m1. Hence,

P(Y = y)=g(y)= m − m1

m − m1 + βy

(
m − m1 + βy

y

)
θ y(1 − θ)m−m1+βy−y, y =0, 1, 2, . . . .

Thus Y is a GNB variate with parameters θ, β, and m − m1. In a similar way, it can be shown
that the r.v. X is also a GNB variate with parameters θ, β, and m1. ��
Theorem 10.8. If X and Y are two independent discrete r.v.s defined on the set of all nonnega-
tive integers such that

P(X = x |X + Y = z) =
m1

m1+βx−x

(m1+βx−1
x

) m2
m2+(β−1)(z−x)

(m2+β(z−x)−1
z−x

)
m1+m2

m1+m2+βz−1

(m1+m2+βz−1
z

) (10.101)

for β > 1 and x = 0, 1, 2, . . . , z and zero otherwise, then X and Y must be GNB variates with
parameters (θ, β, m1) and (θ, β, m2), respectively (Famoye, 1994; incomplete proof given in
Jain and Consul, 1971).

Proof. Let P(X = x) = f (x) > 0 with
∑

f (x) = 1 and let P(Y = y) = g(y) > 0 with∑
g(y) = 1. Since X and Y are independent random variables,

P(X = x |X + Y = z) = f (x)g(z − x)∑z
x=0 f (x)g(z − x)

,

which is given by (10.101) for all values of x ≤ z and for all integral values of z. For z ≥ 1 and
0 ≤ x ≤ z, this yields the functional relation



10.8 Characterizations 211

f (x)g(z − x)

f (x − 1)g(z − x − 1)
=

m1
m1+βx−x

(m1+βx−1
x

)
m1

m1+(β−1)(x−1)

(m1+β(x−1)−1
x−1

)

×
m2

m2+(β−1)(z−x)

(m2+β(z−x)−1
z−x

)
m2

m2+(β−1)(z−x+1)

(m2+β(z−x+1)−1
z−x+1

) . (10.102)

Writing z − x = 0 in the above relation and simplifying, we get

f (x)

f (x − 1)
= g(1)

m2g(0)
.

m1
m1+βx

(m1+βx
x

)
m1

m1+β(x−1)

(m1+β(x−1)
x−1

) , (10.103)

where g(1)/[m2g(0)] is independent of x and can be replaced by A (an arbitrary quantity).
Replacing x by x − 1, x − 2, . . . , 3, 2, 1 in (10.103) and multiplying them columnwise, we
have

f (x) = m1

m1 + βx

(
m1 + βx

x

)
Ax . f (0), x = 0, 1, 2, . . . . (10.104)

Since
∑

f (x) = 1, the above gives

∞∑
x=0

m1

m1 + βx

(
m1 + βx

x

)
Ax = [ f (0)]−1 . (10.105)

The above expansion on the left side becomes the same as in (1.91) if we replace the arbi-
trary quantity A by another arbitrary quantity θ(1 − θ)β−1, where 0 < θ < 1. Thus,

[ f (0)]−1 = (1 − θ)−m1 or f (0) = (1 − θ)m1 .

Hence, the relation (10.104) becomes

f (x) = m1

m1 + βx

(
m1 + βx

x

)
θ x (1 − θ)m1+βx−x , x = 0, 1, 2, . . . .

Thus, X is a GNB variate with parameters (θ, β, m1). Similarly, one can show that the random
variable Y is also a GNB variate with parameters (θ, β, m2). ��

Let Z be a r.v. defined on nonnegative integers with the probability distribution {Pz} and
let Y be a r.v. denoting the undamaged part of the r.v. Z when it is subjected to a destructive
process such that

P(Y = k | Z = z) = S(k | z), k = 0, 1, 2, . . . , z.

Theorem 10.9. Suppose Z is a GNB variate with parameters (θ, β, m). If the destructive
process is the generalized negative hypergeometric distribution given by

S(k | z) =
m1

m1+βk−k (
m1+βk−1

k )
m−m1

m−m1+(β−1)(z−k) (
m−m1+β(z−k)−1

z−k )
m

m+βz−z (
m+βz−1

z )
(10.106)
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for k = 0, 1, 2, . . . , z and m > m1 > 0, then

(a) Y , the undamaged part of Z, is a GNB variate with parameters (θ, β, m1),
(b) P(Y = k) = P(Y = k | Z damaged) = P(Y = k | Z undamaged),
(c) Sk = 0 for all k if Sk = P(Y = k) − P(Y = k | Z undamaged) does not change its sign

for any integral value of k.

(See Famoye, 1994.)

Proof. (a)

P(Y = k) =
∞∑

z=k

S(k | z)Pz(θ, β, m)

=
∞∑

z=k

m1
m1+βk−k

(m1+βk−1
k

) m−m1
m−m1+(β−1)(z−k)

(m−m1+β(z−k)−1
z−k

)
m

m+βz−z

(m+βz−1
z

)
× m

m + βz

(
m + βz

z

)
θ z(1 − θ)m+βz−z

= m1

m1 + βk

(
m1 + βk

k

)
θk(1 − θ)m1+βk−k

∞∑
z=k

m − m1

m − m1 + β(z − k)

×
(

m − m1 + β(z − k)
z − k

)
θ z−k(1 − θ)m−m1+(β−1)(z−k)

= m1

m1 + βk

(
m1 + βk

k

)
θk(1 − θ)m1+βk−k

= Pk(θ, β, m1).

Thus, the random variable Y is a GNB variate with parameters (θ, β, m1).
(b)

P(Y = k | Z damaged) =
∑∞

z=k S(k | z)Pz(θ, β, m)∑∞
k=0
∑∞

z=k S(k | z)Pz(θ, β, m)

=
m

m+βk

(m+βk
k

)
θk(1 − θ)m+βk−k∑∞

k=0
m

m+βk

(m+βk
k

)
θk(1 − θ)m+βk−k

= P(Y = k),

since the denominator is unity. Similarly, it can be shown that

P(Y = k | Z undamaged) = S(k | k)Pk(θ, β, m1)∑∞
k=0 S(k | k)Pk(θ, β, m1)

= P(Y = k), since S(k | k) = 1.
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(c) Since
z∑

j=0
S( j | z) = 1, we have

m

m + βz − z

(
m + βz − 1

z

)
=

z∑
j=0

m1

m1 + β j − j

×
(

m1 + β j − 1
j

)
m − m1

m − m1 + (β − 1)(z − j )
×
(

m − m1 + β(z − j ) − 1
z − j

)
.

Now,

Sk = P(Y = k) − P(Y = k | z undamaged)

=
∞∑

z=k

Pz(θ, β, m)S(k | z) − Pk(θ, β, m1)S(k | k)∑∞
k=0 Pk(θ, β, m1)S(k | k)

.

Summing over k from 0 to ∞, we have

∞∑
k=0

Sk =
∞∑

k=0

∞∑
z=k

Pz(θ, β, m)S(k | z) −
∞∑

k=0

{
Pk(θ, β, m1)S(k | k)∑∞

k=0 Pk(θ, β, m1)S(k | k)

}
. (10.107)

From the proof of (b), the second term on the right-hand side of (10.107) reduces to

∞∑
z=0

Pz(θ, β, m) = 1.

Hence, equation (10.107) becomes

∞∑
k=0

Sk =
∞∑

k=0

∞∑
z=k

Pz(θ, β, m)S(k | z) − 1 =
∞∑

z=0

Pz(θ, β, m)

∞∑
k=0

S(k | z) − 1

=
∞∑

z=0

Pz(θ, β, m) − 1, since
∞∑

k=0

S(k | z) = 1 = 1 − 1 = 0.

Since all Sk, k = 0, 1, 2, . . . , are of the same sign and their sum is zero, each of the Sk
must be zero. ��

Theorem 10.10. Let X be a discrete r.v. indexed by three parameters (θ, β, m) where para-
meter θ is a r.v. that has beta distribution with parameters 1 and k − 1. If a beta mixture
of the probability distribution of the r.v. X is a generalized factorial distribution (generalized
binomial distribution)

P(X = x∗) = (k − 1)(λ + βx∗ − x∗ − 1)(k−1)

(λ + βx∗)(k)

λ − k + 1

λ − k + 1 + βx∗ − x∗
, (10.108)

then X has a GNBD with parameters θ, β, and m = λ − k + 1 (Jain and Consul, 1971).

For the proof, see the paper of Jain and Consul (1971).
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Ahsanullah (1991b) used an infinite divisibility condition and a relation between the mean
and variance to characterize the GNBD. A necessary and sufficient set of conditions (Katti,
1967) for a r.v. X to be infinitely divisible is that

πi = i Pi

P0
−

i−1∑
j=1

πi− j
Pi

P0
≥ 0 for i = 1, 2, 3, . . . . (10.109)

Theorem 10.11. A r.v. X has the GNBD with parameters θ, β, and m if and only if

πk = m

(
βk − 1
k − 1

)
γ k, k = 1, 2, . . . (10.110)

with γ = θ(1 − θ)β−1 and P0 = (1 − θ)m (Ahsanullah, 1991b).

Proof. Let X be a GNBD with pmf as in (10.1), then it can be shown that (10.110) is true.
Assume (10.110) is true. Then

P1 = π1 P0 = (1 − θ)m
[
θ(1 − θ)β−1

]
,

P2 = 1

2
[π2 P0 + π1 P1]

= 1

2

[
m

(
2β − 1

1

)
γ 2 + m2γ 2

]
P0

= m

m + 2β

(
m + 2β

2

)
(1 − θ)m

[
θ(1 − θ)β−1

]2
,

P3 = 1

3
[π3 P0 + π2 P1 + π1 P2]

= γ 3

3

[
m

(
3β − 1

2

)
+ m2

(
2β − 1

1

)
+ m

(
m − 2β

2

)
m

m + 2β

]
P0

=
(

m + 3β
3

)
m

m + 3β
γ 3 P0.

In general,

k Pk =
k−1∑
j=0

πk− j Pj

= mγ k
k∑

j=1

(
mβ − ( j − 1)β − 1

k − j

)(
m + ( j − 1)β

j − 1

)
m

m + ( j − 1)β
P0

= mkγ k
(

m + βk
k

)
1

m + βk
P0.

Thus,

Pk =
(

m + βk
k

)
m

m + βk
γ k P0,

which is the GNBD. ��
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Suppose X1, X2, . . . , X N denote a random sample from a population possessing the first
four moments. Also, let

� =
N∑

i=1

Xi

and a statistic T be defined in terms of the eight subscripts g, h, . . . , n by

T = 7!
∑

Xg . . . Xn(8 − Xn) − 240(N − 7)
∑

Xg . . . X
 X2
n(9 − 5X1 + 6Xm)

+ 6(N − 6)(N − 7)
∑

Xg . . . Xk X
(24Xk − 45X j Xk + 20Xk X
 − 10X2



− (N − 5)(N − 6)(N − 7)
∑

Xg Xh Xi X2
j X2

k

× (12Xi − 72Xh Xi + 8Xi Xk + 6X j Xk − 3X2
k ), (10.111)

where the summations go over all subscripts g, h, i, . . . , n which are all different and vary from
1 to N . Consul and Gupta (1980) showed that the population must be a GNBD if and only if
the statistic T has zero regression on the statistic �.

Consul (1990c) defined a new class of location-parameter discrete probability distributions
(LDPDs). Furthermore, he proved that a random variable X with LDPDs satisfies

σ 2 = n(1 + an)(1 + bn), a > b > 0,

if and only if the random variable X has a GNBD with parameters θ = (a −b)n/(1+an), β =
nb + 1, and m = n.

A discrete probability distribution is a GNBD if and only if the recurrence relation between
its cumulants is given by

Kr+1 = θ(1 − θ)

1 − θβ

∂Kr

∂θ
, r = 1, 2, 3, . . . , (10.112)

where K1 = mθ(1 − θβ)−1. This characterization is a special case of the one given by Jani
(1978b) for the class of MPSD.

10.9 Applications

Queuing Process

Univariate distributions associated with Lagrange expansions have been shown by Consul and
Shenton (1975) to represent the number of customers served in a busy period of a single server
queuing system. The G|D|1 queue is a single server queue with arbitrary interarrival time dis-
tribution and constant service time. Let X denote the number of customers served in a busy
period and let Y denote the number of arrivals during the service period of each customer.
Suppose the number of customers, N , initiating the service has a binomial distribution with pgf
f (z) = (1−θ+θ z)m . Let the distribution of the r.v. Y be binomial with pgf g(z) = (1−θ+θ z)β .
By using Theorem 6.1, the probability distribution of X is the GNBD in (10.1).
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Branching Process and Epidemics

Good (1960, 1965) showed that the class of Lagrangian probability distributions that contains
the GNBD is important in the analysis of biological data and other areas where branching
mechanism is involved. In a branching process, let X0, X1, X2, . . . , Xn, . . . denote the total
number of objects in the zeroth, first, second, . . . , nth, . . . generations. Suppose g(z) = (1 −
θ + θ z)β is the pgf of the probability distribution of offspring in the branching process. If X0,
is a random variable with pgf f (z) = (1 − θ + θ z)m , then the probability distribution of the
total progeny at the nth generation is given by the GNBD in (10.1).

Let X denote the total number of infected anywhere in a habitat, starting from those initially
infected and up to the time of extinction of an epidemic. In section 6.4, it was shown that the
probability distribution of X is a Lagrangian probability distribution. Suppose an epidemic
is started with a random number X0, which has a pgf f (z) = (1 − θ + θ z)m . Let g(z) =
(1 − θ + θ z)β be the pgf of the number ν of susceptibles who would be infected at a certain
point if there is an infectious individual. The distribution of X , the total number of infected
individuals before the extinction of the epidemic, is the GNBD in (10.1).

Molecular Weight Distribution in Polymers

The GNBD has an important use in chemistry in polymerization reaction where the substances
formed are generally classified into unbranched linear chains and branched chains. The mole-
cular weights distribution can be suitably represented by the GNBD. Gordon (1962) derived
the distribution of branched polymers by using the cascade theory of stochastic processes. Yan
(1979) also used the theory of cascade processes to obtain a univariate Stockmayer distribution
for the condensation of polymer chains with an initial size distribution. The primary polymers
are called “chains” and the aggregates formed after cross-linking are called “molecules.”

Theories of branched polymers are generally based on the assumptions that all functional
groups are equally reactive and that intramolecular reaction is excluded. Both the number and
weight distributions of the chains are assumed to exist. Yan (1979) retained these assumptions
to obtain the weight distribution of an x-mer molecule with x degree of polymerization.

To derive the distribution, the x-mer is considered to be a “tree” in the cascade process.
The “zeroth generation” or the “root” of the tree is a randomly chosen monomeric unit of the
type R Ak , where k is the number of functional groups. Let the pgf of the number of func-
tional groups in the zeroth generation be g0(z) = (1 − θ + θ z)k , where θ is the fraction of
reacted functional groups (or the branching probability in cascade theory) and z is related to
the generating variable u by

z = ug1(z), 0 ≤ u ≤ 1, 0 ≤ z ≤ 1,

where g1(z) is the pgf of the first, second, third, . . . , generations. In the chemical situation, we
have

g0(z) 	= g1(z) = g2(z) = g3(z) = · · ·
because the zeroth generation can produce one more offspring than each of the other genera-
tions. Thus,

g1(z) = g2(z) = · · · = (1 − θ + θ z)k−1 .

The weight distribution P(X = x) for a chemical condensation is given by the pgf

f (u) =
∑

x

P(X = x)ux = ug0(z) = (z/g1(z)) g0(z) = z (1 − θ + θ z) .
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By using the Lagrange expansion in (1.78) on f (u) under the transformation z =
u (1 − θ + θ z)k−1, we obtain

P(X = x) = k

(k − 1)x + 1

(
(k − 1)x + 1

x − 1

)
θ x−1 (1 − θ)(k−2)x+2 , x ≥ 1.

On replacing x by y + 1, we get

P(Y = y) = k

k + (k − 1)y

(
k + (k − 1)y

y

)
θ y (1 − θ)k+(k−1)y−y , y ≥ 0,

which is the GNBD in (10.1) with m = k and β = k − 1.

10.10 Truncated Generalized Negative Binomial Distribution

Famoye and Consul (1993) defined the truncated GNBD as

fx(θ, β, m) = Px(θ, β, m)/Kt, x = 0, 1, 2, . . . , t, (10.113)

and zero otherwise, where 0 < θ < 1, m > 0, −m < β < ∞,

Kt =
t∑

x=0

Px(θ, β, m), (10.114)

and Px(θ, β, m) is the GNBD model in (10.1).
When −m < β < 1

2 (1 − m), the maximum value of t is 1 and so the truncated GNBD
in (10.113) reduces to the point binomial probability model with two probabilities

P0(θ, β, m) =
[
1 + mθ(1 − θ)β−1

]−1
(10.115)

and

P1(θ, β, m) = mθ(1 − θ)β−1
[
1 + mθ(1 − θ)β−1

]−1
. (10.116)

When 1
2 (1 − m) < β < 1, the value of t is any positive integer ≤ (m + 1)(1 − β)−1. The

largest observed value of x in a random sample is usually taken as an estimate of t . When
1 < β < θ−1, Px(θ, β, m) is positive for all integral values of x and so the largest value
of t may be +∞. By the Lagrange theorem, Kt = 1 for t = ∞ and so Px(θ, β, m), for
x = 0, 1, 2, . . . , provides a true probability distribution.

When β > θ−1, Px(θ, β, m) for x = 0, 1, 2, . . . does not provide a true probability
distribution. Consul and Gupta (1980) showed that a quantity q0, say, can be determined such
that Px(θq0, βq0, mq0), x = 0, 1, 2, . . . , is a true probability distribution.

The ratio of the first two probabilities in (10.113) is

f1(θ, β, m)

f0(θ, β, m)
= mθ(1 − θ)β−1.

The population mean µt and the variance σ 2
t for the truncated GNBD (10.113) can be written

as

µt = E(X) = K −1
t

t∑
x=0

x Px (θ, β, m) (10.117)
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and

σ 2
t = E(X − µt )

2 = K −1
t

t∑
x=0

x2 Px(θ, β, m) − µ2
t . (10.118)

Famoye and Consul (1993) proposed the following estimation methods for the truncated
GNBD: (i) method based on mean and ratio of frequencies; (ii) method based on ratio of first
two frequencies, mean, and second factorial moment; and (iii) method of ML. The ML method
has the smallest bias while the moment method is the most efficient.

The truncated GNBD given in (10.113) is a right truncated MPSD. In a similar manner a
left truncated GNBD which is also a left truncated MPSD can be defined. The MVU estimators
of θ and its functions follow the general procedure described for the MPSD in chapter 7. Kumar
and Consul (1980), Jani (1977), and Gupta (1977) gave MVU estimators of θ and some of its
functions for the left truncated GNBD model.

In a study conducted by Consul and Famoye (1995), they found that while the fitted fre-
quencies of GNBD are close to the observed frequencies, the parameter estimates are not close
to the actual parameter values. By using the bias property, they found that the truncated GNBD
model provided better parameter estimates than the corresponding nontruncated GNBD model
when fitted to data sets from the nontruncated GNBD model. Consul and Famoye (1995) sug-
gested that the error caused by truncation can be eliminated to a great extent in estimation
by using a truncated model for the estimation of parameters even though the data is from a
nontruncated GNBD model.

10.11 Other Related Distributions

10.11.1 Poisson-Type Approximation

The GNBD in (10.1) can be written in the form

Px(θ, β, m) = (mθ)x
x−1∏
i=1

(
1 + βx − i

m

)
(1 − θ)m+βx−x/x!, x = 0, 1, 2, . . . . (10.119)

By substituting θ = α/m, β/m = λ/α and taking the limit of (10.119) as m → ∞, Jain and
Consul (1971) obtained the limit

Px(λ, α) = α(α + λx)x−1 e−α−λx/x! (10.120)

for x = 0, 1, 2, 3, . . . , which is the generalized Poisson distribution discussed in chapter 9.

10.11.2 Generalized Logarithmic Series Distribution-Type Limit

The zero-truncated GNBD can be obtained from (10.113) as

fx(θ, β, m) = m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x/[1 − (1 − θ)m] for x = 1, 2, 3, . . . .

(10.121)
As m → 0, the zero-truncated GNBD in (10.113) tends to the generalized logarithmic series
distribution with parameters θ and β. The GLSD is discussed in chapter 11 and its probability
function is given by

Px(θ, β) = [− log(1 − θ)]−1 1

βx

(
βx
x

)
θ x (1 − θ)βx−x . (10.122)
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10.11.3 Differences of Two GNB Variates

Let X and Y be two independent r.v. having GNBDs Px(θ, β, m) and Py(θ, β, n), respectively.
Consul (1989b) defined the distribution Pr (D = d) of the difference D = Y − X as

Pr (D = d) =
{

(1 − θ)m+n∑
x (m, β)x(n, β)d+x[θ(1 − θ)β−1]2x+d , d ≥ 0,

(1 − θ)m+n∑
y(n, β)y(m, β)y−d[θ(1 − θ)β−1]2y−d , d < 0,

(10.123)

for x = 0, 1, 2, . . . , and where the summations on x and y are from 0 to ∞ and (m, β)x =
m

m+βx

(m+βx
x

)
, and d takes all integral values from −∞ to ∞.

The pgf of the random variable D is given by

G1(u, v) = (1 − θ + θ t1)
n(1 − θ + θ t2)

m, (10.124)

where t1 = u(1−θ +θ t1)β and t2 = v(1−θ +θ t2)β. The pgf in (10.124) is somewhat restricted
as the parameters m, n, and β are positive integers. A more general pgf of the distribution of
the random variable D = Y − X is

G2(u, v) = f (t1, t2) = (1 − θ)m+n(1 − θ t1)
−n(1 − θ t2)

−m, (10.125)

where t1 = u(1 − θ)β−1(1 − θ t1)−β+1 and t2 = v(1 − θ)β−1(1 − θ t2)−β+1.
The cgf is given by

ψ(U ) = (β − 1)−1[n(T1 − U ) + m(T2 + V )], (10.126)

where T1 = U + (β − 1){log(1 − θ) − log(1 − θeT1)} and T2 = U + (β − 1){log(1 − θ) −
log(1 − θeT2)}.

A recurrence relation between the cumulants is

ψ(U ) = m
∂ψ(U )

∂m
+ n

∂ψ(U )

∂n
, (10.127)

which corresponds to

Lk = m
∂Lk

∂m
+ n

∂Lk

∂n
, k = 1, 2, 3, . . . , (10.128)

where Lk is the kth cumulant and L1 = (m −n)θ(1−θβ)−1. Consul (1990c) obtained the next
three cumulants as

L2 = (m + n)θ(1 − θ)(1 − θβ)−3, (10.129)

L3 = (m − n)θ(1 − θ)[1 − 2θ + 2θβ − θ2β](1 − θβ)−5, (10.130)

and
L4 = (m + n)θ(1 − θ)A(1 − θβ)−7, (10.131)

where

A = 1 − 6θ + 6θ2 + θβ(8 − 18θ + 8θ2) + θ2β2(6 − 6θ + θ2). (10.132)

The coefficients of skewness
√

β1 and kurtosis β2 are given by

√
β1 = (m − n)

m + n

(1 − 2θ + 2θβ − θ2β)√
(m + n)θ(1 − θ)(1 − θβ)

(10.133)
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and
β2 = 3 + A/[(m + n)θ(1 − θ)(1 − θβ)], (10.134)

where A is defined in (10.132).
The first three moments for the absolute difference | X − Y | of two GNB variates are also

given in Consul (1990c).

10.11.4 Weighted Generalized Negative Binomial Distribution

Ambagaspitiya (1995) defined an ω(m + βx, β)-weighted GNBD as

Px(m, β) = ω(m + βx, β)

E [ω(m + β X, β)]

m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x,

or

Px(m, β)= W (m+β, β)

W (m, β)

θ2

(m+β)(1 − θ)

(
β−1+ m+1

x

)
Px−1(m+β, β), x = 1, 2, 3, . . . ,

where

W (m, β) =
∑

x

ω(m + βx, β)
m

m + βx

(
m + βx

x

)
θ x (1 − θ)m+βx−x,

and obtained the pgf of the distribution. When W (m, β) = m, this weighted distribution re-
duces to the probability distribution given by Janardan and Rao (1983). The ω(m + βx, β)-
weighted distribution satisfies the convolution property. Ambagaspitiya (1995) also derived a
recursive formula for computing the distribution function.

The GNBD in (10.1) satisfies the relation

Px(m, β) = mθ

(m + β)(1 − θ)

(
β − 1 + m + 1

x

)
Px−1(m + β, β), x = 1, 2, 3, . . . ,

which has been used in the second definition of the weighted GNBD.
Lingappaiah (1987) discussed the relationship of the GNBD with its weighted distribution,

given by ω(m + βx, β) = x , and obtained a number of recurrence relations between their
moments. Also, he obtained some inverse moments and other relations.

10.12 Exercises

10.1 Use the method of differentiation to show that a recurrence relation between the central
moments of GNBD is given by (10.10). Also, show that a recurrence relation between
the factorial moments is (10.11).

10.2 Suppose X1, X2, . . . , Xn is a random sample from a GNBD with unknown θ (parame-
ters β and m are assumed known). Show that the MVU estimators of µ′

1, (µ′
1)

2, and µ2
are given, respectively, by (10.67), (10.68), and (10.69).

10.3 Consider Exercise 10.2. Show that the MVU estimators of θk and θk(1 − θ)βk−k are
given, respectively, by (10.70) and (10.71).

10.4 Suppose X1, X2, . . . , Xn is a random sample from a GNBD with parameter θ as the
only unknown. Under a prior distribution which is beta with parameters a and b, show
that the Bayes estimator of θ is given by (10.77).
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10.5 Let X1, X2, . . . , Xn , where n is large, be a random sample from a GNBD with parame-
ters β and m known. By using the sample mean X̄ and normal approximation, obtain an
expression for computing a 100(1 − α)% CI for θ.

10.6 Suppose X is a discrete r.v. indexed by three parameters θ, β, and m, where θ is a r.v.
that has beta distribution with parameters a = 1 and b = k − 1. If a beta mixture of
the probability distribution of the r.v. X is generalized factorial distribution in (10.108),
show that X has a GNBD with parameters θ, β, and m = λ − k + 1.

10.7 If X is a generalized negative binomial random variable with mean µ = mθ(1 − θβ)−1

and variance σ 2 = mθ(1 − θ)(1 − θβ)−3, show that the limiting distribution of Z =
(X − µ)/σ, as m → ∞, is normal.

10.8 Let X1, X2, . . . , X N be a random sample of size N from the Consul probability distrib-
ution given by

P(X = x) = 1

x

(
mx

x − 1

)
θ x−1(1 − θ)mx−x+1, x = 1, 2, 3, . . . ,

and zero otherwise, where 0 < θ < 1 and 1 ≤ m ≤ θ−1. Show that the probability
distribution of Y = X1 + X2 + · · · + X N , given N , is

P(Y = y|N) = N

y

(
my

y − N

)
θ y−N (1 − θ)N+my−y

for y = N, N + 1, . . . , and zero otherwise. If N is a binomial r.v. with parameters θ and
k (k > 0), show that the probability distribution of Y is a GNBD.

10.9 Suppose a queue is initiated by N members and has traffic intensity with negative bino-
mial arrivals, given by the generating function g(z) = (1−θ)β−1(1−θ z)−β+1, 0 < θ <
1, 1 < β < θ−1, and constant service time. Find the probability that exactly x members
will be served before the queue vanishes, where the queue discipline is “first-come, first-
served.” Also, obtain the probability distribution of the customers served in the first busy
period if N is also a negative binomial r.v. with parameters θ and m, 1 < m < θ−1.

10.10 Let Y be a r.v. with zero-truncated GNBD. Obtain a recurrence relation between the
noncentral moments of Y . By using the recurrence relation, find the mean and variance
of zero-truncated GNBD. Assuming that parameter m is known, find the estimates of θ
and β by using the first moment and the proportion of ones.
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Generalized Logarithmic Series Distribution

11.1 Introduction and Definition

A discrete r.v. X is said to have a generalized logarithmic series distribution (GLSD) if its
probability function is given by

Px(θ, β) =
{

1
βx

(βx
x

) θ x (1−θ)βx−x

{− ln(1−θ) , x = 1, 2, 3, . . . ,

0, otherwise,
(11.1)

where 0 < θ < 1 and 1 ≤ β < θ−1. When β = 1, the probability function in (11.1) reduces
to that of the logarithmic series distribution given in Johnson et al. (1992). The GLSD belongs
to the class of Lagrangian distributions in (2.7) and is listed at (12) in Table 2.3. It belongs
to the subclass MPSD. Thus, the GLSD possesses all the properties of the MPSDs and of the
Lagrangian distributions as discussed in earlier chapters.

The GLSD in (11.1) was obtained (Jain and Gupta, 1973; Patel, 1981) as a limiting form of
zero-truncated GNBD, which is defined as

P(X = x) = m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x

1 − (1 − θ)m
, x = 1, 2, 3, . . . , (11.2)

where 0 < θ < 1, 1 ≤ β ≤ θ−1, and m > 0.
On rewriting (11.2) as

x!P(X = x) = (m +βx −1) (m +βx −2) · · · (m +βx −x +1) ·θ x(1−θ)βx−x m(1 − θ)m

1 − (1 − θ)m
,

and taking the limit of the above as m → 0, we obtain the probability function in (11.1).
Tripathi and Gupta (1985) defined a discrete probability distribution, which they called a

GLSD with two parameters. Their GLSD was developed by taking the limit of a shifted version
of a GNBD given by Tripathi and Gurland (1977). Another generalization of logarithmic series
distribution was obtained by Tripathi and Gupta (1988). This GLSD was based on a GNBD
obtained from a generalized Poisson distribution compounded with a truncated gamma distri-
bution. We remark here that both forms of GLSD defined by Tripathi and Gupta (1985, 1988)
differ from the probability model in (11.1) and both of them have complicated probability mass
functions.
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Since ∞∑
x=1

Px (θ, β) = 1,

the mean µ′
1 can easily be obtained by differentiating

[− ln(1 − θ)] =
∞∑

x=1

1

βx

(
βx
x

) [
θ(1 − θ)β−1

]x

with respect to θ and simplifying the result. Thus,

µ′
1 = αθ(1 − θβ)−1, where α = [− ln(1 − θ)]−1 . (11.3)

Mishra and Tiwary (1985) defined the GLSD for negative values of the parameters. By
putting θ = −a and β = −b in (11.1), where a and b are positive quantities, we obtain

Px (−a, −b) = 1

x ln(1 + a)

(
bx + x − 1

x − 1

)(
a

1 + a

)x ( 1

1 + a

)bx

.

On substituting θ1 = a/(1 + a) and β1 = 1 + b, the above reduces to

Px(−a, −b) = 1

β1x

(
β1x

x

)
θ x

1 (1 − θ1)
β1x

− ln(1 − θ1)
,

which is of the same form as (11.1). The assumption of θ and β being positive may be dropped,
and hence the GLSD is defined for negative values of θ and β.

11.2 Generating Functions

The pgf of the GLSD can be obtained by using the results obtained for the class of Lagrangian
probability distributions L( f ; g; x) in (2.7). The pgf is given by

Gx (u) = ln(1 − θ + θ z), (11.4)

where z = u(1 − θ + θ z)β.
On using z = es and u = ev in (11.4), we obtain the mgf for the GLSD as

Mx(v) = ln(1 − θ + θes), where s = v + β ln(1 − θ + θes).

Another pgf for the GLSD is given by

Gx (u) = f (z) = ln

(
1 − θ

1 − θ z

)
, where z = u

(
1 − θ

1 − θ z

)β−1

. (11.5)

Correspondingly, we obtain the mgf from (11.5) as

Mx(v) = ln

(
1 − θ

1 − θes

)
, where s = v + (β − 1) ln

(
1 − θ

1 − θes

)
.

Since the Gx(u) in (11.4) and the Gx(u) in (11.5) cannot be transformed into each other, the
GLSD is one of those few probability models which has two independent sets of the pgfs for
its generation and has two sets of mgfs, which can be used to obtain the moments.
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11.3 Moments, Cumulants, and Recurrence Relations

All the moments of GLSD exist for 1 ≤ β < θ−1. Though one of the two sets of the above
mgfs can be used to determine the moments of the GLSD about the origin, there is a recurrence
relation which gives the moments more easily. The kth moment about the origin can be written
as

µ′
k = E

[
Xk
]

=
∞∑

x=1

xk 1

βx

(
βx
x

)
θ x (1 − θ)βx−x

[− ln(1 − θ)]
.

On differentiating the above with respect to θ , we get

dµ′
k

dθ
=

∞∑
x=1

xk Px (θ, β)

[
x(1 − θβ)

θ(1 − θ)
− 1

(1 − θ) {− ln(1 − θ)}
]

= 1 − θβ

θ(1 − θ)

[
µ′

k+1 − µ′
1µ

′
k

]
.

Hence,

µ′
k+1 = θ(1 − θ)

1 − θβ

dµ′
k

dθ
+ µ′

1µ
′
k, k = 1, 2, 3, . . . , (11.6)

which is a recurrence relation between the noncentral moments. Famoye (1995) used the rela-
tion (11.6) to obtain the first six noncentral moments as

µ′
1 = αθ(1 − θβ)−1 (given by (11.3)),

µ′
2 = αθ(1 − θ)(1 − θβ)−3, (11.7)

µ′
3 = αθ(1 − θ) [1 − 2θ + θβ(2 − θ)] (1 − θβ)−5, (11.8)

µ′
4 = αθ(1 − θ)A(1 − θβ)−7, (11.9)

µ′
5 = αθ(1 − θ)B(1 − θβ)−9, (11.10)

and

µ′
6 = αθ(1 − θ)

[
(1 − 2θ + 8θβ − 7θ2β)B + θ(1 − θ)(1 − θβ)C

]
(1 − θβ)−11, (11.11)

where

α = [− ln(1 − θ)]−1 , (11.12)

A = 1 − 6θ + 6θ2 + 2θβ(4 − 9θ + 4θ2) + θ2β2(6 − 6θ + θ2), (11.13)

B = 1 − 14θ + 36θ2 − 24θ3 + θβ(22 − 113θ + 152θ2 − 58θ3)

+ θ2β2(58 − 152θ + 113θ2 − 22θ3) + θ3β3(24 − 36θ + 14θ2 − θ3), (11.14)

C = d B

dθ
. (11.15)
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The kth central moment of GLSD is given by

µk =
∞∑

x=1

(x − µ′
1)

k 1

βx

(
βx
x

)
θ x (1 − θ)βx−x

[− ln(1 − θ)]
.

On differentiating the above with respect to θ , we obtain

dµk

dθ
=

∞∑
x=1

(x − µ′
1)

k · 1 − θβ

θ(1 − θ)
(x − µ′

1)Px(θ, β) −
∞∑

x=1

k(x − µ′
1)

k−1 dµ′
1

dθ
Px(θ, β)

=
∞∑

x=1

(x − µ′
1)

k+1 1 − θβ

θ(1 − θ)
Px(θ, β) − k µk−1

dµ′
1

dθ
.

On further simplification, a recurrence relation between the central moments becomes

µk+1 = θ(1 − θ)

1 − θβ

dµk

dθ
+ kµ2 µk−1, k = 2, 3, . . . . (11.16)

By using the mean µ′
1 in (11.3) and the second noncentral moment in (11.7), the variance of

GLSD becomes

σ 2 = µ2 = αθ(1 − θ)(1 − θβ)−3 − (µ′
1)

2. (11.17)

The GLSD is a member of the class of modified power series distributions considered in
chapter 7 with φ(θ) = θ(1 − θ)β−1 and h(θ) = {− ln(1 − θ)}. Tripathi, Gupta, and Gupta
(1986) obtained the first three incomplete moments and incomplete factorial moments for the
GLSD. Recurrence relations between these moments for the MPSD are given in chapter 7. The
incomplete moments are given by (7.21), while the incomplete factorial moments are given
by (7.23). By using these results Tripathi, Gupta, and Gupta (1986) have derived the expressions
for the first three incomplete moments and the first three incomplete factorial moments for the
GLSD. However, these expressions are too long.

11.4 Other Interesting Properties

Gupta (1976) obtained the distribution of Z = ∑n
i=1 Xi , where X1, X2, . . . , Xn is a random

sample from the GLSD model (11.1). Since each Xi is a MPSD with φ(θ) = θ(1 − θ)β−1 and
h(θ) = {− ln(1 − θ)}, the distribution of Z is of the form

P(Z = z) = b(z, n) φz(θ)/(h(θ))n, z = n, n + 1, n + 2, . . . , (11.18)

where

[h(θ)]n =
∑

z

b(z, n) φz(θ). (11.19)

By using the Lagrange expansion on (h(θ))n under the transformation θ = ug(θ) = u(1 −
θ)−β+1 as φ(θ) = θ/g(θ), we obtain
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(h(θ))n =
∞∑

z=n

n

z!

{(
d

dθ

)z−1 [
(1 − θ)−βz+z−1{− ln(1 − θ)}n−1

]}
θ=0

(
θ

g(θ)

)z

=
∞∑

z=n

n!

z!

⎧⎨
⎩
(

d

dθ

)z−1
⎡
⎣ ∞∑

k=n−1

1

k!
|s(k, n − 1)| ·

∞∑
r=0

(−1)rθr+k
(−βz + z − 1

r

)⎤⎦
⎫⎬
⎭

θ=0

×
(

θ

g(θ)

)z

,

where (
a
b

)
=
{a(a−1)a−2) ··· (a−b+1)

1·2·3 ··· b , a > b ≥ 0,

0 , b < 0 .

On further simplification, we get

(h(θ))n =
∞∑

z=n

n!

z

⎧⎨
⎩

z∑
t=n−1

(−1)z−1−t

t!
|s(t, n − 1)|

(−βz + z − 1
z − 1 − t

)⎫⎬
⎭
(

θ

g(θ)

)z

, (11.20)

where s(t, n −1) are the Stirling numbers of the first kind. Comparing (11.19) with (11.20) and
using (11.18), we obtain the distribution of Z as

P(Z = z) = n!

z

z−1∑
t=n−1

(−1)z−1−t |s(t, n − 1)|
t!

(−βz + z − 1
z − 1 − t

)
θ z(1 − θ)βz−z

{− ln(1 − θ)}n . (11.21)

The above probability distribution has a complex form; however,

E[Z] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ] = nαθ(1 − θβ)−1

and

Var[Z] =
n∑

i=1

Var[Xi ] = nαθ(1 − θ)(1 − θβ)−3 − n
[
αθ(1 − θβ)−1

]2
.

Thus,

E[X̄ ] = αθ(1 − θβ)−1, (11.22)

Var[X̄ ] = n−1
[
αθ(1 − θ)(1 − θβ)−3 − α2θ2(1 − θβ)−2

]
. (11.23)

Theorem 11.1. The GLSD model (11.1) is not strongly unimodal but is unimodal for all values
of θ in 0 < θ < β−1 and for β ≥ 1, and the mode is at the point x = 1 (Famoye, 1987).

Proof. Keilson and Gerber (1971) showed that the sequence {Px} is strongly unimodal if and
only if P2

x / (Px−1 Px+1) ≥ 1 for all values of x .
For x = 2, the GLSD gives

P2
2

P1 P3
= 3

2

(2β − 1)2

(3β − 1)(3β − 2)
. (11.24)
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By using logarithmic differentiation, it can be shown that the right-hand side of (11.24) is a de-
creasing function of β, and hence it takes the maximum value when β = 1. Therefore, (11.24)
becomes

P2
2

P1 P3
<

3

4
< 1 .

Thus, the GLSD model (11.1) does not satisfy the property of strong unimodality for x = 2
and so the model is not strongly unimodal, or equivalently, not log-concave.

When β = 1, the GLSD reduces to the logarithmic series distribution whose unimodality is
well established (see Johnson, Kotz, and Komp 1992, p. 290). We now consider the unimodality
of GLSD for β > 1. For the mode to be at the point x = 1, it suffices to show that

Px+1 < Px for all x = 1, 2, 3, . . . .

Now,

Px+1

Px
= x

(x + 1)2

(βx + β)!(βx − x)!

[(β − 1)(x + 1)]!(βx)!
· θ(1 − θ)β−1 . (11.25)

Since 0 < θ < β−1, the expression θ(1−θ)β−1 is an increasing function of θ and its maximum
occurs at θ = β−1. Thus, (11.25) becomes

Px+1

Px
<

x

(x + 1)2
· 1

β
·
(

β − 1

β

)β−1 (βx + β)(βx + β − 1) · · · (βx + 1)

(βx − x + β − 1)(βx − x + β − 2) · · · (βx − x + 1)

= x

x + 1

(
β − 1

β

)β−1 β−1∏
i=1

(
1 + x

βx + β − x − i

)

<
x

x + 1

(
β − 1

β

)β−1 (
1 + x

βx + β − x − β + 1

)β−1

= x

x + 1

(
β(βx + 1) − βx − 1

β(βx + 1) − βx

)β−1

< 1 for x = 1, 2, 3, . . . .

Therefore, the GLSD is unimodal with its mode at the point x = 1. ��
Hansen and Willekens (1990) showed that the GLSD in (11.1) is strictly log-convex and is

infinitely divisible.
The mean µ′

1 in (11.3) is a monotone increasing function of θ and β. When β ≥ 1, the sec-
ond moment of the GLSD is always more than the mean. Furthermore, the mean and variance
tend to increase with an increase in the value of the parameter β. The variance increases faster
than the mean.

For computation of probabilities, the following recurrence relation between the probabilities
is useful:

Px+1(θ, β) =
(

β − x

x + 1

)
θ(1 − θ)β−1

x−1∏
j=1

(
1 + β

βx − j

)
Px(θ, β) (11.26)

for x = 1, 2, 3, . . . , where P1 = θ(1−θ)β−1/{− ln(1−θ)} and P2 = (β − 1
2 ) θ(1−θ)β−1 P1.
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11.5 Estimation

11.5.1 Point Estimation

Suppose a random sample of size n is taken from the GLSD model (11.1). Let the observed
values be 1, 2, . . . , k with corresponding frequencies n1, n2, . . . , nk , where k is the largest
observed value of x in the sample, and let

n =
k∑

x=1

nx .

Let the first two sample moments be

x̄ = 1

n

k∑
x=1

x nx (11.27)

and

s2 = 1

n − 1

k∑
x=1

(x − x̄)2 nx . (11.28)

Moment Estimates

On equating the first two sample moments (11.27) and (11.28) to the corresponding population
moments (11.3) and (11.7), we get

x̄ = αθ(1 − θβ)−1 (11.29)

and
s2 = αθ(1 − θ)(1 − θβ)−3 − x̄2 . (11.30)

From (11.29), we obtain
β = θ−1 − α(x̄)−1, (11.31)

and on using (11.31) in (11.30),

f (θ) = (1 − θ)x̄3α−2 − θ2(s2 + x̄2) = 0 . (11.32)

We solve equation (11.32) for θ by using an iterative procedure.
As θ → 0, the function f (θ) in (11.32) tends to 1 − (s2 + x̄2)(x̄)−3 and as θ → 1,

f (θ) → −(s2 + x̄2)(x̄)−3 < 0.

When 1 − (s2 + x̄2)(x̄)−3 > 0, there exists at least one solution for equation (11.32) in the
interval (0, β−1). For k = 2 and k = 3, 1 − (s2 + x̄2)(x̄)−3 > 0, and by using mathematical
induction

1 − (s2 + x̄2)(x̄)−3 > 0 for all values of k.

Furthermore, f ′(θ) first increases and then decreases in the interval (0, β−1). Since f ′′(θ) < 0,
the function f (θ) in (11.32) is concave down in the interval (0, β−1). Famoye (1995) has
remarked that equation (11.32) gave one and only one solution to all simulation problems
considered by him.

On getting the moment estimate θ̃ , the value of β̃, the moment estimate of β, can be obtained
from (11.31).
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Maximum Likelihood Estimates

The loglikelihood function of the GLSD is given by


(θ, β) = ln

[
k∏

x=1

{Px(θ, β)}nx

]

= n x̄ ln θ + nx̄(β − 1) ln(1 − θ) − n ln {− ln(1 − θ)}

+
k∑

x=2

nx

{
x−1∑
i=1

ln(βx − i) − ln(x!)

}
. (11.33)

On differentiating (11.33) with respect to θ and β, we obtain the likelihood equations

∂
(θ, β)

∂θ
= nx̄

θ
− (β − 1)nx̄

1 − θ
+ n

(1 − θ) ln(1 − θ)
= 0 (11.34)

and
∂
(θ, β)

∂β
= n x̄ ln(1 − θ) +

k∑
x=2

x−1∑
i=1

xnx

βx − i
= 0. (11.35)

Equations (11.34) and (11.35) are solved simultaneously to obtain θ̂ and β̂, the ML estimates
of parameters θ and β, respectively.

It has not yet been shown that the ML estimators are unique. However, in all simulation
results involving the GLSD model (11.1), the ML estimating equations give a unique solution
set for the parameters θ and β. It can easily be shown that (11.34) represents a curve where β
is a monotonically decreasing function of θ . Similarly, the equation (11.35) represents a curve
in which β is a monotonically decreasing function of θ . Thus, if the two curves intersect, it will
be a unique point.

Proportion of Ones and Sample Mean Method

If P1 denotes the probability of the class X = 1, then from (11.1),

P1 = αθ(1 − θ)β−1 . (11.36)

By equating (11.36) to the proportion of ones in the sample, we obtain
n1

n
= α θ(1 − θ)β−1 . (11.37)

By using (11.31) in (11.37) and on taking the logarithms of both sides, we get

g(θ) = ln θ +
[
θ−1 − x̄−1{− ln(1 − θ)}−1 − 1

]
ln(1 − θ)

− ln {− ln(1 − θ)} − ln(n1/n) = 0. (11.38)

When θ → 0, the function g(θ) in (11.38) tends to x̄−1 − ln(n1/n) − 1, and as θ → 1, the
function g(θ) → +∞. By using mathematical induction as in the case of moment estimation,

x̄−1 − ln(n1/n) − 1 > 0 .

Furthermore, g′(θ) < 0 for all values of θ . Thus, the function g(θ) is monotonically decreasing
in the interval

(
0, β−1

)
, and hence equation (11.38) has a unique solution θ∗ of θ .

The corresponding estimate β∗ of β can be obtained by substituting the value of θ∗ in
equation (11.31).
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Minimum Variance Unbiased Estimation

Patel (1980) obtained the MVU estimators of some functions of parameters of the GLSD. Since
the GLSD is a member of the MPSD class, Z = ∑n

i=1 Xi is a complete and sufficient statistic
for θ , and so the sample mean X̄ = Z/n is a MVU estimator of the mean µ = αθ(1 − θβ)−1

of the GLSD, defined by (11.1).
The MVU estimators of other functions 
(θ) of the parameter θ can be obtained by follow-

ing the method given in subsection 7.5.2 and Theorem 7.4.
By formula (7.51) and the result (11.21), we get the value

b(n, z) = n!

z

z−1∑
t=n−1

(−1)z−1−t |s(t, n − 1)|
t!

(−βz + z − 1
z − 1 − t

)
. (11.39)

(i) MVU estimator for 
(θ) = {− ln(1 − θ)}m. By section 11.4, the Lagrange expansion of

(θ) (h(θ))n = {− ln(1 − θ)}m+n, under the transformation θ = ug(θ) = u(1 − θ)−β+1

and φ(θ) = θ/g(θ), is given by

{− ln(1 − θ)}m+n =
∞∑

z=m+n

m + n

z!

{(
d

dθ

)z−1 [
(1 − θ)−βz+z−1{− ln(1 − θ)}m+n−1

]}
θ=0

×
(

θ

g(θ)

)z

.

On simplification as in section 11.4 and using the result in (11.21), we get

{− ln(1 − θ)}m+n =
∞∑

z=m+n

c(m + n, z)

(
θ

g(θ)

)z

,

where

c(m + n, z) = (m + n)!

z

⎡
⎣ z∑

t=m+n−1

(−1)z−1−t

t!
|s(t, m + n − 1)|

(
βz + z − 1
z − 1 − t

)⎤⎦ .

Thus, the MVU estimator of {− ln(1 − θ)}m is

f (z) = c(m + n, z)/b(n, z)

for z = m + n, m + n + 1, . . . and zero otherwise.

(ii) MVU estimator of θm, m is a positive integer. Now,

d

dθ

[
θn (h(θ))n] = d

dθ

[
θm{− ln(1 − θ)}n]

= mθm−1{− ln(1 − θ)}n + m(1 − θ)−1θm{− ln(1 − θ)}n−1.

By section 11.4, the Lagrange expansion of θm{− ln(1 − θ)}n , under the transformation
θ = ug(θ) = u(1 − θ)−β+1 and φ(θ) = θ/g(θ), is given by
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θm{− ln(1 − θ)}n =
∞∑

z=m+n

1

z!

{(
d

dθ

)z−1

(1 − θ)−βz+z
[
mθm−1{− ln(1 − θ)}n

+ n(1 − θ)−1θm{− ln(1 − θ)}n−1
]}

θ=0

(
θ

g(θ)

)z

=
∞∑

z=m+n

[c1(m + n, z) + c2(m + n, z)]

(
θ

g(θ)

)z

,

where

c1(m + n, z) = m

z!

{(
d

dθ

)z−1 [
θm−1(1 − θ)−βz+z (− ln(1 − θ))n

]}
θ=0

= m!

(z − m)!z

{(
d

dθ

)z−m
[ ∞∑

k=n

1

k!
|s(k, n)|

∞∑
r=0

(−1)rθr+k
(−βz + z

r

)]}
θ=0

= m!

z

∞∑
k=n

(−1)z−m−k

k!
|s(k, n)|

( −βz + z
z − m − k

)

and

c2(m + n, z) = n

z!

{(
d

dθ

)z−1 [
θm(1 − θ)−βz+z−1 (− ln(1 − θ))n−1

]}
θ=0

= n

(z − m − 1)!z

⎧⎨
⎩
(

d

dθ

)z−m−1
⎡
⎣ ∞∑

k=n−1

1

k!
|s(k, n − 1)|

∞∑
r=0

(−1)rθr+k

×
(−βz + z − 1

r

)]}
θ=0

= n

z

∞∑
k=n−1

(−1)z−m−k−1

k!
|s(k, n − 1)|

( −βz + z − 1
z − m − k − 1

)
.

By Theorem 7.4 the MVU estimator of 
(θ) = θm for the GLSD becomes

f (z) = [c1(m + n, z) + c2(m + n, z)] /b(n, z)

for z = m + n, m + n + 1, m + n + 2, . . . and zero otherwise.

(iii) MVU estimator of Px(θ, β) = 1
βx

(βx
x

)
θ x (1 − θ)βx−x/[− ln(1 − θ)]. It can be obtained by

determining the MVU estimator of


(θ) = θ x(1 − θ)βx−x/[− ln(1 − θ)]

in the same manner as (ii) above. However, the method will be longer and somewhat more
complex.
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11.5.2 Interval Estimation

The distribution of the sample sum Y =∑n
i=1 Xi is given by (11.18). When the sample size is

small, a 100(1 − α)% CI for θ when β is known can be obtained from the equations

∞∑
x=y

n!

x

x−1∑
k=n−1

(−1)x−1−k |s(k, n − 1)|
k!

(−βx + x − 1
x − 1 − k

) (
θ
(1 − θ
)

β−1
)x

[− ln(1 − θ
)]n = α

2
(11.40)

and

y∑
x=0

n!

x

x−1∑
k=n−1

(−1)x−1−k |s(k, n − 1)|
k!

(−βx + x − 1
x − 1 − k

) (
θu(1 − θu)β−1

)x
[− ln(1 − θu)]n = α

2
, (11.41)

where |s(k, n − 1)| denotes the Stirling numbers of the first kind (see chapter 1).
Equations (11.40) and (11.41) can be solved iteratively with the help of a computer program

to obtain θ
 and θu , respectively. The quantities θ
 and θu are the respective lower and upper
100(1 − α)% confidence bounds for the parameter θ .

When the sample size is large, we apply the same method as used for the MPSD. By re-
placing the value of µ in expression (7.64), we obtain

1 − α = Pr

{
X̄ − zα/2 s/

√
n <

θ

(1 − θβ) {− ln(1 − θ)} < X̄ + zα/2 s/
√

n

}
. (11.42)

We obtain θ
 and θu by solving the equations

θ

(1 − θβ) {− ln(1 − θ)} = h(θ) = x̄ − zα/2 s/
√

n (11.43)

and
θ

(1 − θβ) {− ln(1 − θ)} = h(θ) = x̄ + zα/2 s/
√

n (11.44)

numerically through an iterative procedure to yield θ
 and θu , respectively, when the numerical
values of n, β, x̄, s, and zα/2 are substituted. Since h(θ) is an increasing function of θ , the equa-
tions in (11.43) and (11.44) have either no solutions or unique solutions. If θ → 0, h(θ) → 1
and if θ → β−1, h(θ) → ∞. Therefore, equations (11.43), for example, will have a unique
solution if and only if

1 − (x̄ − zα/2 s/
√

n) < 0 .

11.6 Statistical Testing

The goodness-of-fit test of the GLSD can be based on the chi-square statistic

χ2 =
k∑

x=1

(Ox − Ex)
2/Ex , (11.45)

where Ox and Ex are the observed and the expected frequencies for class x . The parameters θ
and β are estimated by the ML technique. The expected value Ex is computed by



234 11 Generalized Logarithmic Series Distribution

Ex = n Px(θ, β), (11.46)

where n is the sample size.
The random variable χ2 in (11.45) has a chi-square distribution with k − 1 − r degrees of

freedom, where r is the number of estimated parameters in the GLSD.
Famoye (2000) developed goodness-of-fit test statistics based on the EDF for the GLSD

model. For small or moderate sample sizes, the tests are compared with respect to their simu-
lated power of detecting some alternative hypotheses against a null hypothesis of a GLSD. The
discrete version of the Cramer–von Mises test (defined in subsection 9.7.3) and the Anderson–
Darling test (defined in subsection 9.7.3) are found to be the most powerful among the EDF
tests.

11.7 Characterizations

Theorem 11.2. Let X and Y be two independent discrete r.v.s. The conditional distribution of
X, given X + Y = z, is

P(X = x | X + Y = z) =
1

βx

(βx
x

) 1
β(z−x)

(βz−βx
z−x

)
ux∑z−1

j=1
1
β j

(β j
j

) 1
β(z− j)

(β(z− j)
z− j

)
u j

, (11.47)

where u = θ1
θ2

(
1−θ1
1−θ2

)β−1
and z = 2, 3, . . . , if and only if X and Y each has a GLSD with

parameters (θ1, β) and (θ2, β), respectively.

Proof. Assume that X has a GLSD with parameters (θ1, β) and that Y has a GLSD with para-
meters (θ2, β). Since X and Y are independent

P(X + Y = z) =
z−1∑
j=1

1

β j

(
β j
j

)
1

β(z − j )

(
β(z − j )

z − j

)
θ z

2 (1 − θ2)
βz−z u j

ln(1 − θ1) ln(1 − θ2)
.

Now

P(X = x | X + Y = z) = P(X = x) · P(Y = z − x)

P(X + Y = z)

=
1

βx

(βx
x

) (θ x
1 (1−θ1))

βx−x

{− ln(1−θ1)}
1

β(z−x)

(β(z−x)
z−x

) θ z−x
2 (1−θ2)

(β−1)(z−x)

{− ln(1−θ2)}
P(X + Y = z)

=
1

βx

(βx
x

) 1
β(z−x)

(β(z−x)
z−x

)
ux∑z−1

j=1
1
β j

(β j
j

) 1
β(z− j)

(β(z− j)
z− j

)
u j

,

which is the result in (11.47).
The second part of the proof is to assume that (11.47) holds. This part is straightforward.

See Exercise 11.3. ��
Theorem 11.3. Suppose X and Y are two independent r.v.s such that

P(X = 1 | X + Y = z) =
1

β(z−1)

(β(z−1)
z−1

)
u∑z−1

j=1
1
β j

(β j
j

) 1
β(z− j)

(β(z− j)
z− j

)
u j

(11.48)
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and

P(X = 2 | X + Y = z) =
1

2β

(2β
2

) 1
β(z−2)

(β(z−2)
z−2

)
u2∑z−1

j=1
1
β j

(β j
j

) 1
β(z− j)

(β(z− j)
z− j

)
u j

(11.49)

where β ≥ 1, 0 < θ1, θ2 < 1, u = θ1
θ2

(
1−θ1
1−θ2

)β−1
. Show that X and Y are GLS variates with

parameters (θ1, β) and (θ2, β), respectively.

Proof. Let P(X = x) = f (x) with
∑∞

x=1 f (x) = 1 and P(Y = y) = g(y) with∑∞
y=1 g(y) = 1.
By condition (11.48),

f (1)g(z − 1)∑z−1
j=1 f ( j ) g(z − j )

=
1

β(z−1)

(β(z−1)
z−1

)
u∑z−1

j=1
1
β j

(β j
j

) 1
β(z− j)

(β(z− j)
z− j

)
u j

, (11.50)

and by condition (11.49),

f (2)g(z − 2)∑z−1
j=1 f ( j ) g(z − j )

=
1

2β

(2β
2

) 1
β(z−2)

(β(z−2)
z−2

)
u2∑z−1

j=1
1
β j

(β j
j

) 1
β(z− j)

(β(z− j)
z− j

)
u j

. (11.51)

Dividing (11.50) by (11.51) yields

f (1)g(z − 1)

f (2) g(z − 2)
=

1
β(z−1)

(β(z−1)
z−1

)
u
(
β − 1

2

) 1
β(z−2)

(β(z−2)
z−2

) ,
which gives

g(z − 1) = f (2)

u
(
β − 1

2

)
f (1)

·
1

β(z−1)

(β(z−1)
z−1

)
1

β(z−2)

(β(z−2)
z−2

) g(z − 2).

When z = 3,

g(2) = f (2)

u
(
β − 1

2

)
f (1)

· 1

2β

(
2β
2

)
g(1) .

Also, when z = 4,

g(3) =
{

f (2)

u
(
β − 1

2

)
f (1)

}2
1

3β

(
3β
3

)
g(1) .

Hence, a recurrence relation is obtained as

g(z) =
{

f (2)

u
(
β − 1

2

)
f (1)

}z−1
1

βz

(
βz
z

)
g(1) . (11.52)

Now by assigning f (2)(
β− 1

2

)
f (1)

= θ1(1−θ1)
β−1, so that f (2)

u
(
β− 1

2

)
f (1)

= θ2(1−θ2)
β−1, the relation

in (11.52) gives

g(y) =
{
θ2(1 − θ2)

β−1
}y 1

βy

(
βy
y

)
g(1) . (11.53)
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By using the fact that
∑∞

y=1 g(y) = 1 and the Lagrange expansion, we obtain from (11.53)

g(1) = θ2(1 − θ2)
β−1

{− ln(1 − θ2)} .

Therefore,

g(y) = 1

βy

(
βy
y

)
θ

y
2 (1 − θ2)

βy−y

[− ln(1 − θ2)]
,

which is a GLSD with parameters (θ2, β). Similarly, it can be shown that the r.v. X has a GLSD
with parameters (θ1, β). ��

11.8 Applications

The GLSD has been found useful in research areas where the logarithmic series distribution
has been applied. The GLSD can be used for the distribution of animal species and to represent
population growth. Jain and Gupta (1973) used the GLSD to model the number of publications
written by biologists.

Hansen and Willekens (1990) have shown that, at least asymptotically, the GLSD is a dis-
cretized version of the inverse Gaussian distribution and that it can be used as a lifetime distri-
bution between two renewal points. They considered the application of GLSD in risk theory.
Suppose an insurance company has a portfolio in which claims Xi (i = 1, 2, . . . ) occur at
consecutive time points Yi (i = 1, 2, . . . ). By assuming that {Yi } are independent negative ex-
ponentials with parameter λ and that {Xi } is a sequence of independent r.v.s with the same
distribution F , and independent of {Yi }, the total claim size distribution up to time t is given by

Ft (x) = e−λt
∞∑

k=0

(λt)k(k!)−1 F∗k(x), x ≥ 0 , (11.54)

where F∗k is the kth convolution power of F . Hansen and Willekens (1990) assumed that Ft is
GLSD and obtained the claim size distribution as

P(X1 = n) = 1

θβ

(
β − 1

β(1 − θ)

)β−1 1

λt

log(1 − θ)

log(1 − β−1)
Pn(θ, β), (11.55)

where Pn(θ, β) is the GLSD in (11.1).

11.9 Related Distributions

Truncated GLSD

Since the GLSD is a modified power series distribution and since its truncated form is also a
modified power series distribution, all the results in subsection 7.7.2 for truncated MPSD are
applicable to the truncated GLSD.

The probability mass function of GLSD truncated on the left at the point x = r − 1 is given
by

Px(θ, β, r) = 1

βx

(
βx
x

)
θ x(1 − θ)βx−x

g1(θ, r)
, x = r, r + 1, . . . , (11.56)
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where 0 < θ < 1, 1 ≤ β < θ−1, and

g1(θ, r) = − ln(1 − θ) −
r−1∑
x=1

1

βx

(
βx
x

)
θ x (1 − θ)βx−x . (11.57)

Charalambides (1974) obtained the distribution of Z =∑n
i=1 Xi for truncated GLSD as

Px(z, β, θ) = s̄(z, n, r)θ z(1 − θ)βz−z

gn(θ, r) z!
, z = nr, nr + 1, . . . , (11.58)

where

gn(θ, r) = 1

n!

[
− ln(1 − θ) −

r−1∑
x=1

1

βx

(
βx
x

)
θ x(1 − θ)βx−x

]n

(11.59)

and the coefficients

s̄(z, n, r) = z!

n!

∑ n∏
i=1

1

βxi

(
βxi
xi

)
, (11.60)

where the summation is extended over all n-tuples (x1, x2, . . . , xn) of integers xi ≥ r such that∑n
i=1 xi = z.

Modified GLSD

Jani (1986) defined and studied the GLSD with zeroes. The pmf of generalized logarithmic
series distribution with zeroes (GLSD0) is given by

Px (θ, β, γ ) =
⎧⎨
⎩

1 − γ, x = 0,

γ
βx

(βx
x

) θ x (1−θ)βx−x

{− ln(1−θ)} , x > 0,
(11.61)

for 0 < γ < 1, 0 < θ < 1, and θ−1 > β ≥ 1. For γ = 1, the modified probability distribution
in (11.61) reduces to the GLSD defined in (11.1). If the GLSD provides a good fit to a zero-
truncated data set, then the GLSD with zeros must provide a satisfactory fit to the complete
data set with zeros.

Hansen and Willekens (1990) showed that the GLSD with zeros (GLSD0) is log-convex
and hence it is infinitely divisible. The r th moment about the origin for the modified GLSD can
be obtained easily by multiplying the r th moment about the origin for the GLSD in (11.1) by
γ . Thus, one can obtain the first six moments for GLSD0 by multiplying the results in (11.3)
and (11.7)–(11.11) by γ .

Suppose a random sample of size n is taken from a population that has GLSD0. Suppose
the frequency at each x-value is denoted by nx such that n = ∑k

x=0 nx , where k is the largest
observed value of x . The likelihood function is given by

L =
k∏

x=0

{Px(θ, β, γ )}nx . (11.62)

On taking the logarithm of the likelihood function in (11.62) and differentiating partially with
respect to the three parameters γ, θ, and β, the likelihood equations after simplification be-
come
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γ̂ = n − n0

n
, (11.63)

γ̂ α̂ θ̂

1 − θ̂ β̂
= x̄, (11.64)

and

γ̂

∞∑
x=2

x−1∑
j=1

x nx(β̂x − j )−1 = nx̄, (11.65)

where x̄ is the sample mean and α = [− ln(1 − θ)]−1. (See Exercise 11.5).
Equations (11.64) and (11.65) can be solved for the maximum likelihood estimators θ̂ and β̂
by using the Newton–Raphson iterative method. It is quite possible that iteration may fail to
converge.

Since the method of maximum likelihood may not yield a solution due to nonconvergence,
one may use the method of zero-cell frequency and the first two sample moments. By equat-
ing the zero-class probability to the sample proportion for zeroclass and equating the first two
population moments to the corresponding sample moments, we obtain the following three esti-
mating equations:

1 − γ̃ = n0

n
, (11.66)

µ′
1 = x̄, (11.67)

and
µ′

2 − (µ′
1)

2 = s2. (11.68)

On solving the above simultaneously, we obtain estimators based on the zero-cell frequency
and the first two moments (see Exercise 11.6).

11.10 Exercises

11.1 Show that the function Gx (u) given in (11.4) is a pgf for a r.v. X with GLSD.
11.2 By using the recurrence relation in (11.16), obtain the third, fourth, and fifth central

moments for GLSD.
11.3 Assuming that the result in equation (11.47) holds, prove that the r.v.s X and Y have

GLSD with parameters (θ1, β) and (θ2, β), respectively.
11.4 Suppose a r.v. X has GLSD with zeros. Obtain a recurrence relation for the central

moments. By using your relation, or otherwise, obtain the first four central moments for
X .

11.5 Verify the likelihood equations in (11.63)–(11.65).
11.6 By substituting for the values of µ′

1 and µ′
2 in equations (11.67) and (11.68), simplify

the estimating equations in (11.66)– (11.68).
11.7 A r.v. X has the logarithmic series distribution given by

P(X = x) = θ x

x{− ln(1 − θ)} , x = 1, 2, 3, . . . ,
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and zero otherwise and 0 < θ < 1. If θ is a continuous r.v. having the beta density
function with parameters a and b, obtain the unconditional probability distribution of X
with parameters a and b.

11.8 An insurance company has a portfolio in which the claims Xi , i = 1, 2, 3, . . . , occur at
consecutive time points Yi , i = 1, 2, 3, . . . , which are independent negative exponential
r.v.s with parameter λ. If {Xi } is a sequence of independent r.v.s with the same distrib-
ution function F , and independent of {Yi }, show that the total claim size distribution up
to time t is given by

Ft (x) = e−λt
∞∑

k=0

(λt)k (k!)−1 F∗k(x), x > 0,

where F∗k is the kth convolution power of F . What will be the form of the above distri-
bution if Fi is GLSD? (Hint: See Hansen and Willekens, 1990.)

11.9 Prove that the GLSD in (11.1) is strictly log-concave and is infinitely divisible.
11.10 By using the mean of GLSD in (11.3) and the variance of GLSD in (11.17), determine

the range of parameter values for which the mean is (a) smaller than, (b) equal to, and
(c) greater than the variance. (Hint: Use computer programming and note that both the
mean and variance of GLSD are increasing functions of β.)
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Lagrangian Katz Distribution

12.1 Introduction and Definition

A discrete r.v. X is said to follow a Lagrangian Katz distribution (LKD) with parameters a, b,
and β if its pmf is given by

P(X = x) = Px (a, b, β) = a/β

a/β + xb/β + x

(
a/β + xb/β + x

x

)
βx (1 − β)a/β+xb/β,

(12.1)
for x = 0, 1, 2, 3, . . . and zero otherwise, where a > 0, b > −β, and β < 1. Consul and
Famoye (1996) formally defined and studied the above LKD. It is a member of the class
of Lagrangian probability distributions L( f ; g; x) and is also a member of its subclass, the
MPSDs. The probability model in (12.1) reduces to the Katz distribution (Katz, 1945, 1965)
when b = 0. The LKD reduces to the binomial distribution with parameters n and θ (i) when
0 < β = θ < 1, a = nθ, b = −θ and n (positive integer); and (ii) when b = 0, β < 0,
β(β −1)−1 = θ , −a/β = n (an integer). It reduces to the Poisson distribution when b = 0 and
β → 0, and to the negative binomial distribution with parameters k and θ (i) when b = 0,
0 < β = θ < 1, a/β = k; and (ii) when b = θ(1 − θ)−1, a = kθ(1 − θ)−1, and
β = −θ(1 − θ)−1.

The GNBD in chapter 10 also contains three parameters just like the LKD; however, the
GNBD lies in a narrow domain of the LKD as indicated below:

(i) When 0 < β = θ < 1, the values a = nθ and b = (m − 1)θ change the LKD to the
GNBD.

(ii) When β < 0, the values β = −θ(1 − θ)−1, a = nθ(1 − θ)−1, and b = mθ(1 − θ)−1

change the LKD to the GNBD.

For other values of a, b, and β, the LKD is well defined outside the domain of the GNBD.
Also, the LKD provides the generalized Poisson distribution (discussed in chapter 9) as a lim-
iting form when β → 0 under suitable conditions.

12.2 Generating Functions

The pgf of the LKD is given by

H(u) = f (z) = (1 − β + βz)a/β where z = u(1 − β + βz)1+b/β (12.2)

for all values of the parameters in (12.1).
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Another pgf for the LKD is

G(u) = f (z) =
(

1 − βz

1 − β

)−a/β

, (12.3)

where

z = u

(
1 − βz

1 − β

)−b/β

. (12.4)

Thus, the LKD is one of those few probability distributions which is generated by two sets of
functions as given above. Note that for some values of a, b, and β in (12.1), the four functions
in (12.2), (12.3), and (12.4) may not be pgfs in z; however, the functions are such that their
values for z = 1 are unity.

By replacing β with c in the exponents of the functions
(

1−βz
1−β

)−a/β
and (1−β +βz)1+b/β

in the two pgfs (12.3) with (12.4) and in (12.2), Janardan (1998) has generalized the two pgfs
and their corresponding LKD in (12.1) to the form

P(X = x) = a/c

a/c + xb/c + x

(
a/c + xb/c + x

x

)
βx(1 − β)a/c+xb/c (12.5)

for x = 0, 1, 2, . . . and where a > 0, c > 0, b ≥ −c, 0 < β < 1, and has called
it the generalized Pólya–Eggenberger distribution. As this model is not related to the Pólya–
Eggenberger distribution and is a generalization of the LKD, we rename it the generalized
Lagrangian Katz distribution I (GLKD1).

Obviously, the special cases of the GLKD1 are (i) the LKD (when c is replaced with β), (ii)
the Katz distribution (when b = 0 and c is replaced with β), (iii) the GNBD (for c = 1), (iv) the
negative binomial distribution (for b = 0), (v) the binomial distribution (for c = 1, b = −1),
and (vi) the Poisson distribution (for c → 0, β → 0 such that aβ/c = θ).

12.3 Moments, Cumulants, and Recurrence Relations

Let a = cβ and b = hβ in the LKD defined in (12.1). Thus, the probability model in (12.1)
becomes

Px(cβ, hβ, β) = c

c + hx + x

(
c + hx + x

x

)
βx(1 − β)c+hx , (12.6)

which gives

(1 − β)−c =
∞∑

x=0

c

c + hx + x

(
c + hx + x

x

)
βx(1 − β)hx .

On differentiating with respect to β,

c(1 − β)−c−1 =
∞∑

x=0

c

c + hx + x

(
c + hx + x

x

)
· x(1 − β − hβ) · βx−1(1 − β)hx−1.

The above gives

µ′
1 =

∞∑
x=0

x · Px(cβ, hβ, β) = cβ(1 − β − hβ)−1. (12.7)
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Now, the r th noncentral moment is given by

µ′
r = E(Xr ) =

∞∑
x=0

xr Px(cβ, hβ, β). (12.8)

By using the method of differentiation on (12.8) with respect to β and on simplification, a
recurrence relation between the noncentral moments of LKD becomes

µ′
r+1 = β(1 − β)

1 − β − hβ

dµ′
r

dβ
+ µ′

1µ
′
r (12.9)

for r = 0, 1, 2, . . . , where µ′
0 = 1, µ′

1 = βc(1 − β − hβ)−1 = a(1 − b − β)−1. Note that one
has to differentiate µ′

r with respect to β first and then substitute for the values of c = a/β and
h = b/β.

By putting r = 1 in (12.9),

µ′
2 − (µ′

1

)2 = β(1 − β)

1 − β − hβ)

d

dβ

[
βc(1 − β − hβ)−1

]
= cβ(1 − β)

(1 − β − hβ)3
.

Thus,
σ 2 = cβ(1 − β)(1 − β − hβ)−3 = a(1 − β)(1 − b − β)−3. (12.10)

By using the same method of differentiation with respect to β as in the noncentral moments,
a recurrence relation between the central moments of LKD can be shown to be

µr+1 = β(1 − β)

1 − β − hβ

dµr

dβ
+ rµ2µr−1 (12.11)

for r = 1, 2, 3, . . . , where µ1 = 0, µ2 = a(1 − β)(1 − b − β)−3.
Consul and Famoye (1996) obtained the first four cumulants of the LKD as

L1 = a(1 − b − β)−1 = µ

L2 = a(1 − β)(1 − b − β)−3 = σ 2

L3 = a(1 − β2)(1 − b − β)−4 + 3ab(1 − β)(1 − b − β)−5

⎫⎪⎬
⎪⎭ (12.12)

and

L4 = a(1 − β)
{
(1 + 4β + β2)(1 − b − β)−5 + 10b(1 + β)(1 − b − β)−6

+15b2(1 − b − β)−7
}

. (12.13)

A recurrence relation between the LKD probabilities is

Px+1 = a + b(x + 1) + βx

x + 1
(1 − β)b/β

x−1∏
i=1

(
1 + b

a + bx + βi

)
· Px (12.14)

for x = 1, 2, 3, 4, . . . , where P0 = (1 − β)a/β and P1 = a(1 − β)b/β P0. The recurrence
relation in (12.14) is useful for computing LKD probabilities.

Janardan (1998) has also given a recurrence relation (similar to (12.14)) for the probabilities
of GLKD1. The mean and the variance of the GLKD1 are

L1 = µ = a(β/c)(1 − β − bβ/c)−1

and
L2 = σ 2 = a(1 − β)(β/c)(1 − β − bβ/c)−3.
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12.4 Other Important Properties

Some of the important properties of GLKD1 and LKD are given in this section. The results for
GLKD1 reduce to the results for LKD when c = β.

Theorem 12.1. If X1 and X2 are two mutually independent GLKD1 variates with parameters
(a1, b, c, β) and (a2, b, c, β), then their sum Y = X1+X2 is a GLKD1 variate with parameters
(a1 + a2, b, c, β).

Proof. The joint probability distribution of X1 and X2 is given as

P(X1 = x1, X2 = x2) = Jx1(a1, b, c)Jx2(a2, b, c)βx1+x2(1 − β)(a1+a2+bx1+bx2)/c,

where

Jxi (ai , b, c) = ai/c

ai/c + bxi/c + xi

(
ai/c + bxi/c + xi

xi

)
, i = 1, 2.

Therefore, the probability distribution of the sum Y = X1 + X2 is obtained by putting x2 =
y − x1 and by summing over x1 as

P(Y = y) = β y(1 − β)(a1+a2+by)/c
y∑

x1=0

Jx1(a1, b, c)Jy−x1(a2, b, c).

By using identity (1.85) on the above, it gives

P(Y = y) = (a1 + a2)/c

(a1 + a2)/c + by/c + y
β y(1 − β)(a1+a2+by)/c (12.15)

for y = 0, 1, 2, . . . , which is a GLKD1 with parameters (a1 + a2, b, c, β). ��
Theorem 12.1 can be extended to any number of GLKD1 variates. Hence, the GLKD1 is

closed under convolution.

Theorem 12.2. Let X1 and X2 be two independent GLKD1 variates with parameters (a1, b, c, β)
and (a − a1, b, c, β). Then the conditional distribution of X1 = x, given that X1 + X2 = z, is
a generalized negative hypergeometric distribution with parameters (a/c, a1/c, b/c).

Proof. By definition and on cancellation of the common terms,

P(X1 = x |X1 + X2 = z) = Jx(a1, b, c)Jz−x(a − a1, b, c)∑z
x=0 Jx (a1, b, c)Jz−x(a − a1, b, c)

.

On using the identity (1.85) on the denominator, we get

P(X1 = x |X1 + X2 = z) = Jx (a1, b, c)Jz−x(a − a1, b, c)

Jz(a, b, c)
, (12.16)

which is the generalized negative hypergeometric distribution with parameters (a/c, a1/c, b/c).
��

Theorem 12.3. The zero-truncated LKD with parameters a, b, and β approaches the general-
ized logarithmic series distribution with parameters b and b/β as a → 0 and is given by

P(X = x) = [− ln(1 − β)]−1 (xb/β + x − 1)!

x!(xb/β)!
βx(1 − β)xb/β

for x = 1, 2, 3, . . . and zero otherwise.
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Proof. See Exercise 12.3

Theorem 12.4. Let X1 and X2 be two independent r.v.s such that their sum Z = X1 + X2
with z = 0, 1, 2, 3, . . . . If the conditional distribution of X1 = x, given that Z = z is the
generalized negative hypergeometric distribution in Theorem 12.2, then each one of the r.v.s
X1 and X2 has a LKD distribution.

Proof. Let p(x1) and q(x2) denote the pmfs of X1 and X2, respectively. Then

p(x)q(z − x)∑z
x=0 p(x)q(z − x)

= Jx (a1, b, β)Jz−x(a2, b, β)

Jz(a1 + a2, b, β)
.

Therefore, for all integral values of x and z ≥ x , we have

p(x)q(z − x)

p(x − 1)q(z − x + 1)
= Jx(a1, b, β)Jz−x(a2, b, β)

Jx−1(a1, b, β)Jz−x+1(a2, b, β)
.

By putting z = x in the above, we have

p(x)

p(x − 1)
= q(1)

q(0)
· Jx (a1, b, β)

Jx−1(a1, b, β)
· β

a2
. (12.17)

On using x = 1, 2, 3, . . . in (12.17) and multiplying them together, we obtain

p(x) = p(0)βx
(

q(1)

a2q(0)

)x

Jx(a1, b, β). (12.18)

Since p(x )̇ > 0 for all values of x and
∑∞

x=0 p(x) = 1, the summation of (12.18) over all
values of x gives

1 =
∞∑

x=0

a1/β

a1/β + xb/β + x

(
a1/β + xb/β + x

x

)
βx
(

q(1)

a2q(0)

)x

· p(0). (12.19)

The right-hand-side of (12.19) is the sum of a power series similar to the sum of LKD in (12.1)
over x = 0 to ∞. Thus, we have that

p(0) = (1 − β)a1/β.

Therefore, the r.v. X1 has a LKD with parameters (a1, b, β). Similarly, it can be shown that X2
has a LKD with parameters (a2, b, β). ��

12.5 Estimation

Let a random sample of size n be taken from the LKD model (12.1) and let the observed values
be x1, x2, . . . , xn . Also, let ni denote the frequency of the i th class, i = 0, 1, 2, . . . , k, where k
is the largest observed value. The sample sum y can be written in the form

y =
n∑

j=1

x j =
k∑

i=0

ini , (12.20)
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where
∑k

i=0 ni = n and x̄ = y/n is the sample mean. The sample variance is

S2 = (n − 1)−1
k∑

i=0

ni (i − x̄)2 = (n − 1)−1
n∑

j=1

(x j − x̄)2. (12.21)

The third central moment for the sample is given by

S3 = (n − 1)−1
k∑

i=0

ni (i − x̄)3 = (n − 1)−1
n∑

j=1

(x j − x̄)3. (12.22)

Moment Estimation

Consul and Famoye (1996) have given the moment estimators of a, b, and β of LKD in (12.1) as

β̃ = 2 − 1

2
(A ±√A(A − 4)), (12.23)

ã = 1

2
(x̄)3/2(S2)

−1/2(
√

A ± √
A − 4), (12.24)

and

b̃ = −1 + 1

2
(
√

A ± √
A − 4)(

√
A −√x̄/S2, (12.25)

where
A = (3S2

2 − S3x̄)2(x̄ − S3
2)−1. (12.26)

From (12.23), the value of A has to be more than 4, otherwise β is not a real number. For a
frequency distribution in which A < 4, the moment estimates for parameters a, b, and β do not
exist.

Estimation Based on Moments and Zero-Class Frequency

By equating the zero-class probability with zero-class sample proportion n0/n = f0, it can be
seen that

(1 − β)a/β = f0 or a = β log( f0)

log(1 − β)
. (12.27)

The estimates based on zero-class frequency and moments are obtained from solving equa-
tion (12.27) along with the following two equations:

µ′
1 = a(1 − b − β)−1 = x̄ (12.28)

and
µ′

2 = a(1 − β)(1 − b − β)−3 = S2. (12.29)

On eliminating a and b between (12.27), (12.28), and (12.29),

(1 − β)[log(1 − β)]2 = β2S2(x̄)−3[log( f0)]
2, (12.30)

which gives an estimate for β either graphically or by a numerical solution using the Newton–
Raphson method. On getting the estimate β̄ of β from (12.30), the estimates of a and b are
given, respectively, by

ā = [x̄3(1 − β̄)/S2]1/2

and
b̄ = 1 − β̄ − ā/x̄ .
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Maximum Likelihood Estimation

The three unknown parameters in the LKD are a, b, and β. The log likelihood function of the
LKD is


 = log L(a, b, β)

= (n − n0) log(a) + n(a + bx̄)

β
log(1 − β) −

k∑
i=2

ni log(i !) +
k∑

i=2

i−1∑
j=1

ni log(a + bi + β j ).

(12.31)

On differentiating (12.31) partially and setting the derivatives equal to zero, the likelihood
equations become

∂


∂a
= n − n0

a
+ n

β
log(1 − β) +

k∑
i=2

i−1∑
j=1

ni

a + bi + β j
= 0, (12.32)

∂


∂b
= nx̄ log(1 − β)

β
+

k∑
i=2

i−1∑
j=1

ini

a + bi + β j
= 0, (12.33)

and

∂


∂β
= −n(a + bx̄) log(1 − β)

β2
− n(a + bx̄)

β(1 − β)
+

k∑
i=2

i−1∑
j=1

jni

a + bi + β j
= 0. (12.34)

On multiplying equation (12.32) by a, equation (12.33) by b, equation (12.34) by β, and sim-
plifying, it can be shown that

â = x̄(1 − b − β). (12.35)

On using (12.35) in (12.33) and (12.34), the two ML equations become

nx̄ log(1 − β)

β
+

k∑
i=2

i−1∑
j=1

ini

x̄(1 − b − β) + bi + β j
= 0 (12.36)

and

−nx̄(1 − β) log(1 − β)

β
− nx̄

β
+

k∑
i=2

i−1∑
j=1

jni

x̄(1 − b − β) + bi + β j
= 0. (12.37)

The maximum likelihood estimates b̂ and β̂ are obtained by solving equations (12.36) and
(12.37) iteratively, starting with the moment estimates b̃ and β̃ (or the moment and zero-
class estimates b̄ and β̄) as the initial values of b and β. The Newton–Raphson iterative
technique or some other techniques can be used. Then, the ML estimate â of a is given
by (12.35).
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12.6 Applications

The LKD is a very versatile probability model. It was shown in section 12.1 that the domain
of its three parameters a, b, and β is much larger than the domain of the parameters of the
GNBD and that it reduces to the GNBD for some specific values of the parameters when β is
positive as well as when β is negative. The limiting form of the LKD is the GPD. Thus, the
LKD reduces to the binomial and the negative binomial distributions, which are special cases
of the GNBD, and to the Poisson distribution, which is a special case of the GPD. The LKD
is applicable to physical situations for which the binomial, the negative binomial, the Poisson,
the GNB, and the GP distributions are found useful.

Consul and Famoye (1996) have applied the LKD to fit three sets of data from Beall and
Rescia (1953). The fit of LKD to the data on Lespedeza capitata was found to be better (as
judged by the chi-square goodness-of-fit test) than the fit from Neyman Type A distribution. For
frequency data on tribes in Clearwater, Idaho, the LKD provided a better fit than the Neyman
Type A distribution. The LKD was also applied to the frequency distribution of potato beetle
data and the fit from LKD was better than that of Neyman Type A distribution.

12.7 Related Distributions

12.7.1 Basic LKD of Type I

A basic LKD of type I is denoted by basic LKD-I and is defined by the pmf

P(X = x) = 1

x

(
xb/β + x − 2

x − 1

)
βx−1(1 − β)xb/β (12.38)

for x = 1, 2, 3, . . . and zero otherwise.
The basic LKD-I is the limit of zero-truncated LKD as a → −β. The basic LKD-I

in (12.38) reduces to the

(i) Borel distribution when β → 0;
(ii) Consul distribution (discussed in chapter 8) when β < 0, β = −α, b = mα, and α(1 +

α)−1 = θ ;
(iii) Geeta distribution (discussed in chapter 8) when 0 < β = θ < 1 and b = (m − 1)θ .

The pgf for the basic LKD-I is given by

H(u) = ϕ(z) = z, where z = u

(
1 − βz

1 − β

)−b/β

. (12.39)

Following the same method as for LKD, it can be shown that the mean and variance of basic
LKD-I are given, respectively, by

µ = (1 − β)(1 − b − β)−1 and σ 2 = b(1 − β)(1 − b − β)−3. (12.40)

Putting b = hβ in (12.38) and denoting the r th moment, of basic LKD-I, about the origin
by 1µ

′
r ,

1µ
′
r =

∞∑
x=1

xr−1
(

xh + x − 2
x − 1

)
βx−1(1 − β)xh .
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On differentiation with respect to β and on simplification,

d

dβ

(
1µ

′
r

) =
∞∑

x=1

xr−1
(

xh + x − 2
x − 1

)
βx−1(1 − β)xh x(1 − β − hβ) − (1 − β)

β(1 − β)

= 1 − β − hβ

β(1 − β)

(
1µ

′
r+1

)− (1µ′
r

)
β−1,

which gives the recurrence relation

1µ
′
r+1 = β(1 − β)

1 − β − hβ)

d

dβ

(
1µ

′
r

)+ (1µ′
r

) (
1µ

′
1

)
.

Though the mean and the variance given in (12.40) of the basic LKD-I are different from those
of the LKD, yet the above recurrence relation is exactly the same as (12.9) for the LKD.

The basic LKD-I is not closed under convolution even though the distribution of the sum
of two independent basic LKD-I variates can be obtained. The distribution of the sum Y of n
independent basic LKD-I variates is

P(Y = y) = n

y

(
yb/β + y − n − 1

y − n

)
β y−n(1 − β)yb/β (12.41)

for y = n, n + 1, n + 2, . . . and zero otherwise. The probability distribution in (12.41) is
sometimes called the delta-LKD.

12.7.2 Basic LKD of Type II

A basic LKD of type II (basic LKD-II) is defined by the probability mass

P(X = x) = 1

x

(
xb/β + x

x − 1

)
βx−1 (1 − β)1+xb/β (12.42)

for x = 1, 2, 3, . . . and zero otherwise.
The basic LKD-II is the limit of zero-truncated LKD as a → β. The basic LKD-II in (12.42)

reduces to the

(i) Borel distribution when β → 0;
(ii) Consul distribution (discussed in chapter 8) when 0 < β = θ < 1 and b = (m − 1)θ ;
(iii) Geeta distribution (discussed in chapter 8) when β < 0, β = −α, b = mα and

α(1 + α)−1 = θ .

The pgf for the basic LKD-II is given by

H(u) = ϕ(z) = z, where z = u(1 − β + βz)1+b/β. (12.43)

It can easily be shown that the mean and variance of the basic LKD-II are, respectively, given by

µ = (1 − b − β)−1 and σ 2 = (b + β)(1 − β)(1 − b − β)−3. (12.44)
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Putting b = hβ in (12.42) and denoting the r th moment of the basic LKD-II, about the
origin, by 2µ

′
r , we have

2µ
′
r =

∞∑
x=1

xr−1
(

xh + x
x

)
βx(1 − β)1+xh .

Differentiating the above with respect to β and on simplification,

d

dβ

(
2µ

′
r

) =
∞∑

x=1

xr−1
(

xh + x
x

)
βx−1(1 − β)1+xh

[
x(1 − β − hβ) − 1

β(1 − β)

]
,

which gives the recurrence relation among the moments of the basic LKD-II as

2µ
′
r+1 = β(1 − β)

1 − β − hβ)

d

dβ

(
2µ

′
r

)+ (2µ′
r

) (
2µ

′
1

)
.

Again, the mean and variance in (12.44), of the basic LKD-II are different than the mean and
the variance of the basic LKD-I. However, the recurrence relation between the moments about
the origin is the same for both models.

12.7.3 Basic GLKD of Type II

By taking the Lagrangian pgf

h(u) = f (z) =
(

1 − βz

1 − β

)−a/c

, where z = u

(
1 − βz

1 − β

)−b/c

,

and using the Lagrange expansion in (1.80), Janardan (1998) obtained a GLKD of type II
(GLKD2) as

P(X = x) = (1 − β − bβ/c)

(
a/c + (1 + b/c)x − 1

x

)
βx (1 − β)(a+bx)/c−1 (12.45)

for x = 0, 1, 2, . . . , and zero elsewhere, and a > 0, c > 0, b ≥ −c, 0 < β < 1. Just like
GLKD1, the model GLKD2 has many special cases:

(i) the negative binomial distribution (for b = 0),
(ii) the Katz distribution (for b = 0, c = β),
(iii) the binomial distribution (for b = −1, c = 1, a an integer),
(iv) the linear function negative binomial distribution (for c = 1) with pmf

P(X = x) = [1 − β(b + 1)]

(
a − 1 + (b + 1)x

x

)
βx (1 − β)a−1+bx , x = 0, 1, 2, . . . ,

with parameters (a − 1, b + 1, β) (Janardan and Rao, 1983).
(v) When c = β in (12.45), the GLKD2 reduces to a weighted LKD with pmf

P(X = x)= (1−β−b)

(
a/β + xb/β+x − 1

x

)
βx(1−β)a/β+xb/β−1, x =0, 1, 2, . . . .
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Denoting the combinatorial function in (12.45) by H and since
∑

x P(X = x) = 1, (12.45)
gives

(1 − β)−a/c =
∑

x

H(1 − β − bβ/c)βx(1 − β)bx/c−1.

On differentiation of the above with respect to β and multiplying by (1 − β)a/c, on simplifica-
tion, it gives the mean µ as

µ = aβ/c

1 − β − bβ/c
+ bβ/c

(1 − β − bβ/c)2
.

In a similar manner, one can show that the variance is given by

σ 2 = a(1 − β)β/c

(1 − β − bβ/c)3
+ b(1 + β + bβ/c)(1 − β)β/c

(1 − β − bβ/c)4
.

Theorem 12.5. If a r.v. X has the model GLKD1 and it is weighted by ω(X) = a + bX, then
the weighted r.v. X∗ is GLKD2 (Janardan, 1998).

The theorem can be easily proved by getting E[a + bX ] and by multiplying the probability
mass function of GLKD1 by (a + bx) {E[a + bX ]}−1.

Theorem 12.6. Let X be a GLKD2 r.v. with parameters (a, b, c, β). If it is weighted by ω(X) =
c(a + bX)−1, then the weighted r.v. X∗ follows the GLKD1 with parameters (a, b, c, β).

Proof. E[c(a + bX)−1] = (1 − β − bβ/c)(c/a)(1 − β)−1 by using the sum of the probability
mass function of GLKD1 over x = 0 to ∞. Then

P(X∗ = x) = c(a + bx)−1(1 − β − bβ/c)

(1 − β − bβ/c)(c/a)(1 − β)−1

(a/c + xb/c + x − 1)!

x!(a/c + xb/c − 1)!
βx (1 − β)a/c+xb/c−1

= a/c

a/c + xb/c + x

(a/c + xb/c + x)!

x!(a/c + xb/c)!
βx(1 − β)a/c+xb/c.

��

12.8 Exercises

12.1 By differentiating the result in (12.8) with respect to β, show that a recurrence relation
between the noncentral moments of LKD is given by (12.9). Also, show that a recurrence
relation between the central moments is given by (12.11).

12.2 Show that the basic LKD-II is not closed under convolution. Find the distribution of the
sum Y of n independent basic LKD-II variates.

12.3 Prove that the zero-truncated LKD with parameters a, b, and β approaches the general-
ized logarithmic series distribution with parameters b and b/β as a → 0.

12.4 Show that the basic LKD-I is the limit of zero-truncated LKD when the parameter
a → −β .

12.5 Obtain the moment estimates for the parameters of LKD-I and LKD-II.
12.6 Show that the function G(u) given in (12.3) is a pgf for a r.v. X with LKD.
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12.7 Suppose x1, x2, . . . , xn is a random sample from a LKD (given by (12.6)) with parameter
β as the only unknown. Under a prior distribution which is beta with parameters a and
b, find the Bayes estimator of β.

12.8 Show that the LKD defined by

P(X = x) = a/β

a/β + xb/β + x

(
a/β + xb/β + x

x

)
βx (1 − β)a/β+xb/β

for x = 0, 1, 2, 3, . . . and zero otherwise, where a > 0, b > −β, and β < 1, provides
the GPD as a limiting form when β → 0 under suitable conditions.

12.9 A r.v. X is a GLKD1 given by

P(X = x) = a/c

a/c + xb/c + x

(
a/c + xb/c + x

x

)
βx(1 − β)a/c+xb/c

for x = 0, 1, 2, 3, . . . , zero otherwise, and where a > 0, c > 0, b ≥ −c, 0 < β < 1.
If each random variable X is weighted by ω(X) = a + bX , obtain the probability
distribution of the weighted r.v. X∗.

12.10 Show that the pgf of the GLKD1 in Exercise 12.9 is

G(u) = f (z) =
(

1 − βz

1 − β

)−a/c

, where z = u

(
1 − βz

1 − β

)−b/c

,

by expanding G(u) in powers of u and by obtaining the coefficient of ux .
12.11 Obtain the zero-truncated LKD. By using the method of differentiation, obtain a re-

currence relation between its noncentral moments. Obtain the mean and variance of
zero-truncated LKD.
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Random Walks and Jump Models

13.1 Introduction

A particle is said to perform a simple random walk on a line; when starting from an initial
position (an integer n) on the line, it moves each time from its position either a unit step (+1)
in the positive direction with some probability p (0 < p < 1) or a unit step (−1) in the
negative direction with probability q = 1 − p. In a general random walk problem, the particle
may move each time from its position a unit step (−1) in the negative direction, or it may
stay at its position or jump 1, 2, 3, . . . , k steps in the positive direction on the line. Various
probabilities are assigned for the various possible mutually exclusive moves or jumps of the
particle such that the sum of the probabilities is unity. Also, a random walk may have either
absorbing or reflecting barriers on one or both sides on the line. Thus, there can be numerous
variations in the random walk problems.

The random walk models provide a first approximation to the theory of Brownian motion.
The random walk problems, the classical gamblers’ ruin problems, the queuing problems, the
problems of the total size of an epidemic, and the ballot problems have been independently
studied for a very long time by numerous researchers. The methods used for solving such prob-
lems are based on either the study of lattice paths, formulating difference equations, or the
generating functions. All these techniques essentially use different combinatorial methods (see
McKendrick, 1926; Feller, 1957, 1968; Takács, 1962; Spitzer, 1964; Prabhu, 1965; Mohanty,
1966, 1979). The probability models for these problems are often given in the form of pgfs
and they appear to be different on account of some differences in the assumptions to the prob-
lems. Kemp and Kemp (1968) showed that the distribution of the number of steps to ruin in a
gambler’s ruin random walk with initial position n and the distribution of the number of cus-
tomers served during a busy period of M|M|1, when the service starts with n customers, are the
same.

Hill and Gulati (1981) considered a simple random walk with an absorbing barrier at zero
associated with the game of roulette and used the method of difference equations and Lagrange
expansion to obtain the probability of ruin at exactly the nth step. Recently, Consul (1994b)
has given a general theorem for obtaining the pgf of the distribution of the probabilities of
absorption of a particle at the origin when it starts from a point n and performs a polynomial
walk or jumps in each step and has applied it to obtain the exact probability distributions for a
number of specific walks.
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13.2 Simplest Random Walk with Absorbing Barrier at the Origin

Let a particle be at a distance of unit space from the origin, which has an absorbing barrier. The
barrier does not allow the particle to jump away from the origin. Let p be the probability of a
unit jump towards the origin and q = 1 − p be the probability of failing to jump. Let X denote
the number of trials in which the particle reaches the origin. It is evident that X has a geometric
distribution given by P(X = x) = pqx−1, x = 1, 2, 3, . . . , whose pgf is l(u) =∑x ux pqx−1.

Let us now apply the Lagrange transformation. For each trial made by the particle the
pgf is g(z) = p + qz and thus the Lagrange transformation becomes z = u(p + qz), i.e.,
z(1 − uq) = up or

z = l(u) = up(1 − uq)−1 =
∞∑

x=1

ux pqx−1, (13.1)

which is the pgf of the geometric distribution for the random variable X . Thus, the two pgfs are
the same.

13.3 Gambler’s Ruin Random Walk

The gambler’s ruin problem (playing against an infinitely rich person) is a random walk on
the points 0, 1, 2, 3, . . . , with an initial sum (position) of n and with an absorbing barrier at
x = 0. We shall first consider n = 1. If p is the probability of one step towards the origin and
q = 1 − p is the probability of one step to the right, i.e., of reaching the sum of 2, then the pgf
of these changes is g(z) = p + qz2.

Let X denote the total number of steps to absorption (ruin). According to Feller (1957) and
Kemp and Kemp (1968), the pgf of the distribution of X is

l(u) =
[{

1 − (1 − 4pqu2)
1
2

}/
2qu
]
. (13.2)

By using the Lagrange transformation on the above g(z) = p + qz2, we get

z = u(p + qz2) i.e. uqz2 − z + up = 0.

On solving this quadratic equation for z, we have the pgf

z = l(u) =
{

1 −
√

(1 − 4pqu2)

}/
2qu,

which is the same as (13.2). Thus, the use of Lagrange transformation provides the pgf of the
total number of trials before absorption in a random walk. By using the Lagrange expansion of
z one can express the same pgf in the form

z = l(u) =
∞∑

x=1

ux

x!
Dx−1

[
(p + qz2)x

]
z=0

=
∞∑

x=1

ux

x!
Dx−1

[
x∑

k=0

(
x
k

)
qkz2k px−k

]
z=0

=
∞∑

k=0

u2k+1

(2k + 1)!
pk+1qk ·

(
2k + 1

k

)
(2k)!, (13.3)
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which gives the probability distribution of X , the number of steps to ruin, as

P(X = 2k + 1) = (2k)!

k!(k + 1)!
qk pk+1 (13.4)

for k = 0, 1, 2, 3, . . . , and where the particle takes k steps to the right and k +1 steps to the left
before absorption at the origin (i.e., ruin of gambler). The above probability distribution of X
is a modified form of the GNBD defined by Jain and Consul (1971) as the r.v. X takes the odd
integral values 1, 3, 5, 7, . . . only. One can easily verify that (13.2) and (13.3) are equivalent to
each other.

When the gambler starts with an initial capital of n (instead of 1), the pgf of X can be
written by taking the nth power of l(u) in (13.2) or (13.3), as done by Kemp and Kemp (1968);
however, the computation of the absorption (ruin) probabilities is somewhat involved.

A simpler method of computing the absorption probabilities is to put f (z) = zn and g(z) =
p + qz2 in (2.3). The coefficients of the various powers of u in the Lagrange expansion denote
the absorption probabilities. This result is proved for a very general polynomial random walk
in the next section.

Thus the pgf of the distribution of X for the ruin of the gambler is

zn = G(u) =
∞∑

x=n

ux

x!
Dx−1[nzn−1(p + qz2)x ]z=0

=
∞∑

k=0

un+2k n

n + 2k

(
n + 2k

k

)
qk pn+k (13.5)

and the probability distribution of X , the number of steps to gambler’s ruin, becomes

P(X = n + 2k) = n

n + 2k

(
n + 2k

k

)
qk pn+k (13.6)

for k = 0, 1, 2, 3, . . . , where k denotes the number of steps moved to the right before ruin.
Obviously, X = n, n + 2, n + 4, . . . , and the result (13.4) is a particular case of (13.6) given
by n = 1.

It can easily be shown that the mean and variance of the probability distribution of the
games played before the ruin of the gambler with capital n, given by (13.6), are

µ = n(1 − 2q)−1 and σ 2 = 4npq(1 − 2q)−3 for 0 < q <
1

2
. (13.7)

13.4 Generating Function of Ruin Probabilities in a Polynomial Random
Walk

Let the initial capital (position) of a player (particle) be n. Also, in each play (step) the
player (particle) changes his capital (position) by −1, 0, 1, 2, . . . , k with probabilities p−1, p0,
p1, . . . , pk , respectively, where p−1 + p0 + p1 + · · ·+ pk = 1 and the pgf of the change in the
capital (position) after each play (step) is

g(z) = p−1 + p0z + p1z2 + · · · + pkzk+1. (13.8)
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Since the adversary (casino) is infinitely rich, the model has a single absorbing barrier at
the origin; i.e., absorption (ruin) occurs when the particle hits the origin. Let pi,x denote the
probability that the particle is at position i after step x . Therefore, initially pn,0 = 1 and
pi,0 = 0 for i 	= n; i.e., initially we have

pi,0 = δi,n , (13.9)

where δi,n is the usual Kronecker delta where δn,n = 1 and zero otherwise.
The difference equations satisfied by pi,x for x ≥ 1 are as follows:

p0,x = p−1 p1,x−1, (13.10)

pi,x =
i−1∑

h=−1

ph pi−h,x−1 for i = 1, 2, 3, . . . , k, (13.11)

pi,x =
k∑

h=−1

ph pi−h,x−1 for i ≥ k + 1. (13.12)

Let Pi (u), (i ≥ 0) be a pgf defined by

Pi(u) =
∞∑

x=1

pi,x ux−1, (13.13)

so that P0(u) is the pgf of the ruin probabilities in this polynomial random walk problem.
By multiplying (13.10), (13.11), and (13.12) by ux and summing over x from x = 1 to ∞,

we obtain

P0(u) = p−1 u P1(u), (13.14)

Pi(u) =
i−1∑

h=−1

[ph upi−h(u) + ph δi−h,n], i = 1, 2, 3, . . . , k, (13.15)

Pi(u) =
k∑

h=−1

[phu Pi−h(u) + ph δi−h,n], i ≥ k + 1. (13.16)

Defining a new generating function P(u, z) by

P(u, z) =
∞∑

i=0

Pi(u) · zi , (13.17)

multiplying (13.15) and (13.16) by zi , and adding these for i = 1, 2, . . . , k, k + 1, . . .
with (13.14), we get

P(u, z) =
[

p−1uz−1 + p0u + p1 uz + · · · + pk uzk−1
]

[P(u, z) − P0(u)]

+ zn−1
[

p−1 + p0z + p1z2 + · · · + pkzk+1
]

= uz−1g(z) [P(u, z) − P0(u)] + zn−1g(z).
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The above relation gives

P(u, z) = zn − u P0(u)

z/g(z) − u
. (13.18)

The pgf P0(u) can be determined from (13.18) by requiring that P(u, z) be analytic and
u = z/g(z) so that

P0(u) = zn/u, (13.19)

where z is defined in terms of u by the Lagrange transformation z = ug(z). Thus the Lagrange
expansion of zn in powers of u, under the transformation z = u g(z), gives the pgf of the ruin
probabilities of the above polynomial random walk. By using the Lagrange expansion (2.3),

P0(u) = u−1zn =
∞∑

x=1

ux−1

x!
Dx−1

[
nzn−1(g(z))x

]
z=0

=
∞∑

x=n

ux−1 n

(x − n)!x
Dx−n [(g(z))x]

z=0 , (13.20)

where D = ∂/∂z, and the probabilities of the player’s ruin become

p0,x = P(X = x) = n

(x − n)!x
Dx−n

[
(p−1 + p0z + p1z2 + · · · + pk zk+1)x

]
z=0

= n

(x − n)!x
Dx−n

∑ x!

r0!r1!r2! . . . (rk+1)!
(p−1)

r0 (p0)
r1 (p1)

r2 . . . (pk)
rk+1 (z)

∑k+1
i=1 iri

∣∣∣∣
z=0

= n

x

∑ x!

r0!r1!r2! . . . (rk+1)!
(p−1)

r0 (p0)
r1 (p1)

r2 . . . (pk)
rk+1 (13.21)

for x = n, n + 1, n + 2, . . . and zero otherwise, and where ri ≥ 0, i = 0, 1, 2, . . . , k + 1,
and the summation is taken over all sets of nonnegative integers r0, r1, r2, . . . , rk+1 from 0 to
x such that

∑k+1
i=0 ri = x and

∑k+1
i=0 iri = x − n.

Some particular values of p0,x , given by (13.21), are

p0,n = (p−1)
n , p0,n+1 = np0 (p−1)

n ,

p0,n+2 = np1 (p−1)
n+1 +

(
n + 1

2

)
p2

0 (p−1)
n ,

p0,n+3 = np2 (p−1)
n+2 + n(n + 2)p1 p0 (p−1)

n+1 +
(

n + 2
3

)
p3

0 (p−1)
n ,

p0,n+4 = np3 (p−1)
n+3 + n(n + 3)p2 p0 (p−1)

n+2 + 1

2
n(n + 3)p2

1 (p−1)
n+2

+ 1

2
n(n + 2)(n + 3)p1 p2

0 (p−1)
n+1 +

(
n + 3

4

)
p4

0 (p−1)
n .

It is clear from the above that the actual determination of the ruin probabilities for this
polynomial random walk is quite complex on account of the summations and the conditions on
those summations.
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A number of simpler random walks, for special values of g(z) will be considered in sec-
tions 13.5 through 13.9 of this chapter.

The expression for p0,x in (13.21) represents the nonzero probabilities of the gambler’s ruin
(or the absorption of the particle) at the nth, (n + 1)th,. . . step i.e., at the x th step, whatever
values it may have in a particular problem.

However, the player of the game is more concerned with the probability that he or she is
still playing after the N th step (play). By (13.21) one can write

Pr{still playing after the N -th step} = 1 −
N∑

x=n

p0,x . (13.22)

Probability of Capital i after the Nth Step

The generating function P(u, z), obtained in (13.18), can also be written in the alternative form

P(u, z) = P0(u) +
[
zn−1g(z) − P0(u)

]
(1 − u g(z)/z)−1 . (13.23)

Since u and z are arbitrary variables, we assume that 0 < u g(z)/z < 1, and we ex-
pand both sides in powers of u and z by (13.17), (13.13), and the binomial (1 − u g(z)/z)−1.
Thus

∞∑
i=0

∞∑
x=1

pi,xux−1zi ≡
∞∑

x=1

po,xux−1+zn−1g(z)
∞∑
j=0

u j (g(z)/z) j−
∞∑

k=1

uk−1
k∑

j=1

po, j (g(z)/z)k−j.

By equating the coefficients of uN−1 on both sides,

∞∑
i=0

pi,N zi = p0,N + zn−N (g(z))N −
N∑

j=1

p0, j(g(z)/z)N− j . (13.24)

Since p0, j = 0 for j = 1, 2, . . . , n − 1 and p0,N gets canceled with the last term in the
summation, (13.24) reduces to

∞∑
i=0

pi,N zi = zn−N (g(z))N −
N−1∑
j=n

p0, j (g(z)/z)N− j . (13.25)

Since (13.21) gives only nonzero probabilities of ruin after step x , the nonzero values of
pi,N for i ≥ 1 are given by (13.25) as the coefficient of zi on the right-hand side. Therefore,

pi,N = coefficient of zi−n+N in (g(z))N −
N−1∑
j=n

p0, j × coefficient of zN+i− j in (g(z))N− j .

(13.26)
The actual computation of the values of pi,N for the general value of g(z) in (13.8)

is difficult. These will be determined for the particular cases in sections 13.5, 13.6, 13.7,
and 13.8.
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13.5 Trinomial Random Walks

Good (1958) has defined a “recurrent right-handed walk” as one that starts and ends at the same
point and never goes left of this point and has obtained the probability of a particle starting at
the origin and of returning to the origin for the first time. Let the probabilities of taking steps
of −1, 0, +1 by a particle at any point be p−1, p0, p1, respectively, so that the pgf for any one
step is g(z) = p−1 + p0z + p1z2, where p−1 + p0 + p1 = 1.

Let the particle start from a point n steps from the origin and let there be an absorbing
barrier at the origin like that of a gambler who starts with a capital of n and who can’t start
again after getting ruined. Also, let X denote the total number of steps taken by the particle
before absorption at the origin.

The pgf of the probability distribution of X will be given by the Lagrange expansion (2.3),
where f (z) = zn or by (13.20). Then the pgf is

zn = G(u) =
∞∑

x=n

ux

x!
Dx−1

[
nzn−1(p−1 + p0z + p1z2)x

]
z=0

=
∞∑

x=n

ux

x!

(
x − 1
n − 1

)
n!Dx−n

⎡
⎣ x∑

i, j=0

x!pi
1 p j

0(p−1)
x−i− j

i ! j !(x − i − j )!
· z2i+ j

⎤
⎦

z=0

,

where i + j ≤ x . On differentiating (x − n) times and putting z = 0, the pgf of r.v. X becomes

G(u) =
∞∑

x=n

ux n

x

[a]∑
i=0

x!pi
1(p−1)

n+i(p0)
x−n−2i

i !(n + i)!(x − n − 2i)!
, (13.27)

where a = 1
2 (x − n), and [a] is the integral part of a.

Thus the probability distribution of X, the number of steps to absorption, is

p0,x = P(X = x) = n

x

[a]∑
i=0

x!

i !(n + i)!(x − n − 2i)!
(p−1)

n+i pi
1(1 − p1 − p−1)

x−n−2i .

(13.28)
By using the results on the cumulants of the Lagrangian probability distributions, given in

chapter 2, it can be shown that the mean and variance of the above probability distribution are

µ = n

1 − p0 − 2p1
and σ 2 = n[p0q0 + 4p1q1 − 4p0 p1]

(1 − p0 − 2p1)3
, (13.29)

which exist when 0 < p0 + 2p1 < 1, i.e., when p−1 > p1. Thus if p−1 = p0 = p1 = 1
3 , the

mean µ will not exist; i.e., the particle may never reach the origin and the player may never get
ruined.

The probability of the particle not being absorbed after the N th step can easily be written
down by substituting the value of p0,x from (13.28) in (13.22). Thus, the probability of still
playing after the N th step is

1 − (p−1)
n
[

1 + np0 +
(

n + 1
2

)
p2

0 + np1 p−1 +
(

n + 2
3

)
p3

0 + n(n + 2)p−1 p0 p1 + . . .

+ n

N

(N−n)/2∑
i=0

N !

i !(n + i)!(N − n − 2i)!
(p1 p−1)

i pN−n−2i
0

]
.
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Since the expansion of (p−1 + p0z + p1z2)N in powers of z can easily be written down by
the trinomial theorem, the probability of the particle being at position i after the N th step is
given by (13.26) as

pi,N =
[b]∑

s=0

N !ps
1 pi−n+N−2s

0 (p−1)
n+s−i

s!(n + s − i)!(i − n + N − 2s)!
−

N−1∑
j=n

p0, j

[c]∑
s=0

(N − j )!ps
1(p−1)

i+s pN−i− j−2s
0

s!(i + s)!(N − i − j − 2s)!

(13.30)
for N = n + 1, n + 2, n + 3, . . . and zero otherwise, and where b = 1

2 (i − n + N), c =
1
2 (N − i − j ), [b] and [c] denote the integer parts of b and c, and the second summation is zero
if N < n + 1.

Special Cases
Case I. When n = 1, the pgf of the recurrent random walk, with an absorbing barrier at zero,
can also be expressed in another form, instead of (13.27), by the Lagrange transformation as
given below:

z = u (p−1 + p0z + p1z2)

or u p1z2 + (up0 − 1)z + up−1 = 0

or z = 1 − up0 − (1 − 2up0 − u2 B2)
1
2

2up1
, (13.31)

where B2 = 4p1 p−1 − p2
0.

Case II. When p−1 = p2, p0 = 2pq, and p1 = q2, where p + q = 1, the probability
distribution (13.28) gets reduced to the simple form

P(X = x) = n

x

(
2x

x − n

)
qx−n pn+x (13.32)

for x = n, n + 1, n + 2, . . . and zero otherwise.

13.6 Quadrinomial Random Walks

Let a particle start from some point n (a positive integer) and let the particle be allowed to take
steps of size −1, 0, +1, or +2 only from any given position in each trial. Thus the particle is
like a gambler who can increase or decrease his capital by −1, 0, +1, +2 in each game and
who keeps playing against an infinitely rich adversary till he gets ruined or becomes infinitely
rich. Obviously, there is an absorbing barrier at the origin because he can’t play after he loses
all the money. There can be four different probabilities for these four possible alternatives.
However, the general case does not provide reasonably nice results. Let 0 < p0 = 1 − q0 < 1
and 0 < p = 1 − q < 1. Also, let the probabilities of taking −1, 0, +1, or +2 steps by the
particle be pp0, pq0, p0q, qq0, respectively, so that the pgf of these moves is g(z) = pp0 +
pq0z + p0qz2 + qq0z3 = (p0 + q0z)(p + qz2).

Let X be the total number of trials made by the particle before it reaches the origin for the
first time and gets absorbed (i.e., the gambler gets ruined). Using the Lagrange expansion with
f (z) = zn , the pgf of the r.v. X is given by (13.20) in the following form:
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zn = G(u) =
∞∑

x=n

ux

x!
Dx−1

[
nzn−1(p0 + q0z)x(p + qz2)x

]
z=0

=
∞∑

x=n

ux

x!

(
x − 1
n − 1

)
n!Dx−n

⎡
⎣ x∑

i=0

(
x
i

)
px−i

0 qi
0zi

x∑
j=0

(
x
j

)
q j px− j z2 j

⎤
⎦

z=0

=
∞∑

x=n

ux

(x − n)!

n

x
Dx−n

⎡
⎢⎣ 3x∑

k=0

[ 1
2 k]∑

j=0

(
x
j

)(
x

k − 2 j

)
q j px− j qk−2 j

0 px+2 j−k
0 zk

⎤
⎥⎦

z=0

=
∞∑

x=n

ux n

x

[a]∑
j=0

(
x
j

)(
x

x − n − 2 j

)
q jqx− j pn+2 j

0 qx−n−2 j
0 , (13.33)

where a = 1
2 (x − n), and which gives the probability distribution of X , the number of steps for

absorption, as

p0,x = P(X = x) = n

x
px pn

0 qx−n
0

[a]∑
j=0

(
x
j

)(
x

x − n − 2 j

)(
qp2

0

pq2
0

) j

(13.34)

for x = n, n + 1, n + 2, . . . and zero otherwise.
By using the formulas for the cumulants of the Lagrangian probability distributions given

in chapter 2, the mean and the variance of the above probability distribution (13.34) can be
shown to be

µ = n(1 − q0 − 2q)−1, 0 < q0 + 2q < 1, (13.35)

and
σ 2 = n(p0q0 + 4pq)(1 − q0 − 2q)−3. (13.36)

The particle will ultimately reach the origin if 0 < q0 + 2q < 1 or if 1 < p + 1
2 p0 < 3

2 .
However, if p + 1

2 p0 < 1 the particle may not get absorbed. The probability of the particle not
getting absorbed after the N th step can easily be written down by substituting the value of p0,x
from (13.34) in (13.22).

Also, the expansion of (g(z))N = (p0 + q0z)N (q + qz2)N in powers of z is

(p0 + q0z)N (p + qz2)N =
3N∑
k=0

[a]∑
s=0

zk
(

N
s

)(
N

k − 2s

)
qs pN−sqk−2s

0 pN−k+2s
0 , (13.37)

where a = 1
2 k and [a] is the integer part of a. By using the expansion (13.37) in (13.26) twice,

the probability that the particle is at position i (≥ 1) just after step N is

pi,N =
[b]∑

s=0

(
N
s

)(
N

i − n + N − 2s

)
qs pN−sqi−n+N−2s

0 pn−i+2s
0

−
N−1∑
j=n

p0, j

[c]∑
s=0

(
N − j

s

)(
N − j

N + i − j − 2s

)
qs pN− j−sq N+i−2 j−2s

0 p j+2s−i
0

(13.38)
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for N = n + 1, n + 2, n + 3, . . . and zero otherwise, and where b = 1
2 (N + i − n), c =

1
2 (N + i − j ), [b] and [c] are the integer parts of b and c, and the second summation is zero if
N < n + 1.

13.7 Binomial Random Walk (Jumps) Model

Let the initial position of a particle be +n and each time let the particle be allowed to take mutu-
ally exclusive steps of size −1, +1, +3, +5, . . . , 2m −1 only with probabilities of

(m
i

)
pm−i qi ,

i = 0, 1, 2, . . . , m, respectively, so that the pgf of its mutually exclusive steps in this kind
of walk (or jump) is g(z) = ∑m

i=0

(m
i

)
pm−iqi z2i = (p + qz2)m for each time (trial), where

p + q = 1.
Let X be the total number of jumps taken by the particle before it reaches the origin for

the first time, where it gets absorbed, as the origin has an absorbing barrier. If the particle
is a gambler playing with an infinitely rich adversary, he or she gets ruined when the capital
becomes zero.

Then, the pgf of the r.v. X is given by the Lagrange expansion in (13.20), under the trans-
formation z = u(p + qz2)m , as

zn = l(u) =
∞∑

x=n

ux−1

x!
Dx−1[nzn−1(p + qz2)mx]z=0

=
∞∑

x=n

ux−1

x!

(x − 1)!n!

(n − 1)!(x − n)!
Dx−n[(p + qz2)mx ]z=0

=
∞∑

x=n

ux−1 n

(x − n)!x
Dx−n

[
mx∑
k=0

(
mx
k

)
qkz2k pmx−k

]
z=0

=
∞∑

k=0

un+2k−1 n

n + 2k

(
mn + 2mk

k

)
qk pmn+2mk−k. (13.39)

The above pgf gives the probability distribution of X , the number of steps on which the particle
gets absorbed at the origin, as

p0,x = P(X = x = n + 2k) = n

n + 2k

(
mn + 2mk

k

)
qk pmn+2mk−k (13.40)

for k = 0, 1, 2, 3, . . . and zero otherwise.
When n = 1 and m = 1, the model (13.40) reduces to the ordinary random walk distribu-

tion (13.4) of a gambler who starts with unit capital, which has been discussed by Feller (1957)
and Kemp and Kemp (1968).

The model (13.40) is a special case of the GNBD, discussed in detail in chapter 10. The
mean and the variance of X are

E(X) = n(1 − 2mq)−1, 0 < q < (2m)−1

σ 2
x = 4nmqp(1 − 2mq)−3, 0 < q < (2m)−1.

}
(13.41)

The probability that the particle does not get absorbed at the origin until the end of the
N th step is given by (13.22) and can be written down easily by substituting the values of
p0,x from (13.40) in (13.20) and becomes 1 −∑N

x=n p0,x .
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Since (
g(z)N

)
=
(

p + qz2
)m N =

m N∑
s=0

(
m N

s

)
qs pm N−s z2s,

the probability that the particle is at position i (≥ 1) after the N th step (or jump) is given
by (13.26) in the form

pi,N =
(

m N
1
2 (i − n + N)

)
q(N+i−n)/2 p(2m N−N−i+n)/2

−
N−1∑
j=n

p0, j

(
m N − mj

(N + i − j )/2

)
q(N+i− j)/2 pm N−mj−(N+i− j)/2 (13.42)

for N = n + 1, n + 2, n + 3, . . . and zero otherwise, and where the second summation is zero
if N < n + 1.

13.8 Polynomial Random Jumps Model

Let the particle start from some given point n (a positive integer) and let us suppose that in each
trial or game it can either move one step backwards or stay at its place, or it can move forward
by either one of 1, 2, 3, . . . , 3m steps. These movements are mutually exclusive. Also, let the
pgf of these movements in each game or trial be given by g(z) = (p0 + q0z)m(p + qz2)m ,
where pm

0 pm is the probability of moving one step backward, mpm−1
0 q0 pm is the probability

of staying at its place, 1
2 m(m − 1)pm pm−2

0 q2
0 + mpm

0 pm−1q is the probability of moving one
step to the right, and so on. Also, 0 < p0 = 1 − q0 < 1 and 0 < p = 1 − q < 1.

If there is an absorbing barrier at the origin, the random walks terminate as soon as the
particle reaches the origin, i.e., when the particle takes n steps backwards from its original
position. Let X denote the total number of trials or games in which the random jumps of
the particle terminate. The pgf of the probability distribution of X is given by the Lagrange
expansion of f (z) = zn , under the transformation z = u (p0 + q0z)m(p + qz2)m , by the
formula (13.20) as

zn =G(u) =
∞∑

x=n

ux−1

x!
Dx−1

[
nzn−1(p0 + q0z)mx(p + qz2)mx

]
z=0

=
∞∑

x=n

ux−1

(x − n)!x

n

x
Dx−n

⎡
⎣ mx∑

i=0

(
mx
i

)
pmx−i

0 qi
0zi

mx∑
j=0

(
mx

j

)
pmx− j q j z2 j

⎤
⎦

z=0

=
∞∑

x=n

ux−1

(x −n)!

n

x
Dx−n

⎡
⎢⎣ 3x∑

k=0

[ 1
2 x]∑

j=0

(
mx

j

)(
mx

k−2 j

)
q j pmx−j qk−2 j

0 pmx−k+2 j
0 zk

⎤
⎥⎦

z=0

=
∞∑

x=n

ux n

x

[a]∑
j=0

(
mx

j

)(
mx

x − n − 2 j

)
q j pmx− j qx−n−2 j

0 pmx+n−x+2 j
0 , (13.43)
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where a = 1
2 (x − n). Thus, the probability distribution of X, the number of trials made by the

particle before absorption, becomes

p0,x = P(X = x) = n

x

[a]∑
j=0

(
mx

j

)(
mx

x − n − 2 j

)
q j pmx− j qx−n−2 j

0 pmx+n−x+2 j
0 (13.44)

for x = n, n + 1, n + 2, . . . and zero otherwise. The expression becomes a little smaller for the
special case of p0 = p.

The mean and the variance of the probability distribution of X can be obtained by using the
formulas for the cumulants of Lagrangian probability distributions given in chapter 2 and are

µ = n(1 − mq0 − 2mq)−1

σ 2
x = nm(p0q0 + 4pq)(1 − mq0 − 2mq)−3,

}
(13.45)

where 0 < mq0 + 2mq < 1. Thus, the particle will definitely get absorbed at the origin if
q0 + 2q < m−1.

The probability of the particle not getting absorbed even after the N th step is given by
substituting the value of p0,x from (13.44) in (13.22).

Also,
(g(z))N = (p0 + q0z)m N (p + qz2)m N

gives the power series in z as

(g(z))N =
m N∑

r,s=0

(
m N

s

)(
m N

r

)
qr

0 pm N−r
0 qs pm N−s zr+2s .

By using the above expansion and the expression (13.26), the probability that the particle is at
position i (≥ 1) after the N th step can be written in the form

pi,N =
[a]∑

s=0

(
m N

s

)(
m N

N + i − n − 2s

)
qs pm N−s pm N

0 (p0/q0)
n+2s−N−i

−
N−1∑
j=n

p0, j

(
m N − mj

s

)(
m N − mj

N + i −2 j −2s

)
(pp0)

m N−mj (q/p)s (q0/p0)
N+i−2s−2 j

(13.46)

for N = n + 1, n + 2, n + 3, . . . and zero otherwise, and where a = 1
2 (N + i − n), [a] is the

integer part of a, and the second summation is zero if N < n + 1.

13.9 General Random Jumps Model

Let +n be the initial position of a particle. Each time the particle jumps, it takes mutu-
ally exclusive steps of size −1, a − 1, 2a − 1, 3a − 1, . . . , am − 1 only with probabili-
ties

(m
i

)
pm−i qi , i = 0, 1, 2, . . . , m, respectively, so that the pgf of its jump each time is

g(z) =∑m
i=0

(m
i

)
pm−iqi zai = (p + qza)m , where 0 < p = 1 − q < 1.
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Let X denote the total number of jumps taken by the particle before it reaches the origin,
which has an absorbing barrier, and where it gets absorbed. By section 13.4, the pgf of the
probability distribution of X is given by the Lagrange expansion in (13.20) of zn, under the
transformation z = u (p + qza)m , in the form

zn = l(u) =
∞∑

x=n

ux−1

x!
Dx−1

[
nzn−1(p + qza)mx

]
z=0

=
∞∑

x=n

ux−1 n

(x − n)!x
Dx−n

[
mx∑
k=0

(
mx
k

)
qk pmx−k zak

]
z=0

=
∞∑

k=0

un+ak−1 n

n + ak

(
mn + mak

k

)
qk pmn+mak−k, (13.47)

which gives the probability distribution of X , the number of jumps made by the particle before
it gets absorbed at the origin as

p0,x = P(X = x = n + ak) = n

n + ak

(
mn + mak

k

)
qk pmn+mak−k (13.48)

for k = 0, 1, 2, 3, . . . and zero otherwise. The above is the GNBD discussed in detail in chap-
ter 10. The mean and the variance of X are

E[X ] = n(1 − amq)−1

σ 2
x = mna2 pq(1 − amq)−3,

}
(13.49)

which exist when q < (am)−1.
The probability of the particle not getting absorbed until after the N th jump can be written

by substituting the value of p0,x from (13.48) in (13.22). Also, the probability pi,N that the
particle is at position i (≥ 1) after the N th jump is given by (13.26). By using g(z) = (p +
qza)m , the probability becomes

pi,N =
(

m N
(N + i − n)/a

)
q(N+i−n)/a pm N−(N+i−n)/a

−
N−1∑
j=n

p0, j

(
m N − mj

(N + i − j )/a

)
q(N+i− j)/a pm N−mj−(N+i− j)/a (13.50)

for N = n + 1, n + 2, n + 3, . . . and zero otherwise, and where the second summation is zero
if N < n + 1.

13.10 Applications

It was shown in chapter 6 that the probability distributions of the first busy period in many
queuing problems, of the branching processes, of the spread of various epidemics, and of the
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spread of the sales of a product, are all Lagrangian probability models, which are given by
using different pgfs.

A large number of researchers have used many techniques, based on combinatorial meth-
ods, for solving the gambler’s ruin problems, random walk problems, and the ballot problems.
However, it has been shown in the previous sections that the Lagrange expansion can be used
effectively to obtain the probability distributions for all these models and to compute the prob-
abilities for many useful cases.

The main use of the random walks models and the random jumps models, discussed in this
chapter, will be for applied problems in the different disciplines of study and in the industry. The
researcher in this field of study has to give a suitable interpretation to the different variables,
analyze the problem carefully, break it up systematically into small time periods, and reduce it
to the form of a random walk, a random jump, or a branching process.

The manufacturer (company) of a new product has to invest capital (money) in the initial
development of the product and its utility value, in its approval by government, in setting up the
production line, in the actual cost of production, and in sales campaigns through various kinds
of media like magazine advertisements, TV advertisements, radio, sales agents, etc., over a
reasonable period of time. Thus, the company has the initial costs of development, of approval,
and of manufacturing plant which have to be realized from the sales of the product. Then,
the company has the basic cost of the product and the advertisement costs. Considering the
retailers’ and wholesalers’ commissions the product is priced in such a manner that the initial
costs are realized within the first three years together with the cost of the product, all the cost of
advertisements, and a reasonable return on all the investments made by the company. The price
must be competitive with the prices of other similar products. If this product is completely new
and there is no similar product in the market, then the price must be affordable to the public.

The manufacturing company shall have a break-even point of minimum sales volume and
the company suffers losses till the sales reach that break-even point. If all the initial capital
amount gets used up and the company is not able to raise more capital, it will go bankrupt. As
the company increases its monthly sales above the break-even point, it becomes more profitable.
The researchers in the company have to determine a probability model for increase in sales after
each advertisement campaign and have to prescribe some numbers for break-even point sales,
for net 10% profit sales, for net 20% profit sales, . . . , and then they have to formulate a suitable
random walk model to determine the probabilities for reaching those levels. Every company
has to collect data on the effect of the advertisement campaigns to determine the probabilities
for the sales of the product and on the various costs of the product as well as the profit margins
etc. to determine the various profit levels so that this research can be completed. This research
is an ongoing process in every industry.

13.11 Exercises

13.1 Consider the trinomial random walk model in (13.32). Obtain a recurrence relation be-
tween the noncentral moments. Hence or otherwise, obtain the first three noncentral mo-
ments. Obtain the moment estimate for the parameter p.

13.2 (a) Show that the mean and variance of the random walk model (13.6) are given by (13.7).
(b) Show that the mean and variance of the trinomial random walk model in (13.28) are

given by (13.29).
(c) Show that the mean and variance of the binomial random walk model (13.40) are

given by (13.41).
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13.3 Show that the mean and variance of the Katz distribution (model (6), Table 2.1) are

µ = (1 − β)(1 − β − b)−1, σ 2 = b(1 − β)(1 − β − b)−3.

13.4 Let the probabilities of taking steps −1, 0, +1 on a straight line by a particle at any point
be p−1, p0, p1, respectively, where p−1 + p0 + p1 = 1. Let the particle start from a point
n steps away from the origin, which has an absorbing barrier, and let X denote the total
number of steps taken by the particle before its absorption at the origin. Show that the
probability distribution of the r.v. X is

P(X = x) = n

x

[a]∑
i=0

x!

i !(n + i)(x − n − 2i)!
pi

1(p−1)
n+1(p0)

x−n−2i ,

where a = 1
2 (x − n), [a] is the integral part of a, and x = n, n + 1, n + 2, . . . . Also,

express the pgf G(u) of the r.v. X for the above trinomial walk as an implicit function

G(u) = zn, where z = u(p−1 + p0z + p1z2).

13.5 Let a particle start from a point one step away from the origin which has an absorbing
barrier and let the particle make random jumps to points −1, +1, +3, . . . , (2m − 1) with
the probabilities given by the pgf g(z) = (p + qz2)m, 0 < p = 1 − q < 1. If X denotes
the total number of trials (jumps) made by the particle before it gets absorbed at the origin
(z = 0), show that the probability distribution of X is

P(X = 2k + 1) = m

m + 2mk

(
m + 2mk

k

)
qk pm+2mk−k, k = 0, 1, 2, . . . .

Also, show that the pgf of the r.v. X is

G(u) = z, where z = u(p + qz2)m .

13.6 Let a particle start from some point n (a positive integer > 0) and let the particle be
allowed to take mutually exclusive steps of size −1, 0, +1, +2, only from any given
position in each trial. Let the pgf of these moves in each trial be g(z) = p0 + p1z +
p2z2 + p3z3, where 0 < pi < 1, i = 0, 1, 2, 3, and p0 + p1 + p2 + p3 = 1. Let X denote
the total number of steps taken by the particle before absorption at the origin. Obtain the
probability distribution of X , the number of steps to absorption at the origin.

13.7 Obtain the values of E[X ] and Var(X) in Exercise 13.6.
13.8 Obtain the probability that the particle in Exercise 13.6 will be at the point 20 after the

nth step.
13.9 A company manufactures hair shampoo and supplies its product to the retailers in 10 oz.

bottles. The market is very competitive and so they have to run TV advertisements every
month. If they are able to sell N bottles every month, they make a reasonable profit. On ac-
count of the monthly advertisements and the strong competition, the monthly sales of the
bottles increase or decrease by mutually exclusive numbers of −1, +1, +3, . . . , 2m − 1
with probabilities given by the pgf g(z) = (p + qz2)m for each TV advertisement (trial),
where 0 < q = 1 − p < 1. Find the probability that the monthly sales of the shampoo
bottles are ≥ N after n months.
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Bivariate Lagrangian Distributions

14.1 Definitions and Generating Functions

Univariate Lagrangian probability distributions, in general, and many of their special models
have been discussed in chapters 1 through 13. Shenton and Consul (1973) studied the bivariate
Lagrangian distributions (BLDs). Jain and Singh (1975) and Churchill and Jain (1976) studied
some bivariate power series distributions associated with the Lagrange expansion. Shoukri and
Consul (1982) and Shoukri (1982) considered the bivariate modified power series distributions
associated with the Lagrange expansion.

Shenton and Consul (1973) applied Poincaré (1886) generalization of Lagrange expan-
sion to develop the bivariate Lagrangian and Borel–Tanner distributions and showed that these
probability distributions represent the number of customers served in a single server queu-
ing system. When the service begins with a queue consisting of i customers of type I and j
customers of type II with different arrival rates requiring separate kinds of service for each
type of customer, the general probability distribution of the number of customers of type I
and type II served in a busy period is a Lagrangian-type bivariate Borel–Tanner probability
distribution.

Let h(t1, t2) ≡ h, k(t1, t2) ≡ k and f (t1, t2) ≡ f be any three nonnegative bivariate
meromorphic functions such that h(1, 1) = k(1, 1) = f (1, 1) = 1 and h(0, 0) and k(0, 0) are
nonzero. As all these properties are satisfied by bivariate pgfs, the functions h, k, and f can
be pgf but it is not necessary. Consider the transformations

t1 = u h(t1, t2),

t2 = v k(t1, t2),
(14.1)

which give u = v = 0 for t1 = t2 = 0 and u = v = 1 for t1 = t2 = 1. Since u and v are
bivariate analytic functions of t1 and t2 in the neighborhood of the origin, the smallest positive
roots of the transformations in (14.1) give for f (t1, t2), by Poincaré’s bivariate generalization
of Lagrange expansion, a power series expansion in terms of u and v. (See (1.93), (1.94),
and (1.95)). Let X and Y be two discrete random variables and let the probability P(X =
x, Y = y) be denoted by P(x, y). The bivariate function f (t1, t2) in (1.93) provides the pgf
l(u, v), which can be written as

f (t1, t2) = l(u, v) =
∞∑

x=0

∞∑
y=0

P(x, y)uxv y (14.2)
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for x + y > 0, x, y = 0, 1, 2, . . . and where

P(0, 0) = f (0, 0)

and

P(x, y) = 1

x!

1

y!

(
∂

∂t1

)x−1 ( ∂

∂t2

)y−1
{

hxky ∂2 f

∂t1∂t2
+ hx ∂ky

∂t1

∂ f

∂t2
+ ky ∂hx

∂t2

∂ f

∂t1

}
t1=t2=0

.

(14.3)
The values of P(x, y) for particular integral values of x and y are nonnegative probabilities.

When the bivariate functions h(t1, t2), k(t1, t2), and f (t1, t2) are not pgfs, one has to impose
the conditions that the values of P(x, y) in (14.3) are nonnegative for all values of x and y.
Since l(u, v) = 1 for u = v = 1, the sum of all P(x, y), x, y = 0, 1, 2, . . . is unity.

In general, each one of the three bivariate functions, h, k, and f , have three parameters and
so the bivariate Lagrangian probability distribution P(x, y) in (14.3) will have nine unknown
parameters. In statistical applications of the probability models, the estimation of the unknown
parameters is one of the main areas of study. The estimation becomes very difficult when there
are too many parameters. In view of this problem, Consul (1994a) showed that when the three
bivariate analytic functions f , h, and k are of the form f (t1, t2) = [g(t1, t2)]a , h(t1, t2) =
[g(t1, t2)]b and k(t1, t2) = [g(t1, t2)]c, where a, b, c are real nonnegative constants, g(1, 1) =
1, and g(0, 0) is nonzero, then the power series expansion in (14.2) provides the bivariate pgf
l(u, v), which can be simplified to any one of the two forms

f (t1, t2) = f (0, 0) +
∞∑

x=0

∞∑
y=0

ux

x!

v y

y!

{(
∂

∂t2

)y ( ∂

∂t1

)x−1 [
hxky ∂ f

∂t1

]}
t1=t2=0

, (14.4)

x + y > 0,

or

f (t1, t2) = f (0, 0) +
∞∑

x=0

∞∑
y=0

ux

x!

v y

y!

{(
∂

∂t1

)x ( ∂

∂t2

)y−1 [
hxky ∂ f

∂t2

]}
t1=t2=0

, (14.5)

x + y > 0.

The bivariate Lagrangian probability distribution in (14.3) will then be simplified to the
form

P(x, y) = 1

x!y!

{(
∂

∂t1

)x ( ∂

∂t2

)y−1 [
hxky ∂ f

∂t2

]}
t1=t2=0

, (14.6)

for x + y > 0, x, y = 0, 1, 2, . . . and P(0, 0) = f (0, 0).
Numerous bivariate Lagrangian probability models can be generated by assigning differ-

ent sets of bivariate probability generating functions to f (t1, t2), h(t1, t2), and k(t1, t2). More
bivariate Lagrangian probability models can also be generated by choosing specific functions
h, k, and f , which satisfy the conditions in paragraph three of this section. Many such bi-
variate Lagrangian probability models will be derived and considered in later sections of this
chapter.

There is another method as well by which some specific bivariate Lagrangian probability
distributions can be obtained. Let f ≡ f (θ1, θ2), φ ≡ φ(θ1, θ2), and ψ ≡ ψ(θ1, θ2) be three
nonzero bivariate analytic functions of θ1 and θ2. Consider the bivariate transformations
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θ1 = u φ(θ1, θ2) and θ2 = v ψ(θ1, θ2),

which provide u = v = 0 when θ1 = θ2 = 0 and

u = θ1 [φ(θ1, θ2)]
−1 = g(θ1, θ2), v = θ2 [ψ(θ1, θ2)]

−1 = h(θ1, θ2). (14.7)

Since u and v are bivariate analytic functions of θ1 and θ2 in the neighborhood of the origin,
the smallest positive roots of the transformations provide, by Poincaré’s formula (1.93), a power
series expansion in terms of u and v as

f (0, 0) = a(0, 0)

and

f (θ1, θ2) =
∞∑

x=0

∞∑
y=0

a(x, y)uxv y =
∞∑

x=0

∞∑
y=0

a(x, y) (g(θ1, θ2))
x (h(θ1, θ2))

y , (14.8)

x + y > 0, x + y > 0,

where

a(x, y) = 1

x!

1

y!

(
∂

∂θ1

)x−1 ( ∂

∂θ2

)y−1
[
φxψ y ∂2 f

∂θ1∂θ2
+ φx ∂ψ y

∂θ1

∂ f

∂θ2
+ ψ y ∂φx

∂θ2

∂ f

∂θ1

]
θ1=θ2=0

(14.9)

defined over (x, y) ∈ S, where S is a subset of the cartesian product of the set of nonnegative in-
tegers. If a(x, y) > 0 for all (x, y) ∈ S and θ1, θ2 ≥ 0, the relation (14.8) can be divided by the
function f (θ1, θ2) on both sides. On division, it provides the families of bivariate Lagrangian
probability distribution, given by

P(X = x, Y = y) = P(x, y) = a(x, y) [g(θ1, θ2)]
x [h(θ1, θ2)]

y / f (θ1, θ2), (x, y) ∈ S,
(14.10)

where a(x, y) is given by (14.9).
By assigning suitable values of the functions f (θ1, θ2), g(θ1, θ2), and h(θ1, θ2), subject to

the conditions stated earlier, one can obtain a large number of bivariate Lagrangian probabil-
ity models. This class of bivariate Lagrangian probability distribution (14.10) was given the
name bivariate modified power series distribution (BMPSD) by Shoukri and Consul (1982)
and was studied in detail. Many specific bivariate Lagrangian probability distributions, ob-
tained from (14.3) or (14.6), belong to the class of BMPSD. The study of the BMPSD is much
simpler than the study of the general class of bivariate Lagrangian probability distributions
in (14.3) or (14.6).

14.2 Cumulants of Bivariate Lagrangian Distributions

Shenton and Consul (1973) obtained expressions for the first-order cumulants in terms of the
cumulants of h(t1, t2) and k(t1, t2), for bivariate Lagrangian probability models. Let Hr,s and
Kr,s , r, s, = 0, 1, 2, . . . , be the cumulants of the probability distributions generated by h(t1, t2)
and k(t1, t2). Let Fr,s , r, s = 1, 2, . . . , be the cumulants of the distribution generated by the
pgf f (t1, t2). Also, let Lr,s , r, s = 0, 1, 2, . . . , be the cumulants of the bivariate Lagrangian
probability distributions.

Now using eT1 , eT2 , eβ1 , and eβ2 in place of t1, t2, u, and v, respectively, in (14.1) and
in (14.2), taking the logarithms of all three results, and by expanding them in power series, we
obtain
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T1 = β1 + (H10T1 + H01T2)

+ (H20T 2
1 /2! + H11T1T2 + H02T 2

2 /2!
)+ . . .

T2 = β2 + (K10T1 + K01T2)

+ (K20T 2
1 /2! + K11T1T2 + K02T 2

2 /2!
)+ . . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14.11)

F10T1 + F01T2 + F20T 2
1 /2! + F11T1T2 + F02T 2

2 /2! + . . .

= L10β1 + L01β2 + L20β
2
1/2! + L11β1β2 + L02β

2
2/2! + . . .

}
. (14.12)

On substituting the values of β1 and β2 from (14.11) in (14.12) and by equating the coefficients
of T1 and T2 with each other, we have

F10 = L10(1 − H10) + L01(−K10)

F01 = L10(−H01) + L01(1 − K01)

}
, (14.13)

which give the two first-order noncentral moments of BLD as

L10 = F10(1 − K01) + F01 K10

(1 − H10)(1 − K01) − H01K10
(14.14)

and

L01 = F01(1 − H10) + F10 H01

(1 − H10)(1 − K01) − H01K10
. (14.15)

By equating together the coefficients of T 2
1 , T1T2, T 2

2 on both sides of (14.12) after eliminat-
ing β1 and β2 by (14.11), Shenton and Consul (1973) obtained the following relations among
the second-order cumulants:

L20(1 − H10)
2 − 2L11K10(1 − H10) + L02 K 2

10 = Q20

L20 H01(1 − H10) − L11 {(1 − H10)(1 − K01) − H01K10} + L02K10(1 − K01) = Q11

L20 H2
01 − 2L11 H01(1 − K01) + L02(1 − K01)

2 = Q02

⎫⎪⎬
⎪⎭ ,

(14.16)
where

Q20 = F20 + L10 H20 + L01K20

Q11 = −(F11 + L10 H11 + L01 K11)

Q02 = F02 + L10 H02 + L01K02

⎫⎪⎬
⎪⎭ . (14.17)

On solving equations (14.16) by Cramer’s rule, the second-order cumulants or covariances of
BLD can easily be evaluated. The first- and second-order cumulants will exist if H10 + H01 < 1
and K10 + K01 < 1.

14.3 Bivariate Modified Power Series Distributions

14.3.1 Introduction

The class of bivariate modified power series distribution (BMPSD) is defined (Shoukri and
Consul, 1982) by a bivariate discrete random variable (X, Y ) as

P(X = x, Y = y) = a(x, y) [g(θ1, θ2)]
x [h(θ1, θ2)]

y / f (θ1, θ2), (x, y) ∈ S, (14.18)
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and zero otherwise, where S is a subset of the cartesian product of the set of nonnegative
integers, a(x, y) > 0, θ1, θ2 ≥ 0 and g(θ1, θ2), h(θ1, θ2) and f (θ1, θ2) are finite positive and
differentiable functions of θ1 and θ2 such that

f (θ1, θ2) =
∑

(x,y)∈S

a(x, y)gx(θ1, θ2)h
y(θ1, θ2).

Whenever g(θ1, θ2) = �1 and h(θ1, θ2) = �2 can be solved for θ1 and θ2, the BMPSD reduces
to the class of bivariate generalized power series distribution.

The class of BMPSD includes, among others, the trinomial distribution, the bivariate neg-
ative binomial distribution, the bivariate Poisson distribution, the bivariate Borel–Tanner dis-
tribution, the bivariate GNBD, and the power series distributions associated with Lagrange
expansion as defined by Jain and Singh (1975). A truncated BMPSD is also a BMPSD.

Many important families of the BMPSD can be generated by using the Lagrange expansion
in (14.2). Jain and Singh (1975) used the expansion in (14.2) on f (θ1, θ2) under the transfor-
mation θ1 = ug(θ1, θ2) and θ2 = vh(θ1, θ2) to obtain the BMPSD in (14.18). Shoukri and
Consul (1982) provided a table of the sets of pgfs with their corresponding BMPSDs. Some of
these are given in Table 14.1.

In subsequent subsections, we use the letters g, h, and f only for the functions g(θ1, θ2),
h(θ1, θ2), and f (θ1, θ2), respectively, and the following symbols:

Di = ∂

∂θi
,

gi = ∂ log g

∂θi
, hi = ∂ log h

∂θi
, fi = ∂ log f

∂θi
, (14.19)

gi j = ∂2 log g

∂θi∂θ j
and so on, where i, j = 1, 2. (14.20)

The sign
∑

will be used for the sum over all points (x, y) ∈ S, unless otherwise specified. We
denote

� = g1h2 − g2h1. (14.21)

For all nonnegative integers r and s,

µ′
rs = E(XrY s), µrs = E

[
(X − µ′

10)
r (Y − µ′

01)
s] . (14.22)

14.3.2 Moments of BMPSD

Since
∑

P(X = x, Y = y) = 1, we have f =∑ a(x, y)gxhy . On differentiating this partially
with respect to θ1 and θ2, respectively, and dividing by f , we obtain

f1 = g1µ
′
10 + h1µ

′
01,

f2 = g2µ
′
10 + h2µ

′
01.

On solving the above, one obtains

µ′
10 = ( f1h2 − f2h1)/� (14.23)
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Table 14.1. Some members of BMPSDs

Name, f (θ1, θ2) g(θ1, θ2) h(θ1, θ2) a(x, y)

Bivariate modified θ1e−m1(θ1+θ2) θ2e−m2(θ1+θ2) (1+m1x+m2 y)x+y−1

x!y!
double Poisson, θ1, θ2 > 0 0 < m1θ1 + m2θ2 < 1 m1 > 0, m2 > 0
f (θ1, θ2) = eθ1+θ2 x, y = 0, 1, 2, . . .

Bivariate modified θ1(1 − θ1 − θ2)
β1−1 θ2(1 − θ1 − θ2)β2−1 n�(n+β1x+β2 y)

x!y!�(n+β1x+β2 y−x−y+1)
negative binomial, 0 < θ1, θ2 < 1 0 < β1θ1 + β2θ2 < 1 n > 0
f (θ1, θ2) = x, y = 0, 1, 2, . . .
(1 − θ1 − θ2)−n

Bivariate modified θ1(1 − θ1 − θ2)
β1−1 θ2(1 − θ1 − θ2)β2−1 �(β1x+β2 y)

x!y!�(β1x+β2 y−x−y+1)
logarithmic, 0 < θ1, θ2 < 1 0 < β1θ1 + β2θ2 < 1 x, y = 1, 2, 3, . . .
f (θ1, θ2) =
− ln(1 − θ1 − θ2)

Bivariate modified θ1e−θ1−θ2 θ2e−θ1−θ2 (m+n)(x+y)x+y−m−n−1

(x−m)!(y−n)!
delta Poisson, θ1, θ2 > 0 x = m(1), y = n(1)

f (θ1, θ2) = θm
1 θn

2

Bivariate modified θ1(1 − θ1 − θ2)
β1−1 θ2(1 − θ1 − θ2)β2−1 (mβ1+nβ2)

(x−m)!(y−n)!

delta binomial, 0 < θ1, θ2 < 1 0 < β1θ1 + β2θ2 < 1 × �(β1x+β2 y)
�(β1x+β2 y+m+n−x−y+1)

f (θ1, θ2) = x = m(1), y = n(1)
θm

1 θn
2

(1−θ1−θ2)m+n

and
µ′

01 = ( f2g1 − f1g2)/� (14.24)

In general, µ′
r,s = ∑

xr ysa(x, y)gxhy/ f . On differentiating partially with respect to θ1 and
θ2, respectively, we obtain

D1µ
′
r,s = g1µ

′
r+1,s + h1µ

′
r,s+1 − f1µ

′
r,s,

D2µ
′
r,s = g2µ

′
r+1,s + h2µ

′
r,s+1 − f2µ

′
r,s .

On solving the two equations, the recurrence relations for the higher product moments are given
by

µ′
r+1,s = [h2 · D1µ

′
r,s − h1 · D2µ

′
r,s

]
/� + µ′

r,sµ
′
10, (14.25)

µ′
r,s+1 = [g1 · D2µ

′
r,s − g2 · D1µ

′
r,s

]
/� + µ′

r,sµ
′
01. (14.26)

Similarly, by differentiating µr,s partially with respect to θ1 and θ2, respectively, and on
simplification, the two recurrence relations between the central product moments are
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µr+1,s = �−1 {(h2 D1 − h1 D2)µr,s + rµr−1,s(h2 D1 − h1 D2)µ
′
10

+ sµr,s−1(h2 D1 − h1 D2)µ
′
01

}
(14.27)

and

µr,s+1 = �−1 {(g1 D2 − g2 D1)µr,s + rµr−1,s(g1 D2 − g2 D1)µ
′
10

+ sµr,s−1(g1 D2 − g2 D1)µ
′
01

}
. (14.28)

The above two formulas will give not only the variances σ 2
x and σ 2

y by putting r = 1, s = 0
and r = 0, s = 1, but will also give the recurrence relations among higher central moments by
putting r = 0 or s = 0. The coefficient of correlation ρxy can be obtained from the recurrence
relation.

Recurrence relations among the factorial moments µ
[r]
x = E

(
X [r]
)

and µ
[s]
y = E

(
Y [s]
)

of
the BMPSD can be obtained, and these are given by

µ[r+1]
x = �−1 [h2 D1 − h1 D2] µ[r]

x + (µ′
10 − r)µ[r]

x (14.29)

and
µ[s+1]

y = �−1 [g1 D2 − g2 D1] µ[s]
y + (µ′

01 − s)µ[s]
y , (14.30)

where µ[1]
x = µ′

10 and µ[1]
y = µ′

01. The cumulants can be obtained from the moments by using
the relationship between central moments and cumulants or by using the results for cumulants
in section 14.2.

14.3.3 Properties of BMPSD

The following properties are given by Shoukri and Consul (1982).
Let (Xi , Yi ), i = 1, 2, 3, . . . , N , be a random sample of size N taken from the BMPSD

given by (14.18) and let

Z1 =
N∑

i=1

Xi and Z2 =
N∑

i=1

Yi .

When the functions g and h are zero at θ1 = 0 and θ2 = 0, due to the properties of the power
series functions, the joint probability function of (Z1, Z2) can be written as

P(Z1 = z1, Z2 = z2) = b(z1, z2, N)gz1hz2/ f N , (14.31)

where

b(z1, z2, N) =
∑ N∏

i=1

a(xi, yi),

and the summation extends over all ordered N -tuples {(x1, y1), . . . , (xN , yN)} of nonnegative
integers of the set S under the conditions

N∑
i=1

xi = z1 and
N∑

i=1

yi = z2.

The evaluation of b(Z1, Z2, N) seems to be difficult on account of the summation over (xi , yi)
on the products of a(xi, yi), but it can be obtained more easily from (14.3) by replacing f , g,
and k by f N , θ1g−1, and θ2h−1, respectively, using θ1 and θ2 instead of t1 and t2 and putting Z1
and Z2 instead of x1 and x2, respectively. Thus, the BMPSD satisfies the convolution property.
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The following two theorems, given by Shoukri and Consul (1982), can easily be proved for
a BMPSD.

Theorem 14.1. The means µ′
10 and µ′

01 of a BMPSD with f (0, 0) = 1 are proportional to
the parametric functions g and h, respectively, if and only if it is a double Poisson probability
distribution.

Theorem 14.2. The means µ′
10 and µ′

01 of a BMPSD with f (0, 0) = 1 are equal to cg(1 −
g − h)−1 and ch(1 − g − h)−1, respectively, where c is any real number and g and h are
the two parametric functions of the BMPSD, if and only if it is a bivariate negative binomial
distribution with pmf

P(X = x, Y = y) = (x + y + n − 1)!

x!y!n!
θ x

1 θ
y
2 (1 − θ1 − θ2)

n.

14.3.4 Estimation of BMPSD

Maximum Likelihood Estimation

If (Xi , Yi ), i = 1, 2, 3, . . . , N , is a random sample of size N taken from the BMPSD given
by (14.18), the logarithm of its likelihood function L becomes

ln L = constant +
N∑

i=1

xi log g +
N∑

i=1

yi log h − N log f. (14.32)

On differentiating partially with respect to θ1 and θ2 and equating to zero, the ML equations
become

x̄g1 + ȳh1 − f1 = 0, (14.33)

x̄g2 + ȳh2 − f2 = 0, (14.34)

where (x̄, ȳ) is the sample mean. Assuming that other parameters in the BMPSD are known,
the solution of the above two equations for θ1 and θ2 is not easy because these two parameters
are involved in the functions g1, g2, h1, h2, f1, and f2. However, these equations can easily be
solved for x̄ and ȳ to give

x̄ = f1h2 − f2h1

g1h2 − g2h1
= µ̂′

10 (14.35)

and

ȳ = f2g1 − f1g2

g1h2 − g2h1
= µ̂′

01. (14.36)

Thus, X̄ and Ȳ are the ML estimators for the means µ′
10 and µ′

01, respectively. This shows
that the ML estimators of the means µ′

10 and µ′
01 are identical to their moment estimators. If

equations (14.35) and (14.36) do not give an explicit solution for θ1 and θ2, an iterative method
can be used to get a convergent solution starting with some values (θ10, θ20). The variances and
covariance of the ML estimators for θ1 and θ2 are given by Shoukri and Consul (1982).
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MVU Estimation

The BMPSD belongs to the exponential class. Accordingly, the sample sums Z1 and Z2 be-
come jointly sufficient statistics for the parameters θ1 and θ2. Shoukri (1982) has shown that
the statistic (Z1, Z2) is complete. Shoukri (1982) has also obtained the necessary and suffi-
cient conditions for the existence of a minimum variance unbiased estimator for a parametric
function of parameters θ1 and θ2.

Let the set of positive integers {(x, y) : x ≥ r, y ≥ s} of a two-dimensional space be de-
noted by r Is , where r and s are nonnegative integers. A subset UN of 0 I0 is said to be the
index-set of the function f N if

f N =
∑

b(Z1, Z2, N)gZ1h Z2,

where b(Z1, Z2, N) > 0 for (Z1, Z2) ∈ UN ⊆ 0 I0. Let K (θ1, θ2) be a real valued parametric
function of θ1 and θ2 such that, for a random sample of size N , we have

K (θ1, θ2) · f N =
∑

c(Z1, Z2, N)gZ1 h Z2,

where c(Z1, Z2, N) 	= 0 for (Z1, Z2) ∈ U∗
N ⊆ 0 I0. U∗

N is the index-set of the function
K (θ1, θ2) · f N .

Shoukri (1982) stated and proved the following theorem which provides a necessary and
sufficient condition for the existence of a MVU estimator of K (θ1, θ2).

Theorem 14.3. Necessary and sufficient conditions for K (θ1, θ2) to be MVU estimable on the
basis of a random sample of size N taken from the BMPSD are that K (θ1, θ2) f N is ana-
lytic at the origin and that U∗

N ⊆ UN , where U∗
N and UN are the index-sets of the functions

K (θ1, θ2) f N and f N , respectively. Also, when K (θ1, θ2) is MVU estimable, its MVU estimator

(Z1, Z2, N) is given by


(Z1, Z2, N) =
⎧⎨
⎩

c(Z1,Z2,N)
b(Z1,Z2,N) , (Z1, Z2) ∈ U∗

N ,

0, otherwise.
(14.37)

Proof. Condition is necessary: Let K (θ1, θ2) be MVU estimable for some N ; i.e., there exists
a function 
(Z1, Z2, N) such that E [
(Z1, Z2, N)] = K (θ1, θ2). Thus,∑

UN


(Z1, Z2, N)b(Z1, Z2, N)gZ1 h Z2 = K (θ1, θ2) f N

and K (θ1, θ2) · f N must possess an expansion in powers of g and h; i.e., it must be analytic
at the origin. In view of the assumption of the expansion taken earlier, by equating the two
summations, we have∑

UN


(Z1, Z2, N)b(Z1, Z2, N)gZ1h Z2 =
∑
U∗

N

c(Z1, Z2, N)gZ1 h Z2 .

Now, for every (Z1, Z2) ∈ U∗
N , b(Z1, Z2, N) must be > 0, i.e., (Z1, Z2) ∈ UN , which implies

that U∗
N ⊆ UN .

By equating the coefficients of gZ1 h Z2 on both sides for all (Z1, Z2) ∈ UN , the MVU
estimator of K (θ1, θ2) becomes



278 14 Bivariate Lagrangian Distributions


(Z1, Z2, N) =
{ c(Z1,Z2,N)

b(Z1,Z2,N) , (Z1, Z2) ∈ U∗
N ,

0, otherwise.

Condition is sufficient: Let U∗
N ⊆ UN and K (θ1, θ2) · f N be analytic at the origin. Expanding

K (θ1, θ2) · f N in powers of g and h by bivariate Lagrange expansion,

K (θ1, θ2) · f N =
∑
U∗

N

c(Z1, Z2, N)gZ1h Z2 .

Thus,

K (θ1, θ2) =
∑
U∗

N

c(Z1, Z2, N)

b(Z1, Z2, N)
· b(Z1, Z2, N)gZ1 h Z2/ f N

=
∑
UN


(Z1, Z2, N)P(Z1 = z1, Z2 = z2),

implying that 
(Z1, Z2, N) is an unbiased estimator for K (θ1, θ2). Since 
(Z1, Z2, N) is a
function of the joint complete sufficient statistic (Z1, Z2), it must be an MVU estimator for
K (θ1, θ2). ��
Remark. The parametric function gahb/ f c, where a, b are any nonnegative integers and c is a
positive integer, is MVU estimable for all sample sizes N ≥ c if and only if U∗

N−c ⊆ UN , and
in that case the MVU estimator for gahb/ f c is


(Z1, Z2, N) =
⎧⎨
⎩

b(Z1−a,Z2−b,N−c)
b(Z1,Z2,N) , (Z1, Z2) ∈ U∗

N−c,

0, otherwise.
(14.38)

Bivariate Modified Double Poisson Model

The ML equations (14.33) and (14.34) become

x̄(θ−1
1 − m1) − m2 ȳ − 1 = 0 and − x̄m1 + ȳ(θ−1

2 − m2) − 1 = 0,

which provide the ML estimators for the parameters θ1 and θ2 as

θ̂1 = X̄

m1 X̄ + m2Ȳ + 1
= Z1

N + m1 Z1 + m2 Z2

and

θ̂2 = Z2

N + m1 Z1 + m2 Z2
.

It can easily be shown that E [θ̂1] = Nθ1(N +m1)
−1 and E [θ̂2] = Nθ2(N +m2)

−1, so that
(N + m1)Z1(N + m1 Z1 + m2 Z2)

−1N−1 is an unbiased estimator for the parameter θ1. Thus,
the MVU estimator for θ1 becomes

(N + m1)Z1(N + m1 Z1 + m2 Z2)
−1 N−1.

Similarly, the MVU estimator of θ2 is

(N + m2)Z2(N + m1 Z1 + m2 Z2)
−1 N−1.
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Bivariate Modified Negative Binomial Model

The ML equations (14.33) and (14.34) become

x̄θ−1
1 (1 − θ1 − θ2) − x̄(β1 − 1) − ȳ(β2 − 1) − n = 0

and
−x̄(β1 − 1) + ȳθ−1

2 (1 − θ1 − θ2) − ȳ(β2 − 1) − n = 0,

which provide the ML estimators for the parameters θ1 and θ2 as

θ̂1 = X̄

N + β1 X̄ + β2Ȳ
= Z1

N(N + β1 Z1 + β2 Z2)

and

θ̂2 = Z2

N(N + β1 Z1 + β2 Z2)
.

One can easily find their expected values, which can be used to find the unbiased estimators
for θ1 and θ2. These unbiased estimators will be the MVU estimators of θ1 and θ2.

Bivariate Modified Delta Poisson Model

The ML equations (14.33) and (14.34) become

x̄(θ−1
1 − 1) − ȳ − mθ−1

1 = 0 and − x̄ − ȳ(θ−1
2 − 1) − nθ−1

2 = 0,

which provide the ML estimators for the parameters θ1 and θ2 as

θ̂1 = Z1 − m N

Z1 + Z2
and θ̂2 = Z2 − nN

Z1 + Z2
.

By taking the expected values of θ̂1 and θ̂2, one can easily find the MVU estimators of θ1 and
θ2.

Bivariate Modified Delta Binomial Model

The ML equations (14.33) and (14.34) become

(x̄ − m)θ−1
1 (1 − θ1 − θ2) = m + n + β1 x̄ + β2 ȳ − x̄ − ȳ

and
( ȳ − n)θ−1

2 (1 − θ1 − θ2) = m + n + β1 x̄ + β2 ȳ − x̄ − ȳ,

which provide the ML estimators for the parameters θ1 and θ2 as

θ̂1 = Z1 − m N

β1 Z1 + β2 Z2
and θ̂2 = Z2 − nN

β1 Z1 + β2 Z2
.

On taking the expected values of θ̂1 and θ̂2, one can determine the unbiased estimators for
θ1 and θ2, which become their MVU estimators.
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14.4 Some Bivariate Lagrangian Delta Distributions

These families of probability models are obtained by taking f (t1, t2) = tm
1 tn

2 in the Lagrangian
expansion in (14.2), as the other expansions in (14.4) and (14.5) are not applicable. When
h(t1, t2) = (g(t1, t2))c1 , c1 > 1, and k(t1, t2) = (g(t1, t2))c2 , c2 > 1, the expansions in (14.2)
and (14.3), under the transformation (14.1), provide the pgf of the bivariate Lagrangian delta
distributions in the form

tm
1 tn

2 =
∞∑

i=m

∞∑
j=n

uiv j

(i − m)!( j − n)!

mc1 + nc2

c1i + c2 j
Di−m

1 D j−n
2 gc1i+c2 j

∣∣∣∣∣∣
t1=t2=0

as a power series in u and v and the family of bivariate probability distribution as

P(X = x, Y = y) = mc1 + nc2

(x − m)!(y − n)!Q
Dx−m

1 Dy−n
2 [g(t1, t2)]

Q
∣∣∣∣
t1=t2=0

for x = m, m + 1, m + 2, . . . , y = n, n + 1, n + 2, . . . , and zero otherwise, and where
Q = c1x + c2 y.

Three important families of the bivariate Lagrangian delta probability distributions are
given in Table 14.2, where a = min(x − m, y − n):

Table 14.2. Some members of bivariate Lagrangian delta distributions

No. g(t1, t2) P(X = x, Y = y)

1. eθ1(t1−1)+θ2(t2−1)+θ3(t1t2−1) (c1m + c2n)Qx+y−m−n−1e−Q(θ1+θ2+θ3)

θi ≥ 0, i = 1, 2, 3 ×∑a
k=0

θ x−m−k
1 θ

y−n−k
2 θk

3 Q−k

(x−m−k)!(y−n−k)!k!

2. (θ0 + θ1t1 + θ2t2 + θ3t1t2)
r (c1m + c2n)r

0 ≤ θi ≤ 1, i = 1, 2, 3 ×∑a
k=0

(Q−1)!θ x−m−k
1 θ

y−n−k
2 θk

3 θ
Q−x−y+m+n+k
0

(x−m−k)!(y−n−k)!k!(Q−x−y+m+n+k)!
θ0 = 1 − θ1 − θ2 − θ3 > 0

3. θ−1
0 (1 − θ1t1 − θ2t2 − θ3t1t2)

(c1m+c2n)θ
Q−x−y
0

Q

0 ≤ θi ≤ 1, i = 1, 2, 3 ×∑a
k=0

θ x−m−k
1 θ

y−n−k
2 θk

3 �(Q−m−n−k)
(x−m−k)!(y−n−k)!k!�(Q−x−y)

θ0 = 1 − θ1 − θ2 − θ3 > 0

h = [g(t1, t2)
]1−c1 , c1 > 1

k = [g(t1, t2)
]1−c2 , c2 > 1
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Notes:

(i) The model (1) is called the bivariate Lagrangian delta-Poisson probability distribution. Its
particular case, given by θ3 = 0, c1θ1 = m1, c2θ2 = m2, c2θ1 = M1, and c2θ1 = M1,
was studied by Shenton and Consul (1973).

(ii) The model (2) can be called the bivariate Lagrangian delta-binomial probability distribu-
tion. Model (1) can be obtained as a limiting form of this model.

(iii) The model (3) can be called the bivariate Lagrangian delta-negative binomial probability
distribution. One can obtain model (1) as a limiting distribution of this model as well.

14.5 Bivariate Lagrangian Poisson Distribution

14.5.1 Introduction

The pgf of the bivariate Poisson probability model, given by Holgate (1964), is

g(t1, t2) = exp [θ1(t1 − 1) + θ2(t2 − 1) + θ3(t1t2 − 1)] .

Now, let
f (t1, t2) = en[θ1(t1−1)+θ2(t2−1)+θ3(t1t2−1)] (14.39)

and
h(t1, t2) = eβ1[θ1(t1−1)+θ2(t2−1)+θ3(t1t2−1)]

k(t1, t2) = eβ2[θ1(t1−1)+θ2(t2−1)+θ3(t1t2−1)]

}
. (14.40)

Under the transformations (14.1), Consul (1994a) used the formula (14.4) on (14.39) and (14.40)
and obtained the bivariate Lagrangian Poisson distribution (BLPD) as

P(0, 0) = f (0, 0) = e−n(θ1+θ2+θ3)

and

P(x, y) =
min(x,y)∑

u=0

θ x−u
1

(x − u)!

θ
y−u
2

(y − u)!

θu
3

u!
n · Qx+y−u−1e−Q(θ1+θ2+θ3) (14.41)

for x, y = 0, 1, 2, . . . , x + y > 0 and Q = n + β1x + β2 y. The values of P(x, y) in (14.41)
reduce to the bivariate Poisson distribution, defined by Holgate (1964), when β1 = β2 = 0 and
n = 1. When θ3 = 0 and n = 1, the BLPD in (14.41) reduces to the bivariate modified double
Poisson model in Table 14.1.

Ambagaspitiya (1998) derived recurrence formulas for the bivariate Lagrangian Poisson
distribution. Using the definition

S =
⎡
⎣ X1, X2, . . . , X M

Y1, Y2, . . . , YN

⎤
⎦

for modeling a book of business containing two classes of insurance policies where claim
frequency among two classes are correlated but claim severities are independent of frequencies
and assuming that (M, N) have a BLPD, he obtained the pmf of S as the compound BLPD. He
obtained some recurrence formulas for this model as well.
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14.5.2 Moments and Properties

Let M j,k = E[X j Y k] denote the bivariate j th and kth noncentral moment for the BLPD. Using
the BLPD model probabilities given in (14.41) to evaluate E[X j Y k ], Consul (1994a) obtained
the following two recurrence relations among the bivariate moments

aM j+1,k = n(θ1 + θ3)M j,k + β2(θ1 + θ3)(θ2 D2 + θ3 D3)M j,k

+ (1 − β2θ2 − β2θ3)(θ1 D1 + θ3 D3)M j,k

(14.42)

and

aM j,k+1 = n(θ2 + θ3)M j,k + β1(θ2 + θ3)(θ1 D1 + θ3 D3)M j,k

+ (1 − β1θ1 − β1θ3)(θ2 D2 + θ3 D3)M j,k,
(14.43)

where

a = 1 − β1(θ1 + θ3) − β2(θ2 + θ3),

Di = ∂

∂θi
, i = 1, 2, 3,

and M0,0 = 1.
By using j = 0 = k in (14.42) and (14.43), the two means become

µ′
10 = n(θ1 + θ3)a

−1 (14.44)

and
µ′

01 = n(θ2 + θ3)a
−1. (14.45)

On finding the partial derivatives of µ′
10 and µ′

01, with respect to θ1, θ2, and θ3 and on further
simplifications, the variances µ20 and µ02 become

µ20 = n(θ1 + θ3)
{

1 − 2β2θ2 + (θ1 + θ2)(θ2 + θ3)β
2
2

}
a−3 (14.46)

and
µ02 = n(θ2 + θ3)

{
1 − 2β1θ1 + (θ1 + θ2)(θ1 + θ3)β

2
1

}
a−3. (14.47)

Also, the covariance of the BLPD is given by

µ11 = n [θ3 + β1θ2(θ1 + θ3) + β2θ1(θ2 + θ3) − β1β2(θ1 + θ2)(θ2 + θ3)(θ1 + θ3)] a−3.
(14.48)

Consul (1994a) showed that the BLPD possesses the convolution property. If (X1, X2) and
(Y1, Y2) are two BLPD r.v.s with the six parameters

(n1, θ1, θ2, θ3, β1, β2) and (n2, θ1, θ2, θ3, β1, β2),

respectively. Then the r.v.s X1 + Y1 = Z1 and X2 + Y2 = Z2 have a BLPD with parameters
(n1 + n2, θ1, θ2, θ3, β1, β2).
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14.5.3 Special BLPD

The special case of the BLPD for θ3 = 0 and n = 1 is the bivariate modified double Poisson
model of the BMPSD class discussed in section 14.3 with the functions defined as

g = θ1e−β1(θ1+θ2), h = θ2e−β2(θ1+θ2), and f = eθ1+θ2 .

Its means, variances and covariance can be written from the above values. However, they can
be computed from (14.22), (14.23), and (14.24) as well. The functions give f1 = f2 = 1,
g1 = θ−1

1 − β1, g2 = −β1, h1 = −β2, and h2 = θ−1
2 − β2.

By the formulas given in section 14.3 for BMPSD, we obtain

� = g1h2 − g2h1 = (1 − θ1β1 − θ2β2)/θ1θ2,

µ′
10 = ( f1h2 − f2h1)/� = θ1/(1 − θ1β1 − θ2β2), (14.49)

and

µ20 = (h2 D1µ
′
10 − h1 D2µ

′
10)/� = θ1

[
1 − 2β2θ2 + β2

2θ2(θ1 + θ2)
]

(1 − θ1β1 − θ2β2)3
, (14.50)

where θ1β1 + θ2β2 < 1.
The values of µ′

01 and µ02 can be written down by symmetry. It can also be proved that the
coefficient of correlation between X and Y is given by (Shoukri, 1982)

ρ = θ1θ2[β1(1 − θ2β2) + β2(1 − θ1β1)]

[θ1θ2(1 − 2θ1β1 + θ2
1 β2

1 + θ1θ2β
2
1 )(1 − 2θ2β2 + θ2

2 β2
2 + θ1θ2β

2
2 )]1/2

. (14.51)

The conditional expectation and variance of Y for a given x become

E(Y |x) = θ2(1 + β1x)

1 − θ2β2
, x = 0, 1, 2, . . . , (14.52)

and

Var(Y |x) = θ2(1 + β1x)

(1 − θ2β2)2
, x = 0, 1, 2, . . . . (14.53)

14.6 Other Bivariate Lagrangian Distributions

14.6.1 Bivariate Lagrangian Binomial Distribution

A bivariate discrete r.v. (X, Y ) is said to follow a bivariate Lagrangian binomial distribution
(BLBD) if the joint probability distribution of X and Y is given by

P(x, y) =
min(x,y)∑

u=0

n�(n + m1x + m2 y)

(n + m1x + m2 y − x − y + u)!

θ x−u
1

(x − u)!

θ
y−u
2

(y − u)!

θu
3

u!

×(1 − θ1 − θ2 − θ3)
n+m1x+m2 y−x−y+u+1 (14.54)

for x, y = 0, 1, 2, 3, . . . , and where θi ≥ 0, i = 1, 2, 3, such that 0 < θ1 + θ2 + θ3 < 1 and
m1, m2, and n are nonnegative integers. Consul (1994a) obtained the model (14.54) by defining
its bivariate pgf as
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(u, v) = f (t1, t2) = [1 + θ1(t1 − 1) + θ2(t2 − 1) + θ3(t1t2 − 1)]n , (14.55)

under the transformations

t1 = u h(t1, t2) and t2 = v k(t1, t2),

where

h(t1, t2) = [1 + θ1(t1 − 1) + θ2(t2 − 1) + θ3(t1t2 − 1)]m1 , (14.56)

k(t1, t2) = [1 + θ1(t1 − 1) + θ2(t2 − 1) + θ3(t1t2 − 1)]m2 . (14.57)

To obtain the means, variances, and covariance of the BLBD in (14.54), the bivariate cumu-
lants F10, F01, F20, F11, F02, H10, H01, H20, H11, H02, K10, K01, K20, K11, and K02
can be derived for the bivariate generating functions f (t1, t2), h(t1, t2), and k(t1, t2) and then
substitute their values in the formulas (14.14), (14.15), (14.16), and (14.17) to get the means
L10 and L01 and the variances L20 and L02. The process is time consuming.

Another alternative is to define M j,k = E[X jY k ] and then obtain recurrence relations for
M j+1,k and M j,k+1 by differentiation of M j,k with respect to θ1, θ2, θ3, respectively, and by
solving them. This method will also be long.

The BLBD (14.54) reduces to the bivariate modified negative binomial model, when θ3 = 0,
which belongs to the BMPSD class defined by Shoukri and Consul (1982) and for which the
relevant functions are

g = θ1(1 − θ1 − θ2)
m1−1, h = θ2(1 − θ1 − θ2)

m2−1, and f = (1 − θ1 − θ2)
−n−1.

From the above, we get

f1 = (n + 1)(1 − θ1 − θ2)
−1 = f2,

g1 = θ−1
1 − (m1 − 1)(1 − θ1 − θ2)

−1, g2 = −(m1 − 1)(1 − θ1 − θ2)
−1,

h1 = −(m2 − 1)(1 − θ1 − θ2)
−1, h2 = θ−1

2 − (m2 − 1)(1 − θ1 − θ2)
−1,

and
� = g1h2 − g2h1 = (1 − m1θ1 − m2θ2)/ [(1 − θ1 − θ2)θ1θ2] .

By substituting their values in (14.23), (14.24), (14.25), and (14.26) the means and the variances
of the bivariate modified negative binomial model become

µ′
10 = (n + 1)θ1(1 − m1θ1 − m2θ2)

−1, µ′
01 = (n + 1)θ2(1 − m1θ1 − m2θ2)

−1,

µ20 = (n + 1)θ1[1 − θ1 − 2m2θ2 + m2
2θ2(θ1 + θ2)]/(1 − m1θ1 − m2θ2)

3,

µ02 = (n + 1)θ2[1 − θ2 − 2m1θ1 + m2
1θ1(θ1 + θ2)]/(1 − m1θ1 − m2θ2)

3,

where 0 < m1θ1 + m2θ2 < 1. The ML estimators and the MVU estimators for θ1 and θ2 are in
section 14.3.

14.6.2 Bivariate Lagrangian Negative Binomial Distribution

The bivariate Lagrangian negative binomial distribution (BLNBD) is defined by Consul (1994a)
as
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P(x, y) (14.58)

=
min(x,y)∑

u=0

n�(n + β1x + β2 y − u)

(n + β1x + β2 y − x − y)!

θ x−u
1

(x − u)!

θ
y−u
2

(y − u)!

θu
3

u!
(1 − θ1 − θ2 − θ3)

n+β1x+β2 y−x−y

for x , y = 0, 1, 2, 3, . . . and where θi ≥ 0, i = 1, 2, 3, such that 0 < θ1 + θ2 + θ3 < 1, n > 0,
and βi ≥ 1, i = 1, 2. The pgf of the joint probability distribution in (14.58) is given by


(u, v) = f (t1, t2) =
(

1 − θ1t1 − θ2t2 − θ3t1t2
1 − θ1 − θ2 − θ3

)−n

(14.59)

under the transformations

t1 = u h(t1, t2) and t2 = v k(t1, t2),

where

h(t1, t2) =
(

1 − θ1t1 − θ2t2 − θ3t1t2
1 − θ1 − θ2 − θ3

)1−β1

, (14.60)

k(t1, t2) =
(

1 − θ1t1 − θ2t2 − θ3t1t2
1 − θ1 − θ2 − θ3

)1−β2

. (14.61)

When θ3 = 0 the probability model BLNBD, defined by (14.58), reduces to the bivariate
modified negative binomial model which belongs to the BMPSD class. Jain and Singh (1975)
obtained this particular model by a different method and had called it generalized bivariate
negative binomial distribution and obtained a recurrence relation between the probabilities and
the first two means and the second factorial moments for the model. Shoukri (1982) obtained
the MVU estimator for θ

γ1
1 θ

γ2
2 when θ3 = 0 in (14.58) as


(Z1, Z2, N) =

⎧⎪⎪⎨
⎪⎪⎩

Z1!Z2!�(nN+β1 Z1+β2 Z2−γ1−γ2)
nN(Z1−γ1)!(Z2−γ2)!�(nN+β1 Z1+β2 Z2)

×[nN + γ1(β1 − 1) + γ2(β2 − 1)], Z1 ≥ γ1, Z2 ≥ γ2,

0, otherwise,

(14.62)

where Z1, Z2, and N are defined in section 14.3.
For a probabilistic interpretation of the BLNBD model, defined by (14.58), consider a se-

quence of independent trials with four possible outcomes:

(i) occurrences (successes) of events of Type I with probability θ1,
(ii) occurrences of events of Type II with probability θ2,
(iii) occurrences of some events of Type I and some events of Type II together with probability

θ3, and
(iv) the nonoccurrences (failures) of any event with probability 1 − θ1 − θ2 − θ3.

Then the probability that x events of type I, y events of type II, and u events of both type I and
type II together do take place with exactly n + β1x + β2 y − x − y failures in n + β1x + β2 y
trials will provide the model (14.58).

The means, variances, and covariance of the model in (14.58) can be obtained from
the formulas (14.14), (14.15), (14.16), and (14.17) by substituting the values of the bivari-
ate cumulants Fi j , Hi j , and Ki j , i, j = 0, 1, 2, which can be determined from the pgfs
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in (14.59), (14.60), and (14.61), respectively, by replacing t1 and t2 by eT1 and eT2 in f , g, and
h, taking the logarithms of f, g, and h and by expanding them in powers of T1 and T2. The
cumulants are the coefficients of the various powers of T1 and T2.

14.6.3 Bivariate Lagrangian Logarithmic Series Distribution

Consul (1994a) defined bivariate Lagrangian logarithmic series distribution (BLLSD) as

P(x, y) = (1 − θ1 − θ2 − θ3)
β1x+β2 y−x−y

[− ln(1 − θ1 − θ2 − θ3)]

min(x,y)∑
u=0

�(β1x + β2 y − u)

(β1x + β2 y − x − y)!

θ x−u
1

(x − u)!

θ
y−u
2

(y − u)!

θu
3

u!

(14.63)
for x , y = 1, 2, 3, . . . x + y ≥ 1, where θi ≥ 0, i = 1, 2, 3, such that 0 < θ1 + θ2 + θ3 < 1
and βi ≥ 1, i = 1, 2. The pgf of the bivariate distribution in (14.63) is given by


(u, v) = f (t1, t2) = ln(1 − θ1t1 − θ2t2 − θ3t1t2)

ln(1 − θ1 − θ2 − θ3)
(14.64)

under the transformations

t1 = u h(t1, t2) and t2 = v k(t1, t2),

where

h(t1, t2) =
(

1 − θ1t1 − θ2t2 − θ3t1t2
1 − θ1 − θ2 − θ3

)1−β1

, (14.65)

k(t1, t2) =
(

1 − θ1t1 − θ2t2 − θ3t1t2
1 − θ1 − θ2 − θ3

)1−β2

. (14.66)

The means, variances, and covariance of the BLLSD, defined above, can be obtained from
the formulas (14.14), (14.15), (14.16), and (14.17) by substituting the values of the cumulants
Fi j , Hi j , and Ki j , i, j = 0, 1, 2, which can be determined from the pgfs (14.64), (14.65),
and (14.66), respectively.

When θ3 = 0, the above probability model in (14.63) reduces to the bivariate modified
logarithmic series distribution (Shoukri and Consul, 1982), which belongs to the BMPSD class
with the functions

f = − ln(1 − θ1 − θ2), g = θ1(1 − θ1 − θ2)
β1−1, and h = θ2(1 − θ1 − θ2)

β2−1.

According to the definitions in section 14.3, for this special case of θ3 = 0, we get

f1 = (1 − θ1 − θ2)
−1

− ln(1 − θ1 − θ2)
= f2,

g1 = θ−1
1 − (β1 − 1)(1 − θ1 − θ2)

−1, g2 = −(β1 − 1)(1 − θ1 − θ2)
−1,

h1 = −(β2 − 1)(1 − θ1 − θ2)
−1, h2 = θ−1

2 − (β2 − 1)(1 − θ1 − θ2)
−1,

and
� = g1h2 − g2h1 = (1 − β1θ1 − β2θ2)/[(1 − θ1 − θ2)θ1θ2].
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Therefore,

µ′
10 = ( f1h2 − f2h1)/� = θ1(1 − β1θ1 − β2θ2)

−1

[− ln(1 − θ1 − θ2)]
,

µ′
01 = ( f2g1 − f1g2)/� = θ2(1 − β1θ1 − β2θ2)

−1

[− ln(1 − θ1 − θ2)]
.

The values of µ20 and µ02 can be similarly derived from (14.27) and (14.28).

14.6.4 Bivariate Lagrangian Borel–Tanner Distribution

Shenton and Consul (1973) defined the bivariate Lagrangian Borel–Tanner distribution (BLBTD)
by using the bivariate Lagrange expansion and gave its pgf as


(u, v) = f (t1, t2) = t i
1t j

2 (14.67)

under the transformations in (14.1), where

h(t1, t2) = exp[m1(t1 − 1) + m2(t2 − 1)], (14.68)

k(t1, t2) = exp[M1(t1 − 1) + M2(t2 − 1)]. (14.69)

The expansion gives the bivariate joint probability for the BLBTD as

P(x, y) = e−(m1+m2)x−(M1+M2)y (m1x + M1 y)x−i

(x − i)!

(m2x + M2 y)y− j

(y − j )!

×
[

i j

x y
+ x − i

x

M1 j

m1x + M1 y
+ y − j

y

m2i

m2x + M2 y

]
. (14.70)

The cumulants of the probability models represented by (14.67), (14.68), and (14.69) are

F10 = i, F01 = j, F20 = F02 = F11 = 0,

H10 = H20 = m1, H01 = H02 = m2, H11 = 0,

K10 = K20 = M1, K01 = K02 = M2, K11 = 0.

Substituting their values in (14.14) and (14.15), the means of the BLBTD become

L10 = [i(1 − M2) + j M1] / [(1 − m1)(1 − M2) − m2 M1]

and
L01 = [ j (1 − m1) + im2] / [(1 − m1)(1 − M2) − m2 M1] .

The variances and the covariance of the BLBTD are given by

L20 = Q20(1 − M2)
2 + Q02 M2

1

[(1 − m1)(1 − M2) − m2 M1]2
, L02 = Q20(1 − m2)

2 + Q02m2
1

[(1 − m1)(1 − M2) − m2 M1]2
,

L11 = Q20m2(1 − M2) + Q02 M1(1 − m1)

[(1 − m1)(1 − M2) − m2 M1]2
,
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where

Q20 = [(i + j )(M1 + m1) + i(M1m2 − M2m1)] / [(1 − m1)(1 − M2) − m2 M1] ,

Q02 = [(i + j )(M2 + m2) + j (M1m2 − M2m1)] / [(1 − m1)(1 − M2) − m2 M1] .

We now consider the following three cases.

Case 1. If m1 = M1 and m2 = M2, in the above BLBTD one obtains the BLBTD defined by
Shoukri and Consul (1982), and the probability function in (14.70) reduces to

P(x, y) = (i + j )
mx−i

1

(x − i)!

my− j
2

(y − j )!
(x + y)x+y−i− j−1e−(m1+m2)(x+y) (14.71)

for x ≥ i and y ≥ j .

Case 2. If m1 = 0 and M2 = 0, the BLBTD in (14.70) reduces to

P(x, y) = M1(M1 y)x−i−1

(x − i)!

m2(m2x)y− j−1

(y − j )!
(x j + yi − i j )e−m2x−M1 y (14.72)

for x ≥ i and y ≥ j .

Case 3. If m2 = 0 and M1 = 0, the BLBTD in (14.70) reduces to the probability function

P(x, y) = (m1x)x−i

(x − i)!

(M2y)y− j

(y − j )!

i j

x y
e−m1x−M2 y (14.73)

for x ≥ i and y ≥ j .
Jain and Singh (1975) have defined a bivariate Borel–Tanner distribution as a limiting

form of their bivariate generalized negative binomial distribution and have obtained its first
two noncentral moments. In fact, what they obtained is the bivariate modified double Poisson
model, given in Table 14.1, and it is a particular case of the BLPD for θ3 = 0.

14.6.5 Bivariate Inverse Trinomial Distribution

Shimizu, Nishii, and Minami (1997) defined the bivariate inverse trinomial distribution (BITD).
Let

g1(t1, t2) = g2(t1, t2) = p +
2∑

j=1

(q j t j + r j t
2
j ),

and f (t1, t2) = tk1
1 tk2

2 be three pgfs where p > 0, q j , r j ≥ 0, p +∑2
j=1(q j + r j ) = 1, and

k j ( j = 1, 2) are nonnegative integers. By using the Lagrange expansion (14.2) with h(t1, t2) =
g1(t1, t2) and k(t1, t2) = g2(t1, t2), the pmf of BITD becomes

P(x1, x2) = k1 + k2

x1 + x2

[
x1−k1

2 ]∑
i1=0

[
x2−k2

2 ]∑
i2=0

p
∑2

j=1(i j+k j )

(14.74)

×
2∏

j=1

{
q

x j−2i j −k j
j r

i j
j

(
x1 + x2

i1, i2, x1 − 2i1 − k1, x2 − 2i2 − k2,
∑(

i j + k j
))}

for x j = k j , k j + 1, k j + 2, . . . and k1 + k2 > 0.
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On using the transformation X j = Y j + k j for j = 1, 2, and putting λ = ∑2
j=1 k j , we

obtain the probability function of Y = (Y1, Y2) as

P(y1, y2) = λpλ
2∏

j=1

q
y j
j

[
y1
2 ]∑

i1=0

[
y2
2 ]∑

i2=0

2∏
j=1

(
pr j

q2
j

)i j

×
(

λ + y1 + y2
i1, i2, y1 − 2i1, y2 − 2i2, λ + i1 + i2

)
(14.75)

for y j = 0, 1, 2, . . . and p ≥ r1 + r2.
As long as λ > 0, the probability function in (14.75) has the pgf

φ(u1, u2) =

⎛
⎜⎜⎝ 2p

1 −∑2
j=1 q ju j +

√(
1 −∑2

j=1 q j u j

)2 − 4p
∑2

j=1 r j u2
j

⎞
⎟⎟⎠

λ

(14.76)

for 0 < u j ≤ 1, j = 1, 2 and φ(1, 1) = 1 if p ≥ r1 +r2 and φ(1, 1) =
(

p
r1+r2

)λ
if p ≤ r1 +r2.

14.6.6 Bivariate Quasi-Binomial Distribution

Mishra (1996) considered a five-urn model with different colored balls and described succes-
sive drawings of balls by a player from the different urns under a number of conditions and
calculated the probability of the player being a winner. Based on the numbers of balls in the
various urns and the number of balls being added, the probability had six integer parameters.
Mishra (1996) replaced some ratios with different symbols and obtained the probability of the
player being a winner in a nice form as

P(x, y) =
min(x,y)∑

u=0

n!

u!(x − u)!(y − u)!(n − x − y + u)!
α1β1(α1 + α2u)u−1(p − α1 − α2u)x−u

×[β1 + (y − u)β2]y−u−1[1 − p − β1 − (y − u)β2]n−x−y+u, (14.77)

where x , y = 0, 1, 2, . . . , n and 0 < p < 1, 0 < αi , βi < 1 for i = 1, 2, and n is a
positive integer. Mishra (1996) proved that it was a true bivariate probability distribution and
named it the bivariate quasi-binomial distribution (BQBD) because its conditional distribution,
for given x , is the quasi-binomial distribution. Also, Mishra (1996) obtained the first- and the
second-order moments of BQBD in (14.77) in the form

E[X ] = np,

E[Y ] = n
n−1∑
i=0

(n − 1)(i)
(
α1α

i
2 + β1β

i
2

)
, (14.78)

E
[

X2
]

= n(n − 1)p2 + np,
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E
[
Y 2
]

= n(n − 1)

⎡
⎣n−2∑

i=0

(i + 1)(n − 2)(i)
(
α2

1α
i
2 + β2

1β i
2

)

+ 2α1β1

n−2∑
r=0

(n − 2)(r)αr
2

n−2−r∑
j=0

(n − 2 − r)( j)β
j

2

+
n−1∑
j=0

1

2
( j + 1)( j + 2)(n − 1)( j)

(
α1α

j
2 + β1β

j
2

)⎤⎦ (14.79)

and

Cov(X, Y ) = −np
n−1∑
i=0

(i + 1)(n − 1)(i)
(
α1α

i
2 + β1β

i
2

)
. (14.80)

Mishra (1996) fitted the model (14.77) to a demographic sample survey data of 515 families
of Patna (India) by estimating the parameters p, α1, α2, β1, and β2 by ML method.

14.7 Exercises

14.1 Obtain the variances and covariance of the ML estimates of parameters θ1 and θ2 in a
BMPSD.

14.2 For a BMPSD, state and prove the theorem that provides a necessary and sufficient
condition for existence of an MVU estimator of K (θ1, θ2).

14.3 For a BMPSD, derive the results in (14.27) and (14.28).
14.4 For a BLPD, show the results in (14.42) and (14.43).
14.5 Let θ3 = 0 in the BLPD defined in (14.41). Compute µ′

01 and µ02.
14.6 Consider the BLBD in (14.54). Show that the distribution is a BMPSD when θ3 = 0.

When θ3 = 0, find the moment estimates of the parameters θ1, θ2, m1, and m2 if n is a
known constant.

14.7 Let Xi , i = 1, 2, . . . , M , and Y j , j = 1, 2, . . . , N , be the claim severities in two
classes of insurance policies, which are independent of each other and are also inde-
pendent of the frequencies. Assume that (M, N) have a BLPD. If a book of business
consists of

S =
[

X1, X2, . . . , X M
Y1, Y2, . . . , YN

]
,

show that the pmf of S is a compound BLPD (Ambagaspitiya, 1998).
14.8 If the service begins with a queue consisting of i customers of type I and j customers

of type II with different arrival rates for each type of customer and requiring separate
kinds of service for each type of customer, show that the probability distribution of the
number of customers of type I and type II served in a busy period is a Lagrangian-type
bivariate Borel–Tanner probability distribution (Shenton and Consul, 1973).

14.9 Consider a bivariate branching process similar to the univariate branching process given
in section 6.2. Define the total number of objects in the zeroth, first, second, . . . , nth
generations. Assume that the probability distribution of the number of objects produced
by each object remains unaltered over successive generations and that the branching
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process started with two objects, one of each kind I and kind II. Show that the probability
distribution of the total progeny is the basic BLD.

14.10 Find the variance and covariance for the bivariate logarithmic series distribution.
14.11 Let f = f (θ1, θ2) = en(θ1+θ2), g = g(θ1, θ2) = θ1e−β1(θ1+θ2), and h = h(θ1, θ2) =

θ2e−β2(θ1+θ2). Find a(x, y) such that f, g, and h give a BMPSD. Show that the means
µ′

10 and µ′
01 are equal to the corresponding means for the bivariate modified negative

binomial distribution.



15

Multivariate Lagrangian Distributions

15.1 Introduction

The multivariate generalizations of important discrete distributions, their properties, and some
of their applications have been discussed by many researchers, including Neyman (1965), Olkin
and Sobel (1965), Patil and Bildikar (1967), Teicher (1954), and Wishart (1949). A systematic
account of these generalizations of discrete distributions has been given by Johnson and Kotz
(1969) and Johnson, Kotz, and Balakrishnan (1997). The vast scope and importance of the mul-
tivariate generalizations of discrete distributions is abundantly clear from the works cited above.

However, very little work has been done on the multivariate generalizations of Lagrangian
distributions, their importance, and their applications. The pioneering work in this direction was
done by Good (1960, 1965), who generalized the Lagrange expansion to an arbitrary number
of independent variables and applied it to the enumeration of trees and to stochastic processes.
Consul and Shenton (1973b) used one of the expansions, given by Good (1960), to derive an-
other form and to define the multivariate Lagrangian probability distributions. They described
a number of possible applications, obtained its mean vector and variance-covariance matrix,
and developed a multivariate generalization of the Borel–Tanner distribution. Khatri (1982)
presented the complex form of the class of multivariate Lagrangian distributions (MLDs) in
a more systematic form and explicitly gave the probability density functions for multivariate
Lagrangian Poisson, multinomial, and quasi-Pólya distributions and obtained expressions for
their moments.

Nandi and Das (1996) defined the multivariate Abel series distributions. They derived
the quasi-multinomial distribution of type I and the multiple GPD as examples. Kvam and
Day (2001) considered the multivariate Pólya distribution for application in combat models.
Goodness-of-fit tests for the model are derived.

15.2 Notation and Multivariate Lagrangian Distributions

The letters t, T, u, β, 0, x represent k-variate column vectors so that

t′ = (t1, t2, . . . , tk), u′ = (u1, u2, . . . , uk)

T′ = (T1, T2, . . . , Tk), β ′ = (β1, β2, . . . , βk)

0′ = (0, 0, . . . , 0), x′ = (x1, x2, . . . , xk)

T−1 = (T −1
1 , T −1

2 , . . . , T −1
k )′ β−1 = (β−1

1 , β−1
2 , . . . , β−1

k )′

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (15.1)
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We shall use the following symbols:

gi(t′) = gi , (gi)
xν = gxν

i ,

x! =
k∏

i=1

(xi)!, and Dr
i =

(
∂

∂ti

)r

(15.2)

for i = 1, 2, 3, . . . , k and where Dr
i is a differential operator that will be used on the left-

hand side of all functions and will operate on all of the functions on the right-hand side of the
operator.

Let the multivariate functions gi(t′) of t′ be analytic in the neighborhood of the origin, such
that gi(0′) 	= 0′ (i = 1, 2, . . . , k). Note that the transformations

ti = ui gi(t′), i = 1, 2, . . . , k, (15.3)

imply that u = 0 ⇐⇒ t = 0.
Let f (t′) be another meromorphic function in t′. Good (1960) proved that

f (t′(u′)) =
∑ ux1

1 ux2
2 . . . uxk

k

x1!x2! . . . xk!
Dx1

1 . . . Dxk
k

{
f (t′)gx1

1 . . . gxk
k ‖δν

i − ui g
ν
i ‖}∣∣t′=0′ , (15.4)

where the summation is taken over all nonnegative integers x1, x2, . . . , xk . Good (1960)
pointed out that the factor multiplying ux1

1 . . . uxk
k in (15.4) is not a proper “coefficient.” Consul

and Shenton (1973b) modified Good’s general result in (15.4) so that the factor multiplying
ux1

1 . . . uxk
k becomes a true coefficient. They gave a new form of Good’s multivariate Lagrange-

type expansion as

f (t′(u′)) =
∑

x

ux1
1 ux2

2 . . . uxk
k

x1!x2! . . . xk!

[
Dx1−1

1 . . . Dxk−1
k ‖Dν (gν)

xν I − G‖ f (t′)
]

t′=0′ , (15.5)

where I is the k × k identity unit matrix and G is the k × k matrix ∂
∂t j

(gi)
xi. The result in (15.5)

is a generalization of Poincaré’s result, as the factor multiplying ux1
1 . . . uxk

k is a true coefficient.

When the operational determinant is positive for all x, then the coefficient of
∏k

i=1 uxi
i provides

the multivariate Lagrangian probability distribution. To show that (15.5) is a generalization of
Poincaré’s expansion, we consider the value of the operational determinant in (15.5) for k = 2
as ∣∣∣∣∣

D1gx1
1 − ∂1gx1

1 −∂2gx1
1

−∂1gx2
2 D2gx2

2 − ∂2gx2
2

∣∣∣∣∣ f (t1, t2), ∂i = ∂

∂ti
.

On evaluating the determinant and simplifying it by the use of the operators D1 and D2 on the
functions, one obtains

gx1
1 gx2

2 ∂1∂2 f + gx1
1 ∂1gx2

2 ∂2 f + gx2
2 ∂2gx1

1 ∂1 f,

which is the expression in the bivariate Lagrange expansion in section 14.1.
Considering

ux =
k∏

i=1

uxi
i =

k∏
i=1

t xi
i

/
k∏

i=1

gxi
i
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and
f (t) = 
(u) =

∑
x

b(x′)ux/(x!), (15.6)

Khatri (1982) combined (15.4) and (15.5) and expressed the coefficient of ux in a very compact
form as

b(x′) =
[

k∏
i=1

Dxi
i f (t′)

k∏
i=1

(
gi(t′)

)xi | I − A(t′) |
]

t′=0′
, (15.7)

where A(t′) = (
ai j (t)

)
and ai j (t) = ti D j

{
ln gi(t′)

}
for all i, j . If b(x′) ≥ 0′ for all x, the

multivariate Lagrangian probability distribution becomes

P(Xi = xi , i = 1, 2, . . . , k) = b(x′)/(x!) (15.8)

for all x and for all t within the radius of convergence. If gi(t′) = 1′ for all i = 1, 2, . . . , k,
then (15.7) together with (15.8) reduces to the multivariate power series distribution.

Since (15.7) is in a very compact form and its importance may not be realized, Khatri
(1982) considered its value for particular cases k = 1, 2, 3, simplified (15.7), and gave different
expressions. For brevity, let(

gi(t′)
)xi = gxi

i = hi for i = 1, 2, 3, . . . , k.

For k = 1, (15.7) gives

b(x1) =
[

Dx1
1

{
f (h1 − x−1

1 t1 D1h1)
}]

t1=0

=
[ x1∑

i=1

(
x1
i

)(
Di

1 f
) (

Dx1−i
1 h1 − (x1 − i)x−1

1 Dx1−i
1 h1

)]
t1=0

=
x1∑

i=1

(
x1
i

)(
Di

1 f
)( i

x1

)
Dx1−i

1 h1 |t1=0 = Dx1−1
1 (h1 D1 f ) |t1=0,

which is the term of the univariate Lagrange expansion.
For k = 2, (15.7) gives

b(x1, x2) = Dx1
1 Dx2

2 f (t′)gx1
1 gx2

2

∣∣∣∣∣
1 − t1 D1(ln g1) −t1 D2(ln g1)

−t2 D1(ln g2) 1 − t2 D2(ln g2)

∣∣∣∣∣
t1=t2=0

= Dx1
1 Dx2

2 f ·
∣∣∣∣∣
h1 − x−1

1 t1 D1h1 −x−1
1 t1 D2h1

−x−1
2 t2 D1h2 h2 − x−1

2 t2 D2h2

∣∣∣∣∣
t1=t2=0

= Dx1
1 Dx2

2

[
f
{

h1h2 − t1x−1
1 h2 D1h1 − t2x−1

2 h1 D2h2

+ t1t2x−1
1 x−1

2 (D1h1 D2h2 − D1h2 D2h1)
}]

t1=t2=0

= Dx1
1 Dx2

2 ( f h1h2) − Dx1−1
1 Dx2

2 f h2 D1h1 − Dx1
1 Dx2−1

2 f h1 D2h2

+Dx1−1
1 Dx2−1

2 (D1h1 D2h2 − D1h2 D2h1) |t1=t2=0 .



296 15 Multivariate Lagrangian Distributions

On simplification, the above expression gives

b(x1, x2) = Dx1−1
1 Dx2−1

2 [h1h2 D1 D2 f + h1(D1h2)(D2 f ) + h2(D2h1)(D1 f )]t1=t2=0 ,

which is the term of the bivariate Lagrange expansion in chapter 14.
Similarly, for k = 3, the expression (15.7) can finally be simplified to the form

b(x1, x2, x3) = Dx1−1
1 Dx2−1

2 Dx3−1
3 [h1h2h3 D1 D2 D3 f + h1(D1h2h3)D2 D3 f

+h2(D2h1h3)D1 D3 f + h3(D3h1h2)D1 D2 f

+(�12h1h2h3)D3 f + (�13h1h3h2)D2 f

+ (�23h2h3h1)D1 f ]t1=t2=t3=0 , (15.9)

where
�12h1h2h3 = h1h2h3 + h1(D1h2)(D2h3) + h2(D2h1)(D1h3). (15.10)

The expressions (15.9) and (15.10), together with (15.8), define the trivariate Lagrangian
probability distributions as

P(X1 = x1, X2 = x2, X3 = x3) = b(x1, x2, x3)
/

[x1!x2!x3!] (15.11)

for all nonnegative integral values of x1, x2, x3 if b(x1, x2, x3) ≥ 0.
By assigning suitable values for the functions f (t′), g1(t′), g2(t′), g3(t′) for t′ = (t1, t2, t3),

one can determine numerous trivariate Lagrangian probability models, like the bivariate La-
grangian probability models in chapter 14.

Thus, the multivariate Lagrangian probability distributions are given by the expression
in (15.8) together with the expression (15.7) for all nonnegative integral values of xi , i =
1, 2, . . . , k. Another form of the class of multivariate Lagrangian probability distributions is
given by the generating function (15.5) as

P(X′ = 0′) = f (0′),

P(X′ = x′) = 1

x1! . . . xk!
Dx1−1

1 . . . Dxk−1
k ‖Dν (gν)

xν I − G‖ f (t′)|t′=0′ (15.12)

for (x1, . . . , xk) 	= (0, . . . , 0) and where G is a k × k matrix ∂
∂t j

(gi)
xi , j = 1, 2, , . . . , k.

To get many families of discrete multivariate Lagrangian probability distributions easily, the
functions gi(t′), i = 1, 2, . . . , k, and f (t′) are replaced by particular sets of multivariate pgfs.
When one chooses some other nonnegative multivariate meromorphic functions for gi(t′), i =
1, 2, . . . , k, and f (t′), which are not pgfs, satisfying the conditions gi(0′) 	= 0′ and f (1′) = 1′,
they must be such that all the terms in (15.12) are nonnegative.

Khatri (1982) has also shown, by using Jacobians of some transformations, that the ex-
pression given by him for b(x′) can be transformed to the form given by Good (1960).
Also, he has stated that the actual computation of b(x′) for the various multivariate La-
grangian probability models is quite difficult even when specific values are chosen for the
pgfs f, gi , i = 1, 2, . . . , k. The expression (15.9), together with (15.10), for b(x1, x2, x3)
makes it clear that the expressions for different trivariate Lagrangian probability models will
be quite long and complicated. Even Good (1975) has stated that one need not try to open up
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the compact form of the model and that the properties be studied by other ingenious meth-
ods as given by Consul and Shenton (1972) for computing cumulants. Good (1975) used the
same methods to get the cumulants for the multivariate Lagrangian distributions because he
did not realize that it had already been done by Consul and Shenton (1973b). Good (1975)
has stated that every probability model is trivially Lagrangian, as gi(t′) can be taken to be
unity.

Since the general form of the MLD, defined by (5.8) with (15.7) or by (15.12) are not easy
to use, we shall consider some special cases of the MLD in sections 15.4 and 15.5.

15.3 Means and Variance-Covariance

Consul and Shenton (1973b) obtained the mean vector and the k × k variance-covariance
matrix for the MLD by a very ingenious method, which is described here. Let the mean
vector of the MLDs, defined by (15.12) or by (15.8), together with (15.7), be denoted by
L(1) = (L1, L2, . . . , Lk). Also, let the mean row vectors of the discrete distributions given
by gi(t′) and f (t′) be denoted by Gi

(1) = (Gi
1, Gi

2, . . . , Gi
k) and F(1) = (F1, F2, . . . , Fk). If

some of these (k + 1) multivariate probability distributions do not have the same number (k)
of variates, the particular means, corresponding to the variates absent, are taken to be zero and
the corresponding t’s in the gi(t′) and f (t′) can be replaced by unity. Since Gi

(1) denotes the

mean vector, let (Gi
(1)) be a k × k matrix of mean values given by

(
Gi

(1)

)
=

⎡
⎢⎢⎢⎢⎢⎣

G1
1 G1

2 . . . G1
k

G2
1 G2

2 . . . G2
k

. . .

Gk
1 Gk

2 . . . Gk
k

⎤
⎥⎥⎥⎥⎥⎦ . (15.13)

Also, let the variance-covariance matrix of the multivariate probability distributions, given by
the pgfs gi(t′), i = 1, 2, . . . , k, be represented by

Gi
(2) =

⎡
⎢⎢⎢⎢⎢⎣

Gi
11 Gi

12 . . . Gi
1k

Gi
21 Gi

22 . . . Gi
2k

. . .

Gi
k1 Gi

k2 . . . Gi
kk

⎤
⎥⎥⎥⎥⎥⎦ for i = 1, 2, 3, . . . , k. (15.14)

Let the variance-covariance matrix of the probability distribution, given by f (t′), be denoted
by F(2) and the variance-covariance matrix of the MLD (15.12) be denoted by L(2). Since Gi

(2)

is a k × k matrix, let (Gi
(2)) represent a three-dimensional k × k × k matrix whose element in

the j th row and lth column is the column vector (G1
j l, G2

j l, . . . , Gk
jl) for j, l = 1, 2, 3, . . . , k.

By replacing each ti and ui by eTi and eβi , respectively, in the k transformations (15.3),
taking the logarithms of each one of them, and on expanding them, Consul and Shenton (1973b)
got the relations (given in the vector form)

T = β +
(

Gi
(1)

)
T + 1

2
T′ (Gi

(2)

)
T + · · · , (15.15)
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which gives the vector relation

β =
{

I −
(

Gi
(1)

)
− 1

2
T′ (Gi

(2)

)
− · · ·

}
T. (15.16)

Similarly, by replacing each ti and ui by eTi and eβi , respectively, in the relation (15.5),
which can be expressed as

f (t′) =
∑

ux1
1 ux2

2 . . . uxk
k L
(
g′, f ; x′) = 
(u′) (15.17)

also, and by taking logarithms on both sides and by expanding in powers of Ti and βi , we get
the vector relation

F(1)T + 1

2
T′F(2)T + · · · = L(1)β + 1

2
β′L(2)β + · · · . (15.18)

On eliminating the column vector β between (15.18) and (15.16), one obtains

F(1)T + 1
2 T′F(2)T + · · · = L(1)

{
I −
(

Gi
(1)

)
− 1

2 T′
(

Gi
(2)

)
− · · ·

}
T

+ 1
2 T′
{

I −
(

Gi
(1)

)
− 1

2 T′
(

Gi
(2)

)
− · · ·

}′
L(2)

×
{

I −
(

Gi
(1)

)
− 1

2 T′
(

Gi
(2)

)
− · · ·

}
T + · · ·

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (15.19)

Since both sides of (15.19) must be identical, a simple comparison of the terms on the two sides
gives the following two relations together with many others for higher values:

F(1) = L(1)

(
I −
(

Gi
(1)

))
and

F(2) = −L(1)

(
Gi

(2)

)
+
(

I −
(

Gi
(1)

))′
L(2)

(
I −
(

Gi
(1)

))
.

Hence the mean-vector of the MLD becomes

L(1) = F(1)

(
I −
(

Gi
(1)

))−1
, (15.20)

and the corresponding variance-covariance matrix, when (I − (Gi
(1))) is a nonsingular k × k

matrix, is given by

L(2) =
[(

I −
(

Gi
(1)

))′]−1 (
F(2) + L(1)

(
Gi

(2)

)) (
I −
(

Gi
(1)

))−1
, (15.21)

where the elements of the middle matrix are of the form

Fjl + L1G1
j l + L2G2

j l + L3G3
j l + · · · + Lk Gk

jl (15.22)

for j, l = 1, 2, 3, . . . , k.
Minami (1998) has obtained the above variance-covariance matrix L(2), but the same had

been obtained twenty-five years earlier by Consul and Shenton (1973b).
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15.4 Multivariate Lagrangian Distributions (Special Form)

The multivariate Lagrange expansions (15.4), given by Good (1960), and (15.5), given by Con-
sul and Shenton (1973b), or the form (15.6) with (15.7) given by Khatri (1982), are in very nice
compact form. However, each one of these forms involves the determinant of a k × k matrix,
whose evaluation becomes quite difficult. In view of this we shall consider some special forms
of the generating functions to get a simpler form for the multivariate Lagrange expansion.

Let the functions gi(t′) = (g(t′)
)ci , i = 1, 2, 3, . . . , k, and let the function f (t′) = g(t′)m

or the derivative of f (t′) with respect to any one of the variables ti be of that form. For the
present, we assume that ∂

∂ti
f (t′) is of that form. When these multivariate functions are of these

forms, the determinant of the k × k matrix in the Lagrange expansion (15.5) can be opened up
in a systematic manner, and it is found that almost all the terms, except one, cancel out with
each other. The whole expression gets simplified to a form similar to the bivariate simplified
form (14.4) or (14.5) and gives the new multivariate Lagrange expansion as

f (t′) = f (0′) +
∑ ux1

1 ux2
2 . . . uxk

k

x1!x2! . . . xk!

[
Dx1−1

1 Dx2
2 . . . Dxk

k

{
gx1

1 gx2
2 . . . gxk

k
∂ f

∂t1

}]
t′=0′

. (15.23)

The above multivariate Lagrange expansion provides the multivariate Lagrangian probabil-
ity distributions in the nice form

P(X′ = 0′) = f (0′),

P(X′ = x′) = 1

x1!x2! . . . xk!
Dx1−1

1 Dx2
2 . . . Dxk

k

{
gx1

1 gx2
2 . . . gxk

k
∂ f

∂t1

}∣∣∣∣
t′=0′

= 1

x1!x2! . . . xk!
Dx1−1

1 Dx2
2 . . . Dxk

k

{(
g(t′)

)∑ ci xi ∂ f

∂t1

}∣∣∣∣
t′=0′

(15.24)

for i = 1, 2, . . . , k, and the summation
∑

ci xi is on all values of i and xi = 0, 1, 2, . . . for
each value of i .

15.4.1 Multivariate Lagrangian Poisson Distribution

Let the multivariate functions gi(t′) and f (t′) be given by

gi(t′) = exp

⎧⎨
⎩mi

k∑
j=1

θ j (t j − 1)

⎫⎬
⎭ , i = 1, 2, . . . , k, and f (t′) = exp

⎧⎨
⎩α

k∑
j=1

θ j (t j − 1)

⎫⎬
⎭

(15.25)
for θ j > 0, mi > 0, for i, j = 1, 2, 3, . . . , k and α > 0.

Substituting these values in (15.24) and on taking the derivatives successively and simpli-
fying, we get the multivariate Lagrangian Poisson probability distribution in the form

P(X′ = x′) =
[

k∏
i=1

θ
xi
i

xi !

]
α

(
α +

k∑
i=1

mi xi

)∑k
i=1 xi−1

exp

{
−
(

α +
k∑

i=1

mi xi

)
k∑

i=1

θi

}

(15.26)
for xi = 0, 1, 2, 3 . . . , for i = 1, 2, . . . , k. Some further conditions on the parameters may
have to be imposed for the existence of cumulants. Khatri (1982) had obtained a more complex
form of the multivariate Lagrangian Poisson distribution, but it contains a k × k determinant
for evaluation with k derivatives.
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15.4.2 Multivariate Lagrangian Negative Binomial Distribution

Let the multivariate probability generating functions gi(t′) and f (t′) be given by

gi(t′) =
(

1 −∑k
j=1 θ j t j

1 −∑k
j=1 θ j

)1−βi

, i = 1, 2, . . . , k, (15.27)

and

f (t′) =
(

1 −∑k
j=1 θ j t j

1 −∑k
j=1 θ j

)−α

, (15.28)

where θ j > 0, such that
∑k

j=1 θ j < 1, 1 < β <
(
max θ j

)−1
for i = 1, 2, 3, . . . , k and α > 0.

Substituting the above values of the functions gi(t′) and f (t′) in (15.24), differentiating suc-
cessively with respect to ti , i = 1, 2, . . . , k, and simplifying the expressions, the multivariate
generalized negative binomial distribution becomes

P(X′ = x′) = α
(
α +∑k

i=1 βi xi
)
!(

α +∑k
i=1(βi − 1)xi

)
!

k∏
i=1

θ
xi
i

xi !

(
1 −

k∑
i=1

θi

)α+∑k
i=1(βi −1)xi

(15.29)

for xi = 0, 1, 2, 3, . . . , for i = 1, 2, . . . , k.
By using combinatorial methods, Mohanty (1966, 1979) obtained the model (15.29) and

proved that it represents the probability of a particle from the origin to the point(
α +

∑
(βi − 1)xi; x1, x2, . . . , xk

)
,

not touching the hyperplane
z = α +

∑
(βi − 1)zi

except at the end.
When βi = 1 for i = 1, 2, . . . , k, the model (15.29) reduces to the multivariate negative

binomial distribution. When α → ∞, βi → ∞, and θi → 0 for i = 1, 2, . . . , k such that
αθi = ai , βiθ j = bi j , it can be proved that the limiting form of the multivariate Lagrangian
negative binomial model (15.29) approaches another multivariate generalization of Poisson
distribution given by

P(X′ = x′) =
k∏

j=1

a j
(
a j +∑ b ji xi

)x j −1

x j !
exp

⎡
⎣−

k∑
j=1

(
a j +

k∑
i=1

bi j xi

)⎤⎦ . (15.30)

The expression in (15.30) can be changed to the same form as (15.26) by putting ai = cdi and
b ji = d j mi for i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , k.

15.4.3 Multivariate Lagrangian Logarithmic Series Distribution

Let the multivariate probability generating functions gi(t′) be given by (15.27) and the function
f (t′) be
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f (t′) = ln
(
1 −∑k

j=1 θ j t j
)

ln
(
1 −∑k

j=1 θ j
) , (15.31)

where θ j > 0 such that
∑k

j=1 θ j < 1, 1 < βi <
(
max θ j

)−1
for i = 1, 2, . . . , k.

Substituting the values of the functions gi(t′) and f (t′) in the expression (15.24), differenti-
ating with respect to t1, t2, . . . , tk successively, and simplifying the expression, the multivariate
Lagrangian logarithmic series distribution is given in the form

P(X′ = x′) = �
(∑k

i=1 βi xi
)

�
(
1 +∑n

i=1(βi −1)xi
) {− ln(1−∑k

i=1 θi)
} k∏

i=1

θ
xi
i

xi !

(
1 −

k∑
i=1

θi

)∑k
i=1(βi−1)xi

(15.32)
for xi = 1, 2, 3, . . . , for i = 1, 2, . . . , k, and the summations are on i = 1 to k.

15.4.4 Multivariate Lagrangian Delta Distributions

Let the multivariate binomial analytic probability generating functions be

gi(t′) =
⎡
⎣1 +

k∑
j=1

θ j (t j − 1)

⎤
⎦

βi

, i = 1, 2, . . . , k, (15.33)

where θ j > 0 such that
∑k

j θ j < 1 and βi are positive integers and let

f (t′) = tm1
1 tm2

2 . . . tmk
k

be another multivariate analytic function, where mi , i = 1, 2, . . . , k are positive integers.
The use of these multivariate functions in (15.5) provides the multivariate Lagrangian delta
binomial probability model in the form

P(X′ = x′) =
∑k

i=1 βi mi�
(∑k

i=1 βi xi
)

�
(∑k

i=1 [(βi − 1)xi + mi ] + 1
) k∏

i=1

θ
xi −mi
i

(xi − mi )!

(
1 −

k∑
i=1

θi

)∑k
i=1[(βi−1)xi+mi ]

(15.34)
for xi = mi , mi + 1, mi + 2, . . . , for i = 1, 2, . . . , k, and all summations are on i = 1 to k.

Similarly, by considering the multivariate Poisson probability generating functions

gi(t′) = exp

⎡
⎣mi

k∑
j=1

θ j (t j − 1)

⎤
⎦ , i = 1, 2, . . . , k, (15.35)

where mi > 0, θ j > 0 for all values of i and by taking

f (t′) = tn1
1 tn2

2 . . . tnk
k ,

where n1, n2, . . . , nk are positive integers, and using them in the multivariate Lagrange expan-
sion (15.5) gives the multivariate Lagrangian delta Poisson probability model as
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P(X′ = x′) =
k∏

i=1

θ
xi −ni
i

xi − ni

(
k∑

i=1

mi ni

)(
k∑

i=1

mi xi

)∑k
i=1(xi−ni )−1

exp

[
−
(

k∑
i=1

mi xi

)
k∑

i=1

θi

]
,

(15.36)
where xi = ni , ni + 1, ni + 2, . . . for i = 1, 2, . . . , k and all the summations are for i = 1 to
k.

Consul and Shenton (1973b) had taken the parameter ai j , instead of the product miθ j used
in (15.35), and had obtained another version of multivariate Lagrangian delta Poisson proba-
bility distribution as

P(X′ = x′) =
⎡
⎣ k∏

i=1

⎧⎨
⎩e

−xi

(∑
j ai j

)
(xi − ni)!

⎛
⎝∑

j

ai j x j

⎞
⎠

xi −ni
⎫⎬
⎭
⎤
⎦ ∣∣∣∣I − ar j (xr − nr )∑

i xiair

∣∣∣∣ (15.37)

for xi = ni , ni + 1, ni + 2, . . . , i = 1, 2, . . . , k
Shimizu, Nishii, and Minami (1997) extended the bivariate inverse trinomial distribution to

the multivariate Lagrangian inverse trinomial distribution and obtained its pgf and conjectured
the form of the distribution.

Minami (1998) has derived a number of multivariate Lagrangian distributions, which are
either particular cases or the same as those obtained earlier by Consul and Shenton (1973b)
and by Khatri (1982). Possibly, Minami did not know about these earlier works.

15.5 Multivariate Modified Power Series Distributions

It has been shown earlier that the univariate MPSD and the bivariate MPSD belong to the class
of Lagrangian probability distributions and form a separate subclass for which many results
can be obtained more easily. The multivariate Lagrange expansion will now be used to obtain
the multivariate MPSD.

Let gi = gi(a1, a2, . . . , ak), i = 1, 2, . . . , k, be a set of nonnegative multivariate analytic
functions of the parameters a1, a2, . . . , ak such that gi(0′) 	= 0′ for i = 1, 2, . . . , k. Also, let
ai/gi(a′) = hi(a′) = hi for i = 1, 2, . . . , k.

Let f = f (a1, a2, . . . , ak) be another nonnegative multivariate analytic function of the
same parameters such that f (0′) 	= 0′. Also, let there be k multivariate Lagrange transforma-
tions given by

ai = ui gi(a1, a2, . . . , ak), i = 1, 2, 3, . . . , k,

which give ui = ai/gi and ui = 0 when ai = 0. These k transformations imply that each
ai is a function of the k variables (u1, u2, . . . , uk) and that the function f = f (a′) can be
expanded near the smallest root into a power series in ui , i = 1, 2, . . . , k, which is given
by the multivariate Lagrange expansion (15.4), given by Good (1960), or the expansion (15.5)
given by Consul and Shenton (1973b). Thus,

f (a′) =
∑

x

ux1
1 ux2

2 . . . uxk
k

x1!x2! . . . xk!

[
Dx1−1

1 . . . Dxk−1
k ‖Dν (gν)

xν − G‖ f (a′)
]

a′=0′ , (15.38)

where G is the k × k matrix
(

∂
∂aν

gxi
i

)
and the summations are over all xi = 0, 1, 2, 3, . . . , i =

1, 2, . . . , k.
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By replacing ui = ai/gi(a′) = hi (a′) = hi , the above becomes

f (a′) =
∑

x

b(x1, x2, . . . , xk)
hx1

1 hx2
2 . . . hxk

k

x1!x2! . . . xk!
. (15.39)

where

b(x1, x2, . . . , xk) = Dx1−1
1 Dx2−1

2 . . . Dxk−1
k ‖Dν (gν)

xν − G‖ f (a′) |a′=0′ . (15.40)

When b(x1, x2, . . . , xk) ≥ 0 for all values of xi , i = 1, 2, . . . , k, the multivariate series
sum (15.39), on division by f (a′) on both sides, becomes unity and provides the multivariate
MPSD as

P(X′ = x′) = b(x1, x2, . . . , xk)
hx1

1 hx2
2 . . . hxk

k

x1!x2! . . . xk!

[
f (a′)

]−1
(15.41)

for xi = 0, 1, 2, 3, . . . , i = 1, 2, . . . , k, and where b(x′) is given by (15.40).
In the general case, as above, the computation of b(x1, x2, . . . , xk) is very time consuming.

When the multivariate functions gi(a′) are of the form
(
g(a′)

)ci for i = 1, 2, 3, . . . , k and the
multivariate function f (a′) = (

g(a′)
)m

or the derivative of f (a′) with respect to any one of
the parameters ai is of that form, as in section 15.4, then the form of (15.40) becomes much
simpler. Assuming ∂

∂ai
f (a′) to be of that form, the expression (15.40) gives

b(x1, x2, . . . , xk) = Dx1−1
1 Dx2

2 . . . Dxk
k

{
gx1

1 gx2
2 . . . gxk

k
∂ f

∂ai

}∣∣∣∣
a′=0′

. (15.42)

The following three subsections provide three multivariate Lagrangian models as applica-
tions of the multivariate MPSDs.

15.5.1 Multivariate Lagrangian Poisson Distribution

Let f (a′) = eα
∑

i ai and gi = emi
∑

j a j , i = 1, 2, . . . , k, j = 1, 2, . . . , k, and α > 0 and
mi > 0, i = 1, 2, . . . , k, so that hi = ai/gi . On substitution in (15.42), we get

b(x1, x2, . . . , xk) = Dx1−1
1 Dx2

2 . . . Dxk
k

{
α exp

[(
α +

∑
i

mi xi

)∑
i

ai

]}∣∣∣∣∣
a′=0′

= α

(
α +

∑
i

mi xi

)∑
i xi−1

.

Thus, the MPSD formula (15.41) gives the multivariate Lagrangian Poisson distribution as

P(X = x) = α

(
α +

∑
i

mi xi

)∑
i xi−1 [ k∏

i=1

axi
i

xi!

]
exp

{
−
(

α +
∑

i

mi xi

)∑
i

ai

}

for xi = 0, 1, 2, 3, . . . , i = 1, 2, . . . , k, and where all summations are for i = 1 to k.
The above expressions for the probabilities are the same as (15.26), where ai is replaced by
θi .
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15.5.2 Multivariate Lagrangian Negative Binomial Distribution

The multivariate Lagrangian negative binomial distribution is also a multivariate MPSD for

f (a′) =
(

1 −
∑

i

ai

)−α

and g j(a′) =
(

1 −
∑

i

ai

)−β j +1

,

where α > 0, β j > 1, j = 1, 2, 3, . . . , k, and ai > 0 such that
∑k

i=1 ai < 1 and hi(a′) =
ai/gi(a′).

Substitution of the values in (15.42) provides the value of b(x′) and the substitution
in (15.41) gives the probabilities, which are similar to (15.29).

15.5.3 Multivariate Lagrangian Logarithmic Series Distribution

The Multivariate Lagrangian logarithmic series distribution is also a multivariate MPSD which
is given by taking

f (a′) = − ln

(
1 −

∑
i

ai

)
and g j(a′) =

(
1 −

∑
i

ai

)−β j +1

,

where ai > 0 such that
∑k

i=1 ai < 1 for i = 1, 2, . . . , k and β j > 1, j = 1, 2, 3, . . . , k, and
hi(a′) = ai/gi(a′). By using these values in (15.42) one gets b(x1, x2, . . . , xk), and then sub-
stituting them in (15.41), where hi = ai/gi(a′), provides the same probabilities as in (15.32).

15.5.4 Moments of the General Multivariate MPSD

The following symbols will be used in this section:

∂

∂a j
ln hi(a′) = hi j ,

∂

∂a j
ln f (a′) = f j

for i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , k. Also, the mean vector of the general multivariate
MPSD, defined by (15.41), will be denoted by E(X1), E(X2), . . . , E(Xk).

Since
∑

x′ P(X′ = x′) = 1, the probabilities (15.41) give

f (a′) = f (a′) =
∑

x

b(x1, x2, . . . , xk)

x1!x2! . . . xk!
hx1

1 hx2
2 . . . hxk

k . (15.43)

By differentiating the above successively with respect to a1, a2, . . . , ak and multiplying
each one of them by

[
f (a′)

]−1
, we get the k relations

f1 = E(X1)h11 + E(X2)h21 + E(X3)h31 + · · · + E(Xk)hk1,

f2 = E(X1)h12 + E(X2)h22 + E(X3)h32 + · · · + E(Xk)hk2,

f3 = E(X1)h13 + E(X2)h23 + E(X3)h33 + · · · + E(Xk)hk3,

...
...

...
...

...

fk = E(X1)h1k + E(X2)h2k + E(X3)h3k + · · · + E(Xk)hkk. (15.44)
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By solving the above k relations for the k means of the probability model (15.41), we have

E(X1)�
−1
1 = −E(X2)�

−1
2 = E(X3)�

−1
3 = · · · = (−1)k−1E(Xk)�

−1
k = �−1, (15.45)

where

�1 =

∣∣∣∣∣∣∣∣∣∣∣

f1 h21 h31 · · · hk1

f2 h22 h32 · · · hk2

...
...

...
...

...

fk h2k h3k · · · hkk

∣∣∣∣∣∣∣∣∣∣∣
, �2 =

∣∣∣∣∣∣∣∣∣∣∣

f1 h11 h31 · · · hk1

f2 h12 h32 · · · hk2

...
...

...
...

...

fk h1k h3k · · · hkk

∣∣∣∣∣∣∣∣∣∣∣
,

�3 =

∣∣∣∣∣∣∣∣∣∣∣

f1 h11 h21 · · · hk1

f2 h12 h22 · · · hk2

...
...

...
...

...

fk h1k h2k · · · hkk

∣∣∣∣∣∣∣∣∣∣∣
, �k =

∣∣∣∣∣∣∣∣∣∣∣

f1 h11 h21 · · · hk−1,1

f2 h12 h22 · · · hk−1,2

...
...

...
...

...

fk h1k h2k · · · hk−1,k

∣∣∣∣∣∣∣∣∣∣∣
,

and

� =

∣∣∣∣∣∣∣∣∣∣∣

h11 h21 h31 · · · hk1

h12 h22 h31 · · · hk2

...
...

...
...

...

h1k h2k h3k · · · hkk

∣∣∣∣∣∣∣∣∣∣∣
.

The determination of the matrix of the second moments for the general multivariate MPSD
becomes much more complex. Theoretically, one can obtain these quantities by taking the
second derivatives of (15.43) with respect to a1, a2, . . . , ak successively and then simplifying
them to get another set of k relations, which have to be used in conjunction with the k rela-
tions (15.44) to get the k second moments for the probability model (15.41)

15.5.5 Moments of Multivariate Lagrangian Poisson Distribution

Khatri (1982) had obtained the expressions for the means and variances of the multivariate
Lagrangian Poisson distributions but these contained k × k determinants and matrices with k
derivatives and need complex computation for reduction into simple forms. Independent meth-
ods for their evaluations are being given here.

Since
∑

x′ P(X′ = x′) = 1, by (15.26) we have

e−α
∑

i θi =
∑

x′
a(x1, x2, . . . , xk)θ

x1
1 θ

x2
2 . . . θ

xk
k e−∑i mi xi

∑
j θ j , (15.46)

where

a(x1, x2, . . . , xk) = α
(
α +∑i mi xi

)∑
i xi−1

x1!x2! . . . xk!
,

and i, j = 1, 2, 3, . . . , k, and the summations are on all values of i and j . Differentiat-
ing (15.46) with respect to θi , multiplying both sides by e−α

∑
i θi , and summing over all

x′ = (x1, x2, . . . , xk), we get
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α =
(
θ−1

i − mi

)
E [Xi ] −

k∑
j 	=i

m j E
[
X j
]
, i = 1, 2, . . . , k. (15.47)

By subtracting the relation for i = 1 in the above from each of the other k − 1 relations
in (15.47),

θ−1
1 E[X1] = θ−1

2 E[X2] = · · · = θ−1
k E[Xk].

Then, by adding together the k relations in (15.47) and by using the above equalities, we obtain

E[Xi ] = αθi

⎛
⎝1 −

k∑
j=1

m jθ j

⎞
⎠

−1

, i = 1, 2, 3, . . . , k. (15.48)

To obtain the variance V(X1), we differentiate E[X1]eα
∑

i θi with respect to θ1 and get

∂

∂θ1

αθ1eα
∑

i θi

1 −∑i miθi
= ∂

∂θ1

[∑
x′

a(x′)x1θ
x1
1 θ

x2
2 . . . θ

xk
k e−∑i mi xi

∑
j θ j

]
,

which gives, on division by eα
∑

i θi ,

α + α2θ1

1 −∑i miθi
+ αm1θ1(

1 −∑i miθi
)2 = θ−1

1 E[X2
1] −

k∑
i=1

miE[X1 Xi ]

=
(
θ−1

1 − m1

)
E[X2

1] −
k∑

i=2

miαθ1 · αθi(
1 −∑i miθi

)2 ,

∴ 1 − m1θ1

θ1
E[X2

1] = α + α2θ1

1 −∑i miθi
+ αm1θ1(

1 −∑i miθi
)2

+α2θ1
[(∑

i miθi − 1
)+ 1 − m1θ1

]
(
1 −∑i miθi

)2
= α

1 −∑i miθi
+ αm1θ1(

1 −∑i miθi
)2 + α2θ1(1 − m1θ1)(

1 −∑i miθi
)2 ,

∴ V(X1) = E[X2
1] − (E[X1])2 = αθ1(1 − m1θ1)

−1

1 −∑i miθi
+ αm1θ

2
1 (1 − m1θ1)

−1(
1 −∑i miθi

)2 . (15.49)

By symmetry,

V(Xi ) = αθi (1 − miθi )
−1

1 −∑i miθi
+ αmiθ

2
i (1 − miθi )

−1(
1 −∑i miθi

)2 , i = 1, 2, . . . , k, (15.50)

and Cov(Xi, X j ) = 0 for i, j = 1, 2, . . . , k and i 	= j .
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15.5.6 Moments of Multivariate Lagrangian Negative Binomial Distribution

Since the probability model is given by (15.29) and
∑

x′ P(X′ = x′) = 1, one can
write(

1 −
∑

i

θi

)−α

=
∑

x′
a(x1, x2, . . . , xk)θ

x1
1 θ

x2
2 . . . θ

xk
k

(
1 −

∑
i

θi

)∑
i (βi−1)xi

, (15.51)

where

a(x1, x2, . . . , xk) =
(
α +∑i βi xi − 1

)
!α

x1!x2! . . . xk!
(
α +∑i (βi − 1)xi

)
!
.

Differentiating (15.51) with respect to θ j , multiplying both sides by
(
1 −∑i θi

)α+1
, and sim-

plifying, we have

α =
(

1 −
∑

i

θi

)
θ−1

j E[X j ] −
∑

i

(βi − 1)E[Xi ] (15.52)

for j = 1, 2, 3, . . . , k. The above k relations show that

θ−1
1 E[X1] = θ−1

2 E[X2] = · · · = θ−1
k E[Xk] = L (say).

Substituting these values in (15.52),

α = L

(
1 −

∑
i

θi

)
− L

∑
i

(βi − 1)θi = L

(
1 −

∑
i

βiθi

)

∴ L = α

(
1 −

∑
i

βiθi

)−1

,

and thus

E[X j ] = αθ j

(
1 −

∑
i

βiθi

)−1

, j = 1, 2, . . . , k, (15.53)

where
∑k

i=1 βiθi < 1.

To obtain the V(X1), we differentiate E[X1]
(
1 −∑i θi

)−α
with respect to θ1.

Thus,

∂

∂θ1

[
αθ1
(
1 −∑i θi

)−α

1 −∑i βiθi

]
=
∑

x′
a(x′)θ x1

1 θ
x2
2 . . . θ

xk
k

⎧⎨
⎩x2

1θ−1
1

(
1 −

∑
i

θi

)∑
i (βi −1)xi

− x1
∑k

i=1(βi − 1)xi
(
1 −∑i θi

)∑
i (βi−1)xi

1 −∑i θi

}
.
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Therefore, on division by
(
1 −∑i θi

)−α ,

α2θ1
(
1 −∑i θi

)−1 + α

1 −∑i βiθi
+ αβ1θ1(

1 −∑i βiθi
)2

= θ−1
1 E[X2

1] −
(

1 −
k∑

i=1

θi

)−1 k∑
i=1

(βi − 1)E[Xi X1]

=
(

θ−1
1 − β1 − 1

1 −∑i θi

)
E[X2

1] − α2θ1
∑k

i=2(βi − 1)θi(
1 −∑i θi

) (
1 −∑i βiθi

)2
or (

1 −
∑

i

θi − β1θ1 + θ1

)
E[X2

1] = αθ1
(
1 −∑i θi

)
1 −∑i βiθi

+ αθ2
1 β1

(
1 −∑i θi

)
(
1 −∑i βiθi

)2
+ α2θ2

1

[
1 −∑i θi − β1θ1 + θ1

]
(
1 −∑i βiθi

)2 .

∴ E[X2
1] = α2θ2

1(
1 −∑i βiθi

)2 +
[

αθ1

1 −∑i βiθi
+ αβ1θ

2
1(

1 −∑i βiθi
)2
]

1 −∑i θi

1 −∑i θi − (β1 − 1)θ1

∴ V(X1) = E[X2
1] − (E[X1])2 =

[
αθ1

1 −∑i βiθi
+ αβ1θ

2
1(

1 −∑i βiθi
)2
]

1 −∑i θi

1−∑i θi −(β1 −1)θ1
.

By symmetry,

V(X j) =
[

αθ j

1 −∑i βiθi
+ αβ jθ

2
j(

1 −∑i βiθi
)2
] (

1 −∑i θi
)

1 −∑i θi − (β j − 1)θ j
(15.54)

for j = 1, 2, . . . , k and Cov(Xi , X j ) = 0.

15.6 Multivariate MPSDs in Another Form

A special case of the multivariate MPSDs, derived in (15.41), can also be written as

P(x1, x2, . . . , xk) = B(b1, b2, . . . , bk) f (x1 + x2 + · · · + xk)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
, (15.55)

with the condition

B(b1, b2, . . . , bk)

∞∑
x=0

f (x1 + x2 + · · · + xk)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
= 1. (15.56)

Kapur (1982) stated that these k summations can be done in two stages. First, the summa-
tions over all the values of x1, x2, . . . , xk can be taken such that the sum x1+x2+· · ·+xk = x is
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an integer and then the sum over x can be taken from 0 to ∞ and such that the above expression
will give

A(b)

∞∑
x=0

f (x) · bx

x!
= 1, (15.57)

where b = b1 + b2 + · · · + bk and A(b) = B(b1, b2, . . . , bk), so that

P(x1, x2, . . . , xk) = A(b) f (x1 + x2 + · · · + xk)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
. (15.58)

The mgf for (15.55) becomes

M(t) = B(b)

∞∑
x=0

f (x1 + x2 + · · · + xk)
(b1et1)x1(b2et2)x2 . . . (bketk )xk

x1!x2! . . . xk!

= A(b1 + b2 + · · · + bk)

A(b1et1 + b2et2 + · · · + bketk )
, (15.59)

from which all the moments can be determined.
Kapur (1982) provided the pmfs for the following thirteen families of multivariate MPSDs

corresponding to the univariate Lagrangian probability models in chapter 2. Note that x1 +x2 +
· · · + xk = x and b1 + b2 + · · · + bk = b in all models given below.

(i) Multivariate generalized negative binomial distribution:

f (t) = (q + pt)n, g(t) = (q + pt)m, 0 < 1 − q = p < m−1,

L(g, f ; x) = nqn

n + mx

(n + mx)!

[n + (m − 1)x]!

bx1
1 bx2

2 . . . bxk
k

x1!x2! . . . xk!

for xi = 0, 1, 2, . . . and i = 1, 2, . . . , k, where b = pq−m+1 = (1 − q)q−m+1; the
parameters are m, n, b1, b2, . . . , bk, q.

(ii) Multivariate delta-binomial distribution:

f (t) = tn, g(t) = (q + pt)m, 0 < 1 − q = p < m−1,

L(g, f ; x) = nqmn

n + x

[m(n + x)]!

[mn + (m − 1)x]!

bx1
1 bx2

2 . . . bxk
k

x1!x2! . . . xk!

for xi = 0, 1, 2, . . . , i = 1, 2, . . . , k, and b = pqm+1 = (1 − q)qm+1.
(iii) Multivariate binomial-Poisson distribution:

f (t) = eM(t−1), g(t) = (q + pt)m, 0 < 1 − q = p < m−1,

L(g, f ; x) = e−M
2 F0

(
1 − x, −mx; ; − p

Mq

)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
,

for xi = 0, 1, 2, . . . , i = 1, 2, . . . , k, b = Mqm, q = (b/M)1/m.
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(iv) Multivariate binomial-negative binomial distribution:

f (t) = (1 − p′)k(1 − p′t)−k, g(t) = (q + pt)m, 0 < 1 − q = p < m−1,

0 < p′ = 1 − q ′ < 1,

L(g, f ; x)

= (1− p′t)k

�(k)
�(k + x) 2 F1

(
1−x, −mx; 1−x − k; − p′(1− p′)−2

qp

)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!

for xi = 0, 1, 2, . . . , i = 1, 2, . . . , k, and b = qm p′.
(v) Multivariate delta-Poisson distribution:

f (t) = tn, g(t) = eθ(t−1), 0 < θ < 1,

L(g, f ; x) = ne−nθ(n + x)x

n + x

bx1
1 bx2

2 . . . bxk
k

x1!x2! . . . xk!
,

where b = θe−θ .
(vi) Multivariate generalized Poisson distribution:

f (t) = eθ(t−1), g(t) = eλ(t−1), 0 < λ < 1,

L(g, f ; x) = θe−θ (θ + λx)x bx1
1 bx2

2 . . . bxk
k

x1!x2! . . . xk!
,

where b = e−λ.
(vii) Multivariate Poisson-binomial distribution:

f (t) = (q + pt)n, g(t) = eθ(t−1), 0 < θ < 1,

0 < 1 − q = p < 1,

L(g, f ; x) = npqn−1

θ
(x)x−1

2 F0

(
1 − x, 1 − n; ; p

θqx

)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!

for xi ≥ 0, i = 1, 2, . . . , k; x 	= 0 and b = θe−θ and L(g, f ; x) = 0 for x = 0.
(viii) Multivariate Poisson-negative binomial distribution:

f (t) = (1 − p′)k(1 − p′t)−k, g(t) = eθ(t−1), 0 < θ < 1,

0 < p′ = 1 − q ′ < 1,

L(g, f ; x) = kp′(1 − p′)k

θ
(x)x−1

2 F0

(
1 − x, 1 + k; ; − p′

θx

)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!

for xi ≥ 0, i = 1, 2, . . . , k; x 	= 0 and L(g, f ; x) = (1 − p′)k for x = 0.
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(ix) Multivariate delta-negative binomial distribution:

f (t) = tn, g(t) = (1 − p′)k(1 − p′t)−k, kp′(1 − p′)−1 < 1,

L(g, f ; x) = n

n + x

�[(k + 1)x + kn]

�(kx + n)
e−nk bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
,

where b = p′(1 − p′)k .
(x) Multivariate negative binomial-binomial distribution:

f (t) = (q + pt)n, g(t) = (1 − p′)k(1 − p′t)−k, kp′(1 − p′)−1 <1,

0 < p = 1 − q <1,

L(g, f ; x) = npqn−1(p′)−1
2 F1

(
1 − x, 1 − n; 2 − (k + 1)x; − p

qp′

)
bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!

for xi ≥ 0, i = 1, 2, . . . , k; x 	= 0 and L(g, f ; x) = qn for x = 0.
(xi) Multivariate negative binomial-negative binomial distribution:

f (t) = (1 − p)M(1 − pt)−M , g(t) = (1 − p′)k(1 − p′t)−k,

kp′(1 − p′)−k < 1,

L(g, f ; x) = M(1 − p′)M

M + (k + 1)x

�[(k + 1)x + M + 1]

�[kx + M + 1]

bx1
1 bx2

2 . . . bxk
k

x1!x2! . . . xk!
,

where b = p′(1 − p′)k .
(xii) Multivariate Poisson-rectangular distribution:

f (t) = 1 − tn

n(1 − t)
, n ≥ 2, g(t) = em(t−1), 0 < m < 1,

L(g, f ; x) = 1

n

n−2∑
r=0

(r + 1)
(x − 1)

(x − r − 1)
(mx)x−1 bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
,

where b = e−m .
(xiii) Multivariate Poisson logarithmic series distribution:

f (t) = ln(1 − pt)

ln(1 − p)
, g(t) = em(t−1), 0 < m < 1,

L(g, f ; x) = p

−m ln(1 − p)
2 F0

(
1 − x, 1; ; − p

mx

)
x x−1 bx1

1 bx2
2 . . . bxk

k

x1!x2! . . . xk!
,

where b = me−m .

None of the above thirteen models resembles any one of the models in Table 14.1 (in the
bivariate case) or any one of the multivariate models given in sections 15.4 and 15.5. It seems
that Kapur (1982) did not realize that the multivariate Lagrangian probability models would
not be similar to the univariate probability models.
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15.7 Multivariate Lagrangian Quasi-Pólya Distribution

Khatri (1982) developed the multivariate Lagrangian quasi-Pólya distributions by taking the
Lagrange expansion of

f −a0 =
(

1 −
k∑

i=1

θi

)−a0

in powers of θ1 f −a1, θ2 f −a2 , . . . , θk f −ak and then considering the product

f −(a0+b0) = f −a0 · f −b0 . (15.60)

By equating the coefficients of
∏k

i=1 θ
νi
i f −ai νi in the expansion on the left-hand side

of (15.60) with the coefficients in the product of the two expansions on the right-hand side
of (15.60), Khatri (1982) obtained the formula

(a0 + b0)

(
a0 + b0 +

k∑
i=1

aiνi + 1

)(
∑

i νi−1)/ k∏
i=1

νi !

=
ν1∑

x1=0

· · ·
νk∑

xk=0

A(xi, a0)A(νi − xi , b0)

x1!x2! . . . xk!(ν1 − x1)!(ν2 − x2)! . . . (νk − xk)!
, (15.61)

where

A(xi , a0) = a0

(
a0 +

k∑
i=1

ai xi + 1

)(
∑

i xi −1)

.

By dividing both sides with the expression on the left-hand side of (15.61), Khatri (1982)
defined the multivariate Lagrangian quasi-Pólya distribution as

P(X′ = x′) =
[

k∏
i=1

(
νi
xi

)]
· A(xi , a0)A(νi − xi , b0)

A(νi , a0 + b0)
(15.62)

for xi = 0, 1, 2, . . . , νi , i = 1, 2, . . . , k, and where a0, b0, a1, a2, . . . , ak are all positive.
Considering the other multivariate Lagrange expansion

f −a0+1

f −∑k
i=1 aiθi

=
∞∑

x′=0′

(
a0 +∑k

i=1 ai xi

)(∑k
i=1 xi

)

x1!x2! . . . xk!

k∏
i=1

(
θ

xi
i f ai xi

)
, (15.63)

Khatri (1982) obtained the first moments of the distribution as

E[X j ] = a0ν j/(a0 + b0) for j = 1, 2, . . . , k. (15.64)

15.8 Applications of Multivariate Lagrangian Distributions

Good (1960, 1965) not only did the pioneering work of the multivariate Lagrange expansions
of multivariate functions but also showed that these expansions could be usefully applied to
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random branching processes, to the enumeration of rooted ordered trees, and to some stochastic
processes. Consul and Shenton (1973b) showed that the total number of customers of different
kinds served in a busy period was given by a multivariate Lagrangian distribution and that the
theory could easily be extended for use in different areas. We shall now consider some of these
applications.

15.8.1 Queuing Processes

A busy airport is served everyday by a large number of airplanes of different types and differ-
ent sizes which arrive at different rates and at different times on account of the various types of
flights (passenger, commercial freight, consumer freight and mail, charter, training, etc.). Each
type of flight service has its own multivariate probability distribution for the arrival of different
types of airplanes. Each plane needs many kinds of services (like fuel supply, drinking water
supply, nondrinking water, unloading, cleaning, checking of equipment, etc.) at the same air-
port. The service crew may consist of many persons but they have to work in sequence and in
collaboration with each other and so they may all be regarded as one set of crews which looks
after all the service needs of the different airplanes. Thus, the set of crews can be regarded as a
single server giving multivariate services and the different types of airplanes may be supposed
to form queues for the needed services.

Let the (r1, r2, . . . , rk) denote the different types of airplanes waiting for services when
the service begins, so that f (t′) = tr1

1 tr2
2 . . . trk

k . Also, let the average input vector of the i th

type of flight service for unit time element be (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
k ) and the average service

vector be (µ1, µ2, . . . , µk). Then the ratio vector (λ
(i)
1 /µ1, λ

(i)
2 /µ2, . . . , λ

(i)
k /µk) will denote

the average rates of change per unit time element. Let the mean vector of the multivariate
probability distribution, with pgf g(i)(t′), be

G(i)
(1) =

(
λ

(i)
1 /µ1, λ

(i)
2 /µ2, . . . , λ

(i)
k /µk

)
.

The probability distribution of the number of airplanes of different types served in a busy
period will be given by

P(X′ = x′) = 1

x1! . . . xk!

[
Dx1−1

1 . . . Dxk−1
k ‖Dν trν

ν g(ν)
x I − trν

ν G‖
]

t′=0′ (15.65)

for xi ≥ ri , i = 1, 2, . . . , k, and G represents the k × k matrix
(

g(i)
xi j

)
and

g(i)
xi j = ∂

∂t j

(
g(i)
)xi

.

The above is a multivariate Lagrangian delta distribution. According to the values of the
multivariate pgfs

g(i)(t′),
these probability distributions (15.65) will change. When the numbers (r1, r2, . . . , rk) of the
different types of airplanes, waiting in queues for service at the initial time, become random
variables, given by pgf f (t′), then the probability distribution of the number of planes of dif-
ferent types served in a busy period will be given by the general multivariate Lagrangian prob-
ability distribution (15.8) together with (15.7).

This queuing process plays its part in many different industries. Some simple examples are
given below:
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(i) Let each atomic fission generate k different types of reactions and have its own multivari-
ate probability distribution of producing such reactions. If the number of different kinds
of fissions is also k, then the pgfs of the different types of reactions may be given by
g(i)(t′), i = 1, 2, . . . , k. When the different kinds of atomic fissions are generated ac-
cording to the pgf f (t′), the probability that the whole process started by such atomic
fissions will contain x1 reactions of type 1, x2 reactions of type 2, . . . , xk reactions of type
k will be given by a multivariate discrete probability distribution of the Lagrangian type
pgf (15.4) with suitable choice of f (t′) and g(i)(t′), i = 1, 2, . . . , k.

(ii) In the highly developed modern world, we are being constantly bombarded with various
types of radioactive particles and cosmic rays from the computers, TVs, microwaves, etc.,
which slowly weaken the human immune system. Also, everyone is subjected to thou-
sands of very mild shocks every day by static electricity generated by modern clothes and
carpets, etc. Then we go through numerous medical tests which involve x-rays and other
types of rays. When the number of hits by each of such sources exceeds certain levels
k1, k2, k3, . . . , kn , then their adverse effects in the form of different types of new diseases
may be visible. Let f (t′) denote the pgf of the generation of different types of such ra-
dioactive rays. If g(i)(t′) represents the pgf of the multivariate probability distributions of
the number of persons who contacted such visible diseases on account of the i th source,
i = 1, 2, . . . , k, then the probability distribution of the number of such attacks by dif-
ferent diseases in the whole process will be given by one of the multivariate Lagrangian
distributions with pgf (15.4) and some particular values of f (t′) and g(i)(t′).

(iii) Numerous diseases are caused by (a) air pollution, (b) water pollution, (c) food pollu-
tion or contamination due to the use of insecticides, (d) bad sanitation, (e) consumption
of too many preservatives, and (f) unhygienic conditions. All these sources have their
own multivariate distributions of generating different types of diseases when each source
exceeds some specific limits. If g(i)(t′) denotes the pgf of the multivariate probability dis-
tribution of the number of persons getting different diseases on account of the i th source,
i = 1, 2, . . . , k, and f (t′) is the pgf of the multivariate distribution of the different types
of susceptible persons who are exposed to these sources for diseases, then the pgf of the
total number of persons affected by these diseases will be of the form given by (15.4).

15.8.2 Random Branching Processes with k Types of Females

Suppose a female of type i, i = 1, 2, . . . , k, has a probability of giving birth in any generation
(fixed discrete time interval) to m1, m2, . . . , mk individuals of type 1, 2, . . . , k (the original
female being included as one of the children if she survives). Let the probability be the coef-
ficient of tm1

1 , tm2
2 , . . . , tmk

k in a probability generating function gi(t′). Good (1955) has shown
that the pgfs, ti (u′), of the size of the whole tree, including the original female (of type i ), are
given by

ti = ui gi(t′).

The conditions gi(0′) 	= 0′, i = 1, 2, . . . , k, have a physical significance that every type
of female must have a nonzero probability of being barren. Let the branching process start
with r1 females of type 1, r2 females of type 2, . . . , rk females of type k. Good (1960) has
shown that the probability that the whole process will contain precisely m1 individuals of
type 1, m2 individuals of type 2, . . . , mk individuals of type k, is equal to the coefficient of
um1−r1

1 um2−r2
2 . . . umk−rk

k in



15.9 Exercises 315

gm1
1 gm2

2 . . . gmk
k

∥∥∥∥δν
i − ui

gi

∂gi

∂uν

∥∥∥∥ .

As an example, Good (1960) stated that if the distributions of children were Poissonian,
given by gi(t′) = exp

[∑
ν aiν(tν − 1)

]
, then the probability of the whole process containing

m1 individuals of type 1, m2 individuals of type 2, . . . , mk individuals of type k will be given
by obtaining the coefficients from

exp

{∑
i

mi

∑
ν

aiν(tν − 1)

}
‖δν

i − ti aiν‖.

Good (1960) had also applied this theory to the enumeration of rooted trees. Good (1965)
gave a very detailed description of the different kinds of trees, their colors and generations,
and their ordered forms within colors, etc., and applied the theory of multivariate Lagrange
expansions to obtain numerous results. Those persons who wish to work in this area should
definitely read this important paper.

15.9 Exercises

15.1 Let the multivariate probability generating functions gi(t′) and f (t′) be given by

gi(t′) =
⎡
⎣1+

k∑
j=1

θ j (t j − 1)

⎤
⎦

mi

, i = 1, 2, . . . , k, and f (t′) =
⎡
⎣1+

k∑
j=1

θ j (t j − 1)

⎤
⎦

n

,

where θ j > 0 such that
∑k

j θ j < 1; n > 0 and mi > 0, i = 1, 2, . . . , k, are posi-
tive integers. By using (15.24), derive the multivariate Lagrangian binomial probability
distribution.

15.2 For the multivariate Lagrangian quasi-Pólya distribution, show the result in (15.64).
15.3 Let the trivariate functions gi(t′) and f (t′) be given by

gi(t′) = exp

⎧⎨
⎩mi

3∑
j=1

θ j (t j − 1)

⎫⎬
⎭ , i = 1, 2, 3, and f (t′) = exp

⎧⎨
⎩α

3∑
j=1

θ j (t j − 1)

⎫⎬
⎭

for θ j > 0, mi > 0, for i, j = 1, 2, 3 and α > 0. By using the expressions (15.9)
and (15.10), together with (15.8) define the trivariate Lagrangian Poisson probability dis-
tribution.

15.4 Let the multivariate functions f (a′) and gi(a′) be given by

f (a′) =
(

1 −
∑

i

ai

)−α

and gi(a′) =
(

1 −
∑

i

ai

)−βi+1

,

where α > 0, βi > 1, i = 1, 2, 3, . . . , k, and ai > 0 such that
∑

i ai < 1 and
hi(a′) = ai/gi(a′). Using the above functions in (15.42), obtain a multivariate modified
power series distribution which is similar to the multivariate Lagrangian negative bino-
mial distribution in (15.29).
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15.5 Consider the atomic fissions example (i) of subsection 15.8.1 and assign suitable values
to the functions f (t′) and g(i)(t′), i = 1, 2, 3, 4, so that the whole process started by
such atomic fissions contains x1 reactions of type 1, x2 reactions of type 2, x3 reactions
of type 3, and x4 reactions of type 4, and will generate a multivariate Lagrangian Poisson
probability distribution. Prove the result in a systematic manner.

15.6 Describe a specific example with full details based on the material described in (ii)
of subsection 15.8.1. Assign suitable values to the multivariate functions f (t′) and
g(i)(t′), i = 1, 2, 3, so that the probability distribution of the number of attacks by dif-
ferent diseases in the whole process will be given by the multivariate Lagrangian negative
binomial model. Prove the result.

15.7 Consider the general example (iii) discussed in subsection 15.8.1 and formulate a spe-
cific example with full details so that the probability distribution of the total number of
persons affected by various diseases will have a trinomial Lagrangian logarithmic series
distribution. Prove the result.

15.8 Let the multivariate binomial pgfs be

gi(t′) =
⎛
⎝1 +

k∑
j=1

θ j (t j − 1)

⎞
⎠

βi

, i = 1, 2, . . . , k,

where θ j > 0 such that
∑k

j=1 θ j < 1 and βi are positive integers. Let f (t′) = t1t2 . . . tk
be another multivariate analytic function. By using the multivariate Lagrange expansion
in (15.23), derive the multivariate basic Lagrangian binomial probability distribution. By
using

gi(t′) = exp

⎡
⎣mi

k∑
j=1

θ j (t j − 1)

⎤
⎦ , i = 1, 2, . . . , k,

where mi > 0, θ j > 0 for all values of i , derive the multivariate basic Lagrangian
Poisson probability distribution.
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Computer Generation of Lagrangian Variables

16.1 Introduction and Generation Procedures

The use of general (nonspecific) methods for generating pseudo-random variables from La-
grangian probability distributions will now be considered. The general methods include the
inversion method and the alias method. Then, some specific method to certain Lagrangian
probability distributions will be given for generating pseudo-random variables. The nonspe-
cific generation methods are particularly suitable when the parameters of a Lagrangian distrib-
ution remain constant from call to call in the algorithm. When the parameters of a distribution
change from call to call, the distribution-specific generation methods are recommended. These
methods employ the structural properties of the distributions.

16.1.1 Inversion Method

Suppose X is a Lagrangian random variate with probability mass function

P(X = x j) = Px j , x j ∈ T, (16.1)

where T is a subset of nonnegative integers. The cumulative distribution function is given by

P(X ≤ x j ) = f (x j) =
∑
i≤x j

Pi . (16.2)

Let U be a random variate from uniform distribution on (0, 1). Then

P
(
F(x j − 1) < U ≤ F(x j)

) =
F(x j )∫

F(x j −1)

du = F(x j) − F(x j − 1) = Px j .

A Lagrangian variate x is obtained by setting x = x j if

F(x j − 1) < U ≤ F(x j). (16.3)

The inversion method consists of generating a uniform random variate U on (0, 1) and
obtaining X by monotone transformation of U into a variate from the Lagrangian distribution.
Thus, a uniform (0, 1) cdf is transformed into a Lagrangian cdf.
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The inversion method is also called the “table look-up” method. One obtains a table con-
taining the cumulative probabilities for the Lagrangian distribution and these probabilities are
stored in computer memory. A uniform variate on (0, 1) is then generated and compared with
the cumulative probabilities. The interval in which the uniform (0, 1) lies gives the random
variate X . One can use one of the many search procedures (see Devroye, 1986, Chapter 3) that
are now available to make this a very fast method.

The standard method is the sequential search method which compares the generated uni-
form (0, 1) variate with the list of F(x j). The search starts at the first value of F(x j) and
compares the uniform (0, 1) with each F(x j) until the inequality in (16.3) is satisfied.

Chen and Asau (1974) introduced the “index table” search method. In this method, an index
table is constructed and the value stored in the table is used to indicate which subset of F(x j)
contains the value of x j that satisfies the inequality in (16.3) for a generated variate U from
uniform (0, 1). This method requires less computation time than the “sequential method” or
the “bisection method.” A modification of the “index table” search method was proposed by
Ahrens and Kohrt (1981). This modification was designed for discrete distributions with long
tails.

In the algorithms for generating Lagrangian pseudo-random variates, a sequential search
method will be used. These algorithms are quite ideal for situations in which one or a few
random variates are required. If several random variates are required, one can set up a table
look-up algorithm with a sequential search.

16.1.2 Alias Method

Walker’s (1974a, 1974b, 1977) alias method is a general nonspecific method for generating
pseudo-random variates from discrete distributions. The method requires only one comparison
for each generated variable. The alias method is related to “rejection” methods but differs from
“rejection” methods because all rejected numbers are replaced by “aliases” that are used. Thus,
a generated number is either accepted or replaced with an alias number. To generate a pseudo-
random variate X with probability distribution (16.1) for j = 1, 2, 3, . . . , n, we use a random
number W which is uniformly distributed over the range 1, 2, 3, . . . , n.

Hence

P(W = j ) = 1

n
.

The alias method consists of generating a pair (W, U ) where U is uniform on (0, 1) and this is
independent of W . The random variate is then defined by

X =
{

W if U ≤ E(W ),

A(W ) if U > E(W ),

where A(W ) is an alias and E(W ) is a cutoff value. The functions A(W ) and E(W ) are chosen
as indicated in the following algorithm.

Algorithm for Alias Method

1. [Initialize]
N ← X if PX > 1.0E − 5 and PX+1 < 1.0E − 5, where PX is the probability for X .
G X ← PX for X = 0, 1, 2, . . . , N
For I = 0, N , Do
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AI ← I
EI ← 0.0
BI ← G I − 1.0/N

2. [Assign the alias and cutoff values]
S ← 0.0
For I = 0, N , Do
S ← S + BI
while S > 1.0E − 5
For I = 0, N , Do

C ← B j , the largest negative value of B
K ← J, the corresponding position in array
D ← B j , the largest positive value of B
L ← J, the corresponding position in array

Ak ← L
Ek ← 1.0 + C · N
Bk ← 0.0
BL ← C + D

3. [Generate the random variate]

Generate two independent variates (W, U ) from uniform distribution on (0, 1):

X ←
∫

(W · N) + 1

If (U > Ex) then X ← A

The inversion method algorithms for some members of Lagrangian probability distributions
are described in subsequent sections. When the pseudo-random variate has been obtained, we
say “Return X .” The routine terminates if only one random variate is required, or loops back to
the beginning if another random variate is desired.

The computation of quantities such as (1 − θ)m may cause underflow when m is large.
Also, the recurrence relation between the Lagrangian probabilities may be a potential source of
roundoff errors. These errors may accumulate as x increases. To guard against these problems,
implementation of all algorithms under double precision is recommended.

In addition to the inversion method, some distribution-specific generation algorithms have
also been included in the following sections.

16.2 Basic Lagrangian Random Variables

The basic Lagrangian probability distributions are discussed in chapter 8. The pmf for the Borel
distribution is given by

Px = (xλ)x−1e−xλ

x!
, x = 1, 2, 3, . . . .

A recurrence relation between the Borel probabilities is

Px = λe−λ

(
1 + 1

x − 1

)x−2

Px−1, x = 2, 3, . . . , (16.4)
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with P1 = e−λ. The pmf for the Consul distribution is

Px = 1

x

(
mx

x − 1

)
θ x−1(1 − θ)mx−x+1, x = 1, 2, 3, . . . ,

with a recurrence relation

Px = (m − 1)(x − 1) + 1

x − 1
θ(1 − θ)m−1

x−2∏
i=1

(
1 + m

mx − m − i

)
Px−1 (16.5)

for x = 2, 3, . . . and P1 = (1 − θ)m . The pmf for the Geeta distribution is given by

Px = 1

mx − 1

(
mx − 1

x

)
θ x−1(1 − θ)mx−x , x = 1, 2, 3, . . . .

A recurrence relation between the probabilities of the Geeta distribution is

Px = m(x − 1) − x

x
θ(1 − θ)m−1

x∏
i=2

(
1 + m

mx − m − 1

)
Px−1 (16.6)

for x = 2, 3, 4, . . . with P1 = (1 − θ)m−1. The Haight distribution is a special case of the
Geeta distribution when m = 2.

Borel Random Variate Generator based on Inversion Method
[Initialize: ω = λe−λ]

1. X ← 1
2. S ← e−λ and P ← S
3. Generate U from uniform distribution on (0, 1).
4. While U > S, do

X ← X + 1
C ← (1 + 1/(X − 1))X−2

P ← ωC P
S ← S + P

5. Return X

Consul Random Variate Generator based on Inversion Method
[Initialize: ω = θ(1 − θ)m−1]

1. X ← 1
2. S ← (1 − θ)m and P ← S
3. Generate U from uniform distribution on (0, 1).
4. If U ≤ S, Return X
5. X ← X + 1
6. P ← ωm P and S ← S + P
7. If U ≤ S, Return X
8. While U > S, do

X ← X + 1
C ← ((m − 1)(X − 1) + 1)

∏X−2
i=1 (1 + m/(m X − m − i))

P ← ωC P/(X − 1)
S ← S + P

9. Return X
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Geeta Random Variate Generator based on Inversion Method
[Initialize: ω = θ(1 − θ)m−1]

1. X ← 1
2. S ← (1 − θ)m−1 and P ← S
3. Generate U from uniform distribution on (0, 1).
4. While U > S, do

X ← X + 1
C ← ((m X − m − X)

∏X
i=2(1 + m/(m X − m − i))

P ← ωC P/X
S ← S + P

5. Return X

16.3 Simple Delta Lagrangian Random Variables

The simple delta Lagrangian probability distributions are given in chapter 2. The pmf for the
delta-Poisson distribution is given as

Px = n

x(x − n)!
(λx)x−ne−xλ for x ≥ n.

A recurrence relation between the delta-Poisson probabilities is

Px =
(

x − 1

x − n

)
λe−λ

(
1 + 1

x − 1

)x−n−1

Px−1 (16.7)

for x = n + 1, n + 2, n + 3, . . . with Pn = e−nλ. The delta-Poisson distribution reduces to the
Borel distribution when n = 1.

The pmf for the delta-binomial distribution is given by

Px = n

x

(
mx

x − n

)
θ x−n(1 − θ)n+mx−x for x ≥ n.

A recurrence relation between the delta-binomial probabilities is

Px = (m − 1)(x − 1) + n

x − n
θ(1 − θ)m−1

x−n−1∏
i=1

(
1 + m

(m − 1)x − i

)
Px−1 (16.8)

for x ≥ n + 1 with Pn = (1 − θ)nm .
The delta-binomial distribution reduces to the Consul distribution when n = 1. The pmf for

the delta-negative binomial distribution is

Px = n

x

(
mx − n − 1

x − n

)
θ x−n(1 − θ)mx−x, x ≥ n,

with recurrence relation

Px = m(x − 1) − x

x − n
· x − 1

x
· θ(1θ)m−1

x∏
i=n+1

(
1 + m

x(x − 1) − i

)
Px−1 (16.9)
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for x ≥ n + 1 with Pn = (1 − θ)n(m−1). The delta-negative binomial distribution reduces to
the Geeta distribution when n = 1.

The inversion method for generating simple delta Lagrangian random variables is similar
to the inversion method for generating basic Lagrangian random variables as provided in sec-
tion 16.2. We now give the inversion method for generating the delta-Poisson random variables.
Similar algorithms for the delta-binomial and delta-negative binomial can be obtained.

Delta-Poisson Random Variate Generator based on Inversion Method
[Initialize: ω = λe−λ]

1. X ← n
2. S ← e−λn and P ← S
3. Generate U from uniform distribution on (0, 1).
4. While U < S, do

X ← X + 1
C ← (X − 1)(1 + 1/(X − 1))X−n−1

P ← ωC P/(X − n)
S ← S + P

5. Return X

Devroye (1992) introduced two universally applicable random variate generators for the
family of delta Lagrangian distributions. The branching process method and the uniform
bounding method were used to generate pseudo-random variates from the delta-Poisson, delta-
binomial, and delta-negative binomial distributions.

The Branching Process Method
A pseudo-random variate X is generated based upon partial recreation of a certain branching
process. In this method, there are no heavy numerical computations. The delta Lagrangian
distribution was defined in chapter 2 as a Lagrangian distribution with generating functions
(g, f ), where f (z) = zn and g is a pgf. The pgf f (z) = zn puts mass 1 at point x = n. In
a Galton–Watson branching process started with one individual, let every individual produce
children independently in accordance with the distribution defined by the pgf g(z). Let the size
X be the number of elements that ever live in such a finite population. The pgf for X is q(z),
which is equal to the unique solution u of the equation

u = z g(u), z ∈ [0, 1]. (16.10)

If the branching process is started with Y individuals, where Y is a random variable having pgf
f (z), then the pgf of X is

E
{

[q(z)]Y
}

= f (q(z)), where q(z) is a solution of (16.10).

Since the distribution of X is delta Lagrangian distribution with generating function (g, f ), by
using this property, one obtains the branching process method to generate the delta Lagrangian
distribution.

The Branching Process Algorithm

1. Generate Y with pgf f (z).
2. X ← Y
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3. While Y > 0, do
Generate W with pgf gY (z).
(X, Y ) ← (X + W, W )

4. Return X

Uniform Bounding Method
Certain delta Lagrangian distributions have the property that

sup
θ

Px,θ ≤ qx (16.11)

for all x , where Px,θ = P(X = x),
∑

x qx < ∞, and θ is the collection of parameters. If Px
is a probability distribution such that Px ≤ qx for all x , then a pseudo-random variate X with
probability distribution Px can be generated by the rejection method. One generates pairs of
independent random variates (X, U ), where X has distribution cqx for some constant c and U
is from uniform distribution on (0, 1). When Uqx < Px , one returns X . This technique, called
the uniform bounding method, has good speed even when θ changes from call to call.

Theorem 16.1. The delta-Poisson, delta-binomial, and delta-negative binomial distributions
with fixed n satisfy the condition where c is a constant depending on n and

sup
θ

Px,θ ≤
{

nc
x
√

x−n
if x > n,

1 if x = n,
(16.12)

where c = 1/
√

2π for the delta-Poisson, c = e
1

24n /
√

n for the delta-binomial, and c =
e

1
12 /

√
2π for the delta-negative binomial distribution (Devroye, 1992).

Proof. We shall show the result for the delta-Poisson distribution. The results for the delta-
binomial and delta-negative binomial distributions can be proved in a similar manner.

By using differentiation, it is not hard to show that

sup
u>0

uae−bu =
( a

be

)a
for a, b > 0. (16.13)

By using (16.13), the delta-Poisson distribution can be written as

sup
0<λ≤1

Px,λ ≤ n[(x − n)/e]x−n

x(x − n)!
, x ≥ n. (16.14)

By applying the Stirling’s approximation

x! ≥
(x

e

)x √
2πx

to the inequality in (16.14), we obtain

sup
0<λ≤1

Px,λ ≤ n

x
√

2π(x − n)

= nc

x
√

x − n
, where c = 1/

√
2π. ��
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By using Theorem 16.1, the uniform bounding algorithm is developed for the delta-Poisson,
delta-binomial, and delta-negative binomial distributions.

The Uniform Bounding Algorithm

1. [Initialize]
Set c ← 1/

√
2π for delta-Poisson distribution.

Set c ← e
1

24n /
√

π for delta-binomial distribution.

Set c ← e
1

12 /
√

2π for delta-negative binomial distribution.
2. Repeat

Generate U from uniform distribution on (0, 1).
V ← (1 + 4c

√
n)U

Case I
V ≤ 1: Return X ← n
1 < V ≤ 1 + 2c

√
n: Y ← n + 1 + (V − 1)2/4c2

T ← 2c2/(V − 1)
Case II

V > 1 + 2c
√

n: Y ← n + 1 +
(

2nc
1+4c

√
n−V

)2

T ← nc/(Y − 1 − n)
3
2

Generate W from uniform distribution on (0, 1).
Until W T < P�Y �
Return X ← �Y�, where �Y� denotes rounding to the nearest smaller integer.

16.4 Generalized Poisson Random Variables

The pmf for the GPD is given in chapter 9 as

Px = θ(θ + λx)x−1e−θ−λx/x! for x = 0, 1, 2, 3, . . . .

A recurrence relation between the generalized Poisson probabilities is given by

Px = θ − λ + λx

x

(
1 + λ

θ − λ + λx

)x−1

e−λPx−1 (16.15)

for x ≥ 1, with P0 = e−θ .

Inversion Method (Famoye, 1997b)
[Initialize: ω = e−λ]

1. X ← 0
2. S ← e−θ and P ← S
3. Generate U from uniform distribution on (0, 1).
4. While U > S, do

X ← X + 1
c ← θ − λ + λX
P ← ωc(1 + λ/c)X−1 P/X
S ← S + P

5. Return X
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Under the inversion method, one needs to guide against underflow and roundoff errors. The
recursion formula in (16.15) is a potential source of roundoff errors. Using double precision
arithmetic in the computer program can provide some protection for the roundoff errors.

Devroye (1989) worked out uniformly fast algorithms for generating the generalized Pois-
son random variables. Three regions in the parameter space (θ, λ) are considered in developing
the algorithms. The regions are the Abel side of the parameter space, the Poisson side of the
parameter space, and the region of monotonicity.

In the Abel side of the parameter space, θ ≥ 1 + λ, θ ≥ 2λ(1 − λ)−1. For this case, a two-
tier rejection algorithm was developed. On the right tail, a polynomially decreasing distribution
is used as a bounding function, while on the left tail, a geometrically increasing dominating
function is used.

In the Poisson side of the parameter space, θ ≥ max(3, 2λ(1 − λ)−1). The generalized
Poisson probability Px is bounded uniformly by a function g(x). A rejection algorithm based
on bounding continuous distributions is developed. The bounding distribution is the normal
density with exponential tails added on both ends. The idea is to generate pairs (Y, U ), where
Y is a pseudo-random variate with density proportional to g and U is a uniform variate on
(0, 1) until Ug(Y ) ≤ Px . When this inequality is satisfied, we set X ← �Y�, where X has the
desired generalized Poisson distribution.

In the region of monotonicity, θ ≤ 1 + λ, the algorithm is a rejection method based upon
the inequality

Px ≤ θe2−λ−min(λ,θ)

√
s

π

(
1√
x

− 1√
x + 1

)
. (16.16)

The algorithm can be applied to any region of the parameter space (θ, λ); however, it is recom-
mended for parameter values of θ ≤ 1 + λ.

Rejection Algorithm with Polynomial Bound

1. [Initialize]
P0 ← e−θ , b ← θe2−λ−min(λ,θ)

√
2/π

2. [Generator]
Generate U from uniform distribution on (0, 1).
Repeat
If U ≤ P0

P0+b
Then X ← 0 and Accept ← True
Else
Generate V , W independent and identically distributed variables from uniform (0, 1).
Set X ← � 1

W 2 �
Set Accept ←

[
V b
(

1√
X

− 1√
X+1

)
≤ PX

]
Until Accept

3. Return X

The evaluation of Px for x ≥ 1 can be done efficiently by using the recurrence relation
in (16.15).

Famoye (1997b) developed a branching algorithm to generate generalized Poisson variates
when the parameter λ is positive.
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Branching Algorithm

1. Generate Y from Poisson distribution with mean θ .
2. X ← Y
3. While (Y > 0), do

k ← λY
Generate Z from Poisson distribution with mean k.
(X, Y ) ← (X + Z, Z)

4. Return X

An algorithm based on a normal approximation was developed by Famoye (1997b).

Normal Approximation Algorithm
[Initialize: m ← θ(1 − λ)−1; ν ← √

θ(1 − λ)−3]

1. Generate Y from a standard normal distribution.
2. X ← max(0, �m + νY + 0.5�)
3. Return X

The above algorithm is recommended for θ ≥ 10.0 when λ < 0 and also for θ ≥ 30.0
when 0 < λ < 0.2.

Famoye (1997b) compared the generalized Poisson variates generating algorithms. For low
parameter values, the inversion method is faster than both the rejection and the branching
methods. As the value of θ increases, the branching method performs faster than the inver-
sion method.

16.5 Generalized Negative Binomial Random Variables

The pmf for the GNBD is given in chapter 10 as

Px = m

m + βx

(
m + βx

x

)
θ x (1 − θ)m+βx−x, x = 0, 1, 2, 3, . . . .

A recurrence relation between the generalized negative binomial probabilities is given by

Px = m + (β − 1)(x − 1)

x
θ(1 − θ)β−1

x−1∏
i=1

(
1 + β

m + βx − β − i

)
Px−1 (16.17)

for x ≥ 1, with P0 = (1 − θ)m .
Famoye (1998b) provided some of the theoretical bases for some of the generating algo-

rithms developed in this section.

Theorem 16.2. The GNBD in (10.1) is nonincreasing for all values of θ, β, and m such that
mθ(1 − θ)β−1 < 1 and satisfies the inequality

Px (θ, β, m) ≤ m(1 + √
2)

(
1√
x

− 1√
x + 1

)
[πβ(β − 1)]−1/2 (16.18)

for all values of x = 1, 2, 3, . . . .
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Proof.

Px(θ, β, m) = m

m + βx

(
m + βx

x

)
θ x(1 − θ)m+βx−x

≤ m(θβ)x(1 − θ)m+βx−x

β
√

2πx x+1/2e−x

x−1∏
i=1

(
x − i − m

β

)
(16.19)

since by Stirling’s approximation, x! ≥ √
2πx x+1/2e−x . The inequality in (16.19) can be re-

written as

Px (θ, β, m) ≤ m
(
β
√

2πx3/2
)−1

eR, (16.20)

where

R = x log(θβ) + x + (m + βx − x) log(1 − θ) +
x−1∑
i=1

log

(
1 − i − m

βx

)
.

On differentiating R with respect to θ , we obtain

d R

dθ
= x − θ(m + βx)

θ(1 − θ)
(16.21)

and this is zero when θ = x/(m + βx). When x is very large, the value of θ goes to β−1.
When x is large: The result in (16.21) is always positive. Here, R is an increasing function

of θ and R is maximum when θ = β−1. Thus,

R ≤ x + (m + βx − x) log(1 − β−1) +
x−1∑
i=1

log

(
1 − i − m

βx

)

≤ −1

2
log(1 − β−1).

When x is small: The result in (16.21) may change sign over the values of θ . If (16.21) is
always negative, R ≤ − 1

2 log(1 − β−1). On taking the second derivative of R with respect to
θ , we obtain

d2 R

dθ2
= −xθ−2 − (m + βx − x)(1 − θ)−2 < 0.

Hence, R has a maximum value at θ = x/(m + βx), and using this value, we obtain

R ≤ −1

2
log(1 − β−1).

Therefore,

Px(θ, β, m) ≤ m
[
β
√

2πx3/2
]−1

exp

[
−1

2
log(1 − 1/β)

]
,

= mx−1 [2xπβ(β − 1)]−1/2 .
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But x−3/2 ≤ (2 + √
2)
(

1√
x

− 1√
x+1

)
for all x ≥ 1, and so

Px(θ, β, m) ≤ m(1 + √
2)

(
1√
x

− 1√
x + 1

)
[πβ(β − 1)]−1/2 ,

which completes the proof. ��
The GPD in (9.1) can be rewritten as

Qx(p, λ) = p(p + λx)x−1e−p−λx/x!. (16.22)

The GPD model in (16.22) is a limiting form of the GNBD when m → ∞ and β → ∞ such
that mθ = p and βθ = λ.

Theorem 16.3. The GNBD in (10.1) satisfies the inequality

Px (θ, β, m) ≤ cQx(p, λ)

for all values of x = 0, 1, 2, . . . , where m and β are large, p = θm, λ = θβ, Qx(p, λ) is the
GPD model, and the constant c = eθ .

Proof. We need to show that

m

m + βx

(
m + βx

x

)
θ x (1 − θ)m+βx−x ≤ θm

(θm + θβx)x−1

x!
e−θm−θβx+θ .

That is, we need to show that

(1 − θ)m+βx−xeθ(m+βx−1)
x−1∏
i=1

(
1 − i

m + βx

)
≤ 1. (16.23)

When x = 0, (16.23) reduces to (1 − θ)eθ(m−1) ≤ 1, which holds for all parameter values.
The inequality in (16.23) also holds for x = 1. When x = 2, the left-hand side of (16.23) can
be written as eR(2), where

R(2) = log

(
1 − 1

m + 2β

)
+ (m + 2β − 2) log(1 − θ) + θ(m + 2β − 1).

R(2) is maximum when θ = 1/(m + 2β − 1). Therefore,

R(2) ≤ log

(
1 − 1

m + 2β

)
+ (m + 2β − 2) log(1 − 1

m + 2β − 1
) + 1 ≤ 0

when m + 2β > 2.27288, which holds for large values of m and β. Therefore, eR(2) ≤ 1 and
hence (16.23) holds for x = 2.

For x = k, the left-hand side of (16.23) becomes eR(k), where

R(k) =
k−1∑
i=1

log

(
1 − i

m + βk

)
+ (m + βk − k) log(1 − θ) + θ(m + βk − 1).

R(k) is maximum at the point θ = (k − 1)/(m + βk − 1) and so

R(k) ≤
k−1∑
i=1

log

(
1 − i

m + βk

)
+ (m + βk − k) log

(
1 − k − 1

m + βk − 1

)
+ k − 1 ≤ 0

for large values of m and β. Hence, (16.23) is satisfied for all values of x . ��
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Inversion Method (Famoye, 1998b)
[Initialize: ω = θ(1 − θ)β−1]

1. X ← 0
2. S ← (1 − θ)m and P ← S
3. Generate U from uniform distribution on (0, 1).
4. If U ≤ S, Return X
5. X ← X + 1
6. P ← ωm P and S ← S + P
7. If U ≤ S, Return X
8. While U > S, do

X ← X + 1
C ←∏X−1

i=1 (1 + β/(m + β X − β − i)
P ← ωC(m + (β − 1)(X − 1))P/X
S ← S + P

9. Return X

Famoye (1998b) applied the inequality in (16.18) to develop a rejection algorithm. If U is
a uniform random variate, the random variate X ← �U−2�, where �.� is the integer part of the
value, satisfies

P(X ≥ x) = P
(

1 ≥ xU 2
)

= P

(
U ≤ 1√

x

)
= 1√

x
for all x ≥ 1.

Therefore, P (X = x) = 1/
√

x −1/
√

x + 1. The rejection algorithm may be used for all values
of θ, β, and m; however, the method is recommended for the case where mθ(1 − θ)β−1 ≤ 1.

Rejection Algorithm

1. [Initialize]
Set c ← m(1 + √

2) [πβ(β − 1)]−1/2

Set P0 ← (1 − θ)m

2. [Generator]
Generate U from uniform distribution on (0, 1).
Repeat
If U ≤ P0 (c + P0)

−1

Then X ← 0 and Accept ← True
Else
Generate V , W independent and identically distributed from uniform (0, 1).
Set X ← �W −2�
Set Accept ←

[
V c
(

1√
X

− 1√
X+1

)
≤ PX

]
Until Accept

3. Return X

Suppose the probability distribution Qx , x ≥ 0 is easy to generate. A rejection algorithm
can be used to generate Px , x ≥ 0 if

Px ≤ cQx , x ≥ 0

where the rejection constant c ≥ 1. Using Theorem 16.3, Famoye (1998b) developed a rejection
algorithm based on the GPD.
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Rejection Algorithm based on GPD

1. [Initialize]
Set ω ← eθ

2. [Generator]
Generate U from uniform distribution on (0, 1).
While (ωU Q X > PX ), do
Generate X from GPD with parameters p = θm and λ = θβ.

3. Return X

Famoye (1998b) developed a branching algorithm for the GNBD.

Branching Algorithm

1. Generate Y from the negative binomial distribution with parameters θ and m.
2. While (Y > 0), do

k ← (β − 1)Y
Generate Z from the negative binomial distribution with parameters θ and k.
(X, Y ) ← (Y + Z, Z)

3. Return X

When parameters β and m are integers, the negative binomial distribution in the above
algorithm can be replaced with binomial distribution.

In comparing the inversion, branching, and rejection methods, the rejection method is the
slowest. For small values of θ , the inversion method is faster than the branching method. How-
ever, as parameter θ becomes large, the branching method becomes faster. In general, the in-
version method tends to be the fastest when θβ ≤ 0.6. Famoye (1998b) recommended the
inversion method when θβ ≤ 0.6 and the branching method when θβ > 0.6.

16.6 Generalized Logarithmic Series Random Variables

The pmf for the GLSD is given in chapter 11 as

Px = 1

βx

(
βx
x

)
θ x(1 − θ)βx−x

− ln(1 − θ)
, x = 1, 2, 3, . . . .

A recurrence relation between generalized logarithmic series probabilities is given by

Px = (β − 1)(x − 1)

x
θ(1 − θ)β−1

x−1∏
i=1

(
1 + β

βx − β − i

)
(16.24)

for x ≥ 2, with P1 = θ(1 − θ)β−1[− ln(1 − θ)]−1.
Famoye (1997d) presented some theoretical justification for some generating algorithms for

the GLSD.

Theorem 16.4. The GLSD in (11.1) is nonincreasing for all values of θ in 0 < θ < β−1 and
β ≥ 1, and for all values of x = 1, 2, 3, . . . the GLSD satisfies the condition

Px (θ, β) ≤ 1

x
. (16.25)
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Proof.

Px(θ, β) = 1

βx

(
βx
x

)
θ x(1 − θ)βx−x

[− ln(1 − θ)]

≤ θ x−1(1 − θ)(β−1)(x−1)
x−1∏
i=1

βx − i

x!
(16.26)

since
P1(θ, β) = θ(1 − θ)β−1 [− ln(1 − θ)]−1 ≤ 1.

The function θ x−1(1 − θ)(β−1)(x−1) is an increasing function of θ and it is maximum at θ =
β−1. Thus, we can write (16.26) as

Px(θ, β) ≤
(

1

β

)x−1 (
1 − 1

β

)(β−1)(x−1) x−1∏
i=1

βx − i

x!

=
(

1 − 1

β

)(β−1)(x−1) x−1∏
i=1

(
x − i

β

)
1

x!
. (16.27)

The right-hand side of (16.27) is a decreasing function of β and it is maximum when β = 1.
Hence

Px (θ, β) ≤
x−1∏
i=1

x − i

x!
= 1

x
.

��
By using the unimodality property and mathematical induction, one can also show that the
inequality in (16.25) holds.

Theorem 16.5. The GLSD in (11.1) is nonincreasing for all values of θ in 0 < θ < β−1 and
β > 1 and satisfies the inequality

Px(θ, β) ≤ (1 + √
2)

(
1√
x

− 1√
x + 1

)[
(− ln(1 − θ))

√
πβ(β − 1)

]−1
(16.28)

for all values of x = 1, 2, 3, . . .

Proof.

Px(θ, β) = 1

βx

(
βx
x

)
θ x(1 − θ)βx−x

[− ln(1 − θ)]

≤ (θβ)x(1 − θ)βx−x ∏x−1
i=1 (x − i/β)

β[− ln(1 − θ)]
√

2πx x+1/2e−x
, (16.29)

since by Stirling’s approximation, x! ≥ √
2πx x+1/2e−x . The inequality in (16.29) can be re-

written as

Px (θ, β) ≤
{
β[− ln(1 − θ)]

√
2πx3/2

}−1
eQ, (16.30)



332 16 Computer Generation of Lagrangian Variables

where

Q = x log(θβ) + x(β − 1) log(1 − θ) + x +
x−1∑
i=1

log

(
1 − i

βx

)
.

Q is an increasing function of θ and it is maximum when θ = β−1. Hence

Q ≤ x(β − 1) log

(
1 − 1

β

)
+ x +

x−1∑
i=1

log

(
1 − i

βx

)
. (16.31)

By using the results for
∑n

i=1 i,
∑n

i=1 i2,
∑n

i=1 i3, and
∑n

i=1 i4 in (16.31), we obtain

Q ≤ −1

2
log

(
1 − 1

β

)
. (16.32)

On using (16.32) in (16.30), we obtain

Px(θ, β) ≤
exp
[
− 1

2 log
(

1 − 1
β

)]
β[− log(1 − θ)]

√
2πx3/2

. (16.33)

But x−3/2 ≤ (2 + √
2)
(

1√
x

− 1√
x+1

)
, and hence

Px (θ, β) ≤ (1 + √
2)

(
1√
x

− 1√
x + 1

) [
{− log(1 − θ)}√πβ(β − 1)

]−1
.

��
Inversion Method (Famoye, 1997d)
[Initialize: ω = θ(1 − θ)β−1]

1. X ← 1
2. S ← ω/(− ln(1 − θ)) and P ← S
3. Generate U from uniform distribution on (0, 1).
4. While U > S, do

X ← X + 1
C ←∏X−1

i=1 (1 + β/(β X − β − i))
P ← ωC(β − 1)(X − 1)P/X
S ← S + P

5. Return X

Famoye (1997d) used the upper bound of the inequality in (16.28) to develop an algorithm
based on the rejection method. Consider the uniform (0, 1) random variate U . The random
variate X ← �U−2�, where �.� is the integer part of the value, satisfies

P(X ≥ x) = P(1 ≥ xU 2) = P

(
U ≤ 1√

x

)
= 1√

x

for all values of x ≥ 1. Therefore,

P(X = x) = 1√
x

− 1√
x + 1

,
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and so a rejection algorithm for generating a generalized logarithmic series variate can be based
on (16.28).

Rejection Algorithm

1. [Initialize]
Set c ← (1 + √

2)
[
(− log(1 − θ))

√
πβ(β − 1)

]−1

2. [Generator]
Repeat
Generate U, V i.i.d. from uniform distribution on (0,1).
Set X ← �V −2�
Set Accept ← Uc

(
1√
X

− 1√
X+1

)
≤ PX

Until Accept
3. Return X

The GLSD probabilities satisfy the inequality in (16.25). Devroye (1986) suggested a rejec-
tion algorithm for any distribution that satisfies the inequality. For the GLSD, the probability
vector P1, P2, . . . , Pn is nonincreasing and the choice of n = n(θ, β) is given by the first in-
teger n for which Pn(θ, β) < 10−5. Based on this inequality, Famoye (1997d) developed a
monotone property algorithm for the GLSD.

Monotone Property Algorithm

1. [Initialize] Determine the first n such that Pn(θ, β) < 10−5.
2. Generate a random variate X with probability vector proportional to 1, 1

2 , 1
3 , . . . , 1

n .
3. Repeat

Generate U from uniform distribution on (0, 1).
Set Accept ← U ≤ X PX
Until Accept

4. Return X

Famoye (1997d) developed a branching algorithm to generate GLS variates.

Branching Algorithm

1. Generate Y from logarithmic series distribution with parameter θ .
2. X ← Y
3. While (Y > 0), do

k ← (β − 1)Y
Generate Z from negative binomial distribution with parameters θ and k.
(X, Y ) ← (X + Z, Z)

4. Return X

Famoye (1997d) compared all the algorithms and found that the inversion method was the
fastest for small values of θ and β. However, the branching method appeared to be the fastest
for large values of θ and β. Famoye (1997d) recommended a modified algorithm which used
an inversion method when θβ ≤ 0.45 and used a branching method when θβ > 0.45.



334 16 Computer Generation of Lagrangian Variables

16.7 Some Quasi-Type Random Variables

The pmf for the QBD-I is given in chapter 4 as

Px =
(

m
x

)
p(p + xφ)x−1(1 − p − xφ)x−m, x = 1, 2, 3, . . . .

A recurrence relation between the above probabilities is given by

Px = m − x + 1

x
· p − φ + xφ

1 − p + φ − xφ

(
1+ φ

p − φ + xφ

)x−1 (
1− φ

1− p+φ−xφ

)m−x

Px−1

(16.34)
for x ≥ 1 with P1 = (1 − pm).

Quasi-Binomial I Random Variate Generator based on Inversion Method
[Initialize: ω = p − φ]

1. X ← 0
2. S ← (1 − p)m and P ← S
3. Generate U from uniform distribution on (0, 1).
4. While U > S, do

X ← X + 1
C ← (1 + φ/(ω + Xφ))X−1(1 − φ/(1 − ω − Xφ))m−X

P ← C(m − X + 1)(ω + Xφ)P/(X (1 − ω − Xφ))
S ← S + P

5. Return X

The pmf for the QHD-I is given by

Px =
(n

x

)
a(a + xr − 1)(x−1)(b + nr − xr)(n−x)

(a + b + nr)(n)
, x = 0, 1, 2, 3, . . . ,

and a recurrence relation between its probabilities is given as

Px = n − x + 1

x
· a + (x − 1)(r − 1)

b + r + (r − 1)(n − x)

x−1∏
i=1

(
1 + r

1 − r + xr − i

)

×
n−x−1∏

i=0

(
1 − r

b + nr − r(x − 1) − i

)
Px−1 (16.35)

for x > 1, with P0 = (b+nr
n

)/ (a+b+nr
n

)
.

Quasi-Hypergeometric I Random Variate Generator based on Inversion Method
[Initialize: ω1 = a − r and ω2 = b + nr + r ]

1. X ← 0
2. S ← (b+nr

n

)/ (a+b+nr
n

)
and P ← S

3. Generate U from uniform distribution on (0, 1).
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4. If U ≤ S, Return X
5. X ← X + 1
6. P ← a

[(b+nr−r
n−1

)/(b+nr
n

)]
P and S ← S + P

7. If U ≤ S, Return X
8. While U > S, do

X ← X + 1

c ←∏X−1
i=1 (1 + r/(ω1 + Xr − i))

∏n−X−1
j=0 (1 − r/(ω2 − Xr − j ))

P ← c(n − X + 1)(ω1 + X (r − 1) + 1)P/(X (ω2 − n − X (r − 1)))

S ← S + P
9. Return X

The pmf for the QPD-I is given by

Px =
(n

x

)
a(a + xr + c)[x−1,c](b + nr − xr)[n−x,c]

(a + b + nr)[n,c]
, x = 0, 1, 2, 3, . . .

A recurrence relation between the above probabilities is given by

Px = (n − x + 1)

x

(a − r + xr + (x − 1)c)

b + nr + r + nc − x(r + c)

x−1∏
i=1

(
1 + r

a − r + xr + ic

)

×
n−x−1∏

j=0

(
1 − r

b + nr + r − xr + ic

)
Px−1 (16.36)

for x ≥ 1, with P0 = ( b+nr
c +n−1

n

)/ ( a+b+nr
c +n−1

n

)
.

Quasi-Pólya I Random Variate Generator based on Inversion Method
[Initialize: ω1 = a − r and ω2 = b + nr + r ]

1. X ← 0
2. S ← ((b+nr)/c+n−1

n

)/ ((a+b+nr)/c+n−1
n

)
and P ← S

3. Generate U from uniform distribution on (0, 1).
4. If U ≤ S, Return X
5. X ← X + 1
6. P ← a

[((b+nr−r)/c+n−2
n−1

)/ ((b+nr)/c+n−1
n

)]
P and S ← S + P

7. If U ≤ S, Return X
8. While U > S, do

X ← X + 1

c ←∏X−1
i=1 (1 + r/(ω1 + Xr + ic))

∏n−X−1
j=0 (1 − r/(ω2 − Xr − j c))

P ← c(ω1 + Xr + (X − 1)c)P/[X (ω2 + nc − X (r + c))]

S ← S + P
9. Return X
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16. E. Borel. 1942. Sur l’emploi du théorème de Bernoulli pour faciliter le calcul d’un infinité de coefficients.
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Applied Math., 1:359–360.



340 References

74. F. Famoye. 1987. A short note on the generalized logarithmic series distribution. Statistics and Probabil-
ity Letters, 5:315–316.

75. F. Famoye. 1993. Testing for homogeneity: The generalized Poisson distribution. Communications in
Statistics—Theory and Methods, 22:705–715.

76. F. Famoye. 1994. Characterization of generalized negative binomial distribution. Journal of Mathemati-
cal Sciences, 5:71–81.

77. F. Famoye. 1995. On certain methods of estimation for the generalized logarithmic series distribution.
Journal of Applied Statistical Sciences, 2:103–117.

78. F. Famoye. 1997a. Generalized geometric distribution and some of its applications. Journal of Mathe-
matical Sciences, 8:1–13.

79. F. Famoye. 1997b. Generalized Poisson random variate generation. American Journal of Mathematical
and Management Sciences, 17:219–237.

80. F. Famoye. 1997c. Parameter estimation of generalized negative binomial distribution. Communications
in Statistics—Simulation and Computation, 26:269–279.

81. F. Famoye. 1997d. Sampling from the generalized logarithmic series distribution. Computing,
58:365–375.

82. F. Famoye. 1998a. Bootstrap based tests for generalized negative binomial distribution. Computing,
61:359–369.

83. F. Famoye. 1998b. Computer generation of generalized negative binomial deviates. Journal of Statistical
Computation and Simulation, 60:107–122.

84. F. Famoye. 1999. EDF tests for generalized Poisson distribution. Journal of Statistical Computation and
Simulation, 63:159–168.

85. F. Famoye. 2000. Goodness of fit tests for generalized logarithmic series distribution. Journal of Compu-
tational Statistics and Data Analysis, 33:59–67.

86. F. Famoye and P.C. Consul. 1989a. Confidence interval estimation in the class of modified power series
distributions. Statistics, 20:141–148.

87. F. Famoye and P.C. Consul. 1989b. A stochastic urn model for the generalized negative binomial distrib-
ution. Statistics, 20:607–613.

88. F. Famoye and P.C. Consul. 1990. Interval estimation and hypothesis testing for the generalized Poisson
distribution. American Journal of Mathematical and Management Sciences, 10:127–158.

89. F. Famoye and P.C. Consul. 1993. The truncated generalized negative binomial distribution. Journal of
Applied Statistical Sciences, 1:141–157.

90. F. Famoye and C.M.-S. Lee. 1992. Estimation of generalized Poisson distribution. Communications in
Statistics—Simulation and Computation, 21:173–188.

91. W.S. Fazal. 1977. A test for a generalized Poisson distribution. Biometrical Journal, 19:245–251.
92. W. Feller. 1957. An Introduction to Probability Theory and Its Applications, volume 1. John Wiley &

Sons, Inc., New York, second edition.
93. W. Feller. 1968. An Introduction to Probability Theory and Its Applications, volume 1. John Wiley &

Sons, Inc., New York, third edition.
94. D.A.S. Fraser. 1952. Sufficient statistics and selection depending on the parameter. Annals of Mathemat-

ical Statistics, 23:417–425.
95. B. Friedman. 1949. A simple urn model. Communications in Pure and Applied Mathematics, 2:59–70.
96. I.J. Good. 1949. The number of individuals in a cascade process. Proceedings of Cambridge Philosophi-

cal Society, 45:360–363.
97. I.J. Good. 1955. The joint distribution of the sizes of the generations in a cascade process. Proceedings

of Cambridge Philosophical Society, 51:240–242.
98. I.J. Good. 1958. Legendre polynomials and trinomial random walks. Proceedings of Cambridge Philo-

sophical Society, 54:39–42.
99. I.J. Good. 1960. Generalizations to several variables of Lagrange’s expansion, with applications to sto-

chastic process. Proceedings of Cambridge Philosophical Society, 56:367–380.
100. I.J. Good. 1965. The generalization of Lagrange’s expansion, and enumeration of trees. Proceedings of

Cambridge Philosophical Society, 61:499–517.
101. I.J. Good. 1975. The Lagrange distributions and branching processes. SIAM Journal of Applied Mathe-

matics, 28:270–275.



References 341

102. M.J. Goovaerts and R. Kaas. 1991. Evaluating compound generalized Poisson distributions recursively.
ASTIN Bulletin, 21:193–197.

103. M. Gordon. 1962. Good’s theory of cascade processes applied to the statistics of polymer distributions.
Proceedings of the Royal Statistical Society of London, Series A, 268:240–256.

104. H.W. Gould. 1962. Congruences involving sums of binomial coefficients and a formula of Jensen. Math-
ematical Notes, pages 400–402, May.

105. H.W. Gould. 1966. Evaluation of a class of binomial coefficient summation. Journal of Combinatorial
Theory, 1:233–247.

106. H.W. Gould. 1972. Combinatorial Identities. Morgantown Printing and Binding Company, Morgan-
town, WV.

107. P.L. Gupta. 1982. Probability generating functions of a MPSD with applications. Mathematische Opera-
tionforschung und Statistik, series Statistics, 13:99–103.

108. P.L. Gupta, R.C. Gupta, and R.C. Tripathi. 1995. Inflated modified power series distributions with appli-
cations. Communications in Statistics—Theory and Methods, 24:2355–2374.

109. P.L. Gupta, R.C. Gupta, and R.C. Tripathi. 1996. Analysis of zero-adjusted count data. Computational
Statistics and Data Analysis, 23:207–218.

110. P.L. Gupta and J. Singh. 1981. On the moments and factorial moments of a MPSD. In C. Taillie, G.P.
Patil, and B.A. Baldessari, editors, Statistical Distributions in Scientific Work, 4: Models, Structures and
Characterizations, pages 189–195. Reidel Publishing Company, Dordrecht.

111. R.C. Gupta. 1974. Modified power series distributions and some of its applications. Sankhyā, Series B,
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213. G. Pólya. 1930. Sur quelques points de la théorie des probabilités. Annales de l’Institut Henri Poincaré,
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applications, 157
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Cumulant generating functions, 18
Cumulative distribution function (cdf), 15

Damage process, 178
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Delta distributions, see Distribution
Difference equations, 97, 196, 253
Difference-differential equations, 75, 146, 168
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binomial-binomial, 32
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binomial-Poisson, 27, 31, 43
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Dev, 43
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double negative binomial, 32
Felix, 24
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223–236, 244
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generalized negative
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generalized negative binomial, 28, 29, 65, 88, 89,
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generalized Pólya–Eggenberger, 87, 242
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Harish, 43
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inverse hypergeometric, 100
inverse Pólya, 95
Katz, 24, 95
Lagrangian Katz, 241–248
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linear negative binomial, 31, 250
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logarithmic-binomial, 32
logarithmic-negative binomial, 28, 32, 43
logarithmic-Poisson, 28, 32
modified Felix, 28
modified generalized logarithmic

series, 237–238
modified Ved, 28
negative binomial, 26, 39, 95, 194
negative binomial-binomial, 27, 32, 43
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negative hypergeometric, 88, 96, 100
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Otter, 24
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Poisson-negative binomial, 27, 32, 43
Prem, 99
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quasi-hypergeometric I, 80–81, 105
quasi-hypergeometric II, 85–86, 107
quasi-Pólya I, 81–82, 105
quasi-Pólya II, 86–89, 106
random walk, 26
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rectangular-negative binomial, 28
rectangular-Poisson, 28, 32
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Sudha, 31, 64
Sunil, 24
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truncated generalized logarithmic series, 236–237
truncated generalized negative binomial, 191,

217–218
truncated generalized Poisson, 180–181
Ved, 24, 31, 64
Waring, 96
zero-inflated generalized Poisson, 137
zero-truncated generalized negative

binomial, 154, 218, 223
zero-truncated Lagrangian Katz, 244

Distributions
generalized power series, 41
inflated modified power series, 136
location-parameter discrete

probability, 144, 151, 215
maximum-Bayesian-entropy, 46–48
modified power series, 41–46, 121–136
truncated modified power series, 137

Empirical distribution function, 177
Equivalence theorem, 30
Estimation

confidence regions, 175
empirical weighted rates of change, 172
interval, 132, 173–175, 204–205
maximum likelihood, 77, 79, 88, 128, 149, 156,
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method based on first frequency, 160
method based on moments and ratio of

frequencies, 202
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frequency, 201, 246
method based on proportion of “ones” and sample

mean, 230
method based on sample mean and first frequency,

149, 155, 171
method of moments, 88, 148, 155, 160, 170, 201,
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minimum chi-square method, 184, 204
minimum variance

unbiased, 130–131, 150, 203, 231, 277
Expansion

Abel series, 90
binomial, 3
bivariate Lagrange, 12, 278, 294
Lagrange, 10, 22, 70, 80, 82, 86, 89, 114, 144,

192, 198, 210, 226
multinomial, 3
multivariate Lagrange, 294, 299
negative binomial, 3
Poincaré’s, 294
power series, 270
Taylor’s, 7

Expected value, 16, 83
Extra binomial variation, 69, 72

Factorial power series, 72
Factorial

ascending, 1
descending, 1

Faà di Bruno’s formula, 13
FBP, 195
First busy period, 195
Fisher information, 78
Force of mortality, 15
FPT, 194
Function

beta, 4
bivariate, 12
confluent hypergeometric, 9
gamma, 4
Gauss hypergeometric, 9
hypergeometric, 9, 36
incomplete beta, 5
incomplete gamma, 5
Kummer, 9
Lambert’s W , 166, 186

Geeta distribution, 143–151
applications, 150
estimation, 148
generating functions, 144
moments, 145
other properties, 145

Generalized distributions, see Distribution
Generalized logarithmic series distribution, 223–236

applications, 236
characterizations, 234
estimation, 229
generating functions, 224
moments and cumulants, 225
other properties, 226
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statistical testing, 233

Generalized negative binomial distribution, 191–217
applications, 215
characterizations, 207
estimation, 200
generating functions, 192
moments and cumulants, 192
other properties, 197
other related distributions, 218
statistical testing, 205
truncated, 217

Generalized Poisson distribution, 165–180
applications, 179
characterizations, 177
estimation, 170
generating functions, 166
moments and cumulants, 167
other properties, 170
other related distributions, 186
restricted, 182
statistical testing, 175
truncated, 180

Generalized stochastic urn model, 94–103
Generalized variance, 183
Generating functions

bivariate probability, 269, 284
central moment, 17, 52
cumulant, 18, 54, 60, 166, 187, 219
factorial moment, 18, 89, 90
moment, 17, 56, 122, 144, 166, 186, 224
multivariate probability, 296
probability, 19, 89, 90, 187, 224, 241

GLKD, 242
GLSD, 65
GLSD0, 237
GNBD, 65
Goodness-of-fit, 233
Gould series distributions, 89
GPD, 65
GPSD, 41

Hazard function, 15
Homogeneity hypothesis, 185

Identity
Hagen–Rothe’s, 87
Jensen, 83
Vandermonde’s, 3

Independent, 14
Index parameter, 39
Index table search method, 318
Infinite divisibility, 177, 214
Integral representation, 67

Jointly sufficient statistics, 277

Kolmogorov–Smirnov statistic, 177
Kronecker delta, 256
kurtosis, 159, 167, 188, 194, 219

L-shaped, 143
Lagrange expansions, 10–12
Lagrange transformation, 10, 22
Lagrangian distributions, 22–41

basic, 22–23, 66, 143–162
bivariate, 269–290
central moments, 51–53, 56–60
convolution property, 36
cumulants, 53–56, 60–62
delta, 23–26
general, 25–29
limit theorems, 66–67
moments, 33–36
weighted basic, 161

Lagrangian Katz distribution, 241–248
applications, 248
estimation, 245
generating functions, 241
moments and cumulants, 242
other properties, 244
related distributions, 248

Lagrangian probability distributions, 21
LDPD, 215
Length-biased, 121, 132
Leptokurtic, 159, 167
Likelihood function, 77, 128
Likelihood ratio statistic, 174
Limit theorems, 66
LKD, 241
Log-convex, 228

Makov–Pólya urn model, 106
Mathematical induction, 331
Maximization of likelihood, 174, 185
Maximum-entropy, 46
MBED, 47
Mean absolute error, 173
Mean square error, 173
Mean-vector, 293
Meromorphic function, 294
Method of conditioning, 185
Method of induction, 76
Mixture distribution, 195
MLD, 293
Modified Anderson–Darling statistic, 177
Modified Cramer–von Mises statistic, 177
Modified power series distributions, 121–136

characterizations, 132
estimation, 128
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other properties, 125
related distributions, 136

Moment generating functions, 16–18
Moments

about zero, 16, 137
ascending factorial, 123
bivariate, 282
bivariate cumulants, 284, 285
central, 16, 123, 137, 145, 152, 159, 167, 193,
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central moments of L( f ; g; x), 51–53
central moments of L1( f1; g; y), 56–60
central product, 274
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cumulants of bivariate Lagrangian

distributions, 271–272
descending factorial, 17, 33, 193
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factorial moments, 275
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incomplete ascending factorial, 125
incomplete factorial, 194, 226
negative, 73, 124, 194
noncentral, 122, 152, 159, 167, 192, 225, 243, 282
product, 274

Monte Carlo simulations, 177
MPSD, 41
Multiplicative process, 21
Multivariate distributions

Lagrangian, 293–315
Lagrangian delta, 301–302
Lagrangian logarithmic, 300–301, 304
Lagrangian negative binomial, 300, 304
Lagrangian Poisson, 299, 303
Lagrangian quasi-Pólya, 312
modified power series, 302–308
power series, 295
trivariate Lagrangian probability, 296

Multivariate functions, 294
Mutually exclusive, 14, 263
Mutually independent, 244

Nuisance parameter, 174, 185

Operator
Abel, 7
Abel-difference, 89
backward difference, 6
difference, 89

displacement, 5, 89
forward difference, 5

Order statistics, 188
Over-dispersion, 69, 144, 151, 158

Parametric bootstrap, 177
Platykurtic, 167
Poincaré’s formula, 271
Poisson process, 195
Polymer distributions, 22
Polynomial, 6
Polynomials

Abel, 7, 13
Gould, 7, 89
Hermite, 9

Portfolio of policies, 186
Posterior probability, 15
Prem distribution, 99–103

applications, 103
mean, 101
variance, 102

Probability generating functions, 18–19
Probability mass function, 15

QBD, 70
QHD, 80
QPD, 81
Quasi-binomial distribution I, 70–80

maximum likelihood estimation, 77
mean and variance, 71
negative moments, 73

Quasi-binomial distribution II, 82–85
mean and variance, 83
other properties, 85

Quasi-hypergeometric distribution I, 80–81
Quasi-hypergeometric distribution II, 85–86
Quasi-Pólya distribution I, 81–82
Quasi-Pólya distribution II, 86–89

estimation, 88
mean and variance, 88
special cases, 87

Queuing model, 195
Queuing process, 22, 111–115, 169

Random jumps model
general, 264–265
polynomial, 263–264

Random mapping theory, 22
Random mappings, 70
Random variable, 15
Random walk model, 194
Random walks

binomial, 262–263
gambler’s Ruin, 254–255
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polynomial, 255–258
quadrinomial, 260–262
simplest, 254
trinomial, 259–260

Rejection method, 318
Relations between Lagrangian distributions, 62–66
Reversed J -shaped, 143

Sequential search method, 318
Series

Abel, 13
Gould, 13, 81, 85

Skewness, 159, 167, 188, 194, 219
Standard normal, 66
Stirling numbers

first kind, 7
second kind, 7

Stochastic model of epidemics, 115–116
Stochastic process, 22
Sufficiency, 200
Sufficient statistic, 200, 231
Survival function, 15

Table look-up method, 318
Test

chi-square, 176, 233
discrete Anderson–Darling, 205, 234
discrete Cramer–Von Mises, 234
empirical distribution function, 177, 205, 234
goodness-of-fit, 176, 205
likelihood ratio, 176
sequential probability ratio, 185, 206
uniformly most powerful, 185, 205

Thermodynamic process, 169
Traffic intensity, 195
Transformed function, 25
Transformer function, 25
Trees

Cayley’s, 117
enumeration of, 116–117
ordered, 117, 313
rooted, 116, 313, 315

Truncation error, 165, 191

Unbiased estimator, 20
Under-dispersed, 151
Under-dispersion, 69, 144, 158
Unimodal, 70, 145, 153, 160, 170, 198, 227
Urn model, 93–108, 196, 289

Variance-covariance matrix, 293, 297

Weighted distribution, 186
Weighted distributions:

Borel, 64, 162
Consul, 31, 162
delta-binomial, 31
delta-negative binomial, 31
delta-Poisson, 31
Geeta, 64, 161
generalized negative binomial, 220
generalized Poisson, 187
geometric, 31
Otter, 64

Zero regression, 179, 215
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